Combining Predictors

Meta Machine Learning Methods and
Bias/Variance & Ambiguity Decompositions

Jakob Vogdrup Hansen

Ph.D. Dissertation

Department of Computer Science
University of Aarhus
Denmark






Combining Predictors

Meta Machine Learning Methods and
Bias/Variance & Ambiguity Decompositions

A Dissertation
Presented to the Faculty of Science
of the University of Aarhus
in Partial Fulfillment of the Requirements for the
Ph.D. Degree

by
Jakob Vogdrup Hansen
Handed in: January 31, 2000
Revised: June 26, 2000






Preface

Before I began my four year Ph.D. education, I participated in the courses
“Neural Networks” and “Neural Network Study Group”, where my inter-
est in the field of artificial intelligence and especially machine learning was
founded. The “Neural Network Study Group” resulted in the report “Opti-
mal Brain Construction” [29].

It was therefore natural that Brian Mayoh became my supervisor when I
began my Ph.D. education in February 1997.

I used the first part (part A) to take courses and to find the field in which
I wanted to specialize. During this process I studied various areas such as
artificial life, genetic algorithms, genetic programming, and neural networks.
A result was the report “Studies of Optimal Strategies for War & Peace using
Neural Networks, Genetic Programming, and Genetic Algorithms” [30].

In the second year of part A, I decided to specialize in the field of ensemble
methods. I developed the DynCo method, that turned out to be a mixtures
of experts method, so I broadened my field to include mixtures of experts
methods as well.

After my part A exam, Anders Krogh became my assistant supervisor. I
continued my study of meta machine learning methods as I call ensemble
methods and mixture of experts methods. Parallel with empirical tests of
different meta machine learning methods, I began, encouraged by Anders
Krogh, to study the bias/variance decomposition, which is the central the-
oretical tool in meta machine learning methods. After I had made some
theoretical advances I got in contact with Tom Heskes, with whom I co-
operated to find the group of error functions with a natural bias/variance
decomposition.

This dissertation is a presentation of my work in the field of meta machine
learning methods. All the work has been done at the department of com-
puter science (DAIMI), University of Aarhus, Denmark or at the Center
for Biological Sequence Analysis (CBS), Technical University of Denmark,
Denmark.



vi

The first version of this dissertation was handed in January 31, 2000. This
is the revised version. Only minor errors and the reference list have been
corrected.

Acknowledgments

During the four year period I have been in contact with many people that
in some positive way have contributed to my work.

First and foremost, I would like to thank my two supervisors Brian Mayoh
(DAIMI, AU) and Anders Krogh (CBS, DTU), who taught me the value of
supervision. A special thank to Tom Heskes (SNN, KUN) for being both a
nice guy and a pedantic. A productive mixture.

In no particular order I would like to thank Torsten Ertbjerg Rasmussen
(IMF, AU), Niels Vaever Hartvig (IMF, AU), and Jens Ledet Jensen (IMF,
AU) for answering all my questions, Simeon Falk Sheye (Cryptomathic) for
constructive discussions, writing a PVM based training program, and for
proofreading, Mikkel Tjgrnfelt-Jensen (DAIMI, AU) for constructive discus-
sions, and for choosing to be my officemate after all, Peter Mgller-Nielsen
(DAIMI, AU) for introducing me to Hansen and Olsen, Claus Andersen
(CBS, DTU) and Ole Lund (CBS, DTU) for the sharing their protein data
set, Ole Lajord Munk (PET, AUH) for sharing his brain co-registration da-
ta set and for proofreading, Bente Lynge Pedersen for proofreading and for
believing in me all the time.

Jakob Vogdrup Hansen,
Arhus, June 26, 2000.



Abstract

The advances presented in this dissertation' fall into two groups: Improve-
ment of theoretical tools and development of meta machine learning methods.

The most important theoretical tool in connection with meta machine learn-
ing is the bias/variance decomposition of error functions. Together with
Tom Heskes, I have found the family of error functions with a natural
bias/variance decomposition that has target independent variance. It is
shown that no other group of error functions can be decomposed in the
same way. An open problem in the machine learning community is there-
by solved. The error functions are derived from distributions in the one-
parameter exponential family. Empirical tests show that there is positive
correlation between how well an error function derived from a certain distri-
bution performs and the noise distribution on the training set. The tests also
indicate that the error function derived from the Poisson distribution gen-
erally outperforms other error functions, among them the commonly used
mean square error function.

A bias/variance decomposition can also be viewed as an ambiguity decom-
position for an ensemble method. The family of error functions with a
natural bias/variance decomposition that has target independent variance
can therefore be of use in connection with ensemble methods.

The term “meta machine learning methods” covers both ensemble methods
and mixture of experts methods. I have developed the logarithmic opinion
pool ensemble method and reinvented the meta machine learning method
DynCo, which is similar to earlier published methods [43]. It has been em-
pirically established that the cooperative error function used by DynCo is
superior to the formerly preferred competitive error function. The DynCo
method bridges the gap between ensemble methods and mixture of experts
methods, since it, via the continuous parameter -y, can be set to be either a

'Some of the results presented in this dissertation have been published [32, 33], accepted
for presentation [34, 36], or are in submission [35]. Since the dissertation has been handed
in, the articles [34, 36] have been presented, and the article [35] has been accepted for
presentation.



viii

mixture of experts method, an ensemble method or a combination of both.
This can also be used to test whether a problem benefits from decomposition
or not. The DynCo method has been compared empirically with well-known
meta machine learning methods such as AdaBoost, Bagging, and Hierarchi-
cal mixtures of experts. DynCo has generally outperformed them. But in
some cases the most simple ensemble method, called Simple, outperformed
DynCo and the other methods.

The logarithmic opinion pool (LOP) ensemble method has been developed
based on the LOP ambiguity decomposition using the Kullback-Leibler (KL)
error function. The KL error function compares class probabilities, so the
LOP ensemble method is tailor-made for classification. The LOP ensemble
method is extended to the cross-validation LOP ensemble method. The
advantage of the cross-validation LOP ensemble method is that it can use
unlabeled data to estimate the generalization error, while it still uses the
entire labeled example set for training. The cross-validation LOP ensemble
method has been tested on prediction of the secondary structure of proteins
and it compares favorably with other methods.

The cross-validation LOP ensemble method is easily reformulated for an-
other error function, as long as the error function has an ambiguity decom-
position with target independent ambiguity.

Bringing the results together, it is indicated that the DynCo method, the
cross-validation LOP ensemble method, and the Simple ensemble method
are well-performing methods. The LOP ensemble method and the Sim-
ple ensemble method are similar except in the error function, and both
would benefit from the cross-validation technique. Furthermore, the cross-
validation technique applies to all error functions that have an ambiguity
decomposition with target independent ambiguity. It is shown exactly which
error functions have a natural ambiguity decomposition with target indepen-
dent ambiguity.

I recommend using the mixtures of experts form of the DynCo method on
problems that benefit from decomposition, or the cross-validation Simple en-
semble method on problems that do not benefit from decomposition. In both
cases the error function can be chosen to fit noise from the one-parameter
exponential family of distributions.



Contents

Introduction
1.1 Motivation . . . . . . . . . . e e e

1.2 Overview of the dissertation . . . . . . .. ... ... .....

Theory

Framework
2.1 A general framework . . . ... ..o oL 0oL

2.2 The application framework . . . .. ... ... ... .. ...

Bias/variance and ambiguity
3.1 The bias/variance dilemma . . . ... ... ... .. .. ...
3.2 Ambiguity decomposition . . . .. ... ..o L.

3.3 Bias/variance and ambiguity . ... ... ... ... ... ..

Bias/variance decomposition in literature
4.1 A trivial bias/variance decomposition . . ... ... .. ...
42 James 1996 [44] . . . ...
43 Zhu[96] . . . .. ..
44 Heskes 1998 [39,40] . . . . . . .. ... ..
4.4.1 Logarithmic ambiguity . . . . ... ... ... ... ..
4.5 Zhu [96] and Heskes [39] . . . . . .. ... ... ... .....
4.6 Others . . . . . . ..

15
17
20
21



CONTENTS

5 General bias/variance decomposition

5.1 Introduction. . . . . . . . . . . . ..o

5.2 Requirements for bias/variance decomposition and error func-
tions . . . . . .. e e e e e

5.3 Deviance error functions . . . . . . . . . ... oo

5.4 Deviance error functions for the exponential family of distri-
butions . . . . . ... L

5.5 Completeness of the family of deviance error functions derived
from the one-parameter exponential family of distribution . .

5.6 Examples of deviance error functions . . . . . . .. ... ...
5.7 Connection to other bias/variance decompositions . . . . . .
5.7.1 Connection to James 1996 [44] . ... ... ... ...
5.7.2 Connection to Heskes 1998 [39] . . . . ... ... ...
5.8 Conjugated families of posterior densities . . . .. ... ...

5.9 Ambiguity for deviance error functions . . . . . ... ... ..

Machine learning methods
6.1 Neural Network . . . . .. ... ... ... ... ...

6.2 Back propagation . . . . . .. ... o oL

Meta machine learning methods

7.1 Ensemble methods . . .. ... ... ... ... .. ...
7.1.1 Combinationrules . . ... ... ... ... ...,
7.1.2 Bagging . . . . ... ..o L
713 Simple. . . . ...
7.1.4 Logarithmic opinion pool ensemble . . . . . . . .. ..
7.1.5 AdaBoost . . ... ... .. ... ...
7.1.6  Other boosting ensemble methods . . . .. ... ...

7.2 Mixtures of experts . . . . . . ... .. oL oL
721 XuME . ... ..
722 DynCo. ... ... .. . ..



CONTENTS

xi

7.2.3 The family of gradient descent ME methods . . . . . .
7.3 Ensemble and mixtures of expert methods . . . . . ... ...

7.3.1 DynCo and the v parameter . . . . . .. ... .. ...

IT Experiments

8 Empirical comparison of the deviance error functions
8.1 Noise on target functions . . . ... ... ... ... .....
8.2 Gradient descent for deviance error functions . . . . .. ...
8.3 The empirical test of deviance error functions . . . . . . . ..

8.4 Further analysisof thetests . . . . . ... ... ... .....

9 DynCo compared with four other methods
9.1 Cooperation or competition? . ... ... ... ...,
9.2 Empirical tests of meta machine learning methods . . . . . .
9.2.1 Relativetests . . . . . . ... ...
9.2.2 Absolutetests. . . . .. ... ... ... L.

10 Comparison of four meta machine learning methods
10.1 Thetests . . . . . . . . . . .
10.2 Theresults . . . . . . . . . ...
10.3 Why Simple performs best on large noisy training sets . . . .
10.4 Why AdaBoost performs poorly . . . . . . .. ... ... ...

85
85
86

89

91
92
92
93
97

99
99
101
104
109

113
114
116
122

11 Cross-validation logarithmic opinion pool ensemble and pre-

diction of the secondary structure of protein.

11.1 The cross-validation ensemble method . . . . .. .. .. ...
11.2 The protein secondary structure problem . . ... ... ...
11.3 Empirical tests . . . . . . . . ..o oo

11.4 Training of ensembles on parallel super computers . . . . . .

12 Conclusion and recommendation

127



xii CONTENTS
Notation and symbols 139
A.1 Statistical notation . . . ... ... ... ... . L. 139
A.2 Commonly used machine learning symbols . . . . . . .. . .. 140

Training of LOP ensemble while achieving well-conditioned

Hessian matrix 141
B.1 Definitions and notation . . . . . . . . . ... ... ... ... 141
B.2 Thederivatives . . . . . . . . . . . e 143
B.3 The condition of the Hessian matrix . . .. ... . ... ... 147
Bias-effect /variance-effect 151

Generalized linear models 153

Exponential family of distributions 157
E.1 Gaussian distribution N(u,0%) . . ... ... ... ... ... 159
E.2 Poisson distribution P(A) . . . . . ... ... .. ... 159
E.3 Gamma distribution T'(v, A) . . . . ... ... ... 159
E.4 Binomial distribution B(n,m) . . . ... ... ... ... ... 159
E.5 Inverse Gauss distribution . . . . . ... ... ... ... ... 160
E.6 Beta distribution B(r,s) . . . . ... ... Lo L. 160
E.7 Inverted Gamma distribution . . . . .. ... ... ... ... 160
Gradient descent for deviance error functions 161

An alternative approximation of the Faculty and Gamma
functions 165

Probability of sampling an example k£ times in Bagging 169

Gradient descent 171



CONTENTS xiii

J Logarithmic opinion pool ensemble in a statistical mechanics
setting 173

J.1 Temperature in LOP ensemble . . ... ............ 175

K Comparing large test runs 177



xiv

CONTENTS




Chapter 1

Introduction

Let’s get this party started.
— Kofln, Issues, Let’s Get This Party Started.

In section 1.1 we! give a discussion of the nature of machine learning, meta
machine learning, and the problems involved at a conceptual level. This is
also the motivation. In section 1.2 we give an overview of the contents of
the dissertation.

1.1 Motivation

The aim of all science is to give answers to questions, or solve problems. The
aim of machine learning is to automate the process of solving problems, and
thereby machine learning is a rival to what humans have considered their
domain. Not all problems are suitable for machine learning. Let us divide
all problems into three groups: The simple mathematical/algorithmic prob-
lems, e.g. how to add two numbers or how to sort a list of numbers. These
problems are well understood, and - more importantly - a way to find the
answer of an instance of the problem is readily available. Another group of
problems are what could be called meta-problems, which is problems where
no answer can be given, or are subjective, e.g. “Do Humans Beings have a
soul?”, or “Is this painting beautiful?”. Both of these groups cannot benefit
from machine learning. In between lies a grey zone of problems where the
complete answers are unknown, but partial information is available. Until
recently this group of problems has been exclusively for human experts, e.g.
medical doctors. Let us use that as an example. It is not always easy to

'Throughout this dissertation I will use the plural forms ’we’ and us’ because it narrows
the gap between reader and author, and because we are more comfortable with that.



Introduction

give the right diagnosis for a patient. The symptoms can be faint and irreg-
ular, they can be somewhat similar to another disease, or the disease can be
unknown. A medical doctor will have been taught about symptoms and the
corresponding disease before encountering real patients, but his or her skill
should improve by examining patients, diagnosing them, and see the result
of the treatment. The doctor will learn from these examples, and become
better to diagnose patients in the future. The doctor will learn to generalize.
Today medical doctors are not alone in giving diagnosis. Also computers
have been used to diagnose people. The first such systems were expert sys-
tem, where the rules were given the computer by human experts, so the
generalization or the learning did not take place in the computer, but still
in the mind of the human experts. In recent years this has changed, now the
systems learn by themselves in the same ways the doctors do: generalizing
from examples, this is why it is called machine learning. Machine learning
methods have been used in many situations, e.g. to control fusion reactors
[8], speech recognition [28, 62], character recognition [78, 67|, speaker iden-
tification [16], survival prediction of AIDS patients [58], backgammon [83],
document classification [77] and many other things.

In this dissertation we will look into an area of machine learning which is
very promising, and already has produced important results: The area of
combining predictors. A predictor is here the computer system which is the
result of machine learning. The reason behind combining predictors is the
same as for gathering a group of human experts: to get better generalization.

Theoretical results tell us that combining predictors improves generaliza-
tion, and empirical tests support that. But that is just the source of the
excitement. There are as many ways of combining predictors as there are re-
searchers in machine learning. Let us illustrate the situation with the group
of human experts. They are given an example of something, say a medical
record, and must answer a question, like “what is the diagnosis?” What
do they do? Let us say they disagree, because that is the interesting case.
If most of them agree, then we should trust the majority. But what if the
world expert on that disease votes with the minority? Should we give him
or her extra votes? The domain of the answer could be continuous instead
of classes, then no one would agree with anybody. We could choose the
average of the guesses. But what if the guesses come in two distinct groups,
so the average is nowhere near any of the groups? The human experts could
be specialists in each their subset of the problem domain. Given a question
we are faced with the problem of finding the right specialist.

The problems are many, and but potential benefits are even greater, which
makes it an exciting research field.



1.2 Overview of the dissertation

1.2

Overview of the dissertation

Many of the results in this dissertation are from five papers

HANSEN, J. V. Combining predictors: Some old methods and a new
method. In JCIS ’98 Proceedings (1998), G. Georgiou, Ed., Associa-
tion For Intelligent Machinery, Inc., pp. 12-16.

HANSEN, J. V. Accepted for oral presentation at ICCIN2000: The
superiority of simplicity. comparison of four meta machine learning
methods. Aug. 1999.

HANSEN, J. V. Combining predictors: Comparison of five meta ma-
chine learning methods. Information Science, an International Jour-
nal (1999).

HANSEN, J. V., AND HESKES, T. Submitted to 15th international
conference on pattern recognition: General bias/variance decomposi-
tion with target independent variance of error functions derived from
the exponential family of distributions. Dec. 1999.

HANSEN, J. V., AND KROGH, A. Accepted for presentation at the
international conference on artificial neural networks in medicine and
biology (ANNIMAB-1): A general method for combining predictors
tested on protein secondary structure prediction. Oct. 1999.

The dissertation is in two parts: A theoretical part (chapter 2-7) and
an empirical part (chapter 8-11). The theoretical part is mainly about
bias/variance decompositions and the corresponding ambiguity decomposi-
tions. Also selected literature on the subject is reviewed. In the empirical
part different meta machine learning methods are compared, analyzed, and
discussed.

Chapter 2. Framework.
The framework used in this dissertation is presented.
Chapter 3. Bias/variance and ambiguity.

The bias/variance decomposition is a very important theoretical tool
in machine learning and especially in meta machine learning. It is
presented intuitively and in detail for the mean square error. The
connection to the ambiguity decomposition is stated.

Chapter 4. Bias/variance decomposition in literature.

An overview of bias/variance decompositions in literature. The claimed
connection between two decompositions is shown to be false.



Introduction

Chapter 5. General bias/variance decomposition.

The main theoretical result of the dissertation. The work has been
done in cooperation with Tom Heskes. It is shown exactly which er-
ror functions have a natural bias/variance decomposition. The error
functions are connected to the one-parameter exponential family of
distributions. The results is to be published in [35].

Chapter 6. Machine learning methods.
Overview of the machine learning methods used in the dissertation.
Chapter 7. Meta machine learning methods.

Overview of the meta machine learning methods used in the disserta-
tion.

Chapter 8. Empirical comparison of deviance error functions.

The error functions from chapter 5 are connected mathematically to
distributions. It is tested empirically if an error function connected to
a special distribution is more suitable for training sets with noise from
that distributions.

Chapter 9. DynCo compared with four other methods.

Presentation and expansion of results from [31, 32, 33]. Five meta ma-
chine learning methods are compared empirically on natural example
sets and the results are analyzed.

Chapter 10. Comparison of four meta machine learning methods.

Presentation and expansion of results from [34]. Four meta machine
learning methods are compared empirically on artificial target func-
tions and the results are analyzed.

Chapter 11. Cross-validation logarithmic opinion pool ensemble and
prediction of the secondary structure of protein.

Presentation and expansion of results from [36]. This work has been
done in cooperation with Anders Krogh. The logarithmic opinion pool
ensemble method is tested on prediction of the secondary structure of
protein.

Chapter 12. Conclusion and Recommendation

All the results are brought together in a recommendation on how to
solve machine learning problems.



Part 1

Theory






Chapter 2

Framework

Machine learning is suitable for a large group of problems, and many dif-
ferent methods and results have been developed in that area. In order to
evaluate these different methods and results it is necessary to have a com-
mon framework. A framework is a common intuition expressed in suitable
and consistent notation and definition of essential concepts in terms of the
notation. In the literature the framework is often implicitly assumed, which
can lead to difficulties. We will therefore define an appropriate framework -
the application framework.

2.1 A general framework

In the book “Mathematics of Generalization” by Wolpert [89], there is an
excellent overview of four commonly used frameworks. The overview is in
chapter 5 with the describing title “The Relationship between PAC, the
statistical Physics framework, the Bayesian Framework, and the VC Frame-
work”. Wolpert suggests a general framework called FEztended Bayesian
Framework or EBF (also see [90]), which unifies the four other frameworks.

We will discuss EBF only to give a flavor of the framework, since it will
not be used in this dissertation. The EBF consists of an input space X,
an output space Y, an example set T containing X — Y pairs, a target
function ¢, which is used to generate the example set, a predictor f, which
is used to guess the target, and a cost (error) E. The different terms are
connected by distributions, e.g. the learning algorithm is the probability of
the predictor f given training set 7" or P(f|T). An example set is generated
with probability P(T'|t). The target t is considered to be the outcome of
a stochastic variable with probability P(¢). The probability of ¢ can also
depend on the example set. This probability is denoted P(¢|7"). It may



Framework

seem counter-intuitive, that the target function is conditional dependent on
the training set, but it is reasonable when assuming that the target function
is unknown. It is intuitive that there is higher probability that the unknown
target function resembles the example set, and a lower probability that it
does not resembles the example set. The error at a point = in input space
is described by a distribution where the probability of error E is given by
P(E\t, f,z). So almost everything is expressed in outcomes of stochastic
variables and associated distributions. This makes the EBF very broad and
strong in the sense of generality of the results, but it also makes the notation
somewhat cumbersome to work with. It is possible to “downgrade” EBF to a
more limited framework, but there is some overhead in notation complexity.

2.2 The application framework

EBF is very broad and a good choice of framework, but for this dissertation
not all of the broadness is required, so a framework well-suited for a less
general view will be defined. It will be called the application framework. In
EBF the view is on distributions, while the view in this dissertation will be
on functions. The two views are interchangeable, e.g. a predictor in EBF
is viewed as a distribution on output given an input, so a predictor f is
described by the probability P(y|f,z), while we will view a predictor as
a function, and use the notation y = f(z). If the predictor is stochastic,
the view in EBF is the better. The predictor could still be viewed as a
non-deterministic function and the probability of output y would be given
by the stochastic variable fx so P(y = f(z)) = P, (y) = P(y|f,z). If the
predictor is deterministic, the function view is the most suitable. In EBF
the conditional probability of output y would be P(y|f,z) = 0y, (z)), Wwhere
d(.,-) is Kronecker delta function.

The intuition of the application framework is
e The aim of machine learning is to learn a problem from examples.

e There is a fixed target function, the “truth”, that has generated a
finite set of problem examples. The example set could be distorted,
e.g. by measurement noise.

e A machine learning method can be used to find an approximation of
the target function based on the problem set. The machine learning
method is a function that takes the example set as input and outputs
an approximation. The machine learning function is not necessary
deterministic.

e The approximation from a machine learning method is in the form of
a deterministic function, a predictor, that maps input to output.



2.2 The application framework

e The error of a predictor is calculated with an error function.

e The quality of the predictor is measured by the generalization error,
which is the error on the target function.

The framework outlined above is application oriented, therefore the name
“application framework”.

Below is given definitions of the terms used above.

Definition 1 (Function Space)

Let g be a function with input T and let it depend on parameters W, then
the function space of g is the set G consisting of all possible functions g(; W)
obtained by varying W in the domain of 1. |

The function space of g(z;n) = 2", where n € N is the set of all single term
polynomial functions. The function space of a predictor is all the functions
the predictor can learn.

Definition 2 (Predictor)

A predictor is a function f that takes an input & and generates an output i
and depends on some parameters wW. The output of the predictor is denot-
ed y = f(Z). If the parameters are of importance the notation is f(Z;W).
All predictors are assumed to be deterministic. A regression predictor is a
predictor with continuous, and thereby metric, output. A classification pre-
dictor is a predictor with class density output: f(Z) = {f(Z),..., f(Z)},
where f¢(Z) is the output (the estimated probability) for class c;. A classifier
outputs the class label. |

A regression neural network nn depends on the weights W, takes continu-
ous input Z and gives output nn(Z; W). A regression neural network can
be turned into a classification predictor by post processing, e.g. using the
SOFTMAX function [14]

exp[nn®]
> exp[nnc]’

where nn€ is the ¢’th output of the neural network. The SOFTMAX function
ensures that the f¢’s sum to one, and are positive or zero, so the f¢’s can
be regarded as probabilities

fo= (21)

Definition 3 (Estimator)



10

Framework

An estimator is a parameterized function that takes as input an outcome of
a stochastic variable and outputs the probability or density of the outcome.
|

As an example an estimator p(y) can be the Normal density function pa-
rameterized by the mean p and variance o2:

1 _ 2

p(y;p,0) = o exp[— (y205) ]-

An estimator can be connected to a predictor in two ways: Firstly the
output of a predictor can be one or more parameters of the estimator, e.g
the predictor f outputs the mean, so the estimator p(y) becomes p(y; f, o).
Secondly a predictor can be identical to the estimator, so the parameters of
the predictor are equal to the parameters of the estimator. In the discrete
case the output of the predictor can be a vector corresponding to the class
probability (see chapter 11 for an example). In the continuous case the
outcome must be a part of the input to the predictor and the output is the
density of the given outcome. When an estimator is connected to a predictor,
the probability or density is conditioned on the input of the predictor, i.e.

p(y|Z) = p(y; f (), 0?).

Definition 4 (Machine learning method)

A machine learning function L takes as input a training set T and gives as
output a predictor: f = L(T). Often a machine learning function depends
on some parameters . If the parameters are important the notation will
be f = L(T,wW). A group of machine learning functions are called iterative,
because they refine a predictor repeatedly. This will be written

fnew — L(T, fold)_
|

Machine learning functions can be deterministic, e.g C4.5 [65] and splines
(see section 6.4 in [48]) or stochastic. Back propagation (BP) is an example
of an iterative, stochastic machine learning function.

Definition 5 (Meta machine learning methods)

A meta machine learning function MML takes as input a training set T
and a machine learning method L. It produces as output a predictor: [ =
MML(L,T). Often a meta machine learning function depends on some
parameters w. If the parameters are important the notation will be f =
MML(L, T, ). |



2.2 The application framework

11

A meta machine learning method can use several distinct machine learning
methods, but that possibility is not investigated in this dissertation.

Definition 6 (Error and Error functions)

The error of a predictor is a measure of how wrong the predictor is. The
error is given by an error function E. The notation E is chosen to indicate
that the error can be viewed as an average over a set of errors. An error
function takes a predictor f and a function t as input and yields the error

E(t, f).

One can speak of the error of a point in input space: E(t(Z), f(Z)) or some
subset of input space. The subset can be defined by a set of input points,
so one can speak of the error on the training set or the training set error
E(T, f), where the training set T is viewed as a function that is undefined
except for the input-output pairs in the set. The connection between the
error E for a function and the error E for a point is

E(t, f) = (BE(t(Z), f(#)))x,

where the mean is with respect to the input density in the domain where t is
defined, e.g the error for set T is

B(T,f)= > E( f@)P@.

(Z9)eT

The probability P(Z) can be assumed to be % if the set T is sampled from

the real density of the input.® For a function t defined on the entire input
space the error becomes

B(t, f) = / dEp(E)B(H(E), (7).

Definition 7 (Generalization Error)

The generalization error of a predictor is E(t, f) where t is the target func-
tion. |

!Let us assume that there are only two possible inputs 21 and z». The real probability
is P'(z1) = 0.8, and P'(z2) = 0.2. We sample ten times. On average the point z1 will be
sampled eight times and x2 two times. If we set P(z) = 11—0 then the examples with z1 as
input is represented by weight 0.8 as it should.



12

Framework

In all practical situations the target function ¢ is not known, therefore the
generalization error must be estimated. The error on the training set E (T, f)
cannot be used since the predictor f often will be biased towards the training
set. An independent test set D, which is not used for training can be used
to estimate the generalization error. The estimated error becomes

1D (Z,9)eD

There are many different error functions, but there are some characteristics
almost all error functions have in common. For a given function g and
predictor f there is a lower limit for the value of error function (often zero).
The lower limit is reached when the predictor and the function are identical.
Furthermore, for an error function to be sensible, a lower value must in some
way express that the predictor has become a better approximation of the
function.

Two commonly used error functions are the mean square error (MSE) and
the Kullback-Leibler entropy error (KL).

Definition 8 (Mean Square Error (MSE))

The MSE is defined as

E(7, f( Z — [3(%))

J

where K 1is the size of the output vector and j is the output indez. |

Note that MSE is defined only for metric values. It is therefore suitable for
regression.

Definition 9 (Kullback-Leibler Error (KL))

The Kullback-Leibler error function is defined as
: Y
= ci 10 - 7
% y“ log( fci(ac))

where y© is the target probability for class ¢; and f%(Z) is the estimated
probability for class c;. |

The KL error function is well-suited for classification.



2.2 The application framework

13

Definition 10 (Early Stopping)

To avoid overfitting a part of the training set is not presented to the ML
method, but is used to estimate the generalization error. This is the valida-
tion set. The ML method stops training when the estimated generalization
error is minimal. |

Since it is generally impossible to determine if the validation error has
reached it minimum, training is often continued until the validation error
has not attained a minimum for some time. The predictor at the time of
lowest validation error is chosen. Training is not independent of the vali-
dation set, so the validation set is rightly considered a part of the training
set.

Definition 11 (Combined Predictor)

A combined predictor is a predictor F that is defined in terms of a finite
group of predictors f_' and a combination rule. The combining rule is a func-
tion B that takes the predictors f as input and gives the combined predictor
as output F = B(f). [ |

Several kinds of combined predictors will be discussed in this dissertation.
Among them are the linear average predictor (LAP) combined predictor

F(Z) = Zaz‘fz'(f),

and the logarithmic opinion pool (LOP) combined predictor for classifica-
tion. For a class ¢ the combined predictor is given by

F(7) = % exp(Y aslog fE(@)].

The normalization factor Z is given by Z = ), F¢(Z). The o’s are positive
and sum to one.

Definition 12 (Average Predictor)

An average predictor is a predictor f defined in terms of a finite or infinite
group of predictors f and an average measure. The average measure is a
function B that takes the predictors f as input and gives the average pre-
dictor as output f = B(f) The average measure often involves an average
from a distribution over the set of predictors: A discrete distribution in case
of a finite set of predictors and a continuous distribution in case of a infinite
set of predictor. [ |



14

Framework

Let (- )y be a mean operator of the form ), P(f;) in the discrete case and

[ dfp(f) in the continuous case. The linear average predictor (LAP) is given
by B

and the logarithmic opinion pool (LOP) average predictor for classification.
For a class ¢ the LOP combined predictor is given by

F(@) =  expl{log )]

—

The normalization factor Z is given by Z = 3" f¢(7)

Note the similarities between combined predictor (see definition 11) and
average predictor. Besides that the combined predictor is only defined for a
finite group of predictors, the difference is only in the view.

In appendix A is listed a number of commonly used symbols and notation.



Chapter 3

Bias/variance and ambiguity

The success of a machine learning method can be expressed by the gener-
alization error E(t, f). The lower the generalization error, the better the
predictor approximates the target function, and predicting the target func-
tion is the true aim of machine learning.

The value of the generalization error is therefore of great importance. It is
possible to decompose the generalization error into two terms with different
“feel”. Assume we have a training set generated with noise from target
function ¢. We have a machine learning function that generates a simple
predictor, e.g. a neural network with few weights, and a machine learning
function that generates a complex predictor, e.g. a neural network with many
weights. Furthermore, assume that the function space of the simple predictor
does not contain ¢, while the function space of the complex predictor does.
The predictors are trained until the training error is non-decreasing. It is
well known that the complex predictor can have a generalization error of
the same size as the simple predictor. The problem is that the complex
predictor overfits.

In figure 3.1 a target function (dashed line) and a training set (points) are
illustrated. A complex predictor (left graph) and a simple predictor (right
graph) are also illustrated. As can be seen the way the predictors err is
different in nature. The complex predictor is confused by the noise,! while
the simple predictor cannot approximate the target function well.

Let the training of the predictors be repeated a number of times. For each

!Even if the training set is noise-free, a complex predictor can overfit. In figure 3.1 the
complex predictor is a spline (see section 6.4 in [48]) and is well-behaved between points.
A polynomial with the same degree as the number of points, can go through all the points
as the spline, but the value between points can be very large or small. This would also
be the case for a noise-free training set. The commonly used machine learning method,
Neural networks with back-propagation, can also overfit on noise-free training sets.



16

Bias/variance and ambiguity

Figure 3.1: A complex predictor (left full line) and a simple predictor (right
full line) trained on the same training set (points) generated by a target
function (dashed line).

repetition a new training set is generated from the target function with
noise. The simple predictor will give approximately the same result for each
training session, and will for a given input be biased with respect to the
target function. The complex function will on average predict the target
function, but will vary around it. The way the simple predictors errs is
called bias while the way the complex predictors errs is called variance.

This can be expressed mathematically for the MSE: Assume a ML function
L and a target function ¢. The target function can generate different training
sets, e.g. by adding noise with zero mean?, varying the number of examples,
or sampling the input space for input examples at random. Let P(T') be the
probability that training set 1" is generated and let T be the corresponding
stochastic variable. Let fr denote L(T). The predictor fr is the outcome
of the stochastic variable L(T), so it is possible to talk about the mean of
fr i.e. (fr)p. Because this is an important concept the mean of fr will be
denoted f and called the average predictor. The mean of the generalization
error with respect to T is (E(t, fr))p. This is a sensible measure of error
because it expresses what we on average can expect the generalization error
to be. It can be written (assuming one-dimensional output and omitting

2The noise can be explained by a stochastic target function, but since all target func-
tions in this dissertation are assumed to be deterministic, the noise is associated with
the process of generating a training set, e.g. by noise in the measuring process. The as-
sumption about zero mean noise is made for practical reasons. It is desirable that the
mean of the training sets equals the target function. Furthermore, a non-zero mean noise
will be oblivious for the machine learning function without additional information, and is
therefore uninteresting.



3.1 The bias/variance dilemma

17

input for simplicity)
(Bt fr)e = (It = fr]P)xx (3.1)
Using (2f2 — 2ffT>H =0 and (2tf7)xy = <2tf)X yields

(Bt fr))p = ([t - fr])x

=

<t2+fT_2th>XT+< F?=2ffr)xr (3.2)
= (" + 2 —2f)x + (P + fF —2f fr)xr '
=

[t = %)% +(f = f1)xr

This decomposition can be found in e.g. [27]. Both terms in (3.2) are errors.
The first ([t — f|2)x = E(t, f) is the bias, which will be denoted Bias(t, f).
The second ([f — fr]? )xT = (B B(f, fr))x is the variance, which will be de-
noted Var(f). Because both expressions are errors in themselves they obey
some nice properties. Both are greater than or equal to zero. Furthermore,
Var(f) only depends on the target function through the mean with respect
to the training set.

To sum up the error can be written in terms of bias and variance

(E’(t,fT))I = Bias(t, f) + Var(f) (3.3)

To get a better understanding of the bias/variance let us return to the
simple and the complex predictor. The complex predictor can approximate
the different training sets very well, and since the mean of the training
sets equals the target function, the average of the complex predictors will be
very close to t, so Bias(t, f), that measures the difference between the target
function and the average predictor will be very small. Each of the complex
predictors differs to some degree from the average predictor, and will on
average give a substantial contribution to the mean of error. This is what
Var(f) measures. The situation is the opposite for the simple predictors.
For almost all training set generated from the target function the simple
predictor will be very similar to the U-graph in figure 3.1, so the average
predictor for the simple predictors will also be similar to figure 3.1, and
Var(f) will be close to zero. The average predictor will not resemble the
target function very well, so Bias(t, f) will contribute significantly to the
mean of the error.

3.1 The bias/variance dilemma

From the first studies of bias and variance it has been thought that there is
a trade-off between bias and variance (e.g. see [86]). This is supported by



18

Bias/variance and ambiguity

empirical experiments, where the generalization error, bias and variance are
plotted against the “complexity” of a predictor. The “complexity” can be
the number of hidden nodes in a neural network, or the number of iteration a
neural network has been trained. Both is believed to increase “complexity”
of a predictor. A typical graph of error vs. “complexity” can be found in
figure 3.2

jo013

———  Generdization Error

————— Variance

Complexity

Figure 3.2: Common behavior of generalization error, bias and variance.

This apparent trade-off is called the “Bias/Variance Dilemma’ [27].

Let the increase in complexity come from iterations by an iterative machine
learning function. In the beginning of training the predictor will resemble
the simple predictor and have a large bias. If the training is allowed to con-
tinue and the predictor has sufficiently large function space the predictor
will resemble the complex predictor and have a large variance. The gen-
eralization error will drop in the beginning of training where the predictor
learns, then reach a minimum and begin to rise. This is overfitting, where
the predictor remembers the training set. The optimal predictor will be
somewhere in between, where both variance and bias are small. A predictor
close to the optimal predictor can be found by estimating the generalization
error on a validation set, and stopping the training when the error on the
validation set is smallest. This is early stopping.

The bias/variance dilemma is also applicable in connection with choosing the
optimal architecture. Choose an architecture for the predictor too small and
it can be trained forever without the generalization error decreases because
the bias continues to be high. Choose an architecture too large and the
predictor can overfit, resulting in high variance. Again the optimal predictor
is somewhere in between.

This suggests that the bias error and variance error are equal evils. This



3.1 The bias/variance dilemma

19

is not so. It is possible that a predictor that “knows too little” and a
predictor that “knows too much” have comparable generalization errors,
but the predictor that “knows too much” has the crucial information built
in, so it is potentially possible to extract it, while the predictor that “knows
too little” has “forgotten” information, which therefore cannot be extracted.
Meta machine learning methods like Bagging [9, 10, 92, 66, 39] are designed
to extract information from predictors that “know too much”.

Figure 3.3: Two predictors (thin lines in left graph) trained on different
training sets combined into one predictor (thick line). The combined pre-
dictor is a better approximation of the target function (dashed line) than a
predictor trained on the entire training set (thin line in right graph).

An example of how to extract information from predictors that overfit is
given in figure 3.3. In the left graph of the figure the thin lines depict two
predictors trained on disjoint subsets of the training set from figure 3.1.
Both of them are poor approximations of the target function. The thick
line is the uniform linear combination of the two predictors. This combined
predictor is a much better approximation of the target function than the
two predictors used to form the combination. Furthermore, the combined
predictor is a better approximation than the predictor trained on the entire
training set (see right graph of figure 3.3). The drop in generalization error
is accomplished by approximating the average predictor (see equation 3.2)
and thereby lowering the variance. This indicates that variance is a lesser
evil than bias, since variance can be reduced.

It should also be noted that the bias/variance decomposition in some frame-
works does not hold, e.g. the EBF (see section 2.1 or [90]). If the predictor
and the target function are dependent, a covariance term is introduced. In
this dissertation it is assumed that the target function is deterministic, and
by definition of covariance the predictor and the target function are inde-



20

Bias/variance and ambiguity

pendent.

3.2 Ambiguity decomposition

The ambiguity decomposition is defined in terms of an error function and a
finite set of predictors (an ensemble), that is combined to form a combined
predictor F'. Assume that F' is a linear combination of M predictors f;

M
F = Z a; fi-
i=1

Let the coefficients «; sum to one, then the coefficients can be viewed as
the probability of the predictors. The corresponding stochastic variable
is called F, so F = (f)p. The combined predictor F' is called a linear

average predictor (LAP). Assume that the error function E is the MSE, then
the error of F' with regard to an arbitrary function d can be decomposed
using ) . o; = 1. Assuming one dimensional output and omitting input for
simplicity we have

E(d,F)=(d- Ppx —{f = F)px (3.4)
Proof

E(d,F) = (d - FI")x
= (d* + F* — 2dF)x

— (&> + F? - 2dZ aifi + Zaiff - Zaiff +F° —F?)x
—QdZazf,-l-Zazf? Zazf, +2FZasz F2y
d2+Zazfz —ZdZazfz— Zaif,- +F2—2F2aifi Dx

Zazd fi)? Zaz |

= <[d—f] ex —(If —F] JEX

In the third line of the proof we have added two pairs of terms ), o; 2 -
>, aif? and F? — F?, that sums to zero.

This decomposition for a linear average predictor (LAP) is due to Krogh &
Vedelsby [51]. The first term on the right hand side in (3.4) is the mean
(with respect to F) of the error of the predictors f;. The second term
measures the error between F' and the f;’s. This is called the ambiguity and



3.3 Bias/variance and ambiguity

21

is denoted A. Note that A does not depend directly on d, but only on F' and
fi- This is a very desirable property. (see sections 5.9 and 4.4.1 for general
expressions for ambiguity, and chapter 11 for an application of ambiguity).
The decomposition can now be written in this short form

E(d,F) = (E(d, f;))g — A. (3.5)

Since A is an error it obeys A > 0, which yields E(d, F) < (E(d, f;))p. In
words: the error of the LAP is less than or equal to the mean of the error
for the members of the ensemble. A result also noted in [51] and [63].

3.3 Bias/variance and ambiguity

We have encountered two different decompositions for MSE. The bias/variance

decomposition in chapter 3 and the ambiguity decomposition in section 3.2.
These are mathematically equivalent as can be seen by a minor rewriting of
the ambiguity decomposition. First the bias/variance

(E(d, fr))r = E(d, ) + (E(f, f1))- (3.6)
Then the ambiguity
(E(d, fi))p = E(d, F) + (E(F, fi))p- (3.7)

So Bias(d, f) is equivalent to the error of the LAP E(d, F) and Var(f) is
equivalent to ambiguity. If we have a decomposition for an arbitrary error
function £ on the form:

(E(t, f)) = E(t, F) + (E(F, ])), (3-8)

where F is the “average predictor”, which only depends on f, and the
term (F(F,f)) is independent of the target function ¢, we have both a
bias/variance and an ambiguity decomposition.

The equivalence is more than mathematical, as the equivalence can and have
been put to practical use, e.g. the meta machine learning method Bagging
(see [9] and figure 3.3) is based upon the equivalence between the LAP F
and the average predictor f. The rational behind Bagging is that predictors
outputted by a machine learning method have a low bias if the predictors
are complex enough. They will generally have a large variance, but if one
could find the average predictor, then the variance of the average predictor
will be zero. It is impossible to find f exactly since the mean is over all
possible training sets, but if the training set is resampled an approximation
can be made by averaging over the group of resampled training set. This is
a LAP and we have reached the ambiguity decomposition.

For ambiguity to be of practical use, it must obey some properties:



22 Bias/variance and ambiguity

e Ambiguity must always be positive or zero.

e Ambiguity must measure the average difference between the set of
predictors and the combined predictor.
If all predictors are equal the ambiguity should be zero.

e Ambiguity must not depend on the target function.
This also means that ambiguity must not depend on the training set.

In chapter 5 a general decomposition of errors into bias/variance with tar-
get independent variance is presented. Due to the equivalence between
bias/variance decomposition and ambiguity decomposition, a general ex-
pression for ambiguity, that obeys the properties listed above, is implicitly
presented.



Chapter 4

Bias/variance decomposition
in literature

The bias/variance decomposition has been studied intensively in the liter-
ature, mainly in three different ways, or combinations of those: Empirical
studies [27, 12, 25, 92, 72|, limited decompositions with desirable properties
[10, 39], and general decompositions without guarantee of all of the desirable
properties, e.g. target independent variance [44, 10]. In this overview of the
literature we will concentrate on the last two. Bias/variance decomposition
for both regression and classification will be discussed.

Before the overview, we present a very simple bias/variance decomposition
in section 4.1 that exemplifies some of the issues.

4.1 A trivial bias/variance decomposition

The fundamental issue is to decompose the generalization error into two
terms
Generalization Error = Bias + Variance.

The bias is attributed the systematic part of the error, while the variance
is attributed the stochastic part of the error. The stochastic aspect comes
into the picture, since the generalization error is defined as a mean of an
error function over different stochastic variables, e.g. the target function, the
predictor, and the input. Let an arbitrary error function be E(t(z), f(x)),
then the generalization error can be defined as (E(t(z), f(z)))p p x- Thisis
how it is defined in [90]. Often one or more of the stochastic variables are
omitted, depending on the perspective. Most bias/variance decomposition
involves an average predictor f defined on the distribution of predictors F.



24

Bias/variance decomposition in literature

With an average predictor a general bias/variance decomposition can be
defined
(E(, f)) = (B ) — (E(f, N+ (B, [))-

For notational convenience we omit the dependency on input and the s-
tochastic variables. The variance is (E(f, f)) and the “bias” is (E(t, f)) —
(E(f, f)). This decomposition holds for all error functions and even for all
definitions of average predictors. Also, the variance is independent of the
target function. But as a general decomposition it is uninteresting, because
in most cases the “bias” is meaningless. Only in specialized cases, e.g. for
the MSE function and the KL error function, can the “bias” be given a
reasonable interpretation.

A number of such decompositions can be made by rearranging terms. In [44]
one of the more useful can be found, and some useful concepts are defined
(See appendix C and section 4.2).

4.2 James 1996 [44]

The decomposition in [44] is due to James & Hastie. Note that the terms in
the decomposition below are not called bias and variance in [44], but bias-
effect and variance-effect. In [44] separate bias- and variance terms are also
defined, but they do not form a general decomposition. We will regard the
bias-effect /variance-effect decomposition as a bias/variance decomposition.

The decomposition is given by
(E[t, f]) = var(t) + BE(t, Sf) + VE(, f),

where

var(t) = (E[t, St]),
is the intrinsic noise,
BE(t,Sf) = (E[t,Sf] — E[t, St]),
is the bias-effect, and
VE(, f) = (E[t, f] - E[t, Sf])

is the variance-effect. The operator S is called the systematic mean (see
definition 15 in appendix C), and is defined as

Sz = argmin (g(y, z)).
y

We assume that Sf = argming(E(t, f))p and St = argming(E(t, f)), even
though it is not clear from [44]. The decomposition holds for any definition



4.3 Zhu [96]

25

of Sf and St, but is most meaningful with the above definition, e.g. the
intrinsic noise var(t) = (E|[t, St]) is with the definition of St the lowest error
obtainable, because

Vi (Bt fI)p = (B, St])p-

This also implies that the bias-effect always is greater than or equal to
zero. Furthermore, Sf can be regarded as the average predictor, so the
bias-effect can be regarded as the average increase in error when changing
prediction from the best prediction St to the average predictor Sf. Also
the variance-effect can be meaningful interpreted. It is the mean increase in
error when changing the prediction from the average predictor to another
predictor with regard to the distributions over predictors. Unfortunately
there is no guarantee that variance-effect is positive, or that the variance-
effect is independent of the target function.

4.3 Zhu [96]

The decomposition in [96] is due to Zhu. It is not a bias/variance decom-
position as it is presented. It is a decomposition of the mean generalization
error into intrinsic noise (irreducible error) and reducible error. First the
decomposition is presented as it is given, then it is shown how to reinterpret
the decomposition, so it becomes a bias/variance decomposition in the usual
sense. The author claims that the decomposition is a generalization of the
already very general decomposition in [39] (see section 4.4). This claim is
not correct (see section 4.5 for elaboration) even with the reinterpretation.

The decompositions in e.g. [44, 27] are based directly on predictors (see
definition 2), while the decomposition in [96] is based on estimators (see
definition 3). The relationship between input and output for an estimator
is not described by a function, but by a distribution. The distribution can
be discrete or continuous. We will discuss the result in [96] in terms of
a continuous distribution, so we have a density p(z,y) that describes the
relationship between input and output.

Let z = {z1,...,2n} be an example set sampled from the distribution p,
where z; = (z;,y;). The distribution p is described by the stochastic vari-
ables {X,Y}, so p(z,y) is the likelihood of X = z and Y = y. The estima-
tor is the density g(z,y). The goal is to find the most accurate estimator
compared with p. In [96] the inaccuracy of an estimator is measured with
the information loss function D,(p,q). The scalar v € [—1,2] spans the
family of information loss functions. The parameters p and ¢ must obey
[ p < 00, [q < oo and not necessarily [p = [ ¢ = 1. The family of infor-



26

Bias/variance decomposition in literature

mation loss functions is defined by

— — 1—
Jpy DRy € [-1,2)/{0,1}

Dy(pq) = [,,a—p+plogh =1 : (4.1)
_ q —
JoyP—atqlogl  y=0

The information loss function has some desirable properties:

e D,(p,q) = Di—,(g,p) >0
e Dy(p,q) =0 p=gq

An estimator ¢(x,y) depends on the example set z. This we will signify with
the notation ¢(z,y|z) or g(z). The mean generalization error of an estimator
is defined as

E(g) = / P(2)(D(pq(2)))-

The notation (g(z)), is the mean operator with regard to the density m(p|z),
so (g(p)), = fp m(p|z)g(p). It is a somewhat unusual to take the mean with
regard to m(p|z), since p is the “truth”. The intuition is: we have a data set
z, then m(p|z) expresses the density of the different p’s under the condition
that they generated z. So the mean is over the possible “truths” that could
generate z. The notation (-), from [96] is also unusual. The mean is not
over z, but for a fixed z.

If the function I is defined by D, (p,q) = [, 1 (p,q) then the mean general-
ization error of ¢ can be stated as three different means over I

E(q) = ({({I(p,4(2)) x,¥))=)z

The inner mean is over (X,Y) with uniform density, and the outer mean is
over all the possible example sets.

Below is a list of some of the members of the information loss family.

e The Hellinger distance:

D <p,q>=/w<¢ﬁ—¢a)2

Note that this can be transformed into the mean square error. let
p' = p? and ¢’ = ¢? then D%(p',q') = fxy(p — g)2. That can be done
because [p' < oo & [p < oo.

1
2

e Kullback-Leibler deviation:

Di(p,q) = Do(g,p) =/ (a-p+plog?).
z,y

If [p=[q=1then Di(p,q) = Do(q,p) = [plog 2.



4.3 Zhu [96]

27

e The x? deviation:

_ 2
D) = D-1(a) = | v—q)
Z,Y

2q

The information loss function can be decomposed by the y-mean. Before
the decomposition is shown, more definitions are needed.

e y-coordinate: ly(p) = 1)77’ lo(p) = log(p)-
e y-potential: U, (p) = [ (lp,y) U1 (p) = [ plog(p)
e y-mean (p;): Iy(pz) = (Iy(p))=-

1
For v # 0 the y-mean p, is given by ((p?),)7. For v = 0 the y-mean
P is given by exp(log(p)),. Note that [ p = 1 generally does not imply
[, =1%

e ~-variance (<D’Y(p7ﬁz)>2): <\P7(p)>z - q’w(ﬁZ)

For v ¢ {0,1} the v-variance (D,(p,p.)), is given by (f yl%) -
Jey - I [p = 1 then (Dy(p,p)). = ﬁ — Joy 25 # 0. For
v € {0,1} the ~y-variance is given by (D,(p,.)), = fx,yplog( )z —
fz,y o 103(1’32)-

The decomposition is

Proof:
<D’7(paﬁz)) +D (pZa ):

~ A1— o o —
/ (p|z)/ v+ (1 =P — 7Pz " +/ 6. + (1 —v)g—pig'™7 _
(1 =) 2y

7 v(1-7)
/ / (pl2) 2 + (L= y)p: —p"P: "+ b + (1 - 7)g — plg* _
T,y o
/ / (plz) ("YP L + pYq " + . —ppy T — ﬁlqlﬂ) _
N Bt (1 =7)
(Dy(p9))2 +/ PI¢ 77 + P zlpjpl) T plgt _
z,Y

<D7(p, q))z

'Let (p?), be a discrete average over two densities p; and p» each with probability
%. Furthermore, let po = p1 + §, where ¢ is small and integrates to zero over input and

1
output. Then (p?). is approximately pi1(1 + (% ;—1)7) which is not normalized.



28

Bias/variance decomposition in literature

There are two problems with the decomposition in (4.2). The 7y-mean is
defined on a mean with regard to the density of p - the “truth”. Furthermore,
the y-mean is not normalized even if the p is normalized.

Let us begin with the definition of the y-mean. It is not equivalent with the
average predictor, since it is defined on the distribution of p - the “truth”
(the target). The y-mean can be regarded as the average target for a fixed
example set z. The decomposition in (4.2) is then a decomposition of the
generalization error into an intrinsic noise term (the y-variance) and the
reducible part of the generalization error D, (p,,q). This cannot be seen as
a bias/variance decomposition.

By interchanging the meaning of p and ¢ we get a new interpretation of the
decomposition, so it can be seen as a bias/variance decomposition. The -
variance must be equivalent with the variance, and the term D, (p,, q) must
be the bias. The former estimator ¢ must be interpreted as the “truth” or
the target density, while p must be interpreted as the estimator. That is in
agreement with the definition of the y-mean. With the new interpretation
the y-mean is defined on a mean with regard to the density of p - the
predictors. Only the definition of the average generalization error must be
changed. Now it is p that depends on z:

E(p) = / P()(D(p(2).0))-

The second problem is that [p = 1 generally does not imply p, = 1.

Furthermore, the decomposition does not hold for the normalized vy-mean
P, = fpgz-

4.4 Heskes 1998 [39, 40]

The decomposition in [39, 40] is due to Tom Heskes. It is based on the
Kullback-Leibler (KL) divergence, that compares density or probability func-
tions. If the density or probability functions are predictors the KL diver-
gence can be viewed as an error function (see chapter 11 or section 7.1.4),
but if the density or probability functions are estimators parameterized by
predictors (see definition 3), the KL divergence is not in it self an error
function, but is a way of deriving error functions from density or probability
functions.

The combination rule is the logarithmic opinion pool (LOP). We repeat the
definition of the LOP from definition 12:

The logarithmic opinion pool is an average measure of a (possibly infinite)
group of estimators p. The estimators are probability or density functions.



4.4 Heskes 1998 [39, 40]

29

The group of estimators have associated a mean operator (-)f,2. The LOP
for an outcome y is given by N

ply) = 7 exp {log (y))p. (43)

where Z is a normalization factor satisfying for the continuous case [ dyp(y) =
1 and the discrete case Y, p(y;) =1

The LOP is intimately connected to the Kullback-Leibler (KL) error

Exr(t,p) =Y t(yi) log (t(yi) ) (4.4)

- p(yi)

where ¥ = {y1,...,yn} is the vector of classes, and ¢ is the target probability
function. In the continuous case t and p are continuous density functions of
y and the summation in (4.4) is replaced by integration over y. Note that
the KL error always is positive or zero. The proof is by Jensen’s inequality

Z Ailog(z;) < log(z AiTi),
i i

where A\; > 0, and ) ; \; = 1. Setting \; = t(y;) and z; = t((gi-) we get

(It’(y;)> < log (Z; <y)f<(35))> @
() < e 32t

108 (o) <0
Zt(yz’)log (?(Z?)) -

i

N

y;) log

The variance is defined analogously to the definition of variance in [44] as
the smallest mean distance measured by the KL error function between the
estimators p(y) and an average estimator. This definition of the average
estimator is equal to the systematic mean (see definition 15 in appendix C).
There is a normalization constraint on the average estimator, since it is a
probability function. We arrive at

var(p) = mln<EKL(Z P)p = (Exr(p,0)p (4.5)

2The mean operator is not with regard to the density or probability given by the
estimators viewed as density/probability functions, but is with regard to the density or
probability of the estimator in the group of estimators.



30

Bias/variance decomposition in literature

under the constraint ), p(y;) = 1. The average estimator p(y) found this
way is the LOP. The variance will be called the logarithmic variance. Note
that the logarithmic variance always is positive or zero, since the KL error
always is positive or zero.

The bias is the difference between the target function and the average esti-
mator

bias(t,ﬁ) = EKL(taﬁ)

Note that the bias always is positive or zero, since the KL error always is
positive or zero.

The bias and variance constitute a proper decomposition of the mean of the
KL error

(Exr(t,p))p = bias(t, p) + var(p). (4.6)

If it is assumed that the target function is a discrete class probability vector
and that the individual target probabilities are either one or zero, the ex-
pression for the error and the bias becomes simpler. This is the case if the
target function is associated with a set of class examples. Because proba-
bilities sum to one, there is only a single of the target probabilities that can
be one. Let the index of this be ¢. Now the error decomposition becomes

(i (t0)p = —(108((e))g = —og(@(ue)) + (Bxr(@,5))g (A7)

For a continuous target function we get a similar result up to an irrele-
vant constant® with Dirac’s delta function (see e.g. [70] p. 614-618) and
integration.

(Bx1(t0),9))p = —(108(y")s = ~logpW) + (Bxr(.p))g.  (4.8)

where #(y) is defined as the Dirac’s delta function 4, .

In the discrete case the estimator p can be viewed as a vector of class
probabilities, which can be equated with the output of a predictor, i.e
G2, B(yal®) = (FH(F),., (@) = [(@). An example of this
can be seen in chapter 11. The general way is to view the estimators are
as parameterized density /probability functions. As an example assume that
the density is given by the continuous density function of the Normal distri-
bution: p(y; u, ). The outcome y is the outcome of a continuous stochastic
variable Y and the output of a predictor f is associated with the mean pa-
rameter u, so we have p(y) = p(y; f, o). Note that the mean operator (- ) is

3The constant goes towards infinity as ¢ goes towards the Dirac’s delta function, but
the constant appears on both sides of the right-hand equality sign in (4.8) and is therefore
irrelevant.



4.4 Heskes 1998 [39, 40]

31

now with regard to the probability /density of predictors f, and only indi-
rectly with regard to the probability /density of the estimators p. Therefore
the symbol for the stochastic variable is changed to F.

The estimator associated with average predictor becomes

Ply) =  exp (108 p(y) g

_£)2
= %exp( — log(ov/2r) — %ﬁ‘ (4.9)
2 2_9
= %exp[_ <§U>2E] exp(— log(oV/2m) — %)
The constraint on p gives
_F)2
Z = /dy exp ( — log(ov/2m) — %)F
2 2_9
= expl= L8 [ ayexp(-togtovam) - 20

2
By multiplying both Z and exp ( — log(ov2m) — (yT;J;X)E with exp(—%g—)

in the expression of p(y) (4.9) we get

. 2 1-1
ﬁ(y)=[ dya\Z—WeXP(—(y 25:;)2) )] U;ﬂexp(—i%a )-

The first factor

1 -1

[ tvlo = exnl 55t~ (1))

is one, since it is the inverse of the integral over a density function, so we

get )
) = o exp(- LD

oV2m
The density function associated with the average predictor has the same
form as the group of density functions for the predictors f, so the average
predictor is f = (f)p. By using the decomposition in (4.7) we get (omitting
irrelevant constants and factors)

(f=9)p =T —9>+{f =N
as noted in [27] and chapter 3

|

A similar result applies to all members of the exponential family (see ap-
pendix E). It is shown for the natural form of the one parameter exponential
family (E.4):

p(y) = p(y;n) = exp[nT'(y) + do(n) + S(y)]



32

Bias/variance decomposition in literature

The density p(y) is normalized:

/ dyp(y) = exp(do(n)) / dyexplT(y) + Su)] = 1,

/ dy explT(y) + S(u)] = exp(—do(n)). (4.10)

Note that the mean operator (- ) now is with regard to the probabili-
ty/density of the parameter 7. The average estimator is given by

Ply) = 7 expl(T(y) + doln) + 5(3),

= expl(n), () + (do(m), + S

The normalization constant Z is

2~ [ dyexpl(n), Tw) + (o)), + S

13

where the last equality comes from (4.10). The average estimator becomes

p(y) = exp[(n), T(y) + do({n),) + S(y)]- (4.11)

So the average estimator is also a member of the one parameter exponen-
tial family with a parameter equal to the mean of the parameter of the
estimators:

1=y

For the Normal distribution the 7 parameter equals the mean of the distri-
bution (except for a constant). The connection between 7 and the mean is
not always linear. The function describing the connection is the canonical
link function n = ¢(p). If one wants the predictors to correspond to the
mean, the average predictor is not always the mean of the predictors, but is
given by

F=c({e(f)p)-

In table 4.1 the average predictor for the most commonly used distributions
are given.



4.4 Heskes 1998 [39, 40] 33

| DENSITY | AVERAGE PREDICTOR |

Normal F={fe

Poisson f = exp(log(f))g

Binomial f=lexp(log(f ' =1)p—1]"
Gamma F="g

Inverse Gauss f = <f72>§2

Table 4.1: Average predictor for LOP

The logarithmic variance is given in (4.5). The logarithmic variance for the
natural form of the one parameter exponential family is

var(p) = (do((n(f))g) — do(n(f))) - (4.12)

Proof:

var(p) =(ExkL(P: D))y

=(do((n(f))r) — do(n(f))g

In table 4.2 an overview of some variance expression is given.

4.4.1 Logarithmic ambiguity

In section 3.2 the ambiguity for MSE is described, and it is shown that the
ambiguity decomposition for the MSE is mathematically equivalent with
the bias/variance decomposition. In [40] an ambiguity expression for the KL
error is presented, this is also mathematically equivalent to the bias/variance
decomposition of the KL error.



34

Bias/variance decomposition in literature

| DENSITY | VARIANCE |

Normal H(f = Me
Poisson (f—71 )F
Binomial n(log =4)
Gamma v{log %)

Inverse Gauss x(f — f)g

Table 4.2: Variance for LOP

The ambiguity expression for the KL error will be called for logarithmic
ambiguity. The logarithmic ambiguity expression will be discussed in the
context of predictors outputting class probabilities. As mentioned in section
4.4 there are other contexts, e.g. where the predictor output is the mean
in a density function. The discussion below is readily generalized to that
perspective.

An ensemble consists of M ensemble members f;. The output of f; is
{fL ..., f)}, where ff is the estimate of the probability of class c. Each
ensemble member has associated a weight «;. The weights obey >, a; =1
and a; > 0. The weights can be viewed as the probabilities of the corre-
sponding predictors, and ZZN a; can be regarded as the mean operator for
the stochastic variable F. The combined LOP predictor for a single class ¢
becomes

1
F® = — exp(log f)p,

where Z is a normalization factor given by

N
Z = Zexp(logfcf)E
J

Now we have a decomposition of the error of the combined LOP predictor
on target ¥

EKL(:J’ F) = <EKL(37’f)>E_ <EKL(Faf)>E

The first term on the right side of the equality sign is the average error of
the ensemble members, while the second term is the logarithmic ambigui-
ty, which is independent of the target function. In chapter 11 there is an
example of the use of logarithmic ambiguity.



4.5 Zhu [96] and Heskes [39]

35

4.5 Zhu [96] and Heskes [39]

In [96] it is claimed that the decomposition in (4.2) is a generalization of
the decomposition in [39]. As noted in section 4.3 the decomposition in
(4.2) is not a bias/variance decomposition, but it can be reinterpreted to
become one. Even in that case it is not a generalization of the decomposition
from [39] in (4.6). There are some similarities. The decomposition in 4.3
involves the information loss function that compares density functions. The
information function is parameterized by v and for two values of 7y (zero and
one) the information loss function becomes the Kullback-Leibler divergence
measure. The decompositions are still not equivalent.

In [96] (see section 4.3) the information loss for v € {0,1} is given by

/
P
Di(p',q) =/p’10g 7

ql
Dqo(p'.q') Z/q'log;-

The information loss has associated a mean operator (-), that is with regard
to p’. In [39] (see section 4.4) the Kullback-Leibler divergence is given by

K(q,p) = /qlog%-

The Kullback-Leibler divergence has associated a mean operator ( - )p that
is with regard to p. Both integrals are over the input and output space.

The following must be equivalent
o p' ~p.

o {(“)p~ (e

But then Di(q’,p’) is not equivalent with K (g, p) since the parameters are
interchanged and the functions are asymmetric*.

The functions Dy(q’,p") and K(q,p) are equivalent, but the two definitions
of the average densities is not. The average density in section 4.4 is p =
1 . . . . . ~) /

- exp (log p)p, while the average density in section 4.3 is p, = exp (logp').,

but these are not the same because of the normalization factor Z = [ p # 1.

“Note that D; has a natural decomposition with a y-mean (p'), that is a density.
However the decomposition is practically useless, since ¢’ appears in the denominator in
the expression for D



36

Bias/variance decomposition in literature

4.6 Others

Friedman [25] and Bauer & Kohavi [5]

In Friedman [25] and Bauer & Kohavi [5] two bias/variance decomposition
for classification probabilities are given. Let y be a class label from a finite
set of classes Y. Let p(y|Z) be the target probability and f(y|Z) be the pre-
dictor. We will present the decomposition at one input point and therefore
omit 7 from the notation. Let (-) be the mean operator with regard to a
distribution over the predictors. Let f(y) = (f(y)) be the average predictor.
The decomposition in [25] is

O @) = ) =Y () — FW)*+ (D _(fly) — F)?, (413)

yey yey yey

where 35,y (p(y) — f(y))? is the bias and (35, (f(y) — f(y))?) is the
variance. This is the same decomposition as for regression MSE, the only

difference is that probabilities are compared.

The decomposition in [5] is based on the error function

E(p,f)=(1-Y_pu)fW))

yey

The error function is sensible since it always is positive or zero. It attains
it’s minimal value if p = f. If the target probabilities are class examples,
so p(y) € {0,1}, then the error becomes 1 — f(Yeorrect), Where Yeorrect 18 the
correct class. The decomposition is given by

(1= Y00 W) = 5 o) — WP + 50— X 7w+ 3o (419

yey yey yey

where 02 = [1 — Eyeyp(y)Z] is the intrinsic noise (irreducible error), the
term - v [p(y) — f(y)]? is the bias, and [1 — > yey f(v)?] is the variance.

The bias/variance decomposition in (4.13) is traditional in the sense that
the error in question is the average over a set of predictors and the de-
composition involves an average predictor. The decomposition in (4.14) is
not a bias/variance decomposition in the usual sense. The variance term
[1—2 ey f(y)?] does not involve the variation around an average predic-
tor. It is better interpreted as a measure of “certainty”. If the predictor is
certain (but not necessary correct) about the classification, i.e. if f(y) =1
for some class y, then the variance is zero, while a completely uncertain
predictor, i.e. if f(y) = ﬁ, has the largest variance. The bias in (4.14) is
equivalent with the MSE error function in (4.13). Taking the average over
a set of predictors and combining the two decompositions yields a decom-
position comprised of four terms: bias, variance, the certainty of the target
(intrinsic noise), and the certainty of the predictor. [ |



4.6 Others

37

Friedman [25]

The paper by Friedman [25] has been quoted several times for the following
statement “For classification it is possible for fixed bias, that an increase in
variance to yields a decrease in error”. This seems to contradict common
sense about bias/variance decomposition. This is not so, because while the
statement above is correct, it would be more meaningful to rephrase it to
“For classification it is possible for fixed MSE bias, that an increase in
MSE variance yields an decrease in classification error”. The MSE bias
and variance are defined in (4.13), while the classification error is defined as
the average probability of misclassification. Let the problem in question be
a two-class problem, so a predictor misclassifies if the predicted probability
of the correct class is less than 50 %.

The situation where increasing variance yields decreasing classification er-
ror arises if the predictors on average make the wrong prediction, i.e. the
average predictor predicts the correct class with less than 50 % probability.
The average classification error will be large but not necessary 100 % mis-
classification. Some of the predictors could predict the class with over 50 %
probability. Fix the bias (and thereby the average predictor) and increase
the variance, now more predictors will predict the class with more than 50
% and the classification error will decrease.

There is nothing spectacular about the statement in [25], because the errors
that are used are of different types. |

Breiman [10]

In Breiman [10] two bias/variance decomposition are given. The usual MSE
decomposition for regression and a radical different decomposition for clas-
sification. Normally an error function and corresponding decomposition
involves comparison of metric values, for regression the comparison is di-
rectly on the values, for classification the probabilities can be compared as
in (4.13). The decomposition in [10] uses non-metric class labels. So we have
a classifier ¢(Z) that outputs a class label. We use the symbol ¢ to empha-
size that we are dealing with pure classification. The classifier is a member
of a set of classifiers with associated distribution denoted by the stochastic
variable C. The classes y € Y have associated a distribution denoted by the
stochastic variable Y. The average misclassification error for a classifier is
defined as

PE(c) = (c(Z) # y)g,z
The Bayes optimal classifier is

c*(Z) = argmax P(y|T),
y



38

Bias/variance decomposition in literature

where P(y|Z) is the true probability of the class y at point Z. Instead of an
average predictor the aggregated classifier is defined as

¢(f) = argmax (c¢(Z) = ¥) ¢
y
This is aggregating by voting. A classifier is unbiased at point Z if the
aggregated classifier equals the Bayes optimal classifier, i.e. the classifiers
more often predicts the same class as the Bayes optimal classifier on average
than any other class. Let U be the set of input point for which the classifiers
are unbiased, and let B be the complementary set. Bias is defined as

bias(c) = PEg(c*) — (PEg(c))c»

where PEp denotes the average generalization error, where the average over
input points is taken over the input points in the set B. The variance is
defined as

variance(c) = PEy(c*) — (PEy(c))c,

where PFEpy is analog to PEg. The average generalization error can be
decomposed as

PE(c) = PE(c*) + bias(c) + variance(c)

This decomposition has a number of desirable properties
¢ Bias and variance are always positive or zero.
e The variance of the aggregated classifier is zero.
e The bias of the Bayes optimal classifier is zero.
e The decomposition holds for all classifiers.

But the decomposition lacks one important property, namely target inde-
pendent variance. |

Many of the bias/variance decompositions in the literature assume implic-
itly or explicitly that the distribution of targets and predictors, estimators,
or classifiers are independent. Often this is a necessary requirement for the
decomposition to hold. In [90] the problem of dependency is addressed. Cor-
rection terms are presented for e.g. the MSE bias/variance decomposition.

In chapter 5 we present a general bias/variance decomposition with desirable
properties, and show for which family of error functions that decomposition
hold.



Chapter 5

General bias/variance
decomposition

Erst wenn die Wolken schlafen gehen,
kann man uns am Himmel sehen.
— RAMMSTEIN, Sehnsucht, Engel.

A great deal of research has gone into finding an expression for a bias/variance
decomposition that applies to all error functions or as many error functions
as possible (see [10, 27, 90, 25, 44, 39, 96] or chapter 4). The properties
sought are not always the same. One of the more common is that the de-
composition must be proper, meaning that the error can be expressed by
the sums of bias and variance (maybe plus some intrinsic noise term from
the target function). Another common property is that bias and variance
must be positive or zero, and the variance is zero if the different predictors
are functional identical.

A general decomposition will be presented below, developed by the author
of this dissertation and Tom Heskes. A paper based on the results have been
accepted for presentation at the 15th International Conference on Pattern
Recognition (ICPR2000) [35].

5.1 Introduction

In chapter 3 the bias/variance decomposition for the MSE was given. The
MSE is by far the most commonly used error function, since it has many nice
properties. The use of the MSE for regression problems makes the implicit
assumption that there is Gaussian noise on the target function. This is a
reasonable assumption, without specific knowledge about the noise, since the



40

General bias/variance decomposition

Gaussian (or Normal) distribution is the “standard” distribution, but with
more specific knowledge we can often do better. In this section we present
a family of error functions with almost all of the nice properties of the
MSE, e.g. a bias/variance decomposition with target independent variance.
The family of error functions corresponds exactly to the error functions
derived from the exponential family of distributions. The assumption of
Gaussian noise can therefore be replaced by any kind of noise assumption
with distributions from the exponential family.

An important concept is the average predictor (see definition 12). The set
of predictors, on which the average predictor is defined, has a distribution
associated with it. The mean operator (- )y is with regard to that distribu-
tion of predictors. The distribution can be either continuous or discrete. A
continuous distribution could e.g. come from a stochastic learning method.
The predictors in an ensemble with normalized ensemble coefficients can
be viewed as a discrete distribution. The most common definition of the
average predictor is the linear average predictor (LAP) defined as f = (f)p.

5.2 Requirements for bias/variance decomposition
and error functions

We will state the natural requirements for any error function and a strict
set of requirements for the bias/variance decomposition. The MSE and
corresponding decomposition is used as an example. The MSE is given by

EMSE(taf) = 1(t - f)2

2
The shape of Eyg(t, f) as a function of the predictor f is a parable with
a global minimum at t. Furthermore the value at ¢ is zero. Any other
error function should also be minimal at ¢ and have no other local or global
extremes. Note that it is easy to achieve that the value at t is zero, as the
error function E'(t, f) = E(t, f) — E(t,t) automatically ensures that. The
requirements are stated mathematically as

1. argmin E(t, f) =t
)

2. BE(t,t) =0

The first requirement is not the whole story. It only specifies that the global
minimum must be at ¢. There could be other extremes, so we really want

that %ﬁ;f) = 0 only at one point, namely at . Furthermore, 6261%:% ) should
be positive. We will not always mention all the specific properties needed to

ensure the requirements. Often we shall assume the relation in (5.1) holds




5.2 Requirements for bias/variance decomposition and error functions

both ways.

0
2 = argmin g(y,2) < 99y, 2) =0
z 0z

(5.1)

2=z

The relation in (5.1) holds for the MSE. We show f = t for MSE in details

O0FBusk(t, f)

— =0, <&

of f=r
—-t=0|. <&

! f=f

f=t
and
9?Euss (1, f) 1

ofof

The bias/variance decomposition of the generalization error for MSE (3.2)
is on the form

(Buse(t, f))p

EMSE(t’ fT) + <EMSE(fTa f))E
bias(t, f) + var(f),

where the average predictor f is (f)p.

The bias/variance decomposition for the MSE has some very desirable prop-
erties. The bias depends only on the predictors through the average predic-
tor. The variance does not depend on the target. Furthermore, the average
predictor minimizes the variance:

f= argrtnin (E(t, f))p- (5.2)

This will later become the general definition of the average predictor, so we
will expand upon it. We will assume that the implication in (5.3) holds both
ways and omit any other details.

z = argmin (g(y, 2))z © a0 - 0| (5.3)
Y Y z=y

The definition in (5.3) is equivalent to the definition of systematic mean (see
definition 15 in appendix C) from [44]. Note the difference between (5.1)
and (5.3): the value Z from (5.1) is the minimal value of z for a fixed y, while
the value Z from (5.3) is the minimal value of y on average with regard to
z. If the function ¢(y, z) obeys z = y, then z is a weighted (by the function
¢) minimum of z.



42

General bias/variance decomposition

The definition in (5.2) yields f = (f)p for the MSE. We show that in detail
by using (5.3):

HBuse(t, f))p

=0_ <
ot f=t
a-EMSE(taf) _
< ot >E_ 0 et
(F-te=o|
(flg=t Ft A
F={Ne

A general bias/variance decomposition with the same desirable properties
as the MSE bias/variance decomposition has the form

where the average predictor is given by (5.2).

We end this section by summarizing the requirements in figure 5.1.

R1: argmin;E(t, f) = t.
R2: E(t,t) = 0.
R3: The bias/variance decomposition is

(E(t, e = E@ f) + (E(f, g (5.5)

where

f= argmin (E(t, /) (5.6)

is the average predictor.

Figure 5.1: Requirements

5.3 Deviance error functions

The deviance is a measure of how similar two statistical models are. If one
thinks of the example set as one of the models and the predictor as the other



5.3 Deviance error functions

43

model, the deviance naturally can be thought of as an error function. In
order to do so error functions must be linked to density functions.

Before the definition of the deviance error functions is given, we show how
the MSE can be interpreted as the negative log likelihood under the as-
sumption of Gaussian (Normal) noise. The Normal distribution with unit
standard deviation is given by

1 1 9
plzlp) = Nir: exp[—5 (2 — p)7]
The negative log likelihood is
1
~logp(2|p) =log V2m + 2 (2 — p)*

By interpreting the outcome z as the target and the parameter y as the
predictor the expression above only differs from the MSE by an additive
constant. The desired result is found by subtracting — log p(t|t):

Eyse(t, f) = —logp(t|f) + log p(t|t)

This can be viewed as the deviance [53].

In the general definition of deviance two statistical models, represented by
their densities, is used to describe the same set of data: {z1,...,2zx}. The
deviance is used to compare the statistical models. The measure is the
logarithm of the quotient of the two densities:

p1(2i]6;)
p2(zil60;)’

here presented for only one data point. A natural upper bound on the
likelihood is when the density p; is parameterized to have maximum likeli-
hood at exactly the data points. Let the density p; have that property, ie.
argmax, log pi1(z, 91) = z;. The density ps will naturally represent the model
which accuracy we wish to measure. The parameters {51, - ,én} are given
by the definition of the full model, while the parameters {61, ...,6,} are the
parameters we wish to predict. This yields a natural definition of an error
function derived from a density

E(ti, f(#)) = D(t:, 6:, f (%)),

D(z,0:,0;) = log

where the predictor f(Z;) is the estimate of parameter 6;. This defines a
family of error functions

Definition 13 (The Deviance Error Function)



44

General bias/variance decomposition

Let p1 and py be two densities, each with one parameter and scalar outcome.
Let f be a predictor and let S = {(t1,Z1),...,(tn,Zn)} be an ezample set.
The deviance error function for a single example is given by

E(t;, f(3)) = —log p1(til £ (%)) + log p2(ti6;), (5.7)

where the parameters 0; obey

argmaz logp(t,6;) = t;.
t
|

Often the densities p; and po will come from the same class of distributions.
This is the case in section 5.4

5.4 Deviance error functions for the exponential
family of distributions

Let the density p correspond to a member of the one-parameter exponential
family of distributions (see appendix E):

p(2|0) = exp[c(0)T (2) + d(0) + S(2)];

where c is the canonical link and T is the sufficient statistics. The deviance
error function (see definition 13) is

E(t, f) = [e(8) — (T () +d(6) — d(f)

The error function requirement R1 (see figure 5.1) is generally not obeyed,
but by reparameterizing the density p the requirement can be ensured. From
5.1 and 5.7 it follows that

oy, 1= logp(tlf) +logp(tlf)] _ _dlogp(tlf) _

af of f=t

This yields for an of the one-parameter member exponential family

Vi (f)T(@t)+d(f)=0 i

so the functions ¢, T', and d must be related or constrained by
Vy:d(y)T(y) +d'(y) =0 (5.8)

Note that the constraint in (5.8) means that the parameter with maximum
log likelihood is equal to the outcome, so for the density p(z|@) it should



5.4 Deviance error functions for the exponential family of distributions

45

apply that 6 = 7. This is generally not obeyed, but it is possible to repa-
rameterize the density to another parameter ¢, that ensures qAS = z. Let the
relation between the parameter 6 and ¢ be given by 6 = g(¢). The density
p(z|g($)) is the same as p(z|@), only the value of the parameter is not the
same.

For ¢ = z to hold g(y) must equal A~ (T(y)), where h(y) = —d'(y)/c (y).
Using (5.1) yields

8logp z|g ‘

¢ (9()g (DT () +d (9(p g'(qs) .,

d(g(¢)
Cd(g(e)

hg(4)) =T(2)| .
$) =

Implying that g(y) = b= (T (y)) yields ¢ = z.

As an example it is shown how to reparameterize the Normal distribution
and the Gamma distribution.

Example 1: Normal distribution The Normal distribution is given by

z— 2
p(z3p,0) = 0;27 exp[—( 205) ]

Assuming that the standard deviation is known, it is an one-parameter den-
sity. The free parameter is the mean . The defining functions are c¢(u) =
p/o?, T(z) = z, and d(u) = p*/(20%), yielding that h(u) = —d'(1)/c' () =
p. The reparameterization function g(¢) = h 1 (T(¢)) yields ¢ = p. This
implies the well-known result that i = z, because ¢§ = z, so for the Normal
distribution the predictor f is an estimate of the mean parameter. |

Example 2: Gamma distribution The Gamma distribution is given by

AY xl/—le—)\m x> 0

p(z;v,\) = {F(”)

0 else

Let the parameter v be known and the parameter A be the free parameter.
Setting A = 6 yields

p(2]0) = exp[—0z + vlog(6) + (v — 1) log(z) —log(T'(v)),



46

General bias/variance decomposition

where ¢(0) = —0, T'(z) = z, and d(0) = vlog(f). This yields h(8) = v/#,

which implies 8 = g(¢) = v/¢. The mean of the Gamma distribution is

given by v/\ = v/(v/$) = ¢, so the parameter ¢ is the mean parameter.

As for the Normal distribution the predictor f is an estimate of the mean

parameter. Renaming the functions ¢(g(¢)) and d(g(¢)) to c¢(¢) and d(¢)

yields ¢(¢) = —v/¢ and d(¢) = vlog(v/¢). The reparameterized density is
v

¢) + (v — 1) log(z) —log(T'(v)),

which obeys the constraint (5.8). [ |

p(z|$) = exp[—gz + vlog(

With the reparameterizing, the parameters ¢; in the full model become easy
to find. They are equal to the target ¢;. The deviance error function becomes

E(t, f) = [e(t) — (DT (@) + d(t) — d(f)- (5.9)

We will later show that only error functions with the form in (5.9) are
decomposable as in (5.5). Observe that the function d is determined com-
pletely from the functions ¢ and T' by the constraint (5.8), so the canonical
link function ¢ and the sufficient statistic function 7" can be viewed as the
fundamental defining functions.

As noted above the Normal distribution does not need reparameterization
and has c(f) = f,T(t) = t, and d(f) = —1f? for the standard deviation
equal to one. This yields Exoruar(t, f) = Fuse(t, f) as expected.

The error function in (5.9) obeys R1-R3 in figure 5.1. That R1 is obeyed
comes from the constraint (5.8). Requirement R2 is obeyed because of the
definition of deviance. For the error functions in (5.9) we have the following
corollaries

Cl: f= argmin (E(t, f))p = e H({e())p)
Proof:
Using (5.3) we have

f= argrtnin (E(t,f)p &
NE(, [y 0
ot B ‘t:f
(d@OT () + c)T'(t) — c(/)T'(t) + d' (t)p = O‘t:f <
(cT'(t) — c(HT'(t)p = OLZ [
()T (t))p = (c(f)T'(t)>EL:f Aad



5.4 Deviance error functions for the exponential family of distributions

where the constraint (5.8) has been used.
C2: 7= argmin (E(t, f))g = T~ (T(1))g)
i T T

The term ¢ will be called the average target.
Proof:
Using (5.3) we have

t = argmin (E(t, f))p <

!
NE(, [))r 0
of N f:f<:>
(=d(HTE) —d(f)p=0 i <
(= (HTE)+(NHT(f)p =0 . <
T(f)={Tt)r i <
t=T7'((T(t)g),

where the constraint (5.8) has been used.

The average predictor is defined by corollary C1. The bias/variance decom-
position (R3) is proven by inspection.

) +(E(, ) =
[e(t) — e(NIT @) + d(t) — d(f) + {[e(f) — e(NIT(f) +d(f) — d(f))p =
[c(t) = c«(DIT(t) +d(t) + [e(F) = (c(NEIT(F) = {d(f))p =
[c(t) = (c(fNE]T(#) +d(t) = {d(f))g =

where ¢(f) = {c(t))g has been used multiple times.

The variance is by definition independent of the target, and given by
var(f) = (E(f, f))p = (d(f) — d(f))p (5.10)

The decomposition in (5.5) is defined for a single target. If we also average
over the distributions of targets the bias term can be split into an intrinsic
noise term and a bias term. For the generalization error averaged over both
the predictors and the targets we get

(Et, gz = (BEt,D))p + EE f) +(E, N, (5.11)

where (E(t,f))y is the intrinsic noise (irreducible error) and E(%, f) is the
bias. The systematic part of the error, the bias, is minimal at the average
target defined by corollary C2.



48

General bias/variance decomposition

The corollary C2 deserves more remarks. First, note the symmetry between
corollary C1 and C2. The average predictor and the target predictor are
of the same form for the canonical link and sufficient statistic respectively.
This suggests interchangeability that will be explored in section 5.8. The
corollary C2 holds for any mean operator over T, even if the distribution
of targets is not equal to the distribution from which the error function is
derived. If the distribution of targets is equal to the distribution from which
the error function is derived, it yields that ¢ = ¢. It is shown by using
the general relation from appendix E (E.5) for the reparameterized density

p(z|9).

Ologp(zl¢),
<7a¢ )1—0

=
(AT (2) +d'($)p =0

—~
S
—~
N
~—
S~
Il
—~
&
—
<
~

_ C,( ) &
(T(2))p = (T(¢))
T (T(2))x) = ¢,

where T(¢) = —d'(¢)/c'(¢) has been used. Note that the above always
holds, not just for a particular value of ¢, but for all ¢. By using (5.3) we
find £ =T }((T(t))g) = ¢. Even though the predictor f is associated with
the parameter, we cannot conclude the f = £, because f is an estimation of
¢, and the above holds for the “real” unknown parameter.

$) 1
s

We conclude this section by summarizing the most important results.

e The deviance error functions with the form

E(t, f) = [e(t) — (NIT(#) + d(t) — d(f)

obey the requirements in figure 5.1, if the error function obeys the
constraint ¢ (f)T(t) + d'(f) = 0.

e Any one-parameter exponential density can be reparameterized so the
corresponding deviance error function obeys the constraint (5.8). The
new parameter ¢ must obey

where 6 is the old parameter and h(y) = —d'(y)/c ().

e The variance is given by var(f) = (d(f) — d( f))p, which is indepen-
dent of the target.

e The average predictor is given by f = ¢~ {c(f))p-



5.5 Completeness of the family of deviance error functions derived from the

one-parameter exponential family of distribution

49

e The average target is given by ¢ = T*1<T(t))l.
If the distribution of T is the same as the distribution from which the
error function is derived then = ¢.

e The defining functions are the canonical link function and the sufficient
statistic function.

e The bias/variance decomposition.
Decomposition of the average generalization error with regard to the
predictors only is

(E(t, g = E@ ) +({E(f, g

Decomposition of the average generalization error with regard to both
predictors and targets is

(E(t, ez = (Bt D)) + EES) + (B, g

5.5 Completeness of the family of deviance error
functions derived from the one-parameter ex-
ponential family of distribution

In section 5.4 it was shown that error functions of the form

E(t, f) = [e(t) — c(NIT(2) + d(t) — d(f)

with constraint ¢'(f)T'(t) + d'(f) = 0 (5.8) obeys the requirements in figure
5.1. Also it was shown that if the density from which the error function was
derived did not obey the constraint (5.8), it could be reparameterized with-
out changing the density class. Furthermore, it was noted that the defining
functions are the canonical link and the sufficient statistic. These occur as
a product in the error function. It seems like a fundamental property of the
error function. The proof or verification of the requirements suggests that
exactly a product is necessary for the bias/variance decomposition to hold.
This is indeed the case, which is proven below.

We will show that 825;((9? ) = a1(f)az(t). This suffices since it implies that

E(t, f) is of the form

A1(f)A2(t) + k1 (f) + Ka(t),

where A; and A, are the anti-derivative of a1, and ao respectively. The
functions k; and ko are arbitrary functions. If the error function is inter-
preted as a deviance error function we identify A; and As as the canonical
link function and the sufficient statistic respectively. As noted in section 5.4



50

General bias/variance decomposition

they are the defining functions, so k1 and ks is determined from A; and A,
2
so is sufficient to show aaEtig}f) = a1(f)az(t) for any functions a; and as.

We will show 2 ;J;g}f ) — a1(f)az(t) for a particular value of f, namely for

the average predictor f. The proof will not depend on the form of the
2

distribution, so the relation 9 ;;g;;f ) = a1(f)ao(t) will still hold for any value

of f by choosing the distribution of predictor to be the appropriate Dirac’s

delta function or Kronecker delta function.

The crux of the proof is that a slight change in the distribution over f yields

e dist
a change in the average predictor, that affects aftig}” multiplicatively and

independently of a fixed {. Mathematically this means that a2£g;f ) must be

of the form ka(f), where the constant k£ can depend on t.

The derivative with regard to ¢ of the bias/variance decomposition (5.5) is

HE(, )y  OE(t, )
ot ot

for all distributions F. Let II denote a particular distribution with density
7(f) and average predictor f. Let d(f) be a function that integrates to zero
over the domain of f. Then 7(fle) = w(f) + €d(f) is a density with average
predictor f(e), yielding

OB e _ 9EE ) n, 9 [dfs(f)E(t f)
ot ot ot

or equivalently

E(t,f(e)) OE(, f) te o [dfi(f) f)
ot Ot at

Differentiation with regard to e yields

O*E(t, f(€) 0f(e) _ 0 [ df3(£)E(, )

otof  Oe ot

Note that ZEEGHED) 5 short-hand for azftig}n‘f fa In the limit € — 0,
=f(e

dtof
%éff(e)) becomes 62£gt}f ). The right hand side does not depend on f,

af(9
de

while
yields

does not depend on ¢t. Taking the limit of ¢ and rearranging

82E(t,f)_[8f ]1afdf6 E(t, f)
otof L e ot ’

this is exactly on the form al(f)ag_(t). Note that the value of % is still
well-defined in the limit, because f(e) is continuous in €. Another way of



5.6 Examples of deviance error functions

seeing the result is to choose two values of €: €; and e3. Then the quotient
¢ OBt J(€0))
of —Zw7 becomes

E(t, f(e1)) /82E(t, fle2)) _ Of /OF
otof otof "~ Oey/ Oer’

which is independent of .

5.6 Examples of deviance error functions

We consider two special cases: linear sufficient statistic and linear canonical
link.

The common univariate distributions in the exponential family have lin-
ear sufficient statistics, but generally non-linear canonical links. This also
applies to the generalized linear models (see appendix D). In table 5.1 is
an overview of the ¢, T, and d functions, respectively the canonical link,
sufficient statistic, and normalization term from the density.

DISTRIBUTION CAN. LINK SUF. STAT. NORM. TERM

Normal(y, o) o 2u t —207242
Poisson(u) log i t —W
Binomial(y, k) klog ﬁ t klog(l — p)
Gamma(v, u) —v/p t —vlogp
Inv. Gauss(u, ) -1/(02p2) t 1/(0u)

Table 5.1: The defining functions and the normalization term for five mem-
bers of the exponential family of distributions

Some of the densities in table 5.1 have more than one parameter, e.g. the
gamma, density. We have chosen the mean parameter u to be the unknown
and all other parameters to be known constant parameters. When the den-
sities later are reparameterize, the mean parameter is a good candidate for
the parameter that obeys the constraint 5.8.

For densities with linear sufficient statistics the constraint (5.8) becomes
d'(y) = —c'(y)y, which is equivalent with d(y) = —c(y)y + C(y), where C' is



52

General bias/variance decomposition

the anti-derivative of c. All of the densities in table 5.1 obeys the constraint
in the given form, so no reparameterization is needed.

Table 5.2 gives an overview of some of the error functions with linear suf-
ficient statistics. All constant factors are omitted. Since the canonical link
function is non-linear for all errors except the Normal error, the average
predictors are generally non-linear means.

DISTRIBUTION ERROR FUNCTION DOMAIN

Normal(u, ) s(f =1 ]-o0500]
Poisson () [f —1] +tlog [0; 00|
Binomial(y, k) tlog % + (1 —t)log 1=} [0;1]
Gamma(v, 1) (§ 1) +log { 0; 00]
Inv. Gauss(u,0) (f = )%/ (f?t) 0; 0]

Table 5.2: Error functions with linear sufficient statistics.

The densities in table 5.1 have linear sufficient statistics and generally non-
linear canonical links, while the densities in table 5.3 have linear canonical
links and generally non-linear sufficient statistics. In case of more than one
parameter we choose the free parameter to be the mean p and all other
parameters to be constant. Note that the last distribution “unknown” only
has been added to the table because it matches the Inverse Gauss distri-
bution. It has not been possible to find the distribution in the literature,
nor a complete expression for the density. The constraint (5.8) becomes
d(y) = TJ (y), where T/ is the anti-derivative of T'.

The average predictor is given by f = ¢ *{c(f))p, so the corresponding
error functions have linear average predictors. In table 5.4 is an overview of
error functions with linear average predictor corresponding to the densities
in table 5.3. Constant factors are omitted. Most of the densities need
reparameterization. The relation between the new parameter ¢ and the old
parameter 6 is given by § = (—d')~(T(¢)), where (—d')~!(y) is the inverse
of —d'(y).

The Gamma(y,1) and the Beta(ku, k(1 —p)) error functions are approxima-
tions because the corresponding density contains the gamma function as a



5.7 Connection to other bias/variance decompositions

53

DISTRIBUTION C. L. SUF. STAT. NORM. TERM
Normal(y, o) W o2t —20 22
Gamma/(p,1) o logt —logT'(u)
Beta(kp, k(1 — ) 7 klog & —log D(kp)T(K[1 — u)
Inv. Gamma(y,v) 1 —v/t (v —1)log p
Unknown(6) 0 —1/(2t%) —1/(20)

Table 5.3: The defining function and the normalization term for five mem-
bers of the exponential family of distributions with linear canonical link.

factor. The Gamma function can be approximated by (see appendix G)

T(y) ~ \/ﬂ[y — %]y% (5.12)

e

Let us use the Gamma(u,1) density as an example.

Pr(u1) (2lp) = exp[(p — 1) logt — log I'(u) — 1]

The sufficient statistic function is logt, while the normalization term is
logT'(p). To reparameterize the density we must find 81%;(?’), the diGam-

ma function. The approximation (5.12) yields al%;(y) ~ log(y — 3). The
1
5.

relation between the old and new parameter becomes ¢ ~ p — |

Note that the error functions in table 5.4 match the error functions in table
5.2 in pairs, only the predictor and the target are interchanged. This will
be explained in section 5.8. Also note that the Normal error function and
the counterpart both are the mean square error. The Beta error function is
not very useful, since it is undefined for target equal to one or zero.

5.7 Connection to other bias/variance decomposi-
tions

The general bias/variance decomposition in this chapter is connected in vari-
ous ways to two other general bias/variance decompositions. In section 5.7.1
we show that the error functions that can be decomposed as deviance error



54

General bias/variance decomposition

DISTRIBUTION ERROR FUNCTION DOMAIN

Normal(u, o) s(f =12 ] — o000
Gamma(u, 1) [t = f1+ flog [0; 00|
beta(kp, k(1 — p)) flog 4+ (1— f)log =4 [0; 1]
Inverted Gammal(y, v/) ($—1)+logt 10; 00|
Unknown(y, 0) (f —1)*/ () 10; oo

Table 5.4: Error functions with linear canonical links.

functions derived from the one-parameter exponential family of distributions
(see section 5.4) are exactly the error functions for which the bias/variance-
effect decomposition in [44] (see section 4.2) reduces to the bias/variance
decomposition also defined in [44]. In section 5.7.2 we show that deviance
error functions derived from the one-parameter exponential family of distri-
butions can be reformulated in terms of the Kullback-Leibler error function
from [39] (see section 4.4).

5.7.1 Connection to James 1996 [44]

In [44] (James & Hastie) (see section 4.2) a bias/variance-effect decomposi-
tion is presented that holds for any error function. In section 4.2 we chose
to regard it as a general bias/variance decomposition. This was not the
intention of James & Hastie, since they defined bias and variance differently
from bias-effect and variance-effect, which were introduced because the bias
and variance do not generally form a proper decomposition of the average
generalization error. The deviance error functions derived from the expo-
nential family of distributions are exactly the error functions for which the
bias and variance form a proper decomposition. To see that, we begin with
the definitions of bias and variance in [44]. Variance is defined as

var(f) = (E(f, Sf))px = (E(f, S
and bias is defined as
bias(St, Sf) = (E(St, Sf»E,I = E(St,Sf)

The symbol S denote the systematic mean operator (see definition 15 in
appendix C). The definition is slightly unclear in [44], but it is reason-
able to believe that Sf is equivalent with the average predictor f and St



5.7 Connection to other bias/variance decompositions

55

is equivalent with the average target . In that case the bias and variance
terms are identical to the bias and variance terms in (5.11), which is the
bias/variance decomposition for the deviance error functions derived from
the exponential family. From section 5.5 we know that these error function-
s are the only error functions with that decomposition. Furthermore, the
bias/variance-effect decomposition reduces to the bias/variance decomposi-
tion in (5.11) for the deviance error functions derived from the exponential
family. This property can be seen by showing equivalence for each term in
the decomposition.

Recall the form of the deviance error functions derived from the one-parameter
exponential family of distributions

E(t, f) = [e(t) — (DT (@) + d(t) — d(f),
and the bias/variance decomposition from (5.11)
(E(t, f»E,I = <E(t,f))l + E(ﬂ f) + <E(f_> f))Ea

e The bias-effect is equivalent to the bias for the deviance error functions.
The bias-effect is given by BE(t,Sf) = (E[t, Sf] — E[t, St])x:

— [e(t) = cDIT(t) —d(t) + d(D) ¢

E(t, f) = bias(t, f),

where corollary C2 has been used.

e The variance-effect is equivalent to the variance for the deviance error

functions.
The variance-effect is given by VE(t, f) = (E[t, f] — E[t, Sf])p x

VE(t, f) = (E[t, f] - E[t, f])px =
]

([e(t) = e(NIT @) +d(t) — d(f) = [e(t) — e(NIT (@) = d(t) + d(f))px =
([e(f) = e(HAT @) g — d(f) + d(f))p =

([e(f) = e(MTR) - d(f) +d(f))g =

([e(f) = e(MT@D)g + (d(f) — d(f))p =

0+ (d(f) —d(f))g =

where corollary C1 and C2 has been used.



56

General bias/variance decomposition

e The intrinsic noise is equivalent to the intrinsic noise for the deviance
error functions

var(t) = (E[t, St])p r = (E(t, 7)) p-

We conclude that the family of deviance error functions derived from the
one-parameter exponential family of distributions are the error functions for

which the bias-effect /variance-effect decomposition reduces to the bias/variance

decomposition defined by the bias and variance terms from [44]. Since the
family of deviance error functions derived from the one-parameter expo-
nential family of distributions are the only error functions for which the
bias/variance decomposition in (5.11) holds, we have that the family of er-
ror functions for which the bias-effect /variance-effect decomposition reduces
to the bias/variance decomposition defined by the bias and variance terms
from [44] and the family of error functions that can be decomposed as in
(5.11) are identical.

5.7.2 Connection to Heskes 1998 [39]

Comparing the results in section 4.4 from [39] due to Tom Heskes and the
results in 5.6 it is easy to see that there is a connection between the Kullback-
Leibler error functions and the deviance error function from 5.4. We show
that the deviance error function derived from the one-parameter exponential
family of distribution can be reformulated in term of the Kullback-Leibler
€error.

The deviance error function is given by

B(t, f) = log %

Let p be a density from the one-parameter exponential family of distribution.
The density is reparameterized according to the method in section 5.4. The
density then obeys

~

Vz : ¢ = argmax p(z|¢) = z
¢
The density has the form

p(z|¢) = exple(9)T'(2) +d(¢) + S(2)]-

Because of the reparameterization the functions ¢, T', and d obey the con-
straint



5.7 Connection to other bias/variance decompositions

57

We will show that the deviance error function can be reformulated as

1y ! ! p(t|tl)
(1) = [piee) o 20
We think of ' and f’ as instances of respectively the target and the predictors
viewed as stochastic variables T and F. Furthermore, we think of p(¢|t') as
the true density of the targets conditioned on #'. This is not mathematically
necessary, but makes it easier to comprehend. The error function E’ can be
written as E'(t', f') = (log 5 &';’,)))T or in terms of the functions ¢, T, and d

(5.13)

E'(t, f") = [e(t") — c(f)UT#)p +d(t) — d(f).

By using the general relation from appendix E (E.5) on the density p(z|¢)
we find (T'(t))p = T(t).

Proof:
dlogp(tl), _
( o >1 =0&
(dA)TH)+d )y =0&
_ dl(tl)
<T(t) T — _C'(t') At

where the constraint on d has been used. Now the error function can be
rewritten as

E'(t, f) = [c(t) = c(fT() +d(t') — d(f'),
which is exactly the deviance error E(t', f').

The error function in (5.13) is also a Kullback-Leibler error function com-
paring the two densities p(t|t') and p(t|f’), yielding K L(p(t|t'),p(t|f")) =
E'(t',f") = E(¢, f'). What is left to show is the connection between the
average predictor f and the average estimator 5. Note that it was shown in
section 4.4 that the average estimator is in the same class as the set of esti-
mators, if the estimators all are members of the same class of one-parameter
exponential densities. So the average estimator is in the same class as p(t|f').
Let the parameter of the average estimator be 6 then p = p(t|@). The defi-
nition of the average estimator is

p= argglin (KL(p,9))q
where the mean is over the estimators g. For the densities p(¢|t') and p(t|f')
the average estimator is

p(tl0) = argég;i)n (K L(p(t]0), p(t|f)))es



58

General bias/variance decomposition

where the running parameter to argmin is §. Reformulated for the deviance
error function we have

0= argranin (B, f)p

This is exactly the definition of the average predictor f.

We conclude that for reparameterized densities from the one-parameter ex-
ponential family of distributions the error function derived by the deviance
as in section 5.4 and by the Kullback-Leibler divergence as in section 4.4 are
identical. Furthermore, the parameter in the average estimator and in the
average predictor are identical. Implying that the bias/variance decomposi-
tions are mathematically identical.

5.8 Conjugated families of posterior densities

The densities we have investigated from the one-parameter exponential fam-
ilies of distributions are denoted p(z|@), where the outcome z is associated
with the target ¢ and the parameter 8 is associated with the predictor f.
In a Bayesian setting, the parameter 6 can be viewed as the outcome of a
stochastic variable ©. The density of © is denoted 7 (6|z) and is connected
to p by
m1(0|2) o< w2 (0)p(z]0).

This is a simplified version of Bayes’ formula. The density m(f) is the
prior density, which expresses some fundamental (prior) knowledge about 6,
before the outcome z is know. The density 71(0|z) is the posterior density.
If w1 and 7o are from the same class of densities, then that class of densities
is called conjugated (see [6] section 2.4).

We will use conjugated densities for three things

e In the case where there are a number of targets for a given input point,
minimizing the error function does not generally yield an uniform mean
of the targets as one might expect. We show that minimizing the error
function is the optimal prediction.

e The examples of error functions in section 5.6 are identical in pairs,
except the predictor and target are interchanged. We show that these
pairs are connected by Bayes’ formula. The transformation will be
called Transpose.

e An alternative definition of the deviance error function exists, where
the predictor is associated with the outcome, and the target is as-
sociated with the parameter. We show that the two definitions are
connected by Bayes’ formula.



5.8 Conjugated families of posterior densities

59

First we define and discuss Bayes’ formula and conjugated densities in
greater detail.

In the Bayesian setting the parameter(s) in a density function can be regard-
ed as outcome of a stochastic variable themselves. The density of the param-
eters can be found with Bayes’ Formula. The formula for a one-parameter
density p(z;8) is

p(2;0) = exp[c(0)T(z) + S(z) + d(0)]- (5.14)

In Bayesian setting the parameter § can be considered an outcome of a
stochastic variable ©, so the density p(z;6) is conditional on 6: p(z;0) =
p(z]0).} Given a prior density m2(6) the posterior density of 6 conditioned
on z can be found with Bayes’ formula

_ m(0)p(2]9)
m(0]z) = m (5.15)

The normalization constant [ déma(t)p(z|t) does not dependent on 6, which
yields
m1(0]z) o< m2(0)p(210),

If the densities m and 7o are in the same class, they are called conjugated.

Based on the density in (5.14) a family of conjugated densities can be found.
Let 75 be given by a two-parameter member of the exponential family

m2(0)a, b) = explaTy (6) + bTZ(0) + da(a,b)].

The form of the density - two parameters and linear canonical link functions
- is chosen with the benefit of hindsight.

The density m is given by 71 (0|a, 8) o w2(f]a, b)p(0]z)
71 (6], B) o explaTy (6) + bT5 (0) + da(a, b) + ()T (2) + S(z) + d(6)]
We are looking for a conjugated posterior, so 71 must be on the form
m1(8lov, B) = explaTy (6) + BT3(6) + di (v, B)].
One solution is to set 74} = ¢ and T4 = d:
(8], B) oc expl(a + T(2)) T3 (8) + (b+ 1)T3 (6)] exp[da(a, b) + S(2)]

The factor exp[ds(a,b) + S(z)] has no influence, and is replaced with the
normalization factor exp d; (o, ) for the normalized density. The density m;
and 7y are in the same class if we associate a with a+7T'(z) and 5 = b+1. So

"We do not normally distinguish between p(z;8) and p(z|§). Here we see that the
difference is only in the perspective.



60

General bias/variance decomposition

any one-parameter density on the form p(z|0) = exp[c(0)T'(z) +d(0) + S(z)]
has a corresponding conjugated two-parameter posterior density on the form

m(0]a(2), B) = expla(z)c(0) + Bd(0) + di(a(2), B)]-

Let the density p(z|$) obey the constraint in (5.8) and let 2z’ be a specific
outcome. The prior density 7(é|a(z'),3) can now be interpreted as the
density of the parameter ¢ given some specific parameters a(z’') and g.
What can be said about the posterior density? We know that since the
density p obeys the constraint, the maximum likelihood of the parameter ¢
is ¢ = 2. Furthermore, before 2’ is known, it cannot be assumed that one
value of ¢ is more likely than another. The prior density must express the
lack of knowledge. In that case we would expect the posterior log likelihood
to be maximal for ¢ = z’. The maximal posterior density can be found from:

9logp(4|a(2'), B)

9 =0«
da()e(9) + fd($) + d(a(),B) _
¢ =0¢&
o) (4) + () = 0 &
o) () = B ($)T(#)
o) = BT().

Remember that « = a + T'(2') and 8 = b+ 1 so only for a = b = 0 can
the maximal log likelihood of ¢ be equal to z’. Setting a = b = 0 yields a
constant prior density. This is exactly the prior that expresses no knowledge
about ¢. The problem is that a constant prior density can not be normalized.
For the Bayes’ formula (5.15) the normalization terms in the prior cancels
out in the quotient and is therefore of no consequence. Such a prior is called
an improper prior. We conclude that setting the parameters a and b to zero
fulfill the requirement of no prior knowledge and the maximal log likelihood
of ¢ be equal to t. The posterior density becomes

m($|T (<), 1) = exp[T(2')c(¢) + d(¢) + di (T(2'), 1)]

This can be reinterpreted as an one-parameter member of the exponential
family of distributions

m(¢|z') = exp[T(2')c(¢) + di () + d(¢)] (5.16)

Remember that the density 7 is the posterior of the density p that obeys
the constraint (5.8). This density corresponds to the deviance error E(t, f).
The density 7 in the one-parameter version can also be used in our definition
of deviance error function.

Er(t, f) = [T(t) = T(f)le(t) + di(t) — di(f) (5.17)



5.8 Conjugated families of posterior densities

61

Instead of reparameterizing we would like the defining functions - the old
canonical link function and the old sufficient statistic function - to remain
unchanged in the deviance error function derived from 7. The error function
must still obey the constraint (5.8), so d}(y) = —T"(y)c(y). This can be
ensured by setting

di(y) = —d(y) — T(y)c(y)

It is easy to verify that d; now obeys the constraint. The deviance er-
ror function derived from the density 7 will be called the transposed error
function of the error function E(t, f).

Er(t, ) [T'(#) = T(Ne(t) + du(t) — du(f)
() = T(N)le(t) = d(t) = Tt)e(t) +d(f) +T(F)e(f)  (5.18)
= [C(f) —cIT(f) +d(f) - d(?)

To go from the error function E(t, f) to the transposed error function
Ep(t, f) the predictor and the target are interchanged. In section 5.6 there
are examples of pairs of error functions that differed only in the interchanging
of target and predictor. The connection between the pairs is now established
as the connection between the density, from which the error function was
derived, and the posterior density with only the very natural assumption
that there was no prior knowledge about the distribution of the parameter
in the original density.

In the definition of the deviance error function we associated the target
t with the outcome and the predictor f with the parameter. The mini-
mization of the error function for the predictor is easily interpreted as the
maximization of the log likelihood of the parameter. An alternative defi-
nition of the deviance error function has the role of the predictor and the
target interchanged

p(f|f)
% o(f18)”

With the benefit of hindsight E¢ (¢, f) will be called for the conjugated de-
viance error function.

Ec(t, f) =1 (5.19)

For a one-parameter density from the exponential family of distribution that
obeys the constraint (5.8), the conjugated deviance error function is given
by

Ec(t, f) = [cc(f) — cc®)|Tc(f) + dc(f) — dc (). (5.20)

Having d,(y) = —c(y)Tc(y) (the constraint) ensures that error function
Ec(t, f) obeys the requirements in figure 5.1, and therefore have a “nice”
bias/variance decomposition. The direct statistical interpretation of the



62

General bias/variance decomposition

conjugated deviance error function is difficult because the predictor is asso-
ciated with the outcome and the target is associated with the parameter. It
can be interpreted as the deviance error function derived from the posterior
density 7 of a density p. In that case the interpretation makes more sense.
The outcome, with which the predictor is associated, is really the (stochas-
tic) parameter of the density p. Optimizing the predictor by minimizing the
error function Ec(t, f) can be interpreted as maximizing the log likelihood
of the parameter for the density p. The connection between the posterior
density and the density p is given by (5.16). Let the density p be on the
form

p(2|0) = c(0)T'(2) +d(6) + 5(2)

Comparing Er(t,f) (5.17) and Ec(t, f) (5.20) yields that c(y) = Tc(y)
and T(y) = cc(y). As with the transposed error function we would like
the link between the posterior density and the density p to be the defining
function ¢ and T, so in order for the density p to obey the constraint (5.8)
we set d(y) = —dc(y) — c(y)T(y). The conjugated deviance error function
expressed in terms of the ¢, T and d becomes

Ec(t, f) = [ec(f) — cc@®)]Tc(f) +dc(f) — dc(?)
=[T(f) =T ®)]le(f) — d(f) — c(£)T(f) +d(t) + c@t)T(2)
= [e(t) — c(HIT(t) + d(t) — d(f)
= E(t, ).

The conjugated deviance error function E¢(t, f) is identical to the normal
deviance error function E(t, f).

The posterior density can be used for yet another purpose. We will look at
the situation were there are n targets (n > 1) for a single input point.?

The error function for the n targets is given by the sum
1 n
1 n
= D elt)T(t:) — () D T(t) + Zd — nd(f)]
i

The optimal predictor f,,; is the predictor that minimizes the error function

2 An almost similar situation is were the input point for n targets are very close together
so the predictor is effectively constant. The analysis also holds for this situation.



5.8 Conjugated families of posterior densities

63

E(t, f)
OE(L, f) _
af iyt 7
O+ c(t)T(t:) — e(f) 207 T(t:) + Y27 d(t:) — nd(f)] o -
af f:fopt

-~
f:fopt

CNTW) =N Tw)|,_ ©

ot =T D2 T(0)

The result is slightly surprising. The optimal predictor is generally not
linear in the targets, as one is used to from the MSE error. For the MSE the
sufficient statistic 7" is the identity function and we get the expected result

Jopt = %Z? t;.

The optimality of fy,; can be verified by using the posterior density for the
n targets. The likelihood for each target is p(t;|¢). Assuming independently
sampling of the targets, the combined likelihood is given by

n

p(#lg) = [ p(til)

2

Letting p be an one-parameter exponential density and assuming a improper
prior (constant prior), it is easy to extend the posterior in (5.16) to the n
targets:

m(glf,m) = exp[}  T(ti)e(¢) + di(F:m) +nd(@)] (5.21)

For a single target ¢ the maximum log likelihood of the parameter ¢ for the
posterior density is at ¢, reflecting that the predictor should estimate the
target, so the maximum log likelihood of ¢ for multiple targets reflects what
the predictor should estimate. The maximal log likelihood of the parameter



64

General bias/variance decomposition

for the posterior density is

dlogm(@lf,n) _
o e
2Tt ($) +nd(¢) =0 &
DTt (¢) ~n($)T(9) = 0] __ &

§=TC D T(),

The optimal predictor found by minimizing the error function is identical to
the maximum posterior log likelihood of the parameter.

We conclude this section by summarizing the results

e The transposed error function Er (¢, f) is related to the deviance error
function E(t, f) through the conjugated posterior given by (5.16). The
posterior error function obeys the requirements in figure 5.1. It is given
by

Er(t, f) = [e(f) = c@OIT(f) + d(f) — d(?),
where the functions ¢, T', and d are from the deviance error function

E(t, f).

e The conjugated deviance error function is an alternative definition to
the deviance error function.
The predictor is associated with the outcome of a density 7, and the
target is associated with the parameter. The definition is

m(f[f)

m(t]f)

If the density 7 is a member of the one-parameter exponential family
of distribution and obeys the constraint (5.8), then the conjugated
deviance error function obeys the requirements in figure 5.1.

Ec(ta f) = log

If the density 7 is the conjugated posterior of a density p as in (5.16),
the conjugated deviance error function is identical to the normal de-
viance error function derived from p.

e The optimal predictor for a set of targets with identical input points
is
1 n
Jopt = Tﬁl(; ZT(tz))
7

Minimizing the error of the examples Y. E(t;, f) with regard to the
predictor yields the same value.



5.9 Ambiguity for deviance error functions

65

5.9 Ambiguity for deviance error functions

The bias/variance decomposition for the deviance error functions can be
used to define an ambiguity decomposition (see section 3.3). Ambigui-
ty is defined for an ensemble of predictors in connection with an ensem-
ble method. This means we have an finite ensemble of ensemble members
{f1,---, fm}. Each ensemble member f; has associated a weight «;. Nor-
mally the weights sum to one and are positive. In that case the weights can
to viewed as probabilities and defines a mean operator over the ensemble
members

G =Y aig().

The deviance error functions derived from the one-parameter exponential
family of distributions have the form

E(f,t) = [e(t) — c(N)IT(t) + d(t) — d(f)

The combined predictor for the ensemble is defined similar to the average
predictor (Corollary C1):

M

F=c ' ({e(Mp) = ¢ (D aicf)).

g
The ambiguity decomposition for F' is
E(F,t) = (E(f,t))g — (E(F, [))p,

where (E(f,))p is the mean error of the ensemble members, and (E(F, f))¢
is the deviance ambiguity. The ambiguity is independent of the target func-
tion, thus it can be estimated by unlabeled data.



66

General bias/variance decomposition




Chapter 6

Machine learning methods

There are many different machine learning methods. Some of them are
kernel-based methods, radial basis methods, nearest neighbor methods [17],
support vector methods [18], tree predictor methods such as C4.5 [65] and
CART (Classification And Regression Trees) [13], splines (see section 6.4 in
[48]) such as MARS (Multivariate Adaptive Splines) [24]. Two references
discussing many of the mentioned methods are [7] and [27].

In this section only the commonly used machine learning method, neural
network with back-propagation [75], will be discussed.

6.1 Neural Network

An (artificial) neural network is a predictor that is inspired by the first mod-
els of the human brain (see introduction in [37]). There are many types of
neural networks. The standard feed-forward neural network will be present-
ed. In figure 6.1 is a picture of a neural network with one hidden layer.
Each layer consists of a number of nodes connected by weights. The first
layer is the input layer, while the last layer is the output layer. The number
of weights in layer i is denoted n;, so in a fully connected network there are
n; X ni+1 weights between layer ¢ and ¢ + 1. The weights between layer i
and ¢+ 1 are denoted wz ’n where the subscripts k and j indicates the weight
connecting node number j in layer ¢ to node number & in layer ¢ + 1. The
state of node j in layer ¢ is denoted by l; For all layers, except the input
layer, the state of the nodes is given by

n
i+l _ i g i
™= ijkgk(lk) — W,
k=1



68

Machine learning methods

Figure 6.1: Structure of a neural network.

where wf) is the threshold weight and gfc is the activation function. Normal-
ly, all the activation functions are identical, so ¢ is used for all activation
functions. One can view the threshold weight as coming from a node I} that
is “hard-wired” so g(l§) = —1. In that way the state of node l;-“ can be
simplified to

n
I =" wiyg(i})- (6.1)
k=0

There are different kinds of activation functions. Among the commonly used
are the Sigmoid function

1
g(a’) - 1 + e a
and the hyperbolic tangent function
e —e™?
= tanh(a) = ———.
ga) = tanh(a) = S

For a discrete neural network the sign function can be used as activation
function. In appendix B it is shown that a particular choice of activation
function can be of theoretical and practical importance.

A neural network nn is a function § = nn(Z), where Z is the input and
i/ is the output vector. The neural network function nn is evaluated by
setting the nodes in the input layer equal to the scalars in the input vector
Z, then the states of the layers are calculated layer for layer by the formula
in (6.1). This is called feed-forward propagation. The output of the neural
network can be read from the nodes in the output layer. Note that by
definition there is no activation function for the output layer, but often the
states of the output nodes are post-processed by some function. Sometimes
the post-processing function' depends on the states of all the nodes, e.g. the

'The post-processing function is in some situations called transfer function, output
activation function, or squashing function.



6.2 Back propagation

69

SOFTMAX post-processing function (2.1) (see chapter 11 for an application
of the SOFTMAX post-processing function). Let the output of the neural
network (the state of the nodes in the output layer) be % then the post-
processed output is for the post-processing function pp given by f = pp(7)-
In this dissertation it will be clear from the context if the output in question
is the post-processed output or the output of the neural network.

A neural network can be trained using the gradient descent optimization
methods. This is presented in section 6.2.

6.2 Back propagation

If the predictor f is a neural network, the error function £ can be mini-
mized by the gradient descent optimization method (see appendix I). The
parameters that are to be optimized are the weights of the neural network.
Let the predictor f depend on weights & = {w1,...,w,}, which is signified
by writing f(z;@). The notation E(w) = E(f(&;),t) is used, because the
free parameters are the weights . The first order Taylor expansion of F ()
is

OE (W)
E(w + dW) = E(w - du
(W + dw) (W) + 90 0
The vector agq(ﬁu?) = {ag&v),_“’agu(]f)} is the gradient. Since we wan-
t E(W + dw) < E(w) we must have ag_gﬁ) -dw < 0. This is guaranteed
under the approximation if dwj = — 621(5”) . The gradient descent method has
the following update rule
OE(w
U—]'I — ’U_i —r (:I;U),
0w

where 7 is called the learning rate. The learning rate is a user defined
parameter that controls the rate of descent. Too high a learning rate, and
the method cannot find the global minimum because it “overshoots”. Too
low a learning rate, and the method stops in a local minimum, or learning
takes “forever”. The right learning parameter is notoriously difficult to find.

For a neural network, the gradient descent method is called back propaga-
tion, because the error is propagated from the output layer and back towards
the input layer. We assume that the post-processing function is the identity
function. The number of layers is N. The number of nodes in the last layer
is ny and thereby also the size of the output of the neural network. We
assume that the error for one input is given by

nN

B(f(@),t) = Y B(}, ),

h=0



70

Machine learning methods

which is the straightforward linear generalization of the error for a predictor

with scalar output. Let E'(I) denote Mg;(f) o and let ¢’ be the deriva-
z=lj

tive of the activation function. The gradient is recursive in an auxiliary
parameter 6;- called the back-propagated error:

5 — E'(;;.V ) . i=N
P lg@EhY R g g, i< N
The gradient for the weight wé-k is given by

OF (W)
Buék

= 87 g(1}) (6.2)

Note that the gradient can be calculated efficiently in time proportional
to the number of weights plus the number of nodes. There are two main
ways of updating the weights. The deterministic update rule, where the
gradient is accumulated for all training examples, and then the weights are
updated. The other update rule is the stochastic update rule, where the
weights are updated for each training example. The stochastic update rule
is generally an order of magnitude faster than the deterministic, but does not
guarantee convergence. An intermediate update rule is batch update where
the gradient is accumulated for a number of training examples, usually much
smaller than the number of training examples, before update.

The back propagation method is not regarded as the best learning method
for neural networks (see [55, 7]), but it is by far the most commonly used
method. To speed up convergence the back-propagation method is usually
used with the addition of momentum. The momentum method works this
way: Let ij- i be the amount the weight w§ « Was changed in the last update.

Find the gradient aﬂg‘z) and set Aw;-k to
; OE (W) ~
AWy, — ——— = Aw’y, (6.3)
J 371);- K J

where « € [0;1] is the momentum rate. Update the weight according to
wj-k + Aw;.-k — 'w;-k.

Momentum dampens oscillating gradients and speeds up learning for small
and constant sign gradients. For a more detailed description of momentum
see [7] p. 267-268.



Chapter 7

Meta machine learning
methods

Meta machine learning (MML) methods are the designation of all methods
that combines a set of predictors (or experts as they are called in connection
with mixtures of experts) to form a combined predictor.

Normally the MML methods are divided into two groups: The ensemble
methods and the mixtures of experts (ME) methods. The ensemble meth-
ods can again be divided into two groups: The parallel ensemble methods
(e.g. Bagging), and the boosting ensemble methods (e.g. AdaBoost). The
lines between the groups are blurred. In figure 7.1 a sketch of the different
methods is given. The sketch is somewhat simplified, but captures some
of the characteristics normally associated with the different methods. The
main components are pre-processing of input, training, and post-processing
of output. Post-processing also constitutes the combination rule of the pre-
dictors.

The figure in 7.1 will be discussed in greater detail in section 7.1 for ensemble
methods and in section 7.2 for ME methods. Six representatives will be
presented and literature will be discussed.

Two important references are the book: “Combining Artificial Neural Nets”
[79], that covers ensemble methods as well as ME methods, and the special
issue of Connection Science: “Combining Artificial Neural Nets: Ensemble
Approach” [80].



72

Meta machine learning methods

Post processing

A Combination Rule Gating network
Traning
2 ol o | Freprocessing Training of both
= cC | < c .
@ E|E .as | E . gating network
S ® B ® . and predictors
Training
Pre processing Pre processing Gating network

Parallel Ensemble  Boosting Ensemble Mixtures of Experts
Pre processing

Figure 7.1: A simplified sketch of meta machine methods

7.1 Ensemble methods

The main point for ensemble methods is: “T'wo heads are better than one”.
The translation to machine learning language is that a group (ensemble) of
predictors potentially gives better generalization than the individual predic-
tors (ensemble members). The theoretical justification for regression with
the MSE lies in the ambiguity decomposition (see section 3.2 or [51]). The
ambiguity decomposition yields that the combined predictors always has a
lower generalization error than the average of the ensemble members. The
corresponding theoretical justification for classification can be found in [76],
that states that a weak learner can be transformed into a strong learner.
A weak learner produces predictors that with high probability, misclassify
less than half the time (for a two class problem). A strong learner pro-
duces predictors that with high probability, misclassify with an arbitrary
low probability. The crux of the constructive proof is an application of
boosting, which will be discussed later. The result is that a weak learner
that produces predictors that maximally misclassifies a < % of the times,
can - by combining three predictors - produce a (combined) predictor with
maximal misclassification rate of 3a? — 2a® < a. This can be repeated un-
til a (combined) predictor is produced, that misclassifies with arbitrary low
probability.

The two fundamental articles [51, 76] have been extended several times, e.g.
the result in chapter 3 is an extension of [51] to cover many error functions,
while [76] has been extended in e.g. [2] to include regression.



7.1 Ensemble methods

73

The two articles [51, 76] represent the two types of ensemble methods - par-
allel ensemble methods and boosting ensemble methods. In [51] an ensemble
of predictors are combined by weighting to produce the combined predictor.
It is assumed that the predictors differ to some degree due to mechanisms
such as stochastic training, different architecture, or different training set-
s. The last of the methods covers different examples of pre-processing of
the training set. The training set can be partitioned arbitrarily or by some
criteria. The Bagging parallel ensemble method employs resampling with
replacement (see section 7.1.2). In [51] it is shown how to find near optimal
weights for the combination rule. This is an example of post-processing (see
section 7.1.1). Without any further assumptions on the ensemble members,
it is possible to train them in parallel, making it a parallel ensemble method.
This is illustrated in figure 7.1 by having training concurrent on the time
line.

In contrast, the boosting method in [76] requires sequential training of the
ensemble members because the training set of one ensemble member depends
on the training of the previously trained predictors. This is illustrated in
figure 7.1 by having pairs of pre-processing and training sequential on the
time line.

We use the practical version of the constructive proof in [76] as an example of
boosting. The problem domain is two class classification. First a predictor
(classifier) is trained on the entire training set. It is assumed that the
predictor misclassifies less than a < % of the time. Construct a new training
set with all the examples on which the first predictor misclassifies and an
equal number of correctly classified examples. A second predictor is trained
on that training set, so it becomes an “expert” on the examples on which the
first predictor failed. There is no gain in that, because if we present a new
input to both predictors and they disagree, we cannot with any confidence
say what class the input belongs to. Therefore a third predictor is trained
on all the examples where the first two predictors disagree. This is the “tie-
breaker” expert. The three predictors are combined using majority vote, and
it can be shown,! that the misclassification rate of the combined predictor
is less than 3a? — 2a3, which is lower than the misclassification rate of the
first predictor. The training set has been boosted between training sessions.
This has given name to the Boosting ensemble methods.

The majority vote mechanism is a very simple form of combination rule. In
other boosting methods, e.g. AdaBoost (see section 7.1.5), the combination
rule is more complicated and uses information about the ensemble members
found during training.

!The proof is not for the practical version presented here, but for the PAC learning
model (see e.g. [89]), which is beyond the scope of this dissertation. The practical version
has been shown empirically to lower misclassification rates in most cases.



74

Meta machine learning methods

Below in sections 7.1.2, 7.1.3, and 7.1.4 three parallel ensemble methods
are presented. The most popular boosting ensemble method, AdaBoost, is
present in the regression version in section 7.1.5. Before the presentation of
the ensemble methods, combination rules are discussed in section 7.1.1.

For further references covering interesting aspects of ensemble methods see
[73, 60, 82, 76, 21]. In [73] a de-correlation term is added to the error function
for the combined predictor to achieve diverse ensemble members. Another
method of diversifying the ensemble members, by using a genetic algorithm,
is given in [60]. A “dogma” for ensemble methods is that overfitting can be
useful. A proof is given in [82]. A practical version of the constructive proof
in [76] is presented and tested in [21].

7.1.1 Combination rules

A very important aspect of ensemble methods is how the ensemble mem-
bers are combined. Some combination rules are very simple i.e. uniform
weighting for regression or majority voting for classification. See [50, 49, 4]
for other simple combination methods. More complex combination rules
have been presented (see e.g. [82, 69, 35, 1]). AdaBoost (see section 7.1.5)
uses a more complicated combination rule, where information found during
training is incorporated.

Let us look at the general case. We have an example set T' divided into
a training set 7" and the rest T”. We restrict the situation to be one-
input/one-output problems, so T' = {Z,%}. An ensemble of predictors
f is trained on 7. Let us assume that we have a combination function
F(z) =C( f (), z; @) parameterized by @. The direct dependency on input
z is unusual for a combination rule, but it has been used (one example can
be found in [84]). The parameters @ could be the weights of a regression
ensemble. Furthermore, assume that we have a fitness function g for the
combination function. That would typically be an estimate of the general-
ization error of the combined predictor, and that could be the error on the
example set T". In general, the fitness function can depended on T, F(Z),
f(#), and @. The general problem is to optimize g(T, F(Z), f(Z), W) with
regard to w. This is a particular instance of stacking [88]. Stacking has
been used on Bagging [92] and on kernel functions [81, 69] to find optimal
coefficients.

-

There is not far from the combination function C(f(z),z;w) to a gating
network for mixtures of experts (see section 7.2). The difference between a
complex combination function, that also depends on the input and a gating
network is that a combination function is found after the ensemble members
have been trained, while the gating network is trained concurrently with



7.1 Ensemble methods

the experts (corresponding to the ensemble members). Also see section 7.3
for further discussion about differences and similarities between ensemble
methods and ME methods.

7.1.2 Bagging

In algorithm 1, the standard Bagging algorithm from [9, 10] is presented.
Algorithm 1 (Bagging)

1. Choose machine learning method L and ensemble size M .

2. Generate M training sets T; from the original set T by resampling
with replacement. The size of the T;’s equals the size of T.

3. fi = L(T;) for all i

4. Construct ensemble predictor F(Z) = 4 Zf\il fi(@).

Bagging can be used to combine any kind of predictors. In [9] it is stated that
the benefit of Bagging lies in variance reductions (for a description of bias
and variance see [10, 27, 44] or chapter 3). This is achieved by generating
an ensemble of different predictors, where the variance is “averaged out” in
the combined predictor. The pre-processing is resampling with replacement
of the training set. For each ensemble member about 37 % of the examples
are not used for training (see appendix H). These have been used for other
purposes in [15, 69]. In [15] the “unused” examples are used to estimate
the generalization error of the combined predictor. In [69] the “unused”
examples are used to estimate the weights of the ensemble members, which
in the standard version are uniform.

The creator of Bagging, Leo Breiman, has extended Bagging in [12] by using
the unused examples to reduce bias as well as variance.

Stacking has been used to estimate the generalization error of Bagging [92]
and to improve learning [91].

Four versions of Bagging have been compared in [38]. These versions are
Bumping, where the weight of the best ensemble member is set to one,
Bagging in the standard version, and two versions where the weights are
optimized to, respectively, maximize ambiguity and minimize the general-
ization error as in [82]. The last is called Balancing. Bumping is the worst
performing method and Balancing is the best performing method.



76

Meta machine learning methods

7.1.3 Simple

Even though Bagging is a fairly simple ensemble method, it is possible to
imagine an even more simple method: Train a group of predictors separately
on the same training set and combine them by the linear average predictor
(LAP) with uniform weights. We call this method for Simple. There is no
pre-processing and the simplest possible combination rule is used.

If the machine leaning method used is deterministic on the training set,
Simple will do no better than a single ensemble member. If the machine
learning method is nondeterministic on the training set, the only benefit
for Simple lies in the variation among the ensemble members, therefore we
consider Simple as a natural “zero” for MML methods, i.e. all other methods
should do better than Simple to have any merit.

7.1.4 Logarithmic opinion pool ensemble

A logarithmic opinion pool (LOP) ensemble is a classification ensemble that
uses the logarithmic opinion pool (see section 4.4) as a combination func-
tion. The outputs are estimates of the probability of the classes. The LOP
ensemble method is very similar to the Simple ensemble method (see section
7.1.3), only the combination rule is different.

The ensemble consists of M predictors f; that each outputs a vector with
class probabilities {f*,..., f{¥}. Each ensemble member has associated a
weight ;. The weights obey EZM a; = 1 and o; > 0, so they can be regarded
as the probabilities of the ensemble members. The weights define a mean
operator:

M
(9(f)e = Zaig(fi)-

The target ¥ is a vector with the target class probabilities {y°,...,yN }.
Often the target is a class example, so y% € {0,1}. The combined predictor
F' is also a class probability vector {F°,..., F°N}. The combination rule
for a class c is the logarithmic opinion pool:

P = exp {Tog(f{(®)g. (7.1)

where Z is a normalization factor satisfying

N

Z = exp (logl(f (@)

J

This combination rule is non-linear and asymmetric as opposed to the linear
average predictor.



7.1 Ensemble methods

77

The error function is the Kullback-Leibler (KL) error function. The error
on target 4 and combined predictor F' is given by

E(y,F) = Zycf log (;Z) (7.2)

The error is zero if F° is equal to y° for all ¢c. If the target probabilities
are restricted to one and zero, the error function (7.2) reduces to E(¢, F) =
—log(F*), where y* is one. This would be the case if the error function is
used on a training set consisting of class examples.

The error in (7.2) can be decomposed into two terms:

M M
E(§,F) =Y oBE(j, f) — Y a:E(F, fi)
i=1 i=1

= (B, )y — A(f),

where A(f) is the ambiguity and (- ) is the weighted ensemble mean.

In chapter 11 the LOP ensemble and an extension, the cross-validation LOP
ensemble, is tested on an important real life problem: the prediction of the
secondary structure of proteins. This has been published in [36].

The decomposition in (7.3) is due to Tom Heskes (see [39, 40] and sections
4.4 and 5.7.2). The view in [40] is different from the one taken here. In [40]
the densities or probabilities are estimators (see definition 3), while the the
LOP ensemble uses predictors that output class probabilities.

If the predictors are neural networks (see section 6.1) then a suitable post-
processing function is the SOFTMAX function (2.1). This automatically
ensures the necessary constraint on the post-processed output.

In appendix B training of a LOP ensemble with neural network predictors is
discussed, and the Hessian matrix is investigated. An alternative activation
function is proposed in appendix B that ought to eliminate some sources of
poor learning.

In appendix J a surprising connection between a LOP ensemble and a phys-
ical canonical ensemble is discussed.

7.1.5 AdaBoost

The regressor version of AdaBoost presented here in algorithm 2 is from
[20], which is a modification of AdaBoost.R in [95].



78 Meta machine learning methods

Algorithm 2 (AdaBoost)

1. Choose machine learning method L

2. Let T be the training set with size N, Let P = (p1, -, PN), Pi = %
Let k =1.

3. Generate training set Ty, by sampling from T' with replacement, where
the probability for sampling training example i is p;. The size of Ty,
equals the size of T.

4. fr = L(T}).
5. Let (ly,...,ln) be the loss vector, where
12
o .
li = W and D = suply; — fi(Z)|
(2
6. Calculate N
B = 1- Zizl pil;
YLy pili
7. Let .
pmﬂkm
Pm — ———+— for all m.
Zz’]\;l piﬂllcl

8. k <+ k+ 1. If a stopping criterion is not satisfied, go to 3.

9. Construct ensemble predictor:

N | =

F(@) =inf(y: Y log(B) >

y k:fi(8)<y

> " log(Br)) (7.4)
k

The AdaBoost method consists of a number of boosting sessions. In each
session a new training set is generated by sampling with replacement from
the original training set, and a predictor is trained using this training set.
The difference compared to Bagging, is that the probability of a training
example being sampled is not uniform, but depends on the training error of
previous predictors.

In step 5 the loss for each example is found. The loss is scaled so a correct
learned example yields a loss of zero, while the example that by the absolute
measure is most wrong yields a loss of one. Beside the square loss function
in step 5 two other loss function is suggested in [20]. The linear loss function



7.1 Ensemble methods

is given by
lyi — fr(Z5)]

l’i: D )

and the exponential loss function is given by

|yi _fk(-’fm].

lizl—exp[— D

Empirical testing has not showed significant differences in performance for
the different loss functions, so the square loss is always used. In step 6 the
Br value is calculated. A high value indicates that the examples with high
weights have been learned to great accuracy, and a low value indicates that
the examples with high weights have not been learned to great accuracy. It is
assumed that Zi]\ilpili < 0.5,2 s0 the value of 3 is restricted to [1;00[. The
loss vector and the i are used to find the resampling weights or probabilities
P. A high loss yields a high resampling weight, so the predictor in the next
boosting session is trained mainly on examples where the current predictor
did poorly.

The combination rule for AdaBoost uses information found during training.
The output of the combined predictor is the median of the ensemble members
weighted by the logarithm of the £ values.

AdaBoost was designed to decrease the training error, but has been re-
ported to also decrease the generalization error. In literature AdaBoost is
considered to be one of the best performing ensemble methods.

7.1.6 Other boosting ensemble methods

A number of boosting methods have been developed. They share a fun-
damental trait with AdaBoost, namely that examples on which the current
predictor does poorly are propagated (boosted) to the training set of the next
predictor. In [10] the claim is that this trait is the reason for the success of
AdaBoost. A heuristic boosting ensemble method, called Arching-x4, was
developed to support the claim. In AdaBoost the connection between the re-
sampling probability and the “error” of an example (the loss) is exponential
(the probability is proportional to 3'°*%), while in Arching-x4 the connec-
tion is polynomial (the probability is proportional to error?). Arching-x4 is
reported in [10, 59] to achieve errors comparable to AdaBoost.

Other boosting ensemble methods and discussions hereof can be found in
[22, 26, 23].

2The requirement Efvzl pil; < 0.5 can be used as a stopping criterion in step 8



80

Meta machine learning methods

7.2 Mixtures of experts

In contrast to the ensemble methods, the view in mixtures of experts (ME)
methods is not to combine a group of global predictors, but to decompose
the problem into a set of subproblems that can be solved by local experts.
Therefore the focus is more on the decomposition than on the experts. The
experts can be very simple predictors [43] or generalized linear models (see
appendix D or [53] for definition of generalized linear models and [93, 45] for
examples of ME methods using generalized linear models), but also complex
neural networks have been used as experts (see [42] and DynCo in section
7.2.2). The gating network (that corresponds to the combination function)
is responsible for the decomposition of the problem. The decomposition will
often be a decomposition of input space, so the gating network must depend
on input. In that case the gating network works as both pre- and post-
processing. The weights of the examples for a given expert are determined by
the gating network. This corresponds to pre-processing of the training set.
The gating network is also the combination function. This corresponds to
post-processing. In figure 7.1 the boundary between training, pre- and post-
processing are broken lines to illustrate that these “stages” is not separated
in time.

Mixtures of experts methods, also called modular network methods, are often
used in specialized versions to solve specific problems. e.g. in [28] the vowel-
speaker problem was investigated using a specialized modular network called
the Meta-pi network. Amnother specialized modular network was used on
handwritten letter recognition in [67]. In [58] medical prognosis of survival
of AIDS patients was done using a specialized modular network, while time
series prediction was investigated in [87].

Below we present two ME methods. First an extension of ’Hierarchical
Mixtures of Experts’ [45] is presented in section 7.2.1. This version can be
found in [94]. We call the method XuME after the author.

The method DynCo found in section 7.2.2 is similar to the method in [43],
but was reinvented by the author of this dissertation. It will be given special
attention. The relation of DynCo to other ME methods in the literature will
be discussed in section 7.2.3.

7.2.1 XuME

The output of the combined function is a density estimation P(%|Z), which
is defined as

P(12) =) g;(& v;) P(§%, 0).
i



7.2 Mixtures of experts 81

The parameters v; are defined later. The probabilities P(¢|Z, 6;) are defined
as
P, 05) = ———re 300100
(2m) = |Ty[>

where I'; is a covariance matrix. The output of the experts is the estimated

bl

mean: gj'] The experts are linear predictors: @'J = wT[a_:' 1], where w; are
the weights and & is the input, so 6; is {I‘J, w;} and 0 is | J; §;. The notation
[#, 1] represents the vector (z1,...,z,, 1)1 if # = (z1,... ,xn) .

The g;’s are the outputs of the gating network defined as

where ¥; is a covariance matrix. The outputs of the gating network are
the coefficients by which the experts are weighted. The outputs can also
be considered the probability of choosing an expert, so g;(Z,v) = P(j|Z).
The P(Z|vj) depends on the parameters {¥;,m;}, so v; is {3;,m;} and v

is U, vi-

Output:

Expert 1 Expert2 Gating Network

Input:

Figure 7.2: Mixtures of Experts.



82

Meta machine learning methods

An example of a two-expert ME is illustrated in figure 7.2. The input is
distributed to the experts and the gating network. The experts are sim-
ple linear predictors, they output the mean of Gaussian distributions. The
gating network outputs a probability for each expert. The density corre-
sponding to each expert is weighted by this probability and added together
to form the combined estimator.

The Expectation-Maximization (EM) algorithm (see [45] and [46] for proof
of convergence) is used to maximize a log likelihood function, which in the
case of XuME is

1(0,v) = log(H P(y;|Z;)) Zlog (T5125))-
J
The theoretical background is well described in the literature, so we will
proceed to the update rules after introducing the expectation variables

h;(§1%) = P (5|2, 9):

i P(&|v) P(|E0 6))
Wi 2 = Y 1Y T1,05)
W) = S~ G PG P (G130 6)

The update rules for the parameters «; are
new 1 = |7
= Zhj(yt|xt).
t

The update rules for the parameters v; = {m;, ¥;} are

! 21 (G| Z)
snew _ >t hi(Ge|Z) (T — ) (T — Tﬁ?e“’)T
Zt b (Gi| %)
It is more complicated to find 7" = {I'}*, w}*”}, but it can be solved by

a set of linear equation systems: ci;c = Agk, where Ek is the unknown k’th
column of fw;-”ew. The index k takes values between one and the size of the

output vector. The vector d_;c and the matrix A are constructed as follows

I =" bl 1@, 1)
t

A =" hi(Gl3)[F, 1[E, 17

t
The update rules for I} are

prew _ 2t 1 (Gel @) (F — (w w™) (7, 1]) (G — ()T [F, 1))T
! Zt b (i:| Zt)




7.2 Mixtures of experts

83

This version of ME has a long history. We have traced the origin to [42]
where a heuristic ME method was presented. Both the gating network
and the predictors were neural networks trained with back propagation.
The error function for the gating network was ad hoc. In the much cited
article [43] the ideas were taken further, and the emphasis was on strong
combination, while the predictors were simple. This version was tested in
[67] on a vowel classification problem. In [47] the Hierarchical mixtures of
experts is presented, where the gating network has a tree structure. The
learning EM-algorithm is introduced in [45]. In [68] pruning and growing
are added to the presented here version from [94]. It has been used in [16]
on speaker identification.

7.2.2 DynCo

DynCo is a variant on the ME methods presented in [43].

Definition 14 (DynCo Combined Predictor)

A DynCo combined predictor F' consists of a group of M regressors f;, called
experts, and another group of M regressors z;, called coefficient predictors.
The combined predictor is given by the linear average predictor (LAP)

M

F(Z) =) (@) fi(E) (7.5)

3
The coefficients are given by the SOFTMAX function
ez@(f)

¢(T) = ST @)’

The SOFTMAX function is used to automatically ensure that the coefficients
obey 0 < ¢;(Z) <1 and ZZM ci(Z) = 1.

In figure 7.3 is an illustration of a DynCo combined predictor with three
experts. Note the similarities with figure 7.2. The gating network block in
figure 7.2 corresponds to the part of figure 7.3 where the coefficient predictors
z; are combined by the SOFTMAX function to form the coefficients c;.

The DynCo training algorithm can use any machine learning method that
is iterative and use gradient descent. The error function for the experts is
the MSE function on the combined predictor:

1

Es(t, fi) = 5(75 - F(f:)% (7.7)



84

Meta machine learning methods

Output:

Gating
Network

Figure 7.3: DynCo architecture

while the error function for the coefficient predictors is the MSE function
on the combined predictor plus a penalty term. The penalty term in the
error function for the coefficients predictors has been added to prevent the
DynCo training method from emphasizing on only a few experts by setting
the coefficients of all other experts to zero (see section 7.3.1).

M

B(t,5) = 5t = Fe))? + 3 (i = 37 (7.9

Algorithm 3 (DynCo Training Algorithm)

1. Choose an iterative machine learning method L and ensemble size M.
2. Generate M ensemble members f; and M coefficient predictors z;.

3. frev = L(T, f2'4) for all i using the error function Ey.

4. 21V = L(T, 22'%) for all i using the error function E,.

7

5. If a stop criterion is not satisfied, go to 3.



7.3 Ensemble and mixtures of expert methods

85

6. Construct the combined predictor
M

F(@) =) (@ fi(@),
i=1

where ¢; is defined in (7.6).

Back-propagation can be used to train a DynCo combined predictor, if the
experts and coefficient predictors are neural networks. This is assumed in
the following.

7.2.3 The family of gradient descent ME methods

DynCo is a variation on the ME method presented in [41, 43, 47]. There
are a number of similarities: a group of experts are combined using weight-
ing with non-constant coefficients (the gating network). In all methods the
experts are trained using gradient descent (see appendix I). The differences
are to be found in the error function and the architecture. In [41] the error
function for each expert is the MSE function. This encourages competition
between the experts (see section 9.1). The error function for the gating
network is an ad hoc function that does not guarantee normalized coeffi-
cients. The methods in [43, 47] and DynCo use the SOFTMAX function
to obtain auto-normalization of the coeflicients. In Jacobs et al. [43] three
different error functions are discussed. The two first are MSE functions for
respectively the combined predictor and the experts. The first error func-
tion ((y —>_;¢; fi)?) is the error function used in DynCo. It encourages
cooperation between the experts, since the experts can cooperate to form
an accurate combined predictor without being accurate themselves. The
second error function (3_; ¢;(y — f;)?) is the one preferred by Jacobs et al.
It encourages competition, since it is advantageous to use only the most
accurate expert. Qur experiments show that the first error function is the
better (see section 9.1). Jacobs et al. also suggest a third error function
—log(y>; cje 2@=1)?) which is derived from a likelihood measure. The er-
ror function in [47] is also a log likelihood measure. The experts are still
neural networks in [47], but the gating networks are simple affine predictors
before they are combined using the SOFTMAX function. The architecture
in [47] is hierarchical with gating networks forming a binary tree.

7.3 Ensemble and mixtures of expert methods

In section 7.1 some ensemble methods were presented and in section 7.2 some
mixtures of experts methods were presented. They are often considered as



86

Meta machine learning methods

two separate groups of machine learning methods, but even though they
have been presented as two groups, with different characteristics, they must
be considered inseparable facets of the same group of methods. That is why
they together are denote meta machine learning methods. Admitted it is
difficult to see the ME characteristics in Simple (section 7.1.3), and it also
difficult to find the ensemble members in Hierarchical mixtures of experts
[45], but they are extremes. The overlap between the two groups can be
seen in e.g. the boosting ensemble methods. They can to some extend be
seen as decomposing the problem. The next predictor in a boosting session
becomes an expert on a subset of the problem, often the examples for which
the previous predictor did poorly on.

The combination rule and the gating network share common traits. The
combination rule often is very simple, and the gating network is often com-
plex and often contains the most of the expressive power of the combined
predictor, but in principle they have the same possible functionality. There
is nothing wrong in the gating network choosing to weigh all examples and all
experts with uniform weight (but highly unlikely). The combination rule for
an ensemble method can be very complex, e.g. the combination rule for Ad-
aBoost uses information from training. Estimation of coefficients in parallel
ensemble methods can be complex. The combination function can depend
on the input [84]. We have chosen to define the difference between ensemble
methods and ME methods as whether the gating network/combination rule
is found during training, but this differentiation is to some degree arbitrary
and not really well defined.

Some methods are in both groups, e.g. in [1] where boosting and mixture
of experts are combined. The predictors are trained with boosting sessions,
where the selection of examples for the next boosting session is based on a
confidence measure defined on the already trained predictors. This makes
it a boosting ensemble method. The confidence measure is also used to
combine the predictors. This makes it a mixture of experts method.

Any subdividing of the group of meta machine learning methods can not be
strict, and will depend on the view of the “subdivider”. Another counter-
example of a strict grouping is the DynCo method, which is discussed below.

7.3.1 DynCo and the v parameter

The DynCo method can continuously be set from a “pure” ME method
to a “pure” ensemble method via the y parameter. If 7y is set to zero, the
coeflicient predictors decompose the input space as an ME method. If y goes
toward infinity, the coefficient predictors are forced towards their common
mean, which is uniform weighting as in many parallel ensemble methods.



7.3 Ensemble and mixtures of expert methods

87

A natural question is if there is an optimal 7 parameter? If there was, we
would know the optimal blend of ensemble method and ME method. In
order to determine this, test runs on six different training sets have been
done, where the value of v was varied from 0.001 to 20. The example sets
Building, Brain I, Brain II, Abalone, Thyroid, and Spiral are described in
section 9.2. In figures 7.4-7.9 graphs of the error as function of -y for the six
example sets can be found.

0.00136 T T T T 0.055

MSE ——
Standard Deviation +—
0.00134

0.00132
0.0013 -
0.00128 |

0.00126 |

0.00124 |

0.00122 |

0.0012 L L L L 0.02

Figure 7.4: Building Figure 7.5: Brain I

0.037 T T T T T 0.0695

MSE MSE
0.0365 - Standard Deviation —i Standard Deviation —i

0.069 [
0.036 [
0.0685 [
0.0355
0.068 [
0.035 |

0.0345 0.0675 -

0034 | 0.067 |

0.0335 -
0.0665 (-
0033 [
0.066
0.0325

0082 - 00655 |-

0.0315 L L L L L 0.065

Figure 7.6: Brain II Figure 7.7: Abalone

As can be seen in the figures the optimal value of v is problem dependent.
The problems can be divided into three groups. The first group (Building,
Thyroid, and Spiral) contains problems, which require a small value of ~y
(K 1), whereas the second group (Brain IT) requires a large value of vy (> 1).
The third group (Abalone, and Brain I) has intermediate optimal value of
v (= 1). The optimal value of v can be interpreted in the following way: If
the optimal value is small, the corresponding problem benefits strongly from
decomposition, in contrast, if the optimal value is large there is no gain in
applying decomposition.

We conclude that the optimal value of y can give valuable information about
the training set. This also indicates that for a given class of predictors, with



88

Meta machine learning methods

0.012

0.011

0.009

0.008

0.007

0.006

MSE
tandard Deviatiofy +o—i

0.005 L
0.01 01 1 10

Figure 7.8: Thyroid

MSE ——
Standard Deviation +e—+

L
0.01 0.1 1 10

Figure 7.9: Spiral

the same “complexity”, some problems benefit from decomposition, while

others do not.



Part 11

Experiments






Chapter 8

Empirical comparison of the
deviance error functions

In chapter 5 we presented a general bias/variance decomposition for a large
group of error functions. The error functions are derived from densities in
the one-parameter exponential family of distributions through the deviance.
No assumption was made about the distribution of the noise on the targets,
but intuitively it would make sense to use an error function that is derived
from the noise distribution in order to improve learning. On the other hand,
it is not impossible that a particular error function, e.g. the popular MSE,
generally is better for a wide range of noise distributions.

In this section we empirically test the MSE function, Poisson error function,
and Gamma, error function on six artificial functions with four different noise
distributions, one of them being no noise. We will investigate if there is a
connection between the type of error function and the type of noise, and
see if a particular error function generally is better. The empirical result
indicates that the noise distribution and the corresponding error function
are correlated as expected. The tests show that the Poisson error function
generally outperforms the two other error functions.

The test is not conclusive, but only indicative because of the empirical nature
of the test. The number of error functions and target functions are limited.
The learning method could have influence on the result, and it is not clear
what noise on the target function should mean. We will address the noise
in section 8.1 and the learning method in section 8.2. The result of the test
will be presented and discussed in section 8.3.



92

Empirical comparison of the deviance error functions

8.1 Noise on target functions

Noise on the target function can come from a number of sources: the target
function can be stochastic, or the measuring process can be inaccurate. The
normal model of Gaussian noise is as an additive term to a deterministic
target function

t(Z) = t*(Z) + e(T),

where ¢ is the stochastic target from which the examples are sampled, t* is
the “real” target function and e is the noise term with zero mean and variance
o(Z). This model is tailor made for Gaussian noise, since the Gaussian
distribution is invariant under transformation of the mean, so if €(Z) is
distributed as N(0,0(Z)) then ¢(¥) is distributed as N(t*(Z),o(Z)). This
is generally not possible, e.g. the Gamma and Poisson distribution are not
invariant under transformation of the mean. Both distributions can not have
negative mean. Furthermore, if €(Z) is Poisson distributed then t*(%) + €(%)
is not Poisson distributed.

In order to amend this problem we choose that the “real” target t* is the
mean parameter in the distribution and we assume that the variance is
known:

p(H(7) = 2) = = (2]t*(Z), 0),

where 7 is the density corresponding to the noise distribution.

8.2 Gradient descent for deviance error functions

In section 6.2 the back propagation algorithm is described for the MSE. Back
propagation is a gradient descent method for neural networks. If the error
function is changed the only effect on the update rule is the term connected
to the error function, i.e. it will only affect the back-propagated error 5;-\7 .
In the following scalar output of the neural network is assumed, but it is
not assumed that the post-processing function is the identity function. Let
the output of the neural network be given by nn and the post-processing
function be given by f = pp(nn) yielding the back-propagation error:

5N _ 9E(}.1) Opp(nn)
Y onn

This parameter negated is an expression for how much the output of the
neural network should be changed. We denote that change Ann and call it
the intended shift of the neural network:

Ann = -5V (8.1)



8.3 The empirical test of deviance error functions

93

A post-processing function can be a simplifying tool in connection with the
deviance error functions, e.g. the Poisson or Gamma error functions that
only accept positive predictors. The output of a neural network can take
any value on the real line, but by setting the post-processing function to be
the exponential function, the post-processed output is forced to be positive.

Let us use the Poisson error function as an example, and let the post-
processing be the exponential function f = e"". The post-processed output
is the actual output of the predictor. The error function is given by

B(t, 1) = [t~ 7]+ tlog T
and is only suppose to take positive parameters ¢ and f. The intended shift

of the neural network Ann is given by (8.1)

ot — f]+tlog £ dem ¢

of onn - ?]enn

Remember that f = €™ so the intended shift in output of the neural
network is given by [% —1]f =t — f, which is the signed difference between
the target and the output of the post-processed output. This difference
can take on any value on the real line, but so can the output of the neural
network. Note that the intended shift Ann is reduced to the gradient for the
MSE error function. The post-processing functions and intended shifts for
the error functions in section 5.6 are given in appendix F. In the next section
three error functions are compared using the post-processing functions given
in appendix F.

Ann = —

8.3 The empirical test of deviance error functions

In order to test the hypothesis of a connection between the types of noise on
the target function and the types of error functions, three error functions are
trained on six target functions with four types of noise. The error functions
are the Normal error function (MSE), the Gamma error function, and the
Poisson error function (see section 5.4). The six target functions are SinC,
Gabor, Multi, Friedmanl, Friedman2, and Friedman3 (see section 10.1 for
a description). Four types of noise are tested on the six target functions,
namely Normal distributed, Gamma distribution, Poisson distributed noise,
and no noise. The Normal and Gamma distributed noise are both in two
versions with different deviation. One where the deviation is 5 % of the
output domain, and one where the deviation is 25 % of the output domain.
The Poisson distribution does not have a separate variance parameter, so
there is only one version. The data is distorted by noise as described in
section 8.1.



94

Empirical comparison of the deviance error functions

The errors of the different error functions are not directly comparable. Fur-
thermore, the post-processing output domain of the error functions are dif-
ferent, making direct comparison meaningless. Therefore the output of the
post-processing function (from now on called the output and denoted by f)
and the output of the target function are rescaled to the interval [0; 1], and
the absolute error (|f — t|) is found on the noise-free target function. In this
way the absolute error is the same as the average difference between the
target and the output in per cent. During training, the target functions are
rescaled to naturally fit the output domain of the error function. For the
MSE the target functions are rescaled to the domain [—1;1]. For both the
Gamma and Poisson error function the target functions are rescaled to the
domain [1;100]. In table 8.1 is an overview of the output domain (OUT.
DOM.), rescaling domain (RES. DOM.), post-processing function (P.P.
FUNC.), and intended shifts (Ann) for the three error functions.

| ERROR | OUT. DOM. | RES. DOM. | P.P. FUNC. | Ann |

MSE ] — 005 00] [—1;1] f=nn t—f
Gamma [0; o0 [1;100] f=e" % -1
Poisson [0; o0 [1;100] f=e"m t—f

Table 8.1: Error function specifications

For each combination of noise and error function 30 neural networks were
trained. For each training run a new training set was generated. The size
of the training sets was as default 2500, but only 1000 for the SinC target
function. The neural networks had one hidden layer. The size of the input
and output layer were determined by the number of inputs and outputs of
the targets function. The hidden layer had as default 20 nodes. The only
exception was for the SinC target function, which is so simple, that only
10 hidden nodes were used. Training was done using back propagation as
described in section 8.2. The learning rate was set to 0.01 for the Gamma
and Poisson error function and 0.5 for the MSE. Momentum (see section 6.2)
was used with a momentum rate of 0.9. All neural networks were trained
for 5000 epochs. The weights were updated after a batch of 100 training
examples were seen.

In tables 8.2 and 8.3 is an overview of the test errors from the training
runs. As previously mentioned the test errors were found on the noise-free
target function, even for training runs where the training set had noise.
Technically the noise-free test error was found by sampling the noise-free
target function a number of times equal to the size of the training set and



8.3 The empirical test of deviance error functions

95

calculating the error on that set. It can be a little difficult to see what the
test error on the noise-free target function would mean on natural data. We
know the noise-free target functions, because artificial target functions were
used, but for natural data the noise-free target function is not even well
defined. If the noise originates from measuring process, then the noise-free
target function corresponds to the unknown “truth” we wish to find, and
is therefore well defined. But if the target function is inherently stochastic,
e.g. in example data that involves atomic decay, there is no deterministic
“truth”. We have defined noise in section 8.1 as a distribution with a well
defined mean parameter. Furthermore, the deviance error functions in this
test have minimum in what corresponds to the mean parameter (see section
5.4), so the noise-free target function corresponds to the mean parameter as
a function of input, and is therefore well defined.

Each number in tables 8.2 and 8.3 represents 30 training runs. The average
of the test error is the first number, while the digits in the parentheses is the
error on the last digits of the test error, i.e 0.0114(48) means 0.0114+0.0048.

[TARGET | NOISE MSE _ POISSON GAMMA |
SinC None 0.0200(47) _ 0.0048(13) _ 0.0114(48)
SinC Normal (5) | 0.0095(36)  0.0087(24)  0.0136(37)
SinC Normal (25) | 0.0125(27)  0.0146(35)  0.0308(33)
SinC Gamma (5) | 0.0342(49)  0.0187(30)  0.0240(98)
SinC Gamma (25) | 0.1486(85)  0.0357(31)  0.0137(43)
SinC Poisson 0.0230(25)  0.0096(17)  0.0241(83)
Gabor None 0.01405(52) 0.00371(49) _0.0085(19)
Gabor Normal (5) | 0.0095(10)  0.0108(32)  0.0180(51)
Gabor Normal (25) | 0.0196(25)  0.0174(31)  0.037(10)
Gabor Gamma (5) | 0.0169(26)  0.0089(22)  0.0120(30)
Gabor Gamma (25) | 0.0858(95)  0.0163(16)  0.0153(22)
Gabor Poisson 0.0236(22)  0.00361(80) 0.0057(15)
Multi None 0.00372(74) 0.00774(88) 0.0121(12)
Multi Normal (5) | 0.0221(27)  0.0217(24)  0.0232(24)
Multi Normal (25) | 0.0433(26)  0.0440(28)  0.0573(79)
Multi Gamma (5) | 0.0220(26)  0.0147(18)  0.0158(24)
Multi Gamma (25) | 0.0814(88)  0.0242(17)  0.0249(15)
Multi Poisson 0.0263(36)  0.0201(16)  0.0205(29)

Table 8.2: Test results for noise type versus error function type I

The test error is between 0.20 % and 15 % and the deviation is between 3.3
% and 42 % of the test error. The average test error is close to 2.4 % and
the typical deviation is around 10 % of the test error.



96

Empirical comparison of the deviance error functions

| TARGET | NOISE MSE  POISSON GAMMA |
Friedmanl | None 0.0063(13)  0.0145(15)  0.0247(36)
Friedmanl | Normal (5) | 0.0311(17)  0.0311(26)  0.0354(33)
Friedmanl | Normal (25) | 0.0566(24)  0.0617(34)  0.0656(46)
Friedmanl | Gamma (5) | 0.0300(29)  0.0207(12)  0.0273(37)
Friedmanl | Gamma (25) | 0.0811(49)  0.0318(11)  0.0343(11)
Friedmanl | Poisson 0.0356(17)  0.0329(31)  0.0366(22)
Friedman2 | None 0.0133(36)  0.00203(31)  0.00467(74)
Friedman2 | Normal (5) | 0.01036(45) 0.00255(37) 0.00091(11)
Friedman2 | Normal (25) | 0.00738(93) 0.00592(46) 0.0123(12)
Friedman2 | Gamma (5) | 0.0121(31)  0.00456(60) 0.0136(20)
Friedman2 | Gamma (25) | 0.0206(43)  0.0160(14)  0.0341(51)
Friedman2 | Poisson 0.01519(80)  0.0056(11)  0.0103(23)
Friedman3 | None 0.0081(19)  0.0117(14)  0.0234(23)
Friedman3 | Normal (5) | 0.0290(83)  0.0255(27)  0.0235(24)
Friedman3 | Normal (25) | 0.0397(44)  0.0440(50)  0.0565(46)
Friedman3 | Gamma (5) | 0.0168(21)  0.0152(24)  0.0159(17)
Friedman3 | Gamma (25) | 0.0433(49)  0.0210(18)  0.0214(32)
Friedman3 | Poisson 0.031(13)  0.0268(19)  0.0248(32)

Table 8.3: Test results for noise type versus error function type II

Due to the number of test errors in tables 8.2 and 8.3, it is not easy to draw
conclusions. To get a clearer picture we introduce a quality measure of the
error functions: The percentage that a given error function would produce
the lowest test error for a given noise and target function averaged over the
target functions (see appendix K). In practice this percentage is found by
using the results in tables 8.2 and 8.3, and assuming that the test errors for a
given error function, target function, and noise type are Normal distributed
with the mean and standard deviation given in the table.

The quality measure for error functions versus noise type is given in table
8.4. In the table the highest probability (quality measure) for each error
function is written in boldface, excluding the probabilities for no noise.

We see that the MSE is best on training sets with no noise and with Gaus-
sian noise, while the Poisson error function is best on Poisson and Gamma
noise, and Gamma error function is best on Gamma and Poisson noise. This
strongly support the hypothesis that an error function derived from a dis-
tribution is best suited for training set with noise from that distribution.
The Poisson error function is almost as good on Gamma noise as on Poisson
noise, while the Gamma, error function is almost as good on Poisson noise
as on Gamma noise. This is not very surprising, since Gamma and Poisson
distributed noise share some characteristics, e.g. lower-bound at zero, and



8.4 Further analysis of the tests

97

\ NOISE MSE POISSON GAMMA |
None 0.498 0.502 0.000
Normal (5) and Normal (25) | 0.489 0.430 0.081
Poisson 0.033 0.807 0.160
Gamma (5) and Gamma (25) | 0.006 0.761 0.233

Table 8.4: Noise type versus error function type

an infinite positive tail. The most surprising is that the Poisson error func-
tion is the best performing error function for three of of the four types of
noise (including no noise), and the probability that the Poisson error func-
tion yields the lowest error with Normal distributed noise is almost as large
as the the probability for the MSE function. This questions the role of MSE
as the commonly used error function, since not even for Normal distributed
noise is the MSE unchallenged in performance. It should be noted that the
test is empirical and by nature limited. The conclusions can therefore only
be indicative. Furthermore, the Poisson error function is lower-bounded,
while the MSE is defined on the entire real line. Still, if the training exam-
ples have a natural lower-bound, there should be no reason to use the MSE
function over the Poisson error function.

8.4 Further analysis of the tests

The results in tables 8.2 and 8.3 can be used for further analysis. In table
8.5 the average test error over noise types and error function types for the
target functions are given. This can be used as an empirical measurement of
the difficulty of the target functions. The number in the parentheses is the
average standard deviation expressed as the inaccuracy on the last digits of
the average test error. Even though there are some differences between the
difficulty of the targets function, the spread between the most difficult target
function (Friedmanl) and the least difficult target function (Friedman2) is
less than a factor 3.3. Since this difficulty measure is very crude, we cannot
with confidence say that there is substantial differences between the target
functions. This is an advantage, since it indicates a uniform background for
the test and conclusions in section 8.3.

Note that the difficulty measure for SinC is not reliable, since the predictors
used for the SinC target function are less complicated (half the number of



98

Empirical comparison of the deviance error functions

| TARGET FUNCTION | AVERAGE TEST ERROR |

SinC 0.0254(44)
Gabor 0.0181(25)
Multi 0.0269(27)
Friedmanl 0.0365(24)
Friedman2 0.0111(13)
Friedman3 0.0265(32)

Table 8.5: The average test error for the target functions

hidden nodes) and the number of training examples is less (1000 instead of
2500).

In table 8.6 the average means for the different noise types are given. There
is no problem in connection with the SinC target function, since the results
for SinC are equally distributed between the results for the different types
of noise.

| NOISE TYPE | AVERAGE TEST ERROR |

None 0.0108(15)
Normal (5) 0.0186(22)
Normal (25) 0.0348(33)
Gamma (5) 0.0180(25)
Gamma (25) 0.0416(34)
Poisson 0.0208(23)

Table 8.6: The average test error for the noise types

The spread between the smallest and the biggest average test error is about
a factor four, which is larger than the corresponding difference in table 8.5,
making the difference more significant.

As expected the average of the test errors for training without any noise is
smallest. The average of the test errors with noise are all larger and the
average of the test errors increases with increasing deviation. The average
of the test errors for Normal (5) noise and Gamma (5) noise are equal, and
the average of the test errors for Normal (25) noise and Gamma (25) noise
are close to each other. This indicates that the deciding factor is not the
type of noise, but the deviation. The average of the test errors for Poisson
noise is between the average of the test errors for small deviation (5 %) and
large deviation (25 %).



Chapter 9

DynCo compared with four
other methods

The results in this section are the main results from the article “Combin-
ing Predictors: Comparison of Five Meta Machine Learning methods”, that
has been published in “Information Science, an International Journal” [33].
Some of these results have been published in the proceedings of the third
International Conference on Computational Intelligence and Neuroscience
(ICCIN’98), which was part of the fourth International Conference on Infor-
mation Sciences (JCIS’98) [32], and in the progress report for the author’s
part A exam [31]. The results were presented orally at ICCIN’98.

In section 9.1 the optimal error function for DynCo (see section 7.2.2) is
investigated. In section 9.2 three ensemble methods and two mixtures of
experts (ME) methods are compared.

9.1 Cooperation or competition?

Remember that the combined predictor for DynCo is given by the LAP
F =% ;cjfj- As mentioned in section 7.2.3 Jacobs et al. [43] prefer the
error function

E(F,t) =) cily—£;)
J
to
E(Ft)=(y—Y cif;)
J
Note that in the ambiguity decomposition of the MSE function (3.5) the first
term is 3 c;(y— f;)? (apart from a constant). By introducing an ambiguity



100

DynCo compared with four other methods

factor (AF) in the second term of (9.1), we can test which of the two error
functions is the better.

N
l\')lb—l

1 M M
_ZCZ (y — fz Z (9.1)
=1 =1

The value of AF was varied in test runs between 0 and 1.8 in steps of size
0.2 for 12 problems.! For each problem and value of AF ten test runs were
performed, and the mean and standard deviation were found. Even though
different values of AF were used during training, AF was set to one for the
test set error in order to make the comparison equal and fair.

In figures 9.1-9.12 the graphs of error as function of AF' are given for the
12 problems.

0.0014 T T T 0.055

MSE ——
Standard Deviation +—i Standard Deviation +o—

0.00138 -

0.00136 |-

0.00134 -

0.00132 -

0.0013 |

0.00128 |-

0.00126 L L L 0.025

Ambiguity Factor Ambiguity Factor

Figure 9.1: Building Figure 9.2: Brain I

004 T T T 0073 T T T
MSE —— MSE ——
Standard Deviation +e— Standard Deviation +~e—

0.072 -
0.039

0.071 -
0.038 -

0.037 -
0.069 -

0.036
0.068 |-

0035 - 0067

0.034 L L L 0.066 L L L
0 05 1 15 2 0 05 1 15 2

Ambiguity Factor Ambiguity Factor

Figure 9.3: Brain II Figure 9.4: Abalone

None of the 12 problems indicates that zero should be the best value of AF.
To give an over-all picture the following is calculated: the probability for
each value of AF that a test run with that value would yield the lowest

1The problems are described in section 9.2.



9.2 Empirical tests of meta machine learning methods

101

0017 T T T 02

MSE ——
Standard Deviation +—i

0.016 -
0.015
0.014 -
0.013 -
0012

0011

0009 | 1 002 |

0.008 L L L 0

Ambiguity Factor

Figure 9.5: Thyroid

0.016 T T T 0018

MSE ——
Standard Deviatior| +e—
0014 | B 0016 |

0012 | B 0014 |
001 | b 0012 |
0.008 |- B 001 |
0.006 | B 0.008 |-
0.004 | b 0.006 -
0.002 | i 0.004 |

0 L L L 0.002

Ambiguity Factor Ambiguity Factor

Figure 9.7: SinC Figure 9.8: Gabor

error, where the problems are weighted uniformly (see appendix K). The
resulting probabilities are plotted in figure 9.13.

As can be seen the percentages are peaked around AF equal to one. There
is 25.3 % probability that training with AF = 1 yields the lowest error,
while it for AF = 0 is only 7.1 % or about 3.6 times less. We have therefore
chosen always to use AF = 1, which corresponds to the error function:

B(F) = 5y~ Y eify)” = 5y~ F)”

J

9.2 Empirical tests of meta machine learning meth-
ods

We have performed two groups of tests: One where we have implemented
five of the MML methods from chapter 7 and compared their test set er-
rors. This group of tests is called relative-tests. The other group of tests
is called absolute-tests, because we compare DynCo with results published



102

DynCo compared with four other methods

0.0016 T T T 0.003

MSE ——
Standard Deviation +—i Standard Deviation +—
0.0014 i 0.0028 4

0.0026
0.0012 |

0.0024
0.001 -
0.0022
0.0008
0.002 -
0.0006
0.0018

0.0004 |
0.0016

0.0002 - 1 00014 |

0 . - . 0.0012 . - .
o 05 1 15 2 o 05 1 15 2

Ambiguity Factor Ambiguity Factor

Figure 9.9: Multi Figure 9.10: Friedman 1

0.017 T T T 0.01

MSE —— MSE ——
Standard Deviation +e— 0.0005 | Standard Deviation ~e— _|

0.016
0009 |-
0.015

00085 |-
0.014 4 0.008 |-
00075 |
0.013
0.007
0.012 1 0.0065 |

0.006

0011
0.0085

0.005

0.009 L L L 0.0045 L L L
0 05 1 15 2 0 05 1 15 2

Ambiguity Factor Ambiguity Factor

Figure 9.11: Friedman 2 Figure 9.12: Friedman 3

for AdaBoost, Bagging (both from [20]), and for an extended version of X-
uME, that employs pruning/growing [68], which we call XuME++. The
implementation of DynCo, Bagging, AdaBoost, and Simple employs neu-
ral networks as ensemble members/experts. The predictors used in [20] for
AdaBoost and Bagging are regression trees. The experts for XuME and
XuME++ are given by the definitions of the methods.

For both groups of tests the quality measure is the MSE on a test set.
This only makes sense if the combined predictors from the implemented
methods are regressors. AdaBoost, Bagging, Simple, and DynCo already
have a regression version, while XuME is a density estimation method. To
transform XuME into a regressor, one could take the mean over the output
density, but to use the advantage of density estimation, we have chosen to
use the output with the highest density:

argmaz(P(§|7)) ~ argmaz (g;(&,v;)P(J;|7,6;))-
g GE(Lyennsk):F;

The error of the approximation is small if the peaks of high density are not
too close and there is not too much overlap between the experts.



9.2 Empirical tests of meta machine learning methods

103

0.3 T T T T

Percent ——

0.2 -

0.05 -

0 L L L L
0 0.5 1 1.5 2

Ambiguity Factor

Figure 9.13: Ambiguity Factor

A test consisted of ten training runs on an example set. Exactly the same
partitioning of the example set into training set (75 %), and a test set (25
%) was used every time and for every MML method. If a method uses early
stopping (see definition 10) a third of the training set was used as validation
set. The mean MSE and the standard deviation have been calculated for
the ten test runs.

To make the comparison as fair as possible, we have tried to use the best
possible parameters for each test. An extensive work has been done to
find e.g. the best number of ensemble members/experts (see figures 9.14—
9.19) or the best values of hand-set parameters such as learning rate and
momentum. DynCo has the unique parameter -y, for which the empirically
found optimal values were used (see section 7.3.1). Some parameters were
not the same for the different methods e.g the number of hidden units in the
experts/ensemble members. AdaBoost, Simple, and Bagging require global
predictors in contrast to DynCo, so we chose as a default that the ensemble
members in AdaBoost, Simple, and Bagging had one hidden layer with 25
nodes, while the DynCo predictors had one hidden layer with only four to
eight nodes. There is one exception: the architecture for AdaBoost, Bagging
and Simple ensemble members had two hidden layers with each ten nodes
for the Spiral problem, since it is difficult for neural network to learn. The
coefficient predictors for the DynCo method had one hidden layer with eight



104

DynCo compared with four other methods

nodes, except for the Brain I problem where 30 nodes was used.

The experts in DynCo were trained for 5000 epochs with early stopping,
i.e. if the validation error had not decreased in 500 epochs, training was
terminated, and the error on the test set when the validation error was
lowest was reported. The ensemble members in AdaBoost, Simple, and
Bagging were trained for 5000 epochs without early stopping, since it can
be advantageous for the predictors to overfit (see e.g [82]). XuME was
trained for 200 epochs, which is enough due to the fast convergence of the
EM algorithm. XuME also uses early stopping. Training was stopped if the
validation error had not decreased after eight epochs.

9.2.1 Relative tests

The relative-tests were done on six example set. Table 9.1 gives an overview
of the sets.

| NAME | SIZE | TARGET FUNCTION |

Building 4208 PROBENT [64]
Brain I 784 PET Center [56]
Brain IT 1000 PET Center [56]
Abalone 4177 UCI [54]

Thyroid 7200 PROBEN1 [64] & UCI [54]

Spiral 1800  Generated. See figure 10.1

Table 9.1: Example Sets for Relative-tests

In figures 9.14-9.19 the graphs of the error as function of the ensemble
size/number of experts are given for the Bagging, Bagging, DynCo and Sim-
ple. The graphs for the XuME+ method have not been included, since the
nature of the XuME+ algorithm makes them incomparable, e.g. the experts
in XuME+ are very simple in contrast to neural networks in the other meth-
ods, so a larger number of experts is usually needed. The graphs in figures
9.14-9.19 has been used to find the optimal number of experts/ensemble
members, but the structure of the graphs also deserves some remarks.



9.2 Empirical tests of meta machine learning methods 105

0.003 . T T T
: DynCo MSE
; Standard Deviation +--+---
0.0028 |- Bagging MSE -------- -
b Standard Deviation -
o AdaBoost MSE ——-—~
- Standard Deviation ---%--
00026 Simple MSE -- - -
B Standard Deviation - & -+
0.0024 |- ; i
0.0022 : il
0.002 ; i
0.0018 |- i
0.0016 - _
0.0014 i
0.0012 E
0.001 L L 1 L
0 5 10 15 20
Number of Experts/ensemble members
Figure 9.14: Building
0.055 T ; . ,
DynCo MSE
Standard Deviation ---+---
B Bagging MSE
0.05 - ! Standard Deviation > —
i AdaBoost MSE -~
1 Standard Deviation - - -
i Simple MSE -
0.045 | 3 Standard Deviation - E
0.04 | i i
0.035 _
0.03 4
0.025 _
-~
0.02 4
0.015 L 1 I I
0 5 10 15 20

Number of Experts/ensemble members

Figure 9.15: Brain I



106 DynCo compared with four other methods

0042 T T T T T T T
DynCo MSE
o Standard Deviation --—+--
004 L' Bagging MSE -------- ]
: . Standard Deviation -
D AdaBoost MSE --—---
Pk Standard Deviation ---% -
0.038 [ ¥ | Simple MSE -~ -
Vi Standard Deviation - & -
1
I Jy
0.036 - .| i
]
0.034 | | E
0032 |- -
0.03 -
0.028 E
0.026 4
0024 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Number of Experts/ensemble members
Figure 9.16: Brain II
0.082 T T T T T T
DynCo MSE
1 T Standard Deviation ---+---
0.08 - ! [ Bagging MSE -------- i
: DT Standard Deviation -
R AdaBoost MSE ——--
s Standard Deviation ---% -
0.078 - ¥ Simple MSE -~
N Standard Deviation - & ---
[ AR
! Yo
0.076 A 4
ke
[
n I
0.074 + . -
! 1
0.072 | E
0.07 - -
0.068 | - 4
0.066 E
0064 1 1 1 1 1 1
0 5 10 15 20 25 30

Number of Experts/ensemble members

Figure 9.17: Abalone



9.2 Empirical tests of meta machine learning methods 107

0.04 T T T T T T
DynCo MSE
Standard Deviation ---+---
Bagging MSE --------
Standard Deviation -
0.035 |- AdaBoost MSE ———— |
Standard Deviation ---%--
Simple MSE - - -
Standard Deviation - & -+
0.03 B
0.025 B
0.02 B
0.015 B
0.01 B
0005 1 1 1 1 1 1
0 5 10 15 20 25 30
Number of Experts/ensemble members
Figure 9.18: Thyroid
0.4 T T T T T T
DynCo MSE ——
Standard Deviation +——
035 - Bagging MSE ------- i
’ Standard Deviation ——
AdaBoost MSE -~
Standard Deviation +H5—
03 F |& Simple MSE ------
\ Standard Deviation +=<—
|
0.25 i -
‘%
02t I e
\\ N I [
0.15 B
0.1 E
0.05 - _
0 1 1
0 25 30

Number of Experts

Figure 9.19: Spiral



108

DynCo compared with four other methods

Some of the figures seem to have the same structure, e.g. figures 9.15 and
9.16, which corresponds to the example sets Brain I and Brain II. All the
graphs in figures 9.15 and 9.16 follow the “classical” pattern of decreasing
error for increasing number of experts/ensemble members and the decrease
in error becomes smaller and smaller. For both figures, AdaBoost achieves
the lowest error among the methods depicted.

It is not surprising that figures 9.15 and 9.16 resemble each other, since
both examples sets originate from the same problem. More surprising is
the similarities in figures 9.14 and 9.18, since the example sets Building and
Thyroid are unrelated. Also, the structure of the figures are interesting and
“non-classic”. It seems as if the ensemble methods have a lower bound for
the error, which is equal to the error of a single ensemble member. We call
that for the “lower error bound for ensemble methods”. The ME method
DynCo does not suffer from the lower bound, and it significantly outperforms
the ensemble methods. Especially remarkable is the structure of the graph
for AdaBoost in figure 9.18. The error of AdaBoost is on the lower error
bound for one and two ensemble members, but then the error increases until
it is the double of the lower error bound. This kind of behavior has been
reported in literature [66, 59] and indicates noise and/or outliers.

The structure of the two pairs of figures are correlated with the optimal value
of 7y (see section 7.3.1). For the figures 9.15 and 9.16 the optimal values of
v are one or greater, while the optimal values for figures 9.14 and 9.18 are
close to zero. This is in agreement with the interpretation of the optimal
value of 7. A low optimal value indicates that the example set benefits from
decomposition of the problem, so ME methods should perform well. A high
optimal value on the other hand indicates, that global combination is better,
so ensemble methods should perform well.

Note that even though DynCo is not the best performing methods on Brain
I and Brian II, it is not much worse than the ensemble methods. This is due
to the fact that DynCo resembles an ensemble method for high values of ~.

The two figures 9.17 and 9.19 have structures in between the discussed
figures. Generally, the behavior of the individual graphs are classical with
the exception of AdaBoost in figure 9.17. But the decrease in error for
the ensemble methods compared with a single predictor is small, especially
compared with the decrease for the DynCo method. This indicates a lower
error bound for the ensemble methods. The behavior of AdaBoost in figure
9.17 indicates noise or outliers.

The graphs in figures 9.14-9.19 together with the graphs for XuME+ have
been used to decide the optimal number of experts/ensemble members. S-
ince the error in most cases do not increase, the optimal number of expert-
s/ensemble members is the number for which the error in a statistical sense



9.2 Empirical tests of meta machine learning methods

109

has stopped to decrease. The other parameters have been found in a similar
way, e.g. the optimal values of the v parameters have been found from the
graphs in figures 7.4-7.9. After the optimal value of the parameters have
been estimated, the different methods have been run on the examples sets
again. In table 9.2 there is an overview of the MSE for the test runs in per
cent. The errors on the two last digits are given in the parentheses.

SET DynCo Bagging AdaBoost XuME Simple

Building | 0.1180(11) 0.1457(13) 0.1468(16)  1.205(21)  0.1458(9)
BrainI | 2.28(22) 2.646(41)  2.133(71)  3.4(1.9) 2.238(18)
Brain IT | 2.911(40)  2.847(27)  2.685(43)  1.238(37) 2.801(27)
Abalone | 6.599(81)  6.689(22)  6.94(10) 7.33(37)  6.729(27)
Thyroid | 0.502(44)  1.6881(59) 1.674(25)  2.21(0) 1.6844(22)

Spiral | 0.31(13)  5.0(10) 17.0(35) 1.12(50)  4.64(92)

Table 9.2: Test Results for the Relative-tests (Per cent)

The DynCo method achieves the lowest error for four of the six example
sets. If the problems are weighted uniformly the probability that DynCo
gives the best result is 66.3 %. The second best is XuME with 21.9 % or
three times less than DynCo. See appendix K for the calculation of the
probabilities.

Note that DynCo performance is correlated with the optimal value of 7y (see
section 7.3.1). DynCo performs best in the group of problems corresponding
to a low optimal value of v (Building, Thyroid, and Spiral), while DynCo
performs worst for the group corresponding to a high optimal value of
(Brain II). The last group corresponds to an intermediate optimal value of
v (Brain I and Abalone). Here DynCo gives the lowest test set error for
Abalone, though not by much, and DynCo is not the best for Brain I.

9.2.2 Absolute tests

Tables 9.3 and 9.4 give an overview of the example sets used in absolute-
tests.

The SIZE fields have the format: “train set size”+”test set size”. The
example sets in table 9.3 are from [68], while the example sets in table



110

DynCo compared with four other methods

| NAME | SIZE | ORIGIN
Building2 210441052 PROBENT1 [64]
SinC 100¢ sin(z)/z + N(0, %)
Gabor 644192 % exp[—0.5(z% + y?) cos(2m(z + v))]
Multi 820+204 0.79 + 1.27x1x9 + 1.56x124 + 3.422925 + 2.06231475

“The test error is found by testing against the true SinC function without noise.

Table 9.3: Example Sets for Absolute-tests I

NAME | SIZE | ORIGIN

Friedmanl® 240+5000 10sin(rzi22) + 20(z3 — 1) 4+ 1024 + 525 + N(0,1)

Friedman2 24045000 \/a:f + (w23 — (55-))% + N(0,a)®

Friedman3  240+5000 tan~! 228 1/(@201) 4 N (g, )

Housing 481425 UCT [54]
“There are ten inputs: {z1,...,Z10}, only the first five have influence on the output.

*The Gaussian noise N(0, a) is a third of signal power of the function, i.e. a? is a third
of the variation of the function, calculated with uniform density over the input domain.

Table 9.4: Example Sets for Absolute-tests II

9.4 are from [20]. Note that six of the sets are generated by sampling the
input domain uniformly and computing the function in ORIGIN. The input
range for SinC is [—10;6]. For both Multi and Gabor the domains for all
inputs are [—1 : 1]. Friedmanl has input domain [0 : 1] for all inputs. For
Friedman2 and Friedman3 the input domains are z; € [0 : 100], zo € [107 :
1407],z3 € [0 : 11], and x4 €]1 : 11]. The outputs have been scaled so the
output domain is [—1 : 1] for all functions. This changes the test set errors
in tables 9.5 and 9.6, compared with the results in the literature. The test
set errors have been scaled accordingly. The numbers in the parentheses are
the deviation on the last digits.

The errors in both [68] and [20] are reported without deviation, so statistical
comparison is impossible. We adopt the terminology that two errors are



9.2 Empirical tests of meta machine learning methods

111

| SET | DYNCO XUMEH |
Buil2 | 0.1222(10) 0.42
SinC | 0.450(90)  0.435
Gabor | 0.450(79) 1.48
Multi | 0.0038(4)  0.00529

Table 9.5: Test results for Absolute-tests I (Per cent)

[ SET DYNCO BAGGING ADABOOST |
Friedmanl | 0.1476(61) 0.272 0.217
Friedman2 | 0.675(61) 0.7385 0.7155
Friedman3 | 0.492(27) 0.993 0.642
Housing? 1.31(13) 1.225 1.057

Table 9.6: Test results for Absolute-tests II (Per cent)

comparable, if the published result is in the range defined by the deviation
of the error of DynCo, otherwise the error is higher or lower. We see in tables
9.5 and 9.6 that the error of DynCo is lower than the published results for
five of the eight example sets, it is comparable with the published results for
two example sets. Only for the Housing2 example set is the error of DynCo
higher than one of the published errors, namely the error of AdaBoost.

We conclude this section with a resume.

e [t was shown empirically that the cooperative error function of DynCo
is superior to the competitive error function preferred in [43].

e DynCo was shown empirical to give lowest error 66.3 % of the time of
the five implemented MML methods, or 3.3 times more often than if
the five methods were equally good.?

e DynCo has been compared with published results for XuME with

2Five equally good methods would each have a probability of 20 % of yielding the
lowest error.



112

DynCo compared with four other methods

growing/pruning, Bagging, and AdaBoost. It was shown that Dyn-
Co gives the lowest error about 75 % of the time. This is about three
times more often than if DynCo were compared with equally good
methods.

It is believed that the strength of the DynCo method is that it can
use strong predictors (e.g. neural networks) and uses strong combina-
tion (dynamic coefficients). In contrast the ensemble methods can use
strong predictors, but have simple combination (constant coefficients),
and XuME uses strong combination, but have linear predictors.

The ensemble methods show no improvement over single predictors on
certain example sets. They cannot pass the “lower error bound for
ensemble methods”. This must be due to the simple combination rule,
because DynCo achieves significantly better results, and the difference
between DynCo and ensemble methods lies in the combination rule.

The optimal value of the v parameter gives information about how
suitable decomposition is for a given example set.



Chapter 10

Comparison of four meta
machine learning methods

The results in this section are to be published in the article [34]. The article
has been presented at the fourth International Conference on Computa-
tional Intelligence and Neuroscience (ICCIN2000), which is part of the fifth
International Joint Conference on Information Sciences (JCIS2000).

In chapter 9 five MML methods were compared on a group of natural ex-
ample sets. The conclusion was that the two ME methods DynCo and
XuME performed best. The ensemble methods Bagging, AdaBoost, and
Simple performed about equally well. This is slightly surprising, since Bag-
ging, and AdaBoost are renowned methods, while Simple is the simplest
ensemble method conceivable. The common belief in the machine learning
community is that AdaBoost is the overall best performing ensemble method
because of the adaptive resampling method used (see [20, 72, 66, 95, 10]).
Bagging should perform well for noisy example sets, especially with only a
few examples, because of the variance reducing ability (see chapter 3). Dyn-
Co and AdaBoost should be able to take advantage of a large number of
training examples. DynCo can use the extra information to decompose the
input space and fine tune the individual experts, while AdaBoost through
the adaptive resampling can use extra information. AdaBoost is known for
disregarding a large number of examples (see [10]), so extra examples could
be advantageous. AdaBoost should not do as well on the noisy example sets,
because AdaBoost is known to have problems with outliers [66, 59, 10]. Sim-
ple should be a natural “zero” among the ensemble methods. If a method
should be of any use, it should be better than Simple.

In a series of tests described below, the three ensemble methods are com-
pared with each other to check the beliefs above. In the tests, seven different
target functions are used to generate different size example sets and different



114

Comparison of four meta machine learning methods

amounts of noise.

Below is the questions that will be answered in the following

1.

A

How do the methods behave as a function of the size of the training
set?

How do the methods behave when different amounts of noise are added
to the training set?

Is AdaBoost generally the best performing method?
Does Bagging perform best on small and/or noisy example sets?
How does DynCo perform, which was the best method in chapter 97

Are the other methods generally better than the Simple method?

10.1 The tests

The target function used to generate the example sets are listed in table
10.1
| NAME | TARGET FUNCTION |
SinC sin(z)
Gabor 2 exp[—2(z? + y?)] cos[2m(z + y)]
Multi 0.79 + 1.27x129 4+ 1.56x2124 + 3.422925 + 2.06232425
Friedman] ¢ 10sin(nz122) 4+ 20(z3 — 3)? + 1024 + 55
Friedman?2 \/x% + (zox3 — (3621:154))2
Friedman3 tan~! Z283—1/(z2z4)
1
Spiral The Intertwined Spiral. See figure 10.1.
“There are ten inputs: {z1,...,z10}, only the first five have influence on the output
Table 10.1: Target Functions
The target functions SinC, Gabor, and Multi are from [20], while the target

functions Friedmanl, Friedman2, and Friedman3 are from [68]. The Spiral

targ

et function is the well-known intertwined spiral target function (figure



10.1 The tests

115

10.1). The target functions were used to generate example sets by sampling
the input domain uniformly, calculating the function, and maybe applying
noise. For each target function three test rows were done. The first test
row was without noise, and the size of the training set size was varied from
10 to 1000 in 10 exponential increasing steps. This is the noise-free test
row. In the second test row, Gaussian noise with standard deviation 0.1 was
added. The size of the training set size was varied from 10 to 4642 in 13
exponential increasing steps. This is the moderate-noise test row. The third
test had Gaussian noise with standard deviation 0.5 added. The training
set size was varied from 10 to 5000 in 13 exponential increasing steps. This
is the high-noise test row. See table 10.2 for an overview of the test rows.
The reason for choosing to train with larger training sets in the noisy test
rows is that there might be effects that first would occur at low errors, as it
must be assumed that more training examples are need to achieve low error
for the noisy test rows.

All predictors (ensemble members or experts) were neural networks trained
using back propagation (BP) with momentum. The default architecture of
the neural networks for the ensemble method was one hidden layer with 25
hidden units, while the default architecture of the experts for DynCo was one
hidden layer with five hidden units. The coefficient predictors always has one
hidden layer with eight hidden nodes. The architectures used during training
on the spiral example set were more complex, because it is more difficult
for neural network predictors to learn than the other example sets. For the
ensemble methods the architecture were two hidden layers each with twenty
hidden units. The architecture of the DynCo predictors were one hidden
layer with ten hidden units. The DynCo method does not need as complex
experts, since the problem is decomposed by the coefficient predictors. The
7y (see section 7.3.1) parameter of DynCo was always set to zero in order to
make DynCo a “pure” ME method.

The ensemble members for AdaBoost and Bagging were trained for 5000
epochs on the entire training set. The predictors in Simple and DynCo were
trained on 75 % of the training set. The last 25 % of the training examples
were used for early stopping of training of the combined predictor.

For each amount of noise and training set size the training was repeated 20
times. For each training run a new training set was generated. The error
measure was the MSE. The test error on the target function, i.e. the noise
free function was found. The mean and standard deviation of the 20 training
runs were calculated.



116

Comparison of four meta machine learning methods

"Ry, | NAME [ NOISE | SIZE INTERVAL |

s F 4 %
FLE0#%Y &7 Noisefree 0.0 10-1000
& mﬂﬁ'ﬁf ) Moderate-noise 0.1 10-4642

1-_ “,4.1

’ ':“i.‘.'i'."."‘;"l"‘-’p v . .
High-noise 0.5 10-5000

Figure 10.1: Spiral Table 10.2: Test Rows

10.2 The results

In the order of 15000 training runs were done, so the results had to be
processed in order to get an overview. This was done in two ways: The
average test error as a function of the training set size (see figure 10.2-10.7)
and the probability of a method giving the lowest error as a function of
training set size (see figures 10.8-10.11).

DynCo MSE -
2l " Simple MSE

L L L L L L
10 100 1000 10 100 1000
Set Size Set Size

Figure 10.2: Noise-free. Figure 10.3: Noise-free.

The axis in figure 10.2-10.7 are scaled logarithmically, so a straight line
indicates a polynomial connection between the Y-value and the X-value.!
In this case Y-value and the X-value are respectively the test error and the
training set size. The graphs are “sums” of the methods error on the seven
target functions. The “sum” was found this way: First, the logarithm was
taken on all test errors. For each target function the errors were scaled lin-
early, so the average error for all four methods for the smallest and biggest
training set were respectively —1.0 and —2.0. This was done in order to
avoid that test runs with large difference between lowest and highest error
dominated the “sum”. Note that the ordering of the four methods is pre-
served. The graphs are qualitative and not quantitative due to the rescaling.

A straight line with slope a indicates the connecting logy = alogz + b < y = ebz°.



10.2 The results

117

08

DynCo MSE -
Simple MSE

L L L L L L
10 100 1000 10 100 1000

10 100 1000 10 100 1000 10000

Figure 10.6: High-noise. Figure 10.7: High-noise.

The scaled errors for all target functions are averaged over the seven target
functions to give the final graphs. The graphs are presented in two version-
s, one with error bars, and one without. The graphs pairs are in figures
(10.2,10.3), (10.4,10.5), and (10.6,10.7) for the noise-free, moderate-noise,
and high-noise test rows respectively. The general picture is a straight line
with a negative slope, most clearly for the noise-free test row (figures 10.2
and 10.3). This indicates that the graphs follow a power law. In table 10.3
the average slope is given for the log-log graph before rescaling of the four
methods for each target function and noise level. The target function can be
divided into three groups. The first group consists only of the SinC target
function, where the slope is large even for high-noise. The second group
consists of the Gabor, Friedmanl, Friedman2, Friedman3, and Multi target
function, which have comparable slops for the different noise levels: Around
—1.0 for noise-free, —0.80 for moderate-noise and —0.65 for high-noise. The
last group consists of the Spiral target function with a slope close to —0.44.
The slops, especially for the noisy test rows, seem to reflect the difficulty
of learning the problem, indicating that SinC is the most easy and Spiral is
the most difficult. The slope decreases in magnitude as the noise level rises,
which signifies that for a noisy training set, more examples are needed in



118

Comparison of four meta machine learning methods

[ NAME | NO-NOISE | MODERATE | HIGH |
SinC ~1.1140.21  —1.054+0.13  —0.90 +0.14
Gabor ~0.97+0.13  —0.79+£0.14  —0.67+0.17
Friedmanl —1.22+0.13  —0.82+0.14  —0.63£0.14
Friedman2 —-1.18+0.25  —0.91+0.15  —0.66 +0.13
Friedman3 —0.80+0.12  —0.82+0.19  —0.64+0.18
Multi ~1.04£0.10  —0.79+0.14  —0.65+0.18
Spiral ~0.435+0.050 —0.468 £0.049 —0.408 % 0.049

Table 10.3: Slope of error for each target function and noise level

order to get the same decrease in test error, than for a noise-free training
set. The errors on the slopes are loose overestimates of the possible maximal
and minimal slope.

If we use the error bars as a standard unit, we see that the graphs of the
methods become more clearly separated as the noise is increased. It can also
be seen that the methods performs about equal for small training set.

To get a more quantitative measure of the methods, the average probability
over the seven target functions that a given method will yield the lowest test
error is found. The calculations are based upon the mean test errors and
the standard deviations (see appendix K). The probabilities for three test
rows can be found in figures 10.8, 10.10, and 10.11. For the noise-free test
row (figure 10.8) we see that the methods start about equal in performance.
AdaBoost and Simple quickly dwindle away, while Bagging and DynCo begin
to outperform the others. First Bagging is best, but at around a couple of
hundred training examples DynCo passes Bagging and rises to 80 % or three
times more than for equally good methods.? This indicates that for large
noise free training sets the DynCo method performs best. If only the three
ensemble methods are compared, we get the graphs in figure 10.9. Bagging
is the best performing method about 55 % to 60 % of the time for larger

*Equally performing methods would give the lowest error - of the time for M methods.

In this case M is four, so with a probability of 80 % DynCo is 0.8M = 3.2 times better
than it would have been if all methods performed equally.



10.2 The results

119

1
I I AdaBoolst —
Bagging ---x---
DynCo ---*---
Simple 8
0.8 | « B
,'*’V
0.6 | B
/X\ /
/ o
04 | - };j .
0.2 | i

10 100 1000
Set Size

Figure 10.8: Noise-free. All.

training sets, which is more than 1.5 times the result for equal performing
methods. AdaBoost and Simple perform approximately equal.

The figures 10.10 and 10.11 are very alike and will be treated as one. Again
the methods perform almost equally for small training sets, with the excep-
tion of AdaBoost that does not seem to react well towards noise. Bagging
dwindles away and Simple quickly reaches between 50 and 60 % or about
2-2.5 times more than for equally good methods. DynCo is constant around
30-40 % or a little more than for equally good methods.

We are now ready to give some empirical answers to the questions asked in
the beginning of this chapter. It must be stressed that tests and thereby the
answers are limited in a number of ways: The data is artificial and of low
difficulty. There is no missing data or outliers. The noise is Gaussian with
zero mean and uniform variance over the input domain. Still, some of the
indications from the test, are surprising.

1. What is the behavior of the methods as function of size of the training
set?

Not surprisingly the test set errors decrease when the size of the train-
ing sets is increased. The errors seem to approximately follow a power
law (see figures 10.3,10.5, and 10.7 and table 10.3). Generally the



120

Comparison of four meta machine learning methods

0.8

0.6

0.4

0.2

Bagging ---x---
Simple ---%---
S
L e i
. -x7 X
o
/X\\
x <

T
AdaBoost ——

10 100 1000
Set Size

Figure 10.9: Noise-free. Ensembles.

four methods perform about equally for small training sets. For larger
training sets one or two methods dominate.

What is the behavior of the methods as function of the amount of
noise?

More noise means that more examples are needed for a given reduction
in test error. When no noise is added the training set size must be
doubled for the error to be halved for most of the target functions.
The size of the training set must be increased by almost a factor three
when high noise is added. More surprisingly it turns out that Bagging
is not as good a noise reducer as Simple and DynCo. AdaBoost seems
to suffer greatly under noise.

AdaBoost is generally the worst performing method.

AdaBoost performs about as well as Simple in the noise-free test row
and worse than both DynCo and Bagging. For both the noisy test
rows AdaBoost is the worst performing method. The probability that
AdaBoost gives the lowest test error is mostly under 5 %, which is
more than five times worse than for equally performing methods. It is
well-known that AdaBoost is sensitive to outliers, and it is indicated
that AdaBoost also is sensitive to noise, even with zero mean.



10.2 The results 121

1
I I I AdaBoost —+—
Bagging ---x---
DynCo ---*---
Simple 8
0.8 -
06 - L e Foeeee ]
i} S A £ a
= .
) ~EL
=] = e
04 =1 P 8
02 | i
0

Set Size

Figure 10.10: Noise 0.10.

4. Bagging performs best on small training sets without noise.

Surprisingly Bagging is the best performing method only on noise-
free training sets of size between 10 and 200 (see figure 10.8). It is the
best performing ensemble method on the entire noise-free test row (see
figure 10.9). Since Simple is so much better on the noisy test rows,
the role of noise reducer for the Bagging method is questioned.

5. DynCo performs best on large noise-free training sets.

DynCo seems to be able to use the extra information on large noise-free
training set to achieve the lowest test error, as suggested above.

6. Simple performs best on large noisy training sets.

Simple clearly outperforms all other methods on the noisy test rows.

That Simple performs so well is surprising. In section 10.3 there is an
analysis that offers an explanation.



122

Comparison of four meta machine learning methods

1 T T T
AdaBoost —+—
Bagging ---x---
DynCo ---*---
Simple 8-
0.8 E
0.6 B _
. -
- : I
.Uf' £ G B &l
"D" = 15|
04 — e R X 7
x *
%77 /i\ * * *
N X
0.2 T N E
X2
% —oye o= s
0

10000

Set Size

Figure 10.11: Noise 0.50.

10.3 Why Simple performs best on large noisy
training sets

As noted in section 10.2 the Simple method gives the lowest error on the noise
free target function when there are many training examples and noise. To
better understand the situation let us look at a small part of the input space
denoted A. We assume it is small enough for both the target function and
the predictor to be effectively constant, while there still are some examples
in A. The target function is the constant ¢ over A, and the output of the
predictor is the constant f over A. Let us say there are N examples from
the original training set in A. These examples are not equal over A because
of the noise. They are denoted ¢ = t + dt;. The noise has zero mean, so
we assume that the dt;’s sum to zero. The difference between the three
ensemble methods Bagging, Simple, and AdaBoost lie in the probability
that an example is in the training set. Let w; indicate the number of times
example ¢ is in the training set. Simple has w; = 1, while Bagging can
have an example in the training set any number of times, since the training
set is generated by resampling with replacement. The probability that an
example is in the training set k times is denoted P(w; = k). AdaBoost
assigns resampling probabilities to each example as a part of the training
method, so it is difficult to find the distribution of P(w; = k). Generally,



10.3 Why Simple performs best on large noisy training sets

123

the examples with the highest previous error get the highest resampling
probability. This will often give outliers a high probability.

The error function that we would like to minimize is the MSE on the target

function
N

B(t,f) = Dt~ 1)’

2

But the error function that actually is minimized is
_ 1
E(t', f) = w5 D wilt; — f)".
%
This can be rewritten as
(4% 1 al 2
E(t*, f) = Nzi:wi(t"’dti -1
1 2 2
= N;wi[(t_ )7+ dt; —2(t — f)dti]

We ignore the intrinsic noise term % Ziv w;dt? that has no influence on
training. For simple w; = 1 so E(t*, f) becomes

_ 1 &
B, f) =5 2= 1),

since Efv w2(t — f)dt; = 2(t — f) Eiv dt; = 0. This error function has
minimum in f = ¢t as we would like it to have. This is not so for Bagging
where the probability for w; = k is (see appendix H)

1
-1
P('LUZ = k) ~ e H.
Let us simplify things and assume that there are two examples in A and the
noise is given by dt; = 1 and dto = —1, then the error function to minimize
becomes

B, 1) = gl +un)(t — [)” ~ (wn —~ wn)(t ~ )

Let B denote %(wl + w9) and let D denote w; — we. The mean over all

possible training sets of B and D is one and zero respectively. But for a
given training set B and D will generally not be one and zero. The deviation

of B is \%2, while the deviation of D is v/2. Typically B is 1 + % and D is

++/2. The error function has minimum in f = ¢+ %. In the scenario above



124

Comparison of four meta machine learning methods

% would typically be in the order of a half times the standard deviation
of the noise, which is substantial. There is a number of things that makes
this an overestimate. The estimates are based on the implicit assumption
that the input space A is independent of the rest of input space. This is
not so, the predictor will be influenced by nearby training examples, in all
likelihood towards a better prediction. Also, the estimations were done on
a single ensemble member and for N = 2. An entire ensemble will smooth
the error. This is related to the variance reduction discussed in section 3.1.
A more elaborate analysis with M ensemble members weighted uniformly
and with NV an arbitrary number of examples in A yields that the standard
dex_ziation of the offset % scales as \/%, where SD is the deviation of the
noise.

Still Bagging performs worse than Simple for noisy training sets with suffi-
ciently many examples as the analysis above indicates.

It is more difficult to analyze the resampling probability of AdaBoost in
the same setting as above. As a rule of thumb, AdaBoost will place high
probability on outliers. This should have an even stronger effect on the
minimum of the error function than for Bagging. This is in agreement with
the empirical results from section 10.2, that unanimously declared AdaBoost
the worst performing MML method, but this is not in agreement with the
results in the majority of the literature on AdaBoost compared with other
MML methods (see [20, 72, 66, 95, 10]). This will be discussed in section
10.4.

DynCo performs second best on the noisy training set. An analysis of the
behavior of DynCo is difficult, because DynCo is not an ensemble method.
If it is assumed that in a given area of the input space only one predictor
has a coefficient substantially above zero, which is not unreasonable since
the v parameter always is set to zero, then DynCo effectively behaves as a
single predictor. So the analysis above holds for DynCo, which explains that
DynCo performs better than Bagging and AdaBoost. That DynCo performs
worse than Simple can be explained by the variance reduction achieved by
Simple.

10.4 Why AdaBoost performs poorly

In chapter 9, AdaBoost was compared with two other ensemble methods
and two ME methods on natural data. AdaBoost did no better than the
other ensemble methods and worse than the ME methods. In this chapter,
AdaBoost was compared with two ensemble methods and one ME method
on artificial data and performed worse than any other method. This is in
contrast to the results in the literature (see [20, 72, 66, 95, 10, 5]) where



10.4 Why AdaBoost performs poorly

125

AdaBoost nearly always performs best. It is difficult to give a clear answer
to this discrepancy. A possible explanation is that the base learner in the
literature nearly always is a tree predictor (see [26, 23, 20, 10, 11, 66, 95, 72])
such as C4.5 [65], CART [13], or MARS [24], while the base learners in
chapter 9 and chapter 10 are neural networks. It is a common belief that a
tree predictor, at least with a limited depth, is not a very good stand-alone
predictor, while a neural network can perform very well as a stand-alone
predictor. The advantage of tree predictors are the learning speed. This
might be the reason for the popularity of tree predictors in literature, since
experiments with ensemble methods often demand a large number of training
runs on many ensemble members. It is possible that AdaBoost and Bagging
are well suited methods for improving “weak” learners like tree predictors,
while the improvement on “strong” predictors are less than other methods.

Note that the explanation above is highly speculative, but the empirical
results and the analysis do question the common belief that AdaBoost and
related boosting methods are the methods of choice under all circumstances.

There are empirical studies in the literature, that supports the conclusions in
this chapter. In [59] Opitz & Maclin present an empirical study of ensemble
methods. The methods in question are AdaBoost, Arching-x4, Bagging, and
Simple. Both tree predictors and neural networks were used as ensemble
members. The conclusions for neural networks as ensemble members are
very similar to the conclusions above: the Simple ensemble method performs
well in comparison with the other methods, giving better or just as good
results in many cases. AdaBoost and Arching-x4 are sensitive to noise. From
the results in [59] no definite conclusion can be made whether tree predictors
or neural networks are best as ensemble members. The overall conclusion is
that Bagging and Simple (parallel ensemble methods) are the most stable
in that they almost always yield an error reduction, while AdaBoost and
Arching-x4 (boosting ensemble methods) can yield greater reduction in some
cases, but can also increase the error on noisy training sets.



126 Comparison of four meta machine learning methods




Chapter 11

Cross-validation logarithmic
opinion pool ensemble and
prediction of the secondary
structure of protein.

A paper [36] written by the author of this dissertation and Anders Krogh
presenting the meta machine learning method ’Cross-validation LOP en-
semble’ and the results on prediction of the secondary structure of proteins
has been published in the proceedings of the conference ’Artificial Neural
Networks in Medicine and Biology’ (ANNIMAB-1). The paper has been
presented orally at ANNIMAB-1.

Ensemble methods have been used before to predict the secondary structure
of protein: see [74, 71] for examples in protein secondary structure, [3] for
an overview of applications in molecular biology. The novelty in this chapter
is the application of the LOP combination rule, the KL error function, and
the cross-validation technique in that connection.

In section 11.1 we present the extension of the LOP ensemble method (see
section 7.1.4). In section 11.2 the protein secondary structure problem is
presented. The standard LOP ensemble and the cross-validation LOP en-
semble are tested on the protein secondary structure problem and compared
with single predictors and linear average predictor ensemble method in sec-
tion 11.3.



Cross-validation logarithmic opinion pool ensemble and prediction of the secondary

128

structure of protein.

11.1 The cross-validation ensemble method

The definition of the LOP ensemble (see section 7.1.4) is

The ensemble consists of M predictors f; that each outputs a vector with
class probabilities {f;*,..., f{*}. Each ensemble member has associated a
weight ;. The weights are positive and sum to one, so they can be regarded
as the probabilities of the ensemble members. If so the weights defines the
mean operator (- )p as (9(f))p = Efw a;g(fi). The target ¢ is a vector with
the target class probabilities {#,...,y°V }. If the targets are class examples
the class probabilities are restricted to y% € {0,1}. The combined predictor
F' is also a class probability vector {F“,...,F°N}. The combination rule

for a class ¢ is

Fe = L exp (Log(f£(@).

where Z is a normalization factor satisfying:

N
Z =Y exp (log(f* (7).

J

This combination rule is non-linear and asymmetric as opposed to the linear
average predictor.

The error on target ¥ and combined predictor F' is given by the Kullback-
Leibler error function
). (11.1)

The error is zero if F¢ is equal to y¢ for all c. For all appearances of this
error function, the mean over the training set is implicitly taken. It can be
decomposed into two terms with the LOP:

Ci

- ¢ y-
E(7,F) =}y log (F
J

M

M
E(§,F) =Y B, fi) = aB(F, f;)
i=1 i=1
= (E(7, fi)) — A(f),

where A(f) is the ambiguity and (- ) is the weighted ensemble mean. This
decomposition is from [39, 40], also see section 4.4 and 5.7.2.

(11.2)

The ambiguity term in (11.2) is independent of the target probability, which
means that the ambiguity can be estimated using unlabeled data, or if the
input distribution is known without data. Assuming we have estimates
of the generalization error of the ensemble members and an estimate of the
ambiguity, the estimated generalization error comes directly from (7.3). This



11.2 The protein secondary structure problem

129

Portions

For validation. f,

. For training. f,

Ensemble members.

Figure 11.1: The cross-validation technique for the LOP ensemble method

can be achieved in the cross-validation LOP ensemble, where the training
set is divided into M equally sized portions. Ensemble member f; is trained
on all the portions except for portion . This is illustrated in figure 11.1.

Each of the seven bars represents the entire training set. The error on
portion 7 is independent of training of ensemble member f; and can be used
to estimate the generalization error of the ensemble members. With the
estimated ambiguity, this gives us a technique for obtaining an unbiased
estimate of the ensemble error and still use all the training data. This is the
cross-validation technique. Note that the term ’cross-validation’ also is used
for other techniques.

11.2 The protein secondary structure problem

Proteins [19] are sequences of amino acids, of which there are 20 different,
so at the primary level of analysis they can be viewed as long sequences
of letters from a 20 letter alphabet;! this is called the primary structure.
A protein folds into a complex three-dimensional structure. This so-called
tertiary structure determines the function of the protein, and is therefore of
great interest in molecular biology. Because of the difficulties in determining

!The amino acids are denoted E,Y,L,M,Q,D,R,H,,AN,W F,T,G,S,V,K,C, and P.



Cross-validation logarithmic opinion pool ensemble and prediction of the secondary
130 structure of protein.

the structure experimentally, there is much focus on computational methods
for predicting the structure from the sequence of amino acids. In principle
this should be possible for most (but not all) proteins, because they fold
spontaneously. However, the problem has proven to be very difficult, and
therefore there has been quite an effort to predict the local structure as a
first step.

There are two large classes of local structures that are stabilized by hydrogen
bonds. The a-helix is a helical conformation of the amino acid chain with
an average of 3.6 amino acids per turn and typical lengths between 4 and
20 amino acids. The [-sheet is a sheet-like structure, in which the protein
folds back on itself and form hydrogen bonds between two or more strands
of amino acids. These strands typically consist of 2-10 amino acids. When
the structure is known, each amino acid of the sequence can be classified in
one of three classes: part of an a-helix, a S-strand, or something else, which
is usually called coil. This is the secondary structure. In the secondary
structure prediction problem, the task is to predict these classes.

The local structure of an amino acid depends on the surrounding amino
acids. For prediction it is therefore necessary to use a window of amino acids
in the sequence surrounding the one to be predicted. For most methods it
has proven optimal to use a window of 13-15 amino acids. The 20 different
amino acids are usually coded as an indicator vector of size 20 with a one
at the index of an amino acid and zeros for the rest. In order to cope with
the ends of a protein “null amino acids” must be coded. This can be done
by having all zeros, or extending the vector to size 21, where the last scalar
represents the null amino acid. This sparse encoding ensures that there are
no artificial correlations between the amino acids.

The secondary structure is known for less than 1000 non-homologous pro-
teins, that is, proteins that have significantly different amino acid sequences,
whereas the sequence is known for a very large number of proteins.

11.3 Empirical tests

The LOP ensemble is suitable for the protein problem for several reasons.
First the protein problem is a classification problem, and the LOP ensemble
method is tailor-made for classification, and secondly there is a huge amount
of unlabeled data, i.e. proteins of unknown structure, which can be used to
estimate the ambiguity.

The ensemble members were chosen to be neural networks. The output of



11.3 Empirical tests

131

a neural network was post-processed by the SOFTMAX function defined as

fj _ exp(gj)

Zj exp(g?)’

where ¢/ is the linear output (the weighted sum of the hidden units) of
output unit j. This ensured that the ensemble members obeyed Zj fl =

1, fij > 0. The ensemble coefficients were uniform. Learning was done with
back-propagation and momentum. A window of 13 amino acids was used,
together with a sparse coding of amino acid into a vector of size 20, so each
network had 260 inputs and three outputs. Each network had a hidden
layer with 50 nodes. All examples in the training set were used once and
only once during each epoch. Weights were updated after a certain number
of randomly chosen examples had been presented (batch-update). During
training the batch size was increased every tenth epoch by a number of
examples equal to the square root of the training set size. The learning
rate was decreased inversely proportional to the batch size. Training was
stopped after 500 epochs, or if the validation error was increased by more
than 10 % over the best value.

The data set consisted of 650 non-homologous protein sequences with a total
of about 130,000 amino acids [52]. Four-fold cross-validation was used for
each test, which means that the training set was divided into four equally
sized sets. Training was done on three sets with 97,000 amino acids in total,
while testing was done on the remaining set of 33,000 amino acids. The test
set was rotated for each cross-validation run. The average of the four test
runs was calculated.

In the cross-validation ensemble the validation error was the estimate of the
generalization error calculated from (7.3) by using a set of 70,000 unlabeled
amino acids to estimate the ambiguity. Seven ensemble members were used,
which means that each one was trained on about 83,000 amino acids and
validated on 14,000. Apart from the cross-validation ensemble, we also test-
ed what we will term a simple ensemble, in which all the ensemble members
were trained on the same training set of 83,000 amino acids, and the valida-
tion error was calculated from an independent set of labeled data containing
14,000 amino acids. Note that there still was the four-fold cross-validation
as an ‘outer loop’ for both ensemble methods.

For every tenth epoch the ensemble validation error, the ensemble test error,
and the average test error of the individual ensemble members were calcu-
lated. The graphs in figure 11.2 show these values for the cross-validation
ensemble for a single test run.

It is clearly seen that an ensemble was better than the average of the indi-
vidual members, as proven by the ambiguity decomposition.



Cross-validation logarithmic opinion pool ensemble and prediction of the secondary

132

structure of protein.

036 * T T T T T T
x Test Set KL Error of Ensemble —+——
d Average Test Set KL Error ------
: Estimated Generalization KL Error of Ensemble 8-
034 | N
o B
1 X
032 | | 1 . I -
é | T i | | | a1 *
5 P LT Lo
0 i REAS I 8
3 03r TR L %7 £k .
x oo b o
3 Polboxmog % [ P
o [P R 10 | 1 '
= [ | - ! H
2 X /
0.28 - S E
SRR
0.26 —
024 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Epochs

Figure 11.2: Cross-validation LOP ensemble

The cross-validation ensemble reached a lower generalization error (repre-
sented by the test error) than the simple ensemble. This can be explained
by the fact that the difference in training sets makes the ensemble members
differ more than if they were trained on the same data, and this increased
the ambiguity, which in turn lowers the generalization error.

In a practical application, one would select the ensemble at the training
epoch with the lowest validation error. The various errors are shown for
the ensemble selected in this manner. Using the validation error to select
the ensemble training makes training dependent on the validation error, and
therefore the estimate of the generalization error becomes biased. We will
call the time of lowest validation error the stopping time.

In table 11.1 the Kullback-Leibler error and misclassification rate at stopping
time for the test runs is given. In these runs the validation error fluctuated
by about +3 % around the test error. However, the oscillations of the
validation error followed the oscillations of the test set error, as can be seen
in figure 11.2, so the validation error could still be used to find the lowest
test error. The validation error was not always at its minimum when the
test set error was lowest, so a measure of the usability of validation error for
stopping is the average difference between the lowest test set error and the
test set error at stopping time. For both types of ensembles this difference
was as low as 0.0001 or close to 0.05 %. So the estimated generalization



11.3 Empirical tests

133

Combination rule LOP LOP LAP

Validation error Cross-validation Simple Cross-validation
Train error function KL KL MSE

Test error 0.2546 0.2585 0.6293

Average of indiv. 0.287 £ 0.010 0.2802 4+ 0.0065 1.46 + 0.12
Misclassification rate 0.3331 0.3385 0.3542
Ambiguity 0.0327 0.0217 0.8320

Table 11.1: The Kullback-Leibler errors at stopping time.

error can very accurately be used to find the right stopping time.

The cross-validation ensemble reached a test error that is 1.5 % lower than
for the simple ensemble, and a misclassification rate that was 1.6 % lower.
The explanation lies in a larger ambiguity for the cross-validation ensemble,
since the average test error of the ensemble members were comparable. The
ambiguity of cross-validation ensemble was 1.5 times the ambiguity for the
simple ensemble.

As noted in section 11.1 the error of the combined predictor was always
better than the average of the error of the ensemble members. Still, one of
the ensemble members could be better than the combined predictor. For
the cross-validation ensemble method the test error was 0.2546, while the
average of the error of the ensemble members was 0.2873. The difference
(the ambiguity) was 0.0327. A gain of 12.8 %, which is substantial. The
standard deviation on the test error of the ensemble members was 0.010,
so the ambiguity was more than three times larger. It is very unlikely that
any ensemble member had a lower generalization error than the ensemble
error. For the simple ensemble method the ambiguity was smaller: 0.0217
or a gain of 8.4 %. The standard deviation among the ensemble members
was 0.0065, so the ambiguity was more than three times the deviation.

The lowest average error for the ensemble members does not necessary hap-
pen when the ensemble error is lowest. Typically the lowest average gener-
alization error of the ensemble members will be reached before the lowest
generalization error for the ensemble, so the ensemble can actually gain from



Cross-validation logarithmic opinion pool ensemble and prediction of the secondary
134 structure of protein.

overfitting in the individual ensemble members. This effect can be seen in
figure 11.2. Also the optimal architecture for a simple predictor is often
smaller than for ensemble members. A number of single predictors with
different size hidden layer have been trained. The number of nodes in the
hidden layer were varied from 3 to 400. The training must be done with a
separate validation set, since there was no ambiguity for a single predictor.
The best result was achieved with 10 hidden nodes giving an average gen-
eralization error of 0.2598, and a misclassification rate of 0.3413, which was
respectively 2.0 % and 2.5 % more than the cross-validation LOP ensemble.

A standard cross-validation ensemble using the MSE error function and LAP
combination rule was trained on the same data as the cross-validation LOP
ensemble. The validation error was calculated using (7.3) even though the
outputs do not necessary sum to one. The validation error have lost it’s
meaning as an error, e.g. it could be negative, but it was still valid as an
early stopping indicator. The generalization error for the standard ensemble
was much higher measured with the KL error function, namely 0.6293 or
about 2.5 times more than the cross-validation LOP ensemble, but this is
not a fair comparison, since the LOP ensemble was trained to minimize the
KL error. Another measure is the misclassification rate: for the standard
ensemble the misclassification rate was 0.3542, which is 6.3 % more than the
misclassification rate of the cross-validation LOP ensemble.

Surprisingly the benefit was not in the combination rule. A test run, where
the LOP was replaced with the LAP yields a generalization of 0.2543, which
was essentially the same as for the LOP combination rule. The misclassifi-
cation rate for the LAP was 0.3363, which 1.0 % more than the LOP.

Below we summarizes the results in this section.

e Estimation of generalization error with the cross-validation technique.

The generalization error of an ensemble of predictors using a loga-
rithmic opinion pool (LOP) can be estimated using cross-validation
on the training set and an estimate of the ambiguity from an inde-
pendent unlabeled set of data. When testing on prediction of protein
secondary structure problem, it was shown that this estimate follows
the oscillations of the error measured on an independent test set. The
estimated error can be used to stop training when it is at a minimum.

e Cross-validation LOP ensemble performed best.

The cross-validation LOP ensemble method is superior to single pre-
dictors, simple LOP ensemble, and standard ensemble methods using
mean square error function on the protein problem. The benefit is not
as much in the combination rule, as in the use of the Kullback-Leibler
error function and the cross-validation technique.



11.4 Training of ensembles on parallel super computers

135

11.4 Training of ensembles on parallel super com-
puters

The training of ensembles on the secondary structure protein example set
is very computational intensive, demanding in the order of 10'® weight up-
dates for a training session. Also the amount of data is in the order of 100
megabytes (100 x 10° bytes). This is very demanding of the computers on
which it is done. Fortunately, we were allowed to use the parallel super
computing system at UNI-C, University of Aarhus, Denmark. Homepage:
http://supercomputing.uni-c.dk/aarhus

The newest system at UNI-C is "Karlsen’ consists of 64 CPUs (Mips R12000,
300 MHz, 8 MB cache). The system has 64 GB memory (64 x 10° bytes)
and approx. 1 TB (10'2 bytes) of disk storage. Even on that system the
training time for a single training session was in the order of days.

In order to use the parallel system a program was developed, based on
PVM3, which stands for “Parallel Virtual Machine” version 3. Homepage:
http://www.epm.ornl.gov/pvm/pvm_home.html. The ensemble members
were trained in parallel gaining a time factor of about the ensemble size.

It is also possible to distribute the training on a local area network of work-
stations, but due to the large amounts of data that have to be copied over
the network, we loose about a time factor of two on workstation as powerful
as the individual CPUs on Karlsen. The data traffic cannot be avoided, since
some of the computations are none-local, e.g. calculation of the validation
error of the ensemble.



Cross-validation logarithmic opinion pool ensemble and prediction of the secondary
136 structure of protein.




Chapter 12

Conclusion and
recommendation

Was tust du?

Was fihlst du?

Was bist du?

— RAMMSTEIN, Sehnsucht, Tier.

In this dissertation I have presented advances in two areas of machine learn-
ing, namely in the theoretical area of bias/variance decompositions, and in
the more empirical area of developing, testing, and analyzing meta machine
learning methods. The work has resulted in five papers. Two have been
published [32, 33], two have been accepted for presentation [34, 36], and one
is in submission [35]. After the dissertation has been handed in, the arti-
cles [34, 36] have been presented and published. The article [35] has been
accepted for presentation.

The previously open problem on exactly which error functions have a nat-
ural bias/variance decomposition with target independent bias/variance is
closed. The error functions is derived through the deviance from the one-
parameter exponential family of distributions. This work was done in coop-
eration with Tom Heskes.

The common use of the mean square error with the corresponding assump-
tion of Gaussian noise on the target function can now be extended to any
error function derived from the one-parameter exponential family of dis-
tribution with assumption of noise from that distribution, without loosing
any of the essential properties including a bias/variance decomposition with
target independent variance.

The DynCo mixtures of experts method was reinvented and shown empiri-
cally to perform well, indicating that a cooperative error function is superior



138

Conclusion and recommendation

to a competitive error function. The DynCo method can also be used to test
whether a problem benefits from decomposition or not. The Simple ensem-
ble method was shown empirically to outperform such renowned methods
as Bagging and AdaBoost in many cases. The logarithmic opinion pool en-
semble method was developed and it was shown empirically to perform well,
especially in connection with the cross-validation technique. This was done
in cooperation with Anders Krogh.

I will now bring the results together and present the concluding unified
recommendation of this dissertation.

We have seen that both the DynCo method with low v value and the Sim-
ple ensemble are well-performing methods. Also the cross-validation LOP
ensemble method performs well, due to the cross-validation technique. The
Simple ensemble method and the LOP ensemble method are similar except
for the combination rule.

We define a family of Simple ensemble methods, that differs only in their
combination rule, and thereby generally also in the error function. We state
the conjecture that this family of ensemble methods is well-performing, and
benefits from the cross-validation technique. The cross-validation technique
demands that the error function in question has an ambiguity decomposi-
tion with target independent ambiguity. We have shown that exactly the
deviance error functions derived from the one-parameter exponential family
of distributions have such an decomposition. It is also possible to use these
error functions with the DynCo method. This brings us to the recommen-
dation of the dissertation:

To learn a target function, use a deviance error function that corresponds
to the noise on the problem. Test whether the problem benefits from decom-
position or not (use the optimal value of v to make this decision). If the
problem benefits from decomposition, then apply the DynCo mizture of ex-
perts method with low ~v value using the chosen deviance error function. If
not, apply the Simple ensemble method using the cross-validation technique
and the chosen deviance error function.



Appendix A

Notation and symbols

A.1 Statistical notation

e Px(z): The probability of outcome z of the discrete stochastic vari-
able X. If the stochastic variable is given by the context then the short
hand P(z) is used.

e px(z): The density of outcome z of the continuous stochastic variable
X. If the stochastic variable is given by the context then the short hand
p(z) is used.

e P(z|y) or p(z|y): Respectively the conditional probability or density
of X on Y. The definitions are

2ly) = P
P(zy) {Oy Py — 0

and

p(xay) > O
plaly) = { ) PW >0
0 p(y) =0

e (9(X))x: The mean of the function g with respect to stochastic vari-
able X. If the stochastic variable in question is given by the context,
the short hand (g(X)) will be used. If X is discrete then

GXNx= Y Px(x)g(x),

z:Px(x) i.d.

where “i.d” stands for “is defined”. If X is continuous then

(9(X))x = /X dopx ()9 (z).



140 Notation and symbols

A.2 Commonly used machine learning symbols

e f: A predictor. Often the predictor depends on a set of parameters
w, in that case it will be written f(Z, ).

e [: The combined predictor F' depends on a group of predictors.

e f :The average predictor f is defined on a mean operator over a group
of predictors.

e f: The optimal predictor f is defined as

A~

f= argr;lin E(f,t).

e nn: A feed-forward neural network.
e T: A training set is a set of input-output pairs (Z;, ;).

e L: A machine learning method L is a function that takes a training
set T as input and generates a predictor as output; f = L(T).

o MML: A meta machine learning method. Input is a machine learning
method L and a training 7. Output is a combined predictor F =
MML(L,T).

e MSE: The mean square error is defined as
1 2
E(.f,t) = i(f _t) :
e KIL: The Kullback-Leibler error is defined as
tC
E(t, f) =) t°log e
C

where c is a class label.

e LAP: The linear average predictor. A predictor combination function

defined as
F=> aifi
i

e LOP: The logarithmic opinion pool. A estimator combination function

1
F = Zexpl} | oilog fi
2

e ME: Mixtures of experts. See section 7.2.



Appendix B

Training of LOP ensemble
while achieving
well-conditioned Hessian
matrix

The logarithmic opinion pool (LOP) ensemble method (see section 7.1.4) is
a probability estimation ensemble method for classification. It is developed
by the author of this dissertation based on [40]. The LOP ensemble method
has been tested on the secondary structure of proteins problem (see chapter
11).

In this appendix we present the information necessary to train a LOP en-
semble with neural network predictors with back-propagation (see section
6.1). Furthermore, we investigate the Hessian Matrix, that contains second
order derivative information, in order to achieve better learning. Based on
this investigation we propose an activation function that removes some of
the reasons for an ill-conditioned Hessian matrix. An ill-conditioned Hessian
matrix yields a low convergence rate for gradient descent (see [55] p. 17).
The investigation of the Hessian matrix on ensemble members in a LOP
ensemble is similar to an investigation of the Hessian matrix for standard
neural networks in [85].

B.1 Definitions and notation

Our problem area is classification, so the outputs are probability estima-
tions, which means that the sum of the outputs is one. The inputs are not



142 Training of LOP ensemble while achieving well-conditioned Hessian matrix

limited. The learning mechanisms are neural networks and ensembles of
neural networks. The following notation is used for the networks and the
ensembles:

o ff(Z): The probability output for class ¢ of ensemble member f; with
input .
Each ensemble member has a corresponding weight «;. The weights
are positive and sum to one.

e F(Z): The combined output of the ensemble members for class ¢ with
input Z.
The combined output is defined with the logarithmic opinion pool

(LOP) 1
Fe(#) =  exply oy log (7))

where Z is a normalization factor defined as

Z=Y" exp[z o log fE(T)).

e t.(Z): The target function for class ¢ at input Z.

o T ={(th,Z1),...,(Yn,ZnN)} is an example set.

The vector ¢, = (y§p)’ e ay](\?)

c

) is the density vector for input-output

pair (yp, Zp). Often only one y£p ) takes the value one.

In a LOP ensemble the ensemble members are trained separately. We will
therefore consider training of a single ensemble member, so we omit the
ensemble index i. We assume that all ensemble members are three layer
neural networks. So we have an output layer, a hidden layer, and an input
layer. The numbers of nodes in each layer are respectively N., Ny, and N;.
An extra node is added to the hidden layer and the input layer, with a forced
activation value of —1. This is equivalent to having threshold for the nodes
in the hidden layer and the output layer. The real number of nodes in the
input layer and the hidden layer are then Ny 4+ 1 and N; + 1. The activation
function used is s = tanh. The state of output node c is:

Np+1 N;+1 Np+1
ac(Z) = Z WheS( Z WipT;) = Z whes(an(7)),
h i h

where ay, is the state value of the hidden node h. The activations values of
the output nodes are combined to form the output of the network with the
SOFTMAX post-processing function

oy explac(#)
F@) = & explaw (2)




B.2 The derivatives

143

The error measurement used is the Kullback-Leibler cross-entropy (see e.g.
[39]) error function:

(p)
(p) ) = ZE("(P Z Zy fc _’(p ) (B.1)
P

In the following we will omit the data set index p, the dependency on input
Z and only concentrate on one term in the error function in equation B.1

B.2 The derivatives

Many learning methods, e.g. back-propagation (see [7] and section 6.2) use
information about the first derivatives of the error function with regard to
the parameters of the predictor. To investigate characteristics of learning, in-
formation about the second derivatives (the elements of the Hessian matrix)
are used. Below the first and second derivatives of the KL-error function
(B.1) with regards to the weights of a neural network are calculated.

Before we show the derivation of the derivatives, we present a couple of
useful results. The post-processed outputs of an ensemble member are class
probabilities, so we define a mean operator

(h(e))c = D fh(c),

c

The weights between a given node in the hidden layer and the output layer
can be viewed as a function on the classes. Let the hidden node be A, then
the mean of the weights wy, is

<whc)g = Z fcwhc-

For notational convenience we omit the stochastic variable C in the follow-
ing.

In a similar fashion we define the covariance over weights from two hidden
nodes h and h' as
COV(’thC,’th'c) = <[whc - <whc>][wh’c - <wh’c)])

= (WheWpre) — (Whe) (Whre) (B.2)

An often used derivative is

afe ,
a1, (B3




144

Training of LOP ensemble while achieving well-conditioned Hessian matrix

life=<¢
Where 6 . is the Kronecker delta defined as d( ) = {0 1lc ©
else.

day

aw;c = 5(c/,c)s(ah).
da = z;wpes (ap)
win = L{WhceS \Qh)-

Using the chain rule for derivation and (B.3) we get

ofe o O
f =f (6(c,c’)_f )—

8whc 8whc ’

8fc _ fc( 8ac _chl 8acf )

8wi h Bwi h Bwi h

We have F = chclog?—z SO

OF c
aac_f _y'

(B.8)

Note that this is exactly the same derivative as for the MSE with the iden-
tity function as post-processing function (no post-processing function). The
Kullback-Leibler error function and the SOFTMAX post-processing func-
tion “annihilates” each other. This has been observed in connection with

some of the deviance error function (see section 8.2).
Using the chain rule we can find the first derivatives:

oE OF day c e da,
_Z _(f y)awhc'

Owp, ~ Oa Owp,
C

OF _ Z OF 8&01 . Z(fcl _ ycl) 8(1,01
cl !

8wih Bac: 8wih N p Bwih

Using (B.4) and (B.5) we get

OFE
duy, — Y )s(an).
3(11; = (17 =y )miwnes' (an).

c!

The second order derivatives are



B.2 The derivatives

145

0’E 0 ¢ o Oac
= (< =y°)
Owp ¢ Owpe Owp et Owpe
_ 0f¢ Oac ¢ e 0%a,
N Bwh/d 6whc + (f y )awh’c’awhc
. o Oay  Oa, 0%a,
= f(b¢cte) — f )3w—h'c'37ﬂhc +(f“—y )m
O0’FE 0 ¢ o Oac
: =—(f"—¢°)
8wzh’ 8whc awzh’ 8'whc
_0f° Oa. e o 0%,
Owipr Owpe Ty )awih’awhc
o, Oag ¢ Oay | Oag c 0%a,
=1 (awih’ a zc,:f Ow;p " Owpe Ty )awzh’a'whc
82E 6 < < Bacz
Owp 0wy, Owpe Z(f -y )awih
o 6f aac < _ J a Qg
Z Owpre Ow;p, zc;(f 4 )Bwh/ Ow;p,
c 8@01 8ac ¢ J (9 Qe
Zf awh/ ow;p, + Zc,:(f Y )3wh/ ow;p,
82E 6 e o aacl
Owip Ows,  Owyrpy Z(f Y )3wih
aac d J 8 Qe
Z Owgrpr Ow;p, %:(f Y )6wz'h’awzh
0a. Bacf ay

SN —

Bwi: h'

Z awzlhl

+) (- )TM o

cl

awz h



146 Training of LOP ensemble while achieving well-conditioned Hessian matrix

Generally we have

c 2
Zaf Ooe L SN(feoy) 0 (B

Bw, Bw] ow; Ow; - Ow; 0w,

where index ¢ and j are a renaming of either index ¢h and hc. Using the

approximation ) _(f¢ — y°) agjgfuj = 0, which is valid when f¢ is close to y,

yields

OE < 0f° da,

=~ B.12
Ow;Ow; - ow; Ow; ( )

With this approximation the elements of the Hessian matrix can be calcu-
lated from first order derivatives.

Assuming f¢ ~ y° we have

0’E
m = wi’xisl(ah’)sl(ah)(<wh’c'wh,c> — <whc) <wh’c>)- (B13)
627E_.’E'Sl(a, )S(G, )fc(w —<’UJ )) (B 14)
Owpy 0wy, o h h he hel)- .
827E — x-s'(a )S(G )fc(,w _ <w >) (B 15)
Ow;p 0w o h h he hel)- .
Note that awa, gwm = awfaih,c as they should be. The term wp. — (wpe) is
a measure of the size of wy, compared to the average.
0’E ,
EI T “(O(e,ery — f€)- B.1
Bwhfcfawhc S(Gh’ )S(ah)f ( (C,C) -f ) ( 6)

Let w,c;c be a pseudo weight defined as

, life=¢
¢ = ’ B.17
Whe {0 else. ( )

/ . . .
So wj, = d(c,)- The second derivatives can be reformulated in terms of
covariances:

0’E

B oy, — i @is (an)s' (an) Covlwne,tne). (B.18)



B.3 The condition of the Hessian matrix

147

627E — p.af c
= Tis (ah)S(GhI)COV(’LUhC,th). (B19)
Bwh,cawih

°E , .
Owr Owpr. o\ : B.2
o (ap)s(an)Cov(ws ., whe) (B.20)

0’E ,

oW Owne s(an')s(an) Cov(whe,whe)- (B.21)

B.3 The condition of the Hessian matrix

Above the second derivatives are expressed using covariance between the
weights. The term (wp wpe) — (Whe){(wpre) in (B.13) is the covariance of
the weights from the hidden nodes h and h' with regard to the output of
the net interpreted as probabilities. It is not unreasonable to expect high
correlation between the weight groups wp,. and wy ., since the hidden nodes
h and h' are interchangeable in the network architecture.

Note that the covariance is zero if the probability of one of the classes is
one, that is if an output is one. For three of the expression for covariance
(B.19-B.21), the covariance is zero if one of the class probabilities is zero.
The sum of the second derivatives over the example set are the elements of
the Hessian matrix. A badly conditioned Hessian implies low learning rate
for back-propagation (see [55] p. 17).

A matrix can be ill-conditioned if some of the diagonal elements are much s-
maller than the others. As has been explained above the covariance can
become zero in some situations, thereby making the Hessian matrix ill-
conditioned. That occurs if the output is one or zero, but this generally
happens when the target function is learned, so we assume that the covari-
ance factors is not zero. If we assume that inputs are distributed with mean
zero, and are independent, we see that the elements in (B.18-B.20) are close
to zero because (zjz;) = (z;) = 0 except if ¢ = j in (B.18). We can therefore
assume that the off-diagonal elements are smaller than the diagonal ele-
ments. A similar analysis can be applied to the value of the elements from
(B.20). It is more complicated since the input has been through a transfor-
mation, but the general picture is the same. There is one more possibility
for the elements to become zero, and that is if the hidden units are saturat-
ed, so s'(ay) = 0. Then the diagonal elements from equation B.18 become
much smaller than the diagonal elements from (B.21) and this can happen



148 Training of LOP ensemble while achieving well-conditioned Hessian matrix

before the target function is learned. To amend this, let s be replaced with
a function g that does not have any derivatives that goes asymptotically
towards zero. Such a g could be g(z) = tanh(z) + log(cosh(z)) [85]. The
function log(cosh(z)) is approximately equal to |z| — log(2) when |z| > 0,
and is close to zero if |z| = 0, so g(z) behaves as tanh(z) for input close
to zero and as |z| + constant for input not close to not close to zero. Note
that w = tanh(z), so ¢'(z) = s'(z) + s(x). The new definition of
a. becomes

ac =Y wneg(Y_ winwi) = Y whe(s(an) + S(an)),
c h c

where S = logcosh. Note that in order to calculate the derivatives of the
new function we only have to replace s with g in the derivatives above.

35 T T T T

{anh(x)
log(cosh(x)) -------
3 r tanh(x)+log(cosh(x)) |
al i
2r -
sl \ , 4
1k
05
ol
05 F
-1

Figure B.1: tanh(z) + log cosh(z)

In figure B.1 the tanh(z), log cosh(z), and tanh(xz) +log cosh(x) are plotted.
We see that the alteration of the tanh(z) function is substantial. Empirical
tests have indicated that the alteration is too large, therefore we suggest
using the activation function tanh(z) + 75 log cosh(z).

In figure B.2 this function is plotted together with tanh(z), & logcosh(z),

and 15 logcosh(z) + tanh(z). We see that the difference between the t-
wo activation functions tanh(z) and tanh(z) + £ log cosh(z) is much more



B.3 The condition of the Hessian matrix 149

15 . : . | |
tanh(x)
0.1*log(cosh(x)) -------

tanh(x)+0.1*log(cosh(x)) -------- )
1+
05
0+
-05 +

-1

-3

Figure B.2: tanh(z) + -5 log cosh(z)

moderated. The activation function proposed was used in the test of LOP
ensemble on the protein secondary structure problem (see chapter 11).



150 Training of LOP ensemble while achieving well-conditioned Hessian matrix




Appendix C

Bias-effect /variance-effect

In [44] a general decomposition of any error function can be found. It is
assumed that both the target functions and the predictors are outcomes
of stochastic variables, and the mean operator used is with regard to both
stochastic variables. The predictors are outcomes of the stochastic variable
F. The expected error is defined as (E(t, f))ppx- To simplify matters
only the error at a point will be discussed, one dimensional output will be
assumed, and the subscript F, T will be omitted when obvious, so the error
under investigation is (E(t, f)).

Variance is defined as (E[f,Sf]) and bias is defined as E[Sy,Sf]. The
symbol S denotes an average operator defined as

Definition 15 (Systematic Mean)
The minimal mean is the result of the operator S working on a stochastic
variable G and an error function E defined as

Mg = arg;nin(E(g, z))g (C.1)
[ |
The definition of S f and St are respectively
Sf= argrtnin (E'(t,f))E

and
St = argming(E(t, f))p-

Bias and variance as defined above do not constitute a general decomposition
of the error, and S is generally not the mean operator. To alleviate the first
problem the bias-effect and variance-effect are defined



152

Bias-effect /variance-effect

Definition 16 (Bias Effect)

BE(t,Sf) = (E[t,Sf] — E[t, St]) (C.2)

Definition 17 (Variance Effect)

VE({, f) = (E[t, /] - Elt,Sf]). (C.3)

We arrived at the following general decomposition:
(E[t, f]) = var(t) + BE(t, Sf) + VE(, ), (C.4)

where BE(t,Sf) and VE(t, f) are defined above and var(t) is the intrinsic
noise of the target function defined as (E[t, St]). It is easy to check that the
decomposition is legal, since

var(t) + BE(t, f) + VE[t, f) =
(Elt, St]) + (E[t, Sf]) — (E[t, St]) + (E[t, f]) — (E[t. Sf]) =
(Elt, f])-

The Bias-effect is positive by definition of St. Unfortunately nothing similar
can be said about the variance-effect.

If E is the MSE then the decomposition in (C.4) reduces to the well known
bias/variance decomposition for the MSE and S reduces to the mean oper-
ator. To see the latter note that

(g —a) =2g ) =a )

which implies that argmin(E(g,a))s = (9)- Now we have:
. G

E(t, f) = (E[t, Sf] - Et, 5t))
= ([t — (NI = [t = ()*)
= [(t) = ()
= bias((f), (t))

and similar for

VE(, f) = (If = (A)]°) = var(f).



Appendix D

Generalized linear models

The family of generalized linear models (GLM) is a set of distributions
that encompass some of the commonly used distributions, e.g. the Normal,
Poisson, Binomial, Gamma and Inverse Gauss distributions (see [53]). The
GLM has been used in machine learning, e.g. [45].

Associated with any distributions is a function that maps the outcome of
a stochastic variable to the density or probability of the outcome. A dis-
tribution depends on some parameters e.g. the mean and the variance. If
the number of unknown parameters is k, we indicate it by a subscript k
on GLM. The notation GLM is used for GLM;. The definition of the
family of generalized linear models is from “Generalized Linear Models” by
McCullagh and Nelder [53]

Definition 18 (Generalized Linear Models)

The members of the family of Generalized Linear Models are defined by a
vector of parameters 6 = (01,...,60,), the parameter ¢, and three functions
a, b and c. The parameters 6 are the natural parameters and ¢ is called
the dispersion parameter. All the parameters 6 are unknown, while the pa-
rameter ¢ can be either known or unknown. If ¢ is known then k = n
else k =n+1. LetY = (Y;,...,Y,) be the stochastic variable and let
7= (Y1,---,Yn) be the outcome. The density for a given set of parameters
and functions is

1

p(7;0, ¢) = exp[g'ai_b()

@ " (y, ¢)]- (D.1)



154

Generalized linear models

The natural parameter 6; is connected to the marginal mean of Y, by:

=

0b(6)
00;

= (Yi)y = ti- (D.2)

The variance of Y, is connected to the dispersion parameter and the natural
parameter 6; by

Varly) = S Vo(9). (03

The covariance of Y; and Y ; is given by

-

0%b(0)
Cov(yi,yi) = =—=~a(d). D4
It is given that there exist functions 6;(u;) = 6;, that are the inverse of
%gf), so we have %éiﬁ)) = pi. The functions 6;(u;) are the canonical link
functions.

The GLM can be reformulated in terms of the mean u:

(1) = b(0(w))
a(¢)

= b/'(0) = p, the density is normalized, so we

p(y; {11, 8}) = exp[2 T el ). (D.5)

Besides the constraint W

have
/dyexp[yo(/j’)a_((;)(o(u)) +C(y, ¢)] -1

The name ‘Generalized linear model’ refers to that the mean parameter is
defined as a linear sum of covariates {z1,...,zp}. We have

p
p=>y Bz
i

The covariates can be viewed as input to an estimator (see definition 3 in
chapter 2), while {f31,...,0p} are the parameters of the estimator.

If ¢ is known, the family GLMy, is a subset of the k-parameter exponen-
tial family (see appendix E). In table D.1 the connection between the
k-parameter exponential family density in natural form (E.2) and GLMy
density from (D.1) is given.

The GLMj, is a real subset of the exponential family. If the sufficient statistic
function T is T'(y) = y? there is no corresponding density for v in the GLMj.
This is the case for the normal distribution if the variance is unknown.



155

DENSITY IN (D.1) DENSITY IN (E.2)

a($)~'6; ni

Yi Ti(9) = v
—a(¢)~'b(6) do (7
o(F, ¢) S(7)

Table D.1: The connection between the family of generalized linear models
with known dispersion parameter and the exponential family.

The density in (D.1) is not necessarily a member of the exponential family
if the dispersion parameter ¢ is unknown, but if the function ¢(%, ¢) is con-
strained, the density is a subset of the exponential family. Assume that the
¢ function is given by

(7, ¢) = c1(¢)ea () + c3(¢) + ca(y)-

the GLM}, family is a subset of the k-parameter exponential family. In table
D.2 the corresponding function from E.2 and GLMjy, with the constraint on
c is given.

DENSITY IN (D.1) DENSITY IN (E.2)

a(¢$)~'0; i

ca(¢) ! Tk

Yi Ti(9) = yi

10)) T(7)

a(¢)'b(6) + c3(¢) do (i)
ca(y) S(#)

Table D.2: The connection between the family of generalized linear models
with unknown dispersion parameter and the exponential family.



156 Generalized linear models

As mentioned the normal distribution is a member of GLM:

1 (y — )
N(v: — —
(v, 0) = —=exp[—==5 5]
_Lz 2 D.6)
_ el 2 (Y Jor (
= exp ™2 (L tog(ov2m)]
= p(y; 1, 0).
The functions a, b, and c are in this case a(o) = o2, b(u) = p?, and
() = —(Lr + log(oVET). We get (y) = V(u) = u and Var(y) =

b'(p)a(c) = o2 as we should.



Appendix E

Exponential family of
distributions

The exponential family of distributions is a large set of distribution, that
contains most of the commonly used distributions, among them the Gaussian
(Normal), Poisson, Gamma and Binomial distributions. The family also
includes most generalized linear models (see appendix D).

We present the general definition in detail. The definition is from [6].

Definition 19 (k-parameter exponential family)

Let & = (w1,...,wk) be a k dimensional vector of parameters, let Z be an
arbitrary dimensional vector - the outcome of the stochastic variable Z, and
let ¢;,T;,d, S be functions. A member of the k-parameter exponential family
is defined by the density or probability:

k
p(Z &) = expY _ (@ + d(@) + S(2)] (E.1)
=1

The function d is the normalization term given by

exp[—d(& /eXp[ZCz T;(2) + S(2)],

where A is the domain of Z. If the distribution is discrete the integral is
replaced by a summation.

The functions c; are the canonical link functions. The functions T; are the
sufficient statistic functions |



158

Exponential family of distributions

If the model is full the density or probability can be rewritten in the natural
form:

k
p(Z ) = exp[Y_ miTi(2) + d(7) + S(2)] (E-2)
i=1
We will exclusively use full models, so when we say the exponential family
we mean only full models.

We will almost always use members of one parameter exponential family
with scalar outcome. It is given by

p(z;w) = exple(w)T(2) + d(w) + S(2)]- (E.3)
The natural form is
p(z;m) = exp[nT'(z) + do(n) + S(z)], (E.4)

where do(n) = d(c '(n)) if the canonical link c is one-one, else dy is found
by normalization. A very useful equation that holds for any density or
probability function is

dlogp(z|w)

< Ow
The only requirement is that integration and differentiation can be inter-
changed.

) =0. (E.5)

Proof:

/ dop(ziw) =1
/dzap(Z;w) —0e

Ow
9p(zw)
dzp(z;w) =22 =0 <
J e
Op(z;w)
w__y — ()&
<p(z;w)>
Ologp(z;w
D =0
By using E.5 it can be shown that
ddo(n)
-~ (@)
and )
9 8317‘;9(2) = var(T(2))z-

Below is a list of some of the common distributions in the exponential family.



E.1 Gaussian distribution N(u,o?)

159

E.1 Gaussian distribution N(u,o?)

The Gaussian distribution is the most well-known distribution, therefore
also called the Normal distribution. The domain of the outcome of the
distribution is the entire real line ().

7 — 2
el o) =~ el -2

where 4 € R is the mean parameter and ¢ > 0 is the standard deviation
parameter. The variance is 02. A Gaussian distribution is denoted N (u, o?).

E.2 Poisson distribution P(\)

The Poisson distribution is defined for positive discrete outcome. There is
only one parameter A, which is both variance and mean parameter. The
density function is given by

67’\% T € 2y

P(z; M) = {

0 else

A Poisson distribution is denoted P()).

E.3 Gamma distribution I'(v, \)

The domain of the outcome of the gamma distribution is the positive real
line. The density is given by

AV x”_le_)‘“” x> 0

plw;v,A) = {F(”)

0 else

Both parameters are greater than zero. The mean is defined by /X and the
variance is defined by v/A?. A Gamma distribution is denoted I'(v, \).

E.4 Binomial distribution B(n,r)

The domain of the outcome of the Binomial distribution is {0,...,n}. So
the domain is discrete and both upper and lower bounded. The density of
the Binomial distribution is given by

(")rme(1 —m)n1=2) ng € {0,...,n}

nr
0 else

P(z;n,m) = {



160

Exponential family of distributions

The mean is nm and the variance is nm(1 — 7). A Binomial distribution is
denoted B(n, ).

E.5 Inverse Gauss distribution

The domain of the outcome of the inverse Gauss distribution is the positive
real line. The density is given by

exp[3 log X + 2v/x9 — xz — % —Slogz] z>0
0 else

plzlx, ¥) = {
The mean is /x/v/% and the variance is \/x/+/43.

E.6 Beta distribution g(r, s)

The domain of the outcome of the Beta distribution is ]0; 1[, so the domain
is continuous and both upper and lower bound. The density is given by

exp[(r — 1) log z(s — 1) log(1 — z) + log FF((TSF&] 0<z<l1

p(zlr,s) = {

0 else

Both parameters r and s are positive. The mean is r/(r+s) and the variance
is rs/[(r +8)%(r + s+ 1)].

E.7 Inverted Gamma distribution

The domain of the outcome of the inverted Gamma distribution is the pos-
itive positive real line. The density is given by

exp[-nlogz — ¢ + (n — 1)log(a) — log'(n —1)] 2> 0

0 else

p(zla;n) = {

Both the parameters a and n are positive.



Appendix F

Gradient descent for
deviance error functions

In section 5.4 a family of error function is presented, that it is based on
the deviance of an one-parameter density from the exponential family of
distributions. The general form is

E(f,t) = [e(t) — c(N)IT(#) + d(t) — d(f)],

where d obeys d'(z) = —c(z)T(z). In table F.1 is an overview of deviance
error functions derived from some of the commonly used densities (see ap-
pendix E). All error functions have non-linear average predictor, except the
Normal error function, because the corresponding densities have non-linear
sufficient statistics. As noted in section 5.8 all error functions have a trans-
posed error function where the canonical links and sufficient statistics are
interchanged. Since the error functions in table F.1 have linear canonical
links, the transposed error functions of the error functions in table F.1 have
linear average predictors. The results in this appendix hold for the trans-
posed error function, only the sufficient statistics and the canonical links are
interchanged.

The gradient of the error functions with regard to the predictor f must
be found in order to use the gradient descent optimization method (see
appendix I) on the error functions. The general result is

OE(f,t
OB _ ()~ 101 ()
of
The corresponding gradient for the transposed error functions is
aE'T(fa t)

af  — L) - c(IT'(f)



162

Gradient descent for deviance error functions

DISTRIBUTION ERROR FUNCTION DOMAIN

Normal(y, o) 5(f —1)?

Poisson (1) [f —t] +tlog %

Binomial(y, k)
Gamma(v, u)

Inv. Gauss(u, )

tlog%—l—(l—t)log%
(%—1)+log;

(f =?/(f70)

] — 005 00]
[0; oo
[0;1]

[0; oo

]0; 00]

Table F.1: Error functions with linear sufficient statistics.

From appendix I we have that the intended shift (Af) of the predictor is

proportional to the negative gradient, so we have Af o« —

%j{’t) . The values

of Af for the error functions in table F.1 and their transposed counterparts

are particularly simple and given by
Af =[t—fI(f)
Afr=[t— fIT'(f)

The gradient for the error functions in table F.1 can be found in table F.2.

DISTRIBUTION INTENDED SHIFT (Af)

Normal(u, o)
Poisson(p)
Binomial(y, k)
Gamma(v, u)

Inv. Gauss(u,6)

t—f

Table F.2: Gradient of error functions with non-linear average predictor.

If the predictor is a neural network the gradient descent method becomes
back propagation (see section 6.2). The domain of the output of a neu-
ral network is the entire real line, while the domain of the output of the



163

predictors for some error functions are limited (see table F.1), e.g. for the
Poisson error function the predictor can only take positive values. In order
to amend this problem a post-processing function is introduced. Let the
output of the neural network be nn and the post-processing function be pp
we have f = pp(nn). The intended shift of the neural network (Ann) is
then connected to the intended shift of the predictor by

Ann = Af - ai—fn = Af - pp'(nn) (F.1)

By choosing a suitable post-processing function the problem with the do-
mains of f and nn can be avoided and the expression for the intended shift
of the neural network can be simplified. In table F.3 suitable post-processing
functions for the error functions in F.1 are given together with the derivative
of the post-processing function expressed both in terms of f and nn.

DISTRIBUTION pp(nn)  pp'(nn) I pp'(pp *(f)) 11

Normal(u, o) nn 1 1
Poisson(u) e e f
Binomial(y, k) e—n%%+1 e_nnjfennﬂ fa=f)
Gamma(v, u) enm e f
Inv. Gauss(u,6) enr e"" f

Table F.3: Gradient of error functions with non-linear average predictor.

The derivative of the post-processing function for the error function in table
F.1 can all be expressed succinctly in terms of the output of the predictor

1.

With the post-processing functions in F.3 the intended shift of the neu-
ral network is greatly simplified (see table F.4). Let us use the Binomial
error function as an example. The post-processing function is given by
f= %, and the derivative of f with regard to nn is m Using
that 1— f = ﬁ and straightforward manipulation yields that the deriva-
tive of f with regard to nn expressed in terms of f is f(1 — f). From (F.1)



164 Gradient descent for deviance error functions

we find that the intended shift of the neural network is

Ann = Afpp'(nn)

t 1-—1
= ?—m]f(l—f)
—t—tf — [+ tf
—t—f.

With the chosen post-processing function the intended shift for the neural
network becomes the same as for the MSE, which is remarkable.

DISTRIBUTION Af Ann
Normal(yu, o) t—f t—f
Poisson(u) % -1 t—f
Binomial(y, k) % - 11,;; t—f
Gamma(v, u) [% - 1]% % -1
Inv. Gauss(yu,0) [% - 1]# [% - 1]%

Table F.4: Gradient of error functions with non-linear average predictor.

In table F.4 we see that while the expressions for Af are different, the
expressions for Ann are all on the form [t — f]fin, where n is zero for the
Normal, Poisson, and Binomial error function, while n is one for the Gamma
error function, and two for the Inverse Gauss error function.



Appendix G

An alternative
approximation of the Faculty
and Gamma functions

Stirling’s formula is an approximation of the faculty n!. In the infinite limit
the approximation is very good, but for n close to zero it becomes very poor.
In the following we will treat n! as a continuous function (so we are really
examine I'(n + 1)). A well-known bound on n! is

27rn<g> <n!< v27rn<g> esn (G.1)

An alternative approximation of n! is

1\ n+i
n!z\/%("j§> ’ (G.2)
For various reasons we will investigate the logarithm of the three approxi-
mations. Let the logarithm of the lower bound in (G.1) be denoted A(n),
the logarithm of the upper bound be denoted B(n), and the logarithm of
the approximation in (G.2) be denoted C(n). In figure G.1 the three ap-
proximations and the continuous version of the faculty is plotted.

We will show that A(n) < C(n) < B(n) by investigating C(n) — A(n) and
B(n) — A(n):

(G.3)

(G.4)



166

An alternative approximation of the Faculty and Gamma functions

35 T T T T

log(n')
B(n) --—---—-
A ,,,,,,,,
3t Cg% i
25 B

_05 - ////’/ —

Figure G.1: Comparison of the continuous version of log(n!), the upper
Stirling log bound A(n), lower log bound B(n), and the alternative approx-
imation of log(n!) : C(n)

To show A(n) — C(n) > 0 (G.3) it must be shown that

n-l—% N 1
_2'
n—}—%
n

1
(n+ E)log

— % for n — oo. Further-
n—}—% 1
n > 2

Using log(1 + z) = z yields that (n + 3)log

1
more, the first derivative of (n+3) log R;:Q is negative so (n+3) log
To show B(n) — C(n) > 0 (G.4) it must be shown that

11 1., n+1

—4+—> )1 2,

24_8n_(n+2)0g n
The first derivative of B(n) — C(n) is always negative, meaning that the
difference is decreasing. For n = 1 the value of B(n) — C(n) is greater

than zero, so it must be checked that B(n) — C(n) > 0 for n — oo. Using

1
log(1+x)z1:v—z2—2yields (n+%)lognj;2 z%—l—%—ﬁ. Since § + g >

% + % Ty the difference is positive also in the limit n — oo.
We conclude that A(n) < C(n) < B(n) and thereby

n 1 n—|—% n
27rn(ﬂ> S\/ﬂ(n+2) < 27rn<ﬁ) e (G.5)

(& (&




167

For n — 0 the approximations in (G.2) is much better. The real value of
n! is one. The two bounds diverge, while the approximation in (G.2) is
approximately 1.075. The relative error decreases for greater values of n.

1
There are even better approximation of n! than v/ 27r(n+T2)(”+%)

nl ~ 27m”+%e_”+“("),
where
1 1 1

#r) = o0 ~ 360m3 T 126005

but this approximation is very cumbersome and /27 ( is a much

better approximation for n < 0.4

1
”Jf_i)(n%)
e

As mentioned we have also presented an approximation of the I'(z). It is
given by

I'(z) z@(m_%y_% (G.6)

e

An important function that is connected to the I'(z) is the diGamma func-
tion. It is given by

_ OlogI'(x)

diGamma(zr) = ———=. (G.7)
Oz
The approximation of I'(z) gives an approximation for the diGamma func-
tion: 9o T )
diGamma(z) = OlogI'(z) ~ log(z — -).

ox 2



168 An alternative approximation of the Faculty and Gamma functions




Appendix H

Probability of sampling an
example £ times in Bagging

A Bagging training set is sampled with replacement from the original exam-
ple set. Let the size of the example set be n. A particular example can be
in the training set between zero and n times. The probability of sampling
an example k times is binomial distributed with probability parameter %:

=) -3

n

The probability P(0) is equal to (1 — %) . For large n this is approximately
e 1~ 0.3679. It is easy to show that for k£ # 0 we have

_ln—k

P(k) = Pk -1).
(k) = 3 = P(k 1)
If k& is much smaller than n, the factor Z—:'f is very close to one, so a very

good approximation of the probability of sampling an training example k
times is

The first probabilities for k = {0,...,8} are given in table H.1.



170 Probability of sampling an example k times in Bagging

P(k)
0.3679
0.3679
0.1839
0.0613
0.0153
0.0031
0.0005
0.0001
0.0000

OO Ot ihWNh = O

Table H.1: The probability that an example is sampled £ times.

The probabilities are very accurate for n > 1000 and &k < 10.



Appendix 1

Gradient descent

A well known optimization method is the gradient descent method. It is
used to minimize a function. Let h be the function we want to minimize.
It depends some parameters @ = {wy,...,w,}. In gradient descent method
the parameters are iteratively changed in order to find the minimum of the
function. So we want to know what happens if we change the weights by a
small amount dwj. A first order Taylor expansion of the error function F ()
around 1/ gives

Oh(w)
h(W + dw) ~ h(w - du
(W + dw) (W) + 5 40
The vector 5 oh(d) _ 6&5]1 yenes 8;5;‘7)} is the gradient. Since we want h(u_J:+
dw) < h(w) we must have a(*) dw < 0. This is guaranteed if dwj = ag(%”).
So the gradient descent method has the following update rule:
ah(u'i)
—f = _
T e

where r is called the learning rate.



172 Gradient descent




Appendix J

Logarithmic opinion pool
ensemble in a statistical
mechanics setting

A number of similarities exists between a logarithmic opinion pool (LOP)
ensemble (see section 7.1.4) and a Canonical Ensembles, an area inside sta-
tistical mechanics. (see [70, 61] for an explanation of canonical ensembles).
Very shortly put a canonical ensembles is an abstract group of the same
physical system, where each “mental copy” is characterized by a state r
with a corresponding energy E,.

In a canonical ensemble the probability of one of the systems being in state
T is

bl

1
P. = —e BEr
- e
where FE, is the energy of the system, § is the reciprocal of the temperature,

and Z = Y e #Ps is a normalization constant. This is very similar to the
LOP combination rule in (7.1)

Fe = Zexp Y aalog(ff),
3
where Z =) exp ), o;log(ff). Setting F¢ = P, gives
BB, =Y aslog(f?) (1.1)
i
The reciprocal temperature 8 has no analog. Setting 8 = 1 yields

1
E,. = Zai log F
i 7



174 Logarithmic opinion pool ensemble in a statistical mechanics setting

The state r of a system will be viewed as the class ¢. Note that E. > 0
since f{ < 1. Let us assume that the energy E, is the sum of some weakly
interacting particles with energy E; yielding

E, :ZEZ :Zailog%.
Y i ?

To stretch the analogy further «y is set to correspond to ¢ yielding

; 1
E. = ajlog —, (J.2)
fi
which is the energy of one particle in one system in the canonical ensemble.
Equation J.2 can be rewritten as

ff = exp[—a; 'El.

In a canonical ensemble there are some values of interest. Among them are
the mean energy F, the entropy S, and the free energy F', but before we look
into them, we examine the indirectly important term log Z. By definition

exp[}_; @ilog ff]

e ,Ve: F°¢ > 0.

log Z = log

To express the “for all” constraint the terms logexp[),; o log ff]/F€ can be
summed (over index c¢) weighted by weights that sum to one, and are zero
whenever F¢ is zero. The only functions that always obey this are the F¢’s,
so we have:

T C
lOgZ:ZFClOgZ:chlogexp[Zzazlogfz] = —A7
C c

Fec

where A is the ambiguity. So A = —log Z. Furthermore, the Helmholtz free
energy is
H=-p1logZ = A.

The mean energy is defined as
E=) PE,.
T
Using the analog between a canonical ensemble and a LOP ensemble we get
E= —ZFCZailogff =A- ZFcloch.
c 7 c
The entropy is defined as

S = k(logZ + BE).



J.1 Temperature in LOP ensemble 175

Setting k = 1 we get

S = —A+A—ZFclogFC: —ZFcloch.
Cc c

Finally, we have the equality H = E — T'S. With T = 1 we have
A=FE-S.

So the ambiguity of a LOP ensemble can be interpreted as the difference
between the mean energy and the entropy in the corresponding canonical
ensemble. Note that all three terms A, E, and S are positive or zero, so
we have E > S. In thermodynamics it is well-known that the entropy of
an isolated system is irreducible. It is not the same for a LOP ensemble,
since we have “control” over the ensemble members and combined predictor
through our choice of meta machine learning method.

The decomposition of the ambiguity can be used. It provides us with extra
tools for increasing ambiguity, since we can either increase the mean energy
and/or minimize the entropy.

J.1 Temperature in LOP ensemble

In (J.1) the reciprocal temperature 3 was set to one. It is tempting to in-
vestigate whether it is possible to introduce a temperature in a classification
ensemble. We would then have the combination rule

Fe = explp Y ailog £, (1.3)

where Z = ) _exp[f ), o;log f{]. Let us first investigate what such a recip-
rocal temperature does: Assume two classes, and set a = ), a; log fil and
b=, a;log f?, we have

_ e—Pa B 1
e Papehb 14 e Bb-a)’

1

If B — 0 (corresponding to infinite high temperature) then F' — 3, if
B —ocoand b > athen F' = 1,if 8 — 0o and b < a then F1 — 0. So a
high temperature makes the combined predictor more “uncertain”, while a
low temperature forces the combined predictor to decide between the classes.
Unfortunately, the decomposition of the error in section 7.1.4 does not hold

for B # 1. To see this note that the decomposition is based on to equalities

K(t, F) = (K(t, f{))g +log Z,



176

Logarithmic opinion pool ensemble in a statistical mechanics setting

and
log Z = —(K(F*, f{))p-

Let us look at the latter equality first. With the combination rule in equation
J.3, we have

c\B
log 7= Y s 3" Felog U1 = k(P fo,

50

K(f, ff) ZFclog

this yields

K(f,F°) = Zazzleog
(KL )>+mogz,

which is not the same as (K(f, f{))p + logZ unless 8 = 1.

-I-ﬁlogZ



Appendix K

Comparing large test runs

In many empirical test runs a great deal of data is collected (see e.g. tables
8.2, 8.3, and 9.2). It is difficult to get a quick overview, and the main point
might be lost in details. We present a method for simplifying the results,
that is applicable in many cases. It will discuss as a comparison of multiple
machine learning methods on multiple example sets, but is easily generalized
to other cases.

The principle is to find how often a given method would yield the lowest
test error averaged over the example sets.

We have M machine learning methods {L1,...,Ly} and N example sets
{T1,...,Tn}. All methods are trained on all examples sets a number of
times. The test error for each training run is used to calculate the mean and
deviation of the test error of each method on each example set. We have
a matrix of size M x N of pairs of mean and deviation (e;j,0;;), from the
stochastic variables X, ;, where i is the method index and j is the example set
method. Without any other data recorded the distribution of the test runs
cannot be found, so it is assumed that the test error is Gamma, distributed
for a training run. We have M x N Gamma densities p(e; e;;,04;) = p(e)i;
and M x N distributions D(e);;. At a specific error e the the distribution
D(e);; (the probability mass) is how likely it is that method i on set j has
yielded an error less than or equal to e, i.e. P(X;; < e) = D(e)i;- The
probability P(X;; > e is 1 — D(e);;. The test runs are independent, so the
stochastic variables are also independent. Therefore the probability that a
group of methods yields a result larger than e is given by the product. Let
a group be all methods except the i’th method for a given example set j.
We have

M

P(le >€X1_1‘7 >€/\X1+1‘7 >e...XMj >€):H(1—D(e)kj)
k#i



178

Comparing large test runs

By averaging the probability above over all possible errors with regard to
the method 7 on set j the probability that method ¢ yields the lowest error

is found:
M

P(lowest)i; = (][(1 = D(e)j))x
k#i
Since no example set is assumed more significant than the other and they

are assumed to be independent, the overall probability that method ¢ yields
the lowest error is

i

N
1
P(lowest); = N Z P(lowest);;
J

Instead of the analytic approach above one can use an iterative approxi-
mation: Sample an error from each of the distribution D(e);; and find the
method that yields the lowest error. Do this a large number of times while
keeping track of how many times a method yields the lowest error. Let the
numbers be K;; then P(lowest);; is approximated by

K;;

P(lowest);; ~ ——"—.



Index

I’ Distribution, see Gamma Distri-
bution

I' Function, see Gamma Function

B Distribution, see Beta Distribu-
tion

x? Deviation, 27

y-mean, 27

vy-variance, 27

k-parameter Exponential Family,
157

Abalone Problem, 104
Activation function, 68
AdaBoost, 77, 102, 113
Ambiguity, 20
Deviance Ambiguity, 65
Logarithmic Ambiguity, 33
Ambiguity Decomposition, 20
Application Framework, 7, 8
Arching-x4, 79
Average Predictor, 13, 40, 42
Average Target, 47

Back Propagation, 10, 69, 69, 92,
115, 162

Back-propagated error, 70, 92

Bagging, 19, 21, 75, 102, 113

Balancing, 75

Batch Update, 70, 94, 131

Bayes’ Formula, 59

Beta Distribution, 160

Beta Error Function, 52

Bias, see Bias/Variance Decompo-
sition, 15

Bias Effect, 24, 151

Bias/Variance Decomposition, 3, 4,
17-19, 21-25, 28, 33, 35—

39, 39, 4042, 47, 49, 50,
53-56, 58, 61, 65, 91, 137,
152
Bias/Variance Dilemma, 17, 18
Binomial Distribution, 159
Binomial Error Function, 51
Boosting, 73
Boosting Ensemble Methods, 125
Brain I Problem, 104
Brain IT Problem, 104
Building Problem, 104
Building2 Problem, 109
Bumping, 75

Canonical Ensemble, 173

Canonical Link, 32, 154, 157

Combination Rule, 74

Combined Predictor, 13, 19, 20,
71

Complexity, 18, 88

Conjugated, 58

Conjugated Deviance Error Func-
tion, 61, 62

Covariate, 154

Cross-Validation Technique, 129

Deterministic Update, 70

Deviance, 43

Deviance Error Function, 42, 43,
44, 46, 48, 49, 51, 53-58,
60-62, 64, 65, 91-93, 95,
138, 144, 161

diGamma Function, 53, 167

DynCo, 83, 102, 113

Early Stopping, 13, 18, 104, 115



180

INDEX

EBF, see Extended Bayesian Frame-
work

Ensemble Methods, 72
Boosting Ensemble Method, 71
Lower Error Bound, 108
Parallel Ensemble Method, 71

Entropy, 174

Error, 11

Error Function, 11

Estimator, 9

Example Sets
Abalone Problem, 104
Brain I Problem, 104
Brain IT Problem, 104
Building Problem, 104
Building2 Problem, 109
Friedmanl Problem, 109, 114
Friedman2 Problem, 109, 114
Friedman3 Problem, 109, 114
Gabor Problem, 109, 114
Housing Problem, 109
Multi Problem, 109, 114
SinC Problem, 109, 114
Spiral Problem, 104, 114
Thyroid Problem, 104

Expectation-Maximization Algorith-

m, 82, 104

Expert System, 2

Exponential Family, 157

Extended Bayesian Framework, 7

Feed-forward Neural Network, see
Neural Network
Feed-forward Propagation, 68
Free Energy, 174
Friedmanl Problem, 109, 114
Friedman2 Problem, 109, 114
Friedman3 Problem, 109, 114
Function Space, 9, 15

Gabor Problem, 109, 114

Gamma, Distribution, 159

Gamma Error Function, 51, 91,
93, 96, 164

Gamma Function, 167

Gaussian Distribution, 159

Gaussian Error Function, see Mean
Square Error

Generalization Error, 11

Generalized Linear Model, 80

Generalized Linear Models, 51, 153

Genetic Algorithm, 74

GLMjy, see Generalized Linear Mod-
els

Gradient Descent, 92, 171

Hellinger Distance, 26

Helmholtz Free Energy, 174

Hessian Matrix, 77

Hierarchical Mixtures of Experts,
83

Housing Problem, 109

Hyperbolic Tangent Function, 68

Improper Prior, 60
Information Loss, 25
Intended Shift
of a neural network, 92, 163
of a predictor, 162
Inverse Gauss Distribution, 160
Inverse Gauss Error Function, 51,
164
Inverted Gamma Distribution, 160
Inverted Gamma Error Function,
52

Jensen’s Inequality, 29

Karlsen, 135

Kernel-based Method, 67

KL, see Kullback-Leibler Error

Kronecker Delta Function, 8

Kullback-Leibler Deviation, 26

Kullback-Leibler Error, 12, 12, 29,
56, 77

LAP, see Linear Average Predic-
tor
Learning Rate, 69, 171



INDEX

181

Linear Average Predictor, 13, 14,
20, 40, 76, 83

Logarithmic Opinion Pool, 13, 14,
28, 76

Logarithmic Opinion Pool Ensem-
ble, 76, 127, 141, 173

Cross Validation, 127

Logarithmic Variance, 30, 33

LOP, see Logarithmic Opinion Pool

LOP Ensemble, see Logarithmic
Opinion Pool Ensemble

Machine Learning, 10
Function, 10
Method, 10, 67, 140
Machine Learning Method, 67
Kernel-based, 67
Nearest Neighbor, 67
Neural Network, 67
Radial Basis, 67
Splines, 67
Support Vector, 67
Tree Predictor, 67
ME Methods, see Mixtures of Ex-
perts Methods
Mean Energy, 174
Mean Square Error, 12, 12, 16, 20,
21, 24, 33, 36-43, 46, 63,
72, 83-85, 91-97, 99, 102,
103, 109, 115, 123, 133,
134, 140, 144, 152, 164
Meta Machine Learning
Function, 10
Meta Machine Learning, 10, 86
Method, 10, 19, 71
Mixtures of Experts Methods, 80
Modular Network, 80
Momentum, 70, 94
Momentum Rate, 70
MSE, see Mean Square Error
Multi Problem, 109, 114

Natural Form, 158
Nearest Neighbor Method, 67

Neural Network, 67, 115, 140

Normal Distribution, 30, see Gaus-
sian Distribution

Normal Error Function, 51, see Mean
Square Error

Overfit, 13, 15

Parallel Ensemble Method, 125
Poisson Distribution, 159
Poisson Error Function, 51, 91, 93,
94, 96, 97, 163

Post-processing Function, 68, 163
Posterior Density, 58
Predictor, 9

Tree Predictor, 125
Prior Density, 58
Problem Sets, see Example Sets

Radial Basis Method, 67

Sigmoid Function, 68
Simple, 76, 102, 113

SinC Problem, 109, 114
SOFTMAX, 9, 83

Spiral Problem, 104, 114
Splines, 67

Stacking, 74

Statistical Mechanics, 173
Stochastic Update, 70
Sufficient Statistic, 157
Super Computing, 135
Support Vector Method, 67
Systematic Mean, 24, 41, 151

Thyroid Problem, 104
Transposed Error Function, 61

Validation Set, 13

Variance, see Bias/Variance Decom-
position, 15

Variance Effect, 24, 151

XuME, 80, 102
XuME+, 102



182 INDEX




Bibliography

[1]

[2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

AVNIMELECH, R., AND INTRATOR, N. Boosted mixture of experts: An
ensemble learning scheme. Neural Computation 11, 2 (1999), 483-497.

AVNIMELECH, R., AND INTRATOR, N. Boosting regression estimators.
Neural Computation 11, 2 (1999), 499-520.

BALDI, P., AND BRUNAK, S. Bioinformatics - The Machine Learning
Approach. MIT Press, Cambridge MA, 1998.

BATTITI, R. Democracy in neural nets: Voting schemes for classifica-
tion. Neural Networks 7, 4 (1994), 691-707.

BAUER, E., AND KOHAVI, R. An empirical comparison of voting classi-
fication algorithms: Bagging, boosting, and variants. Machine Learning
(1999).

Bicker, P. J., AND DoksuM, K. A. MATHEMATICAL STATIS-
TICS: Basic Ideas and Selected Topics. Holden-Day, Inc., 500 Sansome
Street, San Fransisco, Ca., USA., 1977.

Bisuop, C. M. Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

Bisuopr, C. M. Real-time control of a tokamak plasma using neu-
ral networks. In Advances in Neural Information Processing Systems
(1995), G. Tesauro, D. Touretzky, and T. Leen, Eds., vol. 7, The MIT
Press, pp. 1007-1014.

BREIMAN, L. Bagging Predictors. Machine Learning 24 (1996), 123—
140.

BrREIMAN, L. Bias, Variance, and Arcing Classifiers.  Tech.
Rep. 460, Statistics Department, University of Californi-
a, Berkeley, CA 94720, Apr. 1996. Anonymous FTP: ft-
p://ftp.stat.berkeley.edu/pub/users/breiman/old /arcall.ps.Z.



184

BIBLIOGRAPHY

[11]

[12]

[16]

[17]

[21]

BREIMAN, L. Arcing the edge. Tech. rep., Statistics Department,
University of California, Berkley CA. 94720, 1998. Anonymous FTP:
ftp://ftp.stat.berkeley.edu/pub/users/breiman/arcing-the-edge.ps.Z.

BrEIMAN, L. Using adaptive bagging to debias regres-
sions. Tech. rep., Statistics Department, University of
California at Berkeley, Feb. 1999. Anonymous ftp: ft-

p://ftp.stat.berkeley.edu/pub/users/breiman/adaptbag99.ps.Z.

BREIMAN, L., FRIEDMAN, J. H., AND ANS C J STONE, R. A. O.

Classification and Regression Trees. Wadsworth International Group,
1984.

BRIDLE, J. Probabilistic Interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition.
Neurocomputing: Algorithms, Architectures and Applications (1990).

CARNEY, J. G., AND CUNNINGHAM, P. Tuning diversity in bagged
neural network ensembles. Tech. rep., Department of Computer Sci-
ence, University of Dublin, Trinity College, Ireland, Aug. 1999. Anony-
mous FTP: ftp://ftp.cs.tcd.ie/pub/tech-reports/reports.99/TCD-CS-
1999-44.ps.

CHEN, K., AND CHI, H. A method of combining probabilistic classifiers
through soft competition on different features sets. Neurocomputing -
An International Journal (1998).

CLEARY, J. G., AND TRiIG, L. E. K*: An instance-based learner using
an entropic distance measure. Tech. rep., Department of Computer
Science, University of Waikato, New Zealand, 1997.

CorTES, C., AND VAPNIK, V. Support-vector networks. Machine
Learning 20 (1995), 273.

CREIGHTON, T. E. PROTEINS. Structures and Molecular Properties.
W. H. Freeman and Company, New York, 1992.

DRUCKER, H. Improving Regressors using Boosting Techniques. In
Machine Learning: Proceedings of the Fourteenth International Con-
ference (1997), j. Douglas H. Fisher, Ed.

DRUCKER, H., CORTES, C., JACKEL, L. D., LECUN, Y., AND VAP-
NIK, V. Boosting and other ensemble methods. Neural Computation

6, 6 (1994), 1289-1301.

Durry, N., AND HELMBOLD, D. A geometric approach to leveraging
weak learners. FuroColt 99 (1999).

FrRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. Additive logistic
regression: a statistical view of boosting. Tech. rep., Department of



BIBLIOGRAPHY

185

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Statistics, Sequoia Hall, Stanford University, Stanford California 94305,
1998. Link: http://www-stat.stanford.edu/~jhf/ftp/boost.ps.

FRIEDMAN, J. H. Multivariate adaptive regression splines. Annals of
Statistics, 1 (1991).

FRIEDMAN, J. H. On bias, variance, 0/1-loss and the curse-of-
dimensionality. Tech. rep., Department of Statistics and Stanford Lin-
ear Accelerator Center, Stanford University, 1996. Link: http://www-
stat.stanford.edu/~jhf/ftp/curse.ps.Z.

FrRIEDMAN, J. H. Greedy function approximation: A gradient boosting
machine. Tech. rep., Department of Statistics and Stanford Linear
Accelerator Center Stanford University Stanford, CA 94305, Feb. 1999.
Link: http://www-stat.stanford.edu/~jhf/ftp/trebst.ps.

GEMAN, S., BIENENSTOCK, E., AND DOURSAT, R. Neural networks
and the bias/variance dilemma. Neural Computation 4, 1 (1992), 1-58.

HaMPSHIRE, J. B., AND WAIBEL, A. The meta-Pi network - building
distributed knowledge representations for robust multisource pattern-
recognition. Pattern Analyses and Machine Intelligence 14, 7 (1992),
751-769.

HANSEN, J. V. Optimal brain construction. Tech. rep., DAIMI, 1995.
http://www.daimi.au.dk/~vogdrup/obc.ps.

HANSEN, J. V. Studies of optimal strategies for war & peace using
neural networks, genetic programming, and genetic algorithms. Tech.
rep., DAIMI, 1996. http://www.daimi.au.dk/~vogdrup/war.ps.

HANSEN, J. V. Progress report: Ensemble methods in
connection with neural networks. Tech. rep., Departmen-
t of Computer Science, University of Aarhus, Dec. 1997.
http://www.daimi.au.dk/~vogdrup/progressreport.ps.

HANsEN, J. V. Combining predictors: Some old methods and a new
method. In JCIS ’98 Proceedings (1998), G. Georgiou, Ed., Association
For Intelligent Machinery, Inc., pp. 12-16.

HANsEN, J. V. Combining predictors: Comparison of five meta ma-
chine learning methods. Information Science, an International Journal
(1999).

HANSEN, J. V. The superiority of simplicity. comparison of four meta
machine learning methods. In JCIS 2000 Proceedings (Feb. 2000), P. P.
Wang, Ed., Association For Intelligent Machinery, Inc., pp. 899-903.
Link: http://www.daimi.au.dk/~vogdrup/cin00.ps.



186

BIBLIOGRAPHY

[35]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

HANSEN, J. V., AND HESKES, T. Accepted for presentation at the 15th
international conference on pattern recognition: General bias/variance
decomposition with target independent variance of error functions de-
rived from the exponential family of distributions. Tech. rep., Depart-
ment of Computer Science, University of Aarhus, Denmark, Sept. 2000.
Link: http://www.daimi.au.dk/~vogdrup/biasvar.ps.

HanseN, J. V., AND KROGH, A. A general method for com-
bining predictors tested on protein secondary structure prediction.
In Proceedings of Artificial Neural Networks in Medicine and Biol-
ogy (Goteborg, Sweden, May 2000), H. Malmgren, M. Borga, and
L. Niklasson, Eds., Springer-Verlag, London, pp. 259-264. Link:
http://www.daimi.au.dk/~vogdrup/annimabprocrc.ps.

HerTz, J., KROGH, A., AND PALMER, R. G. Introduction to the
Theory of Neural Computation. Addison-Wesley Publishing Company,
350 Bridge Parkway, Redwood City, CA 94065, 1991.

HEeskEs, T. Balancing between bagging and bumping. In Advances
in Neural Information Processing Systems (1997), M. C. Mozer, M. L.
Jordan, and T. Petsche, Eds., vol. 9, The MIT Press, p. 466.

HEskES, T. Bias/variance decompositions for likelihood-based estima-
tors. Neural Computation 10, 6 (1998), 1425-1433.

HEeskEs, T. Selecting weighting factors in logarithmic opinion pools.
In Advances in Neural Information Processing Systems (1998), M. L
Jordan, M. J. Kearns, and S. A. Solla, Eds., vol. 10, The MIT Press.

JacoBs, R. A., JORDAN, M. I., AND BARTO, A. G. Task de-
composition through competition in a modular connectionist archi-
tecture: The what and where vision tasks. Tech. rep., Departmen-
t of Computer & Information Science, University of Massachusetts,
Ambhert, Mar. 1990. Anonymous FTP: ftp://archive.cis.ohio-
state.edu/pub/neuroprose/jacobs.modular.ps.Z.

Jacoss, R. A., JORDAN, M. 1., AND BARTO, A. G. Task decomposi-

tion through competition in a modular connectionist architecture - the
What and Where vision tasks. Cognitive Science 15, 2 (1991), 219-250.

JAcoBs, R. A., JORDAN, M. I., NOWLAN, S. J., AND HINTON, G. E.

Adaptive mixtures of local experts. Neural Computation 3, 1 (1991),
79-87.

JAMES, G., AND HASTIE, T. Generalizations of the bias/variance
decomposition for prediction error. Tech. rep., Dept. of S-
tatistics, Stanford University, Feb. 1996. Link:  http://www-
stat.stanford.edu/~gareth /ftp/papers/bv.ps.



BIBLIOGRAPHY

187

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

JORDAN, M., AND JACOBS, R. Hierarchical mixtures of experts and
the EM algorithm. Neural Computation 6, 2 (1994), 181-214.

JORDAN, M., AND XU, L. Convergence results for the EM approach to
mixtures of experts architectures. Neural Networks 8, 9 (1995), 1409
1431.

JORDAN, M. I., AND JACOBS, R. A. Hierarchies of adaptive experts.
In Advances in Neural Information Processing Systems (1992), J. E.
Moody, S. J. Hanson, and R. P. Lippmann, Eds., vol. 4, Morgan Kauf-
mann Publishers, Inc., pp. 985-992.

KiNcAID, D., AND CHENEY, W. Numerical Analysis. Brooks/Cole
Publishing Company, Pacific Grove, California 93950, 1991.

KITTLER, J. Combining classifiers: Atheoretical framework. Pattern
Analysis and Application 1 (1998), 18-27.

KiTTLER, J., HATEF, M., DUIN, R. P., AND MATAS, J. On com-
bining classifiers. IEEE Transaction on Pattern Analysis and Machine
Intelligence 20, 3 (Mar. 1998), 226-239.

KROGH, A., AND VEDELSBY, J. Neural network ensembles, cross val-
idation, and active learning. In Advances in Neural Information Pro-
cessing Systems (1995), G. Tesauro, D. Touretzky, and T. Leen, Eds.,
vol. 7, The MIT Press, pp. 231-238.

Lunp, O., FriMAND, K., GORODKIN, J., BOoHR, H., BOHR, J.,
HANSEN, J., AND BRUNAK, S. Protein distance constraints predicted
by neural networks and probability density functions. Protein Fngi-
neering 10, 11 (1997), 1241-1248.

McCULLAGH, P., AND NELDER, J. A. Generalized Linear Models.
Chapman and Hall, 11 New Fetter Lane, London EC4P 4EE, UK.,
1983.

MERzZ, C., AND  MURPHY, P. UCI  reposito-
ry of machine learning  databases, 1998. Link:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

MoLLER, M. Efficient Training of Feed-Forward Neural Networks. PhD
thesis, Computer Science Department, Aarhus University, 1993.

Munk, O. L., AND HANSEN, S. B. Automated registration of pet brain
scans using neural networks. In Physiological Imaging of the Brain by

PET (2000), A. Gjedde, S. B. Hansen, G. M. Knudsen, and O. Paulson,
Eds., Academic Press.

NowLaAN, S. J., AND HINTON, G. E. Evaluation of adaptive mixtures
of competing experts. In Advances in Neural Information Processing



188

BIBLIOGRAPHY

[58]

[63]

[64]

Systems (1991), R. P. Lippmann, J. E. Moody, and D. S. Touretzky,
Eds., vol. 3, Morgan Kaufmann Publishers, Inc., pp. 774-780.

OHNO-MACHADO, L., AND MUSEN, M. A. Modular neural networks
for medical prognosis: Quantifying the benefits of combining neural
networks for survival prediction. Connection Science 9, 1 (1997), 71-
86.

OpPiTZ, D., AND MACLIN, R. Popular ensemble methods: An empirical
study. Journal of Artificial Intelligence Research (1999).

OriTz, D. W., AND SHAVLIK, J. W. Generating accurate and diverse
members of a neural-network ensemble. In Advances in Neural Infor-
mation Processing Systems (1996), D. S. Touretzky, M. C. Mozer, and
M. E. Hasselmo, Eds., vol. 8, The MIT Press, pp. 535-541.

PaTtHRrIA, R. K. Statistical Mechanics. Pergamon, Elsevier Science
Ltd. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB,
U.K., 1985.

PENG, F., JAcoBs, R. A., AND TANNER, M. A. Bayesian inference
in mixtures-of-experts and hierarchical mixtures-of-experts models with
an application to speech recognition. Journal of American Statistical
Association (1996).

PERRONE, M. P., AND COOPER, L. N. When networks disagree:
Ensemble method for neural networks. In Artificial Neural Networks
for Speech and Vision (1993), Chapman Hall.

PrRECHELT, L. PROBEN1 — A set of benchmarks and benchmarking
rules for neural network training algorithms. Tech. Rep. 21/94, Fakultét
fiir Informatik, Universitdt Karlsruhe, D-76128 Karlsruhe, Germany,
Sept. 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-
21.ps.Z on ftp.ira.uka.de.

QuiNnLAN, J. R. C4. 5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA, 1993.

QuINLAN, J. R. Bagging, boosting, and c4.5. Tech. rep., U-
niversity of Sydney, Sydney, Australia 2006, Apr. 1996. Link:
http://www.cse.unsw.edu.au/~quinlan/q.aaai96.ps.

RauMAN, A. F. R., AND FAIRHURST, M. C. A new hybrid approach in
combining multiple experts to recognise hanwritten numerals. Pattern
Recognition Letters 18 (1997), 781-790.

RaMamMurTi, V., AND GHOSH, J. Structural adap-
tation in mixtures of experts, 1997. Anonymous FT-
P://ftp.lans.ece.utexas.edu/pub/papers/npap.ps.gz.



BIBLIOGRAPHY

189

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

Rao, J. S., AND TiBsHIRANI, R. The out-of-bootstrap method
for model averaging and selection. Tech. rep., Cleveland Clin-
ic, University of Toronto, May 1997. Anonymous ftp:  ft-
p://utstat.toronto.edu/pub/tibs/outofbootstrap.ps.

REIF, F. Fundamentals of Statistical and Thermal Physics. McGraw-
Hill, 1985.

Riis, S. K., AND KROGH, A. Improving prediction of protein sec-
ondary structure using structured neural networks and multiple se-
quence alignments. Journal of Computational Biology 3 (1996), 163—
183.

ROBERT E SCHAPIRE, YOAV FREUND, P., AND WEE SUN LEE. Boost-
ing the Margin: A New Explanation for the effectiveness of voting

methods. Machine Learning: Proceedings of the Fourteenth Interna-
tional Conference (1997).

RoseEN, B. E. Ensemble learning using decorrelated neural networks.
Connection Science, Special Issue: Combining Artificial Neural Nets:
Ensemble Approaches 8, 3 and 4 (Dec. 1996), 373-383.

RosT, B., AND SANDER, C. Prediction of protein secondary structure
at better than 70 % accuracy. Journal of Molecular Biology 232, 2 (Jul
20 1993), 584-599.

RUMELHART, D. E., HINTON, G. E., AND WIiLLIAMS, R. J. Learn-
ing Internal Representation by Error Propagation. Parallel Distributed
Processing: Ezplorations in the Microstructure of Cognition 1 (1986).

SCHAPIRE, R. E. The strength of weak learnability. Machine Learning
5 (1990), 197.

SCHAPIRE, R. E., AND SINGER, Y. Boostexter: A system for mul-
ticlass multi-label text categorization. Tech. rep., AT & T Labs, 180
Park Avenue, Florham Park, NJ 07932-0971 USA, Mar. 1998. Link:
http://www.research.att.com/~schapire/papers/SchapireSi98b.ps.Z.

ScHWENK, H., AND BENGIO, Y. Adaptive boosting of neural net-
works for character recognition. Tech. rep., Départment d’Informatique
et Recherche Opérationelle, Université de Montréal, May 1997. Link:
http://m17.limsi.fr/Individu/schwenk /Papers.A4/AdaBoost TR.ps.gz.

SHARKEY, A. J., Ed. Combining Artificial Neural Nets: Ensemble and
Modular Multi-Net Systems. Springer-Verlag London Ltd, 1999.

SHARKEY, A. J. C., Ed. Special Issue: Combining Artificial Neural
Nets: Ensemble Approach, vol. 8. Connection Science, Dec. 1996.



190

BIBLIOGRAPHY

[81]

[82]

[83]

[84]

[86]

[87]

[88]

[89]

[90]

[91]

SMYTH, P., AND WOLPERT, D. H. Stacked density estimation. Tech.
rep., Information and computer Science Department, University of Cal-
ifornia, Irvine, Aug. 1997.

SoLuicH, P., AND KROGH, A. Learning with ensembles: How over-
fitting can be useful. In Advances in Neural Information Processing
Systems (1996), D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo,
Eds., vol. 8, The MIT Press, pp- 190-196.

TESAURO, G., AND SEJNOWSKI, T. J. A "neural” network that learns
to play backgammon. In Neural Information Processing Systems (1988),
D. Z. Anderson, Ed., New York: American Institute of Physics, pp. 442—
456.

TRESP, V., AND TANIGUCHI, M. Combining estimators using non-
constant weighting functions. In Advances in Neural Information Pro-
cessing Systems (1995), G. Tesauro, D. Touretzky, and T. Leen, Eds.,
vol. 7, The MIT Press, pp. 419-426.

VAN DER SMAGT, P., AND HIRZINGER, G. Why feed-forward networks

are in a bad shape. In Proceedings of the 8th International Conference
on Artificial Neural Networks (1998), M. B. L. Niklasson and T. Ziemke,
Eds., Springer Verlag, pp. 159-164.

WaHBA, G., LiN, X., GAo, F., X1ANG, D., KLEIN, R., AND KLEIN,
B. The bias-variance tradeoff and the randomized gacv. Tech. rep.,
Department of Statistics, University of Wisconsin, 1210 West Dayton
St., Madison, WI 53706, 1998.

WEIGEND, A. S., MANGEAS, M., AND SRIVASTAVA, A. N. Nonlinear

gated experts for time-series - discovering regimes and avoiding overfit-
ting. International Journal of Neural Systems 6, 4 (1995), 373-399.

WoLpPERT, D. H. Stacked generalization. Neural Networks 5 (1992).

WoLPERT, D. H., Ed. Mathematics of Generalization. Addison Wesley
Longman, Reading, MA, 1995.

WOLPERT, D. H. On Bias Plus Variance. Neural Computation (1997),
1211-1243.

WoLPERT, D. H., AND MACREADY, W. G. Combining stacking with
bagging to improve a learning algorithm. Tech. rep., Santa Fe, Sept.
1996. Anonymous ftp: ftp.santafe.edu/pub/wgm/bs.ps.

WoOLPERT, D. H., AND MACREADY, W. G. An efficient method to
estimate bagging’s generalization error. Tech. rep., Santa Fe, 1996.
Anonymous ftp: ftp.santafe.edu/pub/wgm/error.ps.



BIBLIOGRAPHY

191

[93]

[94]

[95]

[96]

Xu, L., HINTON, G., AND I.JORDAN, M. An alternative model for
mixtures of experts. In Advances in Neural Infomation Processing Sys-
tems 7 (1994), G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds., MIT
Press, pp. 633-640.

Xu, L., JorDAN, M. 1., AND HINTON, G. E. An alternative model
for mixtures of experts. In Advances in Neural Information Processing
Systems (1995), G. Tesauro, D. Touretzky, and T. Leen, Eds., vol. 7,
The MIT Press, pp. 633-640.

YoAv FREUND, AND ROBERT E SCHAPIRE. Experiments with a New

Boosting Algorithm. Machine Learning: Proceeding on the thirteenth
Conference (1996), 148-156.

Zuu, H. Error decomposition and model complexity. Neural Compu-
tation 11 (1998).



