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Abstract This paper presents a semantic algebra, suitable for use in giving
the denotational semantics of various forms of declarations and binding constructs
in programming languages. The emphasis of the paper is on the development of se-
mantic descriptions which are easy to understand at an intuitive level, being based
on algebraic operators corresponding to fundamental concepts of programming
languages. Some familiarity with denotational semantics and abstract data types is
assumed. 7
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1. INTRODUCTION

Denotational Semantics has been used to describe various programming languages,
by giving models based on higher-order functions on Scott-domains. Techniques
have been developed for representing features of programming languages In terms

of the basic operations of A-notation: application, abstraction, tupling and '"tagging"
(separated sums). Naturally enough, the most frequently used techniques have been
those corresponding to fundamental concepts of computation, common to many pro-
gramming languages: for example, function composition, representing the sequencing
of actions; continuations, also representing sequencing, but allowing jumps in
control; and the separation of states into (usually static) environments and {dynamic)
stores. (For an introduction to the descriptive techniques of Denotational Semantics,
see Gordon's (1979) book. )

The problem is that‘ these modelling techniques seem to have taken on a life: of
their own. A standard denotational semantics is (generally) presented as if the
meaning of each construct was just the application of higher-order functions to each
other - instead of being concerned with the order of evaluation of sub-constructs,
scope rules, etc. It is left to the reader of the semantics to recognize the domains
of semantic values and the associated patterns of application and abstraction, in
order to extract the operational implications of the semantics from the A-notation.

For example, considler* the fragment of standard denotational semantics in
Table 1. Anyone familiar with some of the literature on denotational semantics will
immediately recognize the familiar patterns, and conclude that the language being
described is a deterministic, imperative language, perhaps having some form of
jump, and probably with static scope rules for variables. A command sequence

'c I;Cz' is executed in left-to-right order, and the R-value of an identifier 'l' is

* To be presented at the International Colloguium on Formalization of
Programming Concepts, Peniscola, Spain, April 1981,
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found by a single de-refergncing of the location denoted by the identifier.

Of course, it is splendid that those well-versed in denotational semantics can
communicate their ideas so easily. (It was Strachey's idea that one could learn a
lot about a language by simply inspecting the domain definitions in its standard deno—
tational semantics. ) But note the number of different concepts which application
(in XA =notation) is representing: sequencing, static scoping, dynamic storing,
looking-up in“environments and stores, and passing a value to a continuation!

As well as effectively disguising operational concepts, the widespread use of
applications in the standard style of denotational semantics has another unfortunate
effect: it makes semantic descriptions difficult to modify. This point is of relevance
when denotational semantics is used during language design and development, and
also when teaching formal semantics - starting by considering a small fanguage with
simple semantics and extending it gradually to (say) ADA. Of course, a standard
denotational semantics is easily extensible, so long as the new constructs are based
on the same concepts as the original ones; the crunch comes when one wants to add
something new, like non-determinism (and power-domains) - it can entail re-writing
all the original semantic equations, unless one is clever enough to find new semantic

domains which allow the original patterns of applications to be retained.

Table 1. A Fragment of Standard Denotational Semantics
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Here, we use a new approach to denotational semantics, free from the above
problems inherent in the standard approach. The basic idea is to insist on the
abstraction, as explicit operators, of the fundamental operational concepts of com-

putation. These operators form a so-called semantic algebra: a sort of abstract

data type, with the operators generally operating on "actions" rather than on data.

The proposed approach is illustrated in detail below. One of the main features
is that the "semantic equations" are now devoid of any assumptions about the struc-
ture of the semantic domains. Not only does this mean the absence of long lists of
parameters to the semantic function(s), it means also that there is never any need
to modify existing semantic equations when extending the described language with

new constructs. The semantic equations give the meaning of each syntactic con-

3
struct purely in terms of the operators representing the fundamental operational
concepts of computation — the semantic functions can in fact be regarded as a simple
translation from the programming language to the semantic algebra.

As for the definition of the semantic algebra itself, there are two ways to go:
it may be defined axiomatically, in the style of equationally-specified abstract data
types; or one may take a concrete semantic algebra (a model), defining the opera-
tors as functions on Scott-domains. The choice is essentially between, respectively,
ease of modification and ease of initial specification, although (even) more subjective
properties like comprehensibility should also be considered.

An earlier paper (Mosses (1980)) illustrated the usefulness of equationally-
specified semantic algebras in the construction of correct compilers; and the
author's general preference is for equational specifications. It is also appealing
to consider the semantic equations of a denotational semantics as an equational spe-
cification of an operator, rather than (or as well) as an indirect definition of a
homomorphism. However, in spite of this, the semantic algebras in this paper are
defined as models. The motivation is two-fold: to make this paper more digestible
for those acquainted with {standard) denctational semantics; and to put the emphasis
on the idea of abstracting semantic operators corresponding to fundamental concepts,
rather than on the specification of these operators.

The rest of this paper is organized as follows. Section 2 introduces notation,
and a basic semantic algebra which, although it may look rather strange at first,
seems to be a good foundation for building up more specialized semantic algebras
for particular (families of) languages. Section 3 considers the concept of binding,
and shows how to cope with both static and dynamic scope rules. Section 4 special-
izes the basic algebras. The conclusion assesses the advantages and disadvantages

of the proposed approach, and points to topics for future work.

2., A BASIC SEMANTIC ALGEBRA

We start by considering operations corresponding to some particularly fundamental
concepts, such as sequencing and value-passing. These operations, together with
their definitions as functions on some (Scott-) domains, give a basic semantic alge-
bra, which can be extended with more specialized operations for the purpose of
describing particular programming languages.

Actually, we do not go into the details of a model (i.e. choice of functions and
domains) in this section. Our basic semantic operations are only informally described.
The point is that the domains required to support the full basic semantic algebra are
overly complex - at least in comparison to the domains needed for the specialized
semantic algebra of Section 4, which is used for giving the semantics of a simple
example language. More comments about possible models are made below.

In fact the operations of the basic semantic algebra (Qg) described below are a

selection from a more general semantic algebra (to be reported in a forthcoming
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paper). Only those operations relevant to the semantics of our simple example

language are included.

Notational Conventions

Our somewhat unconventional notation is motivated by a desire to present syntactic
constructions and semantic operations in the same way - after all, the operator
symbols corresponding to semantic operations give a language, and syntactic con-
structions may denote (compound) semantic operations. In contrast to the notation of
ADJ (e.g. 1979), we make use of ordinary terminal symbols of grammars in operator
symbols, and we allow distributed (mixfix) operators as well as prefix and infix ones.

Domain names are in lower case (possibly with hyphens and/or primes), e.g.
cmd, a, a'; subscripts may be used to distinguish particular occurrences of domains
in definitions. Domain names are used also as meta-variables, varying over values
in the corresponding domains. Alphabetic parts of operator symbols are underlined,
€.g. var, update. The functionalities of operator symbols are given in a modified
BNF, e.gq.

cmd ::= var id := num in cmd | emd ;5 cmd,,
i ¢
a:i= a;a,
- whether an operator symbol represents a syntactic construction or a semantic
operation is determined by the domains used (here, 'cmd' is a syntactic domain,

whereas 'a'! is semantic).

Fundamental Operations

Now for an informal description of the basic semantic algebra, BS, whose syntax
is given in Table 2. (The reader familiar with the semantic algebras of Mosses
(1980) might notice some simplifications which have been made here - as well as

some new uses of old symbols!)

Table 2. Syntax of BS, A Basic Semantic Algebra

Domains a - actions, = with source ga € A¥*, target ra € A%
v - values, with domainbv e A

X = variables, with domain 6 x€ A

ga= 7? Ta={)

Syntax a:i:=()

| v () (6v)

| apa, oa, Ta;Ta, loa,=ca,)

| a;; a, oa, TarTa, (Ua1=caz)

| ay! a, oa, Ta, (-ra1=cra2)

| == a, (6x) Ta, (crai=( ))
vii=x v =_8x
X =] Gx =i where i € A

y_in i i€ A, nefo,1,...}

5
=7 The.central cencept is that of actions, or perhaps "computations!" might be
better terminology. Actions (a) may consume and/or produce sequences of values,
as specified by their sources (g a) and targets (r a); they may also have "effects".
The values (v) are divided into smaller domains named by the elements of the un-
specified set A (taking A as a poset would allow a hierarchy of separated sums of
domains). As well as being produced and consumed by actions, values may also be

referred to by semantic variables (x).

The simplest action is the null action '( )!, which consumes any values passed
to it, but otherwise has no effect.

Next is the action 'v!, which just produces that value. (The value may depend
on previously-computed values, referred to by variables x. )

The actions 'al,az' and lat;az' both correspond to an associative tupling of the
value sequences produced by a, and a,. The difference between them is that with
31, the effects of a, are preceded by the effects of a;, whereas with !, !, the effects
(if any) of a, and az may be interleaved. In either case, the sequences of values
consumed by a, and a, are identical. (The most common use of ;! is in composing
actions which neither consume nor produce any values. ', ! is useful for specifying
a "don't care' order of evaluation. )

The action 'aT.'az' corresponds to function composition (and to application). All
the values produced by a1 are passed to a, (for consumption). Consequently, the
effects of a, (if any) precede those of as. (The reader worried by the apparent
commitment to a ""call-by-value" discipline may be reassured by the illustration of
delayed evaluation in Section 4 - the idea is just to "wrap up' an action as a value,
enabling it to be passed around by other actions.)

The final basic action considered here is 'x= aT', which consumes a value,
and binds the variable x to this value in a;. (The introduction of such binding
operators complicates an algebraic ireatment, but this is offset by being able to do
without machine-code-like "permutors! (ADJ (1979)) for re-arranging sequences of
values, )

For convenience, semantic variables 'x' have been formed by underlining and
(possibly) subscripting domain names i € A. In specialized semantic algebras used
for describing particular (families of) programming languages, A is specified fully,

and operations on values (and constants) are added to the operations in Table 2.

Syntactic Conventions

Brackets may be used to make the structure of BS terms explicit. The operations
' %' and 1! are all associative, allowing repeated occurrences to be written
without brackets. The only other convention in BS is that the term 'aI' in 'x= a,'

is assumed to extend as far to the right as possible (cp. A-notation).

Possible Models
If the action ‘al,az‘ were to be dropped from BS, it would be possible to take a
model based on simple Scott-domains (either 'direct", or llcontinuation''-based).
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However, when actions with effects are combined in 'at,az', the resulting potential

non-determinism necessitates the introduction of power-domains (and "resumptions!),

In the specialized semantic algebra LS of Section 4, !',! is allowed only on effect-
free actions, permitting a model without power-domains.

Note that if 'al;az' were to be omitted, and actions had no effects, then 8S
would reduce to a X-calculus for sequences - and a "pure" model (with strict com-

position) could be used.

The next section extends BS with some rather general operations corresponding

to the concept of bindings in programming languages. The resulting algebray BBS,

is specialized for giving the semantics of a simple example language in Section 4.

3. AN ALGEBRA FOR BINDING

Mosses (1980) gave a semantic algebra, S, and used it in giving a semantics for a
small, imperative programming language. That language included the construct
'fet id be aexp, in aexp,', which declared and initlalized a local variable whose
scope was aexpz. So we might expect that S had already some suitable operations
corresponding to static binding.

In fact, the "binding' operations of S were 'update! and 'contents' - corre—

sponding to (dynamic) storing! These were used to "implement" static binding in the

semantics of 'let id be aexp, In aexpz' by remembering the value (contents) of id be-

fore the "initialisation" to aexp , and then restoring {updating) id with this value
after computing aexp,. Apart from the fact that this simple technique only gives
static scope rules in the absence of procedures with global variables, it can hardly
be regarded as a direct way of specifying static binding. (It was used in the
referenced paper only to facilitate comparison with the work of ADJ (1979) on

compiler correctness, )

Let us consider the fundamental concepts of binding. The basic notion is that a

declaration (or a formal parameter) specifies a binding of an identifier to some value,

and subsequent occurrences of the bound identifier may refer to this value. In

general, the !bound value' may be either a constant (e.g. number, address) or an

unevaluated action (e.g. procedure body); and in the latter case, there may be some

unresolved references to identifiers (e.g. global variables). There are basically
two ways of resolving such references: static scoping, which makes use of the
bindings existing at the time the value is bound; and dynamic scoping, which uses
the bindings existing at the time the unresolved reference is evaluated. (These two
strategies give different results when identifiers can be re-declared and bound

values can have unresolved references. )

The operations of the semantic algebra BBS, whose syntax is given in Table 3,

should provide a general basis for the semantics of binding constructs of program-

ming languages. As illustrated by the specialized version of BBS used in Section 4,

~———
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it has not been assumed that static and dynamic binding strategies are mutually
exclusive. Generality is achieved through allowing the ""freezing" of unresolved

references in a bound value at any time before they are needed in a computation.

Table 3. Syntak of BBS, a Semantic Algebra for Binding

Domains a - actions, with sourcega € A%, target ta € A¥
v - values, with domaindv € A

where {d,id} € A, a set of domain names

Syntax a:= delay {a,} ga=() ra=(d) (vay=ra,=()
| eval (d) ()
| freeze (d) (d)
| bind {a} (id,d) Ta, . (oa,;=())
|  bind-local fa,) (id, d) Ta, (oa;=())
| find {id) {d)
| find-local (id) (d)

The following informal description of the BBS operations might suggest a model
to readers familiar with (for example) Gordon's (1979) book. The domain name 'd!
corresponds to ''denotable values", and 'id' represents the embedding of syntactic
identifiers in the semantic algebra.

The action 'M{al}"coerces an unevaluated action (a]) to a denotable value,
without freezing any references. (The restriction of a, to empty source and target
is not essential.) The reverse of this operation is 'eval' which converts a denotable
value back into an action - without any freezing - and performs the action. The

composition 'delay {a I; !freeze! gives static scopes, whereas dynamic scopes are

obtained by simply refraining from using 'freeze' at all.

The action 'bind 531] ! takes an (id, d) pair of values, and binds id to d for the
duration of a,. A variant on this is 'bind-local [a1} ', in which the binding is only

statically visible. The latest binding - either frozen, or dynamic - is obtained by
'find'!, whereas 'find-local' ignores dynamic bindings.

It is conjectured that the operations of BBS are sufficient for desér-ibing the
scope rules of most (if not all) existing programming languages. The author would

welcome any convincing counter-examples.

4. AN EXAMPLE

We conclude with a semantic description of an (artificial) language L, whose main
virtue is that procedure identifiers have static scopes, whereas variable identifiers
have dynamic scopes.

However, we first need to specialize BS and BBS to LS, a semantic algebra

corresponding exactly to the concepts which (in our analysis, at least) underly L
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In forming LS, we add actions 'update' (for storing values) and 'contents' (for
accessing values). To avoid unwanted sharing, variables are bound to unique iden-
tifiers (i.e. "locations!") generated by the action 'uni ue', rather than bound directly
to numbers.

sI;S= is defined in Table, 4, with a convenient choice of domains for the promised
medel, based on '"'direct semantics''. Note that the actions a' are (side-) effect free,

which permits the definition of 'a'I,a'z’onour'(r'elatively) simple domains.

Table 4. LS, a Semantic Algebra for L
Domains a - actions, with source ga € A*, targetra € A*
a' - actions without (side-) effects
v - values, with domain 6 v € A
- variables, with domain 6 x € A
where A = {id, |,n,p}
where id is identifiers
I is locations
n is numbers
p is procedures
Syntax a8 = apja, ga=o0a, Ta=rta;- Ta,
| ayta, oay T3
| == a, (6 x) Ta,
| eval (p) ()
| bind-proc {a,} {id, p) Ta,
|  bind—var {a‘} (id, 1) Ta,
| update (1,n) ()
| unique (id) (1)
| a ga' ra'
al = a'l,a‘2 Q.EEUa'T E_.'E'n"a'|‘ Ta'z
| at la'y ca', Ta',
[ov () (6v)
| delay {a,} () (p)
| freeze—procs (p) (p)
| find—proc (id) {p)
| find—var (id) (1)
| contents W (n)
v o= x bv=0x
x =i dx=1i where | € A
i i} A€ P03 050 s

(Table 4 continued)

Semantics:
Domains a =[elxep]+[oga x s]+[ra x s]
a‘=[elxep]-![o-a' X s:[4 ra'

where el = id=|

ep = id=+p
s = Ix mwherem=1=n
1 Ll
n = {]1,0,1,...}
p =a+[el*+()xs=()xs]
id = unspecified
Operations
(asap)el,eplloay,s) . . . . . =let (ra;,s,) = a,lel,epllga ,s) in
let (ra,,s,) = aylel, ep)loa,,s,) in
(ra, - ra,,s,)
(a fagleleplloa,,s) . . ... =let(ra,,s,) = a,lel,ep)loa,,s) in
az(el,ep)(fai,sT)
(x= a )el,ep)((6x),s) . ... =(a, withdxfor x)(el,ep)(),s)
(eval)(el,ep)l{p),s) . . ... =pis a -+ plel,ep)({),s),plel) ),s)

(bind—procia T} )el,ep)llid,p),s) =a T(el, ep[p/id](( ), s)
(pind-var{a el ep)(lid, 1),s) =a Jet[1/id], ep)(( ), )
(update)(el, ep)((1, n), (lo,m)) ..o o=({0), ('0, m[n/1]1))

(unigue)(el,EP)((id),(lo,m)) - =((I0),(I0+1,m))
(a')el,ep)loa',s) . . .. ... = let ra' = a'(el,eploal, s) in
(ra',s)
(a'y,a'y)el,eplioa'y,s) ... =letra', =a' (el,ep)loa’y,s) in
letral, = a',(el,ep)iga'y,s) in
Ta', - ra',
(a',tabiel,eplloa’y,s) . . . . =letra', =a' (el,ep)loa'y,s) in

a'z(el, ep)(ra’ 1 s)

{(v)(el,ep)(( ), s) e e e =v

(delayfa,f)lel,ep)( ),s) . .. =a,
(freeze-procs)(el,ep){(p),s) . =pisa -»Aelrp(el],ep), p
(find—proc)(el, ep)((id),s) . . . = eplid)

(find—var)(el, ep}{(id), s) = el(id)
(contems)(el,ep)((l),(Io,m)). . =m(l)
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Some liberties have been taken with notation in the definitions of operations,
e.g. o0 and 7T are used to indicate sequences of (typed) bound variables, and the
syntactic domain names are used both for semantic domains and as meta-variables
over these! The definition of 'x= af' has been left informal, to avoid going into
some technicalities.

Table 5 gives the semantics of L, based on the operations of LS. It should not

need further explanation - if.it does, then this paper has not achieved its aims.

Table 5. Syntax and Semantics of L

Domains prg, cmd, id, num
Syntax prg :i= res id in cmd

cmd :i= cmd 1 cmcl2

I

I var .
| .
| proc id is cmd, in c:md2

Semantic Functions based on LS

P: prg + a, wherega={(), ra=(n)
Plresidinemd]] ..... = id! unique!
A= (id, 1) | bind-var {C[cmd] ;

1 contehtsl

C:cmd +a, wherega=(), ra={()
C[[cmdr;cmdzj] SEE FEE = C[cmdm;c[cmdz}]
Clidya=td,] e v v = (id, ! f: d-var,

it:i'2 ! find-var ! contents) ! update

Clvar id := num in emd, ] . id! unique !
) = (Ln[num]) ! update;
_ (id, 1) ! bind-var {C[emd] }
Cleallig] ........ = id! find-proc! eval
Cllproc id is emd  in emd, ] (id,
delay {C[lemd ]} !freeze-procs )!
bind-proc {C[cmdz:ﬂ}

N i num = v, where §v =n, is not specified.

11

5. CONCLUSION

By the abstraction of operations corresponding to fundamental concepts of pro-
gramming languages, we obtain denotational descriptions which do not make assump-
tions about choices of semantic domains. Compared with "standard! denotational
descriptions, ours seem to be easy to modify and extend. Moreover, they exhibit
the operational features of the described language.

The particular semantic algebras presented in this paper are not claimed to
be the only suitable algebras, as regards the choice of operator symbols and the
functionalities of the operations — or even as regards the underlying concepts.
More experimentation with semantic algebras is needed.

Future work is to investigate the axioms satisfied by the operations of semantic
algebras, and whether equational specifications could be used instead of (or as well
as) domain-based models. Once the "right" semantic algebras have been developed,
it would be useful to introduce a framework for expressing the hierarchical struc—
ture and modularity of these algebras - perhaps along the lines of Burstall &

Goguen's (1977) specification language, Clear.
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