
DEPARTMENT OF COMPUTER SCIENCE������������������������������
UNIVERSITY OF AARHUS��

IT-parken, Aabogade 34��������������������������������������
DK-8200 Aarhus N, Denmark�����������������������������������

ISSN 0105-8517��

October 2008��

DAIMI PB - 588��

Kurt Jensen (Ed.)���
 ��

Ninth Workshop and Tutorial on������������������������������
Practical Use of Coloured Petri Nets ����������������������
and the CPN Tools���
Aarhus, Denmark, October 20-22, 2008������������������������

Preface

This booklet contains the proceedings of the Ninth Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, October 20-22, 2008. The workshop is
organised by the CPN group at Department of Computer Science, Aarhus University,
Denmark. The papers are also available in electronic form via the web pages:
www.daimi.au.dk/CPnets/workshop08/.

Coloured Petri Nets and the CPN Tools are now licensed to more than 7,200 users in
138 countries. The aim of the workshop is to bring together some of the users and in this
way provide a forum for those who are interested in the practical use of Coloured Petri
Nets and their tools. The submitted papers were evaluated by a programme committee
with the following members:

Wil van der Aalst, Netherlands
João Paulo Barros, Protugal
Jörg Desel, Germany
Joao M. Fernandes, Portugal
Jorge de Figueiredo, Brazil
Monika Heiner, Germany
Thomas Hildebrandt, Denmark
Kurt Jensen, Denmark (chair)
Ekkart Kindler, Denmark
Lars M. Kristensen, Denmark
Charles Lakos, Australia
Johan Lilius, Finland
Daniel Moldt, Germany
Laure Petrucci, France
Rüdiger Valk, Germany
Lee Wagenhals, USA
Karsten Wolf, Germany
Jianli Xu, Finland

The programme committee has accepted 10 papers for presentation. Most of these deal
with different projects in which Coloured Petri Nets and their tools have been put to
practical use – often in an industrial setting. The remaining papers deal with different
extensions of tools and methodology.

The papers from the first eight CPN Workshops can be found via the web pages:
http://www.daimi.au.dk/CPnets/. After an additional round of reviewing and revision,
some of the papers have been published in four special sections in the International
Journal on Software Tools for Technology Transfer (STTT). For more information see:
sttt.cs.uni-dortmund.de/. After an additional round of reviewing and revision, some of
the papers from this years workshop will be published in Transactions of Petri Nets and
Other Models of Concurrency (ToPNoC) which is new journal subline of Lecture Notes
in Computer Science. For more information see: www.springer.com/lncs/topnoc.

Kurt Jensen
PC and OC chair

Table of Contents
Invited Tutorials:
Michael Westergaard and Sami Evangelista
The ASAP Platform: Next Generation Tool Support for State Space Analysis
of CPN Models .. 1

Thomas Hildebrandt
Bigraphical Business Processes Execution.. 3

Marlon Dumas
Model Transformations for Business Process Analysis and Execution..................... 5

Regular Papers:
Michael Westergaard and Lars Michael Kristensen
JoSEL: A Job Specification and Execution Language for Model Checking 7

Venkatesh Kannan, Wil M.P. van der Aalst and Marc Voorhoeve
Formal Modeling and Analysis by Simulation of Data Paths in Digital
Document Printers ... 27

Antonín Kavička and Michal Žarnay
Application of Coloured Petri Net for Agent Control and Communication in
the ABAsim Architecture .. 47

Sami Evangelista, Michael Westergaard and Lars Michael Kristensen
The ComBack Method Revisited:
Caching Strategies and Extension with Delayed Duplicate Detection 63

Michael Westergaard and Lars Michael Kristensen
Two Interfaces to the CPN Tools Simulator.. 83

Marko Bago, Nedjeljko Perić and Siniša Marijan
Modeling Bus Communication Protocols Using Timed Colored Petri Nets—
The Controller Area Network Example... 103

Michal Žarnay
Banker's Algorithm Implementation in CPN Tools... 123

R.S. Mans, N.C. Russell, W.M.P. van der Aalst, A.J. Moleman, and
P.J.M. Bakker
Augmenting a Workflow Management System with Planning Facilities using
Colored Petri Nets.. 143

Somsak Vanit-Anunchai
Towards Formal Modelling and Analysis of SCTP Connection Management 163

Fabien Bonnefoi, Christine Choppy and Fabrice Kordon
A discretization method from coloured to symmetric nets:
application to an industrial example .. 183

The ASAP Platform: Next Generation Tool Support for State
Space Analysis of CPN Models
Michael Westergaard and Sami Evangelista, University of Aarhus, Denmark

Abstract
State space exploration is one of the main approaches to model-based verification of concurrent
systems and it has been one of the most successfully applied analysis methods for Coloured
Petri Nets (CPNs). The basic idea of state space exploration and analysis is to compute all
reachable states and state changes of the concurrent system under consideration and represent
these as a directed graph. Based on state space exploration it is possible to automatically reason
about a wide range of properties concerning the behaviour of concurrent systems.

In this talk we present the ASCoVeCo State Space Analysis Platform (ASAP) which is currently
being developed in the context of the ASCoVeCo research project. ASAP represents the next
generation of computer tool support for state space exploration of CPN models. The vision of
the ASAP platform is to provide an open platform suited for research, education, and industrial
use of state space exploration and model checking. We present the ASAP platform architecture,
the support for state space exploration methods, and give a demonstration of the graphical user
interface of ASAP which is based on the Eclipse Rich Client Platform. Finally, we end with an
outlook on the future development of ASAP. Version 1.0 of the ASAP platform has recently
been released, and we will release an updated version 1.1 after the workshop.

For further information on the ASCoVeCo project, see

http://www.daimi.au.dk/~ascoveco

To download ASAP, see

http://www.daimi.au.dk/~ascoveco/download.html

1

2

Bigraphical Business Processes Execution
Thomas Hildebrandt, IT University of Copenhagen, Denmark

Abstract
The model of Bigraphical Reactive Systems (BRSs) has been proposed by Milner as a formal
meta-model for global ubiquitous computing that encompasses process calculi for mobility,
notably the π-calculus and the Mobile Ambients calculus, as well as graphical models for
concurrency such as Petri Nets.

In this presentation we demonstrate that BRSs also allow natural formalizations of languages
used in practice by providing a direct and extensible formalization of a subset of WS-BPEL as a
binding bigraphical reactive system.

The formalization exploits the close correspondence between bigraphs and XML to provide a
formalization and execution format very close to standard WS-BPEL syntax.

In the talk we will comment on the potential use of the BRS metamodel to relate different
formalizations of BPEL, for instance formalizations based on Petri Net, the π-calculus or the
more direct bigraphical representation of the BPEL syntax as in the presented formalization.

We will also comment on its use to provide a completely formalized and extensible business
process engine within the Computer Supported Mobile Adaptive Business Processes
(www.CosmoBiz.org) research project at the IT University of Copenhagen.

Building upon the formalization of WS-BPEL we have at COORDINATION 2008 proposed and
formalized HomeBPEL, a higher-order WS-BPEL-like business process execution language
where processes are first-class values that can be stored in variables, passed as messages, and
activated as embedded sub-instances. A sub-instance is similar to a WS-BPEL scope, except
that it can be dynamically frozen and stored as a process in a variable, and then subsequently be
thawed when reactivated as a sub-instance.

The formalization has been implemented in the BPL-Tool developed in the Bigraphical
Programming Languages (BPL) project. The tool allows for compositional definition,
visualization and simulation of the execution of bigraphical reactive systems.

3

4

Model Transformations for Business Process
Analysis and Execution

(Tutorial)

Marlon Dumas

University of Tartu, Estonia & Queensland University of Technology, Australia
marlon.dumas@ut.ee

Abstract

A business process model is a representation of the way an organization oper-
ates to achieve a goal, such as delivering a product or a service. For example, an
order-to-cash business process describes the activities that take place within a
company from the moment a purchase order is received until its fulfillment and
the settlement of the associated invoice. Business process models have at least
two classes of users. On the one hand, business and system analysts use process
models to identify and to evaluate business improvement options or to define sys-
tem requirements. On the other hand, software developers are concerned with the
automated execution of business processes based on detailed models. Depending
on the purpose, a business process may be modeled at different abstraction levels
and using different languages.

In this tutorial, we will review various model transformatios aimed at bridging
between different business process modeling languages. The tutorial will discuss
transformations from popular business process modeling notations (e.g. BPMN
and BPEL) to Petri nets and state machines for the purpose of automated
analysis [1, 5, 2, 8, 9]. We will also discuss transformations from business-oriented
to IT-oriented process modeling languages to support system implementation.
In particular, we will review techniques for transforming graph-oriented process
models expressed in BPMN into block-structured process definitions in BPEL [4,
6, 3, 7]. Finally, we will discuss open issues related to the definition of reversible
transformations and round-tripping between high-level and executable process
modeling languages.

References

1. T. Bultan, X. Fu, and J. Su. Tools for automated verification of web services.
In Proceedings of the 2nd International Conference on Automated Technology for
Verification and Analysis (ATVA), Taipei, Taiwan, pages 8–10. Springer, October
2004.

2. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Ws-engineer: A model-based ap-
proach to engineering web service compositions and choreography. In L. Baresi and
E. Di Nitto, editors, Test and Analysis of Web Services, pages 87–119. Springer,
2007.

5

3. L. Garćıa-Bañuelos. Pattern Identification and Classification during the Translation
from BPMN to BPEL. In Proceedings of the On The Move to Meaningful Internet
Systems (OTM) Confederated Conferences, Monterrey, Mexico. Springer, October
2008.

4. R. Hauser and J. Koehler. Compiling process graphs into executable code. In
Proceedings of the 3rd International Conference on Generative Programming and
Component Engineering (GPCE 2004), Vancouver, Canada, pages 24–28. Springer,
October 2004.

5. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri nets. In
W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proceed-
ings of the International Conference on Business Process Management (BPM2005),
volume 3649 of Lecture Notes in Computer Science, pages 220–235, Nancy, France,
September 2005. Springer-Verlag.

6. J. Mendling, K.B. Lassen, and U. Zdun. On the transformation of control flow be-
tween block-oriented and graph-oriented process modeling languages. International
Journal of Business Process Integration and Management, 3(2), September 2008.

7. C. Ouyang, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and
J. Mendling. From business process models to process-oriented software systems.
ACM Transactions on Software Engineering Methodology, 2009. Preprint available
at: http://eprints.qut.edu.au/archive/00005266/01/5266.pdf.

8. C. Ouyang, H.M.W. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas, and
A.H.M. ter Hofstede. Formal semantics and analysis of control flow in WS-BPEL.
Science of Computer Programming, 67(2-3):162–198, 2007.

9. W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E. Verbeek. Confor-
mance checking of service behavior. ACM Transactions Internet Technology, 8(3),
2008.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Formal Modeling and Analysis by Simulation of
Data Paths in Digital Document Printers?

Venkatesh Kannan, Wil M.P. van der Aalst, and Marc Voorhoeve

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands.

{V.Kannan,W.M.P.V.D.Aalst,M.Voorhoeve}@tue.nl

Abstract. This paper reports on a challenging case study conducted in
the context of the Octopus project where CPN Tools is used to model
and analyze the embedded system of digital document printer. Modeling
the dynamic behavior of such systems in a predictable way is a major
challenge. In this paper, we present the approach where colored Petri nets
are used to model the system. Simulation is used to analyze the behavior
and performance. The challenge in modeling is to create building blocks
that enable flexibility in reconfiguration of architecture and design space
exploration. CPN Tools and ProM (a process mining tool) are used to
collect and analyze the simulation results. We present the pros and cons
of both the conventional presentation of simulation results and using
ProM. Using ProM it is possible to monitor the simulation is a refined
and flexible manner. Moreover, the same tool can be used to monitor the
real system and the simulated system making comparison easier.

1 Introduction

The Octopus project is a co-operation between Océ Technologies, the Embedded
Systems Institute (ESI), and several research groups in the Netherlands. The aim
of the project is to define new methods and tools to model and design embedded
systems like printers, which interact in an adaptive way to changes during their
functioning. One of the branches of the Octopus project is the study of design
of data paths in printers and copiers. A data path encompasses the trajectory
of image data from the source (for instance the network to which a printer is
connected) to the target (the imaging unit). Runtime changes in the environment
may require use of different algorithms in the data path, deadlines for completion
of processing may change, new jobs arrive randomly, and availability of resources
also changes. To realize such dynamic behavior in a predictable way is a major
challenge. The Octopus project is exploring different approaches to model and
analyze such systems. This paper focuses on the use of colored Petri nets to
model and study such systems. We report on the first phase of the project,
in which we studied a slightly simplified version of an existing state-of-the-art
image processing pipeline at Océ implemented as an embedded system.

? Research carried out in the context of the Octopus project, with partial support of
the Netherlands Ministry of Economic Affairs under the Senter TS program.

27

1.1 The Case Study

The industrial partner in the Octopus project, Océ Technologies, is a designer
and manufacturer of systems that perform a variety of image processing functions
on digital documents in addition to scanning, copying and printing. In addition
to locally using the system for scanning and copying, users can also remotely
use the system for image processing and printing. A generic architecture of an
Océ system used in this project is shown in Figure 1. [2]

Fig. 1: Architecture of Océ system.

As shown in Figure 1, the system has two input ports: Scanner and Controller.
Users locally come to the system to submit jobs at the Scanner and remote jobs
enter the system via the Controller. These jobs use the image processing (IP)
components (ScanIP, IP1, IP2, PrintIP), system resources such as the memory,
and USB bandwidth for the executing the jobs. Finally, there are two output
ports where the jobs leave the system: Printer and Controller. Jobs that require
printed outputs use the Printer and those that are to be stored in a storage
device or sent to a remote user are sent via the Controller.

All the components mentioned above (Scanner, ScanIP, IP1, IP2, PrintIP)
can be used in different combinations depending on how a document of a certain
job is requested to be processed by the user. Hence this gives rise to different
use-cases of the system i.e. each job could use the system in a different way.
The list of components used by a job defines the data path for that job. Some
possible data paths for jobs are listed and explained below:

– DirectCopy: Scanner ; ScanIP ; IP1 ; IP2 ; USBClient, PrintIP
– ScanToStore: Scanner ; ScanIP ; IP1 ; USBClient
– ScanToEmail: Scanner ; ScanIP ; IP1 ; IP2 ; USBClient
– ProcessFromStore: USBClient ; IP1 ; IP2 ; USBClient
– SimplePrint: USBClient ; PrintIP
– PrintWithProcessing: USBClient ; IP2 ; PrintIP

The data path listed for DirectCopy means that the job is processed in order
by the components Scanner, ScanIP, IP1, IP2 and then simultaneously sent to

28

the Controller via the USBClient and also for printing through PrintIP. In the
case of the ProcessFromStore data path, a job is remotely sent via the Controller
and USBClient for processing by IP1 and IP2 after which the result is sent back
to the remote user via the USBClient and the Controller. The interpretation for
the rest of the data paths is similar.

Furthermore, there are additional constraints possible on the dependency of
the processing of a job by different components in the data path. It is not manda-
tory that the components in the data path should process the job sequentially,
as the design of the Océ system allows for a certain degree of parallelism. Some
instances of this are shown in Figure 2.

Fig. 2: Dependency between components processing a job.

According to the Océ system design, IP2 can start processing a page in a
document only after IP1 has completed processing that page. This is due to the
nature of the image processing function that IP1 performs. Hence as shown in
Figure 2(a) IP1 and IP2 process a page in a document in sequence. Considering
Scanner and ScanIP, they can process a page in parallel as shown in Figure 2(b).
This is because ScanIP works full streaming and has the same throughput as
the Scanner. The dependency between ScanIP and IP1 is shown in Figure 2(c)
and in this case IP1 works streaming and has a higher throughput than ScanIP.
Hence IP1 can start processing the page as ScanIP is processing it, with a certain
delay due to the higher throughput of IP1.

In addition to using the different components of the system for executing
jobs, there are other system resources that are needed to process jobs. The two
key system resources addressed currently in this project are the memory and the
USB bandwidth. Regarding the memory, a job is allowed to enter the system
only if the entire memory required for completion of the job is available before
its execution commences. If the memory is available, then it is allocated and
the job is available for execution. Each component requires a certain amount of
memory for its processing and releases this memory once it completes processing.
Hence utilization of memory is a critical factor in determining the throughput
and efficiency of the system. Another critical resource is the USB. The USB has
a limited bandwidth and it serves as the bridge between the USBClient and the
memory. Whenever the USBClient writes/reads data to/from the memory, it has
to be transmitted via the available USB. Since this bandwidth is limited, it can

29

be allocated only to a limited number of jobs at a time. This determines how
fast the jobs can be transferred from the memory to the Controller or vice versa.

The overview of the system just given illustrates the complexity of the Oc
system. The characteristics of critical system resources such as memory and USB
bandwidth, and the components determine the overall performance. Moreover,
resource conflicts need to be resolved to ensure a high performance and through-
put. The resource conflicts include competition for system components, memory
availability, and USB bandwidth.

1.2 The Approach

In our approach, colored Petri nets (CPN) are used to model the Oc system.
The CPN modeling strategy [3] is aimed at providing flexibility for design space
exploration of the system using the model. Hence, design of reusable building
blocks is vital during the modeling process. Simulation of the model is used for
performance analysis to identify bottleneck resources, utilization of components,
decisions during design space exploration and design of heuristic scheduling rules
(in the future). CPN Tools is used for modeling, simulation and performance
analysis of the system. Additionally, ProM, a versatile process mining tool, is
used to provide further insights into the simulation results and also present
these results to the domain user in different forms. Interestingly, ProM can be
used to monitor both the simulated and the real system, thus facilitating easy
comparison.

2 Modeling Using CPN

The modeling approach takes an architecture oriented perspective to model the
Océ system. The model, in addition to the system characteristics, includes the
scheduling rules (First Come First Served) and is used to study the performance
of the system through simulation. Each component in the system is modeled as
a subnet. Since the processing time for all the components, except the USB, can
be calculated before they start processing a job, the subnet for these compo-
nents looks like the one shown in Figure 3. The transitions start and end model
the beginning and completion of processing a job, while the places free and do
reflect the occupancy of the component. In addition, there are two places that
characterize the subnet to each component: compInfo and paperInfo. The place
compInfo contains a token with information about the component, namely the
component ID, processing speed and the recovery time required by the compo-
nent before starting the next job. The place paperInfo contains information on
the number of bytes the particular component processes for a specific paper size.
The values of the tokens at places compInfo and paperInfo remain constant af-
ter initialization and govern the behavior of the component. Since the behavior
of the USB is different from the other components, its model is different from
the other components and is shown separately. The color sets for paperInfo and
compInfo used in the CPN Tools model are listed below.

30

colset PAPERINFO=record paper:STRING*inputSize:INT;
colset COMPINFO=record compID:STRING*speed:INT*recovery:INT;

In the color set PAPERINFO, the record-element paper contains the infor-
mation on the size of the paper, such as A4 or A3, and element inputSize denotes
the memory required for this size of paper. In the color set COMPINFO, the
element compID is used to name the component (scanner, scanIP, etc.), speed
denotes the processing speed of the component and recovery contains the infor-
mation about the recovery time needed by the component between processing
two jobs.

Fig. 3: Hierarchical subnet for each component

In Figure 3, the place jobQ contains tokens for the jobs that are available for
the components to process at any instance of time. The color of a token of type
Job contains information about the job ID, the use case and paper size of the
job. Hence, the component can calculate the time required to process this job
from the information available in the Job token, and the tokens at the places
compInfo and paperInfo. Once the processing is completed, transition end places
a token in place free with a certain delay, governed by the recovery time specific
to each component, thus determining when the component can begin processing
the next available job. The color set for the type Job is as follows,

colset JOB=record
jobID:STRING*
jobType:STRING*
inputPaper:STRING*
from:STRING*
to:STRING*
startTime:INT*
endTime:INT timed;

The record element jobID is used to store a unique identifier for each job,
jobType contains the use-case of the job (DirectCopy or ScanToEmail, etc.), and

31

the element inputPaper specifies what paper size is used in this job. The elements
from and to are used for the source and destination component IDs respectively,
as the job is being processed by one component after another according to the
data path. The startTime and endTime are used by each component to contain
the timestamps of start and estimated end of processing the job.

Fig. 4: Architectural view of the CPN model.

Figure 4 shows an abstract view of the model. New jobs for the system can
be created using the Job Generator subnet, which are placed as input to the
Scheduler subnet at the place newJob. The Scheduler subnet is the heart of
the system that models the concepts including the scheduling rules, memory
management rules and routing each job step-by-step from one component to the
next depending on the data path of the use-case to which the job belongs. From
this it can be observed that the scheduling rules are modeled as being global to
system and not local to any of the components or distributed.

Vital to the Scheduler’s task of routing jobs from one component to the next
is the information about the use-cases and the data paths. From the information
on data paths in Section 1.1, it can be inferred that each data path is a partial
order. Hence, a list of list (of color STRING) is used to represent the partial
order. An example of a data path represented in the Scheduler component is
shown here.

ucID="DirectCopy",
dataPath= [["scanner","scanIP"],
["scanIP","IP1"],
["IP1","IP2"],
["IP2","printIP","USBup"],
["USBup"],["printIP"]
]

32

The data path of the use-case DirectCopy is explained in Section 1.1. In this
example, each sublist inside the data path list contains two parts: the first ele-
ment being the source component and the remaining being the destination(s).
Hence, ["scanIP","IP1"] indicates that in the DirectCopy use-case, a job pro-
cessed by scanIP will be processed by IP1 next. Similarly, ["IP2","printIP","USBup"]
denotes that a job processed by IP2 will be processed simultaneously by printIP
and USBupload in the next step.

The Scheduler picks a new job that enters the system from the place newJob
and estimates the amount of total memory required for executing this job. If
enough memory is available, the memory is allocated (the memory resource is
modeled as an integer token in the place memory) and the job is scheduled for
the first component in the data path of this job by placing a token of type Job
in the place jobQ, which will be consumed by the corresponding component for
processing. When a component starts processing a job, it immediately places a
token in the startedJob place indicating this event. The Scheduler consumes this
token to schedule the job to the next component in its data path, adding a delay
that depends on the component that just started, the next component in the data
path, and the dependency explained and shown in Figure 2 (a), (b) and (c). Thus
the logic in the Scheduler includes scheduling new jobs entering the system (from
place newJob) and routing the existing jobs through the components according
to the corresponding data paths.

As mentioned above, the Scheduler subnet also handles the memory manage-
ment. This includes memory allocation and release for jobs that are executed.
When a new job enters the system, the Scheduler schedules it only if the com-
plete memory required for the job is available (checked against the token in the
place memory). During execution, part of the memory allocated may be released
when a component completes processing a job. This memory release operation
is also performed by the Scheduler subnet.

Modeling the USB component is different from the other components and
cannot be models using the ”pattern” shown in Figure 5. As described earlier,
for the USB, the time required to transmit a job (upstream or downstream) is
not constant and is governed by other jobs that might be transmitted at the same
time. This necessitates making the real-time behavior of the USB bus dependent
of multiple jobs at the same time. It is to be noted that if only one job is being
transmitted over the USB then a high MBps transmission rate is used, and when
more than one job is being transmitted at the same time then a lower low MBps
transmission rate is used.

The model of the USB as shown in Figure 5 works primarily by monitoring
two events observable in the USB when one or more jobs are being transmit-
ted: (1) the event of a new job joining the transmission, and (2) the event of
completion of transmission of a job. Both these events govern the transmission
rates for the other jobs on the USB and hence determine the transmission times

33

Fig. 5: CPN model for the USB.

for the jobs. In the model shown in Figure 5, there are two transitions join and
update, and two places trigger and USBjobList. The place USBjobList contains
the list of jobs that are currently being transmitted over the USB. Apart from
containing information about each job, it also contains the transmission rate
assigned, the number of bytes remaining to be transmitted and the last time
of update for each job. Transition join adds a new job waiting at place in that
requests use of the USB (if it can be accommodated) to the USBjobList, and
places a token in place trigger. This enables transition update that checks the
list of jobs at place USBjobList and reassigns the transmission rates for all the
jobs according to the number of jobs transmitted over the USB. The update
transition also recalculates the number of bytes remaining to be transmitted for
each job since the last update time, estimates the job that will finish next and
places a timed token at trigger, so that the transition update can remove the
jobs whose transmissions have completed. The jobs whose transmission over the
USB is complete are placed in place out. Thus transition join catches the event
of new jobs joining the USB and the transition update catches the event of jobs
leaving the USB, which are critical in determining the transmission time for a
single job.

3 Simulation and Analysis

This section presents some analysis methods used to study the results from the
simulation of the model. Section 3.1 presents the information collected in CPN
Tools through monitors and how it is used to measure relevant performance
metrics. Section 3.2 presents the use of the process mining tool ProM for an
alternative presentation and analysis of the simulation results. ProM uses event
logs, which are recorded by CPN Tools. The event log contains details about the
events (i.e., transition firings) that take place in the simulation.

We are unable to share detailed data about the Océ system because this
information is highly confidential. Hence, the actual parameters and simulation
results should be seen as potential settings and outcomes.

For the simulation experiment to illustrate possible results obtained by CPN
Tools and ProM, 150 jobs are generated by the Job Generator component of
the model in Figure 4 in each run. These jobs are created by picking a random
number of jobs from the six use-cases listed in Section 1.1. The arrival times
of jobs are distributed negative exponentially with an inter-arrival time of 2
seconds.

34

3.1 Simulation Results

When performing simulation in CPN Tools, the different categories of moni-
tors available can be used to collect the simulation results in different ways [1].
Here, two examples of how different types of monitors are used to aggregate the
simulation results to performance analysis metrics are presented.

Table 1 presents the statistics produced by the data collection monitor that
was used to aggregate the waiting times of jobs before their execution starts
at each component. The averages provided by CPN Tools in the performance
report can be obtained by replicating the simulation for multiple runs. The
waiting times of jobs thus obtained through monitors during simulations can
be used to identify the components that are probable bottleneck resources in
the system. Similarly, using the data collection monitor, the utilization times
for each component can be obtained to determine the under- and over-utilized
components in the system.

Name Avrg 90% Half Length 95% Half Length 99% Half Length

IP1

count iid 100.119400 0.134347 0.160568 0.212527
max iid 3007.696600 4.862893 5.812036 7.692745
min iid 0.000000 0.000000 0.000000 0.000000
avrg iid 34.302562 1.301284 1.555269 2.058537

IP2

count iid 100.048200 0.133754 0.159861 0.211590
max iid 2860.038400 37.247604 44.517618 58.923016
min iid 0.000000 0.000000 0.000000 0.000000
avrg iid 48.990676 0.935130 1.117649 1.479308

USB

count iid 174.983400 0.105168 0.125695 0.166368
max iid 242724.770400 535.206794 639.668843 846.658458
min iid 0.000000 0.000000 0.000000 0.000000
avrg iid 23679.481434 143.889599 171.974075 227.622944

printIP

count iid 74.900800 0.144126 0.172257 0.227998
max iid 96590.504600 524.005807 626.281639 828.939306
min iid 0.000000 0.000000 0.000000 0.000000
avrg iid 13155.451373 126.373949 151.039708 199.914452

scanner

count iid 75.136000 0.141720 0.169381 0.224191
max iid 735681.475800 532.367990 636.275959 842.167675
min iid 5406.491400 866.457382 1035.573160 1370.672942
avrg iid 341606.033984 696.226511 832.116504 1101.380010

Table 1: Waiting times of jobs at the different components

35

From Table 1, it can be observed that the average waiting time for jobs
in front of components Scanner and USB is higher than for the rest of the
components. For example, with 90confidence, the USB is seen to have an average
waiting time of 23680 seconds, with a half length of 144 seconds, for jobs in the
queue in front of it. This is attributed to the scheduling rule that jobs have to
wait for memory allocation before entering the system for processing through the
Scanner or the USBdown. The simulation experiment here was conducted with
minimal memory availability, and hence the longer queues. Also, the average
waiting time in front of the printIP is also higher as it is the slowest component
in the system according to the design specifications.

The second example presented here uses the write-in-file monitor to log the
events when memory is allocated or released by the Scheduler component. Using
this log of the time stamps and the amount of memory available, a simple tool
can be used to plot the chart shown in Figure 6. The chart depicts the amount of
memory available in the system at each instant of time. Information about the
utilization characteristics of the memory resource is a key input in designing the
memory architecture, designing scheduling rules for optimal memory utilization
with high system throughput and analyzing the waiting times in front of each
component in the system.

Fig. 6: Memory Utilization chart

The above simulation results are typical for simulation tools, i.e., like most
tools, CPN Tools focuses on measuring key performance indicators such as uti-
lization, throughput times, service levels, etc. Note that the BRITNeY Suite an-
imation tool [5] can be used to add animations to CPN simulations. Moreover, it
allows for dedicated interactive simulations. This facilitates the interaction with
end users and domain experts (i.e., non-IT specialists).

3.2 Using ProM

ProM is a process mining tool, i.e., it is used to investigate real-life processes by
analyzing footprints of processes in the form of event logs, audit trails, database

36

entries, message exchanges, translation logs, etc. ProM offers a wide variety of
analysis techniques. Because simulation can be seen as imitating real-life, it is
interesting to see what additional insights process mining techniques can provide.
This section presents some of the plug-ins of ProM that have been explored in
the context of Océ’s systems. The plug-ins of ProM use event logs, which is list
of events recording when each component starts and completes processing a job.
These event logs have been generated using the approach described in [6].

Fuzzy Miner The fuzzy miner plug-in along with the animation part of it
provides a visualization of the simulation. The event log is used to replay the
simulation experiment on the fuzzy model of the system. Figure 7 shows a snap-
shot during the animation. During the animation, jobs flow between components
in the fuzzy model in accordance with the events during simulation. It provides
a view of the queues in front of each component, which serves as an easy means
to identify key components, bottleneck resources and the utilization of compo-
nents in the system. For example, from Figure 7 it can be observed that during
this simulation run, the queue in front of printIP was longer, which can be at-
tributed to it being the slowest component in the system. More importantly, the
fuzzy miner animation provides live insight into the simulation run and is an
easier means of communication with the domain users, which is significant in
the context of the Octopus project.

Fig. 7: Fuzzy Miner Animation

37

Dotted Chart Analysis This plug-in uses the event log to create a dotted
chart with each dot referring to an event in the log. The chart can be viewed
using different perspectives. The x-axis always shows the time (can be absolute
or relative) and the y-axis shows a particular perspective. If the ”instance per-
spective” is selected, then each job is represented by a horizontal dotted line
showing the events that took place for this job. If the ”originator perspective”
is selected, each use-case is represented by a horizontal dotted line. Figure 8
shows the dotted chart from the ”task perspective” (i.e., the components in the
system). Hence, each pair of dots represents the start and end of processing a
job by that component. The plug-in can provide an overview of the dynamics of
the execution of jobs and also the system load.

Fig. 8: Dotted Chart Analysis

For instance, the distribution of the dots along the timeline for each compo-
nent gives an insight into the utilization characteristics of the component, which
helps to identify the under- and overutilized components. For example, from
this chart, it was observed that IP2 is a component with high utilization rate
throughout this simulation experiment. Also, the dotted chart provides details
about the distribution of the types of jobs (use-cases) over the simulation. In this
case, it can be observed from Figure 8 that the remote jobs (use-cases that orig-
inate at the USBdown) are generated in a burst at the start of the simulation,
whereas the number of local jobs submitted at the scanner is fewer during the
same interval. Thus this chart gives detailed insight into the steps of simulation
and hence can provide input for a better design of the simulation environment
setup.

38

Performance Sequence Diagram Analysis The performance sequence di-
agram plug-in provides a means to assess the performance of the system. The
plug-in can provide information about behaviors that are common from the
event log. These patterns can be visualized from different perspectives such as
the components of the system and the data paths in the system. Figure 9 shows a
screenshot of the pattern diagram generated from the view of the components. In
this context, the patterns depicted correspond to the different data paths listed
in Section 1.1. Also, statistics about the throughput times for each pattern are
presented, which can be used to determine the patterns that seem to be common
behavior, those that are rare and those that result in high throughput times.

On the other hand, this plug-in can be used to analyze an event log from the
Océ system to identify the data paths available thus assisting in identifying the
architecture and behavior of the system and also in the modeling process.

Fig. 9: Pattern diagram - Performance Sequence Diagram Analysis

Trace Clustering Figure 9 shows the frequent patterns in the event log as
sequence diagrams. In the context of process and data mining many clustering
algorithms are available. ProM supports various types of trace clustering. In Fig-
ure 10 the result of applying the K-means clustering algorithm with a particular
distance metric is shown, where six clusters are identified. These correspond to

39

the different usecases or datapaths. For each cluster, the corresponding process
model can be derived. Figure 10 shows two Petri nets. These nets have been
discovered by applying the alpha algorithm [7] to two of the cluster. These dia-
grams nicely show how the dependencies depicted in Figure 2 can be discovered.
For this particular setting of the clustering algorithm, the basic use-cases are
discovered. However, other types of clustering and distance metrics can be used
to provide insights into the different data-paths.

Fig. 10: Using Trace Clustering the Different Use Cases can be Identified and the Cor-
responding Detailed Process Models can be Discovered

Performance Analysis Figure 11 shows a detailed performance analysis of one
of the use-cases using the Performance Analysis with Petri net plug-in. The focus
of the plug-in is to provide key performance indicators, which can be summoned
in an intuitive way. For this, the event logs of the selected cluster are replayed in
the Petri net model of the use-case generated using the alpha algorithm. From
this simulation of a single use-case, performance indicators including average
throughput time, minimum and maximum values, and standard deviation for
the use-case throughput are derived. These provide a detailed insight into parts
of the system during the simulation experiment, in this case the six use-cases of
the system.

40

Additionally, the color of the places in the Petri net indicates where in the
process (datapath in this case) the jobs of this use-case spend most time. For
example, we can observe and verify, based on the prior system knowledge, that
since the PrintIP is the slowest component, jobs spend most time waiting in its
queue.

Fig. 11: A Detailed Performance Analysis Is Performed For One of the Clusters Dis-
covered

Social Network Analysis Figure 12 shows the result of using Social Net-
work Analysis (SNA) on the event log. This plug-in is typically used to quantify
and analyze social interaction between people in business process environment.
However, by mapping the roles played by people to components in this con-
text, the analysis provides information about interaction statistics among the
components.

The analysis plug-in uses the SNA matrix generated by the social network
miner plug-in, which uses the data on causal dependency in hand over of work
among components, derived from the event log. As a result it is possible to show
the flow of work between the various components. The shape and size of the
nodes give a direct indication of the utilization of the component. The height
of the node is directly proportional to the amount of work flowing into the
component and the width to the amount flowing out. The arc weights are an

41

indicator of the amount of work flowing between the components. This provides
a quantification to analyze the interaction among the components.

Fig. 12: Social Network Analysis Applied to the Components of Océ’s System

3.3 Comparison and Discussion

Section 3.1 showed the classical simulation results obtained from monitors in
CPN Tools. Parameters such as waiting times of jobs and utilization rates help
in identifying the critical resources and to study the system performance and
behavior. The averages and standard deviations of such parameters are helpful
in analyzing the overall performance of the system over the entire simulation.
However, such classical simulation results typically do not present the dynamics
and detailed behavior of the system during the simulation.

On the other hand, Section 3.2 looks into some of the plug-ins available in
the process mining tool ProM and illustrates their application to event logs of a
CPN simulation. They provide the advantage to observe the dynamics and de-
tails of the system behavior and performance during the simulation experiment.

42

For instance, the fuzzy miner and the dotted chart plug-ins can show views of
utilization characteristics of components in the system from different perspec-
tives. Also, the performance sequence diagram analysis presents patterns and
their statistics (such as throughput times) helping in studying their occurrences
and impact on the system performance. Clustering techniques can be used to
group jobs and analyze each group individually. Hence, even though the clas-
sical simulation results provide an overall view of the system performance and
characteristics, ProM provides some added advantages in presenting the detailed
view of the simulation process with insights into the dynamics of the system’s
behavior and simulation.

Another important observation is that process mining tools ProM can be
used to observe and analyze real-world process and simulated processes. Cur-
rently, system analysts tend to use different tools for monitoring real systems
and simulated systems. This is odd, since often the ultimate goal is to compare
the real system with the simulated system. (Recall that simulation is used to
understand and improve real systems!)

4 Related Work

The use of CPN Tools as a simulation tool is described in [1]. In this paper, the
monitor concept is described in detail. The BRITNeY Suite animation tool [5]
extends the visualization and interaction functionality of CPN Tools. The anima-
tion tool can be connected to the running simulation engine and used to present
the simulated behavior in a domain specific and interactive manner. ProM is
described in [8]. The current release of ProM contains more than 230 plug-ins.
In the paper, we could only show a few and we refer to www.processmining.org
for details.

In [2] we modeled the basic components of Océ’s copiers using different
formalisms. In [9] the authors present the modeling of the features of a mo-
bile phone. The work also involves identification and analysis of the interaction
among features, helping in identifying faults in specification and improvement of
the architecture. In [10] the practical use of colored Petri nets is demonstrated by
an industrial case study involving a flowmeter instrument that consists of hard-
ware components performing estimation and calculation functions by interacting
with each other.

5 Conclusions and Future Work

In this paper, initial experiences with using colored Petri nets in Octopus project
have been presented. Petri nets allow for modeling all the details and dynamics
of the embedded system used in this case study. This permits providing practical
inputs and solutions to real-world problems. A slightly simplified version of a
currently existing Océ system was used as the case study. In the modeling process
the goal was to identify building blocks to allow re-use of components in the
model. Also modeling the dynamic behavior of the USB is a significant solution

43

to future problems such as modeling memory bus and processors. CPN Tools
and ProM prove to be effective tools in analyzing and studying the performance
of the system. They provided insights into identifying the bottleneck resources,
utilization of resources and system dynamics during execution of jobs. The pros
and cons of the classical presentation of simulation results and the application
of ProM in analyzing the results are also studied.

From the modeling perspective, the next steps are to model the complete
copier systems at Océ, as opposed to the slightly simplified case studied here.
Hence, it is essential to identify patterns and design re-usable building blocks
in the CPN model. This will allow flexibility in exploring different system ar-
chitectures and design decisions through the model. In addition, the analysis of
simulation results using CPN Tools and ProM will be used to further explore the
design space and build heuristic scheduling rules in the next steps of the project.
We feel that it is important to use the same tools to monitor and analyze the real
system and its simulated counterparts. This will allow for a better comparison
and a more detailed analysis as shown in this paper.

References

1. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
modeling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer (STTT)., Volume 9, Numbers 3-4, June 2007.

2. G. Igna, V. Kannan, Y. Yang, T. Basten, M. Geilen, F. Vandraager, M. Voorho-
eve, S. de Smet, and L. Somers. Formal Modeling and Scheduling of Data Paths of
Digital Document Printers. 6th International Conference FORMATS 2008, Pro-
ceesings, September 15-17 2008.

3. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1992.

4. W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business Process
Simulation: How to get it right? BPM-08-07, Eindhoven, BPMcenter.org, 25pp.

5. M. Westergaard, K.B. Lassen. The BRITNeY Suite Animation Tool. Proceedings of
the 27th International Conference on Application Theory of Petri Nets and Other
Models of Concurrency (ICATPN 2006), Lecture Notes in Computer Science 4024,
Springer, pages 431-440, 2006.

6. A.K. Alves de Medeiros, and C.W. Günther. Scheduling with timed automata.
Theor. Comput. Sci., 354(2):272–300, 2006.

7. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128-1142, 2004.

8. W.M.P. van der Aalst, B.F. van Dongen, C.W. Gnther, R.S. Mans, A.K. Alves
de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M.
Weijters. ProM 4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn
and A. Yakovlev, editors, Application and Theory of Petri Nets and Other Models of
Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484-494. Springer-Verlag, Berlin, 2007.

9. L. Lorenstsen, A.-P. Touvinene, J. Xu. Modelling Feature Interaction Patterns in
Nokia Mobile Phones using Coloured Petri Nets and Design/CPN. In K. Jensen

44

(ed.) Proceedings of the Third Workshop and Tutorial on Practical Use of Coloured
Petri Nets and CPN Tools, 2001.

10. L. Lorentsen. Modelling and Analysis of a Flowmeter System. Proceedings of
Workshop and Tutorial on Practical Use of Coloured Petri Nets and Design/CPN,
1999.

45

46

Application of Coloured Petri Net for Agent Control
and Communication in the ABAsim Architecture

Antonín Kavička1 and Michal Žarnay2

1 Faculty of Electrical Engineering and Informatics, University of Pardubice,

Nám. Čs.legií 565, CZ-532 10 Pardubice, The Czech Republic
Antonin.Kavicka@upce.cz

2 Faculty of Management Science and Informatics, University of Žilina,

Univerzitná 8215/1, SK-01026 Žilina, The Slovak Republic
Michal.Zarnay@fri.uniza.sk

Abstract. Petri nets represent a convenient formalism for description of the
operational logic of internal agent components within agent-based architectures
of simulation models using message-oriented communication paradigm. The
approach supports higher flexibility of simulation models as well as formal
analysis related to relevant parts of the models. The ABAsim architecture (as an
example) already utilizes place/transition Petri nets for description of internal
components of agents. Presented modified approach pays attention to an
application of non-hierarchical coloured Petri nets (describing behavioural rules
of autonomous agents) instead of place/transition ones because of higher
modelling capabilities.

Keywords: Coloured Petri net, agent-based simulation, message-oriented
communication.

1 Introduction

During the last decade a significant progress was achieved in the area of micro-
simulation models reflecting transportation logistic systems [1, 2]. The models are
flexible, which means that they are namely: (i) composed of reusable components and
sub-models, (ii) configurable on a conceptual level and (iii) ready for changes of
granularity related to sub-models. A proprietary agent-based architecture (called
ABAsim Agent-Based Architecture of simulation models) has been developed and it
has been successfully applied within many simulation studies reflecting transportation
and logistic systems (an example is represented in [4]). The architecture utilizes
simulation model decomposition into individual agents (concentrated on distinct
tasks), which are organized within hierarchical structure and communicate by means
of sending messages. Each agent is composed of internal components (potentially
using internal communication), whereas their logic can be described either

47

imperatively (with the help of programme routines) or declaratively (e.g. applying
formalism of Petri nets) – the respective specification is activated by means of system
interpreter during the run of simulation programme.

Up to now, the ABAsim architecture has utilized a subclass of place/transition
Petri net (P/T PN), called ABA-graph [3] for description of control agent components
denoted as managers. Presently is the attention paid to an application of a subclass of
coloured Petri net, named ABA-CPN, which brings more flexible approach in defining
the component descriptions. It includes, for example, easier and more natural
construction of conditional branching and differentiation of various message
instances.

The paper is organised as follows: sections two and three shortly describe
background of the paper: autonomous agents and ABAsim architecture. Section four
explains the ABA-CPN definition in detail, section five provides illustratory example
for it and section six discusses conventions for notation of elements in the ABA-CPN
followed by conclusion of the paper.

Since it has been too challenging to combine all goals in one example, while
keeping its size in reasonable limits, there are two examples. The first accompanies
explanations of the definition – it includes all properties from definition, it uses only
symbolic names and it has no connection to examples from real world. The second
example is built on a simple real case from an ABAsim simulation model of service
system, including meaningful labels – it illustrates usage of notation conventions.

2 Paradigm of autonomous agents

Let us remind the generally-respected agent definition [7]: Agent is an encapsulated
computer system situated in some environment and capable of flexible, autonomous
action in that environment in order to meet its design objectives, where the agent
features are as follows:

• Autonomy – i.e. the agent is able to work autonomously without exogenous

interventions, entirely able to control its activities and inner status.
• Social behaviour – is based on the agent’s interaction with other agents (or with

human beings) by means of some communication mechanism or language.
• Re-activeness – the agent responds to external influences from its surrounding.
• Pro-activeness – the agent acts with initiative and goal-orientation.

The agent realizes, according to its mission, its own life-cycle: sensing – decision

making – acting (within its life space) using the support of solving (focused on
making solution proposals) and communicating with other agents (eventually with
human operators). If the agent detects a problem or a situation beyond its delegated
competence, it informs other agents about the need for a corresponding solution.

48

3 Brief summary of the ABAsim architecture

The agent-based architecture of simulation models of ABAsim was mainly developed
for simulation of queuing, transportation and logistic systems. Those systems can be
considered (from the viewpoint of order processing) strictly hierarchical. The order
(the customer) entering the system initiates a recursive sequence of suborders,
according to the rules of competence redistribution.

The entities (orders/customers and resources) within the frame of the ABAsim
architecture are divided into specialized classes with defined behavioural rules. This
means that the responsibility for the behaviour of these entities is taken over by their
superior subjects (agents). It is necessary in most cases to transfer service resources to
the customer (or vice versa), in order to realize the service activity, i.e. frequent and
complex transposition processes are typical within such systems.

Fig. 1. Agent’s decomposition

3.1 Agent components

Each agent can be decomposed into the following groups of internal components
(presented on fig. 1):
a) The first, control and decision making component (called the manager) is

responsible for making decisions and for inter-agent communication. In addition,
the manager represents the central agent component because it initiates the work
of other internal components and can also communicate with all of them.

b) The group of sensors is specialized for mining information from the system’s
state space. This group is composed of two kinds of components - the query

49

delivers the required forms of information instantly, and the monitor scans the
state space in some time intervals and continuously brings important information
to the manager.

c) The next group, called solvers, provides solutions for problems to the manager,
which can accept them or ask for alternative ones. The advisor represents a
passive component, which is able to react only to the manager’s requests for
delivery of proposals for problem-solving. A typical advisor can be represented
e.g. by an optimization algorithm, an artificial neural network, a fuzzy regulator
or a human operator. On the other hand, the scheduler (focused on a restricted
scope of problems) works continuously for the manager, on the basis of either a
priori rosters or schedules, which have been created (e.g. related to the allocation
of resources), or by making its own dynamic forecast for a defined time interval.

d) The last component group includes effectors (actuators), which make changes to
system status after receiving corresponding instructions from the manager. No
other agent components are allowed to make these changes. An action-
component makes instant state changes (e.g. switch traffic lights, close a train’s
doors), while a process-component (e.g. a crane’s movement) makes them
continuously until its task is finished.

The effectors, sensors, and solvers are, for brevity, given the umbrella term of

manager’s assistants, and can be further distinguished as:
• Continual assistants, the activities of which fill up some interval in the simulation

time (processes, monitors, and schedulers).
• Instant assistants, which are active only in discrete instants of simulation time

(actions, queries and advisors).

The question arises, how to realize the internal agent components appropriately -

they can be described alternatively either
• using imperative approach (implementation of program routines constructed in a

given source code), or
• by means of declarative forms (connected with some kind of symbolic formalism),

which are reflected by structured input data and read by a corresponding
interpreter; e.g. Petri nets represent effective formalisms appropriate for describing
agent internal components.

3.2 Community of agents and its structure

Simulation models for simple real systems could be composed of only one agent;
however, the simulation of complex service systems is obviously connected with a
multi-agent approach using the agents within some organizational structure. Let us
remark that the philosophy of the ABAsim architecture was also partly inspired by the
paradigm of reactive agents, which is based on a society of reactive rather than
proactive agents. The intelligence of such society emerges when one observes the
whole community and not its separate members (individually of relatively low
intelligence).

50

To summarize the philosophy of the ABAsim operation: The control role is played
by mutually communicating managers (supported by sensors and solvers), which
initiate the activities of effectors at the correct time instants and under particular
conditions.

3.3 Communication mechanism

One way to realize inter-agent communication is to use standard communication
languages (e.g. KQML or FIPA-ACL). Another approach is to implement a
customized communication mechanism able to reflect, in the best way, the features of
the respective architecture.

Communication within the ABAsim architecture is based on a simple, original
mechanism applied to inter-agent and also intra-agent communications. As was
already mentioned, inter-agent communication is made by manager components, and
intra-agent communications are realized between the managers and their assistants.
Both kinds of the ABAsim-communications utilize exclusively the paradigm of
sending messages (from this viewpoint, the ABAsim represents message-oriented
architecture).

The following description characterizes selected kinds of messages used within the
ABAsim architecture in a simple way. Notice–messages contain some information for
the addressee without expecting any answer, Request–messages carry specific
demands, which are expected to be satisfied or supplied by means of corresponding
Response–messages. Continual assistants are initiated by Start–messages (sent by
superior managers), whereas Finish–messages (sent by continual assistants) delivered
to corresponding managers, indicate completion of an activity related to relevant
continual assistant. In addition, managers exploit Execute–messages in order to obtain
promptly required results from their inferior instant assistants. Finally, Hold–
messages exclusively mediate the augmentation of simulation time. They involve so-
called time stamps, which define duration of their deliveries (equal or greater than the
current simulation time). The attributes sender and addressee contain the same values
– i.e. the continual assistants send those messages to themselves with some time
delay. Thus, after sending Hold–message, the continual assistant remains idle and
resumes its activity after the message returns. We have to emphasize that the
augmentation of the simulation time is realized exclusively by continual assistants,
i.e. synchronization of simulation time is based on synchronization of these
components.

3.4 ABAsim versus other agent-based architectures

Seeing that general paradigm of autonomous agents influenced the design and
development of the ABAsim architecture, it is only natural that the architecture shares
some common principles with other agent-based simulation architectures that were
inspired by the same paradigm.

Among many, it can be mentioned for example Cougaar architecture [8] (with
similar hierarchical organization of agent communities or agent decomposition to

51

simpler executive units) or architecture HIDES [9], which shares the same view on
importance of hierarchical structure of agents reflecting modelled system and
supports forming of agent communities responsible for specific tasks. Since its
beginning, ABAsim architecture has been oriented to creation of simulation models of
complex large-scale service systems, mainly transportation systems, with emphasis on
flexibility for simulation model designers, programmers as well as for end-users of
simulation models. Since comparison of the ABAsim architecture with outlined or
other simulation architectures and detailed explanation of benefits that it introduces is
out of scope of this paper, we recommend the reader to pay attention to the following
papers [10,11,12].

4 Specification of ABA-CPN

Coloured Petri net (CPN) describing the logic of an agent component can be defined
within an environment of a specific software tool, where an analysis of the net is
supposed to be carried out. Analysed nets are consequently made available (via
respective data files) to a simulation engine of the ABAsim architecture. A relevant
interpreter maintains then the evolution of the nets during simulation.

For the needs of simulation models based on the ABAsim architecture, modelling
capabilities of the non-hierarchical coloured Petri net can be restricted. This results in
a specific subclass of coloured Petri net, called ABA-CPN, partially inspired by the
mentioned ABA-graph.

The following definition builds upon CPN definitions from [5]. Since it is quite
complex, we divide it into four parts that are interleaved with comments and
illustrations on a small example depicted on the figure 2 and built just for that
purpose.

Definition 1:
ABA-CPN represents a subclass of CPN = (Σ, P, T, A, N, C, G, E, I) that satisfies the
following:
(i) Σ is a finite set of non-empty types, called colour sets.
(ii) The finite set of places P = {pin} ∪ {pout} ∪ PS, where pin is called input

place, pout output place and PS is composed of internal places and the three
sets are mutually disjoint.

(iii) The finite set of transitions T = TD ∪TA ∪TS ∪TB , T ≠ ∅, where elements of
TD are denoted as decision transitions, elements of TA as assistant
transitions, elements of TS as sending transitions and elements of TB as
standard transitions, the four sets are all mutually disjoint and T ∩ P = ∅.

(iv) A is a finite set of arcs such that P ∩ A = T ∩ A = ∅.
(v) N is a node function defined from A into (P×T) ∪ (T×P).
(vi) C is a colour function defined from P into Σ.

(ii) The set of places is divided to subsets in order to distinguish specific kinds of

places. A token in the input place pin corresponds to an input message and a token in
the output place pout corresponds to an output message associated with a relevant

52

agent component. In the illustration net on the figure 2, the input place pin = p1, the
output place pout = p9 and there are seven intern. places: PS = {p2, p3, p4, p5, p6, p7, p8}.

OM_D

OM_Finpinp

res

if res=Res_E
then 1`res
else empty

res

if res=Res_CplusD
then 1`res
else empty

res

if inp=IM_A
then 1`inp
else empty

if inp=IM_B
then 1`inp
else empty

inp res

inp

xx

inp

OM_C

OM_E

s3

d2

d1 a1

a2

t1

s2

s1

p7

InMSG

p6

Result

p5

Result

p4

Result

p8

Generic

p3

InMSG

p9 OutMSG

p2

InMSG

IM_A

InMSG p1

1 1`IM_A

Fig. 2. Illustration net related to definition of ABA-CPN

(iii) The set of transitions is divided to four subsets in order to distinguish various
actions in the ABA-CPN application. Decision transitions (involved in TD) represent
points of variant conditional branching (transitions d1 and d2 within the illustration
net), assistant transitions (folded in TA) reflect actions of corresponding instant
assistants (a1, a2), sending transitions (elements of TS) reflect sending messages to
other model components (s1, s2, s3), while only standard transitions (contained in TB)
have no specific meaning in the ABA-CPN application (t1).

(i) + (vi) In the illustration net, there are four colour sets, i.e. Σ = {InMSG, Result,
Generic, OutMSG}. Examples of colour function are: C(p1) = InMSG and C(p6) =
Result. The InMSG colour set consists of two values IM_A and IM_B, the OutMSG
colour set can have four different values: OM_C, OM_D, OM_E and OM_F. Colour
set Result contains two values Res_CplusD and Res_E, and finally colour set Generic
has a single value e.

Definition 1 cont’d:
(vii) E is an arc expression function defined from A into arc expressions

(specified in [5]).
(viii) For arcs, there are the following specifications:

a) There is no such pair of arcs a1, a2, a1 ≠ a2 with p(a1) = p(a2) ∧
 t(a1) = t(a2) ∧ ((N(a1) ∈ T×P ∧ N(a2) ∈ P×T), where p(a) is the place
 and t(a) is the transition of N(a),
 b) Every arc a ∈ A belongs to one of the following categories:
 • If t(a) ∈ TD ∧ N(a) ∈ T×P, a is called decision arc and its arc
 expression E(a) contains a condition expression for variant branching,

53

 • For all t(a) ∉ TD and all t(a) ∈ TD : N(a) ∈ P×T, a is one of the
 following: constant arc, if E(a) is composed of a single constant only,
 or elementary variable arc, if E(a) consists of one variable only.

In the section (viii), the former specification states that self-loops are not

admissible, so ABA-CPN represents a pure net. The latter specification introduces
allowable arc expressions that divide arcs into categories. Arc expressions of all arcs
going out of decision transitions (named decision arcs) have a condition expression.
In the illustration net, it is the case of arcs (d1, p2), (d1, p3), (d2, p5) and (d2, p6). Arc
expressions of arcs starting from any other transition can contain only one constant
(constant arcs) or one variable (elementary variable arcs). In the illustration net, (p1,
d1), (p2, a1), (a1, p4), (p4, d2), (p5, s1), (p6, s2), (p3, t1), (t1, p7), (p7, s3), (t1, p8), (p8, a2)
are elementary variable arcs. Remaining arcs are classified as constant arcs.

Definition 1 cont’d:
(ix) G is a guard function defined from T into guard expressions (specif. in [5]).
(x) Elements from the sets P and T have the following additional properties

(related to use of the formalism):
a) (∀ t ∈ T: ¬∃ a ∈ A: N(a) = (t, pin)) ∧ (∃1 a ∈ A: N(a) = (pin, t), t ∈ T),
b) (∃ a ∈ A: N(a) = (t, pout), t ∈ T) ∧ (∀ t ∈ T: ¬∃ a ∈ A: N(a) = (pout, t)),
c) ∀ p ∈ PS: (∃ a ∈ A: N(a) = (t, p), t ∈ T) ∧ (∃1 a ∈ A: N(a) = (p, t), t ∈ T),
d) ∀ t ∈ TB: ∃ a ∈ A: N(a) = (p, t), p ∈ P,
e) ∀ t ∈ T \ TB: ∃1 a ∈ A: N(a) = (p, t), p ∈ P,
f) ∀ t ∈ TD ∪ TS : ∃ a ∈ A: N(a) = (t, p), p ∈ P,
g) ∃1 t ∈ TD: ∃1 a ∈ A: N(a) = (pin, t), where t is denoted as input transition,
h) t ∈ T: (∃ a ∈ A: N(a) = (t, pout)) ∨ (¬∃ a ∈ A: N(a) = (t, p), p ∈ P) is
 called output transition,
i) t ∈ T: (¬∃ a ∈ A: N(a) = (pin, t)) ∧ (¬∃ a ∈ A: N(a) = (t, pout)) ∧
 (∃ a ∈ A: N(a) = (t, p), p ∈ P) is named as internal transition,
j) ∀ t ∈ T: G(t) = ∅.

In the section (x), properties a), b) and c) deal with places: the input place has no

incoming and only one outgoing arc (place p1 in the illustration net); the output place
can have only incoming arcs (place p9) and all the other places have at least one
incoming and just one outgoing arc.

Properties d) to j) deal with transitions. All transitions have at least one input arc.
Decision, assistant and sending transitions have just one incoming arc, standard
transitions may have more incoming arcs. As for outgoing arcs, they must be present
by decision and standard transitions (case of transitions d1, d2, s1, s2 and s3 in the
illustration net), while not necessarily by the other transition types (e.g. transition a2
has no outgoing arc). Input transition is just one and it is the one that follows the
input place (transition d1 after input place p1). Output transitions are those having at
least one outgoing arc to output place or not having any outgoing arc (transitions s1,
s2, s3 and a2). All the other transitions are named internal (transitions d2, a1 and t1). No
transition disposes of a guard.

54

Definition 1 cont’d:
(xi) Petri net built from all elements of P, T, and A represents an acyclic net

structure.
(xii) I is an initialization function defined from P into closed expressions

(specified in [5]).
(xiii) The set of admissible initial markings M0 ⊂ I(P) is defined as follows:

M0 = {
jM0 | j =1,2, …, |C(pin)|}, where jM0 denotes j-th initial marking in the

set, for which holds: ∀ p ∈P: |jM0(p)| = 1, if p = pin, and |jM0(p)| = 0,
if p ≠ pin , and for i ≠ j, iM0(p) ≠ jM0(p) .

(xiii) The tokens of different colours in ABA-CPN reflect differently filled

message forms, which are in the ABAsim architecture utilised for communication
purposes. An admissible initial marking of ABA-CPN allows an occurrence of just
one token in the whole net which is located in the input place pin; all other places
dispose of no tokens. This represents a state, where an input message waits in the
input place to be processed and there are no other messages being processed. Since
the ABA-CPN is constructed to process all relevant input messages for the given
manager separately and the input messages are represented by tokens from the colour
set of the input place C(pin), the set of admissible initial markings M0 contains as
many markings as is the number of input messages, i.e. |C(pin)|, and jM0 denotes the j-
th initial marking from the set. In the illustration net on the fig. 2, an admissible initial
marking is displayed: the input place p1 contains one token of colour IM_A, while all
other places are empty. This represents a situation of input message IM_A coming to
the agent to be processed.

5 Example of ABA-CPN

Let us illustrate application of ABA-CPN to a description of manager component
involved within an agent named Resource controller. The agent represents a part of a
model (based on the ABAsim architecture) reflecting simple service system (fig. 3).

The system’s customers, coming into the system from its surroundings, are
supposed to be consecutively involved in two kinds of serving activities and after
their finishing they leave the system. While the first kind of services is carried out
(within the process Service A) with the help of an immovable service resource (i.e. the
customer has to come up to its place), the second one is made by a mobile resource
(exploiting the process Service B), which is able to move (using the process Resource
transfer) directly to the customer’s spot.

A simulator of the mentioned system is composed of three agents: the
Surroundings agent, the Service controller agent and the Resource controller agent.
The first one is responsible for a connection between the system and its surroundings
(deals with arrivals and departures of individual customers), the second one organizes
all concurrently running service activities and finally the third one is competent to
assign/release service resources and to make disposals for their transpositions. Such
designed simulator can be specified in the form of the ABAsim model, the simplified
form of which (excluding instant assistants for the sake of simplification) is depicted

55

on fig. 3. The mentioned picture shows all essential model components and their
communication links.

Fig. 3. Simplified ABAsim model (with commun. links) of the elementary service system

The ABA-CPN of the manager component (encapsulated within the Resource
controller agent) is shown on the fig. 4. It disposes of the following characteristics
(according to the ABA-CPN definition):
• Set of places P = {pi | i =1,…,16}, where: pin = p1, pout = p16, PS = {pi | i =2,…, 15}.
• Set of transitions T = TD ∪TA ∪TS ∪TB , where TD = {di | i =1,…, 4}, TA = {ai | i

=1,…, 8} (elements of TA are commented in the table 1), TS = {si | i =1,2} and TB =
{t1}; the input transition is represented by d1 and output transitions by s1, s2 , a4 , a8.

Table 1. Characteristics of assistant transitions involved in ABA-CPN presented within fig. 4

Transition reflects component Transition reflects component

a1
instant assistant - advisor
Selection from avail. resources a5

instant assistant - action
Resource assign. to applicant

a2
instant assistant - action
Resource release a6

instant assistant - action
Dequeue applicant

a3
instant assistant - query
Queue for released resource? a7

instant assistant - query
Resource transfer to
applicant?

a4
instant assistant - action
Enqueue applicant a8

instant assistant - action
Update transfer statistics

56

• The set of admissible initial markings M0 = {1M0 ,2M0 ,3M0} represents three
different input messages that can reach the manager component of the
Resource_controller agent and is defined as follows:
1M0(p1) = {REQ_Deliver_resource} and 1M0(pj) = ∅, j = 2, … ,16;
2M0(p1) = {NTC_Resource_returned } and 2M0(pj) = ∅, j = 2, … ,16;
3M0(p1) = {FIN_Transfer} and 3M0(pj) = ∅, j = 2, … ,16.

Occurrence graph of the illustrative ABA-CPN for the initial marking 1M0(p1) is
presented on fig. 5 (using the CPN Tools software). It shows that processing of
input message REQ_Deliver_resource can be ceased in three terminal states: either
produce one output message (state space nodes 13 and 14) or no output message
(node 7). The output message can be one of these two: START_Transfer (node 14)
or RESP_Resource_delivered (node 13).

6 Conventions for the notation of ABA-CPN

In order to carry out unambiguous transformation of the ABA-CPN into relevant data
structures of simulation model program and to enable its correct evolution using a
specialized interpreter, there are certain conventions for the notation of the ABA-CPN
elements. ABA-CPN is constructed within the environment of the CPN Tools
software (developed at the University of Aarhus, Denmark [6]). Notation conventions
are as follows (see an example on fig. 4):

a) places are denoted as pi for i =1..n, where n=|P|; p1 denotes input place and pn

corresponds to output place of the net,
b) decision transitions are denoted as di for i=1..m, m =|TD|, (as d1 we denote input

transition), standard transitions are denoted as ti for i=1..k, k=|TB|, assistant
transitions dispose of description ai for i=1..l, l=|TA| and sending transitions are
associated with notation si for i=1..r, r=|TS|,

c) descriptions of constant arcs or elementary variable arcs use declared constants,
elements of colour sets and variables, each arc with one symbol only,

d) decision arcs typically dispose of an expression in the form ’if var = const then
case1 else case2‘, where var or const represent relevant variable or constant,
case1 or case2 reflect elementary notations composed of one variable or one
constant or the key word empty.

Conventions for denoting variables and constants in arc expressions follow the

goal that the designer should be able to control reactions to relevant “content” of a
token (in this case content of a relevant message form). In addition, using the
conventions enables to manage “movements” of token instances within the net.

For purpose of the following explanation, let us consider s as a string, whereas i-th
character of the string is denoted as si.

Proposal of conventions related to denoting variables and constants in arc
expressions of arcs adjacent with a transition t ∈ T, is as follows:

57

Fig. 4. Coloured Petri net reflecting a manager related to Resource controller agent

58

Fig. 5. Occurrence graph for M0 (p1)=REQ_Deliver_resource, M0 (pi)=∅, i = 2,…,14

a) For firing transition t ∈ T, it holds that token instance removed from the place p

∈ P: N(a) = (p, t), a ∈ A is consequently placed (itself or its identical copy) to a
place q ∈ P: N(a) = (t, q), a ∈ A under following conditions:

59

• Token instance from the place p is removed by means of a constant or a
variable (let’s call it input for the sake of this explanation) contained within
expression of the arc (p, t).

• Positioning token instance to the place q is mediated by a constant or a
variable (let’s call it output) encapsulated within expression of the arc (t, q).

• For the mentioned identifiers of constants or variables, it holds: input 1 =
output 1, i.e. the first character of both identifiers is the same.

The presented convention enables to affect the concrete “path” of a token
instance within the net. It means in fact that designer of a corresponding net
(included within the frame of a simulation model based on the ABAsim
architecture) can determine a particular passing of a message instance (carrying
specific data) through the net. Such a feature extends behavioural rules of
classical coloured Petri nets: instead of disappearing of “old” and appearing of
“new” tokens during firing of transitions the tokens representing messages can be
understood as preserved.

b) The second character within string identifier (if it has more than one character) of
a variable (not a constant) involved in a relevant arc expression is utilized for
determining of data that is contained within j-th item of a given token c. Firing of
decision transition t ∈ TD follows the next stages:
• Token instance c from the place p ∈ P: N(a) = (p, t), a ∈ A is removed by

means of a variable (with string identifier input) contained within expression
of (p, t).

• The second character of the input string is identified as j = int(input 2), where
function int transforms character input 2

 ∈ M (set of characters ’1’,…,’9’) to a
corresponding result from interval of integers 〈1, … , 9〉.

• The corresponding data content of the j-th item of c-token is obtained – let us
denote it as val c.j – it is consequently elaborated within expressions of
decision arcs, which go out of decision transition t.

In case that the second character of the string identifier s2 is equal to ‘0’, it
indicates that all data items associated with an instance of relevant token in the
simulation program are during the operation represented by the adjacent
transition reset to initialisation values.

c) Places are denoted as pi for i =1..n, where n=|P|; p1 denotes input place and pn
corresponds to output place of the net.

d) The third character within the string identifier s3 of variables is utilized only in
the cases that there is more than one identifier in one net with the first two
characters being the same, while they are related to tokens of different colours.

e) Naming convention for constant identifiers for their second and every additional
character differs from variable identifiers. There is no further rule for that, which
means that constant identifiers follow only the convention in the point a).

Let us demonstrate proposed conventions (using the ABA-CPN from fig. 4) for

construction of identifiers related to constants and variables on the cases of two
transitions.
• For the input decision transition d1, it holds that arc expressions associated with all

adjacent arcs dispose of identifiers related to constants and variables, the first

60

characters of which are equal to ‘x’ (‘x5‘,‘x_No_transfer‘). It means that the
message represented by a token instance removed from the place p1 is
consequently bound to a new token positioned to a relevant place q. The second
character of the variable identifier associated with elementary variable arc (p1, d1)
is equal to ‘5’, i.e. interpreter of ABA-CPN decides about variant branching
according to the current content of the 5-th data item of the message encapsulated
by a token c that is being currently removed from the place p1. For example, in the
case of val c.5 = REQ_Deliver_resource the message is bound to a new token that
is placed to p2.

• On the other hand, situation on the transition t1 is different: firing it does not use
only the message instance in the token removed from p11 (subsequently placed to
p15), but creates another (new) instance as a copy of it and puts it to p13. This
behaviour is based on the fact that the first character of the constant identifier
‘x_No_transfer‘ (associated with arc (p11, t1)) is not equal to the first character of
the variable identifier ‘y‘ linked to arc (t1, p13).

7 Conclusions

In this paper, we described the ABA-CPN, subclass of coloured Petri nets, used for
formalization of control and communication of agents within the ABAsim
architecture. The ABA-CPN is structurally bounded, not reversible and not live Petri
net from definition, since it is acyclic (point (xi) of Def. 1) and there is no source
transition allowed (points (x) d) and e) of Def. 1).

State space of the ABA-CPN usually contains at least one dead marking, which can
be of two types. The first type is caused by existence of output place pout with no
outgoing arc (point (x) b) of Def. 1). In this type of dead marking, only the place pout
contains one or more tokens and all the other places are empty. The second type is
caused by existence of standard transition t ∈ TB or assistant transition t ∈ TA with no
outgoing arcs, what may lead potentially to a dead marking with no tokens in the net.
All dead markings represent admissible end states of processing of initial message
(initial marking M0) in the ABA-CPN. The former type of dead marking symbolises
sending of message (result of processing) from current agent to another agent, the
latter type stands for consumption of the message form and no need of further
communication.

As for liveness of individual transitions, the only transition occurring in all
sequences is the input transition t ∈ TD. If the net is designed correctly, it contains no
transition that would be dead in all occurrence sequences for all admissible initial
markings. Analysis of the liveness property is the principal benefit from use of the
ABA-CPN. It is used for checking of correct construction of a concrete ABA-CPN. If
the occurrence graph contains dead markings related to non-admissible states, it
indicates a mistake in structure of the constructed net.

Current development concentrated on descriptions of agent components within the
ABAsim architecture of simulation models prefers utilizing a specific subclass of
coloured Petri net (ABA-CPN) to a subclass of P/T Petri net due to higher modelling
capabilities of CPN. For example, construction of conditional branching and

61

differentiation of various instances of messages is more natural and feasible using
formalism of CPN than formalism of P/T PN.

At the present time, the development of a software application (interpreter of
ABA-CPN) is carried out. Within the ABAsim simulation kernel, it is supposed to
maintain the evolution of the mentioned ABA-CPN. Constructed and analyzed ABA-
CPN (within the CPN Tools environment) is at interpreter’s disposal using XML-
formatted file. The interpreter of the ABA-CPN is currently intensively tested.

Acknowledgments. This work has been supported by the Czech National research
program under project MSM 0021627505 "Theory of transportation systems" and by
the grant of the Scientific Grant Agency VEGA 1/4057/07 in the Slovak Republic.

References

1. Kavička, A., Klima, V., Adamko, N.: Simulations of transportation logistic systems
utilizing agent-based architecture, International Journal of Simulation Modelling,
DAAAM International, Vienna, 1 (2007) 13-24

2. Adamko, N., Kavička, A., Klima, V.: Agent based simulation of transportation logistic
systems, DAAAM International Scientific Book 2007, Chapter 36, B. Katalinic (Ed.),
DAAAM International, Vienna (2007) 407- 422

3. Kavička, A.: Petri net with decision transitions applied within ABAsim architecture of
simulation models. In MOSIS’03 – Proceedings of the 37th conference Modelling and
simulation of systems, MARQ, Ostrava (2006) 373-380

4. Kavička, A., Klima, V., Adamko, N.: Analysis and optimization of railway nodes using
simulation techniques, In COMPRAIL 2006 – Proceedings of 10th Computer system
design and operation in the railway and other transit system, WIT-Press, Southampton
(2006) 663-672

5. Jensen, K.: Coloured Petri nets – basic concepts. Springer Verlag, Berlin (1997)
6. CPN Tools home page. [online]. [cited on 29 February 2008] Available at:

<http://www.daimi.au.dk/ CPNTools/>
7. Jennings, R.: An agent-based approach for building complex software systems,

Communications of the ACM, Vol. 44 (2001) 35-41
8. Helsinger, A., Thome, M., Wright, T.: Cougaar: A Scalable, Distributed Multi-Agent

Architecture, Proceedings of Systems, Man and Cybernetics, IEEE International
Conference, Cambridge (2004) 1910-1917

9. Henoch, J., Ulrich, H.: HIDES: Towards an Agent-Based Simulator, Proceedings of the
Workshop on Agent Based Simulation, SCS European Publishing House, [cited on 24
September 2008] Available at: <http://www.ifor.math.ethz.ch/publications/oldpubli
cations/ 2000_towardsagentbasedsimulator.pdf >

10. Daniel Moldt, D., Wienberg,F.: Multi-Agent-Systems Based on Coloured Petri Nets,
Proceedings of the 18th International Conference on Application and Theory of Petri Nets
(1997) 82-101

11. Fernandes, J., M., Bello, O.: Modeling of Multi-agent System Activities through Colored
Petri Nets: an Industrial Production System Case Study. In Proc. of the16 Int. Conf. on
Applied Informatics, Anaheim, CA, (1998) 17-20.

12. Weyns, D., Holvoet, T.: A colored Petri-net for a multi-agent application, Proceedings of
MOCA'02 (Moldt, D., ed.), vol 561, DAIMI PB (2002) 121-141

62

The ComBack Method Revisited:

Caching Strategies and Extension with

Delayed Duplicate Detection⋆

Sami Evangelista, Michael Westergaard and Lars Michael Kristensen

DAIMI, University of Aarhus, Denmark
{evangeli,mw,kris}@cs.au.dk

Abstract. The ComBack method is a memory reduction technique for
explicit state space search algorithms. It enhances hash compaction with
state reconstruction to resolve hash conflicts on-the-fly thereby ensuring
full coverage of the state space. In this paper we provide two means
to lower the run-time penalty induced by state reconstructions: a set
of strategies to implement the caching method proposed in [18], and
an extension through delayed duplicate detection that allows to group
reconstructions together to save redundant work.

1 Introduction

Model checking is a formal method used to detect defects in system designs. It
consists of a systematic exploration of the reachable states of the system whose
behavior can be formally represented as a directed graph whose nodes are states
and arcs are possible transitions from one state to another. This principle is
simple, can be easily automated, and, in case of errors, a counter-example can
be provided to the user.

However, even simple systems may have an astronomical or even infinite num-
ber of states. This state explosion problem is a severe obstacle to the application
of model checking to industrial size systems. Numerous possibilities are available
to alleviate, or at least delay, this phenomenon. One can for example exploit the
redundancies in the system description that often induce symmetries [3], exploit
the independence of some transitions to reduce the exploration of redundant
interleavings [6], or encode the state graph using compact data structures such
as binary decision diagrams [1].

Hash compaction [15,19] is a graph storage technique that reduces the amount
of memory used to store states. It uses a hash function h to map each encoun-
tered state s into a fixed-size bit-vector h(s) called the compressed state descrip-
tor which is stored in memory as a representation of the state. The full state
descriptor is not stored in memory. Thus, each discovered state is represented
compactly using typically 32 or 64 bits. The disadvantage of hash compaction is
that two different states may be mapped to the same compressed state descriptor

⋆ Supported by the Danish Research Council for Technology and Production.

63

which implies that the hash compaction method may not explore all reachable
states. The probability of hash collisions can be reduced by using multiple hash
functions [10,15], but the method still cannot guarantee full coverage of the state
space. This is acceptable if the intent is to find errors, but not sufficient if the
goal is to prove the correctness of a system specification.

The ComBack method [18] extends hash compaction with a backtracking
mechanism that allows reconstruction of full state descriptors from compressed
ones and thus resolve conflicts on-the-fly to guarantee full coverage of the state
space. Its underlying principle is to store for any state a sequence of events that
generated this state. Thus, when the search algorithm checks if it already visited
a state s, it can reconstruct states mapped to the same hash value as s and
compare them to it. Only if none of the states reconstructed is equal to s can
the algorithm consider it as a new state.

This storage technique stores a small amount of information per state, typ-
ically between 16 and 24 bytes depending on the system being analyzed. Thus
it is especially suited to industrial case studies for which the full state descrip-
tor stored by a classical search algorithm can be very large (from 100 bytes to
10 kilo-bytes). This important reduction, however, has a time cost: a ComBack
based algorithm will explore many more arcs in order to reconstruct states. As
the graph is given implicitly, visiting an arc consists of applying a successor func-
tion that can be arbitrarily complex, especially for high-level languages such as
Promela [8] or Colored Petri nets [9]. Experiments made in [18] report an in-
crease in run-time ranging from 50% for the simplest examples to more than
600% for real-life protocols.

The goal of the work presented in this paper is to propose solutions to tackle
this problem. Starting from the proposal of [18] to use a cache of full state de-
scriptors to shorten sequences, we first propose different caching strategies. We
also extend the ComBack method with delayed duplicate detection, a technique
widely used by disk-based model checkers [16]. The principle is to delay the
instant we check if a state has already been visited from the instant of its gen-
eration. Any state reached is put in a set of candidates and only occasionally is
this set compared to the set of already visited states in order to identify new
ones. The underlying idea of this operation is that comparing these two sets may
be much cheaper than checking separately if each candidate has already been
visited. Applied to the ComBack method, this results in saving the visit of tran-
sitions that are shared by different sequences. For instance if sequences a.b.c and
a.b.d reconstruct respectively states s and s′ we may group the reconstructions
of s and s′ in order to execute sequence a.b only once instead of twice. This will
result in the execution of 4 events instead of 6 events.

This article has the following structure. The basic elements of labeled tran-
sition systems and the ComBack method are recalled in Section 2. In Section 3,
different caching strategies are proposed. An algorithm that combines the Com-
Back method with delayed duplicate detection is presented in Section 4. Section
5 reports on experiments made with the ASAP tool [12] which implements the
techniques proposed in this paper. Finally, Section 6 concludes this paper.

64

2 Background

We give in this section the basic ingredients that are required for understanding
the rest of this paper and provide a brief overview of the ComBack method [18].

2.1 Transition systems

As the methods proposed in this work are not linked to a specific formalism they
will be developed in the framework of labeled transition systems that are the
most low-level representation of concurrent systems.

Definition 1 (Labeled Transition System). A labeled transition system is
a tuple S = (S, E, T, s0), where S is a finite set of states, E is a finite set of
events, T ⊆ S × E × S is the transition relation, and s0 ∈ S is the initial

state.

In the rest of this paper we assume that we are given a labeled transition system
S = (S, E, T, s0). Let s, s′ ∈ S be two states and e ∈ E an event. If (s, e, s′) ∈ T ,
then e is said to be enabled in s and the occurrence (execution) of e in s leads to

the state s′. This is also written s
e
−→ s′. An occurrence sequence is an alternating

sequence of states si and events ei written s1
e1−→ s2 · · · sn−1

en−1

−−−→ sn and

satisfying si
ei−→ si+1 for 1 ≤ i ≤ n − 1. For the sake of simplicity, we assume

that events are deterministic1, i.e., if s
e
−→ s′ and s

e
−→ s′′ then s′ = s′′.

We use →∗ to denote the transitive and reflexive closure of T , i.e., s →∗ s′

if and only if there exists an occurrence sequence s1
e1−→ s2 · · · sn−1

en−1

−−−→ sn,
n ≥ 1, with s = s1 and s′ = sn. A state s′ is reachable from s if and only
if s →∗ s′. The state space of a system is the directed graph (V, E) where
V = { s′ ∈ S | s0 →∗ s′ } is the set of nodes and E = {(s, e, s′) ∈ T | s, s′ ∈ V } is
the set of edges.

2.2 The ComBack method

A classical state space search algorithm (Algorithm 1) operates on a set of visited
states V and a queue of states to visit Q. An iteration of the algorithm (lines
4–7) consists of removing a states from the queue, generating its successors and
inserting the successor states that have not been visited so far both in the visited
set and in the queue for a later exploration2.

Using hash compaction [19], items stored in the visited set are not actual
state descriptors but compressed descriptors, typically a 32-bit integer, obtained
through a hash function h. Algorithm 2 uses this technique. The few differences
with Algorithm 1 have been underlined. This storage scheme is motivated by
the observation that full state descriptors are often large for realistic systems,

1 For an extension of the ComBack method to non-deterministic transition systems
the reader may consult Section 5 of [18].

2 We will use the term of state expansion to refer to this process.

65

Algorithm 1 A classical search algorithm.

1: V ← empty ; V.insert (s0)
2: Q ← empty ; Q.enqueue (s0)
3: while Q 6= empty do

4: s ← Q.dequeue ()
5: for e, s′ | (s, e, s′) ∈ T do

6: if s′ /∈ V then

7: V.insert (s′) ; Q.insert (s′)

Algorithm 2 A search algorithm based on hash compaction.

1: V ← empty ; V.insert (h(s0))
2: Q ← empty ; Q.enqueue (s0)
3: while Q 6= empty do

4: s ← Q.dequeue ()
5: for e, s′ | (s, e, s′) ∈ T do

6: if h(s′) /∈ V then

7: V.insert (h(s′)) ; Q.insert (s′)

i.e., typically between 100 bytes and 10 kilo-bytes, which drastically limits the
size of state spaces that can be explored. Though hash compaction considerably
reduces memory requirements, it comes at the cost of possibly missing some
parts of the state space and potentially some errors. Indeed, as h may not be
injective, two different states may erroneously be considered the same if they are
mapped to the same hash value. Hence, hash compaction is preferably used at
early stages of the development process for its ability to quickly discover errors
rather than proving the correctness of the system.

The ComBack method extends hash compaction with a backtracking mecha-
nism that allows it to retrieve actual states from compressed descriptors in order
to resolve hash collisions on-the-fly and guarantee full coverage of the state space.
This is achieved by modifying the hash compaction algorithm as follows:

1. A state number (integer), or identifier, is assigned to each visited state s.
2. A state table stores for each compressed state descriptor a collision list of

state numbers for visited states mapped to this compressed state descriptor.
3. A backedge table is maintained which for each state number of a visited state

s stores a backedge consisting of an event e and a state number of a visited
predecessor s′ such that s′

e
−→ s.

The key algorithm of the ComBack method is the insertion procedure that checks
whether a state s is already in the visited set and inserts it into it if needed. Its
principle can be illustrated with the help of Figure 1 which depicts a simple state
space. Each ellipse represents a state. The hash value of each state is written in
the right part of the ellipse. The state and backedge tables used to resolve hash
conflicts have been depicted to the right of the figure for two different steps of
the search. For the sake of clarity, we have also depicted on the state space the
identifier of each state (the square next to the ellipse) and highlighted (using

66

0

1

2

3

0

4

5

63

2

3

0

1

4

5

6

0

1

2

3

5

6

4

1 2

2

3

0

1

nil

(0, e)

(0, a)

(1, c)

At the end of the search

a

b

a
d

c

e

e

c
d

nil

(0, e)

(4, a)

(5, d)

(0, a)

(1, c)

(2, b)

After the expansion of
and s1

h0

h1

h2

h3

s5 h1

s6 h6s3 h3 s4 h3

h0

h1

h2

h3

h6

s1 h1 s2 h2

s0 h0 s0

Fig. 1. A state space and the state and backedge tables at two stages.

thick arcs) the transitions that are used to backtrack to the initial state, i.e., the
edges constituting the backedge table. Note that these identifiers also coincide
with the expansion order of states.

After the expansion of s0 and s1, the set of visited states is {s0, s1, s2, s3}.
As no hash conflict was detected, a single state is associated in the state table
(the left table of the first rounded box) with each hash value. In the backedge
table (the right table of the first rounded box) a nil value is associated with state
0 (the initial state) as any backtracking will stop here. The table also indicates
that the actual value of state 1 (s1) is retrieved by executing event e on state
0 and so on for the other entries of the table. After the execution of event b on
state s2 we reach s4. Algorithm 2 would claim that s4 has already been visited
— since h(s3) = h(s4) — and stop the search at this point, missing states s5

and s6. Using the two tables the hash conflict between s3 and s4 can be handled
as follows. The insertion procedure first looks in the state table if any state has
already been mapped to h(s4) = h3 and finds out value 3. The comparison of
state 3 (of which we do not have the actual state descriptor) to s4 is first done
by recursively following the pointers of the backedge table until the initial state
is reached, i.e., 3 then 1 and then 0. Then the sequence of events associated
with the entries of the table that have been met during the backtrack, i.e., e.c,
is executed on the initial state3. Finally, a comparison between s3 and s4 indi-
cates that s4 is new. We therefore assign to s4 a new identifier (4) insert it in the
collision list of hash value h3 and insert the entry 4 → (2, b) in the backedge table.

This storage scheme is especially suited to systems exhibiting large state
vectors as it allows to represent each state in the visited set with only a few bytes.
The only elements of the state and backedge tables that are still dependent of

3 We will use the term of state reconstruction (or more simply reconstruction) to refer
to this process, i.e., backtracking to the initial state and then executing a sequence of
events to retrieve a full state descriptor. Sequence e.c will be called the reconstructing

sequence of state 3.

67

the underlying model are the events stored to reconstruct states. In the case of
Colored Petri Nets, this comprises a transition identifier and some instantiation
values for its variables while for some modeling languages it may be sufficient to
identify an event with a process identifier and the line of the executed statement.
Still, a state rarely exceeds 16–24 bytes.

However, the ComBack method is penalized by an (important) run-time in-
crease due to the reconstruction mechanism. After a state s has been reached
it will be reconstructed once for each following incoming arc, hence in(s) − 1
times where in(s) denotes the in-degree of s. If we denote by d(s) the length
of the shortest path from s0 to s, the number of event executions due to state
reconstructions is lower bounded by:

∑

s∈S

(in(s) − 1) · d(s)

Note that in Breadth-First Search (BFS) each sequence executed to reconstruct
a state s is exactly of length d(s) while it may be much longer in Depth-First
Search (DFS). This is evidenced by some data of Table 1 in [18] showing that
the ComBack method combined with DFS is in some cases much slower than
with BFS while the converse is not true.

In addition, the time spent in reconstructing states depends, to a large extent,
on the complexity of executing an event that ranges from trivial (e.g., for PT-
nets) to high, e.g., for Promela or Colored Petri Nets for which executing an
event may include the execution of embedded code.

3 Caching strategies

A cache mapping state identifiers to full descriptors is a good way to reduce the
cost of state reconstructions. The purpose of such a cache is twofold. Firstly, the
reconstruction of a state identified by i may be avoided if i is cached. Secondly, if
a state has to be reconstructed we may stop backtracking as soon as we encounter
a state belonging to the cache and thus execute a shorter reconstruction sequence
from this state. As an example, consider the configuration of Fig. 1. Caching the
mapping 1 → s1 may be useful in two ways.

To avoid the reconstruction of state 1. A lookup in the cache directly returns
state s1, which saves the backtrack to s0 and the execution of event e.

For the reconstruction of state 3. During the backtrack to s0 the algorithm
finds out that state 1 is cached, retrieves its descriptor and only executes
event c from s1 to obtain s3, once again saving the execution of event e.

We now propose four strategies to implement this cache. We focus on strategies
based on BFS as the traversal order it induces enables to take advantage of some
typical characteristics of state spaces [13].

68

Random cache The simplest and easiest way is to implement a randomized
cache. This gives us the first following strategy.

Strategy R: When a new state is put in the visited set, it is inserted in
the cache with probability p (1 if the cache is not full) and the state to
replace (if needed) is randomly chosen.

Fifo cache A common characteristics of state spaces is the high proportion of
forward transitions4, typically around 80%. This has a significant consequence
in BFS in which levels are processed one by one: most of the transitions outgoing
from a state will lead to a new state or to a state that has been recently generated
from the same level. Hence, a good strategy in BFS seems to be to use a fifo
cache since when a new state at level l + 1 is reached from level l it is likely
that one of the following states of level l will also reach it. If the cache is large
enough to contain any level of the graph, only backward transitions will generate
reconstructions as forward transitions will always result in a cache hit. This
strategy can be implemented as follows.

Strategy F: When a new state is put in the visited set, insert it un-
conditionally into the cache. If needed, remove the oldest state from the
cache.

Heuristic based cache Obviously, the benefit we can obtain from caching a
state may largely differ from one state to another. For instance, it is pointless
to cache a state s that does not have any successor state pointing to it in the
backedge table as it will not shorten any reconstruction sequence, but only avoid
the reconstruction of s.

To evaluate the interest of caching some state s we propose to use the fol-
lowing caching heuristic H .

H(s) = d(s) · p(s) with p(s) =
r(s)

L(d(s))

where

– d(s) is the distance of s to the initial state in the backedge table
– r(s) is the number of states that reference s in the backedge table
– L(n) is the number of states at level n, i.e., with a distance of n from the

initial state

A cache hit is more interesting if it occurs early during the backtrack as it will
shorten the sequence executed. Thus the benefit of caching a state s increases
with its distance d(s). Through rate p(s) we evaluate the probability that s

4 If we define level l as the set of states that are reachable from s0 in l steps (and not
less), a transition that has its source in level l and its target in level l + 1 is called a
forward transition. Any other transition is called a backward transition.

69

belongs to some reconstructing sequence. This one increases if many states point
to s in the backedge table and decreases with the number of states on the same
level as s. The distance of s could also be considered in the computation of p(s)
as s cannot appear in a reconstructing sequence of a length less than d(s). Our
choice is based on another typical characteristic of state spaces [17]: backward
transitions are usually short in the sense that the levels of its destination and
source are often close. Thus, in BFS, if a state has to be reconstructed, it is likely
that the length of its reconstructing sequence is close to the current depth which
is an upper bound of the length of a reconstructing sequence. Hence, assuming
that the state space has this characteristic, the distance slightly impacts on p(s).

Our third strategy is based on this heuristic.

Strategy H: After all outgoing transitions of state s have been visited
compute H(s). Let s′ be the state that minimizes H in the cache. If
H(s′) < H(s) replace s′ by s in the cache.

Note that after the visit of s, all necessary information to compute H(s) is
available since all its successors have been generated and the BFS search order
implies that L(d(s)) is known.

Other possibilities are available. In [5] a reduction technique also based on
state reconstruction is proposed. The algorithm is parametrized by an integer k

and only caches states at levels 0, k, 2 ·k, 3 ·k The motivation of this strategy
is to bound the length of reconstructing sequences to k − 1. As presented, the
strategy in [5] does not bound the size of the cache but k could be dynamically
increased to solve this problem.

Different strategies may also be combined. We can for example cache recently
inserted states following strategy F and when a state leaves this cache it can be
inserted into a second level cache maintained with strategy H. Thus we will keep
some recently visited states in the cache and some old strategic states.

4 Combination with delayed duplicate detection

Duplicate detection consists of checking the presence of a newly generated state
in the set of visited states. If the state has not been visited so far, it must
be included in the set and later expanded. With delayed duplicate detection
(DDD), this check is delayed from the instant of state generation by putting
the state reached in a candidate set that contains potentially new states. In this
scheme, duplicate detection consists of comparing the visited and candidate sets
to identify new states. This is motivated by the fact that this comparison may
be much cheaper than checking individually for the presence of each candidate
in the visited set.

Algorithm 3 is a generic algorithm based on DDD. Besides the usual data
structures we find a candidate set C filled with states reached through event
execution (lines 7–8). An iteration of the algorithm (lines 4–9) consists of ex-
panding all queued states and inserting their successors in the candidate set.

70

Algorithm 3 A generic search algorithm using delayed duplicate detection

1: V ← empty ; V.insert (s0)
2: Q ← empty ; Q.enqueue (s0)
3: while Q 6= empty do

4: C ← empty

5: while Q 6= empty do

6: s ← Q.dequeue ()
7: for e, s′ | (s, e, s′) ∈ T do

8: C.insert (s′)
9: duplicateDetection ()

10: proc duplicateDetection () is

11: new ← C \ V
12: for s ∈ new do

13: V.insert (s)
14: Q.enqueue (s)

Once the queue is empty duplicate detection starts. We identify new states by
removing visited states from candidate states (line 11). States remaining after
this procedure are then put in the visited set and in the queue (lines 12–14).

The key point of this algorithm is the way the comparison at line 11 is
conducted. In the disk-based algorithm of [16], the candidate set is kept in a
memory hash table and visited states are stored sequentially in a file. New states
are detected by reading states one by one from the file and deleting them from
the table implementing the candidate set. States remaining in the table at the
end of this process are therefore new. Hence, in this context, DDD replaces a
large number of individual disk look-ups — that each would likely require to read
a disk block — by a single file scan. It should be noted that duplicate detection
may also be performed if the candidate set fills up, i.e., before an iteration (lines
4–9) of the algorithm has been completed.

4.1 Principle of the combination

The underlying idea of using DDD in the ComBack method is to group state
reconstructions together to save the redundant execution of some events shared
by different reconstruction sequences. This is illustrated by Fig. 2. The search
algorithm first visits states s0, s1, s2, s3 and s4 each mapped to a different com-
pressed state descriptor. Later, state s is processed. It has two successors: s4

(already met) and s5 mapped to h3 which is also the compressed state de-
scriptor of s3. With the basic reconstruction mechanism we would have to first
backtrack to s0, execute sequence a.b.d to reconstruct s4 and find out that e

does not, from s, generate a new state, and then execute a.b.c from s0 to dis-
cover a conflict between s5 and s3 and hence that f generates a new state.
Nevertheless, we observe some redundancies in these two reconstructions: as
sequences a.b.c and a.b.d share a common prefix a.b, we could group the two
reconstructions together so that a.b is executed once for both s3 and s4. This
is where DDD can help us. As we visit s, we notice that its successors s4 and
s5 are mapped to hash values already met. Hence, we put those in a candi-
date set and mark the identifiers of states that we have to reconstruct in or-
der to check whether s4 and s5 are new or not, i.e., 3 and 4. Duplicate detec-
tion then consists of reconstructing marked states and to delete them from the

71

f

h

h0

h1

h2

h3 h4

h3

s0

s1

s2

s3 s4

s5

a

b

c d

s

e

Fig. 2. The prefix a.b of the reconstruct-
ing sequences of s3 and s4 can be shared.

candidate set. This can be done
by conducting a DFS starting from
the initial state in search of marked
states. However, as we do not want
to reconstruct the whole search tree,
we have to keep track of the sub-
tree that we are interested in. Thus,
we additionally store for each iden-
tifier the list of its successors in the
backedge table that have to be vis-
ited. The DFS then prunes the tree
by only visiting successors included
in this list. On our example this will
result in the following traversal or-
der: s0, s1, s2, s3 and finally s4.

4.2 The algorithm

We now propose Algorithm 4 that combines the ComBack method with DDD.
As it is straightforward to extend the algorithm with a full state descriptor cache
as discussed in Section 3 we only focus here on this combination.

The two main data structures in the algorithm are the queue Q containing
full descriptors of states to visit together with their identifiers and the visited
set V . The latter comprises three structures.

– As in the basic ComBack method, the stateTable maps compressed states to
state identifiers. It is implemented as a set of pairs (h, id) where h is a hash
signature and id is the identifier of a state mapped to h.

– backedgeTable maps each identifier id to a tuple (idpred, e, check, succs) where
• idpred and e are the identifier of the predecessor and the reconstructing

event as in the basic ComBack method;
• check is a boolean specifying if the duplicate detection procedure must

verify whether or not the state is in the candidate set;
• succs is the identifier list of its successors which must be generated during

the next duplicate detection as previously explained.
– candidates is a set of triples (s, idpred, e) where s is the full descriptor of a

candidate state. In case duplicate detection reveals that s does not belong
to the visited set, idpred and e are the reconstruction information that will
be associated with the state in backedgeTable.

The main procedure (lines 1–10) works basically as Algorithm 3. A notable
difference is that procedure insert (see below) may return a two-valued answer:

NEW - if the state is surely new. In this case, the identifier assigned to the
inserted state is also returned by the procedure. The state can be uncondi-
tionally inserted in the queue for a later expansion.
MAYBE - if we can not answer without performing duplicate detection.

72

Algorithm 4 The ComBack method extended with delayed duplicate detection

1: V ← empty ; Q ← empty

2: n ← 0 ; id ← newState (s0, nil, nil) ; Q.enqueue (s0, id)
3: while Q 6= empty do

4: V.candidates ← empty

5: while Q 6= empty do

6: (s, sid) ← Q.dequeue ()
7: for e, s′ | (s, e, s′) ∈ T do

8: if insert (s′, sid, e)= NEW(s′id) then Q.enqueue (s′, s′id)
9: if V.candidates.isFull () then duplicateDetection ()

10: duplicateDetection ()

11: proc newState (s, idpred, e) is

12: id ← n ; n ← n + 1
13: V.stateTable.insert (id, h(s))
14: V.backedgeTable.insert (id→ (idpred, e, false, []))
15: return id

16: proc insert (s, idpred, e) is

17: ids ← {id | (h(s), id) ∈ V.stateTable}
18: if ids = ∅ then

19: id ← newState (s, idpred, e)
20: return NEW(id)
21: else

22: V.candidates.insert (s, idpred, e)
23: for id in ids do

24: V.backedgeTable.setCheckBit (id)
25: backtrack (id)
26: return MAYBE

27: proc backtrack (id) is

28: idpred ← V.backedgeTable.getPredecessorId (id)
29: if idpred 6= nil then

30: if id /∈ V.backedgeTable.getSuccessorList (idpred) then

31: V.backedgeTable.addSuccessor (idpred, id)
32: backtrack (idpred)

33: proc duplicateDetection () is

34: dfs (s0, 0)
35: for (s, idpred, e) in V.candidates do

36: id ← newState (s, idpred, e)
37: Q.enqueue (s, id)
38: V.candidates ← empty

39: proc dfs (s, id) is

40: check ← V.backedgeTable.getCheckBit (id)
41: if check then V.candidates.delete (s)
42: for succ in V.backedgeTable.getSuccessorList (id) do

43: e ← V.backedgeTable.getReconstructingEvent (succ)
44: dfs (s.exec (e), succ)
45: V.backedgeTable.unsetCheckBit (id)
46: V.backedgeTable.clearSuccessorList (id)

73

Procedure newState inserts a new state to the visited set together with its
reconstruction informations. It computes a new identifier for s, a state to insert,
and update the stateTable and backedgeTable structures.

Procedure insert receives a state s, the identifier idpred of one of its prede-
cessors s′ and the event used to generate s from s′. It first performs a lookup in
the stateTable for identifiers of states mapped to the same hash value as s (line
17). If this search is unsuccessful (lines 18–20), this means that s has definitely
not been visited before. It is unconditionally inserted in V , and its identifier is
returned by the procedure. Otherwise (lines 21–26), the answer requires the re-
construction of states whose identifiers belong to set ids. We thus save s in the
candidate set for a later duplicate detection, set the check bit of all identifiers
in ids to true so that the corresponding states will be checked against candidate
states during the next duplicate detection and backtrack from these states.

The purpose of the backtrack procedure is, for a given state s with identifier
id, to update the successor list of all the states on the path from s0 to s in the
backedge table so that s will be visited by the DFS performed during the next
duplicate detection. The procedure stops as soon as a state with no predecessor
is found, i.e., s0, or if id is already in the successor list of its predecessor, in
which case this also holds for all its ancestors.

To illustrate this process, we have depicted in Fig. 3 the evolution of (a part
of) the backedge table for the graph of Fig. 2. The four values specified for
each state are respectively the identifier of the predecessor, the event used to
reconstruct the state, the check bit (set to False or True), and the successor list.
After the execution of event e from s we reach a state mapped to hash value
h4 already associated with state 4. We thus set the check bit of state 4 to true,
backtrack from it and update the successor list of its ancestors 0, 1 and 2. The
same treatment is performed for state 3 after the execution of f from s since
the state thus reached and state 3 are mapped to the same hash value. The
backtrack stops as we reach state 2 since it already belongs to the successor list
of state 1.

Duplicate detection (lines 33–38) is conducted each time the candidate set is
full (line 9), i.e., it reaches a certain peak size, or the queue is empty (line 10).

from s to s5

1

2

3

4

0 (nil, nil, F, [])

(0, a, F, [])

(1, b, F, [])

(2, c, F, [])

(2, d, F, [])

1

2

3

4

0 (nil, nil, F, [1])

(0, a, F, [2])

(1, b, F, [4])

(2, c, F, [])

(2, d, T, [])

1

2

3

4

0 (nil, nil, F, [1])

(0, a, F, [2])

(1, b, F, [3, 4])

(2, c, T, [])

(2, d, T, [])

0

1

2

3 4

h

h0

h1

h2

h3 h4

h3

s0

s1

s2

s3 s4

s5

a

b

c d

s

e
f

after execution of e after execution of f
from s to s4

Fig. 3. Evolution of the backedge table after the execution of e and f from s

74

Using the successor lists constructed by the backtrack procedure, we initiate a
depth-first search from s0 (see procedure dfs). Each time a state with its check
bit set to true is found (line 41) we delete it from the candidate set if needed.
When a state leaves the stack we set its check bit to false and clear its successor
list (lines 45–46). Once the search finishes (lines 35–37) any state remaining in
the candidate set is new and can be inserted into the queue and the visited set.

4.3 Additional comments

We discuss several issues regarding the algorithm proposed in this section.

Memory issues Our algorithm requires the storage of some additional infor-
mation used to keep track of states that must be checked against the candidate
set during duplicate detection. This comprises for each state a boolean value
(the check bit) and a list of successors that must be visited. As any state may
belong to the successor list of its predecessor in the backedge table, the memory
overhead is theoretically one bit plus one integer per state. However, our ex-
periments reveal (see Section 5) that even very small candidate sets show good
performance. Therefore, successor lists are usually short and the extra memory
consumption low. We did not find any model for which the algorithm of [18]
terminated whereas ours did not due to a lack of memory.

Grouping reconstructions of queued states In [18] the possibility to reduce
memory usage by storing identifiers instead of full state descriptors in the queue
(Variant 4 in Section 5) was mentioned. This comes at the cost of an additional
reconstruction per state required to get a description of the state that can be
used to generate its successors. The principle of grouping state reconstructions
can also be applied to the states waiting in the queue. The idea is to dequeue
blocks of identifiers from the queue instead of individual ones and reconstruct
those in a single step using a procedure similar to dfs given in Algorithm 4.

Compatibility with depth-first search A nice characteristic of the basic
ComBack method is its total decoupling from the search algorithm thereby
making it fully compatible with, e.g., LTL model checking [2,7]. Delaying de-
tection from state generation makes an algorithm implicitly incompatible with
a depth-first traversal where the state processed is always the most recent state
generated. At first glance, the algorithm proposed in this section also belongs
to that category. However, we can exploit the fact that the insertion procedure
can decide if a state is new without actually putting it in the candidate set (if
the hash value of the state has never been met before). The idea is that the
search can progress as long as new states are met. If some state is then put in
the candidate set the algorithm puts a marker on the stack to remember that a
potentially new state lies here. Finally, when a state is popped from the stack,
duplicate detection is performed if markers are present on top of the stack. If we

75

find out that some of the candidate states are new, the search can continue from
these ones. This makes delayed detection compatible with depth-first search at
the cost of performing additional detections, during the backtrack phase of the
algorithm.

5 Experimental results

We report in this section the data we collected during several experiments with
the proposed techniques. We used the ASAP verification tool [12] where we
have implemented the algorithms described in this article. A nice characteristic
of ASAP is its independence from the description language of the model. This
allowed us to perform experimentations on DVE models taken from the BEEM
database [14] and on CPN models taken from our own collection.

Experimenting with caching strategies In this first experiment we evalu-
ated the different strategies proposed in Section 3. We picked out 102 instances
of the BEEM database having from 100,000 to 10,000,000 states and run the
ComBack algorithm of [18] using BFS with 6 caching strategies and 3 sizes of
cache (100, 1,000 and 10,000 states). Out of these 6 strategies 3 are simple: R
(Random, with a replacement probability p = 0.5), F (Fifo), H (Heuristic); and 3
are combinations5 of the first ones: F(20)-H(80), F(50)-H(50) and F(80)-H(20).
We measured after each run the number of event executions that were due to
state reconstructions. The results are summarized in table 1.

Strategy F performs well compared to R but it seems that its performance
degrades (in comparison) as we allocate more states to the cache. This is also
confirmed by the fact that the combination F-H seems to perform better for a
large cache when the proportion of states allocated to the fifo sub-cache is low.
Apparently with this strategy we quickly reach a limit where all (or most of) the
forward transitions lead to a cached (or new) state and most backward transi-
tions lead to a non cached state. Such a cache failure always implies backtracking
to the initial state (the fifo strategy implies that if a state is not cached none of
its ancestors in the backedge table is cached) which can be quite costly. Beyond
this point, allocating more states to the cache is almost useless.

The performance of strategy H is poor for small caches but progresses well
compared to strategy F. With this strategy, most transitions will be followed by a
state reconstruction. However, our heuristic works rather well and reconstructing
sequences are usually much shorter than with strategy F. Still, strategy H is
usually outperformed by strategy F due to a high presence of forward transitions
in state spaces [13]. To sum up, strategy F implies few reconstructions but long
sequences and strategy H has the opposite characteristics.

From these observations it is not surprising to see that the best strategy is to
maintain a small fraction of the cache with strategy F and the remainder with

5 F(X)-H(Y) denotes the combination where X% of the cache is allocated to a fifo
sub-cache and Y% is allocated to a heuristic based sub-cache.

76

Table 1. Evaluation of caching strategies on 102 DVE instances.

Cache Strategy R Strategy F Strategy H Strategy Strategy Strategy
size F(20)-H(80) F(50)-H(50) F(80)-H(20)

102 1.0 0.429 1.128 0.436 0.397 0.390

103 1.0 0.437 1.178 0.364 0.347 0.355
104 1.0 0.488 0.742 0.255 0.262 0.302

102 0 7 2 21 34 42

103 0 3 1 51 38 17
104 0 7 3 80 14 9

Top rows: Average on all instances of the number of event executions due to state
reconstruction with this strategy reported to the same number obtained with strategy
R. Bottom rows: Number of instances for which this strategy performed best.

strategy H, that is to keep a small number of recently visited states and many
strategic states from previous levels that will help us shorten reconstructing
sequences.

Out of these 102 instances we selected 4 instances that have some specific
characteristics (brp2.6, cambridge.6, firewire tree.5 and synapse.6) and
evaluated strategies F, H and F(20)-H(80) with different sizes of cache ranging
from 1,000 to 10,000. Data collected are plotted on figure 4. On the x-axis are the
different cache sizes used. For each run we recorded the number of event execu-
tions due to reconstructions and reported it to the same number obtained with
strategy F. For instance, with brp2.6 and a cache of 4,000 states, reconstruc-
tions generated approximately three times more event executions with strategy
H than with strategy F. We also provide the characteristics of these graphs
in terms of number of states and transitions, average degree, number of levels
and number of forward transitions as a proportion of the overwhole number of
transitions.

The graph of firewire tree.5 only has forward transitions, which is com-
mon for leader election protocols. Therefore, a sufficiently large fifo cache is the
best solution. This is one of the few instances where increasing the cache size
benefits strategy F more than H. Moreover its average degree is high, which
leads to a huge number of reconstructions with strategy H. On the opposite side
the graph of cambridge.6 has a relatively large number of backward transi-
tions. Increasing the fifo cache did not bring any substantial improvement: from
262,260,647 executions with a cache size of 1,000 it went down to 260,459,235
executions with a cache size of 10,000. Strategy H is especially interesting for
synapse.6 as its graph has a rather unusual property: a low fraction of its states
have a high number of successors (from 13 to 18). These states are thus shared
by many reconstructing sequences and, using our heuristic, they are systemat-
ically kept in the cache. Thus, strategy H always outperforms strategy F even
for small caches. The out-degree distribution of the graph of brp2.6 has the op-
posite characteristics: 49% of its states have 1 successor, 44% have 2 successors
and the other states have 0 or 3 successors. Therefore, there is no state that is

77

0

1/4

1/2

3/4

1

 0 2000 4000 6000 8000 10000

1

2

3

4

Strategy F

brp2.6 - H
brp2.6 - F(20)-H(80)
cambridge.6 - H
cambridge.6 - F(20)-H(80)

firewire_tree.5 - H
firewire_tree.5 - F(20)-H(80)
synapse.6 - H
synapse.6 - F(20)-H(80)

Instance States Transitions Deg. Levels Forward tr.

brp2.6 5,742,313 9,058,624 1.57 571 92.6%
cambridge.6 3,354,295 9,483,191 2.83 259 66.8%

firewire tree.5 3,807,023 18,225,703 4.79 202 100%
synapse.6 625,175 1,190,486 1.90 70 74.9%

Fig. 4. Evolution of strategies F, H and F(20)-H(80) on some selected instances.

really interesting to keep in the cache. This is evidenced by the fact that the
relative progressions of heuristic based strategies are not so good. It goes from
3.456 to 2.660 for strategy H and from 0.782 to 0.608 for strategy F(20)-H(80).

Experimenting with delayed duplicate detection (DDD) To experiment
with delayed detection we picked out 94 DVE instances from the BEEM database
(all instances having between 500,000 and 50,000,000 states) and 2 CPN in-
stances from our own database. The ComBack method was especially helpful for
nets dymo and erdp that model two industrial protocols — a routing protocol [4]
and an edge router discovery protocol [11] — and have rather large descriptors
(1,000 - 5,000 bytes).

Table 2 summarizes our observations. Due to a lack of space we only report
the data for some DVE instances but still provide the average on all instances.
We used caching strategy F(20)-H(80), as it is apparently the best we proposed,
with a cache size of 10,000. For each instance we performed 4 tests: one with
a standard storage method, i.e., full state descriptors are kept in the visited

78

Table 2. Evaluation of delayed duplicate detection on DVE and CPN instances.

Std. Type of ComBack

items in No DDD DDD(102) DDD(103)
T the queue T↑ E↑ T↑ E↑ T↑ E↑

DVE instances

brp.5⋆ 17,740,267 states 36,903,290 transitions

23.1 SD 11.02 21.19 8.08 7.56 9.01 7.10
ID 35.03 69.12 14.57 17.48 15.74 15.37

cambridge.7 11,465,015 states 54,850,496 transitions

195 SD 14.12 35.88 2.63 4.40 2.30 3.49
ID 18.54 44.50 3.22 5.92 2.96 5.03

iprotocol.5⋆ 31,071,582 states 104,572,634 transitions

63.1 SD 8.74 11.71 5.07 2.97 4.93 2.65
ID 21.12 30.81 6.72 5.44 6.63 4.91

pgm protocol.8 3,069,390 states 7,125,121 transitions

18.45 SD 2.07 2.64 1.65 1.48 1.59 1.35
ID 16.87 42.04 4.60 8.05 4.42 7.31

rether.6 5,919,694 states 7,822,384 transitions

13.0 SD 3.86 7.23 3.16 3.89 3.17 3.64
ID 24.38 75.16 9.11 19.99 9.33 19.18

synapse.6 625,175 states 1,190,486 transitions

1.4 SD 2.42 1.74 2.50 1.45 2.42 1.43
ID 3.50 3.54 3.57 3.01 3.57 3.01

Average on 94 instances

SD 4.92 7.06 3.92 3.44 4.02 3.06
ID 10.11 18.69 5.49 6.31 5.61 5.69

CPN instances

dymo.6⋆ 1,256,773 states 7,377,095 transitions

2,115 SD 2.97 2.88 1.65 1.42 1.72 1.37
ID 4.12 4.39 1.93 1.94 1.93 1.85

erdp.3⋆ 2,344,208 states 18,739,842 transitions

5,425 SD 3.99 6.17 2.19 2.69 2.10 2.28
ID 4.37 7.50 2.15 3.15 1.92 2.70

Average on 2 instances

SD 3.48 4.52 1.92 2.05 1.91 1.82
ID 4.24 5.94 2.04 2.54 1.92 2.27

⋆: standard search out of memory. Time in column Std. is approximated.
Type of items in the queue: SD (full state descriptor) or ID (state identifier).

79

set, (column Std.), one with the ComBack method without delaying detection
(column ComBack - No DDD) and two with delayed detection enabled with a
candidate set of size 100 and 1,000 (columns ComBack - DDD(102) and ComBack
- DDD(103)). Each test using the ComBack method actually comprises two runs:
one keeping full state descriptors in the queue (line SD) and one keeping only
identifiers in the queue (line ID) — as described in [18], Variant 4 of Section 5. For
this second run, we used the optimization described in Section 4.3 that consists
of grouping the reconstruction of queued identifiers. Each block of identifiers
dequeued to be reconstructed had the same size as the candidate set. Hence,
when DDD was not used this optimization was turned off. In column Std. - T
we provide the execution time in seconds using a standard search algorithm. In
columns T↑ we measure the run-time increase (compared to the standard search)
as the ratio execution time of this run

T (with standard search) and in column E↑ the increase of the number

of event executions as the ratio event executions during this run
transitions of the graph . Hence, a value of 1

in this column means that we executed exactly the same number of events as
the basic algorithm and that no state reconstruction occurred. Some runs using
standard storage ran of out memory. This is indicated by a ⋆. For these, we
provide the time obtained with hash compaction as a lower approximation.

We first observe that DDD is indeed useful to save the redundant exploration
of transitions during reconstruction even with small candidate sets. Typically
we can reduce the number of events executed by a factor of 3 or even more
if we group the reconstruction of queued identifiers. It seems that, using BFS,
states generated successively are “not so far” in the graph so their reconstructing
sequences are quite similar, which allows many sharings.

However, this reduction does not always impact on the time saved as we
could expect. Indeed DDD is much more interesting for CPN models than DVE
models. If we consider for example the average made on the 94 DVE instances
with our optimization disabled we divided the number of events executed by
more than 2 (7.06 → 3.44) whereas the average time slightly decreased (4.92
→ 3.92). The reason is that executing an event is much faster for DVE models
than for CPN models. Events are typically really simple in the DVE language,
e.g., a variable incrementation, whereas they can be quite complex with CPNs
and include the execution of some embedded code. Therefore, the only fact of
maintaining the candidate set or successors lists has a non negligible impact
for DVE models which means that DDD reduces time only if the number of
executions decreases in a significant way, e.g., instance cambridge.7.

Grouping the reconstruction of queued states can save a lot of executions,
especially for long graphs like those of brp.5 and cambridge.7. It should be
noted that by storing identifiers in the queue we obtain an algorithm that bounds
the number of full state descriptors kept in memory. Hence, we can theoretically
consume less memory compared to an algorithm based on hash compaction which
has to store full descriptors in the queue. This was indeed the case for nets
dymo.6 and erdp.3. Both have rather wide graphs: their largest levels contains
approximately 10% of the state space and so contained the queue as it reached
its peek size.

80

6 Conclusion

The ComBack method has been designed to explicitly store large state spaces
of models with large state descriptors. The important reduction factor it may
provide is however counterbalanced by an increase in run-time due to the on-the-
fly reconstructions of states. We proposed in this work two ways to tackle this
problem. First, some strategies have been devised in order to efficiently maintain
a full state descriptor cache, used to perform less reconstructions and shorten
the length of reconstructing sequences. Second, we combined the method with
delayed duplicate detection that allows to group reconstructions and save the
execution of events that are shared by multiple sequences. We have implemented
these two extensions in ASAP and performed an extensive experimentation on
both DVE models from the BEEM database and CPN models from our own col-
lection. These experiments validated our proposals on many models. Compared
to a random replacement strategy, a combination of our strategies could, on an
average made on a hundred of DVE instances, decrease the number of transi-
tions visited by a factor of four. We also saw that delaying duplicate detection
is efficient even with very small candidate sets. In the best cases, we could even
approach the execution time of a hash compaction based algorithm. Moreover,
by storing identifiers instead of full descriptors in the queue we bound the num-
ber of full state descriptors that reside in memory. Hence, our data structures
can theoretically consume less memory during the search than hash compaction
structures. We experienced this situation on several instances.

In this work, we mainly focused on caching strategies for breadth-first search.
BFS is helpful to find short error-traces for safety properties, but not if we are
interested in the verification of linear time properties that is inherently based
on depth-first search. The design of strategies for other types of search is thus
a future research topic. In addition, the combination with delayed duplicate
detection opens the way to an efficient multi-threaded algorithm based on the
ComBack method. The underlying principle would be to have some threads
exploring the state space and visiting states while others are responsible for
performing duplicate detection. We are currently working on such an algorithm.

References

1. J.R. Burch, E.M. Clarke, D.L. Dill, L.J. Hwang, and K. McMillan. Symbolic model
checking: 1020 states and beyond. In Proceedings of Logic In Computer Science,
pages 428–439, 1990.

2. J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Proceedings

of Formal Methods, Volume 1708 of Lecture Notes in Computer Science, pages
253–271. Springer-Verlag, 1999.

3. E.A. Emerson and A.P. Sistla. Symmetry and model checking. Formal Methods in

Systems Design, 9(1-2):105–131, 1996.
4. K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen. Modelling and initial valida-

tion of the dymo routing protocol for mobile ad-hoc networks. In Proceedings of

Application and Theory of Petri Nets, Volume 5062 of Lecture Notes in Computer

Science, pages 152–170. Springer-Verlag, 2008.

81

5. S. Evangelista and J.-F. Pradat-Peyre. Memory efficient state space storage in ex-
plicit software model checking. In Proceedings of SPIN – Software Model Checking,
Volume 3639 of Lecture Notes in Computer Science, pages 43–57. Springer-Verlag,
2005.

6. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems

- An Approach to the State-Explosion Problem, Volume 1032 of Lecture Notes in

Computer Science. Springer-Verlag, 1996.
7. P. Godefroid and G.J. Holzmann. On the verification of temporal properties. In

Proceedings of Protocol Specification, Testing and Verification, Volume C-16 of
IFIP Transactions, pages 109–124. North-Holland, 1993.

8. G.J. Holzmann. The model checker spin. IEEE Transactions on Software Engi-

neering, 23(5):279–295, 1997.
9. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical

Use. Vol. 1-3. Springer-Verlag, 1992-1997.
10. W. Knottenbelt, M. Mestern, P. Harrison, and P. Kritzinger. Probability, par-

allelism and the state space exploration problem. In Proceedings of Modelling,

Techniques and Tools, Volume 1469 of Lecture Notes in Computer Science, pages
165–179. Springer-Verlag, 1998.

11. L.M. Kristensen and K. Jensen. Specification and validation of an edge router
discovery protocol for mobile ad-hoc networks. In Proceedings of Integration of

Software Specification Techniques for Applications in Engineering, Volume 3147 of
Lecture Notes in Computer Science, pages 248–269. Springer-Verlag, 2004.

12. L.M. Kristensen and M. Westergaard. The ASCoVeCo state space analy-
sis platform. In Proceedings of Practical Use of Coloured Petri Nets and

the CPN Tools, Volume 584 of DAIMI-PB, pages 1–6, 2007. Available at:
http://www.daimi.au.dk/∼ascoveco/asap.html.

13. R. Pelánek. Typical structural properties of state spaces. In Proceedings of SPIN

– Software Model Checking, Volume 2989 of Lecture Notes in Computer Science,
pages 5–22. Springer-Verlag, 2004.

14. R. Pelánek. BEEM: Benchmarks for explicit model checkers. In Proceedings of

SPIN – Software Model Checking, Volume 4595 of Lecture Notes in Computer

Science, pages 263–267. Springer-Verlag, 2007.
15. U. Stern and D.L. Dill. Improved probabilistic verification by hash compaction.

In Proceedings of Correct Hardware Design and Verification Methods, Volume 987
of Lecture Notes in Computer Science, pages 206–224. Springer-Verlag, 1995.

16. U. Stern and D.L. Dill. Using magnetic disk instead of main memory in the Murφ
verifier. In Proceedings of Computer Aided Verification, Volume 1427 of Lecture

Notes in Computer Science, pages 172–183. Springer-Verlag, 1998.
17. E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting transition

locality in automatic verification. In Proceedings of Correct Hardware Design and

Verification Methods, Volume 2144 of Lecture Notes in Computer Science, pages
259–274. Springer-Verlag, 2001.

18. M. Westergaard, L.M. Kristensen, G.S. Brodal, and L. Arge. The ComBack method
- extending hash compaction with backtracking. In Proceedings of Application and

Theory of Petri Nets, Volume 4546 of Lecture Notes in Computer Science, pages
445–464. Springer-Verlag, 2007.

19. P. Wolper and D. Leroy. Reliable hashing without collision detection. In Proceed-

ings of Computer Aided Verification, Volume 697 of Lecture Notes in Computer

Science, pages 59–70. Springer-Verlag, 1993.

82

http://www.daimi.au.dk/~ascoveco/asap.html

Two Interfaces to the CPN Tools Simulator

Michael Westergaard and Lars Michael Kristensen

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

Email: {mw,kris }@cs.au.dk

Abstract. Coloured Petri nets (CP-nets or CPNs) is a useful modeling
formalism for formally describing concurrent systems, and CPN Tools
provides a mature environment for constructing, simulating, and per-
forming simple analysis of CPN models. Sometimes, this does not suffice,
however. For example, if one wishes to extend the analysis capabilities or
to integrate CPN models into other programs. In this paper we present
two new interfaces which facilitate this. One is written in Standard ML
and is very close to the simulator component of CPN Tools, providing
a solid foundation for developing advanced analysis tools. The other in-
terface is written in Java and provides an object-oriented representation
of CPN models as well as a means to load models created using CPN
Tools. Furthermore, the Java interface provides a high-level interface to
the simulator component facilitating integration of simulation of CPN
models into other programs. We illustrate the interfaces by providing
the complete implementation of a command-line state space exploration
tool. The interfaces are available to interested parties.

1 Introduction

Coloured Petri nets (CP-nets or CPNs) provide a useful modeling formalism
for formally describing concurrent systems, such as network protocols [12] or
work-flows in companies [8]. CPN Tools [14] provides a mature environment for
editing and simulating CPN models, and to a limited degree also for formally
verifying that a given model is correct using state space analysis.

Sometimes, this is not enough, however. The basic problem is that CPN Tools
is inherently graphical and cannot be controlled by outside applications. This
makes it difficult to use CPN Tools in settings that are outside its scope of inter-
active use by one user. Such examples include repeated simulation on multiple
servers in a grid, which is a useful analysis technique for models that are too
large for exhaustive analysis techniques like state space analysis, to describe a
complex decision procedure in a parametrised manner for use in a regular ap-
plication, and allowing users to set parameters of a model using a custom user
interface and just present the end-result of a simulation. It is also difficult to
implement new analysis techniques such as new more efficient state space meth-
ods or completely different analysis methods (e.g., coverability graphs, bounded
model-checking techniques, or invariant analysis), especially if we intend to also
build a user-friendly interface for the new methods.

83

Fig. 1: Architecture of CPN Tools.

CPN Tools basically consists of two components (see Fig. 1), a graphical edi-
tor (middle) and a simulator daemon (right). The graphical editor allows the user
to interactively construct a CPN model. The model is transmitted to the simu-
lator daemon, which checks it for syntactical errors and generates model-specific
code to simulate the model. The graphical editor can invoke the generated sim-
ulator code and present the results graphically. The graphical editor can also
load and save models using an XML format (left in Fig. 1). The graphical editor
imposes most of the previously mentioned restrictions; the simulator daemon is
basically a generic Standard ML/New Jersey (SML/NJ or SML) [15] run-time
environment and compiler with functions for syntax checking CPN models. It
is obvious that by replacing the graphical editor with our application, we can
alleviate most of the limitations imposed by the graphical editor, and this has
indeed also been done in different settings [10,16]. The CPN simulator, however,
suffers from two problems making such a replacement difficult. Firstly, the pro-
tocol used for communication between the graphical editor and the simulator
is rather low-level and complex to implement. Secondly, the CPN simulator is
optimised for simulation and incremental code generation making it difficult to
use for other purposes as the model-specific code is difficult to use.

In this paper we propose two new interfaces to the CPN simulator1. Neither
aim to replace CPN Tools as editor for CPN models, but rather to allow people to
make experiments with the formalism. Both of the interfaces have been developed
as part of the ASCoVeCo [1] project and the ASAP model checking platform [11],
but are believed to be useful in other settings as well. Neither of the interfaces are
intended for end-users; both of the interfaces provide rather low-level simulation
primitives, which can be used by programmers to build new generic tools. We
present the interfaces in the context of formal verification because that has been
our motivation for developing the interfaces, but numerous applications can build
upon the foundation to allow more high-level use of the CPN simulator. One of
the interfaces is written in Java and the other in SML. In Fig. 2 we see how
the new interfaces augment and replace parts of CPN Tools. The Java interface
(middle) consists of an object-oriented representation of a CPN model, the ability
to transmit this representation to the simulator and to programmatically perform
simulation and inspection of the current state in the simulator. Furthermore,
it includes an importer module which can import models created using CPN
Tools. In effect, this allows programmers to load a model created using CPN
Tools (left), instantiate a simulator for this model and perform simulation of the

1 The interfaces are available to interested parties; send an email to ascoveco@cs.
au.dk for more information.

84

Fig. 2: Architecture of new interfaces.

model in their own applications, which can be anything from a simple command-
line utility to a full-fledged CPN editor. The SML interface (right in Fig. 2)
encapsulates the complex data-structures used in the simulator, and provides a
simple frozen interface to the state of a CPN model which facilitates very fast
simulation. This is in particular useful for efficient analysis, e.g., by means of
state spaces, but applicable for any application that requires fast execution of
transitions with little or no user-interaction.

The rest of this paper is structured as follows: In the next section, we in-
troduce a simple example, that is used throughout this paper. In Sect. 3, we
describe the SML interface to the simulator, and in Sect. 4, we describe the Java
interface to the simulator. These two sections are independent of each other. In
Sect. 5 we use the two interfaces to create a simple command-line tool for state
space analysis of CPN models. Finally, in Sect. 6, we sum up our conclusions
and provide directions for future work.

2 Example CPN Model

Throughout this paper we will use a CPN model of a simple stop-and-wait
protocol with one sender and two receivers. The top module of the model can be
seen in Fig. 3, where we have a substitution transition for the sender, the network,
and one for each receiver. The network has a maximum capacity modeled by the
Limit place. If the network still has available capacity, the sender (Fig. 4 (left))
transmits packets onto the A place. The place Send contains the packets to
send. The network (Fig. 4 (middle)) then transmits the packet to B1 and B2,
optionally dropping one or both of the packets. The receivers (Fig. 4 (right))
receive the packets on Received and transmit back acknowledgements onto C1 or
C2, which the network transmits to D, optionally dropping one or both. When
the sender receives acknowledgements from both receives, the NextSend counter
is updated and the cycle restarts. We observe that the model consists of four
different modules: Top, Sender, Network, and Receiver. The Receiver module is
instantiated twice as Receiver 1 and Receiver 2 in the module Top.

85

N e t w o r kN e t w o r kS e n d e rS e n d e r L i m i t 3 ` ()U N I T
S e n d 1 ` (1 , " C O L O U R ") + +1 ` (2 , " E D P E T ") + +1 ` (3 , " R I N E T ")N O x D A T A

" "D A T AC 2N ON O x D A T AN OB 1N O x D A T A " "D A T AAN O x D A T A
DN O x N OS e n d e r N e t w o r k B 2 R e c e i v e r 2R e c e i v e rR e c e i v e rR e c e i v e d 2

C 1 R e c e i v e r 1R e c e i v e rR e c e i v e rR e c e i v e d 133 1 ` (1 , " C O L O U R ") + +1 ` (2 , " E D P E T ") + +1 ` (3 , " R I N E T ")
1 1 ` " "

1 1 ` " "

Fig. 3: Top page of a simple stop-and-wait protocol model with two receivers.

()
1 ` (n 1 , 1) + +1 ` (n 2 , 2)

(n , p)2 ` ()
(n , p)

i m i n (n 1 , n 2)nkR e c e i v eA c k n o w .
S e n dP a c k e t

D I nN O x N O
A O u tN O x D A T AL i m i tI / O 3 ` ()U N I T

S e n dI / O 1 ` (1 , " C O L O U R ") + +1 ` (2 , " E D P E T ") + +1 ` (3 , " R I N E T ")N O x D A T A
N e x t S e n d1N O

I / O
I / O O u t

I n 43 1 ` (1 , " C O L O U R ") + +1 ` (2 , " E D P E T ") + +1 ` (3 , " R I N E T ")
1 1 ` 1

()
ni f s u c c e s s 2t h e n e m p t ye l s e 1 ` ()

i f s u c c e s s 1 a n d a l s o s u c c e s s 2t h e n 2 ` ()e l s ei f s u c c e s s 1 o r e l s e s u c c e s s 2t h e n 1 ` ()e l s e e m p t y
i f s u c c e s s 1t h e n 1 ` (n , p)e l s e e m p t yi f s u c c e s s 2t h e n 1 ` (n , p)e l s e e m p t yi f s u c c e s s 1t h e n e m p t ye l s e 1 ` ()

(n , p)
ni f s u c c e s s 1t h e n 1 ` (n , 1)e l s e e m p t yi f s u c c e s s 2t h e n 1 ` (n , 2)e l s e e m p t y T r a n s m i tA c k n o w 2T r a n s m i tA c k n o w 1

T r a n s m i tP a c k e t
C 1 I nN O

B 1 O u tN O x D A T AB 2 O u tN O x D A T AL i m i tI / O 4 ` ()U N I TAI nN O x D A T A
C 2 I nN ODO u t N O x N OO u t I n

I n I / O O u tO u t
I n4 s t r

i f n = kt h e n k + 1e l s e k
i f n = kt h e n s t r ^ pe l s e s t r(n , p)i f n = kt h e n k + 1e l s e kk R e c e i v eP a c k e tBI nN O x D A T A R e c e i v e d I / O" " D A T A

CO u t N ON e x t R e c1 N O O u t
I / OI n 11 ` " "

11 ` 1
Fig. 4: Sender (left), network (middle), and receiver (right) modules of the protocol.

3 The SML CPN Model Interface

In this section we present the old SML interface to the simulator and some
of its shortcomings. We also present our new interface and explain why it is
superior. The aim of the SML model interface is to provide efficient access to the
CPN simulator, in particular with the purpose of implementing efficient analysis
methods. To support this, the SML interface provides an interface to the state of
a CPN model and to execute enabled transitions. For performance reasons, this
interface is written in the same language as the CPN simulator itself, namely
SML/NJ [15]. We suggest that all applications that are algorithmic in nature use
the SML interface described in this section. Using SML as implementation may
seem a bit strange as it is not as well-known as, e.g., Java. The choice makes
sense, however, both because this interface is the fastest as it is written in the
same language as the simulator itself and because SML is a useful language for
declaratively implementing complex algorithms due to its functional paradigm.

86

3.1 The Old SML Interface

In Listing 1.1 we see part of the current interface for the model in Figs. 3 and 4.
In lines 1–10 we see the definition of the place NextRec in the module Receiver.
We first notice that the relationship to the place and module is not immediately
visible, as the place is only referred to by a generated identifier (CPN’placeid168).
All places reside at the top level, so the modularity of the model is not visible in
the interface. The functions get and set (ll. 7–8) take as parameter an instance
number, which is the internal number of the instance of the place. This number
is not immediately derivable from the model (we have, e.g., no guarantee that
the instance corresponding to Receiver 1 has number 1). The ims.cs ms type is a
multi-set over the type of the place, in this case NO.

The rest of Listing 1.1 shows representations of three different transitions,
Send Packet from Sender (ll. 11–15), Transmit Acknow1 from Network (ll. 16–21),
and Transmit Packet from Network (ll. 22–29). Like places, all transitions are
referred to by a generated identifier rather that their user-recognisable name.
Transitions, like places, live at the top-level, and the CPN’occfuns (ll. 12, 17–18,
and 23–25) take an internal instance number as the first parameter. The last
parameter given to CPN’occfun is a boolean indicating whether the step-counter
should be incremented. This is used internally by the simulator for handling mon-
itors, and during normal simulation should always be set to true. The middle
parameter to a CPN’occfun describes the binding of the variables of the transi-
tion. For Send Packet, this consists of a record containing all variables. The two

Listing 1.1: Current interface.
� �

1 structure CPN’placeid168: sig
2 structure ims: sig
3 structure cs: COLORSET
4 type cs = cs.cs
5 ... (* 1 type definition and 22 functions *)
6 end
7 val get: int -> ims.cs ms
8 val set: int -> ims.cs ms -> unit
9 ... (* 2 constants and 8 functions *)

10 end
11 structure CPN’transitionID1264271480: sig
12 val CPN’occfun: int * {n:NO, p:DATA} * bool -> CPN’Sim.result * string list
13 val CPN’bindings: int -> {n:NO, p:DATA} list
14 ... (* 5 constants, 3 variables, and 6 functions *)
15 end
16 structure CPN’transitionID1264276591: sig
17 val CPN’occfun:
18 int * ({n:NO} * BOOL) * bool -> CPN’Sim.result * string list
19 val CPN’bindings: int -> ({n:NO} * BOOL) list
20 ... (* 5 constants, 3 variables, and 6 functions *)
21 end
22 structure CPN’transitionID1264276586: sig
23 val CPN’occfun:
24 int * ({n:NO, p:DATA} * {success1:BOOL, success2:BOOL}) * bool
25 -> CPN’Sim.result * string list
26 val CPN’bindings:
27 int -> ({n:NO, p:DATA} * {success1:BOOL, success2:BOOL}) list
28 ... (* 5 constants, 3 variables, and 6 functions *)
29 end

� �

87

transmit transitions are more complex. The technical reason is that, in the case
of the Transmit Acknow1, the variables n and success1 are not correlated in any
way, and can be bound independently, so by separating them it is possible to
find legal bindings for the transition more efficiently. The CPN’occfun for Trans-
mit Packet is just a more complex example of this. The result of CPN’occfun is
a result from the simulator, indicating whether the transition was successfully
executed, whether the transition was disabled, or whether the transition was
not enabled a the current time stamp (for timed models). Additionally, a list of
descriptive error messages may be returned. All transitions also have a function,
CPN’bindings (ll. 13, 19, and 26–27), which given an instance number returns a
list of all enabled bindings using the same grouping of variables as CPN’occfun.

This interface is well-suited for high-performance simulation and incremental
code generation. By distributing the state to multiple structures, it is possible to
update only markings of places affected by the execution of a given binding ele-
ment (transition with associated binding of all variables), making the execution
independent of the size of model. This also makes the enabling calculation more
efficient, as the enabling is only affected for transitions connected to modified
places (and we can even exploit monotonicity of enabling to further improve
the enabling calculation). Furthermore, as all places and transitions are repre-
sented as separate structures, incremental code generation is independent of the
size of the model. Adding a place or transition simply means we have to add a
new structure. Modifying a transition only requires the regeneration of a single
structure, and modifying a place only requires that we regenerate the structure
corresponding to the place and all structures corresponding to transitions con-
nected to the place, which is in practise a low number. Finally, during simulation,
we are just interested in whether a transition is enabled, and, if so, to execute
one enabled binding element. This is greatly facilitated by grouping the variables
of transitions, as there is no reason to calculate all binding elements, which can
be found as elements of the Cartesian product of elements of each group.

The properties of the interface facilitate an editor with incremental syntax
check and efficient simulation of CPN models, but the requirements for a state
space tool are different as we are dealing with many states (as opposed to just
one during simulation), requiring that it is possible to represent more than one
state. Also, we need to obtain all enabled binding elements in a given state. As
the state is distributed across multiple structures in the old interface, it is diffi-
cult to represent more than one state at a time, as we would need to traverse all
structures to read the marking of each place. As the enabling calculation of tran-
sitions is distributed across many structures, gathering all enabled transitions
requires checking enabledness of transitions individually. Finally, the old inter-
face is not very user-friendly, as we refer to all nodes using internal generated
names and instance numbers not easily obtainable by the user.

3.2 The New SML Interface

Instead, we define a completely new interface to CPN models. The interface is
designed with state space analysis in mind, but can of course be used for other

88

Listing 1.2: Model interface.
� �

1 signature MODEL =sig
2 eqtype state
3 eqtype event

5 exception EventNotEnabled

7 (* Get the initial states and enabled events in each state *)
8 val getInitialStates: unit -> (state * event list) list

10 (* Get the successor states and enabled events in each successor state *)
11 val nextStates: state * event -> (state * event list) list

13 (* Execute event sequence, return resulting states and enabled events *)
14 val executeSequence: state * event list -> (state * event list) list

16 (* String representations of states and events *)
17 val stateToString: state -> string
18 val eventToString: event -> string
19 end

� �

purposes. The interface is designed to be independent of the actual formalism
at the most abstract level, which allows us to build tools that are formalism-
independent. The entire interface can be seen in Listing 1.2. The interface defines
the concepts of states and events (ll. 2–3). The most important functions are ge-
tInitialStates (l. 8) and nextStates (l. 11). getInitialStates returns the list of initial
states. The reason that this is a list and not just a singleton state is to support
non-deterministic formalisms. In addition to the state, we also return a list of en-
abled events for each initial state. The reason for this is that it makes it possible
to optimize enabling calculation during depth-first traversal. nextStates takes as
argument a state and an event and returns the successors using the same format
as getInitialStates. If the given event is not enabled, the exception EventNotEn-
abled (l. 5) is raised. Additionally, the interface has a function for executing a
sequence of events, executeSequence (l. 14), which works like nextStates, except it
can execute zero, one, or more events rather than just one. Finally, the interface
contains two functions, stateToString and eventToString (ll. 17–18) for converting
states and events to a user-readable string.

State Representation. The interface in Listing 1.2 is formalism-independent.
In order to instantiate the interface for CPN models, we need to define the types
state and event, and define the functions in the interface.

As mentioned earlier, we need to be able to represent multiple states in a
state space tool. To increase familiarity for previous users of the state space tool
of CPN Tools [14], we define a structure Mark with data types and functions
for manipulating states. We do not want to distinguish between the type used
internally and the type manipulated by users in order to alleviate the need for
translating between different representations, so the type should closely reflect
the underlying CPN model. In Listing 1.3, we see (most of) the Mark structure
for the model in Figs. 3 and 4. The type of the state is defined inductively in
the hierarchy of the model. For each page, we define a record, which contains

89

Listing 1.3: New state representation.
� �

1 structure Mark : sig
2 type Sender = {NextSend: NO ms}
3 type Network = {}
4 type Receiver = {NextRec: NO ms}
5 type Top = {A: NOxDATA ms, B1: NOxDATA ms, B2: NOxDATA ms, C1: NO ms,
6 C2: NO ms, D: NOxNO ms, Limit: UNIT ms, Received_1: DATA ms,
7 Received_2: DATA ms, Send: NOxDATA ms, Network: Network,
8 Receiver_1: Receiver, Receiver_2: Receiver, Sender: Send er}
9 type state = {Top: Top, time: time}

10 val get’Top’Receiver_1’NextRec : state -> NO ms
11 val set’Top’Receiver_1’NextRec : state -> NO ms -> state
12 val get’Top’Receiver_2’NextRec : state -> NO ms
13 val set’Top’Receiver_2’NextRec : state -> NO ms -> state
14 val get’Top’Receiver_1’B : state -> NOxDATA ms
15 val set’Top’Receiver_1’B : state -> NOxDATA ms -> state
16 ... (* several more accessor functions *)
17 end

� �

entries for all places and sub-pages of the page. For example, in Listing 1.3 l. 2
we see the record defined for the Sender page in Fig. 4 (left). We see that we
have only included “real” places, i.e., the four port places are not included so
only the NextSend place is present. The type uses the names used in the model,
and NextSend is thus represented using the record entry NextSend. The type of
the NextSend is NO ms, i.e., multi-sets over the color NO of the place NO. The
multi-set type is the same as used by CPN Tools. Similarly, types are defined
for Network (l. 3), which contains no non-port places, and Receiver (l. 4), which
contains one non-port place. The Top page is more complex (ll. 5–8), but uses the
same structure. It contains entries for all non-port (i.e., all) places (ll. 5–6), but
also entries for all sub-pages (ll. 6–8). The entries for sub-pages are named after
the substitution transition and the type is that of the sub-page. For example,
we see that the sub-page defined by the substitution transition Receiver 1 is
represented by the entry Receiver 1 of type Receiver. Finally, at the top-level,
we define the type of the state itself. As it is possible for a model to contain
more than one top page, we define a new top level (l. 9), which contains all top
pages (in this case just one entry Top of type Top). The state type also contains
an entry for all reference declarations (in this model there are none) and the
model time. As an example, we see the initial state of the network protocol in
Listing 1.4.

State records, like the one in Listing 1.4, can be used as is, i.e., by using SML
pattern matching or built-in accessor functions to pull values out of the record,
or by building new structures with the correct names. For the user convenience,

Listing 1.4: Initial state of network protocol.
� �

1 val initial = { Top = {
2 A = empty, B1 = empty, B2 = empty, C1 = empty, C2 = empty, D = empty ,
3 Limit = 3‘(), Received_1 = 1‘"", Received_2 = 1‘"", Send = 1‘(1,"COLOUR")++
4 1‘(2,"ED PET")++1‘(3,"RI NET"), Network = {}, Receiver_1 = {NextRec = 1‘1},
5 Receiver_2 = {NextRec = 1‘1}, Sender = {NextSend = 1‘1} }, tim e = 0 }

� �

90

we have also created set- and get-functions to access all pages and places of
the structure. These functions all use the same naming convention, which is the
function name (get or set) followed by a quote (’). Then comes the complete
path to the place or page we wish to access, separated by quotes. The functions
take a complete state as argument. Getter functions return either a multi-set of
the appropriate type or a record describing the selected page. Setter functions
instead take an additional parameter of the correct multi-set or record type and
returns a new state, which is identical to the one given as the first parameter,
except that the selected place/page marking has been replaced. Examples of
setter and getter functions can be seen in Listing 1.3 in ll. 10–15. In addition to
providing accessor functions for the “real” places represented in the state record,
we also provide accessors which provide access to port and fusion places, so it is
possible to use, e.g., get’Top’Receiver 1’B, to get the marking of the port place
B in the receiver module. This function looks up the value on the corresponding
socket place. This function is identical to get’Top’B1.

Event Representation. For events, we must make a choice between ease of use
and compositionality. We first outline the obvious hierarchical approach to events
and some of the problems of that. Then we describe our current implementation,
which is not hierarchical (and thus does not as easily support compositionality).

The hierarchical event representation (Listing 1.5) is the natural companion
to the state representation. Instead of types and records, we use structures and
data types. For each page, we have a structure defining a data-type with a
constructor for each transition and substitution transition. The type of each

Listing 1.5: Hierarchical representation of events.
� �

1 structure Bind : sig
2 structure Top : sig
3 structure Sender : sig
4 datatype event = Send_Packet of {n: INT, p: STRING}
5 | Receive_Acknow of {k: INT, n1: INT, n2: INT}
6 end
7 structure Network : sig
8 datatype event =
9 Transmit_Packet of

10 {n: INT, p: STRING, success1: BOOL, success2: BOOL}
11 | Transmit_Acknow1 of {n: INT, success1: BOOL}
12 | Transmit_Acknow2 of {n: INT, success2: BOOL}
13 end
14 structure Receiver : sig
15 datatype event =
16 Receive_Packet of {k: INT, n: INT, p: STRING, str: STRING}
17 end
18 datatype event = Sender of Sender.event
19 | Network of Network.event
20 | Receiver_1 of Receiver.event
21 | Receiver_2 of Receiver.event
22 end
23 datatype event = Top of Top.event
24 end

� �

91

constructor contains either a record with all variables (for normal transitions)
or a reference to a previously defined data-type (for substitution transitions).

While this type definition is nice and natural, it has the major deficit that
it is very cumbersome to use. The problem is that while data-type constructors
are scoped, they are not context-sensitive. Thus, to refer to the transition Re-
ceive Acknow on the Sender page, we would need to write Bind.Top.Sender
Bind.Top.Sender.Receive Acknow {k, n1, n2 }, and the verbosity and
redundancy only gets worse if we have deeper hierarchies. We cannot solve this
problem by opening all structures unless we require that all transitions, globally
in the model, have unique names, and this is against the locality inherent in
Petri nets.

Instead, we define a data-type as in Listing 1.6. We define a constructor for
each transition named after the page it resides on and the name of the transi-
tion. The type of each constructor is a pair of an instance number and a record
containing all variables associated with the transition. This definition is not as
natural as the hierarchical one, and it re-introduces the “magic” instance num-
bers. To alleviate the introduction of instance numbers, we also define symbolic
constants (ll. 10–14) for the path to each page instance. Using this, we can refer to
the Receive Acknow transition on Sender as Bind.Sender’Receive Acknow
(Bind.Top.Sender, {k, n1, n2 }) , where only Bind and Sender are re-
peated, and the latter only because the substitution transition has the same
name as the page.

A final way to represent events is to create a data-type with a constructor for
each transition instance, named after the path leading to the transition instance.
While this is nice to use at first sight, it is even less compositional than both
of the previous representations, and has the problem of making two instances of
the same transition have completely different constructors.

3.3 Optimizations

A thing to notice about the representation of the state in Listing 1.3 is that it
is immutable, i.e., that it is impossible to change markings of individual places

Listing 1.6: New representation of events.
� �

1 structure Bind : sig
2 datatype event =
3 Network’Transmit_Acknow1 of int * {n: INT, success1: BOOL}
4 | Network’Transmit_Acknow2 of int * {n: INT, success2: BOOL}
5 | Network’Transmit_Packet of
6 int * {n: INT, p: STRING, success1: BOOL, success2: BOOL}
7 | Receiver’Receive_Packet of int * {k: INT, n: INT, p: STRING, str: STRING}
8 | Sender’Receive_Acknow of int * {k: INT, n1: INT, n2: INT}
9 | Sender’Send_Packet of int * {n: INT, p: STRING}

10 val Top : int
11 val Top’Network : int
12 val Top’Receiver_1 : int
13 val Top’Receiver_2 : int
14 val Top’Sender : int
15 end

� �

92

in a state without creating a completely new state. This is a nice property we
can use to make several optimisations. Immutability allows us to use the same
representation internally as we expose to the user, as the user is not able to
modify the representation. This has the great advantage that we do not need
to translate between different representations in a state space tool (as happens
in CPN Tools, where the exposed representation of a state is a Node, which is
really an integer pointing into a mutable tree). Having the same representation
internally and externally also lowers the barrier for users to become developers
and experiment with more advanced aspects of state space reduction methods.

The implementation of the most interesting function from the interface in
Listing 1.2, nextStates is implemented as in Listing 1.7. The setState function
(not shown) basically copies the state record into the simulator. execute contains
a large switch, which calls the correct CPN’occfun with the right parameters,
and getState (not shown) reads the simulator representation and constructs a
state record. The implementation is in fact slightly more intelligent. setState and
getState keep track of the latest state record copied to/from the simulator. This
improves performance a lot, in particular when doing depth-first traversal, as we
will, most of the time, want to compute successors of a successor of the state
currently stored in the simulator. As we have already calculated successors of
this state and do not change it, the simulator is able to use locality to more
efficiently calculate the desired successors. By exploiting immutability of the
state record we can re-use parts of it to do even better by combining it with
locality to implement BDD-like data-structure, which is essentially a faster but
less memory efficient implementation of the tree-based storage of CPN Tools [2].
Assume we are given a state-record, e.g., the initial state from Listing 1.4. When
we execute the Send Packet transition on Sender, we know (statically), that we
can only change A and Limit on Top. We can thus re-use the representation of all
other places at the top level and the representation of all sub-pages by making
getState used in Listing 1.7 dependent on the event. This not only alleviates
the need to transfer state from the simulator to the new state records, it also
makes equality tests faster by reducing to pointer comparison for sub-pages and
unchanged places. Furthermore, re-using old representations conserve memory.
This does not ensure that we only store the multi-set 1‘1 once (and is hence not
as memory efficient as the representation of CPN Tools), but on the other hand
does not spend any time trying to unify multi-sets that are almost the same. This
can also be exploited in the other direction. When asked to compute successors
for a certain state, we only need to transfer pages and places that have actually
changed (by changing the implementation of setState used in Listing 1.7). All
of this can be done completely independently of the interface, without making
explicit whether the interface is implemented in the most naive way or whether
locality-optimisations take place (except for faster execution in the latter case).

Listing 1.7: Implementation of nextStates function.
� �

1 fun nextStates (state, event) =
2 (setState state; execute event; getState())

� �

93

3.4 Auxiliary Functions

In order to provide the interface in Listing 1.2, we need to generate model-
specific functions; basically the getState, execute, and setState functions used
in Listing 1.7. Furthermore, we need to generate the Mark and Bind structures.
The CPN simulator contains a set of tables, which can be used to inspect the
model, but these tables are optimized for incremental syntax-check and fast
simulation, and are therefore not very easy or fast to traverse. We have therefore
developed an interface to the static part of the model, i.e., the pages with places,
transitions, arcs, and all annotations of each. This interface can also be used
for other purposes. We have already used it to generate model-specific hash-
functions, marshaling of states and events, and ordering of states and events.

The generated hash-functions calculate hash values inductively in the struc-
ture of the model. We build “strings” on several levels, from multi-sets as strings
of tokens (which may again be strings of simpler values), over pages as strings
of places (multi-sets), to models as strings of pages. Using a simple combinator
function which can calculate the hash value of a string given the hash values of
each of it elements and hash-functions for all simple types, we can calculate a
hash value for an arbitrary CPN model in a very efficient way. Furthermore, by
using different combinator functions, we can efficiently generate multiple linearly
independent hash functions. Such hash functions are useful for many things, such
as putting states into hash tables (implementing full state space traversal), stor-
ing only a hash-value for each state (implementing hash compaction), or using
the hash-value to set a bit in a bit-array (implementing bit-state hashing).

Marshaling is implemented using a strategy similar to the hash function. If
we know how to store each character of a string, we can store the entire string
by writing the length of the string and each character. Marshaling is useful
for storing states to disk (implementing various disk-based state space traversal
algorithms), or for transmitting states over a network (implementing distributed
state space traversal).

Ordering is also implemented using the same strategy, by basically induc-
tively defining a lexicographical order. Orders are useful for storing states to
disk, as it is often useful to sort states when storing them on disk. It is also
useful for storing states in search trees, which is used by many algorithms built
into Standard ML, such as algorithms for calculating strongly connected com-
ponents of graphs, which is useful for determining certain liveness properties of
CPN models.

4 The Java CPN Model Interface

As mentioned in the introduction, many applications can benefit from tight in-
tegration with CPN models and the CPN simulator. If such applications are
algorithmic in nature, we suggest using the SML interface described in the pre-
vious section, as it does not have the overhead of communication via TCP/IP.
For most other applications, we propose that the Java interface described in this

94

section is used as the overhead is irrelevant for many applications. The Java
interface provides a high-level object-oriented representation of CPN models as
well as an implementation of the protocol used by the CPN Tools graphical
editor to communicate with the CPN simulator. As we furthermore provide an
importer package that is able to read models created with CPN Tools, this inter-
face makes it possible to create tools that load, manipulate, and simulate CPN
models. Applications with these purposes often need to provide a user-friendly
user interface or integrate with other applications. For these reasons, we have
decided to create this interface in Java, which is widely used and provides many
frameworks and tools for creating user-friendly applications.

4.1 Object Model

The CPN object model is a cleaned-up re-implementation of the model of the
BRITNeY Suite [16], created for the ASAP model checking platform [11]. ASAP
builds on the Eclipse platform [4], and so it is natural to use Eclipse frameworks
for the implementation of the Java interface. In order to improve interoper-
ability with other tools, we also support the ISO/IEC 15909-2 transfer format
standardisation effort [7].

Our object model builds on version 1.1.5 of ISO/IEC 15909-2, in partic-
ular the PNML Core Model (Fig. 2 in [7]) and the High-Level Core Structure
(Fig. 8 in [7]). In addition, we have added some extensions for CPN Tools specific
features (to support CPN Tools’ concept of time and code segments for transi-
tions). In order to not pollute the basic model, we have basically implemented
the PNML Core Model, and added features from the High-Level Core Structure
and the CPN Tools specific extensions as add-ins. We have also extended the
PNML Core Model with a simplified version of Modular PNML [9] to support
hierarchical nets. The resulting object model can be seen in Fig. 5. Basically,
we have a PetriNet at the top left corner. A Petri net can contain one or more
Pages (middle left), which can contain any number of Arcs and Objects (mid-
dle). Objects are basically Places and Transitions (bottom). Additionally, objects
can be Instances, which basically correspond to substitution transitions in CPN
Tools. Objects can have any number of Labels (middle top), which are annota-
tions, that correspond to initial markings, place types, arc inscriptions, names,
guards (or conditions), code segments, and time inscriptions (middle from left
to right). Places, transitions, and arcs each have one or more add-ins (classes
with dark gray background), which basically allows them to have typed access to
their annotations. Annotations also have an add-in, which makes it possible to
store a structured version of the annotation as well as a plain text version. The
Annotations package with the light gray background at the top right is basically
an implementation of the High-Level Core Structure except that we have added
Time and Code annotations. The white classes outside of this package basically
implements the PNML Core Model. The Instance and ParameterAssignement are
simplified versions of ModInstance and ParamAssign (renamed to remove abbre-
viations). The change is that where Modular PNML introduces a concept of
modules and import nodes, we just use the already defined concepts of page and

95

Fig. 5: Object model for CP-nets in the Java interface

place (as we only allow place-bordered modules). Furthermore, our Instance class
is a Node and not just an object as CPN Tools allows arcs to and from substi-
tution transitions. Finally, the place and transition add-ins do not contain their
annotations (as they do in High-Level Core Structure), but just refer to them,
as objects already contain labels and the add-ins merely provide typed access to
these. We also have a few add-ins not shown in the figure. One adds an identifier
to pages, arcs, labels and objects, and another adds names to pages and objects.
Finally, we have an add-in for tool-specific information to Petri nets, objects,
and labels.

The actual implementation of the object model is done using the Eclipse
Modeling Framework (EMF) [5], which is a framework for implementing object
models. EMF can generate implementation code from Java interfaces or from
an UML diagram [13]. EMF is furthermore able to generate Java interfaces
and UML diagrams from the model as well. In our case, we have described the
model using Java interfaces, and the UML diagram in Fig. 5 is automatically
generated from the model. In addition to automatic implementation, EMF also
provides some nice features, such as automatic generation of XML marshaling

96

and unmarshaling as well as an adapter functionality which is an extension of an
observer architecture [6, Chap. 5]. This makes it possible to observe the object
model for changes which is useful for editors, and to attach adapters adding new
functionality to the classes.

CPN Tools Importer. Instances of the object model in Fig. 5 can be gen-
erated programmatically. It is of course desirable to create such models using a
graphical user interface instead. For this reason we have created an importer,
which allows programmers and users to import models created with CPN Tools.

The importer only imports the net-structure of the model but is prepared
to support the graphical information as well, as we have made a preliminary
implementation of the Graphical Information (Fig. 3 in [7]). All labels except
for HLDeclarations are loaded as flat text; HLDeclarations use a structure similar
to the TermsUserDeclarations (Fig. 17 in [7]), but the details are not shown
here.

4.2 Protocol Implementation

The CPN Tools GUI communicates with the simulator process using a custom
protocol. The protocol is an implementation of a remote procedure call (RPC)
system [3, Chap. 5.3]. The protocol sends packets over a TCP/IP stream. Packets
are transmitted in the custom BIS (boolean, integer, string) format, which is a
binary packet format that basically takes care of marshaling of simple data
types. Packets have an opcode which indicates the type of packet. CPN Tools
primarily uses two opcodes, namely 1 (evaluate SML code) and 9 (RPC request).
Packets with opcode 1 just contain a string to be sent for evaluation. Packets
with opcode 9 have an additional integer to indicate which command to execute
and sometimes another integer to determine a sub-command. Such commands
must be combined in the correct way to syntax check an entire CPN model and
generate simulator code for it.

In order to implement this protocol, one must implement the BIS packet
format as well as high-level constructs translating to the lower-level command
and sub-command integers, which is a tedious and error-prone job. Finally, we
need to construct a component that can take a CPN object model and correctly
send it to the simulator for syntax check and simulation. In Fig. 6 we see how
this has been implemented in the Java interface. We see five packages. cpn.model
represents the object model from Fig. 5, and cpn.model.importer is a package
implementing an importer able to load a file created using CPN Tools. The class
Job, which is outside of any of the packages, is part of Eclipse. The remaining
three packages implement the protocol used to communicate with the CPN sim-
ulator. The classes are listed with the most high-level at the left. Only the classes
at the top are meant to be used by most implementers. At the bottom-right, we
have Packet, which implements the BIS package format. Such packets can be sent
to a Simulator. The Simulator uses a delegate DaemonSimulator to communicate
with the simulator via TCP/IP in the same way as CPN Tools. The Simulator

97

class provides communication at the level of packets. The HighLevelSimulator
provides stubs for all the calls supported by the simulator, and it is thus possi-
ble to communicate with named methods. It uses a PacketGenerator factory to
actually create the packets it needs. The Checker class ties this to the object
model hierarchy, and makes it possible to perform higher-level operations, such
as syntax checking all declarations of a model. CheckerJob further lifts this and
makes it possible to syntax check an entire net using a single call. The checker
job integrates with the Eclipse platform and can provide feedback to the user.
If this is not desired, one can use the simpler Checker class, which can be used
independently of the platform used. For operations other than checking (such as
simulation), one must go to the HighLevelSimulator. One will very rarely need to
consider the Simulator, PacketGenerator, and their underlying classes.

Fig. 6: Implementation of the protocol used to communicate with the simulator

5 Examples

In this section we show how to use the aforementioned interfaces by implementing
a simple state space exploration tool that can check a model for dead-locks
from the command-line. We first show the SML code implementing the traversal
algorithm using the SML interface from Sect. 3, and then turn to the Java code
for the command-line application loading a model and launching the exploration.

5.1 State-space Exploration

The implementation of the state space exploration algorithm can be seen in List-
ing 1.8. We actually implement an algorithm parametrised with a state property,
so it is possible to check for other properties than dead-locks. The algorithm ba-
sically performs a recursive depth-first traversal of the state space and stores

98

already expanded states in a hash-table. If a state not satisfying the property is
found an exception is raised. The code starts (l. 1) by defining an exception to
raise if a violating state is found. Then the built-in parametrised hash-function is
instantiated. Then follows the implementation of the actual algorithm (ll. 6–35),
which takes a predicate to apply to each state and a list of states from which to
start the exploration. The function first defines the storage using SML’s built-in
HashTable (ll. 8). Then two mutually recursive functions dfs’ and dfs” are defined.
dfs’ (ll.20–31) traverses a list of states. It starts by checking if we have already
traversed the state (l. 22), and, if so, continues with the next state (l. 23). If the
state is new, it is stored (l. 25) and the predicate is checked (l. 26). If the predi-
cated is violated, the exception is raised (l. 29). Otherwise we call dfs” with the
state before continuing with the rest of the states. dfs” takes care of exploring
successors resulting from executing all enabled events for a given state. It basi-
cally calculates successor states for each event (l. 14), and explores them using
dfs’ (l. 15) before traversing the rest of the events (l. 17). The entire function
just calls dfs’ with the given state(s). If no exception is raised, we return that no

Listing 1.8: Implementation of a simple state space exploration algorithm.
� �

1 exception Violating of CPNToolsModel.state

3 fun combinator (h2, h1) = Word.<<(h1, 0w2) + h1 + h2 + 0w17
4 val hash = CPNToolsHashFunction combinator

6 fun dfs predicate states =
7 let
8 fun equals (a, b) = a = b
9 val storage = HashTable.mkTable (hash, equals) (1000, LibBase .NotFound)

11 fun dfs’’ state [] = ()
12 | dfs’’ state (event::events) =
13 let
14 val successors = CPNToolsModel.nextStates (state, event)
15 val _ = dfs’ successors
16 in
17 dfs’’ state events
18 end

20 and dfs’ [] = ()
21 | dfs’ ((state, events)::rest) =
22 if Option.isSome (HashTable.find storage state)
23 then dfs’ rest
24 else let
25 val _ = HashTable.insert storage (state, ())
26 val violates = predicate (state, events)
27 in
28 if violates
29 then raise Violating state
30 else (dfs’’ state events; dfs’ rest)
31 end
32 in
33 (dfs’ states; (NONE, storage))
34 handle Violating state => (SOME state, storage)
35 end

37 fun none _ = false
38 fun dead (_, events) = List.null events

� �

99

state violating the property was found, and the storage (l. 33). If an exception
is raised, we also return the state violating the property. The last part of the
listing contains a predicate that is never satisfied (l. 37) and one that checks for
dead-locks (l. 38). The first is useful for performance testing, as it forces a full
generation.

We have tested this implementation against the one built into CPN Tools.
By varying the number of packets to transmit in the CPN model in Figs. 3 and
4 (altering the marking of the Send place) from two and upwards, we see that
this implementation is 50-290 times faster (for 4-19 packets), discovers the same
number of states as CPN Tools, and is able to explore larger state spaces than
CPN Tools (3.0 · 106 states when transmitting 25 packets compared to CPN
Tools’ 1.7 · 106 states when transmitting 19 packets).

5.2 Command-line State-space Analyser

To keep the example short, we use a simple implementation strategy. We load
the model given as the first parameter, load the SML code shown in the previous
example, which we assume is stored in a file simple-dfs.sml. Finally, we perform
the exploration and show the result to the user. The implementation can be seen
in Listing 1.9. We start by importing some classes needed (ll. 1–9). The rest of the
code is the class implementing our state space tool. The class starts by obtaining
the name of the file to analyse (l. 13). The file is loaded as a Petri net (l. 14),
and we create a HighLevelSimulator. As we are running this outside of an Eclipse
run-time environment, we need to supply a simulator manually. The simulator
requires a delegate, which requires information about which host and port to
connect to as well as the name of the run-time system to load. All of this takes
place in ll. 16–18. If we are using the interface as part of an Eclipse application,
we can just use the simplified version in l. 15, which obtains all parameters from
a preference pane exposed to the user. We then create a new CheckerJob (l. 20),
which requires a name (we just give it the name of the file), a Petri net, and
a high-level simulator. We start (schedule) the job and wait for it to terminate
(ll. 21–22). We then load the state-space algorithm developed previously (l. 23),
and launch an exploration (ll. 24–30). We process the result of the exploration
so the result we show the user is the violating state (if any) and the number
of nodes explored. When we are done, we destroy the simulator (l. 32). This
is needed as the simulator starts an external application, which should be shut
down as well as a couple of Java threads for communication. By destroying the
simulator we make sure to clean this up. If we quit the application (such as
pressing the cross in a graphical application), this is performed automatically,
but for this command-line application do this manually in order to terminate
the program when the exploration is done.

The command-line tool can be executed as java StateSpaceTool protocol.cpn,
and shows the first encountered dead-lock if there is one as well as the number
of states stored.

100

Listing 1.9: Implementation of a command-line state space exploration tool.
� �

1 import java.io.File;
2 import java.net.InetAddress;
3 import java.net.URL;
4 import dk.au.daimi.ascoveco.cpn.engine.Simulator;
5 import dk.au.daimi.ascoveco.cpn.engine.daemon.DaemonSimula tor;
6 import dk.au.daimi.ascoveco.cpn.engine.highlevel.HighLevel Simulator;
7 import dk.au.daimi.ascoveco.cpn.engine.highlevel.checker.C heckerJob;
8 import dk.au.daimi.ascoveco.cpn.model.PetriNet;
9 import dk.au.daimi.ascoveco.cpn.model.importer.DOMParser;

11 public class StateSpaceTool {
12 public static void main(String[] args) throws Exception {
13 String file = args[0];
14 PetriNet petriNet = DOMParser.parse(new URL("file://" + file));
15 // HighLevelSimulator s = HighLevelSimulator.getHighLevelSimulator();
16 HighLevelSimulator s = HighLevelSimulator.getHighLevel Simulator(
17 new Simulator(new DaemonSimulator(
18 InetAddress.getLocalHost(), 23456, new File("cpn.ML"))));
19 try {
20 CheckerJob checkerJob = new CheckerJob(file, petriNet, s);
21 checkerJob.schedule();
22 checkerJob.join();
23 s.evaluate("use \"simple-dfs.sml\"");
24 System.out.println(s.evaluate(
25 "let " +
26 " val (state, storage) = " +
27 " dfs dead (CPNToolsModel.getInitialStates()) " +
28 "in " +
29 " (state, HashTable.numItems storage) " +
30 "end"));
31 } finally {
32 s.destroy();
33 }
34 }
35 }

� �

6 Conclusion and Future Work

In this paper we have described two interfaces to the CPN Tools simulator. One
is very close to the simulator and written in Standard ML, and provides fast
access to the simulator. The interface is useful for analysis methods and other
algorithmic applications requiring little user-interaction. The other interface is
written in Java and provides an object-oriented representation of CPN models,
a means to import models created using CPN Tools, and high-level abstrac-
tions of the communication with the CPN Tools simulator, making it possible to
integrate CPN simulation into Java applications, ranging from simple command-
line applications to full-fledged graphical applications. Both of the interfaces are
available to interested parties. Send an email to ascoveco@cs.au.dk for more
information.

Future work includes replacing the current event implementation with the
indicated hierarchical implementation from Listing 1.5. We can alleviate the syn-
tactical problems by observing that while names of transitions may overlap, they
rarely do in practise, so by just opening all structures, we can refer to the tran-
sition Receive Acknow. on the Sender page as Top Sender Receive Acknow
{k, n1, n2 }. For transitions with overlapping names, we still need to use the

101

very verbose naming, but we find that this is a reasonable price to pay for the
more convenient representation.

The current Java interface only supports loading CPN models and syntax-
checking them in one action. It would be useful to integrate the incremental
syntax-checking capabilities of the simulator with the adapter functionality of
the object model, so that whenever the object model is altered, it is automatically
syntax-checked, independently of how the model is altered. This would be useful
for editors, but also for applications generating models, as they are automatically
checked for correctness and ready to be simulated.

References

1. ASCoVeCo Project webpage. Online: www.daimi.au.dk/ ˜ ascoveco/ .
2. S. Christensen and L. M. Kristensen. State Space Analysis of Hierarchical Coloured

Petri Nets. Petri Net Approaches for Modelling and Validation, Lincom Studies in

Computer Science 01, pages 1–16, 2003.
3. G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems - Concepts and

Design. Addison-Weslay, 3rd edition, 2001.
4. Eclipse webpage. Online: www.eclipse.org/ .
5. Eclipse Modelling Framework (EMF). www.eclipse.org/modeling/emf/ .
6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
7. ISO/JTC1/SC7/WG19. Software and System Engineering—High-level Petri

nets—Part 2: Transfer Format, version 1.1.5.
8. J.B. Jørgensen and K.B. Lassen. Aligning Work Processes and the Adviser Portal

Bank System. In REBNITA’05, 2005.
9. E. Kindler and M. Weber. A Universal Module Concept for Petri Nets—an

implementation-oriented approach. Informatik-Berichte, (150), June 2001.
10. L.M. Kristensen, P. Mechlenborg, L. Zhang, B. Mitchell, and G.E. Gallasch. Model-

based Development of a Course of Action Scheduling Tool. STTT, 10(1):5–14,
2007.

11. L.M. Kristensen and M. Westergaard. The ASCoVeCo State Space Analysis Plat-
form: Next Generation Tool Support for State Space Analysis. In Proc. of 8th CPN

Workshop, volume 584 of DAIMI-PB, pages 1–6, 2007.
12. L.M. Kristensen, M. Westergaard, and P.C. Nørgaard. Model-based Prototyping

of an Interoperability Protocol for Mobile Ad-hoc Networks. In Proc. of IFM’05,
volume 3771 of LNCS, pages 266–286. Springer-Verlag, 2005.

13. Object Management Group. Unified Modeling Language (UML), Version 2.1.1.
Online: www.omg.org/technology/documents/formal/uml.htm , 2007.

14. A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S. Stissing,
M. Westergaard, S. Christensen, and K. Jensen. CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In Proc. of ATPN’03, volume 2679 of LNCS,
pages 450–462. Springer-Verlag, 2003.

15. J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1998.
16. M. Westergaard and K.B. Lassen. The BRITNeY Suite Animation Tool. In Proc.

of ATPN’06, volume 4024 of LNCS, pages 431–440. Springer-Verlag, 2006.

102

Modeling Bus Communication Protocols

Using Timed Colored Petri Nets —

The Controller Area Network Example

Marko Bago1, Nedjeljko Perić1, and Sinǐsa Marijan2

1 University of Zagreb,
Faculty of Electrical Engineering and Computing,

Unska 3, 10000 Zagreb, Croatia
{marko.bago,nedjeljko.peric}@fer.hr

http://www.fer.hr
2 Končar - Electrical Engineering Institute,
Fallerovo šetalǐste 22, 10000 Zagreb, Croatia

sinisa.marijan@koncar-institut.hr

http://www.koncar-institut.hr

Abstract. Engineers in industry usually design new systems based on
earlier experience and available development tools. Unfortunately, soft-
ware tools that enable industrial users insight into systems’ inner behav-
ior before the production, are still not in everyday use. However, such
tools, when used properly, can save both time and money.
In this paper a system based on Controller Area Network is modeled
using timed colored Petri nets. This system is verified for the desired
properties and then it is validated. Validation is done using two real-life
vehicle control units used in light rail applications. The results, as well
as possible future use of the model, are presented.

Key words: Controller Area Network, timed colored Petri net, model-
ing, simulation, verification, validation

1 Introduction

Distributed systems are based on communication networks. Different communi-
cating entities (nodes) interact with each other. The interaction becomes more
complex as the system grows. Developing a distributed system also means devel-
oping an adequate communication network, one that is able to support all the
requirements set by each individual node.

During recent light rail vehicle development CAN was used as a fieldbus,
[1, 2]. Testing the functionality of such a system required Software Simulation
Tools (SSTs) and, in the end, real-life equipment. SSTs allow for easier and faster
development of a system than real-life equipment. Unfortunately, communication
SSTs are usually based on a single communication protocol. This raises at least
two problems. First, if the system uses more than one communication protocol,
it is necessary to use more than one SST. The interaction between the tools is

103

either difficult or impossible. Second, using more than one SST increases the
cost, and the development engineers have to be familiar with several different
development environments.

One solution to these problems would be a single SST with support for mul-
tiple communication protocols, [3, 4]. In order to achieve this, a development
environment for the SST has to be defined. This environment should fulfill the
following requirements: it should be flexible, user friendly, and it should support
verification and validation of communication system models.

“Whereas verification checks a model against a given specification, validation
checks a model against the modeled system.”, [6].

Verification of a system can only be performed if the system is modeled using
some formal method.

In [5] it is correctly observed that “A model is always a reduced rendering of
the system that it represents.”. Five key characteristics for a Model-Driven Devel-
opment (MDD) of software are given: abstraction, understandability, accuracy,
predictiveness and inexpensiveness. These five characteristics are universal to all
modeling and can be recognized in the requirements for the SST, e.g. under-
standability can be understood as a part of user friendly requirement, accuracy
and predictiveness are in fact support for verification and validation, etc.

Petri nets fulfill all of these requirements. The graphical representation of
the net gives the user an easier understanding of the modeled process, and
system models can be verified because Petri nets are a formal method. For a
correct validation, a real-life system should be modeled. Results obtained from
the simulation model and from the real-life system should be compared. For
communication protocols two factors are important for the validation: (i) order
of messages gaining bus access must be identical and (ii) message propagation
time has to be equal to that of the real-life system.

This paper presents a way to model Controller Area Network (CAN) com-
munication protocol using timed colored Petri nets (CPN), [7–9]. A short intro-
duction to the CAN bus is presented in Sect. 2. In Sect. 3 a short introduction
to hardware and software tools used to create, verify and validate the model, is
given. Section 4 presents the CPN model of the CAN bus created using CPN
Tools. All modules used to create the CAN bus network are explained. Section
5 presents verification and validation methods used on the model and explains
how and why they are used. This section also presents the results of the ver-
ification and validation processes. Verification was achieved using state space
queries within CPN Tools. Validation of the model was done using two real-life
vehicle control units (VCUs) used in light rail applications. Section 6 concludes
the paper and gives a brief overview of the future work.

2 CAN bus communication

CAN was originally developed for automotive applications in the early 1980’s by
Robert Bosch GmbH. The CAN protocol was internationally standardized by

104

ISO (International Organization for Standardization) and SAE (Society of Au-
tomotive Engineers). Today, CAN is used in many markets, like motor vehicles,
industrial automation, medical equipment etc.

CAN bus is an event-triggered, multi-master, bus communication system with
priority-based access control and automatic retransmission of corrupted frames,
[7, 8]. Frames are labeled with identifiers (11-bit or 29-bit) that are used to
determine both the priority and the content of a frame. Frame identifiers (ID)
are transmitted together with useful user data. There are no node addresses.
Two bit levels exist on the bus, dominant and recessive. The dominant bit level
(logical 0) overwrites the recessive bit level (logical 1). The CAN bus bit rate
can be up to 1 Mbit/s.

CAN protocol uses four different frame formats for the communication:

1. Data frame - carries data from the transmitter to all receivers on the bus.
Data is labeled with a message ID.

2. Remote frame - used to request transmission of a data frame with identical
message ID.

3. Error frame - transmitted by any node (transmitter or receiver) in case of a
bus error detection.

4. Overload frame - used for providing an extra delay between the preceding
and succeeding data or remote frames.

Data frames and remote frames are separated from the preceding frames
by an interframe space. There are two parts of interframe space, intermission
and bus idle. Intermission is inserted after data or remote frame and is 3 bits
(recessive) long. During intermission no node is allowed to send either data or
remote frames. Only sending of an overload frame is allowed. Bus idle may be
of arbitrary length and only recessive values are on the bus.

CAN frames. A CAN frame is simultaneously accepted either by all nodes or
by none.
Data frames are composed of seven different bit fields, as in Fig. 1.a and Fig.
1.c: SOF (Start Of Frame) - 1 bit, arbitration field - 12 bits (11-bit ID) or 32
bits (29-bit ID), control field - 6 bits, data field - [0-8] bytes, i.e. [0-64] bits, CRC
field (Cyclic Redundancy Check) - 16 bits, ACK field (Acknowledge) - 2 bits and
EOF (End Of Frame) - 7 bits.
Remote frames are composed of six different bit fields, as in Fig. 1.b and Fig.
1.d: SOF - 1 bit, arbitration field - 12 bits (11-bit ID) or 32 bits (29-bit ID),
control field - 6 bits, CRC field - 16 bits, ACK field - 2 bits and EOF - 7 bits.
Error frame is composed of two fields, as in Fig. 1.e and Fig. 1.f: error flag field
- [6-12] bits and error delimiter - 8 bits.
Overload frame is composed of two fields, as in Fig. 1.e and Fig. 1.f: overload
flag field - [6-12] bits and overload delimiter - 8 bits.

Frame coding. The following bit sequences (fields) will be coded by the bit
stuffing method: SOF, arbitration field, control field, data field and CRC se-
quence. Whenever a transmitter detects five consecutive bits (including stuff

105

f

e

d ID CRC

c ID 1 CRC2 3 4 5 6 7 8

b ID CRC

a ID CRC1 2 3 4 5 6 7 8

Fig. 1. Following frames are presented: a)
11-bit ID, 8 byte Data frame; b) 11-bit
ID remote frame; c) 29-bit ID, 8 byte
Data frame; d) 29-bit ID Remote frame;
e) 6-bit flag field error/overload frame; f)

12-bit flag field error/overload frame. The
data fields are colored white.

Node 1 Arbitration
lost

Node 2

Node 3 Arbitration
lost

BUS

R DR RR R

RDR R DR R R D

R R R

R RDR DR R R D

Arbitration
won

Fig. 2. An example of an arbitration pro-
cess on the CAN bus. The arbitration is
among three competing nodes. Node 3 is
the first to lose the arbitration, while the
Node 2 won the arbitration. BUS shows
values present on the CAN bus.

bits) of identical value in the bit stream, it automatically inserts a complemen-
tary bit into the stream. The receiver automatically destuffs this bit from the
received bit stream.

Bus access. Every node has the right to access the idle bus at any moment
in time. SOF (data or remote frame) marks the beginning of bus access and
contention-based arbitration takes place. Every transmitter compares the bit
being transmitted with the bit on the bus. If a recessive bit is being sent, but a
dominant bit is detected, the node loses arbitration and will not send any more
bits, Fig. 2. The node that lost the arbitration becomes a receiver. If a data and
a remote frame are sent to the CAN bus at the same time, and if the two frames
have identical identifiers, then the data frame will win the arbitration process,
i.e. it will gain access to the CAN bus first.

Error detection and handling. The following mechanisms are provided for
error detection: monitoring, stuff rule check, frame check, 15-bit CRC, ACK
check.
Monitoring: A node sending a bit on the bus monitors the bus at the same time.
If the value sent is different from the value detected then an error is detected.
Exceptions happen during arbitration, during an ACK slot and while sending
an error passive flag.
Stuff rule check: A stuff error is detected during the sixth consecutive bit of
equal level in the frame field coded by the bit stuffing method (SOF, arbitration
field, control field, data field and CRC sequence).
Frame check: This error is detected if one or more illegal bit values is detected in
a bit field, e.g. during EOF the node detects a dominant bit and only 6 recessive

106

bits instead of 7.
15-bit CRC: CRC is calculated by the receiver in the same way it is calculated
by the transmitter. If the values do not match then an error is detected.
ACK check: An ACK error is detected by the transmitter whenever a dominant
bit is not detected during the ACK slot.
Errors are registered and error frames are automatically retransmitted.

In this paper 11-bit message IDs and 500 kbit/s were used for CAN commu-
nication.

3 Tools

Creation, verification and validation of a simulation model requires different
tools. The tools can be divided into two groups, hardware and software tools,
i.e. hardware equipment and a computer with appropriate programs. In order to
create, verify and validate a timed colored Petri net model, CPN Tools is used,
[10]. Validation also requires a real-life system. The real-life system was composed
of two vehicle control units (VCUs) that are used in light rail applications, [2].

3.1 Hardware tools

Hardware used for validation purposes consists of three CAN communication
nodes. Two CAN communication nodes are VCUs used for control of TMK2200
trams operating in the city of Zagreb, Croatia, Fig. 3, [1]. The third node is
a general purpose CAN communication node connected via a USB cable to a
laptop PC. It is used to start the message exchange between VCUs and to log
all data traffic on the CAN bus. All logged messages are time stamped with 1
µs resolution. The hardware validation test system is given in Fig. 3.

Fig. 3. The assembled test system consist-
ing of a VCU and a PC on top of it.

Fig. 4. The integrated development envi-
ronment for the programming of the VCU.

107

Vehicle Control Unit. VCU is a twin-channel, multiprocessor system that
supports sequencing, protection, regulation, diagnostic and communication func-
tions, [2].

Integrated Development Environment (IDE). User programs are devel-
oped by the engineers that are application oriented. To support them, an IDE
based on block diagrams was developed, Fig. 4. This IDE was used to program
the validation system.

3.2 Software tools

CPN Tools software was used to create, verify and validate timed colored Petri
net models. CPN Tools is a program developed and maintained by the CPN
group from University of Aarhus, Denmark. The program is capable of creating
hierarchical timed colored Petri net models, [10]. Petri nets are represented by
the graphical layout, while additional information and interaction of the model
comes from the CPN ML programming language. CPN ML is based on the
Standard ML programming language, [11, 12]. Using CPN ML, it is possible to
define complex data structures and functions to handle these structures.

CPN Tools is based on the formally defined syntax of colored Petri nets. The
semantics, i.e. the behavior of the net, is also defined. The defined semantics
enable simulation of the model. Simulation can be interactive, i.e. with user in-
tervention, or automatic. Automatic simulation enables validation of the system.
Since both the syntax and the semantics of the CPN models created using CPN
Tools are defined, it is possible to generate the full state space of the models.
The state space can be queried. Queries have to be written using CPN ML pro-
gramming language. Queries enable verification of the desired properties of the
system.

4 Model

The concept of the bus communication system is given in Fig. 5. The nodes
have an identical structure. This means that it is possible to create one node
structure, and reuse it to model multiple nodes. The modular approach is also
used for message generators, i.e. message formatting.

Actual data to be transferred is not modeled. It is possible to abstract the
real data from the model since, in this case, the data is not used for any sort
of control of the system. A model of a higher level protocol based on CAN, e.g.
CANopen, would require the actual data. The final CANopen model would look
a bit different, but it could be based on the CAN model presented in this paper.

Since time is used for modeling, it is necessary to define how much real time
is represented in a single simulation time unit. In this paper the single simulation
time unit represents 10 ns of real time.

The top level of the model, given in Fig. 6, contains: two nodes (substi-
tution transitions Node 1 and Node 2); three places (Node2Bus, BusFree and

108

Fig. 5. The concept of the bus communication sys-
tems.

Node_2

Node_02

Node_1

Node_01

CANbus

CANbus

Bus2Node

csMSG

BusFree

true

BOOL

Node2Bus

csMSG

Node_02Node_01

CANbus

Fig. 6. The top level of the CAN
bus communication model.

Bus2Node) that represent the state of the CAN bus; and a substitution transi-
tion (CANbus) that handles messages on the CAN bus.

The first node is configured as given in Fig. 7. The node sends 9 messages.
All messages are to be sent with a 10 ms period. The length of messages is
defined by the parameter DLC (number of data bytes), while ID defines message
identifier.

MSG_65

MsgGen

MSG_57

MsgGen

MSG_49

MsgGen

MSG_41

MsgGen

MSG_33

MsgGen

MSG_25

MsgGen

MSG_17

MsgGen

MSG_9

MsgGen

MSG_1

MsgGen

Msg2CAN

Msg2CAN

MsgPool

csMSG

Bus2Node

Out
csMSG

BusFree

I/O

true

BOOL

Node2Bus

In
csMSG

MSG_17

({ID=17,RTR=0,DLC=6},
(10*msDuration,0))

csMSGdef

MSG_25

({ID=25,RTR=0,DLC=5},
(10*msDuration,0))

csMSGdef

MSG_33

({ID=33,RTR=0,DLC=4},
(10*msDuration,0))

csMSGdef

MSG_65

({ID=65,RTR=0,DLC=0},
(10*msDuration,0))

csMSGdef

MSG_57

({ID=57,RTR=0,DLC=1},
(10*msDuration,0))

csMSGdef

MSG_49

({ID=49,RTR=0,DLC=2},
(10*msDuration,0))

csMSGdef

MSG_41

({ID=41,RTR=0,DLC=3},
(10*msDuration,0))

csMSGdef

MSG_1

({ID=1,RTR=0,DLC=8},
(10*msDuration,0))

csMSGdef

MSG_9

({ID=9,RTR=0,DLC=7},
(10*msDuration,0))

csMSGdef

In I/O Out

Msg2CAN

MsgGenMsgGenMsgGenMsgGenMsgGenMsgGenMsgGenMsgGenMsgGen

Fig. 7. The CAN node, substitution transition label Node 01, Fig. 6.

The second node is configured as given in Fig. 8. The node sends 9 messages.
All messages are to be sent with a 10 ms period. The length of messages is

109

defined by the parameter DLC (number of data bytes), while ID defines message
identifier.

Msg2CAN

Msg2CAN

MSG_66

MsgGen

MSG_58

MsgGen

MSG_50

MsgGen

MSG_42

MsgGen

MSG_26

MsgGen

MSG_34

MsgGen

MSG_18

MsgGen

MSG_2

MsgGen

MSG_10

MsgGen

MsgPool

csMSG

Bus2Node

Out
csMSG

BusFree

I/O

true

BOOL

Node2Bus

In
csMSG

MSG_66

({ID=66,RTR=0,DLC=0},
(10*msDuration,0))

csMSGdef

MSG_58

({ID=58,RTR=0,DLC=1},
(10*msDuration,0))

csMSGdef

MSG_50

({ID=50,RTR=0,DLC=2},
(10*msDuration,0))

csMSGdef

MSG_42

({ID=42,RTR=0,DLC=3},
(10*msDuration,0))

csMSGdef

MSG_34

({ID=34,RTR=0,DLC=4},
(10*msDuration,0))

csMSGdef

MSG_26

({ID=26,RTR=0,DLC=5},
(10*msDuration,0))

csMSGdef

MSG_18

({ID=18,RTR=0,DLC=6},
(10*msDuration,0))

csMSGdef

MSG_2

({ID=2,RTR=0,DLC=8},
(10*msDuration,0))

csMSGdef

MSG_10

({ID=10,RTR=0,DLC=7},
(10*msDuration,0))

csMSGdef

In I/O Out

MsgGen MsgGenMsgGenMsgGen MsgGenMsgGenMsgGenMsgGenMsgGen

Msg2CAN

Fig. 8. The CAN node, substitution transition label Node 02, Fig. 6.

Each node uses nine message generators, modelled by substitution transition
MsgGen in Fig. 7 and Fig. 8. Besides message generators, each node uses a
substitution transition that forwards messages from the node to the CAN bus
(substitution transition label Msg2CAN).

The message generator, given in Fig. 9, creates a single shot or periodic
messages for the node to transfer. It is important to be able to create both types
of messages, since start-up procedures and similar actions use one-time messages,
while the system in operation usually uses periodic messages. Alarms or error
situations in the system can be communicated by the one-time messages too.

Two functions are present in the arc inscriptions originating from the transi-
tion ReadMsg, Fig. 9. The first one is abs(int). This built-in function returns the
absolute value of an integer int. The second function is fGenFrame(ID, RTR,
DLC). This is a user defined function and it creates a CAN message frame based
on the identifier (ID), type of frame (data or remote, RTR), and number of data
bytes (DLC).

The system used to transfer generated messages to the CAN bus is given in
Fig. 10. It is composed of two substitution transitions. The first one, MSG2RAM,
takes generated messages and places them in the input FIFO memory buffer,
just like a regular communication processor. The second one, Transceiver, takes

110

vMsg@+1

vI

vMsg

vI@+vIvI

[vI<=0]

[vI>0]

csMSGdef

csMSG csMSG

INTt

P&O

MsgGen

ReadMsg

vPer
@+abs
(vOff)

Msg

Oneshot

MsgPool

OutOut

vMsg

vMsg@+1

fGenFrame
(vID,vRTR,
vDLC)

MSGdef

InIn

({ID=vID,RTR=vRTR,DLC=vDLC},(vPer,vOff))

Fig. 9. The CAN message generator, sub-
stitution transition label MsgGen, Fig. 7
and Fig. 8.

Msg2RAM

Msg2RAM

MsgPool

In
csMSG

RAM

[]

csMSGs

Bus2Node

In
csMSG

Node2Bus

Out
csMSG

BusFree

I/O

true

BOOL
I/OOut In

In

Msg2RAM

Transceiver

TransceiverTransceiver

Fig. 10. The system used to transfer mes-
sages from the node to the CAN bus, sub-
stitution transition label Msg2CAN., Fig.
7 and Fig. 8.

the first message from the input FIFO buffer and sends it over the CAN bus.
MSG2CAN is structured that way in order to enable easier simulation of different
message sorting mechanisms.

In MSG2RAM, simultaneously generated messages, e.g. the messages gener-
ated in the same interrupt routine, are sorted according to their priority, Fig.
11. The highest priority message (lowest ID) is on the top of the list, while the
lowest priority message (highest ID) is on the bottom of the list. The entire
sorted list is appended at the end of the input FIFO memory buffer. Thus the
input FIFO buffer is not sorted, i.e. it can happen that a higher priority message
is behind a lower priority message. The real system behavior is simulated that
way. Other system behaviors can be simulated too, e.g. a system with a priority
sorted input FIFO buffer.

0

vI

insMsg(vMsg,vMsgs)vMsgs

[] vMsgs

vMsgs2

vMsgs2
^^vMsgs

vMsgvMsg@+1

vIvI+1

vMsg

Sort2RAM

[vI>0,
length(vMsgs)=vI]

Counter

Sorted

[]

csMSGs

RAM

I/O

[]

csMSGs

Counted

csMSG

Counter

0

INT

MsgPool

In
csMSG

In

I/O

Count2Sort

Fig. 11. The system used to transfer messages from RAM to the CAN transceiver,
substitution transition label Msg2RAM, Fig. 10.

Substitution transition MSG2RAM has two functions on the arc inscriptions
originating from transitions Sort2RAM and Count2Sort, Fig. 11. The first one is

111

a built-in function length(lst). It returns the length of the list lst, i.e. the number
of elements on the list. The second function is a user defined insMsg(msg, lst).
This function inserts a message msg to the priority sorted list of messages lst.

Figure 12 shows the message transceiver. It takes only one message at a time.
The message is taken from the top of the input FIFO buffer. The transceiver
sends the message to the CAN bus (place Node2Bus) only if the bus is available.
The state of the CAN bus is defined in the place BusFree. The CAN bus can be
either available (true) or occupied (false).

false

0@+2

3

vMsg

2@+2

0

vMsg

vMsg

RCV

TRNTRN

0

false
true

vMsg

vMsg

1

0

vMsg

vMsg

vMsg

vMsg@+1

vMsg

RCV

vTrans

if(vMsg=vMsg2)
then TRN
else RCV

TRN

TRNvTrans

true

vMsg@+2

vMsg

vMsg2

vMsg

2@+21

3

0@+2

3

2

vMsg

vMsg2

falsetrue

vMsg::vMsgs

if(vMsg<>vMsg2)
then vMsg::vMsgs
else vMsgs

vMsg::vMsgs

ClearRx

RxArb

RCVorTRN

Msg2Bus

Comp1

ReadMsg

RAM2Tran

Comp2 Bus2Node

In
csMSG

Node2Bus

Out
csMSG

Compare

csMSG

TranState

RCV

csTRANS

BusFree

I/O

true

BOOL

Tx

csMSG

Counter

0

INTt

Rx

csMSG

MsgInTrn

false

BOOL

RAM

I/O

[]

csMSGs
I/O

I/O

Out

In

Fig. 12. The model of the CAN transceiver, substitution transition label Transceiver,
Fig. 10.

When the node gains access to the bus, it sends the message from the transmit
register (place Tx). If the message has the highest priority, compared to all
the other messages sent by competing nodes, then the transceiver remains a
transmitter. If the message has a lower priority, then the transceiver turns into
a receiver. The message is handled by the CANbus module and the end result is
passed to transceivers through the place Bus2Node.

The CANbus, given in Fig. 13 handles messages sent by the nodes. The
maximum number of messages in the place Node2Bus must be equal or smaller
than the number of connected nodes. Once the messages are received, the bus
changes the state of the BusFree place. Next, the messages are sorted according
to their priority. The function insMsg(msg, lst) adds message msg to the sorted
list lst.

The highest priority message is sent to the place Bus2Node, Fig. 13. This
way all nodes become aware of the highest priority message and can change

112

vMsg

0

0@+(fProp(vMsg)+1)

0
2

vMsg

vMsg

2

vMsg

0

vMsg2

2

1
1

vMsg

1

0

[]

0

vI

falsevBool

vMsg

vI+1

vI

vMsg@+1vMsg

vMsg

vMsg::vMsgs

insMsg(vMsg,vMsgs)

vMsgs

vMsg@+1

vMsg

vMsg

vMsg

false

true

vMsg@+fProp(vMsg)

vMsg

vMsg

ClearBus

Msg2Bus2

Msg2Bus

BusCount

TakeFirst

[vI=length
(vMsg::vMsgs)]

AddError

Prop

MsgOnBus

Sort

Wait

INTt

State

0

INT

NoOfMsgs

0

INT

Counted

csMSG

SortedMsgs

[]

csMSGs

MsgOnBus1

csMSG

Msg4Prop

csMSG

MsgOnBus

csMSG

BusFree

I/O

true

BOOL

Node2Bus

In
csMSG

Bus2Node

Out
csMSG

Out

In

I/O

Fig. 13. The model of the CAN bus, substitution transition label CANbus, Fig. 6.

their respective state (transmitter or receiver). In order to synchronize the state
change of all the nodes it is necessary to add a time delay on the arc between the
transition MsgOnBus and the place MsgOnBus1. The message is then processed
by the AddError transition. Here complex error behavior of the bus can be
modeled. The message, modified or not, is sent to the place Msg4Prop. In this
paper no errors on the bus were assumed.

Message propagation time is calculated by the transition Prop, Fig. 13. De-
pending on the size of the message, and other parameters influenced by the
AddError transition, it is calculated how long the message actually occupied
the bus. The message is sent to the Bus2Node place, where it is read by all
the nodes. If there was an error during the transmission, the transmitting node
would automatically try to retransmit the message.

The substitution transition CANbus uses two user defined functions, Fig. 13.
First one is insMsg(msg, lst). This function inserts a message to the priority
sorted list. The second function, fProp(msg), is used to calculate the message
propagation time. It uses total number of bits in the message frame to calculate
the duration on the CAN bus. All delays added in the CANbus are compensated
for.

The place State in Fig. 13 defines the state of the CAN bus as follows: 0 -
no message present on the bus; 1 - a single message present on the bus, which
is used to inform the nodes about the message that won the arbitration process;
2 - a single message present on the bus which is used to transfer the message to
all the nodes.

113

4.1 Model restrictions

The state machine of the CAN node, that depends on the error counters, was
not implemented. Modeling the error counter would be a major difficulty for the
verification. TRN - transmit error counter has 256 states. RCV - receive error
counter has 128 states. This alone gives 128 ∗ 256 = 32768 states per node.

If there are occasional errors in the communication system, and we model
them, then the model will behave in an identical way as the real-life system. In
the case of a heavily disturbed communication (system error) the CAN nodes will
eventually go into ”bus off” state, [7, 8]. Heavy disturbances are usually caused
by physical defects, i.e. short-circuit, wave reflection due to poor termination,
disconnected wires etc. This is out of scope of our model.

5 Verification and validation results

5.1 Verification

Verification is used to test the model for desired (or undesired) properties, [18–
20]. Since verification of a large system tends to get extremely difficult (due to
the state explosion problem), it is possible to use modular analysis of the system,
[13–17]. There are different possible approaches to the modular analysis.

It is possible to analyze every module as a separate entity. The boundary
conditions should, in such cases, be identical to the ones when the module is
part of the system. It is possible to define such conditions and mimic them.
Thus, all possible local states of the module are checked.

Three types of modules can be used in a modular analysis approach: a source
module, a transport module, and a sink module. A source module generates
tokens without any external influence. A transport module transfers the tokens
from the input place(s) to the output place(s). It does not generate any tokens
on its own. The sink module consumes all tokens it receives from the input(s).
The most critical modules are the transport modules. It is necessary for these
modules to have independent input interfaces, i.e. if more than one input is
present, then the inputs have to cause independent actions within the module.

There are three separate modules for the state space analysis in this paper:
(i) message generator - generates messages for the node to send to the CAN bus,
(ii) the node - gets messages from message generators and sends them via the
CAN bus, and (iii) CAN bus - handles messages that the nodes want to send.
In this paper message generator is the source module, CAN bus is the transport
module, while the node is the sink module. For the state space analysis of all
modules, the following branching condition has been used:

fn (n:Node) =>

if (n=hd(sort INT.lt (EqualsUntimed(n))))

then

true

else

false

114

This condition limits the generation of the state space. States (nodes in the
state space) are compared to each other, but without time marks. If there are
two identical states with different time marks, only one will be processed. This
is a perfectly legal condition since there are no time controlled events except the
generation of the periodic messages. Properties of these periodic messages do not
change with time. This means that a message generated at time T 1 will cause
identical system behavior as a message generated at time T 2, where T 1 6= T 2,
if the state of the system is otherwise identical (time invariant system).

Message generator module. The input place to message generator module
is MSGdef. The output place is MsgPool. The module has no other interaction
with its environment, Fig. 14. The CAN message generator can generate two
types of messages: (i) single message and (ii) periodically repeating message.
The module has to be verified for both types.

vMsg

vMsg@+1

vMsg

vI

({ID=vID,RTR=vRTR,DLC=vDLC},(vPer,vOff))

vMsg

vI@+vIvI

vPer@+abs(vOff)

fGenFrame
(vID,vRTR,vDLC)

vMsg@+1

MSG2RAM

Oneshot

[vI<=0]

ReadMsg

MsgGen

[vI>0]

MSGdef

({ID=10,RTR=0,DLC=7},
(10*msDuration,0))

csMSGdef

Msg

csMSG

MsgPool

csMSG

P&O

INTt

Fig. 14. The model used for verification of the message generator module. Filled tran-
sition is used to mimic the behavior of the environment.

The single message generator should have the following properties: (i) only
one type of message is generated and (ii) if the module deadlocks, it terminates
properly. Both properties have been verified by the state space analysis. The
state space has 4 nodes and 3 arcs. There is one dead marking and there is one
dead transition MsgGen (this transition creates periodic messages).

The periodic message generator should have the following properties: (i) only
one type of message is generated, (ii) module does not deadlock, and (iii) module
is in livelock. All properties have been verified by the state space analysis. State
space has 4 nodes and 3 arcs. It is not the full state space because time changes,
so no markings are identical. There is no dead marking and there is one dead
transition Oneshot (this transition creates the single message).

Node module. The input places to the node module are Node 1, BusFree and
Bus2Node. The output places are Node2Bus and BusFree. The module has no

115

other interaction with its environment, Fig. 15. The CAN node can get two types
of messages from the message generator: (i) single message and (ii) periodically
repeating message. The module has to be verified for both types of messages.

vMsg@+6

0 2

true

false

vMsg

vMsg

12

vMsg

1

0

true
false

vMsg

vMsg

vMsg

vMsg

vMsg

vMsg

vMsg

vMsg

vMsg@+1

truevMsg::vMsgs

if(vMsg<>vMsg2)
then vMsg::vMsgs
else vMsgs

vMsg::vMsgs

falsefalse

0@+2

3

vMsg

2@+2

0

RCV

TRN

0

false

true

vMsg

1

0

vMsg

RCV

vTrans

if(vMsg=vMsg2)
then TRN
else RCV

TRN

TRN vTrans

vMsg@+2

vMsg

vMsg2

vMsg

2@+21

3

0@+2

3

2

vMsg

vMsg2

false

true

vMsg

vMsgs2 vMsgs2^^vMsgs

0 vI

insMsg(vMsg,vMsgs)

vMsgs[]

vMsgs

vMsg

vMsg@+1

vI
vI+1

Clear bus

CANmsg

CANarbClearRx

RxArb

RCVorTRN

Msg2Bus

Comp1

ReadMsg

RAM2Tran

Comp2

Sort2RAM

[vI>0,
length
(vMsgs)=vI]

Count2Sort

Counter

CANstate

0

INT

Compare

csMSG

TranState

RCV

csTRANS

Tx

csMSG

Counter

0

INTt

Rx

csMSG

MsgInTrn

false

BOOL

Sorted

[]

csMSGs

Counted

csMSG

Counter1

0

INT

RAM

[]

csMSGs

Node_1

1`{ID=1,RTR=0,DLC=8,AID=1,TBL=131}

csMSG

Bus2Node

csMSG

Node2Bus

csMSG

BusFree

true

BOOL

Fig. 15. The model used for verification of the node module. Filled places and transi-
tions are used to mimic the behavior of the environment.

With the single message the node should have the following properties: (i)
only one type of message is handled and (ii) module deadlocks. Both properties
have been verified by the state space analysis. The state space has 14 nodes and
14 arcs. There is one dead marking and there are two dead transitions ClearRx
and RxArb (these transitions are used when the node is receiver). The correct
behavior of two nodes, each sending a single message (with different IDs), has
also been tested. In such a case there is no dead transition. This test also verified
the automatic retransmission capability.

With the periodic message the node should have the following properties: (i)
only one type of message handled, (ii) module does not deadlock, (iii) module is
in livelock, and (iv) only one message at the time sent to the bus. All properties
have been verified by the state space analysis. The state space has 14 nodes and
14 arcs. It is not full state space because time changes so no markings are iden-
tical. There is no dead marking and there are two dead transitions ClearRx and
RxArb. The correct behavior of two nodes, each sending a periodic message (with
different IDs), has also been tested. In such a case there is no dead transition.
This test also verified the automatic retransmission capability.

116

Creation of multiple messages and handling of these messages has only been
simulated. There is no need for the verification of this property because mes-
sages with periods lower and higher than message propagation time have been
generated for the state space analysis.

In the case of the periods lower than message propagation time (input arc
to the place Node 1, Fig. 15), messages stack up in the node but the node sends
only one message at a time. The state space analysis run terminates when the
deadline, i.e. threshold time, is reached. In Fig. 15 the initial value of the place
Node 1 is set to the maximum message length, and a message period significantly
lower than the propagation time. In the case of the period higher or equal to the
message propagation time, all messages are sent and the buffer is empty. The
analysis terminates properly, i.e. as expected.

CAN bus module. The input places to the CAN bus module are BusFree and
Node2Bus. The output places are Bus2Node and BusFree. The module has no
other interaction with its environment, Fig. 16. The CAN bus module can get
two types of messages from the node: (i) a single message and (ii) a periodically
repeating message. For the verification of the module this is not important. It
is important that, while one message is being processed, another one does not
access the bus. CAN bus was modeled with 5 different non-periodic messages,
representing 5 different nodes.

05

vI-1vI

vMsg

vMsg

0@+22

2@+2

1

vMsg

vMsg

if(vI=1)
then 1
else 0

0

1`{ID=vI,
RTR=0,
DLC=7,
AID=10,
TBL=121}@+1

true

vMsg

vMsg

vMsg2

vMsg

vMsg@+fProp(vMsg)

vMsg

vMsg

vMsg

vMsg

falsevBool

false

true

0

0@+(fProp(vMsg)+1)

0

2

2

0

2

1

1

1

0

[]

0

vI

vMsg

vI+1
vI

vMsg
@+1

vMsg

vMsg::vMsgs

insMsg(vMsg,vMsgs)

vMsgs

vMsg@+1

vMsg

vMsg

vMsg

vMsg

ReadMsg

ReadArb

GenMsg

[vI>0]

ClearBus

Msg2Bus2

Msg2Bus

BusCount

TakeFirst

[vI=length
(vMsg::vMsgs)]

AddError

Prop

MsgOnBus

Sort

NoOfMsg

5

INT

StateOfNode

0

INTt

Wait

INTt

State

0

INT

NoOfMsgs

0

INT

Counted

csMSG

SortedMsgs

[]

csMSGs

MsgOnBus1

csMSG

Msg4Prop

csMSG

MsgOnBus

csMSG

Bus2Node

csMSG

Node2Bus

csMSG

BusFree

true

BOOL

Fig. 16. The model used for verification of the CAN bus module. Filled places and
transitions are used to mimic the behavior of the environment.

117

The CAN bus module should have the following properties: (i) multiple mes-
sages can access the Node2Bus place (max. number of messages equals max.
number of connected nodes), (ii) only one message should be handled, (iii) mes-
sage of highest priority should be handled, and (iv) deadlock can occur only in
case there are no more messages to handle. All properties have been verified by
the state space analysis. State space has 77 nodes and 174 arcs. There is one
dead marking and no dead transition. Node2Bus holds at most 5 messages. Place
Bus2Node contains the message of highest priority.

5.2 Validation

The CAN communication system consists of two nodes with the following prop-
erties: bit rate of 500 kbit/s, 11-bit message ID, each node sends 9 different mes-
sages (18 messages in total), all messages have different IDs, message lengths
are in range from 0 to 8 bytes, no errors on the bus. The only thing to consider
when developing the test system is that the propagation time of all messages
has to be lower than half the round period. In this case total propagation time
is cca. 3 ms while the round period is 10 ms, i.e. 3 ms < 5 ms.

Two tests were conducted. The first test, Test1, considered messages with
data that produced the highest number of bits (due to bit stuffing). The second
test, Test2, considered messages with data that produced the lowest number of
bits. Nodes were programmed as shown in Tab. 1 and Tab. 2.

Table 1. Message settings for two tests of
Node 1.

Node 1

ID DLC Test1 Test2

1 8 0x3C 0xAA

9 7 0xC3 0xAA

17 6 0x0F 0xAA

25 5 0xF0 0xAA

33 4 0x1E 0xAA

41 3 0xE1 0xAA

49 2 0xF0 0xAA

57 1 0xE1 0xAA

65 0 no data no data

Table 2. Message settings for two tests of
Node 2.

Node 2

ID DLC Test1 Test2

2 8 0x3C 0xAA

10 7 0xC3 0xAA

18 6 0x0F 0xAA

26 5 0xF0 0xAA

34 4 0x1E 0xAA

42 3 0xE1 0xAA

50 2 0xF0 0xAA

58 1 0xE1 0xAA

66 0 no data no data

Both nodes had to start sending messages at the same time. All messages are
sent only once. The main reason is that the simulation model has the knowledge
of global time, the simulation time, while the real-life equipment does not.

Real-life equipment has inherent drifts and needs synchronization in order to
have a notion of global time. This was not implemented in the real-life system,
so only one round of messages was allowed. The authors did actually test the
real-life system allowing it to continue operation without synchronization.

118

Message reception times

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

1 2 9 10 17 18 25 26 33 34 41 42 49 50 57 58 65 66

Message ID

T
im

e
 [

m
s

] Sim-T_1

RL-T_1

Sim-T_2

RL-T_2

Fig. 17. The results of the validation tests. Sim-T x stands for simulation test x. RL-

T x stands for real-life test x.

An internal test report [21] shows a significant drift (up to 10.5 ms per
hour) between two identical oscillators. The same oscillators were used in the
microelectronic boards for this paper. The 10.5 ms per hour drift translates to
0.0105/(60 ∗ 60) = 2.917 ∗ 10−6 = 2.917 ppm.

Since a single bit lasts 1/500000 = 2∗10−6 sec it can be seen that an offset of
a single bit between the two boards will be within 2 ∗ 10−6/2.917∗ 10−6 = 0.686
sec. This is roughly 68 ms. This gives about 6 rounds of messages, at 10 ms
period, without distortion. This calculation does not include other factors, such
as interrupt latencies, which can cause drifting and significantly lower the number
of synchronized rounds.

The difference was observed, in average, after the third round. Then a mes-
sage sent by one of the nodes was sent later then planed, but still within the
block of messages. After about 1-2 min the messages form the nodes were not
interleaved any more but rather separate blocks of messages were observed on
the bus. These results were much better at a lower communication speed (100
kbit/s) and with a lower number of messages (3 per node). Now the drifting
became apparent after about 13 rounds (cca. 1.3 sec). The separate blocks of
messages were observed after 7 min.

The real-life system had a starting message. It was not considered to be the
starting point of time measurement, because of the message processing overhead,
which is not modeled. The moment the first message (ID 1) was received, is
considered the starting point, i.e. time 0. All other messages were timed according
to the first message. The obtained results are given in Fig. 17.

The time difference, between the model and the real-life system, was in both
tests less than 1 µs, so it is not visible in Fig. 17.

119

6 Conclusion and future work

It has been shown that the proposed concept for communication system model-
ing is adequate. The verification and validation results show that the simulation
model can be used during the development of new CAN based systems. In future
work a model of 16 (+4 optional) nodes will be created. This model will be used
to simulate and analyze the CAN bus system in a future city train. Due to the
high number of nodes, and even higher number of messages, a modular verifica-
tion approach is necessary. Future work will address a more formal description
of necessary and sufficient module boundary conditions.

In the future, gateway systems, based on real-life equipment, between the
CAN and the WTB buses will also be developed.

Acknowledgments. This work was supported by Končar - Electrical Engineer-
ing Institute, Croatia, and the Ministry of Science, Education and Sports of the
Republic of Croatia.

References

1. Marijan, S.: Control Electronics of TMK2200 Type Tramcar for the City of Zagreb.
International Symposium on Industrial Electronics - ISIE, volume IV, Dubrovnik
(2005) 1617–1622

2. Marijan, S.: Vehicle control unit for the light rail applications. International Con-
ference on Electrical Drives and Power Electronics - EDPE, Dubrovnik (2005)

3. Bago, M., Marijan, S., Perić, N.: Modeling Controller Area Network Communica-
tion. International Conference on Industrial Informatics - INDIN, Vienna (2007)
485–490

4. Bago, M., Perić, N., Marijan, S.: Modeling Wire Train Bus Communication Using
Timed Colored Petri Nets. International Conference on Instrumentation, Control
and Information Technology - SICE, Tokyo (2008) 2905–2910

5. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software, vol. 20,
No. 5 (2003) 19–25

6. Desel, J., Juhas, G.: What is a Petri Net?. Unifying Petri Nets, Springer-Verlag
(2001) 1–25

7. ISO: Road vehicles - Controller area network (CAN) - Part 1: Data link layer and
physical signalling. ISO 11898-1:2003, The International Organization for Stan-
dardization (2003)

8. ISO: Road vehicles - Controller area network (CAN) - Part 2: High-speed medium
access unit. ISO 11898-2:2003, The International Organization for Standardization
(2003)

9. Jensen, K.: An Introduction to the Theoretical Aspects of Coloured Petri Nets.
A Decade of Concurrency, Lecture Notes in Computer Science, vol. 803, Springer-
Verlag (1989) 230–272

10. Jensen, K., Kristensen, M.L., Wells, L.: Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer, vol. 9, No. 3-4 (2007) 213–254

11. Standard ML of New Jersey. http://www.smlnj.org

120

12. Ullman, J.D.: Elements of ML Programming. Prentice-Hall, Englewood Cliffs
(1998)

13. Valmari, A.: The State Explosion Problem. Lectures on Petri Nets I: Basic Models,
Lecture Notes in Computer Science, vol. 1491, Springer-Verlag (1998) 429–528

14. Valmari, A.: State of the Art Report: STUBBORN SETS. Petri Net Newsletter,
No. 46 (1994) 6–14

15. Christensen, S., Petrucci, L.: Modular Analysis of Petri Nets. The Computer Jour-
nal, vol. 43, No. 3 (2000) 224–242

16. Lakos, C., Petrucci, L.: Modular Analysis of Systems Composed of Semiau-
tonomous Subsystems. Fourth International Conference on Application of Con-
currency to System Design - ACSD, (2004) 185–195

17. Lakos, C., Petrucci, L.: Modular state space exploration for timed petri nets. Inter-
national Journal on Software Tools for Technology Transfer, vol. 9, No. 3-4 (2007)
393–411

18. Toussaint, J., Philippe, C., Simonot-Lion, F.: A Model of CAN-based Applications
for the Verification of Temporal Properties. 3rd IFAC Symposium on Intelligent
Components and Instruments for Control Applications - SICICA, Annecy, (1997)

19. Krakora, J., Hanzalek, Z.: Timed Automata Approach to CAN Verification. 11th
IFAC Symposium on Information Control Problems in Manufacturing - INCOM,
vol. 1 (2004)

20. Liu, L., Billington, J.: Verification of the Capability Exchange Signalling protocol.
International Journal on Software Tools for Technology Transfer, vol. 9, No. 3-4
(2007) 305–326

21. Bago, M.: Test report - oscillator drift. Končar - Electrical Engineering Institute
(2005) 1–12

121

122

Banker’s Algorithm Implementation
in CPN Tools

Michal Žarnay1

University of Žilina, Univerzitná 8215/1, SK-01026 Žilina, Slovak Republic.
michal.zarnay@fri.uniza.sk

Abstract. When constructing discrete simulation models of complex
transportation systems, their designers face problems of deadlock states
occurring in the course of simulation. When analyzing it, the issue was
transformed to a problem of solving deadlock states in resource alloca-
tion systems (RAS) with non-sequential processes with flexible routing
and use of resources of multiple types at once. As a suitable deadlock-
avoidance policy, the banker’s algorithm (BA) has been chosen. The task
was to modify the basic version of the BA and to test the developed al-
gorithm on a sample transportation system with the outlined properties.
As a suitable environment for this, the CPN Tools were chosen, what
led to an implementation of the modified version of the BA in the CPN
ML, language used by the CPN Tools. The paper explains modifications
of the algorithm, describes an implementation of it in the CPN ML and
shows its use on a coloured Petri net model of a small example from the
outlined category of the RAS.

1 Introduction

Motivation for this work came from the field of detailed computer simulation of
complex transportation systems, such as railway marshalling yard processing a
few thousands of wagons per hour in trains of various technological processing
descriptions with help of over one hundred resources (individual tracks, locomo-
tives, members of personnel). From experience with real projects, main techno-
logical processes in complex systems are usually clearly defined, however, there
are often little details complicating the models and causing that designers of
models face problems of deadlock states occurring in the course of simulation.

Deadlock state is a state of a system, where two or more system processes
are blocked in their execution because they wait for two or more resources, and
the awaited resources are at the same time occupied by the processes included in
the waiting list. The waiting processes thus block and are blocked. Unblocking
this state is possible only by an exceptional operation.

When analyzing the issue, we learnt that it is similar to solving of deadlock
states in other fields like flexible manufacturing systems, and that it has been
tackled in literature for many years. However, none of the proposed solutions
seemed to be adequate for this problem. Further analysis in [1] transformed
the issue to a problem of solving deadlock states in resource allocation systems

123

(RAS) with non-sequential processes with flexible routing and use of resources
of multiple types at once.

As a suitable deadlock-avoidance policy for such a system, the banker’s al-
gorithm (BA) has been chosen [1]. The task was to modify the basic version of
the BA and to test the developed algorithm on a sample transportation system
with the outlined properties. From our literature review, we are not aware of any
use of the BA in a RAS combining flexible routing with concurrent processing.
As a suitable environment for this, the CPN Tools were chosen: to construct a
CPN model for the sample system and to implement an adjusted version of the
BA. Reasons of this decision lie in the abilities of Petri nets and CPN Tools to
construct a model of a RAS quicker compared to other means, e.g. high-level
programming languages, and to facilitate a qualitative analysis of the model with
and without the BA for testing its effectiveness in deadlock avoidance. In the
end, the algorithm itself has been implemented in the CPN ML, language used
by the CPN Tools.

From the complex work, this paper focuses on explaining basic modifications
of the BA, describing an implementation of it in the CPN ML and showing
its successful use on a coloured Petri net model. For the illustrative model,
however, only a theoretical example from the outlined category of the RAS has
been included, since the model of a sample transportation system developed in
[1] and briefly described in [2] is too complex to serve as a basis for showing the
algorithm.

The paper is organised as follows. In the section 2, we introduce background
for the paper about resource allocation systems and their modelling in Petri nets,
and the banker’s algorithm and our modifications for the studied system. The
section 3 describes the implementation of the modified algorithm in the CPN
ML, its integration with the CPN model and its analysis results. That is followed
by discussing main contributions and issues of the work in the conclusion.

2 Starting Point

2.1 Resource Allocation System in Petri Net

Resource allocation system (RAS) is a system consisting of concurrently running
processes that in certain stages, in order to get successfully completed, require
an exclusive use of certain number of system resources [3]. Resources are limited
and re-usable as their allocation and de-allocation changes neither their charac-
ter nor quantity. Based on its character, a process in the RAS is sequential or
non-sequential, i.e. some stages of the process run concurrently. The resulting
system is then either sequential (if all involved processes are sequential) or non-
sequential (if at least one process in the system is non-sequential). Furthermore
a process may contain flexible routing, which means that in a certain moment, a
process execution continues in one of available options and if correctly defined,
taking any of them brings the process to the same final state. Finally, the num-
ber and the type of resources allocated at the same time distinguish between

124

a single-unit RAS (every process is allowed to have only one resource unit al-
located at a time, i.e. before allocation of the next resource, the previous must
be returned), a single-type RAS (at least one process has two or more units of
the same resource type at a time) or a multiple-type RAS (at least one process
has two or more units from two or more resource types at a time). The outlined
attributes create categories of the RAS with varied complexity.

The system used in this paper is a non-sequential multiple-type RAS with
flexible routing. It means that at least one process in the system combines flexible
routing with concurrent execution. To distinguish modelling elements of both
properties, we use the following naming convention in the paper:

– Variant – one of possible routes of a process execution (sequential or non-
sequential) that is chosen by flexible routing

– Branch – a part of a process that is executed concurrently with another part
(branch) of the same process

For the modelling of a RAS, the coloured Petri net (CPN) is used. In the
net, subnets of two types are found: a process subnet and a resource subnet.
A process subnet consists of places, transitions and arcs in a structure starting
by an initial transition and ending with a final transition and describing causal
relations between stages of a process. A stage (a task) in the process corresponds
to a place and events of beginning and ending of tasks correspond to transitions.
Together with a place for idle processes (let’s denote it P0), which connects the
final transition with the initial transition of the process description, it makes
a strongly connected component. The variants of the flexible routing in the
process description are created, when at least one place has at least two output
transitions (conflict in Petri net, like in state machines) and another place has
at least two input transitions, while all possible routes in the process subnet
contain the place P0. The branches of the concurrent processing are created,
when a transition has at least two output places and another transition has
at least two input places (synchronization in Petri net, like in marked graphs),
while the place P0 is in a part of the subnet with no more than one branch.
A resource subnet consists of one place and adjacent arcs. Content of the place
represents actually free resources and arcs express their allocation and release
to and from stages of processes. Typically, there are several process subnets, one
for each modelled process, and one resource subnet in a RAS model.

For a description of the system’s dynamic behaviour, we’ll distinguish be-
tween process types and process instances. The process type is an abstract de-
scription of a process. The process instance is a concrete occurrence of a process
according to a process type. In the CPN, the process type is modelled by the
process subnet and the process instance by one or more tokens of one colour.
A position of a token in a place of the process subnet represents a stage of the
process and a combination of places occupied by tokens of the same value consti-
tutes the actual state of the process instance. Similarly, there are resource types
and resource instances. The former modelled by colours of a colour set for all
resources (one resource type = one colour) and the latter by individual coloured

125

tokens (number of tokens of a colour = number of resources of the respective
resource type).

The figure 1 depicts a CPN model of an illustrative RAS that we use in
this paper. The system contains one non-sequential process type modelled by
the process subnet. The places P1, . . . , P9 represent individual activities (tasks)
in the process. The place P0 represents the outside environment, where the
finished process instances (tokens coming to the place P0) get replaced by new
ones before their processing (tokens leaving the place P0). Transitions T1, . . . , T9
interlink the activities to give them a logical structure.

An execution of the process type is divided into two branches from the initial
transition T1, which continue until the final transition T9. The left-hand branch
is further divided into two variants between the places P1 and P8. The left-
hand variant of these has further 2 branches between transitions T2 and T8.
The place P0 contains two tokens of different colours from the integer colour set
cProcessID modelling two process instances currently outside of the system.
When an instance is in the system, it is represented by two or three tokens of
the same colour, depending on the number of branches visited in the actual state.
Movements of the coloured tokens are facilitated by the variable proc present on
all the arcs in the process subnet.

The place Resources with adjacent arcs represents the resource subnet. The
arcs define relations of allocation/release of resources to/from process activities.
Nine tokens in the place Resources of 3 colours R1, R2 and R3 from the colour
set cResources represent nine available resource instances, three of each resource
type.

2.2 Banker’s Algorithm

The banker’s algorithm, first introduced in [4], uses information about a current
system state to decide, whether an allocation request of a process instance can
be fulfilled. It is called every time, when an allocation request is made. It tries
to find, whether the allocation leads to a safe state, i.e. a state, from which all
running processes can finish their execution. If yes, the request can be fulfilled,
otherwise, the requesting process instance must wait until another process in-
stance returns resources. In order to decide, whether the state is safe, the BA
tries to order all running process instances in such a sequence, so that each
of them can be finished with resources that it has currently allocated or that
are currently available in the system or that are returned from finished process
instances already in the sequence prior to the tested process. If it succeeds in
finding such a sequence, we say that the state is ordered, and since every ordered
state is safe [5], the state is also safe. If it fails to find the sequence, we say that
the state is unordered, which does not mean that the state is unsafe. However,
the allocation request cannot be fulfilled. This is due to the suboptimality of
the BA, while finding an optimal algorithm for solving the question about state
safeness is a NP-hard problem.

The basic principle of the BA is described in a pseudo-code based on the
Algorithm 1 from [5]. It uses the following data structures:

126

�� ������ ������
�� ��

�� �� �� ���� ���� ��
�� �� ���� ��

�� ������ ��
�� ������ ��

� ��	
� ��	 � ��
	� ��	

� ��	� ��	
� ��	

� ��	
� ��	
� ��	

� ��	

� ��	
� ��	� ��	 � ��	

� ��	
�� � ��	� ��	� ��	

� ��	� ��	
� ��	

�
�

�

�

�
�

�

�
�
 	� ��	������� 	� ��	�����

��	� ��	�����

�� 	� ��	�����

�� 	� ��	�������	� ��	������� 	� ��	�����

��	� ��	������� 	� ��	�����

� ���� �	���� ���� �� �� �� �� �� 	� ���� �	��

���� ����� � 	� ��	�����

��� ���� �� �� �� �� ��

��� ��� �� �
Fig. 1. CPN model of illustration RAS.

127

– Allocated – a matrix of allocated resource units to process instances
– Allocated[i][j] – a number of resources of the kind j allocated to the process

instance i
– Needed – a matrix of needed resource units to finish execution of process

instances
– Needed[i][j] – a number of resources of the kind j needed by the process

instance i
– Available – a vector of available resource units in the system
– Available[j] – a number of available resources of the kind j
– S – a set of all process states currently being executed by process instances
– Π – a set of identification numbers of process stages in S
– R – a set of all resource types
– p(i) – the i-th item in the vector of all running process instances p

When called, the algorithm uses data about a current state of the system in
the data structures Allocated, Needed and Available as input and provides an
answer to the question Is the given state ordered? as output values Admit or
Reject:

begin
// Set of currently running process instances. //

Π = {1, 2, . . . , | S |};
loop

// If all instances have been ordered, admit the state. //
if Π = ® then return Admit

// Otherwise find a p(i) that can be added to the order. //
else find i ∈ Π such that

Needed[i][j] ≤ Allocated[i][j] + Available[j];
if no such i exists, return Reject;

// Otherwise, add p(i) to the order. //
for j = 1 to | R | do begin

Available[j] = Available[j] + Allocated[i][j];
Allocated[i][j] = 0;
Needed[i][j] = 0;

end;
Π = Π \ i

end loop
end

The outlined algorithm has been tested for a sequential single-unit resource
allocation system (RAS) with flexible routing [5].

The algorithm assumes that as each process instance enters the system, it
declares the maximum number of units of each resource type needed for its
execution. In a more elaborated version, supportive routines update the number
of remaining needed resources of each type of the system processes based on
descriptions of their execution and actual positions of process instances [5] [6]
and [7].

128

Applications of the banker’s algorithm described in the mentioned literature
sources as well as in [8], [9] and [10] have been connected with the sequential
RAS-s only. On the other side, authors in [11] consider a banker’s-like dead-
lock avoidance policy for a RAS with non-sequential processes without flexible
routing. Our literature review did not bring to our attention any application of
the banker’s algorithm or banker’s-like deadlock avoidance policies that would
treat a RAS combining both concurrent processing as well as flexible routing in
a process.

2.3 Modifications of Banker’s Algorithm

Data structures (the matrices Allocated, Needed and the vector Available) used
by the original version of the BA stay the same in our implementation except
renaming the Needed matrix to RemainingNeeded to express more precisely
that a content of the data structure is modified during a process instance exe-
cution. Resources that will not be requested any more, are subtracted from the
vector after their allocation. Only those resources will stay recorded that will
be requested in the remaining part of execution. This is based on the assump-
tion that we know process descriptions and we know states, when values of the
RemainingNeeded vector are changed.

In [7], it is proposed to assign values of the RemainingNeeded vector to
individual process stages of a process on its route to the end of execution. This
proposal is suitable for flexible routing, but not for concurrent processing of non-
sequential processes. In such processes, the current process instance state may
be represented by tokens in more than one place, where the places are in dif-
ferent branches. Since tokens in branches move concurrently, the order of their
movements is non-deterministic and it is not possible to know the number of
currently allocated and the number of remaining needed resources for each place
(for the time, when a place is occupied by a token) generally for all possible
executions. That’s why we introduce vectors of relative changes (called Change)
which modify the RemainingNeeded vector for the current process instance
according to the change in the allocation of resources in the related stage. If re-
sources are being allocated, the Change vector will contain a positive number of
the allocated units, if released, the number will be negative. The Change vector
must be defined for each process stage with any allocation or release of resources.
In addition, it is necessary to take into account, whether resource units will be
allocated to the same process instance repeatedly, i.e. allocations and releases
of a unit of the same resource type occur in disjunctive time periods at least
two times till the end of the process instance execution. This is recorded in the
RemainingNeeded vector through values of the Change vector distinguishing
two groups of bits in the integer used by every release of resource units. An item
of the Change vector expresses a number of units of the relevant resource type
that are to be allocated/released. When a value of the Change vector contains
a non-zero number encoded in the lower half of the bits (the bits 0-3 by 8-bit
numbers), the corresponding units will be used again. When a non-zero number

129

is encoded in the upper half (the bits 4-7), the units won’t be used again. For in-
stance, if there are 2 units released without a planned re-allocation, the number
will be −32. If they were both to be re-allocated later, the number will be −2,
if only one should be re-allocated, the correct number will be −17. The outlined
mechanism is relevant only for releases of resources. By allocations of resource
units, only the lower half of bits is considered.

As for the division of bits, it is not necessary that the available bits are divided
into two halves. It is important that the smallest used part of bits is enough to
record the highest number of resource units allocated or released at once in the
modelled system. The chosen bits are manipulated with help of operations divide
(/) and modulo (\) and of a relevant constant called ByteDiv (for the discussed
division to upper and lower bits of an 8-bit value, ByteDiv = 16).

The routine updating the three main data structures then looks as follows:

for j = 1 to | R | do
if Change[j] 6= 0 then do begin

if Change[j] < 0
then ChangeV alue = −((−Change[j])/ByteDiv

+ (−Change[j]) \ByteDiv)
else ChangeV alue = Change[j]/ByteDiv + Change[j] \ByteDiv;
Available[j] = Available[j]− ChangeV alue;
Allocated[i][j] = Allocated[i][j] + ChangeV alue;
if Change[j] ≤ 0
then ChangeV alue = −(−Change[j]) \ByteDiv
else ChangeV alue = Change[j] \ByteDiv;
RemainingNeeded[i][j] = RemainingNeeded[i][j]− ChangeV alue

end;

The vectors of relative changes are used not only for (de)allocation of re-
sources, but also for flexible routing. The RemainingNeeded vectors may be
different for individual variants of a process description, while every process in-
stance must have one of them in its initial state. That is why we propose two
steps to carry out:

1. To order all available variants of the process description and to set the first
of them as primary – its RemainingNeeded vector will be initial for every
process.

2. To define a differential vector between an old and a new variant for every
point in the net, where a switch of the two variants is realized.

In the illustrative example, the switch from the primary to the secondary
variant is necessary on realizing the transition T3 providing the variant with the
transitions T2, T5 and T8 is primary and variant with T3 and T6 is secondary.

In summary, our modifications to the banker’s algorithm consist of renaming
the Needed data structure to RemainingNeeded (otherwise the original algo-
rithm in the section 2.2 is the same), specifying details of the routine updating
the BA data structures and defining related change vectors for every stage of

130

processes with a (de)allocation in the underlying system. The changes were mo-
tivated by the fact that the original algorithm has been constructed for a simpler
class of RAS than our application RAS.

3 Banker’s Algorithm in CPN

3.1 Construction in CPN ML

Apart from the BA main logic (finding, if the new state is ordered), the imple-
mentation needs data structures and routines for recording and managing infor-
mation about a current state of running processes in the system. Both parts are
implemented in user-defined functions of the language CPN ML. In the following
sections, we describe colour sets, variables, constant values and functions used.
They are fully cited in the appendix.

Data Structures The principal data structure is defined by the colour set
cBankerAlgData, which is a product of three components corresponding with
the above mentioned matrices Allocated, RemainingNeeded and the vector
Available. The first two components are of the colour set cAllProcessesWRes,
which is a list of items as products cProcessID ∗ cResNumbersList. Each
product represents a process (cProcessID) and a list of numbers of resources
(cResNumbersList), where each list item corresponds to one resource type. The
third component of the cBankerAlgData product is of the latter colour set. An
example of use of the cBankerAlgData structure is seen in the constant value
vInitBAData.

Content of the value vInitBAData corresponds to the above discussed illus-
trative RAS in its initial state. The model has two process instances, which in the
beginning contain no resources, hence the Allocated part of the vInitBAData
contains the following list of values: [(1, [0, 0, 0]), (2, [0, 0, 0])]. Needs of the pro-
cess instances (initial value of the RemainingNeeded matrix) are in the second
row of the vInitBAData value definition and express that both process instances
have the same needs expressed by another constant value:
[(1, vInitMaxNeedPrimary), (2, vInitMaxNeedPrimary)]. The value
vInitMaxNeedPrimary corresponds to maximal needed numbers of resources
for one execution of the primary description of the process type, and that is 2
units of the resource type R1, 3 units of R2 and 1 unit of R3 (it can be verified
in the model at fig. 1).

vMaxNeedPrimarySecondaryDiff is the difference vector between the pri-
mary and the secondary variants of the example’s process type description. This
means, that the secondary variant has the maximal needs [1, 3, 2]. vByteDiv is
the factor for the division of bits in a byte to two halves.

The final group of constant values defines the change vectors (implemented
as CPN ML lists) that modify the BA data structure by firing of individual
transitions T1 to T9. Values in vectors correspond to the explanation in the
section 2.3 and are connected to the original model on the fig. 1. For instance,

131

the list [∼16,1,∼16] of the vChangeT6 constant value corresponds to the change
on the T6 transition in the model: an allocation of one unit of the resource R2
and a release of the resources R1 and R3 (one unit of each), while both units
will not be requested again in the process type description.

Functions Hierarchy Relations among functions in the CPN implementation
are depicted at the figure 2. Arcs represent relations of calling – from a superior
function to a subordinate function in the direction of their arc. The functions are
divided to three groups. The Main Algorithm group corresponds to the slightly
modified pseudo-code from the section 2.2. The Data Structure Manipulation
functions implement the manipulation with data structures introduced in the
section 2.3. Finally, there are General functions that are not directly attributed
to the banker’s algorithm. They work with lists of integers – they use a recursion
to look through the lists and produce their results.

General Functions The ModifyList function modifies the list pA with the list
pB returning a new list in which for every item: pA+pOper∗pB (relevant items in
the given lists). It is assumed that both initial lists contain integer values and the
parameter pOper determines, whether the operation is an addition (pOper = 1)
or a subtraction (pOper = ∼1). The IsIn function checks, if all items of the
list pA are less than or equal to equivalent items of the list pB (i.e. pA ”is in”
pB). The function is widely used to compare vectors of resources required and
available, and to check, if the request can be covered.

The ULBits and LowerBits functions look at given numbers in the pList list
parameter as two-part numbers: upper and lower bits, where the edge is defined
by the vByteDiv value (bits manipulation is discussed in the section 2.3). The
former function sums up numbers encoded in the upper and the lower bits of
values in the given pList, e.g. the given list [∼32,18,∼7] is changed to [∼2,3,∼7].
The latter function retrieves only numbers encoded in lower bits of values in the
given pList, in the example it returns [0,2,∼7].

Data Structure Manipulation Functions Most of the CPN ML functions
for the banker’s algorithm work with lists, thus use a recursion to traverse them.

A set of functions uses an abbreviation PRL that stands for a list of pro-
cess instances with a list of resources adjacent to it, shorter process-resources-
list. The functions are used to manipulate with data in the Allocated and the
RemainingNeeded lists. The LocateListInPRL function locates the PRL of
the process of pKey in the pPRL list and returns its list of resource numbers.
The ModifyPRLList function modifies the given PRL-type list: it selects the
item with the pKey and modifies its resource number values according to the
pOper operation (addition or subtraction) and returns the updated PRL list.
The RemoveItemFromPRLList function removes the item with pKey from
pPRLList and returns the updated PRL list.

The simple function ChangeMaxNeed only updates BA data according to
the pChange item. It is used for switching from an old to a new variant of

132

Fig. 2. Diagram of functions in the CPN ML implementation.

133

process description by flexible routing. The pChange argument contains the
ID of the process instance and the difference vector between the switched vari-
ants. It affects only the middle part of the BA data structure related to the
RemainingNeeded matrix and only its item related to the given process in-
stance ID.

The ModifyBAData function modifies data for the banker’s algorithm given
in the pBAData parameter by data from the pChange parameter, which iden-
tifies the respective process instance and contains the change vector with infor-
mation encoded in its lower and upper bits as explained above. All resources
stated in the change vector (i.e. upper and lower bits) are added to the allo-
cated resources of the given process and subtracted from the list of all available
resources in the system. However, only the resources encoded in lower bits af-
fect the remaining needed resources of the process (see the 2nd statement in the
function).

Main Algorithm Functions The FindAllowedProcess function looks for an
item in the list of running process instances (pRemainNeed), remaining needed
resources of which can be covered by the list of available resources (Avail), i.e.
a process that can be finished with current available processes. If no process is
found, it returns ∼1, otherwise the ID of the process found.

The IsStateOrdered function is the principal function of the banker’s Al-
gorithm. It tries to find an ordered sequence of process instances that can be
finished in the given conditions. If it is successful, it returns the ordered pro-
cess sequence. If not, it returns a list with 1 item: [∼1]. [∼2] serves only for
recognizing the bottom of the recursion – when all processes were chosen to the
order.

Finally, the top function CanItBeAllocated in the hierarchy answers the
question, if the process instance with its resource request can be allocated the
requested resources. It checks, if the state after the allocation will be ordered –
then it returns true, otherwise false.

3.2 Adding Banker’s Algorithm to CPN Model

In this phase, there are two tasks to fulfill:

– To construct the required data structure in the CPN and to connect it to
the underlying CPN model of RAS,

– To interlink all points of allocation in the model with calls of the BA.

The BA data structure is represented by one token of the cBankerAlgData
colour set in a dedicated place called Banker′sAlgData (see fig. 3). Its initial
value is equal to the constant value vInitBAData (see section 3.1). The connec-
tion of the new place to the underlying model is made via pairs of arcs with all
transitions, at which contents of the BA data structure are to be changed, i.e. all
transitions, where at least one resource allocation or release is modelled. One of
the arcs in a pair leads from the place Banker′sAlgData to the transition and

134

brings the BA data structure token through the variable BAData in the arc in-
scription to make it available for an execution of the banker’s algorithm and for
an update of data in case the transition fires. The other arc leads in the opposite
direction and contains a call to the function ModifyBAData in order to update
the data structure after the transition has been fired. As arguments, the function
needs the process ID, the respective change vector in resource allocation and the
BA data structure itself, for example:

ModifyBAData ((proc, vChangeT5), BAData)

where vChangeT5 is a constant value containing the change vector for firing
the transition T5 (proc and BAData are variables bringing the other needed
arguments in).

The BA is called in guards of all transitions where a resource allocation
request is made. In our example, it is at all transitions except T7 and T8. The
top BA function CanItBeAllocated is called with the same arguments as the
ModifyBAData function, for example:

[CanItBeAllocated((proc, vChangeT5), BAData)]

Being in the transition guard, the algorithm has direct effect on whether the
transition is enabled or not. It serves as the last condition for enabling the
firing after all basic conditions secured by the structure of RAS (a process in-
stance is in the appropriate state, resources to be allocated are available) are
fulfilled. If the state to come after firing is safe according to the algorithm, the
CanItBeAllocated function will allow the transition firing. In case that not, the
transition will not be enabled. It can be, however, enabled in the future – when
the state of the RAS model changes and the transitions in the CPN affected
by the change will be re-calculated, the result of the function (while not chang-
ing the basic conditions for the transition) may become positive and enable the
transition.

When a process instance chooses another variant of execution by flexible
routing, the guard of the relevant transition contains a modification of the max-
imal needed resources for the given process instance via the ChangeMaxNeed
function. In the illustrative model, it happens on the transition T3 and its guard
is the following:

[BADataAmended =
ChangeMaxNeed ((proc, vMaxNeedPrimarySecondaryDiff), BAData),
CanItBeAllocated ((proc, vChangeT3), BADataAmended)]

The amended data structure in BADataAmended is then used in the inscription
of the arc from the transition to the Banker′sAlgData place instead of BAData.
For the transition T3 in the example, it is:

ModifyBAData ((proc, vChangeT3), BADataAmended)

135

� ������ �� 	
	���
��
����	������ �� �� 	

	�

� �� 	
	� �� 	
	� �� 	
	 � �� 	
	� �� 	
	� �� 	
	� �� 	
	 � �� 	
	� �� 	
	

�� ������ ������
��
��

�� �� ��
�� ������ ��

�� ������ ��

�
��

�
�� �

���
��

�
���
��
�
��

�
��

�
��

�
��

�
��

�
��
�
��

�
�� �
��
�
��

�� �
���
���
��
�
���
��

�
��

���

��

��

��

�!" �	�#
� ��$$ ��	

�� ���
������	����!�
�� �� 	
	�%

�&
�'

��
(� �(
���))#�

� 	�* �
+)�$ � � 	
	

(! �(
���))#�
('�(
���))#�

(� �(
���))#�

(� �(
���))#�(�(
���))#�(� �(
���))#�

(&�(
���))#�(� �(
���))#�

� �)�,
��)

(-�� ����� �
" � �� 	
	�. ��� ��/
��	���� 	01���
���
����� 	01��� (

� . 	
�2 ����� 	
� ����
� �
� �� 	
	� � �	�#
� ��$$ ��	
�� ���
������	������

�� �� 	
	�. ��� �� �%
" �	�#
� ��$$ ��	
�� ���
������	����&�

�� �� 	
	�%

�# ��
� �� 	
	 �� 	�* �
�$ �� 	
	
�(
���))#�" �	�#
� ��$$ ��	
�� ���
������	������

�� �� 	
	�%

�� ���� �� ���� �� �� �� �)�,
��)

" �	�#
� ��$$ ��	
�� ��
�
������	������ ��
�� 	
	�% �� ���
��� �� �� ������ ��

" �	�#
� ��$$ ��	
�� ���
������	���� �
�� �� 	
	�%

" �	�#
� ��$$ ��	
�� ���
������	����'�
�� �� 	
	�%

� ������ �� 	
	���
��
����	������ ���	�
��� 	01��� ���
���
�# ��
� 	01��� (
� . 	

� � �� �� 	
	��

� ������ �� 	
	���
��
����	����'� �� �� 	

	�

� ������ �� 	
	���
��
����	����!� �� �� 	

	�

� ������ �� 	
	���
��
����	���� � �� �� 	

	�

� ������ �� 	
	���
��
����	����&� �� �� 	

	�

� ������ �� 	
	���
��
����	������ �� �� 	

	�

� ������ �� 	
	���
��
����	������ �� �� 	

	�. ��� �� �

� ������ �� 	
	���
��
����	������ �� �� 	

	�

��� �" �� �" - �- �-% � �
�� �" - �- �-% �% �" �� �" � ��
��% � �
�� �" � �� ��% �% �" � �� ��% �

��� ���� �� ���� �� ��

��� ��� �� �

Fig. 3. CPN model of illustration RAS with banker’s algorithm.

136

After its execution, a finished process instance is replaced by a new process
instance in the place P0. In the BA control subsystem, it is reflected by a use
of the ChangeMaxNeed function in the inscription of the arc from the last
transition of the process type description to the Banker′sAlgData place – to
update maximal needed resources for the new process instance in the BA data
structure to the initial vInitMaxNeedPrimary value. Inscription of the arc (in
the illustration model from transition T9) looks like this:

ModifyBAData ((proc, vChangeT9),
ChangeMaxNeed ((proc, vInitMaxNeedPrimary), BAData))

3.3 Analysis Results

The effect of the banker’s algorithm to avoid deadlock states in a modelled
system is measured by a number of deadlock states in the occurrence graphs of
two CPN models. One is the RAS CPN model without the BA implementation
and the other one with it. It is expected that in the first case, the number of
deadlock states is not zero, i.e. there are deadlock states in the original RAS to
be eliminated. Then, if the deadlock avoidance of the BA is effective, the number
of deadlock states in the second model goes down to zero.

In the validation and verification phases, we also further used liveness and
home properties of the available analysis tool to check, if the existence of the
BA control does not restrict the behaviour of the model in an unappropriate
manner, i.e. if all the transitions in the model can occur and whether all reachable
markings form a home space. The state space report proved that it was correct.

Furthermore, it is interesting to see, how the algorithm restricts the state
space of the original CPN model, since it avoids not only the deadlock states,
but also unsafe states leading to deadlock states and also some safe states that
are however not accepted by the algorithm due to its suboptimal calculation (see
section 2.2).

Tests of the outlined algorithm with two RAS CPN models always showed
that it avoids all deadlock states as expected. In the illustrative example, the
CPN model of the RAS without the BA contains 12 deadlock states, while the
CPN model with the BA contains no deadlock states. As for restriction of their
state space, the occurrence graph of the original model has 152 nodes and 378
arcs, while the BA-controlled model has only 113 nodes and 260 arcs.

4 Conclusion

In this paper, we focused on an implementation of the banker’s algorithm (BA)
for deadlock avoidance in a resource allocation system (RAS) with non-sequential
processes with flexible routing and a use of resources of multiple types at once,
all modelled as a coloured Petri net in the environment of the CPN Tools. The
original version of the BA has been slightly modified in the direction of its appli-
cation for the outlined system, requiring the introduction of vectors of relative

137

changes necessary for processes combining all three outlined properties: concur-
rent processing, flexible routing and use of multiple resources of multiple types
at once.

The algorithm has been verified to be effective on such a system. This result
we consider as the major contribution of this work, since the application of the
banker-like algorithms to such a class of RAS has not been apparently discussed
in the literature so far.

Selection of the CPN Tools environment was mainly motivated by the abilities
of the fast construction of the underlying RAS model in the CPN and of the
available analysis of occurrence graphs on the presence of deadlock states. Both
proved to be beneficial. Especially the analysis ability is a very strong tool – it
enables to further study behaviour of the BA and its versions on a toy example
via detailed analysis of its state space.

However, the implementation of the basic version of the BA in 12 CPN ML
functions looks rather complicated compared to sequential programming. Also
maintaining information about the global state of a RAS modelled in CPN is
rather complicated – it is concentrated to one place, which is connected to many
transitions, where allocation requests occur. This makes the CPN more difficult
to read, especially for large RAS models. Solution to this is using hierarchy for
the CPN: dividing process subnet(s) in RAS to CPN subpages, each of them
containing only a few transitions. In the illustrative example in the paper, the
process subnet could be split e.g. to three subpages. However, in order to show
the whole approach, the hierarchy was not used for the model in this paper.

Further issues are connected to the use of the outlined results in the field,
where the motivation comes from – for deadlock avoidance in computer simula-
tion of complex transportation systems.

First, the complex models produce very large state spaces that cannot be
fully verified in a reasonable time like the presented simple example. We believe
that once the BA has been verified on a small scale example preserving the
outlined properties of the complex transportation system, it will be effective
also on complex models with tens of process types and process instances and
hundreds of resource types as well as resource units. The research will be rather
focused on making the run of the BA more effective for the large system.

Secondly, the BA needs to be adjusted to a more complicated way of alloca-
tion and release of resources that is currently present in the original simulation
models. The first version of the BA with this property has been already made [1],
however, it requires further research and testing.

Thirdly, apart from the BA’s basic version, we have implemented two more
versions of the BA according to [5] – for partially-ordered and V1-ordered states
in the CPN Tools [1]. Their explanation requires however more space and is
thus outside of scope of this paper. The open question here is, if implementation
of other versions, for Vn-ordered states (according to the mentioned paper) is
effective and beneficial in our application field.

All the briefly outlined issues frame our future work in this context.

138

Acknowledgements. This paper has been supported by the grant of the Sci-
entific Grant Agency VEGA 1/4057/07 in the Slovak Republic and the research
project MŠM 0021627505 – Theory of transport systems in the Czech Republic.

References

1. Žarnay, M.: Systém na podporu rozhodovania pre riadenie dopravných procesov
[Decision-support system for transportation systems control]. PhD thesis, Faculty
of Management Science and Informatics, University of Žilina (January 2007) in
Slovak.

2. Žarnay, M.: Solving deadlock states in model of railway station operation using
coloured petri nets. In Tarnai, G., Schnieder, E., eds.: Formal Methods for Au-
tomation and Safety in Railway and Automotive Systems. (2008) to appear

3. Peterson, J.L.: Operating System Concepts. Addison-Wesley (1981)

4. Dijkstra, E.W.: Co-operating sequential processes. In Genuys, F., ed.: Program-
ming Languages, New York, Academic Press (1968) 43112 Reprinted from: Techni-
cal Report EWD-123, Technological University, Eindhoven, the Netherlands, 1965.

5. Lawley, M.A., Reveliotis, S.A., Ferreira, P.M.: The application and evaluation of
banker’s algorithm for deadlock-free buffer space allocation in flexible manufactur-
ing systems. International Journal of Flexible Manufacturing Systems 10 (1998)
73–100

6. Tricas, F., Colom, J.M., Ezpeleta, J.: Some improvements to the banker’s algorithm
based on the process structure. Proceedings of IEEE International Conference on
Robotics and Automation 3 (2000) 2853–2858 San Francisco, CA, USA.

7. Tricas, F.: Deadlock Analysis, Prevention and Avoidance in Sequential Resource
Allocation Systems. PhD thesis, Departamento de Informática e Ingenieŕıa de
Sistemas, Universidad de Zaragoza (May 2003)

8. Ezpeleta, J., Tricas, F., Garćıa-Vallés, F., Colom, J.M.: A banker’s solution for
deadlock avoidance in fms with flexible routing and multiresource states. IEEE
Transactions on Robotics and Automation 18(4) (August 2002) 621–625

9. Lang, S.D.: An extended banker’s algorithm for deadlock avoidance. IEEE Trans-
actions on software engineering 25(3) (1999) 428–432

10. Reveliotis, S.A.: Conflict resolution in agv systems. IIE Transactions 32(7) (2000)
647–659

11. Ezpeleta, J., Valk, R.: A polynomial deadlock avoidance method for a class of
nonsequential resource allocation systems. IEEE Transactions on Systems, Man
and Cybernetics, Part A 36(6) (2006) 1234–1243

Appendix

A complete listing of colour sets, variables, constant values and functions used for
the implementation of the BA in the CPN ML is available here. It complements
the description of the BA implementation in the CPN ML in the section 3.1
Concrete values are related to the presented illustrative CPN model.

139

Data Structures

colset cProcessID = INT;
colset cResources = with R1 | R2 | R3;
colset cResNumbersList = list INT;
colset cProcessList = list cProcessID;
colset cResources4Process = product cProcessID * cResNumbersList;
colset cAllProcessesWRes = list cResources4Process;
colset cBankerAlgData = product cAllProcessesWRes *

cAllProcessesWRes * cResNumbersList;

var proc: cProcessID;
var BAData, BADataAmended: cBankerAlgData;

val vInitMaxNeedPrimary = [2,3,1]
val vMaxNeedPrimarySecondaryDiff = [~1,0,1];
val vByteDiv = 16;
val vInitBAData =
([(1,[0,0,0]), (2,[0,0,0])],
[(1,vInitMaxNeedPrimary), (2,vInitMaxNeedPrimary)],
[3,3,3]);

val vChangeT1 = [1,0,1];
val vChangeT2 = [1,1,0];
val vChangeT3 = [0,1,1];
val vChangeT4 = [0,1,~1];
val vChangeT5 = [0,1,0];
val vChangeT6 = [~16,1,~16];
val vChangeT7 = [0,~16,1];
val vChangeT8 = [~32,0,0];
val vChangeT9 = [0,~32,~16];

General Functions

fun ModifyList (pA, _, []) = pA
| ModifyList ([], _, pB) = pB
| ModifyList (pA, pOper, pB) =

(hd pA + pOper * hd pB) :: ModifyList (tl pA, pOper, tl pB);

fun IsIn ([],[]) = true
| IsIn ([], _) = false
| IsIn (_, []) = false
| IsIn (pA, pB) =

if hd pA <= hd pB andalso IsIn (tl pA, tl pB)
then true else false;

140

fun ULBits ([]) = []
| ULBits (pList) =

if hd pList < 0 then
~(~(hd pList) div vByteDiv + ~(hd pList) mod vByteDiv) ::
ULBits (tl pList)

else ((hd pList) div vByteDiv + (hd pList) mod vByteDiv) ::
ULBits (tl pList);

fun LowerBits ([]) = []
| LowerBits (pList) =

if hd pList < 0 then
~(~(hd pList) mod vByteDiv) :: LowerBits (tl pList)

else ((hd pList) mod vByteDiv) :: LowerBits (tl pList);

Data Structure Manipulation Functions

fun LocateListInPRL ([], _) = []
| LocateListInPRL (pPRL: cAllProcessesWRes, pKey) =

if #1 (hd pPRL) = pKey then #2 (hd pPRL)
else LocateListInPRL (tl pPRL, pKey);

fun ModifyPRL_List ([], _, _) = []
| ModifyPRL_List (pPRLList: cAllProcessesWRes,
pOper, pPRLItem: cResources4Process) =

if #1 (hd pPRLList) <> #1 (pPRLItem)
then (hd pPRLList) ::

ModifyPRL_List (tl pPRLList, pOper, pPRLItem)
else (#1 (hd pPRLList), ModifyList (#2 (hd pPRLList),
pOper, #2 pPRLItem)) :: (tl pPRLList);

fun RemoveItemFromPRL_List ([], _) = []
| RemoveItemFromPRL_List (pPRL_List: cAllProcessesWRes, pKey) =

if #1 (hd pPRL_List) = pKey then tl pPRL_List
else hd pPRL_List ::
RemoveItemFromPRL_List (tl pPRL_List, pKey);

fun ChangeMaxNeed (pChange, pBAData: cBankerAlgData) =
(#1 pBAData,
ModifyPRL_List (#2 pBAData, 1, pChange),
#3 pBAData);

fun ModifyBAData (pChange: cResources4Process,
pBAData: cBankerAlgData): cBankerAlgData =
(

ModifyPRL_List (#1 pBAData, 1,
(#1 pChange, ULBits(#2 pChange))),

141

ModifyPRL_List (#2 pBAData, ~1,
(#1 pChange, LowerBits(#2 pChange))),

ModifyList (#3 pBAData, ~1, ULBits(#2 pChange))
);

Main Algorithm Functions

fun FindAllowedProcess ([], _): cProcessID = ~1
| FindAllowedProcess (pRemainNeed: cAllProcessesWRes,
pAvail: cResNumbersList): cProcessID =

if IsIn (#2 (hd pRemainNeed), pAvail) then #1 (hd pRemainNeed)
else FindAllowedProcess (tl pRemainNeed, pAvail);

fun IsStateOrdered (_, [], _) = [~2] (* recursion at the bottom *)
| IsStateOrdered (Alloc, RemainNeed: cAllProcessesWRes,

Avail: cResNumbersList): cProcessList =
let
(* looking for a process that can be chosen to the order *)
val proc = FindAllowedProcess (RemainNeed, Avail)

in
(* if unsuccessful, state is not ordered and return [~1] *)
if proc = ~1 then [~1]
else

(* if process found, continue to the next round *)
let val result = IsStateOrdered

(RemoveItemFromPRL_List (Alloc, proc),
RemoveItemFromPRL_List (RemainNeed, proc),
ModifyList (LocateListInPRL (Alloc, proc), 1, Avail))

in
case result of (* of previous round of recursion *)
[~1] => [~1] (* was unsuccessful, pass it further *)

| [~2] => [proc] (* returned from end of recursion,
start to build up the ordered process sequence *)

| _ => proc :: result (* was successful:
building up the process sequence *)

end
end;

fun CanItBeAllocated (pRequest: cResources4Process,
pBAData: cBankerAlgData): BOOL =

if IsStateOrdered (ModifyBAData (pRequest, pBAData)) = [~1]
then false
else true;

142

Augmenting a Workflow Management System with
Planning Facilities using Colored Petri Nets

R.S. Mans1,2, N.C. Russell1, W.M.P. van der Aalst1, A.J. Moleman2, P.J.M. Bakker2

1 Department of Information Systems, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB, Eindhoven, The Netherlands. {r.s.mans,n.c.russell,w.m.p.v.d.aalst}@tue.nl

2 Academic Medical Center, University of Amsterdam, Department of Quality Assurance and
Process Innovation, Amsterdam, The Netherlands. {p.j.bakker,a.j.moleman}@amc.uva.nl

Abstract. Traditional workflow management systems distribute workitems to users
via a worklist and leave the actual timing of workitem execution to the individual
resource(s) performing the task. In work environments in which resources are scarce,
expensive and multiple resources are necessary to undertake the workitem, often an
appointment-based approach is utilized in order to maximize resource utilization. To
this end, we propose the extension of a workflow management system with plan-
ning and monitoring facilities in order to guarantee effective resource utilization and
minimize dead-time for resources as a result of canceled appointments. This paper
describes the approach taken in which first a conceptual model for these extensions
has been developed which is based on Colored Petri Nets. Second, based on the con-
ceptual model, a prototype has been developed using YAWL and the collaborative
software product Microsoft Exchange Server 2007. The applicability of the approach
for the development of large scale systems will be demonstrated by elaborating on the
conceptual model and the experiences that have been gained. Finally, the operation
of the system is demonstrated in the context of a real-life healthcare scenario.

1 Introduction

Nowadays, hospitals are focusing on improving the quality of care and the service that is de-
livered to a patient. Typically, when making appointments for a patient, patient preferences
are taken into account. Examples of this include considering whether appointments can all
be scheduled on one day, and querying the availability of the patient. Similarly, constraints
imposed by doctors, nurses, rooms, and medical equipment also need to be considered.

Usually, the scheduling of these appointments is done on a manual basis and does not take
into account which preceding tasks are necessary and whether they have been performed.
For example, in order to perform surgery it is important that the patient is first seen by
an anaesthetist in order to determine the anaesthetics that are needed. Moreover, prior
to surgery a last check is performed before proceeding with the final preparations for the
operation. If these tasks are not performed in time, this can lead to a delay in performing the
operation. Another example occurs where during a regular meeting to discuss the status of
patients and plan subsequent treatment, a doctor finds out that not all required information
is available. The above mentioned examples lead to the inefficient use of scarce, expensive
resources, and necessitate the rescheduling of appointments.

Workflow management systems support process execution by managing the flow of work
such that individual workitems are done at the right time by the proper person [1]. The
benefits being that processes can be executed faster, more efficiently, and their progress can
be monitored. Based on business process definitions, which define the ordering between the

143

tasks which need to be performed, so called workitems are distributed to resources (typically
people) for execution. A workitem is an indivisible task of work and corresponds to a task
which needs to be performed in the context of a given case. An example of a workitem
is the performance of a “CT-scan” for patient “Rose”. Typically, the user sees available
workitems via a so called worklist, which can be seen as a to-do list in which people can
view the various workitems that they need to perform. At an arbitrary point in time, a user
can pick a workitem and perform the task associated with it.

In healthcare the actual execution of a workitem is often linked to an appointment in
which several people can be involved. In other words, an appointment-based approach is
often utilized for scheduling workitem execution due to the scarce and limited availability of
resources that are involved. However, this schedule-based way of working is not supported by
the worklist approach offered by current workflow management systems. Moreover, patient
preferences need to be taken into account when making these appointments. Consequently,
we need to extend workflow management systems with planning facilities. Furthermore,
planned appointments need to be monitored to ensure that preceding tasks, in the corre-
sponding process definition, are performed on time. If limited time is left to complete them,
this needs to be signalled. If they can not be performed on-time, the appointment and pos-
sibly subsequent appointments will need to be rescheduled, which is highly undesirable. So,
in addition to planning facilities there is the need to incorporate monitoring facilities as
well. Note that the focus is on how workflow management can be integrated with scheduling
and monitoring facilities instead of extending the functionalities of a workflow management
system or a planning system.

In this paper, we present the approach taken to design and implement a workflow system
offering (re)scheduling and monitoring facilities. Moreover, the appointments made can also
be shown to the people involved. Figure 1 sketches the approach that has been used.

First of all, we started by augmenting a workflow language with planning functional-
ity. Then, we created a conceptual model of a workflow management system augmented
with planning and monitoring facilities. The conceptual model is based on Colored Petri
Nets (CPNs) [9] thus providing a complete and formal specification of the system to be
implemented. The complete specification of the system in CPNs consists of 27 pages, 377
transitions, 169 places, and over 1000 lines of ML code. The construction of the whole model
was undertaken by one person, with advanced knowledge about CPNs and CPN Tools, in
about 3 months. This, together with the size of the model, illustrates the overall complexity
of the system. Finally, we build a prototype of the system. For this prototype we used the
open-source, service-oriented architecture of YAWL [2] and the Microsoft Exchange Server
2007 together with several Outlook 2003 clients. The implementation of the system was
done by one person, having already built several software tools, in around three months.

The paper proceeds as follows: Section 2 introduces the research approach that was
followed. Section 3 describes how a workflow language can be augmented with planning
functionality, followed by a description of the conceptual model, constructed in CPNs, in

Conceptual model

(CPN)

Implementation
(YAWL + Exchange Server 2007

+ Outlook 2003)

Workflow language

(planning WF-net)

input
(manual)

translation

Fig. 1. Overall approach. The workflow language serves as input for the conceptual model. The
conceptual model is used as design model for the implementation of the system.

144

Section 4. Section 5 elaborates on the implementation of the system and outlines a con-
crete application of the realized system. Section 6 presents related work. Finally, Section 7
discusses the experiences of following the aforementioned approach and concludes the paper.

2 Approach

In this section, we elaborate on the approach that has been followed, as shown in Figure 1,
to provide a concrete implementation of a workflow management system augmented with
planning and monitoring facilities. As can be seen in the figure, a model-based approach has
been used, in which intermediate models are used in order to obtain the final implementation.

The first step was to get insight into how a workflow language could be augmented
with planning functionality. As Petri nets are extensively used in Workflow (WF) modeling,
primarily because of their mathematical definition and graphical representation, WF-nets
were chosen as the basis for these extensions. The main advantage of this choice was that
it assisted in the formalization of the augmented workflow language. Note that in principle
these extensions can be applied to any workflow language.

Next, we constructed the conceptual model of the system to be realized. A conceptual
model serves in understanding a problem domain and identifying how functionality can be
added which should collaborate with already existing functionality. The conceptual model
that has been constructed is based on CPNs [9]. CPNs provide a well-established and well-
proven language suitable for describing the behavior of systems involving characteristics
such as concurrency, resource sharing, and synchronization. In this way, they are an excellent
candidate for the formalization of such a system.

The CPN language is supported by the CPN Tools offering [9] which we used for creating,
simulating and analyzing the model being constructed. This setting allows for experimen-
tation, during which deep insights and a good understanding of the design and behavior of
the system can be gained. Additionally, it allows for rapid prototyping. A complete model of
the system can be executed, simulated and analyzed. Flaws in the design can be detected
and fixed, leading to a more complete specification. Finally, the system has been imple-
mented using YAWL, Microsoft Exchange Server 2007 and several Outlook 2003 clients by
(manually) translating the conceptual model into a working system.

It is important to note that the workflow language is at a different level of abstraction to
the conceptual model and the implementation. The workflow language is used as input for
the conceptual model. However, the conceptual model and the implementation operate at
a similar level. The conceptual model is in such a level of detail that it completely specifies
the behavior of the system to be implemented. So, on the basis of the conceptual model, we
immediately implement the desired functionality and no other graphical models have been
used other than the conceptual model and the implementation. The difference between them
is that the conceptual model abstracts from implementation details and language specific
issues. The advantage of this is that for the conceptual model we only need to consider the
functionality that will be provided by the system and that for the implementation we only
need to focus on realizing a working system.

3 Workflow Language

In order to extend workflow systems with planning functionality some new terminology
and concepts need to be introduced. We will use a running example for this purpose. It is

145

assumed that the reader is familiar with basic workflow management concepts, like “case”,
“role”, and so on [1].

3.1 Flow and Schedule tasks

Figure 2 outlines a hospital process in which a patient suspected to be suffering from a lung
disease is diagnosed.

endstart

admission
register
patient

make documents
and patient card give information

and brochures

assistant doctor nurse

Jane Marc

Nick

Sue

Rose

d:15
r:nurse

d:15
r:nurse

d:30
r:nurse

diagnosis

d:30
r:nurse

d:30
r:doctor

radiologist

Anne
Arthur

p1

p4

p5

p7

p6

p2

p3

p8

p10

p11

p9

CT-scan

lung function test

bronchoscopy
first consult

d:60
r:doctor

d:30
r:radiologist

d:45
r:assistant,nurse

d:60
r:assistant,nurse

Fig. 2. WF-net for the running example showing schedule (S) and flow (F) tasks. The prefix “d:”
indicates the average time needed for performing the task and prefix “r:” indicates which roles are
necessary to perform the task. From each associated role, exactly one person needs to be assigned
to the task. Note that the “register patient” and “give information and brochures” tasks have XOR
split and join semantics associated with them. Moreover, the “give information and brochures” and
“diagnosis” tasks have OR split and join semantics. Furthermore, for all of the schedule tasks, the
patient is required to be present.

As can be seen in the figure, first the admission is done by a nurse, i.e., some patient
related data is recorded and an appointment is made for the first visit of the patient (task
“admission”). The next step is that the patient arrives at the outpatient clinic for the first
appointment with the doctor (task “register patient”), followed by the first appointment
with the doctor (task “first consult”). In this step, a decision is made about the tests
to be performed before the second visit of the patient. In parallel, a nurse prepares the
documents and the patient card (task “make documents and patient card”). Afterwards,
a nurse provides information and brochures to the patient (task “give information and
brochures”). Next, the diagnostic tests are performed which are needed for the diagnosis of
the patient which is performed by a doctor (task “diagnosis”). For these diagnostic tests a
choice can be made from the following tests: CT-scan (task “CT-scan”), lung function test
(task “lung function test”), or bronchoscopy (task “bronchoscopy”).

From this example, it can be seen that two kinds of tasks can be distinguished: flow
tasks and schedule tasks. In the figure, a flow task is labeled by an “F” and a schedule task
is labeled by an “S”.

146

Tasks with an “F” annotation should be performed as soon as a resource is able to
undertake them. For example, task “make documents and patient card” can be performed
by any nurse when task “register patient” is finished. Basically, a flow task can be performed
at an arbitrary point in time when a resource becomes available and there is no reason to
postpone it to a specific point in time. These tasks can be presented in an ordinary worklist
where a given resource can start working on the task when it becomes available. Therefore,
as only a single resource is needed to perform the task, it is sufficient to define only one role
for them. For example, for the flow task “make documents and patient card” only a single
nurse is needed which explains why the “nurse” role has been defined.

The tasks annotated by an “S” in the figure correspond to schedule tasks. For these tasks
typically multiple resources are required, with different capabilities. A schedule task needs
to be performed by one or more resources at a specified time. As multiple resources can be
involved in the actual performance of a schedule task, at least one role needs to be defined
for each of them. For each role specified, only one resource may be involved in the actual
performance of the task. For example, for task “lung function test” an appointment is needed
in which one assistant and one nurse are involved which explains why the “assistant” and
“nurse” roles are defined. Note that for the schedule tasks the patient may also be involved
which means that the patient is also a required resource for these tasks. The patient is not
involved in the actual execution of a task but is only a passive resource who needs to be
present. For that reason, the patient is not added to any of the roles for the task, nor are
they defined in terms of a separate role. Instead, it is necessary to identify which schedule
tasks the patient needs to be present for.

Flow tasks are presented in an ordinary worklist. However, schedule tasks are presented
in a calendar as for each of them specific appointments need to be made involving multiple
resources. Each resource has its own specific calendar in which the appointments made for
schedule tasks can be seen. In this way, a single appointment made for a schedule task can
appear in multiple calendars but only in the calendars of the resources which are involved
in the actual performance of the task even though a workitem does not yet exist. When the
workitem becomes available, the schedule task can be performed. Note that an appointment
in a calendar may also refer to an activity which is not workflow related.

For the booking of appointments in a calendar, it is important to mention that a cal-
endar consists of blocks of equal length. So, all blocks represent the same timeperiod. So,
a block may either represent one hour but also one minute. Depending on the length of
an appointment and the timeperiod of a block, an appointment may occupy several blocks.
For example, the “first consult” task has a duration of 60 blocks if a block represents one
minute.

To be more precise, for the correct scheduling of appointments for schedule tasks it
must be known at runtime what the estimated duration is of the appointment and what
the earliest time is that the appointment may be booked. Therefore, for every task in the
process model an average duration needs to be specified. As we use the notion of blocks in
calendars, we specify the duration of tasks in terms of blocks. In Figure 2 for each task this is
indicated by prefix “d:”. For example, one blocks takes 1 minute and task “make documents
and patient card” requires 30 blocks which means that the task takes 30 minutes on average
to complete.

For reasons of simplicity we only include the average task duration for a task to complete.
Ideally, more information on the probability distribution could be used, e.g., the standard
deviation.

147

3.2 Formalization

In this section, a formalization of the augmented workflow language will be presented. A
WF-net is a Petri net with one initial and one final place such that every place or transition
is on a directed path from the initial to the final place [1]. The execution of a case is
represented as a firing sequence that starts in the initial marking, consisting of a single
token in the initial place. The token in the final place with no tokens left in the other places
indicates proper termination of case execution. A model is called sound if every reachable
marking can terminate properly.

WF-net extended with the schedule and flow tasks is called a planning WF-net (pWF-
net).

A pWF -net is a tuple N = (P, Tf , Ts, F, CR, Res,Role,R, Rtf, Rts,D), where

– P is a non-empty finite set of places;
– Tf is a finite set of flow tasks;
– Ts is a finite set of schedule tasks;
– Tf ∪ Ts = T and Tf ∩ Ts = ∅ and Tf ∪ Ts 6= ∅, i.e., Ts and Tf partition T . So, a task

is either a flow task or a schedule task, but not both. Moreover, the set T may not be
empty;

– F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation);
– CR ⊆ Ts is a set of schedule tasks for which the human resource for whom the case is

being performed is also required to be present. For our healthcare example this means
the schedule tasks for which the patient is required to be present during their execution.

– Res is a non-empty finite set of resources;
– Role is a non-empty finite set of roles;
– R: Res→ P(Role) is a function which maps resources onto sets of roles;
– Rtf : Tf 9 Role is a partial function which maps flow tasks onto roles;
– Rts: Ts → P(Role)\{∅} is a function which maps schedule tasks onto at least one role;
– D: T → N is a function which maps tasks onto a the number of blocks that are needed

for the execution of the task. This value indicates the average time it takes to execute
the task. One block corresponds to a specific actual duration, e.g. a block can be half
an hour or one minute3.

The running example in Figure 2 can be easily mapped onto this formalization. For
example, the “lung function test” task belongs to Ts, and where Rts(lung function test) =
{assistant, nurse} and D(lung function test) = 60.

4 Conceptual Model in Colored Petri Nets

The conceptual model which defines the precise behavior of a workflow management system
augmented with planning facilities is defined in terms of a CPN model. The complete CPN
model consists of a series of CPNs in which several layers can be distinguished. Figure 3
shows the hierarchy of CPNs in the CPN model, together with the relationships between
them. In total, there are 27 distinct CPNs. An indication of the complexity of each net is
expressed by the p and t value included for each them, showing the number of places and
transitions they contain. It is not possible to discuss all the nets in details in this paper. Only
the blocks in Figure 3 which are colored grey will be discussed. However, this is sufficient
to give an overview of the operation of the model. At the end of the section, Section 4.4, we
will focus on the analysis of the conceptual model.
3 Currently, we only use the average value for (re)planning. However, in the future we plan to

utilize more information (variance etc).

148

 p:31 t:4

architecture

 p:16 t:18

planning service

 p:45 t:2

workflow client
application

 p:30 t:15

workflow engine

 p:7 t:5

book into calendar

 p:49 t:33

worklist
management

 p:4 t:2

connect / disconnect

 p:3 t:1

available processes

 p:2 t:1

data start case

 p:5 t:2

allocate workitem

 p:7 t:3

allocated workitems

 p:5 t:2

deallocate workitem

 p:6 t:1

beginning start
case

 p:2 t:1

response
schedule service

 p:15 t:7

user request
appointment

 p:9 t:2

regular check
schedule status

 p:5 t:1

available workitems

 p:24 t:5

graphical user
interface

 p:17 t:10

available processes

 p:7 t:6

log on and off

 p:9 t:6

available workitems

 p:31 t:20

calendar

 p:18 t:12

allocated workitems

 p:14 t:7

check in workitem

 p:9 t:6

data workitem

 p:5 t:2

cancel case

 p:4 t:1

update rush
status tasks

(see Figure 4)

(see Figure 6)

(see Figure 7)

Fig. 3. CPN hierarchy of the conceptual model: each square represents a (sub)net containing places
and transitions.

4.1 Overview

Figure 4 shows the topmost net in the CPN model and gives an idea of the main com-
ponents in the system and the interfaces between them. It can be seen in the figure that
there are three substitution transitions. They represent the major functional units in the
system, namely: workflow engine, workflow client application and planning service. Each
place which is connecting two components forms part of the interface between the two com-
ponents, except for the place “calendars users” which stores the calendars for each user. The
components of the system are set-up in a service-oriented way such that the workflow client
application and planning service can interchange data with the workflow engine on a loosely
coupled basis. In order to guarantee this, the interface, which defines how two components
should interact, should be as minimal as possible. However, this has the advantage that the
components can easily be coupled with any other workflow engine component.

The conceptual model consists of three main components.

– The workflow engine is the most important component of the workflow system as it
is the heart of the system. Based on the business process definition, the engine routes
cases through the organization and ensures that the tasks of which they are comprised
are carried out in the right order and by the right people. Next to this, the engine takes
care of offering workitems to users, once they become available for execution.

– The workflow client application communicates the distributed workitems to the
users so that they can select and perform them. In our case, workitems that correspond
to flow tasks are advertised via the worktray. The appointments that are created for
schedule tasks are advertised via a calendar. Once a workitem becomes available for such
an appointment, the work can be performed. However, where appointments have been
made, users can express their dissatisfaction with the nominated scheduling by request-
ing: (1) the rescheduling of the appointment, (2) the rescheduling of the appointment
to a specified data and time, or (3) the reassignment of the appointment to another

149

1`[{piID="1",ciID=0,
graph=(["A","E","F","B","C","D","p1","p2","p3","p4","p5","end"],
[("A","p1"),("A","p2"),("p1","B"),("p2","C"),("B","p3"),("C","p4"),
("p3","D"),("p4","D"),("D","p5"),("p5","E"),("p5","F"),("E","end"),("F","end")]),
netp=[("manipulateType","non_user")],
nodep=[("B",[("duration","7"),("splitType","XOR"),("joinType","XOR"),
("typeTask","schedule"),("roles","[assistant,nurse]")]),
("C",[("duration","2"),("splitType","XOR"),("joinType","XOR"),("typeTask","schedule"),
("roles","[assistant]")]),("D",[("duration","6"),("splitType","XOR"),("joinType","AND"),
("typeTask","schedule"),("roles","[doctor]")]),("A",[("duration","1"),("splitType","AND"),
("joinType","XOR"),("typeTask","flow")]),("E",[("duration","1"),("splitType","XOR"),
("joinType","XOR"),("typeTask","flow")]),("F",[("duration","1"),("splitType","XOR"),
("joinType","XOR"),("typeTask","flow")]),("p1",[("duration","0"),("splitType","XOR"),
("joinType","XOR"),("typeTask","dummy")]),("p2",[("duration","0"),("splitType","XOR"),
("joinType","XOR"),("typeTask","dummy")]),("p3",[("duration","0"),("splitType","XOR"),
("joinType","XOR"),("typeTask","dummy")]),("p4",[("duration","0"),("splitType","XOR"),
("joinType","XOR"),("typeTask","dummy")]),("p5",[("duration","0"),("splitType","AND"),
("joinType","XOR"),("typeTask","dummy")]),("end",[("duration","0"),("splitType","XOR"),
("joinType","AND"),("typeTask","dummy")])],arcp=[(("A","p1"),[]),(("A","p2"),[]),(("p1","B"),[]),
(("p2","C"),[]),(("B","p3"),[]),(("C","p4"),[]),(("p3","D"),[]),(("p4","D"),[]),(("D","p5"),[]),
(("p5","E"),[]),(("p5","F"),[]),(("E","end"),[]),(("F","end"),[])]}]

workflow client
application

workflow client application

workflow
engine

workflow engine

planning service

planning service

response allocated
schedule tasks

ResWorkItemIdentifiers

request allocated
schedule tasks

Resource

notification
task

[]

ScheduleStatusTasks

disconnect

Resource

connect

Resource

response user
request

ResponseUser

planning
problem

[]

ListNodeArcGraphProps

continue
workitem

WorkItemIdUser

Time

0

smallint

available
cases

ProcessesUser

get available
cases

Resource

response

ResponseUser

allocated
workitems

WisUser

get allocated
workitems

WisTaskType

cancel
case

CaseID

allocate
workitem

WorkItemIdUser

get available
wi user

Resource

complete
data start

case
DataStartCase

data attr
start case

DataStartCase

start
case

StartCase

calendars users

[]

Calendars

user request:
move

appointment

UserReschedule

user request:
reject

appointment

UserRejectedAppointment

user request:
reschedule

appointment

UserRescheduleFromTo

check
in workitem

WorkitemUser

available
wi user

WisUser

deallocate
workitem

WorkItemIdUser

wi_data
user

WorkitemUser

workflow engine

workflow client application

planning service

Fig. 4. Overview of the conceptual model.

employee. In addition, the workflow client also indicates whether limited time is left in
which to undertake workitems related to preceding tasks for an appointment.
The users who utilize the workflow system interact with it via the workflow client appli-
cation. All allowed user actions are modeled in subnets of the “graphical user interface”
net, which in its turn is a subnet of the “workflow client application” net (see Figure 3).

– The planning service component provides the planning capabilities needed by the sys-
tem. The planning service behaves in a passive way and its operation must be explicitly
triggered. Its operation is initiated by the engine which sends a planning problem for a
specific case. This planning problem is represented as a graph indicating the planning
constraints which hold between the tasks in the corresponding process definition for the
case, e.g. the ordering between tasks. Based on this graph, the planning service is re-
sponsible for determining whether appointments need to be (re)scheduled. Moreover, the
planning service identifies whether limited time is left for the completion of workitems
for preceding tasks of an appointment. For such workitems, a warning is forwarded to
the users via the workflow engine.

An example of a planning problem that is sent from the workflow engine to the planning
service can be found in Figure 5. As can be seen in the figure, the planning graph is formu-
lated as a graph having nodes and directed arcs between the nodes. Additionally, the graph,
the nodes and the arcs may have properties. These properties are represented as name-value
attributes. In this way, we can add additional constraints to the graph which are relevant
for the planning activity. For correct planning of a case, the ordering of tasks in a given
process definition is relevant. Therefore, for the corresponding process definition of a case,

150

(duration,30)
(roles,nurse)

(typeTask,flow)
(splitType,OR)
(joinType,AND)
(status,enabled)

p1
register
patient p3

p2

make documents
and patient

card

first
consult

p4

p5

give
information

and
brochures

p6 CT-scan

broncho
scopy

end

p8

p9

p11

diagnosis

start admission

p7 p10
lung function

test

Fig. 5. Planning graph for the running example in Figure 2. The “give information and brochures”
task is currently enabled.

we map all nodes and arcs of the process definition to the graph. If the human resource for
which the case is being performed is also required in order to perform some of the schedule
tasks, then the name of the calendar for this resource is included together with the names
of the relevant schedule tasks. If a workitem exists for a certain node, this is also included
in the graph as only this task or subsequent tasks need to be (re)scheduled. Additionally,
the following information for a task is included: split and join semantics, whether the node
represents a schedule, flow, or dummy (i.e. routing) task, and the roles which are involved
in performing the task. So, in Figure 5, we can see how the graph of Figure 2 is mapped to a
planning graph. For the “give information and brochures” task it is shown that the average
duration is 30 minutes, only a single nurse is needed to execute the task, it is a flow task
exhibiting OR split and AND join semantics, and a workitem exists which is in the enabled
state. In order to simplify the graph, the properties of the other nodes have not been shown.

4.2 Workflow Engine

Figure 3 shows that the workflow engine comprises of 15 distinct CPNs. In total, they
consist of 125 places and 54 transitions thus illustrating that the engine demonstrates fairly
complex behavior. The naming of the different subnets in the workflow engine CPN gives a
good overview of the functionality that is provided by the workflow engine as they all appear
as substitution transition on the workflow engine subpage. It is not possible to describe all
aspects of these subnets in detail. Hence, we focus on a specific subnet, the checking in of
workitems (substitution transition “check in workitem”), which will be discussed in detail.

Before discussing the operation of this subnet, it is important to mention that a workitem
passes through a series of states during execution. We make a distinction between the
following three states: enter, execution, and completion. A workitem is in the entered state
when it may be executed, but it is not yet been allocated to a resource. A workitem is the
execution state, when it has been allocated. A workitem is in the completed state, when it
has been checked back into the engine, indicating that its execution is completed.

The process associated with the checking in of a workitem is depicted in Figure 6. The
thick black lines in the figure shows the paths that can be followed when a request for
checking in a workitem arrives at the “check in workitem” place for a given case. Starting
from this place it is checked whether: (1) there is a corresponding workitem with the same id
in the executing state (place “state cases”), (2) the case is active (place “active cases”), and
(3) the case is not blocked (place “blocked cases”). If one of the first two prerequisites are

151

om

lnagp

lnagp

pd
lnagp2

ru

1`S(s2) ++
1`enWIs(eWIs3) ++
1`exWIs(execWIs3)++
1`resAllF(resAlloc5)

1`S(s3) ++
1`enWIs(eWIs4) ++
1`exWIs(execWIs4)++
1`resAllF(resAlloc6)

cids

cids2pcu

1`psS(s1) ++
1`psenWIs(eWIs2) ++
1`psexWIs(execWIs2)++
1`psresAllF(resAlloc2)

cids2

cids2

1`psS(s)++
1`psenWIs(eWIs2)++
1`psexWIs(execWIs2)++
1`psresAllF(resAlloc2)

pcu 1`psS(s)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs)++
1`psresAllF(resAlloc2)

ru

cids2

1`S(s3)
1`S(s2)

pcu

pd

cids

1`psS(s)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs)++
1`psfwi(fuwi)

1`psS(s)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs)++
1`psresAllF(resAlloc2)

pcu

pd

cids
1`psS(s)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs)++
1`psresAllF(resAlloc2)

cids

1`psS(s1)++
1`psenWIs(eWIs2)

pd

1`psS(s)++
1`psenWIs(eWIs)

ru

exWIs(execWIs)

widata

cids

cids ^^
[#ciID widata]

(#piID widata,
#ciID widata,#user widata)

1`S(s)++
1`enWIs(eWIs)++
1`exWIs(execWIs)++
1`resAllF(resAlloc)

1`psS(s1)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs2)++
1`psresAllF(resAlloc3)

pd

widata

change state and
calculate

planninggraph

input (pcu,s1,s2,eWIs2,eWIs3,execWIs2,execWIs3,resAlloc2,resAlloc5,cids,pd,lnagp,om);
output (s3,eWIs4,execWIs4,resAlloc6,cids2,ru,lnagp2);
action
changeState_and_Calc_planningGraph (pcu,s1,s2,eWIs2,eWIs3,
execWIs2,execWIs3,resAlloc2,resAlloc5,cids,pd,lnagp,om)

executing state
for schedule

tasks

input (eWIs,execWIs,pcu);
output (eWIs2,execWIs2);
action
exec_schedule_tasks
(eWIs,execWIs,pcu)

case
completed

[check_case_completed(cids,s,pd,pcu)]

input (s,pcu,cids);
output (s3,cids2,ru);
action
completeCase(s,pcu,cids)

finish
creating

workitems

[no_workitems_case_not_finished(pd,s,cids,pcu)]

create
workitem

[workitems_creation(pd,s,cids)]

input (s,eWIs,pd,cids,vsmint);
output (s1,eWIs2);
action
createWorkItem(s,eWIs,pd,cids,vsmint)

workitem
can not be
checked in

[wi_not_exists(widata,execWIs,cids2)]

input (widata);
output (ru);
action
not_existing_wi(widata)

check in
workitem

[check_in_enabled(widata,lnagp,execWIs,cids,cids2)]
input (widata,pd,s,execWIs,resAlloc);
output (s1,execWIs2,resAlloc3);
action
checkInWorkItem(widata,pd,s,execWIs,resAlloc)

organizational
model

I/O
OrgModel

blocked
cases2

blocked cases

[]

CaseIDs

NodeArcs
Graph

I/O

ListNodeArcGraphProps

active
cases2

active cases

[]

CaseIDs

new state
schedule

StateProcPlan

finished creating
workitems StateProcPlan

active
cases

active cases

[]

CaseIDs

response
Out

ResponseUser

blocked
cases

blocked cases

[]

CaseIDs

pid cid
user

pid cid user piIDxCiIDxUser

state
cases

I/O

StateProcess

partial update
state case

updated state process StateProcPlan

Process
Repository

I/O

ProcessDeclarations

check in
workitem

In WorkitemUserIn

I/O

updated state process

I/O

pid cid user

blocked cases

Out

active cases

active cases

I/O

blocked cases

I/O

Fig. 6. Checking in of a workitem.

not fulfilled, the “workitem can not be checked in” transition will be fired which informs the
requester that checking the workitem into the engine was not successful (place “response”).
If the prerequisites are fulfilled, the “check in workitem” transition fires and the following
actions are taken:

1. the case is blocked (place “blocked cases”).
2. the new state of the case is calculated.

152

3. the resource allocation information for the workitem, being checked into the engine is
removed from the state information in the “state cases” place.

4. four tokens are produced in the “partial update state case” place containing the following
information: the state of the case, the workitems in entered or executing state, and the
resource allocations for the flow workitems in state executing.

5. a token is produced in the “pid cid user” case which contains the ProcessID, CaseID
and the user id of the requester.

Several things can happen now. The “create workitem” transition fires when a workitem
can be created for a case. When it fires, the following actions are taken:

1. a workitem is created for the task which will be in the entered state.
2. the state of the case, in the “state cases” place, will be updated.

If no workitems can be created for the case, the “finish creating workitems” transition will
fire which moves the token to place “finished creating workitems”. However, it could also
happen that no new workitems can be created because the case is complete. In that situation
the “case completed” transition fires and the following actions are taken:

1. all case related information is removed from the “state cases” place.
2. the case is deactivated by removing the case id from the “active cases” place.
3. the requester is informed about case completion by putting a token in the “response”

place.

After the “finish creating workitems” transition has fired, two steps remain. The first step
relates to the “executing state for schedule tasks” transition. This transition changes the
state of the schedule workitems, which just have been created, from entered into executing.
The resource allocation for them is done by the planning service.

The second step relates to the “change state and calculate planning graph” transition.
When fired, the following actions are taken:

1. a planning problem is formulated and sent to the planning service via place “NodeArc-
sGraph”.

2. the updated state of the case and the updated resource allocation for the flow workitems
is saved in place “state cases”.

3. the case is unblocked (“blocked cases2” place).
4. the requester is informed about the successful completion of the workitem by putting a

token in place “response”.

4.3 Planning Service

Figure 7 shows the uppermost model of the planning service. Looking back at Figure 3, we
can see that this model consists of 21 places and 13 transitions. However, modeling all the
required behavior necessitated writing hundreds of lines of ML code which indicates that
this component is fairly complex in its behavior.

Three different parts can be distinguished in the model shown in Figure 7. First, at the
top, there is the part which is responsible for receiving a planning problem, (re)scheduling
tasks if needed, and generating warnings that limited time is left for performing tasks pre-
ceding a schedule task. Second, the “cancel case” substitution transition is responsible for
removing all appointments for a case. Third, the “get appointments for resource” substitu-
tion transition is responsible for finding all appointments for a specific resource.

153

ttbs2RD
ttbsRD

ssts

timeVal

lnagp

ssts2

margin2

lnagp2

lnagp

lpc
pc::lpc

lpclpc2

margin

margin

timeVal

ttbs2RD

nagp::lnagp

lnagp2

lnagp2

lnagp

ttbsRD

lnagp

ttbs2RD

lnagp

lnagp2 ^^
[nagp2]

get appointments
for resource

get appointments for resource

cancel
case

cancel case

finished2

input (pc,lnagp);
output (lnagp2);
action
finishPlanningImm(pc:PC,lnagp:ListNodeArcGraphProps)

finished

[finishedPlanning(piIDsmall,ciIDsmall,ttbsRD,lnagp)]

input (ttbsRD,lnagp,piIDsmall,ciIDsmall);
output (ttbs2RD,lnagp2);
action
finishPlanning(ttbsRD,lnagp,piIDsmall,ciIDsmall)

calculate next
schedule tasks

[check_continue_scheduling(piIDsmall,ciIDsmall,ttbsRD,lnagp)]

input (lnagp,ttbsRD,piIDsmall,ciIDsmall,calendars,margin,timeVal);
output (ttbs2RD,ttbs3RD);
action
continue_planning
(lnagp,ttbsRD,piIDsmall,ciIDsmall,calendars,margin,timeVal)

start
off

[checkFirstTasksToBeScheduled(piIDsmall,ciIDsmall,ttbsRD,lnagp,lpc)]

input (piIDsmall,ciIDsmall,ttbsRD,lnagp,
timeVal,margin,margin2,lpc,ssts,calendars);
output (ttbs2RD,lpc2,ssts2);
action
calcFirstTasks
(piIDsmall,ciIDsmall,ttbsRD,lnagp,timeVal,
margin,margin2,lpc,ssts,calendars)

book into
calendar

book into agenda

convert

[checkPlanningCaseBegin(nagp,lnagp)]

input (nagp);
output (nagp2);
action
convertGraph(nagp)

response allocated
schedule tasks

Out ResWorkItemIdentifiers

request allocated
schedule tasks

In Resource

warning
Margin

2

INT

notification
task

I/O ScheduleStatusTasks

nothing
to do

[]

lPC

response user
request

Out ResponseUser

margin

4

INT

Time
I/O

0

smallint

converted
graph

1`[]

ListNodeArcGraphProps

NodeArcs
Graph

I/O

ListNodeArcGraphProps

cancel
case

In CaseID

tasks to be
scheduled

1`[]

TasksToBeScheduledRD

Calendars users

I/O

Calendars

I/O

In

I/O

I/O Out

I/O

In

Out

book into agenda

cancel case
get appointments for resource

ttbsRD
calendars

calendars

Fig. 7. Top level model of the planning service.

For the remaining part of this section we restrict our discussion to the process of receiving
a planning problem from the engine and the steps that are taken afterwards. The sequence of
these steps are indicated by a path of thick black lines starting from the “NodesArcGraph”
place. When a planning problem is sent to the planning service, the required data for
the planning problem is added to the “NodesArcGraph” place. The planning problem is
represented by a graph containing the planning constraints which hold between the tasks
in the corresponding process definition for the case, e.g. the ordering between the tasks.
Once this has occurred, the “convert” transition can fire if the planning service is not busy
handling another planning problem for the same case. When it fires, nodes are removed from
the graph, which represent a task that has already been performed for the case. Also nodes
are removed which represent tasks which we are not sure they will ultimately be executed.
So, no optimistic planning takes place. The first nodes in the graph, which do not have an
incoming arc, represent tasks in the case for which a workitem exists. Note that our algorithm
does not take into account any constraints which may hold between tasks that already have
been performed and succeeding tasks, which justifies that the nodes for already performed
tasks are removed from the graph. However, for more advanced algorithms it might be the
case that this removal step is not allowed.

When the “convert” transition fires, a token containing the converted graph is put into
the “converted graph” place. Next, the “start off” transition can fire and the following
actions are taken:

1. determine whether the first schedule tasks in the graph, viewing it from the start, need
to be (re)scheduled or if a warning should be generated. For a user request, the task

154

which is selected for rescheduling is considered to be the first schedule task as only this
task needs to rescheduled and possibly subsequent schedule tasks.

2. for the schedule tasks which need to be (re)scheduled, the earliest time is calculated at
which they may be executed. This is dependent on any preceding tasks which need to
be completed.

3. other relevant information for scheduling the task is determined, such as the defined
roles and the duration of the task.

4. for every first schedule task, that is a schedule task in the graph for which no preceding
schedule task exists, which needs to be (re)scheduled a token containing the information
mentioned above is put in the “tasks to be scheduled” place. An example of such a first
schedule task is the “first consult” node in Figure 5.

5. for the first schedule tasks in the graph, that are the schedule tasks in the graph for
which no preceding schedule task exists, it is determined whether a warning needs to
generated because (too) little time is left for performing preceding tasks. If a warning is
needed, a notification is sent to the engine via the “notification task” place. The value
for deciding how early such a warning needs to be generated, is stored in the “warning
margin” place.

6. for each task that needs to be rescheduled, a notification is sent to the engine via the
“notification task” place.

The first tasks which need to be (re)scheduled are added to the “tasks to be scheduled”
place, and the substitution transition “book into calendar” is responsible for the actual
(re)scheduling. The (re)scheduling is done automatically, which means that there is no user
involvement. It should be noted that multiple roles can be specified for a schedule task and
that for each role specified only one resource may be involved in the actual performance of
the task. In the “book into calendar” substitution transition a search is started for the first
opportunity that for one resource for every required role an appointment can be booked
for the respective workitem. If found, an appointment is booked in the calendars of these
resources. If the patient for which the case is performed also needs to be present at the
appointment, then this is also taken into account.

However, it can also be that no tasks needs to be (re)scheduled at all. This is determined
by the “start off” transition which then puts a token into the “ nothing to do” place. After-
wards, the “finished2” transition fires removing the planning problem from the “converted
graph” place, indicating that the planning problem has been dealt with.

If all schedule tasks for a case that are present in the “tasks to be scheduled” place
are (re)scheduled, then it is checked by the guard of the “calculate next schedule tasks”
transition whether succeeding schedule tasks in the planning problem graph need to be
(re)scheduled. If the transition fires, the following actions are taken:

1. it is determined which subsequent schedule tasks need to be (re)scheduled.
2. for the schedule tasks which need to be (re)scheduled, the earliest time is determined

at which they may be executed.
3. the same relevant information for scheduling the task is determined as when the “start

off” transition happens.

For each schedule task which needs to be (re)scheduled, a token containing the informa-
tion described above is put in the “tasks to be scheduled” place triggering another cycle of
(re)scheduling and checking. When no subsequent schedule tasks need to be (re)scheduled,
transition “finished” fires. If this transition fires, the planning problem present in the “con-
verted graph” place is removed, indicating that the planning problem has been dealt with.

155

4.4 Analysis

A serious drawback that we faced was that no meaningful verification of the CPN model
was possible due to its size and complexity. Even more, as an unlimited number of business
process models and users can be represented, state space analysis would be impossible.
Therefore, we have tested the model by manually simulating a well-chosen set of scenarios.
Although this approach revealed several errors, it does not guarantee that the final model
is indeed error-free. An example of such a test scenario is that a case is executed from begin
to end during which some appointments are rescheduled as consequence of a user action.

5 Implementation

In this section, we will elaborate on the development of a concrete implementation of a
workflow management system augmented with planning facilities. First, we elaborate on
the architecture of the implemented system, followed by a discussion of its application to a
realistic healthcare scenario.

5.1 Architecture

Figure 8 shows the architecture of the system that has been realized. We can see the com-
ponents and services that are used, and the means by which they interact with each other.
The open-source workflow system YAWL has been chosen as the workflow engine [2]. For
storing the calendars of users, we selected Microsoft Exchange Server 2007 which offers
several interfaces for viewing and manipulating these calendars. Together with this system
we could easily use Microsoft Outlook 2003 clients for obtaining a view on an individual
users calendar. Moreover, these clients are configured in such a way that they can interact
with the YAWL system via an adaptor. By doing so, an Outlook client can act as a full
workflow client application. Finally, the planning service is implemented as a Java service
which communicates with both YAWL and the Microsoft Exchange Server 20074.

The dashed rectangles around the components in Figure 8 indicate how each substitution
transition in Figure 4 has been realized. For example, the “workflow engine” substitution
transition of Figure 4 has been realized using the YAWL workflow engine and an adaptor
which communicates with the workflow client application and the planning service. For
implementing the system, we clearly benefitted from the knowledge contained in the CPN
model. As the model is a complete specification of the system that needs to be implemented,
while abstracting from implementation details, we could immediately start coding from it.
Particularly, given the ML-code and the logic, e.g. ordering of transitions, in the CPN
model, the code has directly been written. However, if existing third party software could
provide the desired functionality of a (part of a) substitution transition, then of course
this software is chosen. For example, YAWL has been chosen as workflow engine as it
provides the majority of the functionality that needs to be provided by the “workflow engine”
substitution transition. On the other hand, the “planning service” substitution transition
has been implemented completely in Java code.

4 Of course one could argue that for the implementation of the planning service the corresponding
part of the CPN model itself could be used. However, pursuing this approach introduces other
complex issues like opening and starting a CPN model without opening CPN Tools, communi-
cation with external systems, and so on.

156

YAWL
planning
service

(Axis2 service)

Microsoft
Exchange

Server 2007

adaptor
(Axis2 service)

outlook
2003
client

outlook
2003
client

YAWL
Interface B

Workflow engine Planning service

workflow client application
Agendas users

SOAP
messages

SOAP
messages

MAPI

Fig. 8. Architecture of the implemented system. The dashed rectangles indicate how each sub-
stitution transition of Figure 4 has been realized. For example, the workflow engine substitution
transition has been realized using the YAWL workflow engine together with custom written adaptor.

.

In total, it took around three months for a single person to implement the whole system
which involved both component selection and coding. As part of this effort, over 8000 lines
of code was written.

5.2 Application

In the remainder of this section, we demonstrate the operation of the system that we realized
in the context of a real-life healthcare scenario. As a candidate care process, we have taken
the diagnostic process of patients visiting the gynecological oncology outpatient clinic at the
AMC hospital, a large academic hospital in the Netherlands. The healthcare process under
consideration is a large process consisting of around 325 activities. This healthcare process
deals with the diagnostic process that is followed by a patient who is referred to the AMC
hospital for treatment, up to the point where the patient is diagnosed. For our scenario we
will only focus on the initial stages of the process shown in Figure 9.

At the beginning of the process, a doctor in a referring hospital calls a nurse or doctor at
the AMC hospital resulting in an appointment being made for the first visit of the patient.
Several administrative tasks need to be finished before the first visit of the patient (task
“first consultation doctor”). For example, the referring hospital needs to be asked to send
the radiology data to the AMC (task “call for radiology data”). When the patient visits the
outpatient clinic for the first time, the doctor decides whether an “MRI”, “CT” or “pre-
assessment” or a combination of these tasks is necessary. After performing these diagnostic
tests, the results will be discussed during the next visit of the patient (task “consultation
doctor”). Note that for the MRI, CT and pre-assessment tasks we do not show the preceding
tasks at the respective departments that need to performed in order to simplify the presented
model.

In this scenario, we assume that the task “additional information and brochures” has
been performed in which a nurse provides the patient with information and brochures prior
to the execution of the diagnostic tests. Furthermore, it has also been confirmed that the

157

Fig. 9. Screenshot of the YAWL editor showing the initial stages of the gynaecological oncology
healthcare process. The flow tasks are indicated by a person icon and the schedule tasks are indicated
by a calendar icon. For all schedule tasks, the patient is required to be present.

.

doctor requires an MRI and a pre-assessment for the patient. So, by looking at the process
model it becomes clear that the tasks “MRI”, “pre-assessment” and “consultation doctor”
need to be scheduled. The result of the scheduling performed by the system for these tasks is
shown in Figure 10. Note that our case has “Oncology” as a process identifier and has “126”
as case identifier. Moreover, for the “consultation doctor”, “pre assessment”, and “MRI”
examination, a doctor, an anaesthetist, and MRI machine are needed respectively. Conse-
quently, these tasks have role “doctor”, “anaesthetist”, and “MRI” respectively. Moreover,
the patient is also required to be present.

In Figure 10, going from left to right, we can see that the “MRI” has been scheduled
for 8:00 till 8:45, the consultation with the doctor has been scheduled for 13:00 till 13:30
in the calendar of doctor “Nick” and that the pre-assessment has been scheduled for 11:00
till 11:30 in the calendar of anaesthetist “Jules”. At the far right, we can see the agenda
of patient Fred who also needs to be present during these appointments. All the previously
mentioned appointments are also present in his agenda. Moreover, it is important that the
“consultation doctor” is scheduled after the “MRI” and “pre-assessment” task, which is also
consistent with the corresponding process definition, where the “consultation doctor” task
also occurs after them.

However, a problem is now identified: the patient now has been scheduled for an MRI in
which they have to lie in a tube. Unfortunately, the patient is suffering from claustrophobia
which means that the patient can only be scanned in an MRI having an open system design,
a so-called “open-MRI”. As the role “MRI” includes both the open and closed MRI, we need
to reschedule the patient to use the open-MRI by rejecting the current appointment for the

158

Fig. 10. Screenshot of the calendars for the MRI, consultation with doctor “Nick”, and the pre-
assessment done by anaesthetist “Jules”.

.

(closed) MRI. Rejecting the appointment means that the appointment must be rescheduled
and that the resource who rejected the appointment may not be involved anymore. The
effect of this specific rescheduling request can be seen in Figure 11.

In this figure, the messagebox indicates that the MRI has been successfully rescheduled.
Moreover, the calendar of the open MRI is now shown on the right hand side. It can be seen,
that an appointment for the open MRI has been made, taking place from 14:00 to 14:45.
However, as can be seen in the second column of the calendar, which shows the calendar of
doctor “Nick”, it was also necessary to reschedule the appointment with the doctor which
will now occur from 15:00 to 15:30. These changes are also reflected in the agenda of patient
“Fred”, which is shown in the third column. As can be seen in Figure 9, this rescheduling
step is necessary as the task “consultation doctor” occurs after the “MRI” task and the
“register patient” task falls in between these two tasks and takes 15 minutes. Moreover, in
the left top of the figure, we see the form that is generated automatically for performing
the “MRI” task.

6 Related Work

A review of relevant literature shows that extensive research has been done into the problem
of appointment scheduling in healthcare, e.g. in areas such as appointment scheduling for
outpatient service services [6], operating room scheduling [5] and diagnostic resources. How-
ever, these approaches tend to focus on specific facilities and not on the complete careflow
process. Another approach is described in [22] in which the online problem of scheduling
multiple appointments on a single day is considered. In our approach, the whole careflow is
taken into account and appointments are scheduled when it is clear that they need to be
executed.

Much effort has been put into experimenting and developing workflow management sys-
tems so that they can be applied in the healthcare domain [18, 14]. These efforts vary in the
sense that they support evidence-based medical procedures, therapies and hospital admin-
istrations [16, 15, 21, 4]. One of the most important challenges that needs to be addressed
is flexibility support [20]. Unfortunately, current workflow management systems are falling

159

Fig. 11. Result after rescheduling the “MRI” task.
.

short in providing flexibility [10, 11] which seriously hampers the application of workflow
technology in the healthcare domain. In addition to this, support is needed for the cross-
departmental nature of healthcare processes [12]. Currently, administrative workflows are
typically limited to single departments [19]. Successful implementation of workflow man-
agement exists but widespread adoption and dissemination is the exception rather than the
rule [14]. It is expected that the use of workflow technology by healthcare institutions will
grow dramatically in the future [14] and it is likely that it will become a core component in
future healthcare systems [7].

Despite all these efforts, no work has been performed on the combination of appointment
scheduling and workflow management systems, i.e., existing approaches are either focusing
on planning with little consideration for workflow aspects or are focusing on workflow while
ignoring that much work is done via appointments rather than worklists. We are not aware
of any research looking at the mixture of flow and schedule tasks.

For various systems, CPNs have been used to formalize and validate functional require-
ments. For example, the formalization of the design of the so-called worklet service, which
adds flexibility and exception handling capabilities to the YAWL workflow system [3], for-
malizing the implementation of a healthcare process in a workflow management system [13],
and presenting a model-based approach to requirements engineering for reactive systems, in
which CPNs are used for validating the functional requirements [8]. Related to this is [17],
in which CPNs are used for specifying the operational semantics of newYAWL, a business
process modeling language founded on the well-known workflow patterns5.

7 Experiences and Conclusions

In this paper, we have discussed the design and implementation of a workflow management
system offering planning and monitoring facilities. As approach, we started with a workflow
language, followed by a conceptual model in CPNs and finally a concrete implementation
5 For more information about workflow patterns see http://www.workflowpatterns.com

160

of the system. The conceptual model consists of 27 distinct nets, 377 transitions, 169 places
and over 1000 lines of ML code. The construction of the whole model took around three
months of work. These figures indicate that a workflow system augmented with planning
facilities is a fairly complex system and the task of developing it is far from trivial.

One of the main benefits of building the conceptual model in CPNs is that it can be
executed in the CPN Tools offering. In this way, it allows for experimentation during which
comprehensive insights can be obtained about the design and behavior of the system to be
realized which probably would not have been possible to obtain by pursuing other approaches
to designing the system. Parts of the system can be tested early in the development process,
thus enabling early detection of design errors. The costs of repairing these errors in this
phase of the development process is far less than would be the case in a later phase. For
example, when experimenting with the subnet of the planning service we identified errors
with regard to the correct planning of appointments.

Another advantage of modeling the conceptual model in CPNs is that it completely
specifies the behavior of the system to be implemented while abstracting from implemen-
tation details and language specific issues. So, for the conceptual model we only needed to
worry about the behavior of the system, while for the implementation we focused on the
realization. In this way, these kinds of issues are distinguished, allowing for a separation of
concerns. The importance of this distinction can probably best be illustrated by the fact
that it took more than 3 months to build the conceptual model, and just 3 months to imple-
ment the whole system. For the implementation of the system it was necessary to produce
over 8000 lines of code by hand. Although the main functionality of the system was fully
implemented during the implementation phase, a significant amount of time still needs to
be spent on component selection, coding, and dealing with residual implementation issues.

The fact that we started completely from scratch ending up with a concrete imple-
mentation of the system with the proposed functionality shows both the applicability and
feasibility of our approach. However, the developed system has only been tested in a limited
set of scenarios. As future work, we plan to systematically test parts of the system by “re-
placing” one or more components in the conceptual model by a complete implementation for
it, based on third party software, allowing for the testing of thousands of scenarios. In this
way by simply executing the CPN model, we are able to identify errors in the components
which probably would not have been found with using a scenario based approach of testing.
In addition to this, we plan to use the conceptual model for evaluating alternative planning
approaches using various performance indicators.

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

2. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, 2005.

3. M.J. Adams. Facilitating Dynamic Flexibility and Exception Handling for Workflows. PhD
thesis, Faculty of Information Technology, Queensland University of Technology, 2007.

4. L. Ardissono, A.D. Leva, G. Petrone, M. Segnan, and M. Sonnessa. Adaptive medical workflow
management for a context-dependent home healthcare assistance service. Electronic Notes in
Theoretical Computer Science, 146(1):59–68, 2006.

5. B. Cardoen, E. Demeulemeester, and J. Beliën. Operating room planning and scheduling: A
literature review. FEB Research Report KBI 0807, Katholieke Universiteit Leuven, Leuven,
2008.

161

6. T. Cayirli and E. Veral. Outpatient scheduling in health care: a review of literature. Product
Operations Management, 12(4):519–549, 2003.

7. A. Dwivedi, R. Bali, A. James, and R. Naguib. Workflow Management Systems: the Health-
care Technology of the Future? In the 23rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, volume 4, pages 3887–3890, 2001.

8. J.M. Fernandes, S. Tjell, and J.B. Jorgensen. Requirements Engineering for Reactive Systems
with Coloured Petri Nets: the Gas Pump Controller Example. In K. Jensen, editor, Proceedings
of the Eight Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
pages 207–222, 2007.

9. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling
and Validation of Concurrent Systems. STTT, 9(3-4):213–254, 2007.

10. M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems, Special Issue
of Computer Supported Cooperative Work, 2000.

11. R. Lenz, T. Elstner, H. Siegele, and K. Kuhn. A Practical Approach to Process Support in
Health Information Systems. JAMIA, 9(6):571–585, December 2002.

12. R. Lenz and M. Reichert. IT Support for Healthcare Processes - Premises, Challenges, Per-
spectives. Data and Knowledge Engineering, 61:49–58, 2007.

13. R.S. Mans, W.M.P. van der Aalst, P.J.M. Bakker, A.J. Moleman, K.B. Lassen, and J.B. Jor-
gensen. From Requirements via Colored Workflow Nets to an Implementation in Several Work-
flow Systems. In K. Jensen, editor, Proceedings of the Eight Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, pages 187–206, 2007.

14. M. Murray. Strategies for the Successful Implementation of Workflow Systems within Health-
care: A Cross Case Comparison. In Proceedings of the 36th Annual Hawaii International Con-
ference on System Sciences, pages 166–175, 2003.

15. M. Poulymenopoulou and G. Vassilacopoulos. A Web-based Workflow System for Emergency
Healthcare. In Proceedings of the MIE 2002 conference, 2002.

16. S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, and S. Panzarasa. Flexible Guideline-
based Patient Careflow Systems. Artificial Intelligence in Medicine, 22(1):65–80, 2001.

17. N.C. Russell, A.H.M. ter Hofstede, and W.M.P. van der Aalst. newYAWL: specifying a workflow
reference language using coloured petri nets. In K. Jensen, editor, Proceedings of the Eight
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2006), volume
584 of DAIMI, pages 107–126, Aarhus, Denmark, October 2007. University of Aarhus.

18. G. Russello, C. Dong, and N. Dulay. Consent-Based Workflows for Healthcare Management. In
Proceedings of 2008 IEEE Workshop on Policies for Distributed Systems and Networks (Policy
08), pages 153–161, Palisades, NY, US, 2008.

19. X. Song, B. Hwong, G. Matos, and A. Rudorfer. Understanding and classifying requirements
for computer-aided healthcare workflows. In COMPSAC (1), pages 137–144. IEEE Computer
Society, 2007.

20. M. Stefanelli. Knowledge and Process Management in Health Care Organizations. Methods Inf
Med, 43:525–535, 2004.

21. S.W. Tu, M.A. Musen, R. Shankar, J. Campbell, K. Hrabak, J. McClay, S.M. Huff, R. McClure,
C. Parker, and R. Rocha. Modeling Guidelines for Integration into Clinical Workflow. Studies
in Health Technology and Informatics, 107:174–178, 2005.

22. I. Vermeulen, H. La Poutré, S.M. Bohte, S.G. Elkhuizen, and P.J. Bakker. Decentralized
Online Scheduling of Combination-Appointments in Hospitals. In Proceedings of ICAPS-2008,
the International Conference on Automated Planning and Scheduling, Sydney, Australia, 2008.
AAAI Press.

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

A discretization method from coloured to symmetric nets:
application to an industrial example

FabienBonnefoi
DSO/DSETI,

Cofiroute,
6 - 10 rue Troyon,

92310 Sèvres, France
Fabien.Bonnefoi@cofiroute.com

ChristineChoppy
LIPN, CNRS UMR 7030,

Université Paris XIII,
99 av. J-B Clément,

93430 Villetaneuse, France
Christine.Choppy@lipn.univ-paris13.fr

FabriceKordon
LIP6 - CNRS UMR 7606,
Université P. & M. Curie,

4 Place Jussieu,
75252 Paris Cedex 05, France
Fabrice.Kordon@lip6.fr

1 Introduction

Future supervision systems tend to be distributed and at least partially embedded. Distribution brings a
huge complexity and then, a strong need to deduce possible (good and bad) behaviours on the global system,
from the known behaviour of its actors. This is crucial sincemission critical or life critical missions are more
and more supervised by such systems. Intelligent TransportSystems (ITS) are a typical example: more and
more functions tend to be integrated in vehicles and road infrastructure.

Moreover, in many cases (like ITS), physical constraints are part of the system description. Analysis tech-
niques based on discrete models must integrate such constraints : we then speak ofhybrid systems.

So, a major trend in formal analysis is to cope with such systems. This raises many issues in terms of
analysis complexity. Some techniques are dedicated to continuous analysis such as algebraic approaches like
B [1]. However, such approaches are difficult to set up and most industries prefer push-button tools.

Model checking easily offers such push-button tools but does not cope well with continuous systems. Most
model checking techniques deal with discrete (finite) systems. Thus, management of hybrid systems is not easy
or leads to potentially infinite systems that are difficult toverify (for example, management of continuous time
requires much care, even to only have decidable models). Hybrid Petri Nets [15] might be a solution to model
and analyze hybrid systems but no tool is available to test neither safety nor temporal logic properties [11].

In this paper, we propose a methodology to handle hybrid systems with model checking on Petri Nets and
algebraic methods. Our methodology is based on transformations from Coloured Petri Nets (CPN) [25, 26] to
Symmetric Petri Nets (SN) [9, 7].

CPN allow an easy modelling of the system to be analyzed. SN are of interest for their analysis because of
the symbolic reachability graph that is efficient to represent the state space of large systems. Moreover, since
SN only offer a limited set of operations on colours, transformation from CPN requires much care from the
designer as regards the types to be discretized.

Our methodology also addresses an important question: whatis the impact of discretization on the precision
of verification? As in scientific computing, the discretization process may generate “precision errors” that
could turn a given verified property into a wrong one. In that case, the property to be verified might have to be
transformed to take into consideration such precision errors.

Section 2 briefly recalls the notions of CPN, SN and abstraction/refinement, type issues. Our methodology
which involves modelling, discretization and verificationis presented in Section 3, and we show in Section 4
how we model our Emergency Braking application. The variousissues regarding discretization on our case
study are detailed in Section 5, and issues on net analysis are presented in Section 6. Some open issues are
discussed in Section 7 before a conclusion (Section 8).

2 Building Blocks

This section presents the building blocks from the state of the art used to set up our transformation method-
ology.

183

2.1 Coloured Petri Nets

Coloured Petri nets [25, 26] are high level Petri nets where tokens in a place carry data (or colours) of a
given type. Since several tokens may carry the same value, the concept of multiset (or bag) is used to describe
the marking of places.

In this paper, we assume the reader is familiar with the concept of multisets. We thus recall briefly the
formal definition of coloured Petri nets as in [26]. It shouldbe noted however that the types considered for the
place tokens may be basic types (e.g. boolean, integers, reals, strings, enumerated types) or structured types –
also called compound colour sets – (e.g. lists, product, union, etc.). In both cases, the type definition includes
the appropriate (or usual) functions.

Different languages were proposed to support the type definition for coloured Petri nets (e.g. algebraic
specification languages as first introduced in [33], object oriented languages [5]), and an extension of the
Standard ML language was chosen for CPN Tools [13]. As always, there may be a tradeoff between the
expressivity of a specification language, and efficiency when tools are used to compute executions, state graphs,
etc. If expressivity is favored, it could be desirable to allow any appropriate type and function, while when tools
should be used to check the behaviour and the properties of the system studied, the allowed types and functions
are restricted (as the language allowed for CPN Tools or as inSymmetric Nets presented in Section 2.2). Here,
we want to allow a specification language that fits as much as possible what is needed to describe the problem
under study, and then show how the specification is transformed so as to allow computations and checks by
tools.

In the following, we refer toEXPRas the set of expressions provided by the net inscription language
(net inscriptions are arcs expressions, guards, colour sets and initial markings), and toEXPRV as the set of
expressionse∈ EXPRsuch thatVar[e] ⊆V.

Definition 2.1. A non-hierarchical coloured Petri net CPN [26] is a tuple
CPN= (P,T,A,Σ,V,N,C,G,E, I) such that:

1. P is a finite set of places.

2. T is a finite set of transitions such that P∩T = /0.

3. A⊆ P×T ∪T ×P is a set of directed arcs

4. Σ is a finite set of non empty colour sets (types).

5. V is a finite set of typed variables such that Type[v] ∈ Σ for all variables v∈V.

6. C : P→ Σ is a colour set f unction assigning a colour set (or a type) to each place.

7. G : T → EXPRV is a guard function assigning a guard to each transition suchthat Type(G(t)) = Bool,
and Var[G(t)] ⊆V, where Var[G(t)] is the set of free variables of G(t).

8. E : A → EXPRV is an arc expression f unction assigning an arc expression toeach arc such that
Type(E(a)) = C(p)MS, where p is the place connected to the arc a.

9. I : A → EXPRV is an initialisation f unction assigning an initial markingto each place such that
Type(I(p)) = C(p)MS.

As explained in Section 3, the first step of our methodology isto produce a CPN model for the application
under study. The next step is a transformation motivated by the discretization of continuous functions to obtain
a symmetric net.

2.2 Symmetric Nets

Symmetric nets1 were introduced in [9] and [7], with the goal of exploiting symmetries in distributed
systems to provide a more compact representation of the state space.

1Symmetric netswere formerly known asWell-Formed nets, a subclass ofHigh-level Petri nets. The new name was chosen in the
context of the ISO standardisation of Petri nets [21].

184

The concept of symmetric nets is similar to the coloured Petri net one. However, the allowed types for the
places as well as allowed colour functions are more restricted. These restrictions allow us to compute symme-
tries and obtain very compact representations of the state space, enabling the analysis of complex systems as
in [22].

Basically, types must be finite enumerations and can only be combined by means of cartesian products.
Allowed functions in arc valuation are: Id, successor, predecessor and broadcast (that generates one copy of
any value in the type). These constraints affect points 4, 6,7, 8, 9 in Definition 2.1.

Class
 P is 1..PR;
 Val is 1..V;
Domain
 D is <P,Val>;
Var
 p in P;
 v, v2 in Val;

Mutex•

out
P

<P.all>

InCS

compute
D

outCS

CR
Val

<Val.all>

<v>

<p>

<p, v>

<p, v>
<v>

<p>

Figure 1: Example of Symmetric Net

The Symmetric net in Figure 1 represents a class of threads (identified by an identity in typeP) accessing
a critical resourceCR. Threads can get a value within the typeVal from CR. ConstantsPR andV are integer
parameters for the system. The class of threads is represented by placesout andcompute. Placecompute
corresponds to some computation on the basis of the value provided byCR. At this stage, each thread holds
a value that is replaced when the computation is finished. Place Mutex handles mutual exclusion between
threads and contains token with no data (”black tokens” in the sense of the Petri Net standard [23]). Placeout
initially holds one token for each value inP (the marking is then denoted< P.all >) and placeCR holds one
value for each value inVal.

Verification of properties can be achieved either by a structural analysis, on the symbolic reachability graph
(model checking), or on the unfolded associated Place/Transition (PT) net (model checking as well as structural
properties).

2.3 Transformation, abstraction and refinement

Abstraction and refinement are part of the use of formal specifications. While abstraction is crucial to
concentrate on essential aspects of the problem to be solved(or the system to be built), and to reason about
them, more elaborate details need to be further introduced in the refinement steps. A similar evolution is
taking place when a general pattern or template is established to describe the common structure of a family of
problems, and when this template is instantiated to describe a single given problem.

Three kinds of refinement for coloured Petri nets are introduced in [28, 29], the type refinement, the node
refinement and the subnet refinement. The idea for these refinements to be correct is that behaviours should be
preserved, and to any behaviour of a refined net it should be possible to match a behaviour of the abstract net.

We have here another motivation that is raised by the use of tools to check the behaviour and properties
of the model, and that may involve the discretization of somedomains so as to reduce the number of possible
values to consider in the state space. It thus involves a simplification of some domains that may be considered
as an abstraction.

3 Methodology for Discretization

This section presents our methodology to model and analyse acomplex system. We first give an overview
of the approach and then detail its main steps and the involved techniques.

185

3.1 Overview of the Methodology

Figure 2 sketches our methodology. It takes as input a set of requirements structured following the FRAME
method [20]. It is thus divided in two parts:

• thespecificationdescribes the system (we only consider in this work the behavioural aspects),

• therequired propertiesestablish a set of assertions to be verified by the system.

S p e c i fi c a t i o nR e q u i r e dp r o p e r t i e s M o d e l l i n g C P N m o d e lC P Np r o p e r t i e s D i s c r e t i z a t i o n S N m o d e lS N p r o p e r t i e s F o r m a lV e r i fi c a t i o nc o n t i n u o u s f u n c t i o n sp r e c i s i o n o n p r o p e r t i e s v e r i f i c a t i o n c o n s t r a i n t s
A n a l y s i s f e e d ? b a c k

Figure 2: Overview of our methodology

Once the specification written using “classical” techniques, the system is modelled using high-level Petri
Nets (CPN) that allow one to insert complex colour functionssuch as one involving real numbers. These
functions come from the specifications of the system (in Intelligent Transport Systems, numerous behaviours
are described by means of equations describing physical models). These functions are inserted in arc labels into
the CPN-model produced by theModelling step. Required properties are also set in terms of CPN. However,
the CPN system cannot be analyzed in practice since the system is too complex (due to the data and functions
involved). So, theDiscretization step is dedicated to the generation of an associated system expressed using
Symmetric Nets. Symmetric Nets are well suited to specify such systems that are intrinsically symmetric [3].
Operations such as structural analysis or model checking can be achieved for much larger systems. Formal
analysis of the system is performed at theFormal Verification step.

The following sections present the three main steps of our methodology and especially focus on theDis-
cretization step that is the most delicate one as well as the main contribution of this paper.

3.2 Modelling

There are heterogeneous elements to consider in Intelligent Transport Systems (ITS): computerized actors
(such as cars or controllers in a motorway infrastructure) have to deal with physical variables such as braking
distances, speed and weigth. In [3] we presented a methodology to model large and complex ITS starting from
a specification mainly based on a subset of UML diagrams.

This methodology [3] is also based on the definition and use ofan ITS template. To have a hierarchical and
structured specification using a relevant subset of UML diagrams, we proposed an ITS template that allows
variations of architectures and component variables. The architectures are defined, involving components and
their interconnections through interfaces. This enables us to change and update components of the architecture
and to generate the Petri Net model easily. This template waselaborated from the investigation of case studies
of the SAFESPOT and TrafficView projects [4, 14].

The system high level architecture is specified using UML component diagrams. Interfaces between com-
ponents are specified with class diagrams. This first step of the methodology is used to identify the different
components of the system and their counterparts in Petri nets. It is also used to define how they should be
assembled to compose a complete model. Then, the behaviour of each component can be specified either with
UML activity diagrams, UML state machines or Petri nets. This methodology relies on the use of Petri scripts
to assemble the complete model but also for modelling complex components.

This methodology is well suited to have a fast, efficient, modular and incremental approach in modelling
large systems. But only a subpart of the “required properties” of the system could be checked. Especially, it

186

was not possible to verify properties related to quantitative variables as they are usually abstracted in the Petri
nets.

The work presented in this paper aims at providing a more precise representation of the system in the Petri
net models by representing those quantitative variables. To design the CPN model we used a template adapted
to the case study presented in Section 4. The “interfaces” ofthe Petri net model, presented in Section 5, were
already identified. The main task was to identify control anddata flows that are involved in this subpart of
the system, and that must be modeled to allow formal verification. Also, operations made on those flows were
identified.

Then, the different selected variables of the system were represented using equivalent types in CPN. For
example, continuous variables of the system were modelled with the real type of CPN formalism. The functions
of the system that manipulate the continuous variables wererepresented using arc expressions.

3.3 Discretization

The discretization step takes CPN with their properties as inputs, and produces SN with their properties as
outputs. To achieve this goal, a discretization of the real data and functions involved is performed. As a result,
the types involved in the CPN are abstracted, and the real functions are represented by a place providing tuples
of appropriate result values.

We propose different steps to manage the discretization of continuous functions in Symmetric Nets

• Continuous feature discretization.

• Error propagation computing

• Type transformation and modelling of complex functions in Symmetric Nets.

Continuous feature discretization Discretization is the process of transforming continuous models and
equations into discrete counterparts. Depending on the domain to which this process is applied we use also
the words “digitizing”, “digitization”, “sampling”, “quantization” or “encoding”. Techniques for discretization
differ according to application domains and objectives.

Let us introduce the following definitions that are used in this paper to avoid ambiguity:

Definition 3.1. A region is a n-dimentional polygon (i.e. a polytope) made by adjacent points of an n-
dimentional discretized function.

Definition 3.2. A mesh is a set of regions used to represent a n-dimentional discretized function for modeling
or analysis.

There exist many discretization methods that can be classified between global or local, supervised or unsu-
pervised, and static or dynamic methods [17].

• Local methodsproduce partitions that are applied to localized regions ofthe instance space. Those
methods usually use decision trees to produce the partitions (i.e. the classification).

• Global methods(like binning) [17] produce a mesh over the entiren-dimentional continuous instance
space, where each feature is partitioned into regions. The mesh contain∏n

i=1ki regions, whereki is the
number of partitions of theith feature.

In our study we consider theequal width interval binning method as a first approach to discretize the
continuous features. Equal width interval binning is a global unsupervised method that involves dividing the
range of observed values for the variable intok equally sized intervals, where k is a parameter provided by the
user. If a variablex is bounded byxmin andxmax, the interval width is:

∆ =
xmax−xmin

k
(3.1)

187

Error propagation computing To model a continuous function in Symmetric Nets it is necessary to convert
it into an equivalent discrete function. This operation introduces inaccuracy (or error) which must be taken
into account during the formal verification of the model. This inaccuracy can be taken into account in the
Symmetric Net properties in order to keep them in accordancewith the original system required properties.
The other solution is to change the original required properties taking into account the introduced inaccuracy.

The issues are well expressed below [6]:
In science, the terms uncertainties or errors do not refer tomistakes or blunders. Rather, they refer to

those uncertainties that are inherent in all measurements and can never be completely eliminated.(...) A large
part of a scientist’s effort is devoted to understanding these uncertainties (error analysis) so that appropriate
conclusions can be drawn from variable observations. A common complaint of students is that the error
analysis is more tedious than the calculation of the numbersthey are trying to measure. This is generally true.
However, measurements can be quite meaningless without knowledge of their associated errors.

There are different methods to compute the error propagation in a function [30, 6]. The most current
one is to determine the separate contribution due to errors on input variables and to combine the individual
contributions in quadrature.

∆ f (x,y,..) =
√

∆2
f x + ∆2

f y + ... (3.2)

Then, different methods to compute the contribution of input variables to the error in the function are possible,
like the “derivative method” or the “computational method”.

• The derivative method evaluates the contribution of a variablex to the error on a functionf as the product
of error onx (i.e. ∆x) with the partial derivative off (x,y, ..):

∆ f x =
∂ f (x,y, ..)

∂x
∆x (3.3)

• The computational method computes the variation directly by a finite difference:

∆ f x =| f (x+ ∆x,y, ..)− f (x,y, ..) | (3.4)

The use of individual contribution in a quadrature relies onthe assumption that the variables are independent
and that they have a Gaussian distribution for their mean values. This method is interesting as it gives a good
evaluation of the error. But we do not have a probabilistic approach, and we do not have a Gaussian distribution
of the “measured” values.

In this paper, we prefer to compute the maximum error bounds on f due to the errors on variables as it gives
an exact evaluation of the error propagation. Letf (x) be a continuous function,x be the continuous variable,
andxdisc the discrete value ofx. If we choose a discretization step of 2∗∆x we can say that for eachxdisc image
of x by the discretization process,x ∈ [xdisc− ∆x,xdisc+ ∆x] (which is usually simplified by the expression
x = xdisc±∆x). We can compute the error∆ f (x) introduced by the discretization:

f (x) = f (xdisc)±∆ f (x) (3.5)

∆ f (x) = f (x±∆x)− f (x) (3.6)

We can also say that the error onf (x) is inside the interval :

∆ f (x) ∈ [Min(f (x±∆x)− f (x)),Max(f (x±∆x)− f (x))] (3.7)

This method can also be applied with functions of multiple variables. In this case, for a functionf of n variables
f (x±∆x,y±∆y, ..) has 2n solutions. The maximum error bounds onf are:

∆ f ∈ [Min(f (x±∆x,y±∆y, ..)− f (x,y, ..)),Max(f (x±∆x,y±∆y, ..)− f (x,y, ..))] (3.8)

An example of this method applied to an emergency braking function is presented in Section 5.2.

188

Type transformation Once the best discretization actions are decided upon as regards our goals, the CPN
specification may be transformed. The resulting net is a symmetric net.

Let us first note that some types do not need to be transformed because they are simple enough (e.g.
enumerated types) and do not affect the state graph complexity.

When the types are more complex, two kinds of transformationare involved in this process, that concern
the value set (also called carrier set), and the complex functions. The value set transformation results from the
discretization of all infinite domains into an enumerated domain.

A node refinement is applied to transitions that involve a complex function on an output arc expression.
As explained below and in Figure 3, there are two possibilities to handle this. In our method, such functions
are represented by tuples of discrete values (values of the function arguments and of the result) that are stored
in a valuesplace. Thevaluesplace is both input and output of the refined transition, thusfor any input data
provided by the original input arc(s), thevaluesplace yields the appropriate tuple with the function result.

Modelling of complex functions in Symmetric Nets To cope with the modelling of complex functions in
Symmetric Nets (for example, the computation of braking distance according to the current speed of a vehicle),
we must discretize and represent them either in a specific place or as a guard of a transition. When a place is
used, it can be held in an SN-module ; it then represents the function and can be stored in a dedicated library.

Class
 Cx is 0..5;
 Cy is 0..6;
Domain
 D is <Cx,Cy>;
Var
 x, in Cx;
 y in Cy;

y

0

2

4

6

2 4 x

(a) (b)

result
Cy

param
Cx

values
D

<0,0>, <1,1>,
<2,1>, <3,2>,
<4,3>, <5,6>

<x>

<y>

<x,y>

<x,y>

[x=0 and y=0] or
[x=1 and y=1] or
[x=2 and y=1] or
[x=3 and y=2] or
[x=4 and y=3] or
[x=5 and y=6]

param
Cx

result
Cy

<y>

<x>

(c)

Figure 3: Example of complex function discretization by means of a place or a transition guard

Figure 3 represents an example of function discretization.The left side (a) of Figure 3 shows a function
that is discretized, and the right side shows the corresponding Petri net models : in model (b), the function is
discretized by means of a place, in model (c), it is discretized by mean of a transition guard. In both cases,
correct associations between x and y are the only ones to be selected when the transition fires. Note that in
model (b)valuesmarkings remain constants.

This technique can be generalized to any functionx = f (x1,x2, ...,xn), regardless of its complexity. Non
deterministic functions can also be specified in the same way(for example, to model potential errors in the
system). Let us note that:

• the discretization of any function becomes a modelling hypothesis and must be validated separately (to
evaluate the impact of imprecision due to discretization),

• given a function, it is easy to automatically generate the list of values to be stored in the initial marking
of the place representing the function, or to be put in the guard of the corresponding transition.

The only drawback of this technique is a loss in precision compared to continuous systems that require
appropriate hybrid techniques [10]. Thus, the choice of a discretization schema must be evaluated, for example
to ensure that uncertainty remains in a safe range.

3.4 Verification

We use CPN-AMI [31] to perform verification. So far, our models can be analyzed using:

189

• Structural techniques(invariant computation, structural bounds, etc) on P/T nets. Since our nets are
coloured, an unfolding tool able to cope with large systems [27] is used to derive the corresponding P/T
net to compute structural properties.

• Model checking, we designed efficient model checking techniques that are dedicated to this kind of
systems and make intensive use of symmetries as well as of decision diagrams. Such techniques revealed
to be very efficient for this kind of systems by exploiting their regularity [22, 3].

However, due to the complexity of such systems, discretization is a very important point. If Symmetric net
coloured classes are too large (i.e. the discretization interval is too small), we face a combinatorial explosion
(for both model checking or structural analysis by unfolding). On the other hand, if the error introduced by
the discretization is too high, the property loses its ”precision” and the verification of properties may lose its
significance.

This is why in Figure 2, the discretization step needsverification constraintsas inputs from the verification
step. A compromise between combinatorial explosion and precision in the model must be found.

4 Modelling the Emergency Braking Problem

The case study presented in this paper is a subpart of an application from the “Intelligent Road Transport
System” domain. It is inspired from the European project SAFESPOT [4]. This application is called “Hazard
and Incident Warning” (H&IW), and its objective is to warn the driver when an obstacle is located on the road.
Different levels of warning are considered, depending on the criticality of the situation. This section presents
the “Emergency Braking module” of the application and how itcan be specified using the CPN formalism.

4.1 Presentation of the Case Study

SAFESPOT is an Integrated Project funded by the European Commission, under the strategic objective
“Safety Cooperative Systems for Road Transport”. The Goal of SAFESPOT is to understand how “intelligent”
vehicles and “intelligent” roads can cooperate to produce abreakthrough in road safety. By combining data
from vehicle-side and road-side sensors, the SAFESPOT project will allow to extend the time in which an
accident is foreseen. The transmission of warnings and advices to approaching vehicles (by means of vehicle-
to-vehicle and vehicle-to-infrastructurecommunications [34, 19, 24]), will extend in space and time the driver’s
awareness of the surrounding environment.

The SAFESPOT applications [2] rely on a complex functional architecture. If the sensors and warning
devices differ between SAFESPOT vehicles and SAFESPOT infrastructure, the functional architecture is de-
signed to be almost the same for these two main entities of thesystem providing a peer-to-peer network archi-
tecture. It enables real-time exchange of vehicles’ statusand of all detected events or environmental conditions
from the road. This is necessary to take advantage of the cooperative approach and thus enable the design of
effective safety applications.

As presented in Figure 4, information measured by sensors isprovided to the “Data Processing / Fusion”
module or transmitted through the network to the “Data Fusion Processing / Fusion” module of other enti-
ties. This module analyses and processes arriving data to put them on the “Local Dynamic Map” (LDM) of
the system. The “Local Dynamic Map” enables the cooperativeapplications of the system to retrieve relevant
variables and parameters depending on their purpose. The applications are then able to trigger relevant warn-
ings to be transmitted to appropriate entities and displayed via an onboard Human Machine Interface (HMI)
or road side Variable Message Signs (VMS). In SAFESPOT, five main infrastructure-based applications were
defined: “Speed Alert”, “Hazard and Incident Warning”, “Road Departure Prevention”, “Co-operative Inter-
section Collision Prevention” and “Safety Margin for Assistance and Emergency Vehicles”. These applications
are designed to provide the most efficient recommendations to the driver.

The aim of the “Hazard and Incident Warning” application is to warn the drivers in case of dangerous
events on the road. Selected events are: accident, presenceof unexpected obstacles on the road, traffic jam
ahead, presence of pedestrians, presence of animals and presence of a vehicle driving in the wrong direction
or dangerously overtaking. This application also analysesall environmental conditions that may influence the
road friction or decrease the drivers’ visibility. Based onthe cooperation of vehicles and road side sensors, the

190

Figure 4: SAFESPOT High Level Architecture

“Hazard and Incident Warning” application provides warnings to the drivers and feeds the SAFESPOT road
side systems and vehicles with information on new driving situations. This application is essential to provide
other applications with the latest relevant road description.

The emergency braking module The emergency braking module is one subsystem in the “Hazardand Inci-
dent Warning” distributed application. It communicates with other subsystems. The behavior of this subsystem
is significant in the SAFESPOT system and must be analyzed.

Petri nets are well suited to describe and analyse this type of application. However, a part of the “Hazard
and Incident Warning” application algorithm is based on theanalysis of continuous variables like vehicle speed
or position of an obstacle. Those data are part of the data flowof the system ; they are also determinant for
the control flow of the system. Many properties of the application can be verified with Petri nets by making
an abstraction of the data flow where “continuous” variablesare involved. This is where we face a huge
combinatorial explosion and have to enhance the Petri net formalism and modelling methodology to enable the
modelisation and verification of this kind of systems.

In the case of an obstacle on the road, the emergency braking module receives/retrieves the speed, decel-
eration capability and the relative distance to a static obstacle for the monitored vehicle. With these data, it
will compute a safety command to be transmitted to the driverand to other applications of the system. Those
commands represent the computed safety status of a vehicle.The three commands (or warnings) issued by this
module are “Comfort” if no action is required from the driver, “Safety” if the driver is supposed to start decel-
erating, and “Emergency” if the driver must quickly start anemergency braking. This is illustrated in Figure 5.
Note that if a driver in an “Emergency” status does not brake within one second, an automated braking should
be triggered by the “Prevent” system (which is another European project).

191

Figure 5: Emergency braking safety strategy

4.2 Mathematical model of the emergency braking module

The “emergency braking module” implements a strategy function to determine the safety status of a given
vehicle. This function computes the “braking distance” of avehicle from its speed and deceleration capabilities.

Let v∈V be the velocity (speed) of a vehicle withV ⊂ R
+∗. Let alsob∈ B be the braking capability of the

vehicle withB⊂ R
+∗. The braking distance function is then:

f (v,b) =
v2

2b
(4.1)

Let thend ∈ D be the relative distance of the obstacle to the vehicle withD ⊂ R
+. The main algorithm of

the “Emergency braking module” defines two thresholds to determine when a vehicle goes from a “Comfort
sate” to a “Safety state”, and from a “Safety state” to an “Emergency state”. Those thresholds are based on
the time left to the driver to react. According to the application specification, if the driver has more than three
seconds to react he is in a “Comfort state”, then if he has lessthan three seconds but more than one second he
is in the “Safety state”, if he has less than one second to react, he is in the “Emergency State”. The values of
those thresholds are expressed as follow:

EB Sa f ety=
v2

2b
+v∗3−d (4.2)

EB Emergency=
v2

2b
+v∗1−d (4.3)

The resulting algorithm of the strategy function can be represented with this pseudocode:

Eb_Strategy(d,v,b){
Eb_Safety = (vˆ2)/(2b) + v * 3 - d;
Eb_Emergency = (vˆ2)(2b) + v * 1 - d;
if (Eb_Safety < 0) then

Command = ’Comfort’;
else

if (Eb_Emergency < 0) then
Command = ’Safety’;

else
Command = ’Emergency’;

endif
return Command;

}

192

In SAFESPOT,v values are considered to be in[0,46]m/s, b in [3,9]m/s−2 andd in [0,500]m. If variables
are outside those sets, other applications are triggered (this becomes out of the scope of the emergency braking
module). For exemple, speeds above 46m/sare managed by the “Speed Alert” application.

4.3 Required Properties

The SAFESPOT and H&IW application specifications are completed with required properties to be satisfied
by the system. An analysis of the H&IW required properties shows that over the 47 main requirements, 18
involve continuous space and/or time constraints (i.e. 38%). The method presented in this paper focuses on
those properties. Here are examples of this kind of properties for the emergency braking module:

• Property 1: When the braking distance of a vehicle is below its distancefrom a static obstacle plus one
second of driver’s reaction time, the H&IW application musttrigger an “Emergency” warning.

• Property 2: When the braking distance of a vehicle is below its distancefrom a static obstacle plus three
seconds of driver’s reaction time, the H&IW application must trigger a “Safety” warning.

4.4 The coloured Petri net specification

Several modules in the H&IW application share the same architecture, namely for a given process, data
is retrieved from the interface. Then, a command is computed, and sent to appropriate modules in the sys-
tem. The coloured Petri net of Figure 6 exhibits this genericbehaviour (i.e. the template mentioned in Sec-
tion 3.2). TransitionGet Data has two input arcs from placesInterface Call andInterface Data . Place
Interface Call is typed withPROCESSIDwhich may be an integer subset (here the marking is a token with
value 1). Once a process is called and data is retrieved, place Step1 carries tokens that are couples (pid,data).
TransitionProcess Strategy provides a command resulting from computations from data.

cmdpid

(pid,cmd)

(pid,Strategy(data))

(pid,data)

data

(pid,data)

pid

Interface_Command

COMMAND

Interface_Answer

PROCESSID

Interface_Data

"generic_data"

DATA

Interface_Call

Get_Data

Process_Strategy

Step2

PROCESSID

1

Actuation

Step1

PROCESSIDXCOMMAND

PROCESSIDXDATA

Figure 6: Template Coloured Petri net for the H&IW
applications

eb_cmdpid

(pid,eb_cmd)

(pid,EB_Strategy(eb_data))

(pid,eb_data)

eb_data

(pid,eb_data)

EB_Get_Data

EB_COMMANDPROCESSID

PROCESSIDXEB_COMMAND

(40,23,7)

EB_DATA

PROCESSIDXEB_DATA

Interface_CommandInterface_Answer

Interface_Call Interface_Data

EB_Data_Retrieved

EB_Process_Strategy

EB_Command_Computed

EB_Actuation

pid

PROCESSID

1

Figure 7: Coloured Petri net instantiated for the Emer-
gency Braking application

In Figure 7 this generic schema is instanciated for the Emergency Braking Application (so,generic data
andgeneric commandbecomeEB DATAandEB COMMAND). Data for this application areDistance , Velocity ,
andBraking Factor , thus:

EB DATA = product Distance * Velocity * Braking Factor .
Data modelling physical entities are measured with a possible measurement error and are usually repre-

sented and computed inR∗ in physics computations. For the CPN specification, we can keep this typing for

193

expressivity sake, while it is clear that it is not usable in practice (we would use integers for Petri nets tools and
float in programming languages).

TheEB COMMANDtype has three possible values related with the three levelsof command or warning, there-
foreEB COMMAND = Comfort | Safety | Emergency . The appropriate command results from theEB Strategy
function computation.

5 Discretization of the Problem

Discretization raises several issues. We propose a way to cope with these issues and apply our solutions to
the emergency braking example.

5.1 Implementing complex functions in Symmetric Nets

Starting from the CPN model we use the methodology presentedin Section 3.
First, CPN types must be transformed into discrete types. Using the equal width interval binning dis-

cretization method (presented in Section 3.3) with a numberof kv, kb andkd intervals for each variable we
obtain a mesh ofkv× kb× kd regions (as defined in definitions 3.2 and 3.1) in the resulting discretized func-
tion. The resulting sets for variablesd, v and b are then composed ofk ordered elements. For example,
with k = kv = kb = kd = 10 the resulting discretized type ofv is [0,4.6,9.2, ...,46] and the discretized braking
function contains 103 regions.

With k = 100, the domain ofv is [0,0.46,0.92, ...,46] and the mesh is composed of 106 regions.
Section 3.3 presents two solutions to model complex functions in Symmetric Nets. We select solutionb

in Figure 3 because it is more efficiently represented in the Symbolic Reachability Graph. Therefore we add
place “EBStrategyTable” in the Symmetric Petri net (Figure 8). Thus, cardinalities of the domains for places
“InterfaceData” and “EBStrategyTable” (respectively named “EBData” and “EBStgyTable” in Figure 8)
are computed using the formula:Card(EBData) = Card(EBStgyTable) = Card(D×V×B). This means that
these cardinalities are equal to the number of regions of thediscretized function.

This method could provide very large markings (that is with alarge number of tuples) in the resulting
Symmetric Net. However, the use of a appropriate state spacerepresentation (by means of decision diagrams
like in [12]) does not impact the size of the generated state space since the large marking is just represented
once (the marking of places encoding complex functions is stable).

We chose a simple and generic discretization method that does not take into account the specificity of
functions to be discretized. Other discretization methodslike those using variable intervals can reduce the
number of markings with the same level of accuracy in the resulting discretized function. Finally, depending
on the kind of expected analysis, it is also possible to compute and use the equivalence classes. Those aspects
are discussed later on this paper in sections 7.1 and 6.2.2.

5.2 Computation of the error propagation in Symmetric Nets

As presented in Section 3, we compute the precision error introduced by the discretization operation. The
resulting error in the computation of the “Safety Threshold” is:

∆Eb Sa f ety= Eb Sa f ety(v±∆v,b±∆b,d±∆d)−Eb Sa f ety(v,b,d) (5.1)

∆Eb Sa f ety= (
(v±∆v)

2

2(b±∆b)
+3(v±∆v)− (d±∆d))− (

v2

2b
+3v−d) (5.2)

∆Eb Sa f ety=
(v±∆v)

2

2(b±∆b)
−

v2

2b
±3∆v±∆d (5.3)

For example, let us consider a classic private vehicle driving atv = 14m/s (i.e. 50km/h), on a dry road
(i.e. b = 8m/s2), atd = 500m from an obstacle. If we considerk = 100 intervals and an error of respectively
±0.45m/s for v, ±0.06m/s2 for d and±5m for p. Then we obtain:

∆Eb Sa f ety∈ [−7.25m,+7.29m]

194

∆Eb Emergency∈ [−6.33m,+6.37m]

For the same vehicle at 100 meters from the obstacle, drivingat v = 36m/s (i.e. 130km/h), on a wet road
(i.e. b = 4m/s2), we obtain:

∆Eb Sa f ety∈ [−12.85m,+13.10m]

∆Eb Emergency∈ [−11.93m,+12.19m]

Those results provide an information on the precision of theSymmetric Net properties. Table 1 gives
some error bounds computed from four values for parameterk. As expected, precision of computed thresholds
depends onk. However, precision also depends on the values of variables. For example, values ofv andb are
determinant on the computation of error bounds. Exploitingthose precisions, to validate the Symmetric Net
model and its properties, requires to consider carefully those values.

Discretization parameter v = 13m/s, b = 8m/s−2, v = 36m/s, b = 4m/s−2,

d = 500m d = 100m
k = 10 ∆Eb Sa f ety∈ [−70.83m,74.84m] ∆Eb Sa f ety∈ [−118.9m,144.5m]
card(EBData) = 103 ∆Eb Emergency∈ [−61.64m,65.64m] ∆Eb Emergency∈ [−109.7m,135.3m]
k = 20 ∆Eb Sa f ety∈ [−35.87m,36.81m] ∆Eb Sa f ety∈ [−61.97m,68.28m]
card(EBData) = 8∗103 ∆Eb Emergency∈ [−31.27m,32.26m] ∆Eb Emergency∈ [−57.37m,63.68m]
k = 50 ∆Eb Sa f ety∈ [−14.45m,14.61m] ∆Eb Sa f ety∈ [−25.47m,26.47m]
card(EBData) = 12.5∗103 ∆Eb Emergency∈ [−12.62m,12.77m] ∆Eb Emergency∈ [−23.63m,24.63m]
k = 100 ∆Eb Sa f ety∈ [−7.25m,7.29m] ∆Eb Sa f ety∈ [−12.85m,13.10m]
card(EBData) = 106 ∆Eb Emergency∈ [−6.33m,6.37m] ∆Eb Emergency∈ [−11.93m,12.19m]

Table 1: Error bounds for different discretization parameters

5.3 Validating the discretization in Symmetric Nets

Discretization of variables and function in the Symmetric Net model in Figure 8 introduces imprecision.
Depending on properties that need to be verified, this imprecision must be considered. For example, properties
presented section 4.3 can be verified using CTL (ComputationTree Logic) [18] formulae. With a discretization
factor ofk = 100 values on input variables, property 1 can be verified withan accuracy smaller than±7,3mon
a relative distance, for a velocity of 14m/son a dry road.

If the introduced imprecision is acceptable with regards tothe properties to be verified, then the system
designer can state that the discretization is valid for those properties. Otherwise, a better accuracy may be
required and a new discretization must be done.

It is also possible to integrate the imprecision in the CTL formulae. To do so, more constraining value
of input variables must be chosen (i.e. an higher speed, a lower braking factor or a closer obstacle) in the
CTL formula. In our case, the simplest way is to choose a lowervalue of obstacle position that cover the
discretization error.

In some cases, it is possible to compute the discretization of input variables depending on the required
precision on the function. This solution is discussed in section 7.2.

5.4 Transformation to obtain the Symmetric net

The SN in Figure 8 is derived from the CPN in Figure 7. Our purpose is to obtain a manageable state space
for model checking, and, as presented in Section 3.3 and in Figure 3, this leads us to discretize some types and
also to adopt some modelling for complex functions.

Thus, the different fields ofEB DATA in Figure 7 are now discretized. For example, type Distance is dis-
cretized into an enumeration:0, 50, 100 , etc.

EB DATA is associated toEBData in the SN of Figure 8 that is a list of 3-uples (Distance , Velocity ,
Braking Factor).

195

Now, as explained in Section 3.3 and shown in Figure 3 (b), theapproach for modelling the function
EB Strategy is to add a place with a marking that is a conversion table for the discretized function. Thus, the
EB Strategy function in Figure 7 is associated in Figure 8 to a tableEBStgyTablethat represents the discretized
function (Emergency , Safety or Comfort). This result is retrieved by means of placeEB Strategy Table
connected to transitionEB Process Strategy .

EB_Command_Computed

EBOutArgs

Interface_Data
EBData
<Distance.all,Velocity.all,Breaking_Factor.all>

Interface_Call
ProcessId

<1>

EB_Strategy_Table

EBStgyTable

<0,0,4,Emergency>,
<50,0,4,Safety>,
<80,0,4,Comfort>

EB_Data_Retrieved

EBInArgs

Interface_Command
EBCommand

Interface_Answer
ProcessId

EB_Get_Data

EB_Process_Strategy

EB_Actuation

<d,v,b>

<eb_cmd>

<pid>

<d, v, b, eb_cmd>

<d, v, b, eb_cmd>

<pid>

<pid, d,v,b>

<pid, d,v,b>

<pid, eb_cmd>

<pid, eb_cmd>

Class

 ProcessId is 1..1 ;

 Distance is [_0, _50, _100, ... , _500];

 Velocity is [_0, _4.6, _0.2, .., _46];

 Braking_Factor is [_3, _3.6, _4.2, .., _9];

 EBCommand is [Comfort, Safety, Emergency] ;

Domain

 EBData is <Distance, Velocity, Braking_Factor> ;

 EBInArgs is <ProcessId, Distance, Velocity,

 Braking_Factor > ;

 EBStgyTable is <Distance, Velocity, Braking_Factor,

 EBCommand> ;

 EBOutArgs is <ProcessId, EBCommand> ;

 Var

 pid in ProcessId;

 eb_cmd in EBCommand;

 d in Distance;

 v in Velocity;

 b in Braking_Factor;

Figure 8: Symmetric Petri net for Emergency Braking module

Of course, the models presented in this paper are only sub-parts of a system. They can be independently
verified but the purpose is to integrate them in a more complete representation of the system. This integration
may introduce new discretization constraints and verification formulae must be rewritten. Those aspects are
discussed in section 7 of this paper.

6 Net analysis

The use of a discretization method with symmetric nets generates complex models with large markings. It
is important to know what are the consequences on the net analysis and model checking tools. In this section
we present an overview of the analysis results obtained on the model.

Objectives The objectives of this analysis was first to analyse the properties of the net and sources of combi-
natorial explosion. Another interesting aspect of this analysis was to find the limitation of the tools used, which
are not a priori suited to this type of net, and find some optimisation methods.

Experimental method As the complexity of the models presented in this paper is mainly dependent on
the discretisation made on the three input variables, we focussed on the impact of this discretization. The
symetric net model of Figure 8 was adapted to the experiment by connecting place “InterfaceAnswer” to
place “InterfaceCall” with two arcs and a transition with arcs expressions assigning variable< pid > to the
arcs. This allows the net to loop until the marking in place “InterfaceData” is empty. The marking of place
“InterfaceData” was initialized with all values of domain “EBData” as presented Figure 8. Then scripts were
used to initialize the class declaration and the marking of place “EB StrategyTable” depending on the chosen
discretization level. Figure 9 gives an overview of the subset of properties that were tested.

Technical aspects The analysis of the Petri Net is a complex operation that requires different transformations
of the model like unfolding or reduction. Different tools were used to make various analysis. First the CPN
models were designed with CPN-Tools [13], then the symmetric models were designed using Coloane and

196

Figure 9: Overview of the analyses

Petriscript [31].To make the analysis of the model we chose the CPN-AMI [31] environment that provides a
unified access to different tools like: a Petri net unfoldingtool, PROD [32] or GreatSPN [8].

6.1 Structural analysis

The first analyses made on the net are structural analyses. They do not require the construction of the reach-
ability graph and then, do not require to apply firing rules. Therefore they are less complex than behavioural
analyses.

6.1.1 Symmetric net analysis

We made the computation of Coloured-Invariant on the Symmetric net with different discretisations. The
only invariant detected is the marking of place “EBStrategyTable”, as expected. The results show that the
discretization does not have a significant impact on the memory used for the computation. But due to the size
of the marking of place “EBStrategyTable”, which is composed of all associations between variables and
commands, the tool is not able to show the invariant for largemarkings even if it claims to have made the
computation.

6.1.2 Unfolding the net

The computation of the unfolded net requires an increasing amount of memory depending on the discretiza-
tion of input variables. It also gives an increasing unfolded net. In fact, the size of the domain “EBData” has
a cubic growth. An analysis of the symmetric net shows that the size of the unfolded net in terms of places
(np) follows the law:np= 5∗ (k)3 +8 ,wherek is the discretization level. The use of the CPN-AMI unfolder
confirms that the unfolding of the symmetric net did follow this law. It also appears that the memory used to
compute the unfolded net grows even more quickly than the size of the unfolded net. This explains why we
faced a combinatorial explosion in the computation of the unfolded net which has bounded the coverage of our
experiment.

6.1.3 Bound computation

We were able to test the bounds and safety of the net. The net iseffectively bounded but the complexity of
the computation, in terms of memory and time used, is the sameas the one of the unfolding operation.

6.2 Behavioural analysis

The behavioural analysis is based on the use of Great-SPN andProd to produce the reachability graphs.

6.2.1 Computation of the reachability graph

The generation of rechability graphs seems, according to the few tests that we made, to have about the
same complexity in terms of memory and time as that of the unfolding of the net. The size seems also to follow

197

a cubic growth. Using the symbolic rechability graph of GreatSPN is a little bit more efficient. We did not
make enough LTL and CTL queries to provide conclusions but the detection of deadlocks is not generating an
additionnal combinatorial explosion.

6.2.2 Semantic equivalence Classes in the Model

If we consider the computation ofsafety properties(also called reachability properties) in the reachability
graph, we can deduce that numerous states correspond to similar execution path in the original program or
specification.

0

5

10

15

20

25

30

35

40

45

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

500,0

450,0-500,0
400,0-450,0
350,0-400,0
300,0-350,0
250,0-300,0
200,0-250,0
150,0-200,0
100,0-150,0
50,0-100,0
0,0-50,0

0

5

10

15

20

25

30

35

40

45

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

500,0

3,0

5,0

7,0

9,0

3,0

5,0

7,0

9,0
0

5

10

15

20

25

30

35

40

45

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

500,0

3,0

5,0

7,0

9,0

Comfort zone

Safe zone

Emergency zone

Velocity (m/s)
Braking factor (m/s)2

Safety limit surfaceEmergency limit surface Computed equivalence classes

Velocity (m/s)
Braking factor (m/s)2

Velocity (m/s)
Braking factor (m/s)2

Velocity (m/s)
Braking factor (m/s)2

Safety surface

Emergency surface

Figure 10: Building behavioural equivalence classes from the surfaces generated by the resolution of safety
and emergency equations.

Thus, some accessibility properties could be preserved through equivalence classes. It is then of interest to
exploit these, for example, when the computed subnet is integrated into a larger specification.

In our example, the equivalence classes are based on the net behaviour and must be computed from the
physics equations that define the limits between the different situations of the system: “Comfort”, “Safety”,
“Emergency”. To determine the surface that delimits equivalence classes in the state space, we compute solu-
tions equations 4.2 and 4.3. We then get the two surfaces displayed on the left part of Figure 10.

From these surfaces, we can deduce five equivalence zones in the reachability graph as shown on the right
part of Figure 10:

• the one above safety limit surface,

• the safety limit surface itself,

• the one between safety and emergency surfaces,

• the emergency surface itself,

• the one below the emergency surface.

For reachability properties, it is possible to provide a coherent discretization that reaches at least all these
equivalence classes by randomly selecting any point in eachzone and adding the corresponding value ofb
(from B axis), d (from D axis) andv (from V axis). Then, for each discretized colourB, D andV, we can
take the coordinates of five points randomly chosen in these five zones. This approach is similar to the one
proposed in [16] that was dealing with one colour domain onlyand used guards from the Petri nets to compute
equivalence classes.

198

6.3 Conclusion on the analysis

The conclusions on the analysis of the nets are balanced. We were able to check properties but not for large
models. The limitation comes from either the limitation of the tools, that are often not able to manage large
markings, or from the complexity of the property to be analysed. We think anyway, that exploiting behavioural
symmetries will solve some of those limitations.

7 Discussion and Open Issues

We have described and applied a discretization method to cope with hybrid systems and handle continuous
variables in a safe and discrete manner. In this section, we open a discussion on several aspects.

7.1 Other discretization parameters

The methodology presented in this paper is based on the use ofa discretization algorithm to discretize
continuous variables. In section 5.2, we used “equal width interval binning” algorithm because it is simple to
implement. This algorithm, like many others, relies on discretization parameters that can be optimized for a
given set of continuous variables and functions.

However, in the emergency braking module example, we may study the partial derivates of the error on the
two thresholds (∆EB Sa f etyand∆EB Emergency). We then find that variablesv andd are more influent thanb. For
example, the partial derivate of the error on theEB Sa f etythreshold (equation 5.3) with respect to the variable
v is:

∂∆Eb Sa f ety

∂v
=

v±∆v

b±∆b
−

v
b

(7.1)

This allows to find optimized discretization parameters considering the respective influence of each in-
volved variable. This is done by considering different parameters for each discretized variable depending on
its influence on the error propagation.

Discretization parameters v = 14m/s,b = 8m/s−2,d = 500m v = 46m/s,b = 4m/s−2,d = 100m
kv = 114,kb = 73,kd = 120 ∆Eb Sa f ety∈ [−6.167m,6.203m] ∆Eb Sa f ety∈ [−12.09m,12.40m]
card(EBData) < 106 ∆Eb Emergency∈ [−5.367m,5.403m] ∆Eb Emergency∈ [−11.29m,11.60m]

Table 2: Discretization with optimized criteria

Table 2 presents the resulting error when discretization parameters are optimized using partial derivates.
It shows that we can reduce the resulting error of about 10% with discretization parameters based on partial
derivates.

The study of the best discretization method and parameters for a given set of continuous variable and
function is a complex problem which can give very interesting results. It is a promising field for future work
on optimization of the methodology presented in this paper.

7.2 Tunning the discretisation

It is of interest to compute the discretization intervals ofdiscretized types (herekb, kv andkd) according to
the maximum error tolerated on one type involved in a property where error must be boundeda priori.

Let us consider as an example the braking distance fonction (4.1) presented section 4.2. It is possible to
compute the discretization intervals of variablesv andb, based on the accuracy required for the function∆ f .
Let ±∆ f be the tolerated error onf , and±∆v, ±∆b be the resulting errors onv andb. Using the error bounds
propagation as presented section 3.3 we get:

±∆ f =
(v±∆v)

2

2∗ (b±∆b)
−

v2

2∗b
(7.2)

199

We then obtain2:

∆b = −
2∗b2∗∆ f −2∗b∗∆v∗ v−b∗∆2

v

2∗b∗∆ f +v2 (7.3)

and two solutions for∆v that are a little bit more complex.
Let vmin,vmax,bmin andbmaxbe the bounds ofv andb. The cardinality ofV andB sets are:

Card(V) =
vmax−vmin

2∗∆v
(7.4)

Card(B) =
bmax−bmin

2∗∆b
(7.5)

Now, consider that we want the same cardinalities forV andB colour sets (kb = kv). We obtain3:

∆v =
(vmax−vmin)∆b

bmax−bmin
(7.6)

Using the value of∆v of equation (7.6) in equation (7.3), it is now possible to compute∆b from the desired
∆ f .

For only two variables, this method is complex as it gives multiple solutions that need to be analyzed to
choose the appropriate solutions. However, it provides a way to compute the discretization intervals of input
variables depending on the desired output error.

8 Conclusion

In this paper, we proposed a way to integrate continuous aspects of complex specifications into a discretized
Petri Net model. Our approach was studied in the context of Intelligent Transport Systems and, more precisely,
management of emergency braking when an obstacle is identified on the road. An application to this case study
is provided.

This discretization method relies on the use of equations modelling the problem. Such equations come
from the physical models that interact with the system. We attach these equations to a CPN template and then
proceed to its transformation in order to be able to have an analyzable model (i.e. that remains finite).

The equations modeling the problem are used to:

• Provide a discretized abstraction

• To evaluate the quality of this abstraction with regards to the proof of properties on the resulting model.

This is a key point in modeling and evaluating a system by means of formal specification. It is crucial for
engineers to evaluate the quality of the proven properties and, if necessary when assumptions are done (here,
they come from the discretization), to evaluate their impact on the system’s properties. Typically, imprecision
raised by discretization may have to be corrected by either applying a more precise discretization or adding
constants in formulas expressing properties to be checked.

In our paper, discretization is applied on symmetric Nets deduced from CPN since our tools rely on sym-
metric nets. Of course, it is also valid on the CPN models.

In our methodology, different discretization algorithms can be applied. We used in this paper a simple
algorithm as a first approach but other ones based on non-uniform discretization intervals are promising alter-
natives. This will introduce new constraints in formal verification and in error propagation computation but it
is a interesting field for future works.

Also, managing more than one module is of interest. In the context of a SAFESPOT application, several
modules run in parallels and may introduce more continuous types and variables. Future work will then have
to evaluate how a larger number of variable (and constraints) could be managed. In particular, experimenting,

2We intentionally removed the± operator to increase readability.
3Note that it is possible to choose another factor betweenCard(V) andCard(B) as explained section 7.1

200

propagation of discretization contraints between different modules need a particular attention.

Acknowledgements: We would like to thank the anonymous referees fro their careful reading and helpful
comments.

References

[1] J-R. Abrial. The B book - Assigning Programs to meanings. Cambridge Univ. Press, 1996.

[2] F. Bonnefoi, F. Bellotti, T. Scendzielorz, and F. Visintainer. SAFESPOT Applications for Infrasructure-
based Co-operative Road Safety . In14th World Congress and Exhibition on Intelligent Transport Systems
and Services, Beijing, China, October 2007.

[3] F. Bonnefoi, L. Hillah, F. Kordon, and X. Renault. Design, modeling and analysis of ITS using UML
and Petri Nets. In10th International IEEE Conference on Intelligent Transportation Systems (ITSC’07),
pages 314–319, Seattle, USA, September 2007. IEEE Press.

[4] R. Brignolo. Co-operative road safety - the SAFESPOT integrated project. InAPSN - APROSYS Confer-
ence. Advanced Passive Safety Network, May 2006.

[5] Didier Buchs and Nicolas Guelfi. A formal specification framework for object-oriented distributed sys-
tems.IEEE Trans. Software Eng., 26(7):635–652, 2000.

[6] R. Brown C. Covault and D. Driscoll.Uncertainties and Error Propagation - Appendix V of PhysicsLab
Manual. Case Western Reserve University, 2005.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic reachability graph for coloured
Petri nets.Theoretical Computer Science, 176(1–2):39–65, 1997.

[8] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphical Editor and Analyzer
for Timed and Stochastic Petri Nets Performance Evaluation. special issue on Performance Modeling
Tools, 24((1&2)):47–68, November 1995.

[9] Giovanni Chiola, Claude Dutheillet, Giuliana Franceschinis, and Serge Haddad. Stochastic well-formed
colored nets and symmetric modeling applications.IEEE Trans. Computers, 42(11):1343–1360, 1993.

[10] P. Christofides and N. El-Farra.Control Nonlinear And Hybrid Process Systems: Designs for Uncertainty,
Constraints And Time-delays. SPringer Verlag, 2005.

[11] Petri Nets Steering Committee. Petri nets tool database: quick and up-to-date overview of existing tools
for petri netshttp://www.informatik.uni-hamburg.de/TGI/PetriNets/ tools/db.html .

[12] J-M. Couvreur and Y. Thierry-Mieg. Hierarchical Decision Diagrams to Exploit Model Structure.Formal
Techniques for Networked and Distributed Systems - FORTE 2005, pages 443–457, 2005.

[13] The CPN Tools Homepage, 2007. http://www.daimi.au.dk/CPNtools.

[14] S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. Borcea, P. Kang, and L. Iftode. TrafficView: A Driver
Assistant Device for Traffic Monitoring based on Car-to-CarCommunication. In IEEE Computer Press,
editor,IEEE Semiannual Vehicular Technology Conference, 2004.

[15] René David and Hassane Alla. On Hybrid Petri Nets.Discrete Event Dynamic Systems: Theory and
Applications, 11(1-2):9–40, 2001.

[16] M. Doche, I. Vernier-Mounier, and F. Kordon. A modular approach to the specification and validation
of an electrical flight control system. InProceedings of the International Symposium of Formal Methods
Europe on Formal Methods for Increasing Software Productivity, pages 590–610. Springer-Verlag, 2001.

201

[17] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of con-
tinuous features. InInternational Conference on Machine Learning, pages 194–202, 1995.

[18] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness in the temporal logic
of branching time.J. Comput. Syst. Sci., 30(1):1–24, 1985.

[19] IEEE 802.11 Working Group for WLAN Standards.IEEE 802.11 tm Wireless Local Arae Networks.
IEEE, 2008.

[20] Frame Forum. The FRAME forum home page,http://www.frame-online.net .

[21] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves. PN standardisation : a survey. InInternational Con-
ference on Formal Methods for Networked and Distributed Systems (FORTE’06), pages 307–322, Paris,
France, September 2006. IFIP.

[22] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir, and T. Vergnaud. On the Formal Verification
of Middleware Behavioral Properties. In9th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’04), pages 139–157. Elsevier, September 2004.

[23] ISO/IEC-JTC1/SC7/WG19. International Standard ISO/IEC 15909: Software and Systems Engineering
- High-level Petri Nets, Part 1: Concepts, Definitions and Graphical Notation, December 2004.

[24] D.Luca J.Daniel. IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular
Environments. InProceedings of Vehicular Technology Conference,VTC Spring, IEEE, pages 2036–2040,
May 2008.

[25] Kurt Jensen.Coloured Petri nets: basic concepts, analysis methods and practical use, vol. 1, vol. 2 et vol.
3. Springer-Verlag, London, UK, 1995.

[26] Kurt Jensen and Lars M. Kristensen.Coloured Petri Nets, Modelling and Validation of Concurrent Sys-
tems. Monograph to be published by Springer Verlag, 2008.

[27] F. Kordon, A. Linard, and E. Paviot-Adet. Optimized Colored Nets Unfolding. InInternational Confer-
ence on Formal Methods for Networked and Distributed Systems (FORTE’06), volume 4229 ofLNCS,
pages 339–355, Paris, France, September 2006. Springer Verlag.

[28] Charles Lakos and Glenn Lewis. Incremental state spaceconstruction of coloured Petri nets. InProc.
22nd Int. Conf. Application and Theory of Petri Nets (ICATPN’01), volume 2075 ofLecture Notes in
Computer Science, pages 263–282. Springer, 2001.

[29] Glenn Lewis. Incremental specification and analysis in the context of coloured Petri nets. PhD thesis,
University of Hobart,Tasmania, 2002.

[30] Vern Lindberg.Uncertainties and Error Propagation - Part I of a manual on Uncertainties, Graphing,
and the Vernier Caliper. Rochester Institute of Technology, 2000.

[31] LIP6/MoVe. The CPN-AMI home page,http://www.lip6.fr/cpn-ami/ .

[32] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. Prod reference manual. Technical report,
Helsinki University of Technology, 1995.

[33] Jacques Vautherin. Parallel systems specifications with coloured Petri nets and algebraic specifications.
In Advances in Petri Nets 1987, covers the 7th European Workshop on Applications and Theory of Petri
Nets, June 1986, pages 293–308, London, UK, 1987. Springer-Verlag.

[34] ISO TC204 WG-16.CALM architecture. ISO, 2007.

202

	AcrD5B.tmp
	AcrD5B.tmp
	Papers Samlet v3.pdf
	Papers Samlet v3.pdf
	Paper05.pdf
	Paper05.pdf
	 The ComBack Method Revisited: Caching Strategies and Extension with Delayed Duplicate Detection
	 Sami Evangelista, Michael Westergaard and Lars Michael Kristensen

