ISSN 0105-8517

FLOW ANALYSIS OF LAMBDA EXPRESSIONS

by

Neil D. Jones

DAIMI PB-128
January 1981

Computer Science Department

AARHUS UNIVERSITY

Ny Munkegade — DK 8000 Aarhus C — DENMARK]

Telephone: 06 — 12 83 55

.

Sinm

FLOW ANALYSIS OF LAMBDA EXPRESSIONS

Neil D. Jones

Aarhus University, Denmark

0. INTRODUCTION

Overview

Program flow analysis determines properties of the computation(s) induced by
a program without actually running it. The purpose is usually to extract information
which may be used to optimize the program, compile code, certify the absence of
certain runtime errors, etc. Excellent introductions to flow analysis may be found
in [Hec77] and [Aho77].

We describe a method to analyze the data and control flow during mechanical
evaluation of lambda expressions. The method produces a finite approximate de-
scription of the set of all states entered by a call-by-value)\ -calculus interpreter;
a similar approach can easily be seen to work for call-by-name. A proof is given
that the approximation is "safe!', i.e. that it includes descriptions of every inter-
mediate A —expression which occurs in the evaluation.

From a programming languages point of view the method extends previously
developed interprocedural analysis methods to include both local and global
variables, call-by-name or call-by-value parameter transmission and the use of
procedures both as arguments to other procedures and as the results returned by
them.

The main emphasis is on development of the flow analysis framework rather
than on applications, although a few are given (ter'mination, finiteness, dependence,
constant propagation). Other familiar analyses easily fit into the same framework,
e.g. available expressions and deciding whether a base function's arguments always
have the right type.

The information gathered could be used to compile unusually efficient code for
programming languages based on the \-calculus such as LISP and SCHEME [Ste?G].
Hopefully it will be possible to extend these methods to the flow analysis of denota-
tional definitions. The use of such analyses in compiler generation was described

in [JoS80] and provided the initial motivation for this study.

The methods developed here are not limited to the A —calculus, but may be
applied to any programming language whose semantics are specified by {or speci-

fiable) by a definitional interpreter using recursively defined data structures. The

A-calculus was chosen because of the challenge of tracing control and data flow in

2

a computation; it provides a "worst-case! example of many problems encountered

in interprocedural analysis.

Related Work

Lambda calculus machines include the SECD and CUCH machines of Landin
and Bohm ([Lan64], [Boh72]) and those due to Reynolds, Wegner and McGowan
([Rey72], [Weg68], [McG70]). McGowan and Plotkin ([McG70], [Plo75]) have
proved correctness of their machines, and Plotkin further investigates a number of
questions concerning call-by-name and call-by-value.

Interprocedural flow analysis has been investigated by (among others) Rosen,
Cousot and Cousot, and Sharir and Pnueli ([Ros79], [Cou77], [Sha80]). Levy has
developed sufficient conditions for termination of S-reduction sequences in [Lev75],
and Mycroft ([Myc80]) developed sufficient conditions for the replacement of call-
by-need by call-by-value in schemes of recursion equations using the flow analytic
idea of "abstract interpretation'. Pleban is currently doing a flow analysis of the

SCHEME language, expressed using denotational semantics [PIeBO].

Qutline of the Paper

In the first section we introduce the Ol interpreter, a nondeterministic machine
which can perform an arbitrary sequence of outside-in B- and d6-reductions on a
closed lambda expression. The initial state of the Ol interpreter for input M0 will
be Load (MO), and every Ol state g will represent a A-expression Unload (g). A com-
putation Load (Mj) = o, = 0y 205 = ... Will correspond to a series of B-reductions,
6-reductions or identity transformations.

There are two reasons for introducing yet another)\-calculus interpreter.
First, the Ol machine can naturally be restricted to yield deterministic call-by-
name and call-by-value submachines CBN and CBV. While we analyze only CBV
(because of its similarity with existing programming languages) it will be apparent
that CBN can be analyzed by the same methods. Second, both CBV and CBN seem
to be significantly simpler than other A-calculus interpreters, which in turn simpli-
fies our model-building process. The appendix*" contains correctness proofs for
these machines.

Section 2 develops analysis methods for a closed \-expression MO without

constants; this we call the control flow analysis of the call-by-value computation.

The result of this is a safe description of

States (Mo) ={g | CBV enters state g during its computation on MO}

* Appendix omitted in this preliminary version.

A lattice D will be defined whose elements § will each describe a set of
states; An effectively computable method will be described to obtain from M0 a
description 5(M0) € D. It will be proven that this description is "safe!" in the sense
that every state g € States (MO) is represented in 6(MO). Safeness implies that
answers to questions about the computation which can be answered by examination
of & (MO) can at worst err ''on the safe side!, since every state in States (Mo) is
accounted for. However precise answers cannot be given to all such questions since
some (such as the halting problem) are undecidable. Technically this occurs since
D is finitg with size recursively bounded in the size of MO’ so some information
must be lost.

Section 2 concludes by constructing a context—free grammar G(MO) which
generates linear representations of all g in States (MO), followed by a proof that
safe answers may be computably obtained to several questions about the computation.

Section 3 extends the method to handle A-expressions with constants and §-
reduction, using an approximation lattice to describe effectively sets of constant
values. An example is given which is suitable for constant propagation, i.e. to find
out which variables only receive constant values, and what those values are. Appli-
cations to error-checking and type-correctness of base functions are considered.

Section 4 ends with conclusions, future directions and acknowledgments.

Notational Conventions

The power set of X, written P(X) is the set of all subsets of X.

Given sets X and Y, X :l? Y is the set of partial functions from X to Y. Given
fe (X =P> Y), Domain(f) is its domain. Two functions in X =p> Y are equal iff their
domains are equal and they have the same values on arguments for which they are
defined. If x&€ X, vy € Y and f€ X g
tion f' such that f'(z) = f(z) if z# x and f'(x) = y.

Y then f{ y/x} denotes the unique partial func-

A function f € X B v with Domain(f) = {xI, - ,xn} may be written as

{x, +f(x:)y...,x_ = f(x_)}. The totally undefined function is written "
1 1 n n

4+

Given a relation = (always in an infix notation), 3 is its n'th power (n = 0),
is its transitive closure and ﬁ is its transitive reflexive closure.

Inductive definitions will be written in the style of the abstract syntax of
McCarthy [McC63:|; for example binary lists can be defined by List ::= Atom |I_ist List
where a list in List may be thought of as an abstract syntax tree. This notation will
be extended to encompass sets of partial functions, e.g. E ::= var E: Cl where Var
is a countable set of variables. This may also be viewed as defining abstract syntax
trees, with at most one subtree of type Cl| for each variable. The notation is similar

to VDM notation [Bjg78].

4
The LLambda Calculus

Given predefined disjoint sets Var = {x,y, z,...} and Con = {a,b,c, was b OFf
variables and constants respectively, the set of A-calculus terms Lam = {M,N,.. .

is the smallest set such that

(1) Any variable or constant is in Lam.
(2) If x is a variable and M is in LLam then the abstraction AxM is in Lam.
(3) If Mand N are in Lam then the combination MN is also in Lam. M is its

rator and N is its rand.

A term is a value if it is not a combination.

This inductive definition may also be written as follows, using abstract syntax:

Lam ::= Var | Con | X var Lam | Lam Lam

The free and bound variables EV(M) and BV(M) of a term M are defined by

(1) FV(a)=@; FV(x)={x}; FVIMN)=FV(M) U FV(N); FVAxM)=FV(M)\ { x|

(2) BV(a)=@; BVI(xX)=@ ; BV(MN)=BV(M) U BV(N); BV(AxM)=BV(M)U { x|

A term M is closed if FV(M)=@. The substitution prefix [M/x] defines the

following operation on Lam: [M/X]N is the result of substituting M for all free

occurrences of x in N, renaming variables of N as necessary to avoid capturing
bound variables as in [Cur58]. Plotkin calls a closed term a program.

The set of contexts c[| is defined by

Cix 1= [] | Ctx Lam | Lam Ctx | X Var Ctx

A context may be viewed as a lambda expression with a "hole" [] init. Noting
that a context would be a A-expression if [:[were regarded as a variable, we define
c[M] to be the result of "filling the hole! in context c[| by term M.

Now supposing we are given a partial function
Constapply : Con x Con E Closed Values

we define the reduction relation > on terms by

. xM>dy[y/x]IM (if y ¢ FVv(M)) o reduction
2 AxMIN > [N/x]M B reduction
3. ab > Constapply(a, b) (if this is defined) 0 reduction
4, M> N for any context ¢[] reduction in context

c[M] > c[N]

5
Note that if M is closed and M > N without ¢ reduction then no renaming occurs,

Define an outside-in context to be one formed without the rule Ctx ::= X VVar Citx,

so the '"hole'" is not in the scope of any \. We write Mgi N ifM>NbyfB or d reduc-
tion, possibly in an outside-in context.

A machine-independent definition (from [Plo75]) of call-by-value evaluation

is given by the partial function evaIV: Programs E Programs defined recursively as
follows:
evalv(a) = a; evalv()txM) = X xM;
1 1 H = I = 1
evaIV([N /xM!") if eva!V(M) A xM! and evaIV(N) N

evaIV(MN) =
a' it evaIV(M) = a, evaIV(N) = b and

Constapply(a,b) = a! is defined
The call-by-name evaluation function evalN: Lam E: Lam is similarly defined:

evaIN(a) = a; evaIN()\xM) = X xM;

evaIN([N/x]M’) if EvaIN(M) =) xM!

eva[N(MN) =
al if evaIN(M) = a, evalN(N) =6 and

Constapply(a,b) = a' is defined

It is shown in [Plo75] that these are good definitions of partial functions. Note
that both could have been restricted to Frograms -Fh,Closed values. The following
is easily shown.

*

Lemma 0.1 If M is closed and evalV(M) is defined then M gl evalV(M); and

similarly for evaIN(M).

1. LAMBDA CALCULUS INTERPRETERS

We first introduce a nondeterministic interpreter which can do arbitrary
outside-in reduction sequences and some lemmas about its behaviour. This machine
is then restricted to yield two deterministic interpreters CBV and CBN which are
proved to perform correctly call-by-value and call-by-name reductions. The ter-

minology and methods of this section owe much to [P1075].

The Ol interpreter

The Ol interpreter is given by a set ¥ of states and a binary transition relation

3 ©on Z; its data structures and transition rules are summarized in Figure 1.
Auxiliary functions Load: Closed terms #+ T and Unload: T - Lam are used to initia—

6

lize the machine and to read out the A-expression denoted by a state.

Data Structures

To avoid explicit substitutions into A —expressions (in the interest of efficiency)
an expression will be represented in an interpreter state by a closure of the form

(M, e) where M is a term and e € E is an environment binding its free variables (if

any) to other closures. Further, a closure may take the form cl 1cI i.e. a combi-

z’
nation of two closures. The function Real: Cl + Lam mapping the set Cl of all clo-
sures into the A-expressions they denote is given as follows.

In this paper every closure (M, e) will satisfy FV(M) < Domain(e), so Real(cl)

will always be closed.

Real(cllcl Real(cIT) Real(cl

)
2
[Real(e(xl))/x1] [Real(exn))/xn]M

%)
Real((M, e))

where Domain(e) = {XI’ i ,xn}

To extend the idea of outside-in contexts to apply to closures we define the
set of Cl-contexts by C ::=[| | C CI | CIC. The notations c[[]Jcl] and c[cl[1]
will have many uses; they denote the Cl-contexts obtained by replacing the single
occurrence of [| in ¢ by the Cl-contexts [Jcl and clI[|, respectively.

A state o inZ may be viewed intuitively as a closure in which a particular
subclosure has been identified to be processed next by the interpreter. Formally o
is a pair consisting of a Cl-context c and a closure cl, written in the suggestive
notation c[cl] (which does not indicate substitution). If ¢ = CI[CII[1] then c[cl]
may also be written ¢ [cl,[cl,]], and similarly ci[[Jet,[el,]] may be written
c1[[cl1]clz].

Load: Programs - I and Unload: T + Lam are now defined, using { } for the
initial environment with empty domain. Note that Unload(c[cl]) may be seen as the

result of substituting Real(cl) into the context naturally obtained from c.

]

Load(M,) [(Mgs { 1]

Real(cl)

Unload([cl])

Unload(c[cl [cl,]]) Unload(c[[cl,]cl,]) = Unload(c[cl 1€151)

Transition Rules

Figure 1 contains the transition rules defining & and repeats the definitions

of Cl, E etc. in more compact form.

Data Siructures

Transition Rules

)
.

c[[(AxM, e)]cl]
2. c[[(a,e)](b,e')]

3. c[(xe)]

4, c[(MN,e)]
S <[elqel,]
6. c[[cl,]cl,]
7. clclel,]
8. c[cli[clzﬂ

cl : Cl = LamE | ClICI
e : E = Var‘]-:;CI

c[] :c =w=i[]lexci|cic
c : I = c[cl]

> c[(M,efcl/x})]
g cl@, {1l

3, cl[e(x)]

= c[(M,e)(N,e)]
2 c[[clijclzj

3 c[cllclz]

> c[cli[clzﬂ

5 c[cllclzj

Closures
Environments
Cl-contexts

States

B reduction

6 reduction

(if a' = Constapply(a,b) is
defined)

variable expansion
(if e(x) is defined)

combination

scan rator
return from rator
scan rand

return from rand

Example Computation

Figure 1. Ol Interpreter.

Following is an example Ol computation on MO = (X ff7)square:

I"
)
i
=]
=

o
S

[

o8

ou

oU

o)

QU

ou

[((Xff7)square, { })]
[(AF7, { } M(square, { })]
[[(AFF7, { }](square, {})]

[(7,{f + (square, @)})]
g J

S
call this e

[[(f,e)](7,e)]
[[(square,{ |)](7,e)]
[(49,{)]

combination
scan rator
B reduce

scan rator

expand "i!

0 reduce

8

Mathematical Justification

The following provides the mathematical justification of the Ol interpreter;

its proof is straightforward but detailed and so appears in the appendix.

Theorem 1. 1

*] : ; *
a) If 0y 3 0, and Unload(o-l) is closed then LInload(o-l)gi Unload(o-z)

* *)
. N and M is closed then Load(M)c=)>i o for some g with Unload(g) = N.

b) IfM 3

A similar interpreter has been constructed and proven correct which can do
arbitrary reduction sequences (not just outside-in), at the expense of more com—
plexity in handling environments. A deterministic restriction of it could provide an
alternative to the CUCH machine [Boh72], but is omitted due to the difficulties en—

countered in approximating a renaming interpreter.

Call-by-Value and Call-by-Name Interpreters

The Ol interpreter may be simplified and made deterministic by imposing a
consistent ordering on operator and operand evaluation. If the operand is always
left unevaluated we have the usual implementation of call-by-name. Figure 2 contains
the CBN interpreter; it was obtained from Ol by combining transition rules 4 and 5,
dropping 2, 6, 7, 8 and simplifying closures by omitting Cl ::= Cl Cl. This machine
has been studied by Schmidt [Sch81].

Define Last :Z E:Z)and Eval _, : Lam 5 L.am by:

N N

I_astN(cr') ifo = o' for someg!';

b
LastN(o) = wal
o otherwise
EvalN(MO) = Unload(LastN(l_oad(Mo)))

Theorem 1.2

EvaIN(MO) = evaIN(MO) for all closed constant-free terms Mo-

Thus CBN correctly performs call-by-name evaluation. Proof is omitted; a
very similar proof for call-by-value is found in the appendix. Constants are omitted
for simplicity, and because CBN will not be studied in detaijl. They could be handled
by adding transition rules to evaluate the operand in case the operator value is a
constant, plus a 6-reduction rule. A simpler alternative (from [Sch81]) is to re-

quire that constant functions be applied in postfix order instead of prefix.

Data Struciures

cl: Cl = LamgE
P

e E = Var = CI
e[1: € = [llcor|ere
gz = C[CI]

Transition Rules

1. c[[xm,e)]el] = c[(M,efcl/x})]

cbn

2. c[(x,e)] = c[e(x)]
cbn

3. c[(MN, e)] & c[[(M,e)](N,e)]
cbn

Closures
Environments
Cl-contexts

States

B reduction

variable expansion

(if e(x) is defined)

combination

Figure 2. CBN Interpreter,

Data Structures

el : &l = LamE
es E = Var‘aCI

el 12 8 = []|]cci]|clic
g: Z = Cc[cClI]

Transition Rules

14 c[[(AxMm, e)]cl] = c[(M,efcl/X})]
2. c[[(a,e)](be)] = c[la',{})]

3. c[(x,e)] > cle(x)]
4. c[(MN,e)] = c[(M,e)[(N,e)]]
5, c[cl][clzﬂ = c[[el]el,]

Closures
Environments
Cl-contexts

States

B reduction

0 reduction

(if a' = Constapply(a,b)]
is defined)

variable expansion
(if e(x) is defined)

combination

scan operator

(if cI2 = (M, e) where M is a closed value)

Figure 3. CBV Interpreter,

10
For call-by-value we evaluate both operator and operand before B or 6 reduc-

tion. The result is in Figure 3; it was obtained from Ol by combining transition
rules 4 and 7, and applying 8 followed by 5 if operand evaluation produced a value.
Rule 6 is omitted since either 8 or § reduction must oécur after operator evaluation.
Define evaIV(MO) = Unload(Last(Load(Mo)) where

1 T 1
Last(g) = Last(o!) ifo=>0
o ifo#o!forallg' ando = [cl] for some cl

Proof of the following is found in an appendix.

Theorem 1.3

EvaIV(MO) = evaIV(MO) for all closed terms Mg-

Corollary 1.4

CBV is computationally equivalent to the SECD machine.

Proof Plotkin has shown that SECD computes eval, , in [Plo75].

A Useful Property

Inh every closure (M, e) which was obtained in the example computation, M was

a subexpression of MO or a constant. This is in fact always true,

Lemma 1.5 Suppose M is closed and L_oad(Mo) O%(S c[(M,e)]. Then

a) Domain(e) ¢ BV(MO) and

b) M is a subexpression either of M, or of Constapply(a,b) for some a,b € Con.

Proof Define ''p appears in cl'" for closures cl and A -expressions or environments
p as follows:
i) M and e appear in (M, e)

ii) if p appears in e(x) for some x € Domain(e) then p appears in (M, e)

iii) if p appears in cll or c[z then it appears in cl 1€l 5

An easy induction on n now verifies that if I_oad(Mo) c%i c[cl] and p appears in
cl or any closure in c, then p satisfies a) or b) above.

O

Lemma 1.5 implies that for each fixed input M0 we may regard Ol as operating

on occurrences of expressions rather than on arbitrary expressions. This useful

property follows from the fact that we only do outside-in reductions. It implies that
a computer implementation of an Ol A-calculus machine can manipulate pointers
instead of arbitrary A-expressions. Incidentally, the SECD machine also has this

property.

11

The approximations to be developed later will trace occurrences (so all x's

are not treated alike, for instance), so we introduce some terminology.

]

Sub(MO) (M | M is an occurrence of a subexpression in M

ol
M | M is an occurrence of a subexpression in N = Constapply(a,b),
where a,b € Con and N ¢ Con}

Subcon

I_am(Mo) = Sub(MO) U Subcon U Con

The specialization of the Ol interpreter to M, is written OI(MO) and defined in
Figure 4. The same concept will also be applied to the call-by-value interpreter
CBV vyielding its specialized form CBV(MO).

Clearly OI(MO) has a computation ¢, = 0p= ... =0 With L.Inload(on) =M if
and only if Ol has a corresponding computation L_oad(MO) = 01' = 0-2‘ Di S Un'
with l.lnload(on') = M.

Data Structures

g] 2 €l 2% I_am(Mo) E| ClClI Closures

e: E = BV(MO) B Cl Environments
cf]:Cc u=[]]|ccli|cIC Cl-contexts

o LE = C[CI] States

Transition Rules

Identical to those of Ol, but regarded as operating on elements
of l_am(MO).

Figure 4. OI(MO) Interpreter,

2. ANALYSIS OF CONTROL FLOW

Let M0 be a given closed A-expression without constants, and let CBV(MO) be

the CBV interpreter specialized to M Define

o
States(Mg) = f{o | Load(M,) X ¢ by CBV(M,)}
Note that CBV(M,) can only halt by entering a state of the form [(AxM, e)], so

no "error halts!" are possible. It will be shown that a safe description G(MO) may be

effectively obtained as follows.

12
s A method will be developed to represent finitely the data structures of

CBV(MO), yielding a finite lattice D containing computation descriptions §.

2. For each & € D a representation relation 2 Z x Z' will be defined, where !

models the states of CBV(MO). The relation ¢ Q, o' will mean that state g is

represented by g! € Z! in the computation description 6.

3. A continuous simulation function f: D =+ D will be defined satisfying

6 1 fé) I 1 1
Lemma 2.1 lf01:>o-2ando1~ 04 thencr2 ~ 0-2 for somecr2 e X!,

4, Safeness will be shown by the following, where G(MO) is the least element

of D which describes L_oad(MO) and is a fixpoint of f.

Theorem 2. 2

6(Mo)

If g € States(Mo) then o g! for some g! € T,

5. A linear encoding le of states will be introduced, and a context-free grammar

G(MO) will be constructed from G(MO) will be constructed from G(MO) such that

L(G(Mg)) 2 {lelo) | o € States(M,)]

6. Effective methods will be developed to give !'safe!' positive answers to the

following questions
+ Is a subexpression of M never evaluated ?
« Will the computation terminate?
. Is States(MO) finite?

* Is M independent of N, for subexpressions M, N of Mqy?

TheDescription Lattice D

The sets of closures, contexts etc. of CBV{MO) are infinite, so for effective
approximation it is desirable to represent them finitely. We first develop informal
methods for finite representation and then give a mathematical definition of what a
representation is. The data structure representations (and more) are summarized
in Figure 5.

The sets E and Cl are infinite, since defined by mutual recursion. However,
notice that every value e(x) € Cl| comes from a Cl-context as the result of

B-reduction; in fact CBV could easily be modified to work with E ::= Var B C

instead of E ::= Var i Cl. We thus approximate E by E! ::= VVar =+ C! where C!

is an as-yet-undefined representation of C.

13

Since MO is constant-free, the closures computed by CBV(MO) must all lie in
Sub(Mo) x E. We thus approximate closures by CI! ::= Sub(MO)E'. State g = c[cl]
will be represented by a pair ¢g' = (c!,cl'), so we define ! ::=C!' CI!,

Cl-context is also infinite due to its recursive definition. During the CBV(MO)
computation, contexts are manipulated "inside out', i.e. from the vicinity of [1.
The reduction rules remove the innermost closure, and rule 3 has no effect on the
closure. Rule 4 !'ldeepens' the Cl-context, changing c[] to c[(M,e)[]] when pro-
cessing a combination (MN, e), and rule 5 changes c[cl 1[1] toc[[]clz:[.

Let Com(Mo) denote the set of occurrences of combinations within Mo; these
will be used for local representations of C.

‘The Cl-contexts appearing in a computation will be represented by two data

structures: a set C' of local representations, plus a single global retrieval function

cc: C!' =+ P(CI' C!') which is used to extract the structure of any Cl-context if given
its local representation. A containment (C[I’Cll) € cc(c!') indicates that ¢! locally
represents a context c,[cl[]] or c [[Jel], where cl' and c,' represent cl and ¢

1
respectively. More specifically,

* [] locally represents the empty Cl-context.

o M[\I[] locally represents any Cl-context created by a transition
c[(MN,e)] = c[(M,e)[(N,e)]]. The remaining structure is represented
globally by the containment ((M,e!),c!) € cc(MN[1), where e!, c!
represent e, c. (M, e') represents the operator of the combination

(MN, e). Further, if MN[] represents c[cl[]] locally, then

* [JMN similarly represents (in the local sense) the context created by
c[cll[clzﬂ = [[cl1]cI2]. This is globally represented by
(clz',c‘) € cc([|MN) where c! locally represents c[| and cl,!

2
represents the reduced form of operand (N, e).

Consequently we set C' :z=[] | [1Com(m,) | Com(Mg)[] and
CC u:=Clap(Ccll C),

An entire computation g 1> Op= on- will be represented by a pair 6 = (s,cc)
where S ¢ ! contains representations of the states (using local context represen-
tations) and cc globally represents the structures of all the Cl-contexts.

Let D ::=P(Z) CC with the ordering: (SI’CC.T)E(SZ’ ccz) iffs,cs, and

1 2
vc!le Cl! cc1(c') c ccz(c'). D is clearly a complete finite lattice, and is called the

description lattice. We write |, T, LI, N for the least element, greatest element,

least upper bound and greatest lower bound, respectively.
The way in which elements of D represent closures, states, etc. is now

made precise:

14
Definition 2.3 Let 6 = (S,cc) € D. The representation relation
S clCIx CIMUEx EYUK x CHYU(Z x TV is defined inductively by:

a) (M,e)g(M,e’) it erg el

b) erg e! if Vx € Domain(e) 3(cl!, c') € cc(e'(x)) such that e(x)g cl!

o [1R[]
e[#l]]]QJMN[] if 3(cl',c') € ce(MN[]) such that c1citand cQ et

cl[[]Cl:lpv[IMN if 3 (cl',c!) € cc([JMN) such that el and 2o

d) c[cl]rdu(c',cl‘) if Crov el clpvcl' and (c!,cl!) € s,

O
Note thatrq: is monotonic with respect to §: 6] gbz and 0-9.1 o' implies 09—9 a'.

This technique may be used to approximate the behavior of many algorithms
using recursively defined data types, providing an alternative for example to the
methods of Jones and Muchnick [JoM81] and Reynolds [Rey68] for simple LISP-like
programs. The underlying idea is to represent a recursively-defined structure by
the set of program points which contain constructor operations, plus a retrieval
function on this set which can be used to retrieve the components put together by a
construction. These program points are propagated as descriptions of variables!
values along control paths during flow analysis, and selector operations are per-

formed by consulting the retrieval function.

The CBV(MC)SimuIation Function

It is well known that most forward flow analysis methods essentially carry out

an abstract interpretation of the simulated algorithm over a lattice of approximations

to states or sets of states. Descriptions of this approach may be found in [SIn?Z]
and [Cou79].

This approach was used to construct the simulation function f: D =+ D which is
defined in Figure 5; the clauses defining f in essence apply the CBV(MO) transition
rules to representations of states. Clearly f is monotonic; D is finite, so f is also
continuous and so 5(M0) is well-defined. LLemma 2. 1 will be proved after an example;

we now prove that Theorem 2. 2 follows from LLemma 2. 1.

Proof of Theorem 2.2

Suppose I_oad(Mo) =0g=20;>...20,. Forn=0,

Load(My) = ([1,(Mg, | Inge JsMgs t 1)) =00'6\w§;e 6o =(ogt,{ 1) and { tis
o~

the empty Cl-context retrieval function. Now ¢ cro‘ follows since 60 C G(MO).

156

Now suppose inductively that o, GrLMO) Uil' By Lemma 2. 1 there exists U%+

1
such that Ot) o-'H_] where § = f(G(MO)) C 6(M0), so o, 8(Mo) o!

i+1°
]
Data Structure Descriptions

gt ¥ ! = Sub(Mo)E' Closures

e : E! u= BV(MO) B Environments

el 5 g1 a= [1) []Com(Mo) | Com(My)[] Contexts - local
descriptions

€€ £ co = CraP(C) CY) Contexts - global
descriptions

scZ! = @ e States

i I D = pPEY)CcCe Descriptions of states

and sequences

Simulation Function f: D =+ D

Let 6 = (S,cc) € D. Then f(8) is the least pair (51,:cc1) 1 (S, cc) such that
the following hold:

1. B reduction: if ([NP, (AxM,e")) € S and (cl',c!') € cc([INP) then
(et (M, e'{[INP/x} € 5

2. Variable expansion: if (c',(x,e'!)) € S and (cl',cI‘) € ccle'(x))

then (c!, cl!) € S,

. Combination: if (c!',(MN,e!)) € S
then (MN[],(N,e')) € S, and ((M,e!),c') € cc (MN[)

4, Scan operator: if (MN[],clz') € S where C|2' = (P, e') for some closed
value P and (cl ', c') € cc(MN[])
~then ([JMN, cl 1) € S;and (cl,',c') € ce ([JMN)

O)GD

This is the least solution to the equation 6 = f(8) U Load'(MO), where

Control Flow Description §(M

Load'(Mg) =({([],(M0,§ INt,1}) describes {L_oad(MO)}.

Figure 5. Simulation Function and Description Lattice.

An Example

Let My =AB = (Axxx)(A\yy). The reduction sequence Mg > Ayy)(Ayy) = Ayy as
computed by CBV(MO) and as represented by S(MO) = (S, cc) are as in Flgure 6.

16

CBV(MO) Computation Approximation

State Action =] cc

[(AB, {})] scan operand [([],(AB,{}))
= (A {D[B,{1)]] scan operator | (AB[],(B,{])) |(A,{]),[]) € cclaB]])
> [[A, {D]B,{}1)] |8 reduce ([A, (A, {IN |(B,{1),[]) € cc([1AB)

= [(xx,{x =2 (B,{]))] | scan operand | ([1, (xx, {x=+ [JAaB}))
R S —

call this e call this e!
> [(a,e)[(x,e)]] expand x (xx] 1, (x,e")
> [(x,e)[(B,{}1)]] scan operator | (xx[],(B,{})) |((x,e"),[])€ cc(xx[])
= [[(x,e)](B,{})] expand x ([Jxx,(x,eM) [(B,{}),[1) € ccl[Jxx)
> [[(8,8)]B,{1)] B reduce ([Ixx,(8,{1}))
=2 [ly,{y=(B,{})})] |expandy ([],y iy = [Ixx}))
> [(8,{])] ([1,(8,{})

Figure 6. CB\/(MO) Computation and Approximation.

Proof of Lemma 2. 1

Suppose 0120, and o 1 9; ag Tl where & = (S, cc).

Case 1. c[[AxM,e)]cl] =0,20, =c[(M,efcl/x})].

I_et01r§a ([INP, (AxM, e!)). Then 3 c',cl! such that ega el, cga L clpu cl! and
(cl',e") € cc([INP). By definition of f, o, = (c',M,e'{[INP/x})) € S, To show
o, f(5) 0,' we need only establish e{cl/x} (o) e'{[INP/x}. This follows from the
definition oerJ and the facts that erﬁv e' and (cl',c') € cc([INP).

Case 2. c[(x,e)] =0,20, =cle(x)].

()

1f01r§, (e, (x,e")) theno (c',e'(x)) by the definitions of efév e! and f.

Case 3. c[(MN,e)] =¢ 120, =c[(M,e)[(N,e)]].

LetUTQ (c',(MN, e')). By defmltlon of f, o, = (MN |] (N,e')) € Sy and

((M,e'),c') €ccy(MN]). f;\éc;w (M, e} (M, e!) so c[(M &) 112 mNT 1 ThlS and

6 . .
(N,e)~ (N, e!) implies 0, 0-2|

174

Case 4. clel [cl,]] =0,=> 0y =cl[[cl]el,] with cl, suitably restricted.

I_eto'lga (MN[],clz'). Then Jc',cl,', such that clzg.ﬁ cly, &9, e, c]1r6u cl,'

and (cl,',c') € cc(MN[]). By definition of f, o,' =([]JMN,cl.") € S, and
(clz',c‘) €cc[JMN). Clearly c[[:chz] 2 [JMN so cr;(g)cz' is immediate.

O

A Context-free Approximation to States(MO)_

First we define a way to encode states, etc. as linear strings of symbols.
A Cl-context will be written linearly as (11,cl1) i (in,cln) where each ij is 1if
cl. is in operator position and 2 if in operand position. For example
c = (c|1([:]clz))cl3 becomes (2,c|2)(1, cl 1)(2,(:13). This would be suitable for computer
implementation since the Ol and CBV transition rules in effect treat such a string as
a stack with the top at the left end. An environment e will be encoded as
{x, e(xl), PR e(xn)} where Domain(e) = {xl,. ‘e ,xn} and x, € x, < ... < x

1 n

relative to some arbitrary fixed order relation on Var.
The linear encoding function le: ClU EU C U XZ 4 A¥ is defined as follows,
where A is the alphabet A =var u {(,),{,},[,],* 1,2 U {,}.

le((M, e)) = (M, le(e))
le(e) = {x1 - Ie(e(xl)),...,xn—b Ie(e(xn))}
where Domain(e) = {xl, .o m ,xn} and x; < ... < X
le([]) = ¢ (the empty string)
le(cl ¢) = le(c)(1,le(cl))
le(c cl) = le(c)(2,le(cl))
le(c[cl]) = le(c)[le(cl)]

Definition 2.4 Let § = (S, cc) be the control flow description of CBV(MO). The

context-free grammar G(Mo) is defined in Figure 7.

An example derivation from Figure 5 is
s = [] [(xx,e')] X [(xx,e"]

> [ix=2 B, TN = [(xx, {x=2 Qyy, { 1])]

18

Nonterminals : {SO} U{X | Xecl'uE'UC'yZY
Terminals : A ; Start symbol SO
Productions
Closures: s (M, el) 5= (M, ef) for each M € Sub(Mo),e' € E!
Environments: el = {x1 *c_lf,...,anqf]
where Domain(e!) = {xv ‘% § xn}, X Se e a2
and Vi€ [1,n] 3c;! (cli',ci')e cc(e'(xi)))
Cl-contexts : E_] =€
MN[] =(1,cl’) ¢! for each (cl',c') € cc(MN[])
[IMN ::=(2,cll) ¢! for each (cl',c!) € cc([MN)
States 2 (et,el!) =T [cll] for each (c!,cl') € S
Initial £ SO =0 for eachg' € S

Figure 7. Context-free Grammar G(MO) Approximating States(Mo).
For any nonterminal X let L(X) = {x € A¥ | X3 x| .

Theorem 2.5

Let MO be a closed constant-free A -expression and § its control flow descrip-
tion. For each x' € X' where X = CI,E,C or I:

L(x") = {le(x) | %% X and x € X}

Proof is a straightforward induction on definition 2. 3 of xg: ks

Corollary 2.6
L(G(MO)) 2 {le(o) | o € States(MO)} .

19

Applications

Let a "safe positive reply!" P to a question whose answer is Q be one such
that P logically implies Q. Given N € Sub(MO) and (M, e) € CI define (M, e) to depend
on N if either M = N or for some x € FV(M), e(x) depends on N. We say that M
depends on N for M, N € Sub(Mo) if S contains a state c[(M, e)] with (M, e) dependent

on N.

Theorem 2.7

There is a decidable method to obtain nontrivial safe positive replies to the

following questions about a closed constant-free A-—expression MO:

1. Is evaluation of M & Sub(Mo) never attempted ? (Meaning: does States(Mo)

contain no state c[(M, e)] ?).

2. Will the computation terminate ?
3 Will the computation fail to terminate?
4, Is States(Mo) finite?

5. Is M independent of N (given M, N € Sub(MO))?

Proof is by showing how to analyze the structure of 6(M) = § = (S, cc). Question 1
is simple: if S contains no pair (c!, (M, e')) then States(Mo) contains no state
c[(M,e)] by Theorem 2. 2.

Define the flowchart of M to have nodes in T! and an edge crl‘ =>o-2' just in case
gz' & ST where f({o-]'] ,cc) = (ST,cc}. It is easy to see that ifcy1 Q, Ull thehch =20,
byCBV(MO) implieso-T' =>cr2l in the flowchart for some 0-2' with 022 0'2'. Letting the
CBV(MO) computation be L_oad(MO) =0g=>0;= ..., there exists a path 00' = cr]' = e
where each oirav o;/forn=0andg,' = ([],(Mo,{ ! 30

If the computation is infinite there must exist g! such that cro' :,io‘ ib o', since
! is finite, This condition is certainly decidable, and its falsity implies the compu-
tation is finite. Question 3 may be answered "'yes!! if there is no path 00' ; o!
where g! 7501' for all 01‘. Note that safe answers to questions 2 and 3 can both be !'"no',

Question 4 can be answered simply by constructing G(MO) and testing I_{G(MO))
for finiteness; by Corollary 2.6 a positive answer implies States(MO) is finite. It is
well known that finiteness of context-free languages is decidable.

For question 5, define '"cl' depends on N!" for cl' € CI! by

20
a) (M, e') depends on M for any e! € E!

b) (M,e') depends on N if there exist x € FV(M) and (cl',c!') € cc(e'(x))

such that cl! depends on N.

It is easily seen that if (M, e) depends on N and (M,e)rov (M, e!) then (M, e')
depends on N. The set of all pairs (M, cl') such that cl! depends on M is clearly
effectively computable, Finally, M is independent of N if there exists no
(c,(M, e!)) € S with (M, e!) dependent on N.

3 ANALYSIS OF DATA AND CONTROL FLOW

A method will now be given to obtain a safe description of States(Mo) where
M0 is an arbitrary A-expression. The method involves the use of an auxiliary
lattice to approximate sets of constants. The development is otherwise quite
parallel to the previous one, so only the essential detaijls are given. For the method

to succeed finitely, however, we need the following reasonable

Assumption Subcon is finite,

Approximation of Constants

Since the set of constants is infinite and our descriptions of States(M.) are

o/
finite, it is necessary to find a way to finitely represent unbounded sets of constants.

This is traditionally done in flow analysis by use of a complete approximation

lattice L whose elements represent sets of constants via an abstraction function

abs: P(Con) =+ L. For example a suitable L for "constant propagation! would be the
one in Figure 8. Constant propagation allows the recognition of subexpressions

which always evaluate to the same value, and determination of that value.

abs: P({0,1,2,...})»L

abs(A) = if A =@ then | else if A ={a} thenaelse T

Figure 8. A Simple Approximation Lattice L.

21
Not all abstraction functions and lattices are suitable for flow analysis. An
appropriate and useful restriction due to Cousot is that there exist a concretization

function conc: L = P(Con) such that (abs, conc) are a pair of adjoined functions.

Letting C be the ordering on L this means that
¥ A c Con VIEL A < conc(l) iff abs(A) C |

Motivation of this definition and useful mathematical properties may be found in
[Cou79]. A suitable concretization function for constant propagation is: conc(l) = o,
conc{a) = {a}, conc(T) = Con.

In order to effectively obtain finite descriptions we also require that L have

the finite chain property, i.e. that there exist no infinite properly increasing

chains. Note that the example is infinite but has the finite chain property.

The Description Lattice Dcon

This extends the D lattice used before. Figure 9 contains Dcon and the simula-
tion function fcon' Note that E', C' and ' are as in Figure 5 but that CI', CC and
Dcon are more elaborate.

By Lemma 1. 5 an achievable closure (M, e) must have M € L_am(MO) =
Sub(MO) U Subcon U Con. In Dcon we represent a closure by either | € L describing
a set of constant values, or a pair (M,e') with M € Sub(MO) U Subcon.

We cannot use Dcon ::= P(Z')CC since P(Z') = P(C' CI') may not possess the
_finite chain property (as in Figure 8). This problem is resolved by merging ahset
{(c', 1 1), 8 In)} cClx C,' with lyp+«.5 1" € L into the single pair (c!, u li).
P(Z') is replaced by il

ct ® cl = {XQC' ¥ CI i (C',|1),(C',|z)€ C!'x L implies l] =]2}

Clearly C' (® CI' has no infinite ascending chains. We now define
Dcon ::= (C! €] CI')CC. An order relation C can now be imposed on C! ® ClI! to

make Dcon a complete lattice, as follows. The following function is easily seen to

be an isomorphism:

g:C'Q® ClI' »+ P(C'x ((Sub(MO)U Subcon) x E) x (C‘EI_)

g(X) =(Xn(C'x ((Sub(MO) U Subcon) x E)), Ac. if (c,1) € X then | else undefined)

Informally, if g(X) = (Y, h) then ¥ consists of those pairs (e!,cl') where cl! is
not in L, and h maps ¢! to | iff (c!,1) € X and | € L. The range of g is certainly a
complete lattice with (Y,h) < (Y',h!) iff Y € ¥Y! and VYc € C! (h(c) c h(c'). Now define
X, E X, iff g(xi) < g(xz), making C!' ® CI' into a complete lattice.

22

Note that (c',cl') € X and {(c',cl') }E X are both meaningful. Both are used in
Figure 9,

Similarly the set of global context descriptions CC ::=C! =+ C|! ® C'isa
complete lattice, with CI' ® C' defined symmetrically to C' (CI'. It should now

be evident that Dcon is a complete lattice with the finite chain property.

The Simulation Function

This function fcon is constructed in the same way as f, to simulate the effect
of a CBV(MO) transition o, = 0, in terms of the data structure § representing 0q-
Constants can either be computed or original subexpressions of MO; thus we add a
rule to convert closure (con, e) into its representation abs{con} in L. For 6 reduc-
tion we must map backwards from L. to Con and then forward into L again. This is

done with the aid of Conap: L x L + P(Con) and Lamap: L x L -+ P(L_am) defined by:

Conap(! 12 Iz) = Con N Back, Lamap(| 1 IZ) = Subcon N Back

Back(l,1,) = {a' |3 a € conc(l)y bE conc(l,) such that
a' = Constapply(a,b) is defined }

Further Development

It seems clear that the steps taken earlier for control flow analysis can now
be paralleled: a representation relation 0.,@,01 could be defined, safeness proved,
and a context-free grammar generating a superset of { le(g) | o€ States(Mo)} could
be constructed. We do not do this for brevity and because no new ideas are involved.

The CBV(MO) interpreter may perform an "error halt" if M, contains constants;
a state c[[(a, e)](b, e,)] with a € Con causes nonstandard termination unless b € Con
and Constapply(a,b) is defined. Taking this into account it appears straightforward
to extend the methods of Theorem 2.7 to obtain effectively safe positive replies to

the five questions stated there, plus:
6. Is the computation free of error halts ?

7. Is a given variable occurrence bound only to a single constant value?

(If so, its value can be obtained.)

23

Data Structure Descriptions

elt 2 Gl = (Sub(Mgy) | Subcon)E | L Closures

el : E! = BV(MO) B o Environments

et & o =[]1]1]Com(MO) | Com(Mo)[] Contexts - local
cc u GO =C'aCI'® C) Contexts - global
=T = C!'CI! State sets

8§ : Dcon :u= (C'Q® ClIYCC States and sequences

Simulation Function fcon: Dcon = Dcon

Let § = (S,cc) € Dcon. Then fcon(ﬁ) is the least pair (ST,cc:) satisfying:

1. B reduction: if ([JNP,(AxM,e')) € S and (cl',¢') € cc([]NP)
then (c!, (M,ef [JNP/x}) € s,

2. b reduction: if ([INP, 1) € 5, and (15,¢') € cc ([INP)
then a) {(c',abs(Conap(l 1 [2)))} Es,

b) (c', (M, {})) € S, for each M € Lamap(l , |

PEAPY

3. Constant representation: if (c',(con,e)) € S
then (c!,abs{con}) C S,
4. Variable expansion: if (c',(x,e')) € S and (cl',cT') € cc(e'(x))
then (c!,cl!) € S,
5. Combination: if (c!',(MN,e')) € S
then (MN[],(N,e')) € S, and {((M,e!),c") € ccT(MN[B
6. Scan operator: if (MN[1,¢c1,') € S where cl,' =(P,e') for some closed
value P, and (cli',c') € cc(MNJ 1)
then ([]MN,CIT') €S, and (c!z‘,c‘) € cc1([IMN)

Data and Control Flow Description

6(M0) is the least solution to the equation § = f(6)w L_oad'(MO)

Figure 9. Approximate Description of Data and Control Flow.

24
4, CONCLUSIONS AND ACKNOWLEDGEMENTS

It has been shown that safe answers may be effectively obtained to a varijety
of questions about call-by-value reduction sequences including finiteness, termina-
tion, freedom from errors, and independence of subexpressions. The methods used
are clearly applicable to call-by-name; further since abstract interpretation does
not depend on determinism it seems likely that the Ol interpreter could be similarly
analyzed, giving information about the set of all outside-in reduction sequences.
One application would be to determine from the flow analytic information a combi-
nation of call-by-value and call-by-need which have the same termination properties
as call-by-name but allow a more efficient implementation. This would extend the
results of Mycroft [Myc80].

The analysis method applied the classical flow-analytic idea of abstract inter—
pretation to a new call-by-value interpreter CBV which appears to be somewhat
simpler than the SECD machine. This application required a new description
technique involving both local and global data representations due to the recursive—
ness of CBV's data structures. The technique is applicable to many programs which
manipulate tree-like data structures; it is anticipated that it can be used to develop
practical interprocedural flow analysis methods for more conventional imperative
programming languages. Another application would be the development of compiling

methods for applicative languages capable of producing highly efficient object code.

Discussions with Flemming Nielson, David Schmidt, Peter Mosses, Mogens
Nielsen and Steven Muchnick on various aspects of this work have been very
helpful.

REFERENCES

Aho77 Aho, Alfred V., and Jefferey D. Ullman, Principles of Compiler Design,
Reading, MA: Addison-Wesley, 1977,

Bjg78 Bjg¢rner, Dines and CIliff B. Jones, The Vienna Development Method:

The Meta-L anguage, Lecture Notes in Computer Science 61 (1978).

Boh72 Bohm, Corrado and Mariangiola Dezani, ""A CUCH-Machine: The Automatic
Treatment of Bound Variables!", Int. J. Comp. Info. Sci. vol. 1, no. 2
(1972), 171-291,

25
Cou77 Cousot, Patrick, and Radhia Cousot, "Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction of

Approximation of Fixpoints'', Conf. Rec. of 4th ACM Symp. on Prin-

ciples of Programming Languages, Los Angeles, CA (January 1977),

Cou79 Cousot, Patrick, and Radhia Cousot, "Systematic Design of Program

Analysis Frameworks', Conf. Rec. 6th ACM Symp. on Principles of

Programming Languages, San Antonio, TX {January 1979), 269-282.

Cur58 Curry, Haskell B. and R. Feys, Combinatory Logic vol. 1, North-Holland,
Amsterdam (1958).

Hec77 Hecht, Matthew S., Flow Analysis of Computer Programs. New York:
Elsevier North-Holland, 1977.

JomM81 Jones, Neil D. and Steven S. Muchnick, "Flow Analysis and Optimization
of LISP-like Structures', in Program Flow Analysis, S.S. Muchnick
and N.D. Jones(eds.),Prentice-Hall (1981).

JosS80 Jones, Neil D. and Schmidt, David A., ""Compiler Generation from Deno-

tational Semantics", in Semantics-Directed Compiler Generation,

Lecture Notes in Computer Science 94 (1980), 70-93.

Lan64 Landin, P.J., "The Mechanical Evaluation of Expressions!, Computer
Journal vol, 6, no. 4 (1964),

Lev76 Levy, J.J., "An Algebraic Interpretation of the A\fk-calculus and an

Application of a labelled A -calculus!", Theor. Comp. Sci. vol. 2 no. 1

(1976), 97-114,

McC63 McCarthy, J., "Towards a Mathematical Science of Computation! in

Information Processing, North-Holland (1963).

McG70 McGowan, C., "The Correctness of a Modified SECD Machine!, Second
ACM Symposium on Theory of Computation (1970).

Myc80 Mycroft, Alan, "The Theory and Practice of Transforming Call-by-need

into Call-by-value!", Internl. Symposium on Programming, LNCS 83

(1980), 269-281.

Ple80 Pleban, Uwe, "A Denotational Semantics Approach to Program Optimiza-

tion'", Ph.D. Dissertation, Univ. of Kansas, Lawrence, KS (1980).

26

Plo75

Rey72

Ros79

Sha80

Sin72

Ste76

Weg68

Plotkin, Gordon, D., ''Call-by-Name, Call-by-\VValue and the Lambda
Calculus'", Theor. Comp. Sci. 1(1975), 125-159,

Reynolds, John, "Definitional Interpreters for Higher-Order Programming

Languages!", Proc. ACM National Meeting (1972).

Rosen, Barry K., '"Data Flow Analysis for Procedural Languages',
J. ACM, 26, no. 2 (April 1979), 322-344,

Sharir, M. and A. Pnueli, "Two Approaches to Interprocedural Data F low

Analysis!", Program Flow Analysis, S.S. Muchnick and N.D. Jones eds.

Prentice Hall (1980).

Sintzoff, M., "Calculating Properties of Programs by \Valuation on Specific
Models!", Proc. ACM Conf. on Proving Assertions about Programs,
New Mexico (1972), 203-207.

Steele, Guy Lewis Jr., "LAMBDA: The Ultimate Declarative!, Al Memo
379 (November 1976), Artificial Intelligence Laboratory, MIT.

Wegner, Peter, Programming Languages, Information Structures and

Machine Organization, McGraw-Hill, New York (1968).

Al-1
APPENDIX |

PROOF OF THEOREM 1.1

* *
Lemma 1 Real(cl 1) 3 Reai(clz) implies Unload(c[cl T})gi Unload(c[clzj).
Proof is by a simple induction on the size of c[|.

Lemma 2 Suppose Real((AxM, e)) = AxM!, Real(cl) = N and N is closed. Then
Real((M, e{cl/x|)) = [N/x]M'.

Proof is straightforward and so omitted.

*
Lemma 3 0, 3 0,and Uhload(TI) closed implies Unload(crj)gj Unload(crz).

ai 2

Proof lfo-1 ?i 0, by transition rule 5, 6, 7 on 8 then Unload(cy]) = Unload(o-z)‘
by definition of Unload. If g, = c[cl,] = c[clz] =0, by rule 3 or 4 then
Real(cll) = Rear(clz) so the result holds by Lemma 1.

fo, = c[[(a,e)](b,e')] = c[(a', {})] =0, by rule 2 then Real((a, e)(b,e')) =
ab S a' = Real((a',{])). By Lemma 1, Unload(ol) = Unload(c[(a, e)(b, e')]) o§i
Unfoad(gz}. Finally suppose g ;= 0, as inrule 1, and let Real((AxM, e)) =XxM' and
Real(cl) = N. Unload(cl) is closed so N must also be closed. By B-reduction and

Lemma 2,
Real((AxM, e)cl) = ()\><r\/l')l\10>i [N/xM! = Real((M, e{cl/x}))

Thus Unload(o-1) = Unload(c[(AxM,e)cl]) g*i Uhload(cz) by Lemma 1.
|

This completes the proof of part a) of Theorem 1.1 For part b), first define
a closure (M, e) to be simple if M is not a variable. Note that any state g = clcl]
yields a stateg! = c[cl'] with simple cl! by a finite number of applications of tran-
sition rule 3 (rule 3 cannot be applied infinitely often since environments are de—
fined inductively). A consequence is that if Real(cl) is a combination M1M2 then
there exist cl,,cl, such that c[cl] c% clcl i€l,] and Real(cl;) = M, for i =1,2
(since the cl! mentioned above must be a combination by the definition of Real).
Similar results hold if Real(cl) is an abstraction or a constant.

Part b) of Theorem 1.1 is an immediate consequence of the following.

*
Lemma 4 If Unload(g,) > N and Unload(o ;) is closed then 0, = 0, for some
-_— Oi oi

0, satisfying N = Unload(o,).

Al-2
Proof It is easily seen that the inference rule for reduction in context can be

replaced by the two simpler rules

M, > M £ M, > M
B e b Ml 3
M!N > MZN NM] > I\IM2

Proof of the lemma ié by induction on the number k of times inference rules

4! or 4" are used to establish L.lhlor:-,ld(o-1)0>f N.

Basis k = 0: Suppose Unload(g1) = AxM)N > [N/x|M. The following machine
oi

computation occurs:

T4 3 [el] where Unload(o ;) = Real(cl) by Ol transition
oI
rules 6, 8
*
= [ecl]c12] where Real(cl 1) =)LxM,ReaI(clz) = N by rule 3
oi
2’ HCH]CIZJ Ol rule 5
f} [[AxM', e)]cl,] where Real((AxM!, e)) = AxM by rule 3
= [(M',e{dz/xfﬂ Ol rule 1
o

0, by definition.

Now N must be closed so by Lemma 2 Unload(cz) = Real((M',e{c!z/x}) =

[N/x]M as required. Delta reduction is similar but a bit simpler.

Inductive step Suppose the result holds for fewer than k uses of 4' and 4" where

k> 0 and Unload(o) MTMZ > NM2 by k uses. As in the basis case
oi
o, :> [[cl1]cI2] where Real(cl,) M (i =1,2), by a computation involving Ol
oi

transition rules 6, 8, 3 and 5. By mductlon [cl1] => 0 4' for some 04" with
Unload(c) = N. By OI rules 6, 801‘ :> [cl " for some cl,! with Real(c! ‘) =

Fmally [cl1:| =>I [cl '] implies [TCIT]CIZJ > [[el 'lel,]. Leto,= [[ci ']012]
Clearly Unload(g) = Real(cl ‘)Real(cl) =NM, as r~equ|r*edr A symmetric argument
applied if Unload((r1) =M;M; > M,N.

oi

D

All-1
APPENDIX 11

PROOF OF THEOREM 1.3

We first define evaIV more formally just as in [Plo75]. Let '"M has value N at

time t" mean T(M, t) = N where T: Programs x {0, 1, .. . B Programs is defined as
follows.
1. T(M,0) =M if M is a constant or an abstraction
T(M1,tr)= a, T(Mz, tz) = b and Constapply(a,b) exists
2.
T(M1M2, tytt, +1) = Constapply(a, b)
s T(M,,t,) = =AxMy!y T(M,, t,) = M,', T([M /x]M] . 3) N

T(M]Mz,t1+t2

+1) =N
Now let evaIV(M) =N iff T(M,t) =N for some t= 0, i.e. iff M has value N at

some time. Note that N cannot be a combination.

Lemma 1 If Real(cl) has closed value N at some time then CBV has a computation
[c1] 3 [cI'] such that N = Real(cl').

Corollary 2
evaIV(M) = EvalV(M) if evaIV(M) exists.

Proof Let T(M,t) = N where Real(cl) = M. Proof is by inductionont. Ift =0
it follows immediately with cl = cl'. Now suppose t> 0 and the result holds for all
times less than t. By definition of T Real(cl) = MM, for some MI’M It is easy to

12 2°
see that [cl] = [cl [clzﬂ by CBV transition rules 2, 4 where Real(cl.)=

(i=1, 2).

Case 1 T(M1,t1) =a, T(Mz,tz) = b, N = Constapply(a,b) exists and t = tytto+l.
.) * *
Then t,,t, <t so by induction [cl,] 5 [(a,e')] and [clz:[= [(b,ez)] for some
Consequently CBV has the computation

1€y

[c1] = [elylet,]] 3 [cly[(b,e 211 = [[el,](b, e,)]

[[(a,e)](b e,)] = [(Constapply(a,b),)]

Uk U

Now let cl!' = (Constapply(a,b), {}).

All-2
Case 2 T(MP t) =M, T(My, t5) =M1, T([M /><]M1 »t3) =N and
t=1t +t +t_ +1.

2 3 ‘
Then t,,t, < t so by induction [cl1:| b [cl1':| and [clzj X [clz'] where

Real(cl 1') =)\le‘ and Real(clz') = Mz'. Without loss of generality cl, (JLxM ", e)

for some e,M,". Letcl, = (MI”,e{clz'/x}). By Lemma 2 of Appendix I, Real(cl;) =

[le/x]MT'. Using induction again, [cl,] 3 [cl'] where N = Real(cl'). Putting these

together the required CBV computation is
[cl] 2 [el,[e1]] 3 [el[el']] = [[el,]el,']
X [[(AxM1”,e)]clz'] = [(MI“,e{clz‘/x})] =[cf3] = [el']

Lemma 3 If [cl] L% 0, Last(o) =g and Real(g) is closed then T(Real(cl), t) =

Unload(g) for some t = 0.

This result and Corollary 2 yield Theorem 1. 3.

Proof Let [cl] % o where Last(o) = 0, Real(cl) is closed and c| = (M, e). The
result is immediate if M is a constant or an abstraction, which must hold if n = 0.

Assume inductively that the result holds for all computations of length less
than n, where n> 0. If M is a variable then [cl] = [e(M)] e o and Real(cl) =
Real(e(M}) so the result holds by induction.

The remaining case if M = M My, so [cl] =]:cll[clz]] X & where cI = (M e)
for i = 1,2, Consider the computation [clz] 0120, . This must tepmmate in
some g without an "error stop', else [cl] = ¢ is violated. It is easy to see that

T = [clz'] where clz' = (M ',ez) for some value Mz‘. Thus the computation may be

2
refined further:

[e1] 3 [el,[el,]] _2 [elie1,]] = [[el]el,'] 3 o

Since n, < n and I_ast([clz‘]) = [clz'] we may use induction to show that
T(Real(clz),t) = Real(clz‘) for some tye

By exactly the same reasoning applied to c:I1 there must exist cl = (M1 1€)5 t
such that [cl 1] X [C|]'] and T(Real(cl,), t;) = Real(cl ') The computatlon may be

re—expressed:

[c1] 3 [[cl,']el,] 3 o

All-3
Case 1 M1' is a constant a.
Since the computation terminates Mz‘ must be a constant b such that

Constapply(a,b) exists. By inference rule 2 of the definition of T
T(Real(cl), t1+t2+1) = T(Real(cl I)F%eal(c:lz), t]+t2+1) = Constapply(a, b)

Case 2 Ml' is an abstraction)LxMI”. -
- * 3
By CBV transition rule 1 [cl] = [[CIT']CIZ‘] = [(Mi“,e{cfz'/x})] = [cl;] 50
where n_, < n. By induction T(Real(cla),t) = Unload (g) for some ty. Let Real(cll‘) =

3
Ale“'. By Lemma 2 of Appendix |

Real(cl ;) = [Real(cl,')/x]M !

By inference rule 3 of the definition of T,T(Real(cl), t]+t2+t3+‘l) = Unload(g).
]

