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Abstract

We develop the concept of minimum weight binary continued fraction
representation of a rational number as an extension of minimum
weight binary radix representation of an integer. The relation of
these representations to the attainment of optimum efficiency in

the shift and add or subtract model of binary computer arithmetic

is discussed.
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I INTRODUCTION AND SUMMARY

Signed digit binary representation allows the digit values of a binary
radix polynomial to assume values from the signed digit set {-1,0, 1}
rather than the digit set {0, 1} of standard binary representation. For
example, using 1 to denote the value -1, we have 10070070 1y =
1101110 12 = 221. Amongst the redundant signed digit representa-
tions of an integer n, we are concerned with those representations which

have the minimum number, w(n), of non zero digits. Thus, from the

preceeding example, we note w(221) is at most four.

The binary signed continued fraction

[ao,al,...,am] = Hy :

allows each partial quotient a, to be a member of the signed binary partial

2-,& 23, ...}, in contrast to standard simple

quotient set {0,+ 1,£2,+2
continued fractions where a, is any integer and a, = 1for 1< i< m-1,
with a2 2. For example, using overbars for negative partial quotients,
[2,1,8,16] = [3,7,16] = 355/113.

Amongst the redundant signed continued fraction representations of a
rational p/q, we are concerned with those representations which possess

the minimum number, u(p/q), of non zero partial quotients. From our

example, u(355/113) is then at most four. It will be shown that u(p/1) =



w(p), so 4: Rationals =+ Int provides an extension to the rationals of
w: Int + Int, where u and w are termed the minimum weight functions

over the rationals and over the integers, respectively.

A considerable literature has been implicitly developed for the minimum
weight function over the integers incidental to the design of efficient
multiplication and division algorithms for binary computers [N56, R58,
T58, R60, F61, M61, M62, R70]. Note that in the multiplication of two
binary represented integers by an iterative shift and add or subtract
procedure, it is the number of non zero digits inithe signed digit binary
representation of the multiplier that determines the number of add and

subtract operations in computing the product.

As a model for standard binary multiplication architecture it is reasonable
to assume the add and subtract execution times to be equivalent and more
costly than the shifts. Furthermore, the total number of shifts is deter—
mined by the position of the leading digit of the multiplier rather than

the composition of individual digit values, and so is not a significant
variable. For the shift and add or subtract model of multiplication with
efficiency measured in terms of the total number of adds and subtracts,
the minimum weight binary representation of the multiplier then achieves
optimum speed. Detailed investigations of the shift and add or subtract
model of the division of binary represented integers by several authors
[R58, T58, F61, WL61, M62] has culminated in the result that the
quotient; which can be determined by a humber of add or subtract

operations equal to the number of signed non zero digits in the resulting



representation of the quotient, can always be obtained in one of its
minimum weight forms. Thus the minimum weight representation of the
resulting quotient also determines the optimum speed in the shift and
add or subtract model of division of binary represented integers. Since
binary floating point numbers may simply be considered as integers
scaled by powers of two, these same optimal multiplication and division

results also pertain to binary floating point arithmetic.

Reitwiesner pursues an explicit detailed investigation of minimum
weight binary representation in [R60]. He shows that a unique cano-
nical minimum weight binary representation can be characterized by the
property that no two successive digits are both non zero, and gives a
simple digit by digit right to left conversion procedure from standard

to canonical minimum weight binary representation. From analysis

of the algorithm he then shows that an assumed average density of
one-half for the non zero digits in the standard binary representation
yields an average of one-third non zero digits in the minimum weight
binary representation. To see that this average is asymptotically
achievable consider the following procedure for determining a signed
digit binary representation of a real number %'i o < 1. Choose a digit
b€l -%, 1} so as to minimize |b - @& |, with say b = 1 for & = 3/4. Then
multiply b — @ by the appropriate power of two, termed the shift length k,
to achieve % < zk{ b-a| < 1, and repeat the cycle. Each cycle computes
one non zero digit out of a number of digits(of the binary fraction for ¢)

equal to the average shift length per cycle. If @ is chosen uniform on

—;, 1], then 2k| b-a| is also uniform on (—;-, 1] and the average shift



length is -12- - 2+ -}‘- » 3+ -éL « 4+ ,,, =3, so the asymptotic average
density of hon zero digits in such a signhed digit representation of ¢

is 1/3.

In Section |l we develop properties of the minimum weight function

w: Int #* Int in a straightforward number theoretic manner primarily

to provide a self contained foundation for the subsequent study of the
minimum weight function over the rationals. Our main oEiginal contri-
bution of this section is an exact formula for Q(Zk) = % w(i), from which

i=1
we obtain that the average minimum weight of the integers over the

k
range 0= n< zk_1 is —1-k+£+£-ibg .
39 g, oK

Our interest in minimum weight binary signed continued fractions is
likewise motivated by their importance in determining the optimum speed

in terms of the number of add and subtract operations in the shift and add
or subtract model of binary computer arithmetic. In this case we are spe-
cifically interested in the multiplication, division, addition and subtraction
of fractions, with the application relating to efficient computer arithmetic

unit design for fixed and floating slash arithmetic [MKBO].

Essential to efficient computer arithmetic design for such slash arithmetic
p.
is the fact that the truncated signed continued fraction (—:I-l- = [aO’a‘l’aZ’ ceesa;]
i

of the binary signed continued fraction [ao,a],az, o ,am] can be recur-

sively computed forwardly for i =0,1,2,...,m from the equations



P, =20
a_, = 1
p___] = 1
a_q = 0
Pi B p1—1+p|—2
for 0= 1< m.
q; - ql_1+q|_2

Thus for a; a power of two, each cycle of the recursion is simply a
standard shift and add for the numerators and denominators, which may
be computed in parallel in computer hardware. Furthermore, by seeding

P_q with the value r and a_o, with the value s, we may then determine the

o]
product Z x =2 ina number of addition and subtraction operations
m
given by the number of non zero partial quotients in the binary signed

continued fraction [EO’aT’ i B ,am]. The following illustrates the compu-
tation of 5 x [2,1,8,16] = ??gg .

[ -2 -1 0 1 2 3

a; 2 1 8 16

rp; 0 r 2r 3r =22r 355r

sq, s 0 s s -7s 113s

Our purpose in exploring the feasibility of slash arithmetic is to support
reasonably efficient approximate real arithmetic as well as exact ratjonal
arithmetic. To this end it may be noted that the preceeding example
computes an approximation to -;; X ® with relative error less than

1x 10~7 using only four shift and add operation cycles.



The preceeding fraction multiplication procedure employing continued
fraction representation for one of the arguments may be extended to

division by simply reciprocating r/s. We may similarly compute [KM81:|

addition or subtraction of fractions by setting P_,= e i, P_y=5s, d_, =sand
. . ot Pm r
q = 0, where then we obtain the resulting fraction - = — £+ —,
=] 2 u qm S

Related interesting observations on the possibilities for exact computation
utilizing rationals with both arguments and results in their continued

fraction form have been given by Gosper [G80].

We have found no previous treatment of minimum weight binary continued
fractions in the literature. As a foundation for the investigation of mini-
mum weight signed binary continued fractions in Section |11, we initially
define the minimum weight function p: Rationals =+ Int in terms of the
minimum weights of the partial quotients of the signed continued fraction
[ao,a], co ,am] where the partial quotients are arbitrary integers.
Several useful value preserving transformation rules for signed continued
fractions are derived expanding on some observations of Knuth [K69,

p. 334-386]. A minimality criteria for signed continued fractions is
introduced and the transformation rules are utilized to exclude certain
partial quotient subsequences from any such "minimal' continued fraction,
whereby we then obtain a recurrance equation for computation of ,u(%).
These results are then related to binary signed continued fractions where
we are able, however, to provide only a partial solution to the goal of
determining an algorithm that recursively generates the successive par-

tial quotients of a minimum weight binary continued fraction.



Noting the sign and magnitude inversion symmetry of u(%), we need only

consider 2> 1, Specifically we show for %2 4 with 2k the closest power

23 k-1_p _ 25 k-1

—_— < et

322 =3=3:22

can each' be the leading term of some minimum weight

of two from E—, that ,u,(%) =1+ p,(zk - %). In fact for
both 25~ ! and 9
binary continued fraction for % This provides useful redundancy that
can be used in minimizing digit lookahead in obtaining the continued

fraction for % in a manner similar to the extended non restoring division

procedure analysed by Wilson, Ledley and Metze [WL61, M62].

For 1= %S 4, we exhibit certain regions where the closest power of two

can not be the leading term of any minimum weight binary continued fraction.
Determination of the appropriate leading term becomes progressively more
difficult over successively smaller nested subregions within the interval

(1, 4). However, these subregions have progressively smaller measure,

so close approximation of the "average!' value of Ju(%) is possible.

Binary continued fraction representations of # and e are specifically in-
vestigated. A binary continued fraction for e is derived and shown to

yield a succession of approximations to e reducing the relative approximation
error by an average factor of about 64 (6 more bits of accuracy) for every

non zero binary partial quotient.

In SectionlVV we tabulate some numerical results for Iu(%} and the average

value given by L = (9-). Extrapolating on these results we con-
2 [

n- 1=<p, gn
clude with some observations, the foremost of which is that the GCD(p, q)
can be computed with an average of only about 5% to 10% more shift and add

cycles in this model than the average number of division cycles in the

standard Euclidian algorithm.



I MINIMUM WEIGHT BINARY REPRESENTATION OF INTEGERS

A signed digit binary representation of an integer n is a binary radix

2m—1

polynomial P = bm2m+bm +owew F b121+b0 of value n where all bi

=1
are members of the signed digit set {-1,0, 1} . The number of non zero digits
of P is termed the weight of P. A signed digit binary representation P is a

minimum weight representation of the integer n if P has the minimum weight,

denoted by wi(n), over all signed digit binary representations of n. The

resulting minimum weight function w: Int =+ Int has rather erratic behavior

with n, and the following triangle inequality will be useful in analysing

the behavior of .
Lemma 1 For any integers i, j,
w(i+j) = w(i) + w(j), (1)
where the inequality is strict whenever | and j are both odd integers.
Proof Let PI and Pj be minimum weight representations of i and it
respectively. Let C and P be the binary radix polynomials of carries
and place values, respectively, determined by one cycle (no carry propagation)

of the addition of Pi and Pj using the addition table of Figure 1 in parallel

for each digit position.
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Digit
VValues 1 0 1

Figure 1: Binary addition table giving (carry, place)

values where the overbar denotes a negative digit value.

From the addition table note that the digits in the k'th places of F’I and Pj
determine the k'th digit of P and the (k+1)'th digit of C in a manner pre-
serving or decreasing the number of non zero digits for each k. Thus the

sum of the weights of C and P is at most w(i)+w(j), and will be strictly

less if both Pi and Pj have a non zero digit in the k'th place for at least

one value of k. The addition process may be iterated until the carry polynomial
is zero, in which case the corresponding place polynomial then has value

i+j and weight at most w(i)+w(j), verifying (1). Furthermore, if i and j

are both odd, then Pi and Pj must both have non zero unit position digits,

so then inequality (1) must be strict as previously noted.

O

Corollary 1, 1: For any integer k,
w(2k) < w(2k £ 1) < w(2k) + 1.

The minimum weight function may be computed recursively as shown in

the following lemma.
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Lemma 2 For any integer n,

~
0 forn=20
w(n) = < wlk) for n = 2k, (2)
w(k)+1 for n = 4k £ 1.
.
Proof The value w(0) = 0 is immediate. Then note that any signed

digit binary representation of the even number n = 2k must have the unit

place digit equal to zero, Thus P = bmzm+bm 2m—1+ ee. b121+b0 has

i
value n = 2k if and only if by =0 and P' = P/2 b2 b 127 L. 4b,2 b,

has value k, where since P and P! have equal weight, then w(n) = w(k).

From Corollary 1.1 withu =% 1, we obtain w(4k) < w(4k+u) < w(4k)+1, which

by the preceeding result gives w(k) < w(4k+u) < w(k)+1. Let

P = bm2m+ iwg T b121+b0 be a minimum weight representation of 4k+u. Then

l:)0 = umod 2, so either b0 =uor bo = —u. If bo
1

bmzm +ass F b12 +0 has value 4k and weight one less than P, so w(4k+u) =

=u, then P! = P-b_ =

w(k)+1. Otherwise by = -u, so then P! = P-b, has value 4k + 2u and weight
one less than P. But then using w(2j) = w(j) and Corollary 1.1, we have
wldktu) = 1+ w(4k+2u) = 1+ w(2k+tu) =2 1+ W(2k) = 1 + w(k), and the lemma

is proved.

In his study of minimum weight binary representation, Reitwiesner [R60]
characterized a ""canonical' minimum weight representation by the property
that no two consecutive digits are both non zero. He showed that a unique

canonical minimum weight representation exists for every integer, and then
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gave an efficient right to left digit sequential conversion procedure to
obtain the canonical minimum weight representation from the standard
binary representation. From Lemma 2 we obtain the following algorithm
for determining a minimum weight representation of any integer. The
representation is readily seen to have the property that no two consecutive
digits are both non zero, and hence is the canonical minimum weight

representation.

AL GORITHM MINREP(i)

{ For any integer i, this recursive algorithm determines the canonical
minimum weight signed digit binary representation of i in digit string form.
T denotes the digit value -1 and & denotes the string concatenation

operation. } .

begin if i = 0 then MINREP := 10! else
case i mod 4 of
0, 2: MINREP := MINREP(i/2) & '0!
1: MINREP := MINREP((i-1)/4) & 10! & 1!

3: MINREP := MINREP((i+1)/4) & 10" & 17!

end

If we assume that the value of i is available in standard binary representation
for ALGORITHM MINREP(i), then i/2, (i-1)/4, and (i+1)/4 can be efficiently
computed with shifts and carries yielding essentially the conversion algo-

rithm of Reitwiesner [ R60]. To see that the canonical representation is
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unique, assume two distinct minimum weight representations of some

integer j both have no adjacent non zero digits. Without loss of generality

assume the representations differ in the units position, hence j is odd, so

then the two low order terms of the two distinct representations are

1

0*2]+1and0*2 + 1. But then 1=jmod 4and -1 = ] mod 4, a contra-

diction. Hence the canonical representation is unique.

From Lemma 2 and ALGORITHM MINREP(i) we obtain Table 1.

n | w(n) MINREP(n) n w(n) MINREP(n)
0 0 0 16 1 10000
1 1 fig 2 10001
2 1 10 18 2 10010
3 2 107 19 3 101071
4 1 100 20 2 10100
5 2 10 21 3 10101
6 2 10710 22 3 107070
7 2 1007 23 3 1010071
8 1 1000 24 2 107000
9 2 1001 25 3 101001
10 2 1010 26 3 101010
11 3 101071 27 3 100101
12 2 10700 28 2 100100
13 3 10101 29 3 100101
14 2 10010 30 2 100070
15 2 100071 31 3 1000071

Table 1: The minimum weight w(n) and canonical minimum weight

representation of n for n=0,1,...,31,
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In order to obtain a better understanding of the rather erratic function
w(n), we shall describe its extremal and average behavior for increasing

n. Since w(zi) = 1for all iz 0, lim inf wW(n)= 1. Now lim sup w(n) diverges,
so let n; = min in| w(n) =j, n= 0}, and note that the canonical minimum
weight representation of r‘:‘i must have a leading term of size at least 22'“—”.
The smallest positive canonical representation with this leading term is

; -2
22(.]"1)

- 22 - 22 s
=0

Thus n; = [sz—1/3-lfor' j= 1, where for example n, = [25/3] =11=1010 15

and g = ]'29/3'[ =171=10101010 1,. From the formula for n; we imme-

diately obtain the following extremal result for the behavior of w.

Lemma 3 lim sup w(n)/log2 nh=1/2.

Certain patterns and symmetries are observed in the values of w(n) in
Table 1 and the next two lemmas confirm specific patterns for the whole

range of w.

Lemma 4 For any k =z 0,

1+ wl(i) for 0 i< (%)Zk,

(3)

t.u'(2k + 1)
w(i) for (%}zk < i< 2k,



15

Proof As a basis for induction note from Table 1 that (3) holds for
k=4, Let k= 5, and by induction assume (3) holds for all exponent values
through k=1. For 0 1 < Zk, using Lemma 2 and the induction assumption,
(i) for i= 0 mod 2,

w(2541) = w2X4+i/2)

1+wl(i/2) for0<i/2< (—g)zk“

wli/2) for (%)z"‘1 ¢ f/2= gk-1
1+ w(i) for 0= i < ()2~
Lo for (312 « 1< 2%,
(ii) for i = 4j+u with u =+1, noting j < (%)Zk—z implies j < (---)2k G %,
w(2k+i) = w(#(zk_2+j)+u) =1+ w(zl< 2+j)
2 + w(j) fOT‘0<J<()2kz—%
) 1+ w(j) for ( )2k 2 %S i< g2
1+ wi4j+u) for-0<4_|<()k_.‘§.
) w(4j+u) for ( )2 + gs 4j < 2K
1+ w(i) for 0£i<(-5)2
C et for (£)2" < i < 2°
and (3) holds for all k by induction.
O

We also state the following noting that the proof follows by induction in the

same manner as for Lemma 4.

Lemma 5 For any k= 0,

k+1 _ 1) k

W25+) = w2 for 0 i< 27, (4)
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From Lemmas 4 and 5 note that if Zk =nh<= 2k+1, then the leading term of

a minimum weight representation of n must be either 2K or 2k+1. Furthermore

if 2X<ne (%)Zk, then the leading term must be Zk; if (-g-)zk <n< 2k+1,
then the leading term must be 2k+1; and if (-;’E)Zk <n< (%}Zk, then the leading

k+1

term can be either zk or: 2 . The following algorithm utilizes these

observations to provide all minimum weight representations of n.

ALGORITHM ALL (N, k)
{ This algorithm generates all k digit minimum weight representations
of an integer n for [n] < % zk'] in digit string form. COMPL. denotes

sign inversion of all digits of all members of a set of sirings, & denotes

the string concatenation operation, and @ denotes the empty set. ]

begin if k = 0 then ALL :=@

else if n < 0 then ALL := COMPL(ALL(-n,k))

else it 32 2<n< 22T then ALL 1= 111 & ALL (n_2K T, k1)
else if g 52 g e g— 252 then

ALL =111 & 10t &ALL(n-2" k=2 U 10! & v11e ALL(n-25"2,

else if0<n< % 252 then ALL :=1'0' & ALL(n,k-1)

If nis given in standard binary representation, then inspection of the two

most significant bits of n allows the determination that either 2k£ n < 2 Zk

2
3,k k+1 : . =S
or 2 2 ' =n<2 . From the preceeding observations note that by associating
as leading terms either 2k or 2k+1 with these two conditions, respectively,

we may then also readily obtain a left to right digit by digit conversion algo-
rithm from standard binary to a minimum weight binary (but not necessarily

canonical) form.

-2)
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The cumulative sum and cumulative average value of w(n) as n increases

n
are now shown to have more stable behavior. Let Q(n) = ¥ (i) for any
i=1

n= 0.
Theorem 6 For any k= 0,
Q(zk)=l|<zk+32k+1+(“—”—l-(— (5)
3 9 2 18 ’
Proof As a basis for induction by direct evaluation (5) is seen to

hold for k = 0, 1. Assume (5) holds for all exponents through k-1 for a

given k 2 2. From Lemma 4 and the induction assumption,

k
Kk _ k-1 2
A2 = 22T+ |2
k-1 K
= ok=1 k=1 4 k-1_1_(=1) 2
= ATF 2T +g2 gt g )+ |5
k K k=1
k k. 4 .k 2 2 (=1
= e e + e aiid — —
32 +92 L3J 3+1+ 5

and by considering k even and odd separately we obtain (5) in both cases,

and the theorem then follows by induction.

From Theorem 6 we are able to make an (exact) comparison of the average
weights of standard binary and minimum weight binary representation for

the k-bit integers {0,1,2,... ,Zk-lf which are of particular importance

for number systems and arithmetic employing binary representation.
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Corollary 6. 1 The average weight of the binary representation

of the k-bit integers {0, 15250004 zk-l] for any k Is given by

(i)

k for standard binary representation,

|-

(ii) -:;k + = + ((_—IL) for minimum weight binary repre-
sentation.

Proof Note that the sum of the weights of the unique standard binary

representations of | and zk-T—i is k for any i € {0,1,2,... ) Zk-lf , SO

1 . . . : .
the average of Ek is obtained for standard binary representation. Since

w(0) = 0, the average minimum weight binary representation over

k

10152 o 0 2708 T mibven, by 2k-1 /2 = (Q(2")- 1)/2 , SO expression (ii)

follows from (5).

From Lemma 4 and Theorem 6 it is also possible to determine values of
An) for n not a power of 2, where the results are simplest if the binary
expansion of n has relatively few terms. For example, for k= 1,

k=1 k-1
)

Q(25) + (2 +2

I

3.0k
9152)

+

kT) LSKT

3Q(2

and substitution of (5) then would provide an exact formula for Q(%Zk)
for all k2 1. More simply we note from the substitution that asymptotically

ink,
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(52°) 1o, (22 + 0(32).

3.k _ 1
Q(EZ)—3

Utilizing the same procedure for any constant of the form b = i/Z*I where

1

217" < i< 2) (i.e. a normalized binary fraction), we may similarly obtain

asymptotically in k,
Q(b2K) = %(bzk)logz(bzk) +O(b2K). (6)

From (6) and the fact that Q(n) is monotone increasing, we note that

Q(n)/(n log2 n) must converge and so obtain the following corollary.

Corollary 6.2 Iimn“’m Q(n)/(n log, n) = 1/3. (7)
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11 MINIMUM WEIGHT CONTINUED FRACTIONS

The notation [ao,ap o ,am] shall denote the signed continued fraction

where the partial quotients a; are arbitrary integers except that

[ai,ai+1,.. .,am] is non zero for 0< i< m whenm= 1. The latter condition

assures that the value of any signed continued fraction is a finite rational
+ 1

0 [aj,az,... ,am]

The standard continued fractions with ai =z 1for 1< i< mare

number, where furthermore % = [ao, ay585 000, am] =a

contained within the set of signed continued fractions, so for every rational

B a4t least one signed continued fraction has value % .

Utilizing signed continued fractions we define a minimum weight function

K: Rationals = Int by

m
(B) = min r wla,) ; (8)
“'q [ao,a1,...,am]=% i=0 !

where @ is the minimum weight function over the integers [we shall later

show p ( %) = w(p), so u is an extention of ¢, from the integers to the

m
rationals]. Letting w[ao,al, e ,am:l = T wl(a;) denote the weight of the
i=0

signed continued fraction [ao,a1, e ,am] , we further say [ao,aT, . ,am]=

E
q
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is a minimum weight continued fraction for % whenever w[ao,aI, ‘e ,am]=

p
.u(q)-

Our goals for investigation of minimum weight continued fractions are

I Find a formula and/or efficient procedure for determining ,u(z—) for

any rational p/q;

1. Provide a convenient and efficient algorithm for generating a
minimum weight continued fraction [a ,a,,... ,am] of value p/q

for any p, q;

11,  With U(n) = T 7 (.—'), determine U(n) at least for small n,
1<, j<n

and find the asymptotic form of U(n).

Given the minimum weight continued fraction [aO’BI’ ce ,am] = 2-— y the

- 9
PYRRER am] paga

signed continued fraction [a1,a must also have

minimum weight for m = 1. Thus using the fact that u(p'/q') = ula'/p')

for p' £ 0,

wlag) for m =0,
B =
kg i
w(ao) + Z (.o(ai) form= 1,
i=1
wlag) for m = 0,

1
e ao) + b-agq ) for m

v

p-a

oq)
q

v
=

= w(ao) + uf for m
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Since a minimum weight continued fraction of value % has ag = i for some

integer i, we obtain the identity

MB) = min{ w(i)+ lu(f-?:q‘—q)} for any 2. (9)

The identity (9) does not provide an effective algorithm for recursive
computation of u( %)’ but the following sharper form of (9) does provide

such an algorithm.

Theorem 7 For anyp>q=x= 1, letp =kq+r where -q/2< r < q/2. Then

r
wlk) if r =0,
1+ min{ w(k), wlkt} ifr=q/2, (10)

By o |
wg) ( 1+min{.u(%), u(g;f), wB)}ifo<r<gqg/2, andk =1,

min { wik+i) +]_.;(—q—i =L )} ifoe |r~| < d/2, and
i==1,0,1 ' g v B

-

Assuming the validity of Theorem 7, note that the required values of "]
for fractions p'/q' on the right hand side of (10) all have q' < q, p'<p,
with p' + q' < p + g. Thus the recursion - will not cycle and will allow
the recursive computation of u(p/q) from values of w(j), j an integer,

for any rational p/q.

The last line of the formula for u( % ) dictates that we must consider three

candidates, L%-i—%J s 1y ]_%-{-%J, and L%+..21_

partial quotients to obtain a minimum weight continued fraction of value

| + 1, as possible leading

p/dq. The fact that the two candidates ]_%J and [%I are not sufficient is
confirmed by the following example. Note that 20/3 = [6, 1,2] = [7,3] =

[B,T, 4], where overbars denote negative partial quotients. Thus
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1(20/3) = w[8,1,4] = 3, and since u(2/3) = u(1/3) = 2, the leading partial
quotient of any minimum weight continued fraction for 20/3 cannot be

either |20/3] =6 or [20/3] = 7.

In order to prove Theorem 7 we first note certain partial quotient trans-
formation rules that preserve the value of the signed continued fraction.
Letting the length of [ao,a.‘, ¥ % ,am] denote the number of partial quotients,
m+1, in the continued fraction, we shall in addition be concerned with how
the transformation rules alter both the length and weight of the continued

fraction.
For any real x,y,z with z7é 0 and vy +% L 0,

1
Xxt+ty+—= = x+
¥ z

and

from which we obtain the following two rules.

Rule 1. Internal Zero Deletion

Given [ao,a1,...,ai_],O,ai_l_],...,am] for 1< i<m-1, then
[ao,al, § s ’ai-Z’(ai—1+aI+l)’ai+2" .. ,am] is a signed continued

fraction of the same value with no greater weight and length one less.
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Rule 2. Partial Quotient Splitting

Given [ao,a1, i ,am] , then [ao,a e ,ai_l,ai—a',o,a',ai_l_], - ,am]
is a signed continued fraction of the same value for any integer

a'£ - 1 for i = m-1, and any integer a' £ 0 for i = m.
[ai+1"' a ]
This transformation increases the length by two, and the weight

becomes greater than or equal to the previous weight.

Now letu =+ 1, so u2 = 1. Then for any real x,y, z with 274 0, and

y + -;-74 0, and u + (1/(y+1/2)) £ 0,

1

1 uly + =)
><+'—'——1 = R 1
6118, 1 y+u+—
y+ = “

z

= x+tu+t 1 3
- + —
(y+u) + —

1
where we note y + u + - cannot be zero. Furthermore, assuming z% 0
1
and u + —2;& 0,

1 e N
x + - ><+u+_(z+u)

where also z + u can not be zero. From these observations we obtain the
result that any internal unit may be deleted from a sighed continued

fraction.
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Rule 3. Internal Unit Deletion

Given [ao,a], ey ,am] where a, = u =+ 1 for some particular i,

1< i< m-1, then [ao,al,. - ,ai_z,(ai__1+u),(ai+1+u),ai+z,. .. ,—a-m]

is a sighed continued fraction of the same value with weight at

most one greater and length one less.

Suppose [ao,a], Vi ,am] has a, = 2u, where u =+ 1, for some 1<i<m-1.
Then by Rule 2 [ao,ai, crer@_pu0,ua gy ,am] has the same value
if [u,aH_T, .5 @ ,am] is not zero, Furthermore, the units may be removed

by two applications of Rule 3, 'so under the same assumptions

[ao,a], cen ,(ai_1+ u),'Z_u,(ai_‘_l-l-u),aHz, — ,am] also has the same value,

from which we obtain Rule 4.

Rule 4. Internal Two Complementation

Given [ao,a1, -+.,a_] where a; = 2u for u = = 1 for some particular i,
P = - T
1<i<m-1, then [ao,al,... ,ai_z,(ai_1+u),2u,(ai+1+u),ai+2,... ,am]

is a signed continued fraction of the same value with the same length
and with weight at most two greater whenever [u,aH_I, ikl § § am] is

on zero, or equivalently wheneve a, -u.
non , qu y hever | 1 ,am]7£ u

For any p, q the signed continued fraction [ao,al, s e ,am:[ of value
either % or -g is @ minimal continued fraction whenever it has the

minimum length over all minimum weight continued fractions of value

i B | B. i B
either = or B Thus for any a°’ we have either g [ao,al, “on ,am]
or % = [O,ao,aI, - ,am] for some minimal [ao,a], in ,am].
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The partial quotients of a minimal continued fraction satisfy several

restrictive conditions which are enumerated in the following lemma. Let

E = {k| k#£0, w(k+t1) = w(k) + 1},
F = {k| k#0, k£ -2, w(k+1) = w(k)}.
Lemma 8 For every minimal [ao,a], e ,am],
(i) |a;|z1for 0<i<m, and |a_| = 2 for m= 1,
i ¥ m
(ii) a, = 1for 1< i< m-1only ifai—T’ai+IE E,
a, = -1 for 1= i=m-1only if =3;_12"34 g€ E;
(iii) a, = 1only if a, €F,
ag =-1only if -a, g F3
(iv) lai_1| =|ai+11 =1 for 1<i<m-1only if
either ai/ZG Eanda, ;=a, , =1,
or —ai/ZE Eanda, ;=a,,=-1;
(v) a, = 2, ai+1=—2 for 0< i < m-1only if ai—l’_ai+26':’
a, = -2, a g =2 for 0< i < m-1only if -ai-l’ai+2€F'
Proof Assume [ao,a], v » ,am] is a minimal continued fraction of value

value % Now |a_| # 1for m=> 1, since otherwise

[ao,av R Y (am_1+am):| = [ao, cee am] contradicts the minimality
assumption, Now a; # 0 for 1< i=m-1, since otherwise employing Rule 1
gives a contradiction, and ao% 0, since otherwise [a1, . .am] has value

‘—pJ*and shorter length, a contradiction. This establishes assertion (i) of the

lemma.
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Assertion (ii) is immediate since otherwise application of Rule 3 deleting
the unit would contradict the minimality of [ao,al, e ,am:l. When

ay = 1, we may consider deletion of ag in g = [O,ao,a1, i e ,am] as

well as deletion of any a, = +1for 1< i<m-1by Rule 3. Thus assertions
(iii) and (iv) follow, for otherwise one or two applications of Rule 3
would yield a contradiction to the minimality assumption, e.g.
[1,§,a2,...,am] =[o,1, 1,52,...,’ém] = [o,z,a2-1,a3,...,am] =

1/[2,a2—1,a3,. v ,am] implies ay= 1, a, = 2 is not possible.

It follows from the minimality of [ao,aT, — ,am] that [ai+1’ai+2’ 3 ,am]

is minimal for any 0< i < m-1, so then |:ai ,am] £ £ 1 for any

+17 427
0= i=m-1. Hence Rule 4 may be applied whenever ]ai| =2for0=i<m-1.
Assertion (v) then follows for all cases where [ai_1| £ 2, [ai+2| # 2 since
otherwise a single application of Rule 4 would contradict the minimality of
[ao,ai, oy ,am] . To see that the subsequences 2, 2,2 and 2, 2, 2 cannot

occur in [a : ,am] » one applies Rule 4 on the middle + 2 followed

0317+
by deletions of the neighboring resulting units by successive applications

of Rule 3. This completes the proof of assertion (v) and the lemma.

Lemma 9 The value of any minimal [ao,a TEREE am] has the same sign

as a, and the magnitude satisfies

2 .
3 |f1a0| =1,
4
][ao,al,...,am] | = < 3 if |ag] = 2, (11)
7 .
3 |f|a0| = 3,
|



Proof

The assertion is immediate from Lemma 8 for all minimal

[ao,ai, . ,am:[ of length one or two. Proceeding by induction on the

length of the minimal continued fractions, assume the assertion holds

through length k for k = 2, and let [ao,al, i 5 ,ak] be minimal with

length k+1. Without loss of generality we assume a.. = 1

and

where [a], -

for which inequality (11) then holds by the induction assumption. Since

a

0

[ao,ai,...,ak] =ay+

2y

0

[ao,a],...,ak] ot L

1

[az,a3, ces

. ’ak+1] and [az,. ;

»8p 1]

» and note

(12)

(13)

[a]| =1 is precluded by Lemma 8, from (11) and (12) we obtain

[ao,a],...,ak+1] > 0, so [ao,al,.. .,ak_H:[ has the same sign as ay-

Now if a, is also positive, inequality (11) is immediate so assume

a,= -1, and from (11), (12) and (13),

1
3
-4

[]’Z’az“"’ak+1] > 1+

1
3
-5+ 3

[l,al,...,ak+1] > 1+

[Z,E,az,..a,ak_l_]] s B v

-2 + =

N
\

Il

9
e

n

(] N

|
Y

2
3

Wiy

for

for

for

a22 2,

or

a25_1,

29

: ,ak+1:] are minimal of length at most k,
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3 11 4
[2,31,. 8 q] > 2 - - = 7> 3 for a, <-3,
= 1 26 7 i
[3,2,a2,...,ak+1:]> 3+'—'—'—3—— =17 > 3 for aéz 3]
-2+ 2
7
3 17 7
[3,61,...,ak+1:|> 3 - 7= 5 > 3 for 615—3,
3 7
[EO’al""’ak+1]> A= 5= g for aj= 4.

The preceeding seven cases are exhaustive by Lemma 8, verifying
inequality (11) for [ao,aT, - ’ak+1:|' By induction the lemma is then

proved.

Corollary 9.1 Let [ao,ai, § i ,am] be minimal of value z. Then a,

1 1 1
has one of the at most three values |z - zle 2% 5] 2% ET ;
Proof For m =0, the result is immediate. For m = 1,

3
z=a,+ 1/[a1,...,am], so by Lemma 9, |z-a0| <3, and the

corollary follows.

Corollary 9.2 For every integer P,

BE) = wip), (14)

p(2p + —;) =1+ wlip). (15)
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Proof The results (14) and (15)) are immediate for ‘p} < 1. For
|p| = 2, by Lemma 9 we must have p = [ao,al,.. i ,am] for some
minimal [ao, b s ,am]. If m =0 we obtain (14),so0 assume m= 1. By

Cor*ollar'y 9.1; ;8= pt+1 or Gy = p-1, so w(ao) > w(p)-1, and

el %) E wl(a. )2 w(a ) + wla )2 w(p), proving (14).
i=0

Since [2p, + 2] has weight 1 + w(p), we obtain u(2p :i:% )< 1+ wip).

For |p| =2 2, both 2p ——;- and 2p +-% are the values of some minimal
[ao,aI, ;a ] by Lemma 9and by Corollary 9.1, a, is either 2p-1,

2p, or 2p+1 in each case.

Since w(2p) < w(2p £ 1) holds for all p, we obtain p(2k ﬂ:-% ) =

w(ao) + .w(aT) = w(2p) + 1, establishing (15).

We now proceed to complete the proof of Theorem 7.

Proof of Theorem 7

The first two cases of equation . (10) are obtained from Corollary 9. 2. For

the fourth case let p = kg + r with 0 < |r| < q/2, where we assume k = 2.

3
Then R > 5, so by Lemma © % is the value of some minimal [ao,ap ‘5w ,am].
|l< - R] —-L—L < = implies k = f% + E.], so by Corollary 9.1, ag must be
either k-1, k, or k-f-l, verifying equation (10) for this case. The remaining

casehas p = q+ r with 0<r < q/2, hence 1< E < % . Using Lemma 9

we then have either a minimal [ao,a,‘, w wa ,am] of value % with a, =1 or

S g i =
ag 2,or value = W|tha0 i 9
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It follows that ( %) = 1+ minfu( %- 1), ul %- 2), ul g- 1)}, which

completes the proof of Theorem 7.

Now every % has either a representation %= [ao,al, oo ,am] or
% = [O,ao,ai, wa ,am] where [ao,av e ,am] is minimal. Then for

any 0< i < m using Lemma 9, [a],ai_H,. - ,am] # 1/j for any integer j.
These conditions assure that Rule 2 may be used recursively in a left
to right order to generate a signed continued fraction [bo, bi’ 5 55 ,bk] of

2 3

value B where b, € {0,+1,£2,+2%+2° ...} for 0= i<k, and
q i

[bo, b1, s Gys ,bk] has precisely u( % ) non zero partial quotients.

In general, we say the signed continued fraction [bo’bv _— ,bm] is a
binary continued fraction whenever - b, = +2) or b, = Ofor 0=i=m.
Noting that the weight of a binary continued fraction is simply the

number of its non zero terms, we have then proved the following assertion

providing an alternative definition of p( % }e

Lemma 10 Every % has a representation as a binary continued
fraction, where puf %) is the minimum number of non zero partial quotients

in any binary ° .continued Tfraction of value %.

As an example, [ 14,29, 4] can be shown to be minimal, from which we
obtain the minimum weight binary continued fraction

[16,0,2,32,0,4,0, 1, 4] of weight 6. Such a minimum weight representation
is not unique even using the canonical signed digit form and ordering the

partial quotients by decreasing powers of two for each initial bi' Spe-
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cifically, using Rules 2 and 3, [14,29,4] = [14,1,0,28,4] = [ 15,7, 28, %]
= [16,0,T T, 3_ 0, 4,—5], where the latter is also a minimum weight binary

continued fraction.

A minimum weight representation of an integer may be efficiently
determined recursively generating one ''signed bit" per iteration. We
now consider the possibility that a minimum weight binary continued fraction

may be similarly determined.

For any rational z, b(z) is admissible for z as a leading binary partial
quotient if b(z) € {0,+ 1,+ z,izz,ﬂ: 23,. o}, and p(z) = 1+ pl(z - b(2)).
Thus when b(z) is admissible for z and [bi’ . w0 bm] is a minimum weight binary

continued fraction of value 1/(z-b(z)), we obtain z = [b(z), bT’ b ey bm]

2
as a minimum weight representation of z. The sign and inversion symmetry
of u allow us to restrict our attention to the positive rationals greater

than or equal to unity, where for % 2 4 a well behaved solution is obtained.

Lemma 11 For any rational number z = 4, b(z) = 2' is admissible
23 25
for z whenever 32 2 = 16 2.
Proof It follows from Lemma 8 that there is a minimal [ao,al, 5 ,am]
of value z for any z = 4. First assume 8 < 2 <z 5122 Then ke
25 i _5 5 5,47 3 _ 1
zS 3§ 2 -3_2 482_I32]—2,soa0—z- <
[al,az,...,am]

i 5 i i, e

]'3 2 '| --+—- , and then 2° - 1Sa0£ |_-§2 _[ Thus 2' is a realizable

leading signed bit for some minimum weight representation of the integer

i i .
a,, hence p(z) = 1+ w[ao-—-z 28108550 ,am] =1+ u(z - 2'). Now consider
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4< z<6 1/4, where then z = [ao,a], w .,am] for some minimal

7£1andz>?-§,a

=3. It

[ao,al,. i ,am]. Note that if ag = 7, then |a,|

contradiction. We obtain a similar contradiction assuming a0

4 is then admissible for z. A similar

It

follows that 4 < 8, = 6 and b(z)

argument for the regions % 2'< z< 2' then completes the proof.

Hence the closest power of two is admissible for any z = 4. However, it
follows from Theorem 7 that “(%g) = 3 and that [ 2, T,g:[ is the unique
minimum weight binary continued fraction of value _?_72 , SO 4 is not
admissible. for %2- In fact, each element of the sequence [ 2, 1,§] i
[2,1,8,1,8], [2,1,8,1,8,1,8],... with limiting value [2, 1,8, ,8,...] =
6 — 2,/2 is a unique minimum weight binary continued fraction, and there-
fore represents a value wheéetre the closest power of two is not admissible.
The next lemma shows that values in the interval [ % , 4] with the excep-
tional property that the closest power of two is not admissible are limited
to relatively small neighborhoods around 2 and 3.

2

Lemma 12 For the rational number Zs

(i) bl(z)
(ii) b(z)

4 is admissible whenever 4> z=> 6-2/2 = 3, 17157, ..,

i

2 is admissible whenever2,82842...=2,/2> z> 3-5/2 = 1.58578 ...

Proof From Theorem 7 a minimal [ao,al, ...,a_| of value z for
————— m
42 726 - 2,/2must have 2 < ay =5, and b(z) = 4 is then admissible

Whenever 3<aj < 5. For a, = 2, note that since [2, 1,8,1,8,...,1,8, 1,4]
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=[4,1,4,1,4,...,1,4, T,E], it follows from Lemma 8 that any value

less than four for which b(z) = 4 is not admissible must be less than

[ 2, 1,5, 1,8,1,8,.. .] =6 -2/2, proving (i). By a similar argument
3

it follows for z < 2.,/2 that either b(z) = 2 or b(z) = 1 is admissible.

5 =
Then since [1,2,4,2,%,...,2,4,2,2] =[2,2,2,2,2,. ce92,2,2,1], it
further follows from Lemma 8 that any value less than 2./2 for which

b(z) = 2 is not admissible must be less than [1,2,%,2,4,.. L] =3-.2,

proving (ii).

There is no result comparable to Lemmas 11 and 12 providing an interval

range of z for which b(z) = 1 is admissible. To see why this is so note

that [2,2,4] = 171 1.4285 ..., and [2,5,4,3,4] = % = 1.4146 ...,
where it can be shown by Theorem 7 that 2 is the only admissible value
for 179 and %. Also [0, 1,4,2,4] = % = 1.4117 ..., and
[0,1,4,2,4,2,4] = '—‘g‘g = 1.4141 ..., where 0 is the only admissible
value for %— and %)- . Thus certain values approaching ,JZ from above

have only 2 as admissible, and certain values approaching,/ 2 from below

have only 0 as admissible,

We are left with three regions of uncertainty relative to a direct minimum
weight binary partial quotient generation process for z > 1, where in each of
these regions it can be shown that at least one of two possible values must

be admissible:
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(i) for2/2<z<6-2,/2, either b(z) = 2 or b(z) = 4 is admissible,
(i) Tfor/2<€z23-42, either b(z) = 1 or b(z) = 2 is admissible,
(iii) for 1< z<,/2, either b(z) =0 or b(z) = 1 is admissible.

We note that heuristics involving trial and some partial quotient look ahead for
the above regions can be used to obtain "almost!"! minimum weight binary
continued fractions that will bound from above and allow a close approxima-
tion of the average minimum weight binary continued fraction given as a
function of n by ( b ) (E))i/nz.

<p,qsn ¢
It is also instructive to consider:the minimum weight binary continued
fraction representation of the successive convergents of particular
irrational and transcendental numbers which are of essential importance
to scientific computation. Now ## = [3,7,15,1,292,1,1,1,2,...] with no
known general pattern to the partial quotients. The leading partial
quotients of a minimum weight binary representation of [3,7,15,1,292,1, 1, 1,2]
are then indicated in [ 2, 1,8, 16, 256, 0, 32, 0, 4] which can be used, if
further truncated, to obtain a succession of very good approximations to
m each computable by relatively few shift and add cycles as noted in the

introduction.

A much stronger result is obtained for e which has the standard continued
fraction representation e =[2,1,2,1,1,4,1,1,6,1,1,8,.. .] =

[2,00,20, 10,4 5 )
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Using the transformation rules we obtain € = [2,0, 1, (4i, 2, 4i, 2)i_1 5 ]
Tly Ly e

which may be expanded to a binary continued fraction by inserting the minimum

weight representation of 4i for each i. Note then that [2,0,1,4,2,4,2,8, 2]

2721
1001

requiring only eight non zero binary partial quotients, Employing Theorem 6

= 2.71828171, which agrees-with e to seven decimal places

it can be shown that, asymptotically, each additional non zero binary partial
quotient digit in the above continued fraction reduces the error in the
approximation of e by an average factor of 64, thus generating on the

average ''six bits of accuracy! per non zero bit of representation.
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IV NUMERICAL RESULTS AND CONCLUSIONS

The recursion of Theorem 7 for computing the minimum weight function

was utilized to obtain p,(%) forall 1= gq<p< 210. Values for 1< q<p < 32

are given in Table 2.
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Table 2: Values of the minimum weight function u(-g—)for‘

1< g<p=< 32.
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Values of U(n) = = “(E) and the average minimum weight u(r‘n)/h2
1<p,q=n ¢ ]
are tabulated in Table 3 forn=2, i=1,2,...,10.
2
n L(n) u(n)/n A
2! 4 1.00000 -
22 22 1.37500 . 37500
23 120 1.87500 . 50000
o4 602 2. 35156 . 47656
25 3006 2. 93555 . 58399
25 14358 3. 50537 . 56982
27 67134 4.09753 .59216
28 307880 4.69788 . 60035
29 1392148 5.31062 61274
210 6212770 5. 92496 61434
. Iy _ o i 2i
Table 3: Values of U(2') = S - p(=), u(2’)/2%, and
1<psg=2' 9
A=u(2)/22 _u2=N/22 % tor i = 1,2,..., 10.

From the established theory on the distribution of partiall quotient values

in standard simple continued fraction representation of real numbers, it

is reasonable to expect U(n) to have the following asymptotic form:
o 2 2
L(n) = en 1092 n + o(n log, n). (16)

The value for A in Table 3 then must approach the constant c of (16),
which would appear to give a value for c in the neighborhood of .62 .
We have separately [MKBI] determined the weight of the binary continued

fraction representation of % for each p,q in the range 1< p<g= 212
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employing the '"closest partial quotient! rule of choosing ag = 2k so as

to minimize ]z - aO] for all z= 1, even though this does not always give
the admissible minimum weight choice. Similar computation of values of
Afor i =1,2,...,12 show convergence, in this approximate minimum
weight case,to c* = ,660, where further simulation runs for large
samples with 1= p < qg< 2i for i as large as 32 give results for c¢¥* in the
range .660 to ,662 . Similarities in the second order differences (differ-
ence between successive A values) in Table 3 and in the "closest partial
quotient!! data strongly support the assumption that the value of ¢ in (16)

will be near .62 .

The limiting value of c is relevant to computer arithmetic for the following

reasons:

(i) a value of c < % implies that in the shift and add or subtract model of
binary arithmetic, multiplication or division of fractions to a given
level of average approximation error,using the minimum weight
binary continued fraction representation for one argument,can be
executed faster than floating point multiplication or division in the
standard shift and add or subtract model, employing minimum weight

integer representation for one argument,with results of comparable

precision;

(ii) since the number of division cycles in the standard GCD algorithm
for p, g (which equals the number of partial quotients of the standard
simple continued fraction representation of % ) converges to

0. 5841 Ic:g2 n on the average for 1< q< p < n, a value of c in the
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neighborhood of .62 in (16) implies that the shift and add or subtract
model allows computation of the GCD by an average number of add
or subtract operations only about 5% greater than the average
number of division operations required in the standard Euclidian

GCD algorithm.

Acknowledgment

We would like to thank Andy Freeman for preparation of programs to

obtain the data of Tables 2 and 3.

References

[FGT:[ Freiman, C.V., ""Statistical analysis of certain binary
division algorithms'. Proc. IRE, vol. 49, pp. 91-103,
1961,

[G80] Gosper, unpublished manuscript.

[K69] Knuth, D.E., The Art of Computer Programming, Vol. 2,

Reading, Mass.: Addison-Wesley, 1969,
[KMB]] Kornerup, P. and Matula, D.W., in preparation.

[M61] MacSorley, O.L., "High speed arithmetic in binary computers!,
Proc. IRE, vol. 49, pp. 67-91, 1961,

[MK80] Matula, D.W., and Kornerup, P. "Foundations of Finite
Precision Rational Arithmetic, Computing, Suppl. 2
pp. 85-111, 1980.

’



43

[MK81] Matula, D.W., and Kornerup, P., in preparation.

[M62 ] Metze, G., "A class of binary divisions yielding minimally
represented quotients!, IRE Trans. Electronic Computers,
vol. EC-11, pp. 761-764, 1962.

[N56] Nadler, M., "A high speed electronic arithmetic unit for
automatic computing machines!', Acta Technica, no. 6,

pp. 464-478, 1956,

[R60] Reitwiesner, G.W., ""Binary arithmetic'", in Advances in
Computers, vol. 1, F.L. Alt, Ed. New York: Academic
Press, 1960.

[R58] Robertson, J.E., "A new class of digital division methods!",
IRE Trans. Electronic Computers, vol. EC-7, pp. 218-222,
1958.

[R70] Robertson, J.E., "The Correspondence Between Methods of

Digital Division and Multiplier Recoding Procedures',
IEEE Trans. on Comp., vol. C-19, pp. 692-701, 1970.

[T58] Tocher, T.D., "Techniques of multiplication and division
for automatic binary computers!', Quart. J. Mech. Appl.
Math., vol. 11, pt. 3, pp. 364-384, 1958,

[WL61] Wilson, J.B., and Ledley, "An Algorithm for Rapid Binary
Division", IRE Trans., vol. EC-10, pp. 662-670, 1961,



oel—gd

ON MINIMUM WEIGHT BINARY REPRESENTATION
OF INTEGERS AND CONTINUED FRACTIONS
WITH APPLICATION TO COMPUTER ARITHMETIC *

by

David W. Matula
and

Peter Kornerup

IYyBlap wnwiiuly uQ :dnusudo A Bn1ew

DAIMI PB-130
January 1981

* This research was supported in part by the National Science
Foundation under grant MCS-8012704.

Computer Science Department _ _|_I_I_ _
AARHUS UNIVERSITY - ||u1
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone.: 06 — 12 83 55 u‘ﬁ%ﬁ jl 1_\

TRYK: DAIMI/RECAU




