ISSN 0105-8517

ANALYSIS OF CONCURRENT AL GORITHMS

by

Jgrgen Staunstrup

DAIMI PB-129
January 1981

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

— |

il




ANALYSIS OF CONCURRENT ALGORITHMS
Jgérgen Staunstrup

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Aarhus C

Abstract

Analyzing the running time of a concurrent algorithm can be as important as
verifying its partial correctness or termination. A simple technique for analyzing
the running time of a concurrent algorithm is presented, To analyze an algorithm
with concurrent processes, the interaction between the processes must be con-
sidered. This is done by using the communication sequences of the processes as
the basis of the analysis. The technique is used for analyzing and comparing three

concurrent algorithms for finding the root of a real function.



s INTRODUCTION

PRERE F

which can be executed in parallel. This paper presents an example of how the run-

A concurrent algorithm specifies a number of processes Pl’ P

ning time of such a concurrent algorithm can be estimated. Techniques for esti-
mating the running time of sequential algorithms (only one process) are very well
developed |Knuth 1968 | and  Aho, Hopcroft, and Uliman 1974, Analyzing a con-
current algorithm with several processes presents additional problems because
the interaction between the processes must be taken into account. Such interaction
is for example necessary when the processes exchange intermediate results. The
interaction between concurrent processes can be very complex to analyze, which
is also why it is difficult to construct and verify concurrent algorithms. The chal-
lenge is of course to avoid the complexity in reasoning about the algorithms and

still obtain realistic results.

2 ROOT SEARCHING

In this section a concurrent algorithm for finding the root of a continuous func—
tion, H, is presented. Assume that H is a real continuous function defined on the
closed interval [a, b]. Assume furthermore that H(a) * H(b) < 0 and that H has only

one root in [a, b]l.

There are many well known sequential algorithms for finding the root, for example

binary search. Let T, denotethe average time it takes to evaluate H, If T,, domi-

H H
nates other quantities in the running time, then it is well known that the running

time, B for binary search is:

T’
|

0
B =Ty, - 109 gpe

where eps is the accuracy with which the root is obtained and | . = b-a. {For binary

0
search the worst, best, and average case running times are the same),

The above running time can be improved by letting several processes evaluate H

at different interval points concurrently.

2.1 A Two Process Algorithm

The following algorithm [Kung 1976 | with only two concurrent processes is simple,

but manageable.

Two processes, p and g, evaluate the function H at two different interval points:
x _and x_.

P q
e ' { N

a * x b
) q

interval:

Like the binary search, the algorithm works by narrowing the interval. Assume

that p finishes its evaluation of H first and H(a) - H(xp) <0, i.e. the root is in
[a, xp_}. The interval is now changed to [a, x_]|, therefore the work of g is wasted

and q must be directed to work in the new interval [a, x_| as soon as possible, If
on the other hand H(a) - H(xp) > 0, the root is in the interval [xp, b]. In this case

the work currently being done by g is utilized.

As we shall see later, the placement of xp and xq is crucial for the efficiency of

the algorithm. Let D be a function for calculating xp and xq from a and b:
x, = D(a,b,p) and e D(a,b, q)

Administration of the interval is the central part of the algorithm. The interval is

an abstract date type with two operations, respond and result:




4

The operation respond is used by p and g every time they have completed one eval-
uation of H. The operation result gives the root.
The notation from Staunstrup [1978] is used to specify such an abstract data type.

type interval (eps: real);

state a, b: real;

operation respond (Hx: real; id: (p, q); var x: real);

when
1) x € [a,b],b-a>eps + b-a< by=ag x = Dla, b, id), H(a) * H(b) = of]
2) x§ [a,b],b-a>eps + x = D(a, b, id)

end;

operation result (var r: real);
when

b-aseps-’r=ao

end interval,

The abstract data type has a state space with two components a and b. How these
are given an initial value is not considered here, State changes are specified by
transitions of the form R + U, where R and U are predicates. A transition R + U
can only take place if R is satisfied, performing the transition results in a state
satisfying U, Each transition is indivisible. The endpoints of the interval should
change when one of the processes finishes evaluation of H on an interval point. The
new endpoints of the interval ceiﬁ by any pair of points a,b such that i) b-a is small-
er than b_-a (ao, b, are the values of a and b before the transition), and ii)

H(a) - H(b) < 0 (the root is within [a,b]). These requirements are specified in line 1),

When the interval is changed, one of the processes might work outside the current
interval, i.e. x § [a,b]. In this case the process is directed to work on the correct

interval point next time it calls respond. This is specified in line 2).

It is quite easy to show that the above specified algorithm is partially correct and

that it converges, the proof is omitted here.

2.2 Communication Sequences

The communication sequences of an abstract data type are all sequences of completed
operation calls which arise when the abstract data type is used. The communication

sequences for the interval are of the form:

o= r‘espor\d(H] ; Il’xT)' r‘espond(Hz, Iz,xz). T r‘espond(Hk, o xk). result(r)
whereas the segquence:

c = r‘espond(H1 , 'I], x ). ... .result(r). P95pond(Hj, ij’ xj). ce

is not a communication sequence, because no call of respond can be completed af-

ter a call of result is completed.

The algorithm is analyzed by showing various properties of the communication se—
quences. Assume that ¢ is a communication sequence for the interval, then the

following notation is convenient:

lo| ¢ the length of g i. e. the number of operations in g
llgll  : the number of occurrences of respond(-,p,-) ing
”c“q : the number of occurrences of respond(-,q,-) ing

Finally, let [I denote the set of all communication sequences for the interval.

3. COMPLEXITY MEASURES

In this section a number of alternative ways of analyzing the running time of the
above algorithm are considered. It was assumed that evaluating H dominates the
running time. Since there is one evaluation of H for each call of respond, there is
a direct relationship between the length of a communication sequence and the running
time of the corresponding execution. Consider a communication sequence g, then
Hccllp is the number of function evaluations performed by P and Hcflq is the number of
evaluations performed by Q. If we assume that both processes on the aver‘age'take

time TH to evaluate H, the running time of the execution corresponding to g is:



Tig) = max(Hng, Ho’llq) Ty

4, IMPLEMENTATIONS OF THE CONCURRENT SEARCHING ALGORITHM
Different complexity measures are useful for different purposes, but usually the
worst, best, and average case is considered. These can, however, not be defined Two different implementations of the specification from section 2 are consider-
straightforwardly as: ed and it is shown how their running time is analyzed. The only difference between
¥ the two implementations is in the choice of D, i.e. the subdivision of the interval.
max{T(s)),
o€l 4.1 The Golden Section Algorithm
]

min(T(g)), and Kung [ 1976 | has suggested choosing the subdivision points X, and *q 3s the golden

oETl section (8= (V5-1)/2 = 0.618) of the interval [a,b].

Zipls) © Tlo) (where plg) is the probability of g). a % « b

left right
o€l } + |
| S —
a2l 021
The maximum of T{g) is obtained when e |
@l
o = respond(-,p,-). ... respond (-,p, =)
|l =b-a
i.e. only one process responds. Although this is a maximum, it is much too conser- Dla,b, 1eft) =a ¥ ®2|
ive., If t ted with approximately the same speed, it could .

vative WO processes are execute pp Y p s Bla, b; pight] = b = Gzl (=a+al

never be observed in an execution of the above specified algorithm. Instead of con-

sidering the set of all communication sequences, the notion of an observable commu-

) ] - where left is the name of the process (p or g) working on the leftmost subdivision
nication sequence is defined. The observable communication sequences is a subset

point, and right is the other process. Note, that x = X eft + @2(@), so when

of all communication sequences which is selected as a model of the behaviour of the . : |‘_ight o
E—— the interval is reduced to [xl ft’b]’ Xnight automatically becomes the left division

algorithm. . . € rig
point of the new interval [xleft’ b].

The observable sequences can for example be defined by a regular expression or a . . . L y
We want to find an expression for g, from which it is easy to determine the reduc-

finite state machine. In section 4 several examples of observable sequences are - . L ; ;
tion of the interval length performed by each transition. The algorithm can be in

given. The set of all observable communication sequences is denoted 7, 1cll. The : : : :
two different states, characterized by the following predicates:

following complexity measures can now be defined:

S XDE [a,b] and qu [a,b]

Worst observable case: 1

Wi(r) = max T{o) ¢

= x 4 [a,b] xor x § [a,b]
o€ pq —_— qq

2

L The following transitions can be made between these states:
Best observable case:

B(r) = min T(g)

ty

GET




8
The two transitions t3 and t-ﬁ differ in that t‘3 reduces the interval length by @2 and
ta reduces it by @. The communication sequences are determined by the following

regular expressions:

G:Lt,l,

t(t

ltgty) ¥ gl ”

5

Each transition reduces the interval length by some fractionag (0 < g = 1). If the

transition is substituted by its reduction g in the above expression we get:

eps & [ @

where Io is the initial length of the interval. The maximum of ]g | (tergth of o) can

immediately be derived from this expression, namely the n such that:

|
e ; = 0 =
eps = @) lgi-e n Iog¢ Py where @

@|=

Similarly for the minimum: I09¢2 é-p—s

The set of observable communication sequences for the golden section algorithm is

defined by the following regular expression:

*
tyts]

Thus, in the observable sequences, there are approximately the same number of
responds from p and q, without requiring strict alternation. The length of O ic F 5

is found in the same way as above:

eps ~ [ 8,

From this, it is easily seen that:

: o

3 o]
2 IOggDZeps < lo| = Iog(,?ﬁ eps

A——T

9
In the observable sequences each of the two processes contribute with approximate-
ly half of the responds, so:

: L 0 .
wi(T) : 7 log & ape 0.728
|
s 3 il S
B(r) : 5% g Iog¢ e 0. 548
4,1.1 Analysis of The Average Running Time

The finite state model is also used to find the average running time. Consider first

the set of all communication sequences, [|, and assume that:

i) the probability of finding the root in a given interval is propor-
tional to the length of the interval,

ii) the system is memoryless, i.e. there is always the same probabil-
ity, 1/2, of process p responding next, regardless which proc-
ess responded last. Similarly there is always probability 1/2

of process g responding next.

With these assumptions the model becomes:

a/®

(The notation ¢/B on a transition means that the transition is performed with prob-

ability 5 and makes a reduction of g in the interval length).

The average running time is found by first finding the average reduction of the in-
terval length in each call of respond. This average is called R. The probabilities

of being in the two states are:

1 202
p(S,) = 328 P8 = 3555 [Feller 1950]

Let T be the set of all transitions. For any ,tIET, r; is the reduction in the interval



10

length made by Ii and P is the probability of performing ti. The average reduction

of the interval length performed by one transition is:

P
R=1 [

t.iET

To see this view the piis as relative frequencies, then there will be on the average

ka" ki/n = p; occurences of ti in a sequence of length n.

The reductions of such a sequence can be expressed as:

Kk
=0 ra
LET

The average reduction of this sequence is the number R such that:

n _ k k k
R = Fy 1My 2 . r'J. j
thus:
n
- K k k
R = '\/r‘1 1 ry = r‘j i
_ k /n k /n k /n
= M Fg 2 C T /
k
B
t.e€T
= il ™ pi
tIGT

The average reduction for the golden section algorithm becomes:

i 1 1
(@2Pls. ) @2(@)!3(51)' 8(g2)2 P(S )" 6% )2 p(s ) . 2 p(S)

R =
A 0. 594

The average length of the communication sequence is therefore:

I
Al lo)): log ;/Re";??s ~1.34B,

Note, this average is an average over all communication sequences.

Since the worst and best case analyses were based on the observable sequences,

it would be natural to use these for the average case analysis also. The method de-
scribed above can be used for this, but there are more states in the model and the
average reduction which is obtained is almost the same as the above, but more te-
dious to compute. The conclusion is that no matter which of the models is used,

we have:
5 u* 2% .
o] =~ 2 “G”p (= 2 Hc”p)

From this it follows that the average running time of the golden section algorithm

is:

A(m : A (Jo])

~ 0,67 BT

4.2 The Equidistant Algorithm

The most obvious way to subdivide the interval is to cut the interval in three pieces

of the same length.

x,l eft Xr;ight

a
e — S —
1/31 1/31

i y ) ;
If the left process responds that the root is in the interval [x‘eﬂ,bj then xrlght ]

working on the center point of the new interval. The new X eft becomes:

8 *left xr‘ight b

I_\"—')"“V_'-‘I l—_\.r'—_—""')
1/41 1/4 1 1/21

These two patterns are sufficient. As it was the case with the golden section algo-
rithm, different calls of respond may give different reductions of the interval
length. The same technique is therefore used to determine the length of the commu-

nication sequences.




12

The algorithm can be in three different states, characterized by the following three

predicates:

1 1

ST la,b! and s |a,bl and x,~a+31 and xq=b-3|
‘ L 1 1

52: xpé La,b ! and qu la,b! and xp=a+4i and xq=b—2|
1 1

S (xp{{l {a,b| xor xqéf la,b]) and(xp=a+3| or xq=b—3|)

The following transitions can be made between these states:

The communication sequences are determined by the following regular expressions:

. #*
ot [ty ™ty
* * 1 *
(tytg ™ i tg), 1) (tg, tg) ™t ]
The observable communication sequences are defined by the following regular

expression:

o: [_t1t3 # tys
9 (ts, tehs tz) bty
(113 ™ (tg te)y ty) toty,
(tyty ™ g, tghy tph ey |7

By substituting each transition with its reduction of the interval length we get:

eps~ (20" 2,
2D * g i,
2d+d, b,
2@ G D 1%,

It is easy to see that the maximum length of the communication sequence is obtained

by the path: t,'tq. The minimum length is obtained by the path: tztst?.

I |
o] 0
3 - !oggg;ss lo| = 2|092e?s

In the observable sequences each of the two processes contribute with approximate-

Iy half of the responds, so:
|

. My 0 o
wWi(T) : 5 2 Iogeps ET
1 'o
B(T) : 58 Ioge—ps = 0.478B.

In the worst case, there is no gain in using two processors, the running time is

the same as the running time of binary search.

The average running time is found in the same way as for the golden section algo-

rithm.

Alm : 0.69 By

On the average the equidistant algorithm is slightly slower than the golden section

algorithm. The results are summarized in the following table:

Best Average Worst
Golden section algorithm 0. 54 BT 0. 67 BT 0.72 BT
Equidistant algorithm 0. 47 BT 0. 69 BT 1 BT

5. GENERALIZING THE ALGORITHM

In this section we consider finding searching algorithms with more than two
processes. The abstract data type interval can immediately be used by any number
of processes, n. Since the golden section algorithm works so well for n = 2, it
would be nice to find a generalization of this algorithm for n > 2, Let | denote the

length of the interval. To generalize the algorithm an g (0 < ¢ < 1) must be found

such that:
at ccn = ]
a + an-»l = 1
a *n *n-1 * b
- g £ 4 - i 1
F s o T 2 1
n n-1 al



14

If there are n such that this set of equations have a solution, we immediately have

an elegant n process algorithm. For n = 4 the above set of equations does not have

a solution, but we can choose ¢ (0 < ¢ < 1) as the root of the polynomium az +g_3 =1.
In this case g + qs = 1. Thus the following subdivision of the interval can be
used:
a Xy x3 xz x,' b
t + + -
- '
~
LQ I
__;SI___,
ke ]
oF
a
L J
a I
= .755, g2 =.570, ¢ =.430, (g% =.325), o° = . 245

Let p] denote the process currently working on x and let pz denote the process

11
currently working on xz etc. When one of the processes respond, the processes

are permuted. For example, when pT responds that the root is in [a x1] Py be-

comes py, Py becomes Pgr and Py becomes Py This is written y = (312-). The follow-

ing is a description of the algorithm using this notation.

Process Location
Responding of Root New | New Permutation
1 re[x ]-’I=o.5| , y=1(2---)
re[a,x1]+|=a| , y=1(312-)
2 re[xz,b]»|=a3| y y=1(21--)
Pe[a,xzj -+ |=a2| 4 =(-312)
3 re[x3,b]+|=azl , y=(312-)
r‘E[a,xSJ -+ |=u,3| " y=(--12)
4 r'E[xq,b] + =gl , y=(-312)
refax] » =0 , y=(---2)

The bars indicate which processes are no longer working on useful subdivision

points, and whose work is therefore useless. {(Few of the above given permutations
. . . . 6

are immediately obvious, they are based on properties of o such as: g =a - az,

which are simple to show. Further justification is therefore not given here).

The details of the running time analysis are not given here, but the average running

time is computed by the technique presented above:

Al = 0.46 B

Kung [1976 I suggests other generalizations of the algorithm to n processes.

CONCLUSION

In this paper three different concurrent algorithms have been described and
analyzed. This analysis shows that using two concurrent processes gives a signi-
ficant reduction of the running time, and that using four processes gives a further

significant reduction.

The aim of this work is to find techniques for analyzing concurrent algorithms. The
main problem is to handle the intricate interaction patterns that will often be caused
by such algorithms. Some concurrent algorithms Have little or no interaction. An
example of this is doing numeric integration of some functions by n processes, where

each process computes the integral over a small interval:

L .

1T 2 n
The analysis of such concurrent algorithms is of course trivial and consequently not

very interesting. In algorithms requiring more synchronization the speed increases

will, however, be smaller as the root searching algorithms show.

Acknowl edgement

Torry Skak Gaarde made many valuable suggestions and corrections to the calcula-
tions presented in this paper, in particular he suggested the formula for calculating

the average reduction of the interval length. -

References

[Aho, Hopcroft, and Ullman 1974 | The Design and Analysis of Computer Algor‘lthms,
A. V. Aho, J.E. Hopcroft and J.D. Ullman, Addison Wesley 1974,

[Feller 1950j An Introduction to Probability Theory and its Applications ,
W. Feller, John Wiley and Sons 1950.

[Knuth 1968 | The Art of Computer Programming | - 11,
D.E. Knuth, Addison Wesley 1968,

[Kung 1976J Synchronized and Asynchronous Algorithms, H. T. Kung in
Algorithms and Complexity, J.F. Traub (ed.) Academic Press 1976.

fStaunstr‘up 1978 } Specification, Verification, and Implementation of Concurrent
Programs , University of Southern California, Los Angeles 1978.




