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Abstract

In mobile and ubiquitous computing the location of de-
vices is often important both for the behavior of the appli-
cations and for communication and other middleware func-
tionality. Mobility prediction enables proactively dealing
with changes in location dependent functionality. In this
project Bayesian networks’ ability to reason on the basis of
incomplete or inaccurate information is powering mobility
prediction based on a map of the street grid and the cur-
rent location and direction of the vehicle. We found that it
is feasible to divide information of a map into smaller parts
and generate a Bayesian network for each of these in order
to make mobility prediction based on localized information.
This makes the information stored in the Bayesian networks
more manageable in size, which is important for resource
constrained devices. Common sense knowledge of how ve-
hicle moves is feeded into the networks and enables them
to make a good prediction even when no information of the
vehicles mobility history is used. Experiments on real world
data show that in an area statically divided into hexagonal
cells of 200m in diameter, we get 80.54% accuracy when
using localized Bayesian networks to predict which cell a
vehicle enters next.

1 Introduction

The future location of mobile devices is often of interest
in a ubiquitous computing environment. It may, for exam-
ple, be used on various levels in a communication protocol
for mobile ad-hoc networks. Such networks consist of mo-
bile nodes that communicate without using centralized ac-
cess points or fixed infrastructure. Nodes move in to and
out of range of other nodes as communication ranges are
limited - especially for resource-constrained devices. The
network will, therefore, have a dynamically changing topol-
ogy. Mobility prediction lets topology changes be foreseen.
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This allows choice of more stable routes in the routing pro-
tocol. Furthermore, mobility prediction enables proactive
route discovery and resource reservation, which may be a
step towards real-time message delivery. Finally, prediction
of the future location of nodes may motivate suspicion of
link failure and may consequently speed up the detection of
link failure and network divisions.

On a higher level, applications using context informa-
tion will often benefit from a prediction of location changes
as location is a basic context information and other types
of context often depend on the location. When a location
change is anticipated, services that depend on the current
location may be closed down gracefully, or possibly down-
loaded for local use.

Previously, mobility prediction has been based upon a
variety of artificial reasoning about the mobility history of
the mobile device, for example neural networks [8] and
compression techniques [2, 11]. Bayesian techniques have
been used in [9, 10, 1]. Other approaches use recent loca-
tion and velocity data in combination with a mobility model
such as linear movements, random way point, or Gauss-
Markov [5, 6]. To our knowledge no previous model, that
makes predictions on a fine grained scale in an outdoor set-
ting, have been tested on a larger amount of real world data.
Furthermore, none of the projects using Bayesian tech-
niques incorporate a commonsense knowledge of move-
ments that enables the technique to achieve good predic-
tions without adapting to the history of the users.

In the present study, an outdoor area of around 20 times
30 kilometers is divided statically into hexagonal cells of
200m in diameter and we predict which cell a vehicle is
going to enter next. The prediction is based on the output
of Bayesian networks. The Bayesian networks use input
of the current location and direction of the vehicle, infor-
mation about possible routes that is extracted from a street
map, and common sense knowledge of how vehicles move
on streets. In order to get a fast prediction the complex-
ity of each network is lessened by using several networks
each covering a separate physical area. The performance of
the networks is tested on real world data from 20 different



cars driving for between 10 and 54 days in the Danish city
Aalborg. The networks are not adapted by feeding the mo-
bility history of the vehicles into the networks. Therefore,
the prediction accuracy optained in the experiments pictures
mobility prediction when the vehicle diverges from its ha-
bitual paths.

The next section presents related work. Section 3 then
introduces Bayesian networks and argues for their use in
mobility prediction. Thereafter, Section 4 explains the
structure of the Bayesian networks we have used for mobil-
ity prediction. A short presentation of the implementation
techniques follows in Section 5, and in in Section 6 the ex-
periments and their results are outlined. Finally we outline
future work, and close with a conclusion.

2 Related work

A dynamic Bayesian network was used for indoor mobil-
ity prediction in [10]. The prediction was tested in an office
environment with 15 rooms on mobility traces of 4 users in
two periods of respectively 2 and 5 weeks. A symbolic loca-
tion model with rooms constituting locations was used. The
potential uncertainty of which room the user is placed in is
not discussed in the paper, and probably the uncertainty is
very small compared to the uncertainty faced when mapping
a GPS position to a street section. The Bayesian network
used in the project is correspondingly simple; the 15 loca-
tions are easily represented in one network, and the current
location is simply represented in one node. They compare
the prediction of next room based on current room, to pre-
dictions where a mobility history of up to 5 rooms is used
and predictions where the time of day and the weekday are
included in the network. Interestingly, this extra informa-
tion does not unequivocally improve the predictions. Their
experiments show that it gives better results to use trained
networks. The prediction accuracy varies between 35 and
90% in the various setups. No prediction is made the first
time a specific combination of inputs appears, which is the
opposite approach of ours: we set up common sense rules
for movement predictions and did not adapt the networks to
the mobility history of the vehicles.

In [8] a project where mobility prediction is used for
home automation is presented. A neural network predicts
which rooms are going to be occupied based on the entire
history of location changes and of noise, door and window
status. It is not discussed in the paper how the pattern de-
tection in the neural network would scale to a large outdoor
environment with a huge number of locations, nor is it clear
which kind of secondary input, such as noise, would be in-
teresting in the outdoor setting.

Lempel-Ziv compression is used for indoor mobility pre-
diction in [11] and for outdoor mobility prediction in [2]. In
the indoor case rooms and corridors or other doors between

rooms are represented as symbols, and in the outdoor case
cells in a cellular network are represented as symbols. The
compression technique builds a trie (a multi-tree) of the mo-
bility history, which is then used for predictions according
to the number of times a sequence of symbols was found
in the past. In the outdoor prediction case time is added as
another factor and a symbol is repeated when longer time is
spent in the corresponding location. The problem in scaling
such an approach is that the amount of data needed in order
get reliable predictions grows with the number of symbols
in the dictionary.

In [9] a Bayesian model, implemented as a particle fil-
ter, was used for mobility prediction in an outdoor scenario.
Their primary goal was to infer high-level behaviour, de-
fined as changes in transportation mode, from the location
information, but the accuracy of prediction of future loca-
tion is also assessed. The project resembles ours in that out-
door mobility is predicted in a larger area. The prediction is
done using a filtering technique which means the movem-
nets are described as a mathematical function, where uncer-
tainty is handled by using random variables. The choice of
an approximative particle filter over a Kalman filter means
the estimated posteriors over the state space are not re-
stricted to a unimodal distribution. It might also make it
easier to handle the large number of states of the variables.
To evaluate the prediction they present the prediction accu-
racy in terms of prediction length in number of city blocks.
Usually there are only one street surrounding a city block,
sometimes with a smaller street or two crossing through it.
In our scenario the vehicle will cross 0 to 5 junctions be-
fore entering the next cell. In their adapted model the pre-
diction descends from 100% to 52% for prediction 1 to 5
city blocks ahead. But because of the difference in unit of
measurement it is difficult to compare that to our results.
They do not state the location prediction accuracy for the
unadopted model. The amount of test data is another dif-
ference between the projects: They evaluate the model on a
dataset chosen from a log of one person’s movements. The
29 episodes that cover 12 hours of log are chosen such that
they contain a change in transportation mode, and in the
figure visualizing the training data they seem simple.

Markov models are used in [1] to predict future loca-
tions. A method for automatic identification of important,
meaningful locations is presented. These locations are en-
tered in a Markov model, which may be used for predic-
tion. In this project a plethora of GPS positions spread over
a large area are reduced to a handfull or two of locations.
This makes the number of locations entered in the predic-
tive model manageable in size. The possible applications
using prediction of transitions between important locations
are different from the applications that would use prediction
of next cell. It would be interesting to combine the two ap-
proaches to a predictive model that uses both fine grained
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and coarse grained prediction.
In for example [5, 6] mobility patterns are described us-

ing a mobility model, and the use of mobility prediction for
different uses is analysed. The predictions are then tested
against simulations, where the mobile entity moves accord-
ing to the used mobility model. It is not clear how these
mobility models relate to real movement patterns.

3 Motivation

Mobility prediction involves estimating an unknown
given some observations. We have prior knowledge about
how the unknown is connected to the observable phenom-
ena. But both the observations and the connections are un-
certain. We must, therefore, turn to probability theory in
order to reason about the future location of mobile devices.
It enables us to work with statements such as “if the device
is on roadY the probability of getting a GPS reading in
areaX is 0.7” or “if the device is on roadY , the probability
of getting a direction reading of north is 0.2”. Bayes’ rule:
P (Y |X) = P (X|Y )P (Y )/P (X) gives us the means of
reasoning in the opposite direction of the known posterior
probabilities. This enables us to answer questions such as:
“what is the probability of being on roadY if we get a GPS
reading in areaX andthe device is going north”.

Bayesian networks1 is a formalization of the human way
of reasoning using propositional logic in combination with
uncertain events. The definition of a Bayesian network
given by Jensen [4] is: A Bayesian network consists of the
following:

• A set ofvariablesand a set ofdirected edgesbetween
variables.

• Each variable has a finite set of mutually exclusive
states.

• The variables together with the directed edges form a
directed acyclic graph. (A directed graph isacyclic if
there is no directed pathA1 → . . . → An s.t. A1 =
An.)

• To each variableA with parentsB1, . . . , Bn, there is
attached the potential tableP (A|B1, . . . , Bn).

Note that ifA has no parents, then the table reduces to un-
conditional probabilitiesP (A).

In Bayesian networks the assertion of independence of
variables is expressed in the topology of the network: A
variable should be independent of its predecessors given its
parents. Variable independence allows the full joint distri-
bution, which would otherwise be used to find the prob-
ability of a variable’s value, to be broken up into much

1Bayesian networks are also called belief networks, probabilistic net-
works, causal networks, and knowledge maps

smaller pieces. When comparing the number of probabili-
ties needed for a full joint distribution table and the number
needed for a Bayesian network with the same variables, we
often see an exponential reduction.

4 Location Prediction Design

The prediction model is envisioned to be used for out-
door applications for vehicles. Therefore, no natural bound-
aries to the area exist, with the exception of the boundaries
of the island or continent, where no car ferries cross. The
solution is to let each vehicle use a Bayesian network for
each cell; the prediction will be based on the network for
the cell where the vehicle is currently located. Thus, the
current cell as an entity is not represented in the network.
In this project hexagonal cells with a diameter of 200m are
used.

The actual location of the vehicle may be different from
the measured location. This means there is some uncer-
tainty regarding in which cell the vehicle is currently lo-
cated, at least when it is close to a border between cells.
Therefore, which network to choose for prediction is also
to some extend uncertain. This may be countered by mak-
ing the area the Bayesian network covers larger than a cell,
corresponding to a satisfying amount of errors of location
measurements. For now the mobility prediction is based on
the cell the logged GPS coordinate is placed in, even though
this might give some problems with determining on which
street the vehicle is placed.

A minimal Bayesian network must reflect the causal
structure of the problem it models [4], which is a good rea-
son to strive to represent causal relations between variables.
This is done by making the cause variable a parent of the
effect variable, and is visually represented as an arrow from
the cause variable to the effect variable. Often children are
placed below parents. We reason about which cell is en-
tered in the future. As causal relations proceed in time, the
variable we want to determine is in the bottom of the net-
work. This is contrary to the usual case, where the Bayesian
network supports belief in a hypothesis that causes certain
observable variables to be in certain states.

A Bayesian network for prediction of the next cell based
on current location and direction and on the structure of the
street network is presented in Figure 1. Below we will ar-
gue for the structure of the network and explain how the
probability tables of the nodes are produced.

The two variablesLane and Street Sectionare closely
connected. Each state ofStreet Sectionrepresents a straight
section of the street, its ends are either intersections or
points inserted to approximate curved streets by straight
street sections. The possible states of the variable are ex-
tracted from the digital map. A state ofLanerepresents one
direction of a state ofStreet Section. Each state ofLane
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Figure 1. Bayesian network for mobility pre-
diction

may cover several lanes as all lanes in the same direction on
larger streets are covered by one state. The potential table
of Laneis very simple: every state of the Lane variable has
the same probability. The potential table ofStreet Section
states the probability of being on a certain street section,
given the lane. Given the lane we know the street section,
so for each of the lane states, only one street section state
has a non-zero entry. This is also an argument for thatStreet
Sectionis independent of its siblings given its parent.

The child of Street Sectionis calledGPS Location. It
represents the observations of the location and supports the
belief about which street section the vehicle is located on.
Location is, when defined as an x and a y coordinate, a con-
tinuous variable. When the position is based on GPS, the
accuracy of the GPS device gives a possible interval but this
interval is still much too fine-grained to be represented di-
rectly in the network. Thus we need to define intervals of
GPS coordinates. They should be as big as possible in or-
der to make the probability table as small as possible, and
it should be easy to determine whether a GPS position falls
inside the area. The approach we have chosen is to define
circles around junctions and rectangles around street sec-
tions. Many GPS receivers have an accuracy of for example
5 meters, but with the shading buildings and reflected sig-
nals common in an urban setting, that kind of accuracy is
not obtained on actual measurements. To take the measure-
ment inaccuracies into account we have defined two zones
of 10 and 40 meters around street sections and of 15 and
57 meters around junctions, in the following calledprimary
zones. The longer distances to junctions are chosen because
there is some uncertainty in the map; the junctions are not
necessarily exactly at the position stated in the map. A GPS
reading inside a circle is interpreted as there being an equal
chance of the vehicle being on either of the streets of the
junction. We would like for a circle around a junction to
cover the overlap between the rectangles around the street
sections that are part of the junction. When the distances
are chosen as stated, the overlaps between primary zones

around street sections of the junction are covered by the cir-
cle around the junction, when the angle between the street
sections is 90o or more. The primary zones of different
street sections and junctions often overlap. In order to get
mutually exclusive states, as is required for Bayesian net-
works [4], an overlap between two or more primary zones
will define yet another zone. The exception to this is that
a small distance zone around a junction takes precedence
over a small distance zone of a street section that is part of
the junction. When the vehicle is placed in the overlap of
two or more primary zones, it should be understood as there
being a high or medium probability of it being on either of
the corresponding street sections.

The potential table ofGPS Locationstates the probabili-
ties of getting a GPS reading in a zone given that the vehicle
is on a certain street section. In an ad-hoc fashion the prob-
ability of being inside a small primary zone is set to 0.7
(the GPS reading is less that 10 or 15 meters away from
the actual location), the probability of being inside a large
primary zone is set to 0.25 (an error of between 10 and 40
meters, or between 15 and 57), and the last 0.05 accounts for
when the GPS reading is more than 40 or 57 meters away
from the actual location. When the primary zones overlap
with each other the sub zones thus created get a probability
corresponding to their area, but such that, for example, the
summed probabilities of all zones inside the small primary
zone equals 0.7. The area of a zone is not calculated ac-
curately, but on the basis of a count of how many “pixels”
with 1 meter distance the zone contains.

Driving in a lane will cause the car to move in a cer-
tain direction. The variableDirection is therefore a child
of Lane. The states ofDirection are the eight major direc-
tions: N, S, E, W, NE, NW, SE and SW. This is a coarse
grained division of direction into states, but given the lane
there is actually only two directions that are possible for the
vehicle to move in: up and down the street. To get a fast
change in direction, when the vehicle changes its direction
only the last three GPS position readings are used to deter-
mine the direction. This means that there are much uncer-
tainty in the direction input because the GPS receiver uses
its internal direction calculations to correct the GPS posi-
tion before it outputs the GPS position. This means that the
log of GPS positions tend to make soft turns rater that sharp
ones, especially when the reception conditions are not ideal.
Therefore it will not reflect the information available to let
the direction input influence the belief of which lane we are
placed on in a critical manner.

The potential table ofDirection again reflects the large
amount of uncertainty in the direction readings. If the di-
rection matches exactly with one of the major directions,
this direction has a probability of 0.5, the neighboring di-
rections a probability of 0.2 and the directions perpendicu-
lar to the calculated a probability of 0.05. If the direction is
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between mayor directions the two closest directions have a
probability of 0.4 and the following a probability of 0.1.

The variableNext Cellis also a child ofLane. Its states
are the six adjacent cells of the current cell. Being in a
certain lane will sometimes cause the vehicle to enter a new
cell with a high probability. When there is a junction ahead,
there may be several possibilities and the probabilities are
based on common sense knowledge about how cars move:
that they drive on a path in the street network, that they tend
to choose larger roads with higher speed limits, that they
move purposefully (most of the time) and thus do not often
turn around and go in the opposite direction.

To make the potential table all possible routes starting in
the given lane and leaving the cell without returning to an
earlier point are generated. To this purpose the digital map
is represented as a graph. Junctions correspond to nodes and
an edge denotes a street section between junctions. A stan-
dard search algorithm is then used to find possible routes
on the map. The probability of each route is calculated as
explained below, the probability of the most probable route
to a certain end lane is chosen, and the probabilities of go-
ing to any of the lanes entering each of the adjacent cells
is summed. To get the probability of a route the follow-
ing rules for attaching a probability of choosing each of the
possibile lanes in a junction are observed:

• With weight 0.15: The probability of taking a certain
lane in a junction is linearly dependent on the angle be-
tween the current lane and the next. An angle of 0o has
a probability of 1 and an angle of 180o a probability of
0.

• With weight 0.35: The probability of taking a certain
lane is linearly dependent on the angle between the
next lane and the general direction of the path. The
general direction of the path is calculated from the fu-
ture route. To simplify the feedback into the network
the history of current movements is not taken into ac-
count.

• With a weight of 0.5: Speed limits of the possible lanes
are compared. Streets with a speed limit of 30 km/hour
is given a weight of 10 and else the weight is given as
speed limit minus 20. The probability is found by a
normalizing the numbers thus obtained.

As is obvious there are many ad hoc choices lying un-
derneath these probabilities. Another possibility would be
to give all possible streets of a junction the same probabil-
ity. This would waive the idea of using the expectation of
purposefulness to predict the future movements. A better
support for the probabilities could be obtained by analyzing
traces of moving vehicles. Even if the probabilities do not
exactly mirror the standard behaviour of drivers, they result
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Figure 2. Map detail with data of one car

in differences in belief of which cell is entered next, which
follows common sense knowledge of how people drive.

5 Implementation

A program that parses a digital map of Aalborg city and
generates the the Bayesian networks for mobility prediction
according to the principles explained above has been im-
plemented using Java. The Bayesian network tool Netica is
used for implementation and inference of the networks. It
compiles Bayesian networks into a junction tree of cliques
for probabilistic reasoning.

6 Experiments

The test data consists of logs of GPS data collected by
20 cars driving for between 10 and 54 days in the city of
Aalborg, Denmark [3]. A detail of the map and data from
one car is shown in Figure 2. The data contains location
and velocity data collected at one second intervals. This
amounts to each car giving between 14291 and 264721 en-
tries, corresponding to between 4 and 73 hours of driving,
with an averagte 26 hours. The data has been made anony-
mous by removing all data that falls within a 2km∗ 2km
square, where the center of the square is less than 1km from
the residence of the driver(s). The data set is divided into
portions that have no missing GPS entries for more than 5
seconds, and all of the data is used.

The data of the digital street map was provided by Cowi.
The data was created some time before the test data was
collected. This means there will be some discrepancies be-
tween the map data and the street network the cars actually
traveled on as street networks evolve over time. The data
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# junctions # cells # junctions # cells
1 796 11 35
2 481 12 39
3 354 13 26
4 278 14 15
5 215 15 13
6 168 16 2
7 136 17 2
8 113 18 2
9 79 19 2
10 54 20 1

Figure 4. Number of cells with data

contains endpoints for street sections where the endpoints
are inserted either in order to approximate a curved street or
because there is an intersection with another street.

A prediction has been made for each GPS log entry. Of
893,638 predictions 80.54% were correct. In Figure 3 the
mean values for predictions are depicted as a function of the
number of junctions in the cell. When the data is fitted to
a linear function, the result is:f(x) = −0.014 ∗ x + 0.87.
In Fig. 4, the number of cells with predictions is given by
the number of junctions in the cells. As is seen in Fig. 4, the
cars drove through only a limited number of cells with more
than 15 junctions. The large variation in prediction for cells
with many junctions is probably due to this.

The number of residents in Aalborg municipality was
around 160,000 at the time the data was collected. For
larger cities the number of cells with a medium density of
junctions will be larger, but the number of cells with the
highest density will probably not be much larger as these
are centered around the old part of town. Because of the
higher number of cells with a medium number of cells in
larger cities, mobility prediction performance will be some-

what inferior here, while it will be better in smaller towns.

7 Future Work

7.1 Adaptation

The structure of the Bayesian networks are supposedly
the same for all users. But different users will have different
probabilities for example for which lanes (ie. street section
and direction) they use most. The probability of which cell
is entered next, given the lane, is another part of the net-
works where there are differences between users. It is an
interesting point to investigate the effect of using an adap-
tation technique [4] to adapt the networks to different users
by learning from the user history.

For some adaptations it might also be rewarding to
adapt the networks to the mobility history of all vehicles
in the population. In related work both strategies are used,
see [5, 6] and [8]. We plan to test the difference of per-
formance between predictions in a non-adapting network,
a network adapted only to the vehicle which owns the net-
work and a network adapted to data from the whole popula-
tion of vehicles. There is both an information dissemination
issue and a privacy issue in using mobility data from other
vehicles to adapt the Bayesian networks.

7.2 Complex Mobility Patterns

The mobility model presented in this paper models
which cell the car is moving into from the present street
section, using an input of the current direction. It is possi-
ble to base the prediction on more complex movement pat-
terns. If personal habitual driving routes are represented in
the network, the Bayesian network would be able to dis-
tinguish between two or more different routes with one or
more lanes in common. Other factors such as weekday or
the time of the day may also support prediction based on
complex mobility patterns.

7.3 Time of Entering Next Cell

A valuable complement to information about which cell
the vehicle is going to enter iswhenit is going to enter it. A
model of traffic flow, which is widely accepted in the traf-
fic management community [7] might be used for this. The
length of the street interval is equal to the distance that a
single vehicle travels in one time step at free-flow speed. A
street interval could for example be 13.9 meters long, which
corresponds to movement for one second at the speed limit
of 50 km/h which is normal in many urban areas. In the
traffic management community formulas describing traffic
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movementsare researched. Among other things they incor-
porate free-flow speed and congestion factor. Such a for-
mula could be used to estimate the time of entering the next
cell.

8 Conclusion

We wrote a program that from the input of a digital map
generates Bayesian networks for mobility prediction. We
generated Bayesian networks for an area of around 20 times
30 kilometers. The area was divided into hexagonal cells of
200m in diameter, and a Bayesian network was generated
for each of these cells. Prediction of which cell was entered
next was tested on GPS logs from 20 different cars driving
for between 4 and 73 hours; of 893,638 predictions 80.54%
were correct.

The result establishes that mobility prediction may be
based on localized information. This means that the to-
tal area the prediction is made for need not be bounded.
Furthermore, the result confirms the use of statistical tools,
such as Bayesian networks, for mobility prediction, that has
earlier been supported by simulations and small-scale real-
world tests. Finally, common sense knowledge of vehicle
movements was feeded into the network, and the high accu-
racy of predictions supports the possibility of using mobility
prediction even when diverging from one’s habitual paths.
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