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Foreword 

  

(This report is a translation of DAIMI IR-115 written by Thomas W. Larsen in Danish) 

This project is the written report for the course in Picture Processing as part of the computer 

science master’s degree at the University of Aarhus. The starting point for my project is an article 

of Michael Leyton in Artificial Intelligence 34 1988 “A process grammar for shape” [1]. The 

article describes how it is possible to derive the process history for an object from its state at two 

stages in its development. The aim in this project is to describe and test an algorithm for deriving 

the process history of an object from its state at two different stages. First I give a short summary 

of Leyton’s article and describe his method. After this there is a description of an implemented 

algorithm and a system that incorporates it. The system extracts the information for the algorithm 

in an interactive environment. All my ideas (good or bad) have been implemented and tested. All 

parts of my testing are programmed in C and the user interface is built in Sun-View (Sun’s window 

system). The images used for testing (not all of which are in this report) are scanned in a 

Macintosh and then ftp-ed to a Sun. 

  I will freely use terms from image processing and computer graphics without defining and 

explaining them. As this is a course project some parts and peripheral topics will be treated 

superficially. Some will be described, some named and some omitted. A few concepts that are 

directly connected to the problems or their solutions will be treated. The implementation and 

testing of the methods will take up a major part of the report. 

  Finally I would like to thank my adviser Brian Mayoh who gave me the idea for this project 

and always had time to answer questions and give criticism. 

  

 Thomas W. Larsen, 1991 
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1  Background 

Interest in knowing and understanding the conditions, mechanisms and rules that control events 

has always been great. It is not enough to know that an event happens; we also want to know 

why and preferably when. 

 

Earthquakes are facts. We often observe earthquakes, we investigate what causes them, we 

generalize and set up rules for how an earthquake develops and we try to predict earthquakes 

from these rules. Plants that grow are also a development process we are interested in. Islands 

that appear in the oceans are a third example. We look at cloud formations to predict weather and 

much else. 

For all these events we are interested in explaining conditions and development. The rules we 

develop from our observations describe explain how processes develop and the conditions 

explain when. 

 

There can be situations where several of the rules we have derived can be used (ambiguity). An 

ambiguity does not necessarily lead to an incorrect end result, but to use one rule rather than 

another can describe a less likely history. 

Therefore it may be necessary to choose between rules. These choices are based on the 

knowledge and information one has in the given situation. 

 

We will look at some of this in what follows, using Leyton’s process grammar as our starting 

point. 

 

1.1  “A Process Grammar for Shape” 

Leyton presents his theory in two sections. The first is concerned with the derivation of the 

process history for a single object (i.e. which processes have influenced this object through 

time?). This derivation uses two rules. The other section looks at how it is possible to connect 

two successive stages of an object with a process history (i.e. which processes have played a role 

in the intervening period?). This is done by introducing a “process grammar”. The use of the 

word “object” refers to “some object described by a simple, closed, planar, curve”. 
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1.1.1  Process history for a single object 

 

Extremes of curvature of an object play a central role in the derivation of the process history of 

the object. The transition between curvature extremities and processes is given by axes of 

symmetry. Leyton defines these using differentials. 

As shown in figure 1.1 the line cI2 reflects the tangent in point “a” to the tangent in point “b”. By 

pushing the circle along the two sides of a curve (that represents a section of the object) and 

maintaining contact in two points, one can define different types of differential symmetry axes as 

a trace of some kind of middle point of the circle. The Symmetry Axis Transform, SAT, defines 

the symmetry axes as the trace of the center of the circle. Smooth Local Symmetry, SLS, defines 

the symmetry axes as the trace of I1while Leyton defines the symmetry axes as the trace of I2. 

Leyton calls this form for symmetry Process Inferring Symmetry Analysis, PISA.  

 

 

 

 

 

 

 

 

 

 

 

 

              

 

                                          Fig. 1.1:  Illustration of axes of symmetry 

 

For any of these symmetries it is shown in one of Leyton’s articles [2] that a curvature extremity, 

maximum or minimum, lying on a curve segment between two extremities of the other type 

forces a uniquely determined symmetry axis that ends in that curvature extremity. Leyton calls 

this theorem the Symmetry-Curvature-Duality theorem. Figure 1.1 illustrates also this. 
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The connection between symmetry axes and processes gives what Leyton calls the Interaction 

Pr inciple: Symmetry axes for an object are understood as the directions where processes 

probably have worked or will work. Preconditions for this principle are discussed in other 

articles of Leyton[3]. 

By combining these two rules, Symmetry-Curvature-Duality and the Interaction Pr inciple, 

we get the rule: a curvature extremity determines a process whose trace is given by the unique 

symmetry axis that is produced by and ends in that extremity. 

 

On the curves we look at there can be four types of curvature extremities. A plot of curvature as 

a function of curve length for the curve in figure 1.2 is shown in figure 1.3. Here the four types 

can be seen. M denotes a local maximum, m denotes a local minimum while + and – show 

whether they are positive or negative. Figure 1.4 shows a curve with its curvature extremities and 

the directions of the corresponding symmetry axes. This is called a process diagram. One can 

group these process diagrams according to the number of curvature extremities along the curve. 

If one compares process diagrams with the way one classifies processes, one sees that a purely 

syntactic (structural) characterization of curvature extrema gets a semantic meaning from the 

process that they indicate have been working: 

 

 

 

 

 

 

 

 

 

                                          Fig.  1.2 Curve with the four extremum types 
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Fig.  1.3  k(s)  for the curve 

 

M+: Bulging out 
M-: Inner resistance 
m+: Compression 
m-: Sink  

 

1.1.2  Intermediate process history 

 

Given two objects as representatives of two successive stages of an object, it is possible to 

describe what has happened in the period between the stages. The later stage is explained in 

terms of the earlier stage. 

The evolution of processes can be divided into two groups: 

 

! Continuous 

! Bifurcation. 

 

 

                                

 

 

 

 

Fig.  1.4    Process diagram for an object 
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Since the process traces in a given process diagram end in an extremum, the problem reduces to looking at 

the four types of extremes and what happens to them with the different process developments. A 

continuous process is called Cm and a bifurcation process is called Bm, where m is one of the four 

extremity types. 

 

A bifurcation of a process can be considered as a bifurcation of the associated extremity. This result in an 

extremity of the opposite type is introduced between these. The continuation of a process can be 

considered as a (continued) push on the curve in the direction of the process, so no new extremity is 

introduced. Initially we have the following rules: 

C1: Cm+ : m+ -> m- 

C2: Cm- : m- -> m- 

C3: CM- : M- -> M+ 

C4: CM+ : M+ -> M+ 

B1: BM+ : M+ -> M+m+M+ 

B2: BM+ : M+ -> M+m-M+ 

B3: BM- : M- -> M-m-M- 

B4: Bm- : m- -> m-M-m- 

B5: Bm- : m- -> m-M+m- 

B6: Bm+ : m+ -> m+M+m+ 

We note that for purely mathematical reasons we can not have Bm
+
  : m

+
  -> m

+
m m

+   
where m 

is negative and BM
-
  : M

-
  -> M

-
m M

-   
where m is positive. The above rules can be simplified. 

From a structural viewpoint C2 and C4 are identities. This is also in agreement with the semantic 

interpretation: a bulge continues to bulge and a sink continues to sink. Using rule B2 can be 

considered as using rule B1 then C1. Similarly using rule B5 can be considered as using B4 then 

C3. Thus we are left with six rules: C1, C3, B1, B3, B4, B6. 

 

 

 

 

 

 

Fig. 1.5       Illustration of  CM
-
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An example of the continuous development of a process is shown in figure 1.5. Initially we have 

M
-
 at the bottom of a sink. 

The development of the process presses the curve up until it bulges. M
-
  is replaced by M

+
  at the 

top of the bulge. The semantic interpretation of this is that the inner resistance increases until it 

causes the bulge.  

In figure 1.6 we see an example of a bifurcation development of a process. We have a process 

that ends in M
+
. 

If this process bifurcates there will come processes on its left and right. The endpoints for these 

processes are still M
+
. A minimum is introduced (a mathematical consequence) between the two 

M
+
. The semantic interpretation of this could be that unevenness becomes a sink. 

                               
 

 

 

 

 

 

 

 

 

Fig.  1.6            Illustration of  BM
+ 

 

It is now possible to generate all possible process developments with the six rules. In other words 

we can explain the connection between two arbitrary process diagrams by repeated use of the 

rules for process development. 

 

As mentioned earlier the number of curvature extremes gives a partition of objects into classes or 

levels. The first class consists of objects with four curvature extremities; the next class consists 

of objects with six curvature extremities, the next of objects with eight etc. 

The result of using a continuous process rule on an object is an object in the same class. The 

result of using a bifurcation process rule on an object is an object in the next class. Thus there is 

a highly ordered structure between these levels, when we connect objects with all possible 

applications of the grammar rules. From this structure it is apparent that there can be ambiguous 

derivations of a given process history. Leyton says that the grammatical operations commute. 

Figure 1.7 shows an example. 
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Fig.  1.7      Illustration of commuting operations in the grammar 

 

To alleviate this Leyton suggests a heuristic: size-is-time, the younger a process the less 

remarkable it is. 

This says that younger processes have worked in less time and have had smaller effects. 
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2  Image Processing and Process Grammar    

 

In this chapter we look at different properties of objects and symmetry axes. We look at what 

information one can use to derive a process history for an object. Also we characterize a process 

grammar. 

 

2.1  Information and Image Processing 

In image processing and analysis it is important that one can extract information from a given 

scene
1
. It often suffices to resolve the picture into components (objects). Sometimes one wants to 

know about the individual components in the scene. This knowledge is information about the 

components form, color and position in the scene. 

There are many techniques, each with their aim. Techniques that extract information about the 

form of a component can be described as information preserving or not information preserving. 

If it is possible to reconstruct an object from the extracted description it is information 

preserving. 

When certain information or a description based on this information is extracted from an object, 

one usually “transforms” the object and uses this (more compact) form in the future. The choice 

of a technique depends on which information one wants to use in the future analysis or which 

conclusions one wants to reach. 

An example could be to decide how many objects are in a scene. Here it is enough to determine 

the number of connected components. If one also wants to decide if the objects represent 

previously known objects, one needs to analyze further. One needs to describe the unknown 

objects in the scene in the same format as the description of the known objects (e.g. Chain 

encoding, graph of the skeleton), and then try to match using this information. 
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2.1.1 Information  

 

The methods used in “recognition” can be divided in two categories. The first type looks at the 

global structure of the object and tries to divide it into simple structures. The second type looks 

at the local properties of the object along its contour. Most methods of the first type are directed 

towards inner properties (e.g. contour filling, thinning), while methods of the second type are 

directed towards outer properties (e.g. contour tracing, polygon approximation). The choice of 

method depends on which properties one wants to determine the presence of or which structural 

information one should use. The aims of methods are different but there are similarities. In what 

follows I will look at the actual problem and what information is required by Leyton’s theory. 

Abstractly described our goal is to explain the connection between two subjects (or two states of 

the same object) that is to give a semantic explanation of what we see. There are (luckily) some 

limits to this. We have chosen to limit the object domain to consist of objects that (or whose 

projection in one or another direction) can be described by a simple closed and plane curve. We 

are also limited by the connection we want to derive in that objects are described by syntactic 

elements (with a semantic explanation) and a finite set of rules (with a semantic explanation) is 

used on these descriptions. 

Leyton claims that from the process diagrams for two objects one can determine the intervening 

process history. One can by “reducing” the information for the two objects to the description of 

their process diagrams form the information needed to derive the process history. 

The process diagram for an object consists of the curvature extremes for the curves that represent 

the object and the associated symmetry axes. From the Symmetry-Curvature-Duality theorem 

we know that the curvature extremes “generate” the symmetry axes. This implies that the 

symmetry axes can be derived from the curve and its curvature extremes. Our first step is thus to 

transform the implicit representation of an object (in the form of an image) to an explicit 

representation of a curve. As discussed in chapter 3.2 there a different ways of representing a 

curve. The representation of a curve is based on the outline of an object. We can now derive the 

two components that comprise a process diagram. 

 

Curvature 

From [11] we know that the curvature for a R
2 

curve is given by 

  k(t) =   ( X’(t) Y’’(t) – X’’(t) Y’(t))/ (X’(t)2 +  Y’(t)2)3/2 

In other words the curvature at any point can be determined, independently of the other points on 

the curve if the curve is given in the form a(t) = (x(t) , y(t)) . When the outline of an object is not 

smooth, the use of this rule assumes that the curve is represented by a parametrised 
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approximation. Whatever the chosen curve representation (almost) one can calculate an 

approximation to the curvature. In these calculations the curvature at a point depends on a 

segment of the curve on both sides of the point. Various methods are discussed in chapter 3.3. 

To determine the local extremes along a curve we do not need to calculate the absolute curvature 

at every point. It is enough to be able to decide if a point is a local maximum or local minimum 

(i.e. it is enough with a function k’ such that k’(t1) > k’(t2) ! k(t1) > k(t2) . 

Using this function we can determine the position and type of every extreme along a curve. 

 

Symmetry axes and skeletonising 

When we have a curve and the positions of the curvature extremes we can find the symmetry 

axes. The procedure was described in chapter 1.1.1. The symmetry axes are the traces of a 

midpoint of a circle that touches the curve twice. The Symmetry-Curvature-Duality theorem 

tells us that each curvature extreme determines a symmetry axis and the nature of the process 

ensures that some of these axes are external to the curve. We know that the circles that define the 

symmetry axes are the same for the different methods (PISA, SAT, SLS). However Leyton 

shows that only PISA gives symmetry axes for the four types of extrema that matches theory. 

For the position of symmetry axes to agree with the semantic explanation we use both internal 

and external circles on the curve segments that determine symmetry axes. 

The only case when all three methods give axes that agree with the theory is for curve segments 

with local positive maxima (i.e. axes generated by inner circles. 

We represent objects by plane closed curves and the object is the set of points enclosed by the 

curves. A point in such a set is a skeleton or multiple point if the point has more than one nearest 

neighbor on the curve. 

The set of multiple points is the skeleton (Medial Axis Transform [15]) of the original set. Thus 

the skeleton is a proper subset of the object. From the skeleton and the distances to the nearest 

neighbors one can reconstruct the original figure. The connection between the skeleton and the 

outline of an object is: if one has the outline one can find the skeleton and vice-versa. 

We see that if a point P is multiple, then P is the centre of a circle with maximal radius 

completely within the set. This also means that P is the point generated by SAT and it is on the 

symmetry axis. We remember that symmetry axes are defined using differentials, but when we 

use inner circles this coincides with the definition of multiple points (Note: The difference 

between a symmetry axis and skeleton “branch” is that in the end point for the skeleton one 

continues with minimize the radius (SAT) while the circle touches the extremum. This way one 

makes the axis exactly terminate in the extremum). 
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                                         Fig. 2.1:        No point outside a can be multiple 

 

If we look at a local negative maximum or a local positive minimum on a curve, we cannot find 

the symmetry axes by thinning (skeletonising), which ends in an extremity (or more correctly in 

the centre of the curvature circle of the point). The reason is that no point p outside axis a – see 

figure 2.1- can be a multiple point. This shows why it is not enough to use inner circles to 

determine symmetry axes. 

 

If we now consider “circumscribing” circles, we see that both SAT and SLS fail. The reason for 

SAT can be seen in figure 2.2. Circle C centre c is the intersection of the normals na and nb to the 

tangents ta and tb at a and b [16] and c determines the symmetry axis. This implies that the axes 

are neither finite nor connected. 

 

 

                            

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2:      SAT fails with circumscribed circles 
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For SLS the symmetry axes are determined by the midpoint P of the line between a and b.See 

figure 2.3. P is center of line “l” between “a” and “b”. Line “l” has the same angle to ta and tb. 

We have determined a interior symmetry axis, contradicting our semantic interpretation of the 

extremum: An exterior force. 

 

                                               

               

 

 

 

 

 

 

 

 

 

                       Fig. 2.3:          SLS fails with circumscribed circles 

 

By choosing the midpoint of the arc between a and b PISA avoids these situations: with a 

circumscribing circle forces the symmetry axis outside the curve and this midpoint is the point 

on the circumscribing circle that is closest to the extremity-see figure 2.4.  

 

                                                                                                                             

                                    

 

 

 

 

 

 

 

 

                              Fig. 2.4:        PISA chooses the midpoint between a and b 



Page 16 of 45 

For me the symmetry axes for an object are more “fundamental” than its skeleton. When one has 

the skeleton and a radius for each of its points, one can reconstruct the figure. One can say that 

we can grow it from the inside. A figure whose outline is without discontinuities, i.e. smooth, 

can be scaled by scaling radii up to a certain interval without changing the structural properties 

of the figure. One can say that there is a form of equivalence connected with this. One can not do 

this for the symmetry axes of an object. This is because the axes terminate at the extremes, not at 

points distant from them by the curvature radius, so they indicate a discontinuity for the 

reconstruction. This means that it is impossible to scale the figure. 

 

In conclusion it should be said that I have not implemented the derivation of the symmetry axes.  

In chapter 3 there is a description of methods to compute curvatures. 

 

2.2  Process Grammars 

We consider objects as represented by plane curves. We let the alphabet "#be given by "#= {m
+
, 

M
+
, m

–
 , M

-
}. By a Characteristic String for a curve C we mean a string Sc $ "

* 
such that Sc is a 

listing of the curvature extremes one meets starting somewhere on the curve C and moving along 

it in a predetermined direction. It does not matter where on C one starts. 

                                  

 

 

 

 

 

 

                                     Fig. 2.5: Determining the characteristic string 

 

Not all strings in "
*
 are characteristic strings e.g. M

+
 m

–
, while several strings can characterize 

the same curve. If we look at figure 2.5 we get m
+
 M

+
 m

+
 M

+
 by starting at point a and M

+
 m

+
 

M
+
 m

+
   by starting at point b. Both strings characterize the curve, so the characteristic string is 

not uniquely defined. We therefore define a “rotational” equivalence on ". 
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2.2.1  Redundancy in the Grammar 

 

Using the rotational equivalence from the last section gives equivalence classes that agree with 

Leyton’s partition of curves into levels according to how many curvature extremities they have. 

(Implicitly Leyton has used this rotational equivalence). 

The goal now is to derive from an object at two different stages in its development, what has 

happened in the intervening period. We want to deduce a discrete process history for an object. 

In order to use the operations in a grammar it is enough to know the characteristic strings for the 

curves that represent the object at two different stages in its development. At this time the 

absolute curvature has no influence on our understanding of the curve; only the type of the 

extremities and their relative locations is significant. 

We can define a context-free grammar that generates all characteristic strings. We assume 

terminal symbols for the nonterminals that symbolize the four extremum types. The set of non-

terminals is V = { S, B, M
+
, m

+
, M

-
, m

-
 } and the rules are: 

1. S  -> M+BM+B | e 

2. B  -> m- | m+ 

3. m- -> m- | m-M-m- 

4. m+ -> m- | m+M+m+ 

5. M+ -> M+ | M+m+M+ 

6. M- -> M+ | M-m-M- 

Rule 3 corresponds to process grammar operations Cm
-
 and Bm

-
, rule 4 to Cm

+
 and Bm

+
, rule 5 

to CM
+
 and BM

+
, and rule 6 to CM

-
 and BM

-
. 

If we now let two strings S1 and S2 represent two stages in the development of an object, it is 

clear that the derivation S1 =>* S2 is not always unique. These ambiguities arise because of 

redundancies in the grammar and the rules can commute. To illustrate redundancy consider an 

occurrence of m
-
M

-
m

-
 in a string S. 

Consider the occurrence m
-
M

-
m

-
 isolated from the rest of the string. One can use Bm

-
: m

-
M

-
m

-
 -

> m
-
M

-
m

-
M

-
m

-
 . Instead one can use BM

-
: m

-
M

-
m

-
 -> m

-
M

-
m

-
M

-
m

-
 . 

One cannot decide if Bm
-
 or BM

-
has been used in such a derivation. The reason for this is that 

we describe a discrete development of an object: we see the object before and after a bifurcation 

without regard to the extremity size or other information such as the size of the extrema or the 

symmetry axes. Thus we cannot decide which of the two rules should be used. The same is true 

for Bm
+
 or BM

+
, when it is possible to simulate Bm

+
 by BM

+
. 
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One could avoid the redundancy of the grammar by reducing the number of the rules. However 

this cuts off the possibility of distinguishing between developments where a process bifurcates 

because of inner resistance and those where a process bifurcates because of compression. All 

these are now considered as a bifurcation of a process representing an exterior force, and a 

bifurcation of a process representing interior force (bulge). In chapter 3.4 we describe an 

algorithm that derives a process history, using characteristic strings as its only source of 

information, which is based on an implicit reduction of the grammar rules. The algorithm cannot 

be used to derive the real process history; it can only answer the question of whether one object 

can become another object in time. Thus a reduction of rules means that not all process 

developments can be described satisfactorily. 

Redundancy arises because there are situations where we cannot decide which of the possible 

rules is used (i.e. which is the most likely to be used), while commutativity of rules is because 

we have no time aspects (i.e. which rule is used first). We can illustrate the latter by: 

M+m+M+m+ -> M+m+m+Cm+ -> 

M+m+M+m- -> M+m+BM+m- -> 

M+m+M+m+M+m- 

Using the two rules in the opposite order gives the same result; this is shown in figure 1.7. 
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3  Implementation of methods 

 

                                          Fig 3.1 User interface for the program 

 

For testing the different algorithms I have built a window-based system. The objects, used by the 

algorithms are represented by binary raster images. There is some preprocessing of these images 

– filtering, derivation and transformation of information in the images- so that the algorithms can 

work satisfactorily with them. The system makes it possible to visualize the results of the 

algorithms and to give parameters interactively. The tools used in this project are not chosen 

after philosophical considerations. I had two requirements: The programs should be fast and be 

programmed flexibly, and there should be a graphic interface that gave a consistent interface to 

the programming language. Therefore the programs were implemented in C with interface to 
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SunView and tested on Sun workstations
1
. I will briefly describe the methods I used for this and 

the information I derived from the images. In figure 3.1 shows the interface for the program. The 

way the program works is shown in figure 3.2. This shows the steps. 

 

            

 

 

 

 

 

 

 

 

 

 

 

                                               

 

                                              Fig.3.2     Program components 

 

Filtering is part of the image processing since pictures often have “noise”. Filtering can be 

omitted. Contour tracing derives the necessary information from an object for further work. Then 

we compute the curvature along the curve. Based on the curvature we derive the characteristic 

string for the curve. From the characteristic strings from object1 and object2 we can now decide 

whether object1 can or cannot develop into object2. A more detailed description of the separate 

steps will be given now. 

 

3.1  Filtering 

The purpose of filtering is to remove salt, pepper noise from the image. I have tried different 

methods, all based on 3x3 matrices [17]. Filtering is not a central part of the program and it will 

not be further discussed. 
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3.2  Contour tracing and Curve representation 

To find the variation in the curve that represents the object we must thin it. By thinning we get an 

approximation to a simple plane closed curve with the topological properties that such curves 

have (e.g. zero area) and at the same time keep the topological properties from the original curve 

(e.g. connectedness). 

 

 

 

 

 

 

 

 

 

 

                      Fig. 3.3:          a) Original image             b) contour of a) 

 

For thinning I have used a contour tracing algorithm taken from [6]. An example can be seen in 

figure 3.3. In all its simplicity the algorithm is: 

 1. Choose either clockwise or anticlockwise 

 2. Find a point on the contour (left-right top-bottom scan) 

 3. For each point find a transition from white to black and make it the new actual point 

 4. Repeat 3 until we are home again. 

 

By running along the boundary of an image in this way, one can gather a Chain code or a list of 

(x,y)-pairs for the curve. I chose the latter in what follows. Another and very elegant method to 

find the contours of image components (if there are many) is described in [8]. The method has 

two parts. In the first part inner points are removed until only contour points are left. The second 

part is basically a contour tracing algorithm but it can eliminate noise and small divergences 

from the contour by remembering k previous points. Every gathered point is deleted so any 

remaining points in the image belong to contours that are not yet traced. However I used the 

algorithm from [6], partly because it is quick and partly because my images are almost without 

noise and divergences. Also I only need one contour from my images. 
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The result of contour tracing is a list of (x,y)-pairs. This gives an explicit representation of a 

curve. There are advantages and disadvantages with this. One immediately has y = f(x) for all 

values of x and it is simple to redraw the curve anywhere. On the other hand one has no 

smoothing, if there is much noise along the curve and some desirable mathematical properties 

are missing i.e. scalability, rotation and smoothness (C
n
), see [9,10,20]. 

As I want to derive curvatures I was interested in finding a general expression for the curvature 

along a curve, see chapter 3.3. By using cubic B-splines we can reduce the number of data points 

needed for a parametric approximation to a curve with the C
2
 property. From [11] we then know 

that the curvature is given by the length of the double derivative in R
3
 and by the equation given 

in chapter 2.1.1 in R
2
. By using cubic uniform B-splines it is possible to compute the curve very 

efficiently [18,19]. In figure 3.4 we see the spline approximation to the curve in figure 3.3. 

 

               

 

 

 

 

 

 

 

 

 

 

 

                                      Fig. 3.4:   Spline approximation 

 

As mentioned data points must be chosen so the spline approximation can be interpolated i.e the 

approximation must go through the points. Otherwise one has no control over the spline curve, 

other than it is within the convex hull of the control points [12,20]. In normal interactive 

interpolation the control points are given first. This is not so here. In my case the control points 

are found by Gauss-Seidel iteration, a method taken from [12]. 
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By taking points over intervals of the same length one risks losing information. In [21] a method 

is described that avoids this. One gathers points that satisfy one of the following criteria: 

 1. Absolute curvature is greater than a given minimum 

 2. Curvature is a local minimum or maximum 

 3. Distance from the last point is greater than the interval length. 

The method assumes a calculation of the curvature so it takes longer to find an approximation to 

the curve. 

I have discussed B-splines. There are other representations of curves. Two of these, Hermite 

curves and Bezier curves, are also cubic parametrisations. Unlike B-splines, both are based on 

both control points and tangent vectors. A Bezier curve’s tangent vector is implicitly defined by 

four control points. In contrast to cubic B- splines, which have the C
(2)

 property at the endpoints, 

both Bezier and Hermite curves have only the C
(1)

 property. Furthermore one has to specify two 

tangent vectors for a Hermite curve. Some graphics programs use these two types of curves, but I 

have not found use for them. 

 

3.3  Calculating Curvatures 

When we have a plane closed curve, we know that the curvature is defined at every point, if the 

curve is smooth. For a curve in R
2
 we have, as mentioned in chapter 2.1.1, 

  k(t) =   ( X’(t) Y’’(t) – X’’(t) Y’(t))/ (X’(t)2 +  Y’(t)2)3/2 

provided we have a parameterization of the curve. For a smooth curve one can compute the 

curvature at a point p as 1/r, where r is the radius of curvature (to be completely exact: r is 

calculated from the curvature). If one can find the radius of curvature, then one can find the 

curvature. 

 

When one digitalizes a smooth curve, there is no longer anything that is smooth. One gets a 

sampled version of the curve, a discrete set of points in R
2
. There is no immediate way to use 

mathematics. There two ways one can go from here. As described in chapter 3.2 one can either 

derive a parameter representation/Fourier transform, a smoothing, or one can consider the given 

digitalized curve of (x,y)-pairs as smooth. Either way will give an estimate for the curvature. I 

have chosen to discuss the second way as the first is more or less given by the parameter 

representation. 

There are many ways of computing curvatures in the discrete plane. There are also many articles 

on this subject. In this document I have chosen to describe only a few methods that I have tried. 

The most important is to be clear about when one can use what and how one does. 
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3.3.1  Calculating Curvatures from point-pairs 

 

Radius of curvature 

I have implemented an algorithm that finds an approximation to the circle of curvature for every 

point along a contour. We want to compute the curvature for the white pixel by the arrow in 

figure 3.5. Mathematically the curvature is defined by a small region around the point. Here I 

cannot use this, so I approximate. In the figure one sees to the right and left of the white pixel a 

pixel with a white edge. 

                            

                         

 

 

 

 

 

 

 

                                    Fig. 3.5         Computing the curvature       

From these three points one determines the radius of the circumcircle. I quickly discovered that 

this method was too uncertain. Those points, that visually had higher curvatures than others, had 

computed curvatures that were lower than the others because of the slight noise along the curve. 

To smooth not the curve but the curvature I weighted the curvatures within a little bigger region 

around the actual point. In figure 3.5 there are four pixels with a white edge to both left and right 

(a little unclear). I take the average of the radii of the four circumscribing circles. Maybe one 

could weight the averages differently. By testing I got the most reliable results by placing the 

four point-pairs, which with the actual point determine the circles, at distances 6, 12, 16 and 24 

pixels from the actual point. A plot of the curvature for the curve in figure 3.3 is shown in figure 

3.6. I call this method of computation c-curvature. 
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                                    Fig. 3.6              c-curvature 

 

Another method which is similar to ours is described in [24]. It is not for estimating curvatures 

but an iterative process for estimating a circle arc from a given set of points. The use of this 

method is limited as the algorithm requires too large arcs to converge quickly enough. Another 

approximation to the radius of curvature (perhaps more correct) is given in [7]. 

 

Angles 

The curvature in R
2
 is a measure of the change in the tangent along a curve. We will find an 

expression for the curvature at the point pi on the curve segment in figure 3.7. By using the angle 

between aik and bik we get a measure for the change in the tangents at the point pi. We have:  

 

If we choose pi-k and pi+k as the previous and next points (i.e. k = 1), one has only 8 different 

angles between aik and bik. Thus it is important to choose a k that gives smaller angle changes. 

How to do this is described in [23]. For every point pi one computes cos(vik) for k =  1,….m, 

where m is about 1/10 of the curve length. For h where  

cos(vim) < cos(vim-1) < …. < cos(vih) > cos(vih-1)  

We use cos(vih) as the measure for angle change. I call this measure k-curvature. 
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                                           Fig. 3.7 Computing Curvature 

 

In figure 3.8 these values are plotted for the curve in figure 3.3. The top plot is computed with m 

= 1/20 of the curve length and the bottom plot is computed with m = 1/10 of the curve length. It 

is quite clear that k-curvature smoothes the actual curvature. This is particularly clear on the part 

of the plots that correspond to the long flat part at the bottom of the curve in figure 3.3. If one 

looks at this curve segment locally it is just flat as in the upper plot, but if one looks at the whole 

curve segment it is slightly curved as in the lower plot. 

               

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             Fig. 3.8            k-curvature 
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One must say that this method gives a good result. However the method is not sensitive enough 

to find discontinuities, particularly if there is noise along the contour. More noise, the larger m 

and more smoothing. Look at the plot in figure 3.10 of figure 3.9.  

                           

                                   

 

 

 

 

 

 

                                              Fig. 3.9     Discontinuities 

 

 

 

 

 

 

 

 

 

                    Fig.3.10    Discontinuities become points with high curvature 

 

In this connection we should mention that [4] describes an extension of Leyton’s process 

grammars so they also describe discontinuities, i.e. points with infinite curvature. The extension 

is also based on the similarity-curvature duality theorem. The only difference between the 

original symmetry axes and the symmetry axis in a discontinuity is that one no longer has a 

unique tangent. However the problem is solved by arbitrary choice among the set of tangents 

between the two half-tangents of the discontinuity. We will not discuss this further but we should 

mention that [22] discusses very elegant a method of finding discontinuities, based on B-splines, 

and [8] discusses a method based on tangent differences.  



Page 28 of 45 

 

3.4  Methods to reveal process development 

In chapter 2.2 we described the characteristic string of a curve and the equivalence class of such 

a string. The method, which is described now, uses the characteristic string as its only 

information about a curve. Chapter 3.3 describes how one calculates the curvature along a curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

                           Fig. 3.11  Data structures for deriving the characteristic string 

 

From this list of values the characteristic string is derived. I will not describe in detail how this is 

done, just give the overall outline. Look at figure 3.11.  
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! CURV   holds the curvature along the curve 

! from CURV we get sequences of positive and negative curvatures. The start and end 

indices of these are saved in POSITIV and NEGATIV  

! for every sequence in POSITIV( NEGATIV) the number of extremities and their 

index in CURV is stored in MAX[0] (MAX[1]) 

! the information in MAX[0] and MAX[0] is converted to the symbols m
+
, M

+
, m

-
, M

-
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Fig. 3.12:    Curvature for every index in CURV 

 

Of course there is no clear transition between positive and negative sequences. The algorithm 

that makes this distinction looks at the tendency in CURV (via indices) to decide if it now 

collects positive or negative sequences. When all these sequences are collected, it is still 

necessary to look at tendencies within each sequence to decide where there are local extremes 

(note: the procedure described here is done in one loop through CURV, but the steps are 

separated for clarity’s sake). 

To check the tendencies we require k successive values of a type (positive or negative) for a 

sequence. If we get these k values, we change from gathering positive (negative) to gathering 

negative (positive) and remember these k values. To determine extrema within each sequence 

there are two matters to consider. Figure 3.12 illustrates this (the situation for negative sequences 

is analogous).  
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One must consider if the curvature is large enough to be a potential extreme and if the distance to 

the next extreme is large enough. In figure 3.12 all points over the dashed line are extrema 

candidates, but only 2 and 3 are local maxima. The distance between 1 and 2 is not large enough. 

Min_dist gives the least allowed difference between extrema. 

For the i
th

 point we compute leveli = leveli-1 + (CURV[i] - CURV[i-1]). This is compared with 

Threshold and the previous index j where levelj >  Threshold, if any. If leveli >  Threshold and 

|i-j| >  Min_dist , then j is declared an index of a local maximum and we look for the next. 

Between j and the next local maximum k we remember a local minimum. Both Threshold and 

Min_dist are dynamic. 

 

The result string S1 from the above is delivered with the corresponding string S2  to the algorithm 

in figure 3.13. The algorithm derives the process history from the object represented by S1 to the 

object represented by S2. Remarks on the algorithm follow: 

 

! We rotate S1 until we get a representative in the equivalence class for S1 that 

has S1[0]=M
+ 

! With Match we find the maximal match between S1 and S2 i.e. we get mcnt = max(k 

such that S1(i) = S(i) for i=0,..,k-1 for some S equivalent to S2) and t 

contains the member of the equivalence class for S2 that gives the maximal 

match. The idea is borrowed from [13]. 

! In the repeat loop GENTAG the partial string S1[mcnt .. len1] is pumped to      

S2[mcnt .. len2] using the rules that are possible in the given situation. It is 

always the actual ith sign in S1 that determines the next action. 

! Insert(S1, buf) saves this version of  S1until we know that S1 => * S2. buf thus 

contains the process history. 

 

The implicit reduction of the grammatical rules, mentioned in chapter 2.2.1, appears in the ELSE 

IF( len1 < len2) block in the algorithm. In this sentence block the actual bifurcation is inserted. 

There can be other bifurcations in the algorithm but they do not lead to a reduction in the rules. 

Apparently all four possible bifurcations can occur, but actually there are only two possible rules 

that can be used. Upon consideration one sees that the shown configurations for S1 and t, where 

we have focused on the (i-1)-th and i-th places, are the only configurations that can occur in this 

block of the algorithm: 
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S1 : * * ... * M+m- ? ? ... ? 

 t : * * ... * M+m+ ? ? ...... ? 

Bifurcation BM+ is inserted 

S1 : * * ... * m-M+ ? ? ... ? 

 t : * * ... * m-M- ? ? ...... ? 

Bifurcation Bm- is inserted 

 

We see that the rules used are those we found in chapter 2.2.1 could simulate the other two rules. In this 

way we eliminate redundancy from the grammar but unfortunately we sacrifice a “prioritized” explanation 

of the process. 

 

Algorithm ProcHist_ver_1(S1, S2) 

    len1 = Len(S1); 

    len2 = Len(S2); 

    IF(len1 > len2) -> 

        Print("S1 cannot derive S2"); 

    REPEAT(S1[0] <> M+) -> 

        Rotate(S1); 

    Match(S1,S2,t,mcnt); 

    "t contains  S2 rotated, such that" 

    "a maximal match between S1 and t as achieved" 

    i = j = mcnt - 1; 

    Insert(S1, buf); 

    stop = 0; 

    REPEAT(stop = 0) -> 

        IF(S1[i] = t[j]) -> 

            IF(i = len1 - 1) -> 

                IF(j >= len2 - 1) -> 

                    stop = 1; 

                ELSE "find bifurcations for the rest" 

                    S1[i + 1] = Bifurcation[t[j]][1]; 

                    S1[i + 2] = Bifurcation[t[j]][2]; 

                    len1 = len1 + 2; 

                    Insert(S1,buf); 
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            ELSE 

                i = i + 1; 

                j = j + 1; 

        ELSE IF(Continuation([S1[i]]) = t[j]) -> 

            S1[i] = Continuation([S1[i]]); 

            Insert(S1,buf); 

        ELSE IF(len1 < len2) -> 

            "Insert bifurcation of t[j-1] in S1 between S1[i-1] and S1[i]" 

            "In next loop we will find the potential continuations" 

            "of the new elements in S1" 

            Insert(S1,buf); 

            len1 = len1 + 2; 

        ELSE 

            stop = 2; 

    END "REPEAT" 

    IF(stop = 2) -> 

        Print("S1 cannot derive S2"); 

    ELSE 

        Print(buf); 

END 

 

 

                                   Fig 3.13 Algorithm for deriving a process history 
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4  Testing 

As mentioned earlier the method described in chapter 3.4 gives only one process history between 

two states of an object. There can be many others. The emphasis in this report has been laid 

elsewhere. 

As a practical application the method was tested on two islands in the Hawaii group, Kauai and 

Hilo. We know that Kauai, fig.4.1, is younger than Hilo, fig.4.2. The islands’ form changes all 

the time because of the geographic activity (volcanoes etc.). This process is very slow, so we do 

not have many observations of these changes. Therefore it is difficult to test theories of this 

process. That is why we are interested in the description of the islands’ development by Leyton’s 

grammars.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        Fig. 4.1   Contour of Kauai 
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                                              Fig. 4.2   Contour of Hilo 

 

In figures 4.1 and 4.2 we see two islands. The extremes found by our algorithm are marked by a 

black dot. The counterclockwise ordering is shown by the numbering of the exrema. The 

characteristic string for Kauai is: 

M+m+
 M+m+

 M+m+
 M+m+

 M+m-
 M+m+

 M+m+
 M+m- 

  

And for Hilo: 

M+m-
 M+m-

 M-m-
 M+m-

 M+m-
 M+m-

 M+m-
 M+m- 

 M+m-
 M+m+

 M+m-
 

The algorithm starts by making a maximal match between the two characteristic strings. Hilo’s 

string is rotated to give: 
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M+m+
 M+m-

 M+m-
 M+m-

 M-m-
 M+m-

 M+m-
 M+m-

 M+m-
 M+m- 

 M+m-
  

It runs 19,20,…,18. We have matched 1, 2, 3 from Kauai to 19, 20, 21 from Hilo. We see that 22 

from Hilo is m-
 while 4 from Kauai is m+

 so we use Cm
+
 on 4 in Kauai. In this way we run 

through the string for Kauai and the result of different grammar operations is put in the string for 

Kauai. The entire run is: 

 M+m+
 M+m+

 M+m+
 M+m+

 M+m-
 M+m+

 M+m+
 M+m- 

  

Continuation in m
+ 

 M+m+
 M+m-

 M+m+
 M+m+

 M+m-
 M+m+

 M+m+
 M+m- 

  

Continuation in m
+ 

 M+m+
 M+m-

 M+m-
 M+m+

 M+m-
 M+m+

 M+m+
 M+m- 

  

Continuation in m
+ 

 M+m+
 M+m-

 M+m-
 M+m-

 M+m-
 M+m+

 M+m+
 M+m- 

  

Bifurcation in m
- 

 M+m+
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m+
 M+m+

 M+m- 
  

Continuation in m
+ 

M+m+
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m-
 M+m+

 M+m- 
  

Continuation in m
+ 

M+m+
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m- 
  

Bifurcation in M
+ 

M+m+
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m- M-m-
 

Continuation in M
- 

M+m+
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m- M+m-
 

Bifurcation in M
+ 

M+m+
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m- M+m- M-m-
 

Continuation in M
- 

M+m+
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m-
 M+m-

 M+m- M+m- M+ m-
 

As we see, we have “edited” Kauai to Hilo. In other words Hilo was once like Kauai. If the 

development of Kauai keeps to the rules it can take the same form as Hilo in some million years. 

As a comment on the above example we should mention that the islands are shown to scale. I 

tried to make Kauai about as large as Hilo and ran the algorithm again. There was too much 

noise on the enlarged Kauai contour for it to find sensible extrema. I tried also with a spline 

approximation to the enlarged Kauai. Here the results were much better. Perhaps there should be 

only eight extrema: 1, 2, 5, 8, 11, 14, 15, 16. We get this by changing the choice-criteria in the 

algorithm and if one uses k-curvature by adjusting m. 
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5  Conclusion 

Our experience shows the utility and strength of Leyton’s process grammars. With very few and 

simple rules we have a tool for determining the development of a dynamic entity. We can relate 

any two of its states; we divide the development into stages and identify each stage as the effect 

of one of four possible processes. 

As mentioned in chapter 1.1.2 we get a very ordered structure in our “object universe”, using 

various rules. As a very important point we note that there is a unique direction of movement 

through this structure, because we are describing irreversible processes. In other words we are 

describing development in the word’s real meaning, not just “executing” rules. This means that 

the use of process grammars in their present form is not universal. 

Each of the four processes has a semantic explanation; one could say meta-explanation. When 

one wants to use the process grammar on a concrete category of objects, say the Hawaiian 

islands, one can identify the four processes with existing “phenomena” or “factors” (e.g. oceans 

eroding coasts, lava streams) whose effects give the same development as the corresponding 

process in the process grammar. In this way we have a transition between the real world and the 

object universe of the process grammar. A somewhat unfortunate consequence of this is a 

tendency to consider an idealized version of the world. Chance events that are not covered by the 

real world’s phenomena or factors are falsely explained by them. A perhaps extreme example 

could be that one of the islands suffered an earthquake that changed its coastline appreciably. 

The new bay would be explained as “continued impounding from the ocean”. 

I will now very briefly describe various expansions that could be useful. 

 

More Information 

We mentioned earlier in chapter 2.2.1 that there could be ambiguous (redundant and 

commutative) use of the rules in the grammar. This arises because of the missing temporal aspect 

or, said in another way, missing measure for how probable the use of a given rule would be in a 

given situation. Independently of the “meaning” one chooses, one has to base oneself on more 

information in the given situation, e.g. symmetry axes, and more knowledge of the nature of the 

concrete objects. 
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A technique that possibly could be used with advantages to capture process grammars and 

administer them is to use L-systems as described in [14]. In this context we can also suggest the 

future development of an object. 

 

3D 

Another aspect of process grammars is their extension to 3 dimensions. Leyton describes two 

possible ways of doing this. One can use a three dimensional version of the Symmetry-

Curvature-Duality theorem where the symmetry axes are now symmetry planes. On this basis 

one gets completely equivalent rules in three dimensions. The other possibility is to use the 

known two dimensional rules directly on the 3D objects (generalized cylinders). This is done by 

slicing the object by planes and using the rules on the resulting 2D objects. In [18,19] a spline 

representation is described, that can be used for precisely this. 

 

Animation 

Another thing I will mention is to improve the visual part of the process explanation. One could 

use a variation of “Inbetweening” in [25] to give an animated version of the process 

development, concurrently with the algorithm. This would make it easier, more attractive and 

much quicker to run through a process development. 

 

Shape Matching 

As a last remark in [5] there is a description of a shape matching algorithm which uses process 

grammars. Instead of extrema they consider curve segments (concave or convex) separated by 

“zero crossings”. The matching itself is done by “editing” both objects’ curves using dynamic 

programming. I first found [5] very late in the project so it has not given me any inspiration. Also 

it is a completely different approach from the one I have used. 

 

As we see there are many ways one can go and many aspects that require careful treatment. In 

any case we have started on part of an area that can and will find serious applications in image 

processing and pattern recognition. By agreement with Brian Mayoh this report has no program 

documentation, apart from the module that implements the process history. All source text is in 

my university file system. 

 

Aarhus University, Sep 9 1991, Thomas W. Larsen 
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#include     "pg.h" 

#include     <suntool/textsw.h> 

 

static char  continuation[5] = { 

                  0, Mplus, mminus, mminus, Mplus 

             }; 

 

static char  bifurcation[5][3] ={ 

                  { 0, 0, 0 }, 

                  { Mplus, mplus, Mplus }, 

                  { mplus, Mplus, mplus }, 

                  { mminus, Mminus, mminus }, 

                  { Mminus, mminus, Mminus } 

             }; 

 

static char  convert[5][2] = { 

                  "  ", "M+", "m+", "m-", "M-" 

             }; 

 

/********** Routines to match S1 with S2 ************************/ 

static void out_s( s1, textsw, no ) 

    char    *s1; 

    Textsw  textsw; 

    int     no; 

{ 

    int     k; 

    char    msg[200]; 

 

    if( no == 1 ){ 

       sprintf( msg, "S1 kan ikke derivere S2\n" ); 

    } 

    else if( no == 2){ 

       sprintf( msg, "S1 er laengere end S2\n" ); 
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    } 

    else{ 

       for( k = 0 ; k < strlen(s1) ; k ++ ){ 

           msg[2 * k] = convert[ s1[k] ][0]; 

           msg[2 * k + 1] = convert[ s1[k] ][1]; 

       } 

       msg[2 * k] = '\n'; 

       msg[2 * k + 1] = '\0'; 

    } 

    textsw_insert( textsw, msg, strlen(msg) ); 

} 

 

static void rotate(s) 

    char *s; 

{ 

    char t[MAX_STR_LEN]; 

 

    strncpy( &t[1], s, strlen(s) - 1 ); 

    t[strlen(s)] = '\0'; 

    t[0] = s[strlen( s ) - 1]; 

    strcpy(s, t); 

} 

 

static void s_match(s1, s2, t, match_length) 

    char *s1, *s2, *t; 

    int  *match_length; 

{ 

    int  c, max_match, match, len1, len2, i; 

 

    c = 0; max_match = 0; 

    len1 = strlen( s1 ); 

    len2 = strlen( s2 ); 

    if( len1 > len2 ) len1 = len2; 

 

    do{ 
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       match = 0; i = 0; 

       while( i < len1 ){ 

          if( s1[i] != s2[i] ) break; 

          i ++; 

       } 

       match = i; 

       if( max_match < match ){ 

          strcpy( t, s2 ); 

          max_match = match; 

       } 

       rotate( s2 ); 

       c ++; 

    }while( c < len2 ); 

 

    *match_length = max_match; 

} 

 

int process_history( q, r, textsw ) 

    char     *q, *r; 

    Textsw   textsw; 

{ 

    int      len1, len2, match, i, j, k; 

    char     t[MAX_STR_LEN], s1[MAX_STR_LEN],  

             s2[MAX_STR_LEN], s1_1[MAX_STR_LEN]; 

    char     msg[200]; 

 

    strcpy( s1, q ); 

    strcpy( s2, r ); 

    len1 = strlen( s1 ); 

    len2 = strlen( s2 ); 

 

    if( len1 > len2 ){ 

        /* stop */ 

        out_s( s1, textsw, 2 ); 

        return 0; 
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    } 

    while( s1[0] != Mplus ) rotate( s1 ); 

    s_match(s1, s2, t, &match); 

 

    /** from now on, t is the rotated version of s2 **/ 

    i = j = match - 1; 

    out_s( s1, textsw, 0 ); 

    do{ 

       if( s1[i] == t[j] ){ 

          if( i == len1 - 1 ){ 

            if( j >= len2 - 1 ) return 1; 

            else{ /** find bifurcations for the rest **/ 

               s1[i + 1] = bifurcation[t[j]][1]; 

               s1[i + 2] = bifurcation[t[j]][2]; 

               s1[i + 3] = '\0'; 

               len1 += 2; 

               out_s( s1, textsw, 0 ); 

            }  

          } 

          else{ 

            i += 1; 

            j += 1; 

          } 

       } 

       else if( continuation[ s1[i] ] == t[j] ){ 

           /** save Cont.[s1[i]] **/ 

           s1[i] = continuation[ s1[i] ]; 

           out_s( s1, textsw, 0 );  

       } 

       else if( len1 < len2 ){ 

          /** insert  bifur. of t[j-1] between s1[i-1] and s1[i]  **/ 

          /** find cont. in the next round and save these as well **/ 

          strcpy( s1_1, s1 ); 

          s1[i] = bifurcation[t[j - 1]][1]; 

          s1[i + 1] = bifurcation[t[j - 1]][2]; 
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          strcpy( &s1[i + 2], &s1_1[i] ); 

          out_s( s1, textsw, 0 );            

          len1 += 2; 

       } 

       else{ 

          /** ERROR , s1 doesn't match t **/ 

          out_s( s1, textsw, 1 ); 

          return 0; 

       } 

    }while( 1 ); 

} 
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