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Abstract

Virtual classes are class-valued attributes of objects.
Like virtual methods, virtual classes are defined in
an object’s class and may be redefined within sub-
classes. They resemble inner classes, which are also
defined within a class, but virtual classes are accessed
through object instances, not as static components
of a class. When used as types, virtual classes de-
pend upon object identity – each object instance in-
troduces a new family of virtual class types. Virtual
classes support large-scale program composition tech-
niques, including higher-order hierarchies and fam-
ily polymorphism. The original definition of virtual
classes in Beta left open the question of static type
safety, since some type errors were not caught until
runtime. Later the languages Caesar and gbeta have
used a more strict static analysis in order to ensure
static type safety. However, the existence of a sound,
statically typed model for virtual classes has been a
long-standing open question. This technical report
presents a virtual class calculus, vc, that captures
the essence of virtual classes in these full-fledged pro-
gramming languages. The key contributions of the
paper are a formalization of the dynamic and static
semantics of vc and a proof of the soundness of vc.
Categories: D.3.3 [Language Constructs and Fea-
tures]: Classes and objects, inheritance, polymor-
phism. F.3.3 [Studies of Program Constructs]:
Object-oriented constructs, type structure. F.3.2
[Semantics of Programming Languages]: Operational
semantics.
General terms: Languages, theory

∗This technical report is an extended version of a paper
with the same title published at POPL’06.

Keywords: Virtual classes, soundness

1 Introduction

Virtual classes are class-valued attributes of objects.
They are analogous to virtual methods in traditional
object-oriented languages: they follow similar rules
of definition, overriding and reference. In particular,
virtual classes are defined within an object’s class.
They can be overridden and extended in subclasses,
and they are accessed relative to an object instance,
using late binding. This last characteristic is the key
to virtual classes: it introduces a dependence between
static types and dynamic instances, because dynamic
instances contain classes that act as types. As a re-
sult, the actual, dynamic value of a virtual class is not
known at compile time, but it is known to be a par-
ticular class which is accessible as a specific attribute
of a given object, and some of its features may be
statically known, whereas others are not.

When an object is passed as an argument to a
method, the virtual classes within this argument are
also accessible to the method. Hence, the method
can declare variables and create instances using the
virtual classes of its arguments. This enables the def-
inition and use of higher-order hierarchies [9, 28], or
hierarchies of classes that can manipulated, extended
and passed as a unit. The formal parameter used to
access such a hierarchy must be immutable; in gen-
eral a virtual class only specifies a well-defined type
when accessed via an immutable expression, which
rules out dynamic references and anonymous values.

Virtual classes from different instances are not
compatible. This distinction enables family poly-
morphism [8], in which families of types are defined
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that interact together but are distinguished from the
classes of other instances. Virtual classes support ar-
bitrary nesting and a form of mixin-based inheritance
[3]. The root of a (possibly deeply) nested hierarchy
can be extended with a set of nested classes which
automatically extend the corresponding classes in the
original root at all levels.

Virtual classes were introduced in the late seventies
in the programming language Beta, but documented
only several years later [21]. Methods and classes are
unified as patterns in Beta. Virtual patterns were
introduced to allow redefinition of methods. Since
patterns also represent classes, it was natural to allow
redefinition of classes, i.e. virtual classes. Later lan-
guages, including Caesar [22, 23] and gbeta [7, 8, 9]
have extended the concept of virtual classes while
remaining essentially consistent with the informally
specified model in Beta [20]. For example, they have
lifted restrictions in Beta that prevented virtual pat-
terns (classes) from inheriting other virtual patterns
(classes). So in this sense the design of virtual classes
has only recently been fully developed.

Unfortunately, the Beta language definition and
implementation allows some unsafe programs and in-
serts runtime checks to ensure type safety. Caesar
and gbeta have stronger type systems and more well-
defined semantics. However, their type systems have
never been proven sound. This raises the important
question of whether there exists a sound, type-safe
model of virtual classes.

This technical report provides an answer to this
question by presenting a formal semantics and type
system for virtual classes and demonstrating the
soundness of the system. This calculus is at the core
of the semantics of Caesar and gbeta and would pre-
sumably be at the core of every language supporting
family polymorphism [8] and incremental specifica-
tion of class hierarchies [9].

The calculus does not allow inheritance from
classes located in other objects than this, and we use
some global conditions to prevent name clashes. The
significance of these restrictions and the techniques
used to overcome them in the full-fledged languages
are described in Section 5 and 8. The approach to
static analysis taken in this technical report was pio-
neered in Beta, made strict and complete in gbeta,

and adapted and clarified as an extension to Java in
Caesar. The claim that virtual classes are inherently
not type-safe should now be laid to rest. The primary
contributions of this technical report are:

• Development of vc—a statically typed virtual
class calculus, specified by a big-step semantics
with assignment. The formal semantics supports
the addition of virtual classes to mainstream
object-oriented languages.

• Proof of the soundness of the type system. This
technical report includes the theorems with full
proofs in an appendix, as indicated in the shorter
version of this paper which is published in the
proceedings of POPL 2006 [10]. We use a proof
technique that was developed for big-step seman-
tics of object-oriented languages [6]. The preser-
vation theorem ensures that an expression re-
duces to a value of the correct type, or a null
pointer error, but never a dynamic type error.
No results are proven about computations that
do not terminate.

• We strengthen the traditional approach to
soundness in big-step semantics by proving a
coverage lemma, which ensures that the rules
cover all cases, including error situations. This
lemma plays a role analogous to the progress
lemma for a small-step semantics [29]: it ensures
that evaluation does not get stuck as a result of
a missing case in the dynamic semantics.

2 Overview of Virtual Classes

Virtual classes are illustrated by a set of examples us-
ing an informal syntax in the style of Featherweight
Java [17] or ClassicJava [12]. The distinguishing char-
acteristics of vc include the following:

• Class definitions can be nested to define virtual
classes.

• An instance of a nested class can refer to its en-
closing object by the keyword out.
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• Objects contain mutable variables and im-
mutable fields. Fields are distinguished from
variables by the keyword field. Fields must all
be initialized by constructor arguments.

• A type is described by a path to an object and
the name of a class in that object.

• The types of arguments and the return type of
a method can use virtual classes from other ar-
guments.

These concepts are illustrated in the examples
given below. A formal syntax for vc is defined in Sec-
tion 3. The main difference between the informal and
formal syntax is that the formal syntax unifies classes
and methods into a single construct, thus highlight-
ing the syntactic and semantic unification of these
concepts.

2.1 Higher-Order Hierarchies

Virtual classes provide an elegant solution to the ex-
tensibility problem [5, 19]: how to easily extend a
data abstraction with both new representations and
new operations. This problem is also known as the
expression problem because a canonical example is
the representation of the abstract syntax of expres-
sions [36, 34, 38]. We present a solution to a simpli-
fied version of a standardized problem definition [15].

class Base { // contains two virtual classes
class Exp {}
class Lit extends Exp {

int value ; // a mutable variable
}
Lit zero ; // a mutable variable
out.Exp TestLit () {

out.Lit l ;
l = new out.Lit();
l . value = 3;
l ;

}
}

Figure 1: Defining virtual classes for expressions.

class WithNeg extends Base {
class Neg extends Exp {

Neg(out.Exp e) { this .e = e; }
field out.Exp e;

}
out.Exp TestNeg() {

new out.Neg(TestLit());
}
}

Figure 2: Adding a class for negation expressions.

class WithEval extends Base {
class Exp {

int eval () { 0; }
}
class Lit {

int eval () { value ; }
}
int TestEval() {

out.TestLit (). eval ();
}
}

Figure 3: Adding an evaluation method on expres-
sions.

In Figure 1, the class Base contains two virtual
classes: a general class Exp representing numeric ex-

class NegAndEval extends WithNeg, WithEval {
class Neg {

Neg(out.Exp e) { this .e = e; }
int eval () { −e.eval (); }
}
int TestNegAndEval() {

out.TestNeg().eval ();
}
}

Figure 4: Combining the negation class and evalua-
tion method.
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pressions and subclass Lit representing numeric lit-
erals. All classes in vc are virtual classes and can
be arbitrarily nested. Top-level classes are virtual by
means of an implicit root class containing all top-level
declarations. The method TestLit is explained below.

A family is a collection of virtual classes that de-
pend upon each other. For example, the classes Exp
and Lit are a family that exists within class Base. A
family can be extended by subclassing the class in
which it is defined. For example, Figure 2 extends
the family to include a class Neg representing nega-
tion expressions.

Every virtual class has an enclosing object, to
which the class can refer explicitly via the keyword
out. In Figure 2, class Neg contains a field of type
out.Exp. The type out.Exp is a reference to the class
Exp in the enclosing instance of Neg. In general the
type out.A in class B denotes the sibling A of B. Be-
cause of subclassing and late binding, the dynamic
value of out in Neg may be an instance of WithNeg
or a subclass thereof. The out keyword can be re-
peated to access further enclosing objects.

The test functions in Figures 1 and 2 create a test
instance of each class. The objects are created by ac-
cessing a virtual class (Lit or Neg) in the enclosing ob-
ject. The return type of the methods is out.Exp rather
than Exp because activation records are treated as
separate objects whose enclosing object is the object
containing the method, hence a property of the ob-
ject containing the method must be accessed via out,
whereas method parameters are accessed via this. A
test can be run by invoking new WithNeg().TestNeg().

Redefinition of a virtual class occurs when it is de-
clared and it is already defined in a superclass. In
Figure 3, Exp and Lit are redefined to include an
eval method; it is a redefinition because the family
WithEval extends Base and they both define Exp and
Lit. All superclasses in vc are virtual superclasses be-
cause redefinition of a class that is used as superclass
affects its subclasses as well, so that the entire family
is redefined.

The static path of a class definition is the lexical ad-
dress of a class definition defined by the list of names
of lexically enclosing class definitions. The static
paths of the class definitions in Figure 3 are WithEval,
WithEval.Exp and WithEval.Lit. Static paths never

appear in programs, because virtual classes are al-
ways accessed through an object instance, not a class.
However, they are useful for referring to specific class
definitions.

Note that references to classes are “late bound”
just like methods: when Base.TestLit is called from
WithEval.TestEval the references to Lit are interpreted
as WithEval.Lit, not Base.Lit.

A virtual class can have multiple superclasses, as
in the definition of NegAndEval in Figure 4, which
composes WithNeg and WithEval and adds the miss-
ing implementation of evaluation for negation expres-
sions.

Hierarchies are not only first-class values, they can
also be composed as a consequence of composing
the enclosing class. The semantics of this compo-
sition is that nested virtual classes are composed,
continuing recursively into nested classes. This phe-
nomenon was introduced as propagating combination
in [7] and later referred to as deep mixin composi-
tion [38]. This is achieved by combining the super-
classes of the virtual class using linearization. For ex-
ample, the class NegAndEval.Neg implicitly extends
class WithNeg.Neg. Its also extends both Base.Exp
and WithEval.Exp.

This behavior is a form of mixin-based inheritance
[3] in that new class bodies are inserted into an ex-
isting inheritance hierarchy. For example, although
WithNeg.Neg in Figure 2 has Exp as a declared su-
perclass, after linearization it has WithEval.Exp as its
immediate superclass.

2.2 Path-based Types

The example in Figure 5 illustrates path-based types
and family polymorphism. The argument types in
the previous examples have had the form C or out.C,
where out can be repeated multiple times. Types can
also be named via fields, which are immutable object
instances that may contain virtual classes. The vari-
able n defined at the bottom of Figure 5 has type
f1.Exp, meaning that only instances of Exp whose en-
closing object is identical to the value of f1 may be
assigned to n. In general, a type consists of a path
that specifies how to access an object, together with
a class name. To ensure that this is well-defined, the
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class Test {
int Test(out.WithNeg f1, out.NegAndEval f2) {

this . f1 = f1; this . f2 = f2;
n = buildNeg(f1, n); // OK
// n.eval (); −− Static error
f2 . zero = new f2.Lit(); // OK
// n2 = buildNeg(f2, f1.zero) −− Static error
n2 = buildNeg(f2, f2 . zero ); // OK
n2.eval (); // OK
}
ne.Neg buildNeg(out.out.WithNeg ne, ne.Exp ex){

new ne.Neg(ex);
}
field out.WithNeg f1
field out.NegAndEval f2
f1 .Exp n
f2 .Exp n2
}
new Test(new NegAndEval(), new NegAndEval())

Figure 5: Example of family polymorphism

path must only contain out and/or immutable fields,
but not mutable variables. Hence, type compatibility
depends on object identity, but types do not depend
on values in any other way. More specifically, the
type system makes sure that two types are only com-
patible if they are known to have identical enclosing
objects.

Although the resulting types may resemble Java
package/class names, they are very different because
objects play the role of packages, and the class that
creates a package can be subclassed.

2.3 Family Polymorphism

A family object is an object that provides access to a
class family. A family object may be the enclosing ob-
ject for an expression, but it may also be a method
argument or the value of a field. As a provider of
classes, and hence types, it enables type parameter-
ization of classes and methods. But virtual classes
are different from parameterized types: while type
parameters are bound statically at compile-time, vir-

tual classes are bound dynamically at runtime. Thus
virtual classes enable a new kind of subtype polymor-
phism known as family polymorphism [8].

Family objects can also be used to create new ob-
jects, even though the classes in the family object are
not known at compile time. To achieve the same ef-
fect in a main-stream language like Java, a factory
method [13] must be used. However, the typing re-
lation between related classes is then lost, whereas
a family object testifies to the interrelatedness of its
nested family classes.

In Figure 5, f1 and f2 inside Test are used as fam-
ily objects. The constructor call in the last line of
the example shows how f1 is polymorphically initial-
ized with a subtype of its static types. The field f1
of class Test is declared to be an out.WithNeg, but
the constructor is called with an argument of type
NegAndEval, which illustrates that entire class hier-
archies are first class values, subject to subtype poly-
morphism via their family objects, and the nested
family classes are usable for both typing and object
creation.

The assignments and calls in the body of the
Test constructor illustrate the expressiveness of the
type system. For example, although the buildNeg
method is not aware of the eval method introduced
by WithEval, it is possible to assign the result to n2
and call eval on the returned value. This is an impor-
tant special case of family polymorphism where the
types of arguments or the return type of a method
depend on other arguments. The example also shows
a few cases that are rejected by the type checker be-
cause they would potentially lead to a type error at
runtime.

3 Syntax

The formal syntax of vc has been designed to make
the presentation of the semantics as simple as possi-
ble, hence the formal syntax deviates from the infor-
mal syntax used in the examples in a few points that
will be described in this section.
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Grammar of vc
CL ::= class C extends C {

K CL; T f; T v
}

K ::= T C(T f) { e; }
T ::= path.C
path ::= spine.f
spine ::= this.out
e ::= null | e ; e | path | path.v |

path.v = e | new path.C(e)
Identifiers

class names C
field names f
variable names v
members m = f ∪ v
(C, f, and v are pairwise disjoint)

Figure 6: Syntax of virtual class calculus vc

3.1 Notational Conventions

Our formal definitions use a number of syntactic con-
ventions. A bar above a metavariable denotes a
list: p stands for p1, ..., pk for some natural num-
ber k ≥ 0. If k = 0 then the list is empty. The
length of p is |p|. The same notation is used for lists
whose elements are separated by dots or commas,
e.g., f1.f2. · · · .fk = f. A list may also be represented
by a combination of barred and unbarred variables:
f.f stands for f1. · · · .fk.f, where f denotes the last item
of the list. Following common convention, T f repre-
sents a list of pairs T1 f1 · · ·Tk fk rather than a pair
of lists. An empty list is written nilx, where x iden-
tifies the kind of items that the list should contain.
The subscript x may be omitted if it is clear from
context. The notation [f] represents a list with a sin-
gle element f. Finally, in function definitions with
overlapping branches the first matching case is used.

3.2 Formal Syntax of vc

The formal syntax of vc is defined in Figure 6. A
class definition CL consist of a name, the superclass
names C, a constructor K, a list of nested class defi-
nitions CL, declarations T f of immutable fields, and

Metavariable
static paths p ::= C

Class table

CT (p) = CT2 (p, CLroot)

CLi = class C extends C { ... }

CT2 (C, CL) = CLi

CLi = class C extends C { K CL
′
; ... }

CT2 (C.p, CL) = CT (p, CL
′
)

All members
Members(nilp) = nilT f , nilTv

Members(p) = T f, T
′
v

CT (p) = classC extendsC { K CL; T
′′

f
′
; T
′′′

v′ }

Members(p p) = T
′′

f
′
T f, T

′′′
v′ T

′
v

Constructor

CT (p) = classC extendsC {K CL; T
′′

f
′
; T
′′′

v′ }
Constr(p) = K

Figure 7: Auxiliary definitions

declarations T v of mutable variables. A construc-
tor K consists of a return type T, the class name,
the formal parameters T f, and an expression e. The
constructor has a return type because it can return
other things than the new object, which enables the
encoding of methods as classes.

The keyword field from the informal syntax is
not needed, because field and variable names are
separate in the formal syntax and use different
metavariables—f for fields and v for variables. Field
and variable names must be unique within the pro-
gram in order to simplify the handling of name
clashes in connection with class composition. Class
names are unique in that two definitions of the same
class name must have a common superclass. We will
later discuss the implications and possible relaxations
of these restrictions. Note, however, that any pro-
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gram in which the names are reused can always be
rewritten to a program with unique names.

Expressions include standard forms for the current
object or any of the enclosing objects via spine, ac-
cess to fields of the current or an enclosing object via
path, access and assignment of variables, path.v, and
path .v = e, and the null value, null. Method calls
and object construction are unified in the expression
new path.C(e).

Types in the syntax of vc have the form path.C. A
path has the form this.out.f. Thus a type allows a
class C to be identified by navigating to any enclosing
object and then traversing fields to find the object
which contains C.

Primitive types like bool and int are omitted; they
just add complexity to the formalism without adding
value. A member m is either a field or a variable.

3.3 Translating Informal Notation to
vc

The translation of the informal language to the for-
mal syntax of vc is straightforward. The most signif-
icant difference is that vc unifies methods and classes
into a single definition construct. This technique
originated in Simula, where classes were simply func-
tions that returned the current activation record. In
vc activation records are first-class values that are
accessed by this. Thus a class is simply a definition
that returns this, while a method is a definition that
returns any other value.

Hence, method definitions in the informal language
correspond to class declarations in vc, where the con-
structor represents the method body. More formally,
the translation is as follows:
T C(T f) { T v; e; } ⇒

class C extends { K nilCL; T f; T v }
where K = T C(T f) { e; }. Method calls are trans-
lated by prefixing them with the keyword new.

As in Java, constructors in the informal syntax do
not specify a return type or return value, but these
must be specified in vc. For a class definition C in
the informal syntax, the constructor return type is
always out.C and the returned value is always this.

In the informal syntax a class definition with no
superclasses may omit the extends clause. In the

formal syntax it must be present, but the list of su-
perclasses can be empty. The assignments of the con-
structor arguments is omitted in the formal syntax;
instead, the name of the constructor arguments are
matched against the field names. Constructors are
required in vc, while the informal syntax assumes a
default constructor if none is given.

The informal notation omits this when followed
by out or a field. vc has no implicit scoping rules,
and all access to fields, variables, and classes must be
disambiguated by a spine.

The informal language allows more general expres-
sions where the calculus only allows paths: e.m,
new e.C(e), and e.v = e′. The general forms are
translated into the calculus by rewriting e.m as
new this.C′(e) where C′ is a new local class with a
field T f where T is the type of e, and whose construc-
tor returns this.f.m. The translation is legal because
the member is accessed through the new field. The
other two constructs (new e.C(e), and e.v = e′) are
handled similarly. The consequence of this is that the
formal treatment need not take types inside tempo-
rary objects into account. This is a significant simpli-
fication, and handling types in temporaries does not
produce useful extra insight.

3.4 Auxiliary Definitions

Figure 7 gives some auxiliary definitions. A static
path p is a list of class names C. The function CT
looks up a class definition. We assume the existence
of a globally available program in the form of a list of
top-level class declarations CLroot, which would oth-
erwise embellish many relations and functions. CT
is a partial function from static paths to class defi-
nitions. It uses the helper function CT2 , which re-
cursively enters each class definition named in the
path starting from root. For example, the static path
Base.Lit denotes the definition of Lit inside Base in
Figure 1.

A static path that identifies a valid class is called a
mixin. The set of mixins in a program is equivalent to
the static paths p for which CT (p) 6= ⊥. Since there
is a one-to-one correspondence between a mixin (a
static path) and its class definition, we also use the
term mixin to refer to the body of the corresponding
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ιroot 7→ [[ ⊥ ‖ Croot ‖ ]]
ι1 7→ [[ ιroot ‖ NegAndEval ‖ zero : null ]]
ι2 7→ [[ ιroot ‖ NegAndEval ‖ zero : ι5 ]]
ι3 7→ [[ ιroot ‖ Test ‖ f1 : ι1 f2 : ι2 n : ι4 n2 : ι6 ]]
ι4 7→ [[ ι1 ‖ Neg ‖ e : null ]]
ι5 7→ [[ ι2 ‖ Lit ‖ value : 0 ]]
ι6 7→ [[ ι2 ‖ Neg ‖ e : ι5 ]]

Figure 9: Dynamic Heap after executing the example
in Figure 5

class, i.e., the part of a class declaration between the
curly brackets { ... }.

The function Members collects all field and vari-
able declarations found in a list of mixins p. The
function Constr(p) returns the constructor of CT (p)
given a static path p.

4 Operational Semantics

The operational semantics is defined in big-step
style. The semantic domains, evaluation relation,
and helper functions are given in Figure 8. Both the
operational semantics and the type system have also
been implemented in Haskell.

4.1 Objects and the Heap

As in most object-oriented languages, an object in vc
combines state and behavior. An Object is a tuple
containing a pointer to its enclosing object ι, a class
name C, and a list of fields and variables with their
values.

The fields and variables are the state of the object;
fields are immutable while variables can be updated.
The heap is standard: a map H from addresses ι to
objects. The top-level root object has the special
address ιroot. An example heap is given in Figure 9.

The features of the object are determined by the
enclosing object ι and the class C. The enclosing
object specifies the environment containing the class
from which the object ι′ was created: an object ι′

with enclosing object ι and class C must have been

created by evaluating an expression equivalent to
new ι.C(...).

An object’s features are defined by a list of mixins,
or class bodies; these class bodies contain the decla-
rations of members and nested classes. In vc there
are no methods, but classes may be used as methods.
The list of mixins of an object is computed from the
class name and the mixins of the enclosing object.

Note that the definition of Object is optimized for
a situation where all path expressions associated with
an object should be understood relative to the same
environment—the same enclosing object. It would be
a relevant extension of vc to allow inheritance from
classes inside other objects than this (i.e., to allow
superclasses on the form path.C), but it would then
be necessary to maintain an environment for each
mixin or for each feature. It is possible to do this,
and for instance the static analysis and run-time sup-
port for gbeta maintains a separate enclosing object
for each mixin. This causes a non-trivial amount of
extra complexity, even though the basic ideas are un-
changed. It is part of future work to extend vc cor-
respondingly.

4.2 Mixin Computation

The Mix function computes the behavior, or mixin
list, of an object ι in the heap H. It does so by first
computing the mixins of the enclosing object. All
definitions of C and its superclasses are assembled
into this mixin list. The mixin list of the root object
has only a single element, namely the empty static
path.

The Assemble function1 computes the mixin list
for a class C relative to an enclosing mixin list p. It
calls Defs to collect all the definitions of C located in
any of the class bodies specified by p. If the resulting
list of mixins is empty then the class is not defined
and Assemble returns ⊥. Otherwise, the result is a
list of static paths that identifies all definitions of C
contained in the list of enclosing mixins.

1The [... | ...] notation used in the definition of Defs,
Assemble, and Expand means list comprehension as for exam-
ple in Haskell. Note that we append an element to a list by
just writing the element to append after the list. For example,
[ 2n | n← 1...5, n > 3 ]42 is the list [8, 10, 42].
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Objects and the Heap:

Address = natural numbers ι

Object = {[[ ι ‖ C ‖ f : val v : val
′
]]} [[ ... ]]

Heap = Address ⇀fin Object H
Value = Address ∪ {null} val

Evaluation rules:

;: e×Heap×Address→
Value ∪ {TypeErr, NullErr} ×Heap

null, H, ι ; null,H (R1)
e,H, ι ; val, H′

e′, H′, ι ; val′, H′′

e ; e′, H, ι ; val′, H′′
(R2)

Walk(H, ι, path)=val

path, H, ι ; val, H
(R3)

path, H, ι ; ι′, H
H(ι′)(v) = val

path.v,H, ι;val, H
(R4)

path, H, ι ; ι′, H e, H, ι ; val, H′

H′(ι′)(v) 6= ⊥ H′′ = H′[ι′ 7→ H′(ι′)[v 7→ val]]
path.v = e, H, ι ; val, H′′

(R5)

path, H, ι ; ι′,H H = H1

ei,Hi, ι ; vali, Hi+1 for i ∈ {1...|e|}
H′ = H|e|+1 p = Assemble(Mix (H′, ι′), C)
Members(p) = T f, T

′
v |f| = |val|

ι′′ is new in H′ Constr(p|p|) = T C( ){e′; }
H′′ = H′[ ι′′ 7→ [[ ι′ ‖ C ‖ f : val v : null ]] ]

e′, H′′, ι′′ ; val,H′′′

new path.C(e),H, ι ; val, H′′′
(R6)

Enclosing object:
Encl([[ ι ‖ ‖ ... ]]) = ι

Evaluation functions:
Walk(H, ι, this) = ι
Walk(H, ι, spine.out) = Encl(H(ι′))

if Walk(H, ι, spine) = ι′ 6= ιroot

Walk(H, ι, path.f) = val if H(Walk(H, ι, path))(f) = val

Walk(H, ι, path.f) = NullErr if Walk(H, ι, path)=null
Walk(H, ι, path.f) = TypeErr if H(Walk(H, ι, path))(f)=⊥
Walk(H, ι, spine.out) = TypeErr if Walk(H, ι, spine)= ιroot

Error handling:

path,H, ι ; null, H
path.v,H, ι ; NullErr, H

path.v = e, H, ι ; NullErr,H
new path.C(e), H, ι ; NullErr,H

(Er1)

path, H, ι ; ι′,H H(ι′)(v) = ⊥
path.v, H, ι ; TypeErr, H

path.v = e,H, ι ; TypeErr, H

(Er2)

path, H, ι ; ι′,H
Assemble(Mix (H, ι′),C) = ⊥

new path.C(e), H, ι ; TypeErr, H
(Er3)

path, H, ι ; ι′,H
Assemble(Mix (H, ι′), C) = p
Members(p) = T f, |e| 6= |f|
new path.C(e), H, ι ; TypeErr, H

(Er4)

Mixin Computation:
Mix (H, ιroot) = [nilc]
Mix (H, ι) = Assemble(Mix (H, ι′), C)

where H(ι) = [[ ι′ ‖ C ‖ ... ]]

Assemble(p, C) =
Linearize[ Expand(p, p) | p← Defs(p,C) ]

Defs(p,C) = check [ p.C | p← p,CT (p.C) 6= ⊥ ]

where check(p) =
{ ⊥ |p| = 0

p otherwise
Expand(p, p) =
Linearize([Assemble(p, C) | C← C ] p)
where CT (p) = class C′ extends C { ... }

Linearize(nilp) = nilp
Linearize(p p) = Lin2 (Linearize(p), p)

Lin2 (nilp, nilp) = nilp
Lin2 (p p, p′ p) = Lin2 (p, p′) p
Lin2 (p, p′ p′) = Lin2 (p, p′) p′, if p′ 6∈ p
Lin2 (p p, p′) = Lin2 (p, p′) p, if p 6∈ p′

Lin2 (p p′p′′p, p′p′) = Lin2 (p p′′p, p′) p′

Figure 8: Operational semantics of vc
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As an example, let us consider the computation
of Mix (H, ι4) in the program in Figure 1-4 and the
sample heap in Figure 9. Assume that the mixin
list p of the enclosing object ι1 has been computed
to yield [Base,WithNeg, WithEval, NegAndEval]. Then
Defs(p, Neg) = [WithNeg.Neg, NegAndEval.Neg].

The complete mixin list must also include the
mixins of all the superclasses. To do so, Assemble
maps Expand over the list of static paths that
was computed with Defs, and linearizes the result.
Expand assembles each of the superclasses of C, lin-
earizes the result, and appends the class itself to
the resulting list. In our example [ Expand(p, p) |
p ← WithNeg.Neg NegAndEval.Neg ] = p′p′′, where
p′ = [Base.Exp, WithEval.Exp,WithNeg.Neg] and p′′ =
[NegAndEval.Neg].

Linearization sorts an inheritance graph topolog-
ically, such that method calls are dispatched along
the sort order. The function Linearize linearizes a
list of mixin lists, i.e., it produces a single mixin
list which contains the same mixins as those in the
operands; the order of items in each of the input lists
is preserved in the final result, to the degree possible.
Linearize is defined in terms of a binary linearization
function, Lin2 . This function is an extension of the
C3 linearization algorithm [1, 7] which has been used
in gbeta and Caesar for several years. The lineariza-
tion algorithm allows a programmer of a subclass to
control the ordering of the class’s mixins by choos-
ing the order in which the superclasses appear in the
extends clause.
Lin2 produces the same results as C3 linearization

in every case where C3 linearization succeeds—this
result follows trivially from the fact that the defi-
nition of C3 is just the four topmost cases in the
definition of Lin2 . The cases where C3 linearization
fails are exactly the cases covered by the bottom-
most clause in the definition of Lin2 , i.e., the cases
where the two operands contradict each other with re-
spect to the ordering of shared mixins (intuitively this
means that they disagree about which mixin should
be the more specific one); in these cases, Lin2 re-
solves the conflict by letting the rightmost operand
decide the outcome.

The final result of computing Mix (H, ι4) is the
mixin list [Base.Exp, WithEval.Exp, WithNeg.Neg,

NegAndEval.Neg].
Lin2 is a total function on lists of mixins, and the

set of mixins in the result is equal to the union of the
sets of mixins in the operands. For soundness the
set of mixins is relevant but the ordering makes no
difference, so this generalization of C3 enhances the
expressive power without affecting type safety.

4.3 Evaluation Rules and Error Han-
dling

The evaluation relation e, H, ι ; r, H′ reduces an ex-
pression, a heap, and a current object to a value or
an error and a new heap. The current object plays
the role of the environment.

The expression null evaluates to the null value
(R1). An expression sequence e ; e′ evaluates to the
result of evaluating e′ in the heap that results from
evaluating e (R2).

Evaluation of a path path does not affect the heap
(R3). The value of the path is computed by the func-
tion ⇓, which “walks” a path from an address ι in the
heap H to return the value specified by the path. As
a base case, ⇓ returns ι when applied to the trivial
path, this; spine.outn locates the nth enclosing ob-
ject of ι; finally a path path.f finds the object ι′ for
path and then returns the value of the field f in the
object ι′.

Variable lookup path.v evaluates path to get ι′,
which is then looked up in the heap to get the vari-
able’s value (R4). An assignment path.v = e evalu-
ates path and e to ι′ and val (R5). It then checks
that the variable is defined on the object and up-
dates the heap to set variable v of ι′ to val. The
notation H(ι)(m) means lookup of the value of a field
or variable m in the object ι. The notation [v 7→ val]
appended to an object denotes (functional) update of
the variable v of that object, and H[ι 7→ ...] denotes
heap update.

In (R6) a new object new path.C(e) is constructed
by instantiating the virtual class C defined in the en-
closing object ι′ identified by path. The behavior p
of the new object is assembled from the mixins of the
enclosing object as described in Section 4.2. If the
enclosing object does not contain a definition of C,
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then Assemble returns ⊥ and rule (R6) does not ap-
ply. The mixin list p also specifies the members and
the most specific constructor of the new object. To
construct the object, the heap is extended to define
a new address ι′′ bound to a new object with enclos-
ing object ι′, class C, fields initialized to the evalu-
ated constructor arguments, and variables initialized
to null. The constructor body is then evaluated in
the context of this new object. The result of the con-
structor is the result of the entire expression. If the
constructor body is this (i.e., the class is used as a
class in the conventional sense), then the result of the
constructor call is ι′′.

Two different kinds of error can occur during eval-
uation: Type errors (TypeErr) and null pointer errors
(NullErr). The rule (Er1) handles access to a prop-
erty of an object, where the object is null. (Er2)
to (Er4) define the situations in which a type error
occurs, namely if a member to be read or written is
not available (Er2), or when creating an instance of
a class C, but the enclosing object has no definition
of C, i.e., its mixin list is empty (Er3), or the number
of parameters does not match (Er4).

The rules for propagating errors are standard and
straightforward, so they are omitted; the sequel as-
sumes that NullErr or TypeErr errors are propagated.
The complete list of error rules are provided together
with the proof of soundness in the appendix.

5 Type System

The vc type system uses nominal typing based on
paths to objects containing virtual classes. Typing
domains, type checking rules, and functions for ab-
stract interpretation are given in Figure 10.

5.1 Types

The type of an expression describes an object ι ob-
tained by evaluation of it in one of two ways. In the
first case a path which leads to the object ι itself is
computed statically, and in the second case a path
to the enclosing object of ι is computed, as well as
a class name characterizing the class of ι itself. The
former is an object type, u, and the latter is a class

type, s. An object type contains more information
than a class type, because every object type can be
converted into a class type, but not vice versa. Since
a path only makes sense as seen from a lexical point
p′ in the program, typing judgements have the form
p′ ` e : t, where t is a type and p′ represents the
current this object.

An object type u has the form 〈p〉.f. If an expres-
sion has the object type 〈p〉.f as seen from p′, then
p is a prefix of p′, and the object denoted by the ex-
pression can be reached by going out (|p′|−|p|) steps
and then following f in the heap. More formally, if
the program and heap H are well-formed, the expres-
sion e is typable by p′ ` e : 〈p〉.f in this program, the
object ι0 is appropriate as this for p′, and e evaluates
by e,H, ι0 ; ι, H′, thenWalk(H′, ι0, this.outj .f) = ι,
where j = Depth(H′, ι0)− |p|.

A class type s is on the form 〈p〉.f.C. If an expres-
sion e has type 〈p〉.f.C and e,H, ι0 ; ι, H′ as above
then 〈p〉.f is an object type describing the enclosing
object Encl(H′(ι)), and ι is an instance of the class C
which is nested in Encl(H′(ι)), or a subclass thereof.

The type checker computes object types for paths
or path-like expressions (like a sequence containing a
path as last element). For an expression like path.v
or new path.C, an object type cannot be computed
because, in general, there is no path to that object.
However, there is always a path to its enclosing object
in these cases, hence such expressions can be assigned
a class type.

5.2 Abstract interpretation of the
heap

The operational semantics defines functions to nav-
igate a heap and compute mixin lists of objects.
In particular, Encl navigates to an enclosing object,
WalkH follows a path starting from some object, and
Mix computes the mixin list of an object. An ab-
stract interpretation of these functions is at the core
of the type system: E , W, andM are the static ver-
sions of Encl , Walk , and Mix , respectively. They
serve the same purpose as their dynamic counter-
parts, but they receive and produce types instead of
objects. Before going into the details of their defini-
tion, we will at first state some properties of E , W,
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Typing domains:
u ::= 〈p〉.f q ::= this | out | f
s ::= 〈p〉.f.C Q ::= q | q.C
t ::= u | s

Expression Typing:
M(t) 6= ⊥
p ` null : t

(T1)

p ` e : t
p ` e′ : t′

p ` e ; e′ : t′
(T2)

W(〈p〉, path) = u

p ` path : u
(T3)

p ` path : u
W(u,DclType(u, v))=s

p ` path.v : s
(T4)

p ` path.v : s p ` e : t C(t) <: s

p ` path.v = e : t
(T5)

p ` path : u p′ ∈M(u.C) p ` e : t
Constr(p′) = T0 C(T f) ... |T| = |t|

si =





W(u, this.Q)
if Ti = this.out.Q

W(uj , this.Q)
if Ti =this.fj .Q ∧ tj =uj

for i = 0...|t|
C(ti) <: si for i = 1...|t|
p ` new path.C(e) : s0

(T6)

Conversion to class types:
C(〈p.C〉) = 〈p〉.C
C(u.f) = W(u,DclType(u, f))
C(s) = s

Mixins:
M(〈〉) = [nilc]
M(u.C) = Assemble(M(u), C)
M(u) = M(C(u))

Enclosing object type:
E(u.C) = u
E(u) = E(C(u))

Static lookup:
W(u, this) = u
W(u, spine.out) = E(W(u, spine))
W(u, path.f) = W(u, path).f

ifExists(W(u, path), f)
W(u, path.C) = W(u, path).C

ifExists(W(u, path), C)

Program Typing:

M(〈p〉.C) 6= ⊥
p ` C OK

(WF1)
W(〈p〉, T) 6= ⊥

p ` T OK
(WF2)

C = C′ ⇒ T = T′,T f = T
′
f
′

T C(T f) {e; } overrides T′ C′(T
′
f
′
) {e′; } OK

(WF3)

K = T C(T
′′

f
′
) { e; } M(〈p〉.C) = p

Members(p) = T
′′

f
′
,

p ` C OK p.C ` T OK p.C ` T
′
OK p.C ` T OK

p.C ` e : t C(t) <:W(〈p.C〉, T)
K’ = Constr(pj)⇒ K overrides K’ OK

p ` class C extends C {K CL; T f; T
′
v} OK

(WF4)

There is a strict partial order <f on f such that
∀p, f. spine.f.C f ∈Members(p)⇒ ∀i. fi<f f

There is a strict partial order <c on C such that
∀p. CT (p)= class C extends C...⇒ ∀i. Ci<cC

CT is acyclic
(WF5)

CT is acyclic
∀p, p′, C : CT (p.C) 6= ⊥,CT (p′.C) 6= ⊥ ⇒

p′′.C ∈M(〈p〉.C) ∩M(〈p′〉.C)
∀p 6= p′ : CT (p) = class C ... {K CL; T f;T

′
v}

CT (p′) = class C′ ... {K′ CL
′
; T

′′
f
′
;T
′′′

v′}
⇒ f ∩ f

′
= ∅, v ∩ v′ = ∅

∀p, C : CT (p.C) 6= ⊥ ⇒ p ` CT (p.C) OK

CT OK
(WF6)

Subtyping:

s <: s (S-Refl)
s <: s′ s′ <: s′′

s <: s′′
(S-Trans)

M(u)=p CT (pj .C)=class C extends ..C′..

u.C <: u.C′
(S-Decl)

Declared type and existence of features:
DclType(t, m) = T where T m ∈Members(M(t))
Exists(t,m) = (DclType(t, m) 6= ⊥)
Exists(u,C) = (M(u.C) 6= ⊥)

Figure 10: Typing rules
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andM and discuss the connection with Encl ,WalkH,
and Mix (the formal statements and proofs of these
properties are provided in the appendix).

The most important connections between the static
and dynamic semantics are (a) if a navigation along a
path is ok in the abstract interpretation of the heap
then the corresponding navigation is also ok in the
dynamic heap, and (b) navigation preserves agree-
ment. Agreement, which is formally defined later in
this section, states that an object ι has type t as seen
from an object ι0 in a heap H, written H, ι0 ` ι . t.
Given a well-formed program and a well-formed heap
and H, ι0 ` ι . t, then the following holds:

1. Enclosing types agree with enclosing objects: if t
is not the type of the root object, then Encl(H(ι))
exists and H, ι0 ` Encl(H(ι)) . E(t).

2. The statically known set of mixins is a subset of
the dynamic set of mixins, Mix (H, ι) ⊇M(t).

3. If a field or variable exists according to the ab-
stract interpretation then it exists in the heap:
Exists(t,m)⇒ H(ι)(m) 6= ⊥.

4. If t is an object type u and a path is valid
in both the heap and its abstract interpre-
tation, then the results will agree: given
Walk(H, ι, path) = val and W(u, path) = t′ then
H, ι0 ` val . t′.

Both the heap and its abstract interpretation are
also enclosing-correct, which informally means that
for any declared field path.C f, the enclosing object
of the value of the field must be equal to the object
specified by the path, relative to the object containing
the field. More formally, a well-formed dynamic heap
ensures Walk(H, ι, path) = Encl(H(Walk(H, ι, f))),
where path.C f ∈Members(Mix (H, ι)) and H(ι)(f) 6=
null. Similarly, the static semantics ensures
W(u, path) = E(W(u, f)), where DclType(u, f) =
path.C.

Let us now consider the definition of these func-
tions in detail. The W function takes an object type
u and a path path or a syntactic type T and produces
an object type or a class type, if it succeeds. If the
second argument is a path path, the intuition is that
W computes a type for the object that is reached

from the object described by u by traversing path in
the heap. A naive approach would be to concate-
nate path to the path in u, but it would be hard to
tell whether such a concatenated path leads to the
same object as another concatenated path. The abil-
ity to decide whether two paths lead to the same
object, however, is crucial for determining the sub-
typing relation, since only objects with identical en-
closing object are compatible. For this reason, W
returns a canonical representation of the combined
path, namely a type. It is canonical in that the path
inside the type has the form spine.f. Object types can
hence be compared by simple equality tests in order
to determine whether they refer to the same object.

For the empty path this,W simply returns u (first
case). For paths ending in out, the function E is used
to find the enclosing type (second case). Paths ending
in a field or a class are checked for validity: an appro-
priate field or class must exist. The last case in W
extends the domain of the second argument to T; this
is the only case where W returns a class type. As an
example based on the definitions in Figures 1 and 2,
we would have W(〈WithNeg.Neg〉.e, this.out.Lit) =
〈WithNeg〉.Lit.

Object types can be converted into class types by
means of the C function as follows: If the object
type is just a static path and no field accesses, then
the enclosing object is described by the same static
path with the last element removed, and the class is
that last element (first case). If the object type ends
with a field, the field is replaced by its declared type
(DclType is explained below) and the W is called to
normalize the resulting path (second case). If the
type is already a class type, there is nothing to do
(third case).

The M function computes the statically known
mixin structure of an object described by a type.
The type 〈〉 describes the root object which has only
one mixin, namely the empty class path: [nilc] (first
case). For an object type u.C, u is a type that
describes the enclosing object, hence its mixin list
can be recursively computed from the enclosing ob-
ject. This mixin list and the class name C are suffi-
cient to compute the mixin list for this type by call-
ing the Assemble function (second case). Finally,
to compute the mixin list of an object type it is
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first converted to a class type (third case). For ex-
ample, with the code in Figure 1-5 the mixin lists
areM(〈Test〉.f1.Neg) = [Base.Exp, WithNeg.Neg] and
M(〈Test〉.f2.Exp) = [Base.Exp,WithEval.Exp].

The DclType function usesM to look up a field or
variable declaration in the mixin list of a given type.
C, E , W,M and DclType depend on each other in

non-trivial ways, so it is not obvious that evaluation
of these functions will terminate. A proof is given
in the appendix. Informally, the functions terminate
because the arguments to recursive calls of W inside
W and DclType are smaller, and the recursive call
inside C replaces a field by its declared type. The
latter case is also guaranteed to terminate because
programs are well-formed only if there are no cyclic
dependencies on field types, as explained later in this
section.

5.3 Subtyping

Subtyping determines the compatibility of values for
assignment or parameter binding. It is defined only
on class types but object types can always be con-
verted to class types via C. The main rule for the
subtyping relation, (S-Decl), defines type compat-
ibility through a combination of path equality and
examination of declared subclass relationships. The
latter is standard in object-oriented type systems: a
class B is a subtype of A if B is derived by subclass-
ing from A. This traditional definition is modified
in vc to take into account virtual classes: two classes
can only be in a subtype relation if they are contained
in the same object ; this is a concrete manifestation
of the fact that types depend on the enclosing ob-
ject. Rule (S-Decl) ensures that subtypes are always
based on the same object type u. Since an object type
describes a path to an object, the enclosing objects
must be identical. This comparison for identical en-
closing object types works because object types are
paths in a normalized form.

5.4 Expression Typing

Expressions are given a type in the context of a static
path p which describes the current object this. As
in the operational semantics, an environment is not

needed because method parameters are encoded as
fields.

The null value (T1) has any meaningful type,
whereby “meaningful” is checked by ensuring that
the type has mixins. The type of a sequence is the
type of the last expression in the sequence (T2).
Paths (T3) are given a type using the static lookup
function W explained in Section 5.2. As is obvious
from the definition, paths have an object type. Vari-
able lookup (T4) also uses W, but in this case the
type of the variable is passed instead of the variable
name. This is a manifestation of the fact that vari-
ables cannot be used in types. This also means, how-
ever, that the type of a variable access is always a
class type, not an object type.

An assignment (T5) is checked by computing a
type for the left hand side, which is known to be
a class type by (T4), computing a type for the right
hand side and then checking whether the left side is
a subtype of the right side. If the left hand type is
an object type, it is converted to a class type first.

The rule for object creation (T6) is the most com-
plex, which is not surprising given that it also handles
method calls. First, the type of the enclosing object
u is computed. The statically known mixin struc-
ture of the new object, M(u.C), is computed, and a
mixin is selected via the choice of p′, which is then
used to find the constructor signature. Note that all
mixins will provide the same signature due to pro-
gram well-formedness. The types of the arguments
are computed; their number must be equal to the
number of constructor arguments. The actual set of
mixins at runtime may be larger than the statically
known set, but program well-formedness ensures that
the signature of the most specific constructor at run-
time is identical to the one in the statically selected
constructor.

To compare the syntactic types specified in the con-
structor with the types of the actual arguments, class
types si are computed for every syntactic type in the
constructor, including the return type. Intuitively,
the syntactic types Ti must be adapted to the view-
point p. To do that, the static lookup function W
is used again. The types Ti are either of the form
this.out.... or this.fj ...., depending on whether the
argument type comes from the environment or an-
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other argument. (Syntactically, Ti could also have
the form this.C′ for some class name C′, but this
type would not be useful because it would refer to a
virtual class of an object that does not yet exist.)

The first case applies to the traditional situation
where the type of the argument is taken from the
environment; TestLit in Figure 1 is an example. In
this case, this.out refers to the enclosing object of
the class. The type of this enclosing object is the type
of path, or the object type u. The actual argument
type si is then found by navigating from u into the
tail of Ti using W.

The latter case applies if an argument type depends
on the virtual class of another argument, as for exam-
ple buildNeg in Figure 5. In this case, fj is initialized
with the value of ej at runtime. The actual argu-
ment type si is then found by navigating from tj into
the tail of Ti using W. If an argument is used as
type provider for another argument, then the expres-
sion for the argument needs to have an object type.
This restriction is enforced by the condition uj = tj
in (T6).

The complete list of argument types si is then
checked to be subtypes of the formal argument types.
Finally, the viewpoint-adapted constructor return
type s0 is returned.

Figure 11 shows an example of a non-trivial usage
of (T6) in the example from Figure 5. It has been
slightly adjusted to fit to the formal syntax, see Sec-
tion 3.3. The example illustrates only the last step
in the typing derivation, the result of sub-derivations
has been inlined. Notice in particular that the type
of the expression contains the information that the
result has the family f2.

5.5 Program Typing

In order to separate out the problem of cyclic in-
heritance relations and cyclic field type dependencies
(the type of a field may depend on the value of other
fields), declared names are partially ordered such that
each of the two kinds of dependencies are known to be
acyclic (WF5). Consequently, cyclic inheritance rela-
tions and cyclic relations via dependent types (which
are expressed using fields) cannot occur. We could re-
lax this restriction without affecting soundness, but

Test ` this : 〈Test〉.
M(〈Test〉.buildNeg) = Test.buildNeg

Test ` f2 : 〈Test〉.f2 Test ` f2.zero : 〈Test〉.f2.Lit
Constr(Test.buildNeg) =

ne.Neg buildNeg(out.out.WithNeg ne, ne.Exp ex)
s0 =W(〈Test〉.f2, this.Neg) = 〈Test〉.f2.Neg

s1 =W(〈Test〉., this.out.WithNeg) = 〈WithNeg〉.
s2 =W(〈Test〉.f2, this.Exp) = 〈Test〉.f2.Exp
C(〈Test〉.f2) = 〈NegAndEval〉. <: s1
C(〈Test〉.f2.Lit) = 〈Test〉.f2.Lit <: s2

Test ` new this.buildNeg(f2,f2.zero) : 〈Test〉.f2.Neg

Figure 11: Type derivation for buildNeg(f2,f2.zero) in
Figure 5

with the current strict ruleset it is easy to see that
the type analysis always terminates, without adding
special checks for infinite loops in type computations.

The overall program well-formedness rule, (WF6),
requires that the program is acyclic, that two class
declarations of the same class name have a shared
mixin, that field and variable declarations are unique,
and that each class declaration is well-formed.

A class is OK (WF4) if the list of constructor ar-
guments matches the list of fields in the statically
known mixin structure of the class, if all superclasses
are valid, if the type of the constructor expression
is compatible to the declared return type, and if all
other mixins that have the same class name have the
same constructor signature, see also (WF3). The
validity of superclass and type declarations ((WF1)
and (WF2)) is checked using the M and W func-
tions, which return ⊥ if the class or type, respectively,
is not known to exist in the context p.

Note that (WF4) implies that fields can only be
declared in new class declarations (i.e., if there is no
inherited class declaration with the same name); this
restriction is not essential and we could easily add
initialized fields (declared as T f = e) to the calcu-
lus which could be declared in all classes. (In fact,
we developed the whole calculus with initialized and
redefinable fields before we decided to add construc-
tors and let fields be initialized via constructor ar-
guments.) We have chosen to leave out initialized
fields because they do add a number of details to
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rules, but do not provide much additional insight. We
could also have allowed field declarations everywhere
and accepted the possibility for additional run-time
NullErr errors due to uninitialized fields, but we felt
that the current strict approach is useful because it
illustrates how to statically ensure that all fields are
initialized. Also note that the restriction on fields
does not affect the ability to declare variables and
classes (possibly used as methods) in all class decla-
rations, so there are no restrictions on ordinary width
subtyping in the calculus.

As mentioned, (WF6) requires globally unique
member names; that is, field and variable names must
be unique throughout the program. This may seem
like a serious restriction that could interfere with sep-
arate compilation, but it is in fact just a simple way
to emulate an approach which is usable in a full-
fledged language and which does not interfere with
separate compilation. In particular, the gbeta com-
pilation process extends all declared names with a
unique identification of the enclosing class body (i.e.,
something that corresponds to the static path to the
scope of the declaration). It is then resolved stati-
cally which name declaration each name usage refers
to, and the name usage is then extended correspond-
ingly. As a result, if a given object contains mul-
tiple members named m, they will at run-time be
distinct members with extended names p1 m, p2 m,
etc., and name usages will use these extended names
for lookups. Hence, field and variable lookup uses
early binding, which is also the desired semantics. In
Caesar, such name clashes are detected and rejected
at compile time, so the programmer has to rename
one of the features in case of a clash.

For class or method lookup the desired semantics
is late binding, so in this case the technique is slightly
different. (WF6) requires any two declarations of a
class with the same name to have a shared declara-
tion of that class in their statically known sets of mix-
ins. This global restriction may seem to interfere with
separate compilation. However, it can be removed in
a way which is similar to the one used for members.
First, note that in vc it is easy to show that for a given
class name C there must be a unique declaration of C
which is in this sense shared among all declarations of
C. In gbeta it is required that an “introductory” class

declaration—i.e., one where no other declarations of
the same class are known statically—is marked syn-
tactically, not unlike the distinction between virtual
and override methods in C#. Each introductory
declaration for a class is renamed with an identifica-
tion of its enclosing class body, just like a member
declaration. Each non-introductory class declaration
is renamed like a member name usage to have the
same extended name as its introduction. This implies
that every class declaration has one particular intro-
duction, which is resolved statically. Finally, class
name usages are renamed to be like their extended
statically known declarations. As a result, there is
no need for global restrictions, and it is possible for
multiple classes with the same name to coexist in the
same object. With respect to binding time, there is
early binding of the choice of class introduction (class
identity), but late binding of the actual value (the
dynamic set of mixins). Our formalization is thus
much simpler, but it models the approach taken in
full-fledged languages in a faithful albeit not always
direct manner.

6 Wellformed Heaps and
Agreement

The soundness of the operational semantics with re-
spect to the type system depends upon having a well-
formed heap, and agreement between a value and a
type relative to a heap. The rules for heap well-
formedness and agreement are given in Figure 12.
Since the details of these definitions are not required
to understand the vc calculus as such, the remainder
of this section can be skipped by readers who are less
interested in how the soundness result is reached.

A heap is well-formed if all its objects are well-
formed (WF-Heap). An object is well-formed if
all its members are well-formed (WF-Obj). An ob-
ject member is well-formed if its value in the heap is
null (WF-Null). Otherwise a member m of object
ι is well-formed if the member value ι′ = H(ι)(m)
satisfies two conditions: (1) the enclosing object
of the value, Walk(H, ι′,out), is equal to the ob-
ject Walk(H, ι, path) specified by the path in the de-
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Well-formedness:

H(ι)(m) = null
ι.m : T OK in H

(WF-Null)

H(ι)(m) = ι′

Walk(H, ι′,out) = Walk(H, ι, path)
p.C ∈Mix (H, ι′)

ι.m : path.C OK in H
(WF-Mem)

T m ∈Members(Mix (H, ι))
⇒ ι.m : T OK in H

ι OK in H
(WF-Obj)

H(ιroot) = [[ ⊥ ‖ Croot ‖ [nilc] ]]

ιroot OK in H
(WF-Root)

∀ι. ι OK in H

H OK
(WF-Heap)

Agreement:

H, ι0 ` null . t (A-Null)

H, ι0 ` ιroot . 〈〉 (A-Root)

j = Depth(H, ι0)− |p|
Walk(H, ι0, this.outj .f) = ι

H, ι0 ` ι . C(〈p〉.f)
H, ι0 ` ι . 〈p〉.f (A-Otype)

p′.C ∈Mix (H, ι)
H, ι0 ` Encl(H(ι)) . E(u.C)

H, ι0 ` ι . u.C
(A-Ctype)

Auxiliary definitions:

Depth(H, ι) =
{

0, if ι = ιroot

1 +Depth(H, Encl(H(ι)))

Figure 12: Dynamic well-formedness and agreement

clared type path.C; and (2) the mixins of the value,
Mix (H, ι′), include a path ending with the class C.
There is a special rule for well-formedness of the root

object because it does not have an enclosing object.
Type agreement is specified as the agreement of an

object at ι with a type T, relative to a dynamic heap
H and a starting point ι0. The starting point specifies
an address in the dynamic heap that is related to
the base of the type. null agrees with all types (A-
Null), and the root object agrees with the empty
object type (A-Root).

Rule (A-Otype) handles object types, 〈p〉.f. The
rules ensure that the class path p is a prefix of the
spine of ι0, so the value j represents the number of
enclosing objects that must be traversed from ι0 to
read an object with the same depth as p. The path
this.outj .f traverses to this object, and then tra-
verses the field list f. The object ι must be located at
the end of this path. In addition, ι must agree with
the corresponding class type.

Rule (A-Ctype) handles class types, 〈p〉.f.C. It
requires that the mixins of the value, Mix (H, ι), in-
clude a path ending with the type’s class C. It also
requires that the actual enclosing object agrees with
the enclosing type.

7 Soundness

The type system of vc is sound in the sense that
a well-typed expression either returns a value that
agrees with its type, terminates with a NullErr, or
diverges, but never terminates with a TypeErr. The
soundness result is composed of two formal results:
preservation and coverage. Preservation is the stan-
dard theorem which characterizes the result of ex-
pressions that are well-typed and evaluate to a re-
sult. Coverage is a new technique for ensuring that
errors do not prevent expressions from evaluating to
a result.

Preservation assumes a valid program and heap.
Given the static path p of a class in which an expres-
sion e has type t, and the address ι of an object that
agrees with p; if the expression evaluates to a result
r then either the result is NullErr or it is a value that
agrees with t. Preservation also guarantees that the
heap is still well-formed after the execution, and that
the current object still agrees with its type.
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Theorem 1 (Preservation)




CT OK
H OK
p ` e : t
H, ι ` ι . 〈p〉
e, H, ι ; r,H′



⇒




H′ OK
H′, ι ` ι . 〈p〉
r = val ∧ H′, ι ` val . t
∨
r = NullErr




This theorem only characterizes evaluations that ter-
minate, which is a natural consequence of using a
big-step semantics. Hence it is slightly weaker than
the usual “progress and preservation” theorems in a
small-step semantics, where it can be expressed that
execution of a type correct program will never get
stuck even if the execution continues forever.

Preservation alone does not ensure soundness how-
ever, because an expression may fail to evaluate due
to a missing case in the evaluation rules. We have
followed standard practice by including rules (Er1-
4) to cover a variety of error cases in evaluation [14].
The complete list of error rules is given along with the
soundness proof. The second half of our soundness
proof ensures that all error cases have been handled.
As a result, the only way an evaluation can fail to
produce a value is if the computation diverges. This
Lemma plays a role similar to the ‘progress’ theorem
when using a small-step semantics.

The purpose of the coverage lemma is to show that
the evaluation rules always produce a value unless the
computation diverges. First we define a notion of fi-
nite evaluation. If the evaluation exceeds the bound
for finite evaluation, it produces a special termina-
tion value. The evaluation rules for error propagation
propagate this special value.

Definition 1 (Finite Evaluation) Define an eval-
uation relation ;k as a copy of the rules for ;. Re-
place each occurrence of ; in a premise by ;k−1.
Replace ; in the conclusion of each rule and axiom
with ;k. Note that the copied axioms are defined for
all k. Add the following axiom:

e, H, ι ;0 KillErr, H (Kill)

The finite evaluation relation ;n returns KillErr if
the derivation is more than n derivations deep. It is

thus a finite approximation of the normal evaluation
of an expression. The coverage lemma states that
finite evaluation always produces a value.

Lemma 1 (Coverage) For all natural numbers n
and e, H, ι, there exists r, H′ such that

e, H, ι ;n r,H′

The coverage lemma ensures that the operational
semantics produces a value even in the face of runtime
errors, such as access to non-existing members, see
(Er2) and (Er3) in Figure 8.

A terminating expression is one for which there is
an n such that finite evaluation ;n does not return
KillErr. If the expression does not return KillErr, then
it cannot use the Kill axiom. As a result, the deriva-
tion in ;n can be translated to a derivation in ;.
Thus every terminating expression has a correspond-
ing derivation in ;.

Theorem 1 and Lemma 1 ensure the soundness of
vc: execution of well-typed expressions will either
produce a value of the correct type, return NullErr,
or else diverge. But evaluation will never access
non-existing fields, variables, or classes, and is never
stuck.

Note that all proofs are provided in the appendix.

8 Related and Future Work

The idea of virtual classes and their different kinds of
bindings stems from Beta [21]. The concept of vir-
tual superclasses was explored but never fully realized
in Beta and has not been supported in the Beta
compiler since the early eighties. Virtual classes in
their general form as defined in this technical re-
port have been presented informally in the works on
family polymorphism and higher-order hierarchies in
gbeta [8, 9], delegation layers [28], and Caesar [23].
vc represents the core of these languages.

In gbeta, classes can have superclasses of the form
path.C, which enables a new kind of dynamic com-
position that is not expressible in vc. However, we
have analyzed the required extensions to vc in or-
der to support this kind of inheritance, and based
on the experience from gbeta it does not seem very
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hard, although it does introduce many new details in
the rules and proofs (essentially, mixins must be on
the form 〈u〉.p rather than simply p, and each mem-
ber in an object must have its own enclosing object).
We expect to explore this extension in some future
work. Delegation layers are more dynamic than vc
in that they use object-based delegation instead of
class-based inheritance, which enables polymorphic
composition of types at runtime. It is also a nat-
ural part of our future work to create a version of
vc building on delegation, but in this case it is not
obvious how hard it is. In Caesar, virtual classes
are combined with some aspect-oriented mechanisms
which make the language very suitable for integrating
independently-developed software components. As in
vc, both Caesar and gbeta distinguish mutable vari-
ables from immutable fields and use this distinction
during type checking.

Odersky et al have presented a calculus with path-
dependent types called νObj [26]. The most impor-
tant difference to νObj is that vc allows virtual classes
whereas νObj focuses on virtual types only. This
means that no objects can be created as an instance
of a virtual type (abstract type member) and no im-
plementation can be specified before the virtual type
is final-bound to a concrete type. Although it is pos-
sible to create a class that has a virtual super-class in
νObj , this mechanism cannot express hierarchy spe-
cialization because the virtual superclass can only be
replaced by a class that has exactly the same signa-
ture (e.g., does not add methods) [37]. Another dif-
ference is that vc has assignments, whereas νObj is
purely functional. On the other hand, νObj is more
powerful than vc w.r.t. the encoding of parametric
polymorphism, which is not in the focus of this work.
Finally, since our type-checker is completely syntax-
directed (in particular, we have no subsumption rule),
type-checking in vc is decidable, which is not the case
for νObj .

In [25], a language with nested inheritance is de-
scribed, which has a number of similarities with vir-
tual classes. An important difference to their ap-
proach is that they use classes in classes rather than
classes in objects. The classes-in-classes model can
trivially be simulated in a classes-in-objects model
by using only one instance of each class containing

virtual classes, but the converse does not hold—e.g.,
nested classes in [25] cannot access shared state of
instances of enclosing classes. For example, in vc ev-
ery nested class in Base and its subclasses can ac-
cess the zero field declared in Figure 1. The expres-
sive power of having access to the enclosing object
is also illustrated by our straightforward encoding of
methods by means of classes – accessing an instance
variable foo of an object in a method bar is encoded
as an access to the enclosing object out.foo in the
corresponding class bar. Using nested inheritance,
it would be possible to manually declare an instance
variable, say ‘enclosing’, in each nested class and thus
emulate the enclosing object, but it would require sig-
nificantly more work to create and administrate such
simulated enclosing objects, and it is not obvious that
they could be given all the desired typing properties.

Another consequence is that a given program us-
ing nested inheritance has a fixed number of class
families, whereas a given program in vc can have an
unlimited number of distinct class families because
every new family object contains a new class family.
This enables a more fine-grained typing discipline in
vc, because the type system will ensure that all these
families are not mixed up. For example, this could
be used to ensure that instances of Student nested
in a given University are used only with the univer-
sity from which they were obtained. With nested
inheritance a simple instanceof test could reveal that
all students were in fact members of the same class
family, and hence the connection between a specific
university and the associated students could not be
expressed or enforced.

Family polymorphism by means of passing an in-
stance of the enclosing class cannot be done directly
in a classes-in-classes model. Instead, the authors
of [25] propose the notion of prefix types to achieve
a similar kind of polymorphism. Prefix types are a
mechanism to refer to the (statically unknown) en-
closing class of the class of an object. For example,
A[b.class] denotes the enclosing class of the class of
the object b.

The nested inheritance language itself is much big-
ger (and hence more complex) than our language. For
example, there are seven different syntactic forms of
type declarations and type schemas in [25], whereas
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the only form of type declaration is path.C in vc. Yet
another difference is that different extensions to a
class hierarchy cannot be combined in the nested in-
heritance language, as illustrated by our example in
Figure 4. This is a consequence of the requirement in
nested inheritance that the declared superclass of a
class C must be a subtype of the inherited version of
C, i.e., declared superclasses in redefinitions cannot
be used to mix in additional features.

One feature which is well-known from related lan-
guages and calculi (including Beta and νObj ) is that
of final-bindings. A virtual class/type may be final-
bound, which means that the current value must re-
main unchanged (e.g., no additional mixins can be
included). This feature is useful because it provides
a lower bound on the value of a class, which opens
more opportunities for assignments to variables hav-
ing a given virtual class/type as their declared type.
It would hence make sense to add final bindings to
vc as well, but this extension is orthogonal to our
work because our focus is on extensibility and not on
genericity. Moreover, many years of experience with
Beta seems to indicate that final bounds are not
that important when initialized immutable fields are
available, because such fields can be used to obtain a
lower bound on all virtual classes in a given object.
It is likely that the trade-off is different in languages
like νObj and Scala [27], because many details in the
language design are different and closer to the func-
tional paradigm.

There are a couple of other approaches that widen
the expressibility of the static type system with re-
spect to collaborating classes and parametric poly-
morphism but do not support incremental hierarchy
specification [4, 33, 16].

Thorup proposes a virtual type system for
Java [32]. It supports instantiation of a virtual class
and hence late bound classes, but it does not support
virtual superclasses. Furthermore, the type system
relies on dynamic type checks.

There have been a couple of approaches for hierar-
chy refinement in the context of product lines (e.g.,
[2, 30]) but polymorphic usage of a hierarchy variant
is not in the focus of these works. It will be inter-
esting to explore how virtual classes improve the ex-
pressibility of languages with respect to product lines.

Virtual classes are interesting from a software archi-
tecture point of view because they enable both incre-
mental specification of class hierarchies and compo-
sition of different extensions to a class hierarchy, a
problem that is hard to solve in conventional object-
oriented languages. Hence, the language constructs
in vc are well-suited to implement layered software
architectures like mixin layers [30] or GenVoca [2].

Family classes used as argument types give rise to
covariant typing, which is known to be non-trivial to
handle in a type-safe manner. Other examples of a
strict and safe treatment of covariance are the for-
malization of variant parametric types in [18], and
the inclusion of wildcards into the J2SE 5 version of
the Java platform [35]. Note, however, that virtual
classes are different from variant parametric types
or parametric types with wildcards, because those
mechanisms do not support family polymorphism,
but they provide a different kind of flexibility through
structural equivalence among type applications.

The notion of having a first-class representation of
a hierarchy is also highly relevant to the domain of
aspect-oriented programming, which can be seen as
an approach to have multiple cross-cutting decompo-
sitions (that is, hierarchies) of a system [31, 24].

The only prior work related to our coverage lemma
that we know of is a paper by Fisher and Reppy [11].
They also improve on the traditional approach to
proving type soundness for big-step semantics by dif-
ferentiating diverging expressions from errors. They
use an ‘evaluation height function’, whose definition
is similar in structure to a small-step operational se-
mantics, to count the number of steps during evalu-
ation. Their soundness proof involves showing that
a well-typed term with an evaluation height of n will
always evaluate to a value of the correct type. They
define diverging programs as those for which the eval-
uation height function is undefined, but there is no
proof that the evaluation height function correctly
characterizes divergence of the operational semantics.
In our technique, the correspondence between ; and
;k is obvious by construction, all non-diverging pro-
grams have an evaluation tree because of the error
rules, and missing rules are prevented due to the cov-
erage lemma. Since Fisher and Reppy do not give full
proofs, it is difficult to compare our techniques in de-
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tail.

9 Conclusions

We have presented the calculus vc of virtual classes
with path-dependent types, described its dynamic
and static semantics, and proved soundness. The
approach to static analysis which was pioneered
in Beta, made strict and complete in gbeta, and
adapted for Java-like languages in Caesar has thereby
been documented, clarified, and characterized as fun-
damentally sound. Our calculus has certain unique-
ness requirements on declared names, but we have
explained how these restrictions have been lifted in a
full-fledged language at the cost of some extra com-
plexity. All in all, we have hereby provided a founda-
tion which shows that the widespread image of virtual
classes as being inherently unsafe is too pessimistic.
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A Lemmas and proofs

In this appendix we present some formal results
which characterize vc, along with proofs of the theo-
rems and lemmas in the main part of this technical
report. First we show that the type analysis of vc is
decidable. The remaining results are concerned with
the soundness proof. These results are divided into
three groups—results concerned with syntactic en-
tities; results concerned with the static information
about the heap; and results concerned with both the
static and the dynamic heap, including preservation
and coverage. Notationally, we use some small marks
to make internal references in certain proofs more
convenient and precise. In particular, result number
1 would be marked like 1:this, and references to it
are shown as (1). Similarly, statements which are yet
to be proved are marked like ?2:this, with references
shown as (?2).

A.1 About the Decidability of Typing

The static analysis of vc is decidable, because the
type rules are syntax directed and because the aux-
iliary functions are computed by directly specified,
terminating algorithms. The only non-trivial point is
that the partial ordering <f of field names required in
program well-formedness is needed in order to show
that the computation of C,M, E , and W always ter-
minates for all acyclic programs.

A.1.1 Termination of C, M, E, and W
We can assume without loss of generality that all field
names in use are on the form fi where the index i re-
spects the partial ordering (i.e., fi<f fi+1 for all i).
Then define the weight of concatenated paths as fol-
lows:

Definition 2 (Weight) The weight of a concate-
nated path Q, Weight(Q), is a function from natural
numbers to natural numbers such that:

Weight(nil)( ) = 0
Weight(q.q) = Weight(q) +Weight(q)
Weight(q.C) = Weight(q)

Weight(fi)(k) =
{

1, if k = i
0, otherwise

Weight(q)( ) = 0, if q ∈ {this,out}

Concatenated path weights are totally ordered as fol-
lows: If w1 and w2 are concatenated path weights then
w1 < w2 iff there is an n0 such that

(∀n > n0. w1(n) = w2(n)) ∧ (w1(n0) < w2(n0))

The weight of a concatenated path is a histogram
of the number of occurrences of each field, and it
maps all numbers which are not field indices to zero;
elements other than fields (i.e., this and out) are
ignored. It is easy to see that the defined ordering of
weights is indeed a total order and that the all-zero
weight is minimal.

To see that these functions terminate we use in-
duction on a pair which is the weight and the length
of the argument to the function C, M, E , or W.
With the argument list (〈p〉.f.q.C?) or (〈p〉.f, q.C?),
the pair is defined to be (Weight(f.q), |p.f.q| + ε),
where ε = 1/2 if C is present and ε = 0 otherwise.
Let these values be ordered as follows: if w′ < w then
(w′, s′) < (w, s), and if s′ < s then (w, s′) < (w, s).
Using this measure it is easy to see that all invoca-
tions of C, M, E , and W by the same functions are
made using strictly smaller arguments. In particu-
lar, the weight of the declared type of a field f is by
acyclicity smaller than the weight of f itself, which is
used for the second case of C. For the innermost invo-
cations we directly check the form of the arguments;
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for the invocations where a returned result is given as
an argument, as in E(W(u, spine)), we need to use the
fact that W, E , and C will return a result which is at
most as large as the given arguments, and C returns
a strictly smaller result when given an object type as
argument.

A.2 Syntax Related Results

First we need to establish some simple properties in-
volving only syntactic entities.

Definition 3 (Well-defined stat. path) A static
path p is well-defined iff the indicated classes are
present in the given program, i.e., if CT (p) is de-
fined.

A static path unambiguously identifies a syntactic
class body if and only if it is well-defined, and all
static paths in use must be well-defined.

Definition 4 (Homogeneous p) A list of static
paths, p, is homogeneous iff all its elements have the
same length, i.e., ∀i, j ∈ {1...|p|}. |pi| = |pj |.
We later show that all mixin lists provided by the
static semantics are homogeneous, which is a natural
consequence of using a model where each object has
only one enclosing object. We also need an auxiliary
concept of being a syntactic subclass:

Definition 5 (Syntactic subclass) C is a direct
syntactic subclass of C′ in a list of mixins p, writ-
ten p ` C :< C′, iff for some j, CT (pj .C) =
class C extends ...C′... { ... }. The reflexive and
transitive closure is denoted syntactic subclass and
written with a star as in p ` C :<∗ C′.

Lemma 2 (Basic properties of Assemble)
If Assemble(p,C) is defined then the result is a
non-empty list containing an element on the form
p′′.C. If Assemble(p,C) = p′ then p are prefixes of
p′, i.e., for p′ ∈ p′ there is a p ∈ p and a C′ such
that p′ = p.C′. Moreover, p ` C :<∗ C′. If all static
paths in p are well-defined then all static paths in p′

are well-defined, too. Finally, if p is homogeneous
then p′ is homogeneous, too.

Proof: Easy induction in the definitions of Assemble,
Expand , Defs, Linearize, and Lin2 . 2

We sometimes need to consider a list of mixins as
a set of mixins, which just implies that we ignore
the ordering and possible duplicates in the list. For
conciseness we do not show this conversion explicitly,
but it is applied whenever a list of mixins is used in
a context that requires a set, e.g., in expressions like
p ∪ p′.

Lemma 3 (Set properties of Assemble func.s)
With implicit conversion of each list into the set of
elements in the list wherever a set is required, the
following relations hold:

1. Lin2(p, p′) = p ∪ p′

2. Linearize(p) =
⋃

pi

3. p ⊆ p′ ∧ Defs(p,C) 6= ⊥ ⇒ Defs(p, C) ⊆
Defs(p′, C)

4. p ⊆ p′ ∧ Expand(p, p) 6= ⊥ ⇒ Expand(p, p) ⊆
Expand(p′, p)

Proof: Easy inductions and usage of the definitions
of Defs, Expand , Linearize, and Lin2 . 2

Lemma 4 (Monotonicity of Assemble)
If Assemble(p,C) 6= ⊥ and p ⊆ p′ then
Assemble(p, C) ⊆ Assemble(p′, C). If
Assemble(p, C′) 6= ⊥, Assemble(p, C) 6= ⊥, and
p ` C′ :<∗ C then Assemble(p, C′) ⊇ Assemble(p,C).

Proof: For the first part of the lemma, assume
that Assemble(p,C) 6= ⊥. The definition of
Assemble then shows that Defs(p, C) is defined
and that Expand(p, p′) is defined for each p′ ∈
Defs(p,C). Lemma 3 then yields Assemble(p, C) ⊆
Assemble(p′,C) by monotonicity of all functions in-
volved. The second part is shown by induction in the
number of direct syntactic subclass steps involved in
p ` C′ :<∗ C. In the base case there are zero steps
and C = C′ which makes the result immediate. For
the induction step, assume that Assemble(p,C′) 6= ⊥,
Assemble(p, C) 6= ⊥, and p ` C′ :<∗ C because p `
C′ :< C′′, and p ` C′′ :<∗ C. Then there is a p′ ∈ p
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such that CT (p′.C′) = class C′ extends C { ... },
and C′′ = Cj for some j. This means that p′.C′ ∈
Defs(p, C′), and then, implicitly converting lists to
sets and using Lemma 3 as well as various function
definitions,

Assemble(p,C′) =
Linearize[ Expand(p, p) | p← Defs(p, C′) ] ⊇
Expand(p, p′.C′) =
Linearize([Assemble(p,C) | C← C ] p′.C′) ⊇
Linearize[Assemble(p, C) | C← C ] ⊇
Assemble(p,C′′)

By the induction hypothesis, Assemble(p,C′′) ⊇
Assemble(p, C), hence Assemble(p,C′) ⊇
Assemble(p, C) as required. 2

In short, Assemble(p,C) appends C or a syntactic su-
perclass to some of p, preserves well-definedness and
homogeneity in p, co-varies with p, and contra-varies
with C.

A.3 Results Involving the Static Heap

The static semantic entities mimic the dynamic en-
tities to a large extent. We make this connection
more explicit here, by defining some auxiliary func-
tions that produce and investigate static objects, i.e.,
values on the form [[ u ‖ C ‖ p ]], denoted by the
symbol so. Here, u is a type that describes the en-
closing object, C is the statically known class of the
object, and p is the statically known list of mixins of
the object. The type of the enclosing object corre-
sponds directly to the enclosing object which is the
first component of an object in the dynamic heap,
and C corresponds to (but need not be the same as)
the second component of the object; the list of mix-
ins defines the features of the object by its members,
so the last component of the static object also corre-
sponds to the last component of the dynamic object,
although this connection is less direct.

Definition 6 (Static heap) We define the static
heap, H, a function to extract the class of a static
object, Clss, and a function that computes the depth
of a static object, Depths.

• H(t) =





[[ ⊥ ‖ Croot ‖ [nilc] ]] if t = 〈〉
[[ u ‖ C ‖ p ]]

if C(t) = u.C and M(t) = p

• Depths(t) =
{

0, if t = 〈〉
1 +Depths(u) if C(t) = u.C

• Clss(t) = C, if C(t) = u.C

Lemma 5 (The static heap) The static heap H is
a well-defined, partial function. If p is well-defined,
t = 〈p〉.Q, and H(t) is defined then computing H(t)
will only involve well-defined static paths. Finally,
if H(t) = [[ t′ ‖ C ‖ p ]] then t′ is an object type,
∃p′ : p′.C ∈ p, and p is homogeneous.

A well-defined partial function is a relation that re-
lates at most one value in the range to each value in
the domain.

Proof: An easy induction in the definitions of the
relevant functions, using that Assemble by Lemma 2
preserves well-definedness, and that prefixes of well-
defined paths are themselves well-defined. 2

Next, we establish that the syntactic subclass relation
contra-varies with the corresponding mixin sets, that
syntactic subclass is implied by subtype, and hence
that the subtype relation contra-varies with the cor-
responding mixin sets. This connection is the moti-
vation for having the notion of syntactic subclass.

Lemma 6 If M(u) = p, M(u.C′) = p′, M(u.C′′) =
p′′, and p ` C′ :<∗ C′′, then p′ ⊇ p′′.

Proof: Follows from the definition of M and
Lemma 4. 2

Lemma 7 If s <: s′ then there is an object type u
and classes C and C′ such that s = u.C, s′ = u.C′,
and M(u) ` C :<∗ C′.

Proof: Easy induction in the proof of s <: s′. 2

Lemma 8 (Subtype ⇒ more static mixins) If
s <: s′ then E(s) = E(s′). Moreover, ifM(s) 6= ⊥ and
M(s′) 6= ⊥ then M(s) ⊇M(s′).
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Proof: By Lemma 7 there exist u, C, and C′ such that
s = u.C and s′ = u.C′, so E(s) = u = E(s′). Lemma 7
also yields M(u) ` C :<∗ C′. For the second part of
the lemma assume thatM(u.C) 6= ⊥ andM(u.C′) 6=
⊥, and then Lemma 6 yields M(u.C) ⊇M(u.C′). 2

The following lemmas show that the relation in the
static setting between the mixin sets of an object and
that of its enclosing object is the same as in the dy-
namic heap, and a similar correspondence exists for
the depth of an object and for the enclosing object of
a field or variable.

Lemma 9 (Static heap respects mixins) If
H(t) = [[ u ‖ C ‖ p ]] then p = Assemble(M(u), C).

Proof: By the definition of H, p = M(t) and
C(t) = u.C. The definition of C and M shows that
∀t : M(t) = M(C(t)), so p = M(t) = M(C(t)) =
M(u.C) = Assemble(M(u), C). 2

Lemma 10 If p ∈M(t) then |p| = Depths(t).

Proof: Induction in the computation ofM(t).

Case (M(〈〉) = [nilc]): Trivial.

Case (M(u.C) = Assemble(M(u),C)): By the in-
duction hypothesis, for any p′ ∈ M(u) we have
|p′| = Depths(u). By Lemma 2, for any p ∈
Assemble(M(u), C), |p| = |p′|+ 1 = Depths(u.C).

Case (M(u) =M(C(u))): Assume p ∈ M(u), then
also p ∈ M(C(u)). By the induction hypothesis,
|p| = Depths(C(u)). But Depths(C(u)) = Depths(u)
because C(C(u)) = C(u), so |p| = Depths(u). 2

An immediate consequence of this lemma is the fol-
lowing:

Corollary 11 (Static heap respects depth)
If H(t) = [[ ‖ ‖ p ]] and p ∈ p then
|p| = Depths(t).

Lemma 12 (Static heap is enclosing-correct)
If W(u, path) = u′ and DclPath(u′, f) = path′ then
W(u′, path′) = E(W(u, path.f)).

Proof: Assume that W(u, path) = u′ and
DclPath(u′, f) = path′. This implies that there
is a C such that DclType(u′, f) = path′.C, hence
Exists(u′, f), so W(u, path.f) is defined, and it is easy
to see that W(u, path.f) = u′.f. The definition of C
now yields C(u′.f) =W(u′, path′.C) =W(u′, path′).C.
Finally E(W(u, path.f)) = E(u′.f) = E(C(u′.f)) =
E(W(u′, path′).C) =W(u′, path′). 2

We shall need one more result which shows that we
can “shift” a step from one path to another.

Lemma 13 (Shifting a static step) Assume
E(u) = u′ and W(u, spine.out.f) = u′′, then
W(u′, spine.f) = u′′.

Proof: By induction in the shape of the path
spine.out.f.

Case (this.out): Assume that E(u) = u′ and
u′′ = W(u, this.out). Then from W(u, this.out) =
E(W(u, this)) = E(u) = u′ we conclude u′′ = u′ and
hence W(u′, this) = u′′.

Case (spine.out.out): Assume that E(u) = u′ and
u′′ = W(u, spine.out.out), then u′′ = E(u′′′), where
u′′′ = W(u, spine.out). By the induction hypothesis,
W(u′, spine) = u′′′, which implies W(u′, spine.out) =
E(W(u′, spine)) = E(u′′′) = u′′.

Case (spine.out.f.f): Assume that E(u) = u′ and
W(u, spine.out.f.f) = u′′, then u′′ = u′′′.f where
u′′′ = W(u, spine.out.f) and DclType(u′′′, f) 6= ⊥.
By the induction hypothesis, W(u′, spine.f) = u′′′, so
W(u′, spine.f.f) = u′′′.f = u′′. 2

A.4 Results Involving Both Heaps

First we need to introduce an auxiliary function and
a new concept of heap compatibility.

Definition 7 (Dynamic class function) If
H(ι) = [[ ‖ C ‖ ]] then Cls(H(ι)) = C.

Definition 8 (Heap compatibility) H′ is com-
patible with H iff H′ is defined in at least all those ι
where H is defined, and for each ι where both H and
H′ are defined, H′(ι) differs from H(ι) at most in the
values of variables.
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To support the intuition behind this concept, note
that the class of an object, the enclosing object, and
the objects accessible through its fields are significant
for the static analysis, whereas the values of variables
may change freely as long as the declared types are
respected. This reflects the fact that types may de-
pend on the values of fields and the enclosing object,
but not on the values of variables. The next two re-
sults show that evaluation preserves compatibility.

Lemma 14 (Immutability of objects) If H(ι) =
[[ ι′ ‖ C ‖ f : val ... ]] and e,H, ; , H′, then ι is
defined in H′, and H′(ι) = [[ ι′ ‖ C ‖ f : val ... ]].

Proof: Easy induction in the proof tree for the eval-
uation. 2

Corollary 15 (Evaluation yields comp. heap)
If e, H, ; ,H′ then H′ is compatible with H.

The next lemma is also easy, but it is important for
the static analysis that paths never change, because
they are used in types.

Lemma 16 (Values of paths are immutable)
If Walk(H, ι, path) = ι′ and H′ compatible with H
then Walk(H′, ι, path) = ι′.

Proof: Since path has the form this.out.f, which
means that only enclosing objects and fields are eval-
uated, the Lemma follows directly from the definition
of heap compatibility and the definition of Walk . 2

Lemma 17 (Evaluation from enclosing) If
Walk(H, ι, spine.out.f) = ι′ then Encl(H(ι)) 6= ⊥
and Walk(H, Encl(H(ι)), spine.f) = ι′. If
Walk(H, ι, spine.f) = ι′ and Encl(H(ι′′)) = ι
then Walk(H, ι′′, spine.out.f) = ι′.

Proof: The first part is an easy induction in
the shape of path, using the cases this.out,
spine.out.out, and spine.out.f.f because these cases
inductively describe all the possible paths on the form
spine.out.f. The second part is an easy induction in
the shape of the path spine.f based on the cases this,
spine.out, and spine.f.f, which inductively describes
all shapes of path, but allows for insertion of out in
the desired position. 2

The next lemma shows various properties about
agreement, including that it is sufficient to ensure
the syntactic subclass relation in the agreement rules
because the desired mixin relation follows, and that
nesting preserves agreement:

Lemma 18 (Agreement) Assume that CT OK,
H OK, and H, ι0 ` ι . t. Then

1. Depth(H, ι) = Depths(t)

2. If Mix(H, Encl(H(ι))) = p or ι = ιroot then
p ` Cls(H(ι)) :<∗ Clss(t)

3. If Depths(t) > 0 then
H, ι0 ` Encl(H(ι)) . E(t)

4. Mix(H, ι) ⊇M(t)

5. If ι0 = Encl(H(ι1)) then H, ι1 ` ι . t

6. If C(t) <: s, M(t) 6= ⊥, and M(s) 6= ⊥, then
H, ι0 ` ι . s

Proof: To enable concise references to assumptions
we number them as follows: 1:CT OK, 2:H OK, and
3:H, ι0 ` ι . t.

1. Induction in the proof of (3).

Case (A-Null): Not applicable (ι cannot be
null).

Case (A-Root): Trivial.

Case (A-Otype): In this case H, ι0 ` ι .
C(〈p〉.f) where 〈p〉.f = t. Note that 〈p〉.f 6= 〈〉
because C(〈p〉.f) is defined, and C(〈p〉.f) 6= 〈〉 be-
cause 〈〉 is not a class type. Then

Depth(H, ι) =
// by the induction hypothesis

Depths(C(〈p〉.f)) =
// by def. of Depths

1 +Depths(E(C(〈p〉.f))) =
// E(C(〈p〉.f)) = E(〈p〉.f)

1 +Depths(E(〈p〉.f)) =
// by def. of Depths

Depths(〈p〉.f).
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Case (A-Ctype): Here, H, ι0 ` Encl(H(ι)) .
u, where t = u.C. Note that ι 6= ιroot because
Encl(H(ι)) is defined. Then

Depth(H, ι) =
// by def. of Depth

1 +Depth(H, Encl(H(ι))) =
// by the induction hypothesis

1 +Depths(u) =
// u = E(u.C)

1 +Depths(E(u.C)) =
// by def. of Depths

Depths(u.C).

2. Induction in the proof of (3).

Case (A-Null): Not applicable (ι 6= null).

Case (A-Root): In this case ι = ιroot

and t = 〈〉. Hence Clss(t) = Croot, and by
H OK, Cls(H(ι)) = Croot, which shows that p `
Cls(H(ι)) :<∗ Clss(t) for arbitrary p.

Case (A-Otype): We have H, ι0 ` ι . C(〈p〉.f)
where 〈p〉.f = t. By the induction hypothesis
p ` Cls(H(ι)) :<∗ Clss(C(〈p〉.f)), and the de-
sired result then follows from Clss(C(〈p〉.f)) =
Clss(〈p〉.f).

Case (A-Ctype): In this case t = u.C such
that C = Clss(t), and there exists a p′ such
that p′.C ∈ Mix (H, ι), and H, ι0 ` Encl(H(ι)) .
u. From H OK we get ι OK in H, and this
must have been shown using (WF-Obj) because
ι 6= ιroot, because Encl(H(ι)) is defined. More-
over, since ι 6= ιroot we must also have p =
Mix (H, Encl(H(ι))). From the definition ofMix
we get Mix (H, ι) = Assemble(p, Cls(H(ι))), and
p ` Cls(H(ι)) :<∗ C then follows from Lemma 2,
which concludes the case.

3. If t is a class type, t = u.C, then (3) by (A-
Ctype) yields H, ι0 ` Encl(H(ι)) . u and since
u = E(t) we are done. Otherwise t is an ob-
ject type, so from (A-Otype) we get H, ι0 `

ι . C(t), hence by the class type case H, ι0 `
Encl(H(ι)) . E(C(t)), and the result then follows
from E(C(t)) = E(t).

4. Induction in Depths(t).

Case (Depths(t) = 0): The definition of Depths

shows by an easy induction that t = 〈〉 when
Depths(t) = 0. Moreover by 1., Depth(H, ι) = 0,
so ι = ιroot by a similar induction. The result
then follows immediately from the definitions of
Mix (H, ιroot) and M(〈〉).

Case (Depths(t) = k + 1):

M(t) =
// by Lemma 9

Assemble(M(E(t)), Clss(t)) ⊆
// by 3., the ind.hyp., and Lemma 4

Assemble(Mix (H, Encl(H(ι))), Clss(t)) ⊆
// by 2. and Lemma 4

Assemble(Mix (H, Encl(H(ι))), Cls(H(ι))) =
// definition of Mix

Mix (H, ι)

5. Induction in Depths(t).

Case (Depths(t) = 0): As in the proof of 4., t =
〈〉 and ι = ιroot, so the result follows immediately
from (A-Root).

Case (Depths(t) = k + 1): We must consider
class types and object types separately.

• t = u.C: By (3) and (A-Ctype) there is a
p′ such that p′.C ∈ Mix (H, ι), and H, ι0 `
Encl(H(ι)) . u. The induction hypothesis
yields H, ι1 ` Encl(H(ι)) . u, hence by (A-
Ctype) H, ι1 ` ι . t as required.

• t = 〈p〉.f: By (3) and (A-
Otype), j = Depth(H, ι0) − |p|,
Walk(H, ι0, this.outj .f) = ι, and
H, ι0 ` ι . C(〈p〉.f). But then with
j′ = j + 1, j′ = Depth(H, ι1) − |p|, by
Lemma 17 Walk(H, ι1, this.outj′ .f) = ι,
and by the previous case H, ι1 ` ι .C(〈p〉.f),
which by (A-Otype) yields H, ι1 ` ι . t.
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6. We need to consider class types and object types
separately.

Case (t = s′): Assume C(s′) <: s, i.e.,
4:s′ <: s. Also assume 5:M(s′) 6= ⊥, and
6:M(s) 6= ⊥. Let 7:C = Clss(s). Using (1) (2) (3)
with part 4. of this lemma yields 8:Mix (H, ι) ⊇
M(s′). From (4) (5) (6) with Lemma 8 we get
9:M(s′) ⊇ M(s) and 10:E(s′) = E(s). Using (7)
(8) and the definition of M then shows that
11:M(s) = Assemble(M(E(s)), C). An inspec-
tion of the definition of Assemble shows that
for all p′′ and C′ where Assemble(p′′, C′) = p′′′,
∃p′. p′.C′ ∈ p′′′. Noting that M(ιroot) is the
list of lenght one containing the element nilc
(rather than the empty list), it is easy to see that
mixin lists from the static heap are never empty,
so in this case we get ∃p′. p′.C ∈ M(s), and
hence from (8) (9) that 12:∃p′. p′.C ∈Mix (H, ι).
Moreover, (3) via (A-Ctype) yields 13:H, ι0 `
Encl(H(ι)) . E(s′). Finally, using (10) (13) we
get 14:H, ι0 ` Encl(H(ι)) . E(s), and then from
(12) (14) via (A-Ctype) that H, ι0 ` ι . s, as
required.

Case (t=u): Assume C(u) <: s, then from
C(C(u)) = C(u) we also have 4:C(C(u)) <: s.
From (3) by (A-Otype) we get 5:H, ι0 ` ι .C(u).
Now we can use (1) (2) (5) (4) with this lemma
again because it matches the class type case for
which the proof is given above, yielding H, ι0 `
ι . s as required.

2

Agreement can sometimes be established from heap
soundness alone, namely with respect to the point of
view of a class body which corresponds to one of the
mixins of the given object. We use the phrase local
view type to denote such a type because it is a view
upon the object as seen from itself.

Lemma 19 (Agreement with local view types)
Assume CT OK, H OK, and Mix(H, ι) = p, then for
any i: H, ι ` ι . 〈pi〉.

Proof: By induction in Depth(H, ι).

Case (Depth(H, ι)=0): In this case ι = ιroot, so p =
[nilc] and pi = nilc, so we just need to show that
H, ιroot ` ιroot . 〈〉, which follows directly from (A-
Root).

Case (Depth(H, ι)=k+1): We must prove that
H, ι ` ι . 〈pi〉 using (A-Otype), because 〈pi〉 is
an object type and (A-Root) does not apply. By
part 1 of this lemma, Depths(〈pi〉) = k + 1, so
there exists Ci such that pi = C1...Ck+1. Let
j = Depth(H, ι) − |C1...Ck+1| = 0, and note that
Walk(H, ι, this) = ι, which establishes the two first
premises for (A-Otype).

For the last premise of (A-Otype) note that
C(〈C1...Ck+1〉) = 〈C1...Ck〉.Ck+1, so we need to show
H, ι ` ι .〈C1...Ck〉.Ck+1. In this case we must use (A-
Ctype) because 〈C1...Ck〉.Ck+1 is a class type. For
the first premise of (A-Ctype) we let p′ = C1...Ck,
such that p′.Ck+1 = pi ∈ p =Mix (H, ι). Finally we
need to show that H, ι ` Encl(H(ι)) . 〈C1...Ck〉.
By the definition of Mix , Mix (H, ι) =
Assemble(Mix (H, Encl(H(ι))), Cls(H(ι))). From
C1...Ck+1 ∈ Mix (H, ι) and Lemma 2 we con-
clude C1...Ck ∈ Mix (H, Encl(H(ι))). The induc-
tion hypothesis then provides H, Encl(H(ι)) `
Encl(H(ι)) . 〈C1...Ck〉 and then part 5 of this lemma
finishes the case. 2

Agreement does not depend on the values of vari-
ables, which makes it a very persistent property.

Lemma 20 (Agreement is persistent) Assume
CT OK, H OK, H′ OK, H′ compatible with H, and
H, ι0 ` ι . t. Then H′, ι0 ` ι . t.

Proof: By induction in Depth(H, ι).

Case (Depth(H, ι)=0): In this case ι = ιroot and
t = 〈〉, so we just need to show that H′, ι0 ` ιroot . 〈〉,
which follows directly from (A-Root).

Case (Depth(H, ι) = k + 1, t = u.C): From H, ι0 `
ι . u.C by (A-Ctype), there is a p′ such that p′.C ∈
Mix (H, ι), and H, ι0 ` Encl(H(ι)).u. Since H′ is com-
patible with H, Mix (H′, ι) = Mix (H, ι), so p′.C ∈
Mix (H′, ι), too. By the induction hypothesis we get
H′, ι0 ` Encl(H(ι)) . u, so Encl(H′(ι)) = Encl(H(ι))
finishes the case.
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Case (Depth(H, ι) = k + 1, t = 〈p〉.f): From
H, ι0 ` ι .〈p〉.f by (A-Otype), j = Depth(H, ι0)−|p|,
Walk(H, ι0, this.outj .f) = ι, and H, ι0 ` ι . C(〈p〉.f).
But then also j = Depth(H′, ι0) − |p| because heap
compatibility ensures unchanged enclosing objects,
and by Lemma 16, Walk(H′, ι0, this.outj .f) = ι. Fi-
nally, the previous case shows H′, ι0 ` ι . C(〈p〉.f),
which yields H′, ι0 ` ι . 〈p〉.f, as required. 2

Finally, we shall need the following result which
shows that agreement can imply the existence of a
path between objects.

Lemma 21 (Agreement implies path)
If CT OK, H OK, H, ι0 ` ι . u, and
H, ι0 ` ι′ .W(u, path), then Walk(H, ι, path) = ι′.

Proof: Assume 1:CT OK, 2:H OK, 3:H, ι0 ` ι .u, and
4:H, ι0 ` ι′ .W(u, path). Let u = 〈p〉.f and path =
this.outk.f

′
. The proof then proceeds by induction

in k.

Case (0): An easy induction in |f| shows that
W(u, path) = 〈p〉.f.f ′. From (3) (4) with (A-Otype)
we get 5:Walk(H, ι0, this.outj .f) = ι where j =
Depth(H, ι0)−|p|, and 6:Walk(H, ι0, this.outj .f.f

′
) =

ι′. But then there exist ιi such that H(ιi)(f ′i) =
ιi+1 for i ∈ {1...n} where ιn = ι′ and (by
(5)) ι1 = ι, which we can directly use to show
Walk(H, ι, this.f

′
) = ι′, as required.

Case (k+1): Since W(u, this.outk+1.f
′
) is de-

fined, W(u, this.outk+1) is also defined, so we
must have u 6= 〈〉 and hence 7:Depths(u) >
0. Now from (1) (2) (3) (7) with Lemma 18.3,
8:H, ι0 ` Encl(H(ι)) . E(u). By Lemma 13,
9:W(u, this.outk+1.f

′
) = W(E(u), this.outk.f

′
). Ap-

plication of the induction hypothesis to (1) (2) (8)
(4) (9) yields 10:Walk(H, Encl(H(ι)), this.outk.f

′
) =

ι′. Finally from (10) with Lemma 17 we get
Walk(H, ι, this.outk+1.f

′
) = ι′, as required. 2

The next few lemmas establish correspondences be-
tween the static and the dynamic world. First we
show that a member predicted by static analysis will
also exist at run-time, then we show that agreement
is preserved in some important cases, and finally we

show that object creation and assignment preserve
heap well-formedness.

Lemma 22 (Memory Lookup Succeeds)
Assume that CT OK, H OK, H, ι0 ` ι . u, and
Exists(u,m). Then H(ι)(m) 6= ⊥.

Proof: By the definition of Exists, DclType(u, m) 6=
⊥, so there is a T such that T m ∈ Members(p)
for some p ∈ M(u). By Lemma 18.4, Mix (H, ι) ⊇
M(u), so p ∈Mix (H, ι), too. By H OK and ι OK in
H which uses (WF-Obj) because ι 6= ιroot since ιroot

has no members, H(ι)(m) is either null or ι′, so
H(ι)(m) 6= ⊥. 2

Lemma 23 (Path lookup pres. agreement) If
CT OK, H OK, H, ι0 ` ι . u, Walk(H, ι, path) = val,
and W(u, path) = u′, then H, ι0 ` val . u′.

Proof: If val = null then the result is trivial. Oth-
erwise val = ι′. For easy reference to assumptions we
number them as follows: 1:CT OK, 2:H OK, 3:H, ι0 `
ι . u, 4:Walk(H, ι, path) = ι′, and 5:W(u, path) = u′.
We now prove by induction in the weight and length
of path that H, ι0 ` ι′ . u′.

Case (this): Trivial.

Case (spine.out): Here Walk(H, ι, spine.out) =
ι′ because 6:Walk(H, ι, spine) = ι′′ and 7:ι′ =
Encl(H(ι′′)). Similarly, W(u, spine.out) = u′ because
8:W(u, spine) = u′′ and 9:u′ = E(u′′). Since spine
has same weight as spine.out but is shorter we can
use the induction hypothesis on (1) (2) (3) (6) (8)
to get 10:H, ι0 ` ι′′ . u′′. Finally note that by (9)
11:Depths(u′′) > 0, and use (1) (2) (10) (11) (7) (9)
with Lemma 18.3 to get H, ι0 ` ι′ . u′.

Case (path.f): In this case Walk(H, ι, path.f) = ι′

because 6:Walk(H, ι, path) = ι′′ and 7:ι′ = H(ι′′)(f).
Similarly, W(u, path.f) = u′ because 8:W(u, path) =
u′′, 9:u′ = u′′.f, and 10:DclType(u′′, f) = T 6= ⊥.
Let T = path′.C′. Since path has smaller weight
than path.f we can use the induction hypothesis on
(1) (2) (3) (6) (8) to get 11:H, ι0 ` ι′′ . u′′. By
(2) (WF-Obj) (WF-Mem) we get 12:Encl(H(ι′)) =
Walk(H, ι′,out) = Walk(H, ι′′, path′) and there is
a p′ such that 13:p′.C′ ∈ Mix (H, ι′); let 14:ι′′′ =
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Walk(H, ι′′, path′). Similarly, Lemma 12 with (8) (10)
yields 15:W(u′′, path′) = E(W(u, path.f)) = E(u′).
Let 16:u′′′ = W(u′′, path′), then by (8) (9) (10) (15),
17:C(u′) = u′′′.C′. By (1) the program is acyclic, so
the weight of path′ is smaller than the weight of f and
hence also smaller than the weight of path.f. This im-
plies that we can use the induction hypothesis on (1)
(2) (11) (14) (16) to get H, ι0 ` ι′′′ . u′′′, and us-
ing (12) (14) (15) (16) as well as E(u′) = E(C(u′))
this yields 18:H, ι0 ` Encl(H(ι′)).E(C(u′)). Note that
by (17), Clss(C(u′)) = C′. Now (13) (18) with (A-
Ctype) yields 19:H, ι0 ` ι′ . C(u′). Let 〈p〉.f = u′′,
then by (9) we have 20:〈p〉.f.f = u′. By (11) (A-
Otype) we conclude 21:j = Depth(H, ι0) − |p| and
22:Walk(H, ι0, this.outj .f) = ι′′, and (7) (22) then
yields 23:Walk(H, ι0, this.outj .f.f) = ι′. Finally we
use (20) (21) (23) (19) with (A-Otype) to get H, ι0 `
ι′ . u′. 2

Lemma 24 (Variable lookup pres. agreement)
If CT OK, H OK, H, ι0 ` ι .u, W(u,DclType(u, v)) =
s, and H(ι)(v) = val, then H, ι0 ` val . s.

Proof: If val = null then the result is triv-
ial. Otherwise let val = ι′ and assume the
following: 1:CT OK, 2:H OK, 3:H, ι0 ` ι . u,
4:W(u,DclType(u, v)) = s = u′.C, and 5:H(ι)(v) = ι′.
By the definition of W and using (4) there exists
a path such that 6:DclType(u, v) = path.C, hence
7:W(u, path) = u′. By (1) (2) (3) Lemma 18.4
yields 8:Mix (H, ι) ⊇ M(u), which shows that
path.C v ∈ Members(Mix (H, ι)), so by (2) (5) we
get 9:Walk(H, ι, path) = Encl(H(ι′)) and there ex-
ists p′ such that 10:p′.C ∈ Mix (H, ι′). Now we
can use (1) (2) (3) (9) (7) with Lemma 23 to get
11:H, ι0 ` Encl(H(ι′)) . u′, and finally (10) (11) with
(A-Ctype) yields H, ι0 ` ι′ . u′.C, as required. 2

At this point we can show that variable assignment,
the core imperative feature, does not destroy the well-
formedness of the heap.

Lemma 25 (Heap upd. pres. well-formedness)
Assume that CT OK, H OK, H, ι0 ` ι . u, H, ι0 `
val . t, M(t) 6= ⊥, and C(t) <: W(u,DclType(u, v)).
Then H[ι 7→ H(ι)[v 7→ val]] OK.

Proof: Let H′ = H[ι 7→ H(ι)[v 7→ val]]. It is obvious
that H′ differs from H only in that H′(ι) maps v to val
rather than to its previous value in H, so we only need
to consider ι OK in H′, and only for the member v.
If the new value val is null then the result is trivial;
so assume this is not the case and let val = ι′ Assume
1:CT OK, 2:H OK, 3:H, ι0 ` ι . u, 4:H, ι0 ` ι′ . t,
5:M(t) 6= ⊥, and 6:C(t) <: W(u,DclType(u, v)).
From (6) we conclude that DclType(u, v) is defined,
let DclType(u, v) = path.C. By the definition of
W, when W(u, path.C) = u′.C is defined also u′ =
W(u, path) is defined, and so is M(u′.C). Hence, we
can use (1) (2) (4) (5) (6) with Lemma 18.6 to obtain
7:H, ι0 ` ι′.u′.C. Note that Depths(u′.C) > 0 because
it is a class type, and E(u′.C) = u′. With (1) (2) (7)
using Lemma 18.3, this yields 8:H, ι0 ` Encl(H(ι′)) .
u′, and then (1) (2) (3) (8) with Lemma 21 yields
9:Walk(H, ι, path) = Encl(H(ι′)) = Walk(H, ι′,out).
From (7) via (A-Ctype) we now obtain that there is
a p′ such that p′.C ∈ Mix (H, ι′), and by Lemma 14
and Corollary 15 via the definition of Mix we con-
clude 10:p′.C ∈ Mix (H′, ι′). Finally, since H′(ι)(v) =
ι′, (9) (10) and Lemma 16 with (WF-Mem) shows
that ι.v : path.C OK in H′, as required. 2

A crucial result for soundness is that the creation of a
new object will always preserve the well-formedness
of the heap.

Lemma 26 (Obj. creat. pres. well-formedness)
Assume CT OK, H OK, H, ι0 ` ι . u,
H, ι0 ` val . t, p = Assemble(Mix(H, ι), C),
Members(p) = T f, T

′
v, |f| = |val|, ι′ new in H,

si =





W(u′, this.Q)
if Ti = this.fj .Q and tj = u′

W(u, this.Q)
if Ti = this.out.Q

for i ∈ {1...|t|}, and C(t) <: s. Then
H[ ι′ 7→ [[ ι ‖ C ‖ f : val v : null ]] ] OK.

Proof: Let H′ = H[ ι′ 7→ [[ ι ‖ C ‖
f : val v : null ]] ]. Assume 1:CT OK, 2:H OK,
and 3:H, ι0 ` ι . u. 4:H, ι0 ` val . t, 5:p =
Assemble(Mix (H, ι),C), 6:Members(p) = T f, T

′
v,
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7:|f| = |val| = n, 8:ι′ new in H,

9i:si =





W(u′, this.Q)
if Ti = this.fj .Q and tj = u′

W(u, this.Q)
if Ti = this.out.Q

for i ∈ {1...n}, and 10i:C(ti) <: si, for i ∈ {1...n}.
By (WF-Heap) showing that H′ OK means show-

ing that every object in H′ is wellformed. By (8) and
the definition of H′, H′ is compatible with H, and H is
undefined at ι′. Inspection of the rules (WF-Root),
(WF-Obj), (WF-Null), and (WF-Mem) shows the
value of each member declared in a mixin of the ob-
ject is either ⊥, null, or an address ι1 at which H is
defined. Hence, ι′ is not an enclosing object or the
value of any member of any object in H, so from H OK
follows ι2 OK in H for all ι2 where H is defined, and
hence also ι3 OK in H′ for all ι3 where H is defined.
Since H′ is defined in D∪{ι′} where D is the domain
of H, we have now dealt with all addresses where H′ is
defined except ι′, so we need only show ι′ OK in H′.
Since Encl(H(ι′)) is defined we know that ι′ 6= ιroot,
so we must use (WF-Obj) to show this.

Note that 11:ι 6= ι′ because H is defined at
ι. From (5) via Lemma 14 we get 12:p =
Assemble(Mix (H′, ι), C) =Mix (H′, ι′).

Now we need to show that the value of each mem-
ber m ∈ Members(p) satisfies the implication in the
premise of (WF-Obj). We have to consider variables
and fields separately, and we have to use induction for
the fields.

If m is a variable v then from the definition of H′

we conclude H′(ι′)(v) = null, and by (WF-Null)
the implication is trivially satisfied.

To deal with fields we need to consider their order-
ing and handle the “smallest” ones first—by (1) fields
are ordered such that for each field f, DclType(p, f) =
this.outk.f.C⇒ ∀i. fi<f f, i.e., “a field only depends
on smaller fields”.

• Consider the smallest field fj among the fields of
ι′. Since fj cannot depend on other fields in ι′,
its declared type must be this.outk+1.f

′′
.C′′ for

some k, f
′′
, and C′′. By (9j) this implies that

13:sj = W(u, this.outk.f
′′
.C′′). Note that (13)

implies that sj is a class type with class C′′ and
14:E(sj) = W(u, this.outk.f

′′
). By (4j) we get

15:H, ι0 ` valj . tj . If valj = null then we finish
by using (WF-Null) because H′(ι′)(fj) = null.

Otherwise there exists a ι′′ such that valj =
ι′′. Note that by (13) M(sj) is defined,
and M(tj) is defined because it is produced
by a type judgment. Using this and (1)
(2) (15) (10j) with Lemma 18.6 we conclude
16:H, ι0 ` ι′′ . sj . From (14) (16) via (A-
Ctype) we conclude that there is a p′ such
that 17:p′.C′′ ∈ Mix (H, ι′′) = Mix (H′, ι′′)
and 18:H, ι0 ` Encl(H(ι′′)) .W(u, this.outk.f

′′
).

Using (1) (2) (3) (18) with Lemma 21
yields Walk(H, ι, this.outk.f

′′
) = Encl(H(ι′′)).

Since H′ is compatible with H this imme-
diately yields 19:Walk(H′, ι, this.outk.f

′′
) =

Encl(H′(ι′′)). and with Lemma 17 this yields
20:Walk(H′, ι′, this.outk+1.f

′′
) = Encl(H′(ι′′)).

Finally, (20) (17) shows that the member related
implication from (WF-Obj) holds for fj , so we
are done.

• For a field fj other than the one with the low-
est order we assume that the member related
implication holds for all fields with lower order
than fj . If the declared type of fj is on the form
this.out.Q then the proof in the previous case
can be reused. Otherwise by (9j) the declared
type Tj is this.fm.f

′′
.C′′ for some m, f

′′
, and

C′′. Moreover, tm is an object type u′, such that
21:sj =W(u′, this.f

′′
.C′′) and by (9j), 22:C(tj) <:

sj . By (4j) (4m) we get 23:H, ι0 ` valj . tj and
24:H, ι0 ` valm . u′.

If valj = null then we are done. Other-
wise there exists a ι′′ such that valj = ι′′.
Using (21) and the definition of W we get
M(sj) 6= ⊥, and M(tj) 6= ⊥ because it is
obtained from a typing judgment. Now, (1)
(2) (23) (22) (21) with Lemma 18.6 then yields
25:H, ι0 ` ι′′ . W(u′, this.f

′′
.C′′). Note that

Depths(W(u′, this.f
′′
.C′′)) > 0 because it is a

class type, so from (1) (2) (25) with Lemma 18.3
we get 26:H, ι0 ` Encl(H(ι′′)).W(u′, this.f

′′
). Let
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u′ = 〈p′′〉.f ′′′, then W(u′, this.f
′′
) = 〈p′′〉.f′′′.f′′,

and then (26) with (A-Otype) for some suit-
able l yields Walk(H, ι0, this.outl.f

′′′
.f
′′
) =

Encl(H(ι′′)), but then there is an ι′′′ such that
Walk(H, ι0, this.outl.f

′′′
) = Encl(H(ι′′′)), which

from (24) via (A-Otype) shows that valm =
ι′′′ and in particular valm 6= null. This
and (1) (2) (24) (26) with Lemma 21 shows
that Walk(H, ι′′′, this.f

′′
) = Encl(H(ι′′)). Since

H′ is compatible with H this and Lemma 16
yields Walk(H′, ι′′′, this.f

′′
) = Encl(H′(ι′′)) and

using H′(ι′)(fm) = ι′′′ we can construct
27:Walk(H′, ι′, this.fm.f

′′
) = Encl(H′(ι′′)). To

conclude, (27) is the first clause from the right
hand side of the member related implication, and
the other clause (about the existence of a mixin
ending in C′′) is an easy consequence of (25) as
in the first case of this proof.

2

Finally we reach the preservation theorem, which es-
sentially states that evaluation of an expression with
a given type leads to a result which also has that type
or it raises a NullErr, and the receiver will preserve
its type, and the heap will remain well-formed.

Proof of Theorem 1: By induction in the structure of
the derivation of the evaluation judgment. We start
by assuming the left hand side of the implication and
then show that the right hand side holds. For easy
reference we number the parts as follows: 1:CT OK,
2:H OK, 3:p ` e : t, 4:H, ι ` ι . 〈p〉, and 5:e,H, ι ;

r, H′. The task is then to show ?1:H′ OK, and either
?2a:H′, ι ` val.t where r = val, or ?2b:r = NullErr. This
is sufficient because by Lemma 20 and Corollary 15,
(2), (4), (5), and H′ OK ensure H′, ι ` ι . 〈p〉.
Case (R1,R2): Trivial.

Case (R3): The usage of (R3) implies that e =
path, r = val, H′ = H, t = u, and 6:Walk(H, ι, path) =
val. In proving (3), p ` path : u, we must have used
(T3), which implies 7:W(〈p〉, path) = u. Using (1)
(2) (4) (6) (7) with Lemma 23 yields H, ι ` val . u,
which is (?2a). Since H = H′, the remaining result
(?1) is trivial, which finishes the case.

Case (R4): From the evaluation we get
6:path,H, ι ; ι′, H and 7:H(ι′)(v) = val, and from the
typing, 8:p ` path : u and 9:W(u,DclType(u, v)) = s.
The induction hypothesis applied to (1) (2) (8) (4)
(6) yields 10:H, ι ` ι′ . u. Using (1) (2) (10) (9) (7)
with Lemma 24 yields 11:H, ι ` val . s. Since (?1) is
just (2) and (11) is (?2a), this concludes the case.

Case (R5): The evaluation yields 6:path,H, ι ;

ι′, H, 7:e,H, ι ; val,H′, 8:H′(ι′)(v) 6= ⊥, and 9:H′′ =
H′[ι′ 7→ H′(ι′)[v 7→ val]], From the typing judg-
ment, (T5), we get 10:p ` path.v : s, 11:p ` e : t,
and 12:C(t) <: s. Moreover, (10) via (T4) yields
13:p ` path : u and 14:W(u,DclType(u, v)) = s. Ap-
plying the induction hypothesis on (1) (2) (13) (4)
(6) yields 15:H, ι ` ι′ . u. Applying the induction hy-
pothesis on (1) (2) (11) (4) (7) yields 16:H′ OK and
17:H′, ι ` val . t. Now use (7) with Corollary 15 to
conclude that H′ is compatible with H, and use (1) (2)
(16) (15) with Lemma 20 to get 18:H′, ι ` ι′ .u. Next,
note that M(t) 6= ⊥ because t was obtained from a
typing judgment and then use (1) (16) (18) (17) (12)
(14) (9) with Lemma 25 to conclude 19:H′′ OK, which
is (?1) with the renaming required for this case. Fi-
nally, note that H′′ is compatible with H′ because the
only difference between them is the value of one vari-
able, and then use (1) (16) (19) (17) with Lemma 20
to get H′′, ι ` val . t, which is (?2a).

Case (R6): The evaluation new path.C(e), H, ι ;

val,H′′′ and the typing p ` new path.C(e) : s0 to-
gether yield the following:

• 6:path,H, ι ; ι′, H

• 7:ei, Hi, ι ; vali, Hi+1, for i ∈ {1...n}
• 8:p = Assemble(Mix (H′, ι′),C)

• 9:Members(p) = T f, T
′
v

• 10:|f| = n

• 11:ι′′ new in H′

• 12:Constr(pc) = T0 C(T f) {e′; }
• 13:H′′ = H′[ι′′ 7→ [[ ι′ ‖ C ‖ f : val v : null ]]]

• 14:e′, H′′, ι′′ ; val, H′′′
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• 15:p ` path : u

• 16:p′c ∈M(u.C)

• 17:p ` e : t

• 19:Constr(p′c) = T0 C(T f)...

• 20i: si =





W(u′, this.Q)
if Ti = this.fj .Q and tj = u′

W(u, this.Q)
if Ti = this.out.Q

for i ∈ {0...n}
• 21:C(ti) <: si, for i ∈ {1...n}

where n = |e|, pc = p|p|, H1 = H, and H′ = Hn+1.
The choice of symbols above implies that the C

constructors found at the end of p in the dynamic
case and at an arbitrary location of p′ in the static
case must have the same signature. It is easy to see
that the last element of Assemble(p, C), if defined,
will be on the form p′.C. Hence, by (1), M(pc) and
M(p′c) must have a mixin p′′.C in common, and this
together with (WF3) ensures that they will have the
same constructor signature.

Applying the induction hypothesis to (1) (2) (15)
(4) (6) we obtain 22:H, ι ` ι′ . u. For each i ∈ {1...n}
we obtain the following implication by the induction
hypothesis:




(1)
Hi OK
(17i)
Hi, ι ` ι . 〈p〉
(7i)



⇒




23i:Hi+1 OK
24i:Hi+1, ι ` ι . 〈p〉
25i:Hi+1, ι ` vali . ti




We can establish the left hand side of this implication
for all i ∈ {1...n}, which shows that the right hand
side holds, i.e., that (23i)...(25i) hold. For i = 1 we
use (2) (4). For i > 1 we use the result from the
implication with i − 1. In particular, 26:H′ OK and
27:H′, ι ` ι . 〈p〉.

Using Corollary 15 and Lemma 20 as usual we get
28:H′, ι ` ι′.u from (22) etc., and 29:H′, ι ` val.t from
(25i) with i ∈ {1...n}, etc. Now use (1) (26) (28) (29)
(8) (9) (10) (11) (12) (20) (21) (13) with Lemma 26
to conclude that 30:H′′ OK. Moreover, (13) directly
shows that 31:Encl(H′′(ι′′)) = ι′.

We need to obtain results associated with (14). At
this point it is crucial that we use induction in the
shape of the evaluation derivation and not the typ-
ing derivation, because there is no typing judgment
corresponding to (14). However, we can rely on pro-
gram well-formedness to obtain such a typing judg-
ment, and then use the induction hypothesis on (14)
together with that typing. As (8) (12) (13) shows,
e′ is the expression returned from the constructor in
the last (most specific) mixin of ι′′, namely p|p|; to
avoid repeating this unwieldy expression many times
we let p′′ = p|p|. By (1) there exists a type t′ such
that 32:p′′ ` e′ : t′ and 33:C(t′) <:W(〈p′′〉,T0). Since
p′′ is one of the mixins in ι′′ we can use (1) (30) with
Lemma 19 to get 34:H′′, ι′′ ` ι′′ . 〈p′′〉. Finally we use
the induction hypothesis on (1) (30) (32) (34) (14)
which yields 35:H′′′ OK and 36:H′′′, ι′′ ` val.t′. Result
(35) is obviously useful because it is (?1). Result (36)
is not so helpful because we need to prove that val has
a certain type as seen from ι, but (36) is concerned
with the type of val as seen from ι′′. Nevertheless, it
is used below in a more indirect manner.

The last task is to show that the final result, val,
agrees with s0. If val = null then agreement is
trivial and we are done. Otherwise there is a ιv
such that val = ιv. From (1) (35) (36) (33) with
Lemma 18.6 and notingM(t′) 6= ⊥ we get 37:H′′′, ι′′ `
ιv . W(〈p′′〉, T0). By the grammar, T0 = path′.C′

for some path′ and C′, so W(〈p′′〉,T0) is a class type
with class C′, i.e. 38:W(〈p′′〉,T0) = u0.C

′ for some
object type u0, and since we must have used (A-
Ctype) in the proof of (37) we get 39:∃p′′′. p′′′.C′ ∈
Mix (H′′′, ιv).

To finish the proof we need to consider two cases
for the shape of the path in the declared return type
of the constructor, path′:

• path′ = this.outk+1.f
′′
: It is easy to

see that all depths are non-negative and
40:E(u0.C

′) = u0 = W(〈p′′〉, path′), so
41:Depths(u0.C

′) = 1 + Depths(u0) > 0.
Now use (1) (35) (37) (41) (40) with
Lemma 18.3 to get 42:H′′′, ι′′ ` Encl(H′′′(ιv)) .
W(〈p′′〉, path′). Let 43:p′′ = C1...Cm. Using
(1) (35) (34+Corollary 15 and Lemma 20) (43)
with Lemma 18.1 we get 44:Depth(H′′′, ι′′) =

34



Depths(〈p′′〉) = m. Since W(〈p′′〉, path′) =
〈C1...Cm−k−1〉.f′′ we get from (42) (44) via (A-
Otype) that 45:j = Depth(H′′′, ι′′)−(m−k−1) =
k + 1 and 46:Walk(H′′′, ι′′, this.outk+1.f

′′
) =

Encl(H′′′(ιv)). Using (31) and Lemma 14 we get
47:Encl(H′′′(ι′′)) = ι′, and then using (46) (47)
with Lemma 17, 48:Walk(H′′′, ι′, this.outk.f

′′
) =

Encl(H′′′(ιv)). Based on T0 = this.outk+1.f
′′
.C′,

(20) yields 49:s0 = W(u, this.outk.f
′′
.C′). From

(28) etc. with Corollary 15 and Lemma 20 we
get 50:H′′′, ι ` ι′ . u, and from (49) we get
51:E(s0) = W(u, this.outk.f

′′
). Using (1) (36)

(50) (48) (51) with Lemma 23 yields 52:H′′′, ι `
Encl(H′′′(ιv)).E(s0). From (49) we conclude that
Clss(s0) = C′. Finally, we use (39) (52) with (A-
Ctype) to conclude that 53:H′′′, ι ` ιv .s0, which
is (?2a).

• path′ = this.fj .f
′′

and tj = u′: Us-
ing W(〈p′′〉, path′.C′) = 〈p′′〉.fj .f ′′.C′ and
(37) we get 47:H′′′, ι′′ ` ιv . 〈p′′〉.fj .f

′′
.C′,

which by (A-Ctype) yields 48:H′′′, ι′′ `
Encl(H′′′(ιv)) . 〈p′′〉.fj .f

′′
. From (1) (35)

(34 + Corollary 15 and Lemma 20) via
Lemma 18.1 we get 50:Depth(H′′′, ι′′) =
Depths(〈p′′〉) = |p′′|. Now, (48) (50) by (A-
Otype) yields 51:j′ = Depth(H′′′, ι′′) − |p′′| = 0
and 52:Walk(H′′′, ι′′, this.fj .f

′′
) = Encl(H′′′(ιv)).

By the definition of Walk this im-
plies 53:Walk(H′′′, ι′′, this.fj) = ιj where
H′′′(ι′′)(fj) = ιj . From (13) and using
Lemma 14 we get ιj = valj . But then
54:Walk(H′′′, ιj , this.f

′′
) = Encl(H′′′(ιv)).

Knowing more about tj and valj , and using
Corollary 15 and Lemma 20 as usual we
deduce from (25j) that 55:H′′′, ι ` ιj . u′.
From (20), using our knowlegde about path′

and hence T0, we now get s0 = W(u′, f
′′
.C′),

hence 56:E(s0) = W(u′, f
′′
). Finally, (1)

(35) (55) (54) (56) with Lemma 23 yields
57:H′′′, ι ` Encl(H′′′(ιv)) . E(s0), and then (39)
(57) with (A-Ctype) yields 58:H′′′, ι ` ιv . s0,
which is (?2a).

By inspection of (20) we can see that no other cases
than these two are possible for path′, which again
shows that (?2a) holds in all cases, and thus the proof
of this case is hereby complete.

Case (Er1): The error rules are easy to handle, so
we do not cover them in full detail. This rule is of
course a shorthand for three rules, one for each con-
clusion. However, they may be handled identically:
Since the heap is unchanged the required H OK is im-
mediate, and so is H, ι ` ι . 〈p〉. Finally, r = NullErr
satisfies the disjunction.

Case (Er2): Consider the first of the two rules.
From p ` path.v : t we conclude by (T4) that
p ` path : u and W(u,DclType(u, v)) = t 6= ⊥. Ap-
plying the induction hypothesis on CT OK, H OK,
p ` path : u, H, ι ` ι .〈p〉, and path,H, ι ; ι′, H yields
H, ι ` ι′ . u. But then by Lemma 22 H(ι′)(v) 6= ⊥.
This is a contradiction, so it cannot be the case that
the evaluation derivation is based on this rule, so we
need not show that the right hand side of the sound-
ness implication holds. The same proof works for the
second rule.

Case (Er3): By (T6) we get 6:p ` path : u
and 7:p ` e : t. Apply the induction hypothe-
sis to (1) (2) (6) (4) and path, H, ι ; ι′,H to get
8:H, ι ` ι′ . u. Next, (1) (2) (8) with Lemma 18.4
yields 9:Mix (H, ι′) ⊇ M(u). From (T6) we have
Assemble(u, C) = M(u.C) 6= ⊥, so from (9) with
Lemma 4 we get Assemble(Mix (H, ι′), C) 6= ⊥. This
is a contradiction, so so it cannot be the case that
the evaluation derivation is based on this rule.

Case (Er4): This case is when the constructor is
given an incorrect number of arguments. We already
argued at the beginning of the case (R6) that this
cannot occur.

Case (ErP1...ErP7): These error propagation
cases just ensure that an error in a subtree of an
evaluation is always propagated as the result of the
entire evaluation, and the induction hypothesis is ap-
plied to conclude that only NullErr can be the result,
never TypeErr.

Case (ErH1...ErH4): This rule will only be used
in a context where p ` path : u, and by the induction
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hypothesis, W(u,DclType(u, v)) = t 6= ⊥. Now we
can use Lemma 23 on each prefix of the path to ensure
that agreement exists at each step, and Lemma 18.1
to conclude that the statically predicted number of
enclosing objects exists, such that evaluation of each
out step will succeed, and finally Lemma 22 to show
that for each field lookup the field will be defined,
although possibly null, and hence the returned result
may be a value or NullErr, but never TypeErr.

2

Lemma 27 (Coverage of path evaluation)
For all H, path and ι, Walk(H, ι, path) ∈
Value ∪ {TypeErr, NullErr}.
Proof: We prove the lemma by induction on the
structure of path.

Case (this): Definition of Walk .

Case (spine.out): First, note that for spines, Walk
never returns null or NullErr:

Walk(H, ι, spine) ∈ Address ∪ {TypeErr}
By the induction hypothesis, Walk(H, ι, spine) may
be TypeErr or ι′. (ErH3) handles TypeErr. If it is ι′,
then H(ι′) may be ⊥ or an object. Case 6 in definition
of Walk handles ⊥. Case 2 in definition of Walk
handles objects.

Case (path.f): By the induction hypothesis,
Walk(H, ι, path) may be null, Err, or ι′. Case 4 in
definition of Walk handles null. (ErH3) handles Err.
If it is ι′, then H(ι′)(f) may be ⊥ or val. Case 5 in
definition of Walk handles ⊥. Case 3 in definition of
Walk handles val. 2

Proof of Lemma 1: By induction on n with cases on
the structure of e. The base case for the induction,
n = 0 is trivial by rule (Kill).

Case (null): Trivial by rule (T1).

Case (e ; e): Immediate from induction hypothesis,
and rules (R2) and (ErP5).

Case (path): Follows from Lemma 27.

Case (path.v ): By Lemma 27, evaluation of path
can be null, Err, or ι′. (Er1) handles null. (ErP2)

handles Err. If it is ι′ then H(ι′)(v) may be ⊥ or val.
(Er2) handles ⊥. (R4) handles val.

Case (path.v = e): Includes the steps from path.v,
except the last step where path evaluates to val. Then
e can evaluate to Err or val. (ErP3) handles Err. (R5)
handles val.

Case (new path.C(e)): Includes the steps from
path.v, except the last step where path evaluates
to val. Then ei may evaluate to Err or val.
(ErP6) handles Err. |e| 6= |f| is handled by (Er4).
Assemble(Mix (H, ι′), C) = ⊥ is handled by (Er3). Fi-
nally, e′ may evaluate to Err or val. (ErP7) handles
Err. (R6) handles val. 2

A.5 Error handling

The rules dealing with error situations are shown in
Figure 13.
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path, H, ι ; null, H
path.v, H, ι ; NullErr,H

path.v = e,H, ι ; NullErr, H
new path.C(e),H, ι ; NullErr, H

(Er1)

path,H, ι ; ι′, H H(ι′)(v) = ⊥
path.v,H, ι ; TypeErr, H

path.v = e, H, ι ; TypeErr,H

(Er2)

path, H, ι ; ι′, H
Assemble(Mix (H, ι′), C) = ⊥

new path.C(e), H, ι ; TypeErr,H
(Er3)

path, H, ι ; ι′, H
Assemble(Mix (H, ι′), C) = p
Members(p) = T f, |e| 6= |f|
new path.C(e), H, ι ; TypeErr,H

(Er4)

Walk(H, ι, spine.out) = TypeErr
if Walk(H, ι, spine) = ιroot

(ErH1)

Walk(H, ι, path.f) = NullErr
if Walk(H, ι, path) = null (ErH2)

Walk(H, ι, path.f) = TypeErr
if H(Walk(H, ι, path))(f) = ⊥ (ErH3)

Walk(H, ι, q.q) = Err
if Walk(H, ι, q) = Err

(ErH4)

Walk(H, ι, path) = Err

path, H, ι ; Err, H
(ErP1)

path, H, ι ; Err, H

path.v, H, ι ; Err,H
path.v = e, H, ι ; Err, H

new path.C(e),H, ι ; Err, H

(ErP2)

path, H, ι ; ι′,H e,H, ι ; Err, H′

path.v = e, H, ι ; Err,H′
(ErP3)

e, H, ι ; Err,H′

e; e′, H, ι ; Err, H′
(ErP4)

e,H, ι ; val,H′ e′, H′, ι ; Err,H′′

e; e′,H, ι ; Err, H′′
(ErP5)

1 ≤ j ≤ |e| path, H1, ι ; ι′, H1

ei, Hi, ι ; vali,Hi+1 for i = 1...j − 1
ej , Hj , ι ; Err,Hj

new path.C(e),H1, ι ; Err, Hj

(ErP6)

path, H, ι ; ι′, H H = H1

ei, Hi, ι ; vali,Hi+1 for i ∈ {1...|e|}
H′ = H|e|+1 p = Assemble(Mix (H′, ι′),C)
Members(p) = T f, T

′
v |f| = |val|

ι′′ is new in H′ Constr(p|p|) = T C( ){e′; }
H′′ = H′[ ι′′ 7→ [[ ι′ ‖ C ‖ f : val v : null ]] ]

e′, H′′, ι′′ ; Err, H′′′

new path.C(e),H, ι ; Err, H′′′

(ErP7)

Figure 13: Error handling
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