Ninth Workshop and Tutorial on
Practical Use of Coloured Petri Nets

and the CPN Tools

Aarhus, Denmark, October 20-22, 2008

Kurt Jensen (Ed.)

DAIMI PB - 588
October 2008

ISSN 0105-8517

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

IT-parken, Aabogade 34
DK-8200 Aarhus N, Denmark

—]
]

sl

— [|

Preface

This booklet contains the proceedings of the Ninth Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, October 20-22, 2008. The workshop is
organised by the CPN group at Department of Computer Science, Aarhus University,
Denmark. The papers are also available in electronic form via the web pages:
www.daimi.au.dk/CPnets/workshop08/.

Coloured Petri Nets and the CPN Tools are now licensed to more than 7,200 users in
138 countries. The aim of the workshop is to bring together some of the users and in this
way provide a forum for those who are interested in the practical use of Coloured Petri
Nets and their tools. The submitted papers were evaluated by a programme committee
with the following members:

Wil van der Aalst, Netherlands
Jodo Paulo Barros, Protugal
Jorg Desel, Germany

Joao M. Fernandes, Portugal
Jorge de Figueiredo, Brazil
Monika Heiner, Germany
Thomas Hildebrandt, Denmark
Kurt Jensen, Denmark (chair)
Ekkart Kindler, Denmark

Lars M. Kristensen, Denmark
Charles Lakos, Australia
Johan Lilius, Finland

Daniel Moldt, Germany

Laure Petrucci, France
Ridiger Valk, Germany

Lee Wagenhals, USA

Karsten Wolf, Germany

Jianli Xu, Finland

The programme committee has accepted 10 papers for presentation. Most of these deal
with different projects in which Coloured Petri Nets and their tools have been put to
practical use — often in an industrial setting. The remaining papers deal with different
extensions of tools and methodology.

The papers from the first eight CPN Workshops can be found via the web pages:
http://www.daimi.au.dk/CPnets/. After an additional round of reviewing and revision,
some of the papers have been published in four special sections in the International
Journal on Software Tools for Technology Transfer (STTT). For more information see:
sttt.cs.uni-dortmund.de/. After an additional round of reviewing and revision, some of
the papers from this years workshop will be published in Transactions of Petri Nets and
Other Models of Concurrency (ToPNoC) which is new journal subline of Lecture Notes
in Computer Science. For more information see: www.springer.com/Incs/topnoc.

Kurt Jensen
PC and OC chair

Table of Contents
Invited Tutorials:

Michael Westergaard and Sami Evangelista
The ASAP Platform: Next Generation Tool Support for State Space Analysis

OF CPIN IMOUEIS ..o et e e e e e eeeee s

Thomas Hildebrandt

Bigraphical Business Processes EXECULIONcccuevverieivereenesie e e e

Marlon Dumas

Model Transformations for Business Process Analysis and Execution...............

Regular Papers:
Michael Westergaard and Lars Michael Kristensen

JOSEL.: A Job Specification and Execution Language for Model Checking.......

Venkatesh Kannan, Wil M.P. van der Aalst and Marc Voorhoeve
Formal Modeling and Analysis by Simulation of Data Paths in Digital

DOOCUMIENT PIINTEIS .ttt nenesenensmennnnes

Antonin Kavicka and Michal Zarnay
Application of Coloured Petri Net for Agent Control and Communication in

The ABASIM ATCNITECIUIE ...ttt e e e e e e

Sami Evangelista, Michael Westergaard and Lars Michael Kristensen
The ComBack Method Revisited:

Caching Strategies and Extension with Delayed Duplicate Detection

Michael Westergaard and Lars Michael Kristensen

Two Interfaces to the CPN Tools SIMUIator..........ooovvvviv

Marko Bago, Nedjeljko Peri¢ and Sinisa Marijan
Modeling Bus Communication Protocols Using Timed Colored Petri Nets—

The Controller Area Network EXample...........cocoiveveieiieiecie e

Michal Zarnay

Banker's Algorithm Implementation in CPN TOOIS.........ccccocovvvevieeie i,

R.S. Mans, N.C. Russell, W.M.P. van der Aalst, A.J. Moleman, and
P.J M. Bakker
Augmenting a Workflow Management System with Planning Facilities using

(0] o] (=To l 221 £ 4 T V=) £ U RTPRRRTRRRRT

Somsak Vanit-Anunchai

Towards Formal Modelling and Analysis of SCTP Connection Management ...

Fabien Bonnefoi, Christine Choppy and Fabrice Kordon
A discretization method from coloured to symmetric nets:

application to an industrial eXample ..o

The ASAP Platform: Next Generation Tool Support for State
Space Analysis of CPN Models

Michael Westergaard and Sami Evangelista, University of Aarhus, Denmark

Abstract

State space exploration is one of the main approaches to model-based verification of concurrent
systems and it has been one of the most successfully applied analysis methods for Coloured
Petri Nets (CPNs). The basic idea of state space exploration and analysis is to compute all
reachable states and state changes of the concurrent system under consideration and represent
these as a directed graph. Based on state space exploration it is possible to automatically reason
about a wide range of properties concerning the behaviour of concurrent systems.

In this talk we present the ASCoVeCo State Space Analysis Platform (ASAP) which is currently
being developed in the context of the ASCoVeCo research project. ASAP represents the next
generation of computer tool support for state space exploration of CPN models. The vision of
the ASAP platform is to provide an open platform suited for research, education, and industrial
use of state space exploration and model checking. We present the ASAP platform architecture,
the support for state space exploration methods, and give a demonstration of the graphical user
interface of ASAP which is based on the Eclipse Rich Client Platform. Finally, we end with an
outlook on the future development of ASAP. Version 1.0 of the ASAP platform has recently
been released, and we will release an updated version 1.1 after the workshop.

For further information on the ASCoVeCo project, see
http://www.daimi.au.dk/~ascoveco
To download ASAP, see

http://www.daimi.au.dk/~ascoveco/download.html

Bigraphical Business Processes Execution
Thomas Hildebrandt, IT University of Copenhagen, Denmark

Abstract

The model of Bigraphical Reactive Systems (BRSs) has been proposed by Milner as a formal
meta-model for global ubiquitous computing that encompasses process calculi for mobility,
notably the m-calculus and the Mobile Ambients calculus, as well as graphical models for
concurrency such as Petri Nets.

In this presentation we demonstrate that BRSs also allow natural formalizations of languages
used in practice by providing a direct and extensible formalization of a subset of WS-BPEL as a
binding bigraphical reactive system.

The formalization exploits the close correspondence between bigraphs and XML to provide a
formalization and execution format very close to standard WS-BPEL syntax.

In the talk we will comment on the potential use of the BRS metamodel to relate different
formalizations of BPEL, for instance formalizations based on Petri Net, the m-calculus or the
more direct bigraphical representation of the BPEL syntax as in the presented formalization.

We will also comment on its use to provide a completely formalized and extensible business
process engine within the Computer Supported Mobile Adaptive Business Processes
(www.CosmoBiz.org) research project at the IT University of Copenhagen.

Building upon the formalization of WS-BPEL we have at COORDINATION 2008 proposed and
formalized HomeBPEL, a higher-order WS-BPEL-like business process execution language
where processes are first-class values that can be stored in variables, passed as messages, and
activated as embedded sub-instances. A sub-instance is similar to a WS-BPEL scope, except
that it can be dynamically frozen and stored as a process in a variable, and then subsequently be
thawed when reactivated as a sub-instance.

The formalization has been implemented in the BPL-Tool developed in the Bigraphical
Programming Languages (BPL) project. The tool allows for compositional definition,
visualization and simulation of the execution of bigraphical reactive systems.

Model Transformations for Business Process

Analysis and Execution
(Tutorial)

Marlon Dumas

University of Tartu, Estonia & Queensland University of Technology, Australia
marlon.dumas@ut.ee

Abstract

A business process model is a representation of the way an organization oper-
ates to achieve a goal, such as delivering a product or a service. For example, an
order-to-cash business process describes the activities that take place within a
company from the moment a purchase order is received until its fulfillment and
the settlement of the associated invoice. Business process models have at least
two classes of users. On the one hand, business and system analysts use process
models to identify and to evaluate business improvement options or to define sys-
tem requirements. On the other hand, software developers are concerned with the
automated execution of business processes based on detailed models. Depending
on the purpose, a business process may be modeled at different abstraction levels
and using different languages.

In this tutorial, we will review various model transformatios aimed at bridging
between different business process modeling languages. The tutorial will discuss
transformations from popular business process modeling notations (e.g. BPMN
and BPEL) to Petri nets and state machines for the purpose of automated
analysis [1,5,2,8,9]. We will also discuss transformations from business-oriented
to IT-oriented process modeling languages to support system implementation.
In particular, we will review techniques for transforming graph-oriented process
models expressed in BPMN into block-structured process definitions in BPEL [4,
6,3, 7]. Finally, we will discuss open issues related to the definition of reversible
transformations and round-tripping between high-level and executable process
modeling languages.

References

1. T. Bultan, X. Fu, and J. Su. Tools for automated verification of web services.
In Proceedings of the 2nd International Conference on Automated Technology for
Verification and Analysis (ATVA), Taipei, Taiwan, pages 8-10. Springer, October
2004.

2. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Ws-engineer: A model-based ap-
proach to engineering web service compositions and choreography. In L. Baresi and
E. Di Nitto, editors, Test and Analysis of Web Services, pages 87—119. Springer,
2007.

. L. Garcia-Banuelos. Pattern Identification and Classification during the Translation
from BPMN to BPEL. In Proceedings of the On The Move to Meaningful Internet
Systems (OTM) Confederated Conferences, Monterrey, Mezico. Springer, October
2008.

. R. Hauser and J. Koehler. Compiling process graphs into executable code. In
Proceedings of the 3rd International Conference on Generative Programming and
Component Engineering (GPCE 2004), Vancouver, Canada, pages 24-28. Springer,
October 2004.

. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri nets. In
W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proceed-
ings of the International Conference on Business Process Management (BPM2005),
volume 3649 of Lecture Notes in Computer Science, pages 220-235, Nancy, France,
September 2005. Springer-Verlag.

. J. Mendling, K.B. Lassen, and U. Zdun. On the transformation of control flow be-
tween block-oriented and graph-oriented process modeling languages. International
Journal of Business Process Integration and Management, 3(2), September 2008.

. C. Ouyang, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and
J. Mendling. From business process models to process-oriented software systems.
ACM Transactions on Software Engineering Methodology, 2009. Preprint available
at: http://eprints.qut.edu.au/archive/00005266/01/5266.pdf.

. C. Ouyang, HM.W. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas, and
A.H.M. ter Hofstede. Formal semantics and analysis of control flow in WS-BPEL.
Science of Computer Programming, 67(2-3):162-198, 2007.

. W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E. Verbeek. Confor-
mance checking of service behavior. ACM Transactions Internet Technology, 8(3),
2008.

JoSEL: A Job Specification and Execution
Language for Model Checking

Michael Westergaard and Lars Michael Kristensen

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,
Email: {mw,kris}@cs.au.dk

Abstract. Model checking tools and techniques are being applied for
verification of concurrent systems by users having different skills and
background. This ranges from formal methods experts with detailed
knowledge of the inner workings of the tools over students learning about
model checking techniques to engineers that are mostly interested in ap-
plying the technology as a black-box. This paper proposes JoSEL, a vi-
sual language for specification of executable model checking jobs. JoSEL
makes it possible to work at different levels of abstraction when inter-
acting with model checking tools and thereby support the different kinds
of users in a coherent manner. A verification job in JoSEL consists of
tasks, ports, and connections describing the models to be verified, the be-
havioural properties to be checked, and the model checking techniques to
be applied. A job can then be mapped onto an underlying model checking
tool for execution. We introduce the syntax of JoSEL, informally define
its semantics, and describe how it has been realised in the ASAP model
checking platform.

1 Introduction

Model checking [1] is a very useful technique for validating the correctness of
concurrent systems. Algorithms for performing model checking can be highly
automated and a multitude of model checking tools have been implemented.
In order to cope with the inherent state explosion problem, a large number
of reduction techniques have been devised [9]. Reduction techniques typically
exploit characteristics of systems to represent states more efficiently or to store
only some of the states, but no reduction technique performs well for all systems.
Also, many reduction techniques can be parametrised, and the chosen parameters
can greatly affect the performance of the model checker. A useful model checker
must therefore allow the user to select between a large number of reduction
techniques and set parameters for each. Furthermore, new reduction techniques
are constantly being developed, and a model checker must be able to incorporate
new techniques easily. This means that it must be possible to augment the model
checker, and that it must be possible for the user to access new techniques in a
uniform way.

Model checkers can be used in at least three settings: by researchers (who
develop reduction techniques), by students (who learn about model checking

and reduction techniques), and by engineers (who analyse real-life systems).
The three kinds of users have different backgrounds and approaches to using
model checkers. Researchers may need extremely fine-grained control over all of
the parameters, know in detail how the reduction techniques work, and often
need to experiment with new reduction techniques and compare them to exist-
ing techniques. A student in the process of learning initially knows little about
reduction techniques and wishes to experiment without pre-existing intuition
about the techniques. An engineer will seldom learn the reduction techniques in
detail so the model checker should basically be a push-button technology. Some-
times an engineer needs to fine-tune a few parameters. This means that users
of a model checker work on different levels and need different abstractions. It is
therefore desirable that a model checker makes it possible to hide details of the
supported techniques, but also to fine-tune details when required.

The contribution of this paper is to propose the verification Job Specification
and Execution Language (JoSEL) aimed at supporting users with different back-
ground when applying and experimenting with model checkers to solve concrete
verification problems. A verification job in JoSEL consists of tasks, input/out-
put ports, and connections. A job typically specifies model(s), properties to be
verified, and model checking techniques to be applied. The tasks correspond to
software components of an underlying model checker and the input ports of a
task specify required parameters to the component. The output ports of a task
specify the results produced when the component is executed. Output produced
by one component can be used as input for other components by connecting
the corresponding tasks using connections. Examples of components are stor-
ages, which can store reachable states, queues containing states that need to be
processed, queries (e.g., in a temporal logic) that express behavioural properties,
and hash-functions for storing states in hash-tables. JoSEL is independent of any
concrete model checking tool, but for a verification job to be executed the tasks
must be mapped onto components of a concrete model checking tool. This can
be done in a manner which is fully transparent to the user, and in this paper we
show how this has been implemented in the ASAP model checking platform [6].

JoSEL should be viewed as a flexible graphical alternative to hard-coding
the supported model checking techniques into dialog boxes in a graphical user
interface or relying on complex command-line arguments to manipulate the pa-
rameters of the model checker. To allow users to abstract away details that may
not be required for everyone, JoOSEL has macro tasks that basically represent a
set of tasks and their interconnections. If a macro is given a meaningful name,
it is possible to ignore the details of the compound task it represents. Still, it is
easy to allow users to manipulate the details if needed. To make specifications
created in JoSEL less prone to human errors, we assign types to the input and
output ports of tasks. Finally, in JoOSEL the user does not have to worry about
the order in which tasks are to be executed as we can do a simple dependency
analysis and execute components in a correct order.

It is possible to specify verification tasks using other techniques, e.g., a textual
description like shell scripts, Makefiles or custom scripting languages, such as

SVL [4]. Textual languages have several disadvantages making them difficult to
use for inexperienced users. Firstly, the user needs to remember keywords and
names of the available components, and, secondly, textual languages are very
prone to typing errors. Furthermore, and more importantly, textual descriptions
have a built-in order, and it may be confusing if it does not correspond to the
order of execution. Hence, at least at some level, users need to worry about the
order in which the components are executed. Graphical alternatives exist as well.
One example is a workflow specification language [10], but they are not really
tailored to dealing with model checking, and we find that a language designed
specifically for model checking is preferable. An example of a language for this
purpose is JETI [7], whose main objective is to easily compose web-services.
JETI does not, however, make it easy to specify several similar tasks, and is
more tailored to a write once, run many times paradigm, whereas we seek a
language that makes it possible for experienced users to make building blocks
that can be used and modified by less experienced users that are not necessarily
programmers. JoSEL addresses the above problems. As JoSEL is a graphical
language it can show users all available components and only allow the user to
select legal components, so the user does not have to remember the names of
the components, thereby alleviating the problems with textual languages. JOSEL
also takes care of the order of execution so that all input values required for each
part of a task are guaranteed to be available. Furthermore, JoSEL is designed
with abstraction mechanisms that allow experienced users to design components
that can be used directly as black boxes or adapted by other users.

The rest of this paper is structured as follows: Section 2 introduces the con-
structs of JoOSEL and defines its syntax. In Sect. 3, we informally define the
semantics of JoSEL and indicate how we have realised JoSEL in the ASAP
model checking platform. We sum up our conclusions in Sect. 5.

2 Syntax

The Job Specification and Execution Language (JoSEL) is inspired by work-
flow specifications [11] and data-flow graphs [8]. We do not use these languages
directly as we aim at a language tailored for specification of verification jobs.
Furthermore, we want our job specifications to be executable which means that
we must be able to distinguish the inputs and outputs of processes, and we need
to be able to instantiate and synchronise processes based upon the data content.
The two latter requirements means that we cannot use data-flow graphs directly.
In this section, we formally introduce the graphical syntax of JoSEL; in the next
section we consider the execution of JoSEL specifications.

To introduce JoSEL we use an example of a verification job where we want to
verify two safety properties of a given (formal) model. The properties we wish to
check are that the model contains no dead-locks (states without enabled transi-
tions), and that it is impossible to reach a state where a certain buffer overflows.
We assume that dead-lock freeness is a standard property built into the underly-
ing model checking tool, and that the buffer overflow property can be expressed

as a state predicate in a propositional logic. Executing this job consists of sys-
tematically traversing all reachable states of the model while storing already
encountered states in a storage. If a violation is found, i.e., if we encounter a
dead-locked state or a state where the buffer has overflowed, an error-path lead-
ing to the violating state should be reported to the user. We introduce JoSEL
by constructing the example job bottom-up from scratch, i.e., we deal with the
most specific details first. In a real model checker, it is rarely required to specify
all parts as some building blocks would be available beforehand. We build the
job to illustrate how JoSEL supports accessing the detailed parameters of the
model checker components when required.

2.1 Tasks

The basic unit of computation in JoSEL is a task, which corresponds to a process
in data-flow graphs. The reason for the different terminology is in part due to
workflow specifications, whose terminology we have adopted, and due to the fact
that a task can be instantiated more than once when a job is executed, thereby
giving rise to multiple processes. As we need to graphically fit information for
inputs and outputs into each task, we do not use a circle to represent tasks, but
rather a rounded rectangle. Figure 1 shows a task named Instantiate Hash Table
Storage. The task in Fig. 1 is able to instantiate the storage required for the
verification job.

(Instantiate Hash Table Storage w

[% Hash Function Storage ?

Fig. 1: A task with one input port and one output port.

Associated with tasks are two kinds of ports: input ports and output ports.
Input ports specify the input data required for a task and are by convention
located on the left-hand side of a task. Output ports specify the output data
produced by a task and are located on the right-hand side of a task. Ports
are represented by triangles; input ports point into the task, symbolising values
going into the task, and output ports point out of the task. The name of a port
is written inside the task next to the port itself. The task in Fig. 1 has one input
port and one output port. The set of input ports of a task is denoted I and the
set of output ports of a task is denoted O. In the example we have I ={Hash
Function} and O = {Storage}. This specifies that in order to generate a storage
(the output port) that store states in a hash table, we need a hash function (the
input port).

Associated with each port of a task is a port type specifying the kind of data
that can be consumed/produced at the port. This is represented by a mapping

10

7: P — X from the set of all ports P = I U O of the task to a set of types Y.
The actual types allowed are implementation specific, but can, e.g., be simple
strings, integers and files, or more complex data-structures like hash-tables or
representations of formal models and state space graphs. The type of each port is
not reflected in the graphical representation, since in practice the type of a port
can be inferred from the name of the port and task. In the example in Fig. 1, it is
fairly clear that the input has a type that is a hash function and the type of the
output port is storage. The main reason for omitting the types from the graphical
representation is simplicity of the drawing, but tools implementing JoSEL are
free to reveal the types if desired. Associated with each port is also a port mode
which is either unit, iterator, or collection. The port mode describes how data
is consumed (input ports) and produced (output ports), and is specified by a
port mode mapping PM . Basically, unit ports only produce/consume one value,
whereas iterator and collection ports can consume/produce more than one value.
We explain port modes in more detail in Sect. 2.4 and Sect. 3 when discussing
the execution of tasks. The following summarises the definition of tasks.

Definition 1. A task is a tuple T = (I,O0, PM, X, 1) where:

— I is a finite set of input ports,

— O is a finite set of output ports such that INO = 0,

— PM : P — {unit, iterator, collection} assigns to each port a port mode,
where P=1UO.

— X is a set of types and T : I UO — X assigns to each port a port type. O

2.2 Jobs

When we have a task able to generate a hash function for use by the task in
Fig. 1, we would like to be able to specify that the hash function produced by
that task should be passed to the Instantiate Hash Table Storage task. A job
consists of a set of tasks 7 connected by a set of connections C describing how
the output produced by one task is used as input to other tasks. A connection
is a pair (co, cr) connecting an output port c¢o of one task with an input port ¢y
of another task. We represent a connection by a line from the output port to the
input port. In Fig. 2, the output port of Instantiate Hash Function is connected to
the input port of Instantiate Hash Storage. In this case Instantiate Hash Function
is able to generate a hash function. This is done from a specific model that
must be provided. The generated hash function is passed to Instantiate Hash
Storage, which can generate a storage, which is able to store states of the model
given to Instantiate Hash Function. Input ports can be connected to output ports
with the same type. It is, however, easy to allow sub-typing, by loosening this
requirement such that the type of the output port is only required to be a sub-
type of the type of the input port. This is also how we have implemented it in
ASAP [6] (using the type hierarchy of Java as the sub-typing relation), but we
have omitted it in the formal definition for simplicity. Furthermore, we require
that the directed graph induced by the tasks and connections in a job is acyclic

11

(Instantiate Hash Function] (Instantiate Hash Table Storage]

I% Model Hash Function H Hash Function Storage

Fig.2: A job consisting of two tasks.

to ensure termination. As we require that input ports are always to the left and
output ports are to the right of the task, this naturally leads to a flow from the
left to the right of the job. The following summarises the definition of a job:

Definition 2. A job is a tuple J = (T,C) where:

- T ={T, = (1;,0;, PM;, X;, T:) }1<i<n 15 a finite set of tasks satisfying i #
j= P,NP; =0, where P, =1;U0;

— C C O xZis a set of connections (where I = Up. 7 1i, O = Up, 7 Oi)

satisfying that the directed graph induced by tasks and connections is acyclic,

— For all co € O; and ¢y € I; such that (co,cr) € C we have T;(co) = 1j(cr).

O

It should be noted that the definition allows multiple connections to and
from each port. This is, e.g., useful if we want to use the value produced at an
output port in multiple locations or if we want to consume values from multiple
sources or instantiate processes for values calculated by different processes. It is
possible for tasks in a job to have free ports, i.e., ports that are not assigned via
connections. The set of free input ports of a job J is denoted Free;(J). A job
is closed if it has no free input ports, otherwise it is open. The job in Fig. 2 is
open as the input port Model of Instantiate Hash Function is free.

2.3 Macro Tasks

In order to support different levels of abstraction, we introduce macro tasks (or
macros for short). A macro task is a high-level representation of a job with free
ports. A macro task can be thought of as a component of a job which is intended
to be re-used in different settings and therefore does not have all parameters
defined immediately. For example, we may want to reuse the job from Fig. 2 in
several different job descriptions, as it provides an implementation of a way to
generate a storage that is able to store states of a given model. Instead of copying
the entire job, we just draw a special macro task. A macro task is graphically
represented like an ordinary task except that we draw its outline using double
lines. An example of a macro task can be seen in Fig. 3 (top). In order to specify
the input and output ports of a macro, we introduce a special kind of port, which
states that when a job is used as a macro, this port should be available to the
user of the macro. Such ports are called exported ports (exported input/output
ports), and are drawn using a double outline, as in Fig. 3 (bottom), where
Model and Storage are exported. Outside the task, next to an exported port,

12

(" Instantiate Hash Storage)
Iit Model Storage B}

(Instantiate Hash Function w (Instantiate Hash Table Storage w

Model [% Model Hash Function H Hash Function Storage [}Storage

Fig. 3: A macro task (top) and the corresponding job (bottom).

we write the exported name of the port. The name is chosen by the user, but
will often be the same as the name of the port. The macro task in Fig. 3 (top)
can represent the job in Fig. 3 (bottom). The exported name becomes the name
of the port in the macro. Macros are purely syntactical, and can be removed
by repeatedly replacing macro tasks with the tasks of underlying jobs, moving
connections to/from a port on a macro task to the corresponding exported port
in the job, and removing all exported ports. We require that the set of exported
input ports includes all the free input ports of the job and that the exported
ports are contained in the ports of the underlying job. Port modes and types of
an exported job are inherited from port modes and types of the underlying job.
The following summarises the definition of a macro task.

Definition 3. Let J=(7,C) be a job and T ={1;=(I1;, 0y, PM;, X;, 7) }1<i<n.-
J can be represented by a macro task which is a task M = (I,O,PM,X)
where:

— I is a set of exported input ports such that I C T and Freer(J) C I, where
1= UTieT I;.

— O is a set of exported output ports such that O C O, where O = UTieT O;.

— PM(p) = PM;(p) for allp € PN P, and 1 < i < n, where P=1U0O and

— Y =Uj<icn Zi and 7(p) = 7(p) for allp e PN P; and 1 <i < n. |

2.4 Hierarchical Jobs

In our running example we have until now constructed a means to store states of
a given formal model (cf. Fig. 3). We now hierarchically construct the remainder
of the verification job for checking the two safety properties. The next step
is to construct a job for checking a safety property of a model. Such a job is
shown in Fig. 4. The job has a Waiting Set Exploration task which traverses
all states, stores all states we have already visited in a Storage, and stores all
discovered but not yet processed in a Waiting Set. The task is parametrised to
allow flexibility. For example, we can use a storage storing states in a balanced
tree or on disk instead, or we can use a different waiting set to impose a different

13

traversal order. The typing of ports makes sure that only storages and waiting
sets that are actually usable can be connected. Our previous macro task from
Fig. 3, Instantiate Hash Storage, takes care of creating a storage, and the task
Instantiate Queue takes care of instantiating a specific waiting set, implemented
as a queue, which imposes a breadth-first traversal of the states. As the model
has to be used both for the Waiting Set Exploration and as input for instantiating
the storage and waiting set, we use a Multiplex task, which just lets its input
flow unaltered to the output port. Here we have used the ability to connect an
output port to multiple input ports. The result of the Waiting Set Exploration
is a Traversal, an abstract result, which can be used by the On-the-fly Safety
Checker to check properties. We see that the job in Fig. 4 exports four ports,
Model, Properties, Answer, and Error trace. The Instantiate Queue, Waiting Set
Exploration, and On-the-fly Safety Checker are all components of the underlying
model checker.

Waiting Set Exploration

[> Model
{ > storage Traversal [>
[> waiting Set

r Multiplex]
Model [% Model Model [3

“ Instantiate Hash Storage “

[> Model Storage [

Instantiate Queue
[> Model Waiting Set [>

On-the-fly Safety Checker

[> Traversal Answer Answer
L.
Properties }Properlies Error Trace b Error Trace

Fig. 4: Specification of a verification job for checking safety properties.

The exported port Properties in Fig. 4 has port mode collection. We indicate
that a port has mode collection by annotating it with “{ }” (like a set). On-the-fly
Safety Checker takes care of actually checking the properties given. It produces an
Answer (a boolean value; did the property hold) and a path to violating states (if
any). In order to do this efficiently, it needs the set of all safety properties when
the task is started which is exactly what collection ports specify. As the On-the-
fly Safety Checker task can take more than one property as input, it may also
produce more than one output for both Answer and Error trace. We could assign
both of these mode collection, but it is possible that we can provide an answer
for one of the safety properties earlier than we can for other properties. The
Answer and Error trace ports therefore have port mode iterator, which indicate
that multiple outputs may be produced, and that they are produced one at a
time as they become available. Iterator ports are annotated with “...”. Letting
Answer and Error trace be iterator ports allows us to show a user that one of the
properties has been violated before the execution of the task has completed. We
also allow iterator ports to be input ports (indicating that we can consume values
one at a time) and collection ports to be output ports (indicating that all results
are returned when the task has completed). Ports that are neither collection
ports nor iterator ports are unit ports which means that they consume/produce
exactly one value per task instantiation.

14

A ASAP [=)[=][x]
File Edit Diagram Window Help
= | Esmt\
— Hiv ofv Zav =
By % = B || safety % =8
5% - !
v Demo i
o b+
v & jebs [Input 1 [nstantiate Model | 2
-~ [dsarety | l File H Model file Model t5 Model Safety property [I
© & Macro: Safety Checker
SML Safety Prope
% Macro: Hash Storage ”
i [> Model safety Property /
 Macro: Simple Report i
< (= queries
) buffer overflow.sml
(& reports [
& M)
1 £ Demo/jobs/safetyjosel 12Mof17M [s BB

Fig. 5: Using the ASAP tool to model check using JoSEL.

To check the two safety properties for a given model we create the job in
Fig. 5 which constitute the root job of our example verification job. Figure 5
is a snapshot from the implementation of JoOSEL in ASAP. The Safety Checker
macro task represents the job in Fig. 4. In addition, we have tasks to instantiate
a safety property for checking dead-locks (No Dead States), and to instantiate
a safety property from a user-supplied file (for checking buffer overflow; two
Inputs, one for specifying the file and one to give a descriptive name of the
property, and SML Safety Property). Both of these properties are input to the
Safety Checker. Additionally, we have tasks to instantiate a model from a user-
supplied file (Input and Instantiate Model). The model is also passed to the Safety
Checker. Furthermore, we want to generate a report which shows whether the
properties were violated and, if so, how we can reach a state where the property
is violated. At our disposal we have a Simple Report macro which is able to
generate such reports. The task is passed the values produced by the Safety
Checker. The Simple Report task is able to update the report as answers arrive,
so we can see partial results during the calculation. The Simple Report macro is
an example of connecting more than one output port to a single input port. We
need not worry about the actual implementation of the Simple Report macro as
long as we are aware that it creates a report and displays the values passed to
it. The Simple Report task is in fact implemented so that it is possible to extend
its capbilities to show values of various types, but, as the actual operations of
the task is out of scope of this paper, we can just assume that the task is able
to perform reasonable post-processing and display any value passed to it.

Our example shows that JoSEL can express rather complex jobs at different
levels of abstraction. The top-level view (Fig. 5) allows us to specify which prop-
erties to check of which model and what to do with the results. The next level
(Fig. 4) allows us to determine the traversal strategy (using different waiting
set implementations) and how to store states (by using another storage imple-
mentation). At this level we can also swap the safety checker for, e.g., an LTL

15

model checker, which is able to check more complex properties. At the lowest
level (Fig. 3) we can change which hash function is used to store states in a hash
table. The three levels together forms a hierarchical job as defined below.

Definition 4. A hierarchical job is a tuple H = (7, J,,T,SJ) where:

— J = {Ji = (T;,Cs) }1<i<n is a finite set of jobs such that T N T; = () and
C’iﬂC’jz(ZJforiyéj.

— Jr € J is a distinguished root job,

— T = {Ty = {Ii, Ok, PMy, Xk, T} }1<k<m 1S a set of macro tasks such that
for all Ty, € T there exists a J; € J such that Ty, € T,

— 8J: T — J assigns jobs to macro tasks such that SJ is onto T\ {J.}, Tk is
a macro task for SJ(Ty) for all Ty, € T (cf. Def. 3), and the graph induced
by J and SJ is a tree rooted in T..

— For J;, J; € J with i # j, (Pi\ P]) N (P; \ P;) = 0, where P; are the ports
of tasks of J; and P are the ports of macro tasks of J;. o

K2

The last requirement in the above definition ensures that only exported ports
are shared between jobs. A hierarchical job can be flattened by replacing all
macro tasks with the corresponding jobs and moving the connections to the
correct ports as defined below.

Definition 5. Let H = (J,J,,7,8J) be a hierarchical job with J = {J; =
(7:,Ci)}1<i<n. The corresponding flattened job is J = {I,C} where T =
Ulgign Ti\T and C = U1gign Ci. 0

A hierarchical job is said to be closed when the root job is closed. Whenever
a hierarchical job is closed, so is the corresponding flattened job as stated in the
following proposition.

Proposition 1. If H = (7,J.,7,5J) is a hierarchical job. Then the corre-
sponding flattened job is closed if and only if H is closed.

Proof. Any free input ports of a job J; = SJ(T') with T' € 7; is either connected
in T; or a free input port of T; (Def. 3). Thus any free port of J, is a free port of
the flattened job as no connections are broken during flattening, and H is closed
if and only if .J, is closed. O

3 Execution of JoSEL Specifications

In this section we outline the semantics of JoSEL and outline how this has been
implemented in the ASAP model checking platform [6]. The semantics define
the dynamics of the language. We can formally define the semantics, but for
an intuitive understanding of JoSEL this is not necessary, and may in fact be
counter-productive due to the level of detail required to fully specify JoSEL.
Instead we intuitively describe how jobs are executed with particular focus on
how instantiation works when ports with different modes interact.

16

The basic idea in the semantics of JoSEL is to instantiate each task such that
whenever a task is instantiated, all preceding tasks (tasks with a connection to
an input port of the task in question) have been instantiated and completed
(at least all values for non-iterator input ports). For non-hierarchical jobs, this
can be ensured by performing a topological sorting of the tasks where a task
Ty = (I,01, PM;, X1, 1) is sorted before Ty = (Iz, Oy, PMs, X5, 72) if there is
a connection (co,cr) from T7 to Ty (co € O1 and ¢y € I). As this graph is
acyclic (cf. Def. 2) this sorting is well-defined and yields a total order of all tasks
(tasks that using the aforementioned ordering are equal or incomparable are
simply taken in an arbitrary order). If we further assume that the job is closed,
executing jobs according to this order will ensure that all values are available
when we want to execute a task. If we are given a hierarchical job, we construct
(at least conceptually) the corresponding flattened job according to Def. 5. Due
to Prop. 1, we easily see that a hierarchical job can be executed when it is closed.

3.1 Port Modes and Instances of Tasks

If ports with different modes are connected, we may either instantiate a task
more than once or synchronise a number of tasks depending on the port modes.
The effects of all possible combinations of ports are summarised in Table 1.
Basically, whenever an input port has mode unit, we start an instance for each
value it is given. If we have multiple connections with different modes to an
input port with mode unit, we simply start a thread for each value arriving from
each connection, essentially implementing a fork semantics. Similarly, we always
pass exactly one collection or iterator to input ports with mode collection and
iterator, respectively. The result of having multiple connections to such a port is
thus to create exactly one collection containing all data or one iterator iterating
over all values. Iterator output ports differ from collection output ports in that
values can be passed before the task producing them has terminated. This is,
e.g., useful for data collection. Table 1 shows what happens when a single output
port is connected to a single input port.

Based on the intuition of the semantics, we obtain the following proposition
which states that if the execution of all tasks terminate for all inputs and produce
only a finite amount of data, execution of the job always terminates.

Proposition 2. Let H be a closed hierarchical job. If all tasks of jobs in H
terminate for any input and all iterators produce only a finite number of data-
elements, the execution of H eventually terminates.

Proof. The proof is in the structure of the flattened job corresponding to H. If
we assume that the predecessor of a task T produce only a finite number of data
elements and that predecessor tasks can only be instantiated a finite number of
times, T' can only be instantiated a finite number of times. a

3.2 Implementation in ASAP

The outlined semantics assume that we wait for all instances of a task to run to
completion before starting subsequent tasks. As most modern computers have

17

Table 1: The effect of connecting different kinds of ports.

Output Input
[> Unit [>__I_terator [>{ g)ollection
unit > Directly pass value Create iterator over Create a collection
one value with one value
terator > Fork as values arrive Pass all values to a Synchronise; wait un-
single task instance til all values have ar-
as they arrive rived and pass in a
collection
Collection [>{} Fork for each value in Create iterator over Pass all values to a

collection

collection and pass to

single task instance

a single task instance

CPUs with two, four, or more cores, this is not optimal. Instead, we have made
a more efficient implementation in ASAP, which basically allows tasks to start
as soon as all the input values they require are available. From Prop. 2, we see
that this strategy eventually will lead to executing all tasks.

The implementation of JoSEL in ASAP is done by implementing the data-
structures corresponding to the tuples in the previous section using the Eclipse
Modeling Framework (EMF) [3], implementing a simple object oriented repre-
sentation of tasks, connections, and jobs. On top of that, we have developed
a graphical editor using the Eclipse Graphical Modeling Framework [2], which
semi-automatically generates a graphical editor that automatically maintains
the object oriented representation of JoSEL, so we only need to consider an ab-
stract representation of JoSEL when dealing with the execution of jobs. As we
only deal with the abstract representation it is in principle possible to develop
other concrete syntaxes for JoSEL if one, e.g., prefers a textual syntax.

Our implementation of execution of JoSEL specifications aims to increase
concurrency and observes that starting many threads that are just waiting to
be executed is relatively inexpensive. The idea is to create a thread for each
task (a task thread) which is intended to contain the actual implementation of
the task, a thread for each output port (an output thread) to distribute the
output to multiple recipients, a thread for each input port (an input thread)
to collect and synchronise input from multiple sources and put the data to the
correct format, and finally a thread to spawn the appropriate task thread and
pass parameters (a launcher thread). We may start multiple instances of a task
thread, one for each execution of the task, but only one instance of each output,
input, and launcher thread. Additionally, we have a communication channel for
each output port, allowing task threads to transmit values to the correct output
threads, a channel for each connection, allowing output threads to transmit data
to the correct input threads, and one for each input port, allowing input threads
to pass data to the correct launcher thread. Finally, We need to keep track of how
many instances of each task thread we have started and when we will start no

18

more task threads for a specific task thread. This information allows subsequent
output threads to realise when they have received all output values from task
threads.

In the figure on page 14, we see some of the threads instantiated in ASAP
to execute the JoSEL specification in Figs. 3, 4, and 5. Threads are named after
their task and, in the case of input and output threads, after their port as well.
Threads are identified by an L, a T, an |, or an O for launcher, task, input,
and output threads, respectively. We have numbered the three Input tasks in
Fig. 5 from the top to the bottom in order to better be able to distinguish them.
Active threads are marked by a white band. We notice that in the beginning all
threads except for task threads are active (but waiting). Initially, the launcher
thread for the Input 1 task realises that it has all input values required to start
an instance of the task, so it launches a task thread for the task. This thread
runs to completion and produces a single output value, which is transmitted to
the output thread for the File output port of the Input 1 task. Independently,
the launcher, task, and output threads for the Input 2 and Input 3 task do the
same thing. The single connection from the File output port of the Input 1 task
to the Model file input port of the Instantiate Model task, makes the output
thread transmit the value to the input thread of the Model file input thread,
which is then awoken. The value needs no translation, so it is just transmitted
directly to the launcher thread of Instantiate Model, which realises that it has
received enough input values to launch an instance of the Instantiate Model task
thread. This runs and produces a Model output value, which is transmitted to
the output thread. The corresponding output port has three connections, so the
value is transmitted to the three corresponding input threads. At some point,
the File and String values have been transmitted to the SML file and Name input
threads of the SML Safety Property task. The three input threads transmit the
values to the launcher thread of the SML Safety Property task, which realises,
it has enough information to launch a SML Safety Property task thread. The
computation continues in this manner.

As indicated from the example the threads collaborate to perform the entire
computation specified by the specification. The different functions of the differ-
ent kinds of threads have been summarised in Table 2. Task threads perform the
actual execution of a single instance of a task. A task thread receives a correctly
formatted value for each input port, executes the task with the given values
and transmits values produced for each output port to the corresponding output
process. Output threads take care of transmitting values to the correct input
threads, and as such implement the connections. When there is only a single
connection from an output port, this just consists of passing on the value. In the
case where there are more outgoing connections (such as the Model output port
of the Instantiate Model task in Fig. 5), the value must be copied, in particular
if it is a port with collection or iterator mode. Input threads are responsible for
receiving values from multiple output threads (as in the case of the Properties
input port of the On-the-fly Safety Checker in Fig. 4, which is exported and con-
nected to multiple output ports in Fig. 5). Input threads are also respounsible for

19

bus

],,,,,,,,,,,,,,

19PON

iBung

13PON

19PON

18PON

19PON

alld

youne|

a4

alld

ISPOIN [SPON S1ERUE}SU]

youne|

|

20

converting the received values to the correct format. In the example of the Prop-
erties input port of On-the-fly Safety Checker, the input port has mode collection,
but it receives values from two output ports with mode unit. The input thread
must therefore construct a collection containing the values received. A similar
conversion must take place when the input port has mode iterator. If the input
port has mode unit, values are simply transmitted one at a time as they are
received, optionally extracting values from collections or iterators. Finally, input
value(s) on the correct form are transmitted to the launcher thread. Launcher
threads receive correctly formatted input values and as soon as a value is received
for each input port, a new task thread is started with the correct parameters. As
more than one value can be received on unit input ports (collection and iterator
ports always receive exactly one collection or iterator), it is possible that more
than one task instance needs to be started. The launcher thread takes care of
starting new task threads as soon as possible by constructing new elements of
the Cartesian product of the input values as soon as possible.

Table 2: The function to be performed by each kind of thread.

Thread Function
Task Run a single instance of the task with the provided parameters and
transmit the produced results to the correct output threads.
Output Receive values and transmit them to all input threads according to
the connections.
Input Collect values from multiple output processes and put them into

the correct form according to the input port mode.

Launcher Receive values from input threads and launch new task threads
whenever enough values have been received to provide a full set of
inputs.

4 Example

Let us see some examples of use of JoOSEL in ASAP from the point of view of
different users. Assume a person from the industry wishes to verify a concrete
model of a network protocol. The task is to verify that the protocol contains no
dead-locks and that the buffers of the participants do not overflow. As the model
is of a real-life system, it is suspected that the state space may be large, and as
the protocol works in steps, it is decided, guided by ASAP, to use the sweep-line
state space reduction method, which exploits progress to only store parts of the
state space in memory at any time. A standard JoSEL template specification for
checking for dead-locks using the sweep-line method is created using a simple
wizard, and a specification like the one in Fig. 6 is obtained (for legibility, we
have removed all the input tasks; all unassigned input ports are connected to the
output of a corresponding input task). Compared to the example from Fig. 5 the

21

[Mo Dead States }
[Model Safety property [

[Instantiate Model }
[} Madel fie Model

| sweep-ne safety checker ||
’I, Modlel Answer [
Property Error trace

Simple Report_ ||

SML Progress Measure
[Model Progress measure [
[ShL file
[Mame

> Progress Measure

Fig. 6: Initial dead-lock freeness checker using sweep-line method.

Sirnple Report ﬂ

[_Sweenine safety checker__||
[Model Answer
.I‘ Property Error trace
‘ Progress Measure

[Tnstantiate Model } Mo Dead States

[} Madel fle Model

Fig. 7: Dead-lock and buffer overflow checker using sweep-line method.

only difference we see is that there is no SML Safety Property task and instead
we have a SML Progress Measure, which is used by the sweep-line method to
decide when states no longer need to be kept in memory.

Our industry person slightly modifies the task and adds tasks to specify the
no buffer overflow property. The task now looks like the one in Fig. 7, which
identical to the one in Fig. 5 except for the added progress measure. Another
way to arrive at the job in Fig. 7 would be start from Fig. 5, observe that the
verification is not able to go through as too much memory is consumed, and
delete the Safety Checker macro and replace it with a Sweep-line Safety Checker
built into the tool.

Assume now a student wants to experiment with the sweep-line method.
The student starts with the same job from Fig. 6 and digs into the details of the
Sweep-line Safety Checker and sees the implementation shown in Fig. 8. Com-
pared to the implementation of the Safety Checker in Fig. 4, we have removed the
Queue and use a Sweep-line Exploration instead of a Waiting Set Exploration. The
queue is not needed as the sweep-line method imposes a certain order of traversal
(least progress first). We also see that the Sweep-line Exploration task takes an
additional input value, namely Persistent initial states, which is a heuristic im-
proving speed for certain systems that return to the initial state after executing.
This is usually a very cheap way to speed up a large class of models, and is set
to true by default. In order to better understand the method, a student may try
setting the value to false and observe the performance on different models.

22

Sweep Line Exploration] { On-the-fly Safaty Checker]
Mo Traversal ["> Traversal Arswer

Storage [p Property Errar Trace

4 Progress Measure

Persistent initial states ’ Storage

Fig. 8: Implementation of sweep-line safety checker.

[Sweep Line Exploration } [On-the-fly Safety Checker}
Moce!

[[Instantiate Hash-compaction Etnrageﬂ
Storage

Traversal Traversal Brswer

Storage Property Error Trace

Moce!

Progress Measure

Persistent initial states Storage

Fig. 9: Job for checking safety properties using a combination of the sweep-line method
and hash compaction.

Finally, let us consider a researcher who experiments with the sweep-line
method, knowing that a good way to obtain even better performance is to com-
bine different methods. In addition to the sweep-line method, the researcher
also knows about hash compaction, which, instead of storing the full states, just
stores a hash value. This saves a lot of memory, as the hash value is usually 4 or
8 bytes whereas the full state is usually thousands of bytes. The caveat is that
the method may not explore all states as several states may have the same hash
value. The researcher thinks that using the sweep-line method to remove states
known not to be encountered again may reduce this probability and use less
memory than using either method by itself. The reasearcer therefore deletes the
Instantiate Hash Storage macro, replaces it with a Instantiate Hash-compaction
Storage macro, and obtains Fig. 9. If it is found that this method performs well,
the constructed task can be saved and added to the tool so others can benefit
in the future.

Suppose that the researcher wishes to test the performance of the new method
and eliminate as much overhead to get as accurate results as possible. Looking
at the details of the Hash-compaction Storage in Fig. 10, the researcher observes
that it is possible to tune the initial size of the hash-table used to store states.
Initially, this value is set rather small (1000) as the overhead in real cases is
relatively small. If the researcher knows that the models uses for testing have
at most 100,000 states and that the used computer has sufficient memory to
handle this, the values can be set to 200,000 so the hash table never needs to be
re-balanced, which will improve the performance slightly and factor out the cost
of re-balancing a hash table, which provides a more fair and accurate comparison
between the standard sweep-line method and the new method.

23

Hash Compaction Storage

Storage [;,

[Fipe [CPN Tools Hash Function 1]
In Out Model Hash function

Fig. 10: Details of the hash compaction storage.

Finally, we may argue that even the task in Fig. 5 is not that simple as it
contains eight tasks, of which only two or three are really interesting. We can
instead create a new macro like the one in Fig. 11, where we have basically
removed the inputs to model file and SML file from the task in Fig. 5 and
exported the ports. We can go even simpler and remove the Property input port
as well by replacing it with a set of standard properties that make sense for all
models.

Check SML Safety Propert:
Mode! file
Property

Fig. 11: More abstract top level of the safety checker from Figs. 3-5.

5 Conclusion and Future Work

In this paper we have proposed the JoSEL language for specification and exe-
cution of verification jobs in model checking. By means of an example we have
demonstrated how JoSEL can be used to define a simple safety checker, which
can be modified easily at different levels of abstraction. We have informally de-
fined the semantics of JoSEL and indicated an efficient implementation in ASAP.

An important requirement for JoSEL was to support users at different ex-
perience levels and with different reasons to use verification tools. We find that
JoSEL supports this because of the hierarchy concept, as is supported by the
examples given in Sect. 4.

Future work includes considering extensions of the JoSEL language. One
interesting extension is to allow cyclic connections, so that we can iteratively
improve a verification result. This is interesting for implementing incremental
improvement of approximative reduction techniques, e.g., by iteratively increas-
ing the size of the table used for bit-state hashing [5] until we have refuted
the property or a certain threshold has been reached. The reason for not just
doing this is that it would make the implementation more complex and, more
importantly, it would be easier for users to make mistakes, as Prop. 2 would no
longer hold. It would also be interesting to add a way to terminate a task or
a set of tasks. This has interesting applications to, e.g., state-of-the art model

24

checking, in which we start model checking with all or at least several available
model checking techniques. As soon as the first technique provides a definitive
answer we terminate the execution of the other techniques. This should be fairly
easy to do, and the main issue is to find a good graphical representation for this
mechanism. A variant of macro tasks may be used as a composition mechanism
stating which tasks to terminate. Many control structures need not be part of the
language but can be implemented as tasks that do not correspond to anything
in the underlying model-checking platform. On such example is an If task, which
takes as input a boolean value test and an arbitrary value value. Depending on
the value of the test, the value is either transmitted to a then or an else output
port.

Another interesting direction is to investigate scheduling across multiple ma-
chines. It should be possible to extend JoSEL with annotations describing the
time-wise and space-wise cost of a task and the produced values. It should then
be possible to intelligently distribute data to the appropriate machines, taking
into account that it may sometimes be more efficient to re-calculate data than
to transmit results.

References

1. E. Clarke, O. Grumberg, and D. Peled. Model Checking, chapter 12. The MIT
Press, 1999.

2. Eclipse Graphical Modelling Framework (GMF). www.eclipse.org/modeling/
gmf/.

3. Eclipse Modelling Framework (EMF). www.eclipse.org/modeling/emf/.

4. H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verifica-

tion. In Proc. of FORTE’01, volume 197 of IFIP Conference Proceedings, pages

377 394. Kluwer, 2001.

G.J. Holzmann. An Analysis of Bitstate Hashing. Formal Methods in System

Design, 13:289-307, 1998.

6. L.M. Kristensen and M. Westergaard. The ASCoVeCo State Space Analysis Plat-
form: Next Generation Tool Support for State Space Analysis. In Proc. of 8th CPN
Workshop, volume 584 of DAIMI-PB, pages 1-6, 2007.

7. T. Margaria, R. Nagel, and B. Steffen. Remote Integration and Coordination of
Verification Tools in JEIT. In Proc. of ECBS’05, pages 431 436. IEEE Comp. Soc.
Press, 2005.

8. R.S. Pressman. Software Engineering. McGraw-Hill, 1997.

9. A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic
Models, volume 1491 of LNCS, pages 429-528. Springer-Verlag, 1998.

10. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.

11. W.M.P. van der Aalst and K. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, 2002.

[

25

26

Formal Modeling and Analysis by Simulation of
Data Paths in Digital Document Printers*

Venkatesh Kannan, Wil M.P. van der Aalst, and Marc Voorhoeve

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands.
{V.Kannan,W.M.P.V.D.Aalst,M.Voorhoeve}@tue.nl

Abstract. This paper reports on a challenging case study conducted in
the context of the Octopus project where CPN Tools is used to model
and analyze the embedded system of digital document printer. Modeling
the dynamic behavior of such systems in a predictable way is a major
challenge. In this paper, we present the approach where colored Petri nets
are used to model the system. Simulation is used to analyze the behavior
and performance. The challenge in modeling is to create building blocks
that enable flexibility in reconfiguration of architecture and design space
exploration. CPN Tools and ProM (a process mining tool) are used to
collect and analyze the simulation results. We present the pros and cons
of both the conventional presentation of simulation results and using
ProM. Using ProM it is possible to monitor the simulation is a refined
and flexible manner. Moreover, the same tool can be used to monitor the
real system and the simulated system making comparison easier.

1 Introduction

The Octopus project is a co-operation between Océ Technologies, the Embedded
Systems Institute (ESI), and several research groups in the Netherlands. The aim
of the project is to define new methods and tools to model and design embedded
systems like printers, which interact in an adaptive way to changes during their
functioning. One of the branches of the Octopus project is the study of design
of data paths in printers and copiers. A data path encompasses the trajectory
of image data from the source (for instance the network to which a printer is
connected) to the target (the imaging unit). Runtime changes in the environment
may require use of different algorithms in the data path, deadlines for completion
of processing may change, new jobs arrive randomly, and availability of resources
also changes. To realize such dynamic behavior in a predictable way is a major
challenge. The Octopus project is exploring different approaches to model and
analyze such systems. This paper focuses on the use of colored Petri nets to
model and study such systems. We report on the first phase of the project,
in which we studied a slightly simplified version of an existing state-of-the-art
image processing pipeline at Océ implemented as an embedded system.

* Research carried out in the context of the Octopus project, with partial support of
the Netherlands Ministry of Economic Affairs under the Senter TS program.

27

1.1 The Case Study

The industrial partner in the Octopus project, Océ Technologies, is a designer
and manufacturer of systems that perform a variety of image processing functions
on digital documents in addition to scanning, copying and printing. In addition
to locally using the system for scanning and copying, users can also remotely
use the system for image processing and printing. A generic architecture of an
Océ system used in this proiect is shown in Figure 1. [2]

Controller

UsB
client

@‘} usB

MEMORY

|Scanner|—i| ScanlP I—i —il PrintIP |—»| Printerl

Fig. 1: Architecture of Océ system.

As shown in Figure 1, the system has two input ports: Scanner and Controller.
Users locally come to the system to submit jobs at the Scanner and remote jobs
enter the system via the Controller. These jobs use the image processing (IP)
components (ScanlP, IP1, IP2, PrintIP), system resources such as the memory,
and USB bandwidth for the executing the jobs. Finally, there are two output
ports where the jobs leave the system: Printer and Controller. Jobs that require
printed outputs use the Printer and those that are to be stored in a storage
device or sent to a remote user are sent via the Controller.

All the components mentioned above (Scanner, ScanIP, IP1, IP2, PrintIP)
can be used in different combinations depending on how a document of a certain
job is requested to be processed by the user. Hence this gives rise to different
use-cases of the system i.e. each job could use the system in a different way.
The list of components used by a job defines the data path for that job. Some
possible data paths for jobs are listed and explained below:

— DirectCopy: Scanner ~» ScanlP ~» IP1 ~» IP2 ~» USBClient, PrintIP
— ScanToStore: Scanner ~» ScanIP ~» IP1 ~» USBClient

— ScanToEmail: Scanner ~» ScanlP ~» IP1 ~» IP2 ~» USBClient

— ProcessFromStore: USBClient ~» IP1 ~» IP2 ~» USBClient

— SimplePrint: USBClient ~» PrintIP

PrintWithProcessing: USBClient ~» IP2 ~» PrintIP

The data path listed for DirectCopy means that the job is processed in order
by the components Scanner, ScanIP, IP1, IP2 and then simultaneously sent to

28

the Controller via the USBClient and also for printing through PrintIP. In the
case of the ProcessFromStore data path, a job is remotely sent via the Controller
and USBClient for processing by IP1 and IP2 after which the result is sent back
to the remote user via the USBClient and the Controller. The interpretation for
the rest of the data paths is similar.

Furthermore, there are additional constraints possible on the dependency of
the processing of a job by different components in the data path. It is not manda-
tory that the components in the data path should process the job sequentially,
as the design of the Océ system allows for a certain degree of parallelism. Some
instances of this are shown in Figure 2.

ScanlP IP1
Scanner ScanlP

» » : 1.4
time time time

(@ (b) (c)

wsuodwos
wsuodwos
jusuodwiod

IP1

v

Fig. 2: Dependency between components processing a job.

According to the Océ system design, IP2 can start processing a page in a
document only after IP1 has completed processing that page. This is due to the
nature of the image processing function that IP1 performs. Hence as shown in
Figure 2(a) IP1 and IP2 process a page in a document in sequence. Considering
Scanner and ScanlP, they can process a page in parallel as shown in Figure 2(b).
This is because ScanIP works full streaming and has the same throughput as
the Scanner. The dependency between ScanIP and IP1 is shown in Figure 2(c)
and in this case IP1 works streaming and has a higher throughput than ScanIP.
Hence IP1 can start processing the page as ScanlP is processing it, with a certain
delay due to the higher throughput of IP1.

In addition to using the different components of the system for executing
jobs, there are other system resources that are needed to process jobs. The two
key system resources addressed currently in this project are the memory and the
USB bandwidth. Regarding the memory, a job is allowed to enter the system
only if the entire memory required for completion of the job is available before
its execution commences. If the memory is available, then it is allocated and
the job is available for execution. Each component requires a certain amount of
memory for its processing and releases this memory once it completes processing.
Hence utilization of memory is a critical factor in determining the throughput
and efficiency of the system. Another critical resource is the USB. The USB has
a limited bandwidth and it serves as the bridge between the USBClient and the
memory. Whenever the USBClient writes/reads data to/from the memory, it has
to be transmitted via the available USB. Since this bandwidth is limited, it can

29

be allocated only to a limited number of jobs at a time. This determines how
fast the jobs can be transferred from the memory to the Controller or vice versa.

The overview of the system just given illustrates the complexity of the Oc
system. The characteristics of critical system resources such as memory and USB
bandwidth, and the components determine the overall performance. Moreover,
resource conflicts need to be resolved to ensure a high performance and through-
put. The resource conflicts include competition for system components, memory
availability, and USB bandwidth.

1.2 The Approach

In our approach, colored Petri nets (CPN) are used to model the Oc system.
The CPN modeling strategy [3] is aimed at providing flexibility for design space
exploration of the system using the model. Hence, design of reusable building
blocks is vital during the modeling process. Simulation of the model is used for
performance analysis to identify bottleneck resources, utilization of components,
decisions during design space exploration and design of heuristic scheduling rules
(in the future). CPN Tools is used for modeling, simulation and performance
analysis of the system. Additionally, ProM, a versatile process mining tool, is
used to provide further insights into the simulation results and also present
these results to the domain user in different forms. Interestingly, ProM can be
used to monitor both the simulated and the real system, thus facilitating easy
comparison.

2 Modeling Using CPN

The modeling approach takes an architecture oriented perspective to model the
Océ system. The model, in addition to the system characteristics, includes the
scheduling rules (First Come First Served) and is used to study the performance
of the system through simulation. Each component in the system is modeled as
a subnet. Since the processing time for all the components, except the USB, can
be calculated before they start processing a job, the subnet for these compo-
nents looks like the one shown in Figure 3. The transitions start and end model
the beginning and completion of processing a job, while the places free and do
reflect the occupancy of the component. In addition, there are two places that
characterize the subnet to each component: compInfo and paperInfo. The place
compInfo contains a token with information about the component, namely the
component ID, processing speed and the recovery time required by the compo-
nent before starting the next job. The place paperInfo contains information on
the number of bytes the particular component processes for a specific paper size.
The values of the tokens at places complInfo and paperInfo remain constant af-
ter initialization and govern the behavior of the component. Since the behavior
of the USB is different from the other components, its model is different from
the other components and is shown separately. The color sets for paperInfo and
compInfo used in the CPN Tools model are listed below.

30

colset PAPERINFO=record paper:STRING*inputSize:INT;
colset COMPINFO=record compID:STRING*speed:INT*recovery:INT;

In the color set PAPERINFO, the record-element paper contains the infor-
mation on the size of the paper, such as A4 or A3, and element inputSize denotes
the memory required for this size of paper. In the color set COMPINFO, the
element compID is used to name the component (scanner, scanlP, etc.), speed
denotes the processing speed of the component and recovery contains the infor-
mation about the recovery time needed by the component between processing
two jobs.

Fig. 3: Hierarchical subnet for each component

In Figure 3, the place job@Q contains tokens for the jobs that are available for
the components to process at any instance of time. The color of a token of type
Job contains information about the job ID, the use case and paper size of the
job. Hence, the component can calculate the time required to process this job
from the information available in the Job token, and the tokens at the places
complInfo and paperInfo. Once the processing is completed, transition end places
a token in place free with a certain delay, governed by the recovery time specific
to each component, thus determining when the component can begin processing
the next available job. The color set for the type Job is as follows,

colset JOB=record
jobID:STRING*
jobType: STRING*
inputPaper:STRING*
from:STRING*
to:STRING*
startTime: INT*
endTime:INT timed;

The record element jobID is used to store a unique identifier for each job,
jobType contains the use-case of the job (DirectCopy or ScanToEmail, etc.), and

31

the element inputPaper specifies what paper size is used in this job. The elements
from and to are used for the source and destination component IDs respectively,
as the job is being processed by one component after another according to the
data path. The startTime and endTime are used by each component to contain
the timestamps of start and estimated end of processing the job.

jobQ ¢
JOB

| scanner| IscaniP| [iP1] [ip2] [usB| |printip]

NT

Job scheduler

Generator

JoB

Fig. 4: Architectural view of the CPN model.

Figure 4 shows an abstract view of the model. New jobs for the system can
be created using the Job Generator subnet, which are placed as input to the
Scheduler subnet at the place mewJob. The Scheduler subnet is the heart of
the system that models the concepts including the scheduling rules, memory
management rules and routing each job step-by-step from one component to the
next depending on the data path of the use-case to which the job belongs. From
this it can be observed that the scheduling rules are modeled as being global to
system and not local to any of the components or distributed.

Vital to the Scheduler’s task of routing jobs from one component to the next
is the information about the use-cases and the data paths. From the information
on data paths in Section 1.1, it can be inferred that each data path is a partial
order. Hence, a list of list (of color STRING) is used to represent the partial
order. An example of a data path represented in the Scheduler component is
shown here.

ucID="DirectCopy",

dataPath= [["scanner","scanIP"],
["scanIP","IP1"],

["IP1","IP2"],
["IP2","printIP","USBup"],
["USBup"], ["printIP"]

]

32

The data path of the use-case DirectCopy is explained in Section 1.1. In this
example, each sublist inside the data path list contains two parts: the first ele-
ment being the source component and the remaining being the destination(s).
Hence, ["scanIP","IP1"] indicates that in the DirectCopy use-case, a job pro-
cessed by scanlIP will be processed by IP1 next. Similarly, ["IP2","printIP","USBup"]
denotes that a job processed by IP2 will be processed simultaneously by printIP
and USBupload in the next step.

The Scheduler picks a new job that enters the system from the place newJob
and estimates the amount of total memory required for executing this job. If
enough memory is available, the memory is allocated (the memory resource is
modeled as an integer token in the place memory) and the job is scheduled for
the first component in the data path of this job by placing a token of type Job
in the place job@, which will be consumed by the corresponding component for
processing. When a component starts processing a job, it immediately places a
token in the startedJob place indicating this event. The Scheduler consumes this
token to schedule the job to the next component in its data path, adding a delay
that depends on the component that just started, the next component in the data
path, and the dependency explained and shown in Figure 2 (a), (b) and (c). Thus
the logic in the Scheduler includes scheduling new jobs entering the system (from
place newJob) and routing the existing jobs through the components according
to the corresponding data paths.

As mentioned above, the Scheduler subnet also handles the memory manage-
ment. This includes memory allocation and release for jobs that are executed.
When a new job enters the system, the Scheduler schedules it only if the com-
plete memory required for the job is available (checked against the token in the
place memory). During execution, part of the memory allocated may be released
when a component completes processing a job. This memory release operation
is also performed by the Scheduler subnet.

Modeling the USB component is different from the other components and
cannot be models using the ”pattern” shown in Figure 5. As described earlier,
for the USB, the time required to transmit a job (upstream or downstream) is
not constant and is governed by other jobs that might be transmitted at the same
time. This necessitates making the real-time behavior of the USB bus dependent
of multiple jobs at the same time. It is to be noted that if only one job is being
transmitted over the USB then a high MBps transmission rate is used, and when
more than one job is being transmitted at the same time then a lower low MBps
transmission rate is used.

The model of the USB as shown in Figure 5 works primarily by monitoring
two events observable in the USB when one or more jobs are being transmit-
ted: (1) the event of a new job joining the transmission, and (2) the event of
completion of transmission of a job. Both these events govern the transmission
rates for the other jobs on the USB and hence determine the transmission times

33

jobList
[Job | Rate | LastupdateTime |

Fig.5: CPN model for the USB.

&
JOB
.I

for the jobs. In the model shown in Figure 5, there are two transitions join and
update, and two places trigger and USBjobList. The place USBjobList contains
the list of jobs that are currently being transmitted over the USB. Apart from
containing information about each job, it also contains the transmission rate
assigned, the number of bytes remaining to be transmitted and the last time
of update for each job. Transition join adds a new job waiting at place in that
requests use of the USB (if it can be accommodated) to the USBjobList, and
places a token in place trigger. This enables transition update that checks the
list of jobs at place USBjobList and reassigns the transmission rates for all the
jobs according to the number of jobs transmitted over the USB. The update
transition also recalculates the number of bytes remaining to be transmitted for
each job since the last update time, estimates the job that will finish next and
places a timed token at trigger, so that the transition update can remove the
jobs whose transmissions have completed. The jobs whose transmission over the
USB is complete are placed in place out. Thus transition join catches the event
of new jobs joining the USB and the transition update catches the event of jobs
leaving the USB, which are critical in determining the transmission time for a
single job.

3 Simulation and Analysis

This section presents some analysis methods used to study the results from the
simulation of the model. Section 3.1 presents the information collected in CPN
Tools through monitors and how it is used to measure relevant performance
metrics. Section 3.2 presents the use of the process mining tool ProM for an
alternative presentation and analysis of the simulation results. ProM uses event
logs, which are recorded by CPN Tools. The event log contains details about the
events (i.e., transition firings) that take place in the simulation.

We are unable to share detailed data about the Océ system because this
information is highly confidential. Hence, the actual parameters and simulation
results should be seen as potential settings and outcomes.

For the simulation experiment to illustrate possible results obtained by CPN
Tools and ProM, 150 jobs are generated by the Job Generator component of
the model in Figure 4 in each run. These jobs are created by picking a random
number of jobs from the six use-cases listed in Section 1.1. The arrival times
of jobs are distributed negative exponentially with an inter-arrival time of 2
seconds.

3.1 Simulation Results

When performing simulation in CPN Tools, the different categories of moni-
tors available can be used to collect the simulation results in different ways [1].
Here, two examples of how different types of monitors are used to aggregate the
simulation results to performance analysis metrics are presented.

Table 1 presents the statistics produced by the data collection monitor that
was used to aggregate the waiting times of jobs before their execution starts
at each component. The averages provided by CPN Tools in the performance
report can be obtained by replicating the simulation for multiple runs. The
waiting times of jobs thus obtained through monitors during simulations can
be used to identify the components that are probable bottleneck resources in
the system. Similarly, using the data collection monitor, the utilization times
for each component can be obtained to determine the under- and over-utilized
components in the system.

Name Avrg 90% Half Length 95% Half Length 99% Half Length
1P1
count_iid 100.119400 0.134347 0.160568 0.212527
max_iid 3007.696600 4.862893 5.812036 7.692745
min_iid 0.000000 0.000000 0.000000 0.000000
avrg_iid 34.302562 1.301284 1.555269 2.058537
P2
count_iid 100.048200 0.133754 0.159861 0.211590
max_iid 2860.038400 37.247604 44.517618 58.923016
min_iid 0.000000 0.000000 0.000000 0.000000
avrgiid 48.990676 0.935130 1.117649 1.479308
USB
count_iid 174.983400 0.105168 0.125695 0.166368
max_iid 242724.770400 535.206794 639.668843 846.658458
min_iid 0.000000 0.000000 0.000000 0.000000
avrg_iid 23679.481434 143.889599 171.974075 227.622944
printIP
count_iid 74.900800 0.144126 0.172257 0.227998
max_iid 96590.504600 524.005807 626.281639 828.939306
min_iid 0.000000 0.000000 0.000000 0.000000
avrgiid 13155.451373 126.373949 151.039708 199.914452
scanner
count_iid 75.136000 0.141720 0.169381 0.224191
max_iid 735681.475800 532.367990 636.275959 842.167675
min_iid 5406.491400 866.457382 1035.573160 1370.672942
avrg iid 341606.033984 696.226511 832.116504 1101.380010

Table 1: Waiting times of jobs at the different components

35

From Table 1, it can be observed that the average waiting time for jobs
in front of components Scanner and USB is higher than for the rest of the
components. For example, with 90confidence, the USB is seen to have an average
waiting time of 23680 seconds, with a half length of 144 seconds, for jobs in the
queue in front of it. This is attributed to the scheduling rule that jobs have to
wait for memory allocation before entering the system for processing through the
Scanner or the USBdown. The simulation experiment here was conducted with
minimal memory availability, and hence the longer queues. Also, the average
waiting time in front of the printIP is also higher as it is the slowest component
in the system according to the design specifications.

The second example presented here uses the write-in-file monitor to log the
events when memory is allocated or released by the Scheduler component. Using
this log of the time stamps and the amount of memory available, a simple tool
can be used to plot the chart shown in Figure 6. The chart depicts the amount of
memory available in the system at each instant of time. Information about the
utilization characteristics of the memory resource is a key input in designing the
memory architecture, designing scheduling rules for optimal memory utilization
with high system throughput and analyzing the waiting times in front of each
component in the system.

Memory chart

o

ONALOBONAD

50.000 100,000 150,000 200000 250,000 300,000 350,000 400,000 4soooo 500, ‘000

Fig. 6: Memory Utilization chart

The above simulation results are typical for simulation tools, i.e., like most
tools, CPN Tools focuses on measuring key performance indicators such as uti-
lization, throughput times, service levels, etc. Note that the BRITNeY Suite an-
imation tool [5] can be used to add animations to CPN simulations. Moreover, it
allows for dedicated interactive simulations. This facilitates the interaction with
end users and domain experts (i.e., non-IT specialists).

3.2 Using ProM

ProM is a process mining tool, i.e., it is used to investigate real-life processes by
analyzing footprints of processes in the form of event logs, audit trails, database

36

entries, message exchanges, translation logs, etc. ProM offers a wide variety of
analysis techniques. Because simulation can be seen as imitating real-life, it is
interesting to see what additional insights process mining techniques can provide.
This section presents some of the plug-ins of ProM that have been explored in
the context of Océ’s systems. The plug-ins of ProM use event logs, which is list
of events recording when each component starts and completes processing a job.
These event logs have been generated using the approach described in [6].

Fuzzy Miner The fuzzy miner plug-in along with the animation part of it
provides a visualization of the simulation. The event log is used to replay the
simulation experiment on the fuzzy model of the system. Figure 7 shows a snap-
shot during the animation. During the animation, jobs flow between components
in the fuzzy model in accordance with the events during simulation. It provides
a view of the queues in front of each component, which serves as an easy means
to identify key components, bottleneck resources and the utilization of compo-
nents in the system. For example, from Figure 7 it can be observed that during
this simulation run, the queue in front of printIP was longer, which can be at-
tributed to it being the slowest component in the system. More importantly, the
fuzzy miner animation provides live insight into the simulation run and is an
easier means of communication with the domain users, which is significant in
the context of the Octopus project.

Fuzzy Model Animation o' @ B4
v

Fig. 7: Fuzzy Miner Animation

37

Dotted Chart Analysis This plug-in uses the event log to create a dotted
chart with each dot referring to an event in the log. The chart can be viewed
using different perspectives. The x-axis always shows the time (can be absolute
or relative) and the y-axis shows a particular perspective. If the ”instance per-
spective” is selected, then each job is represented by a horizontal dotted line
showing the events that took place for this job. If the ”originator perspective”
is selected, each use-case is represented by a horizontal dotted line. Figure 8
shows the dotted chart from the ”"task perspective” (i.e., the components in the
system). Hence, each pair of dots represents the start and end of processing a
job by that component. The plug-in can provide an overview of the dynamics of

the execution of jobs and also the system load.

[Analysis - Dotted Chart Analysis

Dotted Chart | Settings

47007 742007
ipin} 210
scanll

=)
=
Ia.
s
a
d

ask ID

Time option:
[Actual ~

| Time sort cchart:

Color By:
Taskip =

Shape By:

USBup

a0
02y | | -ct023x
1ok 1ok
E Sx

“1x

zoom(X) | zoom (v)

Zoom out 1P

scanner

Time sort (metrics):
‘omponent Overall:

f# of components: 7

iterns. values

fime s _|4/2/02 12:00 P
ime(end) _|4/8/0212:12 PM
avg spread (65251171

min spread 279,02 =

ma spread 717257

omponent scanlP:
e of dots: 134

ms values
[imeirst) 418102 1200 P

fime(end) _4/6/02 12:11 PM

avg.interval [5.39291

min interval |1.02
max interval |246 966 e
‘omponent printiP:
F of dots: 158
iterns.

values
Jfime irsh —[478707 12:00 FM

ime(end) _4/3/0212:11 PM

avg.interval |4 58575

min interval [0

0
max interval |145.317

‘omponent USBup:
e of dots: 184

4802 12:00 P

48/0212:12 Pt

3.0031

(]

14288 L

e

Fig. 8: Dotted Chart Analysis

For instance, the distribution of the dots along the timeline for each compo-
nent gives an insight into the utilization characteristics of the component, which
helps to identify the under- and overutilized components. For example, from
this chart, it was observed that IP2 is a component with high utilization rate
throughout this simulation experiment. Also, the dotted chart provides details
about the distribution of the types of jobs (use-cases) over the simulation. In this
case, it can be observed from Figure 8 that the remote jobs (use-cases that orig-
inate at the USBdown) are generated in a burst at the start of the simulation,
whereas the number of local jobs submitted at the scanner is fewer during the
same interval. Thus this chart gives detailed insight into the steps of simulation
and hence can provide input for a better design of the simulation environment

setup.

38

Performance Sequence Diagram Analysis The performance sequence di-
agram plug-in provides a means to assess the performance of the system. The
plug-in can provide information about behaviors that are common from the
event log. These patterns can be visualized from different perspectives such as
the components of the system and the data paths in the system. Figure 9 shows a
screenshot of the pattern diagram generated from the view of the components. In
this context, the patterns depicted correspond to the different data paths listed
in Section 1.1. Also, statistics about the throughput times for each pattern are
presented, which can be used to determine the patterns that seem to be common
behavior, those that are rare and those that result in high throughput times.
On the other hand, this plug-in can be used to analyze an event log from the
Océ system to identify the data paths available thus assisting in identifying the
architecture and behavior of the system and also in the modeling process.

) —
(5 Anoysis - Performance Seusence Disgrom naysis 5315515752555 e R
Options Full diagram | Pattern diagram |
Component type: <] pattern 0z =
E D= i

i : : d Throughput time

Time sort: Pafiem.0 |
aecomss |

Pattern type:
@ Flexible equivalent

v (2266083333
min__[7000.0
max [66991.0
stiev 1692612211

Pattern 1:
© strict equivalent

Show diagram|

Filter options

Freguency: 5
Throughput time

avg_ [an2004
min_ [9020.0
max (9021.0
stler (0.2

Pattern 1

Pattern 2:
Frecuency: 25

|

|

|

|

|

-

ol

| Throughput time

| vy [a01164
e min__[an11.0
max__ [9012.0
Stdev 027417

Pattern 2

Pattern 3:

Frequency: 21

Pattern 3 Throughput time:

vg (005666667
min___[9010.0
maz [2967.0
stdev |208 81201 m

Pattern 4:
Pattern 4
Frequency; 20
Zoom: 100.0%

Throughput time:

o [100200
min___[10020.0
max [10020.0
stdev (0.0

'
|
|
|
|
|
|
|
|
|
|
|
|
; [;:‘ Pattern 5:
|
|

Pattern 5

Freguency: 20

44444444444444444444|44‘44444444

| Throughput time
~l|avg (430945 -

Fig. 9: Pattern diagram - Performance Sequence Diagram Analysis

Trace Clustering Figure 9 shows the frequent patterns in the event log as
sequence diagrams. In the context of process and data mining many clustering
algorithms are available. ProM supports various types of trace clustering. In Fig-
ure 10 the result of applying the K-means clustering algorithm with a particular
distance metric is shown, where six clusters are identified. These correspond to

39

the different usecases or datapaths. For each cluster, the corresponding process
model can be derived. Figure 10 shows two Petri nets. These nets have been
discovered by applying the alpha algorithm [7] to two of the cluster. These dia-
grams nicely show how the dependencies depicted in Figure 2 can be discovered.
For this particular setting of the clustering algorithm, the basic use-cases are
discovered. However, other types of clustering and distance metrics can be used
to provide insights into the different data-paths.

2 proM [5.0]
Fie Mining Analsis Conversion Exports Window Help

F s a4 =2D=0

5] Results - Aipha agorithm plugin on Cluster 1
4|

(] Analysis - Trace Clustering (3)

K-Means Clustering (Correlation Coefficient)

scanner
@ scanner
E
seanner

USBdown

USBdown USBdown
start = O — end

printP printP
. eod

B 18:30:13 [M] Process mining finshed

Fig. 10: Using Trace Clustering the Different Use Cases can be Identified and the Cor-
responding Detailed Process Models can be Discovered

Performance Analysis Figure 11 shows a detailed performance analysis of one
of the use-cases using the Performance Analysis with Petri net plug-in. The focus
of the plug-in is to provide key performance indicators, which can be summoned
in an intuitive way. For this, the event logs of the selected cluster are replayed in
the Petri net model of the use-case generated using the alpha algorithm. From
this simulation of a single use-case, performance indicators including average
throughput time, minimum and maximum values, and standard deviation for
the use-case throughput are derived. These provide a detailed insight into parts
of the system during the simulation experiment, in this case the six use-cases of
the system.

40

Additionally, the color of the places in the Petri net indicates where in the
process (datapath in this case) the jobs of this use-case spend most time. For
example, we can observe and verify, based on the prior system knowledge, that
since the PrintIP is the slowest component, jobs spend most time waiting in its
queue.

File Mining Analysis Conversion Exports Window Help

"mQk O@® === m

[Analysis - Performance Analysis with Petri net (18) © : 24 o'y |
Log Traces i

Case al® USBdown . .

Case 20 — — printlp .|| Process information:

- 7 awn own

CEEE ._‘-| start w}‘ Total number selected:

G printiP O printiP —.

= start end 26 cases

Case o

Case - Number fitting:

Case 26 cazes

Case = P2 P2 |- " ?

Case start end Arrival rate:

Case 0,14 cases per second

Case

Case 7 Throughput time i |

Case 7! avy 33,38

Case rmin 3,0

Case max 94,80

Case stdev 25,6

Case fast 25,00% _|8,86

Case 100 slow 2500... |70,0

Case 111 normal 50,0...|27,35

Case 112 =] Change Export

= [ﬂ> Percentages Time-Metrics

Update
Invert Selection cEEmE | | e i I»

Waiting time: SLALELLE
B High |
[Medium
. Low and:

Fig. 11: A Detailed Performance Analysis Is Performed For One of the Clusters Dis-
covered

Social Network Analysis Figure 12 shows the result of using Social Net-
work Analysis (SNA) on the event log. This plug-in is typically used to quantify
and analyze social interaction between people in business process environment.
However, by mapping the roles played by people to components in this con-
text, the analysis provides information about interaction statistics among the
components.

The analysis plug-in uses the SNA matrix generated by the social network
miner plug-in, which uses the data on causal dependency in hand over of work
among components, derived from the event log. As a result it is possible to show
the flow of work between the various components. The shape and size of the
nodes give a direct indication of the utilization of the component. The height
of the node is directly proportional to the amount of work flowing into the
component and the width to the amount flowing out. The arc weights are an

41

indicator of the amount of work flowing between the components. This provides
a quantification to analyze the interaction among the components.

=P
File Mining Analysis Conversion Exports Window Help
v =
F o\ o
BT T
M
v: [] Show role nodes Lot i GromClustars
[Show org unit nodes 0
[v] vertex size n Etlges remaved for clusters: 0.080

S sy gy | e
Vertex degrea ratio stretch IMH

Edge weight

—

UsBdown

2

printlP

Fig. 12: Social Network Analysis Applied to the Components of Océ’s System

3.3 Comparison and Discussion

Section 3.1 showed the classical simulation results obtained from monitors in
CPN Tools. Parameters such as waiting times of jobs and utilization rates help
in identifying the critical resources and to study the system performance and
behavior. The averages and standard deviations of such parameters are helpful
in analyzing the overall performance of the system over the entire simulation.
However, such classical simulation results typically do not present the dynamics
and detailed behavior of the system during the simulation.

On the other hand, Section 3.2 looks into some of the plug-ins available in
the process mining tool ProM and illustrates their application to event logs of a
CPN simulation. They provide the advantage to observe the dynamics and de-
tails of the system behavior and performance during the simulation experiment.

42

For instance, the fuzzy miner and the dotted chart plug-ins can show views of
utilization characteristics of components in the system from different perspec-
tives. Also, the performance sequence diagram analysis presents patterns and
their statistics (such as throughput times) helping in studying their occurrences
and impact on the system performance. Clustering techniques can be used to
group jobs and analyze each group individually. Hence, even though the clas-
sical simulation results provide an overall view of the system performance and
characteristics, ProM provides some added advantages in presenting the detailed
view of the simulation process with insights into the dynamics of the system’s
behavior and simulation.

Another important observation is that process mining tools ProM can be
used to observe and analyze real-world process and simulated processes. Cur-
rently, system analysts tend to use different tools for monitoring real systems
and simulated systems. This is odd, since often the ultimate goal is to compare
the real system with the simulated system. (Recall that simulation is used to
understand and improve real systems!)

4 Related Work

The use of CPN Tools as a simulation tool is described in [1]. In this paper, the
monitor concept is described in detail. The BRITNeY Suite animation tool [5)
extends the visualization and interaction functionality of CPN Tools. The anima-
tion tool can be connected to the running simulation engine and used to present
the simulated behavior in a domain specific and interactive manner. ProM is
described in [8]. The current release of ProM contains more than 230 plug-ins.
In the paper, we could only show a few and we refer to www.processmining.org
for details.

In [2] we modeled the basic components of Océ’s copiers using different
formalisms. In [9] the authors present the modeling of the features of a mo-
bile phone. The work also involves identification and analysis of the interaction
among features, helping in identifying faults in specification and improvement of
the architecture. In [10] the practical use of colored Petri nets is demonstrated by
an industrial case study involving a flowmeter instrument that consists of hard-
ware components performing estimation and calculation functions by interacting
with each other.

5 Conclusions and Future Work

In this paper, initial experiences with using colored Petri nets in Octopus project
have been presented. Petri nets allow for modeling all the details and dynamics
of the embedded system used in this case study. This permits providing practical
inputs and solutions to real-world problems. A slightly simplified version of a
currently existing Océ system was used as the case study. In the modeling process
the goal was to identify building blocks to allow re-use of components in the
model. Also modeling the dynamic behavior of the USB is a significant solution

43

to future problems such as modeling memory bus and processors. CPN Tools
and ProM prove to be effective tools in analyzing and studying the performance
of the system. They provided insights into identifying the bottleneck resources,
utilization of resources and system dynamics during execution of jobs. The pros
and cons of the classical presentation of simulation results and the application
of ProM in analyzing the results are also studied.

From the modeling perspective, the next steps are to model the complete
copier systems at Océ, as opposed to the slightly simplified case studied here.
Hence, it is essential to identify patterns and design re-usable building blocks
in the CPN model. This will allow flexibility in exploring different system ar-
chitectures and design decisions through the model. In addition, the analysis of
simulation results using CPN Tools and ProM will be used to further explore the
design space and build heuristic scheduling rules in the next steps of the project.
We feel that it is important to use the same tools to monitor and analyze the real
system and its simulated counterparts. This will allow for a better comparison
and a more detailed analysis as shown in this paper.

References

1. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
modeling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer (STTT)., Volume 9, Numbers 3-4, June 2007.

2. G. Igna, V. Kannan, Y. Yang, T. Basten, M. Geilen, F. Vandraager, M. Voorho-
eve, S. de Smet, and L. Somers. Formal Modeling and Scheduling of Data Paths of
Digital Document Printers. 6th International Conference FORMATS 2008, Pro-
ceesings, September 15-17 2008.

3. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1992.

4. W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business Process
Simulation: How to get it right? BPM-08-07, Eindhoven, BPMcenter.org, 25pp.

5. M. Westergaard, K.B. Lassen. The BRITNeY Suite Animation Tool. Proceedings of
the 27th International Conference on Application Theory of Petri Nets and Other
Models of Concurrency (ICATPN 2006), Lecture Notes in Computer Science 4024,
Springer, pages 431-440, 2006.

6. A.K. Alves de Medeiros, and C.W. Gilinther. Scheduling with timed automata.
Theor. Comput. Sci., 354(2):272-300, 2006.

7. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128-1142, 2004.

8. W.M.P. van der Aalst, B.F. van Dongen, C.W. Gnther, R.S. Mans, A.K. Alves
de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M.
Weijters. ProM 4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn
and A. Yakovlev, editors, Application and Theory of Petri Nets and Other Models of
Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484-494. Springer-Verlag, Berlin, 2007.

9. L. Lorenstsen, A.-P. Touvinene, J. Xu. Modelling Feature Interaction Patterns in
Nokia Mobile Phones using Coloured Petri Nets and Design/CPN. In K. Jensen

(ed.) Proceedings of the Third Workshop and Tutorial on Practical Use of Coloured
Petri Nets and CPN Tools, 2001.

10. L. Lorentsen. Modelling and Analysis of a Flowmeter System. Proceedings of
Workshop and Tutorial on Practical Use of Coloured Petri Nets and Design/CPN,

1999.

45

46

Application of Coloured Petri Net for Agent Control
and Communication in the ABAsim Architecture

Antonin Kavi¢ka! and Michal Zarnay?

! Faculty of Electrical Engineering and Informatics, University of Pardubice,
Nam. Cs.legii 565, CZ-532 10 Pardubice, The Czech Republic
Antonin.Kavicka@upce.cz

2 Faculty of Management Science anvd Informatics, University of Zilina,
Univerzitna 8215/1, SK-01026 Zilina, The Slovak Republic
Michal.Zarnay(@fri.uniza.sk

Abstract. Petri nets represent a convenient formalism for description of the
operational logic of internal agent components within agent-based architectures
of simulation models using message-oriented communication paradigm. The
approach supports higher flexibility of simulation models as well as formal
analysis related to relevant parts of the models. The ABAsim architecture (as an
example) already utilizes place/transition Petri nets for description of internal
components of agents. Presented modified approach pays attention to an
application of non-hierarchical coloured Petri nets (describing behavioural rules
of autonomous agents) instead of place/transition ones because of higher
modelling capabilities.

Keywords: Coloured Petri net, agent-based simulation, message-oriented
communication.

1 Introduction

During the last decade a significant progress was achieved in the area of micro-
simulation models reflecting transportation logistic systems [1, 2]. The models are
flexible, which means that they are namely: (i) composed of reusable components and
sub-models, (ii) configurable on a conceptual level and (iii) ready for changes of
granularity related to sub-models. A proprietary agent-based architecture (called
ABAsim Agent-Based Architecture of simulation models) has been developed and it
has been successfully applied within many simulation studies reflecting transportation
and logistic systems (an example is represented in [4]). The architecture utilizes
simulation model decomposition into individual agents (concentrated on distinct
tasks), which are organized within hierarchical structure and communicate by means
of sending messages. Each agent is composed of internal components (potentially
using internal communication), whereas their logic can be described either

47

imperatively (with the help of programme routines) or declaratively (e.g. applying
formalism of Petri nets) — the respective specification is activated by means of system
interpreter during the run of simulation programme.

Up to now, the ABAsim architecture has utilized a subclass of place/transition
Petri net (P/T PN), called ABA-graph [3] for description of control agent components
denoted as managers. Presently is the attention paid to an application of a subclass of
coloured Petri net, named ABA-CPN, which brings more flexible approach in defining
the component descriptions. It includes, for example, easier and more natural
construction of conditional branching and differentiation of various message
instances.

The paper is organised as follows: sections two and three shortly describe
background of the paper: autonomous agents and ABAsim architecture. Section four
explains the ABA-CPN definition in detail, section five provides illustratory example
for it and section six discusses conventions for notation of elements in the ABA-CPN
followed by conclusion of the paper.

Since it has been too challenging to combine all goals in one example, while
keeping its size in reasonable limits, there are two examples. The first accompanies
explanations of the definition — it includes all properties from definition, it uses only
symbolic names and it has no connection to examples from real world. The second
example is built on a simple real case from an ABAsim simulation model of service
system, including meaningful labels — it illustrates usage of notation conventions.

2 Paradigm of autonomous agents

Let us remind the generally-respected agent definition [7]: Agent is an encapsulated
computer system situated in some environment and capable of flexible, autonomous
action in that environment in order to meet its design objectives, where the agent
features are as follows:

e Autonomy — i.e. the agent is able to work autonomously without exogenous
interventions, entirely able to control its activities and inner status.

e Social behaviour — is based on the agent’s interaction with other agents (or with
human beings) by means of some communication mechanism or language.

o Re-activeness — the agent responds to external influences from its surrounding.

¢ Pro-activeness — the agent acts with initiative and goal-orientation.

The agent realizes, according to its mission, its own life-cycle: sensing — decision
making — acting (within its life space) using the support of solving (focused on
making solution proposals) and communicating with other agents (eventually with
human operators). If the agent detects a problem or a situation beyond its delegated
competence, it informs other agents about the need for a corresponding solution.

48

3 Brief summary of the ABAsim architecture

The agent-based architecture of simulation models of ABAsim was mainly developed
for simulation of queuing, transportation and logistic systems. Those systems can be
considered (from the viewpoint of order processing) strictly hierarchical. The order
(the customer) entering the system initiates a recursive sequence of suborders,
according to the rules of competence redistribution.

The entities (orders/customers and resources) within the frame of the ABAsim
architecture are divided into specialized classes with defined behavioural rules. This
means that the responsibility for the behaviour of these entities is taken over by their
superior subjects (agents). It is necessary in most cases to transfer service resources to
the customer (or vice versa), in order to realize the service activity, i.e. frequent and
complex transposition processes are typical within such systems.

Agent

Solvers
A\ —
G

Effectors yolvmg support

N <
R Communication
A ctuation

N

ﬂerception

A [/ N\
I

Sensors

Human
operator

Fig. 1. Agent’s decomposition

3.1 Agent components

Each agent can be decomposed into the following groups of internal components

(presented on fig. 1):

a) The first, control and decision making component (called the manager) is
responsible for making decisions and for inter-agent communication. In addition,
the manager represents the central agent component because it initiates the work
of other internal components and can also communicate with all of them.

b) The group of sensors is specialized for mining information from the system’s
state space. This group is composed of two kinds of components - the query

49

delivers the required forms of information instantly, and the monitor scans the
state space in some time intervals and continuously brings important information
to the manager.

¢) The next group, called solvers, provides solutions for problems to the manager,
which can accept them or ask for alternative ones. The advisor represents a
passive component, which is able to react only to the manager’s requests for
delivery of proposals for problem-solving. A typical advisor can be represented
e.g. by an optimization algorithm, an artificial neural network, a fuzzy regulator
or a human operator. On the other hand, the scheduler (focused on a restricted
scope of problems) works continuously for the manager, on the basis of either a
priori rosters or schedules, which have been created (e.g. related to the allocation
of resources), or by making its own dynamic forecast for a defined time interval.

d) The last component group includes effectors (actuators), which make changes to
system status after receiving corresponding instructions from the manager. No
other agent components are allowed to make these changes. An action-
component makes instant state changes (e.g. switch traffic lights, close a train’s
doors), while a process-component (e.g. a crane’s movement) makes them
continuously until its task is finished.

The effectors, sensors, and solvers are, for brevity, given the umbrella term of

manager’s assistants, and can be further distinguished as:

e Continual assistants, the activities of which fill up some interval in the simulation
time (processes, monitors, and schedulers).

e Instant assistants, which are active only in discrete instants of simulation time
(actions, queries and advisors).

The question arises, how to realize the internal agent components appropriately -

they can be described alternatively either

e using imperative approach (implementation of program routines constructed in a
given source code), or

¢ by means of declarative forms (connected with some kind of symbolic formalism),
which are reflected by structured input data and read by a corresponding
interpreter; e.g. Petri nets represent effective formalisms appropriate for describing
agent internal components.

3.2 Community of agents and its structure

Simulation models for simple real systems could be composed of only one agent;
however, the simulation of complex service systems is obviously connected with a
multi-agent approach using the agents within some organizational structure. Let us
remark that the philosophy of the ABAsim architecture was also partly inspired by the
paradigm of reactive agents, which is based on a society of reactive rather than
proactive agents. The intelligence of such society emerges when one observes the
whole community and not its separate members (individually of relatively low
intelligence).

50

To summarize the philosophy of the ABAsim operation: The control role is played
by mutually communicating managers (supported by sensors and solvers), which
initiate the activities of effectors at the correct time instants and under particular
conditions.

3.3 Communication mechanism

One way to realize inter-agent communication is to use standard communication
languages (e.g. KQML or FIPA-ACL). Another approach is to implement a
customized communication mechanism able to reflect, in the best way, the features of
the respective architecture.

Communication within the ABAsim architecture is based on a simple, original
mechanism applied to inter-agent and also intra-agent communications. As was
already mentioned, inter-agent communication is made by manager components, and
intra-agent communications are realized between the managers and their assistants.
Both kinds of the ABAsim-communications utilize exclusively the paradigm of
sending messages (from this viewpoint, the ABAsim represents message-oriented
architecture).

The following description characterizes selected kinds of messages used within the
ABAsim architecture in a simple way. Notice—messages contain some information for
the addressee without expecting any answer, Request-messages carry specific
demands, which are expected to be satisfied or supplied by means of corresponding
Response—messages. Continual assistants are initiated by Start-messages (sent by
superior managers), whereas Finish-messages (sent by continual assistants) delivered
to corresponding managers, indicate completion of an activity related to relevant
continual assistant. In addition, managers exploit Execute—messages in order to obtain
promptly required results from their inferior instant assistants. Finally, Hold-
messages exclusively mediate the augmentation of simulation time. They involve so-
called time stamps, which define duration of their deliveries (equal or greater than the
current simulation time). The attributes sender and addressee contain the same values
— i.e. the continual assistants send those messages to themselves with some time
delay. Thus, after sending Hold—message, the continual assistant remains idle and
resumes its activity after the message returns. We have to emphasize that the
augmentation of the simulation time is realized exclusively by continual assistants,
i.e. synchronization of simulation time is based on synchronization of these
components.

3.4 ABAsim versus other agent-based architectures

Seeing that general paradigm of autonomous agents influenced the design and
development of the ABAsim architecture, it is only natural that the architecture shares
some common principles with other agent-based simulation architectures that were
inspired by the same paradigm.

Among many, it can be mentioned for example Cougaar architecture [8] (with
similar hierarchical organization of agent communities or agent decomposition to

51

simpler executive units) or architecture HIDES [9], which shares the same view on
importance of hierarchical structure of agents reflecting modelled system and
supports forming of agent communities responsible for specific tasks. Since its
beginning, ABAsim architecture has been oriented to creation of simulation models of
complex large-scale service systems, mainly transportation systems, with emphasis on
flexibility for simulation model designers, programmers as well as for end-users of
simulation models. Since comparison of the ABAsim architecture with outlined or
other simulation architectures and detailed explanation of benefits that it introduces is
out of scope of this paper, we recommend the reader to pay attention to the following
papers [10,11,12].

4 Specification of ABA-CPN

Coloured Petri net (CPN) describing the logic of an agent component can be defined
within an environment of a specific software tool, where an analysis of the net is
supposed to be carried out. Analysed nets are consequently made available (via
respective data files) to a simulation engine of the ABAsim architecture. A relevant
interpreter maintains then the evolution of the nets during simulation.

For the needs of simulation models based on the ABAsim architecture, modelling
capabilities of the non-hierarchical coloured Petri net can be restricted. This results in
a specific subclass of coloured Petri net, called ABA-CPN, partially inspired by the
mentioned ABA-graph.

The following definition builds upon CPN definitions from [5]. Since it is quite
complex, we divide it into four parts that are interleaved with comments and
illustrations on a small example depicted on the figure 2 and built just for that

purpose.

Definition 1:

ABA-CPN represents a subclass of CPN = (2, P, T, A, N, C, G, E, I) that satisfies the

following:

1) is a finite set of non-empty types, called colour sets.

(i1) The finite set of places P = {pin} U {pout} W Ps, where pi, is called input
place, pou output place and Ps is composed of internal places and the three
sets are mutually disjoint.

(iii) The finite set of transitions T = TpUTaUTsUTg, T # &, where elements of
Tp are denoted as decision transitions, elements of T, as assistant
transitions, elements of Ts as sending transitions and elements of Tg as
standard transitions, the four sets are all mutually disjointand TN P = &.

(iv) Ais a finite set of arcs such that PN A=T N A=.

W) N is a node function defined from A into (PxT) U (TxP).

(vi) C is a colour function defined from P into 2.

(i1) The set of places is divided to subsets in order to distinguish specific kinds of
places. A token in the input place pj, corresponds to an input message and a token in
the output place poyt corresponds to an output message associated with a relevant

52

agent component. In the illustration net on the figure 2, the input place pj, = p;, the
output place pPoyt = Pg and there are seven intern. places: Ps = {p2, Ps, P4, Ps, Pe, P7, Ps} -

if res=Res_CplusD
then 17 res
else empty

Result

if res=Res_E
then 17res
else empty

if inp=IM_A
then 17inp
else empty

if inp=IM_B
then 17inp
else empty

Generic

Fig. 2. Tllustration net related to definition of ABA-CPN

(iii) The set of transitions is divided to four subsets in order to distinguish various
actions in the ABA-CPN application. Decision transitions (involved in Tp) represent
points of variant conditional branching (transitions d; and d, within the illustration
net), assistant transitions (folded in Ta) reflect actions of corresponding instant
assistants (a3, &), sending transitions (elements of Tg) reflect sending messages to
other model components (S;, Sy, S3), while only standard transitions (contained in Tg)
have no specific meaning in the ABA-CPN application (ty).

(1) + (vi) In the illustration net, there are four colour sets, i.e. 2= {InMSG, Result,
Generic, OutMSG}. Examples of colour function are: C(p;) = INMSG and C(pg) =
Result. The INMSG colour set consists of two values IM_A and IM_B, the OutMSG
colour set can have four different values: OM_C, OM_D, OM_E and OM_F. Colour
set Result contains two values Res_CplusD and Res_E, and finally colour set Generic
has a single value e.

Definition 1 cont’d:
(vii) E is an arc expression function defined from A into arc expressions
(specified in [5]).
(viii) For arcs, there are the following specifications:
a) There is no such pair of arcs a,, a,, a; # & with p(a;) = p(a;) A
t(a)) =t(ay) A ((N(a;) € TxP A N(ay) € PxT), where p(a) is the place
and t(a) is the transition of N(a),
b) Every arc a € A belongs to one of the following categories:
e Ift(a) e Tp A N(@) € TxP, a is called decision arc and its arc
expression E(a) contains a condition expression for variant branching,

53

e Forallt(a) ¢ Tpandallt(a) € Tp : N(a) € PxT, a is one of the
following: constant arc, if E(a) is composed of a single constant only,
or elementary variable arc, if E(a) consists of one variable only.

In the section (viii), the former specification states that self-loops are not
admissible, so ABA-CPN represents a pure net. The latter specification introduces
allowable arc expressions that divide arcs into categories. Arc expressions of all arcs
going out of decision transitions (named decision arcs) have a condition expression.
In the illustration net, it is the case of arcs (dy, pP2), (d1, P3), (d2, ps) and (dy, pe). Arc
expressions of arcs starting from any other transition can contain only one constant
(constant arcs) or one variable (elementary variable arcs). In the illustration net, (py,
dl)’ (p25 a1)7 (als p4)a (p47 dZ)’ (p5’ Sl)’ (p65 SZ): (p35 tl)’ (tla p7)7 (p7’ 53)’ (tla p8)7 (Ps, az)

are elementary variable arcs. Remaining arcs are classified as constant arcs.

Definition 1 cont’d:
(ix) G is a guard function defined from T into guard expressions (specif. in [5]).
x) Elements from the sets P and T have the following additional properties
(related to use of the formalism):
a) (VteT:~3dae A:N@) =, pin) A(F1a e A:N@) =(Pin, 1), t € T),
b) GaeA:N@ =1 pouw),te T)A(VteT:—Fa e A: N@) = (Pous, 1)),
c) VpePs:(FaeceA:N@=(p),teT)rFiacA:N@=(@{p,t),teT),
d) VteTg:tdae A:N@=(p,t),p P,
e) Vte T\Tg:djace A:N@)=(p,t),peP,
) VteTpuTs:Jae A:N@=(t,p),peP,
g) 31t e Tp: 3;a € A: N(@) = (pin, t), where t is denoted as input transition,
hyteT:(3aeA:N@)=(powr) V(—3aec A:N@)=(t,p),p € P)is
called output transition,
i) teT:(—3aeA:N@) =P t) A(—3Fae A:N@) = (1, Pout)) A
(3a e A:N(@)=(t, p), p € P) is named as internal transition,
) VteT:G()=4.

In the section (x), properties a), b) and c) deal with places: the input place has no
incoming and only one outgoing arc (place pl in the illustration net); the output place
can have only incoming arcs (place pg) and all the other places have at least one
incoming and just one outgoing arc.

Properties d) to j) deal with transitions. All transitions have at least one input arc.
Decision, assistant and sending transitions have just one incoming arc, standard
transitions may have more incoming arcs. As for outgoing arcs, they must be present
by decision and standard transitions (case of transitions dj, dy, S;, S; and Sz in the
illustration net), while not necessarily by the other transition types (e.g. transition a,
has no outgoing arc). Input transition is just one and it is the one that follows the
input place (transition d; after input place p;). Output transitions are those having at
least one outgoing arc to output place or not having any outgoing arc (transitions Sy,
Sy, S3 and @,). All the other transitions are named internal (transitions d,, a; and t;). No
transition disposes of a guard.

Definition 1 cont’d:

(x1) Petri net built from all elements of P, T, and A represents an acyclic net
structure.

(xii) | is an initialization function defined from P into closed expressions
(specified in [5]).

(xiii) The set of admissible initial markings My < I(P) is defined as follows:
Mo = {IMo|j=1.2, ..., |C(Pin)|}, where "M, denotes j-th initial marking in the
set, for which holds: V p €P: [Mo(p)| = 1, if p = pin, and [Mq(p)| = 0,
if p # pin, and for i # j, 'Mo(p) #’Mo(p) .

(xiii) The tokens of different colours in ABA-CPN reflect differently filled
message forms, which are in the ABAsim architecture utilised for communication
purposes. An admissible initial marking of ABA-CPN allows an occurrence of just
one token in the whole net which is located in the input place pin; all other places
dispose of no tokens. This represents a state, where an input message waits in the
input place to be processed and there are no other messages being processed. Since
the ABA-CPN is constructed to process all relevant input messages for the given
manager separately and the input messages are represented by tokens from the colour
set of the input place C(pin), the set of admissible initial markings Mg contains as
many markings as is the number of input messages, i.e. |C(pin)|, and 'My denotes the j-
th initial marking from the set. In the illustration net on the fig. 2, an admissible initial
marking is displayed: the input place p; contains one token of colour IM_A, while all
other places are empty. This represents a situation of input message IM_A coming to
the agent to be processed.

5 Example of ABA-CPN

Let us illustrate application of ABA-CPN to a description of manager component
involved within an agent named Resource controller. The agent represents a part of a
model (based on the ABAsim architecture) reflecting simple service system (fig. 3).

The system’s customers, coming into the system from its surroundings, are
supposed to be consecutively involved in two kinds of serving activities and after
their finishing they leave the system. While the first kind of services is carried out
(within the process Service A) with the help of an immovable service resource (i.e. the
customer has to come up to its place), the second one is made by a mobile resource
(exploiting the process Service B), which is able to move (using the process Resource
transfer) directly to the customer’s spot.

A simulator of the mentioned system is composed of three agents: the
Surroundings agent, the Service controller agent and the Resource controller agent.
The first one is responsible for a connection between the system and its surroundings
(deals with arrivals and departures of individual customers), the second one organizes
all concurrently running service activities and finally the third one is competent to
assign/release service resources and to make disposals for their transpositions. Such
designed simulator can be specified in the form of the ABAsim model, the simplified
form of which (excluding instant assistants for the sake of simplification) is depicted

55

on fig. 3. The mentioned picture shows all essential model components and their
communication links.

Response : Resource delivered

) | - ‘ /\‘

lotice : Customer has just arrived . / ~N
Request : Deliver resource

adr

(" Notice : Customer leaves A
Notice : Resource returned

~_

Customer transfer

MANAGER

MANAGER

agent
Service controller

Finished

~__ 7)
agent agent
Surroundings Resource controller

Fig. 3. Simplified ABAsim model (with commun. links) of the elementary service system

The ABA-CPN of the manager component (encapsulated within the Resource
controller agent) is shown on the fig. 4. It disposes of the following characteristics
(according to the ABA-CPN definition):

e Setof places P = {p; | i =1,...,16}, where: Pin = P1, Pout = P1s> Ps = {pi| | =2,..., 15}.
e Set of transitions T = Tp UTpo UTsUTg, where Tp = {d; | i =1,..., 4}, Ta= {ai | i
=1,..., 8} (elements of T, are commented in the table 1), Ts = {s;|i=1,2} and Tg =

{t1}; the input transition is represented by d; and output transitions by Sy, S, , a4, @s.

Table 1. Characteristics of assistant transitions involved in ABA-CPN presented within fig. 4

Transition | reflects component Transition | reflects component
a instant assistant - advisor a instant assistant - action
1 Selection from avail. resources 5 Resource assign. to applicant
a instant assistant - action a instant assistant - action
2 Resource release 6 Dequeue applicant
. . instant assistant - que
Instant assistant - query dquery
a3 ay Resource transfer to
Queue for released resource? .
applicant?
a instant assistant - action a instant assistant - action
4 8

Enqueue applicant Update transfer statistics

56

e The set of admissible initial markings My = {1Mo M, ,3I\/I0} represents three
different input messages that can reach the manager component of the
Resource_controller agent and is defined as follows:

"Mo(p;) = {REQ_Deliver_resource} and ‘Mo(p) =, j=2, ... ,16;
2Mo(py) = {NTC_Resource_returned } and *Mo(pj) =&, j=2, ... ,16;
*Mo(py) = {FIN_Transfer} and *My(p) =@, j=2, ... ,16.

Occurrence graph of the illustrative ABA-CPN for the initial marking "Mo(p,) is
presented on fig. 5 (using the CPN Tools software). It shows that processing of
input message REQ_Deliver_resource can be ceased in three terminal states: either
produce one output message (state space nodes 13 and 14) or no output message
(node 7). The output message can be one of these two: START_Transfer (node 14)
or RESP_Resource_delivered (node 13).

6 Conventions for the notation of ABA-CPN

In order to carry out unambiguous transformation of the ABA-CPN into relevant data
structures of simulation model program and to enable its correct evolution using a
specialized interpreter, there are certain conventions for the notation of the ABA-CPN
elements. ABA-CPN is constructed within the environment of the CPN Tools
software (developed at the University of Aarhus, Denmark [6]). Notation conventions
are as follows (see an example on fig. 4):

a) places are denoted as p; for i =1..n, where n=|P|; p; denotes input place and p,
corresponds to output place of the net,

b) decision transitions are denoted as d; for i=1..m, m =[Tp|, (as d; we denote input
transition), standard transitions are denoted as t; for i=1..k, k=|Tg|, assistant
transitions dispose of description a; for i=1..l, I=|T,| and sending transitions are
associated with notation s; for i=1..r, r=|Tg|,

¢) descriptions of constant arcs or elementary variable arcs use declared constants,
elements of colour sets and variables, each arc with one symbol only,

d) decision arcs typically dispose of an expression in the form ’if var = const then
casel else case2‘, where var or const represent relevant variable or constant,
casel or case? reflect elementary notations composed of one variable or one
constant or the key word empty.

Conventions for denoting variables and constants in arc expressions follow the
goal that the designer should be able to control reactions to relevant “content” of a
token (in this case content of a relevant message form). In addition, using the
conventions enables to manage “movements” of token instances within the net.

For purpose of the following explanation, let us consider s as a string, whereas i-th
character of the string is denoted as s'.

Proposal of conventions related to denoting variables and constants in arc
expressions of arcs adjacent with a transitiont € T, is as follows:

57

273nsay

sansneIs Aydwse ssjp .
Jaysuely 29X T usyl ¢924nosal ases|al
s1epdn N - Ui peses|al 10y ERILTEEN]
1 1) snanb~Aydwe UoN=29X JI anend Ardws asfe
- SX T usyy
" 2 nsay PBUIN}B. 824N0S8Y DLN=GX JI
A _
g nsay
——— 13 ¢ —— @A _M
J8ysueII ON "X J94sUBIITON X Aydws ss|p _!
Jaysuedy ON” X T uayj
jueo|dde Jajsuell NI4=6X JI
Aydws sspp ananbeq
— gox T usuy
a ansed 13J5URI} ON=Q9X JI _ _
q-ynsay e jnssy eT3nsey

Aydws esjp
qox T usy}
12JSUBIL=(OX JI

JajsuellT VIS X qox

qTansey

éiueo|dde juswubisse Adws ssje
03 Jaysued] 20Inosey eox T sty
|IBABT921N0S8Y=B0X JI

o~
o

Adws ss|p
eOX T Uay3
824N0S84” ON=B9X JI

e9X

juedidde eTynsay
ananbu3z

Aydwse ssjp
SX T usy}
92IN0SB.IRAIRA” DIY=GX JI

e 3nsay
e
eoX Bgx =%
$824N0S8. OSWUI
a|qe|ieAR WOy
uonoales

gx

OShUI

Fig. 4. Coloured Petri net reflecting a manager related to Resource controller agent

58

Adwa T £1d,NdD
Adws 1T T1d,NdD
Adws <1 pTdNdD
Mdwae 11 51d,NdD
paIBMIBP 324N0s3Y dS3Y T 1T 9TANGD
Adwe i1 z1d,NdD
Adwa 11 o1d.NdD
Aydwa i1 gd,NdD
Aydwa 11 9d,NdD
Aydwia 11 gd,NdD
Aydwa i1 gd,NdD
Aydwa i1 gd,NdD
Aydwa i1 $d,NdD
Aydwa 11 1d,NdD
Aydwa i1 £d,NdD
Aydwa i1 zd,NdD

T

Aydws 17 £1dNdD
Adwa 1T TTd,NdD
Aydwa i1 pTd.NdD
Aydwa i1 STd.NdD
JaysuRILTLMYLS T T 91dNdD
Aydwa i1 z1d.NdD
Aydwa 11 0Td.NdD
Aydws 1 2dNdD
Aydwa 11 9d,NdD
Aydws 11 gd.NdD
Aydwa 11 gd,NdD
Aydws 1 sd.NdD
Aydwa 1 pd,NdD
Aydws 11 1d.NdD
Aydwa 1T £d.NdD
Aydws 11 zd.NdD
Ba

Aydwa 1T £1dNdD fAdws 11 £1d,NdD
Adwa T TTdNdD Adwa i1 TTdNdD
JajsuRdl T:T $T0NdD Adwa T $1d,NdD
Aydws i1 STdNdD fydwa 1T §Td,NdD
Adwa 1T 91d,NdD Adwa 11 oTdNdD
Jaysues) T i1 ZTO,NdD
Adwa i1 oTdNdD
Aydwe 1T £dNdD
Aydws 1T 9dNdD
Aydwa :T 6d,NdD
Adwa 11 gdNdD
Aydwe 1T gdNdD
Aydws 1T $d,NdD
Aydwe 1T TdNdD
Aydwa i1 £dNdD
Aydwe T zdNdD

Aduwie T ZTdNDD
Adwsa 1T 0TdNdD
Adwa 11 £dNdD
Adwz i1 9d,NdD
Adwss 1T 6d,NdD
Aydwss 11 gdNdD
Adwe i1 5d,NdD
Aydwa 11 pdNdD
Aydwe 1T Td,NdD
Aydwss i1 £dNdD
Aydwe i1 zd,NdD

4

Aydwa 1T £1d.NdD
T1d.NdD
Aydwa 1T $1d.NdD
J3SURIYTON T 1T STA.NAD
Aydws 11 91d.NdD

Aydw Z1d.Nd4D

Azdw 0Td.NdD

Aydwa i1 zdNdD

A 11 9d,NdD

Adwa 11 gdNdD

Aydwa i1 gdNdD

Aydwa i1 gdNdD

Az 1T $d.NdD

Aydwa i1 1dNdD

Aydwia 1T £dNdD

Aydws 11 2d.NdD

Tt

0T 11 T ot T I
HA a. ‘ ‘ s £

01 T:1 T 4 T 1
+1 T ot 8 9 ¥

Aydwa 11 £1d,NdD
Adws 1 TTd,NdD
Aydwa 1 $1d,NdD
Aydws i1 sTdNDD
Aydwae 1 91d,NdD
Aydwa i1 Z1d,NdD
lleARTBIN0SY T i1 0Td.NdD
Adwa 11 2dNdD
Aydwa 11 9d.NdD
Adwa 11 60,NdD
Ayduwa 11 gd.NdD
Ayduwe 11 gd,NdD
Aydws 11 pd.NdD
Aydwsa : 1 1d,NdD
Aydwa 11 £d.NdD
Ayduwa 11 2d,NdD

01

Aydws T £1d,NdD |

Aydwa :T T1d,NdD
Aydwa 11 p1d,NdD
Aydwe 1T 5Td,NdD
Aydwa 11 91d,NdD
JaJsuRSYON T :T ZTdNdD
Aydws 11 0Td,NdD
Adwa 1T 2dNdD
Aydws 11 9d NdD
Adwsa 1 gd.NdD
Adws 11 gd,NdD
Aydws i1 5d,NdD
Adwa 1T pd NdD
Aydws 11 1d NdD
Adwa 1T £d,NdD
Aydwsa i1 zd,NdD
6

‘8

Aydwe

[Adwa 11 £1d,NdD

Aydwa 11 TTd,NdD
Adws 1T $Td,NdD
Aydwa 11 5Td,NdD
Adwa 11 91d,NdD
Aydwa 11 Z1d,NdD
Adwa 11 pTd,NdD

Adwa
Aydwa
Aydwa
Adwa
Adwa
Adwa
Adwa
Adwa
Adwa

Aydwa 1T £1d,NdD
Aydwsa i1 T1d,NdD
Adwa T $1d,NdD
T 5Td.NdD
Aydwa 1T g1d,NdD

Aydws 1T Z1d,NdD

Aydws 1T 01d.NdD

eae @nosay T 1T £d,NdD
Aydwa 11 9d NdD

Adwa 1 T 6d,NdD

Adwa T gd.NdD

Adwa : 1 gd,NdD

Aydwa 11 pd NdD

Aydwa 11 1d,NdD

Adwa T £d,NdD

Aydwsa i1 zd NdD

‘9

T 2dNdD
T gd,NdD
T ed.NdD
1T gd,NdD
1T sdNdD
T pdNdD
1T Td,NdD
T £d,NdD
11 zd,NdD

L

1
Z

Aydwa i1 £TdNdD
Aydws i1 TTd,NdD
Aydwa i1 $1dNdD
Aydwa 11 5T N4D
Aydwa 17 9TdNdD
Adwa i1 z1d,NdD
Adws 11 01d.NdD
Adwa T £d,NgD

@adnosad oN T T ad NdD

Adwa 1 5d,NgD
Adwa 1 gd,NdD
Aydwa 1 gd,NgD
Aydws 1T pd NdD
Adwa 1T 1d,NdD
Adwa 1T £d,NdD
Aydwa 1 zd.NGD

1

Adwa 11 £1d.NdD |

Adwe i1 T1d,NdD
Adwa 1T +1d,NdD
Adwae 11 gTdNdD
Adwa 11 91d,NdD
Aydwa i1 ZTdNdD
Aydwa 11 01d,NdD
Aydwa 1T 2dNdD
Adwa 1T 9d NdD
Aydwa T gdNdD
Aydwa 1T gd,NdD
Aydws 1T §dNgD
B04N0SAS ON, T I T #d,NdD
Aydwa 1T 1d.NdD
Aydwa 1T £dNdD
Adwa 1T zdNdD
33

Aydwe 11 £1d.NdD
Aydwa T TTdNdD
Aydwa i1 $TdNdD
Aydwa 17 sTdNdD
Aydwa 11 91d.NdD
Aydwa 11 Z1dNdD
Aydwe 11 oTd.NdD
Aydws 1T 2dNdD
Aydwss 1T 9d.NdD
Aydwa 1T sd,NdD
Aydws 1T gd.NdD
Aydwsa 11 5d,NdD
Aydwa 1T $dNdD

anunosal JaAlag O3Y T T Td.NdD

10
1

Aydwea i1 £1dNdD
Aydwa 1T T1dNdD
Aydwa i1 +1dNdD
Aydwa 11 51d NdD
Aydwa 11 91d NdD
Aydwa 1T z1d NdD
Aydwa 1T o1dNdD

Aydws
Aydwa
Aydws
Aydwa
Ayduwsz
IBAE B2INOSEY T
Ayduwsz
Aydwa
Aydwa

T 2dNdD
T 9dNdD
1 6d.NdD
1 8dNdD
1 sdNdD
T #dNdD
1 1dNdD
T EdNdD

(T ZdNdD | ewunosaduBARQ 03Y . T (T ZAINdD

b

Aydwa 1T £dNdD
Aydwa 1T zd,NdD
i

Adwa T £1dNdD
Aydwa :T TTd.NdD
Aydwa T p1dNgD
Aydwa 11 sTdNdD
Adwa 1 91d,NdD
Adwa 11 Z1dND
Adwa :T 0Td.NdD
Aydwa 1 £dNdD
Aydws 1 9dNdD
Aydwa 1 sdNdD
Aydwa 1T gdNdD
Aydwa 1 sdNdD
Aydwa T $dNdD
Aydws 1 TdNdD
Adwa 11 £dNdD

Z

2,...,14

, 1

o

sMO(pi)

1ver_resource

 Del

REQ

Fig. 5. Occurrence graph for My (p;)

a) For firing transition t € T, it holds that token instance removed from the place p

1 copy) to a

1ca

tly placed (itself or its ident

is consequen
(t, g), a € A under follow

N@)=(p,t),ac Ai

e P

1tions

&

ing con

N(@) =

placeq e P

59

b)

¢)
d)

e)

e Token instance from the place p is removed by means of a constant or a
variable (let’s call it input for the sake of this explanation) contained within
expression of the arc (p, t).

e Positioning token instance to the place g is mediated by a constant or a
variable (let’s call it output) encapsulated within expression of the arc (t, g).

e For the mentioned identifiers of constants or variables, it holds: input® =
output?, i.e. the first character of both identifiers is the same.

The presented convention enables to affect the concrete “path” of a token

instance within the net. It means in fact that designer of a corresponding net

(included within the frame of a simulation model based on the ABAsim

architecture) can determine a particular passing of a message instance (carrying

specific data) through the net. Such a feature extends behavioural rules of
classical coloured Petri nets: instead of disappearing of “old” and appearing of

“new” tokens during firing of transitions the tokens representing messages can be

understood as preserved.

The second character within string identifier (if it has more than one character) of

a variable (not a constant) involved in a relevant arc expression is utilized for

determining of data that is contained within j-th item of a given token c. Firing of

decision transition t € Tp, follows the next stages:

e Token instance C from the place p € P: N(a) = (p, t), a € A is removed by
means of a variable (with string identifier input) contained within expression
of (p, 1).

e The second character of the input string is identified as j = int(input?), where
function int transforms character input? € M (set of characters ’1°,...,’9") to a

corresponding result from interval of integers (1, ... , 9).
e The corresponding data content of the j-th item of c-token is obtained — let us
denote it as val® — it is consequently elaborated within expressions of

decision arcs, which go out of decision transition t.
In case that the second character of the string identifier s° is equal to ‘0, it
indicates that all data items associated with an instance of relevant token in the
simulation program are during the operation represented by the adjacent
transition reset to initialisation values.
Places are denoted as p; for i =1..n, where n=|P|; p; denotes input place and p,
corresponds to output place of the net.
The third character within the string identifier s* of variables is utilized only in
the cases that there is more than one identifier in one net with the first two
characters being the same, while they are related to tokens of different colours.
Naming convention for constant identifiers for their second and every additional
character differs from variable identifiers. There is no further rule for that, which
means that constant identifiers follow only the convention in the point a).

Let us demonstrate proposed conventions (using the ABA-CPN from fig. 4) for

construction of identifiers related to constants and variables on the cases of two
transitions.

For the input decision transition d;, it holds that arc expressions associated with all
adjacent arcs dispose of identifiers related to constants and variables, the first

60

characters of which are equal to ‘X’ (‘X5°,°X_No_transfer). It means that the
message represented by a token instance removed from the place p; is
consequently bound to a new token positioned to a relevant place . The second
character of the variable identifier associated with elementary variable arc (pi,d;)
is equal to ‘5, i.e. interpreter of ABA-CPN decides about variant branching
according to the current content of the 5-th data item of the message encapsulated
by a token c that is being currently removed from the place p;. For example, in the
case of val > = REQ_Deliver_resource the message is bound to a new token that
is placed to p,.

e On the other hand, situation on the transition t; is different: firing it does not use
only the message instance in the token removed from p;; (subsequently placed to
pis), but creates another (new) instance as a copy of it and puts it to py3. This
behaviour is based on the fact that the first character of the constant identifier
‘x_No_transfer¢ (associated with arc (pys, t1)) is not equal to the first character of
the variable identifier ‘y* linked to arc (t;, Pi3).

7 Conclusions

In this paper, we described the ABA-CPN, subclass of coloured Petri nets, used for
formalization of control and communication of agents within the ABAsim
architecture. The ABA-CPN is structurally bounded, not reversible and not live Petri
net from definition, since it is acyclic (point (xi) of Def. 1) and there is no source
transition allowed (points (x) d) and e) of Def. 1).

State space of the ABA-CPN usually contains at least one dead marking, which can
be of two types. The first type is caused by existence of output place poy, with no
outgoing arc (point (x) b) of Def. 1). In this type of dead marking, only the place pout
contains one or more tokens and all the other places are empty. The second type is
caused by existence of standard transition t € Tg or assistant transition t € T, with no
outgoing arcs, what may lead potentially to a dead marking with no tokens in the net.
All dead markings represent admissible end states of processing of initial message
(initial marking Mg) in the ABA-CPN. The former type of dead marking symbolises
sending of message (result of processing) from current agent to another agent, the
latter type stands for consumption of the message form and no need of further
communication.

As for liveness of individual transitions, the only transition occurring in all
sequences is the input transition t € Tp. If the net is designed correctly, it contains no
transition that would be dead in all occurrence sequences for all admissible initial
markings. Analysis of the liveness property is the principal benefit from use of the
ABA-CPN. It is used for checking of correct construction of a concrete ABA-CPN. If
the occurrence graph contains dead markings related to non-admissible states, it
indicates a mistake in structure of the constructed net.

Current development concentrated on descriptions of agent components within the
ABAsim architecture of simulation models prefers utilizing a specific subclass of
coloured Petri net (ABA-CPN) to a subclass of P/T Petri net due to higher modelling
capabilities of CPN. For example, construction of conditional branching and

61

differentiation of various instances of messages is more natural and feasible using
formalism of CPN than formalism of P/T PN.

At the present time, the development of a software application (interpreter of
ABA-CPN) is carried out. Within the ABAsim simulation kernel, it is supposed to
maintain the evolution of the mentioned ABA-CPN. Constructed and analyzed ABA-
CPN (within the CPN Tools environment) is at interpreter’s disposal using XML-
formatted file. The interpreter of the ABA-CPN is currently intensively tested.

Acknowledgments. This work has been supported by the Czech National research
program under project MSM 0021627505 "Theory of transportation systems" and by
the grant of the Scientific Grant Agency VEGA 1/4057/07 in the Slovak Republic.

References

1. Kavicka, A., Klima, V., Adamko, N.: Simulations of transportation logistic systems
utilizing agent-based architecture, International Journal of Simulation Modelling,
DAAAM International, Vienna, 1 (2007) 13-24

2. Adamko, N., Kavicka, A., Klima, V.: Agent based simulation of transportation logistic
systems, DAAAM International Scientific Book 2007, Chapter 36, B. Katalinic (Ed.),
DAAAM International, Vienna (2007) 407- 422

3. Kavicka, A.: Petri net with decision transitions applied within ABAsim architecture of
simulation models. In MOSIS’03 — Proceedings of the 37th conference Modelling and
simulation of systems, MARQ, Ostrava (2006) 373-380

4. Kavicka, A., Klima, V., Adamko, N.: Analysis and optimization of railway nodes using
simulation techniques, In COMPRAIL 2006 — Proceedings of 10th Computer system
design and operation in the railway and other transit system, WIT-Press, Southampton
(2006) 663-672

5. Jensen, K.: Coloured Petri nets — basic concepts. Springer Verlag, Berlin (1997)

6. CPN Tools home page. [online]. [cited on 29 February 2008] Available at:
<http://www.daimi.au.dk/ CPNTools/>

7. Jennings, R.: An agent-based approach for building complex software systems,
Communications of the ACM, Vol. 44 (2001) 35-41

8. Helsinger, A., Thome, M., Wright, T.: Cougaar: A Scalable, Distributed Multi-Agent
Architecture, Proceedings of Systems, Man and Cybernetics, IEEE International
Conference, Cambridge (2004) 1910-1917

9. Henoch, J., Ulrich, H.: HIDES: Towards an Agent-Based Simulator, Proceedings of the
Workshop on Agent Based Simulation, SCS European Publishing House, [cited on 24
September 2008] Available at: <http://www.ifor.math.ethz.ch/publications/oldpubli
cations/ 2000_towardsagentbasedsimulator.pdf >

10. Daniel Moldt, D., Wienberg,F.: Multi-Agent-Systems Based on Coloured Petri Nets,
Proceedings of the 18th International Conference on Application and Theory of Petri Nets
(1997) 82-101

11. Fernandes, J., M., Bello, O.: Modeling of Multi-agent System Activities through Colored
Petri Nets: an Industrial Production System Case Study. In Proc. of thel6 Int. Conf. on
Applied Informatics, Anaheim, CA, (1998) 17-20.

12. Weyns, D., Holvoet, T.: A colored Petri-net for a multi-agent application, Proceedings of
MOCA'02 (Moldt, D., ed.), vol 561, DAIMI PB (2002) 121-141

62

The ComBack Method Revisited:
Caching Strategies and Extension with
Delayed Duplicate Detection*

Sami Evangelista, Michael Westergaard and Lars Michael Kristensen

DAIMI, University of Aarhus, Denmark
{evangeli,mw,kris}@cs.au.dk

Abstract. The ComBack method is a memory reduction technique for
explicit state space search algorithms. It enhances hash compaction with
state reconstruction to resolve hash conflicts on-the-fly thereby ensuring
full coverage of the state space. In this paper we provide two means
to lower the run-time penalty induced by state reconstructions: a set
of strategies to implement the caching method proposed in [I8], and
an extension through delayed duplicate detection that allows to group
reconstructions together to save redundant work.

1 Introduction

Model checking is a formal method used to detect defects in system designs. It
consists of a systematic exploration of the reachable states of the system whose
behavior can be formally represented as a directed graph whose nodes are states
and arcs are possible transitions from one state to another. This principle is
simple, can be easily automated, and, in case of errors, a counter-example can
be provided to the user.

However, even simple systems may have an astronomical or even infinite num-
ber of states. This state explosion problem is a severe obstacle to the application
of model checking to industrial size systems. Numerous possibilities are available
to alleviate, or at least delay, this phenomenon. One can for example exploit the
redundancies in the system description that often induce symmetries [3], exploit
the independence of some transitions to reduce the exploration of redundant
interleavings [G], or encode the state graph using compact data structures such
as binary decision diagrams [IJ.

Hash compaction [T5TY] is a graph storage technique that reduces the amount
of memory used to store states. It uses a hash function h to map each encoun-
tered state s into a fixed-size bit-vector h(s) called the compressed state descrip-
tor which is stored in memory as a representation of the state. The full state
descriptor is not stored in memory. Thus, each discovered state is represented
compactly using typically 32 or 64 bits. The disadvantage of hash compaction is
that two different states may be mapped to the same compressed state descriptor

* Supported by the Danish Research Council for Technology and Production.

63

which implies that the hash compaction method may not explore all reachable
states. The probability of hash collisions can be reduced by using multiple hash
functions [TOTH], but the method still cannot guarantee full coverage of the state
space. This is acceptable if the intent is to find errors, but not sufficient if the
goal is to prove the correctness of a system specification.

The ComBack method [I8] extends hash compaction with a backtracking
mechanism that allows reconstruction of full state descriptors from compressed
ones and thus resolve conflicts on-the-fly to guarantee full coverage of the state
space. Its underlying principle is to store for any state a sequence of events that
generated this state. Thus, when the search algorithm checks if it already visited
a state s, it can reconstruct states mapped to the same hash value as s and
compare them to it. Only if none of the states reconstructed is equal to s can
the algorithm consider it as a new state.

This storage technique stores a small amount of information per state, typ-
ically between 16 and 24 bytes depending on the system being analyzed. Thus
it is especially suited to industrial case studies for which the full state descrip-
tor stored by a classical search algorithm can be very large (from 100 bytes to
10 kilo-bytes). This important reduction, however, has a time cost: a ComBack
based algorithm will explore many more arcs in order to reconstruct states. As
the graph is given implicitly, visiting an arc consists of applying a successor func-
tion that can be arbitrarily complex, especially for high-level languages such as
Promela [§] or Colored Petri nets [9]. Experiments made in [I8] report an in-
crease in run-time ranging from 50% for the simplest examples to more than
600% for real-life protocols.

The goal of the work presented in this paper is to propose solutions to tackle
this problem. Starting from the proposal of [I8] to use a cache of full state de-
scriptors to shorten sequences, we first propose different caching strategies. We
also extend the ComBack method with delayed duplicate detection, a technique
widely used by disk-based model checkers [I6]. The principle is to delay the
instant we check if a state has already been visited from the instant of its gen-
eration. Any state reached is put in a set of candidates and only occasionally is
this set compared to the set of already visited states in order to identify new
ones. The underlying idea of this operation is that comparing these two sets may
be much cheaper than checking separately if each candidate has already been
visited. Applied to the ComBack method, this results in saving the visit of tran-
sitions that are shared by different sequences. For instance if sequences a.b.c and
a.b.d reconstruct respectively states s and s’ we may group the reconstructions
of s and s’ in order to execute sequence a.b only once instead of twice. This will
result in the execution of 4 events instead of 6 events.

This article has the following structure. The basic elements of labeled tran-
sition systems and the ComBack method are recalled in Section Bl In Section Bl
different caching strategies are proposed. An algorithm that combines the Com-
Back method with delayed duplicate detection is presented in Section Bl Section
B reports on experiments made with the ASAP tool [I2] which implements the
techniques proposed in this paper. Finally, Section @ concludes this paper.

2 Background

We give in this section the basic ingredients that are required for understanding
the rest of this paper and provide a brief overview of the ComBack method [I§].

2.1 Transition systems

As the methods proposed in this work are not linked to a specific formalism they
will be developed in the framework of labeled transition systems that are the
most low-level representation of concurrent systems.

Definition 1 (Labeled Transition System). A labeled transition system is
a tuple S = (S, E, T, s0), where S is a finite set of states, E is a finite set of
events, T C S x E x S is the transition relation, and so € S is the initial
state.

In the rest of this paper we assume that we are given a labeled transition system
S=(S,E,T,s0). Let s,s" € S be two states and e € E an event. If (s,e,s’) € T,
then e is said to be enabled in s and the occurrence (execution) of e in s leads to
the state s”. This is also written s = s’. An occurrence sequence is an alternating
sequence of states s; and events e; written s S Sy 8y RN s, and
satisfying s; RN si41 for 1 < i < n — 1. For the sake of simplicity, we assume
that events are deterministicﬁ, ie.,if s 5 s and s = s” then s’ = s”.

We use —* to denote the transitive and reflexive closure of T, i.e., s —* s
if and only if there exists an occurrence sequence s; o, 89 Sp_1 Lt Sns
n > 1, with s = s; and ' = s,. A state s’ is reachable from s if and only
if s —* s'. The state space of a system is the directed graph (V,E) where
V={s€8]|syg—*s"}is the set of nodes and F = {(s,e,s') € T'|s,s' € V}is
the set of edges.

2.2 The ComBack method

A classical state space search algorithm (Algorithm/[l) operates on a set of visited
states V and a queue of states to visit Q. An iteration of the algorithm (lines
4-7) consists of removing a states from the queue, generating its successors and
inserting the successor states that have not been visited so far both in the visited
set and in the queue for a later exploratiorﬂ.

Using hash compaction [19], items stored in the visited set are not actual
state descriptors but compressed descriptors, typically a 32-bit integer, obtained
through a hash function h. Algorithm B uses this technique. The few differences
with Algorithm [l have been underlined. This storage scheme is motivated by
the observation that full state descriptors are often large for realistic systems,

! For an extension of the ComBack method to non-deterministic transition systems
the reader may consult Section 5 of [IJ].
2 We will use the term of state expansion to refer to this process.

65

Algorithm 1 A classical search algorithm.

1: V «— empty ; V.insert (so)
2: Q «— empty ; Q.enqueue (So)
3: while Q # empty do
s < Q.dequeue ()
for e, s’ | (s,e,s’) € T do
if s ¢ V then
V.insert (s') ; Q.insert (s')

Algorithm 2 A search algorithm based on hash compaction.

1: V «— empty ; V.insert (h(so))
2: Q «— empty ; Q.enqueue (so)
3: while Q # empty do
s < Q.dequeue ()
for e, s’ | (s,e,s’) € T do
if h(s') ¢ V then
V.insert (h(s")) ; Q.insert (s)

i.e., typically between 100 bytes and 10 kilo-bytes, which drastically limits the
size of state spaces that can be explored. Though hash compaction considerably
reduces memory requirements, it comes at the cost of possibly missing some
parts of the state space and potentially some errors. Indeed, as A may not be
injective, two different states may erroneously be considered the same if they are
mapped to the same hash value. Hence, hash compaction is preferably used at
early stages of the development process for its ability to quickly discover errors
rather than proving the correctness of the system.

The ComBack method extends hash compaction with a backtracking mecha-
nism that allows it to retrieve actual states from compressed descriptors in order
to resolve hash collisions on-the-fly and guarantee full coverage of the state space.
This is achieved by modifying the hash compaction algorithm as follows:

1. A state number (integer), or identifier, is assigned to each visited state s.

2. A state table stores for each compressed state descriptor a collision list of
state numbers for visited states mapped to this compressed state descriptor.

3. A backedge table is maintained which for each state number of a visited state
s stores a backedge consisting of an event e and a state number of a visited
predecessor s’ such that s’ = s.

The key algorithm of the ComBack method is the insertion procedure that checks
whether a state s is already in the visited set and inserts it into it if needed. Its
principle can be illustrated with the help of Figure [l which depicts a simple state
space. Each ellipse represents a state. The hash value of each state is written in
the right part of the ellipse. The state and backedge tables used to resolve hash
conflicts have been depicted to the right of the figure for two different steps of
the search. For the sake of clarity, we have also depicted on the state space the
identifier of each state (the square next to the ellipse) and highlighted (using

66

After t?f gﬁ%ﬂm of At the end of the search
[0 n nil To@ o | ni
©e| | |m|ms| 1|09

2@ 2|ea| | mE 2|09
: wo| | |m|E@| 3] ao
he |[6] 4| (2b)

|5l @a

)

Fig. 1. A state space and the state and backedge tables at two stages.

thick arcs) the transitions that are used to backtrack to the initial state, i.e., the
edges constituting the backedge table. Note that these identifiers also coincide
with the expansion order of states.

After the expansion of sy and s1, the set of visited states is {so, s1, 2, s3}.
As no hash conflict was detected, a single state is associated in the state table
(the left table of the first rounded box) with each hash value. In the backedge
table (the right table of the first rounded box) a nil value is associated with state
0 (the initial state) as any backtracking will stop here. The table also indicates
that the actual value of state 1 (s1) is retrieved by executing event e on state
0 and so on for the other entries of the table. After the execution of event b on
state sy we reach s4. Algorithm Bl would claim that s has already been visited
— since h(s3) = h(s4) — and stop the search at this point, missing states ss
and sg. Using the two tables the hash conflict between s3 and s4 can be handled
as follows. The insertion procedure first looks in the state table if any state has
already been mapped to h(s4) = hz and finds out value 3. The comparison of
state 3 (of which we do not have the actual state descriptor) to s4 is first done
by recursively following the pointers of the backedge table until the initial state
is reached, i.e., 3 then 1 and then 0. Then the sequence of events associated
with the entries of the table that have been met during the backtrack, i.e., e.c,
is executed on the initial statd. Finally, a comparison between s3 and s4 indi-
cates that s4 is new. We therefore assign to s4 a new identifier (4) insert it in the
collision list of hash value hs and insert the entry 4 — (2, b) in the backedge table.

This storage scheme is especially suited to systems exhibiting large state
vectors as it allows to represent each state in the visited set with only a few bytes.
The only elements of the state and backedge tables that are still dependent of

3 We will use the term of state reconstruction (or more simply reconstruction) to refer
to this process, i.e., backtracking to the initial state and then executing a sequence of
events to retrieve a full state descriptor. Sequence e.c will be called the reconstructing
sequence of state 3.

67

the underlying model are the events stored to reconstruct states. In the case of
Colored Petri Nets, this comprises a transition identifier and some instantiation
values for its variables while for some modeling languages it may be sufficient to
identify an event with a process identifier and the line of the executed statement.
Still, a state rarely exceeds 16—24 bytes.

However, the ComBack method is penalized by an (important) run-time in-
crease due to the reconstruction mechanism. After a state s has been reached
it will be reconstructed once for each following incoming arc, hence in(s) — 1
times where in(s) denotes the in-degree of s. If we denote by d(s) the length
of the shortest path from s¢ to s, the number of event executions due to state
reconstructions is lower bounded by:

> (in(s) —1) - d(s)

seS

Note that in Breadth-First Search (BFS) each sequence executed to reconstruct
a state s is exactly of length d(s) while it may be much longer in Depth-First
Search (DFS). This is evidenced by some data of Table 1 in [I8] showing that
the ComBack method combined with DFS is in some cases much slower than
with BFS while the converse is not true.

In addition, the time spent in reconstructing states depends, to a large extent,
on the complexity of executing an event that ranges from trivial (e.g., for PT-
nets) to high, e.g., for Promela or Colored Petri Nets for which executing an
event may include the execution of embedded code.

3 Caching strategies

A cache mapping state identifiers to full descriptors is a good way to reduce the
cost of state reconstructions. The purpose of such a cache is twofold. Firstly, the
reconstruction of a state identified by ¢ may be avoided if 4 is cached. Secondly, if
a state has to be reconstructed we may stop backtracking as soon as we encounter
a state belonging to the cache and thus execute a shorter reconstruction sequence
from this state. As an example, consider the configuration of Fig.[ll Caching the
mapping 1 — s; may be useful in two ways.

To avoid the reconstruction of state 1. A lookup in the cache directly returns
state s1, which saves the backtrack to sg and the execution of event e.

For the reconstruction of state 3. During the backtrack to sg the algorithm
finds out that state 1 is cached, retrieves its descriptor and only executes
event ¢ from s; to obtain sz, once again saving the execution of event e.

We now propose four strategies to implement this cache. We focus on strategies

based on BFS as the traversal order it induces enables to take advantage of some
typical characteristics of state spaces [[3].

68

Random cache The simplest and easiest way is to implement a randomized
cache. This gives us the first following strategy.

Strategy R: When a new state is put in the visited set, it is inserted in
the cache with probability p (1 if the cache is not full) and the state to
replace (if needed) is randomly chosen.

Fifo cache A common characteristics of state spaces is the high proportion of
forward transitionﬁﬁ, typically around 80%. This has a significant consequence
in BFS in which levels are processed one by one: most of the transitions outgoing
from a state will lead to a new state or to a state that has been recently generated
from the same level. Hence, a good strategy in BFS seems to be to use a fifo
cache since when a new state at level [+ 1 is reached from level [it is likely
that one of the following states of level [will also reach it. If the cache is large
enough to contain any level of the graph, only backward transitions will generate
reconstructions as forward transitions will always result in a cache hit. This
strategy can be implemented as follows.

Strategy F: When a new state is put in the visited set, insert it un-
conditionally into the cache. If needed, remove the oldest state from the
cache.

Heuristic based cache Obviously, the benefit we can obtain from caching a
state may largely differ from one state to another. For instance, it is pointless
to cache a state s that does not have any successor state pointing to it in the
backedge table as it will not shorten any reconstruction sequence, but only avoid
the reconstruction of s.

To evaluate the interest of caching some state s we propose to use the fol-
lowing caching heuristic H.

H(s) = d(s) - p(s) with p(s) =

where

— d(s) is the distance of s to the initial state in the backedge table

— 7(s) is the number of states that reference s in the backedge table

— L(n) is the number of states at level n, i.e., with a distance of n from the
initial state

A cache hit is more interesting if it occurs early during the backtrack as it will
shorten the sequence executed. Thus the benefit of caching a state s increases
with its distance d(s). Through rate p(s) we evaluate the probability that s

4 If we define level [as the set of states that are reachable from so in I steps (and not
less), a transition that has its source in level [and its target in level I+ 1 is called a
forward transition. Any other transition is called a backward transition.

69

belongs to some reconstructing sequence. This one increases if many states point
to s in the backedge table and decreases with the number of states on the same
level as s. The distance of s could also be considered in the computation of p(s)
as s cannot appear in a reconstructing sequence of a length less than d(s). Our
choice is based on another typical characteristic of state spaces [I7]: backward
transitions are usually short in the sense that the levels of its destination and
source are often close. Thus, in BFS, if a state has to be reconstructed, it is likely
that the length of its reconstructing sequence is close to the current depth which
is an upper bound of the length of a reconstructing sequence. Hence, assuming
that the state space has this characteristic, the distance slightly impacts on p(s).
Our third strategy is based on this heuristic.

Strategy H: After all outgoing transitions of state s have been visited
compute H(s). Let s be the state that minimizes H in the cache. If
H(s") < H(s) replace s’ by s in the cache.

Note that after the visit of s, all necessary information to compute H(s) is
available since all its successors have been generated and the BFS search order
implies that L(d(s)) is known.

Other possibilities are available. In [3] a reduction technique also based on
state reconstruction is proposed. The algorithm is parametrized by an integer k
and only caches states at levels 0, k,2-k,3-k.... The motivation of this strategy
is to bound the length of reconstructing sequences to k — 1. As presented, the
strategy in [B] does not bound the size of the cache but &k could be dynamically
increased to solve this problem.

Different strategies may also be combined. We can for example cache recently
inserted states following strategy F and when a state leaves this cache it can be
inserted into a second level cache maintained with strategy H. Thus we will keep
some recently visited states in the cache and some old strategic states.

4 Combination with delayed duplicate detection

Duplicate detection consists of checking the presence of a newly generated state
in the set of visited states. If the state has not been visited so far, it must
be included in the set and later expanded. With delayed duplicate detection
(DDD), this check is delayed from the instant of state generation by putting
the state reached in a candidate set that contains potentially new states. In this
scheme, duplicate detection consists of comparing the visited and candidate sets
to identify new states. This is motivated by the fact that this comparison may
be much cheaper than checking individually for the presence of each candidate
in the visited set.

Algorithm B is a generic algorithm based on DDD. Besides the usual data
structures we find a candidate set C filled with states reached through event
execution (lines 7-8). An iteration of the algorithm (lines 4-9) consists of ex-
panding all queued states and inserting their successors in the candidate set.

70

Algorithm 3 A generic search algorithm using delayed duplicate detection

1: V «— empty ; V.insert (so) 10: proc duplicateDetection () is
2: Q «— empty ; Q.enqueue (So) 11: new «— C\V

3: while Q@ # empty do 12: for s € new do

4: C «— empty 13: V.insert (s)

5: while Q@ # empty do 14: Q.enqueue (s)

6: s « Q.dequeue ()

T: for e, s' | (s,e,8’) € T do

8: C.insert (s')

9: duplicateDetection ()

Once the queue is empty duplicate detection starts. We identify new states by
removing visited states from candidate states (line 11). States remaining after
this procedure are then put in the visited set and in the queue (lines 12-14).

The key point of this algorithm is the way the comparison at line 11 is
conducted. In the disk-based algorithm of [I6], the candidate set is kept in a
memory hash table and visited states are stored sequentially in a file. New states
are detected by reading states one by one from the file and deleting them from
the table implementing the candidate set. States remaining in the table at the
end of this process are therefore new. Hence, in this context, DDD replaces a
large number of individual disk look-ups — that each would likely require to read
a disk block — by a single file scan. It should be noted that duplicate detection
may also be performed if the candidate set fills up, i.e., before an iteration (lines
4-9) of the algorithm has been completed.

4.1 Principle of the combination

The underlying idea of using DDD in the ComBack method is to group state
reconstructions together to save the redundant execution of some events shared
by different reconstruction sequences. This is illustrated by Fig. Bl The search
algorithm first visits states sg, s1, $2, s3 and s4 each mapped to a different com-
pressed state descriptor. Later, state s is processed. It has two successors: s4
(already met) and s5 mapped to hs which is also the compressed state de-
scriptor of s3. With the basic reconstruction mechanism we would have to first
backtrack to sg, execute sequence a.b.d to reconstruct s, and find out that e
does not, from s, generate a new state, and then execute a.b.c from s to dis-
cover a conflict between s; and s3 and hence that f generates a new state.
Nevertheless, we observe some redundancies in these two reconstructions: as
sequences a.b.c and a.b.d share a common prefix a.b, we could group the two
reconstructions together so that a.b is executed once for both s3 and s4. This
is where DDD can help us. As we visit s, we notice that its successors s, and
s5 are mapped to hash values already met. Hence, we put those in a candi-
date set and mark the identifiers of states that we have to reconstruct in or-
der to check whether s4 and s5 are new or not, i.e., 3 and 4. Duplicate detec-
tion then consists of reconstructing marked states and to delete them from the

71

candidate set. This can be done
by conducting a DFS starting from
the initial state in search of marked
states. However, as we do not want
to reconstruct the whole search tree,
we have to keep track of the sub-
tree that we are interested in. Thus,
we additionally store for each iden-
tifier the list of its successors in the
backedge table that have to be vis-
ited. The DFS then prunes the tree
by only visiting successors included
in this list. On our example this will
result in the following traversal or-
der: sg, s1, S2, s3 and finally s4.

Fig. 2. The prefix a.b of the reconstruct-
ing sequences of s3 and s4 can be shared.

4.2 The algorithm

We now propose Algorithm Bl that combines the ComBack method with DDD.
As it is straightforward to extend the algorithm with a full state descriptor cache
as discussed in Section Bl we only focus here on this combination.

The two main data structures in the algorithm are the queue Q containing
full descriptors of states to visit together with their identifiers and the visited
set V. The latter comprises three structures.

— As in the basic ComBack method, the stateTable maps compressed states to
state identifiers. It is implemented as a set of pairs (h,id) where h is a hash
signature and id is the identifier of a state mapped to h.

— backedge Table maps each identifier id to a tuple (idpreq, €, check, succs) where

® idyreq and e are the identifier of the predecessor and the reconstructing
event as in the basic ComBack method;

e check is a boolean specifying if the duplicate detection procedure must
verify whether or not the state is in the candidate set;

e succs is the identifier list of its successors which must be generated during
the next duplicate detection as previously explained.

— candidates is a set of triples (s, idpreq, €) where s is the full descriptor of a
candidate state. In case duplicate detection reveals that s does not belong
to the visited set, idpreq and e are the reconstruction information that will
be associated with the state in backedgeTable.

The main procedure (lines 1-10) works basically as Algorithm Bl A notable
difference is that procedure insert (see below) may return a two-valued answer:

NEW - if the state is surely new. In this case, the identifier assigned to the
inserted state is also returned by the procedure. The state can be uncondi-
tionally inserted in the queue for a later expansion.

MAYBE - if we can not answer without performing duplicate detection.

72

Algorithm 4 The ComBack method extended with delayed duplicate detection
: V «— empty ; QO «— empty
n «— 0 ; id < newState (so,nil,nil) ; Q.enqueue (so,1id)
while @ # empty do
V.candidates «— empty
while Q@ # empty do
(s,8id) «— Q.dequeue ()
for e, s’ | (s,e,s") € T do
if insert (s', si4,e)= NEW(s,;) then Q.enqueue (s, s,)
if V.candidates.isFull () then duplicateDetection ()
duplicateDetection ()

H
4

11: proc newState (s,idpred,€) is

12: id—mn;n<—n+1

13: V.stateTable.insert (id, h(s))

14: V.backedgeTable.insert (id — (idpreq, €, false,[]))
15: return id

16: proc insert (s,idpred,€) is

17: ids — {id | (h(s),id) € V.stateTable}

18: if ids = () then

19: id — newState (s, idpred,€)

20: return NEW(id)

21: else

22: V.candidates.insert (s,idpred,€)

23: for id in ids do

24: V.backedge Table.setCheckBit (id)

25: backtrack (id)

26: return MAYBE

27: proc backtrack (id) is

28: idpred < V.backedgeTable.getPredecessorld (id)
29: if idpreq # nil then

30: if id ¢ V.backedgeTable.getSuccessorList (idpreq) then
31: V.backedge Table.addSuccessor (idpred,id)
32: backtrack (idpred)

33: proc duplicateDetection () is

34: dfs (so0,0)

35: for (s,idpred,) in V.candidates do

36: id «— newState (s,idpred, €)

37: Q.enqueue (s,1id)

38: V.candidates — empty

39: proc dfs (s,id) is

40: check «— V.backedgeTable.getCheckBit (id)

41: if check then V.candidates.delete (s)

42: for succ in V.backedgeTable.getSuccessorList (id) do
43: e «— V.backedgeTable.getReconstructingEvent (succ)
44: dfs (s.exec (e), succ)

45: V.backedgeTable.unsetCheckBit (id)

46: V.backedgeTable.clearSuccessorList (id)

73

Procedure newState inserts a new state to the visited set together with its
reconstruction informations. It computes a new identifier for s, a state to insert,
and update the stateTable and backedgeTable structures.

Procedure insert receives a state s, the identifier id,..q of one of its prede-
cessors s’ and the event used to generate s from . It first performs a lookup in
the stateTable for identifiers of states mapped to the same hash value as s (line
17). If this search is unsuccessful (lines 18-20), this means that s has definitely
not been visited before. It is unconditionally inserted in V, and its identifier is
returned by the procedure. Otherwise (lines 21-26), the answer requires the re-
construction of states whose identifiers belong to set ids. We thus save s in the
candidate set for a later duplicate detection, set the check bit of all identifiers
in 7ds to true so that the corresponding states will be checked against candidate
states during the next duplicate detection and backtrack from these states.

The purpose of the backtrack procedure is, for a given state s with identifier
id, to update the successor list of all the states on the path from sy to s in the
backedge table so that s will be visited by the DFS performed during the next
duplicate detection. The procedure stops as soon as a state with no predecessor
is found, i.e., sg, or if id is already in the successor list of its predecessor, in
which case this also holds for all its ancestors.

To illustrate this process, we have depicted in Fig. Bl the evolution of (a part
of) the backedge table for the graph of Fig. Bl The four values specified for
each state are respectively the identifier of the predecessor, the event used to
reconstruct the state, the check bit (set to False or True), and the successor list.
After the execution of event e from s we reach a state mapped to hash value
h4 already associated with state 4. We thus set the check bit of state 4 to true,
backtrack from it and update the successor list of its ancestors 0, 1 and 2. The
same treatment is performed for state 3 after the execution of f from s since
the state thus reached and state 3 are mapped to the same hash value. The
backtrack stops as we reach state 2 since it already belongs to the successor list
of state 1.

Duplicate detection (lines 33-38) is conducted each time the candidate set is

full (line 9), i

after execution of e

74

after execution of f

e., it reaches a certain peak size, or the queue is empty (line 10).

from s 0 55 from s to 5
[0 it nit, £y [0 [(it,nit, £.[0) [0 | it nit, £ (1)
1 loer) |1 |0aFRR) |1 |0.aFR)
o lwnED | 2 lwnEE) | 2 |1 FBA)
3 leerD) | 3leerD |3 |@er)
4|@ar) |4]edn) |4 |@an)

Fig. 3. Evolution of the backedge table after the execution of e and f from s

Using the successor lists constructed by the backtrack procedure, we initiate a
depth-first search from sy (see procedure dfs). Each time a state with its check
bit set to true is found (line 41) we delete it from the candidate set if needed.
When a state leaves the stack we set its check bit to false and clear its successor
list (lines 45—46). Once the search finishes (lines 35-37) any state remaining in
the candidate set is new and can be inserted into the queue and the visited set.

4.3 Additional comments

We discuss several issues regarding the algorithm proposed in this section.

Memory issues Our algorithm requires the storage of some additional infor-
mation used to keep track of states that must be checked against the candidate
set during duplicate detection. This comprises for each state a boolean value
(the check bit) and a list of successors that must be visited. As any state may
belong to the successor list of its predecessor in the backedge table, the memory
overhead is theoretically one bit plus one integer per state. However, our ex-
periments reveal (see Section B that even very small candidate sets show good
performance. Therefore, successor lists are usually short and the extra memory
consumption low. We did not find any model for which the algorithm of [Ig]
terminated whereas ours did not due to a lack of memory.

Grouping reconstructions of queued states In [I8] the possibility to reduce
memory usage by storing identifiers instead of full state descriptors in the queue
(Variant 4 in Section 5) was mentioned. This comes at the cost of an additional
reconstruction per state required to get a description of the state that can be
used to generate its successors. The principle of grouping state reconstructions
can also be applied to the states waiting in the queue. The idea is to dequeue
blocks of identifiers from the queue instead of individual ones and reconstruct
those in a single step using a procedure similar to dfs given in Algorithm El

Compatibility with depth-first search A nice characteristic of the basic
ComBack method is its total decoupling from the search algorithm thereby
making it fully compatible with, e.g., LTL model checking [2[7]. Delaying de-
tection from state generation makes an algorithm implicitly incompatible with
a depth-first traversal where the state processed is always the most recent state
generated. At first glance, the algorithm proposed in this section also belongs
to that category. However, we can exploit the fact that the insertion procedure
can decide if a state is new without actually putting it in the candidate set (if
the hash value of the state has never been met before). The idea is that the
search can progress as long as new states are met. If some state is then put in
the candidate set the algorithm puts a marker on the stack to remember that a
potentially new state lies here. Finally, when a state is popped from the stack,
duplicate detection is performed if markers are present on top of the stack. If we

75

find out that some of the candidate states are new, the search can continue from
these ones. This makes delayed detection compatible with depth-first search at
the cost of performing additional detections, during the backtrack phase of the
algorithm.

5 Experimental results

We report in this section the data we collected during several experiments with
the proposed techniques. We used the ASAP verification tool [I2] where we
have implemented the algorithms described in this article. A nice characteristic
of ASAP is its independence from the description language of the model. This
allowed us to perform experimentations on DVE models taken from the BEEM
database [I4] and on CPN models taken from our own collection.

Experimenting with caching strategies In this first experiment we evalu-
ated the different strategies proposed in Section Bl We picked out 102 instances
of the BEEM database having from 100,000 to 10,000,000 states and run the
ComBack algorithm of [I§] using BFS with 6 caching strategies and 3 sizes of
cache (100, 1,000 and 10,000 states). Out of these 6 strategies 3 are simple: R
(Random, with a replacement probability p = 0.5), F (Fifo), H (Heuristic); and 3
are combinationd] of the first ones: F(20)-H(80), F(50)-H(50) and F(80)-H(20).
We measured after each run the number of event executions that were due to
state reconstructions. The results are summarized in table [l

Strategy F performs well compared to R but it seems that its performance
degrades (in comparison) as we allocate more states to the cache. This is also
confirmed by the fact that the combination F-H seems to perform better for a
large cache when the proportion of states allocated to the fifo sub-cache is low.
Apparently with this strategy we quickly reach a limit where all (or most of) the
forward transitions lead to a cached (or new) state and most backward transi-
tions lead to a non cached state. Such a cache failure always implies backtracking
to the initial state (the fifo strategy implies that if a state is not cached none of
its ancestors in the backedge table is cached) which can be quite costly. Beyond
this point, allocating more states to the cache is almost useless.

The performance of strategy H is poor for small caches but progresses well
compared to strategy F. With this strategy, most transitions will be followed by a
state reconstruction. However, our heuristic works rather well and reconstructing
sequences are usually much shorter than with strategy F. Still, strategy H is
usually outperformed by strategy F due to a high presence of forward transitions
in state spaces [I3]. To sum up, strategy F implies few reconstructions but long
sequences and strategy H has the opposite characteristics.

From these observations it is not surprising to see that the best strategy is to
maintain a small fraction of the cache with strategy F and the remainder with

® F(X)-H(Y) denotes the combination where X% of the cache is allocated to a fifo
sub-cache and Y% is allocated to a heuristic based sub-cache.

76

Table 1. Evaluation of caching strategies on 102 DVE instances.

Cache | Strategy R | Strategy F |Strategy H| Strategy Strategy Strategy
size F(20)-H(80) | F(50)-H(50) | F(80)-H(20)
102 1.0 0.429 1.128 0.436 0.397 0.390
103 1.0 0.437 1.178 0.364 0.347 0.355
10* 1.0 0.488 0.742 0.255 0.262 0.302
10 0 7 2 21 34 42
10° 0 3 1 51 38 17
10* 0 7 3 80 14 9

Top rows: Average on all instances of the number of event executions due to state
reconstruction with this strategy reported to the same number obtained with strategy
R. Bottom rows: Number of instances for which this strategy performed best.

strategy H, that is to keep a small number of recently visited states and many
strategic states from previous levels that will help us shorten reconstructing
sequences.

Out of these 102 instances we selected 4 instances that have some specific
characteristics (brp2.6, cambridge.6, firewire tree.5 and synapse.6) and
evaluated strategies F, H and F(20)-H(80) with different sizes of cache ranging
from 1,000 to 10,000. Data collected are plotted on figurel On the x-axis are the
different cache sizes used. For each run we recorded the number of event execu-
tions due to reconstructions and reported it to the same number obtained with
strategy F. For instance, with brp2.6 and a cache of 4,000 states, reconstruc-
tions generated approximately three times more event executions with strategy
H than with strategy F. We also provide the characteristics of these graphs
in terms of number of states and transitions, average degree, number of levels
and number of forward transitions as a proportion of the overwhole number of
transitions.

The graph of firewire tree.5 only has forward transitions, which is com-
mon for leader election protocols. Therefore, a sufficiently large fifo cache is the
best solution. This is one of the few instances where increasing the cache size
benefits strategy F more than H. Moreover its average degree is high, which
leads to a huge number of reconstructions with strategy H. On the opposite side
the graph of cambridge.6 has a relatively large number of backward transi-
tions. Increasing the fifo cache did not bring any substantial improvement: from
262,260,647 executions with a cache size of 1,000 it went down to 260,459,235
executions with a cache size of 10,000. Strategy H is especially interesting for
synapse.6 as its graph has a rather unusual property: a low fraction of its states
have a high number of successors (from 13 to 18). These states are thus shared
by many reconstructing sequences and, using our heuristic, they are systemat-
ically kept in the cache. Thus, strategy H always outperforms strategy F even
for small caches. The out-degree distribution of the graph of brp2.6 has the op-
posite characteristics: 49% of its states have 1 successor, 44% have 2 successors
and the other states have 0 or 3 successors. Therefore, there is no state that is

77

—&— brp2.6-H —-&—- firewire_tree5-H

--#-- brp2.6 - F(20)-H(80) ---&-- firewire_tree.5 - F(20)-H(80)
---©-- cambridge.6 - H - v-- synapse.6-H

@ cambridge.6 - F(20)-H(80) ~—¥ - synapse.6 - F(20)-H(80)

1 . »f i — _ - . a Strategy F
Ry
. - S
34 |- .*——l;;;AK'_;:;E;; Ca :\O: —~
. . 1 R : ,,,,,,,, - - m - .
b o e] 0 4
o e O o =
- e
va b v\\\\v”““-»v,,_rn‘ D S . e i
W Ve
,,Vﬁ~_3ﬁ;;g;ii;zﬂ‘»3,;,777&7>73
% 2000 w00 00 2000 1000
Instance States |Transitions|Deg.|Levels|Forward tr.
brp2.6 5,742,313 9,058,624| 1.57| 571 92.6%
cambridge.6 [3,354,295| 9,483,191|2.83| 259 66.8%
firewire_tree.5|3,807,023| 18,225,703| 4.79| 202 100%
synapse.6 625,175 1,190,486 | 1.90 70 74.9%

Fig. 4. Evolution of strategies F, H and F(20)-H(80) on some selected instances.

really interesting to keep in the cache. This is evidenced by the fact that the
relative progressions of heuristic based strategies are not so good. It goes from
3.456 to 2.660 for strategy H and from 0.782 to 0.608 for strategy F(20)-H(80).

Experimenting with delayed duplicate detection (DDD) To experiment
with delayed detection we picked out 94 DVE instances from the BEEM database
(all instances having between 500,000 and 50,000,000 states) and 2 CPN in-
stances from our own database. The ComBack method was especially helpful for
nets dymo and erdp that model two industrial protocols — a routing protocol [4]
and an edge router discovery protocol [IT] — and have rather large descriptors
(1,000 - 5,000 bytes).

Table Bl summarizes our observations. Due to a lack of space we only report
the data for some DVE instances but still provide the average on all instances.
We used caching strategy F(20)-H(80), as it is apparently the best we proposed,
with a cache size of 10,000. For each instance we performed 4 tests: one with
a standard storage method, i.e., full state descriptors are kept in the visited

78

Table 2. Evaluation of delayed duplicate detection on DVE and CPN instances.

Std. Type of ComBack
items in No DDD DDD(10%) DDD(10%)
T the queue 7 E7 T ET T7 E7
DVE instances

brp.5* 17,740,267 states 36,903,290 transitions
23.1 SD 11.02 21.19 8.08 7.56 9.01 7.10
1D 35.03 69.12 14.57 17.48 15.74 15.37

cambridge.7 11,465,015 states 54,850,496 transitions
195 SD 14.12 35.88 2.63 4.40 2.30 3.49
1D 18.54 44.50 3.22 5.92 2.96 5.03
iprotocol.5" 31,071,582 states 104,572,634 transitions
63.1 SD 8.74 11.71 5.07 2.97 4.93 2.65
1D 21.12 30.81 6.72 5.44 6.63 4.91

pgm_protocol.8 3,069,390 states 7,125,121 transitions

18.45 SD 2.07 2.64 1.65 1.48 1.59 1.35
1D 16.87 42.04 4.60 8.05 4.42 7.31

rether.6 5,919,694 states 7,822,384 transitions
13.0 SD 3.86 7.23 3.16 3.89 3.17 3.64
1D 24.38 75.16 9.11 19.99 9.33 19.18

synapse.6 625,175 states 1,190,486 transitions
14 SD 2.42 1.74 2.50 1.45 2.42 1.43
ID 3.50 3.54 3.57 3.01 3.57 3.01

Average on 94 instances
SD 4.92 7.06 3.92 3.44 4.02 3.06
1D 10.11 18.69 5.49 6.31 5.61 5.69
CPN instances

dymo . 6" 1,256,773 states 7,377,095 transitions
2,115 SD 2.97 2.88 1.65 1.42 1.72 1.37
1D 4.12 4.39 1.93 1.94 1.93 1.85

erdp.3” 2,344,208 states 18,739,842 transitions
5,425 SD 3.99 6.17 2.19 2.69 2.10 2.28
1D 4.37 7.50 2.15 3.15 1.92 2.70
Average on 2 instances

SD 3.48 4.52 1.92 2.05 1.91 1.82
1D 4.24 5.94 2.04 2.54 1.92 2.27

*: standard search out of memory. Time in column Std. is approximated.
Type of items in the queue: SD (full state descriptor) or ID (state identifier).

79

set, (column Std.), one with the ComBack method without delaying detection
(column ComBack - No DDD) and two with delayed detection enabled with a
candidate set of size 100 and 1,000 (columns ComBack - DDD(10?) and ComBack
- DDD(10%)). Each test using the ComBack method actually comprises two runs:
one keeping full state descriptors in the queue (line SD) and one keeping only
identifiers in the queue (line ID) — as described in [I8], Variant 4 of Section 5. For
this second run, we used the optimization described in Section that consists
of grouping the reconstruction of queued identifiers. Each block of identifiers
dequeued to be reconstructed had the same size as the candidate set. Hence,
when DDD was not used this optimization was turned off. In column Std. - T
we provide the execution time in seconds using a standard search algorithm. In
columns T1 we measure the run-time increase (compared to the standard search)

as the ratio gxecution time of this run 514 i) column E7 the increase of the number
T (with standard search)
nt executions during this run

of event executions as the ratio S oot car . Hence, a value of 1
. . grap.

in this column means that we executed exactly the same number of events as
the basic algorithm and that no state reconstruction occurred. Some runs using
standard storage ran of out memory. This is indicated by a x. For these, we
provide the time obtained with hash compaction as a lower approximation.

We first observe that DDD is indeed useful to save the redundant exploration
of transitions during reconstruction even with small candidate sets. Typically
we can reduce the number of events executed by a factor of 3 or even more
if we group the reconstruction of queued identifiers. It seems that, using BFS,
states generated successively are “not so far” in the graph so their reconstructing
sequences are quite similar, which allows many sharings.

However, this reduction does not always impact on the time saved as we
could expect. Indeed DDD is much more interesting for CPN models than DVE
models. If we consider for example the average made on the 94 DVE instances
with our optimization disabled we divided the number of events executed by
more than 2 (7.06 — 3.44) whereas the average time slightly decreased (4.92
— 3.92). The reason is that executing an event is much faster for DVE models
than for CPN models. Events are typically really simple in the DVE language,
e.g., a variable incrementation, whereas they can be quite complex with CPNs
and include the execution of some embedded code. Therefore, the only fact of
maintaining the candidate set or successors lists has a non negligible impact
for DVE models which means that DDD reduces time only if the number of
executions decreases in a significant way, e.g., instance cambridge.7.

Grouping the reconstruction of queued states can save a lot of executions,
especially for long graphs like those of brp.5 and cambridge.7. It should be
noted that by storing identifiers in the queue we obtain an algorithm that bounds
the number of full state descriptors kept in memory. Hence, we can theoretically
consume less memory compared to an algorithm based on hash compaction which
has to store full descriptors in the queue. This was indeed the case for nets
dymo .6 and erdp.3. Both have rather wide graphs: their largest levels contains
approximately 10% of the state space and so contained the queue as it reached
its peek size.

80

6 Conclusion

The ComBack method has been designed to explicitly store large state spaces
of models with large state descriptors. The important reduction factor it may
provide is however counterbalanced by an increase in run-time due to the on-the-
fly reconstructions of states. We proposed in this work two ways to tackle this
problem. First, some strategies have been devised in order to efficiently maintain
a full state descriptor cache, used to perform less reconstructions and shorten
the length of reconstructing sequences. Second, we combined the method with
delayed duplicate detection that allows to group reconstructions and save the
execution of events that are shared by multiple sequences. We have implemented
these two extensions in ASAP and performed an extensive experimentation on
both DVE models from the BEEM database and CPN models from our own col-
lection. These experiments validated our proposals on many models. Compared
to a random replacement strategy, a combination of our strategies could, on an
average made on a hundred of DVE instances, decrease the number of transi-
tions visited by a factor of four. We also saw that delaying duplicate detection
is efficient even with very small candidate sets. In the best cases, we could even
approach the execution time of a hash compaction based algorithm. Moreover,
by storing identifiers instead of full descriptors in the queue we bound the num-
ber of full state descriptors that reside in memory. Hence, our data structures
can theoretically consume less memory during the search than hash compaction
structures. We experienced this situation on several instances.

In this work, we mainly focused on caching strategies for breadth-first search.
BF'S is helpful to find short error-traces for safety properties, but not if we are
interested in the verification of linear time properties that is inherently based
on depth-first search. The design of strategies for other types of search is thus
a future research topic. In addition, the combination with delayed duplicate
detection opens the way to an efficient multi-threaded algorithm based on the
ComBack method. The underlying principle would be to have some threads
exploring the state space and visiting states while others are responsible for
performing duplicate detection. We are currently working on such an algorithm.

References

1. J.R. Burch, E.M. Clarke, D.L. Dill, L.J. Hwang, and K. McMillan. Symbolic model
checking: 10%° states and beyond. In Proceedings of Logic In Computer Science,
pages 428-439, 1990.

2. J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Proceedings
of Formal Methods, Volume 1708 of Lecture Notes in Computer Science, pages
253—-271. Springer-Verlag, 1999.

3. E.A. Emerson and A.P. Sistla. Symmetry and model checking. Formal Methods in
Systems Design, 9(1-2):105-131, 1996.

4. K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen. Modelling and initial valida-
tion of the dymo routing protocol for mobile ad-hoc networks. In Proceedings of
Application and Theory of Petri Nets, Volume 5062 of Lecture Notes in Computer
Science, pages 152-170. Springer-Verlag, 2008.

81

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Evangelista and J.-F. Pradat-Peyre. Memory efficient state space storage in ex-
plicit software model checking. In Proceedings of SPIN — Software Model Checking,
Volume 3639 of Lecture Notes in Computer Science, pages 43-57. Springer-Verlag,
2005.

P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-FExplosion Problem, Volume 1032 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

P. Godefroid and G.J. Holzmann. On the verification of temporal properties. In
Proceedings of Protocol Specification, Testing and Verification, Volume C-16 of
IFIP Transactions, pages 109-124. North-Holland, 1993.

G.J. Holzmann. The model checker spin. IEEE Transactions on Software Engi-
neering, 23(5):279-295, 1997.

K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. Vol. 1-8. Springer-Verlag, 1992-1997.

W. Knottenbelt, M. Mestern, P. Harrison, and P. Kritzinger. Probability, par-
allelism and the state space exploration problem. In Proceedings of Modelling,
Techniques and Tools, Volume 1469 of Lecture Notes in Computer Science, pages
165—179. Springer-Verlag, 1998.

L.M. Kristensen and K. Jensen. Specification and validation of an edge router
discovery protocol for mobile ad-hoc networks. In Proceedings of Integration of
Software Specification Techniques for Applications in Engineering, Volume 3147 of
Lecture Notes in Computer Science, pages 248—269. Springer-Verlag, 2004.

L.M. Kristensen and M. Westergaard. @The ASCoVeCo state space analy-
sis platform. In Proceedings of Practical Use of Coloured Petri Nets and
the CPN Tools, Volume 584 of DAIMI-PB, pages 1-6, 2007. Available at:
http://www.daimi.au.dk/~ascoveco/asap.html.

R. Pelanek. Typical structural properties of state spaces. In Proceedings of SPIN
— Software Model Checking, Volume 2989 of Lecture Notes in Computer Science,
pages 5—22. Springer-Verlag, 2004.

R. Peldanek. BEEM: Benchmarks for explicit model checkers. In Proceedings of
SPIN - Software Model Checking, Volume 4595 of Lecture Notes in Computer
Science, pages 263—267. Springer-Verlag, 2007.

U. Stern and D.L. Dill. Improved probabilistic verification by hash compaction.
In Proceedings of Correct Hardware Design and Verification Methods, Volume 987
of Lecture Notes in Computer Science, pages 206—224. Springer-Verlag, 1995.

U. Stern and D.L. Dill. Using magnetic disk instead of main memory in the Mur¢
verifier. In Proceedings of Computer Aided Verification, Volume 1427 of Lecture
Notes in Computer Science, pages 172-183. Springer-Verlag, 1998.

E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting transition
locality in automatic verification. In Proceedings of Correct Hardware Design and
Verification Methods, Volume 2144 of Lecture Notes in Computer Science, pages
259-274. Springer-Verlag, 2001.

M. Westergaard, .M. Kristensen, G.S. Brodal, and L. Arge. The ComBack method
- extending hash compaction with backtracking. In Proceedings of Application and
Theory of Petri Nets, Volume 4546 of Lecture Notes in Computer Science, pages
445-464. Springer-Verlag, 2007.

P. Wolper and D. Leroy. Reliable hashing without collision detection. In Proceed-
ings of Computer Aided Verification, Volume 697 of Lecture Notes in Computer
Science, pages 59-70. Springer-Verlag, 1993.

82

http://www.daimi.au.dk/~ascoveco/asap.html

Two Interfaces to the CPN Tools Simulator

Michael Westergaard and Lars Michael Kristensen

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,
Email: {mw,kris }@cs.au.dk

Abstract. Coloured Petri nets (CP-nets or CPNs) is a useful modeling
formalism for formally describing concurrent systems, and CPN Tools
provides a mature environment for constructing, simulating, and per-
forming simple analysis of CPN models. Sometimes, this does not suffice,
however. For example, if one wishes to extend the analysis capabilities or
to integrate CPN models into other programs. In this paper we present
two new interfaces which facilitate this. One is written in Standard ML
and is very close to the simulator component of CPN Tools, providing
a solid foundation for developing advanced analysis tools. The other in-
terface is written in Java and provides an object-oriented representation
of CPN models as well as a means to load models created using CPN
Tools. Furthermore, the Java interface provides a high-level interface to
the simulator component facilitating integration of simulation of CPN
models into other programs. We illustrate the interfaces by providing
the complete implementation of a command-line state space exploration
tool. The interfaces are available to interested parties.

1 Introduction

Coloured Petri nets (CP-nets or CPNs) provide a useful modeling formalism
for formally describing concurrent systems, such as network protocols [12] or
work-flows in companies [8]. CPN Tools [14] provides a mature environment for
editing and simulating CPN models, and to a limited degree also for formally
verifying that a given model is correct using state space analysis.

Sometimes, this is not enough, however. The basic problem is that CPN Tools
is inherently graphical and cannot be controlled by outside applications. This
makes it difficult to use CPN Tools in settings that are outside its scope of inter-
active use by one user. Such examples include repeated simulation on multiple
servers in a grid, which is a useful analysis technique for models that are too
large for exhaustive analysis techniques like state space analysis, to describe a
complex decision procedure in a parametrised manner for use in a regular ap-
plication, and allowing users to set parameters of a model using a custom user
interface and just present the end-result of a simulation. It is also difficult to
implement new analysis techniques such as new more efficient state space meth-
ods or completely different analysis methods (e.g., coverability graphs, bounded
model-checking techniques, or invariant analysis), especially if we intend to also
build a user-friendly interface for the new methods.

83

Generate model- Model-specific
Load, specific code, CPN simulator
save inspect state,

Graphical editor simulate Model-independent
XML representation <):‘[> P <):‘[> CPN simulator

SML/NJ

Fig. 1: Architecture of CPN Tools.

CPN Tools basically consists of two components (see Fig. 1), a graphical edi-
tor (middle) and a simulator daemon (right). The graphical editor allows the user
to interactively construct a CPN model. The model is transmitted to the simu-
lator daemon, which checks it for syntactical errors and generates model-specific
code to simulate the model. The graphical editor can invoke the generated sim-
ulator code and present the results graphically. The graphical editor can also
load and save models using an XML format (left in Fig. 1). The graphical editor
imposes most of the previously mentioned restrictions; the simulator daemon is
basically a generic Standard ML/New Jersey (SML/NJ or SML) [15] run-time
environment and compiler with functions for syntax checking CPN models. It
is obvious that by replacing the graphical editor with our application, we can
alleviate most of the limitations imposed by the graphical editor, and this has
indeed also been done in different settings [10,16]. The CPN simulator, however,
suffers from two problems making such a replacement difficult. Firstly, the pro-
tocol used for communication between the graphical editor and the simulator
is rather low-level and complex to implement. Secondly, the CPN simulator is
optimised for simulation and incremental code generation making it difficult to
use for other purposes as the model-specific code is difficult to use.

In this paper we propose two new interfaces to the CPN simulator!. Neither
aim to replace CPN Tools as editor for CPN models, but rather to allow people to
make experiments with the formalism. Both of the interfaces have been developed
as part of the ASCoVeCo [1] project and the ASAP model checking platform [11],
but are believed to be useful in other settings as well. Neither of the interfaces are
intended for end-users; both of the interfaces provide rather low-level simulation
primitives, which can be used by programmers to build new generic tools. We
present the interfaces in the context of formal verification because that has been
our motivation for developing the interfaces, but numerous applications can build
upon the foundation to allow more high-level use of the CPN simulator. One of
the interfaces is written in Java and the other in SML. In Fig. 2 we see how
the new interfaces augment and replace parts of CPN Tools. The Java interface
(middle) consists of an object-oriented representation of a CPN model, the ability
to transmit this representation to the simulator and to programmatically perform
simulation and inspection of the current state in the simulator. Furthermore,
it includes an importer module which can import models created using CPN
Tools. In effect, this allows programmers to load a model created using CPN
Tools (left), instantiate a simulator for this model and perform simulation of the

! The interfaces are available to interested parties; send an email to ascoveco@cs.
au.dk for more information.

CPN CPN
Model Model
Loader | Instantiator

CPN Model
Representation

SML interface

Generate model-

Eclipse Modelling specific code, Model-specific
Framework inspect state, CPN simulator
simulate Lind
. Model-independent
XML representation Eclipse Platform <—> CPN simulator
Java SML/NJ

Fig. 2: Architecture of new interfaces.

model in their own applications, which can be anything from a simple command-
line utility to a full-fledged CPN editor. The SML interface (right in Fig. 2)
encapsulates the complex data-structures used in the simulator, and provides a
simple frozen interface to the state of a CPN model which facilitates very fast
simulation. This is in particular useful for efficient analysis, e.g., by means of
state spaces, but applicable for any application that requires fast execution of
transitions with little or no user-interaction.

The rest of this paper is structured as follows: In the next section, we in-
troduce a simple example, that is used throughout this paper. In Sect. 3, we
describe the SML interface to the simulator, and in Sect. 4, we describe the Java
interface to the simulator. These two sections are independent of each other. In
Sect. 5 we use the two interfaces to create a simple command-line tool for state
space analysis of CPN models. Finally, in Sect. 6, we sum up our conclusions
and provide directions for future work.

2 Example CPN Model

Throughout this paper we will use a CPN model of a simple stop-and-wait
protocol with one sender and two receivers. The top module of the model can be
seen in Fig. 3, where we have a substitution transition for the sender, the network,
and one for each receiver. The network has a maximum capacity modeled by the
Limit place. If the network still has available capacity, the sender (Fig. 4 (left))
transmits packets onto the A place. The place Send contains the packets to
send. The network (Fig. 4 (middle)) then transmits the packet to Bl and B2,
optionally dropping one or both of the packets. The receivers (Fig. 4 (right))
receive the packets on Received and transmit back acknowledgements onto C1 or
C2, which the network transmits to D, optionally dropping one or both. When
the sender receives acknowledgements from both receives, the NextSend counter
is updated and the cycle restarts. We observe that the model consists of four
different modules: Top, Sender, Network, and Receiver. The Receiver module is
instantiated twice as Receiver 1 and Receiver 2 in the module Top.

85

DATA

Facoved O]
NOxDATA

Receiver 1

@

NO
Network

NOXDATA Receiver 2

NOXDATA

Sender

NOxXNO

ST

DATA

Fig. 3: Top page of a simple stop-and-wait protocol model with two receivers.

if success1
then 1°(n,p)
else empty

Transmit
Packet

if success2

NOXDATA NOXDATA

(n,p!

if success1 andalso success2

then 27 () () then 1(n,p) @ [Out]
else else empty NOXpATA @ Received

if success1 orelse success2

then 1" () @
else empty UNIT
str| |if n=k
then str*p
o if success1 . else str
then empty
else 17() NOxDATA
(n,p)
@) if success1 T -
then 1" (n,1) ransmi Tn
else empty Acknow1 @ @ k "
G m— [
acke
if success2 NO if n=k
then empty then k+1 if n=k
NOXNO else 1°() else k tTen kk+1
else
if success2 Transmit 1 <:>< —
1°(n1,1)++ then 17(n,2) Acknow2
1°(n2,2) else empty NO NO

Fig. 4: Sender (left), network (middle), and receiver (right) modules of the protocol.

3 The SML CPN Model Interface

In this section we present the old SML interface to the simulator and some
of its shortcomings. We also present our new interface and explain why it is
superior. The aim of the SML model interface is to provide efficient access to the
CPN simulator, in particular with the purpose of implementing efficient analysis
methods. To support this, the SML interface provides an interface to the state of
a CPN model and to execute enabled transitions. For performance reasons, this
interface is written in the same language as the CPN simulator itself, namely
SML/NJ [15]. We suggest that all applications that are algorithmic in nature use
the SML interface described in this section. Using SML as implementation may
seem a bit strange as it is not as well-known as, e.g., Java. The choice makes
sense, however, both because this interface is the fastest as it is written in the
same language as the simulator itself and because SML is a useful language for
declaratively implementing complex algorithms due to its functional paradigm.

86

3.1 The Old SML Interface

In Listing 1.1 we see part of the current interface for the model in Figs. 3 and 4.
In lines 1-10 we see the definition of the place NextRec in the module Receiver.
We first notice that the relationship to the place and module is not immediately
visible, as the place is only referred to by a generated identifier (CPN’placeid168).
All places reside at the top level, so the modularity of the model is not visible in
the interface. The functions get and set (Il. 7-8) take as parameter an instance
number, which is the internal number of the instance of the place. This number
is not immediately derivable from the model (we have, e.g., no guarantee that
the instance corresponding to Receiver 1 has number 1). The ims.cs ms type is a
multi-set over the type of the place, in this case NO.

The rest of Listing 1.1 shows representations of three different transitions,
Send Packet from Sender (1. 11-15), Transmit Acknowl from Network (11. 16-21),
and Transmit Packet from Network (1l. 22-29). Like places, all transitions are
referred to by a generated identifier rather that their user-recognisable name.
Transitions, like places, live at the top-level, and the CPN'occfuns (1. 12, 17-18,
and 23-25) take an internal instance number as the first parameter. The last
parameter given to CPN'occfun is a boolean indicating whether the step-counter
should be incremented. This is used internally by the simulator for handling mon-
itors, and during normal simulation should always be set to true. The middle
parameter to a CPN'occfun describes the binding of the variables of the transi-
tion. For Send Packet, this consists of a record containing all variables. The two

Listing 1.1: Current interface.

1 | structure CPN'placeid168: sig

2 structure ims: sig

3 structure cs: COLORSET

4 type cs = cs.cs

5 . (* 1 type definition and 22 functions *)

6 end

7 val get: int -> ims.cs ms

8 val set: int -> ims.cs ms -> unit

9 .. (* 2 constants and 8 functions *)

10 |end

11 | structure CPN'transitionID1264271480: sig

12 val CPN'occfun: int * {n:NO, p:DATA} * bool -> CPN'Sim.result * string list
13 val CPN'bindings: int -> {n:NO, p:DATA} list

14 ... (* 5 constants, 3 variables, and 6 functions x)

15 | end

16 | structure CPN'transitionID1264276591: sig

17 val CPNoccfun:

18 int * ({mNO} » BOOL) * bool -> CPN'Sim.result * string list
19 val CPN'bindings: int -> ({n:NO} * BOOL) list

20 ... (* 5 constants, 3 variables, and 6 functions x)

21 | end

22 | structure CPN'transitionlD1264276586: sig

23 val CPN'occfun:

24 int * ({n:NO, p:DATA} * {success1:BOOL, success2:BOOLY}) * bool
25 -> CPN’'Sim.result * string list

26 val CPN'bindings:

27 int -> ({n:NO, p:DATA} * {success1l:BOOL, success2:BOOLY}) list
28 ... (* 5 constants, 3 variables, and 6 functions x)

29 | end

87

transmit transitions are more complex. The technical reason is that, in the case
of the Transmit Acknowl, the variables n and successl are not correlated in any
way, and can be bound independently, so by separating them it is possible to
find legal bindings for the transition more efficiently. The CPN'occfun for Trans-
mit Packet is just a more complex example of this. The result of CPN'occfun is
a result from the simulator, indicating whether the transition was successfully
executed, whether the transition was disabled, or whether the transition was
not enabled a the current time stamp (for timed models). Additionally, a list of
descriptive error messages may be returned. All transitions also have a function,
CPN’bindings (11. 13, 19, and 26-27), which given an instance number returns a
list of all enabled bindings using the same grouping of variables as CPN’occfun.

This interface is well-suited for high-performance simulation and incremental
code generation. By distributing the state to multiple structures, it is possible to
update only markings of places affected by the execution of a given binding ele-
ment (transition with associated binding of all variables), making the execution
independent of the size of model. This also makes the enabling calculation more
efficient, as the enabling is only affected for transitions connected to modified
places (and we can even exploit monotonicity of enabling to further improve
the enabling calculation). Furthermore, as all places and transitions are repre-
sented as separate structures, incremental code generation is independent of the
size of the model. Adding a place or transition simply means we have to add a
new structure. Modifying a transition only requires the regeneration of a single
structure, and modifying a place only requires that we regenerate the structure
corresponding to the place and all structures corresponding to transitions con-
nected to the place, which is in practise a low number. Finally, during simulation,
we are just interested in whether a transition is enabled, and, if so, to execute
one enabled binding element. This is greatly facilitated by grouping the variables
of transitions, as there is no reason to calculate all binding elements, which can
be found as elements of the Cartesian product of elements of each group.

The properties of the interface facilitate an editor with incremental syntax
check and efficient simulation of CPN models, but the requirements for a state
space tool are different as we are dealing with many states (as opposed to just
one during simulation), requiring that it is possible to represent more than one
state. Also, we need to obtain all enabled binding elements in a given state. As
the state is distributed across multiple structures in the old interface, it is diffi-
cult to represent more than one state at a time, as we would need to traverse all
structures to read the marking of each place. As the enabling calculation of tran-
sitions is distributed across many structures, gathering all enabled transitions
requires checking enabledness of transitions individually. Finally, the old inter-
face is not very user-friendly, as we refer to all nodes using internal generated
names and instance numbers not easily obtainable by the user.

3.2 The New SML Interface

Instead, we define a completely new interface to CPN models. The interface is
designed with state space analysis in mind, but can of course be used for other

88

Listing 1.2: Model interface.

1 | si gnature MODEL =sig

2 eqt ype state

3 eqt ype event

5 except i on EventNotEnabled

7 (* Get the initial states and enabl ed events in each state *)
8 val getlnitialStates: unit -> (state * event list) list

10 (*» Get the successor states and enabl ed events in each successor state x)
11 val nextStates: state * event -> (state * event list) list

13 (*» Execute event sequence, return resulting states and enabl ed events *)
14 val executeSequence: state * event list -> (state * event list) list

16 (*» String representations of states and events *)
17 val stateToString: state -> string

18 val eventToString: event -> string

19 | end

purposes. The interface is designed to be independent of the actual formalism
at the most abstract level, which allows us to build tools that are formalism-
independent. The entire interface can be seen in Listing 1.2. The interface defines
the concepts of states and events (11. 2-3). The most important functions are ge-
tinitialStates (1. 8) and nextStates (1. 11). getlnitialStates returns the list of initial
states. The reason that this is a list and not just a singleton state is to support
non-deterministic formalisms. In addition to the state, we also return a list of en-
abled events for each initial state. The reason for this is that it makes it possible
to optimize enabling calculation during depth-first traversal. nextStates takes as
argument a state and an event and returns the successors using the same format
as getlnitialStates. If the given event is not enabled, the exception EventNotEn-
abled (1. 5) is raised. Additionally, the interface has a function for executing a
sequence of events, executeSequence (1. 14), which works like nextStates, except it
can execute zero, one, or more events rather than just one. Finally, the interface
contains two functions, stateToString and eventToString (1l. 17-18) for converting
states and events to a user-readable string.

State Representation. The interface in Listing 1.2 is formalism-independent.
In order to instantiate the interface for CPN models, we need to define the types
state and event, and define the functions in the interface.

As mentioned earlier, we need to be able to represent multiple states in a
state space tool. To increase familiarity for previous users of the state space tool
of CPN Tools [14], we define a structure Mark with data types and functions
for manipulating states. We do not want to distinguish between the type used
internally and the type manipulated by users in order to alleviate the need for
translating between different representations, so the type should closely reflect
the underlying CPN model. In Listing 1.3, we see (most of) the Mark structure
for the model in Figs. 3 and 4. The type of the state is defined inductively in
the hierarchy of the model. For each page, we define a record, which contains

89

Listing 1.3: New state representation.

structure Mark : sig
type Sender = {NextSend: NO ms}
type Network = {}
type Receiver = {NextRec: NO ms}
type Top = {A: NOXDATA ms, B1l: NOXDATA ms, B2: NOXDATA ms, Cl: NO ms,
C2: NO ms, D: NOXNO ms, Limit: UNIT ms, Received_1: DATA ms,
Received_2: DATA ms, Send: NOxDATA ms, Network: Network,
Receiver_1: Receiver, Receiver_2: Receiver, Sender: Send er}
type state = {Top: Top, time: time}
val getTop'Receiver_1'NextRec : state -> NO ms
val setTop’Receiver_1'NextRec : state -> NO ms -> state
val getTop’Receiver_2'NextRec : state -> NO ms
val set'Top’Receiver_2'NextRec : state -> NO ms -> state
val getTop'Receiver_1'B : state -> NOXDATA ms
val setTop’Receiver_1'B : state -> NOXDATA ms -> state
(* several nore accessor functions *)

W N OO W N e

I i I S =S R
o ok WO ©

end

-
S

entries for all places and sub-pages of the page. For example, in Listing 1.3 1. 2
we see the record defined for the Sender page in Fig. 4 (left). We see that we
have only included “real” places, i.e., the four port places are not included so
only the NextSend place is present. The type uses the names used in the model,
and NextSend is thus represented using the record entry NextSend. The type of
the NextSend is NO ms, i.e., multi-sets over the color NO of the place NO. The
multi-set type is the same as used by CPN Tools. Similarly, types are defined
for Network (1. 3), which contains no non-port places, and Receiver (1. 4), which
contains one non-port place. The Top page is more complex (1. 5-8), but uses the
same structure. It contains entries for all non-port (i.e., all) places (1. 5-6), but
also entries for all sub-pages (11. 6-8). The entries for sub-pages are named after
the substitution transition and the type is that of the sub-page. For example,
we see that the sub-page defined by the substitution transition Receiver 1 is
represented by the entry Receiver_1 of type Receiver. Finally, at the top-level,
we define the type of the state itself. As it is possible for a model to contain
more than one top page, we define a new top level (1. 9), which contains all top
pages (in this case just one entry Top of type Top). The state type also contains
an entry for all reference declarations (in this model there are none) and the
model time. As an example, we see the initial state of the network protocol in
Listing 1.4.

State records, like the one in Listing 1.4, can be used as is, i.e., by using SML
pattern matching or built-in accessor functions to pull values out of the record,
or by building new structures with the correct names. For the user convenience,

Listing 1.4: Initial state of network protocol.

1 | val initial = { Top = {

2 A = empty, B1 = empty, B2 = empty, C1 = empty, C2 = empty, D = empty ,

3 Limit = 3‘(), Received_1 = 1", Received_2 = 1", Send = 1%(1,"COLOUR")++
4 1'(2,"ED PET")++1'(3,"RI NET"), Network = {}, Receiver_1 = {NextRec = 1'1},

5 Receiver_2 = {NextRec = 11}, Sender = {NextSend = 1‘1} }, tim e=01}

90

we have also created set- and get-functions to access all pages and places of
the structure. These functions all use the same naming convention, which is the
function name (get or set) followed by a quote (). Then comes the complete
path to the place or page we wish to access, separated by quotes. The functions
take a complete state as argument. Getter functions return either a multi-set of
the appropriate type or a record describing the selected page. Setter functions
instead take an additional parameter of the correct multi-set or record type and
returns a new state, which is identical to the one given as the first parameter,
except that the selected place/page marking has been replaced. Examples of
setter and getter functions can be seen in Listing 1.3 in 1l. 10-15. In addition to
providing accessor functions for the “real” places represented in the state record,
we also provide accessors which provide access to port and fusion places, so it is
possible to use, e.g., get' Top'Receiver_1'B, to get the marking of the port place
B in the receiver module. This function looks up the value on the corresponding
socket place. This function is identical to get'Top’B1.

Event Representation. For events, we must make a choice between ease of use
and compositionality. We first outline the obvious hierarchical approach to events
and some of the problems of that. Then we describe our current implementation,
which is not hierarchical (and thus does not as easily support compositionality).

The hierarchical event representation (Listing 1.5) is the natural companion
to the state representation. Instead of types and records, we use structures and
data types. For each page, we have a structure defining a data-type with a
constructor for each transition and substitution transition. The type of each

Listing 1.5: Hierarchical representation of events.

1 | structure Bind : sig

2 structure Top : sig

3 structure Sender : sig

4 dat at ype event = Send_Packet of {n: INT, p: STRING}
5 | Receive_Acknow of {k: INT, nl: INT, n2: INT}
6 end

7 structure Network : sig

8 dat at ype event =

9 Transmit_Packet of

10 {n: INT, p: STRING, successl: BOOL, success2: BOOL}
11 | Transmit_Acknowl of {n: INT, successl: BOOL}

12 | Transmit_Acknow2 of {n: INT, success2: BOOL}

13 end

14 structure Receiver : sig

15 dat at ype event =

16 Receive_Packet of {k: INT, n: INT, p: STRING, str: STRING}
17 end

18 dat at ype event = Sender of Sender.event

19 | Network of Network.event

20 | Receiver_1 of Receiver.event

21 | Receiver_2 of Receiver.event

22 end

23 dat at ype event = Top of Top.event

24 |end

91

constructor contains either a record with all variables (for normal transitions)
or a reference to a previously defined data-type (for substitution transitions).

While this type definition is nice and natural, it has the major deficit that
it is very cumbersome to use. The problem is that while data-type constructors
are scoped, they are not context-sensitive. Thus, to refer to the transition Re-
ceive Acknow on the Sender page, we would need to write Bind.Top.Sender
Bind.Top.Sender.Receive Acknow {k, n1, n2 }, and the verbosity and
redundancy only gets worse if we have deeper hierarchies. We cannot solve this
problem by opening all structures unless we require that all transitions, globally
in the model, have unique names, and this is against the locality inherent in
Petri nets.

Instead, we define a data-type as in Listing 1.6. We define a constructor for
each transition named after the page it resides on and the name of the transi-
tion. The type of each constructor is a pair of an instance number and a record
containing all variables associated with the transition. This definition is not as
natural as the hierarchical one, and it re-introduces the “magic” instance num-
bers. To alleviate the introduction of instance numbers, we also define symbolic
constants (1l. 10-14) for the path to each page instance. Using this, we can refer to
the Receive_Acknow transition on Sender as Bind.Sender’Receive _Acknow
(Bind.Top.Sender, {k, n1, n2 }), where only Bind and Sender are re-
peated, and the latter only because the substitution transition has the same
name as the page.

A final way to represent events is to create a data-type with a constructor for
each transition instance, named after the path leading to the transition instance.
While this is nice to use at first sight, it is even less compositional than both
of the previous representations, and has the problem of making two instances of
the same transition have completely different constructors.

3.3 Optimizations

A thing to notice about the representation of the state in Listing 1.3 is that it
is immutable, i.e., that it is impossible to change markings of individual places

Listing 1.6: New representation of events.

1 | structure Bind : sig

2 dat at ype event =

3 Network'Transmit_Acknowl1 of int * {n: INT, successl: BOOL}
4 | Network'Transmit_Acknow?2 of int * {n: INT, success2: BOOL}
5 | Network'Transmit_Packet of

6 int * {n: INT, p: STRING, successl: BOOL, success2: BOOL}
7 | Receiver'Receive_Packet of int » {ki INT, n: INT, p: STRING, str: STRING}
8 | Sender'Receive_Acknow of int * {ki INT, nl: INT, n2: INT}

9 | Sender'Send_Packet of int * {n: INT, p: STRING}

10 val Top : int

11 val Top'Network : int

12 val Top'Receiver_1 : int

13 val Top'Receiver_2 : int

14 val Top'Sender : int

15 | end

92

in a state without creating a completely new state. This is a nice property we
can use to make several optimisations. Immutability allows us to use the same
representation internally as we expose to the user, as the user is not able to
modify the representation. This has the great advantage that we do not need
to translate between different representations in a state space tool (as happens
in CPN Tools, where the exposed representation of a state is a Node, which is
really an integer pointing into a mutable tree). Having the same representation
internally and externally also lowers the barrier for users to become developers
and experiment with more advanced aspects of state space reduction methods.

The implementation of the most interesting function from the interface in
Listing 1.2, nextStates is implemented as in Listing 1.7. The setState function
(not shown) basically copies the state record into the simulator. execute contains
a large switch, which calls the correct CPN'occfun with the right parameters,
and getState (not shown) reads the simulator representation and constructs a
state record. The implementation is in fact slightly more intelligent. setState and
getState keep track of the latest state record copied to/from the simulator. This
improves performance a lot, in particular when doing depth-first traversal, as we
will, most of the time, want to compute successors of a successor of the state
currently stored in the simulator. As we have already calculated successors of
this state and do not change it, the simulator is able to use locality to more
efficiently calculate the desired successors. By exploiting immutability of the
state record we can re-use parts of it to do even better by combining it with
locality to implement BDD-like data-structure, which is essentially a faster but
less memory efficient implementation of the tree-based storage of CPN Tools [2].
Assume we are given a state-record, e.g., the initial state from Listing 1.4. When
we execute the Send Packet transition on Sender, we know (statically), that we
can only change A and Limit on Top. We can thus re-use the representation of all
other places at the top level and the representation of all sub-pages by making
getState used in Listing 1.7 dependent on the event. This not only alleviates
the need to transfer state from the simulator to the new state records, it also
makes equality tests faster by reducing to pointer comparison for sub-pages and
unchanged places. Furthermore, re-using old representations conserve memory.
This does not ensure that we only store the multi-set 1'1 once (and is hence not
as memory efficient as the representation of CPN Tools), but on the other hand
does not spend any time trying to unify multi-sets that are almost the same. This
can also be exploited in the other direction. When asked to compute successors
for a certain state, we only need to transfer pages and places that have actually
changed (by changing the implementation of setState used in Listing 1.7). All
of this can be done completely independently of the interface, without making
explicit whether the interface is implemented in the most naive way or whether
locality-optimisations take place (except for faster execution in the latter case).

Listing 1.7: Implementation of nextStates function.

1 | fun nextStates (state, event) =
2 (setState state; execute event; getState())

93

3.4 Auxiliary Functions

In order to provide the interface in Listing 1.2, we need to generate model-
specific functions; basically the getState, execute, and setState functions used
in Listing 1.7. Furthermore, we need to generate the Mark and Bind structures.
The CPN simulator contains a set of tables, which can be used to inspect the
model, but these tables are optimized for incremental syntax-check and fast
simulation, and are therefore not very easy or fast to traverse. We have therefore
developed an interface to the static part of the model, i.e., the pages with places,
transitions, arcs, and all annotations of each. This interface can also be used
for other purposes. We have already used it to generate model-specific hash-
functions, marshaling of states and events, and ordering of states and events.

The generated hash-functions calculate hash values inductively in the struc-
ture of the model. We build “strings” on several levels, from multi-sets as strings
of tokens (which may again be strings of simpler values), over pages as strings
of places (multi-sets), to models as strings of pages. Using a simple combinator
function which can calculate the hash value of a string given the hash values of
each of it elements and hash-functions for all simple types, we can calculate a
hash value for an arbitrary CPN model in a very efficient way. Furthermore, by
using different combinator functions, we can efficiently generate multiple linearly
independent hash functions. Such hash functions are useful for many things, such
as putting states into hash tables (implementing full state space traversal), stor-
ing only a hash-value for each state (implementing hash compaction), or using
the hash-value to set a bit in a bit-array (implementing bit-state hashing).

Marshaling is implemented using a strategy similar to the hash function. If
we know how to store each character of a string, we can store the entire string
by writing the length of the string and each character. Marshaling is useful
for storing states to disk (implementing various disk-based state space traversal
algorithms), or for transmitting states over a network (implementing distributed
state space traversal).

Ordering is also implemented using the same strategy, by basically induc-
tively defining a lexicographical order. Orders are useful for storing states to
disk, as it is often useful to sort states when storing them on disk. It is also
useful for storing states in search trees, which is used by many algorithms built
into Standard ML, such as algorithms for calculating strongly connected com-
ponents of graphs, which is useful for determining certain liveness properties of
CPN models.

4 The Java CPN Model Interface

As mentioned in the introduction, many applications can benefit from tight in-
tegration with CPN models and the CPN simulator. If such applications are
algorithmic in nature, we suggest using the SML interface described in the pre-
vious section, as it does not have the overhead of communication via TCP/IP.
For most other applications, we propose that the Java interface described in this

94

section is used as the overhead is irrelevant for many applications. The Java
interface provides a high-level object-oriented representation of CPN models as
well as an implementation of the protocol used by the CPN Tools graphical
editor to communicate with the CPN simulator. As we furthermore provide an
importer package that is able to read models created with CPN Tools, this inter-
face makes it possible to create tools that load, manipulate, and simulate CPN
models. Applications with these purposes often need to provide a user-friendly
user interface or integrate with other applications. For these reasons, we have
decided to create this interface in Java, which is widely used and provides many
frameworks and tools for creating user-friendly applications.

4.1 Object Model

The CPN object model is a cleaned-up re-implementation of the model of the
BRITNeY Suite [16], created for the ASAP model checking platform [11]. ASAP
builds on the Eclipse platform [4], and so it is natural to use Eclipse frameworks
for the implementation of the Java interface. In order to improve interoper-
ability with other tools, we also support the ISO/TEC 15909-2 transfer format
standardisation effort [7].

Our object model builds on version 1.1.5 of ISO/IEC 15909-2, in partic-
ular the PNML Core Model (Fig. 2 in [7]) and the High-Level Core Structure
(Fig. 8 in [7]). In addition, we have added some extensions for CPN Tools specific
features (to support CPN Tools’ concept of time and code segments for transi-
tions). In order to not pollute the basic model, we have basically implemented
the PNML Core Model, and added features from the High-Level Core Structure
and the CPN Tools specific extensions as add-ins. We have also extended the
PNML Core Model with a simplified version of Modular PNML [9] to support
hierarchical nets. The resulting object model can be seen in Fig. 5. Basically,
we have a PetriNet at the top left corner. A Petri net can contain one or more
Pages (middle left), which can contain any number of Arcs and Objects (mid-
dle). Objects are basically Places and Transitions (bottom). Additionally, objects
can be Instances, which basically correspond to substitution transitions in CPN
Tools. Objects can have any number of Labels (middle top), which are annota-
tions, that correspond to initial markings, place types, arc inscriptions, names,
guards (or conditions), code segments, and time inscriptions (middle from left
to right). Places, transitions, and arcs each have one or more add-ins (classes
with dark gray background), which basically allows them to have typed access to
their annotations. Annotations also have an add-in, which makes it possible to
store a structured version of the annotation as well as a plain text version. The
Annotations package with the light gray background at the top right is basically
an implementation of the High-Level Core Structure except that we have added
Time and Code annotations. The white classes outside of this package basically
implements the PNML Core Model. The Instance and ParameterAssignement are
simplified versions of ModInstance and ParamAssign (renamed to remove abbre-
viations). The change is that where Modular PNML introduces a concept of
modules and import nodes, we just use the already defined concepts of page and

95

Annotations

[] Petriker] [Label |=] HLAnnotationAddin
0"
TF P
[7 I
H Anribute] H Annotation
T T H HLDeclaration
[I I I 1
H HLMarking H HLAnnotation H Namé] IE Condition H Code| [H Time]
| |
[[
0..1 0.1 0.1 0.1 0.
P
|5 HLPlaceAddin) [HLArcAddin| || HLTransitionddin) || CPNToolsTransitionAddi
1.1 E Object
H Page] [y
e
0.*
H MNode| Arc
larget
source
H FlaceNode H Instance H TransitionMNode]
ref ref
5 RefFPlace] H Flace] E ParameterAssignment El Transitiol [E RefTran
parameter
|
[
T value

Fig. 5: Object model for CP-nets in the Java interface

place (as we only allow place-bordered modules). Furthermore, our Instance class
is a Node and not just an object as CPN Tools allows arcs to and from substi-
tution transitions. Finally, the place and transition add-ins do not contain their
annotations (as they do in High-Level Core Structure), but just refer to them,
as objects already contain labels and the add-ins merely provide typed access to
these. We also have a few add-ins not shown in the figure. One adds an identifier
to pages, arcs, labels and objects, and another adds names to pages and objects.
Finally, we have an add-in for tool-specific information to Petri nets, objects,
and labels.

The actual implementation of the object model is done using the Eclipse
Modeling Framework (EMF) [5], which is a framework for implementing object
models. EMF can generate implementation code from Java interfaces or from
an UML diagram [13]. EMF is furthermore able to generate Java interfaces
and UML diagrams from the model as well. In our case, we have described the
model using Java interfaces, and the UML diagram in Fig. 5 is automatically
generated from the model. In addition to automatic implementation, EMF also
provides some nice features, such as automatic generation of XML marshaling

96

and unmarshaling as well as an adapter functionality which is an extension of an
observer architecture [6, Chap. 5]. This makes it possible to observe the object
model for changes which is useful for editors, and to attach adapters adding new
functionality to the classes.

CPN Tools Importer. Instances of the object model in Fig. 5 can be gen-
erated programmatically. It is of course desirable to create such models using a
graphical user interface instead. For this reason we have created an importer,
which allows programmers and users to import models created with CPN Tools.

The importer only imports the net-structure of the model but is prepared
to support the graphical information as well, as we have made a preliminary
implementation of the Graphical Information (Fig. 3 in [7]). All labels except
for HLDeclarations are loaded as flat text; HLDeclarations use a structure similar
to the TermsUserDeclarations (Fig. 17 in [7]), but the details are not shown
here.

4.2 Protocol Implementation

The CPN Tools GUI communicates with the simulator process using a custom
protocol. The protocol is an implementation of a remote procedure call (RPC)
system [3, Chap. 5.3]. The protocol sends packets over a TCP /IP stream. Packets
are transmitted in the custom BIS (boolean, integer, string) format, which is a
binary packet format that basically takes care of marshaling of simple data
types. Packets have an opcode which indicates the type of packet. CPN Tools
primarily uses two opcodes, namely 1 (evaluate SML code) and 9 (RPC request).
Packets with opcode 1 just contain a string to be sent for evaluation. Packets
with opcode 9 have an additional integer to indicate which command to execute
and sometimes another integer to determine a sub-command. Such commands
must be combined in the correct way to syntax check an entire CPN model and
generate simulator code for it.

In order to implement this protocol, one must implement the BIS packet
format as well as high-level constructs translating to the lower-level command
and sub-command integers, which is a tedious and error-prone job. Finally, we
need to construct a component that can take a CPN object model and correctly
send it to the simulator for syntax check and simulation. In Fig. 6 we see how
this has been implemented in the Java interface. We see five packages. cpn.model
represents the object model from Fig. 5, and cpn.model.importer is a package
implementing an importer able to load a file created using CPN Tools. The class
Job, which is outside of any of the packages, is part of Eclipse. The remaining
three packages implement the protocol used to communicate with the CPN sim-
ulator. The classes are listed with the most high-level at the left. Only the classes
at the top are meant to be used by most implementers. At the bottom-right, we
have Packet, which implements the BIS package format. Such packets can be sent
to a Simulator. The Simulator uses a delegate DaemonSimulator to communicate
with the simulator via TCP/IP in the same way as CPN Tools. The Simulator

97

class provides communication at the level of packets. The HighLevelSimulator
provides stubs for all the calls supported by the simulator, and it is thus possi-
ble to communicate with named methods. It uses a PacketGenerator factory to
actually create the packets it needs. The Checker class ties this to the object
model hierarchy, and makes it possible to perform higher-level operations, such
as syntax checking all declarations of a model. CheckerJob further lifts this and
makes it possible to syntax check an entire net using a single call. The checker
job integrates with the Eclipse platform and can provide feedback to the user.
If this is not desired, one can use the simpler Checker class, which can be used
independently of the platform used. For operations other than checking (such as
simulation), one must go to the HighLevelSimulator. One will very rarely need to
consider the Simulator, PacketGenerator, and their underlying classes.

g Job
@ [Status run(IProgressMoniter monitor)
cpn e%me.highlev&l ## cpn.engine
E Checkerlob £ Checker H HighLevelsimulator [Simulator
| | —
& woid checklnitializing(y @ wvoid initialize(& String evaluate(String expry
@ void checkDeclarations(@ void InitializesyntaxCheck(@ Packet send(Packet p)
@ void checkDeclaration(HLDeclaration decly
H FacketGenerator H Simulatorimplementation
@ Packet constructlnitialized) @ Packet send{Packet p)
@ Packet constructinitializeSyntax Checkg

@ Packet constructCheckDeclaration(HLDeclaration decly
[Packet
cpn.model.importer # cpn.model # cpn.engine.daemon

[l DOMFarser E] Fetrillef E Dasmonsimulator @ void addBoalean(boolean &)
@ woid addintegeriint iy

& Petrilet parse(ULR url) @ woid add

Fig. 6: Implementation of the protocol used to communicate with the simulator

5 Examples

In this section we show how to use the aforementioned interfaces by implementing
a simple state space exploration tool that can check a model for dead-locks
from the command-line. We first show the SML code implementing the traversal
algorithm using the SML interface from Sect. 3, and then turn to the Java code
for the command-line application loading a model and launching the exploration.

5.1 State-space Exploration

The implementation of the state space exploration algorithm can be seen in List-
ing 1.8. We actually implement an algorithm parametrised with a state property,
so it is possible to check for other properties than dead-locks. The algorithm ba-
sically performs a recursive depth-first traversal of the state space and stores

98

already expanded states in a hash-table. If a state not satisfying the property is
found an exception is raised. The code starts (1. 1) by defining an exception to
raise if a violating state is found. Then the built-in parametrised hash-function is
instantiated. Then follows the implementation of the actual algorithm (Il. 6-35),
which takes a predicate to apply to each state and a list of states from which to
start the exploration. The function first defines the storage using SML’s built-in
HashTable (1. 8). Then two mutually recursive functions dfs’ and dfs" are defined.
dfs’ (11.20-31) traverses a list of states. It starts by checking if we have already
traversed the state (1. 22), and, if so, continues with the next state (1. 23). If the
state is new, it is stored (1. 25) and the predicate is checked (1. 26). If the predi-
cated is violated, the exception is raised (1. 29). Otherwise we call dfs" with the
state before continuing with the rest of the states. dfs’ takes care of exploring
successors resulting from executing all enabled events for a given state. It basi-
cally calculates successor states for each event (1. 14), and explores them using
dfs’ (1. 15) before traversing the rest of the events (1. 17). The entire function
just calls dfs’ with the given state(s). If no exception is raised, we return that no

Listing 1.8: Implementation of a simple state space exploration algorithm.

1 | excepti on Violating of CPNToolsModel.state

fun combinator (h2, hl) = Word.<<(h1, Ow2) + hl + h2 + Owl7
val hash = CPNToolsHashFunction combinator

AW

6 | fun dfs predicate states =

7 | let

8 fun equals (a, b) = a=»b

9 val storage = HashTable.mkTable (hash, equals) (1000, LibBase .NotFound)
11 fun dfs” state [| = ()

12 | dfs” state (event:events) =

13 | et

14 val successors = CPNToolsModel.nextStates (state, event)
15 val _ = dfs’ successors

16 in

17 dfs” state events

18 end

20 and dfs’ [] = ()

21 | dfs’ ((state, events):rest) =

22 i f Option.isSome (HashTable.find storage state)
23 then dfs’ rest

24 el se let

25 val _ = HashTable.insert storage (state, ())
26 val violates = predicate (state, events)
27 in

28 if violates

29 then rai se Violating state

30 el se (dfs” state events; dfs’ rest)

31 end

32 [in

33 (dfs’ states; (NONE, storage))
34 handl e Violating state => (SOME state, storage)
35 | end

37 | fun none _ = false
38 | fun dead (_, events) = List.null events

99

state violating the property was found, and the storage (1. 33). If an exception
is raised, we also return the state violating the property. The last part of the
listing contains a predicate that is never satisfied (1. 37) and one that checks for
dead-locks (1. 38). The first is useful for performance testing, as it forces a full
generation.

We have tested this implementation against the one built into CPN Tools.
By varying the number of packets to transmit in the CPN model in Figs. 3 and
4 (altering the marking of the Send place) from two and upwards, we see that
this implementation is 50-290 times faster (for 4-19 packets), discovers the same
number of states as CPN Tools, and is able to explore larger state spaces than
CPN Tools (3.0 - 105 states when transmitting 25 packets compared to CPN
Tools’ 1.7 - 108 states when transmitting 19 packets).

5.2 Command-line State-space Analyser

To keep the example short, we use a simple implementation strategy. We load
the model given as the first parameter, load the SML code shown in the previous
example, which we assume is stored in a file simple-dfs.sml. Finally, we perform
the exploration and show the result to the user. The implementation can be seen
in Listing 1.9. We start by importing some classes needed (1l. 1-9). The rest of the
code is the class implementing our state space tool. The class starts by obtaining
the name of the file to analyse (1. 13). The file is loaded as a Petri net (1. 14),
and we create a HighLevelSimulator. As we are running this outside of an Eclipse
run-time environment, we need to supply a simulator manually. The simulator
requires a delegate, which requires information about which host and port to
connect to as well as the name of the run-time system to load. All of this takes
place in Il. 16-18. If we are using the interface as part of an Eclipse application,
we can just use the simplified version in 1. 15, which obtains all parameters from
a preference pane exposed to the user. We then create a new CheckerJob (1. 20),
which requires a name (we just give it the name of the file), a Petri net, and
a high-level simulator. We start (schedule) the job and wait for it to terminate
(1. 21-22). We then load the state-space algorithm developed previously (1. 23),
and launch an exploration (1l. 24-30). We process the result of the exploration
so the result we show the user is the violating state (if any) and the number
of nodes explored. When we are done, we destroy the simulator (1. 32). This
is needed as the simulator starts an external application, which should be shut
down as well as a couple of Java threads for communication. By destroying the
simulator we make sure to clean this up. If we quit the application (such as
pressing the cross in a graphical application), this is performed automatically,
but for this command-line application do this manually in order to terminate
the program when the exploration is done.

The command-line tool can be executed as java StateSpaceTool protocol.cpn,
and shows the first encountered dead-lock if there is one as well as the number
of states stored.

100

Listing 1.9: Implementation of a command-line state space exploration tool.

1 | inport java.io.File;

2 | inmport java.net.netAddress;

3 |inport java.net.URL;

4 | i nport dk.au.daimi.ascoveco.cpn.engine.Simulator;

5 |1 mport dk.au.daimi.ascoveco.cpn.engine.daemon.DaemonSimula tor;

6 |1 mport dk.au.daimi.ascoveco.cpn.engine.highlevel.HighLevel Simulator;
7 | i mport dk.au.daimi.ascoveco.cpn.engine.highlevel.checker.C heckerJob;
8 | i mport dk.au.daimi.ascoveco.cpn.model.PetriNet;

o |inport dk.au.daimi.ascoveco.cpn.model.importer.DOMParser;

11 | public class StateSpaceTool {

12 public static voi d main(String[] args) t hr ows Exception {

13 String file = args[0];

14 PetriNet petriNet = DOMParser.parse(new URL("file://* + file));

15 | // HighLevel Sinulator s = Hi ghLevel Si nul at or. get Hi ghLevel Si nul ator();
16 HighLevelSimulator s = HighLevelSimulator.getHighLevel Simulator(
17 new Simulator(new DaemonSimulator(

18 InetAddress.getLocalHost(), 23456, new File("cpn.ML"))));

19 try {

20 CheckerJob checkerJob = new CheckerJob(file, petriNet, s);

21 checkerJob.schedule();

22 checkerJob.join();

23 s.evaluate("use \"simple-dfs.smI\"");

24 System.out.println(s.evaluate(

25 "let " +

26 " val (state, storage) = " +

27 " dfs dead (CPNToolsModel.getinitialStates()) " +

28 "in "+

29 " (state, HashTable.numltems storage) " +

30 "end"));

31 } finally {

32 s.destroy();

33 }

34 }

35 |}

6 Conclusion and Future Work

In this paper we have described two interfaces to the CPN Tools simulator. One
is very close to the simulator and written in Standard ML, and provides fast
access to the simulator. The interface is useful for analysis methods and other
algorithmic applications requiring little user-interaction. The other interface is
written in Java and provides an object-oriented representation of CPN models,
a means to import models created using CPN Tools, and high-level abstrac-
tions of the communication with the CPN Tools simulator, making it possible to
integrate CPN simulation into Java applications, ranging from simple command-
line applications to full-fledged graphical applications. Both of the interfaces are
available to interested parties. Send an email to ascoveco@cs.au.dk for more
information.

Future work includes replacing the current event implementation with the
indicated hierarchical implementation from Listing 1.5. We can alleviate the syn-
tactical problems by observing that while names of transitions may overlap, they
rarely do in practise, so by just opening all structures, we can refer to the tran-
sition Receive Acknow. on the Sender page as Top Sender Receive _Acknow
{k, n1, n2 }. For transitions with overlapping names, we still need to use the

101

very verbose naming, but we find that this is a reasonable price to pay for the
more convenient representation.

The current Java interface only supports loading CPN models and syntax-

checking them in one action. It would be useful to integrate the incremental
syntax-checking capabilities of the simulator with the adapter functionality of
the object model, so that whenever the object model is altered, it is automatically
syntax-checked, independently of how the model is altered. This would be useful
for editors, but also for applications generating models, as they are automatically
checked for correctness and ready to be simulated.

References
1. ASCoVeCo Project webpage. Online: www.daimi.au.dk/ ~ascoveco/
2. S. Christensen and L. M. Kristensen. State Space Analysis of Hierarchical Coloured

10.

11.

12.

13.

14.

15.
16.

Petri Nets. Petri Net Approaches for Modelling and Validation, Lincom Studies in
Computer Science 01, pages 1-16, 2003.

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems - Concepts and
Design. Addison-Weslay, 3rd edition, 2001.

Eclipse webpage. Online: www.eclipse.org/

Eclipse Modelling Framework (EMF). www.eclipse.org/modeling/emf/

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.
ISO/JTC1/SC7/WG19. Software and System Engineering—High-level Petri
nets—Part 2: Transfer Format, version 1.1.5.

J.B. Jorgensen and K.B. Lassen. Aligning Work Processes and the Adviser Portal
Bank System. In REBNITA 05, 2005.

E. Kindler and M. Weber. A Universal Module Concept for Petri Nets—an
implementation-oriented approach. Informatik-Berichte, (150), June 2001.

L.M. Kristensen, P. Mechlenborg, L. Zhang, B. Mitchell, and G.E. Gallasch. Model-
based Development of a Course of Action Scheduling Tool. STTT, 10(1):5-14,
2007.

L.M. Kristensen and M. Westergaard. The ASCoVeCo State Space Analysis Plat-
form: Next Generation Tool Support for State Space Analysis. In Proc. of 8th CPN
Workshop, volume 584 of DAIMI-PB, pages 1-6, 2007.

L.M. Kristensen, M. Westergaard, and P.C. Ngrgaard. Model-based Prototyping
of an Interoperability Protocol for Mobile Ad-hoc Networks. In Proc. of IFM’05,
volume 3771 of LNCS, pages 266-286. Springer-Verlag, 2005.

Object Management Group. Unified Modeling Language (UML), Version 2.1.1.
Online: www.omg.org/technology/documents/formal/uml.htm , 2007.
A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S. Stissing,
M. Westergaard, S. Christensen, and K. Jensen. CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In Proc. of ATPN’03, volume 2679 of LNCS,
pages 450-462. Springer-Verlag, 2003.

J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1998.

M. Westergaard and K.B. Lassen. The BRITNeY Suite Animation Tool. In Proc.
of ATPN’06, volume 4024 of LNCS, pages 431-440. Springer-Verlag, 2006.

102

Modeling Bus Communication Protocols
Using Timed Colored Petri Nets —
The Controller Area Network Example

Marko Bago!, Nedjeljko Peri¢!, and Siniga Marijan?

! University of Zagreb,

Faculty of Electrical Engineering and Computing,
Unska 3, 10000 Zagreb, Croatia
{marko.bago,nedjeljko.peric}@fer.hr
http://www.fer.hr
2 Konéar - Electrical Engineering Institute,
Fallerovo Setaliste 22, 10000 Zagreb, Croatia
sinisa.marijan@koncar-institut.hr
http://www.koncar-institut.hr

Abstract. Engineers in industry usually design new systems based on
earlier experience and available development tools. Unfortunately, soft-
ware tools that enable industrial users insight into systems’ inner behav-
ior before the production, are still not in everyday use. However, such
tools, when used properly, can save both time and money.

In this paper a system based on Controller Area Network is modeled
using timed colored Petri nets. This system is verified for the desired
properties and then it is validated. Validation is done using two real-life
vehicle control units used in light rail applications. The results, as well
as possible future use of the model, are presented.

Key words: Controller Area Network, timed colored Petri net, model-
ing, simulation, verification, validation

1 Introduction

Distributed systems are based on communication networks. Different communi-
cating entities (nodes) interact with each other. The interaction becomes more
complex as the system grows. Developing a distributed system also means devel-
oping an adequate communication network, one that is able to support all the
requirements set by each individual node.

During recent light rail vehicle development CAN was used as a fieldbus,
[1,2]. Testing the functionality of such a system required Software Simulation
Tools (SSTs) and, in the end, real-life equipment. SSTs allow for easier and faster
development of a system than real-life equipment. Unfortunately, communication
SSTs are usually based on a single communication protocol. This raises at least
two problems. First, if the system uses more than one communication protocol,
it is necessary to use more than one SST. The interaction between the tools is

103

either difficult or impossible. Second, using more than one SST increases the
cost, and the development engineers have to be familiar with several different
development environments.

One solution to these problems would be a single SST with support for mul-
tiple communication protocols, [3,4]. In order to achieve this, a development
environment for the SST has to be defined. This environment should fulfill the
following requirements: it should be flexible, user friendly, and it should support
verification and validation of communication system models.

“Whereas verification checks a model against a given specification, validation
checks a model against the modeled system.”, [6].

Verification of a system can only be performed if the system is modeled using
some formal method.

In [5] it is correctly observed that “A model is always a reduced rendering of
the system that it represents.”. Five key characteristics for a Model-Driven Devel-
opment (MDD) of software are given: abstraction, understandability, accuracy,
predictiveness and inexpensiveness. These five characteristics are universal to all
modeling and can be recognized in the requirements for the SST, e.g. under-
standability can be understood as a part of user friendly requirement, accuracy
and predictiveness are in fact support for verification and validation, etc.

Petri nets fulfill all of these requirements. The graphical representation of
the net gives the user an easier understanding of the modeled process, and
system models can be verified because Petri nets are a formal method. For a
correct validation, a real-life system should be modeled. Results obtained from
the simulation model and from the real-life system should be compared. For
communication protocols two factors are important for the validation: (i) order
of messages gaining bus access must be identical and (ii) message propagation
time has to be equal to that of the real-life system.

This paper presents a way to model Controller Area Network (CAN) com-
munication protocol using timed colored Petri nets (CPN), [7-9]. A short intro-
duction to the CAN bus is presented in Sect. 2. In Sect. 3 a short introduction
to hardware and software tools used to create, verify and validate the model, is
given. Section 4 presents the CPN model of the CAN bus created using CPN
Tools. All modules used to create the CAN bus network are explained. Section
5 presents verification and validation methods used on the model and explains
how and why they are used. This section also presents the results of the ver-
ification and validation processes. Verification was achieved using state space
queries within CPN Tools. Validation of the model was done using two real-life
vehicle control units (VCUs) used in light rail applications. Section 6 concludes
the paper and gives a brief overview of the future work.

2 CAN bus communication

CAN was originally developed for automotive applications in the early 1980’s by
Robert Bosch GmbH. The CAN protocol was internationally standardized by

104

ISO (International Organization for Standardization) and SAE (Society of Au-
tomotive Engineers). Today, CAN is used in many markets, like motor vehicles,
industrial automation, medical equipment etc.

CAN bus is an event-triggered, multi-master, bus communication system with
priority-based access control and automatic retransmission of corrupted frames,
[7,8]. Frames are labeled with identifiers (11-bit or 29-bit) that are used to
determine both the priority and the content of a frame. Frame identifiers (ID)
are transmitted together with useful user data. There are no node addresses.
Two bit levels exist on the bus, dominant and recessive. The dominant bit level
(logical 0) overwrites the recessive bit level (logical 1). The CAN bus bit rate
can be up to 1 Mbit/s.

CAN protocol uses four different frame formats for the communication:

1. Data frame - carries data from the transmitter to all receivers on the bus.
Data is labeled with a message ID.

2. Remote frame - used to request transmission of a data frame with identical
message ID.

3. Error frame - transmitted by any node (transmitter or receiver) in case of a
bus error detection.

4. Qwerload frame - used for providing an extra delay between the preceding
and succeeding data or remote frames.

Data frames and remote frames are separated from the preceding frames
by an interframe space. There are two parts of interframe space, intermission
and bus idle. Intermission is inserted after data or remote frame and is 3 bits
(recessive) long. During intermission no node is allowed to send either data or
remote frames. Only sending of an overload frame is allowed. Bus idle may be
of arbitrary length and only recessive values are on the bus.

CAN frames. A CAN frame is simultaneously accepted either by all nodes or
by none.

Data frames are composed of seven different bit fields, as in Fig. 1.a and Fig.
l.c: SOF (Start Of Frame) - 1 bit, arbitration field - 12 bits (11-bit ID) or 32
bits (29-bit ID), control field - 6 bits, data field - [0-8] bytes, i.e. [0-64] bits, CRC
field (Cyclic Redundancy Check) - 16 bits, ACK field (Acknowledge) - 2 bits and
EOF (End Of Frame) - 7 bits.

Remote frames are composed of six different bit fields, as in Fig. 1.b and Fig.
1.d: SOF - 1 bit, arbitration field - 12 bits (11-bit ID) or 32 bits (29-bit ID),
control field - 6 bits, CRC field - 16 bits, ACK field - 2 bits and EOF - 7 bits.
Error frame is composed of two fields, as in Fig. 1.e and Fig. 1.f: error flag field
- [6-12] bits and error delimiter - 8 bits.

Owverload frame is composed of two fields, as in Fig. 1.e and Fig. 1.f: overload
flag field - [6-12] bits and overload delimiter - 8 bits.

Frame coding. The following bit sequences (fields) will be coded by the bit
stuffing method: SOF, arbitration field, control field, data field and CRC se-
quence. Whenever a transmitter detects five consecutive bits (including stuff

105

a B0 2] +] /o[7 s [
o [o o] |

ID

W 1[2[3[4]s[][[eellT]

lCRCI ‘

c|

d|

el
4 B

Fig. 1. Following frames are presented: a)
11-bit ID, 8 byte Data frame; b) 11-bit
ID remote frame; c) 29-bit ID, 8 byte
Data frame; d) 29-bit ID Remote frame;
e) 6-bit flag field error/overload frame; f)
12-bit flag field error/overload frame. The

Arbitration

Node 1 |R lost

R|R|R

Arbitration
won

Node 2 |R R|R R

Arbitration

RH
lost

Fig. 2. An example of an arbitration pro-
cess on the CAN bus. The arbitration is
among three competing nodes. Node 3 is
the first to lose the arbitration, while the
Node 2 won the arbitration. BUS shows
values present on the CAN bus.

Node 3 |R

BUS |R

data fields are colored white.

bits) of identical value in the bit stream, it automatically inserts a complemen-
tary bit into the stream. The receiver automatically destuffs this bit from the
received bit stream.

Bus access. Every node has the right to access the idle bus at any moment
in time. SOF (data or remote frame) marks the beginning of bus access and
contention-based arbitration takes place. Every transmitter compares the bit
being transmitted with the bit on the bus. If a recessive bit is being sent, but a
dominant bit is detected, the node loses arbitration and will not send any more
bits, Fig. 2. The node that lost the arbitration becomes a receiver. If a data and
a remote frame are sent to the CAN bus at the same time, and if the two frames
have identical identifiers, then the data frame will win the arbitration process,
i.e. it will gain access to the CAN bus first.

Error detection and handling. The following mechanisms are provided for
error detection: monitoring, stuff rule check, frame check, 15-bit CRC, ACK
check.

Monitoring: A node sending a bit on the bus monitors the bus at the same time.
If the value sent is different from the value detected then an error is detected.
Exceptions happen during arbitration, during an ACK slot and while sending
an error passive flag.

Stuff rule check: A stuff error is detected during the sixth consecutive bit of
equal level in the frame field coded by the bit stuffing method (SOF, arbitration
field, control field, data field and CRC sequence).

Frame check: This error is detected if one or more illegal bit values is detected in
a bit field, e.g. during EOF the node detects a dominant bit and only 6 recessive

106

bits instead of 7.
15-bit CRC: CRC is calculated by the receiver in the same way it is calculated
by the transmitter. If the values do not match then an error is detected.
ACK check: An ACK error is detected by the transmitter whenever a dominant
bit is not detected during the ACK slot.
Errors are registered and error frames are automatically retransmitted.

In this paper 11-bit message IDs and 500 kbit/s were used for CAN commu-
nication.

3 Tools

Creation, verification and validation of a simulation model requires different
tools. The tools can be divided into two groups, hardware and software tools,
i.e. hardware equipment and a computer with appropriate programs. In order to
create, verify and validate a timed colored Petri net model, CPN Tools is used,
[10]. Validation also requires a real-life system. The real-life system was composed
of two vehicle control units (VCUs) that are used in light rail applications, [2].

3.1 Hardware tools

Hardware used for validation purposes consists of three CAN communication
nodes. Two CAN communication nodes are VCUs used for control of TMK2200
trams operating in the city of Zagreb, Croatia, Fig. 3, [1]. The third node is
a general purpose CAN communication node connected via a USB cable to a
laptop PC. It is used to start the message exchange between VCUs and to log
all data traffic on the CAN bus. All logged messages are time stamped with 1
us resolution. The hardware validation test system is given in Fig. 3.

Fig. 3. The assembled test system consist- Fig. 4. The integrated development envi-
ing of a VCU and a PC on top of it. ronment for the programming of the VCU.

107

Vehicle Control Unit. VCU is a twin-channel, multiprocessor system that
supports sequencing, protection, regulation, diagnostic and communication func-
tions, [2].

Integrated Development Environment (IDE). User programs are devel-
oped by the engineers that are application oriented. To support them, an IDE
based on block diagrams was developed, Fig. 4. This IDE was used to program
the validation system.

3.2 Software tools

CPN Tools software was used to create, verify and validate timed colored Petri
net models. CPN Tools is a program developed and maintained by the CPN
group from University of Aarhus, Denmark. The program is capable of creating
hierarchical timed colored Petri net models, [10]. Petri nets are represented by
the graphical layout, while additional information and interaction of the model
comes from the CPN ML programming language. CPN ML is based on the
Standard ML programming language, [11,12]. Using CPN ML, it is possible to
define complex data structures and functions to handle these structures.

CPN Tools is based on the formally defined syntax of colored Petri nets. The
semantics, i.e. the behavior of the net, is also defined. The defined semantics
enable simulation of the model. Simulation can be interactive, i.e. with user in-
tervention, or automatic. Automatic simulation enables validation of the system.
Since both the syntax and the semantics of the CPN models created using CPN
Tools are defined, it is possible to generate the full state space of the models.
The state space can be queried. Queries have to be written using CPN ML pro-
gramming language. Queries enable verification of the desired properties of the
system.

4 Model

The concept of the bus communication system is given in Fig. 5. The nodes
have an identical structure. This means that it is possible to create one node
structure, and reuse it to model multiple nodes. The modular approach is also
used for message generators, i.e. message formatting.

Actual data to be transferred is not modeled. It is possible to abstract the
real data from the model since, in this case, the data is not used for any sort
of control of the system. A model of a higher level protocol based on CAN, e.g.
CANopen, would require the actual data. The final CANopen model would look
a bit different, but it could be based on the CAN model presented in this paper.

Since time is used for modeling, it is necessary to define how much real time
is represented in a single simulation time unit. In this paper the single simulation
time unit represents 10 ns of real time.

The top level of the model, given in Fig. 6, contains: two nodes (substi-
tution transitions Node_1 and Node_2); three places (Node2Bus, BusFree and

108

| NODE 1 | l NODE 2 ‘
1 1
COMMUNICATION PROTOCOL

pemmmmeal

L,*°” NODE1 e -
-

-

=
«*" " NODE2 "Ss

-

Data generator b

0 " 3
.' & Message | S ¢
) 3 linterpretation| Y,
(Y)
% ‘:
& Trnseiver A)
TR A 5 prdl]
. - 2 COMMUNICATION ®« - l'
. PROTOCOL ')
.

B

Fig. 5. The concept of the bus communication sys-
tems.

Fig. 6. The top level of the CAN
bus communication model.

Bus2Node) that represent the state of the CAN bus; and a substitution transi-
tion (CANbus) that handles messages on the CAN bus.

The first node is configured as given in Fig. 7. The node sends 9 messages.
All messages are to be sent with a 10 ms period. The length of messages is
defined by the parameter DLC (number of data bytes), while ID defines message

identifier.

({ID=65,RTR=0,DLC=0},
(10*msDuration,0))
MSG_65

({ID=57,RTR=0,DLC=1},
csMSGdef (1p*msDuration,0))

MSG_57
({ID=49,RTR=0,DLC=2},
csMSGdef (10*msDuration,0))

MSG_49
({ID=41,RTR=0,DLC=3},
csMSGdef (10*msDuration,0))

MSG_41

csMSGdef (1g*msDuration,0))
MSG_33

({ID=33,RTR=0,DLC=4},

({ID=25,RTR=0,DLC=5},
csMSGdef (1p*msDuration,0))

({ID=17,RTR=0,DLC=6},
csMSGdef (1p*msDuration,0))

({ID=9,RTR=0,DLC=T7},
csMSGdef (10*msDuration,0))

({ID=1,RTR=0,DLC=8},
csMSGdef (10*msDuration,0))

csMSGdef
A A y
MSG_65|—[MSG_57|(—|[MSG_49|(—[MSG_41||MSG_33|—|MSG_25|—|MSG_1 MSG_9 MSG_1 MsgPool
MsgGen MsgGen MsgGen MsgGen[[MsgGen MsgGen [[MsgGen MsgGen MsgGen csMSG

Fig. 7. The CAN node, substitution transition label Node_01, Fig. 6.

The second node is configured as given in Fig. 8. The node sends 9 messages.
All messages are to be sent with a 10 ms period. The length of messages is

109

defined by the parameter DLC (number of data bytes), while ID defines message
identifier.

({ID=66,RTR=0,DLC=0},
(10*msDuration,0))

MSG_66

true

=
:

({ID=58,RTR=0,DLC=1},
CcsMSGdef (10*msDuration,0))

MSG_58

({ID=50,RTR=0,DLC=2},
csMSGdef (1p*msDuration,0))

MSG_50

({ID=42,RTR=0,DLC=3}
csMSGdef (10*msD’uration:0)) '
MSG_42

({ID=34,RTR=0,DLC=4}
csMSGdef (10*msD’uration,’0)) '

MSG_34
({ID=26,RTR=0,DLC=5},
csMSGdef (10*msDuration,0))

AN
@ ({ID=18,RTR=0,DLC=6},
csMSGdef (10*msDuration,0))
@ ({ID=10,RTR=0,DLC%7},
csMSGdef (1oxmsDuration,0))
@ ({ID=2,RTR=0,DLC=8},
csMSGdef (10*msDupration,0))
csMSGdef
A A A

e Ao e e e e oo

MsgGen | [MsgGen| [MsgGen] {MsgGen| [MsgGen| [MsgGen| {MsgGen| {MsgGen | {MsgGen | csMSG

Fig. 8. The CAN node, substitution transition label Node_02, Fig. 6.

Each node uses nine message generators, modelled by substitution transition
MsgGen in Fig. 7 and Fig. 8. Besides message generators, each node uses a
substitution transition that forwards messages from the node to the CAN bus
(substitution transition label Msg2CAN).

The message generator, given in Fig. 9, creates a single shot or periodic
messages for the node to transfer. It is important to be able to create both types
of messages, since start-up procedures and similar actions use one-time messages,
while the system in operation usually uses periodic messages. Alarms or error
situations in the system can be communicated by the one-time messages too.

Two functions are present in the arc inscriptions originating from the transi-
tion ReadMsg, Fig. 9. The first one is abs(int). This built-in function returns the
absolute value of an integer int. The second function is fGenFrame(ID, RTR,
DLC). This is a user defined function and it creates a CAN message frame based
on the identifier (ID), type of frame (data or remote, RTR), and number of data
bytes (DLC).

The system used to transfer generated messages to the CAN bus is given in
Fig. 10. It is composed of two substitution transitions. The first one, MSG2RAM,
takes generated messages and places them in the input FIFO memory buffer,
just like a regular communication processor. The second one, Transceiver, takes

110

csMSGdef
({ID=VvID,RTR=VRTR,DLC=vDLC},(vPer,vOff))
vPer

@+abs [vI<=0]

(vOff)

Fig. 9. The CAN message generator, sub- Fig. 10. The system used to transfer mes-

stitution transition label MsgGen, Fig. 7 sages from the node to the CAN bus, sub-

and Fig. 8. stitution transition label Msg2CAN., Fig.
7 and Fig. 8.

the first message from the input FIFO buffer and sends it over the CAN bus.
MSG2CAN is structured that way in order to enable easier simulation of different
message sorting mechanisms.

In MSG2RAM, simultaneously generated messages, e.g. the messages gener-
ated in the same interrupt routine, are sorted according to their priority, Fig.
11. The highest priority message (lowest ID) is on the top of the list, while the
lowest priority message (highest ID) is on the bottom of the list. The entire
sorted list is appended at the end of the input FIFO memory buffer. Thus the
input FIFO buffer is not sorted, i.e. it can happen that a higher priority message
is behind a lower priority message. The real system behavior is simulated that
way. Other system behaviors can be simulated too, e.g. a system with a priority
sorted input FIFO buffer.

[vI>0,
length(vMsgs)=vI] vMsgs2
0

AAVMsgs 01

2R,
csMSGs
[vMsgs
(1

vI+1

Fig.11. The system used to transfer messages from RAM to the CAN transceiver,
substitution transition label Msg2RAM, Fig. 10.

Substitution transition MSG2RAM has two functions on the arc inscriptions
originating from transitions Sort2RAM and Count2Sort, Fig. 11. The first one is

111

a built-in function length(lst). It returns the length of the list Ist, i.e. the number
of elements on the list. The second function is a user defined insMsg(msg, Ist).
This function inserts a message msg to the priority sorted list of messages Ist.

Figure 12 shows the message transceiver. It takes only one message at a time.
The message is taken from the top of the input FIFO buffer. The transceiver
sends the message to the CAN bus (place Node2Bus) only if the bus is available.
The state of the CAN bus is defined in the place BusFree. The CAN bus can be
either available (true) or occupied (false).

CcsMSGs

if(vMsg<>vMsg2) M "

then vMsg::vMsgs vMsg::vMsgs .

else vMsggs 9 if(vMsg=vMsg2)
then TRN

else RCV

false

vTrans
0@+2

ClearRx

Y

vMsg

LR)(/‘ [ReadMsg‘: o

csMSG

Fig. 12. The model of the CAN transceiver, substitution transition label Transceiver,
Fig. 10.

When the node gains access to the bus, it sends the message from the transmit
register (place Tz). If the message has the highest priority, compared to all
the other messages sent by competing nodes, then the transceiver remains a
transmitter. If the message has a lower priority, then the transceiver turns into
a receiver. The message is handled by the CANbus module and the end result is
passed to transceivers through the place Bus2Node.

The CANbus, given in Fig. 13 handles messages sent by the nodes. The
maximum number of messages in the place Node2Bus must be equal or smaller
than the number of connected nodes. Once the messages are received, the bus
changes the state of the BusFree place. Next, the messages are sorted according
to their priority. The function insMsg(msg, Ist) adds message msg to the sorted
list Ist.

The highest priority message is sent to the place Bus2Node, Fig. 13. This
way all nodes become aware of the highest priority message and can change

112

insMsg(vMsg,vMsgs)
VvMsg::vMsgs

[vI=length

(vM%g::vMsgs)]

ClearBus

vMsg@+fProp(vMsg)

wat e

INTt

0@+(fProp(vMsg)+1)

Fig. 13. The model of the CAN bus, substitution transition label CANbus, Fig. 6.

their respective state (transmitter or receiver). In order to synchronize the state
change of all the nodes it is necessary to add a time delay on the arc between the
transition MsgOnBus and the place MsgOnBus1. The message is then processed
by the AddError transition. Here complex error behavior of the bus can be
modeled. The message, modified or not, is sent to the place Msg4Prop. In this
paper no errors on the bus were assumed.

Message propagation time is calculated by the transition Prop, Fig. 13. De-
pending on the size of the message, and other parameters influenced by the
AddError transition, it is calculated how long the message actually occupied
the bus. The message is sent to the Bus2Node place, where it is read by all
the nodes. If there was an error during the transmission, the transmitting node
would automatically try to retransmit the message.

The substitution transition CANbus uses two user defined functions, Fig. 13.
First one is insMsg(msg, Ist). This function inserts a message to the priority
sorted list. The second function, fProp(msg), is used to calculate the message
propagation time. It uses total number of bits in the message frame to calculate
the duration on the CAN bus. All delays added in the CANbus are compensated
for.

The place State in Fig. 13 defines the state of the CAN bus as follows: 0 -
no message present on the bus; 1 - a single message present on the bus, which
is used to inform the nodes about the message that won the arbitration process;
2 - a single message present on the bus which is used to transfer the message to
all the nodes.

113

4.1 Model restrictions

The state machine of the CAN node, that depends on the error counters, was
not implemented. Modeling the error counter would be a major difficulty for the
verification. TRN - transmit error counter has 256 states. RC'V - receive error
counter has 128 states. This alone gives 128 x 256 = 32768 states per node.

If there are occasional errors in the communication system, and we model
them, then the model will behave in an identical way as the real-life system. In
the case of a heavily disturbed communication (system error) the CAN nodes will
eventually go into ”bus off” state, [7,8]. Heavy disturbances are usually caused
by physical defects, i.e. short-circuit, wave reflection due to poor termination,
disconnected wires etc. This is out of scope of our model.

5 Verification and validation results

5.1 Verification

Verification is used to test the model for desired (or undesired) properties, [18—
20]. Since verification of a large system tends to get extremely difficult (due to
the state explosion problem), it is possible to use modular analysis of the system,
[13-17]. There are different possible approaches to the modular analysis.

It is possible to analyze every module as a separate entity. The boundary
conditions should, in such cases, be identical to the ones when the module is
part of the system. It is possible to define such conditions and mimic them.
Thus, all possible local states of the module are checked.

Three types of modules can be used in a modular analysis approach: a source
module, a transport module, and a sink module. A source module generates
tokens without any external influence. A transport module transfers the tokens
from the input place(s) to the output place(s). It does not generate any tokens
on its own. The sink module consumes all tokens it receives from the input(s).
The most critical modules are the transport modules. It is necessary for these
modules to have independent input interfaces, i.e. if more than one input is
present, then the inputs have to cause independent actions within the module.

There are three separate modules for the state space analysis in this paper:
(i) message generator - generates messages for the node to send to the CAN bus,
(ii) the node - gets messages from message generators and sends them via the
CAN bus, and (iii) CAN bus - handles messages that the nodes want to send.
In this paper message generator is the source module, CAN bus is the transport
module, while the node is the sink module. For the state space analysis of all
modules, the following branching condition has been used:

fn (n:Node) =>
if (n=hd(sort INT.1lt (EqualsUntimed(n))))
then
true
else
false

114

This condition limits the generation of the state space. States (nodes in the
state space) are compared to each other, but without time marks. If there are
two identical states with different time marks, only one will be processed. This
is a perfectly legal condition since there are no time controlled events except the
generation of the periodic messages. Properties of these periodic messages do not
change with time. This means that a message generated at time T'1 will cause
identical system behavior as a message generated at time T2, where T'1 # T2,
if the state of the system is otherwise identical (time invariant system).

Message generator module. The input place to message generator module
is MSGdef. The output place is MsgPool. The module has no other interaction
with its environment, Fig. 14. The CAN message generator can generate two
types of messages: (i) single message and (ii) periodically repeating message.
The module has to be verified for both types.

({ID=10,RTR=0,DLC=7},
(10*msDuration,0))

CcsMSGdef
({ID=VID,RTR=VRTR,DLC=VDLC},(vPer,vOff))

Fig. 14. The model used for verification of the message generator module. Filled tran-
sition is used to mimic the behavior of the environment.

The single message generator should have the following properties: (i) only
one type of message is generated and (ii) if the module deadlocks, it terminates
properly. Both properties have been verified by the state space analysis. The
state space has 4 nodes and 3 arcs. There is one dead marking and there is one
dead transition MsgGen (this transition creates periodic messages).

The periodic message generator should have the following properties: (i) only
one type of message is generated, (ii) module does not deadlock, and (iii) module
is in livelock. All properties have been verified by the state space analysis. State
space has 4 nodes and 3 arcs. It is not the full state space because time changes,
so no markings are identical. There is no dead marking and there is one dead
transition Oneshot (this transition creates the single message).

Node module. The input places to the node module are Node_1, BusFree and
Bus2Node. The output places are Node2Bus and BusFree. The module has no

115

other interaction with its environment, Fig. 15. The CAN node can get two types
of messages from the message generator: (i) single message and (ii) periodically
repeating message. The module has to be verified for both types of messages.

1’ {ID=1,RTR=0,DLC=8,AID=1,TBL=131}

VMsg@+1

[vI>0,
length
(vMsgs)=vI]

A CSMSGs
if(vMsg<>vMsg2) frue
then vMsg::vMsgs
else vMsgs

VMsg::vMsgs

Ms BusFree Clear bus
vsG VMsg sooL false
. 2')fRN VTrans false vMsg
if(vMsg=vMsg;
then TRN vMsg@+
else RCV \
RCV 9

64 l \ &

> >

false

vTrans

CANarb

ClearRx

Fig. 15. The model used for verification of the node module. Filled places and transi-
tions are used to mimic the behavior of the environment.

With the single message the node should have the following properties: (i)
only one type of message is handled and (ii) module deadlocks. Both properties
have been verified by the state space analysis. The state space has 14 nodes and
14 arcs. There is one dead marking and there are two dead transitions ClearRz
and RxArb (these transitions are used when the node is receiver). The correct
behavior of two nodes, each sending a single message (with different IDs), has
also been tested. In such a case there is no dead transition. This test also verified
the automatic retransmission capability.

With the periodic message the node should have the following properties: (i)
only one type of message handled, (ii) module does not deadlock, (iii) module is
in livelock, and (iv) only one message at the time sent to the bus. All properties
have been verified by the state space analysis. The state space has 14 nodes and
14 arcs. It is not full state space because time changes so no markings are iden-
tical. There is no dead marking and there are two dead transitions ClearRx and
Rz Arb. The correct behavior of two nodes, each sending a periodic message (with
different IDs), has also been tested. In such a case there is no dead transition.
This test also verified the automatic retransmission capability.

116

Creation of multiple messages and handling of these messages has only been
simulated. There is no need for the verification of this property because mes-
sages with periods lower and higher than message propagation time have been
generated for the state space analysis.

In the case of the periods lower than message propagation time (input arc
to the place Node_1, Fig. 15), messages stack up in the node but the node sends
only one message at a time. The state space analysis run terminates when the
deadline, i.e. threshold time, is reached. In Fig. 15 the initial value of the place
Node_1 is set to the maximum message length, and a message period significantly
lower than the propagation time. In the case of the period higher or equal to the
message propagation time, all messages are sent and the buffer is empty. The
analysis terminates properly, i.e. as expected.

CAN bus module. The input places to the CAN bus module are BusFree and
Node2Bus. The output places are Bus2Node and BusFree. The module has no
other interaction with its environment, Fig. 16. The CAN bus module can get
two types of messages from the node: (i) a single message and (ii) a periodically
repeating message. For the verification of the module this is not important. It
is important that, while one message is being processed, another one does not
access the bus. CAN bus was modeled with 5 different non-periodic messages,
representing 5 different nodes.

5 true
false
NoOfMsg BusFree A\

INT true true
vI vI-1 Fa&ﬁm
[vI>0] o
Wisg insMsg(vMsg,vMsgs)
odezsu BusCoun] @ Sort _@
s s vMsg vMsgs
A @+1

' MSG csMSG - csMSGs
g [vI=length VMsg: :vMsgs
. 0 (vMsg::vMsgs)] []
D=10, VI+1 I
@+1, & oL y 3)
PNoOfMsgdg "] TakefFirst| sgOnBu
o VMsg

GenMsg B

if(vi=1)
then 1
else 0

INT csMSG
o VMsg

>
tateOfNoWAIY ReadArb State [" MsgOnBug
—

1
N
YMsg 4 ! vMsg@
vMsg AddError ngnBus
1
0 csMSG
Msg2Bus

'
ClearBus csMSG

4

vMsg
ReadMsg sg2Bus2 Prop
vMsg vMsg 9 +fPrOD(v

@ 0@+(fProp(vMsg)+1)

INTt

VMsg 2

Fig.16. The model used for verification of the CAN bus module. Filled places and
transitions are used to mimic the behavior of the environment.

117

The CAN bus module should have the following properties: (i) multiple mes-
sages can access the Node2Bus place (max. number of messages equals max.
number of connected nodes), (ii) only one message should be handled, (iii) mes-
sage of highest priority should be handled, and (iv) deadlock can occur only in
case there are no more messages to handle. All properties have been verified by
the state space analysis. State space has 77 nodes and 174 arcs. There is one
dead marking and no dead transition. Node2Bus holds at most 5 messages. Place
Bus2Node contains the message of highest priority.

5.2 Validation

The CAN communication system consists of two nodes with the following prop-
erties: bit rate of 500 kbit /s, 11-bit message ID, each node sends 9 different mes-
sages (18 messages in total), all messages have different IDs, message lengths
are in range from 0 to 8 bytes, no errors on the bus. The only thing to consider
when developing the test system is that the propagation time of all messages
has to be lower than half the round period. In this case total propagation time
is cca. 3 ms while the round period is 10 ms, i.e. 3 ms < 5 ms.

Two tests were conducted. The first test, Testl, considered messages with
data that produced the highest number of bits (due to bit stuffing). The second
test, Test2, considered messages with data that produced the lowest number of
bits. Nodes were programmed as shown in Tab. 1 and Tab. 2.

Table 1. Message settings for two tests of Table 2. Message settings for two tests of

Node 1. Node 2.
Node 1 Node 2

ID|DLC| Testl | Test2 ID|DLC| Testl | Test2

1 8| 0x3C | OxAA 2 8| 0x3C | OxAA

9 7] 0xC3 | 0xAA 10 7] 0xC3 | 0xAA
17 6| OxOF | OxAA 18 6| OxOF | OxAA
25 5| 0xFO | OxAA 26 5| 0xFO | OxAA
33 4| Ox1E | OxAA 34 4| Ox1E | OxAA
41 3| 0xE1 | OxAA 42 3| O0xE1 | OxAA
49 2| 0xFO | OxAA 50 2| 0xFO | OxAA
57 1| 0xE1 | OxAA 58 1| 0xE1 | 0xAA
65 O|no data|no data 66 Olno data|no data

Both nodes had to start sending messages at the same time. All messages are
sent only once. The main reason is that the simulation model has the knowledge
of global time, the simulation time, while the real-life equipment does not.

Real-life equipment has inherent drifts and needs synchronization in order to
have a notion of global time. This was not implemented in the real-life system,
so only one round of messages was allowed. The authors did actually test the
real-life system allowing it to continue operation without synchronization.

118

Message reception times

3,50 -

3,00 - o

2,50 n 8560
= g2 o ° - Sim-T_1
E 2,00 m 5" RL-T_1
g 1,50 g-o -o—Sim-T_2
= g B RL-T 2

1,00 B

B
0,50 - B
B
0,00 740 T T T T T T T T T T T T T T T T T 1
1 2 9 10 17 18 25 26 33 34 41 42 49 50 57 58 65 66
Message ID

Fig. 17. The results of the validation tests. Sim-T_z stands for simulation test x. RL-
T_z stands for real-life test x.

An internal test report [21] shows a significant drift (up to 10.5 ms per
hour) between two identical oscillators. The same oscillators were used in the
microelectronic boards for this paper. The 10.5 ms per hour drift translates to
0.0105/(60 * 60) = 2.917 % 10~6 = 2.917 ppm.

Since a single bit lasts 1/500000 = 2% 10~° sec it can be seen that an offset of
a single bit between the two boards will be within 2% 1076/2.917%10~¢ = 0.686
sec. This is roughly 68 ms. This gives about 6 rounds of messages, at 10 ms
period, without distortion. This calculation does not include other factors, such
as interrupt latencies, which can cause drifting and significantly lower the number
of synchronized rounds.

The difference was observed, in average, after the third round. Then a mes-
sage sent by one of the nodes was sent later then planed, but still within the
block of messages. After about 1-2 min the messages form the nodes were not
interleaved any more but rather separate blocks of messages were observed on
the bus. These results were much better at a lower communication speed (100
kbit/s) and with a lower number of messages (3 per node). Now the drifting
became apparent after about 13 rounds (cca. 1.3 sec). The separate blocks of
messages were observed after 7 min.

The real-life system had a starting message. It was not considered to be the
starting point of time measurement, because of the message processing overhead,
which is not modeled. The moment the first message (ID 1) was received, is
considered the starting point, i.e. time 0. All other messages were timed according
to the first message. The obtained results are given in Fig. 17.

The time difference, between the model and the real-life system, was in both
tests less than 1 us, so it is not visible in Fig. 17.

119

6 Conclusion and future work

It has been shown that the proposed concept for communication system model-
ing is adequate. The verification and validation results show that the simulation
model can be used during the development of new CAN based systems. In future
work a model of 16 (+4 optional) nodes will be created. This model will be used
to simulate and analyze the CAN bus system in a future city train. Due to the
high number of nodes, and even higher number of messages, a modular verifica-
tion approach is necessary. Future work will address a more formal description
of necessary and sufficient module boundary conditions.

In the future, gateway systems, based on real-life equipment, between the
CAN and the WTB buses will also be developed.

Acknowledgments. This work was supported by Koncar - Electrical Engineer-
ing Institute, Croatia, and the Ministry of Science, Education and Sports of the
Republic of Croatia.

References

1. Marijan, S.: Control Electronics of TMK2200 Type Tramcar for the City of Zagreb.
International Symposium on Industrial Electronics - ISIE, volume IV, Dubrovnik
(2005) 1617-1622

2. Marijan, S.: Vehicle control unit for the light rail applications. International Con-
ference on Electrical Drives and Power Electronics - EDPE, Dubrovnik (2005)

3. Bago, M., Marijan, S., Peri¢, N.: Modeling Controller Area Network Communica-
tion. International Conference on Industrial Informatics - INDIN, Vienna (2007)
485-490

4. Bago, M., Peri¢, N., Marijan, S.: Modeling Wire Train Bus Communication Using
Timed Colored Petri Nets. International Conference on Instrumentation, Control
and Information Technology - SICE, Tokyo (2008) 2905-2910

5. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software, vol. 20,
No. 5 (2003) 19-25

6. Desel, J., Juhas, G.: What is a Petri Net?. Unifying Petri Nets, Springer-Verlag
(2001) 1-25

7. ISO: Road vehicles - Controller area network (CAN) - Part 1: Data link layer and
physical signalling. ISO 11898-1:2003, The International Organization for Stan-
dardization (2003)

8. ISO: Road vehicles - Controller area network (CAN) - Part 2: High-speed medium
access unit. [ISO 11898-2:2003, The International Organization for Standardization
(2003)

9. Jensen, K.: An Introduction to the Theoretical Aspects of Coloured Petri Nets.
A Decade of Concurrency, Lecture Notes in Computer Science, vol. 803, Springer-
Verlag (1989) 230272

10. Jensen, K., Kristensen, M.L., Wells, L.: Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer, vol. 9, No. 3-4 (2007) 213-254

11. Standard ML of New Jersey. http://www.smlnj.org

120

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Ullman, J.D.: Elements of ML Programming. Prentice-Hall, Englewood Cliffs
(1998)

Valmari, A.: The State Explosion Problem. Lectures on Petri Nets I: Basic Models,
Lecture Notes in Computer Science, vol. 1491, Springer-Verlag (1998) 429-528
Valmari, A.: State of the Art Report: STUBBORN SETS. Petri Net Newsletter,
No. 46 (1994) 6-14

Christensen, S., Petrucci, L.: Modular Analysis of Petri Nets. The Computer Jour-
nal, vol. 43, No. 3 (2000) 224242

Lakos, C., Petrucci, L.: Modular Analysis of Systems Composed of Semiau-
tonomous Subsystems. Fourth International Conference on Application of Con-
currency to System Design - ACSD, (2004) 185-195

Lakos, C., Petrucci, L.: Modular state space exploration for timed petri nets. Inter-
national Journal on Software Tools for Technology Transfer, vol. 9, No. 3-4 (2007)
393-411

Toussaint, J., Philippe, C., Simonot-Lion, F.: A Model of CAN-based Applications
for the Verification of Temporal Properties. 3rd IFAC Symposium on Intelligent
Components and Instruments for Control Applications - SICICA, Annecy, (1997)
Krakora, J., Hanzalek, Z.: Timed Automata Approach to CAN Verification. 11th
IFAC Symposium on Information Control Problems in Manufacturing - INCOM,
vol. 1 (2004)

Liu, L., Billington, J.: Verification of the Capability Exchange Signalling protocol.
International Journal on Software Tools for Technology Transfer, vol. 9, No. 3-4
(2007) 305-326

Bago, M.: Test report - oscillator drift. Koncar - Electrical Engineering Institute
(2005) 1-12

121

122

Banker’s Algorithm Implementation
in CPN Tools

Michal Zarnay*

University of Zilina, Univerzitna 8215/1, SK-01026 Zilina, Slovak Republic.
michal.zarnay@fri.uniza.sk

Abstract. When constructing discrete simulation models of complex
transportation systems, their designers face problems of deadlock states
occurring in the course of simulation. When analyzing it, the issue was
transformed to a problem of solving deadlock states in resource alloca-
tion systems (RAS) with non-sequential processes with flexible routing
and use of resources of multiple types at once. As a suitable deadlock-
avoidance policy, the banker’s algorithm (BA) has been chosen. The task
was to modify the basic version of the BA and to test the developed al-
gorithm on a sample transportation system with the outlined properties.
As a suitable environment for this, the CPN Tools were chosen, what
led to an implementation of the modified version of the BA in the CPN
ML, language used by the CPN Tools. The paper explains modifications
of the algorithm, describes an implementation of it in the CPN ML and
shows its use on a coloured Petri net model of a small example from the
outlined category of the RAS.

1 Introduction

Motivation for this work came from the field of detailed computer simulation of
complex transportation systems, such as railway marshalling yard processing a
few thousands of wagons per hour in trains of various technological processing
descriptions with help of over one hundred resources (individual tracks, locomo-
tives, members of personnel). From experience with real projects, main techno-
logical processes in complex systems are usually clearly defined, however, there
are often little details complicating the models and causing that designers of
models face problems of deadlock states occurring in the course of simulation.

Deadlock state is a state of a system, where two or more system processes
are blocked in their execution because they wait for two or more resources, and
the awaited resources are at the same time occupied by the processes included in
the waiting list. The waiting processes thus block and are blocked. Unblocking
this state is possible only by an exceptional operation.

When analyzing the issue, we learnt that it is similar to solving of deadlock
states in other fields like flexible manufacturing systems, and that it has been
tackled in literature for many years. However, none of the proposed solutions
seemed to be adequate for this problem. Further analysis in [1] transformed
the issue to a problem of solving deadlock states in resource allocation systems

123

(RAS) with non-sequential processes with flexible routing and use of resources
of multiple types at once.

As a suitable deadlock-avoidance policy for such a system, the banker’s al-
gorithm (BA) has been chosen [1]. The task was to modify the basic version of
the BA and to test the developed algorithm on a sample transportation system
with the outlined properties. From our literature review, we are not aware of any
use of the BA in a RAS combining flexible routing with concurrent processing.
As a suitable environment for this, the CPN Tools were chosen: to construct a
CPN model for the sample system and to implement an adjusted version of the
BA. Reasons of this decision lie in the abilities of Petri nets and CPN Tools to
construct a model of a RAS quicker compared to other means, e.g. high-level
programming languages, and to facilitate a qualitative analysis of the model with
and without the BA for testing its effectiveness in deadlock avoidance. In the
end, the algorithm itself has been implemented in the CPN ML, language used
by the CPN Tools.

From the complex work, this paper focuses on explaining basic modifications
of the BA, describing an implementation of it in the CPN ML and showing
its successful use on a coloured Petri net model. For the illustrative model,
however, only a theoretical example from the outlined category of the RAS has
been included, since the model of a sample transportation system developed in
[1] and briefly described in [2] is too complex to serve as a basis for showing the
algorithm.

The paper is organised as follows. In the section 2, we introduce background
for the paper about resource allocation systems and their modelling in Petri nets,
and the banker’s algorithm and our modifications for the studied system. The
section 3 describes the implementation of the modified algorithm in the CPN
ML, its integration with the CPN model and its analysis results. That is followed
by discussing main contributions and issues of the work in the conclusion.

2 Starting Point

2.1 Resource Allocation System in Petri Net

Resource allocation system (RAS) is a system consisting of concurrently running
processes that in certain stages, in order to get successfully completed, require
an exclusive use of certain number of system resources [3]. Resources are limited
and re-usable as their allocation and de-allocation changes neither their charac-
ter nor quantity. Based on its character, a process in the RAS is sequential or
non-sequential, i.e. some stages of the process run concurrently. The resulting
system is then either sequential (if all involved processes are sequential) or non-
sequential (if at least one process in the system is non-sequential). Furthermore
a process may contain flexible routing, which means that in a certain moment, a
process execution continues in one of available options and if correctly defined,
taking any of them brings the process to the same final state. Finally, the num-
ber and the type of resources allocated at the same time distinguish between

124

a single-unit RAS (every process is allowed to have only one resource unit al-
located at a time, i.e. before allocation of the next resource, the previous must
be returned), a single-type RAS (at least one process has two or more units of
the same resource type at a time) or a multiple-type RAS (at least one process
has two or more units from two or more resource types at a time). The outlined
attributes create categories of the RAS with varied complexity.

The system used in this paper is a non-sequential multiple-type RAS with
flexible routing. It means that at least one process in the system combines flexible
routing with concurrent execution. To distinguish modelling elements of both
properties, we use the following naming convention in the paper:

— Variant — one of possible routes of a process execution (sequential or non-
sequential) that is chosen by flexible routing

— Branch — a part of a process that is executed concurrently with another part
(branch) of the same process

For the modelling of a RAS, the coloured Petri net (CPN) is used. In the
net, subnets of two types are found: a process subnet and a resource subnet.
A process subnet consists of places, transitions and arcs in a structure starting
by an initial transition and ending with a final transition and describing causal
relations between stages of a process. A stage (a task) in the process corresponds
to a place and events of beginning and ending of tasks correspond to transitions.
Together with a place for idle processes (let’s denote it P0), which connects the
final transition with the initial transition of the process description, it makes
a strongly connected component. The variants of the flexible routing in the
process description are created, when at least one place has at least two output
transitions (conflict in Petri net, like in state machines) and another place has
at least two input transitions, while all possible routes in the process subnet
contain the place P0. The branches of the concurrent processing are created,
when a transition has at least two output places and another transition has
at least two input places (synchronization in Petri net, like in marked graphs),
while the place PO is in a part of the subnet with no more than one branch.
A resource subnet consists of one place and adjacent arcs. Content of the place
represents actually free resources and arcs express their allocation and release
to and from stages of processes. Typically, there are several process subnets, one
for each modelled process, and one resource subnet in a RAS model.

For a description of the system’s dynamic behaviour, we’ll distinguish be-
tween process types and process instances. The process type is an abstract de-
scription of a process. The process instance is a concrete occurrence of a process
according to a process type. In the CPN, the process type is modelled by the
process subnet and the process instance by one or more tokens of one colour.
A position of a token in a place of the process subnet represents a stage of the
process and a combination of places occupied by tokens of the same value consti-
tutes the actual state of the process instance. Similarly, there are resource types
and resource instances. The former modelled by colours of a colour set for all
resources (one resource type = one colour) and the latter by individual coloured

125

tokens (number of tokens of a colour = number of resources of the respective
resource type).

The figure 1 depicts a CPN model of an illustrative RAS that we use in
this paper. The system contains one non-sequential process type modelled by
the process subnet. The places P1, ..., P9 represent individual activities (tasks)
in the process. The place PO represents the outside environment, where the
finished process instances (tokens coming to the place P0) get replaced by new
ones before their processing (tokens leaving the place P0). Transitions 7'1,...,79
interlink the activities to give them a logical structure.

An execution of the process type is divided into two branches from the initial
transition 71, which continue until the final transition 7'9. The left-hand branch
is further divided into two variants between the places P1 and P8. The left-
hand variant of these has further 2 branches between transitions 72 and T'8.
The place PO contains two tokens of different colours from the integer colour set
cProcessI D modelling two process instances currently outside of the system.
When an instance is in the system, it is represented by two or three tokens of
the same colour, depending on the number of branches visited in the actual state.
Movements of the coloured tokens are facilitated by the variable proc present on
all the arcs in the process subnet.

The place Resources with adjacent arcs represents the resource subnet. The
arcs define relations of allocation/release of resources to/from process activities.
Nine tokens in the place Resources of 3 colours R1, R2 and R3 from the colour
set cResources represent nine available resource instances, three of each resource

type.

2.2 Banker’s Algorithm

The banker’s algorithm, first introduced in [4], uses information about a current
system state to decide, whether an allocation request of a process instance can
be fulfilled. It is called every time, when an allocation request is made. It tries
to find, whether the allocation leads to a safe state, i.e. a state, from which all
running processes can finish their execution. If yes, the request can be fulfilled,
otherwise, the requesting process instance must wait until another process in-
stance returns resources. In order to decide, whether the state is safe, the BA
tries to order all running process instances in such a sequence, so that each
of them can be finished with resources that it has currently allocated or that
are currently available in the system or that are returned from finished process
instances already in the sequence prior to the tested process. If it succeeds in
finding such a sequence, we say that the state is ordered, and since every ordered
state is safe [5], the state is also safe. If it fails to find the sequence, we say that
the state is unordered, which does not mean that the state is unsafe. However,
the allocation request cannot be fulfilled. This is due to the suboptimality of
the BA, while finding an optimal algorithm for solving the question about state
safeness is a NP-hard problem.

The basic principle of the BA is described in a pseudo-code based on the
Algorithm 1 from [5]. It uses the following data structures:

126

€. T ++72d.2 soid)
arssa%04do
Td.¢ so.d
aIssanouado s0.4d
€. T++Td. T soud
/1 9l
4 2y 2
$324N0SaYD s04d c0ud so0.d QIssa204dd Q155990442
$90.4N0Sd
€ € d 9d e 0d
++2d . € QIss$220.4d0 @QISS900.4dd @AISS900.4d2 . I++T1. 1
++74.€
@ s0.d s0ud
£d € 4N @
* €y ++T1 .1
++2d.€
+4+TH.€ vl
4| cd. T++ 1Y, T
€d . T++2d. T
s0.d
aIssa%04do Q1SS2204d2
J
so0ud

€4 . T++Td. T

Fig. 1. CPN model of illustration RAS.

127

— Allocated — a matrix of allocated resource units to process instances
— Allocated|i][j] — a number of resources of the kind j allocated to the process

instance i

— Needed — a matrix of needed resource units to finish execution of process
instances

— Needed][i][j] — a number of resources of the kind j needed by the process
instance 1

— Awailable — a vector of available resource units in the system

— Available[j] — a number of available resources of the kind j

— S — a set of all process states currently being executed by process instances
— II — a set of identification numbers of process stages in S

— R — a set of all resource types

— p(i) — the i-th item in the vector of all running process instances p

When called, the algorithm uses data about a current state of the system in
the data structures Allocated, Needed and Available as input and provides an
answer to the question Is the given state ordered? as output values Admit or
Reject:

begin
// Set of currently running process instances. //
I={1,2,....] 5|}
loop
// If all instances have been ordered, admit the state. //
if IT = @ then return Admit
// Otherwise find a p(i) that can be added to the order. //
else find ¢ € IT such that
Needed][i][j] < Allocated]i][j] + Availablelj];
if no such 7 exists, return Reject;
// Otherwise, add p(i) to the order. //
for j =1 to | R| do begin
Available[j] = Availablelj] + Allocated]i][j];
Allocated|i][j] = 0;
Needed][i][j] = 0;
end;
I=1I\i
end loop
end

The outlined algorithm has been tested for a sequential single-unit resource
allocation system (RAS) with flexible routing [5].

The algorithm assumes that as each process instance enters the system, it
declares the maximum number of units of each resource type needed for its
execution. In a more elaborated version, supportive routines update the number
of remaining needed resources of each type of the system processes based on
descriptions of their execution and actual positions of process instances [5] [6]
and [7].

128

Applications of the banker’s algorithm described in the mentioned literature
sources as well as in [8], [9] and [10] have been connected with the sequential
RAS-s only. On the other side, authors in [11] consider a banker’s-like dead-
lock avoidance policy for a RAS with non-sequential processes without flexible
routing. Our literature review did not bring to our attention any application of
the banker’s algorithm or banker’s-like deadlock avoidance policies that would
treat a RAS combining both concurrent processing as well as flexible routing in
a process.

2.3 Modifications of Banker’s Algorithm

Data structures (the matrices Allocated, Needed and the vector Available) used
by the original version of the BA stay the same in our implementation except
renaming the Needed matrix to RemainingNeeded to express more precisely
that a content of the data structure is modified during a process instance exe-
cution. Resources that will not be requested any more, are subtracted from the
vector after their allocation. Only those resources will stay recorded that will
be requested in the remaining part of execution. This is based on the assump-
tion that we know process descriptions and we know states, when values of the
RemainingN eeded vector are changed.

In [7], it is proposed to assign values of the RemainingNeeded vector to
individual process stages of a process on its route to the end of execution. This
proposal is suitable for flexible routing, but not for concurrent processing of non-
sequential processes. In such processes, the current process instance state may
be represented by tokens in more than one place, where the places are in dif-
ferent branches. Since tokens in branches move concurrently, the order of their
movements is non-deterministic and it is not possible to know the number of
currently allocated and the number of remaining needed resources for each place
(for the time, when a place is occupied by a token) generally for all possible
executions. That’s why we introduce vectors of relative changes (called Change)
which modify the RemainingNeeded vector for the current process instance
according to the change in the allocation of resources in the related stage. If re-
sources are being allocated, the Change vector will contain a positive number of
the allocated units, if released, the number will be negative. The Change vector
must be defined for each process stage with any allocation or release of resources.
In addition, it is necessary to take into account, whether resource units will be
allocated to the same process instance repeatedly, i.e. allocations and releases
of a unit of the same resource type occur in disjunctive time periods at least
two times till the end of the process instance execution. This is recorded in the
RemainingNeeded vector through values of the Change vector distinguishing
two groups of bits in the integer used by every release of resource units. An item
of the C'hange vector expresses a number of units of the relevant resource type
that are to be allocated/released. When a value of the Change vector contains
a non-zero number encoded in the lower half of the bits (the bits 0-3 by 8-bit
numbers), the corresponding units will be used again. When a non-zero number

129

is encoded in the upper half (the bits 4-7), the units won’t be used again. For in-
stance, if there are 2 units released without a planned re-allocation, the number
will be —32. If they were both to be re-allocated later, the number will be —2,
if only one should be re-allocated, the correct number will be —17. The outlined
mechanism is relevant only for releases of resources. By allocations of resource
units, only the lower half of bits is considered.

As for the division of bits, it is not necessary that the available bits are divided
into two halves. It is important that the smallest used part of bits is enough to
record the highest number of resource units allocated or released at once in the
modelled system. The chosen bits are manipulated with help of operations divide
(/) and modulo (\) and of a relevant constant called ByteDiv (for the discussed
division to upper and lower bits of an 8-bit value, ByteDiv = 16).

The routine updating the three main data structures then looks as follows:

forj=1to| R| do
if Changel[j] # 0 then do begin
if Change[j] <0
then ChangeValue = —((—Change[j])/ByteDiv
+ (—Changelj]) \ ByteDiv)
else ChangeValue = Changelj]/ByteDiv + Changel[j] \ ByteDiv;
Available[j] = Available[j] — ChangeV alue;
Allocated]i][j] = Allocated[i][j] + ChangeV alue;
if Change[j] <0
then ChangeValue = —(—Changelj]) \ ByteDiv
else ChangeValue = Change[j] \ ByteDiv;
RemainingNeeded]i][j] = RemainingN eeded|[i][j] — ChangeV alue
end;

The vectors of relative changes are used not only for (de)allocation of re-
sources, but also for flexible routing. The RemainingNeeded vectors may be
different for individual variants of a process description, while every process in-
stance must have one of them in its initial state. That is why we propose two
steps to carry out:

1. To order all available variants of the process description and to set the first
of them as primary — its RemainingNeeded vector will be initial for every
process.

2. To define a differential vector between an old and a new variant for every
point in the net, where a switch of the two variants is realized.

In the illustrative example, the switch from the primary to the secondary
variant is necessary on realizing the transition 73 providing the variant with the
transitions 72, T'5 and T'8 is primary and variant with 7'3 and 7'6 is secondary.

In summary, our modifications to the banker’s algorithm consist of renaming
the Needed data structure to RemainingNeeded (otherwise the original algo-
rithm in the section 2.2 is the same), specifying details of the routine updating
the BA data structures and defining related change vectors for every stage of

130

processes with a (de)allocation in the underlying system. The changes were mo-
tivated by the fact that the original algorithm has been constructed for a simpler
class of RAS than our application RAS.

3 Banker’s Algorithm in CPN

3.1 Construction in CPN ML

Apart from the BA main logic (finding, if the new state is ordered), the imple-
mentation needs data structures and routines for recording and managing infor-
mation about a current state of running processes in the system. Both parts are
implemented in user-defined functions of the language CPN ML. In the following
sections, we describe colour sets, variables, constant values and functions used.
They are fully cited in the appendix.

Data Structures The principal data structure is defined by the colour set
cBanker AlgData, which is a product of three components corresponding with
the above mentioned matrices Allocated, RemainingNeeded and the vector
Awailable. The first two components are of the colour set cAllProcessesW Res,
which is a list of items as products cProcessID x cResNumbersList. Each
product represents a process (cProcessID) and a list of numbers of resources
(cResNumbersList), where each list item corresponds to one resource type. The
third component of the cBanker AlgData product is of the latter colour set. An
example of use of the cBanker AlgData structure is seen in the constant value
vInitBAData.

Content of the value vInitBAData corresponds to the above discussed illus-
trative RAS in its initial state. The model has two process instances, which in the
beginning contain no resources, hence the Allocated part of the vIinitBAData
contains the following list of values: [(1, [0, 0,0]), (2,[0,0,0])]. Needs of the pro-
cess instances (initial value of the RemainingNeeded matrix) are in the second
row of the vInit BAData value definition and express that both process instances
have the same needs expressed by another constant value:
[(1,vInitMaxNeedPrimary), (2, vinitMaxNeed Primary)|. The value
vInitMaxNeedPrimary corresponds to maximal needed numbers of resources
for one execution of the primary description of the process type, and that is 2
units of the resource type R1, 3 units of R2 and 1 unit of R3 (it can be verified
in the model at fig. 1).

vMazxNeedPrimarySecondaryDif f is the difference vector between the pri-
mary and the secondary variants of the example’s process type description. This
means, that the secondary variant has the maximal needs [1, 3, 2]. vByteDiv is
the factor for the division of bits in a byte to two halves.

The final group of constant values defines the change vectors (implemented
as CPN ML lists) that modify the BA data structure by firing of individual
transitions T'1 to 79. Values in vectors correspond to the explanation in the
section 2.3 and are connected to the original model on the fig. 1. For instance,

131

the list [~16,1,~16] of the vChangeT6 constant value corresponds to the change
on the T'6 transition in the model: an allocation of one unit of the resource R2
and a release of the resources R1 and R3 (one unit of each), while both units
will not be requested again in the process type description.

Functions Hierarchy Relations among functions in the CPN implementation
are depicted at the figure 2. Arcs represent relations of calling — from a superior
function to a subordinate function in the direction of their arc. The functions are
divided to three groups. The Main Algorithm group corresponds to the slightly
modified pseudo-code from the section 2.2. The Data Structure Manipulation
functions implement the manipulation with data structures introduced in the
section 2.3. Finally, there are General functions that are not directly attributed
to the banker’s algorithm. They work with lists of integers — they use a recursion
to look through the lists and produce their results.

General Functions The Modi fyList function modifies the list pA with the list
pB returning a new list in which for every item: pA+pOperxpB (relevant items in
the given lists). It is assumed that both initial lists contain integer values and the
parameter pOper determines, whether the operation is an addition (pOper = 1)
or a subtraction (pOper = ~1). The IsIn function checks, if all items of the
list pA are less than or equal to equivalent items of the list pB (i.e. pA ”is in”
pB). The function is widely used to compare vectors of resources required and
available, and to check, if the request can be covered.

The U LBits and Lower Bits functions look at given numbers in the pList list
parameter as two-part numbers: upper and lower bits, where the edge is defined
by the vByteDiv value (bits manipulation is discussed in the section 2.3). The
former function sums up numbers encoded in the upper and the lower bits of
values in the given pList, e.g. the given list [~32,18,~7] is changed to [~2,3,~7].
The latter function retrieves only numbers encoded in lower bits of values in the
given pList, in the example it returns [0,2,~7].

Data Structure Manipulation Functions Most of the CPN ML functions
for the banker’s algorithm work with lists, thus use a recursion to traverse them.

A set of functions uses an abbreviation PRL that stands for a list of pro-
cess instances with a list of resources adjacent to it, shorter process-resources-
list. The functions are used to manipulate with data in the Allocated and the
RemainingNeeded lists. The LocateListInPRL function locates the PRL of
the process of pKey in the pPRL list and returns its list of resource numbers.
The ModifyPRLyist function modifies the given PRL-type list: it selects the
item with the pKey and modifies its resource number values according to the
pOper operation (addition or subtraction) and returns the updated PRL list.
The RemoveltemFromPRLyist function removes the item with pKey from
pPRLypist and returns the updated PRL list.

The simple function ChangeMaxNeed only updates BA data according to
the pChange item. It is used for switching from an old to a new variant of

132

FindAllowedProcess

(RemoveltemFromPRL List] (ModifyBAData] (ChangeMaxNeed]

ModifyPRL._List

: Data Structure i
Manipulation

Y
| Isin | |LowerB|ts ULBits ModlfyLlst

Cy CF CF OF

General

Fig. 2. Diagram of functions in the CPN ML implementation.

133

process description by flexible routing. The pChange argument contains the
ID of the process instance and the difference vector between the switched vari-
ants. It affects only the middle part of the BA data structure related to the
RemainingNeeded matrix and only its item related to the given process in-
stance ID.

The ModifyBAData function modifies data for the banker’s algorithm given
in the pBAData parameter by data from the pChange parameter, which iden-
tifies the respective process instance and contains the change vector with infor-
mation encoded in its lower and upper bits as explained above. All resources
stated in the change vector (i.e. upper and lower bits) are added to the allo-
cated resources of the given process and subtracted from the list of all available
resources in the system. However, only the resources encoded in lower bits af-
fect the remaining needed resources of the process (see the 2"¢ statement in the
function).

Main Algorithm Functions The FindAllowedProcess function looks for an
item in the list of running process instances (pRemainNeed), remaining needed
resources of which can be covered by the list of available resources (Avail), i.e.
a process that can be finished with current available processes. If no process is
found, it returns ~1, otherwise the ID of the process found.

The IsStateOrdered function is the principal function of the banker’s Al-
gorithm. It tries to find an ordered sequence of process instances that can be
finished in the given conditions. If it is successful, it returns the ordered pro-
cess sequence. If not, it returns a list with 1 item: [~1]. [~2] serves only for
recognizing the bottom of the recursion — when all processes were chosen to the
order.

Finally, the top function CanltBeAllocated in the hierarchy answers the
question, if the process instance with its resource request can be allocated the
requested resources. It checks, if the state after the allocation will be ordered —
then it returns true, otherwise false.

3.2 Adding Banker’s Algorithm to CPN Model
In this phase, there are two tasks to fulfill:

— To construct the required data structure in the CPN and to connect it to
the underlying CPN model of RAS,
— To interlink all points of allocation in the model with calls of the BA.

The BA data structure is represented by one token of the cBanker AlgData
colour set in a dedicated place called Banker'sAlgData (see fig. 3). Its initial
value is equal to the constant value vInit BAData (see section 3.1). The connec-
tion of the new place to the underlying model is made via pairs of arcs with all
transitions, at which contents of the BA data structure are to be changed, i.e. all
transitions, where at least one resource allocation or release is modelled. One of
the arcs in a pair leads from the place Banker’sAlgData to the transition and

134

brings the BA data structure token through the variable BAData in the arc in-
scription to make it available for an execution of the banker’s algorithm and for
an update of data in case the transition fires. The other arc leads in the opposite
direction and contains a call to the function ModifyBAData in order to update
the data structure after the transition has been fired. As arguments, the function
needs the process ID, the respective change vector in resource allocation and the
BA data structure itself, for example:

ModifyBAData ((proc, vChangeT5), BAData)

where vC'hangeT5 is a constant value containing the change vector for firing
the transition T5 (proc and BAData are variables bringing the other needed
arguments in).

The BA is called in guards of all transitions where a resource allocation
request is made. In our example, it is at all transitions except 77 and T'8. The
top BA function CanltBeAllocated is called with the same arguments as the
ModifyBAData function, for example:

[CanItBeAllocated((proc, vChangeT5), BAData)]

Being in the transition guard, the algorithm has direct effect on whether the
transition is enabled or not. It serves as the last condition for enabling the
firing after all basic conditions secured by the structure of RAS (a process in-
stance is in the appropriate state, resources to be allocated are available) are
fulfilled. If the state to come after firing is safe according to the algorithm, the
CanltBeAllocated function will allow the transition firing. In case that not, the
transition will not be enabled. It can be, however, enabled in the future — when
the state of the RAS model changes and the transitions in the CPN affected
by the change will be re-calculated, the result of the function (while not chang-
ing the basic conditions for the transition) may become positive and enable the
transition.

When a process instance chooses another variant of execution by flexible
routing, the guard of the relevant transition contains a modification of the max-
imal needed resources for the given process instance via the ChangeMaxNeed
function. In the illustrative model, it happens on the transition T3 and its guard
is the following:

[BADataAmended =
ChangeMaxNeed ((proc, vMaxNeedPrimarySecondaryDiff), BAData),
CanItBeAllocated ((proc, vChangeT3), BADataAmended)]

The amended data structure in BADataAmended is then used in the inscription
of the arc from the transition to the Banker’sAlgData place instead of BAData.

For the transition T3 in the example, it is:

ModifyBAData ((proc, vChangeT3), BADataAmended)

135

€d.€
$901N0SdY | ++72Y . € Sd €d QIssa04dd (0d
++Td.€
QISSa004dd QISS2201dd QISS2001dd T T++T.T
€d.€
++2d . € 201d ++M,M @
++TY.€ coud s04d (ejeqyg soueydh ‘o01d)) ezeqyaispon
€y [(pepuswyeleqva ‘(g196ueyda “d0id)) eleqve
[(e32qva ‘(pLoBUROA “20d)) 1S uESo:%Mwﬁﬂ ¢ (23°0v8 “(z136ueydy *20d)) eredvaApow
I <
pa1e20||yogIIue)] y ‘(331aA1epuodasAiewidpasnxe A ‘ooid)) eledve
paanxepwabueyd = papuswyeleqvd] [(e3eravg ‘(z1ebueyna 2oid))
L 2 4.1 ++ 8T pa1edo|yagiiued]

— ((e3eqvg ‘(AtewnidpaanxeuIA ‘2oid)) paanxepnabuey) ‘(g1abueyda ‘ooad)) eyeqyvaAipon
6L (<€

(sua++aice >0:d 3

QISSa004dd (ISS300.d0

eleqgvd

, (e3eava ‘(gLabueyga “doid)) eyeavakyipo

T™.C h eleqve
201d ooud ejeg

QI559204dd eyedbv.axuegd By S, Joxueg
e1eQVaIIuIA
— Py
[(e1eava (o19bueun 2010)) [(ereayal(sLobueton o)) sod {121 DII0'0"012)([00'0)' D). T

€4 T++TY.T pa3Ro0lI¥aEIIUED] pajed0||yagiIued] (e3eava ‘(9196ueydy “20d)) eeavaAypon

[(e3eavg ‘(£196ueyda ‘doid)) A“ ooid ejeavd

pajedojiyagiiued] — (ereavg ‘(S1obueydyp 0id)) ereqvaAyipon

L1 oL | L |«

o Y AR 2 exeave

(e3eavd ‘(£19bueyda doid)) ereavaAypon

eleave

Y | soounosoywd s0ud >01d QIsse001gD v

d s
soud| €Y. THHTET ﬁ 204 soud (papuswyeieayg ‘(g19buey]

A “20.d)) eleqygAJIpo

QISS9204dd QISS9204dd

(e3eavg ‘(1.L1o6ue

eieavd

DA ‘20id)) ereqygAipon

€d.T ++ T T o0ad

[(e3eavg ‘(T.La6ueyDA 204d)) pa3ed0|YagIIURD]

eleqvd

Fig. 3. CPN model of illustration RAS with banker’s algorithm.

136

After its execution, a finished process instance is replaced by a new process
instance in the place P0. In the BA control subsystem, it is reflected by a use
of the ChangeMaxNeed function in the inscription of the arc from the last
transition of the process type description to the Banker’'sAlgData place — to
update maximal needed resources for the new process instance in the BA data
structure to the initial vInit M axNeed Primary value. Inscription of the arc (in
the illustration model from transition T9) looks like this:

ModifyBAData ((proc, vChangeT9),
ChangeMaxNeed ((proc, vInitMaxNeedPrimary), BAData))

3.3 Analysis Results

The effect of the banker’s algorithm to avoid deadlock states in a modelled
system is measured by a number of deadlock states in the occurrence graphs of
two CPN models. One is the RAS CPN model without the BA implementation
and the other one with it. It is expected that in the first case, the number of
deadlock states is not zero, i.e. there are deadlock states in the original RAS to
be eliminated. Then, if the deadlock avoidance of the BA is effective, the number
of deadlock states in the second model goes down to zero.

In the validation and verification phases, we also further used liveness and
home properties of the available analysis tool to check, if the existence of the
BA control does not restrict the behaviour of the model in an unappropriate
manner, i.e. if all the transitions in the model can occur and whether all reachable
markings form a home space. The state space report proved that it was correct.

Furthermore, it is interesting to see, how the algorithm restricts the state
space of the original CPN model, since it avoids not only the deadlock states,
but also unsafe states leading to deadlock states and also some safe states that
are however not accepted by the algorithm due to its suboptimal calculation (see
section 2.2).

Tests of the outlined algorithm with two RAS CPN models always showed
that it avoids all deadlock states as expected. In the illustrative example, the
CPN model of the RAS without the BA contains 12 deadlock states, while the
CPN model with the BA contains no deadlock states. As for restriction of their
state space, the occurrence graph of the original model has 152 nodes and 378
arcs, while the BA-controlled model has only 113 nodes and 260 arcs.

4 Conclusion

In this paper, we focused on an implementation of the banker’s algorithm (BA)
for deadlock avoidance in a resource allocation system (RAS) with non-sequential
processes with flexible routing and a use of resources of multiple types at once,
all modelled as a coloured Petri net in the environment of the CPN Tools. The
original version of the BA has been slightly modified in the direction of its appli-
cation for the outlined system, requiring the introduction of vectors of relative

137

changes necessary for processes combining all three outlined properties: concur-
rent processing, flexible routing and use of multiple resources of multiple types
at once.

The algorithm has been verified to be effective on such a system. This result
we consider as the major contribution of this work, since the application of the
banker-like algorithms to such a class of RAS has not been apparently discussed
in the literature so far.

Selection of the CPN Tools environment was mainly motivated by the abilities
of the fast construction of the underlying RAS model in the CPN and of the
available analysis of occurrence graphs on the presence of deadlock states. Both
proved to be beneficial. Especially the analysis ability is a very strong tool — it
enables to further study behaviour of the BA and its versions on a toy example
via detailed analysis of its state space.

However, the implementation of the basic version of the BA in 12 CPN ML
functions looks rather complicated compared to sequential programming. Also
maintaining information about the global state of a RAS modelled in CPN is
rather complicated — it is concentrated to one place, which is connected to many
transitions, where allocation requests occur. This makes the CPN more difficult
to read, especially for large RAS models. Solution to this is using hierarchy for
the CPN: dividing process subnet(s) in RAS to CPN subpages, each of them
containing only a few transitions. In the illustrative example in the paper, the
process subnet could be split e.g. to three subpages. However, in order to show
the whole approach, the hierarchy was not used for the model in this paper.

Further issues are connected to the use of the outlined results in the field,
where the motivation comes from — for deadlock avoidance in computer simula-
tion of complex transportation systems.

First, the complex models produce very large state spaces that cannot be
fully verified in a reasonable time like the presented simple example. We believe
that once the BA has been verified on a small scale example preserving the
outlined properties of the complex transportation system, it will be effective
also on complex models with tens of process types and process instances and
hundreds of resource types as well as resource units. The research will be rather
focused on making the run of the BA more effective for the large system.

Secondly, the BA needs to be adjusted to a more complicated way of alloca-
tion and release of resources that is currently present in the original simulation
models. The first version of the BA with this property has been already made [1],
however, it requires further research and testing.

Thirdly, apart from the BA’s basic version, we have implemented two more
versions of the BA according to [5] — for partially-ordered and V1-ordered states
in the CPN Tools [1]. Their explanation requires however more space and is
thus outside of scope of this paper. The open question here is, if implementation
of other versions, for Vn-ordered states (according to the mentioned paper) is
effective and beneficial in our application field.

All the briefly outlined issues frame our future work in this context.

138

Acknowledgements. This paper has been supported by the grant of the Sci-
entific Grant Agency VEGA 1 /4057/07 in the Slovak Republic and the research
project MSM 0021627505 — Theory of transport systems in the Czech Republic.

References

10.

11.

Zarnay, M.: Systém na podporu rozhodovania pre riadenie dopravnych procesov
[Decision-support system for transportation systems control]. PhD thesis, Faculty
of Management Science and Informatics, University of Zilina (January 2007) in
Slovak.

. Zarnay, M.: Solving deadlock states in model of railway station operation using

coloured petri nets. In Tarnai, G., Schnieder, E., eds.: Formal Methods for Au-
tomation and Safety in Railway and Automotive Systems. (2008) to appear
Peterson, J.L.: Operating System Concepts. Addison-Wesley (1981)

Dijkstra, E.W.: Co-operating sequential processes. In Genuys, F., ed.: Program-
ming Languages, New York, Academic Press (1968) 43112 Reprinted from: Techni-
cal Report EWD-123, Technological University, Eindhoven, the Netherlands, 1965.
Lawley, M.A., Reveliotis, S.A., Ferreira, P.M.: The application and evaluation of
banker’s algorithm for deadlock-free buffer space allocation in flexible manufactur-
ing systems. International Journal of Flexible Manufacturing Systems 10 (1998)
73-100

Tricas, F., Colom, J.M., Ezpeleta, J.: Some improvements to the banker’s algorithm
based on the process structure. Proceedings of IEEE International Conference on
Robotics and Automation 3 (2000) 2853-2858 San Francisco, CA, USA.

Tricas, F.: Deadlock Analysis, Prevention and Avoidance in Sequential Resource
Allocation Systems. PhD thesis, Departamento de Informatica e Ingenieria de
Sistemas, Universidad de Zaragoza (May 2003)

Ezpeleta, J., Tricas, F., Garcia-Vallés, F., Colom, J.M.: A banker’s solution for
deadlock avoidance in fms with flexible routing and multiresource states. IEEE
Transactions on Robotics and Automation 18(4) (August 2002) 621-625

Lang, S.D.: An extended banker’s algorithm for deadlock avoidance. IEEE Trans-
actions on software engineering 25(3) (1999) 428-432

Reveliotis, S.A.: Conflict resolution in agv systems. IIE Transactions 32(7) (2000)
647-659

Ezpeleta, J., Valk, R.: A polynomial deadlock avoidance method for a class of
nonsequential resource allocation systems. IEEE Transactions on Systems, Man
and Cybernetics, Part A 36(6) (2006) 1234-1243

Appendix

A complete listing of colour sets, variables, constant values and functions used for
the implementation of the BA in the CPN ML is available here. It complements
the description of the BA implementation in the CPN ML in the section 3.1
Concrete values are related to the presented illustrative CPN model.

139

Data Structures

colset cProcessID INT;

colset cResources = with R1 | R2 | R3;

colset cResNumbersList = list INT;

colset cProcessList = list cProcessID;

colset cResources4Process = product cProcessID * cResNumbersList;

colset cAllProcessesWRes = list cResourcesé4Process;

colset cBankerAlgData = product cAllProcessesWRes *
cAllProcessesWRes * cResNumbersList;

var proc: cProcessID;
var BAData, BADataAmended: cBankerAlgData;

val vInitMaxNeedPrimary = [2,3,1]

val vMaxNeedPrimarySecondaryDiff = [~1,0,1];

val vByteDiv = 16;

val vInitBAData =

(f(,[0,0,01), (2,[0,0,01)],
[(1,vInitMaxNeedPrimary), (2,vInitMaxNeedPrimary)],
[3,3,3]);

val vChangeTl = [1,0,1];

val vChangeT2 = [1,1,0];

val vChangeT3 = [0,1,1];

val vChangeT4 = [0,1,71];
val vChangeT5 = [0,1,0];

val vChangeT6 = [~16,1,716];
val vChangeT7 = [0,716,1];
val vChangeT8 = [732,0,0];
val vChangeT9 = [0,732,716];

General Functions

fun ModifyList (pA, _, [1) = pA
| ModifyList ([], _, pB) = pB
| ModifyList (pA, pOper, pB) =
(hd pA + pOper * hd pB) :: ModifyList (tl pA, pOper, tl pB);

fun IsIn ([],[]) = true

| IsIn ([1, _) = false

| IsIn (_, [1) = false

| IsIn (pA, pB) =
if hd pA <= hd pB andalso IsIn (tl pA, tl pB)
then true else false;

140

fun ULBits ([1) = []
| ULBits (pList) =
if hd pList < O then
(7 (hd pList) div vByteDiv + ~(hd pList) mod vByteDiv)
ULBits (tl pList)
else ((hd pList) div vByteDiv + (hd pList) mod vByteDiv)
ULBits (tl pList);

fun LowerBits ([]) = []
| LowerBits (pList) =
if hd pList < O then
(7 (hd pList) mod vByteDiv) :: LowerBits (tl pList)
else ((hd pList) mod vByteDiv) :: LowerBits (tl pList);

Data Structure Manipulation Functions

fun LocateListInPRL ([], _) = []

| LocateListInPRL (pPRL: cAllProcessesWRes, pKey) =
if #1 (hd pPRL) = pKey then #2 (hd pPRL)
else LocatelListInPRL (tl pPRL, pKey);

fun ModifyPRL_List ([1, _,) = [
| ModifyPRL_List (pPRLList: cAllProcessesWRes,
pOper, pPRLItem: cResources4Process) =
if #1 (hd pPRLList) <> #1 (pPRLItem)
then (hd pPRLList)
ModifyPRL_List (tl pPRLList, pOper, pPRLItem)
else (#1 (hd pPRLList), ModifyList (#2 (hd pPRLList),
pOper, #2 pPRLItem)) :: (tl pPRLList);

fun RemovelItemFromPRL_List ([1, _) = []
| RemoveItemFromPRL_List (pPRL_List: cAllProcessesWRes, pKey) =
if #1 (hd pPRL_List) = pKey then tl pPRL_List
else hd pPRL_List
RemoveIltemFromPRL_List (tl pPRL_List, pKey);

fun ChangeMaxNeed (pChange, pBAData: cBankerAlgData) =
(#1 pBAData,

ModifyPRL_List (#2 pBAData, 1, pChange),

#3 pBAData);

fun ModifyBAData (pChange: cResources4Process,
pBAData: cBankerAlgData): cBankerAlgData =
(
ModifyPRL_List (#1 pBAData, 1,
(#1 pChange, ULBits(#2 pChange))),

141

ModifyPRL_List (#2 pBAData, "1,

(#1 pChange, LowerBits(#2 pChange))),
ModifyList (#3 pBAData, ~1, ULBits(#2 pChange))
)3

Main Algorithm Functions

fun FindAllowedProcess ([], _): cProcessID = "1

| FindAllowedProcess (pRemainNeed: cAllProcessesWRes,

pAvail: cResNumbersList): cProcessID =
if IsIn (#2 (hd pRemainNeed), pAvail) then #1 (hd pRemainNeed)
else FindAllowedProcess (tl pRemainNeed, pAvail);

fun IsStateOrdered (_, [], _) = [72] (* recursion at the bottom *)
| IsStateOrdered (Alloc, RemainNeed: cAllProcessesWRes,
Avail: cResNumbersList): cProcessList =
let
(* looking for a process that can be chosen to the order *)
val proc = FindAllowedProcess (RemainNeed, Avail)
in
(* if unsuccessful, state is not ordered and return [~1] *)
if proc = "1 then [71]
else
(x if process found, continue to the next round *)
let val result = IsStateOrdered
(RemoveItemFromPRL_List (Alloc, proc),
RemoveItemFromPRL_List (RemainNeed, proc),
ModifyList (LocateListInPRL (Alloc, proc), 1, Avail))
in
case result of (* of previous round of recursion *)
[1] => [71] (* was unsuccessful, pass it further *)
| [72] => [proc] (* returned from end of recursion,
start to build up the ordered process sequence *)
| _ => proc :: result (* was successful:

building up the process sequence *)
end
end;

fun CanItBeAllocated (pRequest: cResources4Process,
pBAData: cBankerAlgData): BOOL =

if IsStateOrdered (ModifyBAData (pRequest, pBAData)) = [71]
then false

else true;

142

Augmenting a Workflow Management System with
Planning Facilities using Colored Petri Nets

R.S. Mans'2, N.C. Russell', W.M.P. van der Aalst', A.J. Moleman?, P.J.M. Bakker?

! Department of Information Systems, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB, Eindhoven, The Netherlands. {r.s.mans,n.c.russell,w.m.p.v.d.aalst}@tue.nl
2 Academic Medical Center, University of Amsterdam, Department of Quality Assurance and
Process Innovation, Amsterdam, The Netherlands. {p.j.bakker,a.j.moleman}@amc.uva.nl

Abstract. Traditional workflow management systems distribute workitems to users
via a worklist and leave the actual timing of workitem execution to the individual
resource(s) performing the task. In work environments in which resources are scarce,
expensive and multiple resources are necessary to undertake the workitem, often an
appointment-based approach is utilized in order to maximize resource utilization. To
this end, we propose the extension of a workflow management system with plan-
ning and monitoring facilities in order to guarantee effective resource utilization and
minimize dead-time for resources as a result of canceled appointments. This paper
describes the approach taken in which first a conceptual model for these extensions
has been developed which is based on Colored Petri Nets. Second, based on the con-
ceptual model, a prototype has been developed using YAWL and the collaborative
software product Microsoft Exchange Server 2007. The applicability of the approach
for the development of large scale systems will be demonstrated by elaborating on the
conceptual model and the experiences that have been gained. Finally, the operation
of the system is demonstrated in the context of a real-life healthcare scenario.

1 Introduction

Nowadays, hospitals are focusing on improving the quality of care and the service that is de-
livered to a patient. Typically, when making appointments for a patient, patient preferences
are taken into account. Examples of this include considering whether appointments can all
be scheduled on one day, and querying the availability of the patient. Similarly, constraints
imposed by doctors, nurses, rooms, and medical equipment also need to be considered.

Usually, the scheduling of these appointments is done on a manual basis and does not take
into account which preceding tasks are necessary and whether they have been performed.
For example, in order to perform surgery it is important that the patient is first seen by
an anaesthetist in order to determine the anaesthetics that are needed. Moreover, prior
to surgery a last check is performed before proceeding with the final preparations for the
operation. If these tasks are not performed in time, this can lead to a delay in performing the
operation. Another example occurs where during a regular meeting to discuss the status of
patients and plan subsequent treatment, a doctor finds out that not all required information
is available. The above mentioned examples lead to the inefficient use of scarce, expensive
resources, and necessitate the rescheduling of appointments.

Workflow management systems support process execution by managing the flow of work
such that individual workitems are done at the right time by the proper person [1]. The
benefits being that processes can be executed faster, more efficiently, and their progress can
be monitored. Based on business process definitions, which define the ordering between the

143

tasks which need to be performed, so called workitems are distributed to resources (typically
people) for execution. A workitem is an indivisible task of work and corresponds to a task
which needs to be performed in the context of a given case. An example of a workitem
is the performance of a “CT-scan” for patient “Rose”. Typically, the user sees available
workitems via a so called worklist, which can be seen as a to-do list in which people can
view the various workitems that they need to perform. At an arbitrary point in time, a user
can pick a workitem and perform the task associated with it.

In healthcare the actual execution of a workitem is often linked to an appointment in
which several people can be involved. In other words, an appointment-based approach is
often utilized for scheduling workitem execution due to the scarce and limited availability of
resources that are involved. However, this schedule-based way of working is not supported by
the worklist approach offered by current workflow management systems. Moreover, patient
preferences need to be taken into account when making these appointments. Consequently,
we need to extend workflow management systems with planning facilities. Furthermore,
planned appointments need to be monitored to ensure that preceding tasks, in the corre-
sponding process definition, are performed on time. If limited time is left to complete them,
this needs to be signalled. If they can not be performed on-time, the appointment and pos-
sibly subsequent appointments will need to be rescheduled, which is highly undesirable. So,
in addition to planning facilities there is the need to incorporate monitoring facilities as
well. Note that the focus is on how workflow management can be integrated with scheduling
and monitoring facilities instead of extending the functionalities of a workflow management
system or a planning system.

In this paper, we present the approach taken to design and implement a workflow system
offering (re)scheduling and monitoring facilities. Moreover, the appointments made can also
be shown to the people involved. Figure 1 sketches the approach that has been used.

First of all, we started by augmenting a workflow language with planning functional-
ity. Then, we created a conceptual model of a workflow management system augmented
with planning and monitoring facilities. The conceptual model is based on Colored Petri
Nets (CPNs) [9] thus providing a complete and formal specification of the system to be
implemented. The complete specification of the system in CPNs consists of 27 pages, 377
transitions, 169 places, and over 1000 lines of ML code. The construction of the whole model
was undertaken by one person, with advanced knowledge about CPNs and CPN Tools, in
about 3 months. This, together with the size of the model, illustrates the overall complexity
of the system. Finally, we build a prototype of the system. For this prototype we used the
open-source, service-oriented architecture of YAWL [2] and the Microsoft Exchange Server
2007 together with several Outlook 2003 clients. The implementation of the system was
done by one person, having already built several software tools, in around three months.

The paper proceeds as follows: Section 2 introduces the research approach that was
followed. Section 3 describes how a workflow language can be augmented with planning
functionality, followed by a description of the conceptual model, constructed in CPNs; in

(manual)
Workflow language i Conceptual model translation Implementation
- (YAWL + Exchange Server 2007
(planning WF-net) (CPN) + Outlook 2003)

Fig. 1. Overall approach. The workflow language serves as input for the conceptual model. The
conceptual model is used as design model for the implementation of the system.

144

Section 4. Section 5 elaborates on the implementation of the system and outlines a con-
crete application of the realized system. Section 6 presents related work. Finally, Section 7
discusses the experiences of following the aforementioned approach and concludes the paper.

2 Approach

In this section, we elaborate on the approach that has been followed, as shown in Figure 1,
to provide a concrete implementation of a workflow management system augmented with
planning and monitoring facilities. As can be seen in the figure, a model-based approach has
been used, in which intermediate models are used in order to obtain the final implementation.

The first step was to get insight into how a workflow language could be augmented
with planning functionality. As Petri nets are extensively used in Workflow (WF) modeling,
primarily because of their mathematical definition and graphical representation, WF-nets
were chosen as the basis for these extensions. The main advantage of this choice was that
it assisted in the formalization of the augmented workflow language. Note that in principle
these extensions can be applied to any workflow language.

Next, we constructed the conceptual model of the system to be realized. A conceptual
model serves in understanding a problem domain and identifying how functionality can be
added which should collaborate with already existing functionality. The conceptual model
that has been constructed is based on CPNs [9]. CPNs provide a well-established and well-
proven language suitable for describing the behavior of systems involving characteristics
such as concurrency, resource sharing, and synchronization. In this way, they are an excellent
candidate for the formalization of such a system.

The CPN language is supported by the CPN Tools offering [9] which we used for creating,
simulating and analyzing the model being constructed. This setting allows for ezperimen-
tation, during which deep insights and a good understanding of the design and behavior of
the system can be gained. Additionally, it allows for rapid prototyping. A complete model of
the system can be executed, simulated and analyzed. Flaws in the design can be detected
and fixed, leading to a more complete specification. Finally, the system has been imple-
mented using YAWL, Microsoft Exchange Server 2007 and several Outlook 2003 clients by
(manually) translating the conceptual model into a working system.

It is important to note that the workflow language is at a different level of abstraction to
the conceptual model and the implementation. The workflow language is used as input for
the conceptual model. However, the conceptual model and the implementation operate at
a similar level. The conceptual model is in such a level of detail that it completely specifies
the behavior of the system to be implemented. So, on the basis of the conceptual model, we
immediately implement the desired functionality and no other graphical models have been
used other than the conceptual model and the implementation. The difference between them
is that the conceptual model abstracts from implementation details and language specific
issues. The advantage of this is that for the conceptual model we only need to consider the
functionality that will be provided by the system and that for the implementation we only
need to focus on realizing a working system.

3 Workflow Language

In order to extend workflow systems with planning functionality some new terminology
and concepts need to be introduced. We will use a running example for this purpose. It is

145

assumed that the reader is familiar with basic workflow management concepts, like “case”,
“role”, and so on [1].

3.1 Flow and Schedule tasks

Figure 2 outlines a hospital process in which a patient suspected to be suffering from a lung
disease is diagnosed.

d:30
rradiologist

CT-scan

d:30
r:nurse make documents
and patient card

d:60
r:assistant,nurse

give information
and brochure

register

admission patient aiag nosis

P
lung function test .-

end

start

d:15 d15 P3 firstconsut P° d:30
rnurse r:nurse /
d:30 r:.doctor
d:60 r:nurse p8 e P11)
[0 (o o1 o)] d:45
r:assistant,nurse
Jane Sue
Anne Rose,
assistant doctor nurse radiologist

Fig. 2. WF-net for the running example showing schedule (S) and flow (F) tasks. The prefix “d:”
indicates the average time needed for performing the task and prefix “r:” indicates which roles are
necessary to perform the task. From each associated role, exactly one person needs to be assigned
to the task. Note that the “register patient” and “give information and brochures” tasks have XOR
split and join semantics associated with them. Moreover, the “give information and brochures” and
“diagnosis” tasks have OR split and join semantics. Furthermore, for all of the schedule tasks, the
patient is required to be present.

As can be seen in the figure, first the admission is done by a nurse, i.e., some patient
related data is recorded and an appointment is made for the first visit of the patient (task
“admission”). The next step is that the patient arrives at the outpatient clinic for the first
appointment with the doctor (task “register patient”), followed by the first appointment
with the doctor (task “first consult”). In this step, a decision is made about the tests
to be performed before the second visit of the patient. In parallel, a nurse prepares the
documents and the patient card (task “make documents and patient card”). Afterwards,
a nurse provides information and brochures to the patient (task “give information and
brochures”). Next, the diagnostic tests are performed which are needed for the diagnosis of
the patient which is performed by a doctor (task “diagnosis”). For these diagnostic tests a
choice can be made from the following tests: CT-scan (task “CT-scan”), lung function test
(task “lung function test”), or bronchoscopy (task “bronchoscopy”).

From this example, it can be seen that two kinds of tasks can be distinguished: flow
tasks and schedule tasks. In the figure, a flow task is labeled by an “F” and a schedule task
is labeled by an “S”.

146

Tasks with an “F” annotation should be performed as soon as a resource is able to
undertake them. For example, task “make documents and patient card” can be performed
by any nurse when task “register patient” is finished. Basically, a flow task can be performed
at an arbitrary point in time when a resource becomes available and there is no reason to
postpone it to a specific point in time. These tasks can be presented in an ordinary worklist
where a given resource can start working on the task when it becomes available. Therefore,
as only a single resource is needed to perform the task, it is sufficient to define only one role
for them. For example, for the flow task “make documents and patient card” only a single
nurse is needed which explains why the “nurse” role has been defined.

The tasks annotated by an “S” in the figure correspond to schedule tasks. For these tasks
typically multiple resources are required, with different capabilities. A schedule task needs
to be performed by one or more resources at a specified time. As multiple resources can be
involved in the actual performance of a schedule task, at least one role needs to be defined
for each of them. For each role specified, only one resource may be involved in the actual
performance of the task. For example, for task “lung function test” an appointment is needed
in which one assistant and one nurse are involved which explains why the “assistant” and
“nurse” roles are defined. Note that for the schedule tasks the patient may also be involved
which means that the patient is also a required resource for these tasks. The patient is not
involved in the actual execution of a task but is only a passive resource who needs to be
present. For that reason, the patient is not added to any of the roles for the task, nor are
they defined in terms of a separate role. Instead, it is necessary to identify which schedule
tasks the patient needs to be present for.

Flow tasks are presented in an ordinary worklist. However, schedule tasks are presented
in a calendar as for each of them specific appointments need to be made involving multiple
resources. Each resource has its own specific calendar in which the appointments made for
schedule tasks can be seen. In this way, a single appointment made for a schedule task can
appear in multiple calendars but only in the calendars of the resources which are involved
in the actual performance of the task even though a workitem does not yet exist. When the
workitem becomes available, the schedule task can be performed. Note that an appointment
in a calendar may also refer to an activity which is not workflow related.

For the booking of appointments in a calendar, it is important to mention that a cal-
endar consists of blocks of equal length. So, all blocks represent the same timeperiod. So,
a block may either represent one hour but also one minute. Depending on the length of
an appointment and the timeperiod of a block, an appointment may occupy several blocks.
For example, the “first consult” task has a duration of 60 blocks if a block represents one
minute.

To be more precise, for the correct scheduling of appointments for schedule tasks it
must be known at runtime what the estimated duration is of the appointment and what
the earliest time is that the appointment may be booked. Therefore, for every task in the
process model an average duration needs to be specified. As we use the notion of blocks in
calendars, we specify the duration of tasks in terms of blocks. In Figure 2 for each task this is
indicated by prefix “d:”. For example, one blocks takes 1 minute and task “make documents
and patient card” requires 30 blocks which means that the task takes 30 minutes on average
to complete.

For reasons of simplicity we only include the average task duration for a task to complete.
Ideally, more information on the probability distribution could be used, e.g., the standard
deviation.

147

3.2 Formalization

In this section, a formalization of the augmented workflow language will be presented. A
WPF-net is a Petri net with one initial and one final place such that every place or transition
is on a directed path from the initial to the final place [1]. The execution of a case is
represented as a firing sequence that starts in the initial marking, consisting of a single
token in the initial place. The token in the final place with no tokens left in the other places
indicates proper termination of case execution. A model is called sound if every reachable
marking can terminate properly.

WF-net extended with the schedule and flow tasks is called a planning WF-net (pWF-
net).

A pWF-net is a tuple N = (P, Ty,Ts, F,CR, Res, Role, R, Rtf, Rts, D), where

— P is a non-empty finite set of places;

— T is a finite set of flow tasks;

— T, is a finite set of schedule tasks;

-~ TyUTy, =T and Ty NTs = 0 and Ty UT,s # 0, i.e., Ts and Ty partition T'. So, a task
is either a flow task or a schedule task, but not both. Moreover, the set 7' may not be
empty;

- FC(PxT)U(T x P) is a set of arcs (flow relation);

— CR C T, is a set of schedule tasks for which the human resource for whom the case is
being performed is also required to be present. For our healthcare example this means
the schedule tasks for which the patient is required to be present during their execution.

— Res is a non-empty finite set of resources;

— Role is a non-empty finite set of roles;

R: Res — P(Role) is a function which maps resources onto sets of roles;

Rtf: Ty - Role is a partial function which maps flow tasks onto roles;

— Rts: Ty — P(Role)\{0} is a function which maps schedule tasks onto at least one role;

— D: T — N is a function which maps tasks onto a the number of blocks that are needed
for the execution of the task. This value indicates the average time it takes to execute
the task. One block corresponds to a specific actual duration, e.g. a block can be half
an hour or one minute?.

The running example in Figure 2 can be easily mapped onto this formalization. For
example, the “lung function test” task belongs to Ty, and where Rts(lung_function_test) =
{assistant, nurse} and D(lung_function_test) = 60.

4 Conceptual Model in Colored Petri Nets

The conceptual model which defines the precise behavior of a workflow management system
augmented with planning facilities is defined in terms of a CPN model. The complete CPN
model consists of a series of CPNs in which several layers can be distinguished. Figure 3
shows the hierarchy of CPNs in the CPN model, together with the relationships between
them. In total, there are 27 distinct CPNs. An indication of the complexity of each net is
expressed by the p and t value included for each them, showing the number of places and
transitions they contain. It is not possible to discuss all the nets in details in this paper. Only
the blocks in Figure 3 which are colored grey will be discussed. However, this is sufficient
to give an overview of the operation of the model. At the end of the section, Section 4.4, we
will focus on the analysis of the conceptual model.

3 Currently, we only use the average value for (re)planning. However, in the future we plan to
utilize more information (variance etc).

148

architecture

(see Figure 4)
p:31 t:4]
[
[I |
workflow client q q .
application planning service workflow engine
pp! (see Figure 7)
p:45 t:2) p:16 t:18| p:30 t:15]
graphical user worklist book into calendar
interface management
p:24 t:5| p:49 t:33] p:7t:5
[
[[| [[[[
log on and off available processes available workitems connect / disconnect available processes data start case begmcna\gge; start

p:7 t:6] p:17 t:10) p:9 t:6) p:4 t:2 p:3t: p:2 t:] p:6 t:1

[| [[[[
allocated workitems calendar available workitems allocate workitem deallocate workitem allocated workitems
p:18 t:12] p:31 t:20 p:5] p5t2 p:5 t:2) p:7 t:3

[[[[[[[

data workitem check in workitem cancel case user Teques{ response regular check update rush
(see Figure 6) appointment schedule service schedule status status tasks

p:ot6 p:14 t7| p:5 t:2 p:15 t:7] p2tl p:9t2 P4t

Fig. 3. CPN hierarchy of the conceptual model: each square represents a (sub)net containing places
and transitions.

4.1 Overview

Figure 4 shows the topmost net in the CPN model and gives an idea of the main com-
ponents in the system and the interfaces between them. It can be seen in the figure that
there are three substitution transitions. They represent the major functional units in the
system, namely: workflow engine, workflow client application and planning service. Each
place which is connecting two components forms part of the interface between the two com-
ponents, except for the place “calendars users” which stores the calendars for each user. The
components of the system are set-up in a service-oriented way such that the workflow client
application and planning service can interchange data with the workflow engine on a loosely
coupled basis. In order to guarantee this, the interface, which defines how two components
should interact, should be as minimal as possible. However, this has the advantage that the
components can easily be coupled with any other workflow engine component.
The conceptual model consists of three main components.

— The workflow engine is the most important component of the workflow system as it
is the heart of the system. Based on the business process definition, the engine routes
cases through the organization and ensures that the tasks of which they are comprised
are carried out in the right order and by the right people. Next to this, the engine takes
care of offering workitems to users, once they become available for execution.

— The workflow client application communicates the distributed workitems to the
users so that they can select and perform them. In our case, workitems that correspond
to flow tasks are advertised via the worktray. The appointments that are created for
schedule tasks are advertised via a calendar. Once a workitem becomes available for such
an appointment, the work can be performed. However, where appointments have been
made, users can express their dissatisfaction with the nominated scheduling by request-
ing: (1) the rescheduling of the appointment, (2) the rescheduling of the appointment
to a specified data and time, or (3) the reassignment of the appointment to another

149

planning
problem

0 ListNodeArcGraphProps

smallint

CaselD

Workflow engine v request allocated
schedule tasks
Resource
tesponse allocated
schedule tasks
ResWorkItemIdentifiers planning service
workflow response user
engine request
ResponseUser
8]
notification
task
™ ScheduleStatusTasks
<

service

user request:
reschedule
appointment

user request:
reject
appointment

allocated allocate
workitems workitem
WisTaskType | wisUser

get allocated

workitems

continue
workitem

A A
orkItemIdUsgr WorkItemIdUsg

deallocate
workitem

user request:
move
appointment
orkitemUser L
Usg¢rReschedule
UgerRejectedAppointment

WorkItemIdUser
UserR

scheduleFromTo

calendars users

R workflow client
v application

Calendars

workflow client application

Fig. 4. Overview of the conceptual model.

employee. In addition, the workflow client also indicates whether limited time is left in
which to undertake workitems related to preceding tasks for an appointment.
The users who utilize the workflow system interact with it via the workflow client appli-
cation. All allowed user actions are modeled in subnets of the “graphical user interface”
net, which in its turn is a subnet of the “workflow client application” net (see Figure 3).
— The planning service component provides the planning capabilities needed by the sys-
tem. The planning service behaves in a passive way and its operation must be explicitly
triggered. Its operation is initiated by the engine which sends a planning problem for a
specific case. This planning problem is represented as a graph indicating the planning
constraints which hold between the tasks in the corresponding process definition for the
case, e.g. the ordering between tasks. Based on this graph, the planning service is re-
sponsible for determining whether appointments need to be (re)scheduled. Moreover, the
planning service identifies whether limited time is left for the completion of workitems
for preceding tasks of an appointment. For such workitems, a warning is forwarded to
the users via the workflow engine.

An example of a planning problem that is sent from the workflow engine to the planning
service can be found in Figure 5. As can be seen in the figure, the planning graph is formu-
lated as a graph having nodes and directed arcs between the nodes. Additionally, the graph,
the nodes and the arcs may have properties. These properties are represented as name-value
attributes. In this way, we can add additional constraints to the graph which are relevant
for the planning activity. For correct planning of a case, the ordering of tasks in a given
process definition is relevant. Therefore, for the corresponding process definition of a case,

150

make documents give p6 CT-scan p9

and patient information
4
p2 card p: and

lung function
test

rochure

p7 plo

start admission p1 .
register

patient p3 first p5

consult (duration,30)
(roles,nurse) pg broncho p11
(typeTask,flow) scopy
(splitType,OR)
(joinType,AND)

(status,enabled)

Fig. 5. Planning graph for the running example in Figure 2. The “give information and brochures”
task is currently enabled.

we map all nodes and arcs of the process definition to the graph. If the human resource for
which the case is being performed is also required in order to perform some of the schedule
tasks, then the name of the calendar for this resource is included together with the names
of the relevant schedule tasks. If a workitem exists for a certain node, this is also included
in the graph as only this task or subsequent tasks need to be (re)scheduled. Additionally,
the following information for a task is included: split and join semantics, whether the node
represents a schedule, flow, or dummy (i.e. routing) task, and the roles which are involved
in performing the task. So, in Figure 5, we can see how the graph of Figure 2 is mapped to a
planning graph. For the “give information and brochures” task it is shown that the average
duration is 30 minutes, only a single nurse is needed to execute the task, it is a flow task
exhibiting OR split and AND join semantics, and a workitem exists which is in the enabled
state. In order to simplify the graph, the properties of the other nodes have not been shown.

4.2 Workflow Engine

Figure 3 shows that the workflow engine comprises of 15 distinct CPNs. In total, they
consist of 125 places and 54 transitions thus illustrating that the engine demonstrates fairly
complex behavior. The naming of the different subnets in the workflow engine CPN gives a
good overview of the functionality that is provided by the workflow engine as they all appear
as substitution transition on the workflow engine subpage. It is not possible to describe all
aspects of these subnets in detail. Hence, we focus on a specific subnet, the checking in of
workitems (substitution transition “check in workitem”), which will be discussed in detail.

Before discussing the operation of this subnet, it is important to mention that a workitem
passes through a series of states during execution. We make a distinction between the
following three states: enter, execution, and completion. A workitem is in the entered state
when it may be executed, but it is not yet been allocated to a resource. A workitem is the
execution state, when it has been allocated. A workitem is in the completed state, when it
has been checked back into the engine, indicating that its execution is completed.

The process associated with the checking in of a workitem is depicted in Figure 6. The
thick black lines in the figure shows the paths that can be followed when a request for
checking in a workitem arrives at the “check in workitem” place for a given case. Starting
from this place it is checked whether: (1) there is a corresponding workitem with the same id
in the executing state (place “state cases”), (2) the case is active (place “active cases”), and
(3) the case is not blocked (place “blocked cases”). If one of the first two prerequisites are

151

input (pcu,s1,s2,eWIs2,eWIs3,execWIs2,execWIs3,resAlloc2,resAlloc5,cids,pd,Inagp,om);
output (s3,eWIs4,execWIs4,resAlloc6,cids2,ru,Inagp2);

action

om changeState_and_Calc_planningGraph (pcu,s1,52,eWIs2,eWIs3,
execWIs2,execWIs3,resAlloc2,resAlloc5,cids,pd,Inagp,om)

organizational

OrgModel

Inagp
tragp "] change state and | o \\
calculate f N\
pcu planninggraph
L{stNodeArcGraphProps 1°psS(s1) ++ u 175(s2) ++ 1°5(s3) ++

1" enWIs(eWIs3) ++
1" exWIs(execWIs3)++
1" resAllF(resAlloc5)

1" enWIs(eWIs4) ++
1 exWIs(execWIs4)++
1" resAllF(resAlloc6)

1 psenWis(eWIs2) ++
1" psexWIs(execWIs2)++
1" psresAllF(resAlloc2)

new state
schedule
StateProcPlan
1°psS(s)++
1 psenWIs(eWIs2)++

1 psexWIs(execWIs2)++
1" psresAllF(resAlloc2)

executing state exWIs(exdcWIs)
for schedule .
tasks 1°5(s3)

1°5(s2) StateProcess

ResponseUser

input (eWIs,execWIs,pcu);
output (eWIs2,execWIs2);
action

exec_schedule_tasks
(eWIs,execWIs,pcu)

1 psS(s)++ “
1° psenWIs(eWIs)++

1° psexWis(execWIs)++
1" psresAllF(resAlloc2)

pcu

pid

user pcu
finished creating
pid cid user @'tm) StateProcPlan

1'psS(s)++

1’ psenWIs(eWIs)++

1 psexwis(exechlc)++ ProcessDeclarations
1" psresAllF(resAlloc2)

Finish—] [no_workitems_case_not_finished(pd,s,cids,pcu)]
creating [«
workitems

pd Process

P\ Repository
L

cids
1 psS(s)++|
1" psenWIs(@WIs)++
1" psexWis(dkecWls)++ active ¢ 5
1" psresAlIF(fesAlloc2) cases /¢

CaselDs cids 0

[workitems_creation(pd,s,cids)]

input (s,eWIs,pd,cids,vsmint);

output (s1,eWls2);

action
createWorkItem(s,eWIs,pd,cids,vsmint)

create

workiter|® od

cids

[1' psS(s)++
1° psenWIs(eWIs)
y | Y »
update | case od
state case T pSS(S)t completed
StateProcPlan 1" PeeeWIs{eWIs)++ [check_case_completed(cids,s,pd,pcu)]
o 1 psexWIs(execWIs)++
(#piID widata,) 1" psfwi(fuwi) input (s,pcu,cids);
#cilD widata, #user widata) 1 psS(sif++ output (s3,cids2,ru);
1 psenWlls(eWIs)++ action
1° psexWits(execWIs2)++ completeCase(s,pcu,cids)
1" psresAljF(resAlloc3) 1°5(s)++
1" enWIs(eWIs)++
1 exWis(execWIs)++ [wi_not_exists(widata,execWIs,cids2)]
1" resAllF(resAlloc)
12 -
Inagp check in active g_Cids2 | workitem
workitem a2 cases2 can ot be
CaseIDs
o input (widata);
[check_in_enabled(widata,Inagp,execWIs,cids, cids2)] cids output (ru);
input (widata,pd,s,execWIs,resAlloc); [#ciID widata] action !
gg:%\:‘t (s1,execWIs2,resAlloc3); CaselDs not_existing_wi(widata)
i
checkInWorkItem(widata,pd,s,execWIs, resAlloc) widata

widata

check in
workitem

pet

WorkitemUser

Fig. 6. Checking in of a workitem.

not fulfilled, the “workitem can not be checked in” transition will be fired which informs the
requester that checking the workitem into the engine was not successful (place “response”).
If the prerequisites are fulfilled, the “check in workitem” transition fires and the following
actions are taken:

1. the case is blocked (place “blocked cases”).
2. the new state of the case is calculated.

152

3. the resource allocation information for the workitem, being checked into the engine is
removed from the state information in the “state cases” place.

4. four tokens are produced in the “partial update state case” place containing the following
information: the state of the case, the workitems in entered or executing state, and the
resource allocations for the flow workitems in state ezecuting.

5. a token is produced in the “pid cid user” case which contains the ProcessID, CaselD
and the user id of the requester.

Several things can happen now. The “create workitem” transition fires when a workitem
can be created for a case. When it fires, the following actions are taken:

1. a workitem is created for the task which will be in the entered state.
2. the state of the case, in the “state cases” place, will be updated.

If no workitems can be created for the case, the “finish creating workitems” transition will
fire which moves the token to place “finished creating workitems”. However, it could also
happen that no new workitems can be created because the case is complete. In that situation
the “case completed” transition fires and the following actions are taken:

1. all case related information is removed from the “state cases” place.

2. the case is deactivated by removing the case id from the “active cases” place.

3. the requester is informed about case completion by putting a token in the “response”
place.

After the “finish creating workitems” transition has fired, two steps remain. The first step
relates to the “executing state for schedule tasks” transition. This transition changes the
state of the schedule workitems, which just have been created, from entered into executing.
The resource allocation for them is done by the planning service.

The second step relates to the “change state and calculate planning graph” transition.
When fired, the following actions are taken:

1. a planning problem is formulated and sent to the planning service via place “NodeArc-
sGraph”.

2. the updated state of the case and the updated resource allocation for the flow workitems

is saved in place “state cases”.

the case is unblocked (“blocked cases2” place).

4. the requester is informed about the successful completion of the workitem by putting a
token in place “response”.

@

4.3 Planning Service

Figure 7 shows the uppermost model of the planning service. Looking back at Figure 3, we
can see that this model consists of 21 places and 13 transitions. However, modeling all the
required behavior necessitated writing hundreds of lines of ML code which indicates that
this component is fairly complex in its behavior.

Three different parts can be distinguished in the model shown in Figure 7. First, at the
top, there is the part which is responsible for receiving a planning problem, (re)scheduling
tasks if needed, and generating warnings that limited time is left for performing tasks pre-
ceding a schedule task. Second, the “cancel case” substitution transition is responsible for
removing all appointments for a case. Third, the “get appointments for resource” substitu-
tion transition is responsible for finding all appointments for a specific resource.

153

Inagp2

[checkFirstTasksToBeScheduled(pilDsmall,cilDsmall,ttbsRD, Inagp,Ipc)]

input (piIDsmall,cilDsmall,ttbsRD,Inagp,
timeVal,margin,margin2,Ipc,ssts,calendars);
output (ttbs2RD,lIpc2,ssts2);

action

calcFirstTasks

(piIDsmall,cilDsmall,ttbsRD, Inagp,timeVal,

ListNodeArcGraphProps
hagp::Inagp

[checkPlanningCaseBegin(nagp,Inagp)]
Ipc

input (nagp); margin,margin2,Ipc,ssts,calendars)
output (nagp2);

A action input (pc,Inagp);
convertGraph(nagp) output (Inagp2);

agp2 [2 AN IPC action
[nagp2] Ipc finishPlanningImm(pc:PC, Inagp:ListNodeArcGraphProps)
ScheduleStatusTasks
| W__ ListNodeArcGraphProps

Converted Inagp

graph‘(

margin

book into
calendar

tasks to be
scheduled

H

Inagp

response user
request

ResponseUser

TasksToBeScheduledRD
ttbs2RD

[check_continue_scheduling(pilDsmall,ciIDsmall,ttbsRD,Inagp)]

input (Inagp, ttbsRD, pilDsmall,cilDsmall calendars, margin, timeVal);
output (ttbs2RD,ttbs3RD);

action

continue_planning
(Inagp,ttbsRD,pilDsmall,cilDsmall,calendars,margin,timeVal)

Calendars
Tequest allocated
. schedule tasks
Resource

Calendars users

B
B calculate next
schedule tasks

Inagp ttbs2RD

finished 1
d ttbsRD

calendars

fi ing(pi ciIDsmall, ttbsRD,Inagp)]

o |[cancel get appointments response allocated
)] ; case for resource schedule tasks
input (ttbsRD,Inagp,pilDsmall,cilDsmall); ‘ s o ol " d f
output (ttbs2RD, Inagp2); ResWorkItemIdentifiers
action
finishPlanning(ttbsRD,Inagp,pilDsmall,cilDsmall) cancel

case
CaselD

Fig. 7. Top level model of the planning service.

For the remaining part of this section we restrict our discussion to the process of receiving
a planning problem from the engine and the steps that are taken afterwards. The sequence of
these steps are indicated by a path of thick black lines starting from the “NodesArcGraph”
place. When a planning problem is sent to the planning service, the required data for
the planning problem is added to the “NodesArcGraph” place. The planning problem is
represented by a graph containing the planning constraints which hold between the tasks
in the corresponding process definition for the case, e.g. the ordering between the tasks.
Once this has occurred, the “convert” transition can fire if the planning service is not busy
handling another planning problem for the same case. When it fires, nodes are removed from
the graph, which represent a task that has already been performed for the case. Also nodes
are removed which represent tasks which we are not sure they will ultimately be executed.
So, no optimistic planning takes place. The first nodes in the graph, which do not have an
incoming arc, represent tasks in the case for which a workitem exists. Note that our algorithm
does not take into account any constraints which may hold between tasks that already have
been performed and succeeding tasks, which justifies that the nodes for already performed
tasks are removed from the graph. However, for more advanced algorithms it might be the
case that this removal step is not allowed.

When the “convert” transition fires, a token containing the converted graph is put into
the “converted graph” place. Next, the “start off” transition can fire and the following
actions are taken:

1. determine whether the first schedule tasks in the graph, viewing it from the start, need
to be (re)scheduled or if a warning should be generated. For a user request, the task

154

which is selected for rescheduling is considered to be the first schedule task as only this
task needs to rescheduled and possibly subsequent schedule tasks.

2. for the schedule tasks which need to be (re)scheduled, the earliest time is calculated at
which they may be executed. This is dependent on any preceding tasks which need to
be completed.

3. other relevant information for scheduling the task is determined, such as the defined
roles and the duration of the task.

4. for every first schedule task, that is a schedule task in the graph for which no preceding
schedule task exists, which needs to be (re)scheduled a token containing the information
mentioned above is put in the “tasks to be scheduled” place. An example of such a first
schedule task is the “first consult” node in Figure 5.

5. for the first schedule tasks in the graph, that are the schedule tasks in the graph for
which no preceding schedule task exists, it is determined whether a warning needs to
generated because (too) little time is left for performing preceding tasks. If a warning is
needed, a notification is sent to the engine via the “notification task” place. The value
for deciding how early such a warning needs to be generated, is stored in the “warning
margin” place.

6. for each task that needs to be rescheduled, a notification is sent to the engine via the
“notification task” place.

The first tasks which need to be (re)scheduled are added to the “tasks to be scheduled”
place, and the substitution transition “book into calendar” is responsible for the actual
(re)scheduling. The (re)scheduling is done automatically, which means that there is no user
involvement. It should be noted that multiple roles can be specified for a schedule task and
that for each role specified only one resource may be involved in the actual performance of
the task. In the “book into calendar” substitution transition a search is started for the first
opportunity that for one resource for every required role an appointment can be booked
for the respective workitem. If found, an appointment is booked in the calendars of these
resources. If the patient for which the case is performed also needs to be present at the
appointment, then this is also taken into account.

However, it can also be that no tasks needs to be (re)scheduled at all. This is determined
by the “start off” transition which then puts a token into the “ nothing to do” place. After-
wards, the “finished2” transition fires removing the planning problem from the “converted
graph” place, indicating that the planning problem has been dealt with.

If all schedule tasks for a case that are present in the “tasks to be scheduled” place
are (re)scheduled, then it is checked by the guard of the “calculate next schedule tasks”
transition whether succeeding schedule tasks in the planning problem graph need to be
(re)scheduled. If the transition fires, the following actions are taken:

1. it is determined which subsequent schedule tasks need to be (re)scheduled.

2. for the schedule tasks which need to be (re)scheduled, the earliest time is determined
at which they may be executed.

3. the same relevant information for scheduling the task is determined as when the “start
oftf” transition happens.

For each schedule task which needs to be (re)scheduled, a token containing the informa-
tion described above is put in the “tasks to be scheduled” place triggering another cycle of
(re)scheduling and checking. When no subsequent schedule tasks need to be (re)scheduled,
transition “finished” fires. If this transition fires, the planning problem present in the “con-
verted graph” place is removed, indicating that the planning problem has been dealt with.

155

4.4 Analysis

A serious drawback that we faced was that no meaningful verification of the CPN model
was possible due to its size and complexity. Even more, as an unlimited number of business
process models and users can be represented, state space analysis would be impossible.
Therefore, we have tested the model by manually simulating a well-chosen set of scenarios.
Although this approach revealed several errors, it does not guarantee that the final model
is indeed error-free. An example of such a test scenario is that a case is executed from begin
to end during which some appointments are rescheduled as consequence of a user action.

5 Implementation

In this section, we will elaborate on the development of a concrete implementation of a
workflow management system augmented with planning facilities. First, we elaborate on
the architecture of the implemented system, followed by a discussion of its application to a
realistic healthcare scenario.

5.1 Architecture

Figure 8 shows the architecture of the system that has been realized. We can see the com-
ponents and services that are used, and the means by which they interact with each other.
The open-source workflow system YAWL has been chosen as the workflow engine [2]. For
storing the calendars of users, we selected Microsoft Exchange Server 2007 which offers
several interfaces for viewing and manipulating these calendars. Together with this system
we could easily use Microsoft Outlook 2003 clients for obtaining a view on an individual
users calendar. Moreover, these clients are configured in such a way that they can interact
with the YAWL system via an adaptor. By doing so, an Outlook client can act as a full
workflow client application. Finally, the planning service is implemented as a Java service
which communicates with both YAWL and the Microsoft Exchange Server 20074,

The dashed rectangles around the components in Figure 8 indicate how each substitution
transition in Figure 4 has been realized. For example, the “workflow engine” substitution
transition of Figure 4 has been realized using the YAWL workflow engine and an adaptor
which communicates with the workflow client application and the planning service. For
implementing the system, we clearly benefitted from the knowledge contained in the CPN
model. As the model is a complete specification of the system that needs to be implemented,
while abstracting from implementation details, we could immediately start coding from it.
Particularly, given the ML-code and the logic, e.g. ordering of transitions, in the CPN
model, the code has directly been written. However, if existing third party software could
provide the desired functionality of a (part of a) substitution transition, then of course
this software is chosen. For example, YAWL has been chosen as workflow engine as it
provides the majority of the functionality that needs to be provided by the “workflow engine”
substitution transition. On the other hand, the “planning service” substitution transition
has been implemented completely in Java code.

4 Of course one could argue that for the implementation of the planning service the corresponding
part of the CPN model itself could be used. However, pursuing this approach introduces other
complex issues like opening and starting a CPN model without opening CPN Tools, communi-
cation with external systems, and so on.

156

service

1
1

1

1
planning :
1
Axis2 service) :
1

1

|
l
Microsoft :
messages Exchange |
| outlook outlook |1 Server 2007 ||
! 2003 2003 |1 :
! client client || ! |
| !)

Fig. 8. Architecture of the implemented system. The dashed rectangles indicate how each sub-
stitution transition of Figure 4 has been realized. For example, the workflow engine substitution
transition has been realized using the YAWL workflow engine together with custom written adaptor.

In total, it took around three months for a single person to implement the whole system
which involved both component selection and coding. As part of this effort, over 8000 lines
of code was written.

5.2 Application

In the remainder of this section, we demonstrate the operation of the system that we realized
in the context of a real-life healthcare scenario. As a candidate care process, we have taken
the diagnostic process of patients visiting the gynecological oncology outpatient clinic at the
AMC hospital, a large academic hospital in the Netherlands. The healthcare process under
consideration is a large process consisting of around 325 activities. This healthcare process
deals with the diagnostic process that is followed by a patient who is referred to the AMC
hospital for treatment, up to the point where the patient is diagnosed. For our scenario we
will only focus on the initial stages of the process shown in Figure 9.

At the beginning of the process, a doctor in a referring hospital calls a nurse or doctor at
the AMC hospital resulting in an appointment being made for the first visit of the patient.
Several administrative tasks need to be finished before the first visit of the patient (task
“first consultation doctor”). For example, the referring hospital needs to be asked to send
the radiology data to the AMC (task “call for radiology data”). When the patient visits the
outpatient clinic for the first time, the doctor decides whether an “MRI”, “CT” or “pre-
assessment” or a combination of these tasks is necessary. After performing these diagnostic
tests, the results will be discussed during the next visit of the patient (task “consultation
doctor”). Note that for the MRI, CT and pre-assessment tasks we do not show the preceding
tasks at the respective departments that need to performed in order to simplify the presented
model.

In this scenario, we assume that the task “additional information and brochures” has
been performed in which a nurse provides the patient with information and brochures prior
to the execution of the diagnostic tests. Furthermore, it has also been confirmed that the

157

@ Gynaecological _Oncology

A
enter patiert sendfaxto dall patient send Lgister, first Sdditional’ ‘rigister consultation

\ 4 A
\‘ information ainto document! pathology /” for passing confirmation patlent L \Gonsultatlo mfcrmatmﬂ\ S ,patlent doctar
|\ from doctor ystem and stick date for appointment \domr fizg =/
\ ; : 7 i f {f
\ referring | appoint mert 7 Jbrachures \ i
hospital | Ao drfersm \ '
| |. |I dodor]
\ check/ '.
erring \
. ---- \ hpsp\tal p’(t'e"t d'lata
write down ask 1 | ‘
data patient irformation utpatlent HaepRtigH T

and make from doctar

decision referring "' El'tl?;:lt?gy T
haspital2

'. | ut patlent

card assesment

it H i
| | o radiolo, / /!
L&y ay Sk
'|I list / fiiiif
ey s
1 it
'| fill in Sy
||I plication if ,.‘
tgrms and
ndout
'ﬂ
call for receive dafa
aynaescology raferrln?
data hospitd
&}
call for receive
radiology radiology
data data

Fig. 9. Screenshot of the YAWL editor showing the initial stages of the gynaecological oncology
healthcare process. The flow tasks are indicated by a person icon and the schedule tasks are indicated
by a calendar icon. For all schedule tasks, the patient is required to be present.

doctor requires an MRI and a pre-assessment for the patient. So, by looking at the process
model it becomes clear that the tasks “MRI”, “pre-assessment” and “consultation doctor”
need to be scheduled. The result of the scheduling performed by the system for these tasks is
shown in Figure 10. Note that our case has “Oncology” as a process identifier and has “126”
as case identifier. Moreover, for the “consultation doctor”, “pre assessment”, and “MRI”
examination, a doctor, an anaesthetist, and MRI machine are needed respectively. Conse-
quently, these tasks have role “doctor”, “anaesthetist”, and “MRI” respectively. Moreover,
the patient is also required to be present.

In Figure 10, going from left to right, we can see that the “MRI” has been scheduled
for 8:00 till 8:45, the consultation with the doctor has been scheduled for 13:00 till 13:30
in the calendar of doctor “Nick” and that the pre-assessment has been scheduled for 11:00
till 11:30 in the calendar of anaesthetist “Jules”. At the far right, we can see the agenda
of patient Fred who also needs to be present during these appointments. All the previously
mentioned appointments are also present in his agenda. Moreover, it is important that the
“consultation doctor” is scheduled after the “MRI” and “pre-assessment” task, which is also
consistent with the corresponding process definition, where the “consultation doctor” task
also occurs after them.

However, a problem is now identified: the patient now has been scheduled for an MRI in
which they have to lie in a tube. Unfortunately, the patient is suffering from claustrophobia
which means that the patient can only be scanned in an MRI having an open system design,
a so-called “open-MRI”. As the role “MRI” includes both the open and closed MRI, we need
to reschedule the patient to use the open-MRI by rejecting the current appointment for the

158

EEaIendar—Microsn[t DOutlook = (ol x|
¢ Fle Edt Wew Goo Tools Help Type & guestion for kelp =

Calendar Jules Nick Fred 2
Thursday, July 17 Thursday, July 17 Thursday, July 17 Thursday, July 17

¢ 5:00am-8:45am Unavailable aynaecology:23intake_1 A 8:00am-5:45am
£ Oncology: 126:MRI_3819 (location) €2 Oncology:126:MRI_3819

aynascology:32:intake_I

Lung_disease_59_pre_assesment_3829 gynascology: 33tintake_1
Lung_dissase_&1_pre_assesment_30629 —
4% Oncology: 126:pre_assesment_3524 W gynaecology:34intake_1 % Oncology: 126:pre_assesment_3629 |

lunch lunch lunch

59 Oncology: 126:consultation_dactor | AR Oncology: 126:consu\tat\on_doctor_ﬁS‘

iz

|3 Ttems ||£| Online 2

Fig. 10. Screenshot of the calendars for the MRI, consultation with doctor “Nick”, and the pre-
assessment done by anaesthetist “Jules”.

(closed) MRI. Rejecting the appointment means that the appointment must be rescheduled
and that the resource who rejected the appointment may not be involved anymore. The
effect of this specific rescheduling request can be seen in Figure 11.

In this figure, the messagebox indicates that the MRI has been successfully rescheduled.
Moreover, the calendar of the open MRI is now shown on the right hand side. It can be seen,
that an appointment for the open MRI has been made, taking place from 14:00 to 14:45.
However, as can be seen in the second column of the calendar, which shows the calendar of
doctor “Nick”, it was also necessary to reschedule the appointment with the doctor which
will now occur from 15:00 to 15:30. These changes are also reflected in the agenda of patient
“Fred”, which is shown in the third column. As can be seen in Figure 9, this rescheduling
step is necessary as the task “consultation doctor” occurs after the “MRI” task and the
“register patient” task falls in between these two tasks and takes 15 minutes. Moreover, in
the left top of the figure, we see the form that is generated automatically for performing
the “MRI” task.

6 Related Work

A review of relevant literature shows that extensive research has been done into the problem
of appointment scheduling in healthcare, e.g. in areas such as appointment scheduling for
outpatient service services [6], operating room scheduling [5] and diagnostic resources. How-
ever, these approaches tend to focus on specific facilities and not on the complete careflow
process. Another approach is described in [22] in which the online problem of scheduling
multiple appointments on a single day is considered. In our approach, the whole careflow is
taken into account and appointments are scheduled when it is clear that they need to be
executed.

Much effort has been put into experimenting and developing workflow management sys-
tems so that they can be applied in the healthcare domain [18,14]. These efforts vary in the
sense that they support evidence-based medical procedures, therapies and hospital admin-
istrations [16,15,21,4]. One of the most important challenges that needs to be addressed
is flexibility support [20]. Unfortunately, current workflow management systems are falling

159

Calendar - Microsoft Outlook . 5 |E|Ii|

i Oncology:126:MR1_3819REJECT =3} Type 3 question for help— ~

Fle Edit View Insert Tools Actions Help]

Schecle task | Schedding | Tracking | Fred OpenMRI -

. 126: = Thursday, July 17 Thursday, July 17
Subect: |Oncology:126:MRI_5519 mmmmpm—r—— x| y, July v, Julky

Input Yarisbles

appointment has beenrescheduled | 4] ¢ 8:00am-8:45am Canceled: 3% Regular maintenance
patientid:STRING 676 €2 Oncology: 126:MRI_3819

patient_name:STRING [er

4 | Ll—l
Reject | Reschedule From

Complets | Reschedule -
IR Oncology 126:pre_assesment_362t

12 pro iflunch | Tunch
1 oo #R Canceled: Oncology: 126:consultatwk
2 ful] ’ A 2:00pm-2:45pm 3 2:00pm-2: 45pm
A& Oncology: 126:MRI_3619 {lacation) € Oncology: 126:MRI_3519 {location)
3 fuli} fets:) Oncology:126:consultation_doctor_!_ ¥ 3057 Oncology: 126:consultation_doctor
2 Ttems [|5] orline

Fig. 11. Result after rescheduling the “MRI” task.

short in providing flexibility [10,11] which seriously hampers the application of workflow
technology in the healthcare domain. In addition to this, support is needed for the cross-
departmental nature of healthcare processes [12]. Currently, administrative workflows are
typically limited to single departments [19]. Successful implementation of workflow man-
agement exists but widespread adoption and dissemination is the exception rather than the
rule [14]. Tt is expected that the use of workflow technology by healthcare institutions will
grow dramatically in the future [14] and it is likely that it will become a core component in
future healthcare systems [7].

Despite all these efforts, no work has been performed on the combination of appointment
scheduling and workflow management systems, i.e., existing approaches are either focusing
on planning with little consideration for workflow aspects or are focusing on workflow while
ignoring that much work is done via appointments rather than worklists. We are not aware
of any research looking at the mixture of flow and schedule tasks.

For various systems, CPNs have been used to formalize and validate functional require-
ments. For example, the formalization of the design of the so-called worklet service, which
adds flexibility and exception handling capabilities to the YAWL workflow system [3], for-
malizing the implementation of a healthcare process in a workflow management system [13],
and presenting a model-based approach to requirements engineering for reactive systems, in
which CPNs are used for validating the functional requirements [8]. Related to this is [17],
in which CPNs are used for specifying the operational semantics of newYAWL, a business

process modeling language founded on the well-known workflow patterns®.

7 Experiences and Conclusions

In this paper, we have discussed the design and implementation of a workflow management
system offering planning and monitoring facilities. As approach, we started with a workflow
language, followed by a conceptual model in CPNs and finally a concrete implementation

5 For more information about workflow patterns see http: / /www.workflowpatterns.com

160

of the system. The conceptual model consists of 27 distinct nets, 377 transitions, 169 places
and over 1000 lines of ML code. The construction of the whole model took around three
months of work. These figures indicate that a workflow system augmented with planning
facilities is a fairly complex system and the task of developing it is far from trivial.

One of the main benefits of building the conceptual model in CPNs is that it can be
executed in the CPN Tools offering. In this way, it allows for experimentation during which
comprehensive insights can be obtained about the design and behavior of the system to be
realized which probably would not have been possible to obtain by pursuing other approaches
to designing the system. Parts of the system can be tested early in the development process,
thus enabling early detection of design errors. The costs of repairing these errors in this
phase of the development process is far less than would be the case in a later phase. For
example, when experimenting with the subnet of the planning service we identified errors
with regard to the correct planning of appointments.

Another advantage of modeling the conceptual model in CPNs is that it completely
specifies the behavior of the system to be implemented while abstracting from implemen-
tation details and language specific issues. So, for the conceptual model we only needed to
worry about the behavior of the system, while for the implementation we focused on the
realization. In this way, these kinds of issues are distinguished, allowing for a separation of
concerns. The importance of this distinction can probably best be illustrated by the fact
that it took more than 3 months to build the conceptual model, and just 3 months to imple-
ment the whole system. For the implementation of the system it was necessary to produce
over 8000 lines of code by hand. Although the main functionality of the system was fully
implemented during the implementation phase, a significant amount of time still needs to
be spent on component selection, coding, and dealing with residual implementation issues.

The fact that we started completely from scratch ending up with a concrete imple-
mentation of the system with the proposed functionality shows both the applicability and
feasibility of our approach. However, the developed system has only been tested in a limited
set of scenarios. As future work, we plan to systematically test parts of the system by “re-
placing” one or more components in the conceptual model by a complete implementation for
it, based on third party software, allowing for the testing of thousands of scenarios. In this
way by simply executing the CPN model, we are able to identify errors in the components
which probably would not have been found with using a scenario based approach of testing.
In addition to this, we plan to use the conceptual model for evaluating alternative planning
approaches using various performance indicators.

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

2. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245-275, 2005.

3. M.J. Adams. Facilitating Dynamic Flexibility and Exception Handling for Workflows. PhD
thesis, Faculty of Information Technology, Queensland University of Technology, 2007.

4. L. Ardissono, A.D. Leva, G. Petrone, M. Segnan, and M. Sonnessa. Adaptive medical workflow
management for a context-dependent home healthcare assistance service. Electronic Notes in
Theoretical Computer Science, 146(1):59-68, 2006.

5. B. Cardoen, E. Demeulemeester, and J. Belién. Operating room planning and scheduling: A
literature review. FEB Research Report KBI 0807, Katholicke Universiteit Leuven, Leuven,
2008.

161

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. T. Cayirli and E. Veral. Outpatient scheduling in health care: a review of literature. Product

Operations Management, 12(4):519-549, 2003.

. A. Dwivedi, R. Bali, A. James, and R. Naguib. Workflow Management Systems: the Health-

care Technology of the Future? In the 23rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, volume 4, pages 3887-3890, 2001.

. J.M. Fernandes, S. Tjell, and J.B. Jorgensen. Requirements Engineering for Reactive Systems

with Coloured Petri Nets: the Gas Pump Controller Example. In K. Jensen, editor, Proceedings
of the Eight Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
pages 207222, 2007.

. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling

and Validation of Concurrent Systems. STTT, 9(3-4):213-254, 2007.

M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems, Special Issue
of Computer Supported Cooperative Work, 2000.

R. Lenz, T. Elstner, H. Siegele, and K. Kuhn. A Practical Approach to Process Support in
Health Information Systems. JAMIA, 9(6):571-585, December 2002.

R. Lenz and M. Reichert. IT Support for Healthcare Processes - Premises, Challenges, Per-
spectives. Data and Knowledge Engineering, 61:49-58, 2007.

R.S. Mans, W.M.P. van der Aalst, P.J.M. Bakker, A.J. Moleman, K.B. Lassen, and J.B. Jor-
gensen. From Requirements via Colored Workflow Nets to an Implementation in Several Work-
flow Systems. In K. Jensen, editor, Proceedings of the Eight Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, pages 187-206, 2007.

M. Murray. Strategies for the Successful Implementation of Workflow Systems within Health-
care: A Cross Case Comparison. In Proceedings of the 36th Annual Hawaii International Con-
ference on System Sciences, pages 166-175, 2003.

M. Poulymenopoulou and G. Vassilacopoulos. A Web-based Workflow System for Emergency
Healthcare. In Proceedings of the MIE 2002 conference, 2002.

S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, and S. Panzarasa. Flexible Guideline-
based Patient Careflow Systems. Artificial Intelligence in Medicine, 22(1):65-80, 2001.

N.C. Russell, A.H.M. ter Hofstede, and W.M.P. van der Aalst. newYAWL: specifying a workflow
reference language using coloured petri nets. In K. Jensen, editor, Proceedings of the Eight
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2006), volume
584 of DAIMI, pages 107-126, Aarhus, Denmark, October 2007. University of Aarhus.

G. Russello, C. Dong, and N. Dulay. Consent-Based Workflows for Healthcare Management. In
Proceedings of 2008 IEEE Workshop on Policies for Distributed Systems and Networks (Policy
08), pages 153-161, Palisades, NY, US, 2008.

X. Song, B. Hwong, G. Matos, and A. Rudorfer. Understanding and classifying requirements
for computer-aided healthcare workflows. In COMPSAC (1), pages 137-144. IEEE Computer
Society, 2007.

M. Stefanelli. Knowledge and Process Management in Health Care Organizations. Methods Inf
Med, 43:525-535, 2004.

S.W. Tu, M.A. Musen, R. Shankar, J. Campbell, K. Hrabak, J. McClay, S.M. Huff, R. McClure,
C. Parker, and R. Rocha. Modeling Guidelines for Integration into Clinical Workflow. Studies
in Health Technology and Informatics, 107:174-178, 2005.

I. Vermeulen, H. La Poutré, S.M. Bohte, S.G. Elkhuizen, and P.J. Bakker. Decentralized
Online Scheduling of Combination-Appointments in Hospitals. In Proceedings of ICAPS-2008,
the International Conference on Automated Planning and Scheduling, Sydney, Australia, 2008.
AAAT Press.

162

Towards Formal Modelling and Analysis of SCTP
Connection Management

Somsak Vanit-Anunchai

School of Telecommunication Engineering
Institute of Engineering
Suranaree University of Technology
Muang, Nakhon Ratchasima, Thailand
Email: somsav@sut.ac.th

Abstract. The Stream Control Transmission Protocol (SCTP - RFC 2960) is
a reliable unicast transport protocol originally specified by the Internet Engi-
neering Task Force (IETF) in 2000. Its design rationale aims to overcome the
weaknesses of the Transmission Control Protocol (TCP). However, after years
of implementing and testing, defects and errors in RFC 2960 were reported and
later fixed in RFC 4460. Incorporating those suggested fixes, IETF revised the
SCTP specification and in September 2007 published RFC 4960, which replaces
RFC 2960. This paper presents a Coloured Petri Net (CPN) model of the re-
vised version of SCTP’s connection management from RFC 4960. In particular
we model the revised Tie-Tag mechanisms that differ significantly from those
specified in RFC 2960. By following a procedure-based approach, each CPN
page relates to only a few sections in RFC 4960, which aids validation. Pre-
liminary results from state space analysis reveal two potential problems. First,
SCTP association establishment can terminate in a half open state, with one
side in CLOSED but the other in ESTABLISHED. Second, simultaneous estab-
lishment can lead to states in which both sides are in ESTABLISHED but the
verification tags in both Transmission Control Blocks do not match.

Keywords: SCTP, Formal Methods, Coloured Petri Nets, State space methods.

1 Introduction

Motivation The Stream Control Transmission Protocol (SCTP) [6] is a trans-
port protocol that was approved by the Internet Engineering Task Force (IETF)
as Request for Comment (RFC) 2960 in 2000. It was originally designed by the
Signalling Transport working group for transporting telephony signalling mes-
sages over UDP. These signalling messages have stringent timing requirements
which are difficult to meet when using TCP. Foreseeing its significance and
great potential to become a major transport protocol, IETF decided to operate
SCTP over IP instead. Despite its potential to replace TCP, several years of
implementation and testing revealed fifty-two defects in the SCTP specifica-
tion, RFC 2960. Solutions were gathered and discussed in RFC 4460 [5]. The
IETF has published a revised version of the SCTP specification, RFC4960 [4],
in September 2007, and RFC 2960 has become obsolete. This revised specifica-
tion raises two questions. Firstly, are there any unknown defects left? Secondly,
are any new defects introduced in the new specification?

In addtion to the motivation for formal validation of SCTP, we wish to
experiment with a new modelling approach called the “procedure-based” ap-
proach. In [2] Billington and Vanit-Anunchai discussed the advantages and

163

disadvantages of state-based and event-processing CPN modelling styles. The
state-based modelling approach has the advantage of readability, and unspec-
ified actions can be easily discovered. Its disadvantage comes from redundant
specification of actions that are common to several states. While the event pro-
cessing modeling approach has the advantage of folding common actions across
several states, which makes the CPN model easier to maintain, it has some
drawbacks with respect to readability. Thus [2] proposed the procedure-based
modelling approach, which structures the CPN model according to the proto-
col’s functionality. This modelling style has two merits. Firstly, the CPN model
is easy to maintain. Secondly, the procedure-based CPN model comprises typi-
cal - simple procedures and unexpected - complex procedures (error handling).
Beginners can pay attention to the typical scenarios before getting into the com-
plex procedures later. The procedure-based CPN model of DCCP connection
management presented in [2] evolved from a previous version modelled using
the state-based approach. In this paper, we wish to gain experience building a
procedure-based CPN model directly from an informal specification.

Previous work Since published in 2000, SCTP has been an attractive re-
search topic. Although there has been a lot of work on SCTP regarding its
security, performance, and extensions of SCTP functionality, we have found
only one article (in Portuguese) [3] modelling SCTP connection management
using Coloured Petri Nets (CPN). The CPN model we propose in this paper
differs from [3] in three aspects. Firstly, we build the CPN model according
the revised specification, RFC 4960, while [3] uses RFC 2960 which is now ob-
solete. Secondly, while the CPN model in [3] did not include the procedures
for when SCTP nodes receive duplicated or unexpected messages, our model
includes these events (described in Sections 5.2 and 9.2 in RFC 4960). Thirdly,
the CPN model in [3] follows the state-based approach, whereas our model uses
the procedure-based approach of [2].

Contribution The difficulty of designing a protocol is again witnessed by the
defect list in RFC 4460 [5]. Despite many years of implementing and testing, it
is still important to have a proper formal model and to perform formal analysis
of SCTP connection management, especially when SCTP is designed for reliable
data transfer such as signalling in Public Switching Telephone Networks. The
contribution of this paper is three-fold. Firstly, we propose a CPN model of
SCTP connection management based on Internet Standard RFC 4960. The
model provides good insight into how to manipulate and use the Tie-Tags.
Secondly, even though no errors in the shutdown scenarios are found, we discover
an error in section 5.2.4 of RFC 4960 and two potential defects in the association
establishment scenarios. Thirdly, for readers who are not interested in SCTP,
this paper demonstrates an example of modelling a transport protocol using
the procedure-based approach.

Organisation This paper is organised as follows. Section 2 provides an overview
of SCTP association set up and graceful shutdown. Modelling assumptions are

164

listed in Section 3. The description of the CPN model of SCTP connection
management and its declarations is given in Section 4. Section 5 presents the
analysis results and a discussion of terminal markings. Section 6 presents con-
clusions and future work.

2 Stream Control Transmission Protocol

The Stream Control Transmission Protocol (SCTP) [6] is a unicast connection
oriented transport protocol. Like TCP, SCTP provides an error-free reliable
flow of data, without loss or duplication, between a client and a server. To
ensure that the behaviour of SCTP’s traffic mimics that of TCP, it uses the
same congestion control algorithm as TCP.

SCTP has three distinctive features. Firstly, SCTP introduces the concept
of multiple streams to reduce the problem of head-of-line blocking. It delivers its
user messages in sequence within a given stream. Multiple streams are bundled
into a single SCTP packet. The number of streams in an association is set up
during startup. If one stream is blocked, delivery on the other streams can
still proceed. Secondly, SCTP has the ability to support multiple IP addresses,
called multi-homing. Several paths may exist between two nodes but only the
primary path is used for transferring data. Other paths are redundant and
are used when the network fails. Thus an SCTP connection is referred as an
“association” between two sets of IP addresses. Thirdly, it defends against state-
exhaustion attacks using a cookie mechanism and a four way handshake during
connection establishment.

2.1 SCTP Packet Format

An SCTP packet comprises a common header and one or more chunks as shown
in Fig. 1. The SCTP header contains 16 bit source and destination port num-
bers, a 32 bit verification tag and a 16 bit checksum. The verification tag is
used to protect an association from blind attacks. Each end point keeps two
values of verification tag: “My Verification Tag” and “Peer’s Verification Tag”.
In general, any received packets containing a verification tag differing from “My
Verification Tag” will be discarded. On the other hand, sent packets will carry
a verification tag equal to “Peer’s Verification Tag’. These tag values are ran-
domly selected at initialization and exchanged between the end points during
association set up.

A Chunk is an information unit. There are 12 different control chunks but
only one data chunk. The control chunks are Init!, InitAck, SACK, Heartbeat,
HeartbeatAck, Abort, Shutdown, ShutdownAck, Error, CookieEcho, CookieAck
and ShutdownComplete. Control chunks are used to setup and shutdown the as-
sociation, selectively acknowledge, report error messages, monitor reachability
of the peer, etc. Association setup uses a four-way handshake comprising four
control chunks: Init; InitAck; CookieEcho and CookieAck. Graceful closing uses

! Chunk names in the RFC are shown in all uppercase letters. To increase readability and
distinguish them from SCTP States, the chunk names in this paper are given with only the
first letters capitalized instead.

165

01234567890123456789012345678901

. Source Port Destination Port

Common Verification Tag
Header
| Checksum
Chunk Type |Chunk Flags Chunk Length
Chunk 1

(Control Chunk)
Chunk Value

Type=0 [Reserved F

B’; Length

TSN

Chunk N Stream Indentifer S Stream Sequence Number n
(Data Chunk)

Payload Protocol Identifer

User Data (Seq n of Stream S)

Fig. 1. SCTP Packet Format.

a three-way handshakes comprising three control chunks: the Shutdown; Shut-
downAck and ShutdownComplete chunks. The Data transfer phase involves
Data and SACK (Selective Acknowledgement) chunks. Further detail of the
structure of chunks can be found in [4].

2.2 SCTP Connection Management Procedures

The state diagram shown in Fig. 2 illustrates the connection management proce-
dures of SCTP. It comprises eight states: CLOSED; COOKIE-WAIT; COOKIE-
ECHOED; ESTABLISHED; SHUTDOWN PENDING; SHUTDOWN-SENT;
SHUTDOWN-RECEIVED and SHUTDOWN-ACK-SENT. The typical associ-
ation establishment and close down procedures are shown in Fig. 3.

Normal Association Establishment Figure 2 (a) shows the association set
up state diagram, and Fig. 3 (a) shows a typical set up procedure. An association
between two nodes, A and Z, is initiated by a SCTP user on node “A” issu-
ing an “ASSOCIATE” command. After receiving the “ASSOCIATE” primitive,
node A sends an SCTP packet with a verification tag (VTAG) equal to zero.
This SCTP packet contains only an Init chunk with an initial tag to specify the
verification tag of incoming packets. Then node A enters the COOKIE-WAIT
state. On receiving the Init chunk, node Z replies with an InitAck chunk indi-
cating that it is willing to communicate with node A. The response includes
node 7Z’s initial tag number and encrypted cookie containing enough informa-
tion to create node Z’s Transmission Control Block (TCB). To prevent state

166

rev Init
snd InitAck {cookie}

ASSOCIATE primitive
snd Init
SHUTDOWN primitive rcv Shutdown
rcv CookieEcho {cookie}
@ crate TCB from cookie
snd CookieAck SHUTDOWN SHUTDOWN
PENDING ECETVED
rev InitAck {cookie} no more no more
snd CookieEcho {cookie} outstanding data outstanding data
snd Shutdown snd ShutdownAck
rcv Shutdown
OOKIE_ ECHOED SHUTDOWN snd ShutdownAck SHUTDOWN
SENT CK-SENT
rcv CookieAck rcv ShutdownAck
rcv ShutDownComplete

> ESTABLISHED)Xi »®<

(a) (b)
Fig. 2. SCTP State Diagram (a) association set up (b) closing down.

exhaustion attacks node 7 is still in CLOSED after replying with an InitAck.
To acknowledge the InitAck, node A returns the cookie in a CookieEcho chunk
and enters COOKIE-ECHOED. When carrying an Init or InitAck chunk, the
SCTP packet comprises only one chunk. When sending a CookieEcho chunk,
the SCTP packet may enclose Data chunks after the CookieEcho chunk. On
receiving a CookieEcho from node A, node 7 creates its TCB from the received
cookie, enters the ESTABLISHED state, replies with CookieAck and is ready
for data transfer. After receiving CookieAck, node A enters ESTABLISHED
indicating that the association is established. During data transfer, endpoint
nodes A and 7 may exchange Data and SACK chunks.

Graceful Association Shutdown Figure 2 (b) shows the association close
down state diagram, and Fig. 3 (b) shows a typical graceful close down proce-
dure. When the application at node A issues a “SHUTDOWN” command, node
A enters the SHUTDOWN PENDING state and waits for all outstanding data
chunks to be acknowledged. This end point stops accepting new data from the
user. After all remaining data is acknowledged, node A sends a Shutdown chunk
and enters the SHUTDOWN-SENT state. When node 7 receives a Shutdown
chunk, it must enter SHUTDOWN-RECEIVED, stop accepting new data from
its user, and remain in this state until all outstanding data chunks are acknowl-
edged. After all remaining data is acknowledged, node Z sends a ShutdownAck
chunk and enters the SHUTDOWN-ACK-SENT state. After node A receives
a ShutdownAck chunk, it must respond with a ShutdownComplete chunk and
enter the CLOSED state. When node 7 receives the ShutdownComplete chunk
in SHUTDOWN-ACK-SENT, it enters the CLOSED state.

Besides the typical association set up and closing down procedures, the
SCTP specification allows the simultaneous opening and simultaneous closing
down of associations. For instance, when an endpoint in SHUTDOWN-SENT

167

Node A Node Z
CLOSED CLOSED
[ASSOCIATE]

Init (vtag=0, itag=Ax)
COOKIE_WAIT
(itag= Ax)
InitAck (vtag=Ax, itag=Zx, CK] Zx.Ax

COOKIE_ECHOED

(my vtag= Ax, CookieEcho (vtag=Zx, CK([Zx.Ax])
peer’s vtag =Zx) CLOSED
CookieAck (vtag=Ax) ESTABLISHED
(my vtag=Zx,
ESTABLISHED peer’s vtag = AX)
(my vtag= Ax,
peer’s vtag =Zx)
(a)
Node A Node Z
ESTABLISHED ESTABLISHED
(my tag=Ax, (my vtag=2x,
peer’s tag =Zx) peer’s vtag=Ax)
[SHUTDOWN]

SHUTDOWN PENDING

No more outstanding data

SHUTDOWN-SENT Shutdown (vtag=Zx)
(my tag=Ax,
peer’s tag = Zx)
SHUTDOWN-RECEI VED
(my vtag=27x,
peer’s vtag= Ax)

No more outstanding data

ShutdownAck (vtag= Ax SHUTDOWN-ACK-SENT
(my vtag=Zx,

peer’s vtag= Ax)

CLOSED ShutdownComplete (vtag=Zx)

CLOSED

(b)
Fig. 3. Typical message sequence charts (a) association set up (b) closing down.

receives a Shutdown chunk, it sends a ShutdownAck in response and enters
SHUTDOWN-ACK-SENT.

Handling Unexpected Init, InitAck, CookieEcho, and CookieAck Be-
sides typical set up and closedown procedures, RFC 4960 specifies the rules
to handle duplicate and unexpected Init, InitAck, CookieEcho, and CookieAck
chunks in Section 5.2. These rules are intended to identify and solve problems
that occur in the following scenarios.

1) An association is already established and both sides are in ESTAB-
LISHED. An end point crashes and attempts to restore the association by
sending a new Init chunk with a new Initial Tag.

2) Both end points attempt to open the association simultaneously.

3) The control chunk used to establish the association is stale.

4) An attacker generates a false SCTP packet.

5) The peer keeps retransmitting CookieEcho chunks and never receives a
CookieAck.

168

Section 5.2 of RFC 4960 discusses the definition of Tie-Tags. Tie-Tags are
copies of two verification tags (my verification tag and peer’s verification tag).
Actions specified in RFC 4960 that significantly differ from RFC 2960 are how
to store and use the Tie-Tags. RFC 2960 specifies the Tie-Tags being stored
in the cookie only but RFC 4960 requires to store the Tie-Tags in both cookie
and TCB. The Tie-Tags in the TCB are called “Local Tag” and “Peer’s Tag”.
The Tie-Tags in the cookie are called “Local Tie-Tag” and “Peer’s Tie-Tag”.
The Tie-Tags are used to tie the received cookie of the new association with
the old association. The Local Tie-Tag and the Peer’s Tie-Tag (in the cookie)
are compared with the Local Tag and the Peer’s Tag (in the TCB) to ensure
that the cookie belongs to the current association.

Section 5.2.4 of RFC 4960 discusses how SCTP responds when receiving an
unexpected CookieEcho chunk. The Tie-Tags and verification tags in the cookie
are compared with the verification tags in the existing TCB to identify which
scenario occurs. Thus the received CookieEcho chunk can be correctly handled.
An example of the scenarios is an association restart. When one side crashes
and loses its existing TCB, Tie-Tags are used to link the restart association to
the original association without shutting down and starting a new association.

3 Modelling Scope and Assumptions

Our model comprises all the state transitions of Fig. 2, and incorporates the
narrative description from the RFC 4960 [4] Section 5.1, 5.2, 8.4, 8.5, 9.1 and
9.2. We also make the following assumptions regarding SCTP connection man-
agement when creating our CPN model.

1. We only consider a single association instance, while ignoring the proce-
dures for data transfer, congestion control and other options. One SCTP packet
contains only one chunk. A SCTP packet is modelled by chunk type, verification
tag, initial tag and cookie. A cookie is modelled by “My Verification Tag” and
“Peer’s Verification Tag”, “Local-Tie-Tag” and “Peer’s-Tie-Tag”.

2. Other fields in the SCTP packet are omitted because they do not affect
the operation of the connection management procedure.

3. We do not consider misbehaviour or malicious attack.

4. Reordered or lossy channels may mask out possible deadlock, such as un-
specified receptions. Thus we follow the incremental procedure outlined in [1]
and analyse the CPN model with the following channel characteristics: FIFO
without loss, reordered without loss, FIFO with loss, and reordered with loss,
using the method proposed in [8]. However due to space limitations and for the
sake of readability, we only discuss the case when the communication channels
can delay and reorder packets without loss.

4 CPN Model of SCTP Connection Management

This section describes our CPN model of SCTP association establishment and
shutdown procedures. Influenced by [2,7], the hierarchical structure of our CPN
model is a procedure-based style. It comprises four hierarchical levels, 6 places,

169

1" ASSOCIATE 1" ASSOCIATE

COMMAND COMMAND
1" CLOSED 1 CLOSED

SCTP'A | SCTP'Z |

SCTP Procedures SCTP Procedures TCB

Fig. 4. The Top-level CPN page.

16 substitution transitions, 54 executable transitions and 2 ML functions. The
top-level page of the SCTP-CPN model is illustrated in Fig. 4. Two substitution
transitions (SCTP'A and SCTP'Z) represent the SCTP end point nodes, A and
7. Each side connects to four places. One place represents an application user
typed by COMMAND. Another models a Transmission Control Block typed
by TCB. Both end points are connected via two channel places, CH.A_Z and
CH_Z_A. We assume that during association set up and closing down a packet
contains only one chunk. Thus the channel places are typed by CHUNK, defined
in Fig. 7. The layout of the top level CPN page also reflects the well-known
model of the n-layer in a layered protocol architecture. The application layer
is placed on the top while the underlying medium layer is below the protocol
entity.

The substitution transitions, SCTP'A and SCTP'Z, are linked to the second
level page named SCTP_Procedures, shown in Fig. 5. We divide
SCTP_Procedures into five categories: normal events; unexpected events; re-
transmission; abort and checking Invalid Tags. Shown in Fig. 6 (a), the nor-
mal events comprise NormalEstablish and NormalShutDown of an association.
The unexpected events are when the end points receive unexpected packets.
We group the unexpected events into three CPN substitution transitions ac-
cording to chunk types: UnexpectedIntintAck; UnexpectedCookieEchoCookieAck
and UnexpectedShutdown, shown in Fig. 6 (b). Space limitation prevents us
from including all CPN model pages. Thus this paper will illustrate only five
CPN pages: Normal'Establish, Normal'Shut_Down, Unexpected'Int_IntAck, Unex-
pected'CookieEcho_CookieAck and Unexpected’'Shutdown.

With a state-based approach a CPN page represents several actions that
may be scattered through the narrative specification. When modelling SCTP
connection management with the procedure-based style, actions in each CPN
page are confined to only a few sections in RFC 4960, as illustrated in Table 1.
This makes our CPN model easier to understand when reading it alongside
RFC 4960.

170

User out Out
COMMAND A CHUNK

Normal
Events

Z

ormal

UnExpected
Events

Unexpected

Retransmission

[Retransmission |

Abort

Abort

—— || ChecklInvalidVTAG
CheckInvalidVTAG

e

CHUNK

Fig.5. The SCTP_Procedures page.

COMMAND UnExpected
InitInitAck

Init TnitAck

UnExpected
CookieEcho
CookieAck

CookieEcho_CookieAck

UnExpected
Shutdown

Shutdown

(b)
Fig. 6. (a) The Normal page (b) The Unexpected page.
4.1 Definition of CHUNK

When considering an abstract representation of SCTP packets, unlike the pack-
ets of TCP and DCCP, we found that Transmission Sequence Numbers (TSN)
and Stream Sequence numbers are used only during the data transfer phase and
are not relevant to SCTP connection management. On the other hand, Verifi-
cation Tags (VTAG) play a major role during SCTP association establishment.
Figure 7 defines the data structure of an SCTP packet called CHUNK (recall
that we model each packet as a single chunk only). Many chunks have a differ-
ent formats, thus we declare CHUNK (line 10) as the union of nine colour sets:
VTAGXITAG (for Init chunk), VTAGXITAGxCOOKIE (for InitAck chunk),
VTAGxCOOKIE (for CookieEcho chunk), four sets of VTAG (for CookieAck,
Data, Shutdown and ShutdownAck chunks) and two sets of TFLGxVTAG (for
Abort and ShutdownComplete chunks). Chunk types are distinguished by the
ML selectors shown in line 10 to 14.

171

Procedures CPN Page Relevant Sections
Normal Event
Normal establishment Establish 5.1
Normal Shutdown Shut_Down 9.2
Unexpected Events
Receiving unexpected Init chunk Init_InitAck 5.2.1, 5.2.2
Receiving unexpected InitAck chunk Init_InitAck 5.2.3
Receiving unexpected CookieEcho chunk |CookieEcho_CookieAck 5.2.4
Receiving unexpected CookieAck chunk |CookieEcho_CookieAck 5.2.5
Receiving unexpected Shutdown chunk Shutdown 9.2
Receiving unexpected ShutdownAck chunk|Shutdown 9.2
Receiving unexpected Shutdown 9.2
ShutdownComplete chunk
Abort Abort 9.1
Retransmission Retransmission 5.1, 9.2
Validation of VTAG ChecklnvalidVTAG 8.4, 8.5

Table 1. Relationship between SCTP procedures, CPN pages and sections in RFC 4960.

colset VTAG = int;
colset VTAGXITAG = product VTAG * VTAG; (* Init and InitAck Chunk *)
colset MyVTAGxPeerVTAG = product VTAG * VTAG;
colset COOKIE = record CK_TAG:MyVTAGxPeerVTAG
* CK_TT:MyVTAGxPeerVTAG;
colset VITAGxCOOKIE = record VI:VTAGXITAG * CK:COOKIE; (* InitAck chunk x*)
colset VTAGxCOOKIE = record VT:VTAG * CK:COOKIE; (* CookieEcho Chunk *)
colset TFLAG = with T_ON | T_OFF;
colset TFLAGXVTAG = product TFLAG * VTAG;
: colset CHUNK = union Init:VTAGXITAG + InitAck:VTAGxITAGxCOOKIE
+ CookieEcho:VTAGxCOOKIE + CookieAck:VTAG
+ Data:VTAG + Abort:TFLAGxVTAG
+ Shutdown:VTAG + ShutdownAck:VTAG
+ ShutdownComplete: TFLAGXVTAG;

= s e
L N T

Fig. 7. The definition of SCTP Chunk.

Line 1 defines the basic unit, VTAG, as the set of integers. Although an
integer in CPN Tools is not a 32-bit unsigned integer like the VTAG field shown
in Fig. 1, this does not affect the analysis of the model. Notice that according
to our model abstraction, besides T-Flag, CHUNK comprises only VTAG and
the compositions of VTAGs.

Each endpoint shall keep my and peer’s verification tags in its TCB. When
an endpoint sends out a packet, the value of peer’s verification tag is copied into
VTAG field of the outgoing chunks. If an endpoint receives an SCTP packet
of which VTAG field does not match my wverification tags, the packet shall
be silently discarded. Peer’s verification tags of both sides are initialized by
exchanging the value in the Initial Tag (ITAG) field of the Init and InitAck
chunks (see Fig. 3 (a)). Thus the data structure of the Init chunk is defined as
the product of two verification tags (VTAGXITAG - line 2). The InitAck chunk
(line 6) is modelled by a record of VTAGxXITAG and COOKIE. Despite a cookie
containing a lot of parameters, we model COOKIE (line 4) as a record of two
pairs of VTAG: (My Verification Tag, Peer’s Verification Tag) and (Local-Tie-
Tag, Peer-Tie-Tag).

Line 7 defines CookieEcho chunk as the record of VTAG and COOKIE,
whereas CookieAck, Shutdown and ShutdownAck are modelled by only VTAG.

172

Abort and ShutdownComplete chunks use T-Flag to indicate whether, when
sending out these chunks, the TCB exists or not. If the TCB does exist, the
Abort and ShutdownComplete chunks have T-Flag set to off and VTAG equal
to the peer’s verification tag. When TCB does not exist, T-flag is on and the
VTAG field equals the verification tag of the received packet the SCTP entity is
responding to. Thus Abort and ShutdownComplete chunks (line 9) are defined
by the product of TFLAG and VTAG (TFLAGxVTAG).

4.2 Definition of TCB

During each stage of association establishment the TCB of a SCTP endpoint
may record different data. CLOSED means there is no connection, and no state
parameters exist. A SCTP node in the COOKIE-WAIT state has no knowledge
of the peer’s verification tag but knows only my verification tag. Both verifica-
tion tags are known in the COOKIE-ECHOED state but a SCTP node may
retransmit the CookieEcho chunk together with the echoed cookie. Thus the
SCTP node needs to store the cookie for the purpose of retransmission because
the content in the cookie is encrypted and cannot be recreated.

According to the differences in the TCB data structure we describe above,
we divide SCTP states into four groups: CLOSED, COOKIE-WAIT, COOKIE-
ECHOED and the states after association established. Figure 8 declares TCB
in line 12 as a union set of empty set, COOKIEWAIT_CB,COOKIE_.ECHOED_CB
and SCTP_CB. SCTP’s state are distinguished by ML selectors as defined in line
12. Similar to CHUNK, besides the retransmission counter, a TCB comprises
only VTAG and the compositions of VTAGs.

1: colset RCNT = int;

2: colset COOKIEWAIT_CB = record Rcnt:RCNT * myvtag:VTAG

3: * SV_TT:MyVTAGxPeerVTAG;

4: colset SV_in_TCB = record Rcnt:RCNT

5: * SV_VT:MyVTAGxPeerVTAG

6: * SV_TT:MyVTAGxPeerVTAG;

7: colset COOKIE_ECHOED_CB = product SV_in_TCB * COOKIE;

8: colset TCB_EXIST_STATE = with ESTABLISH | SHUTDOWN_PENDING

9: | SHUTDOWN_RECEIVED | SHUTDOWN_SENT
10: | SHUTDOWN_ACK_SENT;

11: colset SCTP_CB = product TCB_EXIST_STATE * SV_in_TCB;
12: colset TCB = union CLOSED + COOKIE_WAIT:COOKIEWAIT_CB
13: + COOKIE_ECHOED:COOKIE_ECHOED_CB

14: + TCBExist:SCTP_CB;

15: colset COMMAND = with ASSOCIATE | SHUTDOWN | ABORT;

Fig. 8. The definition of SCTP’s Transmission Control Block (TCB).

Differing from RFC 2960, in addition to only storing Tie-Tags in the cookie,
Section 5.2.2 of RFC 4960 defines the Local Tag and Peer’s Tag be stored in
association’s TCB. Thus line 4 declares state variables in TCB, SV_in_TCB, as a
record of retransmission counter (RCNT - line 1) and two products of verification
tags: (my verification tag, peer’s verification tag) and (Local Tag, Peer’s Tag).

173

After association establishment, a SCTP node in our model has TCB defined
as a product of state after the association established (TCB_EXIST_STATE- line
8) and state variables SV_in_TCB.

COOKIE_.ECHOED_CB (Line 7) is defined as a product of SV_.in_TCB and
COOKIE (line 4 of Fig. 7). Line 2 declares COOKIE_-WAIT_CB as a record
of retransmission counter (RCNT), my verification tag (VTAG) and a pair of
VTAGs (Local Tag, Peer’s Tag). Line 15 defines user commands which are
ASSOCIATE, SHUTDOWN and ABORT.

4.3 CPN Model of SCTP Normal Procedures

This subsection illustrates two CPN pages of typical scenarios of SCTP connec-
tion management: association establishment and graceful shutdown. Beginners
who have just studied this protocol can easily understand these two CPN pages
because they are similar to state diagrams (Fig. 2) and the typical message
sequence chart in Fig. 3.

Normal Establishment Page The normal establishment procedures de-
scribed in section 5.1 of RFC 4960 are modelled in the Normal'Establish page
shown in Fig. 9. Five transitions represent a sequence of actions directly map-
ping from the message sequence chart in Fig. 3 (a). In addition to sending
outgoing chunks and changing states, SCTP nodes validate VTAG fields and
populates the values of Tie-Tags into the cookie and TCB. The guard on transi-
tion Rev_Init requires the VTAG of the Init chunk to be equal to zero. According
to last paragraph of section 5.2.2 page 67 of RFC 4960 [4], the value of Tie-
Tags in CLOSED, COOKIE-WAIT and SHUTDOWN-ACK-SENT shall be set
to zeros. Thus the Tie-Tags in the InitAck chunk and in TCB of COOK-WAIT
state are set to zeros.

Normal Shutdown Page Figure 10 shows a CPN page of the normal grace-
ful shutdown procedures described in section 9.2 of RFC 4960. Despite the
normal shutdown procedure shown in Fig. 3 (b) comprising only SHUTDOWN
primitives and three-way handshakes, the Normal'Shut_Down page contains 9
transitions. Unlike association establishment, section 9.2 of RFC 4960 does not
separate the normal closing down and unexpected closing down procedures.
Hence, in addition to the typical actions of SHUTDOWN primitives and three-
way handshakes, this page includes

1) Clearing outstanding data when receiving Data chunks in SHUTDOWN-
PENDING and SHUTDOWN-RECEIVED;

2) Retransmitting Shutdown chunks when receiving Data chunks in the
SHUTDOWN-SENT state;

3) Receiving Shutdown chunks in the SHUTDOWN-RECEIVED state.

4.4 CPN Models of Unexpected Procedures

Handling unexpected receptions of SCTP control chunks is modelled by three
CPN pages: Unexpected'Int_IntAck, Unexpected'CookieEcho_CookieAck, and Un-
expected'Shutdown. These are illustrated in this section.

174

COMMAND
ASSOCIATE

CLOSED HUNK

Init (0, InitTag_A)

- ASSOCIATE PRIM
COOKIE_WAIT
{Rcnt = 0, myvtag = InitTag_A,

SV_TT = (0, 0)}
CLOSED

1
[vtag =0] InitAck { VI=(itag, InitTag_Z), CK =
{ CK_TAG= (InitTag_Z, itag), CK_TT=(0,0)}}

‘J Rev_Init
r‘ Al

Init (vtag, itag)
COOKIE WAIT { Rent=rent,
myvtag = localtag, SV_TT = tt}
P |
TCB it #1vitag = localtag then
COOKIE_ECHOED ({ Rent=0, SV_VT=(localtag, # 2vitag),
SV_TT = tt}, cookie)
else COOKIE_WAIT { Rent=rcnt, myvtag = localtag, SV_TT= tt}
CLOSED

[#1vitag = localtad] ¢ 4 q(yitag) = localtag then 1° CookieEcho
{VT= #2(vitag),CK=cookie} else empty

Rev_InitAck

RCV_CookieEcho

>
if cookievalid then

TCBExist (ESTABLISHED, { Rent=0, SV_VT= # CK_TAG(cookie),
SV TT = #CK TT(cookie)}) else CLOSED

CookieEcho { VT=vtag,

COOKIE_ECHOED (sv, cookie)

_ r]“ CookieAck vtag
Rev_CookieAck ¢
if vtag = #1(# SV_VT(sv)) then TCBExist (ESTABLISHED,
{Rent=0, SV_VT = #SV_VT(sv), SV_TT = #SV_TT(sv)})
else COOKIE ECHOED (sv, cookie)
CHUNK
. 5 .
Fig. 9. The Normal’Establish page.
COMMAND
[tcb exist state <>
SHUTDOWN_RECEIVED] SHUTDOWN
TCBEXxist (tcb_exist_state, sv)
~ r] ShutDown_PRIM
TCBEXxist (SHUTDOWN_PENDING, sv)
CHUNK
[(state = SHUTDOWN_PENDING
orelse state = SHUTDOWN RECEIVED)]
TCBEXxist (state, sv) Data vtag
P ClearingDataChunk
TCBExist (SHUTDOWN_PENDING, sv)
Shutdown (#2(# SV VT(sv
- SndShutdown (2 ()
TCBExist (SHUTDOWN_SENT,
{Rent=0, SV VT= #SV VT(sv), SV TT = #SV TT(sv)})
[vtag = #1(#SV_VT(sv))
TCBExist (SHUTDOWN_SENT, sv) andalso vtag <> 0]
'] Shutdown (#2(#SV VT(sv)))
RevDatainShutdownSent —
TCBExist (SHUTDOWN_SENT, { Rent =0, ‘ ¢
SV_VT= #S8SV_VT(sv), SV_TT = #SV_TT(sv)})
[vtag = #1(# SV_VT(sv)) Data viag
v andalso vtag <> 0]
TC‘B 70 TCBEXxist (ESTABLISHED, sv) Revshutd
cvShutdown
. 4 | [‘ Shutdown vtag
A TCB TCBExist (SHUTDOWN_RECEIVED, sv)
RCVShutdownln Shutdown vtag
TCBExist (SHUTDOWN RECEIVED, sv) SHUTDOWN_RECEIVED
TCBExist (SHUTDOWN_RECEIVED, sv) ShutdownAck (#2(#SV_VT(sv)))
> SndShutdownAck
TCBExist (SHUTDOWN_ACK_SENT,
{Rent=0, SV VT= #SV VT(sv), SV TT= (0,0)})
[vtag = #1(# SV_VT(sv))
andaliso vtag <> 0] ShutdownComplete
TCBExist (SHUTDOWN_SENT, sv T_OFF,#2(#SV_VT(sv
N~ ! =) P RovshutdownAck (T ESVNTE) 1)
CLOSED ShutdownAck viag
L TCBExist (state, sv)
P RevShutdownComplete
. | ShutdownComplete (t,vtag)
if (state = SHUTDOWN_ACK_SENT andalso
((vtag = #1(#SV VT(sv)) andalso t = T OFF) orelse

(vtag = #2(#SV_VT(sv)) andalso t = T_ON)) andalso In
vtag <> 0) then CLOSED
else TCBExist (state, sv) CHUNK

Fig. 10. The Normal’Shut_Down page.

175

Unexpected Init and InitAck Page Figure 11 shows the CPN page deal-
ing with the unexpected events of receiving Init and InitAck chunks in states
other than CLOSED. Transitions Revlnit. CK_.WAIT and RcvInit CK_ECHOED
model the actions according to section 5.2.1 of RFC 4960 [4] when an endpoint
receives an Init chunk in the COOKIE-WAIT or COOKIE-ECHOED state.
The difference between these actions is that the Tie-Tags from the COOKIE-
WAIT state are set to zeros but from COOKIE-ECHOED, they are set to the
current verification tags. Transitions Recv_InitOtherThan models the action ac-
cording to section 5.2.2 of RFC 4960 when the endpoints receive unexpected
Init chunks in states other than CLOSED, COOKIE-WAIT and COOKIE-
ECHOED. The action is similar to that of transition Rcvinit- CK_ECHOED but
the “my verification tag” in the cookie and Initial Tag in the InitAck chunk
are set to a new value instead of the old value of the Initial tag (InitTag_Z).
Transition Revinit_iin SHUTDOWN_ACK_SENT models the action according to
the sixth paragraph of section 9.2 of RFC 4960. After receiving an Init chunk in
SHUTDOWN-ACK-SENT, the SCTP node discards the Init chunk but retrans-
mits a ShutdownAck chunk. Transition Rev_InitAck models the action according
to section 5.2.3 of RFC 4960. The SCTP node silently discards any unexpected
InitAck chunks if receiving them in states other than COOKIE-WAIT

Unexpected CookieEcho and CookieAck Page Figure 12 shows the CPN
page dealing with the unexpected events of receiving CookieEcho chunks in
states other than CLOSED; and receiving CookieAck in states other than
COOKIE-ECHOED. When receiving CookieAck in states other than COOKIE-
ECHOED, (transition Rcv_CookieAck), the SCTP node silently discards the

InitAck {Vi=(itag, # myvtag(sv ckwait)),

[vtag = 0] CK={ CK_TAG= (# myvtag(sv_ckwait), itag),

CK_TT=(0, 0)}}
COOKIE_WAIT sv_ckwait [Out
Revinit CK WAIT [« ~ [Out
Init (vtag, itag) CHUNK
InitAck { VI = (itag, # 1(# SV_VT(sv))),
COOKIE_ECHOED ({ Rent= # Rent(sv), [vtag - 0] CK = { CK_TAG=((#1 (#SV_VT(sv))), itag),
SV VT = #SV VT(sv), g = 0] CK_TT= (#SV_VT(sv))}}
SV_TT = #SV_VT(sv)}, cookie) [I
Revlnit_CK_ECHOED |«
N Init (vtag, itag)
COOKIE_ECHOED (sv, cookie)
InitAck { VI = (itag, new_tag),

[vtag = 0 andalso state :
CK = { CK_TAG= (new_tag, itag),
TOBExist (state, <> SHUTDOWN_ACK_SENT] OK_TT= Iptag]]

Rent=rent, SV_VT=Iptag, SV_TT=tt} .
é »| Rev InitOtherThan

TCB A TCBExist (state, Init (vtag, itag)
{Rent=rcnt, SV_VT=Iptag,
SV TT= Iptag})
[vtag = 0] Shutdow —
TCBExist (SHUTDOWN_ACK_SENT, sv) Revinit in

<
»| SHUTDOWN_ACK_SENT [Init (vtag, itag)

[not (TCB.of _COOKIE_WAIT(any_state))]

any_state InitAck vitagXcookie
~ Y- 1 Rev_InitAck F 9

o,
CHUNK

Fig. 11. The Unexpected’Init_InitAck page.

176

CookieAck chunk. Four substitution transitions, Restart, Simultaneous Open,
Delayed_Cookie and Tags_match, model the actions described in section 5.2.4 of
RFC 4960. While we modeled this CPN page, we found an error? in Table 2
of section 5.2.4 of RFC 4960. The column headers of the Table, “Local Tag”
should be “Local verification tag in the received cookie” and “Peer’s tag” should
be “Peer’s verification tag in the received cookie”.

Rev_CookieEcho
» — »
> Restart gt e

Restart

' Rcv_CookieEcho
1| Simultaneous_Open |[4

Simultaneous Open R

A
J

£

=

CHUNK

- Rev_CookieEcho
1| Dealyed_Cookie —

Delayed Cookie

g Rev_CookieEcho ‘/—ﬁ%
ld Tags_match

Tags match
[not (TCB.of_COOKIE_ECHOED(any_state))]
any_state CookieAck vtag
Rev_CookieAck <

E In)
CHUNK

Fig. 12. The Unexpected’CookieEcho_CookieAck page.

Unexpected Shutdown Page This CPN page represents the events when
a SCTP endpoint unexpectedly receives shutdown control chunks (Shutdown,
ShutdownAck and ShutdownComplete). The states in the establishment phase,
COOKIE-WAIT and COOKIE-ECHOED, should not receive the shutdown
control chunks. SHUTDOWN-SENT should not receive the Shutdown chunk.
SHUTDOWN-ACK-SENT should not receive the ShutdownAck chunk. The
reception of shutdown control chunks in CLOSED is modelled by the first
transition. The second, third and fourth transitions model the receptions of
Shutdown, ShutdownAck and ShutdownComplete respectively in the COOKIE-
WAIT and COOKIE-ECHOED states. When a node receives ShutdownAck in
either COOKIE-WAIT or COOKIE-ECHOED, the node replies with Shutdown-
Complete. The T-Flag is set and the VTAG of the outgoing packet is set equal
to the VTAG of the incoming packet.

The fifth transition models the reception of a Shutdown chunk in the
SHUTDOWN-SENT state. The node replies with ShutdownAck and enters the
SHUTDOWN-ACK-SENT state. The sixth transition represents the reception

2 See Transport Area Discussion Archive
http://www.ietf.org/mail-archive/web/tsvwg/current /msg08603.html.

177

[CHUNK.of_Shutdown(chunk) orelse
CHUNK.of_ShutdownAck(chunk) orelse
CHUNK. of_ShutdownComplete(chunk)]

RCV_Shutdown_x_
in_CLOSED

chunk

[TCB.of_COOKIE_WAIT(any_state) orelse
TCB.of _COOKIE_ECHOED(any_state)]

any_state RevShutdown_in

CK_WAIT_CKECHOED

Shutdown vtag
[Out} A CHUNK

[TCB.of _COOKIE_WAIT(any_state) orelse
TCB.of _COOKIE ECHOED(any_state)] g \\o0ncombiete (T ON.vtag)

any_state RevShutdownAck in [
P _CK_WAIT_CKECHOED ShutdownAck vtag

[TCB.of_COOKIE_WAIT(any_state) orelse
TCB.of_COOKIE_ECHOED(any_state)]

any_state

RevShutdownComplete
in_CK_WAIT_CK_ECHOED

ShutdownComplete (t,vtag)

[vtag = #1(#SV_VT(sv))
TCBExist (SHUTDOWN_SENT, sv) andalso vtag <> 0] Shutdow = L
'] RcvShutdown_in_

TCBExist (SHUTDOWN_ACK_SENT, SHUTDOWN SENT Shutdown vtag
{ Rent=0,
SV_VT= #SV_VT(sv), SV_TT= (0,0)})

[vtag = #1(#SV_VT(sv))
TCBExist (SHUTDOWN_ACK_SENT, sv) ~andalso vtag <> 0] ShutdownComplete

_ "1 RevShutdownAck | (T OFF, #2(#SV VT(sv)))

CLOSED inShutdownAckSent | ‘\

ShutdownAck vtag

Fig. 13. The Unexpected’Shutdown page.

of a ShutdownAck chunk in the SHUTDOWN-ACK-SENT state. The node
replies with ShutdownComplete and goes to CLOSED.

5 Analysis of DCCP-CPN Connection Management Model

5.1 Initial configuration

We analyse our SCTP connection management model using CPN Tools version
2.2.0 on an AMD Athlon 1.79 GHz computer with 2GB RAM. The SCTP-CPN
model is initialised by distributing initial tokens to places User_A and User_Z.
TCB_A and TCB_Z of the model to create the initial marking. Table 2 shows
the initial values of the user commands and TCB. All channel places are empty.
All initial tags used during association establishment are randomly generated.

We analyse five cases. Case A is association establishment. Both node A
and 7 are initially in CLOSED. The user of node A issues an “ASSOCIATE”
command to start an association. Case B is simultaneous establishment, where
both sides attempt to initiate the association at about the same time. Case C
is graceful shutdown. Both sides are in ESTABLISHED, and the user at node
A issues a SHUTDOWN command. Case D is simultaneous graceful shutdown
when both sides try to close the association at about the same time. Case E
is ungraceful abort. Both sides are in ESTABLISHED, and the user at node A

178

Initial Markings in place
Case User_A User_Z TCB_A TCB.Z
A |1‘ASSOCIATE CLOSED CLOSED
B |[1°‘ASSOCIATE | 1°‘ASSOCIATE CLOSED CLOSED
C [I‘'SHUTDOWN TCBExist (ESTABLISHED, | TCBExist (ESTABLISHED,
D |1‘'SHUTDOWN|1‘SHUTDOWN| {Rcnt=0,SV_VT=(2,3) {Rent=0, SV_VT=(3,2)
E 1‘ABORT SV_TT=(2,3)}) SV_TT=(3,2)})

Table 2. Initial Configurations.

issues an ABORT command. The initial markings for these cases are shown in
Table 2.

5.2 Analysis Results

The analysis results of our SCTP Connection Management CPN model using
the initial configurations in Table 2 are shown in Table 3. The 4-tuple in the first
column is the maximum retransmissions allowed for Init, CookieEcho, Shutdown
and ShutdownAck respectively. An “x” indicates that the retransmission of
those chunk types does not occur in that configuration. The state space tool
(in CPN Tools) provides the number of nodes, arcs and terminal markings. In
all cases (A to E) in Table 2 the number of nodes and arcs in the Strongly
Connected Component (SCC) Graph are the same as the number of nodes and
arcs in the state space. Thus no livelocks are found.

We classify the terminal markings into four categories based on the SCTP
endpoint states:

TYPE-I CL-CL: both sides terminate in CLOSED.

TYPE-IT EST-EST: both sides terminate in ESTABLISHED.

TYPE-III CL-EST: node A terminates in CLOSED but node Z in ESTAB-
LISHED.

TYPE-IV EST-CL: node A terminates in ESTABLISHED but node Z in
CLOSED.

Cases C to E in Table 2 are when the association is terminated. All terminal
markings of cases C to E are TYPE-I (CLOSED-CLOSED) which is desirable,
and no other deadlocks are found. Case D has three terminal markings because
there is the possibility of one user command token (SHUTDOWN) remaining
in either place User_A or User_Z.

Case A and B are when SCTP’s nodes attempt to establish an association.
TYPE-I terminal marking (CLOSED-CLOSED) is a desirable terminal marking
when the association can not be established thus both sides go to CLOSED state
(No connection). TYPE-III and TYPE-IV terminal markings occur when one
side is in ESTABLISHED while the other is in CLOSED. This can happen when
the maximum number of retransmissions of the CookieEcho chunk is reached
and the node enters CLOSED before CookieAck arrives. An example of this
scenario is shown in Fig. 14. Although TYPE-III and TYPE-IV are unwanted,
they are not harmful. This is because when the peer is considered unreachable,
SCTP will report the failure to its user so that the user may decide to re-initiate

179

Case Nodes| Arcs |Time Terminal Markings
(sec) |(TI)CL-CL| (I EST-EST|(III)CL-EST|(IV)EST-CL
A-(00xx)| 12 3 |0 1 I I 0
A-(1,0xx)| 38 | 58 | 0 1 2 2 0
A-(01xx)| 20 | 26 | 0 1 1 1 0
A-(Llxx)| 78 | 147 | 0 1 2 2 0
A-(2,2x,x)| 345 | 905 | 1 1 2 2 0
A-(3,3xx) 1,124 | 3535 | 1 1 2 2 0
B-(0,0,x,x)| 380 756 0 1 16(11) 4 4
B-(1,0,x,x)| 8,206 | 25,778 | 41 1 36(20) 7 7
B-(0,1x,x)| 1,087 | 2,498 | 1 1 16(11) 4 4
B-(1,1,x,x)|31,295(113,302| 579 1 36(20) 7 7
C-(x,x,0,0)| 14 20 0 1 0 0 0
C-(x,x,1,0)| 28 50 0 1 0 0 0
C-(x,x,0,1)| 22 36 0 1 0 0 0
C-(x,x,1,1)| 45 87 0 1 0 0 0
D-(x,x,0,0)| 106 234 0 3 0 0 0
D-(xx,1,0)| 415 | 1,178 | © 3 0 0 0
D-(x,x,0,1)| 253 598 0 3 0 0 0
D-(xx,1,1)[1,125 | 3,604 | 1 3 0 0 0
D-(x,x,2,2)| 6,024 | 22,294 | 16 3 0 0 0
E-(x,x,x,x)| 3 2 0 1 0 0 0

Table 3. State space analysis results.

the ASSOCIATE command. Thus the association can be restored as described
in Fig. 5 of RFC 4960.

Node A Node Z
CLOSED CLOSED
[ASSOCIATE]
Init (vtag=0, itag=Ax)
COOKIE WAIT
(itag= Ax)

InitAck (vtag=Ax, itag=Zx, CK[Zx.AX

CookieEcho (vtag=Zx, CK([Zx.AX])

COOKIE_ECHOED
(my vtag=Ax,

peer’s vtag =Zx) CLOSED
Time-out
CLOSED CookieAck (vtag=Ax ESTABLISHED
(my vtag=27x,
peer’'s vtag = Ax)

Fig. 14. A scenario leads to a terminal marking TYPE III (half open state).

TYPE-II terminal markings should be desirable when both sides successfully
establish the association. However when we check the verification tags stored in
the TCBs, some terminal markings of TYPE-II are undesirable. #1SV_VT in
TCB_A must equal #2SV_VT in TCB_Z and vice versa, otherwise all received
data packets will be discarded. In column TYPE-II, the number in parenthesis
is the number of TYPE-II terminal markings in which verification tags between
both TCBs match each other. For example, in case B(0,0,x,x), eleven terminal
markings of TYPE-II have verification tags matched to each other.

180

Node A Node Z
CLOSED CLOSED
[ASSOCIATE|

Init (vtag=0, itag=A1)
COOKIE_WAIT
(itag=A1)

InitAck(viag= A1,itag=Z1,CK[Z1.A1

COOKIE_ECHOED CookieEcho (vtag=Z1, CK[Z1.A1])
(my vtag=At, [ASSOCIATE
peer’s vtag =Z1)
Time-out Init (vtag=0, itag=22) COOKIE_WAIT
CLOSED (itag=22)
InitAck(vtag=Z2) itag= A2, CK[A2.22])
CookieEcho(vtag= A2,CK[A2.Z COOKIE_ECHOED
(my tag=22,
ESTABLISHED peer's tag =A2)
(my tag=A2, CookieAck vtag=Z2 Time-out
peer's tag =72) CLOSED
ESTABLISHED
(my tag=21,
CookieAck vtag= Al peer’s tag =A1)

Fig. 15. A scenario when both sides reach ESTABLISHED with mismatched verification tags.

According our investigation, one cause of this problem is shown in Fig. 15.
Node A starts initiating the association. The setup sequence proceeds accord-
ing to the typical scenario but the CookieEcho chunk from node A is delayed.
While waiting for CookieAck, node A reaches the maximum number of retrans-
mission of the CookieEcho chunk, thus node A goes to CLOSED. Meanwhile
after replying InitAck, node Z initiates the association establishment (simulta-
neous establishment) using a different set of verification tags. Similar to node A,
while waiting for CookieAck, node Z retransmits the maximum number of re-
transmission of CookieEcho chunks, and goes to CLOSED. After both sides are
in CLOSED, CookieEcho’s arrive at both sides. Both sides process the cookies
and authenticate the State Cookie if it is the one that it has just generated. Both
sides create their TCBs from the received cookies and go to ESTABLISHED
with mismatched verification tags. Notice that this problem does not relate to
Tie-Tags mechanism or section 5.2 of RFC 4960.

6 Conclusions and future work

This paper has presented a Coloured Petri Nets model and analysis of SCTP
connection management. Our CPN model is based on the recent RFC 4960
rather than the obsolete RFC 2960. Besides the typical association establish-
ment, graceful shutdown and abort, our CPN model includes the procedures for
handling the reception of unexpected control chunks. In particular we attempt
to model the use of Tie-Tags from RFC 4960 that differs significantly from the
description in RFC 2960.

We build the procedure-based CPN model of SCTP connection management
directly from RFC 4960. It took about two months (part time) to study the
SCTP procedures, create the model and debug the model. The most critical
problem of this project is to understand how to use Tie-Tags. When SCTP
receives a CookieEcho chunk in the states other than CLOSED (section 5.2.4

181

of RFC 4960), Tie-Tags are used to identify complex scenarios such as an asso-
ciation restart and simultaneous establishment. Although we found an error in
section 5.2.4 of RFC 4960 while we developed the SCTP-CPN model, to gain
an insight into these complex scenarios requires more exhaustive analysis and
more time.

Our initial state space analysis shows that the shutdown procedures have
no deadlocks but the establishment procedures have undesired deadlocks. The
undesired deadlocks are half open states, where one SCTP node is in CLOSED
while the other is in ESTABLISHED. This deadlock could be easily solved by
restarting the association. When the maximum number of retransmissions has
been reached, SCTP must report to its user. Then the user can restart the
association.

The second problem seems more severe because both sides are in ESTAB-
LISHED with mismatched verification tags stored in their TCB. As far as we
aware there is no existing discussion of this problem. The solution to the second
problem seems to involve cookie authentication, which needs further investiga-
tion. In future, we are interested in modelling security attacks against SCTP
as well as multi-homing.

Acknowledgments The author are thankful to the anonymous reviewers and
also to Professor Jonathan Billington and Dr. Guy Gallasch. Their constructive
feedback has helped to improve the quality of this paper.

References

1. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol
Verification. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency
and Petri Nets, Advances in Petri Nets, volume 3098 of Lecture Notes in Computer Science,
pages 210-290. Springer, Heidelberg, 2004.

2. J. Billington and S. Vanit-Anunchai. Coloured Petri Nets Modelling of an Evolving Internet
Standard: the Datagram Congestion Control Protocol . Fundamenta Informaticae, In Press,
2008.

3. M. Martins M. G. Modelagem e Andlise Formal de algumas Funcionalidades de um
Protocolo de Transporte Atrvés das Redes de Petri. Master’s thesis, Instituto Nacional
de Telecomunicagoes (INATEL) , Santa Rita do Sapucai, Brazil, December 2003.

4. R. Stewart Ed. Stream Control Transmission Protocol (SCTP), RFC4960. Available via
http://www.rfc-editor.org/rfc/rfc4960.txt, September 2007.

5. R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, M. Tuexen. Stream Control Transmission
Protocol (SCTP) Specification Errata and Issues, RFC4460. Available via http://www.rfc-
editor.org/rfc/rfc4460.txt, September 2007.

6. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M.
Kalla, L. Zhang and V. Paxson. Stream Control Transmission Protocol (SCTP), RFC2960.
Available via http://www.rfc-editor.org/rfc/rfc2960.txt, October 2000.

7. S. Vanit-Anunchai and J. Billington. Modelling the Datagram Congestion Control Pro-
tocol’s Connection Management and Synchronisation Procedures. In J. Kleijn and
A. Yakovlev, editors, Proceedings of the 28th International Conference on Application and
Theory of Petri Nets and Other Models of Concurrency (ICATPN’07), volume 4546 of Lec-
ture Notes in Computer Science, pages 423—-444, Siedlce, Poland, 25-29 June 2007. Springer,
Heidelberg.

8. S. Vanit-Anunchai, J. Billington, and G.E. Gallasch. A Combined Protocol Channel Model
and its Application to the Datagram Congestion Control Protocol. In D. Moldt N. Sidorova
and H. Rolke, editors, Proceeding of the International Workshop on Petri Nets and Dis-
tributed Systems (PNDS08), pages 32—46, Xian, China,, 23-24 June 2008.

182

A discretization method from coloured to symmetric nets:
application to an industrial example

FabienBonnefoi ChristineChoppy FabriceKordon
DSO/DSETI, LIPN, CNRS UMR 7030, LIP6 - CNRS UMR 7606,
Cofiroute, Université Paris XlII, Université P. & M. Curie,
6 - 10 rue Troyon, 99 av. J-B Cléement, 4 Place Jussieu,
92310 Sévres, France 93430 Villetaneuse, France 75252 Paris Cedex 05, France
Fabien.Bonnefoi@cofiroute.com Christine.Choppy@lipn.univ-paris13.fr Fabrice.Kordon@!ip6.fr

1 Introduction

Future supervision systems tend to be distributed and at petially embedded. Distribution brings a
huge complexity and then, a strong need to deduce possiide @nd bad) behaviours on the global system,
from the known behaviour of its actors. This is crucial singssion critical or life critical missions are more
and more supervised by such systems. Intelligent Tran§ystems (ITS) are a typical example: more and
more functions tend to be integrated in vehicles and roadstructure.

Moreover, in many cases (like ITS), physical constraingspart of the system description. Analysis tech-
niques based on discrete models must integrate such cotstrave then speak dfybrid systems.

So, a major trend in formal analysis is to cope with such sgsteThis raises many issues in terms of
analysis complexity. Some techniques are dedicated tonuamis analysis such as algebraic approaches like
B [1]. However, such approaches are difficult to set up and imdsistries prefer push-button tools.

Model checking easily offers such push-button tools busdua# cope well with continuous systems. Most
model checking techniques deal with discrete (finite) systeThus, management of hybrid systems is not easy
or leads to potentially infinite systems that are difficulvésify (for example, management of continuous time
requires much care, even to only have decidable models)itHPletri Nets [15] might be a solution to model
and analyze hybrid systems but no tool is available to tdtteresafety nor temporal logic properties [11].

In this paper, we propose a methodology to handle hybricesystvith model checking on Petri Nets and
algebraic methods. Our methodology is based on transfarnsafrom Coloured Petri Nets (CPN) [25, 26] to
Symmetric Petri Nets (SN) [9, 7].

CPN allow an easy modelling of the system to be analyzed. $Mfanterest for their analysis because of
the symbolic reachability graph that is efficient to repregbe state space of large systems. Moreover, since
SN only offer a limited set of operations on colours, transfation from CPN requires much care from the
designer as regards the types to be discretized.

Our methodology also addresses an important question:igvtieet impact of discretization on the precision
of verification? As in scientific computing, the discretipatprocess may generate “precision errors” that
could turn a given verified property into a wrong one. In treses the property to be verified might have to be
transformed to take into consideration such precisionrerro

Section 2 briefly recalls the notions of CPN, SN and abstagtfinement, type issues. Our methodology
which involves modelling, discretization and verificatisrpresented in Section 3, and we show in Section 4
how we model our Emergency Braking application. The variggaes regarding discretization on our case
study are detailed in Section 5, and issues on net analysigrasented in Section 6. Some open issues are
discussed in Section 7 before a conclusion (Section 8).

2 Building Blocks

This section presents the building blocks from the statb@#firt used to set up our transformation method-
ology.

183

2.1 Coloured Petri Nets

Coloured Petri nets [25, 26] are high level Petri nets whekerts in a place carry data (or colours) of a
given type. Since several tokens may carry the same valeegthicept of multiset (or bag) is used to describe
the marking of places.

In this paper, we assume the reader is familiar with the goneemultisets. We thus recall briefly the
formal definition of coloured Petri nets as in [26]. It shobkinoted however that the types considered for the
place tokens may be basic types (e.g. boolean, integefs, s&ings, enumerated types) or structured types —
also called compound colour sets — (e.g. lists, producgnyrétc.). In both cases, the type definition includes
the appropriate (or usual) functions.

Different languages were proposed to support the type tiefinfor coloured Petri nets (e.g. algebraic
specification languages as first introduced in [33], obje®med languages [5]), and an extension of the
Standard ML language was chosen for CPN Tools [13]. As alwthere may be a tradeoff between the
expressivity of a specification language, and efficiencymtbels are used to compute executions, state graphs,
etc. If expressivity is favored, it could be desirable toallany appropriate type and function, while when tools
should be used to check the behaviour and the properties sf/tem studied, the allowed types and functions
are restricted (as the language allowed for CPN Tools or 8ginmetric Nets presented in Section 2.2). Here,
we want to allow a specification language that fits as much ssilple what is needed to describe the problem
under study, and then show how the specification is trangdrse as to allow computations and checks by
tools.

In the following, we refer toEXPRas the set of expressions provided by the net inscriptioguage
(net inscriptions are arcs expressions, guards, coloaraggt initial markings), and tBXPR, as the set of
expressions € EXPRsuch thavar[e] C V.

Definition 2.1. A non-hierarchical coloured Petri net CPN [26] is a tuple
CPN= (P T,A%,V,N,C,G,E,I) such that:

1. Pis afinite set of places.

. T is afinite set of transitions such thatA = 0.

. ACPxTUT x P is a set of directed arcs

. 2 is afinite set of non empty colour sets (types).

. 'V is afinite set of typed variables such that Type Z for all variables ve V.

C :P— ZXZisacolour set function assigning a colour set (or a type)aoteplace.

N o o o~ W N

. G: T — EXPR, is a guard function assigning a guard to each transition stiet TypéG(t)) = Bool,
and VafG(t)] CV, where VajG(t)] is the set of free variables of(§.

8. E : A— EXPRy is an arc expression function assigning an arc expressiorach arc such that
TypeE(a)) = C(p)ms, Where p is the place connected to the arc a.

9. I : A— EXPR, is an initialisation function assigning an initial marking each place such that
Typel(p)) =C(p)ms.

As explained in Section 3, the first step of our methodolodg isroduce a CPN model for the application
under study. The next step is a transformation motivatethéyliscretization of continuous functions to obtain
a symmetric net.

2.2 Symmetric Nets

Symmetric nets were introduced in [9] and [7], with the goal of exploitingrsgnetries in distributed
systems to provide a more compact representation of the gpace.

1Symmetric netsvere formerly known asVell-Formed netsa subclass oHigh-level Petri nets The new name was chosen in the
context of the ISO standardisation of Petri nets [21].

184

The concept of symmetric nets is similar to the colouredietrone. However, the allowed types for the
places as well as allowed colour functions are more restticthese restrictions allow us to compute symme-
tries and obtain very compact representations of the spatees enabling the analysis of complex systems as
in [22].

Basically, types must be finite enumerations and can onlydoebined by means of cartesian products.
Allowed functions in arc valuation are: Id, successor, pmbsor and broadcast (that generates one copy of
any value in the type). These constraints affect points 4, 8, 9 in Definition 2.1.

<P.all>

Class
Pis 1..PR;
Valis 1..V;
Domain <p <p, vz
D is <P,Val>; CR
Var Compute Val
pinP; D <Val.all>
v, v2in Val; <p, v>

outCS i 5

Mutex

Figure 1: Example of Symmetric Net

The Symmetric net in Figure 1 represents a class of threddst{fied by an identity in typ®) accessing
a critical resourc€R Threads can get a value within the typal from CR. Constant®R andV are integer
parameters for the system. The class of threads is repessbytplace®ut andcompute Placecompute
corresponds to some computation on the basis of the valugdeiby CR. At this stage, each thread holds
a value that is replaced when the computation is finishedceMNatex handles mutual exclusion between
threads and contains token with no data ("black tokens” enstnse of the Petri Net standard [23]). Place
initially holds one token for each value I(the marking is then denoted P.all >) and placeCR holds one
value for each value iWal.

Verification of properties can be achieved either by a stmattinalysis, on the symbolic reachability graph
(model checking), or on the unfolded associated Placesitian (PT) net (model checking as well as structural
properties).

2.3 Transformation, abstraction and refinement

Abstraction and refinement are part of the use of formal $ipatibns. While abstraction is crucial to
concentrate on essential aspects of the problem to be s@vede system to be built), and to reason about
them, more elaborate details need to be further introduceated refinement steps. A similar evolution is
taking place when a general pattern or template is estalishdescribe the common structure of a family of
problems, and when this template is instantiated to deser&ingle given problem.

Three kinds of refinement for coloured Petri nets are inteedlin [28, 29], the type refinement, the node
refinement and the subnet refinement. The idea for thesem&dints to be correct is that behaviours should be
preserved, and to any behaviour of a refined net it should bsilple to match a behaviour of the abstract net.

We have here another motivation that is raised by the useots to check the behaviour and properties
of the model, and that may involve the discretization of salmmains so as to reduce the number of possible
values to consider in the state space. It thus involves ali§icagpion of some domains that may be considered
as an abstraction.

3 Methodology for Discretization

This section presents our methodology to model and analgsenplex system. We first give an overview
of the approach and then detail its main steps and the indab@hniques.

185

3.1 Overview of the Methodology

Figure 2 sketches our methodology. It takes as input a setpfirements structured following the FRAME
method [20]. It is thus divided in two parts:

e thespecificatiordescribes the system (we only consider in this work the heheal aspects),

e therequired propertiegstablish a set of assertions to be verified by the system.

precision on properties

! continuous functions \

CPN model
. — L
- Modelling Discretization Formal
Required [CPN s) Verification
properties properties SN properties

R__ |

Analysis feed-back

Figure 2: Overview of our methodology

Once the specification written using “classical” techngjube system is modelled using high-level Petri
Nets (CPN) that allow one to insert complex colour functisnsh as one involving real numbers. These
functions come from the specifications of the system (inlligent Transport Systems, numerous behaviours
are described by means of equations describing physicatislod hese functions are inserted in arc labels into
the CPN-model produced by théodelling step. Required properties are also set in terms of CPN. Hewyev
the CPN system cannot be analyzed in practice since thensyst®o complex (due to the data and functions
involved). So, theDiscretization step is dedicated to the generation of an associated sysamssed using
Symmetric Nets. Symmetric Nets are well suited to specifjhssystems that are intrinsically symmetric [3].
Operations such as structural analysis or model checkingpbeaachieved for much larger systems. Formal
analysis of the system is performed at F@mal Verification step.

The following sections present the three main steps of odhog®logy and especially focus on tbés-
cretization step that is the most delicate one as well as the main cotitibof this paper.

3.2 Modelling

There are heterogeneous elements to consider in Intdligansport Systems (ITS): computerized actors
(such as cars or controllers in a motorway infrastructuasetto deal with physical variables such as braking
distances, speed and weigth. In [3] we presented a methgyltienodel large and complex ITS starting from
a specification mainly based on a subset of UML diagrams.

This methodology [3] is also based on the definition and usadT S template. To have a hierarchical and
structured specification using a relevant subset of UML rdiatg, we proposed an ITS template that allows
variations of architectures and component variables. Ttigtactures are defined, involving components and
their interconnections through interfaces. This enabdde €hange and update components of the architecture
and to generate the Petri Net model easily. This templatesledmrated from the investigation of case studies
of the SAFESPOT and TrafficView projects [4, 14].

The system high level architecture is specified using UML ponent diagrams. Interfaces between com-
ponents are specified with class diagrams. This first stepeofrtethodology is used to identify the different
components of the system and their counterparts in Peti rieis also used to define how they should be
assembled to compose a complete model. Then, the beha¥ieaclo component can be specified either with
UML activity diagrams, UML state machines or Petri nets.sTimiethodology relies on the use of Petri scripts
to assemble the complete model but also for modelling coxg@enponents.

This methodology is well suited to have a fast, efficient, madand incremental approach in modelling
large systems. But only a subpart of the “required prop&rtié the system could be checked. Especially, it

186

was not possible to verify properties related to quantieatiariables as they are usually abstracted in the Petri
nets.

The work presented in this paper aims at providing a moreiggeepresentation of the system in the Petri
net models by representing those quantitative variableslesign the CPN model we used a template adapted
to the case study presented in Section 4. The “interfaceieoPetri net model, presented in Section 5, were
already identified. The main task was to identify control aada flows that are involved in this subpart of
the system, and that must be modeled to allow formal verifinatlso, operations made on those flows were
identified.

Then, the different selected variables of the system wgreesented using equivalent types in CPN. For
example, continuous variables of the system were modelidine real type of CPN formalism. The functions
of the system that manipulate the continuous variables vegnesented using arc expressions.

3.3 Discretization

The discretization step takes CPN with their propertiempats, and produces SN with their properties as
outputs. To achieve this goal, a discretization of the ragh @nd functions involved is performed. As a result,
the types involved in the CPN are abstracted, and the reefiuns are represented by a place providing tuples
of appropriate result values.

We propose different steps to manage the discretizationmtfrtuous functions in Symmetric Nets

e Continuous feature discretization.
e Error propagation computing

e Type transformation and modelling of complex functions ymnetric Nets.

Continuous feature discretization Discretization is the process of transforming continuowslets and
equations into discrete counterparts. Depending on theadota which this process is applied we use also
the words “digitizing”, “digitization”, “sampling”, “quatization” or “encoding”. Techniques for discretization
differ according to application domains and objectives.

Let us introduce the following definitions that are used is traper to avoid ambiguity:

Definition 3.1. A region is a n-dimentional polygon (i.e. a polytope) made by adjageyints of an n-
dimentional discretized function.

Definition 3.2. A mesh is a set of regions used to represent a n-dimentional dige@tfunction for modeling
or analysis.

There exist many discretization methods that can be cledsigétween global or local, supervised or unsu-
pervised, and static or dynamic methods [17].

e Local methodsproduce partitions that are applied to localized regionthefinstance space. Those
methods usually use decision trees to produce the pasifian the classification).

e Global methods(like binning) [17] produce a mesh over the entirelimentional continuous instance
space, where each feature is partitioned into regions. TéshroontairT]{L, ki regions, wherd; is the
number of partitions of thih feature.

In our study we consider thequal width interval binning method as a first approach to discretize the
continuous features. Equal width interval binning is a glaimsupervised method that involves dividing the
range of observed values for the variable iktequally sized intervals, where k is a parameter providedhby t
user. If a variablexis bounded bymin andXmay the interval width is:

A Xmax; Xmin (3.1)

187

Error propagation computing To model a continuous function in Symmetric Nets it is neagsto convert

it into an equivalent discrete function. This operatiorradiuces inaccuracy (or error) which must be taken

into account during the formal verification of the model. §maccuracy can be taken into account in the

Symmetric Net properties in order to keep them in accordavittethe original system required properties.

The other solution is to change the original required progetaking into account the introduced inaccuracy.
The issues are well expressed below [6]:

In science, the terms uncertainties or errors do not refemigtakes or blunders. Rather, they refer to
those uncertainties that are inherent in all measurements@an never be completely eliminated.(...) A large
part of a scientist’s effort is devoted to understandingsthancertainties (error analysis) so that appropriate
conclusions can be drawn from variable observations. A comgomplaint of students is that the error
analysis is more tedious than the calculation of the numtiexg are trying to measure. This is generally true.
However, measurements can be quite meaningless withowléahge of their associated errors.

There are different methods to compute the error propagatia function [30, 6]. The most current
one is to determine the separate contribution due to ermigmut variables and to combine the individual

contributions in quadrature.
Di(xy.) = [D+ D7+ ... (3.2)

Then, different methods to compute the contribution of infariables to the error in the function are possible,
like the “derivative method” or the “computational method”

e The derivative method evaluates the contribution of a \seiato the error on a functio as the product
of error onx (i.e. Ay) with the partial derivative of (x,y,..):

OT6Y,) 5 (3.3)

A =
fx ox

e The computational method computes the variation diregtls bnite difference:

AfX :| f(X+AX7y7") - f(X,y,..) | (34)

The use of individual contribution in a quadrature reliestom assumption that the variables are independent
and that they have a Gaussian distribution for their meamegalThis method is interesting as it gives a good
evaluation of the error. But we do not have a probabilistigrapch, and we do not have a Gaussian distribution
of the “measured” values.

In this paper, we prefer to compute the maximum error boundsdue to the errors on variables as it gives
an exact evaluation of the error propagation. £Eet) be a continuous functio, be the continuous variable,
andXgisc the discrete value of. If we choose a discretization step of ¢ we can say that for eachisc image
of x by the discretization process,c [Xgisc — Ax, Xdisc + Ax] (which is usually simplified by the expression
X = Xgisc+ Lx). We can compute the errdy) introduced by the discretization:

f(X) = f(Xdisc) £ (x) (3.5)
Af(x) = f(X:l:Ax) — f(X) (36)

We can also say that the error 6(x) is inside the interval :
Ay € Min(f(x£Ax) — f(X)), Max(f(x+Ax) — f(x))] (3.7)

This method can also be applied with functions of multipleatales. In this case, for a functidnof n variables
f(x+Ax,y£4y,..) has 2 solutions. The maximum error bounds brare:

At € MIn(f(XE£A,YEADy,..) — f(XY,..)),Max(f (Xt Ay, y£ Ay, ..) — F(X,Y,..))] (3.8)

An example of this method applied to an emergency brakingtfon is presented in Section 5.2.

188

Type transformation Once the best discretization actions are decided upon asd®gur goals, the CPN
specification may be transformed. The resulting net is a sgtmomet.

Let us first note that some types do not need to be transforreeduse they are simple enough (e.g.
enumerated types) and do not affect the state graph corplexi

When the types are more complex, two kinds of transformadiennvolved in this process, that concern
the value set (also called carrier set), and the complexitume The value set transformation results from the
discretization of all infinite domains into an enumeratechdon.

A node refinement is applied to transitions that involve a glex function on an output arc expression.
As explained below and in Figure 3, there are two possiedito handle this. In our method, such functions
are represented by tuples of discrete values (values ofitieidbn arguments and of the result) that are stored
in avaluesplace. Thevaluesplace is both input and output of the refined transition, flousny input data
provided by the original input arc(s), thvaluesplace yields the appropriate tuple with the function result

Modelling of complex functions in Symmetric Nets To cope with the modelling of complex functions in
Symmetric Nets (for example, the computation of brakinggesise according to the current speed of a vehicle),
we must discretize and represent them either in a specifiegaas a guard of a transition. When a place is
used, it can be held in an SN-module ; it then represents tietitn and can be stored in a dedicated library.

param param
Cx
<>
Cléf(ﬁs 0.5 <X,y> [x=0 and y=0] or
. =1 and y=1] or
Cyis 0..6; Va|ue <0,0>, <1,1— [X_ —
Domain <2,1>, <3,2: K:g gﬂg y:%% 8::
D is <Cx,Cy>; <4,3>, <5,6: [x; 4 and ¥;3] or
\Y;
ir nox: <X.y> <y>[x=5 and y=6]
yinCy: result result
Cy

(@ (b) (c)
Figure 3: Example of complex function discretization by meaf a place or a transition guard

Figure 3 represents an example of function discretizatidme left side (a) of Figure 3 shows a function
that is discretized, and the right side shows the correspgrieetri net models : in model (b), the function is
discretized by means of a place, in model (c), it is disceetiny mean of a transition guard. In both cases,
correct associations between x and y are the only ones tolbetesst when the transition fires. Note that in
model (b)valuesmarkings remain constants.

This technique can be generalized to any functea f(x1,Xp, ...,X), regardless of its complexity. Non
deterministic functions can also be specified in the same (feayexample, to model potential errors in the
system). Let us note that:

e the discretization of any function becomes a modelling tigpsis and must be validated separately (to
evaluate the impact of imprecision due to discretization),

e given a function, it is easy to automatically generate tsiedf values to be stored in the initial marking
of the place representing the function, or to be put in thedjo&the corresponding transition.

The only drawback of this technique is a loss in precision garad to continuous systems that require

appropriate hybrid techniques [10]. Thus, the choice ofarétization schema must be evaluated, for example
to ensure that uncertainty remains in a safe range.

3.4 \Verification

We use CPN-AMI [31] to perform verification. So far, our magleln be analyzed using:

189

e Structural techniqueginvariant computation, structural bounds, etc) on P/Tsne&dince our nets are
coloured, an unfolding tool able to cope with large syste?7§ s used to derive the corresponding P/T
net to compute structural properties.

e Model checkingwe designed efficient model checking techniques that adécaied to this kind of
systems and make intensive use of symmetries as well asisfalediagrams. Such techniques revealed
to be very efficient for this kind of systems by exploitingithegularity [22, 3].

However, due to the complexity of such systems, discrétizas a very important point. If Symmetric net
coloured classes are too large (i.e. the discretizatiarviat is too small), we face a combinatorial explosion
(for both model checking or structural analysis by unfoiginOn the other hand, if the error introduced by
the discretization is too high, the property loses its "Bien” and the verification of properties may lose its
significance.

This is why in Figure 2, the discretization step neeesfication constraintgas inputs from the verification
step. A compromise between combinatorial explosion andigioe in the model must be found.

4 Modelling the Emergency Braking Problem

The case study presented in this paper is a subpart of arcappti from the “Intelligent Road Transport
System” domain. It is inspired from the European project BEBPOT [4]. This application is called “Hazard
and Incident Warning” (H&IW), and its objective is to warretdriver when an obstacle is located on the road.
Different levels of warning are considered, depending @ndtiticality of the situation. This section presents
the “Emergency Braking module” of the application and howait be specified using the CPN formalism.

4.1 Presentation of the Case Study

SAFESPOT is an Integrated Project funded by the Europeann@ssion, under the strategic objective
“Safety Cooperative Systems for Road Transport”. The GbSIKF-ESPOT is to understand how “intelligent”
vehicles and “intelligent” roads can cooperate to produbeeakthrough in road safety. By combining data
from vehicle-side and road-side sensors, the SAFESPOEdrugijill allow to extend the time in which an
accident is foreseen. The transmission of warnings andcag¥od approaching vehicles (by means of vehicle-
to-vehicle and vehicle-to-infrastructure communicasi{84, 19, 24]), will extend in space and time the driver’s
awareness of the surrounding environment.

The SAFESPOT applications [2] rely on a complex functiorrah#iecture. If the sensors and warning
devices differ between SAFESPOT vehicles and SAFESPO@strfrcture, the functional architecture is de-
signed to be almost the same for these two main entities afytbiem providing a peer-to-peer network archi-
tecture. It enables real-time exchange of vehicles’ statakof all detected events or environmental conditions
from the road. This is necessary to take advantage of theetatige approach and thus enable the design of
effective safety applications.

As presented in Figure 4, information measured by sensgoisded to the “Data Processing / Fusion”
module or transmitted through the network to the “Data Fu$toocessing / Fusion” module of other enti-
ties. This module analyses and processes arriving datatttheon on the “Local Dynamic Map” (LDM) of
the system. The “Local Dynamic Map” enables the cooperaipmications of the system to retrieve relevant
variables and parameters depending on their purpose. Tlieatons are then able to trigger relevant warn-
ings to be transmitted to appropriate entities and displaya an onboard Human Machine Interface (HMI)
or road side Variable Message Signs (VMS). In SAFESPOT, fimenmfrastructure-based applications were
defined: “Speed Alert”, “Hazard and Incident Warning”, “RibBeparture Prevention”, “Co-operative Inter-
section Collision Prevention” and “Safety Margin for Adaisce and Emergency Vehicles”. These applications
are designed to provide the most efficient recommendat@tieetdriver.

The aim of the “Hazard and Incident Warning” applicationaswarn the drivers in case of dangerous
events on the road. Selected events are: accident, prestooexpected obstacles on the road, traffic jam
ahead, presence of pedestrians, presence of animals ashpeeof a vehicle driving in the wrong direction
or dangerously overtaking. This application also analgdlesnvironmental conditions that may influence the
road friction or decrease the drivers’ visibility. Basedtha cooperation of vehicles and road side sensors, the

190

=d Dornain Model

Actustor, HMI, VS, ...

Massage Stack
1 determines 7 &g

¢ I I 1 at design
- y time k
LOk E 1 Message Generation Meszage Router

External

Application, e.g.
CVIS

&

WAMNET Tranzmitter

conte:t relevance

relevance checking, e.g. ;
checking meszages |,posi_t1'0n based |)

: £ | not WANET Receiver

Q-AF|

— relevant 5
T-AP| ¢ J/ Q-AP| for this
node
—=Data Frocessing /f=—
Fusian messages relevant to this node
= SP1/2

This Vehicla / -
Infrastructure Node's
Sensing & Data
Sources

Figure 4: SAFESPOT High Level Architecture

“Hazard and Incident Warning” application provides wagsrio the drivers and feeds the SAFESPOT road
side systems and vehicles with information on new drivirigagions. This application is essential to provide
other applications with the latest relevant road desanipti

The emergency braking module The emergency braking module is one subsystem in the “Haaatdnci-
dent Warning” distributed application. It communicatethwather subsystems. The behavior of this subsystem
is significant in the SAFESPOT system and must be analyzed.

Petri nets are well suited to describe and analyse this tfppmication. However, a part of the “Hazard
and Incident Warning” application algorithm is based onahalysis of continuous variables like vehicle speed
or position of an obstacle. Those data are part of the datadfdive system ; they are also determinant for
the control flow of the system. Many properties of the appiicacan be verified with Petri nets by making
an abstraction of the data flow where “continuous” varialaes involved. This is where we face a huge
combinatorial explosion and have to enhance the Petri netdiism and modelling methodology to enable the
modelisation and verification of this kind of systems.

In the case of an obstacle on the road, the emergency bralddglmreceives/retrieves the speed, decel-
eration capability and the relative distance to a statidaaths for the monitored vehicle. With these data, it
will compute a safety command to be transmitted to the diawvet to other applications of the system. Those
commands represent the computed safety status of a vefidehree commands (or warnings) issued by this
module are “Comfort” if no action is required from the driy&afety” if the driver is supposed to start decel-
erating, and “Emergency” if the driver must quickly starteanergency braking. This is illustrated in Figure 5.
Note that if a driver in an “Emergency” status does not brakbiwone second, an automated braking should
be triggered by the “Prevent” system (which is another Eeamyproject).

191

¥

E) d \

< > A
3 . . . Event
a. Calculation of braking distance/time (obstacle)
DIRECTION OF TRAFFIC

ADVANCE WARNING PREVENTION MITIGATION
“COMFORT” “SAFETY” "EMERGENCY"|

b. Three categories for warning types

Figure 5: Emergency braking safety strategy

4.2 Mathematical model of the emergency braking module

The “emergency braking module” implements a strategy fondb determine the safety status of a given
vehicle. This function computes the “braking distance” géhicle from its speed and deceleration capabilities.

Letv eV be the velocity (speed) of a vehicle wkhc R™*. Let alsob € B be the braking capability of the
vehicle withB c R**. The braking distance function is then:

V2

f(v,b) = 5 4.1)
Let thend € D be the relative distance of the obstacle to the vehicle Rith R*. The main algorithm of
the “Emergency braking module” defines two thresholds temine when a vehicle goes from a “Comfort
sate” to a “Safety state”, and from a “Safety state” to an “Egeeacy state”. Those thresholds are based on
the time left to the driver to react. According to the appiiza specification, if the driver has more than three
seconds to react he is in a “Comfort state”, then if he hasthessthree seconds but more than one second he
is in the “Safety state”, if he has less than one second td,rbads in the “Emergency State”. The values of

those thresholds are expressed as follow:

EB_Safety= Zﬁb+v*3—d (4.2)
V2
EB_Emergency= % +vx1l—d (4.3)

The resulting algorithm of the strategy function can be espnted with this pseudocode:

Eb_Strategy(d,v,b){
Eb_Safety = (v'2)/[(2b) + v * 3 - d;
Eb_Emergency = (vV2)(2b) + v * 1 - d;
if (Eb_Safety < 0) then
Command = 'Comfort’;
else
if (Eb_Emergency < 0) then
Command = 'Safety’;
else
Command = 'Emergency’;
endif
return Command;

192

In SAFESPOTy values are considered to be[®46)m/s, bin [3,9]m/s2 andd in [0,500m. If variables
are outside those sets, other applications are triggenesb@comes out of the scope of the emergency braking
module). For exemple, speeds above¥§are managed by the “Speed Alert” application.

4.3 Required Properties

The SAFESPOT and H&IW application specifications are coteplavith required properties to be satisfied
by the system. An analysis of the H&IW required propertiesvghthat over the 47 main requirements, 18
involve continuous space and/or time constraints (i.e. 38Phe method presented in this paper focuses on
those properties. Here are examples of this kind of progeeftir the emergency braking module:

e Property 1: When the braking distance of a vehicle is below its distdnm® a static obstacle plus one
second of driver’s reaction time, the H&IW application mtrggger an “Emergency” warning.

e Property 2: When the braking distance of a vehicle is below its distdrm® a static obstacle plus three
seconds of driver’s reaction time, the H&IW application mugger a “Safety” warning.

4.4 The coloured Petri net specification

Several modules in the H&IW application share the same tchire, namely for a given process, data
is retrieved from the interface. Then, a command is compwad sent to appropriate modules in the sys-
tem. The coloured Petri net of Figure 6 exhibits this genkebaviour (i.e. the template mentioned in Sec-
tion 3.2). TransitiorGet Data has two input arcs from placégerface _Call andInterface _Data. Place
Interface _Call is typed withPROCESSIDwhich may be an integer subset (here the marking is a tokdn wit
value 1). Once a process is called and data is retrieveck Btegl carries tokens that are couples (pid,data).
TransitionProcess _Strategy provides a command resulting from computations from data.

1 "generic_data" 1 (40,23,7)

Interface_Call Interface_Call Interface_Data

PROCESSID PROCESSID EB_DATA
data pid

Interface_Data

pid eb_data

Get_Data

(pid,data)

EB_Get_Data

(pid,eb_data)

PROCESSIDXDATA EB_Data_Retrieved

PROCESSIDXEB_DATA
(pid,eb_data)

EB_Process_Strategy

(pid,EB_Strategy(eb_data))

EB_Command_Computed

PROCESSIDXEB_COMMAND
(pid,eb_cmd)

Interface_Command

Interface_Answer

PROCESSID COMMAND PROCESSID EB_COMMAND

Interface_Answer Interface_Command

Figure 6: Template Coloured Petri net for the H&IW Figure 7: Coloured Petri net instantiated for the Emer-
applications gency Braking application

In Figure 7 this generic schema is instanciated for the EerergBraking Application (sajeneric _data
andgeneric _commandbecomeEB_DATAandEB.COMMANDDAata for this application a@istance , Velocity
andBraking _Factor , thus:

EB_.DATA = product Distance * Velocity * Braking _Factor .

Data modelling physical entities are measured with a ptssiteasurement error and are usually repre-
sented and computed IR* in physics computations. For the CPN specification, we cap kbis typing for

193

expressivity sake, while it is clear that it is not usableriaqtice (we would use integers for Petri nets tools and
float in programming languages).

TheEB.COMMANYpe has three possible values related with the three lefelsmmand or warning, there-
foreEB.COMMAND = Comfort| Safety | Emergency . The appropriate command results fromEBeStrategy
function computation.

5 Discretization of the Problem

Discretization raises several issues. We propose a wayp®wih these issues and apply our solutions to
the emergency braking example.

5.1 Implementing complex functions in Symmetric Nets

Starting from the CPN model we use the methodology presemt8dction 3.

First, CPN types must be transformed into discrete typesndJthe equal width interval binning dis-
cretization method (presented in Section 3.3) with a nunolbég, k, andky intervals for each variable we
obtain a mesh ok, x ky x kg regions (as defined in definitions 3.2 and 3.1) in the regyliiiscretized func-
tion. The resulting sets for variables v and b are then composed & ordered elements. For example,
with k =k, = kp = kg = 10 the resulting discretized type ofs [0,4.6,9.2, ...,46] and the discretized braking
function contains 19regions.

With k = 100, the domain of is [0,0.46,0.92, ...,46] and the mesh is composed offI@gions.

Section 3.3 presents two solutions to model complex funstin Symmetric Nets. We select solutibn
in Figure 3 because it is more efficiently represented in yratdlic Reachability Graph. Therefore we add
place “EB StrategyTable” in the Symmetric Petri net (Figure 8). Thus, cardtied of the domains for places
“Interface Data” and “EBStrategyTable” (respectively named “EBata” and “EBStgyTable” in Figure 8)
are computed using the formul@ard(EBData = Card(EBStgyTable= Card(D x V x B). This means that
these cardinalities are equal to the number of regions aigezetized function.

This method could provide very large markings (that is witlai@e number of tuples) in the resulting
Symmetric Net. However, the use of a appropriate state spgeesentation (by means of decision diagrams
like in [12]) does not impact the size of the generated stpéee since the large marking is just represented
once (the marking of places encoding complex functionsaisls}.

We chose a simple and generic discretization method theg doetake into account the specificity of
functions to be discretized. Other discretization methiddsthose using variable intervals can reduce the
number of markings with the same level of accuracy in theltiegudiscretized function. Finally, depending
on the kind of expected analysis, it is also possible to cdmpnd use the equivalence classes. Those aspects
are discussed later on this paper in sections 7.1 and 6.2.2.

5.2 Computation of the error propagation in Symmetric Nets

As presented in Section 3, we compute the precision erraydoted by the discretization operation. The
resulting error in the computation of the “Safety Threshad

Db satety= Eb_Safetyvt Ay, b+ A, d+Aq) — Eb.Safetyv,b,d) (5.1)
_(vEAy)? V2
Agp safety= (M +3(ViAv)_(diAd))_(%+3V_d) (5.2)
VEA)? VP
Agpsafety= ﬁ % + 34+ Aqg (5.3)

For example, let us consider a classic private vehicle nigigtv = 14m/s (i.e. 5&km/h), on a dry road
(i.e. b= 8m/s%), atd = 500m from an obstacle. If we consid&r= 100 intervals and an error of respectively
+0.45m/sfor v, £0.06m/s? for d and-=5mfor p. Then we obtain:

AEb_SafetyE [—725m, —|—729m]

194

Agp Emergencye [—6.33m,4-6.37m)|

For the same vehicle at 100 meters from the obstacle, draiimg= 36m/s (i.e. 13&km/h), on a wet road
(i.e. b= 4m/s%), we obtain:

DAgp safety€ [—12.85m,+13.10m]
AgbEmergency© [—11.93m,4-12.19m]

Those results provide an information on the precision of Sgenmetric Net properties. Table 1 gives
some error bounds computed from four values for paranketks expected, precision of computed thresholds
depends ok. However, precision also depends on the values of variablasexample, values afandb are
determinant on the computation of error bounds. Exploithase precisions, to validate the Symmetric Net
model and its properties, requires to consider carefubgéhvalues.

Discretization parameter v=13m/s, b=8m/s?, v=36m/s, b=4m/s?,
d =500m d=100m

k=10 Deb.sateryC |—70.83m, 74,84 DebsateryC [—1189m, 1445
card(EBData) = 10° Deb Emergencye [—61.64M,65.64m] | Agh Emergencye [—109.7m, 1353m
k=20 Aeb.satery€ [—3587m 36.81M | Agpsafery© |—61.97m, 68.28m)
card(EBData) =8+ 10° | Agpemergencye [~31.27M,32.26m] | Agh Emergencye [—57.37m, 63.68m
k=50 Dep satery€ [—14.45m 1461M | Agpsatery© [—25.47m, 26.47m]
card(EBData) = 125%10° | Agp emergencye [~12.62M 12.77m] | Agp Emergencye [—23.63m, 24,63
k=100 Agp safety€ [—7.25m, 7.29m] Agp safety€ [—12.85m,13.10m]
card(EBData) = 108 Deb.Emergency [—6.33M,6.37M | AgbEmergencye [—11.93m,12.19m

Table 1: Error bounds for different discretization paraengt

5.3 Validating the discretization in Symmetric Nets

Discretization of variables and function in the Symmetriet khodel in Figure 8 introduces imprecision.
Depending on properties that need to be verified, this imgi@tmust be considered. For example, properties
presented section 4.3 can be verified using CTL (Computatiea Logic) [18] formulae. With a discretization
factor ofk = 100 values on input variables, property 1 can be verified aitlaccuracy smaller thah7,3mon
a relative distance, for a velocity of i¥son a dry road.

If the introduced imprecision is acceptable with regardtht properties to be verified, then the system
designer can state that the discretization is valid foreéhm®perties. Otherwise, a better accuracy may be
required and a new discretization must be done.

It is also possible to integrate the imprecision in the CTtnfalae. To do so, more constraining value
of input variables must be chosen (i.e. an higher speed, arlbvaking factor or a closer obstacle) in the
CTL formula. In our case, the simplest way is to choose a lovedue of obstacle position that cover the
discretization error.

In some cases, it is possible to compute the discretizationpait variables depending on the required
precision on the function. This solution is discussed irtieac7.2.

5.4 Transformation to obtain the Symmetric net

The SN in Figure 8 is derived from the CPN in Figure 7. Our psgois to obtain a manageable state space
for model checking, and, as presented in Section 3.3 andjur&3, this leads us to discretize some types and
also to adopt some modelling for complex functions.

Thus, the different fields cEB.DATAIn Figure 7 are now discretized. For example, type Distanadis-
cretized into an enumeratiorf, 50, _100, etc.

EB_.DATAIs associated t&BDatain the SN of Figure 8 that is a list of 3-upleBigtance , Velocity
Braking _Factor).

195

Now, as explained in Section 3.3 and shown in Figure 3 (b),ajygroach for modelling the function
EB Strategy is to add a place with a marking that is a conversion tableHeriscretized function. Thus, the
EB_Strategy functionin Figure 7 is associated in Figure 8 to a tdablStgy Tabl¢hat represents the discretized
function Emergency , Safety or Comfort). This result is retrieved by means of plagR Strategy _Table
connected to transitioBB_Process _Strategy

Class Interface_Call Interface_Data
Processld is 1..1; Processld EBData
Distanceis[_0, _50, _100,..,_500]; <I> <Distance.all,Velocity.all Breaking_Factor.all>

P <pid> <d,vb>
Velocityis[_0, _4.6,_0.2,.,_46];

Braking_Factoris[_3,_3.6,_4.2,., 9]
EBCommand is [Comfort, Safety, Emergency] ; EB_Get_Data
Domain <pid, d,v,b>

EBData is <Distance, Velocity, Braking_Factor> ;

EBInArgs is <Processld, Distance, Velocity,
Braking_Factor > ;

EBStgyTable is <Distance, Velocity, Braking_Factor,

EBCommand>;
EBOutArgs is <Processld, EBCommand> ;

=

EB_Data_Retrieved
EBInArgs
<pid, d,v,b>

e

<d, v, b, eb_cmd> EB_Strategy_Table

<d, v,b, eb_cmd> : EBSigyTuble

EB_Process_Strategy

e

Var . <0,0,4 Emergency>,
pid in Processld; <pid, cb_cmd> :gg,g’i’ngritf{;>
eb_cmd in EBCommand; EB_Command_Computed hal
din Distance; EBOutArgs
v in Velocity; <pid, eb_cmd>
b in Braking_Factor;

EB_Actuation
<pid> <eb_cmd>
Interface_Answer Interface_Command

Processld EBCommand
Figure 8: Symmetric Petri net for Emergency Braking module

Of course, the models presented in this paper are only sub-plaa system. They can be independently
verified but the purpose is to integrate them in a more corapigiresentation of the system. This integration
may introduce new discretization constraints and verificaformulae must be rewritten. Those aspects are
discussed in section 7 of this paper.

6 Net analysis

The use of a discretization method with symmetric nets gegasrcomplex models with large markings. It
is important to know what are the consequences on the netsasahnd model checking tools. In this section
we present an overview of the analysis results obtainedemtidel.

Objectives The objectives of this analysis was first to analyse the pitimssof the net and sources of combi-
natorial explosion. Another interesting aspect of thidysiawas to find the limitation of the tools used, which
are not a priori suited to this type of net, and find some op@tion methods.

Experimental method As the complexity of the models presented in this paper imipalependent on
the discretisation made on the three input variables, wasieed on the impact of this discretization. The
symetric net model of Figure 8 was adapted to the experimgmobnecting place “InterfacAnswer” to
place “InterfaceCall” with two arcs and a transition with arcs expressiorsigrsng variable< pid > to the
arcs. This allows the net to loop until the marking in placetérfaceData” is empty. The marking of place
“Interface Data” was initialized with all values of domain “EBData” agepented Figure 8. Then scripts were
used to initialize the class declaration and the markingade“EB_StrategyTable” depending on the chosen
discretization level. Figure 9 gives an overview of the silo$ properties that were tested.

Technical aspects The analysis of the Petri Net is a complex operation thatiregulifferent transformations
of the model like unfolding or reduction. Different tools reeused to make various analysis. First the CPN
models were designed with CPN-Tools [13], then the symmetodels were designed using Coloane and

196

PT Netmodel |—|Bounds (and safety) |
CPN model | =—> | SN model | ——> | Reachability Graph CTL

Dead marking
\ Symbolic RG Deadlocks

C-Invariants LIL

Figure 9: Overview of the analyses

Petriscript [31].To make the analysis of the model we chbseGPN-AMI [31] environment that provides a
unified access to different tools like: a Petri net unfoldiogl, PROD [32] or GreatSPN [8].

6.1 Structural analysis

The first analyses made on the net are structural analyseg.dbmot require the construction of the reach-
ability graph and then, do not require to apply firing rulesiefiefore they are less complex than behavioural
analyses.

6.1.1 Symmetric net analysis

We made the computation of Coloured-Invariant on the Symimeét with different discretisations. The
only invariant detected is the marking of place “E#rategyTable”, as expected. The results show that the
discretization does not have a significant impact on the nmgmsed for the computation. But due to the size
of the marking of place “EBStrategyTable”, which is composed of all associations between bégand
commands, the tool is not able to show the invariant for largekings even if it claims to have made the
computation.

6.1.2 Unfolding the net

The computation of the unfolded net requires an increasimguat of memory depending on the discretiza-
tion of input variables. It also gives an increasing unfdldet. In fact, the size of the domain “EBData” has
a cubic growth. An analysis of the symmetric net shows thatsilae of the unfolded net in terms of places
(np) follows the law:np= 5+ (k)2 + 8 ,wherek is the discretization level. The use of the CPN-AMI unfolder
confirms that the unfolding of the symmetric net did follovisthaw. It also appears that the memory used to
compute the unfolded net grows even more quickly than the aiizhe unfolded net. This explains why we
faced a combinatorial explosion in the computation of thimlgded net which has bounded the coverage of our
experiment.

6.1.3 Bound computation

We were able to test the bounds and safety of the net. The effeiively bounded but the complexity of
the computation, in terms of memory and time used, is the semtiee one of the unfolding operation.
6.2 Behavioural analysis

The behavioural analysis is based on the use of Great-SPRraddo produce the reachability graphs.

6.2.1 Computation of the reachability graph

The generation of rechability graphs seems, accordingeddiv tests that we made, to have about the
same complexity in terms of memory and time as that of theldirfg of the net. The size seems also to follow

197

a cubic growth. Using the symbolic rechability graph of G8#N is a little bit more efficient. We did not
make enough LTL and CTL queries to provide conclusions beitiftection of deadlocks is not generating an
additionnal combinatorial explosion.

6.2.2 Semantic equivalence Classes in the Model

If we consider the computation safety propertiegalso called reachability properties) in the reachability
graph, we can deduce that numerous states correspond tarsaxécution path in the original program or
specification.

Emergency limit surface Safety limit surface Computed equivalence classes
e o m‘g. miort zone

RORKAL KRS
g &;ﬁ.‘}g&ﬁ&.‘ koo, A&mmmi Safety surface

Safe zone

. ’ ",;‘ Emergency surface
0004 v.v.v&o‘v,v~ R RO RLEIL
0"’:"&:’:””&":” ! ““:’:‘:‘:’:"’w‘:f Emergency zone
& , R ; QR
s s RS
R / SRR : RS

.‘03.0_:‘0

QQRLRRLERE
V00029500 LR 40

L2 20:00090%
22508 220X

7,0
Braking factor (m/s)

Velocit Vel Vel -
0 Velocity (m/s) 9,00 0 Velocity (mis) 0 Velocity (m/s) Eood?

7,0 7,0
Braking factor (m/#) 9,0 Braking factor (m/82' g o

Figure 10: Building behavioural equivalence classes froemdurfaces generated by the resolution of safety
and emergency equations.

Thus, some accessibility properties could be preserveditiirequivalence classes. It is then of interest to
exploit these, for example, when the computed subnet igriated into a larger specification.

In our example, the equivalence classes are based on thematibur and must be computed from the
physics equations that define the limits between the diffesguations of the system: “Comfort”, “Safety”,
“Emergency”. To determine the surface that delimits edeivee classes in the state space, we compute solu-
tions equations 4.2 and 4.3. We then get the two surfacelgepon the left part of Figure 10.

From these surfaces, we can deduce five equivalence zortesiieachability graph as shown on the right

part of Figure 10:

e the one above safety limit surface,

e the safety limit surface itself,

e the one between safety and emergency surfaces,
e the emergency surface itself,

e the one below the emergency surface.

For reachability properties, it is possible to provide aeremt discretization that reaches at least all these
equivalence classes by randomly selecting any point in eank and adding the corresponding valueof
(from B axis), d (from D axis) andv (from V axis). Then, for each discretized colday D andV, we can
take the coordinates of five points randomly chosen in thesezfines. This approach is similar to the one
proposed in [16] that was dealing with one colour domain @migt used guards from the Petri nets to compute
equivalence classes.

198

6.3 Conclusion on the analysis

The conclusions on the analysis of the nets are balanced.aiéeable to check properties but not for large
models. The limitation comes from either the limitation béttools, that are often not able to manage large
markings, or from the complexity of the property to be anati/S/Ne think anyway, that exploiting behavioural
symmetries will solve some of those limitations.

7 Discussion and Open Issues

We have described and applied a discretization method te with hybrid systems and handle continuous
variables in a safe and discrete manner. In this section pga a discussion on several aspects.

7.1 Other discretization parameters

The methodology presented in this paper is based on the uagalistretization algorithm to discretize
continuous variables. In section 5.2, we used “equal widthrval binning” algorithm because it is simple to
implement. This algorithm, like many others, relies on thszation parameters that can be optimized for a
given set of continuous variables and functions.

However, in the emergency braking module example, we malyshe partial derivates of the error on the
two thresholds&gg safety@NdAe B Emergency- We then find that variablesandd are more influent thah. For
example, the partial derivate of the error on EB_Sa f etythreshold (equation 5.3) with respect to the variable
Vis:

aAEb_Safety: VA, v (7.1)
ov b+A, b

This allows to find optimized discretization parameterssidering the respective influence of each in-
volved variable. This is done by considering different paegers for each discretized variable depending on
its influence on the error propagation.

Discretization parameters| v= 14m/s,b=8m/s?,d =500m | v=46m/s,b=4m/s 2 d = 100m
k= 114k, = 73 kg = 120 | Depsafeyc |—6.167m,6.20aT] Deb.sateryC |—12.09m, 12,40
Card(E BData) < 1@ AEb_Emergencﬁ [_5.367m,5.40311] AEb_Emergencﬁ [—11.29I’T],11.6Q"n]

Table 2: Discretization with optimized criteria

Table 2 presents the resulting error when discretizatioarpaters are optimized using partial derivates.
It shows that we can reduce the resulting error of about 108 discretization parameters based on partial
derivates.

The study of the best discretization method and paramedera fjiven set of continuous variable and
function is a complex problem which can give very interggtiasults. It is a promising field for future work
on optimization of the methodology presented in this paper.

7.2 Tunning the discretisation

It is of interest to compute the discretization intervalsliscretized types (helg, ky andky) according to
the maximum error tolerated on one type involved in a prgpettere error must be boundadgriori.

Let us consider as an example the braking distance foncfidn) presented section 4.2. It is possible to
compute the discretization intervals of variablesndb, based on the accuracy required for the funciign
Let +A¢ be the tolerated error ofy, and+A,, +Ay, be the resulting errors anandb. Using the error bounds
propagation as presented section 3.3 we get:

2 2
LA — (VEA) v

- 2x(b+4p) 2xb (7.2)

199

We then obtaif

2xb%x At — 25 bx Ayxv—bx A2
Ay =— v 7.3
b 2xbxAf 4+ V2 (7.3)
and two solutions fof, that are a little bit more complex.

Let Vimin,Vmaxbmin @ndbmax be the bounds of andb. The cardinality oV andB sets are:

Card(V) = "'“;XT_A‘CW‘ (7.4)
Card(B) = bmazx*i_A:m"‘ (7.5)

Now, consider that we want the same cardinalitiesf@ndB colour setsk, = k,). We obtair:

(Vmax— Vmin)Ab
bmax— bmin
Using the value of\, of equation (7.6) in equation (7.3), it is now possible to poeAy, from the desired
As.
For only two variables, this method is complex as it givestipld solutions that need to be analyzed to
choose the appropriate solutions. However, it providesyatawaompute the discretization intervals of input
variables depending on the desired output error.

8 Conclusion

In this paper, we proposed a way to integrate continuoustspecomplex specifications into a discretized
Petri Net model. Our approach was studied in the contexttefligent Transport Systems and, more precisely,
management of emergency braking when an obstacle is ightifi the road. An application to this case study
is provided.

This discretization method relies on the use of equationdetiiog the problem. Such equations come
from the physical models that interact with the system. Vilechtthese equations to a CPN template and then
proceed to its transformation in order to be able to have afyaable model (i.e. that remains finite).

The equations modeling the problem are used to:

e Provide a discretized abstraction

e To evaluate the quality of this abstraction with regard$ogroof of properties on the resulting model.

This is a key point in modeling and evaluating a system by m@#rformal specification. It is crucial for
engineers to evaluate the quality of the proven properties inecessary when assumptions are done (here,
they come from the discretization), to evaluate their impaicthe system’s properties. Typically, imprecision
raised by discretization may have to be corrected by eithplyang a more precise discretization or adding
constants in formulas expressing properties to be checked.

In our paper, discretization is applied on symmetric Netduded from CPN since our tools rely on sym-
metric nets. Of course, it is also valid on the CPN models.

In our methodology, different discretization algorithnendoe applied. We used in this paper a simple
algorithm as a first approach but other ones based on noorandiscretization intervals are promising alter-
natives. This will introduce new constraints in formal ¥ieation and in error propagation computation but it
is a interesting field for future works.

Also, managing more than one module is of interest. In theesdrof a SAFESPOT application, several
modules run in parallels and may introduce more continugpss and variables. Future work will then have
to evaluate how a larger number of variable (and constiadotsid be managed. In particular, experimenting,

2We intentionally removed the operator to increase readability.
3Note that it is possible to choose another factor betwanl(V) andCard(B) as explained section 7.1

200

propagation of discretization contraints between difiéreodules need a particular attention.

Acknowledgements: We would like to thank the anonymous referees fro their canefading and helpful
comments.

References

[1] J-R. Abrial. The B book - Assigning Programs to meaninGambridge Univ. Press, 1996.

[2] F. Bonnefoi, F. Bellotti, T. Scendzielorz, and F. Visirier. SAFESPOT Applications for Infrasructure-
based Co-operative Road Safety 14th World Congress and Exhibition on Intelligent Trandfystems
and ServicesBeijing, China, October 2007.

[3] F. Bonnefoi, L. Hillah, F. Kordon, and X. Renault. Desjgnodeling and analysis of ITS using UML
and Petri Nets. 1i1.0th International IEEE Conference on Intelligent Trangpton Systems (ITSC'0y)
pages 314-319, Seattle, USA, September 2007. IEEE Press.

[4] R. Brignolo. Co-operative road safety - the SAFESPOEgnated project. IAPSN - APROSYS Confer-
ence Advanced Passive Safety Network, May 2006.

[5] Didier Buchs and Nicolas Guelfi. A formal specificatiomfnework for object-oriented distributed sys-
tems.|EEE Trans. Software Eng26(7):635—-652, 2000.

[6] R. Brown C. Covault and D. DriscollUncertainties and Error Propagation - Appendix V of Phydied®
Manual Case Western Reserve University, 2005.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. HatldA symbolic reachability graph for coloured
Petri nets.Theoretical Computer Scienck76(1-2):39-65, 1997.

[8] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudea@PN 1.7: Graphical Editor and Analyzer
for Timed and Stochastic Petri Nets Performance Evaluatgpecial issue on Performance Modeling
Tools 24((1&2)):47-68, November 1995.

[9] Giovanni Chiola, Claude Dutheillet, Giuliana Frandeisis, and Serge Haddad. Stochastic well-formed
colored nets and symmetric modeling applicatidisE Trans. Computergl2(11):1343-1360, 1993.

[10] P. Christofides and N. El-Farr@ontrol Nonlinear And Hybrid Process Systems: Designs focdstainty,
Constraints And Time-delaySPringer Verlag, 2005.

[11] Petri Nets Steering Committee. Petri nets tool databgsick and up-to-date overview of existing tools
for petri netshttp://www.informatik.uni-hamburg.de/TGl/PetriNets/ tools/db.html

[12] J-M. Couvreur and Y. Thierry-Mieg. Hierarchical Deiois Diagrams to Exploit Model Structur€ormal
Techniques for Networked and Distributed Systems - FORDB, padges 443—-457, 2005.

[13] The CPN Tools Homepage, 2007. http://www.daimi.alCiNtools.

[14] S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. BpRedéang, and L. Iftode. TrafficView: A Driver
Assistant Device for Traffic Monitoring based on Car-to-Cammunication. In IEEE Computer Press,
editor,IEEE Semiannual Vehicular Technology Conferer2@®4.

[15] René David and Hassane Alla. On Hybrid Petri NeBiscrete Event Dynamic Systems: Theory and
Applications 11(1-2):9-40, 2001.

[16] M. Doche, I. Vernier-Mounier, and F. Kordon. A modulgrpoach to the specification and validation
of an electrical flight control system. FProceedings of the International Symposium of Formal Masho
Europe on Formal Methods for Increasing Software Produiigtipages 590—610. Springer-Verlag, 2001.

201

[17] James Dougherty, Ron Kohavi, and Mehran Sahami. Sigeehand unsupervised discretization of con-
tinuous features. Iimternational Conference on Machine Learnjpages 194—-202, 1995.

[18] E. Allen Emerson and Joseph Y. Halpern. Decision pracesiand expressiveness in the temporal logic
of branching timeJ. Comput. Syst. ScB0(1):1-24, 1985.

[19] IEEE 802.11 Working Group for WLAN Standard$EEE 802.11 tm Wireless Local Arae Netwarks
IEEE, 2008.

[20] Frame Forum. The FRAME forum home pagtp://www.frame-online.net

[21] L. Hillah, F. Kordon, L. Petrucci, and N. Treves. PNrafardisation : a survey. Imternational Con-
ference on Formal Methods for Networked and Distributededys (FORTE’'06)pages 307-322, Paris,
France, September 2006. IFIP.

[22] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baand T. Vergnaud. On the Formal Verification
of Middleware Behavioral Properties. 8th International Workshop on Formal Methods for Indudtria
Critical Systems (FMICS’04pages 139-157. Elsevier, September 2004.

[23] ISO/IEC-JTC1/SC7/WG19. International Standard Q7 15909: Software and Systems Engineering
- High-level Petri Nets, Part 1: Concepts, Definitions andghical Notation, December 2004.

[24] D.Luca J.Daniel. IEEE 802.11p: Towards an InternagidBtandard for Wireless Access in Vehicular
Environments. IlProceedings of Vehicular Technology Conference,VTC §piiEE pages 2036—-2040,
May 2008.

[25] KurtJensenColoured Petri nets: basic concepts, analysis methods aactipal use, vol. 1, vol. 2 et vol.
3. Springer-Verlag, London, UK, 1995.

[26] Kurt Jensen and Lars M. Kristense@oloured Petri Nets, Modelling and Validation of Concurr&ys-
tems Monograph to be published by Springer Verlag, 2008.

[27] F. Kordon, A. Linard, and E. Paviot-Adet. Optimized G@d Nets Unfolding. Irnnternational Confer-
ence on Formal Methods for Networked and Distributed Syst@f@RTE’'06) volume 4229 olLNCS
pages 339-355, Paris, France, September 2006. Sprindag Ver

[28] Charles Lakos and Glenn Lewis. Incremental state spaostruction of coloured Petri nets. Rroc.
22nd Int. Conf. Application and Theory of Petri Nets (ICAT®D, volume 2075 ofLecture Notes in
Computer Scien¢@ages 263—282. Springer, 2001.

[29] Glenn Lewis. Incremental specification and analysis in the context obemd Petri nets PhD thesis,
University of Hobart, Tasmania, 2002.

[30] Vern Lindberg. Uncertainties and Error Propagation - Part | of a manual on ¢émtainties, Graphing,
and the Vernier CaliperRochester Institute of Technology, 2000.

[31] LIP6/MoVe. The CPN-AMI home pagéitp://www.lip6.fr/cpn-ami/

[32] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysa&frod reference manual. Technical report,
Helsinki University of Technology, 1995.

[33] Jacques Vautherin. Parallel systems specificatiotts egloured Petri nets and algebraic specifications.
In Advances in Petri Nets 1987, covers the 7th European Wopkshdpplications and Theory of Petri
Nets, June 198pages 293-308, London, UK, 1987. Springer-Verlag.

[34] ISO TC204 WG-16 CALM architecture ISO, 2007.

202

	AcrD5B.tmp
	AcrD5B.tmp
	Papers Samlet v3.pdf
	Papers Samlet v3.pdf
	Paper05.pdf
	Paper05.pdf
	 The ComBack Method Revisited: Caching Strategies and Extension with Delayed Duplicate Detection
	 Sami Evangelista, Michael Westergaard and Lars Michael Kristensen

