ISSN 0105-8517

Fifth Workshop and Tutorial on
Practical Use of Coloured Petri Nets

and the CPN Tools
Aarhus, Denmark, October 8-11, 2004

Kurt Jensen (Ed.)

DAIMI PB - 570
October 2004
DEPARTMENT OF COMPUTER SCIENCE B I_I -
UNIVERSITY OF AARHUS — T [1]
IT-Parken, Aabogade 34 _l—_l— =T
DK-8200 Aarhus N, Denmark =il I 1 [T

Preface

This booklet contains the proceedings of the Fifth Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, October 8-11, 2004. The workshop is
organised by the CPN group at Department of Computer Science, University of
Aarhus, Denmark. The papers are also available in electronic form via the web
pages: http://www.daimi.au.dk/CPnets/workshop04/

Coloured Petri Nets and the CPN tools are now used by 1400 users in 85
countries all over the world. The aim of the workshop is to bring together some of
the users and in this way provide a forum for those who are interested in the
practical use of Coloured Petri Nets and their tools.

The submitted papers were evaluated by a programme committee with the
following members:

Wil van der Aalst, Netherlands
Jonathan Billington, Australia
Jorg Desel, Germany

Joao M. Fernandes, Portugal
Jorge de Figueiredo, Brazil
Nisse Husberg, Finland

Kurt Jensen, Denmark (chair)
Ekkart Kindler, Germany
Lars M. Kristensen, Denmark
Charles Lakos, Australia
Tadao Murata, USA

Daniel Moldt, Germany
Laure Petrucci, France
Karsten Schmidt, Germany
Radiger Valk, Germany

Lee Wagenhals, USA

Jianli Xu, Finland

WIlodek Zuberek, Canada

The programme committee has accepted 13 papers for presentation. Most of these
deal with different projects in which Coloured Petri Nets and their tools have been
put to practical use — often in an industrial setting. The remaining papers deal with
different extensions of tools and methodology.

The papers from the first four CPN Workshops can be found via the web pages:
http://www.daimi.au.dk/CPnets/. After an additional round of reviewing and
revision, some of the papers have also been published as a special section in the
International Journal on Software Tools for Technology Transfer (STTT). For
more information see: http://sttt.cs.uni-dortmund.de/

Kurt Jensen

Table of Contents

Brice Mitchell, Lars M. Kristensen, Lin Zhang
Formal Specification and State Space Analysis of an Operational
PIANNING PrOCESS ...ttt 1

Guy E. Gallasch, Chun Ouyang, Jonathan Billington, Lars M. Kristensen
Experimenting with Progress Mappings for the Sweep-Line Analysis of
the Internet Open Trading ProtoColcccooeiiiiiiiniiiee e 19

Christine Choppy and Laure Petrucci
Towards a Metodology for Modelling with Petri Nets..........ccccoovvveiiiinceenne. 39

B. Han and J. Billington
Experince with Modelling TCP's Connection Management Procedures
LT O N SRS 57

Thomas Runge
Application of Coloured Petri Nets in Systems Biologycccocvevivevieivernnnne 77

Xiaoou Li, Joselito Medina Marin
Composite Event Specification in Active Database Systems: A Petri Nets
APPIOBCI ...t 97

Somsak Vanit-Anunchai and Jonatan Billington
Modelling Probalistic Inference using Coloured Petri Nets and Factor
(C] o] SR P R 117

Sami Evangelista, Jean Francois Pradat-Peyre
An Efficient Algorithm for the Enabling Test of Colored Petri Nets.............. 137

Dmitry A. Zaitsev
An Evaluation of Network Response Time using a Coloured Petri Net
Model Of SWITChEd LAN........oo it 157

Peter. R. Stephenson
A Formal Model for Information Risk Analysis Using Colored Petri Nets ... 167

Lawrence Cabac, Michael Kohler
Relating Higher Order Reference Nets and Well-Formed Nets 185

Joao Paulo Barros and Luis Gomes
A Unidirectional Transition Fusion for Coloured Petri Nets and its
Implementation for the CPNTOOIS...........ccoeiieiiie e 199

Dragana Makaji¢-Nikoli¢, Biljana Panié, Mirko Vujosevic¢
Bullwhip Effect and Supply Chain Modelling and Analysis using CPN
TOOIS e 219

Formal Specification and State Space Analysis of an
Operational Planning Process

Brice Mitchell!, Lars M. Kristensen®, Lin Zhang!

! Command and Control Division, Defence Science and Technology Organisation,
Edinburgh, SA 5111, Australia
{Brice.Mtchell, Lin.Zhang} @st o. def ence. gov. au
2 Department of Computer Science, University of Aarhus, IT-Parken,
Aabogade 34, DK-8200 Aarhus N, Denmark
kri s@ai m . au. dk

Abstract. Formal models of business processes support performance and be-
havioural analysis of the processes for continuous improvement. Formal models
are also useful in guiding the development of software tools to support the
processes. This paper presents a formal model of the operational planning proc-
ess used in the Deployable Joint Force Headquarters of the Australian Defence
Force. The formal process model was developed using Coloured Petri Nets
(CPN or CP-nets) and the supporting Design/CPN computer tool. The con-
structed CPN model has allowed the planning process to be validated and ana-
lysed using simulation and state spaces. State space analysis was conducted us-
ing full state spaces and the sweep-line state space reduction method.

Topics: Business process modelling, Design and analysis of business proc-
esses, Coloured Petri Nets

1. Introduction

Workflow modelling [18] based on formal methods such as Petri Nets [16] for rigor-
ous specification and analysis of business processes is becoming applied more and
more in practice [19]. Business processes in a military organisation take the form of
Standard Operating Procedures (SOP), guided by principles expressed in a doctrine.
The representation and analysis of military business processes for continuous im-
provement is of great importance as the military activities allow little inefficiency or
ambiguity.

This paper presents the formal specification and analysis of the business process
for planning at the Deployable Joint Force Headquarters (DJFHQ) of the Australian
Defence Force (ADF). The DJIFHQ is a Joint Headquarters (HQ) for the Army, Navy
and Air Force of the ADF. It can be deployed for offshore military operations and has
been deployed for operations such as East Timor in 1999. The doctrine that the
DJFHQ uses for planning is the Joint Military Appreciation Process (JMAP) [1]. The
HQ has a set of SOPs [4] that describe the DJFHQ implementation of the JMAP prin-
ciples in detail. The JMAP and associated SOPs are described in several natural lan-

guage documents, but these documents do not describe the planning process formally
nor completely. As military require efficiency and clarity in operations, it is beneficial
that the process is formalised especially for the purposes of training new staff offi-
cers, analysing the process for improvement, and guiding the development of soft-
ware tools to support the process.

The project reported in this paper is aimed at contributing to the development of a
robust operational planning process at the HQ based on the doctrine and current SOP.
The project consisted of three steps. The first step was to specify the DJFHQ plan-
ning process using Coloured Petri Nets (CPNs or CP-nets) [10,11,12,13] and the
supporting Design/CPN computer tool [5]. This step involved liaising with staff offi-
cers from DJFHQ to ensure that the CPN model properly reflected the planning proc-
ess. The next step was to validate the constructed CPN model and conduct initial
analysis of the planning process using simulation. The third step was to conduct state
space analysis of the CPN model. The basic idea behind state spaces [11] (also called
reachability trees/graphs or occurrence graphs) is to compute a directed graph (called
the state space), which represents all possible executions of the CPN model. These
states can then be traversed to find qualitative and quantitative properties of the proc-
ess. This type of analysis led to a better understanding of the planning process, and
enabled identification of areas for improvement. In the analysis step, we also investi-
gated the use of the sweep-line method [3] in the domain of workflow modelling. The
sweep-line method exploits the progress present in systems to reclaim memory during
state space exploration and thereby alleviate the state explosion problem [17].

The choice of CPNs as the modeling language in the project was based on the au-
thors experience with CP-nets from earlier projects [14,15] in the area of operational
planning. In [14], a CPN model of the DJFHQ planning process based on the obser-
vation of a training exercise was reported. The process used in the planning exercise
can be seen as one of many possible implementations of the doctrine and SOP based
process that we consider in this paper. The work in [15] reported a formal specifica-
tion of the planning process at another HQ of the ADF, Headquarters Australian
Theatre (HQAST), using CPNs. The findings from these earlier projects was that: 1)
CPNs enabled complex processes to be decomposed by the use of hierarchical con-
structs, something which is important for presentation purposes and to manage com-
plexity, and 2) the state space tool of Design/CPN provided the required flexibility to
implement the algorithms to analyse the planning process as per DJFHQ require-
ments.

This paper is organised as follows. Section 2 briefly describes the JIMAP as well as
the approach used in the development of the CPN process model. Section 3 provides
an overview of the CPN model. Section 4 explains how the CPN model was analysed
using simulation. Section 5 presents the full state space analysis of the process, while
Section 6 discusses the sweep-line analysis. Finally, Section 7 gives the conclusions
and discusses future work. The reader is assumed to be familiar with the basic ideas
of high-level Petri Nets.

2 Model Development

The IMAP is a logical decision-making process that guides military staff in producing
an operational plan. It comprises four consecutive and iterative steps as illustrated in
Figure 1: Mission Analysis, Course of Action (COA) Development, COA Analysis,
and Decision and Execution. Prior to these four steps, Preliminary Scoping is nor-
mally conducted to analyse the superior HQ’s intent and guidance to gain an idea of
the “bigger picture”.

| Preliminaf Scoping |

Mission Analysis COA Development
1 Review the Situation "
) : . 1 Confirm Centre of Gravity
gf‘dxr;iltgiffsm&S;npaelrgre(;l_g;n;ganderS Intent 2 Refine Critical Wulnerability Analysis
y ¥ . - 3 Dewelop Lines of Operation
4 Identify & Analyse Freedom of Action Comd's Guidance

5 Identify & Analyse Facts and Assumptions 4 Develop the COA Scheme of Manoeuurs
s i 4 Test COA Criteria
G Analyse Critical Wulnerabilities & : .
' L G Prepare & Deliver Brief
Identify Decisive Events

7 Draft Commander's Guidance
8 Prepare & Deliver Brief

Effects
Broad COAs

COA Analysis

- 1 Determine the War Game Start State
Modified COAs |5 =qjort war Game Method

3 Select WWar Game Record

4 Conduct the War Game

Decision & Execution
1 Compare COAs
2 Selact the COA
3 Develop and Issue the Plan
4 Execute the plan

I

Figure 1: Joint Military Appreciation Process (JMAP).

In the Mission Analysis step, staff officers provide input to the process, which
leads to an awareness of the situation. Staff officers analyse all mission aspects and
compile a brief (presentation) to the Commander. The Commander, upon receipt of
the brief, provides a guidance to staff for subsequent steps. The COA Development
step consists of identifying a broad range of potential COAs that achieve the mission
in accordance with the Commander’s guidance (Comd’s Guidance). The broad COAs
are presented to the Commander in the COA Development Brief. The COA Analysis
step consists of a war game where, typically, two sides are formed. One side acts as
the enemy and the other side as the friendly force. The purpose of a war game is to
investigate each COA by determining the risks, feasibility, strengths, and weaknesses.
This provides Modified COAs to be used in the next step. The final step of the process
is Decision and Execution when the Commander compares the strengths and weak-
nesses of each COA as revealed by the war game with assistance from staff. The
result is the selection of a COA to be developed into a plan and executed. The Effects
of this execution enables the process to start again leading to an iterative process. All
JMAP steps are supported with intelligence update activities.

The highly structured nature of the JMAP suggested that the CPN model to be de-
veloped should reflect this hierarchical representation. From Fig.1, the top level CPN
model would comprise substitution transitions to represent Preliminary Scoping and
the JIMAP steps (i.e. Mission Analysis, COA Development, COA Analysis, and Deci-
sion & Execution). The second level would comprise transitions to model sub-steps of
each of the IMAP steps. The sub-steps are listed inside the boxes in Fig.1, and can be
broken down into lower level activities in the process. It is important to note that the
numbering of sub-steps does not impose an ordering of their occurrences. Rather, the
timing of an activity is determined by the availability of required information, staff
officers, and completion of other activities. Activities can occur concurrently and out
of the JMAP step and sub-step order if the above conditions are satisfied. Strictly
speaking, the grouping of JMAP steps and sub-steps is for the purpose of representa-
tion, and should not constrain the ordering of activities. For this reason, we consider
it important to model the individual behaviour of each activity in order to study the
overall and complete behaviour of the operational planning process. The execution of
individual activities in the process model would then generate the overall behaviour
for analysis. One of the objectives was to investigate possible execution sequences of
activities in the JMAP in order to determine the most efficient allocation of staff re-
sources.

We consider that each activity in the JMAP can be characterised with six attributes
(see Fig.2): Input Information, Output Information, Prior Activities, Required Staff,
Desired Staff, and Duration. If information is obtained on all six attributes for each
activity in the JMAP, a CPN model can then be constructed and populated. The rest

of this section briefly describes these attributes.

Prior
Activities

Output
Information

Input »
Information |: > Activity
Duration

Required/Desired
Staff

Figure 2: An activity in the JMAP.

Input Information must be available before the activity can occur, while Output
Information is produced at the conclusion of the activity. Information is usually in
the form of an electronic document (i.e., Word, Excel, or PowerPoint files) or hand-
written notes, but may also be passed verbally. The output information of one activity
may become input information of another activity, introducing a dependency between
activities in the JMAP. Prior Activities are activities that must be completed before
the activity can occur. Prior activities are another mechanism for modelling depend-
ency between activities, as it is sometimes difficult to represent these dependencies
through the input/output mechanism.

The Required Staff must be available before the activity can occur. This is defined
by a set of conditions {cy,...,cx}, Where condition ¢; = (n;, {Si1,-...,Sim}) 1s satisfied if

n; or more staff officers are available from the set {s;;,...,Sin}. It is a precondition for
an activity to start that all such conditions {c;,...,cn} for the activity are satisfied. The
Desired Staff set can provide assistance in the activity or benefit from attending the
activity. Desired staff officers attend the activity if they are available, but do not
prevent the activity from occurring.

Duration is the expected length of the activity in minutes. This deterministic time
is based on the available documentation and estimates from DJFHQ staff officers
based on domain knowledge and experience.

3 Overview of the CPN Model

This section describes the hierarchical CPN model that has been constructed using the
approach described in Section 2. Figure 3 shows the hierarchy page of the CPN
model. Each node in Figure 3 represents a page (module) in the CPN model. An arc
going from a higher-level page to a lower-level page indicates that the higher-level
page contains a substitution transition that has the lower-level page as its associated
subpage. The immediate subpages of the JMAP page represent the five steps of the
JMAP as shown in Figure 1. Subpages representing the JMAP steps are divided into
subpages representing the activities constituting the steps. These activities are
grouped according to the logical structure of the JMAP as described in [1]. Represen-
tative pages of the CPN model will be described in the following sections, and are
highlighted with a thick border in Figure 3.

\g ‘JMAP#l)}
PreliminaryScoping#2 MissionAnalysis#3 COADevelopment#4 COAAnalysis#5 Decision&Execution#6
yScoping Y P! s

(Psi_1#16)H{(psi#7 K (WAL 1422)

(Psi2mr K (war_2423
mETY
(wazezs J(maztos#e) (Conpa_t#se)i-{(comparis i+
(Commizm)

(conos 141 Jo{(conpsrz
()
T |
()

COAA2#46 Kt

(connasias) DE3_1#52

DE3_2#53 J<

DE3_3#54 J

DE3_4#55 J&

CEERY <

(D S —

MA8_1#31 K MA8#10 Kt

MA8_2#32 Kt

MA8_3#33)

IAB_4#34)<

Figure 3: The hierarchy page.

3.1 The JMAP page

The JMAP page is the highest-level page in the CPN model and is shown in Figure 4.
On this page there are five substitution transitions (indicated by the tag in the
lower right corner of the transition) corresponding to Preliminary Scoping and the
four IMAP steps. The subpage of each substitution transition in Fig.4 is the accord-
ingly named page in Figure 3. Note that for the Decision and Execution step, the CPN
model captures activities up to the production of plans. The process completes when a
token of colour Plan is produced in the Planning Completed place.

There are six places on the IMAP page named External Information, Input Infor-
mation, Output Information, Planning Completed, Completed Activities, and Staff.
These places hold information about the process, including what information has
been produced (Output Information place), what information is available (Input In-
formation and External Information places), what activities have been completed
(Completed Activities place), what staff officers are currently available (Staff place),
and whether the process has been completed (Planning Completed place).

Since we require some of the produced output information to be used by other ac-
tivities as input information, we define the Input Information and Output Information
as fusion places belonging to the same fusion set. Fusion places are indicated by the
tag next to the place. This implies that the places Input Information and Output
Information always have the same marking.

ExInfo
External
I N N N\ Completed
(P Activities

InfoDoc

InfoAct

Preliminary

Scoping
S)

HS

Mission
Analysis

Y
Input coA Output
A D »>
InfoD =
nfoDoc
1 1 4 Infoboc
4
coA
Analysis

HS

4

Decision &

- Execution J
HS
Staff Planning
- > Completed
Mﬁus(InfoDoc

Figure 4: The JMAP page.

The InfoDoc colour set is an enumerated type that represents all information that
can be produced in the process. The Input Information, Output Information, External
Information, and Planning Completed places have this colour set to model what in-

formation is currently available. The InfoAct colour is an enumerated type that repre-
sents all possible activity names in the JMAP planning process. The Completed Ac-
tivities place has this colour set to store all activities that have been completed in the
process. The StaffList colour set is a list of the Staff colour set that is an enumerated
type representing all staff officers involved in the process. The Staff place has the
StaffList colour set to model staff officers that are available to activities that require
them. A list type is used on the Staff place to make it efficient to determine which of
the desired staff officers available will participate in a given activity. We will return
to this issue when we present the lower level pages of the model.

Only two places on the JMAP page have non-empty initial markings: External In-
Sformation and Staff places. The initial marking of the External Information place is a
set of information units provided by external sources (i.e., external HQ or processes).
The initial marking of the Staff place (ms_to_list(Staff)) is a list of all staff officers.

3.2 The Mission Analysis page

Fig.5 shows the Mission Analysis step. It is the subpage of the Mission Analysis sub-
stitution transition in Fig.4. The five port places (places indicated by a @ tag posi-
tioned next to the them) are connected to the accordingly named socket places in
Fig.4. Port and socket places are the mechanism by which a subpage interfaces with
the superpage containing the substitution transition. The marking of a port place is
always the same as it corresponding socket place. See [10] for details.

External
I Information
[l S S N N o~ |
Activities vo
InfoDoc 7 7 7 Y
InfoAct
MAL
Review the
Ve »Siation ~N
=
MA2-5
Analyse Mission
I ‘Aspects ~
%
MA6
Inp:\ ﬂ:rpm
Analyse CVs
& C_/ e, (o e
5
InfoDoc InfoDoc
MA7
§ Draft Comd's Y,
Guidance
W
e
_ Prepare &)
Deliver Brief
=
\ \ TN / J
StaffList
T

Figure 5: Example of a JMAP Step page - Mission Analysis.

The five transitions on the Mission Analysis page represent the group of activities
that are involved in the Mission Analysis step. These transitions are also substitution
transitions. The MA6 Analyse CVs & Identify DEs and MA7 Draft Comd’s Guidance
transitions are represented by activity pages, while the MA1 Review Situation, MA2-5

Analyse Mission Aspects, and MAS8 Prepare & Deliver Brief transitions are repre-
sented by intermediate pages.

3.3 The Draft Commander’s Guidance Page

An example of an activity page is given in Figure 6. It is the subpage of the MA7
Draft Comd’s Guidance substitution transition on the Mission Analysis page from
Fig.5. All activity pages contain 9 places (5 port places and 4 ordinary places), and 2
transitions (Start Activity and Stop Activity). The 5 port places relate to the accord-
ingly named socket places on higher-level pages, and the 4 ordinary places (Duration,
Activity Occurring, Required Staff and Desired Staff) represent the detailed informa-
tion needed for an activity to occur.

[Plwo

Completed
Activities

1'MA7
InfoAct
118
External Duration
[PTw <
duration
InfoDoc Duration

calcattendance

(required,
desired, 1'Proposed_Intent

1°Prelim_Guid: P -

stafflist)
Input 1'Proposed_DEs S@a_rl @-+duration Activity staffused Sl_o_p Output
E e Information Activity Occurring Activity Information H out
nfoDoc StaffList

[checkstaffenabled InfoDoc
(required,

stafflist)]
removestaff

PG_Req
P required Cdre, st
stafflist)

ReqStaffList
return_staff
(staffused,
PG_Des N
Desired . desired stafflist)
Staff
stafflist Staff
StaffList
Pl o StaffList

Figure 6: Example of an Activity page — MA7.

Every activity in the planning process is modelled to occur in two stages. The first
stage represents the start of an activity (transition Start Activity), and the second stage
the termination of the activity (transition Stop Activity). Enabling of the Start Activity
transition requires the following conditions to be satisfied.

Firstly, necessary information from the /nput Information and External Informa-
tion places must be available as per inscriptions on the arcs between these two places
and the Start Activity transition. For this example, no external information is required,
and hence the arc has an empty inscription.

Secondly, necessary prior activities must have been completed. Normally, these
activities are specified through the arc inscription between the Start Activity transition
and the Completed Activities place. In this activity, no prior activities are specified
other than implicit dependencies through input and output information. This arc
therefore has an empty inscription in this case.

Thirdly, the required staff are available on the Staff place. The required staff are
specified through the initial marking of the Required Staff place (JPG Req in this
activity) and the required inscription. The colour set of the Required Staff place is
ReqStaffList. ReqStaffList is a list of the StaffCondition colour set, which is a product
of two colour sets: NumberReq and StaffList. The NumberReq colour set is an integer
type representing the number of staff officers that are at least required. The second
part of the product StaffList represents candidates of the required staff. The desired
staff are specified through the initial marking of the Desired Staff place (JPG _Des in
this activity) and the desired inscription. Obviously there need to be tokens in the
Required Staff and Desired Staff places for Start Activity to be enabled, although
desired staff are optional. The condition on required staff in the Staff place is ensured
through the transition guard: checkstaffenabled(required, stafflist). This expression
evaluates to true only if required staff is contained in the stafflist.

The duration of the activity is specified by the duration inscription and the initial
marking of the Duration place. The Duration colour set is an integer type. The activ-
ity pages are the only pages that directly use the time concept of CP-nets.

When Start Activity occurs, tokens from the Duration, Required Staff and Desired
Staff places are consumed. Input information, external information and completed
activities are examined, and then reproduced in their respective places. The staff list
is taken from the Staff place, and then returned to the Staff place after the removal of
the required and desired staff through the function removestaff(required, desired,
stafflist). The staff officers participating in the activity are put on the output place
Activity Occurring, and will stay there for the duration of the activity. When time has
elapsed corresponding to the duration of the activity, the transition Stop Activity can
occur. When this transition occurs, the officers that participated in the activity are
returned to the Staff place, the information produced by the activity (Pro-
posed_Intent) is added to the Output Information place, and a token corresponding to
the activity (MA7) is produced on the Completed Activities place.

Note that each of the Duration, Required Staff and Desired Staff places contains
exactly one token as an initial marking and tokens are not returned to these places
when the Start Activity transition occurs. This implies that each activity will only
occur once which is in accordance with the planning process.

4 Simulation

Using the Design/CPN simulator, simulations were performed to validate the CPN
model and to conduct initial analysis. For validation, interactive (single-step) simula-
tion was used to investigate if an execution of the model could reach the desired ter-
minal state. A desired terminal state is characterised as follows. All 77 units of infor-
mation are produced (77 tokens on Output Information/Input Information place), the
7 units of external information are still available at the end of the process (7 tokens on
the External Information place), all staff are returned (ordered staff list was the same
as the initial marking on the Staff place), all activities are completed (41 tokens on the
Completed Activities place), and a plan was produced (a token with colour Plan on
the Planning Completed place).

After the model was validated, behaviours of the process were investigated
through the use of automatic simulation and simulation reports, where all the steps
that occurred during a simulation were recorded. The simulation report can be used to
produce a GANTT chart. Fig.7 depicts a GANTT chart created from the simulation
report where the execution terminated in a desired terminal state. Activities in the
JMAP are shown on the y-axis, and time (in minutes) is on the x-axis. The process
took 2095 minutes to complete. It can be noted that the process is very sequential in
nature, but some activities have occurred simultaneously and out of the order of the
JMAP steps. For example, some Preliminary Scoping activities (PS/ I, PSI 2 and
PS2) occurred simultaneously, and some other Preliminary Scoping activities PS4
and PS5 occurred after certain Mission Analysis activities (labels starting with MA).
These kinds of properties make the process more flexible and therefore a plan could
be produced quicker than a strictly sequential process that would take 2151 minutes.
The CPN model allows activities to occur “out of sequence” according to the activity
attributes.

MA1_1
MA1_2

0 200 400 600 800 1000 Time 1200 1400 1600 1800 2000 2200

Figure 7: GANTT chart extracted from an automatic simulation.

We also investigated the completion time of the process when there were no re-
source requirements, i.e., the process was based solely on information flow with staff
requirements ignored. A simulation report of this model was produced, and the corre-
sponding GANTT chart is shown in Figure 8. From the GANTT chart, we found that
the process took 1845 minutes to complete when there are no resource constraints. A
larger number of activities were shown to have occurred concurrently. For example,
certain Mission Analysis activities (MA3, MA4, MA5, and MAG6) occurred in parallel.
The simulation results suggest that one method of improving the process efficiency is
to enable concurrent activities through de-conflicting staff requirements on activities.

10

0 200 400 600 800 1000 Time 1200 1400 1600 1800 2000 2200

Figure 8: GANTT chart of a process with no resource constraints.

5 Full State Space Analysis

The interactive and automatic simulation reported in the previous section served as a
first step to validate the CPN model and analyse the planning process. To obtain a
rigorous analysis of the planning process and the CPN model, state space analysis
was applied. The full state space of the CPN model has 14783 nodes, 21690 arcs, and
could be generated in 2 minutes and 14 seconds on a PIII Linux PC.

The first part of the state space analysis was based on the state space report that can
be produced fully automatically by the Design/CPN state space tool. The state space
report contains answers to a number of standard dynamic properties of Petri nets such
as boundedness properties, home and liveness properties, and fairness properties. In
the following we interpret selected results from the state space report in the context of
the DJFHQ planning process.

Boundness properties. The integer bounds specify the minimal and maximal num-
ber of tokens that can reside on a given place. The multi-set bounds give information
about the minimal and maximal numbers of tokens with a certain colour that reside on
the place in any reachable state. The state space report specifies the integer and multi-
set bounds for each place in the CPN model. Table 1 specifies the lower and upper
integer bounds for five places from the JMAP page, previously shown in Fig.4.

Place Upper Bound | Lower Bound
External Information 7 7
Completed Activities 41 0

Input Information 77 0
Output Information 77 0
Planning Completed 1 0

Table 1: Selected upper and lower integer bound of places.

11

Both lower and upper integer bounds of the place External Information are 7,
showing that there are always 7 tokens present on this place. Careful inspection of the
upper and lower multi-set bounds (not shown) shows that the multi-set of tokens
present on the External Information is always equal to the external information ini-
tially present when the planning process commences. This shows that the external
information is not consumed by any activities, but only read. The upper integer bound
of 41 for place Completed Activities shows that at most 41 activities can be com-
pleted. The 41 tokens correspond to the total number of activities present in the CPN
model. Similarly, the upper integer bound on Input Information and Output informa-
tion corresponds to the 77 information units that can maximally be produced in the
planning process. The upper integer bound of 1 on the Planning Completed place
shows that there exist states in which a plan has been produced. This confirms the
observation made during the interactive and automatic simulations of the CPN model.

Liveness Properties. The CPN model has 14 reachable dead states (states without
enabled transitions). These states correspond to states in which the planning process
has terminated. To investigate whether these states represent desired terminal states of
the planning process, a predicate on states was written expressing that a terminal state
is a desired terminal state if the requirements stated in the beginning of Section 4 are
all satisfied. Applying the predicate shows that all dead states represent desired ter-
minal states of the planning process. This shows that if the planning process termi-
nates, then it terminates in the desired state. Inspection of the dead states shows that
the planning process may take 2141 minutes in worst case, and 2059 minutes in the
best case. A path corresponding to an optimal schedule for the planning process can
easily be obtained as a path in the state space from the initial state to a state where the
planning process has terminated at time 2059.

Home Properties. A home space [11] is a set of states H with the property that
from any reachable state, it is always possible to reach at least one of the states in H.
Using the query function HomeSpace available in the Design/CPN state space tool, it
was shown that the set of states constitute a home space. This means that the planning
process has the property that it is always possible to terminate the process in a state
where the plan has been produced. Generation of the strongly connected components
graph showed that the state space is acyclic. Since the state space is also finite, this
implies that when started, the process will eventually terminate in a state in which a
plan has been produced. This establishes the soundness of the planning process.

Completion times. Another measure of interest in the analysis of the planning proc-
ess is the earliest and latest time each activity can be completed. This information can
also be obtained from the state space. Table 2 lists these results for the activities in
the mission analysis step of the planning process. These results were obtained by
traversing the state space using the functions available in the Design/CPN state space
tool for writing non-standard queries. Similar results were obtained for the activities
in the other steps of the process, and similar results can be obtained for the best and
worst case start times of the activities.

12

Activity | Min Max Activity Min Max
MA2 28 157 MA3 65 286
MA4 65 286 MAS 83 286
MA6 65 268 MA7 85 286

MAI11 28 28 MA12 28 286
MA13 56 414 MASI1 277 323
MAS2 350 432 MAS3 387 469
MAS84 424 506

Table 2: Earliest and latest completion time for mission analysis activities.

6 Sweep-Line State Space Analysis

Full state space analysis of the DJFHQ CPN model was feasible with the available
computing resources because the state space of the CPN model was of a moderate
size. Since we eventually want to extend our work to cover even more complex and
detailed business processes of the ADF, we are likely to encounter the state explosion
problem, i.e., state space analysis will be prohibited because of the size of the state
space. As part of the project we therefore experimented with the use of the sweep-line
state space analysis method [3].

The basic idea behind the sweep-line method is to exploit a formal notion of pro-
gress present in many concurrent and distributed systems. Exploiting progress makes
it possible to reclaim memory during state space exploration by deleting visited states
on-the-fly. The deletion is done such that the state space exploration will eventually
terminate and upon termination all reachable states will have been explored exactly
once. Below we explain the basic ideas behind the sweep-line method and show how
the method can be applied in on-the-fly state space analysis of the DJFHQ CPN
model. The reader is referred to [3] for a complete presentation of the sweep-line
method. For the experiments, we used the sweep-line library [7] available for De-
sign/CPN.

The sweep-line method has until now only been used on communication protocols
[8], exploiting progress originating from internal states of protocol entities, retrans-
mission counters, and packet sequence numbers. There is however an intuitive pres-
ence of progress in many business processes from the start of the process toward the
termination of the process when the desired outcome has been produced. The pro-
gress can, e.g., be measured in the number of completed activities, the number of
documents produced, and the elapse of time. This kind of progress is also present in
the DJFHQ planning process, and it is reflected in the state space of the CPN model.
Figure 9 shows the initial fragment of the state space for the DJFHQ CPN model. The
initial state is represented by node 1, and initially three different activities may start.
The states have been organised into layers (separated by a horizontal line) based on
how far the system has progressed according to the creation time of the marking
(nodes). The creation time of a state in a timed CP-net represents the time at which

13

the system entered the corresponding state. For example, layer 0 contains the nodes
representing states with creation time 0. The marking in layer 1 has creation time 10.

Layer 0 (0)

I el "4_‘|

S \ ,\/
T

Figure 9: Initial fragment of the state space.

DT
\
(G

The key observation to make is that progress in the DJFHQ CPN model manifests
itself by the property that a state in a given layer has successor states either in the
same layer or in some lower layer, but never in an upper layer. This is a consequence
of the fact that the creation time in a timed CP-nets increases along an occurrence
sequence [11]. The idea underlying the sweep-line method is to exploit such progress
by deleting states on-the-fly during state space exploration.

To illustrate how the sweep-line method operates, consider Fig.9 and assume that it
represents a snapshot taken during conventional state space exploration. Dashed
nodes are fully processed states (i.e. states that are stored in memory and all their
successor states have been calculated). Nodes with a thick solid black border are
unprocessed nodes (i.e. nodes that are stored in memory, but their successor states
have not yet been calculated). Nodes with a thin solid black border have not yet been
calculated.

If the state space exploration algorithm processes states according to their creation
time, node 7 will be the state among the unprocessed states that will be selected for
processing next. This will add nodes 10, 11, and 12 to the set of stored states and
mark these as unprocessed. At this point it can be observed that it is not possible from
any of the unprocessed states to reach one of the markings 1-9 or 15. The reason is
these nodes represent states where the planning process has not progressed as far as in
any of the unprocessed states. Hence, it is safe to delete these nodes, as they cannot
possibly be needed for comparison with newly generated states when checking (dur-
ing the state space exploration) whether a state has already been visited. In a similar
way, once all the states in the second layer have been fully processed these nodes can
be deleted from the set of nodes stored in memory. Intuitively, one can think of a
sweep-line as being aligned with the highest layer (seen from the top) that contains
unprocessed states. During state space exploration, unprocessed states are selected for
processing in a least-progress first order causing the sweep-line to move downwards.
States will thereby be added in front of the sweep-line and deleted behind the sweep-

14

line. We could have subdivided each layer further by taking into account, e.g., the
number of started and completed activities or the number of produced documents.

To use the sweep-line method as implemented in the library [7], a progress meas-
ure must be provided to the tool. The progress measure specifies the progress to be
exploited by the sweep-line method, and consists of a mapping from states into pro-
gress values. The progress value of a state quantifies the progress of the system in
that state. The progress mapping is required to preserve the reachability relation of
the CPN model, i.e., a successor state S' of a state S is required to have the same or a
higher progress value than S. For the CPN model of the DJFHQ planning process, we
used a function that maps a state into its creation time. As an inherited property of
timed CP-nets, this mapping preserves the reachability relation.

The peak number of states stored with the sweep-line method using a progress
measure based on creation time is 2149 nodes. Assuming that memory consumption
is linear in the number of states stored, this corresponds to a reduction in peak mem-
ory consumption for analysis to 11.8 %. The total time used to conduct the sweep of
the state space was 2 minutes and 33 seconds (compared to 2 minutes and 14 seconds
for full state space generation). Using the sweep-line method, we can investigate the
same dynamic properties as was considered in the previous section using the query
functions available in the sweep-line library. The main difference is that analysis is
now done on-the-fly during the state space exploration. This is necessary since state
information is deleted by the sweep-line method. The sweep-line method can be used
to reason about home and liveness properties because states in a strongly connected
component of the state space will have the same progress value and hence will be
present in memory simultaneously before being deleted.

7 Conclusions and Future Work

We have presented the development of a CPN model of the DJFHQ planning process.
The model gives a formal and graphical representation of the process. It captures
activities in the process, and how staff and information flow between these activities.
An important feature of the CPN model is the uniform modelling of activities which
eased the development of the CPN model based on the JMAP and SOP documents.
The CPN model is useful for training new staff officers, assisting the HQ in modify-
ing existing planning documentation based on the JMAP, and providing a framework
to test variations of the JMAP and other business processes.

Another contribution of this paper is the analysis of the DJFHQ planning process
using simulation and state spaces. The simulation results allowed recommendations to
be given to the DJFHQ to facilitate concurrent activities in the process, and hence an
earlier completed plan. The state space analysis allowed the soundness of the plan-
ning process to be established together with additional quantitative properties. To
alleviate the state explosion problem, we have reported on initial experiments with
the application of the sweep-line method in the workflow domain. These experimen-
tal results are very encouraging for the use of the sweep-line method in this domain,
where models typically have an inherited presence of progress that can be exploited.

15

The planned direction of this work is to extend the CPN model to represent the ex-
ternal JMAP processes and other related processes at DJFHQ that interact with the
JMAP. Also, it would be of interest to refine the CPN model by replacing the deter-
ministic duration of activities with time intervals. The work on Interval Timed Col-
oured Petri nets and their state space analysis [2, 20] could serve as a starting point
for this work. Recently, the JMAP process as presented in this paper has been mod-
eled and analysed usingn stochastic Petri nets [6]. Finally, we are planning activities
where the CPN model is applied at DJFHQ for training staff, and as a tool for moni-
toring the process during a planning exercise. In such a setting, the progress of the
planning process can be monitored at the level of the CPN model, and state space
analysis using the current state as initial state can be used to make predications, e.g.,
about worst and best case termination time given the current state of the planning
process.

References

1. Australian Defence Force Publications (ADFP). Joint Military Appreciation
Process. Operations Series 9, Joint Planning, Chapter 8, 1999.

2. G. Bertholot. Occurrence Graphs for Interval Timed Coloured Petri Nets. In
Proc. Of ICATPN’94, volume 815 of Lecture Notes in Computer Science, pp.
79-98. Springer-Verlag, 1994.

3. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for
State Space Exploration. In Proceedings of TACAS'2001, volume 2031 of Lec-
ture Notes in Computer Science, pp. 450-464. Springer Verlag, 2001.

4. Deployable Joint Force Headquarters (DJFHQ). SOP 310 — The Operational
Planning Process, 2001.

5. Design/CPN Online. http://www.daimi.au.dk/designCPN/.

6. J. Freiheit and Jonathan Billington. Using TimeNET to Evaluate Operational
Planning Processes. In Proceedings of BPM 2004, volume 3080 of Lecture Notes
in Computer Science, pp.17-32, Springer-Verlag, 2004.

7. G. E. Gallasch, L. M. Kristensen, and T. Mailund. The Sweep/CPN Library.
Available via http://www.daimi.au.dk/designCPN/libs/sweepcpn/

8. S. Gordon, L.M. Kristensen, and J. Billington. Verification of a Revised WAP
Wireless Transaction Protocol. In Proceedings of Petri Nets 2002, volume 2360
of Lecture Notes in Computer Science, pp.182-202. Springer-Verlag, 2002.

9. R. Harper. Introduction to Standard ML. Technical Report ECS-LFCS-86-14,
University of Edinburgh, Department of Computer Science, 1986.

10. K. Jensen. Coloured Petri Nets: Volume 1: Basic Concepts Monographs in
Theoretical Computer Science, Spinger-Verlag, 1997.

11. K. Jensen. Coloured Petri Nets: Volume 2: Analysis Methods Monographs in
Theoretical Computer Science, Spinger-Verlag, 1994.

12. K. Jensen. Coloured Petri Nets: Volume 3: Practical Use. Monographs in
Theoretical Computer Science, Spinger-Verlag, 1997.

13. L. M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98-132, 1998.

16

http://www.daimi.au.dk/designCPN/
http://www.daimi.au.dk/designCPN/libs/sweepcpn/

14.

15.

16.

17.

18.

19.

20.

L. M. Kristensen, B. Mitchell, L. Zhang, and J. Billington. Modelling and Initial
Analysis of Operational Planning Processes using Coloured Petri nets. In pro-
ceedings of Workshop on Formal Methods Applied to Defence Systems, volume
12 in Conferences in Research and Practice in Information Technology, pp. 105-
114. Australian Computer Society, 2002.

S. Lumsden, R. Smallwood, B. Mitchell, and L. Zhang. Modelling Operational
Level Planning Processes with Coloured Petri Nets. 7™ International Command
and Control Research and Technology Symposium. 2002.

T. Murata. Petri Nets: Properties, Analysis, and Application. In Proceedings of
the IEEE, Vol. 77. No. 4, pp. 541-580. IEEE Computer Society, 1989.

A. Valmari. The State Explosion Problem. Lectures on Petri Nets I: Basic Mod-
els. Volume 1491 of Lecture Notes in Computer Science, pp. 429-528. Springer-
Verlag, 1998.

W. van der Aalst and K. van Hee. Workflow Management — Models, Methods
and Systems. The MIT Press, 2002.

W. van der Aalst. Advanced Tutorial on Workflow Management. 23" Interna-
tional Conference on Application and Theory of Petri Nets, Adelaide, June 2002.
W. van der Aalst. Interval Timed Coloured Petri Nets and Their Analysis. In
Proc. Of ICATPN’93, volume 691 of Lecture Notes in Computer Science, pp.
453-472. Springer-Verlag, 1993.

17

18

Experimenting with Progress Mappings for the Sweep-Line
Analysis of the Internet Open Trading Protocol*

Guy Edward Gallasch!, Chun Ouyang', Jonathan Billington', and
Lars Michael Kristensen?**

! Computer Systems Engineering Centre
School of Electrical and Information Engineering
University of South Australia
Mawson Lakes Campus, SA 5095, AUSTRALIA
Email: guy.gallasch@postgrads.unisa.edu.au, chun.ouyangQunisa.edu.au,
jonathan.billingtonQunisa.edu.au
2 Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, DENMARK
Email: kris@daimi.au.dk

Abstract. The sweep-line occurrence graph method exploits a behavioural notion of progress
found in many systems. This allows states to be deleted that will not be revisited during oc-
currence graph generation, allowing fewer states to be stored in main memory for the necessary
comparisons, thus providing savings in both memory and time. Properties of the system (such
as deadlocks) can then be verified on-the-fly. This method is relatively new and needs to be
evaluated on a range of examples. One class of protocols that seems to be suited to sweep-line
analysis is transaction protocols. This is because transaction protocols often have an occurrence
graph that starts with a request and finishes with the request being satisfied (or not). Thus
there is a natural progression of states as the transaction proceeds. This paper provides insight
into how to design a progress mapping, central to the use of the sweep-line method, for a trans-
action protocol known as the Internet Open Trading Protocol (IOTP). IOTP is quite complex
and is modelled using hierarchical Coloured Petri Nets (CPNs). The sweep-line method is par-
ticularised for CPNs and three progress mappings are developed for IOTP. The results show
that naive choices for the progress mapping leads to unnecessary regeneration of states, due to
the mapping not being monotonic. Refinement of the mapping leads to a monotonic progress
measure, which allows results to be obtained for IOTP that were not previously possible.

Keywords: State space methods, Occurrence graph methods, Sweep-line, State explosion prob-
lem, Internet Open Trading Protocol, Coloured Petri Nets, Verification.

1 Introduction

State space (occurrence graph) methods encompass the paradigm of analysis techniques that
involve generation of all or part of the reachable state space (occurrence graph) of a system in
order to answer verification questions. This paradigm is one of the main analysis methods for
Coloured Petri nets (CPNs) [19,20] and has been used successfully to analyse and verify many
systems (for examples see [1,21]). These methods have an advantage over theorem proving
techniques [35] in that the mathematics can be neatly contained in automated software tools
such as Design/CPN [5, 8].

One disadvantage that has been the subject of much research is that of the state explosion
problem. Even for relatively simple systems, the number of reachable states can be very large.
The unfortunate result of state explosion is that in many cases, the entire occurrence graph
is too large to fit into computer memory. This has led to a number of so-called state space
reduction techniques to alleviate the problem.

A good survey of reduction techniques is provided in [35]. These techniques may be clas-
sified into three main categories. The first are those that represent the occurrence graph

* Supported by an Australian Research Council (ARC) Discovery Grant (DP0210524).
** Supported by the Danish Natural Science Research Council

19

in a condensed or compact form, such as symmetry reduction [7,9, 18]. The second class
explores only a subset of the reachable states. Partial order methods [31,34,38] such as stub-
born sets fall into this category. The third class involves deleting or throwing away states
or state information during exploration and include bit-state hashing [15,16,39], state space
caching [11,13,14] and the pseudo-root technique [30].

The sweep-line exploration method belongs to the third category. It guarantees full cov-
erage of the occurrence graph but differs from the state space caching and pseudo-root tech-
niques in the way that states are selected for deletion. By exploiting progress in the model
being analysed, a progress mapping can be defined which identifies states that are guaranteed
not to be reached again [6] or are unlikely to be reached again [24].

The Internet Open Trading Protocol (IOTP) [3,4] is an electronic commerce protocol
developed by the Internet Engineering Task Force (IETF). The core of IOTP is a set of
electronic transactions that reflect common trading activities, such as purchasing goods or
depositing funds, over the Internet. The specification of IOTP, published as Request For
Comments (RFC) 2801 [3], was the largest RFC developed by IETF to that time, spanning
290 pages. The RFC however contains an informal narrative description of IOTP, and so far
no complete implementation of IOTP yet exists [17,32].

A hierarchical CPN model of IOTP was created [29] and further improved [27] to cover
most protocol features in RFC 2801. A set of desired properties of IOTP (e.g., correct termi-
nation) were investigated in [28] and revealed errors in the design of IOTP. Changes to RFC
2801 were suggested and a revised IOTP CPN model [26] developed. This paper has arisen
from attempts to analyse the revised IOTP CPN, which presents a practical challenge due to
the large number of reachable states for increasing parameter values.

The purpose of this paper is to apply the sweep-line method to the revised IOTP CPN
in order to obtain results for larger parameter values than is possible using conventional
analysis [26] and to provide more experience in applying the sweep-line method to practical
examples. Another objective is to provide a comparison between the effectiveness of sweep-
line analysis when using a progress mapping based on general protocol properties and one
based on IOTP-specific properties when analysing the revised IOTP CPN.

The rest of this paper is organised as follows. Section 2 provides a description of the sweep-
line method. Sections 3 and 4 introduce the Internet Open Trading Protocol and its CPN
model, respectively. The derivation of three different progress mappings and some insights into
the process for doing this are presented in Section 5 and the experimental results obtained
by using them are presented in Section 6. Finally, some concluding remarks and future work
are presented in Section 7. We assume that the reader is familiar with the basic concepts of
CPNs and reachability analysis.

2 The Sweep-line Method

We present the sweep-line method in the context of Coloured Petri nets [19,22] as we are
using the sweep-line method to analyse a CPN model. The method is, however, not specific
to CPNs, but applicable to a wide range of modelling languages and formalisms.

The sweep-line method is based on the notion of progress within the system being mod-
elled. Systems exhibit progress in different ways. One example is found in transaction protocols
such as IOTP, where interacting protocol entities move through a series of interactions (called
exchanges in IOTP) towards a final completed state. IOTP is described in more detail in the
next section. Communication protocols in general exhibit progress through sequence numbers
and retransmission counters. The key concept behind the sweep-line method is that if we can

20

quantify the progress of a system in each state, then we can identify the states with a lower
progress value that cannot be reached from states with a higher progress value. When states
are no longer reachable we do not need to keep them in memory for comparison with each
newly generated state.

The notion of progress is captured formally in a progress measure [6,24]. Importantly
a progress measure specifies a progress mapping 1 from states to progress values that are
ordered. In this paper we shall use the natural numbers N as the set of progress values
and their usual order relations (e.g. <,<,>). We firstly introduce the concept of a CPN
instrumented with a progress mapping .

Definition 1. A CP-net with a progress mapping is a tuple CPNy, = (CPN,v) where CPN
is a Coloured Petri net (defined in [19]) and 1) is a progress mapping given by 9 : Ml — N
where M is the set of possible markings for CPN.

From [19], let [Mj) be the set of reachable markings of CPN and be € BE be a binding el-
ement enabled in marking M. If, for a given progress mapping ¢, VM, M’ € [My), M[be)M' =
(M) < (M') then the mapping 1 is monotonic with respect to the reachability relation
and implies that if (M) > p(M') for M, M' € [My) then M' & [M).

We may consider that the mapping % induces an ordered partition on the set of reachable
markings. Once all successors of all markings with a particular (minimum) progress value
have been generated, then, for a monotonic progress mapping, we can delete the markings
(that are not of interest) with this progress value, freeing up memory, and reducing the time
spent comparing new markings with those already generated. The overhead is calculating the
progress value for each state, and ensuring that markings are processed in a least-progress-first
order.

The monotonicity of the progress mapping can be checked during occurrence graph (OG)
generation as all arcs in the OG are traversed by the sweep-line method. If, however,) (M') <
(M) for some M[be)M' then we have a regress edge:

Definition 2. Let OGcpn be the occurrence graph of CPN in CPNy, as given in Defini-
tion 1. An occurrence of binding element be € BE of CPN in marking M € [My), leading to
marking M' in which (M') < (M) is called a regress edge with respect to ¢ of OGepn.

Regress edges may lead to new markings or to markings that have already been explored
but subsequently deleted from memory. The sweep-line algorithm has no way of distinguishing
between these two types of markings and so must treat all destinations of regress edges as if
they have not yet been explored. Exploration does not continue along regress edges, however
the destinations of regress edges are marked as roots (initial states) for a subsequent sweep of
the OG. To guarantee termination of the algorithm these states are also marked as persistent.
Persistent states cannot be deleted and so each state can be marked at most once as a root
state for a subsequent sweep.

An algorithm for the sweep-line method that takes into account non-monotonic progress
mappings was presented in [24]. We present a modified version in Fig. 1 for CPN,. Let
there be a set ROOTS which contains the starting markings of a sweep; a set PERSISTENT
which contains markings that cannot be deleted; a set UNEXPLORED which contains all the
markings generated so far within a sweep that have not had their successors explored; a set
PROCESSED which stores markings which have had their successors generated in a sweep; a
set SUCCESSORS which holds the successors of a given marking; and a set DM which stores
all dead markings. The algorithm selects and removes a marking from UNEXPLORED that has
the minimum progress value among all states in UNEXPLORED (lines 12 and 13), adds it to

21

RooTs + {Mo}

PERSISTENT < ()

UNEXPLORED < ()

PROCESSED < 0

SUCCESSORS « ()

DM « 0

while RooTs # () do
UNEXPLORED < RoOTS

9: RooTs « 0

10: while UNEXPLORED # () do

11: (* Generate the successors of a node in UNEXPLORED that has the lowest progress value *)
12: Select M € UNEXPLORED such that VM’ € UNEXPLORED, (M) < ¢(M")

13: UNEXPLORED ¢— UNEXPLORED \ {M}

14: PROCESSED - PROCESSED U {M }

15: SUCCESSORS < {M'|M[be)M'}

16: if Successors = () then

17: DM « DM U {M}

18: else

19: ROOTS < RooTs U {M' € SUCCESSORS | ¢)(M') < ¢)(M) and M' ¢ PERSISTENT}

20: PERSISTENT < PERSISTENT U {M' € SUCCESSORS |)(M") < (M)}

21: UNEXPLORED <~ UNEXPLORED U {M' € SUCCESSORS | ¢)(M') > (M) and M’ € PROCESSED}
22: end if

23: (* Delete states that have a progress value less than those in UNEXPLORED *)

24: PROCESSED « PROCESSED \ {s € PROCESSED|V M’ € UNEXPLORED, 1(s) < ¢(M')}

25: end while
26: end while

Fig. 1. The Generalised Sweep-line Algorithm, based on the algorithm from [24].

the set of processed markings (line 14) and generates all successors of this marking (line 15).
If there is no successor, the marking is added to the set of dead markings (line 17). If any
regress edges are detected, their destination markings (if not already marked as persistent)
are added to ROOTS as initial states for the next sweep (line 19) and marked as persistent
(line 20). Destinations of non-regress edges that have not already been processed are added
to UNEXPLORED (line 21). Deletion of states occurs on line 24.

The example shown in Fig. 2 (from [25]) illustrates the behaviour of the sweep-line method.
This figure shows three snapshots of the OG during OG exploration. Arc labels have been
omitted to simplify the diagram. The states are arranged from left to right in ascending
progress order. Nodes that have been explored and deleted are represented as empty circles.
Nodes currently in memory (but that have not yet been explored) are solid black circles. Nodes
yet to be discovered are grey circles. In Fig. 2 (a) the states My and M; have been explored and

! "
| My Mo Mg |
[Sy @ S w; -@ o< —@

DoMn Mg Mol Mg My 1 My
"\ A A |
Mg . M Mg .-~ A Ms Mo .~ “alfs
QO | o %9 ‘ N QO :Q‘
/ o / N Mg A v ~a) Mg K . T Fay Mg
/ \ / \ ! , \
Lo Ms Me/ Lo Mg Mﬁ/ Lo Ms Me/
) P L o L o
. , , ‘
o N et i 5 Yo
() () :
My . My // P My i
S Mz /’/ M~ T Mg
My My My |
o o o

Fig. 2. Snapshots of sweep-line occurrence graph exploration.

22

subsequently deleted because they have a smaller progress value than the minimal progress
value among the unprocessed states My, M3 and My4. The conceptual sweep-line is shown as
a vertical dashed line, immediately to the left of the unprocessed states.

Exploring in least-progress-first order means that either My or M3 will be explored next.
When both have been explored, the sweep-line moves to the right and My and M3 are deleted,
giving the situation shown in Fig. 2 (b). My, M5 and Mg will be explored and eventually the
situation shown in Fig. 2 (c) will be obtained. When Mg is explored two regress edges are
identified, one going to the previously explored state Mg and the other to the unexplored
state My. Note that the algorithm does not know that Mg was previously explored, as it was
deleted. The algorithm marks both Mg and Mg as persistent and flags them as roots for a
subsequent sweep. In the subsequent sweep, M, is discovered, along with the re-exploration
of My, M; and Mg. Because Mg and Mg are persistent, the regress edges to Mg and My
discovered in the re-exploration of Mg do not induce a further sweep. The correctness of the
sweep-line algorithm (both termination and full OG coverage) was proved in [24].

One drawback of the sweep-line method is that users need to define and supply their own
progress mapping. Steps have been taken towards automatic generation of 1 for low-level
Petri nets [33] and compositional systems [23].

3 The Internet Open Trading Protocol (IOTP)

IOTP [3] focuses on consumer-to-business e-commerce applications. It defines five trading
roles to identify the different roles that organisations can assume while trading. These are
Consumer, Merchant, Payment Handler (a bank), Delivery Handler (a courier firm) and
Merchant Customer Care Provider. The core of IOTP is an Authentication transaction and
five payment-related transactions named Purchase, Deposit, Withdrawal, Refund and Value
Exchange. Each transaction comprises a sequence of IOTP message exchanges between trading
roles, where each IOTP message comprises a set of pre-defined trading blocks. IOTP [3]
currently uses HTTP [10] as its transport mechanism.

3.1 Document Exchanges and Transactions

IOTP defines a set of document exchanges as building blocks for creating transactions. These
are: Authentication, Brand Dependent Offer, Brand Independent Offer, Payment, Delivery,
and Payment-and-Delivery. An Authentication transaction consists of just an Authentication
(document) exchange. A Purchase transaction comprises an optional Authentication, an Of-
fer (either a Brand Dependent Offer or a Brand Independent Offer), and then, a Payment
exchange, a Payment followed by a Delivery exchange, or a Payment-and-Delivery exchange.
A Deposit, Withdrawal, or Refund transaction starts with an optional Authentication, an Of-
fer, and a Payment exchange. Finally, a Value Exchange transaction begins with an optional
Authentication followed by an Offer and two Payment exchanges in sequence.

Below, we consider an example of a Purchase transaction comprised of an Authentication,
a Brand Dependent Offer, a Payment and a Delivery exchange. Figure 3 shows a possible
sequence of messages exchanged between the four trading roles involved in the transaction.

In the beginning the Consumer decides to buy goods and so sends a Purchase Request
(event 1) to the Merchant. This event initiates a Purchase transaction, however it is not part
of Baseline IOTP [3] and is handled by HTTP [10].

Upon receiving the Purchase Request, the Merchant starts an Authentication document
exchange (events 2-4) to verify the bona fides of the Consumer. In IOTP’s terminology, the

23

Document Event Consumer Merchant

Exchange No.
N S, Purchase Request _ _ _ _)

Authentication Request

2
N Authentication Response
Authentication {3 2 = = P q

Authentication Status &
Trading Protocol Options (TPO)

Brand 4
Dependent {5 TPO Selection

Offer 6 Offer Response

Payment Handler
Payment Request

7
Payment Protocol Data
Payment ‘{8 o

9 Payment Response

Delivery Handler

10 Delivery Request
Delivay{ll Delivery Response
—— I0TP message exchanges 4= =2 Outside the scope of Baseline IOTP

Fig. 3. A possible sequence of message exchanges in a Purchase transaction.

Merchant acts as the Authenticator and the Consumer the Authenticatee. At first, an Authen-
tication Request is issued by the Merchant (event 2), specifying the authentication algorithm
to be used. As a result, the Consumer replies with an Authentication Response containing
the authentication data obtained using the above algorithm (event 3). After verifying the
Consumer’s response, the Merchant generates an Authentication Status indicating that the
authentication is successful (part of event 4).

Once the authentication completes, the Merchant continues to a Brand Dependent Offer
document exchange in our example (events 4-6) by providing the Consumer a list of Trading
Protocol Options (TPO). This includes the available payment methods and associated pay-
ment protocols. The message combining the TPO and the above Authentication Status is then
sent to the Consumer (event 4). The Consumer chooses one of the options, and sends it back
as a TPO Selection (event 5). The Merchant uses the selection to create and send back an
Offer Response (event 6), which contains details of the goods to be purchased together with
payment and delivery instructions.

Next, a Payment document exchange starts between the Consumer and the Payment Han-
dler (events 7-9). After checking the Offer Response for purchase details, the Consumer sends
the Payment Handler a Payment Request (event 7). The Payment Handler checks the Pay-
ment Request, and if valid, the payment is conducted using Payment Protocol Data exchanges
(event 8) as determined by the encapsulated payment protocol (e.g., Secure Electronic Trans-
action). After the payment protocol data exchange has finished, the Payment Handler sends
a Payment Response (event 9) containing the payment result (e.g., receipt).

Finally, a Delivery document exchange is carried out between the Consumer and the De-
livery Handler (events 10-11). After checking the Payment Response, the Consumer sends the
Delivery Handler a Delivery Request (event 10). The Delivery Handler schedules the delivery
and sends the Consumer a Delivery Response (event 11) containing details of the delivery, and
possibly the actual delivery if the goods are electronic (e.g., an e-journal).

It should be mentioned that in a Brand Independent Offer the TPO Selection in event 5
does not occur. A Brand Dependent Offer occurs when the Merchant offers some additional
benefit (e.g., price discount) in the Offer Response that depends on the specific payment
brand (e.g., VISA or MasterCard) chosen in the Consumer’s TPO Selection. In the Brand
Independent Offer, the Offer Response is independent of the TPO and so the TPO Selection

24

(event 5) does not happen. Also, IOTP defines a combined TPO and Offer Response message
(combining events 4 and 6) for a Brand Independent Offer.

3.2 Transaction Cancellation and Error Handling

A Cancel message is used for transaction cancellation and an Error message for reporting errors
and instigating retransmissions. A transaction may be cancelled by any trading role engaged
in that transaction. For example, in the Purchase transaction shown in Fig. 3, the Merchant
would cancel the transaction if the Consumer’s Authentication Response failed. Error handling
is concerned with how trading roles handle technical errors and exceptions that occur during
a transaction. For example, in Fig. 3, the Merchant may re-send the TPO upon reception of an
Error message when expecting the Consumer’s TPO Selection. Also, IOTP defines a message
identifier to uniquely identify IOTP messages at each local trading role. Only duplicates have
the same message identifier.

4 A Revised IOTP CPN Model

RFC 2801 [3] contains an informal narrative description of IOTP and suffers from ambiguities
and incompleteness. We have created a CPN model of IOTP for six Authentication and
Payment-related transactions [29] and further improved it to include procedures for error
handling and arbitrary cancellation [27]. Analysis of the IOTP CPN model [28] revealed
two main errors in the current design of IOTP, where the Payment-related transaction fails
to terminate correctly. This motivated the development of a revised IOTP specification to
eliminate the identified errors. To see if the revised protocol was correct, we revised the
previous IOTP CPN [27]. In this section, we describe the revised IOTP CPN model only to
the level of detail necessary to understand the derivation of the progress mappings in Sect. 5.
A presentation of the complete CPN model can be found in [26].

4.1 Net Structure

Figure 4 shows the hierarchy page for the revised IOTP CPN. There are 31 pages organised
into four hierarchical levels, giving a logical structure that can be validated against RFC 2801.

The first (top) level has one page named IOTP_TopLevel. The second level comprises four
pages: Consumer, Merchant, PHandler and DHandler, corresponding to four trading roles'. We
refer to these pages as trading role pages. Each trading role page has a set of subpages speci-
fying the possible Authentication and payment-related transactions for that trading role. All
these subpages, which we call transaction pages, constitute the third level of the model. The
initial letter of a trading role is used as a suffix of the name of transaction pages modelled for
that trading role. For example, the page Consumer has four subpages modelling six transac-
tions for the Consumer. The three transactions Deposit, Withdrawal and Refund use the same
procedure and therefore are modelled on one page named Deposit_C/Withdrawal_C/Refund_C.
Each transaction page is further decomposed into a set of subpages modelling the document
exchanges that are used to construct the transaction as well as error handling and cancellation
procedures. All these subpages, which we call exchange level pages, constitute the fourth level
of the model. For example, the page Purchase_C has six subpages modelling the six document
exchanges used to implement the Purchase transaction for the Consumer and two others for

! The Merchant Customer Care Provider, currently not used in any transaction, is not modelled.

25

Auth Auth

Consumer,

IOTP_TopLevel#l

Merchant

(Consumer#3)

(Merchant#4)

ValExTr_C#10

Auth

Value_|

BDOfr

BDOfr

Auth ¢~ =
»_Authenticatee#17)

(Authenticator#18)1&

BIOfr

BIOfr

2201 o((BraDepOffer_C#19)

(Brdbepotter_w#20)22

Pay

Pay

fi
2 »(Brdindoffer_C#21)

(Brdindorfer_ M2z)22/

L 2™ payment_C#23)

Auth /]

PHandler#5

Purchase

DHandler#6

Value_Exchange’

ValExTr_P#15

Pay

Pay

(Payment _proa JeLE

AuthTr_C#7 AuthTr_M#11
Purchase Purchase
Purchase_C#8 Purchase Purchase_P#13 H (Purchase_D#lB }
D T o Deposit Deposit Pnghas‘e*MN/Il Deposit D P
" eposit Withdrawal Withdrawal . eposit | Withdrawal . eposit |
Withdrawal_C/ PRLLILLCUEEN Withdrawal_M/ Withdrawal_P/
Refund_C#9 Refund | Re’“": Refund_M/ Refund Refund_P#14
Value_Exchange| valExTr_M#12

Deliv

PayDL - - PayDI
ayDl ='\ PayDelivery_C#25] [PayDellveryiP#ZG ,‘4 oY
Deliv »(_Delivery ci27) (oelivery b2)
Cancel _Cancel Cancel Cance‘{Cancellationic#ZQ) (Cancellati0n7NC#30)‘Cam:EI Cancel Cancel Cancel Cancel Cancel N
Grerl ErrHd| ErrHd| ErrHdl (ErrHandIing NC#32\ ErrHdl ErrHdl ErrHdl ErrHd| ErrHd| ErrHd| J
= J"

»_ErrHandling_C#31)

Fig. 4. The Hierarchy page.

error handling and cancellation. Since a document exchange involves two trading roles, we
have modelled each exchange as a pair of pages - one for each of the trading roles involved
in the document exchange. For example, the pages Authenticatee and Authenticator in Fig. 4
represent an Authentication exchange where the Consumer is authenticated by the Merchant.

4.2 Global Declarations

Figure 5 shows part of the global declarations that define the colour sets and variables for
IOTP messages and trading role states. The declarations not shown in Fig. 5 define functions
used in the model.

IOTP messages are modelled by the colour set lotpMsg (line 15) as a list of trading blocks,
as derived from their XML definition in RFC 2801. The colour set TradingBlk (lines 8-14) is
defined as the union of different kinds of trading blocks of IOTP messages. A trading block
describes several attributes, some of which are specified by the first four colour sets (lines 1-
5). The colour set TwoErrAttrsOfErrComp (line 6) is defined as a product of the two colour
sets Severity (line 4) and ErrorCode (line 5), and models an Error Block containing these two
attributes. The colour set Msgld (line 17), defined as integers, models the message identifier.
The colour set Message (line 18), defined as the product of lotpMsg and Msgld, specifies that
each IOTP message has a message identifier. Since IOTP currently operates over HT'TP, we
consider a reliable transport medium with no loss, duplication or re-ordering. Because of this,
a list of Messages is defined by MsgQueue (line 20) for use when modelling a First-In-First-
Out queue of messages between trading roles. The colour set TradingRole (line 21) enumerates
the four trading roles. The colour set TRxXTRxMQ (line 22) is defined as a product of a sender
TradingRole, a receiver TradingRole and the MsgQueue between the two trading roles.

Trading role states are modelled by the colour set State (line 31), which is the product of
the following five colour sets. InternalState (lines 25-26) specifies the eight internal states of a
trading role in a document exchange. Exchange (line 27) represents the six document exchanges
and a value NoExch indicating no document exchange occurs. R_Counter (line 29) models the
message retransmission counter used in the error handling procedure, which increments its

26

(* Selected Attributes)
1 color lotpTransType = with Authentication | Purchase | Deposit | Withdrawal | Refund |
2 ValueExchange;
3 color DelivExch = with True | False;
4 color Severity = with TransientError | HardError;
5 color ErrorCode = with MsgErr | MsgBeingProc;
6 color TwoErrAttrsOfErrComp = product Severity * ErrorCode;
7 var trtype: lotpTransType; var dlv: DelivExch;

(* Trading Blocks and IOTP Messages)
8 color TradingBlk = union TransRefBlk:lotpTransType +

9 AuthReqBlk + AuthRespBlk + AuthStatusBlk +
10 TpoBlk + TpoSelectionBlk + OfferRespBlk:DelivExch +
11 PayReqBlk + PayExchBlk + PayRespBlk +
12 DeliveryReqBlk + DeliveryRespBlk +
13 ErrorBlk: TwoErrAttrsOfErrComp +
14 CancelBlk;

15 color lotpMsg = list TradingBlk;
16 var m, rm, sm: lotpMsg;

(% IOTP Message with Message ldentifier *)
17 color Msgld = int;
18 color Message = product lotpMsg % Msgld;
19 var id, rid, sid: Msgld;

(* Message Queue between Trading Roles)
20 color MsgQueue = list Message;
21 color TradingRole = with Consumer | Merchant | PHandler | DHandler;
22 color TRXTRXMQ = product TradingRole * TradingRole * MsgQueue;
23 var role: TradingRole;
24 var q, rq, sq: MsgQueue;

(* Trading Role State and Message Buffer x)
25 color InternalState = with READY | COMPLETED | CANCELLED |

26 LISTEN | WAIT | HOLD | HOLD_WAIT | FINISHED;
27 color Exchange = with Auth | BDOfr | BIOfr | Pay | PayDlv | Deliv | NoExch;

28 val RCmax = 1; (* Maximum number of message Re-transmissions)

29 color R_Counter = int with 1..RCmax; (* Message Re-transmission Counter x)

30 color MIdxRC = product Msgld * R_Counter;

31 color State = product InternalState * lotpTransType x Exchange * MIdxRC * Msgld;
32 color StaxBfr = product State * lotpMsg;

33 var s: InternalState; var exch: Exchange; var rc: R_Counter;

Fig. 5. Definitions of colour sets and variables for the revised IOTP CPN model.

value by one upon each message retransmission until it reaches the maximum value RCmax
(line 28). MIdxRC (line 30) records the Msgld of the previously sent message along with its
R_Counter. The last colour set in State represents the Msgld of the previously received message,
used to check for duplicates in the error handling procedure. The colour set StaxBfr (line 32)
combines the State of a trading role with the lotpMsg residing in the message retransmission
buffer for that trading role.

4.3 The Top Level Page

Figure 6 shows the IOTP_TopLevel page that provides an abstract view of IOTP. The four
substitution transitions, Consumer, Merchant, Payment Handler and Delivery Handler, represent
IOTP’s procedures for the corresponding trading roles. The place Transport, typed by colour
set TRXTRxMQ, models the transport medium over which the trading roles communicate.

27

Consumer Merchant Payment Delivery
Handler Handler

I I

Transport

TRXTRXMQ

Fig. 6. The IOTP_TopLevel page.
4.4 Trading Role Pages

Both Consumer and Merchant are involved in all six transactions. Figure 7 depicts the two
corresponding pages Consumer and Merchant, which we use as representative examples of
the four trading role pages in the CPN model. Each transaction is abstractly represented
by a substitution transition which has the same name as the transaction. Each place has a
name starting with C or M, is typed by the product set StaxBfr, and models the state of the
Consumer or Merchant with its message retransmission buffer in one of the six transactions.
For brevity, we refer to these places as C_places or M_places. The exception is the Transport
place on each page in Fig. 7 which has been described above.

InitialState InitialState

(trtype, Authentication) @ Authentication @ (trtype, Authentication)
StaxBfr StaxBfr
InitialState InitialState
(trtype, Purchase) % Purchase @ (trtype, Purchase)
StaxBfr StaxBfr
InitialState InitialState
(trtype, Deposit) Deposit Deposit (trtype, Deposit)
InitiateTr_C StaxBfr StaxBir InitiateTr_M
InitialState InitialState
(trtype, Withdrawal) W Withdrawal Withdrawal W (trtype, Withdrawal)
StaxBfr StaxBfr
InitialState InitialState
(trtype, Refund) @ Refund @ (trtype, Refund)
StaxBfr StaxBfr
InitialState InitialState
(trtype,ValueExchange) w Value_Exchange Value_Exchange @ (trtype, ValueExchange)
StaxBfr StaxBfr trtype
110 110
_ (Merchant, Consumer, (TransRefBlk(trtype)::m, id)::q) E] T E]
N @ @ Transaction @
(Merchant, Consumer, (m, id)::q)
TRXTRXMQ TRXTRXMQ lotpTransType
(a) (b)

Fig. 7. Two trading role pages: (a) Consumer and (b) Merchant.

In Fig. 7 (b), the page Merchant has another place called Initialise (bottom right), which
stores the transaction to be initiated by the Merchant. It is typed by the colour set lotp-
TransType and has an initial marking given by a constant Transaction that can be set to
any of the six transactions. Place Initialise has an output arc to the only ordinary transition
called InitiateTr_M. The arc is inscribed by variable trtype representing any token available in
place Initialise. The arc from transition InitiateTr_M to each M_place is inscribed by a function
named InitialState (see below), modelling how the initial state of the Merchant is determined
upon a certain transaction type.

Figure 8 defines the function Initialise. It has two parameters: trtype and trtypevalue,
both of type lotpTransType. If the two parameters have the same value, the function returns
1'((READY,trtype,NoExch,(0,0),0),[]) (of StaxBfr), representing the initial state of a trading
role. If not, no token value is returned (defined as empty). For example, in Fig. 7 (b), if

N
(o]

Transaction has the value Purchase, upon occurrence of InitiateTr_M, a token that indicates
the Merchant is ready to carry out a Purchase transaction will be added to place M_Purchase.

1 fun InitialState(trtype, trtypevalue:lotp TransType): StaxBfr =

2 = if trtype=trtypevalue
3 then 1‘((READY, trtype, NoExch, (0, 0), 0), [])
4 else empty

Fig. 8. Function used to determine the initial state of a trading role.

The page Consumer in Fig. 7 (a) has only one ordinary transition, InitiateTr_C, used to
initiate an appropriate transaction for the Consumer on receiving the first IOTP message from
the Merchant. It has both input and output arcs associated with place Transport. The input arc
has an inscription specifying the first IOTP message (represented by (TransRefBlk(trtype)::m,
id)) from the Merchant. The output arc indicates that processing of a Transaction Reference
Block, which conveys transaction type information (TransRefBlk(trtype)) in an IOTP message,
is complete, and thus the block is removed from the input message buffer. Similarly, the token
returned by function InitialState is added to one of the six C_places on occurrence of transition
Initiate Tr_C, modelling that the corresponding transaction has been initiated at the Consumer.

5 Sweep-line Exploration of IOTP

Analysis of the revised IOTP focuses on the six Authentication and Payment-related trans-
actions. For each transaction, there are also different cases we can analyse by changing the
maximum value of the message retransmission counter (RCmax, line 28 of Fig. 5) for each of
the four trading roles. Once the number of retransmissions reaches RC'maz, the transaction
will be cancelled. However, RFC 2801 does not define a value for RCmax. We therefore have
modelled RC'max as an unbounded parameter, resulting in an infinite number of possible con-
figurations. In [26] the revised IOTP CPN was analysed for 0 < RCmaz < 3. When RCmazx
was increased to 4, the OG of both the Purchase and Value Exchange transactions became
too large to manage with the available computer resources at that time. It is our intention to
alleviate the problems of state explosion for the revised IOTP with RCmax greater than 3
by applying the sweep-line method.

Two approaches were taken to define a progress mapping for the application of the sweep-
line method to the revised IOTP CPN. The first was to look only at features common to many
protocols, such as sequence numbers and retransmission counters. The second was to develop a
progress mapping based on specific features of IOTP and hence take advantage of behavioural
properties of the IOTP CPN. These progress mappings are presented in Sections 5.1 and 5.2
respectively. A third progress mapping, combining the generic and specific progress measures,
is presented in Section 5.3.

5.1 Generic Progress Mapping

Sequence numbers and retransmission counters are features common to many protocols. It
would be nice if a generic progress mapping, giving reasonable performance, could be derived
from these common features.

Each trading role in IOTP maintains its own retransmission counter and sequence number
(the message identifer) for the message it most recently transmitted. The message identifier is
used to differentiate messages when interacting with other trading roles and retransmissions

29

are used to recover from (processing delay and transient) errors. As an example, let us consider
the Consumer trading role. In a Purchase transaction, the Consumer trading role keeps this
information in the token on place C_Purchase on the Consumer page. This token belongs to the
StaxBfr colour set (see Fig. 5). To obtain the message identifer and retransmission counter of
the Consumer we can define functions GetMessIDconsumer and GetRCoonsumer t0 €xtract them
from the token on C_Purchase in a given marking M € [Mj) of the IOTP CPN. Analogous
functions can be defined for the Merchant, Payment Handler and Delivery Handler.

Let us define TR = {Consumer, Merchant, Payment Handler, Delivery Handler} to be
the set of four trading roles. One strategy to create a generic progress mapping would be a
straight sum of the values of these variables over all trading roles, i.e. providing the mapping

Ygeneric_1 (M) = Z (GetMessIDy (M) + GetRCy (M))
treTR

Intuitively, this may not be the best solution, as many combinations of message identifiers
and retransmission counters will result in the same progress value. It is desirable to have many
progress values to give the potential for greater reduction, but there is a trade-off with the
number of regress edges introduced (we want this to be low) and also the number of states
discovered with higher progress values that are not immediately explored but are nonetheless
stored in memory and cannot be deleted until later. We also note that, in general, a sequence
number represents a more significant measure of progress than a retransmission counter, as
generally a retransmission counter is kept for each message, then reset for the next message.
We use this knowlegde to construct a more elaborate progress mapping by giving a weight
to the message identifier component of the progress values. This weight is (RCmaz + 1) and
is one larger than the maximum possible value of GetRCy.. This ensures that an increment
in the message identifier is always more significant than any increment in the retransmission
counter. A second generic progress mapping is then defined as:

VYgeneric2(M) = Z ((RCmax + 1) * GetMessIDy (M) + GetRCy (M)
treT’R

This is the generic progress mapping we use in our experiments in Section 6.1. Note that
YPgeneric2 may not exhibit the optimum combination of message identifiers and retransmission
counters with respect to the IOTP CPN. For example, each trading role could be given its own
weight to further differentiate the progress of states, but assigning anything but an arbitrary
weighting to each trading role may require IOTP-specific knowledge, hence violating our
intentions for the general nature of this progress mapping.

An important feature of this progress mapping is its incorporation of the parameter
RCmaz. As RCmax increases, the set of generated progress values also increases. It is hoped
that this progress mapping will scale well with RC'maz. Scalability is a desirable property of
a progress mapping.

5.2 TOTP-Specific Progress Mapping

In IOTP, all six Authentication and Payment-related transactions are implemented via com-
binations of document exchanges. Within a transaction, progress is exhibited by the execution
of successive document exchanges. Within a document exchange, progress is exhibited by the
internal state changes of the trading roles. Accordingly, we can define a progress mapping
which is based on the current document exchange in the transaction and also the internal
states of trading roles within each document exchange.

30

Table 1. The four mappings ¢, ¥c, ¥pr and ¢gn enumerating and ordering the internal states of the four
trading roles (Merchant, Consumer, Payment Handler and Delivery Handler) in a document exchange.

|Trading Role Internal States||tm (M)[the (M) [thpn (M)]tan (M)

READY 1 1 1 1
LISTEN 2 4 - -
HOLD - 5 2 -
WAIT 3 2 3 2
HOLD_WAIT 4 3 4 -
FINISHED 5 6 - -
COMPLETED 6 7 5 3
CANCELLED 7 8 6 4
no state 0 0 0 0

For a given transaction, the sequence of internal states of each trading role is fixed. The
internal state of each trading role can be obtained by considering the token on the place
corresponding to the given transaction type on the corresponding Trading Role page, as
described in Section 4.4 for the Consumer and Merchant. To capture the progress from the
trading role internal states within a document exchange, we define four progress mappings
Ym, Ve, Ypn, and g, which respectively enumerate the internal states of the Merchant,
the Consumer, the Payment Handler and the Delivery Handler according to the progress
represented by each. Table 1 lists the sequences of trading role internal states for a Purchase
transaction. Not all trading roles can enter all states and so no mapping has been defined for
these cases (indicated by ‘-’ in the table.) The bottom row of Table 1 indicates that trading
roles that have not yet entered any state (no state) map to 0.

We also define a mapping to capture the progress of the execution of document exchanges
in a transaction. An Authentication (Auth) exchange always takes place at the beginning
of a transaction (that requires authentication of the Consumer). An Offer exchange, either
Brand Dependent (BDOfr) or Brand Independent (BIOfr), never occurs before an Authen-
tication exchange but must occur before any other document exchange. A Payment (Payl)
or a Payment-and-Delivery (PayDlv) exchange is carried out after an Offer exchange only,
and a Delivery (Deliv) exchange happens after a Payment exchange only. A Value Exchange
transaction involves two Payment exchanges, where the second Payment (Pay2) must follow
the first Payment (Payl) exchange. It can be seen that there is always a choice between a
Brand Dependent Offer and a Brand Independent Offer in any Payment-related transaction.

This knowledge of the behaviour of IOTP is useful in two ways. The first is that it allows
us to reason about the order in which the document exchanges occur. IOTP is sequential
in its ordering of document exchanges within a transaction and thus we can give a higher
progress value to those states in which the trading roles have progressed further. Secondly,
we can use this knowledge to explore the part of the occurrence graph for each document
exchange combination sequentially. Conceptually, when arranging the OG in a least-progress-
first manner, this is tantamount to reshaping the OG to be long and thin rather than short and
wide to minimise the number of states with a given progress value, which, in our experience, is
beneficial to the performance of the sweep-line method. To illustrate this, we describe the effect
of reshaping the OG for a Purchase transaction. The Purchase transaction OG can be initially
divided into two parts based on the choice of a Brand Dependent or Brand Independent Offer.
We choose to always explore the part relating to the Brand Dependent Offer first, and then
the part involving the Brand Independent Offer. Similarly, there is always a choice between a
Payment followed by a Delivery exchange and a (combined) Payment-and-Delivery exchange
in a Purchase transaction, and so the corresponding transaction OG following each Offer

31

exchange can be further divided into two parts. In this case, we choose to explore first the part
with Payment followed by Delivery, then the part with the Payment-and-Delivery exchange.

By defining a mapping that reflects these observations, a transaction OG can be generated
in such a way that on one hand the correct progress of the transaction is preserved (i.e. the
progress mapping results in monotonic progress) and on the other hand a narrower OG is
obtained. Such a mapping is defined in Table 2 as erch_comp Which enumerates all possible
combinations of document exchanges executed at each of the four trading roles. Similarly
to identifying the internal state of each trading role, the document exchange that a trading
role is involved in can be obtained from the token on the place corresponding to the given
transaction on the corresponding Trading Role page (see Section 4.4). A trading role with no
document exchange information (represented by ‘-’) is not involved, or has not yet started
a transaction. In Table 2, the value 9eyen_comp(M) is incremented by 26 for each different
combination of document exchanges. The offset of 26 was chosen as it is one greater than
the maximum sum over all trading roles of the trading role internal state progress mappings
(7+8+6+4=25, see Table 1) in a document exchange. This is important, as an offset of one
greater than 25 guarantees that there will be no overlap between the progress mappings in
Yezeh_compb Tor any two combinations of document exchange states at each trading role.

Having identified sources of IOTP-specific progress, we can now define the full progress
mapping Ygpecific for IOTP as follows:

"/)specifz'c(M) = 7wbesﬁch_comb(]W) + 7»bm(Zw) + "/JC(M) + "/)ph(M) + "/)dh(M)

The performance of the sweep-line with this progress mapping is discussed in Section 6.2.

5.3 Combination of Generic and Specific Progress Mapping

The mapping specific takes advantage of knowledge of the sequence of states that trading
roles progress through, and also of the sequential nature of IOTP operations. It does, however,
lack potential for scalability. Ideally, we would like a progress mapping for the IOTP CPN
to incorporate the parameter RC'maz in such a way as to scale with RC'maz. The generic
progress mapping Ygeneric2 ‘grows’ with the parameter RCmaz so by combining this with
the specific progress mapping we hope to obtain a progress measure with the advantages of
both.

Rather than simply adding together the progress values ¢generico(M) and Ygpecific(M) for
each state M, we take note of the fact that message identifiers and retransmission counters
increment within a particular document exchange. When combining the progress measures,
we give a weighting to the IOTP-specific progress values to make an increment in the IOTP-
specific progress values more significant than any increment in the generic progress values.
This weight must be one more than the maximum value of ¥ yeperic2. To determine this value
we must first determine an upper bound on the message identifier values.

IOTP has 15 different (non-error and non-cancel) message types, each of which may be
used at most once during a transaction. (We omit the details of these messages for brevity.)
Each new message sent by a trading role is given a message identifier one greater than the
previously sent message. Retransmissions of the same message are given the same message
identifier as the original. The receiver of one of the 15 message types may generate an error
message requesting a retransmission. Each error message is given a new (incremented) message
identifer. Thus, in the worst case, sending a (non-error and non-cancel) message to a peer
trading role will cause the receiving trading role’s internal message identifier to increment by
RCmaz (after RCmax retransmissions) or by RC'maxz+1 if the message being sent stimulates

32

Table 2. The mapping Yezch_coms enumerating all possible combinations of document exchanges at each of
the four trading roles in a transaction.

| Merch(mt| C’onsumer| PH(mdler| DHandler”d;euh_comb (M) |

NoExch - - - 0
Auth - - - 26
Auth | NoExch - - 52
Auth Auth - - 78

BDOfr - - - 104
BDOfr | NoExch - - 130
BDOfr Auth - - 156
BDOfr | BDOfr - - 182
BDOfr Payl - - 208
BDOfr Payl NoExch - 234
BDOfr Payl Payl - 260
BDOfr Deliv Payl - 286
BDOfr Deliv Payl | NoExch 312
BDOfr Deliv Payl Deliv 338
BDOfr | PayDlv - - 364
BDOfr | PayDlv | NoExch - 390
BDOfr | PayDlv | PayDlv - 416
BDOfr Pay2 Payl - 442
BDOfr Pay2 Pay2 - 468
BIOfr - - - 494
BIOfr | NoExch - - 520
BIOfr Auth - - 546
BIOfr BDOfr - - 572
BIOfr Payl - - 598
BIOfr Payl NoExch - 624
BIOfr Payl Payl - 650
BIOfr Deliv Payl - 676
BIOfr Deliv Payl NoExch 702
BIOfr Deliv Payl Deliv 728
BIOfr | PayDly - - 754
BIOfr | PayDlv | NoExch - 780
BIOfr | PayDlv | PayDlv - 806
BIOfr Pay2 Payl - 832
BIOfr Pay2 Pay2 - 858

a response from the receiving trading role. Thus 15(RCmaz+1) is an upper bound on message
identifiers, where 15 is the number of messages and (RC'maz + 1) is the maximum increase in
message identifier induced by each message. Cancel messages terminate the transaction and
are never retransmitted and thus are not taken into account.

Based on this, an upper bound on the value of ¥generic 2 is 4(15(RCmaz + 1)? + RCmaxz)
where RC'max is the maximum possible value of GetRC;, and the 4 comes from the summation
over all 4 trading roles. This is quite a conservative upper bound, as each trading role transmits
only a subset of the set of 15 messages. The weight needs to be larger than this value, and so
we obtain the following combined progress mapping;:

Veomb (M) = Pgeneric2(M) + (4(15(RCmaz + 1)* + RCOmaz) + 1) * Pspecific(M)

The performance and scalability of this progress measure is discussed in Section 6.3.

In [12] the sweep-line method was used to verify the Wireless Transaction Protocol
(WTP) [36] within the Wireless Application Protocol (WAP) [37]. Conventional occurrence
graph generation could only be used for retransmission counters up to 5 due to state explo-
sion. In contrast to our method of mapping directly to N, a monotonic progress mapping was

33

defined as a progress vector in Z°, embedded into the total ordering (<) on integers. The five
elements of progress were the state of each of the two interacting protocol entities, the retrans-
mission counters in each of the two interacting protocol entities and the inverse of the number
of messages left in the channel once one or both of the protocol entities had reached their final
states. This allowed WTP to be verified using sweep-line for retransmission counters up to 8,
the value specified in [36] for WAP operating over IP networks. The progress mapping in [12]
is similar to our definition of ..,y as we also use protocol entity states and retransmission
counters to gauge the progress of IOTP. In addition, we use message identifiers but we do not
use the number of messages left in the channel after a transaction has completed.

6 Experimental Results

The IOTP CPN was analysed with the computer tool Design/CPN, using conventional
OG generation and a prototype implementation of the sweep-line method using the generic
progress mapping Ygeneric2, the IOTP-specific progress mapping 9gpecific and the combined
progress mapping ¥.omp- The results are shown in Tables 3, 4 and 5 respectively. We present
results from the Purchase Transaction only, as this transaction exercises all elements of the
IOTP CPN model.

When analysing IOTP, one of the desired properties of IOTP is valid transaction termi-
nation. If a transaction terminates properly, each of the trading roles that have started the
transaction must enter a valid terminal state, i.e. COMPLETED, indicating that a transaction
terminates successfully, or CANCELLED, indicating the transaction is cancelled. We are able to
check the dead markings obtained and verify that they all have this property.

To eliminate differences in performance due to the efficiency of state storage, a custom
hashing function for storing states was implemented and used in both the conventional gen-
eration and the sweep-line generation. All experiments were conducted on a 2.6GHz Pentium
4 with 1Gb of memory.

It is worth noting that the node deletion mechanism in the sweep-line implementation
used in this paper differs from the experimental implementation used in [6] and [24], where
node deletion was initiated every time a statically defined number of new nodes were explored.
In addition, as reported in [24], the former method for node deletion performed poorly and
became the dominant time factor when exploring large occurrence graphs. The implementa-
tion used in this paper matches the algorithm more closely, in that states with a progress
value n € N are deleted as soon as the minimum progress value over all unprocessed states is
greater than n.

6.1 Generic Progress Mapping

Table 3 contains the OG statistics when using the sweep-line method with 4epneric2. Column
1 shows the value of the RCmax parameter for which the OG was generated. The second,
third and fourth columns show the number of states and arcs generated by conventional
exploration (the number of states and arcs in the full OG) and the total time taken. Column
5 shows the peak number of states stored in memory at any one time using the sweep-line
method. Columns 6 and 7 show the total number of states swept (explored) and arcs traversed
with the sweep-line method. The total time for sweep-line exploration is shown in column 8.
The number of dead markings discovered is shown in column 9. Columns 10 and 11 show
the factor of reduction in space and time when using the sweep-line method as compared
to conventional generation. We were limited to RC'max = 4 for conventional generation and

RCmaz = 5 with the sweep-line method before computer memory and time contraints forced
us to abandon generation. We were unable to generate the full OG (using the conventional
method) for RCmaz = 5 so the number of states and arcs in the full state space and the
theoretical reduction are shown in brackets.

The first thing to notice is that this progress mapping is non-monotonic, as indicated by
having swept more states than are in the full state space. This was not unexpected, as the
message identifiers and retransmission counters reset to 0 at various times during an IOTP
transaction. The factor of reduction in states is relatively constant over this range of RCmax
values, staying around 1.7 times more efficient in space. This is not a particularly useful
reduction. It is worth noting that the progress mapping does not scale as well as we had
hoped, hence the relatively constant (but worsening) reduction in space. The reduction in
time is due to a lower peak state storage and so each new state does not need to be compared
with as many existing states.

Table 3. Sweep-line statistics for the analysis of the IOTP CPN using ¢generic_2-

RCmax Conventional Sweep-line Dead |Reduction in
States | Arcs |hh:mm:ss Peak | Total | Arcs |hh:mm:ss markings space| time
0 2144 5243 | 00:00:03 | 1462 | 2534 | 6338 | 00:00:04 85 1.47 | 0.75
1 12695 37947 | 00:00:30 | 7141 | 17521 | 52675 | 00:00:36 85 1.78 | 0.83
2 47931 | 161437 | 00:04:21 | 26369 | 62158 | 208473 | 00:02:43 85 1.82 | 1.60
3 142499 | 518910 | 00:29:59 | 84853 |176126| 635844 | 00:09:37 85 1.68 | 3.12
4 361451 | 1389461 | 02:55:09 |227012|430713|1638636| 00:31:04 85 1.59 | 5.64
5 |(816957)|(3266339) - 523953(946571|3743931| 01:33:39 85 (1.56)| -

6.2 TOTP Specific Progress Mapping

Table 4 contains the state space statistics when using the sweep-line method with 9g,ccific-
The table format is the same as in Table 3. This progress mapping results in a monotonic
measure of progress (this is checked automatically by the tool during exploration) so the total
number of states and arcs explored with the sweep-line method is identical to the total number
of states and arcs in the full state space, hence we can infer the size of the full state space. The
reduction in space and time is better than when using ¥generic2. The space reduction worsens
as RC'max increases, indicating that this progress measure also scales poorly. The worsening
in reduction is caused by the number of states with a given progress value growing out of
proportion with the total number of states, as RCmax increases. This worsening in memory
reduction seems to go against the usual trend, as in e.g., [2,6,12,24] where the reduction in
space increases with the size of the state space.

Table 4. Sweep-line statistics for the analysis of the IOTP CPN using ¥specific-

RCmax Conventional Sweep-line Dead |Reduction in
States | Arcs |hh:mm:ss| Peak | Total | Arcs |hh:mm:ss/markings|space| time
0 2144 5243 00:00:03 | 191 2144 5243 00:00:04 85 11.21| 0.75
1 12695 37947 1 00:00:30 | 1266 | 12695 | 37947 | 00:00:27 85 10.03| 1.11
2 47931 161437 | 00:04:21 | 5528 | 47931 | 161437 | 00:02:10 85 8.67 | 2.01
3 142499 518910 | 00:29:59 | 18876 | 142499 | 518910 | 00:08:12 85 7.55 | 3.66
4 361451 | 1389461 | 02:55:09 | 61025 | 361451 | 1389461 | 00:27:02 85 5.92 | 6.48
5 (816957) | (3266339) - 163776| 816957 | 3266339 | 01:22:36 85 (4.99)| -
6 |(1690370)| (6961367) - 385077|1690370| 6961367 | 03:44:06 85 (4.39)| -
7 1(3260531)|(13739782) - 819848(3260531|13739782| 10:24:42 85 (3.98)| -

35

6.3 Combined Progress Mapping

Table 5 contains the state space statistics when using the sweep-line method with 1.4,,5. The
table format is again the same as used previously. The reduction in space obtained by using
the combined progress mapping is identical to using v gpec;fic for small values of RCmax but
as RCmax increases, the reduction in space does not worsen as rapidly. The reduction in
time is approximately the same as when using tpec;fic €ven though the peak state storage is
lower, a fact that we attribute to the more complicated progress mapping function (hence a
larger overhead in calculating the progress value for each state).

An unexpected result we discovered was that 1.mp is monotonic, at least for the cases we
examined (0 < RCmaz < 7). We conjecture that this is due to the events causing a decrease
in progress with respect to ¥generic2 are also causing an increase in progress with respect to
Yspecific- Due to the weighting we have given specific i Yeomp the increase in progress due
to a changing trading role internal state or document exchange is greater than the decrease
caused by the reset of a message identifier or retransmission counter.

The number of dead markings is constant for all configurations, whereas we would expect
the number of dead markings to explode with RCmax. The reason is that the IOTP CPN
resets retransmission counters upon termination. We can deduce that there are 85 ways that
the IOTP CPN can terminate independently of retransmission counter values.

Table 5. Sweep-line statistics for the analysis of the IOTP CPN using %coms-

RCmax Conventional Sweep-line Dead |Reduction in
States | Arcs |hh:mm:ss Peak | Total | Arcs |hh:mm:ss markings space| time
0 2144 5243 00:00:03 | 191 2144 5243 00:00:04 85 11.21| 0.75
1 12695 37947 | 00:00:30 | 1266 | 12695 | 37947 | 00:00:27 85 10.03| 1.11
2 47931 161437 | 00:04:21 | 5528 | 47931 | 161437 | 00:02:10 85 8.67 | 2.01
3 142499 518910 | 00:29:59 | 17163 | 142499 | 518910 | 00:08:10 85 8.30 | 3.67
4 361451 | 1389461 | 02:55:09 | 46369 | 361451 | 1389461 | 00:27:02 85 7.80 | 6.48
5 (816957) | (3266339) - 124693| 816957 | 3266339 | 01:22:08 85 (6.55)| -
6 |(1690370)| (6961367) - 294108|1690370| 6961367 | 03:44:53 85 (5.75)| -
7 1(3260531)|(13739782) - 628845(3260531(13739782| 10:14:15 85 (5.18)| -

7 Conclusions and Future Work

This paper has presented some experiments in applying the sweep-line occurrence graph
method to a CPN model of the Internet Open Trading Protocol. We have particularised the
sweep-line method to CPNs, where we use the Naturals as the progress values and its usual
order relation (<). This allows us to just associate a progress mapping with the CPN. We
then present a revised abstract generalised sweep-line algorithm for CPNs, which includes the
storing of dead markings and uses set operations.

We derived three progress mappings for the analysis of the IOTP CPN model and pre-
sented our intuition and rationale behind each. The first is a progress mapping based on
generic properties of protocols. The second is based on properties specific to IOTP. The third
is based on a combination of the first two.

The TOTP CPN is parameterised with a maximum number of retransmissions, RC'mazx.
Using the combined progress mapping, we were able to analyse the IOTP CPN for larger
values of RC'max than was possible using conventional occurrence graph generation. In doing
so we have demonstrated that the sweep-line method can be successfully applied to a complex
real-life example.

36

We have represented our progress values as a summation of component progress values. An
alternative representation would be to use vectors (as in [12]) to represent the progress values.
This would allow easier investigation of different orderings and weightings of the components
making up the progress mapping. It also allows use of the compositional sweep-line method [23]
for analysis of the IOTP CPN. This method takes advantage of monotonic and non-monotonic
components of the measure of progress to further reduce peak state storage. We intend to
investigate this approach to determine what gains in space and time can be made.

The design of optimal (or even good) progress mappings for CPN models of practical
systems is an open question. When defining progress mappings for IOTP, we have used rules
of thumb aimed at giving a good progress mapping with respect to the peak number of
states stored and the time required for OG exploration. The rules of thumb are: 1) the
progress sources should be weighted according to their significance in the system; 2) regress
edges should be avoided or the number kept as low as possible; 3) the number of progress
values should be as high as possible; and 4) a progress mapping that works well for small
configurations of the system will also work well for larger configurations. Currently, these
rules are based on intuition and a limited amount of practical experience. As part of future
work it would be useful to develop some formal and/or further practical justification for these
rules to obtain a better understanding of what constitutes a good progress mapping. The
phenomenon observed in this paper where the reduction decreased for larger configurations
suggests that 4) is not a valid assumption in general. It would also be of interest to determine
the best possible progress mapping that can be defined for the system. This would allow the
analyst to gauge the potential reduction that can be obtained with the sweep-line method.

References

1. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol Verification.
In Lectures on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098 of Lecture Notes in
Computer Science, pages 210-290. Springer-Verlag, 2004.

2. J. Billington, G.E. Gallasch, L.M. Kristensen, and T. Mailund. Exploiting equivalence reduction and the
sweep-line method for detecting terminal states. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 34(1):23-37, January 2004.

3. D. Burdett. Internet Open Trading Protocol - IOTP Version 1.0. RFC 2801, IETF, April 2000.

4. D. Burdett, D.E. Eastlake, and M. Goncalves. Internet Open Trading Protocol. McGraw-Hill, 2000.

5. S. Christensen, K. Jensen, and L.M. Kristensen. Design/CPN Occurrence Graph Manual. Department of
Computer Science, University of Aarhus, Denmark. On-line version:
http://www.daimi.au.dk/designCPN/.

6. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State Space Exploration. In
Proceedings of TACAS 2001, volume 2031 of Lecture Notes in Computer Science, pages 450-464. Springer-
Verlag, 2001.

7. E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting Symmetries in Temporal Logic Model Checking.
Formal Methods in System Design, 9(1/2):77-104, 1996.

8. Design/CPN Online. http://www.daimi.au.dk/designCPN/.

9. E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal Methods in System Design,
9(1/2):105-131, 1996.

10. R. Fielding et al. Hypertext Transfer Protocol - HTTP/1.1. RFC 2616, IETF, June 1999.

11. P. Godefroid, G.J. Holzmann, and D. Pirottin. State-Space Caching Revisited. Formal Methods in System
Design, 7(3):227-241, 1995.

12. S. Gordon, L.M. Kristensen, and J. Billington. Verification of a Revised WAP Wireless Transaction
Protocol. In Proceedings of ICATPN’02, volume 2360 of Lecture Notes in Computer Science, pages 182—
202. Springer-Verlag, 2002.

13. G.J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(10):2413-2433, December 1985.

14. G.J. Holzmann. Algorithms for Automated Protocol Validation. AT&T Technical Journal, 69(2):32-44,
1990.

37

15.
16.
17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

G.J. Holzmann. An Analysis of Bitstate Hashing. Formal Methods in System Design, 13(3):287-305, 1998.
InterPay I-OTP.

URL: http://www.ietf.org/proceedings/0laug/slides/trade-1/index.html, August 2001.

K. Jensen. Condensed State Spaces for Symmetrical Coloured Petri Nets. Formal Methods in System
Design, 9(1/2):7-40, 1996.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 1, Basic
Concepts. Springer-Verlag, 2nd edition, 1997.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 2, Analysis
Methods. Springer-Verlag, 2nd edition, 1997.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 3, Practical
Use. Springer-Verlag, 1997.

L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to Coloured Petri Nets. Inter-
national Journal on Software Tools for Technology Transfer, 2(2):98-132, 1998.

L.M. Kristensen and T. Mailund. A Compositional Sweep-line State Space Exploration Method. In
Proceedings of FORTE’ 02, volume 2529 of Lecture Notes in Computer Science, pages 327-343. Springer-
Verlag, 2002.

L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety Properties. In Proceedings
of FME’02, volume 2391 of Lecture Notes in Computer Science, pages 549-567. Springer-Verlag, 2002.
L.M. Kristensen and T. Mailund. Efficient Path Finding with the Sweep-Line Method using External
Storage. In Proceedings of the International Conference on Formal Engineering Methods (ICFEM’03),
volume 2885 of Lecture Notes in Computer Science, pages 319-337. Springer-Verlag, 2003.

C. Ouyang. Formal Specification and Verification of the Internet Open Trading Protocol using Coloured
Petri Nets. PhD thesis, Computer Systems Engineering Centre, School of Electrical and Information
Engineering, University of South Australia, Adelaide, Australia, June 2004.

C. Ouyang and J. Billington. An improved formal specification of the Internet Open Trading Protocol.
In Proceedings of the 2004 ACM Symposium on Applied Computing (SAC 2004), pages 779-783, Nicosia,
Cyprus, 14-17 March 2004. ACM Press.

C. Ouyang and J. Billington. Formal Analysis of the Internet Open Trading Protocol. In Proceedings of
the 1st International Workshop on Theory Building and Formal Methods in Electronic/Mobile Commerce
(TheFormEMC), Toledo, Spain, 1-2 October 2004, in press. Springer-Verlag.

C. Ouyang, L.M. Kristensen, and J. Billington. A formal and executable specification of the Internet
Open Trading Protocol. In Proceedings of 3rd International Conference on Electronic Commerce and Web
Technologies, volume 2455 of Lecture Notes in Computer Science, pages 377-387, Aix-en-Provence, France,
2-6 September 2002. Springer-Verlag.

A.N. Parashkevov and J. Yantchev. Space Efficient Reachability Analysis Through Use of Pseudo-Root
States. In Proceedings of TACAS’97, volume 1217 of Lecture Notes in Computer Science, pages 50-64.
Springer-Verlag, 1997.

D. Peled. All from One, One for All: On Model Checking Using Representatives. In Proceedings of CAV’93,
volume 697 of Lecture Notes in Computer Science, pages 409-423. Springer-Verlag, 1993.

Standard SMart Card Integrated SettLEment System Project SMILE Project.

URL: http://www.ietf.org/proceedings/99mar/slides/trade-smile-99mar, April 1999.

K. Schmidt. Automated Generation of a Progress Measure for the Sweep-Line Method. In Proceedings of
TACAS’04, volume 2988 of Lecture Notes in Computer Science, pages 192-204. Springer-Verlag, 2004.
A. Valmari. A Stubborn Attack on State Explosion. In Proceedings of CAV’90, volume 531 of Lecture
Notes in Computer Scienc, pages 156—165. Springer-Verlag, 1990.

A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic Models, volume 1491 of
Lecture Notes in Computer Science, pages 429-528. Springer-Verlag, 1998.

WAP Wireless Transaction Protocol Specification. June 2000 Conformance Release. Available via:
http://www.wapforum.org/.

Wireless Application Protocol. Specifications available via: http://www.wapforum.org/.

P. Wolper and P. Godefroid. Partial Order Methods for Temporal Verification. In Proceedings of CON-
CUR’93, volume 715 of Lecture Notes in Computer Science, pages 233—-246. Springer-Verlag, 1993.

P. Wolper and D. Leroy. Reliable Hashing withoug Collision Detection. In Proceedings of CAV’93, volume
697 of Lecture Notes in Computer Science, pages 59-70. Springer-Verlag, 1993.

38

Towards a Methodology for Modeling
with Petri Nets

Christine Choppy and Laure Petrucci
LIPN, UMR CNRS 7030, Institut Galilée - Université Paris XIII
99 Avenue Jean-Baptiste Clément, F-93430 Villetaneuse, FRANCE
email: {Christine.Choppy,Laure.Petrucci}@lipn.univ-paris13.fr

Abstract

Formal specifications remain difficult to write in general, due to both
the complexity of the system to be developed, and the use of a formal
language. In [4], a method is proposed for specification development,
with CASL, the Common Algebraic Specification Language, and CASL-
LTL, an extension for dynamic systems specification, as target languages.
However, this method could be used with quite a variety of modeling
languages, as shown in this paper which is a first attempt to provide sys-
tematic guidelines for Petri net specification on the ground of the afore-
mentioned specification method. It is shown how to express in terms of
Petri nets the constituent features and the properties exhibited from the
first specification approach. A model train specification from [2] is used
as a running example.

1 Motivation

While formal specifications are well advocated when a good basis for further
development is required, they remain difficult to write in general. Among the
problems are the complexity of the system to be developed, and the use of a
formal language. So potential helps are needed to start the specification, and
then some guidelines to remind some essential features to be described. In [4], a
method is proposed for specification development, with CAsL[3], the Common
Algebraic Specification Language, and CASL-LTL[13], an extension for dynamic
systems specification, as target languages. However, this method could be used
with quite a variety of target languages.

Petri nets have been successfully used for concurrent systems specification.
Among its attractive features, is the combination of a graphic language and an
effective formal model that may be used for formal verification. Expressivity of
Petri nets is dramatically increased by the use of high-level/coloured Petri nets,
and also by the addition of modularity features. Thus, quite sizable examples
were specified with Petri nets.

While the use of Petri nets becomes much easier with the availability of high
quality environments and tools, to our knowledge, little work was devoted to

39

a specification methodology for Petri nets. The aim of this work is to provide
guidelines for Petri net specification on the grounds of the aforementioned spec-
ification method. A train specification [2] is used as a running example.

The structure of the paper is as follows. We first describe the train ex-
ample in Section 2, then the general specification method [4] is presented in
Section 3. The proposed guidelines for Petri net specification are presented in
Section 4, together with their application on the train example, and the Petri
net specification is given in Section 5.

2 The model train example

Our running example will be the toy railway from [2], in which a step-by-step
modeling of the railway by students was described.

The project assigned to students was not only designed as an approach to
parallel programming, but also to emphasize the benefits of specification and
validation prior to programming. In particular, the students were asked to pro-
duce a graphical model, having the same appearance as the physical railway.
This was not required for aesthetic reasons but because it greatly helps to un-
derstand whether a configuration of the railway is correct or not. This eases a
boring and error-prone task of synthesizing a long sequence of transitions. It
represents an important benefit for debugging. It also permits to make a direct
correspondence between the physical train devices and the Petri net model.

The physical model railway is depicted in Figure 1. It consists of about 15
meters of tracks, divided into 16 sections (blocks B1 to B16) plus 2 sidetracks
(ST1 and ST2), connected by four switches and one crossing. The way the trains
can pass the switches and the crossing is indicated by the arrows in Figure 1.
The traffic on all tracks can go both ways. Although one can notice that switch
1 (and also switch 2) is composed of two elementary ones, it is managed as a
single unit, due to the short distance between the two physical components.
The railway is connected to a computer via a serial port which allows to read
information from sensors and send orders to trains through the tracks or directly
to switches. Each section is equipped with one sensor at each end, to detect the
entrance or exit of a train. The orders sent to trains can be either stop or go
forward/backwards at a given speed.

Hierarchical coloured Petri nets [11] were chosen as a model, due to their tool
support for hierarchies, simulation, and occurrence graphs, e.g. DESIGN/CPN
[12, 10]. Hierarchies allowed a structured design, where the top-level net reflects
the hardware layout. The use of high-level nets permits both capturing several
cases by a single transition and representing the parameters of trains and track
sections by one place. The use of an ordinary net leads to unreadable intricate
models.

The model described in [2] adopts an adaptive routing strategy for the trains

40

ST1

ST2

Figure 1: The tracks of the model railway.

to circulate. Hence, the behavior of trains adapts to local conditions. Namely,
at each switch, the train’s route can be chosen among several tracks and a train
may even go back when it cannot continue forward.

Although surprising at the first glance, such behavior of trains offers several
complex routing possibilities, demanding the students to design a routing policy
so that safety and operational requirements are fulfilled.

3 Specification method principles

The method presented in [4] aims at helping a modeler in designing a “software
item”. It assumes that a software item may be either of the following:

e a simple dynamic system (a dynamic interacting entity in isolation, e.g.,
a sequential process) or

e a structured dynamic system (a community of mutually interacting enti-
ties, simple or also structured), or

e a data structure (or data type).

Items are characterized by their parts and constituent features, that are
subsequently specified. For instance, the parts of simple systems are data struc-
tures, and their constituent features are states and elementary interactions def-

41

initions (cf. Section 3.1). The method also involves quite a precise guidance on
which properties should be expressed, and in which way.

Among the various specification styles, the property-oriented (or ariomatic)
and constructive (or model-oriented) ones are mostly used, and here we shall
focus on the property-oriented one which is relevant at the beginning of the
specification task. In any case, [4] advocates that a visual presentation should
be provided to help reading the formal specification, and also that comments
should be used, e.g., to accompany formulae.

Property-oriented specification The semantics of property-oriented speci-
fication is basically defined as follows: “a model belongs to the semantics of a
property-oriented specification if and only if all formulae of the specification are
valid on it”.
The methodological ideas supporting this specification style are:
the item is described at a certain moment in its development by expressing all
its “relevant” properties using sentences provided by the formalism (formulae).
For each software item, the property-oriented specification technique, is
given, by providing the abstract structure of the corresponding specifications
together with the related visual presentation and corresponding formal specifi-
cation.

The target languages are initially CASL[3], the Common Algebraic Specifica-
tion Language, and CASL-LTL[13], an extension designed for the dynamic sys-
tems specification by giving a CASL view to LTL, the Labeled Transition Logic
([1, 9)). LTL, and thus CASL-LTL, is based on the idea that a dynamic system
is considered as a labeled transition system (shortly lts), and that to specify it
one has to specify the labels, the states and the transitions of such a system.
Recall that an lts is a triple (State, Label, —), where —C State x Label x State.

Subsequent work [5, 7, 6] showed that this method could also be used with
other target languages, e.g., UML. Although UML is not a formal language, the
formally grounded approach used there conveys a quite systematic development
for the description, and of course, OCL may be used to describe some of the
properties.

In the following, we focus on simple systems items since they are used in the
first step when applying our method. Structured systems will be discussed in
the conclusion and addressed in further work.

3.1 Simple systems

Here the word system denotes a dynamic system of any kind, and so evolving
with time, without any assumption about other aspects of its behaviour. Thus it
may be a communicating/nondeterministic/sequential/... process, a reactive/
parallel /concurrent /distributed/... system, but also an agent or an agents sys-
tem. A simple system is a system without any internal components cooperating
together.

42

Simple systems are seen formally as labeled transition systems. The states of
an lts modeling a simple system represent the relevant intermediate situations

in the life of the system, and each transition s L represents the ability of
the system in the state/situation s of evolving to the state/situation s'; the label
l contains information on the conditions on the external environment for this
ability to become effective, and on the transformation induced on this environ-
ment by the execution of the transition, i.e., it fully describes the interaction of
the system with the external environment during this transition.

To design effective and simple specification methods, the labels are assumed
to have the standard form of a set of elementary interactions, where each elemen-
tary interaction intuitively corresponds to an elementary (that is, not further
decomposable) exchange with the external environment. It is also assumed that
the elementary interactions are of different types, and that each type is charac-
terized by a name and by some arguments (elements of some data structures).
Thus, elementary interaction types (just elementary interactions from now on)
are constituent features of the simple systems.

The form of the states (which are the intermediate situations during the
system’s life) is also a characterizing feature of simple systems, therefore state
constituent features are needed. However, they are technically different for the
property-oriented and the constructive case.

Finally, to define the constituent features of a simple system, values of various
data structures are used; they are the “parts” of the simple systems.

3.2 Simple systems property-oriented specifications

The property-oriented specification method for simple systems requires to first
find the parts and constituent features, and then to express the properties.
In order to keep the specification level abstract, the states are not completely
described, but only a list of what should be observed is given, and thus the
state features will correspond to elementary observations on the states (state
observers). A state observer is characterized by a name, some arguments (ele-
ments of some data structures), and by the observed value (element of some data
structure). Figure 2 shows the structure (by means of a UML class diagram!)
of a property-oriented specification of a simple system, and Figure 3 shows how
to visually depict its parts (DATAq, ..., DATA;) and the constituent features.

3.3 Simple systems properties

All the properties about a simple system correspond to properties on the lts
modeling it, and thus on its labels, states and transitions. These properties
may express which are the admissible sets of elementary interactions building
a label, and link the source state, the label and the target state of a transition.

1To shortly explain the UML notation, the diamond connects the “Simple system specifi-
cation” with its constituents, the * indicates the multiplicity (as in regular expressions), and
labels on the lines provide a “role” name for each part.

43

Property Data structure specification

* *

State observer definition

» — Elementary interaction definition parts
2 name: String -
?Jg_ argTypes:Sequence(Type) name: String
o resType: Type argTypes:Sequence(Type)
o
s-features e-features 1

0

Simple system property-oriented specification

name: String

Figure 2: Simple System Property-Oriented Specification.

| DATA, |— SystemName

elementary interactions

DATA _| state observers

Figure 3: Visual presentation of a simple system: parts and constituent features.

The properties may also provide some information on the values observed by
the various state observers on a state.

More precisely, label properties express when, under some condition, two
different elementary interactions are incompatible, i.e., no label may contain
both (cf. incompatl and incompat2 in Figure 4). State properties describe
conditions the values returned by the state observers should satisfy for any
state (cf. valuel and value2 in Figure 4). State formulae may also include
special atoms, expressing properties on the paths (concatenated sequences of
transitions) leaving/reaching the state, that is on the future/past behaviour of
the system from this state. Transition properties are conditions on the state
observers applied to the source and target states of the transition.

Guidelines for properties follow a general tableau method which gives provi-
sion for “property cells” with respect to the system constituent features. Since
the constituent features of simple systems are of two kinds, elementary interac-
tions and state observers, five kinds of “property cells” are considered:

e properties on an elementary interaction,

e properties on a state observer,

relationship between two elementary interactions,

relationship between two state observers,

e relationship between an elementary interaction and a state observer.

Schemas for these five property cells are described in Figure 4, with, for each
cell, the list of possible properties.

In Figures 5 and 6 the details of two schemas are given, providing, for each
property, its name, an informal comment, and its formal expression in a visual
presentation associated with CASL-LTL. There, arg stands for generic expres-
sions of the correct types, possibly with free variables, and cond(ezprs) for a
generic condition where the free variables of exprs may appear.

State observer

value1: Set(StateProp)
how-change: Set(TransitionProp)
change-vital: Set(StateProp)

Two elementary interactions

incompat2: Set(LabelProp)

Elementary interaction

incompat1: Set(LabelProp)
pre-cond1: Set(TransitionProp)
post-cond1: Set(TransitionProp)

Elementary interaction
and state observer

pre-cond2: Set(TransitionProp)
post-cond2: Set(TransitionProp)
vital2: Set(StateProp)

Two state observers

value2: Set(StateProp)

vital1: Set(StateProp)
[I I

Cell schema

Figure 4: Simple System Cell schemas

4 Applying the specification approach to the train
example

The general ideas [4] described in Section 3 were initially introduced to help
designing an algebraic specification. We will show here that these principles
can also be applied to coloured Petri nets, through the model train example.

4.1 Parts and constituent features

In order to apply the general ideas given in Section 3, we first need to choose
what kind of software item our system is. When dealing with systems like the
model train example, we may consider, in a first approach, that a single entity
is involved (the railway), and therefore that it has to be specified as a simple
dynamic system. This will lead to a general high-level design of the system, not
getting into the details of trains changing sections policies.

According to Figure 2 need to find the system (sub)parts and constituent
features. In both cases, the parts are the data structures required in the system.

45

pre-cond1 (transition property) If the source state of the transition satisfies
some condition then the label of a transition contains some instantiation
of ei.

if cond(arg) then ei(arg) happens
where some source state observers must appear in cond(arg) and the target
state observers cannot appear in cond(arg).

post-condl (transition property) If the label of a transition contains some
instantiation of ei, then the target state of the transition must satisfy
some condition. The condition on the target state may require also the
source state to be expressed.

if ei(arg) happens then cond(arg)
where some target state observers must appear in cond(arg) and the source
state observers may appear in cond(arg).

incompatl (label property) Two instantiations of ei are incompatible (i.e., no
label may contain both) if their arguments satisfy some conditions.
ei(arg1) incompatible with ei(arg,) if cond(arg:,args)

vitall (state property) If a state satisfies some condition, then any path (se-
quence of transitions) starting from it will eventually contain a transition

whose label contains ei. Note that in these properties in any case may
be replaced by in one case and eventually by next.

if cond(arg) then in any case eventually ei(arg) happens

Figure 5: Elementary interaction (ei) cell schema

46

valuel (state property) The results of the observation made by so on a state
must satisfy some conditions.

cond, where so must appear in cond.

how-change (transition property) If the observed value changes during the
occurrence of a transition, and some elementary interactions belong to
the transition label, then some condition on source and target states, old
and new values holds (new values are denoted with a ').

if so(arg) = v1 and eiy, ..., ei, happened
then so'(arg) = vo and vy # va and cond(vi,vs,ar9)

change-vital (state property) If a state satisfies some condition, then the ob-
served value will change in the future. Note that in these properties in
any case may be replaced by in one case and eventually by next.

if cond(vy,v2,arg) and so(arg) = vy and vy # vs then
in any case eventually so(arg) = v

Figure 6: State observer (so) cell schema

The constituent features are the elementary interactions and the state descrip-
tion features (observers or constructors). At this first stage of model design, the
property-oriented approach is often more relevant, thus we need state observers
to start with.

The physical system is made of track sections, switches between track sec-
tions, and trains. Thus, state observers should provide information on the layout
of tracks, i.e. which track sections are contiguous, which ones are connected by
switches, whether a train is present on a track, and, when this is the case, in
which direction it is traveling (this may be expressed in various ways, e.g. here,
clockwise or anticlockwise).

The elementary interactions (that are associated with a state change of the
system) are a train track section change, moving either directly between con-
tiguous sections or between sections connected by a switch. It is admitted that
the position of a track section is fixed (sic!), and that the potential connections
that can be established by a given switch are also fixed, and this will be reflected
in the state observers properties.

The required data structures are obtained through the data types used by
the state observers and the elementary interactions. Quite obviously, some
data type is needed to refer to track sections, and to switches. Since they are
named in Figure 1 (i.e., the possible values are known and in a quite limited
number), so-called enumerated types are adequate. The same principle is used

47

TrackSection
—
Bl =
Switch

B2 Z
B3 switchl %
switch2 >
B16 switch3 TrainDirection TrainPresence —
STI switch4 clockwise none >

ST2 crossing anticlockwise TrainDirection

Figure 7: The data structures.

for train directions, as shown in Figure 7. We present here also the corresponding
CAsL specification for these data where the type name is simply followed by the
enumeration of its possible values (which are constants of this type). The free
construct insures that no property relates (e.g., equates) these values, so that
they are all different. The sort construct is used here to express that any
element of the type TrainDirection is also of the type TrainPresence.

spec TRAINDATA =
free type
TrackSection := B1 | B2 | B3...| B16 | ST1 | ST2
free type
Switch ::= switchl | switch2 | switch3 | switch4 | crossing
free type
TrainDirection ::= clockwise | anticlockwise
free type
TrainPresence ::= none | sort (TrainDirection)
end

These data will be reflected either in the names of states and transitions of
the Petri net, or as colours of tokens.

The state observers are chosen so as to provide enough information on the
state of the modeled system. For our example, observers are needed to describe
the track sections layout, as well as the presence of a train with its travel di-
rection (Figure 8). The connected predicate is used to express when two track
sections are directly connected, and in which train direction. The switched pred-
icate is used to express when two lists of track sections are connected through a
switch, and in which train direction. These observers (connected and switched)
are fixed once the railway topology is fixed. This is not the case for train_present
which reflects a situation that evolves with time, and that depends on the ini-
tial state as well as the history of elementary interactions leading to the current
state. The state and history type specifications are given below.

48

TRAINDATA

STATE
HISTORY

TRAIN

(elementary interactions)
changeTrackSec(TrainTrack, TrainTrack, History) : State

BASIC DATA
LIST, PAIR ...

—

(state observers)
connected(TrackSection, TrackSection, TrainDirection)
switched(List[TrackSection], List[TrackSection], Switch, TrainDirection)
train_present(TrackSection, TrainPresence, History)

where TrainTrack is an auxiliary type defined as Pair[TrainPresence, TrackSection]

Figure 8: The train elementary interactions and state observers.

spec STATE =
sort State;
op initial : State; %% There is an initial state

%% which will be further described in the Section 5

end

spec HISTORY = STATE then
type History := initial | __.__ (History; State);
op last : History — State;
vars h : History; s : State;

axioms

last(initial) = initial;
last(h.s) = s;

end

The elementary interactions express the fact that a train changes track sec-

tion (Figure 8).

4.2 Properties

Once the parts and constituent features of the system are specified, its prop-
erties should be expressed. Following the method described in Section 3.3, the
property cells of Figure 4 should be filled. Since there is only one elementary

interaction, the relationship between two elementary interactions is skipped.

Properties on a state observer

valuel (state property) Here we express the results of observations. The prop-
erties on connected and switched do not change and express the railway

topology. The properties on train_present vary with the state.

connected(B1, B2, anticlockwise)
connected(B2, B1, clockwise)

49

switched((ST'1, B1), B3), switchl, clockwise)
switched((B1), (B3, B4, B5), clockwise)
switched((B3), (B1,ST1), anticlockwise)
switched((B3, B4, B5), (B1), switchl, anticlockwise)

train_present(B1, none, initial) . ..

how-change (transition property) As mentioned above, this concerns only
train_present which varies when a track section change changeT'rackSec
occurs.

if train_present(T'S;, T P;, h) A train_present(T'S;,none, h)

A changeTrackSec(< T'S;, TP; >,< TSj,none >,h) happened

then (T P; # none) A train_present(T'S],none, h') A
train_present(T'S;, TP;, h')

where h' denotes h.changeT'rackSec(< T'S;, TP; >, < TS;,none >, h)

change-vital (state property) This property is not relevant here.

Properties on the elementary interaction changeTrackSec

pre-cond1 (transition property) A track section change is defined when the
two track sections are connected or “switched”, when there is a train
traveling in the (connection or switch) direction in the first track section,
and no train in the second one.
if (connected(TS;,TS;,TP;) vV
Asw : Switch s.t. swichted((...,TS;,...),(...,TS;,...),sw,TF;))
A (T P; = none)
then changeTrackSec(< TP;,TS; >,< TP;,TS; >,h) happens

post-cond1 (transition property) After a track section occurred, the train is
in the target track section.

if changeTrackSec(< TP;,TS; >,< TP;,TS; >,h) happens then
(TP, =TP)

incompatl (label property) This property should express when simultaneous
train track section changes should not occur. Since the information on the
direction of the train is included in the interaction, the only case is that,
at a given switch, a train cannot take simultaneously several directions.
changeTrackSec(< TP;,TS; >, < TP;,TS; >,h) incompatible with
changeTrackSec(< TP;,TS; >, < TPy, TSy >,h)
if Isw : Switch s.t. swichted((...,TS;,...),(...,TS;j,...,TSk,...),sw,TH)
NT; # T)

vitall (state property) There is no property here since it is not relevant here
to express that a track section change will eventually happen.

50

There are no properties between the state observers, and the properties ex-
pressing the relationship between the elementary interaction and the train_present
state observer are redundant with those already expressed.

In the methodology introduced here, some properties can be specified, which
are not part of the Petri net model per se. For example, the modeler could
specify a state property (see Figure 6) expressing that, unless otherwise imposed
by the initial state, there is always a single token in each place representing a
track section (which is inferred by the pre-cond1 of changeTrackSec above).

Even though this property seems extremely simple, it is important to guide
the modeler into explicitly writing down the expected properties from the sys-
tem, based on the current status of the model being designed.

In later phases of system development, a simple system can evolve by refin-
ing its constituents, or by composing it with other systems. Stating expected
properties is then crucial to have better insight. These properties could be ver-
ified by a model-checking tool, in order to check consistency of the model w.r.t.
the intended behaviour.

5 From the specification to the coloured Petri
net

The state observers are reflected in the Petri net in different ways. The fized
part, that is here the way track sections are connected, together with the poten-
tial switch connections, may be reflected by the Petri net layout, as suggested in
the pedagogical project of [2], thus it will be observable on the grounds that it
will be possible for a train to move from one track section to another (connected)
one. More precisely, the Petri net places reflect the different track sections, and
places that model adjacent track sections are connected with transitions asso-
ciated with a train changing track section. Following [2], it is suggested that
places and transitions are displayed so as to reflect the physical model train
track and switches display.

Quite obviously then, elementary interactions reflecting a train changing
track section are specified by the corresponding transitions.

The presence of a train together with its direction (none, clockwise or anti-
clockwise) comes here as a colour for the track section places.

The pre-conditions and post-conditions properties of the elementary inter-
actions (see Figure 5) induce the arcs between places and transitions.

Hence, we obtain a model which is similar to the prime page of [2] presented
in Figure 9.

The prime page represents the whole railway, without any consideration of
the policy used to move from one section to the next. This policy is described in

51

ST1 TrainPresence

color TrainDirection = with clockwise | anticlockwise;
color TrainPresence = union t:TrainDirection + none;

TrainPresence TrainPresence

switcht C_J switch4

B4 TrainPresence TrainPresence B10

TrainPresence TrainPresence

B1

TrainPresence TrainPresence

TrainPresence

B2 TrainPresence TrainPresence

TrainPresence

switch2 switch3

TrainPresence B1

TrainPresence

ST2

Figure 9: The prime page of the model railway hierarchical coloured Petri net.

sub-pages, corresponding to the different switches and moves between adjacent
sections. A single look at this prime page shows the current state, i.e. where
the different trains are located. The similarity between the physical railway
model (Figure 1) and the prime page (Figure 9) is easily observed. The places
represent the sections (they have the same names in both figures), while the
transitions indicate the possible moves.

The colors (data types) of tokens within places are defined in the global
declaration node (boxed text at the top of Figure 9). First, the direction of
a train, TrainDirection, can be either clockwise or anticlockwise. Each
place represents a railway section with the corresponding name and thus always
contains one token of color TrainPresence, with a value characterizing the state
of the section, that is either a train is in the section, or the section is empty.
This is expressed with the union type:

color TrainPresence = union t:TrainDirection + none;

All the transitions are substitution transitions, i.e. their behaviour is ex-
plicited on the associated subpage. They precisely describe the policy used to
change sections. In this paper, we will not get into the details of these policies.

Now, the initial situation chosen for the railway is that there are trains
traveling in the clockwise direction on track sections B9 and B10, and trains

52

sT1 i
t anticlockwise TrainPresence

sidetrack1

color TrainDirection = with clockwise | anticlockwise;
color TrainPresence = union t:TrainDirection + none;

t clockwise

TrainPresence
1't clokwise

switch1 L1 switch4

TrainPresence TrainPresence

B1 TrainPresence TrainPresence

TrainPresence

B2 TrainPresence TrainPresence

1't anticlockwise

TrainPresence
switch2 —__] L~ 1 switch3

TrainPresence B14

. TrainPresence
t clockwise

sidetrack2 [1

t anticlockwise gT2

Figure 10: The prime page with the initial marking.

traveling in the anticlockwise direction on track sections B2, B3 and B15. This
is reflected by the following properties:

train_present(B9, clockwise, initial);

train_present(B10, clockwise, initial);

train_present(B2, anticlockwise, initial);

train_present(B3, anticlockwise, initial);

train_present(B15 , anticlockwise, initial);
which are represented by an initial marking in the Petri net of figure 10.

6 Conclusion and perspectives

In this paper, we provided guidelines for specifying “simple systems” using Petri
nets. These guidelines are derived from a method developed in [4] for an alge-
braic specification language and an extension for dynamic systems specification.
In particular, elements provided for specifying “simple systems” (consisting of
a single dynamic entity) were studied for their expression with Petri nets. The
(sub)parts are data structures (that can be used e.g. for the Petri net colors),
and we refer to the method in [4] for their specification. The state description
features may be reflected either in the Petri net layout (i.e., the way places and
transitions are connected), or in the information conveyed in the places. The

53

elementary interactions are reflected in the transitions firings. The properties
for the state descriptors and the elementary interactions may be checked against
the Petri net properties or behaviour.

This first experiment with a model train seems quite promising in the direc-
tion of providing a more extensive method for Petri net specification. It shows
that the methodology envisioned applies to a large panel of specification lan-
guages, which are in essence quite different.

This work should be pursued by extending the “structured systems” part of
the approach described in [4]. Our approach should then be extended so as to
include the communication mechanisms between modules provided by Petri nets
(e.g. hierarchical CPNs [11], modular Petri nets [8]). This should also include
property verification, i.e. if a general property is to be satisfied, it would be
nice to know at which level of the specification process a formal analysis should
(in)validate it. Applying this methodology to design step-by-step a complex
case study is another important issue.

References

[1] E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Acta
Informatica, 37(11-12):831-879, 2001.

[2] G. Berthelot and L. Petrucci. Specification and validation of a concurrent
system: An educational project. Journal of Software Tools for Technology
Transfer, 3(4):372-381, 2001.

[3] M. Bidoit and P.D. Mosses. CASL User Manual, Introduction to Using
the Common Algebraic Specification Language. Lecture Notes in Computer
Science 2900. Springer-Verlag, 2004.

[4] C. Choppy and G. Reggio. Towards a Formally Grounded Software
Development Method. Technical Report DISI-TR-03-35, DISI, Univer-
sita di Genova, Italy, 2003. Available at ftp://ftp.disi.unige.it/
person/ReggioG/ChoppyReggio03a.pdf.

[5] C. Choppy and G. Reggio. Improving use case based requirements using
formally grounded specifications. In Fundamental Approaches to Software
Engineering, LNCS 2984, pages 244-260. Springer Verlag, 2004.

[6] C. Choppy and G. Reggio. A uml-based method for the commanded be-
haviour frame. In K. Cox, J.G. Hall, and L. Rapanotti, editors, Proc. of
the 1st International Workshop on Advances and Applications of Problem
Frames (IWAAPF 2004), pages 27-34. An ICSE 2004 workshop, IEEE,
2004.

[7] C. Choppy and G. Reggio. Using uml for problem frame oriented software
development. In Walter Dosch and Narayan Debnath, editors, Proc of the

ISCA 13th Int. Conf. on Intelligent and Adaptative Systems and Software
Engineering (IASSE-2004), pages 239-244. The International Society for
Computers and Their Applications (ISCA), 2004.

[8] S. Christensen and L. Petrucci. Modular analysis of Petri nets. The Com-
puter Journal, 43(3):224-242, 2000.

[9] G. Costa and G. Reggio. Specification of Abstract Dynamic Data Types:
A Temporal Logic Approach. T.C.S., 173(2):513-554, 1997.

[10] DESIGN/CPN online. http://www.daimi.au.dk/designCPN.

[11] K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and prac-
tical use. Volume 1: basic concepts. Monographs in Theoretical Computer
Science. Springer, 1992.

[12] META Software and Aarhus University. Design/CPN 3.0, 1996. Also
available as: http://www.daimi.au.dk/designCPN.

[13] G. Reggio, E. Astesiano, and C. Choppy. CASL-LTL : A CasL Extension
for Dynamic Reactive Systems Version 1.0—- Summary. Technical Report
DISI-TR-03-36, DISI — Universitd di Genova, Italy, 2003. Available at
ftp://ftp.disi.unige.it/ person/ReggioG/ReggioEtA1103b.ps and
ftp://ftp.disi.unige.it/ person/ReggioG/ReggioEtA1103b.pdf.

55

56

Experience using Coloured Petri Nets to Model
TCP’s Connection Management Procedures

Bing Han and Jonathan Billington
Computer Systems Engineering Centre
University of South Australia
Mawson Lakes, SA 5095, Australia
Email: Bing.Han@postgrads.unisa.edu.au
Jonathan.Billington@unisa.edu.au

Abstract

The Transmission Control Protocol (TCP) is the most widely used transport protocol
in the Internet, providing a reliable data transfer service to many applications. This paper
presents a formal model of TCP connection management using Coloured Petri nets. The
model is created to verify TCP’s functional correctness (e.g., the absence of deadlocks and
livelocks) rather than its performance properties. This paper also discusses different mod-
elling approaches and issues raised during this process in the hope that it is helpful for others
to specify other complex protocols.

1 Introduction

The Transmission Control Protocol (TCP) [3,28] is a complex protocol, designed over 20 years
ago to provide a reliable data transfer service, so that applications (e.g. WWW and Email) can
be assured that data will be delivered in order and without loss or duplication. The operation
of TCP was originally specified in RFC 793 [28] using narrative descriptions, message sequence
diagrams, and a finite state machine (FSM) diagram. It was then improved and modified
in [1,3,9,10, 15,21, 25]. The number of bugs reported in TCP implementations [25] spans 60
pages. This and other experience lead us to believe that a more formal approach to TCP
specification may prove beneficial.

TCP comprises a connection management protocol for establishing and terminating connec-
tions and a data transfer protocol for reliable data transfer. This paper focuses on modelling
the connection management protocol and the aim of the modelling is to examine its functional
correctness, e.g., correct termination. The basic idea of modelling TCP is that we consider two
peer TCP entities, communicating over the Internet Protocol (IP) as well as interacting with
their application processes. Figure 1 illustrates the system which we specify using Coloured
Petri nets (CPNs).

We specify TCP’s behaviour according to the narrative description of an implementation ex-
ample provided in Section 3.9 of RFC 793, which gives the details needed for investigating TCP’s
functional correctness. The protocol is specified using hierarchies. To ensure our specification
of TCP precisely reflects the contents of Section 3.9, we not only conduct manual consistency
checks but also automatic model validation by using simulation [16]. The CPN model presented
in this paper is the result of incremental and iterative revision of two earlier versions of the
model [13,14]. In addition to providing an in-depth specification, we also consider the following
aspects that are usually avoided in the literature. Our specification accommodates each side es-
tablishing a connection simultaneously, which is not included in [17,32]. We use a realistic model
of IP that can lose, delay and re-order packets. We model packet corruption indirectly by loss,
since packets with retransmission errors will be discarded either by routers or by hosts, which

57

Figure 1: TCP and its environment

amounts to being lost. Duplicate packets can appear in the channel as a result of retransmissions
by TCP.

This paper is organised as follows. Section 2 provides an introduction to TCP connection
management. Section 3 reviews related work. Section 4 describes the scope and assumptions
made for creating the CPN model. Sections 5 provides a detailed description of the CPN
model that is organised in a hierarchy. Section 6 discusses alternative modelling approaches and
identifies our chosen methods by showing the reasons. Finally, Section 7 concludes this paper.

2 TCP Connection Management

TCP is a connection-oriented protocol. Before data transfer begins, a connection needs to be
set up between two end points. An end point is identified by a pair comprising an IP address
(a 32-bit integer assigned to each host in the Internet) and a port number (a 16-bit integer that
identifies a process within a given host). The pair comprising an IP address and a port is known
as a socket [28]. A connection between two end points is identified by a pair of sockets.

TCP uses a three-way handshake [34] to open a connection, that is, three segments are
exchanged by the two communicating entities. The three-way handshake is used to prevent the
connection from being opened by an old duplicate segment from an earlier connection instance
[36]. A TCP connection is full duplex allowing concurrent and independent data flow in both
directions. After finishing sending data, each TCP entity closes the connection in one direction
and can still receive data from the other direction. The connection is fully released when both
ends close in an orderly manner and the procedure is known as orderly release. The connection
establishment, release and abort procedures are known as TCP Connection Management, which
is critical for reliable data delivery.

2.1 TCP Segment Format

A TCP segment is a sequence of 32-bit words, comprising header fields and a data field. As
shown in Figure 2 (taken from Figure 3 of [28]), the first six rows make up TCP header fields
that provide control information for end-to-end communication and the last row is the data field
that contains a portion of data from an application.

At the beginning of the header fields are the 16 bit source and destination port fields. They
are used to identify two communicating application processes running over a connection. Every
octet of data sent by the TCP entity is assigned a sequence number. The sequence number field
contains the sequence number of the first data octet in the segment, known as the sequence
number of the segment, which is used to detect duplicate segments and preserve the order of the
segments in the stream. The acknowledgement number field contains the next sequence number
that the sender of the segment is expecting to receive. The 4 bit data offset field contains the
header length in 32 bit words and it indicates where the data starts. The reserved field is kept
for future use.

58

32 Bits

Sour ce Port Destination Port

Sequence Number

Acknowledgment Number

U|A|P|R|S|F
ODf?tS; Reserved [R|C|S|S|Y]I Window
G|K|H|T|N|N
Checksum Urgent Pointer
Options Padding
Data

Figure 2: TCP segment format

Next to the reserved field are six 1-bit control flags: URG (urgent), ACK (acknowledgement),
PSH (push), RST (reset), SYN (synchronisation), and FIN (finish). The URG flag if set, is used
in conjunction with the urgent pointer field, to indicate to the receiver the position of data
in the octet stream that should be processed immediately upon arrival. The ACK flag if set,
indicates that the acknowledgement number field of the segment is valid. A segment with PSH
on indicates that it contains ‘push’ data which the sending TCP entity has transmitted without
waiting for its send buffer to be filled, and the receiving TCP entity should pass immediately
to its application for processing without waiting for its receive buffer to be full. When set, the
RST flag informs the receiver of the segment to reset the connection.

A TCP connection is initiated by a segment which has the SYN flag set. The sequence
number of the SYN segment is the initial sequence number for the connection. Instead of being
set to 0, the initial sequence number is selected according to the value of a clock that the host
runs. This is to reduce the probability of old duplicate SYNs from earlier connection instances
being accepted by the current connection. A segment with the FIN flag set indicates that the
sender of the segment has no more data to send. As there can be duplicate SYNs or FINs in the
channel as a result of retransmissions, a SYN and a FIN segment each is assigned one sequence
number to prevent confusion as to whether the SYN or FIN has been received before. The
SYN occupies one sequence number before the first data octet of the segment, whereas the FIN
occupies one sequence number after the last data octet of the segment [28]. Note that the SYN
and FIN are the only control bits that are assigned a sequence number.

The window field contains the maximum number of data octets that the sender of the segment
is able to receive and is used for flow control. The checksum field is used to verify that the
segment is received without bit errors. Next to it is the urgent pointer field that indicates where
the urgent data (if there is any) ends. The options field conveys information (e.g., maximum
segment size [8]), which the sending TCP entity uses to negotiate with the other TCP entity.
The padding field is used to ensure that the TCP header ends and data begins on a 32-bit
boundary.

2.2 Transmission Control Block

To provide reliable data delivery, TCP maintains the state of a connection by storing a set of
variables in a data structure known as the transmission control block (TCB) [28]. Among these
variables, the important ones for TCP connection management are: send oldest unacknowl-
edged (SND_UNA), send next (SND_NXT), initial send sequence number (ISS) and receive next
(RCV_NXT).

When TCP transmits a segment, it increments SND_NXT. When TCP accepts a segment, it
increases RCV_NXT and sends an acknowledgement. Upon the receipt of an acknowledgement,
TCP advances SND_UNA. The amount by which each of the three variables is increased is

59

given by the length of the segment in octets, i.e., the sequence space for both data and control
bits SYN and FIN. The SYN and FIN bits each occupy one sequence number [28]. If the
SYN or FIN segment does not carry data, the amount by which each variable is advanced is
1. For example, if a SYN is sent with sequence number 100, we have SND_NXT=100+1 at the
sender side. When the SYN is received, we have RCV_NXT=100+1 at the receiver side. The
receiver then sends its own SYN with sequence number of say 300 and acknowledgement number
(denoted by SEG_ACK) of 100+1. When the sender receives the acknowledgement to its SYN,
the oldest unacknowledged number SND_UNA is updated with the acknowledgement number of
the incoming segment, i.e., SND_UNA=SEG_ACK.

2.3 Functional Behaviour

In this section, we describe how TCP establishes and releases a connection.

2.3.1 Connection Establishment

A connection is initiated by the TCP entity (TCP client) that sends a SYN segment, and is
responded to by the peer TCP entity (TCP server). The TCP server receiving a SYN segment
has no way of telling whether it is a new SYN to open a connection or an old duplicate SYN from
an earlier incarnation. Therefore it must ask the other side (through the exchange of segments)
to verify the identity of the SYN. This process is illustrated in Figure 3 (a) with a time sequence
diagram.

On the left side of the figure is the TCP client (the initiator of the connection) and on
the right is the TCP server. Time progresses down the page. The client’s states (CLOSED,
SYN_SENT and ESTABLISHED) are written to the left of the vertical line representing the
client. A similar convention is adopted for the server side. User commands (i.e., active open and
passive open) are written in parentheses, indicating when they occur. In Fig. 3, the sequence
number and the acknowledgement number (when relevant) are included with the segment name.
For example, the ACK segment has sequence number ISS14+1 and acknowledgement number
ISS2+1, and is written as ACK(ISS1+1,ISS2+1).

Client Server TCPEntity 1 TCP Entity 2
CLOSED CLOSED CLOSED CLOSED
(active open) (active open)

(passive open) (active open)

SYN_SENT SYN_SENT |SYN(Sss)
x W‘ LISTEN - >% SYN_SENT
SYN_RCVD
SYNACK (ISS2, 1SS1+1)
/ SYNACK (1552, 1ss1+1)_| SYN_RCVD

SYN_RCVD
- SYNACK (ISS1, 1S52+1)

ACK (ISS1+1, ISS2+1)
ESTABLISHED
ESTABLISHED
ESTABLISHED

(a) Normal establishment (b) Simultaneous establishment

ESTABLISHED

Figure 3: Message sequences for TCP connection establishment

Initially no connection exists between the client and the server, so both TCPs are CLOSED.
After receiving the active open command from its user, the TCP client creates a TCB that
stores its state information for a connection. It selects an initial send sequence number, ISS1,
according to a 32-bit clock, and sends out a SYN segment with this initial sequence number.
The TCP client then moves into the SYN_SENT state, waiting for a corresponding connection
acknowledgement from the TCP server.

On the other side of the connection, the TCP server has already received a passive open

60

command from its user and has created its own TCB. The TCP server has changed state from
CLOSED to LISTEN, and is waiting for an incoming connection request. When the SYN
segment arrives, the server chooses its own ISS and sends a segment which has both SYN
and ACK bits set. As shown in the figure, this segment, usually referred to as a SYNACK, has
sequence number ISS2 and acknowledgement number ISS1+-1, confirming the receipt of the SYN
segment. The server then enters the SYN_RECEIVED (abbreviated to SYN_RCVD) state. If
the passive open command had not been issued when the SYN segment arrives, the TCP server
will remain in CLOSED and the connection will not be established.

After receiving the SYNACK segment from the server, the client sends a segment with
the ACK bit set. It has sequence number ISS1+1 and acknowledgement number ISS2+1, ac-
knowledging the receipt of the SYNACK. The client then enters the ESTABLISHED state from
SYN_SENT. Upon receiving the ACK segment from the client, the server enters ESTABLISHED
from SYN_RCVD. The connection is now fully set up, allowing data to be transferred in both
directions.

TCP also allows both sides to initiate a connection simultaneously. As shown in Figure 3 (b),
the TCP entity on each side receives an active open command from its user and sends a SYN
to the other side before receiving the SYN from the other side. The SYNs from each side have
initial sequence numbers ISS1 and ISS2. On sending the SYN, each TCP entity changes state
from CLOSED to SYN_SENT. After receiving the SYN from the other side, each TCP entity
changes state from SYN_SENT to SYN_RCVD and acknowledges the SYN with a SYNACK. The
SYNACK from TCP entity 1 to TCP entity 2 has sequence number ISS1 and acknowledgement
number 1SS2+1, and the SYNACK from TCP entity 2 to TCP entity 1 has sequence number
ISS2 and acknowledgement number ISS1+1. Upon receipt of the SYNACK from the other side,
both TCP entities go into ESTABLISHED, indicating the connection is fully set up.

2.3.2 Connection Release

When a user at either end of a connection is finished sending data, it closes the connection.
TCP connection release is an orderly operation, which involves two transactions. Firstly, TCP
entity 1 initiates the procedure and TCP entity 2 responds to it. This transaction closes the
connection from entity 1 to 2. Next, once it has transmitted all its data, TCP entity 2 initiates
the procedure to close the connection in the opposite direction. The orderly release ensures that
all data is received before the connection is fully closed.

We now describe the release procedure in detail. As shown in Fig. 4, the procedure begins
with a user issuing a close command to its TCP entity (i.e., TCP entity 1), which results in a FIN
segment being sent out. Assume the FIN segment has sequence number x and acknowledgement
number y. If no data is transferred by TCP entity 1 after the connection is established (see Fig. 3
(a)), then x=ISS1+1 and y=ISS2+1. After sending the FIN, TCP entity 1 changes state from
ESTABLISHED to FIN_WAIT_1, waiting for an acknowledgement of the FIN segment. After
receiving the FIN from TCP entity 1, TCP entity 2 enters the CLOSE_WAIT state (waiting for
its user to close the connection) and sends out ACK segment. The ACK has an acknowledgement
number x+1, that is, the sequence number of the FIN segment plus 1. The sequence number of
the ACK depends on whether data has been sent before the FIN is received. If no data is sent,
then the ACK has sequence number y, as shown in the figure.

TCP entity 1 receives the ACK from TCP entity 2 and changes state from FIN_-WAIT_1 to
FIN_WAIT_2, waiting for a connection release request from TCP entity 2. Meanwhile, data can
still be transmitted from TCP entity 2 to 1 (but not vice versa) until the user TCP entity 2
issues a close command. After its user issues the close command, TCP entity 2 sends out a FIN
segment. Suppose no data is sent by TCP entity 2 after it receives the FIN from TCP entity 1.
The sequence number of the FIN sent to TCP entity 1 is the same as that of its preceding ACK
segment. The acknowledgement number of the FIN is also x+1. Next TCP entity 2 enters state
LAST_ACK, waiting for an acknowledgement of the FIN, that is, the last acknowledgement for

61

TCP Entity 1 TCP Entity 2 TCP Entity 1 TCP Entity 2

(close) ESTABLISHED ESTABLISHED
FIN_WAIT_1) (o)
FIN_WAIT_1 FIN (x, ¥) (doss)
CLOSE_WAIT - - ' FINGX) | FIN_WAIT_1

P
FIN_WAIT_2 FIN (y, x+1) LAST_ACK
CLOSING ACK (y+1, x+1) CLOSING
ACK (x+1,y+1)
TIME_WAIT
ACK (x+1,y+1)
\ TIME_WAIT
CLOSED N TIME_WAIT

CLOSED CLOSED

CLOSED

(a) Normal release (b) Simultaneous release

Figure 4: Message sequences for TCP connection release

the connection.

Upon receipt of the FIN segment, TCP entity 1 enters the TIME_WAIT state and responds
to the FIN with an ACK segment that has sequence number x+1 and acknowledgement number
y+1. When TCP entity 2 receives the ACK from TCP entity 1, it enters CLOSED from
LAST_ACK. TCP entity 1 remains in TIME_WAIT for two maximum segment lifetimes (MSL)
before entering CLOSED. The MSL is the longest time that a segment can exist in the Internet
(about 2 minutes).

It is possible for each end of a TCP connection to terminate the connection simultaneously,
as shown in Fig. 4 (b). TCP entity 1 receives a close command from its user and sends out a
FIN segment with sequence number x and acknowledgement number y. Before the FIN arrives,
TCP entity 2 receives a close from its user and sends out a FIN with acknowledgement number
x. After TCP entity 1 sends its FIN and if TCP entity 2 does not send data, then the FIN
sent by TCP entity 2 has sequence number y, as shown in the figure. After receiving the FIN
from the other end, each TCP entity sends out an ACK and changes state from FIN_ WAIT 1 to
CLOSING. Because the FIN consumes one sequence number, the sequence number of the ACK
is the sequence number of the FIN from the same side plus 1. The acknowledgement number
of the ACK is the sequence number of the FIN from the other side plus 1. Both TCPs enter
state TIME_WAIT on receipt of the ACK from the other side, and go to CLOSED after two
maximum segment lifetimes.

3 Related Work

Previous work on modelling TCP Connection Management is mainly confined to the establish-
ment procedure. The modelling of the release procedure is either greatly simplified or omitted
from most investigations. Almost all the previous work is based on early versions of TCP, to
which continuing changes were made. The official TCP specification [3,28] is not well examined
in terms of functional correctness.

In their pioneering work on verifying TCP connection management, Sunshine and Dalal [34]
address the design issues of early versions [5-7] of TCP, which was still evolving at that time.
They conducted informal case studies (manual walk-through of the sequences) to investigate the
functional behaviour of TCP’s connection establishment procedures. However, simultaneous
opening of connections is not addressed in [34], nor the orderly release procedure. This signifi-
cantly simplifies the study of TCP connection management. Sunshine and Dalal [34] envisaged
that to verify TCP with greater certainty, a precise model of the protocol would be required
and appropriate analysis techniques developed.

Based on another early version [27] of TCP, Schwabe [29] specified the connection estab-
lishment protocol using the SPEX language [30]. SPEX is based on a non-deterministic state
transition system. However, the simultaneous open Schwabe investigated is different from that

62

in the current TCP specification [28], where TCP sends a SYNACK rather than an ACK upon
receiving a SYN.

Kurose and Yemini [18] specify the connection establishment protocol based on another
version [26] of TCP. They only consider the client-server situation and specify the protocol
using a PASCAL-like language.

In [19], Lin specifies a connection establishment protocol [34,37] using finite state machine
and verifies the connection will be eventually established through logical deduction. Again, only
the client-server connection is examined. In addition, the behaviour of the TCP server is not
correctly specified as it does not go through the LISTEN state.

Mehrpour and Karbowiak [22] model and analyse an early and simplified version [33] of TCP
using Numerical Petri Nets [35]. They model TCP segments by their names without sequence
and acknowledgement numbers. Hence, the model is not precise with these important details
missing. Also the model is incomplete in that none of the arc inscriptions are given.

In [23,24], Murphy and Shankar specifies a transport protocol using a state transition model
and invariant and progress assertions. The protocol is similar to TCP only in connection estab-
lishment procedures.

Smith [31,32] specifies TCP Connection Management using the general timed automaton [20]
and follows a phase-based approach, which is different from the way TCP is specified in [28].
This makes it difficult to validate this model against the official TCP specification. As well as
excluding simultaneous opening of connections and user aborts, Smith’s specification does not
address the following details that are part of TCP’s functional behaviour and can have an impact
on its logical correctness: (1) the release of a connection in any state including SYN_RCVD,
(2) entering TIME_WAIT from FIN_WAIT_1 upon receiving a FINACK segment, as specified
in RFC 1122 [3], and (3) state variable SND_UNA (send oldest unacknowledged number) that
is used to check whether an ACK is a duplicate segment.

In [13], we provide a quite simple model of TCP Connection Management based on the
FSM diagram [28]. The model does not include protocol details such as sequence numbers and
state variables. A more detailed model enhanced with these features is given in [2,14], which
is structured according to a state-based approach. Using an event processing approach, this
paper re-structures the model in [2,14] and incorporates the retransmission mechanism and
lossy channel. The contribution of this paper is two-fold: (1) providing a formal specification
of TCP Connection Management, and (2) providing some insights into the modelling process,
which may be helpful for specifying complex protocols in general. The analysis of the TCP
Connection Management CPN is addressed in [12] and in [2,13, 14] for previous versions of the
model.

4 Modelling Scope and Assumptions

We limit the scope of our model to Connection Management. Thus any parameters or segment
fields associated with data transfer are not modelled. We consider five of TCP’s user commands:
active open, passive open, send, close and abort. Command send is considered since it changes
the state of the TCP entity from LISTEN to SYN_SENT. We do not model the receive and
status commands, as they are not concerned with connection management. We consider that
security and precedence are always met and only consider a single connection between users.
This allows us just to model the commands without their parameters.

We only model those fields in the TCP segment header and the state variables that are related
to TCP connection management. A segment contains a sequence number, an acknowledgement
number and the control bits: SYN, ACK, FIN and RST. Apart from the ACK bit, there can
only be one control bit set in a segment.

In contrast with data transfer, TCP connection management only consumes a small portion
of the sequence number space. Thus we can choose a small value of initial sequence number for

63

each TCP entity so that sequence numbers will not wrap during a connection. Therefore we
don’t need to implement modulo arithmetic. We also assume that the receive window is always
big enough to accept incoming segments, since TCP Connection Management only consumes a
small portion of the sequence numbers, and omit modelling the window field in segments and

implementing checks associated with window size.
Table 1 describes the TCP states and variables that we model in this paper.

| | Name | Description
State CLOSED Connection does not exist.
LISTEN Waiting for a connection request.
SYN_SENT Waiting for a matching connection response after having sent a
connection request.
SYN_RECEIVED | Waiting for a confirming acknowledgement after having both re-
ceived a connection request and sent a response.
ESTABLISHED The connection is opened and data transfer can begin.
FIN_WAIT_1 Waiting for a connection release request or its
connection release request acknowledgement from the remote TCP.
FIN_WAIT_2 Waiting for a connection release request from the remote TCP.
CLOSE_WAIT Waiting for a connection close command from the local user after
receiving a connection release request from the remote TCP.
CLOSING Waiting for a connection release request acknowledgement from the
remote TCP which responds to the release.
LAST_ACK Waiting for a connection close request acknowledgement from the
remote TCP which initiates the release.
TIME_WAIT Waiting for 2MSL (maximum segment lifetime) to close.
State SND_NXT Next sequence number to be sent
Variable | SND_UNA Oldest unacknowledged sequence number
RCV_NXT Next sequence number to be received
ISS Initial send sequence number

Table 1: TCP states and variables

In the life cycle of a connection, each TCP entity goes through a subset of the states listed
in the table. State variable RCV_NXT is used to validate the sequence number of an incoming
segment. Variables SND_UNA and SND_NXT are used to validate the acknowledgment number
of an incoming segment. The ISS variable is the initial sequence number that each TCP entity
selects for a connection.

Finally we assume that segments can be lost, delayed, and re-ordered while traversing the
network.

5 TCP Connection Management CPN

As shown in Fig. 5, the CPN model contains a declarations page and 19 CPN pages. The 19
CPN pages are organised into a tree structure, which comprises 4 hierarchical levels.

The root of the “tree” is the TCP_Overview page, which is at the first level of the hierarchy
and provides an abstract view of TCP and its environment. The second level contains the
Event_Processing page that models TCP’s responses to user commands, segment arrivals and
retransmission timeout. The User_Commands page comprises three subpages: open, close and
abort. The Segment_Processing page models the processing of segments for each of TCP’s 11
states. The Retransmissions page models TCP retransmitting various segments. The CPN
model contains 7 places, 19 substitution transitions and 95 executable transitions.

5.1 Overview Page

As shown in Fig. 6, the TCP_Overview page comprises 6 places, 2 substitution transitions and 2
executable transitions. Places User_1 and User_2 model TCP user commands. A token in a user

64

(Hierarchy#10010) (Declarations#0)

F []

TCP'1
{{ Event_Processing#2
TCP2

User_Ct

Open#6

Abort#8

Segment_Processing

Segment_Processing#4

LOSED
CLOSED#9

|

ISTEN
LISTEN#10

i”

SYN_SENT
™ SYN_SENT#11

|

YN_RECEIVED
X SYN_RECEIVED#12

iw

ESTABLISHED
{{ ESTABLISHED#13

i

IN_WAIT_1

i

(FIN_WAIT_1#14

IN_WAIT_2

i”

> FIN_WAIT_2#15

CLOSE_WAIT

|

1 CLOSE_WAIT#16

LOSING

|

b CLOSING#17

LAST_ACK

|

b LAST_ACK#18

IME_WAIT

i

> TIME_WAIT#19

Retrans_Timeout

Figure 5: The Hierarchy page of TCP Connection Management CPN

place represents a command to be issued to the TCP entity. Place TCB, typed by colour set
TCB, models the transmission control block that contains all the state variables for a connection.
Places H1_H2 and H2_H1 model TCP buffers and all network storage (e.g., router buffers). H1_H2
indicates the data flow direction is from host 1 to host 2, whereas H2_H1 indicates data flow in
the opposite direction. Transitions Lossy_Channell and Lossy_Channel2 can be switched on and
off by their guards to model lossy and non-lossy channels respectively.

The TCP entities are modelled by two substitution transitions named TCP'l and TCP’2.
Places User_1 and User_2 are both assigned to place User in Figure 7. Place H1_H2 is assigned to
place Out for TCP’'1 and place In for TCP’2, and place H2_H1 is assigned to place In for TCP’1l
and Out for TCP'2.

Listing 1 defines the declarations associated with the TCP_Overview page. The declarations
are divided into four groups: (1) user commands, (2) TCP segments, (3) Transmission Control
Block, and (4) initial send sequence numbers.

The first group has one colour set, COMMAND (line 2). It defines the type of places User_1
and User_2. The second group comprises lines 3 — 12. CTLbit (line 4) defines the four control
bits SYN, ACK, FIN and RST in TCP headers. ACKflag (line 5) defines the status of the
ACK bit, i.e, on or off. The introduction of the ACKflag facilitates checking the ACK status

65

1'A_Open 1P_Open
COMMAND COMMAND

TCB HS
‘ s

(CLOSED, (CLOSED,

{RCV_NXT=0, SsEG {RCV_NXT=0,
SND_NXT=0, SND_NXT=0,
SND_UNA=0, :@ SND_UNA=0,

ISS=ISS_tcpl},
cls)

1SS=ISS_tcp2},
cls)

o
.3
a

Lossy_Channell

[false]

S 1%}
@
@

@
2
a

2_H1)¢ J

Lossy_Channel2

[false]

Figure 6: Top level CPN page: TCP_Overview

of an incoming segment, which is a step involved in TCP segment processing (see Section 3.9
of RFC 793). An alternative way of modelling the ACK bit is to combine it with the ACK
field of a segment (line 10) by defining a union colour set, which comprises a string type and
an integer type. If the ACK bit is off, then the ACK field is assigned string “null”. Otherwise,
it is assigned an integer. This then eliminates the need of defining ACKflag. This approach is
more abstract than the use of the ACKflag which is aligned with the format of the TCP header,
which contains an ACK bit field. SEG_CTL (line 6) is the product of the two colour sets CTLbit
(line 4) and ACKflag (line 5). Int (line 7) defines the integer type. Places H1_H2 and H2_H1
are typed by SEG (line 8 — 11) which represents TCP segments. SEG is a record type that has
three entries: SEQ, ACK and CTL. SEQ and ACK model the sequence and acknowledgement
numbers respectively and each have the integer type Int. CTL (line 11) models the control
information in the TCP header fields and it is typed by SEG_CTL (line 6). Finally, variable seg
(line 12) represents any TCP segment in the channel and has the type SEG. An example of a
TCP segment is {SEQ = 20, ACK = 11, CTL = (SYN,on)}. This segment is a SYNACK segment
that has sequence number 20 and acknowledgement number 11.

The third group comprises lines 13 — 26. STATE (line 14 — 16) is an enumeration type that
contains all the TCP states. SV (line 17 — 21) defines the four TCP variables RCV_NXT, SND_NXT,
SND_UNA and ISS that are part of the TCB. Note that the ISS of a TCP entity is the basis for
determining the initial values of its SND_NXT and SND_UNA for a connection and is also used to
determine the initial value of the RCV_NXT of its peer TCP entity in a connection. LISTENstat
(line 22) stores the history of the TCP state, that is, whether or not it has been in LISTEN. It
contains the two values lis and cls, which indicates it has been in LISTEN or not respectively.
This is used to determine the next state TCP enters from SYN_SENT or SYN_RCVD upon
receiving a RST segment. TCB (line 23) is a product of colour sets STATE, SV and LISTENstat.
Variable s (line 24) represents a TCP state. Variable v (line 25) represents the four-tuple of
TCP state variables. An example of the value of such a variable is (21,11,10,10) where 21 is
the receive next number (RCV_NXT), 11 is the send next number (SND_NXT), the first 10 is
the send oldest unacknowledged number (SND_UNA) and the second 10 is the initial sequence
number (ISS). Finally, variable i (line 26) is a variable that runs over LISTENstat.

The initial send sequence number for each TCP entity is represented by ISS_tcpl (line 28)
and ISS_tcp2 (line 29) respectively. We chose a small value of ISS for each TCP entity (i.e,
10 and 20), such that the sequence number space is within the range of Int and no sequence
number wraps.

66

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Listing 1: Colour sets for places on page TCP_Overview

(* User Commands *)

color COMMAND = with A_Open | P_Open | Close |
(* TCP Segments %)

color CTLbit = with SYN | RST | ACK | FIN;

color ACKflag with on]off;

color SEG_CTL product CTLbit*ACKflag;

color Int = int;

color SEG = record
SEQ: Int =*
ACK: Int *

CTL: SEG_CTL;
var seg: SEG;
(* Transmission Control Block x)

color STATE = with CLOSED | LISTEN | SYN_SENT

CLOSE_WAIT | LAST_ACK | FIN_W1

CLOSING | TIME_WAIT;

color SV = record

RCV_NXT: Int =*

SND_NXT: Int *

SND_UNA: Int *

ISS:Int;
color LISTENstat = with lis|cls;
color TCB = product STATE*SV*#LISTENstat;
var s: STATE;
var v: SV;
var i:LISTENstat;

(* Initial Sequence Numbers %)

val ISS_tcp1l 10;

val ISS_tcp2 20;

67

5.2 Event Processing Page

The Event_Processing page (Fig. 7) contains 4 places and 3 substitution transitions. All the
places are defined as port places and are linked with their corresponding socket places on the
TCP_Overview page through port assignment, as already indicated.

Each substitution transition on the Event_Processing page is named by an event and is
expanded onto the subpage bearing the same name at the third hierarchical level.

COMMAND Hs

- » User_Commands

[lln]

TCB HS
e | _Processing |g

HS
| Retrans_Timeout

y SEG SEG

@ @D G

Figure 7: Second level CPN page: Event Processing

5.3 User Commands Processing

The processing of user calls Open, Close and Abort are modelled by the User Commands page
(Fig. 8) and its three subpages: Open, Close and Abort. The processing of command Send is
included in the Open page (Fig. 9). If the issuing of a command in a particular state results in
an error message being returned to the user (which means that the operation is not allowed),
then this operation is not modelled as it has no affect on TCP’s functional correctness.

HS
> Open

COMMAND TCcB 1S

(um e ‘ Close out) [P
[P)n] (P[]

HS

Abort

Figure 8: The User Commands page

On the Open page (Fig. 9), transition Passive_Open models the TCP server responding to the
user command passive open. The transition is enabled if there is a token P_Open in place User
and a token (CLOSED,v,i) in place TCB. When transition Passive_Open occurs, TCP changes
state from CLOSED to LISTEN and variable 7 is set to lis, indicating TCP has been in LISTEN.
Transition Active_Open models TCP’s behaviour in response to an active open command, which
results in a SYN being sent. Segments are modelled with ML functions and are described
in Listing 2 of Section 5.4. Transition Send models TCP’s behaviour in response to a send
command, which results in a SYN being sent and TCP entering SYN_SENT from LISTEN.

The Close and Abort pages are modelled in a similar way.

68

P_Open

(CLOSED,v.i)

(LISTEN,v lis)

COMMAND TcB

<

[l] [PIwo]

(CLOSED,v,i)

SYNseg(v)

(SYN_SENT,

{RCV_NXT=0,

SND_NXT=#ISS(v)+1,

SND_UNA=#ISS(v),

1SS=#ISS(W)}i)

SYNseg(v)

(LISTEN, v lis)

(SYN_SENT,
{RCV_NXT=0,

SND_NXT=#ISS(v)+1,
SND_UNA=#ISS(v),
Send ISS=#ISS(V)},i)

Figure 9: The Open page

5.4 Segment Processing Pages

The Segment Processing page is shown in Fig. 10. It has 11 substitution transitions, each of
which is expanded onto a fourth-level subpage, describing the processing for each TCP state.
We illustrate a fourth-level page using a very simple page, the LISTEN page, shown in Fig. 11.

CLOSED <
LISTEN <

~
SYN_SENT g
SYN_RECEIVED |
<
ESTABLISHED |

N

TcB A 4
CCB FIN_WAIT_1 <
<
Fle] 4

FINWAIT 2 g

~
CLOSE_WAIT |g
CLOSING <
<
LASTACK |q
TIME_WAIT |g
<

y SEG

Q Feg(») EE

Figure 10: The Segment Processing page

Transition Rcv_ACK models TCP receiving an ACK segment which has the RST bit off
and sending out a RST. TCP remains in state LISTEN with state variables unchanged. If the
incoming segment contains a RST, TCP ignores it and remains in state LISTEN. This is modelled
by transition Rcv_RST. Transition Rcv_.SYN models TCP sending out a SYNACK segment upon
receiving a SYN from the TCP client. The inscription of the arc from transition Rev_SYN to
place Out represents the SYNACK segment, which is modelled by function SYNACKseg that takes
the record of the current state variables as its argument.

Listing 2 illustrates the ML functions that model TCP segments that have been mentioned
so far. They appear as inscriptions on the arcs between transitions and the channel places In
and Out. We model a segment using a function which returns a record rather than a tuple. An
element of the record can then be referred to by a meaningful name rather than a number as in

69

10

11

12

[#1(#CTL(seg))<>RST
andalso #2(#CTL(seg))=on]

Rcv_ACK

(LISTEN,v.i) seg

RSTackoff(seg)

[#1(#CTL(seg))=RST]

LISTEN,v,
{ bl Rev_RST P seg

[#CTL(seg)=(SYN,off)]
Rcv_SYN

(LISTEN,v,i)

(SYN_RCVD,
{RCV_NXT=#SEQ(seg)+1,
SND_NXT=#ISS(v)+1,
SND_UNA=HISS(v),

sEG
1SS=#ISSM)}i) ISS=HSS(N @ [P][ou] n [P]

SYNACKseg({RCV_NXT=#SEQ(seg)+1,
SND_NXT=#ISS(v)+1, y SEG
SND_UNA=#ISS(v),

Figure 11: The LISTEN page

the case of a tuple. This makes the model more understandable. Gordon [11] adopts a similar
approach in modelling the Wireless Transaction Protocol (WTP) [40].

Listing 2: ML functions for TCP segments

fun SYNseg(v: SV):SEG =
{SEQ
ACK = 0,

#ISS(v),

CTL =(SYN,off)};

fun SYNACKseg(v: SV):SEG =

{SEQ = #ISS(v),
ACK = #RCV_NXT(v),
CTL = (SYN,on)};

fun RSTackoff (seg: SEG):SEG =

{SEQ = #ACK(seg),
ACK = 0,
CTL = (RST,off)};

Function SYNseg (lines 1 — 4) models the SYN segment. It takes the current state variable v
as argument and returns a value of type SEG (see Listing 1). The SYN’s sequence number field,
SEQ, is an initial sequence number, specified in ML as #ISS(v) (see Listing 1). As a SYN is
the first segment sent to establish a connection, it does not have an acknowledgement number.
We model this by assigning 0 to the acknowledgement number field, ACK. It is safe to do so
because the control field, CTL, is assigned (SYN,off), where off indicates that the number in
the acknowledgement number field is invalid. The other segments are defined in a similar way.

5.5 The Retransmissions Page

The retransmission mechanism is modelled in Fig. 12. Place Retrans_Counter is a new place
that models the number of retransmissions occurred in one of the five states: SYN_SENT,
SYN_RCVD, FIN_WAIT_1, CLOSING and LAST_ACK. Each time a segment is retransmitted,
the number in the retransmission counter is increased by 1.

Transition Timeout_Retrans models retransmitting a segment in one of the following states:
SYN SENT, SYN RCVD, FIN_ WAIT _1 and LAST_ACK, under the condition that the counter
has not yet reached its maximum retransmissions value for that state. Transition Closing_Retrans
models retransmitting a FIN in state CLOSING. It occurs when the TCP entity enters CLOS-

70

10

11

12

13

14

15

16

17

[(s=SYN_SENT orelse
s=SYN_RCVD orelse
s=FIN_W1 orelse
s=LAST_ACK) andalso
n<Max(s)]

" (s.n+1) RetransSeg(s,v)
v Timeout_Retrans ~
D e TUE—

(s.n)
[n<MaxRetransFIN1-m]
(CLOSING. v FINrety
(Vi) Closing_Retrans (CLOSING,n+1) retrans(v)
~
(CLOSING,n)
SEG
v y RC 1(SYN_SENT,0)++ h 4
TCB (FIN_W1,m) e 1'(SYN_RCVD,0)++
TCB Retrans, = B
() Cour@ T'(FIN_WL,0)++ out) [P Jou]
_ (FIN_W1,m) _ 1'(LAST_ACK 0)++
[Plwo] & 3 1/(CLOSING,0) Y
(CLOSING.v.i) Closing_Abort (CLOSING,0) RSTseg(v)
(CLOSED, - B CLOSING,n
{RCV_NXT=0, [n=MaxRetransFIN1-m] (¢)
SND_NXT=0,
SND_UNA=0,
1SS=0} cls)
[s=SYN_SENT orelse
s=SYN_RCVD orelse
s=FIN_W1 orelse
S=LAST_ACK]
sV, 5.0) RSTseq(v)
svi) oo) 9() Y,
<
(CLOSED, (s,Max(s))

{RCV_NXT=0,
SND_NXT=0,
SND_UNA=0,
1SS=0},cls)

Figure 12: The Retransmissions page

ING and the number of retransmissions that occurred in CLOSING plus that occurred in
FIN_WAIT 1 is less than the maximum retransmission value set on the FIN.

When the counter reaches its maximum retransmission value, the TCP entity aborts the
connection, i.e., entering CLOSED and sending a RST. When the abort occurs, the number of
retransmissions contained in the retransmission counter is reinitialised to 0. Transition Clos-
ing_Abort models TCP aborting the connection in CLOSING. Transition Abort models TCP
aborting the connection in any of the four states, as specified in it guard.

The declarations of the CPN model are given in Listing 3.

Listing 3: Declarations for the Retransmissions page (Fig. 12)

color RS subset STATE with [SYN_SENT ,SYN_RCVD ,FIN_W1,CLOSING,LAST_ACK];
color RC = product RS*Int;

var n:Int;

var m:Int;

val MaxRetransSYN = 2;

val MaxRetransSYNACK = 2;

val MaxRetransFIN1

n
N

val MaxRetransFIN2

n
N

fun Max(s:STATE) = case s
of SYN_SENT => MaxRetransSYN
| SYN_RCVD => MaxRetransSYNACK
| FIN_W1 => MaxRetransFIN1
| LAST_ACK => MaxRetransFIN2;
fun RetransSeg (s:STATE,v:SV) =
if s = SYN_SENT then SYNseg(v)
else if s = SYN_RCVD then SYNACKseg(v)

else FINretrans (v);

71

Colour set RS (line 1) defines a subset of STATE, which includes the five states in which
the retransmissions occur. Colour set RC (Line 2) is the type of place Retrans_Counter and it is
a product of RS and Int that associates the number of retransmissions with a state. Variable
n (line 3) represents the number of retransmissions occurred in a particular state. Variable m
(line 4) models the number of retransmissions of a FIN occurred in state FIN_WAIT_1 while the
TCP entity enters CLOSING. The maximum number of retransmissions for various segments
are given in Lines 5 — 8. The official TCP specification [3, 28] does not mention the maximum
number of retransmissions for SYN, SYNACK and FIN. We set the number to two for SYN
and SYNACK according to Wright and Stevens [39] and the same for FIN. Note that the
retransmission mechanism can be disabled by setting the maximum number of retransmissions
to a value less than 0 (e.g., —1) so that transitions Timeout_Retrans and Closing_Retrans in
Fig. 12 will not be enabled. Function Max() (Lines 9 — 13) takes a state as argument and
returns the maximum number of retransmissions that can occur for a particular segment in that
state. Finally, function RetransSeg() (Lines 14 — 17) models a segment retransmitted. It takes
a state and a set of state variables as argument and returns a segment that is retransmitted in
that state.

6 Discussion of Modelling Approaches

The process of modelling complex protocols such as TCP is non trivial. The first version of the
model is published in [13] and then it has gone through numerous revisions and several major
changes including being restructured. There can be more than one modelling approach with
pros and cons existing at different stages of the process. Therefore it is necessary to weigh the
advantages and disadvantages of an approach and choose the most appropriate one. However,
this is only half the story. When we use one approach, we may not be aware of its potential
disadvantages that can surface and cause trouble at a later stage of the modelling process. It
becomes of paramount importance to discover and identify new approaches to overcome problems
that occur at later stages in the modelling process, especially when it is expensive to switch to
another approach. This section discusses the possible approaches that can be used during the
modelling stage of TCP connection management, gives the reason behind choosing an approach,
and illustrates how to overcome the drawbacks of an approach with concrete examples.
We discuss the modelling approaches in the context of TCP connection management. Nonethe-

less, these approaches may be useful for modelling complex protocols in general.

6.1 Modular Organisation

The idea of modular organisation is to break down a CPN model into separate modules, each
having a specific functionality. Modularity reduces the complexity of specifying a protocol or
system. One way to define a module’s functionality is according to the phase in which the
protocol is operating. Because TCP has three phases, namely, connection establishment, data
transfer and connection release, the CPN model of TCP can be decomposed into three modules,
each corresponding to one phase. This approach is intuitive and it is adopted in [22,32] and our
early work [13]. However, we discovered that it is difficult to check whether the CPN model is a
faithful reflection of RFC 793 [28] with this approach, because Section 3.9 of RFCT93 specifies
the protocol on an event processing basis. That is, actions are taken by TCP entities in response
to user commands, segment arrivals and internal timeouts. Using the phase based approach, it
becomes more difficult to conduct consistency checks when the protocol is modelled in greater
detail.

Another modelling approach we have used is the state-based approach. We use one CPN
page to model TCP’s behaviour for one state, for example, the processing of a user command
and/or an incoming segment. This approach is close to the way TCP is specified using its state
diagram and is easier to read and check for consistency between the model and the specification.

72

Many ITU-T Recommendations (e.g., X.25 [4]) and the WAP Forum [38] adopt the state-based
approach as a standard way of specifying protocols. Gordon [11] uses the state-based approach
in modelling the Wireless Transaction Protocol (WTP) [40]. However the disadvantage of the
state-based approach is that the event processing common to a set of states will be replicated
in the model, resulting in redundancy.

A way to overcome this problem is to fold the transitions whose occurrences are triggered by
similar inputs (e.g., segment arrivals) and yield similar outputs (e.g., sending segments). In the
case of TCP connection management, we achieved a significant reduction (about two thirds) in
the number of transitions. However, the folding of transitions inevitably breaks the easy-to-read
structure following the state-based approach and makes the model difficult to understand.

To make a trade-off between redundancy and readability, we choose to fold the transitions
that are involved in TCP’s processing of user commands but adopt the state-based approach for
TCP’s processing of incoming segments. This approach is demonstrated by the TCP Connection
Management CPN in Section 5.

6.2 Hierarchical Construction

Modules are often organised in a hierarchy, which conveys a top-down design philosophy. De-
sign/CPN supports this by allowing users to create substitution transitions that are macros,
each of which represents a piece of net structure (i.e., module). In Fig. 5, the TCP_Overview
page is called a superpage, whereas the Event_Processing page is a subpage. When two sub-
stitution transitions are expanded onto the same subpage, the subpage is then instantiated to
replace each of the substitution transitions at compile time.

A model that has both superpages and subpages is a hierarchical net. Each hierarchical net
has an equivalent flattened net, which can be obtained by replacing each substitution transition
by its subpage. Duplicate net structures will appear when a subpage is used as a page instance.
This can be seen by observing the structure of the model. For instance, in Fig. 5, we see TCP’1
and TCP’2 as inscriptions of the arc from the TCP_Overview page to the Event_Processing
page. This means that the net structure on Event_Processing will appear twice when the model is
compiled. It is important to check the hierarchy page of the CPN to ensure that the duplicate net
structures are indeed needed. To explain this, we give an example. There are four states where
TCP retransmissions can occur: SYN_SENT, SYN RCVD, FIN. WAIT_1 and LAST ACK. A
modelling mistake that can be easily made is associating the Retransmissions page with each of
the four state pages as their subpages. This results in unnecessary duplicate net structures and
is in fact a modelling error.

6.3 Modelling Identical Protocol Entities

The state machine of each TCP entity is identical. Hence we only need to model one of them,
which can then be instantiated twice to represent two TCP entities. This is done by using
the page instance technique discussed above. As the CPN model contains over 90 executable
transitions, using the page instance technique significantly reduces the number of transitions
that would be needed with an ordinary approach. Correspondingly, it reduces the time of
syntax checking, the time of switching from the editor to the simulator and to the occurrence
graph analyser, which is used over and over again when conducting analysis. Moreover, it saves
a lot of time and effort in debugging and maintaining the model. However, as we shall discuss in
Section 6.4, this approach has difficulty modelling different Initial Send Sequence (ISS) numbers.
We devise new methods to overcome this problem. Given that we believe its advantages outweigh
its disadvantages, we adopt the page instance technique throughout our modelling process.

73

6.4 Modelling Initial Sequence Numbers

The TCP entity at both sides of the connection has its own ISS. It is selected by the TCP
client after the client receives an active open command from its user, and it is selected by the
TCP server when the server is in state LISTEN and receives a SYN segment from the client.
In a simultaneous open situation, each TCP entity chooses its ISS on receiving an active open
command from its user.

If we use the page instance technique to create one CPN that can be instantiated, the ISS
will be identical for each side. To accommodate the more general case, i.e., modelling the TCP
entities with different ISS values, we create two extra TCB places on the TCP_Overview page
(Fig. 6), one for each side, and preset the value of each ISS. By changing the preset value of ISS,
we can model different ISSs for each side as well as identical ISSs. We call this method static
ISS assignment. It has been used in previous versions of the model [13,14].

Another way of overcoming the identical ISSs problem is dynamic ISS assignment, which
eliminates the need to create the two extra places. The ISS entry of the initial marking of place
TCB on the Event_Processing page (Fig. 7) is assigned a random number function that generates
a random integer each time it is evaluated. When the Event_Processing page is instantiated twice
and the random number function is evaluated, each TCP entity has its own ISS, which may or
may not be the same because it is chosen arbitrarily. However, due to the randomness of the
initial sequence number, we find it is difficult to examine the state space, which may be different
each time it is generated. This is the drawback of using a random number function.

7 Conclusions

In this paper, we have presented a formal model of TCP connection management at a significant
level of detail. The model precisely captures TCP behaviour as defined in RFCs 793 and
1122. TCP segments are represented by functions that contain information including sequence
numbers, acknowledgement numbers and 4 control bits; and the transmission control block is
modelled as a triple comprising TCP state, a set of state variables and a listen status. The CPN
model also takes into account retransmissions and lossy channel.

Due to the protocol’s inherent complexity, a good structure is the key to the model’s readabil-
ity. We have illustrated the use of hierarchical CPNs to structure the model, taking advantage
of symmetry, to just specify the connection management procedures once, but call them for
each TCP entity by using page instances. This reduces the complexity of the model and eases
maintenance. The detailed part of the model is structured on an event processing basis, that
is, according to TCP’s response to user commands, segment arrivals, and internal timeouts.
The state-based approach is adopted in modelling TCP’s behaviour in response to incoming
segments. The advantage of this approach is good readability and ease of validating the model
against the TCP specification. We also discussed the modelling decisions regarding modelling
identical protocol entities and initial sequence numbers.

References

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. Request for Comments
2581, IETF, April 1999.

[2] J. Billington, G.Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol Verifi-
cation. In Lectures on Concurrency and Petri Nets: Advances in Petri Nets, volume 3098
of Lecture Notes in Computer Science, pages 210-290. Springer-Verlag, 2004.

[3] R. Braden. Requirements for Internet Host — Communication Layers. RFC 1122, IETF,
October 1989.

74

[4]

[5]

[6]

[7]

(8]

[11]

[12]

[13]

[14]

[20]
[21]

CCITT. Interface between DTE and DCE for Terminals Operating in the Packet Mode on
Public Data Networks, 1977. ITU Recommendation X.25.

V. G. Cerf. Specification of TCP Internet Transmission Control Program, TCP (Version
2), March 1977. available from DARPA/IPTO.

V. G. Cerf, Y. K. Dalal, and C. A. Sunshine. Specification of Internet Transmission Control
Program. INWG Note 72, December 1974.

V. G. Cerf and J. B. Postel. Specification of Internet Transmission Control Program, TCP
(Version 3), January 1978. available from USC/ISI.

D. E. Comer. Internetworking with TCP/IP: Principles, Protocols, and Architecture, vol-
ume 1. Prentice Hall, Upper Saddle River, NJ, 4th edition, 2000.

S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, IETF, 2003.

S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery Algorithm.
RFC 2582, IETF, April 1999.

S. Gordon. Verification of the WAP Transaction Layer using Coloured Petri Nets. PhD
Thesis, University of South Australia, Australia, November 2001.

B. Han. Formal Specification of the TCP Service and Verification of TCP Connection
Management. Draft PhD Thesis, University of South Australia, Australia, August 2004.

B. Han and J. Billington. An Analysis of TCP Connection Management Using Coloured
Petri nets. In Proceedings of the 5th World Multi- Conference on Systemics, Cybernetics
and Informatics (SCI’2001), pages 590-595, Orlando, Florida, July 2001.

B. Han and J. Billington. Validating TCP Connection Management. In Proceedings of the
Workshop on Software Engineering and Formal Methods, Adelaide, Australia, volume 12 of
Conferences in Research and Practice in Information Technology, pages 47-55, June 2002.

V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance. RFC
1323, IETF, May 1992.

K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, Vol-
ume 1, Basic Concepts. Monographs in Theoretical Computer Science. Springer-Verlag,
Berlin, 1997.

J. F. Kurose and K. W. Ross. Computer Networking - a Top-Down Approach Featuring the
Internet. Addison-Wesley, U.S.A, 2nd edition, 2003.

J. F. Kurose and Y. Yemini. The Specification and Verification of a Connection Estab-
lishment Protocol Using Temporal Logic. Protocol Specification, Testing, and Verification,
pages 43-62, 1982.

H. P. Lin. Modelling a Transport Layer Protocol using First-order Logic. In Proc. of
the ACM SIGCOMM Conference on Communications Architecture and Protocols, pages
92-100, September 1986.

N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

J. Martin, A. Nilsson, and I. Rhee. Delay Based Congestion Avoidance for TCP.
IEEE/ACM Transactions on Networking, 11(3):356-369, 2003.

75

[22]

[23]

[24]

H. Mehrpour and A. E. Karbouiak. Modelling and Analysis of DOD TCP/IP Protocol
Using Numerical Petri Nets. In Proc. IEEE Region 10 Conf. on Computer Communication
Systems, pages 617-622, Hong Kong, September 1990.

S. L. Murphy. Service Specification and Protocol Construction for a Layered Architecture.
PhD Thesis, University of Maryland, USA, May 1990.

S. L. Murphy and A. U. Shankar. Connection Management for the Transport Layer:
Service Specification and Protocol Verification. IEEE Transactions on Communications,
39(12):1762-1775, December 1991.

V. Paxson. Known TCP Implementation Problems. RFC 2525, IETF, March 1999.

J. Postel. Transmission Control Protocol Version 4, February 1979.

J. Postel. DoD Standard Transmission Control Protocol. RFC 761, IETF, January 1980.
J. Postel. Transmission Control Protocol. RFC 793, IETF, September 1981.

D. Schwabe. Formal Specification and Verification of a Connection Establishment Protocol.
In Proc. of the Seventh Symposium on Data Communications, pages 11-26, New York, NY,
USA, 1981. ACM Press.

D. Schwabe. Formal Techniques for Specification and Verification of Protocols. PhD The-
sis, Report CSD 810401, Computer Science Department, University of California at Los
Angeles, 1981.

M. A. Smith. Formal Verification of Communication Protocols. Formal Description Tech-
niques IX: Theory, Applications and Tools, pages 129-144, October 1996.

M. A. Smith. Formal Verification of TCP and T/TCP. PhD Thesis, M.I.T., USA, September
1997.

W. Stallings. Department of Defense (DOD) Protocol Standards, volume 3. Howard
W. Sams & Company, 1978.

C. A. Sunshine and Y. K. Dalal. Connection Management in Transport Protocols. Computer
Networks, 2(6):454-473, December 1978.

F. J. W. Symons. Modelling and Analysis of Communication Protocols Using Numerical
Petri Nets. PhD Thesis, University of Essex, May 1978.

A. S. Tanenbaum. Computer Networks. Prentice Hall, 4th edition, 2003.

R. S. Tomlinson. Selecting Sequence Numbers. In Proc. of ACM SIGCOM/SIGOPS Inter-
process Communications Workshop, pages 11-23, Santa Monica, California, March 1975.

WAP Forum. Wireless Application Protocol Architecture Specification. Web site: http:
//www.wapforum.org.

G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Vol.2 : The Implementation.
Addison-Wesley, Reading, MA, 1995.

WAP Forum. Wireless Application Protocol Wireless Transaction Protocol Specification,
June 2000. Web site: http://www.wapforum.org.

76

Application of Coloured Petri Nets
in Systems Biology

Thomas Runge?
1Brandenburg University of Technology Cottbus, Department of Computer Science,
chair of data structures and software dependability
Postbox 10 13 44, 03013 Cottbus, Germany
thomas.runge@informatik.tu-cottbus.de
phone: +49 355 69 3885
fax: +49 355 69 3830
2Technical University of Applied Sciences Berlin, Department of Bioinformatics,
Seestrasse 64, 13347 Berlin, Germany

September 2004

Abstract

Computer aided analysis is necessary to improve the understanding of the complex biochemical
processes. The often used kinetic models in biochemistry are based on differential equations. The results
of such a kinetic model are often non-reliable on account of unreliable data or of inconsistencies in the
used model. Therefore, other supplementary methods are indispensable. A detailed qualitative analysis
should be done, before a quantitative (kinetic) analysis is made. This paper extends and refines the
construction strategy of a coloured Petri net model of a metabolic network at a steady state, previously
introduced in[[1l]. In a steady state the internal compounds’ concentrations are constant and therefore
bounded. Each chemical reaction is typically active at steady state. Therefore, its naturally to demand
a bounded and live model. A systematic procedure, exploiting the place transition nets’ T-invariants
to construct an behavioural equivalent bounded and live coloured net, is presented. The application of
P-invariant or model checking analysis techniques of such a model results in usable information, which
are helpful for model validation.

Keywords:coloured Petri net, T-invariant, P-invariant, metabolic pathway, glycolysis pathway

1 Introduction

Due to the rapidly growing amount of biologically experimental possibilities and the related amount of
created experimental data, it is mandatory to transmit data in simple, analysable, and possibly validated
models. Therefore, bioscientists need practicable, theoretically well-founded methods to construct, prove,
analyse, and simulate a model, which is based on experimental data.

Today, there exist many quantitative models, which typically employ differential equations. Such models
need kinetic parameters to describe and analyse a biochemical system. A restriction on hand of these models
is often the imperfect and imprecise knowledge of the kinetic parameters, because up to now it is difficult
to observe the processes in a cell at molecular level in vivo. Contrary, a qualitative analysis offers the
possibilities of a structural analysis based only on information of the simple, atomic chemical reactions and
their stoichiometric parameters. A qualitative analysis can be used for an intermediate validation of the given
model structure.

Many different approaches for qualitative or quantitative analysis methods have been developed. For
example, a graph theoretical approach is described in [7]. A mathematical approach is introduced in [22],
computing a set of generating vectors that describe the conical steady-state solution space for flux distribu-
tions in a metabolic network, the so-called extreme pathways. But only Petri nets have been applied for both
kinds of analysis. For example, quantitative Petri net models are introduded in [&]land [6], qualitative Petri
net models are described in [18], [12], [10] ahdI[15], using place/transition nets, and in [11] and [21], using
coloured Petri nets.

77

In the latter papers the feasibility is examined to construct a coloured Petri net model of the glycolysis and
the pentose-phosphate pathways in an erythrocyte cell. A deep understanding of the given network is used
for a construction by handf an environment for the modelled reaction chains. An experimental software
package, called SY written by H. Genrich [4], was used to improve and validate the model stepwise. The
work done by Voss et al. and Genrich was the starting point for the current paper. An extended, more
general model of the glycolysis serves as case study. Starting from unbounded and live place/transition net
a behavioural equivalent bounded and live coloured Petri net will be constructed.

The contributions of this paper are the following: (1) The basis of modelling relative reaction rates,
which are necessary to get a bounded system model, is the dynamic conflict avoidance principle. Two
systematic, but different dynamic conflict avoidance principles are introduced to get a bounded and not live
coloured Petri net, the so-called core model. (2) The core model is extended to a system model, which
contains additionally an environment behaviour. An automatic way to construct a similar environment as
the environment, constructed by Voss et al. by hand, is introduced, exploiting the place/transition nets’ T-
invariants to construct a behavioural equivalent bounded and live coloured net, the so-called system model.

It is assumed that the reader is familiar with place/transition (P/T) nets and coloured Petri nets (CPN).
Otherwise, related literature is recommended [20], [13], and [14].

The paper is organized as follows. In the next section, the essential biochemical and Petri net terms and
concepts are recalled. In section three the motivation to combine place/transition nets and coloured Petri
nets is described. The used case study - an extended glycolysis - is introduced in section four. Section five
presents two modelling strategies to get a coloured Petri net core model and compares them shortly. Addi-
tionally, some possible problems during the construction are explained. Section six introduces an automatic
algorithm to compute an environment to extend the coloured Petri net core model and reach the aim of a
bounded and live model. Finally, conclusions are given in section nine.

2 Biochemical and Petri Net Prerequisites

Metabolic networks are one of the main types of molecular biological networks. Theretabolisnrefers

to the processes, which acquire and utilize energy (e.g. in form of ADP and ATP) and small building units
(e.g. R5P). In general, a metabolic network consists of many interconnected atomic reactions. An atomic
chemical reaction is described by its input compounds (also called educts), its output compounds, and the
stoichiometric relations between themn#etabolic pathwais defined by its set of involved reactions and its

input and output compounds. The educts, the intermediates, and the products ametdtelites Accord-

ing to the applied abstraction level, different specifications of an atomic reaction can be used. An observed
metabolic pathway is characterized by a setxiernalandinternalmetabolites. An external metabolite is a
substance, which can be supplied and removed to/from the model/pathway. A suppliable external metabolite
is calledsourceand a removable external metabolite is catbétk All other metabolites are internal and

can only be transformed into another internal or external metabolite(s). The sodaiigitousmolecules

are an exception. Those are the small molecules Ii@,HNADH, ADP, and CQ found in sufficiently large
amounts in all organisms. These metabolites can be treated as external or as internal metabolites, depending
on the desired environment behaviour. For ease of distinction, Voss et al. hamed the remaining substances
primary [21].

The regulation of the reaction rates of a reaction is controlled by one or more enzymes. In a qualitative
model it is assumed that the system is ist@ady stateA steady state is a special system state, in which all
internal substance’ concentrations are constant. The total production rate of each internal metabolite is equal
to its total consumption rate at a steady state. Therefore, the enzyme regulation is not explicit considered in
a qualitative analysis. For this reason, only the set of atomic reactions with their stoichiometric parameter
are necessary to construct an analysable qualitative model and to perform a qualitative analysis.

Reaction Types

There exist three types of chemical reactions. The three types result in three different model components of
an atomic reaction, shown in the glycolysis model later.

The classical, not reversible chemical reaction is namedersible reaction

Two reactions are hidden behind the so-catadbrsible reactionThey are two complementary reactions
catalyzed by the same enzymes, but often located in different compartments of a cell. The point is that, if
they are in the same compartment, only one of them is thermodynamically preferred on account of the

78

surrounding irreversible reactiongquilibrium reactionsare similar to reversible reactions. The difference
is that both reactions may be active at the same time and at the same location of a cell.

These three reaction types are important for a correct quantitative analysis. The equilibrium and re-
versible reactions have different effects on the dynamic behaviour of the model. The behaviour of a re-
versible reaction is mostly similar to the behaviour of an irreversible reaction. But in biochemical context
both reactions are often not distinguished. A reason may be the assumption that an equilibrium reaction can
also be considered as irreversible reaction, if it is enclosed by irreversible reactions.

How to represent Metabolic Networks with Petri nets?

Metabolites are modelled as places and by convention the primary metabolites are represented by a larger
place and the ubiquitous molecules with a smaller one. Chemical reactions are modelled as transitions and
the stoichiometric relations as weighted arcs between places and transitions. The token of a net represents
a unit of the corresponding metabolite of the given place. Reddy et al., Koch et al., and Heiner et al. have
applied these simple transformation rules on biochemical systems to get P/T nets.

Some Petri Net Properties and their Biochemical Interpretation

The invariant analysis of Petri nets plays a special role in biochemical context. Only positive invariants
are considered. The positiypdace-invariant(P-invariant) is defined by the integer solution vectp(place
vector) of the equatiog-C = 0,y > 0, wherebyC is the (PxT) incidence matrix. The symhslimeans that
no component of the vector is smaller than zero and at least one component of the vector is greater than zero.
In biochemical context the mass conservation law is represented by a P-invariant. The mass conservation
law states that the mass of an isolated system will always remain constant, regardless of the processes acting
inside the system. The amount of tokens on a place states for the mass of the corresponding metabolite.
Today, great attention in biochemistry lies on the minimal posttigasition-invariants(T-invariant) in
the Petri net theory, elementary modes in biochemistry, respectively. T-invariants are defined by the positive
integer solution vectors (transition vector) of the equatidd-x = 0,x > 0. The P- resp. T-invariarttis
calledminimal if there exists no P- resp. T-invariamt= 0 with supgw) C supfz), wherebysupgx)
(read as support of x) describes the set of nhon-zero componextsil the largest common divisor of all
components ok is equal to one. A T-invariant gives structural insights in the represented pathway. The
following definition of minimal biochemical pathways corresponds to the minimal T-invariant of Petri nets.
Elementary modekave been defined as the minimal set of enzymes that could operate at steady state.
These modes can be calculated using the convex analysis with special conditions. A tool, which is able to
calculate elementary modes, is METATOOL, which is described by Pfeiffer et al.fin [16].
In the following, only minimal T-invariants are considered. In metabolic Petri net models T-invariants
(elementary modes) can be classified into two groups and for each group two types.

e Trivial T-invariant

— Environment T-invariant
If the environment strategy of type | is used, explained below, a trivial T-invariant exists for each
pair of supply and removal transitions of a ubiquitous compound.

— Reaction T-invariant
A trivial T-invariant exists for each equilibrium reaction. These invariants are internal cycles. In
a place/transition nets, a trivial T-invariant exists also for a reversible reaction.

o Non-Trivial T-invariant

— 10 T-invariant
An IO T-invariant describes the exchange fluxes from one or more primary source metabolites to
one or more primary sink metabolites.

— Internal T-invariant
An internal T-invariant represents an internal cycle within the modelled system. Reaction T-
invariants are special internal T-Invariants.

The following additionally introduced notions are essential for this papematking of a Petri net
assigns a multi-set of tokens to each place. Each marking represents a system state of the net. A marking,
which is reachable from the initial marking, is callddad markingif no transition is enabled.

79

Informally, astructural conflictis present, if at least two transitions exist, which have at least one com-
mon pre-place. Alynamic conflicis present, if a marking, reachable from the initial marking that realizes
the structural conflict, exist. Aritical dynamic conflicis informally defined as a dynamic conflict, whereby
at least one alternative solution can be result in a dead marking. An example is shown iflfigure 2.

3 Modelling Aspects

A direct modelling of the given set of reactions yields normally a bounded, not reversible and not live Petri
net. It is calledcore model The core model is place-bordered, because each pathway starts and ends with a
set of metabolites. This model is not sufficient for a detailed analysis. So, an extension of the core model by
an environment is necessary. The extended model is cajlkddm model

With the knowledge about sources and sinks it is possible to extend the core model by an environment.
Such an environment is only used to increase the set of useable results by applying of Petri net analysis
possibilities, for example reachability graph/occurrence graph analysis and/or model checking techniques.
Two useful types of environments are introduced.

Environment Type |

The simplest model of an environment is a transition bordered Petri net with an empty marking. This
means that for each primary source a pre-transition without pre-places and for each primary sink a post-
transition without post-places are added. It is assumed that each ubiquitous compound is a sausagkand
Reproducing the empty marking of the core model is the reason for this assumption, which is equal to the
assumption that all supplied molecules must be, possibly in another form, be removed. An unbounded and
possibly live Petri net model is the result of this modelling. The liveness property depends on the source/sink
specification of the primary metabolites and the modelled pathways. If no diseases are modelled, which is
currently done, then the net must be live for the empty initial marking, otherwise the selected reactions
and source/sink specifications are unfavourably chosen. For example, no molecule can be transformed into
another without a foregoing supply of them.

The resulting model can be analysed by calculation of T-invariants, whereas the T-invariants can be
classified by four types, which were previously described. Each calculated EA-T-invariant is expected to
reproduce the empty marking. No useable result is produced by applying of P-invariant and other extensive
analysis methods (e. g. model checking), because the resulting model is always unbounded. Some isolated
case studies can be found In[12],[10] ahd|[19]. To fill the lack of P-invariant analysis the second type of
environment was developed.

Environment Type II

On account of the inspection of metabolic networks at a steady state the intermediates’ concentrations are
constant and therefore bounded. For this reason the aim of the second environment type is to get a bounded
and live Petri net model, which is behavioural equivalent to the model with environment type I. The net
with environment type |l is behavioural equivalent to a P/T net with environment | of the same considered
metabolic network, if the T-invariants/elementary modes (without border transitions) of the P/T net are also
included in the coloured net, but on account of the environment type possibly in a summarized form. To
reach the aim of a bounded and live model without an explicit enzyme control, it is necessary to limit the
amount of supplied metabolites and to include relative reaction rates in an arbitrary way in the model. The
relative reaction rates are used to avoid dead markings, which can arise through the restriction of the amount
of supplied source molecules and through an unfavourable solved dynamic conflict. An example is given
in figure[2. To avoid dynamic conflicts in a compact description, coloured Petri nets are used for this case
study.

The environment is used to conserve the steady state. Unfortunately, through this type of environment
it is possible that only one minimal T-invariant, a summarized version of all I0-T-invariants of the system
model with environment type |, exists within a coloured Petri net.

The first attempt by using coloured Petri nets was made by Voss et al. [21]. The construction of the
environment was made stepwise and by hand with much knowledge about the modelled system. In this
paper an automated calculation of the environment of type Il is shown by using knowledge from a P/T net
system model with environment type I.

80

The resulting model can now be analysed by P-invariant, model checking or other analysis techniques
that require a finite state space or the boundness property. The results of the analysis are useful for model
validation and naturally these results increase the knowledge about the considered system.

Combination of Place/Transition Nets and Coloured Petri Nets

In this paper a combination of analysis, simulation and modelling techniques of coloured and P/T Petri
nets is used to get a new coloured model, which fulfils the requirements of quantitative and qualitative
analysis. Only a small subset of the coloured net possibilities, provided by Desigri/CPN [1], is necessary for
a qualitative modelling and analysis of a metabolic network. Only properties or features of coloured Petri
nets, especially of Design/CPN, are used, which enables an unfolding to a P/T net.

The place transition nets’ T-invariants are exploited to construct a behavioural equivalent bounded and
live coloured net. The behavioural equivalence has no relation to an (un-) folding process.

It is well known that an equivalence relation ((un-) folding) exists between coloured and P/T nets. On
account of the equivalence of the P/T nets and coloured Petri nets, each of the described environment types
can be expressed with both net classes. But the combination of the advantages of both classes makes a
modelling and validation easier.

The tool Design/CPN_[1] is used to construct the coloured Petri nets and the tool PED [3] is used to
construct the P/T nets.

Useful Properties of Both Net Classes

An advantage of the P/T nets is the possibility to calculate invariants in a simple way. INA, which can be
found in 2], is such a calculation tool.

Compactness is one of the great advantages of coloured Petri nets. Compactness means that a smaller
net for the same content as for P/T nets is reachable, if coloured Petri nets are used. Especially, for the later
presented biochemical models it gets a clearer model. For example, after an unfolding of the coloured net,
additional transitions or places in a P/T model may exist for each token colour. For this reason a coloured
Petri net is longer human readable as a P/T net by increasing the net size.

The possibility to execute code, which is able to modify the state of the net, or a time concept are
examples of some extensions of coloured Petri nets, provided by Design/CPN. These possibilities will not
be explained in detail now, but these are the reasons why a coloured net can be used for quantitative analysis
and simulation. It is a great advantage, if the fundamental model/data structure must not be changed for
guantitative and qualitative analysis.

Another disadvantage of P/T nets are showriin [19]. It was shown that for P/T nets not every possible
P-invariant is biochemically interpretable by using the direct mapping from the reaction formulas to the P/T
net. Each P-invariant of a biochemical coloured Petri net model must be biochemically interpretable, if
additional knowledge about metabolite conservations are used during the modelling process. The modelling
of such knowledge is very easy and without adding new places or transitions realizable in contrast to a P/T
net. For example, the conservation of the ADP-part of ATP can be very easy expressed by a special arc
inscription to/from a ubiquitous compound. The figlfe 1 shows an example reaction with such conservation
knowledge. The constant value P and the other arc inscriptions are used to distinguish the transport of
molecules. Hence, a P-invariant for ATP and ADP should be exists by using this additional knowledge about
conservations.

Until now, a disadvantage of coloured Petri nets is the absence of some analysis tools, which are able to
calculate P- or T- invariants. First attempts to verify P- and T-invariants of coloured Petri nets was made by
Genrich, with an experimental software package (called SY), and Voss etlal. [21]. It should be noticed that
only a verification of an expected T- or P-invariant could be realized. No calculation of a T- or P-invariant is
possible with SY.

It should be noticed that a T-invariant of a P/T net contains only an amount of occurrences of transitions.
A T-invariant of a coloured net contains additionally information about binding elements (a concrete variable
- value assignment) for a transition. To distinguish between them, a T-invariant (P/T) stands for a T-invariant
in a P/T net and a T-invariant (CPN) stands for a T-invariant in a coloured net.

The construction of a bounded and live coloured Petri net using two different methods will be demon-
strated in the next sections.

81

(* Declarations *)

(*gl obal col our set definitions*)
color CS=with A| H| P

(* col our subset definitions*)
color X = subset CS with [A]

(*variabl e definitions*)
var x: X

G6P_1

Figure 1: An irreversible Reaction expressed by a CPN
reaction hk:Gluc+ ADP — G6P + ATP+H

4 Case Study Glycolysis

The glycolysis is one of the main metabolic processes in human cells. In this paper we use the following
selected pathways, which are described in standard biochemistry books, for a case study.

GP tk: GA + ATP — GAP + ADP +H
hk: Gluc + ATP— G6P + ADP + H F6PP

pgi: G6P— F6P hk2: Fruc + ATP— F6P + ADP + H
pfk: F6P + ATP— FBP + ADP + H GGIP

al: FBP— DHAP + GAP

tpi: DHAP « GAP

gapA: GAP + Pi + NAD— NADH + H + BPS
pgk: BPS + ADP— PG3 + ATP
bpgm: BPS— DPG +H

bpgp: DPG + H20— PG3 + Pi
gpm: PG3— 2PG

eno: 2PG— H20 + PEP

pyk: PEP + ADP + H— ATP + Pyr
Idh: Pyr + H + NADH « Lac + NAD
F1PP

scrK: Fruc + ATP— F1P + ADP + H
flpa: F1P— DHAP + GA

galK: Galac + ATP— Galacl1P + ADP + H
gal: GalaclP— G1P

pgm: G1P— G6P

PPP

g6pdh: G6P + NADP- 6PL + NADPH + H
6pgl: 6PL + H20— 6GP + H

6pgd: 6GP + NADP— NADPH + CO2 + Ru5P
rpi: RuSP«— R5P

rpe: RuSP— Xu5P

tkt: XuSP + R5P— GAP + S7P

tal: GAP + S7TP— F6P + E4P

tkt2: Xu5P + E4P— GAP + F6P

Table 1: Formulas of Atomic Reactions, the Modelling Basis

The considered pathways are the glycolysis pathway (GP), the pentose-phosphate-pathway (PPP), the
fructose-1-phosphate-pathway (F1PP), the fructose-6-phosphate-pathway (F6PP), and the galactose-glucose
interconversion pathway (GGIP). Fructose (Fruc), galactose (Galac), and their pathways interact with the
glycolysis. All the individual reactions take place in the cytoplasm of a cell. Glucose-6-phosphate and/or
fructose-6-phosphate are intermediate products of all described pathways. The described pathways start
always with glucose (Gluc), fructose (Fruc) or galactose (Galac). Reaction products are lactate (Lac), pyru-
vate (Pyr) and Ribose-5-phosphate (R5P). The gluconeogenesis - the nearly inversion of the glycolysis - is
not modelled, because some reactions of them do not take place in the cytoplasm of a cell. Moreover, the
gluconeogenesis is only active in liver cells! [5] serves as biochemical reference for this paper. T table 1
shows the considered set of atomic reactions. Some simple sequences will be later summarized.

5 Modelling Strategies of the Core Model

Two steps are necessary to get a system model. The first one is to construct a core model with all biochemical
information, which are available. The second step is to calculate an environment for a core model. A third
verification step, using the notions of effects and defects, can be additionally made to get a stronger confi-
dence with the system model (not shown). In this section two systematic methods of modelling metabolic

82

networks to get a core model are introduced and discussed. Before doing this a short description of the
problems is given, which arise by the limitation of source metabolites.

To get a live model it is necessary to avoid each possible dead marking under the prerequisites that the
source metabolites are bounded. However, the general behaviour, represented by the T-invariants of the P/T
net with environment I, must be conserved. Two strategies to construct a core model are introduced by
avoiding each critical dynamic conflict.

SUA

a) no dead marking
reachable

b) dead marking
reachable

reg E

Figure 2: P/T Nets with Environment Types | (a) and Il (b)

a) The general behaviour is defined by the T-invariants: T1 = {suA, r1, r2, reC}; T2 = {2*suA, 2*r1, 2*r3, t4, reE}. The net is live and
unbounded.

b) A behavioural equivalence is not reached on account of a critical dynamic conflict between r2 and r3 by marking (3*B). E. g. the
occurrence sequence ol = (r1, r1, r1, r3, r2, r2) yields in a dead marking. Therefore, the net is bounded and not live. The T-invariant
T3 is the summarized version of the 10-T-invariants T1 and T2. T3 ={s2, 3*r1, r2, 2*r3, r4, s1}

The figurd 2 shows two short P/T nets with two different environment types to demonstrate the problem
of unmeant dead markings. The point is that the general behaviour of the net b) must be the same as the
behaviour of the net a). But the P/T net b) contains at least one dead marking.

There exist two techniques to model relative reaction rates and thereby avoid dead markinfisst The
techniqueis to change the firing rule and to use information about the relative reaction rates. E. g. a time
concept can be used to model the given relative reaction ratesséduad techniquis to avoid critical
dynamic conflicts and use an initial marking of the net, which contains indirectly information about relative
reaction rates. This technique is demonstrated in this paper. The construction of a core model is described
in this chapter and the calculation of an initial marking is described in the next chapter. The first technique
is not considered in this paper, but additional information can be foundin [17].

Dynamic conflict detection is very expensive, but a dynamic conflict can only be realized on a structural
conflict. For this reason no dynamic conflict is calculated, but each structural conflict is intensive considered.
Each outgoing arc of a conflict place will be coloured to avoid a dynamic conflict. It should be noticed that
only conflict places are considered, which represent primary metabolites. It exist no dynamic conflict at a
ubiquitous compound, because it is assumed that the ubiquitous compounds are available in high enough
concentrations. Anymore, the primary metabolites determine the main pathways. All arc inscriptions from
and to ubiquitous places contain only special token colours with a given multiplicity, which represent con-
servations of molecules.

Voss et al. have constructed a CPN model avoiding dynamic conflicts. A coloured Petri net with conflict
avoidance has the same structure as the P/T net b) in fipure 2, but some additional inscriptions, especially the
arc inscriptions, are used. The CPN model is very compact and easy to read in contrast to a P/T net, which
would be the result of an unfolding process of the CPN model.

By using different token colours, a dynamic conflict can be avoided. A token colour has to represent
the information about the pathway on which the token has to go along. This strategy is not biochemically
motivated, because there exist no difference of the same molecule. But in biochemical context alternative
paths result often in different overall reactions and in different relative reaction rates, which allow us to
discriminate molecules of the same type.

83

The following two core models are constructed by hand, but systematically. Therefore, an algorithm
is easy to imagine for an automatic construction. The first one is the application of the method used by
Voss et al. in[[2l]. The second one uses additional information about T-invariants to reduce the effort of
construction. The conflict avoidance principle plays a large role during the construction. A calculation of
the environment is performed, later in this paper.

Conventions

First, a reduction of each sequence is done. A sequence results in no significant structural information. See
abbreviations for the reduced sequences.

Secondly, the following naming conventions are used to obtain clarity. Each occurrence of a logical place
(or fusion place) must have its own unique name (prerequisite of Design/CPN). Use the fusion set name with
an appended"_x", whereby x is the x-th occurrence of a place in a fusion set, as the name for a place.

Thirdly, by a reversible or equilibrium reaction the transition, which represents the main reaction direc-
tion, becomes the enzyme name, which catalyzes the reaction. The other direction becomes the same name
with the suffix "_rev". If more than one reaction (different educts, products) is catalyzed by one enzyme,
then an additional identifier must be used. The different reaction rates are the biochemical interpretation of
the different names.

Fourthly, Design/CPN does not allow place or transition names, which start with another character as a
letter. Therefore, another abbreviation as regular must be sometimes used (e.-g. B8&).

Fifthly, transitions, which have no relation to an 10 T-invariant and which are a part of a reversible reac-
tion, are removed. Those transitions have no contribution to the observed system. Therefore, the transitions
Idh_revandrpi_revare removed.

Sixthly, each place of the coloured net has the same standard col@8 getestriction of token colours
is indirectly given by the surrounding arc inscriptions of a place.

Variant |

The main construction principle of a core model, exploiting the P/T net with environment I, is the conflict
avoidance principle, used by Voss et al. Much knowledge about the modelled system is necessary. It is only
a principle and not a rule, because some non-critical dynamic conflicts must not be avoided. Look at figure
[4 at placeGAP. The conflict between the transitiopi_rev and all other post-transitions G/AP must not
avoided, because it exists an internal T-invariapt (rev andt pi), which reproduces the same marking as it

was beford pi_revhas been occurred.

color CS = with P|NP|C|H|HOIN|

A1|A5|A6|A7|A8|A9|AL0]|
A27|A28|A29|A210|
A37|A38|A39|A310;
color A2 = subset CS with [A27,A28,A29,A210];
color A3 = subset CS with [A37,A38,A39,A310];
color | = subset CS with [A1,A5,A6,A7,A8,A9,A10,

A27,A28,A29,A210, A37,A38,A39,A310];
color B = subset CS with [Al, A27,A28,A29,A210, A37,A38,A39,A310];
color D = subset CS with [A37,A38,A39,A310, Al, A6];
color E = subset CS with [A27,A28,A29,A210, A37,A38,A39,A310,

A7,A8,A9,A10];
color E1 = subset CS with [A29,A210,A39,A310,A9,A8];
color E2 = subset CS with [A27,A28,A37,A38,A7,A8];
color E3 = subset CS with [A27,A29,A37,A39,A7,A9];
color F = subset CS with [A7,A8,A9,A10, A5];
color G = subset CS with [A6, A7,A8,A9,A10 ,A5];
color K = subset CS with [A5,A6,A7,A8,A9,A10];
color C1 = subset CS with [A1,A5,A7,A8,A9,A10,

A27,A28,A29,A210, A37,A38,A39,A310];

var b:B;var d:D;var i:lvar e:E,var f:F,var g:G;,var kiK;
var a2:A2; var a3:A3;var el:El,var e2:E2; var e3:E3;var cl:C1;

Table 2: Declarations of Coloured Petri Net Core Model, Variant |

A token colour by this variant of modelling represents the sink as target and the back end of the path,
on which has to go on the net. For each involved arc of a conflict a separate token colour should be used.
To assure this, variables with disjoint ranges must be used. In this paper only variables are used to resolve
the conflicts. The figurg]4 shows the resulting model, using only the conflict avoidance principle, and the
figure[2 shows the corresponding global declarations of the net.

General Procedure - short abstract form

e First, each structural conflict must be determined and all primary paths are temporary coloured by the
same token colour.

e Secondly, determine all primary patias starting backwards from a conflict plageto the source
places, to get the set of token colowlsi TC, which can arrive the conflict plage Introduce new
token coloursiewT Cfor each output arc of the conflict place. Combine each token colouewf C
with each ofoldTC and change the arc inscription along the pathsFor each successor path of
the outgoing arc of conflict place write the token colour, which corresponds to outgoing arc, until
another conflict place or a sink is reached.

e Thirdly, repeat step 2 for each conflict.

Descriptions/Exceptions

Fifteen token colours are used to avoid all critical dynamic conflicts. An example of conflict solving follows.

The lower part of the model frolBPSto pyruvate and lactate is observed. It is easy to see that e

to Pyr two paths exist. EacPRyr can be transformed intbac. For this reason there exist four possible

paths in the lower part. Two paths transfoBRSto Pyr and two paths transforf@PSto Lac. Four colours

are needed for this part. Therefore, each token that rBR3must also represent one of the four paths in

the lower part. For examplé\2 represents the path througBpdh rpe, tkt, tal, tkt2, pfk and would be

represented by one token colour, if the lower part would not be exist. But with the lower part the token colour

A2 must be extended with the information about the four sub-paths, represented by an appended constant.
A special operation for this model is done. The pl&#®&Roc corresponds to no fusion set, although all

tokens on this place represenGaP molecule like the other places in the fusion 6&P. If GARocwould

be correspond to the fusion $BAP, it would be possible that the token on this place are consumed pi

before the transitional has occurred. If so, it is possible that not enough tok&¥R) are available to

transform all metabolites of the pentose-phosphate pathway (no occurreraiinfo pyruvate or lactate.

This problem can be classified. It exists, if an intermediate product occurs more than once in the partial net

representation of a considered T-invariant. The fi§lire 3 shows the pattern of this problem.

Figure 3: Pattern of a conflict within a minimal T-invariant.

The transitions t1, t2, t3, t4 are a part of a minimal T-invariant. If the transition t1 occurs, then it exist a
dynamic conflict between t2 and t4. If t4 occurs before t2 occurs and both belong to the same minimal
T-invariant, then a dead marking is possible. Otherwise, the occurrence sequence tl, t2, t3, t4 is harmless.

The problem (the conflict) can be avoided as shown with a special local place. A transition in relation to
their guard is able to transform a token from one colour to another colour. This can also be used to avoid such
problems. But this solution is not adequate enough and much more complex as a solution with a local place.
\oss et al. have an easier model, which does contain such a problem within the easiest form. It was solved
by such a transformation from only one token colour to only one another token colour. But if more token
colours at the involved place are possible, this solution can not be applied by using only arc inscriptions.

85

i PP i

GP, PPP, F1PP, F6PP, and GGIP

Variant |
galk . p ADP_1 p . hk 'y 2
' O @
i i NADP_1 NADPH_1
. pgm snp 2NP
i i G6P .
O T s)
) i H20_1 2'H b a2
G1P [k O g6pdh) Hs A6
HO —
pgm_rev c d
e 5 e[L e] o
ATP_3 H_5
OF 'O k e 4
Fruc_1 hk2 F6P_1 tkt2 A6

a2
O L] Q2 L] =

ATP_2 ADP_3

scrk

. ADP_4 ATP_4

ADP_5 ATP_5
e . P
H N O P pgK P . PG3 O gpm P . Pyr_1 Idh
e 3 e3
O O es (g 2 [| O
H 6 NADH_1 el H HO i’ Lac 1
- bpgm . H7 . N N ac-
e2 . e2 H20_3 H
H
P O Ons)
H20_2 () HO () Pi_2 NADH_2 NAD_2

Figure 4: Core Model, Variant |
conflict places: Pyr, BPS, GAP, Fruc, F6P, R5P, E4P, Xu5P, Ru5P, G6P, S7P

By this variant of systematic modelling only the information of structural conflicts of the previously
constructed P/T net with environment | is used. A discrimination of the T-invariants by using the token
colours is not possible. There exists no relation between them.

Variant I

Another idea to construct a core model from a P/T net with environment | is now introduced. As previously
suggested, minimal T-invariants of a P/T model can be used to construct a coloured Petri net core model.
The construction of a P/T net is very easy and straightforward. It is a direct reflection of the atomic reactions
with their stoichiometric parameter. The resulting P/T model must now be extended by the environment of
type . Hence, a T-invariant analysis is now possible. The calculated non-trivial minimal T-invariants (P/T)
represent the general behaviour and the basic structure of the modelled system. These T-invariants are used to
construct a core model without critical dynamic conflicts. It should be noticed that the T-invariant calculation
depends on the source/sink specification. Therefore, for the given case study all ubiquitous molecules are not
observed during the calculation of minimal T-invariants, because elsewhere much more invariants, but with
no more new structural information, would be calculated. In other words a sensible selection of minimal

86

T-invariants (elementary modes) in relation to the biochemical context is done. The todllINA [2] calculates
40 minimal T-invariants, whereby 8 minimal T-invariants are trivial (reversible or equilibrium reactions).
After inspection of these T-invariants it was realized that the transitaimgevandrpi_revonly occur in a

trivial T-invariant. For this reason they are removed.

Galac_1 Gluc_1 GP, PPP, F1PP, F6PP, and GGIP
. ATP_1 . Variant Il
x1 P . P X2
galk . p ADP_1 p . hk
H O
x1 x H NADP_1 NADPH_1

H1 : 2NP
O Xl " eep (O2NP O
= =0)
x5 ¢
. 1 © H20_1 x5

2'H
G1P x1 HOngdh . H3

pgm_rev

ATP_2 ADP_3

x4

P N
x4 gapA
. ADP_4
y ADPS ATP_5 O P ’4
H N Q PpgK P) paa gpm P Idh .
y y3 y
O O s] > e | O
H_6 NADH_1 Pyr 1 ‘
m . - . y i -
. H20_3 H
H
P Owns O
H20_2 () HO () Pi_2 NADH_2 NAD_2

Figure 5: Core Model, Variant Il

The basic idea is that a direct relation must be exists between the token colour and a T-invariant. A
token colour corresponds only to one minimal IO-T-invariant. For this reason almost each conflict can be
avoided, because each token denotes its pathway from a source to a sink. The following selected example,
the minimal IO-T-invariant38 demonstrates an exception.

t38 = {3*hk, 3*g6pdh, 2*rpe, 1*rpi, 1*tkt, 1*tal, 1*tkt2, 2* pfk, 2*tpi, 5*gapA, 5*bpgm, 5*gpm}

After occurring of three times dfk andg6pdh, RUP contains three tokens. Now a critical dynamic conflict
exists betweenpi andrpewithin the partial virtual net representation of the T-invaried&, containing only

nodes that correspond to the given T-invariant. To avoid such a conflict, more token colours must be used to
set the path, on which token colour belongs to. This is done by using d6&&4 andC38B for the given
example. Both colours belong to the given T-invariant, but each of them corresponds to a specific path within
the partial virtual net representation. Only such conflicts must be resolved under the assumption that a token

colour exists for each minimal T-invariant. Therefore, the most effort of search a pathway from a conflict
place backward to a source is avoided.

The figurg $ shows the resulting model of the current modelling strategy. The corresponding declarations
can be found in tablg]3. Omit the arc inscriptions without multiplicity and we get the corresponding P/T
net without an environment. In such a coloured Petri net an equilibrium reaction must result in the same
arc inscriptions (same token colours) at both corresponding transitipid |§i_rev and pgm pgm rev).
Otherwise no equilibrium of such a reaction can be reached. A reversible reaction must result into two
transitions with different arc inscriptions (different token colours), because the transitions correspond to
different T-invariants.

color CS = with P|NP|C|H|HO|N|
C9|C10|C11|C12|C13|C14|C15|C16|C17A|C17B|C18|C19|C20]|
C21|C22A|C22B|C23|C24|C25|C26|C27A|C27B|C28|C29|C30|
C31| C32A|C32B|C33A|C33B|C34A|C34B|C35A|C35B|C36A|C36B|
C37A|C37B|C38A|C38B|C39A|C39B|C40A|C40B;

color X1 = subset CS with[C9,C16,C23,C24,C25,C27A,C27B,C26,C33A,C33B,
C34A,C34B,C35A,C35B,C36A,C36B];(*galK **)

color X2 = subset CS with[C10,C15,C18,C19,C20,C21,C22A,C22B,C37A,C37B,
C38A,C38B,C39A,C39B,C40A,C40B];(*hkx)

color X3 = subset CS with[C17B,C28,C29,C30,C31,C32A,C32B];(*hk2*)

color X4 = subset CS with[C11,C12,C13,C14,C15,C16,C17A];(*SCrK +)

color X5 = subset CS with[C9,C10,C33A,C33B,C34A,C34B,C35A,C35B,C36A,
C36B,C37A,C37B,C38A,C38B,C39A,C39B,C40A,C40B];(*g6pdh *)

color X6 = subset CS with[C18,C19,C20,C21,C22A,C23,C24,C25,C26,C27A,

C28,C29,C30,C31, C32A,C33A,C33B,C34A,C34B,C35A,C35B,
C36A,C36B,C37A,C37B,C38A,C38B,C39A,C39B,C40A,C408B];
(*pfk)

color X7 = subset CS with[C15,C16,C17B,C22B,C27B,C32B];
(*tkt2_rev von F6P x)

color X8 = subset CS with[C9,C10,C15,C16,C17B,C22B,C27B,C32B,C33B,C34B,
C35B ,C36B,C37B,C38B,C39B,C40B];(*rpi *)

color X9 = subset CS with[C15,C16,C18,C19,C20,C21,C22A,C22B,C23,C24,
C25,C26,C27A,C27B];(*pgi *)

color X10 = subset CS with[C15,C16,C17A,C22A,C27A,C32A];
(*tkt2_rev von GAP)
color X11 = subset CS with[C33A,C34A,C35A,C36A,C37A,C38A,C39A,C40A];

(*rpe *)

color X12 = subset CS with[C33B,C34B,C358 ,C36B,C37B,C38B,C39B,C408];
(+tkt *)

color Y = subset CS with[C13,C14,C20,C21,C25,C26,C30,C31,C35A,C36A,
C39A,C40A,C35B,C36B,C39B,C40B,C11,C12,C18,C19,C23,C24,
C28,C29,C33A,C34A,C37A,C38A,C33B,C34B,C37B,C38B];
(+gapA = Y1 & Y2x)

color Y1 = subset CS with[C13,C14,C20,C21,C25,C26,C30,C31,C35A,C36A,
C39A,C40A,C35B,C36B,C39B,C40B];(*pgKx)

color Y2 = subset CS with[C11,C12,C18,C19,C23,C24,C28,C29,C33A,C34A,
C37A,C38A,C33B,C34B,C37B,C38B];(*bpgm+)
color Y3 = subset CS with[C11,C13,C18,C20,C23,C25,C28,C30,C33A,C35A,

C37A,C39A,C33B,C35B,C37B,C39B];(*|dh *)
var x1:X1;var x2:X2;var x3:X3;var x4:X4;var x5:X5;var x6:X6;var X7:X7;
var x8:X8;var x9:X9;var x10:X10;var x11:X11;var x12:X12;

var yl:Yl,var y2:Y2;var y3:Y3;
var x:CS; var y:Y;

Table 3: Declarations of Coloured Petri Net Core Model, Variant Il

Conventions

For this model the following additional conventions are made. First, each token colour contains the identifier
(integer number) of the corresponding minimal T-invariant. Secondly, if more than one token colour is
necessary, then they will be discriminated by a non-numeric suffix

88

General Procedure - short abstract form

e First, a simple and straightforward construction of a P/T net with environment type | must be done.
After them, a calculation of minimal T-invariants must be performed.

e Secondly, for each transition/reaction collect the minimal T-invariants identifiers, which contains this
transition. Create a variable on the corresponding arcs of the transition, which range represents the
collected T-invariant identifiers. Examples of the resulting colours are shown irf fable 3. On account
of the restriction of variables no additional guards are necessary.

e Thirdly, it is necessary to compute structural conflicts of a P/T net representation of each minimal
T-invariant. This can be easy done by using INA. For each detected conflict within a T-invariant avoid
them by adding new token colours to the coloured core model. This can be done by using the conflict
avoidance method of variant I, but only within the P/T net representation of a T-invariant. The T-
invariants 17, 22, 27, 32, 33, 34, 35, 36, 37, 38, 39, and 40 are examples of such conflicts (to save
paper space not shown). Much of the conflicts are at the same place, whereby the effort is very small
in difference to the conflict solving by variant I.

Additionally, this modelling strategy in comparison to variant | is faster. The model can be automated
constructed, if the set of atomic reactions and the source/sink specification are given. The same problem
pattern as described and shown by variant | at the local @#de loc appears in the current model, too.

A verification of the dynamic conflict avoidance in the both constructed core models can additionally be
realized. Let us consider the simple conflict at the pBE& There exist two post-arcs with the variabjds
andy? as arc inscriptions. The potential dynamic conflict in relation to a P/T net is avoided, if the following
condition is fulfilled.y1Ny2 = 0 (intersection of the ranges of the variables is empty)

Generalized it may be said, if the intersection of all colour sets of outgoing arcs of a place is equal to the
empty set, then no dynamic conflict exists at this place. Now, we have two core models, which are bounded,
but not live. The next section introduces an algorithm, which results can be used to get an environment of
type Il for each of the core model.

6 Computation of the Environment

To get a bounded model, it is necessary to limit the arbitrary supply of metabolites, which is not fulfilled
by the environments of type I. This can be done by replacing the supplying and removing border transitions
of environments | by two transitions, each for one task (supplying or removing). The[figure 6 illustrates a
transformation from a P/T net to a coloured net. The environment contains only two additional transitions, a
start and a stop transiti@rand one additional place. The additional place "env" contains maximal one token.
In relation with the start/stop transition it is used to get an empty core model within the system model. If
the place "env" contains a token, no other token is in the net. The start transition supplies all necessary
metabolites and the stop transitions removes all produced or transformed metabolites.

Starting from a core model and the information about T-invariants (P/T), a marking can be calculated,
which contains the information how much metabolites and ubiquitous molecules must be supplied to realize
an elementary mode. Such a marking should be called start marking. If all problematic conflicts are avoided
in the core model, then each start marking is transformed by occurrence of the corresponding T-invariant
(PIT) without border transitions into the so-called end marking. These marking pair is used to determine
the arc inscriptions of the start and stop transitions. At this point a new so-called selection parameter is
introduced. A selection parameter corresponds to one minimal T-invariant (haming convemtxtended
with T-invariant number) and enables us to specify how often a T-invariant should occur by multiplying the
start/stop marking with the selection parameter. An example is shown in fipure 6. The calculation of such
markings and the transformation into arc expressions are automatic.

By using each T-invariant of the P/T net with environment 1, it is possible to select each non-negative
integer linear combination of the minimal T-invariants for a simulation or analysis of a system model. If
only one T-invariant (P/T) is selected (ti = 1; tj = 04i), then the resulting T-invariant (CPN) is equivalent
to the corresponding T-invariant of the P/T net.

1in Design/CPN start and stop are not allowed as transition names. For this reason the names "s1" for stop and "s2" for start are
used.

89

P/T net with environment | CPN with environment |1

(* Declarations *)

(*gl obal Col our Set Definition*)
color CS=wth F1]| F2 | P| Z
var x:CS;

(*a value for each min T-invariant*]
val t1 = 1;
val t2 = 1;

(*decl aration of values of arc
inscription*)
val el (t1*1)‘ F1++ (t2*2)‘ F2;

val e2 = (t2*2)'P;
val e3 = (t1)'F1;

val e4 = (t2*1)'F2;
val e5 = (t2*3)‘P;

col or set of each
place is CS.

pl aces with sane nanme
are fusion places.

Figure 6: Example P/T Net with Environment I, which is Transformed into a CPN with Environment 11

P/T netinvariants: T1 = suA, r1, r3, reD; T2 = suB, r2, r3, reD corresponding CPN invariant: T3 = s2, r1, r2, 1*r3(x=F1), 2*r3(x=F2),
s1 The calculated start and stop marking for each T-invariant are direct transformed into arc inscriptions of the start or stop transitions.
For each T-invariant (P/T) exists a selection parameter (t1 and t2), which indicates how often a T-Invariant must be occur. With a
modification of the constant values t1 and t2, each minimal I10-T-invariant can be separately activated.

start marking for tlof CPN core model = A:1* F1; stop marking for t1 = D: 1*F1

start marking for t2 of CPN core model = B:1* F2, E1:3*P; stop marking for t2 = D: 2*F2, E2:2*P

Computation

To get a bounded model, which allows the selection of elementary modes, only the core model, the
source/sink specification, and the previously calculated 10-T-invariants (P/T) are necessary. If the core
model of variant Il is used, these data are completely available. Under the assumption that each critical
conflict is avoided and no disease is modelled, it is possible to calculate a start and stop marking for each
|O-T-invariant.

The given abstract algorithm, shown in tapje 4, is similar to a construction algorithm of a run of a single
T-invariant (P/T), but the current algorithm has no initial marking as prerequisite. Instead, the source/sink
specification is used to identify, on which places a token can be added or removed. The algorithm simulates
each T-invariant and memorizes each supplied and produced token separately. During the simulation, each
transition of the given T-invariant (P/T) has to occur in relation to its partial order and its weight, whereby
each possible binding element of the transition is considered. The calculation is finite, because the given
T-invariant is finite.

Results

Using the described algorithm for the computation of start/stop marking pairs for the core models (variant |
and 1), a transformation into arc inscriptions is also performed. Up to now the graphical representation of
the environment, shown in figur¢ 7, must be additionally constructed by hand up to now.

The core model must be only extended by the graphical representation of the environment and the cal-
culated declaration must be added to the global declaration node. To save paper space, only two example
declarations for the model of variant Il are shown in tdle 5. Two different types are shmeh corre-
sponds to a primary metabolite apde2 corresponds to a ubiquitous molecule, which pre- and post-arcs
have always the same colour.

On account of the knowledge of the modelled system some new questions are recognized. The cal-
culated markings realize a corresponding T-invariant, but an 1O-T-invariant has often more than one inter-
leaving sequence. Therefore, is it possible to calculate a start and stop marking under the assumptions that
no potentially concurrency is limitednaximal concurrengyor that the concurrency is maximal limited
(minimal concurrency? These markings can be biochemically useful. For the current case study only the
concentrations of the ubiquitous molecules have an influence to minimal or maximal concurrency.

90

Input:

tinv: Tinvariant; P/T net invariant without border transitions (tn)
cpn: coloured Petri net; core model
sources set of places;

sinks: set of places;

Output:
(pre: marking post: marking) pre => start marking;post => stop marking
Initialisation:
post=0; pre=0;
tn: transition; current considered transition
prePostT N PrePostMarkings; set of marking pairs (pre, post) of atn
lastStep PrePostMarkingsiastSte p= 0; set of marking pairs, before a tnh occur
currentStep PrePostMarkingsgurrentSte p= onlySources marking pairs, after a tn occured
onlySources -> special initialisation
pet: list of Transitions; possibly enabled transitions
pet= possibleExtensions(0); which tn will be enabled
pet= petntinv; observe only net representation of current T-inv.
pet = removeNotSufficientMarked TN (pet, post); remove tn, which are not enabled by post marking
Main Procedure without Error/Dead Marking Detection/Handling:
while (tinv # 0) do
lastStep= currentStep
currentStep= 0;
tn = selectTN (pet);
prePostT N= tn.getPrePostMarkings();
for (inti = 0; i < prePostTNlength i+ +) do prove each tn colour
for (intj =0; j < lastStedength j++) do prove each last marking pair
if (lastStepj].getPost).covergprePostT Ni].getPre))) is current tn colour enabled
using only source spec. and last marking pair
then simulate occurrence of tn

pre: marking post: marking
pre = lastStepj].preu (prePostT Ni].pre\ (prePostT Ni].prenlastStefj]. post));
post= prePostT fi]. postU (lastStepj]. post\ (prePostT Ni]. prenlastSte pj]. post));
combination is allowed and new Marking is calculated
currentStepaddPrePostMarkingpre, post);
fi
od

od

tinv.occurOnce (tn); modify T-invariant to memorize, which part is not currently considered

pet= petU possibleExtensions(tn); pet= petntiny;

pet = removeNotSufficientMarked TN (pet, currentSte

od

(pre, post) = getMarkingPair(currentStejp;

Table 4: Abstract Algorithm to Get Environment Type |l

Existing Problems

On account of a bug of the used Design/CPN tool or CPN/Tools, respectively, a construction of the occur-
rence graph was not possible up to now. Therefore, the expected liveness property could not be proved. The
problem, described by a smaller example, was reported to the "CPNTools-support".

Using the effect and defect notions is another way to increase the confidence in the constructed model
(not shown here). By using the defect calculation, it was verified that the net is bounded. Furthermore,
it could be a T-vector constructed (for each system model), which is a covering T-invariant of the system
model.

The introduced modelling techniques to get a system model with environment type Il work fine for all
known case studies. But an artificial example can be constructed, whereby the modelling techniques do not
work using only minimal T-invariants. Up to now no solution for the artificial example could be derived.

91

4‘1'@1’0 Galac_2

R5P_2

Pyr_2 4;“)}@ Gluc_2
Lac_2]—WEGPO Fruc_2
coz 2 O Pt
Pia Q* 49’93,0 Pi 3
NADPH_3 OL 4;3@2’@ NADP_2
Hos (O—8 LY
ATP_7 OL 4”3’@ ATP_6
ADP_7 OL 9) aoes
H_10 O post5
NAD,_ 4 O post9 pre7 : NAD_3
NADH_4 O post12

Figure 7: Environment of Both System Models
(the differences lie on the definition of the values on the arcs)

val prel = (1 *t9)'C9++ (4 *t16)'Cl6++ (1 *123)'C23++ (1 *t24)'C24++
(1 xt25)'C25++ (1 *1t26)'C26++ (1 *t27)'C27A++ (4 *1t27)'C27B++
(1 #t33)'C33B++ (2 *t33)'C33A++ (1 t34)'C34B++ (2 *t34)'C34A++
(1 xt35)'C35B++ (2 *t35)'C35A++ (1 t36)'C36B++ (2 *136)'C36A,;
(*Galac *)

val pre2 = (2 *t9 + 2 *t10 + 6 *t33 + 6 *t34 + 6 *t35 + 6 *t36 + 6 *t37 +
6%t38 + 6 *t39 + 6 »t40)'NP;(*NADP 1)

Table 5: Declaration Part of the System Model, Variant Il

7 Conclusions

Starting with a P/T net and its minimal T-invariants, a behavioural equivalent bounded and live coloured
Petri net was constructed. The construction of the coloured net was divided into two separate steps. First,
the core model was derived. After that, an automatic calculation of an environment to extend the core
model to a system model was performed. The system models of variant | and Il represent the same T-
invariants/elementary modes as the P/T model with environment type I.

It was shown that a combination of the analysis techniques of P/T nets and coloured Petri nets can be used
to get a more useful and sensible model of a metabolic network. The constructed coloured Petri net models
are bounded and live. Therefore, we are now able to get new insights into the modelled pathway using
additional qualitative analysis techniques, for example model checking or P-invariant analysis. Moreover,
by using extensions of the coloured Petri net tool Design/CPN, we are able to perform a quantitative analysis
of a qualitatively analysed model without changing the model class.

The construction of a core model must now be implemented. An additional feature of the implementation
would be an extraction of pathways from a databake [9]. Moreover, a main problem is the selection of the set
of atomic reactions, the specification of source and sink metabolites, and in relation to them the treatment of
the ubiquitous molecules. The elementary modes/minimal T-invariants depend on this specification. It has
to be scrutinized in more detail, how the treatments of the ubiquitous molecules have an influence on the
elementary modes. But this is a task for biochemists.

Additional case studies should be performed to increase the confidence in the application of Petri nets in
biochemistry and modelling technique presented is this paper.

Acknowledgement

This work is partly supported by the Federal German Ministry of Education and Research (BMBF), BCB
project 0312705D. The results are a part of my master thesis, supervised by Monika Heiner, Brandenburg

92

University of Technology Cottbus, and Ina Koch, Technical University of Applied Sciences Berlin. | would
like to thank Monika Heiner and Ina Koch for the fruitful discussions and hints. Furthermore | would like to
thank the anonymous referees for their constructive comments.

References

[1] Design/CPN, http://www.daimi.au.dk/designCPN/.

[2] INA - Integrated Net Analyzer v2.2, http://www.informatik.hu-berlin.de/~starke/ina.html.
[3] PED - Petri net Editor, http://www-dssz.informatik.tu-cottbus.de/ wwwdssz/.

[4] Software Package SY, private communication.

[5] BERG, J. M. ; TyMOCZKO, J. L. ; STRYER, L.: Biochemistry 5th EditionW. H. Freeman, New York,
2002

[6] CHEN, M. ; HOFESTADT, R.: Quantitative Petri Net Model of Gene Regulated Metabolic Networks in
the Cell. In:In Silico Biol 3 (2003), Nr. 3, S. 347-365

[7] EHRENTREICH F. ; SCHOMBURG, D.: Dynamic Generation and Qualitative Analysis of Metabolic
Pathways by a Joint Database/Graph Theoretical Approachruimct Integr Genomic8 (2003), Nr.
4,S.189-196

[8] GENRICH, H. ; KUFFNER R.; Voss K.: Executable Petri Net Models for the Analysis of Metabolic
Pathways. In:International Journal on Software Tools for Technology (STBr{2001), Nr. 4, S.
394-404

[9] GEVORGYAN, A. ; HEINER, M. ; KOCH, I.: Japet: an Integrated Tool for Recreating KEGG Data into
Hierarchical Petri Net. In5th International Conference on System Biology - ICSB 2004, October 9 -
13, 2004, Heidelberg/Germar(2004)

[10] HEINER, M. ; KOCH, |.: Petri Net Based Model Validation in Systems Biology. LlNCSBd. 3099,
Springer, 2004, S. 216-237

[11] HEINER, M. ; KocH, I. ; Voss K.: Analysis and Simulation of Steady States in Metabolic Pathways
with Petri Nets. In:Proceedings CPN Workshop, Univ. of AarhRe01, S. 15-34

[12] HEINER, M. ; KocH, I. ; WiLL, J.: Model Validation of Biological Pathways Using Petri Nets -
Demonstrated for Apoptosis. Idournal BioSystemg5 (2004), Nr. 1-3, S. 15-28

[13] JENSEN K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 1-3.
Monographs in Theoretical Computer Scien&pringer-Verlag, Berlin, 1992-1997

[14] JENSEN K.: An Introduction to the Practical Use of Coloured Petri NetsLINCSBd. 1492, Springer,
1998, S. 237-292

[15] KocH, I. ; JUNKER, B. H. ; HEINER, M.: Application of Petri Net Theory to Model Validation of
the Sucrose Breakdown Pathway in the Potato Tubersdibmitted and accepted by Bioinformatics
(2004)

[16] PFEIFFER T.; SANCHEZ-VALDENEBRO, I. ; NUNO, J. C. ; MONTERQ, F. ; SCHUSTER S.: META-
TOOL: for Studying Metabolic Networks. IrBioinformatics15 (1999), Nr. 3, S. 251-257

[17] POPOVA-ZEUGMANN, L. ; HEINER, M. ; KOCH, I.: Modelling and Analysis of Biochemical Net-
works with Time Petri Nets - Extended Abstract. BONCURRENCY proc. SPECIFICATION AND
PROGRAMMING CS & P’2004, Caputh, Germany, 24-26 September 2004

[18] REDDY, V. N. ; LIEBMAN, M. N. ; MAVROVOUNIOTIS, M. L.: Qualitative analysis of biochemical
reaction systems. IrComput Biol Med26 (1996), Nr. 1, S. 9-24

93

[19] RuUNGE, T.: Qualitative Path Analysis of Metabolic Pathways Using Petri Nets for Generic Modelling
/ Technical Report, Brandenburg University of Technology Cottbus, Department of Computer Science,
Germany. 2004

[20] STARKE, P. H.: Analyse von Petri-Netz-ModelleB. G. Teubner Stuttgart, 1990

[21] Voss K. ; HEINER, M. ; KocH, I.: Steady state analysis of metabolic pathways using Petri nets. In:
In Silico Biol. 3 (2003), Nr. 3, S. 367-387

[22] WIBACK, S. J.; RLSSON, B. O.: Extreme Pathway Analysis of Human Red Blood Cell Metabolism.
In: Biophysical JournalB3 (2002), Nr. 2, S. 808-818

Abbreviations

Metabolites / Compounds
(chemical formulas from [5] and [22])

2PG 2-Phosphoglycerate C3H407P | Galac Galactose C6H1206

6GP 6-Phosphogluconate C6H10010PGAP Glyceraldehyde-3-phosphate

6PL 6-phosphogluconé-lactone C3H506P
C6H909P Gluc Glucose C6H120¢

BPS 1,3-Biphosphoglycerate C3H4010P2H Hydrogen lon H

CO2 Carbon Dioxide CO2 H20 Water H20

DHAP Dihydroxyacetone phosphate Lac Lactate C3H503
C3H506P

DPG 2,3-Biphosphoglycerate C3H3010PRPEP Phosphoenolpyruvate C3H206P

E4P Erythrose-4-phosphate C4H707P | PG3 3-Phosphoglycerate C3H407P

F1P Fructose-1-phosphate C6H1109R Pi Orthophosphate, ionic form

F6P Fructose-6-phosphate C6H1109H HO4P

FBP Fructose-1,6-biphosphate C6H10012PRyr Pyruvate C3H303

Fruc Fructose C6H1206 R5P Ribose-5-phosphate C5H908P

G1P Glucose-1-phosphate C6H1109R Ru5P Ribulose-5-phosphate C5H908P

G6P Glucose-6-phosphate C6H1109R S7P Sedoheptulose-5-phosphate

GA Glyceraldehyde C3H603 C7H13010P

GalaclP Galactose-1-phosphate C6H1109P Xu5P Xylulose-5-phosphate C5H908P

ADP Adenosine diphosphate C10H13N5010pP2

ATP Adenosine triphosphate C10H13N5013P3

NAD Nicotinamide adenine dinucleotide, oxidized form C21H28N7014P2

NADH Nicotinamide adenine dinucleotide, reduced form C21H29N7014P2

NADP Nicotinamide adenine dinucleotide phosphate, oxidized form C21H29N701L7P3

NADPH Nicotinamide adenine dinucleotide phosphate, reduced form C21H30N7Q17P3

94

Correspondence between Petri net transitions, abbreviations, and enzymatic reactions

Tn-name enzyme name reduced sequences / included reactions
hk Hexokinase
pgi Phosphoglucose isomerase
pfk Phosphofructokinase al Aldolase
tpi Triose phosphate isomerase
gapA GAP dehydrogenase
pgK Phosphoglycerate kinase
bpgm Bisphosphoglycerate mutase bpgp Bisphosphoglycerate phosphatase
gpm Phosphoglycerate mutase eno Enolase
pyk Pyruvate kinase
Idh Lactate dehydrogenase
scrK Fructokinase flpa Fructose 1-phosphate aldolase
tk Triose kinase
hk2 Hexokinase
galK Galactokinase gal Galactose 1-phosphate uridyl transferag
UDP-Galactose 4-epimerase
pgm Phosphoglucomutase
g6pdh Glucose 6-phosphate 6pgl Lactonase
dehydrogenase 6pgd 6-Phosphogluconate dehydrogenase
rpi Phosphopentose isomerase
rpe Phosphopentose epimerase
tkt Transketolase

95

96

Composite Event Specification in Active
Database Systems: A Petri Nets Approach

Xiaoou Li, Joselito Medina Marin
Seccion de Computacion
Departamento de Ingenieria Eléctrica
CINVESTAV-IPN, Mexico City, Mexico

lixo@cs.cinvestav.mx

Abstract

Event detection is the first and the most important step for Event-Condition-Action (ECA) rule execution in active
database systems. Composite event detection is not easy for most existing active database systems. In this paper, a
Conditional Colored Petri Net model (CCPN) is proposed for composite events specification and detection. Composite
events are detected by checking composite transition enabling and verifying the temporal condition attached on the
transition. On the other hand, rule execution are realized by verifying rule transition enabling and verifying the rule
condition attached on the transition. In this way, both composite event detection and ECA rule execution are integrated
in the same CCPN model. Furthermore, examples and implementation issues are discussed. Comparisons show that
CCPN is a general model for active database system, and it can be used as an independent engine in many active
database systems.

Keywords: active database system, Petri nets, ECA rules, composite events.

I. INTRODUCTION

Rules are used in active database systems to monitor situations of interest and to trigger a timely response when these
situations occur. They can enforce integrity constraints, compute derived data, control data access, gather statistics and
much more. The most general form of these rules is the so-called ECA (Event-Condition-Action) rules. An ECA rule
has three basic parts that are event, condition and action. The condition of a rule is evaluated whenever its triggering
event occurs. If the condition is satisfied, the specified action will be executed. One rule may trigger or activate
another one, and rule behavior depends on both the database transactions and its rule interrelations. By investigating
rule interrelations and database state one can analyze rule base properties such as termination, confluence, etc..

Since the event part is what really triggers a rule, event specification and detection is very important in active
database systems. Generally events are classified into primitive events and composite (or complex) events. Primitive
event may be modification or retrieval operations provided by the database manipulation language of the underlying
database system, such as insert, update, delete, abort a transaction, etc. To react on more complicated situations
composite events are introduced. Composite events are defined from primitive ones by using event operators such as
disjunction, sequencing, conjunction, etc.. Some existing active database systems have considered composite events,
and corresponding syntax and semantics were defined [13], [10], [9], [7], [8], [5]. However, most of them are
application dependent which means that their semantics are private, and cannot be migrated to other systems. On the
other hand, not all types of composite events were considered.

Petri nets are a good modeling technique for describing logic relations. A modified colored Petri nets model CCPN
(Conditional Colored Petri Nets) was proposed in our early publications for revealing ECA rule structure and their
interrelation [2]. And database states may be abstract as tokens of the Petri net model. The CCPN can not only
model interactions between ECA rules, but also can demonstrate dynamic triggering and activation behavior through
its firing mechanism [2], [3], [4]. However, only conjunction and disjunction composite events were considered in
that work. In this paper, we want to report our advance on specifying composite events with our CCPN model.

There is little result on using Petri nets to specify composite events. To the best of our knowledge, SAMOS is the

unique existing active database system that uses Petri nets as event detector [7]. In SAMOS, a colored-Petri-net-liked

97

model was defined for composite event specification. In order to achieve a correct model of a composite event, many
additional places and transitions have to be used to represent the temporal information. Reference [11] is another
interesting relational research although it is about network management systems rather than active database systems.
In [11] colored Petri nets are used to specify the dependence between events. But, their models are much larger than
those in [7] since they have to put extra structure to express temporal relations between primitive events. Our CCPN
model will overcome the disadvantage of using redundant structure to specify temporal relation between primitive
events since these information can be considered as a condition on transitions.

The paper is organized as following: Section II introduces basic concepts of active database systems and events
in ECA rules. CCPN model is defined in Section III. Composite event specifications are described in Section IV. A
software tool ECAPNSim (ECA-Petri Nets Simulator) is developed based on CCPN in Section V. Finally, section VI
gives comparisons and conclusion.

II. EVENTS IN ACTIVE DATABASE SYSTEMS

ECA rules are not only used in active database systems, but also in other active systems such as network management
systems, workflow management systems, etc.. In this paper we only consider ECA rules in active database systems.

A. ECA rules

An active database management system (ADBMS) integrates event-based rule processing in traditional database
functionality. Active database consists of a normal (passive) database and an active rule base. The most popular active
rules is so-called event-condition-action (ECA) rules (or trigger), which specifies an action to be executed upon the
occurrence of one or more events when a condition holds. Generally, an ECA rule is defined as ON event IF condition
THEN action. Figure 1 shows a simple architectural view of an active database system [11]. The events corresponding
to update operations on the database performed by user transactions and other events (such as method execution,
time) are reported to the event detector. If a rule fires, the C-A part may be executed as database transactions, if C
and A contain database operations. Various transactions models for rule execution have been proposed, that deal with
the coupling and synchronization of user-invoked transactions and system-triggered rules. For example, the triggering
and triggered transaction can be coupled as immediate, deferred and separate. In the immediate coupling mode the
fired rule is executed immediately as a subtransaction of the top level transaction of the triggering transaction. If
multiple rules fire and there is an imposed order, then all the rules are executed in that order, otherwise, in arbitrary
order. The rules in the deferred mode are scheduled to be executed at the end of the transaction, but before the commit
point (integrity constraints are normally executed in deferred mode). The rules in the separate mode coupling are
executed in a totally separate top level transaction.

ECA rules have an explicit event part. It determines when a rule is executed, what condition acts as filter, which
action is internal or external. In almost all existing ADBMS, active rule processing syntax can be classified into two
models: knowledge model and execution model. Knowledge model indicates active rules and essentially supports the
description of active functionality. The features dealt with this model often have a direct representation within the
syntax of rule language [6]. An example of an event may be "update of amount on BONUS" or "insert on SALES";
A condition can be a predicate on database state or query. One or more application procedure-calls (or method-
invocations) can also be conditions. For example, "BONUS_amount > 100". An action can contain many cases, such
as data modification and retrieval in relational DBMSs, transaction operations (for example commit and abort), method
invocation in OODBMSs, procedure calls in relational DBMSs, and rule operations. For example, "update EMP set
rank = update.rank+1 where emp_id = update.emp _id".

Execution model of ECA rules specifies how a set of rules is treated at runtime, and it is closely related to aspects
of the underlying DBMS (e.g., data model, transaction manage). See reference [6] for more details.

Let’s see an example of ECA rules in active database system.

Example 1: The database is based on the following tables:

EMP (emp id, name, rank, salary)

98

C-A of Rule Rules as Subtransaction
of Triggering Transaction
Immediate, Deferred or
DB Separate Top Level
Action Transaction
User Transactions T
Manipulating DB Condition Other
over Actions
DB State
FireRule

Event Expressions

l«<——— Other Events

Event Detector

Fig. 1. A simple architectural view of execution of ECA rules

BONUS (emp_id, amount)
SALES (emp_id, month, number)

The rule base contains 4 rules, which are described in text as following:

Rule 1: When an employee’s bonus is increased by more than 100, then the employee’s rank is increased by 1.

Rule 2: When an employee’s rank is updated, then increased by 1, then the employee’s bonus is increased by 10
times the new rank

Rule 3: When an employee posts sales greater than 50 and its rank lower than 15, his bonus is decreased by 100.

Rule 4: When an employee’s rank reaches 15, increases the employee’s salary by 10%.

In order to see the rule relation clearly, we analyze the EVENT, CONDITION and ACTION parts of these rules,
and rewrite them in ON-IF-THEN style as following:

Rule 1:

ON update of amount on BONUS

IF BONUS amount > 100

THEN update EMP set rank = update.rank+l where emp id = update.emp id;

Rule 2:

ON update of rank on EMP

IF EMP_rank > 5

THEN update BONUS set mount = old.amount+rank*10 where emp id = update.emp id;

Rule 3:

ON insert on SALES

IF SALES number > 50

THEN update EMP set rank = old.rank+l where emp id = insert.emp id;

Rule 4:

ON update of rank on EMP

IF rank = 15

THEN update EMP set salary = old.salary*l.l where emp id = insert.emp id;

99

B. Events in active database systems

The event determines a great width the expressive power of the rule mechanism of an active database. In their
more general form they includes database event (such as insert, delete and update),control events (such as begin
transaction, commit and abort), temporal events which perhaps are absolute or relative, periodic or aperiodic, and
user defined events. Primitive events can be combined by a event algebra which includes operators for sequence,
disjunction, conjunction, negation, history, closure, efc. An event typically can start more than one rule, and an event
can also take part in various event compositions.

An event is an occurrence in the database, and application’s environment. An event occurs at a point in time
where time is modeled as a discrete sequence of points. The following primitive events are generally supported in an
ADBMS:

« Events relating to database manipulation operations such as retrieve, insert, delete, modification;

« Transaction events;

« Explicit time events such as 14:00, Nov. 27, 5 minute.

« Method or procedure execution events which may be signalled at the beginning or end of the execution of a
method.

o External events raised from outside the database environment. Examples of such events are (abstract) events

raised from an application, events defined by a user, events reported from a sensor, etc.

An event may have typed formal arguments which are bound to actual values when the event is detected. For
example, the insert event may have as arguments the name of the relation and the inserted tuple. These attributes can
then be passed to the condition or the action part of the ECA rule. A rule may be fired as soon as a single basic
event happens. But this is not sufficient for many applications, where complex sequences of events may need to be
detected for rule firing. Complex sequences of interrelated events form what is called a composite event (also known
as event pattern). A composite event refers to primitive or other composite events occurring at time points other than
the time when the specified composite event happens. Composite events are specified using a composite event algebra
which allows one to relate events occurring at different time points. For example, selling events of a stock, where the
maximum values of the sell price of the stock are sampled at the end of every 30 minute intervals every day from
9AM to 5PM.

The range of event operators varies from system to system. The most common composite events are eight [6] [5]:

1) Disjunction (e; or eg): this composite event occurs when either e; or e; has occurred;

2) Conjunction (e; and ep): this composite event occurs when both e; and e; have occurred in any order;

3) Sequence (seq(e;, eg)): this composite event occurs when event e; occurs before es;

4) Simultaneous (sim(e;, eg)): this composite event occurs when events e; and es occur at the same time;

5) History (times(n, e1)): this composite event is signaled when event e; occurs n times during the time interval
Int;

6) Negation (not ey in Int): this composite event detects the nonoccurrence of the event e; in time interval Int;

7) Closure (closure ey in Int): this composite event is raised only once the first time event e; is signaled, regardless
of later occurrences of e in the time interval Int;

8) ANY (ANY(m,e;,es,...,e,)): this composite event is raised when m of n different events ey, es,...,e, have
occurred, where m < n.

Rule firings in response to the occurrence of a single primitive event, where the events are only database update
events, are supported in commercial systems such as Sybase, Oracle, and DB2. The SQL3 standard defines a
triggering mechanism where a rule is fired in response to a single primitive database operation event. A number
of composite event specification languages have been proposed by researchers: ODE[9], SAMOS|7] , Snoop[8], EPL
[14], CEDARJ[11], NAOs [10], Chimera [13]. However, composite events handling presents challenges in terms of
semantics and efficiency that don’t have been fully covered.

100

structure

ON event @ ON event 1 AND event 2 @ @

IF condition [] condition
IF condition [| condition

THEN action @ THEN action @

(a). PN structure of an ECA rule (b). PN structureof an ECA rule

y with one primitive event with AND composite events
2.P

Fig. 2. Intuitive PN interpretation of ECA rules

III. CONDITIONAL COLORED PETRI NETS

Petri Nets are a graphical and mathematical tool for modeling concurrent, asynchronous, distributed, parallel,
indeterministic, and/or stochastic systems. As a member of Petri nets family, colored Petri net (CPN) is widely used
in industrial applications since they combine the strengths of ordinary Petri nets with the strengths of a high-level
programming language. Petri nets provide the primitives for process interaction, while the programming language
provides the primitives for the definition of data types and the manipulations of data values. CPN has an intuitive
graphical representation which is appealing to human beings.

Let’s see how to represent ECA rules with CPNs. In order to express clearly and exactly the three components
of an ECA rule, we need to analyze ECA rule execution again. When an ECA rule is executed, event detection is a
process to get a result 1 or 0 (corresponding the event is detected or not). Therefore, it is more convenient to model
it as a place, and the event may be modeled as a "color". If the detection result is 1, then a colored token is deposited
into this place. Furthermore, an action of a rule maybe an event of another rule (i.e., the conjunction of the set of
actions and events is not empty), modeling actions as places also obey human cognition. The condition part of an
ECA rule will be evaluated after event detection, so it is like a guard of a transition. Here, we call this transition a
conditional transition in order to emphasize the importance of conditions. If there are tokens in each input place, then
the transition is enabled, and if its condition is evaluated TRUE, then the transition is firable. Above idea may be
explained intuitively as shown in Figure 2-(a) and Figure 2-(b). In Figure 2-(a), rule is mapped into a transition, event
and action are mapped into input and output places of the transition. Finally condition is attached to the transition as
a guard. In Figure 2-(b), event is a AND composite event, so both event I and event 2 are mapped into input places
of the rule transition.

Based on above analysis, we developed a Conditional Colored Petri Net (CCPN) to model, simulate and analyze
ECA rule execution. Furthermore, an interface ECAPNSim was developed to implement CCPN.

A. CCPN Structure

As shown in Figure 2-(a), a simple ECA rule with only one primitive event may be modeled as a CPN. But for
complicated composite events, basic elements of CPN are not sufficient. For example, composite events sequence
(seq(eq, e2)), times (Times(e, Int)) cannot be modeled by an ordinary CPN directly. For this reason, we defined
some new elements on CPN specially to characterize ECA rules features. Figure 3 shows a list of all CCPN elements.

101

List of CCPN elements:

..................... Timetransition Inhibitor arc

Copy transition Primitive place

—o0
Composite transition Copy place

/’—N‘ A
1 Ruletrandition v) Virtua place
\~’l
Composite place
—_— Normal arc @ P P

Fig. 3. CCPN elements

IN CCPN, places are classified into primitive, virtual, copy and composite places. Primitive and composite places
map primitive and composite events; A virtual place is used for OR composite events; Copy places are used when
one event trigger more than one rule, we make copies of the event so that when the event is detect all rules triggered
by this event can be enabled. Transitions are classified into rule, composite, and copy transitions. A rule transition is a
map of a rule, Composite transitions are used to generate composite events from primitive events, and copy transitions
are used to generate copies of events (maybe primitive or composite events). Arcs are classified into normal arcs and
inhibitor arcs. Inhibitor arcs are used for negation composite events.

Now we give a formal definition of CCPN. Conditional colored Petri nets is a modified colored Petri nets. It is
based on a mathematical concept multi-set that used in reference [12].

Definition 1: A multi-set m, over a non-empty set .S, is a function m € [S — N] which we represent as a formal

sum Y m(s)'s. By Syrs we denote the set of all multi-sets over S. The non-negative integers {m(s) | s € S} are
ses
the coefficients of the multi-set. s € m iff m(s) # 0.

Some other notations of CPN such as element of a type, T, type of a variableType(v), the boolean type B will be
used in this paper.
Definition 2: A conditional colored Petri net (CCPN) is a 11-tuple

CCPN ={%,P,T,A,N,C,Con, Action, D, 7,1}

where

(1) X is a finite set of non-empty types, called color sets.
(2) P is a finite set of places. For better graphical representation, P is divided into four subsets, i.e.,

P:PpriUPcomUPUirUPcop

where Ppri, Peom, Puir and P, are sets of primitive, composite, virtual and copy places.
(3) T is a finite set of transitions. T is divided into three subsets, i.e.,

T = Trule) Tcopy) Tcomp U Ttime

where Tryie; Teopys Teomp and Ty are sets of rule, copy, composite and time transitions.

102

(4) A is a finite set of arcs such that
PNT=PNA=TNA=9.

A= AU Apgr, where A,y and A, represent the sets of inhibitor and normal arcs respectively.
(5) N is a node function. It is defined from A to P x TUT x P.

(6) C' is a color function. It is defined from P to X..

(7) Con is a condition function. It is defined from either 7. or Tiomp into expressions such that

Yt € Truie : [Type(Con(t)) = B
where C'on function evaluates the rule condition;
Vt € Teomp : [Type(Con(t)) = B

where Con function evaluates the temporal condition.
(8) Action is an action function. It is defined from T,.,;. into expressions such that:

YVt € Trute, p €T : [Type(Action(t)) = C(p)ms]

(9) D is a time interval function. It is defined from T, to a time interval [d1, d2], where t € Teopyp, and
dl, d2 are the initial and final interval time, respectively.

(10) 7 is a time stamp function. It is defined from M (p) to {0} UR™, which assign each token in place p
a time stamp corresponding to natural clock with the form year : month : day — hour : minute : second.
For example, a token has time stamp 2003 : 11 : 10 — 11 : 16 : 46.

(11) I is an initialization function. It is defined from P into closed expressions such that

Vp € P [Type(I(p)) = (C(p)ms, 7(C(p)ms)]
B. CCPN Execution

In CCPN, a transition is firstly verified if it is enabled, then is verified if it is firable, then make token transition.
The following definitions specify enabling, firing conditions of a transition.

Definition 3: In CCPN, a token element is a 4-tuple (p, ¢, data, timestamp) where p € P, ¢ € C(p) tells the
color, data is the color information corresponding the color structure of ¢, and t¢mestamp specifies the natural time
when the token is deposited into place p. The set of all token element is denoted by T'E. A marking is a multi-set
over T'E. The initial marking M, is the marking which is obtained by evaluating the initialization expressions:

Y(p, ¢, data,0) € TE : My(p, c,data,0) = (I(p))(c, 7).

The sets of all markings is denoted by M.

Here we introduce a new notation N¢,0-(p) is the number of token colors in place p. If p € P,;,., then tokens in
p may possess various colors that take from its antecedent places. If p € P,y U Peom U Prop, then all tokens in p
have the same color.

Definition 4: A transition ¢t € T' is enabled at a marking M iff

1).Vpe t:|M(p)| =0, type(t) = Negation

2).Vpe t:|M(p)|>1, else
Definition 5: When a transition ¢ € T is enabled, enabled function Ce,,qpeq is defined from P x T into expressions

such that:
vteT, pe 't:[Type(Cenaviea(p,t)) = C(p)ms]

When transition ¢ is enabled, an enabled function Cl¢,,4p1eq is defined to specify what token elements transition ¢
is enabled about. In CCPN, a copy transition is firable if it is enabled. But, enabled composite transitions and rule
transitions fire conditionally. A composite transition fires once it is enabled and the temporal condition is satisfied.
And a rule transition fires once it is enabled and the rule condition is satisfied.

103

Definition 6: When a transition ¢ € Ty, is enabled composition function Ceomposition is defined from T x P
into expressions such that
Type<ccomposition(t7po>) = Typ@(t) (C(pk)MS)

where pi € 't, and p, € t'.
Definition 7: A transition ¢t € T fires iff
(1) Vt € Tyuie, t is enabled and Type(Con(t)) = true.
(ii) Vt € Teopy, t is enabled
(iif) YVt € Teomp, t is enabled, and Vp € °t,

D(t) = [d1(t), d2(t)] : [dr(t) < T(M(p)) < d2(2)]
Definition 8: (token transition) When a transition ¢ is enabled in a marking M7, and it fires, marking M changes
to marking My, defined by
(Q) if t € Truie, VP E P
My(p) = Mi(p) — Cenabicd(p;) + Action(t, p)

(l'l) ift € Tcopy, p1LE€ t,paEL :

MQ(pl) = Ml (pl) - Cenabled(plv t)
My (pZ) = M (pZ) + Oenabled(plv t)
(l”) lf te Tcomp, p1 € .ta p2 € t:
a) if Type(t) = Negation,
Ma(p1) = Mi(p1)
M2 (p2) = Ml (p2) + Ccomposition (tap2)
b) else,
M2 (pl) - Ml (pl) - Cenabled(ph t)
M2 (p?) = Ml (p?) + Ccomposition (t;p2)

When a transition is enabled, it is not to say it always fires, i.e., it may fire or not fire. If it doesn’t fire, we
eliminate the tokens that make the transition enabled in order to utilize the memory efficiently, .

Definition 9: When a transition t € Ty,;eUTcom,p is enabled at a marking M, but not fires because T'ype(Con(t)) =
false, marking change still exists, new marking M> is defined as following:

Vp cP: M2(p) = Ml(p) - Cenabled(p7 t)
M;[t = My means that M; is directly reachable from M; after transition ¢ fires.

IV. COMPOSITE EVENT SPECIFICATION WITH CCPN

Both events and actions of ECA rules in an active database can be translated into CCPN places. A primitive event
is modeled directly by a place , Composite events, unlike primitive events, can’t be modeled as just one place, since
composite events are created by the occurrence (or not occurrence in the case of negation composite event) of two
or more primitive or composite events, then a composite event needs a CCPN structure to generate a place for it. In
references [11], [7], such CPN structures are used to detect composite events.

In this section we will illustrate CCPN modeling by all composite events. The 8 composite events considered here
are conjunction, disjunction, negation, sequence, simultaneous, closure, history, and any. e. represents a composite
event, e, ea, . .., e, represent primitive or composite events that are composition elements of the composite event.

Conjunction: Figure 4-(a) shows the CCPN of the expression e. = e; A e2. The composite event e. happens when
both e; and ey happen. Since D(T'1) = (—o0,00), Type(Con(T1)) = TRUE, the composite transition T'1 fires

104

T1 T1 T2 O T1
e e)
Colore,: e Ue, Colore,: e, U g, Color e, : ~e, in[d1, d2]
@) (b) (c)

Fig. 4. CCPN structures of composite events

when tokens are available at the places marked as e; and es, that is when e; and es occur. When T'1 fires the
corresponding token at the place e; and ey are removed and placed in the virtual place marked as e..

Disjunction: Figure 4-(b) shows the CCPN of the expression e. = e; V ea. The composite event e. happens when
e or es happens. Since T'1 and T2 are copy transitions, 71 or T2 fires when a token is available at the place marked
as ej or eg, that is when e; or es occurs. When 1'1 (1'2) fires the corresponding token at the place e; (e3) is removed
and placed in the virtual place marked as e. accumulating token come from all OR branch.

Negation: Figure 4-(c) shows the CCPN of the expression e, =~ e; in [d1,d2]. The composite event e. happens
when e; does not happen. In this CCPN, N(el,T1) € Ajnpn, D(T1) = [d1,d2], Type(Con(T1)) = TRUE. So the
composite transition 7'1 fires when no token is available at the place marked as e; in time interval (d1,d2), that is
when e; does not occur during the time interval [d1, d2]. When T'1 fires the corresponding token at the place e; is
removed and placed in the composite place marked as e..

Sequence: Figure 5-(a) shows the CCPN of the expression e, = seq(eq, e2). The composite event e. happens when
e1 and ey happen in sequence. In this CCPN, D(T'1) = (—o0,x0), Con(T1) = {r(e1) < 7(e2)}. So the composite
transition 7'1 fires when tokens are available at the places marked as e; and ey and Type(Con(T'1)) = TRUE, that
is when both e; and es occur and ey occurs before es. When T'1 fires the corresponding tokens at the places e; and
ey are removed and placed in the composite place marked as e..

Simultaneous: Figure 5-(b) shows the CCPN of the expression e, = sim(eq, e2). The composite event e, happens
when e; and e, happen simultaneously. We note that this CCPN structure is the same as that of sequence composite
event, the only difference is the condition restraint on the composite transition 71, that is Con(T1) = {7(e1) =
T(e2)}. So the composite transition T'1 fires when tokens are available at the places marked as e; and ez and
Type(Con(T1)) = TRUE, that is when e; and ez occur simultaneously. When T'1 fires the corresponding tokens
at the places e; and ey are removed and placed in the composite place marked as e..

Closure: Figure 5-(c) shows the CCPN of the expression e. = *ej in [d1,d2]. The composite event e. happens
when both e; and es happen. In this CCPN, D(T'1) = [d1,d2], Con(T1) = {7(e1) € [d1,d2]}, e is a time point
indicator, e has a token when the o’clock is at the end of interval [d1,d2]. T2 is a time transition, it fires when
the o’clock is at the time point it is specified. So the composite transition 7'1 fires when tokens are available at the
places marked as e; and e; and T'ype(Con(T'1)) = TRUE, that is when both e; and es occur regardless how many
time e; has happened. When T'1 fires the corresponding tokens at the places e; and e; are removed and placed in
the composite place marked as e..

History: Figure 6-(a) shows the CCPN of the expression e. = times(n,e;) in [d1,d2]. The composite event

105

endof L.iupeus
interval [d1, d2] l

! PEaEN

T1

T1 if t(e)<t(ey —if 1 (e)=1 (&)
) o)
Color e, : seq(e;,) Colore,:sim(e, &) Color e, : *e, in[d1, d2]
(@) (b) (©

Fig. 5. CCPN structures of composite events

e. happens when e; happens at least n times during the time interval [d1,d2]. In this CCPN, D(T'1) = [d1,d2],
Type(Con(T1)) = TRUE, w(e;,T1) = n. So the composite transition T'1 fires when more than n tokens with
timestamp in the time interval [d1,d2] are available at the places marked as e;. When T'1 fires the corresponding
tokens at the place e; is removed and placed in the composite place marked as e..

ANY: Figure 6-(b) shows the CCPN of the expression e, = ANY (m,eq, e, ..., e,), where m < n. The composite
event e. happens when any m events of ej, ea,...,e, happen. In this CCPN, transitions 71,72, ..., Tn are copy
transitions, 7°0 is a composite transition, e is a place accumulating tokens of happened events, w(eg, 70) = m means
that the necessary condition to enable T'0 is place eg has at least m tokens. Furthermore, Con(7T0) = { Neol or > m},
so the composite transition 7°0 fires when there are more than m tokens available at the place marked as eg, and they
take at least m different colors. When 7°0 fires the corresponding tokens at the place e are removed and placed in
the composite place marked as e..

Modeling ECA rules with CCPN

ECA rules can be easily modeled by CCPN by the following way:

« Events and actions are modeled by places which are inputs and outputs of a transition;
o ECA rules themselves are mapped into transitions, conditions are attached to transitions.

« Rule firing corresponds to transition firing.

However, composite events detection is much more complicated than primitive events. Composite events in ECA
rules have to be converted into CCPN structures mention in above section rather than into simple places. After creating
events ECA rules can be converted into CCPN. The conversion algorithm from ECA rules to CCPN is showed in
Figure 7.

Example 2: An example is illustrated with three active rules, where composite events are the event part of ECA
rule. The rules are as follows:

Rule 1: When an employee’s record is added into database or his salary is updated. if new salary is bigger than the
manager’s salary, then the employee’s salary will be decreased, and the new salary will be the 20% of the manager’s
salary.

Rule 2: When an employee is new in the enterprise and in his first day get high sales, then his/her salary is increased
in 10%.

106

€0\
1 ©o
(&)

TO

(=) ©

Color g, : times(n, e) in [d1, d2]

T1

Color e,: ANY(m, e, &5, ..., &)

@) (b)

Fig. 6. CCPN structures of composite events

Rule 3: When there weren’t records added into the sales table in a working day, then notify to the manager about

the sales.

¢0, el and e2 are used to represent instructions insert employee, update employee’s salary, insert sales respectively.
The above three text rules can be written in ON event IF condition THEN action form as following:
Rule 1:

on or(eg,e1)

if employe.salay > manager.salary

then employee.salary = manager.salary * 0.20

Rule 2:

on and(ey,es)

if true

then employee.salary = employee.salary * 1.10;

Rule 3:

on not(ez)

if true

then notify to manager

There are three composite events in this example. They are or(eq, e1), and(ey, e2), and not(ez). ECAPNSim will

produce the three rules into a CCPN automatically as shown in Figure 8. In Figure 8, places named with letter
"E#" represents primitive events, and places named with "EC#" denotes composite events. Transitions T2, and T3 are
composite transitions corresponding to the event part of Rule2 and Rule3, and transitions T5, T6, and T7 are rule
transitions corresponding to Rulel, Rule2 and Rule3. Places E9 and E10 represent action parts of the rules.

From this CCPN model, it is not difficult to observe that the number of places is not as many as the sum of the
number of events and actions. This is because many events and actions are the same database operations.

V. ECA-PN SIMULATOR DEVELOPMENT

ECA-PN Simulator (ECAPNSim) was developed based on CCPN model in order to provide active behavior to

a passive database, however, composite events were not taken into account in our previous work [2]. Currently,

107

EVENTS[m]
RULES|N]
v
i=1
i=1
o no |Create transition ;T T,
t, = RULE[j].conditior;
Connect p, with t;;// 1, ={p,}
yes yes 1 1 1 1
Create py; r
p,.eventindex = i; en s there yes
a place for
action?
tvoe = Is
Py -type - EVENTJi]
primitive; .
Composite~
Create place p, for action part
yes p, = RULE([j].action;
p,.type = composite; L+
Create transition t| Teopp,; Connect t, with p,;
Connect t, with p,. 4]
k=1; ’ :
totalC = | EVENT][i].consEvents |;
i++: no k++; < Save action place in p,
o L]
p, = EVENT[i].constEvents[k]

; no
D, is already Connect p, with t,

p3 = Copyof(py)
Connect p; with t;

Fig. 7. CCPN conversion algorithm

ECAPNSim has been enhanced by adding new components such as composite events, termination analyzer, etc..
ECAPNSim is developed in Java, under MAC OS X Server. It is used as a layer between users and a passive
database. ECAPNSim provides active behavior to traditional databases, i.e., a traditional passive database can work as
an active one by communicate with ECAPNSim. For example, a postgres version 7.1 can work as an active postgres
by connecting with CCPN through JDBC driver instead of utilizing the TRIGGER SEMANTICS. Firstly, ECAPNSim
detects EVENT from database on its state modifications, then executes the simulator; Secondly, if some rules fire
on the detected EVENT, ECAPNSim sends ACTION of the fired rules to the database; Thirdly, database makes
an operation according to the action provided by ECAPNSim. We will illustrate our results with an active postgres

database in the next section.

108

ED E1 E2
J0 o | 1 T4
CopyOf_E1 CopyOf_E2 CopyOf_E2
—_r T2 T3
X i
- - - -
! | EC3 f | EC4 ECS
' v
o -
T5 TG I7
E% E10

8-pdf
Fig. 8. CCPN model of Example 2

Figure 9 is the object model of composite events implementation in CCPN. Class Rule is a main class which has
composition associations with the classes Table, Event, Condition, and Action. Class Rule represents an instance to
store an ECA rule description, thus it must have the three elements of ECA rule form: an event, a condition, and an
action part. Furthermore, Class Rule knows the table definition where the event shall occurr. Class Table has objects
of Class Fields, which are used to define fields and field data types defined in the table. Class Event has an instance
object Class Interval. Objects of Class Interval store the time interval inside specified by the event.

Class Rule objects are taken by the conversion algorithm to create CCPN model, therefore Classes Place, Transition,
InputAre, OutputAre, and Token are used to describe the CCPN structure created from the Class Rule objects. Class
Token is a composition of Classes Place and Transition, since Token objects are held by Place objects, and when a

transition is enabled, it analyzes the token information, then the Token object must be part of the Transition object.

A. ECAPNSim architecture
ECAPNSIm consists of two building blocks: ECAPNSim Kernel and ECAPNSim tools environment, see Figurel0.

ECAPNSim Kernel provides an active functionality to the passive database. ECAPNSim kernel consists of CCPN
Rule Manager, CCPN rule base, Composite Event Detector, and the Rule Execution Component.

° CCPN Rule Manager. When an event is detected by the Composite Event Detector, CCPN rule manager
verifies wether this event belongs to event set of CCPN, which is monitored in CCPN base. When an event of an
existing rule is detected, CCPN evaluates ECA rule, whose conditional part is stored in the CCPN transition. The
evaluation is made by the Condition Evaluator. If the evaluation of conditional part is true, CCPN rule manager sends
information of ECA rule action to rule execution component. Then action information is retrieved from CCPN rule
base.

. Composite Event Detector. Primitive and composite events are monitored by this component. First, primitive
and composite events defined by ECA rules developer are converted into CCPN structures, then they are stored in
the CCPN base. Composite events recognized by composite event detector are conjunction, disjunction, negation,

sequence, simultaneous, closure, last, history, and any. At runtime, composite event detectors “listen” all movements

109

Class Fields

!

Class Table
Class Interval Class Place
| ; Class Token
Class Event i | Class Transition
Class Rule |
Class Condition ' Class InputArc
Class Action Class OutputArc
——» Classes relation ~ -------- » Conversion algorithm relation

Fig. 9. Object model of composite event generation in ECAPNSim.

ECA rules developer

Tools Environment

ECA rule Termination ECA - CCPN CCPN editor/ Explanation
Editor Analyzer convertor visualizer Component

ECAPNSIm Kernel

Events Composite Event

generated —=——g > Detector B
by users +
CCPN < CCPN
Manager Base
4 \ 4
ECAPNSIm 1 Rule Execution
Transactions | | Component
\ A / v 4
» Database
——p eventsignalling ------- P CCPNretrieval == == = gvent - P rule execution

Fig. 10. ECAPNSiIm prototype architecture.

110

Termination Analyzer — The Engine

Incidence Matrix Paths Paths Cyclic Paths Refined
Generator Searcher Analyzer Detector Cycles
|
> CCPN
Manager ECA rules
CCPN developer CCPN
base Editor / Visualizer
__ >
ECA rules
developer
ECA - CCPN ECA rule > ECA rule I:l ECAPNSIm Kernel
Convertor Compiler Editor)
I:l Static tools

Explanation
component

E ——Jp Data flow

S P CCPN elements retrieval
H and storage

Fig. 11. Buildtime tools

that occur in the database, and verify each one with primitives events via CCPN base or composes composite events.
When an important event (primitive or composite) is raised, composite event detector sends a event-detected signal
to CCPN manager.

° Rule Execution Component. When an ECA rule event is detected by Event Detector, Rule Execution
component evaluates conditional part and stores them in a CCPN transition. If the evaluation is true, action part is
performed by rule execution component, and an instruction will be sent to database.

. CCPN Base. In ECAPNSim, ECA rules are defined by ECA rule editor. After ECA rules are converted into
a CCPN, CCPN is saved into CCPN base as places, transitions and arcs. CCPN rule base is used by CCPN manager
which follows ECA rule definition (event detection, condition evaluation, and action execution).

B. ECAPNSim Tools

ECAPNSim has a set of tools used by the ECA rules developer. Tools environment is made of ECA rule editor,
analyzer of no-termination problem, converter of ECA rules to CCPN, CCPN visualizer/editor and explanation
components, termination analyzer and runtime tools. Build-time tools are shown in figure 11. Termination analyzer
engine can check no-termination problem in CCPN rule base.

Relationships among ECA rules are depicted in the CCPN model, thus it is a trivial task to detect a cyclic path
visually. However, termination analyzer engine need to know the relationships among CCPN elements. Incidence
Matrix can be applied to analyze Petri Net, where the connections between places and transitions are transformed
into matrix. We use incidence matrix to find cyclic paths in CCPN. Paths in incidence matrix are described as ordered
pair sequence. For each ordered pair sequence, Cyclic path detector compares every ordered pair with everyone in
the sequence, and if there is any ordered pair duplicated in the sequence, then there exists a cyclic path. If there is
not any ordered pair duplicated in the ordered pair sequence, then, the sequence path has an initial and a final node.
Cyclic paths detector are named Conditional Part Analyzer, which verifies conditions stored in CCPN transitions. If

111

Console
\/—
ECAPNSIm
\ 4
Simulation mode Event Realmode
Condition Detector Rule Execution

evaluator

¢ i Component

With token CCPN <«——P{ Condition | \/
information Manager < : Evaluator [!
Random ¢ i) '
. 'y Action 1 DB
Token game ' =1 Executor [! >
animation i i

v N

ECA rules CCPN CCPN
developer editor/ base
visualizer

—>» Dataflow at runtime |:| ECAPNSIm Kernel |:| Static tools

Fig. 12. Runtime tools

there is, at least, one CCPN input place whose token information resulting from a fired rule, then firing rules in this
cyclic path can finish. For the limitation of space, termination analysis will be reported in another paper.

Cyclic paths which cannot finish are drawn with different colors and are shown in CCPN editor/visualizer. ECA
rules developer can edit CCPN rule base to avoid the no-termination problem. To define ECA rules, ECAPNSim
provides an ECA rule editor. Every ECA rule should be written according to general form of ECA rules, i.e., ON
event IF condition THEN action. After ECA rule base is well written, as syntactically as semantically, “ECA-CCPN
converter” begins to convert ECA rule definitions into a graphical structure. At runtime, ECAPNSim can be executed
in two modes: Simulation mode and Real mode, see Figure 12. ECA rules developer can verify CCPN behavior in
Simulation Mode before its installation over the database, for avoiding inconsistencies.

VI. AN ACTIVE POSTGRES DATABASE SYSTEM

In this section, we use postgres to show how it is transformed into an active database via ECAPNSim. Our objective
is to make postgres active with ECAPNSim instead of using TRIGGER semantics inside postgres system. Example
1 in Section 2 will be used to illustrate results. Originally, data stored in tables EMP, BONUS and SALES are shown
in Figure 13, Figure 14 and Figure 15.

The rules are firstly translated into ON...IF...THEN... style (see the last part of section 2), and are saved in a text
file paper.eca. Now we use the Import item of File menu in ECAPNSim to convert it into a CCPN as shown in
Figure 17. However, Figure 17 has only the structure of rule interaction, there is no dynamic information of the whole
active database system.

In fact, both the database and ECAPNSim can work independently, but they cannot work together as an active
database. In order to let users work on ECAPNSim easily and directly, an additional window, called Console is
developed as an user interface. Users can work on the database through Console instead of working directly on the
database. Any SQL instruction on the database can be operated through Console window, see Figure 16.

112

fusrfbinflogin (ttypl)
Paper=# select * from emp; 4
emnp_id | name | rank | =alary
1 | Jones [3 | 156R.6R
2 | Smith | Z | 1856.8a
|
3 | Hayes | 4| 1628.00 8
(3 rows) !
v
Poper=# |:| 5
Fig. 13. Original data in table EMP
F . |

fusr/bin/login (ttypl)

Poper=# select * from BONUS; 4
emp_id | amount

1] g5
2| L)
|
3) kj
03 rows) .
v
Faper=4 |:| o

Fig. 14. Original data in table BONUS

In this example, we input a SQL instruction through the Console, which updates BONUS amount whose emp id
is 3 from 90 to 200, see Figure 16. When this instruction is received by Console, it is transmitted to both the database
and Event Detector of ECAPNSim. The Event Detector checks the database status, and you will find that the third
record of column amount of tale BONUS has been modified (see Figure 18). If it is confirmed as an event of a rule
in the rule base, the corresponding place of the event in CCPN, named update BONUS amount, is deposited a token
(as shown in Figure 17). The token information can be seen on the right side of the window Token Properties when
the user make a "click" on the place.
When the place update BONUS amount has tokens, transition 7/0 is enabled. The condition attached to transition
T10 (IF update. BONUS_amount-old. BONUS_amount > 100) is evaluated true since update .BONUS amount-o0ld.BONUS am
=110>100. Now T10 fires, the token in place update_ BONUS_amount is removed, and a token with color EMP_rank=4+1=5

fusr/binflogin (ttypl})

Paper=# select * from SALES;
emp_id | month | number

1| g | 28
z | g | 17
sl 8l a3 U
(3 rows) i
¥
Paper=# |:| .

Fig. 15. Original data in table SALES

113

Console

SOL Instruction: update BONUS set amount = 150 where emp_id = 3

Fig. 16. An update instruction in Console window of ECAPNSim

ECAPNSIim: paper.pnj

File Edit Insert Mode Execution Help

FEEEREEE

s I~
Token properties
— o-.,
8 -\, insert_SALE /. "L update_BONU ! Set Where
N8 e Samount amount = 200 |emp_id = 3
] T12 o Y 110
[— 4
[F
D N l/‘\
8 | update_EMP_ { Y update_EMP_ 0 T11
¢ salary S rank
Y coey
o N\ s / \
{ '\ CopyOf_upda i | CopyOf_upda Spre_e"d
. te_EMP_rank S te_EMP_rank yy o
e R I i
v| 0 20 40 60 a0 1

Fig. 17. A token information with color set amount=200 where emp id=3 is deposited to the place update_ BONUS_amount.

is deposited to the place update EMP rank (the downstream place of transition 770). Meanwhile, the action is
transmitted to the database. If you check the database status, you will find that column rank of the last record has
been modified to 5 (see Figure 19).

Until now only the place update EMP rank in the CCPN model has token, so transition copy is enabled. According
to Definition 5, it fires immediately. Then the token in the place update EMP_rank is removed and two places copy
of update EMP _rank have one same token. So transitions 77/ and 774 are enabled. The condition evaluation process
are repeated until no transition can fire, and ECAPNSim stops.

From this example, we see that ECAPNSim is easy to connect with postgres. In fact, ECAPNSim can connect
with many traditional relational database systems. We have made test successfully on Oracle, Progress, Access too,
the results showed that ECAPNSim can be used as an engine of active database.

VII. CONCLUSION

Here we just make a simple comparison with two other relevant works, one is the CPN model in [7], the other

is that in [11]. For example, composite event Sequence: seq(e;, ez) is represented by the CPN in [7] as shown in

114

fusrfbin/login (ttypl)

Poper=# =select * from BONUS;
emp_id | amount

1] g5
2| 1])
31 15a N
(3 rows) k
¥
Paper=3# D

Fig. 18. The database status of table BONUS after an instruction from Console "update BONUS set amount=200 where emp id=3"

= . |
fusrfbin/login (ttypl)
Paper=# select * from emp;
emnp_id | name | rank | =salary
1 | Jones I 3 | 1E08.88
2 | Smith | Z | 165@a.88 -~
3 | Hayes | 51 1620.60 N
{3 rows) i
¥
Paper=# |:|

Fig. 19. The database status of table EMP after carrying out an action from ECAPNSim "update EMP set rank = update.rank+l
where emp id = update.emp_ id"

Figure 20-(a) , by the CPN in [11] as shown in Figure 20-(b), and our model is shown as Figure 5-(a). It is not
difficult to see that our model has the following advantage than the CPN models in the other two relational works:

1) The model structure is simple. There are only three places and one transition in our model, but the other two
models use much more places and transitions since additional places and transitions have to be used to represent
the order of condition attached to the two primitive events.

2) Our model depicts the composite and event-condition-action relationship intuitively and clearly. In our model,
transitions correspond to a composite event or a rule. But, these relations are hidden in net structure in the
other two models.

3) It is easy to verify the correctness of our model. The mapping from rules to CCPN is direct, EVENT part
are modeled as input places, ACTION part is modeled as out places, and composite conditions are attached to
the corresponding composite transition. But, in the other two models, one has to use techniques and additional
axillary places to represent the composite condition. However, the correctness of the obtained model cannot be
guaranteed.

4) CCPN model is a timed model, i.e., time are integrated into the model, so it is suitable for real-time database
too. The other two models are logic, time information were not considered.

5) CCPN is implemented easily based on object oriented programming. The other two models didn’t discuss
implementation issues.

Although CCPN has advantages on modeling ECA rules, it cannot be applied to any area that CPN can be applied.

The disadvantages of CCPN are as following:

1) CCPN is not a normal CPN although it takes some concepts of CPN. Tokens in CCPN take information, but
the arcs don’t have expression for specifying permitted tokens. In CCPN, all tokens have right to enable its

115

Sequence(el,e2)

Sequence(el,e2)

(@) (b)

Fig. 20. CPN models of Sequence(el,e2). (a) CPN model in [7]; (b) CPN model in [11]

output transitions. Therefore, CCPN model semantics is less than CPN's.

2) Up to now, CCPN is developed specially for modeling ECA rules. We haven’t investigate if it is suitable for

other systems. So its application areas are not as widely as CPN.

As a conclusion, CCPN is a good model for modeling, analyzing and simulation of active database systems. It

may be used as an active engine of database system, but not dependent on the database. We have experimented
ECAPNSim successfully on ORACLE, Postgres, Progress, Access. Our future work is applying CCPN on workflow
systems.

[10]

(1]

[12]
[13]

[14]

REFERENCES

Xiaoou Li, Wen Yu and Felipe Lara Rosano, Dynamic knowledge inference and learning under adaptive fuzzy Petri net framework, /EEE
Transactions on System, Man, and Cybernetics, Part C, vol.30, No. 4, 2000 , pp. 442-450

Xiaoou Li, Joselito Medina Marin, and Sergio Chapa V., A Structural Model of ECA Rules in Active Database, Mexican International
Conference on Artificial Intelligence (MICAI’'02), Lecture Notes in Artificial Intelligence series (volume 2313), Springer-Verlag, Mérida,
Yucatan, México, April 22-26, 2002

Joselito Medina Marin y Xiaoou Li, ECAPNSim, un simulador para reglas ECA, el XIII Congreso Interuniversitario de Electronica,
Computacion y Eléctrica (CIECE), Zacatepec, México, Abril, 9-11, 2003

Xiaoou Li, Sergio Chapa, Joselito Medina Marin, and Jovita Martinez Cruz, An Application of Conditional Colored Petri Nets: Active
Database System, /[EEE International Conference on System, Man and Cybernetics, The Hague, Netherlands, Oct. 10-13, 2004

Zimmer D., Unland R., “On the Semantics of Complex Events in Active Database Management Systems”, Proceedings of the 15th International
Conference on Data Engineering, IEEE Computer Society Press, pp. 392-399, 1999.

N.W. Paton and O. Diaz, "Active database systems", ACM Computing Surveys, Vol. 31, No. 1, March, 1999

Gatziu S., Dittrich K.R., "Events in an Active Object-Oriented Database System", Proceedings of the st International Workshop on Rules
in Database Systems, Edinburgh, Scotland, 30 August - 1 September 1993. pp. 23-39.

Detlef Zimmer, Axel Meckenstock, Rainer Unland: "A General Model for Event Specification in Active Database Management Systems",
Proceedings of the 5th International Conference on Deductive and Object-Oriented Databases, DOOD 97, Montreux, Switzerland, December
8-12, 1997 LNCS 1341 pp. 419-420

N. H. Gehani and H. V. Jagadish and O. Shmueli, "Composite event specification in active databases: Model & implementation", Proceedings
of the 18th International Conference on Very Large Databases, 1992.

C. Collet and T. Coupaye, "Primitive and Composite Events in NAOS", C. Collet and T. Coupaye. Primitive and Composite Events in NAOS.
In actes des 12e Journees Bases de Donneees Avancees, Cassis (France), pages 331-349. 1996.

Masum Z. Hasan, "The management of data, events, and information presentation for network management", Doctoral Thesis of the University
of Waterloo, 1996.

CPN introduction papers, http://www.daimi.au.dk/CPnets/

Meo, G. Psaila, and S. Ceri. "Composite Events in Chimera". Proceedings of the 5th International Conference on Extending Database
Technology, EDBT’96, LNCS 1057, Springer Verlag, Avignon, France, pp. 56-78, 1996

1. Motakis, and C. Zaniolo, Formal semantics for composite temporal events in active database rules, Journal of System Integration (JOSI),
Vol. 7, No. 3-4, pp. 291-325, 1997.

116

Modelling Probabilistic Inference using Coloured Petri Nets
and Factor Graphs

Somsak Vanit-Anunchai and Jonathan Billington

Computer Systems Engineering Centre
University of South Australia
Mawson Lakes Campus, SA 5095, AUSTRALIA

Email: vansy014Qunisa.edu.au, jonathan.billington@unisa.edu.au

Abstract. Bayesian Networks are a leading technology for probabilistic reasoning in artificial
intelligence communities while Petri Nets play an important role in the modelling and analysis of
complex systems. The recent development of Factor Graphs and its message passing algorithm
help to provide a way of translating Bayesian Networks into Coloured Petri Nets. The integration
of these two powerful paradigms will help us to obtain and analyze intelligent agent’s belief and
preference models. This paper presents our initial work on modelling probabilistic inference based
on Pearl’s belief algorithm or message passing algorithm of factor graphs using Coloured Petri
Nets. Occurrence graph with the equivalence class tool is nsed to assist validating the inference
algorithm. The occurrence graph is expected to have one dead marking with no livelock.

Keywords: Multiagent Systems, Coloured Petri Nets, Bayesian Networks, Belief propagation,
factor graphs, State space methods.

1 Introduction

Engineering problems generally involve complexity and uncertainty, with their levels depend-
ing on the problem domain. One of the most important theories, which has been successfully
applied to solve uncertainty problems, is probability theory. However sometimes when there
are too many variables, the probability problem is very complex or intractable and requires
a large amount of prior knowledge or data. To mitigate the complexity in the uncertainty
problems many subjects such as Statistics, Fuzzy Logic, Econometrics and Decision Theory
have been studied.

During the last two decades, Bayesian Networks (BN) have played a leading role for proba-
bilistic reasoning in the artificial intelligence community as well as several other communities.
They can perform efficiently not only probabilistic inference but also learning from observed
data. Although BN have simplified the representation and probabilistic inference, the size of
the BN is still a matter of concern. In general probabilistic inference is NP-hard (Cooper,
1990). Even approximate inference has been shown to be NP-hard (Dagum and Luby, 1993).
It is very difficult to model a complex system using BN. There are some proposals to tackle
this complexity problem by grouping BNs into interacting sub-networks. Some examples of
these attempts are Multiply Section Bayesian Networks (MSBN) (Xiang and Lesser, 2003),
Hierarchical Bayesian Networks (HBN) (Gyftodimos and Flach, 2002) and Object Oriented
Bayesian Networks (OOBN) (Pfeffer, 2000). Besides complexity reduction, these approaches
have the advantages of flexibility, modularity, reusability and ease of maintenance.

On another vane, Petri Nets (PN) are well-known for modelling and analyzing complex,
concurrent systems. In many cases, the behaviour of systems, which we study, can be non-
deterministic or uncertain. Many different approaches have been proposed and developed to
build Petri Nets which are suitable for modelling and analysing the uncertain behaviour of

117

complex systems, such as Stochastic Petri Nets (SPN) (German, 2000), Fuzzy Petri Nets
(FPN), (Shen, 2003). Possibilistic Petri Nets (PPN) (Lee et al., 2003).

When problems are large and subtle, we find many applications are suitable to be imple-
mented by intelligent Multi-agent Systems (MAS). There are two important features of MAS.
Firstly, each agent has knowledge or belief about its problem domain (world model) which is
often represented by Bayesian Networks. Secondly, MAS require inter-agent communication
and cooperation protocols which are often formally modelled and analysed by Petri Nets.
Another example is the command and control system in the battle field. This requires assess-
ing the most likely outcome based on unreliable and incomplete evidence, here BN are the
leading technique. Before taking the selected action, the system needs to explore and evaluate
possible actions in detail. Petri Nets play a leading role in this second task.

According to the above discussion, we argue that modelling uncertain-complex systems,
like MAS or command and control systems, should be performed in a common environment,
so that the merit and accumulated knowledge in both fields can be effectively exploited. As
far as we are aware, there are only two groups attempting to merge BN with PN. Firstly,
Bayesian Petri Nets were proposed by (Kruse and Lautenbach, 1998) who introduced the
notions of transition tokens and backward place firing. In Pearl’s belief propagation algorithm
(Pearl, 1988), m messages are defined as messages sent from parent to child nodes and A
messages are defined as messages sent from child to parent nodes. According to Kruse and
Lautenbach’s work, place tokens represent m messages and transition tokens represent A mes-
sages. Secondly, (Wagenhals and Levis, 1998) proposed executable models of Influence Nets
(IN) using Design/CPN. Influence Nets are an extension of traditional Bayesian Networks
but Influence Nets use simplifying assumptions that all parents are independent and the vari-
ables are boolean. Although IN inference is not exact, it can be efficiently applied to belief
networks with loops where Pearl’s belief propagation algorithm can not be applied directly
(Pearl, 1988). They also extend their work to Timed Influence Nets (TINs) (Wagenhals and
Levis, 1999) and TIN with logic (Lindstrem and Haider, 2001). As indicated in (Haider and
Zaidi, 2004), one disadvantage of TINs is that the influence of actions only propagates in the
forward direction: from source to target nodes via intermediate nodes. The limitation occurs
when the states of non-root nodes are observed but INs can not incorporate such informa-
tion. To overcome this difficulty, two methods have been proposed. (Haider and Levis, 2004)
have proposed an approximation for belief revision in TIN based on the constraint that “the
marginal probability of a parent node will not be updated unless all of its children which
need to be updated have updated marginal probabilities”. The other way is to transform a
TIN into a Timed Sliced Bayesian Network (TSBN) or Dynamic Bayesian Network (DBN)
(Haider and Zaidi, 2004). In contrast to TINs, our work can give an exact inference, not
limited to boolean variables and the observed states of non-root nodes can be incorporate in
the inference.

This paper presents our initial work on modelling probabilistic inference using Coloured
Petri Nets. The development of Factor Graphs (FG) (Kschischang et al., 2001) and their
message passing algorithms provide a way of translating Bayesian Networks into Coloured
Petri Nets. Factor graphs and their message passing algorithms can be applied to many fields
depending on how the functions and variables are defined. The most popular application
of factor graphs seems to be signal processing and communications such as in the area of
error control coding. When applying factor graphs to Bayesian Networks, a message passing
algorithm with the sum of product operation is equivalent to Pearl’s belief propagation. In
particular, we propose a formal model of Pearl’s belief propagation algorithm using CPNs.

118

The occurrence graph with the equivalence class tool is used to assist validating inference
algorithms. The occurrence graph is expected to have one dead markings with no livelocks.

The rest of the paper is organised as follows. We review the technical background of
Bayesian Networks, inference algorithms, factor graphs and the message passing algorithm
in section 2. Assuming the reader has some familiarity with CPNs, section 3 explains the
description of our Coloured Petri Net (CPN) model. Section 4 discusses the idea how our
model works. Section 5 discusses the simulation and analysis of the model. Section 6 explains
the contribution of combining BN with CPN. Finally, conclusion and future work are presented
in Section 7.

2 Technical Background

2.1 Bayesian Networks

Bayesian Networks (BN) are graphical models which represent joint probability density func-
tions and dependency relationships among random variables. A BN is defined as a Directed
Acyclic Graph (DAG) G = (V, E). Random variables are represented by nodes (V') in the
graph while dependency relationships are indicated by edges (F) connecting pairs of variables.
Given nodes X and Y in V, if there is an edge from X to Y, Y is called a child of X and X
is called a parent of Y. Each variable is conditionally independent of the others given values
for its parents. Random variables Y and Z are said to be conditionally independent if
there exists a random variable X, such that the joint probability of Y given X and Z denoted
P(Y|X, Z) equals the probability of Y given X (P(Y|X,Z) = P(Y|X)) when X is possible
(P(X) # 0). After we associate a local Conditional Probability Table (CPT) with each node,
a BN represents the joint probability defined in equation 1.

N
P(X1, Xy, .., Xn) = [[P(Xklpa(Xy)) (1)
k=1

where pa(Xy) is the set of parents of a random variable X; and N is the number of random
variables.

Figure 1 shows an example of a Bayesian Network named the lung cancer network which
represents the joint probability distribution of boolean variables: smoking history (H); bron-
chitis (B); lung cancer (L); and chest X-ray (C'). The tables in the figure are the Conditional
Probability Tables (CPT) associated with each node. From an empirical study, suppose smok-
ing causes lung cancer and bronchitis with probability P(L = True|H = True) = 0.003 and
P(B = TruelH = True) = 0.25 respectively so that there are directed edges from the H
node to the L and B nodes. Without a smoking history, the probability of lung cancer P(L =
True|H = False) = 0.00005 and probability of bronchitis P(B = True|H = False) = 0.05.
Chest X-ray could reveal the cancer with probability P(C = True|L = True) = 0.6, however
it could be a false alarm with probability P(C = True|L = False) = 0.02. The lung cancer
network represents the joint probability

P(B,H,L,C) = P(B|H)P(H)P(L|H)P(C|L). 2)

When the joint probability is known, theoretically we can compute marginal probabilities
(Neapolitan, 2004) of any variable combinations. Given some observed state of the nodes,
called evidence, we can calculate the marginal posterior probabilities P(X},|evidence). For

119

H _|P @)

H T |02
F |os
H L |pwmH)
T T 0.003
T F 0.997
F T [0.00005
1 F F |0.99995
H B PBIH)
T T 025
T F 0.75
F T 0.05 L | ¢ |pci
F F 0.95 T | T 0.6
iy F 0.4
F |l T | 002 C
F | 7 | 098

Fig. 1. The lung cancer network.

example, if there is evidence that a patient has bronchitis (B = True), we can calculate
the chance that he could have lung cancer (P(L = True|B = True)). This process is called
probabilistic inference or belief updating (Guo and Hsu, 2002). On the other hand, given the
observed evidence, we may be interested in finding the most probable instantiation of some
hypothesis variables. When all hypothesis variables are not observed, this inference process
is called a most probable explanation (MPE).

2.2 Review of Bayesian Network Inference Algorithms

In the early 1980s Pearl proposed an exact and efficient message propagation inference al-
gorithm for singly connected or polytree networks (Kim and Pearl, 1983) (Pearl, 1988). A
singly connected network is a graph which has only one path between any two nodes. While
general exact inference is NP-hard, Pearl’s algorithm has polynomial complexity in the num-
ber of nodes. In order to apply his algorithm to a multiply connected network, (Pearl, 1988)
suggests loop cutset conditioning to transform the multiply connected network into multiple
polytree networks by instantiating a selected subset of nodes as illustrated in figure 2. Then
each polytree network can be solved by the message propagation algorithm. The results from
networks then are weighted by its prior probabilities and added together. For example, sup-
pose all nodes in the figure 2 (Neapolitan, 2004) are boolean variables. We can compute the
marginal probability P(W) from

PW) = P(W|X = 21)P(X = z1) + P(W|X = 22)P(X = 2») (3)

where the prior probability is P(X = z1) and P(X = z9). P(W|X = ;) and P(W|X = z9)
can be computed by applying Pearl’s belief propagation to networks in figure 2 b and ¢
respectively.

120

° X=x; X=x;

P’(y1) P’(z;) P’ (y,) P (z,)
=Py, %) =P(yvi1xy) =P(y1l xz) =P(z; | x2)
a) b) c)

Fig. 2. A multiply connected network is transformed into two polytree networks by instantiating X with z1
and z2 (Neapolitan, 2004).

However, the complexity of the loop cutset method increases exponentially with the size
of the loop cutset and the number of possible values of instantiated variables. (Pearl, 1988)
also proposed a node clustering method an example of which is shown in figure 3.

o
() (=) ==
() &

a) b)

Fig. 3. a) An undirected graph with loop. b) Converting the graph with loop into a tree by the clustering
method.

The most popular algorithm of BN inference is not Pearl’s belief propagation but the
“junction tree” method which was developed by (Jensen et al., 1990), based on the “clique-
tree propagation algorithm” of (Lauritzen and Spiegelhalter, 1988). The “junction tree” algo-
rithm transforms a multiply connected network into a clique tree'. Then it performs message
propagation on the clique tree. However the complexity of the clique message propagation
algorithm grows exponentially with the size of the largest clique of the tree.

T A clique tree is a graph where the nodes are cliques. A clique is a collection of vertices which are all pairwise
neighbors.

121

Recently, the interest of researchers has returned to Pearl’s belief propagation (BP) be-
cause they found that BP can efficiently perform an approximate inference on graphs with
loops especially in the area of error correction coding and image processing (McEliece et
al.,1998) (Murphy et al., 1999). However in some cases loopy BP may not converge or give
the correct result. A new breakthrough (Yedidia et al., 2002) in understanding loopy BP
occurred when a close connection was found between the BP algorithm and the Bethe free
energy approximation in statistical physics. (Yedida et al., 2002) show that BP converges to a
stationary point of an approximate free energy, known as the Bethe free energy in statistical
physics. By using Kikuchi approximations (Kikuchi, 1951) and the cluster variation method
(Morita, 1991), they propose a new generalized belief propagation (GBP) algorithm which
always converges and gives much more accurate results than ordinary BP.

There are still many other exact and approximate methods which can not be described
here, such as Markov Chain Monte Carlo (MCMC) sampling and symbolic probabilistic in-
ference (Guo and Hsu, 2002).

2.3 Factor Graphs

A factor graph is a undirected graphic representation of a mathematical relation between local
functions and variables. The factor graph comprises factor nodes, variable nodes and edges
connecting factor nodes fr and variable nodes z; if and only if variable x; is an argument
of function fi. The factor graph represents the product of local functions f; as shown in
equation 4.

g9(z1, 72, on) = [] fr(Xe) (4)
keK
where X}, is a subset of {z1,z9,...,2x} and fr(Xx) is a local function which has X}, as an

argument. N is the number of variables and K is the number of local functions.
An example of a factor graph is shown in figure 4 which represents equation: g(x1, o, ..., z4) =

falz1)fe(z2) fo(z1, w2, ®3) fp (3, 24) fE(23)-

@@\@@

fa /B fe fp fE

Fig. 4. An example of factor graph.

Similar to BN, the factor graph not only encodes the factorization of the global function in
its structure, but also can arithmetically compute the marginal functions? associated with the
global function g(z1, %9, ...,zn). There are several ways to perform the marginal operation.

2 Associated with g(z1,z2, ..., zxn), there are N marginal functions g;(z;). The value of g;(z; = a) is obtained
by summing the value of g(z1, z2, ..., zn) over all possible configurations of the variable which have z; = a.

122

For example one can apply the distributive law to the global function and represent the
marginal function as order rooted trees (Rosen, 1999). Then the marginal operation can be
performed either top-down (from root to leaves) or bottom-up (from leaves to root). However
this method results in only one marginal function g;{z;). In many cases we are interested in
more than one marginal function. It is not efficient to recompute each value of g;(x;) each
time. (Kschischang et al., 2001) developed a message passing algorithm which computes all of
the marginal functions g;(z;), (s = 1,.., N) simultaneously. This algorithm involves the sum
of products operation at function and variable nodes and is equivalent to belief propagation
in BN.

Suppose a factor graph has a set of variable nodes V' = {z} | J{y1, 92, ..yr} and a set of
function nodes F' = {f}U{h1, he,..hg} as shown in figure 5. The number of variable nodes
is R+ 1 and the number of function nodes is @ + 1. A set of neighbours of a function node
f is n(f) which is a subset of V" and a set of neighbours of a variable node x is n(x) which is
a subset of F. Node z is a neighbour of node f. Let a function y,_, ¢(x) be the message sent
from variable node z to function node f and a function ps_,,(z) be the message sent from
function node f to variable node z.

Fig. 5. Message passing algorithm in a factor graph (Kschischang et al., 2001).

According to (Kschischang et al., 2001), the message from a variable node to a function
node is computed as follows:

paomp@) =[] saoala) (5)
hen(e\{}

The message from a function node to a variable node is computed as follows:

proe@ = > M) T mr®)] (6)
X\eh ven(f\ie}

123

where X = n(f) is the set of arguments of the function f.

While each node starts in the idle state, waiting for messages from its neighbours, the
leaves and root initiate sending messages. If the leaf or root is a variable node, the initial
message is equal to one. If the leaf or root is a function node, the initial message is equal to
its local function associated with the node. A node = would be able to compute the sending
message when it receives messages from its neighbours. The message sent to a neighbour f
is calculated from all received messages except the message received from that neighbour f.
After sending a message to the neighbour f, node = waits for a returned message from node
f. When the returned message has arrived, node 2 can compute the message sent to other
nodes (h). The algorithm stops when messages have been exchanged between two neighbours.
The product of all incoming messages at a variable node z; is the marginal function g;(z;).

Similar to Loopy BP, while using the sum of product algorithm with a predetermined
message schedule, factor graphs with cycles in general may not converge or may converge to
the wrong result because they have the risk of over-counting information (Kschischang et al.,
2001). However if the original factor graph contains loosely coupled loops, it usually converges
and gives a very good approximate answer. Even though it is not well understood why factor
graphs with cycles work, it has been practically demonstrated in many fields (McEliece et
al.,1998) (Murphy et al., 1999).

2.4 Bayesian Networks represented by Factor Graphs

A Bayesian Network represents the joint probability defined as equation 1. According to
(Kschischang et al., 2001), this equation can also be represented by a factor graph. The local
function nodes are the conditional probabilities which have random variables X and pa(X})
as arguments. The function node P(Xg|pa(Xy)) is connected with variable nodes X} and
pa(Xg). The joint probability of the lung cancer network, equation 2, is represented by a
factor graph as shown in figure 6. In order to be comparable with figure 1, we rearrange
figure 6 into figure 7. A node 7 of a Bayesian Network, corresponding to a dashed ellipse, is
composed of a function node f; and a variable node v;. A message i, . (vp) is @ message sent
from a variable node of a parent v, to a function node of a child f. and a message (7, (vp)
is a message sent from a function node of a child f. to a variable node of a parent v,. These
messages are equivalent to the messages m.(p) and A.(p) respectively in BP algorithm.

Q @

F B F_H F L EC

Fig. 6. A lung cancer Network represented by a factor graph.

124

. -

rd ~
/|EH| N
'H)= (0'2'0'8}* PHB=T) = (0.5556,0.4444
\)= (0.25,005) 47 # BT = 055560.4444)
T @)= 02,08 V \ (va) ¢
My ®)= 0250054 - PLIB=T) = (0.00169,0.99831)
/.""-... ‘ /. . .
: T, @)= (0.05, 0.04 .
;e s LH)= (1)y P Y I
- \ hey-an # : :
"B TE)= (1,0) ¢ 'L T @Y= (0000152, 0.089848)%
‘ A@)= (1,0) 4 | Aakan?d
- % ’
s, @ / A
N, -’ AY 3
= T il
PE=T)=1 T L)= (0.000152, 0.089848)¥ i
Aw=-and A e I
! 1
= (0.00188, 0.881;12 :
Note :AB)=(1,0) meansAB=T)= 1 LE)=0 00*88 0.88 ‘1 }+ cI'
AB=F)= 0 AC)= @) \ ;
N — /
T PCIB=T) = (0.0213,09787)- ,
PH=F)= 0.8 - st

Fig. 7. A lung cancer Network represented by a factor graph and its message propagation.

The messages inside a dashed ellipse are p,,_ ¢, (v;), sent upward from a variable node v;
to a function node f; and iy, (v;), sent downward from a function node f; to a variable
node v;. These messages are equivalent to the messages A(v;) and 7 (v;) respectively in BP
algorithm.

Figure 7 also shows the message passing in the lung cancer network. The message values
are computed as described in the previous section. The leaves and roots initiate sending
messages. If there is evidence that a patient has bronchitis (B = True), the probability of
(B = true) is equal to one. The node B initiates the message n(B) = (1,0) and A(B) = (1,0)
as shown in figure 7. The other messages is computed accordingly by equation 5 and 6. For
example, we can compute A(H) and n(L) by equation 7 and equation 8.
H) = Ap(H)AL(H)

pv_H—Fa(H) = X (7)

privi(D) = w(L) = S (P(LIH)m,(H)) (8)

H

According to Pearl’s algorithm (Pearl, 1988), the marginal probability is computed by
P(v;) = am(v) A(v;). (9)
The normalized factor « is used to make sure that summation of probability is equal to one.

For example, marginal probability of lung cancer (L) can be computed by P(L) = aA(L)n(L).

125

3 Description of Bayesian Network - CPN Model

We think the best way to understand our work is to explain the modelling together with
an example. We model a BN representation of a lung cancer inference problem in figure 7
using Colour Petri Nets (CPNs). Our translating BNs to CPNs preserves all ability of Pearl’s
belief propagation. With loop cutset conditioning and node clustering methods, our work
can be applied to any multiply connected Bayesian Networks with discrete variables, not
limited to boolean variables, and gives an exact inference. With particular design of message
scheduling, we also believe our model will help to model and analyse loopy belief propagation
for approximate inference. However in this paper we limit our work to discrete variables and
polytree Bayesian Networks.

Suppose we wish to model a Bayesian Network of figure 7 in order to infer the probability
of lung cancer P(L). An example question is if we know that a patient has bronchits, what
is the chance he could have lung cancer? We expect to answer this question using CPN. Our
model is organized into three hierarchical levels as shown in figure 8. The top level has one
page named BN _Overview. The second level has one page named BN_NODE. The third level
has two pages named FUNCTION and VARIABLE pages. The global declarations defining
all the constants, and colour sets and declaring the types of the variables used in our model,
are shown in figure 9.

Hierarchy#10 \ DECLARE#4 » \ Eq_Class#7
— —

rBN_O\.fer\.'ie.-\I\'#S\'l M Prime

l— 7 EN_NODE#2 -

N (s i

BN_H
BN B
BNL | peemeem- -
BN C — (ﬂ””.'cl'c."fs.)
FUN
r ----- —.
{ VARIABLE#1
vaR 0 " °

Fig. 8. Hierarchy page for the CPN model.

3.1 First Level Page

Figure 10 shows the top level page named BN_Overview. Each substitution transition models
each discrete BN variable (BN_H, BN_L, BN_C and BN_B) which links to the second level
page named BN_NODE page. Each BN_.NODE sends a message to each other through socket
places named IN_FUN and IN_VAR typed by PACKET. A message token typed by PACKET,
is defined as a product comprising colour sets FNODE, VNODE and LPAIR. The colour sets
FNODE and VNODE are used as the source and designation identifications.

126

(* --- Global Declaration Node —-- *)
val F.B=1; val F_.H = 2; val F_.L = 3; val F_C = 4;
val V.B =1; val V.H = 2; val V_.L = 3; val V_C = 4;

val pr = 6; (#*Precision of Real Number *)
color FNODE = int; (¥*Function Node *)
color VNODE = FNODE; (¥Variable Node *)

var vsrcl,vdstl1:VNODE;

var fsrcl,fdstl:FNODE;

color LVNODE = list VNODE; (* e.g. [V_B, V_L, V_C] %)

var 1v1,1vB:LVNQODE;

color LFNODE = list FNODE;

var 1f1,1fB:LFNODE;

color LLFNODE = list LFNODE; (*List of (FNODE LIST)->[[F_L,F_B],[F_C,F_H]]1%*)
var 11f1,11v1:LLFNODE;

color Real = IntInf; (¥ define Real as Unbounded Integer *)
color X = int; (* value of a variable e.g. V_L=2 *)
color FX = Real; (¥ value of a message mu(V_L=1) = 0.7%)

(* value of a message mu(V_L=2) = 0.3%)
color PAIR = product X*#FX; (* from a pair of variable value and message value*)
color LPAIR = list PAIR;
var lpairl:LPAIR; (* [(1,0.7),(2,0.3)] *)
color PACKET = product FNODE*VNODE*LPAIR;

(* mu(F_L->V_B)(V_B) = (F_L, V_B, [(1,0.7),(2,0.3)])*)
color VNODExLPAIR = product VNODE+LPAIR; (* (V_B,[(1,0.7),(2,0.3)1) *)
color LMSG = list VNODExLPAIR;

(* Lists of messages which are stored in the nodes #*)

var 1lmsg:LMSG; (x [(V_B,[(1,0.7),(2,0.3)1), (V_H,[(1,0.2),(2,0.8)1) 1 =)
color VnX = product VNODE*X; (x (V_H, 1) #%)
color LVnX = list VnX; (* [(V.H,1),(V_B,2),(V_.L,1) 1 %)

color CPT = product LVnX#FX; (* P(V_H=1| V_B=2, V_L=1) = 0.2 *)
(*([(V_H,1),(V_B,2),(V_L,1)1,0,2)%)

color LCPT = list CPT; (* List of 1CPT to form a conditional prob tablex*)

var lcpt:LCPT; (¥ associate with a function node *)

Fig. 9. Global declarations of a lung cancer BN-CPN model.

e e e e - O o 5
_'}. '[FLFBFH'VH +*

.I, l /J"“\ "'*"' -)/f "\-..)/f'_--"‘-.)
N b BN_H \IDFUNH NB_VAR M) 1o vaR H) L GPT H
‘: PI_H)"LAMBDA H) _ ‘NB FUNH, x e e -
S e LHs =~ LvnoDE FNODE LFNODE VNODE = 1cpr
PACKET PACKET [{l(V_H,1j],RealTalntinf pr 0.2),{[{V_H.2)],RealTolntinf pr 0.8)]
S Sy 1 MIVHL G FLLFLRGL v, i
f" / o P ’ - S~ et -
{ P) {LamsDA b) I » BN L |e C NBFUN 5, ID_FUN L)\NE VAR L) io_vAR_L_)/ LCPT L)
- -
o e ¥ e
PACKET packer [TwnonE T FNODE(rNoDE. VNOPE ~ 1cpr
IN FUN IN VAR [{lV_L1)L(V_H. 1] RealTalntint g 0.003)([(V_L.1),0V_H,2) |.RealTolntinf pr 0.00005),
= PACKET PACKE 31 ([(V_L.2),(V_H, 1)}, ReaTalntinf pr 0.997).(i(V_L.2),(v_H.2)] RealTalntinf pe 0.99995))
e y W - .
I vll 1 i VLV C] - e E.C /"t“-- - ——
P A Sy ’ NB_VAR C)/ 1o
ar },LAMBDA c) ! » BN C e ﬁ \“I‘iB FUN C)\ID FUN. c)\) ID_VAR c)" LCPT c)
i = - = == TvNoDE FNODE LFNODE VN@DE e
PACKET{ [HV_C1)V_L 1)) RealTolntind pr 0.8}, ([(V_C.1).{V_L.2)].RealTalntind pr 0.02),
{[{(¥_C.2).(V_L,1)],RealTaintinf pr 0.4}, ([(V_C.2),(V_L.2}].ReaTalntinf pr 0.98)]
i I a V_HY m,J -~ __%FB - + H
et N - - - P Soien s SRS i
{ s)ruxmam) “— 3| BN B |e——~ \NB FUN B}: ID_FUN a)ma VAR B)\ID VAR B)\ L CPT. B)
PACKET ~—=—" N__ -7 = —“wobE ~ " LcpT
PACKET H =g VNODE FNODE LFNODE

[I(V_B:11,{¥_H, 1)} RealTalntinf pe 0.25), [{V_B,1},{v_H,2]} RealTolntin pr 0.05),
([(V_B,2),(V_H,1)] ReaTalntinf pr 0.75), ([(V_B.2),(V_H,2}], RealTolntinf pr 0.95)]

Fig. 10. The top level page: BN_Overview.

127

The colour set LPAIR, which is defined as a list of products (list of PAIR), models message
values. One message value, typed by PAIR, is modelled with a product of an integer and a
real number which represents a value of variable, typed by X, and a value of message, typed
by FX. Although we define the colour set X as the integers to model a value of variable,
the enumerated colour sets can also be used instead. We define a colour set FX as the long

intergers to represent the real numbers as recommended by Design/CPN group (University
of Aarhus, 2004).

3.2 Second Level Page

Figure 11 shows the second level page. The BN_.NODE page models a BN node comprising
two substitution transitions named FUN and VAR which model the function node and variable
node respectively. A place named L_CPT stores initial markings, the Conditional Probability

[Flvo (' NB_FUN [Flvo _ ID_FUN Pl P Jout
_ FNODE

LVNODE F Y PACKET

A

FUN

A HS |FUNCTION#3
— |IN_VAR->Outgoing_MSG
IN_FUN->Incoming_MSG

Y

A 4

IN_FUN 0 [E]we (_LCPT e @
=2 LCPT

y PACKET PACKET

VARIABLE#1
IN_FUN->Qutgoing_MSG
IN_VAR->Incoming_MSG [HS

<
b
o)
F 3

IEI'-’O v ID_VAR LAMBDA)[F]ou
LENODE VNODE PACKET

Fig.11. The Second Level Page: BN_.NODE PAGE.

Table (CPT) associated with the function node in the list format. Figure 12 shows the initial
marking for the CPT which associated with function nodes in our example (figure 1). Place
ID_FUN and place ID_VAR, store a node’s identification (ID). For simplicity we use an integer
to represent the node’s ID. However the enumerated colour sets can be used to model the
node’s ID instead. Places NB_FUN and NB_VAR store a list of node IDs of adjacent nieghbour
nodes. Figure 13 shows the initial marking in places ID_.FUN and ID_VAR. The importance of
this figure is that it encodes the structure of the Bayesian Network we model.

128

BN_Overview’L_CPT_B 1:

BN_Overview’L_CPT_H 1:

BN_Overview’L_CPT_L 1:

BN_Overview’L_CPT_C 1:

10C0(L,1),(2,1)], (41
([(1,1),(2,2)1,Ei
([(1,2),(2,1)1,3E4
([(1,2),(2,2)1,Ei

1¢0([(2,1)], (ii
([2,01, (ii

1[C0E3,1),(2,1)], (i1
([(3,1),(2,2)1,{i
([€3,2),(2,1)1, i
([€3,2),(2,2)1,{i

1¢[([(4,1),(3,1)], (1
([(4,1),(3,2)],(@1
([(4,2),(3,1)],(@1
([(4,2),(3,2)],(@1

("250000"))),
("50000"))),
("750000"))),
("950000")))1
("200000"))),
("800000")))1
("3000"))),
("50"))),
("997000"))),
("999950")))1
("600000"))),
("20000"))),
("400000"))),
("980000")))1

Fig. 12. Initial marking for the CPT associated with function nodes.

BN_Overview’ID_FUN_B
BN_Overview’ID_FUN_H
BN_Overview’ID_FUN_L
BN_Overview’ID_FUN_C

BN_Overview’ID_VAR_B
BN_Overview’ID_VAR_H
BN_Overview’ID_VAR_L
BN_Overview’ID_VAR_C

[S

I

141
empty
: 143
14

empty
12
143
empty

BN_Overview’NB_FUN_B
BN_Overview’NB_FUN_H
BN_Overview’NB_FUN_L
BN_Overview’NB_FUN_C

BN_Overview’NB_VAR_B
BN_Overview’NB_VAR_H
BN_Overview’NB_VAR_L
BN_Overview’NB_VAR_C

[S

I

1¢[2,1]
empty

: 103,21

1¢[3,4]

empty
1¢03,1,2]
1[3,4]
empty

Fig

. 13. Initial marking represent node’s ID and its neighbour.

129

3.3 Third Level Pages

There are two pages in the third level named FUNCTION and VARIABLE pages. Fig-
ure 14 shows the FUNCTION page which has two transitions named Load_MSG and Snd2Var
as well as two places named Ptr_Buffer and MSG_Buffer. The others are port places which are
linked to the upper level pages. The VARIABLE page as shown in figure 15 is similar to the
FUNCTION PAGE but the FUNCTION page also has a place named L_CPT to store CPT
values which are used to compute the outgoing messages by function LMsg2Var() (equation 6).
The VARIABLE PAGE uses LMsg2Fun() (equation 5) instead to compute the outgoing mes-
sages. All ML functions used in these two pages are defined in the global declarations page
but space limits prevent us from including the listing in figure 9. When the message is trans-

Incoming_MSG

|E|In

(fdst1,vsrc lpair)

PACKET

[not (ALL_If_IN_If(IvBIvi:livin] ¢
Load MSG

PutMsgBuf(lvB,vsrcl Ipairl,Imsg)

Y

4 {
fdst1 vB

Iv1:zlivi
PutDg}(IvB,vsrcl,lvl:llvl)

) ¥ (o1
[Plio

Y

[l
_Buffer
LMSG

FNODE & P /0 Jr LVNODE LLFNODE y Y LCPT 'y
ClrDstflvB.(vdst]::lv1)::1lvl)
lcpt Imsg
IvB
fsre1 (vdst1 :iv1):live
- - »| Snd2Var |« - ~
[SOME_If_IN_If(IlvB,(vdstl::lv1):llvl)]
list_to_ms(Pi(lvB,fsrcl,(vdstl::Ivl):lv],Imsg.lept)) list_to_ms(LMsg2Var(IvB,fsrcl,(vdstl::lv1):1lv1,Imsg,lcpt))

[FJou @: »(_ Outgoing_MSG J[p] out
PACKET PACKET

Fig. 14. The Third Level Page: FUNCTION PAGE.

ferred inside the BN node (dashed ellipse in figure 7), the message from the function to the
variable node is the 7 value while the message from the variable to the function node is the
A value. We compute the 7 and A values by functions Pi() and Lambda() and store these
value in places Pl and LAMBDA respectively. These two places are output port places and are
assigned to socket places in second and top levels.

130

[Eln(Incoming_MSG

PACKET

(fsrc1,vdsti,lpairt)

[not (ALL_If_IN_If{IfB.If1::11£1))] E
PutMsgBuf(IfB,fsrcl,Ipairl,Imsg)
7 7 »| Load_MSG
vdsti PutDs|(IfB.fsrc1,1f1::11f1)
I8 1f1 ::11f 1
h 4 A 4 [on : 0
o @\E E_so@@ Ptr_Buffer _Bu)
VNODE LFNODE F 3 LLENODE y Y LMSG
B (fdst1 ::1f1) 111 Imsg
ClrDst(IfBJ(fdst1::161)::11£1)
vsrci L L
» Snd2Fun ¢&———~
[SOME_If_IN_UF(IfB,(fdstl::1f1)::11F1)]
list_to_ms(Lambda(lfB,vsrc1,(fdst1:1f1)::11f1,lmsg))
list_to_ms(LMsg2Fun(IfB,vsrc1,(fdst1::1f1)::11f1,lmsg))
E]Oul L [eloy

»{ Outgoing_MSG

PACKET
PACKET

Fig. 15. The Third Level Page: VARTABLE PAGE.

4 Discussion of the 3-level CPN model

Our model structure has inspiration from packet switching hub used in the Internet. However
the structure of our model (on the top level page) turns out to be different from traditional,
graphical Bayesian Network models. While our CPN model loses the causal relationship rep-
resentation, we believe it has more advantages. Because we encode the structure of BN into
the tokens in place NB_VAR and NB_FUN, our CPN structure does not change if the BN
structure changes given both models have the same variables. This will allow us to model
structure learning where the structure of Bayesian Networks can be adapted.

While the first and second level pages are presented in order to give a clear view of the
model, the actual operations are in the third level pages. We can imagine that there are boxes
in the Ptr_Buffer place. The number of boxes is equal to the number of neighbours. Each box
labels by the name of a neighbour. When the transition Load MSG receives the PACKET,
which has destination ID the same as its ID, it will put source ID into all boxes except the one
which has the same label as the source ID. Also the message values with source 1D are loaded
into MSG_Buffer place. If the new source ID is the same as the one is already in the boxes, it
will not add another source ID into the box but the old message values in MSG_Buffer place
will be replaced by a new message. When all source IDs in a box plus its label v; are equal

131

to the neighbour list, it means the node has all messages required to compute an outgoing
message sending to the node v;. After the transition Snd2Var computes the outgoing message
according to equation 6 by using function LMsg2Var(), the corresponding box in Ptr_Buffer
will be empty by function ClrDst().

If the node is not ready to take the incoming message tokens because it already has all
incoming messages required, the guard function [not AN_1f IN_11f()] will disable the transition
Load_MSG. The transition will be enabled when at least one new message is required. Any new
incoming messages will replace the old messages in the buffer. If the node does not have any
outgoing messages to send because all outgoing messages have just been sent out, the guard
function [SOME_If_IN_1If()]will disable the transition Snd2Var or Snd2Fun. This transition will
be enabled when there is at least one message to be sent.

It is possible to fold FUNCTION page and VARIABLE page together. However the func-
tion node and variable node have different roles in factor graphs and thus two separate pages
makes the model conceptually clearer, more understandable and flexible. Sometimes we also
wish to do some experiments about message scheduling so that two separated pages give us
more flexibility. Tt is also possible to fold transition Load_MSG and Snd2Fun together by which
it can reduce the size of state space. But in this paper we wish to clearly demonstrate two
separate operations, loading message into the buffer and computing the outgoing message
according to equation 5 and 6.

5 Analysis of the BN-CPN Model

The lung cancer model is analyzed by simulation and generating occurrence graph (OG) using
Design/CPN 4.0.5 (University of Aarhus, 2004) on a Pentium-IIT 1 GHz computer with 512
MB RAM. Various inference problems can be computed by instantiating the message values
and A which are the initial markings (Packet) in places IN_ZVAR and IN_FUN (respectively) of
the BN_Overview page. Figure 16 shows the initial markings comprising the messages when
the question is, if we found that a patient has bronchitis, what is the chance he could have
lung cancer?

BN_Overview’IN_VAR 1: 1°(2,2,[(1,(ii ("200000"))),(2,(ii ("800000")))1)
++ 19(1,1,[(1, (41 ("1000000"))), (2, (ii momND
BN_Overview’IN_FUN 1: 1¢(1,1,[(1,(ii ("1000000"))), (2, (ii oMM
++ 1(4,4,[(1, (L ("1000000"))), (2, (ii ("1000000")))1)

Fig. 16. Initial marking comprising messages in places IN_-VAR and IN_FUN.

Refer to figure 7, we set the initial message values of uy o p.c = A(C) = (1,1) because
the message is initiated from the leaf which is a variable node. ppr_ g v g = w(H) = P(H)
because the message is initiated from the root which is a function node. When the evidence
shows that the patient has bronchitis, we instantiate the evidence V_B = true so that these
instantiation messages are py_py_p.p = A(B) = (1,0) and pr_p)»v_p = 7(B) = (1,0).

Using simulation, it takes 21 steps and gives the expected inference results. By generating
the OG graph, there are 418 nodes and 699 arcs with 11 dead markings. Figure 17 shows the
values of m and A which are the output of the inference. These values can be verified with

132

the values in Figure 7. The value of #(H), \(C), n(B) and A(B) are the same as the initial
markings in figure 16.

All dead markings give the same answer as shown in Figure 17 but the differences are
the token values in the places Ptr_Buffer and MSGB _buffer. After we know the value of m and
A, we can compute the marginal probability P(L|B = true) using equation 9. Because we

BN_Overview’PI_H empty
BN_Overview’LAMBDA_H 14(2,2,[(1,(11 ("250000"))),(2, (ii ("50000")))1)
BN_Overview’PI_L 1¢(3,3,[(1, (i1 ("152"))),(2, (ii ("89848"))) 1)

BN_Overview’LAMBDA_L
BN_Overview’PI_C

1¢(3,3,[(1,(ii ("1000000"))), (2, (ii ("1000000")))1)
1¢(4,4,[(1, (i1 ("1888"))),(2, (i1 ("88112")))1)

BN_Overview’LAMBDA_C empty
BN_Overview’PI_B empty
BN_Overview’LAMBDA_B empty

Fig. 17. Output of the inference.

are aware of the state explosion problem that can occur when we apply our work to large
problems, reducing the size of state space in the early stage of the work is very important.
The tokens in the places Ptr_Buffer and MSGB _buffer are lists of data which does not require
ordering. For instance, figure 18 shows the token values in in Ptr_Buffer and MSG_Buffer of
a terminal state.

In other words, lists which have reordered elements are equivalent. Then it is possible
to use occurrence graph with the equivalence class tool (OEOS) in Design/CPN to reduce
the size of state space. To generate an OG with equivalences, we must define two functions;
EquivMark() to detect equivalent markings and EquivBE() to detect equivalent bindings.
EquivMark() performs tests on each place in the marking and performs a logical AND on
the results to determine if the markings are equivalent. The EquivBE() function performs a
similar test to EquivMark(), but it determines if input parameters of two binding elements
are the same. If two bindings have the same transition and the values for the bindings are the
same then they are equivalent. Using OEOS tools together with EquivMark() and EquivBE(),
the state space is reduced to 154 nodes and 302 arcs with only one dead marking.

6 Contributions

This paper provides initial attempt to combine BNs with CPNs in order to model Agent’s
belief and preference in MAS. The contribution of the paper are the advantages that we gain
from combining BNs with CPNs. These advantages are following;

1. Two important problems in multi-agent system design are agent design, which often
uses the Artificial Intelligent (AT) techniques, and society design, which often uses the formal
method and Petri Nets. This paper shows that reasoning or inference algorithms can be also
modelled and analysed by Design/CPN.

2. The original belief updates and message passing algorithm are naturally parallel dis-
tributed over the network with simple control mechanisms and no timing information. Later
several researchers have proposed modified versions of distributed message passing algorithms
with more control mechanisms (Murphy et al, 1999), (Teh and Welling, 2001), (Yedidia et

133

VARIABLE’MSG_Buffer 1: 1°¢[]

VARIABLE’MSG_Buffer 2: 1°¢[(3,[(1,(ii ("1000000"))),(2,(ii ("1000000")))1),
(1,0(1, 11 ("250000"))),(2,(ii ("50000"))>1),
(2,01, 1 ("200000"))),(2,(i1 ("800000")))1)]

VARIABLE’MSG_Buffer 3: 1°¢[(4,[(1,(ii ("1000000"))),(2,(ii ("1000000")))1),
(3,01, {1 ("152"))),(2,(ii ("89848")))1)]

VARIABLE’MSG_Buffer 4: 1°[]

VARIABLE’Ptr_Buffer 1: 1°[[0]]
VARIABLE’Ptr_Buffer 2: 1°¢[[3],[11,[2]1]
VARIABLE’Ptr_Buffer 3: 1°[[4],[3]1]
VARIABLE’Ptr_Buffer 4: 1°[[0]]

FUNCTION’MSG_Buffer 1: 1¢[(1,[(1,(ii ("1000000"))),(2,({i oMM,
(2,01, 1 ("200000"))),(2,(i1 ("800000")))1)]

FUNCTION’MSG_Buffer 2: 1¢[]

FUNCTION’MSG_Buffer 3: 1°[(3,[(1,(ii ("1000000"))),(2,(ii ("1000000")))1),
(2,[0(1,(E1 ("B0000"))),(2,(ii ("40000")))1)1

FUNCTION’MSG_Buffer 4: 1°[(4,[(1,(ii ("1000000"))),(2,(ii ("1000000")))1),
(3,01, {1 ("152"))),(2,(ii ("89848")))1)]

FUNCTION’Ptr_Buffer 1: 1°¢[[1],[2]]
FUNCTION’Ptr_Buffer 2: 1¢[[0]1]

FUNCTION’Ptr_Buffer 3: 1°¢[[3],[2]]
FUNCTION’Ptr_Buffer 4: 1°¢[[4],[3]1]

Fig. 18. Token values in Ptr_Buffer and MSG _Buffer.

al., 2002). Because the nature of BP, applying known CPN modelling technique of concurrent
systems to belief propagation algorithm is very well suited and gives flexibility when investi-
gating alternative (new) message passing algorithms. We do not think of any other BN tools
allow us modify message passing algorithms easily.

3. CPN analytic capability provides a basis for developing verification technique for prob-
abilistic reasoning. The reachability graph also provides a clear picture how the message
passing algorithm operates. Occurrence graph with the equivalence class tool can be used
to assist validating inference algorithms. The occurrence graph is expected to have one dead
marking with no livelock. In belief propagation with the loop cutset method, if there are other
deadlocks, it means we have selected incorrect loop cutsets. The state space analysis can help
us to discover this fault. Another example, if the state space has the livelock property, it
means the iterative inference does not converge.

4. Bayesian networks are not only a well proven technology but also accumulated knowl-
edge in this area is growing rapidly. Instead of inventing new types of Petri Nets, such as
Possibilistic Petri Nets (Lee et al., 2003), Fuzzy Petri Nets (Shen, 2003), we propose to bring
the enormous knowledge from the Bayesian Network paradigm to the Petri Net domain by
translating BNs to CPNs in which inference capability of BNs is preserved. This will enhance
the capabilities of CPNs, in terms of modelling probabilistic reasoning problems.

5. Other important abilities of BNs are parameter learning and structure learning from
empirical data. At this stage, we do not expect to implement learning algorithm by ML

134

language. However we can use other tools such as MATT,AB toolbox to learn parameter and
structure of BNs from empirical data and then automatically translate them to CPN.

7 Conclusion and Future Work

In this paper, we have presented a CPN model of a polytree Bayesian Network with discrete
variables. Our initial work models a BN inference algorithm, Pearl’s belief propagation. To
explain our model, we use a lung cancer Bayesian Network as an example. We were able to
use equivalence class tools to further reduce the size of state space. We intend to proceed
to model Agent’s preference and decision models using CPNs and Influence Diagrams (IDs)
which are an extension of Bayesian Networks. Due to the performance limitations of learning
and inference in real time, agent belief and preference models need to have a small number of
variable nodes (less than 8 nodes). Because of its lower complexity, we consider that Pearl’s
belief propagation and the loop cutset method are enough to model an agent’s belief, espe-
cially when the root nodes are instantiated by evidence (P(X = z;) = 1). The loop cutset
method, which creates multiple graphs with the same structure but having different instanti-
ated messages (figure 2), is very suitable for CPN modelling using substitute transition and
folding.

In conclusion, we feel that the approach presented here of using Bayesian networks, Factor
Graphs and Coloured Petri Nets will lead to further insights and techniques for designing
multiagent decision support systems.

References

1. Cooper, G.F. (1990), The Computational Complexity of Probabilistic Inference Using Bayesian Belief
Networks. Artificial Intelligent, vol. 42, pp. 393-405.

2. Dagum, P. and Luby, M. (1993), Approzimating Probabilistic Inference in Bayesian Belief Networks is
NP-hard. Artificial Intelligent, vol. 60, pp. 141-153.

3. German, R.(2000), Performance Analysis of Communication Systems: Modeling with Non-Markovian
Stochastic Petri Nets. John Wiley & Sons, Ltd., West Sussex.

4. Guo, H. and Hsu, W. (2002), A Survey of Algorithms for Real-Time Bayesian Network Inference.
AAAI/KDD/UAI-2002 Joint Workshop on Real-time Decision Support and Diagnosis Systems, Edmonton,
Alberta, Canada.

5. Gyftodimos, E. and Flach, P. (2002), Hierarchical Bayesian Networks: A Probabilistic Reasoning Model
for Structured Domains. Tn: Proceedings of the ICML-2002 Workshop on Development of Representations,
Edwin de Jong and Tim Oates, editors, pp 23-30, University of New South Wales.

6. Haider, S. and Levis, A.H., (2004), An Approzimation Technique for Belief Revision in Timed Influence
Nets. In 2004 Command and Control Research and Technology Symposium, Loews Coronado Bay Resort
San Diego, California.

7. Haider, S. and Zaidi, A. K., (2004), Transforming Timed Influence Nets into Time Sliced Bayesian
Networks. In 2004 Command and Control Research and Technology Symposium, Loews Coronado Bay
Resort San Diego, California.

8. Heckerman, D). (1995), A Tutorial on Learning With Bayesian Networks. Technical Report MSR-TR-95-
06, Microsoft Research, Redmond, Washiton. ftp://ftp.research.microsoft.com/pub/dtg/david/tutorial.ps.

9. Jensen, F.V., Lauritzen, S.L., and Olesen, K.G. (1990), Bayesian Updating in Causal Probabilistic Network
by Local Computation. Computational Statistical Quarterly, vol. 4, pp. 269-282.

10. Jensen, K. (1997), Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Volumes 1-3,
Monographs in Theoretical Computer Science, Springer-Verlag, Berlin.

11. Kikuchi R. (1951), A Theory of Cooperative Phenomena. Phys. Rev., vol. 81, no. 6, pp. 988-1003.

12. Kim J.H. and Pearl, J.D. (1983), A Computational Model for Causal and Diagnostic Reasoning in Inference
Engines. In Proceeding of the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, West
Germany, pp. 190-193.

135

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Kschischang, F.R., Frey, B.J., and Loeliger, H. (2001), Factor Graphs and the Sum-Product Algorithm.
TEEE Transction on Information Theory, vol. 47, no. 2, pp. 498-519.

Kschischang, F.R. (2003), Codes Defined on Graph. TEEE Communications Magazine, vol. 41,
no. 8, pp. 118-125.

Kruse, R.J. and Lautenbach, K. (1998), Bayessche Petri Netze. Forschungsbericht, No. 694:5, Workshop
Algorithmen und Werkzeuge fiir Petrinetze, pp. 67-72, Universitit Dortmund, Fachbereich Informatik.
Lauritzen, S.L., and Spiegelhalter, D.J. (1988), Local Computations with Probabilities on Graphical
Structures and Their Applications to Expert Systems. Proceedings of the Royal Statistical Society, Se-
ries B., vol 50, pp. 154-224.

Lee, J., Liu, K.F.R., and Chiang, W. (1999), Modeling Uncertainty Reasoning with Possibilistic Petri Nets.
IEEE Trans. Systems, Man and Cybernetics-Part B:Cybernetics, vol. 33, no. 2, pp. 214-224.

Lindstrgm, B. and Haider, S. (2001), Equivalent Coloured Petri Nets Models of a Class of Timed Influence
with Logic. In Proc. of Workshop and Tutorial on CPNs and CPN tools, pp 35-54. DAIMI PB-554, Aarhus
University, Demnark.

Loeliger, H. (2004), An Introduction to Factor Graphs. TEEE Signal Processing Maga-
zine, vol.21, no. 1, pp 28-41.

McEliece, R.J.,Mackay, D.J.C.,and Cheng, J. F. (1998), Turho Decoding as an Instance of Pearl’s 'Belief
Propagation’ Algorithm. TREE JI. Select. Areas Commun., vol. 16, no.2 , pp. 140-152.

Morita, T. (1991), Cluster Variation Method for Non-uniform Ising and Heisenberg Models and Spin-pasr
Correlation Function. Prog. Theor.Phys. vol.85, no. 2, pp. 243-255.

Murphy, K., Weiss, Y.,and Jordan, M. (1999), Loopy-belief Propagation for Approzimation Inference: An
Emprical Study. Tn Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pp. 465-
475.

Neapolitan, R. F. (2004), Learning Bayesian Networks. Prentice Hall, Upper Saddle River, New Jersey.
Pearl, J.D. (1988), Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo, Cali-
fornia.

Pfeffer, A.J. (2000), Probabilistic Reasoning for Complexr Systems. PhD Thesis, Stanford University.
Rosen, K.H. (1999), Discrete Mathematics and its Applications. fourth edition, McGraw-Hill, New York.
Shen, V.R. (2003), Reinforcement Learning for High-Level Fuzzy Petri Nets. IEEE Trans. Systems, Man
and Cybernetics-Part B:Cybernetics, vol. 33, no. 2, pp. 214-224.

Teh, Y.W. and Welling, M. (2003), Passing and Bouncing Messages for Generalized Inference. GCNU
TR 2001-001, Gatsby Computational Neuroscience Unit, University College London.

Wagenhals, L.W., Shin, T. and Levis, A.H. (1998), Creating Ezecutable Models of Influence Nets with
Colored Pelri Nets. International Journal on Software Tools for Technology Transfer, vol. 2, no. 2, pp. 168-
181.

Wagenhals, L.W. and Levis, A.H. (1999), Converting Influence Nets with Timing Information to A Discrete
Event System Model, A Colored Petri Net. In Proc. of 2nd Workshop on Practical Uses of Colored Petri
Nets and Design/CPN, DAIMI PB-532, Aarhus University, Denmark.

University of Aarhus (2004),

Design/CPN Online. http://www.daimi.au.dk/designCPN/.

Xiang, Y. and Lesser, V. (2003), On the Role of Multiply Sectioned Bayesian Networks to Coorpeative
Multiagent Systems. TEEE Trans. Systems, Man, and Cybernetics-Part A, vol. 33, no.4, pp. 489-501.
Yedidia, J., Freeman, W.T. and Weiss, Y. (2002), Understanding, Belief Propagation and its Generaliza-
tioms. Technical Report TR-2001-22; Mitsubishi Electric Research Laboratories, Inc., Massachusetts.

136

An Efficient Algorithm for the
Enabling Test of Colored Petri Nets

Sami Evangelista and Jean-Francois Pradat-Peyre

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris
{evangeli, peyre}@cnam.fr

Abstract. Model checking and simulation tools based on the colored
Petri nets formalism spend a significant amount of time in performing
enabling tests. This consists in taking into account the color mappings
of the net to determine valid transitions variables assignments at a given
marking. This work proposes an algorithm for the enabling test problem.
It implements the relations of conflict and causality between transitions
to efficiently maintain a set of enabled transitions. This set is updated
during the search algorithm according to the transitions fired (or un-
fired). However, in most cases this approach is not sufficient to compute
the set of enabled transition bindings, and has to be followed by a unifi-
cation algorithm. This is the objective of the second part of this work.

1 Introduction

Colored nets provide model designers with the ability to express complex syn-
chronizations patterns. The price to pay is that the analysis and simulation of
such nets can be a difficult task. The possibility to unfold the net to directly
analyze the unfolded ordinary net still exists but such an unfolding is not always
possible because of large or even infinite color domains.

The firing rule of colored nets is made difficult by the management of colors of
the net. When checking whether a transition is firable or not at a given mark-
ing, one has to find an assignment for the variables instantiated by the transition
which respects the firing rule. This process is known under the term of enabling
test.

A trivial solution is to check all the possible assignments and keep only the valid
ones. This is only efficient if a large number of transitions instances is enabled
at a marking. However, in most cases, this solution is not satisfactory.

We propose in this work an algorithm to deal with the enabling test problem.
It includes two main features. Firstly, it implements the relations of conflict and
causality (introduced by Haddad and Dutheillet in [1-3]) to manage a set of
enabled transitions. This set is updated according to the fired (or unfired) tran-
sitions by the solving of some constraints systems. Secondly, as this approach
is not always sufficient, we present in the second part of this work a unification
algorithm inspired from the work of Mikel4 [14].

137

This work is organized as follows. Section 2 recalls some basic definitions on
Petri nets and Colored Petri nets. Section 3 makes an informal presentation of
the algorithm we propose. Section 4 recalls the concepts of conflict and causality.
In Section 5 we detail an implementation of the conflict and causality relations.
A unification algorithm is proposed in Section 6. A set of experimental results
are presented in Section 7 to show the efficiency of our algorithm. At last Section
8 concludes our work.

2 Basic definitions

We recall here some basic definitions on ordinary Petri nets and Colored Petri
nets. We also present the sub class of colored nets studied in this work.

Petri nets

Definition 1 (Petri net). A Petri net is a tuple (P,T,W~, W™ ,mq) where P
is a finite set of places; T is a finite set of transitions such that PNT = (; W~
and W, the backward and forward incidence matrizes are mappings from P x T
to N; and mg is a mapping from P to N. The incidence matric W is defined by
W=Ww+-w-.

The definition of extended conflict and causality relations is based on the exis-
tence of some particular flows.

Definition 2 (Flow). Let (P, T,W~,W¥ mg) be a Petri net. A vector f € Z.F
is a flow if it fulfills ' f. W = 0; a positive flow if it fulfills Vp € P, f(p) > 0; a
binary positive flow if it fulfills Vp € P, Zpep(f(p).mo(p)) = 1.

In the remainder, if f is a flow, we note ||f|| = {p € P | f(p) # 0}.

Colored Petri nets Analysis of colored Petri nets is based on multi-sets han-
dling. Intuitively, a multi-set is a set which can contain several occurrences of
the same item.

Definition 3 (Multi-set). Let s be a set. A multi-set over s is a function from
s to N. Bag(s) is the set of multi-sets over s.

Multi-sets are usually noted as a linear combination of items. For instance, the
multi-set m = 4.a + 2.b+ ¢ over the set {a,b,c,d} is the multi-set containing 4
occurrences of element a, 2 occurrences of element b, and 1 occurrence of element
c. Tt is defined by m(a) = 4, m(b) = 2, m(c) = 1 and m(d) = 0. m(a) is called
the multiplicity of item a. 0 is the empty multi-set, i.e., Ve € E,0(e) = 0.

The following operations may be defined for multi-sets :

Definition 4. If S is a set and a and b are two elements of Bag(S) then :
a+b= > cgla(z)+b(x))x

a—b= 73 cgmax(0,a(x) - b(z)).x

anb =) cgmin(a(z),b(x)).z

a>b<e Ve e S a(x) > b(x)

a>bsa>bAIr eS| alz)>b(x)

138

In colored Petri nets [10], tokens contained in places have colors, and places
and transitions have color domains. Markings of colored nets associate to each
place of the net a multi-set over its color domain.

Definition 5 (Colored Petri net). A colored Petri net is a tuple

(P, T,C, W~ , W, ¢,mq) where P is a finite set of places; T is a finite set of
transitions such that PN'T =0; C : (PUT) — w is a color domain mapping;
w 15 a finite set of finite and non empty sets; W~ and W associate to each
couple (p,t) € P x T a mapping from C(t) to Bag(C(p)); mo associates to each
p € P an element of Bag(C(p)); and ¢ associates to each t € T a guard, i.e., a
mapping from C(t) to B, the set of booleans.

The set of input (resp. output) places of a transition ¢ is the set °t = {p €
P | W (p,t) > 0} (resp. t* = {p € P | W*(p,t) > 0}). Similarly, the set of
input (resp. output) transitions of a place pis the set *p = {t € T | W (p,t) > 0}
(resp. p* = {t € T | W~ (p,t) > 0}). These definitions are extended to set of
places and transitions, i.e., for P’ C P,*P’ = Upcp/®p. In the remainder a
place (p,c) with p € P and ¢ € C(p) is called an instance of p. This also holds
for transitions though the term binding is also used for transitions. The set of
markings of a colored net N noted My is the set of mappings from P which
map each place p to an element of Bag(C(p)).

Definition 6 (Colored firing rule). Let N be a colored net and m € My . A
transition t € T is firable at m with color ¢; (denoted by m(t,ct))) if and only
if - ¢(t)(ct) ANVp € Pym(p) > W (p,t)(ct). The marking m’ obtained is defined
by : Vp € P,m/(p) = m(p) + W(p,t)(ct). In this case, we note m[(t,ct)ym’.

The set of transitions enabled at a marking m is the set En(m). Reach(N) C
My, the set of reachable markings of N is recursively defined as {mg} U {m €
My | 3m’ € Reach(N),t € T,cr € C(t) | m/[(t, ct))ym’}.

The definition of some operations on color mappings may be useful. We first
extend mappings from C' to Bag(C") to mappings from Bag(C') to Bag(C") by
the following rules :

= f(Ae) =Af(o)
— fler +c2) = fler) + fle2)

Definition 7. If f is a mapping from Bag(C") to Bag(C"), and g is a mapping
from Bag(C) to Bag(C") then f o g is a mapping from Bag(C) to Bag(C")
defined by ¥e € C,c' € C', (£ o gNONE) = Xuneen 1(()-9(0) ().

Definition 8. If f is a mapping from Bag(C) to Bag(C"), then ' f is a mapping
from Bag(C") to Bag(C') defined by Ve € C,c" € C', f()(c) = f(c)().

Colored positive flows are defined below.

139

Definition 9 (Colored positive flow). Let (P,T,C,W~ , W ¢,mg) be a col-
ored Petri net. A positive flow f with color domain C(f) is a vector over P,
noted as the formal sum f = X,cpfp.p such that Vp € P, f,, is a mapping from
Bag(C(p)) to Bag(C(f)) and such that ¥t € T, Xpcpf(p) o W(p,t) =0. A col-
ored positive flow is a colored binary positive flow if

Ver € C(f), Sperfolmo(p)(cs) = 1.

In the next sections we will often refer to the unfolded net of the colored
Petri net. It is defined below.

Definition 10 (Unfolded net). Let N = (P,T,C,W~, W, ¢,mg) be a col-
ored Petri net : Ny = (Py, Ty, W™y, W, moy), the unfolded net of N is the
Petri net defined by :

= Py ={(p,cp) | p€ P,cp, € C(p)}
—Tu={(tict) [t €T ct € C(t) NP(t)(ct)}
= V(p,cp) € Pu, (t,ct) € TmW* ((p,c) (t,ct))
— V(p,cp) € Pu, (t,ct) € T, WHu((p, cp), (¢, ¢))
= Y(p,cp) € Puymoy((p,cp)) = o(p)()

W= (p,t)(ct)(cp)
W

A sub class of Colored Petri nets In the sub class under study, color domains
are cartesian products of basic finite sets called color classes. Color mappings
are linear combinations of simpler mappings called tuples. Tuples are cartesian
products of simple expressions. Three kinds of expressions are allowed : a variable
X of the corresponding transition, a constant, and any user defined mapping f
which parameters are valid expressions. At last, a guard can be any boolean
expression.

Ezample 1. X, 3, f(X) are valid expressions.
(X,3, f(X,Y)) is a tuple.
2.(X,3, f(X,Y)) +3.(5,X,¢(Y)) is a color mapping.

In our sense, this class of colored nets can cover a large range of practical
models. However, it could be considered in future works to enrich it with the
following features :

— broadcast mapping of well formed nets
— guarded tuples, e.g., [X > Y](X,Y)
— variable multiplicity tuples, e.g., X.(X,Y,0)

The definition of an enabling test algorithm highly depends on the class of
colored nets considered. Numerous works exploit the good structuring of color
mappings of well formed nets to define specific optimizations techniques : [5],
[8], [18]. For instance, Illié and Rojas use the reversibility of well formed color
mappings to find transitions instances linked to a marked place. The type of
nets we consider, though inspired from well formed nets, has a major difference
with these ones. Indeed, the possibility to allow any user defined mapping in
arc expressions disable the reversiblity of color mappings. Thus, our class seems
closer to the algebraic nets used by Mikeld [14], even if it does not include all
its features such as variable multiplicity arcs.

140

3 Informal presentation of the algorithm

Let us consider a colored net. At a given marking m the set of enabled bindings
is En(m). The firing of a transition (¢,¢) of En(m) leads to a new marking m’'.
If we compare En(m) with En(m’) we can make the following observations :

— Only the instances in conflict with (¢, ¢), i.e. which need tokens consumed by
this one are in En(m) but not in En(m’). These are instances of transitions
which belong to the set (°t)°.

— Instances (¢, ¢’) which are in En(m’) but not in En(m) are such that
t" € (t*)°. Indeed, the newly enabled transitions needed tokens produced by

(t,c).

On the basis of this locality principle, we can reasonably think that these
two sets are quite close. The algorithm we propose is based on this simple obser-
vation. Basically, instead of recomputing at each encountered marking the set
of enabled bindings, we maintain a set of enabled bindings which is updated ac-
cording to the transitions fired (or unfired) during the search algorithm. Figure
1 presents a basic depth first search algorithm based on this principle. This one
operates on a global set of reached markings reached initialized to the empty
set, and the set of enabled transitions enabled initialized to En(mg). Procedure
fire (respectively un fire) updates m by firing (unfiring) (¢, ¢) and updates the
set enabled. To achieve this, it proceeds in two steps. Firstly, it removes the in-
stances disabled by (¢, ¢). Seconly, it adds the instances which have been enabled
by inspecting the tokens produced by the firing.

To manage these two steps we use the relations of conflict and causality. These
concepts are recalled in the next section.

Note. Unfiring an instance (t, ¢) raises no difficulty. It is equivalent to firing
an instance (t',¢) such that C(t') = C(t), Vp € P,W ™ (p,t') = WT(p,t) and
WH(p, t") = W= (p,1).

DFS (in out marking m)
1 if m ¢ reached then

2 reached — reached U {m}

3 for (t,c) € enabled do

4 FIRE((¢,), m)

5 DFS(m)

6 UNFIRE((, ¢), m)

7 endfor

8 endif

FIRE (in transition binding (t,c), in out marking m)
1 REMOVE_DISABLED(m, (t, ¢), enabled)

2 ADD_ENABLED(m, (t, ¢), enabled)

3 m«—ml(tc)

Fig.1. A depth first search algorithm

141

4 Conflict and causality relations

Causality and conflict relations can be used to update the set of enabled transi-
tions. The first one is helpful to determine instances disabled by a firing whereas
the second one is useful to check instances enabled by a firing. We also propose
to refine these relations by taking into account the flows of the net. For each
relation we first give an “ordinary version” of it, i.e., defined on ordinary Petri
nets after generalizing it to colored Petri nets. To achieve this, we first have to
give some definitions and notations on powersets.

Definition 11. If S is a set, then P(S), the powerset of S is the set of sub sets
of S, i.e, seP(S) < sCS.

Definition 12. Let f € S — Bag(S'). f € S — P(Y') is defined by
Vse S, f(s)={s €S| f(s)(s") > 0}.

A function from S to P(S’) can be extended to a function from P(S) to
P(S’) by the following rule : f({c1,c2}) = f(e1) U f(c2). Transpositions and
composition of functions on powersets can now be defined.

Definition 13. Let f € P(S) — P(S'). 'f € P(S") — P(S) is defined by :
self(s) & s € f(s)

Definition 14. Let f € P(S") — P(S') and g € P(S) — P(S"). fog €
P(S) — P(S) is defined by : (f o g)(s) = f(g(x))(s)

4.1 Conflict relation

Two transitions ¢ and ¢’ are in conflict if there is a reachable marking in which
both are firable and the firing of ¢ disables the firing of ¢'. This is given by the
relation CO.

Definition 15 (Conflict relation). Let N = (P,T,W~, W™, mg) be a Petri
net. The ordinary conflict relation CO C T x T is defined by

(t,t') € CO < Im € Reach(N) | m[t)ym’ Am[t'y A —m/[t")

As this definition requires the generation of the reachability set of IV it has no
practical interest. To approximate this relation we define the relation of ordinary
structural conflict which only relies on the structure of the net. A transition ¢
may disable another transition ¢’ only if they share a same input place p such
that ¢ decreases the marking of p. We can easily prove that CO C SCO.

Definition 16 (Structural conflict relation). Let
N = (P, T,W~, W7 ,mq) be a Petri net. The ordinary structural conflict relation
SCO CT xT is defined by

(t,t') e SCO = Ip et | W(p,t) <0

142

Thus, it holds that the only transitions ¢’ disabled by the firing of a transition
t are such that (¢,t') € SCO. We can go a step further and give a more accurate
approximation of CO if we have some knowledge of the flows of the net. Indeed,
if a binary positive flow covers both p and g respectively inputs of ¢ and ¢/, we
can state that ¢ cannot disable ¢’ since ¢ and ¢’ cannot be concurrently enabled.
This is given by the relation ESCO defined below. Once again, it trivially holds
that CO C ESCO C SCO.

Definition 17 (Extended structural conflict relation). Let
N = (P, T,W~, W, mg) be a Petri net. The ordinary extended structural con-
flict relation ESCO C T x T is defined by

(t,t') € ESCO & (t,t') € SCON
Bf € F,(p,q) € () x (*) [p# a A {p,a} SISl
where F' is the set of binary positive flows of N.

We recall now the colored version of the structural conflict relation which
has been given by Dutheillet and Haddad in [3].

Definition 18 (Colored structural conflict relation). Let
N =(P,T,C;W= W, ¢,mg) be a colored Petri net and t,t' € T. The colored
structural conflict relation CSCO(t,t') C C(t) x C(t') is defined by

(c,d) e CSCO(t,t') & ¢ € U W =(p,t") o (W= (p,t) — WH(p,t))(c)

The mapping (W~ (p,t) — W(p,t)) gives the instances (p, ¢,,) which marking
is decreased by the firing of (¢,¢). By composing this mapping with tW~=(p,)
we obtain the instances (¢, ¢’) which need these tokens to be firable. Thus the
“unfolding” of relation C'SCO(t,t") produces the set of couples (¢, ¢’) such that
((t,c), (t', ")) belong to the relation SCO in the unfolded net.

Generalizing the extended conflict relation does not raise any difficulty. The
problem is that it is currently admitted that the computation of flows of colored
Petri net is a difficult task. However, we believe that the model designer can
provide a model checking tool with some basic flows of the net which correspond
to the modeled entities (e.g., process, critical sections). The colored extended
structural conflict relation CESCO is given below.

Definition 19 (Colored extended structural conflict relation). Let
N = (P, T,C,W~, W, ¢,mg) be a colored Petri net and t,t' € T. The colored
extended structural conflict relation CESCO(t,t') C C(t) x C(t') is defined by

(¢,d) € CESCO(t,t') & (c,c) € CSCO(t, ') A

BfeF, (p.g) ety x (*t) [p#aAcd e W—(q.t')olf(q)o f(p) o W (p,t)(c)

where F' is the set of colored binary positive flows of N.

143

By composing W~ (p,t) with f(p) we obtain the instances (f,cy) of flow f
which cover (p, ¢p). A third composition with ?f(g) gives us the instances (g, ¢q)

also covered by (f, ¢y). Finally, the composition of this mapping with *W (g,)
produces the instances (¢, ¢’) that are in mutual exclusion with (¢, ¢).

Ezxample 2. An example of extended structural conflict is given on figure 2. We
easily see that (¢,c¢) is in conflict with (¢,¢) by place (r,¢,). Let us suppose
now that a binary positive flow covers both (p,c,) and (g,c,). With the help
of this flow we can state that (¢, ¢’) will not be disabled by (¢,¢) as these two
transitions cannot be concurrently enabled.

t',d) (t,c)

Fig. 2. An illustration of the extended structural conflict relation

4.2 Causality relation

Two transitions ¢ and ¢’ are causally connected if there is a reachable marking
m in which ¢ is enabled, ¢’ is disabled and the firing of ¢ enables ¢'.

Definition 20 (Causality relation). Let N = (P, T,W~, W my) be a Petri
net. The ordinary causality relation CA CT x T is defined by

(t,t") € CA < Im € Reach(N) | m[tym' A —m[t') Am[t')

As for the conflict relation, the structure of the net can help us to approximate
this relation by the structural causality relation SC'A. Trivially, we have CA C
SCA.

Definition 21 (Structural causality relation). Let N = (P, T, W~ , W™ mg)
be a Petri net. The ordinary causality relation CA CT x T is defined by

(t,t'Ye SCA<sTpet' | W(p,t) >0

Once again we can make use of place flows to give a more accurate approxi-
mation of the causality relation. If a binary positive flow covers a place p output
of t and a place ¢ input of ¢ then we can statically determine that ¢’ is not
causally connected to t. We use the term of extended causality to define this
relation.

144

Definition 22 (Extended structural causality relation). Let
N = (P, T,W~, W™ ,myg) be a Petri net. The ordinary extended structural causal-
ity relation ESCA CT x T is defined by

(t,t') € ESCA & (t,t") € SCAA
Bf € F,(p,q) € (t°) x (*') [p# a A {p,a} SIS
where F' is the set of binary positive flows of N.

We recall now the colored version of [3] of structural causality relation, and
we define the colored extended causality relation.

Definition 23 (Colored structural causality relation). Let
N = (P, T,C,W~, W, ¢,mg) be a colored Petri net and t,t' € T. The colored
structural causality relation CSCA(t,t') C C(t) x C(t') is defined by

(e,d) € CSCA(t 1)) & ¢ € | W= (p,t') o (WH(p,t) = W~ (p,1))(c)
peEP

Definition 24 (Colored extended structural causality relation). Let
N = (P, T,C,W~, W, ¢,mg) be a colored Petri net and t,t' € T. The colored
extended structural causality relation CESCA(t, t') C C(t) x C(t') is defined by

(c,d) € CESCA(t, ') & (c,c) € CSCA(t, ') A

Bf € Fi(p,q) € (1°) x () | p# anc € W(g,t) ot f(q) o f(p) o WH(p,t)(c)
where F' is the set of colored binary positive flows of N.

Ezample 3. Figure 3 illustrates the notions of causality and extended causality.
By place (r,¢;), (t',) is causally connected to (t,c), i.e. the firing of transition
(t,c) can potentially enable (¥, ¢’). Suppose now that a binary positive flow
covers both (p, ¢p) and (g, ¢q). With the help of this flow we can statically state
that (¢/,¢’) cannot be enabled by (¢,c¢) as this one puts a token in (p,c,) (and
s0 (g, ¢q) cannot contain a token).

Fig. 3. An illustration of the extended causality conflict relation

145

5 Implementing conflict and causality relations

The idea of exploiting the locality principle of Petri nets in order to efficiently
manage a set of enabled transitions is not new and has been investigated by
Gaeta [18], Mortensen [12], and Haagh and Hansen [21] to get an efficient simu-
lation engine. Gaeta’s algorithm also relies on the relations of conflict and causal-
ity. However, his implementation proceeds transitions instance by instance which
is equivalent to unfold the net. In our sense, this solution is not satisfactory for
large color domains. In this section we focus on a way to detect such instances
without enumerating them.

In a previous work [19] we have presented a general framework based on an initial
work of Brgan and Poitrenaud [17]. The basic idea is to study the dependencies
between places and transitions of the net at a symbolic level instead of unfolding
the net. For that we translate color mappings into equivalent constraints systems
which can be built and reduced before the state space generation and repeat-
edly solved during the search (or simulation) algorithm to identify disabled and
enabled transitions.

5.1 Translating color mappings to constraints systems

If f is a color mapping (as it is defined in section 2) from C to Bag(C”), then the
mapping f can be translated into an equivalent constraints system. For instance
if we consider the mapping f = 2.(X,Y,0, X + 1) + 3.(Y, X, g(X), 2), the items
{a, b, c,d) which belong to the image of (z,y) by f satisfy the following constraint

[a=2z] AN [b=y] AN [e=0] A [d=x+1]
V
a=y) A p=2] A lc=g@)] A [d=2]

By this way, each basic mapping operation such as composition, or transpo-
sition can be translated into a constraints system. For space constraints, we do
not give here these systems, but we invite the reader to refer to [19].

5.2 Implementing conflict relation

To implement conflict relation between transitions, we build (and simplify) for
each couple of transitions (¢,t") such that ¢ € (°¢)® the constraints system cor-
responding to CSCO(t,t") (or CESCO(t,t') if the flows of the net are known).
During the search algorithm, each time (t,c¢) is fired we remove from the set
of enabled transitions the set of instances (¢',¢’) such that ¢ and ¢ satisfy the
constraints system.

Let us see with an example (figure 4) how we proceed. Suppose we want to
check if a transition (¢, (Xy,Yy)) is disabled by the firing of (¢, (X, Y:)). We

146

first suppose that no binary flow can help us in this task. The constraints system
corresponding to CSCO(t,t') is :

(Xr =Xe AY, =Y3) A (X =X AY, = f(V2) A (X =X, ANYy =Y))

where X, and Y, respectively denote the first and second components of the
color domain of r. We simplify this system in

X=X NYy =Y, AYy # f(V7)

Thus, each time a transition (¢, (X, Y;)) is fired, the only instances (¢, (X, Y3/))
which can potentially be removed from the set of enabled transitions are those
which satisfy this system. If the net is safe, we can erase these transitions from
the set of enabled transitions without looking at the current marking. If it is
not the case, we have to check that these are still firable, as there may still be
enough tokens in the input places.

Fig. 4. An illustration of the resolution of conflicts

Suppose now that we have a binary flow f covering p and ¢ and such that
f=&X)p+ -+ (X).q, ie, the same token cannot be at the same time in
places p and ¢. The system corresponding to CESCO(t,t') is :

(X = XiNYy = YViAYy # fY))A(Xy = XpAXp = XA X = XA Xy = X))

The first part of the conjunction corresponds to CSCO(t,t'). The second part is
provided by f and is reduced to X; = X;. We easily detect an inconsistency in
the system(X; = Xy A Xy # Xyp) and we can conclude that an instance (¢, ¢)
cannot be disabled by the firing of a (¢,¢). Thus, each time a transition (¢, c)
is fired, we do not have to look in the set of enabled transitions for a disabled
instance of t'.

Note that building CESCO is only useful when the system constructed is in-
consistent. In other cases, it may introduce useless computations, as building
CSCO is sufficient to check the disabled transitions.

5.3 Implementing causality relation

As for the conflict relation, we construct for each transitions couple (¢,¢') such
that t' € (¢*)® the constraints system corresponding to CESCA(t,t'). Each time

147

an instance (t, ¢) is fired the resolution of the system gives us the set of instances
(t,¢’) which are enabled by (¢,c). However, in most cases, this is not sufficient
to find a complete assignment of the variables of ¢. For example let us take net
depicted on figure 5. The firing of transition ¢ with assignment [X = z,Y = y]
could potentially enable the transition ¢’ with assignment [X = z,Y =y, W =
?,7Z =7], but we still have to check that a token is present in place ¢ to bind
variables W and Z. So in most cases, the causality relation only help us to find a
partial assignment for the transitions causally connected to the fired transition.
A unification algorithm [14] is a possible way to complete these assignments.

Fig.5. An illustration of the causality

6 A unification algorithm

6.1 Principle

We present the basic idea of the unification algorithm we propose. For sake of
simplicity, we assume that every transition variable appears in its input arcs.
The algorithm starts the unification process for transition ¢ with an empty as-
signment (X7 = *,...,X,, = %) (Xi1,...,X, being the variables of ¢) which
mean that no variable is assigned a value, i.e., no variable is unified. The algo-
rithm iterates on all the tuples which label the input arcs of ¢. For each tuple it
inspects all the tokens present in the corresponding place to find the ones which
match the tuple. A token m..{c1,...,c,) matches the tuple m;.(ex1, ..., ex,) if
the following conditions are met :

1. me > my

2. for each i € {1..n}
(a) if ex; is a constant ¢ then ¢; = ¢
(b) if ex; is a variable X; such that X; = ¢ (and ¢ # *) then ¢; = ¢
(c) if ex; is a mapping f(p1,...,pm) then ¢; = f(p1,...,Pm)

Note that if a p; is an expression which include ununified variables then the
order of analysis of the input tuples is not valid since we cannot reverse such a

mapping.
When such a token is found, we decrement its multiplicity by the multiplicity

148

of the tuple, unify each variable X; which appear in the tuple at position ¢ by
setting X; = ¢; and pursue the unification algorithm by the analysis of the next
tuple. If it is the last tuple to be analyzed, then a valid assignment has been
found which can be added to the set of enabled transitions.

Concerning the guard evaluation, this one can be done as soon as all the vari-
ables of the transition which appear in it are unified. If it is evaluated to true,
then the algorithm can pursue normally, else the unification process is stopped
and the assignment is discarded.

Let us see with an example (figure 6) how we proceed. We assume the tuples
are scheduled as follow : 2.(X,Y), (Y, f(Y)), (W,0), and 2.(W, X).
Initially, no variable is unified : (X =%, Y =, W = x).
step 1 : analysis of 2.(X,Y")
We loop on each token of p. As no variable is unified, all these tokens except (7,9)
(one more token is needed) match the tuple. This gives use the following assign-
ments: (X =8, Y =8W =x%), (X =3, Y =4, W =x), (X =2,Y =4, W = %),
and (X =4,Y =7, W = x).
step 2 : analysis of (Y, f(Y))
For the four assignments previously computed we check that a token matches the
tuple (Y, f(Y)). As 2.(8,8) has been consumed by the first tuple, this token is no
more present in p and the assignment (X =8,V = 8, W = x) is discarded. Since
f(7) = 7 no token matches the tuple for the assignment (X =4,V =7, W = x).
We discard this one too.
step 3 : analysis of (W, 0)
(3,0) and (2,0) both match the tuple. This could potentially give the four
following assignments : (X = 2)Y = 4, W = 3), (X = 3,Y = 4, W = 3),
(X =2,Y=4,W =2)and (X =3,Y =4,W = 2). However, we notice that all
the variables which appear in the guard are now unified. As the guard expression
does not hold for the last assignment, it is discarded.
step 4 : analysis of 2.(W, X)
All the variables are now unified. Since a token misses in r for the assignment
(X =3,Y =4, W = 3), this one is discarded.

Finally the set of possible assignments is :
{(X=2,Y=4,W=3),(X=2,Y =4,W =2)}.

A crucial point for the performance of this algorithm is the order in which
tuples are treated. For instance, it is preferable to treat tuples in which constant
expressions appear as early as possible since the “probability” that a token
matches this tuple is low. For instance, a single token matches the tuple (5): it
is the token (5). On the other hand, if the variable X is not unified, then all the
tokens match (X). Thus, prioritizing such tuples should reduce the size of the
search tree.

In the remainder, we focus on a way to find an efficient static, i.e. done before
the search, scheduling of the tuples on input arcs of the transition.

149

f4) =7 2.(8,8)+
) =17 2.(3,4)+ (3,3)+
3.(2,4)+ 2,0)+ 4.(2,2)+
f(8) =38 5.04,T)+ 3,0)+ 4.03,0)+
(7,9) 4,1 3.(3,2
P q r
2.(X,Y
ey W0y 20X
(Y, f(Y))

W= X]

Fig. 6. Illustration of the unification process

6.2 Scheduling of the input tuples of a transition

Let ¢t be a transition, tupq,...,tup, be the set of tuples on the input arcs of
the transition scheduled in this manner and pq,...,p, be their respective cor-
responding places. We assume that the average number of tokens in the input
places of t is k. If all the tokens match the tuples during the successive steps
of the algorithm given in the previous section then all the tokens present in the
input places of t are visited at each step. Thus each token t{ of place p; is visited
a single time, tokens t4 of place po are visited k times, and tokens t;'- of place
p; are visited k77! times. This is illustrated by figure 7. We note g{ the unique
group of tokens of place p; visited at the first step, i.e., for the first tuple, of

the algorithm. The visit of a group g (with i < n) involves the visit of groups
Jxk—k+1 Jxk
Jit1 soe s vt

Our aim is now to find an efficient way to schedule the input tuples of a
transition. To achieve this, we use the method presented by Mékeld in [14], that
is, to define a cost function which gives an accurate idea of the complexity in-
volved by a scheduling on the unification process. However, unlike Makela’s cost
function, our preoccupations are double. Firstly, this scheduling must naturally
minimize the size of the search tree. Secondly, checking whether or not a token
matches a tuple can be expensive, as tuples may contain user defined mappings
which repetitive applications may substantially slow the unification algorithm.
Thus, the cost function must also try to minimize these applications. In addition,
our cost function takes into account additional considerations such as transition
guards, or data structures used to store local place markings.

The definition of our cost function is based on the five following principles :

1. Tuples in which constant expressions appear should be considered as early
as possible since the proportion of tokens which match this tuple is low.
Prioritizing such tuples should minimize the size of the generated sub trees.

2. If a variable has already been unified in a previous step, then this one should
be considered as a constant since its value is set.

150

step tup;

step tupy

9n g
OO0 . @O -

Fig. 7. Search tree of the unification algorithm

3. If all the variables appearing in a tuple have been unified, then this tuple
should be considered next since the search for tokens which match this tuple
can be reduced to the search of a specific element in a set. If we use balanced
trees to store the local markings of places, this search has a logarithmic
complexity.

4. The sooner the guard of the transition can be evaluated, the better it is.
Indeed, this could allow to prune a wide set of instantiations. Let us con-
sider for instance the transition on figure 8. Two different schedulings are
possible : (X),(Y) and (Y), (X). In the worst case, i.e., all the items of C
are in p and ¢, the first one will generate a search tree with |C]? leaves (all
possible combinations will be checked), whereas the search tree of the second
scheduling will have |C x {¢ € C|c > 10}| leaves : only the couples (z,y)
such that y > 10 will be checked. Thus the search tree will be minimal.

Y > 10]

Fig. 8. Considering guards in the unification process
5. As stated before, the evaluation of a user defined function can substantially
slow the unification algorithm. However, if all the variables which appear in

its parameters are already unified, the function result can be computed a
single time for the whole group. As an example, let us get back to the net

151

of figure 6. If the tuple (Y, f(Y)) is analyzed first, we have to call function
f for each token present in place p since Y is not unified. If we suppose now
that the tuple 2.(X,Y") is analyzed before the tuple (Y, f(Y)), Y is already
unified when (Y, f(Y)) is analyzed, so we only need to compute f(Y) a single
time for all the tokens in place p, i.e., for the whole group.

On the basis of these five principles we propose now a cost function. The

following notations are used.

uni fied; is the set of variables unified at level ¢ and new; is the set of

variables unified by tup;. It is the variables which appear in tup; and which

are not in unified;_,. The following holds : unified; = unified;_1 U new;

and uni fiedy = ().

cy is the cost of the call to function f, i.e., the complexity of f. This pa-

rameter can be provided by the user or given an arbitrary value. A cost of 0

indicates that a call to function f has a negligible impact. In this case, the

cost function only gives an estimation on the size of the search tree.

gfi is the set of functions which appear in tup; and such that no uninstanti-

ated variable appears in its parameter. These functions calls can be evaluated

a single time for the whole group (as stated in point 5).

gc; is the cost of group i, i.e., the cost to evaluate all the functions of gf;.

We define ge; as : ge; =3 e p Cf

tf; is the set of function which parameters include ununified variables. These

functions have to be called for each visited token (again see point 5).

tc; is the cost to check if a token of level ¢ matches tup;. We define tc; as :

te; =1+ pciy Cf-

s; is the size of tup;

t; is an estimation of the number of tokens which match tup;. It mainly

depends on the unified variables and their presence in tup;. We use the

Inews]) *)
E

following formula to compute ¢; : t; = max(1, k x (. By this way we

prioritize tuples in which constant and unified variables appear according to
principles 1 and 2.

n; is an estimation of the number of times a token at level i is visited by the
algorithm. It both depends on the number of times a token of the precedent
level is visited and the number of tokens which match tup;_1 : we have
ny=1,and n; =n;_1 X t;_1.

var(guard) is the set of variables which appear in the guard of t.

cg is a cost associated to ¢’s guard. Strong constraining guards (e.g., X =Y)
should be assigned a higher cost than less ones (e.g., X # Y) since the set
of instances disabled by the first ones is theoretically larger. A true guard
should be assigned a value of 0. Once again, this cost parameter could be
set by the model designer.

152

The cost function for level i is given below. It reflects point 3 : if all the vari-
ables are already unified, looking for a specific item in the local place marking
has a logarithmic complexity.

op _ {nix (gci + 14 logy(k)) if new; =
YT e X (gei + kX ;) else

At last the total cost of a scheduling tup, ..., tup, is :

n
CF = ZCE- + cglo!
i=1
where i, is the smallest index in [1..n] such that var(guard) C unified;,. In
other words, after the evaluation of tup;, the guard can directly be evaluated.
This is guided by principle 4.

The idea is then to select for each transition the scheduling which minimize
this cost function before the search algorithm. During the state space generation,
tuples are always processed in this order. The drawback of this method is that
it does not exploit some dynamic informations on the marking processed which
could be useful such as the number of tokens in input places. A possible opti-
mization would be to use some caching techniques as it is done in [8]. Indeed, we
can reasonably think that the unification algorithm will perform a large number
of redundant computations.

7 Experimental results

The algorithm proposed in this work has been implemented in Quasar [20], a
tool for the analysis of concurrent Ada programs based on Colored Petri nets.
The class of nets used in Quasar is the one described in section 2.

Quasar uses a well known technique which consists in generating a code which
correspond to the actual reachability analyzer. Tools that use this technique in-
clude Prod [11], Spin [6], and Maria [15]. It has been shown in [14] that this
technique greatly reduces the execution time even for small models for which we
may think that the compilation of the generated code is a too severe overhead
(which does not exist if the net is “interpreted”).

We give here some measures performed on two examples : the slotted ring
protocol taken from [16] and the distributed database management system pre-
sented by Jensen in [9]. We performed simulation experiments consisting of 105
event occurrences and recorded the execution times for different values of the
parameters of the system. All the experiments have been made on a Pentium 4,
2.5 Ghz.

The slotted ring protocol The purpose of this example is to show how the
unification process can be sped up by using balanced trees to store local place

153

markings. Figure 9 reports the number of firings per second observed for two
different types of storage : linked lists and balanced trees. As, in this example,
the unification process is quite simple and often reduced to the search of a specific
token in a place, the use of balanced trees is particularly effective and we obtain
very good results with this kind of storage even for small values of the number
of process.

1e+06

T
‘Balanced trees’
‘Linked lists’ -------

800000

600000

400000 |- B

200000 T

Simulation speed (Firings per second)

40 60 80 100
Number of process

Fig. 9. Measures for the slotted ring protocol

The distributed database management system We show by this example
that a static scheduling of the input tuples of a transition can reduce the en-
abling test complexity in a significant way. Results obtained with the optimal

450000 T
*Optimal scheduling’

'Worst scheduling’ -------

400000

350000

300000

250000

200000

150000 [

100000 [

50000 |- b

0 . .
0 20 40 60 80 100
Number of process

Simulation speed (Firings per second)

Fig. 10. Measures for the distributed database management system

154

scheduling, and the worst scheduling according to the cost function given in the
previous section have been reported on figure 10. For 100 process, the firing rate
for the optimal scheduling is 5 times greater than the one for the worst schedul-
ing. In addition, it appears that the optimal scheduling is for this example the
one which gives the best results.

8 Conclusion

We have presented in this work an algorithm for the enabling test problem of
colored Petri nets. This one is based on an implementation of the conflict and
causality relations to efficiently maintain a set of enabled transitions which is
updated according to the transitions fired (or unfired) during the state space
generation. To implement these relations we translate the color mappings of the
net into equivalent constraints systems before the state space generation. These
systems are repeatedly solved during the search algorithm to identify the tran-
sitions disabled or enabled by the fired transition.

As this approach is not sufficient we have also given a unification algorithm.
This one processes input arcs in a predefined static order computed statically
according to some heuristics which take into account numerous considerations.
The major drawback of this approach is that it does not consider some dynamic
informations such as the number of tokens in places. Combining our algorithm
with some dynamic policies, e.g. less different tokens first policy of Gaeta [18]
could be considered in future works.

References

1. Dutheillet C. and Haddad S. An efficient computation of structural relations in
unary regular nets. In Seventh International Symposium on Computer and Infor-
mation Sciences (ISCIS VII), pages 73-79, 1992.

2. Dutheillet C. and Haddad S. Structural analysis of coloured nets. application to
the detection of confusion. Technical report, Rapport IBP/MASI, 1992.

3. Dutheillet C. and Haddad S. Conflict sets in colored petri nets. In 5th International
Workshop on Petri Nets and Performance Models, Toulouse (F) 19.-22. October
1993, pages 76-85, 1993.

4. Chiola G. A Simulation Framework for Timed and Stochastic Petri Nets. Number
90-50. Universite Paris, Institut Blaise Pascal Rapport MASI, 1990.

5. Chiola G., Franceschinis G., and Gaeta R. A symbolic simulation mechanism for
well-formed coloured petri nets. In Proceedings of the 25th annual symposium on
Simulation, pages 192-201. IEEE Computer Society Press, 1992.

6. Holzmann G.J. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279-295,
1997.

7. Sanders M. J. Efficient computation of enabled transition bindings in high-
level petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics
(SMC’2000), 8-11 October 2000, Nashuville, TN, volume 4, pages 3153-3158, 2000.

155

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Ilié J-M. and Rojas O. On well-formed nets and optimizations in enabling tests.
In M Ajmone Marsan, editor, 14th International Conference on Application and
Theory of Petri Nets, number 691 in LNCS, pages 300-318, Chicago, USA, 1993.
Springer.

Jensen K. Coloured petri nets and the invariant method. Theor. Comp. Science
14, pages 317-336, 1981.

Jensen K. Coloured petri nets: A high level language for system design and analysis.
483:342-416, 1991. NewsletterInfo: 39.

Varpaaniemi K. PROD 3.4.00 — an advanced tool for efficient reachability analysis.
Laboratory for Theoretical Computer Science, Helsinki University of Technology,
Espoo, Finland, June 2004. Software.

Mortensen K.H. Efficient data-structures and algorithms for a coloured petri nets
simulator. In 8rd Workshop and Tutorial on Practical Use of Coloured Petri Nets
and the CPN Tools (CPN’01) / Kurt Jensen (Ed.), pages 57-74. DAIMI PB-554,
Aarhus University, August 2001.

Maikeld M. Applying compiler techniques to reachability analysis of high-level
models. In Hans-Dieter Burkhard, Ludwik Czaja, Andrzej Skowron, and Peter
Starke, editors, Workshop on Concurrency, Specification € Programming 2000,
number 140 in Informatik-Bericht, pages 129-142. Humboldt-Universitat zu Berlin,
Germany, October 2000.

Maikeld M. Optimising enabling tests and unfoldings of algebraic system nets. In
José-Manuel Colom and Maciej Koutny, editors, Application and Theory of Petri
Nets 2001 : International Conference, ICATPN 2001, number 2075 in LNCS, pages
283-302, Newcastle upon Tyne, UK, June 2001. Springer.

Maikeld M. Maria: modular reachability analyser for algebraic system nets. In
Esparza J. and Lakos C., editors, Application and Theory of Petri Nets 2002 :
International Conference, ICATPN 2002, number 2360 in LNCS, pages 434-444,
Adelaide, Australia, June 2002 2002. Springer-Verlag, Berlin, Germany.

D. Poitrenaud and J.F. Pradat-Peyre. Pre and post-agglomerations for LTL model
checking. In M. Nielsen and D Simpson, editors, High-level Petri Nets, Theory and
Application, number 1825 in LNCS, pages 387—408. Springer, 2000.

Brgan R. and Poitrenaud D. An efficient algorithm for the computation of stubborn
sets of well formed petri nets. In Proceeding of the 16th International Conference
on Application and Theory of Petri Nets, Turin, June 1995., pages 121-140, 1995.
Gaeta R. Efficient discrete-event simulation of colored petri nets. IEEE Transac-
tion on Software Engineering, Vol.22, No. 9, pages 692-639, 1996.

Evangelista S. Syntactical rules for colored petri nets manipulation. Technical
report, Rapport CNAM / Cedric, http://cedric.cnam.fr, 2004.

Evangelista S., Kaiser C., Pradat-Peyre J. F., and Rousseau P. Quasar: a new tool
for analysing concurrent programs. In Reliable Software Technologies - Ada-Europe
2003, volume 2655 of LNCS. Springer-Verlag, 2003.

Haagh T.B. and Hansen T.R. Optimising a Coloured Petri Net Simulator. Master
thesis, Univ. of Aarhus, 1994.

156

An Evaluation of Network Response Time using a Coloured Petri Net Model of
Switched LAN

Dmitry A. Zaitsev

Odessa National Telecommunication Academy,
Kuznechnaya, 1, Odessa, 65029, Ukraine
Web: http://www.geocities.com/zsoftua

Abstract

The enterprise class model of switched LAN in the form of a coloured Petri net is represented. The components of the
model are switches, servers and workstations. For the evaluation of network response time a special measuring
workstation model is proposed. It counts response times for each request and calculates the average response time. For
the simulation of network behaviour and accumulation of statistical information, CPN Tools was applied. Hierarchical
nets usage allows the convenient representation of an arbitrary given structure of LAN.

Keywords: LAN; Switch; Response time; Colored Petri net; Evaluation

1. Introduction

The technology of switching [4] is prospective for bandwidth increase in local and global
computer networks. But it is hard enough to create an adequate analytical model of a switched
network [2]. Petri net models [5] contain facilities for precise description of network architecture
and traffic peculiarities and allow the representation of interaction within the client-server systems.

Early represented model [9] has been refined up to enterprise quality. CSMA (Carrier Sense
Multiple Access) procedures are implemented. Complete full-duplex mode is simulated with
separate input and output frame buffers. The model of switch was arranged for technological
convenience with fusion places allowing an easy description of an arbitrary number of ports.
Moreover, the general model was supplied with special measuring workstation model that
calculates network response time.

Notice that the model is represented with hierarchical coloured [3] timed [7,10] Petri nets. For
automated composition of model and accumulation of statistical information during network
behaviour simulation, CPN Tools [1] was used.

In the Section 2 we consider the peculiarities of switched Ethernet LAN construction. Model of
LAN is described in Section 3, whereas Sections 4, 5, 6 are devoted to sub models of: switch,
server, workstation, measuring workstation. Evaluation technique is represented in Section 7 and
Section 8 contains the discussion of models parameters.

Results obtained may be used in real-time applications sensitive to delays, as well as at
communication equipment, for instance, switches, development.

2. Switched LAN

Recently the Ethernet has become the most widespread LAN. With gigabit technology it started
a new stage of popularity. And this is not the limit yet. Hubs are dumb passive equipment aimed
only at the connection of devices as wires. The base element of the Local Area Network (LAN)
Ethernet (IEEE 802.x) is a switch of frames. Logically a switch is constituted of a set of ports [6].
LAN segment (for example, made up via hub) or terminal equipment such as workstation or server
may be attached to each port. The task of a switch is the forwarding of incoming frame to the port
that the target device is connected to. The usage of a switch allows for a decrease in quantity of

157

collisions so each frame is transmitted only to the target port and results in an increased bandwidth.
Moreover the quality of information protection rises with a reduction of ability to overhear traffic.
The scheme of sample switched network is presented in Fig. 1.

Scheme of sample switched LAN

Switch (SWI)
Port 1 Port 2 O port3
0 Workstation 3
WS3, MAC=5)
Server 1 Server 2
=T T (51, MAC=1) =1 (52, MAC=3)
Workstation 4
(WS4, MAC=6)
Workstation 1 Waorkstation 2

(WS1, MAC=2) (WS2, MAC=4) Workstation 5

HUB1 HUB2 (s, MAC=T)
HUB3

Fig. 1. Scheme of sample switched LAN

As a rule, the Ethernet works in a full-duplex mode now, which allows simultaneous
transmission in both directions. To determine the target port number for the incoming frame a static
or dynamic switching table is used. This table contains the port number for each known Media
Access Control (MAC) address. Only static switching tables will be modelled in the present paper.

3. Model of LAN

A model of sample LAN with topology, shown in Fig. 1, is represented in Fig. 2. Let us describe
the model constructed. Notice that the model is represented with coloured Petri net [3] and consists
of places, drawn as circles (ellipses), transitions, drawn as bars, and arcs. Dynamic elements of the
model, represented by tokens, are situated in places and move as a result of the transitions’ firing.

The elements of this model are sub models of: Switch (SWI), Server (S), Workstation (WS) and
Measuring Workstation (MWS). Workstations WS1-WS4 are the same type exactly WS, whereas
workstation WS5 is the type MWS. It implements the measuring of network response time. Servers
S1 and S2 are the same type exactly S. Hubs are a passive equipment and have not an independent
model representation. The function of hubs is modelled by common use of the corresponding places
p*in and p*out by all the attached devices. The model does not represent the collisions. Problems
of the Collision Detection (CD) were studied in [11].

Each server and workstation has it’s own MAC address represented in places aS*, awS*. A
switch has separate places for input (p*in) and output (p*out) frames for each port. It represents the
full-duplex mode of work. Bidirected arcs are used to model the carrier detection procedures. One
of the arcs checks the state of the channel, while another implements the transmission.

158

Model of LAN

avail

seg

| WS1 fg— S | W2 oo/ N V5 [
] WS —
12 14 16
GWSD C%Eé
mac mac mac

Fig. 2. Model of sample LAN

color mac = INT timed;

color porthum = INT;

color nfrm = INT;

color sfrm = product nfrm * INT timed,;

color frm = product mac * mac * nfrm timed;
color seg = union f:frm + avail timed;

color swi = product mac * portnum;

color swf = product mac * mac * nfrm * portnum timed;
color remsv = product mac * nfrm timed;
var src, dst, target: mac;

var port: portnum;

var nf, rnf: nfrm;

var tl, t2, s, q, r: INT;

color Delta = int with 1000..2000;

fun Delay() = Delta.ran();

color dex = int with 100..200;

fun Dexec() = dex.ran();

color dse = int with 10..20;

fun Dsend() = dse.ran();

color nse = int with 10..20;

fun Nsend() = nse.ran();

fun cT()=IntInf.toInt(!CPN'Time.model_time)

Fig. 3. Declarations
All the declarations of colours (color), variables (var) and functions (fun) used in the model are

represented in Fig. 3. The Ethernet MAC address is modelled with integer number (colour mac).
The frame is represented by a triple frm, which contains source (src) and destination (dst)

159

addresses, and also a special field nfrm to enumerate the frames for the calculation of response
time. We abstract of other fields of frame stipulated by standard of Ethernet. The colour seg
represents unidirectional channel and may be either available for transmission (avail), or busy with
transmission of a frame (f.frm). It is represented with a union type of colour. Notice that the
descriptor timed is used for tokens, which take part in timed operations such as delays or
timestamps.

The marking of places is represented with multisets in CPN Tools. Each element belongs to a
multiset with defined multiplicity, in other words — in a few copies. For instance, the initial marking
of the place aWS2 is 1°4. It means that place aWS2 contains 1 token with a value of 4. The union
of tokens is represented by a double plus sign (++). Tokens of timed colour have the form x @ t
which means that token x may be involved only after a moment of time t. So, notation @+d is used
to represent the delay with the interval d.

4. Model of Switch

Let us construct a model for a given static switching table. We consider the separate input and
output buffers of frames for each port and common buffer of the switched frames. The model of
switch (SWI) is presented in Fig. 4. The hosts’ disposition according to Fig. 1 was used for the
initial marking of a switching table.

Model of Switch (SWI)
1(1,1)++1°(2,1)++1°(3,2)++1°(4,2}++1°(5,3)++1(6,3)++ 1°(7,3)
[dst=target]

(target,port)

In1T e »{ Swlal SwitchTable]

f(src,dst,nf)

1[0}

seg sWi

Port1 @+5 rc,dst,nf,port)

- @ f(src,dst,nf) outl | (src,dst,nf,1)
seq X1 swf
@+3
(dst=t q 15(1,1)++14(2,1)++19(3,2)++1(4,2)++19(5,3) ++1(6,3)++1°(7,3)
dst=targe
target,port
0 @ f(srcdstnf 2 |g (targetpory) p{ SwTa2) [Switchiabld
vail .
Port2 sed @+5 (src,dst,nf,port) swi
f(src,dst,nf) (src,dst,nf,2)
0] (Port20utg Out2 |Lg
avail
seg @5 swf
[dst—target] 1(1,1)++14(2,1)++1%(3,2)++1°(4,2)++17(5,3) ++17(6,3)++1°(7,3)
f(sre,dst,nf (target,port)
o @ (sre,) In3 |g p{ SwTal SwitchTable
vai
se i
Port3 9 @+5 (src,dst,nf,port) sw
f(src.dst.nf (src,dst,nf,3)
0 @ redstal) 1 ous |g
avai

seg @:5 swf

Fig. 4. Model of switch

The colour swi represents records of switching table. It maps each known MAC address (mac) to
the number of port (nport). The colour swf describes the switched frames, waiting for output buffer

160

allocation. The field portnum stores the number of the target port. The places Port*In and
Port*Out represent input and output buffers of the ports correspondingly. The fusion place
SwitchTable models the switching table; each token in this place represents the record of the
switching table. For instance, token 1°(4,2) of the initial marking means that the host with MAC
address 4 is attached to port 2. The fusion place Buffer corresponds to the switched frames’ buffer.
Notice that a fusion place (such as SwitchTable or Buffer) represents a set of places. The fusion
place SwitchTable is represented with places SwTal, SwTa2, SwTa3. The fusion place Buffer is
represented with places Bul, Bu2, Bu3. It allows the convenient modelling of switches with an
arbitrary number of ports avoiding numerous cross lines.

The transitions In* model the processing of input frames. The frame is extracted from the input
buffer only in cases where the switching table contains a record with an address that equals to the
destination address of the frame (dst=target); during the frame displacement the target port number
(port) is stored in the buffer. The transitions Out* model the displacement of switched frames to
the output ports’ buffers. The inscriptions of input arcs check the number of the port. The fixed time
delays (@+5) are assigned to the operations of the switching and the writing of the frame to the
output buffer.

It is necessary to explain the CSMA procedures of LAN access in more detail. When a frame is
extracted from the input buffer by transition In*, it is replaced with the label avail. The label avail
indicates that the channel is free and available for transmission. Before the transition Out* sends a
frame into a port, it analyses if the channel is available by checking the token avail.

Notice that places Port*In and Port*Out are contact ones. They are pointed out with an 1/O
label. Contact places are used for the construction of hierarchical nets with substitution of transition.
For example, the transition SWI in the top-level page of model (Fig. 2) is substituted by a whole net
SWI represented in Fig. 3. Places Port*In and Port*Out are mapped into places p*in and p*out
correspondingly.

5. Models of Workstation and Server

To investigate the frames’ flow transmitting through LAN and to estimate the network response
time it is necessary to construct the models of terminal devices attached to the network. Regarding
the peculiarity of the traffic’s form we shall separate workstations and servers. For an accepted
degree of elaboration we consider periodically repeated requests of workstations to servers with
random uniformly distributed delays. On reply to an accepted request a server sends a few packets
to the address of the requested workstation. The number of packets sent and the time delays are
uniformly distributed random values.

Model of Workstation (WS)

[dst=target]

f(src,dst,nf) target

LANin

[1[0] i Receive |g

L J

avail
seq @+10

mac

11++1°3

f(srec,dst,1)

dst@+Delay()

Send Remote

L

avail dst

seq @+10

mac

Fig. 5. Model of workstation

161

A model of workstation (WS) is represented in Fig. 5. The places LANin and LANout model
the input and output channels of the local area network correspondingly. The workstation listens to
the network by means of transition Receive that receives frames with the destination address, which
is equal to the own address of the workstation (dst=target) saved in the place Own. The processing
of received frames is represented by the simple absorption of them. The workstation sends periodic
requests to servers by means of transition Send. The servers’ addresses are held in the place
Remote. After the sending of a request the usage of the server’s address is locked by the random
time delay given by the function Delay(). The sending of the frame is implemented only if the LAN
segment is free. It operates by checking place LANout for a token avail. In such a manner the
workstation interacts with a few servers holding their addresses in the place Remote.

Notice that the third field of frame, named nfrm, is not used by the ordinary workstation WS.
The workstation only assigns the value of a unit to it. This field is used by a special measuring
workstation MWS. The copies of the described model WS represent workstations WS1-WS4. To
identify each workstation uniquely, the contact place Own is used. This place is shown also in the
top-level page (Fig. 2) and contains the MAC address of host.

Model of Server (S)

[dst=target]

f{src,dst,nf) target
LANin e Receive Ly o Own
avail
seq @+10 (src,nf) mac

remsy dst,nf)

src,dst,nf ;
= . f(src,dst,nf) Send () Reply Y Nsend()‘(src,dst,nf) Exec

avail
seqg @+Dsend() frm @+Dexec()

Fig. 6. Model of server

A model of server (S) is represented in Fig. 6. The listening of the network is similar to the
model of the workstation but it is distinct in that the frame’s source address is held in the place
Remote. The transition Exec models the execution of the workstation’s request by a server. As a
result of the request execution the server generates a random number Nsend() of the response
frames, which are held in the place Reply. Then these frames are transmitted into the network by
the transition Send. Notice that the request number nf is stored in the place Remote also. It allows
us to identify the response with the same number as the request.

6. Model of Measuring Workstation

A model of the measuring workstation (MWS) is represented in Fig. 7. In essence, it is an early
considered model of workstation WS, supplied with the measuring elements (the measuring
elements are drawn in magenta).

Let us consider the measuring elements in more detail. Each frame of a workstation’s request is
enumerated with a unique number contained in the place num. The time, when the request was sent,
is stored in the place nSnd. The function cT() calculates the current value of the model’s time. The
place nSnd stores a pair: the frame’s number nf and the time of request cT().

The place return stores the timestamps of all the returned frames. As the network response time
we consider the interval of time between the sending of the request and receiving the first frame of
response. This value is stored in place NRTs for each responded request. The transition IsFirst

162

determines the first frame of response. The inscription of the arc, connecting the transition IsFirst
with the place NRTSs, calculates the response time (t2-t1).

A residuary part of the measuring elements calculates the average response time. The places sum
and quant accumulate the sum of response times and the quantity of accepted responses
correspondingly. The arrival of a new response is sensed by the place new and initiates the
recalculation of average response time with the transition Culc. The result is stored in the place
NRTime.

Network Responce Times

Model of Measuring Workstation (MWS) for Requests

sfrm

5

- (et =@ (nft1) p IsFirst sum
sfrm s+(t2-t1)
[dst=target {rnf,cT()) sdiva
LANi f(src,dst,rnf) . target -
[m@] in p| Receive |g I Own
avail mac
seq) g
@10 8] Avarage Network
Src Responce Time INT
dst
11++1'3
LANout Y f(src,dst,nf) Send dst@+Delay() ! Remote
avai nf+1
seq mac
nf
11
(.

nfrm

Fig. 7. Model of measuring workstation

7. Evaluation Technique

The model constructed was debugged and tested in a step-by-step mode of simulation. For these
purposes the frame generated by the workstation was traced through the network to the server and
back. Also we observed the behaviour of the model in the process of automated simulation with a
display of net’s dynamics — in the mode of the so-called game of tokens. It allows us to estimate the
model with a glance at the top-level page and at sub pages during simulation.

To estimate the network response time precisely, rather huge intervals of model time are
required. It is convenient for such purposes to use the simulation mode without displaying
intermediate marking aimed at the accumulation of statistics.

A snapshot of the measuring workstation model is represented in Fig. 8. The rectangular labels
(drawn in bright green) describe the current marking of the simulation system; the circular labels
contain the number of tokens. The place LANin contains frame (1,5,1). The place LANout
represents the available state of the channel avail. The number of the next request, according to the
marking of place num, is 7. The place return indicates that 83 frames of responses have arrived.
The place NRTSs contains the response times for each of the 6 responded requests. For instance, the
network response time for request 5 equals to 235. It should be calculated easily, that the average

163

network response time 389 in the place NRTime equals to 2337/6 according to the markings of the
places sum and quant.

8. Parameters of Model

The right choice of time unit for model time measurement is a key question for an adequate
model construction as well as the calculation of timed delays for elements of the model. It requires
an accurate consideration of the real network hardware and software characteristics.

[1:(1.202) @212+ + +1°(2.737) @807 + ++1°(3.181) @1450 ++ +1'(4,684)@2230+ + +1'(5.235)@2550 +++1'(6.298)@3393__ |

Network Responce Times
for Requests

Model of Measuring Workstation @

sfrm

5

sum

v

(nf,cT()) @ (nf,t1) sFirst

I 1 g

sfrm s+(t2-11)

- , i
(ON1:4((1,5.1))@3642] [dst=target (rnf.cT()) s div q

o] @ fisrc.dst,rmf) Receive |g 1arget = Own (N1 7@3637

avail

seq @+10 o mac

(1389
Avarage Network
SIC, Responce Time INT

dst

11++1°3
dst@-Delayl) p{ Remote (:11‘1@4—145+++1‘3@3?44|
nf+1

mac

nf

11

@
nfrm

Fig. 8. Estimation of network response time

The scheme shown in Fig. 1 represents a fragment of a railway dispatch centre LAN supplied
with special railway CAM software GID Ural [12]. The core of the system constitutes a pair of
mirror servers S1 and S2. The workstations WS1-WS5 are situated in the workplaces of railway
dispatchers.

We have to consider the performance of the concrete LAN switch and LAN adapters to calculate
the timed delays of transitions In*, Out*, Send, Receive. Moreover, the peculiarities of client-
server interaction of GID Ural software ought to be considered for the estimation of such
parameters as delay between the requests Delta and the time of request execution dex. Since the
unit of information transmitting through net is represented with a frame, we have to express the
lengths of messages in numbers of frames. For these purposes the maximal length of an Ethernet
frame equalling 1.5 Kb was chosen.

The types of LAN hardware used are represented in Table 1.

164

Table 1. Types of hardware

Device Type

LAN adapter Intel EtherExpress 10/100
LAN switch Intel SS101TX8EU
Server HP Brio BA600
Workstation HP Brio BA200

In Table 2 the parameters of the model described are represented. LAN switch and adapter
operations are modelled with fixed delays so they are small enough in the comparison with client-
server interaction times. Moreover, in reliable Ethernet frames of maximal length are transmitted
mainly, since the time of frame’s processing is a fixed value. Stochastic variables are represented
with uniform distribution, which corresponds to Ural GID software behaviour. The smallest timed
value is the LAN switch time of read/write frame operation. But for the purposes of future
representation of faster equipment we choose the unit of model time (MTU) equalling 100 ns.

Table 2. Parameters of model

Parameter Variable/Element | Real value Model value
LAN switch read frame delay In* 500 ns 5

LAN switch write frame delay Out* 500 ns 5

LAN adapter read frame delay Receive 1ms 10

LAN adapter write frame delay Send 1 ms 10

Server’s time of request processing Dex 10-20 ms 100-200
Client’s delay between requests Delta 100-200 ms 1000-2000
Length of request 1.2 Kb 1

Length of response Nse 15-30 Kb 10-20

Thus, the average network response time obtained equals 389 MTU or about 39 ms. This delay
satisfies the requirements of train traffic control [12].

9. Conclusion

In the present work the technology of switched local area networks’ models development was
studied. The usage of coloured Petri nets allows the peculiarity of interaction within the client-
server systems to be taken into account. The model reflects the major features of a real-life network.
CSMA procedures, full-duplex mode and switching tables were modelled. A special measuring
model of workstation was suggested and implemented to estimate the network response time.

The model developed is of enterprise class, so it allows easy and convenient adequate
representation of LAN with an arbitrary given topology. The technique described is aimed at real-
time applications, requiring the precise estimation of timed delays before implementation.

References

1. Beaudouin-Lafon M., Mackay W.E., Jensen M. et al. CPN Tools: A Tool for Editing and
Simulating Coloured Petri Nets. LNCS 2031: Tools and Algorithms for the Construction and
Analysis of Systems, 2001, 574-580.

2. Elsaadany M., Singhal T., Lui Ming. Performance study of buffering within switches in local
area networks. Proc. of 4™ International Conference on Computer Communications and
Networks, 1995, 451-452.

3. Jensen K. Colored Petri Nets — Basic Concepts, Analysis Methods and Practical Use. Springer-
Verlag, Vol. 1-3, 1997.

165

oo

10.

11.

12.

Hunt R. Evolving Technologies for New Internet Applications. IEEE Internet Computing, 5
1999, 16-26.

Peterson J. Petri Net Theory and the Modelling of Systems. Prentice Hall, 1981.

Rahul V. LAN Switching. OHIO 2002.

Zaitsev D.A., Sleptsov A.l., State Equations and Equivalent Transformations of Timed Petri
Nets. Cybernetics and System Analysis, 33, 1997, 659-672.

Zaitsev D.A. Subnets with Input and Output Places. Petri Net Newsletter, VVol. 64, April 2003,
3-6, Cover Picture Story.

Zaitsev D.A. Switched LAN simulation by colored Petri nets. Mathematics and Computers in
Simulation, vol. 65, no. 3, 2004, 245-249.

Zaitsev D.A. Invariants of timed Petri nets. Cybernetics and Systems Analysis, no. 2, 2004, 92-
106.

Zaitsev D.A. Verification of Ethernet protocols // Proceedings of Odessa National
Telecommunication Academy, no. 1, 2004, p. 42-48.

Zyabirov H.S., Kuznetsov G.A., Shevelev F.A., Slobodenyuk N.F., Krasheninnikov S.V.,
Krayisvitny V.P., Vedischev A.N. Automated system for operative control of exploitation work
GID Ural-VNIIZT // Railway transport, no. 2, 2003, 36-45.

166

A Formal Model for Information Risk Analysis Using Colored Petri Nets

Peter. R. Stephenson, cissp, cisM, FICAF
The Center for Regional and National Security, Eastern Michigan University

Abstract. The analysis of information systems (IS) risk, especially quantitative analysis, is
fraught with inaccuracy and unreliability for a variety of reasons. First, the metrics required as
input data to virtually all types of quantitative IS risk analysis methods are based upon data that
are virtually impossible to collect accurately. These data require a thorough understanding of
detailed threats and impacts on an asset-by-asset basis. In most organizations those data usually
are not recorded accurately, consistently or over a long enough period of time to be reliable for
quantifying, ranking and predicting risk.

The second weakness of current IS risk analysis approaches is that they tend to be asset-based.
In an environment where IS assets can run in the tens of thousands it is impractical to have a
complete inventory of such assets, let alone a clear understanding of the individual asset loss
impacts under varying types of threats.

Finally, vulnerability assessments and risk analyses usually are performed infrequently in large
enterprises due to cost and inconvenience. This means that such assessments and analyses are,
at best, snapshots that may not be repeated for months or, even, years. Certainly, any annualized
loss expectancy figures, unreliable under the best of circumstances, soon become, essentially,
useless. That makes effective ongoing IS risk management almost impossible in a practical sense.

In this paper we describe the FARES (Forensic Analysis of Risks in Enterprise Systems) project
and propose an alternative method of IS risk analysis that supports ongoing IS risk management
based upon information systems security (ISS) modeling, comparison against global (i.e., world-
wide) norms (a quasi-actuarial approach) and quantification using statistical methods.

An important aspect of ongoing management of IS risk, maintaining a current risk snapshot
without the burdensome cost of continual physical analysis of large information systems, is
satisfied by the use of Colored Petri Nets (CPNets). CPNets allow sophisticated modeling,
simulation and analysis of complex information security system behavior using proven
formalisms.

Additionally, CPNets have the advantage of being graphical representation which allows risk
management experts to construct, modify and present complex models without the need for
advanced training in formal methods. Finally, such graphical representations are ideally suited
for presentation to lay audiences such as executive and financial managers.

The FARES project is ongoing and is in early stages of evolution and field testing. The models
are trivial and approaches we discuss here largely are intended to be proof-of-concept and are
evolving continuously.

167

1.0 Background and Problem
Statement

The notion of risk management and risk
analysis in the information technology arena
is based upon a twenty year-old approach.
Current teaching is clear that information
technology (IT) risk must be asset-based, in
clear opposition to general risk analysis
wisdom that focuses upon modeling
approaches based upon actuarial historical
data.

1.1 Current State of IT Risk
Analysis

Typical risk analysis outside of the IT world
may be generalized into three types: Point
Estimates, Range Estimates and What-if
Scenarios [DECO02]. The problem with
these three methods, and with risk analysis
in general, is that they require reliable input
data to be successful. Often those data are
not available.

When accurate input data are not available,
the next best approach is the use of
modeling methods. These methods
generally make some assumptions based
upon whatever data is available and attempt
to infer future results. While this is more
accurate than assuming data and building
directly from that data to achieve a
predictive result, we still are restricted to
working with estimates.

The potential for accuracy, then, lies in
predicting the future from as clear a picture
of the past as possible. Insurance companies
attempting to manage the risk of making
more in benefits payouts than they take in as
premium payments use an actuarial
approach collecting historical data. Simply
put, that means that they estimate the future
from a global view of the past.

The two major areas where IS risk analysis
and management techniques diverge from

those of other industries lie in the choice of
historical data and the use (or lack of use) of
modeling techniques. This leads to some
important uncertainties.

The three major approaches to risk analysis
outside of IS have significant drawbacks,
especially in an IS environment:

= Range Estimates: Calculate vague
classifications for risk (best case,
worst case, probable case, or high
risk, low risk, medium risk).
Outputs are very subjective and
difficult to use as risk management
metrics.

= What-if Scenarios: Usually use
assumptions from Range Estimates
to predict as many outcomes as
possible. Since this approach is
based upon subjective interpretation
it is likely to be flawed as a
predictive method.

= Point Estimates: Implies accurate
results but, in fact, can be very
misleading due to the uncertainty of
input variables. Most IT quantitative
risk analysis methods are, in fact,
Point Estimates based upon
presumed known asset values and
presumed known threats,
vulnerabilities and impacts. Since
these data rarely are available within
the organization undergoing the
analysis, it is unlikely that the Point
Estimates will reflect the reality of
the organization’s IT risk posture.

Generally IS risk analysis takes one of two
possible directions: quantitative and
qualitative. Qualitative risk analysis is
easier to perform, admits of a lack of
reliable input data but returns no useful
metrics. Quantitative risk analysis offers
metrics but, due to the uncertainty of the
input data, those metrics are not likely to be
particularly useful.

168

When quantitative methods actually do
admit of unreliable historical data, they tend
to evolve into Range Estimates, again
producing little of value in the way of
metrics that will aid in the management of
future risks.

Other important work in the field relates
more to the formal description of computer
security incidents using state machine
analysis [GPO4]. There are significant
correlations between such incidents and
information system risk. Some of this
approach to incident analysis may well have
application in describing information system
risk.

1.2 A Theoretical Solution to the
Problem

The key to performing a credible IT risk
analysis lies in addressing major challenges:

= Selection of credible historical data

= Application of established statistical
methods for predicting future risks

= Use of modeling techniques to
represent the volatility of today’s IT
enterprises and allow for continual
reassessment of risk posture based
upon both local and global changes.

We have approached these challenges as
follows:

= Historical data. Collection of
global data on IT threats
vulnerabilities and impacts.
Cataloging of threats, vulnerabilities
and impacts into manageable
taxonomies.

= Predicting and forecasting. Use of
accepted statistical techniques such
as Monte Carlo simulation,
Bayesian probability, etc.

= Ongoing Modeling. Application of
Colored Petri Nets to capture the
current operating state of the
enterprise and to model and

simulate changes in that state over
real time.

The result of this research is the FARES
program. The program is extremely young
and addresses an audience traditionally
resistant to formal modeling. For that
reason the program currently is in the very
early stages of acceptance in the information
assurance community.

This paper focuses upon the application of
Colored Petri Nets (CPNets) to the ongoing
modeling challenges but, necessarily,
touches upon the remaining two issues. A
significant benefit of CPNets and,
particularly, CPNTools, is that there are
ways to embed the formal modeling aspect
on the FARES process beneath of veneer of
operator-friendly interfaces.

1.3 Clarifying the Risk
Management and Risk Analysis
Processes

There is some danger in considering risk
management solely as a business process. It
is, more correctly, an iterative risk analysis
process. When considering business
processes, for example, we have the notions
of phases, activities, tasks, and techniques,
as well as issues related to human resources,
technology, and the life-cycle model to be
used [FDO04]. In risk management we don’t
address most of those directly. Rather, we
incorporate the risk management process
into other business processes.

Jones [JKLO2] defines risk management as
the:

“Process of identifying and
applying countermeasures
commensurate with the value of
the assets protected based upon
a risk assessment.”

The definition is, of course, in the context of
information security and describes an asset-

169

based process. While the approach reported
here is intended to be a generation beyond
asset-based analysis, the underlying
definition of risk management holds
because, whether or not the analysis is asset-
based, the goal remains a balanced approach
to managing risk to information assets.

Further, most business processes may be
thought of in terms of work-flow
management. Workflow management
systems support of the definition, execution,
registration and control of processes
[WAO98]. For the purposes of risk analysis,
workflow management poses virtually no
applicability.

However, the key issue, from the
perspective of the FARES process, is that
FARES is an analysis, not a business
process. FARES supports and is a tool of
risk management.

2.0 Approach

The FARES approach consists of the
following specific elements:

1 Selection of global sources of actuarial
historical input data to be used as a
comparison baseline

2 Development of a suite of data
management tools to manage historical
reference data and collect local data for
the enterprise under evaluation

3 Application of appropriate local data

collection techniques, such as
vulnerability assessment, data flow
analysis, data and enterprise
classification information, access

control information, etc.

4 Application of appropriate statistical
analysis tools to characterize local data
in comparison with historical actuarial
data.

5 Identification of security policy domains
and their inter-domain communications
channels

6 Modeling inter-domain data flow, both
permitted and potentially unauthorized

7 Modeling threat, vulnerability and
impact status first as a baseline, and
ultimately at any time critical elements
of the model change

8 Applying a combination of statistical
and process analysis (from CPNet
models) to determination of current and
future risk profiles, risk probabilities,
and current local profiles in comparison
to global historical profiles

2.1 Characterizing the Enterprise
Under Analysis

We characterize the enterprise under
analysis in terms of security policy domains.
In the definitions below we wuse the
following simple notations:

Ac B Aisasubsetof B
A|B A such that B

AeB A is subject to B
A= B A implies B

170

We define security policy domains:

Definition 1 — Security Policy Domain'.

A security policy domain consists of all of
the elements of an enterprise that are subject
to the same security policy.

Piom c El&1« p1

such that:

(i) P is the set of all security policies on a
bounded enterprise network

(ii) E is the set of all elements on a bounded
enterprise network

(iii) p. is a particular policy where p. € P
(iv) €.1s a subset of elements where £, C E

(v) Pun is a security policy domain

The notion of security policy domains is
critical to the FARES process for several
reasons. First, in most large enterprises
there are far too many elements in the IT
environment to be handled individually. In
a large organization the number of such
elements easily ranges in the tens of
thousands, and, not uncommonly, in the
hundreds of thousands.

The second requirement for the use of
security policy domains is that they allow
the analysis of data flows on the enterprise
at a manageable level. Determining data
flows between every IT element in an

! Stephenson, Peter [PRS04]

enterprise with several thousand servers, as
well as tens or hundreds of thousands of
users is a near impossible task. However
even a large globally-distributed enterprise
may break down into fewer than 50 policy
domains.

Finally, security policy domains offer an
ideal platform upon which to measure
threats, vulnerabilities and impacts. Once
those elements of risk are measured,
appropriate safeguards may be applied to all
of the elements that comprise the policy
domain. The high level view of these
elements (from the domain perspective)
allows managers a clearer picture of risks
and appropriate countermeasures than does a
granular, element-level view.

2.2 Defining IT Security Risk and
its Elements

The elements of IT risk are threats,
vulnerabilities and impacts. We take each
definition in turn.

We begin with the definition of a security
incident because this definition is used in
later definitions and, although we do not
address the issues of security incidents
directly here, it is important for the role it
plays in our current topic.

We follow the definition of a computer
security incident (Definition 2) with the
definition of a vulnerability (Definition 3).
These terms are fundamental to the IT
security environment and do not, to date,
appear to have been defined formally in the
IT security literature.

171

Definition 2 — Computer Security
Incident'.

A computer security incident is a change of
state in a bounded computer system from the
desired state to an undesired state, where the
state change is caused by the application of a
stimulus external to the system.

I =post Hapre-ﬁ = post Olcor

such that:

(1) A is the set of all possible operating
states of a bounded computer system S
(i1) a.r is the desired operating state
of § where a.r€ A

(iii) &, is the pre-incident operating
state of S where o€ A

(V) A pre = Acor

(V) & o 1s the post-incident operating
state of S where &€ A

(vi) B is the set of external stimuli
applied to §

(vii) B is an external stimulus

where f € B

(viii) I is a computer security incident

The difficulty in defining vulnerabilities,
threats and impacts in the context of today’s
view of information systems security is that
they are concepts whose meaning has grown
up over time without an effort to provide
formal definitions. Jones [AJO2] gives
informal definitions and, from those, we
have derived the more formal definitions
needed to apply the concepts to CPNets.

We follow Definition 3 with definitions of
the other risk elements and, finally, with a
formal definition of IT risk itself.

Definition 3 — Vulnerability

A vulnerability is a weakness or flaw, in an
element of a system, that has the potential to
be exploited with a damaging outcome’.

Vn :gn-afn‘zlgn-ﬁ: 1

such that:

(i) E is the set of all elements in

bounded system S

(i1) €. is a specific element where €, € E
(iii) A is the set of all possible operating
states of bounded system §

(iv) an is a flawed or weakened

operating state where a» € A

(v) V is the set of all possible vulnerabilities
in a bounded system

(vi) v. is a specific vulnerability where v. € V
(vii) B is the set of all possible external stimuli
that could be applied to &.

(viii) £ is an external stimulus applied to &.
where f € B

(ix) I is a computer security incident (Definition 2)

The definition of threat follows. This
definition approaches threat from a very
simple perspective: a threat is nothing more
that an external stimulus that causes some
element in an IT system to change to an
undesirable state. There is a tendency
among today’s information security
practitioners to confuse threat with
vulnerability. In our definition we view a
threat generally (although Jones makes a
distinction between a natural threat, a threat
based upon an unintentional act and a
malicious threat) because at this level of
abstraction we view a threat simply as

? Jones, Andrew [AJ02]

172

something that is capable of causing an
element of an enterprise to change state
from a correct or desired operating state to
an undesired state. The definition does not
address why this state change could occur
(the underlying vulnerability of the element)
or what the motivation for the action is.
Finally, it does not address the capability of
a threat agent to deliver the threat. We save
these issues for a more detailed discussion
involving all of the applicable elements of
risk.

Definition 4 — Threat

A threat is a natural disaster, an
unintentional act by an individual that
causes harm or a malicious act by an
individual or group of individuals®.

T=Enf= Qu

Such that:

(1) T is the set of all threats including natural
disasters and malicious or unintentional acts
by individuals that causes harm

(i) 7 is a specific threat where 7€ T

(iii) E is the set of all elements in

bounded system S

(iv) & is a specific element where &€, € E

(v) A is the set of all possible operating

states of bounded system S

(vi) o is an undesired operating state in bounded
system S state where . € A

(vii) B is the set of all possible external stimuli
that could be applied to &

(viii) B is an external stimulus applied to &.

where S € B

Definition 5 — Impact

An impact is an unwanted or adverse effect
on a system or organization that an incident
would cause”.

p=cfFa1=a

such that:

(i) I is a computer security incident

(Definition 2)

(i1) A is the set of all possible operating states

of bounded system §

(iil) « is an operating state in bounded system

S operating state where r € A

(iv) a. is an undesired operating state in bounded
system S state where ot. € A

(v) M is the set of all possible impacts

(vi) u is a specific impact where ¢t € M

The next definition is the definition of
impact.

Finally, we assemble these definitions into a
formal definition of IT risk. It is important,
at this point, to recognize that there may be
other definitions of IT risk and its elements.
In the FARES project we have attempted to
arrive at the simplest definitions of these
basic building blocks so that we do not, by
the fact of definition, unnecessarily limit the
scope of future models.

The FARES project takes a simple approach
without being simplistic. The assessment,
analysis and management of IT risk is, of
itself, a very complex undertaking. It is
inappropriate to add artificial complexity
through the use of unnecessarily
complicated foundational definitions.

173

Definition 6 - Information Systems Risk

Information Systems Risk is the probability
that a threat agent will successfully exploit a
vulnerability to create an unwanted or
adverse impact’.

p=P(vo= uPau)

such that:

(i) 7 is a specific threat (Definition 4)

(ii) v is a specific vulnerability (Definition 3)
(iii) ¢ is a specific impact (Definition 5)

(iv) A is the set of all possible operating states
of bounded system S

(V) a. is an undesired operating state in
bounded system S where . € A

(vi) P is the set of all information systems risks
(vii) p is a specific information systems risk

where p € P

Here, we have used an italic P to denote
probability and an upper case Greek letter
Rho (P) as the set of all information system
risks.

2.3 Historical Data

A key element of the FARES approach is
the selection of historical baseline data
against which to profile the enterprise under
analysis. We selected global historical data
to represent threats, vulnerabilities and
impacts. The data for building an actuarial
profile of vulnerabilities was taken from the
records of approximately 1 billion individual
cyber attacks and probes world-wide over a

3] ones, Andrew. “Identification of a Method for
the Calculation of Threat in an Information
Environment”[AJ02] with additions and
modifications by Stephenson, Peter

period of 19 months ending in July of 2004*
collected by the DShield network of over
500,000 attack sensors. The attacks were
cross-referenced to target ports and thence to
specific vulnerabilities and exposures using
the Mitre Common Vulnerabilities and
Exposures (CVE) catalog5 .

Data for threats and impacts is the result of
interviews and surveys of organizations of
all types and sizes and is ongoing.

2.3.1 Organization of Historical
Reference Data

There are thousands of vulnerabilities and
over one hundred specific threats cataloged
by various sources. These specific threats
and vulnerabilities change rapidly and are,
essentially, impossible to track reliably.
Additionally, there is the problem of “zero-
day attacks”. These attacks are based upon
exploits that address newly discovered but
unannounced vulnerabilities. These factors
make the assessment of future risk based
upon past history challenging.

In order to achieve the dual objectives of
maintaining a manageable frame of
reference and maintaining a relatively static
basis for profiling, we reduced the CVE
dictionary to a taxonomy of vulnerabilities
and exposures. Likewise, using the
Common Criteria (ISO 15408) we extracted
a threat taxonomy and, finally, we
developed an impact taxonomy based upon
results of interviews and survey
questionnaires. The results comprise a set of
56 categories of vulnerability, 13 categories
of impact and 30 categories of threat.

2.4 Analysis Tool Set

We have built a core tool called the FARES
Data Store (FDS) using Microsoft Access.
The FDS is a repository for the individual

4 Euclidian consulting, Quincy, MA, USA.
> http://www.cve.mitre.org/

174

taxonomies, summary statistics on the
historical data and a collection, analysis and
reporting point for the FARES process.

The analyst uses a suite of data collection
and assessment tools to collect threat,
vulnerability and impact data from the
enterprise under analysis and enters that data
into the FDS. The FDS allows the data to be
organized and managed, and saves
summaries in various external files that
become input files for other analysis tools
such as CPNTools, Excel spread sheets and
statistical analysis tools.

The results of analysis by tools external to
the FDS are saved, again in external files,
and are imported back into the FDS for

profile of the enterprise under analysis
compares with the global actuarial data, the
probability of the risks and how that
probability compares with actuarial data,
and the expected financial impact of each
risk as a percentage of the organization’s
gross annual revenues.

Figure 1 shows the relationships of the tools
used.

Thus, rather than being confined to
developing predictive results based upon a
small and unreliable local data set using
trivial risk measurement techniques, FARES
provides a picture of the enterprise in
relation to a global profile and bases

FORMAL
MODELING
TaOLS

=N

— DATA

DIGITAL
FORENSIC

r

ACQUISITION
TOCLS

A

NETWORK

DISCOVERY |« ENTERPRISE

P P
m DATA STORE
‘\-..___‘_-—._'_,_,_,J

&~

Interaction of Tools Used

A Formal Process for Information Systems Risk Analysis and Management

TQOLS UNDER ANALYSIS

h 4

LINK
ANALYZER

Figure 1 - The Analvsis Tool Architecture Used in the FARES Proiect

reporting purposes. Specifically, we use the
results of certain spreadsheet analyses to
create a set of values (val) imported by
CPNTools to make vulnerability, threat and
impact decisions within the basic CPNet risk
model.

The output of a FARES analysis is a set of
reports that detail the risks present in the
enterprise under analysis, how the risk

predictive processes upon accepted and
tested statistical forecasting methods.

175

3.0 Modeling IS Risk with
CPNets

In this paper we focus upon the role of
Colored Petri Nets in the FARES process.
Other papers on the FARES process address
issues other than the modeling of the risk
process [PRS03].

3.1 Function of CPNets within the
FARES Process

The CPNets used to model risk analysis are
based upon the supposition that risk
comprises a process and the process can be
modeled. The process of risk can be
decomposed into threat, vulnerability,
impact and inter-domain communications
processes. Taken together these processes
define a clear risk including risk probability
and potential countermeasures.

Interrupting the processes of the components
of risk (using countermeasures) reduces the
level and probability of the risk itself. This
translates to managing risk by managing the
components of risk, a task that, in many
cases, is far more achievable than managing
the entire risk as a unit. Thus, the
underlying goal of risk modeling is
decomposing risk into its elements,
decomposing the elements further into their
taxonomy families and comparing those
families with historical actuarial data.

We analyze the families that comprise
threats, vulnerabilities and impacts for the
following relationships:

= The percent ranking of each family
within the entire population of
collected data (other families)
within the threat, vulnerability or
impact taxonomy (calculates the
relative standing of the family
within the overall population)

= The arithmetic mean of the percent
rankings

» The standard deviation of the
percent rankings population of
collected atoms within a particular
taxonomy

» Chi-square distribution of specific
families within the actuarial data
compared to the chi-square
distribution of the same atom in the
data collected from the enterprise
under evaluation (to be added to the
models in the future)

= Bayesian probability analysis (to be
added in the future)

The CPNet used for proof of concepts of the
primary risk model is a hierarchical Net
composed of four sub-nets:

= Threats
= Vulnerabilities
= Impacts

= Inter-domain communications

The sub-pages are converged using fusion
places onto the superpage where the risk
itself is modeled. As the current iteration is
a proof-of-concept only, some of the more
advanced calculations have yet to be added
to the models. The example we use in this
paper is a simplified model requiring more
manual input and including less
sophistication in areas such as probability
calculation than will be present in
production versions. Additionally, we have
put “place holders” in the risk model to
include a “Risk Tolerance Function” that
permits adjustment of results to match the
organization’s tolerance for risk.

3.2 Individual CPNet Pages

The individual components of risk are
modeled as sub-pages. As a starting point
for describing these pages, we review the
declarations for the Net as a whole in Figure
2. Note that some of these declarations
would be somewhat different in a production

176

version that gathered much of its input data
from the FDS.

¥ Declarations
¥ Global
Frolorvu_1
colorvu_1 = with w1 [v2[v3]vd [walvEe 7 [vB|wa]w1 0
Y111 20wl 3wl 4wl Slwl Gl 7w 81 920,
- colorth_1
Fcolorip_1
¥oolor protected
colar protected = bool;
- color configured
- color itf
gyl = 09598529718,
ygl 3= 0928824 T627,
gl vyl 2_r= 09253130588,
Fwal t2_r= 04585205897,
ryal th_r=0.205895552;
eyglto_ = 0.758G2059,
Eyalyl5_r= 00225825380,
wal i2_r=08333333333;
myval 4= 04500000,
wygl iG_r=0.2500000;
Fval sigmazv = 0577551754,
kval sigmazt= 0545109105,
Fyal sigmazi=0.549073414,
wyal testval = 0.0;
Fyar wul
varvul swvu_1;
yar th
Fyar ipd
B3l Comms
Fval protects
var it

Figure 2 - Global Declarations for IS Risk
Model

Color sets vu_1, th_I and ip_1I are similar in
their composition. Representing the
vulnerability (vu_I), threat (th_I) and
impact (ip_I) taxonomies, they contain the
individual families of those taxonomies.

For example, there are 56 families in the
vulnerability taxonomy (the taxonomies are
cataloged by classes which are composed of
families which, in turn comprise elements
that are made up of atoms). The IS Risk
model uses the Family level of abstraction.
The vulnerability taxonomy has a tree-like
structure.

The values (val) shown in the declarations in
Figure 2 have been entered manually for the
purposes of this proof-of-concept.
However, in a production environment they
would be read from an external file (use
[filename]) created by the FDS. These
values are percent rankings of the data
collected from the enterprise under analysis,
the 2% (2 standard deviations) points of the
percent rankings and zero (festval). These
values are used to determine the level of the
individual family relative to the collected
data.

For example, the model looks for percent
rankings within the 2X points. These
percent rankings represent individual atoms
ranking in the top 95% or so of all of the
discovered threats, vulnerabilities or
impacts. This number has several uses
including comparing with the same relative
value in the actuarial data as part of risk
profile matching.

For the purposes of the Risk Model,
however, we use these figures to determine
if an occurrence in the collected data is of
interest. For average enterprises it is
sufficient to keep risks outside the 2X points.

However, there is one difference between
the model and the normal use of standard
deviation. While standard deviation
measures distance from the mean of a set of
values, we use the standard deviation in a
calculation relative to zero. We do this
because we are interested in the difference
between the percent ranking and the
standard deviation.

An example value acceptability calculation
for a vulnerability is shown below.

177

For taxonomy family "Interface Inconsistency" there

are 7,655 occurances within the collected (not actuarial)
data. This family has a percent rank within the collected
dataset of .96968629718 (the rank of the value within the

dataset as a percentage of the dataset).

The 2% point of the dataset is .577561764

Percent Rank —2¥ > 0 = an unacceptable value

96968629718 —.577561764 > 0

Calculation of Value Acceptability for a
Taxonomy Family appearing in Collected
Data

We apply this calculation approach in each
of the CPNet subpages representing threat,
vulnerability or impact. The outputs of

Binder 0

those pages, to the risk model superpage, act
as inputs to the final risk decision. The
output of the risk model is written to an
external file for use by the FDS in further
calculations and reports.

Figure 3 below shows the vulnerabilities
subpage.

For the purposes of this proof-of-concept we
have kept the number of families to a small
number and we have expanded the graphics
for illustrative purposes. However, in the
production version, there are place/transition
pairs (Vuln_n/VT_n) for each of the 56
taxonomy families in vulnerabilities, 30 in
threats and 13 in impacts. The values are
extracted from an external data file
populated by the FDS and the calculations
appear as guards on each of the transitions
as shown in Figure 3.

RiskModel Threats ‘ulnerabilities | Impacts InterDomain Communications

[ifvl_r- sigma2v = testval

Wl l-)1 o then true else false]
WT_1
WLl
wu_1 . .
[ifw3_r- sigma2v = testval
] D1 w3 then true else false]
WT_2
w1l
wu_1

[ifw12_r- sigmaZv = testval

then true else false)

WT_3
vl

wu_1
) [ifw16_r- sigmaZv = testval
w15 l)1 W g then true else false]
WT_4
vl
wL_1

Mone

It

Figure 3 - Vulnerabilities Subpage

178

In Figure 3 we see that transitions VT_1,
VT_2, and VT_3 are enabled. This is
because the calculation (the guard on each
transition) as shown in Figure 4 will yield a
positive value. This means that the number
of occurrences for that particular family is at
an unacceptable high level.

Taken together, the values calculated for all
of the vulnerability families will be passed
to the final risk calculation on the superpage
as well as to an external file for further use
in the FDS. The place VModel is a fusion
place connecting the superpage.

There is a similar fusion place on each of the
other subpages. Transition VRisk is reserved
for adding an additional risk tolerance
function analysis in the future. There is a
similar transition on each subpage.

The sigma2 values in the declarations
represent the 2% points for the collected data

Binder 0

Risk Model | Threats = Wulnerabilities

Impacts

[protects = false andalso

comms = trug]

from the enterprise under evaluation and, as
with the other values in the declarations, are
passed from the FDS through an external
file.

3.2.1 The Communications Page

The Vulnerabilities, Threats and Impacts
subpages behave similarly. However, there
is an additional element to risk that involves
inter-domain communications channels.

In Figure 4 we show the inter-domain
communications model subpage. This
model addresses the communications
channels to the security policy domain Core.
In most organizations, the core comprises
one of the most critical and sensitive
security domains in the enterprise.

Control of access to the core, whether by
users or processes, must be carefully

InterDomain Communications

comms
IntCar

protected

COMMS e
Wirint

rotected
P pratects

Covert
Channel

protects

protects

cComms Extint

@ D1'true

Comms

Internal

protected

3

RTFTestC

protected

protected

comms = trug]

[protects = false andalso
comms= true]

[protects = false andalso

comms
Ferlnt

comms

protected

protects

1)1 ‘true

configured

Mane

Figure 4 - The Inter-Domain Communications Model Subpage

179

managed. By accessing the core it is
possible for intruders to gain access to other
domains and rogue code such as viruses and
worms can be spread throughout the rest of
the enterprise using the capabilities of
devices in the core. The model in Figure 4
is typical of the models that would
accompany each of the inter-domain
communications channels discovered in the
assessment phases of the enterprise under
analysis. Each of these models would
appear as an additional subpage with fusion
places connecting them to the risk model
superpage. For this example we show only
a single typical inter-domain model.

In the Figure 4 model, we see that the entry
point is the Public domain. That means that
we have modeled the inter-domain
communications channels that connect, or
could connect, the Public domain to the
Core. The implication is that an attacker in
the Public domain (for example, the
Internet) could gain access to the Core
domain if appropriate access control
countermeasures are not in place.

The data that results in this model comes
from the assessment phases. Some is
derived from information received during
interviews regarding the use and flow of
various types of data within the
organization. Some information,
predominantly topological data, is used to
map the logical domains and their physical
interconnections. Finally, link analysis is
used to determine all of the possible paths
between domains.

At the same time, vulnerability assessment
reveals countermeasures in place and
general threats, impacts and vulnerabilities
relative to individual domains. That
information is reflected in the threat,
vulnerability and impact subpages while
anything affecting data flows is reflected in
the inter-domain communications
subpage(s).

The Figure 4 model represents inter-domain
communications channels as transitions (the

actions that data moving between domains
take). Security policy domains (the logical
state of the enterprise) are represented by
places.

A quick analysis of Figure 4 shows that
there is a typical channel from the public
Internet to the Perimeter and thence to the
Internal network and, ultimately, to the
Core.

Clearly, we want to prevent unauthorized
users on the public Internet from having
direct access to the Core and the Internal
network, so we interpose a safeguard called
Firewall. = Our vulnerability assessment
showed that this firewall did, in fact, exist
and that it was configured correctly. We
reflect that in the application of the Firewall
place as an inhibitor on the PubPer (Public
to Perimeter) channel (transition), closing
that path.

Internally, we see that there is a Covert
channel from the Public domain to the
Wireless and Extranet domains. We refer to
this as a “covert channel” because there
should be no authorized connection from the
public Internet to the internal network via
wireless communications of through an
extranet that connects to a business partner.

To protect the Internal (and, thus, the Core)
domain from unintended (and unauthorized)
wireless and extranet connections, we insert
another safeguard, this time a filtering
router, as an inhibitor. This safeguard,
represented by the Filter place, is applied to
the Wirlnt (Wireless to Internal) and Extlnt
(Extranet to Internal) channels (transitions).

Again, our vulnerability assessment
indicated that the filter was in place,
configured properly and performing
effectively. Thus, we add it to the model.
The initial marking of the Public domain is a
single token with a value of true (indicating
that the state of the place is protected). This
may appear to be a bit of a philosophical
stretch since most people don’t view the
Internet as protected.

180

However, for our purposes and for
consistency, we have considered that the
state of the Internet domain is that it is
operating correctly and that the link to the
organization’s perimeter has not been
disrupted. In other words, the public
Internet does, in fact, connect to the
organization’s perimeter and it and the
connection are working properly.

The communications models in our
examples use Boolean states almost
exclusively since at this level of abstraction
we are concerned largely with whether the
channel passes data or not. However, in
production versions it may be desirable to
build a somewhat more complex model that
reflects additional granularity of detail by
modeling the protocols in use on the
individual channels.

The two safeguards show single tokens
indicating that they are configured properly
and ready to function. There are arcs in both
directions so that the state of the safeguard
may be refreshed each time a state change is
required to protect its transition.

Transition RTFTestC is a place holder for
future implementation of the Risk Tolerance
Function as with the other subpages. Place
CModel is the fusion place connecting this
subpage to the superpage risk model.

3.2.2 The Risk Superpage

The purpose of the Risk page is collection
and processing of the individual taxonomy
data as well as the inter-domain
communications channel data. The threats,
vulnerabilities, impacts and potentially
compromised communications channels
yield data that is presented to the superpage
as Boolean states. These are then passed to
the Correlation place and, after passing the
Correlation Transfer transition to the Risk
place for final display.

For the purposes of this proof-of-concept,
we have left the Correlation Transfer
transition as a place holder for additional
analysis capability in the future. The intent
of the place holder transitions throughout the
Net is to add calculations for Risk Tolerance
Factor (RTF) once research on that aspect of
the modeling is complete. The Risk
superpage is shown in Figure 5. It is in its
final state after simulating the enterprise
represented on its subpages with six risks
identified. The subpages may be referred to
in order to ascertain those transitions that
did not fire, representing adequate
operational controls in place.

4.0 Using the FARES CPNet
Model for Ongoing IS Risk
Management

One of the strong benefits of CPNets in the
IS risk analysis and management arena is the
ease with which they can be updated and
new simulations cast. The information
technology requirements of large
organizations are in a constant state of
change and the costs associated with
repetitive, frequent testing usually are
prohibitive. Therefore, it is not uncommon
for such organizations to skip security and
risk testing of new implementations of
hardware or software.

Additionally, new threats and vulnerabilities
emerge daily. Again, most organizations are
hard-pressed to stay current. A typical
response to a newly announced vulnerability
is the application of patches to affected
information systems elements enterprise-
wide. This usually is not practical due to the
large number of devices and/or software that
must be patched.

For this reason, organizations use automated
methods to “push out” patches without
testing for conflicts with existing software

181

Binder 0

Risk Model

Maone

Threats Wulnerabiliies Impacts InterDomain Cormmunications
Threats | MY
AREA |1f_\l'
1tf
m ulnerabilties |__T=¥
=F iy
I r
; 1t _w
Carrelation
Y [
@ Cormmunications
] A0 it It v
1f
Impacts
AT AT S et 1w it w

Carrelation Transfer

ity
= @ E’)ﬁ'ﬁlsks

1tf

INFORMATION SYSTEMS RISK MODEL
FOR SECURITY FOLICY DOMAIN CORE

Figure 5 - Risk Superpage After Simulation

applications and hardware configurations.
The ability to add to or change risk models
as necessity dictates and re-run simulations
is a significant cost and risk management
capability.

The cooperation between CPNet models and
statistical models allows IS risk managers to
predict, on an ongoing basis, the potential
financial impact of changes to models due to
changes in the organization’s IS risk profile.
This greatly improves financial and
operational strategic management capability.

In terms of real time response to incidents,
the use of formal models and simulations
allows organizations to model a complex
event in progress and respond rapidly with a
high probability of success.

Applied to post incident root cause analysis,
the underlying causes of information
security incidents can be analyzed and
appropriate countermeasures applied against
future impacts.

Impacts of information security incidents
can be predicted and budgeted for should the
organization wish to manage a risk down to
acceptable levels.

5.0 Conclusions

The use of formal modeling and simulation
in assessing, analyzing and managing
information systems risk appears to offer
strategic, tactical, operational and financial
benefits. The use of CPNets as a modeling
and simulation formalism is appropriate for
a variety of reasons.

182

The formalism is
available freeware tools. The output of
CPNTools is graphical, making the
simulations accessible to lay audiences.
Laboratory tests of the FARES risk analysis
and management process have suggested
that the approach is sound.

well-supported by

This is supported by early field trials on live
information systems [PS03]. Finally,
information security and risk management
practitioners have received the notion of
CPNets and the FARES process positively,
suggesting that practical application is
reasonable.

5.1 Future Work

The primary area for continued development
is the integration of statistical functions,
both within the CPNet model and external to
it, with the modeling and simulation
processes.

Currently, this analysis is performed
manually using additional tools and entering
the data into CPNTools manually.
Additionally, full integration of all
modeling, simulation and data management
tasks under a single user interface is
desirable.

The author is a relative novice with CPNets
and it is clear that there is room for a
significant increase in the sophistication of
the models once the early field trails of the
FARES approach are complete. At this
point the project will be able to identify
clearly the additional areas where CPNets
can offer additional benefit to the IT risk
analysis and management process.

Finally, there is an ongoing need to continue
to research and populate global profiles with
historical actuarial reference data. As the
amount and quality of such data increases,
the reliability of statistical conclusions will
improve.

183

6.0 References

[AJO2] Jones, Andrew. “Identification of a Method for the Calculation of Threat in an
Information Environment” Internal publication, QinetiQ, Inc. April 2002.

[DECO02] Decisioneering. “Traditional Spread Sheet Risk Analysis”, web page last accessed19
September 2004. < http://www.decisioneering.com/risk-analysis-trad.html>

[FDO4] Fernandes, Joao M, Francisco J. Duarte. “A Reference Framework for Process-Oriented
Software Development Organizations”. Springer-Verlag, July 2004.

[GP04] Gladyshev, P., A. Patel. “Finite State Machine Approach to Digital Event
Reconstruction”, Digital Investigation, Volume 1 Number 2, pp130-149, Elsevier, Ltd.

[JKLO2] Jones, Andy, Gerald L. Kovacich, Perry G. Luzwick. Global Information Warfare,
Auerbach Publications, 2002

[PSO3] Stephenson, Peter. “Modeling of Post Incident Root Cause Analysis”, International
Journal of Digital Evidence, Fall 2003 issue.
<http://www.ijde.org/archives_home.html> last accessed 19 September 2004.

[PRSO3] Stephenson, Peter. “Getting the Whole Picture” tutorials in Computer Fraud and
Security, Elsevier Science. December 2003, January 2004, February 2004, March 2004,
April 2004, June 2004.

[PRS04] Stephenson, Peter. “Application of Formal Methods to Root Cause Analysis of Digital
Incidents”. International Journal of Digital Evidence Fall 2004 (publication ending)
<http://www.ijde.org>

[WAO98] van der Aalst, W. M. P. "The Application of Petri Nets to Workflow Management”
Journal of Circuits, Systems and Computers, Vol. 8, No. 1 (1998) 21-66

Author Biography

Peter Stephenson, CISSP, CISM, FICAF, is the Director of Information Assurance and a research
scientist at the Center for Regional and National Security, Eastern Michigan University. He has
over 40 years experience with technology including over 20 years of information security
experience. He holds a BSEE and recently completed PhD work in computer science at Oxford
Brookes University in the UK where his thesis topic was “Structured Investigation of Digital
Incidents in Complex Computing Environments”.

He can be contacted by email at peter.stephenson @emich.edu.

184

Relating Higher Order Reference Nets
and Well-Formed Nets

Lawrence Cabac and Michael Kohler

University of Hamburg, Department of Informatics
Vogt-Kolln-Str. 30, D-22527 Hamburg
Phone: +49 40 42883-2407 Fax: +49 40 42883-2246
{cabac,koehler}@informatik.uni-hamburg.de

Abstract. In this presentation we introduce the formalism of “Higher Order
Reference Nets” (HORNETS). HORNETS follow the paradigm of “nets within
nets”, i.e. the paradigm that allows Petri nets as token objects.

Since all net tokens are objects of some net class they all share the same struc-
ture. In our contribution we therefore introduce the notion of well-formed HOR-
NETS which can be simulated by well-formed coloured Petri nets. This allows
for several analysis techniques, e.g. symbolic state space generation, which au-
tomatically takes the system symmetries into account.

1 Introduction

Object net systems (ONS) [Val98] are well suited to model systems that have a
dynamic hierarchical structure, e.g. systems of mobile agents [KMRO03]. Object
net systems are based on the idea that the tokens of a Petri net are Petri nets
again. In general, this extension increases the computational power of Petri nets
[KRO04]. So, for analysis purposes we are interested in special subclasses of object
net systems. In this contribution we present the formalism of HORNETS that
can be mapped to well-formed nets [CDFH90] — a coloured Petri net [Jen92]
fulfilling additional constraints.

Taking an ONS example from [Val03]: the Bucket-Chain. The original bucket
chain-scenario has been introduced by Carl Adam Petri [Pet79] to study the
causal dependencies of distributed cooperation. The scenario serves a similar
purpose as the well known Bankers-Problem [PS85] for deadlock-prevention in
resource allocation systems (i.e. operating systems) or the Dining Philosophers
[PS85] for the study of fairness in distributed systems.

In the bucket chain example n firemen are standing in a row, each equipped
with a bucket. A water pump is available for the leftmost fireman and the
fire is at the rightmost place. So the leftmost fireman fills his bucket, while
the rightmost extinguishes the fire. Neighboured firemen can exchange buckets,
so full buckets are handed over to right (to extinguish the fire) and empty
ones to the left for refilling. The topology (i.e. each fireman can only interact
with his immediate neighbour) introduces an interesting causal dependency
structure!: The effect of exchanging buckets at a location being k steps away
can be observed only when the whole system has moved k steps ahead.

! In the general research of Petri this causal dependency structure is closely related to Ein-
stein’s physical theory of relativity. This topic is studied in Petri’s research of general net
theory.

185

® ® ®

1: new Fireman() f2: new Fireman() 3: new Fireman()

fretreat() firetreat() firetreat()

Refill Extinguish

forefill()

f:approachFire()

f1

ExchangeB ExchangeC

f1:exchange(be,bf) f1:exchange(be,bf)
f2:exchange(bf,be) f2:exchange(bf,be) FireExtinguished

Fig. 1. The Bucket Chain

Reference nets are a powerful modelling formalism to represent the different
abstraction layers of the system. The model that is presented here is from
[Val03]. The bucket chain is shown in Fig. 1, the fireman in Fig. 2, and the
bucket in Fig. 3.2

The bucket chain has four locations, named A, B, C, and D. Initially, three
firemen are created on A, B, and C. The firemen can refill water in location
A and extinguish the fire on D. If two firemen are located on the same place
(here: B or C) they can exchange buckets. The local synchronisation of firemen
is implemented using synchronous channels. In the bucket chain the calling side
(the downlink) of the channel exchange is used twice— expressed by the transition
inscription f1: exchange(be, bf) fl:exchange(bf, be). The intuitive meaning is the
following: Fireman f1 must provide an empty bucket be and and f2 a full bucket
bf — the first variable in the argument list. The binding mechanism is used to
exchange the buckets.

:new() b: new Bucket rretreat()

empty, right

b

:l :extinguish()

iexchange(bfbe) [b:empty()

refill()]
brfill() [exchange(be,bn

b

:approachFire()
Fig. 2. The Fireman

2 Actually the model is implemented using the Petri net tool RENEW [KWD™"04].

186

The fireman is modelled as net presented in Fig. 2. He has four different
states depending on whether the bucket is full or empty and whether the fireman
has already moved or not. If the bucket is empty, the firemen can either refill
the bucket (only on location A), exchange the bucket with a fireman carrying
a full one (location B or C), or if he has not moved with the empty bucket, the
fireman can retreat from the fire. The transition inscription :exchange(be, bf)
denotes the called part (the uplink) of the channel exchange. For the full bucket
the system behaves in a similar way.

The bucket in Fig. 3 has only two states: full and empty. These states can
be tested and are modified by refilling or extinguishing operations.

[:isEmpty()

Fig. 3. The Bucket

In the Section 2 we introduce the notations used throughout the paper. In
Section 3 the HORNET formalism is introduced. In Section 4 we show how the
class of well-formed HORNETS has to be defined such that they can be simulated
by well-formed coloured Petri nets. In Section 5 we take up our introducing
example — the bucket-chain to illustrate the simulation.

2 Notations and Basic Definitions

Let R C A x B be a relation. A pair (a,b) € R will also be denoted a Rb in
infix notation. For a € A and b € B the domain of B is defined by (_Rb) :=
{a | (a,b) € R} and its co-domain by (a R-) := {b | (a,b) € R}. We generalise
the notion of domain and co-domain to sets C C A and D C B by (CR.) :=
{b|Ja€C:(a,b) € R} and ((RD):={a|3be D: (a,b) € R}.

Let A be a family of sets. Then A* denotes the set of all Cartesian products
over the elements of A.

The definition of Petri nets relies on the notion of multisets. A multiset on
the set D is a mapping A : D — N. Multisets are generalisations of sets in
the sense that every subset of D corresponds to a multiset A with A(z) <1
for all x € D. The empty multiset 0 is defined as 0(z) = 0 for all x € D. The
cardinality is |A| := Y . p A(z). A multiset A is called finite iff |A| < oc.

The multiset sum A + B is defined as (A + B)(z) := A(z) + B(x) the
difference A — B by (A — B)(z) := max(A(z) — B(x),0). Equality A = B is
defined element-wise: Vx € D : A(z) = B(z). Multisets are partially ordered:

187

A< B <= VzeD:A(r) < B(x) The strict order A < B holds iff A < B
and A # B. The notation is overloaded, being used for sets as well as multisets.
The meaning will be apparent from its use.

The set of all finite multisets over the set D is denoted MS(D). A multiset
A can be considered as the formal sum A = }° _p A(z) - 2. Finite multisets
are the freely generated commutative monoid (MS(D),+,0). If the set D is
finite, then a multiset A € MS(D) can be represented equivalently as a vector
AeNIPL

Any mapping f : D — D’ can be generalised to a mapping f : MS(D) —

MS(D’) on multisets:
f (Z a@-> = fla)
i=1 =1

This includes the special case f(0) = 0. These definitions are in accordance
with the set-theoretic notation f(A) = {f(a) | a € A}.

2.1 Petri Nets

N = (P,T,F) is a Petri net iff the set of places P and the set of transitions T’
are disjoint, i.e. PNT =0, F C (P x TUT x P) is the flow relation. Some
commonly used notations for Petri nets are ®y := (_F'y) for the preset and
y® := (y F'_) for the postset of a net element y.

A P/T net is an extension of a Petri net, in which the arcs are inscribed by
non-negative integers and places can hold more than one token.

Definition 1. A P/T net N is a tuple N = (P, T, 0y, 01, My), such that: P is
a finite set of places. T is a finite set of transitions, with PNT = (. 0y, 01 :
T — MS(P) are the pre- and post-condition functions, resp. The multiset My €
MS(P) is the initial marking of N.

A transition ¢t € T of a P/T net N = (P, T,0y,01, Mp) is enabled in the
marking M iff enough tokens are present: M > 9y(t). The successor marking
when firing ¢ is M’ = (M — 0y(t)) + 01(t). We denote the activation of ¢ in
marking M by M % Firing of t is denoted by M % M'. The notation

extends to firing sequences w € T*.

Defining F := {(p, t) [0o(t)(p) > 0} U{(t,p) €| D1(t)(p) > 0} and W (p,t) =
Oo(t)(p) and W (t,p) = 01 (t)(p) aP/T net N = (P, T, 0y, 01, M) can be denoted
equivalently as N = (P,T,F,W, My). The two notations will be treated as
interchangeable throughout this paper.

2.2 Synchronisation

We are using the synchronisation mechanism provided by so-called zero-safe
places introduced by Bruni and Montanari [BM97,BM00]. A subset of places
Z C P is used to characterise those markings that are intermediate states being
visible only during a transaction. For more details cf. [KF04]. These places are
called zero-safe since, in all “visible” markings, these places are unmarked.

188

Let N = (P, Z,T,F,W,M;,) be a net component where (P, T, F,W, M)
denotes a P/T net as usual and Z C P is the set of zero-safe places. The places
in P\ Z are called stable.

Definition 2. Let N be a net component. A firing sequence w =ty ---t, € T*
such that

t t th—1 t
Mo 2 ny 2o 2l g

with M; € MS(P) is a stable sequence iff

— the transition sequence is enabled as a whole wrt. stable places:
Vs e (P\Z):Y ", 0(ti)(s) < My(s) and
— My and M, are stable markings, i.e., Yz € Z : My(z) = M,,(z) = 0.

A stable sequence w is called a transaction iff none of the intermediate markings
My, ..., M, 1 is stable:

Vi<i<n-—1:3z€Z:Myz)>0

A transaction w is called closed iff all permutations w(w) that are activated in
My are transactions, too. Let ©O(N) be the set of all closed transactions of a net
component N.

Note, that the activation condition for a stable sequence requires that the
transitions t¢1,...,t, are concurrently enabled if only resource places s € P\ Z
but no zero-safe places z € Z are considered.

Note, that all stable sequences M > M’ transform a stable marking M
(i.e. a marking without tokens on zero-safe places: M(z) =0 for all z € Z) into
a stable marking.

3 Object Net Systems and HORNETS

Object Net Systems (ONS) [Val98, KR04] are Petri nets that have Petri nets
as tokens. In the following we introduce a high-level variant where net-tokens
are coloured, i.e. they are instances of object nets.® Let N' = {Ny,..., N}
be a finite set of object net sorts. Ny is called system net by convention and
describes the top-level of the system. In the following we use families of disjoint
sets indexed by object net sorts N € N denoted as Ay. Let A =|J Ay for an
arbitrary family.

Each sort N € N is also used to denote a Petrinet ON y = (Pn, Zn, TN, FN)
where Py is a finite set of places, Zny C Py is a set of zero-safe places used for
synchronisation, Ty is a finite set of transitions, and Fy C (Py x T) U (T x
(Py U Z)) the flow relation. Note, that the flow allows to call channels z € Z
of other nets. To simplify notations we identify ON x with N in the following.

3 In fact, HORNETS are a special case of reference nets of Kummer [Kumo02], which allow

additional data types. Here, we restrict the model to ensure well-formedness, similarly to
coloured nets and well-formed nets.

189

Since we are interested in an embedding into well-formed nets, we as-
sume only finitely many identifiers. For each N € A/ we assume a set Oy =
{oNn1,...,0Nnky} of identifiers.

Each place p is inscribed with its type d(p) € N'*, i.e. a Cartesian product
over . The map d is extended for arcs by defining d(p,t) = d(p) and d(t, p) =
d(p). Let Xgp) = Xny X -+ x Xp,, and Oggp) := On, x -+ X O, whenever
d(p) =Ny x--- XNk.

For each N € N we assume an countable infinite set Xy = {zn1,2Zn2,...}
of variables. Each arc f € F' is inscribed by a multiset of variable-tuples of the
type d(f), i.e. W(f) € MS(Xq(p))-

We use directed channels which is expressed by the fact that each arc (¢,z) €
F' is labelled with an variable [(¢,z) € X that is already used in the preset
expressions.®

The set of guard expressions Prop € T consists of all propositional formu-
las with equality of variables as atoms and is given by the following grammar.
Let 4,5 e N:

Prop = (xn; =n xn,j) | 7 Prop | (Prop \VV Prop)
A marking is a map M : P — MS(O*) such that M(p) € MS(Oqp))-

Definition 3. Let N be a finite set of net sorts. A higher order reference net
system (HORNET) is a tuple

0S8 = (ONN,d, {On} . {Xn}, W,1,G, My)

— ONN ={(PN,ZN,TN,FN)}Nen 1S a family of object nets.

— {ONn}Nen is a family of net identifiers.

— {Xn}nen a family of identifier variables.

— Letd: P(OS) — N™* be a type mapping of places to tuples of object nets.
— W F — MS(X) is the arc inscription with W(f) € MS(Xyy))-
—1:FN(T x Z) — X is the channel inscription.

— G :T — Prop is the guard predicate.

— My : P — MS(O%) is the initial marking with Mo(p) € MS(Oqp))-

Define N(p) = N; <= p € Py,. Similarly for N(z), N(t) etc.

The object nets (Py, Zn,Tn, Fiv) can be regarded as classes. The net object
are instances of these classes sharing the same structure but may differ in the
actual state. This can be represented by colouring all net elements with object
identifiers. This approach is very common: [Lak95] presents a formalism that
extends the coloured Petri nets of [Jen92]. Similarly [BG91] extend algebraic
Petri nets. [MM97] define an embedding of objects into coloured Petri nets.

To discriminate between instances, we use identifiers as a prefix for places,
transitions, markings etc. An instance is described by an identifier 0 € Oy

* We assume a finite set of identities, since it is proven in [Kum00] that Object Net Systems
with an infinite set of identities have the power of Turing machines. Here, we are interested
in a more restricted model.

5 The syntax used in the tool RENEW for denoting an arc (t, z) with W (¢,2) = (z1,...,2n)
and I(t,z) =z is © : z(x1,...,2zn) as an inscription of ¢.

190

taken from a finite set Oy for each N € N. Define the prefix operation on
places, where o.p means the place p of the instance o. Similarly for o.t etc. The
operation extends linearly to multisets: o0.(m1 + m2) = 0.m1 + 0.mao.

The initial marking M is extended by:

Mo(o.p)(0") = My(p)(0”)
The notation extends to preconditions by defining:

d(t)(p), ifod =0 ANpeP\Z
Ao(ot)(0'.p) =< d(t)(p), if o =0 ApeZ
0, otherwise

and to postconditions by defining:

() (p), if o =0 ANp€eP\Z
d1(ot)(0.p) =< 01(t)(p), if o =l(t,p) ApEZ

0, otherwise

Note, the special treatment of calling channels (¢,p) with p € Z.

A variable assignment is an indexed map ay : Xy — Oy which extends to
terms the usual way. A variable assignment « is called a binding for a transition
o.t, iff o fulfils the guard, i.e. «(G(t)) is true. A transitions o.t is pre-activated
in M wrt. a binding « iff

M (0 .p)(0") > a (do(0.t) (0" .p)) (0")

for all o’.p and o”. The successor marking M'(0o’.p)(0”) is defined as:
M'(d.p)(0") = (M (0 .p)(0") — o (Do (0.t)(".p)) (6")) + (D1 (0.t) (0" p)) ()

A pre-activated firing sequence w = aq(x1.t1) - - - ap(Tp-ty,) is activated iff w is a
transaction, i.e. it clears all synchronisation places. Transactions of a HORNET
are of the form w = aq(01.t1) - - - ap(0n.ty).

Note, that there is no such RENEWw-like construct as x: new NetToken for
HORNETS, since as Kummer has shown the unbounded use of identifiers leads
to undecidability results of almost all relevant problems related to Petri nets,
since counters can be simulated (cf. [Kum00]). Therefore, for HORNETS only a
bounded number of instances are allowed to be created. The maximal number
of instances is determined through the initial marking. For this, a place initially
holds a set of free identifiers.

4 Expressing HORNETS as Coloured Petri Nets

In this section we define a class of well-formed HORNETS and provide an em-
bedding into well-formed coloured Petri nets.

191

4.1 Well-formed Nets

A well-formed net (WN) [CDFH90] is a coloured Petri net [Jen92] with addi-
tional constraints. The constraints ensure that the net is well structured such
that analysis techniques can be applied efficiently.

Tokens of WN are tuples of coloured objects taken from a non-empty set
C = {Cy,...,Cy} of finite basic colour classes. If the objects do not behave
all the same way a colour class may be partitioned into disjoint subclasses:
Ci=(Cltu...U C’Zkl) A basic colour class C; may be ordered. In this case the
order is total and cyclic.

The basic operations on tokens are: projections of tuples (x1,...,xx) onto
one of its components xz;, the successor !z of an object x (if the colour class
is ordered), and the diffusion/synchronisation denoted as Cj.all, denoting the
multiset containing all the elements of C;. Analogously for subclasses: CY.all.

The colour domain d(p) of a place p is a Cartesian product of basic colour
classes (where e; denotes the numbers of variables of the colour C;):

cd(p) = xc,ec(Cj1 x -+ x Cje,)

The colour domain cd(t) of a transition ¢ (its firing modes) is the set of variable
bindings « that is compatible with the guard predicate:

cd(t) = {a | a(G())}

Guards of a WN are defined as Boolean expressions with the atomic expression:
z =y, z =y, dx) = C! and d(x) = d(y), where z,y are variables and d(x)
denotes the (sub-) class x belongs to.

Definition 4. A well-formed net is a tuple
WN = (P, T, 80, 81, C, Cd, Mo)
where

P and T are finite sets of places and transitions.

0o, 01 are the arc mappings with Oy(t)(p), 01 (t)(p) : cd(t) — MS(cd(p))

C ={C1,...,Cy} is the colour set of finite basic colour classes.

cd maps each place p to a Cartesian product of basic colour classes and each

transition t to a set of firing modes.
5. My : P— MS(JC) with My(p) € MS(cd(p)) is the initial marking.

Lo e =

4.2 Well-formed HORNETS

For a simulation of a HORNET by a well-formed net we have to ensure that the
set of all synchronisations is finite. This is ensured by the following restrictions:

Definition 5. A HORNET OS given as in Def. 3 is well-formed iff the following
holds:

1. The net structure of (P,T,F'), when considering the restriction to Z C P,
is acyclic, i.e. FN((Z x T)U(T x Z)) is an acyclic relation.

192

2. The synchronisations are restricted to tree-like structures: |*t N Z| < 1 for
allteT.

3. All variables on outgoing arcs are already bound in the incoming arcs.

4. Also all inscriptions of transitions connected by zero-safe places have to be
the same: For allty,ty € T and all z € t1°N %9 we have W (t1,z) = W (z,t2).

5. The variables for all inscriptions of stable places — W (s,t) and W(t,s) are
assumed to be chosen pairwise disjoint.

The conditions have the following intuitive meaning:

1. The condition ensures that synchronisation structures cannot be iterated.
Since there are only finitely many transitions the number of synchronisations
is finite.

2. Due to the tree-like structure all synchronisations can be constructed by
starting with channel-free transitions, i.e. transitions with *t N Z = ().

3. The values transferred by the channel must exist in the preset.

This condition ensures that the binding is equal on both sides of the channel.

e~

5. This condition is just for convenience. Since a synchronisation cannot be it-
erated (due to the first condition) every transition appears at most once and
the variables of arcs connected to stable places can be bound independently.

The set of all closed transactions ©(0S) of well-formed HORNETS is finite
and can easily be constructed. So, it can be used as the set of transitions of the
simulating net.

4.3 Embedding of Well-formed HORNETS into Well-formed Nets

Each well-formed HORNET can be simulated directly by a well-formed net. The
identifier sets {Ox | N € N'} are used as colours.

The places in the simulating net are the same as in the HORNET. For each
place p € P of the ONS with type d(p) we have a place p in the WN with the
domain cd(p) = Op(p) X Oy(p)- Instead of using prefixes like 01.p marked with
02 (where o1 is the identity of the instance and oy is the instance referenced)
we use pairs (01, 02) as tokens of the place p.

The set of all closed transactions ©(0S) is used as the set of transitions of
the simulating net.

Definition 6. Let a HORNET be given as:

0S = (ONy,d,{On},{ XN}, W, G, Mp)
The simulating WN is defined as

WN(0S) = (P,0(0S),d,01,C, cd, M}))

where

1. C={OnN | N € N} — without ordering or partition.
2. The colour domain is cd(p) = On () X Oq(py and cd(t) = {a | a(G(t))}.

193

3. 0o, 01 are the pre and post mappings with 0y(0)(p)(a) = E?Zl W(p,t;) and
01(0)(p)(a) = >0 W (ti,p) for 0 = (x1.t1 -+ Ty ty).
4. My(o.p) = Mo(p).

Using the bijection WN on markings defined by
WN(M)(p)(o,0") = M(o'.p)(0”)

the well-formed net WN(OS) provides as direct simulation of a well-formed
HornNET OS.

Proposition 1. Let OS be an well-formed HORNET. A transition 6 € ©(0S)
is activated in OS iff it is activated in WN(OS):

M2 M < WNM) —2— WN(M)
08 WN(05)
Proof. (Sketch) Using this syntactical restrictions we enforce that in each closed
transactions w = ai(x1.t1) - an(xy.t,) each transition can appear at most
once, since FN((Z xT)U(T x Z)) is an acyclic relation. Since expressions are
either disjoint or identical and all variables are bound in the preset, each trans-
actions w = aq(x1.t1) - - - ap(xy.ty,) can be denoted as one with a single variable
assignment a: w = a(x.ty - - - Tp.t,). Note that the guard G of x1.t1 - - - @y, .ty is
the conjunction G(t1) A ... A G(tn). So, ©(0S) is a finite set. It is easy to see,
that by definition of WN(O.S) the pre- and post- conditions coincide. O

5 A Case Study: The Bucket Chain

In order to illustrate the simulation of a HORNET by a well-formed net we
present the transformation of the bucket chain example. This is done step by
step. First the bucket and the fireman will be fused into one net. Then the new
net and the bucket chain net will be fused to form the resulting net. The result
is the simulation of the earlier presented bucket chain example.

Figure 4 sketches the fusion of the bucket with the fireman. The fusion® of
the two pairs of transitions that form the synchronous channels are highlighted
in the image. The result of the first step — the fusion of the fireman net with
the bucket net — is presented in Figure 5. Here the identity for the bucket net is
included in the net. However, since every fireman owns exactly one bucket, only
one identity is needed. Furthermore, the fusions of the synchronous channels
are completed. The unused synchronous channels for status checks (isEmpty(),
isFull()) are discarded for the reason of simplicity.

The complete result of the fusion of the bucket chain example, i.e. the simu-
lating WN is shown in Fig. 6. In this net, the identities reserved for the firemen
and together with these also the identities for each fireman’s bucket are added.
Thus, three identities for the firemen and three identities for the buckets are
used in the simulation. This can be seen in the upper left corner.

6 Note that “fusion” — in this context — means that the two transitions are actually replaced
by one single transition.

194

rretreat
/lcommented 0

b: new Bucket
:new()

empty
refill(I::l :extinguish()

thisfill .
is:fill{) il ﬁl:emp‘y() his:empty()

full

:exchange(be,bf) lexchange(bf,be)

bf

:approachFire()

Fig. 4. Sketch of the Fusion of Fireman Net and Bucket Net

Identities

:retreat()

:exchange(be,bf) [] lexchange(bf,be)

1 :approachFire()

Fig. 5. Fusion of the Fireman Net and the Bucket Net

195

We have tried to keep the layouts of the reference nets by locating the nets
next to each other (similar to the fusion of fireman and bucket) so that the
layout of the old nets can still be identified in the simulating net. However,
due to the fact that transitions in different areas of the net have to be fused
this is not always possible. Also the duplication of transitions that results from
multiple downlinks can not be avoided and leads to a messed up net layout.
Nevertheless, the fragments (only the places) of the bucket chain can be seen
at the left side of the net.

The fusion of the synchronous channels, i.e. the replacing of the original
transitions by a single transition, have been applied in the location of the up-
links, i.e. in the location of the former fireman net. However, as mentioned
before, these transitions have to be duplicated (aproachFire() and retreat()).
This results in three transitions for each fused synchronous channel due to the
fact that in the bucket chain three downlinks for each uplink are used.

Identities Identities

[wo‘[%) 2 ') [100[] GP%p (100}
¥ b
[be.ll] T ‘v
be,| be,|
AN .
X |

J\E‘
. o.0
et

Tbc.] \ BloA

[be.f]
Irb], B [fbl
be.]

£
[be,f] o] e vl DtoC

11.6] =]
[X]
[fb]
X
Empty Left 100) s
Ibe.1)
2l

o2l

CtoB

[oc,f] [f.0]

Empty Right

[be.f] 1.6

)K‘ B , é D |
xtingui
be.f3] !
[b.]
b
[be.f2] /,/] \‘()/

[o,0]
ul
be.1]

i
Full Left f1.6f] L !

exchange on B

If,b] [f,b]
[be.f]

[f.6]

ol If,b] \ﬂ[j
[CtoD
oo \“\\\{:I/ {

[be,f]

'®S FireExtinguished

Full Right

BtoC

[bo.f]

[oc.f] AtoB

Fig. 6. The simulating WN

An important fact is that tuples of firemen and buckets (e.g. [f,b/) are used
to identify the firemen and to imply ownership of buckets. Also the usage of
the different applications of the downlinks is encoded into the fireman-bucket
pairs.

The resulting simulating net has a rather nasty layout. However, this is not
surprising, since the folding of the net into reference nets, i.e. in an object-
based manner, adds to the clarity of the model by reducing the complexity.
In addition, it has to be mentioned that the layout results from the approach
that has been chosen, which can be performed automatically by a machine.

196

Nevertheless, this example shows that HORNETS can be effectively transformed
into well-formed nets.

6 Conclusion

In this presentation we have presented the formalism of “Higher Order Reference
Nets” (HORNETS), which is a higher order variant of the object net system of
Valk, very similar to reference nets of Kummer.

From a formal point of view the reason to introduce the formalism of HOR-
NETS is to restrict reference nets in such a way that the symmetries in the system
can be exploited for analysis purposes. For the class of well-formed HORNETS
these symmetries can be deduced automatically from the net structure. Here
our notion of well-formedness follows the notion of well-formedness in coloured
Petri nets. It has been shown that each well-formed HORNET can be simulated
by a well-formed Petri net in a natural way.

From a modelling point of view HORNETS offer a very expressive modelling
formalism. Especially for dynamic systems, e.g. for mobile agent systems, the
different layers of the system (e.g. the bucket chain, the fireman, and the bucket)
can be modelled separately leading to more compact and modular models — cf.
the HORNET system in Fig. 1 to 3 compared to the simulating WN in Fig. 6.

Forthcoming work of our group is to integrate the HORNET formalism as a
simulation mode into our tool RENEW and to integrate the tools for well-formed
nets to analyse these nets, e.g. for calculating symbolic invariants or symbolic
reachability graphs.

References

[BGI1] Didier Buchs and Nicolas Guelfi. CO-OPN: A concurrent object oriented Petri net
approach. In International Conference on Application and Theory of Petri Nets,
pages 432—454. Springer-Verlag, 1991.

[BM97] Roberto Bruni and Ugo Montanari. Zero-safe nets — or transition synchronization
made simple. In Electronic Notes in Theoretical Computer Science: Proceedings of
EXPRESS’97, 4th workshop on FExpressiveness in Concurrency, volume 7, pages
1-19. Elsevier Science, 1997.

[BMOO] Roberto Bruni and Ugo Montanari. Executing transactions in zero-safe nets. In
M. Nielsen and D. Simpson, editors, Conference on Application and Theory of
Petri Nets (ICATPN 2000), volume 1825 of Lecture Notes in Computer Science,
pages 83—-102. Springer-Verlag, 2000.

[CDFH90] Giovanni Chiola, Claude Dutheillet, Guiliana Franceschinis, and Serge Haddad. On
well-formed coloured nets and their symbolic reachability graph. In G. Rozenberg,
editor, Proceedings of the 11th International Conference on Application and Theory
of Petri Nets, volume 524 of Lecture Notes in Computer Science, pages 387-410.
Springer-Verlag, 1990.

[Jen92] Kurt Jensen. Coloured Petri nets, Basic Methods, Analysis Methods and Practical
Use, volume 1 of EATCS monographs on theoretical computer science. Springer-
Verlag, 1992.

[KF04] Michael Kohler and Berndt Farwer. Processes of zero-safe nets. In Proceedings
of the International Workshop on Concurrency, Specification, and Programming,
CSEP 2004, 2004.

[KMRO3] Michael Kohler, Daniel Moldt, and Heiko Rolke. Modelling mobility and mobile
agents using nets within nets. In W. v. d. Aalst and E. Best, editors, International

197

[KRO4]

[Kum00]

[Kum02]

Conference on Application and Theory of Petri Nets 2003, volume 2679 of Lecture
Notes in Computer Science, pages 121-140. Springer-Verlag, 2003.

Michael Kohler and Heiko Rélke. Properties of object Petri nets. In J. Cortadella
and W. Reisig, editors, International Conference on Application and Theory of
Petri Nets 2004, Lecture Notes in Computer Science, pages 278-297. Springer-
Verlag, 2004.

Olaf Kummer. Undecidability in object-oriented Petri nets. Petri Net Newsletter,
59:18-23, 2000.

Olaf Kummer. Referenznetze. Logos Verlag, 2002.

[KWD%04] Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jérn Schumacher, Michael

[Lak95]

[MM97]

[Pet79]

[PS85]

[Val9sg]

[Val03]

Kohler, Daniel Moldt, Heiko Rolke, and Riidiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In J. Cortadella and W. Reisig, editors,
International Conference on Application and Theory of Petri Nets 2004, Lecture
Notes in Computer Science. Springer-Verlag, 2004.

Charles Lakos. From coloured Petri Nets to Object Petri Nets. In Proceeding of the
16th International Conference on Application and Theory of Petri Nets, Lecture
Notes in Computer Science, pages 278-297, Berlin, 1995. Springer-Verlag.
Christoph Maier and Daniel Moldt. OCPN - a formal Technique for OO Mod-
elling. In Berndt Farwer, Daniel Moldt, and Mark-Oliver Stehr, editors, Petri
Nets in System Engineering (PNSE’97): Modelling, Verification and Validation,
September 1997.

Carl Adam Petri. Introduction to general net theory. In W. Brauer, editor, Net
Theory and its applications. Proceedings of the Advanced course on gemeral net
theory of processes and systems, volume 84 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

James L. Peterson and Abraham Silberschatz. Operating System Concepts.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1985. Second edi-
tion.

Riidiger Valk. Petri nets as token objects: An introduction to elementary object
nets. In Jorg Desel and Manuel Silva, editors, Application and Theory of Petri
Nets, volume 1420 of Lecture Notes in Computer Science, pages 1-25, 1998.
Riidiger Valk. Object Petri nets: using the nets-within-nets paradigm. In Advanced
Course on Petri Nets 2003, Lecture Notes in Computer Science. Springer-Verlag,
2003.

198

A Unidirectional Transition Fusion for Coloured
Petri Nets and its Implementation for the
CPNTools

1 1

Joao Paulo Barros*? and Lufs Gomes

! Universidade Nova de Lisboa / UNINOVA, Portugal
2 Instituto Politécnico de Beja - ESTIG, Portugal
{jpb, lugo}@uninova.pt

Abstract. Petrinets have been frequently extended with object-oriented
concepts. This has originated several flavours of object-oriented nets, of-
ten with no clear connection to the common Petri net semantics. This
paper informally presents a unidirectional transition fusion for coloured
Petri nets named synchrony groups, together with a filter tool, for the
CPNTools, allowing the translation from hierarchical coloured Petri nets
with synchrony groups to hierarchical coloured Petri nets without syn-
chrony groups. Synchrony groups are used in a context where each class
is modelled as a hierarchical coloured Petri net page allowing the mod-
elling of synchronous requests between objects.

Keywords: Coloured Petri Nets, CPNTools, object-oriented design, syn-
chronous requests, transition fusion, net composition.

1 Introduction

After Place/Transition nets, coloured Petri nets (CPNs) [1] are probably the
best well-known Petri net class. Besides the known advantages CPNs offer, their
popularity is also due to the availability of powerful tools, especially the Design-
CPN tool [2], which has recently been superseded by CPNTools [3].

Coloured Petri nets are particularly interesting due to their high-level con-
cepts, which allow the specification of compact models. The parallelism between
Coloured Petri Nets versus Place/Transition nets and high-level programming
languages versus assembly language is often used as an indicator of the extreme
modelling convenience offered by CPNs when compared to low-level nets. There-
fore, it has been quite natural to follow this analogy a step further, and try to
incorporate object-oriented concepts into Petri nets, often taking CPNs as the
starting point. This has given origin to numerous proposals for ”object-oriented
Petri nets” (see [4] for a comprehensive survey). When compared to CPNs, these
proposals include additional syntax and semantics that easily lead them quite
further away from CPNs and, consequentially, from well-known Petri nets syntax
and semantics. Although some proposals do include translations to equivalent

* Work partially supported by a PRODEP 111 grant (Concurso 2/5.3/ PRODEP /2001,
ref. 188.011/01).

199

Coloured Petri nets (e.g. [5] and [6]) they clearly emphasise the need for new
Petri net classes.

In [7] we proposed a distinct attitude towards the introduction of object-
oriented concepts in Petri nets: the use of two syntactically minimal abbrevi-
ations to coloured Petri nets, together with a set of design idioms. The two
abbreviations were:

1. The use of fusion places for modelling asynchronous requests;
2. A unidirectional transition fusion for modelling synchronous requests named
synchrony groups.

The first abbreviation, is also used in hierarchical coloured Petri nets (HCPNs)
[1]. This paper presents a method allowing the use of the second abbreviation
in the CPNTools. It also presents a filter tool, which implements the method.
In particular, the filter tool allows the translations from HCPNs, extended with
synchrony groups, to equivalent HCPNs without synchrony groups. As the CP-
NTools supports HCPNs and, consequentially, fusion places, that capability was
extensively used. This allowed the generated model to stay closer to the initial
model (with synchrony groups) than what would be possible if a single CPN
page had to generated.

The following section presents the motivation for the use of synchrony groups.
After, we informally present synchrony groups for Coloured Petri Nets. These
were formally defined in [7] as part of the class of Composable Coloured
Petri nets. Next, we present an illustrative example showing the use of simple
synchrony groups and also the modelling of a polymorphic request. Finally, we
present a filter tool for the transformation of HCPNs with synchrony groups into
HCPNs and conclude with some pointers for future enhancements to it.

2 Motivation

The fundamental motivations for the creation of synchrony groups were already
documented elsewhere [7] as a part of the Composable Coloured Petri nets class.
This class of high-level Petri nets has the following objectives:

— To close the gap between CPNs and object-oriented design.

— To be strongly based on CPNs.

— To avoid modifications to the CPNs graphical notation and minimal addi-
tions to the textual notations.

To use a composition operator, for the specification of generalisation and
composition, and a different abstraction for message passing modelling.

To be reducible to a CPN.

Note that we want of avoid significant differences to CPNs. Also, we want
to stay close to common object-oriented design concepts. In particular, we want
to remain close to synchronous message passing, which is typically unidirec-
tional (e.g. a method call). Synchrony groups are the proposed way to model

200

synchronous message passing. Place fusion is used for asynchronous message
passing.

Although the motivation was the support for object-oriented design, the syn-
tactical and semantic proximity between method calling and synchrony groups
also means they can be used outside of a object-oriented framework. In partic-
ular, they can be used as a convenient way to integrate synchronous communi-
cation in HCPN models.

3 Synchrony groups

Synchrony groups were inspired by coloured communication channels [8] but
differ in the implicit direction imposed by the parameters’ qualifiers. This section
presents an example-based informal overview of synchrony groups followed by a
specific proposal for their effective use in the CPNTools.

3.1 Syntax and Semantics

A synchrony group is specified by a request with associated SEND and RECV
declarations (see Fig. 1 also found in [7]). These latter two are tuples associated
to different transitions. A transition with an associated SEND declaration is
called a send transition. Accordingly, a transition with an associated RECV
declaration is called a receive transition. Each transition can have zero or one
associated event.

ClassA :: ClassB
1
p1 2 ::
1
<obj, d>
(RECV,s,

[d = 0]
<obj,c + d>
K Pe

1

||

1!

1!
(SEND,ClassB, VW0 b5 [N, OUTd)
req,2,INa, OUTb) i

!

1!

<i, b>

Fig. 1. a)Synchronous request with parameters, and b) The respective request transi-
tion.

When using synchrony groups, the HCPNs pages are typically seen as classes
of an object system. The several objects are represented by tokens flowing around
the page. Subpages (and the associated substitution transitions) continue to be
seen and used as a graphical convenience allowing model modularisation.

The SEND and RECV declarations have the respective following formats:

(SEND,targetClass, request, [quali fier1|parameter, . . ., [quali fier,|parametery,)

201

(RECYV, senderClass, request, [quali fieri]parameteri, . .., [qualifier,|parameters,,)

Their elements are presented next:

SEND and RECYV The SEND and RECYV elements specify the request di-
rection.

targetClass The targetClass element can have one of two distinct meanings:
(1) the class to which a receive transition with the same request belongs;
(2) a variable which can take as values, names of classes containing one
receive transition for the specified request. The latter allows dynamic binding
instantiation.

request The request element identifies the request. Formally, each synchrony
group is a triple with a send transition, a recv transition, and a request.

parameter and qualifier The parameters are transition variables, and the
qualifiers can take one the following values "IN”, ”OUT”, or "INOUT”.
These names are given from the send transition point of view. A qualifier
can be omitted. In that case, it defaults to an IN parameter.

senderClass The senderClass is the name of the send transition’s page. This
allows its use as a transition variable allowing the specification of a ”return”
to the sender class. In fact, it can be seen as a permanent IN parameter.
This allows the modelling of a typical method call through the use of two
synchrony groups: one to invoke the method; another to return to the caller.

An ”IN” parameter must be bound by the send transition. Typically it will
be used in one or more of the receive transition output arcs: the receive transition
”does something” with the received input parameter.

An” OUT” parameter must be bound by the receive transition. Typically, it
will be used in one or more of the send transition output arcs: the send transition
”does something” with the received output parameter.

An ”INOUT” parameter must be bound by the send and receive transitions.
Typically, it will be used in one or more of the send transition output arcs and
in one or more of the receive transition output arcs.

Parameter passing is made ”by name”: the receive transition parameters are
textually replaced by the respective send transition parameters.

Fig. 1a exemplifies a synchronous request and the corresponding translation
(a synchrony group) to a CPN (Fig. 1b).

The variables ”a” and ”b” replace, respectively, the variables "¢’ and ”d”
”by name”: ”a” and ”b” are the request actual parameters, "¢’ and ”d” are the
request formal parameter. Note that the object identifier (”2” in the example) is
also a request parameter: by default, it is an ”IN” parameter . The targetClass
identifier (ClassB in Fig. 1) is used to specify the net (class) where the corre-
sponding RECV transition resides. On the RECV declaration, the senderClass
element identifies the class where the respective SEND declaration resides (”s”
parameter in the example).

The RENEW tool [9,10] also implements a form of synchronous channels. It
differs from our proposal in two ways: (1) the RENEW nets are object nets where

202

the object (or class instance) is a token; instead we rely on CPNs tokens; (2)
The channel parameters in RENEW have no qualifiers.

3.2 Synchrony groups and method calling

Synchrony groups fulfil the double objective of being close to Petri net seman-
tics and allowing a unidirectional invocation with parameter passing, as usually
found in object-oriented design and programming languages, most notably UML
[11]. The closeness to Petri nets implies that a method call must be modelled as
a pair of synchrony groups: one for the invocation, and another for the return.
This is illustrated in Fig. 2 for a object method call and a class method call. In
the latter, notice the absence of an object identifier parameter and the use of a
place (CLA) for class level attributes. Outside of an object-oriented framework,
the class method call can be seen as procedure call to a procedure in a module
named classD.

=== ====== | B || ________________ 1 PSS s s s sss s

' ClassA :: . ClassB i | ClassC Il ClassD |

1| <a L) <obj>) <e> H CLA!
1 " il h

:+(SEND, ClassB, 1| *(RECV, c,r1,0bj,) f +(SEND»(C)13”5D1 | o oCY)i

r3(a 1 e, 3, T
| y <o Teha o ycobj coa> | y <*> 3 Vicg,x, b 20
:, \\ |: ’ \) : , \) 1 : |
{

:|\ ’ AN | v 5> '
T 1T A | !

: <a> 1 g<obj, c, x> i <a> |, x,b> :

i (RECV,c,2,0) i (SEND, c,ry,) .:*(RECV,c,m,a) :. !
1 1 [l I

1y <o> 1y <obj> iy <a> ! (SEND,c,r4,2) |

________________ S . S
a) b)

Fig. 2. a)Double synchronisation for non-atomic operation invocation. b)Double syn-
chronisation for class level operation invocation; notice the use of the class level at-
tributes place (CLA) accessed by two transitions with associated class level requests,
without instance identifier in the request.

3.3 Synchrony groups for the CPNTools

As already exemplified, the semantics of HCPNs, with synchrony groups, in
terms of the "regular” HCPNs semantics is quite straightforward. Hence, an ex-
tension to the CPNTools allowing its execution is certainly possible and probably
simple for a CPNTools developer. Yet, currently the CPNTools documentation
is user-oriented: there is no programmers’ documentation allowing the develop-
ment of tool extensions. Due to this situation, we have chosen another option:
the implementation of a filter tool capable of translating HCPNs with synchrony
groups to "plain” HCPNs. Basically, the tool implements the kind of transfor-
mation exemplified in Fig. 1.

203

The SEND and RECYV specification To allow the specification of the tran-
sitions’ associated SEND and RECV declarations, we decided to take advantage
of an already existing transition related annotation: the code segment. The user
specifies the SEND and RECV declarations as Standard ML comments inside
the code segment. To distinguish this Standard ML comments from regular Stan-
dard ML comments we use a distinct "parenthesis”. Instead of ”(*” and ”x)”
used for Standard ML comments, the SEND and RECV declarations are writ-
ten inside ” (++” and ”#x)”. Note that, code segments are not allowed in receive
transitions. This avoids the problem of fusing code segments. while maintaining
the possibility of a different code segment for each invocation: the one in the
send transition.

The following section presents a slight variation of the example introduced
in [7] but with all the necessary details to make it a legal CPNTools model. It
specifies several SEND and RECV declarations inside the code segments.

The synchrony groups translation Synchrony groups imply the destruc-
tion of the two transitions involved (send and receive), and the creation of a
new single transition. This new transition corresponds to the synchrony group
in Fig. 1 and it is named request transition. It connects to all the arcs previ-
ously connected to the send and the receive transitions. The parameters in the
RECYV declaration must be textually replaced by the corresponding ones in the
respective SEND declaration. In addition, the request transition guard is the
conjunction of the send transition guard and the receive transition guard, after
the parameters textual substitution. To guarantee a minimal modification to the
original HCPN graphical layout, one can create a new page (a request page)
containing the newly created transition (the request transition) and making the
send transition a substitution transition for this new page. The places connected
to the send transition become socket places and the corresponding port places
are then created in the request page.

Additionally, the receive transition is deleted and all the places connected to
it become fusion places. For each of these fusion places a copy is created in the
request page. These place copies are then connected to the request transition.

Next, we exemplify this approach. Figs. 3 and 4 show two pages, each one
modelling a class of an initial model.

Notice that transition ¢ in classA sends a request to transition ¢/ in classB.
Additionally, transition t6 in classB sends a request to transition t3 in classA.

The places checkl and check2 only serve to avoid syntax errors due to the
use of transition variables in output arc expressions that are not present in input
arc expressions (are not bound by the respective transition). This happens with
variables that are OUT parameters in SEND declarations (e.g. variable b in
classA) or IN parameters in RECV declarations (e.g. variable y in classA and
variable ¢ in classB). Due to the mandatory parameters’ occurrence in the send
or receive transition input arcs (listed in section 3.1), these errors cannot be
present in the final model (after transformation). For this reason, the check

204

GO O G
PAIR INT

| INT
X
(ia) X X
y
i <_.b @ @ 4_‘V @
input (); INT input (); INT
(i) output (); output ();
»¥) action action

(**SEND, classB, reqt, 33, IN a, OUT b**); (**RECV, s, reg2, IN y**);

PAIR INT

Fig. 3. ClassA page.

1/(33,1000)
P6) PAIR 13344144
(obi.c) e INT
y
t5 t6
) INT obj)
. input (); input ();
(obj,c+d) ou:put 0; y ou:_put 0;
action action
(**RECV, s, reqt, obj, IN ¢, OUT d**); p10 (**SEND, classA, req2, IN y**);

PAIR

Fig. 4. ClassB page.

places are totally optional: if present, they are removed in the final model®. Yet,
we believe they are useful in the present state of CPNTools as they allow the
modeler to take advantage of the tool syntax checking: the tool immediately
alerts the modeler if some parameter cannot be bound. Finally, note that these
check places do not need any associated marking: they only need a colour and
the associated arcs, each one with an associated variable.

Figs. 5 and 6 show the same classes after transformation. Note that the send
transitions (¢ and #6) remain as substitution transitions associated with the
respective request classes. The receive transitions (¢3 and ¢4) were removed and
their input and output places were made fusion places. Each one is fused with
the respective copy in the associated request page (Figs. 7 and 8).

Unfortunately, CPNTools does not allow a port/socket place to be a fusion
place. Therefore, the only option seems to be the translation of the send transi-
tion in exactly the same way as described for the receive transition: the removal
of the send transition and the creation of places copies in the request page to-

3 The tool (see section 5) identifies the places to be removed by looking at the respec-
tive names: the places with a name beginning with ”check” are removed.

205

1(10,500) INT g
SendRecv 0 I INT
X
t2
regl classA t1 classB t4
X
PAIR SendRecv 1 INT
Fig. 5. ClassA page after transformation.
14(33,1000)
e PAIR 1:33++1'44
SendRecv 3 INT
t5 t6
req2 classB 16 classA 13 |
obj
INT
PAIR
Fig. 6. ClassB page after transformation.
(ib)
p2 »| reql p(P3
(33,a+b) PAIR
SendRecv 4 SendRecv 5 PAIR

p7
SendRecv 3
INT

Fig. 7. Request reql_classA_t1_classB_tj page.

206

133++1'44

y
po AT p| req2 »(P O]
SendRecv 2

i

‘ SendRecv SendRecv 0 I
INT INT

Fig. 8. Request req2_classB_t6_classA_t3 page.

gether with their fusion with the respective places in the original send transition.
This is the approach implemented in the filter tool presented in section 5 and
reflected in the example to be presented in the following section.

Synchrony groups integration in the CPNTools The transformational
approach implemented by the presented filter tool, allowing the use of synchrony
groups in HCPNs models, is surely not the ideal one. There are three basic
reasons for this:

1. The tool is not integrated in the CPNTools; the user has to run the tool
outside the CPNTools and then reload the transformed model;

2. Most syntax checking related to the synchrony groups is done by the filter
tool;

3. Notwithstanding the creation of new pages to avoid significant graphical
layout modifications between the initial and the transformed model, this is
still quite distinct from the initial one; this hampers model readability.

A preferable solution would be the integration of the synchrony group con-
struction inside CPNTools. This would avoid the generation of transformed mod-
els: the simulation would be carried out with the initial model.

We end this section by proposing a list of features that should be implemented
in the CPNTools to integrate and fully support synchrony groups:

— The semantics should be the same as the one exemplified by the transformed
models in this paper — the actual and formal parameters are considered equal
before firing the respective transitions now fused as one;

— Each transition should admit an extra inscription (separated from code seg-
ments) for the specification of a SEND or RECV request;

— SEND requests with no corresponding RECV requests should signalled as
syntax errors;

— The CPNTools left tab should show the receive transitions and the several
associated send transitions; one mouse click should take the modeller to the
page (class) containing the respective send or receive transition;

207

— Non matching parameter types or qualifiers between send and receive tran-
sition pairs, should be signalled as syntax errors;

— The mandatory occurrences of parameters in input arcs should be automat-
ically checked.

— IN parameters in SEND requests and OUT parameters in RECV requests
should be considered as possible ways to bind transition variables; this would
make check places useless;

— The use of a variable with class names as variables, should be supported;
this allows polymorphic invocations as exemplified in the example presented
in the following section.

4 An example

This section details part of the example system model in [7].

4.1 The Specification with Synchrony Groups
The model consists of the following classes:

— Writer

— Producer

— DB

— Reader

— ConsumerA
— ConsumerB

The Writer object (see Fig. 9) asks the Producer (see Fig. 10) for data(request
reqGet in transition get). The Producer object chooses one of two types of con-
sumer (ConsumerA or ConsumerB) and passes the data to the Writer object,
This tries to write the data and the consumer type to the DB object, as long as
the DB control place allows it.

All classes are modelled in their own page. We used a specific token to model
each Writer object, although the model uses only one writer (the writer(1)). This
approach allows a straightforward extension to more than one Writer object. On
the contrary, for the Producer class, and for illustration purposes, we decided
not to model the Producer objects. This attitude means the Producer class is
always seen as a singleton object. In other words, our model should never have
more than one Producer.

Transition produce in class Producer generates the data to be consumed. For
simplification purposes, it always generates the data string “some data”. Obvi-
ously, it could generate any other data depending on some arbitrarily complex
computation. It is also the Producer singleton that specifies which consumer
type should, in the end, get the data. Again, for simplification purposes, the
consumer type is arbitrarily chosen from the set of consumer types specified in
place consumers.

208

The Writer class uses two check places (checkl and check2). As already
stated, their only purpose is to avoid syntax errors when modelling the class. For
example, the variable consumer that in reality is obtained as an OUT parameter
from request reqGet does not cause a syntax error due to the presence of place
check?2 and respective arcs. As already noted, all check places and the respective
arcs are removed from the final model. Finally, notice that the writer object
needs, at least, a number of tokens in control place equal to the number of
readers (NREADERS).

check1

(w, (consumer, data)) ithDat) (consumer, data)) STRING

U daty/" gata

WriterObject

. . NREADERS'e NREADERS‘e Sonsumer ConsumerClass
input (); - write get

output (); \ consumer

action Fusion 1 £

((**SEND, DB, reqWrite) i .
IN consumer, IN dataX)); gﬁg},g)(’);
action
((**SEND, Producer, reqGet,
OUT consumer, OUT data**));

1'writer(1)\NriterID

Fig. 9. Writer class page

STRING
hasData
data

"some data"

1'‘ConsumerA++1‘ConsumerB

c
ConsumerClass
produce deliver @
c
put ();

butput ();
hction
(**RECYV, sender, reqGet, OUT c, OUT data**));

Fig. 10. Producer class page

The two Reader objects (reader(1) and reader(2) in Fig. 11) try to read data
from the DB object, as long as the DB control place allows it. This is achieved by
the request reqRead with a SEND declaration associated to transition do_read.
The reqRead request has two OUT parameters: consumer and data. The latter

209

is passed to the consumer type specified by the former. This means either the
ConsumerA object or the ConsumerB object. This is achieved by transition
send, which has a SEND declaration for request reqPut. The variable consumer
is dynamically bound. Just like the Writer object, the Reader object also needs
two check places to avoid syntax errors due to variables consumer and data.
Differently from the Writer object, they only need one control token in fusion
place control, to be able to read from the database object DB. Naturally, they
also need available data in the object DB (Fig. 12). That is guaranteed by the
receive transition get in DB. Notice that the fusion place control also appears
on the Writer (Fig. 9) and DB (Fig. 12) classes. Although it has no arcs in class
DB, the control place ”"belongs” to class DB and it is used by the writer and
consumer objects.

1'reader(1)++1‘reader(2) checkt STRING

r r

data
ReaderID

ConsumerClass

consumer

input (); e e
output (); send do_read
action Fosion T consumer

((**SEND, consumer, E

reqPut, IN data**)); input ();
output ();
action

((**SEND, DB, reqRead,

read N\ OUT consumer, OUT data**));

-
(r, (consumer, data)) U (r, (consumer, data))

ReaderObject

Fig. 11. Reader class page

The ConsumerA and ConsumerB classes are presented in Fig. 13 and Fig.
14, respectively. For simplification purposes, both were defined as singletons.
Both have request reqPut in common. These requests are called, after dynamic
instantiation of variable consumer in class Reader. More specifically, transition
send in class Reader ”calls” either transition retrieveA, in class ConsumerA, or
transition retrieveB, in class ConsumerB, depending on the value of the consumer
variable being ConsumerA or ConsumerB, respectively.

4.2 The Equivalent HCPN Specification

Here we present the equivalent HCPN model. It is semantically equivalent to
the initial specification (with synchrony groups) just presented, but with one
important difference: it is a legal CPNTools model automatically generated from
the initial specification.

210

output ();
action

D)
ata recipient PUt | (~RECV, s, reqWrite, IN recipient, IN data™)):
@ (recipient, data)
ConsumerClass
E

ConsumerData

E
(recipient, data)
get input ();
output ();
action

(("™RECYV, s, reqRead, OUT recipient, OUT data**));

Fig. 12. DB class page

Data
data
i : retrieveA
Qﬁlﬁm)(’); consumeA
action

((**RECV, sender,
reqPut, IN data**));

Fig. 13. ConsumerA class page

First, we present the initial classes. After, we present the transformed initial
classes and the newly created request pages.

Initial pages Regarding the initial pages, the send and receive transitions are
removed, together with all the respective arcs. With the exception of the places
previously connected to the removed transitions (which become fusion places),
the remaining elements are not changed, not even their layout. This allows an
easy recognition when comparing with the initial specification containing the
send and receive transitions. To increase this recognition, the filter tool replaces
each send and receive transition with a dotted box containing the name of the
respective removed transition. This makes the resulting model graphically closer
to the initial one. Unfortunately, as the CPNTools does not allow it, we could

211

Data Data
data

data

availableB preprocessing

data

data

aQ
1=
i)

Data

input (); retrieveB consumeB
output (); e

action

((**RECV, sender,
Fig. 14. ConsumerB class page

regPut, IN data**));

- e
m

postprocessing

not draw fake arcs, which would increase the graphical similarity to the initial
model. Figs. 15, 16, 17, 18, 19, and 20 show the transformed initial classes.

Lo
Writer_withData WriterObject
I write I @ I get I
—_ E _

1'writer(1)\NriterID

Fig. 15. Final Writer class page. Compare with the initial specification in Fig. 9.

Request Pages For each synchrony group, one new transition is created. This
new transition is made part of a new page. As already stated, these new pages
are named request pages. Figs. 21, 22, 23, 24, and 25 present all the request
pages automatically generated from the initial classes.

Each request page gets a copy of each place connected to the send or the
receive transitions that gave origin to the request transition. Being a transition
fusion, these places are connected to the request transition in exactly the same
way as the original places were connected to the respective send and receive
transitions.

To avoid graphical superpositions between the places and arcs from the send
and receive transitions, they cannot keep the same graphical layout in the re-
quest page. Hence, we decided to distribute the places connected to the request

212

STRING

Producer _hasData

"some data"

1‘ConsumerA++1‘ConsumerB

. ConsumerClass
produce I deliver I @
—_— Producer_consumers

Producer_resource

Fig. 16. Final Producer class page. Compare with the initial specification in Fig. 10.

1'reader(1)++1‘reader(2)

[Reader ready |
Reader read ReaderlD

| send I m | do_read I
_— J Fusion 1 E — =

ReaderObject

Fig. 17. Final Reader page class. Compare with the initial specification in Fig. 11.

I put

— —

&onsumemma i E
I get I

— —

Fig. 18. Final DB page class. Compare with the initial specification in Fig. 12.

213

ConsumerA availableA data

| retrieveA
consumeA|

readyA
ConsumerA readyA

Fig. 19. Final ConsumerA class page. Compare with the initial specification in Fig.
13.

Data

data data
availableB preprocessing

ConsumerB _availableB

data
Data

I retrieveB consumeB

— — 1 e

m e
m

readyB postprocessing

ConsumerB readyB

Fig. 20. Final ConsumerB class page. Compare with the initial specification in Fig.
14.

transition along a vertical line on the left (for transitions’ input places) and a
vertical line on the right (for transitions’ output places). An input-output place
is not duplicated (by place fusion) but instead put in one of the vertical lines.
This happens with place Producer_consumers in the ReqGet request page (Fig.
23)%.

The polymorphic invocation specified by transition send in class Reader (see
Fig. 11) gives origin to one request page for each possible value of the dynami-

4 The two arcs are superposed and have the same annotation (consumer). Future
versions of the filter tool should avoid this superposition.

214

1'writer(1) Writer|D

NREADERS‘e w
Writer_control Pp reqWrite p(Writer_ready
(consumer, data)

Writer withData WriterObject
ConsumerData

y

(w, (consumer, data))

Fig. 21. ReqWrite page

Reader_control

E

1‘reader(1)++1‘reader(2)

(r, (consumer, data))
Reader_read

ReaderObject

Reader_ready »| reqRead

ReaderID

(consumer, data)
DB_store

ConsumerData

Fig. 22. ReqRead page

1'writer(1)

WriterID

Writer_ready

1‘ConsumerA++1‘ConsumerB

consumer
Producer_consumers

onsumerClass
Producer_consumers data

NREADERS‘e
reqGet p(Writer_control

onsumer, data))

Producer_hasData
Producer_hasData

Writer_withData
Writer withData

STRING WriterObject

1'e
Producer_resource

Fig. 23. ReqGet page
cally bounded variable. In our example, we have two different values for variable
consumer. This variable specifies which class should be called for request ”"Re-

qPut”. This translates to two request pages: one when the consumer variable
has the value ” ConsumerA” (see Fig. 24) and another when the consumer vari-

215

able has the value ”ConsumerB” (see Fig. 25). This distinction is made by the
transitions’ guards.

Note that the object identifier can be specified as a simple request parameter
but this is not needed here as both classes have only a singleton object.

Reader_control
£

1‘reader(1)++1‘reader(2

[consumer=ConsumerA]

(r, (consumer, data)) r
Reader_read Pp{ reqPut > Reader_ready

data
ReaderObject

E =]

ConsumerA_readyA
ConsumerA _readyA

()
ReaderlD

Data

ConsumerA_availableA
ConsumerA_availableA

Fig. 24. ReqPut page for ConsumerA.

Reader_control

[consumer=ConsumerB]

1‘reader(1)++1‘reader(2)
(r, (consumer, data)) r
Reader_read P{ reqPut > Reader_ready
[Reader ready |
data (Beader read ReaderID

ReaderObject
Data

ConsumerB_readyB ConsumerB_availableB

ConsumerB_readyB ConsumerB _availableB

Fig. 25. ReqPut page for ConsumerB.

5 The Filter Tool

As already mentioned, the synchrony groups extension (more specifically the
SEND and RECV declarations) can be used in the CPNTools through their
specification as comments inside code segments. This CPNTools models are then
translated to CPNTools models where a new page (the request page) is created
for each SEND and RECV pair. The original send and receive transitions are
removed from the original class pages where they appeared.

As a proof of concept we implemented a filter tool that is able to realise
this translation: it takes a CPNTools model (a .cpn file) and generates another
CPNTools model (another .cpn file).

216

This filter tool, named ccpn2hepn, is written in Ruby [12], an object-oriented
scripting language.

The translation for the example model in the previous section was created
using the ccpn2hepn tool. The tool’s current version, together with a set of
example models, is available at the associated web page [13].

6 Conclusions and future work

The use of send and receive transitions has yet to be tested in realistic size
models. Even so, we believe its usage adds significant modelling convenience to
hierarchical coloured Petri nets.

It is also clear that the translation approach used by the ccpn2hcpn tool
is only useful due to the lack of direct support by CPNTools. If this becomes
available, the translation tool will no longer be needed. Meanwhile the transla-
tion approach is useful and also serves as a proof-of-concept and a test-bed for
additional enhancements. In this sense, we intend to extend it in the following
directions:

— Stronger syntax verification;

— Support for multiple invocation by allowing multiple SEND declarations in
one send transition;

— Support for net addition as proposed in [7] for the modelling of a simple
inheritance type in CPNs.

References

1. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use - Volumes 1-3. Monographs in Theoretical Computer Science. An EATCS
Series. Springer-Verlag, Berlin, Germany (1992-1997)

2. Design/CPN: Design/CPN homepage. http://www.daimi.au.dk/designCPN/

(2004)

CPN Tools: CPN Tools homepage. http://wiki.daimi.au.dk/cpntools (2004)

4. Agha, G., de Cindio, F., Rozenberg, G., eds.: Concurrent Object-Oriented Pro-
gramming and Petri Nets, Advances in Petri Nets. Volume 2001 of Lecture Notes
in Computer Science. Springer (2001)

5. Lakos, C.A.: From coloured Petri nets to object Petri nets. In: Proceedings of
the 16*" International Conference on Application and Theory of Petri Nets, Turin.
(1995) 278-297

6. Maier, C., Moldt, D.: Object coloured Petri nets — a formal technique for object ori-
ented modelling. Lecture Notes in Computer Science: Concurrent Object-Oriented
Programming and Petri Nets, Advances in Petri Nets 2001 (2001) 406—427

7. Barros, J., Gomes, L.: On the use of coloured Petri nets for object-oriented design.
In Cortadella, J., Reisig, W., eds.: Applications and Theory of Petri Nets 2004 25"
International Conference, ICATPN 2004, Bologna, Italy, June 21-25, 2004. Volume
3099 of Proceedings Series: Lecture Notes in Computer Science. Springer (2004)
117-136 ISBN: 3-540-22236-7.

@

217

10.
11.

12.
13.

Christensen, S., Hansen, N.D.: Coloured Petri nets extended with channels for
synchronous communication. Daimi PB-390 (1992) Also in: Valette, R.: Lec-
ture Notes in Computer Science, Vol. 815; Application and Theory of Petri Nets
1994, Proceedings 15th International Conference, Zaragoza, Spain, pages 159-178.
Springer-Verlag, 1994. Abridged version; available at http://www.daimi.au.dk/
CPnets/publ/full-papers/ChrHan1994.pdf.

Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Kéhler, M., Moldt,
D., Rolke, H., Valk, R.: An extensible editor and simulation engine for petri nets:
RENEW. In Cortadella, J., Reisig, W., eds.: Applications and Theory of Petri
Nets 2004 25" International Conference, ICATPN 2004, Bologna, Italy, June 21-
25, 2004. Volume 3099 of Proceedings Series: Lecture Notes in Computer Science.
Springer (2004) 484-493 ISBN: 3-540-22236-7.

Renew: Renew — the reference net workshop. http://www.renew.de/ (2004)
OMG: Unified modeling language specification, version 1.5. http://www.omg.org/
cgi-bin/doc?formal/03-03-01 (2003) Unified Modeling Language, v1.5, Object
Management Group.

Ruby Homepage. http://www.ruby-lang.org/en/ (2004)

Barros, J., Gomes, L.: Composable CPNs homepage. http://www.uninova.pt/
gres/ccpn (2004)

218

BULLWHIP EFFECT AND SUPPLY CHAIN
MODELLING AND ANALYSIS USING CPN TOOLS

Dragana Makaji¢-Nikoli¢, Biljana Pani¢, Mirko Vujosevic¢

Operations Research Laboratory »Jovan Petric«,
Faculty of Organizational Sciences, University of Belgrade
gis@fon.bg.ac.yu, bilja@fon.bg.ac.yu, mirkov@fon.bg.ac.yu

Abstract. The paper presents some of the results obtained by studying Petri
nets’ capability for modeling and analysis of Supply Chain performances. It is
well known that the absence of coordination in Supply Chain management
causes the so-called Bullwhip Effect, in which fluctuations in orders increase as
they move up the chain. A simple three-stage supply chain with one player at
each stage — a retailer, a wholesaler and a manufacturer — is considered. The
model of the chain is developed using a timed, hierarchical coloured Petri Net.
Simulation and performance analysis have been performed applying software
package CPN Tools.

1. INTRODUCTION

A Supply Chain (SC) includes all the participants and processes involved in the
satisfaction of customer demand: transportation, storages, retailers, wholesalers,
distributors and factories. A large number of participants, a variety of relations and
processes, dynamics, the uncertainty and stochastics in material and information
flow, and numerous managerial positions prove that Supply Chains should be
considered as a complex system in which coordination is one of the key elements of
management.

Very important Supply Chain processes are ordering and delivery of purchased
amounts. These are multiple entangled and their disorder can lead to various
unwanted effects. One of them is the so-called Bullwhip Effect in which fluctuations
in orders increase as they move up the chain. In order to illustrate the SC functioning
and particularly the bullwhip effect, Beer Game [10] was created at the beginning of
the sixties in Sloan School of Management, Massachusetts Institute of Technology
(MIT).

This game simulates the SC performance with one participant per each phase and
today it is being played all over the world — among students and top managers, to
improve the approach to Supply Chain functioning. All the simulations led to the
bullwhip effect — the participants of Supply Chain reacted inadequately to sudden
changes in customer demands. However, the bullwhip effect appears in those supply
chains where there is no subjectivity, i.e. in cases where decision-making rules are the
same for all participants and seem to be rational. This paper presents the bullwhip
effect in Supply Chain simulation via a timed hierarchical coloured Petri Net [6].

219

Numerous papers give examples of Petri Nets used in modeling and SC analysis.
In order to analyse the potential benefit of SC management, Van der Vorst, et. al. [12]
modeled the SC dynamic behavior. The authors consider SC as a business process,
which is to be redesigned, and in that case many different redesign scenarios are to be
tested. PN is used to support a decision-maker in choosing the best-fit scenario. The
authors developed the simulation/Petri-Net modeling approach to Supply Chain
analysis and demonstrated their model using a case study from the food industry.
Their model uses eight different performance indicators (three cost-based indicators
and five service-based indicators).

Supply Chains in food industry are also modeled in [1]. The authors propose a
supply chain management of perishable items combining the TTI and Wireless
technologies. The proposed futuristic SC is compared with the existing situation using
simulation of Generalized Stochastic PN.

An approach to Supply Chain process management (SCPM) based on high-level
Petri-nets, called XML-nets is presented in [9]. It is shown that SCPM as a whole can
be improved by employing XML-nets. The major advantages of the approach are:
capturing process dynamics, concurrency and parallelism of processes as well as
asynchronous operations; capabilities for modeling complex objects with a
hierarchical structure; exchange of intra- and inter-organizational data. The paper also
shows the architecture and functions of an XML-net based prototype software tool
supporting SCPM.

Computer Integrated Manufacturing Open System Architecture (CIMOSA) based
process behavior rules and Object-oriented PN (OPTN) are used in [5] to model the
routing structures of a typical SC process. The OPTN, which they consider, consists
of two parts: an internal structure, e.g. an object (composed of state places and
activity transitions) and an external structure (a set of ports places which form the
interface of OPTN). The authors use P-invariant to obtain the system properties from
object properties.

In [7] the authors show how a Generalized Stochastic PN bridges the gap between
application formalism, like process chains, and analysis methods for concurrent
systems, like PN analysis methods. A small supply chain - involving a manufacturer,
one of his suppliers and a transportation company, is used to illustrate their assertion.

In paper [8] the authors propose an implementation of an incremental approach to
modeling discrete events systems at the structural level of systems specification. They
consider the entire system and coordinate decisions at each stage of the Supply Chain.
Using the example of the Beer Game, a systematic method supports the bottom-up
construction of re-usable models of supply chains in the Petri nets domain.

This paper is intended to show that Petri nets may be used for studying the
bullwhip effect, and especially for experimenting on how different replenishment
strategies affect the parameters of certain participants and of the entire Supply Chain.
Such an application of Petri nets to Supply Chains may be very useful for the
education of postgraduate students. This application requires elementary knowledge
of CPN and CPN tools software [3,4] as well as the knowledge of SC functioning and
the bullwhip effect phenomenon.

220

The paper is organized as follows: Section 2 gives the basic terms of supply
chains, bullwhip effect and beer game performed with two student groups, simulating
two SCs; Section 3 includes the CPN model of a simplified SC, created in CPN Tools
program. The same program was used for the simulation of CPN supply chain for
identical customer demands as in the already mentioned beer game; Section 4
presents simulation results.

2. BULLWHIP EFFECT IN A SUPLLY CHAIN

Supply Chain coordination functions well as long as all stages of the chain take
actions that together increase total supply chain profits. Each participant (phase) of
the chain should maintain its actions in a good relation to other participants and the
supply chain in general and make decisions beneficial to the whole chain. If the
coordination is weak or does not exist at all, a conflict of objectives appears among
different participants, who try to maximize personal profits. Besides, all the relevant
information for some reason can be unreachable to chain participants, or the
information can get deformed in non-linear activities of some parts of chain which
leads to irregular comprehension. All these lead to the so-called Bullwhip Effect
resulting from information disorder within a supply chain. Different chain phases
have different calculations of demand quantity, thus the longer the chain between the
retailer and wholesaler the bigger the demand variation.

A retailer can realize a small variation in customers’ demands as a growing trend
and purchase from a wholesaler more products than he needs. Increased order at
wholesalers is larger than at retailers as the wholesaler cannot regularly comprehend
the increased order. As the chain grows longer the order is larger. If a retailer plans
the product promotion he can increase the order. If a manufacturer comprehends the
increased demand as constant growth and in the same manner makes purchases, he
will face the problem of inventory surplus in the end of promoting period [2]. A
variation in demands increases production expenses and expenses of the whole supply
chain in an effort to deliver the ordered quantity in time. A manufacturer
accomplishes demanded capacity and production but when the orders come to a
former level, he remains with the surplus of capacity and inventory.

Any factor that leads to either local optimization by different stages of the supply
chain or an increase in information distortion and variability within the supply chain
is an obstacle to coordination. The major obstacles are[2]:

e Incentive obstacles — a situation in which incentives are offered to different
stages or participants in a supply chain and focus only on the local impact of an
action result in decisions that do not maximize total supply chain profits.

e Information processing obstacles — situations in which demand information is
distorted as it moves between different stages of the supply chain, leading to
increased variability in orders within the supply chain. Demand forecasting
based on the stream of orders received from the downstream stage results in a

221

magnification of fluctuations in demand as we move up the supply chain from
the retailer to the manufacturer.

Operational obstacles — actions taken in the course of placing and filling orders
that lead to an increase in variability.

e When a firm places orders in lot sizes that are much larger than the lot sizes
in which demand arises, variability of orders is magnified up the supply
chain.

o The bullwhip effect is magnified if replenishment lead times between stages
are long

e A situation in which a high-demand product is in short supply often arises
within the supply chain. Rationing schemes that allocate limited production
in proportion to the orders placed by retailers lead to a magnification of the
bullwhip effect.

Pricing obstacles — situations in which the pricing policies for a product (lot size
— based quantity discounts, price fluctuations) lead to an increase in variability
of orders placed.

Behavioral obstacles — problems in learning within organizations that contribute
to the bullwhip effect. These problems are related to the way the supply chain is
structured and the communication between different stages.

The bullwhip effect [2]:

Increases the level of inventory, accordingly the warehouse space is more
occupied, all of which leads to an increase in holding or carrying costs of storage
services;

Prolongs the lead time — the time period from the moment of purchasing to the
moment of receiving the order;

Demands more efficient transportation to satisfy the increased demand, which
leads to a high transportation cost;

Increases labor costs;

Decreases the level of product availability, which can lead to deficiency of retail
inventory;

Causes problems in each phase disturbing relations within a supply chain since
participants’ efforts do not have a positive outcome — leads to distrust among
participants.

222

2.1. BEER GAME

Originally, the game was created as a board game that demonstrates beer
production and distribution, as shown in Figure 1.

Orders Sold
to Raw
Custormers Meterials
Used
Order
Cards
Orders Incomig Orders Incomig Orders Incomig Producti
Placed Orders Placed Orders Placed Orders on
o [+]
Cards
Production
(1)
RETAILER 'WHOLESALER DISTRIBUTOR FACTORY
Current Current Current Current
Inventory Tnventory Inventory Inventory
Shipping Shipping Shipping Shipping Shipping Shipping
Delay Delay Delay Delay Delay Delay Production
Delay
nin L1 W L1 ¥
+ - + T T4 +
nin (111 [111] L1 [111] (111 W [111] (111 L1

Fig. 1. Beer Game board, showing initial conditions [10]

Teams play a game whose objective is to minimize the expenses of an overall
supply chain. The winner is the team with the lowest expenses. Each participant must
initially invest $1, whereas the winner takes the whole investment. Teams are divided
into four sectors: Retailer, Wholesaler, Distributor and Factory. One or two persons
direct over each of the sectors. Coins represent beer cases, and a deck of cards is
customer’s demand. A customer comes to a retailer to buy a beer. The retailer meets
customer’s needs selling the beer from his inventory. Each incomplete order is the
backorder in the following period. The retailer makes orders at the wholesaler that
meets the demand from his inventory. The wholesaler purchases orders from a
distributor, a distributor from a factory and the factory purchases raw materials from a
supplier. The ordered products displace through an introduction phase and a transport
phase, and two time units (two iteration simulations) are the period for which the
product is moved from one phase to the other. Storage expenses are $0.50 per week,
and the expenses incurred for a week in backorder are $1 per case.

223

The game start is equal for all: each participant has the inventory of 12 beer cases,
and initial demand in each phase is 4 cases. In the course of several weeks, players
learn the mechanisms of purchasing, to deposit inventory etc., and during that period
the demand is constant — 4 cases per week. During the first three weeks, the players
can order only 4 cases per week, which is logical since the demand is also 4 cases. In
the beginning of the fourth week a player can order as much as he wants, and he is
said that a customer’s demand can vary. One of his tasks is to foresee the demand,
according to what he makes orders, bearing in mind that the delivery period is two
weeks. Thus, the player must foresee the demand in a two weeks’ time and
accordingly make an order. The game lasts for 50 simulated weeks, but the wanted
effects are obvious far earlier [10].

Each player possesses good local information (about his inventory, remaining
orders, receiving amounts from his direct supplier and amounts he has just delivered
to the player he supplies), but he is not in possession of global information. Only the
retailer knows the last customer’s demand, and the others can get the information only
on the demand of immediate customer. Communication between the participants is
not allowed. Barriers in communication and lack of information lead to inadequate
coordination in a supply chain.

The game indicated that the average expenses in MIT were about $2000,
sometimes the expenses would come to $1000, but they were always higher than
$1000. However, optimal expenses, calculated according to information available to
players, are about $200. Each game shows the same behaviour models and reveals the
bullwhip effect [10].

The beer-game was carried out with the students of specialist studies in industrial
engineering, organized in cooperation by the Ecole Centrale Paris and the Faculty of
Organizational Sciences at the University of Belgrade, within a course in Industrial
Logistics. The students were divided into two teams, with each team representing
one supply chain with four sectors: a retailer, wholesaler, distributor and manufacturer
(factory). The game, developed according to the rules described above, lasted for 23
simulated weeks.

The game showed the expected results, close to the MIT’s results. The total costs
incurred by the first team were $3580.5 (inventory costs $2900,5, backorder costs
$680) and of the second $2497.5 (inventory costs $1766,5, backorder costs $731),
what is in conformity with the results obtained at the MIT. Cost distribution within
teams was as follows:

e Team 1: retailer $201 (inventory $141, backorder $60), wholesaler $748.5
(inventory $545,5, backorder $203), distributor $1305 (inventory $1009, backorder
$269) and manufacturer $1326 (inventory $1205, backorder $121);

e Team 2: retailer $327.5 (inventory $212.5, backorder $115), wholesaler $412
(inventory $272, backorder $140), distributor $428 (inventory $246, backorder
$182) and manufacturer $1330 (inventory $1168, backorder $162).

Such results were expected — costs increase as we go from a retailer to a
manufacturer.

224

When the students were asked to estimate the average demand, their estimation
results were far higher than actual demand. Actual demands of the last-in-chain
customers were the same for both teams: 4, 4, 4, 8, 10, 12, 12, 10, 8, 8, 8,9, 8, 8, 8, 0,
0, 7,8, 8, 8,8, 8 cases. Such demand was selected in accordance with the beer game
played at the MIT. Figure 2 shows customer demands and responding amounts of
other SC participants.

demand

o’ demand customer
] A 120 4 — - - —retailer
100 1 ~ | wl! e wholesaler
' .
— - — -distributor
wi]
I “ — — — manufacturer
60 -| ' i
I\ €0 _/\
40 | N i
e o A
20 4 Eét’—\“\ 20 4 / - "-\
0 T e e e R R e
1.3 5 7 9 11 13 15 17 19 2 1.3 5 7 9 11 13 15 17 19 21 23
@veé"@s weeks

Fig. 2. Bullwhip Effect.

The left-hand side of the Figure shows the reactions by the participants of the first
group and the right-hand side also shows the reactions of the participants of the first
student group to specified demand. The group whose results are shown on the right-
hand side took a higher risk in the game and this is why they had a lower bullwhip
effect.

3. SUPPLY CHAIN MODELING USING CPN TOOLS

The primary objective of this paper is to illustrate how PN can be used in learning
about and studying the bullwhip effect. Thus, the PN of a simplified SC was formed,
with one participant per each phase — a retailer, wholesaler, distributor and
manufacturer, and then it was simulated with CPN Tools [3,4].

The supply chain was simplified to a line of participants taking different places
within a chain and making decisions according to the same rules. The two main
activities of each participant are: delivery of purchased products and forming one’s
orders according to new orders. The selection of strategies by SC participants reduces
to their decision on how they will perform these two activities. We have chosen here a
simple scenario according to which all SC participants behave in the same way, i.e.,
they perform the mentioned activities as follows:

1. Delivery of purchased products. At the moment of receiving the order it has to be
checked if the inventory stores the needed products. If the inventory shows
sufficient amounts of products, the ordered, total amount is delivered. Otherwise, if
the inventory amounts do not suffice it is possible either to wait for needed
inventory product deposit or to deliver the incomplete inventory, with belated
additional quantity. In the presented CPN the chain participants deliver even
incomplete orders.

225

2. Forming one’s orders according to new orders. Since a certain amount of products
is delivered from a personal inventory, new orders are made from the next SC
participant in order to keep the needed level of inventory. The decision on order
quantity, in the modeled SC, is being made in the following way: if the inventory
stores enough products, the same amount delivered to a customer is to be ordered,
since the estimation is that the following delivery is to be of the same quantity. If
the inventory shows the lack of products, the amount that could not have been
delivered is to be ordered, and, as in the previous case, the amount that will suffice
for the next order.

3.1. NET STRUCTURE AND DECLARATIONS

The described SC has been modeled with timed Hierarchical Coloured Petri Nets
[6]. The net structure consists of five modules (pages). The top level of the model is
the whole Supply Chain: a customer and the four mentioned phases, Figure 3. The
three phases (participants): retailer, wholesaler, distributor and manufacturer are
presented by means of substitution transitions. A sub-page models each participant. A
special sub-page Manufacturer models a manufacturer, as a specific participant in
the end of SC. Retailer, wholesaler and distributor are modeled by three instances of
sub-page Supplier. A customer is presented by a place named customer whose
initial marking represents demand in time and he directs the simulation.

manufacturer

manufacturer anufacturer Jelivered d
production elivered_
INTT distributor INTT
u
distributor_demand delivered_w
INTT wholesaler INTT
u
wholesaler_demand
INTT retailer INTT
u
etailer_deman
INTT

customer INTT

tustomer
demand) INTT

Fig. 3. Top-level Petri Net of simplified Supply Chain

226

It is possible to include various parameters within the SC model: prices, time,
amounts of goods, a resource etc. Nevertheless, the bullwhip effect analysis requires
only the follow-up on orders and deliveries in time. Figure 4 shows the declaration
colour sets, variables, and function used in the net.

Decl ar ati ons

color INT = int;

color INTT = INT tined;

var k, m n, s: |INTT;

fun rest(i,j) =if (i>=f) then i-j else 0;

fun order(i,j) =if j>=i theni else i+i-j;
val a=2;
val b=2;

Fig. 4. Declaration of colour sets, variables and functions

As can be seen from the declaration, to form the PN model of the SC, it is
sufficient to use one standard colour set (INT) and define one timed colour set
(INTT).

Function r est (i, j) models activity 1 described above — Delivery of purchased
products. Variable i represents the order and variable j represents the inventory. The
result of function rest (i,j) is the amount of ordered product which is not
delivered. If the inventory shows sufficient amounts of products, the total amount is
delivered and functionr est (i, j) resultsin 0.

Function order (i, j) models activity 2 — Forming one’s orders according to
new orders. Variables i and j represent a received order and the inventory,
respectively. Function order (i,j) behaves as follows: if the inventory stores
enough products, the amount i will be ordered; if the inventory shows the lack of
products, the amount that could not have been delivered (i - j) is to be ordered, and,
as in the previous case, the amount i that will suffice the next order.

Values (constants) a and b refer to the duration of delivery and production periods.
The SC is modeled by timed CPN. This simplified SC suggests creating immediate
personal orders, whereas the production and delivery procedures last.

3.2. SUB-PAGE SUPPLIER

A sub-page Supplier, described in Figure 5, was used to model the retailer,
wholesaler and distributor, each with one of its instances. It became possible to
include more suppliers between the customer and factory. Each of them would be
modeled by one instance of sub-page supplier. This was possible as the assumption of
modeled SC was that each of the participants makes decisions according to the same
rules. If we wish each SC participant’s behaviour to be different from others’, we

227

have to form a new Subpage for each of them (or, at least, for those whose behaviour
is different).

INTT (demand_to delivered_from
Out
A INTT
order(k,n)

forming_order l¢ n

<

fulfillment order delivered_to
@+a [k*n>0] |k-rest(k,n

INTT

Fig. 5. Sub-page Supplier

According to the receiving order in place demand_from and inventory status in
place stock, a supplier makes his own order (the second of the two basic activities),
which has been modeled by transition forming_order and the function order (i),
shown in Figure 4. The starting assumption was that forming one’s order is performed
much faster than the remaining activities in the SC, so the transition forming_order
is momentary

Transition fulfillment_order models the first basic activity of SC participants:
delivery of a needed. amount. Here, the inventory amounts are compared to the order
quantity, and a decision on a delivery amount is to be made. If the inventory stores
enough goods the value of function rest (k,n) (see Figure 4) will be 0, and of the
function rest (n,k) = n-k. Thus, a token, which corresponds to the order quantity, will
appear in the place delivered_to, the inventory will be reduced by k, and there will
be no backorders. If the inventory goods are insufficient, the value of function rest
(n,k) will be 0, and of the function rest (k,n) = k-n. A token n (total inventory goods)
will appear in the place delivered_to, the inventory state will be 0, and a token k-n,
modeling the quantity of undelivered goods, will appear in the place matching. The
duration of transition fulfillment_order is (@+a), because, according to the rules of
the game played at the MIT, product delivery lasts 2 weeks. It can be seen from
Figure 4 that a=2. A guard function [k*n>0] in the transition ensures this transition
to occur only when an order exists and when there are products in stock.

3.3. SUB-PAGE MANUFACTURER
A manufacturer is modeled by a sub-page Manufacturer (Figure 6). He decides,
according to received orders and his inventory state, what quantity of goods to

deliver. He is the last SC link and, in a way, he acts in the same way as suppliers, with
a difference that instead of making an order for the next chain participant, he decides

228

what amounts to produce in the following period. This was modeled by the transition
manufacturing. As the production and delivery were assumed to last 2 weeks each,
duration (@+b) was assigned to this transition. It can be seen from Figure 4 that
b=2.

o final
order(k,m) r@duct

S

manufacturing
D+b

INTT

\ 4
delivery

k
rest(n,k)
INTT ggg;ﬁgler fulfillmentorder delivered
@+a [K'n>0] | k-rest(k,n)

INT ' INTT

Fig. 6. Sub-page Manufacturer

Other transitions and places of this sub-page are analogous to the transitions and
places of the sub-page Supplier.

4. SIMULATION RESULTS

A CPN formed in this way may be used for various experiments. It is possible to
simulate different strategies of delivery and forming one’s inventories and then
analyze the bullwhip effect they cause. This may be accomplished by simply defining
functions rest (i,j) and order(i,j) soasto model a selected strategy. It
is also possible to add stochastic behaviour to a CPN in the sense of defining
functions as stochastic or defining a stochastic duration of activities and transitions.

Instead of making this type of experiments, we will show here the effect obtained
when simulating the demand described in 2.1 using the CPN described in section 3 as
well as all the information obtainable from a simulation report. Simulation starts from
the assumption that the initial system state was stable and remained stable for a
certain time period and that a sudden increase in demand occurred after that. Since it
is possible to compare simulation results, the initial net marking models the next state,
the same state as in the beer-game with students:

e Retailer, wholesaler, distributor and manufacturer, each of them initially has 4
units of an inventory product, after the first week each has 4 units, and after the
second week 4 units, which relates to the following initial marking:

229

1'4 in places stock@Supplier (all instances)
'4@+1++1'4@+2 in places delivered_from@Supplier (all instances)
I'4@+1++1'4@+2 in place final product@Manufacturer

e A customer orders products once a week. Customer’s demand in the first 3 weeks
is 4 units per week, during the following weeks it is growing: 8, 10, 12, 12, 10, 8,
8,8,9,8,8,8,0,0, 7, and in the last five weeks it is stabilized at 8 product units,
which relates to the initial marking:

1'4@+0 ++ 1'4@+1 ++ 1'4@+2 ++ 1'8@+3 ++ 1'10@+4 ++ 1" 12@+5 ++
I'2@+6 ++ 1'10@+7 ++ 1'8@+8 ++ 1'8@+9 ++ 1'8@+10 ++
1'9@+11 ++ 1'8@+12 ++ 1'8@+13 ++ 1'8@+14 ++ 1'0@+15 ++
1'0@+16 ++ 1'7@+171 ++ 1'8@+18 ++ 1'8@+19 ++ 1'8@+20 ++
1'8@+21 ++ 1'8@+22 in place customer@Top page

Various chain performances can be obtained by simulation of CPN models. Figure
7 demonstrates the bullwhip effect, i.e. the reactions of retailer, wholesaler, distributor
and manufacturer to customer demand.

demand
180 -
N
160 - 1N
/ \ customer
140 - I .
| \ — - - —retailer
120 | / wholesaler
I ! — - — -distributor
100 - | \
\ — — — manufacturer
I~
80 4 |/ ‘\\\
60 - l, / \
40 - - \
,’/," TN
20 + e —\\\~___\¢’\¥
0 e N weeks
123 456 7 8 910111213141516 17 18 192021 22 23

Fig. 7. Customer demand within Supply Chain — Bullwhip Effect

An expected result was obtained, close to the MIT’s results. Each participant in the
chain reacted inadequately and the most drastic result was recorded with the
manufacturer — the last SC participant. Such behaviour is predetermined by function
order (i,]) and some more sophisticated strategy would certainly have given beter
results. This can be noted through a comparison with the results obtained in
simulations with the students.

230

Figure 7 demonstrates a stronger bullwhip effect than Figure 2, than it was the case
of students whose decisions were often very risky.

Simulation results demonstrate the consequence of bullwhip effect — inventory
increase in the chain. Figure 8 shows the course of inventory state during the period
of 23 weeks.

stock
250
O manufacturer
200 { Mdistributor
Owholesaler
150 | Oretailer
100 -
50 A
0 T ; —f— —

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fig. 8. The quantity of inventory goods in time

Figure 8 shows the course of backorder during the same period of 23 weeks.

stock

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22
L L I L L \Weeks

0 L L L I I I I I I I I L L L L

-10 A
Omanufacturer

-20 4 W distributor
Owholesaler

-30 A Oretailer

40 A

_50 i

_60 i

Fig. 9. Backorder in time

231

Using cost values from Section 2.1.: storage expenses -- $0.50 per week, and the
expenses for a week in backorder - $1 per case, it is possible to calculate SC costs
which represent the main indicator of chain functioning. The costs incurred by each
participant and the costs of the entire SC are presented in Table 1.

Table 1
retailer | wholesaler | distributor | manufacturer SC
inventory cost 379,5 664 1113 1829 | 3985,5
backorder cost 44 64 108 124 340
total cost 4235 728 1221 1953 | 4325,5

Simulations revealed one more phenomenon. Each chain participant has inventory
goods surplus after 23 weeks. By analyzing the model, one could conclude that the
results of all simulations have to be the same. However, it can be seen in Figure 10
that simulation results vary from one simulation to another. Figure 10 describes the
variation in inventory goods surplus by the end of observation period. Here are the
results of 20 successive simulations of the same initial marking, i.e. the same demand.

stock
400 4
350 A
300 - —&— wholesaler
—l— distributor
250 A
—&— manufacturer
200 - —=— retailer
150 4
100 +
H—\/\/\N—*—P_/H
50 H
0“‘““““‘““““simulation
01234567 8 9101121314151617 181920

Fig. 10. Inventory goods surplus after 23 weeks in 20 successive simulations

Different results are obtained for the following reason: during the simulation,
several transitions occur at the same time instant and the sequence of their occurrence
affects the values tokens may take. For example, in the Sub-page Supplier, the
following transitions may occur at the same time instant: forming_order,
fulfilment_order and delivery. However, these transitions will not occur literally

232

simultaneously, but in some random sequence. The quantity of supplier’s order,
which is determined by the occurrence of transition forming_order and which
affects directly an inventory goods surplus, depends on a received order (token k) and
inventory status in place sctock (token n). Each occurrence of transition delivery
increases the inventory status, while each occurrence of transition fulfillment_order
decreases it. This means that a different sequence of occurrences of the transitions:
forming_order, fulfilment_order and delivery results in a different supplier’s
order.

5. CONCLUDING REMARKS

The paper describes how a Supply Chain can be modeled and analysed by CPN and
CPN Tools. The CPN Tools package permits the functions of forming one’s orders
and delivery to be defined in an easy and fast way, which is not possible by using the
modeling tools known to the authors. According to the results, the simulations can
measure different performances: reactions of participants to sudden changes in
customer demands (the bullwhip effect), changes in supply level in a time, surplus of
inventory goods, the costs of SC participants and of the entire SC, etc. It has been
shown that it is possible to form a PN model of a Supply Chain which allows easy
experimenting with different scenarios, i.e., different strategies of SC participants.
Unlike other beer-game implementations, where one participant must be engaged for
each stage, here one participant may simultaneously experiment with the strategies of
all SC stages. With CPN, the phenomena, corresponding to a real situation, e.g. a
random time delivery and different decision rules in phases, as well as several
participants in each SC stage can be applied to CPN model. The bullwhip effect in the
non-linear SC is of special interest.

REFERENCES

[1] N. Bhushan, K. Gummaraju 4 Petri Net Based Simulation Approach for Evaluating
Benefits of Time Temperature Indicator and Wireless Technologies in Perishable Goods
Retail Management FOODSIM'2002 The Second International Conference on Simulation
and Modeling in the Food and Bio-Industry, June 17-18, 2002

[2] S. Chopra, P. Meindl, Supply Chain Management: Strategy, Planning, and operation,
Prentice Hall, Upper Saddle River, New Jersey, 2001.

[3] Coloured Petri Nets at the University of Aarhus. www.daimi.au.dk/CPnets

[4] CPN Tools: www.wiki.daimi.au.dk/cpntools

[5] M. Dong, F.Frank Chen Process modeling and analysis of manufacturing supply chain
networks using object-oriented Petri nets Robotics and Computer-Inetgrated
Manufacturing, Volume 17, Issues1-2, pp. 121-129, February 2001.

[6] K. Jensen Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use.Volume 1,2,3, Springer-Verlag, 1997.

[7] P. Kemper. Logistic Processes go Petri nets.Philippi, S. (Hrsg.): 7. Workshop
Algorithmen und Werkzeuge fiir Petri Netze, Koblenz: Universitit Koblenz-Landau,
pages 69-74, 7/2000.

233

(8]

(9]

[10]

(1]

[12]

R.V. Landeghem, C.-V. Bobeanu Formal modelling Of Supply Chain: An Incremental
Approach Using Petri Nets, Proceedings 14th European Simulation Symposium A.
Verbraeck, W. Krug, eds. (¢) SCS Europe BVBA, 2002

M. von Mevius, R. Pibernik Process Management in Supply Chains — A New Petri-Net
Based Approach Proceedings of the 37th Annual Hawaii International Conference on
System Sciences (HICSS'04) Big Island, Hawaii - January 05 - 08, 2004

J. D. Sterman, Teaching Takes Off: Flight Simulators for Management Education.
OR/MS Today (Oct), 40-44, 1992.

T. H. Truong, F Azadivar Simulation Based Optimization For Supply Chain
Configuration Design Proceedings of the 2003 Winter Simulation Conference, December
7-102003., pp. 1268-1275.

van der Vorst, Jack G.AJ., A. J.M. Beulens, P. van Beek (2000). Modelling and
Simulating Multi-Echelon Food Systems, European Journal of Operational Research, Vol.
122, pp. 354-366.

234

