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Abstract

This report describes the hierarchical maps used as a central data structure in the Corun-
dum framework. We describe its most prominent features, argue for its usefulness and briefly
describe some of the software prototypes implemented using the technology.

1 Introduction

Palpable computing aims to take pervasive computing to the next level in terms
of usefulness and understandability for end users. Six challenges shape the
notion of palpable computing: invisibility complemented with visibility, scal-
ability complemented with understandability, construction complemented with
de-construction, heterogeneity complemented with coherence, change comple-
mented with stability, and sense-making complemented with user-control.

This report describes the hierarchical maps of the Corundum [Ørb05] frame-
work. Inspired by the Plan 9 OS from Bell Labs [PPD+95a, PPD+95b] and the
Linux /proc file system, the Corundum framework uses a hierarchical map to
support the implementation of palpable components, services and devices. In
particular, the use of the externally accessible hierarchical map supports con-
struction/deconstruction of assemblies of services, and visibility and introspec-
tion of services and applications.

The rest of this report is structured as follows: In Section 2 we introduce the
most prominent features of the hierarchical maps and argue for their usefulness,
in Section 3 we give some examples of their use in programming. Section 4
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describes the access permission system of the maps in more detail, and in Sec-
tion 5 we describe how message handlers are integrated. Section 6 details the
C++ interface to the maps. Section 7 presents related work, and Section 8 briefly
describes some of the software prototypes that use the maps and the Corundum
framework as their platform. Section 9 analyzes the hierarchical maps in terms
of their support for the palpable qualities, and Section 10 concludes and outlines
directions of future work.

2 The Hierarchical Map

A hierarchical map (henceforth called an h-map) is a simple tree-structured name
space that we use to hold (most of) the non-transient data of a single process. The
well-known abstract data type can be described by the context free rules below:

HMap ::= TreeNode
TreeNode ::= TreeLeaf | TreeDir
TreeLeaf ::= Name Value
TreeDir ::= TreeNode*

Names are simple strings. Values are integers of various sizes, floating point
numbers, strings, BLOBs (Binary Large Objects for images and the like), ad-
dresses, messages, message handler objects, and code pointers etc. Values are
tagged with a type identifier. Nodes in the tree structure can be identified by the
path of names from the root to the node, written eg. “a/b/c”.

The h-map is a run-time entity that can be altered dynamically: tree-nodes
can be added and deleted, values can be changed. The values are dynamically
typed using a tagged or “boxed” representation.

The benefit of the data structure and the novelty of the framework described
here does not come from the data structure itself, but from its use. The Corundum
framework uses the h-map to store, basically, all non-transient data of a process.
It is used to route messages among services and components, to keep documen-
tation as well as configuration data, to keep lists of subscribers and discovered
peers, to act as the parsed representation of XML data [BPSM98], etc.

The general motto of the framework is to try to use the h-map instead of
inventing ad hoc data-structures.
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Figure 1: Two devices, one hosting two processes each with their own h-map. The h-maps extend
outside the devices to illustrate that they are accessible from the outside.

The framework encourages an extrovert programming style, where compo-
nents and services expose what they can do (potential uses, events accepted and
sent), what they are doing (eg. logging), and what they have been doing (his-
tory). This is all done via the h-map which is globally visible, and accessible
from outside the process over a network.

One may think of the h-map as a process-local file system where the values
stored are not files but values. Alternatively, one may think of the h-map as
similar to a “Document Object Model” (DOM) from the XML world, or as the
exoskeleton of a process: it is the structure which holds together the different
software parts of the process, and it is externally visible.

Processes automatically make their h-map accessible to remote processes.
This facilitates a high degree of remote introspection and visibility of the struc-
ture and state of a process. No special access methods are needed to remotely
access eg. the list of peer services discovered by another process, or to modify
the parameters of a process, as long as they are put in the h-map of the process.

Note that we make a deliberate distinction between how one accesses the
process-local h-map, and how one accesses the h-map of a remote process. The
process-local h-map (shared among in-process components) is accessed via ordi-

3



nary synchronous method calls to, for example, read the value stored at a certain
path in the local h-map. The value of a node in a remote h-map is accessed by
explicitly sending an (asynchronous) message to the remote process asking for
the value at a path in that h-map.

It is not possible to “mount” remote h-maps transparently in a local h-map
(as is common with file systems), as this would invalidate the assumption of fast,
deterministic, local access to entries in the local h-map. If mounting was allowed
one would always have to access the h-map with the assumption that the access
could time out because a remote device was removed or turned off. This would
be much too cumbersome to use.

In short, the above distinction is made on the belief that in a fragile perva-
sive computing world with constantly changing connectivity, remote network
communication should not be hidden as in remote method invocation (RMI) and
RPC, because of the large differences in latency, reliability and failure modes
between a local procedure call and a remote one.

The h-map makes remote access inside components and devices possible. It
can also be used to enable unforeseen reuse of parts of components. Within
the Corundum framework it is, for example, used to be able to remotely control
the output of debugging information from processes, and to optionally route this
information across the net at run-time, to allow on-the-fly remote logging from
deployed services. This is one of the ways in which processes may expose what
they are doing.

The framework encourages programmers to name their non-transient data and
put it in the h-map. This allows for a more data centric model of computation,
separating functionality from the data, as also advocated by [GD+04].

This, of course, works against encapsulation. But, maybe encapsulation can
be considered harmful? From the programming-by-contract view encapsulation
helps the provider of functionality to make the internal workings of the func-
tionality invisible to the user, and thereby allowing a contract that is less binding
for the provider. Exposing more of the internals puts a heavier burden on the
provider and provides more insight and more opportunities for unforeseen reuse
for the user.

However, the framework does not force programmers to put everything in
the h-map, and encapsulation of the internal workings of components can be
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achieved by not putting all data into the h-map. See also the section on the
permission system below.

With traditional object oriented programming, using popular patterns like Fa-
cade, Layers, Proxy etc. [BMR+96] one often has to go through several inter-
faces, and method calls to access the data one wants, especially if function-
ality is being grafted onto an architecture afterward as the result of new user
demands. Hence the often observed need for restructuring [BL76] and refactor-
ing [CCD+98, Opd92] when the architecture evolves.

The h-map allows access to deeply nested data in the h-map from anywhere
via a single simple interface. It is simple to use the Visitor pattern to work on a
sub-tree of the h-map as well. Many common data structures map nicely onto the
h-map instead of using ad hoc structures with their own idiosyncratic interfaces.
(lists, vectors, sets, trees,...). This may allow for more loosely coupled systems
and fewer necessary refactorings.

The flip-side of the above is that it introduces dependencies between different
software parts on the structure of the h-map, in order for other parts of the code
to find a thing in the h-map it must stay in a fixed or, at least, a well defined
place.

2.1 XML Support

One might also externalize the internal data of a process through for example
a relational data model, but a hierarchical model is simpler to implement, fits
nicely with traditional classification, and matches the tree-structure of XML doc-
uments, and scene graphs of graphics and windowing systems, etc.

To better allow for parsing XML documents into the h-map there is no unique-
ness constraint on names within a single directory: a single directory may con-
tain multiple entries with the same name. This allows to represent the following
XML document in the way shown below:

<?xml version="1.0" encoding="iso-8859-1"?>
<Assembly>
<Prereq>

<Required servicename="camera"/>
<Required servicename="display"/>

</Prereq>
<Connections>
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<Connection source="camera" sink="display"
pattern="picture-taken*"/>

</Connections>
</Assembly>

The XML document is parsed into the h-map using an Expat-based XML
parser (or SAX parser in the Java case), as shown in the following sub-tree of the
h-map.

xml/
Assembly/

Prereq/
Required/

servicename: [str: ’camera’]
Required/

servicename: [str: ’display’]
Connections/

Connection/
source: [str: ’camera’]
sink: [str: ’display’]
pattern: [str: ’picture-taken*’]

Inspired by XPath [CD99] we can distinguish between the two “Required” en-
tries with paths of the following form: “xml/Assembly/Prereq/Required[0]” and
“xml/Assembly/Prereq/Required[1]”. The path “xml/Assembly/Prereq/Required”
is equivalent to the path with “[0]” appended.

2.2 H-map interfaces versus traditional service interfaces

Will systems necessarily become more interdependent and brittle with h-map
interfaces than with standard interfaces? No. The h-map can be used to have a
classical interface with no more and no less exposition of internals.

Note also that in classical CORBA/IIOP [OMG98] rogue clients can dynam-
ically construct method invocations with illegal types and number of parame-
ters. Hence, CORBA also needs to do run-time type checking of parameters in
a CORBA interface. Normally a compiler checking the types is relied upon, but
in an unsafe environment this cannot be relied on. One can also run IIOP on top
of SSL (Secure Socket Layer), but the Corundum protocols could run on SSL as
well.
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The h-map allows, but does not enforce the publication of a wider interface.
It also allows the documentation and even formal specification of interfaces to
be represented on-line by the devices themselves in a uniform manner. Any
formal or informal interface specification could be hosted by the h-map, but a
specification or recommendation of such a specification is outside the scope of
this report. External, off-line, interface specifications, like CORBA IDL still
have their place to be used at compile time.

2.3 Evolution

Already in 1976 Belady and Lehman [BL76] identified two laws of program
evolution dynamics: the law of continuing change, and the law of increasing en-
tropy. The first law states that a program exposed to external forces (like market
pressure or technology advances) will continue to change until it is judged more
cost effective to freeze it and re-create it. The second law says that the struc-
turedness of an evolving program will decay over time unless specific work is
executed to maintain a structure.

The dynamic nature of the h-map allows a large degree of flexibility: the
structure will need to change over time as the system evolves, in accordance with
the first law. Another benefit of the exposed structure of the h-map is that since
it is plainly visible, it is more likely to be kept neat, and hence counteract the
increasing entropy of the second law. Note, however, that we do not see h-maps
as a “silver bullet” [FPB95] for all system design and maintenance. Also, it is
only the data structure of the h-map that is visible and thus invites maintenance,
whereas the h-maps provide no help for keeping the underlying code neat.

3 Examples of Use

This section outlines some examples of programming use of the framework and
of the h-maps in particular. Consider the following piece of C++ code:

class Foo : public Bar {
public:
int counter;

public:
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Foo() { counter = 0; }

void operation(int x) { ... counter += x; ... }
};

Here the counter is public and may be altered by other objects within the same
process, if they can obtain a pointer to the containing object. With the h-maps
one would instead write:

class Foo2 : public Bar {
public:
Foo() { mydir->write("foo/counter", 0); }

void operation(int x) {
...
mydir->write("foo/counter",

mydir->read("foo/counter").asInt()+x);
...

}
};

where mydir is a pointer to a sub-tree of the h-map relevant for this object/class.
This looks somewhat more cumbersome, but makes the counter accessible from
without the process. Other services and browsers may inspect and alter the
counter. There are two main aspects of this: one is the externalization of the
counter, allowing access to it from the outside, and the other is the rooting of
the data item (the counter) in a name space (the h-map), so that it may easily be
accessed both within and without the process.

This also means that the code above is more fragile, one should really write
something like:

class Foo2 : public Bar {
public:
Foo() { mydir->write("foo/counter", 0); }

void operation(int x) {
int tmp;
if (mydir->readInt(&tmp, "foo/counter")) {
mydir->write("foo/counter", tmp + x);

}
...
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}
};

where we check that there is an integer stored at the path “foo/counter”. Some
outside entity might have set it to a string, or might have erased the directory
altogether. The example is a single threaded service, and there is therefore no
need to lock the entry in the h-map between readInt() and write(). For
multi-threaded services, the standard mutual exclusion mechanisms apply.

Another way to cope with unintended changes from third parties is to “type
lock” an entry in the h-map. This will prevent the entry from being deleted and
from having its value set to a different type. Then one can safely write the above
example as:

class Foo2 : public Bar {
public:
Foo() {

mydir->write("foo/counter", 0);
mydir->resolve("foo/counter")->setTypelock(true);

}

void operation(int x) {
mydir->write("foo/counter",

mydir->read("foo/counter").asInt()+x);
...

}
};

Attempting to change the value to a string would result in an exception being
thrown at run-time.

An elaborate permission scheme like the ones found in file systems is also
implemented, so that some may only have read-permission to a node, and others
have no access at all. This is elaborated in the following.

4 Permissions

Inspired by the system of permission bits used widely in file systems, we have
equipped the h-map with permission bits also, to allow control over who can
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change properties of the h-map. This allows more fine grained control over what
external services and clients can do to the h-map on a service.

More elaborate access control and structure preservation schemes where in-
vestigated: most notably a grammar-based scheme to control the structure of a
sub-tree of the h-map, making the system ensure that the sub-tree conformed to
the grammar at all times. However, this was found too rigid an approach, as it
would entail that whole sub-trees would have to be created outside the global
h-map and inserted as a whole, instead of building them gradually inside the h-
map. This would be necessary to ensure that the grammar was always adhered
to. One could loosen this by selectively switch off grammar checking at times,
but this was found inelegant. File-system like permissions allow a more proto-
typical approach where a structure can be constructed piecemeal and later write
protected.

The grammar idea could still be useful for interfacing: for informing users
and other systems about what can be written where in the h-map, but this should
probably be implemented at a higher level. The h-maps themselves are good for
representing grammar rules, and explicit messages and methods to verify that a
sub-tree of the h-map conforms to such a grammar could relatively simply be
made.

More general access control list schemes for protecting the contents and struc-
ture of the h-map have been considered, but found too costly in terms of run-time
performance.

Concretely, we equip each node in the h-map with three sets of bits: one
set for the local process, another set for operations being carried out for other
members of the community1, and a third set of bits for operations carried out
for other communities. This is like the Unix permission bits where there are
permissions for owner, group and others.

Each set of permission bits contains:

• ReadName: If set, the name of the h-map node can be read.

• ReadValue: If set, the value of the h-map node can be read.

• WriteName: If set, the name of the h-map node can be written.
1Corundum services are members of communities and network messages are encrypted with a community spe-

cific key.
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• WriteValue: If set, the value of the h-map node can be written.

• ChangeType: If set, the type of the value stored in the h-map node can be
changed (another type of value can the stored there).

• Handle: If set, a message handler at the h-map node can be invoked.

• ChangePermissions: If set, the permission bits of the h-map node can be
altered.

If an operation is attempted, which is not allowed by the permission bits, an
exception is thrown (and distributed to network exception subscribers, akin to
linked processes in Erlang [Arm03]).

5 Message Handlers

Message routing takes place via the h-map, so that messages between services
are routed to a node within the h-map of the destination service. To handle the
incoming messages, the service has installed a handler function pointer at that
point in its h-map, and at message delivery time the handler procedure is called
with the incoming message.

In the Corundum framework, all communication among services and pro-
cesses is done via asynchronous message passing. This is part of the Corundum
framework and programming style, but not intrinsically tied to the h-maps: h-
maps are equally well-suited for routing synchronous RPC style calls.

void myHandlerProc(TreeDirectory *self, const Message& msg)
{

// called when messages arrive for "srv/myservice/handler"
}
...
// install handler in h-map
root->write("srv/myservice/handler",

Unit("myhandler", myHandlerProc));

Alternatively, one can use the Functor pattern for the message handlers, so
that the messages may be handled by a handle() method inside a C++ class:
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struct MyHandler : public MsgHandler {
...
void handle(const Message& msg)
{
// called when messages arrive for "srv/myservice/handler"

}
};

MyHandler *myHandlerObj = new MyHandler;

// install handler in h-map
root->write("srv/myservice/handler", Unit(myHandlerObj));

If a message is addressed to a directory in the h-map, it is automatically dis-
tributed to all message handlers below that directory. This allows for easy mes-
sage distribution to multiple subscribers.

Messages are distributed to receivers in the h-map by resolving the recipient
path part of the message in the local h-map, and invoking the message handler
stored there (if any) with the message.

6 Interface Overview

This section shows the core of the C++ class interface to the h-maps. There are
three classes corresponding to the productions of the grammar given above: the
abstract class TreeNode, TreeDirectory for internal nodes of the tree, and
TreeLeaf for the leaves holding values.

The core of the abstract super class TreeNode is shown below with a number
of utility methods elided for readability.

class TreeNode : public Marshalable
{

protected:
TreeEntryType type; // directory or leaf
Name name; // name of node
TreeDirectory *parent; // parent pointer, not marshaled

// protected constructors: abstract superclass
TreeNode();
TreeNode(TreeEntryType t, const Name& s);
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private:
PermBits permissions; // permission bits, private to

// TreeNode to maintain control over
// where they can be set.

public:
virtual ˜TreeNode();

/* Returns the TreeEntryType type of the node. */
TreeEntryType getType() const;

/* Permission setter and getter */
unsigned int getPermissions() const;
void setPermissions(unsigned int v);

// getter and setter for the name
Name getName() const;
void rename(const Name& n);

TreeDirectory *getParent() const; // Get ptr to parent node

// the following entries are here for ease of use,
// allows expressions like
// "v = dir->resolve(path)->readNode()"
virtual void setTypelock(bool x);
virtual bool getTypelock() const;

virtual UnitType unitType() const;
virtual Unit readNode() const; // read value of node
virtual void writeNode(const Unit& u); // write value of node

// resolves a path in the tree to a node (read only)
virtual TreeNode * resolve(const Path& path,

TreeDirectory **parent_ret = NULL);
// resolves/creates a path in the tree
virtual TreeNode * resolveCreate(const Path& path,

bool crDir = false);

// invoke the handler stored in this node
// with msg as parameter
virtual void invokeHandler(const Message& msg);
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// marshaling
virtual void marshal(MarshalStream *strm) const;
virtual void unmarshal(MarshalStream *strm);

private:
/* set parent pointer */
void setParent(TreeDirectory *p);
friend class TreeDirectory;

};

The core of the TreeLeaf class is depicted below:

class TreeLeaf : public TreeNode
{

protected:
Unit val; // the value stored in the leaf

public:
TreeLeaf();
TreeLeaf(const std::string name, const Unit& v);

/* Return the UT_ unit type of value stored here. */
UnitType unitType() const;

/* Return the unit value stored at this leaf.
Requires PERM_ReadValue permissions. */

Unit readNode() const;
void writeNode(const Unit& u);

void invokeHandler(const Message& msg);

virtual void marshal(MarshalStream *strm) const;
virtual void unmarshal(MarshalStream *strm);

};

The core of the TreeDirectory class is shown below. The readString()
method and the readStringDef()method are only exemplars. Similar meth-
ods exist for the other data types that can be stored in leaves.

class TreeDirectory : public TreeNode
{

public:
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typedef std::vector<TreeNode *> TreeNodeVec;
typedef TreeNodeVec::iterator iterator;
typedef TreeNodeVec::const_iterator const_iterator;

protected:
TreeNodeVec entries; // the vector of pointers to sub-trees

public:
TreeDirectory();
TreeDirectory(const std::string& name);
˜TreeDirectory();

// STL iterator stuff for accessing sub-trees
iterator begin();
iterator end();
size_t size() const;

const TreeNodeVec& getEntries() const;
std::vector<Unit> getUnitEntries() const;

// for remote directory listings:
std::vector<Unit> getLDUnitEntries() const;
std::vector<Unit> getLDUnitEntriesDeep() const;

TreeNode * resolveLocally(const Name& nm) const;
TreeNode * resolve(const Path& path,

TreeDirectory **parent_return = NULL);

bool insertLocally(TreeNode *newnode);
bool removeLocallyByName(const Name& name);
bool removeLocally(TreeNode *n);
bool remove(const Path& path);
TreeNode * resolveCreate(const Path& path,

bool crDir = false);

/* Write the value val at path in the tree. Automatically
creates the path if it does not already exist. */

void write(const Path& path, const Unit& val);

/* Returns a copy of the Unit stored at path. If the path
does not exist return an UT_Undef unit. */

Unit read(const Path& path);
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/* Read a string from a path in the tree starting from this
directory. Returns true if the path exists and the value
stored is a string, and sets *result to that string.
Otherwise returns false and leaves *result unchanged. */

bool readString(std::string *result, const Path& path);

/* Read a string at the path path starting from this node,
and if not found return defval */

std::string readStringDef(const Path& path,
const std::string& defval);

void invokeHandler(const Message& msg);

static TreeNode *startUnmarshal(MarshalStream *strm);
virtual void marshal(MarshalStream *strm) const;
virtual void unmarshal(MarshalStream *strm);

};

7 Related Work

The One.World framework by Grimm et al. [GD+04] supporting pervasive ap-
plications incorporates a notion of nested environments that are not unlike the
hierarchical structure and programming model described here, but there are no-
table differences. In One.World the nested environment is a network-global,
distributed structure shared among distributed services, whereas the h-maps de-
scribed here are light weight process-local and provide fast and deterministic
access.

The Blackboard pattern [BMR+96] is a shared data structure used in, for ex-
ample, AI systems to share data among “agents”. The pattern is used to deal
with changing contexts and uses, and to deal with an evolving architecture. The
h-maps described here can be used as a blackboard structure among processing
agents within and without a process, but it is not a network shared structure with
that purpose.

The Linda coordination language and many others [CG89, RW97] provide a
distributed, synchronized tuple space shared among agents, and can be seen as
a distributed implementation of the Blackboard pattern. Unlike the h-maps, the
tuple space is a global shared structure, and as such associated with much higher
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access latency than the local h-maps.
In [DBK05] Decker et al. describe a simple file system for small ubiquitous

computing devices. However, it is a file system with files being byte streams like
in Unix, not values like in the h-map, and it is meant for local use only, not for
structuring remote access and handling communication among devices. They
also focus on the structure of the hierarchical name space as opposed to its use.

8 Use Experience

The Corundum framework [Ørb05] implements the h-map ideas. The framework
has been used to implement a number of prototypes within the Palcom project:
the geotagger prototype assembling a digital still camera service with a GPS
service and a PDA display service, with the purpose of adding EXIF GPS meta
information the pictures taken. The sitetracker prototype combines a webcam
service, a GPS service, a digital compass service, and a display service to provide
a pointing tool to show the position of a geographic site as an overlay on a live
video image. The connectivity prototype combines several software services on
a PC with a service running on a Nokia 6600 mobile phone, to provide simple,
supervised, setup of an internet connection via Bluetooth and GPRS.

All the prototypes are distributed systems consisting of a number of services
running on disparate computers and devices, communicating via IP over wireless
ethernet and/or Bluetooth.

The Corundum framework integrates the Expat XML parser so that XML
documents can be parsed into sub-trees of the h-map. XML documents can also
be produced from sub-trees of the h-map. This is used as an external repre-
sentation of specific assemblies both by the simple meta-assembler tool and our
graphical assembler tool supporting the graphical construction of assemblies of
devices and services.

XML is used also for the specification of GUI user interfaces for a couple
of our prototype services. The interface is written in XML, and parsed into the
h-map, and there used as a DOM or scene graph by an OpenGL based renderer.
This makes the setup of simple 3D user interfaces quite simple. The h-map
representation of the scene graph is used to hold colors and textures and strings
for the interface, as well as coordinate transformations. A number of visitor
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Figure 2: The graphical assembler prototype used to construct assemblies of palpable services.
The assembler uses the h-map to represent the UI, and for discovery and connection of services.

classes are used to transform the scene graph and render it, as well as for input
event propagation.

The h-map idea is also being implemented within the Palcom virtual ma-
chine (PRE-VM) to provide a uniform interface to VM internals and to gener-
ally support programming palpable applications and services with h-maps. An
integration with the JADE agent framework [BPR00] is also being undertaken at
Whitestein within the Palcom project to investigate the concepts of resilience and
adaptivity in ad hoc network communication. Furthermore, the use of h-maps is
being explored in connection with architectural manifestations and query lan-
guages (AQL) [IH05].

The Corundum framework, described in depth elsewhere [Ørb05], is more
than the h-maps described here. The framework for example provides a multicast
based service discovery mechanism, a number of bearer protocols (UDP, TCP,
Bluetooth,...), a message format, and a serialization mechanism for it, encryp-
tion, point-to-point communication, multicast communication, and topic-based
publish/subscribe etc.

All of these features build heavily on the h-maps: bearer protocol “drivers”
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are stored in the h-map together with meta-information about the bearer; pub-
lished as well as received announcement messages are kept in the h-map, and all
service addressing goes via the h-map.

The framework exists in two interoperable implementations: a C++ imple-
mentation for high performance, and a Java version (JCorundum) for Java pro-
grammers. The C++ version of the core framework is implemented in about
6000 lines of well commented code, and the Java version is about the same size.

8.1 Remote H-map Access

The Palcom::GenericNode class (the superclass of all components and ser-
vices in the framework) and its descendants handle a number of generic messages
that allow remote access to the h-map of a service. H-map directories can be
listed, and h-map entries can be read and written.

The generic messages also support subscriptions to events from services.
Both two-way where the to-be event sink subscribes to events from a source,
and three-way where an assembly connects a source to a sink. Subscriptions to
remote exceptions are also handled by the generic messages. The remote excep-
tion mechanism is inspired by Erlang [Arm03].

These features are used in the prototypes to build remote inspection and ma-
nipulation tools, that allow dynamical creation and modification of assemblies
of services.

8.2 Example Corundum H-map

The listing below is a commented dump of the h-map of an isolated instance of a
simple service (du1), in a situation where it cannot see other services. It is one
of the simplest real-world examples.

communities/ ←list of communities that the service is a member of
poecomm: [int: 1]

community: [str: ’poecomm’] ←current default community
bearers/ ←bearer protocols supported

udp: [msghandler] ←UDP/IP unicast
udpmcast: [msghandler] ←UDP multicast
tcp: [msghandler] ←TCP/IP point-to-point

discovery/ ←things related to discovery are below here
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announcer: [msghandler] ←handles outgoing announcements
interval: [int: 5] ←announcement interval in seconds
announcement: [msghandler] ←handler for incoming announcements
outgoing/ ←directory containing announcements that are periodically sent from here

logging: [message: [msg: ←this process announces a logging service
sender: udp:poecomm:0.0.0.0:23457:srv;logging;entry;
recipient: udpmcast:poecomm:239.3.3.4:23456:discovery;announcement;logging()]

du1: [message: [msg: ←the service also announces a du1 service
sender: tcp:poecomm:0.0.0.0:23456:srv;du1;entry;
recipient: udpmcast:poecomm:239.3.3.4:23456:discovery;announcement;du1()]

listeners/ ←one may install listeners here if they too need to hear incoming announcements
diruser: [msghandler]

received/ ←directory of received announcements, in this example we only see our own
udp:poecomm:10.11.41.160:23457:srv;logging;entry/

method: [str: ’logging’] ←method of the received announcement: the service type
time: [int: 1099986779] ←timestamp of reception
msg: [message: [msg: ←the received announcement message

sender: udp:poecomm:10.11.41.160:23457:srv;logging;entry;
recipient: udpmcast:::23456:discovery;announcement;logging([int: 20])]

ttl: [int: 20] ←time-to-live in seconds of this announcement, from message parameter
tcp:poecomm:10.11.41.160:23456:srv;du1;entry/

method: [str: ’du1’]
time: [int: 1099986779]
msg: [message: [msg:

sender: tcp:poecomm:10.11.41.160:23456:srv;du1;entry;
recipient: udpmcast:::23456:discovery;announcement;du1([int: 20])]

ttl: [int: 20]
srv/ ←services have their local configuration below /srv

logging/
subs/ ←subscribers for the logging service
entry: [msghandler] ←entrypoint for logging service
keys/ ←logging keys control which kinds of logging messages are output

bearer: [int: 1] ←bearer logging messages are turned on
node: [int: 0] ←node logging messages are turned off
crypto: [int: 0]
discovery: [int: 0]
message: [int: 0]
xml: [int: 0]
it0: [int: 0]
it0mcast: [int: 0]
it0node: [int: 0]
asm: [int: 0]
clnt1: [int: 1]
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to-stderr: [int: 1] ←logging to stderr is on
to-subscribers: [int: 1] ←logging to logging subscribers is on
lastKey: [str: ’clnt1’]

du1/
subs/ ←subscribers to the du1 service
entry: [msghandler]

xsubs/ ←subscribers to exception messages, typically assemblies.

9 Analysis

This section relates the h-map features to the six challenges of palpable com-
puting. As detailed in this report externally visible h-maps aids visibility, with
invisibility allowed by the permission scheme.

With respect to scalability, the h-maps scale up with the number of devices as
they are local to each process. A global structure would be harder to scale up to
large systems. The h-maps can be used in small as well as large devices, as the
extra memory requirement of the h-maps is a small constant factor on top of the
data that would otherwise have to be externalized otherwise.

One trick to keep the memory requirements of the h-map down is to keep
all path components (eg. “a”, “b”, and “c” of the path “a/b/c”) uniquely in a
per-process hash table. The name of each node would then be a pointer into the
unique entry for the name in the hash table, and path component comparison
would be simple pointer comparison.

By making the internal structure and data visible to the outside, and to the
end-user through various browser tools, the h-maps also help with respect to the
understandability aspect of palpable computing.

Dynamic construction and de-construction of assemblies of service and de-
vices is supported within Corundum, by way of the h-map that keeps event sub-
scription lists and handles message addressing. Service discovery is also an im-
portant feature here, for which the h-map is used to keep lists of discovered
services, as well as lists of periodically outgoing announcement messages.

The h-maps and our messaging protocol are platform neutral (as witnessed
by the interoperable C++ and Java implementations), and thus supports hetero-
geneous devices, and allows making coherent assemblies of such devices.

Achieving both sense-making and user-control is not done by just using h-
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map technology, and needs to be handled at a higher layer.

10 Conclusion and Future Work

We have described the idea of using an h-map as the exoskeleton of a process.
The Palcom Corundum framework, building on the h-map idea, both in its C++
and Java incarnations have been used to implement a number of services to sup-
port palpable computing.

With some integration with a programming language, the use of the h-map
could be less cumbersome. Programming language integration would also allow
some form of type checking / inference of the types of data stored in parts of the
h-map. I think that the very open-ended nature of the dynamically typed h-map
should be kept, but a formalism allowing one to specify static type constraints
on parts of the h-map might be useful. Possibly access control could also be
integrated with a type system, so that static access constraints could be imposed
as part of the types.

Scope – the set of services and sub-trees of their h-maps that can be ad-
dressed – is currently at the community level in Corundum. If two services
are in the same community they can access each others h-maps in their entirety.
During discussions with users of the framework it has become clear that a more
fine grained scoping mechanism may be called for. It would be feasible for a
service to restrict outside access to the local h-map to a sub-tree defined by the
service. In this way a service within a process only makes its own sub-tree of the
h-map visible.
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