
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

IT-parken, Aabogade 34
DK-8200 Aarhus N, Denmark

ISSN 0105-8517

October 2005

DAIMI PB - 576

Kurt Jensen (Ed.)

Sixth Workshop and Tutorial on
Practical Use of Coloured Petri Nets
and the CPN Tools
Aarhus, Denmark, October 24-26, 2005

Preface

This booklet contains the proceedings of the Sixth Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, October 24-26, 2005. The workshop is
organised by the CPN group at Department of Computer Science, University of
Aarhus, Denmark. The papers are also available in electronic form via the web
pages: http://www.daimi.au.dk/CPnets/workshop05/

Coloured Petri Nets and the CPN Tools are now used by nearly 3000 users in
106 countries. The aim of the workshop is to bring together some of the users and
in this way provide a forum for those who are interested in the practical use of
Coloured Petri Nets and their tools.

The submitted papers were evaluated by a programme committee with the
following members:

Wil van der Aalst, Netherlands
Jonathan Billington, Australia
Jörg Desel, Germany
Joao M. Fernandes, Portugal
Jorge de Figueiredo, Brazil
Nisse Husberg, Finland
Kurt Jensen, Denmark (chair)
Ekkart Kindler, Germany
Lars M. Kristensen, Denmark
Charles Lakos, Australia
Tadao Murata, USA
Daniel Moldt, Germany
Laure Petrucci, France
Karsten Schmidt, Germany
Robert Valette, France
Rüdiger Valk, Germany
Lee Wagenhals, USA
Jianli Xu, Finland
Wlodek Zuberek, Canada

The programme committee has accepted 16 papers for presentation. Most of these
deal with different projects in which Coloured Petri Nets and their tools have been
put to practical use – often in an industrial setting. The remaining papers deal with
different extensions of tools and methodology.

The papers from the first five CPN Workshops can be found via the web pages:
http://www.daimi.au.dk/CPnets/. After an additional round of reviewing and
revision, some of the papers have also been published as a special section in the
International Journal on Software Tools for Technology Transfer (STTT). For
more information see: http://sttt.cs.uni-dortmund.de/

Kurt Jensen

Table of Contents
Guy Edward Gallasch, Somsak Vanit-Anunchai, Jonathan Billington, and
Lars Michael Kristensen
Checking Language Inclusion On-The-Fly with the Sweep-line Method 1

M.H. Jansen-Vullers and H.A. Reijers
Business Process Redesign at a Mental Healthcare Institute:
A Coloured Petri Net Approach.. 21

Nataliya Mulyar and Wil M.P. van der Aalst
Towards a Pattern Language for Colored Petri Nets .. 39

Lin Liu and Johathan Billington
Enhancing the CES Protocol and its Verification... 59

B. Zouari and S. Zairi
Synthesis of Active Controller for Resources Allocation Systems 79

Irene Vanderfeesten, Wil van der Aalst, and Hajo A. Reijers
Modelling a product based workflow system in CPN tools 99

Michael Westergaard and Kristian Bisgaard Lassen
Building and Deploying Visualizations of Coloured Petri Net Models Using
BRITNeY Animation and CPN Tools .. 119

Cong Yuan, Jonathan Billington, and Jörn Freiheit
An Abstract Model of Routing in Mobile Ad Hoc Networks............................... 137

M. Pesic and W.M.P. van der Aalst
Modeling Work Distribution Mechanisms Using Colored Petri Nets 157

A.K. Alves de Medeiros and C.W. Günther
Process Mining: Using CPN Tools to Create Test Logs for Mining
Algorithms .. 177

C. Lakos and L. Petrucci
Distributed and Modular State Space Exploration for Timed Petri Nets.............. 191

Christian W. Günther and Wil M.P. van der Aalst
Modeling the Case Handling Principles with Colored Petri Nets......................... 211

Ricardo J. Machado, Kristian Bisgaard Lassen, Sérgio Oliveira, Marco
Couto, and Patrícia Pinto
Execution of UML Models with CPN Tools for Workflow Requirements
Validation.. 231

Mariska Netjes, Wil M.P. van der Aalst, and Hajo A. Reijers
Analysis of resource-constrained processes with Colored Petri Nets................... 251

Panagiotis Katsaros, Vasilis Odontidis, and Maria Gousidou-Koutita
Colored Petri Net based model checking and failure analysis for
E-commerce protocols .. 267

Katrin Winkelmann
Application of Coloured Petri Nets in Cooperative Provision of Industrial
Services ... 285

Checking Language Inclusion On-The-Fly

with the Sweep-line Method?

Guy Edward Gallasch1, Somsak Vanit-Anunchai1, Jonathan Billington1, and
Lars Michael Kristensen2??

1 Computer Systems Engineering Centre
School of Electrical and Information Engineering

University of South Australia
Mawson Lakes Campus, SA 5095, AUSTRALIA

Email: guy.gallasch@postgrads.unisa.edu.au, jonathan.billington@unisa.edu.au,
somsak.vanit-anunchai@postgrads.unisa.edu.au

2 Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, DENMARK

Email: kris@daimi.au.dk

Abstract. The sweep-line state space method allows states to be deleted from memory during
state exploration, thus alleviating state explosion. Properties of the system (such as the absence
of deadlocks) can then be verified on-the-fly. This paper presents an extension to the sweep-
line method that allows on-the-fly checking of language inclusion, which is useful for protocol
verification. This has been implemented in a prototype Sweep-line library for Design/CPN. We
evaluate the prototype by applying it to the connection management procedures of the Datagram
Congestion Control Protocol, a new Internet transport protocol.
Keywords: On-The-Fly Protocol Verification, Sweep-line Method, Language Inclusion, Internet
Transport Protocols.

1 Introduction

The collection of methods forming the paradigm of analysis techniques that involve generation
of all or part of the set of reachable states of a system are known as state space methods.
Generation of the state space, along with all possible transitions between states (i.e. the occur-
rence graph) allows many verification questions to be answered by model checking techniques.
State space methods have an advantage over theorem proving techniques [31] in that they are
relatively easily automated in software tools such as SPIN [15, 28] or Design/CPN [6, 9] for
Coloured Petri nets (CPNs) [17,20].

One disadvantage that has been the focus of much research is that of the state explosion
problem [31]. Even for relatively simple systems, the number of reachable states can be very
large. The unfortunate result of state explosion is that in many cases the entire occurrence
graph is too large to fit into computer memory. This has led to the development of a number
of reduction techniques to alleviate the problem.

A good survey of reduction techniques is provided in [31]. The sweep-line exploration
method [7] is a reduction technique that uses the notion of progress to determine which states
to delete and guarantees full exploration of the occurrence graph. By defining a progress map-
ping for the states of the model being analysed, it is possible to exploit progress in the model
to identify states that are guaranteed not to be reached again [7] or are unlikely to be reached
again [22]. The sweep-line method can be used to determine a number of properties on-the-fly,
such as reachability and termination properties (dead markings). Sweep-line has been used to
verify termination properties of CPNmodels of the Internet Open Trading Protocol (IOTP) [12]
and parts of the Wireless Application Protocol (WAP) [14] in addition to analysis of dead tran-
sitions in the WAP model. The sweep-line method was combined with equivalence classes in [4]
and used to verify an infinite-state system in [25]. Several papers on the sweep-line method

? Supported by Australian Research Council Discovery Grants DP0210524 and DP0559927.
?? Supported by the Carlsberg Foundation.

1

have presented extensions to the original algorithm [7] either to extend the range of systems
to which the sweep-line can be applied [22], improve the potential for reduction [21], or add
useful facilities for debugging models [23]. Note that there may be a trade-off between space
and time savings; using sweep-line with a progress mapping that gives a large saving in mem-
ory may induce more re-exploration of parts of the reachability graph and thus take longer
to complete. However, analysis of the CPNs mentioned above indicates that, generally, the
sweep-line achieves a reduction in both time and space.

Of particular relevance to protocol verification is the area of language analysis [3]. In brief,
formal models are created of the service that the protocol should provide and also of the
protocol itself, using e.g. CPNs. The occurrence graphs of these models contain all possible
sequences of user-observable events, called service primitives, exhibited by both the service
and the protocol. The occurrence graphs (OGs) can be interpreted as Finite State Automata
(FSAs) representing the service language and protocol language respectively. If the service and
protocol languages are identical (language equivalent) then the protocol is a faithful refinement
of the service. If the protocol language is contained within the service language (language in-
clusion) then the protocol may still be a faithful refinement of the service, as it may implement
an acceptable subset of the service. If the protocol language is not contained within the service
language, and given that the service is correctly defined, this indicates erroneous behaviour
on the part of the protocol. The check for language inclusion involves computing the language
accepted by the parallel composition of the FSA representation of the protocol OG and the
complement of the FSA representation of the service OG. If this language is empty, language
inclusion holds. Strong parallels can be drawn between this problem and model checking tem-
poral logic [2, 24, 34].

For protocol models with a large number of states, it may be necessary to apply reduction
techniques such as the sweep-line method to alleviate the state explosion problem. Unfortu-
nately, the basic language analysis methods described in [3] and briefly mentioned above require
the full protocol model occurrence graph to be present in memory, a situation the sweep-line
method, by its nature, aims to avoid. Algorithms for temporal logic model checking have been
developed that are conceptually similar to the language inclusion problem [34] with the slight
difference that temporal logic propositions are formulated using Büchi automata accepting
infinite words. Algorithms for performing temporal logic model checking on-the-fly have also
been developed [8, 13].

This paper presents a method of on-the-fly language inclusion checking, similar in spirit to
on-the-fly temporal logic model checking, using the sweep-line method. This allows the language
inclusion property of a protocol model to be checked even when the full occurrence graph is too
large to be stored in computer memory. A prototype sweep-line library incorporating language
inclusion has been developed for the computer tool Design/CPN for CPNs. Our technique is
applied to a CPN model of the connection management procedures of the Datagram Congestion
Control Protocol (DCCP) [18].

The paper includes both theoretical and application-oriented contributions. The function-
ality of the sweep-line method has been extended to allow the checking of language inclusion
on-the-fly. This development allows checking the conformance of a system to any property
expressable as a deterministic ε-free FSA and is thus far more general than the protocol veri-
fication context described above. Application of the prototype implementaton has allowed us
to confirm the language inclusion property of DCCP’s connection management procedures to
its service for configurations of the DCCP model that were previously unattainable by the
conventional protocol verification techniques in [3].

The rest of this paper is organised as follows. Section 2 provides a brief introduction to
the sweep-line method. Section 3 introduces the idea of language inclusion and describes the
procedure for determining whether or not the property of language inclusion holds for a given

2

protocol. Section 4 describes our method for checking language inclusion on-the-fly with the
sweep-line method and a proof of correctness is given. We demonstrate our method on DCCP’s
connection management procedures in Section 5. Finally, some concluding remarks and future
work are presented in Section 6. We assume that the reader is familiar with the basic concepts
of reachability analysis and formal language theory.

2 The Sweep-line Method

The sweep-line method is based on the notion of progress within the system being modelled.
Systems exhibit progress in different ways. One example is found in transaction protocols,
where interacting protocol entities move through a series of interactions towards a final com-
pleted state. Many communication protocols exhibit progress through sequence numbers and
retransmission counters. The key concept behind the sweep-line method is that if we can quan-
tify the progress of a system in each state, then we can identify the states with a lower progress
value that cannot be (or are unlikely to be) reached from states with a higher progress value.
When states are no longer reachable we do not need to keep them in memory for comparison
with each newly generated state.

The notion of progress is captured formally in a progress measure [7, 22]. Importantly
a progress measure specifies a progress mapping ψ from states to progress values that are
ordered. In this paper we shall use the natural numbers N as the set of progress values and
their usual order relations (e.g. ≤, <,>). We begin by defining an occurrence graph as a
formalism-independent labelled directed graph, a progress mapping from states of an OG to
progress values and then explain how the sweep-line method works by way of an abstract
example.

Definition 1 (Occurrence Graph).
The occurrence graph OG of a finite state system can be represented as a labelled directed graph
OG = (S,L,E, s0) where

– S is the finite set of states accessible from the initial state s0;
– L is a set of labels;
– E ⊆ S × L× S is the set of labelled directed edges; and
– s0 ∈ S is the initial state.

Definition 2 (Progress Mapping).
A progress mapping ψ from the states of an OG to progress values is a function ψ : S → N
where

– S is the set of states of OG; and
– N is the set of natural numbers.

If, for all s ∈ S, all successors of s have progress values equal to or greater than s, then we
say ψ is monotonic, i.e. ψ is monotonic iff ∀(s, l, s′) ∈ E,ψ(s′) ≥ ψ(s). If this condition does
not hold, i.e. if ∃s′ ∈ S such that (s, l, s′) ∈ E and ψ(s′) < ψ(s), then (s, l, s′) is a regress edge,
and ψ is non-monotonic. The monotonicity of the progress mapping can be checked during
OG generation as all arcs in the OG are traversed by the sweep-line method.

We may consider that the mapping ψ induces an ordered partition on the set of reachable
states. When generating the occurrence graph, once all successors of all states with a particular
(minimum) progress value have been generated, all the states (that are not of interest) with
this progress value can be deleted, freeing up memory, and reducing the time spent comparing
new states with those already generated. The overhead is calculating the progress value for
each state, and ensuring that states are explored in a least-progress-first order.

3

Figure 1 (from [23]) shows three snapshots of the OG during OG exploration. Arc labels
have been omitted to simplify the diagram. The states are arranged from left to right in
ascending progress order. Nodes that have been explored and deleted are represented as empty
circles. Nodes currently in memory (but that have not yet been explored) are solid black
circles. Nodes yet to be discovered are grey circles. In this example we assume that states are
markings of a CPN. In Fig. 1 (a) the states M0 and M1 have been explored and subsequently
deleted because they have a smaller progress value than the minimal progress value among the
unexplored states M2, M3 and M4. The conceptual sweep-line is shown as a vertical dashed
line, immediately to the left of the unprocessed states.

Exploring in least-progress-first order means that either M2 or M3 will be explored next.
When both have been explored, the sweep-line moves to the right and M2 and M3 are deleted,
giving the situation shown in Fig. 1 (b). M4, M5 and M6 will be explored and eventually
the situation shown in Fig. 1 (c) will be obtained. When M8 is explored two regress edges
are identified, one going to the previously explored state M6 and the other to the unexplored
state M9. Note that the algorithm does not know that M6 has already been explored, as it
was deleted. The Sweep-line method has no way of distinguishing between these two types
of regress-edge destinations and so must treat them both as though they have not yet been
explored. This is done by marking both M6 and M9 as persistent , meaning that they cannot
be deleted. Exploration does not continue along regress edges, but M6 and M9 are flagged as
roots (initial states) for a subsequent sweep. In the subsequent sweep, M10 is discovered, along
with the re-exploration of M4, M7 and M8. Because M6 and M9 are persistent, the regress
edges to M6 and M9 discovered in the re-exploration of M8 do not induce a further sweep. The
correctness of the sweep-line algorithm (both termination and full OG coverage) was proved
in [22].

An algorithm for the sweep-line method that uses non-monotonic progress mappings was
presented in [22]. We presented a modified version in [12] that used set notation, which we
reproduce in Fig. 2. For a detailed description of this algorithm, the reader is referred to [12].

One drawback of the sweep-line method is that users need to define and supply their own
progress mapping. Steps have been taken towards automatic generation of ψ for low-level Petri
nets [30] and compositional systems [21].

3 Language Analysis in Protocol Design and Verification

Language analysis is commonly used in the area of protocol design and verification. A service
specification captures the requirements of a protocol, such as absence of deadlock and livelock,

N

M1

M4

M7

M0

M2

M3 M6

M8

M10

M9

M5

(a)

N

M1

M4

M7

M0

M2

M3 M6

M8

M10

M9

M5

(b)

N

M1

M4

M7

M0

M2

M3 M6

M8

M10

M9

M5

(c)

Fig. 1. Snapshots of sweep-line occurrence graph exploration.

4

1: Roots← {s0}
2: Persistent← ∅
3: Unexplored← ∅
4: Explored← ∅
5: Successors← ∅
6: while Roots 6= ∅ do

7: Unexplored ← Roots

8: Roots ← ∅
9: while Unexplored 6= ∅ do

10: (* Generate the successors of a node in Unexplored that has the lowest progress value *)
11: Select s ∈ {s′ ∈ Unexplored | ∀s′′ ∈ Unexplored, ψ(s′) ≤ ψ(s′′)}
12: Unexplored← Unexplored \ {s}
13: Explored← Explored ∪ {s}
14: Successors← {s′|(s, l, s′) ∈ E}
15: if Successors 6= ∅ then

16: Roots← Roots ∪ {s′ ∈ Successors | ψ(s′) < ψ(s) and s′ 6∈ Persistent}
17: Persistent← Persistent ∪ {s′ ∈ Successors | ψ(s′) < ψ(s)}
18: Unexplored← Unexplored ∪ {s′ ∈ Successors | ψ(s′) ≥ ψ(s) and s′ 6∈ Explored}
19: end if

20: (* Delete states that have a progress value less than those in Unexplored *)
21: Explored← Explored \ {s ∈ Explored|∀s′ ∈ Unexplored, ψ(s) < ψ(s′)}
22: end while

23: end while

Fig. 2. The Generalised Sweep-line Algorithm, based on the algorithm from [22].

and specifies the service that the protocol must provide to its users. An important part of this is
the specification of the allowable sequences of user-observable events, called service primitives.
A service primitive represents an interaction between the user of the service and the provider
of that service. The allowable sequences of these service primitives form the service language,
which we denote LS in this paper.

The behaviour of the protocol itself is captured in a protocol specification. Whereas the
service specification defines the ‘what’, the protocol specification defines the ‘how’. The protocol
specification captures, among other things, a set of sequences of user-observable events (the
service primitives) referred to as the protocol language, which we denote LP . The descriptions
in this section are initially at a high level, i.e. assuming that we know our service and protocol
languages. The method by which we can obtain the service and protocol languages from the
service and protocol specifications is discussed later in this section.

The test for language equivalence is conducted in two parts. The first is checking whether
LP ⊆ LS , i.e. that the protocol language is contained in the service language. This step is
known as language inclusion. (It is similar in spirit to the notion of trace preorder [31] when
using trace equivalence.) If this is true, we say that the protocol implements (a subset of) the
service and we can guarantee that the protocol does not exhibit any user-observable behaviour
that is not in the service. Whether or not the subset of the service implemented by the protocol
is an acceptable subset depends very much on the protocol itself and is not within the scope
of this paper, however [29] provides a good example and discussion. If LP 6⊆ LS (and given
that the service specification is correct) this indicates that the protocol exhibits unexpected or
erroneous behaviour.

The second part of language equivalence involves checking whether LS ⊆ LP , i.e. that
everything contained in the service language is contained in the protocol language. If this is
true, then all of the behaviour specified by the service is implemented by the protocol. Checking
LS ⊆ LP does not, however, say anything about erroneous behaviour of the protocol. Checking
LS ⊆ LP on-the-fly is outside the scope of this paper but is a topic of future research.

5

3.1 Finite State Automata Representations of Protocol and Service Languages

Finite State Automata (FSAs) [1] are a useful formalism for the representation and manipula-
tion of service and protocol languages.

Definition 3 (Finite State Automaton).
FSA = (V,Σ,A, i, F) is a Finite State Automaton, where

– V is a finite set of states;
– Σ is a finite set of symbols called the alphabet;
– A ⊆ V × Σ ∪ {ε} × V is the set of actions (transition relation) of the FSA and ε is the
empty action;

– i ∈ V is the initial state of the FSA; and
– F ⊆ V is the set of final states of the FSA.

The language represented by an FSA, denoted L(FSA), is the set of all (finite) sequences
of symbols from the alphabet Σ recognised by the FSA and that end in a final state. This is
sometimes referred to as the language accepted [1] or marked [5] by the FSA. Formal definitions
can be found in [1, 5]. In the context of protocol engineering, such a sequence of primitives
(called a string) represents a sequence of actions as defined by the service (for LS) or protocol
(for LP) specification.

Given a deterministic, ε-free FSA representing the language L(FSA) it is easy to find
an FSA representing its complement. We denote the complement of FSA as FSA and the
complement of L(FSA) as L(FSA). The following definition is based on [5].

Definition 4 (Complement of a Deterministic ε-free FSA).
Let FSA = (V,Σ,A, i, F) be a deterministic ε-free FSA. The complement of FSA (with respect
to Σ) is denoted FSA = (V ,Σ,A, i, F) where

– V = V ∪ {Trap};
– A = A ∪ {(v, l, T rap) | v ∈ V , l ∈ Σ and ∀v′ ∈ V, (v, l, v′) 6∈ A}; and
– F = {v ∈ V | v 6∈ F}.

Throughout the rest of this paper let us denote the FSA representing the service language
as FSAS and the equivalent ε-free deterministic FSA as DFSAS = (VS , ΣS , AS , iS , FS). Let
us also denote the FSA representing the protocol language as FSAP = (VP , ΣP , AP , iP , FP)
and its deterministic ε-free equivalent as DFSAP . This paper deals with FSAP directly and
not DFSAP because the FSA obtained when interpreting an occurrence graph as an FSA, as
described shortly, will in general contain ε transitions and therefore be nondeterministic. In
the conventional situation, however, it is usual for DFSAP to be obtained and used [3]. For
our purposes, there is no technical need for DFSAS or FSAP to be minimal, but minimisation
can provide space and time benefits in the manipulation of large service or protocol languages.

The occurrence graph of a protocol (or service) model contains all possible sequences of
actions that can be performed by the protocol (or service). The occurrence graph therefore
contains all sequences of service primitives in the protocol (or service) language, although not
necessarily in a form that is easy to analyse or manipulate. Fortunately, an occurrence graph
can be interpreted as a FSA simply by designating an initial state and a set of halt states [3,31].
This FSA thus provides a neat way to encapsulate and manipulate the protocol (or service)
language, with well-known algorithms for determinisation and minimisation [1].

In the context of protocol verification, we can map from the labels on the arcs of an OG
to the set of service primitives, or to ε for actions that do not correspond to service primitives.
For practical examples we also define a mapping to enumerate the states of the OG (i.e. a
mapping from states to integers) for ease of manipulation by computer tools such as the FSM
Library [10]. Conceptually, however, this is unnecessary.

6

Definition 5 (Arc Label Mapping).
Let SP be the set of service primitives of a given service and protocol. Let Prim : L→ SP∪{ε}
be a mapping from arc labels in an OG to service primitive names or the empty action ε.

Application of this mapping to an OG results in an abstract occurrence graph [3] which can
be interpreted as a FSA:

Definition 6 (Finite State Automaton of an Abstract OG).
Let OG = (S,L,E, s0) be an occurrence graph as per Definition 1. By applying the mapping
Prim from Definition 5 to OG, let FSAOG = (VOG, SP,AOG, iOG, FOG) be a Finite State
Automaton interpretation of the abstract OG, where

– VOG = S is the set of states of the FSA;
– SP is the set of service primitive names of the system of interest (the alphabet of the FSA);
– AOG = {(s, Prim(l), s′) ∈ V ×SP ∪{ε}×V | (s, l, s′) ∈ E} is the set of transitions labelled
with service primitives or epsilons for internal events;

– iOG = s0 is the initial state of the FSA; and
– FOG ⊆ VOG is the set of final states of the FSA.

The FSA interpretation requires knowledge of the legitimate final states of the system prior
to analysis. For most protocols, this is not an unreasonable assumption. Legitimate halt states
may be known a priori or can be determined with an iterative analysis process. If one cannot
inspect the state space (e.g. because it is too large to be generated) it is usual in practice to
determine halt states on-the-fly using e.g. a predicate function.

Interpretation of the service and protocol OGs as FSAs results in FSAs representing the
service (denoted FSAS) and protocol (denoted FSAP) languages. FSAS is usually already
deterministic and ε-free although, if not, must undergo ε removal and determinisation proce-
dures [1] to obtain DFSAS , as the procedure for language inclusion checking calculates the
complement of DFSAS . FSAP does not need to be ε-free or deterministic for the purposes
of language inclusion checking. This is critical for combining language inclusion checking with
the Sweep-line method, as traditional algorithms for ε removal and determinisation [1] require
the whole FSA to be in memory, something the sweep-line method aims to avoid.

3.2 Checking Language Inclusion

The procedure for checking language inclusion follows the narrative descriptions in [31] for
using finite test automata representing regular languages to verify properties of a system.
For language inclusion to hold, all sequences of service primitives recognised by FSAP must
also be recognised by DFSAS , i.e. L(FSAP) ⊆ L(DFSAS), or L(FSAP) ∩ L(DFSAS) =
L(FSAP). Conversely, no sequences recognised by FSAP can be recognised by DFSAS , i.e.
L(FSAP) ∩ L(DFSAS) = ∅. In practice, algorithms reason on automata [2], not on regular
expressions or (possibly infinite) sets of sequences.

The notion of parallel composition [5,19] provides a convenient way of finding the common
behaviour of two FSAs and thus the common sequences of shared symbols, i.e. the intersection
of their languages. A common event (in our case a service primitive) can only be executed
in the parallel composition if both FSAs execute it simultaneously, and so the two FSAs are
synchronised on the common events [5]. All non-common events (in our case the ε transitions in
FSAP) can execute without constraint. In our case the two FSAs share a common alphabet,
and thus the set of shared sequences of service primitives is the language accepted by the
parallel composition. If this set is empty, language inclusion holds. We formalise this below.

We define the parallel composition of two FSAs as follows (based on the definitions in [5]).
Note that unlike [5] we use l rather than σ to denote a single symbol from alphabet Σ ∪ {ε}.
We use σ more conventionally to denote a sequence of symbols from Σ.

7

Definition 7 (Parallel Composition).
Let FSA1 = (V1, Σ1, A1, i1, F1) and FSA2 = (V2, Σ2, A2, i2, F2) be two FSAs. The parallel
composition, denoted ||, of FSA1 and FSA2 is defined as FSA1 || FSA2 = (V,Σ,A, i, F)
where

– V ⊆ V1 × V2 is the set of reachable states of the parallel composition;
– Σ = Σ1∪Σ2 is the set of actions of the parallel composition (Σ1∩Σ2 is the set of common
actions on which the two FSAs are synchronised);

– A = {((v1, v2), l, (v
′
1
, v′

2
)) | l 6= ε, (v1, l, v

′
1
) ∈ A1 and (v2, l, v

′
2
) ∈ A2}

∪ {((v1, v2), l, (v
′
1
, v2)) | (v1, l, v

′
1
) ∈ A1 and l 6∈ Σ2}

∪ {((v1, v2), l, (v1, v
′
2
)) | (v2, l, v

′
2
) ∈ A2 and l 6∈ Σ1} is the set of transitions labelled with

actions;
– i = (i1, i2) ∈ V is the initial state; and
– F ⊆ {(v1, v2)|v1 ∈ F1, v2 ∈ F2} is the set of final states of the parallel composition.

We are now ready to state the key theorem for language inclusion checking based on [19].

Theorem 1. Let DFSAS = (VS , ΣS , AS , iS , FS) be a deterministic and ε-free FSA represent-
ing the service language of a system and FSAP = (VP , ΣP , AP , iP , FP) be a (nondeterministic)
FSA representing the protocol language of the same system, where ΣS = ΣP is the set of service
primitives. For LS = L(DFSAS) and LP = L(FSAP),

LP ⊆ LS iff L(FSAP || DFSAS) = ∅

where DFSAS is the complement (with respect to ΣS) of DFSAS, || is the parallel composition
operator and ∅ is the empty set of strings.

Proof. Denote the complement of LS (with respect to ΣS) by LS such that LS = L(DFSAS).
Using the intersection results from [19] we know that the parallel composition of DFSAS and
FSAP is an automaton for the intersection of LS and LP . It follows from basic set theory that
LP is a subset of LS if and only if the intersection of FSAP and DFSAS is empty. ut

The fsmdifference routine from the FSM tool suite [10] uses this approach to provide
automated language inclusion checking and forms part of the protocol engineering methodology
presented in [3].

3.3 A Simple Illustrative Example

A simple example will be used to illustrate the language inclusion checking process. We define,
using FSAs, a simple service, a simple protocol, and a second simple but erroneous protocol.

Our simple service FSA representation is shown in Fig. 3 (a), denoted DFSAS . We have
two service primitives, namely Send and Receive. The service consists of a single Send event
followed by a single Receive event, reflected in the FSA in Fig. 3 (a). The initial state is state 0,
represented by the bold circle, and the terminal (accepting, halt) state is state 2, represented
by the double circle. The sequence (Send, Receive) is the only sequence accepted by this service.

Our simple protocol FSA representation is shown in Fig. 3 (b), denoted FSAP . Note that
some arcs are labelled with ε, the empty move. This symbolises that the protocol performs
actions that are not service primitives and are thus not externally visible. This protocol accepts
two sequences of actions, (Send, ε, Receive) and (ε, Send, Receive). When abstracting from
internal protocol actions, both of these are the sequence (Send, Receive). Thus by inspection
the protocol language is the same as the service language, and thus LP ⊆ LS holds.

Our erroneous protocol, however, accepts the sequence of primitives (Send, Send, Receive).
This sequence corresponds to loss, where two Send operations are followed by only one Receive
operation. This is shown in Fig. 3 (c) and is denoted FSAPerr. The sequence through states
0 → 1 → 2 → 4 → 5 is erroneous, as when abstracting from internal protocol actions, this
sequence is not contained in the service language.

8

Calculating the Service Language Complement
The service language complement contains all strings over the alphabet of service primitives
that are not in LS . Obtaining the complement FSA, DFSAS , as per Definition 4, is shown
in two steps in Fig. 4. Figure 4 (a) reproduces the service from Fig. 3. Figure 4 (b) shows
the introduction of the Trap state and the completion of the FSA [5]. Figure. 4 (c) shows the
inversion of the halt states and the resulting DFSAS .

Calculating the Parallel Composition
Applying Definition 7 to FSAP (Fig. 5 (a)) and DFSAS (Fig. 5 (b)) the parallel composition is
obtained, as shown in Fig. 5 (c). The initial state is the composite state (0,0). The synchronised
action Send can occur from both node 0 in FSAP and node 0 in DFSAS and this is reflected
in the arc from (0,0) to (1,1) in Fig. 5 (c). The action ε represents a non-synchronised action
and is thus represented by the arc from (0,0) to (2,0) in Fig. 5 (c). The rest of the parallel
composition can be described in a similar way. From Definition 7 a state of the parallel com-
position is designated a final state only if the corresponding states in both FSAP and DFSAS

are designated as final states. No final states are reachable in the parallel composition, and
thus L(FSAP ||DFSAS) = ∅ and language inclusion holds.

Detecting Erroneous Sequences
Our simple example FSAP contains no erroneous sequences, as L(FSAP || DFSAS) = ∅. This
can be easily confirmed by inspection of FSAP and FSAS for the single sequence allowable
by DFSAS , but in general this is far from trivial.

What if LP 6⊆ LS? Figure 6 shows the parallel composition of the erroneous protocol,
FSAPerr, from our running example. FSAPerr is reproduced in Fig. 6 (a). Recall that the er-
roneous protocol accepts a sequence comprising two Send primitives followed by a single Receive
primitive (after abstracting from internal protocol actions). The resulting parallel composition
of this and DFSAS in Fig. 6 (b) is shown in Fig. 6 (c). It accepts the erroneous string, thus
L(FSAPerr || DFSAS) 6= ∅ and this indicates an error in the protocol.

The inverse projection of L(FSAPerr || DFSAS) onto the alphabet LPerr of the OG from
which FSAPerr was derived allows error traces in the original OG, and thus in the protocol,
to be obtained. While a procedure for obtaining error traces is beyond the scope of this paper,
it provides a topic for future research.

1

2

0

Receive

Send

(a) DFSAS

0

5

Receive Receive

1 2

3 4

Send

Sendε

ε

(b) FSAP

0

5

Receive Receive

1 2

3 4

Send

Send

ε

ε

ε

(c) FSAPerr

Fig. 3. (a) A simple Service Specification. (b) A simple Protocol Specification. (c) A simple but erroneous
Protocol Specification.

9

1

2

0

Receive

Send

(a) DFSAS

1

0

2

Send

Receive

Send

Receive

Send | Receive

Trap

Send | Receive

(b) Adding the Trap state
and Completing the FSA

1

0

2

Send

Receive

Send

Receive

Send | Receive

Trap

Send | Receive

(c) DFSAS

Fig. 4. Obtaining DFSAS from DFSAS .

0

5

Receive Receive

1 2

3 4

Send

Sendε

ε

(a) FSAP

1

0

2

Send

Receive

Send

Receive

Send | Receive

Trap

Send | Receive

(b) DFSAS

(0,0)

(5,2)

Send

(1,1) (2,0)

Send

(3,1) (4,1)

Receive Receive

ε

ε

(c) FSAP || DFSAS

Fig. 5. The parallel composition of FSAP and DFSAS .

4 On-the-Fly Language Inclusion Checking with the Sweep-Line Method

Methods for on-the-fly verification of conformance between a system and a specification or
property of that system using standard reachability techniques are not new. Valmari [31] de-
scribes a procedure for on-the-fly checking of trace equivalence using composition of FSAs. In
the area of temporal logic model checking, techniques exist to compose Büchi automata to
verify temporal logic propositions on-the-fly [8, 13].

We augment the sweep-line method so that it interprets the OG of a protocol as an FSA
and performs the parallel composition with the complemented service language on-the-fly. In
essence, the sweep-line algorithm no longer generates the OG of the protocol, but rather it
generates the parallel composition of FSAP with DFSAS , guided by the exploration of the
reachable states of the protocol model. Essentially we are sweeping the parallel composition.

It is often the case that when modelling a protocol specification, its occurrence graph
is too large and reduction techniques need to be applied. This is not usually the case for
the service specification, however, which generally is much less complicated than the protocol
specification. Experience has shown us that when service specifications are finite, the occurrence
graphs of service specification models tend to be quite small and easily manageable by standard
techniques. For the rest of this paper, we assume that this is the case, and assume we are able
to obtain DFSAS and DFSAS for our given service specification.

10

0

5

Receive Receive

1 2

3 4

Send

Send

ε

ε

ε

(a) FSAPerr

1

0

2

Send

Receive

Send

Receive

Send | Receive

Trap

Send | Receive

(b) DFSAS

(2,0)

(0,0)

Send

(4,1)

Receive

(5,2)

(3,1)

Receive

Send

(1,1)

(5,Trap)

Receive

Send

(2,1)

(4,Trap)

ε

ε

ε

(c) FSAPerr || DFSAS

Fig. 6. The parallel composition of FSAPerr and DFSAS .

4.1 Sweeping the Parallel Composition

To compute the parallel composition on-the-fly we must interpret the occurrence graph of the
protocol specification model, OGP , as FSAP on-the-fly. This presents no difficulty given the
interpretation provided by Definition 6 with a predicate to determine legitimate halt states.
From this point on, we will refer only to the FSA interpretation of the OG of the protocol
model.

Because the sweep-line algorithm now operates on pairs of states (vP , vS) ∈ VP × VS we
define a new progress mapping for the sweep-line method:

Definition 8 (Parallel Composition Progress Mapping).
A progress mapping ψ|| from states of FSAP || FSAS to progress values is a function ψ|| :
V → N where

– V = VP × VS is the set of states of the parallel composition; and

– N is the set of natural numbers.

Although the progress mapping is from state pairs, it is not obvious to us how the states of
DFSAS may contribute to progress. This is because it is the complement of the service. The
service has already abstracted as much as possible from states as it is only meant to define
the service language. Now taking its complement provides no physical insight into a notion of
progress that may be compatible with our feel for progress in the protocol. We therefore do not
attempt to derive any measure of progress from the states of DFSAS . Thus ψ|| is essentially
the progress mapping ψP for the protocol, that would be used for sweep-line exploration of the
OG for properties such as deadlock. The definition of a progress mapping given above can be
readily extended to progress vectors as is done in [11].

Because we are calculating the parallel composition on-the-fly, there are two factors that
must drive the exploration. Firstly, exploring all reachable states in OGP , and secondly, ex-
ploring all states in the parallel composition.

The second condition is satisfied by the sweep-line method itself. States in V will only be
deleted once all successors are known. The only consequence, if any, may be re-exploration of
some states of FSAP , but sweep-line guarantees that truncated exploration will never occur.

The first condition is satisfied because it is the actions of the protocol model that drive the
exploration of new states in the parallel composition. Any action enabled in a state vP ∈ VP

is mapped either to a service primitive or to ε. If mapped to a service primitive, then by

11

definition an identical action is guaranteed to exist in the corresponding vS ∈ VS of DFSAS .
Or, if mapped to ε, the corresponding state in DFSAS remains unchanged.

States of OGP may be explored many times even when they are not deleted. When cal-
culating the Occurrence graph new states are generated until all reachable states have been
explored. In our case, however, we wish to explore all sequences of actions. This may require
some parts of FSAP to be explored (and regenerated, if states have been deleted by the sweep-
line) more than once. With respect to the parallel composition, this situation may correspond
to two different sequences of service primitives leading to the same state in FSAP but different
states in DFSAS .

If we are only interested in the fact that there is erroneous behaviour in the protocol,
exploration can be terminated as soon as DFSAS enters the ‘Trap’ state [31]. Similar ideas
can be found in temporal logic model checking where verification can be terminated as soon as
the proposition is found not to hold [13]. The action of the protocol corresponding to entering
the Trap state is an action that violates the service. Once entered, DFSAS can never leave
the trap state.

In some sense, detection of erroneous behaviour by detecting DFSAS entering the halt
state is slightly more general than detecting erroneous sequences in FSAP . It is conceivable
that an erroneous action of the protocol will not result in acceptance of an erroneous sequence
in FSAP , even though it is clear that an action in the protocol has violated the service. This
will happen if FSAP never reaches a halt state after the erroneous action occurs (recall that
the Trap state is a halt state in DFSAS .) There are two situations in which this could happen,
namely if after the erroneous action, the protocol model reaches a dead marking that is not
a halt state, or the protocol enters a livelock composed of non-halt states. However both are
unlikely for the following reasons. It is usually the case in protocol verification that (among
others) all dead markings of a protocol model are mapped to halt states [3], thus excluding
the first possibility. Detecting livelocks is a separate step of the protocol verification process [3]
conducted prior to language analysis, thus excluding the second possibility.

4.2 Coping with Regress and Deletion of States

Discovery of regress edges may result in some parts of the parallel composition being explored
multiple times, depending on whether the regress edge leads to a state that has not yet been
explored or to a state that has been explored and subsequently deleted. We must prove that
the conventional parallel composition construction using the full FSAP is language equivalent
to the parallel composition construction created when using the sweep-line method.

Theorem 2. Let FSAPf = (Vf , ΣP , Af , if , Ff) be the FSA interpretation of the abstract full
occurrence graph of a protocol model and FSAPu = (Vu, ΣP , Au, iu, Fu) be the FSA interpreta-
tion of the abstract occurrence graph of the same model, generated using the sweep-line method
with an arbitrary progress mapping. Then:

L(FSAPf || DFSAS) = L(FSAPu || DFSAS)

Proof. The first part of this proof involves showing that the full OG of an arbitrary model is
language equivalent to an OG obtained when using the sweep-line method. We call such an
OG a sweep-line unrolled OG, resulting from multiple sweeps and re-exploration due to regress
edges. Conceptually, consider that each state in Vu is augmented with an integer to indicate
the sweep in which it was explored as was done in [26]. In this way, the states that are explored
multiple times are differentiated, hence the term sweep-line unrolled .

In [26] Mailund proved that FSAPf and FSAPu were strongly bisimilar [31]. To prove
that FSAPf and FSAPu are language equivalent we first prove trace equivalence [31]. In
our context, a trace is the sequence of service primitives obtained from a finite execution of

12

FSAPf or FSAPu after removal of all ε symbols [31]. The set of all traces of an FSA is called
its trace semantics. It can be shown that if two FSAs are strongly bisimilar, they are also trace
equivalent [27]. Trace equivalence is a congruence with respect to hiding [31] (i.e. application
of the mapping Prim from Definition 5) and so when non-service primitives in L are replaced
by ε, the two FSAs are still trace equivalent.

The final step to prove language equivalence involves showing that the traces ending in a
halt state in FSAPf also end in a halt state in FSAPu, and vice versa. (The language of the
FSA is the subset of the traces of the FSA that end in final states.) This result follows directly
from the strong bisimilarity of FSAPf and FSAPu.

Because FSAPf and FSAPu are language equivalent, it follows that the language of the
parallel composition is equivalent regardless of whether FSAPf or FSAPu is used. From [19]
L(FSAPf || DFSAS) = L(FSAPf) ∩ L(DFSAS). Because FSAPf and FSAPu are language
equivalent, this is equal to L(FSAPu) ∩ L(DFSAS), which is equal to L(FSAPu || DFSAS).
So the parallel compositions are language equivalent. ut

4.3 Implementation

A prototype sweep-line library incorporating language inclusion checking has been implemented
for the tool Design/CPN [9]. In addition to the CPN model of a protocol, the library takes
as input a textual representation of DFSAS , from which DFSAS is computed as described
in Definition 4. The main algorithm of the library, shown in Fig. 7, explores the parallel
composition. (This algorithm can also compute integer bounds, evaluate predicates and return
the set of dead markings of the protocol model, although this is not reflected in the simplified
algorithms in Fig. 2 or Fig. 7.) Figure 7 assumes that DFSAS has already been calculated.
The algorithm is formulated in the context of FSAP and DFSAS and the set of states being
explored are the composite states (vP , vS) ∈ VP×VS . Lines 1, 12 and 15 have been modified and
lines 6, 16 and 26 are new with respect to the algorithm presented in Fig. 2. The set Accepting,
initialised to the empty set on line 6, records the accepting states of the parallel composition on
line 16. The algorithm returns true if language inclusion holds, i.e. if Accepting = ∅ on line
26. Our implementation allows the user to truncate exploration along erroneous paths by not
adding successor states to Successors on line 14 if v′S = Trap. Given the discussion at the end
of Section 4.1, if the user is only interested in an answer to the proposition “Does LP ⊆ LS

hold?” the algorithm could be terminated at line 15 as soon as a successor is generated in
which v′S = Trap. Our implementation reports these successors but does not terminate the
algorithm.

5 Validation using the Datagram Congestion Control Protocol

The purpose of this section is to validate the algorithm and its implementation for proving
language inclusion using the sweep-line method. To do this we use a new protocol being devel-
oped for the transport layer of the Internet, called the Datagram Congestion Control Protocol
(DCCP) [18]. DCCP has recently been approved as a Proposed Standard by the Internet
Engineering Steering Group (IESG). The protocol was designed to overcome the problem of
congestion arising in the Internet due to uncontrolled traffic sources (e.g. for delay sensitive
applications such as voice) using the User Datagram Protocol. DCCP is connection-oriented
to allow negotiation of congestion control mechanisms. An important and new part of DCCP
is the way it establishes and releases connections, known as connection management. We are
thus interested in verifying DCCP’s connection management procedures. These procedures are
defined [18] by pseudo code and a finite state machine with nine states: CLOSED, LISTEN, RE-
QUEST, RESPOND, PARTOPEN, OPEN, CLOSEREQ, CLOSING and TIME-WAIT. The

13

1: Roots← {(iP , iS)}
2: Persistent← ∅
3: Unexplored← ∅
4: Explored← ∅
5: Successors← ∅
6: Accepting← ∅
7: while Roots 6= ∅ do

8: Unexplored ← Roots

9: Roots ← ∅
10: while Unexplored 6= ∅ do

11: (* Generate the successors of a node in Unexplored that has the lowest progress value *)
12: Select s = (vP , vS) ∈ {s

′ ∈ Unexplored | ∀s′′ ∈ Unexplored, ψ(s′) ≤ ψ(s′′)}
13: Unexplored← Unexplored \ {s}
14: Explored← Explored ∪ {s}
15: Successors← {(v′P , v

′
S) | (vP , l, v

′
P) ∈ AP , (vS , l, v

′
S) ∈ AS}∪{(v

′
P , vS)|(vP , l, v

′
P) ∈ AP , P rim(l)=ε}

16: Accepting← Accepting ∪ {(v′P , v
′
S) ∈ Successors | v′P ∈ FP , v

′
S ∈ FS}

17: if Successors 6= ∅ then

18: Roots← Roots ∪ {s′ ∈ Successors | ψ(s′) < ψ(s) and s′ 6∈ Persistent}
19: Persistent← Persistent ∪ {s′ ∈ Successors | ψ(s′) < ψ(s)}
20: Unexplored← Unexplored ∪ {s′ ∈ Successors | ψ(s′) ≥ ψ(s) and s′ 6∈ Explored}
21: end if

22: (* Delete states that have a progress value less than those in Unexplored *)
23: Explored← Explored \ {s ∈ Explored|∀s′ ∈ Unexplored, ψ(s) < ψ(s′)}
24: end while

25: end while

26: return (Accepting = ∅)

Fig. 7. The Generalised Sweep-line Algorithm augmented for Language Inclusion Checking.

procedures are implemented by exchanging packets between peer DCCP entities in end sys-
tems. DCCP uses 10 different packet types: Request, Response, Data, DataAck, Ack, CloseReq,
Close, Reset, Sync and SyncAck. Each packet includes 48 bit sequence numbers and most
packets also include a 48 bit acknowledgement number. For each connection, DCCP entities
maintain a set of state variables to keep track of sequence numbers. The important variables
for connection management are Greatest Sequence Number Sent (GSS), Greatest Sequence
Number Received (GSR), Greatest Acknowledgement Number Received (GAR), and the Ini-
tial Sequence Number Sent and Received (ISS and ISR). For a complete description of the
protocol, please see [18,33].

We modelled and analysed the Connection Management (CM) procedures of version 5 of
DCCP with CPNs and found a deadlock [32]. Since then, DCCP has been revised 6 times and
is now at version 11. We revised our CPN model of DCCP to version 11 and found chatter in
the protocol using the OG tool of Design/CPN [33]. However, no attempt has been made as
yet to verify DCCP CM against its service.

5.1 DCCP-CPN Model

The DCCP CM CPN model [33] comprises 6 places, 22 substitution transitions, 63 executable
transitions and 9 functions. The structure is shown in the hierarchy page in Fig. 8 and the
top-level view in the DCCP Overview Page shown in Fig. 9. For a detailed description of the
model, the reader is referred to [33].

5.2 DCCP Service Model and Language

DCCP [18] does not define the service of DCCP to its users. Hence our first task was to create
a service definition. We did this from our knowledge of the protocol and by following the
Open Systems Interconnection Connection-Oriented Transport Service Definition [16]. Firstly

14

ML_Eval#17

StopOptions#21DCCP#1 M Prime

Closed#30

Listen#31

Declarations#12

RcvSync#499

RcvReset#498

CommonProcessing#7

RcvOtherPkt#6

Timewait#35

Close_Request#37

Open#4

PartOpen_Receiver_Packet#44
1

PartOpen_Timeout#442

Respond_Receive_Packet#431

Respond#33

Respond_Teardown#432

Request_Receive_Packet#421

Request#32

Request_Timeout#422

PartOpen_Teardown#443

Closing#8

PartOpen#34

DCCP_CM#2

Hierarchy#10
010

TransitionBinding#3

SweepLineLib#5FSMConversion#9

DCCP_S

DCCP_C

RcvSync

RcvReset

RcvOtherPkt

RcvNonTerminatePkt

RcvTerminatePkt

RcvPkt

TimeOut

RcvNonTerminatePkt

RcvTerminatePkt

TimeOut

Listen

Open

Request

Closed

Respond

CloseReq

TimeWait

Closing

PartOpen

Common

Fig. 8. The DCCP Hierarchy Page.

CB

Client_State

init_C

COMMAND

App_Client

C_cmd

DCCP_SHS

DCCP_CM#2
Ch_S_C->Ch_A_B
Ch_C_S->Ch_B_A
Server_State->StateX
App_Server->App_A

Ch_C_S
PACKETS

Ch_S_C

PACKETS

DCCP_CHS

DCCP_CM#2
Ch_C_S->Ch_A_B
Ch_S_C->Ch_B_A
Client_State->StateX
App_Client->App_A

CB

Server_State

init_S

COMMAND

App_Server

S_cmd

Fig. 9. The DCCP Overview Page.

15

0 1CREQ 2cind

3

AREQ

4

PIND

5cres

6

AREQ

7

areq

8
PIND

9

pind

cind

cind

10
CCNF

11

AREQ

12

areq

13
PIND

14

pind

cres

15

aind

areq
pind

AREQ

AIND

PIND

cres
areq

pind

AREQ

PIND

areq

pind

AREQ

PIND

aind

areq

pind

CCNF

AREQ
AIND

PIND

areq

pind

CCNF

AREQ

PIND

Fig. 10. DCCP’s Connection Management Service Language.

we defined the service Primitives. Those shown in Table 1 are only for connection management.
We then developed a CPN model of the service specification and generated its OG which can
be viewed as a finite state automaton. This automaton was input to FSM tools [10] for FSA
minimisation. The minimised FSA for DCCP connection management is shown in Fig. 10 and
represents the service language. The upper case abbreviations refer to interactions with the
client and lower case abbreviations refer to interactions with the server.

5.3 Experimental Results

We investigated 5 configurations as shown in Table 2. In all configurations the initial markings
of the channel places, Ch C S and Ch S C, are empty and the initial state of each side is
CLOSED. Table 2 shows the initial values of the user commands (where ‘++’ represents
multiset addition) on the client and server side for scenarios where the connection can be closed
by either entity during establishment. All experiments were conducted on a PC Pentium-IV
2.6 GHz with 1 GByte RAM.

Table 3 shows the results obtained by conventional state space generation of the DCCP
CM CPN model. Following the methodology in [3], checking the parallel composition of each
occurrence graph with the complement of the service shown in Fig. 10 was done using fsm
difference from the FSM tools [10]. The 4-tuple in the first column represents the values of

Primitive Abbreviation

DCCP-Connect.request CREQ
DCCP-Connect.indication cind
DCCP-Connect.response cres
DCCP-Connect.confirm CCNF
DCCP-User abort.request AREQ, areq

DCCP-User abort.indication AIND, aind
DCCP-Provider abort.indication PIND, pind

Table 1. DCCP Service Primitives.

16

Initial Markings
Configuration C cmd S cmd

A 1‘a Open 1‘p Open++1‘a Close
B 1‘a Open++1‘a Close 1‘p Open
C 1‘a Open 1‘p Open++1‘server a Close
D 1‘a Open++1‘a Close 1‘p Open++1‘a Close
E 1‘a Open++1‘a Close 1‘p Open++1‘server a Close

Table 2. Configurations of the DCCP CM CPN model.

Config. Conventional OGP

terminal
nodes time markings

A-(0,0,x,0) 1,221 00:00:01 3
A-(0,0,x,1) 6,520 00:00:08 3
A-(0,1,x,0) 8,276 00:00:11 3
A-(0,1,x,1) 75,458 00:05:17 3
A-(1,0,x,0) 180,953 00:26:31 3

B-(0,0,x,0) 459 00:00:00 4
B-(0,0,x,1) 1,453 00:00:02 4
B-(0,1,x,0) 2,526 00:00:03 4
B-(0,1,x,1) 11,649 00:00:17 4
B-(1,0,x,0) 84,495 00:05:40 4

C-(0,0,0,0) 1,633 00:00:01 3
C-(0,0,0,1) 3,119 00:00:03 3
C-(0,0,1,0) 45,011 00:02:06 3
C-(0,1,0,0) 12,570 00:00:20 3
C-(0,1,0,1) 33,865 00:01:37 3

D-(0,0,x,0) 4,852 00:00:05 6
D-(0,0,x,1) 93,773 00:07:49 6
D-(0,1,x,0) 42,754 00:01:54 6

E-(0,0,0,0) 7,927 00:00:11 6
E-(0,0,0,1) 50,905 00:02:55 6

Table 3. Conventional OG Generation Results.

the maximum number of retransmissions allowed for Request, DataAck, CloseReq and Close
packets respectively. Retransmissions of the CloseReq packet do not occur in Configurations A,
B and D, indicated by an ‘x’ in the table. The number of nodes, time taken for OG generation,
and the number of terminal markings are shown in columns 2, 3 and 4.

Table 4 shows the results obtained using conventional on-the-fly language inclusion checking
and sweep-line language inclusion checking. Conventional on-the-fly language inclusion check-
ing was simulated by providing the sweep-line algorithm with a trivial progress mapping that
maps every state to the same progress value, thus preventing deletion of states. This reduces
the sweep-line method to conventional state space generation. For conventional on-the-fly lan-
guage inclusion checking, the number of nodes, the total time taken and the number of terminal
markings of the parallel composition are shown. For sweep-line language inclusion checking,
the total number of nodes, peak node storage, total time and terminal markings of the parallel
composition are shown. The terminal markings in columns 4 and 8 of Table 4 correspond to
pairs (vP , vS) ∈ VP × VS in which vP corresponds to a terminal marking of the DCCP CM
CPN. The number of unique terminal markings of the DCCP CM CPN, when abstracting
from the service complement state, is shown in brackets. This confirms the terminal marking
results obtained when using conventional OG generation as shown in Table 3. Interestingly,
the additional overhead of calculating non-trivial progress values is greater than the time saved

17

Conventional Sweep-line

Config. (FSAP || DFSAS) (FSAP ‖ DFSAS)
terminal total peak terminal % %

nodes time markings nodes node time markings space time

A-(0,0,x,0) 1,364 00:00:00.85 10 (3) 1,364 514 00:00:00.96 10 (3) 37.68 112.94
A-(0,0,x,1) 7,523 00:00:05.55 10 (3) 7,523 2,492 00:00:06.30 10 (3) 33.13 113.51
A-(0,1,x,0) 9,045 00:00:06.86 10 (3) 9,045 3,098 00:00:07.66 10 (3) 34.25 111.66
A-(0,1,x,1) 83,586 00:01:47.26 10 (3) 83,586 27,631 00:01:56.56 10 (3) 33.06 108.67
A-(1,0,x,0) 194,747 00:07:51.29 10 (3) 194,747 62,016 00:06:58.24 10 (3) 31.84 88.74
A-(1,0,x,1) - - - 2,899,394 720,741 16:14:36.35 10 (3) - -

B-(0,0,x,0) 510 00:00:00.29 9 (4) 510 170 00:00:00.32 9 (4) 33.33 110.34
B-(0,0,x,1) 1,594 00:00:00.99 9 (4) 1,594 571 00:00:01.12 9 (4) 35.82 113.13
B-(0,1,x,0) 2,742 00:00:01.80 9 (4) 2,742 903 00:00:02.03 9 (4) 32.93 112.78
B-(0,1,x,1) 12,456 00:00:09.96 9 (4) 12,456 4,118 00:00:11.28 9 (4) 33.06 113.25
B-(1,0,x,0) 88,118 00:02:15.20 11 (4) 88,118 22,028 00:01:47.86 11 (4) 25.00 79.77
B-(1,1,x,0) 906,341 02:15:04.56 11 (4) 906,341 212,352 01:08:53.92 11 (4) 23.43 51.01

C-(0,0,0,0) 1,754 00:00:01.11 10 (3) 1,754 674 00:00:01.25 10 (3) 38.43 112.61
C-(0,0,0,1) 3,314 00:00:02.20 10 (3) 3,314 1,183 00:00:02.45 10 (3) 35.70 111.36
C-(0,0,1,0) 46,454 00:00:43.75 10 (3) 46,454 16,079 00:00:49.27 10 (3) 34.61 112.62
C-(0,0,1,1) - - - 2,211,462 654,651 11:28:09.84 10 (3) - -
C-(0,1,0,0) 13,527 00:00:10.38 10 (3) 13,527 4,590 00:00:11.89 10 (3) 33.93 114.55
C-(0,1,0,1) 36,287 00:00:31.88 10 (3) 36,287 11,730 00:00:37.31 10 (3) 32.33 117.03
C-(0,1,1,0) 620,699 00:34:58.91 10 (3) 620,699 195,731 00:38:52.89 10 (3) 31.53 111.15
C-(1,0,0,0) 312,912 00:15:56.09 10 (3) 312,912 100,544 00:14:59.91 10 (3) 32.13 94.12

D-(0,0,x,0) 5,122 00:00:03.50 17 (6) 5,122 1,881 00:00:04.00 17 (6) 36.72 114.29
D-(0,0,x,1) 97,404 00:01:49.80 17 (6) 97,404 30,520 00:02:14.24 17 (6) 31.33 122.26
D-(0,1,x,0) 44,717 00:00:43.35 17 (6) 44,717 15,281 00:00:49.99 17 (6) 34.17 115.32

E-(0,0,0,0) 8,249 00:00:05.75 17 (6) 8,249 2,953 00:00:06.73 17 (6) 35.80 117.04
E-(0,0,0,1) 52,460 00:00:47.08 17 (6) 52,460 17,461 00:01:01.82 17 (6) 33.28 131.31

Table 4. Conventional and Sweep-line results for On-The-Fly Language Inclusion Checking.

through reduced peak state storage, until the total number of states becomes relatively large,
i.e. for configurations A-(1,0,x,0) and B-(1,1,x,0).

Language inclusion was found to hold for all configurations analysed by each of the three
methods. Moreover, Table 4 shows that in 4 cases the sweep-line completed while the con-
ventional OG generation and conventional on-the-fly language inclusion did not due to state
explosion. Thus it is possible to verify the language inclusion property and obtain the dead
markings simultaneously.

6 Conclusions and Future Work

Verification of protocols against their service specifications is a difficult task due to the inherent
complexity of distributed algorithms. An important property for protocols to preserve is the
sequencing of service primitives at their user interfaces, defined in the service specification.
To prove this property we need to define the service language: the set of sequences of service
primitives that the protocol is meant to obey. In our CPN verification methodology [3] this is
done by creating a CPN specification of the service of the protocol, generating the CPN’s OG
using Design/CPN (or similar) and then using automata reduction tools such as FSM [10] to
obtain a deterministic (and minimum) FSA that embodies the service language. We then do
the same for the protocol and use FSM to compare the service and protocol languages. This
is normally possible for moderately complex protocols for small values of parameters such as
retransmission counters. However, for practical Internet protocols, such as the Transmission
Control Protocol, which have a number of retransmission counters, it has proven impossible

18

to analyse them using conventional full state spaces with Design/CPN, when the number of
retransmissions of each retransmission counter is only one.

This has stimulated us to consider using the sweep-line method. However, neither De-
sign/CPN nor CPN Tools has the functionality to allow language comparison, let alone lan-
guage comparison using the sweep-line. This paper makes the first attempt to provide a lan-
guage comparison facility for Design/CPN. Because we can use FSM for language compari-
son using conventional reachability analysis, we concentrated on language inclusion using the
sweep-line. Firstly we synthesised all the necessary theory for developing an algorithm for
checking language inclusion on-the-fly. This entailed demonstrating that language inclusion
can be decided by demonstrating that the parallel composition of the protocol FSA with the
complement of the deterministic FSA of the service yields an FSA with an empty language.
To make this theory accessible we took a tutorial approach and illustrated it with a simple
protocol example. We then applied this theory in the context of the sweep-line method and
proved that it holds. We showed that language inclusion can be determined by sweeping the
parallel composition, rather than just sweeping the state space, and outputting any violation
on-the-fly.

Using this theory we have developed a prototype implementation for checking language
inclusion on-the-fly with the sweep-line method, and used it to verify the connection manage-
ment procedures of a new Internet protocol called the Datagram Congestion Control Protocol.
We have shown that the protocol does conform to its service and have checked this using FSM,
thus validating the prototype. We have also extended this result for DCCP for parameter values
that could not be handled previously using the conventional methodology.

Future work may involve combining this algorithm with path-finding [23] in order to record
erroneous sequences of service primitives. We would then explore using these sequences to
generate error traces in the protocol OG for debugging purposes. We would also like to extend
this method for on-the-fly language equivalence checking.

Acknowledgements

The authors would like to acknowledge their colleagues Dr. Thomas Mailund and Dr. Jörn
Freiheit for preliminary discussions of the ideas behind this paper and for comments made on
early drafts of this paper. We are also grateful to the anonymous reviewers for their constructive
comments.

References

1. W.A. Barrett and J.D. Couch. Compiler Construction: Theory and Practice. Science Research Associates,
1979.

2. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph. Schnoebelen. Systems and
Software Verification - Model-Checking Techniques and Tools. Springer, 2001.

3. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol Verification. In
Lectures on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 210–290. Springer-Verlag, 2004.

4. J. Billington, G.E. Gallasch, L.M. Kristensen, and T. Mailund. Exploiting equivalence reduction and the
sweep-line method for detecting terminal states. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 34(1):23–37, January 2004.

5. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer Academic Publishers,
1999.

6. S. Christensen, K. Jensen, and L.M. Kristensen. Design/CPN Occurrence Graph Manual. Department of
Computer Science, University of Aarhus, Denmark. On-line version:
http://www.daimi.au.dk/designCPN/.

7. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State Space Exploration. In
Proceedings of TACAS 2001, volume 2031 of Lecture Notes in Computer Science, pages 450–464. Springer-
Verlag, 2001.

19

8. J-M. Couvreur. On-the-fly Verification of Linear Temporal Logic. In Proceedings of Formal Methods’99,
Toulouse, France, volume 1708 of Lecture Notes in Computer Science, pages 253–271. Springer-Verlag, 1999.

9. Design/CPN Online. http://www.daimi.au.dk/designCPN/.
10. FSM Library, AT&T Research Labs. http://www.research.att.com/sw/tools/fsm/.
11. G. E. Gallasch, B. Han, and J. Billington. Sweep-line analysis of tcp connection management. Technical

report, 2005. (Draft Report).
12. G.E. Gallasch, C. Ouyang, J. Billington, and L.M. Kristensen. Experimenting with Progress Mappings for

the Application of the Sweep-Line Analysis fo the Internet Open Trading Protocol. In Fifth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. Department of Computer Science,
University of Aarhus, 2004. Available via http://www.daimi.au.dk/CPnets/workshop04/cpn/papers/.

13. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple On-the-fly Automatic Verification of Linear
Temporal Logic. In Protocol Specification, Testing and Verification, XV, pages 3–18. Chapman & Hall, UK,
1996.

14. S. Gordon, L.M. Kristensen, and J. Billington. Verification of a Revised WAPWireless Transaction Protocol.
In Proceedings of 23rd International Conference on Application and Theory of Petri Nets, volume 2360 of
Lecture Notes in Computer Science, pages 182–202. Springer-Verlag, 2002.

15. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.
16. ITU-T. Recommendation X.210, Information Technology - Open Systems Interconnection - Basic Reference

Model: Conventions for the Definition of OSI Services. International Telecommunications Union, Nov. 1993.
17. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 1, Basic Con-

cepts. Springer-Verlag, 2nd edition, 1997.
18. E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol. draft-ietf-dccp-spec-11,

March 2005.
19. D. C. Kozen. Automata and Computability. Springer-Verlag, 1997.
20. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to Coloured Petri Nets. Inter-

national Journal on Software Tools for Technology Transfer, 2(2):98–132, 1998.
21. L.M. Kristensen and T. Mailund. A Compositional Sweep-line State Space Exploration Method. In Pro-

ceedings of FORTE’02, volume 2529 of Lecture Notes in Computer Science, pages 327–343. Springer-Verlag,
2002.

22. L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety Properties. In Proceedings
of FME’02, volume 2391 of Lecture Notes in Computer Science, pages 549–567. Springer-Verlag, 2002.

23. L.M. Kristensen and T. Mailund. Efficient Path Finding with the Sweep-Line Method using External
Storage. In Proceedings of the International Conference on Formal Engineering Methods (ICFEM’03),
volume 2885 of Lecture Notes in Computer Science, pages 319–337. Springer-Verlag, 2003.

24. O. Lichtenstein and A. Pnueli. Checking That Finite State Concurrent Programs Satisfy Their Linear
Specification. In Proceedings of 12th ACM Symposium on Principles of Programming Languages, pages
97–107, 1985.

25. T. Mailund. Analysing Infinite-State Systems by Combining Equivalence Reduction and the Sweep-Line
Method. In Proceedings of ICATPN’02, volume 2360 of Lecture Notes in Computer Science, pages 314–334.
Springer-Verlag, 2002.

26. T. Mailund. Sweeping the State Space - A Sweep-Line State Space Exploration Method. PhD thesis, De-
partment of Computer Science, University of Aarhus, February 2003.

27. R. Milner. Communication and Concurrency. Prentice-Hall International Series in Computer Science.
Prentice-Hall, 1989.

28. On-The-Fly, LTL Model Checking with SPIN. http://spinroot.com.
29. C. Ouyang. Formal Specification and Verification of the Internet Open Trading Protocol using Coloured Petri

Nets. PhD thesis, Computer Systems Engineering Centre, School of Electrical and Information Engineering,
University of South Australia, Adelaide, Australia, June 2004.

30. K. Schmidt. Automated Generation of a Progress Measure for the Sweep-Line Method. In Proceedings of
TACAS’04, volume 2988 of Lecture Notes in Computer Science, pages 192–204. Springer-Verlag, 2004.

31. A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic Models, volume 1491 of
Lecture Notes in Computer Science, pages 429–528. Springer-Verlag, 1998.

32. S. Vanit-Anunchai and J. Billington. Initial Result of a Formal Analysis of DCCP Connection Management.
In Proceedings of INC 2004, Plymouth, UK, pages 63–70, July 2004.

33. S. Vanit-Anunchai, J. Billington, and T. Kongprakaiwoot. Discovering Chatter and Incompleteness in the
Datagram Congestion Control Protocol. In Proceedings of FORTE’05, volume 3731 of Lecture Notes in
Computer Science, pages 143–158. Springer-Verlag, 2005.

34. M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verification. In Pro-
ceedings of 1st Symposium on Logic in Computer Science, Cambridge, USA, pages 332–344. IEEE Computer
Society Press, 1986.

20

Business Process Redesign at a Mental Healthcare Institute:
A Coloured Petri Net Approach

M.H. Jansen-Vullers and H.A. Reijers

Abstract

Business Process Redesign aims to radically improve the performance of business processes.
One of the approaches to derive such an improved process design is an evolutionary approach,
making use of redesign heuristics (Reijers, 2003). Simulation of the redesigned business
process comes into play if one has to decide whether the redesign is better than the previous
process design, or if one needs to compare alternative redesigns. Usually, the characteristics of
the process are such that a purely analytical performance evaluation is not feasible.

This paper shows the applicability of coloured Petri nets, especially CPN Tools, in such a
redesign approach. The starting point of the paper is a case study in a mental healthcare
institute, which focussed on improvement of the intake process: reduction of flow time and
service time. We show the initial CPN model and an alternative redesigned CPN model for the
intake process and evaluate the impact on flow time and service time.

In line with previous research, we conclude that coloured Petri nets are well suited to model
and simulate business processes. Applying Monitors in addition to the regular CPN Tools
package helped us to carry out the simulations in such a way that we were able to carry out
statistical analysis, enabling us to compare the performance of different models. An important
drawback of our approach is that modelling resources in a business process is quite laborious
and results in complex constructions, which are hard to communicate with people who should
be able to evaluate the effect of a particular redesign.

Keywords: Business Process Redesign, Simulation, Healthcare, CPN Tools, Monitors

1 Introduction
Business Process Redesign is frequently applied to optimise business processes. The way in
which such a redesign is carried out ranges from clean sheet approaches to small incremental
changes. An important aspect to decide whether to implement a particular redesign is the
expected benefit of a redesign, measured in the time needed to handle a case, the time
requested from (particular) resources, or the costs. The efforts to implement a new business
process are big, the effects of a wrong redesign are huge. Simulation of a business process and
several alternatives for this process support the decision which process should be implemented
or not.
The choice of a tool to perform simulations is dependent on the goals of the simulation. In a
redesign project, two stakeholders can be identified: the modeller and the owner of the business
process. In practice, we found that simulation models may not cover all aspects of the business
process, or can be very detailed if one takes all aspects into account. In the first case, the model
doesn’t reflect reality and in such a case it is hard to decide what can be concluded from a
redesign. In the second case, the model becomes too complex to be completely understood by
the process owner.

21

This paper focuses on the evaluation of coloured Petri Nets, and CPN Tools in particular, for
applicability in redesign projects. The approach that we followed is based on so-called redesign
heuristics. Based on a given process design, a heuristic can be applied to improve the process.
Well-known examples of such redesign heuristics are the decision to put tasks in parallel, and
the decision to assign specialists and/or generalists for a particular task. An overview of the
approach can be found in (Reijers, 2003). We carried out a case study at a mental healthcare
institute, in which we developed a CPN model for the initial situation and a CPN model for the
redesigned situation. We carried out simulations for both situations and compared the results.
In the paper we evaluate the modelling process, the resulting models and the results of the
simulations.
This paper is structured as follows. In Section 2 we present a short overview of Business
Process Redesign and the application of simulations when evaluating a redesign. The CPN
model of the intake process of non-urgent patients in a mental healthcare institute and the
simulation results are described in Section 3. Next, we describe in Section 4 the redesign, we
present the changes in the simulation model, the results of the simulations and finally the
comparison with the initial situation. The applicability of our approach is evaluated in Section
5, followed by the conclusions in Section 6.

2 Background
In the early nineties, the first reports appeared on more or less systematic approaches to
generate radical performance improvement of entire business processes (Davenport and Short,
1990; Hammer, 1990; Davenport and Short, 1990). Their major vehicles were the application
of information technology on the one hand and the restructuring of business process on the
other. This approach was coined with the terms "Business Process Reengineering" (Hammer,
1990) and "Business Process Redesign", to both of which we will refer to as 'BPR'.

The BPR guru's of the first hour propagated the "clean sheet" approach, i.e. a process should be
designed from scratch without considering the existing process in too much detail. However,
most BPR projects take the existing business process as starting point (Reijers, 2003): Within
the setting of a workshop, several parties involved (management consultants, business
professionals, and managers) try to think of favorable alternatives to the business process as a
whole or parts of it. IT-specialists, change management experts, and other specialists to
implement the new layout of the process within the organization then use the resulting process
design.

The technical heart of BPR is the sensible application of a number of recurring redesign
practices. (Hammer and Champy, 1993) presents several examples, such as "Small tasks in a
business process should be combined into larger tasks". An extensive literature survey in this
field, extended with actual BPR experiences, has rendered 29 practices that are often applied in
the redesign of a business process (Reijers, 2003). This survey will be taken as the basis for
exploring the possibilities to apply CPN Tools in a BPR project.

(Brand and Kolk, 1995) distinguish four main dimensions in the effects of redesign measures:
time, cost, quality, and flexibility. Ideally, a redesign of a business process decreases the time
required to handle the case, it decreases the required cost of executing the business process, it
improves the quality of the service delivered, and it improves the ability of the business process
to react to variation. The appealing property of their model is that, in general, improving upon
one dimension may have a weakening effect on another. For example, reconciliation tasks may
be added in a business process to improve on the quality of the delivered service, but this may

22

have a drawback on the timeliness of the service delivery. To signify the difficult trade-offs
that sometimes have to be made they refer to their model as the devil's quadrangle.

Awareness of the trade-off that underlies a redesign measure is very important in a heuristic
redesign of a business process. Sometimes, the effect of a redesign measure may be that the
result from some point of view is worse than the existing business process. The application of
several redesign rules may also result in the partly deactivation of the desired effects of each of
the single measures.

The analysis of such a trade-off can be performed with simulations. From practice, the use of
simulation is advocated to compare the ``to be" alternatives and to understand the ``what" and
the ``why" of the current process and possible alternatives (Ardhaldjian and Fahner, 1994).
From a scientific point of view, simulation is used to evaluate quantitative criteria such as flow
time or costs as input for design decisions (Desel and Erwin, 2000).

For the analysis of the best practices the simulation facility of CPN Tools was used. CPN Tools
and Design/CPN, the predecessor of CPN Tools, have been applied in various industrial
projects (University of Arhus, 2005a), but we have found only three projects for which a
business process has been analysed with simulation. In one project a planning process was
modelled with Design/CPN and this process was simulated with the Design/CPN simulator
(Mitchell et al, 2004). In another project CPN Tools was used to study the bullwhip effect in
supply chains. For this project the supply chain was modelled with CPN Tools and with
simulation the bullwhip effect, inventory increase in the chain, was demonstrated (Makajic-
Nikolic et al, 2004). Also a recently submitted paper for this workshop (Netjes et al, 2005)
focuses on simulation of business processes and aims to evaluate the application of particular
redesign heuristics.

3 The intake process in a CPN Model
In this section we describe the case of an intake procedure to process new requests for non-
urgent treatment at a mental healthcare institute in the Netherlands. The procedure is slightly
simplified from the procedure in actual use at this institute. The CPN model consists of 24
pages in which we model the control flow, the resources in the process, the triggers that are
part of the process, and additional steps for simulation purposes. In this section, we describe
each of these parts of the model.

3.1 Modelling the control flow

The two highest levels in the hierarchy of the CPN model reflect the global flow of control:
patients enter the model and subsequently a notification is made, they are assigned to two

Figure 1 Main process

intakers and the intake can take place. This is shown in Figure 1.

23

Subpage ‘notification’

The intake process starts with a notice by telephone at the secretarial office of the mental
healthcare institute. The secretarial worker inquires after the name and residence of the patient
to determine the nursing officer responsible for the part of the region that the patient lives in.

The nursing officer makes a full inquiry into the mental, health, and social state of the patient
in question. This information is recorded on a registration form, handed in at the secretarial

mation system and subsequently printed. For new patients, a patient
orm as well as the print from the information system is stored

tarial office, two registration cards are produced for respectively

t as the first intaker of the
atient. One of the physicians will act as the second intaker. The assignments are recorded on

 which is handed to the secretarial office. For each new assignment, it is also
.

r to

octor of the patient, requesting for a copy of the medical file.

 If both

f

Figure 2 Page ‘intake’

office, stored in the infor
file is created. The registration f
in the patient file. At the secre
the future first and second intaker of the patient.

Subpage ‘assign’

Halfway the week, at Wednesday, a staff meeting of the entire medical team (social-medical
workers, physicians, and a psychiatrist) takes place to assign all new patients. The assign
process first collects all individual patient files of an entire week into a list of patients. When
the so-called Wednesday meeting is taking place, the list is emptied in the place ‘patient in
meeting’.

Each patient will be assigned to a social-medical worker, who will ac
p
an assignment list,
determined whether the medical file of the patient is required and added to the assignment list

The secretarial office stores the assignment of each patient of the assignment list in the
information system and the actual intakes can take place (output place ‘start intake’). For each
patient for which the medical file is required, the secretarial office prepares and sends a lette
the family d

Subpage ‘intake’
The intake process consists of five sub processes: first the intake cards are handed out, then the
first and second intake can be done. These can be planned and executed independently, though
for the second intaker the medical file needs to be available if previously defined so.
intakes are done, the data are prepared for the Wednesday meeting in which the treatment o
the patient is determined. This process is shown in Figure 2.

24

The subpage ‘handout cards’ reflects the physical process in which both intakers receive (a set
of) cards, of those patients that have been assigned to them during the meeting. This provides
them with sufficient information to plan the intake and enables them to work independently.

The intakes for the first and second intaker follow an almost similar pattern: the meeting is
planned, then it takes place, and finally it is administratively completed. We first describe the
process for the first intaker, and then describe only the differences with respect to the second
intaker.

Subpages ‘intake first’ and ‘intake second’

The first intaker plans a meeting with the patient as soon as this is possible. During the first
amined using a standard checklist, which is filled out. Additional

l

again select the correct intaker, check whether he has working time available and then
e meeting can take place at the scheduled date. In the last step of the intake, the intaker is

e and finally the intake can be administratively
en

ied

n the list of patients that reach this status. For the staff

hiatrist. The intake is closed.

meeting, the patient is ex
observations are registered in a personal notebook. After a visit, the first intaker puts a copy of
these notes and the standard checklist in the patient's file. The second intaker plans the first
meeting only after the medical information of the physician – if required – has been received.
Physicians use dictaphones to record their observations, which are typed out by the secretaria
office and added to the patient file.

To plan the meeting, in the CPN model first the intaker is selected who has been assigned to
the patient. If this intaker still has working time available, he can plan the meeting. In the next
step, we
th
selected, checked for available working tim
completed. The process for the second intaker differs at two places in the model: wh
planning the date the patient file needs to be available, and the completion of the file is carr
out by a secretarial office worker in stead of the intaker himself.

Subpages ‘prepare meeting’ and ‘determine treatment’

As soon as the meetings of the first and second intaker with the patient have taken place, the
secretarial office puts the patient o
meeting on Wednesday, they provide the team-leader with a list of these patients. For each of
these patients, the first and second intaker together with the team-leader and the attending
psychiatrist formulate a treatment plan. This treatment plan formally ends the intake procedure.

The sub process ‘prepare meeting’ synchronizes the information that came from the first and
second intaker. When the Wednesday meeting is taking place, the list of intakes is emptied in
the place ‘intakes in meeting’. In the meeting, first the correct first and second intaker are
selected and checked for available working time. If this is the case, they discuss the proposed
treatment for the patient in attendance of the team leader and psyc

3.2 Modelling resources

Within the setting of this process, the medical team consists of 16 people: eight social medical
workers, four physicians, two team-leaders, and two psychiatrists. Each member of the medical
team works full-time and spends about 50 % of his time on the intake of new cases, except for
the psychiatrists who spend 10 % of their time on the intake of new cases. (Most of the
resources' remaining time is spent on the treatment of patients). The secretarial office consists
of eight workers, who work full time. About 50 % of their time is spent on the intake of new
cases.

25

We distinguish five resources in the intake process, which are all modelled as fusion places.
The team leader and the psychiatrist are, in view of performance measurements for the
healthcare institute, of minor importance, and have been modelled as follows:

colset TL = STRING timed; (*name of team leader*)

.
we also

ployees, have a notion of
m, and they stop working as

Figure 3 Resource lifecycle

colset PSY = E timed; (*anonymous team leader*)

The secretarial office worker, the social medical worker and the physician do have time
constraints, and therefore we keep track of the working time they have available in the model
Because the first (spv) and second (doc) intaker have been assigned to particular cases
need to keep track of their names. The resulting colours are:

colset SPV = product STRING*INT timed; (*name and working time*)

colset DOC = product STRING*INT timed; (*name and working time*)

colset SECR = INT timed; (*working time*)

The resources who have working time should, in case of part-time em
a life cycle: they can work for the number of hours assigned to the
soon as they have no more working time available. For this purpose we introduced three
‘resting places’, see Figure 3. In the rest of the model, we check at each transition whether the
required resource has working time available.

26

The notion that a resource consumes his working time, introduces the notion of a new working
day (resetting all working times) and the requirement that this has been synchronised for all
resources. The resetting is carried out by consuming the tokens of the resource places (which
are lists) and producing the initial values again (as stored in the .sml files).

The synchronisation is enforced by a global clock (see Figure 4) that produces a trigger to
change the resource day. This clock is a transition called ‘one more day’ that increases the time
stamp of the minute counter with 480 minutes. Each time this transition fires the day counter is
increased by one and a trigger is produced to change the resource day. The clock stops when all
cases in the model have been closed.

Figure 4 Global clock

3.3 Modelling triggers

In the model we make use of triggers: a work item is worked on only once a resource has taken
the initiative. However, also other forms of triggering exist: an external event (for example, the
arrival of a message) or reaching a particular time (Aalst and Hee, 2002).

In this model we applied two different kinds of time triggers. The planning of the intake
date for the first intaker and for the second intaker are both ‘dependent’ time triggers,
the trigger appears after some time when the previous transition has fired. In

Figure 5 we show the intake by the first intaker. He contacted the patient to set a date for
the meeting. This transition (not shown in

Figure 5) produced a token for the fusion place ‘date for spv’. The transition ‘schedule
meeting’ uses this as an input token, and produces an output token with delay. This delay is
uniformly distributed between 960 and 1920 minutes (i.e., the meeting takes place 2 upto 4
days after the patient has been contacted).

27

Figure 5 Time trigger for the meeting of the first intaker

Furthermore, we have introduced a time trigger to model the so-called Wednesday meeting.

as the value 960 minutes (the first minute of the

Figure 6 Time trigger for Wednesday meetings

The second kind of trigger in the CPN model is an external event, which may occur in case a
medical file is required. The pattern is the same as for the dependent time trigger: the transition

This is a time trigger independent of other transitions and occurs every week on Wednesday
morning. Initially, the place ‘meeting time’ h
third day of a working week), and is increased with 2400 minutes (a working week). When all
cases have been closed no more meetings are scheduled (see Figure 6).

28

that requests a medical file produces a token that is consumed by a transition called ‘receive
medical file’. The delay of this transition is 1 upto 3 days.

3.4 Modeling the simulation

The main purpose of the CPN model is to carry out simulations of a business process, to
redesign the process and simulate it, and to conclude which of the process variants is more
efficient. For each of the steps in the business process (transitions in the CPN model) we
measured the duration. These durations are not constant but stochastic. In the CPN model, we
applied the following distributions:

− Uniform distribution

− Beta distribution

− Exponential distribution

Furthermore, we modeled the arrival pattern of patient cases, which is Poisson distributed, 20
cases per working day (see Figure 7). The case itself is a product of four parameters: its id,
starting time, service time and file type.

fun interarrivaltime() = myround(exponential(1.0/24.0));

(*20 cases per working day, this is 20 cases/480 min*)

In many places we also used a function called myround, which is implemented as follows.

un myround(r) = round(r*d);

precision problems as a logical result. To avoid longer parameters in many places of the model,

 from the
arking size. The observers are defined as follows:

un obsBindElem (determine_treatment'close_intake (1, {i, ct, id,
spv, st, doc, file, tl0})) = IntInf.toInt(time())-(st)

f

Myround multiplies the parameter with a factor d, which can be set in the declarations. We
need this factor for precision purposes. The time unit in our model is 1 minute. The distribution
functions look like, e.g., uniform(1.0, 3.0) and are applied as time delay for transitions.
Therefore we need to convert the outcome of the distribution function to an integer value, with

version of CPN Tools. In that case, the service time and flow time are derived

we redfined the round function into myround (d*r).

Figure 7 Generating cases

At the output side, we modeled two places: one for calculating service times (third parameter of
the case), and one for calculating flow time, which is the difference between the starting time
(second parameter) and the clock time. For our statistical analyses we used the monitors-

m

− For the flow time:

f

29

− For the service time:

fun obsBindElem (determine_treatment'close_intake (1, {i, ct, id,
spv, st, doc, file, tl0})) = ct

The sim a simulation with 30 sub runs, covering 1000 cases per run
(i.e w it in the model was set to 1/100 of a minute. Increasing the

flow is measured in two ways. As a way of making the
ext a ow operational, the average flow time is taken. For the internal
efficiency, the averag ervice time per case is taken. The average flow time is slightly
less than 13 working days. In Table 1 we present the detailed results, including the measured
ave e - and lower bounds of the 95% reliability intervals.

ulation results are based on
. 50 orking days). The time un

number of working days or increasing the time unit with a factor 10 didn’t change the results.

3.5 Simulation results
The current performance of the work

ern l quality of the workfl
e total s

rag flow time, and the upper

 flow time
 LOW AVG HIGH

 620201,64 622570,65 624939,65
Minutes 6202,02 6225,71 6249,40
Hours 103,37 103,76 104,16
Days 12,92 12,97 13,02

Table 1 Flow time of the intake process (initial situation)

The total time spent on a new case averages two hours and 55 minutes. This means that the

 service time

total service time makes up slightly more than 3% of the total flow time. Each day, slightly less
than 20 cases arrive. By using Little's law (see, e.g., (van der Aalst en van Hee, 2002), we can
deduce that at any time there are on average some 200 new, non-urgent requests for treatment
in process. In Table 2 we present the detailed results, including the measured average flow
time, and the upper- and lower bounds of the 95% reliability intervals.

 LOW AVG HIGH
 17418,11 17464,60 17511,08
Minutes 174,18 174,65 175,11
Hours 2,90 2,91 2,92
Days 0,36 0,36 0,36

Table 2 Service time of resources in the intake process (initial situation)

 results with the actual process as it is taken place at the institute. We validated the simulation
This means, we invited process owners and others from the institute to come to the university
and to go through the (digital) models we made. We considered the models at all levels of
detail step by step, and we evaluated the results of the simulation. This concludes the
description of the initial situation.

30

4 Redesign
In this section, we give an example of a redesign for the intake process; the approach we

l sign heuristics. one of the heuristics we found very much applicable is
case-based work g to

comparde the simulation results with those of the
initial situation.

4.1 Periodic meetings

1. For new cases, the first and second intakers are assigned, and

2. For cases for which both intake interviews have taken place, treatment plans are

t

most
utomatically. A match with the case based work heuristic is easily made.

dditional analysis o take workflow points out that the first activity does not really
eeting context, provided that the team-lead icient information

used for new assign n the other hand, the second activity is indeed be
performed in the context of a meeting. This is because of the limited availability of the

atrists, which prohibits lexible measures.

On basis of the case-based work heuristic (CASEB), see (Reijers and Limam Mansar, 2005),
e team-leader will carry out new

case assignments as soon as they are due; the weekly meeting is strictly used for determining
t

4.2 Redesign: CPN model and simulation
e CPN model of the initial s as the starting point for the CPN model of

ed situation. This requi changes in the mo in or in relation to t
ssign intakers’. First the tim ger for the Wednesda eting has been remov

r, the working time of the first and second intaker is not updated anymore, and the guard
on the transition ‘assign intakers’ to check available working time of those intakers has been

 connect the place
‘patient in meeting’ with the previous step. This also included updating the port types and

fol owed is based on rede
the heuristic. We changed the CPN model of the initial situation accordin
the redesign in line with this heuristic and

In the intake workflow the staff meeting is planned at regular weekly intervals on the
Wednesday. During a staff meeting two important things take place:

determined.

From a workflow perspective, periodic restrictions on activities are rather odd. Mental
healthcare patients who ‘arrive’ at Wednesday afternoon have to wait one more week until
intakers can be assigned. Although these patients are considered to be non-urgent, it is at leas
not desirable to let them wait longer than necessary. When you are modelling and simulating
such process parts, and when being present in the institute, the ‘bad smell’ appears al
a

A f the in
require a m er has suff on the
criteria ments. O st

psychi more f

we consider as an alternative for the current workflow that th

treatment plans. The workflow structure as depicted in Figure 5 then changes in the sense tha
the time trigger is removed from the subpage "Assign intakers". Because the information is
available to the team-leader to base his assignment decision on, we expect that the original
duration of the task also decrease from 5 to 2 minutes on average. This time includes the report
of the assignment to the secretarial office. Both the social-medical worker and the physician
will no longer spend this time on the case.

Th ituation w the
redesign red four del, all he sub
page ‘a e trig y me ed.
Furthe

removed. Finally, we had to remove the place of type ‘list of patients’, and to

assignments of ports and sockets, as these places appeared at three levels in the model. The
redesigned page is displayed in Figure 8. Note the difference with the previous model as
displayed in Figure 6.

31

Figure 8 Page 'assign intakers' in the redesigned model

The results of the simulation for the flow time are displayed in Table 3.

 flow time
 LOW AVG HIGH
 432937,52 434554,65 436171,79
Minutes 4329,38 4345,55 4361,72
Hours 72,16 72,43 72,70
Days 9,02 9,05 9,09

Table 3 Flow time of the intake process (redesign)

The flow time of an average case will drop by about 3,8 working days, this is the expected time
a new case has to wait before it is assigned (half a working week) and the queuing time for t
first intaker, the second intaker or both. The reduction is about 30 %. T

he

he reduction of the total
ervice time is 17 minutes, a 10% reduction, as can be calculated from the results in Table 4.

Both imp ce intervals of the designed and the
red n

s
rovements are significant as the confiden

esig ed calculations do not overlap.

 service time
 LOW AVG HIGH
 15639,48 15690,13 15740,79
Minutes 156,39 156,90 157,41
Hours 2,61 2,62 2,62
Days 0,33 0,33 0,33

Table 4 Service time of resources in the intake process (redesign)

32

5 Discussion

igure 9 Page 'determine treatment'

he modelling of resources required explicit m ling of a clock, the change of a day, and
setting of the available w e for all resources. To be able to rese ing time of

rces, we used lists. T duced the necessity to find the correct resources for each
lar step in the business pr and to check the ble working time t

In this section, we discuss the suitability of CPN models for Business Process Redesign
purposes based on the case study as described in this paper. We also discuss the suitability of
CPN Tools (Kristensen et al, 1998), (University of Arhus, 2005b) which we have used to create
our CPN models and to perform the simulations.

Our first conclusion is that we managed to model the business process and to carry out all the
simulations that we wanted to do. Petri nets, or more specifically CPN Tools, helped us to
model the business process in such a way that it resulted in an executable and exact
specification of the business process. The monitor’s version of CPN Tools helped us to collect
the simulation data, and to calculate 95% reliability intervals.

The second conclusion, however, is that the resulting CPN model appears to be too complex,
especially if we compare it to the same process modelled in Protos (see Figure 10). Note that
this model is not a Petri net itself, though it can be mapped onto a Petri net. The part that we
could model quite straightforwardly in CPN Tools is the control flow of the business process.
The triggers we needed in the process model are not very nice from an end-user perspective,
and also introduce some complexity. The main cause for the complexity in the model comes
from the modelling of resources.

The time trigger for the Wednesday meeting demands that all cases before the transition with
the trigger pass this transition, thus requiring a list. As a consequence, we needed some
additional places to convert lists into single tokens. The model in Figure 6 is easier to
understand than the model in Figure 8.

F

T odel
re orking tim t the work
all resou his intro
particu ocess availa of tha

33

No

Medical file

Update patient
file

Ask for medical
file

Medical file required

Wait for medical file

Wednesday
morning

Date meeting
second intaker

Answer notice

Store
assignment

Record notice

Store and print
notice

Close case

Assign intakers

Notice printed

Medical file complete

Intake to start

Nursing officer determined

Notice recorded

Patient to be assigned

Intakers assigned

Plan meeting
second intaker

Type out
conversation

Complete file
with 2nd info

Meeting with
second intaker

2nd meeting finished

Ready to complete file

2nd meeting complete

Meeting 2nd planned

Hand out cards

tice by phone

Determine
treatment

2nd ready for intake

Cards to be assigned

Intake completed

Create patient
file

Meeting with
first intaker

Complete file
with 1st info

Plan meeting
first intaker

Patient file to be created

1st meeting complete

1st meeting finished

Meeting 1st planned

1st ready for intake

Wednesday
morning 2

Date meeting
first intaker

Patient is known

Medical file not required

Patient is unknown

Figure 10 Protos model of the intake workflow

34

resource at that point in time. This resulted in additional transitions and very long arc
inscriptions and guards. An example can be found in the model of Figure 9.

This additional complexity is a drawback for the modeller, because it creates a lot of time-
consuming work that is not directly related to the business process that is being modelled, it
increases the possibility to make mistakes in the model and it hampers a change of the model.
The additional complexity is a severe problem for the end-customer who should be able to
validate the models and who should decide which (re) design will serve his purposes best.

A last issue that we want to discuss is the modelling of service time for a particular case. In the
model we added a parameter to the colour of a case to calculate the service time manually. In a
sequential process this is not a problem, though in processes with a lot of parallel paths this
becomes complex and is thus likely to introduce mistakes.

Other tools

An important reason to start modelling business processes in CPN Tools is based on the fact
that we are not very happy with other tools we know so far. The Protos models are quite
readable for business users, though these are only suited for modelling and cannot be used for
simulation purpopses. To overcome this, an interface has been built to export Protos models
into ExSpect models to run simulations. Another option, of course, is to build ExSpect models
from the start of a project.

ExSpect models are, like CPN Tools models, based on colored Petri nets. As such, these
models have the same advantages and disadvantages caused by the CPN language. The
expressive power, mathematical foundation and reliability of simulation results is very good.
Those functions that are not made available in the tool can be built by the user in GCL (for
ExSpect) or ML (for CPN Tools). However, the models become easily quite complex and are
difficult to understand by business users. Furthermore, the language does not support you how
to develop particular models or constructions (like, e.g., a tool like Arena does). In the view of
modelling business processes, and their application in redesign projects, ExSpect has some
advantages over CPN Tools. In ExSpect, scripts behind the graphic model hide details, a
number of building blocks are already available, and the soundness of models can be evaluated
in Woflan. An important advantage of CPN Tools over ExSpect is the simulation time, which
is much shorter and as such suitable for interactive workshops with end users.

An industrial simulation tool like Arena focuses on understandability of the resulting models.
Important drawbacks of this tool are the expressive power, the handling of parallel processes,
the building blocks that hide almost everything and, most important, it is hard to build
additonal components. We see here a trade of between flexibility (in CP nets) and modelling
support (in Arena). Finally we can refer to simulation engines in workflow tools. We found
here, in general, that it is not possibly to configure your parameters, the concept of reliability
does not exist and it is not possible to decide yourself what you would like to measure.

Conclusion

Being a modeller, we see the advantages of modelling business processes in CP Nets.
However, to provide a tool that appeals to owners of business process, there is a gap which we
hope that can be bridged by a tool like CPN Tools. A process model that is much easier to
understand is, for example, the Protos model in Figure 10. In this model, you mainly see the
control flow of the business process and it is about one page in size. For CPN Tools, we see the
benefit of having a number of building blocks.

− Modelling of resources. Such a building block should include modelling of a resource
(its ID, its role, working time, etc.) and its functions (reset, check working time, get(id),

35

store(id), etc.) in such a way that the handling of lists is hidden for the end-user and
modeller.

− Modelling a global clock.

− Modelling triggers; this includes time triggers and triggers based on external events.

− Measuring service time of a case.

− Handling of batches. The application of a batch in a business process requires the
modelling of a list in the corresponding CPN model. A function “take all tokens” from a
place would decrease the complexity of the model.

A consequence of not having such standard building blocks is a more complex graphical
model. The levels 1 and 2 of the CPN model don’t contain too much information, but the
models on level 3/4 certainly do.

As we pointed out, we want to evaluate the applicability of the resulting models for
communication purposes. When redesigning a business process, a lot of communication is
taking place between the owner of the business process and the modeller. The most important
means of communication is the simulation model. At first sight, Petri nets are considered to be
complex and difficult to understand by business users, see for example (Sarshar et al, 2005). In
line with the evaluation above with respect to the lack of standard building blocks, the
application of CPN Tools in a BPR approach especially this aspect deserves attention. The two
highest levels of the developed model will serve such a purpose, however, the lower levels
show too many details related to CPN Tools or Petri nets in general. Further research should
reveal whether this would meet business requirements.

6 Conclusions and further research
Simulation of the redesigned business process comes into play if one has to decide whether the
redesign is better than the previous process design, or if one needs to compare alternative
redesigns. Usually, the characteristics of the process are such that a purely analytical
performance evaluation is not feasible.

This paper shows the applicability of coloured Petri nets, especially CPN Tools, in such a
redesign approach. In line with previous research, we conclude that coloured Petri nets are well
suited to model and simulate business processes. Applying Monitors in addition to the regular
CPN Tools package helped us to carry out the simulations in such a way that we were able to
carry out statistical analysis, enabling us to compare the performance of different models. An
important drawback of our approach is that modelling resources in a business process is quite
laborious and results in complex constructions, which are hard to communicate with those
people who should be able to evaluate the effect of a particular redesign.

To bridge the gap between current CPN models and the models that could be helpful in a BPR
project, the availability of building blocks would be helpful. This enables the possibility to hide
those parts of the model that are not directly related to the business process.

In our research, we continue with the modelling of business processes in CP Nets. The
simulations of designs and redesigns are used to gather data that could quantify the application

work heuristic as mentioned in the case
study. Current literature does not provide concrete clues when to apply this well-known rule,
nd which benefits may be expected. We want to compare differences in service time and flow

time, but also differences in costs, which, amongst others, can be expressed in resource

of particular redesign rules, such as the case-based

a

36

utilisation. In this paper we did not calculate resource utilisation. Further research shou
whether the monitors can handle the calculation of token availability based o

ld reveal
n tokens with time

,

rocess

er

siness

r

s

or

uide to
d Petri Nets. International Journal on Software Tools for Technology Transfer 2

ss. In: Proceedings of the CPN'04 Workshop.

stamps or we need to model this in the Petri Net. In combination, we can use the simulation
data to evaluate and quantify several redesign heuristics.

Acknowledgement

We would like to thank Kurt Jensen and Lisa Wells from the University of Arhus. We
appreciate that the monitors version of CPN Tools has been made available for us. We also
thank Mariska Netjes, Boudewijn van Dongen and Eric Verbeek for their support in the
modelling process.

Reference List

 1. Aalst, W.P.M.v.d. and Hee, K.M.v. (2002). Workflow Management: Models, Methods
and Systems. Cambridge: MIT Press.

 2. Ardhaldjian, F. and Fahner, M. (1994). Using simulation in the business p
reengineering effort. Industrial Enginering 26(7): 60-61.

 3. Brand, N. and Kolk, H.v.d. (1995). Workflow Analysis and Design. Kluw
Bedrijfswetenschappen (in Dutch).

 4. Davenport, T.H. and Short, J.E. (1990). The new industrial engineering: Information
Technology and Business Process Redesign. Sloan Management Review 31(4): 11-27.

 5. Desel, J. and Erwin, T. (2000). Modelling, Simulation and Analysis of Bu
Processes. In: Business Process Management: models, techniques and empirical studies,
W.P.M.v.d.Aalst (ed), Lecture Notes in Computer Science 1806, pp. 129-141. Springe
Verlag, Berlin.

 6. Hammer, M. (1990). Reenigineering Work: Don't automate, obliterate. Harvard Busines
Review 68(4): 104-113.

 7. Hammer, M. and Champy, J. (1993). Reengineering the Corporation; a manifesto f
Business Revolution. New York: Harper Business.

 8. Kristensen, L.M., Christensen, S. and Jensen, K. (1998). The Practitioner's G
Colore
98-132.

 9. Makajic-Nikolic M., Panic B. and Vujosevic B. (2004). Bullwip effect and supply chain
modelling and analysis using CPN Tools. In: Proceedings of the CPN'04 Workshop.

 10. Mitchell B., Kristensen L.M. and Zhang L. (2004). Formal Specification and State Space
Analysis of an Operational Planning Proce

37

 11. N ned
p th Colored Petri Nets. In: Submitted to CPN Workshop 2005.

 12 R gn and control of workflow processes: Business Process
M

 13 R r, S. (2005). Best Practices in Business Process
R istics.
O

 14. S valuation of EPC and Petri

tment of Computer Science (2005a) CPN Tools, Industry

e

etjes M., Aalst W.P.M.v.d. and Reijers H.A. (2005). Analysis of resource-constrai
rocesses wi

. eijers, H.A. (2003). Desi
anagement for the service industry. Berlin: Springer Verlag.

. eijers, H.A. and Limam Mansa
edesign: An Overview and Qualitative Evaluation of Successful Redesign Heur
mega: The international Journal of Management Science 33(4): 283-306.

arshar K., Dominitzki P. and Loos P. (2005). Empirical E
Nets from the End-User Perspective. In: Proceedings of the BPM'05 Conference.

 15. University of Arhus, Depar
Examples www.daimi.au.dk/CPnets/intro/example_indu.html Arhus, Denmark.

 16. University of Arhus, Department of Computer Science (2005b) CPN Tools, main pag
http://wiki.daimi.au.dk/cpntools/cpntools.wiki Arhus, Denmark.

38

Towards a Pattern Language for

Colored Petri Nets

Nataliya Mulyar and Wil M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{n.mulyar, w.m.p.v.d.Aalst}@tm.tue.nl

Abstract. Experienced Petri net modelers model in terms of patterns,
just like object-oriented programmers use the design patterns of Gamma
et al. So far there is no any structured collection of patterns for Colored
Petri Nets. We have empirically collected 34 patterns in Colored Petri
Nets and documented them in the pattern format. The patterns focus
on the interplay between data-
ow and control-
ow, (i.e. the essence
of Colored Petri Nets), and have been modeled using CPN Tools. The
goal of the patterns is to assist and train inexperienced modelers, and to
serve as a domain language for communicating problems and solutions.
In this paper, we give a summary of the CPN pattern language and
give an overview of the patterns collected. In addition, we examine the
clustering of patterns and the different types of relationships between
the CPN patterns.

1 Introduction

Process-Aware Information (PAI) systems [16], i.e. systems that are used to sup-
port, control, and monitor business processes, are typically driven by models of
di�erent perspectives, i.e. process, organization, data, etc. In order to e�ciently
build a feasible model with the help of a PAI system (e.g. WFM software), all
dimensions of requirements put on the system from process, data, resources and
other perspectives, must be well understood. Developers working in the same
domain experience similar di�culties while solving the same kind of problems.
How to solve a problem? What are the advantages and disadvantages of possible
solutions? Which solution to choose and how to realize the selected solution?
These are the questions which every developer needs to answer. Since problems
to be solved are often non-unique, i.e. they recur in many systems, develop-
ers often spend their time solving problems which may already have existing
solutions.

A pattern language is one of the possible means to help developers to build
their models e�ciently, while avoiding reinvention of already existing solutions
of problems. Pattern languages are based on experience; they express sound
solutions for problems frequently recurring in a certain domain in a pattern

39

format. Knowing a problem at hand, a developer can look up a solution for the
problem in the pattern catalog, while spending less e�ort on the development
and also ensuring the soundness of a solution.

The work reported in this paper is part of the Workflow Patterns Initiative
www.workflowpatterns.com. In the context of this initiative, we have developed
control-
ow patterns [6], data patterns [35], and resource patterns [34]. These
patterns focus on the di�erent perspectives [24] of PAI systems. In this paper
we do not necessarily limit ourselves to work
ow or PAI systems. Instead we
focus on the interplay between control flow and data flow. To do this, we use
a speci�c implementation language: Colored Petri Nets (CPNs). In our view,
a good understanding of the interplay between control
ow and data
ow is
foundational to PAI systems. Moreover, (colored) Petri nets have shown to be a
solid basis for the modeling, analysis, and enactment of work
ows [1, 3, 36].1

Based on the expert knowledge and an analysis of existing models and lit-
erature, we identi�ed 34 patterns that focus on the interplay between control

ow and data
ow and can be represented in terms of Colored Petri Nets. On
the one hand, the patterns we discovered are implementation patterns, i.e. they
are mainly oriented on model developers who are working with CPN Tools. In
particular, the CPN patterns support developers with sound solutions for prob-
lems frequently recurring during modeling. Therefore, these patterns are CPN
language-speci�c. On the other hand, since CPN is a modeling language, which
is often used for the design and modeling of dynamic systems with elements
of concurrency, these patterns can be also considered as design patterns, which
grasp certain problems on the level of model design and o�er visualized solu-
tions by means of CPN. Similarly to the 23 design patterns of Gamma [19],
the CPN patterns also systematically name, motivate, and explain solutions for
generic design problems. However, due to major di�erences in concepts of object-
orientation and Petri Nets, and validity in the CPN context, we will refer to the
CPN patterns as implementation patterns.

The remainder of this paper is organized as follows. First, we introduce a set
of concepts, central to the CPN patterns and de�ne the scope of the patterns
in the context of Petri Nets (Section 2.1). Next, in Section 2.2, we give a brief
introduction into the world of patterns, and introduce the pattern format which
we selected for the description of the 34 identi�ed patterns. In Section 3, we give
an example of a CPN pattern using this format. Then, we introduce the CPN
pattern language (Section 4). We not only examine relationships between the
discovered patterns to enable easy navigation through the CPN pattern catalog
(Section 4.2), but we also classify patterns into clusters in order to simplify the
selection of a suitable pattern (Section 4.3). We conclude the paper by discussing
related work and future work (Section 5 and Section 6).

1 Although (colored) Petri nets form a good foundation for work
ow languages and
PAI systems, one could argue that they are too low level as an end-user language [4].
Therefore, we propose Petri nets as a theoretical basis and use higher-level languages
such as [5] as the end-user language.

40

2 Preliminaries

In this section we brie
y introduce colored Petri nets and discuss existing pat-
terns languages.

2.1 Colored Petri Nets

Colored Petri Nets (CPNs) [25, 26] extend the classical Petri Nets [15] with colors
(to model data), time (to model durations), and hierarchy (to structure large
models). Like in classical Petri Nets, CPNs use three basic concepts: transition,
place, and token. We will use the terms “event”, “task”, “actor” and “transition”
interchangeably, as well as “token” and its mapping on an “object”. We do
not refer to the de�nition of an object from object-oriented programming, but
generalize it in such a way that by “token” or “object” we can refer to any of
[22]:

– Physical objects, i.e. a chair, a stool, a table, etc;
– Conceptual objects, i.e. policies, insurances, etc;
– Information objects, i.e. anything what can be manipulated by a human or

a system as a discrete entity.

Whenever a pattern operates with a speci�c type of objects, we will specify
the type (called color set in CPN) explicitly. For gathering CPN patterns, we
concentrate on discrete dynamic systems, which are systems with a certain state
at any moment of time and a sequence of events which bring a system from
one state to another. The examples of discrete dynamic systems are work
ow
management systems, distributed databases, decision support systems, e-mail
systems, payment systems, etc. Discrete systems are made out of actors, which
are active components, and objects, which are passive components. Actors con-
sume and produce objects [22]. Actors can be machines, humans, networks of
other dynamic systems, etc.

A place is a location where tokens reside. A place can be considered as a tem-
porary or persistent data storage, e.g. either containing a variable or a constant
number of tokens at any time.

Note that although the basic rules of classical Petri nets are still valid in
the context of CPNs, we do not elaborate on basic control-
ow patterns and
focus on the extensions of PN by color and time (in particular the interplay
between control
ow and data
ow). Hence, we abstract from the extension with
hierarchy (e.g., the substitution transitions). Figure 1 visualizes the scope of the
pattern language presented in this paper.

There are many variants of colored Petri nets, i.e., Petri net models with color
and time. Consider for example the di�erent tools: Design/CPN, CPN Tools,
ExSpect, ALPHA/Sim, Artifex, GreatSPN, PEP, Renew, etc. The patterns are
tool independent. Nevertheless, we need to select a speci�c language/tool for the
examples used to describe the patterns. For this purpose, we selected CPN Tools
[14]. The language used by CPN Tools is the de facto standard. Moreover, all

41

Classical PN

Hierarchical PN
Colored PN
 Timed PN

Fig. 1. Scope of CPN patterns: The focus is on color and time while abstracting from
hierarchy.

the patterns that we have collected can be downloaded from [28] and executed
using CPN Tools. Note that most pattern languages use a speci�c language to
represent examples, for example in [19] both C++ and Smalltalk are used.

2.2 Patterns

Nowadays, there is a generic understanding of what a pattern is, i.e. it is a
solution to a problem in a certain context. Note that originally the concept of a
pattern was introduced by Christopher Alexander in [9], who wrote:

The pattern is, in short, at the same time a thing, which happens in the world
and the rule which tells us how to create that thing, and when we must create it.
It is both a process and a thing; both a description of a thing which is alive, and
a description of the process that will generate this thing.

The notion of a pattern language, introduced by Alexander in [8], is similar
to the notion of a language as recorded in the Merriam-Webster Dictionary
as a “formal system of signs or symbols including rules for the formation and
transformation of admissible expressions”. If a word is a central entity of a
language, then a pattern is a central entity of the pattern language. Similar to the
rules describing the use of words in sentences, patterns also have rules associated
with them. As such, pattern rules describe relations between the patterns and
indicate how one pattern can be combined with other ones. Furthermore, a
pattern language can serve as a systematic means of communicating problems
and solutions between colleagues working in the same �eld/domain.

Since the de�nition of a pattern by Christopher Alexander, di�erent types of
patterns in di�erent application domains have been described. This has resulted
in a set of pattern languages each of which addresses di�erent aspects of organi-
zation, software development, analysis, etc. Due to the di�erences in the types
of problems and the solution means in di�erent application �elds and domains,
there is an ongoing discussion concerning the suitability of the pattern format
introduced by Alexander for documenting the patterns.

Since there are multiple views on how to document the patterns and no
consensus in the discussions related to selection of a single pattern format has
yet been achieved, we took as a basis the pattern format of Gamma [19], and
adjuisted it in order to �t our purposes. Every CPN pattern adheres to the
following pattern format:

42

Pattern format

– Pattern name. This is an identi�er of a pattern which captures the main idea
of what the pattern does.

– Also known as. This section lines out the alternatively used names for the
Pattern name.

– Intent. This section describes in several sentences the main goal of a pattern,
i.e. towards which problem it o�ers a solution.

– Motivation. This section describes the actual context of the problem ad-
dressed and why the underlined problem needs to be solved.

– Problem description. This section presents the problem addressed by the
pattern. For the sake of clarity, the problem is explained by using a spe-
ci�c example. The majority of the patterns contain examples which are also
illustrated by means of CPN diagrams.

– Solution. This section describes possible solutions to the problem. Note that
a single problem addressed by the pattern can be solved in several ways,
depending on the requirements and/or context in which the pattern is to
be applied. Since multiple solutions are possible, we consider every solution
separately and for each of the solutions we include an implementation sub-
section.

– Implementation of Solution. This is a part of the Solution section, which
illustrates how to implement the described solution in CPN Tools. The im-
plementation part shows not only the graphical representation of the pattern
with CPN, but also describes how to integrate this solution into the example
considered in the Problem description section. A solution may have several
implementations. The presented implementations may not be the only way
to implement a solution correctly. One should select an implementation de-
pending on the context within which the pattern is to be applied. Note that
correctness of the solution is not guaranteed if a tool di�erent from CPN
Tools is used for implementation purposes.

– Applicability. This section describes the typical situations in which the pat-
tern can be applied.

– Consequences. This section outlines what the possible advantages/disadvantages
of using the pattern are. In case if the pattern supplies several solutions, this
section elaborates on the di�erences between them.

– Examples. This section lists several examples demonstrating the use of the
pattern in practice.

– Related Patterns. This section speci�es relations of the pattern to other pat-
terns.

3 Example: AGGREGATE OBJECTS Pattern

Before de�ning our pattern language that also relates patterns to one another,
we present one of the 34 patterns. Like all the other patterns, it is described
using the pattern format described in the previous section.

43

Pattern: AGGREGATE OBJECTS

Also Known As:

Intent : to allow the manipulation of a set of information objects as a single
entity.

Motivation : In many cases, it is natural to represent an information object
(e.g., an order, a car, a message) as a single entity, i.e. there is a one-to-one
correspondence between objects in a “real system” and tokens in the model.
However, sometimes it is necessary to aggregate objects into one token, thus
referring to the collection of objects as a single entity.

Problem Description : Figure 2 illustrates the problem addressed by this pat-
tern. In the original model, place object is of type T and transitions put and
get add and remove tokens from this place. Note that each token corresponds
to an object.

object

2 1‘"a"++1‘"b"
T

in

1 1‘"b"

T

2‘"a"++3‘"b"

out

2 1‘"a"++1‘"b"

T

put get
x xx

x

Fig. 2. Example used to explain the various problems.

Suppose that it is necessary to perform an operation from the following list:

– Count the number of objects in place object;
– Select an object from place object with some property relative to the other

objects (e.g., the �rst, the last, the smallest, the largest, the cheapest, etc.);
– Modify all objects in a single action (e.g., increase the price by 10 percent);
– (Re-) move all objects in one batch (e.g., remove a set of outdated �les,

items, etc. at once, rather than one by one).

None of these operations is possible in the diagram shown above. Note that
it is only possible to inspect one token at a time and this is a non-deterministic
choice. Moreover, this choice can be limited by transition guards and arc inscrip-
tions, but it is memoryless and not relative to the other tokens in the place. This
makes it very di�cult or even impossible to realize the mentioned aspects.

Solution : In order to allow the manipulation of a set of information objects as
a single entity, aggregate the objects into a single token of “collection type”. 2

2 Note that we assume an interleaving semantics.

44

Implementation of Solution : The list of instructions below describes how to
implement the AGGREGATE OBJECTS pattern (see Figure 3).

– Modify the type T of place objects, where multiple objects may reside, to
the collection type LT (e.g., list, set, bag). In this example the collection type
list is chosen: color LT = list T;.

– Replace arcs between transitions put and get and place objects by bi-
directional arcs with the following inscriptions. An arc which supplies an
object to the collection has an inscription x::l, which adds an object x of
type T to the list l. Return the current list l back to transition put. Similar,
in order to get an object from the collection use x::l and return the changed
list. The described behavior represents LIFO (last-in-�rst-out) ordering.

objects

1 1‘[]
LT

[]

in

5 2‘"a"++3‘"b"
T

2‘"a"++3‘"b"

out

T

put get

x::l x::l

x

x
l

l

Fig. 3. Model after applying the pattern.

By introducing a collection type, it becomes possible to refer to the collection
of objects as a single entity and perform operations on multiple objects contained
in the collection at once. Several examples in Figures 4 and 5 show how to
implement some operations from the ones mentioned in the Problem description
section by extending the net presented in Figure 3.

objects

1 1‘["a","b"]

LT

[]

in

3 1‘"a"++2‘"b"
T

2‘"a"++3‘"b"

out

T

Number
of objects 1 1‘2

INT

put get

count

x::l x::l

x

x
l

l

l

size(l)

l

Fig. 4. Example illustrating how place objects can now be used.

45

Figure 4 shows how to calculate the size of the collection, i.e. the number of
objects the collection contains. Note that there is always precisely one token in
place objects representing all objects. Transition count takes the current list
of objects and sends the size of the list to place Number of objects. Note that
a function size(l) for determining the size of the collection is prede�ned and
available in the CPN Tools.

It is also possible to select an object from place objects with some property
relative to the other objects. For example, the object represented with the �rst
name can be obtained by the transition select as shown in Figure 5.

objects

1 1‘["b"]

LT

[]

in

3 1‘"a"++2‘"b"
T

2‘"a"++3‘"b"

out

T

result 1 1‘"a"

T

put get

select

x::l x::l

x

x
l

l

remove(first(l),l)

first(l)

l

Fig. 5. Another example illustrating how place objects can now be used.

Function first selects the right object while function remove is used to
remove the object, i.e.,

fun f(x:T,l:LT) = if l = [] then x else if x< hd(l) then

f(x,tl(l)) else f(hd(l),tl(l));

fun first(x::l : LT) = f(x,l) |

first([]) = "null";

fun remove(x,[])=[] |

remove(x,y::l) = if x=y then l else y::remove(x,l);

In a similar way, it is possible to modify all objects in a single action (for
instance, increase the price by 10 percent) and to remove all tokens (simply by
returning a token with a value []).

Applicability : Apply this pattern to

– Organize multiple objects into a collection.
– Perform an operation on a group of objects or the whole collection at once.

Consequences: In principle, this pattern is not concerned with the order in

46

which tokens are taken from the collection. The example used in the implemen-
tation section uses last-in-�rst-out ordering (see LIFO QUEUE pattern).3

Nevertheless, if the problem of ordering is relevant, one should apply an
extension of this pattern by adding the QUEUE pattern, or one of its special-
izations.

Note that although some of the functions to manipulate the collection of
objects are already prede�ned in CPN Tools, applying special kinds of operations
requires the writing of corresponding function(s) from scratch.

Examples:

• The salary administration of a university divided employees into di�erent
groups: students, PhD students, and professors. All PhD students got a
salary increase of 10%. The salary administration does not need to adjust
the salary slips for every PhD student individually, but does it in one-step
by increasing the salary of the whole group.

• The documents are collected and organized in one �le. This allows the whole
�le to be taken and sent for processing elsewhere, keeping the documents
structured and grouped.

Related Patterns: This pattern is extended by the QUEUE pattern.

4 CPN Pattern Language

In this section, we introduce the CPN pattern language by listing the names
and intents of the discovered patterns. Next, we analyze relationships between
the CPN patterns, and organize them into a relationship diagram, which allows
navigation through the pattern catalog for identifying related patterns. Further-
more, we classify the patterns into categories in order to simplify the process of
selecting a pattern from the CPN pattern catalog.

4.1 Overview of CPN Pattern Language

In this section we give an overview of the CPN patterns. In Tables 1 and 2 we
present only the names and intents of the patterns; for further details the reader
is referred to [27]. Patterns listed may belong to the same classes, and have
similarities in their intents, problems and solutions. These relationships between
patterns are not covered explicitly in the tables, but are discussed in Section 4.2.

3 Note that this pattern refers to other patterns like the LIFO QUEUE pattern. These
have not yet been discussed. An overview of all 34 patterns in given in Section 4.

47

Pattern name Intent

ID Matching to make identical information objects distinguishable

ID Manager to ensure uniqueness of identi�ers used for distinguishing iden-
tical objects

Aggregate Objects to allow manipulation of a set of information objects as a single
entity

Queue to allow manipulation of the queued objects in a strictly speci�ed
order

FIFO Queue to allow manipulation of objects from the collection in a strictly
speci�ed order such that an object which arrived �rst is con-
sumed �rst

LIFO Queue to allow manipulation of objects from the collection in a strictly
speci�ed order, such that the mostly recently added object is
retrieved �rst

Random Queue to allow manipulation of objects from the collection such that
objects are added to the queue in any order, and an arbitrary
object is consumed from it

Priority Queue to allow manipulation of objects from the collection in the order
of the objects’ priority

Capacity-bounding to prevent over-accumulation of objects in a certain place

Inhibitor Arc to support “zero”-testing of places

Colored Inhibitor Arc to support “non-containment” property of places

Shared Database to enable centralized storage of data shared between multiple
transitions, supporting different levels of data visibility (i.e. lo-
cal, group, or global)

Database Management to specify the interface of accessing data, stored in a shared
database for read-only and modi�cation purposes

Copy Manager to make data stored in the shared database available at other
locations for local use, maintaining the consistency of data in all
places

Lock Manager to synchronize access to shared data by means of exclusive locks

Bi-lock manager to synchronize access to shared data for reading and writing
purposes by means of shared and exclusive locks

Log Manager to record the information about actual process execution by
means of a data log

BSI Filter to prevent data non-conforming to a certain property from pass-
ing through

BSD Filter to prevent data non-conforming to a property involving the state
of an external data-structure, from passing through

NBSI Filter to �lter out data ful�lling a certain property while avoiding ac-
cumulation of non-conforming data in the �lter input place

NBSD Filter to �lter-out data non-conforming to a property, involving the
state of an external data-structure, while avoiding accumulation
of non-conforming data in the �lter input

Translator to enable coordinated communication between two actors with
originally different data formats

Asynchronous Transfer to allow transportation of data from one location to another,
while avoiding the sender to block

Synchronous Transfer to allow transportation of data from one location to another,
ensuring that an actor, which posted a request, is blocked until
it receives the requested information

Rendezvous allow multiple actors to broadcast and discover data objects
concurrently

Asynchronous Router to enable asynchronous transfer of data from a single source to
a dedicated target, providing loose coupling between the source
and targets connected to it

Table 1. Summary of CPN patterns

48

Pattern name Intent

Asynchronous Aggregator to provide a holistic view of data, produced by multiple unre-
lated sources through asynchronous data aggregation

Broadcasting to allow broadcasting of data from a single source to multiple
targets, while avoiding direct dependency between them

Redundancy Manager to prevent transfer of duplicated data between loosely-coupled
actors who communicate asynchronously

Data Distributor to support parallel data processing by distributing data between
several independent actors

Data Merger to compose a single information object out of several smaller
ones when all parts required for composition become available

Deterministic XOR-split to allow at most one transition out of several possible to execute,
based on ful�llment of mutually excluding data conditions

Non-deterministic XOR-split to allow any transition out of several possible, but satisfying the
same data condition, to execute

OR to allow any number of tasks to be selected for execution based
on the ful�llment of a certain data condition

Table 2. Summary of CPN patterns (Cont.)

4.2 CPN Pattern Relationships

The 34 CPN patterns that we have identi�ed, together with the relationships
between them, form a pattern language. In order to classify the CPN patterns
we examined the nature of relationships between the patterns. We used three
types of primary relations: specialization of a problem, use in a solution, and
extension of an implementation; and two types of secondary relations: problem
similarity, and combination of solutions to describe the pattern relationships.
Some of the relationship types are based on Zimmer’s classi�cation [39].

The main purpose of this classi�cation is to provide a holistic view on the
catalog of patterns, providing a means for a user to select a number of patterns
and to determine how the patterns can help in solving a given problem. The
selected types of relationships can help to trace other patterns related to a
chosen pattern, thus allowing the estimation of an overall problem complexity,
the tradeo�s made, and compare the chosen pattern with other similar patterns,
in order to select an optimal solution for a problem in the given context.

Figure 6 shows some of the relationships between the various patterns. The
graphical representation and the text depict the type of a relationship. To un-
derstand the diagram, we �rst need to de�ne the di�erent types of relationships.

Primary relations

Problem-oriented relation
Pattern A is a specialization of the more generic pattern B. Speci�c pattern A,
which deals with a specialization of the problem that generic pattern B addresses,
has a similar but more specialized solution than pattern B. Pattern A includes

49

all the properties of pattern B, but adds further restrictions by adding some
specialized characteristics. Note that a specialization often adds more context to
the problem thus making it less generic.

Solution-oriented relation
Pattern A uses pattern B in its solution. When building a solution for a problem
addressed by pattern A, one sub-problem is similar to the problem addressed by
pattern B. Thus, the solution of pattern B is a composite part of the solution
of pattern A. Whenever pattern A is used, pattern B should also be considered,
since it makes a part of A.4 All instantiations of pattern A use pattern B. Some
example relationships: Lock Manager uses ID Matching, Asynchronous Router
uses Asynchronous Transfer.

Solution implementation-oriented relation
Pattern A syntactically extends pattern B. Pattern A addresses a set of re-
quirements to have more or slightly di�erent functionality than the pattern
B addresses. However, this is the implementation of B, which is syntactically
extended by A, rather than a problem or a solution. For example, the imple-
mentation of Non-Blocking State-Independent Filter extends implementation of
Blocking State-Independent Filter.

Secondary relations

Problem similarity
Pattern A is similar to pattern B. Pattern A addresses a problem similar to the
one addressed in pattern B. Patterns A and B can be considered as alternatives
of each other; therefore, one can compare them and select the one which �ts the
problem best.

Combinable solutions
Pattern A can be combined with pattern B. Neither of the patterns is a part of
the other. Combining the solution of pattern B with the solution of pattern A
can help to solve a more complex problem than a single pattern solves in isola-
tion. Use this relation to �nd out other patterns, which can be used in addition
to pattern A. For example, the Shared Database can be combined with Copy
Manager; Asynchronous Aggregator can be combined with Aggregate Objects.

Figure 6 shows the �ve types of relationships. The listing of the primary rela-
tionships is intended to be complete while the secondary relationships depicted
only represent typical examples. The solid arrows represent primary relationships
while the dashed lines represent secondary relationships. A problem-oriented re-
lation is labelled “is specialization of”. A solution-oriented relation is labelled

4 Since a pattern may have multiple solutions, the relationship may need to refer to a
speci�c solution. For the sake of clarity we use the mnemonics “s1”, “s2” and “s3” as
identi�ers for referring to the �rst, second, and third solution and to make relations
between pattern solutions explicit.

50

D
et

er
m

in
is

tic

X
O

R

-
s

pl
it

(
s

1
,

s
2

)

O
R

N
on

-
d
et

er
m

in
is

tic

X
O

R

-
s

pl
it

Tr
an

sl
at

or

(
s

1
,

s
2

)

B
lo

ck
in

g
S

ta
te

-

D
ep

en
de

nt
 F

ilt
er

ex
te

nd
s

ID
 M

an
ag

er

us
es

ID
 M

at
ch

in
g

C
op

y
M

an
ag

er

S
ha

re
d

D
at

ab
as

e

A
gg

re
ga

te
 O

bj
ec

ts

D
at

a
M

an
ag

em
en

t

us
es

Lo
ck

 M
an

ag
er

Q
ue

ue

(
s

1

,
s

2

,
s

3

)

P
rio

rit
y

Q
ue

ue

is
 a

 s
pe

ci
al

iz
at

io
n

 o
f

C
ol

or
ed

 In
hi

bi
to

r A
rc

(
s

1
,

s
2

)

C
ap

ac
ity

 B
ou

nd
in

g

(
s

1

,
s

2

,
s

3

)

A
sy

nc
hr

on
ou

s
R

ou
te

r

(
s

1

,
s

2
)

A
sy

nc
hr

on
ou

s
Tr

an
sf

er

S
yn

ch
ro

no
us

 T
ra

ns
fe

r

R
en

de
zv

ou
s

B
ro

ad
ca

st
in

g

A
sy

nc
hr

on
ou

s

A

gg
re

ga
to

r

us
es

R
ed

un
da

nc
y

M
an

ag
er

D
at

a
M

er
ge

D

at
a

D
is

tri
bu

to
r

 L
og

 M
an

ag
er

B
i
-

Lo
ck

 M
an

ag
er

ex

te
nd

s

R
an

do
m

 Q
ue

ue

is
 a

 s
pe

ci
al

iz
at

io
n

 o
f

FI
FO

 Q
ue

ue

is

 a
 s

pe
ci

al
iz

at
io

n

 o

f

LI
FO

 Q
ue

ue

In
hi

bi
to

r A
rc

(
s

1

,
s

2

,
s

3

)

s
1

ex
te

nd
s

s

1

s
1

e

xt
en

ds

s
2

u

se
s

s

2
,

s
3

u
se

s
s

3

s
1

u

se
s

s
2

e

xt
en

ds
 s

3

s
2

u

se
s

us
es

us
es

B
lo

ck
in

g
S

ta
te

-

In
de

pe
nd

en
t F

ilt
er

ex
te

nd
s

us
es

N
on

-
b
lo

ck
in

g
S

ta
te

-

D
ep

en
de

nt
 F

ilt
er

ex
te

nd
s

N
on

-
b
lo

ck
in

g
S

ta
te

-

D
ep

en
de

nt
 F

ilt
er

ex

te
nd

s

s
1

ex
te

nd
s

us
es

 s

2

us
es

 s

2

s
2

us
es

us

es
 s

2

s
1

u

se
s

s

1
,

s
2

u
se

s
s

2

us
es

us
es

us
es

us
es

s
3

u

se
s

s
1

,

s
2

,

s
3

u

se

s
3

u

se
s

ex
te

nd
s

ex
te

nd
s

Fig. 6. CPN pattern relationship diagram.

51

“uses”. A solution implementation-oriented relation is labelled “extends”. Prob-
lem similarity is denoted by dashed lines (without dots) while combinable solu-
tions are denoted by dashed lines with dots. Note that the details regarding the
combination of one pattern with another one, or similarities between patterns are
not indicated in the relationship diagram, but can be found in the Consequences
and Related patterns sections of a chosen pattern.

In Section 3, we de�ned the Aggregate Objects pattern. As shown in Fig-
ure 6, the Queue pattern extends the �rst solution of the Aggregate Objects
pattern. Moreover, many patterns use the Aggregate Objects pattern (e.g., the
Log Manager, Inhibitor Arc, Lock Manager, and Capacity Bounding patterns).

4.3 Classi�cation of CPN Patterns

Although the CPN pattern relationship diagram presented in Figure 6 allows
the navigation through the catalog of the CPN patterns, it is not su�cient to
classify the patterns precisely and unambiguously.

As was mentioned in the introduction, the CPN patterns aim at solving
problems in the domain where data and control-
ow perspectives interplay. In
this domain, three pattern groups can be distinguished:

– patterns where the data perspective dominates, but which must be consid-
ered in the context of the control-
ow;

– patterns where the control-
ow perspective dominates, but which are data-
based;

– patterns where both data perspectives and control-
ow perspectives are im-
portant and involved.

However, this classi�cation turns out to be not very meaningful and is rather
subjective.

In order to provide a more useful means for selecting an appropriate pattern,
we adopt the classi�cation presented in [21] to categorize the CPN patterns. This
classi�cation is based on the intent of each pattern. The intent of every pattern
has been analyzed according to a structure where common components con-
tain diagnostic elements, and in turn diagnostic elements contain supplementary
components. This structure will be represented using the following format.

Common component
◦ Diagnostic component

• Supplementary component

Common components de�ne the set of related meanings, by which di�erent
patterns can be placed into one group. For instance, patterns addressing the
problems of creating new elements or entities, belong to the same group with
the common component create. Thus, this is the intent of a pattern from the
process (functionality) point of view. For example, patterns, whose main intent is
to manage or control something, will be combined into the group with a common
component control.

52

Diagnostic elements de�ne the contrastive features which distinguish the pat-
terns belonging to the same common component. For instance, patterns belong-
ing to the same common component control, i.e. control patterns, can involve
di�erent participants or di�er by control parameters. For example, patterns,
whose main purpose is to control such features as the order, the throughput,
the quantity, belong to the same group with a common component control and
can be distinguished by the diagnostic elements Order, Throughput, Quantity
respectively.

Supplementary components address additional features for extended de�ni-
tions of meanings. This components address special circumstances of applying
a pattern. This feature could be applied to distinguish the pattern from other
patterns belonging to the same common component with the same diagnostic
elements; however, multiple patterns may have the same supplementary compo-
nent.

Using the nested format described above (i.e., common components, diag-
nostic elements, supplementary components), we are able to classify the 34 CPN
patterns:

Control
◦ Order of information objects (Queue)

• by prede�ned scheduling policy (FIFO Queue, LIFO Queue, Random
Queue)

• by objects’ priority (Priority Queue)
◦ Availability/Consistency of information objects

• by regular replication (Copy Manager)
◦ Concurrent access to information objects

• by means of exclusive locks (Lock Manager)
• by means of shared and exclusive locks (Bi-Lock Manager)

◦ Throughput of information objects
• by inspecting content (Blocking State-Independent Filter, Non-blocking

State-Independent Filter)
• by inspecting state (Blocking State-Dependent Filter, Non-Blocking

State-dependent Filter, Redundancy Manager)
◦ Number of objects in place

• by bounding the place capacity (Capacity-Bounding)

Discern
◦ Information objects

• by identities (ID Matching)
• by visibility (Shared Database)

Choose
◦ 1 branch deterministically (Deterministic XOR-split)
◦ 1 branch non-deterministically (Non-deterministic XOR-split)
◦ 1 or more branches deterministically (OR)

Create

53

◦ Information objects
• by unique generation (ID Manager)
• by decomposing into parts (Data Distributor)

Assemble
◦ Information objects

• by aggregating into a collection (Aggregate Objects)
• by synchronizing composite parts (Data Merge)
• by asynchronous merging (Asynchronous Aggregator)

Access
◦ Information objects

• by read/write operations (Data Management)

Inspect
◦ “Non-containment” property of place (Colored Inhibitor Arc)
◦ “Zero”-property of place (Inhibitor Arc)

Monitor
◦ Process execution-relevant information

• by data logs (Log Manager)

Transform
◦ Information objects

• by adjusting the data format (Translator)

Transfer
◦ Information objects

• Asynchronously
directly from a source to a target: 1-to-1 (Asynchronous Transfer)
indirectly from a source to one of several targets: 1-to-1 (Asyn-

chronous Router)
indirectly from a source to multiple targets: 1-to-N (Broadcasting)

• Synchronously
· between two actors: 1-to-1 (Synchronous Transfer)

• Concurrently
· from N sources to M targets: N-to-M (Rendezvous)

The Aggregate Objects pattern de�ned in Section 3 is classi�ed under com-
mon component “Assemble”, diagnostic component “Information objects”, and
supplementary component “by aggregating into a collection”. It is interesting to
see how the Queue pattern, although it extends Aggregate Objects pattern, is
classi�ed completely di�erent. This can be explained by the clear di�erence in
intent.

In this section we brie
y introduced the set of 34 patterns. Clearly, we cannot
list the patterns in full and instead refer to [28, 27]. Then we showed two ways
to compare and relate patterns. We identi�ed three primary and two secondary
pattern relationships and classi�ed the patterns using the classi�cation of Hasso
and Carlson [21].

54

5 Related Work

It is impossible to give a complete overview of the di�erent types of patterns
described in literature. The 23 design patterns by Gamma et al. [19] triggered the
development of many more patterns in the object-oriented software community.
Some of it successors include: the patterns for knowledge and software reuse by
Sutcli�e [37], the design patterns in communication software by Linda Rising
[33], and the framework patterns by Wolfgang Pree [32].

Aside from the generic patterns, a set of language-speci�c pattern languages
(UML, Smalltalk, XML, Python, etc.), links to which can be found in the pattern
digest library [29], has been discovered and documented.

Furthermore, some work has been done on formalizing the organization, pro-
cess, analysis, and business-related patterns. Among them are the analysis pat-
terns by Martin Fowler [18], the enterprise architecture patterns by Michael Bee-
dle [12], the framework process patterns by James Carey [13], the patterns for
e-business [7] (which focus on Business patterns, Integration patterns, and Ap-
plication patterns), the business patterns at work [17] (which use UML to model
a business system), and the process patterns [10]. Other interesting patterns
collections focusing on the process-side of things are the enterprise integration
patterns by Hophe and Woolf [23] and the service interaction patterns by Barros
et al. [11].

However, the real starting point for this work has been the Work
ow Pat-
terns Initiative (cf. www.workflowpatterns.com). To capture the functionality
of PAIS in term of patterns, control-
ow patterns [6], data patterns [35], and
resource patterns [34] have been uncovered. We consider the CPN patterns foun-
dational for the further development of this initiative.

In the context of Petri nets some initial attempts to capture patterns have
been made. Earlier work by Kurt Jensen [25], Wil van der Aalst [2], and Kees
van Hee [22], provides some patterns in an implicit and/or fragmented manner.
In [31], Petri nets are used to represent work
ow and communication patterns
in the context of webservices. One of the few papers, linking CPN to patterns
is [30]. However, here CPNs are merely used as an underlying representation
of the dynamic object-oriented architecture and the real focus is on patterns
found in concurrent software designs. The paper that is probably most related
to our work is [20] by Matthias Griess et al. They de�ne 3 patterns in terms of
classical Petri nets using pattern language similar to ours. For a given example
they analyze the use of these patterns.

Our work di�ers from these papers in at least two ways. First of all, we use
CPNs (rather than classical nets) and focus on the interplay between control

ow and data
ow. Second, our set of patterns is more mature as is illustrated
by the number of patterns, classi�cation, and relationships.

6 Conclusion and Future Work

In this paper, we described a pattern language for CPNs. We collected a set of 34
patterns focusing on the interplay between control
ow and data
ow. Although

55

expressed in a speci�c language, the patterns can be applied to model and design
of any kind of dynamic systems with elements of data and concurrency.

The language and the patterns have been developed in an explorative manner.
This means that we applied empirical methods to gather information, such as
observation, content analysis, and simulation. In order to discover patterns we
used application models, publications, tutorials, workshop materials, opinion of
experts, and feedback from model developers. We applied the content analysis
technique for extracting the patterns from the literature sources, and veri�ed
the correctness of models, which represent solutions for certain problems, by
simulating them in CPN Tools.

We do not claim that the CPN patterns we gathered are complete, since
they are the result of explorative work and were not derived in a systematic
manner. We have made the implementations of CPN patterns available to the
CPN community in the form of a pattern library [28]. We want to encourage
members of the CPN community to extend the catalog of patterns by including
the ones not covered here. Moreover, these patterns can serve as a language en-
hancing communication between developers, allowing to communicate problems
and solutions unambiguously.

Further research will include the development of a patterns repository and
empirical research into the actual use of patterns. We have developed a proto-
type patterns repository allowing people to navigate patterns based on various
relationships. This needs to be improved to be really useful. The empirical re-
search into the actual use could involve the analysis of student projects and/or
the analysis of papers describing CPN models. In [20] this approach was used
for a single example and a small set of basic Petri net patterns. In [38] a similar
approach was applied to work
ow projects of Atos Origin using the work
ow
patterns [6].

Acknowledgments

We would like to thank Kurt Jensen for contributing to the work reported in this
paper. His experience in modeling using Colored Petri Nets has been vital for
collecting and describing the patterns presented. We also thank Maurice Hendrix
and Alex Norta for working on the initial prototype of the patterns repository.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Work
ow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst. Process Modeling, Lecture Notes. Eindhoven University of
Technology, Eindhoven, The Netherlands, 2003.

3. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

4. W.M.P. van der Aalst and A.H.M. ter Hofstede. Work
ow Patterns: On the Ex-
pressive Power of (Petri-net-based) Work
ow Languages. In K. Jensen, editor,

56

Proceedings of the Fourth Workshop on the Practical Use of Coloured Petri Nets
and CPN Tools (CPN 2002), volume 560 of DAIMI, pages 1–20, Aarhus, Denmark,
August 2002. University of Aarhus.

5. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Work
ow
Language. Information Systems, 30(4):245–275, 2005.

6. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Work
ow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

7. J. Adams, S. Koushik, G. Vasudeva, and G. Galambos. Patterns for e-Business.
A Strategy for Use. IBM Press, 2001.

8. C. Alexander. A Pattern Language: Towns, Building and Construction. Oxford
University Press, 1977.

9. C. Alexander. Timeless Way of Building. Oxford University Press, 1979.
10. S.W. Ambler. Process Patterns. Cambridge University Press, 1998.
11. A. Barros, M. Dumas, and A.H.M. ter Hofstede. Service Interaction Patterns: To-

wards a Reference Framework for Service-based Business Process Interconnection.
QUT Technical report, FIT-TR-2005-012, Queensland University of Technology,
Brisbane, 2005.

12. M.A. Beedle. Enterprise Architecture Patterns. Cambridge University Press, 1998.
13. J. Carey and B. Carlson. Framework Process Patterns. Addison Wesley Longman,

2001.
14. CPN Group, University of Aarhus, Denmark. CPN Tools Home Page.

http://wiki.daimi.au.dk/cpntools/.
15. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri

Nets, volume 3098 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2004.

16. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems. Wiley & Sons, 2005.

17. H. Eriksson and M. Penker. Business Modeling with UML. Business Patterns at
Work. Wiley, John and Sons, 1998.

18. M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading,
Massachusetts, 1997.

19. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison
Wesley, Reading, MA, USA, 1995.

20. M. Gries, J.W. Janneck, and M. Naedele. Reusing Design Experience for Petri
Nets Through Patterns. In Proceedings of High Performance Computing HPC’99,
pages 453–458, San Diego, CA, USA, 1999.

21. S. Hasso and C.R. Carlson. Linguistics-based Software Design Patterns Classi�ca-
tion. In Proceedings of the Thirty-Seventh Annual Hawaii International Conference
on System Science (HICSS-37). IEEE Computer Society Press, 2004.

22. K.M. van Hee. Information System Engineering: a Formal Approach. Cambridge
University Press, 1994.

23. G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley Profes-
sional, Reading, MA, 2003.

24. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

25. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

57

26. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98–132, 1998.

27. N. Mulyar and W.M.P. van der Aalst. Patterns in Colored Petri Nets. BETA
Working Paper Series, WP 139, Eindhoven University of Technology, Eindhoven,
2005.

28. N. Mulyar. CPN Patterns Home Page. http://is.tm.tue.nl/staff/nmulyar.
29. Pattern digest library. http://patterndigest.com/books/otherlang.jsp.
30. R.G. Pettit and H. Gomaa. Modeling Behavioral Patterns of Concurrent Soft-

ware Architectures Using Petri Nets. In WICSA ’04: Proceedings of the Fourth
Working IEEE/IFIP Conference on Software Architecture (WICSA’04), page 57,
Washington, DC, USA, 2004. IEEE Computer Society.

31. S.K. Prasad and J. Balasooriya. Fundamental Capabilities of Web Coordination
Bonds: Modeling Petri Nets and Expressing Work
ow and Communication Pat-
terns over Web Services. In HICSS ’05: Proceedings of the Proceedings of the 38th
Annual Hawaii International Conference on System Sciences (HICSS’05) - Track
7, page 165.2, Washington, DC, USA, 2005. IEEE Computer Society.

32. W. Pree. Framework patterns. SIGS Books, 1996.
33. L. Rising. Design Patterns in Communication Software. Cambridge University

Press, 2000.
34. N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Work
ow

Resource Patterns: Identi�cation, Representation and Tool Support. In O. Pastor
and J. Falcao e Cunha, editors, Proceedings of the 17th Conference on Advanced
Information Systems Engineering (CAiSE’05), volume 3520 of Lecture Notes in
Computer Science, pages 216–232. Springer-Verlag, Berlin, 2005.

35. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Work
ow
Data Patterns. QUT Technical report, FIT-TR-2004-01, Queensland University of
Technology, Brisbane, 2004.

36. Software-Ley. COSA 3.0 User Manual. Software-Ley GmbH, Pullheim, Germany,
1999.

37. A. Sutcliffe. Patterns for Knowledge and Software Reuse. Lawrence Erlbaum
Associates Inc., 2002.

38. K. de Vries and O. Ommert. Advanced Work
ow Patterns in Practice (1): Ex-
periences Based on Pension Processing (in Dutch). Business Process Magazine,
7(6):15–18, 2001.

39. W. Zimmer. Relationships between Design Patterns. In Pattern languages of
program design, pages 345–364, New York, NY, USA, 1995. ACM Press/Addison-
Wesley Publishing Co.

58

��������� ��� 	�
 ��
�
�
� ��� ��� ���������
�

��� ������ ��� �����	��
����������

� ������ �� ����	
��
�� ������

��� �������
� ����	
�� ���
��� ����������� ���
��

������ �� ����
���
�
�� ������

��� �����������
��������
� �� ��	
� �	�
�
��
� �
���� �
���� �� �� �� �	�
�
��

�������� � ����	
����������	���
������������

��������� !�� �
�
"���
� �#��
��� ����
����� $���% ���
���� �� ��� ��
�� �	"&���
�����
�� �!� $��
���

���
� !�������	���

��� �����% ���������

��� '()*�� +���
��� ���
����
��� �	�
�����
 ����	���

���,(-�����	� ���� �
� ��	��
�

�� ��� ���
���� ��	�� �
��
����
�� ��.	���� �	�"��� 	��� "�
�� ���
���� ��
�(��
��� �
���� �� /��
�� �	�
���
�����
��

�
�� ��� ���
���� "� 	���� �
��	
��
�
�����(!�� ���	�
 ����
��
�� �
�� �����
��
�� ���
����(!� �����
��� ���"���� �� �������
 ��
 �� ��
����
�
�� ��� ���
����(!��
������� ���
���� ��
��� �������� ��
� ����	��� -�
�� 0�
� $�-0�%(1
��� ��
��� ������
�

� ��
��
�� �
��	
��
�
�����
��
������
�
�� ������� ��� ���
���� ��� ����� �
�	��
�� �
�
��
��� ��
�� ���
��(2���/�

��� ���	�
� �	����

�

�� ������� ���
���� �

��/��

�� ������� ������
��� ��
�
�� ����� ���������� �� ������	� ���� "���� ������

��(

��� ������
������� �������� ��� ������������ ��������
���� ����� ���������� ���	����
����������
�������� ����� ����� ��������� �������� � ���������

� ���������	��

	
��
����� �� �������� !"#$# %&' �� �	� (�� ��������)�� *����*���� ������������� ���	 �� +

,+�������
�������- �����	��� ��� *����*���� ���)��������� ��������� ���� ���(��.����� ���/��(��
��������� �	� +�������" !"#$# �� � ��������� �������� %00' ��������� �� �	� +������������ 1�����*.
*��������� 2���� ,+12-" +12 ����**�������� !"$34 %5'� 6������� ��������)�� *����*���� ��*.
���������7� 	�� ���� ���������� ���� �	��)���/��(�� ��� �) �	� ���� ����**���������)�� ��
!"#$# �����*"

1	� ���������� ���	���� ���������� ,���- �������� �� � ���.�������� �) �	� !"$34 ��������"
1	�� �������� �� ���� �� � *����*���� ��**��������� ����� �� ��)��* ��� ���� �) ��� �����*��
���8�� ������� ������������" � *����*���� ����� 	�� � ���������� ���������� �) �� �� ���� �� ������ ���
�����*�� ,�����*�� ����������- �� ������� ��� ������ ,������� ����������- � ���������� *����*����
������ %5'� �"�" ����� 9":$$ %;' �� ����� !"$;0 %:' ������" <��� �	� ������� ����� (��/� �	� �������
������������ �) ��� ����� �� ��� �	�� ���� *����*���� ������� �	�� ��� �� �������� ��� �������
������������� �� ��� ����" 1	�� �� � ���.��������� �) � �������)�� *����*���� ��**��������� �������"
=���	��*���� �) � �������� (��/� �	� �����*�� ������������ �) ��� ����� �	� �������� *�� �� ���� ���
���� �� �����*�� ��)��*����� �	�� �� /��	�� ��� ������� ������������" 1	�� /	�� � !"#$# �������
�� ��� ��� /� �� ���� �	�� �	� ��� *������� ��� �	� ���� !"$34 *������� �����*����� ���/���
��**��������� �������"

=��* �	� ����� �) ���/ �) �������� ������������ �� �� ��������� �	�� �	� ���������� �) � ��������
��� �� ������� ��)��� �*���*�������� %$'" =�� �*������� ��� /��������� ���������� ��(� �	��� �)
!"#$#� �� �� ����� �	�� ������ ������ ���)���� ��� ���*������ ��)��� �*���*��������" 2�)�����������
������ /��(�� ���� ���� �� ����)���� !"#$# ���������" !"#$# �� � ��*���	������ ��� ��*����
��������� �	� �����	 �) �	� ����*�������� �) �	� ���� !"#$# ����**��������� ����� �� ����� �� &>>
�����" �� /� ������� ��� /��(�� !"#$# �� ������������� �	� ��� ��������"

��������� �� �	� �������� ����������� *��	������� ��������� �� %#'� ����������� �) � ��������
��*������ ����������� �) ������� ���������� �) �	� �������� ,���	 �� ������� �) �������(� ��� ����.
���(�- ��� ����������� �) �	� �������� ������� ��� ������� ������������" 1	� *�?�� ���� �) � �������
������������ �� �	� ��������� �) �	� ���	
�� ��
������ �	� ����/���� �� ������ �) ���� ����������

59

������ ,(��/� �� ���	
�� ��
�
�
	��-" 9������ ���������� ��� ������� �� ��������� �	� ����� ����� �)
�	� �
� *���� �) �	� ��������" ����������� ������� �	� ������� �� ����*����	�� �� ����� ��������
��������� /	��	 �������� ��*������ �	� �������� ��
����� ,�"�" �	� �� ������ �) ������� ���*������
�	�� ����� �� � ������ �) �	� ��������@� ���������-� /��	 �	� ������� ��������"

�������� ���� +� %03'� �	� ��� �������� �� *������� /��	 ��������
���� ���� ,�
��- %0>�
0$' ��� ����� ����� �������� �	�/� �	�� �	� �������� /��� /��(��������� /	�� /������� �) �	�
��������@� �� ����� ��*���� ���� ��� �����" !�/����� /	�� �� ����� ��*���� /���� � ���� *��
�� *����)��*�� ����� �	� ���������� �� ��	��/��� �) �	� ������������ �� 	�� ?��� ����" 1	�� �����
���� �� �	�)������ �) �	� *����*���� �������"

������������ �� ��� �
��� +� �	�� ������ /� ������ ������� �	� ��� ��������)���	�� �� �	��(���
�� ������� �	� ��� �������" A� ��� �	�� �	� ��� �������� 	�� �*���*����� ��*� �� ������ �)
���*������ �	�� ��� ��� �������� �� �	� ��� ������� �������� ,(��/� ��
������ �����
���-" ��*� �)
�	��� ������� �� ������ ���������� �� �	� ��*� ����� �	�� /�)���� ���������� %03'"

1� ��*��� �	� ������ /� ������� �/� �	����� �� �	� ��� �������� ������ �� !"$34 %5'" A�
�	�� ����)� �	�� ������� ��� �������� ��)����/��� �	� �������� ����������� *��	������� ���������
�� %#'" ����� ����� �������� �) �	� ������� ��� ���������)�� ����� ������ �) ��� ����*������ �	�/�
�	�� �	�� ������� �������� �������� �	� ������� ���������� �	�� /� 	��� ��������� ��� �	�� �	�
��������� ��	������)���� �� �	� �������� ��� �������� �� ������ ������" =���	��*���� ��������
�������� �	�/� �	�� �	� �������� �������� �) �	� ������� ��� �������� �� �������� �� �	� �������
��������" A� �	�/ �	�� �	� �������� �*���*���� �� ���������� ������ �) �	� �� ������ ��������
�� �	� ������� ��������� ��� ���� ��� �������� ��� ������� �� ������"

��������� �� ��� �
��� 1	� ���� �) �	� ����� �� ��������� ��)����/�" ������� $ ���������� �	�
��� �������� ��� ��� �
� *���� ������� �� %03'" 1	� ������� ����������)�� �	� ��� �������� ���
������ �� ������� #" ������� 3 ��**������ �	� ����� ����� �������� �������)�� �	� ��� ��������
�������� �� %03'� ��� �	�� �������� �	� �������� �������� �������" ������� 4 �������� �/� �	����� ��
�	� ��� �������� ��� �	� �
� *����)�� �	� ������� ��� �������� �� �������" ����� ����� ��������
��� �������� �������� �) �	� ������� �������� ��� ��������� �� �������� ; ��� : ������������" =������
������� & ��**������ �	� ����� ��� ��������)����� /��("

 ��
	�� �� ��� ��� ��������

1	� ��� �������� ��� ��	�� ���.��������� �) !"$34 	��� ���� �������� �� �� ����������� �) �	�
���������� ��������� *����*" !�/����� �� �� ������ �� !"$34 %5' �	�� �	��� ��������� ��� ��������
�� �� ���� ���� � �������� �	������ �"�" � �	����� �	�� ���� ��� ����� �������� �� ��������� *�������"
A��	 �� !"#$# �����*� !"$34 ,��������� �	� ��� ��������- �� �� ����� �� �� ���� ���� � ��������
��������� *����*" 1	���)���� �� �	�� ������ /� ���� ����������� �	� ��	������ �) �	� ��� ��������
��������� ���� � �������� �	�����"

1	� ��� �������� �� �������� �� !"$34 %5' �� ���*� �) � ��� �) ��� *������� �	�� ��� �����*�����
���/��� �	� ��� �������� ,�����-B �	� ��������� �	�� ������� �	� �����*������ �) �	��� *�������B
��� �	� ���	���� �) �	� ��� ������� ���*������ ���/��� �	� ��� ������� ���� ��� �	� ��� ���	
��
���	
��� ,�"�" �	� ����� ��� �	��� ���������� *����*-� �� ����)��* �	� ���� ���� ������� �) �	�
���� ����"

+� %03'� /� ������� � �
� *����)�� �	� ��� ��������� /	��	 �� ���� �� �	�� ������� �� ����������
�	� ��������" =������ 0 ��� $ �	�/ �	� *���� ��� ��� ������������ ,/��	 �	����� �� �	� ��*�� �)
��*� ��� ��*�������-" +� �	�)����/���� /� ������ ��������� �	� ��*������� �) �	� ��� �����.
��� ,��������� �	� ������ �	� ��� *������� ��� �	� ��� ������� ���*������- ��� 	�/ �	�� ���
*�������"
���� �� �	��� /� �������� �	� ��������� �) �	� ��������"

��� �
�
������ ����
�
� ��
�
����
 ��������

!"$34 ������ �/� �����C �� �������� ���� /	��	 ��������� ��**���������B ��� �� ����*���
����/	��	 ��������" 1	� ������ �) �	� �	��� �/� ����� ��� *������� �� ������ ������������ ���

60

ou
tg

oi
ng

C
ES

E
st

at
es

1‘
(0

, i
dl

e)

in
co

m
in

gC
ES

E
st

at
es

1‘
(0

,id
le

)

re
vC

ha
nn

el

in
M

es
sa

ge
Q

ue
ue

1‘
[]

fo
rC

ha
nn

el

ou
tM

es
sa

ge
Q

ue
ue

1‘
[]

TR
A

N
SF

ER
cn

f

[iS
Q

=o
S

Q
]

TR
A

N
SF

ER
in

d

R
EJ

EC
Ti

nd
U

ou
t

[iS
Q

=o
S

Q
]

TR
A

N
SF

ER
re

s

TR
A

N
SF

ER
re

q

R
EJ

EC
Tr

eq

R
EJ

EC
Ti

nd
Pi

n
R

EJ
EC

Ti
nd

U
in

D
IS

C
A

R
D

[o
S

Q
<>

iS
Q

]

IG
N

O
R

Eo
ut

R
EJ

EC
Ti

nd
Po

ut
IG

N
O

R
Ei

n

TR
A

N
SF

ER
in

dT

m
O

^^
[(i

nc
M

od
(o

SQ
),

ca
pS

et
)]

(o
SQ

, c
ap

Se
t):

:m
O

(o
SQ

, a
w

ai
tin

g) (o
SQ

, i
dl

e)

(o
SQ

, a
w

ai
tin

g)

(o
SQ

, i
dl

e)

(iS
Q

, c
ap

R
ej

ec
t):

:m
In

(iS
Q

, c
ap

A
ck

)::
m

In

m
In

^^
[(i

SQ
, c

ap
R

ej
ec

t)]

m
In

^^
[(i

SQ
, c

ap
A

ck
)]

(iS
Q

,a
w

ai
tin

g)

(iS
Q

,id
le

)

(iS
Q

, a
w

ai
tin

g)

(iS
Q

,id
le

)

(iS
Q

, a
w

ai
tin

g)(iS
Q

,id
le

)

(o
SQ

, c
ap

Se
t):

:m
O

m
O

(o
SQ

, a
w

ai
tin

g)
(o

SQ
,id

lT
)

m
O

(in
cM

od
(o

SQ
),

aw
ai

tin
g)

(o
SQ

, i
dl

e)

(o
SQ

, i
dl

e)

(o
SQ

, a
w

ai
tin

g)

(iS
Q

, i
nM

es
)::

m
In

(iS
Q

, i
nM

es
)::

m
In

(o
SQ

, i
dl

e)

m
O

^^
[(0

,c
ap

R
el

ea
se

)]

m
O

m
In

m
In

m
In

m
In

(iS
Q

,id
le

)
(o

SQ
, a

w
ai

tin
g)

(iS
Q

,id
le

)

m
In

m
In

m
O

(0
,c

ap
R

el
ea

se
)::

m
O

(0
,c

ap
R

el
ea

se
)::

m
O

m
O

(iS
Q

, a
w

ai
tin

g)

m
O

(iS
Q

,id
lT

)

(iS
Q

, a
w

ai
tin

g)

�	
� �� �-0 ����� ��
�� ��� ���
����

61

(*---states of CESEs---*)
 color st = with idle | idlT | awaiting ;
(*---sequence numbers/values of state variables---*)
 color sequenceNo = int with 0..255;
(*---states and state variables of CESEs---*)
 color states = product sequenceNo*st;

(*---types of messages sent by outgoing CESE---*)
 color outM = with capSet | capRelease;
(*---messages sent by outgoing CESE---*)
 color outMessages = product sequenceNo*outM;
(*---message queue of forward channel---*)
 color outMessageQueue = list outMessages;

(*---types of messages sent by incoming CESE---*)
 color inM = with capAck | capReject;
(*---messages sent by incoming CESE---*)
 color inMessages = product sequenceNo*inM;
(*---message queue of reverse channel---*)
 color inMessageQueue = list inMessages;

(*---variables---*)
 var mO : outMessageQueue;
 var mIn: inMessageQueue;
 var inMes : inM;
 var oSQ, iSQ : sequenceNo;

(*---function for calculating new value of---*)
(*-sequence number or state variables-*)
 fun incMod (oSQ) = (oSQ+1) mod 256;

�	
� �� !�� ����
�

���� ��
�� ��� ���
���� �-0

��	�
������� ,=����� 0-"
��	 ������ ��� ����� �� ������ ��� ����
� ,��)�� �� =����� $-� � �������
�) ������ ���� �
��
�	
�� ��� ��" !��� �
��
�	
�� �������� �	� ����� �) �� ����� ��*���� ���� ��
��� *�������� �� /��� �� �	� ����� �) �	� ������ �) ����� ��������� �) �	� �������� ���� ,��� �D-
��� �	� ����*��� ���� ,�� �D-" 1	��� �/� ����� ��������� ��� *������� �� �
� ��������� ���
��� ��� ���������������" �� ������ ��� �	� �������� ������ �) �	� �������� ��� ����*��� �����" +�
	�� �	��� �������� ������� ���
� ���� ��� ��������" A	��� ���
 ��� �������� ���������� �� �	�
�/� ������ +E�� ��� �A�+1+�9 ���
<��� �) �	� �/� ������ ���� *����� � ��*������ �����
�) �	� ����*��� ����� /	��	 �� ��� ���������� ������ �� �	� ��� �������� ������������ �) !"$34
,������� �) �	�� ��*������ ����� /��� �� ���������� �� ������� $"3-"

��� ��� ���

��

=��� ��� *������� ��� ������ �� !"$34� ��������� 1��*������������������ 1��*����������������.
��������� 1��*�������������������(� ��� 1��*�������������������?���" 1	� ���� �/� *������� ���
���� �� �	� �������� ���� �� �	� ����*��� ���� ��� �	� ���� �/� ��� ���� �� �	� ����*��� ����"
������ ��� ���� ,=����� $- ������ �	� ����� �) *������� �	�� ��� �� ���� �� �	� �������� �����
��������� 	���
� ,)�� 1��*����������������� *������- ��� 	���
�
��
 ,1��*����������������.
��������-" ������ ��� ����
����
� ��*����� �
��
�	
�� /��	 ����" 1	��� �� �� �� �������*���
���� ������)�� � 1��*������������������������ *������" !�/����� �� ����� ��� �� *�(� �	� ����
�) ����� ��������
� ��*��������� /� ����� ��� � ���� ,�"�" ��� 	���
�
��
�- �� ��������� �	�� *��.
����� ��� ��� �	� ���� ���* �) �	� ���� �� > �� ��� �����" ������ ��� ����
����
��
�
)��*� � ���� �)
�������� *������� ��� �� ���� �� ���� ����� ��������
� ,������������ �	� �������� �	�����)��*
�	� �������� ���� �� �	� ����*��� ����-" ��*������� ���
����
��
�
 �� � ���� �) *������� ���� �� �	�
����*��� ���� ��� �� ����� ����� �
������
� ,*�������� �	� �������� �	�����)��* �	� ����*���
���� �� �	� �������� ����-"

62

��! ��� ������� ���"������

1	��� ��� ��� ��� ������� ���*������ �	�� ��� ����� �� �	� �����)��� ���/��� �	� ��� �������
����� ��� �	� ��� ������� ��������" 1����=��"�� ���� ��� 1����=��"�����* ��� ���*������
�	�� ����� �� �	� �������� ���� ����� ��� 1����=��"����������� 1����=��"�������� ��� ��.
���1"�� ���� ��� ����� �� �	� ����*��� ���� ����"
��*����� �����1"���������� ��� �� ������
���	�� �� �	� �������� ���� �� �	� ����*��� ����" 1	� ����� �) �	��� ��� ���*������ /��� ����*�
����� /	�� /� ��������� �	� ��������� �) �	� ��������" ������� ���*������ ��� *������� �� ������.
����� ,=����� 0-" 1	� �����)�� ��*��� �	� �����������)��* �	� ������������� ���*����� ��*�� ���
��)����/�" 1	� ������� ���*����� ��*�� ��� ���������� �"�" 1����=�� ����� ������� �� �� ��!��
�� �	� ������������� ���������� ��*��B �	� 6"7 �� �	� ��*� �� �*�����B �	� ���� ��*�� �) ���*������
��� ����������� �� # ������� ,�"�" �� ���� ����*�� �
�-B /	�� *�������� �����1"����������� �/�
�������� ����������� ��� ���� �� ����������	 �	� �/� ������ �) �	� �<2��� ����*���� �) �	� ���*.
����� ,���������� �	� ������ �) ��?������-� ��)����/��� �	� ���� ��*�� � ������� ������ " ,�<2���
F 2���-� �� # ,�<2��� F
�<1<�<�-� �� ��������" +� �	� �������� �
�� �� ����������	
���*������ /��	 �	� ��*� ��*� ��� �� ��G����� ���� ,�"�" �����1"����������-� �	� ��Æ� ��� ��
����� �� � ���������� ��*� �� �	�/ �	�� �� �� �� �	� �������� ���� ��� ��Æ� ��)�� �	� ����*���
���"

��# $���
���� �� ��� ��� ��������

+� �	�)����/���� /� ��� �	� ���* �����
�
�� ��� �� �������� �	� ��� �) ������������ �) �	� ��������
��� ���� �	�� �� ������������ �� � 1����=��"�� ���� ���*�����" H�������� �	� ���* �����
�
��
���
���� ��)��� �� �	� ������� �) ���������� � ���������� ��� �� �	� ����*��� ��� ���� ��� �	�
������������� ��(��/����*��� ,�) ���- ���(�� �	� �������� ��� ����" � ���������� �����)�� ��
���
�������� �) �	� ������������� ��(��/����*��� �� ��������� �� �	� ����*��� ��� ���� ���
�� �������� �� �	� �������� ��� ����" � ���������� �����)�� �� ������� �) � ���� 	�� ������ �
�����1"���������� ���*����� ,�<2��� F
�<1<�<�-" � ���������� �����)�� ��� �� ���������
�� �	��� /���C ��(��/������B ������� �� ���	 ����� ,�� �	�� ���� �� ��(��/����*��� �� ���������-B
�� ������� �� �	� �������� ���� ���� �
� �	� ��(��/����*��� 	�� ���� �������� ��� ��������� ��
�	� �������� ���� ,/��	��� ��)��*��� �	� �������� ��� ���� �) �	�� ������� ��(��/����*���-"
A� ��� �	�� � ���������� �����)�� �� ������
�

� �) �� 	�� ��� ���� ��*������"

��)������ �� =������ 0 ��� $� �	� ����� ��������� �) � ��� �������� ��� �� ��������� ��)����/�"
� ���������� �����)�� �� ������� /	�� � 1����=��"�� ���� �� ������ �� �	� ���� �� �	� ��������
���� ,�"�" �� ��!���
� ������-" 2��� ��������� �	� 1����=��"�� ���� ���*������ �	� ��������
���� ��������� ��� ����� ��������� ��� �D� �� 0 *����� $4; ,*������� ��)������� ��	��������-�
����� � 1��*����������������� *������ /��	 �� ����� ��*��� � ��� �� �	� �����*����� ��� �D ��
�	� ����*��� ���� ,�"�" ���	��������� 	���
�� �� ������������ �� �	� ��� �) �	� ���� �� �����
��������
�-" 1	�� � ��*�� �� �������� /	��	 �� �*�������� *������� �� ���������� ��$������#����
��� �	� �������� ���� ������ ��� �A�+1+�9 ���
<��� ������ *������� �� �	������ �	� *��(.
��� �) ������������)��* ���
 �� ��������"

A	�� ��������� �	� 1��*����������������� *������� �	� ����*��� ���� ������ �	� �� �����
��*��� �) �	� *������ ���� �������� �� �D� ��)��*� �	� ���� /��	 � 1����=��"���������� ���*.
������ ��� �	����� �����)��* +E�� �� �A�+1+�9 ���
<���" 1	�� ������� �� *������� ��
�	� ���������� �) �� ��!�����" 1	�� �	� ���� ��� ������ �	� ������������ �� ������� � 1����.
=��"�������� ���*����� ,�"�" �� ��!���
� ������-� �� ��?���� �	�* /��	 � �����1"�� ���� ���*.
����� ,��$����
� ������-" ������������ � 1��*�������������������(,	�� 	%- �� � 1��*��������.
�����������?��� ,	���
&
	�- *������ �� ���� �� �	� ���� ���� ��� �	� ����� �) �	� ����*��� ����
����*�� +E��"

�� �	� �������� ����� �) �	� �������� *������ �� �������� ��)��� �	� ��*�� �������� �	� ��������
���� ������� �	� ���� �� ���*������ � 1����=��"�����* /	�� ��������� � 1��*������������.
�������(*������ ,�"�" �	� ���������� �) �� ��!��	��-" <�	��/��� � �����1"���������� /��	 ���
�<2��� ����*���� ��� �� ����� 2��� �� ���� �� �	� ���� /	�� ��������� � 1��*��������������.
�����?��� *������ ,�	� ���������� �) ��$������"���-� ���������� �	�� �	� ����*��� ��� ���� 	��
��?����� �	� ������������ �) �	� �������� ��� ����" �)��� ��)��*��� �	� ����� �	� �������� ����

63

������� �� +E�� ��� ������ �	� ��*�� ,�"�" ���������� ��$������#��� ��� ��� �� �������-" +) �	�
��*�� ������� ��)��� ��� �������� �� �������� ,�"�" ��$������#��� ������-� � 1��*��������������.
���������� *������ �� ���� �� �	� ���� ����� � �����1"���������� ���*����� �� ������ �� �	� ����
,/��	 ��� �<2��� ����*���� ��� �� �����
�<1<�<�� ���������� �	�� �	� �������� ������ 	��
������� �	� ������� ���������� �����)��-� ��� �	� ����@� ����� ������� �� +E��" A	�� �	� 1��.
*������������������������ *������ ������� �� �	� ����*��� ����� �) �	� ����*��� ���� �� �� �	�
�A�+1+�9 ���
<��� ������ �� /��� ���*�� � �����1"���������� ,/��	 ��� �<2��� ����*����
��� ��
�<1<�<�- �� �	� ���� �� ����� �	� ������� �����)�� ,�"�" ��$������#�� ������-" +) �� ��
+E��� �"�" �	� ������� *������ ������� �)��� �	� ����*��� ���� 	�� ������ �	� ��������� �	�� *������
/��� �� ������� ,*������� �� '(�)����-"

=������� �� �� ��������)�� �� ������� ��(��/����*��� �� ��*� ���(�� �	� �������� ����" 1�����.
����� '(�)����� ��� *'�� �* ��� ���� �� ������� � *������ �������� /	�� �	� �������� ���� ��
��� �� �	� ���	� ����� ,'(�)�����- �� /	�� �	� *������ �������� 	�� � ��G����� �� ����� ��*���
)��* �	�� ����� �������� �� �	� �������� ���� ,*'�� �*-"

��% &�
�������� �� ��!������
�� ��$������"��

A	�� �	� ����*��� ���� �� +E��� �� ��� ����� � 1����=��"���������� ���*����� �� ���������
� 1��*����������������� *������� /	��	 �� *������� �� ���������� �� ��!�����" ��������� �� �	�
��� �������� ������������� /	�� �	� ����*��� ���� �� �� ��� �A�+1+�9 ���
<��� ����� ���
����	�� 1��*����������������� *������ �� ��������� �� /��� ����� �	� �������� ���������� �����)��
�� ������� � �����1"���������� ���*����� �� ��� ���� ,/��	 �<2���F2���� ���������� �	�� �	�
�������� ���� 	�� ������� �� ����� �	� �������� ���������� �����)��-" +**��������)����/��� �	���
� 1����=��"���������� ���*����� ������ �� �	� ����*��� ����� ��� �	� ���� ������� �� ���
�A�+1+�9 ���
<��� �����"

+) /� ��� ���� ���������� �� ��������� �	� ����� ���������� �) �	�� ��������� �"�" /	��	�� �	�
���������� ��)��*����� ��� �� �����)���� ��������� /� ��� *���� �	� ����� �) ������������ �������
�����1"���������� ��� 1����=��"���������� �� � ������ �
� ����������" !�/����� /� ��� ����
���������� �� ����)���� �	� ��� �������� ������� ��� ������� ������������" A� ���� �� ������� �	�
�������� �) ������� ���*����� ������)��* �	�� �������� *���� ,�"�" �������� ��������- ��� ��*����
�� /��	 �	� ��� ������� ��������" +� /��� *�(� �������� ��*������� ��Æ���� �) /� *���� �	�
�/� ���*������ �� � ������ �
� ����������� ������� �	�� /��� ������ �� ��� ����� �� �	� ��������
��������� /	��� �� �	� ������� ��������� �	�� ������ �� �/� �������� ������" 1	���)��� /� *����
�	� �/� ���*������ �� �/� �
� ������������ ��$������"�� ��� �� ��!������" 1� �� �	�� /�
��������� � ��*������ ������ �����)�� �	� ����*��� ����" <��� ���������� ��$������"�� �������
�	� ���� /��� *��� �� ����" +**��������)����/��� �	��� ���� ���������� �� ��!������ ��� �����
�� �	� ����*��� ����"

� ���	��� �������	�� ��� ��� ��� ��������

+� �	�� �������� /� �����)� �	� ������� ����������)�� �	� ��� ��������� ��������� ������� �������
���������� ��� � �������� ��������" +� %03'� ������� ���������� /��� �������� �� ������������� �	�
����� ����� �) �	� ��� �������� �
�" !�/����� �	� ���������� �������� /��� ��� ���������� ������
�� %03'" =���	��*���� ����������� �) �	� ��� �������� ������� ��� ������� /�� ��� ����������" A��	
�	� ����������� �) �	� ������� ������� �) �	� ��� ��������� /� /���� ��(� �� ������ ���������� �����
�	� ������� ���������� �	�� /� ��� ����� �� ����)�"

�� ���������� �� !��I*��� %3'� ������� �) �������(�� ������� �) �������(�� ��� ������ ���*�.
������ ��� �	��� �*������� ������� ������� ����������� ��� � �������� ���)��� �) ��� �) �	� �����
���������� �� ��� ��������" � �������(������� �� �� ��������� ���� *��(��� �� �	� ����� ����� �)
� ��������@� �
� *����" ��������� �� !"$34� � ���������� �����)�� ��� ����� �� ��� ��*� ������ �
�������� �������� �� �	��� *��� ��� �� ��� ���� *��(����"

�������� �� '(������ ��)�
������* ��� ��� �������� ����
�� ���������

1	� ��� �������� *��� ��� �� ������� �� � ��� �) ������ /	��� ������� �� ��������� �� ������
�) ������� ����� ���������� /��	��� ������"

64

�������� �� '(������ �� +��������* ����� ���� ��
� �
	������

 ��� ��� ���������

�� ��������� �� ������� $"3� ����� ���������� �����)�� �	���� ������ �� ��*������" 1	�� ���
�� *�� �� ��(��/������ ,�"�" �� ��!��	�� �� ��$������"��� 	�� ��������-� ������� �� ���	
����� ,��$������#��� ��� ��$������#�� 	��� ��������-� �� ������� �� �	� �������� ���� ����
,��$������#���� ��� '(�)����� �� *'�� �* 	��� ��������-" =���	��*���� ������� �	� ��� ���.
����� ���� *����� ����	*���� �� ��������� �� ����� ��*���� ��� ������ �) ����� ���������� ��� �D
��� �� �D�)��* ��� ������ �	� �������� �	���� �� ���� �� �� ���(�� �	� ������� ����� �� /	��	
���	 ����� ��� +E�� ,/��	 �	� ������ �) ��� �D ��� �� �D ����� I���- ��� �	� �/� �	������
��� �*���" 1	���)��� ������� �) 	����� �	� �������� ����� ������ ���*���� ������� /� ����� �	�

�
�� ����� �� � ���� �����)�� �	� ��� �������� ,/	��� � 	�*� ����� ��)��� �� � ����� �	�� ���
�� ����	��)��* ��� ��	�� ����	���� ����� �) �	� ��������-"

�������� !� ',�"� ��
��* �� ���� �� ����
��� �� �����
 �� ���

�
�� ����� �� ��� ��� ���������
����
� ���

�
�� ����

� �� ��� ��� �������� ��� ���� �� � ���� ����

��

���� �	��
������� # �*�����
��������� 0 ��� $"
� �������� ������ �	���� 	��� �� ���� ����� �"�" ������� �	�� ��� �������� ��� ����� ��������"

�������� #� '-�)�
� ����* ����� ���� ��
� ���� ����

 ��� ��� ��������� ����
� �����
���� ��
� ���� ���
�
�
�
�

 ��� ��� �������� ��� !
���� "#�

�� �*������� �������� �� �� �������)�� � �������� �� �	�� �	� �������� �������� �	� �� �����
�������" =�� �	� ��� ��������� /� ���� �� ����� �	�� �	� �� ������ �) �	� ��� ������� ���*������
�*���*����� �� �	� ��� �������� ,�"�" �	� ��� �������� ��������- �� �������� �� �	� ��� �������
��������" 1	�� �� ������ ����/ ��
������� 4"

�������� %� '+
�
�

� ��������* ��� ��� �������� ��
����� ���� ��

������ ��� ��� ���	
��
��
������

+) �	�� �������� 	����)�� �	� ��� ��������� /� ��� �	� �������� �� � ��$
���
� �) �	� ���
�������"
����������� /	�� �	� �������� �������� �� ��������� �� �	� ������� ��������� /� ��� �	��
�	� �������� �� � ��
����� �����*��� �) �	� ��� �������" A� ���� �	� �� ������ �) ���*������ �	�� ���
�� �	� ������� �������� ��� ��� �� �	� �������� �������� ,�) ���- �
��

� �����
���" +� �	�� �����
/� ���� �� �	�/ �	�� �	� ������ �) �	� ������� �*���*����� �� �	� �������� �� ���)��" A	�� �	���
��� �� ������ �) ���*������ �� �	� ��� �������� �������� �	�� ��� ��� �� �	� ��� ������� ���������
�"�"
������ �����
��� �� *�������� �� ������� 0� �	� ��� �������� 	�� ��������� ��	������ �� ����
�	� ������� ������������ ����� *����������"

� ���	����	�� �� ��� ��� ��������

+� �	�� �������� /� ����������� �	� ��� ���������� ������ �� �	� �������� �������" 1	�� �������� �
�����/ �) �	� ����������� �������)�� �	�)��� ������� ���������� %03'� ��� �	� ��/ �������� ��������
�������"

#�� �������� ����

������ �	� �	������ 	��� ������� ��������� �	� <��������� 9���	 ,<9- �) �	� ��� �������� �
�
�� �������" �� �� %03' ����� ����� �������� /�� ������� �� � ����������)��* �) �	� �
� *���� �) �	�
��� �������� ,=����� 0-" +� �	�� ���������� *����� �� �� ����*�� �	�� �	� �	������ ���/��� �	� �/�
����� 	��� ���� ��������� �"�" �	� �����	� �) �	� ����� �� ������ ��������
� ��� �
������
�

��� ��*����" ����� �� ������ � ��������� <9� ��� �� �� ���� �� ������� �	� ��	������ �) �	� ��������
/	�� �� ����� ��*���� /��� /	��� ��� ������ �	� ���������� �) ����� �
%���
� �� ����� ��*�����
�� ����� ��*���� ��� �� �	� ����� �) �>� 0�� ������� �) �� � > � � � $44�" ����� ����� ��������
�	�/� �	�� �	�� *���� ���� �����)�
��������� 0 �� 3"

&���	���)���	�� ������������� �) �	� <9 �) �	�� *���� �������� �	�� /	�� /������� �) �� �����
��*���� ������ �	� �������� ���� ��� ��(� �� ��� ��(��/����*��� /��	 �	� ��*� �� �����

65

outgoing incoming

REJECTindPout

TRANSFERreq

REJECTindPout

TRANSFERreq

TRANSFERcnf

(0,capRelease)

(1,capAck)

(1,capReject)

(0,capSet)

TRANSFERreq

TRANSFERres

TRANSFERind

TRANSFERind

REJECTindPin

TRANSFERind

REJECTreq

(1,capSet)

(0,capRelease)

(1,capSet)

$
% 3����
������������
 �������� "� 	���

outgoing incoming

REJECTindPout

TRANSFERreq

REJECTindPout

TRANSFERreq

TRANSFERcnf

(0,capRelease)

(1,capAck)

(0,capSet)

TRANSFERreq

TRANSFERres

TRANSFERind

TRANSFERind

REJECTindPin

(1,capSet)

(0,capRelease)

(1,capSet)
TRANSFERind

TRANSFERreq

(0,capSet) REJECTindUin

TRANSFERindT

$"% !�� ���	������ �� ������������
��
������������

�	
�
� ���	�
�

��� ��
�� ������ ��	�� �� 45*6

��*��� �� �	�� �) �	� �������� ��(��/����*���� ��� ������ �	� ��)��*����� �������� �� �	�� ���
��(��/����*��� �� �	� �������� ��� ����" 1	�� ��� �� ��������� *���������"

�� ����������� �� =����� # ,�- ,��� ��)������ =����� 0-� /��	 �	� ���������� *����� ��������� /	��
�� ��!���
� ������� � 	���
� *������ /��	 �� ����� ��*��� 0 �� ����" A	�� �	� ��	�
�������
�������� �	�� *������� �� ��!����� ������ ��� �	� ���� �� ��)��*��" ��/ �	� ��*�� ������� �� �	�
�������� ���� ,��$������#��� ������-� ��� � 	���
�
��
 ������ �� ����" !�/����� �	� �������
��� ���� 	�� �������� �	� ���� ���������� ��� ,�� ��!���
� ������- ��� � 	�� 	% *������ /��	
�� ����� ��*��� 0 �� ���� �� �	� ��	�
������� ��)��� �	� 	���
�
��
 *������ �� ��������" 1	�
������� 	���
�
��
 *������ �� �	�� ������� ,'(�)���� ������-"
������ �	� ������������ ��
���
� �� ��!���
� ��/ ������)�� �	� ������ ��*�� ��� *������ ��� 	���
�� �� ����" !�/���� �	�
��*�� ������� ����� ��� � 	���
�
��
*������ �� ���� ��� �������� �� �	� ��	�
������� ��)��� �	�
����*��� ��� ���� 	�� ��������� � �������� �� �	� ������ ���������� ��� ,��$������#�� ������-"
2� �� ��/� �	� ��(��/����*��� �� �	� ���� ���������� ��� ,�"�" �+� 	�� 	%�- 	�� ��� ������� �� �	�
�������� ���� ���� ��� �� ��!���
� ������)�� �	� �	��� ��*�"
������ �	� �������� ���� *�����
����	*���� ,*����� $)�� �	� ���������� *����- �� �������� �� ����� ��*����� ����	�� 	���
�

������ /��	 �� ����� ����� 0 �� ����� ��� �	� ������������ �� �������� �� ��(��/����*���
/��	 �� ����� ��*��� 0)��* �	� ����*��� ����" �� �	�� ��*�� �	� *������ ,0� 	�� 	%- ������
�������" 1	�� �	� ������������ ��(�� �	�� ��� �� �	� ��(��/����*��� �� �	� �	��� 	���
�*������
��� ��)��*� ��� ���� �	�� �	� �	��� ���������� ��� 	�� ���� �������� �� �	� ����*��� ��� ����"
!�/���� �	� ����*��� ��� ���� ��)��� ��?���� �	� �	��� ���������� ��� ,��$����
� ������- ���
� 	���
&
	� *������ �� ����" !�/���� �	�� *������ �� ������� ,�"�" '(�)����� ������- �� �	�
������������� ������� �	� ���� �� ���
" 1	�� �	�/� �	�� �	� �������� ��� ���� 	�� ����
��)��*�� �) �	� ���������� �) � ���������� ��� �	�� 	�� ���� ��?����� �� �	� ����*��� ��� ����"
1	� ����� ����� �) �	�� ����� �� �	�� �	� �������� ��� ���� ��� �������� � *����*���� �����*������
�	�� ������ �� �������� �������� ���8�� ����������� �� �	� ����*��� ��� ����"

������ �� ������� �� �� ��������� �	�� � �������� 	�� �� ���� ����� /� 	��� �������� �� ��
� ��������� ��������)�� �	� ��� �������� �� ������� #" !�/����� �� ��������� �� %03' �����������
�� ��!������ ��� ��$������"�� ,=����� 0- �	���� �� ���� /	�� �	� ���������� *����* ��
��������" 1	� �/� ����������� ��� ���� �� ����� �� �������)��* �� ���������� *����*" =���	��
�������� �) �	� <9 �) �	� ���������� *���� ���� ������� �	�� �� �� �	� ��������� ��	������ ���������
����� �	�� ����� �� �	� �������
�� �) �	��� �/� ����������� /��	 �	� ��� �������� ��������� ����
� �������� *����*" 1	�� ��� �� ����������� /��	 �	� �������� �	�/� �� =����� # ,�-" 1	� ��*�
�� ����� ������* �� =����� # ,�- �� �	� ��*� �� �	�� �� =����� # ,�-� ������ �	�� �� �	� �����* �)
=����� # ,�-� ��)��� ��$����
� ������� �� ��!���
� ������)�� �	�)����	 ��*� ,��� �� �	� �����
����� /	��	 	�� �	����� �	� ����� �) �	� ������������ �� ���
-� ��� *������ ��� 	���
�� ��

66

����" 1	�� *������ �� �������� /	�� �	� ��	�
������� �� ��������� /	��	 ������� ��$������"��
,��)�� �� =����� 0-� �	�� �� ������" +**��������)����/��� �	��� �� ��!������ ������"

1	�� ������ �*����� �	��
������� 3 �� ��� � ��������� ��������)�� �	� ��� �������� /	�� �	�
��������� *����* �� ��������� �� /� ������ �	�� �������� ��)����/�"

�������� #� '-� .���������)�
� ����* '��
 ��� ���
����� ���
��
� ���
����� ����� ����
��
� ���� ����

 ��� ��� �������� �(���� ��� ��� ��������� ���� ������ ���
 ���

���

� ����

�

)')����* +���,��� �
� ����
	�� � ����

�������
�
����� �������� ��������
�

����
�
�� ��� ��� �������� ��� !
���� "#� ����� ���� ��
� ���� ���
�
�
�
� �(���� ��� ��$������"��
�
� �� ��!�������

+� �	� ���� �) �	� ������
������� 3 ��)��� �� �	� �����-� .���������)�
� ���� ��������"
1	� ������)��* %03' 	�� �	�/� �	�� �	�� �������� ���� ��� 	���)�� �	� ��� ��������"

#�� +
�
�

� (�
����� �� ��� ��� ��������

1� ��*����� �	� ����������� �) �	� ��� ��������� �� �	�� �������� /� �	��(�)
������� 4 	����� �"�"
/	��	�� �	� ��� �������� �������� �� � �������� �� �� �������� �� �	� ��� ������� ��������"

&�� ��� �������
�� �������� +
�
�

�� 1� ������� �	� �������� �������� /�)����/ �	�
*��	������� �) %#'" A� ������ �������� �	� ������� ��������� /	��	 ���������� ��� �	� ����/����
�� ������ �) ������� ���*������ �������� �� �	� ������� ���������" A� ���� ���� �� �������� �	�
�������� ��������� /	��	 ��*������ ��� �	� �� ������ �) ���*������ �	�� ��� �*���*����� �� �	�
��������"
��	 ������� ��� �������� ��������� ��� ����������� �� �����*������� ,��� *���*�� �)
��������- =����� ����� ����*��� ,=��- %0'" 1	�� /� ��*���� �	� �/� =��� �� ��� �) �	� ��������
�������� �� �������� �� �	� ������� ��������" A� *�� ���� �	��(�) �	� �/� ��������� ��� � ��������"

+� %04' ��� %0:'� �)��� �*������� �	� ��� ������� ��������� ����� �� !"$34 %5'� /� 	��� ��������
� ��*����� �������������� �) �	� ��� ������� �������� ,����������� �� � *���*�� ����*����� =��-
�� ���*� �) �	� �������� �) �	� �	�����)��* �	� �������� ���� �� �	� ����*��� ����" �� ��*��������
��� ��� �� �	� �������� �) �	� �	�����)��* �	� ����*��� ���� �� �	� �������� ����" +� �	�� ��������
/� /��� ��� �	�� ������ ��������" ������� ���������� �� *��� ������� ����� 	�/ �	� ������� ��������
�� �������� ��� ��)����� �� %04� 0:'"

1	� �������� �������� �) �	� ��� �������� �� ���������)��* �	� <9 �) �	� �
� �) �	� ���.
�����"
������ /� 	��� *������� ���	 ��� ������� ���*����� �� � �
� ����������� �	� <9 �) �	�
�
� *���� �) �	� ��� �������� �������� ��� �	� �������� ���������� �� ������ �) �	� ��� �������
���*������" !�/����� �	� �
� *���� ���� �������� ����������� �	�� �� ��� *���� ������� ���*�.
����� ,������
�
-��
�
�
	� ���
�
�
�
�-� ��� ���	�� �������� ���������� �) �	� ��������� ���������
'(�)������ *'�� �* ��� '(�)���� �� =����� 0" A� ���� �� ���*����� �	��� ���.���*����� ������.
����� /	��� ���������� ������� ���*����� �� ������" 1� �� �	�� ���)���	�� �� ��� =�� ��*��������
/� ����� �	� <9 �� � =��� ��� ��� �������� ���������� =�� ��������� ���	�� ��� %0' �� �����)��*
�	�� =�� �� ��� �����*������� ��� *���*�*)��*" =�� ��������� ��� �������� ��*������� ���
�������� �� ����� ���	 �� �	� =�H �������)��* �1J1 %0#'"

�������

 /��������� ���� 1	� �������� �������� �) �	� ��� �������� ����� �� �� ���������
)��* �	� <9 �) �	� ��� �������� �
�" !�/����� �� ��� �� ����)��* =����� 0 �	��� �) �	� *���.
� �����	 �) �	� ���� �� ����� ��������
� ,������������ �	� �������� �) �	� �	�����)��* �	�
�������� ���� �� �	� ����*��� ����- �� ��� ��*����� �� ������� ��*��� �) ������������� �) ����������
�� ��!���
�)����/�� �� ��$������#��� ��� ������ ��������� �� �� ������� ��*��� �) 	���
� ���
	���
�
��
 ������� ����� ���������" �� ������� ����� �) *������� ��� ���� �� ��� ���� �	�
 ���� �� ����� �
������
�� �) �	� *���*�* �����	 �) �	�� ���� �� ��� ��*����" �� �� /��	 �	�
����� ����� �������� �� %03'� /� 	��� �� ����� �������� �������� �� � ���������� *����" A� /����
��(� �� ��� � *���� /	��	 ��K���� �	� *��� ��**�� ����� �������� �) �	� �������� �� ���������
�	�� �	� ����������� �) �	�� ���������� *���� ��� ������� �� 	��	 ��������� �	�� �	� �������� ��
������� �� �������"

67

=����� �	� ����� �) �	� *���*�* �����	 �) �	� ���� �� ����� ��������
� ,
�,�-�- ���������
�	� �������� �) �� ��!���
� �� ��$������#" =�� ���*���� �) �	� *���*�* ���� �����	 �� ��� �� 0�
��$������#��� ��� ��� ����� �**�������� �)��� �� ��!���
�� �� �� ��!���
� ��� ��� ����� �*.
*�������� �)��� ��$������#���� ������� �	� ���� �� �������� �� � 	���
� �� 	���
�
��
*������"
!�/����� �	�� /��� ���� ������
� �	� �������� �) ����������� �� ��!���
� ��� ��$������#��� �����
�������� ����*�� ��������� �� �	� ����" =���	��*��� �������� ���	 �) �	� ����������� �) '(�)�����
��$������#��� ��$������"�� ��� �� ��!����� �� �	� ����*��� ���� ���� �� ����� ��� *������ ��
�	�)���� �) �	� ���� �� ����� ��������
� ��� �	� ���������� �) ���	 �) �	�)��� ����������� ����
���� ��*���� ��� *������)��* �	�)���� �) �	� ����"
������ �	� ���� �� �	�� ����� �� � =+=<
 ���� /��	��� *������ ����� 	����� *��� *������� �� �	�� ���� ��� 	����� ���� ��� *������ ��
�	�� ���� /��� ��� �G��� �	� ��	������ �) �	���)��� �����������" =�� ��*���� �������� ����� �	�
����* �����	 �) �	� ���� �� ����� �
������
� ,
�,�-�- /��� ���� �������� �	� �������� �)
�	� �����������)�� /	��	 �
������
� �� �� ������ ������ ��� /��� ��� �G��� �	� ��	������ �) �	�
�����������)�� /	��	 �
������
� �� �� ����� �����" 1	���)���� �� ����� ���� ����������� ��� ��
������ �� ����� �	� *���*�* ���� �����	� �) �	� �/� ������� �"�"
������� 3 �� ���������" !�/.
���� /� ������ ��������� �	�� �	� ��	�� �	��� ������� ���������� �) �	� ��� �������� ��� ���������
/	�� ����� �	� ������ �)
�,�-� ���
�,�-�"

<� �	� ��	�� 	���� �� ��������� �� �� �����* �	�� � ��*���� ,�"�" ��$������#���- ��� ����� ��)���
�	� *������ 	�� ���� �������� �� �	� ���� ��� ,�"�" /	�� � 	���
� *������ �� �� ��������
�-�
��� �� �� ���� ���� �	�� � ��*���� ��� ����� *��� �	�� ���� ��)��� *������� 	��� ���� ���������
�� �	� ���� ���" �� �) �	� ���������� *���� ����/� � ��*���� �� ����� ��)��� �	� 	���
� *������
�� �������� �� �	� ����*��� ����� �	�� /� /��� ������� �	� ���� *�?����� �) �	� ��	������ �) �	�
��� ��������" =��* =����� 0� /� ��� �	�� �) �	� ����� �)
�,�-� �� $� ��$������#��� ��� �����
��� � 	���
�
��
 �� ���� ��)��� �	� 	���
� *������ �� �	�)���� �) �	� ���� �� ��������
� ��
�������� �� �	� ����*��� ����" !�/����� /	�� � ��*���� ������� �	� �������� ���� ������ �
�����1"���������� ���*����� ,�<2��� F
�<1<�<�- �� ��)��* ��� ���� �) �	�)������ �) �	�
��� ������� �������� �� ���������� �	� ���������� ���� ���������� ���" 1	�� �� �� ���� ��(��� �	�� �	�
���� /��� ����� ����	�� 1����=��"�� ���� ,/	��	 *�� ������� �	� ��*� �� �� ������� ����������
���- /��	��� ����� �)��� �� �������� �	� �����1"���������� ���*�����" 1	�� ��� �� �!���
� ���
����� �**�������� �)��� �	� ���������� �) ��$������#���� /��	 � 	���
� *������ ��� ���� �	�
 ���� �� ����� ��������
�" 1	���)���� /� ���� �� ��� �	� ����� �)
�,�-� �� ����� �� # �� ����/
�	�� 	���
� *������ �� �� ����"

+� ��������� �� �� ��� �)��� �	�� � ��/ ��(��/����*��� �� ���� ��)��� �	� �������� ��� 	�� ����
��������� �� �	� ������� �	����� �� �	� �������� ����" �� �������
�,�-� �� $ �� ������� �	�� ���������
/��� ������ �� � ��������� *����)�� �	� ��� ��������" !�/����� ������� /� 	��� ���
�,�-� �� #
�� ����/ �/� 	���
� *������� �� �� �������� �� �	� ����*��� ���� /��	�� � �	��� ������ �) ��*��
�	��� ����� �� �/� ��(��/����*���� ��������� �� �	� ����*��� ��� ���� /��	�� � �	��� ��*� ��
�	�� �	�� ��� �� �� �	� ������� �	����� �� �	� ��*� ��*�" 1� �����)�� �	��� /� �	����
�,�-� ��
�� #"

=��* =����� 0 /� ��� ��� �	��� /	�� �������
�,�-� ���
�,�-� �� # ������������� �	��� ��� ��
��� ; ����������� ���������� �����)���� �) /	��	 �/� 	��� �	� ���������� ���� ����� ����������
)��* �	� �������� ���� �� �	� ����*��� ���� ,�"�" �/� 	���
� *������� ��� �� ����� ��������
�-�
��� 	�� �	� ���������� ��� ����� ��������� �� �	� ����*��� ��� ���� ,�"�" �	� ��	�
������� �� ��
��� �������� �����-� ��� �	��� 	��� �	��� ��(��/����*���� ����� ��������� ,�"�" �	��� ����������
*�������� 	�� 	% �� 	���
&
	� ��� �� ����� �
������
�-"
������ /� ��� ���������� �� ���������
�	� ��	������ �) �	� ��� �������� /	�� �� ����� ��*���� /���� /��	 �	� ����� ������� �)
�,�-�
���
�,�-�� /� ���� �� �	���� � ����� �) �� ����� ��*���� �	�� ����� �� �� *��� �	�� 4 ��G�����
�� ����� ��*����" 1	�� /	�� �	��� ��� ; ����������� ���������� �����)���� �� ����� �/� �) �	�*
��� ��������� �� �	� ��*� �� ����� ��*���" 1� ����� ����� ����� ��������� ��� �	� ��I� �) �	�
�� ����� ��*��� ������ /� �������� �>� 0� �� �	� �*������ ����� �	�� /� ��� �	���� �	��)����� �	�
����� ��������� /	��� �*������� �� ����� ��*���� *�� �����"

+� ��**���� /� �	���� �� ������� �	� �������� �������� �) �	� ��� �������� �
� �� =����� 0
/	�� �����
�,�-� �� #�
�,�-� �� # ��� ����� �>� 0� �� �	� ����� �) �� ����� ��*����" A� ����
�	�� *���� .����)"

68

1

2

3

5

9 11

4

6 7 8

1210

13

14

Key:
Treq: TRANSFER.request
Tind: TRANSFER.indication
Tres: TRANSFER.response
Tcnf: TRANSFER.confirm
Rreq: REJECT.request
Rind: REJECT.indication (issued at incoming side)
RindP: REJECT.indication (SOURCE=PROTOCOL,
 issued at outgoing side)
RindU: REJECT.indication (SOURCE=USER,
 issued at outgoing side)

Treq

RindP
Tind

RindP
Tres

Rreq
Rind

Treq

Tind

RindPRindP

RindUTcnf

RindP

Treq

Tres

Rreq

Rind

RindP

Tind

RindP

Tres

Rreq

Rind

Tind

Treq

Tres

Rreq

Rind

RindP

Tres

Rreq

Rind

Tres

Rreq

Rind

�	
� �� �� 7�� ��������
���
�� ��� ������� �
��	
��

����� �� ����
����� �� �
�� ��

� �� ���� �� ��

� �

5* 89)*:: ;*5)* 98 8)5� �;

+
�
�

� (�
����� �� ���� (1	� *���*�� =�� �	�� ���������� �	� ��� ������� ��������
)�� H���� � ,������� �� �- �� �	�/� �� =����� 3" A� ��������� �	� *���*�� =�� ������������ �	�
�������� �������� �) H���� � ,������� �� ��- ����� =�H ��� �	�� ��*����� �	� ���������" 1����
0 ����� �	� �������" +� �	� ������)��* ��)� �� ���	� ��� �	� ��*��� �) ����� ,� � �- ��� ���� ,� � �- �)
)��� =���C �� ��� ,����-� ��� ,�� ��-" ,����- �� �	� *���*�� ����*���� �	�� ����������
�	� �������� �������� �� � ��� ��� �� ��� ��� ,����- �	� *���*�� ����*���� ������������ �	�
�������� �������� �� �� ��� ��� �� �" +� ��� �� ���� �	�� �	� �������� �������� �) H���� � ��
��� �������� �� �	� ��� ������� ��������� ������� ,�� ��- �� ��� �*��� ,�� 	�� #$0> ����� ���
54:5 ����-" ��
������� 4 ���� ��� 	���)�� H���� �" �� ,� � ��- �� ��� �*���� H���� � ����
��� �*���*��� ��� �	� �� ������ �������� �� �	� ������� ��������� �"�" �	��� ��� *������ �� ������
�� H���� �"

1	� ���������� �����)�� ��� �� /������ ��(��/������ �) �	��� ��� ����� ��� ��(��/����*����
/��	 �	� ��*� �� ����� ��*��� �� �	� �����*" +� ����� ��� �	�� ������� �� ������ �) ���*������
��� �� ��������� �� �	� �������� �� �/� /���C /	�� �	� ����*��� ��� ���� 	�� ��������� �
�������� �������� ,�"�" 1����=��"�������� ������-� ��� �	� �������� ��� ���� �� ��)��*�� /��	 �
�����1"���������� ���*����� ,/��	 ����*���� �<2��� F2���-B �� �	� ���������� ��� �� ��?�����

69

�� �	� ����*��� ��� ���� ,�"�" �����1"�� ���� ������-� ��� �	� �������� ���� �� ��)��*�� �� �
1����=��"�����*"

A� ��/ ��� �������� �������� �� �	�/ �	�� �	� �������� �������� �) H���� � �������� �	���
������� �� ������" 1� �� �� /� ������ �/� =���� ��� /	��	 ������� �	� ��� �� ����� ������ �� �	�
���� ���� �) *����(� ,=����� 4-� ��� ��� � /	��	 ������� � �� ����� ������������ �	� ������ ���� �)
*����(� ,=����� ;-"

2
Treq

3
Tind

6
Treq

7
Tind RindPout

9
Treq RindPinRindPout

4
Rreq

131 5 8 10
Tind

11 12
Tres RindUout

�	
� �� ���

2
Treq

3
Tind

4
Tres

6
Treq

7
TindRindPout RindPout

9
Treq RindPin

1 5 8 10
Tind

11
Rreq

12
Tcnf

13

�	
� �� ���

1���� $ ��**����� �	� �������� ��*������� �������)�� ���	 �) �	� �/� =��� ,��� ��� ��� -�
/��	 � ��� ��" +� ��� �� ���� �	�� �	� ��G������ ���/��� ��� ��� � ��� �	� ��G������ �) ���

��� � ��� ���	 ��� �*��� ,/��	 0# ����� ��� 0$ ����-� �	���)���� �	� �� ������ �������� �� ���

��� ��� ��� ��� �� �	� ������� ��������� �"�" �	�� ��� ������� �� ������" !�/����� �	� ��G������ �)
��� ��� �� ��� �	� ��G������ �) ��� ��� �� ��� ���	 �*���" 1	���)��� H���� � �������� �	���
�/� ������� �� ������"

����� �� ����
����� �� ���
�� ��� ��
� �
�� ��

��� �� ��� ��� ��� �� ��� ���

� �

58 5) � � 58 5) � �

� ��� ��
	��� ��� �������� ��� 	�� ��

%�� ��
�
�� �� ��� ��� ��������

+� %03' /� 	��� �	�/� �	�� �	� ��� �������� �����)��� /	�� /������� �) �� ����� ��*���� ��
��������" A� ��� ������ � *��	����* �� ������� �	� �������� ����)��* ������� � 1��*������.
����������� *������ /��	 �� ����� ��*��� � �) � ���������� �����)�� ��������� �� ��*��� � �� �����
�����������"

������ �	� ��� �������� ���� *����� �
�,�
���.+� ,
�,�
��� ������)�� *���*�* �� �����
��*���� /	��	 �� $44- �� ��������� �	� �� ����� ��*��� �) � 1��*����������������� *������� ��
�� ��� ��������)�� �� ����� ��*���� �� /��� /	�� �	��� ��� �� �� �
�,�
���.+� �����������
���������� �����)���" 1	���)��� �) �	� �������� ���� (��/� �	� ��*��� �) ����������� �������.
��� �����)���� ��� ���� ����� � 1��*����������������� *������ /	�� �	��� ���
�,�
��� �� ����
����������� ���������� �����)���� �	� ����� /��	 �	� �������� ��� �������� /��� �� ��*����" �� /�
������ ������� �	�)����/��� �	���� �� �	� ��� ��������"

��
�
� ��)
�� ����� 	��
����� ���� ���� ��
�� ��
��� ���� /��� ��
�,�
���L0#�
� ���� ��
��� �����

� �����) ����

�������
�
����� ������� ��

�� �� ��
�
� ���� ��� �
�,�
����
���

�
�� 	���� �� ���� ���
� ��� �� /���� ���
 �
�� � ����

�������
�
����� �������
� ��
��

�� 	����
�

������� �� �
�� �
� ���
 �
 ���
��������
�
� ����
	���
�� 	����
� ������� �� �
��

70

A��	 �	� �������� ��� ��������� �) � ���������� �����)�� �� ������� �� ���	 �	� �������� ���
�	� ����*��� ����� ,�"�" ��$������#��� ��� ��$������#�� 	��� ��������-� �� ��(��/����*��� ��
���������)�� �	�� ���������� �����)��" !�/����� �� *�(� ���� �	�� �	� ��� �������� /��	 �	���� 0
��� /��(���������)�� �	��� ���������� �����)��� �� ��(��/����*��� *��� �� ���� �� �	� ��������
���� �� 	��� �	� ����� �) ���� ��1 ���������� ��	��/���� �	� �����* /��� �������(" 1	���)���� /�
������� ����	�� �	���� �� �	� ��� ��������"

��
�
� �� '��
 ���

���

� ����
�

��)')����* +���,��� ����� �
� ����
	�� � ���-
�

�������
�
�����+������ �������� ����� ����
���

� � +�0����

�
���
�
 ��
�
�
	� �,1+��
2�+,�,�,3#� ��� ���� ���� ��
�� � ����

�������
�
�����)���� ������� ����
� ��$
��

����� 4 �
��
�� �����
�������� $��� ��� �� ��� �����
� 	���� ��

 �5�

�����
� <�/��
��� �� !�����
��
�
"���
���
�"��
 ����
��

�����	�� �����
� �	����	�� �	���

"��
 !�����
��
�
"���
���
�"��
 �������� � �	
����� ��.	����0	�"��

1	�� /� ����� �	� +�	
��� ��� �������� ��)����/�"

)�0������ �� ��� +�	
��� ��� ��������
� ��� ��� �������� ��$
��

 &�678 9:; �
�� ���
��� "
�
� 6�

%�� ��- ���� ��� ��� /������ ��� ��������

=����� : �	�/� �	� �
� *����)�� �	� ������� ��� ��������" 1	� ������������ �) �	�� *���� ���
����� �� =����� &" H����������� *��� �� �	� ��� �������� �
� �) =����� 0 ��� ��**������ ��
)����/�"

0" 1	� ������ ��� �) ����� ������������ �� �	�����)��* ����
� �� ����
)�� /	��	 �� ������
�� � ������� �) ���

 ������ ����� �
��
�	
��� �� ��� 	������" ������ ��� 	������ �� ������
�� � ��� �) �������� �������)��* > �� $4; ,�"�" �	�
�,�
��� ���� �� �	� ��� �������� ���� 0-"

$" ������������� �� �	� ����� *����������� �	� ������������ �) �	� ���� ��������� �� �����
������������ ��� ������� �� ������ �	� ���� ��1 ��)��*�����" ��������� �� �	���� 0� ����
��������� �� ��(��/����*��� ,����� �� �������-� �	� ����� �) ���� ��1 (��� �� �	� ������������
�� ��������� �� 0" �� �	� ������������ �) �	� �������� ����)��* ����������� �� ��!��	���
��$������"���� '(�)����� �� *'�� �* �� ������������� ���	 	�� � ��*������ 	�/+� /	���
	� �� � �������� �) ���� 	������ ��� ���������� �	� ������� ����� �) ���� ��1" H���/	���� �	�
���������� �) �� ��!���
� ��������� �	� ����� �) ���� ��1 �� 0� �� �	� ����������� �) �	� ���
)��* �	�� ���������� �� ������������ 	�� � ��*������ 	�.+"

#" =����/��� �	���� 0� �	� ����� �) ���������� �� ��!���
� �� ���*����� /��	 �� ����� ���.
������ 	�01233� *�������� �	�� /	�� �	��� ��� ������� �
�,�
���.+� ����������� ����������
�����)���� � 1��*����������������� *������ ��� ��� �� ����"

3"
������ �) �	� �	���� �) �	� ������ ��� �) ����� ������������� �	� ��	�
������� ��/ ���� ���
�	��� �	� ��*� ������ ��� /��	 �	� ������������" 1	� ������ ��� ����
� �) �	� ��� ��������
�
� �� ����*�� �� ����
�'� �� ���� ����� ��	�
������� �� �	� ������� �
�"

4" +� ���������� /��	 �	���� $� ������ ��� ��� ��/ �������� �	��� ����� �) *�������� /	���
	�� 4��� *����� �	� ��/�� ������ 1��*���������������������� *������" 1	���)��� �����
�
������
� ,����� �� ���
����
��
�
- ��� 	��� �	��� ����� �) *�������" H�������� �	�
���������� �) ���������� ��$������#�� ����� � 	�� 4��� *������ /��	 �� ����� ��*��� ���
,������������ �	� ������� ����� �) �� �D-� ��� � ����� �
�����
'��0
�,�-� �� ����� �� ����.
������ ��$������#��"

71

ou
tg

oi
ng

C
ES

E
st

at
es

O
ut

1‘
(0

, i
dl

e,
0)

in
co

m
in

gC
ES

E
st

at
es

In

1‘
(0

,id
le

)

re
vC

ha
nn

el

in
M

es
sa

ge
Q

ue
ue

1‘
[]

fo
rC

ha
nn

el

ou
tM

es
sa

ge
Q

ue
ue

1‘
[]

TR
A

N
SF

ER
cn

f

[iS
Q

=o
SQ

]

TR
A

N
SF

ER
in

d

R
EJ

EC
Ti

nd
U

ou
t

[iS
Q

=o
SQ

]

TR
A

N
SF

ER
re

s

[le
ng

th
(m

In
)<

m
ax

Q
Lr

]

TR
A

N
SF

ER
re

q

[(l
en

gt
h(

m
O

)<
m

ax
Q

Lf
)

an
da

ls
o

(c
t<

=2
55

)]

R
EJ

EC
Tr

eq

[le
ng

th
(m

In
)<

m
ax

Q
Lr

]

R
EJ

EC
Ti

nd
Pi

n
[le

ng
th

(m
In

)<
m

ax
Q

Lr
]

R
EJ

EC
Ti

nd
U

in

D
IS

C
A

R
D[o

SQ
<>

iS
Q

]

IG
N

O
R

Eo
ut

R
EJ

EC
Ti

nd
Po

ut

[(l
en

gt
h(

m
O

)<
m

ax
Q

Lf
)]

IG
N

O
R

Ei
n

TR
A

N
SF

ER
in

dT

m
O

^^
[(i

nc
M

od
(o

SQ
),

ca
pS

et
)]

(o
SQ

, c
ap

Se
t):

:m
O

(o
SQ

, a
w

ai
tin

g,
ct

)

(o
SQ

, i
dl

e,
ct

-1
)

(o
SQ

, a
w

ai
tin

g,
ct

)

(o
SQ

, i
dl

e,
ct

-1
)

(iS
Q

, c
ap

R
ej

ec
t):

:m
In

(iS
Q

, c
ap

A
ck

)::
m

In

m
In

^^
[(i

SQ
, c

ap
R

ej
ec

t)]

m
In

^^
[(i

SQ
, c

ap
A

ck
)]

(iS
Q

,a
w

ai
tin

g)
(iS

Q
,id

le
)

(iS
Q

, a
w

ai
tin

g)

(iS
Q

,id
le

)

(iS
Q

, a
w

ai
tin

g)

(iS
Q

,id
le

)

(o
SQ

, c
ap

Se
t):

:m
O

m
O

(o
SQ

, a
w

ai
tin

g,
ct

)

(o
SQ

,id
lT

)

m
O

(in
cM

od
(o

SQ
),

aw
ai

tin
g,

ct
+1

)

(o
SQ

, i
dl

e,
ct

)

(iS
Q

, i
nM

es
)::

m
In

(iS
Q

, i
nM

es
)::

m
In

(o
SQ

, i
dl

e,
ct

)

m
O

^^
[(0

,c
ap

R
el

ea
se

)]

m
O

m
In

m
In

m
In

m
In

(iS
Q

,id
le

)

(o
SQ

, a
w

ai
tin

g)

(iS
Q

,id
le

)

m
In

m
In

m
O

(0
,c

ap
R

el
ea

se
)::

m
O

(0
,c

ap
R

el
ea

se
)::

m
O

m
O

(iS
Q

, a
w

ai
tin

g)

m
O

(iS
Q

,id
lT

)
(iS

Q
, a

w
ai

tin
g)

m
In

m
In

^^
[(i

SQ
, c

ap
A

bo
rt

)]

(o
SQ

, i
dl

e,
ct

-1
)

(o
SQ

, i
dl

e,
ct

)
(o

SQ
, a

w
ai

tin
g,

ct
)

(o
SQ

, a
w

ai
tin

g,
ct

-1
)

�	
� �� �-0 ����� ��
�� ������� ��� ���
����

72

(*-maxQLf: maximum queue length of forward channel-*)
(*-maxQLr: maximum queue length of reverse channel-*)
 val maxQLf = 3;
 val maxQLr = 3;

(*---sequence number/values of state variable ---*)
 color sequenceNo = int with 0..255;

(*---ctrl_CNT---*)
 color ctrlCNT = int with 0..256;

(*---states of outgoing CESE---*)
 color st = with idle | idlT | awaiting;
 color statesOut = product sequenceNo*st*ctrlCNT;

(*---states of incoming CESE---*)
 color statesIn = product sequenceNo*st;

(*---types of messages sent by outgoing CESE---*)
 color outM = with capSet | capRelease;
(*---messages sent by outgoing CESE---*)
 color outMessages = product sequenceNo*outM;
(*---message queue of forward channel---*)
 color outMessageQueue = list outMessages;

(*---types of messages sent by incoming CESE---*)
 color inM = with capAck | capReject | capAbort;
(*---messages sent by incoming CESE---*)
 color inMessages = product sequenceNo*inM;
(*---message queue of reverse channel---*)
 color inMessageQueue = list inMessages;

(*---variables---*)
 var mO: outMessageQueue;
 var mIn: inMessageQueue;
 var inMes: inM;
 var oSQ, iSQ: sequenceNo;
 var ct: ctrlCNT;

(*---function for calculating new value of---*)
(*-sequence number or state variables-*)
 fun incMod(oSQ) = (oSQ+1) mod 256;

�	
� �� !�� ����
�

���� ��
�� �-0 ��
�� ������� ��� ���
����

+� �	� �������� �
� *����� �� ����������� /�� *��� �� �	� *���*�* �����	 �) �	� ���� ��
����� ��������
� �� �
������
�� �"�" ���	 ���� 	�� ������� ��������" +� ������� �	� �	�����
�������� �� ������ ��� /� �� ��� (��/ ��� *���*�* �����" A� �	���)��� ����/ �	� *���*�*
�����	 �) �	� ���� �� ���	 �) �	� �/� ������ �� �� ���
����
�� �����" 1	�� �	� ������� �
� *����
����*�� � ��������
� �
� *����" A� 	��� ������ �/� ����*������
�,�-� ���
�,�-� ,���
��� �) =����� &-"
�,�-� ���������� �	� *���*�* ���� �����	 �) ����� ��������
�" ��*������

�,�-� ���������� �	� *���*�* ���� �����	 �) ����� �
������
�"
��	 ����*����� ��� ��������
��������" 1	� ������ �) ����������� �� ��!���
� ��� ��$������#��� ,�
�����
)�0
�,�-�-� ���
��$������#��� ��$����
� ��� �� ��!���
� ,�
�����
'��0
�,�-�- �	�� ��� �	� ��*�� �� �	�
����* �����	 �) �	� ���� �� ������ ��������
� ��� �
������
� ������������"

! ����� ����� "���#�	� �� ��� ��
	��� ��� ��������

���� �� �	� ��*� ������ �	�� �� ��������� �� ������� 3"$� /� �	���� �� ������� �	� ������� ���
�������� �
� �� =����� : /	�� �����
�,�-� �� #�
�,�-� �� # ��� ����� �>� 0� �� �	� ����� �)
�� ����� ��*����" A� ���� ���	 � *����� .���� +) ,������� H���� �-"

1	� ����� ����� �) H���� �� �� ��������� �� �	� <9 ���� �) E�����8�
� %4' ��� ���� �) �	�
����� ����� ������ �� �	�/� �� 1���� 3"
� ���*����� �	� ������ /� ����� �	�� H���� �� ��������

��������� 0 �� 3"

73

����� �� -
�
 ��
�� �

� ��
�� �����
 ��� ����� =�

>��	������ ?�
�� ��� ?�
��
����	��	�� 0����@ 55� 0����@ 5

����@)*9 ����@ �
����@ � ����@ �

���� ��� ���	�� '��� �
������@ ���

<�
� �
������@ 0���
!	"����� ��� ���	�� <�
� !�
���
����@ ������������� ������������

���� !�
���
����@ �������� ��������

��������	� ������������

������������	� ������������	
������ �!� ��������"�#

������������ �������� �!

�������� �!

1	� &��� �������
�� ������ �� �	� ������ �	�/ �	�� ��� �	� *��(���� �) H���� �� ��� 	�*�
��(���� ��� �	�� �� ������� �� �	� ��� ,�������� ��������� ��*������- ����	 �) �	� <9
	����� ���� ��� ����" ��
������� # ,������� ����� �� � 	�*� �����- �� �������� �� H���� ��" 1	��
�*�����
��������� 0 ��� $ ���� 	���� /	��	 �� �����*�� �� �	��� ����� �� ���� *��(���� ��� ���
���"

A��	 H���� ��� ��$������"�� ��� �� ��!������ ��� ���� ����������� ,��� �	� ��������
���.
������-� ��� ��� �	� ��	�� ����������� ��� ���� �����������" 1	�� �� /	�� /� ��������" 1	���)���
���.
���� 3 	����)�� H���� ��" H��������)��* �	� <��� 1���� .���
-��� <��
�� �) ����� ��������
�
�) H���� �� ,1���� 4- /� ��� ������� �	�� �	��� ��� ����� �/� ���������� 	���
� *������� �� �	�
 ���� ,�"�" ���������� ��$������"�� ��� ����� �� �������-" ����� ����� �
������
� ��� 	��� ��
*��� �/� ��(��/������� *�������� ���	���	 �	� *���*�* �����	 �) �	� ���� �� �	�� ����� ,�"�"

�,�-�- 	�� ���� ��� �� #" 1	�� �� �������� ������� �	� ����� �) �� ����� ��*���� �) H���� ��
�� �>� 0�� �"�" �� *��� �/� ����������� ���������� �����)��� ��� ����/��� �	�� �� �� ��� ��������)��
��� �	�� �/� ��(��/�������� �� �� �� �	� �����*"

����� �� 1��
 ����� �	�
�&��
 1�	��� �� ��
��� #� �
�����
�� �$�
����� $����� =�%

#� �
����� %&'()) %&'*+,"�-��	.()) %&'*+,"�-��	.,*+,"�-�������.()) %&'*+,"�-��	.,

+,"�-�������.,%,"�-��	.()) %&'*+,"�-�������.()) %&'*+,"�-�������.,*+,"�-��	.(

)) %&'*+,"�-�������.,*+,"�-��	.,*+,"�-�������.()) %&'*+,"�-�������.,*%,"�-��	.(

)) %&'*+,"�-�������.,*%,"�-��	.,*+,"�-�������.()) %&'*%,"�-��	.(

)) %&'*%,"�-��	.,*+,"�-�������.()) %&'*%,"�-��	.,*+,"�-�������.,*+,"�-��	.(

 �$�
����� %&'()) %&'*+,"�-�"/.()) %&'*+,"�-�"/.,*%,"�-�"/.()) %&'*+,"�-�"/.,*%,"�-����"	.(

)) %&'*+,"�-�"/.,*%,"�-��� 	.()) %&'*+,"�-����"	.()) %&'*+,"�-����"	.,*%,"�-�"/.(

)) %&'*+,"�-����"	.,*%,"�-����"	.()) %&'*+,"�-����"	.,*%,"�-��� 	.(

)) %&'*+,"�-��� 	.()) %&'*+,"�-��� 	.,*%,"�-�"/.()) %&'*+,"�-��� 	.,

%,"�-����"	.()) %&'+,"�-��� 	.,*%,"�-��� 	.()) %&'*%,"�-�"/.(

)) %&'*%,"�-�"/.,*+,"�-�"/.()) %&'*%,"�-�"/.,*+,"�-����"	.(

)) %&'*%,"�-�"/.,*+,"�-��� 	.()) %&'*%,"�-����"	.()) %&'*%,"�-����"	.,

+,"�-�"/.()) %&'%,"�-����"	.,*+,"�-����"	.()) %&'*%,"�-����"	.,*+,"�-��� 	.(

)) %&'*%,"�-��� 	.()) %&'*%,"�-��� 	.,*+,"�-�"/.(

)) %&'*%,"�-��� 	.,*+,"�-����"	.()) %&'*%,"�-��� 	.,*+,"�-��� 	.(

1	� �����)������ �) �	�)��� ������� ���������� �� H���� �� �������� � ������ ���������� �)
�	�)��������� ����������� �) �	� �����*" 1	� ��������� �) ����*���� ������ ,�"�"
�,�-�F # ���

�,�-�F #-� ��� �	� ����� �) �� ����� ��*���� ,�"�"
�,�
���1+)�� H���� ��- 	�� ����������
*��� ����������� ��������� �) �	� ������� ��� ��������"

74

1� ���� *��� ���������� /� ���� �������� �	� ����� ������ �) �	� ������� ��� �������� �
��
)�� ������� ������������� �)
�,�-��
�,�-� ���
�,�
���" +� 	�� ���� ��������)��* �	� �����
����� ������� �	�� /��	 ���	 �) �	� �������������� ��� *��(���� �) �	� �
� ��� 	�*� *��(����
��� ��� ����������� ������)�� ��$������"�� ��� �� ��!������ ��� ���� �����������" 1	�� ��������
�	�� /��	 ��� �) �	��� �������������� �	� ������� ��� �������� �������� �	�)��� ������� ����������"

1	���)���� ����� �� �	��� �������� ������� /� ��� 	��	�� �������� �	�� �	� ������� ��� ��������
/���)������� ���������"

$ %��&��&� "���#�	� �� ��� ��
	��� ��� ��������

1�� &�� ��� �������
�� �������� +
�
�

��

�� /��	 �	� �������� �������� �) H���� � ,������� 3"$-� �� �	�� �������� /� /��� ���� ��� �	� ���
������� �������� �������� �� %04' ��� %0:' ��������" 1	� �������� �������� �) �	� ������� ���
�������� �� ���������)��* �	� <9 �) �	� �
� �) �	� �������� �� �	� ��*� /�� �� /� �������� �	�
�������� �������� �) H���� �"

1�� +
�
�

� (�
����� �� ���� /(

1	� =�� �	�� ���������� �	� ��� ������� ��������)�� H���� �� ,������� �� �- �� �	�/� �� �	�
/	��� ����	 �� =����� 5� /	��	 �� �	� ��*� ������� �������� �	�/� �� =����� 3" 1	� *���*�� =��
�	�� ���������� �	� �������� �������� �) H���� �� ,������� �� ���- �� �������� ����� =�H ������
��� �� �	�/� �� =����� 5 �� �	� �������	 /��	��� �	� 3 ���� ����� ,�"�" ����� &� 0$� 0# ��� 03-
��� �	� 0$ ���� ���� ���������� /��	 �	� 3 �����" 1	� ��*� (�� �� ���� �� =����� 5 �� �	�� ����
�� =����� 3"

1���� ; �	�/� �	� ��*��� �) ����� ��� ���� �) �	�)��� *���*�� =���C �� ���� ,�����-� ���
,��� ��-"
������ ,��� ��- 	�� �� ����� �� ���� ,�*���-� �	� �������� �������� �) H���� ��

����� �� ����
����� �� �
�� ���

� ��� ����� ��� ��

� �

5* 89 5�)*)* 98 � �

�� �������� �� �	� ������� ��������" 1	���)���
������� 4 	����)�� H���� ��" 1	�� *���� �	�� �	�
�����* *������� �� H���� �� ���� ��� �������� ��� ������� �� ������" +������������� ,� � ���-
,1���� ;- ��� ,� � ��- ,1���� 0- ��� � �������� =���" 1	�� �*����� �	�� H���� � ��� H����
�� 	��� �	� ��*� *������ �� ������" !�/����� H���� �� ���� ��� �������� ��� ������� �� ������
/	��� H���� � ����"

+� �	�)����/���� /� ����������� �	� *������ �� ������� �"�" �	� �� ������ �������� �� ,�����-"
�� *�������� �� ������� #� �� ����� ��� /� �	�/ �	�� �	� ������� �������� �� �	� �����* *�������
�� H���� �� �������� �� �������� �	�� /� ����� �"�" �� �� �� ���������� �*���*�������� �) �	� ���
�������"

=��* =����� 5 /� (��/ �	�� �	� �� ������ �	�� ��� *������)��* �	� �������� �������� �)
H���� �� ��� ������ �� �	� ������� �) ����� &� 0$� 0# ��� 03� ��� �	��� ���������� ����" A� ���
�	�� �	� ������� �� �����)��* ���� 3 ��� & �� ���� 0 ���������� �	�� �� �	� ��� �������� � ��.
���1"���������� ���*����� ,/��	 �<2��� F 2��� ��
�<1<�<�- ��� �� ������ �� �	� ����*.
��� ���� ��)��� � �����1"���������� ,�<2��� F
�<1<�<�- ���*����� 	�� ���� ������ ��
�	� �������� ���� ,��� =����� 0> ,�--" !�/����� �� ��� �� ����)��* =������ 0 ��� :� �	� ��� ���.
����� ��� ��� ������� ������� ���� ����/ � �����1"���������� ���*����� ,�<2���F
�<1<�<�-
�� �� ������ �� �	� ����*��� ���� ,*������� �� ���������� ��$������#��- /	�� � 1��*������.
������������������ ,�"�" 	���
�
��
- *������ �� �������� ,��� =����� 0> ,�--" 1	�� *���� �	�� �

75

1

2

3

5

9 11

4

6 7 8

1210

13

14

Treq

RindP
Tind

RindP
Tres

Rreq
Rind

Treq

Tind

RindPRindP

RindUTcnf

RindP

Treq

Tres

Rreq

Rind

RindP

Tind

RindP

Tres

Rreq

Rind

Tind

Treq

Tres

Rreq

Rind

RindP

Tres

Rreq

Rind

Tres

Rreq

Rind

�	
� #� ��� $
�� �	"��
�� ��
��	
 ���� �����
��
���%
�� � $
�� ����� ��
��%

outgoing incoming

TRANSFER.request

TRANSFER.indication

REJECT.indication REJECT.indication

$
% �"��
���

 "�
� ����
� �����/�� ��
��
��� �������

incoming

TRANSFER.indication

REJECT.indication

outgoing

TRANSFER.request

REJECT.indication

TerminalCapabilitySet

TerminalCapabilitySetRelease

$"% �"��
���

 "�
� ����
� ��������
�� "�

�� $�������% ��� ���
����

�	
� �$� ��.	����� ���
"��
���

�� ����

�����1"���������� ���*����� *��� 	��� ���� ������ �� �	� �������� ���� ����" 1	�� �� ������.
���� ��� ��Æ����� ��	������" ,+� �� ��� �*�������)�� �	� ����*��� ���� �� �� ���� �� ����� �
�����1"���������� ��)��� �	� �������� ���� ������ ���� ��� ���	 ��	������ �� ����/�� �� �	�
�������-"

1	� ��	�� # ����� ,0$� 0# ��� 03- ��� *������ ��� �� �	� ��*�� /� 	��� ��� ��
�,�-� ���

�,�
���" 1	� ��� ������� �������� ����������� �� � �� �	� ������� �������� ����� �	� ����*�.
���� �	�� �	� ��� ������� �������� ��� �����)�� �� *��� �/� �����)�� �� ����� �� ��� ��*�" A��	
�	� ,�������- ��� ��������� �	�� ����������� �� �	� *���*�* ��*��� �) 	���
� *������� �� �����

76

��������
� ����� �/�"
������
������� 3 	����)�� H���� ��� �� ��� ��������)�� �/� ����������
	���
� *������� �� �� �� ����� ��������
�� ��	��/��� ���������� ��$������"�� /��� ����*� ��.
�����" 1	�� 	���
� ��� 	���
�
��
*������� ��� ����������� �� ����� ��������
�" �� /	�� �	���
��� �/� 	���
� *������� �� �	� ������ �	��� ���)��� �������� �������� �) �	� *��(���� �) �	�� �����
,��� ��� �� ��� ��-� /	��	 ���C

�� C %	���
�� 	���
�
��
� 	���
�'

�� C %	���
�� 	���
�
��
� 	���
�� 	���
�
��
'

�� C %	���
�
��
� 	���
�� 	���
�
��
� 	���
�'

�� C %	���
�
��
� 	���
�� 	���
�
��
� 	���
�� 	���
�
��
'

/	��� �� ����� ��*���� ��� �*�����)��* �	� ����� ���������������"
!�/����� H���� �� ���� ����/� �	� ���� �������� ��� �������
�,�-�F #" ��)������ �� =�����

5� /� ��� �	�� �	� ���������� �) �	� �� �����)��* ���� 0� ��� ����� $� #� 00� �� 0$ �� �	� �������
��� �������� /���� �� ���� �	� *��(��� �) ����� ��������
� �� 	��� ������� ��" A� �����* �	��
�	�� �� �	� ���� �� �	������ �	� *����"

A� *���)� �	� ����� �) ���������� ��$������#���)��* 5�
�����
)�0
�,�-�6 �� 5�
�����
)�
01
�,�-�6 ,��)�� �� =����� :-� �	�� ������� �� ��� �����" A� ���� �	�� *���� .���� +)�" 1	�
�������� �������� �) �	�� *���� �� ���������� ��� �� ����� ��� �� �� �	� �������	 �� =����� 5
/��	��� ����� &� 0#� ��� 03 ��� �	��� ���������� ����" ���� 0$ ��� �	� ���� ���/��� �	�� ���� ���
����� 0> ��� 00 ��� �������� �� �	� =�� ������������ �	� �������� �������� �) �	�� �	����� *����"
1	�� �	�)��� �	�� ���� 0$ ��� ��� ���������� ���� ��� *������ �� ��� �� �	� �������� ����������
��� �� ��� � ������* �) �	� ��������"

A� �	��)���	�� �	���� H���� ��� �� .���� +)�� �� �������
�,�-�F 3 ���
�,�
���12 ��
����/ �������� �� ��� ��" 1	�� �	� �������� �������� �) H���� ���� �� ���������� ��� �� �� �	�
�������	 �� =����� 5 /��	��� ���� & ��� ��� ���������� ����" 1	�� �	�/� �	�� �	� ������� �) �����
0# ��� 03 ��� �	��� ���������� ���� �� ������ �� �	� ��*�� �� �	� *���*�* �� ����� ��*��� ���
�	� �	����� ��������"

1� ��**������ �������� �������� �	�/� �	�� H���� �� �������� ��� �	� ��������� ����� �) �	�
��� ������� /��	��� ���������� ��� ������� �� ������" 1	� *������ �� ������ ��� ������ �� �	�
�������� ��� *���*�* �� ����� ��*��� ������������ ��� �	� /�� �	� �������� �*���*���� ��?��.
����"

' �������	��

�� � ������������ �) �	� /��(��������� �� %03'� �� �	�� ����� /� ������ ������� �	� ��������
�������� �) �	� ��� ��������" 1	�� /� ������ �	� ��� �������� �� ������ �� �	� �������� �
��	���� �� ������� �	� �������� ����)��* ������� � 1��*����������������� *������ /	�� �	�
��*��� �) ����������� ���������� �����)��� �� � ��� �� �	� *���*�* �� ����� ��*��� ���� 0" A��	
�	�� *����������� �� �� �� ������ ��������)�� �	� �������� ���� �� ���)��� �� ��� ��(��/����*���
/��	 �	� ��*� �� ����� ��*��� �� �	�� �) �	� �������� ��(��/����*���� ���� /	�� �� �����
��*���� /���" 1	�� ������� �	�� �	� �������� ��� ������� ���� �� ��/��� ��)��*�� ��������� �) �	�
��(��/����*��� ������������� �� �	� ���������� ��� �� 	�� ����" ����� ����� �������� ��� ��������
�������� ,)�� �	� ������ �) �	� ����*����� ����������- 	��� �	�/� �	�� �	� ������� �������� ���������
�	� ������� ������� ���������� ��� *���� �	� �� ������� �� ����*���� �) �	� ��� �������"

1� ��	���� � �	�����	 ����������� ������)�� �	� ��� �������� ��� ��� ������� �������� ���
�� ������� �	� �������	 �� ����)���� ����*����� �����*�� /� ��� ���������� �� ����)���� �	� ���
�������� ��� ��� ������� �������)�� ��� ������ �) �	� ����*�����" +� %04'� �������� /��	 ���������
�	� ���������� ������������ �) �	� ����� ������ �) �	� ��� ������� �
� /	�� �	� ����� �) �	�����
�������� �� ������� /� 	���)���� � ��������� �������������� �) �	� ,)�*��� �)- ����� ������ �) �	�
�
� �� ���*� �) �	� �	����� ��������" +� %0;�0:'� /� 	��� ���� �	�/� �	�� � ��������� ��������������
���� ������)�� �	� �����*������� =�� /	��	 ���������� �	� ��� ������� ��������)�� �	� ��*�
����*����" +� �	�� ������ �������� �������� �) H���� �� 	�� �������� �� /��	 	��	 ���������

77

�	�� �	� ������� ��� �������� �� ������� �� � �����*��� �) �	� ��� �������" �� /� ����������
� ��*���� ��������� �������������� �) �	� �������� �������� �) �	� ������� ��� ��������)�� ���
������ �) �	� ����*�����" 1	���)��� �� �	� ���� ����� /� �	��� ����������� �	� �������� ����������
������������ �) �	� ����� ����� �) �	� �
� *���� �) �	� ������� ��� ��������" 1	��� ����� �� �	���
/� 	��� �� ��� � ��*����� ��������������)�� �	� �������� �������� �) �	� ������� ��� ���������
/	��	 ����/� �� �� ����)� �	� ������� ��� �������� ��*���������)�� ��� ������ �) �	����� ��������"

"�(������&�)����

1	� ���	��� �����)���� ��(��/����� �	� ������������ ��**���� �) �	� �����*��� �����/���" 1	��
/���� ���� ��(� �� ��(��/����� �	� ���������� �) �	��� ���������� 9�� 9������	�)�� �������� ��
������� �	�� �����"

����������

5(3(�(1
���

�� A(<(��	��(�������� ���	
���
���
 ������ ��� ����
���(������� =���
���
������

���)�� ���
���� 5 :9(

)(A(1������
��(7���
� �����/�

��� �� -��
�����@ -��
���� �����������(�� �(B��
� A(?(3����
���
��
=(B��
� ���
���� ������������ �� ����������
��	� ���� �� �
���) C85*(�
���� <������ ���(� 5 5(

8(A(1������
��� ?(�(?
��
����
�� 1('
�(� ����	��� -�
�� 0�
 �����
��
� -��
���� 2���/�

���(��
���
���	 �� ����������� ��� ��
�� ��
	
 �������	 �� ��
�� ��
	� ���
	�� 0�
�� �� ����	
�� ��������
2��(8� :� �
���)5�C) �(���������)��*(

*(?(A('��D�
��(��	� � ��� ������
��� �� �����
�� ���
����	(-���
��� '
��� 5 �(
�(<�����E�-0 �����
��(�

�@EE���(�
���(
	(��E�������-0E(
9(�!�&!(!���������
��� "��##� � $%& �����'����� (�
���)* $+�
,	� 5 ::(
;(�!�&!(!���������
��� %�#)-������ ����� ��� �������	��� .������	 �
 �� 9* $+�
,	� �
��� 5 8(
:(�!�&!(!���������
��� %�/#/� ���$�
'+�	�� ���
������ ���������
���	 	�	
��	� A	��)��8(
 (�!�&!(!���������
��� %�#*0� ���
��� ���
���� ��� ���
������ ���������
���� A
�	
��)���(
5�(B(A�����(�������� ��
�� ��
	
 1�	�� ������
	� �����	�	 ��
���	 ��� ����
���� 2	�� ���	�� 5(

���������)�� ���
���� 5 ;(
55(-(�(A����(>������� �� '(8)8 $����� ����
 ������

���%(

�

�@EE���(�
���
�D��(���E����E�8)8E�
����E�������� �� �8)8(�
��� A	��)��*(
5)(�(�(B���
������ �(�����
������
�� B(A�����(!�� ��
�
�����F� �	���
� ����	��� -�
�� ��
�(

3�
����
����� 4������ �� .��
(��� ����	 ��� ������� � ����	����)@ :C58)� 5 :(
58(�!G! 7�� ��"�
���� (�

�@EE���(����
���(

(���E��E
����E���E(
5*(�(��	
�� A(1������
��(���������
�� ��
����� ��
�� ��� -��
���� �� '()*�(�� ����� /�� 5��$	���

��� ��
����� �� ����
���� 2	� �� �������� ��
�� ��
	 ���
�� ��� ����	� �
��� �C55*� �
��	��
<���
��� �	�	�
)��5(

5�(�(��	
�� A(1������
��(!
������
�� ��/��
� �

� ��
�� ��
 �	�
�����
 ���
��� -��
���� �������
�����/�

���(�� ����� #/�� 3�
� ����� �� �������
��� ��� ������ �� ��
�� ��
	� ���
	�� 0�
�� ��
����	
�� �������� 2��()89�� �
���);8C) 8(��������� A	��)��)(

59(�(��	
�� A(1������
��(� -���� ��
�� =��	����� 7���	�
 ���
�� ��/��
� ������� �
��	
�� ��
��
��� -��
����(!������
� �����
� ����&58� ����	
�� ���
��� ����������� ���
��� ��������
� �� ��	
�
�	�
�
��
� A
�	
��)��8 $������� �� A	��)��*%(

5;(�(��	
�� A(1������
��(>"

�����
�� ������� �
��	
�� ��� '()*�F� �	�
�����
 �
�
"���
� �#��
���
����
����� -��
����@
�� 7��
� �
��(�� ����� -6
� 3�
� ���
�'����� �������� ������ �
��� 8)8C8):�
1���"
��� �	�
�
��
� A
�	
��)��*(

78

Synthesis of Active Controller for Resources Allocation Systems

B. ZOUARI and S. ZAIRI

LIP2 Laboratory - University of Tunis Manar-
Faculte des Sciences Tunis- Dep. Informatique

Campus Universitaire - 2092 - Manar II- Tunis(ia)
belhassen.zouari@fst.rnu.tn

Abstract: In this paper, we present a controller synthesis method for resource allocation
systems based on coloured Petri nets (CPN). The first contribution of this work is the use
of High-level Petri nets as a basis model for the specification of the plant model as well as
for the controller generation. Indeed, we present an automatic generation of a controller
characterised by a CPN subnet (with a fixed number of places and transitions) representing
its behaviour. The second contribution is the complete integration of the implementation of
our method, called SACoRAS, in the CPN Tools. SACoRAS is made up of modules
(graphical/textual editor, controller generator) that interact with CPN Tools modules (state
space module, etc.).

Keywords: Supervisory control, resource allocation systems, coloured Petri nets,
controller synthesis, active controller.

1 Introduction
Supervisor synthesis, originated by the work of Ramadge and Wonham [8], is
subject to numerous works in supervisory control of discrete-event systems (DES)
[2][3][4][6][11]. A synthesised supervisor prevents a given system from some
undesirable behaviours as for example those leading to deadlocks. In many cases,
deadlocks must be imperatively avoided (recovering from a deadlock can be
expensive). In many of these works, Resource Allocation Systems (RAS) have
been covered by supervisory control methods [9][1]. RAS represent a particular
class of DES suitable for describing numerous plant models as flexible
manufacturing systems (FMS), production systems, workflow systems, etc. A RAS
may be viewed as a collection of processes using shared resources in a repetitive
manner.

Among the most efficient methods used in supervisory control of DES, Petri
nets based approaches have been frequently adopted. One may distinguish methods
based on structural properties of Petri nets [1] and those based on their dynamic
properties as exploring state graphs [2][3][11]. The main limitation with both of
these approaches is the use, in most cases [2][3], of classical Petri net models (i.e.
ordinary or close models). These are known for their main disadvantage that is the
great size of models at the specification stage. Moreover, the growing availability
of efficient methods and tools based on High-level Petri net models is making
ordinary Petri nets less attractive.

79

In this paper, we introduce a High-level Petri net approach, called “Active
Controller”, allowing the automatic synthesis of controllers for RAS. We consider
the problem of forbidden states under the hypotheses of existence of uncontrollable
transitions [8][2]. Our objective is to develop a supervisory control method and a
tool based on the standard coloured Petri net (CPN) model [5]. Our motivation is to
make possible the use of the available CPN methods and tools and to exploit the
results and benefits of the recent Petri net theory research. We also present an
implementation of our method based on CPN Tools [7].

It is worth noting that our work is integrated in the framework of an engineer-
oriented application, called SACoRAS (for Synthesis of Active Controller for
Resources Allocation Systems), that may be viewed as a functional layer above
CPN Tools. Hence, a user (a non-specialist of Petri nets) starts by introducing a
specification through SACoRAS interface (graphical or textual editor) in terms of
RAS constructs (process structures, resources description, allocation/restitution
primitives) and control constraints (forbidden states and uncontrollable transitions).
Then, this specification is automatically translated into CPN to make possible its
exploiting by CPN Tools, in particular for the generation of the occurrence graph.
From this reachability graph, we apply (through two SACoRAS modules) the
active controller method to obtain the CPN modelling the controlled system. The
first module determines the admissible graph on the basis of both the occurrence
graph and the control specifications. The second module generates the controlled
model (the initial model connected to the controller) that ensures the initial RAS to
behave correctly and not to reach any forbidden state. We also prove the
equivalence between the admissible behaviour (the aimed behaviour of the RAS)
and the controlled behaviour (that obtained from the generated model). The paper
is organised as follows: resource allocation systems are presented in section 2. In
section 3, we introduce the synthesis method of the “Active Controller”. In section
4, we present the SACoRAS application. Finally, section 5 presents the conclusion
of the paper.

2 Resource Allocation Systems (RAS)
In this section, we present RAS used for the specification of the uncontrolled
system. A RAS, as defined in [9], consists of a set of parallel processes. Each
process is defined as being a succession of states, where each state is
characterised by a set of resources necessary to its execution. These resources
represent finite buffering capacity, machines, data or any other tool that is used in
the execution of the process. Thus, formally, a process is described as being a
sequence of vectors representing the resource allocations.

In our work, we consider a RAS as a system made up of a set of resources,
that can be of many types and available in any amount of copies, and a set of
generic processes, that can be instantiated in a collection of processes. Each
generic process has a repetitive and conservative behaviour.

Formally, a RAS is a tuple (R,GP, GetR, PutR) where:
 R = (RT, Rnb) is the resource specification, such that

RT is the finite set of resource types,

80

Rnb∈Bag(RT)1 is a multiset on RT representing the amount of
available copies of each resource type.

 GP is the finite set of generic processes.
A generic process Gi is defined by a finite state machine (FSM) as
follows:
Gi=<Psi,Fi,Ci->such that:
• Psi={p0i, pi1, pi2,...…….., pil(s)} is the finite set of states, where p0i

represents the 'idle' place of the generic process. The 'idle' place is the
initial place of whole process instance.

• Fi : Psi → Psi is the flow relation representing the state transitions.
• Ci is the finite set of identities of process instances.

 GetR : Fi → Bag(R) is the resource allocation function

 PutR : Fi → Bag(R) is the resource restitution function

To each RAS, as previously defined, we can derive a CPN representing whole
the RAS behaviour. Intuitively, the underlying CPN is built from a collection of
FSMs, representing the different generic processes, a resources place, and
connection arcs related to the resource management.

Formally, a marked CPN <N,M0> representing a RAS, where M0 is its initial
marking and N = <P, T, C, W-,W+>, is defined as following:

 P= PS ∪ {pR}is a set of places where PS = U
GP

i 1=
Psi and pR represents the

resources place such that Psi ∩ Psj =Ø and PS ∩ pR = Ø.

 T is a set of transitions recursively built as follows:

Initially T = Ø , then T=T ∪ {fij} i=1,..,|GP| ; j=1,..,|Fi|.
The elements of T may be lexicographically renamed so as we can use
the notation T= {ti}i=1,..,|T|.

 C = U
GP

i 1=
Ci U

GP

i 1=
(Ci×Cr) ∪ Cr where Cr is a colour domain of

pR, Cr = RT
 W-= WS

-
 ∪ WR

-, where WS
-: (PS×T) → {0, U

GP

i 1=
Xi} such that Xi is a

variable defined on Ci, and WR
- : (pR ×T) → Bag(Cr) such that ∀ t ∈ T

WR
-(pR,t)= GetR(fij)

 W+= WS
+

 ∪ WR
+, where WS

+: (PS×T) → {0, U
GP

i 1=
Xi} such that Xi is a

variable defined on Ci and WR
+ : (pR ×T) → Bag(Cr).such that ∀ t ∈ T

WR
+(pR,t)= PutR(fij)

1 Bag(R) is the set of multisets over the set R.

∑
=

→
R

i
riif

1
α

∑
=

→
R

i
riif

1

λ

81

 The initial marking of the system is defined as follows:
∀p ∈PS\ (U

GP

i 1=
p0i); M0 (p)= 0; M0(pR)= Rnb; and ∀p0i ∈P0; M0(p0i) ≥1.

2.1 Example

Let us consider an example of RAS made up of two generic processes P1 and P2
where P1 is instantiated by C1 = {c11, c12} and P2 by C2={c21}. All these processes
share resources represented by Cr={r1,r2}. The following CPN model describes
this system.

x1

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

x2
x2

1`r1

1`r1++1`r2

1`r2

1`r2

x2

1`r1

2`r2
1`r1++2`r2

t11

t12

t13

t21

t22 t23

t24

p01 C1

1`c12++1`c11

p11 C1

p12 C1

p02C2

1`c21

p22C2

p23C2

r

Cr 1`r1++2`r2

Figure[1]: Uncontrolled system

C1, C2 and Cr are the colour classes of the CPN.
The colour domains of places are:
C(p01)=C(p11)=C(p12)=C1, C(p02)=C(p22)=C(p23)=C2, and C(r)= Cr.
Here, colour functions are of two types: variables (like X1 defined on C1 and X2
defined on C2) or constants (like r1, r2, or r1+2r2).
An initial marking of this net is: M0(p01)=C1; M0(p02)=C2; M0(r)=r1+2r2;

3 The “Active Controller” approach

 In this section, we present the “Active Controller” approach for RAS. The
proposed method is based on the dynamic properties of the CPN representing the
initial RAS model by exploring its occurrence graph. To apply the “Active
Controller” approach, we suppose that the behaviour of the initial uncontrolled
system is modelled using CPN as defined in the previous section. We also assume
that control constraints are specified through a set of forbidden states.

The proposed approach is based on two steps. The following figure describes
the inputs and the outputs of each one. A more detailed description of those steps
will be given in the following sections.

82

Figure[2]: “Active Controller” steps.

3.1 Admissible behaviour

The admissible behaviour is an accessible behaviour respecting
specification. In this section, we present the different steps
computation. We suppose that we have the reachability graph of the
and the finite set of specified forbidden states. These states can be eit
markings or any other undesirable markings.

In a first stage, we need to go all over the reachability graph G a
information about some reachability markings (called dangerous ma
which control has to be applied in order to avoid reaching one forbidd

A dangerous marking (or dangerous state) is defined as a nod
which there exists at least one transition that inevitably leads (whe
forbidden state. It is worth to note that a dangerous marking (that i
specified as forbidden) can be qualified as inadmissible if all firing se
this marking inevitably lead to a forbidden or inadmissible state o
uncontrollable transition which leads to a forbidden or inadm
Moreover, it is important to handle, with every dangerous state, infor
transitions that must not be fired because each of them leads to
marking. Let d be a dangerous state, then the set FT(d) of forbidd
related to d is the set of transitions enabled from d according to th
graph G and which inevitably lead to a forbidden or inadmissible s
reachability graph G and a specification of forbidden states FS, the f
this stage is the set DS of dangerous markings and the associated sets
d∈ DS. FT may be viewed as an application from DS to the set of su
second output is the graph Rc, which is called admissible graph, obta
forbidden states (specified and calculated) are removed from G and
the desirable behaviour for the controlled system.

For this purpose, we propose an algorithm that computes Rc and
d∈ DS. The idea is to use a colouring technique on graph G (the
colouring here is independent of CPN's meaning) in order to ident
lead to forbidden or inadmissible states. The algorithm begins by
specified forbidden markings (FS) and the input arcs of these markin
use backward propagation and forward propagation of colouring no
according to the following rules:

- a node is dangerous if there exists at least one output colou
- a dangerous node becomes an inadmissible one if all its o
coloured or if it has a forbidden transition, which is uncont

- all output and input arcs of a forbidden or inadmissible
 coloured

sp

83
Controlled CPN

Control
ecification
+ O.G
Ω: set of
forbidden

state
transitions
 Controller

 synthesis

Admissibility
computation
the control
allowing its
 initial CPN
her blocking

nd determine
rkings) from

en state.

e of G, from
n fired) to a

s not initially
quences from
r if it has an
issible state.
mation about
 a forbidden
en transitions
e reachability
tate. Given a
irst output of
 FT(d) for all
bsets of T. Its
ined when all
 representing

FT(d) for any
 meaning of

ify paths that
colouring the
gs. Then, we
des and arcs

red arc,
utput arcs are
rollable,
node must be

Algorithm “Compute Admissibility” // Compute Rc and Ω =U DSd∈
FT(d)

Input G: Reachability graph of the uncontrolled system with G.nodes
 set of nodes and G.arcs set of arcs.

 FS0: Set of initial forbidden states.
 Tu: Set of uncontrollable transitions.

Initially DM=φ ; TE=φ ; Ω=φ ; Rc=G; FIS=FS0;

Repeat
take a non-coloured node f from FIS ;
colour the node f ;

// backward propagation

For every input arc (x,f) of f do
 colour the arc (x,f) ;

 DM= DM∪{x};
 E=TE∪{(x,(t,c))};

If t∈Tu then FIS= FIS∪{x}
If (x,j) is coloured for all j then FIS= FIS∪{x}
If M0∈FIS then exit // No solution for the control problem

// forward propagation

For every output arc (f,x) of f do
colour the arc (f,x) ;

If (x,j) is coloured for all j then FIS= FIS∪{x}

// eliminate node f from Rc and all its arcs

Rc.nodes=Rc..nodes\{f};
Rc..arcs=Rc.arcs\{(f,z) and (z,f) for all z∈Rc..nodes};

Until all nodes of FIS are coloured

If M0∈ FIS then exit // No solution for the control problem

DM= DM\ FIS;
For all element y of DM do
For all element (x,(t,c)) of TE do

If y==x
then Ω=Ω∪{(x,(t,c))}

Output Rc ,Ω;

One can easily verify that the algorithm terminates correctly. As we deal with
finite reachability graph, FS is finite, and the main loop of the algorithm will
necessarily stop.

84

Let us apply the algorithm on the following graph representing the reachable
graph of the example presented previously:

Figure[3]: reachability graph

The graph nodes are described as follow:

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
p01 c11+c12 c12 c11 c11+c12 c12 c12 c11 c11 c11+c12 c12 c11
p11 0 c11 c12 0 c11 0 c12 0 0 c11 c12
p12 0 0 0 0 0 c11 0 c12 0 0 0
p02 c21 c21 c21 0 0 c21 0 c21 0 0 0
p22 0 0 0 c21 c21 0 c21 0 0 0 0
p23 0 0 0 0 0 0 0 0 c21 c21 c21
r r1+2r2 2r2 2r2 r1+r2 r2 0 r2 0 r1+r2 r2 r2

If the specified forbidden states are 'M9' and 'M10' (representing deadlock
markings), then the algorithm gives : DM={M4,M6,M8}, FT(M4)={t22},
FT(M6)={t22}, FT(M8)={t11} and Ω={((c12,c11,0,0,c21,0,r2),t22) ;
((c11,c12,0,0,c21,0,r2),t22); ((c11+c12,0,0,0,0,c21,r1+r2),t11) }.
Rc is represented by the following graph:

Figure[4]: Admissibility graph

85

3.2 Controller construction method

After computing the set of the forbidden state transitions, we describe in this
section the generation of the controller CPN and its connection to the initial
system.

At this stage, we have two kinds of specification:
- the control specification of supervisory as described in section 3.1. More

precisely, the set DS of dangerous markings and the application FT, that
determines the associated forbidden transitions,

- the uncontrolled system specification represented by a CPN
(N=<P,T,C,W+,W-,M0>) and the associated information as defined in
section 2.

Our method will result in a new CPN obtained on the basis of the previous
specification and which functioning automatically satisfies the control. The key
idea is to handle enough information from the controller to detect reaching a
dangerous state, and from which, remove appropriate authorizations in order to
disable the firing of forbidden transitions. This method relies on the following
points:

- we introduce a new place holding information on dangerous states and
associated forbidden transitions. Its marking is defined by Ω.

- we handle the current state (marking) of all processes and resources in a
special added place. The information is modelled by a composed token
(tuple of colours) in accordance with CPN semantics.

- we add a place that manages authorizations to fire forbidden transitions.
- we add two transitions : one is fired when a dangerous marking is

detected, and the other is fired when it is quitted. These two supervisor
transitions have special high priority over all the other transitions and are
fired immediately when enabled.

- we define the necessary additional CPN components (colour functions,
synchronization arcs, markings, etc.) to ensure the desired management by
the supervisor.

Let us formally define this method. The system under control is a CPN N*
obtained from N so that N*=<P*,T*,C*,W* -,W* +,M*0> where :

P*=P∪{CM, DM, AT, AS}, with
CM representing the Current Marking,
DM the Dangerous Markings,
AT the Authorizations for forbidden Transitions, and
AS the Alert State of supervisor,

T*=T∪{A_In, A_Out}, with
A_In representing entering the alert state,
A_Out quitting the alert state,
A_In and A_Out have the highest priority.

Now, we define the following additional colour classes:

86

Cnum={0,1,2,…,MaxInt} is a class representing a set of finite positive integers.
Its elements will model the occurrences of some given tokens. We assume MaxInt
large enough to be greater than the bound of the maximum occurrences of any
token in a reachable marking. As, we deal with bounded CPNs, this property holds.

CFT is a class representing all forbidden transitions.

In the following, and for simplicity reasons, we may denote N* by N.

Let us determine the colour domain of the additional places as well as their
initial marking:

- place CM has a complex colour domain which is a Cartesian product of
Cnum performed on the basis of the number of process classes, the number of
places per process and the resource class. The role of CM is to handle
information about the current marking.

CCCMC num
Crcard

j
num

xik

i
⊗⊗⊗
==

=
)(

111
)(

CM is always mono-marked and its initial marking M0(CM) is performed on
the basis of initial markings of PS, P0 and {PR} places. The token marking CM
is a long tuple made up of counters where each one holds the information
about the occurrence of tokens in a given place (according to the lexical order)
among process places and the occurrences of tokens in the resource place PR.
M0(CM) may be algorithmically determined.

- place DM has the colour domain : C(DM)=C(CM)×CFT
Its initial marking contains tokens that represent dangerous markings with
the associated forbidden transitions. The initial marking does not change
since this place is only read accessed. The number of tokens in DM is given
by:

Σd∈DS card(FT(d))

- The colour domain and initial marking of place AT are: C(AT)= CFT , and
M0(AT)= CFT ;
Initially, all forbidden transitions are authorized.

- The colour domain and initial marking of place AS are: C(AS)= C(DM) ;
M0(AS)= 0 ;

Finally, we have to determine the additional arcs of transitions by defining the
associated colour functions:

• Input and output arcs of place CM: as its role is to hold the current
marking of N, it is associated with every transition of T, an input arc
(reading marking) and an output arc (updating marking).

∀t∈T, W-(CM,t)=<X1,1,…,Xk,xk, Y1,…,Yu> =<X>

87

where Xi,j is a variable defined on Cnum allowing reading the
marking of place j in generic process i, and Yu is a variable defined
on Cnum allowing reading the occurrences of colour u in place PR ;

and W+(CM,t)= <X'1,1, …, X'k,xk,Y'1, …,Y'u > =<X'>
where X'i,j and Yu are variables defined on Cnum determined as
follows :

X'i,j= Xi,j - χ , with χ= W+(pij,t)-W
-(pij,t),

and
Y'u= Yu-ξ, where ξ is computed as follows:
as W-(r,t)= Σi αi.ri and W+(r,t)= Σi α'i.ri ,

then ξ= α'u - αu

• To every forbidden transition, are added one input arc and one output arc
associated with place AT labelled by the same variable in order to check
the presence of firing authorization :

∀t∈CFT, W-(AT,t)= W+(AT,t)= <Xt> ,
where Xt is defined on CFT and represent the identity of the

transition.

• The place DM acts like a database of dangerous markings which is
accessed in read-only mode. Then, a double arc (loop) is added to
transition A_In with the following functions:

W-(DM,A_In)= W+(DM,A_In)=<X, Xt >
where X∈C(CM) (i.e. X is a tuple of variables)

• Transitions A_In and A_out require the additional following arcs:
W-(CM,A_In) = W+(CM,A_In)= <X> ;
W-(AT,A_In) = < Xt> ; W+(AS,A_In)= <X, Xt > ;
W-(AS,A_Out)= <X, Xt > ; W-(CM,A_Out) = <Y> ;
W+(AT,A_Out) = < Xt> ;
Transition A_Out is associated with the predicate: [X≠Y]

The following figure represents the subnet modelling the controller behaviour. It
is worth to notice that it is connected to the initial CPN specification through the
places AT and CM as it was previously defined.

(X,Xt)(X,Xt)

(X,Xt)

Xt X

(X,Xt)

Xt YY

A_In

A_Out

[X<>Y]

DM Cdm

AS Cdm

CM

Ccm

AT

Cft

Figure[5]: Controller subnet

88

3.3 Example

Let us consider the example of section 2.1. In our example, we have:
C(CM)= (Cnum)8 ;

a token marking CM is a tuple <x1, …, x8> where :
- x1, x2, x3 are values of token counters representing the markings in

p01, p11, p12 respectively.
- x4, x5, x6 are values of token counters representing the markings in

p02, p22, p23 respectively.
- x7, x8 are values of colour counters representing the occurrences of

resources r1 and r2 respectively.
M0(CM)=<2,0,0,1,0,0,1,2> (current marking place)

C(DM)= C(CM)×CFT ; (dangerous markings place)
M0(DM)= <<1, 1, 0, 0, 1, 0, 0,1>, t22> +<<2,0,0,0,0,1,1,1>,t11>

M0(AT)= {t11,t22}; (authorizations place)
As example of colour functions which join CM to the transitions of the
initial model we have:

W-(CM,t11) = <X> = <X1,1,X1,2,X1,3,X2,1,X2,2,X2,3,Y1,Y2>,
W+(CM,t11) = <X'> = <X1,1-1,X1,2+1,X1,3,X2,1,X2,2,X2,3,Y1-1,Y2>

and,
W-(CM,t24) = <X> = <X1,1,X1,2,X1,3,X2,1,X2,2,X2,3,Y1,Y2>,
W+(CM,t24) = <X'> = <X1,1,X1,2,X1,3,X2,1+1,X2,2,X2,3-1,Y1,Y2+1>

Through the next example, we show how the controller subnet is connected to
some transitions of the initial system specification.

X2

1`t221`t22

X

X'

X

X'

X2

t23t22

p22

C2

AT

CFT CM

CM

Figure[6]: Controller connection

3.4 Equivalence between the Admissible and the Controlled behaviours

In this section, we present and proof the equivalence between the computed
admissible behaviour and the controlled behaviour (that obtained from the
generated model). This result is presented in the next theorem.

Theorem

The behaviour of the controlled system is equivalent to the computed
admissible behaviour represented by Rc.

89

Proof
In order to verify the equivalence between the two behaviours, first we prove that
all information about the current state are stored in CM. Second, we verify that, at
any state, we have in AT only the authorisations of the forbidden transition which
could be fired at the current state. Finally, we prove that only admissible markings
are reachable.

STEP 1

A current state is defined when we have the information about each process place
marking and the information about the number of available copies for each
resource type. For this reason, we associate a counter with each process place and
with each resource type to save current state. This hypothesis justifies the colour
domain of CM. But let us prove that the structure of the CM’s token permits to
represent any accessible state.
The initial marking of the RAS model can be modelled using the specified
structure. Indeed, all process instances are in the idle place of the associated
generic process and for each resource type the initial marking of resources place
indicates the finite number of available copies.
Now, let us prove that all accessible states from the initial marking could be
modelled using the structure of the CM’s token.
Suppose M’ such that M[t(c)〉M’. M is modelled using specified structure. When
t(c) is fired, the token handled in CM will be modified. Indeed, we add
(respectively take off) 1 to each counter associated with successors (respectively
predecessors) process places. For each counter associated with a used resource
type, we add the difference between the number of allocated and restored copies.
As a result, we have in CM a new token modelling the new state of the system.

⇒ The token handled in CM place specifies, at any time, the current state
of the system.

 STEP 2

Now let us prove, using absurd, that any forbidden state is reachable.
Suppose that the system has reached a forbidden state. So, there exists a sequence
of events which permits to access this state from an admissible one. We will
consider the last controllable transition “t”. According to the algorithm "Compute
Admissibility", this transition will be determined as forbidden. For this reason it
must find authorisation in AT when it will be fired. Or, the place AT is joined to
the transition A_In, which will be validated when the system reaches the
dangerous state associated with “t”. As A_In has a high priority, it will be fired
immediately and removes all forbidden transitions authorisations. All removed
authorisations will be replaced in AT only when A_Out is fired. This transition
will be fired only when the system exits the dangerous state.
 According to the last results, “t” will never find its authorisation in AT when the
current state of the system corresponds to its associated dangerous state. For this
reason a forbidden state cannot be reached.

⇒ All forbidden states will never be reached

90

 STEP 3

Contrarily to forbidden states, we prove that all admissible states can be reached.
Since Rc represents the connected admissible graph. Indeed, the occurrence graph
is connected, and according to algorithm "Compute Admissibility", if a node is
declared as a forbidden state, all its related nodes will be declared forbidden if
these nodes are not reached at least from an admissible one. Finally, all forbidden
nodes will be removed from Rc, and the resulting graph is a connected one
Indeed, any admissible node could be reached from another and all nodes could
be reached from the initial node.
Under control there are two types of nodes:

 Non-dangerous states: here all transitions are authorised and consequently
all successor nodes could be reached.

 Dangerous states: as we have previously proved, only authorisations
permitting to reach forbidden states, will be removed from AT;
consequently all admissible successors states could be reached.

⇒ Under control all admissible states are reachable.

According to the previous results, we can affirm that the behaviour of the
controlled system is equivalent to the admissible behaviour.

4 SACoRAS application

In this section we introduce SACoRAS application that implements the presented
approach. The next figure describes its architecture and presents the integration of
our application to CPN Tools. All internal and external data exchange are also
presented in the next figure.

Editor Admissibles n

• RA
• Co
SACoRAS level
CPN Tools : State Space Tools

 graph
generator

CPN Tools : simulator

Controlled
CPN model
CPN Tools level
User level
Control
pecificatio
Figure[7]: SACoRAS architectur

91
Ω: set of
forbidden

state
transitions
Plant model
(CPN format)
e

Controller
Synthesis
O G
S specification(description of process behaviour and resources management)
ntrol specification (set of forbidden states, set of uncontrollable transitions)

SACoRAS is made up of four components:

• A graphical/textual interface allowing the edition of RAS model and the
specification of control constraints.

• A module allowing the determination of the occurrence graph of the
specified model using the state space tools of CPN Tools.

• A module generating the set of forbidden state transitions.
• A module allowing the generation of the Active Controller associated

with the initial model if the controller exists.

The different components of our application will be described in this section.

4.1 Design interface for RAS

As previously considered, RAS have numerous characteristics that distinguish
themselves from other DES. On the basis of the particular structuring of RAS, we
offer the possibility of easily editing plant models. Hence, the user may specify the
number of generic processes and the associated instances, resource types and the
available copies, and, each process behaviour regarding the use (allocation and
restitution) of resources. We indicate that we are not interested, in our application,
on flows computation. The proposed interface could be used in two different ways:
textually and graphically.

4.1.1 Textual interface

Using this interface, the user can specify his RAS model textually. To do it, he
must indicate the number of generic process running in his system. For each
generic process, he specifies the number of states. To indicate the different types of
resources and the corresponding number of copies handled in each state, the
designer uses two different primitives. The first one permits to indicate the
resources allocation to execute a specified state. Using the second primitive, the
user indicates the number of copies of resources restored when exiting the
indicated state. To finish the specification of his RAS model, the user indicates the
number and the identity of instances for each generic process and also the initial
marking of resources place. If the initial model has uncontrollable transitions, the
user indicates it by enumerating their identities.

When the user validates his choice, a textual file describing the CPN
representing the specified model will be generated. The interface will manage the
colour functions of arcs associate with different state machines representing
generic processes. It also manages the specification of different colour classes
representing the colour domains of different places. These declarations will be
generated from the initial marking of the different model places.

4.1.2 Graphical interface

To specify a RAS model using textual interface, the user must know the syntax of
the textual specification. To make the edition easier, we propose a graphical
interface allowing the specification of RAS. Using this interface, the user models
the initial RAS by adding process places, resources place, transitions and arcs. To

92

help the designer to edit correct models, the interface ensures some controls. For
example, the user can not change the colour functions of an arc belonging to a
generic process. These colour functions will be automatically created. On the
other hand, the graphical interface offers to the user the possibility to modify the
colour functions of arcs joining transitions to resources place which permit to
indicate the number and the types of resources allocated or restored when a
transition is fired.

To ensure that the designed model has the characteristics of RAS, the interface
forbids the connection of a transition to more than one predecessor process place,
and to more than one successor process place. Other facilities are available, such
as, the user does not have to specify the declarations of colour classes or
variables. The colour domains are automatically computed based on the initial
marking of places. The declaration of variables is also automatically generated.

Thanks to this restrictions and facilities, to model a RAS is easy and the user
can be sure that his model respects characteristics of the RAS class.

The information related to controllability of transitions are also described
thanks to SACoRAS graphical interface. Indeed, to specify whether a transition is
uncontrollable, the user clicks on the concerned transition and sets the
controllability flag to false.

The user can save his model, and a textual file is created describing different
components of CPN representing the designed RAS model.

4.1.3 Textual file formats

After specifying his RAS model, using the proposed interface, the user would
like to save his system. To ensure this operation, we had to choose between
saving binary file or textual file. To facilitate the exchange with another CPN
environment, we chose textual file format. In order to allow the integration of
SACoRAS application to CPN Tools, a compatible format is used. Hence, it is
possible to open a file describing the CPN representing the initial RAS model
using CPN Tools. To ensure this goal, we chose to use the textual exchange file
format offered by CPN Tools and representing one of the many advantages of
this CPN environment.

We have also defined another textual file format allowing to save the
description of the occurrence graph. Indeed, after generating the occurrence graph
associated with the specified model, we must save its description. To generate the
description of this graph, we have defined functions respecting the syntax of
standard ML language supported by CPN Tools. These functions permit to save
the textual description of different elements madding up the occurrence graph:
nodes and arcs. For each node we save the marking of all places of the model at
the specified state. For each arc, we save the name of the fired transition and also
the instance of colour for the different variables when the transition is fired. We
save also for each arc the source and destination node. The definition of these
functions was possible using the primitives offered by CPN Tools and permitting
to handle different components of the occurrence graph. These primitives
represent another advantage of CPN Tools exploited by SACoRAS.

As previously considered, the file generated by the proposed interface can be
opened using CPN Tools. This permits to benefit from the State Space Tools

93

offered by the CPN Tools environment. Also, we generate a textual description of
the generated occurrence graph associated with the initial model and which may
be used later for the generation of the “Active Controller”.

4.2 Occurrence Graph module

To generate the occurrence graph associated with the specified model, SACoRAS
uses the State Space Tools of CPN Tools. To ensure this operation, OG module
first generates, from the internal data structures handled by SACoRAS, an XML
file describing a RAS model and respecting the syntax of the textual exchange
file format offered by CPN Tools. It also generates functions that allow to save
the description of the occurrence graph. Next, OG module opens a CPN Tools
window containing the initial model. When the user exits CPN Tools, OG module
will verify whether the textual description of the occurrence graph was saved. If
the OG module finds the specified file, it will create and fill up internal structures
describing the occurrence graph of the initial model. Conversely, if the file was
not found, the OG module will alert user that textual description of the
occurrence graph was not saved and a new CPN Tools window containing the
initial model will be opened to allow the generation and the save of the
occurrence graph. This operation is repeated until the textual description will be
defined.

When the execution of OG module is terminated, SACoRAS has an internal
description of the occurrence graph associated with the modelled system which
can be used later for the generation of the Active Controller.

4.3 Admissible graph generator

This module allows the computation of the set of forbidden state transitions.
Admissible graph generator works according two different steps.

4.3.1 Compute accessibility: During this first step, the admissible graph
generator module verifies if the occurrence graph of the specified model
was generated. If not, it asks the OG module for the generation of the
occurrence graph. When the internal description of the occurrence graph
is found, the admissible graph generator module can execute its second
step.

4.3.2 Compute admissibility: This second step, which is the
implementation of the algorithm “Compute Admissibility”, allows the
computation of the forbidden state transitions based on the specification
of the forbidden states that could be described using two modes. Indeed,
forbidden states could correspond to deadlock states or to states that are
explicitly specified by the user. For example, user could ask to forbid,
for the model presented in section 2.1, all markings where
card(M0(P01))=1 and card(M0(P23))=1. For the textual specification, we
suppose that the user enters a correct format of the control constraints.
When the user validates the control specification, the compute
admissibility module explores the internal structure describing the
occurrence graph searching nodes that verify the control constraints. All

94

nodes which comply with the control constraints will be considered as
forbidden and will be included to FS0.

When the compute admissibility module terminates the determination
of forbidden states two situations can occur:

* FS0 is empty or M0 is included to FS0, in this situation the
execution of the admissible graph generator module will be exited.
An alert message will indicate to the user that the initial model
does not contain any forbidden state if FS0 is empty or that is not
possible to control the initial model when M0 is a forbidden node.

* FS0 contains forbidden states, in this situation the compute
admissibility module will terminate its execution and will
determine a set of forbidden state transitions associated with the
determined forbidden states. To look for dangerous states, the
compute admissibility module follows the different steps described
in the “Compute Admissibility” algorithm. When all dangerous
states are computed, we can also find two different situations. The
initial state M0 was determined, by propagation, as an inadmissible
state, in this case the generation of the admissible graph generator
will be stopped and an alert message will indicate to the user that it
is not possible to control the specified model. Otherwise, the active
controller synthesis module is caused.

4.4 Active Controller synthesis

The execution of this module allows the generation and the connection of the
Active Controller associated with the initial model.

When the active controller module is caused, it has in its internal data structure
all necessary information for the generation of the Active Controller related to the
initial RAS model. To generate this controller, different steps are followed:

* Two additional colour classes are included to the global
declaration structure of the initial model. The first class, called
Cnum, is based on the integer class used in CPN Tools. The
second class, which represents all forbidden transitions and called
Cft, will be declared by enumeration of all the forbidden transition
identities.

* In this step, the active controller generation module creates the
four additional places and the two transitions making up the
controller subnet and then determines the colour domain and the
initial marking of all additional places. To ensure this operation, a
lexical ordering is defined, based on the identities of processes,
places and resource types. Now colour domain and initial marking
can be determined.

95

* The colour domain of the CM place, declared as a colour class
called Ccm, will be determined as a product based on Cnum and
the number of nodes found in the structure describing the lexical
ordering. The initial marking of CM will be computed on the basis
of initial marking of all places of the uncontrolled model. Indeed,
for each process place, we compute the cardinal of its initial
marking and for the resources place; its initial marking will be
decomposed following the different resources types. Then, the
token representing the initial marking of CM will be generated on
the basis of the lexical ordering and the last computed information.

The class Cdm representing the colour domain of DM will be
declared as a product based on Ccm and Cft. The initial tokens
representing the initial marking of DM will be generated on the
basis of information representing dangerous nodes, and
particularly the marking of all places at this state, and information
about the associated forbidden transitions. In all tokens, the part
representing the dangerous states is generated following the lexical
ordering. This hypothesis permits a correct comparison between
dangerous and current marking. Indeed, the counter associated
with each process place and with each resource type follows the
same order. When two tokens are compared, we compare
respectively their associated counters (the same resource type or to
the same process place).

For AT, its colour domain is Cft and its initial marking will be the
addition of all instances associated with each element included in
Cft.

The colour domain of AS is Cdm, and initially it is empty.

* After having created all additional places and transitions making
up the active controller, the active controller generation module will
connect the net representing the active controller to the net of the
uncontrolled system. To realise this operation, all transitions will be
linked to CM markings with an input and an output arc and all
forbidden transitions will be connected to AT place with an input
and an output arc. The colour functions of these last arcs are
constants representing the identity of the forbidden transitions. For
all input arcs connecting all transitions to CM their colour functions
will be a tuple made up of variables defined on Cnum. To determine
the colour functions of output arcs connecting each forbidden
transition to CM, the active controller generation module will first
determine its successors and its predecessors process places and the
number of copies of all resource types handled when the transition is
fired. Then, a colour function of these output arcs will be computed
based on this information and the input tuple. Indeed, for each
process place, the variable Xi associated with the counter of this
place will be replaced by the expression Xi-X where X represents
the difference between the number of the replaced and the removed

96

tokens from the specified place. Then, for each resource type the
corresponding variable Yi will be replaced by the expression Yi- E
where E is the difference between the number of the restored and
the allocated copies. At the end of this step, the active controller
generation module has in its internal structure all information
representing the controlled system.

* Seeing that the priority is not handled in CPN Tools, we have
implemented the priority of our two controller transitions. To do it
we have add places which were joined to the transitions of the
controlled model.

*At this final step, the active controller module will generate a file
respecting the syntax of CPN Tools files and modelling the initial
system under control. A message will indicate to the user the path
where the generated file was saved.

In this section we have presented the different modules of the SACoRAS
application and we have described the working of each module. When all
modules of the SACoRAS application are executed successfully, they permit, if it
is possible, the generation of a CPN model representing the controlled system
associated with the initial RAS model.

To test our application, we have edited the RAS described in section 2 and
we have asked to control deadlock nodes. The following figure provides a piece
of report, generated using CPN Tools, and associate with the resulting controlled
system. It indicates that the system does not have deadlock markings.

Figure[8]: Piece of CPN Tools report.

5 Conclusion

We introduced a supervisory control approach based on coloured Petri nets. The
first advantage of the presented method is that it does not define a derived model
(neither extension nor abbreviation) from the well-known general CPN one. We

97

described a controller synthesis method for Resource Allocation Systems. This
method is implemented, in the SACoRAS application, within the CPN Tools
environment. One of the advantages of the SACoRAS application is its interface
that allows the specification of only correct RAS models. The second advantage
of this application is the automatic generation of a controller and its integration to
CPN Tools.

References
[1] K. Barkaoui, A. Chaoui and B. Zouari, Supervisory Control of Discrete Event

Systems based on Structure Theory of Petri Nets, in Proc. of the IEEE
International Conference on Systems, Man and Cybernetics, 1997.

[2] Ghaffari, A, N. Rezg and X.L. Xie. Design of a live and maximally permissive
Petri net controller using theory of regions. IEEE Trans. on robotics and
Automation, 2002.

[3] Giua, A. and F. DiCesare. Blocking and controllability of Petri nets in
supervisory control. In: IEEE Trans on Automatic Control, 1991.

[4] M.D. Jeng and F. DiCesare. Synthesis using resource control nets for modeling
shared-resource systems. IEEE Trans. on Robotics and Automation, 11(3):317–
327, June 1995.

[5] Jensen, K. and G. Rozenberg. High-Level Petri Nets. Theory and application. S.
Verlag, 1991.

[6] L. Petrucci. Design and validation of a controller. In Proc. 4th World
Multiconference on Systemics, Cybernetics and Informatics (SCI'2000),
Orlando, FL, USA, volume VIII, pages 684-688, July 2000.

[7] Ratzer, A.V. and Wells, L. and Lassen, H.M. and Laursen, M. and Qvortrup,
J.F. and Stissing, M.S. and Westergaard, M. and Christensen, S. and Jensen, K..
CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets. Proc. of
{ICATPN} 2003. Springer-Verlag.

[8] Ramadge, P.J., W.M. Wonham. The control of discrete event systems. In:
Proceedings IEEE, vol.77, n°1, pp. 81-98, 1989.

[9] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira. Polynomial complexity
deadlock avoidance policies for sequential resource allocation systems. IEEE
Trans. on Automatic Control, 42:1344-1357, 1997.

[10] W.M.Wonham and P.J. Ramadge. On the supremal controllable sublanguage of
a given language. SIAM J. Control and Optimization, vol. 25, No. 3, pp. 637-
659, 1987.

[11] B. Zouari, K. Ghédira, “Synthesis of Controllers using Coloured Petri nets and
Theory of Regions" - IFAC Workshop on Discrete Event Systems (WODES'04),
Reims, September 2004

98

Modelling a product based workflow system in CPN tools

Irene Vanderfeesten, Wil van der Aalst, Hajo A. Reijers

Technische Universiteit Eindhoven, Department of Technology Management,
PO Box 513, 5600 MB Eindhoven, The Netherlands

{i.t.p.vanderfeesten, w.m.p.v.d.aalst, h.a.reijers}@tm.tue.nl

Abstract. A new approach to workflow process (re)design is the use of Product Based
Workflow Design (PBWD) theory. This theory takes the workflow product as the central
concept (instead of the workflow process) and provides a product data model of the structure
of information processing in the workflow process. In this paper we introduce a prototype
for applying PBWD constructed using CPN Tools. The goal of this prototype is to provide
a tool for ‘experimentation’ with the product data model. The CPN model supports the
step-by-step calculation and processing of data in the workflow process based on several
strategies and provides insight in the way PBWD works. Finally, the prototype is evaluated
with on the one hand a state space analysis to assess the correctness of the model and on
the other hand a simulation of a sample product data model.

1 Introduction

Workflow processes are administrative business processes in which much information is processed.
Although the focus on the business process instead of a focus on a single department has become
more and more popular during the past decade, the (re)design of models for these business pro-
cesses is still more art than science.
In redesigning workflow processes generally two approaches can be distinguished [10]:

– Evolutionary approaches: the existing process is taken as a starting point, which is gradually
refined or improved by using a set of best practices or rules to transform that process.

– Revolutionary approaches: a clean-sheet of paper is taken to design the complete process from
scratch.

Product Based Workflow Design (PBWD, see [1,2,3,15,16,17]) is a revolutionary approach. It takes
a different view on the workflow process in which the processing of data and the workflow end
product are the central concepts, rather than the activities and the workflow process itself. In
PBWD, the workflow product is represented by a product data model, i.e. a network structure
of the construction of the product (cf. the Bill-of-Material (BOM) in Manufacturing, [11]). In
manufacturing processes the BOM is used to structure the operations process [6,7,19,20]. It seems
a promising step to adopt this view in administrative business processes too [12]. Based on the
product representation the workflow process model can be derived [17].
Although the “PBWD view” on a workflow process may not be the most popular way people think
about designing a workflow process, it has several advantages [15]:

– The clean sheet approach that is taken allows for maximal space to establish performance
improvements (radicalism). Approaches that use the existing process will to some extent copy
constructions from the current process, taking over errors or undesirable constructs.

– Moreover, PBWD is objective. In the first place because the product specification is taken as the
basis for a workflow design, each recognized information element and each production rule can
be justified and verified with this specification. As a consequence there are no unnecessary tasks
in the resulting workflow. Secondly, the ordering of (tasks with) production rules themselves
is completely driven by the performance targets of the design effort.

– The analytical approach of PBWD renders detailed deliverables suitable to use for systems
development purposes.

99

– Finally, the focus on the product can help to create consensus between different stakeholders. It
gives a clear and objective representation of the workflow product that can help in discussing
the process. Because the product data model contains less information than a process model
it is easier and less complex to design, understand, and maintain.

At this point in time, there is no tool support for PBWD yet. Because it is a time-consuming
and error prone method to come from the product data model to a workflow process model, it
is useful to develop tools that support this process. However, the first step towards such a tool
is a better understanding of and experimenting with the product data model. The goal of this
research is the development of a prototype to get more insight in the product data model. This
prototype provides a way to qualitatively compare the sequential unfolding of the product tree
based on several strategies for local selection of the next step. The prototype is built in CPN Tools
[4,8]. Modelling and analysis with Colored Petri Nets is quite common in a manufacturing context
[5,13,14]. There are several reasons for using Colored Petri Nets and CPN Tools:

– First, the use of Petri nets provides correctness analysis of the model by means of, for instance,
a state space analysis.

– It is very easy to make small adaptations to the models and then compare the outcomes.
– Moreover, the integration of process and data is essential to this view on a workflow process.

CPN Tools provides the possibility to integrate them in one model. The data is then captured
in the data structures of the model, i.e. in the colours or types, and the process in the Petri
net itself.

– Finally, CPN Tools contains a simulation environment, in which one can go step-by-step
through the model, following or defining oneself a sequence of firing.

In this paper we describe the CPN prototype for PBWD. The remainder is organised as follows.
First we introduce the concept of PBWD and the product data model. Next, the CPN model is
explained. In section four we go into further detail of the selection strategies and explain their
differences. This section is followed by an evaluation of the prototype based on a state space
analysis and a simulation example. Finally, the paper concludes with a discussion and directions
for future research.

2 Product Data Model

PBWD theory is based on a product data model. This product data model describes the most
elementary parts of a workflow process. It contains the data and information that is processed
in the workflow process. It can be compared to a Bill-of-Material from manufacturing [11]. For
example, a car is assembled from an engine and a subassembly. This subassembly consists of a
chassis and four wheels (see Figure 1).
Similarly, in an administrative context the balance of a company is determined by its assets and
liabilities. Moreover, the assets are based on the fixed assets (such as goodwill, (in)tangible assets)
and current assets, i.e. debtors, cash at bank and in hand, of the company and the liabilities can
be calculated based on the long-term liabilities (like loans and mortgages) and the short-term
liabilities (for example creditors).
The data pieces in the product data model are called data elements. On these data elements oper-
ations are defined (e.g. a calculation on numbers, decision making based on certain information).
Operations can be executed automatically or manually or through a combination of automatic
and manual execution. They denote the relationship between several data elements. Considering
the example of the balance of a company as introduced above, three of the data elements are the
balance, the assets and the liabilities. An operation defined on these data elements is then the
calculation of the balance of the company, i.e. the output of the operation, out of the assets and
liabilities, i.e. the input elements of the operation. For a better understanding of these product
data structures we refer to [15,16,17].

100

The goal of the prototype described in this paper is to provide insight in the way the PBWD
method works. With the help of this prototype it is possible to simulate the calculation of new
information elements based on the elements that are already known.
For implementation of the CPN prototype the product data model needs to be formalized. This
formalization is discussed below.

2.1 Formalization of product data model

Taking a mathematical view, a product data model is a set of data elements and ‘directed’ links or
relations between them. The data elements of the product data model are denoted by an identifier
(e.g. a). An operation is represented by a tuple (a, [b, c, d]). The first element of the tuple (a) is
the output data element of the operation, while the second element is a list of input data elements
([b, c, d]). Note that an operation can have several input elements, but only one output element.
Next, this tuple is extended with some other information: (“opID”, a, [b, c, d], attributes). “opID”
is a unique identifier of an operation and attributes is a tuple containing a value for duration and
costs of the operation (attributes = (duration, cost)). An operation can be executed when the
values for all input information elements are available and when the values of these input elements
satisfy certain conditions (if declared).

CAR

CHASSIS
WHEEL

SUB-

ASSEMBLY

ENGINE

4

Fig. 1. The bill-of-material of a car

d

f
e

b

a

c

Fig. 2. The product data model of suitability to
become a helicopter pilot

This formalization will be clarified with an example (from [15]). In Figure 2, the procedure to
determine one’s suitability to become a helicopter pilot is denoted in terms of a product data
model. All nodes in the figure are data elements that can be used to decide whether an applicant
is suitable to become a helicopter pilot or not. The meaning of these data elements (denoted by
a, b, c, d, e, and f) is:

a = Suitability to become a helicopter pilot.
b = Psychological fitness.
c = Physical fitness.
d = Latest result of suitability test in the previous two years.
e = Quality of reflexes.
f = Quality of eye-sight.

The suitability to become a helicopter pilot can be determined in either of three ways:

1. Combine the results of the psychological test and physical test. (In Figure 2 this is: e, f
combined to c and b, c combined to a)

2. Use the result of a previous suitability test. (d → a)
3. Make a decision based on the candidate’s quality of eye-sight. (f → a)

101

These different ways to determine a candidate’s suitability may be applicable under different con-
ditions. It can be imagined that if a pilot’s eye-sight is bad, then this directly gives a result that
the candidate is not suitable. However, in a more common case, the eye-sight quality is one of
the many aspects that are incorporated in a physical test, which should be combined with the
outcome of the psychological test to determine the suitability result. Also, not for each candidate
that applies, a previous test result is available. But if there is one of a recent date, it can be used
directly, without knowing the values for the other information elements.

The description of this situation can be formalized in a product data model as follows:

(“Op1”, a, [b, c], (0, 0))
(“Op2”, a, [d], (0, 0))
(“Op3”, a, [f], (0, 0))
(“Op4”, c, [e, f], (0, 0))

Given this product data model and a set of available data element values, it is possible to de-
termine which operations could be executed and thus which new data element values could be
produced. For instance, looking at the example of the helicopter pilot, when the values for data
element e (quality of reflexes) and f (quality of eye-sight) are available, the value for element c
(physical fitness) can be determined, i.e. the execution of “Op4”. Initially, the values of elements
with no ingoing arcs are available (in our example that is b, d, e, f).
Moreover, some constraints for execution can be added to the operations. Consider for instance
operation number three (“Op3”) from the helicopter pilot example. This operation can only be
executed when the value of data element f (quality of eye-sight) is ‘bad’. It should not be exe-
cuted when the value of f is otherwise. The constraints on the execution of an operation are in
this prototype added as a function that checks whether an operation satisfies the condition when
all of its input elements are available (see appendix A.3).

The formalization of the product data model as presented in this section will be used in the
prototype. The CPN-model of this prototype is explained in detail in the next section.

3 CPN prototype

The CPN model we developed consists of two levels: the main level and the sublevel. In this
section we first explain the main level and afterwards we elaborate on different variants modelling
the sublevel.

3.1 Main level

The main level of the CPN model is depicted in Figure 3. It contains eight places and three tran-
sitions. The main stream in the model is indicated by thick lines. Initially, places available data
elements, not yet executable operations, ready for calculation, executable operations, total cost and
total duration contain a token.
The token in ready for calculation does not contain real information. It is only needed to ensure
transition calculate only fires when it is allowed to, i.e. when the operation that was selected in
the previous execution of the main stream has been executed.
However, the tokens in the other places do contain information in order to parameterize the model.
The place available data elements contains a list of data elements that are available with their
corresponding value. The elements of the list change over time. Initially, this place holds the data
elements that initially were available and are not obtained through the execution of an operation
in this process, i.e. the elements with no ingoing arcs. In many cases these data elements will be
the elements that are provided by the customer that starts the case in the workflow process.
The place not yet executable operations holds a list of operations that can not be executed yet.
Initially, this list contains all operations in the product data model. The format of an operation

102

����� �����
	�
 ��� ���
 	��

����� ����� 	�
 ��� ���
 	��

����� ����� ��� �
����������� ����� �
	�
 ��� ���
 	����

� � ��������� ��	�� �����������
����������� ����� � �
 ��� � � 	�
�� ���
��	 � ��� � � ��� 	�

 ��� � ��

����� ����� ��� �!����������� ����� � 	�
 ��� ���
 	����

"#��������� �
	�
 ��� ���
 	��

"#��������� � 	�
 ��� ���
 	��

��	 �%$����%���&���
	�
 ��� ���
 	����

')(��

*�+#
 �
 �
 ��� *#�

������
 � ����� �)
 ��, 	
��� � � � � � �

-&"#./�

*�+#
 �
 �
 ��� *#�
�������

	�
 ��� ���
 	����
'0(�

�

� ��� ����� ��1
	�
 ��� ���
 	��

')(

� ����1�$, 	 �
����� ����� ���
 	��

2���34-&"

*5+ � ��36-&"

� ����1�$, 	 �
� ��� �����
 	��

2���36-&"

� 	 � ���
� 	�� �

-&2�7

*�+98
� 	 � ���

1���� ���
 	��
-&2�7

*�+#8

Fig. 3. The main level of the CPN model.

103

is as defined above in section 2.1. Similarly, executable operations contains the list of operations
that are executable. Initially, this is an empty list, because the executable operations first have to
be calculated.
Finally, total cost and total duration contain an integer value that denotes the total cost and total
duration of the process. For every execution of an operation these values are updated and the cost
and duration attributes of that operation are added. Clearly, the initial value of these variables is
zero.
The CPN model also shows places that initially do not contain tokens: ready for selection and
selected operation. The first one has a similar meaning of the ready for calculation place and makes
sure that the select operation activity can only fire when there has been a recalculation of the ex-
ecutable operations. Place selected operation is used to store operations that are selected. Clearly,
this place can not contain a token initially, because the executable operations first have to be
calculated before one of them can be selected.

The first step in the execution of this prototype is the firing of transition calculate executable
operations. When it fires, the operations that are executable, i.e. all of its input elements are in
the list of available data elements, are determined from the list of not yet executable operations.
The executable operations are stored in the place executable operations. Next, one of the executable
operations is selected and finally this operation is executed, i.e. the output element is added to the
list of available data elements and the value for this output element is determined. Then the flow
starts again: the executable operations can be calculated based on new information, an operation
can be selected, etcetera, until the end product of the process is reached. More specifically this
means that the top data element is in the list of available data elements.

In the next sections the subpages for the transitions calculate executable operations, select op-
eration, and execute operation are clarified.

3.2 Calculation of executable operations

As explained before, the calculate executable operations transition determines which of the opera-
tions from the list of not yet executable operations become executable based on the list of available
data elements. This calculation turns out to be a bit more involved than one may expect.
As is shown in Figure 4, the calculate transition takes the list of available data elements and the
list of not yet executable operations as inputs. For each operation in the list it determines to which
output place it should be sent.
When the condition of an operation is not satisfied, i.e. if the value of one of the input elements
is not satisfying a pre-defined condition, the operation should not become executable and is sent
to place condition not satisfied. After that, the operation can never become executable again. We
assume that conditions remain stable during the process.
If the output element of the operation is already in the list of available data elements then the
operation is put in the place data element already known and again it stays there. There is no
need to determine the value again. When one or more of the required input data elements are not
available yet, i.e. a required item is not in the list of available data elements, the operation is put
back in not yet executable operations.
Finally, the operations which satisfy the predefined condition on the input data element values, of
which the output element is not already known, and of which all input elements occur in the list
of available data elements, are sent to the executable operations place.
Note that calculate also recalculates the operations that where put in the place executable opera-
tions in one of the earlier iterations, because they can become superfluous (e.g. already determined
or not satisfying the condition after the calculation of the value of one of the input elements).
Besides that, if the end product is determined, it makes no sense to still perform some operations
that are available. Therefore, a guard is added to calculate executable operations which only allows
this transition to fire when the end product (‘top’) is not yet in the list of available data elements.

104

���������	 ��
��

����

��
�� ������� ������� ����� ��� ������
�������� 	 ��
��������
��
������������ 	 �� 	 ��������!������ 	 ��
����

������

	 ��
��

��
�����!����

�����"��#����
���������
�� ������� 	 �� 	 �����
�������� 	 ��
������#�
��
���������
�� ������� 	 �� 	 ��������!������ 	 ��
����

�����$��#����� % ��������������� ����� ��� ������
�������� 	 ��
������#�
��� % ��������������� ����� ��� ����� ��!������ 	 ��
����

�����"
�����$

&�' ���������

(��� ����� ��� �
��!�������� ��)�� �

�����% ��� 	
����

* ����!������ ��
�����!�������+
��!�������� ��)�� ��� 	 ��
����
������ �
��
�� � ,-��,-)-�
�� 	 ��
�����.

% �������/
�%
����� ����� ��� 	
��

0 �������

&�' �����#���

� �

��
�� 	 � ��)�� � 	 ��

��� ��,-����� �

���2143

&�'5	 � 	 � 	 ��� &)

� 6�7

��
��8�����
��!�������� ��)�� �

�����% ��� 	
����

7:9 3

&�'5	 � 	 � 	 ��� & �

� 6�7

��!�������� ��)�� �

�����% ��� 	
����

7/9�3

* .

� 6�7
��
���� 	 � 	
��
��
��8����� 	 �� 	 ���

7/9�3

&�' * .
����� �/��� ��,-�����
��� % �������/;���
����

7/9�3

&�' * .

% �������/
�%
����� ����� 	
��

0 �������

7#���

Fig. 4. The calculate executable operations subpage

3.3 Selection of operation

When the executable operations are determined by the calculate transition (there is a token
available in ready for selection and executable operations contains a list of operations), one of
these operations can be selected for execution. Several strategies can be used to determine which
operation from the list of executable operations should be selected. The strategies we considered
are: (a) the first operation of the list, (b) the operation with the lowest cost, (c) the operation
with the shortest duration, (d) random selection, and (e) selection by a user.
The way in which the next operation to be executed is determined influences the performance
of the process of making the workflow end product. We need performance measures to compare
the selection strategies in actual situations. To assess the performance of a certain strategy we
limit ourselves to total cost and total duration, although one could think of other performance
indicators. The selection strategies are further explained in Section 4, and are applied to an example
in Section 5.

3.4 Execution of operation

After selecting an operation for execution, this operation will be executed in two steps (see Figure
5). First the execution will be started and the total cost and duration are updated, while the
execution of this operation takes some time (the time delay is determined by the attribute dura-
tion). Next, the execution is ended, either successfully or unsuccessfully. When the operation is
performed successfully the output data element of the operation is put in the list of available data
elements together with its newly determined value (the simple function calculation determines this
new value, see Appendix A.3).
When the execution of the operation fails, the operation is put back at the end of the list of ex-
ecutable operations, from where it can be selected again some time. The end execution transition
also puts back a token in ready for calculation, so that the loop can start again by calculating the
executable operations for the next possible step.

4 Selection strategies

Once the executable operations have been determined, one of them can be selected for execution.
The selection in a way influences the costs and duration as explained before. In this section we

105

�����

�����

��� �	� ��
	� ���
������ � � � �

�
	����� ����� �
	����� ���

� ���
	����� ���
� �	�
�� ��
	� � � ��� ��
 � � � � �
	���
	����� ��� � ����� � � ��� �
� � � � � ��� �

� ��� �

� ��
 ��� �
	����� ���
� ���
 ��� �� ! #" ��� �	� ��
	� � �
	��� � � � � � $
� � � �%��� �

��� �

�
	��& ��'
	� � ���	�����

��� � �(& ��) � � � � ���	��� �

�
	�

��� � �

 ��*,+.-

/ � � � �
��0�����
	� � �

1 & ��'
	� � ���������

-
��
��0�����
	� � �

� � ����23� ���
� ��� ��
 � � � � �

4 ��*,+.-

5	6
 ��*!+.-

7
	�

�
	����� ����8
� ��� �
	� �

9�7:7%;

5	6 � �
	�<&,& 5�6 � ��� � �

� � ��� � ��=	� � �
	� �
� � ��>#�
 � �

+.-@? /

5	6 �
	� � � ��� 5 =

+ 8 7

� � � ����� � �
���	��� � � � �

7%A+

��0����B���	��� � � � �
	�

7%A�/

" $

+ 8 7

������� � � � �

�
 ��0�����
�� � �

7%A

C ��� ���
��� � �

+ 4�C

5	6ED

7
	�

C ��� ���
�
	� � � � �

+ 4�C

5	6@D

7
	�

Fig. 5. The execute operation subpage

elaborate on several strategies to select the operation to be executed. We have identified five
different strategies that are described separately. We start with a basic strategy: the selection of
the first element from the list. Next, for every other strategy it is shown which adaptations to the
first model have to be made in order to get a model that supports this strategy.

4.1 Select first element from list

To select the first element from the list with executable operations it is not necessary to write a
complex function in CPN Tools1. As is shown in the subpage of select operation in Figure 6 this
element can be specified by explicitly distinguishing the head from the rest of the list: ope :: ops,
where ope is declared as an operation (type OP , see declarations in appendix A.1) and ops as a
list of operations (type OPS). This first element is then taken from the list and passed on to the
place selected operation, while the tail of the list of operations is put back in the place executable
operations.
Clearly, the order of elements in the list determines which element is the first element of the list.
The list can have an arbitrary order (like a lexicographical order or an order based on one of the
attributes). The order of the list can be defined by the user by means of the declaration of the list
containing all operations. In this way the selection strategy can be influenced. In our example we
use a list order based on the ID of the operation, i.e. “Op1” is before “Op2”, etcetera.

4.2 Select element with lowest cost

The selection of the element from the list with the lowest cost is slightly more complex. The basic
structure of the select first element subpage can be maintained but the arc inscriptions have to
be changed as shown in Figure 7. The whole list is taken as an input to the transition. Next, the
element with the lowest value for a certain attribute is determined by a function called SelMin.
To this function we add the attribute that we want to have a minimal value, that is Cost.
1 Note that CPN Tools uses the functional programming language Standard ML [18] to manipulate token

colors

106

��������� �����

�	�	�

���
 �������

�	�	�

� �	� �����
�	����� �	� � �

����������� �	�	� �
�	�	��� ��� � �
 �

 "!��

$

� %

����� ����� ��&
�	����� �	� � �

 "! ���

� ����&�'"(�	�
����� ����� � �

) ��������

Fig. 6. The select first element from the list sub-
page

�����

����� 	�
 �
� �����������

� ��� � � ��� ������� ����� 	�
 ��� �������������

��������� ����� ��� �
��� ��� �
 � �

! ������"�# ! $%$

��&�����' � �(�� �
��� ��� �
 � � �

)+*%�

! $

� ,%)

� ��� ��� � � �
��� ��� �
 � �

)+*)-' �

� �� ��.+/ � �
� ��� ��� �
 � �

0��������� �

Fig. 7. The select element with lowest cost sub-
page

�����

����� 	�
 �
����� �����

� ��� ��� ��� ������� ����� 	�
 ������� �������

��������� ����� �����
��� ��� ��
 � �

! ������"$# ! %&%

��'������(� �)�� �
��� ��� ��
 � � �+*-, �

! %

� . *

� ��� ����� � ���� ��� ��
 � � */,* ���

� �� ��0-1 � �� ��� �����
 � �
2��������� �

Fig. 8. The select element with minimal dura-
tion subpage

�����

�����

� ��� ��	 ��
 ������� ������

��������� � ��� ����	
������� ��	 � ���

� ������	�
�������
��
����	 ����	�
�������
��
����	 � ���
����� ����	 ��� ��� � ���
�������
��

! �����#"�$! %�%

�&������'� �(� ��� � ��� �)'����� ����	 � �
* � ���+	 ,-�.� � ��	������(������	 ��� ��� ��/
��� ����0�������	 ��1�� �'������� ��	 � ������&�

��0�������	 ��1�� �
������� ��	 � ���-�

2.3 �

! %

� 4 2

����� ����	 � �
������� ��	 � ���

2'32 ��	

� ��� �) * ���
����� ����	 � ���

5 �������� �

Fig. 9. The random selection subpage

The SelMin Cost function is applied to the list of executable operations ops. The operation with
the lowest cost is sent to selected operation and is deleted from the list of executable operations.
Of course this only works for a non-empty list in executable operations. Therefore a guard is added
to the transition.

4.3 Select element with shortest duration

Similar to the selection of the element with the lowest cost we can select the element with the
shortest duration (Figure 8). In this case the structure of the model is the same, only the SelMin
function is applied to the list of executable operations considering the value of attribute Dur
(Duration) instead of Cost.

4.4 Random selection

Another way to select an operation from the list of operations is through random selection. Basi-
cally, we can keep the structure of the model as it was in the previous three strategies. To select an

107

����� ����� �
	���
������ �

������	��
� �

�
��� ��� ���
��
��� ����� ����� �
	���
��
��� ���
����

� �

� ��� �����

������ �� �
��

��!�����"
� �#
� �

��
��� �� �
��
�

$&%'�

()

	 * $

����� ����� ���

������ �� �
��

$&%$ "
�

� �� ��
+&,
��
����� ����� �
��

- ���.	��	 �
"
�����

����� ����� �
��
	��

� �
� � � �� /0�

Fig. 10. The selection by user subpage

arbitrary element from the list, we need a function that transforms a real number from a random
number generator into an integer as the number of an element from the list.
Because the random function returns a different value every time it is evaluated we can not use
the function as we used the SelMin function before. Therefore, the random function is put in the
action part of the transition. In this way the random number is bound to a variable ope. Through
this variable the element can be selected and deleted from the list. This function is shown in Figure
9 and is explained in more detail in Appendix A.3.

4.5 User selection

The last strategy for selecting an operation is to let the user decide which operation is selected.
In this way, of course, any strategy can be ‘imitated’ through the actions of a user (e.g. when the
user selects the first element of the list every time, the strategy is equal to the select first element
of list strategy).
Most of the structure of the model can be reused. An extra input place user selection with colour
ID is added. By changing the current marking of that place a user can specify which element from
the list, denoted by its ID, he or she wants to take. This ID is an input to the transition and is
used on the outgoing arcs to specify the element from the list as shown in Figure 10.
Moreover, when CPN Tools version 1.4.0 is used it is possible to select a binding for the next step
from all possible binding elements (see Figure 11). Initially, all opID-s are present in the place
user selection, although not all operations may be present in the list of executable operations.
Therefore, the user should pay attention to select an operation that really is executable because it
is possible to bind an opID that does not exist in the list. When an operation is chosen that is not
in the list, the ‘Empty’ exception is raised and the simulation is stopped. However, we feel this
is a nicer solution than manually changing a marking. Obviously, this is not a very sophisticated
solution from a GUI perspective, but it serves our purpose.

5 Evaluation

In the previous two sections, the prototype for experimenting with a product driven workflow
system is explained. In this section the model is assessed. As explained in the introduction, CPN
Tools provides several ways to evaluate the correctness of a model. The first one is by means of
a state space analysis, which is elaborated on in Section 5.1. In the second part of this section,
simulation experiments are conducted to compare several selection strategies with each other.
Section 5.2 describes the simulation.

108

Fig. 11. Selecting a binding element in CPN Tools 1.4.0

5.1 State space analysis

A state space analysis is an analysis of all possible occurrence paths in the model. Based on the
occurrence graph, containing all occurrence paths, a lot of information on the properties of the
model (and thus on the correctness of the model) can be gained.
To limit the calculation time we have conducted a state space analysis of the model based on a
small example product data model. The Helicopter Pilot example only contains six data elements
and four operations, as was shown in Section 2.1. We have only reported on the state space for
the random selection strategy2 because it covers all the other strategies. CPN Tools calculated a
full state space, containing 157 nodes and 241 arcs, in less than one second. Below, the properties
of the net are discussed based on the generated state space report.

Boundedness properties - The first property that is derived from the state space analysis is
the upper and lower bound for all places of the model. Upper and lower bounds indicate how
many and how few token elements a place can contain, e.g., how many tokens we can have of a
particular color on a particular place instance [8].
The integer upper and lower bounds give an integer number of tokens that are at most, respectively
at least, present in the place. Multi-set upper and lower bounds in addition give information on
the value of the token(s) in the place.
In Table 1 and Table 2, the integer upper and lower bounds and the multi-set upper and lower
bounds of the model are given respectively. For the sake of clarity, the operations in the multi-set
bounds are represented by an abbreviation: (“op1”, a, [b, c], (0, 0)) is denoted by “op1”.
To give an example of an upper multi-set bound we focus on the place selected operation. The upper
bound of this place is the multi-set of all operations in our example, i.e. 1‘(“op1”) + +1‘(“op2”) +
+1‘(“op3”) + +1‘(“op4”). Because of the random selection strategy all operations can be selected
from the list, i.e. for every operation there is a path in the occurrence graph in which the operation
appears in the place selected operation. However, there can never be more than one operation in
the place at the same time.
The tables show that all places have an upper and lower bound. Thus, the net is bounded. This
makes sense because the Helicopter Pilot product data model is represented by a finite list of
operations, from which the elements are taken one by one.
2 To avoid problems with calculating the full state space, the ‘random’ function is replaced by a variable

that denotes the range of the list of operations. Through this variable a random selection can still be
made from the list.

109

Table 1. Integer Bounds Helicopter Pilot Model

Place Upper Integer Bound Lower Integer Bound

Available info elements 1 1
Executable operations 1 1
Not yet executable operations 1 1
Ready for calculation 1 0
Ready for selection 1 0
Selected operation 1 0
Total cost 1 1
Total duration 1 1
Condition not satisfied 1 1
Data element already known 1 1
Operation in execution 1 0
Success 2 2

Table 2. Multi-set Bounds Helicopter Pilot Model

Place Upper Multi-set Bound Lower Multi-set Bound

Available info elements 1‘[(1,0),(2,0),(4,0),(5,0),(6,0)]++
1‘[(1,0),(3,0),(2,0),(4,0),(5,0),(6,0)]++

1‘[(2,0),(4,0),(5,0),(6,0)]++ empty
1‘[(3,0),(2,0),(4,0),(5,0),(6,0)]

Executable operations 1‘[]++1‘[(“op1”),(“op2”)]++
1‘[(“op1”),(“op2”),(“op3”)]++

1‘[(“op1”),(“op3”)]++
1‘[(“op1”),(“op3”),(“op2”)]++

1‘[(“op2”),(“op1”)]++
1‘[(“op2”),(“op1”),(“op3”)]++

1‘[(“op2”),(“op3”)]++
1‘[(“op2”),(“op3”),(“op1”)]++ empty
1‘[(“op2”),(“op3”),(“op4”)]++

1‘[(“op2”),(“op4”)]++
1‘[(“op3”),(“op1”)]++

1‘[(“op3”),(“op1”),(“op2”)]++
1‘[(“op3”),(“op2”)]++

1‘[(“op3”),(“op2”),(“op1”)]++
1‘[(“op3”),(“op4”)]++

1‘[(“op2”),(“op4”),(“op3”)]++
1‘[(“op3”),(“op2”),(“op4”)]++
1‘[(“op3”),(“op4”),(“op2”)]++
1‘[(“op4”),(“op2”),(“op3”)]++
1‘[(“op4”),(“op3”),(“op2”)]++

1‘[(“op4”),(“op2”)]++ 1‘[(“op4”),(“op3”)]
Not yet executable operations 1‘[]++1‘[(“op1”)]++ empty

1‘[(“op1”),(“op2”),(“op3”),(“op4”)]
Ready for calculation 1‘newIE empty
Ready for selection 1‘newIE empty
Selected operation 1‘(“op1”)++1‘(“op2”)++ empty

1‘(“op3”)++1‘(“op4”)
Total cost 1‘0 1‘0
Total duration 1‘0 1‘0
Condition not satisfied 1‘[] 1‘[]
Data element already known 1‘[] 1‘[]
Operation in execution 1‘(“op1”)++1‘(“op2”)++ empty

1‘(“op3”)++1‘(“op4”)
Success 2‘false++2‘true empty

110

Home properties - The existence of home markings in the net is the next property of colored
Petri nets that we discuss. A home marking is a marking to which it is always possible to return
to [8].
In our prototype we consider the fulfilment of the product tree. This is a step-by-step development
of the end product, through the ‘assembly’ of subproducts. In this case, it is not desirable to return
to a previous state, i.e. undo an assembly. Thus, the net should have no home marking(s) and the
state space analysis shows that is indeed the case.

����� �����
	�
 ��� ���
 	��

����� ����� 	�
 ��� ���
 	��

����� ����� ��� �
����������� ����� �
	�
 ��� ���
 	����

� � ��������� ��	�� �����������
����������� ����� � �
 ��� � � 	�
�� ���
��	 � ��� � � ��� 	�

 ��� � ��

����� ����� ��� �!����������� ����� � 	�
 ��� ���
 	����

"#��������� �
	�
 ��� ���
 	��

"#��������� � 	�
 ��� ���
 	��

��	 �%$����%���&���
	�
 ��� ���
 	����

')(�

*�+#
 �
 �
 ��� *#�

* *,+ � � - 	�
 * - ��*#� � . � /� �� ��0 � 0 ����

������
 � ����� �)
 ��1 	
��� � � � � � �

2&"#34�

*�+#
 �
 �
 ��� *#�

*

*�+ � � *#� 0 ��� ��. � 0 ��� ��5 � 0 ��� ��6 � 0 ��� ��7 � 0 ��

������� 	�
 ��� ���
 	����

')(��

�
* *�+ � ��- 	�
 / - ��*8� � 7 � ��0 � 0 � ��� ��- 	�
 5�- � /,� � 6 � 7 � �
0 � 0 ����

� ��� ����� ��9
	�
 ��� ���
 	��

')(

� ����9�$ 1 	 �
����� ����� ���
 	��

:���;<2&"

*,+ � ��;=2&"

* *�+ � ��;=2&"

� ����9�$ 1 	 �
� ��� �����
 	��

:���;=2&"

� 	 � ���
� 	�� �

2&:�>

*�+ 0

* *,+ 0 � 	 � ���
9���� ���
 	��

2&:�>

*�+ 0

* *�+ 0

Fig. 12. State ‘9’ from the state space is a dead marking.

Liveness properties - Liveness denotes that a set of binding elements remains active, i.e. every
transition can become enabled by firing an arbitrary number of transitions [8]. In contrast, a dead
marking is a state of the net in which no transition is enabled.
Our model contains thirty dead markings according to the state space report. These dead markings
are caused by the guard for transition calculate executable operations. The guard not (memb top
ievs) enforces that when the end product is produced, nothing else is allowed to happen. In this

111

case, the tokens in places not yet executable operations and executable operations can not be
removed and form a dead marking.
The state space reports the states of the state space that are dead markings. For instance, state ‘9’
from the state space is a dead marking. By using the ‘SStoSim’ tool in CPNTools we can visualize
this state as is shown in Figure 12. This state indeed is a valid dead marking. The end product
(data element 1) is determined by executing the operation with ID “op2” starting from the initial
marking. Nothing else can happen in the net and there are still operations left in places not yet
executable operations (“op1”) and executable operations (“op3”, “op4”).
Furthermore, the net contains neither dead transition instances, i.e. a transition that never becomes
enabled, nor live transition instances (i.e. a transition that will always get enabled again after
firing).

Fairness properties - Finally, we look at the fairness of this net. Fairness indicates how often
different binding elements occur [8]. The state space analysis report shows that all transitions in
the model are impartial. An impartial transition will fire infinitely often given an arbitrary infinite
occurrence sequence. This means that any infinite occurrence sequence in our model will contain
all transitions infinitely often.
This behavior can be explained by the sequential order of the transitions and the possibility of
failure of the execution of an operation. When the execution of an operation has failed, the loop of
calculation, selection, and execution has to be started over again. An operation can fail infinitely
often (although this is not likely). Therefore infinite occurrence sequences exist in the occurrence
graph. Since all transitions have to occur in a predefined sequential order before the operation can
be executed again all transitions in the model will occur infinitely often in an arbitrary infinite
occurrence sequence.

5.2 Comparison of strategies

The correctness of the model has been shown using state space analysis. Now, we will illustrate
the correct working and results of our model based on a real-life example. The example is taken
from [15,16] and describes the process of a request for social benefits within a Dutch social secu-
rity administration office (‘GAK’). This agency implements the social security legislation in the
Netherlands. On a daily basis, it handles large amounts of requests for unemployment benefits and
occupational disability allowances. Social security laws as well as contracts with employer orga-
nizations impose restrictions on the way these requests are handled. To decide on unemployment
benefits much information is processed. Figure 13 shows the product data model for this case. The
exact meaning of all data elements can be found in the original study [15].
The product data structure of the unemployment benefits case consists of 42 data elements and 33
operations in total. Initially, 18 data elements are available. In [15], the costs for each operation are
given. We have copied them and multiplied them by ten to avoid rounding problems in the CPN
simulation. However, the duration of operations was not indicated in this case study. Therefore,
we have added realistic values for the duration of every operation (see the declaration of the list
of operations in Appendix A.2).

To be able to compare the different strategies of selecting executable operations in this case study,
we have executed several simulation runs for each strategy. A run corresponds to one complete
unfolding of the product tree until the end product is produced and thus gives us one sample of
the total cost and total duration of the process. The data on cost and duration are stored for each
sample. Per strategy we collected 60 samples (n = 60) and constructed 90%-confidence intervals,
according to the formula for a t-distribution3 [9].
In Figure 14 and 15 the confidence intervals are represented. These figures show how much the

value for total cost and total duration may vary given a certain selection strategy. Because most

3 We assume that the population has a normal distribution.

112

37
:

Loss pattern

of labor

hours

47
:

Claimant's

courses

41
:

Earlier

employ-

ment

functions

36
:

Day status

survey of

labor history

42
:

Approved

labor

courses

14
:

Date of

availability

to accept

labor

13
:

Date of lost

right for

payment

34
:

Avg.

number of

labor hours

per week

10
:

Period of

unem-

ployment

Fig. 13. Product data model for the social benefits case

0

20

40

60

80

100

120

Random
 Cost
 Duration
 First

Selection Strategy

T
o

ta
l c

o
st

 o
f

p
ro

ce
ss

Fig. 14. Confidence intervals for total cost

0

5

10

15

20

25

30

35

40

Random
 Cost
 Duration
 First

Selection Strategy

T
o

ta
l d

u
ra

ti
o

n
 o

f
p

ro
ce

ss

Fig. 15. Confidence intervals for total duration

113

of the confidence intervals do not overlap it is possible to draw reliable conclusions from the con-
structed confidence intervals. Some examples of such quantitative conclusions and some qualitative
conclusions as well are:

– The total costs are, for example, minimal in case of a ‘minimal cost’ strategy, followed by a
‘first element from list’ strategy and a ‘random selection’ strategy. The ‘minimal duration’
strategy gives the highest total costs with high variation, i.e. a broad confidence interval,
compared to the other strategies.

– For total duration under different strategies the confidence intervals are less explicit: The
confidence intervals of the strategies of ‘minimal duration’ and ‘first element from list’ selection
do overlap. The figures clearly show that a ‘minimal cost’ strategy leads to a shorter total
duration than a random strategy does. Next, the selection of ‘minimal duration’ and ‘first
element from list’ lead to a shorter total duration than in case of a ‘minimal cost’ strategy.

– The total cost confidence interval under a ‘minimal cost’ selection is only one point (see Figure
14). This can be explained by the nature of the example we are considering. The example
contains many operations that can be executed automatically and which therefore have cost 0.
It is possible to get to the end product by only selecting operations with zero costs. Therefore,
by using a ‘minimal cost’ selection strategy only operations with no costs are selected and we
can get to total costs of zero in each sample. This leads to a confidence interval of only one
point.

– Confidence intervals for selection of the ‘first element from the list’ are small. This makes sense
because in this case every sample starts with (almost) the same sequence of execution. The
only factor that can influence this order is the failure of an execution of an operation which
leads to the ‘skip’ of one operation execution and an extra selection in the end.

The figures show there is no optimal strategy under both optimization criteria. Which strategy
is best therefore depends on the importance of each of the criteria. If costs are important, then
the strategy of selecting operations with minimal costs is best in our example. If flow times are
important, then a minimal duration or first element from list strategy would be best. However,
this simulation example gives a clear idea about the information that can be retrieved using our
prototype.

6 Conclusion

In this paper we have presented a prototype, built in CPN Tools, for modelling a product based
workflow system. This prototype shows how a workflow process can be derived from a product
data model (cf. Bill-of-Material). The core of the prototype is formed by the selection strategy. We
have shown several strategies to select the next step that has to be performed in the process, from
all possible next steps. Note that these strategies only focus on local optimization of the process.
They only consider the operations with, for instance, the lowest cost or shortest duration that are
executable at that point in time. In the end the selection of the local optimal operation can lead
to a suboptimal strategy in terms of overall costs or duration. The prototype provides a way to
qualitatively, and to some extend quantitatively, evaluate these different strategies as is shown by
a real-life example.
The prototype we developed is a generic tool to play with product data models of different cases.
To do so only the initial marking has to be changed by providing different declarations for top,
initial1a, initial1b, initial1c and the function check.

The main goal of this research was to provide more insight in PBWD and the product data
model. During the process of the prototype development we have made some design choices that
gave us a better understanding of the concepts and issues in this area. The first choice we made is
to represent the operations of the product data model by a list of operations instead of a number
of separate tokens. Although the latter would perhaps be the most intuitive way, this raised some
problems implementing the selection strategies. In a CPN model it is not possible to check all

114

tokens present in a place and then select the one satisfying a certain condition. The only solution
to this problem was to put the operations in a list. This issue made us think about operations,
their representation and their relations.
Another choice we made is the strict sequential execution of operations. This point can also be seen
as a limitation to the prototype. It would be more realistic if another operation could already be
calculated, selected and started while the previous operation is still in execution, especially when
execution delays are long. To implement this, extra constructs are needed to make the model work.
For instance, it should be possible to break off an already started execution to avoid duplicate de-
terminations of one data element. Moreover, one has to make sure calculate executable operations
is fired every time a new data element is added to the list of available data elements. For the sake
of understandability and readability we have not incorporated this possibility in the prototype,
because it adds much more complexity to the model. However, this issue made us think of how
to deal with parallel execution and other concepts related to the execution of a product data model.

Furthermore, the user interface of the prototype could be improved by the automatic reading
of a file containing declarations and other information, and a nicer way for user selection. Never-
theless, by this simple prototype we think we have reached our goal for a better understanding of
the product data model and PBWD theory.

Acknowledgements

This research is supported by the Technology Foundation STW, applied science division of NWO
and the technology programme of the Dutch Ministry of Economic Affairs.

References

1. W.M.P. van der Aalst. Designing workflows based on product structures. In: K. Li, S. Olariu, Y. Pan,
I. Stojmenovic (eds.), Proceedings of the ninth IASTED International Conference on Parallel and
Distributed Computing Systems, IASTED/Acta press, Anaheim, pp. 337-342, 1997.

2. W.M.P. van der Aalst. On the automatic generation of workflow processes based on product structures.
Computers in Industry, 39, pp. 97-111, 1999.

3. W.M.P. van der Aalst, H.A. Reijers, S.Limam. Product-based workflow design. In: W. Shen, Z. Lin,
J.P. Barthes, M. Kamel (eds.). Proceedings of the sixth international conference on CSCW in design.
Ottawa: Research Press, pp. 397-402, 2001.

4. CPN Tools home page and manual at http://wiki.daimi.au.dk/cpntools/cpntools.wiki. University of
Aarhus, Denmark, 2005.

5. A.A. Desrochers, R.Y. Al-Jaar. Applications of Petri Nets in Manufacturing Systems: Modeling, Con-
trol, and Performance Analysis. IEEE Press, 1995.

6. F. Erens, A. MacKay, R. Sulonen. Product modelling using multiple levels of abstraction - instances
and types. Computers in Industry, 24 (1), pp. 17-28, 1994.

7. H.M.H. Hegge. Intelligent product family descriptions for business applications. PhD Thesis, Eind-
hoven University of Technology, Eindhoven, 1995.

8. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Volume 1, 2
and 3. Springer-Verlag, 1992.

9. D.C. Montgomery, G.C. Runger. Applied Statistics and Probability for Engineers. John Wiley & sons,
2nd edition, 1999.

10. M. Netjes, I.T.P. Vanderfeesten, H.A. Reijers. “Intelligent” software tools for workflow process re-
design: a research agenda. Proceedings of the first international workshop on Business Process Design
(BPD‘05), Nancy, September 2005 (accepted).

11. A. Orlicky. Structuring the Bill of Materials for MRP. Production and Inventory Management, de-
cember, 1972, pp. 19-42.

12. E.A.H. Platier. A Logistical View on Business Processes: Concepts for Business Process Redesign and
Workflow Management. PhD thesis, Eindhoven University of Technology, Eindhoven, 1996. (in Dutch)

13. J.M. Proth, X. Xie. Petri Nets, A Tool for Design and Management of Manufacturing Systems. Wiley,
1996.

115

14. L. Recalde, M. Silva, J. Ezpeleta, E. Teruel. Petri Nets in Manufacturing Systems: An Examples-
Driven Tour. In: J. Desel, W. Reisig, and G. Rozenberg (eds.), ACPN 2003, LNCS 3098, pp. 742-788.
Springer-Verlag, Berlin, 2004.

15. H.A. Reijers. Design and Control of Workflow Processes: Business Process Management for the Service
Industry. Lecture Notes in Computer Science 2617. Springer-Verlag, Berlin, 2003.

16. H.A. Reijers, S. Limam, W.M.P. van der Aalst. Product-Based Workflow Design. Journal of Manage-
ment Information Systems, 20(1): pp. 229-262, 2003.

17. H.A. Reijers, I.T.P. Vanderfeesten. Cohesion and Coupling Metrics for Workflow Process Design. Pro-
ceedings of the 2nd International Conference on Business Process Management, pp. 290-305, Potsdam,
2004.

18. J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1993.
19. E.A. van Veen. Modelling Product Structures by Generic Bills-of-Material. PhD Thesis, Eindhoven

University of Technology, 1990.
20. E.A. van Veen, J.C. Wortmann. Generative bill of material processing systems. Production Planning

and Control 3 (3), pp. 314-326.
21. M. Zhou, K. Venkatesh. Modeling, Simulation, and Control of Flexible Manufacturing Systems: A

Petri Net Approach. World Scientific, Londen, 1999.

A Declarations

In this appendix the color, variable and function declarations of the CPN model are listed in ML
language [18]. It contains values that belong to the ‘GAK’-case, which we used for simulation.

A.1 color declarations

color IE = INT; color IEVS = list IEV;
color ID = STRING; color DURATION = INT;
color NewIE = with newIE; color COST = INT;
color VAL = INT; color ATTR = product DURATION*COST;
color IEV = product IE*VAL; color OP = product ID*IE*IES*ATTR timed;
color IES = list IE; color OPS = list OP;

A.2 variable declarations

var out: IE; var exec, nonexec:OPS;
var ins : IES; var id:ID;
var attr:ATTR; var dur: DURATION;
var cost: COST; var ope:OP;
var ops,ops2,ops3,ops4: OPS; var ievs:IEVS;
var success,success2: BOOL; var number:INT;

(* ‘top’ is the end product of the workflow process*)
val top=18;
(*value initial1a contains all operations from the product data model, including
their ID, output element, input elements, and duration and cost attributes*)
val initial1a =[("op1", 1,[25,37],(1,0)),("op2", 2,[25,37],(1,0)),

("op3", 3,[33,37],(1,0)),("op4", 4,[33,37],(1,0)),
("op5", 5,[37,45],(2,0)),("op6", 6,[21,37],(1,0)),
("op7", 7,[24,37],(1,0)),("op8", 8,[23,37],(1,0)),
("op9", 9,[24,39],(5,0)),("op10", 10,[13,14,34,37,42],(5,0)),
("op11", 11,[31],(1,6)),("op12", 15,[16],(1,0)),
("op13", 15,[17],(1,0)),("op14", 15,[16,17],(2,0)),
("op15", 16,[25,30,35,36,44],(8,56)),
("op16", 17,[25,30],(1,0)),("op17", 18,[1],(0,0)),

116

("op18", 18,[2],(0,0)),("op19", 18,[8],(0,0)),
("op20", 18,[9],(0,0)),("op21", 18,[10],(0,0)),
("op22", 18,[11],(0,0)),("op23", 18,[15],(0,0)),
("op24", 18,[9,11,15],(0,0)),("op25", 28,[25,37],(1,0)),
("op26", 29,[25,30,35,36],(9,0)),
("op27", 30,[32,37,43],(4,0)),("op28", 31,[29,40,48],(7,0)),
("op29", 32,[1,2,3,4,5,6,7,8,10,27,28],(20,0)),
("op30", 34,[36,37,41],(1,42)),("op31", 40,[39,41],(0,3)),
("op32", 42,[47],(1,3)),("op33", 43,[39,49],(3,6))]

(*value initial1b contains all initially available data elements with their
corresponding value*)
val initial1b =[(13,0),(14,1),(21,1),(23,0),(24,3),(25,2),(27,0),(33,2),(35,1),

(36,3),(37,1),(39,2),(41,0),(44,3),(45,2),(47,1),(48,0),(49,2)]
(*value initial1c contains a token with the operation ID for every operation
from the product data model*)
val initial1c = 1‘"op1" ++ 1‘"op2" ++ 1‘"op3" ++ 1‘"op4" ++ 1‘"op5" ++ 1‘"op6"

++ 1‘"op7" ++ 1‘"op8" ++ 1‘"op9" ++ 1‘"op10" ++ 1‘"op11"
++ 1‘"op12" ++ 1‘"op13" ++ 1‘"op14" ++ 1‘"op15" ++ 1‘"op16"
++ 1‘"op17" ++ 1‘"op18" ++ 1‘"op19" ++ 1‘"op20" ++ 1‘"op21"
++ 1‘"op22" ++ 1‘"op23" ++ 1‘"op24" ++ 1‘"op25" ++ 1‘"op26"
++ 1‘"op27" ++ 1‘"op28" ++ 1‘"op29" ++ 1‘"op30" ++ 1‘"op31"
++ 1‘"op32" ++ 1‘"op33";

A.3 function declarations

(*memb checks whether x is an element of the list l*)
fun memb x l = List.exists (fn (y,_)=>(y=x)) l;

(*membs checks whether all elements of the first list are elements of the
second list*)
fun membs l1 l2 = List.all (fn x => memb x l2) l1;

(*divides the list ops into those operations that are ready for execution and
those that are not; it returns a pair of lists*)
fun executable (ievs:IEVS, ops:OPS) =
List.partition (fn (_,_,ies’,_) => (membs ies’ ievs)) ops;

(*returns a list containing the elements of list ops of which the output element
and its value already are a member of list ievs*)
fun already_calculated(ops,ievs) =
List.filter (fn (_,ie,_,_) => memb ie ievs) ops;

(*returns a list containing the elements of list ops of which the output element
and its value is not a member of list ievs*)
fun not_yet_calculated(ops,ievs) =
List.filter(fn (_,ie,_,_) => not(memb ie ievs)) ops;

(*returns the value of data element ie*)
fun get_value (ie:IE, (ie2,v)::ievs) =
if ie=ie2 then v else get_value(ie,ievs)
| get_value(ie:IE, []) = 0;

(*checks for operation with ID id, whether condition for execution is satisfied*)

117

fun check(id:ID, ievs:IEVS) =
case id of
"op12" => ((get_value(16,ievs))>8)
|"op13" => ((get_value(17,ievs))<23)
|"op17" => false
|"op19" => false
|"op20" => ((get_value(9,ievs))<0)
|"op22" => ((get_value(11,ievs))<0)
|"op23" => ((get_value(15,ievs))<0)
| _ => true;

(*returns a list containing those elements of ops that don’t satisfy the
condition for execution*)
fun cond_not_satisfied(ops,ievs) =
List.filter (fn (id,_,_,_)=> not(check(id,ievs))) ops;

(*returns a list containing those elements of ops that satisfy the condition
of execution*)
fun cond_satisfied(ops,ievs) =
List.filter (fn (id,_,_,_) => (check(id,ievs))) ops;

(*calculates the value for the newly produced data element by adding the values
of the input elements when the input set contains two or more elements and by
changing the sign in front of the value when the input set contains only a
single element*)
fun calculation(one::two::ins, ievs:IEVS) =
get_value(one, ievs) + get_value(two,ievs) + calculation(ins, ievs)
| calculation([one], ievs) = ~(get_value(one,ievs))
| calculation([], ievs) = 0;

(*deletes element op1 from list ops*)
fun delete(ops, op1) = List.filter (fn ope => (ope<>op1)) ops

(* returns the cost of an operation *)
fun Cost((id,out,ins,(dur,cost)):OP) = cost;

(* returns the duration of an operation *)
fun Dur((id,out,ins,(dur,cost)):OP) = dur;

(* returns the operation ope for which Val(ope) is minimal,fails if it is
called with an empty list *)
fun SelMin Val (op1::op2::tail) = if Val(op1) < Val(op2)

then (SelMin Val (op1::tail)) else (SelMin Val (op2::tail))
| SelMin Val (op1::[]) = op1
| SelMin Val ([]) = raise Match;

(* Selects an arbitrary element from the list l *)
fun select_random(l) = List.nth (l,discrete(0,(List.length l)-1))

(* returns ID of an operation *)
fun ID((id,out,ins,(dur,cost)):OP)= id;

(* returns element with ID id from list ops *)
fun select_ID ops id = hd(List.filter (fn ope => (ID(ope) = id)) ops);

118

Building and Deploying Visualizations of
Coloured Petri Net Models Using

BRITNeY Animation and CPN Tools

Michael Westergaard and Kristian Bisgaard Lassen

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

Email: {mw,k.b.lassen}@daimi.au.dk

Abstract. The contribution of this paper is a tutorial in the use of
BRITNeY animation tool together with CPN Tools to make different
views on Coloured Petri Nets. Examples of such views are message-
sequence charts, gantt-charts, or SceneBeans animations showing the
state of the model. In this paper we will describe how to generate message-
sequence charts from executions of Coloured Petri Nets and how to create
SceneBeans animations.

Keywords: Model-driven prototyping; visualization; Coloured Petri nets;
CPN Tools.

1 Introduction

Formal models have proved their usefulness in modeling and understanding of
complex systems [2,12,14,18], e.g., for verification of existing behavior or require-
ments engineering of needed behavior. However, when using a formal model such
as Colored Petri nets (CP-nets or CPN) [8,11], it is only people familiar with the
formalism who are truly able to understand the model of the system. A domain-
user may understand the formalism used but is not capable, as the expert, to
fully understand the model. Therefore formal models of systems are prone to
be erroneous if they can not be fully understood and validated by a user with
domain knowledge.

In this paper we present the tool BRITNeY1 animation [23] which introduce
an animation layer for CPNs. By using BRITNeY animation to animate CP-nets
of systems the above problems of formal methods, being hard to understand,
is alleviated. BRITNeY animation provides a uniform way to implement, inte-
grate, and deploy visualizations of CPN models and has a pluggable architecture
which make it possible to write customized plug-ins to animate the model but
it also have more than a dozen predefined plug-ins for message sequence charts,
SceneBeans [16, 19], plot different kinds of graphs and more. BRITNeY anima-
tion has already been used successfully to animate a network protocol [13] and

1 Originally an abbreviation for Basic Real-time Interactive Tools for Net-based ani-
mation.

119

to animate the work flow of a bank work process for the purpose of requirements
engineering [9].

We will describe methods to develop an animation on top of a CPN model
by using an example of two runners. We describe the methods at the level where
it is possible to replicate our example and use the methods in other projects.

The paper is structured as follows: In Sect. 2 we give a short overview of the
architecture of the BRITNeY animation package. In Sect. 3 we briefly describe
the example used throughout the paper, and go on to describe how to visualize
the execution of the model using message sequence charts and a graphical ani-
mation. In Sect. 4 we mention related work and outline some of the planned new
features of BRITNeY animation.

2 Architectural Overview

A well-known design pattern from object oriented software, is the model-view-
controller (MVC) design pattern [5]. In the MVC design pattern, three partic-
ipants collaborate to provide the implementation of an application, namely a
model, a view, and a controller, see Fig. 1. The model models the state of the
system, the view is a (graphical) representation of the current state of the model,
and the controller implements the behavior of the system. The view may initiate
actions in the controller.

invokes

ModelController View
changes

alerts

observes

Fig. 1. Architectural overview of the model-view-controller design pattern.

The idea behind the BRITNeY animation package is to use a CPN model to
model the state and behavior of the system (the model and controller), and use
BRITNeY animation to model the view of the system. For more information on
the architecture of BRITNeY animation, please refer to [22, Chap. 4].

120

3 Building Visualizations

In this section we will describe how to create two different graphical views of
a CPN model. In Sect. 3.1, we give a brief description of how to work with
the animation tools and the CPN model that will be visualized. In Sect. 3.2 we
will describe the model we intend to create views of. In Sect. 3.3, we will show
how to generate message sequence charts from the execution and finally in Sect.
3.4, we will describe how to create a domain specific animation. We will assume
the reader knows CPN Tools, but we assume no prior knowledge of BRITNeY
animation.

3.1 Working with BRITNeY

The animation tool can be obtained from the home-page [23] either as a down-
loadable version or as a Java Webstart [7] application.

In order to design animations that are easy to deploy, a certain design pattern
must be used when adding animation to your model. The main idea of the design
pattern is to add an init-transition, which is the only transition enabled in the
initial step. All initialization of the animation can then be done in the action
part of this transition. The reason we need to do this is that we will need to set
up the animation for each simulation, but for efficiency, declarations are only
evaluated once in CPN Tools. An overview of the points we have to go through
is in Listing 1.1. In rest of this section, we will describe and exemplify each of
these points in more detail.

Listing 1.1. The steps required to create an animation from an existing CPN-
model.

1. Add declarations of structures for each animation plug-in you will need
2. Add an init-transition
3. Add code needed to set up the animation in an action part on the init-

transition
4. Tie the execution of the model to the animation using action parts
5. (Optionally) deploy your animation on the web

3.2 Model

In this paper we will use a simple example to show the different aspects of
animating a CP-net. In the example, two runners are competing to win a race.
Initially the runners are at the start of the race, and they can then continue to
the end of the race. During the race, the runners pass a drink stand. When the
first runner passes the finish-line, he is declared the winner of the race, and a
flag is lowered to celebrate. When the other runner crosses the finish-line, he is
declared the loser of the race.

The CPN model in Fig. 2 captures the behavior of the example. In the CP-
net, the two runners are modeled by tokens runner(1) and runner(2), both initially

121

S t a r tR U N N E R1 ` r u n n e r (1) + +1 ` r u n n e r (2) D r i n kS t a n dR U N N E R
W i n n e rR U N N E R

L o s e rR U N N E R
F l a gF L A Gd o w nr u n w i n

l o s ex x x x d o w nx x u pu pu p
Fig. 2. CPN model of runner example.

placed on the Start-place. And the Flag is up. The run-transition moves the token
representing a runner from the Start-place to the Drink Stand-place. When the
flag is up, a runner-token on the Drink Stand-place is moved to the Winner-place
and the flag is moved down by the win-transition. When the flag is down, the lose
transition moved runner-tokens from the Drink Stand-place to the Loser-place.

3.3 Message-Sequence Charts

Message sequence charts (MSC) are well-known to protocol engineers, and it is
therefore a good idea to be able to present the execution of a CPN model as an
MSC. Using BRITNeY animation, it is very easy to create MSCs from CP-net
executions. In this section, we will describe the process of adding an animation
view to your model using MSCs as example. An example of an MSC that is
generated from the model can be seen in Fig. 3.

The main points of this section are presented in the listings, which can later
be followed in order to add animation to another CPN-model.

BRITNeY animation has a pluggable structure, meaning it can support dif-
ferent animation plug-ins. Out of the box, BRITNeY animation supports more
than 10 different plug-ins. In order to be able to use an animation plug-in in
our model, we must set up a connection to it using a declaration (as we would
normally do in CPN Tools to declare a color-set or a CPN-variable). An example
of a declaration of a connection to an animation plug-in can be seen in Listing
1.2. Here we declare a new connection called msc to an MSC animation plug-in.
We initialize the animation plug-in with a user-friendly name, which will dis-
played to the user, namely Runners. All declarations of connections to animation
objects are of this kind. We can interchange MSC with the name of the desired
animation plug-in, we can use any identifier instead of msc, and we can give any
string as the user-friendly name instead of Runners. The operations supported
by the MSC animation plug-in can be seen in Listing 1.3. The plug-in allows

122

Fig. 3. Example of an MSC generated by the model in Fig. 2

us to create processes, create events between 2 processes and to create internal
events inside a single process. A more detailed description of the MSC animation
plug-in interface along with documentation of all animation plug-ins can be seen
on the BRITNeY animation home-page [23].

Listing 1.2. The declaration of a structure that can be used to communicate
with the animation plug-in for drawing MSCs.

1 structure msc = MSC(val name = "Runners");

Listing 1.3. The interface of the MSC animation plug-in.

1 void addProcess(String name)
2 void addEvent(String from, String to, String name)
3 void addInternalEvent(String process, String name)

The next step is to create an init-transition, a new transition that is always
executed before all other transitions, while allowing the rest of the execution of
the model to proceed as before adding the init-transition. One way to do this is
outlined in Listing 1.4. Concrete examples of the application of this procedure
can be seen by comparing the net in Fig. 2 with the nets in Figs. 4 and 6 where
init-transitions have been added at the top left.

Listing 1.4. Adding an init-transition.

1. Create a transition named init
2. Create a place named Not inited of type UNIT with initial marking ()
3. Create a place named Inited of type UNIT with no initial marking

123

4. Create an arc from the Not inited-place to the init-transition with inscription
() and an arc from the init-transition to the Inited-place

5. (If you have a hierarchical model) add copies of the Not inited-place on all
pages, and fuse all together in a single fusion-set

6. Create a double-arc2 with inscription () between the Inited-place and all
transitions enabled in the inital step (except for the init-transition)

When we have created an init-transition, we need to add our initialization
code in the action part of the init-transition. In our case, we will create 5 processes
in the MSC, one for each of the places. The action part of the init-transition can
be seen in Listing 1.5. Here we simply make 5 calls to the MSC animation plug-in,
each call creating a new process.

Listing 1.5. The action part used to set up the animation.

1 INPUT ();
2 OUTPUT ();
3 ACTION
4 msc.addProcess("Start");
5 msc.addProcess("DrinkStand");
6 msc.addProcess("Winner");
7 msc.addProcess("Loser");
8 msc.addProcess("Flag")

Now, we have set up the entire animation and only need to update it during
the animation. This is currently done by adding action parts to the model. In
this example, we will create an action part for each of the transitions, which
adds events to the MSC. For example, the action part for the run-transition can
be seen in Listing 1.6. Whenever the run-transition occurs, an event is added
from the Start process to the DrinkStand process, with a label describing which
runner moved from the start of the race to the drink stand. Similar action parts
are added to the other transitions.

Listing 1.6. The action part of the run-transition which updates the animation.

1 INPUT x;
2 OUTPUT ();
3 ACTION
4 msc.addEvent("Start", "DrinkStand", RUNNER.mkstr x)

The net we obtain after adding an init-transition, set-up code and action
parts to all transitions can be seen in Fig. 4. The changes created to the original
model from Fig. 2 are highlighted.
2 CPN Tools uses interleaving semantics for simulation. In tools using partial order

semantics, we would use a test-arc rather than a double-arc to preserve the semantics
of the model.

124

S t a r tR U N N E R1 ` r u n n e r (1) + +1 ` r u n n e r (2) D r i n kS t a n dR U N N E R
W i n n e rR U N N E R

L o s e rR U N N E R
F l a gF L A Gd o w nI n i t e d U N I TN o t i n i t e dU N I T()

r u ni n p u t x ;o u t p u t () ;a c t i o nm s c . a d d E v e n t (" S t a r t " ," D r i n k S t a n d " ,R U N N E R . m k s t r x)
w i n

i n p u t x ;o u t p u t () ;a c t i o nm s c . a d d E v e n t (" D r i n k S t a n d " ," W i n n e r " ,R U N N E R . m k s t r x) ;m s c . a d d I n t e r n a l E v e n t (" F l a g " , " d o w n ")
l o s ei n p u t x ;o u t p u t () ;a c t i o nm s c . a d d E v e n t (" D r i n k S t a n d " ," L o s e r " ,R U N N E R . m k s t r x)

i n i t
i n p u t () ;o u t p u t () ;a c t i o nm s c . a d d P r o c e s s (" S t a r t ") ;m s c . a d d P r o c e s s (" D r i n k S t a n d ") ;m s c . a d d P r o c e s s (" W i n n e r ") ;m s c . a d d P r o c e s s (" L o s e r ") ;m s c . a d d P r o c e s s (" F l a g ")

x x x xu p d o w nx x u pu p
() ()()

Fig. 4. CPN model of runner example which is able to generate an MSC of the execu-
tion.

We can now simulate the model in CPN Tools, and will notice that the
animation is updated. We can also quit CPN Tools, and just simulate the model
in BRITNeY animation. We will no longer be able to see how the model is
updated, but we are still able to see that the animation is updated. If we want
to see how the model is updated, the easiest way to deploy the animation is to
simply require that users have CPN Tools and BRITNeY animation installed,
and distribute the model saved by CPN Tools.

If we want to distribute a prototype to several users, who have little or
no knowledge of CP-nets, we have an easier option, however. We can combine
BRITNeY animation’s ability to dump a simulator for a net with BRITNeY an-
imation’s powerful scripting engine and Java Webstart to deploy a visualization
of a CP-net that can be started by clicking on a single link on a web-page. The
steps we have to go through are outlined in Listing 1.7. We basically have to
dump a simulator for our net, create a script to load a simulator and create a
webstart loader for our simulator.

125

Listing 1.7. How to deploy a visualization of a CPN model.

1. Save a simulator for your net
2. Create a script to load and start your simulator
3. Download the offline version of BRITNeY animation
4. Modify webstart/britney.jnlp to suit your needs
5. Copy the files to a web-server

Saving a simulator for your net is easy:

Listing 1.8. Saving a simulator for a CP-net.

1. Load your net in CPN Tools
2. Ensure you are at the initial state
3. In BRITNeY animation find the simulator console corresponding to your net
4. Right click on the background of the simulator console
5. Select “Save simulator as” from the marking menu
6. Select a suitable name and location for the simulator

Now we need to create a script to load our simulator. BRITNeY allows us
to create scripts using the full power of Java (but a more relaxed syntax if we
desire so). We shall not go into detail about the scripting facilities, but just
mention that we have access to an object, SimulatorService, which takes care of
starting CPN simulators. A simple script to start a simulator can be seen in
Listing 1.9. The first two lines of the script downloads and loads a simulator
from the location http://www.daimi.au.dk/~mw/local/tincpn/simulator.
x86-win32. You will obviously need to change the location of the simulator.
The resulting simulator is very low-level, and only used to construct a more
high-level simulator. Line 3 of the script obtains this high-level simulator. One
feature of the high-level simulator is the ability to simulate nets. In line 4 of the
script, we start a new simulation of 10 steps in 1 step increments. We pause for
1000 ms after each simulation step and we show a progress-bar at the bottom of
the tool. You will probably need to adjust these parameters, at least the total
number of steps and the amount of time to pause. Save the script as something
reasonable at the same location you saved your simulator.

Listing 1.9. A simple script to download and start a simulator.

1 s = SimulatorService.getNewSimulator(
2 new java.net.URL("http://www.daimi.au.dk/~mw/local/tincpn/sim.x86-win32"));
3 hs = s.getHighLevelSimulator();
4 hs.startSimulation(10, 1, 1000, true);

The offline version of BRITNeY animation can be obtained from the home-
page [23], and when you unzip the archive, you will find three jar-files and a
number of directories. You should edit the file webstart/britney.jnlp. You
need to make the changes:

126

Listing 1.10. Changes to make to webstart/britney.jnlp.

1. Change http://www.daimi.au.dk/~mw/local/tincpn/ to location you in-
tend to deploy your visualization everywhere in the file

2. Uncomment the line containing “¡property name=”tincpn.script.load”. . . .”
3. Change the location of the configuration script to the location you intend to

store your configuration script
4. (Optionally, for experienced users only) remove any plug-ins, you do not

need

Finally you need to copy the files to your web-server. The files, you will need
are:

Listing 1.11. The files you need to make available to deploy an animation.

1. All files and directories from the offline version of BRITNeY animation
2. Your edited copy of britney.jnlp (should live at the top with britney.jar)
3. Your configuration script
4. Your simulator

Now you can simply point your users to the location of britney.jnlp on your
web-server. A nice way to do that is to create a web-page with some information
about the visualization and some use-scenarios and link to britney.jnlp from
that page.

3.4 SceneBeans Animation

Fig. 5. Animation of runner example.

This section describes how to build a SceneBeans animation. We will reuse
our example and show two runners go from start to finish crossing the drink
stand on the way. Fig. 5 shows a snapshot of the animation.

127

We describe the process by incrementally changing our CP-net from Fig. 2
and a SceneBeans XML description to achieve our goal. We will use the procedure
from Listing 1.1, which we used to create an MSC view of the model.

The first thing that needs to be done is to set up a connection to the
SceneBeans animation plug-in in BRITNeY. This is done using the declaration
as in Listing 1.12.

Listing 1.12. The declaration of a structure that can be used to communicate
with the animation plug-in for SceneBeans.

1 structure runners = SceneBeans(val name = "Runners")

Listing 1.13 shows the interface accessible through the structure.

Listing 1.13. The interface of the SceneBeans animation plug-in.

1 String getNextEvent()
2 boolean hasMoreEvents()
3 void invokeCommand(String name)
4 String peekNextEvent()
5 void setAnimation(String filename)

We then need to create an initialization transition as described in Listing
1.4.

SceneBeans descriptions are written in an XML file. To specify the location of
this XML file use the expression as in Listing 1.14 on the initialization transition,
as in Fig. 6.

Listing 1.14. Setting the location of the SceneBeans specification.

1 runners.setAnimation "path-to-XML-file"

In Listing 1.14 the path-to-XML-file can e.g. be c:/animation.xml. When the
simulator has evaluated the expression, BRITNeY animation shows the anima-
tion as it will look before any behavior is executed.

We tie the CP-net to the animation by specifying in code segments what
should happen when a transition occurs. In Fig. 6 we have annotated our example
net with the needed code segments.

The two functions which are called in the code segments have similar defi-
nitions. In the following we will only look at the runToDrinkStand function and
how it is hooked up to the animation. The function is defined as:

128

x x x xd o w n u px x d o w nd o w n
() () ()r u ni n p u t (x) ;o u t p u t () ;a c t i o nr u n T o D r i n k S t a n d x ;

w i ni n p u t (x) ;o u t p u t () ;a c t i o nr u n T o F i n i s h x ;
l o s ei n p u t (x) ;o u t p u t () ;a c t i o nr u n T o F i n i s h x ;

i n i ti n p u t () ;o u t p u t () ;a c t i o nr u n n e r s . s e t A n i m a t i o n" c : / a n i m a t i o n . x m l " ;
S t a r tR U N N E R1 ` r u n n e r (1) + +1 ` r u n n e r (2) D r i n kS t a n dR U N N E R

W i n n e rR U N N E R
L o s e rR U N N E R

F l a gF L A Gu pN o t i n i t e dU N I T() I n i t e d U N I T
Fig. 6. Runner CP-net annotated for the SceneBeans animation.

1 fun runToDrinkStand x =
2 let val _ = if x = r(1)
3 then runners.invokeCommand "runToDrinkStand-r(1)"
4 else runners.invokeCommand "runToDrinkStand-r(2)"
5 val _ = runners.waitForEvent "command-executed"
6 in ()
7 done

Two things are worth to notice in this function. Firstly, we use the function
invokeCommand to execute a predefined command in SceneBeans; this is executed
asynchronously. Secondly, we use the function waitForEvent to wait for a named
event; in our case the event command-executed. The reason for why not just
use invokeCommand is that it is executed asynchronously, so a situation could
occur where two behaviors are executed concurrently. This might be the wanted
behavior in some cases but not in our example.

We have now finished in adapting our CP-net to the SceneBeans animation.
The final thing that needs to be done is to specify the commands in SceneBeans
which we called from our CP-net. The XML code for this animation can be seen
in Listing 1.15. For the purpose of this tutorial it is not important to read and
understand the code. It is included for the reader to see the connection between
the CP-net and the SceneBeans specification.

129

Listing 1.15. SceneBeans Specification of the Runners

1 <animation height="150" width="400">
2 <forall var="i" values="1 2">
3 <behaviour algorithm="move" event="command-executed"
4 id="runToDrinkStand-r(${i})">
5 <param name="from" value="10"/>
6 <param name="to" value="150 + 30 * ${i}"/>
7 <param name="duration" value="1"/>
8 </behaviour>
9 <event event="command-executed" object="runToDrinkStand-r(${i})">

10 <announce event="command-executed"/>
11 </event>
12 <behaviour algorithm="move" event="command-executed"
13 id="runToFinish-r(${i})">
14 <param name="from" value="150 + 30 * ${i}"/>
15 <param name="to" value="340 + 10 * ${i}"/>
16 <param name="duration" value="1"/>
17 </behaviour>
18 <event event="command-executed" object="runToFinish-r(${i})">
19 <announce event="command-executed"/>
20 </event>
21 <command name="runToDrinkStand-r(${i})">
22 <reset behaviour="runToDrinkStand-r(${i})"/>
23 <start behaviour="runToDrinkStand-r(${i})"/>
24 </command>
25 <command name="runToFinish-r(${i})">
26 <reset behaviour="runToFinish-r(${i})"/>
27 <start behaviour="runToFinish-r(${i})"/>
28 </command>
29 </forall>
30 <draw>
31 <forall var="i" values="1 2">
32 <transform type="translate">
33 <param name="translation" value="(0,50)"/>
34 <animate behaviour="runToDrinkStand-r(${i})" param="x"/>
35 <animate behaviour="runToFinish-r(${i})" param="x"/>
36 <transform type="scale">
37 <param name="x" value="0.4"/>
38 <param name="y" value=".4"/>
39 <primitive type="sprite">
40 <param name="src"
41 value="file:///c:/Runners/runner-${i}.gif"/>
42 </primitive>
43 </transform>

130

44 </transform>
45 </forall>
46 <transform type="translate">
47 <param name="translation" value="(150,10)"/>
48 <transform type="scale">
49 <param name="x" value="0.4"/>
50 <param name="y" value=".4"/>
51 <transform type="scale">
52 <param name="y" value="0.9"/>
53 <primitive type="sprite">
54 <param name="src"
55 value="file:///c:/Runners/drink-stand.jpg"/>
56 </primitive>
57 </transform>
58 </transform>
59 </transform>
60 <transform type="translate">
61 <param name="translation" value="(10,50)"/>
62 <transform type="scale">
63 <param name="x" value="0.4"/>
64 <param name="y" value=".4"/>
65 <primitive type="sprite">
66 <param name="src"
67 value="file:///c:/Runners/start.JPG"/>
68 </primitive>
69 </transform>
70 </transform>
71 <transform type="translate">
72 <param name="translation" value="(350,50)"/>
73 <transform type="scale">
74 <param name="x" value="0.4"/>
75 <param name="y" value=".4"/>
76 <primitive type="sprite">
77 <param name="src"
78 value="file:///c:/Runners/stop.JPG"/>
79 </primitive>
80 </transform>
81 </transform>
82 </draw>
83 </animation>

Lines 3-8 and 12-17 in the XML file describe the behaviors that exist in the
animation; i.e. both runners can run from start to the drink stand and from
the drink stand to finish. Lines 9-11 and 18-20 describes that events will be
generated after each behavior is executed; e.g. after runner one goes from start
to the drink stand an event is generated saying that the behavior has completed

131

to signal to the CP-net it can proceed on simulating. Lines 21-28 specify the
commands which can be executed on our SceneBeans; i.e. the commands we call
from the CP-net, e.g., runToDrinkStand-r(1). Lines 30-82 describes the figures
that is in the animation; i.e. the two runners, start and finish signs and the
drink stand. Also, this part describes how the figures are related to the defined
behaviors; i.e. runner number one have the two behaviors runToDrinkStand-r(1)
and runToFinish-r(1).

Fig. 7. SceneBeans XML editor.

The actual SceneBeans animation can be built in SClub, which is an extended
version of BRITNeY animation, which provides, among other things, an XML
editor for specifying SceneBeans animations. This editor interprets the XML file
while it is being constructed so it is possible to preview the animation and test

132

commands as you go along. Figure 7 shows the runners animation being built
and tested. In the figure you can see that the editor is aware of which constructs
to suggest depending on the context of position of the cursor. Also, you can see
the defined commands and events. These can be executed by double-clicking on
them.

This is all that is needed to make a simple animation using the SceneBeans
plug-in. Obviously, this is a very small example but the techniques used to make
this animation are well suited for large scale animations.

4 Related Work and Future Improvements

BRITNeY animation supports adding animations to CPN models by annotat-
ing transitions with function calls, which are executed whenever the transition
occurs. In the following, we outline how a number of other modeling tools allow
users to use visualization.

ExSpect [20], a tool for modeling based on CP-nets, allows the user to view
the state by associating widgets with the state of the model, and asynchronously
interact with the model, also using simple widgets. In this way, it is easy to
create simple user interfaces that support displaying information, but support
for creating more elaborate animations is not easily available.

Mimic/CPN [17] makes it possible to animate models within Design/CPN
[1, 3], which is another tool for modeling using CP-nets. CPN models are an-
imated by Mimic/CPN by using function calls that are executed whenever a
transition of the CP-net occurs. The animations are drawn using an application
that resembles traditional drawing programs. Input from the user is possible by
showing a modal dialog, where the simulation of the model is stopped while
the user is expected to input information. It is also possible to make click-able
regions, and the model can then query if one of these has been clicked.

LTSA [15], a tool for modeling using timed labeled transition systems, allows
users to animate models using the SceneBeans library [16, 19]. In LTSA anima-
tions are tied to the models by associating each animation activity with a clock;
resetting a clock corresponds to starting an animation sequence. The animation
sequence or a user with his mouse can then send events which correspond to the
progress of the timer.

Another approach, taken by e.g. the Comms/CPN [4] library for Design/CPN
and CPN Tools, is to provide a TCP/IP abstraction, allowing the user to code
the user interface in any language and use RPC to communicate with it. This
approach resembles creating real programs quite a lot, but the user has to go
through the hassle of implementing RPC himself, making this approach difficult
to use in practice.

PNVis [10] is an add-on for the Petri Net Kernel [21], a highly modular tool
for editing Petri nets. PNVis associates tokens with 3D objects and certain places
with locations in a 3D world. Moving tokens corresponds to moving the associ-
ated object in the 3D world. PNVis is suitable for modeling physical systems,
but not really useful for creating prototypes of software.

133

The Play-Engine [6] supports the developer in implementing a prototype by
inputting scenarios (play-in) via an application-specific GUI, and then executes
the resulting program (play-out). This makes the model implicit as the model
is created indirectly via the input scenarios. In a sense, we create a prototype
via direct manipulation, but as the model of the system is created indirectly via
the input scenarios it may be difficult to use the model for analysis and as basis
for implementation of the final system. The reason is that an implicitly created
model is difficult to interpret as it is automatically generated.

We have mentioned a number of libraries, all of which support animation in
different ways. Using some libraries, animation is integrated with the modeling
formalism, such as the use of timers in LTSA or the ability to view or change
the marking of places in ExSpect. Some libraries are easy to extend, such as
animations in LTSA, as the SceneBeans library allows users to easily extend it
with new animation primitives. Also, animations created using Comms/CPN
can easily be extended, as the “animation” is just a custom (Java) application.
Some libraries make it easy to design animations, such as ExSpect and Mim-
ic/CPN, which both provide a graphical user interface to design animations.

The approach of the current version of BRITNeY animation resembles a com-
bination of Mimic/CPN and Comms/CPN, as the animation is driven by func-
tion calls associated with transitions to an external application. The main feature
offered by BRITNeY from a user point of view is thus compatibility with CPN
Tools (rather than the discontinued Design/CPN) and platform-independence.
From a developer point of view, BRITNeY provides good foundations for al-
lowing closer integration with the model by allowing parts of the animation to
inspect and modify tokens on fusion places of the CPN model, much like how
widgets are associated with places in ExSpect. This is an important part of
future work.

An important new feature of BRITNeY animation is that it is possible to
deploy animations in a way that allows even non-technical users to download
and experiment with the animation. Another part of the future work is to make
this process even easier by adding a wizard to take care of all the details.

BRITNeY animation is currently useful enough to use in real projects, and
has, as mentioned in the introduction, already been used in two projects as part
of the development.

References

1. Design/CPN. Online www.daimi.au.dk/designCPN.
2. C. Bossen and J.B. Jørgensen. Context-descriptive prototypes and their application

to medicine administration. In DIS ’04: Proc. of the 2004 conference on Designing
interactive systems, pages 297–306, Boston, MA, USA, 2004. ACM Press.

3. S. Christensen, J.B. Jørgensen, and L.M. Kristensen. Design/CPN—A Computer
Tool for Coloured Petri Nets. In Proc. of TACAS’97, volume 1217 of LNCS, pages
209–223. Springer-Verlag, 1997.

4. G. Gallasch and L.M. Kristensen. A Communication Infrastructure for External
Communication with Design/CPN. In Proc. of 3rd Workshop on Practical Use of

134

Coloured Petri Nets and the CPN Tools, volume PB-554 of DAIMI, pages 79–93.
Department of Computer Science, University of Aarhus, 2001.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

6. D. Harel and R. Marelly. Come, Let’s Play. Springer-Verlag, 2003.
7. Java Network Launching Protocol and API. http://jcp.org/en/jsr/detail?id=

56.
8. K. Jensen. Coloured Petri Nets—Basic Concepts, Analysis Methods and Practical

Use. Volume 1: Basic Concepts. Springer-Verlag, 1992.
9. J.B. Jørgensen and K.B. Lassen. Aligning Work Processes and the Adviser Portal

Bank System. In REBNITA05, 2005.
10. E. Kindler and C. Páles. 3D-Visualization of Petri Net Models: Concept and

Realization. In Proc. of ICATPN 2004, volume 3099 of LNCS, pages 464–473.
Springer-Verlag, 2003.

11. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. Journal on Software Tools for Technology Transfer, 2(2):98–
132, 1998.

12. L.M. Kristensen and K. Jensen. Specification and Validation of an Edge Router
Discovery Protocol for Mobile Ad-hoc Networks. In Integration of Software Spec-
ification Techniques for Application in Engineering, volume 3147 of LNCS, pages
248–269. Springer-Verlag, 2004.

13. L.M. Kristensen, M. Westergaard, and P.C. Nørgaard. Model-based Prototyping
of an Interoperability Protocol for Mobile Ad-hoc Networks. Accepted for Fifth
International Conference on Integrated Formal Methods, 2005.

14. L. Lorentsen, A-P Tuovinen, and J. Xu. Modelling Features and Feature Inter-
actions of Nokia Mobile Phones Using Coloured Petri Nets. In Proc. of ICATPN
2002, volume 2360 of LNCS, pages 294–313, 2002.

15. J. Magee and J. Kramer. Concurrency – State Models and Java Programs. John
Wiley & Sons, 1999.

16. J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer. Graphical Animation of
Behavior Models. In Proc. of 22nd International Conference on Software Engi-
neering, pages 499–508. ACM Press, 2000.

17. J.L. Rasmussen and M. Singh. Mimic/CPN. A Graphical Simulation Utility for
Design/CPN. User’s Manual. www.daimi.au.dk/designCPN.

18. J.L. Rasmussen and M. Singh. Designing a Security System by Means of Coloured
Petri Nets. In Proc. ICATPN 1996, volume 1091 of LNCS, pages 400–419. Springer-
Verlag, 1996.

19. SceneBeans. Online www-dse.doc.ic.ac.uk/Software/SceneBeans.
20. The ExSpect tool. www.exspect.com.
21. M. Weber and E. Kindler. The Petri Net Kernel. In Petri Net Technologies for

Modeling Communication Based Systems, volume 2472 of LNCS, pages 109–123.
Springer-Verlag, 2003.

22. M. Westergaard. Building Verifiable Software Prototypes using Coloured Petri
Nets. Progress report, Department of Computer Science, University of Aarhus.

23. M. Westergaard. TIN-CPN, BRITNeY animation, and SClub website. Online
wiki.daimi.au.dk/tincpn.

135

136

�����������
	���
���� ��������������� �!�
"#��$%"#�&� �'��"(�)�*�+�&,-��
-.-�/�102�'	�3��

46587:9�;�<>=?7
@BADC?587�=FE)G>=?7IHKJMLMLMJM7�9?EN587
@(A>=?7>OIC>P5?Q#7IR�Q)STJMG:STJUE)V
W�XZY\[�]_^_`badcfeBgihj`bak[�h�l�mon\pqm_akadcbpqmon�XZakmB`rcba

s mopqtuadcbhrpv`wg'Y#x>eiY(^_`by zf^ohj`rc|{#}qp~{
� {k��hrY(m���{(�\akhfX
{([�]o^_hk�oe_z��#�\�\�T�8z s ei�
��zf����z

l>[�{#pq}M�_�\�i�u�#�B�u�u�\�T�#�\�B�u�(�B�i���M�u�_�u�\�����\�\�>���(�F���u)�i�(�\¡i�)�>�£¢_�\¤\¤B�)�B¥u�B #�T�(�u�i�u�\�1���(�\�>�r�#�
¦¨§�cbY(n(c|{#[�[�p©m_nK�ªY\n\pq«kh�¬fcbY\^_]�� � {#­T®w§>}©{#mo«|�'�wmohj`bpv`b^_`ba

e_{({#cb}©{(mo¯ª�?°(°i±N²(³i�8¬/l>� � zf´¶µ
l�[�{(pq}U�F·u¸u�T�)¡T�T�)�B�N¹iº_�(»B�)�B·��¼¹iºB¥��w�u�

½�¾1¿kÀkÁ)ÂFÃ\À\Ä � YT¯iak}q}©pqm_n � Y\Å_pq}©a/z�¯KÆ�YB«f´�ad`w�
Y#cb�ihfÇ � zf´�lD�
h|È�p©h
{�«|yF{#}©}qakm_n\afÅ?ak«N{(^_hraf`by_a¶`bY(]?Y\}qY\n#g
Y(x:hr^_«Éy'moad`w�
Y#cb�ih�«|yF{#mon(akh¶¯igimF{#[�p©«k{(}q}vg�{(mF¯�^om_]_cbaN¯ip©«É`|{(Åo}vgBÊBËÌa/«dcbaN{)`baÍ{Îyopqn(yo}vg'{(Åohj`rc|{#«d`�XZY\}qY\^icbaN¯
§1ad`rcbp:´�aÉ`/[�YT¯_ad}:Y(x>cbY\^_`bpqm_n'pqm¨{ � z¶´/l>�ÏÅF{#hraN¯�Y\mÐ`byoa�Ñ/akhj`bpqmF{)`bpqY\m_®�eTaNÒB^oakm_«kaN¯ÐÑ/pqhj`|{(m_«kad®£ÓDad«d`bY(c
ÇUÑÍeiÑ¶ÓÔÈÎcbY(^_`bpqmon�]icbY(`bYB«kY(}UÊfÕ�^_c�ad­i]?adcbpq[�akmB`bh�hryoYN�Ö`byo{#`�`byopqh�[�YT¯_ak}¶«N{(m×hrpq[Î^o}©{#`baÐ`byoaØcbakÒT^_pvcbaN¯
¯igimF{#[�pq«¨«|yF{#mon(akhØY(xÎmoaÉ`��
Y#cb�Ù`bY\]?Y(}qY\n(g�{#mF¯Úcbaktuak{(}�`byo{#`Øpqm_«kY(crcbak«É`ØcbY\^i`bp©m_nÛpqmixÜY(cb[�{)`bpqY\mI«N{(m�Å?a
«dcbaN{)`baN¯Ø{(mo¯]_cbY(]F{#nu{#`bak¯ pqm'`byoa � z¶´/l>��Ê

Ý ÞTß�à�á Á#â1¿\ã � zf´�lD�
hk�\ÑÍeiÑ¶ÓÛcbY(^_`bpqmonÔ]icbY(`bYB«kY(}U� � YT¯_ak}q}qpqmon�{(mo¯�eipq[6^_}©{#`bpqY\mª�BXZY(}©Y(^_cbaN¯�§1ad`rcbp_´�ad`bhkÊ

ä å_æfç?è8éÔê�ë�ì�ç8í|é¶æ

îðï 5?ñ>JMLMS î Oóò�51ô×õ'SBE|ö65?Q)÷ùø ï�î õ'úÎû'üÚýÜþ\ÿ�J���= ôu58LMLUSTôuE)JM587ó5���ö�JUQ#STLUS�������5?ñ>JMLUSÚ7:51O:S��BA��)<�ô(G =��
LM=
	�EN5�	��BA���5?ñDJMLUS
	DG:587:S��6=?7�O���SBQ��)587�=?L�� JM98JUE)=?L î ���)J��NE)=?7ªE��Ðø���� î �\ü(A�ö'G�JMô#GÛS��NE)=Fñ>L£J��)G =!ENS���	
5?Q#=FQ��
7:SBEÉöÎ5?Q)÷ ö�JUE)G:58<:E E)G:SÏG�STL�	 5���=?7���	�Q)S��bS��:J��NE)JM7�9 JM7���Q#=��NENQ#<>ôuE)<:Q)SI5?QÚôuST7ªENQ(=?LMJ��BSTO2=?O�� JM7�J��NENQ#=FE)JU587!
�/=?ô)÷?SBE��w5?Q#ö6=FQ#O>JM7:9:A
Q)58<:E)JM7�9:A�=?7�O�5?E)G:SBQ¨7:SBEÉöÎ5?Q#÷Ï5�	
SBQ#=FE)JM587���=FQ)S ôB=FQ)Q(JUSTO 58<:EÐñ"� E)G�S JM7�O�J�#�JMO><�=?L
7:51O:S���E)G�S��$�NSTL�#?S��×ýÜþ�%_ÿ& ('d7 =?O�O�JUE)JM587�A�7:51O:S��)��Q)SBSTL��+*N58JM7 J£7 =?7�O,��5-#?SÚ58<:EBAfö�G�JMô(G�Q)S��)<>LUE��¨JM7 E)G:S
7:SBEÉöÎ5?Q)÷ EN5�	
58LU5?9�� ôu587��NE)=?7�E)L�� ô#G�=?7:98J£7:9:A(�)5 E)G�=FE�ôu587�#?ST7ªE)JM587�=?LKQ)58<:E)JM7�9.	�Q)5?EN51ôu58L���O:5�7:5?EÌöÎ5?Q)÷
ö6STLML/�w5?Q ï�î õ'úÎû0�1 ï 52�NE�ôB<�Q)Q)ST7�E×Q)58<:E)JM7:93	�Q#5?EN5�ôu58L���O:S��)JU987:STO4��5?Q ï î õ ú�û
�I=FQ)S5�NE)JML£L <>7�O:SBQ
O:S1#?STLU5�	���ST7ªEÚý76_ÿ& �815.�j=FQ¨E)G:STJUQÌO:S19>7�JME)JU587��Ð=FQ)SÚ7:5?E:� =FE)<:Q)S ST7:58<�98G;��5?Q:'k7�ENSBQ#7:SBE:�)E)=?7�O�=FQ#O��!=?7�O
E)G:S1� G>=�#?S<� =?JM7>L���ñZSBST7 S1#F=?LM<�=FENSTO ñ��,�)J��Ì<�LM=FE)JU587 =?7�O LMJ�#?S ENS��)E)JM7:9� �='7��w5?Q)E)<>7�=FENSTL��?A>�)J��Ì<�LM=FE)JU587
=?7�OÚENS��NE)J£7:9�=FQ)S�7:5?E?�)<�@ ôBJMST7ªEKEN5�#?SBQ#J��A� E)G>=FE�E)G:SBQ)SÐ=FQ)S�7:5��)<:ñ>E)LUS'SBQ#Q)5?Q��K5?Q�O:S��)JM987�BD=Tö
��LMS1�wE�JM7Ú=
	�Q)5?EN51ôu58L¶ý76�%_ÿ& �û¶5�=?ô(G�JUS1#?S�E)G>J��/9?58=?L:ö6S�7:SBSTO�EN5)��5?Q�� =?L£L��)#?SBQ#J��A��JUE��/5�	
SBQ#=FE)JU587! 8R:5?QC� =?L�#?SBQ#J�9DôB=FE)JU587
9�Q��)E)L�� Q)S�D�<�JUQ#S��KE)G:S�ôuQ)ST=FE)JU587�5��/=E��5?Q�� =?LF��5�O�STL
5���E)G�S)�G�"�)ENS��H

46587>ôuSBQ#7�JM7:9;�w5?Q�� =?L?#?SBQ#J�9>ôB=FE)JM587 5��ÐQ)58<�E)JM7:9I	�Q)5?EN51ôu58L����w5?Q ï�î õ ú�û0�BA6HKG�=FQ)98=�#F=?72SBEÛ=?LJ Øý KFÿ
=?7�OML ñ�Q#=?O:5N#�J£ôÛý76�6_ÿ>#?SBQ#J��A�×E)G:S:O�58<:E)JM7:9�'d7���5?Q�� =FE)JM587.�ÍQ#5?EN5�ôu58LKø�O0'P�6ü¨ýÜþ�Q_ÿÔ=?7>OIE)G:S î O��|G:5�ô�LØ7R�
� S�� =?7�OE�ØJ��NE)=?7�ôuSTSÔSTôuEN5?Q�ø î L/�?S�üUO�58<:E)J£7:9V��Q)5?EN5�ôu58L�ý76�W_ÿ& ?û�G:S1��=?7>=?L��"�)STO î L/�0SÖ=?7�OÌJMO:ST7�E)J�9�STO
=VB>=TöóE)G�=FE/ôu58<�LMOÌLUST=?O!EN5 = LU5�5�	X _û�G>J���öK=��/O:587:SK<��)JM7:9/8R�Y'kõùýÜþ?þ\ÿ�=?7�O¨E)G�S6òZL/[Úû�G:SB5?Q)S��\�ÍQ#5-#1JM7:9
8"�R�NENS��*ýÜþ1]oÿ& �'d7�5?Q#O�SBQÍEN5ÐQ)ST=?LMJ��)S�LU5�5�	���Q)SBS�ñ
STG�=-#�JU58<�QTA?=Z��5�O>J�9>ôB=FE)JU587�öK=��Y�)<:9?9?S��)ENSTO =?7�O�#?SBQ(J�9�STO!
û�G:STJMQ�=
	�	>Q)58=?ô#G�#?SBQ(J�9�STOÌE)G:SK9?ST7:SBQ#=?L�ôB=��)S?A?ñ><:E�Q)S�D�<>JUQ)STO�=/�)JU987�J�9DôB=?7ªE/=���58<�7�EÔ5��D<��)SBQÍJM7ªENSBQ(=?ôuE)JU587!
^ JUñ>LMJM7�9ÛSBE¨=?L& �ý76�%_ÿ6ôu587��)J£O:SBQ�=?7�=?<:EN52� =FE)J£ô�#?SBQ#J�9>ôB=FE)JM5875�NENQ#=FENSB9��?A/=?7�O <��NS�EÉöÎ5_��51O:STLÔô#G:STô#÷�J£7:9
EN5�58L��BA"8R�`'dõ =?7�Oa=V��� î î [óýÜþ-biÿbA�EN5c#?SBQ(J��d�Ìñ
5?E)G E)G:S'O�=FE)=¨=?7�O ôu587ªENQ)58LZ=��G	
STôuE��Í5���E)G�S
[¶JU98G�E|ö6STJU98G�E
= 7�O:SBQ#LM=-�Ûõ'SBE|ö65?Q)÷ î O�G:5�ô/O�58<:E)JM7:9Iø�[F= õ î OØüT	�Q)5?EN51ôu58LJ �ò'5iö6S1#?SBQTA>E)G:S1�c*)<��NE?�NE)<�O�JMSTOÙ=�L£J�� JUENSTO
�NSBE�5���EN5�	
58LU5?98JUS��1

û�G�S<	><:Q�	
52�NSÚ5��ÐE)G�J���	>=
	
SBQ J���EN5 JMLMLM<e�NENQ#=FENS×E)G:S�O���7�=�� JMôÚ5�	
SBQ#=FE)JU587�� 5��Ø= ï�î õ ú�û*<e�)JM7:9
4658LU58<�Q)STO���SBENQ#J�õ�SBE��Ïøb4f��õg�(üÚýÜþ�W�A?þ�KFÿ& �ò'5iö6S1#?SBQTAÎJME�J���7:5?E�ST=��G� EN5 ôuQ)ST=FENS�= 4?��õh� 5�O:STLK5��Ø=
ï î õ ú�û*ñZSTôB=?<e�NS×E)G:SIEN5�	
58LU5?9��ó5��/�)<�ô#G =�7:SBE|ö65?Q)÷ ô(G�=?7:9?S�� O���7�=�� JMôB=?LML�� =?7>O <�7�	�Q#STO�JMôuE)=Fñ>L���
LØ7�L�� =_�wSBö =FENENS���	>E�� G�=-#?S×ñZSBST7�� =?O:SÚEN55��5�O�STL6= G>JU98G�L���O��17�=�� J£ô��G�R�NENS��%EN5�	
58LU5?98JUS���<e�)JM7:9
4f�ÎõV�1 �R/JM7�O�LU5_ö�=?7�O HKJMLMLMJM7�9?EN587 ýibiÿK<e�NSTO ò JU98GR�j[¶S1#?STLT��SBENQ#J6õ'SBE��Úý7k_ÿKEN5M��5�O�STL�O��17�=�� JMô O�JM7�JM7�9

137

	>G�J£LU52�N5�	>G:SBQC�BAFö�G:SBQ)SV	>G�JMLU52�)5�	>G:SBQ��ÔôB=?7Ùôu52��SØ=?7�O 9?5�<�7�	�Q#STO�JMôuE)=Fñ>L��� 8û�G:S�EN5�	
58LU5?9�� 5���E)G:Sg�G�R�NENS��
J���ôBJUQ(ôB<�LM=FQTABñ><�E
=FQ#ñ>JUENQ#=FQ#J£L���S��R	>=?7�O�JM7�9K=?7>O�ôu587ªENQ(=?ôuE)JM7:9�=��F	>G�JMLU52�)5�	>G:SBQ��Zôu52��SÎ=?7>OÐ9?5�=?7�O�ôB=?7�E)=F÷?S
O�Jml
SBQ)ST7�E
	
52�)JUE)JM587���JM7�E)G:S�ôBJUQ#ôBLUS� �'d7 ï�î õ ú�û0� E)G:SBQ)S�J��'7:5ÛQ#SB98<�LM=FQ/�NENQ#<�ôuE)<:Q#S¨ñ><:E =?7�=FQ)ñ>JUENQ#=FQ(JML��
ô#G>=?7:98JM7:9 7:SBEÉöÎ5?Q#÷×EN5�	Z58LM5?9���

n JU587:9�SBE�=?LJ �ý76�Q_ÿF	�Q#S��NST7ªE�=ÌE)J���STO�4?��õo� 5�O:STLp��5?Q î L/�?S� �û�G:S1�Ùôu587��)JMO:SBQ#STOÛE)G>=FE�JUEKö6=��KEN5�5
O�J�@ÛôB<�LUE/EN5c��51O:STL1E)G:S�G>JU98G�L��ÌO���7>=�� JMô6EN5�	
58LU5?9���5�� ï î õ'úÎû0�Ôö�JUE)GÙ4f��õg�ÍO�JUQ#STôuE)L��!=?7�O$	�Q)5�	
52�NSTO
= EN5�	
58LU5?9��ó=
	�	�Q)5-�1J�� =FE)JU587ùøjû î üC 6û�G:S1� =����)<���S×E)G�=FE S1#?SBQ�� 7:5�O�SÚG>=���E)G:S.�)=�� S×ENQ#=?7���� J����)JU587
Q#=?7:9?SÙ=?7�O�E)G�<��¨E)G�=FE¨E)G:SÙ7:STJU98G�ñ
58<:Q#G:5�5�OÏQ)STL£=FE)JU587 J��:�G�R�$��SBENQ#JMô
 fû�G:S1� =?L��N5�=����)<���SÛE)G�=FE¨ST=?ô(G
7:51O:S JM7 E)G:S ï î õ'úÎû�G�=��¨E)G:S��#=���SÛ7�<��!ñZSBQ!5���7:STJU98G�ñ
58<:Q��BA�=�Q#=FE)G:SBQ�<�7:Q)ST=?LMJ��NE)JMô�=����)<��$	�E)JU587!
R�<:Q#E)G:SBQTAfJ£7;�)J��Ì<�LM=FE)JM587�S��R	ZSBQ(J���ST7�E��BA¶E)G:SÙ7�<e�¨ñ
SBQ¨5��'7:STJU98G�ñZ58<�Q���7:SBSTO��!EN5ÏñZS+�)<�	�	DLMJUSTO�ñ"��E)G:S
=?7�=?L��R�NE1

q Q(J��NENST7��NST7Ð=?7>O�C?ST7��NST7ÛýÜþ�k_ÿ"��51O:STL?=?7�OÐ=?7�=?L��"�NS�E)G:SÍú�O:9?SYO�58<:ENSBQU�ØJ��#ôu5-#?SBQ��Z�ÍQ#5?EN5�ôu58LZøjú`O
�/�Kü(A
=:	�Q)5?EN51ôu58L���5?Q�ôu587�7:STôuE)JM7�9!98=FENSBöK=��R��JM7 ï�î õ ú�û0�6EN5ÌSTO:9?SØQ)58<:ENSBQ��6JM7�9���STOÙ7:SBEÉöÎ5?Q)÷R�1 :û�G�<��ÎE)G:STJUQ
4f�Îõ\� 5�O:STLfO:5�S���7:5?E JM7r#?58L�#?S¨E)G:SÌO���7>=�� JMôB=?LML��Úô#G>=?7:98JM7:9 EN5�	
58LU5?9��×5�� ï î õ'úÎû0�1 q Q#J��NENST7��)ST7×SBE
=?L�ýÜþ�s_ÿK<��NS G�JUSBQ(=FQ#ô#G�J£ôB=?LÔ4?��õg�ÐEN5.��51O:STLÔ=H9��1STO 7�<��¨ñ
SBQ øjJM7�E)G:STJUQ�ôB=��NS$K�üØ5�� ï î õ'úÎû0�Ðö�G�J£ô#G
ôu52�$�Ì<�7�JMôB=FENS×ö'JUE)G ST=?ô(G 5?E)G:SBQ�#1JM=�=?73'P�Y#�s 7�SBE|ö65?Q)÷� Íõ'51O:S���ôB=?7t*k58J£7 =?7>O LUST=�#?SI=M	>=FQ#E)JMôB<�LM=FQ
ï î õ ú�ûð=?7�O ôB=?7u��5-#?St�wQ)52� 587:S ï î õ ú�ûðEN5 =?7:5?E)G�SBQ� Îû�G�S×EN5�	Z58LM5?9�� 5��Ø= ï�î õ ú�û*J�� O:S��
�)ôuQ#JMñZSTOÛS��R	>LMJMôBJUE)L���ñ��+�NEN5?Q#JM7:9E	>=?JMQ���5��/7:51O:S��BA�ö�G:SBQ)SØST=?ô(GH	>=?JUQKQ)S1	�Q#S��NST7ªE���=�587�SØO>JUQ)STôuE)JU587�=?L
LMJ£7:÷�
û�G:S$� 5�O:STL�JM7�ôBLM<�O�S��g�#J���	>LUSE��5?Q)öK=FQ#O�JM7:9Ú5���<��NSBQc	>=?ô)÷?SBE���O�JUQ#STôuE)L��.��Q)52� E)G:S��N58<:Q#ôuS 7�5�O:S�EN5 E)G:S
O:S��NE)J£7�=FE)JU587 7�5�O:S?A/JUQ)Q#S��G	
STôuE)J�#?S 5���ö�G>JMô#G ï�î õ'úÎû E)G:S1��ñ
STLU587:9 EN5� �û�G�S���51O:STLÎE)G�<��Ì=Fñe�NENQ(=?ôuE��
��Q)52� E)G:Sg��STô#G>=?7�J����+ñ���ö�G�J£ô#G�E)G:S��)S
	>=?ô#÷?SBE���=FQ)S
��5?Q)öK=FQ#O:STO E)G�Q)58<:98G O>JmlZSBQ#ST7ªE�7�5�O:S��Í5���E)G:S
#F=FQG�
JU58<�� ï î õ ú�û0� EN5ÚE)G:STJUQÐO:S��)E)JM7�=FE)JU587�ADö�G�JMô(G�ö6S�ñ
STLMJUS1#?S!J��'=Ù÷?S1�.	D=FQ)E'5�� ï�î õ'úÎû�O:S��)JU987X Dû�G�<��
7:5�=FENENS���	>E�J��Y� =?O�S�EN5c��51O:STL:=ÐQ)58<:E)J£7:9/	�Q)5?EN51ôu58L:5?Q�G:5_ö E)G:S0	>=?ô#÷?SBE��Î=FQ#S�Q)58<:ENSTO J£7!E)G�S�7:SBE|ö65?Q)÷p

'k7óE)G�J���	>=
	
SBQTA/ö6SIôu587��)JMO:SBQ�E)G:S<� S��NE)J£7�=FE)JU587R�v8�S�D�<:ST7�ôuSTO��ØJ��)E)=?7�ôuS��&SÔSTôuEN5?Q�ø��)8R�0SÐüÌQ#58<:E)JM7:9
	�Q)5?EN51ôu58LÍý76wK:Ax6�k_ÿbADñZSTôB=?<e�NSZ�Z8��?S�G>=��KQ)STLM=FE)J�#?STL��ÛLU5iöùôu52��	DLUS��1JMEj�Ûôu52�$	>=FQ)STOÚö�JUE)Gy� =?7��Ù5?E)G:SBQ�=?O
G:51ô�Q#58<:E)JM7:9g	�Q)5?EN51ôu58L��1 ��)8R�?S2J��/='Q#S1	�Q)S��NST7�E)=FE)J�#?S�z�{G|�}2~����A�
�Yzp{P|��&|-~�|
�� �û�G:S�	>Q#J�� =FQ��Ðô(G�=FQ#=?ôuENSBQ#J��)E)JMô
5��f�)<�ô#G =×Q)58<:E)JM7�9Ú=
	e	�Q)58=?ô#G J��ØE)G�=FE�ST=?ô(G 7:51O:S�ENQ#JUS���EN5<� =?JM7�E)=?JM7 =×Q)58<:ENS�EN5�S1#?SBQ���5?E)G:SBQ!7:51O:S
JM7 E)G�S 7:SBE|ö65?Q)÷�=FEÌ=?LMLÔE)J���S��� X'ÉE!G�=���E)G:SÛ=?O�#o=?7�E)=F9?SÙE)G�=FE¨E)G:SBQ#S J���7:5 O:STLM=�� EN5�ñZSB98J£7�=.�NS����)JU587�A
=?7�O�ENST7�O��'EN5�	
SBQ���5?Q�� ö6STLMLfJM7I7:SBEÉöÎ5?Q)÷R� ö�G:SBQ)S!E)G:SBQ)SÌ=FQ)SÌ=��)JU987�J�9>ôB=?7ªE'7�<��!ñ
SBQ�5��ÍO�=FE)=+�NS����#JU587��
ö�JUE)G>JM7ÙE)G:S�7:SBE|ö65?Q)÷ ý76_ÿ&

û�G�S$� =?JM7�=?J�� 5��KE)G�J��Z	>=
	
SBQ�J��ÐEN5<	>Q)5-#1JMO:S�E)G:S$9>Q��NE!4f�Îõ���51O:STL/5��KE)G:S ñD=��)JMôE�j<�7�ôuE)JU587��Ø5��
E)G:S+�Z8��?S-Q)58<:E)JM7�9<	�Q)5?EN51ôu58L�=��Ì=<9e�)Q)E)�NENS1	 EN5iöK=FQ#O��ÌJUE��)��5?Q�� =?L��G	
STôBJ�9>ôB=FE)JU587�=?7>O5#?SBQ#J�9DôB=FE)JU587!
^ SÛJ£7ªENQ)51O�<�ôuS�E)G�S ñ>=��)JMô$�wST=FE)<:Q#S���5��0�)8R�?S =?7�O�E)G:ST75	�Q#5-#1JMO:S =?7 =Fñ��NENQ#=?ôuE�4?��õ���51O:STLÔ5��KE)G:S
�)8R�?S Q)58<�E)JM7:9c��STô(G�=?7�J����H ^ S
	
SBQ���5?Q����)52��SV�)J��!<�L£=FE)JU587�S��R	ZSBQ(J���ST7�E��ÔEN5!O:S�� 587��NENQ#=FENS'E)G:S�öK=��
E)G:S���5�O�STL�ôB=
	�E)<:Q)S��'E)G:S¨O���7�=�� JMôÐô#G�=?7�9?S�� J£7I7:SBE|ö65?Q)÷×EN5�	
58LU5?9��� p'd7 O:58JM7:9$�)5:A>ö6S!<�7�ôu5N#?SBQZ�N52��S
JM7�ENSBQ)S��NE)JM7�9�SBQ)Q)5?Q���=?7>OH�)<:9?9?S��NEg��5�O>J�9>ôB=FE)JU587��6EN5 E)G�S)	�Q)51ôuSTO�<:Q)S��KEN5 STLMJ�� JM7>=FENS E)G�S��NS�SBQ)Q)5?QC�1

û�G�SBQ)S =FQ)SM�NS1#?SBQ#=?L ôu587�ENQ#JUñ><:E)JM587�� 5��ÐE)G�J��$	>=
	
SBQ� 6R�JMQ��NE)L��?AÍö6S�O:S���587��NENQ(=FENS E)G�=FEI4f�ÎõV�ÙôB=?7
��51O:STL�E)G�S!O��17�=�� JMôB=?L£L��Ùô(G�=?7:98JM7�9Û7:SBEÉöÎ5?Q)÷×EN5�	
58LU5?98JMS��'=����)5�ôBJM=FENSTOÏö�JME)G ï�î õ ú�û0� JM7�=?7 STLUSB98=?7�E
=?7�O<�#J���	>LUSØöK=��?AZö�JUE)G:58<�E�<��)JM7:9�E)G:S!=����)<���	>E)JU587��?� =?O:S!JM7 ý76�Q_ÿ�=?7>OIö�JUE)G�58<:EKQ)S�D�<>JUQ#JM7:9�E)G:S¨Q)STLM=w�
E)J�#?STL��Úôu52��	>LMS��+K
�|LUS1#?STLfG�JUSBQ#=FQ(ô#G�JMôB=?L!�)ENQ#<�ôuE)<:Q)S�<e�NSTOIJM7�ýÜþ�s_ÿ& !8�STôu587�O�L��?A:ö6S)	�Q#5-#1JMO:SÐE)G:S)9>Q��NE�4f��õ
��51O:STL:5��
E)G:S
�)8R�0S Q)58<:E)JM7:9Z	>Q)5�ôuSTO><:Q)S��Ô=?7�O O>J��)ôu5-#?SBQ6E|ö65¨SBQ#Q)5?Q��ÍJM7 E)G:S��NS0	�Q#5�ôuSTO�<�Q)S��1 8û�G�J��>	�Q)5
�
#1JMO:S���E)G:Sf9�Q��NEÔ=?7�=?L��"�)J��¶5��ZE)G:SK÷?S1�Ìôu52�$	Z587�ST7ªE/5����Z8��?S!A?E)G�SK<e�NSK5����NS�D�<:ST7�ôuS�7�<��!ñZSBQC�fEN5ÐO�J��)ôB=FQ#O
58LMO J£7��w5?QC� =FE)JU587! ?û�G�JMQ#O�L��Ðö6S'O�J��)ôB<����>��51O�J�9>ôB=FE)JM587��/EN5¨E)G:SV�Z8��?S4	�Q)51ôuSTO�<:Q)S�����5?Q�<�	�O�=FE)J£7:9ØQ)58<:EP�
JM7:9 E)=Fñ>LUS��ÛE)G�=FEÚöÎSÏñ
STLMJUS1#?S ö�JMLML�Q#S���5-#?S�E)G:S��NSÏSBQ)Q)5?QC�1 6û�G:S��NSt� 5�O�J�9>ôB=FE)JU587��Û=FQ)SÏJ���	>LUS���ST7�ENSTO
JM7ó=�Q)S1#1J��NSTO 4f�Îõh��51O:STL�=?7�O 58<:Q$�)J��!<�L£=FE)JU587���G�=�#?S<�#G:5iö�7óE)G>=FE�E)G:S1� G>=�#?S×ñ
SBST7óS�lZSTôuE)J�#?S�JM7
STLMJ�� JM7�=FE)JM7:9ÌE)G:S��NS¨SBQ)Q)5?Q���JM7ÚE)G�Sc�)ôuST7�=FQ#JM52��Q#<�7H�N5a��=FQ�

û�G�S Q)S��NE!5���E)G:S$	>=
	
SBQ!J���5?Q)98=?7�J��NSTO =��c�w58LMLM5iö
�1 >8�STôuE)JU58736×98J�#?S��Ì=?7 JM7�ENQ)51O�<�ôuE)JU587�EN5t�)8R�?S
=?7�OÚS��R	>LM=?JM7e��E)G:SÐñD=��)JMô 5�	
SBQ#=FE)JU587��65���E)G:S/	�Q)5?EN51ôu58LJ �'d7<8�STôuE)JM587.W�A:öÎSÐO:S��#ôuQ#JUñ
S =�G>JU98G�L�� =Fñe�)ENQ#=?ôuE

138

4f�Îõ���5�O�STL¶5��ÔE)G:SE�)8R�?S�	�Q)5?EN51ôu58LJ �81J��!<�L£=FE)JU587IS��R	
SBQ#J���ST7�E���=FQ)S�ôu587�O�<>ôuENSTOÏJ£7_8�STôuE)JU587tK:A�=?7�O
O�J��#ôB<����NSTOÚJM7t81STôuE)JU587.k" >R/JM7�=?L£L��?A:ôu587�ôBLM<��)JM587��K=?7�OH�j<:E)<:Q)SÐö65?Q)÷Ú=FQ)S)	�Q)S��)ST7ªENSTOIJ£7.8�STôuE)JU587ts"

� �I�e�_ç8í|æY�Zç8íbéfæ>�-�>�e�/ëY�>æÎìR�>ê���íx�iç���æ�ìR���C�a�>ì�ç?é�èt��é¶ëÔç8í|æ`���Ûè8é�ç?éÔì1éF�

���J� ���e�N�!���N p¡U¢U£

û�G:SÚO:S��NE)J£7�=FE)JU587R�j�NS�D�<:ST7�ôuSTOóO�J��NE)=?7�ôuS��&#?STôuEN5?Q Q#58<:E)JM7:9_	�Q)5?EN51ôu58LKJ���O:SBQ#J�#?STO¤��Q)52�%O�J��NE)=?7�ôuS��&#?STôuEN5?Q
Q)58<:E)J£7:9Û=?LU9?5?Q(JUE)G��$��ý76
]oÿ& F81<�ô#G�=?LU9?5?Q(JUE)G��$�'=FQ)S�5��wENST7ÏQ)S1��SBQ)Q)STOÏ=�� E)G:S��ØJ��)ENQ#JUñ><:ENSTO H6STLML�� =?7R�|R�5?Q#O
ø��ØHKRÔü�=?LU9?5?Q#JUE)Ge�¥�)JM7�ôuS�E)G:S1��=FQ)S�ñ>=��NSTO�587 =<�)G:5?Q)ENS��)EZ	>=FE)G ôu52��	><:E)=FE)JM587�=?LU9?5?Q#JUE)Ge�¦	�Q)S��NST7�ENSTO
ñ"� HÎSTL£L�� =?7 ý7W_ÿ& Kû�G:S.9�Q��NE O�S��)ôuQ#J�	�E)JM587 5��ÐE)G:S O>J��NENQ#JUñD<:ENSTO =?LU9?5?Q#JUE)Ge� öK=��Û98J�#?ST7 ñ"� R:5?Q#O =?7�O
R�<�LM÷?SBQ��N587×ý7%_ÿ& ?û�G�J���=?LU9?5?Q#JUE)Ge� öK=���E)G:SK5?Q#JU98JM7�=?L î Q�	>=?7:SBE�Q)58<:E)JM7:9 =?LU9?5?Q#JUE)Ge�×Ao=?7>O¨öK=��Ô=?L��N5Ø<��NSTOÌJM7
E)G:ST'd7�ENSBQ#7:SBE/<�7�O�SBQ¶E)G:SK7�=���STO0'P�Ï=?7>O!JM7!ST=FQ#L��Z#?SBQC�)JU587��f5����Øú64K7:SBE/=?7�OÌõ�5N#?STLMLJ§i�('k7ªENSBQ#7�SBE(�/=?ô)÷?SBE
S n ô#G�=?7:9?S øA'P� n üC î 	�	>LUSTû�=?LU÷�=?7�O 4KJ��)ôu5IQ)58<:ENSBQC�¨<��NSÛJ���	�Q)5N#?STO O�J��NE)=?7�ôuS$#?STôuEN5?QE	�Q)5?EN51ôu58L��Ùý76�s_ÿ&
û�G:S O�J��NE)=?7�ôuS.#?STôuEN5?QI=?LU9?5?Q#JUE)G�� ôB=?7ÖôB=?<��)S�E)G:St�w5?Q�� =FE)JU587 5��Ðñ
5?E)G��#G:5?Q)EP�|LMJ�#?STO =?7�O LU587�9
�|LMJ�#?STO
LU5�5�	e� ý7s_ÿ& ¶û�G�SE� =?JM7 ôB=?<��NS 5��6E)G:S���5?Q�� =FE)JU587�5��6Q)58<:E)J£7:9×LU5�5�	��ÐJ��ØE)G�=FE¨7:51O:S��Ðô(G:5�52�)S E)G:STJUQ�7:S��1E
G:5�	e�ÔJ£7Ì=Ðôu52�$	>LUSBENSTL��ÌO�J��NENQ#JMñ><:ENSTO)�j=��)G�JM587!ñD=��NSTO�587 JM7���5?Q�� =FE)JM587¨E)G�=FEY� =��ÌñZS?�NE)=?LMS�=?7�OÌE)G:SBQ)S1��5?Q)S
JM7�ôu5?Q#Q)STôuE1 6û�G:S_� 5�O�J�9>ôB=FE)JU587��Ïý7Q�A8þ�6�AN61þ\ÿ�O:S��)JU987:STOÖEN5óSTLMJ�� J£7�=FENSIE)G:S�LU5�5�	>JM7:9,	�Q)5?ñ>LUS�� =FQ)S 7:5?E
��ST=��)JUñ>LUSÐJM7 ï î õ'úÎû0��ñ
STôB=?<��NSÐ5��/E)G:SÐQ(=
	>JMO�L��Ûô#G�=?7:98J£7:9�EN5�	
58LU5?9��Ú5��>�#<�ô#GI=�7�SBE|ö65?Q)÷ ý76�k_ÿ&

O
'v� ýÜþ�Q_ÿÍJ�� =��#J���	>LUS!=?7�O.	>Q#=?ôuE)JMôB=?L�O�J��NE)=?7�ôuS�#?STôuEN5?QZ	�Q)5?EN51ôu58LJ �'dE J���ST=��G��EN5×<�7>O:SBQ��NE)=?7�O =?7�O
��51O�J��A�� >ò'5iö6S1#?SBQTA�LMJU÷?S�5?E)G:SBQØO�J��)E)=?7�ôuS��&#?STôuEN5?QÐ=?LU9?5?Q#JUE)G��a�BAeO0'P�2=?L��N5��#<RlZSBQC�0��Q)52�¨#?SBQ��<�#LU5iö�ôu587R�
#?SBQ)9?ST7�ôuSÚø�E)G:Sa~�|�©"ª����dª�«y�&|��Aª�¬Yª�����­/	�Q)5?ñ>LMS�� ý76�s_ÿ�üC �� S��G	>JUENSÐE)G>J��f	�Q)5?ñ>LMS��×A�ö'JUE)G:58<:EKE)G:S¨=FñDJMLMJUEx� EN5
G�=?7�O>LUS¨Q#=
	DJMOIEN5�	
58LU5?98JMôB=?L/ô(G�=?7:9?S��BA
E)G:S�<��NS1�j<�LM7:S�����5���O
'v� JM7 ï î õ ú�û J�� LMJ�� JMENSTO ý76�k_ÿ& �R�<:Q#E)G:SBQG�
��5?Q)S?A�E)G�S�ENSTô#G�7�J�D�<:S��¨O:S��)JU987:STO�JM7 ýÜþ�Q_ÿÎEN5.�N58L�#?S.~C|
©Rªe���dª"«t�&|t�Aª�¬Yª�����­�=FQ)S 7:5?E�<��)S1��<�L�ö�JME)G�JM7ÏE)G:S
ö�JUQ#STLUS����ÔST7�#�JMQ)587���ST7�E1 �R:5?QKE)G:S��)S'Q)ST=��)587��BA�J£7�þ�Q�QwK 4g �ú
 ���SBQ)÷1JM7��Î=?7�Oa�(1H6G>=F9?ö6=FE�ý76wKFÿ�	�Q)S��NST7�ENSTO
E)G:SÚO:S��NE)JM7>=FE)JU587R�j�NS�D�<:ST7�ôuSTO O�J��NE)=?7>ôuS��&#?STôuEN5?Q�Q)58<:E)JM7:9t	�Q)5?EN51ôu58LT�w5?Q�=?OóG:5�ôÛ7:SBE|ö65?Q)÷R�1 >'d736
]�]:þFAÍ=
��5?Q)S'ôu52��	�Q)STG:ST7e�)J�#?S0	�Q#5?EN5�ôu58L��G	
STôBJ�9>ôB=FE)JU587�öK=���98J�#?ST7 ñ"�E��SBQ)÷1JM7���ý76�k_ÿbA1=?7�O =¨Q)STôuST7�EÎO:S��)ôuQ(J�	�E)JU587
ñ"�MO�5-�?SBQÌôB=?7�ñ
S��w58<>7�O�JM7 ý76_ÿ& �û�G�J��/	�Q#5?EN5�ôu58L�	>Q)S��NSBQ�#?S��¨E)G:Sa�)J��$	>LMJMôBJUEx�I5��fO0'P� =?7�O =�#?58JMO��¨E)G:S
LU5�5�	>JM7:9�	�Q)5?ñDLUS�� ñ��Ù<��)JM7:9E�NS�D�<:ST7�ôuSÐ7�<��¨ñ
SBQ��� 1û�G:SZ�NS�D�<�ST7�ôuSÐ7�<��!ñ
SBQ�J���=FENE)=?ô#G:STO�EN5�ST=?ô#G�Q)58<:ENS
ST7�ENQ��×JM7ÚE)G:S�Q)58<�E)JM7:9�E)=Fñ>LUS��V�NEN5?Q)STO JM7×7:51O:S��BA��N5 E)G�S1�ÚôB=?7tD�<>JMô)÷1L��ÚO�J��NE)JM7�98<�J��)G+�NE)=?LUS�Q#58<:ENS��?��Q)52�
7:SBö 587:S��BA
=?7�OIE)G�<���=-#?58JMO_�w5?QC� =FE)JU587I5��ÔQ#58<:E)JM7:9 LM5�5�	e�� î ñ�Q#JUS1�ÔJM7�ENQ)51O�<�ôuE)JU587IEN5 E)G:S!ñ>=��)JMô¨Q)58<:EP�
JM7:9Û=?LU9?5?Q#JUE)G�� 5��Y�Z8��?S J���98J�#?ST7�JM7×E)G�S!7:S��1EV�)<�ñe�NSTôuE)JU587<� =?JM7�L��Ùñ>=��NSTO�587 ý76�k_ÿ&
û�G:S)	><�Q�	
52�NS�J��
7:5?E EN5Û98J�#?SÌ=Ùôu52��	>LUSBENS�O:S��)ôuQ(J�	�E)JU587�5��`�)8R�?SÌAZñD<:E�EN5+	�Q)5N#�JMO�S:�)<�@ÛôBJUST7ªE JM7���5?Q�� =FE)JU587�EN5Ù<>7�O:SBQG�
�NE)=?7�O�E)G:SÌ4f�Îõ®��5�O�STL�JM7×E)G:SÌ7:S��1E
�NSTôuE)JU587! �'d7IE)G�J��0��51O:STLrA>öÎS�Q#STLM=w�×E)G:S!=����#<���	�E)JU587ÚE)G>=FE'LMJM7�÷"�
=FQ)SÐñ>J£O�JUQ)STôuE)JU587>=?L�ý76�k_ÿbADñZSTôB=?<e�NS�=��G�R�$��SBENQ#JUS��K5���ENQ#=?7���� J����)JM587ÛQ(=?7:9?S���=FQ)SZ	�Q#S1#o=?LUST7�E�JM7Ú=�ö�JMQ)STLUS����
ST7�#�JUQ#587���ST7�E1

����� ¯)�N e°- !�2 p±V²E³p´��N³FµA´r¶

'k7t�)8R�?SÌA
S1#?SBQ��t� 5?ñ>JMLUSÌ7:5�O�S:� =?JM7�E)=?JM7�� =ÛQ)58<:ENSÌEN5ÙS1#?SBQ���5?E)G:SBQÐ7:51O:SÙøjJ& vS�
O�S��NE)JM7�=FE)JU587Zü�JM7 E)G:S
7:SBEÉöÎ5?Q)÷p :û�G�<��KJUE��6Q)58<:E)JM7:9!E)=Fñ>LUSØôu52��	�Q#J��NS��K=ÌL£J��NE�5��¶Q)58<:ENSØST7ªENQ(JUS��1 î Q)58<:ENS ST7�ENQ��Ûôu5?Q)Q#S��G	
587�O�JM7:9
EN5 = O�S��NE)JM7�=FE)JU587×ôu587�E)=?JM7���E)G:SZ��58LMLU5iö'JM7:9�=FENENQ#JUñ><�ENS��1·

¸�¹ ´"º1°Nµ�¢U��°NµA �¢ ·�'P� =?O�O:Q#S����K5��/E)G:S�O:S��NE)JM7>=FE)JU587!»
¸�¼ ´r½!°N¾U e¿ ·�'P� =?O�O�Q)S����K5��Ô7:S��1E�7:5�O�S�=?LU587:9�E)G:S�Q#58<:ENS�EN5 E)G:S�O�S��NE)JM7�=FE)JU587X»
¸�À ´�°-�wµA� ·>E)G:S¨7�<��¨ñ
SBQ�5��/7:51O:S��¨øjG:5�	e�\üÎQ)S�D�<>JUQ)STOÚEN5 Q)ST=?ô(GIE)G:S!O:S��NE)JM7�=FE)JM587!»
¸ÂÁ ´�Ã ¼ � ·DLM=��NE�Q)STôu5?Q#O�STOMÄ1��Å1©e��ª�~Æ�:ª�©RÇaÈ���{T��5?Q�E)G:S�O:S��)E)JM7�=FE)JU587!»
¸�É ¢Uº1°-�e±�±d°Nµ�Ê,´ ·1E)G:S�E)J���SÐö�G:ST7ÚE)G�J��KQ)58<:ENS�ST7�ENQ��ÚJ���Q)STôuSTJ�#?STOX

139

û�G:SE	><�Q�	
52�NS¨5��T�NS�D�<�ST7�ôuS 7�<e�¨ñ
SBQ�� J�� EN5×ENQ#=?ô)÷ ô(G�=?7:9?S���JM7 EN5�	
58LU5?9��� ¶úÎ=?ô#G 7:51O:S�÷?SBS1	e�ÐJUE��Ø5_ö�7
�NS�D�<:ST7�ôuSI7�<��!ñZSBQiAfö�G>JMô#G J���JM7>ôuQ)ST=��NSTOóö�G:ST7�S1#?SBQ J���	
5?Q)E)=?7�EÌô(G�=?7:9?S��Û=FQ)S<� =?O:S×EN5�JUE���Q#58<:E)JM7:9
E)=Fñ>LUS� ^ G�ST7 =�Q#58<:ENS�ST7�ENQ�� EN5 = O:S��NE)JM7>=FE)JU587 J�� S��NE)=Fñ>LMJ��#G:STO�AÍJUEÙJ��$�NE)=���	
STO ö�JUE)G E)G:SÏôB<:Q)Q)ST7�E
�NS�D�<:ST7�ôuSÚ7�<e�¨ñ
SBQ¨5���E)G>J��!O�S��NE)JM7�=FE)JU587X î �!E)G:SÙEN5�	
58LU5?9���5���E)G:SÚ7:SBE|ö65?Q)÷ ô(G�=?7:9?S��BA>��5?Q)SÙQ)STôuST7�E
Q)58<:ENS ST7ªENQ#JMS���G�=�#?SÙG�JU98G:SBQ)�)S�D�<:ST7>ôuS 7�<e�¨ñ
SBQ��BA!�N5�E)G�=FE¨7:51O:S���ôB=?7�O>J��NE)JM7:98<>J��)G ñZSBEÉöÎSBST7 ôB<:Q)Q)ST7�E
=?7�OH�NE)=?LMS�Q)58<:ENSÐST7�ENQ#JUS��Kñ"�Ùôu52�$	>=FQ#JM7:9�E)G�S)�NS�D�<�ST7�ôuS�7�<e�¨ñ
SBQ��65��/E)G:S��NSÐST7�ENQ#JUS��1 �'k7Ú5?Q#O:SBQ�EN5�÷?SBS1	
Q)58<:E)J£7:9�E)=Fñ>LMS��fôu587��#J��NENST7�E�JM7!='O���7�=�� JMôB=?LML��Øô#G�=?7�98JM7:9 EN5�	Z58LM5?9��?A_ST=?ô(G�7:5�O�S`	
SBQ#JU51O�JMôB=?LML���ENQ#=?7���� JUE��
<�	�O�=FENS��'<��)JM7:9 =cËC©R�A�(Ì
©RÇVzH	>=?ô)÷?SBEBA�=?7�O�ENQ#=?7���� JME���=?75�Aª�~�{G�1Ç$�1ªe�&}
�><�	
O>=FENS¨J��$��STO>JM=FENSTL��Ú=
�wENSBQÐ=
�)JU987>J�9>ôB=?7�EØô(G�=?7:9?S EN5 JUE��ØQ)58<:E)JM7�9ÙE)=FñDLUS� �û�G:S��NS <�	
O>=FENS��Ðôu52��	�Q#J��)S�=�LMJ��NE 5��KENQ#J�	>LUS�� 5��6E)G:S���5?Q��H·
ø ¹ ´"º1°Nµ�¢F��°NµA �¢`Í À ´�°-�
µA��Í Á ´"Ã ¼ � ü(A6O:SBQ#J�#?STOÖO�JUQ)STôuE)L��¤��Q)52� E)G:S�Q#58<:E)JM7:9�E)=FñDLUS�5��¨= 7:51O:S� î �j<�LML
O�<��$	 ôu52��	�Q#J��)S�� =�LMJ��)E�5�� ENQ(J�	>LUS���ö�G�SBQ)S×ST=?ô#GÖENQ#J�	>LMSÚôu5?Q#Q)S��G	
587�O���EN5 =?7 ST7�ENQ�� JM7 E)G:SIQ#58<:E)JM7:9
E)=Fñ>LUS� î 7×JM7�ôuQ#S���ST7ªE)=?L�<�	
O>=FENS'587�L��ÛôB=FQ)Q#JMS��KENQ#J�	>LUS��ÎE)G�=FE�G>=�#?S�ô#G>=?7:9?STO<�)JM7>ôuS E)G�S�LM=��NEf��<>LMLDO><���	X
ú�=?ô(GI7:51O:S/� =��ÛQ)STôuSTJ�#?SÐQ)58<:E)J£7:9ÌJ£7��w5?QC� =FE)JU587y�NST7�E6ñ"�Û=?7�5?E)G:SBQ�7:51O:S� R'ÉE�<:E)JML£J��BS���E)G>J��KJM7���5?Q�� =FE)JU587
EN5ÐQ)STôu52��	D<:ENS�JUE��/Q)58<:E)JM7�9'E)=Fñ>LMS6ST7�ENQ#JUS��� FR�5?QÍS1#?SBQ��ÌENQ#J�	>LUS6Q)STôuSTJ�#?STO�AoE)G�S�7:5�O�S�9�QC�NE)L��¨ô(G:STô)÷R�ÍJUE��/5_ö�7
Q)58<:E)J£7:9!E)=FñDLUSØEN5�9>7�OÙö�G:SBE)G:SBQK5?Q�7:5?E�=?7ÚST7�ENQ��ÛEN5�E)G:S)�)=���SÐO:S��NE)J£7�=FE)JU587ÙS��1J��NE��1 R'x�(�)<�ô(G×=?7ÚST7ªENQ��
O:5�S��!7�5?E¨S��:J��NEBA�E)G:SÛ7:51O:SÙ=?O�O���E)G>J���Q)58<�ENSÛST7�ENQ�� Q)STôuSTJ�#?STO EN5�JUE��!E)=Fñ>LUSÛ=
��ENSBQ�·/JM7�ôuQ)S�� ST7ªE)JM7�9IE)G:S
��SBENQ#J£ô�5���E)G�J���ST7�ENQ���ñ"� 587:SØG:5�	X»�=?O>O�JM7:9�E)G�Sg�NST7>O:SBQ6=��ÎE)G:SØ7:S��1E6G:5�	F»�=?7�OÙJM7�ôBLM<>O�JM7:9ØE)G:SØôB<:Q)Q)ST7�E
�NS�D�<:ST7�ôuS�7�<��¨ñ
SBQØ5���E)G>J��ØO:S��NE)JM7�=FE)JM587! �'v���#<�ô#G =?7ÏST7�ENQ�� S��:J��NE��TAZE)G�S�7�5�O:SÌö�JML£L¶ô#G�5�52�NS�E)G�S�ST7ªENQ��
ö�JUE)GÏE)G:S G>JU98G:SBQZ�NS�D�<:ST7�ôuS�7�<e�¨ñ
SBQ� �'v�ÍE|ö65IST7�ENQ#JUS��ÐG�=-#?S E)G:S��)=���S$�NS�D�<:ST7�ôuS 7�<��!ñ
SBQTADE)G�S�ST7ªENQ��
ö�JUE)G�E)G:S��)G�5?Q)ENSBQ�� SBENQ#JMô�ö�J£LML/ñ
S ô#G:52�)ST7! �û�G:S��NS EÉöÎ5M�)JUE)<�=FE)JM587��¨ôB=?7 98<�=FQ#=?7�ENSBSÙLM5�5�	��&��Q)SBS$	D=FE)G��
EN5 ST=?ô(G�O:S��NE)JM7�=FE)JM587�JM7<�)8R�0Sðø î 	�Q)5�5��/5��Íôu5?Q)Q)STôuE)7:S����'5��ÔE)G�J��
	
58JM7ªE�J���98J�#?ST7ÏJM7 ý76�k_ÿ�üC �õ'5�O:S��'JM7
= ï�î õ ú�û®� =��ÏôB=?<��NS<È�{G|wÎ��1ª;���dª�Î-Ä'=�� E)G:S1�.� 5-#?S���Q)52�Ï	>LM=?ôuSÌEN5+	DLM=?ôuS� î ñ�Q)5?÷?ST7�LMJM7�÷y� =���ñ
S
JM7���SBQ)Q)STO�ñ�� =Û7:51O:SÌJ��Í7:5y��S����)=F9?S�G�=�� ñ
SBST7�Q#STôuSTJ�#?STO_�w5?QÐ=Ûö�G�JMLUSÙø�S� v9� �587:S!E)J���SÌJ£7ªENSBQ�#F=?Lf5��ÍE)G:S
	
SBQ#JU51O�JMôÐñ>Q)58=?O�ôB=��NE(üV��Q)52� =+�w5?Q�� SBQØ7�STJU98Gªñ
58<:Q- Zû�G�S���SBENQ(JMô¨5��6=Ùñ�Q)5?÷?ST7 LMJM7�÷IJ���Q#S1	�Q)S��NST7�ENSTO�ñ��
Ð ^ G:ST7�=ÙL£JM7:÷ÚEN5×E)G:S�7:S���EÐG:5�	 J�� ñ�Q#5?÷?ST7�AZ=?7���Q#58<:ENS�E)G:Q)58<:98GÏE)G�J�� 7:S��1EÐG:5�	 J��ØJ��$��STO�J£=FENSTL��
=����)JM987:STOI=?7 Ð � SBENQ#JMôFA�=?7�OIJME��0�NS�D�<:ST7�ôuS¨7�<��!ñZSBQ�J���JM7�ôuQ)ST=��NSTOIñ���þ ý76�k_ÿ&

(a) (b)

1

3

2
3

2

1

ÑXÒ�Ó Ä1ÔFÄ �
y_aÔmoakpqn(yiÅ?Y(^_cby_YBYT¯'cbak}©{#`bpqY\mÐÅ?aÉ`��
adakm `byoa�moYT¯_adh¶pqm { � zf´�lD�

'k7�E)G:S�ôu587�ENS��1E�5��!��5?ñ>JMLMSK=?O G:5�ô�7:SBE|ö65?Q)÷1JM7:9:A8ST=?ô(G 7:51O:S�ôB=?7 ôu52�a�!<�7>JMôB=FENS�O�JUQ#STôuE)L��¨ö�JME)G =?7r�
5?E)G:SBQ�7�5�O:S�ö'JUE)G�JM7ÌJUE��ÔENQ#=?7e��� J����#JU587ÌQ#=?7:9?S� �'v�DE)G:S�7�5�O:S�öK=?7�E��ÍEN5�ôu52�$�Ì<�7�JMôB=FENS�ö�JUE)G�7:51O:S��/ö�G�J£ô#G
Q)S��)J£O:S!ñ
S1�?587�O�E)G>J��ØQ#=?7:9?S?A�JM7�ENSBQ���STO>JM=FENS�7:5�O�S��ØñZSBEÉöÎSBST7�E)G:S�� =FQ)S <��NSTO�EN5×Q#STLM=��ÏE)G:S$��S����#=F9?S��1
^ S¨ôu587��#JMO:SBQ�E)G�=FE�7:51O:S î J���=�7:STJU98G�ñ
58<:QK5���7�5�O:SÐH J���7:5�O�S î J��Kö�JME)G�JM7Ú7:51O:SÐHV§i��ENQ#=?7���� J����)JU587
Q#=?7:9?S� N'd7¨=�Q)ST=?LMJ��)E)JMô/ST7r#1JUQ)587e��ST7ªEBA�� 5?ñ>JMLUSÍG:52�)E��¶G�=-#?SÎO�Jml
SBQ)ST7�EX�N5���E|öK=FQ)SNÕoG�=FQ#O:öK=FQ)SKôu587�9�98<:Q(=FE)JU587��
=?7�O O�Jml
SBQ)ST7ªE�Q#=?O�JU5 JM7�ENSBQ��j=?ôuS��ÌýÜþ�%_ÿbAZö�G�J£ô#G�ôB=?7 LUST=?OIEN5+#F=FQ#JM=Fñ>JML£JUEj�ÙJM7×E)G:STJUQ�ENQ#=?7���� J����)JU587ÚQ#=?7�9?S��1
46587��#JMO:SBQ�E)G:SÌS��:=���	>LUS!5��Í= ï î õ ú�û�ôu52��	�Q(J��)JM7:9aWÛ7:51O:S��!øj7�5�O:SÙþFAZ7�5�O:SE6 =?7�OÏ7:51O:S�W8ü
�)G:5_ö�7
JM72R/JU9� Ðþ
 T'k7ÖE)G�J���9�98<:Q)S?A6E)G:SM��<>LML�ôBJUQ(ôBLUS�� Q#S1	�Q)S��NST7�E×7:5�O�S��BAÎ=?7�O2E)G:S O:5?ENENSTO ôBJUQ(ôBLUS��ÙQ)S1	�Q)S��NST7�E
ENQ#=?7���� J����)JM587ÐQ#=?7:9?S���5��:E)G:SK7:51O:S��1 _û�G:S�7�<��¨ñ
SBQ(
52�)JUE)JU587:STO¨JM7�ST=?ô(G�5��:E)G:ST��� =?LMLªôBJMQ#ôBLUS���Q#S1	�Q)S��NST7�E��

140

E)G:S�7�5�O:S�§i��JMO:ST7�E)JUEj�ÚøjJJ vS� 2'P� =?O�O:Q#S����(üC ªR/JU9� �þ0�#G:5iö
��6Z�)7�=
	e�#G:5?E��Ô5��ZE)G:S�7:SBEÉöÎ5?Q)÷�=���E)J���S�JM7�ôuQ#ST=��NS��
=?7�OÛE)G:SØ7:5�O�S��`��5N#?SØJ£7 E)G:S 7:SBE|ö65?Q)÷p î �T�)G:5_ö�7ÛJ£7ÛR/JU9� Zþ8øj=ªü(A�7:5�O�S¨þ'=?7>OÛ7:51O:S/W¨=FQ)SØ7:STJU98G�ñ
58<:Q��
5��ÌST=?ô#Gù5?E)G�SBQ� �õ�51O:S;6óJ��×7�5?EI= 7:STJU98G�ñZ58<�QÙ5���7:51O:S þ�5?Q�7:51O:S5W�A�ñ
STôB=?<��NS JUEIJ��Ú7:5?E×ö'JUE)G�JM7
E)G:S!ENQ#=?7���� J����)JU587ÚQ#=?7�9?S¨5��ÔSTJUE)G:SBQ 7:51O:S� �81J�� JMLM=FQ#L��?A�7:51O:S:6ÛG�=��'7:5Û7:STJM98Gªñ
58<:Q��Kñ
STôB=?<��)S!7:5Û5?E)G:SBQ
7:51O:S��/=FQ)S�JM7�JUE���Q#=?7:9?S� ^ JUE)G�J£7Ì= ï î õ ú�û�A?ST=?ô#G 7:51O:SKôB=?7$��5N#?S�=FEÔö�JMLMLbAiô#G�=?7�98JM7:9ÐJUE��Ô7:STJU98G�ñ
58<:Q��
=FQ)ñ>JMENQ#=FQ#JML���
û�G�<��ÐJM7�R/JU9� Íþ8ø�ñZü(A¶7�5�O:S×þ�J��Ð7�5iö+=I7�STJU98Gªñ
58<:QØ5��K7:51O:S$6�A�7:5�O�Sa6Ú=?7�O 7:51O:S$W×=FQ)S
7:STJU98G�ñ
58<:Q��Ì5�� ST=?ô#GÖ5?E)G:SBQTAÔñ><:E 7�5�O:S<6�J�� 7:5?E = 7:STJU98G�ñ
58<:Q�5�� 7�5�O:S þ
 �û�G:SBQ)S1��5?Q)SIJM7 = G�JU98G>L��
O��17�=�� JMô ï�î õ'úÎû E)G�S!7:STJU98G�ñ
58<:Q#G:5�51OÚQ)STLM=FE)JU587_� =��I7�5?E'ñ
Sc�G�R�$��SBENQ(JMô
 e'k7<	�Q#S1#�JU58<e��öÎ5?Q#÷DAZE)G:S
9?ST7:SBQ#=?L>=����)<���	>E)JU587�G�=��Ôñ
SBST7�� =?O:S�E)G�=FEÔS1#?SBQ���7�5�O:S�G�=���JMO:ST7�E)JMôB=?L1ôB=
	>=Fñ>JMLMJMEj�!=?7>O�Q)S��G	
587��)JUñDJMLMJUEx�?A
�N5ÌE)G�=FE�= ï î õ'úÎû2J��`�j<�LML����G�R�$��SBENQ(JMô!ý K:Aj6�k�Aj6�Q_ÿ& >ò'5iö6S1#?SBQTA�=!÷?S1� 5?ñR*NSTôuE)J�#?SØ5���58<:QKQ)S��)ST=FQ#ô#GÚJ��ÎEN5
	�Q)STôBJ��NSTL���� J�� J£ôKE)G:S'O��17�=�� J£ô�7�=FE)<:Q)S�5���= ï î õ ú�û�A�=?7�O E)G�<��Îö6S'O:5Ì7:5?E�� =F÷?S E)G�J��Î=����)<��$	�E)JU587!

'k7�ý76�k_ÿbAe� =?7���	D=FQ#=���SBENSBQ���ö'G�JMô#GÚôu587�ENQ)58L�E)G:SØñ
STG�=-#�JU58<�Q�5��U�)8R�?SÌAe�)<�ô(G×=���E)G:SZ��Q)S�D�<:ST7�ô�� 5��
ñ�Q)58=?O>ôB=��NEBA8E)G:S0��Q)S�D�<:ST7�ô���5��p��<�L£L:O�<���	e�>#?SBQC�)<��ÍJM7>ôuQ)S���ST7�E)=?L�<�	�O�=FENS��Í=?7�O E)G:S0	
SBQ#ôuST7�E)=F9?S'ô#G>=?7:9?S
JM7 E)G:S'Q#58<:E)JM7:9c� SBENQ#JMô�ö'G�JMô#GÛôB=?7ÙENQ#JU9?9?SBQ�=?7ÛJ£7�ôuQ)S���ST7�E)=?L><�	�O�=FENS =FQ)SØ7:5?EÎ98J�#?ST7! ï 5?Q)SB5-#?SBQiA:ö�G:ST7
=?7�OÙG:5iö2ST=?ô#G×7�5�O:S'<�	�O�=FENS��ÎJME��`�NS�D�<:ST7�ôuSØ7�<e�¨ñ
SBQÎJ£7a�)8R�?S =FQ#S 7:5?EKO:S��)ôuQ(JUñ
STO�S��"	DLMJMôBJUE)L��� 8û�G:SBQ)S
J��!=?L��N5 7�5?E!=?7���O:S��)ôuQ#J�	>E)JU587 5���E)G:SÙJM7�JUE)JM=?L`�NE)=FENSÙJ£7 E)G:Sy�Z8��?S¨	�Q)51ôuS����1 fû�G:SBQ)S1��5?Q)S?AfJ£7�5?Q#O:SBQ!EN5
JMLML£<��NENQ#=FENSIE)G�SÏñ
STG�=-#�JM58<:Q 5����Z8��?S ôu52��	DLUSBENSTL�� =?7�O <�7�=��!ñ>JU98<�58<��)L��?AÍö6S 7:SBSTO2EN5¤� =F÷?S5�N52��S
=����)<e��	�E)JU587��� î ôBôu5?Q#O>JM7:9×EN5�E)G�S S��1=��$	>LUS$	�Q#S��NST7ªENSTO JM7 ý76�k_ÿbAfE)G:SBQ)SÛJ���=×Q)58<:ENS ST7ªENQ�� EN5 JUE��NSTL��KJM7
E)G:SÛQ)58<:E)JM7:9�E)=Fñ>LUS 5���ST=?ô(G 7�5�O:S� fR:5?Q�58<:Q:��51O:STLML£JM7:9×=?7�O =?7>=?L��"�#J��BA�ö6SÛ=����#<���S E)G�=FEÌST=?ô#Gó7:51O:S
JM7�JME)JM=?LML��×587�L��ÏG�=���E)G:S Q)58<:ENS�ST7�ENQ���EN5 JME��NSTL��ÎJ£7 JUE��ÐQ)58<:E)J£7:9×E)=Fñ>LUS�ö�JME)G JUE��)�NS�D�<:ST7�ôuS 7�<��!ñ
SBQ)�NSBE
EN5y]R Dû�G:SÌ7:51O:S¨JM7�ôuQ#ST=��NS��'JME��V�NS�D�<:ST7�ôuSÌ7�<e�¨ñ
SBQ�ñ"�.6�ö'G:ST7:S1#?SBQ E)G:SBQ)S!J��'=��)JU987�J�9DôB=?7ªE�ô(G�=?7:9?SÌEN5
JUE��ÌQ)58<:E)J£7:9�E)=Fñ>LMS� �û�G�ST7 E)G>J��!7�5�O:SÛñ�Q)58=?O�ôB=��)E���E)G:SÛENQ(J�	>LUS��Ì=����N51ôBJM=FENSTO ö�JUE)G E)G:S×ô#G�=?7�9?STOóQ)58<:ENS
ST7�ENQ#JUS��KJ��$��STO>JM=FENSTL��� 1û�G�J��Î=����)<���	>E)JU587ÛJ��ÎJM7>O:SBSTO��#=
�wS/��5?Qf�)8R�0S ñ
STôB=?<��NSØJUEf�)=FE)J��G9>S��ÎE)G�SØ7�SBSTOÛ5��
�)8R�?S�·p� 5?Q)S�Q)STôuST7�E'Q#58<:ENS¨ST7�ENQ#JUS��V�)G:58<�LMO�G�=�#?SÌG�JU98G:SBQ
�)S�D�<:ST7>ôuS!7�<��¨ñ
SBQ���JM7IE)G:S¨Q)58<:E)JM7:9 E)=Fñ>LUS�
ï ST=?7ªö�G>JMLUS?AÎJMEÛO:5�S��Ú7:5?EÙJ£7�B><:ST7�ôuS�E)G:S Q#58<:E)JM7:9 =?LU9?5?Q#JUE)G�� 5��c�)8R�?S JM7�ý76�k_ÿ& �ûf5¤�#J���	>LMJ��d� E)G:S
	�Q)5?ñDLUS��×A1öÎS!JU987:5?Q)SÐE)G:S�J£7��NE)=?LML
E)J�� SÐ5��fST=?ô(G�Q)58<�ENSÐST7ªENQ���

2
1

1

2

3

1

3

2 3 2

2

2

1

3 1

(e)2:incremental, no nodes receive then 1: Incremental, 2: receives
(f)2:full dump; 1:receives

(d)1:full dump, 2:receives

(b)2:incremental, 3:receives(a)3:full dump, 2: receives (c)3:incremental, no nodes receive

3

1

3

ÑXÒ�Ó ÄCÖªÄ zfm'ad­_{([�]o}qa/Y#x:ÑÍeTÑfÓ�pqmØY\]?adc|{)`bpqY\m�Çj±NÈ
cbY(^_`baÍ{(¯_tuadcr`bpqhrak[�admT`bh
î 7IS��:=���	>LUS!5��Y�)8R�?S+JM7I5�	ZSBQ(=FE)JU587Iö�JME)G�<�7�J£O�JUQ)STôuE)JU587>=?LZL£JM7:÷R��J���O:S1	DJMôuENSTO�JM7 R/JU9� p6" �'d7�E)G�J��

9�98<:Q#S?A�E)G�Sy�)58LMJMO =FQ)Q)5iöV��JM7�O�JMôB=FENSÙE)G�=FE�E)G:SH�NST7�O�SBQÌñ>Q)58=?O�ôB=��NE�� =_�j<�LML6O�<���	 EN5 JUE���7:STJU98G�ñ
58<:Q��BA
=?7�OÏE)G:S�O�=��)G�STOÏ=FQ#Q)5iö
�ÐJ£7�O�JMôB=FENSÌE)G�=FEØE)G:S��NST7�O:SBQØñ�Q#58=?O�ôB=��NE��Ð=?7 JM7�ôuQ#S���ST7ªE)=?L/<�	�O�=FENS� p'k7 5?Q(O:SBQ

141

× Âo¾RØ Þ ÔFÄ ��m_pv`bp~{#}ªcbY(^_`bpqmonÎ`|{(Åo}qakh¶Y(x1moYT¯_adhÍ±(�?²Î{(mF¯ ³
Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiakÒT´¶c
± ± � Çj±\�o�uÈ

Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiaNÒB´¶c
² ² � Ç£²T�o�uÈ

Ñ/akhj`NÊ ´�ad­T` � aÉ`NÊ eiaNÒB´fc
³ ³ � ÇM³i�o�uÈ

× Âo¾�Ø Þ ÖªÄ �fY(^_`bpqmonÎ`|{(Åo}qakh�Y#x:moYT¯iakhÔ±\�8²Î{(mF¯'³6pqm ÑXÒ�Ó ÄeÖ�Ù�Â2Ú
Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiakÒT´¶c
± ± � Çj±\�o�uÈ

Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiaNÒB´¶c
² ² � Ç£²T�F²\È
³ ³ ± ÇM³i�o�uÈ

Ñ/akhj`NÊ ´�ad­T` � aÉ`NÊ eiaNÒB´fc
³ ³ � ÇM³i�o�uÈ

× Âo¾�Ø ÞcÛ Ä �fY(^_`bpqmon�`|{(Åo}qakh�Y#x�moYT¯_adhÍ±(�?²Î{(mF¯'³6pqm ÑXÒ�Ó ÄeÖ�Ù�¾eÚ {(mo¯ ÙjÃ�Ú
Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiakÒT´¶c
± ± � Çj±\�o�uÈ

Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiaNÒB´¶c
² ² � Ç£²T�F²\È
³ ³ ± ÇM³i�o�uÈ

Ñ/akhj`NÊ ´�ad­T` � aÉ`NÊ eiaNÒB´fc
² ² ± Ç£²T�F²\È
³ ³ � ÇM³i�F²\È

× Âo¾�Ø ÞZÜ Ä �fY(^_`bpqmonÎ`|{(Åo}qakh�Y#x:moYT¯iakhÔ±\�8²Î{(mF¯'³6pqm ÑXÒ�Ó Ä�Ö�Ùjâ�Ú {(mo¯ Ù Þ Ú

Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiakÒT´¶c
± ± � Çj±\�o�uÈ

Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiaNÒB´¶c
± ± ± Çj±\�o�uÈ
² ² � Ç£²T�NÝBÈ
³ ³ ± ÇM³i�o�uÈ

Ñ/akhj`NÊ ´�ad­T` � aÉ`NÊ eiaNÒB´fc
² ² ± Ç£²T�F²\È
³ ³ � ÇM³i�F²\È

× Âo¾RØ ÞcÞ Ä �¶Y\^_`bpqm_nÎ`|{(Å_}qakhfY#x:moYT¯iakhÔ±\�F²6{(mo¯Ø³6pqm ÑXÒ�Ó Ä�Ö"ÙAßCÚ
Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiakÒT´¶c
± ± � Çj±\�F²\È
² ² ± Ç£²T�NÝBÈ
³ ² ² ÇM³i�o�uÈ

Ñ/adhj`NÊ ´�ad­T` � ad`NÊ eiaNÒB´¶c
± ± ± Çj±\�F²\È
² ² � Ç£²T�NÝBÈ
³ ³ ± ÇM³i�o�uÈ

Ñ/akhj`NÊ ´�ad­T` � aÉ`NÊ eiaNÒB´fc
² ² ± Ç£²T�F²\È
³ ³ � ÇM³i�F²\È

× Âo¾�Ø Þcà Ä �fY(^_`bpqmon�`|{(Å_}©adhfY#x:moYT¯iakhÔ±Í{(mo¯Ø²Î«kY#crcbakhr]?Y\mo¯_pqmonK`bY ÑFÒáÓ Ä Û
Ñ/akhj`NÊ ´fad­T` � ad`NÊ eTaNÒB´fc
± ± � Çj±(�wÝuÈ
² ² ± Ç£²B�F°\È
³ ² â ÇM³T��±NÈ

Ñ/akhj`NÊ ´fad­T` � ad`NÊ eTaNÒB´fc
± ± ± Çj±(�?²(È
² ² � Ç£²B�F°\È
³ ³ â ÇM³T��±NÈ

(c) 1: incremental, no nodes receive

2

(a)2: infers a broken link (b)2: incremental; 1: receives

3
2

1
3

1 3

2

1

ÑXÒ�Ó Ä Û Ä z¶m ad­_{#[�]o}qa/Y(x�ÑÔeiÑ¶Ó pqm Y(]?adc|{#`bpqY(m�Ç£²\È
}qp©m_��Å_cbaN{#�\{#n\a

142

EN5I÷?SBS1	 E)G:S$9�98<:Q#S$�)<�ôBôBJM7�ôuEBA�E)G�S ENQ#=?7���� J����)JU587ÏQ#=?7�9?S���5��6E)G:S 7:51O:S��Ð=FQ)S 7�5?E�98J�#?ST7�JM7 R�JM9� F6" X'x�
=Ï7:5�O�S Q)STôuSTJ�#?S��ÌE)G:SÛQ)58<:E)JM7�9 JM7���5?Q�� =FE)JM587;�NST7�E¨ñ"� =?7:5?E)G:SBQ�7:51O:S E)G>=FE���ST=?7e�!E)G�S Q)STôuSTJ�#?SBQ�J��Ì=
7:STJU98G�ñ
58<:QK5��/E)G:Sc�NST7�O�SBQTA:JJ vS� >JUE�J���J£7ÚE)G:S�Q#=?7:9?S¨5��fE)G:S:�NST7�O:SBQ�

R/JU9� �6a�)G:5_ö
�0	
52���)JMñ>LUS Q)58<:ENS¨=?O�#?SBQ#E)J��NS���ST7�E���5��YW 7:5�O�S���Q#<�7�7>JM7:9E�Z8��?S JM7I= ï î õ'úÎûã��Q)52�
E)G:S JM7�JUE)JM=?L��)E)=FENS =��ÎE)J���S JM7�ôuQ)ST=��NS��� ªû�G:S��NS =?O�#?SBQ)E)J��)S���ST7ªE��6JM7�ôBL£<�O:S�=)�j<�LML>O�<���	 5��
ST=?ô(GÙ7�5�O:S =?7�O
ôu587��NS�D�<:ST7�E)JM=?L�JM7>ôuQ)S���ST7�E)=?L�<�	�O�=FENS��1 8û�G�S�JM7�JUE)J£=?L�Q#58<:E)JM7:9ØE)=Fñ>LUS���5��XWÐ7:51O:S��Ô=FQ)SV�#G:5iö�7 JM7�ûf=FñDLUS�þ

øjûf5$�)=�#?S��G	>=?ôuS?A�þÐJ���<��)STOy�w5?Q�7:51O:S�þFAe6E��5?Q�7:51O:S)6�=?7�O<W��w5?Q�7�5�O:S)W" ~üT'k7ÚE)G:SÐE)=Fñ>LMS?A¶økþFA�þFAe]1A¶økþFA
]ªüNü
��ST=?7���E)G>=FE 7:51O:S þ!G�=���=ÛQ)58<:E)J£7:9�E)=Fñ>LUSÌôu52��	�Q#J��#JM7:9�587:S!Q)58<:ENS¨ST7�ENQ��×EN5ÙJUE��NSTL��dA>JM7×ö'G�JMô#G�E)G:S
O:S��NE)J£7�=FE)JU587 =?7�O E)G:S�7:S��1E�G:5�	 ñ
5?E)GÛ=FQ)S�7:51O:S�þFAªE)G�S�7�<e�¨ñ
SBQÔ5���G:5�	e�ÎJ��Y]�=?7�O JUE��ÍJM7�JME)JM=?L��NS�D�<:ST7�ôuS
7�<��¨ñ
SBQ�J��?�)SBE�EN5�]1A�Q#S1	�Q)S��NST7�ENSTOI=��¨økþFAp]ªüC

^ S×=����)<e��SÛE)G>=FE�7�5�O:SyW�J��¨E)G:S+9�Q��)E¨EN5�ñ�Q)58=?O�ôB=��)E�JME��c�j<�LMLÎO�<���	 øJW�A>]1A�øJW�A�]ªüNü¨ö�JUE)G�JM7 E)G:S
ï î õ ú�ûZ �LÐ7�L�� 7:51O:S)6!Q)STôuSTJ�#?S���E)G�J��6J£7��w5?QC� =FE)JU587Ú=���JM7�O�J£ôB=FENSTOÙJ£7ÙR/JU9� �6:øj=ªüC >õ'51O:Sc6Ì<�	�O�=FENS���JUE��
Q)58<:E)J£7:9�E)=Fñ>LUS ñ>=��NSTOÛ587ÛE)G�J���J£7��w5?QC� =FE)JU587! 2'dEK=?O�O��ÎE)G:S'7:SBö2ST7�ENQ��$��5?Q67:51O:S/WÐEN5�JUE��ÍQ#58<:E)JM7:9!E)=Fñ>LUS?A
=
��ENSBQKJ£7�ôuQ)ST=��)JM7�9¨E)G:Sg��SBENQ#JMô'5���E)G�J���ST7ªENQ�� ñ�� þ'=?7�OÙ=?O�O�J£7:9!7:51O:S/W¨=��6E)G:SØ7:S��1EÎG:5�	Ú5���E)G�J��ÎST7�ENQ���
î �wENSBQÔE)G�=FEBA8JME/J£7�ôuQ)ST=��NS��/JUE��/5_ö�7��NS�D�<:ST7�ôuS�7�<e�¨ñ
SBQ/EN5c6" ?û�G:S�<�	�O�=FENSTOÌQ)58<:E)JM7�9'E)=Fñ>LMS��f5��ZE)G:S�7:51O:S��
=FQ)S�98J�#?ST7 JM7�û�=Fñ>LUS�6" î �/�)G�5iö�7 JM7ÏR/JU9� X6:ø�ñZü(A�7:51O:S�6ÛJ��$��STO�JM=FENSTL��Iñ�Q)58=?O�ôB=��)E��Ð=?7 JM7�ôuQ)S���ST7�E)=?L
<�	�O�=FENS?ADøNøJ6�AR]1AZøJ6�AR68üNü(A
øJW�AZþFAZøJW�AR]ªüNüNüC �õ'51O:SVWÐQ#STôuSTJ�#?S���E)G>J��ÍJM7���5?Q�� =FE)JM587 =?7�O <�	
O>=FENS��ÍJUE��ÍQ#58<:E)JM7:9
E)=Fñ>LUSØJM7Ù=:�#J�� JMLM=FQÎö6=-�?A�=?O�O�JM7�9¨=�7:SBöÖQ#58<:ENSØST7ªENQ��a�w5?Q�7:51O:Sg6!EN5�JUE��ÎQ)58<:E)JM7�9¨E)=Fñ>LUS?A:=?7�OÙJM7�ôuQ#ST=��NS��
JUE����NS�D�<�ST7�ôuS'7�<��!ñZSBQÎEN5�6�A�=����)G�5iö�7ÛJM7 û�=Fñ>LUSVW" �'d7ÛR/JU9� "6:øjôiü(A:7:51O:SVW�ñ�Q)58=?O�ôB=��NE��6=?7ÙJM7�ôuQ)S���ST7�E)=?L
<�	�O�=FENS?AføNøJ6�A/þFA�øJ6�A!68üNü(AÔøJW�A�]1A�øJW�A!68üNüNü(AZñ><:E�7:5Û5?E)G:SBQ'7�5�O:S���Q)STôuSTJ�#?S�JUEBA�ñ
STôB=?<��NS!7:5�O�S:6 J���58<:E�5��
E)G:S�Q#=?7�9?S�5��67:51O:S$W" �õ'5iö�A¶7�5�O:S×þ�5?Q#JM98JM7�=FENS���JUE��/�j<�LML�O�<��$	Ïñ>Q)58=?O�ôB=��NE)JM7�9 økþFAX]1AÎøkþFAX]ªüNü ö�G�J£ô#G
7:51O:SZ6ÌQ)STôuSTJ�#?S��BA�=��?�)G�5iö�7×JM7ÚR/JU9� �6:øjODüC �õ'5�O�SZ6�<�	
O>=FENS��6JME��KQ)58<:E)JM7:9ÌE)=Fñ>LUSÐ=��?�)G�5iö�7×JM7Úû�=Fñ>LUSgK�
'k7ÏR/JU9� F6:ø�S_ü(Af7:5�O�SE6Ùñ�Q#58=?O�ôB=��NE��Ð=?7�JM7>ôuQ)S���ST7�E)=?L�<�	
O>=FENSÚøNøkþFA�þFA�økþFAX]ªüNü(A�øJ6�AU]1AÔøJ6�AFK�üNüNü(A�ñ><:EØ7:5
5?E)G:SBQ��ØQ#STôuSTJ�#?S JUE1 �õ'5iö+JM7�R/JU9� X6:øA�(ü(A¶7:51O:S�6Ù5?Q#JU98JM7>=FENS��ÐJUE��/��<>LMLfO><���	�=?7�O�ENQ#=?7���� JUE���øNøkþFA�þFA�økþFA
]ªüNü(A�øJ6�A�]1A�øJ6�ARK�üNü(A�øJW�A�þFA�øJW�AR]ªüNüNü(A�=?7>OÛ7:51O:S�þ�Q#STôuSTJ�#?S��KE)G�J��6JM7���5?Q�� =FE)JU587X ªõ�51O:S�þ ÷?SBS1	e�6E)G:SØST7ªENQ��
EN5�JUE��NSTL���<�7>ô#G�=?7:9?STOÛñ
STôB=?<��NS 5���E)G:SØJMO:ST7�E)JMôB=?Le�)S�D�<:ST7>ôuS 7�<��!ñZSBQf]R "'ÉEK=?O�O��ÎE)G:S ST7ªENQ#JMS��`��5?Q�7:5�O�Sg6
=?7�O×7:51O:S)WÌEN5 JUE��KQ#58<:E)JM7:9ÌE)=Fñ>LUSÐQ)S���	ZSTôuE)J�#?STL��?A�=?7�O×JUE�JM7�ôuQ#ST=��NS���JUE��0�NS�D�<:ST7�ôuS�7�<��!ñ
SBQ6ñ"�H6" �û�G:ST7
7:51O:SÐþKñ�Q)58=?O�ôB=��)E���=?7 JM7>ôuQ)S���ST7�E)=?L:<�	�O�=FENS�øNøkþFA>þFADøkþFAr68üNü(AZøJ6�A�þFAZøJ6�A2K�üNü(ADøJW�A�6�ADøJW�A2]ªüNüNüÔö�G�JMLMS67:51O:S
6�Q)STôuSTJ�#?S���JUEÛø�EN5I�)=-#?Sy��	>=?ôuS?A�=?L��N5t�)G�5iö�7 JM7 R/JU9� >6:øA�(üNüC Ôõ�51O:S+6�587�L�� <�	�O�=FENS��!E)G:SÛQ)58<:ENSÙST7ªENQ��
��5?Q¨7:51O:S×þ�=��ÛøkþFA�þFA�økþFAU68üNü(A�=?7�O�÷?SBS1	e�¨E)G:S�5?E)G:SBQ�ST7�ENQ#JUS���<>7�ô#G�=?7�9?STO�ñZSTôB=?<e�NS�E)G:SBQ)S J��Ð7:5×7:SBö
JM7���5?Q�� =FE)JM587 Q)STôuSTJ�#?STO�A��N5�JUEKO:5�S���7�5?E6ñ>Q)58=?O�ôB=��NE�=?7��ÛJM7>ôuQ)S���ST7�E)=?LZ<�	
O>=FENS� 1û�G:Sg� 5�O�J�9�STO Q#58<:E)JM7:9
E)=Fñ>LUS���=FQ)Sc�)G:5_ö�7IJM7×û�=Fñ>LUSck"

î 7�S��:=���	>LUS�E)G�=FEÍJ£LMLM<��NENQ(=FENS��ÔG:5iö =Ð7�5�O:S�O�ST=?L��/ö�JUE)G�=Øñ�Q#5?÷?ST7 LMJM7:÷!J��/98J�#?ST7 J£7ÌR/JU9� "W" î ���#<���S
E)G:SÌQ)58<:E)JM7�9 E)=Fñ>LUS��'5���7:51O:S��Ìþ!=?7>O_6Û=FQ)SÌE)G:S��#=���SÌ=�� E)G:52�)S�J£7�û�=Fñ>LUS�k" ¶46587e�)JMO:SBQ�7�5�O:S�6a9>7�O��
E)G�=FEÍJUEÔG�=��/7:5?EÔQ#STôuSTJ�#?STO�=Øñ�Q)58=?O�ôB=��)E��wQ)52� 7:51O:S0WV�w5?QÍ=Øö'G�JMLUSØø�S� v9� ª=/	
SBQ#JU51O�JMôÍJM7�ENSBQ�#F=?Lwü(A?=��Y�)G:5_ö�7
JM7 R/JU9� FW:øj=ªüC U'ÉE�JM7��wSBQ�� E)G:SÛLMJM7:÷Iñ
SBEÉöÎSBST7 E)G�S�� J��Øñ�Q)5?÷?ST7X ¶ò�ST7>ôuS?A¶7:51O:S$6×=����)JU987e�ØE)G:S$��SBENQ#JMô�5��
E)G�J��ØLMJ£7:÷IEN5 Ð =?7�O�JM7>ôuQ)ST=��NS��ÐE)G:S��NS�D�<:ST7�ôuS 7�<��!ñ
SBQÐñ�� þ
 �û�G:ST7 JUEÐJM7�ôuQ#ST=��NS��ÐJUE��Ø5iö'75�NS�D�<:ST7�ôuS
7�<��¨ñ
SBQØñ"�_6Ù=?7�O J��$� STO�JM=FENSTL��Iñ>Q)58=?O�ôB=��NE��Ð=?7 JM7>ôuQ)S���ST=?7�E)=?LÔ<�	�O�=FENSÚøNøJ6�AU]1A�øJ6�AFs8üNü(AÎøJW�A Ð AÍøJW�A
� üNüNü(AZö�G�J£LUSÐ7:5�O�S þÐQ)STôuSTJ�#?S�� JUE�J£7IR/JU9� pW:ø�ñZü¨øj7:5?ENS�·D=FE'E)G�J��0� 52��ST7ªEBADE)G:S¨Q#58<:E)JM7:9�E)=Fñ>LMS�5��Í7:51O:S þ
J���E)G:S:�)=�� S!=��'E)G�=FE'JM7 ûf=FñDLUS:k�AZö�G�JMLUSÐE)G�S�Q)58<:E)JM7�9 E)=Fñ>LUS!5��Í7:5�O�S:6 J��V�)G:5_ö�7�JM7 ûf=FñDLUS:s8üC
õ�51O:S
þ�<�	�O�=FENS��KE)G�S�Q)58<:ENS�ST7�ENQ��+�w5?Q 7:51O:S)6�EN5 E)G:S�Q#STôuSTJ�#?STO.�NS�D�<:ST7�ôuS!7�<��!ñ
SBQ
s" >R:5?Q'E)G:S�Q)58<:ENS¨ST7ªENQ��
��5?Q�7:51O:ScW�A>7:51O:S þ)�NSTLMSTôuE���E)G:S�587�S�Q)STôuSTJ�#?STOt�)JM7�ôuS�JUE�G>=���E)G:S¨G�JM98G:SBQ0�NS�D�<:ST7�ôuS¨7�<��!ñZSBQ- �HÎSTôB=?<e�NS
E)G�J��ØJ��Ø=Ùñ�Q)5?÷?ST7�LMJ£7:÷DAZ7:51O:SÙþ�J£7�ôuQ)ST=��NS��ØJUE�� 5iö'7I�NS�D�<�ST7�ôuS�7�<��!ñ
SBQØñ��M6"
û�G:S�� 5�O�J�9�STO�Q#58<:E)JM7:9
E)=Fñ>LUSÚ5��Ø7:51O:SÏþ×J����)G:5iö'7 J£7 û�=Fñ>LUS<s" Íû�G�ST7 7:5�O�SÏþ×J��a��STO�JM=FENSTL�� ñ�Q)58=?O�ôB=��NE���=?7 JM7�ôuQ)S���ST7�E)=?L
<�	�O�=FENS�øNøkþFA�]1A�økþFA"K�üNü(A¶øJ6�A�þFA�øJ6�A�s8üNü(A¶øJW�A Ð A�øJW�A � üNüNü6=?7�OÚ7:5Ì5?E)G:SBQ�7:51O:S��6Q)STôuSTJ�#?SÐJUEBA:=��f�)G:5_ö�7ÚJM7
R/JU9� �W:øjôiüC !8�5�Q)58<:E)JM7�9ÌE)=FñDLUS���5��/7:51O:S þ�=?7�O×7:51O:Sc6�=FQ#S�E)G:S)�)=���S!=���E)G:52�NS¨J£7×ûf=Fñ>LMScs"

143

ä åMæ��_ç?è2��ì�çIç���èêé-éÔê`�e�ØéXë)�ìé¨åIè;í�îïæ����w�>ê éfæ��¤�>�.�

ð!�J� ¹ ´�º-µA�p¢uñ+��°NµA p¢F�e±A´
û�G:SØJM7�ENST7ªE�5��f58<:Q�4f��õò��51O:STL
J��6EN5$�)G:5iö E)G>=FE�4?��õg��ôB=?7ÚñZSØ<��NSTO+��5?Q�E)G:SZ��51O:STLMLMJM7�9¨5��¶Q#58<:E)JM7:9
	�Q)5?EN51ôu58L���JM7¨= ï�î õ ú�û ST7r#1JUQ)587e��ST7ªEfö�G:SBQ)SÎ=FQ)ñ>JUENQ#=FQ��Øô(G�=?7:9?S��/5���7:SBEÉöÎ5?Q#÷�EN5�	
58LU5?9��¨=FQ)S�	Z52���)JUñ>LUS�
^ S E)G:SBQ#S1�w5?Q)S��NE)=FQ#EÐñ��M��51O:STLMLMJM7�9 E)G:S�ñ>=��)J£ô!5�	
SBQ#=FE)JM587�5���E)G:S�Q)58<�E)JM7:9+	�Q)5?EN51ôu58LJ·�7:51O:S��ÐO�J��)ôu5N#?SBQ
5?E)G:SBQ�7�5�O:S��Íñ��ÌQ)STôuSTJ�#1JM7:9Øñ�Q)58=?O>ôB=��NE`��S����#=F9?S���=?7�O <�	
O>=FENS6E)G�STJUQÍQ)58<:E)J£7:9ØE)=Fñ>LUS��Í=?ôBôu5?Q#O>JM7:98L��p»8=?7�O
7:51O:S��ÍO�J��)ôu5-#?SBQ6E)G�=FEY	�Q#S1#�JU58<e�)L��¨S��)E)=Fñ>LMJ��)G�STO LMJM7:÷R�Ô=FQ)S�7�5¨LU587:9?SBQ�#o=?LMJ£O�A?=?7�Oa� =FQ#÷ÌE)G�S��+=��Íñ>Q)5?÷?ST7
JM7ÚE)G:STJMQ�Q)58<:E)JM7:9�E)=FñDLUS��1

^ S O�5Ú7�5?E/� 5�O:STL�E)G:S�Q)58<�E)JM7:9H��S����)=F9?S���S��"	>L£JMôBJUE)L��� �'d7��)ENST=?O�öÎSg*)<��NEÐôu587��)J£O:SBQØS1#?ST7ªE��Ðö'G:SBQ)S
E)G:SÏJM7���5?Q�� =FE)JU5873��Q)52� E)G�S.��S����)=F9?S�J���Q#STôuSTJ�#?STOÖ=?7>Oó	�Q)51ôuS����NSTOX ^ S =����#<���SIE)G�=FEÛE)G�J�� ôB=?7>7:5?E
51ôBôB<:QZ�)J��Ì<�LUE)=?7:SB58<��#L��×JM7�O�J�lZSBQ)ST7�EØ7:5�O�S��BADJJ vS�
7:5ÙE|ö65×7:5�O�S��'Q#STôuSTJ�#?SÌ=?7>Ot	>Q)5�ôuS�����E)G:SÌñ�Q)58=?O>ôB=��NE
=FE�S��:=?ôuE)L���E)G:SV�)=���S�E)J�� S� r'k7��NENST=?O�A8E)G�S��NS�S1#?ST7�E��6=FQ#S�JM7�ENSBQ#LUST=�#?STOÙJM7�E)G�S�O�Jml
SBQ)ST7�EÍ7:5�O�S��1 ªR�<:Q#E)G:SBQTA
ñ
STôB=?<��NS�5���=FQ)ñ>JMENQ#=FQ��t� 5-#?S���ST7�E��¨5��6E)G:S 7�5�O:S��TA�E)G:SBQ)S J���7�5<�G��7>ô#G:Q)587>J��)=FE)JU587�ñ
SBE|ö6SBST7�O�J�lZSBQ)ST7�E
7:51O:S��?��5?Q'= ñ�Q)58=?O�ôB=��NE1 Zò�ST7>ôuS¨E)G:S�ñ>Q)58=?O�ôB=��NE'ñ��×7:51O:S î � =��×ñ
S�Q#STôuSTJ�#?STOIñ"��·Z7:5 7:51O:S��¨øjôu5?Q#Q)S��
�G	
587�O�J£7:9 EN5 î ñ
STJM7:9Ú=?7 J��N58LM=FENSTO 7:5�O�S_üC»Z587�S 7:5�O�S×øj=?L£L/5?E)G:SBQ¨7:51O:S��Ð=FQ)S�58<:EÐ5��6Q#=?7:9?S_üC»¶5?Q¨=?7r�
7�<��¨ñ
SBQ�5��/7:51O:S��1 :û�G:SÐJM7�ENSBQ�	�Q)SBE)=FE)JM587×J��KE)G�=FE�=?LML
7:51O:S��KE)G�=FE'G�=�#?S¨<�	
O>=FENSTOÛE)G�STJUQ�Q)58<:E)JM7�9ÌE)=FñDLUS��
=FQ)S J£7�Q#=?7:9?S =FE�E)G>=FE�E)J���S� f46587�#?SBQ��NSTL��?Af=?LMLÔ7:51O:S��ÐE)G>=FE¨G�=�#?SÛ7:5?E¨<�	�O�=FENSTO�E)G:STJMQ�Q)58<:E)JM7�9ÙE)=FñDLUS��
=FQ)S 7:5?EÐJM7ÏQ#=?7�9?S�=FEÐE)G>=FEÐE)J���S� ï 5?Q#SB5-#?SBQTA¶=×LM52�NEZ��S����)=F9?S G�=��ØE)G�SE�#=���S�S�lZSTôuE�=���ñZSTJ£7:9 58<:EÐ5��
Q#=?7:9?S� ^ JUE)GóE)G>J���<�7�O:SBQC�NE)=?7�O�JM7�9:Afö6S<��51O:STLKE)G:S�<�	�O�=FE)J£7:9 5�� Q)58<:E)J£7:9�E)=Fñ>LUS�� JM7óE)G�S ï�î õ'úÎû
7:587R�|O�SBENSBQ�� JM7�J��NE)JMôB=?LML��� 1û�G�<���<�	�O�=FE)JM7�9Ì=�Q#58<:E)JM7:9�E)=Fñ>LUS!J���ôu587��)JMO�SBQ)STO×=?7�=FQ)ñDJUENQ#=FQ��ÛS1#?ST7ªE1

R�<�Q)E)G:SBQTA�öÎSy��51O:STLÎñ�Q)5?÷?ST7óLMJM7:÷R�¨J£7 =M�)J�� J£LM=FQ�öK=��� ÔH6STôB=?<��NSI=t��<�7>ôuE)JU587�=?L`� 5�O:STL6=Fñe�NENQ(=?ôuE��
��Q)52�+E)J���S?Aªö6S'ôu587��#JMO:SBQ�E)G>=FE6=!ñ�Q)5?÷?ST7ÙLMJM7:÷�ôB=?7ÛñZS JM7�ENSBQ#LUST=�#?STOÛö�JUE)GÛ=?7r� 5?E)G:SBQÎS1#?ST7�E�=?7�O J��ÍE)G�<��
��51O:STLMLUSTO ñ"�Ï=?7 =FQ)ñDJUENQ#=FQ��IS1#?ST7�E1 ¶ò'ST7�ôuS JUEØJ��/	
52���)JMñ>LUSc��5?Q�=×7:51O:S�EN5×Q)STôuSTJ�#?S =y�j<�LML�O�<���	_��Q)52�
=×7:STJU98G�ñ
58<:QØ=?7�O�E)G:ST7�EN5IO:STôBLM=FQ#SÌE)G�S LMJM7:÷IO:5_ö�7 =��ÐE)G:S�7:S��1EÐS1#?ST7�E1 ¶û�G�J��Øôu58<�L£OÏôu5?Q#Q)S��G	
587�OÏEN5
E)G:SØ7:51O:S'LUST=-#�J£7:9¨E)G:S ï î õ ú�û =?7�OÛ5?E)G:SBQ�7:51O:S���ñ
STôu52� J£7:9¨O�J���	ZSBQC�NSTO$�N5ÌE)G�=FE6E)G:S1� =FQ)SØ=?LMLD58<:EÎ5��
Q#=?7:9?S�

^ S ñZSTL£JUS1#?S×E)G�J�� ôB=
	>E)<:Q)S�� E)G�S�=��G�R�$��SBENQ��óñ
SBE|ö6SBST7Ö7�5�O:S�� =?7�O E)G:STJUQÛ=FQ)ñ>JUENQ#=FQ��¤��5N#?S���ST7�E
Q)ST=?LMJ��NE)JMôB=?LML���=FE�=ÌG�JU98GR�|LUS1#?STLD5��¶=Fñe�)ENQ#=?ôuE)JU587! :H6STôB=?<��NSØE)G:S/�j<�7�ôuE)JU587�=?L���51O:STLD=Fñ��NENQ#=?ôuE��f��Q)52�Â	�Q)5?ñ��
=Fñ>JML£JUE)JUS��BA1JUE�JM7�ôBL£<�O:S��f� =?7��y�#JUE)<�=FE)JU587��KE)G>=FE�öÎ58<>LMOÚñ
S�ôu587��)JMO:SBQ#STOÚQ#=FQ)SÐS1#?ST7�E��1

ð!��� ô:¯ ¼õÀ !£(´"±
î 4f��õ O�J£=F9?Q#=�� 5���E)G:S ï î õ'úÎû Q)58<:E)J£7:9H	�Q)5?EN51ôu58LrA�ñ>=��)STO�587;�)8R�0S!A�J���98J�#?ST7 JM7 R/JU9� FK� fû�G:S
	><:Q�	Z52�)S�5���E)G:S¨4f��õ J��6EN5$��5�O�STLZG�5iö 7:51O:S��K<�	�O�=FENS E)G:STJUQ�Q)58<�E)JM7:9ÌE)=Fñ>LUS���=?7�OÚO:ST=?L
ö�JME)GÛñ>Q)5?÷?ST7
LMJM7�÷"�1 �û�G�<e�Íö6Sg��51O:STL>E)G:S 7�5�O:S��6JM7 E)G:S ï î õ ú�û2ñ"�g*N<e�NE�E)G:STJMQ6JMO�ST7ªE)JUEx� =?7�OÛE)G:STJUQ�Q#58<:E)JM7:9!E)=Fñ>LUS�
û�G:S�7�5�O:S���=FQ#Sc�NEN5?Q)STOIJ£7ÚE)G:SÐ587�L��+	>LM=?ôuS�JM7ÚE)G�S!4f��õ!AXö>÷�ø�ù�ú1 >û�G�J��f	DLM=?ôuS�J��KEj�"	
STO×ñ"�ÛE)G:S�ôu58LM58<:Q
�NSBE�ûyö>÷"ørù�=��)�#G:5iö�7 JM7 LMJM7:SÚþ�W×JM7 R/JU9� Fk" Tûyö(÷"ørù�J��Ð=H	�Q)51O�<�ôuEØ5��KJUE���JMO:ST7�E)JUEx�?AYö(÷"ørù�ü7ø>A�ö�G�J£ô#G
ôu5?Q)Q)S���	Z587>O��/EN5¨JUE��Í=?O>O:Q)S����BA8=?7>O JUE��ÔQ)58<�E)JM7:9ØE)=Fñ>LUS?Aeý�þ
 8û�G:S�Q)58<:E)J£7:9ØE)=Fñ>LUS�J��/Q#S1	�Q)S��NST7�ENSTO =��Í=¨LMJ��NE
5���Q)58<:ENSÐST7�ENQ#JUS��BA:587:SZ��5?Q�ST=?ô(G�O:S��NE)J£7�=FE)JU587! ^ G:ST7×JU987:5?Q(JM7:9ÌE)G:S�JM7��NE)=?L£LDE)J���S?A1E)G:SÐQ)58<:ENS�ST7�ENQ��ÚJ���=
K
�bE)<�	>LMS�ôu52��	�Q#J��)JM7:9ÐE)G:S O:S��NE)JM7>=FE)JU587�A87:S��1E)G:5�	�A"��SBENQ#JMô�=?7>O JUE����NS�D�<�ST7�ôuS'7�<��!ñZSBQ- qû�G:S�O:S��NE)J£7�=FE)JU587
=?7�O 7:S���E)G�5�	 =FQ)SÙ7:51O:S =?O�O:Q#S����NS��BAfQ)S1	�Q)S��NST7�ENSTO ñ���E)G:SMö>÷�ø�ù�ü7ø� ^ SÛQ)S1	>Q)S��NST7�E¨E)G:S_ö(÷"ørù�ü7ø�=���=
	
52�)JUE)J�#?S�JM7�ENSB9?SBQ�<�	ÏEN5×E)G:S�� =w�1J��!<�� 7�<��¨ñ
SBQØ5��Î7�5�O:S��ØJM7 E)G:S ï î õ ú�û ø��NSBS�LMJ£7:ScKIJM7ÏR/JU9� Xk8üC
û�G:S/��SBENQ#J£ô
9�STL£OÛJ��K=ÌLMJUENE)LUS/��5?Q)SØJM7�ENSBQ)S��NE)JM7�9� �'dE�J��Î7�5?Q�� =?LML���E)G�S:ÿw÷����1÷������\A1E)G:SÐ7�<e�¨ñ
SBQ65��f7:51O:S��
E)G�=FEK7:SBSTOÙEN5�ñZS'ENQ#=�#?SBQC�NSTOÚEN5!Q#ST=?ô#GÚE)G:SØO:S��NE)JM7>=FE)JU587! �û�G�J���ôB=?7Ùñ
S�Q#S1	�Q)S��NST7�ENSTOÚ=��6=Ì7:587R�|7�SB98=FE)J�#?S
JM7�ENSB9?SBQ� Dò'5iö6S1#?SBQTA�ö�G�ST7I=ÛL£JM7:÷ ö'JUE)G�=Û7:STJU98G�ñZ58<�Q�J���ôu587e�)JMO:SBQ)STO�EN5 ñ
S¨O:5_ö�7�ADE)G:S:��SBENQ(JMôÐE)G�=FEØJ��
<��NSTOÛJ�� Ð �û�G�<��ÍE)G�SV��SBENQ#J£ô�J��Î=¨<�7�JM587�5���E)G:S:ÿN÷����1÷����	�Í=?7�O Ð ø�Q)S1	�Q#S��NST7ªENSTOÚ=��V�dª-¬Yª�����­Tü�=��T�NSBST7
JM7�LMJM7�SEbÙJM7ÏR/JU9� Fk" �û�G:SE�NS�D�<:ST7�ôuS 7�<��¨ñ
SBQØôB=?7�=?L��N5Úñ
SÌQ)S1	�Q)S��NST7�ENSTO =���=Ú7:587R�|7�SB98=FE)J�#?S JM7�ENSB9?SBQ�
'k7 R/JU9� `k�A�
�ù
�eö���J���=M	�Q)51O�<�ôuEE�NSBEBAÍJM7>ôBLM<�O�JM7�9IE)G:S×JMO:ST7�E)JUEj� 5���E)G:S×O:S��)E)JM7�=FE)JU587 5?Q#JU98J£7�=FE)JM7:9ÏE)G:S

144

�NS�D�<:ST7�ôuSÐ7�<��¨ñ
SBQTA1=?7�OÙE)G:S/#F=?LM<:SØ5��¶E)G�J����NS�D�<:ST7�ôuS�7�<��!ñ
SBQ� �û�G�J��6ôu5?Q)Q)S��G	
587�O��ÎEN5 JUE��KO:S��)ôuQ(J�	�E)JU587
JM7H�)8R�?S�

Nodes

1‘(1,[(1,1,hops 0,(1,0))])++
1‘(2,[(2,2,hops 0,(2,0))])++
1‘(3,[(3,3,hops 0,(3,0))])

MNode

Update Table

Broken Link

[neighbour(node,i)]

1‘snode++1‘rnode

1‘UpdateNode(rnode, snode)++1‘snode

1‘node1‘BrokenLink(node, i)

ÑXÒ�Ó Ä Ü Ä X
§>´ � YT¯_ak}�Y(x�{ � z¶´/l>�

^ S×ôu587��)J£O:SBQ!=Ïôu587�9�98<:Q(=FE)JU587�5��VW 7:51O:S��¨J£7�E)G:S ï�î õ ú�û��w5?QÌ58<:Q�JM7�JUE)JM=?LÍS��"	
SBQ#J�� ST7ªE��Ùø��NSBS
LMJM7�S þÌ5���R/JU9� �k8üC �ö>÷"ørù�úØJ���E)G�<�� JM7�JUE)J£=?LML��y� =FQ)÷?STOÏñ��_W 7:51O:S���økþFAX6 =?7�OIW8ü(AZö�G:SBQ)SÌST=?ô#G�Q#58<:E)JM7:9
E)=Fñ>LUST*)<��NE�G>=���=$�)JM7�98LUSØST7ªENQ��ÚEN5 JME��NSTL��v 1û�G�J���ôu5?Q)Q)S���	Z587>O��KEN5�� ���>±d´¤�

'k7�LMJM7:S�6'5��ZR�JM9�
k�A��ezRÌ2}��j�
�p��Å�J��f=?7 ï [×Q)S1��SBQ)ST7�ôuSf#F=FQ#JM=Fñ>LUSØý762biÿ& �'ÉE/J���<��NSTO�=��/=gB>=F9ØEN5ØJ£7�O�JMôB=FENS
J���=$�NS�D�<:ST7�ôuS¨7�<��!ñZSBQ�J��KEN5 ñ
S�<�	�O�=FENSTOÚñ��ÚE)G:SZ�j<�7�ôuE)JM587���O:S��)ôuQ#JMñZSTOÚLM=FENSBQ JM7ÚE)G�J��?�)STôuE)JU587!
»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»
��� �u¤��i�����i (�B�T� �Û��!
"#� �u¤%$BºB�B�(�B�
&\��'(�B¸)�Ù¸B�(·Ú·T�u¤B�#��!�
* �(u¤u (¸ �T (�B�,+#�)�Ú�)�B� -i�#�\¡ � �\�.�i���(�T (�B�T�/!
0 �(u¤u (¸ 1B�T�#�i�)�T�(�i�\ #�2�%�i (�B�,+)�3!
4 �(u¤u (¸ �B�(�u�\¡i)º5���i (�u�,+#�3!
6 �(u¤u (¸ �B�\�u¸i�u� � �u�_�\)�Ú¡i #º_�/7.8i #º_�(#�u�B�29×�)�u·i�)�_�#�\�×�B�T�\¤u�#¸B�I (·,:#¡T #º_�/!
; �(u¤u (¸ 8T #º_�\ #�\�B�)�I�)�B��!
< �(u¤u (¸ �\�#¹i¢T�\¸)�Ú�)�B�3!
� �I�(u¤u (¸)&(�('(�B¸=� ºB¸T (�\�i�#�>1T�T�#�T�)�i�(�i�(#�@?%�u�#¹T¢T�\¸3!
�A� �(u¤u (¸ BAC(Du�B�u¸\�)� ºB¸T #�\�_�#�>1T�B�#�i�)�i�#�i�\ #�E?F�B�(�u�\¡i)º@?%�T�\�u¸T�u�>? &\��'(�B¸3!
�G" �(u¤u (¸ BAC=�Ú¤B�\�#� B
C(D\�B�u¸u�3!
� �I�(u¤u (¸ �(�i (�B�>� ºB¸T (�\�i�#�>�i (�B�
+#�5?%B
C�!
�H*
� 0 � �(¸��I7J�i (�B�,+)�3!
�K4 � �(¸��)�i #�B��L ¸\�T (�B��L �i #�B�37M�A�T (�B��!»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»

ÑXÒ�Ó Ä Þ Ä ¬�}©Y(ÅF{#}1¯_ad«k}©{#c|{#`bpqY(moh¶Y(x:`byoaÔX
§>´�[�YT¯iak}

ûfQ#=?7��)JME)JU587ONP�2ø/Q	�Pù$þRQ�S/T ù+��51O:STL���E)G�S�	�Q#5�ôuS����!5���=Ï7:5�O�SÛ<�	�O�=FE)JM7�9IJUE��¨Q#58<:E)JM7:9 E)=Fñ>LUS ñD=��NSTO
587 E)G:SÙJ£7��w5?QC� =FE)JU587 JME¨Q)STôuSTJ�#?S�����Q)52� =?7:5?E)G:SBQ�7:51O:S� fû�G�SÛ=FQ#ôÛJM7��)ôuQ#J�	�E)JU587I��Q)52� 	>LM=?ôuStö>÷"ørù�úÌEN5
E)G�J���ENQ#=?7��)JUE)JM587�G�=���EÉöÎ5_#F=FQ#JM=Fñ>LUS��TAVU,WYX[ZI\ =?7�O^][WYX_ZI\?A�ö'G�JMô#G�Q)S1	�Q)S��NST7�E¨EÉöÎ5Ï=FQ)ñ>JUENQ(=FQ�� 7:5�O�S���JM7
E)G:S ï î õ ú�û) �'d7Ú58<�Q
��51O:STLrA�][WYX_ZI\ÐQ)STôuSTJ�#?S���E)G:SÐQ)58<�E)JM7:9�JM7���5?Q�� =FE)JU587Úñ>Q)58=?O�ôB=��NE�ñ"�>U�WYX[Z/\2 �û�G:S
=FQ#ôÐJM7e�)ôuQ#J�	�E)JM587a��Q)52�`NP�2ø/Q	�vù/þRQ/S�T ùØEN5 E)G:SZ	>LM=?ôuS�ö>÷"ørù�ú�JM7>ôBLM<�O:S��6=��j<�7�ôuE)JU587�AaNP�2ø/Q	�vù�ö>÷"ørù[bK�c�w÷�ø�ù[d
ú
�N÷"ørù�eC 1û�G�J��Y�j<�7�ôuE)JU587ÛQ)SBE)<:Q#7e�ÍE)G:SØ<�	�O�=FENSTO Q#58<:E)JM7:9!E)=Fñ>LUS 5��R]_WYX[ZI\?A�ö�G�JMLUSfU,WYX[Z/\2§i��Q#58<:E)JM7:9!E)=Fñ>LUS
J��y� =?JM7�E)=?JM7:STO <�7>ô#G�=?7:9?STO ö'G:ST7gN��2øIQ	�vù_þRQ�S/T ùÏ51ôBôB<:Q��1 �û�G�J��ÙJ��Ûö'G:SBQ)S�öÎS�=Fñ��NENQ#=?ôuEH��Q)52�&E)G:S

145

�)8R�?S�	>Q)5?EN5�ôu58LU��STô#G>=?7�J����$�� ^ SÌJ£7ªENSBQ�	>Q)SBE�E)G:S!5�ôBôB<:Q#Q)ST7�ôuS¨5��hN��2øIQ��Pù)þRQ/S�T ùÐEN5+� ST=?7IE)G�=FEØ=?7r�
7:51O:S?Ai][WYX[Z/\8A�ôB=?7ó<�	�O�=FENSÙJUE��!E)=Fñ>LUS?A�ñ>=��NSTO 587 E)G:SÚJM7���5?Q�� =FE)JM5875��Q)52� =?7�5?E)G:SBQ�7:5�O�S?AjU�WYX_ZI\?A/=FE
=?7��ÙE)J���S� >û�G�<���J��kNP�2ø/Q	�PùZþaQ/S/T ùØ51ôBôB<:Q��BA�][WYX[Z/\:�Ì<��NE�G�=-#?S¨ñ
SBST7×ö�JUE)G>JM7ÙE)G:S�ENQ#=?7���� J����)JM587ÚQ#=?7:9?S
5��hU�WYX[Z/\� �'x�ENP�2ø/Q	�vù.þaQ/S/T ùÏO:5�S��Ù7:5?EÙ5�ôBôB<�QTAÎE)G�ST7 STJUE)G�SBQÛE)G:S�<�	�O�=FENS ö6=��Ú7:5?E+�NST7ªEÚñ"�OU,WYX[ZI\
5?Q�ö'G:ST75U�WYX_ZI\�ñ>Q)58=?O�ôB=��NE��'E)G:S¨<�	�O�=FENSl][WYX[Z/\¨öK=���58<:E'5��/JME���ENQ#=?7���� J����)JM587ÛQ(=?7:9?S� VNP�2ø/Q	�PùZþaQ/S/T ù
ôu587�ôuS1	�E)<>=?LML��ØJ���	>LUS�� ST7ªE��
ñ
5?E)GZ�j<�LMLFO�<��$	�=?7�O�JM7�ôuQ#S���ST7ªE)=?L?<�	
O>=FENS��BAT=���E)G:SÎJM7���5?Q�� =FE)JU587ØE)G�=FEfJ���JM7
E)G:S�J£7�ôuQ)S���ST7�E)=?L�<�	�O�=FENS�J��ÍE)G:S�587�L���JM7���5?Q�� =FE)JM587�E)G�=FE�G�=��Î=?7r��=wl
STôuE�ö�G:ST7 <�	�O�=FE)JM7:9ØE)G:S�Q#58<:E)JM7:9
E)=Fñ>LUS� V815 =?LUE)G:58<:98G ôBLUST=FQ(L�� E)G:SI�j<�LMLØJM7��w5?Q�� =FE)JU587 J��Ú=�#F=?JMLM=Fñ>LUS?A�ñ
STôB=?<��)S 587�L�� E)G�S�JM7�ôuQ)S���ST7�E)=?L
JM7���5?Q�� =FE)JM587IJ���<e�NSTO�A>E)G�S!JM7�ôuQ#S���ST7ªE)=?Lf<�	�O�=FENS!J��
��51O:STLMLUSTOX �û�G�J���J���E)G:SÌôB=��NS!ñ
STôB=?<��)S¨ö6SÌO:5Ù7:5?E
��51O:STL�E)G:St��S����)=F9?S��ÛS��"	DLMJMôBJUE)L��� �815 =FE 58<:QÛLUS1#?STL�5���=Fñe�)ENQ#=?ôuE)JU587 E)G�SIE|ö65¤� STô#G�=?7�J����$� =FQ)SÏ7:5?E
O�J��)E)JM7:98<�J��#G�=Fñ>LUS� 8ò'5iö6S1#?SBQTA�ö�G�ST7Ù=�ôuSBQ#E)=?JM7H�)ôuST7�=FQ#JM5�J��6ôuQ#ST=FENSTO×ñ��ÛS���STôB<�E)JM7:9�ENQ#=?7��)JME)JU587��BA�E)G:ST7ÚJUE
ôB=?7Iñ
SÐJM7�ENSBQ�	�Q)SBENSTO�=���JM7�ôuQ#S���ST7ªE)=?L
5?QV��<>LML
O�<���	×=���J���=
	�	�Q)5�	�Q(JM=FENS�

ûfQ#=?7��)JME)JU587nm��d÷�o�ù[�5p/qr�/o���51O:STL��'=Û7�5�O:S�O:SBENSTôuE)JM7�9ÛE)G�=FEØJUEØG�=�� 7:5?E'Q#STôuSTJ�#?STO =?7 <�	
O>=FENSc��Q)52�
=?7:5?E)G:SBQ'7:5�O�S ö'JUE)G�JM7ÛE)G:SÐS��R	ZSTôuENSTOIE)J���S?A�=?7�O×<�	�O�=FE)J£7:9ÌJME��KQ)58<:E)JM7:9�E)=Fñ>LMSØ=?ôBôu5?Q(O�JM7:98L��� �û�G�J��KôB=?7
51ôBôB<:Q>�w5?QÍ=?7��!7:51O:SK=?7�O��w5?QÔ=?7��¨587:SK5��ZJUE��/7:STJU98G�ñZ58<�Q��1 wLØ7ÌE)G:SK51ôBôB<:Q)Q)ST7>ôuS65��sm��d÷�o�ù[�tp/qr�/ooA8=Ø7:51O:S
ø�ñ
58<�7�O�EN5ÛE)G:S:#o=FQ(JM=Fñ>LUS$ªp|�Ìr�#ü'=?7�O�587:SÌ5��ÍJUE��'7�STJU98Gªñ
58<:QC�¨øv�Uü�=FQ)S�ô#G:52�)ST7Ï=FQ#ñ>JUENQ#=FQ#J£L��� �û�G:S�98<>=FQ#O
�Nù_q u�ÿ�S2÷��/�cbK�N÷"ørù[dvqweKST7��)<�Q)S��KE)G�=FE�E)G:S�O�S��NE)JM7�=FE)JU587×J£7ÚE)G:SÐQ)58<:ENS�ST7�ENQ��Ù5���ªp|�Ìr��E)G�=FE�ôu5?Q)Q)S���	Z587>O��KEN5
�fO�5�S���G>=�#?S =H��SBENQ#J£ôIøjG:5�	�ôu58<�7ªE(ü�5��ØþIø�ö�G�JMô(G JM7�O�J£ôB=FENS��'E)G>=FE�JUEÐJ��Ð=×7:STJU98G�ñ
58<:Q\üC
û�G:SE��<>7�ôuE)JU587
m���÷�oCù[�/p/qr�/o_bK�w÷�ø�ù[dvqxe�<�	�O�=FENS��Zª�|-Ìr��§i��Q)58<:E)JM7:9�E)=FñDLUS�=?ôBôu5?Q#O�JM7�98L���
î �wENSBQ�my��÷�o�ù[�Ep�qz��oÌ5�ôBôB<�Q��BA!�)8R�?S Q)S�D�<>JUQ)S��'E)G�=FE�=?7 JM7�ôuQ)S�� ST7ªE)=?L/<�	�O�=FENS�J�� ñ�Q)58=?O�ôB=��)E1 �û�G�J��

ñ�Q)58=?O>ôB=��NE�� =-� 5?Q�� =-� 7:5?E ñ
SIQ#STôuSTJ�#?STO ñ"� E)G:S�7:51O:S��ÛJM7 E)G:S ï î õ'úÎûZ `'v�Ð7:5 7:51O:SIQ)STôuSTJ�#?S��
E)G:S!ñ�Q)58=?O�ôB=��NEBADE)G:ST7�ôu587>ôuS1	�E)<�=?LML��ÚE)G�J���J��0� 5�O:STL£LUSTO×ñ"�^N��2øIQ	�vùZþRQ/S�T ù¨7:5?E'5�ôBôB<:Q#Q#JM7:9�ö�JME)G5U,WYX[ZI\
ñ
58<�7�O EN5ÌE)G�S 7:51O:S E)G�=FE�G�=��F*N<e�NEÎ<�	�O�=FENSTOÙJUE��6E)=Fñ>LUSg��5?Q6E)G�S'ñ�Q#5?÷?ST7ÙL£JM7:÷p "LØ7ÙE)G:S 5?E)G:SBQ�G�=?7�OÙJ��¶=
7:51O:S�O:5�S��ÎQ)STôuSTJ�#?S E)G:S J£7�ôuQ)S���ST7�E)=?L�ñ�Q#58=?O�ôB=��NEBA�E)G:ST7 E)G>J���J�����51O:STLMLUSTO�ñ"�5NP�2ø/Q	�Pù0þRQ�S/T ù�5�ôBôB<:Q#Q#JM7:9
ö�JUE)G E)G�=FE×7:51O:SIñ>JM7>O�JM7:9 EN5¤#o=FQ(JM=Fñ>LUS2]_WYX[ZI\?AÎ=?7>O E)G:S�7:51O:S�E)G>=FEÙJ��Ûñ�Q)58=?O>ôB=��NE)JM7:9:A6ñ>JM7�O>JM7:9�EN5
U�WYX_ZI\� �û�G�S S�l
STôuE�5���E)G:SZ�j<�7�ôuE)JU587ENP�2ø/Q	�vù�ö>÷"ørùØJ��KE)G:SZ�)=�� S�ö�G:SBE)G:SBQK5?Q�7�5?E�JUE�J���=E��<>LMLDO><���	Ú5?Q
=?7IJM7>ôuQ)S���ST7�E)=?L�<�	�O�=FENS� :û�G�<e�KENQ#=?7��)JUE)JM587{N��2øIQ��PùgþaQ/S/T ùØQ)S1	�Q#S��NST7ªE���E)G:SÐñ
STG�=�#1JU58<:Q�5��/<�	�O�=FE)JM7:9�=
7:51O:S�§i�ÔQ)58<�E)JM7:9�E)=Fñ>LMS?AªJUQ)Q)S���	ZSTôuE)J�#?S�5��Zö'G:SBE)G:SBQ�JUE�Q)STôuSTJ�#?S��6=Z��<>LML:O�<���	�5?Q6=?7 JM7>ôuQ)S���ST7�E)=?L�<�	�O�=FENS�

ð!��ð |U¡(¢F��°wµd p¢Fº�}j ���~H¿Y£(��°-´ � ���>±d´
î LML��j<�7�ôuE)JU587e��7:SBSTO:STO���5?QK<�	
O>=FE)JM7:9ÐE)G:S Q)58<:E)JM7�9�E)=Fñ>LUS 5���=!7�5�O:S =FQ)SØO:S��)ôuQ#JUñ
STO J£7 E)G�J��`�)<:ñ��NSTôuE)JU587
ø��NSBS+[¶J��NE)J£7:9�þ
 Mþ =?7�O,[¶J��)E)JM7:9�þ
 68üC /û�G:S$� =?JM7;��<>7�ôuE)JU587�J���N��2øIQ��Pù�ö>÷�ø�ù[bK�c�N÷"ørù[dUú
�N÷"ørù�e)�)G:5iö'7�JM7
LMJM7�S��ÐþÆ�xQ 5���[¶J��NE)JM7:9Iþ
 Mþ

HT�ÙE)G>J��?�j<�7�ôuE)JU587�AD= 7:51O:S?A�][WYX[Z/\?AD<�	�O�=FENS���JUE���Q)58<:E)JM7:9 E)=Fñ>LUSÛøjJM7>ôBLM<�O�JM7�9
JUE���5_ö�7��NS�D�<:ST7�ôuSI7�<��¨ñ
SBQ\ü¨ñ>=��)STOó587óE)G:S×Q)58<:E)JM7�9ÏJM7��w5?Q�� =FE)JU5873�NST7ªE�ñ"� =?7�5?E)G:SBQ 7:51O:S?A�U,WYX[ZI\�
û�G�J��f��<�7>ôuE)JU587×ôu587ªE)=?J£7���= LU51ôB=?L�O:STôBL£=FQ#=FE)JU587�A���\
�G�	�cWV�[\
WYZe e=V�#JM7:9 JUEBA:587:Sc#o=?LM<�SØO�STôBLM=FQ#=FE)JU587×ñDJM7�O��
=:#o=?LM<�S�Q)SBE)<:Q(7:STO ñ"�>����Z/���K\	��\,�[�5]1A1=¨Q#S1���&#F=FQ#JM=Fñ>LMS�ö�JUE)GÛJM7�JUE)JM=?L�#o=?LM<�Sf�a�I��U_\Ìø��NSBSÐLMJM7:S
W8ü(A:=?7�OÛE)G:S
5?E)G:SBQ'587:S¨ñ>J£7�O���=�#F=?LM<:S�Q#SBE)<:Q#7:STO×ñ"�ÚE)G:S)�j<�7�ôuE)JU587�AYN��2øIQ��Pù�ý�þsb�eÐø��)SBS!LMJM7�S��ÐþÆ�xWwKÙJM7.[¶J��NE)J£7:9×þ
 68ü(A
EN5 =?72JMO:ST7�E)J�9�SBQ�#F=FQ#JM=FñDLUS=����Z/���K\,Ze �'k7 LMJ£7:S.s�A�E)G:St#o=?L£<:SI5�������Z/���K\	��\,�[�5] J�� ô#G�STô)÷?STO! f'v�ØJME J��
��]_�a\?A/E)G:SH�NS�D�<:ST7�ôuS×7�<��¨ñ
SBQ�5��M][WYX[Z/\IJ���JM7�ôuQ)ST=��NSTO ñ"�¤6Ï<��)J£7:9.�j<�7�ôuE)JU587�NP�2ø/Q	�Pù������"ý�þsb�eÛø��NSBS
LMJM7�S���þ-b-�x6
]!J£7$[¶J��)E)JM7:9 þ
 MþiüC 1û�G:ST7 E)G�S�<�	�O�=FENSTO�Q)58<�E)JM7:9�E)=Fñ>LMS�ö�JUE)G�E)G�S'7:51O:S�§i�Y'P� ø�5?ñ�E)=?JM7�STO$��Q)52�
�j<�7�ôuE)JU587>�(ùA�Æö>÷"ørù�ü7ø�b�e(A"�NSBS'L£JM7:S���þ?þÆ�#þ�68ü�J��ÔQ)SBE)<:Q(7:STO�ø��NSBS LMJM7:S
b?üC RLØE)G:SBQ)ö�J��)S?A�]_WYX[ZI\�§i��J£O:ST7ªE)JMEj��=?7�O
E)G:S�#o=?LM<�S ôu587ªE)=?JM7�STO JM7�����Z/���K\,Z øjJM7�L£JM7:S��ZK
�xk8ü¨J��ÐQ)SBE)<�Q#7:STO�O�JMQ)STôuE)L�� ø��NSBSÛLMJ£7:Sa%8üC fû�G�S$��<>7�ôuE)JU587
NP�2ø/Q	�vù�ö>÷"ørù[bK�c�w÷�ø�ù[d�ú
�N÷"ørù�e�JM7r#?58L�#?S���E)G:SÔö�G�58LUS�	�Q)51ôuSTO�<:Q)S/5��:<�	�O�=FE)JM7�96E)G�SÔQ)58<:E)JM7:9�E)=FñDLUSÔ5���]_WYX[ZI\?A
<��)J£7:9�E|ö65��NENS1	e��=��?�w58L£LU5iö
��
þ
 |
µA�wº1° Á °N´�¿P� E)G:S�][WYX[Z/\Ð<�	
O>=FENS��ÎJUE��6Q)58<�E)JM7:9ÌE)=Fñ>LUSØñ>=��NSTOÙ587ÚE)G:S Q)58<:E)JM7�9ÌJM7��w5?Q�� =FE)JU587 ñ>Q)58=?OR�
ôB=��NE'ñ��=U�WYX_ZI\� �û�G>J��?�NENS1	�J���Q)ST=?LMJ��NSTOÚñ"�+��<�7>ôuE)JU587{N��2øIQ	�vù�ý�þsb�eC

6" Á ´��r �¢U£ Á °-´"¿�� E)G:SM]_WYX[ZI\�O:SBENSBQ�� JM7:S��Ôö�G�SBE)G:SBQÍ5?QÎ7�5?EÍEN5¨JM7�ôuQ#ST=��NS�JUE��Ô5_ö�7a�)S�D�<:ST7>ôuS�7�<e�¨ñ
SBQ� û�G>J��?�NENS1	�J���O:587:SÐñ"�Ùô(G:STô)÷1JM7:9 E)G�S)#o=?L£<:SÐ5����P��Z��/�K\	�y\��_�2]R

146

� µAº1°wµA¢U���e�J��� R�<�7>ôuE)JU587�NP�2ø/Q	�vù�ö>÷"ørù

W Ç����3�¶cum�Yª¯:a ^>]Z¯>{?`Baoh p#`?h+ciY1^Z`ipÉmZn*`_{�Å
}|a Å>{?h\a_¯�Y_m p|mZxNY�ci[{�`ip|Y1mðÅ>cTY1{�¯D«?{ªhu`ÖÅ8g h(m:Y8¯1a[�����8È
¦��K 3¡ $�ºª���F�ª���� F�ª�£¢\¸F�� o�8�PLi�o�� F�ª�¥¤,�
¦�§c¨ª© «I¬ª§ :­�®¢�$ªº����F�ª��&8��'��ª¸�7��>·��8¤ª�F�ª¤
¯ «I¬ª§ �8º����F�ª�?�°� $ªºª���F���[B�CP¢
±ª�?���� F���/+o�£¢(¸8�� F�ª��¤¥L
±ª�?��B�C��1 F�ª��¢u¸?�� F�ª�ª¤¥L
² ±ª�?���� F���/+o�£¢B�o�� F�ª��¤¥L
±ª�?��B�C��1 F�ª��¢i�_�� F�ª�¥¤[¤
³2´c¡ ´K� ¢�µ�$ªº����F�ª��&8��'��ª¸j¤
¶ ©A·/¨�¡ ¢
±8�?���� F�ª�/+F�P¢u¸?�� ?�ª��¤¥L�$ªºª���F�ª��¸_-ª��B�Cs¢\�8ºª���F�ª�?�i¤_¤
¹ ¨ª§�º[¨ ¢
±8�?���� F�ª�/+F�P¢u¸?�� ?�ª��¤¥L\�8ºª���F�ª�?�a¤
»%¨�¡�¼ !
W.½
WrW Ç����3�f`BY n�ao`Ö{ m�YF¯ªa�¾\h pÉ¯Za?mZ`ipb`TgJ�/�y�ªÈ
Ww¦��K 3¡ ±8�?���� F�ª�/+F��¢k�yL(¸o�Y¤
�2�y!
W.¦
W ¯ Ç����3�f`BY n�ao`Ö{ m�YF¯ªa�¾\h c_Y�^Z`ipÉm
n `i{ªÅZ}ba��/�y�ªÈ
W¿²��K 3¡ ±8�?��B�C��� F���P¢k�yL(¸o�Y¤
� ¸F��!
W.³
W ¶ Ç����3�f`BY ^:]�¯:{o`\a { m�YF¯ªa�¾\h Y\�¶m huaoÒ1^Da_mD«_a m8^8[Å8a)cK�/�y�8È
W.¹ �K 3¡ $ªºª���F�ª��¸_-ª��B�Cs¢k�yL\¸?�8��7[7\¸o�a¤,� ´�� ¸_-ª��B�C�D8���8¸8�J¢k�yL(¸?�8��¤
W.» ©A·/¨�¡ ¢_+_�1�o¸ª���ª�F��&?��'��ª¸M¢\¸?�8�R¤�¤�7�7T¸F�
¦�½ ¨ª§�º[¨ ¸?�8��7[7($ªº����F�ª��¸[-8��B�Cs¢d��L(¸o�a¤�!
¦ÉW
¦r¦ Ç����3�f`BY x)pdm�¯ `By>a cTY�^D`Ta aFm>`BcBg-`BY+`uyDa m1YF¯�a�p)`8h?a:}Nx¥�����8È
¦�¦ �K 3¡ ¸_-8��B�C�D8�ª�ª¸8�J¢k��L_¢T�F�8� � L#�ª�[�?� � LN¹1�F�?¸ � Li�F��'?��¸ � ¤[¤­�®¢N�À� �8�ª� � ¤�!
¦ ¯
¦Á² Ç����3�f`BY pdm�«?coaª{1hia-`ByDa t>{�}b^Za Y�x huaoÒ1^Da_mD«_a mª^ª[ØÅ�a#c�Åªg ²K�a�£�8È
¦�³ �K 3¡ +_�:�o¸ª�ª�ª�?��&?��'���¸M¢\�F�8� � L#�ª�[�?� � LN¹1�F�?¸ � L[¢u�?�8� " L(�?�_¹ � ¤�¤��Â¢(�?�?� � L(�ª�[�?� � Lk¹1�F�?¸ � L[¢u�?�8� " L\�?�_¹ � 9 " ¤�¤�!

õ'5iö�A_öÎS��w51ôB<���587¨E)G:SÍ5�	
SBQ#=FE)JU587e��JM7ÐE)G:S`9�Q��NEF�)ENS1	X iR�<�7>ôuE)JU587��¶O�S��)JU987:STO/��5?Q¶E)G�J��X�NENS1	!=FQ#S��)G:5_ö�7
JM7t[¶J��NE)J£7:9�þ
 6" p'd7ÏLMJM7:S��VW�sN�&K�þFAp�j<�7�ôuE)JM5875ÃYø�øeý�÷����Pù�Ä¥���(�ÆÅ/b�e�Q)ST=?LMJ��)S���=?O�O�J£7:9 7:SBö�Q)58<:ENS!ST7ªENQ#JMS��1 �'k7
LMJM7�S0K�K:A:E)G:Sg��<�7>ôuE)JU587.ÿw÷����/��ÇtS2ù[��ú
b�eÍQ#SBE)<:Q#7��6=?7ÚJM7ªENSB9?SBQf#F=?LM<:S E)G�=FEKJ��65���Ej�"	
S�È>÷����1÷����	�`��Q)52� E)G:S
<�7�JM587�Ej�"	
SEûEùA�(�Áq �Ìø��NSBSØLMJM7:Sgb¨JM7ÛR�JM9� "k8üC "'d7ÙLMJM7:S
K�b�A��j<�7�ôuE)JU587 QwørøªÉ[b�e�JM7�ôuQ#S���ST7ªE��ÎE)G:Sg��SBENQ#JMô�E)G�=FE
J��K5���Ej�"	
S�È>÷����1÷������Kñ"� þ
 î �0�)G�5iö�7IJ£7ÙL£JM7:S��ÐþÆ�xWwK:A>E)G�S)� =?JM7y�j<�7�ôuE)JU587ENP�2ø/Q	�vù�ý�þMb�e6JM7r#?58L�#?S���E)G:S
ö�G:58LMS$	�Q)51ôuSTO�<:Q)S�5���<�	�O�=FE)J£7:9×E)G:S Q)58<�E)JM7:9IE)=Fñ>LMS 5���=�7:51O:S ñ>=��)STO�587�E)G�SÛJM7���5?Q�� =FE)JM587I�NST7ªE!ñ��
=?7:5?E)G:SBQÍ7�5�O:S� ?û�G�S67:51O:SKôu52��	>=FQ)S��ÍST=?ô#G�Q)58<�ENS6ST7�ENQ��ÌJM7ÌE)G�J��/JM7���5?Q�� =FE)JU587!ö�JUE)GÌE)G:S�ôu5?Q)Q#S��G	
587�O�JM7:9
587:S�JM7ÚJUE��KQ#58<:E)JM7:9�E)=Fñ>LUS� �ûf5�98J�#?S)�N52� S�JM7��)JU98G�EKJM7ªEN5�E)G:SÐ5�	
SBQ#=FE)JM587Ú5��fE)G�J����j<�7�ôuE)JM587ÚöÎS�JML£LM<��NENQ#=FENS
E)G:S�	�Q)51ôuSTO�<:Q)Sc�w5?QÐ<�	�O�=FE)JM7�9 = Q)58<�ENS!ST7�ENQ���JM7ÏR/JU9� ps" �û�G>J���J���E)G:ST7�=
	�	>LMJMSTO×Q)STôB<:Q��#J�#?STL��y�w5?QØST=?ô(G
Q)58<:ENSØST7�ENQ��Ïø��)SBSØL£JM7:S��fkN�xWwK�5��U[¶J��NE)JM7:9Ùþ
 68üC �R:5?Q�ôu587�#?ST7�JUST7�ôuS?A�JM7Û58<:Q?��51O:STLrA1=?LMLDQ)58<:ENSØST7ªENQ(JUS���=FQ)S
LMJ��)ENSTO�JM7�=��)ôuST7>O�JM7:9�5?Q(O:SBQ¶5��:E)G:SÎO:S��NE)JM7�=FE)JM587!§i�¶7:51O:S�J£O:ST7ªE)J�9�SBQ�øj=?O�O:Q)S����(ü(AiEN5g�)J���	>L���E)G:S�	�Q)51ôuSTO�<:Q)S�
û�G�J��ÎG�=��KE)G�S�=?O�O:STOÙñ
ST7:S19�EKQ)STO�<�ôBJ£7:9��)E)=FENS)�G	>=?ôuSÐS��R	>LU52�)JU587ÙE)G�=FE�ö658<�LMOÙ5?E)G:SBQ#ö�J��NSØ51ôBôB<:Q�O�<:S EN5
=FQ)ñ>JMENQ#=FQ�� 5?Q(O:SBQ#JM7:9�5��/E)G:S�LMJ��NE1

î �c�)G�5iö�7 JM7 R�JM9� Fs�A�E)G:S Q)STôuSTJ�#?SBQ!J��ØQ)S1	>Q)S��NST7�ENSTO =�� øËÊ=WR�ÌZ Í ýUøËÊ)Z Í Ê=W Í Ê=Ê Í øËÊ)ZDþ Í Ê5U	\��?üNü�·�·
Ê=][�|ÿ�ü(A8J£7!ö'G�JMô#G�Ê=WR�ÌZ¨Q)S1	�Q)S��)ST7ªE��/E)G:S�7�5�O:S�JMO�ST7ªE)JUEx�!=?7�OIøËÊ)Z Í Ê=W Í Ê=Ê Í øËÊ)Z>þ Í Ê5U_\,�8üNü/Q#S1	�Q)S��NST7�E��
E)G:S�Q)58<�ENS�ST7ªENQ��Úøj=?L��)5�Q)S1	�Q)S��)ST7ªENSTO =���\
WR��][ÍZþiü(A8ôB<:Q#Q)ST7ªE)L��!LMJ��)ENSTO�JM7�E)G:S?9�Q��)E�	Z52�#JUE)JU587�JM7�JUE��ÔQ#58<:E)JM7:9
E)=Fñ>LUS� ?û�G�S6Q#S��NE/5��DE)G:SKQ)58<�ENS�ST7ªENQ#JMS���=FQ#S�Q)S1	�Q)S��NST7�ENSTO�ñ"�tÊ=][�C r81J�� JMLM=FQ#L��?ATE)G:S?�NST7�O:SBQÍJ��fQ#S1	�Q)S��NST7�ENSTO
=���øËW Í ýUøËWYZ Í WRW Í WRÊ Í øËWYZ>þ Í WiU_\,�8üNüI·�·J]_�Éÿ�üC `'dE��ÙJMO:ST7�E)JUEj� J���WÔAÎ=?7�O E)G:SÏQ)58<:ENS�ST7�ENQ�� LMJ��NENSTO JM7 E)G:S
9�Q��)E$	
52�)JUE)JU587 JM7 JUE�� Q)58<�E)JM7:9�E)=Fñ>LMS�J�� øËWYZ Í WRW Í WRÊ Í øËWYZ>þ Í WiU_\,�8üNüIøj=?L��N5 Q)S1	>Q)S��NST7�ENSTO =��>\
WR��]_Í�68üC
û�G:SH��SBENQ(JMô1��5��f\,WR��][Í
þÙ=?7>OÎ\
WR��]_Í�6 =FQ)S×Q)S1	�Q)S��)ST7ªENSTO =��FÊ=Ê =?7�OÏWRÊ&Q)S��G	
STôuE)J�#?STL��� ('k7 R/JU9� Ys�A
Ê=ÊI·x�cWR�'5?QlWRÊI·x�cWR�V��ST=?7e�ÐE)G�=FEÐE)G:S���SBENQ#J£ô�J�� 5��ÎEx��	
S=È>÷����1÷������\A¶JJ vS� �=?7 J£7ªENSB9?SBQ� RÊ=ÊI·x�ÌWi�¥�cWR�c��Í

147

� µAº1°wµA¢U���e����� R�<�7>ôuE)JU587�NP�2ø/Q	�vù�ý�þ

W Ç����3��{ m1YF¯�a ^D]D¯>{8`Ba_h�p)`?h�cTY�^D`Ta-aªm�`oc?pka�h Å>{?h\a_¯+Yim-{8mDY8`By>a_c m�Y?¯�a)�3���8È
¦��K 3¡ $ªºª���F�ª�[B�C�¢d¹ª���i�ML�ÐÌÑ�L(�PLIÐ�Ñ3¤	�ÒÐcÑ
¦ÔÓ $ªº����F�ª�[B/CP¢k¹8���i�ML�ÐÌÑyL#�yL\¸?�8��7[7\¸F�R¤��R¢A$ªº����F�ª��&8��'��ª¸�7��>�?¸F�ª�y!^Õ8�ª��B� o�ª���[D8�ª�8¸ª��¢k¹8���i�sLk�yL\¸?�8��7[7\¸o�a¤[¤
¯ Ó $ªº����F�ª�[B/CP¢k¹8���i�sLN¹�¸?�8��7[7k¹�¸F��Lk��L/Ð�Ñ3¤	� ¹�¸?�8��7[7)¹�¸?�
²ÏÓ $ªº����F�ª�[B/CP¢k¹8���i�ML[¢N¹8�PLÉ¹8��LÉ¹o¹sL[¢)¹�� � L)¹��o�['V¤�¤�7�7#¹�¸F�PLk��L[¢(�o�PL)�o�PLN�T¹sL[¢\�?� � L\���o�['V¤�¤�7�7B¸F�a¤,�
³Ï´�� ¹����ª�?�
¶ ©
·/¨�¡
¹ ´H� ¢d¹:�_�_'iÖ8���o�['Y¤
» ©
·�¨�¡ ¢É¹ª��LÉ¹8�PLÉ¹o¹�L_¢N¹�� � LN¹��o�['V¤�¤�7�7,$ªºª���F���[B�CP¢k¹ª���T�sLk¹�¸F��Ld��L(¸o�¥¤
W.½ ¨ª§�º[¨
WrW ´H� ¢k¹��o�['��ª���o�['Y¤
Ww¦ ©
·�¨�¡®×�¬/º,¨ ¢u o·�:_¡� _º��MØ����?�8¸1�8�j¢d¹F¹j¤[¤ÀÙ �
W.¦ ¢(�?¸F�ª�R¤O�/Ö ´H� ¢\¡1 oº8�8�o¹1¢��?¸��P¢k¹o¹i¤ÛÚ�� ¡� oºª�8�o¹�¢��8¸���¢(�i¹V¤[¤
W ¯ ©A·/¨�¡ ¢d¹8�PLÉ¹8��LÉ¹o¹sL[¢)¹�� � L)¹��o�['V¤�¤�7�7,$ªºª���F���[B�C�¢N¹ª���T�sLk¹�¸F�PLk�yL\¸o��¤
W¿² ¨ª§�º[¨ ¢�$�ºª���F�ª�/&?��'��ª¸f7����?¸F�ª�P![¢(�o�PLd�yLB�o�?� � ¢(�i¹i¤aL[¢(�?� � L(���o�['j¤�¤�7�7,$ªºª���F���[B�C�¢N¹ª���T�JLk¹�¸o�£Lk�yL#¸F�a¤[¤
W.³ Ó ¢i·��8¤ª�F�¥¤,�3Ö¥¢)¹8�PLÉ¹8�PLÉ¹o¹ML[¢N¹�� � LN¹��o�['V¤�¤�7�7
$�ºª���F�ª��B�CP¢k¹ª�ª�i�sLk¹�¸o�£Ld��L#¸F�¥¤
W ¶ ¨ª§�º[¨Â×�¬/º,¨ ¢[¢i o·�:_¡� _º��sØ����8�8¸��8�j¢N¹F¹V¤[¤RL[¢o o·�:_¡� _º��JØ(���?�ª¸��8�j¢#�T¹�¤�¤�¤ÜÙ �
W.¹ ¢[¢B�?¸F�ª�Y¤aL[¢B�?¸F�ª�Y¤[¤
�3Ö ´H� ¢k¹o¹Ý� �o�?� � ¢(�i¹V¤_¤
W.» ©
·/¨�¡ ¢N�F��Lk�yLB�o�?� � ¢(�i¹Y¤RL[¢(�F� � L(���o�['V¤�¤�7�7,$ªº����F�ª�[B/C�¢N¹8���i�sLÉ¹�¸F�£Lk��L(¸F�¥¤
¦�½ ¨ª§�º[¨ ¢�$ªºª���F�ª��&?��'��ª¸�7��:�?¸F�ª�P!_¢(�F��Lk�yLT�o�?� � ¢#�T¹V¤RL[¢(�F� � L\���o�['Y¤[¤
¦ÉW 7[7($�ºª���F�ª��B�C�¢N¹ª�ª�i�sLd¹ª¸F�£Lk�yL#¸F�R¤[¤
¦r¦ Ó ¢�¢T�?¸F�ª�a¤RL[¢B·��8¤ª�?�¥¤_¤Þ�/Ö®¢�$ªºª���F�ª��&?��'��ª¸�7��:�?¸F�ª�P!_¢(�F��Lk�yLN�T¹ML[¢(�?� � L(���o�['j¤�¤�7�7,$ªºª���F���[B�C�¢N¹ª���T�JLk¹�¸o�£Lk�yL#¸F�a¤[¤
¦�¦ Ó ¢�¢T·��8¤��F��¤aL[¢B�?¸F�ª�Y¤_¤Þ�/Ö®¢�$ªºª���F�ª��&?��'��ª¸�7��:�?¸F�ª�P!_¢(�F��Lk�yLT�o�?� � ¢#�T¹V¤RL[¢(�F� � L\���o�['Y¤[¤
¦ ¯ 7[7($�ºª���F�ª��B�C�¢N¹ª�ª�i�sLd¹ª¸F�£Lk�yL#¸F�R¤[¤
¦Á² Ó ¢�¢T·��8¤��F��¤aL[¢B·��ª¤ª�F�¥¤[¤,��Öß¢N�F��Lk�yLN�T¹sL[¢\�?� � L\���o�['V¤�¤�7�7,$ªºª���F���[B�CP¢k¹ª���T�sLk¹�¸F�PLk��L(¸o�¥¤
¦�³2¨ª§Áº_¨
¦ ¶ ´H� ¹ª��Ú?�?�
¦�¹ ©
·�¨�¡ ¢É¹ª��LÉ¹8�PLÉ¹o¹�L_¢N¹�� � LN¹��o�['V¤�¤�7�7,$ªºª���F���[B�CP¢k¹ª���T�sLk¹�¸F��Ld��L[¢(�o�PLN�o�PLN�T¹ML[¢(�?� � L(���o�['V¤�¤�7�7T¸F�¥¤
¦�» ¨ª§�º[¨
¦Á½ ´H� o·�:_¡� _º��JØ(���?�8¸��8�j¢#�i¹i¤
¦dW ©
·�¨�¡ ¢�$ªºª���F����&?��'���¸�7��:�?¸F�ª��![¢(�o�PLk��LT�o�?� � ¢)�i¹V¤RL_¢(�?� � L\���o�['i¤_¤
¦b¦ 7[7($ªºª���F�ª�[B�CP¢k¹ª���i�ML[¢N¹8��Ld¹?��LÉ¹o¹ML[¢N¹�� � LN¹��o�['j¤�¤�7�7)¹�¸o�£Ld��L#¸F�a¤[¤
¦Á¦ ¨ª§�º[¨ ¢�$ªºª���F����&?��'���¸�7��:�?¸F�ª��![¢(�o�PLk��L)�B¹�L[¢(�F� � L(���o�['i¤[¤
¦ ¯ 7[7($ªºª���F�ª�[B�CP¢k¹ª���i�ML[¢N¹8��Ld¹?��LÉ¹o¹ML[¢N¹�� � LN¹��o�['j¤�¤�7�7)¹�¸o�£Ld��L#¸F�R¤�¤ª!
¦c²
¦Á³ Ç����3��{ m1YF¯�a �Kp�`\y pN¯
aªm
`Fpd`_gÖ[{?¯:¯1h�m?aN� cTY�^>`Ta a�m�`_c?pka�h�ÅD{?h(ao¯�Yim-{ªm>Y8`ByDaic m�YF¯�a��/�y�8È
¦ ¶ �K 3¡ Õ8�ª��B� o�ª���[D8�ª�8¸ª�M¢|¹PLk�PL/Ð�Ñ�¤	�VÐ�Ñ
¦Á¹ÔÓ Õ8�ª��B� o�ª���[D8�ª�8¸��M¢|¹PLk��L[¢u�?�?� � L(�ª�[�?�F¡� _º � L)¹1�F�?¸��?� � Li�F��'?�ª¸ � ¤�7�7T¸?�i¹V¤,�
¦Á»Ï´�� o·�:_¡� _º��sØ(���?�8¸��8�V¢)¹:�8�8¸��8� � ¤
¯ ½�©
·/¨�¡ ¢\�F�8� � Ld��LB�o�?� � ¢)¹:�?�8¸1�8� � ¤aLi�F��'?�ª¸ � ¤�7�7,Õª�8��B� o���ª�[D8�ª�ª¸8��¢b¹�Ld��L\¸?�i¹Y¤
¯ W>¨ª§Áº_¨ ¢\�F�8� � Ld��LN¹1�F�?¸��?� � Li�F��'8�ª¸ � ¤�7�7,Õ8�8��B1 o�ª�ª�[Dª�ª�8¸ª��¢|¹�LN��L\¸?�i¹j¤�!
¯ ¦
¯ ¦ Ç����3�f`BY n�ao` `By>a t>{�}b^Za�Y�x `uyDa [�a_`ucupr«������8È
¯Á¯ �K 3¡ ¡� oºª�8�o¹�¢��8¸��P¢#¡� _º��ù¹1�F�?¸R¤Î� ¹1�F�?¸�!
¯ ²
¯ ³ Ç����3�f`BY pdm�«?coaª{1hia-`ByDa [�ao`BcTpb« Å8gÖ±Ì�a�J�ªÈ
¯c¶ �K 3¡ �o�?� � ¢(¡� _º�� ¹1�F�?¸V¤
� §Ì¨3©à«/¬ª§ �Û�Ö¹1�F�?¸�9 �
¯ ¹ ´c¡ ¡� _º����
¯ » ¨[¡�¼ !

148

LA

md=nd

(md vs. nd)

md> ndmd<nd

(4)

(mnid,[(md, mn, mm, (md1, mseq))::mrt]) vs. (n,[(nd, nn, nm, (nd1,nseq))::rt])

(mseq vs.nseq)

mseq>nseqmseq=nseq mseq<nseq

(1) (2) (3)

mm<=nm mm>nm

(mm=?,nm=?)

(mm,nm)

entry1 entry2

entry2

entry2

entry1

entry1 (mm=?,nm=?)

(1)(mm: int, nm: int); (2)(mm: int, nm: infinity); (3)(mm: infinity, nm: int); (4)(mm: infinity, nm: infinity);
entry1 : (md, mn, mm, (md1, mseq)) entry2 : (nd, nn, nm, (nd1,nseq))

LA: Link Addition; LB: Link Broken.

LA

entry2 entry2 entry2
LB LA

entry1

mm:int mm:infinity

nm:int nm:infinity

ÑXÒ�Ó Ä à Ä §�cbYB«kak¯_^_cba/x¼Y(c¶^o]8¯_{#`bpqmonK{ÎcbY\^i`ba/akmB`rcrg

5?Q�WRÊI·x�cWi�¥�cWR�c��Í<��ST=?7�� E)G�=FE E)G:SE��SBENQ#JMôÌJ�� Ð ø�Q)S1	�Q)S��NST7�ENSTO�=����cWi�¥�cWR�c��ÍIJM7 R�JM9� �s8ü(A�7�=���STL��IE)G:S
ôu5?Q)Q)S���	Z587>O�JM7:9IST7�ENQ�� J��!=Ïñ�Q)5?÷?ST7 LMJM7�÷� �û�G:Sa	D<:Q�	
52�NS 5��l�P��Z��/�K\	�y\��_�2] J��¨EN5�ENQ#=?ô#÷ ô#G>=?7:9?S���EN5
E)G:S!Q)58<:E)JM7:9 E)=Fñ>LUS¨5��/E)G:S!Q)STôuSTJ�#?SBQÐO�<:Q(JM7:9�<�	�O�=FE)JM7:9� �û�G:Sc#F=?LM<:S�5��£�P��Z��/�K\	�y\��_�2] J��V�NSBE�EN5 ��][�a\?A
ö�G:ST7�S1#?SBQØ=?7ÏJ���	
5?Q)E)=?7�E'ô(G�=?7:9?S�G�=
	�	
ST7��TAe�)<�ô(G =��Ø=ÙLMJM7:÷×=?O�O�JME)JU587 ø�[î ü(A�=ÙLMJM7:÷Ùñ�Q)ST=F÷F=F9?SIø�[¶H�ü
5?Q:� SBENQ#JMô ô(G�=?7:9?S?A�=��:�)G�5iö�7 JM7�R/JU9� (s" U'd7 R/JU9� Us�AfJ��J\,WR��][Í
þ�51ôBôB<:Q��¨<>7�O:SBQ¨=?7 =FQ)Q)5iö¨AfJUEc� ST=?7��
E)G:S�Q)STôuSTJ�#?SBQ�O:5�S��Ð7�5?E�ô#G�=?7:9?S JME��ØQ)58<:ENS�ST7�ENQ��� UL E)G:SBQ)ö'J��NS?AZE)G:S�Q)58<:ENS�ST7�ENQ��_�)ST7ªEÐñ"��E)G:S��NST7>O:SBQTA
\
WR��][ÍR6�AfJ���<��NSTO EN5 <�	�O�=FENS�E)G�S Q)STôuSTJ�#?SBQ-§i��Q)58<:ENSÛST7ªENQ��� F'k7�E)G�J��¨ôB=��NS?AfJ��6E)G:S+��SBENQ#JMô�5��s\,WR��][Í�6×J��
5���Ex��	
S{È>÷����1÷����	�(AÔE)G:SÚQ)STôuSTJ�#?SBQ JM7�ôuQ)ST=��)S��!E)G>J��E��SBENQ#JMôÙñ"� þÚñ��,��<>7�ôuE)JU587ÔQNø�øªÉ[b�e(AÍ=?7�OóJM7>ôBLM<�O:S��
E)G:S.�)ST7�O:SBQ�§i� 7�5�O:S JMO:ST7�E)J�9�SBQ =�� E)G�S�7:S��1E G:5�	 5��ØE)G:SIST7�ENQ��� �'x�ØE)G:S.� SBENQ#JMô×J�� Ð AÍE)G:SIQ)STôuSTJ�#?SBQ
*)<��NEI=?O�O��IE)G�J��ÚST7�ENQ�� ö�JUE)G:58<:E×=?7�� ô#G�=?7:9?S� õ�5_ö�A'= ôu52�$	>=FQ#J��N587ùñZSBEÉöÎSBST7 E|ö65 Q)58<�ENS�ST7ªENQ(JUS��BA
øËÊ)Z Í Ê=W Í Ê=Ê Í øËÊ)ZDþ Í Ê5U	\��8üNü�=?7�O�øËWYZ Í WRW Í WRÊ Í øËWYZ>þ Í WiU_\,�8üNü(ADJ���O:S��)ôuQ#JMñZSTOÚ=��?��58LMLU5_ö
�1
þ
 0'v�ÎEÉöÎ5 ST7ªENQ(JUS��¨=FQ)S EN5IE)G:Sa�)=�� S O:S��NE)JM7>=FE)JU587�AaÊ)Z2áâWYZ ø��)SBSÛLMJM7�S��)sN�x6�kIJM7I[fJ��NE)JM7:9 þ
 68üC �û�G:S
Q)STôuSTJ�#?SBQÙE)G�ST7 ôu52��	>=FQ#S��ÛE)G�STJUQ��NS�D�<:ST7�ôuSÏ7�<e�¨ñ
SBQ��BA�Ê5U	\�� =?7�OOWiU_\,�" Y'v�lÊ5U_\,�ÞãÒWiU	\���AÎE)G:S
Q)STôuSTJ�#?SBQ'ö�J£LML�ô#G�5�52�NSF\
WR��][ÍZþ
 e'x�yÊ5U_\,�háÀWiU_\,��A�E)G�=FE/��ST=?7���E)G:S¨EÉöÎ5H��SBENQ(JMô1��=FQ)S!5��ÔE)G:SE�)=���S
Ex��	
S� >û�G�<��Kñ
5?E)G×ST7�ENQ#JUS���=FQ#S¨=�#F=?JMLM=Fñ>LMSÐ5?Q�ñ
5?E)G×=FQ)S�ñ�Q#5?÷?ST7! �'k7×E)G:SZ9�Q��)E�ôB=��NSÙøjôu5?Q)Q#S��G	
587�O�JM7:9
EN5óLMJM7:S���þ�WN�#þ�k JM7u[¶J��)E)JM7:9 þ
 68ü(A6E)G:S�Q)STôuSTJ�#?SBQÙö'JMLML?�NSTLUSTôuEÛE)G:S�Q#58<:ENS�ST7�ENQ�� ö�JUE)G E)G:St�)G�5?Q)ENSBQ
��SBENQ(JMô
 �'x�P\,WR��][Í�6ÙJ��'ô(G:52�NST7�A�E)G�S�#F=?LM<:SÌ5��s�P��Z��/�K\	�y\��_�2]ÚJ��/�NSBEØEN5=��][�¥\Ìñ
STôB=?<��)SÌE)G�SE� SBENQ#JMô
G�=���ô(G�=?7:9?STO! >'v��E)G:S1� G�=-#?SÚE)G:SH�)=���Sy��SBENQ#JMôFA�E)G:SÙQ)STôuSTJ�#?SBQ =FQ)ñ>JMENQ#=FQ#JML���ô#G�5�52�NS���587�S� ('k7 58<:Q
��51O:STLrAY\,WR��][Í
þ!J��Ðô(G:52�NST7I��5?Q�ôu587�#?ST7�JUST7�ôuS� !'k7�E)G:S$�NSTôu587�O ôB=��)S?A�E)G:S�Q)STôuSTJ�#?SBQ¨ôB=?7 =FQ)ñ>JUENQ#=FQ(JML��
ô(G:5�52�)S?A�=?7�OÏ\
WR��][ÍZþ J��¨ô#G�52�NST7;��5?Q�ôu587r#?ST7�JMST7�ôuS� �LØE)G:SBQ)ö�J��)S?A¶JM7 E)G:SÙôB=��NS Ê5U	\��@äÝWiU	\���AfE)G:S
Q)STôuSTJ�#?SBQÌ=?LUöK=��R�E�NSTLUSTôuE��å\
WR��][ÍR6×J£7��NENST=?O�5��M\,WR��][Í
þ
 ^ G�JMLUS =?ôBôu5?Q(O�JM7:9 EN5�E)G:S+��SBENQ#JMô1�!5���E|ö65
ST7�ENQ#JUS��BAFE)G:SBQ#SK=?L��N5Ð=FQ)Sf�w58<:Q�	
52���#JUñ>LUS�ôu587>O�JUE)JU587��Køjôu5?Q)Q)S���	Z587>O�JM7:9 EN5ÐLMJM7:S��>6�6N�x6�sÐJM7E[¶J��NE)JM7:9Ìþ
 68üC·
JM7 økþiü(Aj\
WR��]_Í�6ÙJ��Ø5��6Ej�"	ZS)È>÷����1÷��/���\AF�N5×E)G:S�Q)STôuSTJ�#?SBQ!O:ST=?L��Øö'JUE)G�E)G�J��Ø=�#F=?JMLM=FñDLUS�ST7ªENQ��� !'x�6E)G:S
��SBENQ(JMô ô#G>=?7:9?S��BA�E)G:S$#F=?LM<:S 5��f���¥Z��/�H_�y\,�[�2]IJ��)�NSBE!EN55��]_�a\� X'k7ÖøJ68ü(A�\
WR��][ÍZþ J���=?7 =-#o=?J£LM=Fñ>LUS
ST7�ENQ���ñ><:E�\
WR��][ÍR6ØJ��Ô=Øñ�Q)5?÷?ST7�587:S� R8�5�JUEÍJ��Ô=)[fHg �'d7�øJW8ü(AI\
WR��]_Í
þ�J��Ô=Ðñ>Q)5?÷?ST7�ST7�ENQ��!ñD<:E�\
WR��]_Í�6
J�� =?7 =�#F=?JMLM=FñDLUS¨587:S� F8�5ÚJUEØJ�� =+[î �'k7 øAK�ü(Ai\,WR��][Í�6 J��'=Ùñ�Q)5?÷?ST7�LMJ£7:÷DA��N5ÚE)G:S!Q#STôuSTJ�#?SBQ�=?O�O�� JUE
<�7>ô#G�=?7:9?STOX

6" 0'v�ÍE|ö65×ST7�ENQ#JUS��Ø=FQ)SÌEN5ÚO>JmlZSBQ#ST7ªEØO:S��NE)JM7>=FE)JU587��BAZ=?7�O@Ê)Z5äæWYZ�ø��NSBS�LMJ£7:S��V62b-�x6�%×J£7t[fJ��NE)JM7:9 þ
 68üC
û�G>=FE>� ST=?7���E)G:SBQ)S�J��/7:5 Q)58<:ENSKST7ªENQ��¨EN5ÐO:S��NE)JM7>=FE)JU587�Ê)Z�JM7!E)G:SKQ)58<:E)JM7:9 JM7���5?Q�� =FE)JU587!ñ�Q)58=?O>ôB=��NE
ñ"�ÛE)G�Sc�NST7�O:SBQ- �8�5�E)G:S�Q)STôuSTJ�#?SBQ�÷?SBS1	e��\,WR��][Í
þÐ<�7�ô(G�=?7:9?STO!

W" gL E)G�SBQ)ö�J��NS?ADJ���Ê)Z=ã­WYZ�ø��NSBS�LMJM7:S��V6�QN�xWwKÚJ£7.[¶J��NE)JM7:9�þ
 68ü(AZö�G�J£ô#G.� ST=?7���E)G>=FE�E)G:S!Q)58<:ENSÌST7ªENQ��
EN5ÚO:S��NE)JM7>=FE)JU587)WYZ øjJJ vS� a\
WR��]_Í�68ü�J���=Ù7:SBö Q)58<�ENS¨ST7�ENQ��<��5?Q�E)G:SÌQ)STôuSTJ�#?SBQ� ZH65?E)GÏôu587>O�JUE)JU587��'ôB=?7
ñ
SÐE)=F÷?ST7�=��V[î �BA:S1#?ST7�J���\,WR��][Í�6�JM7ÚE)G:S)�NSTôu587�O ôu587�O�JUE)JM587×J���=�ñ�Q)5?÷?ST7�LMJM7:÷p

149

û�G�S:	�Q#5�ôuSTO�<�Q)S!O:S��#ôuQ#JUñ
STO�=Fñ
5-#?S�J��Ø<��)STO.��5?QØE)G:SÌ7�S���EØQ)58<:ENSÌST7�ENQ#JUS��ØJM7 ñZ5?E)GÏQ)58<�E)JM7:9 E)=FñDLUS��1
û�G�J��Z	�Q)51ôuSTO�<:Q)S J��ÐQ)S1	
ST=FENSTO <�7�E)JMLÍ=FEÌLUST=��NEÌ=?LMLÔQ)58<:ENSÛST7ªENQ(JUS��¨JM7�587:S 5���E)G:S Q#58<:E)JM7:9IE)=FñDLUS��¨G�=-#?S
ñ
SBST7_	�Q)51ôuS����NSTO! �'k7 E)G>J��ØôB=��NS?A�J��`�N52� SÌQ#58<:ENS�ST7ªENQ#JMS��ÐLMJ��NENSTO�JM7 E)G:S�Q)STôuSTJ�#?SBQ�§i��Q)58<:E)JM7:9ÙE)=Fñ>LUS�G�=-#?S
7:5?EÍñ
SBST7Ûôu52��	>=FQ)STO�AªE)G:S�Q)STôuSTJ�#?SBQ6ö�JML£L�÷?SBS1	ÙE)G:S���<�7�ô#G>=?7:9?STO ø��NSBS LMJM7:SfKÌJM7�[¶J��)E)JM7:9 þ
 68üC "'d7 L£JM7:S
W
JM7H[fJ��NE)JM7:9×þ
 6�Ae�)52��S�Q)58<:ENS¨ST7ªENQ#JMS���LMJ��NENSTO×J£7ÚE)G:S)�NST7�O:SBQ-§i��Q)58<:E)JM7�9ÌE)=FñDLUS¨=FQ)S�7:5?E'JM7ÚE)G:SÐQ)STôuSTJ�#?SBQ-§i�
Q)58<:E)J£7:9�E)=Fñ>LUS� �'k7ÐE)G�J���ôB=��NS?AiE)G:S�Q)STôuSTJ�#?SBQ�ö�JMLMLF=?O�OÐE)G�S���øjJJ vS� -[î �\ü
<��)JM7�9T�j<�7�ôuE)JM587lÃYørø�ýp÷��	�vù�Ä¥�	���ÆÅIb�e
ø��NSBSØLMJM7:S��TW�sN�&K�þØJM7a[fJ��NE)JM7:9Ûþ
 68üC "'v��=?LML>Q)58<:ENS ST7ªENQ#JMS���5���ñ
5?E)G Q)58<:E)JM7:9!E)=Fñ>LUS��6G�=�#?SØñ
SBST7$	>Q)5�ôuS����NSTO�A
E)G:S¨ôu52�$	><:E)=FE)JU587<�)EN5�	e��=?7�OI=?7IS���	�Ej�×LMJ��NE�J��KQ)SBE)<:Q#7�STO ø��NSBS¨LMJ£7:S)6�JM7H[¶J��)E)JM7:9×þ
 68üC

ð!�Æç |U¡(¢F��°wµd p¢Fº�}j ����E�w e�e´R¢ � µ�¢U�
û�G:SE�j<�7�ôuE)JU587e�Ð=����N51ôBJM=FENSTO ö�JUE)G�E)G�S�ENQ#=?7��)JUE)JM587Ômy��÷�o�ù[�{p/qr��o�=FQ)S�98J�#?ST7�JM7I[¶J��NE)JM7:9�þ
 W" F[¶J£7:S���þÆ�xs
O:S19>7�S�E)G:S/�j<�7�ôuE)JU5875�Nù_q u�ÿ/S2÷����cbK�w÷�ø�ù[dvqxe(A:E)G:S 98<�=FQ#OÙ5���ENQ(=?7��)JUE)JU587@m���÷�o�ù[� p/qr��o JM7ÙR�JM9� �K� R'dEÎST7��#<:Q)S��
E)G�=FEÍ=Ð7:51O:S?A[WYX[Z/\8A8O:SBENSTôuE��ÔE)G�=FEÔE)G:S�L£JM7:÷ÐEN5Ð587:S�7:STJM98Gªñ
58<:Qj�¶J��/O:5_ö�7! 8R�<�7>ôuE)JU587F�
ÿNù
�[o[b�e�ø��NSBS'LMJM7:S��
þ�K
�#þ�Q�J£7�[¶J��NE)J£7:9�þ
 W8üÔO:S��)ôuQ(JUñ
S��/E)G:S0��SBENQ#JMôK5��
ST=?ô(G ñ�Q)5?÷?ST7ÛLMJM7:÷!=�� Ð ø�Q)S1	>Q)S��NST7�ENSTO =����cWi�¥�ÌWR�c��ÍÌJM7
�j<�7�ôuE)JU587��\ü(Ao=?7�O�JM7>ôuQ)ST=��NS���E)G:S?�NS�D�<:ST7�ôuS�7�<e�¨ñ
SBQ/5��e�)<�ô(G�=ØLMJM7:÷Øñ"�Ûþ6ö�G:ST7�JUE��/7:S��1EÔG:5�	�J��i�� 8û�G:ST7�A
E)G:S <�	
O>=FENSTO�Q)58<:E)JM7:9ÚE)=Fñ>LMS 5��ÎE)G>J���7:51O:S�J��ÐQ)SBE)<�Q#7:STO�A�=?7�O E)G>J��/#o=?L£<:S J��Ðñ
58<�7�OÏEN5�=?7 JMO:ST7�E)J�9�SBQ
è]�X[é3\,W JM7IL£JM7:S þ1] 5��ÔE)G�S:� =?JM7<��<�7>ôuE)JU587^m���÷�oCù[�/p/qr�/o_bK�w÷�ø�ù[d�qxeÐø��)SBSÌLMJ£7:S��
%N�#þ�6 5��>[fJ��NE)JM7�9Iþ
 W8üC p'k7
LMJM7�SØþ?þFA�E)G:S�7:51O:S�JM7>ôuQ)ST=��NS���JME��Y�NS�D�<:ST7�ôuS�7�<��!ñZSBQÔñ"�E��<>7�ôuE)JU587)NP�2ø/Q	�Pù������"ý�þsb�e(A8=?7�O�E)G�ST7 =¨7:51O:S
ö�JUE)G×JME��?'v�Ö=?O�O:Q)S�����=?7�OI<�	�O�=FENSTOÚQ)58<�E)JM7:9�E)=Fñ>LUS�J��KQ)SBE)<:Q#7:STOX

� µAº1°Nµ�¢U������ðX� R�<�7�ôuE)JU587nm���÷�o�ù[�Ip�qz��o

W Ç����3�f`BY aFmDhB^DcTa { mDa_prn�y>ÅDYª^�c �Kp�`\y��d§%{�¯D¯>cTaFhBh pF�3���8È
¦��K 3¡ �����F¥?¡8¢� o��¸£¢[¢#��L�Ð�Ñ�¤iLu��¤,� ·��8¤ª�F�
¦ÔÓ �����o¥?¡8¢� F�ª¸J¢_¢#��L[¢u�F�8� � L(�ª�[�?� � Lk¹1�F�?¸ � L[¢u�?�8� " L#�?�_¹ � ¤�¤�7�7i¸o�¥¤aL\�3¤
�
¯ ´�� ¢\���1�8�ª� � ¤ ¬�¡�¼3¬�§.º Ùê¢T o·�:_¡� _º��JØ(���?�8¸��8�V¢)¹:�8�8¸ � ¤[¤ ¬3¡3¼3¬3§ëº Ùì¢\¡1 oº8�8�o¹1¢��?¸��P¢N¹:�?�8¸ � ¤�� � ¤
²%©
·/¨�¡ �?¸F�ª�
³2¨ª§Áº_¨ �����o¥?¡8¢1 o�ª¸J¢[¢)�yL\¸o��¤¥LB�3¤3!
¶
¹ Ç����3��{ m1Y?¯�a�¯Za8{�}|h��Kpw`uy-Å:cuY8�1aim }Npkm��
hù{Tm�¯�^D]D¯D{?`Ba_h p)`8h huaFÒ1^>aom>«oaùm8^8[Å8a#cK���y�ªÈ
» �K 3¡îí ¸� _ï��F��ð1�o��ïM¢)�ª _�?�JL\��¤,�
W.½�§c¨ª©â«I¬ª§2í ¸� 	ï��?�°���o¡�����ï�¢#�VL
±8�?���1 F�ª�/+o��¢\�� o�8�a¤¥L
±ª�?��B�C��1 F�ª��¢#�� o�8�Y¤[¤
WrW>´c¡ ¢
±8�?���� F�ª�/+F��¢(�� o�8�a¤aL($ªºª���?�ª��¸_-8��B�CJ¢
±8�?���� ?�ª�/+o�£¢(�� o�8�a¤¥L í ¸� 	ï��F�Y¤[¤
Ww¦F¨�¡�¼ !
W.¦
W ¯ Ç����3�f`BY-¯DaF{�} �6p�`uy-Å:c\Yª��a_m*}Ép|m
�>h������8È
W¿²��K 3¡ �_¡�����ï�¢b¹PLd�£L/Ð�Ñ3¤_�VÐ�Ñ
W.³ÔÓ �_¡�����ï�¢|¹�Ld��L_¢u�?�8� � L(�ª�[�?� � Lk¹1�F�?¸ � L[¢B�?�8� " L\�?�_¹ � ¤�¤�7�7B¸F�R¤,�
W ¶ ´�� ¢É¹ª�������8� � ¤
W.¹�©
·/¨�¡ ¢\�F�8� � L#�ª�[�?� � Li�i�8·��i���_�?�kL[¢u�?�8� " L\�?�_¹ � 9 � ¤�¤¥7�7F�_¡����	ïy¢|¹�Ld��L(¸o�¥¤
W.»2¨ª§Áº_¨ ¢\�F�8� � L#�ª�[�?� � LN¹1�F�?¸ � L[¢u�?�8� " L(�?�_¹ � ¤�¤�7�7F�_¡�����ï�¢|¹PLk�yL\¸o�a¤�!

ñ �/íÌò ë`�&�Zç8íbéfæùéXë¨ç�ó`�óç+��è é-éÔêY���

'k7 5?Q(O:SBQÐEN5y	�Q)5-#1JMO:SE�N52��S J£7��)JU98G�E'JM7�EN5ÚE)G:S�5�	
SBQ#=FE)JU587�5���58<�Q�4?��õ � 5�O:STLbADö6S�ôu587��)JMO:SBQØE)G:SE��58Lm�
LU5_ö�JM7:9¤�)J��Ì<�LM=FE)JU587Ö5��!JUE��Ùñ
STG�=-#�JU58<�Q� Îû�G�SÏ7�<��!ñZSBQÙ5��!7�5�O:S��ÙJM72E)G:S ï�î õ ú�û J��Û9?5-#?SBQ#7�STO ñ��
E)G:SÙJM7�JUE)JM=?L�� =FQ)÷�J£7:9×5���E)G:SÚ4?��õ���51O:STL�JM7 R�JM9� FK øjJ& vS� ¶E)G:S+� =FQ)÷1JM7:9×5��?	>LM=?ôuS_ö>÷�ø�ù�ú(ü(A�=?7�O ôB=?7

150

ñ
S S��1ENST7�O:STO2ST=��)J£L��� 6ò'SBQ)S?AKö6Sa*)<��NEÚôu587��)J£O:SBQÛE)G�S 5�	
SBQ#=FE)JU58725���E)G�S�4?��õ ö�JME)GìW 7:51O:S��1 081<�	��
	
52�NS×E)G:STJUQ =?O>O:Q)S����NS�� =FQ)S×Q)S1	�Q)S��)ST7ªENSTO =�� þFA�6�=?7�O�W Q)S��G	
STôuE)J�#?STL��� î �$�)G:5_ö�7 JM7óR/JU9� YK:A�E)G:SBQ)S
=FQ)SÙE|ö65�ENQ#=?7��)JUE)JM587��BA�NP�2ø/Q	�PùaþRQ/S�T ùÛ=?7�O�m���÷�o�ù[�^p/qz��oFA�J£7 E)G:S×4f��õh��5�O�STLJ X'k7 5?Q#O�SBQ!EN5�S��R	>LM=?JM7
E)G:SE�)J��Ì<�LM=FE)JU587I5��ÍE)G:S�4?��õ S��R	>LMJMôBJUE)L��?A�öÎS�O:S��)ôuQ(JUñ
S�E)G:S¨51ôBôB<:Q)Q#ST7�ôuS!5��ÔENQ(=?7��)JUE)JU587nN��2øIQ	�vù:þaQ/S/T ù
·
ø����¥Z��/�H\
ô��Iõ(�Á\ Í ä®][WYX[Z/\=áß� Í U,WYX[Z/\)áöõ5ã'ü(A�J£7 ö�G>JMô#G^]_WYX[ZI\Ú=?7�OÏU�WYX[Z/\Ú=FQ)S+#F=FQ#JM=Fñ>LUS��ÌJM7 E)G:S
=FQ#ôÚS��R	�Q)S����#JU587 5��'E)G:SIJ£7�	><:EÌ=FQ#ôÚEN5 E)G�J���ENQ#=?7e�)JUE)JU587�A/=?7�O÷� =?7�OÎõÙ=FQ)SH#o=?L£<:S��ÌñZ58<>7�O EN5{]_WYX[ZI\
=?7�O)U�WYX[Z/\ØQ)S���	ZSTôuE)J�#?STL��� î ��O�S��)ôuQ#JUñ
STOÚJM7y�NSTôuE)JU587.W" 6�Aª]_WYX[ZI\ØQ)S1	�Q)S��)ST7ªE���=�7:51O:SØE)G�=FE�ôB=?7×Q#STôuSTJ�#?S
=?7�O <�	�O�=FENS!JUE���Q)58<:E)JM7�9 E)=Fñ>LUS!ñ>=��NSTOI587 E)G:S!Q)58<:E)JM7:9ÛJM7���5?Q�� =FE)JU587t�NST7ªE'ñ��I=?7�5?E)G:SBQ 7�5�O:S?AaU,WYX[ZI\�
R:5?QÐS��:=���	>LUS?AÔø����¥Z��/�H\
ô��Iõ(�Á\ Í äÛ]_WYX[ZI\há þ Í U�WYX_ZI\há�W>ã ü0��ST=?7e�'E)G>=FE ö'G:ST7�ENQ(=?7��)JUE)JU587nN��2øIQ	�vù
þRQ/S�T ùØ51ôBôB<:Q��TA17�5�O:S�þÐJ��Kñ
58<�7>OÛEN5F][WYX[Z/\�=?7�OI7:51O:SZW�J��6ñ
58<�7�OÙEN5�U,WYX[ZI\� �û�G�<��BA:7:51O:S�þÐ<�	�O�=FENS��
JUE���Q)58<:E)JM7:9 E)=Fñ>LUS¨ñD=��NSTOI587 E)G:S¨Q#58<:E)JM7:9 J£7��w5?QC� =FE)JU587IJUE'Q)STôuSTJ�#?STOt�wQ#52�*7:51O:S:W" î 7>=?LU5?9?58<��)L��?ADE)G:S
51ôBôB<:Q)Q)ST7�ôuS�5��KENQ#=?7e�)JUE)JU587Îm��d÷�o�ù[�@p/qz��o J��ÐO:S1	DJMôuENSTO�=��1·�ø è]�X�é3\
WY���ÌWié Í äøWYX_ZI\%áâù Í ��áîZ^ã'ü(A�JM7
ö�G�J£ô#GÏWYX[Z/\IJ���E)G:Sy#o=FQ#J£=Fñ>LUS×JM7 E)G:SI=FQ#ôÙS��R	�Q)S����)JM587ó5���E)G:SIJM7�	><:E�=FQ#ôÚEN5 E)G�J��ÌENQ#=?7��#JUE)JU587�AÔ=?7�O÷ù
J��Ð=y#F=?LM<:S�=����)JM987:STO�EN5=WYX[Z/\� fò�SBQ)S?ARWYX[ZI\�Q)S1	�Q#S��NST7ªE��¨=×7:5�O�SÌö'G�JMô#G�O:SBENSTôuE��!=?7�O O:ST=?L��Øö'JUE)G�E)G:S
ñ�Q)5?÷?ST7�LMJM7:÷R��EN5Û=�7:STJU98G�ñZ58<�Q��#A�ö�G�JMô(GÚJ��KST7��)<:Q#STOÚñ��ÛE)G:SÐ98<�=FQ#O{�wù_q u�ÿ/S2÷����cbK�w÷�ø�ù[dvqxeC >R:5?Q'S��1=��$	>LUS?A
ø è]�X[é3\,WY���cWié Í äÛWYX_ZI\há þ Í �Já®6=ã'ü
��ST=?7�� E)G�=FEØö�G:ST7 ENQ#=?7��#JUE)JU587Ôm���÷�o�ù[�5p/qz��oÌ5�ôBôB<:QC�BAZ7�5�O:SÚþ
J��'ñ
58<�7�O EN5 WYX[ZI\�=?7�OI6ÛJ���ñ
58<�7�O�EN5>�� F8�5Ù7�5�O:SÚþ�O:SBENSTôuE��ØE)G�=FEÐJUEØG�=��Ø7:5?EØQ)STôuSTJ�#?STO =?7�<�	�O�=FENS
��Q)52� =,�w5?QC��SBQÛ7:STJM98Gªñ
58<:QTAÍ7�5�O:S_6�AÎö�JME)G�JM7óE)G:S S��"	
STôuENSTOÖE)J���S?A��)5 JUE+� =F÷?S��Û=?L£L�Q)58<:ENS ST7ªENQ(JUS��
E)G:Q)58<�98GI7:51O:S:6�=��'ñ�Q)5?÷?ST7IL£JM7:÷R�1 �õ�5_ö�A>E)G�Sc�NENS1	e��E)G�=FE�51ôBôB<:Q�JM7�= S��1STôB<:E)JU587I5��/E)G:S�4f��õ®��51O:STL
=FQ)S¨O�S1	>JMôuENSTO×=��0��58LMLU5_ö
�BA�=?7�OIE)G:S)� =FQ)÷1JM7:92�KQ)ST=?ô(G:STO�=FQ#S�98J�#?ST7IJM7�R�JM9� �b�
»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»u»B»u»u»u»B»\»u»u»
¢ � ¤ ��ú ¢ � L
Ð�¢ � L � L�¡i #º_�/¢��	¤�L=¢ � L �	¤A¤KÑ_¤K9A9

��ú ¢ " L
Ð�¢ " L " L�¡i #º_�/¢��	¤�L=¢ " L �	¤A¤KÑ_¤K9A9
��ú ¢j��L
Ð�¢j��L���L�¡i #º_�/¢��	¤�L=¢j��L �	¤A¤KÑ_¤»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»u»B»u»u»u»B»\»u»u»

¢ " ¤ ��ú ¢ � L
Ð�¢ � L � L�¡i #º_�/¢��	¤�L=¢ � L �	¤A¤KÑ_¤K9A9
��ú ¢ " L
Ð�¢ " L " L�¡i #º_�/¢��	¤�L=¢ " L " ¤A¤�L>¢���LØ��L'¡T #º_�/¢ � ¤�L=¢j��LØ��¤A¤KÑ_¤G9(9
��ú ¢j��L
Ð�¢j��L���L�¡i #º_�/¢��	¤�L=¢j��L �	¤A¤KÑ_¤»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»u»B»u»u»u»B»\»u»u»

¢j�	¤ ��ú ¢ � L
Ð�¢ � L � L�¡i #º_�/¢��	¤�L=¢ � L �	¤A¤KÑ_¤K9A9
��ú ¢ " L
Ð�¢ " L " L�¡i #º_�/¢��	¤�L=¢ " L " ¤A¤�L>¢���LØ��L'¡T #º_�/¢ � ¤�L=¢j��LØ��¤A¤KÑ_¤G9(9
��ú ¢j��L
Ð�¢ � L � L�¡i #º_�/¢ � ¤�L=¢ � L �	¤A¤�L>¢���LØ��L'¡T #º_�/¢j��¤�L=¢j��L " ¤A¤KÑ_¤»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»u»B»u»u»u»B»\»u»u»

¢ * ¤ ��ú ¢ � L
Ð�¢ � L � L�¡i #º_�/¢��	¤�L=¢ � L �	¤A¤KÑ_¤K9A9
��ú ¢ " L
Ð�¢ " L " L�¡i #º_�/¢��	¤�L=¢ " L * ¤A¤�L>¢���LØ��L��N�B·i�)�_�)�u�3L=¢j��L � ¤A¤KÑ_¤K9A9
��ú ¢j��L
Ð�¢ � L � L�¡i #º_�/¢ � ¤�L=¢ � L �	¤A¤�L>¢���LØ��L'¡T #º_�/¢j��¤�Lû¢j��L " ¤A¤KÑ_¤»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»u»B»u»u»u»B»\»u»u»

¢ 0 ¤ ��ú ¢ � L
Ð�¢ � L � L�¡i #º_�/¢��	¤�L=¢ � L �	¤A¤KÑ_¤K9A9
��ú ¢ " L
Ð�¢ " L " L�¡i #º_�/¢��	¤�L=¢ " L * ¤A¤�L>¢���LØ��L��N�B·i�)�_�)�u�3L=¢j��L � ¤A¤KÑ_¤K9A9
��ú ¢j��L
Ð�¢ � L � LØ�)�B·i�)�i�#�u�3L)¢ � L � ¤A¤�L=¢���L ��L�¡i #º_�/¢��	¤�L=¢j��L * ¤A¤KÑ_¤»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»u»B»u»u»u»B»\»u»u»

¢ 4 ¤ ��ú ¢ � L
Ð�¢ � L���LØ�)�B·i�)�i�#�u�3L)¢ � L'�	¤A¤�L=¢���L ��L�¡i #º_�/¢ � ¤�L=¢j��L * ¤A¤KÑ_¤K9A9
��ú ¢ " L
Ð�¢ " L " L�¡i #º_�/¢��	¤�L=¢ " L * ¤A¤�L>¢���LØ��L��N�B·i�)�_�)�u�3L=¢j��L � ¤A¤KÑ_¤K9A9
��ú ¢j��L
Ð�¢ � L � LØ�)�B·i�)�i�#�u�3L)¢ � L � ¤A¤�L=¢���L ��L�¡i #º_�/¢��	¤�L=¢j��L * ¤A¤KÑ_¤»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»u»B»u»u»u»B»\»u»u»

¢ 6 ¤ ��ú ¢ � L
Ð�¢ � L���LØ�)�B·i�)�i�#�u�3L)¢ � L'�	¤A¤�L=¢���L ��L�¡i #º_�/¢ � ¤�L=¢j��L * ¤A¤KÑ_¤K9A9
��ú ¢ " L
Ð�¢ " L " L�¡i #º_�/¢��	¤�L=¢ " L * ¤A¤�L>¢���LØ��L��N�B·i�)�_�)�u�3L=¢j��L � ¤A¤KÑ_¤K9A9
��ú ¢j��L
Ð�¢ � L � LØ�)�B·i�)�i�#�u�3L)¢ � L'�	¤A¤�L=¢���L ��L�¡i #º_�/¢��	¤�L=¢j��L * ¤A¤KÑ_¤»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»u»u»u»u»\»B»u»u»u»B»u»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»B»u»u»u»u»B»\»u»u»B»u»u»\»u»B»u»u»u»B»\»u»u»

ÑFÒáÓ Ä(ü8Ä � {#cb�Tpqmon(hfY#x:`byoaÍX
§�´ ¯i^_cbpqmon�`byoa/hrpq[6^_}©{#`bpqY\m

û�G�S�JM7�JUE)JM=?Lp� =FQ)÷1JM7:9 J��K98J�#?ST7IJM7×R/JU9� pb1økþiüC ZR:5?Q�S��:=���	>LMS?A¶økþ Í ýUøkþ Í þ Í�ý X��¥U�ø�]ªü Í økþ Í]�üNü|ÿjüØJ���=E	>=?JUQ
ôu52��	�Q(J��)JM7:9ØE)G:S'JMO:ST7�E)JUEj��=?7�O�Q)58<�E)JM7:9ÐE)=Fñ>LUS�5���7:51O:S�þ¨ø��)SBS'LMJM7�SØþ�W¨JM7�R/JU9� �k8üC �'d7 JME��ÔQ)58<:E)JM7�9ÐE)=Fñ>LUS?A

151

E)G:SBQ)S J��Í587>L���587:S�Q)58<�ENS�ST7�ENQ���økþ Í þ Í�ý X��¥U�ø�]ªü Í økþ Í]ªüNüC î ôBôu5?Q#O�JM7�9¨EN5!L£JM7:S�þ?þ JM7 R/JU9� "k�A�ö6S�÷17:5iö2E)G:S
O:S��NE)J£7�=FE)JU587Ù=?7�O E)G�S 7:S��1E�G:5�	ÙñZ5?E)GÙ=FQ)SÐ7:51O:S!þFA1E)G:S/��SBENQ#J£ô�J��T]1A1ö�G�JMô(GÛJ��Î5���Ex��	
SåÈ(÷����1÷��/���Øø��NSBS
LMJM7�S)bÌJ£7×R�JM9� ek8ü(AD=?7�O�økþ Í]ªü0��ST=?7���E)G�S)�NS�D�<�ST7�ôuS¨7�<��¨ñ
SBQ�J���5?Q(JU98JM7�=FENSTOÚñ"�Ù7�5�O:S þÐ=?7>OIJUE��f#F=?LM<:S
J��?]R

ø��P��Z��/�H\
ô���õ��Á\ Í äÎ][WYX[Z/\�áã6 Í U,WYX[Z/\�á WFã ü
51ôBôB<:Q��BA_ö�G�JMô(G)��ST=?7���7:51O:ST6�Q)STôuSTJ�#?S���E)G:S�Q#58<:E)JM7:9
JM7���5?Q�� =FE)JM587+�)ST7ªE�ñ"�Ú7:5�O�SZW�A�ýUøJW Í�ý X��¥U�ø�]ªü Í øJW Í]ªüNü|ÿ'ø��NSBSc�NSTôuE)JU587t68üC >õ�51O:Sc6�=?O�Oe��E)G�J��6Q)58<:ENS¨ST7ªENQ��
EN5�JUE���Q)58<:E)JM7:9×E)=FñDLUS?A�=
�wENSBQÌJM7�ôuQ)ST=��#JM7:9ÚE)G:Sa��SBENQ(JMô�ñ��óþ =?7�O =?O�O�JM7:9×7:51O:SaW×=��¨E)G:S 7:S��1E¨G:5�	�5��
E)G�J��'ST7�ENQ��� ZH6STôB=?<��)S�JME'J�� =ÛL£JM7:÷×=?O�O�JUE)JM587 ø��NSBS�R/JU9� �s8ü(A�7:51O:SE6 JM7>ôuQ)S���ST7�E��'JUE��g�NS�D�<:ST7�ôuS�7�<e�¨ñ
SBQ
ñ"�y6" >û�G:S)� =FQ)÷1JM7:9�Q)ST=?ô(G:STO J��f	�Q)S��NST7�ENSTOIJM7×R/JU9� pb1øJ68üC

î �wENSBQÔE)G>=FEBA>ø�����Z/���K\Aô���õ(�Á\ Í äÎ][WYX[Z/\fá W Í U�WYX_ZI\fá�þkã'ü¶5�ôBôB<�Q��BAoö�G�JMô(G�� ST=?7��Ô7:51O:SfW'Q)STôuSTJ�#?S��
E)G:S Q#58<:E)JM7:9×JM7���5?Q�� =FE)JM587�AÍýUøkþ Í þ Í�ý X��¥U�ø�]ªü Í økþ Í]ªüNü|ÿg�NST7�E�ñ"�Ï7:51O:SIþ
 ¶õ'51O:S�W×=?O�Oe��=×7:SBö ST7�ENQ���EN5
7:51O:S'þÎJM7�EN5 JUE��¶Q)58<:E)JM7�9�E)=Fñ>LUS6=?7�O¨J£7�ôuQ)ST=��NS���JUE��f5iö�7��NS�D�<:ST7�ôuSK7�<��!ñ
SBQ¶ñ"�c6" oû�G:S�� =FQ#÷�JM7�9�Q)ST=?ô#G�STO
J��?�)G�5iö�7IJ£7×R�JM9� pb1øJW8üC

û�G�ST7�ø è][X�é3\,WY���cWié Í äÔWYX[Z/\�á 6 Í �yá WFã'üf51ôBôB<:Q��1 �û�G�=FEY��ST=?7���7:5�O�S
6ÐO:5�S��Í7:5?EÔQ)STôuSTJ�#?S =?7r�
JM7���5?Q�� =FE)JM587.��Q)52� =×7:STJU98G�ñ
58<:QTAZ7:5�O�S�W�A!��5?Q�=Ùö�G�JMLMS?Ap�N5×JUEÐJM7��wSBQ��'E)G:S LMJ£7:÷×EN5I7:51O:SEWÚJ��'ñ>Q)5?÷?ST7!
õ'5�O:Sc6�=����)JU987��£�cWi�¥�ÌWR�c��ÍÙ=���E)G:S)��SBENQ(JMô 5��fE)G�J��KQ)58<:ENSÐST7�ENQ��Ù=?7>O×JM7�ôuQ)ST=��NS��KE)G�S)�NS�D�<�ST7�ôuS�7�<e�¨ñ
SBQ
5���E)G�J��ÍST7�ENQ�� ñ"�Iþ
 �H6STôB=?<��NSÐJUE6J���=ÌLMJM7�÷!ñ�Q#ST=F÷o=F9?S?A:7:51O:Sg6!JM7�ôuQ#ST=��NS��ÎJME���5_ö�7��)S�D�<:ST7>ôuS 7�<��!ñZSBQÎñ��
6" >û�G�S)� =FQ)÷1JM7:9�=
�wENSBQ'E)G�J��?�NENS1	ÏJ��K98J�#?ST7 JM7×R/JU9� �b1øAK�üC

õ'S���EBA¶ø è]�X�é3\
WY���cWié Í ä÷WYX[Z/\�á W Í ��á�þkã'ü�5�ôBôB<�Q��1 e81J�� J£LM=FQ#L��?Aª7�5�O:SZW�O:ST=?L��6ö�JME)GÛE)G�S ñ>Q)5?÷?ST7
LMJM7�÷ EN5 7:51O:S þ =?7�O2JM7�ôuQ#ST=��NS��ÚJUE�� 5_ö�74�NS�D�<:ST7�ôuS 7�<e�¨ñ
SBQÛ=��Ùö6STLMLJ Kû�G:S_� =FQ)÷1JM7:9 J����)G�5iö�72JM7
R/JU9� pb1øJk8üC

ø��P��Z��/�H\
ô���õ��Á\ Í äÎ][WYX[Z/\�á�þ Í U,WYX[Z/\�á WFã üZ5�ôBôB<�Q��1 iõ'5�O�S�þÍQ)STôuSTJ�#?S��¶E)G:S�Q)58<:E)JM7:9�J£7��w5?QC� =FE)JU587�A
ýUøkþ Í þ Í �cWi�¥�cWR�Ì��Í Í økþ Í þiüNü Í øJW Í W Í�ý X��¥U�ø�]ªü Í øJW Í K1üNü|ÿ`�NST7ªEKñ"� 7:51O:SZW" 1R�5?Q�E|ö65�Q)58<:ENS ST7ªENQ(JUS��KEN5�E)G:SZ�)=���S
O:S��NE)J£7�=FE)JU587�AÔ= 7:51O:S×=?LUöK=��R�a�NSTLUSTôuE�� E)G:S×587:S×ö�JUE)GóE)G�SIG�JU98G:SBQ$�NS�D�<:ST7�ôuSI7�<��!ñ
SBQ� >'d7óE)G�J���ôB=��NS?A
E)G:SBQ)SÐ=FQ)SØEÉöÎ5�Q)58<�ENSÐST7ªENQ#JMS��ÎEN5 7�5�O:S�þFA1587:S�ôu587�E)=?JM7�JM7:9ÌE)G:SØQ)58<:E)J£7:9ÌJ£7��w5?QC� =FE)JU587+�NST7ªEKñ"�Û7:51O:SZW�A
=?7�OÏE)G:S�5?E)G:SBQÐ÷?S1	�E�J£7�E)G:S�Q)58<�E)JM7:9ÙE)=Fñ>LUS�5��Î7:51O:SÚþ
 �õ�51O:S×þE�NSTLUSTôuE��ØE)G:SE��5?Q���SBQÐ587:S�ñ
STôB=?<��NS�JUE
G�=��6E)G:SØG�JU98G:SBQT�NS�D�<:ST7�ôuSØ7�<��!ñ
SBQTADþ
 1H6STôB=?<��NSÐ=Ìñ�Q)5?÷?ST7ÙLMJM7:÷ZADøkþ Í þ Í �cWi�¥�ÌWR�c��Í Í økþ Í þiüNü(A>Q#S1	>LM=?ôuS��6E)G:S
=�#F=?JMLM=FñDLUS 587:S?AKøkþ Í þ Í�ý X��¥U�ø�]ªü Í økþ Í]ªüNü(A6JME!ôB=?7 ñZSÛE)=F÷?ST7ó=��ÌL£JM7:÷ÏQ)S���5-#F=?LJ �õ�51O:S þÙ=?O�O��¨E)G:SÙQ)58<:ENS
ST7�ENQ�� EN5 7:5�O�SHW�JM7ªEN5�JME���Q)58<:E)JM7:9 E)=FñDLUS?AÍJJ vS� Í= LMJM7�÷ =?O�O�JUE)JM587! Ôû�G:ST7 7:51O:S þIJM7�ôuQ#ST=��NS���JUE���5_ö�7
�NS�D�<:ST7�ôuS¨7�<��!ñ
SBQ?�wQ)52� þØEN5+W" >û�G�S/� =FQ)÷�J£7:9�Q)ST=?ô#G�STO�J��?�)G�5iö�7IJ£7×R�JM9� pb1øJs8üC

ø��P��Z��/�H\
ô���õ��Á\ Í äâ][WYX[Z/\=á W Í U,WYX[ZI\)á þ@ã'üÐ7:5_ö 5�ôBôB<:QC�1 fõ'5�O�SyW�Q)STôuSTJ�#?S��ÌE)G:SÛQ)58<:E)JM7:9ÏJM7R�
��5?Q�� =FE)JU587�AÍýUøkþ Í W Í �cWi�¥�ÌWR�c��Í Í økþ Í W8üNü Í øJW Í W Í�ý X��aU�økþiü Í øJW Í K�ü)ü|ÿ
�NST7�EÐñ��Ï7:5�O�SÙþ
 �R:5?Q¨E|ö65×Q)58<:ENS�ST7ªENQ(JUS��
EN5Û7�5�O:S þFAD7:5�O�ScW$�NSTLUSTôuE���E)G:S�587:S¨Q)STôuSTJ�#?STO�A�ñ
STôB=?<��)S¨JUE�G�=���G�JU98G:SBQ
�)S�D�<:ST7>ôuS¨7�<e�¨ñ
SBQ
W" Dõ'51O:S:W
÷?SBS1	e�6E)G:S Q)58<:ENS ST7ªENQ�� EN5ÌJME��NSTL���JM7ÛJUE���Q#58<:E)JM7:9!E)=Fñ>LUSØ<�7�ô#G>=?7:9?STO�Aªñ
STôB=?<��)S'E)G:S E|ö65�ST7ªENQ(JUS���EN5�7:51O:S
W�G�=-#?S�E)G:Sc�#=���Sc�NS�D�<:ST7�ôuS�7�<��!ñZSBQ
K� >û�G:SZ� =FQ)÷1JM7:9�Q#ST=?ô#G:STO J��?�)G:5_ö�7IJM7×R/JU9� pb1ø&b?üC

þ ��íj�Fì:ë`�
�Fíbéfæ

û�G:SÚS��1STôB<:E)JU587ó�)S�D�<:ST7>ôuSÚO�S��)ôuQ#JUñ
STOó=Fñ
5-#?S<�)G:5_ö
��E)G�=FE�E)G�SI4?��õh� 5�O:STL�ôB=?7��#J��!<>LM=FENSÚE)G:SI<�	��
O�=FE)JM7�9I5��KQ)58<:E)JM7:9�E)=Fñ>LUS��¨J£7�=?7�ST7�#�JMQ)587���ST7�E�ö�G:SBQ#S E)G:S EN5�	
58LU5?9���5���E)G:S ï�î õ ú�û+ôB=?7 ô#G>=?7:9?S
O:Q#=�� =FE)JMôB=?LML���
'k7!E)G>J����NSTôuE)JU587�ö6S�JMLMLM<e�NENQ#=FENSKG:5iö E)G�J��fS��1STôB<:E)JU587a�NS�D�<�ST7�ôuS�ôB=?7�ñ
S6Q#STLM=FENSTO�EN5�S1#?ST7�E��
JM7 E)G�S ï�î õ ú�ûÐA�=?7�O�=?L��N5 =?7�=?L��R�NS E)G:S ENQ(=?ôuS ñ"��ôu587e�)JMO:SBQ#J£7:9×E)G:S$#F=?LMJMO�JMEj��5���E)G�S Q)58<:E)JM7�9×E)=Fñ>LUS
ST7�ENQ#JUS��0�)G�5iö�7IJ£7ÚE)G:Sc� =FQ)÷1JM7:92�K5��/R/JU9� pb�

î �)ôuST7�=FQ(JU5ÛJM7ÚE)G�S ï î õ ú�û E)G�=FE�Q)STL£=FENS���EN5 E)G�S¨S��1STôB<:E)JU587.�)S�D�<:ST7>ôuS!JM7×E)G�S)	�Q)S1#1JU58<��0�)STôuE)JU587
J��f�)G:5_ö�7ÚJM7ÚR/JU9� �%" 1û�G:S O>=��)G:STOÚôBJUQ#ôBLUS��KJM7>ôBLM<�O:S'E)G:SÐ7:5�O�S'E)G�=FE�J���ñ�Q#58=?O�ôB=��NE)JM7:9�=?7�OÙö�G>JMô#GÚ7:51O:S��
Q)STôuSTJ�#?S¨E)G:S�ñ�Q)58=?O>ôB=��NE1 Dû�G�S)�N58LMJMO×=FQ)Q#5iö
��J£7�O�JMôB=FENSÐE)G�=FE�E)G:Sc�NST7�O�SBQ�ñ�Q)58=?O�ôB=��)E���=ZËÆ©R�d�UÌ�©"ÇVzDAZ=?7�O
E)G:S×O�=��)G�STO =FQ#Q)5iö
��J£7�O�JMôB=FENSÙE)G�=FE�E)G:SH�NST7�O:SBQ�ñ�Q#58=?O�ôB=��NE���=?74�Aª�~1{���Ça��ª��&}
��<�	
O>=FENS� ^ SI=����#<���S
E)G�=FEÐ7:51O:S�� ñ�Q)58=?O�ôB=��)E E)G�STJUQfËC©R�A��Ì�©"ÇVz JM7ÏE)G:S�5?Q#O�SBQ�·Z7�5�O:S�W�A�7:51O:SÚþÌ=?7>OÏ7�5�O:S�6" �'d7>JUE)JM=?LML��?ADE)G:S
7:51O:S��(*)<��NE�G�=-#?S¨E)G:STJUQ�5_ö�7IST7�ENQ#JUS���=���98J�#?ST7×ñ"�ÙE)G:Sc� =FQ)÷1JM7:9�5��ÔR/JU9� �b1økþiüC

152

1

1

33

1

3
2

3

2

2

3

2

then 2:incremental (broken link), (f) 2:broadcasts, no nodes receive
 no nodes receive

(e) 1:broadcasts, no nodes receive
then 3:incremental (broken link),
 no nodes receive then 3:broadcasts, 1:receives

(c) 2:broadcasts, no nodes receive

1

2

3

1

2

(a) 3:broadcasts, 2:receives (b) l:broadcasts, 3:receives
(then 2:incremental, no nodes receive) (then 3:incremental, no nodes receive)

(d) 3:broadcasts, no nodes receive

1

1

ÑXÒ�Ó Ä�ÿªÄ z¶m pq}q}q^ohj`rc|{#`bpqY(mÐY(x1`by_aÔhrp©[Î^o}©{#`bpqY(mØpqm hrak«d`bpqY(mZÝ

î �E�)G:5iö'7 JM7 R/JU9� �%�� ��� A/7:51O:S+W�ñ�Q)58=?O�ôB=��)E���=?7�O 7�5�O:Sy6 Q)STôuSTJ�#?S���=?7�Oó<�	�O�=FENS��ÌJUE��¨Q#58<:E)JM7:9
E)=Fñ>LUS� fû�G:S <�	�O�=FENSTO�Q#58<:E)JM7:9×E)=Fñ>LMS��¨=FQ)S J£7�R/JU9� (b1øJ68üC /õ�51O:S�6ÚE)G�ST7 ñ�Q)58=?O�ôB=��)E��!=?7 JM7�ôuQ)S���ST7�E)=?L
<�	�O�=FENS?A�ñD<:E�<�7���5?Q)E)<�7>=FENSTL��Ù7�5 7:51O:S���Q)STôuSTJ�#?S�JUE�=���E)G:S1�I=FQ)S!58<:E�5��ÔQ#=?7:9?S� Zû�G�J���J���7:5?E
�#G:5iö�7 JM7
R/JU9� "%" �8�52��SBE)J���S'LM=FENSBQÐø��NSBSØR/JU9� "%�� ��� ü(A�7:5�O�S!þ�ñ>Q)58=?O�ôB=��NE��6=?7�OÙ7:5�O�SVWÐQ)STôuSTJ�#?S��6=?7>O <�	�O�=FENS��6JUE��
Q)58<:E)J£7:9�E)=Fñ>LUS� Zû�G:S¨<�	�O�=FENSTOIQ)58<:E)JM7:9�E)=FñDLUS���5��ÔE)G:S!7:5�O�S���7:5_ö ôu5?Q)Q)S���	Z587>O×EN5ÛR/JU9� !b1øJW8üC Zõ'5�O�S�W
7:5_ö ñ�Q#58=?O�ôB=��NE��Ø=?7�JM7�ôuQ)S���ST7�E)=?L¶<�	
O>=FENS¨ñ><:E JUE�J�� 7:5?E Q)STôuSTJ�#?STOóøj7:5?E/�)G:5iö'7 JM7�E)G:S�R�JM9� ~üC p[f=FENSBQTA
=��g�)G:5iö'7�JM7IR/JU9� �%�� ��� AZ7:51O:S:6�ñ>Q)58=?O�ôB=��NE��'ñ><:E�<�7��w5?Q)E)<>7�=FENSTL��?A�E)G:S!5?E)G:SBQØ7:5�O�S���=FQ)S:�)E)JMLML�EN5�5a�j=FQ
=TöK=��ÏEN5ÚQ)STôuSTJ�#?S�JUE1 X81J�� J£LM=FQ#L��?A�JM7ÏR/JU9� !%�� £�� AZ7:51O:S�W ñ>Q)58=?O�ôB=��NE��BA
ñ><�E'7:5Ù5?E)G:SBQ�7:51O:S��'Q)STôuSTJ�#?S�JUE1
õ'5�O:SH6IG>=��Ì7�5?E¨Q)STôuSTJ�#?STOó=?7�� JM7���5?Q�� =FE)JM5875��Q)52� 7�5�O:SyW<��5?QÌEN5�5�LU587:9:A(�N5ÏJME!O:STôBLM=FQ#S��!E)G>J��¨LMJ£7:÷
ñ�Q)5?÷?ST7�AD=?7�O J��$��STO�J£=FENSTL�� ñ�Q#58=?O�ôB=��NE��'E)G�J���Q#58<:ENS!ô(G�=?7:9?S¨ñD<:E�7:5Ù7:5�O�S���Q)STôuSTJ�#?S�JUE1 >û�G�S¨<�	�O�=FENSTO
Q)58<:E)J£7:9ÐE)=Fñ>LUS��Í=FE�E)G�J��ÔE)J�� S�=FQ)S
�)G:5_ö�7 JM7�R/JU9� Rb1øAK�üC r'k7 R/JU9� �%�� ´�� Aª7:51O:SÐþ�ñ�Q#58=?O�ôB=��NE��ÍEN5Ì7:5ÐS�l
STôuE1
õ'5�O:SZW?*N<�O�9?S���E)G�=FE6E)G:SØLMJM7:÷�EN5�7:51O:S!þ J��Îñ�Q)5?÷?ST7�A1=?7�OÙJ��$��STO�J£=FENSTL���ñ�Q)58=?O�ôB=��NE��6E)G�J��Íñ�Q)5?÷?ST7ÚLMJ£7:÷
JM7 E)G:S ï�î õ ú�ûÐA/ñ><:E�7:5Ï5?E)G:SBQ���Q)STôuSTJ�#?SÚJME1 �û�G�SÚ<�	
O>=FENSTO Q)58<�E)JM7:9�E)=FñDLUS���5���E)G:S×7:51O:S���=FE�E)G�J��
�NE)=F9?S¨=FQ#S/�#G:5iö�7×J£7ÙR/JU9� eb1øJk8üC Zõ�5_öù7:5�O�SZ6Ìñ>Q)58=?O�ôB=��NE���=F98=?JM7�A:ñ><:E6EN5 7:5 =�#F=?JMLÍøjR/JU9� e%�� }�� üC :û�G:ST7
7:51O:SaWÚñ�Q#58=?O�ôB=��NE��¨=?7>O 7:51O:SIþ�Q)STôuSTJ�#?S��¨=?7�O�<�	
O>=FENS���JUE��ÐQ)58<�E)JM7:9×E)=Fñ>LUS� fû�G:S <�	�O�=FENSTO Q#58<:E)JM7:9
E)=Fñ>LUS���5���E)G�S�7:5�O�S���7:5iö ôu5?Q)Q)S��G	
587�OÚEN5 E)G�Sc� =FQ)÷1JM7:9�JM7×R/JU9� pb1øJs8üC

^ S$9D7�OÏE)G�=FE�7:51O:S×þ�G�=���7:5?EÐôu52�$�Ì<�7�JMôB=FENSTO�ö�JUE)G�E)G:S�5?E)G:SBQ��)�w5?Q�=Úö�G>JMLUSE�)JM7�ôuS�R/JU9� F%�� ��� A
�N5�JME��)�NS�D�<:ST7�ôuS 7�<��!ñZSBQ!J��Ð7:5?E¨<�	�O�=FENSTOX �û�G:ST7�JM7 R/JU9� (%�� ´	� 7:5�O�SaWIôu587��)J£O:SBQ��ØE)G�=FE¨JME��¨LMJM7�÷IEN5
7:51O:SÚþÌJ���ñ�Q#5?÷?ST7�A!�N5×JUE J£7�ôuQ)ST=��NS�� E)G:S��NS�D�<:ST7�ôuS�7�<��¨ñ
SBQ 5���E)G�J��'LMJ£7:÷×EN5 þ

û�G:SBQ)S1��5?Q)S?A
E)G:SBQ)S�=FQ)S
E|ö65ÏQ)58<:ENS ST7�ENQ#JUS��¨EN5 7:51O:S�þFAf587:SÛJ£7 Q)58<:E)JM7�9IE)=Fñ>LUS 5���7�5�O:S þ ñ
STJM7:9 økþ Í þ Í�ý X��aU�ø�]ªü Í økþ Í]ªüNü(AK=?7�O
E)G:SÌ5?E)G:SBQ�JM7 Q)58<:E)JM7�9 E)=Fñ>LUSÌ5���7:51O:S�W�AÍøkþ Í þ Í �cWi�¥�cWR�c��Í Í økþ Í þiüNüC �8�5Ú7:5�O�SEWÛG�=��Ø=ÚG�JU98G:SBQ/�NS�D�<:ST7�ôuS
7�<��¨ñ
SBQ��w5?Q67:5�O�S!þ�E)G>=?7 E)G�=FE65���7:51O:S¨þ JUE��NSTL��v ªû�G�<��Î7:5�O�S¨þ�<�	�O�=FENS��ÎJUE��Î5iö�7ÛQ)58<:E)JM7�9�ST7ªENQ���ö�JUE)G
=?7IJM7>ôu5?Q)Q)STôuE�Q)58<�E)JM7:9�ST7ªENQ��+��Q)52� 7�5�O:S)W"

û�G�S���=?ôuE�E)G>=FE¨=IG�JU98G�SBQ)�NS�D�<�ST7�ôuS 7�<��¨ñ
SBQZ��5?Q¨=I7:51O:S ôB=?7 51ôBôB<:Q¨J£7�=×7:51O:S�5?E)G:SBQ¨E)G>=?7 E)G:S
7:51O:SÐJUE��NSTL���LUST=?O���EN5 J£7�ôu5?Q)Q)STôuE�Q)58<�E)JM7:9�ST7ªENQ(JUS���ñ
STJM7:9�ôuQ)ST=FENSTO JM7H�)8R�?S� ^ S¨ôBLM=����#J��d�ÛE)G:S��NSÐSBQ)Q#5?Q��
ôB=?<��NSTOIñ��ÚE)G�J��f�j=?ôuE�JM7�EN5 EÉöÎ5 ôB=FENSB9?5?Q(JUS��'=��
�w58L£LU5iö
��

þ
 �
 ¢F !£(´3¡F¿Y£(��°-´"ºy°N¾U´;�w �¡F°-´;´R¢p°-�
�4°- �µd°-º�´R±Ë}k�U�eº�´�£ò �¢\µ�¢i}x e�
Ê;��°wµd p¢Û}x�N pÊ �e¢U �°N¾U´��
¢U !£U´�� 'd7�E)<�JUE)J�#?STL��?A>E)G:SE��SBENQ#JMô!5���E)G�S!Q)58<�ENSÌST7�ENQ��IEN5×=Ú7:51O:S!JME��NSTL��ÍJ��g]Ú=?7�OÏE)G:SÌ7�S���EØG:5�	 J��
E)G:SØ7:51O:S'JME��NSTL��v ªò�5_öÎS1#?SBQiA�JM7 R/JU9� �b1øJs8ü(A1öÎSg9>7�OÛ=�Q)58<:ENS ST7�ENQ�� 5���økþ Í W Í �cWi�¥�cWR�Ì��Í Í økþ Í W8üNü�JM7 E)G:S
Q)58<�E)JM7:9ÙE)=Fñ>LUSÌ5��Î7:51O:SÚþ
 �û�G�=FE/��ST=?7��ØE)G:S�LMJM7�÷+��Q)52� 7:51O:SÚþÌEN5ÚJME��NSTL���J��'ñ�Q)5?÷?ST7 =?7>O_�#G:58<�LMO
ñ
SZ#1JM=�=?7:5?E)G:SBQ�7�5�O:S?A�7�5�O:ScW" Dû�G�J���J��K5?ñ"#1JU58<��)L��Ûö�Q)587:9�

153

� µAº1°Nµ�¢F�u���ÆçX� ï 51O�J�9�STOy�j<�7�ôuE)JU587{NP�2ø/Q	�Pù�ý�þ

W Ç����3��{ m1YF¯�a ^D]D¯>{8`Ba_h�p)`?h�cTY�^D`Ta-aªm�`oc?pka�h Å>{?h\a_¯+Yim-{8mDY8`By>a_c m�Y?¯�a)�3���8È
¦��K 3¡ $ªºª���F�ª�[B�C�¢d¹ª���i�ML�ÐÌÑ�L(�PLIÐ�Ñ3¤	�ÒÐcÑ
¦ÔÓ $ªºª���F�ª�[B�C�¢d¹ª���i�ML�ÐÌÑ�L(��L\¸?�8��7[7\¸o�Y¤��R¢
$ªº����F�ª��&8��'��ª¸M7����?¸F�ª��!�Õ8�8��B� o�ª�ª��D8�ª�8¸8�f¢d¹ª���i�sLk�yL(¸?�8�P7_7\¸F�a¤[¤
¯ Ó $ªºª���F�ª�[B�C�¢d¹ª���i�sL)¹�¸?�8�P7[7k¹�¸o�£Lk�PLIÐ�Ñ3¤	� ¹�¸?�8��7_7#¹�¸?�
²ÏÓ $ªºª���F�ª�[B�C�¢d¹ª���i�ML[¢N¹8��Lk¹8�PLÉ¹o¹sL[¢)¹�� � L)¹��o�['V¤�¤�7�7#¹�¸F�PLk��L[¢#�o��LN�o�PLN�T¹sL[¢\�?� � L\���o�['V¤�¤�7�7B¸F�R¤,�
³Ï´�� ¹��I���?�
¶ ©
·/¨�¡
¹ ´H� ¹����8¹����_�
» ©
·�¨�¡ ¢d¹ª��LÉ¹8�PLd¹_¹ML_¢)¹�� � L)¹��o�['V¤�¤�7�7,$ªºª���?�ª�[B�C�¢d¹ª���i�sLd¹�¸F�PLk��L(¸F��¤
W.½ ¨ª§�º[¨
WrW ´H� ¹:�_�	'iÖª���o�['
Ww¦ ©
·�¨�¡
W.¦ ´H� ¢d¹��3�?��¤ ¬�¡3¼�¬�§.º Ùê¢(�� o��¢B o·�:_¡� _º��MØ����?�8¸��ª�j¢d¹F¹j¤�¤�¤ ¬�¡3¼�¬�§.º Ù ¢[¢_ o·�:_¡� _º��sØ(���?�8¸��ª�i¢(�i¹V¤[¤
W ¯ ©A·/¨�¡ ¢�$�ºª���F�ª�/&?��'��ª¸f7����?¸F�ª��![¢(�o��LN��LT�o�?� � ¢#�i¹V¤aL[¢(�?� � L(���o�['V¤�¤�7�7
$�ºª���F�ª��B�CP¢k¹ª�ª�i�sLk¹�¸o��Lk��L#¸F�a¤[¤
W¿² ¨ª§�º[¨ ¢d¹8�PLÉ¹8�PLÉ¹o¹ML[¢N¹�� � LN¹��o�['V¤�¤�7�7
$�ºª���F�ª��B�CP¢k¹ª�ª�i�sLk¹�¸o�£Ld��L#¸F�¥¤
W.³ ¨ª§�º[¨
W ¶ ´H� ¢)¹��o�['ª�����o�['R¤
W.¹ �?�?�

6" �
 ¢U !£(´��2�e¢(¢F e°M¡U¿Y£(��°-´3°N¾U´Ô�U�w e��´"¢�±�µ�¢U�ã°- ì�e¢U �°N¾U´��5¢U !£(´�´r³p´"¢® p¢®�N´"�2´Rµ�³Fµ�¢U� �
�(�N ���£(�2��º1°)}x�N pÊê°N¾(µdº<¢U !£(´e� õ�5_ö+ôu587��)JMO�SBQ'E)G�=FEÐ7:51O:S�WÛQ)STôuSTJ�#?S��Ð=Ùñ�Q)58=?O�ôB=��)EZ�wQ)52� 7:51O:S
þ
 6õ�51O:S_W5�)G:58<�LMO <�	�O�=FENSIE)G:SIñ>Q)5?÷?ST7 LMJ£7:÷ EN5 7:51O:S þIñD=��NSTO 587 E)G:S�Q)58<�ENSIST7ªENQ��ó�NST7ªEÛñ��
7:51O:S�þFA�J£7�ôuQ)ST=��NSIJUE����)S�D�<:ST7>ôuS�7�<e�¨ñ
SBQTAÔ=?7�O J��$��STO�JM=FENSTL���ñ�Q)58=?O�ôB=��)E E)G�J���Q)58<�E)JM7:9�ô#G>=?7:9?S�
= 7���5?Q)E)<�7�=FENSTL��?AD7:5�O�ScW�O:5�S���7:5?E�<�	
O>=FENSÐE)G�J��Kñ�Q)5?÷?ST7 LMJM7:÷Ù=FE�=?LML�ñ
STôB=?<��)S�5��/E)G:S)#F=?LM<:SÐ5��/E)G:S
�NS�D�<:ST7�ôuS'7�<��!ñ
SBQ� ?û�G:S�Q)58<�ENS�ST7ªENQ����NST7�EÍñ"�Ì7�5�O:S�þ�G>=��ÔE)G:S
�NS�D�<:ST7�ôuS'7�<��!ñ
SBQ�økþ Í]ªü(Aªö�G�SBQ)ST=��
E)G:S¨ñ�Q)5?÷?ST7�L£JM7:÷ EN5Ù7:51O:S þ�ôu587�E)=?JM7:STO JM7×E)G:S�Q#58<:E)JM7:9�E)=Fñ>LMS�5��Í7:51O:ScW G�=���= G�JU98G�SBQ
�NS�D�<:ST7�ôuS
7�<��!ñZSBQ¨økþ Í þiüC

î ôBôu5?Q#O�JM7�9×EN5.�)8R�?SÌAF��5?Q)S Q#STôuST7ªE�Q#58<:ENS�ST7ªENQ(JUS��)�)G:58<>LMO G�=�#?SÛG�JU98G:SBQ)�NS�D�<:ST7�ôuSÛ7�<��!ñ
SBQ��ØJM7
E)G:SÛQ)58<:E)JM7:9�E)=Fñ>LUS� fò'ST7�ôuS?A/7:51O:S��¨ôB=?7 O�J��NE)J£7:98<�J��)GÏñ
SBE|ö6SBST7óôB<:Q)Q)ST7�E¨=?7�O 5?ñe�N58LMSBENS Q)58<:ENSÛST7ªENQ(JUS��
ñ"��ôu52��	>=FQ#J£7:9ÛE)G�S:#F=?LM<:S�� 5��ÍE)G:STJMQ/�)S�D�<:ST7>ôuSÌ7�<��!ñZSBQC�1 ZR�5?QÐE)G�J��g��STô#G�=?7>J����ðEN5Ùñ
S�ôu5?Q)Q)STôuEBA�ST=?ô(G
7:51O:Sa�)G�58<�LMO�÷?SBS1	óJUE��Ð5iö'7;�NS�D�<:ST7�ôuSÙ7�<��!ñ
SBQ¨=���E)G�S���52�NE!ôB<:Q)Q)ST7�E�587:S� (='7���5?Q)E)<�7>=FENSTL��?AF�)8R�?S
O:5�S���7:5?E�98<>=FQ#=?7ªENSBS!E)G�J��f	
58JM7�E�JM7ÚE)G:S�9?ST7:SBQ(=?L�ST7r#1JUQ)587e��ST7ªE�5��Ô= ï î õ'úÎûZ

'k7�5?Q(O:SBQØEN5Ù=-#?58JMO�E)G:S��NSÌSBQ)Q)5?Q��TADö6S�� 5�O�J��d�H�)8R�?S�ñ���ô(G�=?7:98JM7�9ÛE)G:SÌöK=���Q#58<:E)JM7:9ÛE)=Fñ>LUS��Ø=FQ)S
<�	�O�=FENSTO! î ôu5?Q)Q)STôuE)JM587 J��Y� =?O�S�EN5)��<>7�ôuE)JU587=NP�2ø/Q	�vù�ý�þMb�eKøjO:S��)ôuQ#JUñ
STO�JM7��)<�ñe�NSTôuE)JU587aW" W8ü(A�=?7�O�E)G�<��
E)G:SBQ)SKJ��/7:5Ø7:SBSTOÌEN5Ð=?LUENSBQ/E)G:S?�NENQ#<�ôuE)<:Q#SÎ5���E)G�S�4?��õ���51O:STL�98J�#?ST7�JM7ÌR�JM9� NK� ?û�G:Sf��51O�J�9�STOc��<>7�ôuE)JU587
J��f	�Q#S��NST7ªENSTO JM7H[¶J��NE)JM7:9×þ
 7K ôu5?Q)Q#S��G	
587�O�JM7:9ÌEN5ÛL£JM7:S��ØþÆ�#þ?þ¨JM7H[fJ��NE)JM7�9Úþ
 6"

þ
 �ûf5 =-#?58JMO E)G�Sa9�Q��)E�÷�J£7�O 5��KSBQ)Q)5?Q�·�=�7:51O:S ÷?SBS1	��¨E)G:S Q)58<:ENS ST7�ENQ�� EN5ÏJUE��NSTL���<�7�ô(G�=?7:9?STO ö�G:ST7
<�	�O�=FE)J£7:9'JUE��/Q#58<:E)JM7:9 E)=Fñ>LUS?A8=����)G�5iö�7�JM7�LMJ£7:S��(%N�xQ�JM7E[¶J��NE)J£7:9!þ
 7K� 2'dE/587�L��Ì<�	�O�=FENS��/JUE����NS�D�<:ST7�ôuS
7�<��!ñZSBQ�=FENE)=?ô(G:STO�J£7ÚE)G�J��6Q)58<:ENSÐST7�ENQ��Ùö�G:ST7×7:SBSTO:STO×J£7y��<�7>ôuE)JU587EN��2øIQ��Pù�ö>÷�ø�ù[b�eØø��NSBS¨LMJ£7:SZb!5��
[fJ��NE)JM7:9×þ
 MþiüC

6" �ûf5!=-#?58JMOÙE)G:SV�NSTôu587>O ÷1JM7�O�5���SBQ#Q)5?Q�·ª=!7:5�O�S�Q)STôuSTJ�#?S��ÎQ)58<:E)J£7:9¨JM7���5?Q�� =FE)JM587��wQ#52�+=?7:5?E)G:SBQK7:51O:S?A
J��/JUE�=?LMQ)ST=?O��×G�=���= Q)58<:ENS¨ST7�ENQ��ÚEN5 E)G>J��0�NST7�O�SBQTA>JUE�ö�J£LML�<�	�O�=FENSÐE)G�J���Q)58<:ENS¨ST7�ENQ��ÚQ)SB98=FQ#O>LUS�����5��
E)G:S�#F=?LM<:S¨5���E)G:S��)S�D�<:ST7>ôuSÌ7�<��!ñZSBQiA>ñ
STôB=?<��NS!E)G:S!Q#58<:ENSÌJ£7��w5?QC� =FE)JU587�JME�*)<��NE Q)STôuSTJ�#?S��ØJ��g��5?Q)S
ôB<:Q#Q)ST7ªE1 8û�G�J��/J��ÍJ��$	>LUS���ST7�ENSTO�JM7�LMJM7:S��Kþ�WN�#þ�k�5��p[fJ��NE)JM7:9�þ
 7K�·8E)G�S�Q)STôuSTJ�#?SBQ�Q#STôuSTJ�#?S���=?7 =-#o=?J£LM=Fñ>LUS
Q)58<�ENS ST7ªENQ��ÏEN5�E)G:Sa�NST7�O�SBQ¨=?7�O�<�	�O�=FENS��ØE)G�S ñ�Q)5?÷?ST7 587:S EN5IE)G�J��Z�NST7�O:SBQ�ö'JUE)G�E)G:S 7:SBö+587:S?A
S1#?ST7 J��fE)G�S�7:SBöù587:S¨G>=���= LU5_öÎSBQ
�)S�D�<:ST7>ôuS¨7�<e�¨ñ
SBQ�

154

û�G�SÍQ)S��NEf5��:E)G:S`�j<�7�ôuE)JU587¨J��¶JMO�ST7ªE)JMôB=?L8EN5�E)G�=FE/JM7)[fJ��NE)JM7:9�þ
 6�A
�N5 JUE¶J��f7:5?E¶JM7�ôBL£<�O:STOÐJM7:[¶J��NE)J£7:9�þ
 7K�
î �wENSBQ/�)J��Ì<�LM=FE)JM7�9 E)G:S:� 5�O�J�9�STO 4f�Îõ���5�O�STLrA�ö6Sc9>7�O�E)G�=FE ñZ5?E)G�÷�J£7�O���5��ÔSBQ)Q#5?Q��'=FQ#S!STLMJ�� JM7�=FENSTO!
R:5?QØS��:=���	>LUS?AZ98J�#?ST7 E)G:S!Q#58<:E)JM7:9ÛE)=Fñ>LUS��'5��ÍE)G:S!7�5�O:S�� JM7 R�JM9� !b1øJk8ü(A�J���ø��P��Z��/�H\
ô���õ��Á\ Í äæ][WYX_ZI\ká
þ Í U�WYX_ZI\fáãWFã'üf51ôBôB<:Q���ø��NSBS
�)STôuE)JU587$K�ü(Aª7�5�O:SÐþ�<�	�O�=FENS���JUE��/Q)58<:E)JM7�9 E)=FñDLUS�=?ôBôu5?Q#O�JM7�9ÐEN5�E)G:S�JM7���5?QG�
� =FE)JU587Iñ�Q)58=?O�ôB=��NE�ñ"�Ú7:5�O�ScW" �'ÉE�÷?SBS1	���E)G:S�Q)58<�ENSÐST7ªENQ��ÙEN5 JUE��)STL��f<�7>ô#G�=?7:9?STO�=?7�O×=?O�O��KE)G:S¨Q)58<:ENS
ST7�ENQ���EN5Ø7:5�O�STW'=���= 7:SBö 587:S?AF=?7�O!<�	
O>=FENS��fJUE��(�NS�D�<:ST7�ôuSK7�<e�¨ñ
SBQTA-�)5 JUE���<�	�O�=FENSTO¨Q)58<:E)JM7:9'E)=Fñ>LUSKJ��1·
ýUøkþ Í þ Í�ý X��¥U�ø�]ªü Í økþ Í 68üNü Í ø&W Í W Í(ý X��¥U�økþiü Í øJW Í K�üNü|ÿj ^ G:SBQ)ST=��BA�J���ø��P��Z��/�K\Aô���õ(��\ Í äÛ][WYX[Z/\tá�W Í U,WYX[Z/\�á
þ÷ã'ü�5�ôBôB<:QC�BAÎ7:51O:SMW�<�	�O�=FENS��ÛJUE�� Q#58<:E)JM7:9�E)=FñDLUS =?ôBôu5?Q#O>JM7:9 EN5 E)G:SÏJM7���5?Q�� =FE)JU587 ñ>Q)58=?O�ôB=��NEÙñ��
7:51O:SÚþ
 �O�SB98=FQ#O�LUS����'5���E)G:SE#o=?LM<�S¨5���E)G�S��NS�D�<:ST7�ôuS�7�<��!ñZSBQiADJUEØ<�	�O�=FENS�� E)G:SÌñ�Q)5?÷?ST7�LMJM7:÷×EN5×7:51O:S
þFAÍ=?7�Oó<�	�O�=FENS���JUE��E�NS�D�<:ST7�ôuSI7�<��!ñZSBQiAU�N5�JUE���<�	�O�=FENSTO Q)58<�E)JM7:9ÏE)=Fñ>LUSÚJ��1·�ýUøkþ Í þ Í�ý X��¥U�økþiü Í økþ Í]ªüNü(A
øJW Í W Í�ý X��¥U�økþiü Í øJW Í K�üNü|ÿ&

� çÛé¶æ�ì��Éë`�Fíbéfæ`�H��æ�ê���ëÔç8ëÍè2��� é�è��

û�G�J��U	D=
	ZSBQÍO�S���587��NENQ#=FENS��ÍE)G:S?�wST=��#JUñ>JMLMJMEj�Ð5��
<��)JM7:9�4f�ÎõV�ÔEN5Z�j=?JUE)G��j<�LML��)��5�O�STL�Q#58<:E)JM7:9/	�Q)5?EN51ôu58L��Ô5��
ï î õ ú�û0�698J�#?ST7ÙE)G:STJMQKO���7�=�� JMôB=?LML���ô#G�=?7�98JM7:9�7:SBE|ö65?Q)÷ EN5�	
58LU5?98JMS��1 ^ Sg	>Q)S��NST7�EÎE)G:S/9�QC�NEÎ=Fñe�)ENQ#=?ôuE
4f�Îõò��51O:STLp��5?Q�= ï�î õ ú�û ñ>=��)STO×587<�)8R�?S� î LUE)G:58<:98GÚE)G:S)� 5�O:STL�LM5�5?÷R��O:STôuS1	�E)J�#?STL��+�)J���	>LUS?A1JUE
7:5?E�587�L��Û=?LMLU5_ö
�f��5?Q�=FQ)ñ>JUENQ#=FQ��Ûô#G>=?7:9?S���JM7ÙEN5�	
58LU5?9��Ùñ><:E�=?L��N5�Q#STLM=w��S��KE)G�S�=����)<���	>E)JU587ÙE)G�=FE�7:51O:S��
G�=-#?S E)G�SV�)=���S ENQ#=?7���� J����)JM587�Q#=?7:9?S��1 1û�G�J���=?LMLU5_ö
��<e��EN5E��51O:STL ï î õ'úÎû0�ÎJ£7 ö�G�J£ô#G E)G�S 7:51O:S��6=FQ)S
G:SBENSBQ)5?9?ST7�SB58<���ø�S� v9� :=¨ôu52�!ñ>JM7�=FE)JU587Û5��X�`� î �BA:7:5?ENSBñ
5�5?÷"�6=?7�O+��5?ñ>JMLMS0	>G:587:S��\üC RLØ<:QÎQ)S��)<�LME��`�)G:5_ö
E)G�=FE E)G�S 4f��õÏ��51O:STL�ôB=
	�E)<:Q)S�� E)G:SIG�JU98G>L�� O��17�=�� JMôÙEN5�	
58LU5?9��ó5��/�)<�ô#G =�7:SBE|ö65?Q)÷ZA`�N52��SBE)G>JM7:9
E)G�=FE¨G>=���ñ
SBST7�ôu587��)J£O:SBQ)STO =IO�J�@ ôB<�LUE/	�Q)5?ñDLUS�� ñ���5?E)G:SBQC� ý76�Q_ÿ& �R><:Q)E)G:SBQTA�=?LME)G:58<:98G E)G:S���5�O�STLÍJ��
=Fñe�NENQ(=?ôuEBAªJUEÍG�=����)<�@ ôBJUST7�EÍO:SBE)=?JMLR��5?Q�<��/EN5)9>7>O!SBQ#Q)5?Q��ÍJM7ÌE)G:S0�)8R�0Sì	>Q)5�ôuSTO><:Q)S��Ô<��)J£7:9Z�)J��Ì<�LM=FE)JU587!

û�ö65 ôB=FENSB9?5?Q#JUS���5��'SBQ)Q)5?Q���G�=-#?S×ñ
SBST7,��58<�7�OX fû�G:S+9�Q��)EÌJ��ÌE)G�=FE�JUE�J���	
52���)JUñDLUS$��5?Q�=�7:51O:SÙEN5
ö�Q)587�98L���<�	�O�=FENS�JUE�� 5iö�7ÏQ)58<�ENSÌST7�ENQ��?A�Q)S1	DLM=?ôBJM7:9ÚJUE��/��SBENQ#JMô!5��Î=ÚG:5�	�ôu58<�7�EØ5��`�BSBQ)5�ø�ö�G>JMô#GM�Ì<��NE
=?LUöK=��R�ÌñZSÛE)G:SÚôB=��NS_ü¨ö�JUE)Gó�Aª�¬Yªe�A��­Ù=?7�O O>JUQ)STôuE)JM7:9.	>=?ô)÷?SBE���O:S��)E)JM7:STO,�w5?Q�JUE��NSTL��KEN5 =?7:5?E)G:SBQ�7:51O:S�
û�G�J��'J��Ð=y�NSBQ(JU58<�� SBQ)Q)5?Q� �û�G�SE�)STôu587�O�SBQ)Q)5?Q�J�� E)G�=FE�JMEØJ��V	
52���#JUñ>LUS:�w5?QÐ=×7:51O:S�ö�JUE)GÏ=Úñ�Q)5?÷?ST7 LMJ£7:÷
ST7�ENQ��E�w5?Q�=?7�5?E)G:SBQ�7:51O:S�EN5¨7:5?E�Q)S��bS��NE)=Fñ>LMJ��)G�E)G:S�LMJM7�÷¨ö�JUE)G�E)G>=FE�7:51O:S?AFS1#?ST7 E)G:58<�98G JUEÔG�=��ÍQ#STôuSTJ�#?STO
=Ùñ�Q)58=?O�ôB=��)EZ�wQ)52� E)G�=FEÐ7:51O:S� �û�G�J��'J��ØO�<�S!EN5×JM7�ôu5?Q#Q)STôuEÐG�=?7�O�LMJ£7:9 5����)S�D�<:ST7>ôuS�7�<��!ñ
SBQ��1
û�G�J�� J��
E)G:Sy9�Q��)E!E)J�� SÛE)G:S��)SÙSBQ#Q)5?Q���G�=�#?S×ñ
SBST7 O�J��)ôu5N#?SBQ)STO JM73�)8R�?S =��E��=FQ�=���ö6SÚ=FQ#SÚ=iö6=FQ#S� ^ SI=?L��N5
�)<:9?9?S��)ET��51O�J�9DôB=FE)JU587��ÔEN5ÌE)G:S�Q#58<:E)JM7:9�E)=FñDLUS'<�	�O�=FE)J£7:9)	�Q)51ôuSTO�<:Q#S��ÔEN5!STL£J�� JM7�=FENS�E)G:S��NS�SBQ#Q)5?Q��1 �LØ<:Q
�)J��Ì<�LM=FE)JM587��KG�=�#?SÌôu587�9�Q���STOÚE)G�STJUQ�S�l
STôuE)J�#?ST7:S����1

'k7 E)G>J��Y	>=
	
SBQTAªöÎSØG�=�#?SØ7:5?E6=FENENS���	�ENSTOÙEN5Ì=?7>=?L��"�)S�58<:Qf��51O:STL><��#JM7:9c�NE)=FENS/�G	>=?ôuS��6ñ
STôB=?<��NS'E)G:S
�NE)=FENS$�G	D=?ôuS J��ØJM7�9>7�JMENS¨O�<:SÌEN5×E)G:S��NS�D�<:ST7�ôuS�7�<e�¨ñ
SBQØñ
STJM7:9Û<>7ªñ
58<�7�O�STO! Dû�G>J��
�j=?JUE)G��j<�LML��ÛQ)S1B>STôuE��
E)G:S��Z8��?S �G	
STôBJ�9>ôB=FE)JM587! >ò'5iö6S1#?SBQTA�<�7ªñ
58<�7>O:STOH�NS�D�<:ST7�ôuS!7�<��!ñ
SBQ���=FQ)SÌJ���	�Q#=?ôuE)J£ôB=?LrAe�N5ÛöÎS:	>LM=?7
EN5ÛJ£7r#?S��NE)JM98=FENS��NE)=FENS��G	>=?ôuSÌ=?7�=?L��R�)J���5��ÔE)G�J��0��51O:STL�ö�G:ST7IE)G:S:�NS�D�<:ST7�ôuSÌ7�<e�¨ñ
SBQ
�G	D=?ôuS!J���L£J�� JUENSTO!
R�<:Q#E)G:SBQTA¶ö6S ö658<�LMO LMJU÷?SÛEN5�ST7�G�=?7>ôuSÛE)G:S+��51O:STL�JM7�E|ö65ÏöK=��R�Ìñ�� JM7>ôBLM<�O�JM7�9�·
=ªü�E)G:SÙJM7��NE)=?LMLÍE)J���S
	>=FQ#=�� SBENSBQ�»Z=?7>O ñ
ü�7:51O:S��V	Z5_öÎSBQ(JM7:9ÛO�5iö�7Ï=?7�O Q)Sv*k58J£7�JM7:9 E)G�S ï î õ ú�û) ï 5?Q)SÌ9?ST7:SBQ#=?LML��?A
JUEg� =��
ñ
S
	
52���)JMñ>LUS�EN5�<��NS E)G:Sg� 5�O:STLD=��K=c	>L£=FEG�w5?Q��+EN5��NE)<�O���	�Q#58=?ôuE)J�#?S'Q#58<:E)JM7:9:	�Q)5?EN51ôu58L��Î=?7>OÛO�J��NE)=?7�ôuS��
#?STôuEN5?Q Q)58<:E)JM7:9�=?LU9?5?Q(JUE)G��$�¨ý76
]oÿ�<��NSTOIJM7 ï î õ'úÎû0�1

å ì��Ôæ�é��t�j�>êY�F�ªòì�>æfç��

û�G:S'=?<:E)G:5?Q���öÎ58<�L£O LMJU÷?S�EN5�=?ô)÷17:5_ö�LUSTO:9?S E)G:S�=����#J��NE)=?7�ôuS'5���E)G:STJUQÎôu58L£LUST=F98<:S��BA��Ø<����Ø=?LMLM=��#ô#G�A�8�52�E�
�)=F÷ESÍ=?7�JUEP� î 7�<�7�ô#G>=?J�=?7�O$[fJM7�[¶JM<�A��w5?QÍE)G�STJUQ�=����)J��NE)=?7�ôuS�ö�JME)G��N52��S�5��
E)G:S�O�SBE)=?JMLUSTO�ENSTô(G�7�JMôB=?L�	D=FQ)E��
5��/E)G:Sc��51O:STLJ ^ SÌ=?L��N5 9?Q#=FENS1�j<�LML��Û=?ô)÷17:5_ö�LUSTO:9?S!E)G:S¨ôu587��NENQ(<�ôuE)J�#?S¨ôu52�$� ST7ªE���5���E)G�S�Q)S1#1JUSBöÎSBQC��587
E)G�J��>	D=
	ZSBQ- ?46587�9Ø;�<�=?7 J��>�)<�	e	Z5?Q#ENSTO!ñ"��=?7 î <��)ENQ#=?LMJM=?7�� 5N#?SBQ#7���ST7�EY'k7ªENSBQ#7>=FE)JU587�=?L���52�NEN9?Q#=?O�<>=FENS
81ô(G:58LM=FQ��)G>J�	X

155

�M��ëP��è2�>æÎìR�e�
±(Ê�e?Ê��Z{(hb{(n(mopU� � Ê�XZY(mT`bpU�1e8Ê�¬�pqY(c|¯_{(moYi�:{#mF¯��ÉÊ1eT`bY��j[�akm_Y#tTpq«\Ê � Y\Åopq}qa�z�¯�Æ�YB«6´�ad`w�
Y(cb�TpqmoniÊ��jl>l>l §:cbakhrhk�1´fad�
µDY(cb�?�o²(�(�CÝ_Ê

²BÊ�l�Ê��Dak}©¯_pqmon#®w�¶YNgBadcNÊo�fY(^_`bpqmonÔz¶]o]icbYu{(«|yoadh>pqm � Y(Åopq}qa�zf¯ÎÆfYB«�´�ad`w�
Y(cb�ThkÊ?�wm�e?Ê��
{#hb{(n(mopU� � ÊBXZY(mB`bpM�Be8ÊB¬�p©Y#c|¯o{#moY_�
{#mF¯'�|Ê?eB`bY���[�akmoY)tTpq«\�iaN¯_pv`bY#cbhk���! �"$#&%('*),+.-/ 10/2�'43657 98;:�#=<?>(ÊF��lDl>lÙ§:cbakhrhk�o´�ad�IµDY(cb�?�o²(�\��Ý_Ê

³TÊK�ÍÊ_l�Ê@�Zak}q}q[�{(mªÊBADC9<FE9GH#60*I�8J ;>98KE9GHGL#&<?>(ÊZ§�cbpqm_«kad`bY\m s mopqtuaÉcbhrpq`wg'§�cbakhrhk�ª±N�\�NMBÊÝiÊ.OKÊ��ZyF{)cbnu{Nt\{#m���Ñ6Ê�Õ�Åic|{\¯_Y)tTpq«\�:{#mF¯ XfÊ1z�Ê�¬�^_mB`badcNÊQPoY#cb[�{(}ZÓ>adcbpSRF«k{#`bpqY\m�Y#xfeT`|{(mo¯o{)c|¯_hÍxÜY(c6Ñ/pqhj`|{(m_«ka�ÓDak«É`bY(c
�¶Y\^i`bp©m_nK§:cbY(`bYB«kY(}qhkÊDT? 9U?8V<WEN%� KXD3=Y@'/)�Z��\[]T9)�Z��_^N�wÝ\�_Ç�ÝBÈÉ� �#³N`�aT�NM#°i�cb\^o}vgØ²(�(�u²TÊ

�BÊdb_Ê7�Zpq}q}qpqmon(`bY(m�Ê � {#mTgT®£hrY(cr`bak¯ Æfp©n(y_®w��adtuak}�´�ad`bhkÊÙ��me3=Y@'gfcY?#&8J+ihV<
3j'484<FE936#k 9<FEN%mln 98J:�oKY
 4pq 9<�Ir'43684#*2�'436osE�<W+Ir'48&X$ 984G.E9<W0V'H�! 1+t'$% ob�1]o{(n\adh�±(±4aF±k³i��O/guY(`bY_��bu{(]o{(mª��Ñ/ad«kak[6Å?aÉc�±N�N`(�iÊ �jl>lDl X�e!§�cbakhrhk��Ë�{#hryopqmon#`bY\m���Ñ6Ê1XfÊ©�
s e_z��?±k�N`(�iÊ°TÊ�XfÊ�XZyoakm_n_�
�ÍÊ
�¶pq}qadgB��e?Ê §:Ê �uOÔ^o[�{#cN�Z{(mo¯vb_Ê bÛ¬/{#cb«kp©{#®w�ª^omF{)®wzf«kakt\akhkÊ z �ªYBY\]i®wPicbakai�Zak}q}q[�{(m_®jPoY#c|¯Ù�¶Y\^_`bpqm_n
§:cbY(`bYB«kY(}���pv`byoY(^_`x�ZY(^omo«dp©m_n�l�y8ak«d`NÊ>��ms)�Z��{z?h�|DZB}7�n��~N�9�t�(�_]F{(n(akh�²\²�Ý�ai²#³�MT��eTak]_`bad[6Å?adc/±k�N`(�iÊ

MBÊ�¬ÎÊ,P1pqmo¯_}qYN� {(mF¯�biÊ*�Dp©}q}qpqmon#`bY\m�ÊóÆ�pqn\yi®��ªaktuak}�´�ad`bh�xÜY(c�Ñfg_mo{([�pq«ÐÑ/pqmopqm_nÙ§�yopq}qY\hrY(]oyoaÉcbh¨eTgihj`bak[�hkÊ ��m � Ê �:ÊO/��p©{#`b�\Y)��hr�({i� � Ê Ë�Ê/eiy_p©ad}~¯ihk�¶{(mo¯ �ÍÊ � Êf�
y_Y\[�{(hk��ak¯_pv`bY(cbhk��z�'4G.E9<@36#k0$oHX� 98�Z� 9<F0$U�8V8;'4<F0$C(�/]F{(n(akh�±1`\�1aT²\²\²BÊ
eT]_cbpqmon(adcr®£ÓDadcb}©{#n_�ª±N�\�(�iÊ

`TÊ���Êo�ÍÊ
b(cNÊFP_Y(c|¯Ø{#mF¯'ÑÎÊo�ÍÊ
Po^o}q�uadcbhrY(m�Ê7��%� 95	oD#=<�2�'43657 98J:�obÊ
§:cbpqmo«kad`bY(m s m_pqtuadcbhrpv`�g'§:cbakhrhk��±k�\°u²BÊ�TÊdb_Ê bÍ¬/{)cb«kp©{#®w��^_mF{#®wz¶«kaktuakhkÊ_z s m_p�RoaN¯�zf]o]icbYu{#«ÉyÍ`bY/�ªYBY\]_®jP_cbada
�fY(^_`bpqmon s hrpqmonfÑ/pqhj`|{(m_«ka
Ó>ak«d`bY(cbh:Y#c>��pqmo��eB`|{#`bakhkÊ
�wmQ)�Z���z�h�|DZB}��n��~N�N�t�#�F]F{#n\akh�²T±N²1aT²\²(³T�ªeiad]_`bak[ÎÅ?adc/±N�9`\�TÊ

±N�TÊ � Ê�biÊ�XfÊª¬�Y(c|¯iY\m¨{(mo¯¨��ÊWPZÊ � ak}qyF{([ØÊDhV<
368J 1+9U
0$36#k 9<g3] d-.}��7��)�fcY@'J 98J'4G�IB8K 9�1#&<t>d�B<
�1#&8J 9<
Gm'4<
3�X$ 98D-D#(>�Y
'48
}�8K+t'48x�� ;>9#k0dÊZX
{#[6Å_cbp©¯in\a s m_pqtuadcbhrpv`�g�§:cbakhrhk��±k�\�(³iÊ±\±(Ê�¬ÎÊ�b_Ê>ÆfY\}��k[�{(m_m�Ê�fcY@'�z9pF#&<��i 1+t'$%/Z�Y@'J0V:�'484�xI�84#=Gm'48sE�<W+Q�,'&X1'48;'4<F0V'��!E�<@U
EN% ÊÛz�¯_¯_pqhrY\mi®£ËÌakhr}qadgB���¶aN{\¯ip©m_n_�
� {#hrhb{(«|yi^_hrad`r`bhk�8²#�\�(³iÊ±)²BÊdb_Ê � Ê@bu{�y8aÍ{#mF¯�PZÊ � Y(hrhkÊDz �¶akhr]?Y\m_hrp©t\a/Ñ/pqhj`rcbpqÅo^_`bak¯'�¶Y\^_`bpqm_n6z¶}©n(Y(cbpv`byo[óx¼Y(c�XZY\[�]_^_`badc
´�ad`w�
Y(cb�ThkÊ��wmshK���7�f@8KE9<@o4E�0$36#6 9<� �<�Z� �GHGHU?<
#k0;E936#k 9<
o.ZB}7�i�]�?��[K�V^N�F]o{(n(akh�±1M\��`�aF±1M(°\²TÊ�b\^_}qg¨±N�9`u²BÊ

±N³TÊ.OKÊxb\akm_hrakm�Ê�Z� N%� �U�8J'J+�Ir'43684#.2�'436o$�L�rE9o;#k0vZ� 9<W0V'jpF36o;�d)r<WEN% C�o;#&oi��'43=Y� 1+9o�E9<F+�I�8JEN0$36#k0;EN%i��o$'É�/tuY(}q^o[�aÛ±VaT³TÊ
eT]_cbpqmon(adcr®£ÓDadcb}©{#n_�ª±N�\�NMTÊ

±PÝiÊ���Ê � Ê,O/cbpqhj`bakmohrakmª�fe8Ê¶XZyicbpqhj`bakmohrakmª�¶{(mo¯eOKÊBb\akmohradm�Ê �
y_a�§:c|{(«d`bpv`bpqY\m_adcK¾ h¨¬�^op©¯_a�`bYÙXZY\}qY\^icbaN¯ §1aÉ`rcbpÔ´�ad`bhkÊhV<
3j'484<FE936#k 9<FEN%�T? 9U?8V<WEN%� 9<szW KXV365�E�8;'�fW 1 9% o	X� 98mf�'J0VY?<F N%� ;>9Cif@8JE�<@o X1'48|�8²iÇ£²(ÈÉ� �N`�ao±N³\²T�:±N�(�N`TÊ
±)�BÊ���Ê � ÊWO/cbpqhj`bakmohradm!{#mF¯sOKÊWb(akmohrakmªÊÍeT]?ak«kpSRF«N{)`bpqY\m¨{(mo¯ØÓZ{#}©p©¯_{#`bpqY\m¨Y(xD{(m¨l>¯_n(aÎ�¶Y\^i`badc/Ñ/pqhr«kY)tuaÉcrgÐ§:cbY(`bYB«kY(}�x¼Y(c

� Y(Åopq}qaÍz�¯'ÆfYB«Ô´�ad`w�
Y#cb�ipqm_n_Ê>��mshJ2df�¡����$¢�����2.Z�zi�?~4¢��)�F]o{(n(akhf²�Ý�`1ai²#°\�iÊ�eT]_cbpqmon(adcr®£ÓDaÉcb}~{#n_�F²(�(�CÝ_Ê±N°TÊ���Ê � Ê�O/cbp©hj`badmohrakmª��b_Ê��fÊ
bN£(cbn(akmohradm��_{(mo¯mOKÊ�b(akmohrakmªÊ1z¶]o]_}©pq«N{)`bpqY\m�Y(x�XZY(}qY\^_cbak¯'§1ad`rcbp?´fad`bh
pqm eTgihj`bak[Ñ/aktuak}qY(]_®
[�akmB`NÊ>��ms��'J0$36U�8J'4o. �<�Z� 9<F0$U?848J'4<W0$C�E9<W+HIx'4368V#�<W'436oL�7),+9��E9<F04'J+�#=<nIr'4368V#�2�'436o�¤ IB8K 10�¤= KX*¢�3=Yn)r+9��E�<W0V'J+!Z� 9U?84o$'
 9<�Ir'4368V#	2�'436o$¤V¥
 N%(¤ �?�N�9�n KXr��'J0$36U?8;'�2/ 93j'4oD#&<�Z� 9GxpFU?3j'48/zW0$#]'4<F0V'É�F]F{#n\akhf°u²#°�aB°N`u�BÊªei]icbpqmon\aÉcr®wÓ>adcb}©{(ni�?²#�\��Ý_Ê

±�MBÊ.OKÊ�¬ÎÊ���{)cbhrakm���§1Ê�§1aÉ`r`badcbhrhrY\mª�1{#mF¯Ðµ6Ê8Ë�{#mon_Ê s §>§8z�z�� pqm�{�´�^_`bhry_ak}q}UÊ_hV<@3j'48V<WE�36#k 9<WE9%�T? 9U?8V<WEN%7 9<gzW wX43657E98;'fW 1 9% o�X� 98mfW';0VYt<W N%� ;>9Cif@8KE9<@o X1'48|��±\Çj±d®�²\ÈÉ�q±N³�Ý�ao±)�\²B��Õ�«d`bY\Å?adcÍ±k�\��MBÊ
±1`TÊdb\admomopvx¼adc�b_Êk´ÎÊN�ªpq^Î{#mF¯/�|Ê)XZyo}©{#[Î`|{(«(Ê � Y(Åopq}qa
z�¯fÆ�YB«>´�ad`w�
Y(cb�Tpqmon
��pv`by�{�Ó�pqad�!Y(xNÝB¬�Ë×pvcbak}qakhrhk�)��[�]?adc|{)`bpqtuakhª{(mo¯

XZyo{(}q}qakmon(akhkÊª��m�e?Êt�
{#hb{(n\m_pU� � ÊiXZY\mB`bpU�ie8Êu¬�pqY(c|¯_{(moYi�i{(mo¯K�ÉÊueT`bY��j[�akm_Y#tTpq«\�\aN¯_pv`bY(cbhk���! �"$#6%('B),+�-/ 10,2�'43657 98J:�#&<t>(�
]o{(n\adhÍ±Va1Ýu�TÊ?��lDl>lÙ§:cbakhrhk�F´fad�×µDY(cb�?�?²#�\��Ý_Ê

±N�TÊ�¬ÎÊ � {(}q�Tp©mªÊ8�f��§ÌÓ>adcbhrpqY\m�²)®:X
{#crcrgipqmonÍzf¯o¯_pv`bpqY\mo{(}F�wm_x¼Y(cb[�{#`bpqY(m�Êu�xP1XÚ±�M(²(³iÇM¯ic|{#x~`
hj`|{#mF¯o{)c|¯FÈÉÊª��ad«Éy_mopq«N{(}icbak]?Y(cr`N�
�wmT`baÉcbmoad`�l�mon(pqmoakadcbpqm_n��1{(hr��PoY(cb«da\�o´fY)tuak[6Å?aÉc/±N�(�CÝ_Ê

²(�TÊ�¬ÎÊ?e8Ê � {(}q�Tp©m¨{#mF¯ � ÊFl�Ê?eT`bakakm_hj`rcb^o]ªÊ
Ñ/pqhj`|{(m_«kad®£Ó>ak«d`bY(c¶�¶Y\^i`bp©m_n_Ê��wmi�B 9U?36#&<?>_#=<�Z� �GHGHU?<
#k0;E936#k 9<
o*2�'43657 98J:�ob�
]o{(n\adhx`(³�aB�N`iÊ?§�cbakmB`bpq«kad®£Æ�{(}q}U��±N�(�u�BÊ

²T±(Ê�§1Ê � Ê � adcb}qpqm�{(mo¯ zÍÊ?eTaknu{#}©}UÊZzqPF{#pq}©hb{)xÜa�Ñ/pqhj`rcbpqÅo^_`bak¯'�¶Y\^_`bpqm_n�§�cbY#`bYB«kY\}UÊZ��mQhK�����¦f@8JE�<@o4E�0$36#k 9<
oL 9<�Z� 9GHGLU
�<
#k0;E936#k 9<
o.ZB}7�i�k¡
�?[j�$^N�F]o{(n(akh�±N²9`(��aF±N²9`NMTÊ�eiad]_`bak[ÎÅ?adc/±N�NM(�TÊ
²\²BÊKÑ6ÊoÕ�Åic|{\¯_Y)tTpq«\Ê7�� 98VGdE9%�)r<WE9% C9o;#&o� wX*�B 9U?36#&<t>HI�8J 93] 10; N% obÊ�§�yoÑ `byoakhrpqhk� s mopqtuaÉcbhrpq`wg�Y(x>§1akm_mohjgi}qt\{#mop©{i�o²(�(�u²BÊ²(³TÊ�XfÊ\l�Ê\§1adcb�Tpqmohk�\l�ÊN�Zak}©¯ip©m_n(®£�¶Y)guadcN�u{#mF¯6e8Ê#ÑÔ{(hkÊ�)r+N�&Y
 10L}�<F�&AL'4GdE�<W+/AD#&o;3]E9<W0V'_¥@'J0$3] 98�[&)�}7A�¥@^x�B 9U?36#&<t>(Êo��lD�BP

�wmT`baÉcbmoad`�¯Tc|{#x~`N�?¯ic|{)x¼`r®£pqad`rx¼®£[�{#moad`r®w{(YT¯itB®��(�iÊ `r­T`N�o²(�\�T±\Ê
²�ÝiÊ�XfÊZl�ÊZ§1adcb�Tpqmoh�{(mo¯Ú§1Ê��DyF{(n#��{)`NÊÏÆfp©n(yo}vg Ñ�gimF{#[�p©« Ñ/akhj`bpqmF{)`bp©Y(mIeiakÒT^_akmo«daN¯ÛÑ/pqhj`|{#mo«kaÐÓ>ak«d`bY#c�ÇUÑÍeiÑ¶ÓÔÈ�x¼Y(c

� Y(Åopq}qaØXZY([�]o^_`baÉcbhkÊÐ��m�)�Z��§z�h�|DZB}��n�¨~9����¢©Z� �<1X1'48J'4<W0V'n 9<©Z� 9GHGLU�<
#k0;E936#k 9<
oH)r8J0VY?#=3j';0$36U?8J'4oV�xI�8J �3] 10V 9% o
E9<F+.)�p�pW% #60VE�36#k 9<@ob�_]F{#n\akh�²(³�Ý�ai²�ÝÆÝi�ªzf^on(^ohj`Ô±k�\�CÝiÊ

²\�BÊ�XfÊol�ÊF§1adcb�Tpqmoh¶{(mo¯Ø§1ÊF�Zyo{(n#��{#`NÊB)r+.-� 10D2�'43657 98J:�#&<t>9�*Z�Y
E4p@3j'48L�t�cADz�A�¥��B 9U?36#&<?>� ��9'48HEH�QU�% 36# Y
 Vpªl_#&8;'$%('4o;o
2�'43657 98;:_ KXx�! �"$#6%('.Z� 9G*p@U�3j'48VobÊ
zf¯o¯ip©hrY(m_®MË�adhr}©aÉgª�o²#�\�i±(Ê

²(°TÊ�zÍÊFe?ÊF��{(moadmiÅo{(^_[ØÊDZ� 9G*p@U�3j'48*2�'43657 98J:�o|Ê
§�cbadmT`bpq«kaÉ®wÆ�{(}q}U� s]o]?adcfei{\¯_¯_}qaÔ�fpqtuaÉcN�_´*b_�NÝ(`byØaN¯ipv`bp©Y(m��F²(�(�\³iÊ²NMBÊdb_Ê_Ñ6Ê s }q}q[�{(mªÊ��,%('4Gd'4<@36o� KXx���gI�8J ;>98KE9GHGL#&<?>(ÊD§:cbakmB`bpq«kad®£Æ/{#}©}U��±N�\�9`iÊ²9`TÊ�ÕÎÊBË×pqÅ_}©pqm_n_�
b_Ê_§:{#crcbYN�Ô�o{(mF¯'z�Êi§1aN{)cbhkÊ�zf^i`bY\[�{)`bp(�daN¯�Ó>adcbpSRF«k{#`bpqY\m�Y(x1z�¯�Æ�YB«/�¶Y\^i`bp©m_n6§:cbY(`bYB«dY\}qhkÊ���m��,}7�xf��
¡��N�$¢
����2HZ�zi�N¡t�t«(�o]F{#n\akh¶³CÝ\³�aB³u�9`TÊ�ei]icbp©m_n\adcr®£Ó>adcb}©{(ni�?²#�\�CÝiÊ

²(�TÊ�XfÊ	¬fp©Y(moni�Z��Ê � ^ic|{#`|{i�D{#mF¯�b_ÊD�
hb{(pUÊ � YT¯iak}qpqmon�{#mF¯Ûeipq[6^_}~{)`bpqY\m Y(x��fY(^_`bpqmon!§�cbY#`bYB«kY\}�xÜY#c � Y\Å_p©}qaÐzf¯ ÆfYB«
Ë×pvcbak}qakhrhf´�ad`w�
Y#cb�ih s hrpqm_n XZY(}qY(cbaN¯�§1ad`rcbp1´fad`bhkÊ��wmiIB8K 10�¤�l� 98;:�oKY
 Vp� 9<n�� 98VGdEN%��!'43=Y
 1+9o/)�p�pF% #]'J+_3] dA�'&X1'4<W0V'z
C9o;3j'4GHo�#&<n�� 98VGdEN%���'43=Y
 1+9o�#&<izW KX43657E98J'��B<t>9#&<�';'48V#&<?>nE9<F+mAL'&X�'4<W0V'Lz@C�o;3j'4GHo;�/Z� 9<1X�'48;'4<W0V'4o�#&<s�r'4o$'JE98J0VY�E�<W+
I�8JE�0$36#604'�#&<�hV<1X� �84G.E936#k 9<�f�'J0VY?<F N%� ;>9C#�?tuY\}q^_[�aÎ±)²B�F]o{(n\adh�±vÝB�1ao±)�#³i�ª²#�\�u²BÊ

156

Modeling Work Distribution Mechanisms Using Colored

Petri Nets

M. Pesic and W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology, P.O.Box 513, NL-5600
MB, Eindhoven, The Netherlands.

m.pesic@tm.tue.nl, w.m.p.v.d.aalst@tm.tue.nl

Abstract. Work
ow management systems support business processes and are driven by
their models. These models cover different perspectives including the control-
ow, resource,
and data perspectives. This paper focuses on the resource perspective, i.e., the way the system
distributes work based on the structure of the organization and capabilities/quali�cations
of people. Contemporary work
ow management systems offer a wide variety of mechanisms
to support the resource perspective. Because the resource perspective is essential for the
applicability of such systems, it is important to better understand the mechanisms and
their interactions. Our goal is not to evaluate and compare what different systems do, but to
understand how they do it. We use Colored Petri Nets (CPNs) to model work distribution
mechanisms. First, we provide a basic model that can be seen as the “greatest common
denominator” of existing work
ow management systems. This model is then extended for
three speci�c systems (Staffware, FileNet, and FLOWer). Moreover, we show how more
advanced work distribution mechanisms, referred to as resource patterns, can be modelled
and analyzed.

Key words: Work distribution, work
ow management, business process management, resource patterns,

colored Petri nets.

1 Introduction

Work
ow management systems are process-aware information systems [5, 20], which are used in
companies as a means for the computerized structuring and driving of complex business processes.
Work
ow management systems implement business process models, and use them for driving the

ow of work by allocating the right employees to the right tasks at the right times. The system
manages the work of employees. It will determine which tasks an employee has to execute and when,
which documents will be used, which information will be available during work, etc. Typically,
a work
ow management system o�ers several mechanisms to distribute work. Nevertheless, we
believe that existing systems are too limited in this respect. The goal of this paper is not to
propose advanced work distribution mechanisms. Instead, we focus on the analysis of functionality
in existing systems. The goal is not to evaluate these systems, but to understand how they o�er
speci�c functionality. Since work distribution de�nes the quality of work, it is important to consider
research from the �eld of social sciences, e.g., social-technical design [13, 17, 21, 55]. We believe that
only by combining both technical and social approaches, one can truly grasp certain phenomena.
A deeper understanding of particular aspects of work distribution is essential for developing a new
breed of more user-centric systems.

The work reported in this paper can be seen as an extension of the workflow patterns initiative
[6] (cf. www.work
owpatterns.com). Within the context of this initiative 43 resource patterns [51,
49] have been de�ned. Using a patterns approach, work distribution is evaluated from the perspec-
tive of the end-user as a dynamic property of work
ow management systems. The work reported
in this paper adds to a better understanding of these mechanisms by providing explicit process
models for these patterns, i.e., the descriptive models are augmented with executable models. Most
work reported in literature (cf. Section 4) uses static models to describe work distribution. Con-
sider for example the meta modeling approaches presented in [8, 40–42, 48]. These approaches use

157

static models (e.g., UML class diagrams) to discuss work distribution concepts. This paper takes a
truly dynamic model – a Colored Petri Net model – as a starting point, thus clearly di�erentiating
our contribution from existing work reported in literature.

Colored Petri Nets (CPNs) [31, 34] are a natural extension of the classical Petri net [46].There
are several reasons for selecting CPNs as the language for modeling work distribution in the context
of work
ow management. First of all, CPNs have formal semantics and allow for di�erent types
of analysis, e.g., state-space analysis and invariants [32]. Second, CPNs are executable and allow
for rapid prototyping, gaming, and simulation. Third, CPNs are graphical and their notation is
similar to existing work
ow languages. Finally, the CPN language is supported by CPN Tools1

– a graphical environment to model, enact and analyze CPNs. In the remainder, we assume that
the reader is familiar with the CPN language and refer to [31, 34] for more details.

In this paper, we provide a basic CPN model that can be seen as the “greatest common
denominator” of existing work
ow management systems. The model will incorporate concepts
of a task, case, user, work item, role and group. This model should be seen as a starting point
towards a more comprehensive reference model for work distribution. The basic CPN model is
extended and specialized for three speci�c systems: Sta�ware [54], FileNet [24], and FLOWer [43].
These three models are used to investigate di�erences between and similarities among di�erent
work distribution mechanisms in order to gain a deeper understanding of these mechanisms. In
addition, advanced resource patterns that are not supported by these three systems are modeled
by extending the basic CPN model.

The remainder of this paper is organized as follows. Section 2 presents the basic CPN model
which should be considered a the “greatest common denominator” of existing work
ow manage-
ment systems. Section 3 extends this model in two directions: (1) Section 3.1 specializes the model
for three di�erent systems (i.e., Sta�ware, FileNet, and FLOWer), and (2) Section 3.2 extends
the basic model for selected resource patterns. An overview of related work is given in Section 4.
Section 5 discusses our �ndings and, �nally, Section 6 concludes the paper.

2 Basic Model

Di�erent work
ow management systems tend to use di�erent work distribution concepts and
completely di�erent terminologies. This makes it di�cult to compare these systems. Therefore, we
will not start by developing CPN models for di�erent systems and see how these can be uni�ed,
but, instead, start with modelling the “greatest common denominator” of existing systems. This
model can assist in comparing systems and unifying concepts and terminology. We will use the
term Basic Model to refer to this “greatest common denominator” and represent it in terms of a
CPN model.

The Basic Model represents a work
ow management system where the business process is
de�ned as a set of tasks. Before the process can be initiated and executed, it has to be instantiated.
One (executable) instance of a process is referred to as a case. Each case traverses the process. If a
task is enabled for a speci�c case, a work item, i.e., a concrete piece of work, is created. There is a
set of users that can execute work items. The users are embedded in the organizational structure
on the basis of their roles, and the groups they belong to. Group is an organizational unit (e.g.,
sales, purchasing, production, etc.), while role represents a capability of the user (e.g., manager,
software developer, accountant, etc.). These concepts are mapped onto CPN types as shown in
Table 1.

During the work distribution work items change state. The change of state depends on previous
and determines the next actions of users and the distribution mechanism. A model of a life cycle
of a work item shows how a work item changes states during the work distribution. For more
detailed models about life cycle models we refer the reader to literature, e.g., [5, 18, 20, 30, 37, 41].
We develop and use the life cycle models as an aid to describe work distribution mechanisms. The
Basic Model uses a simple model of the life cycle of work items and it covers only the general, rather
simpli�ed, behavior of work
ow management systems (e.g., errors and aborts are not considered).

1 CPN Tools can be downloaded from wiki.daimi.au.dk/cpntools/.

158

Figure 1 shows the life cycle of a work item of the Basic Model. After the new work item has
arrived, it is automatically also enabled and then taken into distribution (i.e., state initiated).
Next, the work item is o�ered to the user(s). Once a user selects the work item, it is assigned to
him/her, and (s)he can start executing it. After the execution, the work item is considered to be
completed, and the user can begin working on the next work item.

Table 1. Basic Work
ow Concepts

color Task = string;
color Case = int;
color WI = product Case * Task;
color User = string;
color Role = string;
color Group = string;

new

assigned

enabled

initiated

offered

selected

started

executed

completed

waiting for the

preconditions

ready to be

distributed

the distribution is

allocating users

in the queues,

waiting to be selected

withdrawn from

the other queues
can not be selected

again by other users

the user is executing

the work item

removed from the

distribution

Fig. 1. Basic Model - Work Item Life Cycle

For the simulation (execution) of the work distribution in the model it is necessary to initiate
the model by assigning values for four input elements2, as shown in Table 2. Initial values of input
elements describe a real-world situation that the model should execute.

Table 2. Input For The Basic Model

name color description

new work items color WI = product
Case * Task;

work items that have arrived and are ready to be dis-
tributed to users;

system users color Users = list
User;

a set of available users;

task maps color TMap = prod-
uct Task * Role *
Group;

decision about which work items can be executed by
which users is made based on the authorizations given
in the process de�nition, for every task;

user maps color UMap = prod-
uct User * Roles *
Groups;

the organizational structure is used to map users to the
authorization of tasks;

As a model of an abstract work
ow management system, we have developed the Basic Model
on the basis of prede�ned assumptions: (1) we abstract from the process perspective (i.e., splits,
joins, creation of work items), (2) we only consider the “normal” behavior (i.e., work items are
completed successfully; errors and aborts are not included), and (3) we abstract from the user
interface.

The Basic Model is organized into two sub-systems: the Work Distribution and the Work Lists
module. The CPN language allows for the decomposition of complex nets into sub-pages, which
are also referred to as sub-systems, sub-processes or modules. By using such modules we obtain
a layered hierarchical description. Figure 2 shows the modular structure of the Basic Model. The
two sub-modules communicate by exchanging messages via six places. These messages contain
information about a user and a work item. Every message place is of the type (i.e., the CPN color
set) “user work item” (color UWI = product User * WI), which is a combination of a user and
a work item. Table 3 shows the description of the semantics of di�erent messages that can be
exchanged in the model.

2 Initial marking for the CPN model.

159

to be offered

UWI
withdrawn offer

UWI
selected

UWI

approved

UWI

rejected

UWI
completed

UWI

work distribution

workdistribution

work lists

worklists

Fig. 2. Basic Model - Main

Table 3. Messages Between Modules

Place Message

to be offered A work item is offered to the user.

withdrawn offer Withdraw the offered work item
from the user.

selected The user requests to select the work
item.

approved Allow the user to select the work
item.

rejected Do not allow the user to select the
work item.

completed The user has completed executing
the work item

Work Distribution. The Work Distribution module manages the distribution of work items by
managing the process of work execution and making sure that work items are executed correctly. It
allocates (identi�es) users to whom the new work items should be o�ered, based on authorization
(TMap) and organization (UMap) data. Three (out of four) input elements are placed in this
module: new work items, user maps and task maps. The variables used in this module are shown
in Table 4.

Table 4. Basic Model - Variables in Work Distribution Module

var tmaps: TMaps;
var umaps: UMaps;
var wi: WI;
var wis:WIs; (color WIs = list WI;)
var uwi: UWI;

Figure 3(a) shows the Work Distribution module. The allocation function o�er appears on the
arc between the transition o�ers and the place to be o�ered. This function contains allocation rules
(allocation algorithm) of the speci�c distribution mechanism. Work items that are o�ered to users
are stored in the place o�ered work items. After receiving a request from the user to select the
work item, the decision is made whether to allow the user to select the item (and thus to execute
it), or to reject this request. This decision is made based on the assumption that at one moment,
only one user can work on the work item. If the work item has already been selected (i.e., it is not
in the place o�ered work items), then the model rejects this request. If nobody has selected the
work item yet, the approval is sent to the user and the work item is moved to the place assigned
work items. A work item that is moved to the place assigned work items cannot be selected again.

Work Lists. Figure 3(b) shows the Work Lists module. This module receives messages from the
Work Distribution module about which work items are to be o�ered to which users. The Work
Lists module further manages events associated with the activities of users. It is decomposed
into three units, which correspond to three basic actions users can make: log on and o� (cf.
Figure 3(c)) in the system, select work (cf. Figure 3(d)), start work (cf. Figure 3(e)), and stop
work (cf. Figure 3(f)). Once the work item has been o�ered to users, they can select it. When a
user selects the work item, the request is sent to the Work Distribution module. If the request is
rejected, the action is aborted. If the Work Distribution Module approves the request, the user can
start working on the work item. Once the user has started working, the work item is considered
to be in progress. Next, the user can stop working, and the work item is completed. In order to
perform any of these actions, it is necessary that the user is logged on in the system.

160

rejected

UWI
Out

approved

UWI
Out

completed

UWI
In

user map

UMaps

iUMaps

selected

UWI
In

new work items

WI

iWI

to be offered

UWI
Out

task map

TMaps

iTMaps

withdrawn offer

UWI
Out

closed work items WI

offered work items

WIs

[]

assigned work items

WI

offers

selects

[elt(wi,wis)]

reject

[not(elt(wi,wis))]

completes

(u,wi)

uwi

(u,wi)

wi

umaps

wi

(u,wi)

tmaps

(u,wi)

offer(wi,tmaps,umaps)

umaps

tmaps

offer(wi,tmaps,umaps)

wis

wis

wi

wis

del(wi,wis)

wi::wis

wi

(* function "offer" takes new work items,
and offers them to users,
based on task maps and user maps. *)

(* input *)

(* input *)

(* input *)

(* work item cannot
be selectd
more than once *)

(* allow user
to select
the work item *)

(* prevent users
to select
the work item again,
after someone
has selected it*)

(a) Work Distribution

logged off

User

iUser

logged on

User

[]

I/O

log off log on

uu

uu

(* users that are
working/avalaible
at the moment *)

(* users that are
currently not
working/available *)

(c) Log On and Off

active work items

UWI

selected

UWI
Out

withdrawn offer

UWI
In

logged on

User

[]

I/O

requested

UWI
Out

to be offered

UWI
In

insert delete

select

uwiuwi

(u,wi)

(u,wi)

uwi

u

(u,wi)

uwi

(* offer work items
 to users *)

(* remove
 the offered
 work item *)

(* send request
 for the work item *)

(d) Select Work

rejected

UWI
In

completed

UWI
Out

approved

UWI
In

selected

UWI
Out

to be offered

UWI
In

withdrawn offer

UWI
In

logged on

User

in progress

UWI

requested

UWI

abort

select work

selectwork

logon and off

logonandoff

stop work

stopwork

start work

startwork

uwi

uwi

(* request has been sent,
wait for the response *)

(* the user is executing
 the work item *)

(* request approvement
 for executing the work item *)

(* the user has completed the work item *)

(* request approved *)

(* request rejected *)

(* only the user which is
logged on can work*)

(b) Work Lists

in progress

UWI
Out

logged on

User

[]

I/O

requested

UWI
In

approved

UWI
In

start

(u,wi)

u

(u,wi)

uwi

(* the request
is approved *)

(* the work item
is assigned to
the user *)

(* the user is
logged on *)(* the user is currently

 executing
 the work item *)

(e) Start Work

logged on
User

[]

I/O

in progress

UWI
In

completed

UWI
Out

complete
u

(u,wi)

(u,wi)
(* when transition "complete"
fires, execution of a work
item is completed *)

(f) Stop Work

Fig. 3. Basic Model

161

3 Work Distribution Models

The Basic Model presented in previous section (Section 2) is used as a reference for di�erent
extensions and specializations of work distribution. In this section, we �rst extend and specialize
the Basic Model to accommodate the capabilities of Sta�ware, FileNet and FLOWer (Section 3.1).
In Section 3.2 we select four of the more advanced resource patterns reported in [49, 51]. These
four patterns are not supported by Sta�ware, FileNet and FLOWer, but we will show that it is
easy to extend the Basic Model to adequately address the patterns.

3.1 Workflow Management Systems

We have modelled the work distribution mechanisms of three commercial work
ow management
systems: Sta�ware, FileNet and FLOWer. FileNet and Sta�ware are examples of two widely used
traditional work
ow management systems. FLOWer is based on the case-handling paradigm, which
can be characterized as “the more
exible approach” [3, 9]. Each of the models we have developed
will be described shortly in the remainder of this section. For a more detailed description of the
models we refer the reader to a technical report [44].

Staffware The Basic Model is upgraded to represent the work distribution of Sta�ware. The way
of modelling the organizational structure and resource allocation algorithm are changed, while the
concept of work queues and the possibility of the user to forward and suspend a work item are
added to the model.

Organizational Structure. Simple organizational structure can be created in Sta�ware using the
notions of groups and roles. The notion of group is de�ned as in the Basic Model, i.e., one group
can contain several users, and one user can be a member of several groups. However, speci�c for
Sta�ware is that a role can be de�ned for only one user. This feature does not require any changes
in the model itself. It changes the way the initial value for the user maps should be de�ned – one
role should be assigned to only one user.

Work Queues. Groups are used in Sta�ware to model a set of users that share common rights.
The work item can be allocated to the whole group, instead of listing the names of users that can
execute it. Sta�ware introduces a work queue for every group. The work queue is accessible to all
members of the group. Single users are also considered to be groups that contain only one member.
Thus, one work queue is also created for every user and this personal queue is only accessible by
a single user. From the perspective of the user, (s)he has access to the personal work queue and
to work queues of all the groups (s)he is a member of. Table 5 shows which color sets are added
to the model to represent work queues in Sta�ware. While the Basic Model (Section 2) o�ers the
work item directly to users, Sta�ware o�ers items in two levels. First, the work item is o�ered to
work queues (color set WQ). We refer to this kind of work items as to queue work item (color set
QWI). Second, after a queue work item is o�ered to a group (work queue) it is o�ered to each
of its members and only one member will execute the queue work item once. We refer to a queue
work item that is o�ered to a member as to user work item (color set UWI).

Table 5. Staffware - “Work Queue” Color Sets

color WQ = string;
color QWI = product WI * WQ;
color UWI = product User *QWI;

Figures 4 and 5 show that we create two levels in the Work Distribution module to support
the two-level distribution of Sta�ware:

162

1. In the module itself a new work item is o�ered to work queues (as a queue work item). The
new work item is completed when each of its queue work items is executed. Thus, if a new
work item is o�ered to multiple work queues, it is executed multiple times.

2. In the sub-module O�ering to Users every queue work item is o�ered to the queue members
(user work item). A queue work item is completed when one of the members executes the user
work item.

rejected

UWI
Out

approved
UWIOut

completed

UWIIn

user map

UMaps

iUMaps

selected

UWIIn

new
work items

WI

iWI

to be offered

UWIOut

task map

TMaps

iTMaps
withdrawn offer

UWIOut

completed
queue work items

QWI

to offer
to work queues

QWI

offered
work items

WI

closed
work items

WI

suspended
UWIIn

forwarded

UWIxWQ
In

fields

FMaps

iFMaps

offers to
work queues

completes
work item

Offering

offering

wi

tmaps umaps

wi

offer_qwi(wi,tmaps,umaps,fmaps,[])

wi

offer_qwi(wi,tmaps,umaps,fmaps,[])

umaps
tmaps

wi

fmaps

fmaps

(* only umaps are
necessary as input
for offering queue work
items to users *)

(* work item is first offerd to work queues
on the basis of tmaps, umaps and fmaps *)

(* a work item is complete
when every queue, to which it was offered,
has executed the work item *)

Fig. 4. Staffware - Work Distribution

selected
UWIIn

assigned
work items

QWI

offered queue
 work items

QWIs

[]

user map

UMaps

iUMaps

I/O

withdrawn offer

UWIOut

approved

UWI
Out

to offer
to work queues

QWI
I/O

rejected

UWIOut

to be offered

UWIOut

completed
queue work items

QWI
Out

completed
UWIIn

suspended

UWIIn

forwarded

UWIxWQ
In

selects

[elt(qwi,qwis)]

offers

completes

Suspend
 and
Forward

suspendandforward

Reject

[not(elt(qwi,qwis))]

(u,qwi)

qwi

del(qwi,qwis)

umaps
qwis

offer_uwi(qwi,umaps)

(u,qwi)

qwi

qwi::qwis qwis

offer_uwi(qwi,umaps)

umaps

qwi

qwi

(u,qwi)

qwis

(u,qwi)

(u,qwi)

(* every queue work item
is offered to members of the queue *)

(* withdraw all offers
for this queue work item *)

(* use umap to
offer qwi to
queue
members *)

(* a queue work item will be executed
only once, by one user/queue member *)

Fig. 5. Staffware - Offering

Resource Allocation. We have changed the allocation function o�er to represent the allocation
algorithm in Sta�ware. Just like the Basic Model, Sta�ware searches for possible users based on
roles and groups. In addition to this, in Sta�ware users can be allocated by their user-names and
data �elds in the process. In user maps we use the �elds reserved for groups when we want to
specify the allocation for user-names. We do this by assuming that every user-name refers to a
group with only one member – the speci�ed user. The second addition in Sta�ware refers to the
fact that resource allocation can be also done at “run-time” on the basis of data �elds in task maps
(cf. Table 6). This kind of allocation is referred to as a dynamic work allocation: the allocation is
executed based on the current value of the �eld during the process execution. Sta�ware assumes
that the value of the assigned data �eld is a group name, a role name or a user name.

If the allocation refers to group names the work item is allocated to group work queues. In an
allocation that refers to user names or roles the work item is allocated to personal work queues.

Table 6. Staffware - Dynamic Work Allocation

color Field = string;
color Fields = list Field;
color FValue = string;
color FMap = product Field*FValue;
color FMaps = list FMap;
color TMap = product Task * Users * Roles * Groups * Fields;

163

Forward and Suspend. Sta�ware allows for forward and suspend, i.e., a user can put a work item
on hold (suspend) or forward it to another user. Forwarding and suspending of work items adds
two messages that are exchanged between Work Distribution and Work Lists modules in Sta�ware
model. Figures 4 and 5 show two new places – forward and suspend. These two new actions are
triggered in the Work List module by the user. Figure 6(a) shows that in the module Start Work
the user can choose to select or forward (to another work queue) the work item. Figure 6(b)
shows that in the module Stop Work the user can choose to complete or suspend the work item.
The Work Distribution module handles forwarding and suspending in the O�ering to Users sub-
module. Figure 6(c) shows how: (1) in case of forwarding the work item is automatically cancelled
for the current work queue and o�ered to the new work queue, and (2) in case of suspending the
work item is cancelled for the current work queue and re-o�ered as a new work item.

work queue

WQ

iUser ++ iGroup

logged on

User

[]

I/O

in progress

UWI
Out

requested

UWI
In

select

UWI
In

forwarded

UWIxWQ
Out

ForwardStart Work
wqu

(u,qwi)

u

(u,qwi)

(u,qwi) (u,qwi)

((u,qwi),wq)

(u,qwi)

(* a work queue
is created
for every group
and for every user *)

(* the user can choose to execute or forward the work item *)

(a) Start Work

completed

UWI
Out

in progress

UWI
In

suspended

UWI
Out

logged on

User

[]

I/O

suspend

complete
(u,qwi)

(u,qwi)

(u,qwi)

(u,qwi)

u

u

(* the user can
choose to
complete
or suspend
the work item *)

(b) Stop Work

suspended

UWI
In

selected
work items

QWI
In

to offer to
work queues

QWI
Out

forwarded

UWIxWQ
In

to re offer

QWI

to cancel

QWI

re offer

suspendcancel

forward
qwi qwi

qwiqwi (u,qwi)

((u,(wi,wq)),wq1)

qwi

qwi

(wi,wq1)

(wi,wq)

(* when forwarding a "user work item":
1. cancel this "user work item" and 2. offer this work item to the specified user *)

(* when suspending a "user work item":
1. cancel this "user work item" and 2. offer it again like before *)

(c) Suspend and Forward

Fig. 6. Staffware - Forward and Suspend

FileNet Like Sta�ware, FileNet is a widely used traditional process-oriented work
ow manage-
ment system. In this section we will describe the FileNet CPN model that we develop using the
Basic Model as a starting reference model.

Organization. The organizational model in FileNet does not allow for modelling roles. Table 7
shows which color sets are added to the CPN model to represent the two types of organizational
groups:

1. Administrators de�ne work queues (color set WQ) and assign their members in the FileNet
system. A work queue is valid for every process (work
ow) de�nition.

2. Process modelers can de�ne workflow groups (color set WG) in every process model. Thus,
a work
ow group is valid only in the process (work
ow) model in which it is de�ned. While
executing a task of a process de�nition, users have the possibility to change the structure of
work
ow groups that are de�ned in that process. Work
ow groups represent teams in FileNet.

164

Queues. Work queues and personal queues are two types of pools from which users can select
and execute work items. A work queue can have a number of members while a personal queue
has only one member. When a work item is o�ered to a queue one of the queue members can
select and execute the work item. Table 7 shows which color sets are added to the FileNet model
to represent queues. FileNet distributes work in two levels using queues. First, the work item is
o�ered to queues as a queue work item (color set QWI). Second, the queue work item is o�ered
to the members of the queue as a user work item (color set UWI).

Table 7. FileNet - “Queue” Color Sets

color Q = string;
color WQ = Q; (color WQs = list WQ;)
color WG = Q; (color WGs = list WG;)
color UMap = product User * WGs* WQs;
color QWI = product WI * Q;
color UWI = product User * QWI;

Figures 7 and 8 show that the model of the two-level work distribution in FileNet is similar to
the Sta�ware model. For more detailed description of this kind of distribution we refer the reader
to the Sta�ware description in Section 3.1.

rejected
UWIOut

approved
UWIOut

completed

UWIIn

user map

UMaps

iUMaps

user map
selected

UWIIn

 new
 work items

WI

iWI

to be offered
UWIOut

task map

TMaps

iTMaps

withdrawn offer
UWIOut

 completed
queue work items

QWI

to offer
to queues

QWI

offered
work items

WI

 closed
work items

WI

suspended

UWI
In

forwarded
UWIxQIn

offers to
queues

completes
work item

Offering
to Users

offering

wi

tmaps
umaps

wi

offer_qwi(wi,tmaps,umaps,[])

wi

offer_qwi(wi,tmaps,umaps,[])

umaps
tmaps

wi

(* only umaps are
necessary as input
for offering queue work
 items to users *)

(* work item is first offerd to queues
on the basis of tmaps and umaps *)

(* a work item is complete
when every queue, to which it was offered,
has executed the work item *)

Fig. 7. FileNet - Work Distribution

selected
UWIIn

assigned
work items

QWI

offered queue
 work items

QWIs

[]

withdrawn offer

UWIOut

approved
UWIOut

to offer
to queues

QWI
I/O

rejected
UWIOut

offer

UWIOut

completed
queue work items

QWIOut

completed
UWIIn

suspended

UWI
In

forwarded
UWIxQIn

user map

UMaps

iUMaps

user map

selects

[elt(qwi,qwis)]

offers

completes

Suspend and
Forward

suspendandforward

Reject

[not(elt(qwi,qwis))]

(u,qwi)

qwi

del(qwi,qwis)qwis

offer_uwi(qwi,umaps)

(u,qwi)

qwi

qwi::qwis
qwis

offer_uwi(qwi,umaps)

qwi

qwi
(u,qwi)

qwis

(u,qwi)

(u,qwi)

umaps

umaps

(* every queue work item
is offered to members of the queue *)

(* withdraw all offers
for this queue work item *)

(* use umap to
offer qwi to
queue
members *)

(* a queue work item will be executed only once,
by one user/queue member *)

Fig. 8. FileNet - Offering

Resource Allocation. FileNet allocates work using a work queue or a list of participants. Users
and work
ow groups can be entries of a list of participants. In the FileNet model task maps are
de�ned as a combination of a task, a list of work groups, and a work queue (color TMap = product
Task * WGs * WQ;). It is necessary to highlight that, when de�ning the input value for a task
map, only work queue or a list of work
ow groups should be initiated.

If the task is allocated to a work queue FileNet o�ers the work item to the work queue. If the
task is allocated to a list of participants then it is o�ered to personal queues of all users that are
listed as participants or are members in work
ow groups that are listed. Allocation via participants
is introduced to support team work in FileNet, via so-called “process voting” [44].

165

Forward and Suspend. Users can forward and suspend work items while working with FileNet.
In the model of FileNet we use the same adjustments as in the Sta�ware model to implement
forwarding and suspension: modules Start Work and Stop Work are changed and sub-module
Suspend and Forward is added in the Work Distribution module. For detailed description we refer
the reader to Sta�ware description and Figure 6 in this section.

FLOWer FLOWer is a case handling system. Case handling systems di�er in their perspective
from traditional process-oriented work
ow management systems because they focus on the case,
instead of the process [3, 9]. The user is o�ered the whole case by o�ering all available work items
from the case and s(he) does not have to follow the prede�ned order of tasks in the process
de�nition. When modelling FLOWer, we upgraded the Basic Model in such a way that (1) it
supports case-handling distribution (instead of the process-oriented one), (2) it enables the complex
authorization and distribution speci�cations that FLOWer has, and (3) it enables users to execute,
open, skip and redo work items.

Authorization and Distribution Rights. When designing the process it is necessary to de�ne
process-speci�c roles and to assign each role authorization rights for tasks in the process. The
authorization rights determine what users can do. Information about the authorization is stored
in task maps (i.e., color TMap = product Task * Role * CaseType). Distribution rights de�ne
what users should do. These rights are used to model the organizational structure and to assign
authorization rights from the process de�nitions to users. Function pro�les and work pro�les de�ne
distribution rights. Function pro�le is a set of authorization roles from di�erent process de�nitions.
Work pro�les assign function pro�le(s) to users and they can be used to structure organization
into groups, departments or units.

Case Handling. Table 8 shows which color sets are used to model FLOWer as a case-handling
system. Every process de�nition in FLOWer is referred to as a case type. One case represents an in-
stance of a case type and is identi�ed by the case identi�cation (color set CaseID). Figures 9 and 10
show that FLOWer distributes work in two levels:

1. The case is distributed to users (color set UCase). Only one user can select and open the case
at one moment. Figure 9 shows that in the FLOWer Work Distribution module a case becomes
the object of distribution instead of a work item.

2. The selected case is opened for the user in the Case Distribution sub-module. Work items from
the case are o�ered to the user, based on the authorization and distribution rules. The user
can execute, open, skip and redo work items from the selected case. The Case Distribution
sub-module (cf. Figure 12) is described in the remainder of this section.

Table 8. FLOWer - Basic Color Sets

color CaseType = string;
color Tasks = list Task;
color Process = product CaseType * Tasks;
color CaseID = INT;
color Case = product CaseID* CaseType;
color WI = product Case * Task;
color UCase = product User * Case;

Open, Execute, Skip and Redo. Although in a case type tasks in the process de�nition have the
execution order that is suggested to the user, (s)he is not obliged to follow it. When working
with an open case in FLOWer, users can: (1) Execute the work item which is next in the process
de�nition; (2) Open for execution a work item that is still not ready for execution according to

166

rejected
 case

UCase
Out

approved
 case

OpenCase
Out

completed
 case

UCase
In

selected
 case

UCase
In

new
cases

Case

iCases

offer
case

UCase
Out

task map

TMaps

iTMaps

withdraw
case offer

UCase
Out

closed
cases

UCase

offered
cases

Cases

[]

assigned
 cases

UCases

[]

tprocess

Process

iProcess

skip

OpenCaseXUWI
In

execute

OpenCaseXUWI
In

redo
OpenCaseXUWIIn

case
in progress

OpenCase
Out

open
OpenCaseXUWIIn

function
 profile

FPs

iFPs

work
profile

WPs

iWPs

offers
case

selects
 case

[elt(((cid,ct)),cs)]

reject case

[not(elt(c,cs))]

completes
 case

case distribution

case distribution

uc

(u,c)

c

uc

(u,(cid,ct))

tmaps

(u,c)

tmaps

offerc(c,tmaps,fps,wps)

cs

cs

[(u,((cid,ct)))]^^ucs

cs

del(((cid,ct)),cs)

c::cs

ucs

ucs

del(uc,ucs)

fps

wps

fps

wps

opencase((cid,ct),ts,u,tmaps,fps,wps)

offerc(((cid,ct)),tmaps,fps,wps)
(ct,ts)

(* the whole case is offered to users
based on the tmaps, function profiles
and work profiles *)

(* when the user
has selected the case,
the case is opened
for the user *)

Fig. 9. FLOWer - Work Distribution

rejected
 case

UCase
In

completed
 case

UCase
Out

approved
 case

OpenCase
In

selected
 case

UCase
Out

offer case

UCase
In

withdraw
case offer

UCase
In

logged on

User

case
in progress

OpenCase
In

request case

UCase

skip

OpenCaseXUWI
Out

execute

OpenCaseXUWI
Out

redo

OpenCaseXUWI
Out

open

OpenCaseXUWI
Out

abort case

select case

select case

logon
and off

logon and off

stop case

stop case

start case

start case

action

action

ucuc

(* after selecting the case,
the user can work on the work items
from that case, or close the case*)

Fig. 10. FLOWer - Work Lists

the process de�nition; (3) Skip a work item by choosing not to execute the work item which is
next according to the process de�nition, or (4) Redo a work item by executing again a work item
which has already been executed. Figures 9 and 10 show that four new places are added to the
model to represent these four actions. In order to implement these possibilities in the FLOWer
model it is necessary store the information about the case state, i.e., about the work items that
are (1) waiting to be enabled, (2) active (i.e. they are enabled and can be executed), (3) �nished
(executed), and (4) skipped. Thus, an open case (color OpenCase = product UCase*CaseState;)
stores information about the case state (color CaseState = product WIs*WIs*WIs*WIs) in four
lists of work items (waiting, active, �nished and skipped).

Figure 11 shows the sub-module Action (in the FLOWer Work List module) where we model
how user performs the actions to execute, open, skip and redo work items. In FLOWer users can
choose work items on their own discretion but (due to the complexity of the model) we model this
selection as a random function. When the user wants to:

1. open an item s(he) selects a work item from the list of waiting items;

2. execute an item s(he) selects a work item from the list of active items;

3. skip an item s(he) selects a work item from the lists of waiting and active items;

4. redo an item s(he) selects a work item from the lists of �nished and skipped items.

Each of the four actions the user performs changes the state of the open case. For example,
opening a work item transfers it to the state active (and, therefore, it is transferred to the list
of active items). Figure 12 shows that the Case Distribution module responses in di�erent ways
(functions execute item, open item, skip item, and redo item) when each of the four actions is
performed. When an action is performed over a work item, the state of the work item changes,
as shown in Table 9. The four actions are listed in the column “action”. The column “work item
becomes” shows how the action changes state of the work item. It often happens that an action
performed on a selected work item also a�ects other items and this is described in the column
“side e�ects”.

167

case in progress

OpenCase
In

skip

OpenCaseXUWI
Out

logged on

User
I/O

redo

OpenCaseXUWI
Out

open

OpenCaseXUWI
Out

execute

OpenCaseXUWI
Out

execute

[not(a=[])]

open

[not(w=[])]

redo

[not((f^^s)=[])]

skip

[not(a^^w=[])]

((u,c),(w,a,f,s))

((u,c),(w,a,f,s))

(((u,c),(w,a,f,s)),select_random(a^^w))

((u,c),(w,a,f,s))

u

(((u,c),(w,a,f,s)),select_random(f^^s))

(((u,c),(w,a,f,s)),select_random(w))u

((((u,c),(w,a,f,s))),select_random(a))

((u,c),(w,a,f,s))

u

u

Fig. 11. FLOWer - Action

redo

OpenCaseXUWI
In

case in progress

OpenCase
Out

open

OpenCaseXUWI
In

execute

OpenCaseXUWI
In

skip

OpenCaseXUWI
In

tprocess

Process

iProcess

I/O

selected cases

UCases

[]

I/O

execute

[elt(uc,ucs)]

skip

[elt(uc,ucs)]

redo

[elt(uc,ucs)]

ignore

[not(elt(uc,ucs))]

open

[elt(uc,ucs)]

((uc,state),uwi)

(uc,(execute_item(uwi,state,ts)))

((uc,state),uwi)

((uc,state),uwi)

((uc,state),uwi)

(uc,state)

(ct,ts)

(uc,(skip_item(uwi,state,ts)))

((uc,state),uwi)ucs (uc,(redo_item(uwi,state,ts)))

(uc,(open_item(uwi,state,ts)))

ucs

ucs

ucs

ucs

((uc,state),uwi)

((uc,state),uwi)

((uc,state),uwi)

(ct,ts)

(ct,ts)

(ct,ts)

Fig. 12. FLOWer - Case Distribution

Table 9. FLOWer - The Four Actions

work item side
action becomes effects

open active Items from waiting that preceded become skipped.

execute �nished The direct successors in waiting become active.

skip skipped Items from waiting that preceded become skipped. The direct successors
in waiting become active.

redo active Subsequent items from (skipped & �nished) become waiting.

3.2 Resource Patterns

Instead of extending the Basic Model for more systems, we also looked at a more systematic way
of work distribution. As indicated, similar concepts are often named and presented di�erently
in di�erent work
ow management systems. Therefore, it is interesting to de�ne these concepts
in a system-independent manner. We have used 43 documented resource patterns [49, 51]. These
patterns can be used as representative examples for analyzing, evaluating and comparing di�erent
work
ow management systems with respect to work distribution. Resource patterns are grouped
into a number of categories: creation patterns, push patterns, pull patterns, detour patterns, auto-
start patterns, visibility patterns, and multiple resource patterns. Each of these patterns can be
modeled in terms of a CPN model. We cannot elaborate on each of the patterns, but we will discuss
four to illustrate our work. None of the systems supports Pattern 16: Round Robin, Pattern 17:
Shortest Queue, Pattern 38: Piled Execution, and Pattern 39: Chained Execution. Patterns 16 and
17 are push patterns, i.e., they push work to a speci�c user. As auto-start patterns, patterns 38
and 39 enable the automatic start of the execution of the next work item once the previous has
been completed.

Round Robin and Shortest Queue. Round Robin and Shortest Queue push the work item to one
user of all users that qualify. Round Robin allocates work on a cyclic basis and Shortest Queue
to the user with the shortest queue. This implies that each user has a counter to: (1) count
the sequence of allocations in Round Robin and (2) count the number of pending work items in
Shortest Queue. As Figures 13 and 14 show, these two patterns are implemented in a similar way
in the Work Distribution Module. The required changes to the Basic Model are minimal. A counter
is introduced for each user (token in place available) and functions round robin and shortest queue
are used to select one user from the set of possible users based on these counters. Similarly, most
of the other patterns can be realized quite easily. The model for Shortest Queue has an additional
connection (two arcs) that updates the counter when a work item is completed to remove it from
the queue.

Piled and Chained Execution. Piled and Chained Execution are auto-start patterns, i.e., when
the user completes execution of current work item the next work item starts automatically. When

168

rejected

UWI
Out

approved

UWI
Out

completed

UWI
In

User map

UMaps

iUMaps

selected

UWI
In

new
work items

WI

iWI

to be offered

UWI
Out

Task map

TMaps

iTMaps

withdrawn offer

UWI
Out

closed
work items

WI

offered
work items

WIs

[]

assigned
work items

WI

to allocate
UWI

available

RRCounters

[]

RRA available
counter

INT

1

offers

[not(round_robin(offer(wi,tmaps,umaps),rrcs)=NoUWI)]

selects

[elt(wi,wis)]

reject

[not(elt(wi,wis))]

completes

allocate

(u,wi)

(u,wi)

(u,wi)

wi

umaps

wi

(u,wi)

tmaps

(u,wi)

offer(wi,tmaps,umaps)

umaps

tmaps

wis

wis

wi

wis

wi::wis

wi

round_robin(offer(wi,tmaps,umaps),rrcs)
(u,wi) (u,wi)

rrcs count + 1
count

rrcs

allocate(u,rrcs,count)

del(wi,wis)

(* round_robbin selects one
 from all the offers on the basis of couters *)

(* counts the allocations *)

Fig. 13. Push Patterns - Round Robin

working in Chained Execution, the next work item will be for the same case as the completed one
(the user works on di�erent tasks for one case). Similarly, if the user works in Piled Execution
the next work item will be for the same task as the completed one (the user works on one task
for di�erent cases). Figures 15 and 16 show how Piled and Chained Execution are implemented
similarly in the Stop Work sub-module. Users can choose to work in the normal mode or in the
auto-start mode (which is represented by the token in place special mode). The function select is
implemented to search for the next work item for the same: (1) task in Piled Execution and (2)
case in Chained Execution.

4 Related Work

Since the early nineties work
ow technology has matured [26] and several textbooks have been pub-
lished, e.g., [5, 20, 30, 37, 41]. During this period many languages for modelling work
ows have been
proposed, i.e., languages ranging from generic Petri-net-based languages to tailor-made domain-
speci�c languages. The Work
ow Management Coalition (WfMC) has tried to standardize work-

ow languages since 1994 but failed to do so [25]. XPDL, the language proposed by the WfMC,
has semantic problems [2] and is rarely used. In a way BPEL [11] succeeded in doing what the
WfMC was aiming at. However, both BPEL and XPDL focus on the control-
ow rather than the
resource perspective.

Despite the central role that resources play in work
ow management systems, there is a surpris-
ingly small body of research into resource and organizational modelling in the work
ow context
[1, 35]. In early work, Bussler and Jablonski [15] identi�ed a number of shortcomings of work-

ow management systems when modelling organizational and policy issues. In subsequent work
[30], they presented one of the �rst broad attempts to model the various perspectives of work
ow
management systems in an integrated manner including detailed consideration of the organiza-
tional/resource view.

One line of research into resource modelling and enactment in a work
ow context has focused
on the characterization of resource managers that can manage organizational resources and enforce
resource policies. In [19], the design of a resource manager is presented for a work
ow management
system. This work includes a high level resource model together with proposals for resource de�ni-
tion, query and policy languages. Similarly, in [36], an abstract resource model is presented in the

169

approved

UWI
Out

completed

UWI
In

User map

UMaps

iUMaps

selected

UWI
In

new
work items

WI

iWI

to be offered

UWI
Out

Task map

TMaps

iTMaps

closed
work items

WI

offered
work items

WIs

[]

assigned
work items

WI

to allocate
UWI

available

SQCounters

[]

SQ available

withdrawn offer

UWI
Out

rejected

UWI
Out

offers

[not(shortest_queue(offer(wi,tmaps,umaps),sqcs)=NoUWI)]

selects

[elt(wi,wis)]

complets

allocate

reject

[not(elt(wi,wis))]

(u,wi)

(u,wi)

wi

umaps

wi

(u,wi)

tmaps

umaps

tmaps

wis

wi

del(wi,wis)

wi::wis

wi

shortest_queue(offer(wi,tmaps,umaps),sqcs)
(u,wi) (u,wi)

sqcs

sqcs

allocate(u,sqcs,1)

sqcs

allocate(u,sqcs,(~1))
offer(wi,tmaps,umaps)

(u,wi)

(u,wi)wis

wis

(* shortest_queue selects one
 from all the offers on the basis of couters *)

(* when the work item is completed,
remove it from the users’ queue *)

Text

Fig. 14. Push Patterns - Shortest Queue

logged on

User

[]

I/O
in progress

UWI
In

completed

UWI
Out

 active
work items

UWIs

[]

I/O

request

UWI
Out

select

UWI
Out

special
 mode

Users

[]

I/O

ready
UWI

complete

complete
 special

u

(u,wi)

(u,(c,a))

uwis

if elt(u,us) andalso
not(select(u,a,uwis) = NoUWI)
then 1‘select(u,a,uwis) else nil

if elt(u,us) andalso
not(select(u,a,uwis) = NoUWI)
then 1‘select(u,a,uwis) else nil

us

(u,wi)

(u,(c,a))

(* users can
choose
to be in the
"auto-start"
mode*)

(* check if there are
available work items
for the same task *)

(* automatically start the next
work item for the same task*)

(* function "select" picks
the next work item
with the task "t" *)

(* task is the auto-start criteria
(u,(c,t)) -> (u,(c,a)) *)

Fig. 15. Piled Execution - Stop Work

logged on

User

[]

I/O
in progress

UWI
In

completed

UWI
Out

active
work items

UWIs

[]

I/O

request

UWI
Out

select

UWI
Out

special
 mode

Users

[]

I/O

ready
UWI

complete

complete
 special

u

(u,wi)

(u,(a,t))

uwis

if elt(u,us) andalso
not(select(u,a,uwis) = NoUWI)
then 1‘select(u,a,uwis) else nil

if elt(u,us) andalso
not(select(u,a,uwis) = NoUWI)
then 1‘select(u,a,uwis) else nil

us

(u,wi)

(u,(a,t))

(* check if there are
available work items
for the same case *)

(* users can
 choose
to be in the
"auto-start"
mode*)

(* automatically start the next
work item for the same case*)

(* case is the auto-start criteria
(u,(c,t)) -> (u,(a,t)) *)

(* function "select" picks
the next work item
for the case "a" *)

Fig. 16. Chained Execution - Stop Work

context of a work
ow management system although the focus is more on the e�cient management
of resources in a work
ow context than the speci�c ways in which work is allocated to them. In
[29], a proposal is presented for handling resource policies in a work
ow context. Three types of
policy – quali�cation, requirement and substitution – are described together with a means for
e�ciently implementing them when allocating resources to activities.

Another area of investigation has been into ensuring that only appropriate users are selected
to execute a given work item. The RBAC (Role-Based Access Control) model [23] presents an ap-
proach for doing this. RBAC models are e�ective but they tend to focus on security considerations
and neglect other organizational aspects such as resource availability.

Several researchers have developed meta-models, i.e., object models describing the relation
between work
ow concepts, which include work allocation aspects, cf. [8, 40–42, 48]. However,

170

these meta-models tend to focus on the structural description of resource properties and typically
do not describe the dynamics aspects of work distribution.

Flexibility has been a research topic in work
ow literature since the late nineties [4, 7, 9, 10,
16, 22, 28, 33, 45, 47, 56]. Flexibility triggers all kinds of interesting research questions, e.g., if a
process changes how this should in
uence the running cases? [7]. Examples of qualitative analysis
of
exibility of work
ow management system can be found in [13] and [27]. One way of allowing
for more
exibility is to use the case handling concept as de�ned in [3, 9]. FLOWer [12, 43] can be
seen as a reference implementation of the case handling concept. Therefore, its resource perspective
was modeled in this paper. Besides FLOWer there are few other case handling tools: E.C.H.O.
(Electronic Case-Handling for O�ces), a predecessor of FLOWer, the Sta�ware Case Handler [53]
and the COSA Activity Manager [52], both based on the generic solution of BPi [14], Vectus [38,
39], and the open-source system con:cern (http://con-cern.org/).

The work reported in this paper can be seen as an extension of the workflow patterns initiative
(cf. www.work
owpatterns.com). Besides a variety of control-
ow [6] and data [50] patterns, 43
resource patterns [49, 51] have been de�ned. This paper complements the resource patterns [49,
51] by providing executable models for work distribution mechanisms.

5 Discussion

Work
ow management systems should provide
exible work distribution mechanisms for users.
This will increase the work satisfaction of users and improve their ability to deal with unpredictable
situations at work. Therefore, work distribution is investigated as the functionality provided for the
user – work
ow management systems are tested in laboratories [49, 51] or observed (in empirical
research) in companies [13]. This kind of research observes systems externally and provides insights
into what systems do. Analysis of the systems form an internal perspective can explain how
systems provide for di�erent work distribution mechanisms. Due to the complexity of work
ow
management systems as software products, internal analysis starts with developing a model of the
system. Unlike statical models (e.g., UML models), dynamical models (e.g., CPN models) provide
for interactive investigation of work distribution as a dynamic feature. CPN models can be used
for the investigation of both what systems do and how they do it.

Work
ow management systems often provide for di�erent features or use di�erent naming for
the same features. Investigation of work distribution requires analysis, evaluation and comparison
of models of several systems. In order for models of di�erent systems to be comparable, it is
necessary to start with developing a common framework – a reference model. We have developed
the Basic Model as a reference model for work distribution mechanisms in work
ow management
system. The models of Sta�ware, FileNet, FLOWer and resource patterns are comparable because
all models are developed as upgrades of a reference model (the Basic Model).

The model of a work
ow system is structured into two modules (sub-models). The Work
Distribution module represents the core of the system which is often called the “work
ow engine”.
The Work Lists module represents the so-called “work list handler” of a work
ow system and
it serves as an interface between the work
ow engine and users. The interface between the two
modules (i.e., the messages that are exchanged between them) should contain as little information
as possible about the way work items are managed in modules. The Work Lists module should
abstract form the way the work items are created, allocated and o�ered in the Work Distribution
module. The reverse also holds: how work items are actually processed by users is implemented in
the Work Lists module. Once a proper interface is de�ned, it is easy to implement various ways of
work distribution by adding/removing simple features in either one of the modules. For example,
push patterns (Round Robin and Shortest Queue) are implemented in the Work Distribution
module and auto-start resource patterns (Chained and Piled Execution) in the Work Lists module.

The
exibility of a work distribution mechanism determines what users can do with work items.
In the Basic Module the user follows a �xed prede�ned path by only executing work items. Users of
Sta�ware and FileNet models have the freedom to forward and suspend work. In FLOWer, as the
most
exible system, users have four possibilities: execute, open, skip and redo work. Our models

171

show that a more complex model work distribution adds messages between the Work Distribution
and Work Lists modules. These new messages correspond to new actions (operations) that users
can do.

Both the system-based and the patterns-based CPN models showed that one of the core el-
ements of work distribution is the “allocation algorithm”. This algorithm includes the “rules”
for work distribution. It is implemented in the Work Distribution module as the function o�er,
which allocates work based on (1) new work items, (2) process de�nition, and the (3) organiza-
tional model. This function should be analyzed further in order to discover an advanced allocation
algorithm, which should be more con�gurable and less system-dependent.

Every system has its own method of modelling organizational structure. Sta�ware models
groups and roles. In FileNet the organizational model includes groups of users and teams, but
does not model roles. FLOWer groups users based on a hierarchy of roles, function pro�les and
work pro�les. Thus, each of the system o�ers a unique prede�ned type of the organizational
structure. Since every allocation mechanism uses elements of the organizational model, limitations
of the organizational model can have a negative impact on the work distribution in the system.
For example, because in Sta�ware one role can be assigned to only one user, it is not be possible
to o�er a work item to a set of “call center operator”-s.

Each of the three models of work
ow systems distributes work using two hierarchy levels.
Sta�ware and FileNet use two levels of work distribution: queue work items are �rst distributed to
work queues, and then work items are distributed within each of the work queues. The FLOWer
model starts with the case distribution and then distributes work items of the whole case. Although
all three systems distribute work at two levels, they have unique distribution algorithms (the set of
allocation rules implemented in the function o�er) and objects of distribution (work items, queue
work items, cases).

Models of resource patterns [49, 51] show that push patterns (Round Robin and Shortest
Queue) can be implemented “on top of” the pull mechanism, as a �lter. Once the pull mech-
anism determines the set of allocated users, the “push” allocation function extracts only one user
from this set. Auto-start patterns turned out to be remarkable straightforward to model, triggering
the question why this is not supported by systems like Sta�ware and FileNet (FLOWer supports
the Chained Execution in a limited form).

6 Conclusions

This paper focused on the resource perspective, i.e., the way work
ow management systems dis-
tribute work based on the structure of the organization and capabilities/quali�cations of people.
To understand work distribution, we used the CPN language and CPN Tools to model and analyze
di�erent work distribution mechanisms. To serve as a reference model, we provided a model that
can be seen as the “greatest common denominator” of existing work
ow management systems. This
model was upgraded for models of three work
ow management systems – Sta�ware, FileNet, and
FLOWer. Although the reference model already captures many of the resource patterns, we also
modelled four more advanced patterns by extending the reference model. In contrast to existing
research that mainly uses static models (e.g., UML class diagrams), we focused on the dynamics
of work distribution. Our experiences revealed that it is relatively easy to model and analyze the
work
ow systems and resource patterns using CPN Tools. This suggests that CPN language and
the basic CPN model are a good basis for future research. We plan to test completely new ways
of work distribution using the approach presented in this paper. The goal is to design and imple-
ment distribution mechanisms that overcome the limitations of existing systems. An important
ingredient will be to use insights from socio-technical design [13, 17, 21, 55] as mentioned in the
introduction.

References

1. W.M.P. van der Aalst. Don’t go with the
ow: Web services composition standards exposed. IEEE
Intelligent Systems, 18(1):72–76, 2003.

172

2. W.M.P. van der Aalst. Business Process Management Demysti�ed: A Tutorial on Models, Systems
and Standards for Work
ow Management. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures
on Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 1–65.
Springer-Verlag, Berlin, 2004.

3. W.M.P. van der Aalst and P.J.S. Berens. Beyond Work
ow Management: Product-Driven Case Han-
dling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International ACM SIGGROUP Conference on
Supporting Group Work (GROUP 2001), pages 42–51. ACM Press, New York, 2001.

4. W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Management: Models,
Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 2000.

5. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems.
MIT press, Cambridge, MA, 2002.

6. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Work
ow Patterns.
Distributed and Parallel Databases, 14(1):5–51, 2003.

7. W.M.P. van der Aalst and S. Jablonski. Dealing with Work
ow Change: Identi�cation of Issues and
Solutions. International Journal of Computer Systems, Science, and Engineering, 15(5):267–276, 2000.

8. W.M.P. van der Aalst and A. Kumar. Team-Enabled Work
ow Management Systems. Data and
Knowledge Engineering, 38(3):335–363, 2001.

9. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New Paradigm for Business
Process Support. Data and Knowledge Engineering, 53(2):129–162, 2005.

10. A. Agostini and G. De Michelis. Improving Flexibility of Work
ow Management Systems. In W.M.P.
van der Aalst, J. Desel, and A. Oberweis, editors, Business Process Management: Models, Techniques,
and Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pages 218–234. Springer-
Verlag, Berlin, 2000.

11. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language for Web Services,
Version 1.1. Standards proposal by BEA Systems, International Business Machines Corporation, and
Microsoft Corporation, 2003.

12. Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena BV, Apeldoorn, The
Netherlands, 2002.

13. J. Bowers, G. Button, and W. Sharrock. Work
ow From Within and Without: Technology and Co-
operative Work on the Print Industry Shop
oor. In The Fourth European Conference on Computer-
Supported Cooperative Work (ECSCW 95), pages 51–66, Stockholm, September 1995. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands.

14. BPi. Activity Manager: Standard Program - Standard Forms (Version 1.2). Work
ow Management
Solutions, Oosterbeek, The Netherlands, 2002.

15. C. Bussler and S. Jablonski. Policy Resolution for Work
ow Management Systems. In Proceedings
of the 28th Hawaii International Conference on System Sciences, page 831. IEEE Computer Society,
1995.

16. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Work
ow Evolution. In Proceedings of ER ’96, pages
438–455, Cottubus, Germany, Oct 1996.

17. L. U. de Sitter, J. F. den Hertog, and B. Dankbaar. From complex organiations with simple jobs to
simple organizations wiht complex jobs. Human Relations, 510(5):497–534, 1997.

18. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P. van
der Aalst. The ProM framework: A New Era in Process Mining Tool Support. In G. Ciardo and
P. Darondeau, editors, Application and Theory of Petri Nets 2005, Lecture Notes in Computer Science,
pages 444–454. Springer-Verlag, Berlin, 2005.

19. W. Du and M.C. Shan. Enterprise Work
ow Resource Management. In Ninth International Workshop
on Research Issues on Data Engineering: Information Technology for Virtual Enterprises (RIDE-
VE’99), pages 108–115, Sydney, Australia, 1999. IEEE Computer Society Press.

20. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Information Systems.
Wiley & Sons, 2005.

21. F.M. van Eijnatten and A.H. van der Zwaan. The Dutch IOR approach to organisation design. An
alternative to business process re-engineering? Human Relations, 51(3):289–318, 1998.

22. C.A. Ellis and K. Keddara. A Work
ow Change Is a Work
ow. In W.M.P. van der Aalst, J. Desel,
and A. Oberweis, editors, Business Process Management: Models, Techniques, and Empirical Studies,
volume 1806 of Lecture Notes in Computer Science, pages 201–217. Springer-Verlag, Berlin, 2000.

23. D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed NIST Standard
for Role-Based Access Control. ACM Transactions on Information and System Security, 4(3):224–274,
2001.

173

24. FileNET. FileNet Business Process Manager 3.0. FileNET Corporation, Costa Mesa, CA, USA, June
2004.

25. L. Fischer, editor. Workflow Handbook 2003, Workflow Management Coalition. Future Strategies,
Lighthouse Point, Florida, 2003.

26. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Work
ow Management: From Process
Modeling to Work
ow Automation Infrastructure. Distributed and Parallel Databases, 3:119–153,
1995.

27. R.E. Grinter. Work
ow Systems: Occasions for Success and Failure. Computer Supported Cooperative
Work, 9(2):189–214, 2000.

28. T. Herrmann, M. Hoffmann, K.U. Loser, and K. Moysich. Semistructured models are surprisingly
useful for user-centered design. In G. De Michelis, A. Giboin, L. Karsenty, and R. Dieng, editors,
Designing Cooperative Systems (Coop 2000), pages 159–174. IOS Press, Amsterdam, 2000.

29. Y.N. Huang and M.C. Shan. Policies in a Resource Manager of Work
ow Systems: Modeling, En-
forcement and Management. Technical Report HP Tech. Report, HPL-98-156, Palo Alto, CA, USA,
1999. Accessed at http://www.hpl.hp.com/techreports/98/HPL-98-156.pdf on 20 March 2005.

30. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and Imple-
mentation. International Thomson Computer Press, London, UK, 1996.

31. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1.
EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1997.

32. K. Jensen and G. Rozenberg, editors. High-level Petri Nets: Theory and Application. Springer-Verlag,
Berlin, 1991.

33. M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems, volume 9 of Special
issue of the journal of Computer Supported Cooperative Work, 2000.

34. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to Coloured Petri Nets.
International Journal on Software Tools for Technology Transfer, 2(2):98–132, 1998.

35. A. Kumar, W.M.P. van der Aalst, and H.M.W. Verbeek. Dynamic Work Distribution in Work
ow
Management Systems: How to Balance Quality and Performance? Journal of Management Information
Systems, 18(3):157–193, 2002.

36. B.S. Lerner, A.G. Ninan, L.J. Osterweil, and R.M. Podorozhny. Modeling and Managing Re-
source Utilization in Process, Work
ow, and Activity Coordination. Technical Report UM-CS-
2000-058, Department of Computer Science, University of Massachusetts, August 2000. Accessed
at http://laser.cs.umass.edu/publications/?category=PROC on 20 March 2005.

37. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall PTR,
Upper Saddle River, New Jersey, USA, 1999.

38. London Bridge Group. Vectus Application Developer’s Guide. London Bridge Group, Wellesbourne,
Warwick, UK, 2001.

39. London Bridge Group. Vectus Technical Architecture. London Bridge Group, Wellesbourne, Warwick,
UK, 2001.

40. M. Zur Muehlen. Evaluation of Work
ow management Systems Using Meta Models. In Proceedings
of the 32nd Hawaii International Conference on System Sciences - HICSS’99, pages 1–11, 1999.

41. M. Zur Muehlen. Workflow-based Process Controlling: Foundation, Design and Application of
workflow-driven Process Information Systems. Logos, Berlin, 2004.

42. M. zur Muhlen. Organizational Management in Work
ow Applications Issues and Perspectives.
Information Technology and Management, 5(3–4):271–291, July-October 2004.

43. Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Netherlands, 2002.
44. M. Pesic and W.M.P. van der Aalst. Modeling Work Distribution Mechanisms using Colored Petri

Nets. BETA Working Paper Series, WP 146, Eindhoven University of Technology, Eindhoven, 2005.
45. M. Reichert and P. Dadam. ADEPT
ex: Supporting Dynamic Changes of Work
ow without Loosing

Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.
46. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin, 1998.
47. S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic Changes in Work
ow

Systems: A Survey. Data and Knowledge Engineering, 50(1):9–34, 2004.
48. M. Rosemann and M. Zur Muehlen. Evaluation of Work
ow Management Systems - a Meta Model

Approach. Australian Journal of Information Systems, 6(1):103–116, 1998.
49. N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Work
ow Resource Patterns:

Identi�cation, Representation and Tool Support. In O. Pastor and J. Falcao e Cunha, editors, Pro-
ceedings of the 17th Conference on Advanced Information Systems Engineering (CAiSE’05) , volume
3520 of Lecture Notes in Computer Science, pages 216–232. Springer-Verlag, Berlin, 2005.

174

50. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Work
ow Data Patterns.
QUT Technical report, FIT-TR-2004-01, Queensland University of Technology, Brisbane, 2004.

51. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Work
ow Resource Patterns.
BETA Working Paper Series, WP 127, Eindhoven University of Technology, Eindhoven, 2004.

52. Software-Ley. COSA Activity Manager. Software-Ley GmbH, Pullheim, Germany, 2002.
53. Staffware. Staffware Case Handler – White Paper. Staffware PLC, Berkshire, UK, 2000.
54. Staffware. Using the Staffware Process Client. Staffware, plc, Berkshire, United Kingdom, May 2002.
55. F. M. van Eijnatten. The Paradigm that Changed the Work Place. Van Gorcum, Assen, The Nether-

lands, 1993.
56. M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in a Work
ow Man-

agement System. In R. Sprague, editor, Proceedings of the Thirty-Fourth Annual Hawaii International
Conference on System Science (HICSS-34). IEEE Computer Society Press, Los Alamitos, California,
2001.

175

176

Process Mining: Using CPN Tools to Create Test

Logs for Mining Algorithms

A.K. Alves de Medeiros and C.W. G�unther

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{a.k.medeiros,c.w.gunther}@tm.tue.nl

Abstract. Process mining aims at automatically generating process mod-
els from event logs. The main idea is to use the discovered models as an
objective start point to deploy systems that support the execution of busi-
ness processes (for instance, work
ow management systems) or as a feed-
back mechanism to check if the prescribed models �t the executed ones.
When developing an algorithm to do process mining, one needs some logs
to test it. Using real-life logs seems to be the natural choice. However, the
real-life event logs usually contain imperfections that can hinder the tun-
ing of the mining algorithm. For instance, real-life logs can be incomplete
and/or contain noise. Thus, a more common approach is to �rst test the
accuracy of new process mining algorithms in logs created via simulation.
This allows the researcher to have more control about the properties of the
event log and to �ne tune his/her mining algorithm. Besides, having the
original model (the simulated one) may also be a useful aid to assess the
quality of the mining algorithm. In our research group, we work with the
ProM framework [6] mining tool which receives as input an XML event
log. This XML format is also supported by process mining tools of other
research groups [4]. This paper shows how to extend CP-nets to generate
XML event logs that can be mined by process mining tools supporting
this format. This way we bene�t from the simulation capabilities of CPN
Tools and, therefore, we avoid reinventing the wheel. The extension we
made consisted of implementing (i) some ML functions that can be used
to annotate the CP-net, and (ii) a ProMimport -framework [2] plug-in that
bundles up the �les (generated by the CP-net simulation) into a single
XML �le that is ready to be mined.

1 Introduction

Process mining targets the automatic discovery of information from an event log.
This discovered information can be used to deploy new systems that support the
execution of business processes or as a feedback tool that helps in analyzing and
improving enacted business processes. The starting point of any process mining
technique is an event log. This log can have lots of data, such as the tasks that are
executed, their time of execution, the person/system that performed them, the
data �elds related to these tasks, and so forth. For instance, consider the event
log in Table 1. This log has four executions (cases) of a process that handles �nes
for drivers in a certain province.

177

Case ID Task Name Event Type Originator Timestamp Extra Data

1 File Fine Completed Anne 20-07-2004 14:00:00 ...

2 File Fine Completed Anne 20-07-2004 15:00:00 ...

1 Send Bill Completed system 20-07-2004 15:05:00 ...

2 Send Bill Completed system 20-07-2004 15:07:00 ...

3 File Fine Completed Anne 21-07-2004 10:00:00 ...

3 Send Bill Completed system 21-07-2004 14:00:00 ...

4 File Fine Completed Anne 22-07-2004 11:00:00 ...

4 Send Bill Completed system 22-07-2004 11:10:00 ...

1 Process Payment Completed system 24-07-2004 15:05:00 ...

1 Close Case Completed system 24-07-2004 15:06:00 ...

2 Send Reminder Completed Mary 20-08-2004 10:00:00 ...

3 Send Reminder Completed John 21-08-2004 10:00:00 ...

2 Process Payment Completed system 22-08-2004 09:05:00 ...

2 Close case Completed system 22-08-2004 09:06:00 ...

4 Send Reminder Completed John 22-08-2004 15:10:00 ...

4 Send Reminder Completed Mary 22-08-2004 17:10:00 ...

4 Process Payment Completed system 29-08-2004 14:01:00 ...

4 Close Case Completed system 29-08-2004 17:30:00 ...

3 Send Reminder Completed John 21-09-2004 10:00:00 ...

3 Send Reminder Completed John 21-10-2004 10:00:00 ...

3 Process Payment Completed system 25-10-2004 14:00:00 ...

3 Close Case Completed system 25-10-2004 14:01:00 ...

Table 1. Example of an event log.

File

Fine

Send

Bill

Send

Reminder

Process

Payment

Close

Case

Fig. 1. Petri net illustrating the control-
ow perspective that can be mined from the
event log in Table 1.

178

The amount of data in the event log determines which perspectives of process
mining can be discovered. If the log provides the tasks that are executed in the
process and it is possible to infer their order of execution, the control-flow perspec-
tive can be mined. The log in Table 1 has this data (cf. �elds “Case ID”, “Task
Name” and “Timestamp”). So, for this log, mining algorithms could discover the
process in Figure 1. Basically, the process describes that after a �ne is entered in
the system, the bill is sent to the driver. If the driver does not pay the bill within
one month, a reminder is sent. When the bill is paid, the case is archived. If the
log provides information about the persons/systems that executed the tasks, the
organizational perspective can be discovered. The organizational perspective dis-
covers information like the social network in a process, the transferring of work
etc. For instance, the log in Table 1 shows that “Anne” transfers work for both
“Mary” (case 2) and “John” (cases 3 and 4), and “John” sometimes transfers
work for “Mary” (case 4). Besides, by inspecting the log, the mining algorithm
could discover that “Mary” never has to send a reminder more than once, while
“John” does not seem to perform as good. The managers could talk to “Mary”
and check if she has another approach to send reminders that “John” could ben-
e�t from. This can help in making good practices a common knowledge in the
organization. When the log contains more details about the tasks, like the values
of data �elds that the execution of the task modi�es, the case perspective can be
discovered. So, for instance, a forecast for executing cases can be made based on
previous already completed cases, exceptional situations can be discovered etc. In
our particular example, logging information about the pro�les of drivers (like age,
gender, car etc) could help in assessing the probability that they would pay their
�nes on time. Moreover, logging information about the places where the �nes were
applied could help in improving the tra�c measures in these places.

Having these three perspectives in mind, and the di�erent mining tools1 to
tackle one or more of these perspectives, an e�ort was made in [4] to de�ne
a single XML format, called the Mining XML (MXML) format, that could be
used as input to the di�erent tools. By converting simulated or real-life logs to
the MXML format, one could use the mining techniques in multiple contexts.
Therefore, we test our mining algorithms with logs that have the MXML format.

Real-life logs typically contain some subset of data �elds that allow for mining.
However, real-life logs are not always the best data to �rst test a mining algo-
rithm that is being developed because real-life logs may be incomplete and/or
contain noise. So, a better approach to test mining algorithms is to use simulated
data. Note that the use of simulated data gives the researcher more control over
event log properties. This more controlled environment may help with tuning the

1 Examples of mining tools are InWolvE [8, 10], Process Miner [11], EMiT [7], Lit-
tle Thumb [12], MiSoN [3] and ProM framework [6]. The InWolvE, Process Miner,
EMiT and Little Thumb mine the control-
ow perspective. The MiSoN mines the
organizational perspective. The ProM framework has plug-ins that to mine all three
perspectives. Actually, the mining tools EMiT, MiSoN and Little Thumb were respec-
tively implemented as the ProM mining plug-ins “Alpha algorithm”, “Social network
miner” and “Heuristics miner”.

179

algorithm under development. After being able to correctly mine simulated data,
the algorithm can be tested with real-life logs.

CPN Tools supports the modelling, execution and analysis of Coloured Petri
nets (CP-nets) [9]. Additionally, there is a fair amount of CPN models that can be
used as input to test mining algorithms. Thus, we decided to extend CPN Tools
to support the creation of MXML logs. The main idea is to create random MXML
logs by simulating CP-nets in CPN Tools. The extension is fairly simple and took
us no more than twelve man-hours to �nish it. The �rst part of the extension
consisted of implementing the ML functions to support the logging from a CP-
net. The second part consisted of implementing the “CPN Tools” plug-in in the
the ProMimport framework [2] to bundle the logged �les into a single MXML �le.

In short, two steps are necessary to create MXML logs using CPN Tools:

1. Modify a CP-net to invoke the set of ML functions that will create logs for ev-
ery case executed by the CP-net. This step involves modifying the declarations
of the CP-net and the input/output/action transition inscriptions.

2. Use the CPN Tools plug-in, in the ProMimport framework, to group the logs
for the individual cases into a single MXML log.

The rest of this paper is organized as follows. Section 2 explains the MXML for-
mat. Understanding how this format supports the di�erent perspectives of mining
helps in understanding how CPN Tools was extended. Section 3 describes how
to modify a CP-net to create partial MXML logs during its simulation (Step 1
above). Section 4 shows how to use the ProMimport framework to bundle these
partial MXML logs into a single log that can be mined (Step 2 above). Section 5
presents some conclusions and future work.

2 The MXML format

The Mining XML2 format (MXML) started as an initiative to make di�erent
mining tools have a common input format [4]. This way, event logs could be
shared among di�erent mining tools. Actually, de�ning a common input format
like MXML is the �rst step towards the creation of a repository on which process
mining researchers can test their algorithms. In this section we explain the MXML
format because this helps to understand the ML functions de�ned for the extension
of CP-nets. The schema for this MXML format (depicted in Figure 2) is available
at http://www.processmining.org/Work
owLog.xsd.

As can be seen in Figure 2, an event log (�eld WorkflowLog) has the execution
of one or more processes (�eld Process), and optional information about the source
program that generated the log (�eld Source) and additional data elements (�eld
Data). Every process (�eld Process) has zero or more cases or process instances
(�eld ProcessInstance) 3. Similarly, every process instance has zero or more tasks
(�eld AuditTrailEntry). Every task or audit trail entry (ATE) should at least

2 More information about the Extensible Markup Language (XML) can be found in [1].
3 In the rest of this document, the words “execution”, “case” and “process instance”

are interchangeable.

180

(a) Process log XML format

reassign

schedule
 assign

start

resume

suspend

autoskip
 complete

manualskip

ate_abort

pi_abort

withdraw

(b) Transactional model for EventType

Fig. 2. The visual description of the schema for the Mining XML (MXML) format.

have a name (�eld WorkflowModelElement) and an event type (�eld EventType).
The event type determines the state of the tasks. There are 13 supported event
types: schedule, assign, reassign, start, resume, suspend, autoskip, manualskip,
withdraw, complete, ate abort, pi abort and unknown. The other task �elds are
optional. The Timestamp �eld supports the logging of time for the task. The
Originator �eld records the person/system that performed the task. The Data
�eld allows for more logging of additional information. More details about the
MXML format can be found in [6].

Mapping the MXML format to the three mining perspectives, we see that
the control-flow perspective mainly focuses on the Work
owModelElement, the
EventType and the Timestamp 4 �elds. The organizational perspective chie
y
depends on the Originator �eld. The case perspective especially relies on the
extra Data �elds.

Note that in CPN Tools the process corresponds to the CP-net, the tasks
(or ATEs) are the transitions in the CP-net, and each simulation of the CP-net
corresponds to the creation of a process instance.

3 Extending a CP-net to Produce MXML Event Logs

This section shows how to annotate a CP-net with the ML functions that we cre-
ated to log MXML �les. The ML functions can be downloaded from the section

4 When the Timestamp �eld is not logged, the sequence in which the tasks appear in
the log is used to infer their order of execution.

181

“Tools”5 in [2]. To illustrate the extension process, we use the CP-net in Fig-
ure 3. The extension of this CP-net involves editing its declaration and transition
inscriptions.

1`id

if OK(id)
then 1`(id+1)
else empty

1`id@+1

1`id

1`id

1`id

1`(id, role2) @+30

1`(id, role2)

1`id

1`id

1`id@+id

1`(id, role2)

1`(id, role2) @+30

Generator

input (id);
output ();
action
(createCaseFile(id));

FileFine
input (id, role1);
output ();
action
(addATE(id, "FileFine", ["complete"], calculateTimeStamp(), role1, []));

SendBill

input (id, role0);
output ();
action
(addATE(id, "SendBill", ["complete"], calculateTimeStamp(), role0, []));

ProcessPayment
input (id, role0);
output ();
action
(addATE(id, "ProcessPayment", ["complete"], calculateTimeStamp(), role0, []));

CloseCase

input (id, role0);
output ();
action
(addATE(id, "CloseCase", ["complete"], calculateTimeStamp(), role0, []));

SendReminder

input (id, role2);
output ();
action
(addATE(id, "SendReminder", ["complete"], calculateTimeStamp(), role2, []));

INT

1`1

TIMEDINT

INT

INT_ROLE2

INT

TIMEDINT

Fig. 3. Example of an extended CP-net for the process described in Figure 1. The
highlighted transition “Generator” and the input/output/action inscriptions were added
during extension of the CP-net.

CPN Declarations The declarations of a CP-net need to be modi�ed to import
the ML functions to log transitions. These functions are in the �le logging-
FunctionsMultipleFiles.sml. The ML functions in this �le use two constants:

5 Search for the link to the �le “CPNToolsConverter.zip”.

182

FILE and FILE EXTENSION. The constant FILE sets the location and the
name pre�x of the MXML �les that the CP-net will create for every case
it executes. The constant FILE EXTENSION sets the extension that these
created �les have. For instance, to (1) create the XML log �les for every case
at the subdirectory logs from the directory where the CP-net is located and
name every log with the pre�x logsCPN ; and (2) assign the extension .cpnxml
to every created log, the following should be declared:

1. val FILE = “./logs/logsCPN”

2. val FILE EXTENSION = “.cpnxml”

3. use “loggingFunctionsMultipleFiles.sml”;

Note that the use of the �le loggingFunctionsMultipleFiles.sml must be de-
clared after declaring the constants FILE and FILE EXTENSION. Table 3
shows what these declarations look like in the CP-net of Figure 3. Addition-
ally, be aware that ML is case sensitive and the subdirectories provided in the
constant FILE should already exist.

(* Standard declarations *)
colset E = with e;
colset INT = int;
colset BOOL = bool;
colset STRING = string;

(* Net declarations *)
colset TIMEDINT = int timed;
colset ROLE0 = subset STRING with [“system”];
colset ROLE1 = subset STRING with [“Anne”];
colset ROLE2 = subset STRING with [“Mary”, “John”];
colset INT ROLE2 = product INT * ROLE2 timed;
var id: INT;
var role0: ROLE0;
var role1: ROLE1;
var role2: ROLE2;
fun OK(id) =

if id < 1000 then true
else false;

(* Log declarations *)
val FILE = “./logs/logsCPN”

val FILE EXTENSION = “.cpnxml”

use “loggingFunctionsMultipleFiles.sml”;

Table 2. Declarations for the CP-net in Figure 3. The declarations in bold were used
to extend the model to log MXML �les.

CPN Transitions Once the declarations of the CP-net have been updated, the
input/output/action inscriptions of transitions can be modi�ed to invoke the

183

logging functions. The CP-net will create a partial MXML log for every case
that it executes. In the example in Figure 3, the transition Generator creates
the unique case identi�ers. After a partial MXML log has been created, the
transitions (or tasks) executed for a case are written to its partial MXML log.
Thus, two ML functions are provided: createCaseFile and addATE.

The function createCaseFile(int caseId) opens the log �le for a case. This func-
tion should be invoked only once per case, and before the function addATE is
invoked for this same case. The transition Generator in Figure 3 illustrates
how to use the function createCaseFile. Note that this function receives an
integer (the case identi�er!) as input.

The function addATE(int caseId, String transitionName, ListOfStrings event-
Type, StringTimestamp timestamp, String originator, ListOfStrings data) logs
the execution of a transition to the log of a case. For instance, the transition
FileFine in Figure 3 has an invocation of this function. The parameters of the
function addATE are:

1. caseId: integer that uniquely identi�es a case. In Figure 3, the case id is
given by the variable id.

2. transitionName: string that has the name of the transition to log. Note
that all strings in ML should be in quotes (“”). In Figure 3, the task
name for transition FileFine is “FileFine”.

3. eventType: list of strings. If the event type is supported, the list should
contain a single element and have the format [name], where name in
{“assign”, “withdraw”, “reassign”, “start”, “suspend”, “resume”, “com-
plete”, “autoskip”, “manualskip”, “pi abort”, “ate abort”} . If the event
type is unknown, this list should have two elements and the format
[“unknown”, “name”], where name is the unknown event type name.
In Figure 3, the event type for transition FileFine is [“complete”].

4. timestamp: string that represents the date and time in which the task was
executed. The timestamp has the XML pre-de�ned format dateTime [5].
For instance, a valid timestamp string is “2005-06-30T14:55:00.000+01:00”.
The function calculateTimeStamp() is provided to automatically calculate
the timestamp �eld based on the current time (in minutes) of a CP-net.
However, this is a relative time because it always starts at the year 0. The
function calculateTimeStamp() is included in the �le loggingFunctionsMul-
tipleFiles.sml. In Figure 3, the function calculateTimeStamp() was used to
provide the timestamp.

5. originator: string that has the name of the originator (person or system)
that executed the transition. In Figure 3, the user with role1 executed the
task FileFine.

6. data: list of strings containing the additional data �elds that may be
associated to a task. This list must have the format [attributeName1,
attributeValue1, attributeName2, attributeValue2, ..., attributeNameX,
attributeValueX]. In Figure 3, no extra data is associated to the task
FileFine.

184

The parameters timestamp, originator and data can be empty (see optional
�elds in Figure 2). The �rst two are empty if the string “” is given as input.
The data parameter is empty when [] is given as input.

The simulation of the extended CP-net will create the partial MXML log �les
whose aggregation is described in the next section.

4 Final Log Aggregation

Once the CP-net has been simulated with logging extensions enabled, the gener-
ated log output has to be correctly aggregated and converted, such that it can be
read and interpreted by mining tools like the ProM framework. As explained in
Section 3, simulating a CP-net with logging extensions included and enabled will
yield one log �le per invocation of createCaseFile, including all logged events. The
task of log aggregation is now to combine these �les as process instances within
one single MXML log �le, representing all logs for the respective process model
(i.e., the simulated CP-net).

This aggregation pass has been implemented as the “CPN Tools” import plug-
in for the ProMimport framework [2]. This framework has been developed to serve
as a common environment for converting and importing logs from all kinds of
information systems, and subsequently creating MXML compliant log �les from
them. The actual procedures for importing logs from a speci�c source system can
be implemented as plug-ins, which can be dynamically loaded and removed from
the running framework. The framework has a common graphical user interface for
con�guring and controlling import plug-ins, keeps all con�guration data persis-
tent, and provides a set of useful classes which can be used by all import plug-ins
in order to ease development.

As the implemented ML functions createCaseFile and addATE (cf. Section 3)
write MXML compliant log fractions during simulation runs, all that is left to do
is to generate a common enclosing log �le. For each �le created by the simulation
runs, a process instance is created within that common log �le. In this process
instance, all log events from one input �le are added in their given order. In
the end, the output log �le thus includes all data from the simulation run logs
in an aggregated manner, ready to be analyzed by mining tools like the ProM
framework.

Using the “CPN Tools” import plug-in is fairly straightforward: The con�gu-
ration pane (see Figure 4) has two �lter properties that allow the user to select
the input directory for the partial MXML �les and the su�x of these �les. After
running the simulation passes in CPN Tools, the �les created for each trace of one
process model can be selected here. As this plug-in is geared towards aggregat-
ing logs that have resulted from executing one process model, it will accordingly
write one single output log �le. In this, the import framework provides the choice
between writing the log into a compressed ZIP �le, or as plain XML �le. In either
case, the resulting �le can subsequently be loaded from within, for instance, the
ProM framework, where a multitude of Process Mining plug-ins are available for
analysis.

185

Fig. 4. Screenshot of the CPN Tools plug-in. This plug-in is implemented in the
ProMimport framework.

186

Fig. 5. Excerpt of the MXML log that was aggregated for a simulation of the CP-net
in Figure 3.

187

(a)

(b)
 (c)

(d)

Fig. 6. Screenshot of the mined Petri net for the in Figure 5. The shown mining plug-ins
are: (a) Social network miner, (b) Heuristics miner, (c) Multi-phase mining and (d) Alpha
algorithm. The Social network miner plug-in can mine the organizational perspective (cf.
Section 1) of an event log. Here we show the handover of work setting, considering only
direct succession. Note that the users “John” and “Mary” never transfer work to each
other. This is compatible with the CP-net in Figure 3. The other plug-ins in this �gure
can mine the control-flow perspective of the event log. As expected, all mined control-
ow
structures are like the CP-net in Figure 3.

188

As an illustration, Figure 5 shows an excerpt of the MXML log that was
aggregated for the simulation of the CP-net in Figure 3. Additionally, Figure 6
shows a screenshot with the results of applying four di�erent ProM mining plug-
ints to this MXML log.

5 Conclusions and Future Work

This paper demonstrates how to bene�t from the CPN Tools simulation capa-
bilities to build event logs that can be used in the process mining research. The
extension to CPN Tools consisted of implementing (i) a set of ML functions to cre-
ate log �les and (ii) a ProMimport plug-in. the ML functions can be called from the
input/output/action transition inscriptions of a CP-net. When the CP-net is sim-
ulated, partial logs are created. These partial logs are bundled into a single MXML
log by using the ProMimport CPN Tools plug-in. The resulting log can be mined by
mining tools like the ProM framework. All the tools/�les necessary for extending
a CP-net to create MXML logs can be found at http://www.processmining.org.

As future work, we are interested in creating a repository for MXML logs.
This repository will contain logs with di�erent properties. In addition, such a
repository will allow researchers to test and compare their algorithms in a uni�ed
way and with logs that others may have created.

Acknowledgments

The authors would like to thank Wil van der Aalst for suggesting the use of CPN
Tools to create random event logs in the MXML format. They also would like to
thank Wil van der Aalst and Boudewijn van Dongen for the discussions about
how to log from CPN Tools models. Last but not least, the authors would like to
thank the anonymous reviewers for their useful remarks on how to improve this
paper readability.

References

1. Extensible Markup Language (XML). http://www.w3.org/XML/.

2. Process mining website. http://www.processmining.org.

3. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering interaction
patterns in business processes. In J. Desel, B. Pernici, and M. Weske, editors,
International Conference on Business Process Management (BPM 2004), volume
3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag, Berlin,
2004.

4. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Work
ow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

5. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
http://www.w3.org/TR/xmlschema-2/, 2004.

189

6. B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A new era in process mining tool
support. In G. Ciardo and P. Darondeau, editors, International Conference on
Applications and Theory of Petri Nets (ATPN 2005), volume 3536 of Lecture Notes
in Computer Science, pages 444–454. Springer-Verlag, Berlin, 2005.

7. B.F. van Dongen and W.M.P. van der Aalst. EMiT: A process mining tool. In
J. Cortadelle and W. Reisig, editors, International Conference on Applications and
Theory of Petri Nets (ATPN 2004), volume 3099 of Lecture Notes in Computer
Science, pages 454–463. Springer-Verlag, Berlin, 2004.

8. J. Herbst and D. Karagiannis. Work
ow mining with inwolve. Computers in Indus-
try, 53(3):245–264, 2004.

9. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

10. J. Herbst M. Hammori and N. Kleiner. Interactive work
ow mining. In B. Per-
nici J. Desel and M. Weske, editors, International Conference on Business Process
Management (BPM 2004), volume 3080 of LNCS, pages 211–226. Springer Verlag,
January 2000.

11. G. Schimm. Mining exact models of concurrent work
ows. Computers in Industry,
53(3):265–281, 2004.

12. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Work
ow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering,
10(2):151–162, 2003.

190

Distributed and Modular State Space

Exploration for Timed Petri Nets⋆

C. Lakos1 and L. Petrucci2

1 University of Adelaide
Adelaide, SA 5005

AUSTRALIA
Charles.Lakos@adelaide.edu.au

2 LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE
petrucci@lipn.univ-paris13.fr

Abstract. This paper extends modular state space construction for con-
current systems to cater for timed systems. It identifies different forms
of timed state space and presents algorithms for computing them. These
include uniprocessor algorithms inspired by conservative and optimistic
approaches to discrete event simulation, and also a distributed algorithm.
The paper includes performance results for a simple case study.

1 Introduction

State space exploration is a convenient technique for the analysis of concurrent
and distributed systems. Its chief disadvantage is the so-called state space ex-
plosion problem where the size of the state space can grow exponentially in the
size of the system.

One way to alleviate the state space explosion problem is to use modular anal-
ysis, which takes advantage of the modular structure of a system specification.
Here, the internal activity of the modules is explored independently rather than
in an interleaved fashion. Experiments have indicated [11] that modular analysis
can produce a significant reduction in the size of the state space, particularly for
systems where the modules exhibit strong cohesion and weak coupling.

This paper extends modular state space exploration [3, 9] to timed systems.
The introduction of time raises an interesting challenge since, by its very nature,
time is a global entity rather than having local significance. This paper examines
whether modular analysis algorithms can be modified to cater for time and still
reap the benefits already demonstrated for untimed systems [9, 11].

This work applies to Coloured Petri nets as well as to Place/Transition nets.
For the sake of readability, we present the algorithms for Place/transition nets.
Their extension to CP-nets is straightforward.

⋆ This work is supported by the Australian Research Council Linkage International
grant LX04544639, and the French-Australian Science and Technology programme
FR040062.

191

The paper is organised as follows. Section 2 presents preliminary definitions
of timed and modular Petri Nets. Section 3 provides uniprocessor algorithms
for modular state space exploration of timed systems, while Section 4 provides
a distributed algorithm. In section 5 we present some experimental results ob-
tained by applying the timed modular state space technique to a case study, and
compare them to the flat state space. The conclusions are presented in Section 6.

2 Background

We commence with some modified definitions of Petri Nets and their state spaces.
Adapting the notation of Jensen [6], we write 5@2+2@3 for 5 tokens (or values)
available from time 2 and 2 tokens available from time 3. If we remove from this
multiset, 3 tokens at time 4, we could end up with 4@2 or 2@2 + 2@3 or some
other combination. We capture these notions formally as follows:

Definition 1. A time set TS is a set of numeric values. For much of this

paper, the time values will be integral, i.e. TS = N, but in general they could

be positive real numbers, i.e. TS = R
+. Markings and arc inscriptions will be

given by multisets over TS, written as TSMS. We also extend operations over

multisets to take time into account:

1. Given m1, m2 ∈ TSMS, m1 ≥T m2 iff m2 = ∅ or ∃m′

1, m
′

2 ∈ TSMS , m1i, m2i ∈
TS such that m1 = m′

1 + 1@m1i and m2 = m′

2 + 1@m2i and m1i ≤ m2i and

m′

1 ≥T m′

2.

2. Given m1, m2, m3 ∈ TSMS, m1 −T m2 = m3 iff m2 = ∅ and m1 = m3

or ∃m′

1, m
′

2 ∈ TSMS, m1i, m2i ∈ TS such that m1 = m′

1 + 1@m1i and

m2 = m′

2 + 1@m2i and m1i ≤ m2i and m′

1 −T m′

2 = m3.

3. Given m1, m2, m3 ∈ TSMS, m1 +T m2 = m3 iff m1 + m2 = m3.

4. Given m ∈ TSMS and k ∈ TS, k+T m =
∑

mi∈m
1@(k+mi) and k−T m =∑

mi∈m
1@(k − mi).

The comparison operator is interpreted as the multiset m1 having elements
which have been accessible for at least as long as the demands specified by m2. In
other words, it must be possible to pair elements of m2 with elements of m1 such
that the elements of m1 are less than those of m2, i.e. they have been accessible
longer than the requirements. This interpretation of comparison is then used
to define subtraction (between timed multisets) — m1 −T m2 is only defined if
m1 ≥T m2. In general, m1 −T m2 is not uniquely defined unless we insist that
the element m1i is always chosen to be the maximum value that is less than the
corresponding m2i. This is the approach taken by Jensen [6] in order to ensure
that (m1−T m2)−T m3 = (m1 −T m3)−T m2 which is required for the diamond
rule to hold. For completeness, we define addition of timed multisets but this
is the same as multiset addition. Adding and subtracting multisets to scalars is
similar to the scaling function of van der Aalst [1].

Definition 2. A Timed Petri Net is a tuple PN = (P, T, W, M0), where P is

a finite set of places, T is a finite set of transitions such that T ∩ P = ∅, W

192

is the arc weight function mapping from (P × T) ∪ (T × P) into TSMS , and

M0 is the initial marking, namely a function mapping from P into TSMS .

For a Timed Petri Net, each token has a time attribute, which indicates the
earliest time that it is accessible. The output arcs of a transition indicate the
time delays for generated tokens — an output arc with the inscription 5@2 would
indicate that 5 tokens are added to a place and they will become accessible 2
units of time in the future. We allow similar inscriptions on input arcs — an
inscription 5@2 would indicate the consumption of 5 tokens which have been
accessible since (at least) 2 units of time in the past.

It would be possible to specify time delays only on the input arcs or only on
the output arcs. If time delays are only specified on output arcs, then the time
at which a transition can fire depends solely on the accessibility of the tokens.
If time delays are only specified on the input arcs, then the time at which a
transition can fire depends on transition-specific information. Our approach has
the advantage of symmetry and generality. By contrast, the approaches of van
der Aalst [1] and Jensen [6] only specify delays on output arcs.

Definition 3. A marking is a function M mapping from P into TSMS . The

set of all markings is denoted by M. A transition t is time-enabled at time k

in a marking M , denoted by M [t〉k, iff ∀p ∈ P : M(p) ≥T k−T W (p, t). When a

transition t is enabled in a marking M1 at time k, it may occur, changing the

marking M1 to another marking M2, defined by: ∀p ∈ P : M2(p) = (M1(p) −T

(k −T W (p, t))) +T (k +T W (t, p)). This is denoted by M1[t〉kM2. The set of

markings reachable from a marking M , denoted [M〉, is given by the smallest

set satisfying M ∈ [M〉 and M ′ ∈ [M〉 ∧ M ′[t〉kM ′′ =⇒ M ′′ ∈ [M〉.

Definition 4. The timed state space for a Timed Petri Net PN = (P, T, W, M0)
is a tuple TSS = (V, E) where V = [M0〉 and E =

⋃
m∈V

{(m, t, m′)k | m[t〉km′}.

It is common to require that timed transitions fire at the earliest possible
time of enabling. Accordingly, we define an earliest time state space.

Definition 5. The earliest time state space for a Timed Petri Net

PN = (P, T, W, M0) is a tuple ESS = (V, E) where V = [M0〉 and

E =
⋃

m∈V
{(m, t, m′)k | m[t〉km′, 6 ∃k′ < k : m[t〉k′}.

Finally, we define a reduced earliest time state space as a graph where the
transitions in conflict at any given marking all have the same time.

Definition 6. The reduced earliest time state space for a Timed Petri Net

PN = (P, T, W, M0) is a tuple RSS = (V, E) where V = [M0〉 and

E =
⋃

m∈V
{(m, t, m′)k | m[t〉km′, 6 ∃t′, k′ < k : m[t′〉k′}.

Note that t′ could be t firing at an earlier time.
Note that the standard definition for state spaces for timed systems (as in

Design/CPN [4] for example) are equivalent to our definition of a reduced earliest
time state space. Unlike Jensen, however, we do not attach a time to a marking

193

(to indicate the time of firing of the last transition), and then require that
subsequent transitions should have a greater or equal time. This constraint is
imposed to ensure that time cannot go backwards. Thus, if a marking M0 enables
independent transitions t1 at time 2 and t2 at time 5, then our definition of ESS

would allow t1 to be fired at time 2 followed by t2 at time 5, or vice versa. With
Jensen’s constraint, the first alternative would still apply, but the second would
have t1 firing at time 5 after t2. Our approach is somewhat anomalous, but we
retain it because the anomalies will be eliminated in forming a RSS — t1 will
not be allowed to fire after t2. Furthermore, for a modular system, it will be
necessary to consider an ESS as a stepping stone to a RSS , and the standard
unfolding of an earliest time modular state space will produce an ESS .

It should also be noted that, for a timed net, the ESS is a subgraph of
the TSS since some edges are removed, and this may also make some nodes
unreachable. Similarly, the RSS is a subgraph of the ESS. A partially reduced

earliest time state space is also possible. This would be a subgraph of the ESS

and a supergraph of the RSS.

Definition 7. A Timed Modular Petri Net is a pair MN = (S,TF), where:

1. S is a finite set of modules such that:

– Each module, s ∈ S, is a Timed Petri Net: s = (Ps, Ts, Ws, M0s
).

– The sets of nodes corresponding to different modules are pair-wise dis-

joint: ∀s1, s2 ∈ S : [s1 6= s2 ⇒ (Ps1
∪ Ts1

) ∩ (Ps2
∪ Ts2

) = ∅].

– P =
⋃

s∈S

Ps and T =
⋃

s∈S

Ts are the sets of all places and all transitions.

2. TF ⊆ 2T \ {∅} is a finite set of non-empty transition fusion sets.

The above definition of a Timed Modular Petri Net is identical to existing
definitions [3, 9] except for the introduction of time. Each module is a Timed
Petri Net, and the modules interact via transition fusion — the elements of a
fusion set fire as a single transition.

3 Modular Timed State Space Exploration

In this section we present two algorithms for modular state space exploration
for a uniprocessor. (In section 4 we consider an algorithm suitable for a dis-
tributed environment.) The first algorithm is based on a conservative approach,
which only explores transitions if their firing is consistent with the RSS . The
second algorithm is based on an optimistic approach, which explores transitions
if their firing is consistent with the ESS , with reduction left till later. These
algorithms are consistent with the distinction between conservative and opti-
mistic algorithms for distributed discrete event simulation [5]. Before handling
the modular cases, we first present the algorithms for a flat timed net.

In this paper, we focus on state spaces built with a predetermined time limit,
as computed by some tools such as Design/CPN. To remove this limitation, it
would be necessary to construct classes of timed markings, as in e.g. [2]. As we

194

1: TS system limit ←??
2: set Waiting ← ∅
3: Node.Add(M0)
4: repeat

5: for all M ∈ Waiting do

6: Waiting ← Waiting \{M}
7: for all t ∈ T,∃k ≤system limit: M [t〉kM ′ and 6 ∃k′ < k : M [t〉k′ do

8: Node.Add(M ′)
9: Arc.Add(M, t, M ′)k

10: end for

11: end for

12: until stable

Fig. 1. Algorithm for earliest time state space of a timed net.

aim to construct a tool which might, in a distributed version, have the underlying
structure of the distributed state space construction from [8], this limitation is
not yet an issue.

3.1 Algorithms for a flat net

An algorithm to generate an earliest time state space for a timed net is given
in Fig. 1. It maintains a set Waiting of as-yet unexplored markings. At each
iteration of the repeat loop, the current elements of Waiting are removed and
examined for enabled transitions. As usual, function Node.Add(M ′) adds a
node labelled with M ′ to the graph and state M ′ to set Waiting, provided it
does not already exist. Similarly, Arc.Add(M, t, M ′)k adds an arc to the graph.
The algorithm terminates when stability is reached, i.e. when Waiting is empty.

The algorithm includes a time limit (called system limit) beyond which
we do not explore transitions, and we always pick the earliest time at which a
transition is enabled. It is these two aspects which differentiate this algorithm
from the traditional algorithm for reachability analysis of an untimed net.

More significant modifications are required to generate the reduced earliest
time state space. If we restrict our attention to integral time, then we can main-
tain a variable (called system time) which is the time for which we are prepared
to consider transition enablings. Essentially, the repeat loop of lines 4-12 of Fig. 1
can be nested within a loop that increments system time at each iteration. This
guarantees that in a given marking, we will consider the transitions that can fire
earliest. The problem now is that the markings in the set Waiting cannot be dis-
carded immediately because, while they may not currently enable a transition,
they may enable a transition at some future time.

Fig. 2 contains our modified algorithm for producing a reduced earliest time
state space. States are only removed from set Waiting once we have found an
enabled transition. If a state does not enable any transition at any time in the
future, then it will remain in set Waiting forever, which is clearly inefficient.

195

1: TS system limit ←??
2: TS system time ← 0
3: set Waiting ← ∅
4: Node.Add(M0)
5: while system time ≤ system limit do

6: repeat

7: for all M ∈ Waiting do

8: for all t ∈ T, M [t〉system timeM
′ do

9: Node.Add(M ′)
10: Arc.Add(M, t, M ′)system time

11: Waiting ← Waiting \{M}
12: end for

13: end for

14: until stable
15: system time← system time + 1
16: end while

Fig. 2. Algorithm for reduced earliest time state space of a timed net.

3.2 Modular algorithms

In order to highlight the issues pertinent to the modular analysis of timed sys-
tems, we consider the simple example of Fig. 3. The transition input arcs indicate
delays on tokens. Transitions t1, t2 and t3 are local transitions, while transition
tf is fused, with the occurrence in module A needing to synchronise with one
of the occurrences in module B. The corresponding local state spaces and the
synchronisation graph are shown in Fig. 4, where the states indicate the marked
places and the token timestamp(s).

In modular analysis, we explore the local state space of each module. The
synchronisation graph captures the synchronisation points between the modules.
The states of the synchronisation graph are system states, each of which is a
tuple of module states. Thus, the state labelled A1,0 B1,0 corresponds to the
system state with module A in state A1 at time 0, and with module B in
state B1 at time 0. The arcs of the synchronisation graph are labelled with the

Module A Module B

A1

A2 A3

B1

B2 B3

B4 B5

t1 tf

1@5 1@3

t2 t3

tftf

1@2 1@2

1@2 1@4

Fig. 3. Example of two timed modules

196

Module A state space

A1,0

A2,5 A3,3

Module B state space

B1,0

B2,2 B3,2

Synchronisation Graph

A1,0 B1,0

A3,4 B4,4 A3,6 B5,6

B4,4 B5,6

t1,5 tf,3

tf,4 tf,6

t2,2 t3,2 A1B2,tf,4 A1B3,tf,6

Fig. 4. Modular state space for two timed modules

fused transitions together with their time of firing. Since the fused transition will
normally fire only after some internal activity of the modules, the arcs are also
labelled with the local states which enable the fused transition. Thus, the arc
labelled A1B2,tf,4 indicates that transition tf can fire at time 4 when module
A is in state A1 and module B has reached state B2. Thus, while module A can
fire tf at time 3, it needs to wait till time 4, when module B is also ready.

The fact that a system state consists of a tuple of module states also means
that the state of one module may be combined with multiple other states, and
decisions about reduced earliest time state spaces cannot be made merely at the
local level. In the example, we cannot tell whether transition t1 is preempted
by transitions t2 and t3. Similarly, while we can determine if a local transition
preempts a fused transition (in the same module), the converse is not possible.
Thus, in module A, transitions t1 and tf are in conflict. In the local state space,
tf could preempt t1, but tf needs to synchronise with tf in module B, which
delays its firing time. With a short delay, tf may preempt t1; with a longer delay
tf may be preempted by t1.

In other words, questions about which transition preempts another can only
be finalised in an unfolded state space as shown in Fig. 5. The broken arcs
indicate transitions that are preempted in the unfolded state space. Thus, the
local state space needs to be an earliest time state space rather than a reduced
earliest time state space.

3.3 Conservative Algorithm

The algorithm of Fig. 2 is now adapted to cater for modular analysis. The state
space we construct is the timed extension of modular state spaces [3]. It consists
of one local state space per module, describing only the module’s behaviour, and
a synchronisation graph capturing the interactions between modules.

Fig. 6 presents the algorithm for computing the synchronisation graph, while
Fig. 7 presents the algorithm for computing the local state space of a module. As
in Fig. 2, both the local state space and the synchronisation graph are computed

197

A1,0 B1,0

A2,5 B2,2 A2,5 B3,2

t2,2 t3,2

A2,5 B1,0A1,0 B2,2 A1,0 B3,2

A3,4 B4,4

t1,5
tf,4

A3,5 B5,6

t1,5
tf,6

t1,5
t2,2 t3,2

Fig. 5. Unfolded state space for two timed modules

in lock step — all activity at a time point is explored before time is advanced.
This is the conservative approach.

Thus, in Fig. 6, system time is incremented by one each time round the
outer loop (up to system limit) and all possible activity is investigated at each
time point. Given that we are considering integral time, this means that we will
consider transition firings at the earliest possible time. Note that the markings
M are immediately removed from Waiting even though they may enable a fused
transition some time in the future. This is dealt with by having the local state
space exploration retain the local markings between calls.

The function Explore (in Fig. 7) returns a set of triples — the first element
is a synchronisation node, the second is the local marking reachable from the first,
and the third is the fused transition which is locally enabled at this reachable
marking. This approach is required because Explore only examines reachable
markings in time slices up to the current system time. In other words, Explore
will examine the local markings reachable from a synchronisation node over
several calls to the function, and it is necessary to relate the locally reachable
marking to the synchronisation node from which it was derived.

Thus, each call to Explore returns such a set of triples in variable trysynch
i
.

From the results returned for all the modules, we build global marking pairs
(M, M ′), where the first element of the pair is a node in the synchronisation
graph, and the second element corresponds to a marking locally reachable from
there. If the second element enables a fused transition at the current time, then
we add the appropriate node and arc to the synchronisation graph.

The logic of function Explore(Si, Current, local limiti) is based on the
one for a flat net, presented in Fig. 2. The variables, such as trysync

i
, are sub-

scripted to emphasise their local significance, the variable local timei replaces
system time, and the marking M is replaced by marking pairs (M, M ′

i). Vari-
able Waiting future

i
holds the marking pairs that might enable a transition in

the future, while Waiting current
i

holds markings to be examined for transi-
tion enabling at the current time. Because these variables hold pairs of markings,
Node.Add (at the local level) needs to have two arguments — it adds the sec-
ond to the local state space, and the pair of markings to both Waiting future

i

and Waiting current
i
. Finally, lines 18-20 consider the enabling of the local

198

1: TS system limit ←??
2: TS system time ← 0
3: set Waiting ← ∅
4: Node.Add(M0)
5: while system time ≤ system limit do

6: repeat

7: ∀i: trysynchi ← Explore(Si, Waiting, system time)
8: Waiting ← ∅
9: for all tf ∈ TF do

10: for all (M, M ′) s.t. (M, M ′

i , tf) ∈ trysynchi ∨M ′

i = Mi ∧ tf ∩ Ti = ∅ do

11: if M ′[tf〉system timeM
′′ then

12: Node.Add(M ′′)
13: Arc.Add(M, (M ′, tf), M ′′)system time

14: end if

15: end for

16: end for

17: until stable
18: system time ← system time + 1
19: end while

Fig. 6. Algorithm for synchronisation graph.

component of a fused transition. Where such an enabling is found, the relevant
triple is added to variable trysynch

i
, which is then returned as the function

result. These possible synchronisations will be repeatedly returned until they
are preempted by local transitions.

By exploring local activity at each consecutive time point, Explore caters
for transitions preempting others at the local level. As noted in section 3.2, it
cannot determine whether a local transition in one module preempts a local
transition in another, nor whether a fused transition preempts a local transition.
These issues can only be resolved in an unfolded state space.

3.4 Optimistic Algorithm

In view of the limitations of the conservative algorithm (noted in section 3.3),
we now consider an alternative algorithm, inspired by the optimistic approach
to distributed discrete event simulation [5]. Here, we acknowledge that we can
only guarantee producing a reduced earliest time state space at the local level
or at the global level but not local relative to global.

Consequently, each call to Explore examines the local state space up to
system limit and not just system time. Since we explore all relevant activity
from a synchronisation node, and not just some small time slice, we can simply
return pairs giving the locally reachable marking and the fused transition which
it enables. The modified algorithm is presented in Figs. 8 and 9. Note that if Ex-
plore is called multiple times with the same marking, then the locally reachable
markings need to be recalculated or else some caching regime is required [10].

199

1: static TS local timei ← 0
2: static set Waiting futurei ← ∅
3: set Waiting currenti ← ∅
4: set trysynchi ← ∅
5: ∀M ∈ Current: Node.Add(M, Mi)
6: Waiting currenti ← Waiting futurei

7: if local timei < local limiti then

8: local timei ← local timei + 1
9: end if

10: repeat

11: for all (M, M ′

i) ∈ Waiting currenti do

12: Waiting currenti ← Waiting currenti \ {(M, M ′

i)}
13: for all ti ∈ Ti \ TF , M ′

i [ti〉local timei
M ′′

i do

14: Node.Add(M, M ′′

i)
15: Arc.Add(M ′

i , ti, M
′′

i)local timei

16: Waiting futurei ← Waiting futurei \ {(M, M ′

i)}
17: end for

18: for all tf ∈ TF ∩ Ti, M ′

i [tf〉local timei
do

19: trysynchi ← trysynchi ∪ {(M, M ′

i , tf)}
20: end for

21: end for

22: until stable
23: return trysynchi

Fig. 7. Algorithm for local state space — Explore(Si, Current, local limiti).

The optimistic approach simplifies both parts of the algorithm, but the cost is
that it may produce larger local state spaces which will require further reduction
in an unfolding of the modular state space.

4 Distributed Exploration

4.1 Basic Algorithm

The distributed algorithm in this section follows the paradigm of section 3.3 and
relies on an architecture similar to that of [8]: several processes compute local
parts of the state space while a single process handles the synchronisations.

Fig. 10 presents the algorithm to compute the local state space of module
i. It focusses on the messages exchanged with the synchronisation process. The
local generation, per se, is handled by function local generation, in Fig. 11.

The synchronisation process is also presented in two parts: the main one
(Fig. 12) handles the communications with other processes and ensures the ter-
mination of all processes (if necessary), while function synchronise, in Fig. 13,
computes the synchronisation transitions enabled at the current time.

The different processes communicate by exchanging messages, as in table 1.
Let us now explain the different algorithms. There is one local process per

module. Initially, the current time (variable current time) is set to 0 — it will

200

1: TS system limit ←??
2: set Waiting ← ∅
3: Node.Add(M0)
4: repeat

5: for all M ∈ Waiting do

6: Waiting ← Waiting \{M}
7: ∀i : trysynchi ← Explore(Si, Mi,system limit)
8: for all tf ∈ TF do

9: for all M ′ s.t. (M ′

i , tf) ∈ trysynchi ∨M ′

i = Mi ∧ tf ∩ Ti = ∅ do

10: if M ′[tf〉kM ′′ and 6 ∃k′ < k : M ′[t〉k′ then

11: Node.Add(M ′′)
12: Arc.Add(M, (M ′, tf), M ′′)k

13: end if

14: end for

15: end for

16: end for

17: until stable

Fig. 8. Algorithm for synchronisation graph.

Message Local Sync. Meaning

SYNC −−−→ Send a marking
WAITING −−−→ Has sent markings, waits for reply

STATE ←−−− Synchronisation possible, send a marking
SENT ←−−− All new states have been sent

TIMEINC ←−−− No new synchronisation, hence increment time
STOPPED −−−→ Nothing enabled at current time
STUCK −−−→ No future enabling
STOP ←−−− Computation finished

Table 1. Messages exchanged

be incremented when the synchronisation process sends the order to do so. The
local process executes a loop until the synchronisation process instructs it to
stop. This loop receives markings and calls function local generation to ex-
plore transitions for current time. Two sets are used: Waiting current contains
the marking pairs that may enable a transition at the current time, and Wait-

ing future contains the marking pairs that enable a transition later on. Note that
the function creating a node, Node.Add adds elements to both these sets.

After the local generation at current time is completed, any states enabling a
synchronised transition at the current time are sent to the synchronisation pro-
cess, followed by a WAITING message. The local process is then ready to receive
new states obtained by synchronisation, which it will explore, or a TIMEINC
message, indicating that no synchronisation was possible at the current time,
and hence the time can be incremented. Otherwise, if the local process can nei-
ther fire a synchronised transition nor a local one at current time, then either
there are not enough tokens to enable a transition even in the future, in which

201

1: set Waitingi ← ∅
2: set trysynchi ← ∅
3: Node.Add(Mi)
4: repeat

5: for all M ′

i ∈ Waitingi do

6: Waitingi ← Waitingi \ {M
′

i}
7: for all ti ∈ Ti \ TF , M ′

i [ti〉kM ′′

i , 6 ∃k′ < k : M ′

i [ti〉k′ do

8: Node.Add(M ′′

i)
9: Arc.Add(M ′

i , ti, M
′′

i)k

10: end for

11: for all tf ∈ TF ∩ Ti, M ′

i [tf〉kM ′′

i , 6 ∃k′ < k : M ′

i [tf〉k′ do

12: trysynchi ← trysynchi ∪ {(M
′

i , tf)}
13: end for

14: end for

15: until stable
16: return trysynchi

Fig. 9. Algorithm for local state space — Explore(Si, Mi, system limit).

case it tells the synchronisation process that it is STUCK, or else it says that it
is STOPPED and waits until it is told to increment its time.

The synchronisation process also starts at current time 0 and assumes that the
status of all local processes is RUNNING. It performs a loop until all processes
are STUCK or some maximum time system limit has been reached. When this is
the case, it tells all processes to STOP. In the loop, the synchronisation process
receives and handles all messages sent by RUNNING local processes. These
messages can either be states at which a synchronisation might be possible, or the
new status of a local process. Function synchronise is the core of the process.
For each synchronised transition tf , it checks if they can occur, it computes
and sends the resulting states to the local processes concerned. The status of
these processes is updated to RUNNING (which is really the case when all the
necessary operations have taken place). When all synchronisations have been
done, a SENT message is sent to all processes that were involved, so that they
can pursue their local construction at the same current time. Their markings
are removed from the appropriate set of trysync states. If no synchronisation has
occurred, the set of trysync states is reinitialised, the current time is incremented,
and all local processes are told to increment their time.

4.2 Correctness

To prove the correctness of the distributed algorithm, we will explain which
markings and firings are handled by each part of each process.

The local processes construct only the local parts of the state space. Func-
tion local generation uses a set Waiting current of markings which pos-
sibly enable a transition at the current time. All markings M of this set are
dealt with one by one, and then deleted from Waiting current. If M does not

202

1: current time ← 0
2: repeat

3: repeat

4: message ← receive()
5: if message == STATE M then

6: Node.Add(M,Mi)
7: else if message == TIMEINC then

8: current time ← current time +1
9: end if

10: until message ! = STATE M
11: if message ! = STOP then

12: sync ← local generation(current time)
13: if sync == now then

14: send(WAITING i)
15: else if sync == future then

16: send(STOPPED)
17: else

18: send(STUCK)
19: end if

20: end if

21: until message == STOP

Fig. 10. Algorithm for local state space of module i.

enable any transition, independently of the time, it is also removed from the set
Waiting future of markings to be examined later. If M enables a transition
at current time, its successors are built and added to both sets of markings.
As the transitions enabled from M are dealt with at current time, M can be
removed from Waiting future because future transitions have been preempted.

Hence, if no synchronised transition is enabled, the local state space is gen-
erated up to current time. The local process then waits for instructions from
the synchronisation process, which are either to increment time, if a transition
may still be enabled in the future, or stop otherwise.

If synchronised transitions are enabled at the current time, the states en-
abling them are sent to the synchronisation process. Synchronisations may lead
to new states which in turn may enable local transitions at current time. There-
fore, the local process waits for all states sent by the synchronisation process and
then computes again the local parts at current time.

The synchronisation process has the same current time as the other pro-
cesses. When it receives states, it tries to synchronise shared transitions, and
eventually sends back the newly created states. If no synchronisation can occur,
a message TIMEINC is sent to all local processes and current time is incre-
mented. The synchronisation process stops either when all processes are stuck
or a maximum time is reached.

We conclude that transitions are handled in an earliest firing time fashion.

203

1: Waiting current ← Waiting future
2: sync ← none
3: for all (M, M ′

i) ∈ Waiting current do

4: for all ti ∈ Ti \ TF , M ′

i [t〉current timeM
′′

i do

5: Waiting future ← Waiting future \{(M, M ′

i)}
6: Node.Add(M,M ′′

i)
7: Arc.Add(M ′

i , ti, M
′′

i)current time

8: end for

9: if ∃t, enabled untimed(M ′

i , t) then

10: sync ← future
11: else

12: Waiting future ← Waiting future \{(M, M ′

i)}
13: end if

14: for all tf ∈ Ti ∩ TF , M ′

i [tf〉current time do

15: sync ← now
16: send(SYNC M M′

i tf)
17: end for

18: Waiting current ← Waiting current \{(M, M ′

i)}
19: end for

Fig. 11. Function local generation(current time)

One of the key problems is the termination of the distributed algorithm.
When a local process has finished its computation, it sends a message to the
synchronisation process. The local process can either have sent markings on
which a synchronisation is possible (it is then WAITING for an answer), or is
STOPPED (nothing is enabled at the current time) or even STUCK (nothing
will ever be enabled). When in state WAITING, if a synchronisation is possible,
new markings will be sent to the local process, otherwise, a TIMEINC message
will eventually be sent. The same message is sent when the process is STOPPED,
so has markings to handle at a future time. Finally, when all local processes are
STUCK or the time limit has been reached, all local processes receive a STOP
message and end their computation. The synchronisation process stops as well.

5 Experiments

5.1 Case Study: the Timed Protocol

In this section, we apply the conservative uniprocessor algorithm to a variation
of the timed protocol from [7], page 160, figure 5.4. This variant is depicted in
Fig. 14. The main differences with the original model are that it is now split up
into modules communicating via shared transitions, and that the random choices
for time delays have been constrained so as to limit the state space explosion.

The case study is a simple timed protocol composed of 3 modules: a sender, a
receiver and a network that connects them. The sender sends numbered packets,
according to increasing sequence numbers, with a processing time of Tsp per

204

1: ∀i, trysync[i]← ∅
2: ∀i, status[i]← RUNNING
3: current time ← 0
4: system limit ←??
5: Node.Add(M0)
6: ∀i, send(i, STATE M0)
7: ∀i, send(i, SENT)
8: while ∃i, status[i] != STUCK ∧ current time ≤ system limit do

9: for all i do

10: while status[i] == RUNNING do

11: message ← receive(i)
12: if message == SYNC M M′

i tf then

13: trysync[i]← trysync[i] ∪ {(M, M ′

i , tf)}
14: else

15: status[i]←message
16: end if

17: end while

18: end for

19: synchronise(∀i trysync[i],current time)
20: end while

21: ∀i, send(i, STOP)

Fig. 12. Algorithm for the synchronisation process.

packet. A packet can be retransmitted if an additional delay of Twait has elapsed
before the corresponding acknowledgement is received. Transitions Send packet

in the sender and the network are fused together. A packet can then either be
lost (transition Lose Packet) or be transmitted to the receiver. The latter is
achieved by transitions Transmit Packet in the network module and Receive

Packet in the receiver, which are fused together. Upon reception of a packet,
either it has the expected sequence number, in which case it is delivered, or
else it is a duplicate, in which case it is discarded. In both cases, the receiver
sends an acknowledgement indicating the next sequence number expected. Both
transmission and loss of packets have a propagation time across the network of
5*ran’Trans(). The transmission of acknowledgements from the receiver to the
sender through the network is similar.

5.2 Implementation Issues

The conservative algorithm for modular state space construction from Section 3.3
was simulated in the Maria tool [10]. Maria supports modular state space con-
struction but not time. However, it does support transition priorities, and these
were used to simulate the timing mechanism.

All transitions from the model in Fig. 14 were allocated the highest priority
of 9. In other words, if one of the model transitions (whether local to a module
or fused) was enabled, then it would fire. Then, each module maintained a local

205

1: new sync ← false
2: for all tf ∈ TF do

3: if ∀i synchronising on tf ,∃(M, M ′

i , tf) ∈ trysync[i] then

4: {a synchronisation is possible}
5: for all M ′ such that ∀i, (M, M ′

i , tf) ∈ trysync[i] : M ′[tf 〉current timeM
′′ do

6: Node.Add(M ′′)
7: Arc.Add(M, (M ′, tf), M ′′)current time

8: ∀i synchronising on tf , send(i, STATE M ′′

i)
9: end for

10: new sync ← true
11: ∀i synchronising on tf , status[i]← RUNNING
12: end if

13: end for

14: if new sync then

15: for all i such that status[i] == RUNNING do

16: trysync[i]← 0
17: send(i, SENT)
18: end for

19: else if current time < system limit then

20: current time ← current time +1
21: ∀ i, send(i, TIMEINC)
22: end if

Fig. 13. Function synchronise(∀i trysync[i],current time)

timer consisting of a local time and a local time limit. Similarly, a global clock
maintained the global time and the global time limit. At a priority of 2, the
global clock was prepared to synchronise with the module timers. Finally, at the
lowest priority, the global clock was allowed to advance.

The priorities thus ensured that if a transition in the model was enabled,
then it would occur. Only when no such model transitions were enabled, would
the global clock synchronise with the modules and/or advance to the next time
point.

5.3 Experimental Results

The results are given for total time periods of 50 up to 300. The timeout period
for the sender is Tsp+Twait=58. When Trans={4}, the propagation time is fixed
at 20 for each direction and the round trip delay is Tsp+Trp+2*5*ran’Trans()=56.
This just preempts the timeout retransmission of a message.

The experiments also vary the propagation delay with Trans selecting values
from the ranges 4 to 4, 3 to 5 and 2 to 6. This gives corresponding propagation
delays chosen from the sets {20}, {15, 20, 25} and {10, 15, 20, 25, 30}.

The experimental results are given in Figs. 15, 16, and 17. Each one displays
the number of nodes in the synchronisation graph (abbreviated Synch), the
total number of nodes in the modular state space (abbreviated Total), and the

206

color INT = int timed;
color DATA = string;
color INTxDATA = product INT * DATA timed;

var n, k : INT; var p : DATA;

val Twait=50; val Tsp=8; val Trp=8; val Tra=4;
val Tmin=2; val Tmax=6; val Pok=75;

color Trans = int with Tmin..Tmax declare ran;

Send
Packet

@+Tsp

Transmit
Packet

@+5*ran’Trans()

Send

INTxDATA 1‘(1,"1")++1‘(2,"2")++
1‘(3,"3")++1‘(4,"4")++
1‘(5,"5")++1‘(6,"6")++
1‘(7,"7")++1‘(8,"8")

NextSend
INT

1

Packets

INTxDATA

Acks

INT

Received
DATA

NextRec
INT

1

Sender Network Receiver

Lose
Packet

@+5*ran’Trans()

Lose
Acknow.

@+5*ran’Trans()
Ack

INT

Receive
Packet

@+Trp

Send
Packet

Send
Acknow.

Send
Acknow.

Transmit
Acknow.

@+5*ran’Trans()

Receive
Acknow.

@+Tra

(n,p)

if n=k
then 1‘p
else empty

n

k

if n=k
then k+1
else k

k n

n n

(n,p) (n,p)@+Twait

(n,p)

n

if n=k
then k+1
else k

n

(n,p)

n

Fig. 14. Case study: the timed protocol

number of nodes in the flat state space (abbreviated Flat). It should be noted
that the number of nodes was considered to be a more appropriate measure than
the actual time, given that the algorithms are currently simulated in Maria.
Secondly, it is worth noting that the total number of nodes for the modular
state space is of the same order of magnitude as the number of nodes in the
synchronisation graph. Thirdly, the results clearly indicate that as the variability
in the system increases — whether due to the variability in the roundtrip delay,
or in the time period over which the system is explored — so the benefits of the
modular state space construction are increasingly apparent.

6 Conclusions and Future Work

This paper has extended the definition of state spaces to cater for timed systems.
It has identified an earliest time state space, where all transitions enabled in a
marking occur at the earliest time possible. It has also identified a reduced
earliest time state space, where transitions enabled at a state are preempted by
others which can occur earlier. The latter is the more traditional approach to

207

Results for random range = 4..4

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

50 100 150 200 250 300

Maxtime

N
o

d
e
s Synch

Total

Flat

Fig. 15. Results for Trans={4}

Results for random range 3..5

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

50 100 150 200 250 300

Maxtime

N
o

d
e
s Synch

Total

Flat

Fig. 16. Results for Trans={3,4,5}

timed state spaces. However, for modular systems, the independent analysis of
the modules means that a reduced earliest time state space cannot be determined
except in the unfolded state space. This being the case, it is appropriate to
generate an earliest time state space as part of modular exploration.

208

Results for random range 2..6

0

200000

400000

600000

800000

1000000

1200000

1400000

50 100 150 200 250

Maxtime

N
o

d
e
s Synch

Total

Flat

Fig. 17. Results for Trans={2,3,4,5,6}

The above raises the challenging question whether, as for earlier results [9],
timing properties can be determined from the timed modular state space without

unfolding. This is an important issue for future work.

This paper has presented two algorithms for a uniprocessor and one for a
distributed environment which have generated the timed modular state space.
The uniprocessor algorithms were inspired by the conservative and optimistic
approaches to distributed discrete event simulation. The optimistic approach is
based on generating the earliest time state space.

The formal definitions allow for dense time but the algorithms are defined
for integral time. The algorithms can be modified to handle dense time by main-
taining a schedule of pending events, e.g. in a priority queue. While this does not
constitute a significant change, it would unnecessarily clutter the presentation
of the algorithms. A more challenging issue for further work consists in adapt-
ing the algorithms to the generation of state class graphs, as in [2]. This would
alleviate the maximum system time constraint.

Experimental results have been presented for the conservative uniprocessor
algorithm. These demonstrate the value of modular analysis for timed systems.
We have also derived preliminary results for the optimistic uniprocessor algo-
rithm, and they indicate that this approach does reduce the amount of synchro-
nisation between modules without necessarily resulting in a lot of superfluous
exploration of the local state space. However, the optimistic algorithm does need
to be paired with the use of a schedule of pending events, or else each module
from each synchronisation node will increment time up to the time limit looking
for possible enabled transitions. It will be important to perform further experi-
ments to see whether the preliminary results for the optimistic algorithm carry

209

over to more realistic case studies, particularly when the schedule of pending
events is incorporated. It will also be important to experiment with a number of
generalisations and optimisations that we have identified, in order to see whether
they are of value in fine-tuning the algorithms.

References

1. W. van der Aalst. Interval Timed Coloured Petri Nets and their Analysis. In M.A.
Marsan, editor, Internation Conference on the Application and Theory of Petri
Nets, volume 961 of LNCS, pages 453–472, Chicago, 1993. Springer.

2. G. Berthelot and H. Boucheneb. Occurrence graphs for Interval Timed
Coloured Nets. In Proc. 15th Int. Conf. Application and Theory of Petri Nets
(ICATPN’1994), Zaragoza, Spain, June 1994, volume 815 of LNCS, pages 79–98.
Springer, June 1994.

3. S. Christensen and L. Petrucci. Modular analysis of Petri nets. The Computer
Journal, 43(3):224–242, 2000.

4. Design/CPN online. http://www.daimi.au.dk/designCPN.
5. R.M. Fujimoto. Parallel Discrete Event Simulation. Communications of the ACM,

33(10):30–53, 1990.
6. K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and practical

use. Volume 1: Basic Concepts. Monographs in Theoretical Computer Science.
Springer, 1992.

7. K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and practical
use. Volume 2: Analysis Methods. Monographs in Theoretical Computer Science.
Springer, 1994.

8. L. Kristensen and L. Petrucci. An approach to distributed state space exploration
for coloured Petri nets. In Proc. 25th Int. Conf. Application and Theory of Petri
Nets (ICATPN’2004), Bologna, Italy, June 2004, volume 3099 of LNCS, pages
474–483. Springer, June 2004.

9. C. Lakos and L. Petrucci. Modular analysis of systems composed of semiau-
tonomous subsystems. In Proc. 4th Int. Conf. on Application of Concurrency to
System Design (ACSD’04), Hamilton, Canada, June 2004, pages 185–194. IEEE
Comp. Soc. Press, June 2004.

10. M. Mäkelä. Model Checking Safety Properties in Modular High-Level Neets. In
W. van der Aalst and E. Best, editors, 24th International Conference on the Appli-
cation and Theory of Petri Nets, volume 2679 of LNCS, pages 201–220, Eindhoven,
The Netherlands, 2002. Springer.

11. L. Petrucci. Cover picture story: Experiments with modular state spaces. Petri
Net Newsletter, 68:Cover page and 5–10, April 2005.

210

Modeling the Case Handling Principles
with Colored Petri Nets

Christian W. Günther and Wil M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{c.w.gunther, w.m.p.v.d.aalst}@tm.tue.nl

Abstract. Case handling is a new paradigm for supporting flexible and
knowledge intensive business processes. It is strongly based on data as the
typical product of these processes. Unlike workflow management, which
uses predefined process control structures to determine what should be
done during a workflow process, case handling focuses on what can be
done to achieve a business goal. While classical Petri nets are a good the-
oretical foundation for workflow management, the data-intensive nature
of case handling does not allow for the abstraction of data. Therefore,
we use Colored Petri Nets (CPNs) as a foundation for case handling.
This paper models the key principles of case handling in terms of CPNs
and uses state-space analysis and simulation to validate the concepts.
Moreover, we also link the CPN model to process mining and show that
it is possible to rediscover case handling processes based on the event log
of a CPN simulation.

1 Introduction

Although workflow management concepts and technology [3, 13, 20, 21] have been
applied in many enterprise information systems in the last decade, there appears
to be a severe gap between the promise of workflow technology and what sys-
tems really offer. As indicated by many authors, workflow management systems
(WFMSs) are too restrictive and have problems dealing with change [2, 5, 7, 9,
11, 12, 17, 18, 24].

Most of the workflow management systems consider workflows to be produc-
tion processes, directly driven by structured process models. Such an approach
is solely on the concept of routing, i.e., shifting work among resources based on
causal relationship between activities. In [6] it is argued that for some applica-
tions the approach is suitable, but that for many other applications the use of
control-flow as the primary enactment mechanism may result in the following
four problems:

– Distributed handling of work requires its being partitioned, or straight-
jacketed into activities. This fundamental principle, vital for the WFMS,
can hardly ever comply with the way workers organize their tasks. Usually
activities are performed at a far more fine-grained level than proposed by a
process model.

211

– Typical WFMSs make no distinction between authorization and distribution
of work, i.e., a worker is always offered to pick up any task he is authorized to
do. This property leads to e.g. overcrowded in-trays for employees in higher
positions, as their role typically includes many others.

– Strong control-flow orientation of WFM systems tends to blind out the con-
text of tasks to be performed, most notably data created at earlier points
in the process. This leads to the phenomenon of context tunneling, i.e., a
worker has only access to data deliberately provided, a handicap that hin-
ders efficiency and quality of work.

– The push-oriented nature of routing leaves hardly any decision to the user, so
that he does not even have a means of making small ad-hoc adjustments to
the process. That way workflows become unnecessarily inflexible, and small
errors can spawn great problems.

To overcome this problem, we proposed case handling as a new paradigm
for supporting knowledge-intensive business processes [1, 6]. This paradigm has
proven its value in the tool FLOWer [1, 8, 22]. This tool is one of the most
successful products on the Dutch workflow market and has demonstrated its
value in situations requiring more flexibility. The core features of case handling
are:

– avoid context tunneling by providing all information available (i.e., present
the case as a whole rather than showing just bits and pieces),

– decide which activities are enabled on the basis of the information available
rather than the activities already executed,

– separate work distribution from authorization and allow for additional types
of roles, not just the execute role,

– allow workers to view and add/modify data before or after the corresponding
activities have been executed (e.g., information can be registered the moment
it becomes available).

Since case handling is a combination of mechanisms, it is not easy to define
this new paradigm in a rigorous manner. The existing definitions given in [1, 6]
are too informal to allow for any form of analysis. The purpose of this paper is
to “formalize” the case handling concept in terms of Colored Petri Nets (CPNs)
[15, 19]. CPNs are a natural extension of the classical Petri net [23]. There are
several reasons for selecting CPNs as the language for modeling the case han-
dling paradigm. First of all, CPNs have formal semantics and allow for different
types of analysis, e.g., state-space analysis and invariants [16]. Second, CPNs
are executable and allow for rapid prototyping, gaming, and simulation. Third,
CPNs are graphical and their notation is similar to existing workflow languages.
Finally, the CPN language is supported by CPN Tools1 – a graphical environ-
ment to model, enact and analyze CPNs. The model was created by one person,
having a software engineering background and basic knowledge about classical
Petri nets, in about four man-weeks. A significant amount of this time was spent

1 CPN Tools can be downloaded from wiki.daimi.au.dk/cpntools/.

212

getting acquainted with CPN Tools as an application in general, and Standard
ML for e.g. functions in particular.

The remainder of this paper is organized as follows. First, the case han-
dling paradigm is introduced, emphasizing its specific features in contrast to
traditional Workflow Management. Subsequently, Section 3 introduces a CPN
model representing the basic case handling functionality in an abstract man-
ner, including the results of a state space analysis showing model correctness.
Section 4 discusses the applicability of the presented model by inspecting its
alignment to an industrial case handling system and discussing limitations. Fur-
ther, an extension to the model is presented that allows for generating artificial
enactment logs for process mining research, followed by a conclusion.

2 Case Handling

In contrast to the strongly process oriented view of production workflow, empha-
sizing the routing between atomic activities, the case handling paradigm focuses
mainly on the case itself. The case is the primary object to be manufactured
in any kind, e.g. the outcome of a lawsuit or the response to a customer re-
quest. Resulting from that, single activities diminish in importance in favor of
the larger context. They are no longer considered atomic steps that have to be
performed in an “all or nothing” manner, but rather serve as logical partitions
of work between which a transition from one worker to another is possible.

As in traditional WFM there exists a set of precedence relations between
single activities making up a process, using well-known patterns [4] for that.
However the primary driver for progress is no longer the event of explicitly fin-
ishing activities but the availability of values for data objects. While production
workflow clearly separates the process from associated data, case handling inte-
grates both far more closely, using produced data not only for routing decisions
but also for determining which parts of the process have already been accom-
plished. With case handling, each task has associated with it data objects for
three distinct purposes, while the first association is between a task and all data
objects that are accessible while performing it. Further on, all data objects that
are mandatory for a task have to be set (i.e., bound to a value) before the task
itself is considered to be accomplished by the system. Finally, every data object
can have a random number of tasks to which it is restricted, meaning that it
can only be altered while performing one of these tasks. The mandatory and
restricted properties are independent from each other, however reason dictates
to have the last (in the sense of a causal chain) task featuring a data object as
restricted also declare it as mandatory (to make sure it will be provided). User-
interactive tasks are connected to a form, each providing access to a selection of
data objects. Note that one form can be associated with multiple tasks; on the
other hand it is also possible to associate a form to the case itself, so that it can
be accessed at any point in time.

To introduce the case handling principles, Figure 1 shows a simplified exam-
ple of a case type, the case handling analogy to a workflow process definition:

213

Fig. 1. Simplified example case type

Three tasks A, B and C are making up the process, sequentially chained by
causal relationships denoted by connecting arrows. Their mandatory relation-
ships to the three data objects x, y and z below are denoted by curved arcs,
correspondingly they are associated with the forms M and N above. As can be
seen in the illustration, tasks A and B share the same form M , providing access
to data objects x and y. If a properly authorized worker now starts handling
task A, the associated form M will open and he will start providing values for
the presented data objects. In a traditional WFMS activity A would not be fin-
ished before form M is closed, however the case handling system regards A as
finished as soon as a value for x has been provided (and confirmed appropri-
ately), automatically enabling task B in the background. If the worker would
now close form M , another employee could pick up the case where he left it,
starting task B, which would provide the same form M with x having a value
filled in (that could now be changed again). Another possibility is, however, that
the first worker keeps on handling the form, providing also a value for y. This
would correspondingly trigger the auto-completion of task B (as all associated
mandatory data elements, in this case only y, have been provided) and activate
task C. Note that if a worker closes a form after filling out only parts of the
mandatory data fields of a task, despite the task not being considered finished
data already entered is not lost but will be presented to the person continuing
work on that task.

Such closely intertwined relationship between data and process obviously
abandons their, often unnatural, separation so rigidly pursued in traditional
workflow management. With the status of case data objects being the primary
determinant of case status, this concept overcomes a great deal of the problems
described in the introduction:

– Work can now be organized by those performing them with a far higher
degree of freedom. Activities can either be performed only partly, without
losing intermediary results, or multiple related activities can be handled in
one go, surpassing the considerably weakened border between single tasks.

– The phenomenon of context tunneling can be remedied by e.g. providing
overview forms directly associated with the case. Every authorized worker

214

can consult such form at any point in time, ensuring he is aware of the
context where necessary.

– Routing is no longer solely determined by the process model. Case types can
be designed in such a way, that multiple activities become enabled concur-
rently, providing different ways of achieving one goal. It is up to the user to
decide which way to go, with the system “cleaning up behind”, i.e., disabling
or auto-completing tasks that have not been chosen.

In addition to the execute role, specifying the subset of resources allowed
to handle a specific task, the case handling paradigm introduces two further
roles crucial for operation. The skip role allows workers to bypass a selected
task, which could be interpreted as an exception. When one thinks of real busi-
ness processes an exception, like skipping an activity that deals with thoroughly
checking the history of a client before granting a mortgage for well-known and
trusted clients, is likely to occur quite frequently. The ability to grant the skip
role to a senior worker renders the necessity for implementing such bypass ob-
solete, thus greatly simplifying the whole case type. It has to be noted that in
order to skip a task all preceding tasks that have not been completed yet have
to be skipped (or completed) beforehand. Traditional workflow definitions use
loops for repeating parts of the process, e.g. because they have not yielded an
expected result. In a case handling system, such construct has been made obso-
lete as well by the introduction of a redo role, enabling its bearer to deliberately
roll the case’s state back and make a task undone. In doing so, the values pro-
vided for data objects during this task are not discarded but merely marked
as unconfirmed, so that they serve as kind of template when re-executing the
affected task. Similar to skipping, before a task can be redone all subsequent
tasks that have already been completed need to be rolled back as well before.
Roles in a case handling system are case specific, i.e., having assigned the role
“manager” for a case type A does not imply that one can play the same role for
another case B. They can be specified in form of a role graph, where single role
nodes are connected to each other by arcs, symbolizing is-a relationships; i.e.,
being authorized to play a role also implies the authorization to play all roles
connected as child nodes.

Intertwining authorization with distribution of activities has been one major
flaw of traditional workflow technology. In a case handling system, the former
in-tray, i.e., a list of all activities the user is authorized to perform and that he
can choose from, has been replaced by a sophisticated query mechanism. This
tool can be used to look for a specific case, based on certain features (e.g. case
data, or enactment meta-data like the start date of a case instance). Moreover
it can be used to create predefined queries tailored to each worker (or, group of
workers). A manager is no longer constantly flooded with all possible activities
that he can perform, but only those which require a certain role, or e.g. case
instances of an order where the combined value exceeds $1000. Obviously the
query mechanism can also be used to perfectly imitate a classic in-tray, be it
required.

215

3 CPN Model

This section introduces the CPN model of a case handling system, thus making
the case handling paradigm explicit. We first discuss the color sets and then show
the top level view of the model. The top level model contains two substitution
transitions, which are also discussed. Finally, the model is evaluated using the
state space tool of CPN Tools.

3.1 Color Sets

Before showing the top level view of the model, we present some of the color sets
used in the model (cf. Figure 2). Data elements are represented by the color set
DATUM which is composed of a string that denotes its (unique) name, a boolean
flag symbolizing if it is enabled (i.e., if its value can currently be set or unset),
and a second boolean flag representing whether the value has actually been set.
The place all data contains complete information about all data elements as
one single token of color set DATUMLIST, a list of DATUM instances, serving as
central repository and interface between all three parts of the model. Color set
RESOURCE is composed of a string containing the unique name of the resource,
and a list of strings denoting the roles this resource can play. The most complex
color set within this model is the TASK, composed as follows: One string contains
the unique name of the task, followed by a list of strings representing the (names
of the) data elements that can be accessed and another list of strings representing
the mandatory data elements of this task (i.e., those that have to be set in order
to complete a task). Two further string lists contain the names of preceding and
successive tasks, thus making up the control flow of the case, and three strings
specify the respective roles necessary for executing, skipping and redoing the
task.

color STRINGLIST = list STRING;

color DATUM = product
(* name *) STRING *
(* enabled *) BOOL *
(* isset *) BOOL;

color DATUMLIST = list DATUM;

color ROLE = STRING;

color RESOURCE = product
(* name *) STRING *
(* roles *) STRINGLIST;

color MUTEX = unit with null;

color TASKSTATE =
with initial | enabled | finished;

color TASK = product
(* name *) STRING *
(* data *) STRINGLIST *
(* mandatory *) STRINGLIST *
(* previous *) STRINGLIST *
(* successors *) STRINGLIST *
(* exec role *) STRING *
(* skip role *) STRING *
(* redo role *) STRING;

color TASKxRESOURCE =
product TASK * RESOURCE;

color TASKENTRY = product
(* name *) STRING *
(* state *) TASKSTATE;

color TASKLIST = list TASKENTRY;

Fig. 2. Color set definition used in the CPN model

216

3.2 Top-Level View

ready

TASK

active

TASKxRESOURCE

resources

RESOURCE

all_dataDATUMLIST

mutex

MUTEX

open_form

[canExec(r,t1)]

close_form

data manipulation

data manipulation

task lifecycle

task lifecycle

t1

(t1,r)

t1

(t1,r)

r

r

openForm(t1,l)

l

closeForm(t1,l)

l

()()

Fig. 3. Top-level view of the model

All basic functionality available to the user of a case handling system is
included within the top level view. The ready place is the main interface to
one further part of the model describing the lifecycle of tasks; when a task is
ready to be handled it is transported to this place by the system, respectively
tasks whose postcondition has been satisfied get removed from this place by the
system. Users are now able to activate tasks that are being located in place
ready for handling, which usually means opening the respective form in order to
change associated data. This activity corresponds to firing transition open form,
consuming a task from ready and a resource token from the central repository
place, both being stored intermediately in place active (as a product of both
colors). When fired, open form will also consume the token from all data and
set all data elements defined in the opened task as enabled. Subsequently firing
transition close form will adversely disable all data elements specified by the
now closed task, transport the task token itself back into ready and free the
associated resource, i.e., put it back into the central resource repository. Note
that opening and closing forms is the only way to enable or disable data elements

217

for manipulation and, the other way round, apart from that no change in the
overall state is performed.

One thing that has to be noted is that case handling systems usually not
allow for real concurrency. To avoid context tunneling it will provide access to
all case data, and therefore limit parallel updates of data values. If several users
could open forms on one single case in parallel, the outcome of this would be
impossible to determine, as they could enter contradictory values for one data
field on different forms. This behavior is modeled by place mutex which contains
exactly one black token. Once this token has been consumed by firing open form,
no further form can be opened unless firing close form has produced a new
token in mutex.

To avoid context tunneling and provide to the experienced user a higher de-
gree of freedom, case handling systems allow to define forms that are associated
directly to the case (in contrast to task-associated forms). These forms can be
opened at any time and allow direct access to a random choice of case data ele-
ments. In this model, case forms are represented by tasks having no predecessor
and successor tasks and no mandatory data elements. They reside in the ready
place and will not leave it, due to their not being connected to other tasks from
a control-flow point of view.

3.3 Data Manipulation

data_unset

STRING

data_set

STRING

all_data

DATUMLIST

I/O

set

[isEnabled(s,l)]

unset

[isEnabled(s,l)]

s

s

s

s

resetDatum(s,l,[])

l

l

setDatum(s,l,[])

Fig. 4. Data manipulation subsection of the case handling model

This part of the model represents the setting and unsetting of data values
dependent on their being enabled by currently open forms. Single data elements
are represented by simple string tokens (containing their name) and can either

218

reside in places data set or data unset, so that their state is symbolized by their
position within the model. A transition between the states of being set or unset
— i.e., between the two respective places — can be achieved by firing transitions
set and unset. The precondition for firing these transitions is, that for the data
element to be (un-)set the “enabled” flag is set to true within place all data,
a condition checked by function isEnabled. In effect, firing either set (unset)
executes function setDatum (resetDatum), toggling the boolean flag denoting
the value-bearing status of the respective data element within all data.

3.4 Task Lifecycle

initial

TASK

final

TASK

all_tasks

TASKLIST

resources

RESOURCE
I/O

all_dataDATUMLIST

I/O

ready

TASK
I/O

enable

[allPreFinished(t1,tal)]

redo

[canRedo(r,t1) andalso
allPostInitial(t1,tal)]

finish

[allMandatorySet(t1,l)
andalso isNoForm(t1)]

skip

[canSkip(r,t1)]

t1 setStatus(t1,finished,tal,[])

talt1 t1

t1

tal

t1

setStatus(t1,enabled,tal,[])

tal

setStatus(t1,finished,tal,[])

t1

t1 t1

r

rr

r

l

l

setStatus(t1, initial, tal, [])

tal

Fig. 5. Part of the model representing the task lifecycle

Handling the lifecycle of tasks is essential to the case handling mechanism,
for this is possibly the point where such system differs most substantially from
a conventional WFMS. The model is built to reflect the current lifecycle status
of each task as its respective position in one of three places of type TASK (or
four, if you count the active place in the top view part). Any task is either
in state (place) initial, ready or final. One place all tasks serves as a
central repository for task state information, replicating this for the sake of
model readability2. State transitions for tasks are dependent on the states of
2 It would have been possible to test multiple places as precondition for firing a tran-

sition instead of just polling all tasks. However, by using this central replication of
state information it is possible to avoid a large amount of arcs crossing each other.

219

their respective predecessor and successor tasks, as well as it is dependent on
the state of the case’s data elements, i.e., which of them have already been set.
When a case is started, all tasks contained will reside within place initial,
waiting to be enabled by firing transition enable. The precondition for that
is that all tasks that are direct predecessors have already been finished, it is
checked by function allPreFinished which therefore retrieves the central token
from all tasks and puts it back, not before having changed the respective status
of the enabled task.

After having been enabled the task resides at the ready place, from which
basically three possibilities exist for progressing further. The task token can
transcend into the top-level part of the model by being activated, i.e., opening
its adjacent form and starting to change data values associated. This will, how-
ever, finally result in the form being closed again, returning the task into place
ready. If the user decides so and has sufficient rights (i.e., a resource having
the necessary role is available) he can deliberately skip a task (implemented
by a transition of that very name), transporting the respective token directly
into place final. This will adjust the task’s status within the central repository
all tasks and free the resource again immediately afterwards.

The usual way, however, for a task to progress from ready to final is by
firing transition finish. This transition gets enabled as soon as all mandatory
data elements of a task have been set, further it is ensured that the respective
task is “real”, and not in fact a case form (by making sure it has predecessor and
successor tasks) and the task state is adjusted in all tasks. By solely depending
on the status of data elements for finishing tasks this transition also implements
the “autoskip” functionality of case handling systems, i.e., the possibility to finish
tasks without even having touched them, solely by satisfying their mandatory
data requirements otherwise (e.g. using case forms).

Redoing tasks requires, opposite to enabling them, that all successors of the
respective task are in place initial (i.e., that they have previously been rolled
back). The redo transition checks this property, and further needs to acquire a
suitable resource that is freed immediately afterwards. The possibility to redo
tasks closes the circular lifecycle, allowing tasks to progress through this an
arbitrary number of times, under the sole premise that the basic (half-)ordering
of tasks be maintained.

3.5 Evaluation

In order to both verify the correctness of the model and ensure alignment with
the case handling principles that were intended to be modeled, a state space
analysis of the model was performed within CPN Tools. However, before such
analysis was feasible we were forced to reduce the size of the example case han-
dling process and abstract from forms. Without these changes, CPN Tools was
unable to construct the full state space. A token from place ready (symbolizing a
form directly associated with the case) was removed and the represented process
was simplified into a case handling process of only two consecutive steps task1
and task2, i.e., the initial state of place initial was changed and the token in

220

place all tasks was adjusted accordingly as well. However, the basic principles
of case handling remain untouched by these alterations. As a result, the analysis
in remainder remains relevant for other case handling processes.

Place Upper Integer Bound Lower Integer Bound
active 1 0
all data 1 1
mutex 1 0
resources 3 2
ready 1 0
data set 4 0
data unset 4 0
all tasks 1 1
final 3 1
initial 3 1
Table 1. Integer bounds of simplified case handling model

Boundedness Properties — One property the state space analysis can yield
is the upper and lower integer bound of tokens per place, i.e., the maximum and
minimum number of tokens of the appropriate color each place can contain for
a given initial marking [14]. With respect to the scenario described above, the
results are documented in Table 1. One first property that can be noted is that
every place has an upper bound, i.e. the net is bounded. This corresponds to
our expectations, as the model is not intended to generate additional tokens, so
that the overall number of tokens contained within the complete net is expected
to remain unchanged by firing any transitions3. Further it can be observed that
places all tasks and all data will always contain exactly one token, as these
are to serve as central information repositories which are not to be moved perma-
nently. The difference in upper and lower bounds for place resources of merely
1 corresponds to the upper bound of 1 for place active, emphasizing the nature
of a case handling system locking the complete case for exclusive access to one
user at a time. Finally, the lower bounds of 1 for places initial and final are
due to the virtual START and END tokens of color TASK which remain in their
respective places infinitely as guaranteed process boundaries.

Home Properties — The case handling paradigm allows for a maximal degree
of freedom with respect to navigating within a process. Given that he has suffi-
cient permissions, the user can freely move back and forth within a case type’s
3 An exception to this is place mutex, which is empty as long as an activity or form is

open.

221

process model by executing, skipping and redoing tasks at will. As extreme ex-
amples consider at the one hand finishing a case by merely skipping all available
tasks, and on the other hand rolling an otherwise completed case completely
back by redoing the tasks contained in reverse order. This behavior, i.e., the
ability to reach any state from every other possible state, is reflected in the state
space analysis labeling all possible markings of the net as Home Markings, i.e.,
markings that it is always feasible to reach [14].

Liveness Properties — Liveness denotes the remaining active of a set of
binding elements, i.e., every transition can become enabled by firing an arbitrary
number of transitions[14]. In contrast to this, a dead marking denotes a state of
the net in which no transition is enabled. With respect to the model presented,
the only acceptable dead marking, i.e., a state in which no further action is
possible, would be a state in which the process is completely finished. However,
given the fact noted above that case handling provides unlimited navigation
within the process by means of skipping and redoing tasks, neither should there
exist dead markings nor dead transitions (i.e., single transitions that can become
permanently disabled by any firing sequence) for the model. This expectation
has been acknowledged by the state space analysis, yielding no dead markings
and denoting all transition instances as live.

Fairness Properties — Fairness is an indicator of how often different bind-
ing elements occur[14]. For the given model, the state space analysis denotes
transitions enable and redo as fair, so an infinite number of enablings for these
transitions implies an infinite number of occurrences. This corresponds to the
intended behavior, as these transitions will actually remain enabled until fired.
With the exception of close form, all further transitions are just, i.e., persistent
enabling of these implies an eventual occurrence. This property can be deduced
from the free-choice character of the model, i.e., choices between two concur-
rently enabled transitions depend solely on user decision and are also intended
to reflect these. Finally, transition close form has no fairness. This is due to
the fact that, in case this transition is enabled, it is always possible to fire set
and unset in an infinite, alternating sequence, so that firing close form can be
effectively evaded. However, such behavior would correspond to a user having
one specific form open infinitely long and keeping on changing values without
eventually closing it again. Therefore this property reflects an intended model
behavior, and a real-life occurrence of such potential infinite loop can safely be
ruled out by common sense.

4 Applicability

The purpose of this section is to probe the real-life applicability and relevance
of the presented model. In order to more illustrate the concept of case handling,
and also to bridge the gap between the abstract model presented and real life

222

application, the first section compares the CPN model to the real case handling
system FLOWer [1, 8, 22]. The second part discusses limitations of the presented
model and discrepancies with respect to FLOWer, while the last part introduces
an extension of the model for creating enactment logs during simulation.

4.1 Mapping to FLOWer

In order to more illustrate the concept of case handling, and also to bridge the
gap between the abstract model presented and real life application, this section
compares the CPN model to the real case handling system FLOWer.

Fig. 6. Process model (“plan”) in FLOWer

FLOWer features a graphical process designer tool (FLOWer Studio), in
which so-called case types can be defined, Figure 6 shows a screenshot of this
application with a simple example process4. On the left side four rectangular
boxes can be seen, symbolizing the four data objects Data1 to Data4 used
in this case type. To the right, the process structure is depicted, showing the
tasks Task1 to Task4 as rectangular nodes, connected with arcs denoting causal
relations between them. The start and end of the process is marked with so-
called Milestones, which are no real tasks but symbolize defined states of the
process and have been included here to make a connection to the fixed START
and END tokens within the CPN model.

Apart from the relationships visible in Figure 6, the following has been de-
fined: All four tasks use the same form (Form1), providing access to all four
data objects; this form is also connected to the case type itself, i.e., it can be
accessed at any time during handling a case. Task1 has data1 as mandatory,
Task2 and Task3 both have data2 and data3 specified as mandatory and Task4
requires data4 respectively.
4 In FLOWer, the process part of a case type is called a plan.

223

Fig. 7. User perspective of the FLOWer system

Figure 7 shows the user interface of FLOWer. In the front, the single form
has been opened in reaction to executing Task1 and a value has been provided
and acknowledged for data1. The window in second order shows the main user
interface of FLOWer which provides an overview of the case currently handled
by the user. On the left, the single plan, i.e., process model, of the currently
handled plan has been selected, thus it is also displayed on the top third of
the right part. In the middle part of the right side the so-called wavefront is
displayed, which is mainly a vertical line. Tasks that are being displayed on the
left of this line are not yet ready to be executed, enabled tasks are right on the
wavefront and completed tasks are shown to the right of it. Thus, tasks “travel”
from left to right over the wavefront correspondingly to their lifecycle status
(and they move back to the left again when they are being redone). Below the
wavefront part of the interface, Form1 is explicitly depicted and can be opened
any time while handling this case.

As in this example a value has already been provided for data1, the first task
(Task1) has already been finished (as data1 was the only mandatory data object
for this task) and has moved to the right of the wavefront. Corresponding to this,
Task2 and Task3 have been enabled and are positioned right on the wavefront.
A closer look at the opened form reveals red square icons to the left of the entry
fields for data2 and data3 : Both Task2 and Task3 that are now enabled have
set these data objects as mandatory, thus the system now signals (by the square

224

indicators left to each input field) that, by providing values for these fields, the
next step could be accomplished.

Notice the non-intrusive nature of guiding user interaction performed by the
case handling system, which is not enforcing or suggesting any specific behavior
but rather presenting possible options. The user is not controlled by the system
in a push-oriented manner, but he potentially has a great degree of freedom in
his actions (depending on the design of the case type). Meanwhile the system will
constantly observe which parts of the process have already been accomplished
and track progress, providing more of a help in direction than restricting to
predefined paths.

Table 2. Model place contents in discussed state

Place Tokens
all data 1‘[("data1", true, true), ("data2", true, false),

("data3", true, false), ("data4", true, false)]

all tasks 1‘[("START", finished), ("task1", finished), ("task2", enabled),

("task3", enabled), ("task4", initial), ("END", initial)]

initial 1‘("END", [], [], ["task4"], [], "", "", "")++

1‘("task4", ["data1", "data2", "data3", "data4"], ["data2", "data3",

"data4"], ["task2", "task3"], ["END"], "role3", "role3", "role2")

ready 1‘("task3", ["data1", "data2", "data3", "data4"], ["data2", "data3"],

["task1"], ["task4"], "role1", "role1", "role2")

active 1‘(("task2", ["data1", "data2", "data3", "data4"], ["data2", "data3"],

["task1"], ["task4"], "role2", "role2", "role3"),

("resource1",["role1","role2"]))

final 1‘("task1", ["data1", "data2", "data3", "data4"], ["data1"],

["START"], ["task2", "task3"], "role1", "role1", "role2") ++

1‘("START", [], [], [], ["task1"], "", "", "")

resources 1‘("resource2",["role2","role3"]) ++ 1‘("resource3",["role3","role1"])

data set 1‘"data1"

data unset 1‘"data2" ++ 1‘"data3" ++ 1‘"data4"

If the example case type and situation as described above is translated into
the introduced CPN model, the marking of the net after executing Task1 and
providing a value for data1 is given in Table 2. In the token for all data it can
be observed that all four data elements have been enabled (with their second
element, a boolean, set to true, while merely data1 has its third element set to
true, corresponding to its having been set. This last information is also explicitly
reflected in the distribution of tokens between data set and data unset.

225

4.2 Limitations

The mapping performed in the last section shows that the presented CPN model
is suitable for introducing and analyzing the basic features of the case handling
paradigm, enabling the implementation and analytic enactment of simple case
types. However, compared to the presented commercial system FLOWer it has
several subtle discrepancies and limitations, which shall be discussed within this
section.

Regarding case type design, the model does not allow for alternative branches
within the process structure. Such feature would require the interpretation of
Boolean statements on data objects, which is beyond the scope of the presented
model. Another fundamental limitation is concerning process structure as well,
for constructs like arbitrarily instantiated sub-processes5 cannot be represented
with this model. This does, however, have no influence on the correctness of the
model, for these can be interpreted as abstract tasks executed in parallel.

Naturally, FLOWer as a commercial system allows for a much wider range
of task definitions beside form actions. Tasks can also use database interactions,
arbitrary code execution and other non-interactive methods of data processing.
On the conceptual level of the model these differences are, however, completely
irrelevant — all task types available in FLOWer share the same basic property
relevant for the scope of the model, i.e., they all access and potentially modify
case data objects.

Other constructs present in FLOWer can be seen as helpful abstractions,
which can be implemented using the model by breaking them down into more
low-level constructs. One example are role hierarchies; these are not supported
by the model, but can be implemented by granting every resource that has role r
also each child role of r. Regarding the restricted feature of data objects, which is
also not directly implemented in the model, it is possible to make the respective
data object available only for those tasks to which it shall be restricted, resulting
in the very effect.

One aspect in which the behavior of the presented model deviates signifi-
cantly from that of FLOWer is concerning task lifecycle transition. While the
model treats task and associated form as unity, this association is implemented
much less coherent in FLOWer. While, after providing a value for data1 in the
example of the last section, Task1 has already transitioned to the final state, i.e.,
to the right of the wavefront, in the model this transition can only happen after
the form has been closed. This discrepancy extends onto the time of enabling
subsequent Task2 and Task3, which is self-evident as they have to wait until
Task1 is finished. While this difference shows in the delayed transition of tasks,
it has no influence on the general order of these transitions, such that the overall
behavior of the model is consistent with FLOWer. Due to this property, results
gained from the model can be applied with little to no restriction.

5 These serve for executing a specific subprocess multiple times in parallel, whereas the
number of subprocess instances is only determined during super-process enactment
(e.g., collecting witness statements for an accident).

226

4.3 Process Log Synthesis

The presented CPN model obviously does not directly represent a business pro-
cess, but it rather describes the abstract process of handling, or executing, such
business processes within a case handling system. The executed process is thus
not explicitly visible in this meta model, it is encoded in tokens of type TASK.
Only when the model is executed, the handled process becomes observable.

To make such observation easier to achieve, and to allow for a more detailed
analysis of the handled processes, the model was enhanced with the logging
extensions of CPN Tools[10]. These are three ML functions, createCaseFile,
addATE and calculateTimeStamp, that create process enactment logs of a model
in MXML, the ProM6 format, when the model is simulated in CPN Tools. An
extra transition has been added to the model, activating the logging function
createCaseFile(int caseId) before each execution of the model. This will
create a new log file containing all events recorded for this particular simulation
run (i.e., case), while the parameter caseId has to be manually set to a unique
number in order to distinguish between different cases.

The actual log events, describing the life-cycle change of the task in question,
are recorded by the function addATE(int caseId, String transitionName,
ListOfStrings eventyType, StringTimestamp timestamp, String origin-
ator, ListOfStrings data), which is called when firing transitions enable, fin-
ish, skip, and redo. Parameter caseId is set according to the value provided in
createCaseFile, while the value for transitionName corresponds to the task
name contained in the processed TASK token. The eventType is determined by
the fired transition, i.e. transition enable will set the event type to schedule,
finish to complete and so on. Notice that while the names are different, this is
only due to a different terminology between the case handling principle and the
MXML format, the semantics are perfectly in line. For setting the timestamp
parameter, the helper function calculateTimestamp is called, creating ascend-
ing, logical timestamps. Finally, the originator parameter is set to the name of
the RESOURCE token used (if any, otherwise it is left blank), while the data
field is left blank.

Multiple simulations of the same process model can be aggregated into one
log file, using a plugin in the ProMimport framework6. This is an application
that allows for importing MXML logs from all sorts of process-aware informa-
tion systems. The aggregated log is then ready to be analyzed using the wide
palette of Process Mining techniques available within ProM. Figure 8 shows the
results of mining 20 simulation runs of the model with the Alpha algorithm. The
process model encoded in the TASK tokens corresponds to the case type shown
in Figure 6, except for one minor adaption: In order to ease mining and produce
a sound WF-Net a task INIT has been prepended to the process. It cannot
be skipped and rolled back, thus ensuring exactly one defined start condition
without incoming arcs.

6 ProM is the process mining framework. Both ProM and ProMimport can be freely
downloaded at http://www.processmining.org/.

227

Fig. 8. Example process model mined from simulation logs

It is worthwhile pointing out that the mined process model, which is a WF-
Net satisfying the soundness criteria, describes possible paths of execution in a
very concise and accurate manner. For each task a similar sub-process has been
discovered, showing the typical case handling lifecycle of a task with scheduling,
skipping or completing, and rolling back. This accuracy allows for the model
to be used for the sake of synthetic case handling log creation by simulation.
In order to research new methods for Process Mining in the field of case han-
dling systems a wide variety of enactment logs is required, and log synthesis by
simulation can deliver these in a fast and automatized manner. Notice further
that the ProMimport framework also includes a plugin for importing logs from
FLOWer. Actual case handling processes can be remodelled in the CPN model
to research all potential enactment paths in synthesized logs, and the results can
be compared to those obtained from analyzing real FLOWer logs.

5 Conclusion

In this paper we have discussed the deficiencies contemporary Workflow Man-
agement Systems suffer from and that hinder their wider application in industry,
boiled down to four crucial problems. Subsequently, the case handling paradigm
has been presented as potential remedy to these structural problems. Using the
technique of Colored Petri Nets, an abstract model of case handling has been

228

introduced, incorporating all significant features of the way a case is being pro-
cessed in such system.

This model can on the one hand be employed to understand the functionality
of case handling and trace process enactment down to fine-grained steps. On
the other hand, close alignment of the model to a real case handling system,
FLOWer, has been shown in all significant aspects. Together with a state space
analysis, proving basic correctness and expected behavior of the model, these
properties can be extended onto the principles of case handling as a whole.
Taking into account the mentioned limitations of the model and its discrepancies
with respect to a real system like FLOWer, it can be employed to conduct
more thorough research on specific properties of case handling. Especially the
extension of the model with logging capabilities can provide valuable artificial
logs, which are important for process mining research on case handling systems.

6 Acknowledgements

This research is supported by the Technology Foundation STW, applied sci-
ence division of NWO and the technology programme of the Dutch Ministry of
Economic Affairs.

The authors would like to thank Kurt Jensen for his support in the early
stages of this article and his comments, and Ana Karla Alves de Medeiros for
implementing the logging extensions to CPN Tools. Last but not least, the au-
thors would like to thank the anonymous reviewers for their useful remarks.

References

1. W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Management: Product-
Driven Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International
ACM SIGGROUP Conference on Supporting Group Work (GROUP 2001), pages
42–51. ACM Press, New York, 2001.

2. W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Man-
agement: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 2000.

3. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

5. W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identifica-
tion of Issues and Solutions. International Journal of Computer Systems, Science,
and Engineering, 15(5):267–276, 2000.

6. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

7. A. Agostini and G. De Michelis. Improving Flexibility of Workflow Management
Systems. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 218–234. Springer-Verlag, Berlin, 2000.

229

8. Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena
BV, Apeldoorn, The Netherlands, 2002.

9. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. In Proceedings
of ER ’96, pages 438–455, Cottubus, Germany, Oct 1996.

10. A.K. Alves de Medeiros and C.W. Günther. Process min-
ing: Using cpn tools to create test logs for mining algorithms.
http://is.tm.tue.nl/research/processmining/tools/ProM/cpnToolConverter.zip,
2005.

11. C.A. Ellis and K. Keddara. A Workflow Change Is a Workflow. In W.M.P. van der
Aalst, J. Desel, and A. Oberweis, editors, Business Process Management: Models,
Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer
Science, pages 201–217. Springer-Verlag, Berlin, 2000.

12. T. Herrmann, M. Hoffmann, K.U. Loser, and K. Moysich. Semistructured models
are surprisingly useful for user-centered design. In G. De Michelis, A. Giboin,
L. Karsenty, and R. Dieng, editors, Designing Cooperative Systems (Coop 2000),
pages 159–174. IOS Press, Amsterdam, 2000.

13. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

14. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practi-
cal Use. EATCS monographs on Theoretical Computer Science. Springer-Verlag,
Berlin, 1992.

15. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

16. K. Jensen and G. Rozenberg, editors. High-level Petri Nets: Theory and Applica-
tion. Springer-Verlag, Berlin, 1991.

17. M. Klein, C. Dellarocas, and A. Bernstein, editors. Proceedings of the CSCW-98
Workshop Towards Adaptive Workflow Systems, Seattle, Washington, November
1998.

18. M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems,
volume 9 of Special issue of the journal of Computer Supported Cooperative Work,
2000.

19. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98–132, 1998.

20. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

21. D.C. Marinescu. Internet-Based Workflow Management: Towards a Semantic
Web, volume 40 of Wiley Series on Parallel and Distributed Computing. Wiley-
Interscience, New York, 2002.

22. Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Nether-
lands, 2002.

23. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

24. M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in
a Workflow Management System. In R. Sprague, editor, Proceedings of the Thirty-
Fourth Annual Hawaii International Conference on System Science (HICSS-34).
IEEE Computer Society Press, Los Alamitos, California, 2001.

230

Execution of UML Models with CPN Tools for
Workflow Requirements Validation ∗

Ricardo J. Machado1, Kristian Bisgaard Lassen2
Sérgio Oliveira1, Marco Couto1, Patrícia Pinto1

1 Dept. of Information Systems, University of Minho, Portugal
2 Dept. of Computer Science, University of Aarhus, Denmark

Abstract. Requirements validation is a critical task in any engineering project.
The confrontation of stakeholders with static requirements models is not
enough, since stakeholders with non computer science education are not able to
discover all the inter-dependencies between the elicited requirements. Even
with simple UML (unified modelling language) requirements models it is not
easy for the development team to get confidence on the stakeholders’ require-
ments validation. This paper describes an approach, based on the construction
of executable interactive prototypes, to support the validation of workflow re-
quirements, where the system to be built must explicitly support the interaction
between people within a pervasive cooperative workflow execution. A case
study from a real project is used to illustrate the proposed approach.

1. INTRODUCTION

Clients (normally, stakeholders) and developers (system designers and requirements
engineers) have, naturally, different points of view towards requirements. A require-
ment can be defined as “something that a client needs” and also, from the point of
view of the system designer or the requirements engineer, as “something that must be
designed”. The IEEE 610 standard [1] defines a requirement as: (1) a condition or
capability needed by a user to solve a problem or achieve an objective; (2) a condition
or capability that must be met or possessed by a system or system component to sat-
isfy a contract, standard, specification or other formally imposed documents; (3) a
documented representation of a condition or capability as in (1) or (2).

Taking into account these two distinct perspectives, two different categories for
requirements can be conceived:
• User requirements result directly from the requirements elicitation task [2], as an

effort to understand the stakeholders’ needs. They are, typically, described in
natural language and with informal diagrams, at a relatively low level of detail.
User requirements are focused in the problem domain and are the main communi-
cation medium between the stakeholders and the developers, at the analysis phase.

• System requirements result from the developers’ effort to organize the user re-
quirements at the solution domain. They, typically, comprise abstract models of
the system [3], at a relatively high level of detail, and constitute the first system
representation to be used at the beginning of the design phase.

∗ This work has been supported by projects uPAIN (AdI/IDEIA/70/2004/3.1B/00364/007) and STACOS (FCT/POSI/CHS/48875/2002).

231

The correct derivation of system requirements from user requirements is an impor-
tant objective, because it assures that the design phase is based on the effective stake-
holders’ needs. Some existent techniques [4-7] can be used to support the transforma-
tion of user requirements models into system requirements models, by manipulating
the corresponding specifications. This also guarantees that no misjudgement is arbi-
trarily introduced by the developers during the process of system requirements speci-
fication.

However, this effort of maintaining the model continuity by applying transforma-
tional techniques can prove to be worthless, if the user requirements models are not
effectively validated. Typically, the confrontation of stakeholders with static require-
ments models is not enough, since stakeholders with non computer science education
are not able to discover all the inter-dependencies between the elicited requirements.
Even with simple UML requirements models (use case diagrams and some kind of
sequence diagrams) it is not easy for the development team to get confidence on the
stakeholders’ requirements validation. In fact, according to [8] there are three kinds
of analysis that should be accomplished before a workflow is put into production:
(1) validation, to check if the workflow behaves as expected; (2) verification, to study
the correctness of a workflow; (3) performance analysis, to estimate the solution con-
formance with throughput times, service levels, and resource utilization. This paper is
solely devoted to the first kind of analysis at the process level; i.e., we are neither
considering the resource dimension where resources estimation is supposed to be
reached, nor the case dimension where a concrete instance of a workflow process is
analysed both in its commonalities and exceptions.

This paper describes the usage of CPN Tools [9] in the generation of interactive
prototypes to allow stakeholders to be confronted with executable versions of previ-
ously elicited UML use case and sequence diagrams. This approach towards user
requirements validation is illustrated with a real case study where a healthcare infor-
mation system must be built to explicitly support the interaction between people
within a pervasive workflow execution.

The remaining of this paper is organized as follows. Section 2 presents the case
study by informally describing the purposes of the uPAIN system. Some UML mod-
els of the uPAIN system are also presented to support the discussion on the difficul-
ties of achieving effective requirements validation based on static user requirements
models. In section 3, we describe the construction of coloured Petri nets for animation
of the dynamic properties of UML models. Here, the relation between the adopted
stereotyped UML sequence diagrams and the coloured Petri nets is explained. Section
4 contains the global architecture of the tool environment used to generate the interac-
tive animation prototype. Since some interoperability issues are not technological
transparent when CPN Tools are used together with the BRITNeY Animation tool, some
examples of the required XML files to perform the integration are discussed. In sec-
tion 5, the strategies used to design the graphical user interface of the interactive
animation prototype are discussed and some usability issues are referred. This section
is devoted to the discussion of the efforts that must devote to obtain an animation
artefact that effectively involves the stakeholders in the workflow requirements vali-
dation. Section 6 concludes the paper with some final remarks, mainly devoted to the

232

synthesis of the proposed approach limitations and of the accomplishments achieved.
Future work is also briefly referred.

2. REQUIREMENTS MODELING

The case study considered in this paper consists of an information system (uPAIN
system) whose main concern is the process of pain control of patients in a hospital,
who are subjected to relatively long periods of pain during post surgery recovery.
When a surgery is concluded, the patient enters a recovery period, during which anal-
gesics must be administered to him in order to minimize the pain that increases as the
effects of the anaesthesia gradually disappear. This administration of analgesics must
be controlled according to a program which depends on factors like some personal
characteristics of the patient (weight, age …) and the kind of surgery to which the
patient has been submitted. The quantity of administered analgesics must be high
enough to eliminate the pain, but low enough to avoid exaggerated or dangerous
sedation states. This controlled analgesia is supplied to the patient by means of spe-
cialized devices called PCAs (patient controlled analgesia). PCA is a medica-
tion-dispensing unit equipped with a pump attached to an intravenous line, which is
inserted into a blood vessel in the patient’s hand or arm. By means of a simple
push-button mechanism, the patient is allowed to self administer doses of pain reliev-
ing medication (narcotic) on an “as need” basis. This is called a bolus request.

The motivation for the development of the uPAIN system arises from the fact that
different individuals feel pain and react to it very differently. Also, although narcotic
doses are predetermined as mentioned previously, there is a considerable variability
of their efficiency from patient to patient. This is why anaesthesiologists are inter-
ested in monitoring several variables, in a continuous manner during patients’ recov-
ery, in order to increase their knowledge on what other factors, besides those already
known, are relevant to pain control, and in what measure they influence the whole
process. To achieve this, the main idea behind the uPAIN system is to replace the
PCA push-button by an interface on a PDA (personal digital assistant), which still
allows the patient to request doses from the PCA, but with the addition of the func-
tionality of creating records in a database of all those requests, along with other data
considered relevant by the medical doctors, like the values of some pre-determined
physiological indicators measured by a monitor, and/or other data related to a particu-
lar patient’s state, symptoms, etc. These questions may be automatically asked by the
system, via the PDA, when the patient requests a dose or at regular time intervals, or
even when a medical doctor decides to ask for it.

So, the uPAIN system is intended to provide a platform that enables the registra-
tion of patients’ pain levels and the occurrence of several symptoms related with
analgesia processes, as frequently as desired, while allowing the medical staff to be
permanently aware of the occurrence of all the relevant facts of the patients’ recovery
and pain control processes and, simultaneously, allowing permanent remote wireless
communication among system, patients and medical staff.

Requirements elicitation is all about learning and understanding the needs of users and
project sponsors with the ultimate aim of communicating these needs to the system devel-
opers [2]. Getting the right requirements is considered as a vital and difficult part of soft-

233

ware development projects. Modelling and model-driven approaches provide ways of
representing the existing or future processes and systems using analytical techniques with
the intention of investigating their characteristics and limits [3].

UML use case diagrams are a quite adequate tool to describe user requirements at
a first high-level of abstraction. These diagrams constitute a suitable means for delim-
iting the system boundaries, for identifying the functionalities that should be provided
by the system, and for affecting external actors with specific use case functionalities.
Additionally, brief textual descriptions may be provided in natural language for each
use cases. These diagrams are normally constructed by the developers in a tentative to
document the elicited requirements. Stakeholders can read and use these diagrams to
recognize the main functional areas of the system to be designed.

General functionalities of the uPAIN system are inscribed in the UML use case
diagram depicted in Fig. 1. A set of additional use case diagrams have been con-
structed to refine some of the use cases existent in Fig. 1. The corresponding textual
descriptions have also been obtained.

{U0.2} Register
Patient Symptoms

{U0.1} Administer
Drug

{U0.3} Establish
Communication Link

{U0.4} Consult
Historical Data

{U0.5} Consult
Patient State (EPR)

{U0.6} Get Monitor
Data

{U0.7} Generate
Alert

{U0.8} Service
Admin

Patient

Medical Staff«uses»
«uses»

«uses»

{U0} Upain

«uses»

«uses»

Med.Doctor

Nurse

Chief Med.Doctor

{U0.9} Register
Staff Observations

PCA

Monitor

Fig. 1. UML use case diagram for the uPAIN system.

With the exception of just a few «uses» and «extends» relationships that may already
be shown between use cases, it turns out to be obvious that use case diagrams do not
practically say anything about how the system should be designed, in order to supply
the identified functionalities. A further step on that direction may be provided by
sequence diagrams in order to illustrate the desired dynamic behaviour in what con-
cerns its functional interaction with the environment. These diagrams are also to be
constructed by the developers. Stakeholders can also read them. However, they are
not comfortable with all the details these diagrams can entail.

Fig. 2 depicts one UML sequence diagram for the uPAIN system that describes
one macro-scenario where a patient requests a bolus. That request may be accepted by
the system or originate a request for an explicit medical decision. In the later case, the

234

doctor may decide to authorize the bolus or to reconfigure the PCA parameters. The
integration of several scenarios into only on sequence diagram (for a macro-scenario)
is possible due to the new mechanisms of UML 2.0 in supporting different kinds of
frames.

sendRequest()

ProcessRequest()

Patient

{U0.1.2} Request
Bolus

{U0.1.3} Manage
Drug Administration

PCA Medical Staff

{U0.1.1} Inject
Drug

{U0.1.4} Validate
User

sendOrder()

requestMedicalDecision()

sendID(id)

sendOrder()

reconfigureDrugParams(id,params)

sendID(id)

{U0.1.5} Configure
Drug Parameters

sendConfiguration(params)

authorizeDrugAdministration(id)

alt

alt

{SD0.1#1} Bolus Request

inject()

inject()

setConfiguration(params)

Fig. 2. UML sequence diagram for the uPAIN system.

Some more UML sequence diagrams have been constructed to capture the main
system scenarios. At the analysis phase of system development, we adopt a stereo-
typed version of UML sequence diagrams, where only actors and use cases are in-
volved in the sequences, since no particular structural elements of the systems are
known yet. This kind of sequence diagrams allow a pure functional representation of
behavioural interaction with the environment and are particularly appropriate to illus-
trate workflow user requirements.

Our stereotyped UML sequence diagrams contrast with the traditional ones that al-
ready involve system objects in the interaction with external actors, implying that
those objects must be previously identified. One important issue concerning objects
identification and building object diagrams is that they already model structural ele-
ments of the system, which is clearly beyond the scope of the user requirements.
Additionally, the use of this kind of traditional sequence diagrams at the first stage of
analysis phase (user requirements modelling and validation) require a deeper inter-
vention of modelling skills that are hardly understandable to most stakeholders, mak-
ing more difficult for them to establish a direct correspondence between what they
initially stated as functional requirements and what the model already describes. So, a
validation of the user requirements resulting from such an advanced model is not only

235

more difficult to achieve, but also less trustworthy and less ensuring that the resulting
system will correspond effectively to the stakeholders expectations.

3. CPNs FOR ANIMATION PROTOTYPES

The effort to use only elements from the problem domain (external actors and use
cases) in the user requirements models (use case and stereotyped sequence diagrams)
and to avoid any reference to elements belonging to the solution domain (objects and
methods) is not enough to obtain requirements models that are capable of being fully
understandable by common stakeholders. This difficulty is mainly observable in what
concerns the comprehension of the dynamic properties of the system within its inter-
action with the environment. This means that, even with the referred efforts, those
static requirements models should not be used to directly base the validation of the
elicited user requirements by the stakeholders. Instead, we use those static require-
ments models to derivate animation prototypes.

User friendly visualizations of the system behaviour, automatically translated from
formal systems’ models specifications, accepting user interaction for validation pur-
poses, have been generically called animations. Despite seeming a good idea, in a
context where IT is offering more and more powerful multimedia capabilities, the use
of animation in user requirements validation, as a means of improving the under-
standability of systems’ models by stakeholders, has been considered by only a small
number of researchers.

In [10] an empirical study has been carried out to comparatively evaluate the effec-
tiveness of animation and narration (voice recordings of diagram explanations com-
plemented with PowerPoint slides) in the process of communication of domain informa-
tion to stakeholders for validation purposes, which may be seen as a sign that anima-
tion is increasingly drawing the software engineers’ attention as a potentially valuable
instrument for user requirements validation. The results of that empirical study were
inconclusive about the effectiveness of animation, as opposed to the success of narra-
tion, but in our opinion that was due to the fact that, instead of using a meaningful
user interface, the animations were of a very rudimentary type by highlighting the
graphical elements of the diagrams while narration is being executed.

Some other papers have been published, reporting the use of animations to ease
validation by stakeholders, as is the case in [11], where a CORBA API has been used to
directly interpret VDM-SL specifications of requirements to generate a graphical user
interface. Scenario-based approaches have also been used in [12] as a means of ensur-
ing user-orientation, and also in [13], where fluents (boolean system states that model
pairs of system actions) have been used to relate goals with scenarios and, simultane-
ously, support animation. In [14], virtual reality is used to support animation tech-
niques when modelling high consequence systems (systems where errors in develop-
ment have consequences of high cost).

The behaviour of the animation prototypes (proposed in this paper) results from
rigorous translations of the sequence diagrams into Coloured Petri Nets (CPNs) [15,
16]. The transitions of these CPNs present a strict one-to-one relationship with the
messages in the sequence diagrams. So, for each message in a sequence diagram, one
transition, in the corresponding CPN, is created. The name of each transition matches

236

exactly the corresponding name of the message in the sequence diagram. Two simple
rules were used for that translation: (1) Fig. 3 illustrates the rule for translating two
successive messages in a sequence diagram (Fig. 3a) into a CPN (Fig. 3b); (2) Fig. 4
illustrates the rule for translating an alternative block in a sequence diagram (Fig. 4a)
into a CPN (Fig. 4b).

Fig. 3. Transformation of successive messages.

Fig. 4. Transformation of an alternative block.

Each output place of a transition (corresponding to a message in a sequence dia-
gram that ends in a life line of a use case) represents the reaction of the system to the
message request. Although CPN Tools do not support the creation of pages for the
addition of refinement subnets for places (that is the reason why we use the expres-
sion “refinement subnets”, instead of “refinement subpages”), those output places
may be replaced, at the same hierarchy level, by refinement sub-nets (composed of
one input place, one output place, and one substitution transition between them) to
support the refinement of use cases. The refinement subpage for each substitution
transition describes one refined use case.

Typically, the refinement subnets will be built after the application of the 4SRS (4
step rule-set) technique [7] that transforms users requirements into architectural mod-
els representing system requirements, by mapping use cases into system-level objects
within a four step approach: (1) object creation, (2) object elimination, (3) object pack-
aging and aggregation, and (4) object association. Therefore, each transition in those
subnets will correspond to the invocation of a method of a system object.

237

Fig. 5. CPN responsible for the animation of the use case {U0.1} administer drug.

The CPN of Fig. 5 is responsible for the animation of the use case {U0.1} administer dr
corresponding

to one of t ble for the

in animation paths. Most of the transitions of this CPN

ug
(see Fig. 1) by executing three different sequence diagrams, each one

he three branches of the CPN. The middle branch is responsi
execution of the sequence diagram of Fig. 2. Those nodes and arcs drawn with thin-
ner lines were added in a later phase, and have no semantic correspondence to the
sequence diagrams. They were included for the purpose of tools interoperability, as
explained in section 4.

The CPN represented in Fig. 6 corresponds to the top-level net of the animation
prototype for the uPAIN system. Thick lines were used to represent the elements that
correspond to the ma

238

correspond to the use cases in Fig. 1. The refined CPN of the substitution transition
bolus request of Fig. 6 corresponds to Fig. 5.

Fig. 6. Top-level CPN of the animation prototype for the uPAIN system.

With the transformation rules depicted in Fig. 3 and Fig. 4, direct links betw en
e not intended, nor

considered of interest. Instead, the link between the UML diagrams and the CPNs is
obt

ve a partial evaluation of the requirements and
the

e
the use case diagram (Fig. 1) and the CPNs (Fig. 5 and Fig. 6) ar

ained in two steps: the first is supported by the fact that the sequence diagrams are
directly derived from the use cases; the second is ensured by a direct transformation
of the sequence diagrams into CPNs.

Sequence diagrams transmit partial views for the interaction between the system
and its environment, allowing the adoption of an evolutionary approach, by consider-
ing a set of sequence diagrams to ha

n progress with more detailed requirements. In the uPAIN system, the animation
prototype reflects only a top-level description of the system. After the validation of
this top-level model, a set of additional animations, based on refined sequence dia-
grams at the solution level (where objects would already appear), can be constructed.

239

4. TOOLS INTEGRATION

The implementation of the interactive animation prototype demanded the usage of
several technologies. The integration of tools was mainly based on XML files. Fig. 7
shows the global architecture of the tool environment used to generate the animation
prototype. It is composed of a model executor and an animation tool. The model
executor includes a CPN editor and a CPN simulator, both from CPN Tools. The animation
tool used corresponds to the BRITNeY Animation tool [17].

With BRITNeY Animation tool it is possible to use pre-defined plug-ins (or write our own
plug-ins) for executing some animation behaviour in the model. The pre-defined
plug-ins include SceneBeans [18] (an animation framework), message sequence charts
(for displaying the passing of messages) and plot graphs. The writing of our own
plug-ins involves the coding of Java classes and the creation of an XML description
of the plug-in. BRITNeY Animation tool will automatically generate the code needed for the
simulator to know of and use those plug-ins.

Fig. 7. Global architecture for prototype animation.

It is possible to execute behaviours in the BRITNeY Animation tool while simulating mod-
els in CPN Tools. Behaviours are executed through certain SML functions which in
turn call the corresponding Java methods. The names of the functions correspond to
those of the Java methods. When an SML function calls a Java method it simply
corresponds to the logic of an RMI call. The method name and arguments are passed
over to the interface of the BRITNeY Animation tool and the return value of the executed
method is passed back from the interface. If the method M in class C has the signature
int M (int x, string y), then it could be invoked as C.M (42, "Hello World"). However, this is just an
example to explain the way to use the Java methods in the CPN model (see [17] for
complementary explanations). These behaviours, or methods, can be executed any-
where in the CPN model where an expression is allowed. So, it can be on an arc ex-
pression, code segments on transitions (these are specific for CPN Tools), and so on.

240

This is a nice feature for debugging and for understanding the way the model affects
the animation.

The BRITNeY Animation tool can also be executed as a standalone program, using e.g.
Java WebStart to enable web browser integration. This feature is very useful to gen-
erate an autonomous animation prototype which allows stakeholders to “play with”
without the interference and the presence of elements from the development team.
This approach to validation was experimented with and proved to be very effective.
This empowerment of the stakeholders promoted a deeper involvement of them in the
analysis phase that not only assured better validation results, but also allowed the
complementary elicitation of workflow requirements.

The interactive animation prototype for the uPAIN system is depicted in Fig. 8.
The usage of SceneBeans allowed the animation of actors and message passing. Scene-
Beans provides a parser that translates XML documents into animation objects. A
SceneBeans document is contained within a top-level <animation> element that contains
five types of sub-elements: (1) a single <draw> element defines the scene graph to be
rendered (e.g. the representation of the doctor, the nurse, the patient); (2) <define> ele-
ments define named scene graph fragments that can be linked into the visible scene
graph; (3) <behaviour> elements define behaviours that animate the scene graph (e.g. the
animation of the drug injection from PCA to the patient); (4) <event> elements define
the actions that the animation performs in response to internal events (e.g. the clean-
ing of the info text at the end of the drug injection animation); (5) <command> elements
name a command that can be invoked upon the animation and define the actions taken
in response to that command (e.g. the invocation of the behaviours responsible for the
drug injection animation).

Fig. 9 shows an example of a code segment that was used in our <draw> element.
This code segment is responsible for the creation of the icons for the patient, the
uPAIN system and the black ball that represents the messages between actors. To
animate the ball, we used the <animate> element, that means that parameters x and y will
be animated by the behaviours xf_patient_to_system and yf_patient_to_system, respectively.

Fig. 10 shows the behaviours, the commands and the events that are responsible
for moving the ball from the patient to the uPAIN system. When the simulator in-
vokes the command f_patient_t_system_cmd, the behaviours corresponding to the move-
ment of the ball and the displaying of its textual info are started. When the execution
of a behaviour ends, the animation will trigger the associated event, and this will start
other behaviours, like xball_out (to hide the ball), fadeout_info (to hide the textual info), or
hide_patientpda_icon (to hide the patient PDA icon). At the end, the event will be an-
nounced, which is crucial, because it allows the CPN simulator to capture it.

Communication between SceneBeans objects in the animation and the CPN model
can be done in two ways: (1) asynchronously, here the CPN model simply invokes a
command on a SceneBeans object and proceeds simulating, not caring for the moment
when the animation behaviour that was executed terminates; (2) synchronously, here
the CPN model, again, invokes a command on a SceneBeans object, but, instead of just
proceeding, the CPN model waits for a particular event to arrive (e.g. the event “ball
moved from patient to system”). This event would be broadcasted by the animation
command that was executed when it terminates to let the CPN model know that this
animation has completed. Synchronous interactions with SceneBeans objects must be

241

carefully analyzed; otherwise, animations that should be executed in sequence will be
executed concurrently. It is necessary to determine which animation behaviours are to
be completed before any other can proceed (synchronous) and those which can occur
in any order (asynchronous). Invocations on SceneBeans objects are asynchronous in
the sense that, per default, they do not broadcast any event; this has to be specified in
the SceneBeans XML specification.

Fig. 8. Interactive animation prototype for the uPAIN system.

After creating all the behaviours, commands and events, which allow the
animation to announce events and receive commands from the CPN simulator, the next
step is to create Java classes. SceneBeans have the limitation of not allowing the user to
input dynamic contents. In fact, SceneBeans only allows the creation of animations,
based on static behaviours, defined in an XML file. The Java classes we created are
responsible for showing the graphical interfaces of the PDAs and for sending the
corresponding user (of the animation prototype) inputs to the CPN simulator. For
instance, the Log Window that shows all the messages sent between actors demanded
the creation of a Java class (Messenger) that receives the messages from the CPN simulator.
To add a new message to the list of messages of the Log Window, we simply invoke
Messenger.createAndShowGUI(“message”). After creating the Java classes, an XML description
must be constructed so that the BRITNeY Animation tool recognizes them as plug-ins (see
Fig. 11).

242

Fig. 9. Drawing in SceneBeans.

Fig. 10. Defining behaviours, commands, and events in SceneBeans.

To access public methods of previously written Java classes (Chat, ScenarioSelector,
Messenger, Ppda, Dpda, and Npda) and to invoke commands of the SceneBeans object (object
anim) from the CPN Tools, plug-ins must be declared and instantiated as objects in the
index of CPN Tools (see Fig. 12).

243

Java classes in defined animation plug-ins can be instantiated through SML
(Standard Meta Language) functors that BRITNeY Animation tool generates. SML functors
are “abstract” SML structures which can be instantiated. A Java object is instantiated
by, e.g., structure anim = SceneBeans(val name = "Name"), which instantiates an object from the
SceneBeans class. Methods on the instantiated anim are accessed as public methods
defined in the SceneBeans class. Another example is the function SPO () in the transition
Select Patient Options of Fig. 6 that contains the following code to invoke methods to our
Java objects:

Messenger.cleanText ();
Ppda.createAndShowGUI (“mainmenu”);
Ppda.getValueString ();

SceneBeans objects provide also some methods to control the animation. For in-
stance, the calling of function move () in the CPN of Fig. 5 consists in an invocation of
the method invokeCommand to the SceneBeans object anim (Fig. 12), which is responsible for
invoking the previously defined commands in the XML file (Fig. 10). In this case, the
invoked command corresponds to the movement of the black ball between the actors
of the animation.

Fig. 11. Defining Java classes as plug-ins of BRITNeY Animation tool.

Additionally, it is possible to capture events announced by the animation. In our
animation prototype we included one CPN subpage called Events (Fig. 13) that is com-
posed by two distinct parts: one is responsible for the initial loading of the XML
animation description (places Start and Running, and transition Init); the other part in-
cludes the transition Capture Event (captures all the events announced by the SceneBeans
animations and places them, in the form of a string list, in the place Events) and the
place Events. This place Events can be cloned and connected to any transition where the
capture of specific events is required (see, for instance, the nodes and arcs drawn with
thinner lines in Figs. 5-6). These cloned places are named EventN (where N is a digit
that serves only as a distinguishing character, because CPN Tools do not accept
places with the same name, in the same page) and have no semantic meaning from the
workflows’ point of view. They are only needed for tool interoperability.

244

Fig. 12. Declaring and instantiating objects in CPN Tools.

Fig. 13. Events CPN subpage.

5. USABILITY ISSUES

According to [19], usability is considered “the extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”. This means that, besides all the technical
efforts described in the previous two sections of this paper, the effectiveness of the
implemented animation prototype to involve stakeholders in the interactive execution
of the elicited sequence diagrams, complementary elicitation of workflow require-
ments and validation of the requirements model was also a result of a strong invest-
ment in using usability techniques in the construction of this software artefact,
namely in what concerns its GUI (graphical user interface) and the comfort of exploi-
tation of the animation prototype.

The adopted GUI makes use of eight icons on the display: three proactive actors
(one patient, one medical doctor and one nurse); four reactive actors (one monitor,
one PCA device and two databases in use at the hospital); and the uPAIN system
represented by a cloud. The adopted GUI should be obvious and intuitive to the

245

stakeholders and thus, with the exception of the cloud and the databases, we opted for
“concrete” icons. When real-world objects are represented in an icon (“concrete”
icon), individuals are likely to find it more meaningful, are often familiar with the
items depicted, and find it easy to make links between what is shown in the icon and
the function it is supposed to represent [20]. To symbolize the uPain system (a con-
cept which is difficult to materialize and to represent), we chose a cloud which consti-
tutes an “abstract” icon. Forming strong systematic relations between icons and func-
tions is very important, particularly when there are no pictorial alternatives for a
given icon function [21]. To represent the uPain system we wanted an icon that em-
phasized its pervasive and wireless nature. Databases are also represented through an
“abstract” icon which is a standard way to represent software-technology databases.
We also opted for uniform icons in terms of size because we wanted to avoid stake-
holders focusing on some of the icons and not others due to size differences; we
wanted them to have, at the first glance, the notion of the whole GUI. On the other
hand, the real sized PDA is the bigger element and the only one which detaches from
the GUI in terms of size, in order to improve the legibility of its contents.

Fig. 14. Message passing in the animation prototype for the uPAIN system.

Whenever one proactive actor is clicked with the mouse, a PDA icon appears
above it and then, a real sized version of the PDA is also displayed, showing the pre-
defined options, corresponding to possible requests (see Fig. 8). Through each proac-
tive actor’s PDA, the stakeholder just has to select the desired option and then the
corresponding sequences are executed (each one of these is formally related with one
of the UML stereotyped sequence diagrams).

246

Each time one of the proactive actors is clicked, a black ball (representing the ac-
tor’s request) is sent from the actor towards the cloud. In Fig. 14, the stakeholder
interacting with the animation prototype chose the “consult patient state” option by
using the PDA of the medical doctor. The snapshot in Fig. 14 corresponds to the
exact moment in which the monitor is sending to the uPAIN system some physiologi-
cal indicators about the patient; this data exchange is graphically represented by the
black ball trajectory in the display. This snapshot also shows a log window, where all
the requests and interactions are registered. At the same time, underneath the cloud, a
textual expression “receiving patient data” identifies the ongoing request/interaction.
A caption, identifying the selected option is displayed during the whole action in the
upper left corner of the display to prevent stakeholders from forgetting the task at
hand and to provide them feedback, a golden rule of GUI design suggested in [22]. It
is crucial for stakeholders that the animation prototype lets them know at what point
they are, at any given time in a clearly understandable way. Additionally, in Fig. 8 it
is possible to observe a green coloured “Ready…” message informing that the anima-
tion prototype is ready to accept one mouse click in one of the buttons of the dis-
played PDA. If, in any point of the simulation, the actor “uPAIN system” is in proc-
essing state, then a spinning globe appears inside the cloud and a red coloured “Run-
ning…” message is presented (see Fig 12).

To assure that the purpose of any graphical entity is clearly apparent and inferred
(an important cognitive dimension in GUI design to deal with expressiveness [23]), a
green dashed line contour was added around each proactive actor to make clear that
only these are the proactive actors on which it is possible to click to produce some
kind of interaction (Fig. 15). The green coloured “Ready…” message also appears
when these green dashed line contours are displayed. We also used a dashed line and
different background colours to help delimit the three main areas of the GUI and
grouping actors in a logical way, according to the areas in the hospital where they
may be: the patient, the monitor and the PCA are always in the infirmary; the two
databases are installed in the server’s room; the medical doctor and the nurse can be
elsewhere due to the nature of uPain system (ubiquitous); and the uPain system is
“everywhere” in the hospital and so the cloud is placed in the middle of the three
dashed areas. Below each actor, and to ensure that the actor is clearly identified im-
mediately, the respective caption was added, since good labelling can guide stake-
holders through the GUI with minimal search time. We also labelled the three dashed
areas. This approach in GUI design contributes for a reduced cognitive load and im-
mediate recognition in detriment of recalling in order to let stakeholders make opti-
mal use of their high level cognitive abilities and save them to perform the essence of
work; i.e., using the high level cognitive capacity for the more demanding work tasks
such as workflow requirements validation, which is the real aim of the animation
prototype.

The reduction of short-term memory load [23] was another intended goal, once in
that part of memory only few information elements (typically, 5 to 8) can be stored
simultaneously and the decay time is short (approximately 15 sec.). Thus, we avoided
a dense area with many elements and presented only the necessary information.

247

Fig. 15. Dashed line contours in the animation prototype for the uPAIN system.

The animation prototype was first demonstrated to the stakeholders with a strong
involvement of the developers to explain the main approach to its usage as a software
artefact to support the early execution of functional requirements. After that, the
stakeholders have been given a standalone version of the animation prototype. This
usage of the animation prototype has enabled the effective validation of requirements,
since stakeholders generate frequently change requests to incorporate new scenarios
and to adjust others already elicited, which has definitively contributed to the rapid
evolution of the requirements model maturity, prior to design phase. We believe the
usability concerns we adopted in designing the whole animation prototype was de-
terminate to the success of the uPAIN project.

6. CONCLUSIONS

Static requirements models should not be used to directly base the validation of the
elicited user requirements by the stakeholders, since the effort to use only elements
from the problem domain in the user requirements models and to avoid any reference
to elements belonging to the solution domain is not enough to obtain requirements
models that are capable of being fully understandable by common stakeholders. The
stakeholders’ comprehension of the dynamic properties of the system within its inter-
action with the environment is better assured if animation prototypes, formally de-
duced from the elicited static requirements models, are used.

The behaviour of the animation prototypes can be specified by using CPNs rigor-
ously translated from use case and stereotyped sequence diagrams. An effective exe-
cution of UML models can be achieved by using CPN Tools to operationally imple-

248

ment the interaction with the stakeholders within their efforts to validate the previ-
ously elicited workflow requirements models. Presently, the referred transformations
are executed manually, which can be considered a major drawback of the proposed
approach when the system to animate is of large dimension, presenting a great num-
ber of use cases and a large amount of behavioural scenarios to transform into CPNs.

The generation of standalone versions of the interactive animation prototypes mo-
tivates stakeholders to get a deeper involvement in the analysis phase (without the
interference of the development team). Usability features of the animation prototypes
must also be carefully studied and experimented, before reaching the final version of
the prototype in supporting the interactive execution of the elicited sequence dia-
grams, complementary elicitation of workflow requirements and validation of the
requirements models. CPN Tools and BRITNeY Animation tool should evolve to support
better the transparent generation of this kind of standalone versions and to allow a
simpler start-up of an animation.

As future work, we intend to automatically generate CPN skeletons from work-
flows requirements models (use case and stereotyped sequence diagrams). Addition-
ally, we will study the possibility of using CPNs, constructed for specifying the be-
haviour of the animation prototype, to base the behavioural specification of the ele-
ments that will compose the architecture of the system within the design phase. If
data-flow languages (such as LabVIEW, as described in [24, 25]) are used to develop
the semantic layer responsible for integrating the whole ubiquitous system (embedded
and mobile devices, database accesses and a service-oriented architectural platform),
the asynchronous nature of CPNs will smooth the transition from analysis to design
phases in what regards behavioural models. A semantic layer in the Arena environ-
ment [26], capable of accepting CPN-based workflow specifications, will also be
developed to allow the stochastic execution of workflow scenarios as a complement
to the current validation approach based on CPN Tools.

References
1. IEEE 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology, 1990.
2. D. Zowghi, C. Coulin. Requirements Elicitation: A Survey of Techniques, Approaches, and Tools.

In A. Aurum and C. Wohlim (Eds.), Engineering and Managing Software Requirements, pp. 19–46,
Springer-Verlag, July, 2005.

3. R.J. Machado, I. Ramos, J.M. Fernandes. Specification of Requirements Models. In A. Aurum and
C. Wohlim (Eds.), Engineering and Managing Software Requirements, pp. 47-68, Springer-Verlag,
July, 2005.

4. Y. Liang. From Use Cases to Classes: a Way of Building Object Model with UML. Information and
Software Technology, no. 45, pp. 83–93, 2003.

5. J. Whittle, R. Kwan, J. Saboo. From Scenarios To Code: An Air Traffic Control Case Study. Soft-
ware and Systems Modeling, vol. 4, no. 1, pp. 71-93, Springer-Verlag, Feb/2005.

6. I. Krüger, R. Grosu, P. Scholz, M. Broy. From MSCs to Statecharts. In F.J. Rammig (Ed.), Distrib-
uted and Parallel Embedded Systems, pp. 61-72, Kluwer Academic Publishers, 1999.

7. R.J. Machado, J.M. Fernandes, P. Monteiro, H. Rodrigues. Transformation of UML Models for
Service-Oriented Software Architectures. 12th IEEE Int. Conference on the Engineering of Com-
puter-Based Systems (ECBS 2005), Greenbelt, Maryland, U.S.A., pp. 173-182, IEEE CS Press,
April, 2005.

249

8. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models, Systems

and Standards for Workflow Management. In J. Desel, W. Reisig, G. Rosenberg (Eds.), Lecture
Notes in Computer Science 3098, pp. 1-65, Springer-Verlag, 2004.

9. M. Beaudouin-Lafon, W.E. Mackay, P. Andersen, P. Janecek, M. Jensen, M. Lassen, K. Lund, K.
Mortensen, S. Munck, A. Ratzer, K. Ravn, S. Christensen, K. Jensen. CPN/Tools: A Post-WIMP
Interface for Editing and Simulating Coloured Petri Nets. 22nd International Conference on Appli-
cations and Theory of Petri Nets (ICATPN 2001), Newcastle upon Tyne, UK, June, 2001.

10. A. Gemino. Empirical Comparisons of Animation and Narration in Requirements Validation.
Requirements Engineering, vol. 9, pp. 153-168, Springer-Verlag, November, 2003.

11. P. Fenkam, H. Gall, M. Jazyeri. Visual Requirements Validation: Case Study in a Corba-supported
Environment, IEEE Joint International Conference on Requirements Engineering (RE’2002), 2002.

12. M.B. Ozcan, P.W. Parry, I.C. Morrey, J. Siddiqi. Requirements Validation Based on the Visualisa-
tion of Executable Formal Specifications. International Conference on Computer Software &
Applications, pp. 381-386, Austria, IEEE CS Press, 1998.

13. S. Uchitel, R. Chatley, J. Kramer, J. Magee. Fluent-based Animation: Exploiting the Relation
between Goals and Scenarios for Requirements Validation, 12th IEEE Requirements Engineering
International Conference (RE’04), 2004.

14. V. Winter, D. Desovski, B. Cukic. Virtual Environment Modeling for Requirements Validation of
High Consequence Systems, Proceedings of the IEEE International Conference on Requirements
Engineering, pp. 23-30, 2001.

15. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Volumes 1-3.
Monographs in Theoretical Computer Science. Springer-Verlag, 1992-1997.

16. L.M. Kristensen, S. Christensen, K. Jensen. The Practitioner’s Guide to Coloured Petri Nets. Inter-
national Journal on Software Tools for Technology Transfer, no. 2, pp. 98-132, 1998.

17. BRITNeY Animation tool. wiki.daimi.au.dk/tincpn
18. N. Pryce, J. Magee. SceneBeans: A Component-Based Animation Framework for Java.

http://www-dse.doc.ic.ac.uk/Software/SceneBeans/
19. ISO 9241-11: Guidance on Usability, 1998.
20. S.J.P. McDougall, M.B. Curry, O. de Bruijn. Exploring the Effects of Icon Characteristics on User

Performance: The Role of Icon Concreteness, Complexity, and Distinctiveness. Journal of Experi-
mental Psychology: Applied, vol. 6, no. 4, pp. 291-306, 2000.

21. S.J.P. McDougall, M.B. Curry, O. de Bruijn. The Effects of Visual Information on Users` Mental
Models: An Evaluation of Pathfinder Analysis as a Measure of Icon Usability. International Journal
of Cognitive Ergonomics, vol. 5, no. 1, pp. 59-84, 2001.

22. M. Welie, G. van der Veer, A. Eliëns. Breaking Down Usability. Interact 99, Edinburgh, Scotland,
1999.

23. J.F. Pane. A Programming System for Children that is Designed for Usability. PhD Thesis, Com-
puter Science Department, Carnegie Mellon University, Pittsburgh, USA, May, 2002.

24. R.J. Machado, J.M. Fernandes.. Heterogeneous Information Systems Integration: Organizations and
Methodologies. In M. Oivo, S. Komi-Sirviö (Eds.), 4th International Conference on Product Fo-
cused Software Process Improvement (PROFES’02), pp. 629-643, Rovaniemi, Finland, Lecture
Notes in Computer Science Series 2559, Springer-Verlag, December, 2002.

25. R.J. Machado, J.M. Fernandes. Integration of Embedded Software with Corporate Information
Systems. In A. Rettberg, M.C. Zanella, F.J. Rammig (Eds.), From Specification to Embedded
Systems Application, IFIP Series vol. 184, Springer-Verlag, September, 2005.

26. W.D. Kelton, R.P. Sadowski, D.A. Sadowski. Simulation With ARENA, 2nd edition, McGraw-Hill,
2002.

250

Analysis of resource-constrained processes with
Colored Petri Nets

Mariska Netjes, Wil M.P. van der Aalst, Hajo A. Reijers

Eindhoven University of Technology, Faculty of Technology and Management,
(PAV J5,) PO Box 513, NL-5600 MB Eindhoven, The Netherlands

Contact: m.netjes@tm.tue.nl

Abstract. Formal models of business processes support the performance analysis of pro-
cesses and the evaluation of redesign alternatives. This paper presents a formal model to
analyze the behavior of resource-constrained processes. The model is developed using Col-
ored Petri Nets (CPN or CP nets) and the supporting software package CPN Tools. In our
approach, a business process consists of tasks and resources able to perform one or more
tasks in the process. We developed a task building block to model tasks and a resource
module to model the allocation of resources with different allocation methods. The opening
of a bank account is used as an example process to investigate two so-called “best practices”
while using the simulation facility of CPN Tools. First, we explore the specialist-generalist
trade-off, i.e., finding the optimal ratio of specialists and generalists. Then we explore the
flexible assignment policy, i.e., a strategy to deploy specialists first to preserve operational
flexibility.

1 Introduction

Organizations are constantly looking for ways to improve their performance. By emphasizing
business processes rather than hierarchies and by putting a focus on customer satisfaction, organi-
zations tend to attain better overall performance, a better esprit de corps and less interfunctional
conflicts [16]. A survey among 90 Swedish organizations, ranging from small consulting firms, hos-
pitals and state-owned companies to multinational companies such as ABB, Ericsson, Saab and
Volvo, pointed out that organizations seem to be quite satisfied with the effects of such a process
orientation and that they were planning to allocate more resources to their process initiatives [7].

A process initiative can take on different forms, for example, as a project to rethink the
underlying process structure, to change resource allocation strategies, or by the introduction of
new technology such as workflow management systems. In this paper, we focus on a number of
best practices in this area. A best practice prescribes a historical solution that seems worthwhile
to replicate in another situation or setting, although it may need to be adapted in skilful ways in
response to prevailing conditions. A collection of best practices for business process improvement is
given in [18]. It should be noted here that many of the best practices lack adequate (quantitative)
support. It is our objective to investigate two of these best practices in more detail in this paper,
i.e., the so-called specialist-generalist trade-off and the flexible assignment policy. We would like
to obtain insights in the underlying mechanisms and see under which conditions the best practices
indeed provide improvements.

The specialist-generalist trade-off aims at finding the optimal ratio of specialists and generalists
in a process. Given a fixed number of resources, the question is how many of the resources should
be specialized resources and how many of them should be generic resources. We define a specialist
as a resource able to perform exactly one task. Routine is built up in doing this task and as a
result he or she performs the task faster. A generalist is able to perform more tasks and adds
flexibility to the process leading to a better utilization of resources [18].

Using a flexible assignment policy means that resources are assigned to the work in such a way
that maximal flexibility is preserved for the near future. When both specialists and generalists are
available to perform a certain task the most specialized resource is assigned to the task. By doing
this, more generic resources are ‘saved’ for other tasks for which this specialized resource might

251

not be suitable. In this way, the waiting time for a suitable resource may be reduced. Another
advantage is that the specialized resource is more skilled and will need less time to perform the
task [18].

In this paper, we focus on an abstraction of an actual business process as a collection of a
number of inter-related tasks, where a limited number of resources (people, systems, machines,
etc.) is available to execute the process. To be more precise, a task is an “atomic” and logical unit
of work, which is carried out in full or not at all. A task which is just about to be executed for a
specific case (or process instance) is called a work item. Each work item should be performed by
one resource suited for its execution. This implies that, while there may be several resources able to
perform a given work item, exactly one resource should be assigned to perform the work item. Note
that we reserve the term activity for the actual execution of a work item [3]. Resources are grouped
into roles to facilitate the mapping of resources on work items. A role is a group of resources with
similar characteristics. A resource has one or more roles and each role may be performed by many
resources [12]. The objective of this paper is to give an approach for analyzing the performance
of such a resource-constrained process and to show how a choice between alternative designs for a
process using best practices can be supported with this kind of analysis.

For the modeling and analysis of resource-constrained processes, CPN Tools is used. This tool
provides support for the construction, simulation and performance analysis of high-level Petri nets
[11]. CPN Tools is chosen, because it combines the strength of Petri nets with the strength of pro-
gramming languages. The reasons for using Petri nets to model business processes are stated in [1].
The basic behavior of a process is modeled and visualized with Petri nets and more sophisticated
behavior is added through ML functions. It is possible to debug the model and validate the correct
behavior of the model with a step-by-step simulation of the model. Alternatively, the functional
correctness of the system can be validated and verified with state space analysis. Once the model
is validated, it is easy to make adaptations to it and create alternatives for the original model. The
simulation environment in CPN Tools also has the capability to perform an automatic sequence of
firings to examine the behavior of a model in the long run [20]. The combination of time and sim-
ulation in CPN Tools provides the possibility to analyze the performance of the modeled process.
For an introduction into high-level Petri nets and CPN Tools the reader is referred to [8,9,11,20].

The structure of the paper is now as follows. Section 2 describes the developed CPN model
and explains the task building block, the resource module and the different allocation methods
in more detail. Section 3 describes the application of the developed CPN model to investigate
the mechanisms of the specialist-generalist trade-off and the flexible assignment policy. Section 4
discusses the related work and section 5 gives the conclusions and proposes future work.

2 Development of the CPN model

Before investigating the specialist-generalist trade-off and the flexible assignment policy, we de-
scribe the developed CPN model. Both best practices aim at the improvement of resource-constrained
processes. The purpose of the model is to provide an easy way to model such a resource-constrained
process and change it to evaluate the use of the best practices under different circumstances. In
this section we first give an overview of the top level of the developed model to show its main
parts. Further, we explain the sub models which represent the different elements of a general
resource-constrained process. These elements are the generic task building block, the generic re-
source module and different resource allocation methods.

2.1 Overview of CPN model

In Figure 1, an example of the top level or main page of the CPN model (for a process consisting
of two sequential tasks) is shown. The different parts of the CPN model are the generator, the
process (a number of tasks in some relation to each other, e.g. sequential) and the generic resource
module for the allocation of resources to the process.

252

Start_
case

Case

To_next_
 task

Case

Task_
Name1

Task

Task_
Name2

Task

Service_
Times1

ResStime

Service_
Times2

ResStime
Resource_
Exchange

ResEx

End_case

Case

Task_
Roles

TaskRoles

Resources

Resources

Generator
GEN

Task1
TASK

Task2
TASK

Resource Module

RES

Fig. 1. Top level

We give a global description of each of the parts to explain how the model works. The
Generator generates cases which flow through the process. The process consists of tasks placed
in some configuration, allowing for both sequential and parallel configurations. To ensure rapid
and straightforward modeling of (large) processes a generic task sub model is developed. This
sub model gives each task the same layout and functionality, because for each additional task an
instance of the generic task sub model is used. At the top level the specific task variables need
to be configured, because these specific variables distinguish one task instance from another. For
each task the task name needs to be added to the place Task Name and the service times (one for
each role that may perform the task) need to be added to the place Service Times. The Task
and Resource Module substitution transitions communicate and exchange resources through the
place Resource Exchange. The resource module arranges the allocation of resources to work
items in a generic way. The resource module is generic, i.e., the number of tasks and resources in
the process is not predefined. Only a specification of the roles able to perform a specific task and
the available resources is required. For each task, the associated roles need to be specified in the
place Task Roles and the available resources need to be placed in the place Resources. Available
resources are named according to their role, because the role of the resource is the only attribute
required for the mapping of resources to tasks. According to the standard definition of a role [3],
it is possible that resources have more than one role, but in this model the assumption is made
that every resource fulfills exactly one role. This is not necessarily a limitation, because resources
with more roles can be linked to a ‘meta’-role enclosing these roles. For example, if a resource has
roles r1 and r2, we could add a new role r12 which is attached to all tasks that require r1 or r2.

2.2 Task building block

A process model consists of a number of tasks placed in a certain order. When a work item
flows through the process, service times could differ per task and depend on the type of resource
performing the task. Each task has the same basic functionality with a different value for the service
time and different resource types. A generic task sub model enclosing the required functionality is
developed. This model is called a task building block, because a process can easily be built with
these blocks. It is possible to place the building blocks in a sequential order or to put them in
parallel. The task building block is depicted in Figure 2. The main functions of the task block are
requesting a suitable resource and putting a time delay on the case and the involved resource. An
explanation of the color sets used in Figure 2 is given in Table 1.

253

start_
case

Case
In

end_
case

Case
Out

executing

Activity

waiting

Work_Item

task_
name

Task
I/O

service_
times

ResStime
I/O

resource_
exchange

ResEx
I/O

start_task

[i=exp(stime)]

end_task
resource_
request

((id,t),resource)@+i ((id,t),resource) (id,t)(id,t) ((id,t),task) ((id,t),task)

task

(resource,stime)

id1(id,task) id3(resource)
id2(id,task,resource)

Fig. 2. Task building block

Table 1. Color sets

Color sets task building block Color sets resource module

color I = int color ID = int timed
color ID = int timed color Task = string
color T = int color Prerequest = product ID * Task
color Case = product ID * T timed color Role = string
color Task = string color Roles = list Role
color Work Item = product Case * Task color TaskRoles = product Task * Roles
color Stime = int color Request = product ID * Task * Roles
color Role = string color Requests = list Request
color Resource = Role color Resource = Role
color ResStime = product Resource * Stime color Resources = list Resource
color Activity = product Case * Resource timed color Match = product ID * Task * Resource
var i:I color ResEx = union id1:Prerequest+id2:Match
var id:ID +id3:Resource
var t:T var id:ID
var task:Task var task:Task
var stime:Stime var roles:Roles
var resource:Resource var request:Request

var requests:Requests
var resource:Resource
var resources:Resources
var match:Match

254

Before we describe the details of the task block we will look at the interaction between a task
building block and the resource module. A task building block communicates with the resource
module through the place resource exchange. The purpose of the communication is obtaining a
suitable resource from the resource module to perform a specific work item. After completion of
the task the resource is returned to the resource module. In Figure 2 we see two arcs going to and
one coming from the place resource exchange. A token travelling the left arc going to the place
resource exchange represents the request for a resource and for requesting two attributes, the
case id and the task name, are required. The middle arc returns a token representing the request
and the resource attached to it. The attributes on this arc are the case id, the task name and
the resource. With the right arc the resource returns to the resource module. We see that the
sets of attributes, or color sets, on the inputs and output of the place resource exchange differ.
However, the place resource exchange should have a color set consistent with each of these input
and output colors. We make a union place from the place resource exchange uniting the different
color sets to have one consistent color set. The color set of the place is a union of the different
input and output color sets. Each arc has an identifier with the required attributes to specify the
color set related to the arc. With the place resource exchange specified as a union place different
tokens with different color sets may pass it.

Let us now consider the task building block in more detail. A case enters the task block via
the place start case. A case has attributes specifying a unique case id and the time the case was
generated. The task name is stored in the place task name. The task name is added to the case
attributes, because it is necessary for the resource request. By adding the task name the case is
changed to a work item, which needs to be executed. A resource request stating the case id and
the task name is sent to the resource module via place resource exchange. The work item waits
in the place waiting until a work item with the case id and the same task name (together with
the allocated resource) is available in the place resource exchange. The mapping on the waiting
work item is done based on both the case id and the task name to allow for parallel execution of
tasks for the same case. Recall that the term activity [3] refers to the actual execution of a work
item. The average service time needed by the resource to complete the activity is received from the
place service times. The duration or actual service time is modeled as a negative exponentially
distributed delay. When the delay time of the activity is passed, the resource is returned to the
place resource exchange and the case leaves the task block via the place end case.

resource_
exchange

ResExI/O

requests

Requests

[]

busy

Resource

idle

Resources
I/O

task_
roles

TaskRoles
I/O

make_
match

input (requests,resources);
output (match);
action (makematch(requests,resources));

[matchexist(requests,resources)]

return

input_
request

requests

select_res(match)

id2(match)

resources

resource

resources^^[resource]

id3(resource)

delete_req(requests,match)

delete_res(resources,match)

resources

requests
requests^^[(id,task,roles)]

(task,roles)
id1(id,task)

Fig. 3. Resource module

255

2.3 Resource module

The resource module has been developed to allocate resources to work items. In the module, each
resource is assigned to exactly one role and the resource name is equal to the assigned role. For
instance, a resource with role postman is called a postman. If there is more than one postman in
the process, then all resources with role postman are called postman. A role is linked to one or
more tasks, i.e., a resource with a certain role is capable of performing one or more tasks. Resources
are allocated to work items by mapping the role of the resource with the task that needs to be
executed for the work item.

The resource module is a generic solution, i.e., the use of the model is not limited to a specific
number of tasks or resources and the functionality is the same for every resource-constrained pro-
cess model. Figure 3 shows the resource module and Table 1 contains the color sets of the resource
module. We will explain the resource module in more detail starting in place resource exchange
and following the arcs from there.

A resource request for a certain work item is received in the place resource exchange. The
resource request has the attributes case id and task name, because both attributes are necessary
to return the filled request to the right work item. At the first transition, input request, the
roles that may perform the work item are added to the request. The request (with attributes case
id, task name and roles) is put in a list with requests ordered in a First Come First Serve order.
This is done by putting an arriving request at the end of the requests list. The requests will be
matched with the available resources starting from the top of the requests list. The combination of
the case id and the task name from the request and the allocated resource is called a match. When
more role types are able to perform a certain task an allocation method is necessary to allocate
role types in a specified order. Note that in the next section different allocation methods and the
associated functions are described. The available resources are stored in the place idle. If a match
exists, the transition make match is enabled. When enabled, an attempt is made to match the first
request from the requests list with an available resource. When a resource with the required role
is available a match is found. A match is transferred to the place resource exchange and from
there to the corresponding task. The matching request and resource are deleted from the requests
list and the resources list. Next to this, busy resources are stored in the place busy res. This place
can be perceived as redundant, but it is added so show which resources are actually busy. From
head to tail the requests list is evaluated and matches are made. Requests for which no resource
is available wait and stay in the requests list. When a resource is finished working on a task, it is
put back in the resources list via place resource exchange and transition return.

One could think that the model has some restrictions. One possible restriction is that it is not
possible to withdraw an assignment of some work to a resource. This functionality is not added,
because human resources will become demotivated when work is taken from them just before
they will start working on it. More on assignment policies, the possible choices and the subsequent
consequences can be found in [23]. Another point that can be seen as a limitation is that a resource
can not work on several activities at the same time. This limitation follows from the definition of a
task as an “atomic” piece of work. Once started, the task needs to be finished before the resource
will be able to start another task [3].

2.4 Resource allocation methods

The resource module allocates resources to work items based on a certain allocation method. An
allocation method specifies the order in which the allocation of different resource types should take
place. Two allocation methods, priority based allocation and random allocation, are modeled for
incorporation in the resource module. We have chosen to define allocation methods with ML func-
tions. The functions are made on two levels, the top level functions are the same for each allocation
method and these functions call lower level functions which define the specific allocation method.
By doing so, the CPN sub model representing the resource module is the same regardless of the
chosen allocation method, because the resource module only refers to the top level functions. We
will briefly discuss the top level functions, they are all mentioned in Figure 3. All functions are

256

connected to the transition make match in the resource module. This transition is enabled when
the precondition in the guard is satisfied. The precondition function matchexist evaluates if at
least one possible match exists between the list with requests and the resources. When the tran-
sition make match is enabled it performs an action. The action part of the transition make match
is used to model the action and the action part is placed under transition make match (see Figure
3). In the action part the input, the output and the actual action are specified. The inputs for the
action part are the list with requests and the resource list. The actual action is the evaluation of
the function makematch. When evaluated this function calls the lower level functions for a specific
allocation method. The output of the action part is a match between a request and a suitable
resource allocated with the underlying allocation method. This output, match, is used to put the
right value on each arc going from transition make match to one of the surrounding places. The
match itself, with attributes case id, task name and resource, is returned to the requesting task via
the place resource exchange. The function delete req evaluates the requests list and deletes the
request which is in the match. The function delete res deletes the matching resource from the
resources list. The function select res places the resource assigned to the match in the busy place.

We have predefined an allocation method to assign resources on priority and a method to assign
resources randomly. The general idea of both methods will be described. We will first explain the
priority based allocation and then the random allocation.

With priority based allocation it is already known before the actual allocation in which order
resources will be assigned to work items. The roles able to perform a task are prioritized and the
order in which resources are assigned is based on the priority of their role. The priority of the roles
is defined in the place task roles. For each task the roles able to perform the task are specified.
The roles are ordered from high priority to low priority. From the available resources the resource
with the highest priority role is selected and assigned.

With random allocation the available resources with a suitable role all have an equal change
of being selected. For each resource request a preselection of all resources with a suitable role is
made. From this preselection a resource is randomly chosen and allocated.

For validation purposes a tandem M/M/1 queueing system has been modeled with the task
building blocks and the resource module. The simulation results from this model are equal to
the results calculated with queueing theory [10]. This validation suggests the model is working
as we expected. To collect the statistics we have used the monitoring facility of CPN Tools. This
facility has not yet been released. However, we were able to use a prerelease. The facility allowed
us to collect measurement data without changing the functional model and thus very helpful in
maintaining the readability of the models.

3 Application of the CPN model

In this section we will use the developed CPN model to investigate how process performance
is influenced by the ratio of specialized and generic resources in the process and the allocation
method applied to these resources. In this section we will first give a short introduction on the
best practices and the example process on which they are applied. Secondly, we will apply the
specialist-generalist best practice to find the optimal ratio of specialists and generalists. Next to
that, we will investigate when flexible assignment of resources should be applied.

3.1 Introduction

We would like to have more (quantitative) insight in the best practices for business process im-
provement. In this paper we consider two best practices related to the assignment of specialized or
generic resources. We will investigate under which conditions process improvements are achieved
with the application of the best practices. We look for improvements of the average throughput
time of the process and this measure is used as performance indicator. With the developed CPN

257

model we model an example process on which we apply the best practices. This example process
deals with the opening of a bank account. A short description of this bank process is as follows.
When a registration for a bank account is received the data is entered into the system. Secondly,
the bank account is initiated and finally a letter is sent to the customer. The process model is
built with three task building blocks and the resource module and is depicted in Figure 4.

Start_
case

Case

To_task2

Case

Task_
Name1

Task

1‘"Data_Entry"

Task_
Name2

Task

1‘"Initiate_Account"

Service_
Times1

ResStime

1‘("Assistant",2000)++
1‘("Assistantplus", 2500)++
1‘("Administrator",2500)++
1‘("Supervisor",3000)

Service_
Times2

ResStime

1‘("Clerk",5000)++
1‘("Administrator",6000)++
1‘("Accountant",6000)++
1‘("Supervisor",7000)

Resource_
Exchange

ResEx

To_task3

Case

Service_
Times3

ResStime

1‘("Secretary",3000)++
1‘("Assistantplus",3500)++
1‘("Accountant",3500)++
1‘("Supervisor",4000)

Task_
Name3

Task

1‘"Send_Letter"

End_case

Case

Task_
Roles

TaskRoles
1‘("Data_Entry",["Assistant","Assistantplus","Administrator","Supervisor"])++
1‘("Initiate_Account",["Clerk","Administrator","Accountant","Supervisor"])++
1‘("Send_Letter",["Secretary","Assistantplus","Accountant","Supervisor"])

Resources

Resources
1‘["Clerk","Clerk","Clerk","Clerk","Clerk","Clerk","Clerk","Clerk","Clerk","Clerk",
"Clerk","Clerk","Clerk","Clerk","Clerk","Clerk","Clerk","Clerk","Assistant","Assistant",
"Assistant","Assistant","Assistant","Assistant","Assistant","Assistant","Secretary",
"Secretary","Secretary","Secretary","Secretary","Secretary","Secretary","Secretary",
"Secretary","Secretary"]

Generator
GEN

Task1
TASK

Task2
TASK

Resource Module

RES

Task3
TASK

Fig. 4. Process model: Opening a bank account

In the model each task has two places specifying the associated task variables. The task names
are stated above place Task Name. The service times are stated next to place Service Times. For
instance, the first task named ‘Data Entry’ can be executed by one resource with any of the four
stated roles. Each role needs a different average service time to execute the task (e.g. the first
role ‘assistant’ needs on average 2 minutes to perform a data entry). The resource module also
has two specification places. The place Task Roles describes for each task which roles are able to
execute it. The task ‘Data Entry’ is linked to the roles ‘assistant’, ‘assistantplus’, ‘administrator’,
and ‘supervisor’. The roles are ordered from specialized resources to generalists. The assistant is
specialized in entering data, the assistantplus can enter data and send letters, the administrator
could do data entries and account initiations and the supervisor is a generalist and is able to do
all three tasks. The place Resources contains the resources available for the process. In Figure 4
there are 36 specialists available, namely 18 clerks, 8 assistants, and 10 secretaries.

3.2 Specialist-generalist trade-off

In this section we will investigate one of the two best practices, the specialist-generalist trade-off,
and its underlying mechanisms. This best practice aims at finding the optimal ratio of specialized
and generic resources. This implies that the total number of resources is kept constant, while it is
decided how many of the resources should be specialized and how many should be generic to have
an optimal process performance. The performance, indicated by the average throughput time, of
a mixture of specialists and generalists is determined by two mechanisms.

– The specialist performs the work faster and using specialists will lower the average service
time spent on a case. A generalist needs more time for service and this first mechanism is in
favor of the specialized resources.

258

– According to our definition a specialist can only perform one task. When the utilization of
the resources increases, work items will have to wait longer for ‘their’ specialist. The use
of generalists will add flexibility and a better utilization of resources to the process. The
second mechanism favors generic resources, because they are suited for more tasks and using
generalists will lower the average waiting time of a case.

We would like to have more insight in the trade-off between these two mechanisms and find the
optimal ratio of specialists and generalists for the bank process.

According to the description of the specialist-generalist trade-off we should try to find the
optimal ratio of specialists and generalists. In the bank process there are 36 resources available and
each resource could perform one out of seven roles. This means we can form approximately 6 billion
different ratios of specialists and generalists, which all should be evaluated. And each result should
be compared with the results for the other ratios to see which alternative has the optimal ratio of
specialists and generalists. We think a more pragmatic and more efficient approach can distinguish
at least one ratio that is favorable compared to other ratios. For the bank process we would like to
find an alternative process that has a throughput time significantly lower than the initial situation
with only specialists. To find this alternative with a distinctive ratio of specialists and generalists
we first perform a global search for alternatives that seem fruitful for further investigation. From
these alternatives we will derive promising alternatives to evaluate and enclose the alternatives
with a distinctive ratio.

For the global search we make several process alternatives with specialist-generalist ratios
ranging from mainly specialists to mainly generalists. In our initial process model (see Figure
4) only specialized resources are available to execute the process. The roles of resources stored in
place Resources are easily changed to create an alternative process model. Note we have two types
of generalists in the bank process. There are generalists like the administrator which are able to
perform two tasks and this type is called 2task-generalist. The other type of generalists is able
to perform three tasks. Since there is only one such generalist type in the bank process we name
this type supervisor. We form five alternative process models with different ratios of specialists
and generalists. The initial process is called process alternative 0. The six process alternatives are
stated in Table 2 with the ratio of specialists, 2task-generalists, and supervisors per alternative
and the available resources.

Table 2. Definition of process alternatives

Alternatives Ratio of spec-gen Resources

0 36 specialists 8 assistants, 18 clerks, 10 secretaries

1 27 specialists 6 assistants, 14 clerks, 7 secretaries
9 2task-generalists 3 administrators, 3 accountants, 3 assistantsplus

2 18 specialists 4 assistants, 9 clerks, 5 secretaries
18 2task-generalists 6 administrators, 6 accountants, 6 assistantsplus

9 specialists 2 assistants, 4 clerks, 3 secretaries
3 18 2task-generalists 6 administrators, 6 accountants, 6 assistantsplus

9 supervisors 9 supervisors

9 specialists 2 assistants, 4 clerks, 3 secretaries
4 9 2task-generalists 3 administrators, 3 accountants, 3 assistantsplus

18 supervisors 18 supervisors

5 18 2task-generalists 6 administrators, 6 accountants, 6 assistantsplus
18 supervisors 18 supervisors

Each alternative allocates resources randomly, i.e., flexible assignment is not used. For each of
the alternatives we perform a simulation. The arrival intensity is 200 arrivals per hour (Poisson
arrival process) and for each alternative we run a simulation run divided in 30 sub runs handling
1000 cases each. We measure the average throughput time and the average utilization and for the

259

average throughput time we calculate a 95%-confidence interval. The results are presented in Table
3. For each alternative the 95%-confidence interval for the average throughput time and the average
utilization rate are given. The average throughput time for two alternatives differ significantly if
the confidence intervals do not overlap. The results show us that alternative 1 with nine 2task-
generalists has the lowest average throughput time, although the difference is not significant when
compared to alternative 0 (the initial process). Next to this, we see that alternative 5 (with
only generic resources) could be significantly improved by specializing some resources, leading to
alternative 4. The same holds for alternative 4 for which making more resources specialist would
lead to the improved performance of alternative 3. The same argumentation could be applied to
alternative 2 and 3.

Table 3. Results for random allocation

Alternatives Throughput time Utilization rate

0 [16.134 ; 18.604] 0.84

1 [14.541 ; 16.451] 0.89

2 [16.438 ; 19.086] 0.89

3 [29.694 ; 34.838] 0.92

4 [36.390 ; 43.550] 0.93

5 [51.831 ; 58.895] 0.94

It seems that a process with mainly specialists and some generalists could perform significantly
better than alternatives with other ratios of specialists and generalists. Our next step is to focus
our search on alternatives with approximately the same ratio as alternative 1 to find a distinc-
tive ratio of specialists and generalists. Two configurations of a process with 6 2task-generalists
and 30 specialists have an average throughput time which is significantly lower than the average
throughput time of the initial process. The configuration with 2 administrators, 2 accountants, 2
assistantsplus, 8 secretaries, 16 clerks, and 6 assistants is called alternative 1a. The configuration
with 2 administrators, 2 accountants, 2 assistantsplus, 9 secretaries, 16 clerks, and 5 assistants is
called alternative 1b. The results for the alternatives 1a and 1b are stated in Table 4 and for com-
parison the result for the initial process is included. We can see that alternative 1a and alternative
1b outperform the initial process (and also alternatives 2-5).

Table 4. Results for distinctive ratios

Alternatives Throughput time Utilization rate

0 [16.134 ; 18.604] 0.84

1a [13.529 ; 14.867] 0.86

1b [13.852 ; 15.538] 0.86

The specialist-generalist trade-off suggests the improvement of a process by using a distinctive
ratio of specialists and generalists. Our conclusion is that a distinctive ratio of specialists and
generalists is a ratio with mainly specialists and one or a few generalists. With this ratio the best
trade-off is made between the shorter service times of the specialists and the flexibility offered by
a generalist. When applying the best practice to the problem the total number of resources has
been kept constant. A similar problem would have been encountered if the total salary or another
variable had been kept constant.

A precondition for finding a distinctive ratio is a high resource utilization, because then the
advantage of shorter service times for specialists does not compensated for the flexibility offered

260

by one or a few generalists. When the utilization rate is lower suitable specialists will always be
available and the flexibility is not necessary. Next to this, the distribution of the resources over
the different specialized resource types should be proportional, so each resource type has an equal
utilization rate. We also made the explicit assumption that generalists need more time to perform
a task than specialists. If specialists and generalists have an equal service time, a process with
only generic resources will have the best performance.

3.3 Flexible assignment policy

With the flexible assignment of resources the most specialized (available) resource will be assigned
to a work item. In this way, the more generic resources are preserved and the possibilities for having
a suitable resource for the next work item are maximal. There is a smaller chance that a case has
to wait for a specific resource and it is expected that the overall queueing time in the process will
be reduced. Next to the flexibility, a specialist performs a task faster than a generalist leading to
lower service times. When we compare flexible assignment with random allocation we expect the
following for the initial process and the five process alternatives (see Table 2 for the definition of
the process alternatives). For the initial process both allocations will perform the same, because
there are only specialists to allocate. Also, in the first alternative there are mostly specialists
available and no difference is expected. In the second alternative the ratio specialists-generalists is
half-half and it could be that flexible assignment will select a specialist more frequently than would
happen randomly. For the alternatives 3 and 4 there are more generalists than specialists available
and it is likely that flexible assignment will allocate significantly more specialists than random
allocation would. We expect that allocating the specialist will lead to lower queuing and service
times for the process. So, we expect a reduced average throughput time for process alternatives
3 and 4. Alternative 5 has two types of generic resources and maybe allocating the least generic
resource will lead to an improvement.

We apply the flexible assignment policy to the six process alternatives specified in Table 2. We
also apply it to the alternatives 1a and 1b (with a distinctive ratio of specialists and generalists). We
use priority based allocation to model flexible assignment. In place Task Roles (see Figure 4) the
roles for each task are already prioritized with the specialized resource having the highest priority,
the 2task-generalist having a middle priority and the supervisor having a lower priority. Through
this priority setting an available specialist will be assigned and generic resources are preserved
for the near future. The results of the application of flexible assignment to the 8 alternatives are
presented in Table 5.

Table 5. Results for flexible assignment

Alternatives Throughput time Utilization rate

0 [16.703 ; 19.731] 0.84

1 [14.569 ; 16.613] 0.88

1a [14.066 ; 16.158] 0.87

1b [14.149 ; 15.687] 0.87

2 [15.817 ; 17.410] 0.90

3 [29.131 ; 34.279] 0.93

4 [38.070 ; 44.872] 0.92

5 [47.594 ; 54.428] 0.94

We see that alternatives 1a and 1b again have a significantly lower throughput time than the
initial process and also alternative 1 performs significantly better. Next to this, we compare the
results of flexible assignment (Table 5) with the results of random allocation (Table 3 and Table
4). Flexible assignment does not seem to improve process performance, because for all alternatives
both allocation methods lead to similar results.

261

We expected that flexible assignment would have an impact on the performance of processes
with many generalists and just a few specialists, because the outcome of the allocation methods
would be different. With random allocation there is a high chance that a generalist would be
selected, while flexible assignment would favor the selection of a specialist. Alternative processes
3 and 4 have 9 specialists and 27 generalists, but the results with flexible assignment do not
differ from random allocation. When we look at the results for these alternatives we see that the
utilization rate is rather high. When 36 resources have an utilization rate of 0.92 there are on
average 33 resources busy and three resources available. Only a quarter of the total amount of
resources is specialist and specialists can only perform one of the three tasks. It follows that most
of the time only suitable generalists will be available when an allocation has to be made. Because
of this, most of the time flexible assignment will also select a generic resource. This leads to the
conclusion that flexible assignment will probably act the same as random allocation for processes
with a high utilization rate, because in most cases no choice is offered between specialists and
generic resources.

We perform new simulations for the alternatives 3 and 4 with less cases arriving to lower the
utilization rate of the resources. Table 6 shows the results for an arrival intensity of 120 and an
arrival intensity of 150 cases per hour (Poisson arrival process).

Table 6. Significant results for flexible assignment policy

Arrival rate Alt. Allocation method Throughput time Util. rate

Random allocation [12.075 ; 12.249] 0.64
120 cases per hour 3 Flexible assignment [11.312 ; 11.478] 0.60

Random allocation [12.489 ; 12.647] 0.67
4 Flexible assignment [11.707 ; 11.993] 0.62

Random allocation [12.276 ; 12.614] 0.78
150 cases per hour 3 Flexible assignment [11.814 ; 12.186] 0.76

Random allocation [13.076 ; 13.664] 0.81
4 Flexible assignment [12.563 ; 13.019] 0.79

We see that flexible assignment outperforms random allocation for both alternatives 3 and 4
and with both arrival rates. Another interesting point is that although the average throughput time
is lower with an arrival intensity of 120 cases per hour the difference between flexible assignment
and random allocation is larger. It seems that the proposed relationship between the utilization
rate and having a choice between a specialist and a generalist is correct. Flexible assignment does
not perform better than random allocation for processes with a high utilization rate, because then
there is no choice between suitable specialists and generalists when an allocation has to be made.

With the application of the flexible assignment policy we have gained insight in when to
use a flexible allocation method. The flexible assignment policy suggests the improvement of a
process by allocating a specialist when a choice has to be made between specialized and generic
resources. The application of flexible assignment to the bank process led to an improvement of
process alternatives with more generic than specialized resources. Flexible assignment will select
a specialist more frequent than would happen randomly if there is at least one generic resource.
So, in general flexible assignment could improve each process with both specialized and generic
resources.

Note that the benefits of flexible assignment will only be observed if the process is not loaded
too heavily. There should be enough free specialists in the process to have a choice between suitable
specialists and generalists. Next to this, the actual improvement gained with flexible assignment
is dependent on the difference in service time between a specialist and a generalist. When the

262

specialist works faster there is not only the benefit of the preserved flexibility, but also of lower
service times.

4 Related Work

In this section we briefly discuss related work on the two main topics of this paper. The first topic
is the analysis of business processes with simulation. Regarding the analysis of business processes
we describe its position in Business Process Management, the broad use of simulation, and the
application of the simulation facility of CPN Tools to business processes. The second topic is the
application of best practices. We present their general background, the history of the two evalu-
ated best practices, and an empirical study on the use of specialists and generalists in a call center.

The redesign of business processes based on best practices is part of Business Process Man-
agement (BPM). BPM is defined as “Supporting business processes using methods, techniques,
and software to design, enact, control, and analyze operational processes...” [4]. Within the four
defined phases the focus has traditionally been on enactment and control [4]. In this paper we give
attention to (re)design and analysis.

The analysis of business processes is performed with simulations. From practice, the use of
simulation is advocated to compare the “to be” alternatives and to understand the “what” and
the “why” of the current process and possible alternatives [5]. From a scientific point of view,
simulation is used to evaluate quantitative criteria such as throughput time or costs as input for
design decisions [6].

For the analysis of the best practices the simulation facility of CPN Tools was used. CPN Tools
and Design/CPN, the predecessor of CPN Tools, have been applied in various industrial projects
[24], but we have found only two projects for which a business process has been analyzed with
simulation. In one project a planning process was modeled with Design/CPN and this process was
simulated with the Design/CPN simulator [14]. In another project CPN Tools was used to study
the bullwhip effect in supply chains. For this project the supply chain was modeled with CPN
Tools and with simulation the bullwhip effect, inventory increase in the chain, was demonstrated
[13].

Best practices should be seen as independent rules of thumb helping practitioners in their
redesign effort. Best practices are often derived from practical experience within companies and
29 of these best practices have been collected in [18].

In this paper we have evaluated the application of two of these best practices, the specialist-
generalist trade-off [17,19] and the flexible assignment policy [3]. [17] identifies cross-training as
a process improvement point and refers to cross-training as training staff to make them capable
of performing each others’ jobs. When a specialist should become more generic cross-training is
required. A large survey on techniques used for Business Process Re-engineering (BPR) showed
that companies consider the training of employees as the most important technique [21]. Toyota,
for instance, used a system of cross-training and job rotation to enrich the jobs of their employees
[15].

So far, both best practices have been described qualitatively, but little research has been
conducted on the underlying mechanisms and the actual improvement gained when applied. An
experimental study on the use of specialists and generalists in a call center has been performed by
[22]. With simulation it is evaluated if 1) a one-level design should be used with only specialists or
2) a two-level design with generalists on the first level receiving the call which could be forwarded
to specialists on the second level. The results show that a one-level design leads to better quality
measures and a more regular load sharing between employees, but to higher labor costs.

5 Conclusions and Future Work

In this paper we developed a model for the analysis of resource-constrained processes and the
evaluation of process alternatives. The model represents an abstraction of a business process

263

consisting of a process structure formed by task building blocks placed in sequence or parallel,
a generic resource module and a method to allocate resources. While applying the specialist-
generalist trade-off and the flexible assignment policy, many process alternatives were modeled and
evaluated. The developed CPN model turned out to be very useful for comparing the performance
of many process models in a short time. The addition of more tasks or a change in the ordering
of the tasks may also be done in a short period of time.

With the application of the specialist-generalist trade-off to a process, a distinctive ratio of
specialists and generalists can be found. The distinctive ratio is a combination of mainly specialists
and one or a few generalists. Using this ratio instead of the current ratio could improve the process
significantly. With a flexible assignment policy a specialist is assigned to a work item when both
suitable specialized and suitable generic resources are available. The application of this policy to
a process with both specialized and generic resources could lead to an significant improvement
of the process. It is remarkable that the use of the specialist-generalist trade-off and the flexible
assignment policy is influenced by the same mechanisms, but that the working of these mechanisms
is opposite to each other. A useful application of the specialist-generalist trade-off requires high
utilization rates and approximate equal service times for specialists and generalists to be effective,
while the flexible assignment policy pays off if the utilization rates are lower and the service times
of specialists and generalists differ.

We see opportunities for the extension of the developed CPN model. Other process character-
istics like different case types and different customer classes influence the allocation of resources
and could be added to the model. Next to this more performance indicators could be taken into
account. The current model focuses on the timing aspect, but also the performance on cost, quality
or flexibility could be interesting. In our model the requests for resources are handled in a FIFO
order. The use of other priority rules could also change the performance of the process. With an
extended model more insight will be gained on how to allocate resources in an optimal way.

Acknowledgement

We would like to thank Kurt Jensen and Lisa Wells from the University of Aarhus. We appreciate
the help Kurt gave in the early stages of the research presented in this paper and we are grateful
that Lisa let us use the monitors.

This research is supported by the Technology Foundation STW, applied science division of
NWO and the technology programme of the Dutch Ministry of Economic Affairs.

References

1. W.M.P. van der Aalst. Three Good Reasons for Using a Petri-net-based Workflow Management Sys-
tem. In: T. Wakayama et al., editors. Information and Process Integration in Enterprises: Rethinking
Documents. Volume 428 of The Kluwer International Series in Engineering and Computer Science.
Boston, Kluwer Academic Publicers, pp.161-182, 1998.

2. W.M.P. van der Aalst. Workflow verification: finding control-flow errors using Petri-net-based tech-
niques. In: W.M.P. van der Aalst et al., editors. Business process management: models, techniques,
and empirical studies. Lecture Notes in Computer Science 1806. Berlin, Springer-Verlag, pp.161-183,
2000.

3. W.M.P. van der Aalst, K.M. van Hee. Workflow management: models, methods and systems. London,
MIT Press, 2002.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, M. Weske. Business process management: a survey.
In: Proceedings of the 2003 International Conference on Business Process Management (BPM2003).
Lecture Notes of Computer Science 2678. Berlin, Springer-Verlag, pp.1-12, 2003.

5. F. Ardhaldjian, M. Fahner. Using simulation in the business process reengineering effort. Industrial
Engineering, 26(7), pp.60-61, 1994.

6. J. Desel, T. Erwin. Modeling, Simulation and Analysis of Business Processes. In: W.M.P. van der
Aalst et al., editors. Business process management: models, techniques, and empirical studies. Lecture
Notes in Computer Science 1806. Berlin, Springer-Verlag, pp.129-141, 2000.

264

7. T. Forsberg, L. Nilsson, M. Antoni. Process orientation: the Swedish experience. Total Quality Man-
agement, Volume 10(4-5/July), pp.540 - 547, 1999.

8. K. Jensen. Colored Petri Nets: Basic Concepts, Analysis Methods and Practical Use Volume 1. Berlin,
Springer-Verlag, 1992.

9. K. Jensen. Colored Petri Nets: Basic Concepts, Analysis Methods and Practical Use Volume 2. Berlin,
Springer-Verlag, 1995.

10. L. Kleinrock. Queueing Systems, Volume 1: Theory. New York, John Wiley and Sons, 1975.
11. L.M. Kristensen, S. Christensen, K. Jensen. The Practitioner’s Guide to Colored Petri nets. Interna-

tional Journal on Software Tools for Technology Transfer, 2(1998), pp.98-132, 1998.
12. A. Kumar, W.M.P. van der Aalst, H.M.W. Verbeek. Dynamic Work Distribution in Workflow Man-

agement Systems: How to balance quality and performance? Journal of Management Information
Systems, 18(3), pp.157-193, 2002.

13. D. Makajic-Nikolic, B. Panic, M. Vujosevic. Bullwhip effect and supply chain modelling and analysis
using CPN Tools. CPN Workshop 2004.

14. B. Mitchell, L.M. Kristensen, L. Zhang. Formal Specification and State Space Analysis of an Opera-
tional Planning Process. CPN Workshop 2004.

15. R. Muramatsu, H. Miyazaki, K. Ishii. A Successful Application Of Job Enlargement/Enrichment At
Toyota. IIE Transactions, 19(4), pp.451-459, 1987.

16. K. McCormack. Business process orientation: Do you have it? Quality Progress, Volume 34(1), pp.51-
58, 2001.

17. G. Poyssick, S. Hannaford. Workflow reengineering. Mountain View, Adobe Press Editions, 1996.
18. H.A. Reijers, S. Limam Mansar. Best practices in business process redesign: an overview and qualita-

tive evaluation of successful redesign heuristics. Omega, Volume 33(4), pp.283-306, 2005.
19. A. Seidmann, A. Sundararajan. Competing in information-intensive services: analyzing the impact of

task consolidation and employee empowerment. Journal of Management Information Systems, 14(2),
pp.33-56, 1997.

20. A. Vinter Ratzer, L. Wells, H.M. Lassen et al. CPN Tools for Editing, Simulating, and Analysing
Coloured Petri Nets. In: W.M.P. van der Aalst, E. Best (Eds.). Applications and Theory of Petri Nets
2003. Lecture Notes in Computer Science 2679. Berlin, Springer-Verlag, pp. 450-462, 2003.

21. M. Zairi, D. Sinclair. Business process re-engineering and process management: a survey of current
practice and future trends in integrated management. Business Process Re-engineering & Management
Journal, 1(1), pp.8-30, 1995.

22. M. Zapf, A. Heinzl. Evaluation of Generic Process Design Patterns: An Experimental Study. In:
W.M.P. van der Aalst et al., editors. Business process management: models, techniques, and empirical
studies. Lecture Notes in Computer Science 1806. Berlin, Springer-Verlag, pp.83-98, 2000.

23. M. zur Muehlen. Organizational Management in Workflow Applications - Issues and Perspectives.
Information Technology and Management, 5(2004), pp.271-291, 2004.

24. http://www.daimi.au.dk/CPnets/intro/example indu.html

265

266

Colored Petri Net based model checking and
failure analysis for E-commerce protocols

Panagiotis Katsaros1 Vasilis Odontidis2 Maria Gousidou-Koutita2

1 Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
katsaros@csd.auth.gr

http://delab.csd.auth.gr/~katsaros/index.html

2 Department of Mathematics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

gousidou@math.auth.gr

Abstract. We present a Colored Petri Net approach to model check three atom-
icity properties for the NetBill electronic cash system. We verify that the proto-
col satisfies money atomicity, goods atomicity and certified delivery in the
presence of potential site or communication failures and all possible unilateral
transaction abort cases. Model checking is performed in CPN Tools, a graphical
ML-based tool for editing and analyzing Colored Petri Nets (CP-nets). In case
of property violation, protocol failure analysis aims in exploring all property
violation scenarios, in order to correct the protocol’s design. Model checking
exploits the provided state space exploration functions and the supported Com-
putation Tree like temporal logic (CTL). On the other hand, protocol failure
analysis is performed by inspection of appropriately selected markings and if
necessary, by interactively simulating certain property violation scenarios. In e-
commerce, Colored Petri Net model checking has been used in verifying ab-
sence of deadlocks, absence of livelocks and absence of unexpected dead transi-
tions, as well as in verifying a protocol against its service. To the best of our
knowledge, our work is the first attempt to employ CP-nets for model checking
atomicity properties. We believe that the described approach can also be ap-
plied in model checking other functional properties that are not directly related
to the structural properties of the generated state space graph.

1 Introduction

E-commerce systems offer considerable potential, but they are accompanied by a
broad range of often unprecedented risks. A lack of system security or reliability can
cause the system to behave differently than its stakeholders expect and can lead to loss
of physical assets, digital assets, money, and consumer confidence. Model checking
refers to a set of mechanized techniques, which are used to automatically discover any
scenarios, in which the actual system behavior and the behavior of the stakeholders’
model diverge from one another. These scenarios identify potential failures and pin-
point areas where design changes or revisions should be considered.

267

In e-commerce, most published model checking approaches ([10], [16], [23], [24])
use a Communicating Sequential Processes (CSP) system description (SYSTEM) and
verification is performed by the Failure Divergence Refinement (FDR) model checker.
The properties to be checked are also expressed as CSP processes (SPEC) and FDR
checks if the set of behaviors generated by SYSTEM is a subset of those generated by
SPEC.

In the field of e-commerce, CP-nets ([12]) and CPN Tools ([7]) have been used to
model check the absence of deadlocks and livelocks and the absence of unexpected
dead transitions and inconsistent terminal states, for the Internet Open Trading Proto-
col ([18], [20], [21]). Also, CP-nets have been used in verifying a protocol against its
service ([19]). The correctness properties considered in [21] depend on certain struc-
tural properties of the state space graph, like for example the absence of self-loops.

However, in e-commerce we are also interested to model check functional proper-
ties that are not directly related to the structural properties of the state space graph.
CSP-based model checking is broadly used due to its success in verifying security
properties, like confidentiality ([22], [26]), message authentication ([26]), anonymity
([26]), integrity ([22], [26]) and information flow security ([14]). CSP-based model
checking can also be applied in verifying validated receipt ([23], [24]), accountability
([13]), personalization potentiality ([9]) and atomicity properties, like withdrawal
atomicity, payment atomicity and deposit atomicity ([15], [27], [29]), in the presence
of site or communication failures and all possible unilateral transaction abort cases.

In this work, we use CPN Tools to model check payment atomicity for the NetBill
([6]) electronic cash system. We show how to exploit the provided state space explo-
ration functions and the supported Computation Tree like temporal logic (CTL), in
order to verify ([4], [5]) three different levels of payment atomicity (money atomicity,
goods atomicity and certified delivery). In case of property violation, we propose
protocol failure analysis to be based on inspection of appropriately selected markings
and if necessary, to exploit the CPN Tools advanced graphical environment to interac-
tively simulate the actions performed in one or more property violation scenarios.

Although it was already known that NetBill possesses the three levels of payment
atomicity ([10]), we are not aware of published results that model check certified
delivery. Moreover, the applied CP-net approach is characterized by the comparative
advantage of interactively simulating the developed model and makes CPN Tools an
attractive alternative (over CSP-based model checking), for model checking the fore-
named security and reliability properties. Finally, the proposed protocol failure analy-
sis is possible to be applied to other electronic cash systems, like for example Digi-
cash ([2], [3]), Payword ([25]), MicroMint ([25]) and MiniPay ([11]), which fail to
provide a certified delivery mechanism, for selling and delivering digital goods and
services.

Section 2 provides a compact description of the NetBill electronic cash system and
the three levels of payment atomicity. Section 3 introduces the adopted modeling
assumptions and the proposed CP-net. Section 4 focuses on model checking the three
levels of payment atomicity (money atomicity, goods atomicity and certified delivery).
Section 5 introduces the proposed protocol failure analysis and the paper concludes
with a summary of our CP-net model checking experience and its potential impact.

268

2 The NetBill electronic cash system

The NetBill transaction model involves three participants: the consumer (C), the mer-
chant (M) and the bank server (B). A transaction involves three phases: price negotia-
tion, goods delivery and payment. We consider the selling of information goods, in
which case the NetBill protocol links goods delivery and payment into a single atomic
transaction. We use the notation “X ⇒ Y message” to indicate that X sends the speci-
fied message to Y. The basic protocol consists of the following messages:
 1. C ⇒ M Price request
 2. M ⇒ C Price quote
 3. C ⇒ M Goods request
 4. M ⇒ C Goods, encrypted with a key K
 5. C ⇒ M Signed Electronic Payment Order (epo)
 6. M ⇒ B Endorsed Electronic Payment Order (including the key K)
 7. B ⇒ M Signed result (including K in case of successful payment)
 8. M ⇒ C Signed result (including K in case of successful payment)

C and M interact with each other in the following way:
• C issues a price request for a particular product (1) and M replies with the

requested price (2),
• C either aborts the transaction or issues a goods request to the merchant (3),
• in the second case, M delivers the requested goods encrypted with a key K

(4).
The goods are cryptographically checksummed in order to be able to confirm that

received goods are not affected by a potential transmission error and that they are not
subsequently altered. The bank (B) is not involved until the payment phase:

• C sends to M a signed electronic payment order (5) including all necessary
payment details and the received product checksum,

• M validates the received electronic payment order (epo) and checksum in-
formation and either aborts the transaction or endorses it by sending the re-
ceived payment order and the associated decryption key K to B (6),

• B responds to M (7) with the payment result and the decryption key K (in
case of successful payment), which are finally forwarded to C (8) to termi-
nate the transaction.

NetBill provides protection for C against fraud by M in the following ways:
• the key K, which is needed to decrypt the goods is registered with B and if

M does not respond in a valid payment as expected, the consumer asks the
key from B, that in fact acts as a trusted third party,

• if there is a discrepancy between what C ordered and what M delivered, C
can easily demonstrate this discrepancy to the trusted third party, since the
payment order received by B includes all details about what exactly was or-
dered, the amount charged, the key K reported by M and the checksum of
the delivered encrypted goods. Thus, if the goods are faulty it is easy to
demonstrate that the problem lies with the goods as sent and not with any
subsequent alteration (that would produce different checksum information).

269

NetBill is one of the first electronic cash systems that provides the three levels of
payment atomicity, in the presence of potential site or communication failures and all
possible unilateral transaction abort cases.

Money atomicity is the basic level that should be ensured by all transactions ex-
changing electronic cash. It means that the payment transaction ensures that there is no
possibility of creation or destruction of money, while electronic cash is being trans-
ferred.

Goods atomicity ensures money atomicity and also ensures that there is no possibil-
ity of paying without receiving goods or vice versa.

Most electronic payment systems ensure money and goods atomicity, but fail to en-
sure certified delivery, which is the highest level of atomicity. Certified delivery in-
cludes both money and goods atomicity and also allows both participants to prove the
details of the transaction. In the related bibliography, certified delivery is also men-
tioned as non-repudiation of transactions ([28]) or strongly fair exchange ([1]).

3 A Colored Petri Net model for NetBill

In this section, we introduce a CP-net for the NetBill electronic cash system. The
adopted modeling assumptions take into account consumer and merchant site failures
and non-reliable communication between the protocol’s participants, including poten-
tial message losses. We assume that both, consumer’s account debit and merchant’s
account credit take place at the same site (bank server) that provides trivial transaction
atomicity guarantees. Thus, we omit modeling bank site failures, since this would
burden the CP-net with details that are not part of the NetBill protocol, but concern
the provided transaction processing mechanism. This implies the property of money
atomicity, but we show how to express it by exploiting the provided state space explo-
ration functions and the supported Computation Tree like temporal logic (CTL).

Compared to the CP-net proposed for the Internet Open Trading Protocol ([17]) our
model differs in how the protocol’s participants are represented. In our model, the
participant processes correspond to substitution transitions that include potential site
and communication failures and all possible unilateral transaction abort cases. In [17],
the participants are represented by places, whose color sets include token colors that
correspond to all possible participant states. Also, we do not use places that implement
reliable FIFO communication channels between the protocol participants. In our case,
a protocol message loss terminates the corresponding protocol session. We aim in
model checking the forenamed payment atomicity properties that are not directly re-
lated to the structural properties of the generated state space graph. On the other hand,
the CP-net of [17] has been used in verifying the protocol against its service and in
model checking correctness properties that depend on certain structural properties of
the model’s state space graph.

The proposed CP-net consists of a number of hierarchically related pages (Figure
1), which model the protocol’s behavior in different levels of abstraction.

270

Protocol
ConsumerProcess
MerchantProcess
BankProcess

Fig. 1. The hierarchy page of the NetBill CP-net

In the highest level of abstraction (Figure 2), we model the protocol’s participants
and message exchanges. We omit the protocol steps 1 and 2, since they are not sig-
nificant for checking payment atomicity. Figure 3 summarizes the color and variable
declarations used for the transition and arc inscriptions of the described CP-net. Our
model is important to reflect all possible protocol execution scenarios. We adopt a
compact representation of all distinct transaction abort cases by specifying them as
request typed tokens that encode the following execution scenarios:
 1. C sends to M a valid goods request (gReq=v)
 2. C sends to M an invalid goods request (gReq=i)
 3. the encrypted goods received by C are the requested ones
 (enGoods=v)
 4. the encrypted goods received by C are affected by an occurred data
 transmission error (enGoods=i)
 5. C sends to M a valid electronic payment order (epoReq=v)
 6. C sends to M an invalid electronic payment order (epoReq=i)

q

1`STARTq^^[reqRec(aRequest)]

ConsumerProcess
ConsumerProcess

MerchantProcess
MerchantProcess

BankProcess
BankProcess

newRequest prmtrs
pPrmtrs

1`START1 1`START

goodsRequest
request

encrGoods
validORnot

ePaymentOrder
validORnot

endorsedPaymentOrder
INT

stop
STRING

bankOut
INT

endTransaction
INT

queryBank
result

reqQueue

lReqQ

[]1 1`[]

epoInput
validORnot

Fig. 2. Top-level structure of the NetBill CP-net

 colset pPrmtrs =with START;
 colset validORnot =with v | i;
 colset request =record gReq:validORnot*
 enGoods:validORnot*
 epoReq:validORnot;
 colset sRequest =union reqRec:request;
 colset lReqQ =list sRequest;
 colset result =with noFunds | paymentReceipt | noRecord;
 var aRequest :request;
 var q :lReqQ;
 var valCode :validORnot;
 var intVar :INT;
 var res :result;

Fig. 3. Color sets and variables used in the NetBill CP-net

271

reqRec(aRequest)::q

aRequest

"aborted by C"

1`i

1`v"err: invalid encrypted goods"

"aborted by C"

"aborted by C"

reqRec(aRequest)::q

valCode

valCode
valCode

valCode

#epoReq aRequest

valCode

valCode

intVar

intVar

"No Funds"

"Success"

1`noRecord
aRequest

"comm err: CtoM"

valCode

"comm err: CtoM"

1`noRecord

q
q

valCode

gRequest

abort2

errorEnGoods

epoRequest

abort3

abort1

succeeded
intVar=1

NoPayment
intVar=0

commErrCtoM1

commErrCtoM2

reqQueue
lReqQI/O

stop

STRING
Out

goodsRequest
requestOut

encrGoods
validORnotIn

epoInput
validORnotI/O

ePaymentOrder
validORnotOut

endTransaction
INTIn

queryBank
result

Out

Fig. 4. The Consumer (C) process page of the NetBill CP-net

An electronic payment order (epo) is not valid, when it is not signed or includes in-
valid payment details, like for example a product checksum that does not coincide to
the one assigned to the encrypted goods sent to C.

Figure 4 introduces the consumer process page that corresponds to the Consumer-
Process substitution transition of Figure 2. Input and output places were assigned to
the synonyms shown in the top-level CP-net. Firing of transition gRequest places
the result typed token noRecord at the place queryBank. This models the
possibility of C querying B (trusted third party) for the result of the ongoing transac-
tion. The request typed token aRequest is passed to the place goodsRequest
and it is then used non-deterministically to fire either the commErrCtoM1 transition
(communication error: C to M) or the one corresponding to its reception by the mer-
chant process (merchant process page).

We note that C can abort the executed transaction any time up to the submission of
epo. Potential unilateral abort decisions and consumer site failures are modeled by
transitions named as abort# and terminate the protocol by placing an appropriate
diagnostic string at the output place stop. Unilateral transaction aborts are also rep-
resented by transitions like the one called errorEnGoods, which correspond to the
validation actions performed by the protocol participants. Dispatch of the signed epo
by C signifies the commitment of C to the executed transaction request.

The diagnostic strings placed at the place stop indicate protocol termination, but
only “No Funds” and “Success” are reported to the end user. In case of site or
communication failure, C is informed for the transaction result by querying B.

Figure 5 introduces the merchant process page that corresponds to the Merchant-
Process substitution transition of Figure 2. On reception of a request typed to-
ken at the place goodsRequest the merchant process either aborts the transaction
(site failure), terminates the protocol (because of an invalid goods request) or pro-
ceeds to the processing of the received request (transition receiveGoodsReq).

272

aRequest

aRequest

"aborted by M"

"err: invalid goods request"

aRequest

aRequest
aRequest

#enGoods aRequest

1`v

1

1`i

1`v"aborted by M"

"err: invalid EPO"

aRequest

"aborted by M"

"aborted by M" 1

intVar"comm err: BtoM OR M site failure"
intVar

intVar

intVar"comm err: MtoC"

1
"comm err: MtoB"

valCode

valCode

valCode

receiveGoodsReq
[#gReq aRequest=v]

abort1

errorGoodsReq
[#gReq aRequest=i]

sendEncrGoods

receiveEpoabort3

errorEpo

abort2

abort4

fail1

finishTrans

commErrMtoC1

commErrMtoB1

endorsedPaymentOrder
INTOut

goodsRequest
requestIn

bankOut
INTIn

epo validORnot
In

encrGoods
validORnotOut

stop
STRINGOut

goodsReqRcvd
request

endTransaction
INTOut

epoInput
validORnotIn

Fig. 5. The Merchant (M) process page of the NetBill CP-net

The merchant process responds to the consumer process by dispatching an en-

crypted version of the ordered goods (transition sendEncrGoods). On reception of
the signed epo at the place epo, the merchant process either terminates the transaction
in case of invalid epo, aborts the transaction due to a site failure (transition abort3)
or endorses the received epo (attaches the required decryption key) and forwards it to
the bank server process through the place endorsedPaymentOrder.

1
0

1 1 1
1

10

0 0

1`noFunds 1`paymentReceipt
res

1 0

res

1`noRecord

1`noRecord

OK_Trans

No_Trans

pay

receipt

finished

updateDB

noFunds

endorsedPaymentOrder
INTIn

debitC
INT

creditM
INT

bankOut
INTOut

No_Transaction
INT

queryBank
resultI/O

paymentResult
result

Fig. 6. The Bank (B) process page of the NetBill CP-net

Figure 6 introduces the bank process page that corresponds to the BankProcess
substitution transition of Figure 2. On reception of an endorsed payment order at the
place endorsedPaymentOrder the bank server either proceeds to the debit of the
consumer’s account or discovers a low balance account (because of the transition
noFunds) and does not charge C. Both transaction cases are (assumed to be) exe-
cuted atomically and this is modeled, by initially removing the result typed token
found in place queryBank and finally placing an appropriate token value in it. Al-
though this makes money atomicity self-proved, we are still interested to demonstrate
the potentiality of the Computation Tree like temporal logic (CTL) supported in CPN

273

Tools to express and prove all payment atomicity properties, including money atomic-
ity.

4 State space analysis and model checking

Figure 7 shows the standard report generated for the state space analysis of the de-
scribed NetBill CP-net.

 Statistics
--
 State Space
 Nodes: 59
 Arcs: 103
 Secs: 0
 Status: Full

 Scc Graph
 Nodes: 59
 Arcs: 103
 Secs: 0

Boundedness Properties
--
 Best Integers Bounds Upper Lower
 BankProcess'No_Transaction 1 1 0
 BankProcess'creditM 1 1 0
 BankProcess'debitC 1 1 0
 BankProcess'paymentResult 1 1 0
 ConsumerProcess'epoInput 1 1 0
 MerchantProcess'goodsReqRcvd 1 1 0
 Protocol'bankOut 1 1 0
 Protocol'ePaymentOrder 1 1 0
 Protocol'encrGoods 1 1 0
 Protocol'endTransaction 1 1 0
 Protocol'endorsedPaymentOrder 1 1 0
 Protocol'goodsRequest 1 1 0
 Protocol'prmtrs 1 1 0
 Protocol'queryBank 1 1 0
 Protocol'reqQueue 1 1 1
 Protocol'stop 1 1 0

Home Properties
--
 Home Markings: None

Liveness Properties
--
 Dead Markings: 13 [59,658,57,56,55,...]
 Dead Transitions Instances: None
 Live Transitions Instances: None

Fairness Properties
--
 No infinite occurrence sequences.

Fig. 7. The standard report generated for the state space analysis of the NetBill CP-net

274

The results for the standard properties checked in the shown report constitute a nec-
essary input source, for correctly expressing the CTL formulae of the required cor-
rectness properties. We observe the absence of home markings and the absence of
dead and live transitions instances. There are no infinite occurrence sequences and the
protocol terminates in one of the 13 dead markings, with node numbers that are easily
found by the provided state space exploration functions.

The ML-functions used in model checking payment atomicity are summarized in
Table 1:

Table 1. State space querying functions

function description use
Mark.<PageName>’<PlaceName> N M Returns the set of tokens positioned in place <PlaceName> of the

Nth instance of page <PageName> in the marking M
SearchNodes (
 <search area>,
 <predicate function>,
 <search limit>,
 <evaluation function>,
 <start value>,
 <combination function>)

Traverses the nodes of the part of the occurrence graph specified in
<search area>. At each node the calculation specified by <evaluation
function> is performed and the results of these calculations are
combined as specified by <combination function> to form the final
result. The <predicate function> maps each node into a boolean value
and selects only those nodes, which evaluate to true. We use the
value EntireGraph for <search area> to denote the set of all nodes in
the occurrence graph and the value NoLimit for <search limit> to
continue searching for all nodes, for which the predicate function
evaluates to true.

List.nth(l,n) Returns the nth element in list l, where 0 <= n < length l.

Function SearchNodes is used to detect the marking(s) right after the occurrence

of a particular event, like for example a money transfer from C’s account to M’s ac-
count.

Table 2. CTL state formulae operators and model checking functions

state formulae syntax meaning
NOT(A) Boolean value that corresponds to the negation of A, where A is a CTL

formula.
AND(A1,A2) This formula is true if both A1 and A2 are true.
NF(<message>,<node function>) A function that is typically used for identifying single states or a subset

of the state space. Its arguments are a string and a function, which takes
a state space node and returns a boolean. The string is used when a
CTL formula evaluates to false in the model checker.

EV(A)≡FORALL_UNTIL(TT,A) This formula is true if the argument A becomes true eventually (within a
finite number of steps) starting from the state we are now. TT denotes
the true constant value.

ALONG(A)≡NOT(EV(NOT(A))) This formula is true if there exists a path for which the argument A
holds for every state. The path is either infinite or ends in a dead state.

POS(A)≡EXIST_UNTIL(TT,A) This formula is true if possible from the state we are now, to reach a
state where the argument A is true.

EXIST_NEXT(A) This formula is true iff there exists an immediate successor state, from
where we are now, in which the argument A is true.

FORALL_NEXT(A) This formula is true iff for all immediate successor states from where we
are now the argument A is true.

eval_node <formula> <node> The standard model checking function that takes two arguments: the
CTL formula to be checked and a state from where the model checking
should start.

Table 2 summarizes the CTL formulae used to express the required properties in

terms of paths over the generated state space graph. A CTL expression that corre-

275

sponds to the required property is model checked by the eval_node function, start-
ing from the node number that is passed as second argument. The ML statements need
to activate the provided Computation Tree like temporal logic (CTL) are shown in
Figure 8.

 use (ogpath^"ASKCTL/BitArray.sml");
 use (ogpath^"ASKCTL/ASKCTL.sml");
 open ASKCTL;

Fig. 8. ML statements used to activate the provided CTL support

4.1 Model checking money atomicity

Figure 9 shows the model checking of the money atomicity property. We are inter-
ested to verify that money transfer takes place atomically that is, for all paths starting
from the occurrence of the consumer’s debit the protocol performs the corresponding
credit to the merchant’s account irrespective of the considered failure possibilities.

Value firstdebitState corresponds to the marking that signifies consumer’s
debit. This is the marking from where the model checking starts. Value noDebit is
used to detect redundant debits before the occurrence of the expected credit. Value
moneyAtomicity (true) ensures that for all immediate successors, noDebit is
true for each state along the path, until the last state on the path, where credit-
State becomes true.

Fig. 9. Model checking money atomicity: true

4.2 Model checking goods atomicity

Figure 10 shows the model checking of non-atomic goods delivery. We are interested
to verify that irrespective of the considered failures and unilateral abort decisions (i)
when C signs a valid epo it is not possible to eventually perform C’s debit, without a
subsequent protocol termination with a registered payment receipt (including the re-

276

quired decryption key) and (ii) when C sends a not necessarily valid epo it is not pos-
sible to eventually register a payment receipt, without having previously debited C’s
account. The first mentioned guarantee ensures goods atomicity from the consumer’s
perspective and the second mentioned guarantee ensures goods atomicity from the
merchant perspective.

Value dispatchedEPOState corresponds to the marking that signifies the dis-
patch of a valid signed epo. This is the marking from where the model checking of (i)
starts. Value debitState is used to detect C’s debit. Value notRegisteredDe-
crKey is used to check the absence of a payment receipt. Value noGoodsAtomic-
ityA (false) ensures that there is no path, for which it is possible to eventually
occur C’s debit and at the same time in every state, to not register the expected pay-
ment receipt. Note that because of the absence of infinite paths (state space report), all
paths quantified by ALONG end in a dead marking (protocol termination).

Value dispatchedEPOState1 corresponds to the marking that signifies the
dispatch of a valid signed epo. On the other hand, value dispatchedEPOState2
corresponds to the marking that signifies the dispatch of an invalid epo. These are the
markings from where the model checking of (ii) starts. Value noDebitFound is
used to check the absence of C’s debit. Value registeredDecrKey is used to
detect registration of an unexpected payment receipt. Value noGoodsAtomicityB
(false in both model checking cases) ensures that there is no path, for which it is
possible to eventually register a payment receipt and at the same time in every state, to
not have performed C’s debit.

Fig. 10. Model checking the two parts of the non-atomic goods delivery: false

277

4.3 Model checking certified delivery

Figure 11 shows the model checking of a non-certified delivery. We are interested to
verify that irrespective of the considered failures and unilateral abort decisions, the
protocol does not fall in a state, where it is possible to end with a payment receipt,
without C having previously obtained an encrypted version of the requested goods and
the corresponding checksum number. The obtained checksum number can be used to
prove potential discrepancy between what C ordered and what M delivered (if the
number coincides with the checksum number written on the registered payment re-
ceipt).

Value registerKey is used to detect registration of the expected payment re-
ceipt. Value noGoods is used to check the absence of an encrypted goods delivery.
Value nonCertiefiedDelivery (false), when it is model checked starting
from the initial node, ensures that there is no path for which it is possible to not have
delivered the assumed encrypted goods and the protocol to terminate with having
registered a payment receipt.

Model checking certified delivery from the merchant perspective is performed in a
similar way.

Fig. 11. Model checking non-certified delivery: false

5 Protocol failure analysis

In general, protocol failure analysis aims in exploring all property violation scenarios
(if any) and pinpoints areas where design changes or revisions should be considered.
Having shown that CP-net based model checking of payment atomicity is feasible, we
can then exploit the CPN Tools advanced graphical environment, to interactively
simulating the actions performed in possible property violation scenarios.

278

N11

N19

N20 N21

N30

N33

N35

N48N52

N56 N57N58 N59

N1

N9 N8

N7

N6

N5N4 N3N2

N18 N17

N16

N15

N14N13 N12N10

N22

N26

N23

N27

N24

N28

N25

N29

N31N32

N34

N37 N36

N39 N38

N40N41

N44 N43N42N47 N46N45

N51 N50N49N55 N54N53

Fig. 12. NetBill’s CP-net state space graph

279

 Protocol failure analysis is based on inspection of the terminal markings (dead
markings) in all property violation paths. The diagnostic strings positioned at places,
like the place stop and the place queryBank in the top-level CP-net of NetBill
(Figure 2), provide details for interactively simulating the corresponding protocol
execution scenario. The simulation control functionality found in the latest version of
CPN Tools allows firing transitions with an interactively chosen binding. Thus, the
actions included in the scenario of interest are easily reproduced and the analyst ex-
plores all possible protocol revision prospects to repair the detected property viola-
tion. A necessary prerequisite is the selection of informative diagnostic strings in the
phase of model development.

In what is concerned with NetBill, protocol failure analysis is not applicable, since
we did not detect atomicity violation cases. However, we proceed to the inspection of
the CP-net’s terminal markings and the visualization of the generated state space
graph.

CPN Tools exports the model’s state space graph in a DOT language based text file
that is then automatically visualized by an appropriate program, which implements
well-tuned layout algorithms ([8]), for placing graph nodes and arcs. Figure 12 shows
the generated state space graph for the described NetBill CP-net. Leaf nodes corre-
spond to the dead markings to be inspected (Figure 13).

 ListDeadMarkigs() -> val it =[59,58,57,56,55,
 51,35,33,30,21,
 20,19,10]:Node list

Fig. 13. Dead markings for the described NetBill CP-net

Finally, Table 3 provides a concise view of the performed protocol termination in-
spection.

Table 3. Protocol termination inspection

marking
(N)

Mark.Protocol'
stop 1 N

Mark.Protocol'
queryBank 1 N

interpretation

59 [“No Funds”] [noFunds] No failures.
58 [“comm err: MtoC”] [noFunds] Communication failure: M fails to report the transac-

tion result to C. C is informed for the result of the
submitted transaction by querying B.

57 [“Success”] [paymentReceipt] No failures.
56 [“comm err: MtoC”] [paymentReceipt] Communication failure: M fails to report the transac-

tion result to C. C obtains the product decryption key
by querying B.

55 [“comm err: BtoM or
M site failure”]

[noFunds] M is not informed for the result of the submitted
transaction due to a potential site or communication
failure. C is informed for the result of the submitted
transaction by querying B.

51 [“comm err: BtoM or
M site failure”]

[paymentReceipt] M is not informed for the result of the submitted
transaction due to a potential site or communication
failure. C obtains the product decryption key by
querying B.

35 [“comm err: MtoB”] [noRecord] Communication failure: the signed payment order is not
transmitted to B. C is informed that there is no
transaction by querying B.

33 [“err: invalid
EPO”]

[noRecord] M aborts the transaction due to an invalid epo. C is
informed that there is no transaction by querying B.

280

marking
(N)

Mark.Protocol'
stop 1 N

Mark.Protocol'
queryBank 1 N

interpretation

30 [“err: invalid
encrypted goods”]

[noRecord] C aborts the transaction due to reception of encrypted
goods that are possibly affected by an occurred
transmission error.

21 [“comm err: CtoM”] [noRecord] Communication failure: the goods request or the signed
payment order is not transmitted to M. C is informed
that there is no transaction by querying B.

20 [“err: invalid
goods request”]

[noRecord] M aborts the transaction due to an invalid goods
request.

19 [“aborted by M”] [noRecord] M aborts the transaction due to a potential site failure
or due to a unilateral abort decision. C is informed that
there is no transaction by querying B.

10 [“aborted by C”] [noRecord] C aborts the transaction due to a potential site failure or
due to a unilateral abort decision before being commit-
ted to it, by the dispatch of a signed payment order.

6 Conclusion

This paper introduces the use of CP-nets and CPN Tools to model check the three
levels of payment atomicity, for an electronic cash system. The combined use of ap-
propriate state space exploration functions and CTL formulae allowed us to express
and model check money atomicity, goods atomicity and certified delivery.

Although it was already known that NetBill possesses these three properties, we are
not aware of published works in e-commerce, where CP-nets are used to model check
correctness properties that are not directly related to the structural properties of the
generated state space graph. We believe that the described approach is also applicable
in more complex system models and is also possible to be extended for model check-
ing other reliability and security properties.

We also proposed the performance of protocol failure analysis, in order to explore
potential property violation scenarios and pinpoint areas, where design changes or
revisions should be considered. In protocol failure analysis, it is possible to exploit the
advanced graphical environment of CPN Tools to interactively simulate the actions
included in a protocol execution scenario.

Our model checking experience suggests that CPN Tools is an attractive alternative
over CSP-based model checking in e-commerce problems.

Acknowledgments

We acknowledge the CPN Tools team at Aarhus University, Denmark for kindly providing us
the license of use of the valuable CP-net toolset. We also acknowledge the anonymous referees
for their helpful comments.

281

References

1. Asokan, N., Fairness in electronic commerce, PhD thesis, University of Waterloo, On-
tario, Canada, 1998

2. Chaum, D., Fiat, A., Naor, M., Untraceable electronic cash, In: Proceedings of
CRYPTO’88, Springer-Verlag, 1990, 200-212

3. Chaum, D., Security without identification: Transaction systems to make big brother
obsolete, Communications of the ACM, Vol. 28, No. 10, 1985, 1030-1044

4. Cheng, A., Christensen, S., Mortensen, K. H., Model checking Coloured Petri Nets ex-
ploiting strongly connected components, In: Proceedings of the International Workshop
on Discrete Event Systems, Edinburg, Scotland, UK, 1996, 169-177

5. Clarke, E. M., Emerson, E. A., Sistle, A. P., Automatic verification of finite state concur-
rent system using temporal logic, ACM Transactions on Programming Languages and
Systems, Vol. 8, No. 2, 1986, 244-263

6. Cox, B., Tygar, J. D., Sirbu, M., NetBill security and transaction protocol, In: Proceed-
ings of the 1st USENIX Workshop in Electronic Commerce, New York, NY, USENIX
Association, California, 1995, 77-88

7. CPN Tools, http://wiki.daimi.au.dk/cpntools/cpntools.wiki
8. Gansner, E. R., Koutsofios, E., North, S. C., Vo, K.-P., A technique for drawing directed

graphs, IEEE Transactions on Software Engineering, Vol. 19, No. 3, 1993, 214-230
9. Georgiadis, C. K., Manitsaris, A., Personalization in Mobile Commerce Environments:

Multimedia Challenges, Cutter IT Journal, Vol. 18, No. 8, 2005, 36-43
10. Heintze, N., Tygar, J., Wing, J., Wong, H., Model checking electronic commerce proto-

cols, In: Proceedings of the 2nd USENIX Workshop in Electronic Commerce, Oakland,
CA, USENIX Association, California, 1996, 146-164

11. Herzberg, A. and Yochai, H., Minipay: Charging per click on the web, Computer Net-
works, Vol. 29, 1997, 939-951

12. Jensen, K., Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use,
Volumes 1-3, Basic Concepts. Monographs in Theoretical Computer Science, Springer-
Verlag, 1997

13. Kailar, R., Accountability in electronic commerce protocols, IEEE Transactions on Soft-
ware Engineering, Vol. 22, No. 5, 1996, 313-328

14. Katsaros, P., On the design of access control to prevent sensitive information leakage in
distributed object systems: a Colored Petri Net model, In: Proceedings of
CoopIS/DOA/ODBASE, Lecture Notes in Computer Science 3761, Springer-Verlag,
2005, 945-962

15. Kempster, T. and Stirling, C., Modeling and model checking mobile phone payment
systems, Proceedings of the FORTE 2003 Workshops, Lecture Notes in Computer Sci-
ence 2767, Springer-Verlag, 2003, 95-110

16. Lu, S. and Smolka, S. A., Model checking the Secure Electronic Transaction (SET) pro-
tocol, In: Proceedings of the 7th International Symposium on Modeling, Analysis and
Simulatio of Computer and Telecommunication Systems, 1999, 358-365

17. Ouyang, C., Kristensen, L. M. and Billington, J., A formal service specification for the
Internet Open Trading Protocol, In: Proceedings of the 23rd International Conference on
Applications and Theory of Petri Nets, Lecture Notes in Computer Science 2360,
Springer-Verlag, 2002, 352-373

18. Ouyang, C., Kristensen, L. M. and Billington, J., A formal and executable specification
of the Internet Open Trading Protocol, In: Proceedings of EC-Web 2002, Lecture Notes
in Computer Science 2455, Springer-Verlag, 2002, 377-387

282

19. Ouyang, C. and Billington, J., On verifying the Internet Open Trading Protocol, In:
Proceedings of EC-Web 2003, Lecture Notes in Computer Science 2738, Springer-
Verlag, 2003, 292-302

20. Ouyang, C. and Billington, J., An improved formal specification of the Internet Open
Trading Protocol, In: Proceedings of the 2004 ACM Symposium on Applied Computing,
Nicosia, Cyprus, 2004, 779-783

21. Ouyang, C. and Billington, J., Formal analysis of the Internet Open Trading Protocol, In:
Proceedings of the FORTE 2004 Workshops, Lecture Notes in Computer Science 3236,
Springer-Verlag, 2004, 1-15

22. Panti, M., Spalazzi, L. and Tacconi, S., Verification of security properties in electronic
payment protocols, In: Proceedings of the ACM SIGPLAN and IFIP WG 1.7 Workshop
on Issues in the Theory of Security, Oregon, 2002

23. Ray, I., Ray, I., Failure Analysis of an E-Commerce Protocol using Model Checking, In:
Proceedings of the Second International Workshop on Advanced Issues of E-Commerce
and Web-based Information Systems, San Jose, CA, June 2000, 176-183

24. Ray, I., Ray, I., Natarajan, N., An anonymous and failure resilient fair-exchange e-
commerce protocol, Decision Support Systems, Vol. 39, 2005, 267-292

25. Rivest, R. L. and Shamir, A., Payword and MicroMint: Two simple micropayment
schemes, In: Security Protocols Workshop, 1996, 69-87

26. Schneider, S., Modelling security properties with CSP, Tech. Report CSD-TR-96-04,
Dept. of Computer Science, Royal Holloway, University of London, 1996

27. Schuldt, H., Popovici, A. and Schek, H.-J., Execution guarantees in electronic commerce
payments, In: Proceedings of the 8th International Workshop on Foundations of Models
and Languages for Data and Objects, Lecture Notes in Computer Science 1773, Springer-
Verlag, 2000, 193-202

28. Shyamasundar, R. K. and Deshmukh, B., MicroBill: An efficient secure system for sub-
scription based services, In: Proceedings of ASIAN 2002, Lecture Notes in Computer
Science 2550, Springer-Verlag, 2002, 220-232

29. Xu, S., Yung, M., Zhang, G. and Zhu, H., Money conservation via atomicity in fair off-
line e-cash, In: Proceedings of the 2nd Int. Workshop of Information Security, Lecture
Notes in Computer Science 1729, Springer-Verlag, 1999, 14-31

283

284

Application of Coloured Petri Nets in Cooperative
Provision of Industrial Services

Katrin Winkelmann

Research Institute for Rationalization and Operations Management at Aachen University
Pontdriesch 14/16, D-52062 Aachen, Germany

katrin.winkelmann@fir.rwth-aachen.de

Abstract. Product-related services in the capital goods industry are
characterised by international customer demands. Often these demands can only
be met efficiently by cooperating in networks. However, the decision-making
process for network configuration is still not sufficiently supported. Existing
controlling approaches for networks and services are not suitable for an
assessment of different alternatives prior to their implementation. Simulation
approaches for production networks on the other hand, cannot be used for
industrial services. This paper deals with an approach to overcome this problem
and presents a simulation model based on Petri Net theory for the cooperative
provision of industrial services. As a result machine and equipment producers
will be able to assess their cooperation alternatives related to integrated service
provision in advance and thus avoid cost-intensive false decisions.

1 Motivation

1.1 Trend towards Cooperation and Need for Assessment Support

The global trend towards a service economy has become manifest in the German
capital goods industry: German machine and equipment producers realise a rising
percentage of their revenues with product-related services [17]. Product-related
industrial services (e.g. maintenance or spare parts supply) are offered to (re)establish,
ensure or enhance the long-term usability of industrial products. Since Germany’s
capital goods industry has an export rate of about 70 percent and capital goods are
sold around the globe, product-related services also have to be offered internationally
[5], [37]. However, international provision of high-quality services requiring expert
knowledge proves to be rather cost-intensive and thus threatens the service profit
margin. Therefore machine and equipment producers are looking for partners to form
coalitions and thus improve their service business through cooperative advantages
like more efficient deployment of experts, shorter response time or cost reduction.
This means that the process of providing services for customers is not longer owned
by one single company but by several partners. This shared process is referred to as
cooperative service provision.

While companies have gained preliminary experience with cooperative service
provision, problems in finding appropriate partners and organisational difficulties

285

indicate that companies lack support for the planning and configuration of service
networks [38]. A variety of alternatives related to cooperations and configurations
complicates a substantiated decision [1], [11], [15], [33], [36]. In this context, a
possibility to assess different cooperation alternatives before implementation is sorely
needed [7], [21]. Some approaches for network and service controlling exist, but these
methods are not suitable for an assessment of different alternatives prior to their
implementation, i.e. a prospective assessment. Companies are not able to evaluate, for
example, whether a certain combination of partners in the service process leads to a
shorter throughput time for service orders or not. To solve problems of this kind, a
model for the prospective assessment of service network alternatives in the capital
goods industry is needed. This model should represent all relevant elements and their
correlations so that an assessment against the background of service objectives is
possible.

1.2 Prospective Assessment of Service Network Alternatives through
Simulation with Petri Nets

The target is therefore to enable the prospective assessment of different service
network alternatives in the capital goods industry. The chosen method of resolution is
a simulation with Petri Nets. Simulation is particularly suitable for assessing different
alternatives before their actual implementation and has proven to be a successful
method for prospective assessment of production network design [4], [23], [30], [39].
Modern systems are often so complex that system interactions can usually only be
analysed using simulation techniques [3], [4]. First applications of simulation in
service systems (e.g. queuing models at bank counters) have produced promising
results [22], [32]. Petri Nets are a widely used method to model business processes
[18], [19]. They are particularly useful for the case in hand, since they offer a broad
range of analytical possibilities with regard to simulation as well as answers to “what-
if”-questions, and revision of dynamic system characteristics [14], [29], [35].

2 Existing Approaches

Several existing approaches have been examined and evaluated:
• First, approaches based on simulation in different ranges of application have been

evaluated. These approaches provide a valuable contribution since they show how
to model certain problems and transfer them into a simulation model. Although
their objectives differ significantly from the problem at hand, these approaches
provide some useful pointers for the development of a simulation model for the
case described in this paper.

• Second, to consider the special conditions concerning the cooperative provision of
industrial services, approaches for assessing networks and industrial services were
analysed. These approaches are not designed for a prospective assessment but
deliver valuable information about relevant assessment criteria.

286

First simulation applications for services were developed by [22], [27] and [32].
Although the authors examined a prospective assessment for services, their
approaches do not consider the cooperation aspect and characteristics of service
provision in an industrial context. Advanced simulation models exist for different
ranges of application, e.g. for product development [24] or for autonomous
production cells [31]. However, they do not provide information about modelling
cooperative service provision.

Approaches in the field of network controlling proved to be of little value to the
problem at hand, because of their focus on a retrospective analysis and management.
Concepts based on the Balanced Scorecard (e.g. [2], [26]) benefit from the need to
define assessment criteria, but remain superficial about operationalisation of these
criteria.

With regard to the controlling and quality management of industrial services, the
following approaches are worth mentioning: [6], [8], [12], [16], [25] and [34]. These
authors have developed assessment criteria for industrial services at different levels of
detail, and their results will be taken into account in the development of the
simulation model.

The analysis of relevant literature shows that some approaches exist for parts of the
problem, but shortcomings prevail, especially concerning the prospective assessment
of alternatives of cooperative service performance. The following deficiencies can be
identified:
• Most of the approaches concerning prospective assessment based on simulation

refer to manufacturing or other areas of application and do not consider the special
characteristics of industrial services. The constitutive characteristics of services
lead to significant differences between the manufacturing of material goods and the
provision of services. This means that approaches that do not consider these
characteristics of services cannot be used to solve the problem at hand. First
simulation approaches for services differ importantly in terms of the underlying
problem, so that their adoption for the problem is not possible.

• Approaches in the field of network controlling do not consider the special
characteristics of services, either. In addition, concepts of controlling are not
designed for a prospective assessment but rather for continuous management and
retrospective analysis. They are therefore not applicable for a prospective
assessment of service provision.

• Approaches to asses the quality of services or to control services are also designed
for continuous management and retrospective analysis and cannot be adopted for a
prospective assessment. In addition, the approaches focus on individual companies
and neglect network aspects. These aspects, however, are very important for the
current case.

But existing approaches also provide valuable information for solving different parts
of the problem at hand:
• Simulation as a method of prospective assessment has proven to be of great value,

especially for complex processes in networks. First promising applications for
services suggest that using simulation for the problem at hand would be useful.

287

• Petri Nets in particular have proven to be a valuable modelling technique for
complex processes in networks and are applicable to cooperative service provision.
Their analysis potential meets the demands of the current case.

• Assessment criteria used in service controlling and to measure service quality
represent an important input for the development of a model for the assessment of
possible alternatives of cooperative service provision. Especially the assessment
criteria developed for industrial services are relevant for the problem at hand.

Based on the deficiencies and contributions of existing approaches, the following
tasks need to be addressed:
• A conceptual model for the prospective assessment of industrial services has to be

developed.
• This model has to integrate characteristics of services while considering the

dimensions of services [13]: structure, process and outcome, which are explained
in more detail in the following section.

• The model has to be implemented into a simulation model based on the Petri Net
notation.

3 Simulation Model of Cooperative Provision of Industrial
Services

The model presented in this paper basically consists of three partial models that
consider the following dimensions:
• Process dimension: Representation of the process flow in a form amenable to

simulation and modelled according to Petri Net formalism.
• Structure dimension: Representation of the required resources (personnel and

material) and resource consumption related to different service assignments and
network configurations.

• Outcome dimension: Definition of assessment criteria that can be influenced by the
process design within the network.

These partial models map different concepts of the whole system. A brief description
of these partial models and how they are integrated into an overall simulation model
is presented in the following sections.

3.1 Concepts on Which the Overall Simulation Model is Based

Process dimension. To represent the process of industrial service provision, reference
models have been developed [6], [20]. These reference models have been adapted to
fit the cooperative service provision and to fulfil the modelling requirements of the
Petri Net notation. Furthermore, the resulting model has been structured in a hierarchy
in order to model process elements in adequate detail while keeping complexity at the
top level low (fig. 1). At the uppermost level, the whole process is mapped with low
granularity. Each process step is then specified at a first level of detail. For some
processes, this first level is sufficient. The process step accomplish order requires

288

further detailing at a second level. The process of resource allocation within
plan order is a crucial point in order processing so this part is modelled at a third level
of detail.

Process Overview

receive
request

clarify
problem

start
order

plan
order

control
order

accom-
plish
order

make
changes

confirm
order

invoice
order

plan order
contents

plan
resources

plan
materials

plan
personnel

execute
order

Top level

1st detail

2nd detail

3rd detail

incoming
requests

Process Overview

receive
request

clarify
problem

start
order

plan
order

control
order

accom-
plish
order

make
changes

confirm
order

invoice
order

plan order
contents

plan
resources

plan order
contents

plan
resources

plan
materials

plan
personnel

plan
materials

plan
personnel

execute
order

Top level

1st detail

2nd detail

3rd detail

incoming
requests

Fig. 1. Overview of process hierarchy

Structure dimension. The structure dimension represents the resources needed to
execute the processes. Therefore, all relevant resources and their consumption have to
be mapped. Mapped resources are different categories of personnel and material
(fig. 2). Depending on the kind of order that has to be processed, different categories
and quantities of resources are needed and consumed. Resource costs are calculated
by assigning a cost value based on a single item to each of the categories of resources.

Categories of Resources

Personnel Material

• Service technicians (ST)
• Support engineers (SE)
• Client technicians (CT)
• Service providers (SeP)

• Tools
• Operating resources (OR)

(lubricant, gaskets, etc.)
• Spare parts (SpP)

Fig. 2. Categories of resources

Outcome dimension. Based on the assessment criteria for industrial services
mentioned above, relevant criteria for the cooperative provision of industrial services
have to be selected an implemented into the model. In order to do so, information
stored in other dimensions have to be integrated and analysed in the outcome
dimension, e.g. information about resource consumption. On a top level, criteria can
be categorised into time (e.g. throughput time), cost (e.g. resource consumption and
related costs) and quality criteria (e.g. first hit rate, the rate of orders that get
processed without any changes, additions or rescheduling).

289

3.2 Implementation of the Model Using CPN Tools

To transfer the conceptual model into a simulation model, the software CPN Tools of
the University of Aarhus was used [9], [10]. All aspects of the overall model were
mapped into a directed graph consisting of places, transitions, arcs, and markings. The
implementation of the main concepts is presented below.

Process modelling. First of all, the entire process was represented in Petri Net
notation using places, transitions and arcs. The hierarchical concept (fig. 1) was
realised using the technique of substitution transitions. A substitution transition
represents another page (subpage) in the net which starts and ends at the same places
as the substitution transition but which may contain a more detailed process
comprising several other transitions and places. As depicted in fig. 3 the process
overview maps ten substitution transitions.

receive_
request

receive_request

plan_
order

plan_order

control_
order

control_order

accomplish_
order

accomplish_order

confirm_
order

confirm_order

invoice_
order

invoice_order

clarify_
problem

clarify_problem

start_
order

start_order

make_
changes

make_changes

incoming
requests

incoming requests

request_
recorded

Order

request_
arrived

Order

order_
started

Order

order_
planned

Order

change_
necessary

Order

order_
transferred

Order

order_
accomplish

Order

addition_
necessary

Order

order_
confirmend

Order

order_
invoiced

Order

problem_
clarified

Order

Requests

Order

20`(O(0),N,0)

Fig. 3. Top page process overview

Most of the process steps on the top level are arranged in a sequential order except for
the make_changes transition that can be triggered from the transitions
accomplish_order and control_order. Place and transition names have
been chosen accordingly to usual terminology in the area of application. Some of the
subpages are explained in more detail in the following remarks.

Time modelling. All time delays of the model are using random distribution functions,
because the duration of the process steps varies. Incoming requests are modelled
using a queue timed with a Poisson process. All other process steps (transitions) that

290

are engaged with a certain time delay are timed using normal distributions. Since
CPN Tools can handle time values only as integers, the real values of the normal
distribution function have been rounded, e.g. @+round(normal(48.0,20.0)).
Time values (mean and variance) are estimates and have been derived through
interviews with experts in industrial service networks.

Order modelling. The primary markings in the net are the orders that pass through the
process. The colour set of orders (Order(i),j,k) is declared as follows:

colset A = index A with 0..n;
colset B = with N|Ch|Add|N_r|Ch_r|Add_r; with
(N=normal, Ch=change, Add= addition, N_r=normal
rescheduled, Ch_r=change rescheduled, Add_r=addition
rescheduled)
colset Order = product A*B*INT;

Initially, each order (respectively request, since any order enters the process as a
client’s request and turns into an order later on) receives a one-to-one order number
(position k in Order(i),j,k). This is an important requirement since, in order to
model several concurrent processes, order copies (with the same order number) are
created by the function
copy(Order(i),j,k)=(Order(i),j,k);.

When the concurrent processes become synchronised, the order numbers ensure that
original and copy match the same order. (For a more detailed description of branching
and synchronisation patterns see [40].) The function
getn(Order(i),j,k)=k;

extracts the order number from any order (original or copy) so that the numbers of
original and copy can be matched.

The orders are indexed to represent different degrees of difficulty of service
assignments (position i in Order(i),j,k). Depending on the degree of difficulty
of the service assignment, different categories and quantities of resources have to be
employed and certain process steps take different amounts of time.

Any order also carries information about its status regarding changes and additions
in the service assignment as well as a notation to account for conducted rescheduling,
since certain process steps only apply to orders not having passed through any
changes, additions or rescheduling (position j in Order(i),j,k).

Resource modelling. The different resources described above are controlled by special
resource places that monitor their availability and usage. Current information about
availability of resources and reserved resources that are already on-site is monitored
on a special resource subpage, where all relevant information is stored using the
concepts of fusion places (fig. 4). Fusion places are duplicates of places to make the
places accessible at different pages or different locations on one single page.

291

personnel material

personnel

PersRespersonnel

material

MatRes
material

personnel
_on-site

PersRespers_on-site

material_
on-site

MatResmat_on-site

Fig. 4. Subpage resources

Planning and assigning of resources is performed as a function of the degree of
difficulty of the respective orders. The subpage plan_resources (fig. 5) depicts
the concurrent processes of planning the personnel and material. The two processes
are started by the transition plan_personnel_and_material that creates a
copy of the order. At the end, both processes are synchronised by the transition
end_planning. The guard

getn(ord) = getn(ord_copy)

ensures that the order copy drawn from the place end_of_material_planning
matches the original order drawn from end_of_personnel_planning by
checking the order number.

Start_planning_personnel and start_planning_material are both
substitution transitions that refer to subpages. Since both subpages are similar and
differ only in the use of different resources, only the subpage plan_personnel is
presented here1. One of the characteristics of resource planning is that the actual
planning can be done quickly, but before the resources actually are available on-site,
the resources have to be ordered and (eventually) travel to the site or be shipped there.
This is modelled by separating the planning from the allocation, as depicted in fig. 6.

1 Since both processes are similar, resources could have been modelled in Coloured Petri Nets

using only one place containing personnel and material as different coloured tokens. In the
field of industrial services however, personnel and material resources are commonly
separated and treated quite differently. Thus, to keep comprehensibility of the model by users
high, this additional complexity of having two separate places and sub-processes has been
approved.

292

ord

copy(ord)ord

ord

ord ord_copy

plan_personnel_
and_material

end_
planning

[getn(ord_copy)=
getn(ord)]

plan_
material

plan_material

plan_
personnel

plan_personnel

measures_
planned

OrderIn

resources_
planned

OrderOut

start_
planning_
personnel

Order

start_
planning_
material

Order

end_of_
personnel_
planning

Order

end_of_
material_
planning

Order

Fig. 5. Subpage plan_resources

The transition plan_personnel puts the order into the output place
end_of_personnel_planning. This way the planning process can continue on
a higher level omitting the further steps in allocating the resources. The mechanism
for the allocation works as follows: Besides the two input places personnel_
planned and resources, a third input place no_rescheduling is used. This
is to make sure that in the concurrent process on the subpage control_order,
possible rescheduling that can affect the required resources is initiated before the
resources travel to the site. Again a guard ensures that the order copies drawn from
the place personnel_planned and no_rescheduling belong to the same
order by checking the order number. The arc weight of the resources consumed by the
transition personnel_travel is calculated by the function

fun personnel(Order(i),j,k) = if(geti(Oder(i),j,k)=1)
then pers1 else (if(geti(Order(i),j,k)=2) then pers2
else pers3);

293

with pers1, pers2 and pers3 representing the personnel
needed for orders of the three different degrees of
difficulty.

This function takes into account that the amount of required resources depends on the
degree of difficulty of the respective order and can be modified according to the
specifications and qualifications of different partners and suppliers. The same arc
inscription is used for the two output places: One place contains the resources that
have travelled to the site (personnel_on-site), the other one (personnel_
consumption) is a counter of the consumption of personnel.

ord

ord

ord_copy

persmenge
(ord_copy)

copy(ord)

persmenge(ord_copy)

ord_copy1

persmenge
(ord_copy)

plan_
personnel

@+round(normal(1.0,0.5))

personnel_
travel

[getn(ord_copy)=
getn(ord_copy1)] @+round

(normal(24.0,20.0))

end_of_
personnel_
planning

OrderOut

start_
planning_
personnel

OrderIn

personnel_
planned

Orderpers_planned

personnel

PersRespersonnel

personnel_
on-site

PersRespers_on-site

no_
rescheduling_

necessary
Orderno_rescheduling

personnel_
consumption

PersRespers_consumption

Fig. 6. Subpage plan_personnel

Control modelling. The central processes of assigning changes and rescheduling are
implemented in the subpage control_order (fig. 7). After order costs are
planned and the whole planning process is finished, the controlling of the order starts.
The transition control_order assigns changes to an order according to the
probability of changes as it is stored in the place p_of_changes. To make sure that

294

orders get assigned these changes only once (the first time they pass this step) the
functions case_x check the orders for their status regarding changes, additions or
rescheduling:
fun case_p((O(i),j,k),P)=
if(getj(O(i),j,k)=N) then
(if (P=p) then 1`(O(i),j,k) else empty)
else empty;

fun case_r((O(i),j,k),P)=
if(getj(O(i),j,k)=N) then
(if (P=r) then 1`(O(i),j,k) else empty)
else 1`(O(i),j,k);

fun case_r_copy((O(i),j,k),P)=
if(getj(O(i),j,k)=N) then
(if (P=r) then 2`(copy(O(i),j,k)) else empty)
else 2`(copy(O(i),j,k));

Another assignment of changes and rescheduling is performed by the transition
check_changes_etc. The logic of this step is the same as before with the
differences that another probability is used and that two order copies are created in the
places no_rescheduling. These order copies are necessary to allocate resources
correctly as described above.

Partner modelling. To account for the concept of cooperative service provision, the
model has to change with regard to different cooperation alternatives. That means that
different parts of the process may be provided by different partners and thus may
differ in respect of time, cost and quality. Therefore all variable factors of the model
have been assessed if they are influenced by a change in responsibility of certain
process steps. These cooperation relevant factors have to be changed for every
cooperation alternative that is to be assessed using the simulation model. For
example, time delays for process steps, the probability of necessary changes and
additions or the qualification and cost of personnel change depending on the
responsible partner.

295

ord

case_p
(ord, p1)

case_p(ord, p2)

case_r
(ord, p1)

ord

case_r
(ord, p2)

ord

p1

p2

ord

ord

ord

case_r_copy
(ord, p2)

transfer_
order

@+round(normal(0.5,0.2))

control_
order

@+round(normal(0.5,0.2))

check_
changes_and_
rescheduling

@+round
(normal(0.5,0.2))

start_
control

change_
necessary

OrderOut

order_
transferred

OrderOut

costs_
planned

OrderIn

order_
controlled

Order

changes_and_
rescheduling_

checked
Order

p_of_
changes

P

25`p ++ 75`r

p_change

p_of_
rescheduling

P

15`p ++ 85`r

p_rescheduling

control_
started

Order

no_
rescheduling_

necessary
Orderno_rescheduling

Fig. 7. Subpage control_order

296

4 Preliminary Results and Discussion

4.1 Preliminary Results

In order to verify and validate the model, several actions have been taken. Although
these measures are presented at the end of this paper, it is stressed that model
verification and validation is not a task to perform at the end of model development
but rather accompanies the whole process of model development [4], [23], [28].

The full state space and strongly connected components graph were calculated in
order to verify the model. To restrict complexity to a manageable level for this
calculation the model was reduced in different respects: The amount of orders was
reduced; probabilities for changes, additions, and rescheduling were modified so that
only one of those concepts occurred at any one time (analyses were carried out for the
several cases that this implies). The analysis shows that the net is bounded and the
process ends only in desired dead states (invoice_generated, no_action_
necessary, other_kind_of_order and no_order). Dead transition
instances existed only for the transitions that had been disabled via probability to
manage complexity. As soon as they were enabled, they were no longer listed as dead
transition instances.

To validate the conceptual model potential users were involved in the development
process of the model from the beginning. The use of common expressions in the
names of places and transitions as well as the graphical representation and
hierarchical structure of the model in CPN Tools have proven of immense value to
facilitate the communication with potential users and their understanding of the
model. Several workshops with experts in industrial service networks have been
organised to validate the logic and assumptions of the model.

Simulation was then used to assess the behaviour of the model. Interactive
simulation runs showed that the net behaved as expected. Terminating simulation runs
with any amount of orders showed that all orders ended up in the desired dead states.
As a result of these experiments, some minor shortcomings could be identified – and
consequently eliminated. One of these shortcomings was the mechanism for resource
allocation that was improved in the following way: In an early version of the
implementation the need for rescheduling was not considered in the subpages
plan_personnel and plan_material, leading to incorrect (double) resource
allocation. After improving the model resources are allocated only after rescheduling
has taken place.

To check the model for face validity, an example of one cooperation alternative
was simulated and the output’s plausibility checked by experts. The simulation results
of the example proved to be consistent with perceived system behaviour.

297

4.2 Discussion and future research

This paper presents a conceptual and simulation model of cooperative service
provision in order to allow prospective assessment of cooperation alternatives. The
model reflects the major features of industrial services as well as their cooperative
provision. It also allows the prospective assessment of process organisation
alternatives by varying cooperation relevant factors and comparing the analysis
results.

The use of Coloured Petri Nets as a modelling and simulation formalism involves
several benefits: One the one hand, the graphical representation of the model leads to
transparency, consistency and conformity with user’s expectations so that
understanding and acceptance of the model are facilitated. On the other hand, the
maturity of the Petri Net formalism and the availability of appropriate tools allow a
direct implementation into computer models and their analysis.

The model presented in this paper contains elements of some well-known approaches.
In integrating many aspects of these different approaches, the new model considers
aspects neglected by the others. The hierarchical structure and the partial models
which properly map the cooperative provision processes of industrial services enable
planners of service networks to try out alternatives in process organisation and assess
the results before actually implementing the network. First results show that the
model output is consistent with its perceived behaviour and enables the assessment of
cooperation alternatives.

The primary areas for continued development are more detailed output analyses,
sensitivity analyses to identify the most important cooperative relevant factors as well
as closer matching distribution functions for time delays. Additionally, the integration
of concepts which are not directly measurable, like cultural fit and trust between
partners, would be very interesting, and research on how to implement these concepts
should be worthwhile as well.

5 References

[1] Aharoni, Y. (Eds.): Coalitions and Competition: The Globalization of Professional
Business Services, Routledge, London, New York, 1993.

[2] Arns, M.; Bause, F.; Kemper, P.; Schmitz, M.; Schweier, H.; Stüllenberg, F.; Völker, M.:
Gestaltung von Beschaffungsnetzwerken auf Basis einer prozesskettenorientierten
Modellierung, in: Industrie Management, 16 (2000)3, p. 33-36.

[3] Banks, J.; Carson II, J. S.; Nelson, B. L.; Nicol, D.: Discrete-event System Simulation,
Pearson Prentice Hall, Upper Saddle River, NJ, 2001.

[4] Banks, J.: Principles of Simulation, in: J. Banks (Eds.): Handbook of Simulation, Wiley,
New York, NY [u.a.], 1998, p. 3-30.

[5] Bienzeisler, B.; Meiren, T.: Trendstudie Dienstleistungen. Ergebnisse einer Befragung zu
Dienstleistungsproduktivität und Dienstleistungsinternationalisierung, Fraunhofer-Institut
für Arbeitswirtschaft und Organisation IAO, Stuttgart, 2005.

[6] Borrmann, A. F.: Service-Controlling für produzierende Unternehmen, Shaker, Aachen,
2003, also: Aachen, Techn. Hochsch., Diss., 2003.

298

[7] Braun, J.: Veränderte Blickwinkel auf Unternehmen, in: H. Warnecke; J. Braun (Eds.):
Vom Fraktal zum Produktionsnetzwerk: Unternehmenskooperationen erfolgreich
gestalten, Springer, Berlin [u.a.], 1999, p. 43-90.

[8] Bruhn, M.: Qualitätsmanagement für Dienstleistungen: Grundlagen, Konzepte, Methoden,
Springer, Berlin [u.a.], 2004.

[9] CPN Tools: http://wiki.daimi.au.dk/cpntools/.
[10] Coloured Petri Nets at the University of Aarhus: http://www.daimi.au.dk/CPnets/.
[11] DIHT: Services Going Abroad, Deutscher Industrie- und Handelstag, Berlin, 2001.
[12] DIN (Eds.): Strukturmodell und Kriterien für die Auswahl und Bewertung investiver

Dienstleistungen, PAS 1019, Beuth, Berlin, 2002.
[13] Donabedian, A.: Explorations in Quality Assessment and Monitoring. Vol. 1: The

Definition of Quality and Approaches to its Assessment, Health Administration Press,
Ann Arbor, Mich., 1980.

[14] Girault, C.; Valk, R.: Petri Nets for Systems Engineering: A Guide to Modeling,
Verification and Applications, Springer, Tokyo, 2003.

[15] Gulati, R.; Nohria, N.; Zaheer, A.: Strategic Networks, in: Strategic Management Journal,
21 (2000)Special Issue, p. 203-215.

[16] Hlubek, W.; Pötzsch, G.; Kesting, J.: Certified Service, in: H. Luczak; V. Stich (Eds.):
Betriebsorganisation im Unternehmen der Zukunft, Springer, Berlin [u.a.], 2004, p. 167-
187.

[17] Hoeck, H.; Kutlina, Z.: Status quo und Perspektiven im Service 2004. Ergebnisse der
Expertenbefragung Servicemanagement, Verlag Klinkenberg, Aachen, 2004.

[18] Jensen, K.; Rozenberg, G.: High-level Petri Nets, Springer, Berlin [u.a.], 1991.
[19] Jensen, K.: Coloured Petri Nets, Vol. 1-3, Springer, Berlin [u.a.], 1997.
[20] Kallenberg, R.: Ein Referenzmodell für den Service in Unternehmen des Maschinenbaus,

Shaker, Aachen, 2002, also: Aachen, Techn. Hochsch., Diss., 2002.
[21] Klocke, F.: Produktion 2000 plus - Visionen und Forschungsfelder für die Produktion in

Deutschland: Untersuchungsbericht zur Definition neuer Forschungsfelder für die
Produktion nach dem Jahr 1999, Freundeskreis des Laboratoriums für
Werkzeugmaschinen und Betriebslehre der RWTH Aachen, Aachen, 1998.

[22] Laughery, R.; Plott, B.; Scott-Nash, S.: Simulation of Service Systems, in: J. Banks
(Eds.): Handbook of Simulation, Wiley, New York, NY [u.a.], 1998, p. 629-644.

[23] Law, A. M.; Kelton, W. D.: Simulation Modeling and Analysis, McGraw-Hill, Boston
[u.a.], 2000.

[24] Licht, T.; Dohmen, L.; Schmitz, P.; Schmidt, L.; Luczak, H.: Person-Centered Simulation
of Product Development Processes Using Timed Stochastic Coloured Petri Nets, in: P.
Geril (Eds.): Proceedings of the European Simulation and Modelling Conference,
ESM'2004, October 25-27, 2004, Paris, EUROSIS-ETI, Ghent, Belgien, 2004, p. 188-
195.

[25] Luczak, H.; Drews, P. (Eds.): Praxishandbuch Service-Benchmarking, Service Verlag
Fischer, Landsberg, 2005 (in print).

[26] Merkle, M.: Bewertung von Unternehmensnetzwerken: Eine empirische
Bestandsaufnahme mit der Balanced Scorecard, St. Gallen, Univ., Diss., 1999.

[27] Mjema, E.: A Simulation Based Method for Determination of Personnel Capacity
Requirement in the Maintenance Department, Shaker, Aachen, 1998, also: Aachen,
Techn. Hochsch., Diss., 1997.

[28] Naylor, T.; Finger, J.: Verification of Computer Simulation Models, in: Management
Science, (1967)2, p. B-92 - B-101.

[29] Peterson, J. L.: Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[30] Pritsker, A.; Alan B.,: Principles of Simulation Modeling, in: J. Banks (Eds.): Handbook
of Simulation, Wiley, New York, NY [u.a.], 1998, p. 31-51.

299

[31] Reuth, R.; Schlick, C.; Luczak, H.: A Simulation Approach: Comparative Assessment of
Knowledge, Skills and Abilities in Autonomous Production Cells, in: M. J. Smith; G.
Salvendy (Eds.): 'Systems, Social and Internationalization Design Aspects of Human-
Computer Interaction', Proceedings of HCI International, 5.-10. August 2001, New
Orleans, vol. 2, Lawrence Erlbaum, Mahwah, 2001, p. 207-211.

[32] Seel, C.: Visuelle Simulation von Dienstleistungsprozessen, Eul, Lohmar [u.a.], 2002,
also: Saarbrücken, Univ., Diss., 2002.

[33] Sydow, J.: Network Development by Means of Network Evaluation? in: Human
Relations, 57 (2004)2.

[34] VDI (Eds.): Richtlinie 2893: Auswahl und Bildung von Kennzahlen für die
Instandhaltung, VDI-Handbuch Betriebstechnik, Teil 4 - Betriebsüberwachung/Instand-
haltung, Beuth, Berlin [u.a.], 2003.

[35] Wang, J.: Timed Petri Nets: Theory and Application, Kluwer Academic Publishers,
Boston, 1998.

[36] Wiertz, C.; Ruyter, K. d.; Streukens, S.: Cooperating for Service Excellence in Multi-
channel Service Systems: An Empirical Assessment, Maastricht, 2003.

[37] Wise, R.; Baumgartner, R.: Go Downstream. The New Profit Imperative in
Manufacturing, in: Harvard Business Review, 77 (1999)5, p. 133-144.

[38] Zahn, E.; Stanik, M.: Wie Dienstleister gemeinsam den Erfolg suchen - Eine empirische
Studie über Netzwerke kleiner und mittlerer Dienstleister, in: M. Bruhn; B. Stauss (Eds.):
Dienstleistungsnetzwerke, Gabler, Wiesbaden, 2003, p. 593-612.

[39] Zhou, M.; Venkatesh, K.: Modeling, Simulation and Control of Flexible Manufacturing
Systems: A Petri Net Approach, World Scientific, Singapore [u.a.], 1999.

[40] Van der Aalst, W. M. P.; Ter Hofstede, A. H. M.; Kiepuszewski, B.; Barros, A. P.:
Workflow Patterns, in: Distributed and Parallel Databases, 14 (2003)3, p. 5-51.

300

	Jansen-Vullers.pdf
	Abstract
	Introduction
	Background
	The intake process in a CPN Model
	Modelling the control flow
	Modelling resources
	Modelling triggers
	Modeling the simulation
	Simulation results

	Redesign
	Periodic meetings
	Redesign: CPN model and simulation

	Discussion
	Conclusions and further research

