
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

IT-parken, Aabogade 34
DK-8200 Aarhus N, Denmark

ISSN 0105-8517

October 2009
DAIMI PB - 590

Kurt Jensen (Ed.)

Tenth Workshop and Tutorial on
Practical Use of Coloured Petri Nets
and the CPN Tools
Aarhus, Denmark, October 19-21, 2009

Preface

This booklet contains the proceedings of the Tenth Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, October 19-21, 2009. The workshop is
organised by the CPN group at Department of Computer Science, Aarhus University,
Denmark. The papers are also available in electronic form via the web pages:
www.cs.au.dk/CPnets/events/workshop09/.

Coloured Petri Nets and the CPN Tools are now licensed to nearly 9,000 users in 140
countries. The aim of the workshop is to bring together some of the users and in this way
provide a forum for those who are interested in the practical use of Coloured Petri Nets
and their tools. The submitted papers were evaluated by a programme committee with
the following members:

Wil van der Aalst, Netherlands
João Paulo Barros, Portugal
Jörg Desel, Germany
Joao M. Fernandes, Portugal
Guy E. Gallasch, Australia
Jorge de Figueiredo, Brazil
Monika Heiner, Germany
Thomas Hildebrandt, Denmark
Kurt Jensen, Denmark (chair)
Ekkart Kindler, Denmark
Lars M. Kristensen, Norway
Charles Lakos, Australia
Johan Lilius, Finland
Daniel Moldt, Germany
Laure Petrucci, France
Rüdiger Valk, Germany
Lee Wagenhals, USA
Karsten Wolf, Germany
Jianli Xu, Finland

The programme committee has accepted 14 papers for presentation. Most of these deal
with different projects in which Coloured Petri Nets and their tools have been put to
practical use – often in an industrial setting. The remaining papers deal with different
extensions of tools and methodology.

The papers from all CPN Workshops can be found via the web pages:
www.cs.au.dk/CPnets/. After an additional round of reviewing and revision, some of the
papers form the 1998-2007 workshops have been published in four special sections in the
International Journal on Software Tools for Technology Transfer (STTT). For more
information see: sttt.cs.uni-dortmund.de/. After an additional round of reviewing and
revision, some of the papers from the 2008-2009 workshops will be published in
Transactions of Petri Nets and Other Models of Concurrency (ToPNoC) which is new
journal subline of Lecture Notes in Computer Science. For more information see:
www.springer.com/lncs/topnoc.

Kurt Jensen
PC and OC chair

i

ii

Table of Contents
M. Westergaard, L.M. Kristensen, and M. Kuusela

A Prototype for Cosimulating SystemC and Coloured Petri Net Models....................................... 1

Guy Edward Gallasch, Benjamin Francis, and Jonathan Billington

Seeking Improved CPN Tools Simulator Performance:

Evaluation of Modelling Strategies for an Army Maintenance Process....................................... 21

K.L. Espensen, M.K. Kjeldsen, L.M. Kristensen, and M. Westergaard

Towards Automatic Code-generation from Process-partitioned Coloured Petri Nets................ 41

Steven Gordon

Towards Verification of the PANA Authentication and Authorisation Protocol

using Coloured Petri Nets.. 61

Yongyuth Permpoontanalarp and Panupong Sornkhom

A New Coloured Petri Net Methodology for the Security Analysis

of Cryptographic Protocols.. 81

L.M. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Trèves

A primer on the Petri Net Markup Language and ISO/IEC 15909-2... 101

E. Kindler and L. Petrucci

A framework for the definition of variants of high-level Petri nets.. 121

Somsak Vanit-Anunchai

Verification of Railway Interlocking Tables using Coloured Petri Nets..................................... 139

Jing Liu, Xinming Ye, and Tao Sun

Towards Formal Modeling and Analysis of BitTorrent using Coloured Petri Nets................... 159

A.L.G. Colaço, G.C. Barroso, R.A. Azevedo, R.P.S. Leao, R.F. Sampaio, and E.B. de Medeiros

A Full Automated Fault Diagnosis System based on Colored Petri Net..................................... 179

Luciano García-Bañuelos and Marlon Dumas

Towards an Open and Extensible Business Process Simulation Engine.................................... 199

Guy Edward Gallasch and Jonathan Billington

Relaxed Timed Coloured Petri Nets – A Motivational Case Study.. 209

Sami Evangelista and Lars Michael Kristensen

Search-Order Independent State Caching.. 219

Guy Edward Gallasch

On Extending the Sweep-Line for Language Equivalence Checking... 241

iii

iv

A Prototype for Cosimulating SystemC and

Coloured Petri Net Models

M. Westergaard1∗, L.M. Kristensen2, and M. Kuusela3

1 Department of Computer Science, Aarhus University, Denmark.
Email: mw@cs.au.dk

2 Department of Computer Engineering, Bergen University College, Norway.
Email: lmkr@hib.no

3 OMAP Platforms Business Unit, Texas Instruments, Villeneuve-Loubet, France.
Email: m-kuusela@ti.com

Abstract. Semiconductor technology miniaturization allows designers
to pack more and more transistors onto a single chip. The resulting Sys-
tem on Chip (SoC) designs are predominant for embedded systems such
as mobile devices. Such complex chips are composed of several subsys-
tems called Intellectual Property blocks (IPs) which can be developed by
independent partners. Functional verification of large SoC platforms is
an increasingly demanding task. A common approach is to use SystemC-
based simulation to validate functionality and evaluate the performance
using executable models. The downside of this approach is that develop-
ing SystemC models can be very time consuming. We propose to use a
coloured Petri net model to describe how IPs are interconnected and use
SystemC models to describe the IPs themselves. Our approach focuses
on fast simulation and a natural way for the user to interconnect the
two kinds of models. We demonstrate our approach using a prototype,
showing that the cosimulation indeed shows promise.

1 Introduction

Modern chip design for embedded devices is often centered around the concept
of System on Chip (SoC) as devices such as cell phones benefit from the progress
of the semiconductor process technology. In these platforms, complex systems
including components such as general-purpose CPUs, DSPs (digital signal pro-
cessors), audio and video accelerators, DMA (direct memory access) engines and
a vast choice of peripherals, are integrated on a single chip. In Fig. 1, we see
an example of an SoC, namely Texas Instruments’ OMAP44x architecture [14],
which is intended for, e.g., mobile phones. Each of the components, called in-
tellectual property blocks (IPs), can be contributed by separate companies or
different parts of a single company, but they must still be able to work together.
The IPs are designed to be low-power and low-cost parts and often have in-
tricate timing requirements, making the functional verification of such systems

∗Supported by the Danish Research Council for Technology and Production.

1

increasingly difficult. Therefore the IPs are modeled using an executable model-
ing language and simulation based validation is performed to ensure that, e.g.,
the multimedia decoder can operate fast enough to decode an incoming stream
before it is sent to the digital-to-analog converter for playback.

!"#"$%&'(#)*+,)(#)&-")./,0)1)%223'4%&'(#5)

*+,)6)7"3'8"$5)92)&():;<;2)%&)6;=>$%?"5)2"$)

@)ABCD1)A0

@)/0EF1),G0

@)+H=:),0

*+,)6)"#%I3"5)%78%#4"7)?93&'?"7'%)

0.JEK+KL)GFMN1;)!$%2-'45)%44"3"$%&($)

%78%#4"7)!%?'#!)%#7)$'4-)6O)?%22'#!)%&)1P)

2$"8'(95)GFMN6;)4($"B))

6O)!$%2-'45)%#7)5922($&5)%33)&-")?%Q($),0*5R)

)EG)8CB;R).2"#FS)EG)8:B:R)

.2"#+F)8:B:)%#7)EFS)8:B6B)T-")!$%2-'45)

8'7"()%?23'U"$)>"%&9$'#!)I9'3&='#)T+)4%I3")

7"&"4&'(#B),#)'#&"!$%&"7)AO/*)8:B6)&$%#5?'&&"$)

%#7)7'!'&%3)T+)(9&29&5)%$")?9&9%33V)"P4395'8"R)

@)
@)
@)
@) E7!")"#-%#4"?"#&)
@)
@)
@) ,9&(=>(495W%9&(=X-'&")I%3%#4"W)%9&(="P2(59$"
@))O'!'&%3)Y((?

Main system interconnect

M-Shield™

Security
Display

controller

Non-volatile
memory

controller

Volatile
memory

controller

Peripherals
Imaging
Signal

Processor (ISP)

Video
out

ARM®

Cortex™ -A9
MPCore™

ARM®

Cortex™ -A9
MPCore™

POWERVR™
SGX540

graphics
accelerator

Audio
back-end
processor

IVA 3 Hardware
accelerator

Programmable
elements for audio

and emerging
video standards

True HD video
multi-standard 1080p

30-fps playback
and recordSymmetric

Multiprocessing
(SMP)

Processing
power for all
applications

and
no-compromise

Internet
browsing

Securing
content, DRM,

secure
runtime,

IPSec
Larger, color-rich

displays embedded
rotation engine,
multi-pipelines,

multioutput

LPDDR2, MLC/SLC
NAND, NOR Flash,

eSD, eMMC etc.

MMC/SD,
SLIMbusSM,

USBCSI, UART,
SPI, McBSP

DSC quality imaging
up to 20-megapixel
with noise filtering,

image/video
stabiliztion

Composite and
HDMI v1.3

output to drive
external displays
from the handset

Companion ICs
TWL6030
TWL6040

OpenGL® ES 2.0 to
deliver immersive user

interface, advanced gaming,
rich 3D mapping

Virtual
low power

audio IC

Power
management

Audio
management

@)/0EF=C)/0

@).ZC)+0[

Fig. 1: Block diagram of Texas Instruments’ OMAP44x platform.

When an IP is purchased for inclusion in an SoC, one often obtains a model
of the component for inclusion in a whole-system simulation. Such a model is
often created using SystemC [5], an industry standard for creating models based
on an extension of C++. SystemC supports simulation-based analysis and is
well-suited for making models that deal with intricate details of systems, such
as electronic signals. SystemC can semi-automatically be translated directly to
microcode or even electrical circuits, making it possible to obtain an implementa-
tion of the final chip directly from the model. SystemC has weaknesses as well, as
it has no formal semantics and therefore is not well-suited for performing formal
verification. Furthermore, SystemC is not well-suited for modeling in a top-down
approach where implementation details are deferred until they are needed, and
SystemC is inherently textual, making it difficult to get an idea of, e.g., which
parts of the chip are currently working or idle, unless a lot of post-processing
of simulation results is performed. All of these traits make it tedious and time
consuming to create models in SystemC, which postpones the moment where
the modeling effort actually pays off by revealing problems in the design.

The coloured Petri nets formalism (CP-nets or CPNs) [6] is a graphical for-
malism for constructing models of concurrent systems. CP-nets has a formal
semantics and can be analyzed using, e.g., state-space analysis or invariant anal-
ysis. CPN models provide a high-level of abstraction and a built-in graphical
representation that makes it easy to see which parts of the model that currently
process data. The main drawback of CP-nets is that the formalism is not widely
used in the industry, meaning that only little expertise and few pre-existing IP

2

models exist. In order to switch to using CP-nets for SoC modeling, one would
have to make models of the obtained IPs or translating the CPN model to Sys-
temC for simulation along with the IP models.

During development of the next generation SoC at Texas Instruments, some
IPs were modeled with coloured Petri nets using CPN Tools [3, 12] instead of
SystemC. Due to the next generation SoC being work in progress, we cannot go
into further details about the specifics of the model nor the modeled architec-
ture, but we can sum up some initial experiences with using CPN models for SoC
modeling and verification. Firstly, a CPN model can be constructed faster than
a corresponding SystemC model, making it possible to catch errors earlier in the
process and increase confidence in the new architecture. The model constructed
made it possible to catch a functionality error, and subsequent performance sim-
ulation provided input to making reasonable trade-offs between implementation
of some sub-blocks in hardware or software. All in all, the CPN model did pro-
vide interesting insights for a real-life example. Unfortunately, the model also
had limitations. The biggest limitation is that the performance of the connection
between the modeled block and the memory subsystem could not be evaluated
even though a cycle accurate model of the memory system was available in Sys-
temC without doubling the effort put into the SystemC model of the memory
system.

The above shows that CPN models and SystemC models complement each
other very well; one language’s weaknesses are the other language’s strengths. It
would therefore be nice to be able to use the IP models created using SystemC
with a more high-level model created using CP-nets. In this way it is possible
to have the SystemC models specify the low levels of the model and graphically
compose the IPs using CP-nets, allowing us to have a high-level view of which IPs
are processing during the simulation. In this paper we describe an architecture
for doing this by running a number of CPN simulator in parallel with a number
of SystemC simulators, what we call a cosimulation.

The reason for introducing our own notion of cosimulation instead of relying
on, e.g., the High-Level Architecture (HLA) [4, 11], is mainly due to speed of
development and a wish for a more decoupled architecture, which hopefully
leads to faster execution; please refer to Sect. 3 for a more detailed discussion.

The rest of this paper is structured as follows: First, we briefly introduce
SystemC and CP-nets using a simple example, in Sect. 3 we present the algo-
rithm used to cosimulate models, and in Sect. 4 we describe a prototype of the
cosimulation algorithm, our experiences from the prototype, and propose an ar-
chitecture for a production-quality implementation. Finally, in Sect. 5, we sum
up our conclusions and provide directions for future work.

An earlier version of this paper has been published as [17]. The changes made
in this revision is that Sect. 2 has been rewritten for people with background
in CP-nets. Section 3 has been expanded with Algorithm 2 and an improved
description of Algorithm 1. Section 4 has been rewritten to tie the description
of the architecture better to the algorithms from Sect. 3. Section 4 has also been
expanded with a screenshot and a more detailed description of our prototype.

3

2 Background

In this section we introduce an example model of a simple stop-and-wait commu-
nication protocol over an unreliable network. We will use this example through-
out the paper and introduce the SystemC formalism using the example. It is not
crucial to understand the details of SystemC, but just to get an impression of
SystemC models and their communication primitives.

2.1 Stop-and-wait Protocol CPN Model

We use the example hierarchical stop-and-wait protocol included with the CPN
Tools distribution [3, 12]. We briefly recall the example with focus on how com-
munication between the different pages takes place.

At the top level (Fig. 2) the model consists of three modules, a Sender, a
Receiver, and a Network, here represented by substitution transitions . The sender
sends packets via the network to the receiver. As the network can drop and
deliver packets out of order, the sender attaches a sequence number to each
packet and retransmits packets. The receiver acknowledges the receipt of packets
to let the sender know when it is allowed to continue to the next packet. To
make the example more interesting, we have attached a time stamp to each
packet to allow us to simulate real world conditions, where packet delivery is not
instantaneous, and where retransmission only takes place after a certain delay.

Receiver

Receiver

Network

Network

Sender

Sender

D

INT

C

INT

B

INTxDATA

A

INTxDATA

Sender Network Receiver

11`1@312

21`(1,"CP-")@162+++
1`(2,"net")@16411`(2,"net")@281

Fig. 2: Top level of network protocol.

Let us also take a closer look at the sender part of the model shown in Fig. 3
(left). We will not actually use a CPN version of the sender, but it may be use-
ful to compare the CPN version with the SystemC version we present below.
The sender is quite simple. The Send Packet transition reads a packet from the
Send place, matches it against the NextSend counter, delays it for the amount of
time read from Wait and transmits the packet to the out-buffer on A. When Re-
ceive Ack receives an acknowledgement from D, it updates the NextSend counter.
Sending a packet takes 9 time units and processing an acknowledgement takes 7
time units. Figure 3 (right) shows the situation after Send Packet has been exe-
cuted. The A and D places of the sender are port places (or just ports) that are

4

assigned to the socket places (or just sockets) with the same names on the top
page in Fig. 2. Ports are marked by a port tag showing the direction information
flows (into and out of the sender module). Whenever a token is produced on or
consumed from a port or socket place, it is also produced/consumed on the corre-
sponding socket/port place, and we note that port places and the corresponding
socket places indeed have the same markings in the right part of Fig. 3 (e.g.,
1‘(2, ”net”)@281 on both A places), but apart from the shared names nothing in
the graphical representation shows which ports correspond to which sockets.

n

(n,p)

(n,p)

Send
Packet

@+9

Receive
Ack

@+7

D In

INT

A Out

INTxDATA

INT

Send

NextSend
1

INTxDATA

(n,p)@+wait

1`(1, "CP-")++
1`(2, "net")++
1`(3, "###")

100

INT

nn

Out

Wait

wait

In

nk

11`1@312

3
1`(1,"CP-")@218+++
1`(2,"net")@239+++
1`(3,"###")@0

11`2@203

11`100@139

n

(n,p)

(n,p)

Send
Packet

@+9

Receive
Ack

@+7

D In

INT

A Out

INTxDATA

INT

Send

NextSend
1

INTxDATA

(n,p)@+wait

1`(1, "CP-")++
1`(2, "net")++
1`(3, "###")

100

INT

nn

Out

Wait

wait

In

nk

11`1@312

11`(2,"net")@281

3
1`(1,"CP-")@218+++
1`(2,"net")@381+++
1`(3,"###")@0

11`2@281

11`100@281

Fig. 3: Sender of network protocol before executing Send Packet (left) and after (right).

We will not go into details about the Network and Receiver modules; they are
CPN modules that implement the aforementioned operations. The interested
reader is invited to look at the model distributed with CPN Tools.

While neither of the modules shows it, the CPN model also has an associated
global clock , which indicates what the current model time is in the execution of
the model. The idea is that tokens are not available until the global clock reaches
or exceeds the time stamp of the token; intuitively the execution of transitions
take time and tokens are consumed immediately, but new tokes are only produced
after the execution is done. In order to show this to the modeler, the token is
shown immediately, but has an attached time stamp that indicates when it is
available. In Fig. 3 (left) the global clock is 272 and in Fig. 3 (right) and Fig. 2
the global clock has the value 281 (the change is that Send Packet transmitted

5

another copy of packet number 2 at time 272 and the packet is available 9 time
units later, at time 281, due to its @+9 inscription).

2.2 SystemC

We wish to model the Sender module using SystemC instead of the CPN module
shown in Fig. 3. SystemC models, like CPN models, consist of modules organized
in a hierarchy. Modules have interfaces consisting of ports that can be connected
to other ports using channels (note that in SystemC both ends of such an as-
signment are called ports). Modules can execute C++ code. Like CPN models,
SystemC models have a global clock which allows us to model delays in trans-
mission.

In Listing 1, we see a very simplistic SystemC version of the sender. We define
a module Sender (l. 4) and give it two ports, a and d (ll. 5–6). The names used
in this module correspond to the names used in Fig. 3 except we use C++ nam-
ing conventions. The sender has some local data, a variable nextSend (l. 43) for
keeping track of which packet to send next, and an array of all packets we intend
to send, send (l. 44). These are set up in the constructor (ll. 9–13), where we also
indicate (ll.15–16) that our module has two threads, sendPacket, responsible for
transmitting packets, and receiveAck, responsible for receiving and processing ac-
knowledgements. We indicate that we are interested in being notified when data
arrives on d (l. 17). The sendPacket thread (ll. 20–29) loops through all packets,
writing them to a and delaying for sendDelay time units between transmitting
each packet. The receiveAck thread (ll. 31–40) receives acknowledgements from d
and updates nextSend, so the next packet is transmitted. We see that the model
basically is C++ code and despite its simplicity still comprises over 40 lines
of code. We would normally split the code up in interface and implementation
parts, but have neglected to do so here in order to keep the code simple.

We need to set up a complete system in order to run our sender. In Listing 2,
we see how such a setup could look like. We basically have a module Top (l. 6)
which is a simplified version of the top level in the CPN model (Fig. 2), where
we have essentially removed the network part and just tied the sender directly
to the receiver. The top module sets up two channels (ll. 7–8), packets and
acknowledgements. The constructor initializes the sender and receiver test bench
(l. 13) and connects the ports via channels (ll.14–17). The main method initializes
the top level (l. 22) and starts the simulation (l. 23).

Now, our goal is to use the code in Listing 1 as the sender module in the CPN
top level (Fig. 2) with the CPN implementations of the network and receiver (not
shown).

3 Algorithm

As our primary goal is to be able to simulate real-life System-on-Chip (SoC)
systems, which are typically modeled on the nanosecond scale, we need to be
able to perform very fast simulation, and it is not feasible to synchronize the

6

Listing 1: Sender.h
! "

1 #include "systemc.h"
2 #include "INTxDATA.h"

4 SC_MODULE (Sender) {
5 sc_port<sc_fifo_out_if<INTxDATA> > a;
6 sc_port<sc_fifo_in_if<int> > d;

8 SC_CTOR(Sender) {
9 nextSend = 1;

10 for (int i = 0; i < 2; i++)
11 send[i].no = i + 1;
12 send[0].mes = "CP-";
13 send[1].mes = "net";

15 SC_THREAD(sendPacket);
16 SC_THREAD(receiveAck);
17 sensitive << d;
18 }

20 void sendPacket(void) {
21 sc_time sendDelay = sc_time(9,SC_NS);
22 sc_time waitDelay = sc_time(100,SC_NS);

24 while (nextSend < 3){
25 wait(sendDelay);
26 a->write(send[nextSend-1]);
27 wait(waitDelay);
28 }
29 }

31 void receiveAck(void) {
32 sc_time ackDelay = sc_time(7,SC_NS);
33 int newNo;

35 while (true){
36 newNo = d->read();
37 wait(ackDelay);
38 nextSend = newNo;
39 }
40 }

42 private:
43 int nextSend;
44 INTxDATA send[2];
45 };

$

7

Listing 2: sc main.cpp
! "

1 #include <systemc.h>
2 #include "Sender.h"
3 #include "ReceiverTestBench.h"
4 #include "INTxDATA.h"

6 SC_MODULE (Top) {
7 sc_fifo<INTxDATA> packets;
8 sc_fifo<int> acknowledgements;

10 Sender S;
11 ReceiverTestBench RTB;

13 SC_CTOR(Top): S("S"), RTB("RTB") {
14 S.a(packets);
15 RTB.b(packets);
16 S.d(acknowledgements);
17 RTB.c(acknowledgements);
18 }
19 };

21 int sc_main(int argc, char* argv[]) {
22 Top SenderReceiver("SenderReceiver");
23 sc_start();
24 return 0;
25 }

$

CPN and SystemC parts of the model after each step if we wish to simulate
several seconds of activity. Instead, we only globally synchronize the clocks of
models when needed, i.e., when one part has done everything it can do at one mo-
ment in time and needs to increase its clock in accordance with the other parts.
We synchronize models pairwise whenever information is exchanged (which may
enable further events at the current model time). In the following we refer to
CPN and SystemC simulator as components in cosimulations, synchronization
of global clocks as synchronization or time synchronization, and pairwise syn-
chronization in the form of sending or receiving data to/from other components
as information exchange.

Aside from requiring loose coupling between the components, we prefer a
truly distributed algorithm in order to avoid having to rely on a coordinator.
One goal of this work is to find out whether CPN/SystemC cosimulation is
possible and feasible and can actually benefit modeling, and therefore we want
to do relatively fast prototyping.

For these reasons, we decided to make our own implementation of cosimu-
lation instead of using an off-the-shelf technology such as HLA. HLA enforces
a stricter synchronization than we need, so by making our own implementa-
tion, we believe we can achieve better performance. Furthermore, implementing

8

a generic HLA interface for CPN models is a non-trivial and demanding task,
and does not satisfy our requirement of development without investing too many
resources before the viability of the solution can be judged. Finally, HLA relies
on coordinators which conflicts with our desire for a distributed algorithm.

Our algorithm for simulation of the individual components is shown as Al-
gorithm 1. Basically, it runs two nested loops (ll. 2–6 and 3–5). The inner loop
executes steps locally as long as possible at the current model time. A step is an
atomic operation dependent on the modeling formalism; for CPN models a step
is executing a transition and for SystemC a step can be thought of as executing a
line of code (though the real rule is more complex, dealing with synchronization
points, such as information exchange and time synchronization). The inner loop
also transmits information to or from other components (here we have shown
a single-threaded implementation that exchanges information after every step –
but of course only if there is information to exchange – but we can of make a
multi-threaded version or only transfer information when it is no longer possi-
ble to make local steps). When we can make no more steps locally, we find the
allowed time increase by calculating the global minimum of the time increase
requests by all components in the cosimulation.

Algorithm 1 The Cosimulation Algorithm
1: time ← 0
2: while true do

3: while localStepIsPossibleAt(time) do

4: executeOneStepLocally()
5: sendAndReceive()
6: time ← distributedGlobalMin(desiredIncrease())

We note that exchange of information takes place without global synchro-
nization. Participants simply communicate directly as described by the model
structure and if incoming information causes components to be able to execute
more local steps they just do so, and reevaluate how much they want to incre-
ment time. This means that our time synchronization algorithm does not have
to deal with information exchange.

Naturally, Algorithm 1 needs to be implemented for each kind of simula-
tor we wish to be able to use for cosimulation. Our primary goal is to make
implementations for CPN and SystemC models, but the algorithm is general
and can in principle be implemented for any timed executable formalism as
long as the formalism uses a compatible concept of time, i.e., a global clock. In
order to implement the algorithm, we need to provide implementations of lo-
calStepIsPossibleAt, executeOneStepLocally, and sendAndReceive.
The first two will typically be trivial when given a simulator, as executing steps
and querying whether it is possible to execute steps is the main functionality
provided by a simulator. The difficult part is the implementation of sendAn-
dReceive, which requires that we hook into the simulator in some way to find

9

out when values to send are produced, translate the value into an exchange for-
mat (such as JSON (JavaScript Object Notation) [7] or XML described using
XML Schema [1]) agreed upon by the simulators. We must resolve the destina-
tion component, either directly or from an external binding, and transmit the
encoded data to the receiving component. Only the latter part can be done in-
dependently of the component modelling language. When a value is received, we
need to translate the exchange format to a format understood by the simulators
of the component and modify the state of the simulator correctly. Again, these
steps needs to be done for each simulator. For CPN models we regard each token
as an individual exchanged value; SystemC only allows transmitting one value at
a time on a port (though the channel may have a buffer), so sendAndReceive
simply has to exchange single values over a channel. In [9] we describe how to
embed types from Java in CPN models by basically translating simple values
directly, translating between lists of SML and Lists of Java, translating between
JavaBeans and Java Maps, and SML records, and translating between union
data types (datatypes in SML) and Java Enums. A similar approach can be
used to translate between data types of SystemC and CPN models.

Algorithm 1 does not specify how we calculate the global minimum required
for synchronization. As we need to use the time specified by the components
of the models, we cannot use something like, e.g., Lamport timestamps [8] to
perform our time synchronization as they are only useful for ordering events ac-
cording to a causal ordering. We do not only care about causal ordering but also
for slowing down or halting simulation of components if the other components
have not yet advanced their clocks as information exchange may make it possible
to execute actions earlier than what was possible without information exchange.
Therefore Algorithm 1 synchronizes every time a component wishes to increase
its time stamp.

It is possible to do time synchronization without imposing any restrictions on
the network structure, e.g., by using flooding, but making certain assumptions
allows a simpler and faster implementation. As both CPN and SystemC models
are naturally structured hierarchically with components containing nested com-
ponents, optionally in several layers, making the assumption that components
are structured in a tree is no real restriction. Here we give an algorithm for dis-
tributedGlobalMin of Algorithm 1 where we assume that components are
ordered in a tree, and we use normal tree terminology (root, parent, and child).
Naturally, each node knows how many children it has and its parent. The idea is
that each node requests a time increase from its parent. The parent then returns
the allotted time increase. When a node wants to increase time, it waits for
all its children to request a time increase. It takes the minimum of all of these
votes (including its own) and requests this time increase from its parent. When
it receives a response from the parent, it announces this increase to all children.
The root just announces to all children without propagating to its (non-existing)
parent. The entire algorithm is shown as Algorithm 2.

Algorithm 2 consists of two procedures, a workerThread and the ac-
tual distributedGlobalMin procedure. We assume that each component has

10

Algorithm 2 distributedGlobalMin for tree-structured components
1: ready ← false

2: requests ← Queue.empty()
3: results ← Queue.empty()
4:
5: proc workerThread() is

6: while true do

7: minRequest ← ∞ // collect requests from children
8: for i = 1 to children.size() + 1 do

9: minRequest ← min(minRequest, requests.removeHead())
10: if this = root then

11: result ← minRequest // we know the result locally
12: else

13: // propagate our request
result ← parent.distributedGlobalMin(minRequest)

14: for i = 1 to children.size() + 1 do

15: results.add(result) // distribute time increase to children
16: ready ← true

17:
18: proc distributedGlobalMin(vote) is

19: while ready do

20: skip() // wait for any previous ongoing calculations
21: requests.add(vote)
22: while ¬ready do

23: skip() // wait for calculation to complete
24: result ← results.removeHead()
25: if results.isEmpty() then

26: ready ← false // if we are last, signal calculation is over
27: return result

started a single instance of workerThread in a separate thread. We also as-
sume that calls to a parent component’s distributedGlobalMin conceptually
happens in the thread of the caller (the parent starts a separate thread to handle
each child or the child call communicates directly with the workerThread of
the parent). All variables defined in ll. 1–3 live in the context of the work-
erThread. Now, the idea is that the calculation in each component has two
stages: gathering of requests (a result is not ready for queries) and distribution
of replies (a result is ready).

The ready variable keeps track of which stage we are currently in, initially
gathering of requests (l. 1). We gather requests in a queue, which is initially
empty (l. 2). When a child or the component itself (from l. 6 in Algorithm 1) calls
distributedGlobalMin, we first wait until we are in the request gathering
stage (ll. 19–20). We then add our request to the queue of requests (l. 21). We
then wait until replies are ready (ll. 22–23), and read the result (l. 24). If there
are no more results available (l. 25), we indicate that (l. 26), and return the
result (l. 27).

11

Meanwhile, the workerThread calculates the minimum received request
(ll. 7–9). It knows that it will receive exactly children.size() + 1 requests, one
for each child and one for the component itself. If the current component is also
the root component (l. 10), the result is just this calculated minimum (l. 11),
the worker requests an increase from the parent node of exactly this minimum
(l. 13). The workerThread then makes exactly children.size() + 1 copies of
the result, one for each caller (ll. 15–16), switches to the result distribution stage
(l. 14), and restarts for another calculation (l. 6).

The algorithm can be improved in various ways. For example, as soon as
a node realizes that only the minimum time increase can be granted (0 or 1
depending on whether we allow requesting a zero time increase), it can just
announce the result to all children and continue propagating up in the tree.
This can be done around line 9 in Algorithm 2, if we realize that minRequest
is equal to time (l. 1 in Algorithm 1). We also need to change how we wait for
responses, so we do not wait in lines 22–23, yet keep the stage correctly in lines
25–26. This can be done by counting the number of results returned instead of
relying on results to be empty.

Another improvement can be made by observing that a parent node need not
actually announce the lowest time increase. It can announce the time increase
requested by the node that has the second lowest request minus one, and sub-
trees can then autonomously proceed (knowing that other sub-trees will not be
able to proceed as they cannot receive data since information is exchanged only
up and down the tree). Here we need to change the calculation in lines 7–9.

We can also exploit additional knowledge about individual components. For
example a component (or component sub tree) with only output ports can be
allowed to continue indefinitely, as their processing will never be influenced by
the calculation of other components.

4 Evaluation

In order to evaluate Algorithm 1 and whether CPN/SystemC cosimulation is
feasible, we have developed a prototype to show that is is possible to integrate
the two languages. Furthermore, a goal is to show that it is possible to make
the integration without (or with very few) changes to the SystemC simulator,
as there are multiple vendors with different implementations.

4.1 Prototype Architecture

The architecture of our prototype can be seen in Fig. 4. We first look at the
static architecture from the top of Fig. 4. The prototype consists of three kinds
of processes: a SystemC simulator (left), an extended version of the ASCoV-
eCo State-space Analysis Platform (ASAP) [15] (middle), and a CPN simulator
(right) with a library called Access/CPN [16] for easy interaction with the
simulator. The yellow/light gray boxes are standard components (ONC RPC,

12

C++, Java, Eclipse Platform, Eclipse Modeling Framework, SML runtime, and Stan-
dard ML), already part of a standard SystemC simulator (SystemC and SystemC
model), ASAP (CPN model representation, CPN model loader, and CPN model
instantiator), or CPN Tools’ simulator process (CPN simulator and Access/CPN)
and therefore does not have to be built from scratch.

At the top middle of the ASAP process, we have a Cosimulation action, which
takes care of starting and connecting the correct components based on a Cosim-
ulation representation which describes which components to use and how to com-
pose them. The cosimulation action and cosimulation representation (marked
in green/dark gray) are independent of the simulator used. The cosimulation
action basically implements code to set up Algorithm 1 and Algorithm 2 as
described by a cosimulation representation. The representation describes the hi-
erarchy of components, a mapping of interfaces to modelling language-specific
features (port places and exported ports in the cases of CP-nets and SystemC),
and how interfaces are connected to each other (corresponding to port/socket
assignments in CP-nets and channels in SystemC).

The two cosimulation jobs SystemC cosimulation job and CPN cosimulation
job implement Algorithm 1. They share a common Java implementation of Al-
gorithm 1 and Algorithm 2 and are just specializations in terms of localStepIs-

Fig. 4: The static architecture (top) and run-time architecture (bottom) of our proto-
type

13

PossibleAt, executeOneStepLocally, and sendAndReceive. The reason
for this is that a common implementation allows us to do fast prototyping.

The CPN cosimulation job uses Access/CPN to implement the required func-
tion. Access/CPN allows us to check whether any transitions are enabled at
the current model time (accounting for localStepIsPossibleAt), to execute
a step (accounting for executeOneStepLocally) and to read and change the
marking of all places, including port places (allowing us to implement sendAn-
dReceive). All of this can be done in the ASAP process, so we do not have to
change the CPN simulator process.

In order to implement the SystemC cosimulation job, we need to do a little
more work, as we do not have something like Access/CPN available for Sys-
temC. Instead, we have added a Cosimulation layer on top of the SystemC model,
which basically plays the role of Access/CPN. The cosimulation layer provides
stubs for modules that are external (such as a CPN model or another SystemC
model) and implements the top level of the SystemC model (corresponding to
Listing 2). Like with Remote Procedure Call (RPC) [13] systems, stub modules
look like any other module to the rest of the system and takes care of com-
municating with other components. In the example in Sect. 2, the stub would
consist of an implementation of ReceiverTestBench referred to in Listing 2 and
the cosimulation layer would consist of code like Listing 2 along with a com-
munication library. Currently, we need to write stubs and the top level code
manually, but we are confident that both can be generated automatically, as the
problem is very much like standard stub generation for RPC systems (we need to
send/receive data, serialize it, and call the appropriate remote method). The stub
communicates using ONC-RPC [13] (formerly known as Sun RPC and available
on all major platforms) with the SystemC cosimulation job to implement lo-
calStepIsPossibleAt) and executeOneStepLocally (by communicating
with the glue top level code) and sendAndReceive (by communicating with
the stubs).

At run-time, a cosimulation looks like Fig. 4 (bottom). Each rectangle is
a running process, and each rounded rectangle is a task running within the
process, corresponding to the blocks from the static architecture. We see that all
simulators are external and can run on separate machines. We have implemented
Algorithm 1 and Algorithm 2 within the ASAP process (this in particular means
that the distributed algorithm runs within one process). We have implemented
our algorithm in full generality using channel communication only, but as we
were not overly concerned with speed in our prototype, decided against setting
up a truly distributed environment.

4.2 Prototype

In Fig. 5 we see a screenshot from our prototype. The prototype runs on Linux
and Mac OS X, and with a Windows version of ONC RPC port mapper also
on Windows. The view basically consists of four parts, the project explorer at
the top left, where we see all our models and related files, the progress area at
the bottom left, where we see running components during execution, the editing

14

area at the top right, where we describe our cosimulation jobs (as represented
by a cosimulation representation), and an auxiliary area at the bottom right,
currently showing properties of the currently selected object, but which can also
show, e.g., the console of a running SystemC job.

Fig. 5: Screenshot from prototype.

In the Project Explorer view, we see a top-level entries Binaries, Includes, and
Debug, which are part of the C++ subsystem we have built our prototype upon
(they contain compiled files, header files, and debugging files for SystemC mod-
els). A more interesting entry is Models, containing TimedProtocolTop.model,
which contains the CPN model from Fig 2 as well as an implementation of
Network and Receiver (but not Sender from Fig. 3). It also contains a SystemC
model, main.cc containing the code from Listing 1 (implementing the sender in
SystemC) along with an implementation of a hand-written communication top
level and stubs for the rest of the model. The RPC sub-entry contained in the

15

Models folder contains the library to communicate with the SystemC cosimu-
lation jobs. The Logs entry contains an entry for each time we have executed
our cosimulation. We can see an entry Execution 1, containing a TimedProto-
colTop.simlog containing the simulator log for the TimedProtocolTop.model com-
ponent and an entry demo2 corresponding to the compiled name of our SystemC
model. SystemC allows users to specify log files manually, and they are all gath-
ered in this directory along with a log of the console while executing the model.
If our cosimulation had consisted of more CPN and/or SystemC components,
we would have an entry for each additional component here. The last thing we
notice in the Project Explorer, is the Cosimulations entry, which contains just
one file, namely cppcpn.cosimulation, which is a file containing our cosimulation
representation.

In the editing area, we can see the overall structure of our cosimulation rep-
resentation. A cosimulation description consists of a set of components (such as
a CPN or SystemC components). Each component can expose an external in-
terface (such as port places for CP-nets or ports for SystemC models), and can
import other components (corresponding to substitution transitions in CP-nets
and module instantiations in SystemC) and ties into the interface of imported
modules (corresponding to port/socket assignments in CP-nets and channels in
SystemC). In the example in Fig. 5, we have a cosimulation with two components,
a Petri Net Model and a System CModel. The Petri net model is tied to Timed-
ProtocolTop.model and the SystemC model is tied to the compiled name, demo2,
which is our SystemC sender. We see that the SystemC model exports two ports,
one input port and one output port. The ports have exported names (here we
use names corresponding to the places they represent in the CPN models, but
they could be anything) and describe which SystemC port they correspond to.
In the Properties view, we can see that for Output Port Export A the exported
name is A and the corresponding SystemC port is a. The Petri net model does
not export any ports, but rather imports a module from the environment re-
placing a transition in the model. This import contains a link to the SystemC
component (not visible in the figure) as well as assignments between exported
port names and places (also not visible).

This information allows us to implement sendAndReceive for both kinds of
jobs. For Petri net cosimulation jobs we can just read the marking of places, find
the matching exported name and imported module, and transmit the data to that
module when sending, and map an exported port name to a place when receiving
data. For SystemC, we can set up channels listening on/transmitting to the
specified ports. When we receive data on a channel, we invoke code transmitting
it to the correct component. This code can be generated from information about
the module structure (which we have) and information about the exported port
name (which we also have). In the same manner, we can generate code to invoke
when we receive data.

In our prototype, we have not focused on a real exchange format between
the components, and just assume that transmitted values are strings that can
be understood by the receiver.

16

4.3 Simplified Architecture for Production-quality Implementation

For a production-quality implementation we propose the simpler architecture in
Fig. 6. In this architecture, we have removed the centralized process and instead
moved the implementation of Algorithm 1 and Algorithm 2 to the Cosimulation
layers for both SystemC and CPN (using instead a much faster in-process ver-
sion of the Access/CPN layer). We have also replaced ONC-RPC with Message
Passing Interface (MPI) [10] which is an industry standard for very fast com-
munication between distributed components. In order to use MPI, we have to
embed a standard MPI implementation into the CPN simulator process and add
code to interface with that from SML code used in the simulator. The run-time
behaviour is as one would expect: Instead of having the communication being
mediated by ASAP, ASAP is now only responsible for setting up a cosimulation
by starting the autonomous component processes. After being set up, the com-
ponents communicate directly with each other. ASAP can be used to process
the results in a single user interface after simulation.

Fig. 6: The static architecture (top) and run-time architecture (bottom) of production-
quality implementation

One of our design goals was that we did not want to change the SystemC
simulator. Instead, we have created a cosimulation layer as a regular SystemC
process, namely as stubs, so our prototype shows that it is feasible to achieve
cosimulation without changing the SystemC simulator. For efficient implementa-
tion we may need to augment the CPN simulator, but that is less of a problem,
since we have control over it.

17

Our implementation shows that our algorithm is able to provide cosimulation
and we anticipate that the very loose coupling between components will allow
it to perform very well. We believe that it is possible to get meaningful results
from the components of the model. Currently we just extract log files, but it
should be easy to map these back to the models, which is most interesting for
the CPN models, to get graphical feedback, such as showing markings of the
CPN models.

As a completely unrelated bonus, our prototype shows that it may be possible
to do reasonable parallel or distributed simulation of timed CPN models. In
fact, the current prototype is able to use as many processor cores as there are
components in a simulation setup, which can potentially lead to faster simulation
of timed CPN models on multi-core systems.

5 Conclusion and Future Work

In this paper we have described an algorithm for cosimulation of CPN and Sys-
temC models for verification of SoC platforms. The algorithm allows loose cou-
pling between different simulators and the practicality has been demonstrated
using a prototype. We have have demonstrated that it is possible to cosimulate
SystemC and CPN models without changes to either languages by introducing a
cosimulation representation, external to the languages, which takes care of map-
ping between language specific features for composability. The current prototype
is interesting and worth pursuing further as outlined below. The prototype has,
in addition to our intended goal of demonstrating viability of cosimulation, also
provided unforeseen benefits namely an idea for distributed simulation of timed
CPN models.

The major problem currently is that we only have a prototype implementa-
tion and simple proof-of-concept examples. A natural next step is to implement
an actual SoC model using the approach. This will most like lead to performance
problems of the prototype, so future work includes making a production-quality
implementation as proposed in the previous section. We have not currently im-
plemented all of the optimizations to the distributed minimum calculation, and
these should be implemented and evaluated.

It would be interesting to compare an implementation using the simplified
architecture with an implementation using HLA for cosimulation of CPN and
SystemC models, which would require making an implementation of HLA for
CPN models. It would also be interesting to see if the proposed architecture
architecture also allows faster simulation of timed CPN models by using multiple
processor cores.

Until now, we have only dealt with simulation of composite models. It would
be interesting to also look at verification, e.g., by means of state-spaces, which
seems quite promising as modular approaches for CP-nets perform [2] well when
systems are loosely synchronized, which is indeed the case here.

18

References

1. P.V Biron and A. Malhotra. XML Schema Part 2: Datatypes. www.w3.org/TR/
2001/REC-xmlschema-2-20010502/.

2. S. Christensen and L. Petrucci. Modular Analysis of Petri Nets. The Computer
Journal, 43(3):224–242, 2000.

3. CPN Tools webpage. www.cs.au.dk/CPNTools/.
4. Modeling and Simulation High Level Architecture. IEEE-1516.
5. IEEE Standard System C Language Reference Manual. IEEE-1666.
6. K. Jensen and L.M. Kristensen. Coloured Petri Nets – Modelling and Validation

of Concurrent Systems. Springer, 2009.
7. JSON: JavaScript Object Notation. www.json.org/.
8. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, 1978.
9. K.B. Lassen and M. Westergaard. Embedding Java Types in CPN Tools. http:

//westergaard.eu/personlig/publications/types.pdf, 2006.
10. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Inter-

face. Online: www.mcs.anl.gov/research/projects/mpi/mpi-standard/
mpi-report-2.0/mpi2-report.htm, July 1997.

11. K.L. Morse, M. Lightner, R. Little, B. Lutz, and R. Scrudder. Enabling Simulation
Interoperability. Computer, 39(1):115–117, 2006.

12. A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S. Stissing,
M. Westergaard, S. Christensen, and K. Jensen. CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In Proc. of ATPN’03, volume 2679 of LNCS,
pages 450–462. Springer-Verlag, 2003.

13. R. Srinivasan. RPC: Remote Procedure Call Protocol Specification Version 2. RFC
1831, August 1995.

14. Texas Instruments. OMAPTM Applications Processors: OMAPTM 4 Platform.
Online: www.ti.com/omap4.

15. M. Westergaard, S. Evangelista, and L.M. Kristensen. ASAP: An Extensible Plat-
form for State Space Analysis. In Proc. of ATPN 2009, volume 5606 of LNCS,
pages 303–312. Springer-Verlag, 2009.

16. M. Westergaard and L.M. Kristensen. The Access/CPN Framework: A Tool for
Interacting With the CPN Tools Simulator. In Proc. of ATPN 2009, volume 5606
of LNCS, pages 313–322. Springer-Verlag, 2009.

17. M. Westergaard, L.M. Kristensen, and M. Kuusela. Towards Cosimulating Sys-
temC and Coloured Petri Net Models for SoC Functional and Performance Eval-
uation, 2009. Proc. of 21st European Modeling and Simulation Symposium (to
appear).

19

20

Seeking Improved CPN Tools Simulator Performance:

Evaluation of Modelling Strategies for an Army Maintenance Process !

Guy Edward Gallasch1, Benjamin Francis2, and Jonathan Billington1

1 Computer Systems Engineering Centre
University of South Australia

Mawson Lakes Campus, SA, 5095, AUSTRALIA
Email: guy.gallasch@unisa.edu.au jonathan.billington@unisa.edu.au

2 Land Operations Division
Defence Science and Technology Organisation

P.O. Box 1500, Edinburgh, SA, 5111, AUSTRALIA
Email: benjamin.francis@dsto.defence.gov.au

Abstract. The availability of military equipment during a campaign depends on many factors
including usage rates, spares, policy, and importantly the composition and distribution of mainte-
nance personnel. This paper presents a Coloured Petri Net model of an Army maintenance process
that encapsulates these factors. On simulating the model with CPN Tools we identify a number of
simulation performance concerns. Using Standard ML profiling we discover that they are related
to the modelling of personnel. Two different representations of personnel are created and evaluated
in terms of simulation time using CPN Tools. We demonstrate that a list representation can have
dramatic performance gains over a multiset representation. We further demonstrate that simula-
tion performance can be improved by unfolding the CPN with respect to the maintenance network
topology. Finally, we canvass some ideas for further improvements to simulation performance.
Keywords: Army Maintenance Process, Simulation Performance, Models of Personnel.

1 Introduction

In order to support both preparedness levels and the actual conduct of military operations, Defence is
required to maintain the wide variety of defence equipment. This involves the deployment of tradespeo-
ple at a number of military workshops, which may be widely geographically distributed. The defence
maintenance system can thus be considered to be a distributed system. Australia’s Defence Science and
Technology Organisation (DSTO) is interested in understanding the maintenance system and its pro-
cesses at a deep level in order to suggest improvements to them. As part of a broader research initiative,
DSTO have contracted the Computer Systems Engineering Centre (CSEC) of the University of South
Australia to work on a collaborative project to model aspects of Defence logistics [8]. CSEC and DSTO
are developing an Army Maintenance System Analysis Tool to examine the effectiveness of a deployed
maintenance capability for the Australian Army. The tool is required to validate the feasibility of plans
and to explore “what if” scenarios. Due to the distributed nature of the maintenance system, the tool is
based on a timed Coloured Petri Net (CPN) [17,19] model.

There have been several previous attempts to model and analyse Defence maintenance processes,
e.g. [4, 15, 16, 22, 23, 26]. More generally, there are models of the maintenance of fleets of aircraft or
vehicles [9], maintenance of power systems [10], models of specific maintenance facilities [27] and models
that schedule maintenance activities to minimise the disruption caused to the normal operation of that
equipment [2, 5], e.g. equipment in a production line, or military vehicles performing missions. There
are also models that examine key equipment items from a maintenance system perspective [6,25]. Some
models [15,26] make use of the discrete event simulation tool ARENA [20], while others use Bayesian and
Markovian analysis techniques [5,9,16] or optimisation of mixed-integer linear programming models [2].
A genetic algorithm is used in [23] to optimise maintenance schedules.

CPNs have a long history of being applied to the verification of complex distributed systems, e.g. see [1,
3]. In the area of Defence, CPNs have been applied to the modelling of Defence logistics networks [12,13],
the modelling and analysis of operations planning and the subsequent production of a prototype tool
based on CPNs [21,29], and modelling and analysis of the Australian Defence Force planning process [24].

! This work was supported by Australia’s Defence Science and Technology Organisation, Contract No.
4500498737 and Research Agreement No. 229146.

21

Our first prototype timed CPN model of the Army Maintenance Process was presented in [14].
This model captured a number of aspects of Army maintenance, including equipment usage rates and
the composition and disposition of maintenance personnel across a distributed network of maintenance
workshops, and the impact of these aspects on the operational availability of a deployed system of
equipment (the amount of time the equipment is up and running). The model allows the user to specify
a distributed network of maintenance workshops, rather than a single maintenance facility, and is not
specific to any single piece or type of equipment. Personnel are explicitly modelled and are not assumed
to have homogeneous skills. Hence, our CPN model is more extensive, flexible and general than any we
have encountered thus far in the literature. However, modelling with greater fidelity generally requires
greater computational resources.

Although serving well as a specification model (a formal specification of the Army maintenance pro-
cess), analysis was problematic. Attempts to simulate realistic scenarios with CPN Tools [7,18] failed due
to excessive run-time. The investigations reported in [14] revealed that poor simulation performance was
primarily related to the representation of maintenance personnel within the model. This paper expands
on the investigations reported in [14] into the performance of the CPN Tools Timed CPN simulator in
the context of this model. It provides a more thorough investigation of simulation performance of two
models of personnel, and also considers an ‘unfolded’ alternative for the modelling of network topology.

The contribution of this paper is threefold. Firstly, this paper presents a overview of the refined
version of the CPN model of the Army’s maintenance process from [14]. Fusion places are no longer
used, the use of code segments has been eliminated to a large extent, and guards have been expressed
more concisely. In particular, we present a significantly revised version of the Assign Transport Resources
page, which is key to our analysis. Secondly, based on the results of [14], we consider two data structures
to represent personnel within our model and two ways to represent the topology of the maintenance
network: encoding topology within tokens (folded approach) and representing topology explicitly within
net structure (unfolded approach). Thirdly, we provide a more comprehensive comparison and evaluation
of the performance of the CPN Tools simulator using these different personnel modelling approaches,
and extend this investigation to consider the impact of an unfolded network topology on the performance
of the simulator. Although our model represents a military maintenance process, the observations made
may equally apply to other (similar) large-scale CPN models.

The rest of this paper is organised as follows. A brief introduction to the Army maintenance system
is given in Section 2. Section 3 provides a description of our model. Choices for modelling personnel are
described in Section 4. The simulation performance of these different models is presented in Section 5
and discussed in Section 6. Finally, Section 7 provides some concluding remarks. It is assumed that the
reader is familiar with Coloured Petri Nets and CPN Tools.

2 Army Maintenance System

The Army maintenance system can be described at one level as a simple tree hierarchy of maintenance
nodes arranged roughly along four distinct lines of support : from the 1st Line (closest to the front line)
where equipment is used in the field, up to the 4th Line, where deeper level maintenance and equipment
pooling occurs. Typically, the National Support Base for a military campaign exists at the 4th line of
support. Such a maintenance system is illustrated in Fig. 1, where circles represent maintenance nodes
and arcs represent the movement of personnel and equipment. Nodes within the network represent main-
tenance workshops. Each contains a range of personnel of different trade types, forward repair/recovery
capabilities, and authorisations to conduct particular repairs. A maintenance node also has an inherent
capacity that governs the amount and nature of work that can be accepted at a node. In addition, a
node may simultaneously be a source of maintenance liability as they also operate equipment which
may require maintenance. A strategic interface exists between 4th line and the other lines of support,
symbolising that 4th line typically exists within the country of origin and is relatively static, whereas
the remaining lines are deployed.

These node characteristics, combined with the various equipment failures, determines where items
can be repaired in the system, and hence the extent to which equipment is moved around the main-
tenance network. An item of equipment that requires maintenance must be co-located with suitable
maintenance facilities so that the maintenance can be performed. The equipment may already be at a
suitable maintenance workshop, or it may be that a team of maintenance personnel can be dispatched
from a nearby workshop and travel to the equipment. More often, however, this means the equipment
needs to be transported to a maintenance workshop.

22

2 linend1 linest 3 linerd 4 lineth

Pool

Strategic
Interface

RearwardForward

Pool

Fig. 1. Lines of Support within the Army Maintenance System.

In general, repair should be conducted as far forward as possible in order to reduce delays in returning
equipment to an available state, thus increasing effectiveness. This may come at the cost of reduced effi-
ciency due to additional delays in transporting personnel through the network. Alternatively, availability
might be managed through releasing replacements from pools, which are in turn replenished with items
that are repaired under lower operational tempo conditions.

The interaction between the degree of forward repair, the nature of repairs that can be conducted
in the area of operations versus the National Support Base (i.e. 4th line) the disposition and type of
personnel allocated to each line of support, and the use of replacement pools is a complex problem well
suited to formal modelling and analysis. This allows force structure planners to holistically examine trade-
offs involving the size and nature of the Army maintenance system through a review of performance over
a wide range of operational scenarios. Typically, a realistic scenario will involve hundreds of personnel
and thousands of pieces of equipment distributed over tens of nodes.

3 Model Description

Hierarchical Coloured Petri Nets are used to model the Army maintenance system. Figure 1 shows a
system-oriented view of Army maintenance, with a geographically distributed set of nodes (workshops)
with a given topology, where maintenance activities may be carried out at any of the nodes. Apart from
the node at fourth line, the operations at each node follow a maintenance process that is very similar,
regardless of the location of the node. This process differs only with respect to factors such as the capacity
of the workshop, the grade of repair that can be carried out at the workshop, and the maintenance
personnel located at the workshop. Because of these similarities, rather than taking a system-oriented
view of Army maintenance in our CPN model, we have taken a process-oriented view. CPNs allow us to
capture physical characteristics, such as network topology and individual node features, within its data
structures, rather than within the net structure. We do so in our model, hence taking a process-oriented
view avoids the need to duplicate the net structure relating to the maintenance process followed within
each workshop. This approach eases maintenance of the model itself (e.g. in the event of a change to the
maintenance process that we have captured, we need only implement the changes for one piece of net
structure rather than a piece of net structure for every workshop). Our model is thus a hierarchical CPN
model, representing a decomposition of the processes related to performing maintenance in a military
environment.

The model consists of 14 pages arranged into three hierarchical levels, plus an additional layer required
to initialise the model with a specific scenario. The hierarchical structure of pages within our model is
illustrated in Fig. 2. The Process Overview and Workshop Maintenance pages serve as a flowchart of the

23

Determine Transport Resources

Workshop Maintenance

Technical Inspection

Acquire Parts

Inspection Decision

Perform Maintenance

Equipment Return

Backload To 4th Line

FRT Maintenance

Transport Equipment

Assign Transport Resources

Assign Maintenance Liability

Model Initialisation

Process Overview

Personnel Management

Fig. 2. The hierarchical structure of our CPN model.

process. We use these pages to describe the system and processes we are modelling. Size constraints
prevent us from describing the model in detail in this paper. A full description is given in [11].

The model comprises 44 executable transitions and 14 substitution transitions. There are 27 distinct
places in the model, with a total of 88 physical places due to port/socket place duplication. Further com-
plexity is contained in extensive model inscriptions and function definitions, written in the programming
language Standard ML [28], and comprising approximately 1600 lines of code.

Since it was first published [14], the model has been significantly improved. Originally, fusion places
were used as part of the Model Initialisation page (see Section 3.2) to allow the initial marking of numer-
ous places throughout the model to be given a scenario-specific pseudo-initial marking. Unfortunately,
overcoming the limitation of CPN Tools not allowing a place to be both a fusion place and a socket
place resulted in a mix of fusion places and port/socket places, which is undesirable from a hierarchical
modelling perspective. The model no longer uses fusion places and hence the hierarchical structuring has
been made clearer. Also, the previous model used code segments on a number of model pages to specify
a binding of output arc variables. Where this was unnecessary, the code segments have been replaced
by functions on output arcs. As will be seen in Section 4 we examine the use of two data structures
for personnel within this model. The use of code segments has been eliminated completely from the
first model (that considers each person as a separate token), an example of which is seen in Fig. 4 in
Section 4.1. Code segments have only been retained in two instances in the second model (that considers
people stored as values in lists) where pragmatic to do so.

3.1 Important Data Structures

Before we begin describing the model itself, we must first introduce three key data types used to describe
the state information in the model. These are the Equipment, Maintenance Task and Personnel colour
sets. These three colour sets, combined in various ways, form the basis of the types of almost all places
in the model.

Equipment The Equipment colour set is shown in lines 5-13 of Listing 1. It defines a record structure
that describes individual items of equipment that will require maintenance. The equipment type, present
location and home location (lines 5-7) are strings. The usage mode (line 8) designates whether an item
of equipment is actively in use or is in an equipment pool (line 2). The last service type (line 9) records
whether the last service was a major service or a minor service (line 3). Finally, the current usage meter
reading, time of last service, usage meter reading at the last service and time of the last inspection (lines

24

Listing 1. The Equipment Colour Set.

1 c o l s e t Location = STRING;
2 c o l s e t Usage_Mode = with Active | Pool;
3 c o l s e t Service_Types = with Major | Minor;
4

5 c o l s e t Equipment = r e co rd equipment_type : STRING *
6 present_location : Location *
7 home_location : Location *
8 usage_mode : Usage_Mode *

9 last_service_type : Service_Types *
10 usage_meter : INT *
11 time_of_last_service : INT *
12 usage_meter_at_last_service : INT *
13 time_of_last_inspection : INT timed;

Listing 2. The Maintenance Task Colour Set.

1 c o l s e t Maintenance_Type = with Service | Corrective | Inspection;
2 c o l s e t Grade = with L|M|H;
3 c o l s e t Trade = STRING ;

4 c o l s e t ERT_by_Trade = INT;
5 c o l s e t Job = product Trade * ERT_by_Trade;
6 c o l s e t Job_List = l i s t Job;
7 c o l s e t Priority = with Essential | Non_Essential;
8 c o l s e t Mobility = with wheeled_mobile | wheeled_not_mobile | not_wheeled;
9 c o l s e t Maint_Methods = with InSitu | SelfTransport | Distribution | Recovery | FRT;

10 c o l s e t Maint_Methods_Attempted = l i s t Maint_Methods;
11

12 c o l s e t Maintenance_Task = r e co rd maintenance_type : Maintenance_Type *
13 next_occurrence_time : INT *
14 current_request_location : Location *

15 grade_required : Grade *
16 job_requirements : Job_List *
17 job_priority : Priority *
18 mobility : Mobility *
19 inspected : BOOL *
20 methods_attempted : Maint_Methods_Attempted *
21 assignment_timeout : INT timed;

10-13) are recorded as integers. Usage metrics could include e.g. distance travelled (odometer), operating
hours, rounds fired, or calendar time.

Maintenance Tasks The Maintenance Task colour set is shown in Listing 2. This is also a record (lines
12-21) that specifies the maintenance required and records the progression of individual items through the
system. The type of maintenance required (line 12) can be either a regular service, corrective maintenance
(in the event of a breakdown) or an inspection of a piece of equipment (line 1). The next occurrence time
(line 13) records when the next ‘future’ maintenance event is due (unbeknownst to the system) to occur
for a corresponding item of equipment. The location of the workshop that is currently considering the
maintenance task is given by line 14. The grade of repair (line 15) required for a particular maintenance
task will be either Light, Medium or Heavy (line 2) depending on the nature of the task, and hence will
affect where and by whom the corresponding item of equipment can be maintained. The job requirements
(line 16) specify the tradespeople required and the length of time for which they will be required (lines 5
and 6). Rather than using an enumerated type to specify the trade types, e.g. vehicle mechanic, our model
uses strings (line 3). This is for extensibility and to overcome a CPN Tools limitation that prevents colour
set declarations being specified externally and imported into the tool. The length of time a particular
trade is required is given by the Estimated Repair Time (ERT) on line 4. The priority of each particular
maintenance task (line 17) is categorised as either essential or non-essential (line 7) and is based on
the type of equipment and the nature of the campaign. Line 18 specifies the mobility of the equipment
to be maintained. According to line 8, the equipment can be either wheeled and mobile (e.g. a truck
that can be driven), wheeled and not mobile (e.g. a truck with a broken engine) or not wheeled (e.g. a
generator). Whether or not the equipment has undergone a technical inspection, revealing the current
maintenance liability, is given on line 19. Line 20 specifies the methods of transport/maintenance that
have been attempted in order to address this maintenance task. The methods are given on line 9 and
will be described in Section 3.3. The assignment timeout (line 21) specifies how long a task will wait

25

Listing 3. The Personnel Colour Set.

1 c o l s e t Personnel_States = with Ready | Working | Offline ;
2

3 c o l s e t Personnel = r e co rd trade : Trade *
4 home_location : Location *
5 working_status : Personnel_States *
6 last_came_online_time : INT timed;
7

8 c o l s e t Personnel_List = l i s t Personnel timed;

for personnel to be assigned to it before some other alternative method of maintenance/transport is
attempted.

Personnel Listing 3 describes the data structures used for personnel. Personnel (lines 3-6) records the
trade (line 3), home location (line 4) and working status (line 5) of individual people. The working status
specifies whether a person is ready to work, currently working, or offline (line 1). Offline means that the
person is not currently available to be assigned to maintenance work (e.g. is sleeping or performing other
duties). The time at which the person last came online (moved from Offline to Ready) is also recorded
(line 6). Line 8 declares a list of personnel.

3.2 The Model Initialisation Page

The Model Initialisation page is used to populate the model with tokens representing the scenario under
consideration. Because of our process-oriented modelling approach, no modification of the net structure
is needed when analysing different scenarios. The Model Initialisation page initialises the following places:

– Node Knowledge: The Node Knowledge place is populated with tokens that describe the charac-
teristics and capabilities of each maintenance workshop in the scenario;

– Topology: The Topology place specifies the topology of maintenance workshops (nodes);
– Personnel: The Personnel place is populated with tokens that represent the number and disposition

of personnel to be distributed throughout the maintenance workshops;
– Equipment Awaiting Maintenance Assignment: This place is populated with all of the equip-

ment in the system that will require maintenance;
– Equipment Awaiting Parts and Equipment Ready for Maintenance: As ‘house-keeping’,

these places are populated with one token per maintenance workshop, allowing for a prioritised list
of maintenance tasks to be stored in both places for each workshop, as will be described later.

This initialisation is achieved through the use of functions that read in initialisation data from text files
on local storage. The text files may be populated by an external editor, e.g. from an Excel spreadsheet,
thus allowing for increased modelling flexibility and expedient scenario generation and modification.

3.3 The Process Overview Page

The Process Overview page, shown in Fig. 3, is the highest level page that describes the maintenance
process. The net structure of this page has been developed to explicitly represent the flow of equipment
through the maintenance process, depicted by the bold arcs. This page consists mostly of substitution
transitions, each of which represents a sub-process within the overall maintenance process. Each place
on this page is typed by Equipment or by Cartesian products of Equipment, Maintenance Task and
Personnel. The names of these colour sets reflect their declarations (see [11]), e.g. EquipmentXTask is
the product of Equipment and Maintenance Task.

We now describe the processes represented on the Process Overview page.

Assign Maintenance Liability The starting point in the execution of our model is the assignment of
a maintenance liability to each of the items of equipment in the Equipment Awaiting Liability Assignment
place. This is done by the Assign Maintenance Liability page. Each item of equipment is paired with a
‘future’ liability (specific details of the next maintenance requirement, in the form of a maintenance
task) as it is transferred to the Operational Equipment place, where it is considered to be in use until such

26

Fig. 3. The Process Overview page, showing the high-level structure and major flows of equipment (in bold).

27

time as its maintenance liability is realised. At this point, the Requires Maintenance transition moves the
item of equipment from an operational state (Operational Equipment place) to a non-operational state
(Equipment Requiring Maintenance place), where the item awaits maintenance. We use the timestamp
mechanism of CPNs to control when this occurs.

Determine Transport Resources The first step in the maintenance process is to determine the
transportation requirements. The approaches are:

– In-situ: the equipment does not need to move from its present location;
– Self-transport: the equipment moves itself to a suitable maintenance workshop;
– Distribution: the equipment is moved using a more general distribution network, e.g. road or

railway, that services the demands of the military operation;
– Recovery: a team of personnel (a Recovery Team) moves from a maintenance workshop to the

location of the equipment and brings the equipment back to the maintenance workshop; and
– Forward Repair Team: a team of personnel move from a maintenance workshop to the equipment

location in order to effect the necessary maintenance.

The method is selected by the Determine Transport Resources subpage. All methods necessitate the use
of a form of transportation with the exception of in-situ maintenance.

Assign Transport Resources Once the transport requirements have been identified, the Assign Trans-
port Resources subpage ensures that the personnel requirements can be fulfilled and assigns the required
personnel. In the event that the required personnel are not available, the equipment is passed back to
the Determine Transport Resources page (the arc from Assign Transport Resources to Equipment Requiring
Maintenance) and a different approach is selected. This process may be repeated a number of times both
for the current location of the equipment and in the event that the equipment has been moved to a new
location but that new location is not able to perform the necessary maintenance (hence the return arc
from the Workshop Maintenance page to the Equipment Requiring Maintenance place). In the event that
all options for transportation are exhausted and no further locations exist to which the equipment can
be moved, this particular item of equipment is not able to be maintained by the system and is deposited
into the Deadlocked Equipment place.

If the personnel requirements can be satisfied, there are three possible outcomes (the three bold arcs
that exit the Assign Transport Resources page in Fig. 3). In the case of in-situ maintenance, no transporta-
tion is necessary, so the equipment item is passed directly to the Equipment Awaiting Maintenance place.
Secondly, if a Forward Repair Team is required (defined by the type of item and location) the personnel
comprising the FRT are passed to the FRT Awaiting Transportation place, along with the equipment
and maintenance liability to which this FRT corresponds. Note that despite being present in the same
token on the same place, the FRT and the item of equipment are still at geographically separate loca-
tions. Lastly, if an equipment item itself needs to travel within the maintenance network (self-transport,
distribution or recovery), it is inserted into the the Equipment Awaiting Transportation place.

Transport Equipment An item of equipment that requires transportation may be able to transport
itself, or it may require the distribution network or the the assistance of a Recovery Team to do so. All
three of these scenarios are handled by the Transport Equipment page. Once all transportation is taken
care of, equipment items will enter the Workshop Maintenance process from the Equipment Awaiting
Maintenance place and any personnel required during the transportation will then be released to conduct
other work.

FRT Maintenance and Workshop Maintenance Both the FRT and Workshop Maintenance pro-
cesses result in maintained items of equipment. Workshop maintenance is described in Section 3.4. In
the case of FRT Maintenance, the FRT travels to the equipment to maintain it, before returning to its
assigned workshop and disbanding. However, it is possible that the FRT will fail to repair the equip-
ment. This results in the equipment being reassessed by the Determine Transport Resources subpage and
an alternative transportation approach chosen.

28

Backload to 4th Line In the case of either FRT or workshop maintenance, if an initial technical
inspection reveals that an item of equipment is beyond the level of repair available, the equipment
is ‘strategically’ recovered from the area of operation to the 4th line of support. When this happens,
a replacement item of equipment is issued from the 4th line pool and inserted back into the area of
operation at the location of the item it is replacing (after some transport delay). This process is denoted
here as “Backload to 4th Line”, and is modelled by the subpage of the same name. Like all equipment,
the replacement must be given a “future” maintenance liability, hence the arc from Backload to 4th Line
to Equipment Awaiting Liability Assignment.

Return Maintained Equipment Subject to the successful completion of the Workshop Maintenance
or FRT Maintenance process, the equipment item is put into the Maintenance Complete place, and the
maintenance personnel made available for another job, or moved into an off-line or resting state. The
Return Maintained Equipment process will return the equipment to its original location. The equipment
is inserted once more into the Equipment Awaiting Liability Assignment place, which permits the item to
return to an operational state after having been assigned a new maintenance liability.

Personnel Management The Personnel Management page is responsible for moving personnel from a
ready state to an offline state, and vice versa, at the correct times.

3.4 The Workshop Maintenance Page

The primary input to the Workshop Maintenance page is the Equipment Awaiting Maintenance place,
containing equipment items (with their associated liability description) that are located at a maintenance
workshop. The Workshop Maintenance page itself comprises four substitution transitions that describe
four sequential sub-processes of workshop maintenance. A preliminary version of this page appears in [14].
These subpages are briefly described below:

Technical Inspection This process represents the inspection of equipment that reveals to the workshop
the maintenance activities that must be undertaken for a particular item of equipment (the previously
hidden maintenance liability).

Inspection Decision Firstly, this page determines whether to issue a replacement item of equipment to
go into service while the other is undergoing maintenance. Secondly, it determines whether the current
workshop can accept the new task (sufficient grade of repair, spare capacity and appropriately skilled
personnel). Finally, accepted tasks and equipment are passed to the Acquire Parts process (below). If
not accepted, the equipment is returned to the Equipment Requiring Maintenance place, so that it may
undertake another iteration of the Determine Transport Resources process described in Section 3.3.

Acquire Parts The Acquire Parts process represents the delays inherent when spares are required but
not presently in stock. Equipment items awaiting parts are stored in a queue prioritised by the
expected arrival time of the parts.

Perform Maintenance Tradespeople are automatically assigned to the highest priority maintenance
task at their location. Once assigned, the tradesperson continues to work on the repairs until they
either complete their portion of the maintenance task (their job in the joblist of the maintenance
task) or are required to rest. The completion of all required maintenance activities for a given item of
equipment signals the end of the Perform Maintenance process, at which point the item of equipment
is placed in the Maintenance Complete place, and the cycle begins again.

4 Modelling Personnel

Personnel enable transportation and maintenance activities. The Personnel place appears on 9 of the
15 model pages and the availability of tradespeople directly influences the enabling of 6 executable
transitions across 4 model pages (Assign Transport Resources, Technical Inspection, Perform Maintenance
and Personnel Management). The prominence of personnel within our model means that a large part of
the computational effort of CPN Tools relates to the calculation of enabled binding elements involving
personnel. The representation of personnel greatly influences simulation performance [14]. This section
describes the two representations investigated in Section 5.

29

Fig. 4. A fragment of the Assign Transport Resources page of Model 1.

4.1 Personnel Modelled as Tokens (Model 1)

Our initial model represented personnel as individual tokens with timestamps, as per Listing 3. How-
ever, two difficulties were encountered: the number of personnel required may be different for different
maintenance tasks; and the exact composition of the recovery team or FRT may not be known. This
adds significant complexity to the problem of selecting personnel. It is possible to write an input arc
inscription to select either a multiset of fully-specified values of varying size, or a multiset of unspecified
or partially specified values of fixed size. The authors are yet to identify a direct way to select a varying
number of partially known data values on an input arc.

A personnel selection mechanism was implemented to overcome this problem. This mechanism is
shown in Fig. 4, which depicts a fragment of the Assign Transport Resources page, showing only the
Assign Recovery Assets and Assign FRT transitions. To overcome the first problem of selecing a varying
number of tokens we instead select a fixed number of tokens (six in this model) using one variable per
person. These variables, p1 to p6, can be seen on the input arcs from Personnel to Assign Recovery Assets
and Assign FRT. The timestamp on personnel tokens is the time at which they are due to go offline. The
Get Soft Limit function on these two input arcs returns a time value specifying how long people are
allowed to work in the usual course of events, and so this allows selection of people before they are due
to go offline. The number six was chosen as a reasonable maximum size for recovery and forward repair
teams, but if needed the personnel selection mechanism can be extended to cope with larger teams. The
idea is that the six people selected are compared against what is required and those not required are
returned to the Personnel place. This works provided no Recovery or Forward Repair Team requires more
than six people, and that the Personnel place always has at least six personnel tokens in it (e.g. if we
require only two people, there still needs to be at least six tokens in the Personnel place). To ensure this,
we introduced the notion of Dummy peronnel, who have both trade and location equal to the string Dummy.
They do no work and cannot be assigned to Recovery or Forward Repair teams, and hence always reside
in the Personnel place. The Model Initialisation page inserts six such dummy personnel into the Personnel
place.

To overcome the second problem (selecting a team of personnel of unknown composition) we have
introduced a string constant, Unspecified. When we require a person but don’t care what trade they are,
we specify a requirement for an Unspecified trade, and match any trade (except Dummy) to Unspecified.

In [14] this mechanism was implemented using a guard and code segment totalling 50 lines of ML code
for each of the Assign Recovery Assets and Assign FRT transitions. This mechanism has been substantially
refined in our current model and is now implemented using a guard only. The sizable guard has been
expressed more concisely using list manipulation functions within the Check Personnel Assignment

function given in Listing 4. We describe our new implementation with respect to the Assign Recovery
Assets transition. The Assign FRT transition works in a similar way.

The purpose of the Determine Required Trades function (shown in Listing 5) in the guard of
Assign Recovery Assets is to return a list of six trades, comprising the actual trades required (these

30

could be Unspecified) for the Recovery team, obtained by invoking the Recovery Personnel and
Get Min Recovery Population functions, with the balance made up of Dummy trades. For example, in a
particular scenario, Recovery Personnel may specify that a Recovery Team must contain one Recovery
Mechanic, but Get Min Recovery Population may specify a minimum size of 2 for a Recovery Team.
The additional person could be any trade, so is specified by the Unspecified trade. The remaining four
trades in the list of six trades would be Dummy. The function Check Personnel Assignment (Listing 4)
then takes this list of six trades, all six selected people (variables p1 to p6 in a list), and the location
of the request for maintenance, and checks that the people selected match the trades required and are
at the correct location, or else are dummy personnel. Note that the matching of Unspecified with any
trade except Dummy is shown on line 11.

Functions Remove Dummy Personnel and Remove Non Dummy Personnel (not listed) have been added
to the model to replace the code segments previously associated with Assign Recovery Assets and Assign
FRT. As can be seen in Fig. 4 these two functions are used on output arcs to separate real personnel
from dummy personnel as appropriate.

As was reported in [14] this model, which we denote Model 1, was found to perform reasonably well
on small scenarios (10’s of people) when cycling personnel online and offline, but performed very badly
when assigning personnel to teams, due to the nature of the assignment and the selection mechanism
described above. Standard ML profiling of simulation runs indicated that the two transitions in Fig. 4
were responsible for this poor performance. Specifically, we discovered that the ‘less than’ function
automatically defined by CPN Tools for ordering the Personnel colour set was being executed of the
order of 107 times, even for small scenarios, every time the enabling of these two transitions was checked.
Because the Personnel place is connected to these two transitions (amongst others), every time the
marking of the Personnel place changed, a check for the enabling of these two transitions was instigated.
This resulted in a four to five second delay between successive steps of the simulation, where both
transitions contributed equally to this delay. Hence we were able to determine that the time was being
taken in the enabling check subsequent to the firing of a transition that affected the marking of the
Personnel place, rather than firing the transition itself. For scenarios of increasing size, the delay quickly
became prohibitive.

4.2 Personnel Modelled in a List

In an attempt to improve model performance, rather than modelling each person as a token, a list of
personnel was considered. To do this, each person ‘token’ was augmented with a time value modelled as
part of the colour set as shown in line 5 of Listing 6. This time value was used to store the timestamp
that the person would have had as a single, separate token. The personnel list tokens were then given a
timestamp corresponding to the smallest time value over all personnel in the list, to inform the model
of the earliest time that at least one person becomes ‘ready’.

Mechanisms were implemented in the models containing personnel in lists to retain the nondetermin-
istic selection of personnel for Recovery and Forward Repair teams, and the nondeterministic selection
of the next eligible person to move to/from an offline state. It was realised by the authors that for the
purposes of this modelling exercise it was not necessary to capture this degree of nondeterminism for
selection of the next person to move to/from an offline state. Hence two variations were also considered
in [14]: one in which the head of the personnel list was (deterministically) selected as the person to

Listing 4. The Check Personnel Assignment function.

1 excep t i on ListLengthException;

2

3 fun Check_Personnel_Assignment([],[], current_request_location) = true
4 | Check_Personnel_Assignment(required_trades ,[], current_request_location) =
5 r a i s e ListLengthException
6 | Check_Personnel_Assignment([], selected_personnel,current_request_location) =
7 r a i s e ListLengthException
8 | Check_Personnel_Assignment((trade_required ,ert)::rest_of_required ,
9 (selected :Personnel)::rest_of_selected ,current_request_location) =

10 (trade_required = #trade selected o r e l s e

11 (trade_required = Unspecified anda l s o #trade selected <> Dummy))
12 anda l s o (i f ((#trade selected) = Dummy)

13 then true e l s e (#home_location selected)= current_request_location)
14 anda l s o (# working_status selected) = Ready
15 anda l s o Check_Personnel_Assignment(rest_of_required ,rest_of_selected ,current_request_location);

31

Listing 5. The Determine Required Trades function.

1 fun Determine_Required_Trades(personnel_to_assign: Job_List , minimumRequired) =
2 l e t

3 v a l personnel_needed = 6 - List.length (personnel_to_assign)
4 v a l additional_personnel = minimumRequired - List.length(personnel_to_assign)
5 i n

6 i f personnel_needed = 0
7 then personnel_to_assign
8 e l s e i f additional_personnel <= 0

9 then personnel_to_assign^^ ms_to_list(personnel_needed ‘(Dummy ,0))
10 e l s e personnel_to_assign^^ ms_to_list((additional_personnel ‘(Unspecified ,0))
11 ++ ((personnel_needed - additional_personnel)‘(Dummy ,0)))
12 end;

Listing 6. The revised Personnel colour set for use when representing personnel in a list.

1 c o l s e t Person = r e co rd trade : Trade *
2 home_location : STRING *
3 working_status : Personnel_States *
4 last_came_online_time : INT timed;

5 c o l s e t Personnel = product Person * INT timed;
6 c o l s e t Personnel_List = l i s t Personnel timed;

cycle offline/online; and the other in which all eligible personnel were cycled offline/online in one action.
Further discussion of the merits of investigating these variations can be found in [14].

A list imposes an ordering on its elements. Two possibilities were considered in [14] when ordering
the list of personnel: ordering the personnel values in the list firstly according to their time values and
secondly according to the automatically defined ‘less-than’ function for the Personnel colour set; and
ordering the personnel in the list according to time value only. Both of these orderings result in the
earliest available person being at the head of the list, hence searching for available personnel in the list
becomes at worst a linear operation (it is a constant operation if we only wish to find a single available
person, regardless of trade, as may occur with technical inspections).

In [14], seven variations (Model 1, plus three models of personnel in lists with two variations on the
ordering of elements within the personnel lists) were analysed. The most promising list model variation
in terms of simulation performance was the model which cycled offline/online all eligible personnel in one
action and ordered elements in the personnel lists by time value only. This model was denoted Model
4B in [14]. In the rest of this paper, the simulation performance of Model 1 and Model 4B are examined
and compared.

5 Simulation Performance

When simulating Model 1 for a simple scenario comprising 90 personnel and 50 items of equipment
distributed over 18 locations, the model proceeded relatively quickly (cycling personnel offline and online)
up to the point where the first maintenance liability became due and a team of personnel was required.
At this point, the simulation was manually terminated after waiting more than 24 hours of real time for
personnel to be allocated to the first team.

As already mentioned, two of the key involvements of personnel are the cycling of personnel online
and offline and the assignment of personnel to either a Recovery Team or a Forward Repair Team. In
this section, the simulation performance of Model 1 and Model 4B with respect to these two activities
is evaluated and discussed. Further, we compare the simulation performance of models that represent
network topology explicitly in net structure (unfolded models) rather than encoding topology information
within tokens (folded models). All experiments have been carried out with the Timed CPN Simulator of
CPN Tools version 2.2.0 on a 2GHz Intel Core 2 Duo processor with 2Gb of memory.

5.1 Baseline Scenario

As a baseline, we consider a scenario comprising five highly simplified nodes, where each node comprises:

– two tradespeople at each node:
• one Recovery Mechanic; and
• one Vehicle Mechanic;

32

– two tasks that require teams to be formed at each node:
• one Recovery Team, requiring a Recovery Mechanic and any other person; and
• one Forward Repair Team, requiring a Vehicle Mechanic and any other person.

For the baseline scenario, this gives a total of 10 personnel and 10 tasks that require teams to be formed.
(In the baseline scenario there will be a conflict between assigning personnel to the Recovery Team and
to the FRT.) The number of teams that require personnel reflects the number of maintenance tasks in
the system, which in turn reflects the number of pieces of equipment in the scenario. This is a more
sophisticated baseline scenario than was considered in [14].

5.2 Specifying Tests of Model Performance

In an attempt to better understand the cause of the observed performance results, a series of tests was
devised. The tests were designed to investigate the two different aspects of the operation of the model
already mentioned (cycling personnel offline and online and the assignment of personnel to teams) as
different aspects of the size of the scenario were scaled up. There are three dimensions to the size of
scenarios that we investigate below: the number of personnel; the number of teams that simultaneously
require assignment of personnel; and the number of nodes (maintenance workshops) in the scenario.

The process of assigning personnel to teams is affected by all three dimensions. The process of cycling
personnel online and offline is affected only by the number of personnel and the number of nodes in the
scenario, and is independent of the number of teams that require personnel. Hence, five different tests
were considered. Only three tests were considered in [14]: cycling personnel online and offline as the
number of personnel increases; and assigning personnel to teams as the number of teams increase and
the number of personnel increase.

To accurately gauge the individual contribution of these two processes to the performance of the
simulation, the following tests consider these two components in isolation1 from the rest of the model.

Scaling the Number of Personnel To scale the personnel, we applied a personnel multiplier to the
base number of tradespeople. By default, the personnel multiplier is one, giving 10 tradespeople in total
(2 per node). A personnel multiplier of two gives 20 tradespeople in total (4 per node), and so on. The
base number of teams and nodes remains unchanged, at 2 teams per node (10 in total) and 5 nodes
respectively.

Scaling the Number of Tasks that Require Teams Scaling the number of tasks that require teams
was done in a similar manner, using a team multiplier. Again, the default value of this multiplier is one,
giving 10 tasks that require teams in total. The number of people and nodes remains unchanged, at 2
tradespeople per node (10 in total) and 5 nodes respectively.

Scaling the Number of Nodes Scaling the number of nodes was not considered in [14]. This required
changes to the Model Initialisation page, hence there is no simple node multiplier per se. Rather, we refer
directly to the number of nodes in the scenario. When scaling the number of nodes, each node is as
described in the baseline scenario (2 tradespeople and 2 teams per node) unless otherwise stated.

Folded and Unfolded Network Topology To further understand the nature of the performance
problems, we also examine the impact of having the network topology represented in data (a folded
model) versus the network topology represented in net structure (an unfolded model). Again, this was not
considered in [14], so the investigation of the impact of topology representation on simulator performance
is an entirely new aspect considered in this paper.

The maintenance process captured by our model occurs within all maintenance nodes in the main-
tenance network. The idea of representing network topology by data was to avoid duplication of the
net structure representing the process carried out at each node. Hence, a folded model brings with it
the advantage of compactness and provides flexibility in terms of the scenario to be analysed, as the
topology of the scenario is encoded in tokens. An unfolded model that represents topology explicitly

1 These two processes were isolated by deleting all unrelated model pages and executable transitions.

33

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Personnel

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 5. Test 1: Performance of Personnel Cycling Of-
fline and Online as No. of Personnel Increases.

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Nodes

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 6. Test 2: Performance of Personnel Cycling Of-
fline and Online as No. of Nodes Increases.

in net structure requires modification of the net structure each time a new topology is analysed. How-
ever, unfolding the network topology has an advantage when specifying the maintenance network, as it
provides direct spatial visualisation of the topology. This is helpful when the reader is trying to relate
the model to the system (for validation) and for understanding materiel flows between different nodes.
There is no similar benefit to be gained by unfolding the other data structures, such as equipment type,
and doing so may result in a model that is less clear. Hence we decided to experiment with unfolding
topology. From the analysis point of view, the motivation for producing an unfolded model is that the
calculation of enabled binding elements becomes simpler. By unfolding the network topology, CPN Tools
does not need to compute values for variables relating to different node locations, thus the number of
computations is reduced.

To produce unfolded variants of the two sub-models considered in Section 5.3 we manually duplicated
the page in question the number of times required (one page per node) and adjusted the Model Initialisation
page accordingly. Hence, when scaling the number of nodes, we change the net structure. For this reason,
we limit the number of nodes to range from 1 to 10 when analysing the unfolded models.

5.3 Performance of the Folded Models

For the five tests described above, we ran automatic simulations for 20 days of modelled time, whilst
recording the real duration of the simulation. Results and discussion are presented below.

Test 1: Personnel Cycling Offline and Online when Increasing the Number of Personnel.
Figure 5 shows a graph of the real time taken for each run as the personnel multiplier increases, for
both models. Model 4B significantly outperforms Model 1 in this test (20.5 seconds vs 706.7 seconds at
1000 personnel, a factor of 34) confirming the result reported in [14]. The reason is most likely the ease
with which an enabled binding element can be found for the two transitions that move personnel offline
and online. There is only one list of personnel that are online, and one list of personnel that are offline,
instead of a (potentially) large multiset of personnel from which to select.

However, we must be mindful of the fact that Model 4B’s performance will deteriorate as the propor-
tion of personnel eligible to move offline or online at the same model time decreases, e.g. as personnel
availability become increasingly staggered due to performing maintenance work. There will be greater
numbers of transition occurrences involving smaller numbers of personnel in each occurrence. The worst
case corresponds to just the head of the personnel list being selected each time. Tests in [14] showed
that this actually performs worse than Model 1. Hence, while Model 4B appears to be the clear winner
in terms of performance when cycling personnel offline and online under the ideal circumstances of the
test scenarios, it may deteriorate to perform worse than the original model.

Test 2: Personnel Cycling Offline and Online when Increasing the Number of Nodes. Figure 6
shows how the performance of the two models scales with the number of nodes when cycling personnel
offline and online. The results look remarkably similar to those obtained when increasing the number of
personnel (Fig. 5). At 1000 nodes, Model 1 took 565.1 seconds while Model 4B took 21.5 seconds - a
factor of 26 improvement. This may be explained by considering what happens as the number of nodes

34

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10
Number of Nodes

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 7. Test 2∗: Performance of Personnel Cycling Of-
fline and Online as No. of Nodes Increases, with 100
Personnel per Node.

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Teams

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 8. Test 3: Performance of Assigning Personnel
to Teams as No. of Teams Increases.

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Personnel

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 9. Test 4: Performance of Assigning Personnel to
Teams as No. of Personnel Increases.

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600
Number of Nodes

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 10. Test 5: Performance of Assigning Personnel
to Teams as No. of Nodes Increases.

increases. The nature of the model is such that although the personnel at each node may be conceptually
geographically separate, they all appear on the same place in the model (the Personnel place) either as
extra tokens (Model 1), or as extra elements in lists (Model 4B). Hence, the effect of increasing the
number of nodes is the same as increasing the number of personnel.

This is not the case when considering the corresponding unfolded model, discussed later in Section 5.4.
In order to allow direct comparison of results between the folded and unfolded models, we repeat Test 2
(as Test 2∗) but only for the number of nodes from 1 to 10, where there are 100 personnel at each node
instead of two (i.e. a personnel multiplier of 50). In this instance, because the range of nodes covered
is small, we have increased the personnel multiplier so that the results obtained can be differentiated.
These results are shown in Fig. 7, where we see that for 10 nodes, Model 4B (9 seconds) outperforms
Model 1 (142.1 seconds) by a factor of 16.

Test 3: Assigning Personnel to Teams when Increasing the number of Teams. The first of
three performance tests for assigning personnel to teams keeps the number of personnel fixed (personnel
multiplier of 1) but increases the number of teams that simultaneously require personnel, by increasing
the team multiplier. In order for the supply of available personnel at each node in the baseline scenario not
to become exhausted before all teams are allocated (recall that there are only two tradespeople per node)
personnel assigned to a team are immediately released back into the Personnel place, ready for assignment
to another team. This is reasonable, given that we wish to analyse the process of assigning personnel
to teams in isolation from the rest of the model, and hence we exclude the process of tradespeople
performing maintenance before being released. The model was executed until all teams were assigned.
Figure 8 shows a graph of the results obtained.

In this situation, Model 4B significantly outperforms Model 1. The three points shown for Model 1
are for 10, 20 and 30 teams. Assigning personnel to 30 teams took Model 1 839.9 seconds but Model 4B
only 0.0625 seconds - a factor of 13400 improvement at 30 teams. (The factor of improvement is 6500

35

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10
Number of Nodes

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 11. Test 5∗: Performance of Assigning Personnel
to Teams as No. of Nodes Increases, with 200 Teams
per Node.

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Personnel

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 12. Test 1U : Performance of Personnel Cycling
Offline and Online in an Unfolded Model as No. of
Personnel Increases.

for 20 teams.) This may indicate how inefficient the mechanism for assigning a group of personnel of
unknown composition and varying size implemented in Model 1 is.

Test 4: Assigning Personnel to Teams when Increasing the Number of Personnel. The second
of the three tests for assigning personnel to teams keeps the number of teams requiring personnel fixed
(at 10, 2 per node) but increases the number of personnel. A graph of this is shown in Fig. 9. Again, we
see that Model 4B drastically outperforms Model 1. With 40 personnel to choose from, Model 1 took
743.2 seconds to assign personnel to all 10 teams, whereas Model 4B took only 0.101 seconds to do the
same. This is a factor of 7350 improvement.

Test 5: Assigning Personnel to Teams when Increasing the Number of Nodes. Figure 10 shows
the results obtained when scaling the number of nodes in the scenario. As in the previous two tests, the
model of personnel using lists outperforms the baseline model of personnel as tokens. Model 1 took 898
seconds to assign personnel to teams in 7 nodes (2 teams per node), whereas Model 4B took only 0.0465
seconds - a factor of 19300 improvement at 7 nodes.

As was the case for Test 2, we also wish to repeat Test 5 for the purposes of comparison with the
results from the equivalent unfolded model in Section 5.4. We again consider the number of nodes ranging
from 1 to 10, but with 200 tasks requiring teams (requiring personnel) per node instead of 2 (a team
multiplier of 100). We maintain the baseline of 2 tradespeople per node. The results of this test (Test 5∗)
are shown in Fig. 11. Only one point is shown on the graph for Model 1. This is for one node, where it
took 125 seconds to assign personnel to all 200 teams. The next point on Model 1’s curve is not shown,
as for two nodes it took Model 1 5434 seconds (approx. 1.5 hours) to assign personnel to all 400 teams.
Model 4B took only 1.67 seconds to assign personnel to all 400 teams, giving a factor of improvement of
3250 for two nodes. The increased number of teams has magnified the performance difference between
Model 1 and Model 4B, contributing to the belief that Model 1’s arbitrary personnel selection mechanism
is highly sensitive to the number of tokens involved.

5.4 Performance of the Unfolded Models

Each test presented below is named according to the corresponding test in Section 5.3, but with a
superscript ‘U’ to indicate that the test was carried out on the corresponding unfolded model. We have
deliberately kept the X-axis scale of the graph the same as the corresponding graph in Section 5.3, to
facilitate comparison. Note that in the case of Test 2U the Y-axis scale has been reduced to 0-20 from
0-200 and in the case of Test 4U the Y-axis scale has been reduced to 0-100 from 0-900 to avoid large
areas of whitespace and to make the graphs easier to read.

Test 1U : Personnel Cycling Offline and Online when Increasing the Number of Personnel.
Figure 12 shows the results obtained when analysing the effect of increasing the number of personnel on
the process of cycling personnel offline and online. Overall there was an improvement in computation
time for both models for the unfolded case when compared to Fig. 5. For example, the unfolded Model

36

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10
Number of Nodes

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 13. Test 2U : Performance of Personnel Cycling
Offline and Online in an Unfolded Model as No. of
Nodes Increases.

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Teams

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 14. Test 3U : Performance of Assigning Person-
nel to Teams in an Unfolded Model as No. of Teams
Increases.

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Personnel

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 15. Test 4U : Performance of Assigning Personnel
to Teams in an Unfolded Model as No. of Personnel
Increases.

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10
Number of Nodes

R
ea

l T
im

e
Ta

ke
n

fo
r S

im
ul

at
io

n
(s

ec
on

ds
)

Model 1
Model 4B

Fig. 16. Test 5U : Performance of Assigning Person-
nel to Teams in an Unfolded Model as No. of Nodes
Increases.

4B takes around 100 seconds to cycle 10,000 personnel offline and online for 20 model days, compared
to 500 seconds for the folded Model 4B (Fig. 5) giving a factor of 5 improvement in performance due to
unfolding. Model 1 has improved by approximately a factor of 6 at 2000 personnel. We suspect this is
due to simpler calculations when determining enabled binding elements, but have yet to confirm this.

Test 2U : Personnel Cycling Offline and Online when Increasing the Number of Nodes. This
test reveals a major benefit when considering an unfolded model. Looking at Fig. 13, we see that the
real time taken to cycle personnel offline and online scales linearly with the number of nodes. This is
opposed to Fig. 7 in which real time taken appears to increase exponentially with the number of nodes.
This linear growth is also evident in experiments that use a larger personnel multiplier (not shown in
this paper). This linear behaviour makes sense intuitively, as each node is represented by a separate
piece of non-interacting net structure. CPN Tools essentially repeats the same set of calculations for
each separate node, hence one would expect the computational effort to be proportional to the number
of nodes.

Test 3U : Assigning Personnel to Teams when Increasing the Number of Teams. The results
of this test are shown in Fig. 14. Unfolding the topology has not significantly affected model performance
when modelling personnel in lists; indeed the curve for Model 4B shows only marginal improvement when
compared to that in Fig. 8. However, whilst Model 4B still outperforms Model 1, there is a significant
increase in the performance of Model 1. The gains in performance exhibited by Model 1 can be attributed
to the fact that the number of tokens at any one place is reduced (distributed over multiple places), hence
speeding up the calculations for enabling and firing of transitions. This effect is more pronounced for
Model 1, where a reduction in the number of tokens to select from results in a more significant speed-up
due to the inefficient mechanism for selection of personnel discussed in Section 4.1.

37

Test 4U : Assigning Personnel to Teams when Increasing the Number of Personnel. This
test (Fig. 15) reveals that, for the unfolded Model 1, the time taken to assign personnel to teams
scales approximately linearly in the number of personnel. Figure 15 shows a significant improvement in
performance when compared with Fig. 9. The folded Model 1 took over 700 seconds to assign personnel
to teams when there were 40 personnel to choose from. The unfolded Model 1 took only 0.0785 seconds
to do this. Indeed, there is a complete reversal of the performance trend, with Model 1 increasingly
outperforming Model 4B as the number of personnel increases, despite Model 4B having improved in
performance by a factor of 5 at 10,000 personnel.

Extending this experiment for Model 1 to 100,000 personnel (not shown) provides additional evidence
of a linear relationship. This linear relationship may also be present for Model 1 in Fig. 9, however the
increase in simulation time as the number of personnel increases is so severe that we cannot readily
confirm this by experimentation. We conjecture that the mechanism in Model 1 for the selection of
personnel is highly sensitive to the number of distinct personnel tokens from which to choose and the
number of teams that require personnel, but is relatively independent of the multiplicity of the individual
personnel tokens involved. Conversely, the list manipulation operations in Model 4B are affected by the
length of the lists, i.e. the number of personnel under consideration. The length of the personnel lists
increase regardless of whether the topology is folded or unfolded, the only difference being that when
the topology is unfolded there are 5 lists of ‘Ready’ personnel (one per node) instead of a single list.

Test 5U : Assigning Personnel to Teams when Increasing the Number of Nodes. In this test, the
performance of both models scaled approximately linearly with the number of nodes. (Recall that each
node has 200 teams that require personnel, a team multiplier of 100.) This is expected, since each new
node is represented by its own piece of net structure. Figure 16 shows that Model 1 is also outperformed
by Model 4B in this experiment. Despite this, Model 1 has shown dramatic improvement in performance.
With one node, both the folded and unfolded models take approximately 125 seconds to assign personnel
to all teams. With two nodes, the folded model took over 1.5 hours whereas the unfolded model took
less than four minutes (225 seconds). Model 4B has improved, but not nearly as much. For 10 nodes the
improvement is a factor of 1.68 (13.3 seconds folded vs. 7.94 seconds unfolded).

6 Discussion

We consider that model design for good model performance is difficult. The choice of modelling style,
such as the choices for modelling personnel and topology discussed above, has a significant effect on the
performance of the model. With respect to our original model (Model 1), we note that when there are
complex interactions between personnel and tasks, the check for enabled binding elements results in a
prohibitively large number of calculations. This has been greatly reduced for Model 4B, which performs
well in most scenarios examined here. This is the case so long as personnel remain in step with respect
to their scheduled offline and online cycle times. Otherwise, it may diminish performance rather than
enhance it (compared to Model 1 - see [14] for more details).

When considering a folded network topology, modelling personnel as individual tokens results in highly
inefficient simulations. A list-based representation appears to be computationally far superior without
losing much of the desired behaviour of the token-based approach. Unfolding the network topology into
net structure also improves the performance of the models, with Model 1 exhibiting the most significant
improvement.

The above tests purposely cover extreme values of personnel, teams and nodes to elicit performance
trends. For realistic scenarios we can see that Model 4B provides an acceptable level of performance for
the case of cycling personnel and assignment of personnel to teams in isolation. However, this may not be
the case when considering the model as a whole, as it is difficult to directly infer the performance of the
complete model from these results. We are currently investigating the performance of both approaches
to modelling personnel in the complete model.

Unfolding other aspects of the model may provide significant performance gains, but it is a significant
undertaking and there comes a point at which the unfolded model becomes unmanageable. We must also
consider the loss in flexibility that moving to an unfolded model would impose. For example, it would
be useful to specify the tool facilities that could be developed to produce a new model for each distinct
topology that needs to be simulated. Producing (partially) unfolded versions of the complete model for
one or two carefully chosen scenarios may help to clarify the advantages and disadvantages.

38

We would also like to investigate a way of modelling personnel changing state from online to offline,
and vice versa, that does not involve dedicated transition occurrences. Because the cycling of personnel
is predetermined (in the absence of maintenance tasks) it follows that by knowing the most recent
maintenance activity of all personnel, all future availabilities (until the next maintenance activity starts)
can be derived. Therefore, explicit modelling of the transitions of personnel online and offline may not
be necessary.

7 Conclusions

This paper has explored different modelling approaches to improve the performance of CPN Tools when
simulating an industrial-scale CPN model that captures the Australian Army’s maintenance process. Our
aim was to improve simulation performance to a level that is suitable for timely evaluation of different
maintenance scenarios.

In its usual operating environment, the maintenance system involves hundreds of personnel and
thousands of pieces of equipment distributed over tens of locations. Under these conditions, simulations
of our original model did not allow any results to be obtained within an hour. This led us to profile the
model to determine where the bottlenecks in the simulation occurred. We found that the internal CPN
Tools’ function, ‘less than’, for the personnel colour set was being executed millions of times during the
checking of the enabling of two transitions, both associated with assigning personnel to teams. Given this,
we decided to explore different data structures for personnel. We have made some dramatic performance
gains over our original model by using lists of personnel in the maintenance process, rather than the
more natural use of multisets. Two components of the model (cycling personnel online and offline, and
assigning personnel to teams) are now nearing the levels of performance required to make the model fast
enough to be useful in supporting simulated military operations.

We have also considered models in which the network topology of the maintenance system is not
encoded in tokens but rather is represented explicitly in the net structure (i.e. a partial unfolding of
the CPN). This approach has also shown promise, opening up many possibilities to further enhance the
performance of the model.

It is likely that the performance issues discussed in this paper will be present in many industrial-scale
CPN models. We therefore believe that a more fundamental understanding of the relationship between
the use of various modelling constructs and their impact on analysis and simulation performance in CPN
Tools will be beneficial to the user community, particularly those concerned with industrial systems. We
hope that the results in this paper will provide a starting point for the development of a set of guidelines
for modelling complex systems that are more readily simulated by CPN Tools.

Acknowledgments

The authors would like to acknowledge their colleague, Mr. Christopher Moon, for his involvement in
the early development of this model, and Dr. Nimrod Lilith, for support in developing some aspects of
the model and for participation in many active discussions. The authors would also like to acknowledge
Dr. Lisa Wells and Prof. Lars Kristensen for productive discussions and information regarding profiling.
Finally, the authors would like to acknowledge the constructive feedback received from the anonymous
reviewers of [14].

References

1. W.M.P van der Aalst (guest editor). Transactions on Petri Nets and Other Models of Concurrency II, Special
Issue on Concurrency in Process-Aware Systems. Lecture Notes in Computer Science. Springer, 2009.

2. J. Ashayeri, A. Teelen, and W. Selen. Production and maintenance planning model for the process industry.
International Journal of Production Research, 34(12):3311–3326, 1996.

3. J. Billington, M. Diaz, and G. Rozenberg, editors. Application of Petri Nets to Communication Networks,
volume 1605 of Lecture Notes in Computer Science. Springer, 1999.

4. L. Briskin and W. S. Demmy. An overview of the network repair level analysis model [military systems]. In
Proceedings of the IEEE 1988 National Aerospace and Electronics Conference (NAECON 1988), volume 4,
pages 1414–1420, 1988.

5. C. R. Cassady, W. P. Murdock, and E. A. Pohl. Selective maintenance for support equipment involving
multiple maintenance actions. European Journal of Operational Research, 129(2):252–258, 2001.

39

6. T. N. Cook and R. C. DiNicola. Modeling Combat Maintenance Operations. In Proceedings of the Reliability
and Maintainability Symposium, pages 390–396, 1984.

7. CPN Tools. http://www.cs.au.dk/CPNTools.
8. DSTO. Coloured Petri Net Modelling of Defence Logistics. Australian Government, Department of Defence,

Contract No. 4500498737, 1 February 2006.
9. W. W. Fisher. Markov process modelling of a maintenance system with spares, repair, cannibalization and

manpower constraints. Mathematical and Computer Modelling, 13(7):119–125, 1990.
10. O. Fouathia, J.-C. Maun, P.-E. Labeau, and D. Wiot. Stochastic approach using Petri nets for maintenance

optimization in Belgian power systems. In Proceedings of 8th International Conference on Probabilistic
Methods Applied to Power Systems, pages 168–173, 2004.

11. G. E. Gallasch and J. Billington. Army Maintenance System Analysis Tool Enhancement: CPN Model
Documentation. Technical Report CSEC-39, Computer Systems Engineering Centre Report Series, University
of South Australia, September 2009.

12. G. E. Gallasch, N. Lilith, and J. Billington. Extending a Coloured Petri Net Model of a Defence Logistics
Network. Technical Report CSEC-29, Computer Systems Engineering Centre Report Series, University of
South Australia, September 2007.

13. G. E. Gallasch, N. Lilith, J. Billington, L. Zhang, A. Bender, and B. Francis. Modelling Defence Logistics
Networks. International Journal on Software Tools for Technology Transfer, special section on CPN’06,
10(1):75–93, 2008.

14. G. E. Gallasch, C. Moon, B. Francis, and J. Billington. Modelling personnel within a defence logistics
maintenance process. In Proceedings of 1st International Conference on Simulation Tools and Techniques for
Communications, Networks and Systems (SIMUTools 2008), March 2008. (10 pages).

15. T. Gossard, N. Brown, S. Powers, and D. Crippen. Scalable Integration Model for Objective Resource
Capability Evaluations (SIM-FORCE). In Winter Simulation Conference Proceedings, volume 2, pages 1316–
1323, 1999.

16. A. Jacopino, F. Groen, and A. Mosleh. Modelling imperfect inspection and maintenance in defence aviation
through Bayesian analysis of the KIJIMA type I general renewal process (GRP). In Proceedings of Reliability
and Maintainability Symposium (RAMS’06), pages 470–475, 2006.

17. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Volumes 1 to 3, Basic
Concepts, Analysis Methods, and Practical Use. Monographs in Theoretical Computer Science. Springer, 2nd
edition, 1997.

18. K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for modelling and validation
of concurrent systems. International Journal on Software Tools for Technology Transfer, 9(3-4):213–254,
June 2007.

19. K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of Concurrent Systems.
Springer, 2009.

20. W. D. Kelton, R. P. Sadowski, and D. T. Sturrock. Simulation with Arena. McGraw-Hill Higher Education,
3rd edition, 2004.

21. L. M. Kristensen, P. Mechlenborg, L. Zhang, B. Mitchell, and G. E. Gallasch. Model-based Development of a
Course of Action Scheduling Tool. International Journal on Software Tools for Technology Transfer, special
section on CPN’06, 10(1):5–14, 2008.

22. O. Maimon and M. Last. Information-efficient design of an automatic aircraft maintenance supervisor.
Computers & Operations Research, 20(4):421–434, 1993.

23. V. Mattila and K. Virtanen. A simulation-based optimization model to schedule periodic maintenance of a
fleet of aircraft. In Proceedings of European Simulation and Modelling Conference 2005 (ESM’2005), pages
479–483, 2005.

24. B. Mitchell, L. M. Kristensen, and L. Zhang. Formal Specification and State Space Analysis of an Operational
Planning Process. In Fifth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, pages 1–17. Department of Computer Science, University of Aarhus, 2004. Available via http://www.
daimi.au.dk/CPnets/workshop04/cpn/papers/.

25. S. R. Parker. Combat Vehicle Reliability Assessment Simulation Model (CVRASM). In Winter Simulation
Conference Proceedings, pages 491–498, 1991.

26. T. Raivio, E. Kuumola, V. A. Mattila, K. Virtanen, and R. P. Hamalainen. A simulation model for military
aircraft maintenance and availability. In Proceedings of Modelling and Simulation 2001, 15th European
Simulation Multiconference (ESM’2001), pages 190–194, 2001.

27. M. Ramadass, J. Rosenberger, B. Huff, S. Gonterman, and R. N. Subramanian. Simulation Modelling for a
Bus Maintenance Facility. In Winter Simulation Conference Proceedings, pages 1222–1225, 2004.

28. J.D. Ullman. Elements of ML Programming. Prentice-Hall, 2nd edition, 1998.
29. L. Zhang, L. M. Kristensen, B. Mitchell, G. E. Gallasch, P. Mechlenborg, and C. Janczura. COAST - An

Operational Planning Tool for Course of Action Development and Analysis. In Proceedings of the 9th In-
ternational Command and Control Research and Technology Symposium (ICCRTS), Copenhagen, Denmark.,
2004.

40

Towards Automatic Code-generation from
Process-partitioned Coloured Petri Nets

K.L. Espensen1, M.K. Kjeldsen1, L.M. Kristensen2, and M. Westergaard1∗

1 Computer Science Department, Aarhus University, Denmark.
Email: {espensen,keblov,mw}@cs.au.dk

2 Department of Computer Engineering, Bergen University College, Norway.
Email: lmkr@hib.no

Abstract. Constructing an abstract description in the form of a model
can give useful insight into a given system, e.g., to investigate important
properties of the system either through simulation or state space analysis,
and to use the model as inspiration for subsequent manual implementa-
tion. The problem is that a manual implementation may introduce errors
in the code not present in the model. Automatic code generation from
the model saves resources spent on writing code, and eliminates errors
introduced during implementation. This is difficult for coloured Petri
nets models as their rich structure translates badly to common program-
ming languages. Approaches either severely restrict the input accepted
or generate code that is difficult to extend and modify. In this paper we
introduce process-partitioned coloured Petri nets, which is an attempt
to restrict the input accepted as little as possible while still allowing au-
tomatic inference of the control structure of the model to generate code
that can be manually modified afterwards. We illustrate our approach
using a simple example and demonstrate the viability of the approach
by demonstrating that it can be applied to a model of a real-life system,
the Dynamic MANET On-demand (DYMO) routing protocol.

1 Introduction

Software development is a challenging process, and writing a program of sub-
stantial size without errors is difficult. A major part of software development is
therefore concerned with finding and eliminating errors. Testing is widely used
as a technique to detect errors, but the programmer does not know whether the
absence of failed test cases means a missing test case or that the software is free
of errors. It is especially difficult to write exhaustive test cases for concurrent
systems, e.g., for a communication protocol where several process instances are
executing at the same time.

Building an abstract representation of the system in the form of a model
is a way to detect errors early. A model can be used to verify properties of a
system, e.g., that a system does not contain deadlocks, or that a communication
protocol behaves correct when operating over an unreliable network. A typical

∗Supported by the Danish Research Council for Technology and Production.

41

way of using models in software development is to build a model from a system
specification written in plain text. After verifying that the model has the desired
properties, it can be used as a basis for an implementation. A problem with
this approach is that there may be a mismatch between the specification, the
model, and the actual implementation. This is because the translation from one
to another is done manually and hence can introduce errors. A way to reduce
this problem is to use the model as the specification and automatically generate
the implementation from the model. Details abstracted away in the model will
of course also lack in the implementation, but eliminating errors in the verified
parts of the system leads to more reliable software with fewer errors.

The aim of this paper is to develop a technique to automatically generate code
from coloured Petri nets (CPNs or CP-nets) [7]. The code should be readable
and intuitive such that the user can read, modify and extend the generated code.
We also want the model to be clearly recognizable in the generated code since
the people working with the generated code are typically also familiar with the
model. The technique should allow different target languages to be used, e.g.,
C, Java, SML or Erlang [3]. However, the target language should be invisible in
the model and the usual inscription language should be used in the model.

To achieve this aim, we use a sub-class of CP-nets called process-partitioned
CP-nets (PCP-nets or PCPNs). PCPN models preserve much of the general-
purpose strength of CP-nets as we show by constructing a model of the Dynamic
MANET On-demand (DYMO) protocol [1]. We have developed a technique that
translates from the class of PCP-nets to the Erlang programming language, and
have created a prototype of the technique. The prototype is able to generate
readable code from the DYMO model, and we validate that the generated code
has the same behaviour as the model.

Related Work. There are different approaches to automatically generate code
from Petri nets. The chosen strategy has a large impact on the properties of
the final code. The approach should preserve the behaviour of the model, but
the code generated using one approach might be very efficient while the code
generated by using another approach may be very readable and extensible.

In [6] and [13] approaches to automatic code generation is divided into the
four categories simulation-based , structure-based , state space-based and decen-
tralised . Our approach falls into the structure-based approach.

Simulation-based. The basic idea in simulation-based approaches is to have a
central component which controls the flow of the program on the basis of the
state of the environment. This is done by a scheduler which from the current
state computes which state to proceed to. This process corresponds to finding
enabled transitions in CPN models.

A simulation-based approach is used by Philippi to generate Java code from
a high-level Petri net in [13]. The idea is to make a class diagram which outlines
the classes and method signatures of the program. From this diagram, classes
with attribute definitions and methods with empty bodies are generated. The
empty bodies are filled with the simulator code made from the formal model.

42

Simulation-based approaches are also used in the projects described in [12]
and [8] where the generated simulator code made from a CPN model (by CPN
Tools [2]) is used directly in the final implementation. The simulation kernel
is generated from a CPN model and after undergoing automatic modifications,
e.g., linking the code to external code libraries, the generated code is used in the
final implementations.

One advantage of simulation-based approaches is that code execution follows
a simulation of the model very closely, making it easier to establish that the
behaviour of the generated code is the same as the behaviour of the model. Nat-
urally, such approaches do not put any limitations on the class of nets to generate
code for. The main disadvantage of these approaches is that the generated code
is not very natural and often inefficient.

Structure-based. The code generated using a structure-based approach contains
no central component to control the execution of the program. Instead the control
flow of the program is distributed across the program, e.g., to function calls
in functional programming languages. The key idea of these approaches is to
recognise structure (regular patterns) in the model. Structure is then mapped to
well-known programming constructs like sequences, loops, and case constructs.
It is not in general possible to recognize such structure in coloured Petri nets
mainly because they provide much more opportunities for constructing different
control flow structures than common programming languages [13]. Because of
this, it is necessary to restrict the class of nets when using a structure-based
approach.

A structural approach is found in [6]. In this approach the focus is on identi-
fying processes in a Petri net, i.e., parts of the net that work independent of one
other or only have few synchronisation points. Afterwards local variables (i.e.,
information only used by one process) and communication channels are found.

In [14] the authors translate a class of CP-nets, called coloured workflow nets
(CWNs), into BPEL, an XML-based workflow implementation language. CWNs
are quite restricted, and mainly focus on the flow of data and not much on data
processing, making the approach basically a graphical way to describe control
structure instead of a natural way to make CPN models. Furthermore, the BPEL
language is not aimed at general application development. [10] improves on this
by translating directly to Java by adding a data processing component, but it
is very restricted and does not allow the use of general functions in the data
processing part. Furthermore, the approach is limited to emitting Java code.

The advantage of using structure-based approaches is that the code obtained
is more readable than code obtained with a simulation-based approach. The
coding style is more natural and looks more like it is written by a human pro-
grammer. The generated code also has a tendency to be more efficient because
it does not rely on a central component. The main disadvantage is that the
requirements on the modeling language may make the models unnatural.

State space-based. The idea of state space based approaches is to use the state
space of the model to compute the next state. In the state space, we have all

43

successor states computed for each reachable state which alleviate the overhead
of computing the successors each time. Relying on the full state space to be
generated is a huge drawback because of the state space explosion problem, and
therefore we do not find this method worth pursuing.

Decentralised. The opposite of centralised simulation-based approaches are de-
centralised approaches. The idea is to implement each place and transition of
the net as processes. Here the program does not directly reflect the structure or
state of the system. This approach has the advantage that parallelism in the net
is preserved, but it also introduces an overhead because of the administration
needed, e.g., for locks and message passing.

The rest of this paper is structured as follows: In the next section, we introduce
our net class, process-partitioned CP-nets via a simple example. In Sect. 3, we
describe our translation algorithm, and in Sect. 4 we describe our experiences
with application of our prototype to a model of a real-life protocol made before
the definition of the net class. Finally, we sum up our conclusions and provide
directions for future work. Part of this work has been published as [4]. The main
change in this version is that the presentation has been improved and shortened.

2 Process-partitioned Coloured Petri Nets

We use a simple producer-consumer system as example. The example can be
seen in Fig. 1. The system consists of a number of producers that produce data
and send it to the consumers (the top part of the model), and a number of
consumers consuming the data (the bottom part of the model). Producing data is
split up into producing the data and transmitting the data to the consumers. The
producers have local Data, which contains the next data value to produce. When
a data item is produced, it is transmitted to Produced Data for transmission.
Each producer sends its data to a specific consumer, getting the identity of
the consumer from the place Next Consumer, and transmitting it onto Buffer.
Currently the identity of the receiving consumer is hard-coded to consumer c(1),
but we can easily replace this by a load balancer. Consumers receive data from
Buffer, which is a simple model of a network, transmit it to the Received Data
place, where it will be consumed.

A general coloured Petri net is not limited to regular control flow structures
in the same way common programming languages are. For this reason it is not
easy to capture the behaviour of a CPN model by using common programming
constructs, e.g., sequences, loops, and case-statements. We note that while the
model is indeed a CPN model, it is modelled slightly differently from how one
would normally go about it. Most notably, we see that we always both consume
and produce tokens on places with data in the name and that we explicitly
bind the consumer on the Send Data transition. This is because the model is
created using the sub-class process-partitioned coloured Petri nets (PCPNs or
PCP-nets). PCPNs are defined in a way that makes it possible to recognise

44

(cons,rdata)

(prod, pdata)

nextcons

(prod,data+2)

(cons, data)

(cons, data)

(cons, data)

cons

cons

cons

cons

(nextcons, data)

(prod, data)

prod

prod
prod

(prod, data)

(prod, data)

prod

Receive
Data

Consume
Data

Produce
Data

Send
Data

Next
Consumer

c(1)

NEXTCONSUMER

Consuming

CONSUMER

Receiving

CONSUMER.all()

CONSUMER

Received
Data

1`(c(1),0)++
1`(c(2),0)

CONSUMERxDATA

Data1`(p(1),1)++
1`(p(2),2)

PRODUCERxDATA

Sending

PRODUCER

Producing

PRODUCER.all()

PRODUCER

Produced
Data

1`(p(1),0)++
1`(p(2),0)

PRODUCERxDATA

Buffer

CONSUMERxDATA

Fig. 1: The producer-consumer CPN model.

control structures and thus to generate code from the model. The definition of
PCP-nets is inspired by the definition by Kristensen and Valmari from [9].

A main property of PCP-nets is that they are partitioned into processes
that can be executed in parallel without influencing the behaviour of each other
except for distinguished synchronisation points. Another important property is

45

that the control flows of processes are explicit in the net structure, so the state of
the model always reflects where the process is in the control flow. Furthermore,
access to stored values local to each process partition is also explicit in the model,
allowing us to determine the local state of processes.

Here we introduce PCP-nets using the producer-consumer example; for a
formal definition, please refer to [4]. The model has two process partitions , one
modelling producers (top) and one modelling consumers (bottom). Process par-
titions can be connected by either buffer or shared places, but are otherwise
disjoint. In Fig. 1, the producers and consumers are connected only by the buffer
place Buffer. Intuitively, a process partition models the state and actions of one
or more process instances running the same program code, e.g., producer process
partition models two producer process instances running the same program code
in the example. Transitions in a PCP-net belong to a unique process partition,
e.g., the transition Send Data in Fig. 1 belongs to the producer process partition.

There are four kinds of places in PCP-nets: process places , local places, buffer
places and shared places . In Fig. 1, process places are black (Producing, Sending,
Receiving, and Consuming) and represent the control flow of processes. Process
places have distinguished process types , here PRODUCER or CONSUMER, and we
impose the restriction that every token from a process type, a process token, must
reside on exactly one process place. We ensure this by requiring that transitions
are always connected to exactly one input and one output process place and that
the arc expression must be a variable (allowing a double arc instead of two arcs
with the same inscription). We call the variable used the process variable of the
transition. We require that initially, all process tokens of a given type reside on
the same place, corresponding to all processes starting at the same point. For
example, initially all producer tokens reside on Producing.

Local places in Fig. 1 are green (Data, Produced Data, and Received Data),
and represent variables local to a process. We require that local places have a
type that is a product between a process type and a data type. For example,
Data has type PRODUCERxDATA, the product of PRODUCER and DATA. We
require that if a transition has an arc from a local place, it must also have an arc
leading to the place (and vice versa), arc expressions must be pairs where the first
component is the process variable of the transition, and each local place must
initially have exactly one token for each process token (together ensuring that
local places always have exactly one value for each process instance). Finally, the
second component of the expression on the arc from a local place must always
be a variable only bound on that arc (this ensures that reading a variable from
a local place never disables a transition).

Buffer places are blue in Fig. 1 (Buffer) and represent a communication chan-
nel between two processes. Like local places, the type of a buffer place must be a
product of process type and a data types. Buffer places may contain any number
of tokens, but the initial marking is required to be an empty multi-set (corre-
sponding to the communication channel containing no data). Buffer places are
allowed to have any number of arcs as long as outgoing arcs have expressions
that are pairs of the process variable and an otherwise free data variable (like

46

for local places), but we impose no special requirements on arcs going into buffer
places.

Shared places are red in Fig. 1 (Next Consumer) and represent data shared
between multiple processes, corresponding to shared memory. Shared places can
have any type that is not a process type (which is why we use NEXTCONSUMER
on Next Consumer instead of just CONSUMER). The reason for that is to be able
to distinguish shared places from the other kinds of places. We require that a
shared place has an initial marking of size one (corresponding to the variable
having exactly one value), and we preserve this by always requiring that any
transition with an arc from a shared place also has an arc to the shared place.

We require that all arc expressions evaluate to multi-sets of size one to pre-
serve the flow in process partitions. We also require that except for process
variables, all variables exist at most once in all expressions on input arcs around
one transition. This is to make the enabling calculation simpler in the generated
code. It is still possible to make equality tests in the guards, however. We do
not allow free variables on output arcs or in guards, as this would correspond to
drawing random numbers in programs. Randomness can still be introduced by
explicitly calling a random number generator. Variables used in the guard must
be bound from local places, i.e., we do not allow input from shared or buffer
places, as this would introduce race conditions as we shall discuss later.

3 Translation Algorithm

In this section, we explain the techniques developed for translating a PCPN
model into program source code. The producer-consumer system is used to illus-
trate each phase of the translation. The translation from PCPN models to the
target language is divided into five phases. The idea is to move closer and closer
to the target language in small steps. Figure 2 illustrates the phases of the trans-
lation. The three first phases (top) are independent of the target language, i.e.,
they make no assumptions about the target language. The first phase consists
of decorating the different parts of the PCPN model to allow us to distinguish,
e.g., process places and shared places. The second phase translates from the dec-
orated PCPN model into a control flow graph (CFG) for each process partition,
extracting the control flow from the model. In the third phase the CFG is trans-
lated into an abstract syntax tree (AST) for a simple language designed to be
abstract enough that it can be translated into most programming languages. The
control flow represented by the CFG is made explicit by, e.g., goto statements
in the AST. The last two phases of the translation are shown at the bottom of
Fig. 2. These are language dependent, i.e., the phases are specific to a target
programming language. We have shown two possible target languages: Erlang
and Java. In case of Erlang, the AST is translated into an Erlang syntax tree
(EST), mapping the generic concepts of the AST to language specific constructs
for the Erlang language. In case of JAVA, the AST is translated into a Java
syntax tree (JST) and then into Java source code. The last phase pretty-prints
a syntax tree for the concrete target language under consideration.

47

Fig. 2: The first three phases (top) and last two (bottom) of the translation.

Phase 1: Decorating the PCPN Model. The purpose of this phase is to
identify different parts of the PCPN model and decorate them with information
such as whether, e.g., places are shared places or process places. This phase uses
properties of the PCPN net class to perform the identification. In our prototype,
we actually perform this step, but it is likely that one would create an editor that
would automatically provide this information, and ensure that the constructed
model is indeed a PCPN model. For this reason, we will not give the full details
of the decoration, but refer the interested reader to [4]. The main idea is that
a user must identify process types, allowing us to find the process partitions.
Local places can be identified as places only connected to transitions from a
single partition with types that are products of the correct process type (that of
the process variables of connected transitions) and another type. Buffer places
can be recognized as places connected to multiple process partitions, and finally
shared places are identified as places whose type is not a product containing a
process type.

Phase 2: Translating the Decorated PCPN Model to a CFG. The
main purpose of this phase is to extract the control flow from the decorated
PCPN model and make it explicit in a control flow graph (CFG). This phase

48

also identifies common program constructs, e.g., processes, variables, and access
to variables. Furthermore, the phase finds synchronisation points, i.e., messages
passing between processes. The CFG we use is a directed graph in which arcs
correspond to control flow and nodes corresponds to a sequence of statements to
be executed. A CFG is constructed for all process partitions in the model, thus
in the producer-consumer system two CFGs are generated: one for the producer
process partition and one for the consumer process partition. In Fig. 3, we see
the translated CFG for the producer process partition. Transitions are translated
into basic blocks in the CFG. In the producer process partition, the transition
Produce Data is translated into the basic block produce data. The contents of
basic blocks depends on the places connected to the transition. There is a special
start basic block for each CFG representing the start point of the process. In
Fig. 3 it points to the basic block produce data as all tokens initially are on
the Producing place, which is input to Produce Data.

Fig. 3: The CFG of the producer process.

Process places in the PCPN model are not explicitly translated into nodes
in the CFG, but are represented as edges between basic blocks. In Fig. 3 we see
that the basic block produce data has an edge to send data signifying that
after executing produce data control should flow to the basic block send
data. The edge condition true indicates that control flows unconditionally.

Local places are used to store data. In a programming language this corre-
sponds to reading/writing a process local variable. The producer process parti-
tion contains the two process variables Data and ProducedData corresponding
to the two local places Data and Produced Data in the PCPN model. The initial
values for the variables are extracted from the initial markings of the corre-
sponding places. The initial marking of the local place Produced Data contains
0 for both instances and thus this is the initial value of this variable for both
instances. An input arc with an arc expression on the form (pid, var) from
a local place to a transition corresponds to process instance pid reading a vari-

49

able var. The input arc with expression (prod, data) from Data to Produce
Data is translated to Read process var with the expression data as shown in
Fig. 3. Output arcs corresponds to Write process var . (prod, data) on the
arc from Produce Data to Produced Data is translated to Write process var with
the expression data.

Buffer places are used to send data to a particular process instance. In a pro-
gramming language this corresponds to sending to and receiving from a shared
buffer, thus a buffer place is translated into a buffer in the CFG. Input arcs from
a buffer place to a transition with arc expression (pid, var) correspond to a
process pid receiving a message which is put into a variable var. This kind of
input arc can be found in the consumer part of the producer-consumer system
on the arc from Buffer to Receive Data (with expression (cons, data)) and
is translated into Receive with the expression data meaning that the value of
the received data should be read into the variable data for later use. Output
arcs with expression (pid, exp) correspond to sending a value exp to a pro-
cess instance pid. The output arc expression (nextcons, data) from Send
Data to Buffer is translated to Send the expression data to the receiver process
instance nextcons.

Shared places in the PCPN model are used to share data between multiple
process instances. In a programming language this corresponds to a global vari-
able, e.g., in shared memory. Shared places are translated into global variables
in the CFG. In the producer-consumer system there is one global variable cor-
responding to the shared place Next Consumer. Initial markings of shared places
are extracted and used as initial values. Input arcs with arc expression var from
a shared place to a transition corresponds to a process reading a variable with a
global scope. In the producer-consumer system, there is an input arc expression
nextcons to the transition SendData from the shared place Next Consumer.
This is translated to a Read global var . In a similar fashion, outgoing arcs are
translated to Write global var .

Phase 3: Translating the CFG to an AST. The main purpose of this
phase is to take the control flow given in the structure of the control flow graph
(CFG) and translate it into a tree form consisting of nodes representing common
programming constructs, e.g., jump statements. Furthermore, read and write
expressions contained in the CFG are parsed and translated into trees in order
to make them independent of the inscription language.

Figure 4 shows a sub-tree of the AST for the producer-consumer example
where only the nodes from the produce data block of the producer process
are shown. When building the AST, a process is created for each CFG process.
Figure 4 shows the program contains two processes, namely producer and
consumer. The program node also contains the global variable NextConsumer.
In the CFG each process contains a number of variables. These variables are
translated into process variables and contain an initial expression for each in-
stance of the process. Expressions are parsed using a simplistic SML parser. An
AST process also has a number of AST blocks which are created from the basic

50

blocks of the CFG. The producer process contains three such blocks: produce
data, send data, and start. The AST contains nodes for reading and writ-
ing process and global variables as well as for sending and receiving via buffers.
The rightmost node in the produce data block is an unconditional goto state-
ment containing a pointer to the block it jumps to, in this case the send data
block. Jump statements are translated from edges between basic blocks in the
CFG. An AST can have two types of goto statements, a unconditional jump and
a conditional jump with a boolean expression that must evaluate to true for the
jump to take place.

Fig. 4: The AST for the ”produce data” part of the producer.

The AST can either be used as is or we can further transform it by ex-
tending the abstract syntax with, e.g., loops, if statements, or exceptions. These
structured programming paradigms must be inferred from the control flow of
the program. For example, we can identify an infinite loop in the producers of
producing and transmitting. By doing this at the AST level, any new kind of
control structure recognized can be used by all target languages.

Phase 4: Translating the AST to an EST. This phase generates an Erlang
syntax tree (EST) based on an AST. The purpose of this phase is to translate
the abstract representation of a program into an Erlang program represented
as a tree. We have chosen Erlang as implementation because it is a functional
language not too far from SML and it has been developed specifically for han-
dling concurrent and critical systems, such as telephone centrals. The control
flow, represented by goto statements in the AST, is translated into the func-
tional language paradigm equivalent function calls . Since functional languages
are stateless the state is passed along with the function calls. Processes are na-

51

tive in the Erlang language, thus each process in the AST is simply translated
into a module. The generated modules are spawned in a special system module.

To give an impression of the translation from an AST to an EST we take a
look at the producer-consumer system. Figure 5 shows how a part of the producer
is represented in the generated EST (top) and the details of produce data
(bottom). The producer module basically consists of a function, start which
is exported to the environment to allow the environment to start up processes,
a declaration of the environment of the process containing all process variables,
and functions for each basic block. Process variables are represented using an
environment in the form of a record, so reading and writing translates to record
operations. Global variables in the AST are used to share data between pro-
cesses. There is no native equivalent to global variables in the Erlang language,
so instead we construct a module which can be used to spawn processes that
acts like global variables. Receiving messages via a buffer is a native construct
in the Erlang language. To handle the translation of more advanced control flow
constructs, a buffer with extra functionality is needed. For this reason we con-
struct an explicit buffer process for each receiver to receive messages. Goto
statements in the AST are divided into unconditional and conditional jumps.

Fig. 5: The producer module (top) and function declaration produce data (bottom)
of the EST.

52

Unconditional goto statements are simply translated into function application
expressions in the EST. In the example, we see an application of send data at
the far right.

We have a dedicated module to spawn an Erlang process for each process
instance. It also spawns buffer processes and a process for each global vari-
able. In the producer-consumer system this sums up to: two producers, two
consumers, two buffers belonging to the consumers, and a shared instance for
NextConsumer.

Phase 5: Translating the EST to Erlang Code. The last phase is trans-
lating the Erlang syntax tree (EST) into a textual representation. The EST is
a concrete representation of Erlang, so the task is to traverse the tree and print
a textual representation of each node to a file. A traversal is made for each
module declaration because they represent different output files. Listing 1 shows
a part of the generated Erlang code for the producer module. In Fig. 5 at the
top we see the EST of the module declaration and at the bottom, we see the
produce data function declaration. We first declare our module (l. 1) and ex-
port the start function (l. 2). We then define our environment type (ll. 3–5)
and move on to the definition of the produce data function (l. 7–11) starting
by reading Data from the environment (l. 8) and creating a new environment
with updated values of the variables (ll. 9–10). Finally, we hand over control to
the send data function with the new environment (l. 11).

Listing 1: Part of the generated code for the producer module! "
1 - module(producer).
2 - export([start/2]).
3 - record(environment, {
4 produced_data,
5 data}).

7 produce_data(Env) ->
8 Data = Env#environment.data,
9 NewEnv = Env#environment {produced_data = Data,

10 data = Data + 2},
11 send_data(NewEnv).# $
Advanced Control Flow Issues. While covering most of the constructs
found in PCP-nets, the producer-consumer model does not contain a branch of
the control flow. Here, we describe how branches of control flow are handled
in the translation. In the producer-consumer model process tokens residing on
a process place are only available to a single transition but the definition al-
lows process tokens to be available to multiple transitions, i.e., a control flow
branch. Control flow branches introduce an additional challenge when the target
transitions have input arcs from buffer places. These buffer places have to be
taken into consideration when choosing the flow of control. Making a function
call without looking at the buffer may introduce a deadlock in the program that
did not exist in the model. In Fig. 6 we see a part of a PCPN model with one
process place Process Place, two transitions T1 and T2, and two buffer places
Buffer1 and Buffer2. The process token can be removed by either T1 or T2, and

53

p

T2

T1

Process
Place

p
Buffer

2

Buffer
1

BUFFER

BUFFER

(p,i)

(p,i)

PROCESS

[guard2]

[guard1]

PROCESS.all()

Fig. 6: A process partition with a control flow branch.

are in both cases put back on Process Place. T1 is enabled if guard1 evaluates to
true and there is a token on Buffer1, and analogously for T2. This means that
the generated process can proceed to either T1 or T2 depending not only on the
guards but also on presence of tokens on buffer places.

Translation to a CFG. Given the PCPN model shown in Fig. 6, we generate the
CFG shown in Fig. 7 (top). It contains an entry basic block start which has an
edge with condition guard1 to the basic block T1, and an edge with condition
guard2 to the basic block T2. The flow of control from T1 is either to itself
or to T2 depending on the value of guard1 and guard2, and analogously for
T2. T1 contains a receive statement from Buffer1 and T2 contains a receive
statement from Buffer2.

Translation to an AST. The CFG is translated to the AST shown in Fig. 7 (bot-
tom). The Process node contains two blocks T1 and T2. Taking a look at T1
it contains a receive statement which has a pointer to Buffer1 where the in-
coming messages are stored. The receive statement also contains a local variable
i into which a message from the buffer is read. T1 also contains two conditional
statements; one holding the condition expression guard1 and pointing to T1,
and one holding the condition expression guard2 and pointing to T2. The block
T2 is similar to T1.

Translation to Erlang Source Code. The translation becomes more complex
when allowing branches. Jumping to the first block were the guard evaluates to
true could introduce a deadlock in the program if that block contains a receive
statement from a buffer that will never have an element added. For instance,
in the PCPN model shown in Fig. 6, it could be the case that both guard1 and
guard2 evaluates to true. Assume that Buffer1 is empty, and that there will
never be added a token to it. Assume also that Buffer2 already contains a token.
If the program was to jump to the function corresponding to the transition T1
the program would stop on the blocking receive expression. This is not desirable

54

Fig. 7: The CFG (top) and AST (bottom) of the control flow branch.

since T2 is enabled in the PCPN model, thus calling the function corresponding
to T2, would not make the program stop.

A solution to this problem is to only jump to a function with a receive
expression if there is an element in the buffer. Since buffers are local to a process
instance, the element will remain in the buffer until removed by the process
instance. For this reason, we have introduced an explicit Erlang buffer module
with operations for checking if an element is available. An example of this can
be seen for our industrial example in Listing 2 in the next section.

4 Using the Method on a Real-life Example

We have used our prototype to generate code for the producer-consumer exam-
ple, part of which is shown in Listing 1. We have validated this code by manual
inspection and by adding logging code verifying that it is possible to reproduce
runs of the generated code in the model.

55

We have also run our prototype on a model of the real-life dynamic on-
demand MANET routing protocol (DYMO) [1]. The first versions of our model
of this protocol were made before starting this work and the translation effort
required to get running code is therefore realistic for other projects as well.
Earlier versions of the model have been used to find and fix problems in the
protocol specification [5]. The protocol is responsible for establishing routes in
a mobile ad-hoc network (MANETs), i.e., a network with no preexisting infras-
tructure. The protocol establishes routes on-demand, i.e., when they are actually
needed. The model models the two parts route discovery and route maintenance
of DYMO. Route discovery establishes routes by multicasting route request mes-
sages. Each intermediate node records a route back to the originator and forwards
the message. When the request arrives at the destination, a route is established
and used to unicast a route reply back to the originator. Route maintenance ac-
tively monitors links and uses timeouts to discover loss of connection, and when
this happens a route error is multicasted to all neighbours.

The CPN model of DYMO has been translated into PCPN from the earlier
versions in approximately 20 man hours and consists of 8 modules, 49 places,
and 18 transitions, and is thus fairly complex. We have shown part of the route
discovery in Fig. 8. The module is responsible for initiating route discovery. We
have used the same color conventions as in Fig. 1, i.e., process places are black,
local places are green, shared places are red, and buffer places are blue. The
module can either create a new route request or cancel the request if we have
retried too many times.

Generating code from the DYMO model yields the modules shown in Table 1.
We have listed lines of code (L.O.C.) for each module – in total we generated 563

seqNum + 1

seqNum

(net(1), CGcreateRREQ (targetip,
ip, seqNum))

targetip

established

(init, ip)(init, cancel)

(init, established)

(init, cancel)
(init, cancel)

(init, true)

(init, count - 1)

(init, count)

init

(init, count)

initinit

Create
RREQ

[not cancel, count > 0]

RREQ_TRIES
Reached

[count = 0,
not cancel]

Cancel
Request

[cancel]

SeqNum

SeqNum

1

SEQNUM

DYMO To
Network

OutNETWORKxMESSAGE

Target
IP

Target IP

"node 5"

IPADDRESS

Route
Established

RouteEstablished

false

BOOL

Own IP
Address

(i(1), "node 1")

INITIATORxIPADDRESS
Cancel

(i(1), false)

INITIATORxBOOL

RREQ_TRIES

(i(1), 5)

INITIATORxCOUNT

Handle
Request

INITIATOR.all()

INITIATOR

RouteEstablished

Target IP

Out

SeqNum

Fig. 8: The Initiator module of the PCPN DYMO model.

56

Table 1: Generated Modules from the DYMO Protocol.

Module name L.O.C. Functions to implement

system.erl 20 0
buffer.erl 36 0
shared.erl 16 0
initiator.erl 116 1
receiver.erl 116 7
processer.erl 111 4
establishchecker.erl 126 0
network.erl 22 0

Total 563 12

lines of code. Since we do not support automatic translation from SML to Erlang,
we had to manually implement various Erlang expressions and functions on the
basis of the corresponding SML code. These SML expressions are carried along as
comments in the generated code. The comments are placed where the expression
should be used, thus the structure of the program is preserved. Implementing the
functions (12 in total) in Erlang is an easy task, because of the similarity between
Erlang and SML. In total, we spent approximately 12 man hours modifying the
generated code, including removal of unused extracted values. The time spent
could be eliminated by implementing automatic translation from SML to our
AST and adding rudimentary liveness calculation for variables.

In Listing 2, we see the generated code for the Create RREQ from the Initiator
module. This code is pretty typical for the generated code as it starts by gath-
ering parameters, then performs a calculation, distributes results, and finally
passes on control. The code consists of picking the needed values of the environ-

Listing 2: Generated code for the Create RREQ transition of the Initiator module.! "
1 create_rreq(Env) ->
2 Count = Env#environment.rreq_tries,
3 Cancel = Env#environment.cancel,
4 Ip = Env#environment.own_ip_address,
5 is_route_established ! {get, self()}, receive Established -> Established end,
6 target_ip ! {get, self()}, receive Targetip -> Targetip end,
7 seqnum ! {get, self()}, receive Seqnum -> Seqnum end,
8 NewEnv = Env#environment {rreq_tries = Count - 1, cancel = Established},
9 is_route_established ! {set, Established},

10 target_ip ! {set, Targetip},
11 seqnum ! {set, Seqnum + 1},
12 Id1 = 1,
13 Receiver1 = list_to_atom("network_ID" ++ integer_to_list(Id1) ++ "_dymo_to_network"),
14 Receiver1 ! {send, %% CGcreateRREQ (targetip, ip, seqNum)
15 undefined},
16 Guard_cancel_request_cancel = NewEnv#environment.cancel,
17 Guard_rreq_tries_reached_count = NewEnv#environment.rreq_tries,
18 Guard_rreq_tries_reached_cancel = NewEnv#environment.cancel,
19 Guard_create_rreq_count = NewEnv#environment.rreq_tries,
20 Guard_create_rreq_cancel = NewEnv#environment.cancel,
21 Guard_create_rreq_ip = NewEnv#environment.own_ip_address,
22 if
23 %% cancel
24 undefined -> cancel_request(NewEnv);
25 %% count = 0, not cancel
26 undefined -> rreq_tries_reached(NewEnv);
27 %% not cancel, count > 0
28 undefined -> create_rreq(NewEnv)
29 end.# $

57

Listing 3: The createRREQ function.! "
1 createRREQ(Target, N, Seqnum) ->
2 #message {src = N, dest = ’LL_MANET_ROUTERS’, target_addr = Target, orig_addr = N, orig_seqnum = Seqnum,
3 hop_limit = 5, dist = 1, msg_type = ’RREQ’}.# $
ment (ll. 2–4) and reading variables from shared variables (ll. 5–7), gathering
of parameters. Then the code constructs a new environment (l. 8), and sets all
shared values (ll. 8–15), calculation and distribution of results. In lines 14–15 we
see that the original declaration from the CPN model has been commented out
and replaced by undefined. We need to manually translate this function, and
remove the comment and undefined. We then extract values for use in evaluation
of the guard (ll. 16–21), and dispatch based on the result of evaluating the guard
(ll. 22–28). We also need to translate the expressions in the switch in lines 22–28,
but due to similarity between SML and Erlang, this mostly consists of renaming
the variables shown. To illustrate how easy the modifications are, we have shown
the manually implemented function in Listing 3.

In order to execute more than one node running the generated DYMO im-
plementation, we use the distributed Erlang system which is a mechanism in
Erlang allowing a number of Erlang systems to communicate over a network. It
consists of a number of independent Erlang runtime systems, each called an Er-
lang node. Each node executes the same generated DYMO code. The processes
running the DYMO implementation on different Erlang nodes do not communi-
cate directly with each other. Instead they communicate via a network simulator
process running on a separate Erlang node. The stub code for the network sim-
ulator is generated directly from the network process partition of the DYMO
PCPN model. The network simulator process implements a simple MANET with
a static topology where both unicast and multicast is supported.

To monitor the behaviour of the program, each node prints its own routing
table, which can then be manually inspected to verify that the expected routes
were established. To make sure that every part of the generated code at some
point has been executed, we have executed the generated DYMO code with
several different MANET configurations designed to exercise all parts of the code.
The generated code established the correct routes in all cases, which provides
confidence in the generated code.

5 Conclusion and Future Work

In this paper, we have introduced a sub-class of coloured Petri nets, process-
partitioned coloured Petri nets (PCPNs or PCP-nets), which separates control
flow from data, and we have shown a structure-based approach to automatically
generating (Erlang) code from models created using this sub-class. The approach
first extracts a control flow graph from the model, and from the control flow
graph infers the higher level control structures and constructs an abstract syntax
tree for an abstract language. From the abstract syntax tree, we generate a

58

syntax tree specific to the target language, translating generic control structures
into language specific control structures.

We have validated that the translation and net class works for real-life ex-
amples, and have shown that a real life model with 8 pages, 49 places and 18
transitions can be translated to the net class in acceptable time (20 man hours),
which indicates that the net class is not too far from general CP-nets, at least
for network protocols. The generated code can be edited relatively easily, and
even though we do not translate more complex SML functions automatically,
the adaptation and setup for testing of the code was done in only 12 man hours,
which indicates that the generated code is indeed fairly natural. Using manual
inspection and logging, we have validated that traces in the generated code can
be reproduced in the model and that the calculated results are correct according
to the model.

For future work, we would like to extend the PCPN class to allow using vari-
ables from buffer or shared places in guards, which would reduce the complexity
of the PCPN DYMO model. This complicates the calculation of guards, as the
value may change as other process instances modify/receive values, requiring
introduction of a locking mechanism. It would also be interesting to look at
dynamic instantiation of processes, which should not be too difficult since we
already instantiate processes in our setup process. Furthermore, our current im-
plementation does not allow hierarchical PCP-nets, so they have to be flattened,
e.g., using CPN Tools prior to translation. Automatic flattening, or, even better,
use of the module concept in CP-nets to further improve the translation would
be preferable.

It would also be interesting to improve the control structure recognition, from
only using goto and conditional jumps to also include inlining of unconditional
unique jumps, recognition of loops, and binary if statements. It would also be
interesting to add Java code emission to validate that our approach is indeed
output language agnostic. It is also a very interesting option to translate to
GCCs GENERIC [11] intermediate language instead, as this would give us direct
emission of binary code and allow us to directly link with code written in the
plethora of languages supported by GCC.

Tool support can also be improved to, e.g., check that a model is indeed a
PCPN model (or to only allow construction of valid PCPN models), and to add
a parser to automatically generate AST nodes for all SML functions to eliminate
this manual step.

An obvious weak point of the current implementation is that the validation is
done in an ad-hoc manner, which increases our confidence in the implementation,
but does not deliver the promised certainty that the code is correct.

References

1. I.D. Chakeres and C.E. Perkins. Dynamic MANET On-demand (DYMO) Routing,
version 14, June 2008. Internet-Draft. Work in Progress.

2. CPN Tools webpage. www.cs.au.dk/CPNTools/.

59

3. Erlang specification. www.erlang.org/doc.html.
4. K.E. Espensen and M.K. Kjendsen. Automatic Code Generation from Process-

Partitioned Coloured Petri Net Models. Master’s thesis, Dept. of Computer Sci-
ence, Aarhus University, 2008.

5. K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen. Modelling and Initial Vali-
dation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks. In Proc. of
ATPN’08, volume 5062 of LNCS, pages 152–170. Springer-Verlag, 2008.

6. C. Girault and R. Valk. Petri Nets for System Engineering: A Guide to Modeling,
Verification, and Applications. Springer-Verlag, 2003.

7. K. Jensen and L.M. Kristensen. Coloured Petri Nets – Modelling and Validation
of Concurrent Systems. Springer, 2009.

8. L.M. Kristensen, P. Mechlenborg, L. Zhang, B. Mitchell, and G.E. Gallasch. Model-
based Development of a Course of Action Scheduling Tool. STTT, 10(1):5–14,
2007.

9. L.M. Kristensen and A. Valmari. Finding Stubborn Sets of Coloured Petri Nets
Without Unfolding. In Proc. of ATPN’98, volume 1420 of LNCS, pages 104–123.
Springer-Verlag, 1998.

10. K.B. Lassen and S. Tjell. Translating Colored Control Flow Nets into Readable
Java via Annotated Java Workflow Nets. In Proc. of 8th CPN Workshop, volume
584 of DAIMI-PB, pages 127–146, 2007.

11. J. Merril. GENERIC and GIMPLE: A New Tree Representation for Entire Func-
tions. gcc.gnu.org/pub/gcc/summit/2003/GENERIC%20and%20GIMPLE.
pdf.

12. K.H. Mortensen. Automatic Code Generation Method Based on Coloured Petri
Net Models Applied on an Access Control System. In Proc. of ATPN’00, volume
1825 of LNCS, pages 367–386. Springer, 2000.

13. S. Philippi. Automatic code generation from high-level Petri-Nets for model driven
systems engineering. Journal of Systems and Software, 79(10):1444–1455, 2006.

14. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the Way:
From Requirements Via Colored Workflow Nets to a BPEL Implementation of a
New Bank System. In Proc. of OTM Conferences (1), volume 3760 of LNCS, pages
22–39. Springer, 2005.

60

Towards Verification of the PANA Authentication and
Authorisation Protocol using Coloured Petri Nets

Steven Gordon

Sirindhorn International Institute of Technology
Thammasat University, Thailand

steve@siit.tu.ac.th

Abstract

The Extensible Authentication Protocol (EAP) allows a server to request au-
thentication information from a client. In order to transport EAP messages over an
IP network, the Protocol for Carrying Authentication for Network Access (PANA)
has been developed. This paper applies a protocol engineering methodology us-
ing Coloured Petri nets (CPNs) as a step towards formally verifying the design
of PANA. State space analysis of a simple PANA configuration shows that the
current specification has removed deadlocks discovered in previous PANA versions.
Furthermore, state space and language analysis of PANA for different client retrans-
mission limits leads to two important conjectures: the state space size (number of
nodes, arcs) can be expressed as a polynomial in terms of the retransmission limit;
and the protocol language is independent of the retransmission limit. The results
suggest parametric verification is applicable to PANA. Finally, ideas for automati-
cally validating the CPN model against the original specification are discussed.

1 Introduction

The Extensible Authentication Protocol (EAP) [1] is a framework for performing authen-
tication in computer networks (see Figure 1). A typical usage scenario, as illustrated in
Figure 2, involves a server (known as authenticator in EAP) initiating an authentication
request to a peer. The peer responds to this, and any subsequent requests, until the
authenticator determines the procedures to be a success (the peer is authenticated for
network access) or failure (the peer is denied access to the network). In practice a third
entity, the authentication server, may be utilised for storage of credential information.
EAP is designed to support different authentication methods (e.g. MD5, TLS) and to
operate over different (non-IP-based) network technologies. For example, a laptop can
authenticate with a wireless LAN access point using IEEE 802.11i, or a home PC can
authenticate with a dial-in server using EAP over the Point-to-Point Protocol (PPP).

In order to allow EAP to be carried over IP networks, PANA has been developed
and released as IETF Request For Comments (RFC) 5191. The Protocol for Carrying
Authentication for Network Access [8] is a lower layer for EAP, and PANA itself uses
UDP as a lower layer. In addition to the protocol definition in [8], the PANA Working
Group has developed a state-table model of PANA published as RFC 5609 [7]. Although
the state-table model is for informative purposes, combined with the protocol definition,
it provides a detailed explanation of the behaviour of PANA. However, as with many
distributed protocols, it is important that the PANA specification is accurate and unam-
biguous. This is particularly important for an authentication protocol, where small errors
or an ambiguous specification may lead to implementations with potentially damaging
security flaws.

61

Lower layer

PANA Auth.

EAP Auth.

Authenticator

UDP/IP

Authentication
Server

Credentials

database

Peer

EAP Peer

Lower layer

PANA Client

UDP/IP

EAP

PANA

Radius

Diameter

Figure 1: EAP framework

EAP Peer EAP Auth

Request

Response

Success

Response

Request

Figure 2: Typical EAP message sequence

Most research on PANA involved its application to wireless networks [18, 17, 5],
especially performance analysis of PANA re-authentication during handovers [4, 9]. Little
effort has been directed to the formal analysis of PANA, including security analysis. The
overall aim of this research is to verify the design of PANA to ensure a complete and
correct specification is available. To do so a protocol engineering methodology [2] is
applied utilising Coloured Petri nets (CPNs) [14]. There are numerous examples of a
protocol engineering methodology applied to other protocols (e.g. [19, 16, 11, 12]). The
steps followed in this paper include:

1. Modelling of the PANA protocol specification using CPN Tools [15].

2. Simulation of the PANA CPN model to investigate specific scenarios. CPN Tools
is used to step through sequences of events, and combined with BRITNeY [21] to
automatically generate message sequence charts.

3. Functional property verification from state space analysis. CPN Tools is used to
inspect terminal states and identify possible deadlocks, as well as bounds on com-
munication channels.

4. Generation and inspection of the PANA protocol language (i.e. the possible ordering
of interactions between PANA and the higher layer, EAP). Obtaining the protocol
language is necessary in verifying that PANA is a faithful refinement of the service
that EAP assumes is provided by the lower layer. However in this work, there is
not yet a formal definition the PANA service offered to EAP. Hence only manual
inspection of the protocol language is used at this stage.

62

Note that this paper does not attempt a formal security analysis (from a crypto-
graphic viewpoint) of PANA. In fact, such analysis depends largely on EAP and other
authentication methods, as PANA is only a protocol that carries EAP messages.

In previous work [13] a CPN model and initial analysis of PANA was presented. This
was based on RFC5191 and draft version 6 of the PANA state tables. Using state space
analysis of the simplest configurations of PANA (no retransmissions, no optimisation of
the initiation procedure), a problem with aborting sessions was identified. Since then
the PANA state tables have been updated (from version 6 through to 13, which is now
published as RFC 5609). This paper uses an updated CPN model of the latest version of
PANA. In addition, new configurations are analysed, in particular with retransmissions
and initiation optimisation.

The remainder of this paper is organised as follows: Section 2 describes PANA and
EAP in further detail. Section 3 provides an overview of the CPN model of PANA.
Results from the formal analysis of the PANA Authentication and Authorisation Phase
are presented in Section 4. Discussion of the approach, results and ideas for future work
are given in Section 5.

2 EAP and PANA

2.1 EAP

EAP is a request/response protocol where only a single packet is in-flight at once, i.e. the
authenticator cannot send a new request until the response from the previous request is
received. The requests contain authentication challenges to the client. EAP assumes the
lower layer (in this paper, PANA) will provide in-order delivery of packets, however it
does not require the lower layer to be reliable, provide security or remove duplicates. A
typical scenario, as illustrated in Figure 2, involves one or more EAP Request/Response

exchanges (always initiated by the authenticator) followed by a final EAP Success or EAP

Failure message, depending on the authentication information supplied by the client.

2.2 PANA

The role of PANA is to transport EAP messages between peer (referred to as PANA
Client or PaC) and authenticator (PAA). PANA uses UDP at the transport layer, and
hence the service provided to PANA may have packet losses, duplication and re-ordering.
An exchange of messages in PANA is a session, which is divided into four phases:

Authentication and Authorisation At the start of a PANA session this phase in-
volves the exchange of EAP messages to perform authentication.

Access Once authentication is successful network access is provided. In this phase either
PaC or PAA may test for the liveness of the session (which has a limited lifetime).

Re-authentication May be performed to maintain the session liveness.

Termination Either PaC or PAA may terminate a session. If a session isn’t terminated
gracefully, then a timeout on the PANA session will result in the termination.

PANA communications are implemented as a series of request and answer messages.
To explain the Authentication and Authorisation phase consider the example scenario
in Figure 3(a) (which is generated from our CPN model in Section 3). It shows the

63

Service primitives
between the EAP Peer
and the PANA Client PANA messages sent over the

network between PaC and PAA. The
sending and receiving of the message
are shown as two separate events.
Also shown is the sequence number
and Start or Complete flags when
relevant.

Service primitives
between the EAP
Authenticator and
PAA.

Figure 3: Message sequence chart of PANA Authentication phase: (a) no piggybacking;
(b) with piggybacking

64

communication between EAP entity and corresponding PANA entity, as well as between
PANA entities across the network.

The PANA session can be initialised by either the PAA or PaC (Figure 3(a) shows
an example initiated by PAA, whereas Figure 3(b) illustrates PaC initiation, as well as
piggybacking). The methods for each entity learning about the presence of the other is
out side of the scope of PANA. For a PAA-initiated-session, after it discovers the presence
of a PaC, it sends an AuthRequest message to start the session (the ’S’ flag indicates this
message is to start the session). This initial AuthRequest is used to force a restart of the
EAP session at the Peer. The PaC responds with an AuthAnswer, which results in the
EAP session at the Authenticator restarting.

The EAP Authenticator then initiates the authentication with an EAP Request. This
triggers the PAA to send an AuthRequest carrying the EAP Request method (e.g. the
authentication challenge). Upon receipt of the AuthRequest, the PaC passes the EAP

Request method to the EAP Peer and replies with an AuthAnswer.
The PaC sends the response to the challenge in an AuthRequest (which is also acknowl-

edged by the PAA with a AuthAnswer). This sequence of EAP requests and responses
(and AuthRequest and AuthAnswer messages) may repeat until the authentication is com-
plete. Finally the EAP Authenticator will send a Success or Failure method indicating
the result of authentication. The EAP Success is shown in Figure 3(a), which is carried
in an AuthRequest with the Complete flag set. Once the AuthAnswer is received by the
PAA, both PAA and PaC have the PANA session established and the Access phase is en-
tered. Note that the AuthAnswer messages can be considered as acknowledgements of the
AuthRequest messages. They do not necessarily carry the answer to the authentication
challenge (i.e. the EAP response). Other relevant details of PANA include:

• 32-bit sequence numbers are used to maintain ordering and perform error detection.
The sequence numbers at PAA and PaC are independent. An outgoing request
message contains a sequence number, and the corresponding answer message must
have the same sequence number.

• Request messages are retransmitted if an answer is not received within a specified
time. The session is terminated if too many retransmissions occur.

• PANA messages contain 16 bytes of fixed size header (e.g. flags, message type,
sequence number, session identifier) as well as a variable number of Attribute-
Value Pairs (AVPs). AVPs include: the actual EAP message; authentication data;
session lifetime; and other security related information.

• Optional piggybacking of messages allows either PaC or PAA to send a single PANA
message that represents both an answer and a request. For example in Figure 3(a)
without piggybacking, PaC sends an AuthAnswer(8) followed by AuthRequest(3).
With piggybacking turned on (Figure 3(b)), the PaC sends a single message, Au-

thAnswer(9) which also includes the EAP response.

2.3 EAP/PANA Interface

In order to verify if the PANA protocol correctly interacts with EAP, it is necessary to
understand the interface between the two layers. The EAP state-machines [20] specify
the variables used for communication between EAP and a lower layer. This information
is summarised in Figure 4. As an example, when the EAP Authenticator sends an EAP

Request, the eapReq flag will be set to true and the Request method will be included in
eapReqData.

65

PANA PaC PANA PAA

EAP Peer
Authenticator

eapResp/eapRespData
portEnabled
eapRestart

eapKeyAvailable/eapKeyData
eapTimeout

eapFail/eapReqData
eapSuccess/eapReqData

eapNoResp
eapReq/eapReqData

eapReq/eapReqData
portEnabled
eapRestart
altAccept
altReject

eapResp/eapRespData
eapSuccess

eapFail
eapNoResp

eapKeyAvailable/eapKeyData

EAP

Service Provider (UDP/IP)

Figure 4: EAP/PANA interface based on [20]

In addition to the EAP-defined interface, the PANA state-tables [7] describes its own
set of variables and procedures used for communication between PANA and EAP. As
an alternative to the two separate set of variables defined by EAP and PANA, service

primitives can be used to describe the interface between the two layers. Table 1 is an
attempt to define the service primitives that correspond to information found in the EAP
standard [20] and PANA standard [8, 7]. The table lists the EAP-defined variables, the
PANA-defined variables, as well as the newly defined service primitives. However from the
available specifications it is difficult to define all valid sequences of primitives, and hence
orderings are not yet defined. In Section 4 the service primitives are used in determining
the PANA protocol language, i.e. the possible sequences of service primitives.

Table 1: EAP/PANA interface variables and service primitives
No. Entity EAP PANA Primitive

1 Peer/PaC - AUTH USER CAuthUser
2 Peer/PaC eapRestart EAP RESTART CRestart
3 Peer/PaC eapReq EAP REQUEST CRequest
4 Peer/PaC eapResp EAP RESPONSE CResponse
5 Peer/PaC eapSuccess EAP SUCCESS CSuccess
6 Peer/PaC eapFail EAP FAILURE CFailure
7 Peer/PaC - - CTimeout
8 Peer/PaC - ABORT CAbort
9 Auth/PAA - PAC FOUND APacFound
10 Auth/PAA eapRestart EAP RESTART ARestart
11 Auth/PAA eapReq EAP REQUEST ARequest
12 Auth/PAA - - AResponse
13 Auth/PAA eapSuccess EAP SUCCESS ASuccess
14 Auth/PAA eapFail EAP FAILURE AFailure
15 Auth/PAA - EAP TIMEOUT ATimeout
16 Auth/PAA - ABORT AAbort
17 Peer/PaC - DISCARD CDiscard
18 Auth/PAA - DISCARD ADiscard

3 Coloured Petri Net Model of PANA

3.1 Model Hierarchical Structure

A CPN model of PANA has been created based on the state tables in [7]. The model
consists of 23 pages, 63 transitions and 7 places (however not all transitions are relevant
for the Authentication and Authorisation phase of PANA considered in this paper).

The model focuses on the components of the protocol important for functional verifi-
cation, i.e. the ordering of exchange of messages. Where possible, abstraction is used so
that details of message content and format can be omitted. This makes analysis easier,
but at the expense of a complete protocol specification. The structure of the model fol-

66

IETF Protocol for Carrying Authentication for Network Access
Protocol Specification
PANA v17; State Machine v4

$Revision: 180 $
$Author: sgordon $
$Date: 2008-05-16 13:22:03 +0700 (Fri, 16 May 2008) $
$URL: https://sandilands.info/svn/Steve/Source/CPN/pana.cpn $

Steven Gordon
Sirindhorn International Institute of Technology
Thammasat University, Thailand
steven.gordon@ieee.org

PAA

PAA

PaC

PaC

Auth2Client

msg

Client2Auth

msg

PaC PAA

Figure 5: Top-level page of PANA CPN Model

lows a state-based approach, where transitions are used to model actions (each row) in
the PANA state-tables. Further discussion of this approach is given in Section 5.

The PANA CPN is hierarchical, with the PaC and PAA modelled on separate pages,
and then each state of the PaC/PAA modelled on separate pages. This is achieved using
substitution transitions and port/socket places. At the highest level (Figure 5) there are
two transitions (PaC and PAA) and two places modelling the communication channel
between PaC and PAA (and vice versa). The channel is assumed to be reliable (no
message loss), but allows re-ordering and delay of messages. As UDP is used as the lower
layer by PANA, the assumption of no message loss is not always valid. However assuming
no message loss is a useful starting point for the analysis, since modelling loss may hide
deadlocks in the protocol. Studying the impact of message loss is part of future work.

Both the PaC and PAA transitions at the top-level contain detailed models on their
respective sub-pages. These sub-pages (Figures 6 and 7) contain transitions that model
the events at each state and a place to model the current state. For example, the
place Client stores the current state of PaC, C INITIAL, and state variables such as
eap piggyback=false. Places LastClientMsg and LastAuthMsg are used to store the previ-
ous message sent in case a retransmission is necessary.

3.2 Modelling State Tables

Each transition on the PAA/PaC sub-pages is further decomposed to individual pages
that model the events, conditions, actions and next states as presented in the state-tables.
To explain, the case of the PAA in the INITIAL state will be used as an example. The
PANA state-table from [7] for the PAA INITIAL state is given in Figure 8.

For a given state, the state-tables in [7] specify:

• An exit condition, i.e. the conditions that must occur. For example, in Figure 8
there is an exit condition called EAP REQUEST, which indicates a request is received
from the higher layer EAP entity.

• Exit actions, i.e. the actions that will be executed upon the conditions being met.
For the EAP REQUEST condition, the actions are to transmit a PANA AuthRequest

message (Tx:PAR[S]) and then start the retransmission timer (RtxTimerStart().
Note that the contents of the AuthRequest message depends on the type of EAP
method received from the higher layer.

• The exit state, i.e. the next state of the entity. After the EAP REQUEST and
corresponding actions, the PAA will re-enter (i.e. remain in) the INITIAL state.

67

C_RETRANSMIT

C_RETRANSMIT

C_SESS_TERM

C_SESS_TERM

C_WAIT_PNA

C_WAIT_PNA

C_OPEN

C_OPEN

C_WAIT_EAP_RESULT
CLOSE

C_WAIT_EAP_RESULT CLOSE

C_WAIT_EAP_RESULT

C_WAIT_EAP_RESULT

C_WAIT_EAP_MSG

C_WAIT_EAP_MSG

C_WAIT_PAA

C_WAIT_PAA

C_INITIAL

C_INITIAL

LastClientMsg

msg

Client

PaCState

Client2Auth
Out msg

Auth2Client
In msgIn

Out

C_INITIAL

C_WAIT_PAA

C_WAIT_EAP_MSG

C_WAIT_EAP_RESULT

C_WAIT_EAP_RESULT CLOSE

C_OPEN

C_WAIT_PNA

C_SESS_TERM

C_RETRANSMIT

(C_INITIAL,{
 eap_piggyback=false,
 RtxTimerOn=false,
 SessionTimerOn=false,
 RtxCounter=0,
 SeqTx=0,
 SeqRx=INITASEQ})

Figure 6: CPN Model of PaC

A_RETRANSMIT

A_RETRANSMIT

A_SESS_TERM

A_SESS_TERM

A_WAIT_PAN_OR_PAR

A_WAIT_PAN_OR_PAR

A_WAIT_PNA_PING

A_WAIT_PNA_PING

A_OPEN

A_OPEN

A_WAIT_FAIL_PAN

A_WAIT_FAIL_PAN

A_WAIT_SUCC_PAN

A_WAIT_SUCC_PAN

A_WAIT_EAP_MSG

A_WAIT_EAP_MSG

A_INITIAL

A_INITIAL

LastAuthMsg

msg

Authenticator

(A_INITIAL,{
 eap_piggyback=false,
 RtxTimerOn=false,
 SessionTimerOn=false,
 OptimizedInit=false,
 RtxCounter=0,
 SeqTx=0,
 SeqRx=0,
 Started=false})

PAAState

Client2Auth
In

msg

Auth2Client
Out

msg
Out

In

A_INITIAL

A_WAIT_EAP_MSG

A_WAIT_SUCC_PAN

A_WAIT_FAIL_PAN

A_OPEN

A_WAIT_PNA_PING

A_WAIT_PAN_OR_PAR

A_SESS_TERM

A_RETRANSMIT

Figure 7: CPN Model of PAA

68

Ideally, each entry in the state table could be modelled by a single transition in the
CPN. However for some entries multiple transitions are used. This is because the exit
actions in the state table sometimes contain conditions. Consider the action for the
exit condition (Rx:PCI[] || PAC FOUND) in Figure 8. If OPTIMIZED INIT is set then
one sequence of actions are taken, and if not set another sequence of actions are taken.
Hence this entry in the state table is modelled as two transitions. Furthermore, there
are in fact two distinct exit conditions: Rx:PCI[] and PAC FOUND. These are therefore
modelled as separate transitions (this is necessary as the two conditions correspond to
different interactions with the higher layer). As a result, the one state table entry in this
case is modelled with four transitions. In Figure 9 the four transitions are: PAC FOUND

Optimum; PAC FOUND NoOptimum; RxPCI Optimum; and RxPCI NoOptimum.

State: INITIAL (Initial State)

Initialization Action:

OPTIMIZED_INIT=Set|Unset;
NONCE_SENT=Unset;
RTX_COUNTER=0;
RtxTimerStop();

Exit Condition Exit Action Exit State
------------------------+--------------------------+------------
- - - - - - - - (PCI and PAA initiated PANA) - - - - - - - - -

(Rx:PCI[] || if (OPTIMIZED_INIT == INITIAL
PAC_FOUND) Set) {

EAP_Restart();
SessionTimerReStart
(FAILED_SESS_TIMEOUT);

}
else {
if (generate_pana_sa())

Tx:PAR[S]("PRF-Algorithm",
"Integrity-Algorithm");

else
Tx:PAR[S]();

}

EAP_REQUEST if (generate_pana_sa()) INITIAL
Tx:PAR[S]("EAP-Payload",

"PRF-Algorithm",
"Integrity-Algorithm");

else
Tx:PAR[S]("EAP-Payload");

RtxTimerStart();
- -

- - - - - - - - - - - - - - (PAN Handling) - - - - - - - - - -
Rx:PAN[S] && if (PAN.exist_avp WAIT_EAP_MSG
((OPTIMIZED_INIT == ("EAP-Payload"))
Unset) || TxEAP();

PAN.exist_avp else {
("EAP-Payload")) EAP_Restart();

SessionTimerReStart
(FAILED_SESS_TIMEOUT);

}

Rx:PAN[S] && None(); WAIT_PAN_OR_PAR
(OPTIMIZED_INIT ==
Set) &&

! PAN.exist_avp
("EAP-Payload")
- -

Figure 8: State Table for PAA in INITIAL state from [7]

69

Each transition has or may have:

• An input arc from a place containing the current state, and related state informa-
tion, e.g. sequence numbers, flags. Consider the bottom transition in Figure 9 as
an example. The transition is only enabled when PAA is in the A INITIAL state.

• An input arc from the communication places (Client2Auth or Auth2Client, depending
on the entity) if the event involves receiving a message. (The example transition is
only enabled when a AuthAnswer has been sent by the PaC).

• A guard for the conditions related to the event. (AuthAnswer message must have
the Start flag set, not contain EAPPayload, and PAA must be using OptimizedInit)

• An output arc to the communication places if the action involves sending a message.
(No message is sent for the example transition).

• An output arc to the place containing state information, where the next state is
stored. (The new state is A WAIT PAN OR PAA for the example transition—there
are no changes to the state variables).

PAN Handling

PCI and PAA initiated PANA

1

2

4

(A_INITIAL,a)

(A_INITIAL,a)
ClientInitiation pci

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=false,
 EAPType=NO_EAP,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=true,
 EAPType=EAP_REQUEST,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=false,
 EAPType=NO_EAP,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

(A_INITIAL,
 SessionTimerReStartA(
 StartedA(
 SetSeqRxA(a,INITCSEQ))))

(A_INITIAL,a)

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=false,
 EAPType=NO_EAP,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

(A_INITIAL,a)

(A_WAIT_PAN_OR_PAR,a)

(A_WAIT_EAP_MSG,
 SessionTimerReStartA(a))

AuthAnswer pan

AuthAnswer pan

(A_INITIAL,a)

(A_INITIAL,a)

AuthAnswer pan
(A_WAIT_EAP_MSG,a)

(A_INITIAL,a)

(A_INITIAL,
 StartedA(
 RtxTimerStartA(
 SetSeqTxA(a,INITASEQ))))

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=true,
 EAPType=EAP_REQUEST,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=false,
 EAPType=NO_EAP,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

(A_INITIAL,a)ClientInitiation pci

(A_INITIAL,
 SessionTimerReStartA(
 StartedA(
 SetSeqRxA(a,INITCSEQ))))

(A_INITIAL,a)
ClientInitiation pci

DiscardPCI

[#Started(a)]

input (pci); output (); action (if mscOn then (
msc.addEvent("Network","PAA","ClientInit");
msc.addInternalEvent("PAA","Discard")) else ());

PAC_FOUND
Optimum

[#OptimizedInit(a)
andalso not(#Started(a))]

input (pci); output (); action (if mscOn then (
msc.addInternalEvent("PAA","PAC_FOUND");
msc.addEvent("PAA","EAP Auth","EAP_RESTART")) else ());

PAC_FOUND
NoOptimum

[not(#OptimizedInit(a))
andalso not(#Started(a))]

input (pci); output (); action (if mscOn then (
msc.addInternalEvent("PAA","PAC_FOUND");
msc.addEvent("PAA","Network",concat ["AuthRequest(S,",Int.toString (INITASEQ),")"]))
else ());

RxPAN Start
Opt, No PL

[#Start(pan)
andalso #OptimizedInit(a)
andalso not(#EAPPayload(pan))] input (pan); output (); action (if mscOn then (

msc.addEvent("Network","PAA",concat ["AuthAnswer(S,",
 Int.toString (#Seq(pan)),")"]))
else ());

RxPAN Start
Not Opt, No PL

[#Start(pan)
andalso not(#OptimizedInit(a))
andalso not(#EAPPayload(pan))] input (pan); output (); action (if mscOn then (

msc.addEvent("Network","PAA",concat ["AuthAnswer(S,",
 Int.toString (#Seq(pan)),")"]);
msc.addEvent("PAA","EAP Auth","EAP_RESTART"))
else ());

RxPAN Start
Payload

[#Start(pan)
andalso #EAPPayload(pan)]

input (pan); output (); action (if mscOn then (
msc.addEvent("Network","PAA",concat ["AuthAnswer(S,",
 Int.toString (#Seq(pan)),")"]);
msc.addEvent("PAA","EAP Auth","EAP_RESPONSE"))
else ());

EAP_REQUEST

[not(#Started(a))]
input (); output (); action (if mscOn then (
msc.addEvent("EAP Auth","PAA","EAP_REQUEST");
msc.addEvent("PAA","Network",concat ["AuthRequest(S,",Int.toString (INITASEQ),")"]))
else ());

RxPCI
Optimum

[#OptimizedInit(a)
andalso not(#Started(a))]

input (pci); output (); action (if mscOn then (
msc.addEvent("Network","PAA",concat ["ClientInit(",
 Int.toString (#Seq(pci)),",PB)"]);
msc.addEvent("PAA","EAP Auth","EAP_RESTART")) else ());

RxPCI
NoOptimum

[not(#OptimizedInit(a))
andalso not(#Started(a))] input (pci); output (); action (if mscOn then (

msc.addEvent("Network","PAA",concat ["ClientInit(",
 Int.toString (#Seq(pci)),")"]);
msc.addEvent("PAA","Network",concat ["AuthRequest(S,",Int.toString (INITASEQ),")"]))
else ());

LastAuthMsg
Out

msg

Client2Auth
In

msg

Authenticator
I/O PAAState

Auth2Client
Out

msg

Out

I/O

In

Out

(A_INITIAL,
 StartedA(
 RtxTimerStartA(
 SetSeqTxA(
 SetSeqRxA(a,INITCSEQ),INITASEQ))))

(A_INITIAL,
 StartedA(
 RtxTimerStartA(
 SetSeqTxA(
 SetSeqRxA(a,INITCSEQ),
INITASEQ))))

(A_INITIAL,a)

Figure 9: CPN Model of A INITIAL state

70

3.3 Message Sequence Charts

To illustrate the message flow between PANA and EAP entities, BRITNeY [21] and the
message sequence chart library are used in conjunction with CPN Tools. Each transition
modelling state table entries has a code segment indicating the transfer of messages or
special events (if any). For clarity, the code segments are omitted from the figures in this
paper. The code segment for the bottom transition in Figure 9 is:
input (pan); output (); action (if mscOn then (

msc.addEvent("Network","PAA",concat ["AuthAnswer[S,"

Int.toString (#Seq(pan)),")"])) else ());

The firing of the transition will draw an arrow indicating an AuthAnswer message being
sent from the Network to the PAA. Message sequence charts, such as that illustrated in
Figure 3, are useful for testing during model development, and exploring the protocol
behaviour under specific conditions.

4 Analysis Results

4.1 Approach and Assumptions

The state space is generated with CPN Tools and examined to determine the presence
of unexpected terminal states (deadlocks) in PANA, as well as the integer bounds on the
communication places.

To investigate the protocol language (i.e sequence of interactions between PANA and
higher layer), CPN Tools was used to translate the state space into a FSA, where states
were mapped to their node number and each binding element was mapped to an integer
depending on the service primitive it represented. The integer mappings are given in
Table 1. All other binding elements map to 0. In addition, terminal states in the state
space mapped to halt states. Then using AT&T’s FSM Library1 and GraphViz2, the
minimised deterministic FSA is created, representing the PANA protocol language. The
protocol language is studied in order to identify unexpected sequences of events in PANA.

In this paper four protocol parameters are of interest:

1. Piggybacking (PBPaC and PBPAA): this can be either on (true) or off (false). If on,
the PaC/PAA may combine two messages into one, thereby reducing the number
of messages sent over the network.

2. Optimised Initiation (OptInit): this can be either on or off. If on, the PAA can
send an EAP Request in the initial AuthRequest message.

3. PaC Maximum Retransmission Count (MRCPaC): an integer indicating the maxi-
mum number of retransmissions of request messages by PaC.

4. PAA Maximum Retransmission Count (MRCPAA): an integer indicating the max-
imum number of retransmissions of request messages by PAA.

The analysis assumes only a single EAP Request is sent by the Authenticator. In
addition, 4-bit sequence numbers are used (instead of 32-bit), and the initial sequence
numbers are randomly set at 3 and 8 for PaC and PAA, respectively.

In Section 4.2 analysis results for a simple configuration with no retransmissions are
presented. Then the effect of retransmissions is considered in Section 4.3.

1http://www.research.att.com/˜fsmtools/fsm/
2http://www.graphviz.org/

71

Table 2: State Space Analysis of PANA CPN with No Retransmissions
Piggyback OptInit States Arcs Terminal States Client2Auth Auth2Client

Off Off 15531 34047 6866 5 3
On Off 3436 7212 1265 3 2
Off On 12079 26360 5292 5 3
On On 2085 4233 775 3 2

4.2 Analysis of Simple Configuration: No Retransmissions

Statistics from the PANA state space are shown in Table 2. In all cases, MRCPaC =
MRCPAA = 0. Also, for simplicity piggybacking is either on for both PaC and PAA or

off for both PaC and PAA. The integer bounds of the communication places, Client2Auth

and Auth2Client, are reported.
The state space is significantly larger when Piggyback is off. This is because with-

out piggybacking, both the PaC and PAA must send a separate AuthRequest message
to carry EAP responses. As illustrated in Figure 3, after receiving an EAP REQUEST,
the PaC sends an AuthAnswer(9) acknowledging the receipt of the EAP REQUEST, and
then sends a AuthRequest(3) containing the EAP RESPONSE. With piggybacking, the
EAP RESPONSE can be sent in the AuthAnswer(9), omitting the need for the AuthRe-

quest(3). Figure 10 shows the partial state space illustrating the sequences from Figure 3.
The integer bound of the communication places Client2Auth and Auth2Client indicates

the number of messages an entity can send before it has to wait for a response from the
peer entity. Normally an entity sends a AuthRequest and then waits for an AuthAnswer

before sending another message. However, with piggybacking off for example, the PAA
can send an AuthRequest message containing an EAP Request, and then if the EAP
Authenticator returns a result to PAA, the PAA can send anotherAuthRequest message
containing the EAP result. After this the PAA must wait for an answer. Hence the
upper bound on the messages in Auth2Client is 2. Similar scenarios occur for the other
configurations.

1
0:3

A_INITIAL'PAC_FOUND_NoOptimum 1

C_INITIAL'RxPAR_Start_No_EAPPayload 1

12
1:2

A_INITIAL'RxPAN_Start_Not_Opt 1

31
1:6

A_WAIT_EAP_MSG'EAP_REQUEST 1

70
1:4

C_WAIT_PAA'RxPAR_No_Piggyback 1

165
1:6

C_WAIT_EAP_MSG'EAP_RESPONSE_NoPiggyback 1

373
1:6

717
1:6

C_WAIT_PAA'RxPAN 1

1143
1:4

A_WAIT_EAP_MSG'EAP_SUCCESS_Authorized 1

1639
2:4

C_WAIT_PAA'RxPAR_Complete_Success 1

2399
1:5

C_WAIT_EAP_RESULT'EAP_SUCCESS 1

3777
1:4

A_WAIT_SUCC_PAN'RxPAN_Complete 1

5791
1:0

4
1:3

A_WAIT_PAN_OR_PAR'RxPAR 1

15 Aug 2009: PB off, Opt Off, C=A=0, Normal sequence

(a)

15 Aug 2009: PB on, Opt Off, C=A=0, Normal sequence

1
0:3

C_INITIAL'AUTH_USER 1

2
1:5

A_INITIAL'RxPCI_NoOptimum 1

6
2:4

C_INITIAL'RxPAR_Start_No_EAPPayload 1

19
2:3

A_INITIAL'RxPAN_Start_Not_Opt 1

52
1:7

A_WAIT_EAP_MSG'EAP_REQUEST 1

133
1:5

C_WAIT_PAA'RxPAR_Piggyback 1

300
1:7

C_WAIT_EAP_MSG'EAP_RESPONSE_Piggyback 1

596
1:4

A_WAIT_PAN_OR_PAR'RxPAN_Payload 1

990
1:6

A_WAIT_EAP_MSG'EAP_SUCCESS_Authorized 1

1309
1:4

C_WAIT_PAA'RxPAR_Complete_Success 1

1721
1:5

C_WAIT_EAP_RESULT'EAP_SUCCESS 1

2108
1:4

A_WAIT_SUCC_PAN'RxPAN_Complete 1

2558
1:0

(b)

Figure 10: Selected state space showing sequence corresponding to those in Figure 3

72

4.2.1 Terminal States

Closer inspection of the terminal states is necessary to determine if any are unexpected.
However first the expected terminal states must be defined. From previous analysis of
PANA [13], the expected terminal states are classified by the state that the PaC and
PAA finish in. Recall that only the Authentication and Authorisation phase of PANA
is analysed: if this phase is successful the PANA session will be OPEN, and both PaC
and PAA enter the Access phase. If unsuccessful, both PaC and PAA should enter the
CLOSED state (PANA session is closed). Therefore expected terminal states are defined
as those where the PaC/PAA entity is in a valid state. The four expected groups of
terminal states are:

1. C OPEN and A OPEN: both PaC and PAA have opened a PANA session, i.e. au-
thentication was successful.

2. C CLOSED and A CLOSED: both PaC and PAA have closed a PANA session, e.g.
after a failed authentication attempt or abort due to too many retransmissions.

3. C OPEN and A CLOSED: PaC successfully opens a session, however the PAA aborts
before opening the session thereby leaving it in the CLOSED state. This is consid-
ered valid because the PaC will enter the Access phase and eventually the PANA
session will timeout (and close) after receiving no responses from the PAA. Rather
than explicitly modelling the timeout event which is part of the Access phase, these
terminal markings are considered valid.

4. C CLOSED and A OPEN: PAA successfully opens a session, however the PaC aborts.
Following the same reasoning as above, this is a valid terminal state.

In [13] a fifth, unexpected group of terminal states was discovered. After the PaC re-
sponded to the initial AuthRequest message (with Start bit set), it entered the C WAIT PAA

state. If the PAA aborted before receiving the AuthAnswer from PaC, then the PAA en-
tered A CLOSED. This was an invalid terminal state because as the PANA session had not
yet started by the PaC, the session timer would never expire, leaving PaC in C WAIT PAA.
This problem arose because, with no explicit abort messages, an entity only knows the
peer has aborted if a time out occurs. In specific cases, such as described above, a timer
is not started, and hence no timeout will occur.

In the updates of the PANA state table from version 6 to version 13 this behaviour has
been fixed. That is, the session timer is started after PaC sends the initial AuthRequest

message (rather than after entering the C OPEN state). Therefore if PaC is waiting in
the C WAIT PAA state, while the PAA has aborted, eventually PaC session will time-out.
Similar behaviour can lead to a valid terminal state with PaC in C WAIT PAA and PAA
in A OPEN.

Finally, there is another special terminal state when optimised initiation is used (this
case was not analysed in [13]). Note that both PaC and PAA may initiate the Authenti-
cation and Authorisation phase. If both entities initiate before receiving a message from
the peer, then the PAA takes precedence. That is, the PAA will discard any ClientInitia-

tion messages received from PaC. Similar to the above issues, if the PaC then aborts, the
PAA may remain in the A INITIAL start. However, as the session timer has been started,
this is considered a valid terminal state (as eventually, the PAA will timeout and close
the session).

Therefore, we define three more valid groups of terminal states: (5) C WAIT PAA and
A OPEN; (6) C WAIT PAA and A CLOSED; and (7) C CLOSED and A INITIAL.

73

Using CPN Tools queries, the terminal states of each state space were inspected to
determine if they matched any of the above 7 valid groups. Table 3 shows the count of
terminal states for each group. No unexpected terminal states were discovered. Further
discussion on the terminal states is given in Section 5.2.

Table 3: Terminal States with No Retransmissions
Piggyback OptInit 1 2 3 4 5 6 7 Unexpected Total

Off Off 61 6090 164 456 11 84 0 0 6866
On Off 41 871 98 61 8 186 0 0 1265
Off On 59 4660 164 333 7 68 1 0 5292
On On 23 534 59 38 4 116 1 0 775

4.2.2 Language Analysis

There is currently no formally defined service language for PANA. Table 1 lists the
possible service primitives to be exchanged between PANA and the higher layer, but does
not define any ordering. Hence language analysis of PANA is not used for verification
(i.e. comparing a protocol language to a service language), but instead to gain confidence
in the correct operation of the protocol and to investigate a possible service language.
However, as will be shown shortly, the size of the PANA protocol language is too large
for manual inspection. Therefore an abstraction is applied where the protocol languages
for PaC and PAA are produced separately. That is, the PaC Only protocol language
shows the sequence of primitives exchanged between the PaC and the higher layer. This
is useful in validating that at least the PaC and PAA are operating in a normal manner.

Table 4 gives the number of states/arcs/final states in the minimised deterministic
FSA, as well as the number of sequences in the language. Results are shown for the
complete PANA protocol language, PaC only and PAA only. Figures 11 and 12 show
the PaC only and PAA only protocol languages when piggybacking and optimised initi-
ation are both on. Visual inspection of the PaC and PAA languages reveal no obvious
unexpected sequences: the ordering of Requests then Responses is as expected; there are
no Requests or Responses after a Success or Failure; and the PAA only sends a single
Request. The sequence of primitives as seen by the PaC shown in Figure 3 are captured
in the sequence from states 0–2–5–8–12–19 in Figure 11. Unfortunately, the full PANA
protocol language is too large for inspection. Analysis of the full PANA language, and
eventually determining a PANA service language, are left for future work.

Table 4: Protocol Language of PANA CPN with No Retransmissions. (S = States; A =
Arcs; FS = Final States; Seq = Sequences)

PANA PaC Only PAA Only

PB OptInit S A FS Seq S A FS Seq S A FS Seq

Off Off 95 369 7 17862 14 36 6 71 7 23 2 70
Off On 100 383 6 14742 20 56 8 60 7 23 2 56
On Off 88 350 6 13604 14 35 5 65 9 31 3 64
On On 93 340 6 11468 20 47 6 48 9 28 3 54

4.3 The Effect of Retransmissions

The simple configuration assumed no retransmissions from either PaC or PAA. However
in PANA the PaC (or PAA) may retransmit an AuthRequest (or ClientInitiation) message
up to MRCPaC (or MRCPAA) times if a corresponding AuthAnswer has not been received.

74

0

1
CAuthUser

2

CRestar t

3
CRestar t

4

CResponse

19

CAbort

5

CReques t

6CReques t

CAbort

7

CReques t

8CResponse

CAbort

9CResponse

CFailure

CAbort

CDiscard

CTimeout

10CResponse

11CSuccess

12CReques t

CAbort

1 3

CReques t

1 4CReques t

CAbort

CSuccess

CFailure

CTimeout
CDiscard

15

CResponse

CFailure

CTimeout

CAbort
CDiscard

CSuccess

CResponse

CFailure
CDiscard

CResponse

CTimeout

16
CSuccess

17
CReques t

1 8CReques t

CSuccess

CFailure

CResponse

CFailure

CTimeout

CDiscard

Figure 11: PaC language (piggybacking on, optimised initiation on)

0

1
ARestart

2

ARequest

3

AResponse

AResponse

4AResponse

8

AAbort

ADiscard

ATimeout

5

ARequest

6
ASuccess
AFailure

ATimeout

AAbort

ADiscard

ARequest

ASuccess

AFailure

AFailure

ATimeout
AAbort
ADiscard

7
AResponse

AAbort

ATimeout

AAbort
ADiscardASuccess

AFailure

Figure 12: PAA language (piggybacking on, optimised initiation on)

Table 5 lists state space and language statistics for the PANA CPN for increasing values
of MRCPaC . In all cases, MRCPAA = 0 3.

First consider the results when piggybacking is on. For both cases of Optimised Ini-
tiation on and off, the increase in MRCPaC leads to a quadratic increase in the size of
the state space, as well as number of terminal markings. For values 0 to 5 of MRCPaC ,
the number of states (S), arcs (A) and terminal markings (T) can be expressed as Equa-
tions (1) to (3) for the case of Optimised Initiation off:

SMRCPaC = 441(MRCPaC)2 + 2958(MRCPaC) + 3436 (1)

AMRCPaC = 1190.5(MRCPaC)2 + 7029.5(MRCPaC) + 7212 (2)

TMRCPaC = 71.5(MRCPaC)2 + 813.5(MRCPaC) + 1265 (3)

and Equations (4) to (6) for the case of Optimised Initiation on:

SMRCPaC = 270.5(MRCPaC)2 + 3721.5(MRCPaC) + 2085 (4)

AMRCPaC = 699(MRCPaC)2 + 4150(MRCPaC) + 4233 (5)

TMRCPaC = 45.5(MRCPaC)2 + 502.5(MRCPaC) + 775 (6)

3Initial results reveal the increase in state space size as MRCPAA is increased is much larger than in
the case of MRCPaC . More detailed analysis of MRCPAA is left for future work

75

Table 5: State Space Analysis of PANA CPN with PaC Retransmissions (Term = Ter-
minal States; C2A = Client2Auth; A2C = Auth2Client; Seq = Sequences)

Parameters State Space Bounds Language

PB OptInit MRCPaC MRCPAA States Arcs Term. Time C2A A2C Seq.
Off Off 0 0 15531 34047 6866 91 5 3 17862
Off Off 1 0 47046 112620 18943 1549 6 3 17862
Off Off 2 0 101624 257908 38064 5129 7 3 17862
Off Off 3 0 186485 494481 65729 15118 8 3 17862
Off On 0 0 12079 26360 5292 52 5 3 13604
Off On 1 0 38691 93267 15174 665 6 4 14675
Off On 2 0 85589 219656 30983 2248 7 4 14675
Off On 3 0 159568 428774 54100 11413 8 4 14675
Off On 4 0 268212 747212 85947 33286 9 4 14675
On Off 0 0 3436 7212 1265 5 3 2 14742
On Off 1 0 6835 15432 2150 14 4 2 14742
On Off 2 0 11116 26033 3178 24 5 2 14742
On Off 3 0 16279 39015 4349 50 6 2 14742
On Off 4 0 22324 54378 5663 127 7 2 14742
On Off 5 0 29251 72122 7120 146 8 2 14742
On Off 10 0 77116 196557 16550 997 13 2 14742
On On 0 0 2085 4233 775 2 3 2 11468
On On 1 0 4163 9082 1323 6 4 2 11468
On On 2 0 6782 15329 1962 14 5 2 11468
On On 3 0 9942 22974 2692 28 6 2 11468
On On 4 0 13643 32017 3513 51 7 2 11468
On On 5 0 17885 42458 4425 83 8 2 11468
On On 10 0 47210 115633 10350 342 13 2 11468

The equations hold for MRCPaC = 10, giving increased confidence that they are true
for any value of MRCPaC . Similar relationships between retransmission limits and state
space size have been observed with other protocols [11, 12].

A much larger growth in the state space size is seen when considering no piggyback-
ing (see Figure 13). Further state space results are necessary to determine the exact
relationship between state space size and MRCPaC when piggybacking is off.

When piggybacking is on, the PaC can send EAP responses in AuthAnswer messages.
That is, the PaC does not send any AuthRequest messages (instead, the PaC sends
AuthAnswer messages in response to AuthRequest messages sent by the PAA). Therefore
the only message that can be retransmitted is the ClientInitiation which is used by the
PaC to start the session.

When piggybacking is off, the PaC can retransmit a ClientInitiation message as well as
an AuthRequest message that contains the EAP response (since the EAP response cannot
be piggybacked in an AuthAnswer). The ability to retransmit the AuthRequest results in
significant increase in the number of possible states, as illustrated in the partial state
space in Figure 14.

The integer bound of the communication place Client2Auth increases linearly as the re-
transmission limit MRCPaC increases. This is expected as the retransmission mechanism
simply means an additional MRCPaC messages can be sent, and stored in Client2Auth

before the PaC must wait for the PAA to receive a message and respond.
Closer inspection of the PANA protocol language reveals the language is independent

of MRCPaC (with one exception, explained shortly). In other words, retransmissions by
the PaC do not result in additional interactions between PAA and EAP Authenticator,
nor between PaC and EAP Peer. The reason is that retransmissions are only used in two
possible instances by the PaC: ClientInitiation in the C INITIAL state and AuthRequest

76

carrying EAP response in the C WAIT EAP MSG state. In both cases, when the PAA
receives one of these messages (either original or retransmitted) it will process that mes-
sage and ignore any subsequent duplicates. An exception is the protocol language with
piggybacking off, and optimised initiation on. With no retransmissions there are less se-
quences than with retransmissions. The reason for this is retransmitted messages in this
case can cause a different ordering of interactions between PAA and EAP Authenticator.

0

50000

100000

150000

200000

250000

300000

0 1 2 3 4 5 6 7 8 9 10

MCR_{PaC}

N
u
m
b
e
r

o
f

S
t
a
t
e
s

Piggyback: On

OptInit: On

Piggyback: On

OptInit: Off

Piggyback: Off

OptInit: Off

Piggyback: Off

OptInit: On

Figure 13: Impact of PaC retransmissions on state space size (in number of states)

450
1:3

C_WAIT_EAP_MSG'EAP_RESPONSE_NoPiggyback 1

924
2:3

C_RETRANSMIT'Retransmit 1

A_WAIT_PAN_OR_PAR'RxPAR 1

C_WAIT_PAA'RxPAN 1

C_RETRANSMIT'Retransmit 1

A_WAIT_PAN_OR_PAR'RxPAR 1

C_WAIT_PAA'RxPAN 1

A_WAIT_EAP_MSG'EAP_SUCCESS_Authorized 1A_WAIT_EAP_MSG'EAP_SUCCESS_Authorized 1

1643
1:6

2542
1:4

1644
2:3

3984
1:4

3973
2:4

2541
2:6

6375
2:4

6389
2:4

6360
2:4

6395
2:0

3982
2:0

3979
2:4

3967
2:4

This portion of the state space contains states generated

as a result of a retransmission. The states are identical

to those on the left, except there is an additional

AuthRequest message in the Client2Auth place.

Figure 14: Partial state space showing effect of retransmission on state space size

In summary, the analysis with increasing MRCPaC shows that retransmissions by the
PaC do not adversely affect the operation of PANA. However, currently it is assumed
only a single EAP Request is sent and messages cannot be lost. Further work is needed
to analyse the impact of relaxing these assumptions.

5 Discussion

Steps from a protocol engineering methodology utilising Coloured Petri nets have been
applied to PANA, a protocol for carrying authentication information between clients
and servers. In previous work, initial CPN modelling and analysis of an earlier version of

77

PANA revealed an undesirable state when the authenticator aborted a session. This paper
modelled and analysed the latest version of PANA, showing the undesirable state is now
avoided. In addition, new PANA configurations have been analysed, in particular when
Optimised Initiation is used by the authenticator, and when the client can retransmit
messages. The results so far show no unexpected behaviour in the latest version of PANA.

The PANA CPN model has been developed over a period of about two years, over
which time the PANA protocol specification and state tables have progressed from ver-
sions 14 to 18 and 5 to 13, respectively. The modelling, maintenance and analysis has
amounted to 3-4 months of effort from a single person new to CPN Tools (but expe-
rienced with CPNs and Design/CPN). The following discusses lessons learned in the
current work, as well as ideas for future work.

5.1 Modelling Approach

A state-based approach is used for modelling PANA as a CPN. The aim is for the CPN
model to closely follow the PANA state tables, which is advantageous during the de-
velopment of the protocol (and corresponding CPN model). In many cases there is a
direct mapping from a state table row to a CPN transition. However the approach has
limitations [3]. For example in the PANA CPN there are many transitions that model
the same behaviour (but in different states) and could be folded together. In addition,
by closely following the protocol state tables, little consideration is given in optimising
the model for state space analysis.

Despite the close relationship between the original state tables and CPN model, as
changes to PANA are made within IETF it is still time consuming to ensure those changes
are accurately reflected in the CPN model. This was especially difficult with PANA,
as there was an official PANA RFC with informal description of the protocol, as well
as a separately maintained (and often out-of-date) Internet Draft for the state table
description. With the IETF protocol descriptions, the difference between versions can be
visually highlighted using diff -based tools. Similar functionality would be useful in CPN
Tools: for example, highlighting CPN elements that have been changed since a previous
model. Another method to assist in validating the PANA CPN model is to generate state
tables directly from the model. Using the state-based modelling approach this is possible
and is currently work-in-progress.

5.2 State Space Analysis

A property of interest for many communication protocols is the absence of deadlocks.
With state space analysis of a CPN model, this requires specifying the expected terminal
states. In this paper, the simplest possible definition of an expected terminal state is
used: the state name of the PaC/PAA is expected (e.g. PaC and PAA both in the OPEN
state). A more precise definition would also consider the state information stored by
the PaC/PAA (e.g. value of session timer, current sequence number) as well as messages
remaining in the communication places. Also, as only the Authentication and Authorisa-
tion phase of PANA is analysed in this work, the expected set of terminating conditions
is quite large. As discussed in Section 4.2.1, there are 7 different valid states of the
PaC/PAA, a number of which are valid only because it is expected in later phases a valid
terminal state will be reached (because a time-out will occur). In the current CPN model
the timeout in the subsequent phase is not explicitly modelled. This CPN model design
decision was chosen to keep the analysis of PANA phases separate, however it leads to
extra complexity when defining/analysing the terminal states. If all PANA phases were

78

analysed at once, the number of valid terminal states would be less (e.g. only the case
when PaC/PAA are both CLOSED).

The state space results as the number of PaC retransmissions increases suggests, if
the PANA service language is completed, parametric verification may be applicable to
analyse PANA properties [10]. In addition, the CPN model can be optimised for state
space analysis, and Figure 14 indicates equivalence classes may be promising as a state
space reduction technique.

Acknowledgements

The detailed comments from the reviewers are highly appreciated, not only for improving
this paper, but also for providing interesting ideas for future work.

References

[1] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Extensible Au-
thentication Protocol. IETF RFC 3748, June 2004.

[2] J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri net approach to protocol
verification. In Lectures on Concurrency and Petri Nets, Advances in Petri Nets,
pages 210–290. Springer-Verlag, 2004.

[3] J. Billington and S. Vanit-Anunchai. Coloured Petri nets modelling of an evolv-
ing internet standard: the Datagram Congestion Control Protocol. Fundamenta

Informaticae, 88(3):357–385, 2008.

[4] P. Chamuczynski, O. Alfandi, H. Brosenne, C. Werner, and D. Hogrefe. Enabling
pervasiveness by seamless inter-domain handover: Performance study of PANA pre-
authentication. In Proc. Sixth Annual IEEE Intl. Conf. Pervasive Computing and

Communications, pages 372–376, Hong Kong, China, 17–21 Mar. 2008.

[5] V. Fajardo, Y. Ohba, and S. Das. Network service provider selection and security
bootstrapping using PANA. In Proc. of the 2nd Intl Conf. Testbeds and Research In-

frastructures for the Development of Networks and Communities, Barcelona, Spain,
1–3 Mar. 2006.

[6] V. Fajardo, Y. Ohba, and R. Lopez. State machines for protocol for carrying
authentication for network access (PANA). IETF Internet Draft draft-ietf-pana-
statemachine-06 (work in progress), Oct. 2007.

[7] V. Fajardo, Y. Ohba, and R. Lopez. State machines for protocol for carrying au-
thentication for network access (PANA). IETF RFC 5609, Aug. 2009.

[8] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, and A. Yegin. Protocol for carrying
authentication for network access (PANA). IETF RFC 5191, May 2008.

[9] B. Gaabab, D. Binet, and J.-M. Bonnin. Authentication optimization for seamless
handovers. In Proc. 10th IFIP/IEEE Intl. Symp. Integrated Network Management,
pages 829–832, Munich, Germany, 21–25 May 2007.

79

[10] G. E. Gallasch and J. Billington. A parametric state space for the analysis of the
infinite class of stop-and-wait protocols. In Proc. 13th Intl. SPIN Workshop on Model

Checking of Software, pages 201–218, Vienna, Austria, 30 March - 1 April 2006.

[11] G. E. Gallasch and J. Billington. Parametric language analysis of the class of stop-
and-wait protocols. In Proc. 29th Intl. Conf. Application and Theory of Petri Nets

and Other Models of Concurrency, Xi’an, China, 25-27 June 2008.

[12] S. Gordon. Verification of the WAP Transaction layer using Coloured Petri nets.
PhD thesis, Institute for Telecommunications Research, University of South Aus-
tralia, Adelaide, Australia, Nov. 2001.

[13] S. Gordon. Formal analysis of PANA authentication and authorisation protocol.
In Proc. Ninth Intl. Conf. Parallel and Distributed Computing, Applications and

Technologies, Dunedin, NZ, 1-4 Dec. 2008.

[14] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science.
Springer-Verlag, Berlin, 1997.

[15] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. Intl. J. Software Tools for Technol-

ogy Transfer, 9(3-4):213–254, June 2007.

[16] L. Liu and J. Billington. Verification of the Capability Exchange Signalling protocol.
Intl. J. Software Tools for Technology Transfer, 9(3-4):305–326, June 2007.

[17] P. S. Pagliusi and C. J. Mitchell. PANA/GSM authentication for Internet access. In
Proc. Joint First Workshop on Mobile Future and Symposium on Trends in Com-

munications, pages 146–152, Bratislava, Slovakia, 26–28 Oct. 2003.

[18] T. Tanizawa, M. Goto, V. I. Fajardo, and Y. Ohba. A wireless LAN architec-
ture using PANA for secure network selection. In Proc. IEEE Intl. Conf. Wireless

And Mobile Computing, Networking And Communications, pages 111–118, Montreal,
Canada, 22–24 Aug. 2005.

[19] S. Vanit-Anunchai. Towards formal modelling and analysis of SCTP connection
management. In Proc. Ninth Workshop and Tutorial on Practical Use of Coloured

Petri Nets and the CPN Tools, Aarhus, Denmark, 20-22 Oct. 2008.

[20] J. Vollbrecht, P. Eronen, N. Petroni, and Y. Ohba. State machines for Extensible
Authentication Protocol (EAP) peer and authenticator. IETF RFC 4137, Aug. 2005.

[21] M. Westergaard. BRITNeY: Basic Real-time Interactive Tool for Net-based anima-
tion. URL: http://wiki.daimi.au.dk/britney/, Sept. 2006.

80

!"#$%"&'(')*$+",$-*."#$-"/$-0'+'('12"3'*"-0$"
4$5)*.-2"!67(28.8"'3"&*29-'1*790.5",*'-'5'(8""

!
!

"#$%&'()!*+,-.##$(/$/0/,.!/$1!*/$'.#$%!2#,$3)#-!
!"#$%&'()&*+%,-$./&!'0"-'."-/1&2+3'-.4+(.&"5&6"43,.+-&7(#$(++-$(#&

&8'%,9./&"5&7(#$(++-$(#&
:$(#&;"(#<,.=>&?($@+->$./&"5&A+%B("9"#/&AB"(0,-$1&C'(#<"<1&AB'$9'()&

7D4'$9E&/"(#/,.BF3+-G<4,..F'%F.B&
"
"

!:8-*75-"
&

4,&.(#%,/.)56!.,#(#6#07!/,+!.,#(#6#07!8)56)!'7+!6,&.(#%,/.)56!(+6)$59'+7!(#!
/6)5+:+! 6+,(/5$! (/737!8)50+!.,+:+$(5$%!-/0565#'7!./,(5+7! (#! /((/63! ()+!.,#(#6#07;!<)+!
1+75%$!/$1!/$/0&757!#=!6,&.(#%,/.)56!.,#(#6#07!/,+!15==56'0(!(#!/6)5+:+!>+6/'7+!#=!()+!
5$6,+/75$%0&! /((/635$%! 6/./>505(5+7! /$1! ()+! 6#-.0+?! ,+9'5,+-+$(! #=! ()+! /..056/(5#$7;!
<)+,+=#,+@! /((/637! 5$!-/$&! 6,&.(#%,/.)56! .,#(#6#07!)/:+!>++$! =#'$1! 0/(+,! /=(+,! ()+&!
)/:+!>++$!1+75%$+1!/$1!+:+$!5-.0+-+$(+1;!A$!()57!./.+,@!8+!.,#.#7+!/!$+8!4#0#',+1!
*+(,5! B+(! -+()#1#0#%&! =#,! ()+! 7+6',5(&! /$/0&757! #=! 6,&.(#%,/.)56! .,#(#6#07;! C',!
/..,#/6)! #==+,7! /! 75-.0+! >'(! +==+6(5:+!8/&! (#! /$/0&D+!-'0(5.0+! 7+775#$7! #=! .,#(#6#0!
+?+6'(5#$;!<#!1+-#$7(,/(+!()+!.,/6(56/0!'7+7!#=!#',!/..,#/6)@!8+!/..0&!#',!-+()#1!(#!
/$/0&D+! E56/05F7! 6#$(,/6(! 75%5%! .,#(#6#0! /$1! <EB! /'()+$(56/(+1! 3+&! +?6)/$%+1!
.,#(#6#0;!2',.,575$%0&!8+!=#'$1!-/$&!$+8!/((/637!5$!()#7+!.,#(#6#07;!

!
;<"=6-*'+)5-.'6"

!
4,&.(#%,/.)56! .,#(#6#07! /,+! .,#(#6#07! 8)56)! '7+! 6,&.(#%,/.)56! (+6)$59'+7! (#! /6)5+:+!

6+,(/5$!(/737!8)50+!.,+:+$(5$%!-/0565#'7!./,(5+7!(#!/((/63!()+!.,#(#6#07;!<)+,+!/,+!-/$&!/..056/(5#$7!
#=! 6,&.(#%,/.)56! .,#(#6#07@! =#,! +?/-.0+@! /'()+$(56/(+1! 3+&! +?6)/$%+! .,#(#6#07@! 8+>! 7+6',5(&!
.,#(#6#07@!+G./&-+$(!.,#(#6#07@!+G>/$35$%!.,#(#6#07@!+G:#(5$%!.,#(#6#07@!+(6;!

<)+!1+75%$!/$1!/$/0&757!#=!6,&.(#%,/.)56!.,#(#6#07!/,+!15==56'0(! (#!/6)5+:+!>+6/'7+!#=! ()+!
5$6,+/75$%0&! /((/635$%! 6/./>505(5+7! /$1! ()+! 6#-.0+?! ,+9'5,+-+$(! #=! ()+! /..056/(5#$7;! <)+,+=#,+@!
/((/637!5$!-/$&!6,&.(#%,/.)56!.,#(#6#07!)/:+!>++$!=#'$1!0/(+,!/=(+,!()+&!)/:+!>++$!1+75%$+1!HI@!J@!KL!
/$1!+:+$!5-.0+-+$(+1!+%;!HM@!NL;!B#(+!()/(!5$!()57!./.+,!8+!=#6'7!#$!#$0&!-+77/%+!,+.0/&!/((/637!HOL;!

P!0#(!#=!8#,37!#$!*+(,5!$+(7!HQL!)/:+!>++$!/..05+1!(#!/$/0&D+!6,&.(#%,/.)56!.,#(#6#07!5$!HRG
INL;! <)+&! 6/$! >+! 60/775=5+1! 5$(#! (8#! 35$17;! <)+! =5,7(! 35$1! HRGIML! #==+,7! /! -#1+05$%! /$1! /$/0&757!
-+()#1! (#! =5$1! /((/637;! <)+! 7+6#$1! 35$1! HINL! .,#:51+7! /! ()+#,+(56/0! 7+-/$(567! =#,! 6,&.(#%,/.)56!
.,#(#6#07!8)56)!6/$!>+!'7+1!(#!.,#:+!.,#.+,(5+7!#=!.,#(#6#07@!,/()+,!()/$!(#!=5$1!/((/637;!S+!=#6'7!#$!
()+!=#,-+,!35$1!1'+!(#!5(7!.,/6(56/0!'7+;!P00!()+!8#,37!5$!()+!=5,7(!35$1!#==+,!/$!/$/0&757!#=!/!75$%0+!
7+775#$!#=!.,#(#6#0!+?+6'(5#$!#$0&;!!

A$! ()57! ./.+,@!8+! .,#.#7+! /! $+8!4#0#',+1! *+(,5!B+(! T4*BU!-+()#1#0#%&! =#,! ()+! 7+6',5(&!
/$/0&757!#=!6,&.(#%,/.)56!.,#(#6#07;!S+!/1#.(!()+!4*B!/..,#/6)!HIO@IQL!1'+!(#!()+!5$('5(5:+!8/&!(#!
-#1+0!6,&.(#%,/.)56!.,#(#6#07!>&!'75$%!()+!%,/.)!,+.,+7+$(/(5#$;!C',!/..,#/6)!#==+,7!/!75-.0+!>'(!
+==+6(5:+! 8/&! (#! /$/0&D+! -'0(5.0+! 7+775#$7! #=! .,#(#6#0! +?+6'(5#$;! C',! $+8! 4*B! -+()#1#0#%&! 57!
>/7+1!#$!#',!%,#'.F7!.,+:5#'7!8#,37!HIRGJIL;!S+!/,%'+!()/(!#',!$+8!4*B!-+()#1#0#%&!5-.,#:+7!#$!
/00!+?57(5$%!4*B!/$1!*+(,5!B+(!-+()#17!HRGIML!=#,!7+6',5(&!.,#(#6#07!#$!7+:+,/0!577'+7;!A$!./,(56'0/,@!
#',!4*B!-+()#1!57!()+!=5,7(!4*B!-+()#1!8)56)!#==+,7!/!7+6',5(&!/$/0&757!-+()#1#0#%&!#=!-'0(5.0+!
6#$6',,+$(! 7+775#$7! #=! .,#(#6#0! +?+6'(5#$;! V',()+,-#,+@! 5(! #==+,7! /! 7&7(+-/(56! -+()#1! (#! /$/0&D+!
/((/637! 5$!.,#(#6#07;!P07#@! 5(!6/$!1+(+6(!-#,+!/((/637!85()!/!>+((+,!+==565+$6&! ()/$!/00!+?57(5$%!4*B!
-+()#17!=#,!7+6',5(&!.,#(#6#07;!!!

A$! +77+$6+@! #',! $+8! -+()#1#0#%&! #==+,7! =#',! 5-.#,(/$(! 6#$6+.(7;! V5,7(0&@! 8+! '7+!
1+6#-.#75(5#$! /$1! -'0(5G7+775#$! 76)+1'05$%! (+6)$59'+7! (#! /$/0&D+! -'0(5.0+! 7+775#$7! #=! .,#(#6#0!

81

+?+6'(5#$;!<)+!1+6#-.#75(5#$!/00#87!'7!(#!6#$7(,'6(!/!7(/(+!7./6+!#=!#$+!7.+65=56!5$7(/$6+!#=!-'0(5.0+!
7+775#$7!#=!.,#(#6#0!+?+6'(5#$!/(!/!(5-+!(#!,+1'6+!()+!75D+!#=!()+!#'(.'(!7(/(+!7./6+;!A$!%+$+,/0@!7'6)!/!
7.+65=56!5$7(/$6+!-+/$7!/!7+((5$%!#,!/!6#$=5%',/(5#$!8)56)!7.+65=5+7!/00!,+9'5,+1!5$=#,-/(5#$!=#,!()+!
+?+6'(5#$!#=!+/6)!6#$6',,+$(!7+775#$@!=#,!+?/-.0+@!()+!./,(5+7!8)#!/,+!5$:#0:+1!5$!()+!.,#(#6#0@!/00!
7+6,+(7@!/00!$#'$6+7!/$1!/00!/((/63+,7!5$!/!7+775#$;!<)+!-'0(5G7+775#$!76)+1'05$%!/00#87!'7!(#!>'501!/!
7(/(+! 7./6+! 8)56)! 6#$(/5$7! #$0&! #$+! /0(+,$/(5$%! +?+6'(5#$! #=! -'0(5.0+! 7+775#$7! #=! .,#(#6#0! ,'$@!
5$7(+/1! #=! /00! .#775>0+! /0(+,$/(5$%! +?+6'(5#$7;!P7! /! ,+7'0(! #=! ()+7+! (8#! (+6)$59'+7@! ()+! 7(/(+! 7./6+!
#>(/5$+1!57!7-/00!/$1!=/7(!=#,!/$/0&757;!!

2+6#$10&@!8+!6)/,/6(+,5D+!/((/63!7(/(+7!5$!()+!6#-.'(+1!7(/(+!7./6+!>&!'75$%!()+!6#$6+.(!#=!
:'0$+,/>505(&!+:+$(7;!W'0$+,/>505(&!+:+$(7!/,+!+:+$(7!8)56)!-/&!0+/1!(#!/!6#-.,#-57+!#=!.,#(#6#07@!
/$1! 7'6)! +:+$(7! /,+! .,#(#6#0! 1+.+$1+$(;! <)+! 6#$6+.(! #=! :'0$+,/>505(&! +:+$(7! .,#:51+7! /! %+$+,/0!
-+()#1!(#!6)/,/6(+,5D+!/((/63!7(/(+7!5$('5(5:+0&!/$1!6#-.,+)+$75:+0&;!<)5,10&@!8+!1+:+0#.!/$!+==565+$(!
-+()#1!(#!+?(,/6(!/((/63!(,/6+7!85()#'(!()+!$++1!=#,!/$&!=',()+,!6#-.'(/(5#$!#$!()+!7(/(+!7./6+;!P$!
/((/63!(,/6+!1+76,5>+7!)#8!/$!/((/63+,!6/,,5+7!#'(!()+5,!/((/637!7'66+77='00&!7(+.!>&!7(+.;!A$!#()+,!4*B!
8#,37! =#,! 7+6',5(&!.,#(#6#07@! 7'6)! /$! /((/63! (,/6+! 57! 6#-.'(+1!>&!+?(,/6(5$%!/!./()! =,#-!/$! 5$5(5/0!
7(/(+!(#!/$!/((/63!7(/(+;!V#',()0&@!8+!.,#.#7+!/!8/&!(#!60/775=&!7&7(+-/(56/00&!/!)'%+!/-#'$(!#=!=#'$1!
/((/63!(,/6+7!>&!'75$%!/((/63!./((+,$7;!A$!%+$+,/0@!/$!/((/63!./((+,$!1+76,5>+7!()+!6#,+!#=!/$!/((/63@!/$1!
5(!6#$(/5$7!/!-5$5-/0!/((/63!(,/6+!8)56)!0+/17!(#!()+!/((/63;!<#!()+!>+7(!#=!#',!3$#80+1%+@!#',!=#',!
6#$6+.(7!/,+!$#:+0!=#,!()+!4*B!-+()#1#0#%&!=#,!/$/0&D5$%!6,&.(#%,/.)56!.,#(#6#07;!!

<#!1+-#$7(,/(+!()+!.,/6(56/0!'7+7!#=!#',!/..,#/6)@!8+!/..0&!#',!-+()#1#0#%&!(#!(8#!6/7+!
7('15+7! 8)56)! /,+! E56/05F7! 6#$(,/6(! 75%$5$%! .,#(#6#0! HJJL! /$1! <EB! /'()+$(56/(+1! 3+&! +?6)/$%+!
.,#(#6#0! HJKL;! 2',.,575$%0&@! 8+! =#'$1! -/$&! /((/637! 5$! ()+! (8#! .,#(#6#07;! V#,! E56/05F7! 6#$(,/6(!
75%5%!.,#(#6#0@!8+!=#'$1!$+8!/((/637!5$!/!75$%0+!7+775#$!#=!.,#(#6#0!+?+6'(5#$!5$!HIXL;!A$!HJYL@!8+!
/07#! =#'$1!-/$&! $+8!-'0(5G7+775#$! /((/637! 5$! >#()! ()+! #,5%5$/0!E56/05F7! .,#(#6#0! /$1! /!-#15=5+1!
:+,75#$!#=!E56/05F7! .,#(#6#0;!V#,!<EB!/'()+$(56/(+1!3+&!+?6)/$%+!.,#(#6#0@! 5$! HJIL!8+! =#'$1! 75?!
$+8!/((/637!5$!()+!75$%0+!7+775#$!#=!.,#(#6#0!+?+6'(5#$!/$1!(8#!$+8!/((/637!5$!-'0(5.0+!7+775#$7!#=!
.,#(#6#0!+?+6'(5#$;!A$!=/6(@!$+8!/((/637!()/(!8+!=#'$1!5$!<EB!.,#(#6#0!/,+!9'5(+!7',.,575$%0&!75$6+!
<EB!)/:+!>++$!/$/0&D+1!9'5(+!+?(+$75:+0&!HJMGJQL;!!

A$!7+6(5#$!J@!8+!.,#:51+!()+!>/63%,#'$1!#$!E56/05F7!Z42I!/$1!<EB!.,#(#6#0;!A$!7+6(5#$!K@!
8+!6#-./,+!#',!$+8!4*B!-+()#1!85()!+?57(5$%!,+0/(+1!8#,37;!A$!7+6(5#$!M@!8+!.,+7+$(!#',!$+8!4*B!
-+()#1#0#%&!/$1!/..0&!5(!(#!(8#!6/7+!7('15+7!8)56)!/,+!E56/05F7!Z42I!/$1!<EB!.,#(#6#0;!!

!
><"?75@1*')6+"

"
S+!'7+! ()+! =#00#85$%! $#(/(5#$7! (),#'%)#'(! ()+! ./.+,;!* H& E&;&-+/$7! ()/(! '7+,!*& 7+$17!

-+77/%+!;&(#!'7+,!H;!*IJKL;M!,+.,+7+$(7!./,(&!KF7!75%$/(',+!#$!/!-+77/%+!;!/$1!8+!/77'-+!()/(!;!
57! /08/&7! ,+(,5+:/>0+! =,#-!*IJKL;M;! <)+! +$6,&.(5#$! #=! /!-+77/%+!;!85()! ./,(&!KF7! .'>056! 3+&! 57!
1+$#(+1! >&!7N6KL;M;!P07#@!OL6M! 7(/$17! =#,! ()+!)/7)! #=!-+77/%+!6@! /$1!7:L;M!-+/$7! 7&--+(,56!
+$6,&.(5#$!#$!-+77/%+!;!>&!3+&!:;!

!
><;<"/.57(.A8"B&4;",*'-'5'("C>>D"

!
E56/05! .,#.#7+1! /$! +==565+$(! #.(5-57(56! =/5,! +?6)/$%+! .,#(#6#0! =#,! 6#$(,/6(! 75%5%;! <)+!

.,#(#6#0!/5-7!(#!+$7',+!()/(!(8#!+?6)/$%5$%!./,(5+7!%+(!+/6)!#()+,!6#--5(-+$(!#$!/$!/%,++1!6#$(,/6(!
#,!$+5()+,!#=!()+-!1#+7;!<)+,+!/,+!(),++!35$17!#=!./,(5+7!5$!()+!.,#(#6#0![!P056+!/7!/$!5$5(5/(#,!#=!()+!
.,#(#6#0@! \#>! /7! /$! ,+7.#$1+,! #=! ()+! .,#(#6#0! /$1! /! ()5,1! (,'7(+1! ./,(&! 8)#! ,+7#0:+7! /! 157.'(+!
>+(8++$!P056+!/$1!\#>!1',5$%!()+!+?6)/$%+;!

S+!1+$#(+!P056+@!\#>!/$1!/!(,'7(+1!./,(&!>&!P@!\!/$1!<<*@!,+7.+6(5:+0&;!A(!57!/77'-+1!()/(!
>#()! P056+! /$1! \#>!)/:+! /0,+/1&! /%,++1! #$! /! .0/5$(+?(! 6#$(,/6(! 4! >+=#,+! ()+! +?6)/$%+;! P056+! 57!
6#--5((+1!(#!6#$(,/6(!4!/7!/$!5$5(5/(#,!5=!\#>!)/7!>#()!2A]PT4@^U!/$1!E!8)+,+!^_ZB4<<*TP@\@EU!
/$1! E! 57! ,/$1#-;! C$! ()+! #()+,!)/$1@! \#>! 57! 6#--5((+1! (#! 4! /7! /! ,+7.#$1+,! 5=! P056+!)/7! >#()!
2A]\T4@^U!/$1!2A]\T^U;!`#8+:+,@!()+,+!57!$#!$++1!=#,!P056+!(#!:+,5=&!^!(#!.,#:+!\#>F7!6#--5(-+$(;!!

<)+!=#00#85$%!57!()+!1+(/50!#=!()+!.,#(#6#0;!
PI[!IU!P \[!2A]PT4@^U!
\I[!JU!!\ P[!2A]\T4@^U@!2A]\T^U!
PJ[!A=!\#>F7!75%$/(',+7!5$!7(+.!J!/,+!>#()!:/051@!()+$!!!
!!!!!!!!KU!P \[!E!

82

\J[!A=!\#>!,+6+5:+7!:/051!E!7'6)!()/(!^_ZB4<<*TP@\@EU!!
!!!!!!!()+$!()+!+?6)/$%+!57!6#-.0+(+1!!
!!!!!!!+07+!\#>!,+9'+7(7!<<*!(#!,+7#0:+!/!157.'(+!>&!()+!=#00#85$%!7(+.!
!!!!!!!!!!!!!!MU!!!\ <<*[!P@!\@!^@!2A]\T4@^U@!2A]\T^U!
<<*I[!A=!\#>F7!75%$/(',+7!5$!7(+.!M!/,+!>#()!:/051!/$1!^_ZB4<<*TP@\@EU!()+$!
!!!!!!!!N/U!<<* P[!2A]\T4@^U@!2A]\T^U!
!!!!!!!!N>U!<<* \[!E!
B#(+!()/(!()+!,+9'+7(!(#!<<*!/(!7(+.!MU!6#$(/5$7!51+$(5(5+7!#=!5$5(5/(#,!/$1!,+7.#$1+,!8)56)!

)/:+!()+!157.'(+;!P07#@!(#!,+7#0:+!()+!157.'(+@!<<*!7+$17!,+9'5,+1!5$=#,-/(5#$!(#!,+0/(+1!./,(5+7;"
A$! HJRL@! \/#! +(! /0;! /$/0&D+1! Z42I! -/$'/00&! /$1! =#'$1! (),++! -+77/%+! ,+.0/&! /((/637! 5$!

Z42I;! A(!6/$!>+!/,%'+1! ()/(!-/$&!#=! ()+7+!/((/637!/,+!6/'7+1!>&!/$!/->5%'5(&!/(!)#8!<<*!7)#'01!
,+7#0:+! /! 157.'(+;! <)+$@! \/#! +(! /0;! -#15=&! Z42I! (#! 7#0:+! ()+! /->5%'5(&! .,#>0+-! 5$! ()+! #,5%5$/0!
Z42I@!/$1!()+&!=#'$1!#$+!/((/63!5$!()+!-#15=5+1!:+,75#$;!A$!#()+,!8#,17@!\/#!7)#8+1!()/(!/!75-.0+!
-#15=56/(5#$!#$!<<*F7!>+)/:5#,!(#!,+7#0:+!/!157.'(+!57!$#(!/1+9'/(+;!<)+!-#15=5+1!Z42I!57!75-50/,!(#!
()+!#,5%5$/0!Z42I!+?6+.(!()/(!5$!7(+.!<<*I@!()+,+!57!$#!6)+63!#$!^_ZB4<<*TP@\@EU!/$1!-+77/%+7!5$!
7(+.7!N/U!/$1!N>U!/,+!/07#!7+$(! (#! 51+$(5(5+7!P!/$1!\!8)56)!/,+!5$!7(+.!M!/$1!/,+!#>(/5$+1!=,#-!()+!
1+6,&.(5#$!#=!^;!A$!#()+,!8#,17@!5$!()+!-#15=5+1!Z42I@!<<*!,+7#0:+7!()+!157.'(+!+:+$!8)+$!^!57!$#(!
6#,,+6(@!5+;!^ Z<<*TP@!\@!EU;!

A$!HJXL@!^)/$%!/$1!a5'!/..05+1!/!-#1+0!6)+635$%!(+6)$59'+!(#!/$/0&D+!()+!7+6',5(&!#=!Z42I;!
<)+&!=#'$1!(),++!$+8!/((/637;!S+!8500!1576'77!/>#'(!()+5,!$+8!/((/637!/$1!()+!6#-./,57#$!85()!#',!
$+8!/((/637!5$!7+6(5#$!K;J;!!

!
><><"E/#"7)-0$6-.57-$+"@$2"$F50761$"9*'-'5'("C>GD"

!
<EB! 57! /! 6,&.(#%,/.)56! 3+&! +?6)/$%+! .,#(#6#0! =#,!-#>50+! 6#--'$56/(5#$! 7&7(+-;!<EB!

/00#87!'7+,!P!(#!+?6)/$%+!/!7+775#$!3+&!85()!'7+,!\!>&!()+!)+0.!#=!7+,:+,!b;!<)+!'7+,!P!57!6/00+1!/$!
5$5(5/(#,@!>'(!()+!'7+,!\!57!6/00+1!/!,+7.#$1+,;!<)+!1+(/50!#=!<EB!57!1+76,5>+1!/7!=#00#87;!

IU! P! !b![!T\@!ZB4bTc/dUU@!P!
JU! b! !\![!P!
KU! \! !b![!TP@!ZB4bTc/>UU@!\!
MU! b!! !P![!\@!Zc/dTc/>U!
S)+,+!:'0!57!/$!+?6)/$%+1!7+775#$!3+&!/$1!:'P!57!PF7!7+6,+(!8)56)!57!'7+1!(#!(,/$7.#,(!()+!

7+775#$!3+&!/(!()+!0/7(!7(+.;!B#(+!()/(!()+!7+775#$!3+&!57!6,+/(+1!>&!'7+,!\;!A$!HJKL@!5(!57!7'%%+7(+1!()/(!
()+! W+,$/-! 65.)+,! T#,! #$+G(5-+! ./1U! /$1! e2P! .'>056! 3+&! /0%#,5()-! /,+! '7+1! /7! ()+! '$1+,0&5$%!
7&--+(,56!+$6,&.(5#$!ZcTEU!/$1!()+!.'>056!3+&!+$6,&.(5#$@!,+7.+6(5:+0&;!

<EB!)/7!>++$!/$/0&D+1!+?(+$75:+0&!>&!-/$&!=#,-/0!-+()#1!/..,#/6)+7!HJMGJQL@!/$1!-/$&!
/((/637!8+,+!=#'$1;!\'(!5(!8/7!/$/0&D+1!-/$'/00&!/07#!5$!HJKL!>&!25--#$;!25--#$!=#'$1!/$!/((/63!
(#!<EB!>&!'75$%!()+!)#-#-#,.)56!.,#.+,(&!#=!()+!'$1+,0&5$%!.'>056!3+&!6,&.(#%,/.)56!/0%#,5()-;!
P$! /((/63+,! 6/$! 0+/,$! /$! +?6)/$%+1! 7+775#$! 3+&! +/750&@! /$1! ()+! 7+,:+,! 6/$$#(! 1+(+6(! /$&!-+77/%+!
,+.0/&;!<)+!/((/63!5$:#0:+7!(8#!6#$6',,+$(!7+775#$7!#=!.,#(#6#0!+?+6'(5#$;!S+!8500!1576'77!/>#'(!()+!
/$/0&757!#=!<EB!>&!=#,-/0!-+()#17!5$!7+6(5#$!K;J;!

!
G<"H$(7-$+"%'*@8"

!
G<;<",$-*."#$-8"3'*"&*29-'1*790.5",*'-'5'(8"

!
P!0#(!#=!8#,37!#$!*+(,5!$+(7!HQL!)/:+!>++$!/..05+1!(#!/$/0&D+!6,&.(#%,/.)56!.,#(#6#07!5$!HRG

INL;! <)+&! 6/$! >+! 60/775=5+1! 5$(#! (8#! 35$17;! <)+! =5,7(! 35$1! HRGIML! #==+,7! /! -#1+05$%! /$1! /$/0&757!
-+()#1! (#! =5$1! /((/637;! <)+! 7+6#$1! 35$1! HINL! .,#:51+7! /! ()+#,+(56/0! 7+-/$(567! =#,! 6,&.(#%,/.)56!
.,#(#6#07!8)56)!6/$!>+!'7+1!(#!.,#:+!.,#.+,(5+7!#=!.,#(#6#07@!,/()+,!()/$!(#!=5$1!/((/637;!S+!=#6'7!#$!
()+!=#,-+,!35$1!1'+!(#!5(7!.,/6(56/0!'7+;!!

P00! ()+! 8#,37! 5$! ()+! =5,7(! 35$1! HRGIML! #==+,! /$! /$/0&757! #=! /! 75$%0+! 7+775#$! #=! .,#(#6#0!
+?+6'(5#$!#$0&;!E#,+#:+,@!()+!8#,37!5$!HRGIIL!+-.0#&!7#-+!+?(+$1+1!*+(,5!$+(7!(#!/$/0&D+!7+6',5(&!
.,#(#6#07! >'(! ()#7+! *+(,5! $+(7! /,+! 0+77! +?.,+775:+! ()/$!4*B;! A$! HIJL@!4*B! 57! /..05+1! (#! /$/0&D+! /!
1+$5/0! #=! 7+,:56+! /((/63! #$! 6,&.(#%,/.)56! .,#(#6#07! 5$! /! 75$%0+! 7+775#$! #=! .,#(#6#0! +?+6'(5#$;! <)+!
8#,3!HIJL!/$/0&D+7!.,#(#6#07!>&!'75$%!()+!75-'0/(5#$!(+6)$59'+!>'(!#',!8#,3!/$/0&D+7!.,#(#6#07!>&!

83

'75$%! ()+! 7(/(+! 7./6+! 6#-.'(/(5#$;! V',()+,-#,+@! 8)50+! ()+5,! 8#,3! /$/0&D+7! ()+! 1+$5/0! #=! 7+,:56+!
/((/63@! 8+! /$/0&D+! /((/637! #$! ()+! 6#$=51+$(5/05(&@! ()+! /'()+$(56/(5#$@! 3+&! +?6)/$%+@! =/5,! +?6)/$%+!
.,#.+,(5+7;!2#!()+!35$17!#=!/((/637!/,+!15==+,+$(;!!!

<)+,+! /,+! (8#! 8#,37! HIK@! IML! 8)56)! /,+! 60#7+7(! (#! #',7;! <)+&! /..0&! 4*B! (#! /$/0&D+!
6,&.(#%,/.)56! .,#(#6#07! #$! 75-50/,! 35$17! #=! /((/637! (#! #',7;! `#8+:+,@! >#()! 8#,37! 1#! $#(! ,+/00&!
.,#:51+! /$! /$/0&757! #=!-'0(5.0+! 6#$6',,+$(! 7+775#$7! #=! .,#(#6#0! +?+6'(5#$@! >'(! d'7(! (8#! 7+9'+$(5/0!
7+775#$7! #=! .,#(#6#0! +?+6'(5#$;! Z:+$! ()#'%)! HIKL! #==+,7! /$! /$/0&757! #=! (8#! 7+9'+$(5/0! 7+775#$7! #=!
.,#(#6#0! +?+6'(5#$@! 5(!)/7! (#! /$/0&D+! #$+! 7+775#$! /(! /! (5-+;! A$! #()+,! 8#,17@! ()+! /$/0&757! #=! (8#!
7+9'+$(5/0! 7+775#$7! 57! $#$G6#-.#75(5#$/0;! A$! ./,(56'0/,@! /=(+,! /$! +?+6'(5#$! #=! ()+! =5,7(! 7+775#$! 57!
=5$57)+1@! ()+! 7+6#$1! 7+775#$! 57! ()+$! +?+6'(+1! 7+./,/(+0&! 85()! 5$=#,-/(5#$! #>(/5$+1! =,#-! ()+! =5,7(!
7+775#$;! 2#@! 5(! 57! 6#$751+,+1! /7! /! 75$%0+! 7+775#$! /$/0&757! 7(,56(0&;!`#8+:+,@! ()+!8#,3! HIML! #==+,7! /!
6#-.#75(5#$/0! /$/0&757! #=! (8#! 7+9'+$(5/0! 7+775#$7! #=! .,#(#6#0! +?+6'(5#$! /66#,15$%! (#! ()+! 1+(+6(+1!
/((/63! ,+.#,(+1! 5$! ()+! 8#,3;! <)+! /$/0&757! 57! 6#-.#75(5#$/0! 5$! ()/(! (8#! 7+9'+$(5/0! 7+775#$7! 6/$! >+!
/$/0&D+1!/(!/!(5-+;!!!25$6+!5(!57!/!7+9'+$(5/0!6#-.#75(5#$!#=!(8#!7+775#$7@!()+$!()+!8#,3!57!+77+$(5/00&!
/!75$%0+!7+775#$!/$/0&757;!E#,+#:+,@!()+!/((/63+,!6/$$#(!5$5(5/(+!/!$+8!7+775#$!85()!/$&!'7+,;!2#@!#$0&!
/((/637!8)+,+!/!0+%5(5-/(+!'7+,!57!/!7+775#$!5$5(5/(#,!6/$!>+!1+(+6(+1@!/$1!()+7+!/,+!:+,&!05-5(+1;!E#,+!
5-.#,(/$(0&@!/!-+()#1#0#%&! (#!1+/0!85()!/!)'%+!/-#'$(!#=!/0(+,$/(5$%!+?+6'(5#$7!>+(8++$!-'0(5.0+!
7+775#$7!)/7!$#(! >++$! /11,+77+1! /(! /00! 5$!>#()!8#,37;!\'(! ()+!8#,3! HIML!1+/07!85()! ()+!/0(+,$/(5$%!
+?+6'(5#$7!>+(8++$!/!'7+,!/$1!/$!/((/63+,@!75$6+!()+5,!/((/63+,!-#1+0!6/$!>+!+?+6'(+1!5$1+.+$1+$(0&!
#=!()+!+?+6'(5#$!#=!.,#(#6#0!7(+.7;!2'6)!/0(+,$/(5$%!+?+6'(5#$7!#66',!5$!/!75$%0+!7+775#$!#$0&;!!

A(!57!5-.#,(/$(!(#!$#(+!()/(!()+!/$/0&757!#=!-'0(5.0+!6#$6',,+$(!7+775#$7!#=!.,#(#6#0!+?+6'(5#$!
57! 5-.#,(/$(! 75$6+! -/$&! 6,'65/0! /((/637@! =#,! +?/-.0+! ()+! -/$G5$G-5110+! /((/63! HKYL! /$1! ./,/00+0G
7+775#$! /((/63! HKIL! /,+! 6/,,5+1! #'(! 5$! ()+! -'0(5.0+! 6#$6',,+$(! 7+775#$7! 8)+,+! .,#(#6#0! ,'$7! /,+!
/0(+,$/(+1!5$!/!$#$G7+9'+$(5/0!-/$$+,!>+(8++$!-'0(5.0+!7+775#$7;!!

e+6+$(0&!5$!HIRGJIL@!#',!%,#'.!)/7!1+:+0#.+1!/!$+8!4*B!-+()#1!(#!/$/0&D+!6,&.(#%,/.)56!
.,#(#6#07;!C',!$+8!4*B!-+()#1! 5-.,#:+7!#$!/00!+?57(5$%!4*B!/$1!*+(,5!B+(!-+()#17!=#,!7+6',5(&!
.,#(#6#07!#$!7+:+,/0!577'+7;!A$!./,(56'0/,@!#',!4*B!-+()#1!57!()+!=5,7(!4*B!-+()#1!8)56)!#==+,7!/$!
/$/0&757!-+()#1#0#%&!#=!-'0(5.0+!6#$6',,+$(!7+775#$7!#=!.,#(#6#0!+?+6'(5#$;!V',()+,-#,+@!5(!#==+,7!/!
7&7(+-/(56!-+()#1! (#! /$/0&D+! /((/637! 5$! .,#(#6#07;! A$! ./,(56'0/,@! #',!-+()#1! #==+,7! 1+6#-.#75(5#$!
/$1! -'0(5G7+775#$! 76)+1'05$%! =#,! ()+! 6#-.'(/(5#$! #=! 7(/(+! 7./6+7@! /$! 5$('5(5:+! /..,#/6)! (#!
6)/,/6(+,5D+!/((/63!7(/(+7@!/$!+==565+$(!8/&!(#!+?(,/6(!/((/63!(,/6+7!/$1!/!7&7(+-/(56!8/&!(#!60/775=&!/!
0/,%+! /-#'$(! #=! /((/63! (,/6+7;! A$! /115(5#$@! #',! -+()#1! 6/$! 1+(+6(! -#,+! /((/637! 85()! /! >+((+,!
+==565+$6&;! A$! ./,(56'0/,@! #',! /((/63+,! -#1+0! /00#87! 7+775#$! 5$5(5/(5#$@! ,+6+5:+,! 5-.+,7#$/(5#$! /$1!
-+77/%+!1,#..5$%!6/./>505(5+7!/00!#=!8)56)!/,+!-5775$%!5$!HIML;!P7!/!,+7'0(@!-#,+!35$17!#=!/((/637!6/$!
>+!/$/0&D+1;!P07#@!#',!-+()#1! 57!-#,+!+==565+$(!1'+! (#!-#,+! ,+7(,56(+1!'$1+,0&5$%!-#1+07!#=!'7+,7!
/$1!/((/63+,7;!A$!./,(56'0/,@!5$!()+!'7+,!-#1+0!()+,+!57!/!7(,56(!-+77/%+!:/051/(5#$!=#,!+:+,&!,+6+5:+1!
-+77/%+@! /$1! +/6)! (&.+! #=! 6,&.(#%,/.)56! -+77/%+7@! +%;! .'>056G3+&! 65.)+,(+?(! /$1! 7&--+(,56G3+&!
65.)+,(+?(@! 57! 1+=5$+1! 5$15:51'/00&! 5$7(+/1! #=! -5?5$%! ()+-! 5$(#! #$+! (&.+! P07#@! #',! /((/63! -#1+0!
%+$+,/(+7!-+77/%+7!>&!(/35$%!>#()!()+!-+77/%+!:/051/(5#$!/$1!()+!5$15:51'/0!(&.+7!#=!6,&.(#%,/.)56!
-+77/%+7!5$(#!/66#'$(;!P7!/!,+7'0(@!/!7(/(+!7./6+!%+$+,/(+1!57!7-/00+,!()/$!HIML!75$6+!5$:/051!-+77/%+7!
/$1!5$/..,#.,5/(+!6,&.(#%,/.)56!-+77/%+7!/,+!+05-5$/(+1;!

!
G<><"I-0$*"3'*J7("J$-0'+8"3'*"767(2K.61"&*29-'1*790.5"9*'-'5'(8!

!
<)+,+!/,+!/!)'%+!/-#'$(!#=!=#,-/0!-+()#17!=#,!/$/0&D5$%!6,&.(#%,/.)56!.,#(#6#07;!P!7',:+&!

/$1!1576'775#$!#$!()+!6#-./,57#$!>+(8++$!()+-!6/$!>+!=#'$1!5$!HJ@KL;!`+,+!8+!1576'77!#$0&!=#,-/0!
-+()#17!8)56)!/,+!/..05+1!(#!/$/0&D+!6#$(,/6(!75%5%!.,#(#6#07@!Z42I!/$1!<EB!.,#(#6#07;!!

<)+,+! /,+! /(! 0+/7(! (),++!-/5$!8#,37!8)56)! /$/0&D+! %+$+,/0! 6#$(,/6(G75%5%! .,#(#6#07;! A$!
HKJL@!4)/1)/@!c/$#:56)@! /$1!26+1,#:!.,#.#7+1! /$! 5$1'6(5:+!.,##=!-+()#1! (#! /$/0&D+! /!:/,5/$(! #=!
6#$(,/6(G75%$5$%! .,#(#6#0! .,#.#7+1! >&!]/,/&@! b/3#>77#$! /$1! E/6c+$D5+;! <)+5,! -+()#1! /5-7! (#!
.,#:+!=/5,$+77!/$1!/>'7+G=,++!.,#.+,(5+7!#=!()+!.,#(#6#0@!,/()+,!()/$!(#!=5$1!/((/637;!A$!/115(5#$@!()+5,!
-+()#1!57!-/$'/0;!A$!HKKL@!2)/-/(53#:!/$1!E5(6)+00!/..05+1!/!-#1+0!6)+635$%!7&7(+-!6/00+1!E', !(#!
/$/0&D+! (8#! 6#$(,/6(! 75%5%! .,#(#6#07;! P! .,#(#6#0! 57! -#1+0+1! /7! /$! /'(#-/(/! >&! '75$%! /!
.,#%,/--5$%! 0/$%'/%+;! <)+5,! -+()#1! 57! /'(#-/(56! /$1! 7#-+! $+8! /((/637! #$! ()+! .,#(#6#07! /,+!
1576#:+,+1;! A$! HKML@!]',%+$7! /$1! e'1#0.)! /$/0&D+1! /! $'->+,! #=! =/5,! +?6)/$%+! $#$G,+.'15/(5#$!
.,#(#6#07!'75$%! /7&$6),#$#'7!.,#1'6(! /'(#-/(/! TP*PU!/$1! ()+! 75-.0+!)#-#-#,.)57-!:+,5=56/(5#$!

84

(##0! T2`W<U;! 25-50/,! (#! E', @! /! .,#(#6#0! 57! -#1+0+1! /7! /$! /'(#-/(/! >'(! >&! '75$%! /! (+?(G>/7+1!
1+76,5.(5#$!#$!7(/(+7!/$1!7(/(+!(,/$75(5#$7;!<)+5,!-+()#1!57!/'(#-/(56!/$1!7#-+!$+8!/((/637!/,+!=#'$1;!!

A$!HJXL@!^)/$%!/$1!a5'!/..05+1!/!-#1+0!6)+635$%!(+6)$59'+!(#!/$/0&D+!Z42I;!<)+&!=#'$1!
#$+!$+8!75$%0+G7+775#$!/((/63!5$!E56/05F7!Z42I!/$1!(8#!$+8!-'0(5G7+775#$!/((/637!5$!\/#!+(;!/0;!F7!
-#15=5+1!:+,75#$!#=!Z42I!HJRL;!A$1+.+$1+$(0&@!8+!=#'$1!(8#!$+8!75$%0+G7+775#$!/((/637!5$!E56/05F7!
Z42I!5$!HIXL@!/$1!=#'$1!(8#!$+8!-'0(5G7+775#$!/((/637!5$!E56/05F7!Z42I!/$1!=5:+!$+8!-'0(5G7+775#$!
/((/637!5$!\/#F7!-#15=5+1!:+,75#$!#=!Z42I!5$!HJYL;!A$!=/6(@!/(!()+!8,5(5$%!(5-+!#=!#',!8#,37!5$!HIX@!
JYL@!8+!8+,+!'$/8/,+!#=!^)/$%!/$1!a5'F7!8#,3;!`#8+:+,@!/=(+,!8+!0##3!5$(#!()+!1+(/507@!8+!=#'$1!
()/(! #$+!#=!#',! 75$%0+! 7+775#$! /((/637! 57! /!:/,5/$(! =#,-!#=!^)/$%!/$1!a5'F7! /((/63@! /$1! (8#!#=!#',!
-'0(5G7+775#$!/((/637!/,+!:/,5/$(!=#,-7!#=!^)/$%!/$1!a5'F7!/((/63;!<)+,+=#,+@!(#!7'--/,5D+!()+!$+8!
/((/637! =#'$1!>&!#',!4*B!-+()#1!8+! =#'$1!#$+!$+8!75$%0+G7+775#$!/((/63!#=!E56/05F7!Z42I@! (8#!
$+8! -'0(5G7+775#$! /((/637! 5$! E56/05F7! Z42I! /$1! (),++! $+8! /((/637! #=! \/#F7! -#15=5+1! :+,75#$! #=!
Z42I;!!!

<)+,+!/,+!7+:+$!=#,-/0!-+()#1!/..,#/6)+7!8)56)!/,+!/..05+1!(#!/$/0&D+!<EB!.,#(#6#0;!A$!
HJML@! (),++! =#,-/0! -+()#1! /..,#/6)+7@! $/-+0&! Bea@! A$(+,,#%/(#,! /$1! A$/(+7(@! (#! /$/0&D+!
6,&.(#%,/.)56!.,#(#6#07!/,+!6#-./,+1@!/$1!()+!<EB!.,#(#6#0!57!6)#7+$!/7!/!6/7+!7('1&;!P00!#=!()+-!
(/3+!()+!7(/(+!+?.0#,/(5#$!/..,#/6)!(#!/$/0&D+!.,#(#6#07;!\#()!Bea!/$1!A$(+,,#%/(#,!1+(+6(!/$!/((/63!
5$!/!75$%0+!7+775#$!#=!.,#(#6#0!+?+6'(5#$;!`#8+:+,@!A$/(+7(!6/$!#$0&!,+.,#1'6+!25--#$F7!/((/63!HJKL!
8)56)!57!/$!/((/63!5$!-'0(5.0+!7+775#$7;!A$!HJNL@!E', @!/!%+$+,/0!-#1+0!6)+63+,@!57!/..05+1!(#!/$/0&D+!
()+! <EB! .,#(#6#0;! E', ! 6/$! ,+.,#1'6+! 25--#$F7! /((/63@! /$1! 5(! 1+(+6(7! /! $+8! -'0(5.0+! 7+775#$!
/((/63!8)56)!/00#87!/$!/((/63+,! (#! 0+/,$!/$!+?6)/$%+1! 7+775#$!3+&!>+(8++$! (8#! 0+%5(5-/(+!./,(5+7;!
`#8+:+,@! >#()! 0+%5(5-/(+! ./,(5+7! 1#! $#(! 6#--5(! #$! ()+! 7+775#$! 3+&! /=(+,! ()+! 6#-.0+(5#$! #=! ()+!
.,#(#6#0;! A$! HJOL@! a#8+! /$1! e#76#+! /..05+1! 4#--'$56/(5$%! 2+9'+$(5/0! *,#6+77+7! T42*U! /$1! 5(7!
-#1+0!6)+63+,!Vfe!(#!/$/0&D+!()+!<EB!.,#(#6#0;!B#(!#$0&!/00!.,+:5#'70&!3$#8$!/((/637!(#!()+!<EB!
.,#(#6#0!6/$!>+!,+.,#1'6+1@!>'(!/07#!(8#!$+8!/((/637!)/:+!>++$!=#'$1;!<)+!=5,7(!$+8!/((/63!#66',7!5$!
/! 75$%0+! 7+775#$! #=! .,#(#6#0! +?+6'(5#$@! /$1! /$! /((/63+,! 6/$! 5-.+,7#$/(+! '7+,! P! /$1! 0+/,$! ()+!
+?6)/$%+1!7+775#$!3+&!6,+/(+1!>&!'7+,!\;!<)+!7+6#$1!/((/63!8)56)!#66',7!5$!-'0(5.0+!7+775#$7!57!()/(!
>#()!P!/$1!\!6#--5(!#$! ()+!7/-+!7+775#$!3+&!/=(+,! ()+!6#-.0+(5#$!#=! ()+!.,#(#6#0@!>'(! ()+!3+&! 57!
3$#8$!>&! ()+!/((/63+,;! A$!HIML@!P0GPDD#$5!+(;!/0;!/..05+1!4*B!(#!/$/0&D+!()+!<EB!.,#(#6#0;!<)+5,!
4*B!-+()#1!6/$!#$0&!1+(+6(!/!:/,5/$(!=#,-!#=!()+!/((/63!=#'$1!>&!E', !HJNL;!B#(+!()/(!()+!/((/63!
#66',7!5$!(8#!7+9'+$(5/0!7+775#$7!#=!.,#(#6#0!,'$;!A$!HJQL@!^)/$%!/$1!a5'!+-.0#&+1!/!-#1+0!6)+635$%!
(+6)$59'+! (#! /$/0&D+! ()+! <EB! .,#(#6#0;! <)+&! =#'$1! 7#-+! :/,5/$(! =#,-7! #=! a#8+! /$1! e#76#+F7!
/((/637! HIJL! 5$! >#()! /! 75$%0+! 7+775#$! /$1!-'0(5.0+! 7+775#$7;! Z:+$! ()#'%)! <EB! .,#(#6#0!)/7! >++$!
/$/0&D+1! :+,&! +?(+$75:+0&@! 7',.,575$%0&! 8+! =#'$1! $+8! /((/637! 5$! ()+! .,#(#6#0! >&! '75$%! #',! 4*B!
-+()#1#0#%&;!!

A$! 7'--/,&@!8+! /,%'+! ()/(! ()+!4*B!-+()#1#0#%&! #==+,7! /$! /1:/$(/%+! #:+,! ()#7+! =#,-/0!
-+()#17!1576'77+1!.,+:5#'70&!5$!()/(!5(!.,#:51+7!/!75-.0+,!/$1!-#,+!5$('5(5:+!8/&!(#!-#1+0!/!.,#(#6#0!
>&!'75$%!()+!%,/.)!,+.,+7+$(/(5#$;!!
"
L<"I)*"/'+$("

!
L<;<"I)*"#$%"/$-0'+'('12"

!
C',!$+8!4*B!-+()#1!)+,+!57!>/7+1!#$!()+!4*B!/..,#/6)+7!()/(!8+!)/:+!1+:+0#.+1!+/,05+,!

5$!HIRGJIL;!<)+,+!/,+!=5:+!7(+.7;!<)+!1+(/50!#=!#',!-+()#1#0#%&!57!7)#8$!/7!=#00#87;!!!
V5,7(@! 8+! >'501! /! 4*B! -#1+0! (#! ,+.,+7+$(! -+77/%+! +?6)/$%+! >&! /00! '7+,! ./,(5+7! /$1! (#!

,+.,+7+$(! /((/63+,! >+)/:5#,;! Z/6)! '7+,! ./,(&! 57! -#1+0+1! /66#,15$%! (#! ()+! .,#(#6#0;! A$! %+$+,/0@! /$!
/((/63+,! 5$!#',!-#1+0!6/$!+/:+71,#.@!-#15=&!/$1!1,#.!-+77/%+7!1',5$%!()+!(,/$7-5775#$;!P07#@! ()+!
/((/63+,!6/$!7+$1!$+8!-+77/%+7;!S+!8500!1576'77!/>#'(!/77'-.(5#$7!#=!()+!.,#(#6#0!/$1!()+!/>505(5+7!
#=!()+!/((/63+,!5$!1+(/507!0/(+,;!!

2+6#$1@!/$!/'(#-/(/!#,!/!7(/(+!7./6+!#=!()+!.,#(#6#0!85()!/((/63+,7!57!%+$+,/(+1!>&!'75$%!()+!
7(/(+! 7./6+! (##0! 5$!4*B!<##07! HIQL;! A$!%+$+,/0@! ()+! 7(/(+! 7./6+! ,+.,+7+$(7! /00!.#775>0+!>+)/:5#,7!#=!
+:+,&!./,(&@! 5$60'15$%!/((/63+,@! 5$! ()+!.,#(#6#0;!A$7(+/1!#=!%+$+,/(5$%!()+!7(/(+!7./6+!#=!/00!.#775>0+!
5$7(/$6+7!#=!-'0(5.0+!6#$6',,+$(!7+775#$7!#=!.,#(#6#0!+?+6'(5#$!/(!#$6+@!8+!%+$+,/(+!/!7(/(+!7./6+!#=!
#$+!7.+65=56!5$7(/$6+!#=!-'0(5.0+!6#$6',,+$(!7+775#$7!/(!/!(5-+!(#!,+1'6+!()+!75D+!#=!()+!#'(.'(!7(/(+!
7./6+;!S+!6/00!()57!/!1+6#-.#75(5#$!(+6)$59'+;!A$!%+$+,/0@!7'6)!/!7.+65=56!5$7(/$6+!-+/$7!/!7+((5$%!#,!
/! 6#$=5%',/(5#$!8)56)! 7.+65=5+7! /00!-5$5-/00&! ,+9'5,+1! 5$=#,-/(5#$! =#,! ()+! .,#(#6#0! +?+6'(5#$@! =#,!

85

+?/-.0+@!()+!51+$(5(5+7!#=!5$5(5/(#,!/$1!,+7.#$1+,@!()+!,#0+!#=!/((/63+,7@!/00!7+6,+(7!/$1!/00!$#'$6+7!5$!
+/6)! 6#$6',,+$(! 7+775#$@! /$1! /! 76)+1'0+! #=! ()+! +?+6'(5#$! #=! ()+!-'0(5.0+! 6#$6',,+$(! 7+775#$7;!<)+!
76)+1'0+!+$7',+7!()/(!()+!#'(.'(!7(/(+!7./6+!6#$(/5$7!#$+!/0(+,$/(5$%!+?+6'(5#$!#=!-'0(5.0+!6#$6',,+$(!
7+775#$7! #=! .,#(#6#0! ,'$!#$0&@! 5$7(+/1!#=! /00! .#775>0+! /0(+,$/(5$%! +?+6'(5#$7;!Z?.0#,5$%! /00! .#775>0+!
/0(+,$/(5$%!+?+6'(5#$7!85()5$!/!7(/(+!7./6+!57!+?.+$75:+!/$1!6/'7+7!/!)'%+!7(/(+!7./6+;!g7'/00&!()+,+!
/,+!-/$&!.#775>0+!6#$=5%',/(5#$7;!P7!/!,+7'0(!#=!()+!1+6#-.#75(5#$!/$1!()+!-'0(5G7+775#$!76)+1'05$%!
(+6)$59'+7@!()+!7(/(+!7./6+!#>(/5$+1!57!7-/00!/$1!=/7(!=#,!/$/0&757;!

<)5,1@!8+!6,+/(+!/!9'+,&! ='$6(5#$! 5$!4*BEa!0/$%'/%+@!8)56)! 57!>/7+1!#$!Ea!='$6(5#$/0!
.,#%,/--5$%!0/$%'/%+@!(#!7+/,6)!=#,!/((/63!7(/(+7!5$!()+!7(/(+!7./6+;!P((/63!7(/(+7!/,+!6)/,/6(+,5D+1!
>&! :'0$+,/>505(&! +:+$(7;! W'0$+,/>505(&! +:+$(7! /,+! +:+$(7! 8)56)! -/&! 0+/1! (#! /! 6#-.,#-57+! #=!
.,#(#6#07@!/$1!7'6)!+:+$(7!/,+!.,#(#6#0!1+.+$1+$(;!A$!Z42I@!()+,+!57!#$+!:'0$+,/>505(&!+:+$(!8)+,+!
#$+!./,(&@!8)#!57!+5()+,!5$5(5/(#,!#,!,+7.#$1+,@!%+(7!/$#()+,!./,(&!6#--5(-+$(@!>'(!()+!0/((+,!1#+7!$#(!
%+(! ()+! =#,-+,! 6#--5(-+$(;! A$! #()+,!8#,17@! ()57! +:+$(! 1+76,5>+7! +?/6(0&! /$! '$=/5,! 7(/(+;! A$! <EB!
.,#(#6#0@! ()+,+! /,+! (8#! -/5$! :'0$+,/>505(&! +:+$(7;! V5,7(0&@! ()+! /((/63+,! 0+/,$7! /! 7+6,+(! 3+&@! =#,!
+?/-.0+@!()+!+?6)/$%+1!7+775#$!3+&;!2+6#$10&@!/!7+775#$!3+&!8)56)!-/&!>+!/!=/3+!3+&!57!6#--5((+1!
>&!/!'7+,;!\/7+1!#$!()+7+!(8#!:'0$+,/>505(&!+:+$(7@!7+:+,/0!6#->5$+1!:'0$+,/>505(&!+:+$(7!/,+!6,+/(+1!
5$!#,1+,!(#!6)/,/6(+,5D+!-/$&!-+/$5$%='0!/((/63!7(/(+7!5$!<EB!.,#(#6#0;!<)+!6#$6+.(!#=!:'0$+,/>505(&!
+:+$(7!.,#:51+7!/!%+$+,/0!-+()#1!(#!6)/,/6(+,5D+!/((/63!7(/(+7!5$('5(5:+0&!/$1!6#-.,+)+$75:+0&;!P07#@!
9'+,5+7!6/$!>+!>'50(!+/750&!(#!1+(+6(!7'6)!6#->5$+1!:'0$+,/>505(&!+:+$(7;!!

V#',()@! /=(+,! /((/63! 7(/(+7! /,+! 1576#:+,+1! =,#-! ()+! 7(/(+! 7./6+@! 8+! +?(,/6(! /((/63! (,/6+7;!
4#$6+.('/00&@! /$! /((/63! (,/6+! 1+76,5>+7!)#8! /$! /((/63+,! 6/,,5+7! #'(! /$! /((/63! 7'66+77='00&! 7(+.! >&!
7(+.;!]5:+$!/$!/((/63!7(/(+!5$!/!7(/(+!7./6+@!/!./()!=,#-!()+!5$5(5/0!7(/(+!(#!()+!/((/63!7(/(+!6#$(/5$7!/!
7+9'+$6+!#=!/6(5#$7!>&!/00!./,(5+7@! 5$60'15$%!/((/63+,7@!8)56)! 0+/17! (#! ()+!/((/63;!2#@! ()57!7+9'+$6+!
6#$(/5$7!/$!/((/63!(,/6+;!\'(!()+!7+9'+$6+!6#$(/5$7!7'.+,=0'#'7!/$1!,+1'$1/$(!5$=#,-/(5#$!/>#'(!/$!
/((/63! (,/6+!75$6+! 5(!6#$(/5$7!/00!4*B!(,/$75(5#$7! 5$!/$!+?+6'(5#$!8)56)!0+/1! (#!/$!/((/63!7(/(+@!/$1!
-/$&!#=!()#7+!(,/$75(5#$7!/,+!,+1'$1/$(!#,!5,,+0+:/$(!(#!()+!+77+$6+!#=!()+!/((/63;!C',!-+()#1!#==+,7!
/$!+==565+$(!$+8!/..,#/6)!(#!+?(,/6(!/((/63!(,/6+7!=,#-!/$!#'(.'(!7(/(+!7./6+!85()#'(!()+!$++1!=#,!/$&!
=',()+,!6#-.'(/(5#$;!A$!#',!4*B!-#1+0@!/7!()+!.,#(#6#0!+?+6'(5#$!.,#6++17@!/$!/((/63!(,/6+!8)56)!57!
/! ,+6#,1!#=!/00! +?6)/$%+1!-+77/%+7!>+(8++$!./,(5+7!7#! =/,! 57!+->+11+1! 5$(#!/$!#'(.'(! 7(/(+;!E#,+!
7.+65=56/00&@!()+!/((/63!(,/6+!57!7(#,+1!5$!/!%0#>/0!='75#$!.0/6+!8)+$!/!-+77/%+!57!7+$(!=,#-!#$+!'7+,!(#!
/$#()+,;! <)'7@! 8)+$! /$! /((/63! 7(/(+! 57! =#'$1@! ()+! /((/63! (,/6+! 6/$! >+! +?(,/6(+1! =,#-! ()+! 7(/(+!
5--+15/(+0&!/$1!+==565+$(0&;!

V5=()@!/=(+,!/((/63!(,/6+7!/,+!#>(/5$+1@!8+!60/775=&!()+-!5$(#!+/6)!%,#'.;!A$!%+$+,/0@!()+,+!6/$!
>+!/!)'%+!/-#'$(!#=!/((/63!7(/(+7!/$1!(,/6+7!=#'$1!5$!/!7(/(+!7./6+;!V#,!+?/-.0+@!5$!Z42I!8+!=#'$1!
Q@YYY! /((/63! 7(/(+7! T/$1! (,/6+7U! 5$!/! 6#$=5%',/(5#$;!<)'7@! (#! +/7+! ()+!/$/0&757!#=! /! 0/,%+!/-#'$(!#=!
/((/63! (,/6+7@! 8+! 1+:+0#.! /$! /((/63! 60/775=56/(5#$! >&! '75$%! /((/63! ./((+,$7;! A$! %+$+,/0@! /$! /((/63!
./((+,$!1+76,5>+7!()+!6#,+!#=!/$!/((/63@!/$1!5(!6#$(/5$7!/!057(!#=!-5$5-/0!.,#(#6#0!-+77/%+7!()/(!/,+!()+!
6/'7+!#=!+/6)!/((/63;!P((/63!(,/6+7!()/(!.,#1'6+!()+!7/-+!/((/63!./((+,$!/,+!60/775=5+1!5$(#!()+!7/-+!
%,#'.! #=! /((/637;! A$! %+$+,/0@! 5(! ,+9'5,+7!)'-/$! 5$(+,:+$(5#$! (#! 6,+/(+! +/6)! /((/63! ./((+,$! =,#-! /$!
/((/63!(,/6+;!

A$!()+!$+?(!(8#!7+6(5#$7@!8+!/..0&!#',!4*B!-+()#1!(#!/$/0&D+!(8#!6/7+!7('15+7;!<#!500'7(,/(+!
()+!+==+6(5:+$+77!#=!#',!-+()#1@!8+!=#6'7!#',!/$/0&757!#$!<EB;!C',!4*B!=,/-+8#,3!=#,!Z42I!57!
75-50/,!(#!()+!=,/-+8#,3!=#,!<EB;!!
!
L<><"I)*"&,#"!67(28.8"3'*"E/#",*'-'5'("

!
! A$!()57!7+6(5#$@!8+!1576'77!()+!/$/0&757!#=!<EB!>&!'75$%!#',!$+8!-+()#1#0#%&;!A$!7+6(5#$!
M;J;I@!8+!.,#:51+!1+=5$5(5#$7!/$1!-#,+!6#$6,+(+!6#$6+.(7!#=!#',!-+()#1#0#%&;!A$!7+6(5#$!M;J;J@!8+!
>,5+=0&! 7)#8! 7#-+!#=! #',!4*B!%,/.)!-#1+0;!S+! +?.0/5$! #',! 9'+,5+7! /$1!#',! /((/63! 60/775=56/(5#$!
(+6)$59'+! 5$! 7+6(5#$7! M;J;K! /$1! M;J;N@! ,+7.+6(5:+0&;!P07#@! $+8! /((/637! /$1! ()+! .+,=#,-/$6+! #=! #',!
-+()#1!/,+!1576'77+1!5$!7+6(5#$7!M;J;O!/$1!M;J;Q@!,+7.+6(5:+0&;!
!
L<><;<"I)*"&,#"3*7J$%'*@"3'*"E/#"
!

A$! ()57! 7+6(5#$@! 8+! 1576'77! ()+! /77'-.(5#$7! #=! #',! .,#(#6#0! /$/0&757;! S+! /07#! 1+76,5>+!
:'0$+,/>505(&! +:+$(7! #=! <EB;! V5$/00&@! 8+! .,#:51+! /! 1+=5$5(5#$! #=! /! 6#$=5%',/(5#$! #=! ()+! .,#(#6#0!
+?+6'(5#$;!

86

M$3.6.-.'6!;"[!<)+!/77'-.(5#$7!#=!()+!.,#(#6#0!+?+6'(5#$!
<)+!=#00#85$%!/,+!()+!/77'-.(5#$7!#=!()+!+?+6'(5#$!#=!()+!<EB!.,#(#6#0;!!
I;! <)+,+!/,+!(),++!'7+,7!8)#!/,+!/$!5$5(5/(#,@!/!,+7.#$1+,!/$1!/!7+,:+,;!P$1!/00!()+!'7+,7!=#00#8!()+!

.,#(#6#0!7.+65=56/(5#$!7(,56(0&!/$1!)#$+7(0&;!
J;! <)+,+!57!#$+!/((/63+,!8)#7+!/>505(5+7!/,+!1+=5$+1!>+0#8;!
K;! <)+!'$1+,0&5$%!+$6,&.(5#$!57!.+,=+6(!5$!()/(!$#()5$%!6/$!>+!5$=+,,+1!=,#-!/!65.)+,(+?(!85()#'(!()+!

3$#80+1%+!#=!()+!6#,,+6(!3+&;!P07#@!8+!6#$751+,!/!%+$+,/0!.'>056!3+&!+$6,&.(5#$!76)+-+@!,/()+,!
()/$!/$&!7.+65=56!76)+-+;!!!

M;! S+!6#$751+,!()+!+?+6'(5#$!#=!(8#!6#$6',,+$(!7+775#$7!#=!()+!.,#(#6#0!8)+,+!7'6)!+?+6'(5#$!6/$!
>+!.+,=#,-+1!5$!+5()+,!/!7+9'+$(5/0!#,!/!$#$G7+9'+$(5/0!>'(!/0(+,$/(5$%!7(&0+;!!!

N;! \#()! 5$5(5/(#,! /$1! ,+7.#$1+,! 5$:#0:+! 5$! ()+! .,#(#6#0! +?+6'(5#$! /7! 5=! ()+,+! 57! #$+! 7+775#$! #=!
+?+6'(5#$!#$0&@!>'(!()+!7+,:+,!-/&!5$:#0:+!5$!-#,+!()/$!#$+!7+775#$;!!

!
<)+!/77'-.(5#$7!IU!/$1!JU!-+/$!()/(!()#7+!./,(5+7!/,+!/00!()/(!/,+!5$:#0:+1!5$!()+!.,#(#6#0!

+?+6'(5#$;!P$!5$5(5/(#,!-+/$7!/!'7+,!8)#!5$5(5/(+7!/!$+8!.,#(#6#0!7+775#$@!/$1!/!,+7.#$1+,!-+/$7!/!
'7+,!8)#!,+7.#$17!(#!/$!+?57(5$%!7+775#$!85()!/$!5$5(5/(#,!(#!.+,=#,-!()+!3+&!+?6)/$%+;!!

<)+!=5,7(!./,(!#=!/77'-.(5#$!KU!57!/07#!3$#8$!/7!f#0+:!/$1!"/#F7!/77'-.(5#$!HKNL;!P7!7(/(+1!
5$!()+!7+6#$1!./,(!#=!/77'-.(5#$!KU@!5$!()57!./.+,!8+!6#$751+,!/!%+$+,/0!.'>056!3+&!+$6,&.(5#$!76)+-+!
,/()+,!()/$!e2P!76)+-+;!<)57!/77'-.(5#$!57!7'==565+$(!(#!500'7(,/(+!()+!+==+6(5:+$+77!#=!#',!$+8!4*B!
/..,#/6)!(#!/$/0&D+!<EB;!

A$! /77'-.(5#$!MU@!8+!-+/$! ()/(! 5$! /115(5#$! (#!/! 7+9'+$(5/0! +?+6'(5#$!#=! (8#! 7+775#$7@! ()+!
.,#(#6#0! +?+6'(5#$! 6/$! /0(+,$/(+! >+(8++$! ()+! (8#! 6#$6',,+$(! 7+775#$7;! <)'7@! ()+! ,+7'0(! #=! ()+!
+?+6'(5#$! 57! /! $#$G7+9'+$(5/0! #,! 5$(+,0+/:5$%!-/$$+,;!S+!8500! 1576'77! />#'(! ()+! +?+6'(5#$! #=! (8#!
6#$6',,+$(!7+775#$7!#=!()+!.,#(#6#0!-#,+!7.+65=56/00&!0/(+,;!!

A$!/77'-.(5#$!NU@!8+!-+/$!()/(!>#()!5$5(5/(#,!/$1!,+7.#$1+,!()5$3!()/(!()+&!5$:#0:+!5$!#$0&!
#$+!7+775#$!#=!()+!.,#(#6#0!+?+6'(5#$@!/$1!()+5,!%#/07!/,+!(#!+?6)/$%+!/!7+775#$!3+&!>+(8++$!()+-;!
`#8+:+,@!()+!7+,:+,!-/&!5$:#0:+!5$!-#,+!()/$!#$+!7+775#$!#=!()+!+?+6'(5#$;!A$!=/6(@!()57!/77'-.(5#$!
57!,+/7#$/>0+!75$6+!/!7+,:+,!d'7(!,+7.#$17!(#!/$&!,+9'+7(!/$1!5(!-/5$(/5$7!/!7(/(+!#$0&!1',5$%!/!,+9'+7(!
/(! 7(+.! I! /$1! /! ,+7.#$1! /(! 7(+.! M;! P=(+,! ()+! 7(+.! M! #66',7@! ()+! 7(/(+! 57! 1+7(,#&+1! (#!-5$5-5D+! ()+!
,+7#',6+;!!
"
M$3.6.-.'6">![!<)+!/((/63+,!/>505(5+7!
<)+!/((/63+,!5$!#',!-#1+0!57!6/./>0+!#=!()+!=#00#85$%[!
I;! <)+!/((/63+,!6/$!+/:+71,#.@!-#15=&!/$1!1,#.!-+77/%+7!1',5$%!()+!(,/$7-5775#$!>+(8++$!'7+,7;!
J;! <)+!/((/63+,!6/$!7+$1!/!-+77/%+!(#!/!'7+,;!
K;! <)+!/((/63+,!6/$!+5()+,!5$5(5/(+!/!$+8!7+775#$!85()!'7+,7!#,!(/3+!./,(!5$!/$!+?57(5$%!7+775#$!85()!

'7+,7;!
M;! <)+!/((/63+,!6/$!5-.+,7#$/(+!/$&!'7+,;!!
N;! <)+!/((/63+,!6/$!.+,=#,-!/$&!6,&.(#%,/.)56!6#-.'(/(5#$!>&!'75$%!3$#8$!3+&7@!3$#8$!-+77/%+7!

/$1!3$#8$!65.)+,(+?(7!85()!/!05-5(+1!>'(!,+/7#$/>0+!.#8+,@!+%;!+$6,&.(5#$!/$1!1+6,&.(5#$;!
O;! <)+!/((/63+,!)/7!5(7!#8$!7(#,/%+!85()!/!=5$5(+!/$1!,+/7#$/>0+!/-#'$(;!
Q;! <)+!/((/63+,!1#+7!$#(!/((/63!)5-7+0=;!
R;! <)+,+!57!/(!-#7(!#$+!/((/63+,!8)#!.+,=#,-7!()+!/((/63!5$!IU!#$!/!.,#(#6#0!7(+.!5$!/!7+775#$!/(!/!

(5-+;!
!

B#(+!()/(!JU!-+/$7!()+!/>505(&!(#!7+$1!/$&!-+77/%+!(#!/$&!'7+,!8)+,+!()+!-+77/%+!/$1!()+!
'7+,!-/&!#,!-/&!$#(!>+!/66#,15$%!(#!()+!.,#(#6#0!7.+65=56/(5#$;!<)'7@!5(!57!15==+,+$(!=,#-!KU;!!

<)+!/77'-.(5#$!MU!-+/$7!()/(!()+!/((/63+,!6/$!5-.+,7#$/(+!/$!5$5(5/(#,!P@!/!,+7.#$1+,!\!#,!/!
7+,:+,! b;! A=! ()+! 5-.+,7#$/(+1! '7+,! 57! /! ,+7.#$1+,! #,! /! 7+,:+,@! ()+$! ()+! /((/63+,! -'7(! >+! />0+! (#!
5$(+,6+.(! /$! 5$.'(! -+77/%+! /$1! ()+$! (#! 7+$1! /! =/3+! ,+7.#$1! -+77/%+! /(! /! $+?(! 7(+.;! \'(! 5=! ()+!
5-.+,7#$/(+1!'7+,!57!/$!5$5(5/(#,@!()+!/((/63+,!-'7(!>+!/>0+!(#!5$5(5/(+!/!$+8!7+775#$@!/$1!(#!%+$+,/(+!
=/3+!,+7.#$17;!!

A$! NU@! ()+! /((/63+,! /07#!)/7! ()+! />505(&! (#! .+,=#,-! /$&! 6#-.'(/(5#$! 5$! /115(5#$! (#! ()+!
6,&.(#%,/.)56!#$+;!!

A$! QU@! /$&! -+77/%+! ()/(! 57! 7+$(! (#! /$! /((/63+,! 8)#! -/&! 5-.+,7#$/(+! /! '7+,! 8500! $#(! >+!
-#15=5+1!>&!/$&#$+!1',5$%!()+!(,/$7-5775#$;!B#(+!()/(!5=!()+,+!57!/$&!-#15=56/(5#$@!()+$!()+!/((/63+,!
57!/((/63+1;!A$!RU@!/$&!-+77/%+!()/(!57!7+$(!=,#-!/$!/((/63+,!8500!>+!1+05:+,+1!(#!()+!5$(+$1+1!,+6+5:+,!

87

5$(/6(;!A=!()+,+!57!/$&#$+!+07+!8)#!-#15=5+7!()+!7+$(!-+77/%+!=',()+,@!()+$!()+!-+77/%+!57!-#15=5+1!>&!
(8#!/((/63+,7;!!
!
M$3.6.-.'6"G![!<)+!>/756!%#/07!#=!()+!/((/63+,!
<)+,+!/,+!(8#!>/756!%#/07!#=!()+!/((/63+,!=#,!<EB!
I;! <)+!/((/63+,!/5-7!(#!15760#7+!/!7+6,+(!3+&!8)56)!57!/!7+775#$!3+&!#,!PF7!7+6,+(;!
J;! <)+!/((/63+,!/5-7!(#!5-.+,7#$/(+!/!'7+,!8)56)!57!/$!5$5(5/(#,!#,!/!,+7.#$1+,!

!
<)+7+!/,+!(8#!>/756!/$1!%+$+,/0!%#/07!#=!()+!/((/63+,!=#,!<EB;!S+!=#6'7!#$!()+!=5,7(!%#/0@!

>'(!7(500!6#$751+,!()+!7+6#$1!%#/0@!75$6+!()+!=5,7(!%#/0!5$6',7!/!8#,7+!1/-/%+!()/$!()+!7+6#$1!#$+;!A$!
/115(5#$@! ()+! /((/63+,!)/7! -#,+! /5-7! (#! 6#-.,#-57+! ()+! .,#(#6#0! >&! /6)5+:5$%! ()+! 6#->5$+1!
:'0$+,/>505(&!+:+$(7!8)56)!8500!>+!1576'77+1! 0/(+,;!<)#7+!+:+$(7!6/$!>+!6#$751+,+1!/7!6#$6,+(+!/$1!
/1:/$6+1!%#/07!#=!()+!/((/63+,;!

P((/63!7(/(+7!/,+!6)/,/6(+,5D+1!>&!:'0$+,/>505(&!+:+$(7;!V#,!()+!<EB!.,#(#6#0@!()+,+!/,+!(8#!
>/756!+:+$(7@!/$1!=5:+!6#->5$+1!+:+$(7;!!!!
!
M$3.6.-.'6"L![!<)+!=5,7(!>/756!:'0$+,/>505(&!+:+$(7!
<)+!/((/63+,!0+/,$7!/!7+6,+(!3+&;!<)+,+!/,+!(8#!6/7+7;!
I;! <)+!/((/63+,!0+/,$7!()+!+?6)/$%+1!7+775#$!3+&!:'0;!!!!!!!!!!!!!!!L:Q:'0M!
J;! <)+!/((/63+,!0+/,$7!PF7!7+6,+(!:'P;!! !! ! !!&L:Q:'PM!
!
M$3.6.-.'6"N![!<)+!7+6#$1!>/756!:'0$+,/>505(&!+:+$(7!
<)+,+!/,+!(),++!6/7+7!=#,!/!7+775#$!3+&!8)56)!57!6#--5((+1!>&!'7+,7;!!
I;! \#()!P!/$1!\!6#--5(!#$!:'0;!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!LRCQ:'0M!
J;! P!6#--5(7!#$!:$!#,!:'P;!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!LRQ:$1&RQ:'PM&!
!!!!!!!8)+,+!:$!57!/((/63+,F7!7+6,+(!3+&;!!
K;! \!6#--5(7!#$!:'0;!!&LCQ:'0M!
!

B#(+! ()/(!IU!1#+7!$#(! 0##3! 053+!/!:'0$+,/>505(&!+:+$(!#$! 5(7!#8$@!>'(!8)+$! 5(! 57! 6#->5$+1!
85()!/$#()+,!:'0$+,/>505(&!+:+$(@!5(!>+6#-+7!/!:'0$+,/>505(&!+:+$(!60+/,0&;!S+!8500!1576'77!/>#'(!()57!
0/(+,;!P07#@!5(!57!$#(!.#775>0+!(#!=##0!'7+,!\!(#!6#--5(!(#!#()+,!3+&!()/$!:'0!75$6+!\!57!()+!6,+/(#,!#=!
()+!7+775#$!3+&!:'0!/$1!()+$!()+!3+&!57!=5?+1!=#,!()+!6#--'$56/(5#$!85()!P;!\/7+1!#$!()+!(8#!>/756!
+:+$(7@!()+!=#00#85$%!6#->5$+1!/$1!5$(+,+7(5$%!:'0$+,/>505(&!+:+$(7!6/$!>+!6,+/(+1;!!
!
M$3.6.-.'6"O![!<)+!6#->5$+1!/$1!5$(+,+7(5$%!:'0$+,/>505(&!+:+$(7;!
<)+,+!/,+!=5:+!6#->5$+1!:'0$+,/>505(&!+:+$(7;!
I;! <)+!/((/63+,!0+/,$7!:'0@!/$1!>#()!P!/$1!\!6#--5(!#$!:'0;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!S:'0TS:'0TS:'0T!
J;! <)+!/((/63+,!0+/,$7!:'0!/$1!:'P@!/$1!>#()!P!/$1!\!6#--5(!#$!:'0;!!!!!!!!!!!!!!!!S:'01:'PTS:'0TS:'0T!
K;! <)+!/((/63+,!0+/,$7!:'0@!/$1!P!57!=##0+1!(#!6#--5(!#$!:$!>'(!\!6#--5(7!#$!:'0;!&S:'0TS:$TS:'0T!
M;! <)+!/((/63+,!0+/,$7!:'0!/$1!:'P@!/$1!P!57!=##0+1!(#!6#--5(!#$!:$!>'(!\!6#--5(7!#$!:'0;!
&&&&&&&S:'01:'PTS:$TS:'0T!
N;! <)+!/((/63+,!0+/,$7!:'0!/$1!:'P@!/$1!P!57!=##0+1!(#!6#--5(!#$!:'P!>'(!\!6#--5(7!#$!:'0;!!!!! !

S:'01:'PTS:'PTS:'0T!
!

S+!'7+!()+!$#(/(5#$!S:CUTS:CVTS:CWT!(#!1+76,5>+!+/6)!6#->5$+1!:'0$+,/>505(&!+:+$(!8)+,+!
c\I!7(/$17!=#,!!3+&7!()/(!/,+!3$#8$!>&!()+!/((/63+,@!/$1!c\J!/$1!c\K!7(/$17!=#,!/$1!3+&7!()/(!/,+!
6#--5((+1!>&!'7+,7!P!/$1!\@!,+7.+6(5:+0&@!/(!()+!6#-.0+(5#$!#=!()+!.,#(#6#0;!

40+/,0&@!5$!()+!+:+$(!I!()+!/((/63+,!8500!()+$!0+/,$!/00!0/(+,!6#--'$56/(5#$!>+(8++$!P!/$1!\@!
>+6/'7+!()+!/((/63+,!#>(/5$7!()+!7+775#$!3+&!8)56)!/,+!+?6)/$%+1!/$1!/%,++1!>&!>#()!P!/$1!\;!S+!
1#!$#(!=5$1!/$&!/((/63!5$7(/$6+!5$!()57!+:+$(;!!

<)+!+:+$(!J!57!75-50/,!(#!()+!+:+$(!I!>'(!()+!/((/63+,!5$!()+!+:+$(!J!0+/,$7!/$!/115(5#$/0!3+&!
8)56)!57!PF7!7+6,+(;!a#8+!/$1!e#76#+F7!-'0(5G7+775#$!/((/63!HJOL!57!5$!()+!6/(+%#,&!#=!()57!+:+$(;!A$!
()57!+:+$(@!8+!=#'$1!IY!/((/63!./((+,$7@!/$1!-/$&!#=!()+-!/,+!5$(+,+7(5$%!:/,5/$(!=#,-7!#=!a#8+!/$1!
e#76#+F7! /((/63;! V#,! +?/-.0+@! 5$! 7#-+! :/,5/$(! /((/637@! 7+,:+,! b! 6/$$#(! 1+(+6(! ()+! ,+.0/&! /((/63!
#66',,+1!5$!()+!(8#!7+775#$7;!A(7!1+(/50!8500!>+!1576'77+1!0/(+,;!!

A$!+:+$(!K@!()+!/((/63+,!0+/,$7!()+!7+775#$!3+&@!/$1!=##07!P!(#!6#--5(!(#!/!=/3+!3+&!8)56)!57!
()+!/((/63+,F7!7+6,+(!:$;!<)+!+:+$(!M!57!75-50/,!(#!()+!+:+$(!K@!>'(!()+!/((/63+,!0+/,$7!PF7!7+6,+(!3+&!5$!

88

/115(5#$!()+!7+775#$!3+&;!A$!+:+$(!N@!()+!/((/63+,!0+/,$7!()+!7+775#$!3+&!/$1!PF7!7+6,+(!3+&@!/$1!=##07!
P!(#!6#--5(!(#!/!=/3+!3+&!8)56)!57!PF7!7+6,+(!3+&!:'P;!<)+!,+7'0(!#=!()+!+:+$(7!K@!M!/$1!N!6/$!>+!7++$!
/7!/!35$1!#=!()+!-/$G5$G()+G-5110+!/((/637;!A$!+:+$(7!K!/$1!M@!()+!/((/63+,!6/$!5-.+,7#$/(+!\!(#!P!>&!
'75$%!3+&!:$@!8)50+!()+!/((/63+,!6/$!5-.+,7#$/(+!P!(#!\!>&!'75$%!3+&!:'0;!A$!()+!+:+$(!N@!()+!/((/63+,!
6/$!5-.+,7#$/(+!\!(#!P!>&!'75$%!3+&!:'P@!8)50+!()+!/((/63+,!6/$!5-.+,7#$/(+!P!(#!\!>&!'75$%!3+&!:'0;!
S+!=#'$1!IY!/((/63!./((+,$7!5$!()+!+:+$(7!M!/$1!N@!>'(!1#!$#(!=5$1!/$&!/((/63!5$7(/$6+!5$!()+!+:+$(!K;!
A(!57!()+!/((/637!5$!()+!+:+$(7!M!/$1!N!()/(!/,+!$#:+0;!!

B#(+! ()/(! ()+,+! /,+! #()+,! (8#!6#->5$+1!:'0$+,/>505(&! +:+$(7!8)56)! /,+!S:'PTS:$TS:'0T&/$1&
S:'PTS:'PTS:'0T;!`#8+:+,@!>#()!+:+$(7!/,+!$#(!5$(+,+7(5$%!75$6+!()+!/((/63+,!1#+7!$#(!0+/,$!()+!7+775#$!
3+&!:'0;!E#,+#:+,@!()+&!/,+!d'7(!:/,5/$(!=#,-7!#=!75$%0+!7+775#$!/((/637;!2#@!8+!1#!$#(!6#$751+,!()+-!
)+,+;!!
!
M$3.6.-.'6"P![!<)+!6#-.'(/(5#$!#=!()+!=5:+!6#->5$+1!:'0$+,/>505(&!+:+$(7!

<)+!=#00#85$%!7)#87!)#8!(#!6#-.'(+!()+!=5:+!6#->5$+1!:'0$+,/>505(&!+:+$(7;!!
UF! S:'0TS:'0TS:'0T&X&L:Q:'0& &RCQ:'0M&
VF! S:'01:'PTS:'0TS:'0T&X&L:Q:'0& &RQ:$& &CQ:'0M&
WF! S:'0TS:$TS:'0T&X&L:Q:'0& &:Q:'P& &RCQ:'0M&
YF! S:'01:'PTS:$TS:'0T&XL:Q:'0& &:Q:'P& &RQ:$& &CQ:'0M&
ZF! S:'01:'PTS:'PTS:'0TXL:Q:'0 &:Q:'P& &RQ:'P& &CQ:'0M&
!

Z/6)! 6#->5$+1! :'0$+,/>505(&! +:+$(! 6/$! >+! 6#-.'(+1! >&! /..0&5$%! ()+! 5$(+,7+6(5#$! #$! ()+!
,+0+:/$(!>/756!:'0$+,/>505(&!+:+$(7;!

A$!()+!=#00#85$%@!8+!.,#:51+!()+!1+=5$5(5#$!#=!/!6#$=5%',/(5#$!=#,!/!7(/(+!7./6+!6#-.'(/(5#$!
#=!#',!4*B!=,/-+8#,3!(#!/$/0&D+!()+!<EB!.,#(#6#0;!!!
!
M$3.6.-.'6"Q![!P!6#$=5%',/(5#$!#=!#',!4*B!=,/-+8#,3!=#,!<EB!
P!6#$=5%',/(5#$!#=!#',!4*B!=,/-+8#,3!6#$757(7!#=!LL*U1&*V1[1*(M1&*%B1&A-M!/$1!*$!_!L>1I1H1A1:1NM!=#,!
I !$! !(!8)+,+!!
I;! *$!57!/!7+775#$!5$=#,-/(5#$!8)56)!6#$757(7!#=!!

I;I;! >!57!/!7+775#$!51+$(5(&!
I;J;! I!57!/$!5$5(5/(#,!51+$(5(&!
I;K;! H!57!/!,+7.#$1+,!51+$(5(&!
I;M;! A!57!/!7+,:+,!51+$(5(&!
I;N;! :!57!3+&7!=#,!+/6)!./,(&!T5$60'15$%!/((/63+,U!8)56)!6#$757(7!#=!!
!!!!!!/U!*/5,!#=!.'>056!/$1!.,5:/(+!3+&7!

!!!!!!! >U!2)/,+1!3+&!85()!/!7.+65=56!./,(&!
I;O;! N!57!$#'$6+7!'7+1!>&!+/6)!./,(&!

J;! *%B!57!/!-'0(5G7+775#$!76)+1'0+!8)56)!6#$(/5$7!/!057(!#=!7+775#$!51+$(5(5+7!(#!>+!+?+6'(+1!5$!()/(!
#,1+,!

K;! A-! 57!/$!/((/63!(,/6+!8)56)!6#$757(7!#=!/!:'0$+,/>505(&!+:+$(!!/$1!/!057(!#=!.,#(#6#0!(,/6+7!8)56)!
0+/17!(#!()+!:'0$+,/>505(&!+:+$(!!

!
A$! ()+! 6#$=5%',/(5#$@! +/6)! *$! /$1! *%B! /,+! 5$.'(! ./,/-+(+,7! (#! ()+! 4*B! 7(/(+! 7./6+!

6#-.'(/(5#$!8)50+!A-!57!()+!1+75,+1!#'(.'(!=,#-!()+!7(/(+!7./6+!6#-.'(/(5#$;!!
V#,!+?/-.0+@!()+!I7(!7+775#$!5$=#,-/(5#$!2I!8)56)!57!LU1R1C1\1L:U1:V1:W1:YM1QM!-+/$7!()/(!P@!

\!/$1!b!/,+!51+$(5(5+7!=#,!5$5(5/(#,@!,+7.#$1+,!/$1!7+,:+,@!,+7.+6(5:+0&@!/$1!:U1&:V1&:W!/$1!:Y!/,+!3+&7!
=#,!R@!C@!\!/$1!I(!,+7.+6(5:+0&;!P07#@!hij!-+/$7!()/(!()+,+!57!$#!5$=#,-/(5#$!/>#'(!()+!$#'$6+7;!a+(!
:U&X&LQ1]L:'P1QM^M1&:V&X&LQ1]L:'01RM^M1&:W&X&L]L_:\1*:\M^1QM!/$1!:Y&X&LQ1]L:$1QM^M;!:U!-+/$7!()/(!P!)/7!
$#!.'>056!/$1!.,5:/(+!3+&7@!>'(!)/7!#$+!7)/,+1!3+&!:'P!8)56)!6/$!>+!'7+1!85()!/$&#$+;!:V!-+/$7!()/(!
\!)/7!$#!.'>056!/$1!.,5:/(+!3+&7@!>'(!)/7!#$+!7)/,+1!3+&!:'0!8)56)!57!5$(+$1+1!(#!7)/,+!85()!P;!:W!
-+/$7!()/(!b!)/7!/!.'>056!3+&!_:\!/$1!/!.,5:/(+!3+&!*:\@!>'(!b!)/7!$#!7)/,+!3+&;!:Y!-+/$7!()/(!()+!
/((/63+,!)/7!$#!.'>056!/$1!.,5:/(+!3+&7@!>'(!)/7!#$+!7)/,+1!3+&!:$!8)56)!6/$!>+!'7+1!85()!/$&#$+;!

a+(!*%B!>+!SU1U1U1U1V1V1V1VT;!A$!()57!76)+1'0+@!hIj!/$1!hJj!-+/$!/!6#-.0+(+!+?+6'(5#$!#=!#$+!
.,#(#6#0!7(+.!5$!()+!=5,7(!/$1!7+6#$1!7+775#$@!,+7.+6(5:+0&;!A$!()+!+?+6'(5#$@!>#()!-+77/%+!7+15%!/$1!
,+6+5:5$%!5$!()+!7(+.!/,+!.+,=#,-+1;!<)57!-+/$7!()/(!/!7+$1+,!)/7!7+$(!/!-+77/%+@!/$1!/!,+6+5:+,!)/7!
,+6+5:+1!()+!-+77/%+;!2#!()+!76)+1'0+!57!d'7(!()+!7+9'+$(5/0!+?+6'(5#$!#=!()+!=5,7(!7+775#$!/$1!()+$!()+!

89

7+6#$1! 7+775#$;!4#$751+,! /$#()+,! 76)+1'0+! SU1V1V1U1U1V1V1UT;! <)57! 76)+1'0+! 57! /! $#$G7+9'+$(5/0! >'(!
6#$6',,+$(! +?+6'(5#$! 8)56)! 6#,,+7.#$17! (#! ()+! -/$G5$G()+G-5110+! /((/63! HKYL;! <)+! -/$G5$G()+G
-5110+! /((/63! -+/$7! ()/(! ()+! /((/63+,! 75('/(+7! 5$! ()+! -5110+! >+(8++$! (8#! 7+775#$7@! /$1! ,+.0/&7!
-+77/%+7! >+(8++$! ()+-;! <)+! =5%',+! I! 500'7(,/(+7! ()+! =0#8! #=! -+77/%+7! =#,! ()+! -/$G5$G()+G-5110+!
/((/63!5$!<EB!8)+,+!()+!=5,7(!7+775#$!57!>+(8++$!P!/$1!I(@!/$1!()+!7+6#$1!7+775#$!57!>+(8++$!I(!/$1!
\;!<)'7@!()+!76)+1'0+!-+/$7!/$!/0(+,$/(5$%!+?+6'(5#$!>+(8++$!(8#!7+775#$7!5$!()/(!()+!=5,7(!.,#(#6#0!
7(+.!#=!()+!I7(!7+775#$!57!+?+6'(+1!=5,7(@!/$1!()+$!(8#!.,#(#6#0!7(+.7!#=!()+!J$1!7+775#$!/,+!+?+6'(+1@!
/$1!7#!#$;!!

a+(! A-! >+! LS:'01:'PT1& S:$T1& S:'0T1& !A-M! /$1! !A-! ! >+! SLU1U1R1\1& LLC1]:'P^_:D\M1RMM1&
LU1U1I(1\1LLKV1]:$^_:D\M1KUMM1&FFF&T;!<)+!/((/63!(,/6+!A-!6#$757(7!#=!/!:'0$+,/>505(&!+:+$(!LS:'01:'PT&S:$T&
S:'0TM@!/$1!/!057(!!A-!#=!.,#(#6#0!(,/6+7!8)56)!0+/17!(#!()+!/((/63!=#,!()+!:'0$+,/>505(&!+:+$(;!P7!=#,!/!
75-.0+!+?/-.0+@!()+!057(!!A-!#=!.,#(#6#0!(,/6+7!57!#$0&!./,(5/0!/$1!6#$(/5$7!(8#!7(+.7!#$0&;!<)+!=5,7(!
.,#(#6#0!(,/6+!LU1U1R1\1&LC1]:'P^_:D\M1RMM!-+/$7!()/(!5$!()+!=5,7(!7+775#$!/$1!/(!()+!=5,7(!.,#(#6#0!7(+.@!
'7+,!R!7+$17!-+77/%+!LC1]:'P^_:D\M1R! (#!7+,:+,!\;!<)+!7+6#$1!.,#(#6#0!(,/6+!LU1U1I(1\1LKV1L]:$^_:D
\M1KUMM! -+/$7! ()/(! 5$! ()+! =5,7(! 7+775#$! /$1! /(! ()+! =5,7(! .,#(#6#0! 7(+.@! ()+! /((/63+,! I(! 5$(+,6+.(7! ()+!
-+77/%+!7+$(!5$!()+!=5,7(!(,/6+@!/$1!-#15=5+7!5(!(#!LKV1]:$^_:D\M1KU!8)56)!57!1+05:+,+1!(#!\;!!

!
!

!
!
!
!
!
!
!
!
!

V5%',+!I[!<)+!=0#8!#=!-+77/%+7!=#,!()+!-/$G5$G()+G-5110+!/((/63!
!

<#! /$/0&D+! ()+! /((/637! 5$!<EB@!8+! 6#$751+,! #$0&! ()+! 76)+1'0+! SU1V1V1U1U1V1V1UT!8)56)! 57!
60+/,0&!()+!+?+6'(5#$!#=!$#$G7+9'+$(5/0!>'(!/0(+,$/(5$%!7+775#$7!#=!()+!.,#(#6#0;!A(!7'==56+7!(#!6#$751+,!
#$0&! ()57! 76)+1'0+! (#! 500'7(,/(+! ()+! +==+6(5:+$+77! #=! #',! 4*B! -+()#1;! C()+,! 76)+1'0+7! 6/$! >+!
6#$751+,+1!(##!/7!15==+,+$(!5$.'(!./,/-+(+,7;!!

S+!6#$751+,!=#',!35$17!#=!(8#!6#$6',,+$(!7+775#$7!8)56)!/,+!/7!=#00#87;!
UF! LU1R1C1\1L:U1:V1:W1:YM1QM&`&LV1I(1I(1\1L:U1:V1:W1:YM1QM&
VF! LU1R1I(1\1L:U1:V1:W1:YM1QM`&LV1I(1C1\1L:U1:V1:W1:YM1QM&
WF! LU1I(1C1\1&L:U1:V1:W1:YM1QM`&LV1R1I(1\1L:U1:V1:W1:YM1QM&
YF! LU1I(1I(1\1&L:U1:V1:W1:YM1QM`&LV1R1C1\1&L:U1:V1:W1:YM1QM&

8)+,+!cI@!cJ@!cK!/$1!cM!/,+!1576'77+1!.,+:5#'70&;!
A$! 7+775#$! LU1R1C1\1L:U1:V1:W1:YM1QM@! ()+! /((/63+,! >+)/:+7! /7! /$! +?(+,$/0! #>7+,:+,! #$! ()+!

6#--'$56/(5#$!/-#$%7(!P@!\!/$1!b;!A$!7+775#$!LU1R1I(1\1L:U1:V1:W1:YM1QM@!()+!/((/63+,!5-.+,7#$/(+7!/!
,+7.#$1+,! (#! '7+,! P! /$1! 7+,:+,! b;! A$! 7+775#$! LU1I(1I(1\1L:U1:V1:W1:YM1QM@! ()+! /((/63+,! 5-.+,7#$/(+7!
>#()!P!/$1!\!(#!7+,:+,!b;!<)'7@!()+,+!/,+!(),++!+?.0565(!,#0+7!#=!#',!/((/63+,![!/$!+?(+,$/0!#>7+,:+,!/$1!
5-.+,7#$/(#,7!=#,!5$5(5/(#,!/$1!,+7.#$1+,;!<)+!,#0+!#=!7+,:+,!5-.+,7#$/(5#$!57!5-.0565(0&!+$/>0+1@!>'(!
5(!57!157/>0+1!5$!()+!7+775#$!8)+,+!>#()!P!/$1!\!/,+!5-.+,7#$/(+1;!!

<)+7+! =#',! 6#$6',,+$(! 7+775#$7! /,+! /00! .#775>0+! 7+775#$7! ,+%/,15$%! (#! ()+! %#/0! #=! ()+! '7+,!
5-.+,7#$/(5#$!/((/63;!!!!
!
L<><><"I)*"&,#"1*790"J'+$("

!
C',!4*B!%,/.)!-#1+0! =#,!<EB!+?(+$17! ()+!4*B!%,/.)!-#1+0! 5$! HIML!#$!-/$&!577'+7! (#!

.,#:51+!()+!$+8!-+()#1#0#%&!1576'77+1!5$!7+6(5#$!M;I;!<)+!4*B!%,/.)!-#1+0!6#$757(7!#=!=#',!0+:+07[!
(#.@!+$(5(&@!7'>G+$(5(&!/$1!6#$(,#0;!<)+!(#.!0+:+0!7)#87!()+!5$(+,/6(5#$!>+(8++$!/00!./,(5+7!5$60'15$%!
()+!/((/63+,;!<)+!+$(5(&!0+:+0!7)#87!()+!1+(/50!#=!()+!#:+,/00!>+)/:5#',!#=!+/6)!./,(&!/66#,15$%!(#!()+!
.,#(#6#0@! /$1! ()+! 7'>G+$(5(&! 0+:+0! 7)#87! ()+! 1+(/50! #=! /! 7.+65=56! >+)/:5#',! #=! /! ./,(&;!<)+! 6#$(,#0!
0+:+0!6#$(,#07!()+!+?+6'(5#$!#=!()+!-#1+0!/66#,15$%!(#!/$!5$.'(!76)+1'0+;!!
!

90

!"

#$$%&'()

*"$+$,-

*"$+$,-

*"$+$,.

*"$+$,.

*"$+$,#

*"$+$,#

/0

1($23)'

/4

1($23)'

/5

1($23)'

/6

1($23)'

/7

1($23)'

/8

1($23)'

/9

1($23)'

/:
1($23)'

*"$+$,#

*"$+$,.

*"$+$,-

#$$%&'()

!
V5%',+!J[!<#.!0+:+0!

9;$<=<9

9;>+9?+5?5@AA
9;>+4?+8?+7@ 9;>+9?+5A9?B@AA

9;>+4?+8?+7@

9;<9

C9
D<9EFDG?=+9HIJ=<9?=BEH+5?=+5EH4?
=+K=+9H9=$I("=+4H5=(<L(=+4H9?=+7H5G

/5
L&I(M&I(

/9

LNO<%&(M LNO<%&(

L&I(

9;>9?B?5@=AA=9;>5?B?5@

9;D9?5?5?9?9?5?5?9G

!
V5%',+!K[!Z$(5(&!P!

9;KLL>+9?+J9?+J5?L)&?J(L$@

9;P+9

9;><'9?<'5QQD'9G?<'4?$)@

9;><'9?<'5?<'4?$)@

9;>+9?8?9@

9;>+9?9?9@9;>+9?9?9@

9;>+9?8?5@9;>+9?8?9@

9;>+9?9?B@

'9

9;%'>J(L$?'5@AA
9;KLL>+9?+J9?+J5?L)&?J(L$@

>'9?'5@L&

9;>+9?8?-?#?OP5>+?L&@@

9;KLL>+9?#?+J5?L)&?J(L$@

>+9?9?+J9?-?OP+>P+9@@9;>>J(L$?>'9?O'@@?L)&@

O'

9;%'>J(L$9?'9@AA
9;KLL>+5?#?+J5?L)&?J(L$@

C7C8

D+HJ(L$G

C4C9

D+5H+9?==J(L$9HJ(L$G

/0
R3"K

R1S

C)5
C)%&(
*C)%&(

C)
C)%&(
*C)%&(

M/5
LNO<%&(

M

M/9
LNO<%&(

M

/5B

T

/97

MR

/90
R3"K

R1S

/98
!"

1($23)'

/94
R3"K

R1S

/59
UV$

1($23)'

/96

W!

/999;TXO

/T

/9B
R3"K

R1S

R3"K

UV$

R3"K

!"

R3"K

LNO<%&(LNO<%&(

C)%&(

C)%&(

R3"K

9;%'>.?T%X@AA
9;Y'>#?T%Y@AA
9;KLL>9?!"?!"?#?.@AA
9;KLL>5?#?.?#?.@

9;><'9?<'5?<'4?$)QQD>+9?9?+J9?-?OP+>P+9@@G@

9;><'9?<'5?<'4?$)@

&
V5%',+!M[!Z$(5(&!P!

!

91

V5%',+! J! 7)#87! ()+! (#.! 0+:+0;! <)+,+! /,+! M! +$(5(5+7! 5$! #',! -#1+0! 8)56)! /,+! P@! \@! b! /$1!
/((/63+,!I(;!P00!-+77/%+7!()/(!/,+!+?6)/$%+1!>+(8++$!/00!'7+,7!TP@!\!/$1!bU!./77!(),#'%)!()+!/((/63+,!
I(;!V5%',+!K!7)#87!()+!6#$(,#0!0+:+0;!<)+!5$.'(!76)+1'0+!SU1V1V1U1U1V1V1UT!57!%5:+$!/(!()+!*%B+!.0/6+;!
<)+!.0/6+!>D39'%+!3++.7!7+775#$!7(/(+7!8)+,+!/!7+775#$!7(/(+!6#$757(7!#=!T>$)1&>31&>.U!8)+,+!>$)!-+/$7!
()+!7+775#$!51+$(5(&@!>3!-+/$7!()+!6#'$(+,!#=!.,#(#6#0!7(+.7!/$1!>.!-+/$7!7(/(+7;!<)+,+!/,+!(),++!7(/(+7!
8)56)!/,+!Y!T,+/1&U@!I!T+?+6'(5$%U!/$1!J!T5$/6(5:+!#,!=5$57)+1U;!V#,!+?/-.0+@!7(/(+!TI@I@IU!-+/$7!()/(!
()+!7+775#$!I!57!1',5$%!()+!+?+6'(5#$!/(!()+!=5,7(!.,#(#6#0!7(+.;!A$5(5/00&@!8+!)/:+!(8#!7+775#$!7(/(+7[!
TI@Y@JU! /$1! TJ@Y@JU;! <,/$75(5#$! <I! /6(5:/(+7! ()+! +?+6'(5#$! #=! /! 7+775#$! /(! /! (5-+! /66#,15$%! (#! ()+!
76)+1'0+@! /$1! /07#! 5$6,+-+$(7! ()+! 6#'$(+,! #=! .,#(#6#0! 7(+.7! (#! >+! +?+6'(+1;! P7! /! ,+7'0(! #=! ()+!
/6(5:/(5#$@!()+!.,#(#6#0!7(+.!/(!()+!6#'$(+,!57!+?+6'(+1;!!

V5%',+!M!7)#87! ()+!+$(5(&! 0+:+0! =#,!P;!<,/$75(5#$7!<I!/$1!<K!/,+!=#,!6,+/(5$%!()+!-+77/%+!
7+$(!/(! ()+!=5,7(!7(+.!#=! ()+!.,#(#6#0@!8)+,+/7! (,/$75(5#$7!<M!/$1!<N!/,+!=#,!.,#6+775$%! ()+!-+77/%+!
,+6+5:+1!/(!()+!0/7(!7(+.;!<)+!.0/6+!6"(5!7(#,+7!/!7+775#$!6#$=5%',/(5#$!8)56)!6#$757(7!#=!5>>1&'<!/$1!
0<!(#3+$7!8)+,+!5>>L>$)1&$U1&$V1&$W1&$YM!-+/$7!()/(!5$!7+775#$!51+$(5(&!>$)1&$U!/$1!$V!/,+!51+$(5(5+7!#=!()+!
/6('/0! 5$5(5/(#,! /$1! /6('/0! ,+7.#$1+,@! ,+7.+6(5:+0&@! /$1! $W! /$1! $Y! /,+! 51+$(5(5+7! ()/(! $U! /$1! $V! '7+@!
,+7.+6(5:+0&@! 5$! ()+!-+77/%+;! <#3+$!'<L$)1<M!-+/$7! ()/(! <! 57! /! 7)/,+1! 3+&! >+(8++$!P! /$1! $)@! /$1!
0<L$)1<M!1+76,5>+7!/!7)/,+1!3+&!<!>+(8++$!\!/$1! $)!75-50/,0&;!<)+!.0/6+!.-'%+!7(#,+7!/$!/((/63!(,/6+!
8)+$!P!7+$17!/!-+77/%+!(#!b;!!<,/$75(5#$!<I!57!+$/>0+1!5=!7+775#$!7(/(+!57!L$U1U1aM!/$1!P!57!()+!/6('/0!
5$5(5/(#,!5$!7+775#$!$U;!P=(+,!()+!7+775#$!$U! 57!+?+6'(+1@!5(7!7+775#$!7(/(+!>+6#-+7!L$U1U1UM;!<,/$75(5#$!
<M!57!(#!:/051/(+!/!,+6+5:+1!-+77/%+@!/$1!<N!57!(#!1+6,&.(!()+!,+6+5:+1!65.)+,(+?(;!P=(+,!()+!7(+.!M!57!
(+,-5$/(+1@!5(7!7+775#$!7(/(+!>+6#-+7!L$U1Y1VM;!
!
L<><G<"R)$*.$8"
!

P=(+,! /! 7(/(+! 7./6+! 57! 6#-.'(+1! =#,! +/6)! 6#$=5%',/(5#$@!8+! 7+/,6)! =#,! /((/63! 7(/(+7! 5$! ()+!
7(/(+! 7./6+;! P7! 1576'77+1! .,+:5#'70&@! /((/63! 7(/(+7! /,+! 6)/,/6(+,5D+1! >&! :'0$+,/>505(&! +:+$(7;! A(! 57!
7(,/5%)(=#,8/,1! (#! 6#$7(,'6(! 9'+,5+7! (#! 1+(+6(! ()+! 6#->5$+1! :'0$+,/>505(&! +:+$(7;! `#8+:+,@! #',!
-+()#1!57!()/(!9'+,5+7!/,+!/..05+1!(#!#$0&!(+,-5$/0!7(/(+7!#,!$#1+7!5$!()+!7(/(+!7./6+!5$!#,1+,!(#!:+,5=&!
5=!6+,(/5$!6#$15(5#$7!/,+!-+(;!<)+! (+,-5$/0!7(/(+7!/,+!7(/(+7!8)56)!1#!$#(!)/:+!/$&!=',()+,!.#775>0+!
6#-.'(/(5#$@!/$1! ()+&!-+/$!7(/(+7!/(! ()+!6#-.0+(5#$!#=! ()+!.,#(#6#0!+?+6'(5#$;!B#(+!()/(!8)50+!8+!
6#$751+,! (+,-5$/0! 7(/(+7@! P0GPDD#$5! +(;! /0;! 5$! HIML! 6#$751+,! /00! 7(/(+7! 8)56)! /,+! '$$+6+77/,&! /$1!
5$+==565+$(;!!

<)+!=#00#85$%!7)#87!/!9'+,&!=#,!()+!=5,7(!>/756!:'0$+,/>505(&!+:+$(;!!
!

@'9&!+'5N")+>X!$>.2+');'-<$(#>LMb&
5,(&*+%-+%/c$"9'.$"(UL<E:M&E&
N")+&9$>.&&
X&_-+)N")+>&L!+'5N")+>1&&
&&&&&&&&&&&&&&&&&&&&&&&5(&(&Xd&L%5L%:L<M1&;'-<F*/42+%e_W&U&(M&d&aM1&&
&&&&&&&&&&&&&&&&&&&&&&&N"!4.Mb!

!
<)+!*+%-+%/c$"9'.$"(UL:'PM!.,#1'6+7!/!7+(!#=!/00!(+,-5$/0!$#1+7!5$!()+!7(/(+!7./6+!8)+,+!()+!

3+&!:'P!57!.,+7+$(!/(!()+!/((/63+,F7!1/(/>/7+!8)56)!57!,+.,+7+$(+1!>&!()+!.0/6+!$'->+,!*K;!
<)+!=#00#85$%!7)#87!/!9'+,&!=#,!()+!7+6#$1!6/7+!#=!()+!7+6#$1!>/756!:'0$+,/>505(&!+:+$(7;!!

!
5,(&*+%-+%/c$"9'.$"(VL<E:M&E&
N")+&9$>.&&
X&_-+)N")+>&L!+'5N")+>1&
&&&&&&&&&&&&&&&&&&&&&&5(&(&Xd&L%5L<1&;'-<F7(.$./Re_Va&U&(M&d&aM1&
&&&&&&&&&&&&&&&&&&&&&&N"!4.Mb!

!
<)+!*+%-+%/c$"9'.$"(VL:'PM!.,#1'6+7!/!7+(!#=!/00!(+,-5$/0!$#1+7!5$!()+!7(/(+!7./6+!8)+,+!()+!

3+&!:'P! 57! .,+7+$(! /(!PF7! 1/(/>/7+! /=(+,! ()+! 6#-.0+(5#$! #=! ()+! .,#(#6#0;!B#(+! ()/(!PF7! 1/(/>/7+! 57!
,+.,+7+$(+1!>&!()+!.0/6+!$'->+,!*JY;!

2#@! /! 9'+,&! (#! 1+(+6(! ()+! 6#->5$+1! :'0$+,/>505(&! +:+$(7! 6/$! >+! 6,+/(+1! >&! /..0&5$%! ()+!
5$(+,7+6(5#$!#$!()+!9'+,5+7!85()!/..,#.,5/(+!3+&7;!V#,!+?/-.0+@!()+!6#->5$+1!+:+$(!I!57!#>(/5$+1!>&!
()+! 5$(+,7+6(5#$!#$! ()+!9'+,5+7!*+%-+%/c$"9'.$"(UL:'0M!/$1!*+%-+%/c$"9'.$"(VL:'0M;!B#(+! ()/(!8+!1#!

92

$#(!$++1!(#!9'+,&!=#,!\F7!6#--5(-+$(!#$!/!7+775#$!3+&!75$6+!\!/08/&7!6#--5(7!#$!3+&!:'0!1'+!(#!
()+!.,#(#6#0!7.+65=56/(5#$;!!

!
L<><L<"I:-7.6.61"7--75@"-*75$8"
!

P=(+,! ()+! /((/63! 7(/(+7! /,+! =#'$1! >&! '75$%! ()+! 9'+,5+7@! 8+! +?(,/6(! /((/63! (,/6+7! 8)56)!
1+76,5>+!)#8!()+!/((/63+,!6/,,5+7!#'(!()#7+!/((/637!7'66+77='00&!7(+.!>&!7(+.;!C',!-+()#1!(#!+?(,/6(!
/((/63!(,/6+7!57!:+,&!+==565+$(;!25$6+!7'6)!/$!/((/63!(,/6+!57!,+6#,1+1!5$(#!/!%0#>/0!='75#$!.0/6+!8)50+!
()+!.,#(#6#0!+?+6'(5#$!.,#6++17!7(+.!>&!7(+.;!<)'7@!/$!/((/63!(,/6+!6/$!>+!#>(/5$+1!=,#-!()+!%0#>/0!
='75#$!.0/6+!5$!/$!/((/63!7(/(+!5--+15/(+0&;!B#(+!()/(!5$!#()+,!4*B!/..,#/6)+7!=#,!7+6',5(&!.,#(#6#07@!
/$!+?.+$75:+!6#-.'(/(5#$!57!,+9'5,+1!(#!=5$1!/!./()!=,#-!/$!5$5(5/0!7(/(+!(#!/$!/((/63!7(/(+@!/$1!()+$!(#!
+?(,/6(!,+0+:/$(!5$=#,-/(5#$!=,#-!()+!./()!(#!6,+/(+!/$!/((/63!(,/6+;!
!
L<><N<"!--75@"&(788.3.57-.'6""
!

g7'/00&@!()+,+!6/$!>+!/!)'%+!$'->+,!#=!/((/63!7(/(+7!=#'$1!5$!/!7(/(+!7./6+;!A$!=/6(@!8+!=#'$1!
KOY!15==+,+$(!/((/63!7(/(+7!5$!/!7(/(+!7./6+!#>(/5$+1!=,#-!5$!()+!=5,7(!6#$=5%',/(5#$!/7!7)#8$!5$!(/>0+!I;!!

P=(+,!8+!#>(/5$!/!0/,%+!/-#'$(!#=!()+!=#'$1!/((/63!(,/6+7@!8+!/$/0&D+!()+-!-/$'/00&!=5,7(;!
S+!=#'$1!()/(!-/$&!#=!()+!/((/63!(,/6+7!7)/,+!/!75-50/,!./((+,$;!A$!%+$+,/0@!65.)+,(+?(7!()/(!/,+!7+$(!5$!
/00!-+77/%+7!/,+!+77+$(5/0!(#!()+!/((/637@!>'(!()+!51+$(5(5+7!#=!5$5(5/(#,!/$1!,+7.#$1+,!5$!()+!-+77/%+7!
()/(!/,+!-#15=5+1!>&!()+!/((/63+,!/,+!$#(!5-.#,(/$(;!`#8+:+,@!()+!51+$(5(5+7!#=!5$5(5/(#,!/$1!,+7.#$1+,!
5$! ()+! -+77/%+7! ()/(! /,+! 7+$(! =,#-! P! 5$! 7(+.! I@! 7+$(! (#! \! 5$! 7(+.! J! /$1! 7+$(! (#! P! 5$! 7(+.! M! /,+!
5-.#,(/$(;!<)+7+! 51+$(5(5+7! /,+!'7+1!>&! b! =#,! ()+!3+&!+?6)/$%+! ='$6(5#$!/$1!>&!P!/$1!\! =#,! 5$.'(!
:/051/(5#$;!A=!8+!5%$#,+!'$5-.#,(/$(!./,(7!#=!.,#(#6#0!-+77/%+7!5$!.,#(#6#0!(,/6+7@!()+$!8+!#>(/5$!/!
(,/6+! ./((+,$;! \&! 6#$751+,5$%! (,/6+! ./((+,$7@! ()+! $'->+,! #=! /((/637! 57! 1+6,+/7+1! (,+-+$1#'70&! /7!
7)#8$!5$!(/>0+!I;!A$1++1@!()+!.,#6+77!(#!=5$1!(,/6+!./((+,$7!57!-/$'/0!/$1!.,#(#6#0G1+.+$1+$(;!

<)+$@!8+!6#$7(,'6(!/$!/((/63!./((+,$!=,#-!75-50/,!/((/63!(,/6+7;!P$!/((/63!./((+,$!6#$757(7!#=!
/! :'0$+,/>505(&! +:+$(! /$1! /! (,/6+! ./((+,$! =#,! ()+! +:+$(;! <)+! :'0$+,/>505(&! +:+$(! 57! ()+! ,+7'0(! #=! ()+!
/((/63@!/$1! ()+! (,/6+!./((+,$! 57!/! 057(!#=!-5$5-/0!.,#(#6#0! (,/6+7!8)56)! 0+/1!(#! ()+!/((/63;!P$!/((/63!
./((+,$!57!/!%+$+,/0!=#,-!#=!-/$&!/((/637!#=!()+!7/-+!35$1;!S+!/,%'+!()/(!()+!/((/63!./((+,$!57!-#,+!
7'5(/>0+!=#,!()+!.,#(#6#0!/$/0&757!()/$!/!1+(/50+1!/((/63!(,/6+;!!

S+!1+:+0#.!/$!/'(#-/(+1!/((/63!60/775=56/(5#$!-+()#1!(#!60/775=&!/!)'%+!/-#'$(!#=!/((/63!
(,/6+7!=#'$1!>&!'75$%!/((/63!./((+,$7;!!V5,7(@!%5:+$!/!6',,+$(!7+(!#=!/((/63!(,/6+7!(#!>+!60/775=5+1@!8+!
6,+/(+!/!$+8!/((/63!./((+,$!>&!(/35$%!()+!=5,7(!/((/63!(,/6+!5$!()+!7+(@!/$1!/11!()+!$+8!./((+,$!5$(#!/!
6',,+$(!7+(!#=!3$#8$!./((+,$7;!<)+$@!>&!'75$%!/!6',,+$(!7+(!#=!3$#8$!/((/63!./((+,$7@!8+!=50(+,!#'(!()+!
3$#8$! /((/63!./((+,$7! =,#-!/! 6',,+$(! 7+(! #=! /((/63! (,/6+7! (#! >+! 60/775=5+1;!P$1! ()+! .,#6+77! ,+.+/(7!
/%/5$!'$(50!()+,+!57!$#!#'(.'(!7+(!#=!/((/63!(,/6+7!(#!>+!60/775=5+1;!
!
L<><O<"#$%"!--75@8""
!

<)+!(/>0+!I!7)#87!()+!$'->+,!#=!/((/637!7(/(+7!T/$1!/((/63!(,/6+7U!/$1!/((/63!./((+,$7!=#'$1!
5$!+/6)!6#$=5%',/(5#$;!A$!(/>0+!I@!LR1CM&LI(1I(M!-+/$7!()+!=5,7(!6#$=5%',/(5#$!#=!(8#!6#$6',,+$(!7+775#$!
8)+,+!P!/$1!\!/,+!5$!()+!=5,7(!7+775#$@!/$1!I(LRM!/$1!I(LCM!/,+!5$!()+!7+6#$1!7+775#$;!P07#@!A-!/$1!_'.!
-+/$7! ()+!$'->+,!#=!/((/63!(,/6+7!/$1!/((/63!./((+,$7@!,+7.+6(5:+0&;!B#(+!()/(!#',!-+()#1!1#+7!$#(!
=5$1! /((/63! 7(/(+7! =#,! ()+! +:+$(7! I! /$1! K;!P07#@! /00! /((/63! (,/6+7! =#'$1! =,#-! ()+! 7+6#$1@! ()5,1! /$1!
=#',()!6#$=5%',/(5#$7!/,+!d'7(!7#-+!:/,5/$(!=#,-7!#=!()#7+!/((/63!(,/6+7!=,#-!()+!=5,7(!6#$=5%',/(5#$;!
<)+,+=#,+@!5$!()+!=#00#85$%!8+!1576'77!#$0&!()+!/((/637!=,#-!()+!=5,7(!6#$=5%',/(5#$;!!!
!
!
!
!
!
!
!
!

&
A'09+&UE&B'->+,!#=!P((/63!<,/6+7!/$1!*/((+,$7!

BS$6-">" BS$6-"L" BS$6-"N"
&'63.1)*7-.'68"

E*" ,7-" E*" ,7-" E*" ,7-"
I;!TP@\U!!TA$@A$U! KOY! IY! KOY! IY! KOY! IY!

J;!TP@A$U!TA$@\U! IMM! M! IMM! M! IMM! M!

K;!TA$@\U!TP@A$U! QJ! J! QJ! J! QJ! J!

M;!TP@\U!TA$@A$U! KO! I! KO! I! Y! Y!

93

!
\&!'75$%!#',!$+8!4*B!-+()#1@!8+!=#'$1!(8#!$+8!/((/637!#=!()+!<EB!.,#(#6#0!=#,!-'0(5.0+!

7+775#$7!#=!.,#(#6#0!+?+6'(5#$;!<)+!=5,7(!/$1!()+!7+6#$1!$+8!/((/63!57!5$!()+!6/(+%#,&!#=!()+!6#->5$+1!
:'0$+,/>505(&!+:+$(!M!/$1!N@!,+7.+6(5:+0&;!P07#@!8+!=#'$1!-/$&!5$(+,+7(5$%!:/,5/$(!=#,-7!#=!a#8+!/$1!
e#76#+F7!/((/63;!!

<)+! =5,7(! $+8! /((/63! 57! ()+! 6#->5$+1! :'0$+,/>505(&! +:+$(! M! 8)+,+! ()+! /((/63+,! 0+/,$7! ()+!
7+775#$!3+&!/$1!PF7!7+6,+(@!/$1!=##07!P!(#!6#--5(!(#!/!=/3+!3+&!8)56)!57!()+!/((/63+,F7!7+6,+(!:$;!<)+!
+:+$(!M!,+.,+7+$(+1!>&!S:'01:'PTS:$TS:'0T!0+/17!(#!/!35$1!#=!()+!-/$G5$G()+G-5110+!/((/637!5$!()/(!()+!
/((/63+,!'7+7!:$!(#!0+/,$!()+!6#--'$56/(5#$!=,#-!P!/$1!'7+!:'0!(#!6,+/(+!/!=/3+!6#--'$56/(5#$!(#!\;!
P7!/!,+7'0(@!()+!/((/63+,!0+/,$7!()+!6#--'$56/(5#$!>+(8++$!P!/$1!\@!>'(!>#()!P!/$1!\!()5$3!()/(!()+&!
6#--'$56/(+! (#! +/6)! #()+,;! A$! ()+! +:+$(! M@! 8+! =#'$1! IY! /((/63! ./((+,$7;! Z/6)! /((/63! ./((+,$!
,+.,+7+$(7!/!%,#'.!#=!75-50/,!/((/637!85()!/!705%)(!/$1!'$5-.#,(/$(!15==+,+$6+;!f'+!(#!()+!7./6+!05-5(@!
8+!1576'77!#$0&!7#-+!/((/63!./((+,$7!#$0&;!P!='00!1+(/50!#=!()+!/((/637!5$!<EB!57!1+76,5>+1!5$!HJIL;!
<)+!=#00#85$%!7)#87!()+!=5,7(!/((/63!./((+,$;!
!

UM! R& &I(L\M&E&LC1&]:'P^_:D\M1&R&
&&&&&&&&&&&&&&&&&&&&&I(L\M& &\&E&LKV1&]:$^_:D\M1&KU&
&&&&&&&&&&&&&U=M&&&I(LRM& &\&E&LKY1&]:$^_:D\M1&KW&
&&&&&&&&&&&&&V=M&&&\& &I(LCM&E&KW&

VM! \& &I(LCM&E&KU&
&&&&&&&&&&&&&&&&&&&&I(LCM& &C&E&R&

WM! C& &\&E&LKU1&]:'0^_:D\M1&KV&
&&&&&&&&&&&&&W=M&&&I(LCM& &\&E&LKW1&]:'P^_:D\M1&KY&
&&&&&&&&&&&&&Y=M&&&\&& &I(LRM&E&KY1&7:$L:'PM&

YM! \&& &I(LRM&E&KV1&7:$L:'0M&
&&&&&&&&&&&&&&&&&&&&I(LRM& &R&&E&C1&7:'PL:$M&

8)+,+!:$!57!/((/63+,F7!7+6,+(!3+&7;!
!

kI@!kJ@!kK! /$1!kM! 7(/$1! =#,! /,>5(,/,&! 51+$(5(5+7! ()/(! ()+! /((/63+,! 6,+/(+7! /$1!'7+7! 5$! ()+!
-+77/%+7!1',5$%!()+!/((/63;!A$!7(+.!IU@!()+!-+77/%+!()/(!P!7+$17!(#!b!57!-#15=5+1!>&!()+!/((/63+,;!<)+!
#,5%5$/0!-+77/%+!57!5$156/(+1!>&!P! !I(L\M@!>'(!()+!-#15=5+1!-+77/%+!>&!()+!/((/63+,!57!5$156/(+1!>&!
I(L\M! !b;!P07#@!()+!-+77/%+7!/(!7(+.7!JU!/$1!MU!/,+!-#15=5+1!>&!()+!/((/63+,;!!

A$!()57!/((/63!./((+,$@!()+!=5,7(!-+77/%+!/(!()+!=5,7(!7+775#$!57!-#15=5+1!(#!]:$^_:D\@!>'(!5(!57!
,+.0/&+1!/(!()+!()5,1!7(+.!5$!()+!7+6#$1!7+775#$;!<)+,+=#,+@!()+!/((/63+,!0+/,$7!>#()!:'0!/$1!:'P@!/$1!
()+!/((/63+,!7+$17!7:'PL:$M!/(!()+!=#',()!7(+.!5$!()+!=5,7(!7+775#$;!!

<)+!%#/0!#=!()+!=5,7(!/((/63!57!(#!0+/,$!3+&7!:'P!/$1!:'0!>+=#,+!()+!-+77/%+!/(!()+!0/7(!7(+.!57!
7+$(!(#!P;!P$1!/(!()+!0/7(!7(+.@!7:'PL:$M! 57!7+$(!5$7(+/1!(#!=##0!P!(#!6#--5(!(#!:$;!<)+!/((/63!6/$!>+!
'$1+,7(##1!>&! 6#$751+,5$%! ()+!3+&7! ()/(! /,+! +$6,&.(+1!>&! bF7! .'>056!3+&7! /(! 7(+.7!I! /$1!K! 5$!>#()!
7+775#$7;!\/7+1!#$!()#7+!3+&7@!()+!-+77/%+!/(!7(+.!M!6#$(/5$7!()+!3+&!/(!7(+.!K!8)56)!57!+$6,&.(+1!>&!
3+&!/(!7(+.!I;!P$1!5=!()+!3+&!/(!7(+.!I!57!3$#8$@!()+$!7#!57!()+!3+&!/(!7(+.!K;!!

A$! ()+! =5,7(! 7+775#$@!:$! /$1!:'0! /,+! '7+1! 5$! 7(+.7! I! /$1! K@! ,+7.+6(5:+0&@! /$1! 5$! ()+! 7+6#$1!
7+775#$@!:$!/$1!:'P!/,+!'7+1!5$!7(+.7!I!/$1!K@!,+7.+6(5:+0&;!<)+7+!6/$!>+!,+.,+7+$(+1!>&!()+!$#(/(5#$!
Lf:$1:'0d1f:$1:'PdM! 8)+,+! L_U1_VM! -+/$7! ()/(!_U! /$1!_V! /,+! 5$=#,-/(5#$! =#,! ()+! =5,7(! /$1! 7+6#$1!
7+775#$7@!,+7.+6(5:+0&;!<)'7@!()+!65.)+,(+?(7!#>(/5$+1!/(!()+!7(+.!M!5$!()+!=5,7(!/$1!7+6#$1!7+775#$7!/,+!
7:$L:'0M!/$1!7:$L:'PM@!,+7.+6(5:+0&;!2#@!()+!/((/63+,!#>(/5$7!()+!(/,%+(!3+&7!+/750&;!!

<)+!7+6#$1!/((/63!./((+,$!8)56)!6/$!>+!,+.,+7+$(+1!>&!Lf:$1:'Pd1f:$1:'0dM!57!75-50/,!(#!()+!
=5,7(! /((/63!./((+,$;!<)+!15==+,+$6+! 57!#$!7(+.7!KU@!MU@!KFU!/$1!MFU;!<)+!15==+,+$(!7(+.7! 5$! ()+!7+6#$1!
/((/63!./((+,$!/,+!7)#8$!/7!=#00#87;!
!

WM! C& &I(L\M&E&LKU1&]:'0^_:D\M1&KV&
&&&&&&&&&&&&&&&&&&&&&I(L\M& &\&E&LKU1&]:'P^_:D\M1&KV&
&&&&&&&&&&&&&W=M&&&I(LCM& &\&E&LKW1&]:'0^_:D\M1&KY&
&&&&&&&&&&&&&Y=M&&&\&& &I(LRM&E&KY1&7:$L:'0M&

YM! \&& &I(LRM&E&KV1&7:$L:'PM&
&&&&&&&&&&&&&&&&&&&&I(LRM& &R&&E&C1&7:'PL:$M&
!

94

<)+! ()5,1! /((/63! ./((+,$! 8)56)! 6/$! >+! ,+.,+7+$(+1! >&! Lf:$1:'0d1f:'P1:$dM! 57! 7)#8$! /7!
=#00#87;!

!
UM! R& &I(L\M&E&LC1&]:'P^_:D\M1&R&

&&&&&&&&&&&&&&&&&&&&&I(L\M& &\&E&LKV1&]:$^_:D\M1&KU&
&&&&&&&&&&&&&U=M&&&I(LRM& &\&E&LKY1&]:'P^_:D\M1&KW&
&&&&&&&&&&&&&V=M&&&\& &I(LCM&E&KW&

VM! \& &I(LCM&E&KU&
&&&&&&&&&&&&&&&&&&&&&&I(LCM& &C&E&R&

WM! C& &\&E&LKU1&]:'0^_:D\M1&KV&
&&&&&&&&&&&&&W=M&&&I(LCM& &\&E&LKW1&]:$^_:D\M1&KY&
&&&&&&&&&&&&&Y=M&&&\&& &I(LRM&E&KY1&7:'PL:$M&

YM! \&& &I(LRM&E&KV1&7:$L:'0M&
&&&&&&&&&&&&&&&&&&&&I(LRM& &R&&E&C1&7:'PL:$M&
!

<)+! 7+:+$! ,+-/5$5$%! /((/63! ./((+,$7! /,+! Lf:$1:'0d1f:'P1:'0dM1& Lf:$1:'Pd1f:'P1:'0dM1&
Lf:'P1:$d1f:$1:'0dM1& Lf:'P1:'0d1f:$1:'0dM1& Lf:'P1:'0d1f:$1:'PdM1& Lf:'P1:'0d1f:'P1:$dM! /$1!
Lf:'P1:$d1f:'P1:'0dMF!

<)+! 7+6#$1! $+8! /((/63! 57! ()+! 6#->5$+1! :'0$+,/>505(&! +:+$(! N! ,+.,+7+$(+1! >&!
S:'01:'PTS:'PTS:'0T;! <)+! +:+$(! N! 0+/17! (#! ()+! 75-50/,! 35$1! #=! ()+!-/$G5$G()+G-5110+! /((/637! (#! ()+!
+:+$(!M@!>'(!)+,+!()+!/((/63+,!'7+7!:'P! (#!0+/,$!()+!6#--'$56/(5#$!=,#-!P;!P7!/!,+7'0(@!()+!/((/63+,!
0+/,$7!()+!6#--'$56/(5#$!>+(8++$!P!/$1!\@!>'(!>#()!P!/$1!\!()5$3!()/(!()+&!6#--'$56/(+!(#!+/6)!
#()+,;!A$!()+!+:+$(!N@!8+!=#'$1!IY!/((/63!./((+,$7;!<)+7+!/((/63!./((+,$7!/,+!75-50/,!(#!()#7+!./((+,$7!
=#,!()+!+:+$(!M!+?6+.(!()/(!()+!0/7(!7(+.!#=!()+!=5,7(!7+775#$!57!6)/$%+!(#!()+!=#00#85$%;!
!

YM! \&& &I(LRM&&E&KV1[&
&&&&&&&&&&&&&&&&&&&&&I(LRM& &R&&E&C1&7:'PL:'PM!
!

4#$6+.('/00&@!()+!15==+,+$6+!>+(8++$!()+!=5,7(!$+8!/((/63!/$1!()+!7+6#$1!$+8!/((/63!57!()/(!
5$!()+!=#,-+,@!7:'PL:$M! 57!7+$(!(#!P!5$!()+!0/7(!7(+.@!>'(!5$!()+!0/((+,@!7:'PL:'PM! 57!7+$(!(#!P!5$!()+!0/7(!
7(+.;!2#@!'7+,!P!57!=##0+1!(#!6#--5(!#$!)57!#8$!7+6,+(;!!

V5$/00&@!8+!/07#!=#'$1!-/$&!5$(+,+7(5$%!:/,5/$(!=#,-7!#=!a#8+!/$1!e#76#+F7!/((/63!8)+,+!
()+!7+,:+,!b!6/$$#(!1+(+6(!()+!,+.0/&!/((/63!5$!()+!(8#!6#$6',,+$(!7+775#$7;!B#(+!()/(!5$!HJXL@!^)/$%!
/$1!a5'!1+(+6(+1!#$0&!#$+!:/,5/$(! =#,-!#=! ()57!35$1@!/$1!7#! ()+&!6/$!1+(+6(! 0+77!$'->+,!#=!/((/637!
()/$!#',!/..,#/6);!f'+!(#!7./6+!05-5(@!()+!1+(/507!#=!()+7+!:/,5/$(7!/,+!#-5((+1!)+,+;!!
!
L<><P<",$*3'*J765$"
!

<)+! (/>0+! J! 7)#87! ()+! 6#-.'(/(5#$! (5-+! /$1! ()+! 75D+! #=! /! 7(/(+! 7./6+! =,#-! +/6)!
6#$=5%',/(5#$;!A$!#',!+?.+,5-+$(@! ()+!6#-.'(/(5#$!#=!()+!7(/(+!7./6+!57!+?+6'(+1!#$!/!*4!85()!A$(+0!
4#,+J!f'#!J;KK!])D!85()!J!]\!#=!ePE;!!

!

&'63.1)*7-.'68" #'+$8" !"#$% &'()%*$)#+,%

I;!TP@\U!!TA$@A$U! IYM@KMO! IYX@MQO! XQO!

J;!TP@A$U!TA$@\U! QK@RYO! QQ@NOR! NJK!

K;!TA$@\U!TP@A$U! NI@JIJ! NJ@OKX! JRJ!

M;!TP@\U!TA$@A$U! KM@IOY! KN@YXN! IJY!
</>0+!J;!25D+!/$1!<5-+!#=!()+!%+$+,/(+1!7(/(+!7./6+7!

!
P(!-#7(@!5(!(/3+7!IO!-5$'(+7!(#!6#-.'(+!/!7(/(+!7./6+!(#!/$/0&D+!()+!/((/63;!!

!
L<><Q<"M.85)88.'6"
!

95

S+! :+,5=&! ()+! 6#-.0+(+$+77! #=! #',! -+()#1! >&!)/$17! /$1! =#'$1! ()/(! ()+! /((/63! ./((+,$7!
1576#:+,+1!=#,!()+!+:+$(7!M!/$1!N!/,+!6#-.0+(+!85()!,+7.+6(!(#!()+!/77'-.(5#$7!7(/(+1!5$!7+6(5#$!M;J;I;!
C',! /,%'-+$(! 57! /7! =#00#87;! 4#$751+,! ()+! /((/63! ./((+,$7! 5$! +:+$(! M! #$0&;! a+(! _! >+! Lf]:$1:'P^1&
]:'01:'P1:$^d1& f]:$1:'P^1&]:'01:'P1:$^dM! 8)56)! '7+7! /! 75-50/,! $#(/(5#$! (#! ()+! /((/63! ./((+,$!
,+.,+7+$(/(5#$;!_!-+/$7!()/(!5$!()+!=5,7(!7+775#$@!#$0&!()+!65.)+,(+?(7!#=!:$&/$1!:'P&/$1!()+!65.)+,(+?(7!
#=!:'01&:'P!/$1!:$!6/$!>+!7+$(!#,! ,+.0/&+1!/(!7(+.!I!/$1!/(!7(+.!K@!,+7.+6(5:+0&@!/$1!75-50/,0&! 5$! ()+!
7+6#$1!7+775#$;!40+/,0&@!()+7+!/,+!(,'+;!P$1!5(!57!+/7&!(#!:+,5=&!()/(!/00!#=!#',!/((/63!./((+,$7!/,+!d'7(!
/00! +$'-+,/(5#$7! =,#-!_! 8)56)! 0+/1! (#! ()+! /((/637;! B#(+! ()/(! +/6)! +$'-+,/(5#$! 57! 6#$7(,'6(+1! >&!
7+0+6(5$%!+/6)!.#775>0+!3+&!(#!.,#1'6+!/!65.)+,(+?(!5$!+/6)!7+775#$;!

Z?.0#,5$%!/00!.#775>0+!/0(+,$/(5$%!+?+6'(5#$7!85()5$!/!7(/(+!7./6+!57!+?.+$75:+!/$1!6/'7+7!/!
)'%+! 7(/(+! 7./6+;! A$! #',! +?.+,5-+$(@! 5(! (/3+7! -#,+! ()/$! O! 1/&7! (#! 6#-.'(+! 7'6)! /! 7(/(+! 7./6+;!
E#,+#:+,@! 7#-+! /0(+,$/(5$%! +?+6'(5#$7!-/&! >+! '$$+6+77/,&! >'(! ,+1'$1/$(;! V#,! +?/-.0+@! 76)+1'0+!
SV1V1V1U1U1U1V1UT! 57! 75-50/,! (#! 76)+1'0+! SV1V1V1V1U1U1U1UT! ,+%/,15$%! (#! /((/637! =#'$1! 75$6+! 5$! ()+!
=#,-+,@!()+!5$=#,-/(5#$!#>(/5$+1!=,#-!()+!(),++!7(+.7!5$!7+775#$!I!57!$#(!'7+='0!=#,!/$&!,+.0/&!/((/63!
#$!7+775#$!J;!B#(+!()/(!7(+.!M!6#$(/5$7!/!7)/,+1G3+&!65.)+,(+?(@!>'(!7(+.7!I!/$1!K!6#$(/5$!.'>056G3+&!
65.)+,(+?(7;!25-50/,0&@!76)+1'0+7!SU1U1V1V1U1V1U1VT!57!75-50/,!(#!SU1V1U1V1U1V1U1VT!75$6+!7(+.!J!5$!7+775#$!
I!6#$(/5$7!#$0&!.0/5$(+?(!8)56)!57!/0,+/1&!3$#8$!>&!/$!/((/63+,@!/$1!()'7!$#!5$=#,-/(5#$!/(!7(+.!J!5$!
7+775#$!I!57!'7+='0!=#,!/$&!,+.0/&!/((/63!#$!7+775#$!J;!!
!
L<G<"I)*"&,#"!67(28.8"3'*"/.57(.A8"B&4;",*'-'5'("
!
! A$!()57!7+6(5#$@!8+!1576'77!()+!/$/0&757!#=!Z42I!>&!'75$%!#',!4*B!-+()#1;!A$!=/6(@!#',!4*B!
=,/-+8#,3!=#,!()+!/$/0&757!#=!Z42I!57!75-50/,!(#!()+!=,/-+8#,3!=#,!<EB!1576'77+1!.,+:5#'70&;!2#@!
8+!1576'77!#$0&!()+!15==+,+$6+!>+(8++$!()+-;!P07#@!7#-+!$+8!/((/637!#$!Z42I!8500!>+!1576'77+1!5$!
7+6(5#$!M;K;J;!

!
L<G<;<"I)*"&,#"3*7J$%'*@"3'*"/.57(.A8"B&4;",*'-'5'("
!

<)+! /77'-.(5#$7! #=! ()+! .,#(#6#0! +?+6'(5#$! =#,! Z42I! /,+! 75-50/,! (#! ()#7+! /77'-.(5#$7! 5$!
1+=5$5(5#$!I!+?6+.(!=#,!/77'-.(5#$!N;!V#,!Z42I@!()+!7/-+!5$5(5/(#,!/$1!,+7.#$1+,!-/&!./,(565./(+!5$!
-#,+!()/$!#$+!7+775#$;!!!

S+!/77'-+!(8#!35$17!#=!/((/63+,7!8)56)!/,+!I!/$1!R-;!<)+!/((/63+,!I!57!+?/6(0&!()+!7/-+!/7!
()+! /((/63+,! I(! 1576'77+1! 5$! 7+6(5#$! M;J;I;! `#8+:+,@! R-! 57! /! 15==+,+$(! 35$1! #=! /((/63+,7@! /$1! 5(! 57!
6#$751+,+1!/7!/!6#$7.5,+1!'7+,!85()!/((/63+,!I;!A$!=/6(@!R-!57!/!./,(565./(5$%!'7+,!5$!()+!7&7(+-!8)#!)/7!
/00!()+!/>505(5+7!1576'77+1!5$!1+=5$5(5#$!J@!+?6+.(!=#,!()+!/77'-.(5#$!I;!P$!/((/63+,!8)#!)/7!()+!/>505(&!
5$! ()+!/77'-.(5#$!I!6/$!>+)/:+!/7!/$!+?(+,$/0!#>7+,:+,!8)#!(,5+7! (#!-/$5.'0/(+!-+77/%+7!>+(8++$!
'7+,7!5$!/!7+775#$;!B#(+!()/(!()+!+?(+,$/0!#>7+,:+,!57!$#(!/!'7+,!5$!()+!7+775#$;!\'(@!R-!57!/!-/0565#'7!
'7+,!8)#!./,(565./(+7!5$!/!7+775#$!/$1!6#$7.5,+7!85()!/$!/((/63+,!>&!7)/,5$%!7#-+!5$=#,-/(5#$;!<)+7+!
(8#!/((/63+,7!6#00/>#,/(+!(#!6)+/(!/!'7+,;!B#(+!()/(!#$+!/((/63!=#'$1!>&!\/#!+(;!/0;!HJRL!5$:#0:+7!()+7+!
(8#!35$17!#=!/((/63+,7;!!!

P((/63!7(/(+7! 5$!Z42I!/,+!6)/,/6(+,5D+1!>&!:'0$+,/>505(&!+:+$(7;!<)+,+!57!#$+!:'0$+,/>505(&!
+:+$(! 5$!Z42I!.,#(#6#0!8)56)! 57!'$=/5,! 7(/(+7;!P$!'$=/5,! 7(/(+!-+/$7! ()/(!#$+!./,(&@!8)#! 57! +5()+,!
5$5(5/(#,! #,! ,+7.#$1+,@! %+(7! /$#()+,! ./,(&! 6#--5(-+$(@! >'(! ()+! 0/((+,! 1#+7! $#(! %+(! ()+! =#,-+,!
6#--5(-+$(;!A$!=/6(@!()+,+!/,+!(8#!35$17!#=!'$=/5,!7(/(+7!8)+,+!()+!5$5(5/(#,!)/7!/$!/1:/$(/%+!/$1!()+!
,+7.#$1+,!)/7!/$!/1:/$(/%+@!,+7.+6(5:+0&;!!
!
M$3.6.-.'6"T"U"<)+!:'0$+,/>505(&!+:+$(7!5$!Z42I!

<)+,+!/,+!(8#!'$=/5,!7(/(+7;!
IU! <)+!5$5(5/(#,!)/7!()+!,+7.#$1+,F7!6#--5(-+$(@!>'(!()+!,+7.#$1+,!1#+7!$#(!)/:+!()+!5$5(5/(#,F7!

6#--5(-+$(;!! & & & & & &&&&&&&&&&&&&LR#'$(R)@U!
JU! <)+!,+7.#$1+,!)/7!()+!5$5(5/(#,F7!6#--5(-+$(@!>'(!()+!5$5(5/(#,!1#+7!$#(!)/:+!()+!,+7.#$1+,F7!

6#--5(-+$(;!! ! ! !!TC#'$(R)@U!
!
V5,7(@! 8+! 6#-.'(+! (8#! >/756! :'0$+,/>505(&! +:+$(7! 8)+,+! ()+! ,+7.#$1+,!)/7! 5$5(5/(#,F7!

6#--5(-+$(!TR6"44$.U!/$1! ()+! 5$5(5/(#,!)/7!,+7.#$1+,F7!6#--5(-+$(!TC6"44$.U;!<)+$@!=/5,!7(/(+7!
TC".B6"44$.U!/,+!6#-.'(+1!>&!TR6"44$.& &C6"44$.U;!V5$/00&@! ()+! (8#!-/5$!:'0$+,/>505(&!+:+$(7!

96

6/$! >+! 6#-.'(+1! >&! R#'$(R)@& X& LC6"44$.& g& C".B6"44$.M! /$1! C#'$(R)@& X& LR6"44$.& g&
C".B6"44$.M;!!

<)+!9'+,5+7!(#!6#-.'(+!R6"44$.!/$1!C6"44$.!/,+!7(,/5%)(=#,8/,1;!V#,!+?/-.0+@!(#!#>(/5$!
R6"44$.@!8+!8,5(+! /! 9'+,&! (#! =5$1! /! 7+(! #=! /00! (+,-5$/0! $#1+7! 5$! ()+! 7(/(+! 7./6+!8)+,+! 5$5(5/(#,F7!
6#--5(-+$(@!8)56)! /,+!2A]PT4@^U! /$1!E@! /,+! .,+7+$(! /(! ,+7.#$1+,F7!1/(/>/7+;!P07#!#()+,!9'+,5+7!
6/$!>+!6,+/(+1!+/750&;!!

!
L<G<><"#$%"7--75@8""

!
S+!=#'$1!#$+!$+8!75$%0+G7+775#$!/((/63!#=!E56/05F7!Z42I@!(8#!$+8!-'0(5G7+775#$!/((/637!5$!

E56/05F7!Z42I!/$1!(),++!$+8!/((/637!#=!\/#F7!-#15=5+1!:+,75#$!#=!Z42I;!f'+!(#!()+!7./6+!05-5(@!8+!
1576'77!#$0&!7#-+!$+8!/((/637!5$!-'0(5.0+!7+775#$7;!!

A$! ()+! =#00#85$%@! TIU@! TJU@! TKU@!l!1+76,5>+!.,#(#6#0!7(+.7! 5$! ()+! =5,7(! 7+775#$!>'(! TIFU@! TJFU@!
TKFU@!l!1+76,5>+!7(+.7!5$!()+!7+6#$1!7+775#$;!

S+!1+76,5>+!(8#!$+8!/((/637!5$!()+!#,5%5$/0!Z42I!.,#(#6#0;!A$!()+!=5,7(!/((/63@!/!-/0565#'7!
,+7.#$1+,!%/5$7!/$!/1:/$(/%+!#:+,!/!8+00G>+)/:+1!5$5(5/(#,!5=!,/$1#-!;!57!,+'7+1!5$!()+!(8#!7+775#$7;!
A$! ()+! 7+6#$1! /((/63@! /$! 5$5(5/(#,! %/5$7! /$! /1:/$(/%+! #:+,! /! 8+00G>+)/:+1! ,+7.#$1+,! 5=! ()+! 7/-+!
6#$(,/6(!57!75%$+1!5$!()+!(8#!7+775#$7;!!

A$! ()+! =5,7(! /((/63@! /! 8+00G>+)/:+1! 5$5(5/(#,! P! 6#--'$56/(+7! 85()! ()+! 7/-+! -/0565#'7!
,+7.#$1+,!I!5$!(8#!7+775#$7;!<)+!7/-+!,/$1#-!;!57!'7+1!5$!>#()!7+775#$7!>'(!15==+,+$(!6#$(,/6(7!/,+!
'7+1! 5$! ()+! (8#! 7+775#$7;! <)+! /((/63+,! TIU! 75-.0&! 5%$#,+7! (#! ./,(565./(+! 5$! #$+! 7+775#$;! 25$6+! ()+!
,/$1#-! E! =,#-! /$#()+,! 7+775#$! 6/$! >+! '7+1! (#! 6#$7(,'6(! ()+! 7/-+! ^@! /((/63+,! I!)/7! +$#'%)!
5$=#,-/(5#$!(#!7)#8!()/(!P!)/7!6#--5((+1!(#!I!5$!>#()!7+775#$7;!<)+!/((/63!57!7)#8$!/7!=#00#87;!

!
UM! R& &I&E&*IJRL6U1hUM&iB+-+&hUX7N6AA_LR1I14'UM&
U=M&&&R& &I&E&*IJRL6V1hUM&iB+-+&hVX7N6AA_LR1I14'VM&
V=M&&&I& &R&E&N".B$(#&
VM! I& &R&E&*IJIL6U1hUM1&*IJILhUM&&
WM! R& &I&E&4'U&
"
B#(+!()/(!7(+.!JFU!-+/$7!()/(!A!1#+7!$#(!7+$1!/$&!-+77/%+!(#!P@!/$1!()'7!()+!7+6#$1!7+775#$!

57!/>#,(+1;!!
A$!()+!7+6#$1!/((/63@!/!8+00G>+)/:+1!5$5(5/(#,!6#--'$56/(+7!85()!/!-/0565#'7!,+7.#$1+,!I!5$!

#$+! 7+775#$! >'(! 6#--'$56/(+7! 85()! /! 8+00G>+)/:+1! ,+7.#$1+,! \! 5$! /$#()+,! 7+775#$;! <)+! 7/-+!
6#$(,/6(!57!'7+1!5$!()+!(8#!7+775#$7;!<)+!-/0565#'7!,+7.#$1+,!I!,+.0/&7!PF7!75%$/(',+!=#,!7+775#$!85()!
I!(#!()+!7+775#$!85()!\;!f'+!(#!()+!1'.056/(+!6#$(,/6(@!P!)/7!\F7!6#--5(-+$(;!`#8+:+,@!\!1#+7!$#(!
)/:+! PF7! 6#--5(-+$(! 75$6+! PF7! 75%$/(',+! 57! ,+.0/&+1@! /$1! ()'7! ^! 57! $#(! 6#,,+6(;! B#(+! ()/(! <<*!
6/$$#(!,+7#0:+!()+!157.'(+!1'+!(#!()+!5$6#,,+6(!^;!<)+!/((/63!57!7)#8$!/7!=#00#87;!

!
IU! R& &I&E&*IJRL6U1hUM&iB+-+&hUX7N6AA_LR1I14'UM!
U=M&&R& &ILCM&E&*IJRL6U1hVM&iB+-+&hVX7N6AA_LR1C14'VM&
&&&&&&ILRM &C&E&*IJRL6U1hUM&
V=M&&C& &R&E&*IJCL6U1hUM1&*IJCLhUM&
VM! I& &R&E&N".B$(#&
W=M&&R& &C&E&4'V&&
Y=M&&C& &AA_&E&R1&C1&*IJCL6U1hUM1&*IJCLhUM&&
Z'=M&AA_ &R&E&7--"-&
Z0=M&AA_& &C&E&7--"-!
!
25$6+!I!1#+7!$#(!7+$1!/$&!-+77/%+!/(!7(+.!JU!5$!()+!=5,7(!7+775#$@!()+!7+775#$!57!5%$#,+1;!A$!

7(+.7! N/FU! /$1! N>FU@! /$! +,,#,! #66',7! 1'+! (#! ()+! 5$6#,,+6(! ^;! <)'7@! $#! -+77/%+! 57! 7+$(! =,#-! <<*!
/66#,15$%!(#!E56/05F7!Z42I!.,#(#6#0;!!

S+! 1576'77! #$+! $+8! /((/63! 5$!\/#F7!-#15=5+1!Z42I!.,#(#6#0! #$0&;! A$! ()+! /((/63@! /!8+00G
>+)/:+1! 5$5(5/(#,! 6#--'$56/(+7! 85()! -/0565#'7! ,+7.#$1+,! I! 5$! #$+! 7+775#$@! >'(! ()+! -/0565#'7!
,+7.#$1+,!6#$7.5,+7!85()!R-!5$!/$#()+,!7+775#$;!P7!/!,+7'0(!#=!()+!/((/63@!/!-/0565#'7!,+7.#$1+,!%+(7!/!
8+00G>+)/:+1! 5$5(5/(#,F7! 6#--5(-+$(@! >'(! ()+! 5$5(5/(#,! #>(/5$7! R-F7! 6#--5(-+$(! 5$7(+/1;! P=(+,! I!

97

,+6+5:+7!PF7! 75%$/(',+! 5$! 7(+.! I@! I! =#,8/,1!PF7! 75%$/(',+! (#!R-! /$1!R-! ,+9'+7(7! <<*! (#! ,+7#0:+! /!
157.'(+!>&!,+.0/&5$%!R-F7!75%$/(',+;!<)'7@!P!8500!#>(/5$!R-F7!6#--5(-+$(!5$7(+/1@!>'(!I!8500!#>(/5$!
PF7!6#--5(-+$(;!I!%+(7!PF7!6#--5(-+$(!>+6/'7+!<<*!57!=##0+1!(#!577'+!,/$1#-!E!(#!I!>&!()+!)+0.!#=!
R-;!<)+!/((/63!57!7)#8$!/7!=#00#87;!!

!
UM! R& &I&E&*IJRL6U1hUM&iB+-+&hU&X&7N6AA_LR1I14'UM&&
I(&.B+&>+%"()&>+>>$"(1&I&>+()>&*IJRL6U1hUM&."&R-&>+%-+.9/F&&
VM! I& &R&E&N".B$(#&
Y=M&&R-& &AA_&E&R1&R-1&*IJR-L6U1hUM1&*IJR-LhUM&
Z=M&&AA_& &R&E&*IJR-L6U1hUM1&*IJR-LhUM&
j=M&&AA_& &R-&E&4'U&
I(&.B+&>+%"()&>+>>$"(1&R-&>+()>&4'U&."&I&>+%-+.9/F&
"

L<G<G<",$*3'*J765$"
!
<)+!(/>0+!K!7)#87!7#-+!+?/-.0+7!#=!6#$=5%',/(5#$7!/$1!()+5,!6#-.'(/(5#$!,+7'0(7;!Z/6)!,#8!

#=!()+!(/>0+!7)#87!/!75-.05=5+1!=#,-!#=!/!6#$=5%',/(5#$!#=!/!7+775#$;!V#,!+?/-.0+@!LR1I1%U14'UM!-+/$7!
()/(!5$!()+!7+775#$!R!/$1!I!/,+!5$5(5/(#,!/$1!,+7.#$1+,@!,+7.+6(5:+0&@!/$1!%U!57!/!6#$(,/6(!/$1!4'U!57!()+!
,/$1#-!E;!B#(+! ()/(! hij!-+/$7!/$&!:/0'+;!P07#@! hP00!2(/(+7j!-+/$7! ()+!$'->+,!#=!/00! 7(/(+7! 5$!/!
7(/(+!7./6+!/$1!hP((/63!7(/(+7j!-+/$7!()+!$'->+,!#=!/((/63!7(/(+7!=#'$1!5$!()+!7(/(+!7./6+;!h<5-+7j!
-+/$7!()+!/-#'$(!#=!(5-+7!5$!7+6#$17!()/(!/,+!'7+1!(#!%+$+,/(+!+/6)!7(/(+!7./6+;!

"
&'63.1)*7-.'68"'3"-%'"8$88.'68" !(("

4-7-$8"
E.J$8"

V.6"8$5'6+8W"
!--75@"
4-7-$8"

TP,@A@i@-5IUmTA@\@6I@-5IU! IMO@KIR! K@IOK! I@XYY!
TP,@A@i@-5IUmTP@\@6I@-/IU! QR@NXM! I@RYO! J@YMR!
TA@P,@i@-5IUmTP@A@6I@-/IU! XI@NKR! J@YXK! KKY!
TA@P,@i@-5IUmTA@\@6I@-5IU! KKX@XIR! IK@JYY! J@XNJ!
TA@P,@i@-5IUmTA@\@6I@-5JU! OMQ@XIR! KM@KQY! Q@YKJ!
TA@P,@i@-5IUmTP@\@6I@-IU! NI@MKM! I@IRR! I@IYM!
TP@A@6I@-/IUmTP@A@6J@-/IU! J@YJI! JN! JR!
TP@A@6I@-/IUmTP@A@6J@-/JU! N@ORX! QQ! Y!
TP@A@6I@-/IUmTA@\@6I@-5IU! Q@YYM! RN! IYR!

</>0+!K[!2#-+!,+7'0(7!#=!()+!7(/(+!7./6+!
!
B#(+!()/(!/(!7#-+!6#$=5%',/(5#$@!5(!,+9'5,+7!X!)#',7!(#!6#-.'(+!()+!7(/(+!7./6+;!

!
L<L<"M.85)88.'6"
!
! Z:+$!()#'%)!#',!4*B!-+()#1!#==+,7!-/$&!/1:/$(/%+7@!()+,+!57!7#-+!157/1:/$(/%+!/07#;!<)+!
75D+!#=! +/6)! 7(/(+! 5$! ()+!6#-.'(+1! 7(/(+! 7./6+! 57! 0/,%+! 75$6+!/$!/((/63! (,/6+! 57!+->+11+1! 5$(#!+/6)!
7(/(+;!P7!/!='(',+!8#,3@!8+!/5-!(#!5-.,#:+!#',!-+()#1!(#!#:+,6#-+!()57!157/1:/$(/%+;!P07#@!8+!/5-!
(#!/..0&!#',!$+8!-+()#1!(#!/$/0&D+!#()+,!35$17!#=!6,&.(#%,/.)56!.,#(#6#07!/$1!(#!/$/0&D+!#()+,!35$17!
#=!/((/637;!
!
N<""&'65()8.'6"

!
A$!()57!./.+,@!8+!.,#.#7+!/!$+8!4*B!-+()#1#0#%&!=#,!()+!7+6',5(&!/$/0&757!#=!6,&.(#%,/.)56!

.,#(#6#07;!C',!/..,#/6)!#==+,7!/! 75-.0+!>'(!+==+6(5:+!8/&! (#!/$/0&D+!-'0(5.0+! 7+775#$7!#=!.,#(#6#0!
+?+6'(5#$;!S+! /,%'+! ()/(! #',! $+8!4*B!-+()#1#0#%&! 5-.,#:+7! #$! /00! +?57(5$%!4*B! /$1! *+(,5! $+(!
-+()#17! =#,! 7+6',5(&! .,#(#6#07! #$! 7+:+,/0! 577'+7;! A$! ./,(56'0/,@! #',! 4*B!-+()#1! 57! ()+! =5,7(! 4*B!
-+()#1!8)56)! #==+,7! /! 7+6',5(&! /$/0&757! -+()#1#0#%&! #=!-'0(5.0+! 6#$6',,+$(! 7+775#$7! #=! .,#(#6#0!
+?+6'(5#$;!V',()+,-#,+@! 5(!#==+,7!/!7&7(+-/(56!-+()#1! (#!/$/0&D+!/((/637! 5$!.,#(#6#07;! A$!./,(56'0/,@!
#',! -+()#1! #==+,7! ()+! 1+6#-.#75(5#$! /$1! -'0(5G7+775#$! 76)+1'05$%! =#,! ()+! 6#-.'(/(5#$! #=! 7(/(+!
7./6+7@! ()+!5$('5(5:+!/..,#/6)!(#!6)/,/6(+,5D+!/((/63!7(/(+7@! ()+!+==565+$(!8/&!(#!+?(,/6(!/((/63!(,/6+7!
/$1! ()+!7&7(+-/(56!8/&! (#!60/775=&!/! 0/,%+!/-#'$(!#=!/((/63!(,/6+7;!P07#@! 5(!6/$!1+(+6(!-#,+!/((/637!
85()!/!>+((+,!+==565+$6&!()/$!/00!+?57(5$%!4*B!-+()#17!=#,!7+6',5(&!.,#(#6#07;!!!

98

<#!1+-#$7(,/(+!()+!.,/6(56/0!'7+7!#=!#',!/..,#/6)@!8+!/..0&!#',!-+()#1#0#%&!(#!(8#!6/7+!
7('15+7! 8)56)! /,+!E56/05F7! 6#$(,/6(! 75%$5$%! .,#(#6#0! Z42I! /$1! <EB! /'()+$(56/(+1! 3+&! +?6)/$%+!
.,#(#6#0;!2',.,575$%0&@!8+!=#'$1!-/$&!/((/637! 5$! ()+! (8#!.,#(#6#07;!V#,!Z42I@!8+!=#'$1! (8#!$+8!
/((/637! 5$!-'0(5.0+! 7+775#$7! #=! .,#(#6#0! +?+6'(5#$! #=! ()+! #,5%5$/0! Z42I@! /$1! (),++! $+8! /((/637! 5$!
\/#F7!-#15=5+1!Z42I;!V#,!<EB!.,#(#6#0@!8+!=#'$1!(8#!$+8!/((/637!5$!-'0(5.0+!7+775#$7!#=!.,#(#6#0!
+?+6'(5#$;!A$!=/6(@!()+!$+8!/((/637!()/(!8+!=#'$1!5$!<EB!.,#(#6#0!/,+!9'5(+!7',.,575$%0&!75$6+!<EB!
)/:+!>++$!/$/0&D+1!9'5(+!+?(+$75:+0&;!!

!
O<"!5@6'%($+1$J$6-"

!
S+!8#'01!053+!(#!()/$37!/$#$&-#'7!,+:5+8+,7!=#,!()+5,!)+0.='0!/$1!6#$7(,'6(5:+!6#--+$(7;!

<)+! =5,7(!/'()#,!8#'01! 053+! (#!/63$#80+1%+!/! =5$/$65/0! 7'..#,(! =,#-!B/(5#$/0!e+7+/,6)!4#'$650!#=!
<)/50/$1;!

!
P<"H3*$65$8"

HIL! b;! 40/,3! /$1! b;! b/6#>@!P! 7',:+&! #$!P'()+$(56/(5#$! *,#(#6#07@!H+>+'-%B& -+3"-.@! g$5:+,75(&! #=!"#,3@!
IXXQ;!T)((.[nn888;67;&#,3;/6;'3nod/6n./.+,7n1,/,+:5+8;.7;%DU!!
HJL! 4;!E+/1#87@!V#,-/0!W+,5=56/(5#$!#=!4,&.(#%,/.)56!*,#(#6#07[!P!2',:+&@!P1:/$6+7! 5$!4,&.(#0#%&! G!
P75/6,&.(!pXM@!aB24!XIQ@!2.,5$%+,GW+,0/%@!IXXN!
HKL! 4;! E+/1#87@! V#,-/0! E+()#17! =#,! 4,&.(#%,/.)56! *,#(#6#0! P$/0&757[! Z-+,%5$%! A77'+7! /$1! <,+$17@!
I777&\",-('9&"(&*+9+%.+)&R-+'>&$(&6"44,($%'.$"(>@!JITIU@!..;!MMGNM@!JYYK;!
HML! !g0,53+!E+&+,@! 2'7/$$+!S+(D+0@! P!-/$G5$G()+G-5110+! /((/63! #$! gE<2@! A$! *,#6++15$%7! #=! ()+! K,1!
P4E!8#,37)#.!#$!S5,+0+77!7+6',5(&@!JYYM@!..;!XYGXQ!
HNL! !A05/$#!4+,:+7/(#@!P/,#$!f;! b/%%/,1@!P$1,+! 26+1,#:@! b#+Gc/5! <7/&@!4),57(#.)+,!S/07(/1[!\,+/35$%!
/$1!=5?5$%!.'>056G3+&!c+,>+,#7;!I(5"-4'.$"(&'()&6"43,.'.$"(@!JYOTJGMU[!MYJGMJM@!JYYR!
HOL! !*/'0!V;!2&:+,7#$@!P!</?#$#-&!#=!e+.0/&!P((/637@!A$!.,#6++15$%7!#=!()+!Q()!AZZZ!4#-.'(+,!2+6',5(&!
V#'$1/(5#$7!S#,37)#.!T42VSU@!..;!IRQGIXI@!IXXM;!
HQL! <;!E',/(/@! *+(,5! $+(7[! .,#.+,(5+7@! /$/0&757! /$1! /..056/(5#$7@! *,#6++15$%7! #=! ()+! AZZ@! QQTMU[NMIGNRY@!
IXRX;!
HRL! !4;! E#,(#$@! a;! e#>/,(! /$1! 2;! </:/,+7@! f+6#-.#75(5#$! <+6)$59'+7! =#,! 4,&.(#%,/.)56! *,#(#6#0!
P$/0&757@!_-"%++)$(#>&"5&.B+&6'(')$'(&6"(5+-+(%+&"(&79+%.-$%'9&'()&6"43,.+-&7(#$(++-$(#@!4/$/1/@!IXXM;!
HXL! !P;!\/7&#'$5!/$1!2;!</:/,+7@!B+8!P..,#/6)!(#!4,&.(#%,/.)56!*,#(#6#0!P$/0&757!'75$%!4#0#',+1!*+(,5!
B+(7@!_-"%++)$(#>&"5&.B+&6'(')$'(&6"(5+-+(%+&"(&79+%.-$%'9&'()&6"43,.+-&7(#$(++-$(#@!4/$/1/@!IXXQ;!
HIYL!];!a++!/$1!b;a++@!*+(,5!B+(!\/7+1!E#1+07!=#,!2.+65=56/(5#$!/$1!P$/0&757!#=!4,&.(#%,/.)56!*,#(#6#07@!
AB+&\",-('9&"5&*/>.+4>&'()&*"5.i'-+@!KQ[IMIGINX@!IXXQ;!!
HIIL! 2;! a5-@! b;! c#@! Z;! b'$! /$1!];! a++@! 2.+65=56/(5#$! /$1! /$/0&757! #=! $G8/&! 3+&! ,+6#:+,&! 7&7(+-! >&!
Z?(+$1+1!4,&.(#%,/.)56!<5-+1!*+(,5!B+(@!AB+&\",-('9&"5&*/>.+4>&'()&*"5.i'-+@!NR[XKGIYO@!JYYI;!
HIJL! 2',/(#7+!<,5(50/$'$(@!4#05$!\#&1@!Z,$+7(!V##@!b'/$!E/$'+0!]#$Dq0+D!B5+(#[!g75$%!4#0#',+1!*+(,5!B+(7!
(#!25-'0/(+!f#2G,+757(/$(!*,#(#6#07;!A$!3-"%++)$(#>&"5&*+@+(.B&k"-<>B"3&'()&A,."-$'9&"(&_-'%.$%'9&?>+&"5&
6"9",-+)&_+.-$&N+.>&'()&.B+&6_N&A""9>@!./%+7!JOIGJRY;!g$5:+,75(&!#=!P/,)'7@!f+$-/,3@!C6(#>+,!JYYO;;!
HIKL! S;!f,+7.@!2+6',5(&!P$/0&757!#=!()+!2+6',+!P'()+$(56/(5#$!*,#(#6#0!>&!E+/$7!#=!4#0#',+1!*+(,5!B+(7@&
-"%++)$(#&"5&l.B&I8I&6"44,($%'.$"(>&'()&;,9.$4+)$'&*+%,-$./@!JYYN;!!
HIML! P0GPDD#$5@! A;@!f#8$@!f;];@! /$1!c)+1,5@!e;@! hE#1+05$%! /$1!W+,5=56/(5#$!#=!4,&.(#%,/.)56!*,#(#6#07!
g75$%!4#0#',+1!*+(,5!B+(7!/$1!f+75%$n4*Bj@!N"-)$%&\",-('9&"5&6"43,.$(#@!IJTKU[!JYIGJJR@!JYYN;!
HINL! V;!4,/DD#0/,/!/$1!];!S5$73+0@!Z:+$(7!5$!2+6',5(&!*,#(#6#07@!_-"%++)$(#>&"5&.B+&m.B&R6;&6"(5+-+(%+&
"(&6"43,.+-&'()&6"44,($%'.$"(&*+%,-$./@!g2P@!JYYI;!
HIOL! c;! b+$7+$@! 4#0#',+1! *+(,5! B+(7;! \/756! 4#$6+.(7@! P$/0&757! E+()#17! /$1! *,/6(56/0! g7+@! W#0;I;!
E#$#%,/.)7!5$!<)+#,+(56/0!4#-.'(+,!265+$6+@!2.,5$%+,GW+,0/%@!IXXQ!
HIQL! c;! b+$7+$@!a;E;!c,57(+$7+$@! /$1!a;!S+007@! h4#0#',+1!*+(,5!B+(7! /$1!4*B!<##07! =#,!E#1+005$%! /$1!
W/051/(5#$!#=!4#$6',,+$(!2&7(+-7j@!I(.+-('.$"('9&\",-('9&"(&*"5.i'-+&A""9>&5"-&A+%B("9"#/&A-'(>5+-@!XTKU[!
JIKGJNM@!JYYQ;!
HIRL! ";! *+,-.##$(/$/0/,.! /$1!S;! e'd58/((/$/.)#$%@! hP$! A-.,#:+1!E+()#1! (#! P$/0&D+! 4,&.(#%,/.)56!
,#(#6#07!>&!'75$%!4#0#',+1!+(,5!B+(7j@!_-"%++)$(#>&"5&U>.&\"$(.&I(.+-('.$"('9&6"(5+-+(%+&"(&I(5"-4'.$"(&
6"44,($%'.$"(&A+%B("9"#/@!a/#7@!JYYQ;!
HIXL! *;!2#,$3)#-!/$1!";!*+,-.##$(/$/0/,.@!2+6',5(&!P$/0&757!#=!E56/05F7!V/5,!4#$(,/6(!25%$5$%!*,#(#6#0!
>&! g75$%! 4#0#',+1! *+(,5! B+(7@! _-"%++)$(#>& "5& .B+& l.B& R6I*& I(.+-('.$"('9& 6"(5+-+(%+& "(& *"5.i'-+&

99

7(#$(++-$(#1&R-.5%$'9&I(.+99$#+(%+1&N+.i"-<$(#1&'()&_'-'99+9n2$>.-$0,.+)&6"43,.$(#@!<)/50/$1@!AZZZ!.,+77@!
JYYR;!
HJYL! *;!2#,$3)#-!/$1!";!*+,-.##$(/$/0/,.@!2+6',5(&!P$/0&757!#=!E56/05F7!V/5,!4#$(,/6(!25%$5$%!*,#(#6#0!
>&!g75$%!4#0#',+1!*+(,5!B+(7! [!E'0(5G7+775#$! 6/7+@! I(&_-"%++)$(#>& "5& .B+& Z.B& I(.+-('.$"('9&k"-<>B"3& "(&
+%,-$./&$(&/>.+4>&'()&N+.i"-<>@!A(/0&@!AZZZ!.,+77@!JYYX;!
HJIL! ";!*+,-.##$(/$/0/,.@!2+6',5(&!P$/0&757!#=!()+!<EB!.,#(#6#0!>&!'75$%!4#0#',+1!*+(,5!B+(7@!<+6)$56/0!
e+.#,(@!c5$%!E#$%3'(F7!g$5:+,75(&!#=!<+6)$#0#%&!<)#$>',5@!\/$%3#3@!<)/50/$1@!JYYX;!!
HJJL! !2;!E56/05@!h25-.0+!/$1!V/7(!C.(5-57(56!*,#(#6#07!=#,!V/5,!Z0+6(,#$567!Z?6)/$%+j@!_-"%++)$(#>&"5&VU>.&
*/43">$,4&"(&_-$(%$39+>&"5&2$>.-$0,.+)&6"43,.$(#F!g2P@!..;!IJGIX@!JYYK;!
HJKL! E;! </(+>/&/7)5@! B;! E/(7'D/35@! /$1! f;! B+8-/$@! c+&! f57(,5>'(5#$! *,#(#6#0! =#,! f5%5(/0! E#>50+!
4#--'$56/(5#$!2&7(+-7@!I(&6Ho_ApDml@!2.,5$%+,GW+,0/%@!IXXY;!
HJML! e;!c+--+,+,@!4;!E+/1#87!/$1!b;!E500+$@!<),++!7&7(+-7!=#,!6,&.(#%,/.)56!.,#(#6#0!/$/0&757;!\",-('9&
"5&6-/3."9"#/@!QTJU@!IXXM;!
HJNL! b;!E5(6)+00@!E;!E5(6)+00!/$1!g;!2(+,$@!P'(#-/(+1!/$/0&757!#=!6,&.(#%,/.)56!.,#(#6#07!'75$%!E', @!I(&
I777&*/43">$,4&"(&*+%,-$./&'()&3-$@'%/@!IXXQ;!
HJOL!];!a#8+! /$1!\;!e#76#+@!g75$%!42*! (#!f+(+6(! Z,,#,7! 5$! ()+!<EB!*,#(#6#0@! I777&A-'(>'%.$"(>& "(&
*"5.i'-+&7(#$(++-$(#@!JKTIYU@!IXXQ;!
HJQL! ";! ^)/$%! /$1! k;! a5'@! P$! /..,#/6)! (#! ()+! =#,-/0! /$/0&757! #=! <EB! .,#(#6#0@! _-"#-+>>& "(&
6-/3."#-'3B/E&VZ&/+'->&"5&6-/3."#-'3B/&$(&6B$('@!2.,5$%+,GW+,0/%@!JYYM;!
HJRL! V;!\/#@!];!S/$%@!b;!^)#'@!/$1!^;!^)'@!hP$/0&757!/$1!A-.,#:+-+$(!#=!E56/05F7!V/5,!4#$(,/6(!25%5%!
,#(#6#0j@!_-"%++)$(#>&"5&AB+&l.B&R,>.-'9'>$'(&6"(5+-+(%+&"(&I(5"-4'.$"(&+%,-$./&'()&_-$@'%/;!P'7(,/05/@!
JYYM[!IQOGIRQ;!
HJXL! "'95$%!^)/$%@!^)505$%!S/$%@!\#!"/$%@!<)+!e'$$5$%GE#1+!P$/0&757!#=!<8#G*/,(&!C.(5-57(56!V/5,!
Z?6)/$%+!*,#(#6#07@!I(.+-('.$"('9&6"(5+-+(%+&"(&6"43,.'.$"('9&I(.+99$#+(%+&'()&*+%,-$./@!2.,5$%+,!W+,0/%@!
JYYN;!
HKYL!]/:5$!a#8+@!P$!P((/63!#$!()+!B++1)/-G26),#+1+,!*'>056Gc+&!P'()+$(56/(5#$!*,#(#6#0@!!I(5"-4'.$"(&
_-"%+>>$(#&!+..+->@!NOTKU[!IKIGIKK!TIXXNU!
HKIL! <)#-/7!";!4;!S##@!25-#$!2;!a/-[!P!a+77#$!#$!P'()+$(56/(5#$!*,#(#6#0!f+75%$;!p3+-'.$(#&*/>.+4>&
H+@$+i!JRTKU[!JMGKQ!TIXXMU!
HKJL! e;! 4)/1)/@! E;! c#$#:56)! /$1! P;! 26+1,#:@! A$1'6(5:+! E+()#17! /$1! 4#$(,/6(G25%$5$%! *,#(#6#07@!
_-"%++)$(#>&"5&m.B&R6;&6"(5+-+(%+&"(&6"43,.+-&'()&6"44,($%'.$"(>&*+%,-$./@!JYYI;!
HKKL! W;!2)-/(53#:!/$1!b;4;!E5(6)+00@!V5$5(+G2(/(+!P$/0&757!#=!<8#!4#$(,/6(!25%5%!*,#(#6#07@!AB+"-+.$%'9&
6"43,.+-&*%$+(%+@!JRK[MIXGMNY@!b'$+!JYYJ;!
HKML! 2;!]r,%+$7!/$1!4;!e'1#0.)@!2+6',5(&!/$/0&757!#=!+==565+$(!Tg$GU=/5,!$#$G,+.'15/(5#$!.,#(#6#07@!!8"-4'9&
R>3+%.&"5&6"43,.$(#@!IQTKU[!JOYGJQO@!JYYN;!
HKNL! f;!f#0+:@!P;!"/#@!C$!()+!7+6',5(&!#=!.'>056!3+&!.,#(#6#07@!I777&A-'(>'%.$"(>&"(&I(5"-4'.$"(&AB+"-/@!
JXTJU[!IXRGJYQ@!IXRK;!

!
!
!

100

101

PNML Core Model

SymmetricNetPT!Net HLPNG

<<merge>>

<<merge>>

<<merge>>

102

 self.target.page
 self.source.page =

context Arc inv:

PNMLCoreModel

XMLSchemaDataTypes::
String

ToolInfo
tool
version

Object
id* label *

label *

*
net

object

{redefines label}
name0..1

name

0..1

{redefines label}

Graphics

Node

RefPlace RefTrans

1

1
Page

TransitionNode
1

ref

1

ref

source

target

page

Transition

Arc

* *

*

*

page
1..*

1..*

toolspecific

PetriNetDoc

Label

PetriNet

type
id

AttributeAnnotationName

PlaceNode

Place

!! source and target must
!! be on the same page

*

1text graphics
0..1

0..1
graphics

toolspecific

toolspecific *

<<import>>

XMLSchemaDataTypes

103

{ }

104

Line
shape
color
width
style

Font
family
style
weight
size
decoration
align
rotation

context ArcGraphics inv:
 self.object.oclIsKindOf(Arc)

 self.object.oclIsKindOf(Page)
 self.object.oclIsKindOf(Node) or
context NodeGraphics inv:

context AnnotationGraphics inv:
 self.object.oclIsKindOf(Annotation)

NodeGraphics Annotation
Graphics

0..1 font

line0..1

fill
0..1 0..1

fill

color
image

gradient!rotation

line
0..1

line
0..1

0..10..1
dimension

*
position

position

offset
0..1x

y

Coordinate

PNMLCoreModel

{ordered}

gradient!color

Graphics

Fill

ArcGraphics

(x, y)
x

y

105

106

NonNegativeDecimal

PositiveInteger

String

XMLSchemaDataTypes

NonNegativeInteger

Integer

Decimal

p M(p)
f W (f)

0
1

107

Place
{redefines label}

initialMarking

PTMarking0..1

1text

Arc

XMLSchemaDataTypes::

NonNegativeInteger

PTArcAnnotation

PT!Net

text

Annotation

 self.target.oclIsKindOf(PlaceNode))

context Arc inv:
!! no arcs between nodes of the same kind
 (self.source.oclIsKindOf(PlaceNode) and 1

PositiveInteger
XMLSchemaDataTypes::

{redefines label}
0..1

inscription

 self.target.oclIsKindOf(TransitionNode))
or

 (self.source.oclIsKindOf(TransitionNode) and

XMLSchemaDataTypes

<<merge>> <<import>>

PNML Core Model

PT!Net::

Coordinate

context TokenGraphics inv:
!! TokenGraphics only for PTMarkings
 self.object.oclIsKindOf(PTMarking)
 self.tool = ’org.pnml.tool’

PNML Extensions

* tokenposition

TokenGraphics

PT!Net::

ToolInfo

<<import>>
PT!Net

108

UserSort

ProductSort

VariableDecl
name

Terms

SortDecl
name

MultisetSort

NamedSort
context NamedSort inv:

 IsTypeOf(MultiSetSort)
!self.def.ocl.

context Operator inv:
!! sort of Term is output sort of Operator
 self.sort = self.output

context Variable inv:
!! sort of Variable is sort of Term
 self.sort = self.variableDecl.sort

1 /output

* /input
{ordered}equals(Sort):bool

1 variableDecl

1
sort

1

Term

Sort Operator

*

BuiltInConst

BuiltInOperator

MultiSetOperator

BuiltInSort

UserOperator

OperatorDecl

name
1
declaration

*

1basis
elementSort

{ordered}

1def

1

declaration

{ordered}
* subterm

1 def

*
{ordered}

parameter

NamedOperator

multi

/sort

Variable

Declarations

Declaration

Tuple

109

• {•}

•

•

•

•

•

•

110

!! the term for the condition must be of sort boolean
 (self.structure.sort.oclIsKindOf(Booleans:Bool)

Place

Transition

PetriNet

Arc

Declaration

HLAnnotation

{redefines label}
declaration

*

HLCoreAnnotation

Annotation

Condition

 self.target.oclIsKindOf(TransitionNode))
or

 (self.source.oclIsKindOf(TransitionNode) and
 self.target.oclIsKindOf(PlaceNode))

context Arc inv:
!! no arcs between nodes of the same kind

context Condition inv:

Terms::Sort

Terms::Term

Page

Terms::Declarations

Terms::Term

XMLSchemaDataTypes::
String

 (self.source.oclIsKindOf(PlaceNode) and

HLCoreStructure

*

Type structure
0..1

structure

structure

structure

0..1

0..1declaration

0..1
{redefines label}

type

{redefines label}

HLMarking
0..1

structure{redefines label}

0..1
0..1

{redefines label}
condition

hlinitialMarking

0..1

0..1
{redefines label}

hlinscription

0..1
text

Terms::Term

<<import>>
Booleans

<<import>>
Terms

XMLSchemaDataTypes

<<merge>>

PNMLCoreModel

<<import>>

•

111

UnparsedTerms::Sort

Terms::DeclarationTerms::OperatorDecl

ArbitraryDeclarations

Terms::SortDecl

output
ArbitrarySort ArbitraryOperator

* input {ordered}

1

Terms

<<extends>>

Booleans

<<import>>

<<merge>>
Multisets

Dots

HLCoreStructure

PT-HLPNGs<<import>>

<<import>>

Terms

<<import>>

<<import>>

<<import>>

context Type inv:
-- the type of all places must be Dot
self.structure.oclIsTypeOf(Dots::Dot)

context Condition inv:
-- the condition of all transitions must be true
let cond: Terms::Term = self.structure in
 cond.oclIsTypeOf(Booleans::BooleanConstant) and
 cond.value = ‘true’

112

 !self.structure.oclIsKindOf(MultisetSort)

context Type inv:
!! no multiset sorts as types

<<import>>
<<import>>

<<import>>

<<import>>

<<import>>

<<import>>

<<import>>

<<merge>>

<<import>>

<<import>>

<<import>>

Booleans

Partitions

SymmetricNets

CyclicEnumerations

<<import>><<import>>

<<import>>

Multisets

FiniteEnumerations

<<import>>

FiniteIntRanges

Dots HLCoreStructureTerms

113

Terms SymmetricNets

HLPNGs

<<import>>

<<merge>>

<<import>>

<<import>>

<<import>>

<<import>>

<<merge>>

<<import>>

<<import>>

ArbitraryDeclarations

Integers

Strings

Lists

114

115

116

10 20 30 40 50 60

10

20

y

x

ready 2

117

118

119

th

120

A framework for the definition of variants of
high-level Petri nets

E. Kindler1 and L. Petrucci2

1 Informatics and Mathematical Modelling
Technical University of Denmark (DTU)

DK-2800 Lyngby, DENMARK
eki@imm.dtu.dk

2 LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE

laure.petrucci@lipn.univ-paris13.fr

Abstract. There exist many different variants of high-level Petri nets. Many differences between
these variants, however, do not concern the features of the particular versions of Petri nets, but
they concern the data types that can be defined and used in the different variants of high-level
nets. One famous example of a restricted version of high-level nets are well-formed nets (which
are currently standardised as symmetric nets in ISO/IEC 15909-1), which basically restrict the
data types to finite sets with a very limited set of operations on them. Due to these restrictions,
there exist some more powerful analysis algorithms for symmetric nets.
During the standardisation of high-level nets and some of their variations, it turned out that
defining the legal data types and the operations on them is the most difficult part. In particular,
these definitions become lengthy and mix Petri net specific issues with data-type specific issues,
which often blocks the view for the really relevant parts. Even worse, supposedly simpler versions
of high-level nets often are more difficult to define than high-level nets in general.
This paper introduces the concepts and the mathematical tools to ease the definition of new
variants and versions of high-level Petri nets: a framework for defining variants of high-level nets.
The main ingredient of this framework is the concept of generators, which we recently introduced
for formalising modular PNML, and the newly introduced concept of constructs.

Keywords: High-level Petri nets, variations, well-formed nets, symmetric nets.

1 Introduction

There exist many different variants of high-level Petri nets. Some of them have special concepts or are
different in the way they are formalised. However, in many cases, the differences between these versions
are not with the actual Petri net features, but they concern the data types that can be defined or are
built-in to the specific version of Petri nets. One example are well-formed nets [1], which are currently
standardised under the name symmetric nets in an addendum to ISO/IEC 15909-1. The main idea of
symmetric nets is to restrict the data types to finite sets with a very limited set of operations on them;
in turn, these restrictions results in some powerful analysis techniques.

The problem with the many variants of high-level Petri nets is that the formalisations are very
different, and the actual differences are blurred by mixing the conceptual differences with the standard
definitions on a very low level of abstraction. In this paper, we introduce a mathematical framework
for the definition of different versions of high-level Petri nets, which separates these issues and helps
defining the supported constructs on an adequate level of abstraction. In the end, it is possible to define
a specific version of high-level nets by three parameters, which can be defined independently from the
actual definition of high-level nets. The main ingredients of this framework are generators, which have
proven to be useful — if not necessary — for defining and using high-level Petri nets from modules
[2], and the new concept of constructs, which will be used for characterising the legal constructs in the
algebras.

121

In order to validate this framework, we give the definition of several versions of high-level Petri nets
known from the literature.

2 An example

In order to illustrate the concepts of high-level nets and to discuss some of the features in which the
various versions of high-level nets differ, we start with an example. The example is taken from [3, 4],
which models a distributed algorithm for computing the minimal distance of every node (agent) to
some distinguished root nodes in some communication network.

[(x,n)]

AGENT x nat
distances:
AGENT x nat

M(x,1)

[(x,d)]M(x,d+1)

[(x,d)]

[(x,d)]

[(x,d+1)]

messages:

M(x,d+1)

[x] [(x,0)]

x: AGENT
d: nat
n: nat

inneragents: AGENT

rootagents: AGENT

[x]

R

I

t1

t2

d<n

t3

Fig. 1. Example: Minimal distance algorithm

Figure 1 show the algebraic Petri net modelling this algorithm. We assume that there is a network

of agents; the agents could be represented by a set A and the network by a symmetric binary relation
N ⊆ A× A. Moreover, there is a distinguished set of root agents R ⊆ A. Initially, the root agents are
represented on place rootagents, whereas the other agents, which are called inner agents, are represented
on place inneragents. The algorithm is quite simple: Initially, every root agent sends a message to all
its neighbours and stores distance 0 as its own distance; for each neighbour, the message says that it
has a distance of at most 1 to some root node. The distance of an agent x is represented by a pair
(x, d) on place distances, where x represents the agent, and d its distance. A message to an agent y is
represented on the place messages by a pairs (y, d), where y represents the agent to which this message
is addressed, and d the tentative shortest distance. Sending these initial messages is represented by
transition t1, where M(x, 1) represents a set (resp. a multiset) of all the messages with value 1 to every
neighbour of agent x.

Initially, the inner agents cannot do anything. They just wait for a message from one of their neigh-
bours. Once a message arrives for an inner agent x with distance d, it takes that distance d and stores
it for itself (represented as pair (x, d) on place distances). Moreover, it sends a message to all its neigh-
bours with distance d+1, which is represented by M(x, d+1). This behaviour is modelled by transition
t2. But, the inner agents are not finished yet. It might be that later an inner agent receives a distance d

that is even shorter than its current distance n. In that case, it takes that shorter distance d as its new
distance, and again informs all its neighbours about that. This behaviour is modelled by transition t3.

Here, we will not discuss the algorithm further. But, we would like to point out some of the notations
and concepts used in the algebraic Petri net in Fig. 1. First and foremost, we would like to point out
that this is actually not an algebraic net; it is what we call an algebraic net scheme [3]. The reason is
that the set of agents A, and the way they are connected N , may vary. A can be any set, and N can
be any symmetric binary relation over A. This is why the set A is not directly used in the Petri net.

122

Instead, we use a sort symbol AGENT, which could be interpreted by different sets. Likewise the set
of root agents is represented by a constant symbol R and the set of inner agents is represented by the
symbol I, and the interpretation of these symbols might be different, depending on which are the root
nodes and which are not. Likewise, the structure of the network is represented by the interpretation of
the operation symbol M, which produces the messages for all the neighbours.

But, there is another interesting point here. The sort AGENT, the constants R and I, as well as
the operation M are specific to this model (actually, they are specific to a class of algorithms, which
we call network algorithms). Therefore, their syntax as well as as their legal interpretations need to
be defined by the modeller explicitly. In contrast to that, the sort nat does not need to be defined,
because it is a standard sort, and also the constants and operations on that sort are standard and have
a standard interpretation, which the modeller would not need to define. Actually, the classical approach
of algebraic Petri nets [5] forces a modeller to define these sorts and operators even though they are
standard. And a modeller would also be forced to explicitly define the pairs for sorts and the boolean
operations. In this paper, we will introduce a mechanism that helps avoiding this: Generators help to
define the standard sorts and operations of a specific class of high-level nets in a simple and flexible
way.

A third observation is that, for the sorts and operations that must be defined by the user, not all
possible interpretations are legal. Sometimes, we would like to restrict the interpretations to sorts with
a finite set, and also restrict the operations on them. In our example, AGENTS should be finite sets, and
the operation M should only be those functions that represent a network (resp. the sending of messages
in a network). To this end, this paper introduces the concept of constructs. Using this mechanism, we
can for example restrict the user defined sorts to the ones that are legal in symmetric nets.

3 Basic Definitions

In this section, we formalise algebraic Petri nets and all the pre-requisites. We introduce the standard
concepts of algebraic specifications [6] and of algebraic Petri nets [7–9, 5, 10]. The notation, however, is
slightly adjusted for easing the readability of the concepts; the presentation follows the lines of [2] —
streamlined a bit for the settings in this paper.

3.1 Basic notations

As usual, N stands for the set of natural numbers (including 0), and B stands for the set of booleans, i.e.,
B = {false, true}. For some set A, A+ denotes the set of all non-empty finite sequences over A. For some
function f : A → B and some set C, the restriction of f to C is defined as the function f |C : A∩C → B

with f |C(a) = f(a) for all a ∈ A ∩ C. For two functions f : A → B and g : C → D with disjoint
domains A and C, we define f ∪ g as the function (f ∪ g) : A ∪ C → B ∪D with (f ∪ g)(a) = f(a) for
all a ∈ A and (f ∪ g)(c) = g(c) for all c ∈ C.

For some set I, a set A together with a mapping i : A → I is an I-indexed set (A, i). The I-indexed
set (A, i) is finite if A is finite. When i is understood from the context, we often use A for denoting the
I-indexed set. For every j ∈ I, we define the set of all elements indexed by j: Aj = {a ∈ A | i(a) = j}.
By definition, all Aj are disjoint. For an I-indexed set (A, i) and some set B, we define (A, i) ∩ B =
(A ∩B, i|B).

For some set A, a mapping m : A → N is called a multiset over A if
�

a∈A
m(a) is finite. The set

of all multisets over A is denoted by MS (A). For two multisets m1, m2 ∈ MS (A), the operation + is
defined pointwise: m = m1 + m2 is defined by m(a) = m1(a) + m2(a) for every a ∈ A. This way, the
addition operation + is lifted from the natural numbers to multisets. The empty multiset is denoted by
[] and defined by [](a) = 0 for all a ∈ A. This is in line with a special case of our notation that denotes a
multiset by enumerating all its elements: [a1, a2, . . . , an] (where the number of occurrences of the same
element is relevant).

123

3.2 Signatures and algebras

The idea of high-level nets is that there are different kinds of tokens, which are often called colours.
Mathematically, the tokens can come from some set which is associated with a place. Different functions
allow for manipulating them. In order to represent these sets and functions, some syntax must be
introduced. Here, we use the approach of algebraic nets, where we use signatures for the syntax, and
the associated algebras for the meaning.

Definition 1 (Signature). A signature SIG = (S, O) consists of a set of sort symbols S (often called

sorts for short) and an S+-indexed set of operation symbols O such that S and O are disjoint. The

set S ∪ O is called the set of symbols of SIG. For some signature SIG, we denote the set of its sorts

by SSIG and the set of its operations by OSIG .

Sometimes, we want to restrict some signature SIG = (S, (O, i)) to a subset of symbols A. This
is denoted by SIG |A. In the definition, we take care that all the operation symbols operating on an
eliminated sort are also eliminated: We define SIG |A = (S ∩ A, (O�, i�)) where O� = {x ∈ O | i(x) ∈
(S ∩A)+} and i� = i|O� .

Definition 2 (Signature extension). A signature SIG
� extends a signature SIG if, for some set A,

SIG
�
|A = SIG. This is denoted by SIG ⊆ SIG

�
. Let SIG = (S, O) and SIG

� = (S�, O�) be two signatures

with a disjoint set of symbols, then we define the union SIG ∪ SIG
� = (S ∪ S�, O ∪O�).

By definition, SIG ∪ SIG
� is a signature, which extends both SIG and SIG

�.

Definition 3 (Signature homomorphism). For two signatures SIG = (S, O) and SIG
� = (S�, O�),

a mapping σ : S∪O → S�∪O� is called a signature homomorphism, if for every s ∈ S we have σ(s) ∈ S�

and for every o ∈ Os1...sn we have σ(o) ∈ O�
σ(s1)...σ(sn).

Definition 4 (Algebra). A SIG-algebra A assigns a carrier set to every sort of SIG and a function
to every operation of SIG.

Technically, an algebra A is a mapping such that, for every s ∈ S, A(s) is a set and, for every
o ∈ Os1...snsn+1 , A(o) is a function with A(o) : A(s1)× . . .×A(sn) → A(sn+1).

Definition 5 (Algebra extension). Let SIG and SIG
�
be two signatures with SIG ⊆ SIG

�
, and let

A be a SIG-algebra and A� be a SIG
�
-algebra. Algebra A� extends algebra A, if A�|SSIG∪OSIG = A. If A�

extends A, we write A ⊆ A�.

3.3 Variables and terms

The operations of a signature can be used to construct terms, which will be discussed in this section.
We start with the definition of variables.

Definition 6 (Variables). Let SIG = (S, O) be a signature. An S-indexed set X is a set of SIG-

variables, if X is disjoint from O.

VSIG denotes the class of all SIG-variable sets.

From the set of operations O of the signature and a set of SIG-variables X, we can construct terms

of some sort s inductively.

Definition 7 (Terms). Let SIG = (S, O) be a signature and X be a set of SIG-variables. The set of

all SIG-terms of sort s over a set of variables X is denoted by TSIG
s (X). It is inductively defined as

follows:

– Xs ⊆ TSIG
s (X).

– For every operation symbol o ∈ Os1...snsn+1 , and, for every k with 1 ≤ k ≤ n, tk ∈ TSIG
sk

(X), we

have (o, t1, . . . , tn) ∈ TSIG
sn+1

(X).

124

When SIG is clear from the context, we also write Ts(X) instead of TSIG
s (X). The set of all terms

is TSIG(X) =
�

s∈S
TSIG

s (X). Terms without variables are called ground terms and are defined by
TSIG = T(∅) and by TSIG

s = TSIG
s (∅).

Sometimes, we need to refer to some terms with variables, but without specifically mentioning the
set of variables. The set of such terms is denoted by TSIG

s (VSIG).
Note that, in practice, terms are often written o(t1, . . . , tn) to make clear that the operation is

applied to the arguments. In order to emphasise the syntactical nature of terms, we use the tuple
notation (o, t1, . . . , tn) in all our formal definitions.

3.4 Assignment and evaluation

Terms are a purely syntactical construct. In order to give them a meaning, they are evaluated in a
given algebra. In order to evaluate terms with variables, we need to bind their variables to some value,
which is called a binding or an assignment.

Definition 8 (Assignment and evaluation). Let SIG = (S, O) be a signature, A a SIG-algebra,

and X a set of SIG-variables. An assignment β of X in A is a mapping such that, for every s ∈ S and

every x ∈ Xs, we have β(x) ∈ A(s).
An assignment β of variables X in A can be inductively extended to a mapping β that applies to all

terms TSIG(X), which is called evaluation of terms in A:

– For every x ∈ X, we define β(x) = β(x).
– For every o ∈ Os1...sn+1 , and every i ∈ {1, . . . , n} and term ti ∈ TSIG

si
(X), we define

β((o, t1, . . . , tn)) = A(o)(β(t1), . . . ,β(tn)).

For an empty set of variables ∅, there is a unique assignment of ∅ to A, which we denote with �.
The extension � can be used to evaluate ground terms, and is called ground evaluation.

3.5 Generators

In high-level nets and high-level net modules [2] in particular, we often have some sorts provided, and
we need to construct other sorts from them in a standard way. For example, we would like to use the
product over some existing sorts (see the example in Sect. 2); and, for every sort s, we also need a sort
that represents the multiset sort over that sort, ms(s). Moreover, the sets associated with these new
sorts are defined based on the sets associated with the underlying sorts. For example, the set associated
with ms(s) is the set of all multisets over A(s), i. e. MS (A(s)).

For that purpose, we need a mechanism for constructing new sorts and operations from some
signature and a way to define their meaning. To this end, we introduce generators. A generator defines
which new sorts and operators can be constructed out of existing sorts, and once the associated sets are
known for every sort, what the meaning of the corresponding constructed sorts and operators should
be. Since generators are needed anyway, we can also use them for introducing the standard sorts along
with their operations (e. g. nat or bool in our example).

Definition 9 (Generator). A generator G = (GS ,GA) consists of

– a signature generator function GS that, for any given signature SIG = (S, O), returns a signature

GS (SIG) such that SIG ⊆ GS (SIG); the signature GS (SIG) is called the signature generated from

SIG by the generator G;

– an algebra generator function GA that, for any SIG-algebra A, returns a GS (SIG)-algebra such

that the algebra GA(A) extends algebra A.

In [2], we needed a single generator only, because we were dealing with a single version of Petri
nets only. Here, we need different generators for the different versions of high-level nets. Therefore, we
will define several generators and operators for constructing new generators out of the existing ones
later in the paper. In order to give a feeling for the purpose of a generator, we use the one from [2]

125

as a first example here; we will introduce other ones later. The basic idea of this example generator
G = (GS ,GA), is to include, in addition to the existing sorts of some algebra also the booleans,
the associated multiset sort ms(s) for every sort s, and all the product sorts. In order to emphasise
the syntactical nature, and to distinguish the newly constructed sorts from already existing ones, we
use the notation (bool), (ms, s) and (×, s1, . . . , sn) for these generated sorts. Likewise, the generator
will generate the boolean constants (true) and (false) and the standard operations on booleans, the
operation ([], s, n), which makes a multiset out of n elements, the tupling operation ((), s1, . . . , sn), and
the projection operation (pr, i, s1, . . . , sn) on the i-th element of a tuple.

Definition 10 (Sort generator). Let SIG = (S, O) be an arbitrary signature, then GS (SIG) =
(S�, O�) is defined as follows:

– S� is the least set for which the following conditions hold:

1. S ⊆ S�,

2. (bool) ∈ S�,

3. (ms, s) ∈ S� for every s ∈ S�, and

4. (×, s1, . . . , sn) ∈ S� for all sorts s1, . . . , sn ∈ S�.

– O� is the least S�-indexed set for which the following conditions hold:

1. O ⊆ O�,

2. (true), (false) ∈ O�
(bool),

3. (not) ∈ O�
(bool)(bool),

4. (and), (or) ∈ O�
(bool)(bool)(bool),

5. ([], s, n) ∈ O�
s...s(ms,s) for every sort s ∈ S� and n ∈ N, where the number of s elements in the

index of O� is n,

6. (+, s) ∈ O�
(ms,s)(ms,s)(ms,s) for every s ∈ S�,

7. ((), s1, . . . , sn) ∈ O�
s1...sn(×,s1,...,sn) for all s1, . . . , sn ∈ S�, and

8. for every 0 ≤ i ≤ n, (pr, i, s1, . . . , sn) ∈ O�
(×,s1,...,sn)si

.

Definition 11 (Algebra generator). Let A be a SIG-algebra with SIG = (S, O) and let GS (SIG) =
(S�, O�). Then we define GA(A) by:

– The mapping of the sorts of GA(A) is defined as follows:

1. GA(A)|S = A|S,

2. GA(A)((bool)) = B,

3. GA(A)((ms, s)) = MS (GA(A)(s)) for every sort s ∈ S�, and

4. GA(A)((×, s1, . . . , sn)) = GA(A)(s1)× . . .×GA(A)(sn) for all sorts s1, . . . , sn ∈ S�.

– The mapping of the operations of GA(A) is defined as follows:

1. GA(A)|O = A|O,

2. GA(A)((true)) = true and GA(A)((false)) = false,

3. GA(A)((not)) = ¬, where ¬ is the boolean negation function,

4. GA(A)((and)) = ∧ and GA(A)((or)) = ∨, where ∧ and ∨ are the boolean conjunction and

disjunction functions,

5. GA(A)(([], s, n))(a1, . . . , an) = [a1, . . . , an], for every n ∈ N and every sort s ∈ S� and all

a1, . . . , an ∈ GA(A)(s); i. e. the multiset over s containing exactly the elements a1, . . . , an,

6. GA(A)((+, s)) = + for every sort s ∈ S�, where + denotes the addition of two multisets over

GA(A)(s),
7. GA(A)(((), s1, . . . , sn))(a1, . . . , an) = (a1, . . . , an) for all s1, . . . , sn ∈ S� and

a1 ∈ GA(A)(s1), . . . , an ∈ GA(A)(sn), i. e., the usual tupling, and

8. GA(A)((pr, i, s1, . . . , sn))((a1, . . . , an)) = ai for every 0 ≤ i ≤ n and a1 ∈ GA(A)(s1), . . . , an ∈
GA(A)(sn); i. e., the usual projection function on the i-th component.

126

Note that we need to make sure that all the symbols used in a basic signature SIG and introduced
by the generators GS (SIG) are interpreted in the same way. In some cases, this might restrict the legal
signatures and algebras to which a generator can be applied. In order to avoid overly complex math-
ematics, we do not introduce an explicit mechanism for that; we rather construct and use generators
in a systematic way. For example, in many cases the symbols used in SIG are flat and unstructured,
whereas the symbols introduced in GS (SIG) are tuples — some of them, like (bool), are 1-tuples. Since
this is needed only for making the mathematics work, our examples will use bool for (bool) and ms(s)
for (ms, s). However, we stick to the technical notations (bool) and (ms, s) in all formal definitions.

Definition 12 (Generator homomorphism). A signature homomorphism σ from some signature

SIG to some signature SIG
�
carries over to a signature homomorphism σG from GS (SIG) to GS (SIG

�)
in a canonical way for any given generator G. In the case of our example, it is defined as follows:

– 1. σG(s) = σ(s) for every s ∈ S,

2. σG((bool)) = (bool),
3. σG((ms, s)) = (ms, σG(s)) for every s ∈ S, and

4. σG((×, s1, . . . , sn)) = (×, σG(s1), . . . ,σG(sn)) for all s1, . . . , sn ∈ S.

– 1. σG(o) = σ(o) for every operation o ∈ O,

2. σG((true)) = (true) and σG((false)) = (false),
3. σG((not)) = (not),
4. σG((and)) = (and), and

σG((or)) = (or),
5. σG(([], s, n)) = ([], σG(s), n) for every sort s ∈ S and every n ∈ N,

6. σG((+, s)) = (+, σG(s)) for every sort s ∈ S,

7. σG(((), s1, . . . , sn)) = ((), σG(s1), . . . ,σG(sn)) for all s1, . . . , sn ∈ S, and

8. σG((pr, i, s1, . . . , sn)) = (pr, i, σG(s1), . . . ,σG(sn)) for every 0 ≤ i ≤ n and s1, . . . , sn ∈ S.

3.6 Nets

At last, we introduce the basic notion of Petri nets.

Definition 13 (Net). A net N = (P, T, F) consists of two disjoint sets P and T and a set of arcs

F ⊆ (P × T) ∪ (T × P).

4 Algebraic nets and their behaviour

Now we are prepared to give a first definition of algebraic nets. This definition will be refined later,
in order to make it more flexible for defining an algebraic net of a particular kind. In Sect. 4.1, we
define algebraic nets; in Sect. 4.2, we define their behaviour. Note that the focus of this paper is not
on behaviour; but for completeness sake, we do not want to introduce a formal definition of algebraic
nets without a definition of their behaviour.

4.1 Algebraic nets

For a clear separation between syntax and semantics, we distinguish between algebraic net schemes

and algebraic nets [3]. Later we will define different versions of high-level nets, where the generators
are one of the main defining factors of a version. For now, we just use the fixed generator G as defined
in Sect. 3.5.

By contrast to most classical definitions of algebraic Petri nets and by contrast to our example, we
formalise a version of high-level nets, where the scope of a variable is a transition (inspired by [11]).
Note that is not a fundamental change; we even have the impression that many people think of variables
in Petri nets in this way even when variables are declared globally. But since this more local scope of
variables is slightly more complicated to formalise and to use, most formal definitions do not take that
view. However, foreseeing some future extensions in the work of ISO/IEC 15909, we deam it necessary
to be prepared for this in our formal definition.

127

Definition 14 (Algebraic net scheme).

An algebraic net scheme is a tuple Σ = (N,SIG , sort, vars, l, c, i) consisting of:

1. a net N = (P, T, F),
2. a signature SIG,

3. a place sort mapping sort : P → SGS(SIG),

4. a transition variable mapping vars : T → VGS(SIG)

5. an arc label mapping l : F → TGS(SIG)(VGS(SIG)) such that:

– for all (p, t) ∈ F ∩ (P × T) : l((p, t)) ∈ TGS(SIG)
(ms,sort(p))(vars(t))

– for all (t, p) ∈ F ∩ (T × P) : l((t, p)) ∈ TGS(SIG)
(ms,sort(p))(vars(t)),

6. a transition condition mapping c : T → TGS(SIG)
(bool) (VGS(SIG)) such that c(t) ∈ TGS(SIG)

(bool) (vars(t)) for

every t ∈ T ,

7. an initial marking i : P → TGS(SIG) such that, i(p) ∈ TGS(SIG)
(ms,sort(p)) for every place p ∈ P .

The mapping sort assigns a sort to each place, which defines the type of its tokens. The mapping vars

defines for each transition the set of its variables. The annotations of all arcs attached to a transition
may use only these variables; the same applies for the transition condition. Condition 5 formulates this
restriction of the variables of the arc annotations as well as the restriction that the arc annotation must
denote a multiset over the attached place type. Condition 7 guarantees that the term for the inititial
marking denotes a multiset of the respective type.

Definition 15 (Algebraic net). An algebraic net is pair (Σ,A), where Σ is an algebraic net scheme

equipped with a SIG-algebra A.

4.2 Behaviour of algebraic nets

For defining the behaviour of an algebraic net, we first need to define markings.

Definition 16 (Marking).

Let (Σ,A) be an algebraic net with Σ = (N,SIG , sort, vars, l, c, i) and N = (P, T, F). A marking m of

(Σ,A) is a mapping such that for every place p ∈ P , we have m(p) ∈ MS (A(sort(p))).
The operation + on multisets can be lifted to markings by defining m = m1 + m2 by m(p) =

m1(p) + m2(p) for every place p ∈ P .

The firing mode of a transition is the set of assignments to its variables such that the transition
condition evaluates to true.

Definition 17 (Firing mode).

Let (Σ,A) be an algebraic net with Σ = (N,SIG , sort, vars, l, c, i) and N = (P, T, F).
For some transition t ∈ T , an assignment β of the variables vars(t) in A is called a transition mode

of transition t, if β(c(t)) = true.

For any transition t and any firing mode β of t, we define the markings −tβ and t
+
β of (Σ,A) as

follows: For every place p ∈ P

−
tβ(p) =

�
β(l(p, t)) if (p, t) ∈ F

[] otherwise

and

t
+
β (p) =

�
β(l(t, p)) if (t, p) ∈ F

[] otherwise

Next, we define when and how two markings are reachable from each other by a transition in a
firing mode.

128

Definition 18 (Firing rule).

Let (Σ,A) be an algebraic net with Σ = (N,SIG , sort, vars, l, c, i) and N = (P, T, F). Moreover, let

t ∈ T be a transition of N , β a firing mode of t, and let m1 and m2 be two markings. We say that m2

is reachable from m1 by firing t in mode β if there exists a marking m� such that m1 = −tβ + m� and

m2 = m� + t
+
β . Then, we write m1

t,β−→ m2.

If there exists a sequence m1
t1,β1−→ m2 −→ . . . −→ mn

tn,βn−→ mn+1, we write m1
∗−→ mn+1 and say

that mn+1 is reachable from m1 in (Σ,A).

In many publications on Petri nets, m1
t,β−→ m2 would be formalised in a different way by m1 ≥ −tβ

and m2 = (m1 − −tβ) + t
+
β . But, this would require to define the comparision operator ≥ on markings

and the subtraction operation − first. With our definition, we could avoid that. The only operation
necessary for defining the firing rule of Petri nets is the addition operation on markings, +.

From these concepts, we can now define the reachability graph as the semantics of an algebraic net.

Definition 19 (Reachability graph).

Let (Σ,A) be an algebraic net with Σ = (N,SIG , sort, vars, l, c, i) and N = (P, T, F).
We define the initial marking m0 of (Σ,A) by m0(p) = �(i(p)) for each p ∈ P . We define the set of

reachable markings of (Σ,A) by M = {m | m0
∗−→ m}. The relation

R = {(m1, (t, β), m2) | m1, m2 ∈M, t ∈ T, and β a mode of t with m1
t,β−→ m2}

is called the reachability relation of (Σ,A).
Γ = (M, m0,R) is called the reachability graph of (Σ,A).

5 Generators

As pointed out earlier, different generators can be used for defining different classes of high-level Petri
nets. In order to define the respective generators, we define some basic generators and some operations
on generators for defining new generators out of existing ones.

5.1 Basic generators

We start with defining some of the basic generators. In these definitions, we assume that SIG = (S, O)
is some signature and A some SIG-algebra.

Identity For technical reasons, we start with introducing the simplest generator of all: the identity
generator ID , which does not add any new sorts or operators. This generator is defined by ID =
(IDSIG , IDALG), where IDSIG(SIG) = SIG for all signatures SIG . By definition (see Def. 9), IDALG is
then uniquely defined by: IDALG(A)(x) = A(x) for all SIG-algebras A and all symbols x of SIG .

Booleans The generator BOOL = (BOOLSIG ,BOOLALG) adds the booleans and their operations to an
existing signature: We define BOOLSIG(SIG) = (S�, O�) by S� = S∪ �S with �S = {(bool)} and O� = O∪ �O
with �O = {(true), (false), (not), (and), (or)} with (true), (false) ∈ O�

(bool), (not) ∈ O�
(bool)(bool), and

(and), (or) ∈ O�
(bool)(bool)(bool).

We define BOOLALG(A) by BOOLALG(A)(x) = A(x) for every symbol x of SIG \ (�S ∪ �O).
For the symbols x ∈ �S ∪ �O, we define: BOOLALG(A)((bool)) = B, BOOLALG(A)((true)) = true,
BOOLALG(A)((false)) = false, BOOLALG(A)((not)) = ¬, where ¬ is the boolean negation function,
BOOLALG(A)((and)) = ∧ and BOOLALG(A)((or)) = ∨, where ∧ and ∨ are the boolean conjunction
and disjunction functions.

Note that, for some signature SIG , a SIG-algebra A, and some symbol x of SIG , it could happen
that GA(A)(x) �= A(x). For example, if (bool) occured in SIG but with a completely different meaning.
This way, this generator would rule out this algebra as illegal; and we will use this mechanism for
enforcing that symbols defined by the generators will be used in this interpretation only.

129

Restricted booleans Sometimes, we do not even want the full power of booleans. This is for example
the case for Place/Transition nets in high-level net notation as defined in Part 2 of ISO/IEC 15909.
The syntactical definition, however, requires that the trivial transition conditions exist. Therefore, we
introduce a generator that introduces a restricted version of the booleans with sort bool and only the
constant true, which can be used in this setting. We thus call this generator TRUE . The generator
TRUE = (TRUESIG ,TRUEALG) is defined by TRUESIG(SIG) = (S�, O�) where S� = S ∪ �S with �S =
{(bool)} and O� = O ∪ �O with �O = {(true)} with (true) ∈ O�

(bool). We define TRUEALG(A)(x) = A(x)
for every symbol x of SIG \(�S∪ �O). For the other symbols x ∈ �S∪ �O, we define: BOOLALG(A)((bool)) =
B and BOOLALG(A)((true)) = true.

Black tokens For representing Place/Transition nets, we also need a sort that represents the black
tokens, which is often called dots. The generator DOT adds this sort and a single constant to a signature
and the respective algebra. We define the generator DOT = (DOTSIG ,DOTALG) by DOTSIG(SIG) =
(S�, O�) where S� = S ∪ �S with �S = {(dots)} and O� = O ∪ �O with �O = {(dot)} with (dot) ∈ O�

(dots).
We define DOTALG(A)(x) = A(x) for every symbol x of SIG \ (�S ∪ �O). For the other symbols, we
define: BOOLALG(A)((dots)) = {•} and BOOLALG(A)((dot)) = •.

Natural numbers The generator NAT = (NATSIG ,NATALG) defines the natural numbers.
NATSIG(SIG) = (S�, O�) is defined by S� = S ∪ �S with �S = {(nat)} and O� = O ∪ �O with �O =
{(0), (succ)} with (0) ∈ O�

(nat), and (succ) ∈ O�
(nat)(nat). We define NATALG(A) by NATALG(A)(x) =

A(x) for every symbol x of SIG \ (�S ∪ �O). For the other symbols, we define: NATALG(A)((nat)) = N,
NATALG(A)((0)) = 0 and NATALG(A)((succ)) = ++ where ++ is the successor operation.

Multisets All versions of high-level Petri nets need some way of denoting multisets. To this end, we define
a generator that adds the multisets over the given sorts to the signature and algebra: The generator
MULT = (MULTSIG ,MULTALG) adds the constructs that are needed for constructing the multisets
over the sorts of an algebra. Here, we confine ourselves to a minimal version. Later, we introduce a
generator with some more operations on multisets: We define MULTSIG(SIG) = (S�, O�); where S� =
S ∪ �S with �S = {(ms, s) | s ∈ S} and O� = O ∪ �O with �O = {([], s, n) | s ∈ S, n ∈ N}∪ {(+, s) | s ∈ S},
where ([], s, n) ∈ O�

s...s(ms,s) and (+, s) ∈ O�
(ms,s)(ms,s).

We define MULTALG(A) by MULTALG(A)(x) = A(x) for every symbol x of SIG \ (�S ∪ �O). For the
other symbols, we define: MULTALG(A)((ms, s)) = MS (A(s)), MULTALG(A)(([], s, n))(a1, . . . , an) =
[a1, . . . , an], and MULTALG(A)((+, s)) = +, where + is the addition operation on multisets MS (A(s)).

Extended multisets Some versions of high-level Petri nets have more powerful operations on multisets
and for constructing multisets. To this end, we could use a generator that adds these operations. We
denote this generator for extended multisets by MULTX = (MULTXSIG ,MULTXALG), but we leave
the definition open, since it is yet to be decided which operations should be in there. We just assume
that MULTSIG(SIG) ⊆ MULTXSIG(SIG) and MULTALG(A) ⊆ MULTXALG(A).

One special extension of the multisets, which we need later for defining symmetric nets with bags
is MULTB . This generator MULTB = (MULTBSIG ,MULTBALG) is defined by MULTBSIG(SIG) =
MULTSIG(SIG) ∪ (∅, {(card), (unique)}) where (card) ∈ O(ms,s)(nat), and (unique) ∈ O(ms,s)(bool).
We define MULTBALG(A) by MULTBALG(A)(x) = A(x) for every symbol x of MULTSIG . For the
other symbols, we define: MULTBALG(A)((card))([a1, . . . , an]) = n, i. e. the number of elements in the
multiset. MULTBALG(A)((unique))([a1, . . . , an]) is the operator checking that the multiset is actually
a set (i. e. there is at most one occurrence of each element).

Products The generator PROD = (PRODSIG ,PRODALG) adds all products of the existing sorts and
some operations on these products: We define PRODSIG(SIG) = (S�, O�); where S� = S ∪ �S with �S =
{(×, s1, . . . , sn) | n ∈ N, s1, . . . , sn ∈ S} and O� = O ∪ �O with �O = {((), s1, . . . , sn) | n ∈ N, s1, . . . , sn ∈

130

S}∪{(pr, i, s1, . . . , sn) | n ∈ N, i ∈ N, 1 ≤ i ≤ n, s1, . . . , sn ∈ S} with ((), s1, . . . , sn) ∈ O�
s1...sn(×,s1,...,sn)

and (pr, i, s1, . . . , sn) ∈ O�
(×,s1,...,sn)si

.
We define PRODALG(A) by PRODALG(A)(x) = A(x) for every symbol x of SIG \ (�S ∪

�O). For the other symbols, we define: PRODALG(A)((×, s1, . . . , sn)) = A(s1) × . . . × A(sn),
PRODALG(A)(((), s1, . . . , sn))(a1, . . . , an) = (a1, . . . , an) for all s1, . . . , sn ∈ S and a1 ∈ A(s1), . . . , an ∈
A(sn), and PRODALG(A)((pr, i, s1, . . . , sn))(a1, . . . , an) = ai.

Note that PROD defines only products of the sorts that exist in the input signature already. It does
not define products of products recursively. This recursive construction of products is not necessary
here, since we can achieve this by the closure construction on this generator, which will be defined later.

Other sorts and operations Note that there could be many other generators that add some of the
commonly used sorts and operators, such as the integers, strings, or even more generic sorts like queues
or lists over existing sorts. Since, this paper is more on the framework then on actually defining and
classifying all the existing versions of high-level nets, we do not need them here, and therefore do not
formally define them here.

5.2 Constructions on generators

From existing basic generators, we can now built more complex generators. The operations needed in
this paper are the composition ◦, the union ∪ and the closure construct ∗.

Sequential composition The sequential composition of two generators G1 = (GS 1,GA1) and G2 =
(GS 2,GA2) is defined as the function composition, i. e. G2 ◦ G1 = (GS 2 ◦ GS 1,GA2 ◦ GA1). For
some signature SIG and some SIG-algebra A, this means (GS 2 ◦ GS 1)(SIG) = GS 2(GS 1(SIG)) and
(GA2 ◦GA1)(A) = GA2(GA1(A)).

Union Likewise, the union ∪ is the union of the two mappings G1 ∪ G2 = (GS 1 ∪ GS 2,GA1 ∪ GA2).
Note that we do not require the two generators to add disjoint symbols; actually, the way generators
are defined, both generators will add the original symbols, which is why they are not disjoint. But, we
assume (resp. we use and combine generators only in such a way) that they both agree on the meaning
of these symbols, i. e. the generated algebras will assign the same meaning to these symbols.

Closure The closure of a generator applies the generator over and over again. Let G, be some generator.
We define G0 = ID and, for each i ∈ N, we define Gi+1 = G ◦Gi. Then we define G∗ =

�
i∈N Gi.

For example, we can now define the generator G from Sect. 3.5 from the basic generators above
using the following constructions: G = (MULT ∪ PROD)∗ ◦ BOOL.

6 Constructs

Some variants of high-level Petri nets differ in the data structures that may be used in the underlying
algebras. For example, symmetric nets allow for data types with finite domains and a very limited
set of operations only. It would be possible to use the concept of generators with some sophisticated
and parameterised sort definitions, for explicitly introducing these data types. This however, would
introduce much syntactical overhead. Due to this overhead, it would also be very tedious to check
whether the generators really do what they are supposed to do, and designing and validating such
generators would need much care and experience.

This can be alleviated, if we allow to directly provide the respective algebras in the definition of the
algebraic net. This however requires a systematic way to characterise the algebras that are legal for a
specific version of high-level Petri nets and those which are not. In this section, we will introduce the
concepts for doing so: We slightly extend the concept of signatures to define its syntactical part, along
with a set of legal algebras. We call them constructs. Then a variant of high-level Petri nets can be
defined by a set of such constructs.

131

6.1 Formal definition of constructs

As mentioned above, a construct is, basically, a signature defining the sorts and operators of the
construct. In addition to that, we need to identify the role of the sorts and operators, or in general
the role of symbols. One role could, for example, be that it is a standard symbol (which is defined
via some generator); for example the sort booleans or some of the standard operations on it, which
have a fixed meaning in all the algebras and may even occur in different constructs with that same
meaning. Another role can be that the symbol must not be used by or occur in other constructs, with
the same role, which we call disjoint ; i. e. these symbols of different constructs do not overlap with
other constructs. The precise meaning of these roles will be made clear later in Def. 21. For now, we
allow to make these roles explicit.

One of the tricky parts of this definition is that we need to take care that the symbols with a fixed
interpretation actually have a fixed interpretation. To this end, we exploit the generators again which
define the symbols with a fixed meaning. In this definition of constructs, we need to make sure that a
construct is compatible with the used generator.

Definition 20 (Construct).

Let G = (GS ,GA) be some generator. A construct CON = (SIG ,F ,D , A) consists of a signature SIG,

two subsets F and D of symbols of SIG and a class of SIG-algebras A, such that

1. GS (SIG |
F

) ⊇ SIG |F and

2. for every A ∈ A we have GA(A|
F

)|F = A|F ,

where F is the set of all symbols of SIG except the symbols of F . The symbols of F are called the fixed
symbols of CON and the symbols of D are called the disjoint symbols of CON .

The class of all constructs with respect to a generator G is denoted by CG.

Basically, a construct consists of a signature, and some algebras which give all the legal interpre-
tations. The disjoint symbols D define which symbols may not overlap with other constructs, which
will be defined in Def. 21. The fixed symbols F , are the symbols with a fixed meaning. Technically,
we require that the fixed symbols in the algebra are the ones which would be added by the genera-
tor (condition 1) and also have the same meaning in all algebras as they have in the generated parts
(condition 2). Note that we use ⊇, because the generator could introduce many more symbols than the
ones occuring in the signature (typically, there are infinitely many symbols in the generator but only
finitely many in a construct).

Now, a set of such constructs can be used for characterising some specific algebras as defined below.

Definition 21 (Construct mapping and legal algebras).

Let G = (GS ,GA) be some generator and C be a set of constructs, SIG
�
be a signature, and A� be a

SIG
�
-algebra.

A construct mapping H for C and SIG is a set of pairs (CON , h), where CON ∈ C is a construct

with CON = (SIG ,F ,D , A) and h : SIG → SIG
�
is a signature homormorphism such that the following

conditions are met:

1. (h|
F

)G|F = h|F (i. e. the homomorphism respects the interpretation of the fixed symbols as defined

by the generator G).

2. For all signatures SIG
�� ⊆ SIG

�
with SIG

� ⊆ GS (SIG
��), for all ((SIG ,F ,D , A), h) ∈ H, and for

all symbols x of SIG with h(x) in SIG
�

but not in SIG
��
, we have x ∈ F (i. e. symbols with an

interpretation that comes from a generator are a fixed symbol of the construct).

3. For all (CON 1, h1), (CON 2, h2) ∈ H and all symbols x ∈ D1 and y ∈ D2 with h1(x) = h2(y), we

have CON 1 = CON 2, h1 = h2 and x = y (i. e. disjoint symbols of two different constructs do not

overlap in SIG
�
).

4. For all symbols x� of SIG
�
, there exists a (CON , h) ∈ H and a symbol x ∈ SIG such that h(x) = x�

(i. e. all symbols in the signature SIG
�
are part of at least one construct).

5. For every (CON , h) ∈ H, we have A� ◦ h ∈ A (i. e. the part of the algebra corresponding to this

construct is one allowed by this construct).

132

Then, the algebra A� is said to be a legally constructed algebra with respect to C and H. We also say

that H is a construct mapping from C to A�.

The main idea of this definition is that in a legal algebra A�, all parts come from some construct.
Condition 1 says that the interpretation of the fixed symbols of a construct is the one defined by the
generator if these symbols were not there. Condition 2 makes sure that symbols that have a fixed
interpretation according to a generator, have been defined as such in the construct. Condition 3 says
that the disjoint symbols of all constructs are mapped to different symbols in SIG

�, so the constructs
do not overlap on these symbols. Condition 4 says that all symbols of SIG

� result from one of the
constructs, i. e. there are no symbols of SIG

� that are not injected by any construct mapping to SIG
�.

At last, condition 5 says that the semantics of the symbols comes from the construct. Note that in
condition 5, h is a signature homomorphism from SIG to SIG

�; therefore, A� ◦ h is a SIG-algebra, and
exactly this ‘part’ of SIG must be an algebra allowed by the construct (i. e. an algebra from A).

6.2 Examples of constructs

In this section, we will define some examples of constructs, which will be used for defining symmetric
nets and some other versions of high-level nets in Sect. 7.2.

Unordered sets The construct of unordered sets UO is defined by UO = (UOSIG , ∅, {u}, Au), where
UOSIG = ({u}, ∅) and Au contains every UOSIG-algebra A such that A(u) is a finite set.

This is basically defining a sort symbol u, which in all legal interpretations must be a finite set.
Since u is in the set of disjoint symbols of UO , this sort symbol may not overlap with disjoint symbols
of the other constructs.

Linearly ordered sets The construct of linearly ordered sets LO is defined by LO =
(LOSIG , {(bool)}, {o, lt}, Ao), where LOSIG = ({o, (bool)}, ({lt}, i)) with i(lt) = o o (bool) and where
Ao contains every LOSIG-algebra A such that A(o) is a finite set and A(lt) defines an irreflexive total
order on A(o).

Similarly to unordered sets, linearly order sets define a sort o which is associated with a finite set.
In addition, linearly ordered sets define an operation lt which defines a total (irreflexive) order on o.
Technically, lt is an operation into the booleans. This is where the fixed symbols come in: (bool) is a
fixed symbol of this construct, and therefore must obtain the interpretaion as defined in the generator.
Note that this sort (bool) might be used by different constructs. The symbols o and lt are disjoint
symbols.

Cyclic sets The construct of cyclic sets CS is defined by CS = (CSSIG , ∅, {c, pred, succ}, Ac), where
CSSIG = ({c}, ({pred, succ}, i)) with i(pred) = i(succ) = c c and where Ac contains every CSSIG-
algebra A such that A(c) is a finite set and A(succ) is a function defining a cycle on all elements of
A(c), and A(pred) is the inverse of A(succ).

The construct of cyclic sets is very similar to linearly order sets. The elements are arranged in a
cycle, which is expressed by the operators succ and pred.

Partitions The construct of partitions PAR is defined by PAR = (PARSIG , ∅, {p, f}, Ap), where
PARSIG = ({s, p}, ({f}, i)) with i(f) = s p and where Ap contains every PARSIG-algebra A such
that A(p) is a finite set and A(f) is a surjective function.

Equality The construct of equality EQ is defined by EQ = (EQSIG , {(bool)}, ∅, Ae), where EQSIG =
({e, (bool)}, ({eq}, i)) with i(eq) = e e (bool) and where Ae contains every EQSIG-algebra A such that
A(eq) is the equality function on A(e) (i. e. it evaluates to true if both arguments are the same).

Note that, in this construct, the sort symbol e as well as the operation symbol eq expressing the
equality are not in the set of the construct’s disjoint symbols. This way, the equality operation may be
added to any sort (even to the ones coming from other constructs).

133

All Likewise, the following construct allows to introduce a constant for a sort s that denotes a multiset
in which each element of the set associated with this sort occurs exactly once, which is often denoted
by alls; we use, the notation (all, s) here.

The construct ALL is defined by ALL = (ALLSIG , {(ms, s)}, ∅, Aa), where ALLSIG =
({s, (ms, s)}, ({all}, i)) with i(all) = (ms, s) and where Aa contains every ALLSIG-algebra A with
A(s) = {a1, . . . , an} such that A((ms, s)) = MS (A(s)) and A(all) = [a1, . . . , an].

Simple multisets The construct MULTSNB introduces the construction of a multiset el-
ement, the complement of a multiset w.r.t. its carrier set, the difference between two
multisets, and for a sort s a constant singleton multiset with (all, s) as its only ele-
ment. This construct is defined by MULTSNB = (MULTSNBSIG , {s, (ms, s)}, ∅, Am), where
MULTSNBSIG = ({s, (ms, s), (ms, (ms, s))}, ({{}, ~, \, whole}, i)) with i({}) = (ms, s)(ms, (ms, s)),
i(~) = (ms, s)(ms, s), i(\) = (ms, s)(ms, s)(ms, s), i(whole) = (ms, (ms, s)), and where Am contains
every MULTSNBSIG-algebraA withA({})([b1, . . . , bn]) = [[b1, . . . , bn]],A(~)([b1, . . . , bk]) = [c1, . . . , cj]
such that [c1, . . . , cj] contains exactly one occurrence of all the elements of A(s) not in [b1, . . . , bk],
A(\)([b1, . . . , bk], [c1, . . . , cj]) = [b1, . . . , bk] \ [c1, . . . , cj], i.e. the difference between the two multisets,
and finally A(whole) = [(all, s)].

7 The Framework

Now, we can extend the definition of algebraic nets with respect to the used generator and with respect
to some constructs, which will then allow us to define different kinds of algebraic nets. Actually, we use
two generators: the first one defines the basic sorts and operations for the tokens on the places. The
second generator introduces the necessary multiset structure on top of these basic sorts, which are used
to construct the arc annotations and the transition conditions. Note that, in the most general case, the
first generator has the full power so that tokens could be multisets and even multisets of multisets, etc.
The more interesting versions, however, are the ones with a more restrictive first generator.

7.1 Formal definition

Definition 22 (High-level net version definition). Let G1, G2 be two generators, and let C be a

set of constructs with respect to G2 ◦ G1. Then K = (G1, G2, C) is a version definition of high-level
nets.

The main idea of a definition of a version K = (G1, G2, C) is that the constructs C define the
signatures and algebras that may be explicitly defined by the user, and the generator G1 defines which
other sorts and operations may be constructed from them. These together define the basic sorts of this
version of algebraic nets. The generator G2 defines the multiset sorts and the operations that may be
used for the annotations of the net (markings, arc labels and transition conditions).

Definition 23 (Algebraic net of kind K). Let K = (G1, G2, C) be a version definition of high-level

nets with G1 = (GS 1,GA1) and G2 = (GS 2,GA2).
An algebraic net scheme of kind K is a tuple Σ = (N,SIG , sort, vars, l, c, i) with

1. a net N = (P, T, F),
2. a signature SIG,

3. a place sort mapping sort : P → SGS1(SIG),

4. a transition variable mapping vars : T → VGS1(SIG),

5. an arc label mapping l : F → TGS2(GS1(SIG))(VGS1(SIG)) such that:

– for all (p, t) ∈ F ∩ (P × T) : l((p, t)) ∈ TGS2(GS1(SIG))
(ms,sort(p)) (vars(t))

– for all (t, p) ∈ F ∩ (T × P) : l((t, p)) ∈ TGS2(GS1(SIG))
(ms,sort(p)) (vars(t)),

134

6. a transition condition mapping c : T → TGS2(GS1(SIG))
(bool) (VGS1(SIG)) with

c(t) ∈ TGS2(GS1(SIG))
(bool) (vars(t)) for every t ∈ T , and

7. an initial marking i : P → TGS2(GS1(SIG)) such that, i(p) ∈ TGS2(GS1(SIG))
(ms,sort(p)) for every place p ∈ P .

An algebraic net scheme Σ of kind K together with a SIG-algebra A and a construct mapping H

from C to A form an algebraic net (Σ,A,H) of kind K.

Note that the semantics and the reachability graph for algebraic nets of any kind is the same as the
one defined before in Sect. 4.2. The exact details of the generators do not play any role, as long as the
booleans and the multiset addition are included.

7.2 Examples of definitions of net versions

At last, we apply this framework for defining some versions of high-level Petri nets. Note that this
is mainly meant for demonstrating the use of the framework; a more complete, more systematic and
careful definition and classification of most of the relevant high-level Petri net versions is out of the
scope of this paper.

P/T-systems We start with the most primitive version of high-level nets, which is Place/Transition
systems, just in the setting of high-level nets. In ISO/IEC 15909-2 this version is called Place/Transition

systems in high-level net notation. The basic idea is that all places are of sort dots, which represents
the black tokens.

This version can be defined by PT = (DOT ,TRUE ◦MULT , ∅). Since the set of legal constructs
is empty, the signature and algebra provided for an algebraic net of this kind must be empty. Since
the first generator DOT only creates the sort dots from an empty signature, this is the only legal
sort for places. For constructing the legal arc inscriptions, also the sorts and operations generated by
TRUE ◦ MULT on top of that can be used. As discussed earlier, TRUE is a simple version of the
booleans with true as the only possible value; this is necessary for technical reasons, since in high-level
nets as defined above a transition must have condition.

Symmetric nets Next, we define symmetric nets by the help of a specific generator (products and
multisets cannot be built recursively) and the symmetric net constructs. We define the generators for
symmetric nets by SN 1 = PROD ◦ BOOL, SN 2 = MULT .

We define the constructs for symmetric nets by CSN = {UO ,LO ,CS ,PAR,EQ ,ALL}.
Then the definition of the symmetric net version of an algebraic net is KSN = (SN 1,SN 2, CSN).

Symmetric nets with bags Symmetric nets where extended in [12] to allow for manipulating multiset
elements in places, on arcs and in transitions conditions. This feature provides additional flexibility for
modelling with symmetric nets, without losing the analysis techniques such as the symbolic reachability
graph.

The definition of the symmetric net with bags version of algebraic net is KSNB = (MULT ◦PROD ◦
BOOL,MULTB ∪NAT , CSN ∪ {MULTSNB}).

Algebraic Petri nets with fixed arc weight Next, we characterise the version of algebraic nets as defined
by Reisig [5]. The major characteristics of this version is that the number of tokens flowing through an
arc is always the same, which is why they are sometimes called nets with fixed arc weight (see [13]).

The main point is that the multiset structure of the signature is constructed in a fixed way on top
of an arbitrary algebra. This is reflected in the formal definition AN 1 = (BOOL,MULT , CBOOL).

The constructor BOOL is used for using BOOL as a pre-defined sort. All other sorts can be defined
by arbitrary constructs over that generator. The multisets only come in via the second constructor
MULT (which does not provide any operation for flexible arc weights).

135

Algebraic Petri nets with flexible arc weight In contrast to that, Kindler and Völzer [13] introduce a
version of algebraic nets in which the signature and algebra can define arbitrary operations on multisets.
And multiset sorts may even be used as the sort of some places, and multisets of multisets are possible.
Therefore, the first generator allows to use this, and the constructs for the algebra may even define
some of these operations.

This version can be defined as AN 2 = (MULT
∗ ◦ BOOL, ID , CMULT∗◦BOOL).

Note that the second generator does not need to contribute any further operations, since all the
needed multiset operations are already added by the first generator. Therefore, the second generator is
just the identity ID .

General version In principle, algebraic nets with flexible arc weights have all the necessary power. But,
to obtain this power, they require that all more powerful operations are defined by the user by providing
a signature and an algebra with all the desired operations. It would be much easier, if some of these
operations were built-in and could be used without explicitly defining them everytime a new algebraic
net is used. This is in particular true for products. Therefore, a more general version would have the
products and some more operations on multisets available. Only very special sorts or operations would
then come from the signature and algebra defined by the user.

This could look like AN 3 = ((MULTX ∪ PROD)∗ ◦ (BOOL ∪
DOT), ID , C(MULTX∪PROD)∗◦(BOOL∪DOT)). Actually, even some other sorts like strings, integers,
and list could be included here. But, we leave the exact set of operations and sorts that should be
built-in open for a discussion here, as we left the exact definition of MULTX open.

8 Conclusion

In this paper, we have introduced a mathematical framework that allows us to define different versions
of high-level Petri nets, with different built-in sorts and operators, and different legal constructs in the
underlying algebra. The examples at the end of this paper show that a wide variety of different kinds of
high-level net can be defined this way. The main advantage is that the legal constructs and the built-in
sorts and operations can be defined independently from the actual definition of algebraic Petri nets.
This way, it is much easier to define, to compare and classify different versions of high-level Petri nets
and make the built-in sorts and operations and the legal constructs explicit.

Note that for making this possible, we needed to introduce some mathematics, which might be hard
to understand for non-experts. But, once this framework is there (and validated by some experts), it
can be used in an intuitive way, by selecting and combining the respective constructs and generators.
Defining a new version can be done without understanding the details of the underlying framework; one
just needs to select the basic building blocks, and combine them with each other, which is demonstrated
by the examples in Sect. 7.2.

References

1. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured nets and their symbolic
reachability graph. In Jensen, K., Rozenberg, G., eds.: Petri Nets: Theory and Application. Springer-Verlag
(1991) 373–396

2. Kindler, E., Petrucci, L.: Towards a standard for modular Petri nets: A formalisation. In Franceschinis,
G., Wolf, K., eds.: Application and Theory of Petri Nets 2009, Internat. Conference, Proceedings. Volume
5606 of LNCS., Springer-Verlag (2009) 43–62

3. Kindler, E., Reisig, W.: Algebraic system nets for modelling distributed algorithms. Petri Net Newsletter
51 (1996) 16–31

4. Kindler, E., Völzer, H.: Algebraic nets with flexible arcs. Theoretical Computer Science (2001)
5. Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Science 80 (1991) 1–34
6. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specifications 1, Equations and Initial Semantics. Volume 6

of EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1985)

136

7. Berthomieu, B., Choquet, N., Colin, C., Loyer, B., Martin, J., Mauboussin, A.: Abstract Data Nets com-
bining Petri nets and abstract data types for high level specification of distributed systems. In: Proceedings
of VII European Workshop on Application and Theory of Petri Nets. (1986)

8. Vautherin, J.: Parallel systems specifications with coloured Petri nets and algebraic specifications. In
Rozenberg, G., ed.: Advances in Petri Nets. Volume 266 of LNCS. Springer-Verlag (1987) 293–308

9. Billington, J.: Many-sorted high-level nets. In: Proceedings of the 3rd International Workshop on Petri
Nets and Performance Models, IEEE Computer Society Press (1989) 166–179

10. ISO/IEC: Software and Systems Engineering – High-level Petri Nets, Part 1: Concepts, Definitions and
Graphical Notation, International Standard ISO/IEC 15909 (2004)

11. Schmidt, K.: Verification of siphons and traps for algebraic Petri nets. In Azéma, P., Balbo, G., eds.:
Application and Theory of Petri Nets 1997, Internat. Conference, Proceedings. Volume 1248 of LNCS.,
Springer-Verlag (1997) 427–446

12. Haddad, S., Kordon, F., Petrucci, L., Pradat-Peyre, J., Trèves, N.: Efficient state-based analysis by in-
troducing bags in Petri nets colour domains. In: Proc. 28th American Control Conference (ACC2009), St
Louis, Missouri, USA. (2009) 5018–5025

13. Kindler, E., Völzer, H.: Flexibility in algebraic nets. In Desel, J., Silva, M., eds.: Application and Theory
of Petri Nets 1998, 19th International Conference. Volume 1420 of LNCS., Springer-Verlag (1998) 345–364

137

138

Verification of Railway Interlocking Tables using Coloured

Petri Nets
�

Somsak Vanit-Anunchai

School of Telecommunication Engineering
Institute of Engineering, Suranaree University of Technology

Muang, Nakhon Ratchasima 30000, Thailand
Email: somsav@sut.ac.th

Abstract. A functional specification for railway signalling systems called “control table” plays
a vital role in the signalling design and installation processes. Control tables are the tabular
representation specifying the routes, on which the passage of the train is allowed. Associated
with the route, the states and actions of all related signalling equipment are also specified.
Although various software tools are available for generating, editing and checking the control
tables, there are still some drawbacks. Firstly, those tools are usually bound up with the a specific
railway company. Secondly, each railway company has its own operating rules and regulations
that control tables need to comply with. The control tables that are automatically generated and
verified still require manual inspection by the railway signal engineer. This checking process is
very labor intensive and prone to errors. To detect and eliminate errors, we propose to formally
model and analyse the interlocking tables using CPN Tools. Our CPN model comprises two
parts: Signalling Layout model and Interlocking model. We use ML functions on arc inscription
in the Interlocking model. These ML functions can be generated directly from the content of
the control table using Extensible Stylesheet Language Transformations (XSLT). Thus our CPN
model can be easily adapted and reused and CPN models of other control tables can be rapidly
built. Finally some experimental results are discussed to convince us of the correctness of our
CPN model and the control tables.

Keywords: Control Tables, Interlocking Tables, Railway Signalling Systems, Coloured Petri
Nets, State space Analysis

1 Introduction

Currently the State Railway of Thailand (SRT) has been undertaking several railway sig-
nalling projects involving either improvement of the existing signalling systems or expansion
of the existing railway lines. During the whole process of designing, installing and testing the
signalling system, “Interlocking Tables” or “Control Tables” play a vital role in every stage.
The control table is a tabular representation specifying how the trains move together with the
required states and actions of all related equipment. This important document also acts as an
agreement between the railway administrators and the contractors. Many signalling contrac-
tors have software tools for editing, generating and verifying the control tables. Usually the
control table generated by a software tool is bound up with a specific railway company. But
SRT has its own operating regulations, requirements and signalling principles that control
tables need to comply with. Thus after the control tables are designed and checked by the
contractors, they need to be rechecked by SRT’s signal engineers. Now SRT signal engineers
manually inspect the submitted control tables without any software tools. Thus the checking
process is very slow, labour intensive and prone to errors. In order to assist their inspection,
detect and rectify errors rapidly, we propose to formally model and analyze the control ta-
bles using CPN Tools [12]. Because SRT’s signalling projects involve hundreds of Interlocking
� Supported by National Research Council of Thailand Grant no. PorKor/2551-153

139

systems, we wish to study how to rapidly re-build the CPN model of the control tables for
other Interlocking systems. Our counter part, SRT’s signal engineers, believe that the signal
engineers should build, maintain and modify the CPN models of control tables themselves
due to the details and complication of the problem. Thus CPN Tools is a good candidate
because its graphical language and the user interface are easy to use.

The contribution of this paper is two folds. Firstly, the Phanthong’s control table is mod-
elled and verified against its desired property. Secondly, we discuss design decision on how
to create a CPN model of a control table that can be easily adapted and reused for other
control tables. In particular, we propose to standardize the format of control tables using
XML and using XSLT to transform the content of the control table to ML functions used in
the CPN model. Thus the signal engineers who follow our methodology do not need to be a
programming expert in C, Java or ML.

The rest of this paper is organised as follows. Section 2 briefly explains the concept of
railway signalling system and control tables. Section 3 discusses related work. Section 4 defines
the scope of work by discussing assumptions, modelling approach and model structure. The
CPN model of Panthong control table is illustrated in Section 5 and 6. Section 7 discusses
our analysis results. Conclusion and Future work are presented in Section 8.

2 Railway Signalling Systems and Control Tables

2.1 Signalling Systems

In general the railway lines are basically divided into sections. To avoid collision, only one
train is allowed in one section at a time. The train can enter or leave the section when the
driver receives authorization from a signalman via a signal indicator. Before the signalman
issues the authorization, he needs to ensure that no object blocks the passage of the train.
SRT’s regulation divides the section into two categories: between two stations and within
the station area. The section between two railway stations, which involves two signalmen,
is called “block section”. Usually railway companies have a strict procedure how to admit
trains into a block section. To prevent human error, which often leads to collisions, the strict
operation on a block section is controlled by an equipment called “Block Instrument”. The
Block Instrument has 3 possible states. It is Normal when there is no train in the block section
and no one requests block possession. It is in Going state when the permission for the block
possession is given to the outgoing train. It is in Coming state when the permission for the
block possession is given to the incoming train.

Figure 1 shows the signalling layout of a small station named “Panthong”. It comprises a
collection of railway tracks and signalling equipment such as track circuits, points and signals.
Main signals are classified into three types:, warner, home and starter signals. SRT defines
that the station area is between two home signals (signal no.3 and signal no.4). Each piece of
signalling equipment has an identification number and holds a certain state as follows.

Track Circuits A track Circuit is an electrical devices used to detect the presence of a train.
A track circuit (e.g. 42T, 2T) is either cleared indicating no train on the track or occupied
indicating the possible1 presence of a train.

1 When the track circuit fails, its state is occupied even if there is no train.

140

1
T

3
T

9

T

1
0

3
T

2
4

T

1
6

T

4
2

T

4
1

T
2

3
T

1
5

T

1
0

4
T

4
T

2
T

8
T

Fig. 1. Signalling layout of the Panthong Station

141

Warner signals A warner signal (e.g. 1, 2) has two aspects: yellow or green. It informs
drivers about the status of the next signal.

Home signals A home signal (e.g. 3, 4) has three aspects: red or yellow or green.
It displays red when forbidding the train enter the station area.
It displays yellow giving the driver authorities to move the train into the station area and

prepare to stop at the next signal.
It displays green giving the driver authorities to move the train passing the station and

enter the next block section.

Starter signals A starter (e.g. 16, 24, 15, 23) has two aspects: red or green.
It displays red when forbidding the train to enter the block section.
It displays green when giving the driver authorities to move the train into the block section.

Point A point (e.g. 103, 104) or railway switch or turnout is a mechanical installation used
to guide a train from one track to another. A point usually has a straight through track called
main line and a diverging track called loop line. A point is right-hand when a moving train
from a joint track diverges to the right of the straight track. Similarly a left-hand point has
the diverging track on the left of the straight line. When a point diverges the train, it is in
reverse position. When a point lets the train move straight through, it is in normal position.
When the interlocking prevents a point from changing position, the point is locked.

2.2 Control Tables

A collection of track circuits along the reserved section is called “route”. An entry signal shall
be cleared to let the train enter the route. Although the request to clear the entry signal is
issued by the signalman, the route entry permission is decided by the interlocking system
using safety rules and control methods specified in the agreed control tables. Table 1 and 2
are the control tables for Panthong station of which signalling layout is shown in Fig. 1. Data
in the first column, “From”, is the route identifications which are labeled by the entry signal:
3(1); 3(2); 4(1); 4(2); 15; 16; 23 and 24. Each row in the tables represents the requirement
how to set and release each route. For example, route 3(2) comprises the track circuits 3T,
9T, 103T, 16T, 42T, 15T and requires that the points 103 and 104 are in normal position.
Routes 3(1) and 3(2) distinguish that behind signal 3 two routes are possible. Similar rule
applies to routes 4(1) and 4(2).

Different Interlocking systems from different manufacturers may have different control
methods. However there are four basic control methods widely accepted and used among
railway companies.

Route locking Route setting involves a collection of adjacent track circuits, points and
signals. To assure the safety, firstly, the interlocking system verifies that the route does not
conflict with other routes previously set. The column “Requires Route Normal” shows conflict
routes. A route cannot be set if any conflict routes have been set and not yet released. For
route 3(2) the conflict routes are 16, 23, 24, 4(1), 4(2) and 3(1). Secondly, the points along the
route are locked in the correct positions. If the related points are not in the correct positions,
the controller will attempt to set and lock them in the correct positions. Thirdly, the track

142

Table 1. A control table for Panthong station (part 1:Route locking)

TC CLEAR OCC FOR

2 4 Y 4 AT R#
 3 AT Y# OR G#G

AT TIME OF
CLEARING ONLY

OR TIME

CLEAR

ROUTE

INTERLOCKING CONTROL

REQUIRES TC

ASPECT

O G#G

SIGNAL AHEAD

REQUIRES

1 3

From To

REQUIRES SET & LOCKS POINTS

NORMALROUTE NORMAL NORMAL REVERSE

KEYLOCK

Y 3 AT R#

103,104

104,103

Y 16 AT R#

BLOCK
24T,103T,9T,3T,1T,TOLG24 DOWN

SECTION
16,3(1),3(2)

BLOCK
103,104

24,3(1),3(2) G 16T,103T,9T,3T,1T,TOL
SECTION

23 UP G 23T,104T,8T,4T,2T,TOL15,4(1),4(2)

BLOCK

42 FOR
60 sec24T,103T,9T,3T

15 UP G

201,202, Y+JI 24 AT R#

23,4(1),4(2) 15T,104T,8T,4T,2T,TOL
203,204

4215,23,3(1),3(2),4(1)4(2) 24

41 41 FOR
G 16 AT G# 60 sec

15,23,3(1),3(2),4(2)4(1) 16
15 AT G#

41 41 FOR
103,104

3T,9T,103T,16T,42T,
15T,104T,8T,4T 60 sec

 4 AT Y# OR G#

203,204
103,104

42 42 FOR3T,9T,103T,24T,41T,
23T,104T,8T,4T

G

60 sec
3(2) 15

16,24,4(1),4(2),3(2)

16,24,4(1),4(2),3(1)

16 DOWN

3(1)

SECTION

BLOCK

23

4T,8T,104T,23T,41T,

104,103

104,103

104,103

4T,8T,104T,15T,42T,
16T,103T,9T,3T

201,202, Y+JI 23 AT R#

Y 15 AT R#
G

103,104

SECTION
BLOCK

Table 2. A control table for Panthong station (part 2:Approach locking)

WHEN SIGNAL CLEARED &

AND

 RELEASEFrom TO

APPROACH LOCKED

OR
TC OCC

TC OCC

TC OCC

1 3

& CLEAR
Emergency

OR

CLEAR REMARKS

AND / OR

AFTER

ROUTE RELEASED BY
ROUTE

CONTROL

Notes

TC

REPEAT 4

REPEAT 3
WARNER

 TIME

WARNER2 4

1 DOWN BLOCK NOTSET
DOWN XING BOOM DOWN

1 DOWN BLOCK NOTSET
DOWN XING BOOM DOWN

2 UP BLOCK NOTSET
UP XING BOOM DOWN

2 UP BLOCK NOTSET
UP XING BOOM DOWN

42T UP BLOCK SET
UP XING BOOM DOWN

41T UP BLOCK SET
UP XING BOOM DOWN

42T DOWN BLOCK SET

23 240s41T103T120s

16 DOWN

3(1) 3T,9T
REPEAT 4

3(2) 15 3T,9T 103T 42T 240s

4(1) 16 120s 4T,8T 104T

120s

4(2) 24

15 UP 2 240s120s 15T,104T, 4
BLOCK 8T

23 UP
SECTION

2 240s120s 23T,104T,
BLOCK

4
8T

SECTION
240s120s 16T,103T, 3 1

4T,8T 104T 41T 240s120s

42T 240s

DOWN XING BOOM DOWN

41T DOWN BLOCK SET
DOWN XING BOOM DOWN

1
9T

, ,
BLOCK 9T

SECTION
240s120s 24T,103T, 324 DOWN

BLOCK
SECTION

circuits along the required route are all cleared or unoccupied so that nothing obstructs the
passage of the train. Then the entry signal can be cleared (showing yellow or green). The
home signal will be green if the exit signal of the route shows green too. For example the exit
(starter) signal of the route 3(2) is 15. If starter signal 15 shows green and route 3(2) is set,
the home signal 3 will show green.

Approach locking After a route is set; the points are locked; and the entry signal is cleared,
if the track circuit in front of (approaching) the entry signal is occupied, then the signalman
cannot cancel the route and the entry signal by the normal procedure. Approach locking
prevents the train driver from the sudden change of signal aspect from green or yellow to red.

143

Column 3 in Table 2, “APPROACH LOCKED WHEN SIGNAL CLEARED & TC OCC”,
presents locking when the approach track circuit is occupied. For example, route 3(2) will
be approach locked if the route is set and track 1T is occupied. The approach locking also
happens after the signal is cleared longer than 2 minutes.

Route released By the passage of the train, the reserved route is automatically released.
Column “Route Released by” in Table 2 presents route released mechanism for the signalling
layout in Fig. 1. Route 3(2) will be released when track 3T, 9T is cleared; track 103T is
occupied and then cleared; and track 42T is occupied. The reserved route can be emergency
released but the release action will be delayed for 4 minute after the signalman issues “emer-
gency route released” command.

Flank protection The equipments within the surrounding area of the reserved route that
may cause an accident shall be protected even if no train is expected to pass such a signal or
such points. For example points should be in such positions that they do not give immediate
access to the route. The last two columns of Table 2 presents an example of flank protection.
For route 3(2), the track 41T, which is not in the route 3(2), shall be unoccupied. If it is
occupied, the object on the track 41T should stand still. This condition is implied if the track
41T is occupied longer than 1 minute.

3 Related Work

Fokkink and Hollingshead [7] provided a perspective that can classify the research work re-
garding verification of railway signaling systems. According to [7] the railway signalling system
is divided into three layers: infrastructure, interlocking and logistic layers. All layers must pro-
vide safety for railway operation. The infrastructure layer involves objects or equipment used
in the yard. The work in this category, for instance [1,3,6,13], ties closely with manufacturer’s
products. The logistic layer involves human operation and train scheduling which aims at effi-
ciency and deadlock free. It involves the operation of whole railway network (e.g. [9,11]) thus
the state explosion problem is often encountered. The interlocking layer provides the interface
between the logistic and infrastructure layers. It prevents us from accidents caused by human
errors or equipment failures. The work in this category such as [10,15,16] models the control
tables and verify it against the safety regulations and signalling principles.

Hansen [10] presented a VDM (Vienna Development Method) model of a railway interlock-
ing system, and validated it through simulation using ML. The work focuses on the principles
and concepts of Danish systems rather than a particular interlocking system. He also pointed
out that Interlocking systems from other countries may be different from the Interlocking de-
scribed in [10]. Borälv [1] and Peterson [13] constructed interlocking programs using a special
language called STERNOL, which was developed by ADTranz in Sweden, and verified the
interlocking programs using NP-Tools.

Because relay interlocking and computer interlocking [3] are designed based on ladder
logic diagrams, Fokkink and Hollingshead [7] proposed to convert ladder logic diagrams to
Boolean formulae. Then they applied a theorem prover to verify these Boolean formulae.

Winter et al [14] proposed to create two formal models during the design process of in-
terlockings. One is the formal model of the Signalling Principles called Principle model. The

144

other is the formal model of the functional specification for a specific track-layout called Inter-
locking model. The Control Tables are translated into a Interlocking model and then checked
against the Principle model. At first she used CSP (Communicating Sequential Processes) as
a modelling language but later found that the CSP models of the interlocking system and the
signalling principle are difficult to understand and validate. Thus [16] used Abstract State
Machine (ASM) [8] notation to model the semantic of control tables. The ASM model was
then automatically converted to NuSMV code [4] while the safety properties were modeled
in CTL (Computation Tree Logic). Finally [15] they modelled the safety properties in ASM
and then translated both ASM models into the NP Prover tool [1] in order to compare the
performance between NuSMV and NP-tool. They discovered that if the track layout was
divided into smaller segments for verification, the NuSMV outperformed the NP-Tool. Our
work shares the same goal to [1, 7, 13–16] but our tools and signalling principles differ from
their.

Hagalisletto et al [9] demonstrated how to construct and refine models of railway using a
component-oriented approach. They modelled atomic nets, such as track circuits and turnouts,
using Coloured Petri Nets. Although atomic nets were created using Design/CPN, the models
were simulated [2] using Maude [5] due to the state explosion problem. Even though our CPN
models of each piece of equipment, such as track circuits, was inspired by [9], our work aims
at the interlocking table of one station while [9] involved the logistic layer and the whole
railway network.

4 CPN Model of the Panthong’s Control Table - Overview

Currently SRT has been undertaking track doubling projects which need to verify hundreds
of interlocking systems. Thus it is necessary to seek out a modelling approach to rapidly
build and verify these control tables. An existing control table of a single track station named
“Panthong” was selected as a modelling exercise because its new control table with double
track is being designed by a contractor. We wish to upgrade our CPN model for the double
track station to verify the new control table in the near future.

4.1 Modelling Scope and Assumptions

To reduce the complexity of the model as well as the state explosion problem which has been
reported by a number of researchers [9,16] who investigated the similar problems, we need to
make the following assumptions regarding train movement and signalling operations:

1. We assume that a train has no length and it occupies one track at a time. The train
moves in only one direction. Train shunting is not considered.

2. We assume the trains running at the same speed.
3. Our model does not include the auxiliary signals such as Call-on, Shunting and Junction

indicators.
4. Our model does not include timers. However we use time stamps when modelling the

trains moving along the track. This implies moving a train takes longer than other actions
in the system. For example the train must not move through a track circuit so fast that the
interlocking cannot detect the presence of the train.

5. Our model does not include emergency route release, emergency point operation.
6. Normally the signalling system provides a safety mechanism when equipment fails. Our

model does not consider when equipment fails.

145

7. Our model does not include level crossings.
8. Our model includes high level abstraction of block systems but we do not model their

operations in detail.
9. Our model does not include flank protections.
10. The train drivers strictly obey the signals.

4.2 Modelling Approach and Model Structure

Our CPN model comprises 2 parts: Signalling Layout and Interlocking. The Signalling Layout
part shown in Fig. 3 and Fig. 4 represents the system we wish to control. The Interlocking part
represents the interlocking controller. CPN models in Fig. 3 and Fig.4 mimic the signalling
plan of Panthong station (Fig.1). It comprises three kinds of CPN modules modelling wayside
equipment of which functions and states are described in Section 2.1. The CPN model in Fig. 3
and Fig. 4 provides not only geographic information how each way side equipment is connected
to each other but also the ability to simulate trains moving along the tracks. Basically our
CPN model includes three kinds of the train movements:

a) Train movement between two consecutive track circuits.
b) Trains passing a signal.
c) Trains passing a point.
Comparing with the signalling layout in Fig.1 our model does not include the third loop

line because no track circuit is installed there. But we model the key lock of manual operating
points and de-railers.

The Interlocking part comprises three CPN pages: UserCommand, RouteSetting (Fig.
6) and RouteReleased. They model point setting, route locking, signal clearing and route
release functions as specified in the control table and described in Section 2.2. Unlike [15] that
does not include the functionality of approach locking (to avoid the state explosion problem),
our CPN model does include the approach locking function. Even though the control table
of each railway station has different contents, the functionalities: route locking; approach
locking; route release; and flank protection are essentially the same. Attempting to create a
generic interlocking model, we extract the content of the control table and code them into ML
functions which are used in arc inscriptions. To model control tables of other railway stations
we simply change the content of the ML functions while using the same CPN models of the
Interlocking part.

Next we attempt to create these ML functions automatically as illustrated in Fig. 2. In
previous projects contractors submitted the control tables in Microsoft-Excel to SRT. Instead
of Excel, we encourage SRT to maintain the control table in XML format. As shown in Fig.
2 the control table in Microsoft-Excel is transformed to XML. Then it is transformed to ML
functions using Extensible Stylesheet Language Transformations (XSLT). All operations are
done using Microsoft-Excel and Microsoft-Word version 7.

5 The CPN Model of the Signalling Layout

The top layer of our CPN model, named SouthSTA (Fig. 3), mimics the signalling layout of
Panthong’s southern section. It comprises a sequence of places, T1, T3, T9, T103, T16, T24,
T41 and T42. Each place, typed by TCCT, represents a track circuit storing the track circuit
number and its state. TCCT is defined in line 4 of Listing 1.1 as a product comprising Track

146

Excel XML file WordExcel file

XSTL file

SML file

Control
Table

Transform

ML
functions

Easy to
editXSD file

XML
Schema

Fig. 2. Transformation of the control table to ML functions using XSLT

number and Train Description (TD). Line 2 of Listing 1.1 defines TD as a colour set repre-
senting states of a track circuit: unoccupied (noTrain); occupied by a train moving away
from Bangkok (TrainUP); and occupied by a train moving toward Bangkok (TrainDOWN).
Place TOL SOUTH (Train-on-line) models the track section2 between Panthong and the adja-
cent station in the south3. The SouthSTA is linked to NorthSTA page (Fig. 4) which models
the northern section of the station. Besides signalling layout, SouthSTA page also includes
substitution transitions UserRequestBlock and UserRequestRoute modelling the actions of
block setting and route setting by the signalman. When approach locking does not occur, the
signalman can cancel the route setting. This route cancel command is modelled by a token in
the fusion place RouteCancel. Substitution transitions S1, LOS and PT9 linked to TrackCCT
model the passage of the train between two adjacent track circuits. Substitution transition S3
linked to HomeSignalUP page (Fig. 5) models the passage of the train when passing the home
signal no.3. Similarly, substitution transitions S16 and S24, both linked to StarterDOWN page
model the passage of the train when passing the starter signals no. 16 and 24. We do not
need to model the train passing a warner signal. Because the warner has no red signal signal
and it cannot stop the train. It acts as a repeater of the home signal. Its aspect depends on
the aspect of the home signal. Thus we model warner signal no. 1 together with home signal
no. 3 in substitution transition S3. Substitution transition P103, linked to PointSouthLeft
page models the passage of the train when passing the point no. 103. Due to space limit, we
choose to explains a CPN subpage named HomeSignalUP because PointSouthLeft page is
too complex and HomeSignalUP is similar to StarterDOWN and TrackCCT pages.

HomeSignalUP page When a train passes the home signal, two signals’ aspects return
to the normal states. The warner signal returns to yellow and the home signal returns to
red. HomeSignalUP page (Fig. 5) models these aspect restorations. The HomeSignalUP page is
reused at other locations thus it needs an identification place to identify the signal numbers.
For example, place SIG1 3 in Fig. 3 links to place WarnerHome in Fig. 5. Place SIG1 3 and
WarnerHome are typed by WARNERxHOME which is defined in line 6 of listing 1.1 as a product of
two strings that are the numbers of the warner and home signals. Place ApproachLock in Fig.
5 is used to ensure that the train will not pass the signal post before the approach locking
takes place. We defer the explanation about places SIGNAL POOL and TrackPool to section
6.1.

2 No track circuit is installed at this location.
3 South or down means toward Bangkok, north or up means away from Bangkok.

147

U
se

rR
eq

u
es

ts
B
lo

ck

B
lo

ck
S
et

N
o
rt

h
S
T
A

N
o
rt

h
S
T
A

K
ey

Lo
ck

4

K
ey

lo
ck

s

K
ey

Lo
ck

2

K
ey

lo
ck

s

K
ey

Lo
ck

1

K
ey

lo
ck

s

K
ey

Lo
ck

3

K
ey

lo
ck

s

U
se

rR
eq

u
es

tR
o
u
te

U
se

rC
o
m

m
an

d

PT
9

T
ra

ck
C
C
T

S
1
6

S
ta

rt
er

D
o
w

n

S
2
4

S
ta

rt
er

D
o
w

n

S
1

T
ra

ck
C
C
T

P1
0
3

p
o
in

tS
o
u
th

Le
ft

S
3

H
o
m

eS
ig

n
al

U
P

S
IG

2
4

"2
4
"

S
T
R
IN

G

S
IG

1
6"1

6
"

S
T
R
IN

G

S
IG

1
_
3("
1
",

"3
")

W
A
R
N

E
R
xH

O
M

E

B
lo

ck
R
eq

u
es

t

B
LO

C
K

K
2
0
4

"2
0
4
"

S
T
R
IN

G

K
2
0
2

"2
0
2
"

S
T
R
IN

G

K
2
0
1

"2
0
1
"

S
T
R
IN

G

K
2
0
3

"2
0
3
"

S
T
R
IN

G

Po
in

t1
0
3

("
1
0
3
",

N
o
rm

al
)

PI
D

xN
R

R
o
u
te

C
an

ce
l

Fu
si

o
n
 5

R
O

U
T
E

R
o
u
te

R
eq

u
es

t

1
`
"3

(1
)"

+
+

1
`
"4

(1
)"

+
+

1
`
"3

(2
)"

+
+

1
`
"4

(2
)"

+
+

1
`
"1

6
"+

+
1
`
"2

4
"+

+
1
`
"1

5
"+

+
1
`
"2

3
"

R
O

U
T
E

T
1
0
3

("
1
0
3
T
",

 n
o
T
ra

in
)

T
C
C
T

T
2
4

("
2
4
T
",

 n
o
T
ra

in
)

T
C
C
T

T
1
6

("
1
6
T
",

 n
o
T
ra

in
)

T
C
C
T

T
4
2

("
4
2
T
",

 n
o
T
ra

in
)

T
C
C
T

T
4
1

("
4
1
T
",

 n
o
T
ra

in
)

T
C
C
T

T
O

L_
S
O

U
T
H

("
T
O

L_
S
O

U
T
H

",
 T

ra
in

U
P)

T
C
C
T

T
1

("
1
T
",

 n
o
T
ra

in
)

T
C
C
T

T
3

("
3
T
",

 n
o
T
ra

in
)

T
C
C
T

T
9

("
9
T
",

 n
o
T
ra

in
)

T
C
C
T

Fu
si

o
n
 5

H
o
m

eS
ig

n
al

U
P

p
o
in

tS
o
u
th

Le
ft

T
ra

ck
C
C
T

S
ta

rt
er

D
o
w

n

S
ta

rt
er

D
o
w

n
T
ra

ck
C
C
T

U
se

rC
o
m

m
an

d

K
ey

lo
ck

s

K
ey

lo
ck

s
K
ey

lo
ck

s

K
ey

lo
ck

s

N
o
rt

h
S
T
A

B
lo

ck
S
et

LO
S

T
ra

ck
C
C
T

T
ra

ck
C
C
T

Fig. 3. CPN model: the SouthSTA page

148

S
2

T
ra

ck
C
C
T

S
4

H
o
m

eS
ig

n
al

D
O

W
N

LO
S

T
ra

ck
C
C
T

PT
8

T
ra

ck
C
C
T

P1
0
4

p
o
in

tN
o
rt

h
R
ig

h
t

S
1
5

S
ta

rt
er

U
P

S
2
3

S
ta

rt
er

U
P

S
IG

1
_
3

("
2
",

"4
")

W
A
R
N

E
R
xH

O
M

E

S
IG

1
5

"1
5
"

S
T
R
IN

G

S
IG

2
3

"2
3
"

S
T
R
IN

G

T
O

L_
N

O
R
T
H

("
T
O

L_
N

O
R
T
H

",
 T

ra
in

D
O

W
N

)

T
C
C
T

T
2

("
2
T
",

 n
o
T
ra

in
)

T
C
C
T

T
4

("
4
T
",

 n
o
T
ra

in
)

T
C
C
T

T
8

("
8
T
",

 n
o
T
ra

in
)

T
C
C
T

T
1
0
4

("
1
0
4
T
",

 n
o
T
ra

in
)

T
C
C
T

Po
in

t1
0
4

("
1
0
4
",

N
o
rm

al
)

PI
D

xN
R

T
1
5

("
1
5
T
",

 n
o
T
ra

in
)

T
C
C
T

T
2
3

("
2
3
T
",

 n
o
T
ra

in
)

T
C
C
T

T
4
2

I/
O

T
C
C
T

T
4
1

I/
O

T
C
C
T

I/
O

I/
O

S
ta

rt
er

U
P

S
ta

rt
er

U
P

p
o
in

tN
o
rt

h
R
ig

h
t

T
ra

ck
C
C
T

T
ra

ck
C
C
T

H
o
m

eS
ig

n
al

D
O

W
N

T
ra

ck
C
C
T

Fig. 4. CPN model: the NorthSTA page

149

Fig. 5. CPN model: the HomeSignalUP Page

Listing 1.1. Declarations
1 (∗ Global Dec l a ra t i on s ∗)
2 c o l s e t TD = with noTrain | TrainUP | TrainDOWN;

3 var tr ,train_direction:TD;

4 c o l s e t TCCT = product STRING * TD timed;
5 c o l s e t TRACK = r eco rd tid:STRING * pos:TD;

6 c o l s e t WARNERxHOME = product STRING * STRING;

7 c o l s e t E = with e;

8 c o l s e t NR = with Normal | Reverse;

9 var pos1:NR;

10 c o l s e t PIDxNR = product STRING * NR;

11 c o l s e t SIG = with G | Y | R;

12 var w,h,s,GYR:SIG;

13 c o l s e t SIGNAL = r eco rd sid:STRING * pos:SIG;

14 var p_id ,tc_id1 ,tc_id2 ,sig_id1 ,sig_id2:STRING;

15 var entry ,dst ,warner ,home ,starter ,block_no:STRING;

16 c o l s e t ROUTE = STRING;

17 var route ,setting_route ,in_route2:ROUTE;

18 c o l s e t ROUTExSIG_ID = product ROUTE * STRING;

19 c o l s e t POINT = r eco rd pid:STRING * pos:NR * lock:BOOL;

20 var point:POINT;

21 c o l s e t BLOCK_POS = with COMING | NORMAL | GOING;

22 var CNG:BLOCK_POS;

23 c o l s e t BLOCK = r eco rd bid:STRING * pos:BLOCK_POS;

24 v a l n =10;

25 var x:BOOL;

26 use "C:/ InitMarkings.sml";

27 use "C:/ FromXSL.sml";

150

The CPN diagrams of HomeSignalDOWN, StarterUP and StarterDOWN pages are very
similar to the HomeSignalUP. We do not fold these pages together because, we think, at the
early stage of the model development, folding will cause confusion. We consider that it is
faster to select and plug in one of the four CPN modules.

6 The CPN Model of the Interlocking

6.1 Fusion Places - Communication channels between the way side equipment

and the interlocking center

This section attempts to explain the CPN model of the interlocking controller according to
the functions specified in the control table. To perform its functions, the controller needs to
know the states of equipment in the system. Five fusion places are used to store the states of
equipment: TrackPool (typed by TRACK - line 5 of of listing 1.1); PointPool (typed by POINT
- line 19); SignalPool (typed by SIGNAL - line 13); BlockPool (typed by BLOCK - line 23); and
RouteNormal (typed by ROUTE - line 16). TRACK is defined as a record of track identification
and train description. POINT is defined as record of point identification, its position (Normal
or Reverse) and locking status. SIGNAL is defined as a record of signal identification and
its aspect (green, yellow or red). BLOCK is defined as a record of block identification and its
state (train coming, train going or block normal). Fusion place RouteNormal stores the route
identifications that have not been set.

For example, when a train moves from “TOL SOUTH” to “1T”, substitution transition S1
updates not only place T1 with a token (“1T”, TrainUP) but also place TrackPool with
a token 1‘{tid = “1T”, pos = TrainUP}. It is obvious that the same information has been
stored twice which is bad due to the state explosion problem. A solution to the problem is
that deleting the state of track circuits in each track place (e.g. T1, T3). But we will loose
an ability to view the passage of train in Fig. 3 and 4 which is useful for simulating and
debugging the model. On the other hand, storing a track circuit state twice mimics the real
situation. In the real signalling system, the status of track circuit “1T” is actually kept in
two locations: at a way side box and at the interlocking controller. Putting a token into place
TrackPool can be viewed as the track circuit sending its state to the interlocking center via
the fusion place TrackPool. A similar situation applies to fusion places PointPool.

Due to space limit we choose to explain only the RouteSetting page because this page
plays a central role of the interlocking function in the model.

RouteSetting page Figure 6 shows the RouteSetting page which models route setting and
cancelations. Transition SetRoute takes tokens from fusion places TrackPool, PointPool and
RouteNormal, and checks if

1. No conflict route is being set. This models by function require route normal.
2. The tracks along the route are unoccupied. This models by function require track clear.
3. The related points is set and lock in the required positions. This models by function

require point normal and require point reverse.
If all three vital conditions are met, the setting route is reserved. But the signals is not

clear yet, because non-vital conditions such as block status and level crossing booms down
have not yet been proved. At this stage the signalman can cancel the route by putting a route
token into fusion place RouteCancel. The route cancel at this stage is modelled by transition
RouteCancel1. It restores the route identification into fusion place RouteNormal and unlocks

151

Fig. 6. CPN model: the RouteSetting page

related points. Place enable is used to ensure that the interlocking controller will service the
next route request command only after the previous valid command have its route reserved.

After the non-vital conditions are complied, transition ClearSignal clears the related
signals. After route reserved and signal cleared but approach locking has not taken place yet,
the signalman can still cancel the route which is modelled by transition RouteCancel2. This
route cancelation restores the route identification into fusion place RouteNormal, unlocks re-
lated points and returns the state of all related signals to normal. Without route cancellation,
at this stage the interlocking waits for approach locking taking place. This action is modelled
by transition ApproachLock.

6.2 Mapping the Contents in Control Table to ML Functions

The complexity of our CPN model in the Interlocking part does not depend on the number
of possible routes partly because the details are hidden in the ML functions on the arc
inscriptions. The content in each column of the control table can be directly mapped to an
ML function. Due to space limit we can explain only one example of ML functions. Listing
1.2 shows an ML functions representing the column “REQUIRES ROUTE NORMAL”in the
control table (Table 1). When a route is being set, the route identification token is taken
from fusion place RouteNormal in the UserCommand page. When a route is released, the route
identification is restored into fusion place RouteNormal in the RouteReleased page. To set a
route, all conflict routes must be normal (not set) and the route tokens are stored in fusion
place RouteNormal. This condition is checked by transition SetRoute (Fig. 6) using the ML
function, require route normal(route) shown in Listing 1.2.

152

Listing 1.2. Function require route normal(route)
1 (∗ Function r equ i r e r ou t e no rma l (route) ∗)
2 fun rroute(route) = case (route) of
3 ("3(1)") => ["3(1)" , "16" , "24" , "4(1)" , "4(2)" , "15", "3(2)"]

4 | ("3(2)") => ["3(2)" , "16" , "24" , "4(1)" , "4(2)" , "23", "3(1)"]

5 | ("4(1)") => ["4(1)" , "15" , "23" , "3(1)" , "3(2)" , "24", "4(2)"]

6 | ("4(2)") => ["4(2)" , "15" , "23" , "3(1)" , "3(2)" , "16", "4(1)"]

7 | ("15") => ["15" , "23" , "4(1)" , "4(2)" , "24"]

8 | ("23") => ["23" , "15" , "4(1)" , "4(2)" , "16"]

9 | ("16") => ["16" , "24" , "3(1)" , "3(2)" , "23"]

10 | ("24") => ["24" , "16" , "3(1)" , "3(2)" , "15"]

11 | _ => [];

12 fun require_route_normal(route) = list_to_ms (rroute(route));

6.3 Generating the ML Functions using XSLT

Our CPN model uses twelve ML functions that are mapped from the contents of the control
table. In the future hundreds of control tables need to be verify thus manual mapping the
control table to the ML functions is tedious, inappropriate and prone to errors. This paper
proposes a method to automatically map the content of the control tables to the ML functions
using XSLT. Listing 1.3 shows the content of the control table for route 3(1) in XML which is
created from the control table in Excel. We use the XSLT script file in Listing 1.4 transforming
Listing 1.3 to Listing 1.2.

7 Experimental Results

7.1 Desired Properties

Two basic safety properties that railway signalling must provide are no collision and no
derailment. Refer to HomeSignalUP page, notice that moving a train requires a token with
noTrain in the designation place. Thus each track circuit place can contain only one token.
Our modelling decision causes two effects. First, two train tokens in the same place are not
allowed. Second, train tokens cannot move pass each other. We conclude that two trains have
a chance of collision if they are on two consecutive tracks. After generating the state space, we
use ML query functions, in Listing 1.5, searching the entire state space for the markings that
have trains in two consecutive track places. To ensure that our CPN model and the query
functions work as we expect. We create a wrong control table by deleting line 31 in Listing
1.3. We experiment by attempting to set the route 3(1) and bring the train from 1T into 41T
which is already occupied by another train. After generating the state space and search for a
collision, we found a terminal marking that contain a train at 24T and another train at 41T.

Usually derailment can happen when the point is moved (emergency move) while a train
is passing that point. Our CPN model does not allow this situation. Another possibility of
derailment is when the derailer is in the derail position and a train runs through it. Our model
does not include derailers thus checking derailment action is not required in this paper.

7.2 Initial Configurations

We analyse our CPN model using CPN Tools verson 2.2.0 on a AMD9650 2.30 GHz with 3.5
GB of RAM. Due to space limit we select to discuss only three analysis cases of which the
initial markings are shown in Table 3. The initial markings are:

153

Listing 1.3. The content in the control table for route 3(1) in XML
1 <?xml version ="1.0" encoding ="UTF -8" standalone ="yes"?>

2 <Route xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance">

3 <Row >

4 <SignalType >HOME </SignalType >

5 <Entry >3(1) </Entry >

6 <Range >1T:41T</Range >

7 <End >23</End >

8 <RequireRouteNormal >16</ RequireRouteNormal >

9 <RequireRouteNormal >24</ RequireRouteNormal >

10 <RequireRouteNormal >4(1) </ RequireRouteNormal >

11 <RequireRouteNormal >4(2) </ RequireRouteNormal >

12 <RequireRouteNormal >15</ RequireRouteNormal >

13 <RequireRouteNormal >3(2) </ RequireRouteNormal >

14 <RequirePointReverse >103 ,104 </ RequirePointReverse >

15 <RequireKeyLockNormal >201 ,202 ,203 ,204 </ RequireKeyLockNormal >

16 <AspectEntrance1 >Y+JI </ AspectEntrance1 >

17 <AspectEnd1 >23 AT R#</AspectEnd1 >

18 <AppLockbyTcOcc >1T</ AppLockbyTcOcc >

19 <AppLockWhenTime >120s</ AppLockWhenTime >

20 <RouteReleaseByTcClr >3T</ RouteReleaseByTcClr >

21 <RouteReleaseByTcClr >9T</ RouteReleaseByTcClr >

22 <RouteReleaseByTcOccClr >103T</ RouteReleaseByTcOccClr >

23 <RouteReleaseByTcOcc >41T</ RouteReleaseByTcOcc >

24 <EmergencyRelease >240s</ EmergencyRelease >

25 <DetectsPointsNormal >201 ,202 ,203 ,204 </ DetectsPointsNormal >

26 <DetectsPointsReverse >103 ,104 </ DetectsPointsReverse >

27 <RequireTcClear >3T</ RequireTcClear >

28 <RequireTcClear >9T</ RequireTcClear >

29 <RequireTcClear >103T</ RequireTcClear >

30 <RequireTcClear >24T</ RequireTcClear >

31 <RequireTcClear >41T</ RequireTcClear >

32 <RequireTcClear >23T</ RequireTcClear >

33 <RequireTcClear >104T</ RequireTcClear >

34 <RequireTcClear >8T</ RequireTcClear >

35 <RequireTcClear >4T</ RequireTcClear >

36 <ReqTcClr >42T</ReqTcClr >

37 <ReqTcOcc >42T FOR 60 sec </ReqTcOcc >

38 </Row >

Listing 1.4. An example of XSLT transforming the XML control table to the SML file
1 <p> fun rroute(route) = case (route) of </p>

2 <xsl:for -each select ="Route/Row">

3 ("<xsl:value - of select =" Entry "/>") => [

4 "<xsl:apply -templates select ="Entry "/>"

5 <xsl:for -each select =" RequireRouteNormal">,

6 "<xsl:apply -templates />"

7 </xsl:for -each >]<p></p> |

8 </xsl:for -each >

9 _ => [];

10 <p> fun require_route_normal(route) = list_to_ms (rroute(route));</p>

Case A is a dead lock case when two platform track at the station are fully occupied
and one train coming from the south and the other train from the north.

Case B is when two trains coming from the north and south. Another train prepares
to depart from platform track no. 41T to Bangkok. The track no. 42T is unoccupied.

Case C is when two trains coming from the north and south and both platform tracks

154

Listing 1.5. Query functions for checking train collisions
1 fun getTrackList n =

2 ms_to_list(Mark.Interlocking ’TrackPool 1 n);

3 fun TrainExist (hhh ::[]: LTRACK): LSTRING =

4 (i f (#pos(hhh) = TrainUP o r e l s e #pos(hhh) = TrainDOWN)

5 then #tid(hhh)::[] e l s e [])

6 | TrainExist (hhh::ttt:LTRACK): LSTRING =

7 (i f (#pos(hhh) = TrainUP o r e l s e #pos(hhh) = TrainDOWN)

8 then #tid(hhh):: TrainExist(ttt) e l s e TrainExist(ttt));

9 v a l pattern_match:LLSTRING = [[" TOL_SOUTH ","1T"] ,["1T","3T"],

10 ["3T","9T"] ,["9T","103T"] ,["103T","16T"] ,["16T","42T"] ,["24T","41T"],

11 ["103T","24T"] ,["42T","15T"] ,["41T","23T"] ,["15T","104T"],

12 ["23T","104T"] ,["104T","8T"],["8T","4T"] ,["4T","2T"] ,["2T"," TOL_NORTH "]];

13 fun matchCollide(h::[]: LLSTRING , n) =

14 l e t
15 v a l xxxx = TrainExist(getTrackList n);

16 i n
17 i f contains xxxx h then true e l s e false

18 end
19 | matchCollide(h::t:LLSTRING , n) =

20 l e t
21 v a l xxxx = TrainExist(getTrackList n);

22 i n
23 i f contains xxxx h then true e l s e matchCollide(t, n)

24 end;
25 fun eva n = matchCollide(pattern_match , n);

26 v a l result = PredNodes(EntireGraph , eva , NoLimit);

27 v a l _ = print (" Satifies Collide: ");

28 length(result);

are unoccupied.

In all cases other track circuits are unoccupied ; all points are in Normal position and
unlocked. The keylocks are always locked. All signals are in normal states. Blocks in both
directions are in Incoming states. A block request command for the departure train toward
Bangkok in case A and B are prepared in Place BlockRequest in SouthSTA page. This com-
mand cannot be executed unless the block state returns to Normal. Finally the signalman
attempts to set all possible eight routes at once via place RouteRequest in SouthSTA page.
Setting all eight routes sounds unrealistic but this will provide a complete test vector to the
model.

Table 3. Initial configurations

 Initiial Markings

Case TOL_SOUTH 41T 42T TOL_NORTH

A TrainUP TrainDOWN TrainUP TrainDOWN

B TrainUP TrainDOWN noTrain TrainDOWN

C TrainUP noTrain noTrain TrainDOWN

7.3 Analysis Results

The analysis results for the control table of Panthong station are shown in Table 4 and 5 We
searched for the train collision condition using the ML query functions (Listing 1.5) and found

155

Table 4. Summary of state space results

Case Nodes Arcs Number of

Terminal Markings
A 4 4 1

B 212 524 3

C 960 3,140 8

Table 5. Terminal Markings

Case Node Route Request TOL_SOUTH 1T 41T 42T 2T TOL_NORTH Signal Point 103 Point 104

No. (used)

A 4 none noTrain TrainUP noTrain noTrain TrainDOWN noTrain Normal Normal Normal

Unlock Unlock

B 78 4(1) noTrain TrainUP TrainDOWN TrainDOWN noTrain noTrain Normal Normal Normal

Unlock Unlock

95 3(2),16 noTrain noTrain TrainDOWN TrainUP TrainDOWN noTrain (16,G) Normal Normal

Lock Lock

212 3(2),24,4(2) TrainDOWN noTrain TrainDOWN TrainUP noTrain noTrain Normal Reverse Reverse

Unlock Unlock

C 958 3(1),4(1) noTrain noTrain TrainUP TrainDOWN noTrain noTrain Normal Normal Normal

Unlock Unlock

957 4(2),3(2) noTrain noTrain TrainDOWN TrainUP noTrain noTrain Normal Normal Normal

Unlock Unlock

959 4(1),3(1) noTrain noTrain TrainUP TrainDOWN noTrain noTrain Normal Reverse Reverse

Unlock Unlock

960 3(2),4(2) noTrain noTrain TrainDOWN TrainUP noTrain noTrain Normal Reverse Reverse

Unlock Unlock

891 3(1),3(2) noTrain noTrain TrainUP noTrain TrainDOWN noTrain (3,Y) Normal Normal

Lock Lock

934 3(2),3(1) noTrain noTrain noTrain TrainUP TrainDOWN noTrain (3,Y) Reverse Reverse

lock lock

931 4(1),4(2) noTrain TrainUP noTrain TrainDOWN noTrain noTrain (4,Y) Reverse Reverse

lock lock

890 4(2),4(1) noTrain TrainUP TrainDOWN noTrain noTrain noTrain (4,Y) Normal Normal

Lock Lock

that there was no collision in all cases. Besides the safety properties, the signalling system
should handle the train movement as we expect. Table 5 shows the terminal markings of all
cases.

1. Terminal markings no. 4 in Case A is when route request cannot be executed because
either tracks are not clear or block cannot be set to Going state. The only two possible actions
are when TrainUP moves from TOL SOUTH to 1T and TrainDOWN moves from TOL NORTH to
2T.

2. Terminal marking no. 78 in Case B is when TrainDOWN from TOL NORTH is brought to
platform track 42T by route no. 4(1). But both trains on platform tracks 41T and 42T cannot
leave and route 16 or 24 cannot be set because TrainUP on track 1T obstructs the traffic.
After route released, points 103 and 104 are Normal and unlocked.

3. Terminal marking no. 95 in Case B is when TrainUP from TOL SOUTH is brought to
platform track 42T by setting route no. 3(2). Then the signalman sets request block down
and route no.16 permitting TrainUP on track 42T going south but the TrainUP plans going
north instead. Because route 16 is set, points 103 and 104 are Normal and locked.

4. Terminal marking no. 212 in Case B is when TrainUP from TOL SOUTH is brought to
platform track 42T by setting route no. 3(2). Then, the signalman requests block down set to
Going state and brings TrainDOWN on 41T to TOL SOUTH by setting route no. 24. After that,
TrainDOWN from TOL NORTH is brought to 41T by route no.4(2). After route released, points
103 and 104 are Reverse and unlocked.

5. There are eight terminal markings in Case C.

156

5.1 Terminal marking no. 958 is when route 3(1) is set and TrainUP from TOL SOUTH is
brought to platform track 41T. Then TrainDOWN from TOL NORTH is brought to platform track
42T by route no. 4(1). After route released, points 103 and 104 are Normal and unlocked.

5.2 Terminal marking no. 957 is when route 4(2) is set and TrainDOWN from TOL NORTH is
brought to platform track 41T. Then TrainUP from TOL SOUTH is brought to platform track
42T by route no. 3(2). After route released, points 103 and 104 are Normal and unlocked.

5.3 Terminal marking no. 959 is when route 4(1) is set and TrainDOWN from TOL NORTH is
brought to platform track 42T. Then TrainUP from TOL SOUTH is brought to platform track
41T by route no. 3(1). After route released, points 103 and 104 are Reverse and unlocked.

5.4 Terminal marking no. 960 is when route 3(2) is set and TrainUP from TOL SOUTH is
brought to platform track 42T. Then TrainDOWN from TOL NORTH is brought to platform track
41T by route no. 4(2). After route released, points 103 and 104 are Reverse and unlocked.

5.5 Terminal marking no. 891 is when route 3(1) is set and TrainUP from TOL SOUTH is
brought to platform track 41T. Then the signalman sets route no. 3(2).

5.6 Terminal marking no. 934 is when route 3(2) is set and TrainUP from TOL SOUTH is
brought to platform track 42T. Then the signalman sets route no. 3(1).

5.7 Terminal marking no. 931 is when route 4(1) is set and TrainDOWN from TOL NORTH is
brought to platform track 42T. Then the signalman sets route no. 4(2).

5.8 Terminal marking no. 890 is when route 4(2) is set and TrainDOWN from TOL NORTH is
brought to platform track 41T. Then the signalman sets route no. 4(1).

According to Panthong’s control table, SRT allows only one passage of the train within
the station area. If the station is so crowded, traffic is obstructed and the number of possible
train movements is small. On the other hand if the station is empty, the number of possible
movements will be large. This behaviour is witnessed by the state space size in Table 4.
Besides no train collision, all terminal markings in Table 5 demonstrate that our CPN model
works as we expect. We do not discover any errors in the Panthong’s control table.

8 Conclusions and Future Work

This paper has outlined an approach for developing a CPN model of SRT’s railway signalling
system. We mainly focus on modelling the control tables and propose an approach such that
the model can be adapted and reused to create other control table models rapidly. We separate
the CPN model into two parts: Signalling Layout and Interlocking. The Signalling Layout
part comprises net structures which depend on signalling plans. This CPN model mimics the
signalling layout and stores information about how each piece of equipment connects to each
other. Contrast to the Signalling Layout part, the Interlocking part does not depend on the
signalling plan and has the contents of the control tables coded in twelve ML functions. To
assist model development for other CPN models of railway interlocking we propose to use
XSLT transforming the control table in XML to the ML functions.

This paper also demonstrates the analysis of three scenarios. We trace terminal markings
in each scenario and find that our CPN model works as we expect. The generated state
spaces are verified against the desired property that there is no train on two consecutive
track circuits. We search the entire state space in all cases and do not find any marking that
contains trains on two consecutive tracks. These results convince us of the correctness of the
CPN model and the control table.

Although we start with modelling and analysis of a small station, the model development
begins with a lot of assumptions. We would like to relax these assumptions and refine the

157

model in the future. In particular, the assumption that the train occupies one track at a time
is unrealistic and sometimes we need two consecutive tracks occupied in order to trigger an
event.

In the future we wish to directly generate our CPN model from the signalling layouts
and control tables. However nowadays SRT has not yet standardized the file format for the
layouts and control tables. The automatic model generator requires a library of CPN patterns
for signalling equipment and interlocking which need further investigation.

Acknowledgements : The authors are grateful to the reviewers for their comments that
have helped to improve the quality of this paper.

References

1. A. Borälv. Case study: Formal Verification of a Computerized Railway Interlocking. Formal Aspect of
Computing, 10(4):338–360, 1998.

2. J. Bjørk, A. M. Hagalisletto, and P. Enger. Large Scale simulations of Railroad Nets. In Proceedings of
the Fourth International Workshop on Modelling of Objects, Components and Agents, MOCA’06,Bericht
272, FBI-HH-B-272/06, pages 45–101, June 2006.

3. C. Chevilat, D. Carrington, P. Strooper, J. G. Süß, and L. Wildman. Model-Based Generation of In-
terlocking Controller Software from Control Tables. In Proceeding of ECMDA-FA 2008, volume 5095 of
Lecture Notes in Computer Science, pages 349–360. Springer, Heidelberg, 2008.

4. A. Cimatti, E. E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic model verifier. In
Proceedings of International Conference on Computer Aided Verification, CAV’99, volume 1633 of Lecture
Notes in Computer Science, pages 495–499. Springer Verlag, 1999.

5. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Mart-Oliet, J. Meseguer, and C. Talcott. Maude Manual.
http://maude.cs.uiuc.edu/.

6. K. Czarnecki et al. The Future of Train Signaling. In Proceedings of MoDELS 2008, volume 5301 of
Lecture Notes in Computer Science, pages 128–142. Springer Verlag, 2008.

7. W.J. Fokkink and P.R. Hollingshead. Verification of Interlockings: from Control Tables to Ladder Logic
Diagrams. In Proceedings of 3rd Workshop on Formal Methods for Industrial Critical Systems (FMICS’98),
pages 171–185, Amsterdam, May 1998. Stichting Mathematisch Centrum.

8. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specification and Validation
Methods, pages 9–36. Oxford University Press, 1993.

9. A. M. Hagalisletto, J. Bjørk, I. C. Yu, and P. Enger. Constructing and Refining Large-Scale Railway Models
Represented by Petri Nets. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 37(4):444–460,
2007.

10. K. M. Hansen. Formalizing Railway Interlocking Systems. In Nordic Seminar on Dependable Computing
Systems, pages 83–94. Department of Computer Science, Technical University of Denmark, 1994.

11. C. W. Janczura. Modelling and Analysis of Railway Network Control Logic using Coloured Petri Nets.
PhD thesis, School of Mathematics and Institute for Telecommunications Research, University of South
Australia, Adelaide, Australia, August 1998.

12. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 1, Basic
Concepts. Monographs in Theoretical Computer Science. Springer, Heidelberg, 2nd edition, 1997.

13. J. L. Petersen. Automatic Verification of Railway Interlocking Systems: a Case Study. In Proceedings of
2nd workshop on Formal methods in software practice (FMSP’98), pages 1–6, New York, 1998. ACM.

14. K. Winter. Model Checking Railway Interlocking Systems. In Proceeding of the 25th Australian Computer
Science Conference (ACSC 2002), volume 24, pages 303–310. Australian Computer Science Communica-
tions, 2002.

15. K. Winter, W. Johnston, P. Robinson, P. Strooper, and L. van den Berg. Tool Support for Checking Rail-
way Interlocking Designs. In Proceeding of the 10th Australian Workshop on Safety Related Programmable
Systems (SCS’05), pages 101–107. Australian Computer Science Communications, 2005.

16. K. Winter and N. Robinson. Modelling Large Railway Interlockings and Model Checking Small Ones.
In Proceeding of the Australian Cumputer Science Conference (ACSC 2003), volume 25, pages 309–316.
AAustralian Computer Science Communications, 2003.

158

!"#$%&'()"%*$+(,"&-+./0($/&(1/$+2'.'("3((
4.5!"%%-/5(6'./0(7"+"6%-&(8-5%.(9-5'(

!"#$%&'()*%+*%,"#-"#$%./0*%123%4(50%

)%'#67"7879%3:%;3-<87"#$%19=>#3?3$@*%;>"#969%A=2B9-@%3:%4="9#=96*%;>"#2%
0%;3??9$9%3:%;3-<879C%4="9#=9*%'##9C%D3#$3?"2%(#"E9C6"7@*%F3>>37*%;>"#2%

+%GC2B8279%(#"E9C6"7@%3:%;>"#969%A=2B9-@%3:%4="9#=96*%;>"#2%
?"8H"#$I"=7J2=J=#*%KL-@*%=668#7MI"-8J9B8J=#%

1:'5%$;5<%N"713CC9#7%"6%O"B9?@%2B3<79B%"#%P0P%2<<?"=27"3#6*%68=>%26%:"?9%6>2C"#$%
2#B%E"B93%67C92-"#$J%A6% "#7C"=279%=3--8#"=27"3#%2#B%=3#=8CC9#=@%2C9%=>2C2=Q
79C"67"=6%3:%N"713CC9#7*%"7%"6%B"::"=8?7%73%:3C-2??@%2#B%9::9=7"E9?@%-3B9?%"76%:8#=Q
7"3#2?%R9>2E"3C6%"#%<99CQ?9E9?J%'#%7>"6%<2<9C*%2%=3?38C9B%P97C"%5976%R269B%>"9C2CQ
=>"=2?% -3B9?"#$% 2C=>"79=78C9% 2#B% B972"?9B% -3B9?% "#672#=96% 3:% N"713CC9#7% 2C9%
<C3<369BJ%1>9#%6"-8?27"3#*%67279%6<2=96%2#2?@6"6%2#B%-3B9?%=>9=S"#$%79=>#3?3Q
$"96% 2C9% 87"?"T9B% =3-R"#27"E9?@% 73% E2?"B279% 7>9% :3C-2?% -3B9?6% 2#B% E9C":@% 7>9%
:8#=7"3#2?%<C3<9C7"96%3:%N"713CC9#7J%1>9%<C3<369B%:3C-2?%-3B9?%=38?B%#37%3#?@%
R9%69CE9B%26%2#%8#2-R"$8386%2#B%E"682?%:3C-2?%6<9=":"=27"3#*%R87%2?63%:2="?"7279%
7>9%R9>2E"3C6%6"-8?27"3#%2#B%<C3<9C7"96%E9C":"=27"3#%O>9C9%"7%C9?"9E96%7>9%#373Q
C"386%67279%6<2=9%9L<?36"3#%<C3R?9-J% %

=-2#"%&'>%N"713CC9#7*%=3?38C9B%P97C"%5976*%6"-8?27"3#*%67279%6<2=9%2#2?@6"6%

?(((@/5%"&6;5."/(

U2C"386% <99CQ73Q<99C% VP0PW% 2<<?"=27"3#6% >2E9% R9=3-9% <C3B"$"386?@% <3<8?2C% 3#% 7>9%
'#79C#97J%N"713CC9#7%X)Y%2==38#76%:3C%-3C9%7>2#%2%>2?:%7C2::"=%3:%2??%P0P%7C2::"=%"#%-367%
=38#7C"96*%63%"7%"6%O"B9?@%C9=3$#"T9B%26%2%-3C9%<3<8?2C%P0P%=3#79#7%B"67C"R87"3#%<C3Q
73=3?J%1>9%2BE2#72$96%3:%N"713CC9#7%2C9%>"$>%6=2?2R"?"7@*%672R?9%B"67C"R87"3#%<9C:3C-Q
2#=9%2#B%926@%B9<?3@-9#7*%2??%3:%O>"=>%C968?7%:C3-%7>9%R26"=%"B92%3:%N"713CC9#7*%7>27%
"6*% "#B"E"B82?% <99C6% =38?B% 9::9=7"E9?@% 87"?"T9% 7>9"C% "#=3-"#$% 2==966% ?"#S% R2#BO"B7>J%
P99C6%<2C7"="<279%"#%2#%2<<?"=27"3#%?9E9?%3E9C?2@%#97O3CS%2#B%R9>2E9%26%R37>%=?"9#7%2#B%
69CE9CJ%1>9@%B3O#?32B%2#B%8<?32B%:"?9%<"9=96%-8782??@%27%7>9%62-9%7"-9J%1>"6%S"#B%3:%
=33<9C27"E9%R9>2E"3C%-2S96%7>9%:"?9%6>2C"#$%-3C9%9::9=7"E9%2#B%-3C9%9::"="9#7J%F3OQ
9E9C*% "7% 2?63% "#7C3B8=96%-3C9% "#7C"=279% =3--8#"=27"3#% 2#B% =3#=8CC9#=9*%-2S"#$% 7>9%
:8#=7"3#2?%R9>2E"3C6%-3B9?"#$%2#B%2#2?@6"6%3:%N"713CC9#7%-3C9%B"::"=8?7J%

'#%C9=9#7%@92C6*%7>9C9%2C9%-2#@%#372R?9%678B"96%=3#=9C#"#$%2R387%B"::9C9#7%26<9=76%
3:%N"713CC9#7*%68=>%26%6@679-%B96"$#*%7C2::"=%-9268C9-9#7*%<9C:3C-2#=9%2#2?@6"6%2#B%
S9@%2?$3C"7>-6%3<7"-"T27"3#J%A6%:3C%7>9%-3B9?"#$%3:%N"713CC9#7*%-367%C9692C=>96%:3Q
=86% 3#% 7>9% <9C:3C-2#=9%-3B9?"#$% 2#B% 2#2?@6"6J% X0Y% 87"?"T96% 2% 6"-<?9% :?8"B%-3B9?% 73%
B96=C"R9%2#B%2#2?@T9%7>9%B@#2-"=%R9>2E"3C6%3:%7>9%N"713CC9#7%6@679-6J%X+Y%87"?"T96%2%
D2CS3E% -3B9?% 73% 2#2?@T9% 7>9% :C99C"B9C% <>9#3-9#3#*% O>9C9% 2% <99C% H867% B3O#?32B6%
:C3-%37>9C6%O"7>387%8<?32B"#$% "76% =3#79#76%26% 9L<9=79BJ% XZY% 9L79#B6% 7>9% :?8"B%-3B9?%

159

-9#7"3#9B% "#% X0Y% 73% <9C:3C-% 9L79#6"E9% -9268C9-9#7% 2#B% 7C2=9% 2#2?@6"6% 3:% 2% 6"#Q
$?9Q73CC9#7% 6@679-J% X[Y% 2B3<76% 2% 6"-<?9% -27>9-27"=2?% -3B9?% 73% =>2C2=79C"T9% 7>9%
$C38<Q?9E9?% <C3<9C7"96% 3:% N"713CC9#7% 6@679-% 9L9=87"3#% 2#B% <9C:3C-% 2% =3-<?9L% 3RQ
69CE9B%<9C:3C-2#=9% 2#2?@6"6J% X\Y%-3B9?6% 7>9%O>3?9% B3O#?32B"#$% <C3=966% 26% 69E9C2?%
=3#69]89#7%<>2696%86"#$%2%7>C99QB"-9#6"3#%D2CS3E%=>2"#*%O>"=>%"6%68"72R?9%:3C%=2<Q
78C"#$% 7>9% <99C% B3O#?32B"#$% R9>2E"3C6% =3-<2C9B% O"7>% C92?% O3C?B% 7C2=96J% '7% 2?63%
?28#=>96% #372R?9% 2#2?@6"6% 3:% 7>9% 672R"?"7@% 3:% N"713CC9#7J% X^Y% 8696% 2% 673=>267"=% :?8"B%
-3B9?%73%=>2C2=79C"T9%7>9%R9>2E"3C%3:%3#QB9-2#B%673C9B%-9B"2%=3#79#7%B9?"E9C@%R269B%
3#%N"713CC9#7J%'7%<C3E"B96%"#6"$>7% "#73%7C2#6"9#7%2#B%6792B@Q67279%6@679-%R9>2E"3C%:3C%
"76%<9C:3C-2#=9%9E2?827"3#J%

13%68--2C"T9*%-367%3:%7>9%678B"96%2B3<7%E2C"386%-27>9-27"=2?%-3B9?6%73%2#2?@T9%
7>9% <9C:3C-2#=9% 3:% N"713CC9#7*% 2#B% 7>9@% 8682??@% :3=86% 3#% 7>9% 2$$C9$279% <C3<9C7"96*%
68=>% 26% 2E9C2$9% B3O#?32B"#$% 3C% 8<?32B"#$% C2796*% #97O3CS% 87"?"T27"3#% 2#B% =367*% 97=J%
_9O%678B"96%:3=86%3#% 7>9%:8#=7"3#2?%R9>2E"3C%-3B9?"#$% "#%<99C% ?9E9?*%O>"=>%2"-6% 73%
=3#67C8=7%2%:3C-2?%:8#=7"3#%-3B9?%3:%N"713CC9#7%2#B%E2?"B279%"76%638#B#966J%

1>9C9:3C9%"#%7>"6%<2<9C*%2%=3?38C9B%P97C"%5976%R269B%:8#=7"3#%-3B9?%3:%N"713CC9#7%
6@679-% "6% <C3<369B% 2#B% 9::9=7"E9?@%E2?"B279BJ%;3?38C9B%P97C"%5976% 2C9%]8"79% 68"72R?9%
:3C% -3B9?"#$% 2#B% E2?"B27"#$% 7>9% 6@679-% "#% O>"=>% =3#=8CC9#=9*% =3--8#"=27"3#% 2#B%
6@#=>C3#"T27"3#% <?2@% 2% -2H3C% C3?9J% (6"#$% =3?38C9B% P97C"% 5976% 73% -3B9?% N"713CC9#7%
6@679-%"6%2R63?879?@%2%$33B%=>3"=9*%R9=2869%7>969%-3B9?6%#37%3#?@%6<9=":@%7>9%:8#=Q
7"3#2?%B972"?6%>"9C2C=>"=2??@%2#B%8#2-R"$8386?@*%R87%2?63%<C969#7%E"6"R?9%9L9=87"3#%3:%
7>9%=3#=8CC9#7%R9>2E"3C6%3:%N"713CC9#7J%`8C%=3#7C"R87"3#6%2C9%?"679B%26%:3??3O6a%

! !" #$%&'()*" +,-.(/&-/0,&" $1" 2(/3$,,&)/" (4" 5,$5$4&%J% '7% <C969#76% 6"$#":"=2#7%
$8"B2#=9% 2R387%-3B9?% >"9C2C=>@*% B272% 2R67C2=7"3#% 2#B%-3B9?% C9:"#9-9#7J% '7%
2?63% 2<<?"96% 73%-3B9?"#$% 37>9C% <C373=3?6%O"7>% "#7C"=279% =3--8#"=27"3#% 2#B%
=3#=8CC9#=9%26%7>9"C%R9>2E"3C%=>2C2=79C"67"=%?"S9%N"713CC9#7J%

! !"-$'$0,&%"6&/,("7&/4"8+4&%".(&,+,-.(-+'"#$%&'"$1"2(/3$,,&)/"(4"-$)4/,0-/&%J%
13%7>9%R967%3:%38C%S#3O?9B$9*%"7%"6%7>9%:"C67%7"-9%73%<C969#7%2%:8#=7"3#%-3B9?%
3:%N"713CC9#7% "#%<99C% ?9E9?J% '7% =38?B%#37%3#?@%R9% 69CE9B% 26% 2#%8#2-R"$8386%
2#B%E"682?%:3C-2?%6<9=":"=27"3#%:3C%B"::9C9#7%6@679-%"-<?9-9#727"3#6*%R87%2?63%
:2="?"7279%7>9%R9>2E"3C6%6"-8?27"3#%2#B%<C3<9C7"96%E9C":"=27"3#%3:%N"713CC9#7J%

! !)"&11&-/(9&"#$%&'"9+'(%+/($)"+)%"+)+':4(4"#&/.$%" (4"5,&4&)/&%J%12S"#$%:8??%
2BE2#72$9% 3:% ;P5% 133?6*% 2#% "#79$C279B% E2?"B27"3#% 2#B% 2#2?@6"6% -97>3B% "6%
<9C:3C-9B*% =3-R"#"#$% 6"-8?27"3#*% 67279% 6<2=9% 2#2?@6"6% 2#B%-3B9?% =>9=S"#$%
79=>#3?3$"96J%1>9@%2C9%869B%73O2CB6%B"::9C9#7%2R67C2=7%?9E9?6%3:%2R3E9%-3B9?6%
73%E2?"B279%7>9%-3B9?%638#B#966%2#B%9::9=7"E9#966*%2#B%=>9=S%O>97>9C%7>369%
-3B9?6%627"6:@%7>9%S9@%C9]8"C9-9#7%<C3<9C7"96%3:%N"713CC9#7%6@679-*%68=>%26%
#3%387Q3:Q3CB9C6%9L9=87"3#6*%3C%C2#B3-%B3O#?32B"#$%R9>2E"3C6*%97=J%

1>9%C967%3:% 7>"6%<2<9C% "6%3C$2#"T9B%26%:3??3O6J%A6%7>9%R2=S$C38#B%3:%38C%678B"96*%
69=7"3#% 0% <C969#76% 2#% 3E9CE"9O% 3:% N"713CC9#7% 6@679-% 2#B% =3?38C9B% P97C"% 5976% O"7>%
;P5%133?6J% 1>9#*% 69=7"3#% +% B96=C"R96% 7>9%-3B9?"#$% 2C=>"79=78C9% 26% 2% $9#9C2?% $8"BQ
2#=9*% 2#B% 6<9=":"=% -3B9?% "#672#=96% 2C9% =3#67C8=79B% 2#B% 9L<?2"#9B% "#% 69=7"3#% Z*% 73Q
$97>9C% O"7>% 63-9% -3B9?"#$% 2668-<7"3#6% 2#B% B272% -3B9?"#$J% 49=7"3#% [% :3=8696% 3#%
-3B9?%E2?"B27"3#%2#B%2#2?@6"6*%O>"=>%"6%869B%73%=3#:"C-%7>9%E2?"B"7@%3:%:3C-2?%-3B9?6%
<C3<369B%"#%69=7"3#%ZJ%_"#2??@*%69=7"3#%\%=3#=?8B96%7>9%<2<9C%2#B%6S97=>96%38C%:878C9%
C9692C=>%"66896J%

160

A(((4$;B0%"6/&(

A<?(((4.5!"%%-/5(CD-%D.-#(

N"713CC9#7% 2"-6% 73% :2="?"7279% :267%B3O#?32B"#$%3:%<3<8?2C% :"?96J%A==3CB"#$% 73% 7>9% "#Q
:3C-2?%6<9=":"=27"3#%3:%N"713CC9#7%X)Y*%2%6>2C"#$%:"?9%"6%B"E"B9B%"#73%69E9C2?%<"9=96%3:%
:"L9B%6"T9%V9J$J%0[\%bN%92=>W*%O>"=>%2C9%R26"=%6>2C"#$%8#"76%B8C"#$%:"?9%B"67C"R87"3#J%A%
6<9="2?%73CC9#7%:"?9*%26%7>9%8#":3C-%"B9#7":"=27"3#%3:%7>9%638C=9%:"?9*%"6%-2B9%73%C9=3CB%
7>9%"#:3C-27"3#%2#B%B272%>26>%3:%7>969%<"9=96J%A??%<2C7"="<27"#$%<99C6%7>27%B3O#?32B%3C%
8<?32B% 7>9% 62-9% :"?9% O"??% :3C-% 2% C2#B3-% 2#B% 79-<3C2C@% -96>% #97O3CS*% 2#B% 7>9@%
B3O#?32B% B"::9C9#7% <"9=96% :C3-%B"::9C9#7% <99C6J% ':% 7>9C9% 2C9% #8-9C386% 6"-8?72#9386%
<99C6%6>2C"#$%7>9%62-9%:"?9*%B3O#?32B"#$%2#%9#7"C9%=3<@%O"??%R9=3-9%:2679CJ%

'#% 2%N"713CC9#7% B"67C"R87"3#%#97O3CS*% 7>9C9% 2C9% 7O3%S"#B6% 3:% <99C6a% '&&-.&,*%O>3%
B3O#?32B6%"76%?2=S%2#B%8<?32B6%"76%>2E"#$%27%7>9%62-9%7"-9*%2#B"4&&%*%O>3%>26%9#7"C9%
:"?9% 2#B% H867% 8<?32B6% :3C%37>9C% ?99=>9C6J%N96"B96*% 7>9C9% "6% 2% /,+-;&,% 73%S99<% 7C2=S"#$%
"#:3C-27"3#%V9J$J%<99C%<36"7"3#6%2#B%7>9"C%B3O#?32B"#$%<C3$C966W%3:%2??%7>9%<2C7"="<27Q
"#$% <99C6% B92?"#$%O"7>% 7>9% 62-9% :"?9J% '7% 673C96% 2#B%-2"#72"#6% 68=>% "#:3C-27"3#*% 2#B%
8696%7>9-%73%3C$2#"T9%7>9%<99C%?"67*%O>"=>%>9?<6%2%#9O%?99=>9C%:"#B%<99C%=2#B"B2796%73%
=3##9=7J%A6% "??867C279B% "#%:"$8C9%)*%2% ?99=>9C%:"C67?@%26S6% 7>9% 7C2=S9C%:3C% 7>9%<99C% ?"67J%
1>9#%"7%9672R?"6>96%=3##9=7"3#6%73% 7>369%<99C6% "#% 7>9%?"67%O>"=>%2C9%6>2C"#$%7>9%62-9%
:"?9*% 2#B% C9=3CB6% O>"=>% <"9=96% 7>9@% >2E9% 7>C38$>% R"7-2<% -9662$96J% _"#2??@*% 7>"6%
?99=>9C%C9]89676%<"9=96%:C3-%37>9C%=3##9=7"#$%<99C6*%?99=>9C6%3C%699B6*%2#B%=3#7"#896%
7>9%:"?9%6>2C"#$%8#7"?%"7%R9=3-96%2%699BJ%D2#@%<C373=3?6%2#B%2?$3C"7>-6%<?2@%2%6"$#":"Q
=2#7%<2C7%"#%2R3E9%<C3=9B8C96J%

!"#$%&"

'&&(')&&$*&"

!""#$%&'($
#")*"'(

!""#
%&'(

+,-.'+,/"
'"-.$0&(1,!

#"!2#($
.23-%2,.$
'(,(*'$

454%&4,%%5

!&"4"$#")*"'(
!&"4"$'+,#&-6

+,-.'+,/"
'"-.$0&(1,!
!&"4"$#")*"'(
!&"4"$'"-.&-6

42-(#2%$!,4/"(
74+2/"8&-("#"'(".9

!""#$%&'($
)*&+("+*+,"$
*%-.#&(/)

42-(#2%$!,4/"(
74+2/"8&-("#"'(".9

!""#$'"%",(&.+$
*%-.#&(/)

,/.0&+-$*%-.#&(/)

+&&$*&"'

%

).0<(?>(1>9%-2H3C%=3-<3#9#76%3:%2%N"713CC9#7%6@679-J(

1>9C9%2C9%7O3%6<9=":"=%<C373=3?6%"#%N"713CC9#7J%`#9%<C373=3?%6<9=":"96%7>9%=3--8Q
#"=27"3#%R97O99#%2%<99C%2#B%2%7C2=S9C*%=2??9B%/,+-;&,"5,$/$-$'c%7>9%37>9C%6<9=":"96%7>9%
"#79C2=7"3#% R9>2E"3C6% R97O99#% <99C6*% =2??9B%5&&," 5,$/$-$'J% 1>9% 7C2=S9C% <C373=3?% B9Q
6=C"R96% 7>9% :8#=7"3#2?"7"96% "#=?8B"#$% <99C% ?"67% C9]8967% 2#B% C96<3#69*% 2#B% <99C%
B3O#?32B"#$%672786%=@=?"=2?%C9<3C7J%'7%"6%-8=>%6"-<?9C%=3-<2C9B%O"7>%7>9%<99C%<C373Q

161

=3?J% 1>9% <99C% <C373=3?% B96=C"R96% E2C"386% "#79C2=7"3#6% B8C"#$% :"?9% 6>2C"#$% R97O99#% 2%
?99=>9C%2#B%2%699B*%3C%R97O99#% ?99=>9C6J% '7%=3#6"676%3:%>2#B6>2S9%<C3=9B8C9*%R"7-2<%
9L=>2#$9*%<"9=9% C9]8967%2#B%69#B"#$*%<"9=9%>2E"#$%2##38#=9-9#7*%2#B%37>9C%=3#7C3?%
=3--8#"=27"3#%869B%73%2=>"9E9%"#=9#7"E9%-9=>2#"6-%X)Y%"#%N"713CC9#7J%

N96"B96*%7>9C9%2C9%69E9C2?%S9@%2?$3C"7>-6%73%<C3-379%7>9%9::"="9#=@%3:%:"?9%6>2C"#$*%
"#=?8B"#$%<99C% ?"67%-2"#79#2#=9%2?$3C"7>-% "-<?9-9#79B% "#% 7C2=S9C6*% 2#B%<"9=9% 69?9=Q
7"3#%2?$3C"7>-%2#B%=>3S"#$%2?$3C"7>-%"-<?9-9#79B%"#%<99C6J%A6%B96=C"R9B%"#%X)Y*%7>9C9%
2C9%:38C%B9:28?7%<"9=9%69?9=7"3#%2?$3C"7>-6*%"J9J%67C"=7%<C"3C"7@*%C2C967%:"C67*%C2#B3-%:"C67%
<"9=9%2#B%9#B$2-9%-3B9J%1>9@%O3CS%=3??2R3C27"E9?@%73%"-<C3E9%7>9%O>3?9%B"67C"R8Q
7"3#%<9C:3C-2#=9%3:%2%N"713CC9#7%6@679-J%;>3S"#$%2?$3C"7>-%"6%B96"$#9B%73%$82C2#799%
C9263#2R?9%2#B%:2"C%B3O#?32B"#$%6<99B%:3C%9E9C@%?99=>9C*%2#B%<87%63-9%<36"7"E9%:99BQ
R2=S%73%:C99C"B9C6J%

'#%<C2=7"=9*%2%N"713CC9#7%6@679-%"6%E9C@%=3-<?"=279BJ%A%<99C%8682??@%<2C7"="<2796%"#%
B"::9C9#7%:"?9%B3O#?32B"#$%2#B%8<?32B"#$%<C3=9B8C96J%&92C#"#$%:C3-%7>9%$33B%-3B9?Q
"#$%9L9C="69*%O9% 7C2B93::%R97O99#% 7>9%68::"="9#=@%2#B%E2?"B"7@%3:%:3C-2?%-3B9?6%2#B%
6"-<?"="7@% 2#B% :926"R"?"7@% 3:% 7>9% -3B9?% 2#2?@6"6J% d9% -2S9% :8??% 869% 3:% >"9C2C=>"=2?%
-3B9?"#$%=2<2R"?"7@%3:%=3?38C9B%P97C"%5976%73%-3B9?%7>9%N"713CC9#7%<C373=3?%"#%69E9C2?%
2R67C2=7%?9E9?6*%O>"=>%B396%#37%?367%7>9%#9=9662C@%:8#=7"3#2?%B972"?6%3:%N"713CC9#7*%73Q
$97>9C%O"7>%2%-3B967%6"T9%3:%7>9%-3B9?%:3C%<C2=7"=2?%2#2?@6"6J% %

A<A(((789($/&(789(!""+'(

;3?38C9B%P97C"%5976%V;P5W%XeY%"6%2?O2@6%2B3<79B%73%-3B9?%2#B%E2?"B279%6@679-6%O"7>%
>"$>%=3#=8CC9#=9%2#B%=3-<?9L%=3--8#"=27"3#J% '#%C9=9#7%@92C6*% 7>9C9%2C9%-2#@%68=Q
=966:8?%<C3H9=76%X))*%)0*%)+*%)ZYJ%;P5%>26%-2#@%67C3#$%=2<2R"?"7"96%869B%73%:2="?"7279%
-3B9?"#$%=3-<?9L%6@679-6*%"J9J%73S9#%=3?3C6%O"7>%2R8#B2#7%B272%7@<96%2#B%3<9C27"3#6c%
>"9C2C=>"=2?%-3B9?"#$% 86"#$% 68R67"787"3#% 7C2#6"7"3#6*% <2$9% "#672#=96% 2#B% :86"3#% 6976c%
:?9L"R?9%:8#=7"3#2?%<C3$C2--"#$%?2#$82$9%73%6<9=":@%=3#7C3?%2#B%B272%=3#67C2"#6J%48=>%
79=>#"]896% :2="?"7279% -3B9?"#$% 7>9% N"713CC9#7% "#73% 69E9C2?% 2R67C2=7% ?2@9C6*% 2#B% 9LQ
<C966"#$%B272%7@<9%2#B%:8#=7"3#2?%R9>2E"3C6%2==8C279?@%2#B%:?9L"R?@J%

1>969%2C9%69E9C2?%;P5%R269B%-3B9?"#$%733?6%:3C%C9692C=>9C%73%B3%9L<9C"-9#76J%A6%
:2C%26%O9??%S#3O#*%;P5%133?6%Xf*%)gY%"6%7>9%-367%<3O9C:8?%3#9J%h9$2CB9B%26%"#B86Q
7C"2?Q67C9#$7>%63:7O2C9%:3C%-3B9?"#$%2#B%2#2?@6"6%;P5%-3B9?6*%;P5%133?6%$2"#6%-3C9%
7>2#%eggg%869C6% :C3-%#92C?@%)Zg%=38#7C"96*% 2#B%O"B9?@%2B3<79B% "#%-2#@% 6"$#":"=2#7%
<C3H9=76% X)gYJ% '#% 7>9% <2<9C*%O9% 72S9% :8??% 2BE2#72$9% 3:% 9B"7"#$*% 6"-8?27"3#*% 2#B% 67279%
6<2=9%2#2?@6"6%=2<2R"?"7"96%3:%;P5%133?6%73%=3#67C8=7%2#B%E2?"B279%N"713CC9#7%-3B9?6J%

E(((,"&-+./0(1%;F.5-;56%-(

1>9% "#:3C-2?% 6<9=":"=27"3#%3:%N"713CC9#7% X)Y% H867% =3E9C6% 7>9% :8#B2-9#72?% 2#B%#9=96Q
62C@% <2C76*% 68=>% 26% 6@679-6% B9<?3@-9#7*% S9@% B272% 67C8=78C96*% =3C9% 2?$3C"7>-6*% 2#B%
-2"#% :?3O% 3:% =3#79#76% <8R?"6>"#$% 2#B% :"?96% B"67C"R87"3#J% _C3-% 7>9% <3"#7% 3:% E"9O% 3:%
:8#=7"3#2?%-3B9?"#$*%7>9C9%2C9%7O3%-2H3C%>8CB?96%"#%=3#67C8=7"#$%2#%2==8C279%2#B%2<Q
<C3<C"279%-3B9?%R269B%3#%68=>%6<9=":"=27"3#J%`#% 7>9%3#9%>2#B*%63-9%69=7"3#6% "#% 7>9%
6<9=":"=27"3#% B3% #37% #99B% 73% R9%-3B9?9B*% 68=>% 26% 6@679-% B9<?3@-9#7% <C3=9B8C9% 3C%

162

63-9%B272% =3??9=7"3#% R9>2E"3C6% :3C% 869C% ?2@9C% B"6<?2@"#$J%D3B9?"#$% 7>969% R9>2E"3C6%
=3#7C"R8796%:9O%73%6@679-%:8#=7"3#2?%2#2?@6"6*%2#B%73%-2S9%-2779C6%O3C69*%"#7C3B8=96%
"#=3$"72R?9% R87% 8##9=9662C@% 67279% 6<2=9% 9L<?36"3#J%F3O% 73% B"67"#$8"6>% 68=>%S"#B%3:%
:8#=7"3#2?"7"96%:C3-%37>9C%"#B"6<9#62R?9%<2C76%"6%2%C92??@%=>2??9#$9J%`#%7>9%37>9C%>2#B*%
63-9% B972"?9B% 2?$3C"7>-6% 3C% -9662$9% "#79C2=7"3#6% "#% 7>9% 6<9=":"=27"3#% 2C9% #37% 9LQ
<?2"#9B%=?92C?@%3C%9E9#%#37%-9#7"3#9B%27%2??J%12S9% 7>9%=>3S"#$%2#B% "#79C967"#$%-96Q
62$96% :3C% 9L2-<?9*% 7>9% 7C"$$9C% 7"-9%2#B%3CB9C6%3:% 68=>%-9662$96% "#79C2=7"3#% 2C9%#37%
-9#7"3#9B%=?92C?@J%'7%#99B6%:8C7>9C%=3#6"B9C27"3#%2#B%=3-<?9-9#72C"7"96%:C3-%7>9%<9CQ
6<9=7"E9%3:%B96"$#%3C%"-<?9-9#727"3#%<>2696J%

%

).0<(A>(1>9%-3B9?"#$%2C=>"79=78C9%3:%N"713CC9#7J%

'#% 7>"6%<2<9C*%O9%<C3<369%2%#3#Q7C"E"2?%-3B9?"#$%2C=>"79=78C9% 73%=3<9%O"7>%2R3E9%
7O3%=>2??9#$96J%A6%"??867C279B%"#%:"$8C9%0*%7>9%-3B9?"#$%2C=>"79=78C9%=3#72"#6%:38C%?2@Q
9C6*%O>"=>%C9<C969#7%B"::9C9#7%-3B9?"#$%?9E9?6*%73$97>9C%O"7>%B272%B9=?2C27"3#%2#B%2?Q
$3C"7>-6% ?2@9C6% 7>C38$>387J%d9% =38?B% :"C67?@%-3B9% 7>9% #97O3CS% 73<3?3$@*% 2#B% 7>9#%
C9:"#9% 7>9% #3B9% R9>2E"3C6% 2#B% 37>9C% 8<<9C% ?2@9C% "66896*% 26% 7>"6% <2<9C% B9-3#67C279BJ%
d"7>%7>9%9]8"E2?9#7%9::9=76*%O9%=38?B%2?63%-3B9?%B972"?%2?$3C"7>-6%2#B%6<9=":"=%:8#=Q
7"3#2?"7"96%3:%<99C%9#7"7"96%:"C67?@*%2#B%7>9#%=3-<369%7>9-%73%:3C-%=3--8#"=27"3#%"#Q
79C2=7"3#6%2#B%=3#67C8=7%#3B9%2#B%#97O3CS% ?2@9C6J%/2=>% ?2@9C% :3=8696%3#%=9C72"#%26Q
<9=76%3:%6@679-%:8#=7"3#2?%R9>2E"3C6*%2#B%7>9%7C2B93::%R97O99#%7>9%-3B9?%6"T9%"#%3#9%
?2@9C%2#B%7>9%:8#=7"3#%68::"="9#=@%"#%7>27%?2@9C%6>38?B%R9%<2"B%-3C9%2779#7"3#6J%

7&/<$,;"/$5$'$*:"'+:&,%:3=8696%3#%7>9%-3B9?"#$%3:%9#7"C9%#97O3CS%9#E"C3#-9#76*%
"#=?8B"#$% 7>9%<2C7"="<27"#$%9#7"7"96% 2#B% 7>9"C% C9?27"3#6>"<% :C3-% 7>9%#97O3CS% 73<3?3$@%
<3"#7%3:%E"9OJ%/6<9="2??@*%7>9%#8-R9C%3:%B"::9C9#7%7@<96%3:%9#7"7"96%2#B%7>9"C%<36"7"3#%
"#% 7>9% #97O3CS% 9#E"C3#-9#76% 6>38?B% R9% =3#6"B9C9B% =2C9:8??@J% h9B8#B2#7% 9#7"7"96% 3C%
"#=3CC9=7%C9?27"3#6%#37%3#?@%"#7C3B8=9%2%<379#7"2?%>8$9%67279%6<2=9*%R87%2?63%=38?B%#37%
$"E9%<C3-"#9#=9%73%7>9%S9@%<C3<9C7"96%3:%7>9%6@679-J%

7$%&"8&.+9($,4"'+:&,":3=8696%3#%7>9%9L9=87"3#%672796%2#B%7>9"C%7C2#6:9C%C9?27"3#%"#%
2%6<9=":"=%9#7"7@*%68=>%26%2%7C2=S9C%3C%2%<99C%#3B9J%A6%:3C%#97O3CS%<C373=3?6*%69#B"#$%
C9]89676%2#B%C9=9"E"#$%C96<3#696*%73$97>9C%O"7>%63-9%=3##9=7"E"7@%=3#7C3?%2=7"3#6%2C9%
8682??@%-3B9?9B%"#%7>"6%?2@9CJ%

=$##0)(-+/($)"()/&,+-/($)4"'+:&,%:3=8696%3#%-9662$96%"#79C2=7"3#6%R97O99#%<C3Q
73=3?%9#7"7"96J%A6%:3C%#97O3CS%<C373=3?6*%=3??9=7"#$%<C3<9C7@%B272*%$9#9C27"#$%C9]89676*%
<2C6"#$%C96<3#69%2#B%6O"7=>"#$%73%68R69]89#7%<C3=966"#$%2C9%-2H3C%-3B9?"#$%"66896%"#%
7>"6%?2@9CJ%1>9%?3$"=2?%C9?27"3#6>"<%3:%68=>%R9>2E"3C6%#99B6%=2C9:8?%=3#6"B9C27"3#J%

3,+)4+-/($)4"+)%"+'*$,(/.#4"'+:&,%:3=8696%3#%7>9%B972"?9B%:8#=7"3#2?"7"96*%:3C%9LQ
2-<?9*% 7>9%=3#7C3?% :?3O6*%-2"#79#2#=9%3:%S9@%B272% 67C8=78C96*% 62-<?"#$% 7>9% C9]8"C9B%
B272*%2#B%=3C9%2?$3C"7>-6J%1>9%C9B8#B2#7%3C%"#2==8C279%-3B9?"#$%"#%7>"6%?2@9C%O"??%?92B%
73%#373C"386%67279%6<2=9%9L<?36"3#*%96<9="2??@%O>9#%7>9%>"$>%=3#=8CC9#=9%2#B%=3-<?9L%
=3--8#"=27"3#6%9L"67J%1>9C9:3C9*%O9%6>38?B%"79C27"E9?@%C9:"#9%7>9%-3B9?6%73%=3#67C8=7%
2#%3<7"-8-%-3B9?%O"7>%-3B967%6"T96%2#B%:8#=7"3#2?%B96=C"<7"3#6%"#%B"::9C9#7% ?2@9C6J%

163

1>9%-3B9?%6"T9%3:%7>"6%?2@9C%"6%3:79#%R"$$9C%7>2#%7>27%3:%37>9C%?2@9C6*%63%O9%=38?B%B"Q
E"B9%7C2#62=7"3#%?2@9C%"#73%69E9C2?%68RQ?2@9C6%:3C%?9$"R?9%-3B9?"#$J%

13%68-%8<*% 72S"#$%:8??%2BE2#72$9%3:%>"9C2C=>"=2?%2R67C2=7"3#%-97>3B3?3$@*%2R3E9%
-3B9?"#$%2C=>"79=78C9%:2="?"72796%-3B9?"#$%6@679-%:8#=7"3#2?"7"96%"#73%69E9C2?%2R67C2=7%
?2@9C6*%2#B%9L<C966"#$%R9>2E"3C%B972"?6%2==8C279?@%2#B%:?9L"R?@J%'7%"6%]8"79%68"72R?9%2#B%
:926"R?9%:3C%$8"B"#$%=3-<?9L%6@679-%-3B9?"#$J%A==3CB"#$%73%B"::9C9#7%-3B9?"#$%2#B%
2#2?@6"6%<8C<3696*%O9%=38?B%2BH867%7>9%-3B9?"#$%6=2?9%"#79CQ?2@9C%2#B%"##9CQ?2@9C*%2#B%
<9C:3C-%9::"="9#7%2#2?@6"6%"#%68"72R?9%?2@9C6J%;P5%"6%=3#6"B9C9B%73%R9%2#%9::9=7"E9%2=Q
782?"T27"3#%3:%2R3E9%-3B9?"#$%2C=>"79=78C9*%2#B%7>9%:3??3O"#$%69=7"3#6%B9-3#67C279%7>9%
E2?"B"7@%3:%68=>%2=782?"T27"3#J%

G(((789(,"&-+./0("3(4.5!"%%-/5(

G8"B9B%R@%7>9%-3B9?"#$%2C=>"79=78C9%"#%2R3E9%69=7"3#*%O9%=3#67C8=7%2#%9#7"C9%N"713CQ
C9#7% ;P5% -3B9?% O"7>% ZZ% <2$9% "#672#=96% V0Z% ":% C9<?"=279B% <2$9% "#672#=96% 2C9% #37%
=38#79BW*%26%6>3O#%"#%:"$8C9%+J%1>"6%-3B9?%2668-96%7>9%2R69#=9%3:%9L=9<7"3#6*%7>27%"6*%
=3--8#"=27"3#% "#:C267C8=78C9% "6% C9?"2R?9*% 2#B% 7>9C9% 2C9% #3% E8?#9C2R"?"7"96% B8C"#$% 7>9%
<C373=3?%9L9=87"3#J%49=7"3#%ZJ)%B"6=86696%63-9%:8#=7"3#%C9?279B%2668-<7"3#6%"#%-3BQ
9?"#$J%b9@%B279%7@<96%2C9%-3B9?9B%26%B"::9C9#7%=3?3C%6976%"#%69=7"3#%ZJ0J%_C3-%69=7"3#%
ZJ+% 73% ZJ^*% O9% <C969#7% N"713CC9#7% ;P5%-3B9?6% "#% B"::9C9#7% ?2@9C6% C96<9=7"E9?@J% 4"L%
6<9=":"=% <2$9% "#672#=96% 2C9% <C969#79B% 26% 2% C9<C969#727"E9J% 1>9@% =3E9C% 2??% -3B9?"#$%
?2@9C6*%2#B%7>9%-367%6"$#":"=2#7%:8#=7"3#2?"7"96%3:%N"713CC9#7J%

% %

).0<(E>(1>9%9#7"C9%;P5%-3B9?%3:%N"713CC9#7J%

G<?(((,"&-+./0(1''6*H5."/'(

A6%B"6=8669B%"#%69=7"3#%+*%-3B9?"#$%2??%26<9=76%6<9=":"9B%"#%3C"$"#2?%N"713CC9#7%6<9="Q
:"=27"3#% X)Y%O"??%B9:"#"79?@% :9??% "#73% 7>9%67279% 6<2=9%9L<?36"3#%9-R2CC266-9#7J%1>9C9Q

164

:3C9*% 63-9% :8#=7"3#% C9?279B% -3B9?"#$% 2668-<7"3#6% 6>38?B% R9% -2B9% 27% :"C67*% 7>27% "6*%
63-9%=3-<?9L%R9>2E"3C6%6>38?B%R9%6"-<?":"9B%2#B%63-9%"#=3#6"B9C2R?9%<2C76%6>38?B%
R9%3-"779B%B"C9=7?@J%A==3CB"#$%73%7>9%-3B9?"#$%2C=>"79=78C9*%O9%B"6=2CB%7>9%BC366%2#B%
69?9=7%7>9%9669#7"2?*%63%B972"?9B%-3B9?"#$%2668-<7"3#6%2C9%?"679B%26%:3??3O6J%

! >$#&" ()-$)4(%&,+8'&" 10)-/($)+'(/:" (4" $#(//&%?" _"C67?@*% O9R% 69CE9C% C9?279B%
<C3=966"#$%"6%R9@3#B%7>9%=3C9%N"713CC9#7%:8#=7"3#2?"7"96*%2#B%#37%O3C7>%O>"?9%
73%2#2?@6"6J%1>9#*%63-9%3E9CQB972"?9B%-97>3B6*%68=>%26%N9#=3B"#$%2#B%F26>%
=>9=S"#$%X)Y*%2C9%-3B9?9B% H867%26%2% 7C2#6"7"3#%8#B9C% 7>9%C9263#2R?9%2668-<Q
7"3#%7>27%7>9@%$3%OC3#$%"#%2%E9C@%6-2??%<C3R2R"?"7@J%A7%?267*%7>9%>26>%E2?89%3:%
73CC9#7% :"?9% "6%869B% 73% "#B9#7":@%92=>%6>2C"#$% :"?9% "#6792B%3:%86"#$% 7>9%O>3?9%
73CC9#7%:"?9J%1>9%$9#9C27"#$%2#B%<2C6"#$%3:%73CC9#7%:"?9%2C9%3-"779B%73$97>9CJ%

! @)':"4()*'&"1('&"4.+,()*"(4"-$)4(%&,&%?"1>9%6"#$?9%:"?9%6>2C"#$%6=9#2C"3%=3E9C6%
2??%:8#=7"3#2?"7"96%3:%N"713CC9#7*%2#B%"6%-3C9%:926"R?9%:3C%2#2?@6"6*%63%O"7>387%
?36"#$%7>9%$9#9C2?"7@*%O9%=2CC@%387%6"-8?27"3#%2#B%67279%6<2=9%2#2?@6"6%R269B%
3#%6"#$?9%:"?9%6>2C"#$%=3#:"$8C27"3#%"#%N"713CC9#7%9L9=87"#$J%

! A('&"5(&-&" (4" /.&"8+4(-"4.+,()*"0)(/?"A==3CB"#$% 73% 7>9%3C"$"#2?%6<9=":"=27"3#*%
7>9%R26"=%C9]8967%8#"7%3:%2%:"?9%"6%6?"=9%X)Y*%2#B%2%<"9=9%"6%=3-<369B%3:%69E9C2?%
6?"=96J%12S"#$%"#73%2==38#7%7>9%6"-"?2C%<C3=966"#$%R9>2E"3C6*%O9%2B3<7%<"9=9%
26%R26"=%6>2C"#$%8#"7%:3C%6"-<?9C%2#2?@6"6J%

! >$#&"'&44"(#5$,/+)/"#&-.+)(4#4"+,&"4(#5'(1(&%?%/#B$2-9%-3B9%X)Y%"6%H867%2%
<"9=9%69?9=7"3#%3<7"-"T9B%-97>3B%"#%7>9%9#B%<>269%3:%:"?9%B3O#?32B"#$J%537%
-3B9?"#$%"76%R9>2E"3C6%B396%#37%2::9=7%7>9%-2"#%:8#=7"3#2?"7"96%3:%N"713CC9#7*%
2#B%2E3"B%"#7C3B8="#$%>8$9%=3#=8CC9#7%67279%6<2=9J%N96"B96*%26%:3C%7>9%=>3SQ
"#$% 2?$3C"7>-*% O9% H867% -3B9?% 7>9% :8#B2-9#72?% <2C7% O"7>387% 3<7"-"67"=%
8#=>3S"#$%2#B%2#7"Q6#8RR"#$%X)Y*%O>"=>%2C9%869B%:3C%"-<C3E"#$%7>9%<9C:3C-Q
2#=9%2#B%:2"C#966%3:%N"713CC9#7J%

13%68-%8<*%2R3E9%-3B9?"#$%2668-<7"3#6%2C9%#9=9662C@%73%:3=86%38C%-3B9?"#$%"6Q
6896%3#%7>9%-367%6"$#":"=2#7%<2C76%3:%N"713CC9#7*%2#B%=3#7C3?%7>9%6"T9%3:%;P5%-3B9?6%
:3C%9::9=7"E9%2#B%9::"="9#7%R9>2E"3C6%2#2?@6"6J%

G<A(((I5(,"&-+./0(

1>9%-2H3C%B272%7@<96%869B%"#%N"713CC9#7%2C9%-3B9?9B%26%B"::9C9#7%=3?3C%6976*%6>3O#%"#%
:"$8C9%ZJ%d9%87"?"T9%6"-<?9%=3?3C%6976%V8#"7*% "#79$9C*%2#B%67C"#$W%2#B%=3-<38#B%=3?3C%
6976%V<C3B8=7*%C9=3CB*%8#"3#*%2#B%?"67W%73$97>9C%73%-3B9?%<C3<9C7@%:"9?B6%V9J$J%"#:3>26>*%
<99C"B*% 2#B% 63-9% :?2$6W*% =3--8#"=27"3#% <2=S976% V9J$J% >2#B6>2S9% <2=S976*% =>3S"#$%
<2=S976*%R"7-2<%<2=S976*% C9]8967%<2=S976*% <"9=9%<2=S976*%>2E9%<2=S976W% 2#B%S9@%B272%
67C8=78C96%V9J$J%<99C%R"7-2<*%<"9=9%C9]8967%697*%<"9=9%>2E"#$%697W%3:%N"713CC9#7%6@679-J%

'7% "6% O9??QS#3O#% 7>27% =3-<?9L% =3?3C% 6976% O"??% <366"R?@% C968?7% "#% -3C9% B"::"=8?7%
2#2?@6"6%O3CSJ%d9%>3?B%7>9%:3??3O"#$%<C"#="<?9%"#%B272%-3B9?"#$a%=2<78C"#$%7>9%"#B"6Q
<9#62R?9%B272%9?9-9#76%2#B%3C$2#"T"#$%7>9-%86"#$%68"72R?9%=3?3C%6976%73%2=>"9E9%R37>%
=?92C% C9<C969#727"3#% 2#B% 926@% 3<9C27"3#J% _3C% 9L2-<?9*% 7>9% :"9?B6% "#% =3--8#"=27"3#%
<2=S976%869B%"#%7C2=S9C%<C373=3?%2#B%<99C%<C373=3?%2C9%?966%7>2#%7>9%3C"$"#2?%N"713CC9#7%
6<9=":"=27"3#*%R9=2869%3#?@%#9=9662C@%:"9?B6%2C9%<"=S9B%8<*%2#B%3C$2#"T9B%O"7>%68"72R?9%
=3?3C%6976%26%6"-<?9%26%<366"R?9J%

165

%

).0<(G>(1>9%=3?3C%6976%"#%;P5%-3B9?%3:%N"713CC9#7J%

F4ibjD4G%672#B6% :3C%-2"#%B272% :"9?B6%3:%>2#B6>2S9%-9662$96J%1hA54jD4G%
672#B6% :3C%-2"#% B272% :"9?B6% 3:% R"7-2<*% C9]8967*% <"9=9% 2#B% >2E9%-9662$96J% ;`DDj%
D4G%672#B6%:3C%=>3S9*%8#=>3S9*%"#79C9679B%2#B%8#"#79C9679B%-9662$96J%(#"3#%7@<9%"6%
869B%73%8#":3C-?@%-3B9?%68=>%-9662$96*%2#B%=3-R"#9B%O"7>%638C=9%<99C"B%2#B%B967"Q
#27"3#%<99C"B%73%=3-<369%7>9%9#7"C9%=3--8#"=27"3#%<2=S976J%N96"B96*% 7>9C9%2C9%7>C99%
6"$#":"=2#7%B272%67C8=78C9a%ND4/1*%C9<C969#7"#$%7>9%<"9=9%B"67C"R87"3#%"#:3C-27"3#%3:%
37>9C%<99C6*%FAU/4/1*%C9<C969#7"#$%7>9%"#B9L%3:%<"9=96%7>27%>2E9%R99#%B3O#?32B9B*%
h/k4/1*% C9<C969#7"#$% 7>9% "#B9L% 3:% <"9=96% 7>27% >2E9% R99#% C9]89679B% R87% #37%
B3O#?32B9BJ% 1>9@% 2??%-3B9?9B% 26% ?"67% 7@<9% :3C% 926@% B272% C97C"9E2?% 2#B% 8<B279J% _8CQ
7>9C-3C9*%=3CC96<3#B"#$%E2C"2R?96%2C9%#2-9B%2?-367%7>9%62-9%O"7>%"76%>367%=3?3C%6976%
9L=9<7%:3C%6<9??"#$%O"7>%?3O9C=269*%63%O9%B3%#37%?"67%7>9-%:3C%?"-"79B%6<2=9J%

G<E(((9-5#"%BJ+$2-%(,"&-+./0(

_"$8C9%[% "#B"=2796% 7>9% 73<%<2$9%3:%N"713CC9#7%;P5%-3B9?6J% '7%B96=C"R96% 7>9%#97O3CS%
73<3?3$@%3:% 7>9%N"713CC9#7%6@679-%:3C%38C%2#2?@6"6J%1>9C9%2C9%3#9% 7C2=S9C%V3,+-;&,W*%
3#9%699B%V>&&%W*%2#B%7O3%?99=>9C6%VB&&-.&,C"+)%"B&&-.&,DWJ%B&&-.&,C%2=76%26%2%#9O%
H3"#"#$% <99C*% 2#B%B&&-.&,D% 2=76% 26% 2#% 9L"67"#$% ?99=>9C%O"7>% <2C7% :"?9J% N9=2869% 7>9@%
>2E9%62-9%R9>2E"3C6*%7>9%68R<2$96%B9C"E9B%:C3-%7>9%68R67"787"3#%7C2#6"7"3#6%&99=>9C)%
2#B%&99=>9C0%"#%7>9%73<%<2$9%2C9%7>9%62-9J%d9%3#?@%266"$#%B"::9C9#7%"#"7"2?%-2CS"#$6%
3:%ND4/1% 73% "B9#7":@% 7>27%B&&-.&,C%>26% 9-<7@% :"?9% 2#B%B&&-.&,D">26%<2C7% :"?9*% 2#B%
B&&-.&,C% =38?B% B3O#?32B% 7>9% :"?9% :C3-% R37>% >&&%% 2#B% B&&-.&,DJ% 1>9% 8#B9C?@"#$%
7C2#6-"66"3#%#97O3CS%"6%-3B9?%26%69E9C2?%<?2=96%O"7>%=3?3C%697%PA;b/1J%1>969%:38C%
9#7"7"96%=3-<369%2%?9267%73<3?3$@%697%O>"=>%=38?B%=3E9C%7>9%O>3?9%B96"C9B%:8#=7"3#2?Q
"7"96%3:%N"713CC9#7*%2#B%7>9%<C373=3?%9L9=87"3#6%2-3#$%7>969%9#7"7"96%2C9%2?C92B@%E9C@%
=3-<?"=279B%:3C%:926"R?9%2#B%9::9=7"E9%-3B9?%2#2?@6"6%<C3=966"#$J%

166

!""#$"%&!""#$"%&!""#$"%' !""#$"%'

()*"+
()*"+

,""*

,""*

)"-.&
/01234

)"-5&
/01234

)"-6&

/01234

47&

/337,34

47'

/337,34

)"-.'
/01234

)"-5'
/01234

)"-6'

/01234

4,
4,8739

,""*

()*"+

!""#$"%' !""#$"%&

%

).0<(K>(1>9%#97O3CS%73<3?3$@%-3B9?J%

G<G(((9"&-J+$2-%(,"&-+./0(

d9%=>3369% 7>9% ?99=>9C%-3B9?% 26% 2% C9<C969#727"E9% 3:%#3B9% ?2@9C%-3B9?6%R9=2869% 7>9%
7C2=S9C%-3B9?%"6%6"-<?9C%2#B%7>9%699B%-3B9?%"6%H867%2%RC"B$9B%9B"7"3#%3:%?99=>9C%-3B9?%
O"7>387%<"9=9%C9]8967"#$%C9?279B%:8#=7"3#2?"7"96J%_"$8C9%\%"#B"=2796%7>9%6<9=":"=%R9>2EQ
"3C6%3:%2% ?99=>9CJ%1>9%S9@%26<9=7%3:%-3B9?"#$% "#% 7>"6% ?2@9C% "6% 73%387?"#9%7>9%<C373=3?%
9L9=87"3#%:?3O6%26%2%O>3?9J%_3C%9L2-<?9*%7>9%-2"#%R3B@%3:%?99=>9C%R9>2E"3C6%"6%E2C"Q
386%=3--8#"=27"3#6%"#E3?E9B%"#% 7>9%7C2=S9C%<C373=3?%2#B%7>9%<99C%<C373=3?*% 73$97>9C%
O"7>% 7>9"C% 79-<3C2?% 3CB9C6J% A==3CB"#$% 73% 7>"6% <C"#="<?9*% O9% -3B9?% :38C% S"#B6% 3:%
?99=>9C%R9>2E"3C6a%<99C%?"67%C9]8967*%<99C%?"67%<2C6"#$*%<2=S976%$9#9C27"3#%2#B%69#B"#$%
3:%7>9%<99C%<C373=3?*%<2=S976%C9=9"E"#$%2#B%<2C6"#$%3:%7>9%<99C%<C373=3?J%1>969%R9>2EQ
"3C6%"#79C2=7%=2862??@%2#B%=33<9C27"E9?@J%

:;##"::

<)*"+":&

=>?,2@,A=<)*"+":&BCD
E&D<)*"+":CDF#$B

<)*"+":
FG#H"-FG#H"-

<)*"+":

FG#H"-FG#H"-

<ID=E&DFG#H"-BJKF5
-$")D'LFG#H"-
"M:"D"NF-O

<ID=E&DFG#H"-BPF5
-$")D'LFG#H"-
"M:"D"NF-O

FG#H"-

$*DF""%:"-

F""%:"-

F""%:"-

F""%:"-=E'D<)*"+":CDE&D<)*"+":CD:-G%-"*B

#$QH<)R
#$QH<)R'

:")*8:$GH"%SN& %"#S<)R

%"#S<)R'

%SN'

:")*<)R

:")*<)R'

<)<-8:$GH" T=M")R-$DF""%:"-BKUV

:")*8N:R

%"#S8F""%:4%G#H"%8%"W

,404,

IQ%XG%*

/01234

%"#SFH

/01234

)"-6&()

/01234

)"-5'()

/01234

%"#S

/337,34

:$GH"

(Y?3Z3,

:")*

/01234

F<*

(Y?3Z3,

47'()
/337,34

4,[;-

4,8739

)"-6'[;-

/01234

)"-5&[;-

/01234

[;-

[;-

[;- ()

()

()

:")*<)R'

%"#S<)R'

#$QH<)R'

%NGMMD=$*DF""%:"-BDF""%:"-

N

%

).0<(L>(1>9%-3B9?%3:%2%?99=>9CJ%

167

G<K(((@/5-%$;5."/J+$2-%(,"&-+./0(

D3B9?"#$% "#% 7>9% "#79C2=7"3#% ?2@9C% :3=8696%3#% 7>9%<C3=966"#$%3:%<C373=3?%<2=S976J%A6%
:3C%7>9%7C2=S9C%<C373=3?%2#B%<99C%<C373=3?%"#%N"713CC9#7*%$9#9C27"#$%C9]89676%:C3-%B272%
:"9?B6*%<2C6"#$%C96<3#696%2#B%6O"7=>"#$%73%68R69]89#7%<C3=966"#$%C96<9=7"E9?@%2C9%-2Q
H3C%-3B9?"#$% "66896J%A6% 2% 7@<"=2?% 9L2-<?9*% :"$8C9% ^% <C969#76% 7>9% R9>2E"3C6% O>9#% 2%
?99=>9C%C9=9"E96%B"::9C9#7%<2=S976%:C3-%37>9C%=3##9=79B%<99C6J%'7%"6%2=782??@%2%68R<2$9%
3:% 68R67"787"3#% 7C2#6"7"3#6" ,&-&(9&% "#% :"$8C9% \J%`#% C9=9"E"#$% >2#B6>2S9% <2=S976*% 7>9%
?99=>9C%O"??% $9#9C279% 7>9% =3CC96<3#B"#$% R"7-2<%-9662$9% 2:79C% 68==966:8?% >2#B6>2S9%
E9C":"=27"3#J%`#% C9=9"E"#$% V8#W=>3S9%3C% V8#W"#79C9679B%<2=S976*% 7>9% ?99=>9C%O"??% =3#Q
7"#89%68R69]89#7%679<6*%O>"=>%2C9%-3B9?9B%26%2#37>9C%68R67"787"3#%7C2#6"7"3#6%05%+/&4%
"#%B972"?J%`#%C9=9"E"#$%R"7-2<*%C9]8967*%<"9=9%3C%>2E9%<2=S976*% 7>9%?99=>9C%O"??%=2CC@%
387%C96<9=7"E9%<C3=966"#$%2=7"3#6%-3B9?9B%26%B"::9C9#7%68R67"787"3#%7C2#6"7"3#6J%

=<)IQ$G:$CDF""%<*B

470Y,@,A
=-N:RB

470Y,@,A
=-N:RB

470Y,@,A
=-N:RB

<ID@,A\QI81[@@@,A=E'DFG#H"-BD
-$")D'L=E5DFG#H"-B
"M:"D"NF-O

#N:R1[@@@,A
=#N:RB

<ID@,A\QI81[@@@,A=E'DFG#H"-BD
-$")D'L=E'DFG#H"-B
"M:"D"NF-O

470Y,@,A
=-N:RB

<ID@,A\QI8470Y,@,A=E'DFG#H"-BD
-$")D'L=E'DFG#H"-B
"M:"D"NF-O

=>?,2@,A=$N:RBC
DF""%<*CDE&D$N:RB

>?,2@,A
=$N:RB

<ID@,A\QI8>?,2@,A=E'DFG#H"-B
-$")D'L=E'DFG#H"-B
"M:"D"NF-O

;F*G-"8]@
;F*G-"]@'

;F*G-"8/(1

;F*G-"/(1'

"+-%G#-.

TE'D-N:RP^$GS"^V

"+-%G#-5

TE'D-N:RP^F<"#"^V

#$"#H8739
#$"#H739'

"+-%G#-&

TE'D-N:RP^%"W;":-^V

;F*G-":
;F*G-":'

S"%<IO

$G)*M"8]@
$G)*M"]@'

"+-%G#-'

TE'D-N:RP^_<-NGF^V

$G:$S"%<IO

T=E'D$N:RBP<)IQ$G:$V

:-

/(?

(Y?3Z3,

_.

470Y,8@,A

_5

470Y,8@,A

_&

470Y,8@,A

F<*

/337(?

_U

1[@@8@,A

#N:R

@,A

F<*&

/337(?

_'

470Y,8@,A

-N:R

@,A

$*:H

@,A

IQ%XG%*
[;-

$G)*M"]@'

;F*G-":'

#$"#H739'

;F*G-"/(1'

;F*G-"]@'

-N:R

-N:R

-N:R

-N:R
,404,

<ID@,A\QI8470Y,@,A=E'DFG#H"-BD
-$")D'L=E5DFG#H"-B
"M:"D"NF-O

FG#H"-

%"#SFH
()() /01234

FG%:"

/01234

[;-

%

).0<(M>(1>9%C9=9"E"#$%R9>2E"3C%-3B9?%3:%2%?99=>9CJ%

i972"?9B%<C3=966"#$%3:%=>3S"#$%2#B% "#79C967"#$% C9?279B%-9662$96% V;`DDjD4GW%
"6%-3B9?9B%O"7>% 2#% "B9#7"=2?% 68R67"787"3#% 7C2#6"7"3#*% R9=2869% <C3=966"#$%-97>3B6% 73%
7>969%-9662$96% 2C9% 6"-"?2C% 2#B% 6"-<?9J% N87% B972"?9B% <C3=966"#$% 3:% R"7-2<*% C9]8967*%
<"9=9% 2#B% >2E9% -9662$96% V1hA54jD4GW% "6% -3B9?9B% O"7>% C96<9=7"E9% 68R67"787"3#%
7C2#6"7"3#6*%R9=2869%<C3=966"#$%-97>3B6%73%7>969%-9662$96%2C9%-3C9%=3-<?9L%2#B%B":Q
:9C9#7% O"7>% 92=>% 37>9CJ% 43% 2BH867"#$% 7>9% -3B9?% 6=2?9% "#79CQ?2@9C% 2#B% "##9CQ?2@9C% "6%
]8"79%>9?<:8?%73%3R72"#%7>9%-3B967%-3B9?%6"T9%:3C%:926"R?9%2#2?@6"6J%

168

G<L(((!%$/'$;5."/J+$2-%(,"&-+./0(

1C2#62=7"3#%?2@9C%2C9%:8#B2-9#72?%<2$9%"#672#=96%73%-3B9?%6<9=":"=%:8#=7"3#2?"7"96%3:%
N"713CC9#7J%D3B9?"#$%"#%7>"6%?2@9C%C9]8"C96%-2#@%7C2B93::6%73%<8C689%7>9%$3?B9#%69=Q
7"3#%3:%-3B967%-3B9?%6"T9*%63%"79C27"E9%-3B9?%C9:"#9-9#7%"6%"#B"6<9#62R?9%2#B%6"$#":"Q
=2#7J%1O3%S"#B6%3:%7C2#62=7"3#%<2$96%2C9%9L9-<?":"9B%26%:3??3O6J%_"$8C9%e%<C969#76%7>9%
R9>2E"3C6%O>9#% 2% ?99=>9C% C9=9"E96% =>3S"#$% 3C% "#79C967"#$% <2=S976J% '7% =3#72"#6% 63-9%
68R67"787"3#%7C2#6"7"3#6%73%B96=C"R9%-3C9%B972"?9B%R9>2E"3C6*%O>"?9%:"$8C9%f%"6%2#%2R63Q
?879%?92:%<2$9%"#672#=9%O"7>%#3%68R67"787"3#%7C2#6"7"3#6J%'7%"#B"=2796%7>9%R9>2E"3C6%7>27%2%
?99=>9C%:"C67?@%=>9=S6%2#B%=2?=8?2796%O>"=>%<"9=9%6>38?B%R9%C9]89679B%2#B%7>9#%$9#9CQ
2796%C9]8967%-9662$9%O"7>%2E2"?2R?9%B272J%

F""%<*

:;##"::

<IDE'D#N:RP^#$QH"^
-$")D'L:;##"::
"M:"D"NF-O

<)*"+":

<IDE'D#N:RP^<)-"%":-"*^
-$")D'L=E&D#N:RCF""%<*B
"M:"D"NF-O

=^#$QH"^CD
=E&D#N:RBC
DTVCDUB#N:R

F""%<*

F""%<*

<IDE'D#N:RP^#$QH"^
-$")D'L#N:R
"M:"D"NF-O

<IDE'D#N:RP^;)#$QH"^
-$")D'L=E&D#N:RCF""%<*B
"M:"D"NF-O

<IDE'D#N:RP^#$QH"^
-$")D'LF""%<*
"M:"D"NF-O

#N:R

:")*

-"NFN:R ;F*G-"8]@
;F*G-"]@'

:-Q%"F<*

;F*G-"87,

;F*G-"7,'

#$"#H8]@

#$"#H]@'

%"#S

N ,404,

<)-%*

(Y?3Z3,

N:R

F<*

/337(?

_N

`/?043731

#$QH

1[@@8@,A

;)#$

(Y?3Z3,

IQ%XG%* [;-

QF<*&()

/337(?

_&()

1[@@8@,A

()

()

#$"#H]@' ;F*G-"7,'

;F*G-"]@'

=1[@@@,A=^;)#$QH"^CDE'D<)*"+":BC
DE&D<)*"+":CDF#$B

,404,

470Y,8@,A

:-

[;-

/01234

%

).0<(N>(1>9%7C2#62=7"3#%R9>2E"3C%-3B9?%3:%2%?99=>9CJ%

1>9%6"T9%3:%<2$9%"#672#=96%"#%7>"6%?2@9C%79#B6%73%R9%?2C$9*%2#B%2#@%C9B8#B2#7%3C%"#Q
2==8C279%R9>2E"3C6%-3B9?"#$%O"??%?92B%73%69C"386%67279%6<2=9%9L<?36"3#J%N269B%3#%38C%
9L<9C"9#=9*% 7O3%S"#B6%3:%<C3R?9-6%2C9%O3C7>%#37"=9J%`#9%"6%2R387%=3#=8CC9#7%3<9C2Q
7"3#6%69-2#7"=6J%1>9C9%3:79#%9L"67%63-9%699-"#$%=3#=8CC9#7%2=7"3#6*%O>"=>%=38?B%R9%
-3B9?9B% 69]89#7"2??@% O"7>387% 2#@% >2C-% 73% <C373=3?% :8#=7"3#2?"7"96J% _3C% 9L2-<?9*%
O>9#%2%?99=>9C%>26%C9=9"E9B%2%<"9=9*%"7%6>38?B%8<B279%FAU/4/1%67C8=78C9%2#B%C9]8967%
2%#9O%<"9=9J%1>969%7O3%R9>2E"3C6%2C9%"#B9<9#B9#7*%2#B%=38?B%9L9=879%=3#=8CC9#7?@%3C%
69]89#7"2??@J%':%-3B9?%7>9-%26%=3#=8CC9#7?@%9L9=87"3#*%-2#@%8##9=9662C@%=3#=8CC9#7%
672796%O"??% R9% "#7C3B8=9B*% 63%O9%=39C="E9?@%2CC2#$9% 7>9% 9L9=87"3#%3CB9C%3:% 7>969% 2=Q
7"3#6*%7>27%"6*%2%=3#7C3?%<?2=9%"6%2BB9B%73%-2S9%=3CC96<3#B"#$%7C2#6"7"3#6%:"C9B%69]89#Q
7"2??@J% 1>9% 37>9C% <C3R?9-% "6% 2R387% 7>9% R2?2#=9% R97O99#% 7>9% =3-<?9L"7@% 3:% 7>9% #97%
67C8=78C9% 2#B% 7>9% B272% "#6=C"<7"3#6J% '7% "6% O>99T@% R87% E"72?J% ;3#6"B9C"#$% ;P5% 133?6%
<C3E"B96% <3O9C:8?% D&% <C3$C2--"#$% ?2#$82$9% :3C% B96=C"R"#$% =3#67C2"#6*% O9% <C9:9C%
6<9=":@"#$%D&% "#6=C"<7"3#6% 73% "#7C3B8="#$%#9O%<?2=96%3C% 7C2#6"7"3#6%O>9#%-3B9?"#$%
63-9%9L=9<7"3#%R9>2E"3C6J%12S"#$%C97C"9E"#$%?"67%B272%26%2#%9L2-<?9*%7C2#6"7"3#%$82CB%
"#6=C"<7"3#%"6%869B%73%-3B9?%#8??Q?"67%=>9=S"#$%"#6792B%3:%-2S"#$%2%#9O%7C2#6"7"3#J%1>9%
:3C-9C%B396%#3%>2C-%73%<C373=3?%:8#=7"3#2?"7"96*%2#B%C9B8=96%-8=>%C9B8#B2#7%672796J%

169

;F%"#

%"W:"-
:;##"::

:;##"::

:;##"::

:;##"::

%"W:"-

:;##"::

F")-%O

:;##"::

:;##"::

%"W:"-

_<-NGF

F")-%O

%NDF")-%OD%"W:"-

<ID=E'D;F%"#B
DPD=EI<M"D=$*D%"W:"-BB
-$")D'L=$*D%"W:"-B
"M:"D"NF-O

_<-NGF

<ID=E'D;F%"#BP=EI<M"D=$*D%"W:"-BB
-$")D'L=M<:-:;_D=E5D;F%"#B
D=<)-"%:"#-D=E5D;F%"#B
D=E_<-NGF:D=$*D%"W:"-BBBB
"M:"D"NF-O

%"W:"-

%"W:"-

;F%"#

;F%"#

;F%"#

;F%"#

*"M$GS"

*"M);MM

T!<:-\);MMD%"W:"-V

G**

*"M

R")FH

T)Q-D=!<:-\);MMD_<-NGFBV

#$"#H

T)Q-D=!<:-\);MMD%"W:"-BDG)*GM:Q
D)Q-D=#Q)-G<):D=E_<-NGF:D=$*D%"W:"-BB
D=E5D;F%"#BBV

:-Q%"%W

:-Q%"_N)'
,404,

)

,404,

N

IMGR

,404,

QM*")-%O

/3373Y47a

)"X")-%O
](4@0/

-"NF%W:"-

739,34

-NF_N

`/?043731

7398,34
739,34

739,34

IQ%XG%* [;-

/01234

_N()()

[;-

739,34
`/?043731

<):8)"XD%"W:"-D
bI<M"P=EI<M"DF")-%OBCD
DD_<-NGF:P=<):8)"X
D=E_<-NGF:DF")-%OB
D=$*D_<-NGFBBc

:;##"::

,404,

%"W:"-

%"W:"-<ID=E'D;F%"#BP
=EI<M"D=$*D%"W:"-BB
-$")D)<M
"M:"D%NGMMD=$*D%"W:"-B
D%"W:"-

T)Q-D=!<:-\);MMD%"W:"-BDG)*GM:QD
#Q)-G<):D=E_<-NGF:D=$*D%"W:"-BB
D=E5D;F%"#BV

=470Y,@,A
=^)Q%"W^C'CTVC
UBCDF#$CDF#$B

=470Y,@,A=^%"W;":-^CDE'D;F%"#C
D=$*D_<-NGFBddTVCDUBCDE&D;F%"#CDF#$B

%

).0<(O>(1>9%7C2#62=7"3#%R9>2E"3C%-3B9?%3:%2%?99=>9CJ%

G<M(((1+0"%.5F*J+$2-%(,"&-+./0(

1>9C9%2C9%69E9C2?%2?$3C"7>-6%"-<?9-9#79B%"#%N"713CC9#7J%;>3S"#$%2?$3C"7>-%2#B%<"9=9%
69?9=7"3#%2?$3C"7>-6%2C9%-367%"-<3C72#7J%

)<M

_N:"--NF

_N:"--NF

Ne'

%ND=$*D_N:"-BD_N:"-

_N:"-
N

<ID!<:-\);MMD_N:"-D
-$")D'L'
"M:"D"NF-O

_N:"-

_N:"--NFff_N:"-

U

<ID=E;F%G-":D=$*D_N:"-BBK
=E;F%G-":D=$*D_N:"-%;M-BBDG)*GM:QD
=E;F%G-":D=$*D_N:"-BBJ
=E;F%G-":D=$*D=%"SD_N:"-%;M-BBB
G)*GM:QDNPUD-$")DggD
"M:"D<ID=E;F%G-":D=$*D_N:"-BBJ
=E;F%G-":D=$*D_N:"-%;M-BBD
G)*GM:QDNPggD-$")D'UUD"M:"DN

N

_N:"-%;M-

<ID)PUDQ%"M:"D)h'P=M")R-$D_N:"-BD
Q%"M:"D=E;F%G-":D=$*D_N:"-BBDKPD
=E;F%G-":D=$*D=%"SD_N:"-%;M-BBBD
-$")D<):D_N:"-%;M-D=$*D_N:"-B
"M:"D<ID=E;F%G-":D=$*D_N:"-BB
JPD=E;F%G-":D=$*D_N:"-%;M-BB
-$")D=$*D_N:"-Bdd_N:"-%;M-D
"M:"D!<:-*%QF=_N:"-%;M-CD'B

<ID=E;F%G-":D=$*D_N:"-BBDKD=E;F%G-":D=$*D_N:"-%;M-BBD
G)*GM:QD)J=M")R-$D_N:"-Be'DG)*GM:QD
=E;F%G-":D=$*D_N:"-BBDJD=E;F%G-":D=$*D=%"SD_N:"-%;M-BBB
-$")D)e'D"M:"D<ID!<:-\);MMD_N:"-D-$")DUD"M:"D'

)

_N:"-

_N:"-

RQ

_N:"-

RQ

RQ

:")*

%":Q%-

TNP'UUV

:Q%-

:-Q%"

_GH

FG%-:"-

]@,34

:-G%-

(Y4

#-M'

(Y4

%":;M-:"-
]@,34

);N
(Y4

-"NF:"-

-<N"#-M
,404,

N

,404,

]@8,34
]@,34,

]@,34

IQ%XG%* [;-[;-
]@,34,

<ID=E;F%G-":D=$*D_N:"-BBDKD=E;F%G-":D=$*D_N:"-%;M-BBD
G)*GM:QD)J=M")R-$D_N:"-Be'DG)*GM:QD
=E;F%G-":D=$*D_N:"-BBDJD=E;F%G-":D=$*D=%"SD_N:"-%;M-BBB
-$")D_N:"-
"M:"D%ND=$*D_N:"-BD_N:"-

N

T)Q-D=!<:-\);MMD_N:"-BDG)*GM:QD=NPUDQ%"M:"DNPggBV

T)Q-D=!<:-\);MMD_N:"-BDG)*GM:QDNKUV

]@,34

/01234

<ID=E;F%G-":D=$*D_N:"-BBK
=E;F%G-":D=$*D_N:"-%;M-BBD
G)*GM:QD
=E;F%G-":D=$*D_N:"-BBJ
=E;F%G-":D=$*D=%"SD
_N:"-%;M-BBB
-$")D<):D_N:"--NFD
=$*D_N:"-B
"M:"D"NF-O

<IDNJ6
-$")D=1[@@@,A=^;)#$QH"^CD
EI<M"D=$*D_N:"-BBCDEF""%D=$*D_N:"-BCDF#$B
"M:"D=1[@@@,A=^#$QH"^CDEI<M"D=$*D_N:"-BBCD
EF""%D=$*D_N:"-BCDF#$B %

).0<(?P>(1>9%=>3S"#$%2?$3C"7>-%-3B9?%3:%2%<99CJ%

170

N"713CC9#7%>26%#3%=9#7C2?%C9638C=9%2??3=27"3#*%2#B%92=>%<99C%7C"96%73%-2L"-"T9%"76%
3O#%B3O#?32B%C279%R269B%3#%?3=2?%=3#B"7"3#6J%A%<99C%8<?32B6%<"9=96%73%=9C72"#%?99=>Q
9C6%2==3CB"#$% 73% 7>9%B3O#?32B%C279% 7>9@%3R72"#%:C3-%68=>%?99=>9C6J% '7% "6%2%E2C"2#7%3:%
7"7Q:3CQ727J% '#% 3CB9C% 73% 2=>"9E9% R9779C% <9C:3C-2#=9*% 2% <99C% 8682??@% =>3S96% 63-9%
#3#Q2=7"E9% <99C6% 79-<3C2C"?@*% 2#B% C92BH8676% 7>9% =>3S"#$% <99C% ?"67% <9C"3B"=2??@J% 1>9%
=>3S"#$%2?$3C"7>-%6<9=":"9B%"#%N"713CC9#7%"6%=3-<369B%3:%7>C99%<2C76a%7>9%R26"=%=>3SQ
"#$%2?$3C"7>-*%7>9%3<7"-"67"=%8#=>3S"#$%2?$3C"7>-%2#B%2#7"Q6#8RR"#$%2?$3C"7>-J%'#%38C%
;P5%-3B9?6*%3#?@%7>9%R26"=%=>3S"#$%2?$3C"7>-6%2C9%-3B9?9BJ%A6%6>3O#%"#%:"$8C9%)g*%
7>9%-2"#%R9>2E"3C%"#%7>9%2?$3C"7>-%"6%73%3CB9C%7>9%9#7C"96%"#%ND4/1%2==3CB"#$%73%7>9%
B3O#?32B%C2796J%1>9%:"C67%:38C%2C9%=3#6"B9C9B%26%8#=>3S"#$%<99C6%2#B%37>9C6%26%=>3SQ
"#$%<99C6*%2#B%=3CC96<3#B"#$%=>3S9%3C%8#=>3S9%<2=S976%2C9%69#7%C96<9=7"E9?@J%

P"9=9%69?9=7"3#%2?$3C"7>-6%:3=86%3#%69?9=7"#$%<"9=96%73%B3O#?32B%O"7>%-3B967%3CQ
B9C6%:3C%R9779C%<9C:3C-2#=9J%1>9C9%2C9%:38C%<"9=9%69?9=7"3#%2?$3C"7>-6J%>/,(-/"6,($,(/:%
"6% =3#=9C#9B% 2R387% 6?"=9% B3O#?32B"#$*% 7>27% "6*% 3#=9% 2% 6?"=9% >26% C9]89679B% :C3-% 3#9%
<99C*%7>9%C9-2"#"#$%6?"=96%"#%7>27%<"9=9%2C9%2?63%C9]89679B%:C3-%7>9%62-9%<99CJ%d9%B3%
#37%-3B9?%7>"6%2?$3C"7>-%R9=2869%O9%H867%-3B9?%7>9%<"9=9%?9E9?%R9>2E"3C6%26%9L<?2"#9B%
"#% 69=7"3#%ZJ)J%E+,&4/"A(,4/% "6% 7>9% =3C9% 2?$3C"7>-% "#%<"9=9% 69?9=7"3#J%;3#6"B9C"#$% 2??%
=3##9=7"#$%<99C6%O"7>%2%=9C72"#%<99C*% ":%2%<"9=9%>26% ?9267%=3<"96%673C"#$%2-3#$%7>969%
<99C6*%7>"6%<"9=9%6>38?B%R9%B3O#?32B9B%:"C67?@J%1>"6%2?$3C"7>-%$82C2#7996%7>27%7>9%C2CQ
967% <"9=96% =38?B% R9% B"67C"R879B% 26%]8"=S?@% 2#B% 92C?@% 26% <366"R?9J% 4"-"?2C% 73% =>3S"#$%
2?$3C"7>-*%7>9%-2"#%R9>2E"3C%3:%C2C967%:"C67%2?$3C"7>-%"6%73%3CB9C%7>9%9#7C"96%"#%ND4/1%
2==3CB"#$%73%7>9%#8-R9C%3:%92=>%<"9=9%673C"#$%"#%37>9C%=3##9=7"#$%<99C6*%2#B%7>9%?9267%
<"9=96%2C9%<87%:3CO2CBJ%N9=2869%3:%R9>2E"3C%6"-"?2C"7@%73%=>3S"#$%2?$3C"7>-*%-3B9?6%
3:% 7>"6%2?$3C"7>-%2C9%#37%<C969#79B% :3C%6<2=9% ?"-"727"3#J%E+)%$#"A(,4/"6(&-&% "6%869B%
O>9#%B3O#?32B"#$%672C76%:3C%3R72"#"#$%2%=3-<?979%<"9=9%26%633#%26%<366"R?9J%d9%87"?Q
"T9%2%C2#B3-%"#"7"2?%-2CS"#$%73%-3B9?%7>"6%2?$3C"7>-J%A7%?267*%F)%*+#&"G$%&%"6%869B%
73%=3#]89C% 7>9%<C3R?9-%O>9C9% 7>9% ?267%<"9=9% "6%8682??@%>2CB% 73%$97J%A6%-9#7"3#9B% "#%
69=7"3#%ZJ)*%7>"6%2?$3C"7>-%"6%#37%-3B9?9B%R9=2869%3:%69C"386%=3#=8CC9#7%R9>2E"3C6J%

'#%38C%=3#67C8=79B%;P5%-3B9?6*%O9%7C"$$9C%7>9%=>3S"#$%2?$3C"7>-%27%7>9%7"-9%7>27%
<"9=9% C9]8967% 672C76J%A?63*%O9%=3#6"B9C% 7>9%9L9=87"#$%3:% 2?$3C"7>-%26%273-"=%9E9#76*%
7>27% "6*% 7>9% <"9=9% C9]8967% <C3=9B8C9%O"??% #9E9C% 672C7% 8#?966% 7>9% =>3S"#$% 2?$3C"7>-% "6%
3E9CJ%d"7>387%?36"#$%7>9%$9#9C2?"7@*%7>"6%6"-<?":"=27"3#%=38?B%C9B8=9%>8$9%=3#=8CC9#7%
R9>2E"3C6%2#B%-2S9%<C373=3?%2#2?@6"6%-3C9%<C2=7"=2R?9J%N87%"#%:2=7*%7>9%=>3S"#$%2?$3Q
C"7>-%2C9%9669#7"2??@%7"-9QBC"E9#*%7>27%"6*%"7%O3CS6%<9C"3B"=2??@%2#B%"#B9<9#B9#7?@*%63%
O9%O"??%7C@%73%87"?"T9%7"-9%-3B9?"#$%=2<2R"?"7@%<C3E"B9B%R@%;P5%133?6%73%C9:"#9%2?$3Q
C"7>-%-3B9?6%"#%:8C7>9C%C9692C=>%"66896J% %

K(((1/$+2'.'("3(4.5!"%%-/5(789(,"&-+'(

F2E"#$%=3#67C8=79B%7>9%;P5%-3B9?6%3:%N"713CC9#7*%O9%6>38?B%-2S9%:8C7>9C%2#2?@6"6%
73%E2?"B279%2#B%C9E"69%7>9%-3B9?*%7>27%"6*%73%E2?"B279%7>9%9::9=7"E9#966%3:%-3B9?6*%2#B%
=>9=S%O>97>9C%7>369%-3B9?6%627"6:@%7>9%S9@%C9]8"C9-9#7%<C3<9C7"96%3:%N"713CC9#7%6@6Q
79-*%68=>%26%#3%387Q3:Q3CB9C6%9L9=87"3#6*%3C%C2#B3-%B3O#?32B"#$%R9>2E"3C6*%97=J%(#Q
:3C78#279?@*% 26% =3#=8CC9#=9%2#B% "#7C"=279%=3--8#"=27"3#%2C9%9669#7"2?% =>2C2=79C"67"=6%
3:%N"713CC9#7%6@679-6*%7>9%=3#67C8=79B%-3B9?6%2C9%63%?2C$9%7>27%7>9%B"C9=7%67279%6<2=96%

171

2#2?@6"6%R9=3-96% "#:926"R?9%R9=2869%3:% 7>9%#373C"386%67279%6<2=9%9L<?36"3#%<C3R?9-J%
'#%3CB9C%73%?28#=>%<C2=7"=2?%2#2?@6"6*%2#B%-2S9%"7%26%=3-<?979%2#B%C9?"2R?9%26%<366"R?9*%
O9%"#7C3B8=9%2#%"#79$C279B%-97>3B%O>"=>%=3-R"#96%;P5%133?6%68<<3C79B%6"-8?27"3#*%
67279%6<2=9%2#2?@6"6%2#B%-3B9?%=>9=S"#$%79=>#3?3$"96*%2#B%8696%7>9-%73O2CB6%B"::9CQ
9#7%<C3:"?96%3:%7>9%-3B9?6J% %

(

).0<(??>(1>9%2#2?@6"6%:C2-9O3CS%3:%N"713CC9#7%-3B9?6J%

A6%6>3O#%"#%:"$8C9%))*%38C%2#2?@6"6%O3CS%"6%=3-<369B%3:%7O3%26<9=76J%'#%7>9%R37Q
73-*%:8#=7"3#%8#"7%"6%2%R26"=%:8#=7"3#2?%:?3O%3:%7>9%<C373=3?%9L9=87"3#*%:3C%9L2-<?9*%2%
?99=>9C%26S6%7>9%<99C%?"67%3:%7>9%6>2C"#$%7>9%:"?9*%3C%2%?99=>9C%B3O#?32B6%2%<"9=9%:C3-%
2#37>9C% <99CJ% N269B% 3#% 7>9% 62-9% -3B9?6*% B"::9C9#7% 6<9=":"=% "#"7"2?% -2CS"#$% 266"$#Q
-9#76%=2#%:3C-%B"::9C9#7%:8#=7"3#%8#"76*%7>27%"6*%B"::9C9#7%"#"7"2?%-2CS"#$%O"??%C968?7%"#%
B"::9C9#7%9L9=87"3#6%3:%7>9%<C373=3?J%49E9C2?%:8#=7"3#%8#"76%=38?B%9L9=879%69]89#7"2??@%
3C%=3#=8CC9#7?@% 73% :3C-%2%-3C9%=3-<?9L%:8#=7"3#2?"7@J%d9%2B3<7%6"-8?27"3#% 73%E2?"Q
B279%7>9%:8#=7"3#%8#"7*%73$97>9C%O"7>%63-9%67279%6<2=96%2#2?@6"6%73%=>9=S%R26"=%<C3<9CQ
7"96%3:%7>9-*%68=>%26%R38#B9B#966*%?"E9#966*%3C%B92B?3=S%=>9=S"#$J%!867%?"S9%7>9%C9?2Q
7"3#6>"<%R97O99#%8#"7% 7967"#$%2#B%6@679-%7967"#$*%R269B%3#% 7>9%=3CC9=7% :8#=7"3#%8#"7*%
63-9%>"$>9C%<C3<9C7"96%3:%7>9%<C373=3?%6@679-%6>38?B%R9%E9C":"9B*%68=>%26%#3%387Q3:Q%
3CB9C6%9L9=87"3#6*%3C%2%<99C%B3O#?32B6%<"9=96%C2#B3-?@*%97=J%48=>%<C3<9C7"96%2C9%868Q
2??@%B96=C"R9B%26%63-9%79-<3C2?% ?3$"=6%2#B%E9C":"9B%86"#$%-3B9?%=>9=S"#$%79=>#3?3Q
$"96J% '#% 7>"6% <2<9C*%O9%869%A4b;1&% X)eY*% <C3E"B9B% R@% 7>9%;P5%133?6*% 73% B96=C"R9%
68=>%<C3<9C7"96*% 2#B% 9L9-<?":@% 63-9%S9@%<C3<9C7"96%E9C":"=27"3#%<C3=96696%R269B%3#%
2R67C2=7%-3B9?6J%_C3-%7>9%<3"#7%3:%E"9O%3:%-3B9?%E2?"B27"3#*%:8#=7"3#%8#"76%6"-8?27"3#%
2#B%2#2?@6"6%>9?<%E2?"B279%7>9%9::9=7"E9#966%3:%<C373=3?%B972"?9B%R9>2E"3C6*%2#B%>"$>9C%
<C3<9C7"96%=>9=S"#$%>9?<%E9C":@%7>9%627"6:"2R"?"7@%73%<C373=3?%C9]8"C9-9#76J%

K<?((()6/;5."/(Q/.5'(R$+.&$5."/(

i8C"#$% 7>9% <C3=966% 3:% -3B9?% =3#67C8=7"3#*% 6"-8?27"3#% "6% :C9]89#7?@% <9C:3C-9B% 73%
=>9=S%O>97>9C%7>9%-3B9?%R9>2E96%26%9L<9=79BJ%N9=2869%7>9%6"-8?27"3#%>26%"--9B"279%
E"682?% :99BR2=S6*% "7% "6%]8"79% 869:8?% "#% :"#B"#$% -3B9?"#$% 9CC3C6J% /6<9="2??@*% 7>9% 6"#Q
$?9Q679<<"#$%7>C38$>%7>9%6"-8?27"3#%"6%E9C@%>9?<:8?%73%8#B9C672#B%7>9%B972"?6%3:%3C"$"Q
#2?%<C373=3?%6<9=":"=27"3#*%2#B%-2S9%#9=9662C@%C9:"#9-9#7%73%;P5%-3B9?6J%'7%"6%2%$33B%
O2@%73%-3B":@%7>9%-3B9?%"--9B"279?@%O>9#%68=>%6"-8?27"3#%"6%<9C:3C-"#$J%

A==3CB"#$%73%68::"="9#7%6"-8?27"3#6%3:%N"713CC9#7%;P5%-3B9?6*%O9%:"#B%7>27%-367%
3:%=3#=8CC9#7%R9>2E"3C6%9L"679B%"#%7>9%-3B9?%=38?B%R9%69C"2?"T9BJ%_3C%9L2-<?9*%O>9#%2%
<"9=9%<2=S97%"6%C9=9"E9B*%7>9%ND4/1%6>38?B%R9%8<B279B%2#B%63-9%#9O%<"9=9%C9]89676%
6>38?B%R9%69#7J%1>969%7O3%R9>2E"3C6%9L9=879%"#B9<9#B9#7?@*%2#B%":%O9%-3B9?%7>9-%26%
7O3%"#B9<9#B9#7%68R67"787"3#%7C2#6"7"3#6*% 7>9@%O"??% "#7C3B8=9%=3#=8CC9#=9%"#%<C373=3?%
C8##"#$*% 73$97>9C%O"7>% ?2C$9% 67279% 6<2=9J% '#% :2=7*% 7>369% =3#=8CC9#7% R9>2E"3C6% 2C9%#37%

172

"#7C"#6"=2??@%=3#=8CC9#7*%2#B%7>9@%=38?B%R9%69C"2?"T9B%R@%266"$#"#$%2#%9L9=87"3#%3CB9C%
"#%7>9%-3B9?%-2#82??@J%A6%B"6=8669B%"#%69=7"3#%ZJ*%O9%=39C="E9?@%2CC2#$9%7>9%9L9=8Q
7"3#%3CB9C%3:%7>969%R9>2E"3C6%73%9::9=7"E9?@%C9B8=9%-8=>%8##9=9662C@%67279%6<2=9J%

(#:3C78#279?@*%7>9C9%2C9%67"??%63-9%7C89%=3#=8CC9#7%R9>2E"3C6%>2<<9#9B%"#%N"713CQ
C9#7%;P5%-3B9?6J%_3C%9L2-<?9*%O>9#%2% ?99=>9C%C9=9"E96%2%<99C% ?"67% :C3-%7>9% 7C2=S9C%
O"7>% 27% ?9267% 7O3% <99C% =2#B"B2796*% "7%O"??% =3##9=7% 73% R37>% =3#=8CC9#7?@% :3C% B"::9C9#7%
<"9=9%C9]89676J%A6%6>3O#%"#%:"$8C9%)0*%7>9%?9:7%7C2=9%V#3B96%))Ql)0Ql)[Ql)fQl0ZQl+g%
Ql+^QlZ[mW%2#B% 7>9% C"$>7% 7C2=9% V))Ql)+Ql)\Ql0gQl0[Ql+)Ql+eQlZ\mW% C96<9=7"E9?@%
"#B"=279%7>27%2%?99=>9C%C9]8967%<"9=96%:C3-%7O3%B"::9C9#7%<99C6*%2#B%7>9%37>9C%7C2=96%2??%
<C969#7%7>9%"#79C?92E"#$%9L9=87"3#6%R97O99#%7>969%7O3%R9>2E"3C6J%'#%:2=7*%-367%3:%68=>%
7C2=96%2C9%-92#"#$?966%:3C%2#2?@6"6%R9=2869%7>9@%2C9%733%B972"?9BJ%43-9%=3#:?"=7%2==966%
3:% 6"$#":"=2#7% B272% "6%O3C7>@% 3:% =3#6"B9C27"3#*% 2#B% 6"-8?27"3#% C9?279B% =2<2R"?"7"96% "#%
;P5%133?6%2C9%67C3#$%9#38$>%73%E2?"B279%68=>%R9>2E"3C6%R9=2869%3:%7>9%E"682?%:99BQ
R2=S6% 73%=>9=S%O>97>9C%=3#:?"=76% C92??@%>2<<9#J%A==3CB"#$% 73%68=>%3R69CE27"3#6%2#B%
"#:9C9#=96*%O9%$9#9C279%69E9C2?%:8#=7"3#%8#"76%R269B%3#%R37>%:8#=7"3#2?"7@%3:%<C373=3?%
2#B%7C89%=3#=8CC9#7%R9>2E"3C6*%7>27%"6*%92=>%:8#=7"3#%8#"7%C9<C969#76%2%C9?27"E9?@%"#B9Q
<9#B9#7%:8#=7"3#2?%:?3O%3:%<C373=3?%9L9=87"3#6%O"7>%#3%3C%=3#7C3??2R?9%7C89%=3#=8CC9#7%
R9>2E"3C6J%1>969%:8#=7"3#%8#"76%6>38?B%=3E9C%2??%<27>6%3:%7>9%-3B9?*%2#B%7>9"C%69]89#Q
7"2??@%3C%=3#=8CC9#7?@%9L9=87"3#6%:3C-%2??%:926"R?9%:8#=7"3#2?"7"96%3:%3C"$"#2?%6<9=":"=2Q
7"3#J%13O2CB6%92=>%:8#=7"3#%8#"7*%O9%<9C:3C-%R37>%6"-8?27"3#%2#B%67279%6<2=96%R269B%
6727"=%2#2?@6"6%73%E2?"B279%7>9%C9?"2R?9%9L9=87"3#%3:%68=>%:8#=7"3#%8#"7J%

.i
'd&

.6
'd&

..
&d&

.5
&d&

.&
&d&

.'
&d&

5g
&d&

.U
&d&

5j
'd&

5k
'd&

5i
&d&

56
&d&

5.
&d&

5&
&d&

55
&d&

5'
'd&

5U
'd&

&g
&d&

&j
&d&

&i
&d&

&k
&d&

&6
'd&

&.
'd&

&5
&d&

&'
&d&

&&
&d&

'j
&d&

&U
'd&

'k
&d&

'g
'd&

'i
'd&

'.
&d&

'6
'd&

'&
'd&

'5
'd&

''
'd&

'U
'd'

g
'd'

j
'd'

k
'd'

i
'd'

6
'd'

.
'd'

5
'd'

&
'd'

'
Ud'

%

).0<(?A>(1>9%9L2-<?9%67279%6<2=96%3:%N"713CC9#7%;P5%-3B9?6J%

'#%38C%2#2?@6"6*%:38C%:8#=7"3#%8#"76%2C9%B96"$#9Ba%

V)W! B&&-.&,C% :"C67?@% 26S6%3,+-;&,% :3C% <99C% ?"67% 3:% 7>9% 6>2C"#$% :"?9% V68<<369B% 73%
=3-<369B%3:%7O3%<"9=96W*%7>9#%3,+-;&,%C9<?"96%O"7>%?"67%=3#72"#"#$%B&&-.&,D%
2#B%>&&%*%O>9C9%B&&-.&,D%>26%3#9%<"9=9%2#B%>&&%">26%9#7"C9%:"?9J%

V0W! B&&-.&,C% =3##9=76% 73% B&&-.&,D*% 2#B% B3O#?32B% 3#9% <"9=9% O"7>387% :8C7>9C%
<"9=96%C9]89676J%

173

V+W! B&&-.&,C%=3##9=76%73%>&&%*%B3O#?32B6%7O3%<"9=96*%2#B%2##38#=96%B&&-.&,D"
7>27%"7%>26%7>9%9#7"C9%:"?9%86"#$%<"9=9%>2E"#$%<2=S97J%

VZW! B&&-.&,C% 9L9=8796% 7>9% C2C967% :"C67% <"9=9% 69?9=7"3#% 2?$3C"7>-*% 2#B%>&&%% 9L9Q
=8796%=>3S"#$%2?$3C"7>-%O>9#%C9=9"E"#$%<"9=9%C9]8967%:C3-%B&&-.&,CJ%

_8#=7"3#%8#"7%V0W%2#B%V+W%=2#%9L9=879%=3#=8CC9#7?@%2:79C%V)W%>26%:"#"6>9B*%2#B%VZW%
=2#%9L9=879%69]89#7"2??@%R9:3C9%V+WJ%1>969%:38C%:8#=7"3#%8#"76%=3E9C%2??%<27>6%3:%;P5%
-3B9?6% 2#B% -2H3C% :8#=7"3#2?"7"96% 3:% N"713CC9#7% 6@679-6% 2==3CB"#$% 73% 7>9% 3C"$"#2?%
6<9=":"=27"3#6J%A:79C% 68=>% :8#=7"3#%8#"76% B"E"6"3#*% "7% "6% 6"-<?9% R87% C9<C969#727"E9% :3C%
-3B9?%2#2?@6"6J%_"C67?@*%O9%<9C:3C-%68::"="9#7%6"-8?27"3#%73O2CB6%7>969%:8#=7"3#%8#"76%
73% C9-3E9% 8##9=9662C@% =3#=8CC9#=9% 2#B% C9:"#9%-3B9?6J% 1>9% C9:"#9-9#7% <C3=966% "#Q
=?8B96%7O3%26<9=76*%=3CC9=7"#$%7>9%"#2==8C279%R9>2E"3C6%-3B9?"#$%2#B%2R67C2=7"#$%7>9%
C9B8#B2#7%R9>2E"3C6%O"7>387%-92#"#$?966%B972"?6J%1>9#*%R269B%3#%7>969%:8#=7"3#%8#"76*%
2873-27"=%67279%6<2=96%2#2?@6"6%<C3E"B9B%R@%;P5%133?6% "6%<9C:3C-9B% 73%=>9=S%R26"=%
<C3<9C7"96%3:%68=>%:8#=7"3#%8#"76J%1>9%2#2?@6"6%C968?76%3:%2R3E9%:38C%:8#=7"3#%8#"76%2C9%
3E9CE"9O9B%"#%72R?9%)J% %

!$:+-(?>(47279%6<2=9%2#2?@6"6%C968?7%3:%:38C%:8#=7"3#%8#"76J%

!"#$%&'#(
"#&%)(

)%*%+(),*$+(
)%*%")(#'-+)(*.$)(/'"#-#+)) 0'1+((

1*.2)(
-+*-((

1*.2)(
4&5+((

%.*#)&%&'#)(

?(:8??%)g% f% #3C-2?n% ?267%-2CS"#$o ?267%-2CS"#$ #3#9%

A(:8??%)gg% ff% #3C-2?% ?267%-2CS"#$?267%-2CS"#$ #3#9%

E(:8??% Zf)g% ef^e% #3C-2?% #3#9% ?267%-2CS"#$ #3#9%

G(:8??%)e%)^% #3C-2?% #3#9% #3#9% 2??%

?SASE(<2C7"2?p% \g+[e%))))0\ % % % %

H"I)$,#+'J"()%(-+/&4")$"&K-&5/($)4"&K(4/()*"()"8$0)%)&44"-.&-;()*?"
L"I'+4/"#+,;()*J"()%(-+/&4"/.&"4/+/&"()"#$%&'4"<.&,&"10)-/($)"0)(/"&K&-0/&4"40--&4410'':"+)%"/&,#()+/&4?" "
M"I5+,/(+'J"()%(-+/&4"(/"-+)")$/"*&)&,+/&"10''"4/+/&"45+-&4"0)%&,"/.&"/(#&"'(#(/+/($)"$1"CNNN"4&-$)%4?"

K<A(((,"&-+(7F-;B./0("3(T2'5-*(8%"H-%5.-'(

A:79C%2R3E9%E2?"B27"3#%<C3=9B8C96*%:8#=7"3#%8#"76%2C9%E9C":"9B%7>3C38$>?@J%/2=>%:8#=Q
7"3#%8#"7%9L9=87"3#%672C76%:C3-%2%6<9=":"=% "#"7"2?%-2CS"#$%2#B%O"7>%#3%3C%=3#7C3??2R?9%
=3#=8CC9#7%R9>2E"3C6*% 7>9C9:3C9*% 7>9%67279%6<2=9%$9#9C279B%:3C% 7>"6% :8#=7"3#%8#"7%3#?@%
=3#72"#6%7>9%672796%7>27%=38?B%R9%C92=>9B%:C3-%7>27%"#"7"2?%-2CS"#$*%2#B%7>9%6"T9%3:%68=>%
67279% 6<2=9% "6% 8682??@% #37% 733% ?2C$9% 73% 2#2?@6"6J% F3O9E9C*% ":% O9% :3=86% 3#% =>9=S"#$%
>"$>9C%6@679-%<C3<9C7"96*%68=>%26%-8782?%C9?27"3#6>"<%2-3#$%:8#=7"3#%8#"76%3C%6@679-%
?9E9?%C9]8"C9-9#76*%O9%#99B%:8??%67279%6<2=9%73%9#8-9C279%9E9C@%<366"R?9%9L9=87"3#%3:%
<C373=3?% 6@679-6J% (#:3C78#279?@*% R269B% 3#% N"713CC9#7% ;P5% -3B9?6% =3#67C8=79B% "#%
69=7"3#% Z*% 7>9% 67279% 6<2=9% 9L<?36"3#% >2<<9#6% 7>27%O9% =2#% #37% 87"?"T9% 2BE2#=9B% 67279%
6<2=96%]89C"96%X)^Y%3C%-3B9?%=>9=S"#$%79=>#3?3$"96%X)eY%73%E9C":@%68=>%<C3<9C7"96J% %

'#% 7>"6%<2<9C*% "#6792B%3:%=3#6"B9C"#$% 7>9%=3#=C979% :8??% 67279% 6<2=9%$9#9C279B% :C3-%
3C"$"#2?%;P5%-3B9?6%=3#67C8=79B%"#%69=7"3#%Z*%O9%=>9=S%>"$>9C%<C3<9C7"96%3E9C%2%:"#"79%
2R67C2=7"3#J%A==3CB"#$% 73%-3B9?"#$%2C=>"79=78C9%-9#7"3#9B% "#%69=7"3#%+*% 7>9%2R67C2=7%
-3B9?6%3#?@% =3E9C%#97O3CS*%#3B9%2#B% "#79C2=7"3#% ?2@9C6J%D3C9% 6<9=":"=2??@*% 7>9%#97Q
O3CS%2#B%#3B9%?2@9C6%"#%2R67C2=7%-3B9?6%C9-2"#%7>9%62-9%26%7>9%3C"$"#2?%-3B9?6*%2#B%
7>9% "#79C2=7"3#% ?2@9C6% "#%2R67C2=7%-3B9?6%2C9%-3B9?9B%26% ?92:%<2$9% "#672#=96%O"7>387%

174

68R67"787"3#%7C2#6"7"3#6*%7>27%"6*%C9<?2="#$%7>9%68R67"787"3#%7C2#6"7"3#6%"#%3C"$"#2?%-3B9?6%
O"7>%3CB"#2C@%7C2#6"7"3#6J%N96"B96*%7>9%2R67C2=7%-3B9?6%=3#72"#%63-9%#9O%<?2=96%C9<Q
C969#7"#$%S9@%B272%67C8=78C96*%7>9%62-9%26%7>27%2<<92C9B%"#%3C"$"#2?%-3B9?6J%48=>%2RQ
67C2=7"3#%72S96%9::9=7%H867%R9=2869%3#%3#9%>2#B%7>9%:8#=7"3#2?"7"96%3:%3C"$"#2?%7C2#62=Q
7"3#%?2@9C%3C%2?$3C"7>-%?2@9C%-3B9?%>2E9%R99#%E2?"B279B*%7>9%3CB"#2C@%7C2#6"7"3#6%=38?B%
C9<C969#7%9]82?%2#B%E2?"B%:8#=7"3#2?"7"96%26%3C"$"#2?%68R67"787"3#%7C2#6"7"3#6*%2#B%3#%7>9%
37>9C%>2#B*%3C"$"#2?%7C2#62=7"3#%?2@9C%-3B9?6%2C9%2?O2@6%"#B9<9#B9#7%"#%:8#=7"3#2?"7"96%
O"7>%92=>%37>9C%9L=9<7%:3C%2==966"#$%7>9%=3--3#%B272%67C8=78C96*%63%O9%C969CE9%7>969%
B272% 67C8=78C96% "#% #9O% 2R67C2=7%-3B9?6% 73% S99<% 7>9% "#79C2=7"3#% C9?27"3#6>"<% R97O99#%
=3CC96<3#B"#$%R9>2E"3C6J%1>9%2R67C2=7%-3B9?6%=38?B%9::9=7"E9?@%C9?"9E96%7>9%#373C"386%
67279% 6<2=9% 9L<?36"3#*% 2#B%-2S9%-3B9?% =>9=S"#$% :926"R?9J% 1>"6% S"#B% 3:% 2R67C2=7"3#%
=38?B%R9%=3#6"B9C9B%26%2%S"#B%3:%3E9CQ2<<C3L"-27"3#J%`#%=>9=S"#$%>"$>9C%<C3<9C7"96%
3#% 7>9% 2R67C2=7%-3B9?6*% ":% 7>9% <C3<9C7@% <26696% E9C":"=27"3#*% "7% 2?63% >3?B6% "#% 3C"$"#2?%
B972"?9B%-3B9?6J%`7>9CO"69*%6"-8?27"3#%"6%87"?"T9B%73%:"#B%387%7>9%C9263#%3:%:2"?9B%E9C"Q
:"=27"3#a%-3B9?"#$%9CC3C*%<C373=3?%B9:9=76*%3C%"#2==8C279%2R67C2=7"3#J% %

_<-NGF

-MD_<-NGF

_<-NGF

=$*D=E5D-N:RBB
dd_<-NGF

-MD_<-NGF

_<-NGF

-N:R

-N:R

F""%<*

=470Y,@,A=^%"W;":-^CD
E&D-N:RCD_<-NGFCDUBCDF""%<*CDF#$B

F""%<*

F""%<*

F""%<*

<IDF""%<*JKF&
-$")D'L=470Y,@,A
=^$GS"^CE&D-N:RCD
E5D-N:RCDUBCF&CDF#$B
"M:"D"NF-O

=470Y,@,A=^F<"#"^CD
E&D-N:RCDE5D-N:RCDUBC
DF""%<*CDF#$B

-N:R

-N:R

=470Y,@,A=^%"W;":-^C
DE&D#N:RC=$*D_<-NGFBddTVCD
UBCDF""%<*CDF#$B#N:R#N:R

1[@@@,A=#N:RB

=1[@@@,A=^;)#$QH"^C
E&D#N:RBCDF""%<*CF#$B

F""%<*

#N:R

=1[@@@,A=^<)-"%":-"*^CD
E&D-N:RBCDF""%<*CDF#$B

F""%<*

-N:R

=<)IQ$G:$CDF""%<*B

-N:R

470Y,@,A=-N:RB

-N:R

470Y,@,A=-N:RB

<ID@,A\QI81[@@@,A=E'DFG#H"-BD-$")D'L=E5DFG#H"-BD"M:"D"NF-O

#N:R
1[@@@,A=#N:RB

<ID@,A\QI81[@@@,A=E'DFG#H"-BD
-$")D'L=E'DFG#H"-B
"M:"D"NF-O

<ID@,A\QI8470Y,@,A=E'DFG#H"-BD-$")D'L=E5DFG#H"-BD"M:"D"NF-O

-N:R

470Y,@,A=-N:RB

<ID@,A\QI8470Y,@,A=E'DFG#H"-BD
-$")D'L=E'DFG#H"-B
"M:"D"NF-O

=>?,2@,A=$N:RBCDF""%<*CDE&D$N:RB>?,2@,A
=$N:RB

<ID@,A\QI8>?,2@,A=E'DFG#H"-B
-$")D'L=E'DFG#H"-B
"M:"D"NF-O

FG#H"-

:")*-.

T)Q-D=!<:-\);MMD_<-NGFBV

:")*-5

:")*-&

:")*#&

T)Q-D=!<:-\);MMD
_<-NGFBV

"+-%#&

TE'D#N:RP^;)#$QH"^V

:")*#'

:")*-'

"+-%G#-5

TE'D-N:RP^F<"#"^V

"+-%G#-&

TE'D-N:RP^%"W;":-^V

"+-%#'

TE'D#N:RP^<)-"%":-"*^V

"+-%G#-'

TE'D-N:RP^_<-NGF^V

$G:$S"%<IO

T=E'D$N:RBP<)IQ$G:$V

FG%:"

_)l;:<Q)D'
](4@0/

$S

](4@0/

_N

l;:<Q)D'

](4@0/

_5' 470Y,8@,A

;)#
1[@@8@,A

/(? (Y?3Z3,

_5

470Y,8@,A

_&

470Y,8@,A

F<* /337(?

<)
1[@@8@,A

#N:R
@,A

F<*&

/337(?

_'

470Y,8@,A

-N:R

@,A

$*:H

@,A

%"#SFH()

/01234

IQ%XG%* [;-

/01234

[;-

()

l;:<Q)D'

l;:<Q)D'

%

).0<(?E>(1>9%2R67C2=7%C9=9"E"#$%R9>2E"3C%-3B9?%3:%2%?99=>9CJ%

A6%2%C9<C969#727"E9*%:"$8C9%)+%<C969#76%<2=S97%C9=9"E"#$%R9>2E"3C6%3:%2%?99=>9C%"#%
2R67C2=7%-3B9?6J%;3-<2C9B%O"7>%:"$8C9%^*%"7%>26%#3%68R67"787"3#%7C2#6"7"3#6*%2#B%3#?@%
:3=8696%3#%<C373=3?%=3--8#"=27"3#%R9>2E"3C6J%1>9%#9O?@%=3#67C8=79B%2R67C2=7%-3B9?%
>26%)g%<2$9%"#672#=96%"#%7372?J%d9%266"$#%B"::9C9#7%"#"7"2?%-2CS"#$6%73%=3#B8=7%B"::9CQ
9#7%9L9=87"3#%:?3O6J%1>9%C27"3#2?"7@%3:%68=>%266"$#-9#76%>26%R99#%E2?"B279B%"#%:8#=Q
7"3#%8#"7%2#2?@6"6J%A6%2#%9L2-<?9*%O9%=3#6"B9C% 7>9%=3#=8CC9#7%9L9=87"3#%3:% :8#=7"3#%
8#"76%V0W%2#B%V+W%B9:"#9B%"#%69=7"3#%[J)J%1>9%:8??%67279%6<2=9%=3#72"#6%f)eg%672796%2#B%
00[Z\%2C=6J%1>9C9%2C9%#3%>3-9%-2CS"#$6*%#3% ?"E9% 7C2#6"7"3#6%2#B%)\%B92B%-2CS"#$6J%

175

(6"#$% q47279%4<2=9% 73%4"-r% 733?% "#%;P5%133?6*%O9% =38?B% =?92C?@%3R69CE9% 7>9% =3?3C%
73S9#6%"#%=9C72"#%<?2=96*%O>"=>%<C3E96%7>27%7>369%B92B%-2CS"#$6%9L2=7?@%=3CC96<3#B%73%
B"::9C9#7% =3#=8CC9#7% 9L9=87"3#% C968?76J% N269B% 3#% :8??% 67279% 6<2=9*% O9% 2?63% <9C:3C-%
>"$>9C% <C3<9C7"96% E9C":"=27"3#% 86"#$% A4b;1&% R269B%-3B9?% =>9=S"#$J% _3C% 9L2-<?9*%
=3#6"B9C"#$%2%6"7827"3#%7>27%2%<99C%C9=9"E96%2%<"9=9%O"7>387%>2E"#$%C9=9"E9B%2%8#=>3S9%
-9662$9%R9:3C9*%O9% 6<9=":@%23A$,#0'+% 73% =>9=S% 68=>% 6"7827"3#%#9E9C%>2<<9#6J%N9Q
=2869%A4b;1&%>26%#3%B9:"#"7"3#%3:%:3C-8?2%?"S9%qA Nr*%O9%869%"76%9]8"E2?9#7%:3C-%
26%q`hV5`1%A*%NWr%"#6792BJ%_"$8C9%)Z%<C969#76%7>9%<C3<9C7@%B96=C"<7"3#%2#B%=>9=S"#$%
C968?7J%1>"6%S"#B%3:%<C3<9C7"96%8682??@%C9:9CC9B%26%62:97@%<C3<9C7"96*%2#B%>2CB%73%6"-8Q
?279%-2#82??@J% '76% 68==966:8?%E9C":"=27"3#% VE2?% "7%s% 7C89a%R33?W% "#B"=2796% 7>27%R37>%2RQ
67C2=7% 2#B%B972"?9B%-3B9?6%R9>2E9%2==8C279?@%2==3CB"#$% 73% 7>9%<C3<9C7@J%D2#@%37>9C%
62:97@%<C3<9C7"96%=38?B%R9%=>9=S9B%9::9=7"E9?@%2#B%9::"="9#7?@%"#%7>9%62-9%O2@J% %

I;)D(:`)#$QH"DGDPD
=]<)*\%"#"<S":'m:")*#&D='CDbF""%<*PF&CD#N:RP=^;)#$QH"^C'BCD_<-NGFPT'C&VcBDPD0%#4Q]3DGBn

I;)D(:7"#S/<"#"DGDPD
=]<)*\%"#"<S":'m:")*-5D='CDbF""%<*PF&CD-N:RP=^F<"#"^CD'CDT'VCDUBCD_<-NGFPTVcBDPD0%#4Q]3DGBn

SGMD]4lQ%N;MGDPD
(Yo=[7=@[?0!=0l=^`)#$QH"^CD(:`)#$QH"BBCDY[4=@[?0!=0l=^7"#"<S"/<"#"^CD(:7"#S/<"#"BBBBBn

"SGM8)Q*"D]4lQ%N;MGD()<-YQ*"n

;:"D=QRFG-$f^p0,214!p0,214!MQG*"%\:NM^B

%

%

).0<(?G>(1>9%A4b;1&%R269B%-3B9?%=>9=S"#$%3:%>"$>9C%<C3<9C7"96J%

_C3-% 2R3E9% <C3<9C7@% E9C":"=27"3#%<C3=966*% "7% "6% =?92C% 7>27% 7>"6% 2R67C2=7"3#%$8"B9B%
=>9=S"#$% -97>3B% #37% 3#?@% 72S96% :8??% 2BE2#72$9% 3:% 68::"="9#7% E2?"B27"3#% 73% :8#=7"3#%
8#"76*%R87%2?63%-2S96%>"$>9C%<C3<9C7"96%=>9=S"#$%<C2=7"=2?%2#B%9::9=7"E9J%A==3CB"#$%73%
38C% ?"-"79B% 9L<9C"9#=9% 3#% #97O3CS% <C373=3?6%-3B9?"#$% 2#B% 2#2?@6"6*% 7>"6%-97>3B% "6%
2?O2@6%C9$2CB9B%26%2%=367Q9::"="9#7%=>3"=9J%

L(((7"/;+6'."/($/&()656%-(U-'-$%;F(@''6-'(

N"713CC9#7% "6% 3#9%3:% 7>9%-367% <3<8?2C%<C373=3?6%869B% "#%P0P% 2<<?"=27"3#6%<C3E"B"#$%
:267% :"?9% B"67C"R87"3#% 2#B% 9::9=7"E9% :"?9% 6>2C"#$J% '7% >26% =3-<?9L% =3--8#"=27"3#6% 2#B%
=3#=8CC9#7% R9>2E"3C6*% O>"=>% 2C9% -2H3C% >8CB?96% :3C% :3C-2?% :8#=7"3#2?% -3B9?"#$% 2#B%
E2?"B27"3#J%'#%7>"6%<2<9C*%73O2CB6%68=>%=3-<?9L%<C373=3?%6@679-*%2%>"9C2C=>"=2?%-3BQ
9?"#$%2C=>"79=78C9%"6%<C3<369B%73%:2="?"7279%-3B9?"#$%6@679-%:8#=7"3#2?"7"96%"#73%69E9C2?%
2R67C2=7% ?2@9C6*% 2#B% 9L<C966"#$% R9>2E"3C% B972"?6% 2==8C279?@% 2#B% :?9L"R?@J% 1>9#*% O9%
87"?"T9%;P5%26%2#%9::9=7"E9%2=782?"T27"3#%3:%2R3E9%-3B9?"#$%2C=>"79=78C9%73%=3#67C8=7%
N"713CC9#7% ;P5% -3B9?6*% 72S"#$% :8??% 2BE2#72$9% 3:% 7>9% "#B867C"2?Q67C9#$7>% -3B9?"#$%
=2<2R"?"7"96%3:%;P5J%49E9C2?%9L9-<?":"9B%;P5%<2$96%2C9%<C969#79B*%2#B%=3CC96<3#B"#$%

176

-3B9?"#$%79=>#"]896%2C9%B"6=8669B%27%7>9%62-9%7"-9J%13%7>9%R967%3:%38C%S#3O?9B$9*%"7%
"6% 7>9% :"C67% 7"-9% 73% <C969#7% 2% :8#=7"3#2?% :3C-2?%-3B9?% 3:%N"713CC9#7% "#%<99C% ?9E9?J% '7%
=38?B%#37%3#?@%R9%69CE9B%26%2#%8#2-R"$8386%2#B%E"682?%:3C-2?%6<9=":"=27"3#%:3C%B":Q
:9C9#7%6@679-%"-<?9-9#727"3#6*%R87%2?63%:2="?"7279%7>9%R9>2E"3C6%6"-8?27"3#%2#B%<C3<Q
9C7"96%E9C":"=27"3#%3:%N"713CC9#7J%A7%?267*%72S"#$%:8??%2BE2#72$9%3:%67C3#$%2#2?@6"6%=2<2Q
R"?"7"96% "#% ;P5% 133?6*% 9::"="9#7% 2#B% 68::"="9#7% N"713CC9#7% -3B9?6% E2?"B27"3#% "6% <9CQ
:3C-9B% "#% R37>% :8#=7"3#% 8#"7% ?9E9?% 2#B% 6@679-% C9]8"C9-9#7% ?9E9?% 86"#$% 6"-8?27"3#*%
67279%6<2=9%2#2?@6"6%2#B%-3B9?%=>9=S"#$%79=>#3?3$"96%73$97>9CJ%1>9@%2C9%869B%73O2CB6%
B"::9C9#7%2R67C2=7%?9E9?6%3:%2R3E9%-3B9?6%73%E2?"B279%7>9%9::9=7"E9#966%3:%-3B9?6*%2#B%
=>9=S%O>97>9C%7>969%-3B9?6%627"6:@%7>9%C9]8"C9-9#7%<C3<9C7"96%3:%N"713CC9#7J%

A6%:3C%7>9%:878C9%C9692C=>*%7"-9%:2=73C6%O"??%R9%"#7C3B8=96%"#73%=8CC9#7%;P5%-3BQ
9?6*%R9=2869%7>9%=>3S"#$%2?$3C"7>-%2#B%63-9%<99C%69?9=7"3#%2?$3C"7>-6%2C9%9669#7"2??@%
7"-9QBC"E9#J%N96"B96*%=3#7"#8386%"-<C3E9-9#76%3:%-2S"#$%38C%N"713CC9#7%;P5%-3BQ
9?6%-3C9%=3-<?979%2#B%-3C9%9::"="9#7%#99B%"#9E"72R?@%:8C7>9C%678B"96J%
%
1;B/"#+-&0*-/5'>%1>"6%O3CS%O26%68<<3C79B%R@%7>9%527"3#2?%5278C2?%4="9#=9%_38#Q
B27"3#% 3:% ;>"#2% 8#B9C% GC2#7% 53J% \ge\+g)[*% 7>9% b9@% PC3$C2-% 3:% 5278C2?% 4="9#=9%
_38#B27"3#% 3:% '##9C% D3#$3?"2% 3:% ;>"#2% 8#B9C% GC2#7% 53J% 0ggegZgZti0g*% 2#B% 7>9%
;>8#F8"% PC3$C2-% 3:% 7>9% D"#"67C@% 3:% /B8=27"3#% 3:% ;>"#2% 8#B9C% GC2#B% 53J%
t0gg^Q)Qg)gZ0J%

U-3-%-/;-'(

)J! NC2-%;3>9#J%'#=9#7"E96%N8"?B%h3R867#966%"#%N"713CC9#7J%'#%PC3=99B"#$6%3:% 7>9%)67%d3CSQ
6>3<%3#%/=3#3-"=6%3:%P99CQ73QP99C%4@679-6*%<2$9%[*%!8#J%0gg+%

0J! iJ% k"8% 2#B% hJ% 4C"S2#7J% D3B9?"#$% 2#B% P9C:3C-2#=9% A#2?@6"6% 3:% N"713CC9#7Q&"S9%
P99CQ73QP99C%597O3CS6J%'#%PC3=99B"#$6%3:%7>9%A;D%4'G;`DDugZ*%<2$96%+\^v+^e*%A8$J%
0ggZ%

+J! DJ%N2CR9C2*%AJ%&3-R2CB3*%GJ%4=>9-RC2*%97=J%A%D2CS3E%D3B9?%3:%2%_C99C"B9C%"#%2%N"713CQ
C9#7%P0P%597O3CSJ%'#%PC3=99B"#$6%3:%7>9%'///%G?3R9=3-ug[*%<2$96%fe[vfef*%53EJ%0gg[%

ZJ! &9"% G83*% 43#$]"#$% ;>9#*% t>9#% ,"23*% 97=J% A% P9C:3C-2#=9% 478B@% 3:% N"713CC9#7Q?"S9%
P99CQ73QP99C%4@679-6J% '///% !38C#2?% 3#%49?9=79B%AC926% "#%;3--8#"=27"3#6*%U3?J% 0[*%53J%
)a)[[v)\f*%!2#J%0gg^%

[J! A-"C%FJ% h267"% 2#B% h9T2% h9H2"9J% (#B9C672#B"#$% P99CQ?9E9?% P9C:3C-2#=9% "#% N"713CC9#7a% A%
D9268C9-9#7% 478B@J% '#% PC3=99B"#$6% 3:% 7>9%)\7>% '#79C#27"3#2?% ;3#:9C9#=9% 3#% ;3-<879C%
;3--8#"=27"3#6%2#B%597O3CS6%V';;;5%0gg^W*%<2$96%)gfv))Z*%A8$J%0gg^%

\J! U"E9S%h2"*%4O2-"#27>2#%4"E268RC2-2#"2#*%42#BH2"%N>8?2"*%97=J%A%D8?7"<>269B%A<<C32=>%
:3C%D3B9?"#$%2#B%A#2?@6"6%3:%7>9%N"713CC9#7%PC373=3?J%'#%PC3=99B"#$6%3:%7>9%0^7>%'#79C#2Q
7"3#2?%;3#:9C9#=9%3#%i"67C"R879B%;3-<87"#$%4@679-6%V';i;4%0gg^W*%<2$9%)g*%!8#J%0gg^%

^J! bJ5J%P2CE9T*%;J%d"??"2-63#*%A#"CR2#%D2>2#7"*% 97=J%A#2?@6"6%3:%N"713CC9#7Q?"S9%PC373=3?6%
:3C%`#Qi9-2#B%473C9B%D9B"2%47C92-"#$J%'#%PC3=99B"#$6%3:%A;D%4'GD/1h';4uge*%<2$96%
+g)v+)0*%!8#J%0gge%

eJ! b8C7% !9#69#J% ;3?38C9B% P97C"% 5976a% N26"=% ;3#=9<76*% A#2?@6"6%D97>3B6% 2#B% PC2=7"=2?% (69J%
4<C"#$9CQU9C?2$*%0#B%9B"7"3#*%U3?J%)v+*%)ff^J%

fJ! b8C7%!9#69#*%&2C6%D"=>29?%bC"679#69#%2#B%&"62%d9??6J%;3?38C9B%P97C"%5976%2#B%;P5%133?6%
:3C% D3B9?"#$% 2#B% U2?"B27"3#% 3:% ;3#=8CC9#7% 4@679-6J% '#79C#27"3#2?% !38C#2?% 3#% 43:7O2C9%
133?6%:3C%19=>#3?3$@%1C2#6:9C*%U3?J%f*%53J%+QZa%0)+Q0[Z*%4<C"#$9C%U9C?2$*%!8#J%0gg^%

)gJ!;P5%133?6J%`#?"#9a%>77<awwO"S"JB2"-"J28JBSw=<#733?6w=<#733?6JO"S"J%

177

))J!!3#27>2#%N"??"#$73#%2#B%A-2C%b8-2C%G8<72J%/::9=7"E9#966%3:%;3?38C9B%P97C"%#976%:3C%D3BQ
9?"#$%2#B%A#2?@T"#$%7>9%;3#7C2=7%597%PC373=3?J%'#%PC3=99B"#$6%3:%7>9%e7>%;P5%d3CS6>3<*%
<2$96%Zfv\Z*%`=7J%0gg^%

)0J!D2CS3%N2$3*%59BH9?HS3%P9C"=%2#B%4"#"62%D2C"H2#J%D3B9?"#$%N86%;3--8#"=27"3#%PC373=3?6%
(6"#$%1"-9B%;3?3C9B%P97C"%5976%Q%1>9%;3#7C3??9C%AC92%597O3CS%/L2-<?9J%'#%PC3=99B"#$6%
3:%7>9%f7>%;P5%d3CS6>3<*%<2$96%)g+v)00*%`=7J%0gge%

)+J!!"#$%&"8*%,"#-"#$%.9*%!8#%t>2#$*%97=J%49=8C"7@%U9C":"=27"3#%3:%eg0J))"%ZQO2@%F2#B6>2S9%
PC373=3?J% '#%PC3=99B"#$6%3:% 7>9% '///% '#79C#27"3#2?%;3#:9C9#=9%3#%;3--8#"=27"3#6% V';;%
0ggeW*%<2$96%)\Z0v)\Z^*%D2@J%0gge%

)ZJ!P2#2$"37"6%b2762C36J%A%h32B-2<%73%/?9=7C3#"=%P2@-9#7%1C2#62=7"3#%G82C2#7996%2#B%2%;3?Q
3C9B%P97C"%597%D3B9?%;>9=S"#$%A<<C32=>J%'#:3C-27"3#%2#B%43:7O2C9%19=>#3?3$@%2C=>"E9J%
U3?J%[)*%53J%0a%0+[Q0[^*%_9RJ%0ggf%

)[J!.2#?2#%i"#$% 2#B%G8"<"#$%48J%A%h9B8=7"3#%-97>3B% :3C%U9C":"=27"3#% 3:%49=8C"7@%PC373=3?%
7>C38$>%;P5J% '#% PC3=99B"#$6% 3:% '///% '#79C#27"3#2?%;3#:9C9#=9% 3#%597O3CS"#$*% 49#6"#$%
2#B%;3#7C3?%V';54;%0ggeW*%<2$96%^+v^^*%A<CJ%0gge%

)\J!!"#2#%."QL"#*% &"#%;>82#$*%k8%.2#$J%h9692C=>% 3#%D3B9?Q;>9=S"#$%N269B% 3#%P97C"%5976J%
!38C#2?%3:%43:7O2C9*%U3?J%)[*%53J%fa)0\[Q)0^*%49<J%0ggZ%V"#%;>"#969W%

)^J!b8C7%!9#69#*%43C9#%;>C"679#69#%2#B%&2C6%DJ%bC"679#69#J%;P5%133?6%47279%4<2=9%D2#82?J%
!2#J%0gg\%

)eJ!A??2#%;>9#$*%43C9#%;>C"679#69#%2#B%bH9?B%FJ%D3C79#69#J%D3B9?%;>9=S"#$%;3?38C9B%P97C"%
5976%/L<?3"7"#$%47C3#$?@%;3##9=79B%;3-<3#9#76J%19=>#"=2?%h9<3C7%3:%;3-<879C%4="9#=9%
i9<2C7-9#7*%A2C>86%(#"E9C6"7@*%i9#-2CS*%D2CJ%)ff^%

)fJ!1"-3% &27E2?2J% D3B9?% ;>9=S"#$% &1&% PC3<9C7"96% 3:% F"$>Q&9E9?% P97C"% 5976% O"7>% _2"C#966%
;3#67C2"#76J%'#%PC3=99B"#$6%3:%7>9%00#B%'#79C#27"3#2?%;3#:9C9#=9%3#%A<<?"=27"3#%2#B%1>9Q
3C@%3:%P97C"%5976%V';A1P5%0gg)W*%<2$96%0Z0v0\0*%!8#J%0gg)%

0gJ!&"62%d9??6J%P9C:3C-2#=9%A#2?@6"6%86"#$%;P5%133?6J%'#%PC3=99B"#$6%3:%7>9%)67%'#79C#27"3#2?%
;3#:9C9#=9%3#%P9C:3C-2#=9%9E2?827"3#%D97>3B3?3$"96%2#B%133?6%VU2?89133?6%0gg\W*%<2$9%
)g*%`=7J%0gg\%

178

!"#$%%"!$&'()&*+"#)$%&",-)./'0-0"120&*("3)0*+"'/"4'%'5*+"6*&5-"7*&"
!"#$"%"#&'()*'#

&'+,)-./)#0-12345/6)#7'#&1)28#
)-)6'()6'96'1(61"6'+":2#

%"&"#;)22'<'#
=-/>12</7)71#?1712)(#7'#&1)28#

36:9@/</6)"A@6":2#

B"!"!C1>17'#
=-/>12</7)71#?1712)(#7'#&1)28#
2':<'-))C1>17'93+)/("6'+#

B"D"E"#$1)'#
=-/>12</7)71#?1712)(#7'#&1)28#

2(1)'9711"A@6":2#

B"?"#E)+,)/'#
=-/>12</7)71#?1712)(#7'#&1)28#

2@A25)7'9711"A@6":2#

0";#71#F171/2'<#
&'+,)-./)#0-12345/6)#7'#&1)28#

1A71<96'1(61"6'+":2#
"

#
!30&5)8&"
#

"""""""""""!0"&9*":';*5"020&*(0"-/85*)0*"-/"0-<*")/+"8'(:%*=-&2>"&9*"5*)%?&-(*"':*5)&-'/"3*8'(*0")/"-(:'5&)/&")/+"

+*()/+-/."&)0@A"B9*/"&9*"020&*("-0"$/+*5"C)$%&"8'/+-&-'/>")".5*)&"+*)%"'C" -/C'5()&-'/"5*)89*0"&9*"':*5)&'5"

('/-&'5"+*0@>"()@-/."-&"9)5+")/+"0&5*00C$%"&'"&)@*"&9*"5-.9&"+*8-0-'/"&'"5*0&'5*"&'"/'5()%"&9*"020&*("':*5)&-'/A""

D'" 8':*";-&9" &9-0" 0-&$)&-'/>")" C)$%&"+-)./'0-0"(*&9'+"3)0*+"'/"4'%'5*+"6*&5-"7*&0" E467F" -0"5*:'5&*+" -/" &9-0"

:):*5A"D9*":5':'0*+"(*&9'+")-(0"&'"*)0*"&9*"3$5+*/"'C"&9*":';*5"020&*("':*5)&'50"32":5*0*/&-/.")"C)0&")/+"

)88$5)&*"+-)./'0-0"'C"C)$%&0"%'8)&*+"-/"3'&9"&9*"0$30&)&-'/0")/+"&9*"&5)/0(-00-'/")/+"+-0&5-3$&-'/"%-/*0A"!"C)$%&"

+-)./'0-0"020&*("E#,1F"3)0*+"'/"467"9)0"3**/")%5*)+2"+*G*%':*+";9-89"-0"-/+*:*/+*/&"'C"&9*":';*5"020&*("

&':'%'.2A" D9*" (*&9'+" -0" 0$-&)3%*" &'")/2" &2:*" 'C" C)$%&>")/+" -&" +'*0" /'&" 5*H$-5*")/2" G'%&).*")/+" 8$55*/&"

(*)0$5*(*/&0A" I&" 8)/":'-/&" '$&" &9*" C)$%&" &2:*>" &9*" C)$%&*+":9)0*E0F>")/+";9*&9*5" 5*%)20")/+"8-58$-&" 35*)@*5"

9)G*"C)-%*+A""

#

JA"I7DKL,M4DIL7"

############G.1#6'-5/-A'A<#32'H5.#)-7#/-621)</-3#71+)-7#@'2#21(/):/(/5I#.)>1#21JA/217#5.1#

71,('I+1-5#'@#)A5'+)5/6#<I<51+<#@'2#<A,12>/</'-#)-7#6'-52'(#'@#5.1#,'H12#<I<51+<"#G.1#

6A221-5#EA,12>/<'2I#&'-52'(#)-7#K)5)#!6JA/</5/'-#LE&!K!M#<I<51+<#.)>1#6'-52/:A517#

5'# /-621)<1# 5.1# <16A2/5I#)-7# 21(/):/(/5I#'@# 5.1#,'H12# <I<51+<N#,2'>/7/-3# <A,,'25# 5'# 5.1#

<I<51+# ',12)5'2<"# O'H1>12N# H.1-#)# @)A(5# '66A2<# /-#)# ,'H12# <I<51+#)# 321)5# 71)(# '@#

/-@'2+)5/'-# /<# 21,'2517#:I# 5.1#E&!K!#<I<51+#5'# 5.1#,'H12#<I<51+#6'-52'(#61-512# @'2#

1>)(A)5/'-#:I#5.1#<I<51+#',12)5'2<"#P12I#'@51-#5.1#.A31#)+'A-5#'@#/-@'2+)5/'-#+)Q1<#

5.1#1>)(A)5/'-#)#7/@@/6A(5#5)<Q#)-7#/5#+)I#(1)7#5'#122'-1'A<#/-512,215)5/'-#)-7#/-6'22165#

7/)3-'</<# '@# 5.1# '66A221-61"# R-# '2712# 5'# <'25# 5./<# ,2':(1+#'A5# @)A(5# 7/)3-'</<# <I<51+<#

L?KEM#.)>1#:11-#71>1(',17#5'#+)Q1#,'<</:(1#)#@)<5#)-7#)66A2)51#7/)3-'</<#)-7#<A/5):(1#

716/</'-#+)Q/-3"##

############G.1# @)A(5# 7/)3-'</<# '@# 1(1652/6# ,'H12# <I<51+# /<#)# ,2'61<<# '@# 7/<62/+/-)5/-3#

@)A(517#<I<51+#1(1+1-5<#L1"3"N#)#52)-<+/<</'-#'2#7/<52/:A5/'-#(/-1N#:A<:)2N#'2#52)-<@'2+12M#

H./6.# 6)-# :1# <H/56.17# '@@# @2'+# 5.1# <I<51+# :I# 5.1# 52/,,/-3# '@# ,2'5165/>1# 21()I<#)-7#

6/26A/5# :21)Q12<"# E1>12)(# 5''(<#)-7# 7/@@121-5#),,2')6.1<# :)<17# @'2# 1S)+,(1# '-# 1S,125#

<I<51+<# TUVN#)25/@/6/)(# -1A2)(# -15H'2Q<# TWVN#H)>1(15# 52)-<@'2+<# TXVN# 31-15/6#)(3'2/5.+<#

179

TYVN# @ACCI# ('3/6# TZVN#)-7# D152/# -15<# T[V\T]V# .)>1# :11-# ,2','<17# @'2# @)A(5# 7/)3-'</<#

<I<51+<# 71>1(',+1-5"# G.1# ,2','<)(<# +)I# 7/@@12# '-# 5.1# 21<,'-<1# <,117N#)66A2)6IN#

6'+,(1S/5IN#+)/-5)/-):/(/5I#1@@'25N#)-7#)7),5):/(/5I#5'#<I<51+#5','('3I#6.)-31<"#

G.1# ?KE# /<# 2A-# :)<17# '-# 5.1# <5)5A<# 6.)-3/-3# '@# 5.1# ,'H12# <I<51+# 21()I<#)-7#

6/26A/5# :21)Q12<"# R-# '2712# 5'# ,21<1-5# 5.1# @)A(5# 7/)3-'</<# 5'# 5.1# <I<51+#',12)5'2<# /-# 5.1#

6'-52'(#61-512#5.1#&D^#'A5,A5#/<#6'->12517#/-5'#)-#1)<I#)-7#A<A)(#',12)5/'-)(#()-3A)31"#

!-# '@@(/-1# 5):(1# /<# 5.1-# :A/(5# :I#)-# 1S,125# 3/>1-# 5.1#&D^# 'A5,A5# /-512,215)5/'-"# G./<#

,),12#)/+<# 5'#)A5'+)51# 5.1# @)A(5# 7/)3-'</<# +)Q/-3# /5# /-71,1-71-5# @2'+# 5.1# 1S,125#

/-512,215)5/'-#'@#5.1#&D^#'A5,A5"###

G./<#,),12#/<#'23)-/C17#)<#@'(('H<"#E165/'-#W#'A5(/-1<#<'+1#),,2')6.1<#),,(/17#

@'2# @)A(5# 7/)3-'</<#:)<17#'-#D152/# -15<"#E165/'-#X#71<62/:1<# 5.1# @)A(5# 7/)3-'</<# <I<51+#

H./6.# A<1<#)# (''QA,# 5):(1# :A/(5# :I#)-# 1S,125# '-# ,'H12# <I<51+# ',12)5/'-# 5'# 3/>1# 5.1#

/-512,215)5/'-#@'2#5.1#&D^#'A5,A5"##R-#<165/'-#Y#)#@A((#)A5'+)517#@)A(5#7/)3-'</<#<I<51+#

/<#1S,()/-17#H.121#5.1#(''QA,#5):(1#/<#21,()617#+)Q/-3#5.1#7/)3-'</<#/-71,1-71-5#@2'+#

)-# 1S,125"# &)<1# <5A7/1<#)21# ,21<1-517# /-# E165/'-# ZN#)-7# @/-)((I# 5.1# 6'-6(A</'-# /<# 3/>1-# /-#

<165/'-#["#

#

NA"!7"LOPKOIPB"L7"6PDKI"7PD"!66KL!4Q"#LK"#!MRD",I!S7L1I1""

###########?2'+# 5.1#,'H12# <I<51+#,'/-5#'@#>/1HN#)-#1>1-5#6)-#:1#6)A<17#:I#1S512-)(#)-7#

/-512-)(#7/<5A2:)-61<#H./6.#+)I#:2/-3#):'A5#6.)-31<#/-#5.1#1-123I#@('HN#)-7#)<#)#21<A(5#

/5#+)I#6)A<1#5.1#<5)51#'@#5.1#<I<51+#5'#6.)-31#.)>/-3#)-#1@@165#'-#5.1#<I<51+#',12)5/'-"#

!(5.'A3.# 5.1# ,'H12# <I<51+# /<# 6'-</71217#)# 6'-5/-A'A<\5/+1# <I<51+N# 5.1# ,2'5165/'-#

<I<51+#6)-#:1#<11-#)<#)#7/<62151\5/+1#<15A,N#</-61#5.1#<5)51#6.)-31#'@#5.1#,'H12#<I<51+#

71>/61<#/<#H1((#71@/-17"#!#@)A(5#6)A<1<#5.1#21()I#<5)51#5'#6.)-31#@2'+#_21)7I\5'\52/,`#5'#

_52/,,17`"# G.1# 21()I# 52/,# 6)A<1<# 5.1# 6/26A/5# :21)Q12# <5)51# 5'# 6.)-31# @2'+# _6('<17`# 5'#

_',1-17`N#)-7#)<#)# 21<A(5# 5.1# <I<51+# 6.)-31<# @2'+# _1-123/C17`# 5'# _71\1-123/C17`#

6'-7/5/'-"#KA1#5'#5.1<1#6.)2)6512/<5/6<#D152/#-15<#.)>1#:11-#<A661<<@A((I#),,(/17#@'2#@)A(5#

7/)3-'</<"##

!# +15.'7# @'2# @)A(5# 7/)3-'</<#),,(/17# 5'# ,'H12# <A:<5)5/'-# :)<17# '-#

D()61aG2)-</5/'-#D152/#-15<#/<#,21<1-517#/-#T[N#bV"#G.1#+15.'7#/<#'@#1)<I#/+,(1+1-5)5/'-#

)<#/5#/<#:)<17#'-#</+,(1#',12)5/'-#'@#+)52/61<"#G.1#?KE#71512+/-1<#5.1#@)A(5#('6)5/'-N#/5#

6.16Q<#@'2# /-6'22165aA-6125)/-#</3-)(<N#)-7# /71-5/@/1<# 5.1#,2'5165/'-#1JA/,+1-5# 5.)5#.)<#

52/,,17# <A6.#)<# 21()I<#)-7# 6/26A/5# :21)Q12<"# R-# T]V#)-# .I:2/7# +15.'7# 5'# 5.1# @)A(5#

7/)3-'</<#/-#1(1652/6#,'H12#<I<51+<#/<#,21<1-517#:)<17#'-#@ACCI#D152/#-15<"#D152/#-15<#)21#

180

A<17# @'2# 5.1#):/(/5I#'@#71<62/:/-3# 5.1# 21()5/'-#'@#,2'5165/>1# 21()I<#)-7#6/26A/5# :21)Q12<#

)-7#6'-6A221-5#',12)5/-3#+16.)-/<+#)('-3#H/5.#5.1#@ACCI#('3/6#H/5.#/5<#<,16/)(#):/(/5I#

5'#71)(#H/5.#A-6125)/-5I#)-7#/-6'+,(151-1<<#'@#52/,,/-3#/-@'2+)5/'-"#

R-# TUUVN# TUWV#)-# 1S51-</'-# 5'# 5.1# +15.'7# ,21<1-517# /-# T[VN# TbV# /<# 3/>1-"# G.1#

+15.'7#)77<#5.1#21()I#@A-65/'-#_:21)Q12#@)/(A21`#-'2+)((I#@'A-7#/-#5.1#-A+12/6#21()I<N#

+)Q/-3#/5#,'<</:(1#5'#6'-</712#5.1#<1-</5/>/5I#'@#21()I#/-#5.1#?KE"##

!#?KE#:)<17#'-#O/12)26./6)(#&'('217#D152/#^15<#LO&D^M#@'2#,'H12#7/<52/:A5/'-#

<A:<5)5/'-# /<# 3/>1-# /-# TUWV"# R-# 5./<#),,2')6.# 5.1# ?KE# /<# ('6)517#)5# 5.1# <A:<5)5/'-#

)A5'+)5/'-#(1>1(N#H./6.#21,'25<#5.1#<A:<5)5/'-#7/)3-'</<#5'#5.1#6'-52'(#61-512"#!#O&D^#

+'71(# /<# 71,('I17# @'2# 1)6.# <A:<5)5/'-# :)I# L./3.# >'(5)31# :)IN# +17/A+# >'(5)31# :)IN#

52)-<@'2+12#:)IN#@11712<#:)IN#)-7#6'+,1-<)5/'-#:)IM#1-6'+,)<</-3#>)2/'A<#<A:-15<#5'#

+'71(#5.1#H.'(1#,2'5165/'-#<I<51+#'@#5.1#<A:<5)5/'-"##

R-#TUXV#)#?KE#:)<17#'-#&D^#/<#,2','<17N#H./6.#/<#):(1#5'#7/)3-'<1#@)A(5<#/-#5.1#

,'H12# <A:<5)5/'-<#)<#H1((#)<# /-# 5.1#-15H'2Q# 6'--165/-3# 5.1+"#!# </-3(1#&D^#32),.# /<#

71</3-17# @'2# 5.1#H.'(1# ,'H12# <I<51+#)-7# @)A(5<# 'A5</71# 5.1# ,'H12# <A:<5)5/'-# 6)-# :1#

)(<'#)<<1<<17#)-7#7/)3-'<17"#G.1#+'71(#/<#/-71,1-71-5#@2'+#5.1#,'H12#<I<51+#5','('3I#

)-7#</C1#)<#/5#A<1<#/-@'2+)5/'-#'-(I#):'A5#5.1#<5)51#'@#21()I<#)-7#6/26A/5#:21)Q12<"#c.1-#

5.1#,'H12# <I<51+#1S,12/1-61<#)# @)A(5N# 5.1#&D\-15# /<# 2A-#,2'>/7/-3#)-#'A5,A5#+)2Q/-3"#

!-#'@@\(/-1#5):(1#/<#:A/(5#5'#+)56.#5.1#&D^#'A5,A5<#H/5.#5.1#)<</3-17#/-512,215)5/'-#/-#)#

()-3A)31#A<A)(#5'#5.1#',12)5'2<"#G.1#'@@\(/-1#5):(1#21,21<1-5<#5.1#<I<51+#5','('3I#)-7#/5#

/<# :A/(5# :I#)-# 1S,125# /-# ,'H12# <I<51+# ,2'5165/'-#)-7# A,7)517# H.1-1>12# 5.1# ,'H12#

<I<51+#3'1<#5.2'A3.#)#,12+)-1-5#6.)-31#/-#5','('3I"# R-#'2712# 5'#+)Q1#5.1#7/@@121-61#

:15H11-#5./<#+'71(#)-7#5.)5#'-1#,21<1-517#-1S5N#5.1#+'71(#5.)5#+)Q1<#A<1#'@#5.1#&D^#

'A5,A5#)-7#)#(''QA,#5):(1#H/((#:1#21@12217#5'#)<#?KE\$''QA,G):(1"##

!#?KE#:)<17#'-#&D\-15#)-7#)#<15#'@#R?\GO0^#2A(1<#/<#,21<1-517#/-#TUYV"#G.1#<15#

'@#2A(1<#H121#A<17#5'#/-512,215# 5.1#6'71<#'@# 5.1#&D^#'A5,A5N#5.A<#21,()6/-3#5.1#(''QA,#

5):(1"#G./<#),,2')6.#H)<#@'A-7# 5'#3/>1#)# @)<5#)-7#)66A2)51# @)A(5#7/)3-'</<# /-#)# @'2+)5#

)-7#()-3A)31#A<A)(#5'#5.1#<I<51+#',12)5'2<"##

G./<# ,),12# ,21<1-5<#)-#)(512-)5/>1# 5'# 5.'<1#),,2')6.1<# ,21<1-517# /-# TUXVN# TUYV"#

R-<51)7#'@#A</-3#)#(''QA,#5):(1#'2#)#<15#'@# R?\GO0^#2A(1<#5'#/-512,215# 5.1#&D^#'A5,A5#

+)2Q/-3N# 5.1# ,2','<17# +15.'7# A<1<# 5.1# 'A5,A5#+)2Q/-3# @2'+# 5.1# ?KEd$''QA,# 5):(1#

),,2')6.#TUXV#)<#5.1#/-/5/)(#+)2Q/-3#'@#)#-1H#O/12)26./6)(#&'('217#D152/#^15#LO&D^M#5'#

@A((#)A5'+)51# 5.1# @)A(5#7/)3-'</<# <I<51+"#G.1#,2','<17#+15.'7# /<# 21@12217# 5'#)<#?KE\

?A((^15"###

181

TA"DQP"#,1"BIDQ"I7DPK6KPD!DIL7"DQKLMSQ"!"RLLUM6"D!VRP#"

##########G.1# 71>1(',17# ?KE\$''QA,G):(1#),,(/6)5/'-# ,2'32)+# .)<# 5.211# ()I12<#)<#

71,/6517#/-#?/3A21#U"#G.1#@)A(5#7/)3-'</<#<I<51+#6'((165<#7)5)#@2'+#5.1#E&!K!#<I<51+"#

E/-61# 5.1# E&!K!# '@51-# ,2'>/71<#)# 321)5# 71)(# '@# 7)5)N# 5.1# 21(1>)-5# /-@'2+)5/'-#)21#

@/(51217#'A5#)5#5.1#?KE#@/2<5#()I12N#5.1#R-,A5#R-512@)61"#G./<#/<#,12@'2+17#:I#)-)(IC/-3#5.1#

E&!K!# 5):(1<# /-# '2712# 5'# /71-5/@I# 7)5)# 6'-</71217# 21(1>)-5# 5'#)-#)66A2)51# 7/)3-'</<#

H/5.#(1<<#)+'A-5#'@# /-@'2+)5/'-"#G.1#/-,A5# /-512@)61#()I12# /<#)66'A-5):(1# @'2#<1(165/-3#

5.1#7)5)#@2'+#5.1#<A,12>/<'2I#<I<51+#)-7#6'->125/-3#5.1+#/-5'#)-#/-/5/)(#+)2Q/-3#@'2#5.1#

&'('217#D152/#^15#L&D^UM#/-#5.1#R-512,215)5/'-#()I12"#c.1-#)-#1>1-5#'66A2<#/-#5.1#,'H12#

<I<51+N#5.1#&D^U#/<#2A-#(1)7/-3#5'#)#@/-)(#+)2Q/-3#L71)7#+)2Q/-3M"#G.1#1>1-5#7/)3-'</<#

/<#5.1-#':5)/-17#@2'+#5.1#6'+,)2/<'-#:15H11-#5.1#@/-)(#+)2Q/-3#)-7#)#(''QA,#5):(1#5.)5#

6'-5)/-<#5.1#(/Q1(I#7/)3-'</<"#R-#5.1#5./27#()I12N#5.1#7/)3-'</<#/<#21,'2517#5'#5.1#',12)5'2<#

LeA5,A5#R-512@)61MN#H./6.#3/>1<#5.1#@'(('H/-3#/-@'2+)5/'-f#5.1#52/,,17#21()I<#)-7#6/26A/5#

:21)Q12<g# 5.1# 52/,,17# ,2'5165/'-# @A-65/'-g# ,.)<1L<M# /-# @)A(5g# @)A(5# 5I,1g# 5.1# 1JA/,+1-5#

A-712#@)A(5g#)-7#@)/(A21#21,'25#'@#21()I<#)-7#6/26A/5#:21)Q12<"#

#

?/3A21#U"##G.1#@2)+1H'2Q#'@#5.1#?)A(5#K/)3-'</<#EI<51+#:)<17#'-#)#(''QA,#5):(1"#

#

#########G.1# &D^U# 32),.# /<# <.'H-# /-# ?/3A21# W#)-7# /5# /<#)66'A-5):(1# @'2# 5.1# @)A(5#

7/)3-'</<#/5<1(@"#G.1#-15#/<#<5)2517#A,#H.1-1>12#)#6/26A/5#:21)Q12#/<#52/,,17#:I#5.1#<I<51+#

,2'5165/'-"#G.1#&D^U#.)<#5H'#!"!#!$%&'%$()*&+,)%$-&$".&/!0(1!#&20)$3)04#)-7#<1>1-#5!"$%&

'%$()*&+61')07!*!8"9&:0!'').&;1"(#!8"9&<')"&/2&580&8')"&(!0(1!#&=0)$3)09&,)(%8*).&/29&

/2&<1#&85&<')0$#!8"9&/2&:0$"*5)00).9&/2&!"&:0$"*5)04"#G.1#/-/5/)(#,()61<#2161/>1#7)5)#

@2'+# 5.1# /-,A5# /-512@)61N# 6'->12517# /-5'# /-/5/)(# +)2Q/-3"#c.1-#)-# 1>1-5# 5)Q1<# ,()61N#

52)-</5/'-<#)21#@/217N#)-7#H.1-#5.121#)21#-'#+'21#1-):(17#52)-</5/'-<N#5'Q1-<#.)>1#:11-#

,()617# /-# 5.1# @/-)(# ,()61<"# ?/-)(# ,()61<#)21# 5.1# '-1<#H/5.# 5'Q1-<# /-# 5.1# 71)7#+)2Q/-3#

L-)+17#.121# @/-)(#+)2Q/-3M"#G.1# /-@'2+)5/'-# /-# 5.1# @/-)(#,()61<# /<# 5.1# /-,A5#7)5)#'@#)#

5):(1#5.)5#21()51<#5.1#@/-)(#+)2Q/-3#H/5.#5.1#21<,165/>1#7/)3-'</<"#

182

1`(x,y,zaux,0)

1`(x,y1,y2,z,0)

1`(x,y1,y2,"T")

1`(x,y1,"D1",z,0)

1`(x,y1,"D1","52")

1`(x,y1,y2,"ET")

1`(x,y1,y2,"T")

1`(x,y1,y2,"IT")

1`(x,y1,y2,z)

1`(x,y1,y2,"T")
1`(x,y1,y2,"N")

1`(x,y1,y2,"T")

1`(x,y1,y2,"IT")

1`(x,y,zaux,raux)
1`(x,y1,y2,z,raux)

1`(x,y1,y2,z,raux)

1`(x,y1,y2,z,r+1)

1`(x,y1,y2,z,0)

1`(x,y1,y2,z,0)

1`(x,y1,y2,"54") 1`(x,y1,y2,"54")

1`(x,y1,y2,"55")
1`(x,y1,y2,"54")

1`(x,y1,y2,z,0)

1`(x,y1,y2,z)

1`(x,y1,y2,z)

1`(x,y3,y4,z,0)

1`(x,y1,y2,z)

In Transfer
Firing

[z<>"50BF"]

Transferred
Firing

[z<>"50BF"]

Transferred
to Normal

In Transfer to
Transferred

Normal to
In Transfer

Fault
Continue Reclosing

[(r<>0
orelse raux=1)]

Backup
Firing

[z="50BF"]

Manual
Closing

Manual
Opening

Supervision

[z="RVcc"
orelse z="Rwd"]

Main
Firing

[z<>"50BF"
andalso (y1^y2=y3^y4
orelse (z="87" andalso
(y2=y4)))]

Tripping
and

Clearance

[z<>"RVcc"
andalso z<>"Rwd"]

CB in Transfer

MNEMONIC

CB Transferred

MNEMONIC

Aux

MNEMONIC2
Reclosed CB

MNEMONIC3

CB Out
of Operation

MNEMONIC

Supervision

MNEMONIC

Circuit
Breaker 1`("CRE","12","T1","52")++

1`("CRE","11","T1","52")

Open CB for
open circuit breaker

MNEMONIC3

Tripped
Function

MNEMONIC3

Relay

1`("CRE","12","T1","87")

MNEMONIC

MNEMONIC

1`(x,y3,y4,"52")

1`(x,y1,y2,z,0)

1`(x,y3,y4,"52")

1`(x,y1,y2,z,0)

1`(x,y1,y2,"53")
1`(x,y1,y2,z,r)

1`(x,y1,"D1",z,0)

1`(x,y1,y2,z,0)
1`(x,y1,"D1","52")

#

#####?/3A21#W"#G.1#&D^U#+'71(#'@#5.1#?KE\$''QA,G):(1#L?/3A21#UM#),,(/6)5/'-#,2'32)+"#

###########

G.1# &D^U# 5'Q1-<# /-# 5.1# /-/5/)(# ,()61<#)21# '@# 5.1# 5I,1#

K!G!hK!G!hK!G!hK!G!"#G):(1#U#<.'H<#)-#1S)+,(1#'@#+-1+'-/6#6'71<#A<17#5'#

5.1#5'Q1-<"#G.1#@/2<5#@/1(7#/-#5.1#5'Q1-#/-7/6)51<#5.1#<A:<5)5/'-#6'71#H.121#5.1#1JA/,+1-5#

/<#/-<5)((17N#5.1#<16'-7#@/1(7#6'221<,'-7<#5'#5.1#>'(5)31#(1>1(N#5.1#5./27#@/1(7#6'221<,'-7<#

5'# 5.1# 1JA/,+1-5# 6'71N#)-7# 5.1# @'A25.# '-1# 3/>1<# 5.1# @A-65/'-# 21()517# 5'# 5.1# 1JA/,+1-5#

',12)5/'-"##

G):(1#U"#0S)+,(1#'@#+-1+'-/6<#A<17#@'2#5.1#5'Q1-<#<,16/@/6)5/'-"#

#-*%+" " W/*('/-80" ,*085-:&-'/"

"

J"

"

1$30&)&-'/0"

!B=# !2)2)<#

&B0# &)2/24#

E;K# E':2)(#

"

"

N>"T"

"

PH$-:(*/&"

UW&W# P'(5)31#(1>1(#)-7#0JA/,+1-5#6'71#L21()I#'2#6/26A/5#:21)Q12M#

UWi[# P'(5)31#(1>1(#)-7#0JA/,+1-5#6'71#L21()I#'2#6/26A/5#:21)Q12M#

UW$U# P'(5)31#(1>1(#)-7#0JA/,+1-5#6'71#L21()I#'2#6/26A/5#:21)Q12M#

"

"

"

X"

"

"

K*%)2""

#$/8&-'/0"

Zj!# R-<5)-5)-1'A<#'>126A221-5#D.)<1#!#

ZU&# R-<5)-5)-1'A<#'>126A221-5#D.)<1#&##

]b# &A221-5#K/@@121-5/)(#

ZW# &/26A/5#:21)Q12#',1-#

ZZ# &/26A/5#:21)Q12#+)-A)(#6('</-3#

BH7# B1()I#+)(@A-65/'-/-3#

183

G.1# 21()I<#)-7# 6/26A/5# :21)Q12<# 21()517# 5'#)# 3/>1-# <A:<5)5/'-#)21# /71-5/@/17# :I#)#

</+/()2# 6'71"# G.1I# 7/@@12# @2'+# 1)6.# '5.12# :I# 5.1/2# 6'71# @A-65/'-"# !<#)-# 1S)+,(1N#

6'-</712#)# 5'Q1-# H/5.# 5.1# 6'71# L_!B=`N# _UW`N# _&W`N# _Zj!`M"# R5# +1)-<# 5.)5# 5.1#

1JA/,+1-5#/<#/-<5)((17#/-#5.1#<A:<5)5/'-#!2)2)<#L_!B=`MN#/5#6'221<,'-7<#5'#5.1#,2'5165/'-#

21()I# _UW&W`N#)-7# 5.1# 71>/61# @A-65/'-# 6'71# /<# 5.1# /-<5)-5)-1'A<# '>126A221-5# @A-65/'-#

6'221<,'-7/-3#5'#,.)<1#!#L_Zj!`M"#e-1#Q-'H<#5.)5#5.1#5'Q1-#/-7/6)51<#)#21()I#52/,,/-3#

7A1# 5'# 5.1#)<<'6/)517# @A-65/'-# 6'71# _Zj!`"# G.1# 6'221<,'-7/-3# 5'Q1-# @'2#)# 6/26A/5#

:21)Q12#H'A(7#.)>1#5.1#6'71#L_!B=`N#_UW`N#_&W`N#_ZW`MN#H.121#/5#6)-#:1#<11-#5.)5#5.1#

6'71#_ZW`#/71-5/@/1<#)#6/26A/5#:21)Q12"#

G.1# ',1-/-3# '@#)# 6/26A/5# :21)Q12# :I# 5.1# <I<51+# ,2'5165/'-# /-/5/)51<# 5.1# ?KE\

$''QA,G):(1#)(3'2/5.+"#R-#5.1#/-/5/)(#+)2Q/-3N#5.1#/!0(1!#&20)$3)0&,()61#.)<#5.1#52/,,17#

6/26A/5#:21)Q12<#)-7# 5.1#,)%$-#,()61#.)<# 5.1#6'221<,'-7/-3#,2'5165/'-# @A-65/'-<"#?2'+#

5.1# /-/5/)(# +)2Q/-3# 5.1# 52)-</5/'-<#)21# 1-):(17#)-7# @/217#)66'27/-3# 5'# 5.1# &D^U# -15#

7I-)+/6<N#)-7#5.1-#5.1#@/-)(#+)2Q/-3#/<#21)6.17"#!<#)@'21+1-5/'-17#5.1#@/-)(#+)2Q/-3#/<#

6'+,)217#5'#5.1#7/)3-'</<#3/>1-#/-#)#(''QA,#5):(1#)-7#5.1-#)#6'-6/<1#7/)3-'</<#6)-#:1#

,21<1-517# 5'# 5.1# ',12)5'2# /-# 5.1# 6'-52'(# 61-512"# R-# 6)<1#)-# 1>1-5# -'5# ,21>/'A<(I#

)-5/6/,)517#:I#5.1#1S,125/<1#5)Q1<#,()61N#)(5.'A3.#5.1#&D^U#-15#,2'>/71<#5.1#7/)3-'</<N#

5.1# ()6Q# '@# /-512,215)5/'-# /-# 5.1# 5):(1# 21<A(5<# /-#)-#):<1-61# '@# @)A(5# 7/)3-'</<# 5'# 5.1#

',12)5'2N#5.)5#/<#-'5#71</2):(1#)-7#<.'A(7#:1#6/26A+>1-517"##

G.1#?KE\$''QA,G):(1#,2'32)+#/<# /-# 51<5N# /-5132)517# /-# 5.1#<A,12>/<'2I#<I<51+#

'@#5.1#,'H12#7/<52/:A5/'-#A5/(/5I#&e0$&0#/-#;2)C/("#E'#@)2#5.1#),,(/6)5/'-#,2'32)+#.)<#

21<,'-717#)66'27/-3(IN#,21<1-5/-3#)#,2'+,5#)-7#)66A2)51#7/)3-'</<# 5'# 5.1#1S,12/1-617#

<I<51+#7/<5A2:)-61<"#G.1#),,(/6)5/'-#5''(#H)<#/-/5/)((I#+'71(17#A</-3#5.1#<'@5H)21#&D^#

G''(<#)-7#5.1-#6'7/@/17#A</-3#5.1#&<.)2,#,2'32)+#()-3A)31"#

######G./<# ,),12# ,21<1-5<#)# -1H# ,2','<)(# @'2# 5.1# ?KE# H.121# 5.1# (''QA,# 5):(1# /<#

21,()617#:I#)#&D\-15#5.)5#+'71(<#5.1#<I<51+#5','('3I#'>126'+/-3#5.1#<.'25)31<#'@#5.1#

,21>/'A<#+15.'7#)<#1S,()/-17#/-#5.1#-1S5#<165/'-<"#e-#5./<#-1H#),,2')6.#5.1#5','('3I#/<#

/-</71#5.1#&D^#+'71(N#H./(1#/-#5.1#?KE\$''QA,G):(1#5.1#5','('3I#/<#'A5</71#5.1#&D^#

+'71("# !<# 5.1# ,'H12# <I<51+# 5','('3I# .)<# ,12+)-1-5# 6.)-31<N# /5# /<# JA/51# </+,(1# 5'#

A,7)51# 5.1# 5','('3I#'-# 5.1#-1H#),,2')6.N#:16)A<1# 5.1# /-6(A</'-#'@#-1H#5'Q1-<#'2# 5.1#

A,7)5/-3# '@# 5.1# '-1<#)(21)7I# /-# <'(>1<# 5./<# ,2':(1+"# G.1# A,7)51# '@# 5.1# ?KE\

$''QA,G):(1#21JA/21<#)#<5A7I#:I#)-#1S,125#'@#5.1#<I<51+#-1H#6'-@/3A2)5/'-#/-#'2712#5'#

A,7)51#5.1#5):(1#H/5.#5.1#@)A(5#7/)3-'</<"#

184

XA"DQP"#,1"M1I7S"I7DPK6KPD!DIL7"DQKLMSQ"4LRLKP,"6PDKI"7PD"

###########G./<# /<#)# -1H#)(512-)5/>1# 5'# 5.1# @)A(5# 7/)3-'</<#+15.'7# ,21<1-517# /-# <165/'-# X#

H./6.#)/+<#5'#21,()61#5.1#1S,125#@'2#5.1#/-512,215)5/'-#'@#5.1#&D^U#'A5,A5#+)2Q/-3"#G./<#

),,2')6.#/<#71-'517#)<#?KEd?A((^15"##

G.1#?KE\?A((^15#'A5(/-17#/-#?/3A21#X#.)<#)#@2)+1H'2Q#</+/()2#5'#5.)5#3/>1-#/-#

?/3A21#UN#1S61,5#5.)5#5.1#<A:#()I12#$''QA,#G):(1#/<#21,()617#:I#)#-1H#&D^W#-15#H.'<1#

/-/5/)(#+)2Q/-3#/<#5)Q1-#@2'+#5.1#,()61<#:0!'').&;1"(#!8"&)-7&<')"&/2&580&8')"&(!0(1!#&

=0)$3)0# '@# 5.1# &D^U# -15# 71>1(',17# /-# ?KE\$''QA,G):(1# +15.'7"# G.1# &D^W# -15#

,2'>/71<# 5.1# @)A(5# 7/)3-'</<# /-# <A:<5/5A5/'-# 5'# 5.1# '@@(/-1# 5):(1N#+)Q/-3# 5.1#?KE# @A((I#

)A5'+)517"#

#

?/3A21#X#$)I12<#'@#5.1#?KE\?A((^15"##

#

##G.1#&D^W#-15#.)<#/-,A5#,()61<#H/5.#/-@'2+)5/'-#):'A5#5.1#1JA/,+1-5#+'-/5'217#

,'H12#<I<51+#5','('3I"#G.1# /-@'2+)5/'-#21()517# 5'# 5.1#<I<51+#5','('3I#6'-</<5#'@# 5.1#

,2'5165/'-#71>/61<#)5#5.1#(/-1<#512+/-)(<N#52)-<@'2+12<N#:A<:)2<N#@11712<N#6),)6/5'2#:)-Q#

)<#H1((#)<#5.1#-A+:12#'@#,)2)((1(#6/26A/5<#)-7#,)2)((1(#52)-<@'2+12<"#?'2#5.'<1#1JA/,+1-5#

/-# 5.1# -15H'2QN# /"1"N# 'A5</71#)# <A:<5)5/'-N# /5# /<# 21,'2517# 5.1# A,<521)+#)-7# 7'H-<521)+#

<A:<5)5/'-#@'2#1)6.#1JA/,+1-5#'@#5.1#-15H'2Q"#e-#5.1#'5.12#.)-7N#@'2#1JA/,+1-5#/-</71#)#

<A:<5)5/'-#/5#/<#21,'2517#5.1#/-,A5#)-7#'A5,A5#:A<1<"##

G.1# &D^W# /<#)# ./12)26./6)(# -15N# ,)25/5/'-17# /-# ,)31<#)<# <A6.f# F)/-# ,)31N#

K/)3-'</<#!-)(I</<#,)31N#?)A(5#!-)(I</<#,)31N#K/)3-'<5/6<#,)31N#OP#;A<#,)31N#$/-1<#

,)31N#E/-3(1#&/26A/5#;21)Q12#,)31N#G2)-<@'2+12#,)31N#FP#;A<#,)31N#?11712<#,)31#)-7#

&),)6/5'2#;)-Q#,)31"#

G.1#F)/-#,)31# /<# 5.1#'-1#'@#+)k'2#):<52)65/'-# /-# 5.1#O&D^#:)<17#-15N#)-7# /5<#

32),.#/<#71,/6517#/-#?/3A21#Y"#R5#/-6(A71<#5.1#/-/5/)(#,()61<#:0!'').&;1"(#!8"#)-7#<')"&

/!0(1!#&20)$3)0N#)-7#5.1#@/-)(#,()61<#6/&>?&21*#@'2#<.'25#6/26A/517#./3.#>'(5)31#:A<N#6/&

:@# @'2# <.'25# 6/26A/517# 52)-<+/<</'-# (/-1N# 6/& :@& 80& >?& 21*N# 6/& 2$-& :0$"*580A)0N#

BAC).& :0$"*580A)0N# 6/& /$'$(!#80& 2$"3N# 6/& ;)).)0#)-7# 6/& D?& 21*# @'2# <.'25#

185

6/26A/517#+17/A+# >'(5)31# :A<"# G.1# @/-)(# ,()61<# ,2'>/71# 5.1# @)A(5# 7/)3-'</<# H.1-# 5.1#

52)-</5/'-#K/)3-'</<#!-)(I</<# /<# @/217"# #G.1#&D^W# /-/5/)(#,()61<N#:0!'').&;1"(#!8"#)-7#

<')"&/!0(1!#& 20)$3)0# ,()61<#)21# @A</'-# ,()61<#H/5.# 5.1# '-1<# '@# 5.1# <)+1# -)+1# @2'+#

&D^U#-15"##

Diagnosis
Analysis

Diagnosis Analysis

SC Capacitor
Bank

MNEMONIC3

SC Feeder

MNEMONIC3

SC MV Bus

MNEMONIC3

Damaged
Transformer

MNEMONIC3

SC Bay
Transformer

MNEMONIC3

SC TL or
HV Bus

MNEMONIC3

SC TL

MNEMONIC3

SC HV Bus

MNEMONIC

Open
Circuit Breaker

1`("NVR","12","L1","50BF", 0)++
1`("NVR","12","L2","50BF",0)

MNEM3

Tripped
Function

1`("NVR","12","N1","51C", 0)++
1`("NVR","12","N1","51C",0)

MNEM3

Diagnosis Analysis

#

?/3A21#Y"#G.1#F)/-#D)31#'@#5.1#?KE\?A((^15#),,2')6."#

#

?/3A21# Z# <.'H<# 5.1# 716()2)5/'-<# '@# 5.1# &D^WN# H./6.# 71@/-1# 5.1# 6'('2# <15<N#

@A-65/'-<#)-7#5.1#>)2/):(1<#'@#1)6.#6'('2#<15#'@#5.1#@)A(5#7/)3-'</<#<I<51+"#

#

?/3A21#Z"#K16()2)5/'-<#@'2#5.1#?KEd?A((^15#:)<17#'-#&D^#G''(<"#

E&#l#<.'25\6/26A/517#
G$#l#52)-<+/<</'-#(/-1#
OP#l#./3.#>'(5)31#
FP#l#+17/A+#>'(5)31#
#

186

G.1# ,()61<# /-# 5.1# &D^W# -15# <A6.#)<# :0!'').& ;1"(#!8"#)-7# /!0(1!#& 20)$3)0#

,21<1-5# 5.1# 21<,165/>1# 6'('2# <15#)<#)# (/<5# H.121# 1)6.# 1(1+1-5# .)<# 5.1# @'2+)5#

K!G!hK!G!hK!G!hK!G!hR^G#21,21<1-5/-3#21<,165/>1(I#5.1#<A:<5)5/'-#H.121#5.1#

1JA/,+1-5# /<# ('6)517N# 5.1#1JA/,+1-5#>'(5)31# (1>1(N# 5.1#1JA/,+1-5#6'71N# 5.1#,2'5165/'-#

@A-65/'-#)-7#5.1#-A+:12#'@#216('</-3"##

G.1# K/)3-'</<# !-)(I</<# ,)31N# <.'H-# /-# ?/3A21# [N# 6'+,2/<1<# 5H'# <A:<5/5A5/'-#

52)-</5/'-<#5.)5#(1)7#5'#5.1#?)A(5#!-)(I</<#,)31#)-7#5.1#K/)3-'<1<#,)31N#)66'A-5):(1#@'2#

)-)(IC/-3# 5.1#6'22165#',12)5/'-#'@# 5.1#1JA/,+1-5# /->'(>17# /-# 5.1#1>1-5#)-7#,21<1-5/-3#

5.1#7/)3-'<5/6# 5'# 5.1#',12)5'2# /-# 5.1# 6'-52'(#61-512N# 21<,165/>1(I"#G.1#'5.12#+1-5/'-17#

,)31<#)21# /-# @)65#<A:,)31<#'@# 5.1#K/)3-'<1<#,)31N#H./6.#)21# /-#6.)231# 5'#71<62/:1# 5.1#

1>1-5"# G.A<N# /@#)# @)A(5# '66A2<# /-#)# 52)-<+/<</'-# (/-1# '-(I# 5.1# 52)-</5/'-# 21()517# 5'# 5.1#

<A:<5/5A5/'-#$/-1<#/<#1-):(17#,21<1-5/-3#)#@/-)(#+)2Q/-3#H/5.#5'Q1-<#,()617#)5#5.1#E&#G$#

/-7/6)5/-3# 5.)5#)# @)A(5# .)<# 5)Q1-#,()61# /-#)# /71-5/@/17# 52)-<+/<</'-# (/-1N# 5.1# ,2'5165/'-#

@A-65/'-#5.)5#.)<#52/,,17#)-7#5.1#,.)<1<#/-#@)A(5"###

#

Fault
Analysis

Fault Analysis

Diagnoses

Diagnoses

Opened

MNEMONIC3

Failed

MNEMONIC3

Tripped
Function

In
MNEM3

Open
Circuit Breaker
In MNEM3

Tripped

MNEMONIC3

Damaged
Transformer

Out
MNEMONIC3

SC Capacitor
Bank

Out
MNEMONIC3

SC Feeder

Out
MNEMONIC3

SC MV Bus

Out
MNEMONIC3

SC Bay
Transformer

Out

MNEMONIC3

SC TL or
HV Bus

Out
MNEMONIC3

SC TL

Out
MNEMONIC3

SC HV Bus

Out
MNEMONIC

Circuit
Breaker

MNEMONIC3

Out Out
Out Out Out Out OutOut

InIn

Diagnoses

Fault Analysis

#

?/3A21#["#%2),.#'@#5.1#,)31#K/)3-'</<#!-)(I</<"##

#

G.1#?)A(5#!-)(I</<#,)31#/<#<.'H-#/-#@/3A21#b"#!<#)@'21+1-5/'-17#5./<#,)31#H/((#

)-)(IC1# /@# 5.1# 1JA/,+1-5# /->'(>17# /-# 5.1# 1>1-5# ',12)517# 6'22165(I"# G.1# 52)-</5/'-#

)E1!'A)"#& "8#& 5$!%# H/((# :1# 1-):(17# /@# 5.1# ,2'5165/'-# 71>/61<# ',12)517# 6'22165(I"# G./<#

52)-</5/'-#H/((# @/21#H.1-#,()61<#:0!'').&;1"(#!8"#)-7#<')"&/!0(1!#&20)$3)0#H/((#.)>1#

187

5.1#<)+1#+)2Q/-3"#R@#5.1I#H/((#-'5#.)>1#5.1#<)+1#+)2Q/-3N#5.1#52)-</5/'-#)E1!'A)"#&5$!%#

H/((#:1#1-):(17"#

m2m4

m2

m4
m1

m6

m1
m6

[intersect(m4, m6)=nil,m6<>nil,m4<>nil]

input (m6,m4);
output (m8,m5,m1,m2);
action
removeRandom2(m6,m4)

[intersect(m4, m6)<>nil,m6<>nil,m4<>nil]

MNEMONIC3

MNEMONIC3 MNEMONIC3

MNEMONIC3

Tripped
Function

I/O MNEM3I/O

Open
Circuit Breaker

I/OI/OMNEM3

((#1 m5),(#2 m5),(#3 m5),"A",(#5 m5))

Tripped

OutOut

Circuit
Breaker

OutOut

input (m6,m4);
output (m8,m5,m1,m2);
action
removeRandom1(m6,m4)

Failed

OutOut

((#1 m8),(#2 m8),(#3 m8),"F",0)

Opened

OutOut

m5

m8

m8

(if (#1 m5)<>(#1 m8) then (#1 m8)
else (#1 m5),if (#2 m5)<>(#2 m8) then (#2 m8)
else (#2 m5),if (#3 m5)<>(#3 m8) then (#3 m8)
else (#3 m5),if (#4 m5)<>(#4 m8) then (#4 m8)
else (#4 m5), (#5 m5))

equipment
not fail equipment

fail

#

?/3A21#b#"#EA:,)31#?)A(5#!-)(I</<#

#

G.1# ,()61<# 5.)5# +'71(# 5.1# <I<51+# 5','('3I# ,21<1-5# 5.1# @'2+)5#

K!G!hK!G!hK!G!hK!G!hR^GhK!G!# 21,21<1-5/-3# 5.1# A,<521)+# <A:<5)5/'-# '@#

5.1# 1JA/,+1-5N# 5.1# >'(5)31# (1>1(N# 5.1# 1JA/,+1-5# 6'71N# /-@'2+)5/'-# H.15.12# 5.121# /<#

1JA/,+1-5#)5# 5.1# ',,'</51# </71# '@# 5.1# 6/26A/5N# -A+:12# '@# ,)2)((1(# 6/26A/5<#)-7# 5.1#

7'H-<521)+#<A:<5)5/'-#'@#5.1#1JA/,+1-5"#c.1-#5.1#1JA/,+1-5#/<#/-#)#<A:<5)5/'-#'-1#.)<#

5.1#/-@'2+)5/'-#):'A5#5.1#A,<521)+#)-7#7'H-<521)+#1JA/,+1-5#:A<1<"#?/3A21#]#,21<1-5<#

)-#/((A<52)5/'-#):'A5#5.1#/-@'2+)5/'-#21()517#5'#)#52)-<+/<</'-#(/-1#H.1-#71<62/:/-3#5.1#

<I<51+# 5','('3I"# G.1# 5'Q1-# 21()517# 5'# 5.1# 6/26A/5# :21)Q12# &;U# /<# 3/>1-#)<f#

UmLn&B0nNnUWnNn&;UnNnonNUNnR;DnM#H.121#&B0#)-7# R;D#)21# 21<,165/>1(I# 5.1#6'71<#'@#

5.1#A,<521)+#)-7#7'H-<521)+#<A:<5)5/'-<# 5'# 5.1# 6/26A/5# :21)Q12#&;UN#UW# 21@12<# 5'# 5.1#

>'(5)31#(1>1(N#U#/<#5.1#-A+:12#'@#52)-<+/<</'-#(/-1<#:15H11-#5.1#<A:<5)5/'-#:A<1<#&B0#

)-7#R;D#)-7#o#/-7/6)51<#5.1#1S/<51-61#'@#)#,2'5165/>1#1JA/,+1-5#)5#5.1#1-7#512+/-)(#'@#

5.1#(/-1"##

188

#

?/3A21#]"#!-#1S)+,(1#5'#71<62/:1#5.1#/-@'2+)5/'-#21()517#5'#-15H'2Q#5','('3I"##

###########

G.1# <A:,)31# 21()517# 5'# 5.1# 52)-</5/'-# K/)3-'<1<# /<# 71,/6517# /-# ?/3A21# p"# G.1#

,()61<# 5.)5#+'71(# 5.1# <I<51+# 5','('3I#)21#@!")& F"'1#N#@!")&<1#'1#N#:0$"*580A)0N#D?&

21*N#;)).)0#)-7#/$'$(!#80&2$"3"#!((#1JA/,+1-5#/<#+'71(17#:I#)#6'('2#<15"#?'2#/-<5)-61N#

/-#5.1#,()61#@!")&F"'1##/<#216'2717#)((#5.1#6/26A/5#:21)Q12<#H./6.#)21#)5#5.1#/-,A5#(/-1<#'@#

5.1#<A:<5)5/'-<"###

Capacitor
Bank

Capacitor Bank

Feeder

Feeder

Transformer

Transformer

No Equipment at the
Opposite Side of the Circuit

One Circuit Breaker

HV Bus

HV Bus

Damaged
Transformer

Out
MNEMONIC3

Capacitor
Bank

1`("ARU","11","H1","N",1)++
1`("ARU","11","H3","N",1)++
1`("ARU","11","H4","N",1)++
1`("IBP","11","H1","N",1)++
1`("IBP","11","H2","N",1)++
1`("INH","11","H1","N",1)++
1`("INH","11","H2","N",1)++
1`("NVR","11","H1","N",1)++
1`("NVR","11","H2","N",1)

MNEMONIC3

SC Capacitor
Bank

Out
MNEMONIC3

Feeder

MNEMONIC3

1`("INH","11","B1","N",1)++
1`("NVR","11","B1","N",1)++
1`("INH","11","D1","N",1)++
1`("ARU","12","D1","N",1)++
1`("NVR","11","D1","N",1)

1`("ARU","12","T1","Y",2,"ARUB")++
1`("ARU","12","T2","Y",2,"ARUB")++
1`("ARU","11","T1","Y",2,"ARUB")++
1`("ARU","11","T2","Y",2,"ARUB")++
1`("CRE","12","T1","Y",1,"CREB")++
1`("CRE","11","T1","Y",1,"CREB")++
1`("IBP","12","T1","Y",1,"IBPB")++
1`("IBP","11","T1","Y",1,"IBPB")++
1`("INH","12","T1","N",1,"INHB")

MNEMONIC

MNEMONIC

Line
Input

MNEMONIC

SC Feeder

Out
MNEMONIC3

MNEMONIC3

MNEMONIC3MNEMONIC3

SC HV Bus

Out
MNEMONIC

SC TL or
HV Bus

Out
MNEMONIC3

SC Bay
Transformer

Out
MNEMONIC3

Out

OutOut

Out Out

Out

HV Bus One Circuit Breaker Transformer

Feeder Capacitor Bank

Lines

LinesLines

SC TL

OutOut

1`("CRE","12","J1","Y",3,"SBD")++
1`("CRE","12","J6","Y",3,"SBD")++
1`("CRE","12","J7","Y",3,"SBD")++
1`("ARU","12","C4","Y",2,"CRE")++
1`("ARU","12","C2","Y",2,"CRE")++
1`("NVR","12","L1","Y",3,"ARU")++
1`("NVR","12","L2","Y",3,"ARU")++
1`("CAT","12","N1","Y",1,"NVR")++
1`("INH","12","P2","Y",1,"IBP")++
1`("NVR","12","R1","Y",3,"CRE")

Line
Output

1`("CRE","12","C1","N",1,"IBP")++
1`("CRE","12","C4","Y",2,"ARU")++
1`("CRE","12","C2","Y",2,"ARU")++
1`("ARU","12","J1","Y",1,"ARD")++
1`("ARU","12","L1","Y",3,"NVR")++
1`("ARU","12","L2","Y",3,"NVR")++
1`("NVR","12","N1","Y",1,"CAT")++
1`("CAT","12","C1","Y",1,"CAT")++
1`("IBP","12","P2","Y",1,"INH")++
1`("CRE","12","R1","Y",3,"NVR")

Circuit
Breaker

InIn

Transformer

MV Bus

MNEMONIC3

MV Bus

MV BusMV Bus

SC MV Bus

OutOut

1`("ARU","21","Y1","N",1)++
1`("ARU","21","Y2","N",1)++
1`("ARU","21","Y4","N",1)++
1`("ARU","21","Y5","N",1)++
1`("ARU","21","Y6","N",1)++
1`("ARU","21","Y7","N",1)++
1`("ARU","21","Y8","N",1)++
1`("CRE","21","C2","N",1)++
1`("ARU","21","C4","N",1)++
1`("IBP","21","I1","N",1)++
1`("IBP","21","I2","N",1)++
1`("IBP","21","I3","N",1)++
1`("IBP","21","I4","N",1)++
1`("INH","21","I2","N",1)++
1`("INH","21","I3","N",1)++
1`("INH","21","I4","N",1)++
1`("INH","21","I5","N",1)++
1`("INH","21","I6","N",1)++
1`("NVR","21","N1","N",1)++
1`("NVR","21","N2","N",1)++
1`("NVR","21","N3","N",1)++
1`("NVR","21","N5","N",1)

#

?/3A21#p"#EA:,)31#K/)3-'<1<"##

#

G.1# 5'Q1-<# /-# 5./<# ,()61# 6)22I# /-@'2+)5/'-#):'A5# 5.1# >'(5)31# (1>1(N# 1JA/,+1-5#

6'71N#-A+:12#'@#,)2)((1(#6/26A/5<N#5.1#A,<521)+#<A:<5)5/'-#)-7#/@#5.121#/<#)#6/26A/5#:21)Q12#

)5#5.1#1-7#'@#5.1#(/-1<#/-#5.1#A,<521)+#<A:<5)5/'-"##0)6.#@/-)(#,()61#6)-#3/>1#'A5#)#(/Q1(I#

7/)3-'</<"##G.1#>)(A1<#'@#5.1#5'Q1-<#/-#5.1#@/-)(#,()61<#)21#,)<<17#5'#5.1#eA5,A5#R-512@)61#

L?/3A21#XM# 5.)5#,2'>/71<# 5.1# @)A(5#7/)3-'</<# 5'# 5.1#',12)5'2<# /-# 5.1#6'-52'(#61-512"#G.1#

@)A(5#7/)3-'</<#:2/-3<#/-@'2+)5/'-#)<#5.1#<'25#'@#@)A(5#L'-1\,.)<1#<.'25#6/26A/5N#5H'\,.)<1#

<.'25# 6/26A/5N#)-7# <'#'-MN# 5.1#,.)<1<# /-# @)A(5N# 5.1# 21()I<#)-7#6/26A/5# :21)Q12<# 5.)5#.)>1#

<A661<<@A(# 52/,,17"# G.1# /-@'2+)5/'-#):'A5# 6/26A/5# :21)Q12# @)/(A21# 6)-# :1# @'A-7# /-# 5.1#

189

,()61#;$!%).g# /-#6)<1# 5.)5# 5./<#,()61# /<#1+,5I# /5#+1)-<# 5.)5#)((# 6/26A/5#:21)Q12<# 52/,,17#

)66'27/-3(I"##

#

YA"4!1P"1DM,IP1""

R-#'2712#5'#>)(/7)51#)-7#<.'H#5.1#,12@'2+)-61#'@#5.1#?KE\?A((^15#),,2')6.#5H'#

6)<1# <5A7/1<#)21# ,21<1-517f#)# @)A(5# /-#)# [pQP# 52)-<+/<</'-# (/-1#H/5.#)# 6/26A/5# :21)Q12#

@)/(A21#)-7#)# @)A(5# /-#)# [pQP#:A<"#G.1#6)<1<#)21#:)<17#'-# 21)(#7/<5A2:)-61<# 5.)5#.)>1#

'66A2217#'-# 5.1# 51<5#6)<1#<I<51+#H./6.# /<#,)25#'@# 5.1#7/<52/:A5/'-#<I<51+#'@# 5.1#A5/(/5I#

&1)28#0-123I#&'+,)-I#L&e0$&0M#/-#;2)C/("#G.1#<I<51+#'-1\(/-1#7/)32)+#/<#<.'H-#/-#

?/3A21#Uj#)-7#/5#/-6(A71<#1/3.5#<A:<5)5/'-<#)-7#1(1>1-#[pQP#52)-<+/<</'-#(/-1<"##

G.1#<A:<5)5/'-#-)+17#E':2)(#LE;KM#21,21<1-5<#)#<A,,(I#:A<#<A6.#5.)5#5.1#,'H12#

@('H<#@2'+#5.1#(1@5#5'#5.1#2/3.5#</71#)<#21,21<1-517#/-#?/3A21#Uj"#

##

UWiU !K,
UWiU

UW^UUW^U

UWDWUWDWUW&U

UW$W

UW$U

UW$W

UW$UUW&W

UW&Y

UW&W

UW&Y

UW&UUWib

UWi[

UWiU

UWib

UWi[

UWiU

4!D

7OK

I7QIV6

!KM4KP1V,

#
?/3A21#Uj"#K/<52/:A5/'-#,'H12#<I<51+#A<17#)<#51<5#<I<51+###
5'#>)(/7)51#5.1#?KE\?A((^15#),,(/6)5/'-#,2'32)+"##

#

R-#&)2/24#<A:<5)5/'-#L&B0M#5.121#)21#5.1#6/26A/5#:21)Q12<#UWiUN#UWi[#)-7#UWib#)5#

5.1#<A:<5)5/'-# /-,A5# (/-1<#)-7# 5.1#6/26A/5#:21)Q12<#UW&UN#UW&Y#)-7#UW&Y#)5# 5.1#'A5,A5#

(/-1<"# &'--165/-3# 5.1# <A:<5)5/'-<#&B0# L&)2/24M#)-7#!B=# L!2)2)<#=+M# 5.121#)21# 5H'#

52)-<+/<</'-#(/-1<#/-#,)2)((1(#LjW&W#)-7#jW&Y#&B0\!B=M"#?2'+#5./<#:2/1@#71<62/,5/'-#

5.1#5H'#'66A221-61<#)21#6'-</71217#)<#@'(('H<"#

"

YAJ"4)0*"1&$+2"JZ"19'5&?8-58$-&"-/"&9*"D5)/0(-00-'/"R-/*";-&9"8-58$-&"35*)@*5"C)-%$5*A""

$15# /5# :1#)# <.'25# 6/26A/5# LE&UM# /-# 5.1# 52)-<+/<</'-# (/-1# UW^U# 5.)5# 6'--165<# 5.1#

<A:<5)5/'-# ^PB# L^'>)# BA<<)<M# 5'# &!G# L&2)51q<MN# <.'H-# /-# ?/3A21# Uj"# G'# 5./<#

7/<5A2:)-61N#-'2+)((I# '-1#H'A(7#.)>1#)# 6'++)-7# @2'+# 5.1# 21()I#)<<'6/)517#H/5.# 5.1#

6/26A/5#:21)Q12#UW^U#)5#5.1#<A:<5)5/'-#^PB#5'#',1-#5.1#6/26A/5#:21)Q12#UW^U"#=-712#5.1#

E&W#

E&U#

190

6'-</712)5/'-# 5.)5# 5.1# +)/-# 6/26A/5# :21)Q12# UW^U# .)<# @)/(17# 5'# ',1-N# 5.1# ,2'5165/'-#

@A-65/'-# _6/26A/5# :21)Q12# @)/(A21`# LZj;?M# /<# 52/,,17#)-7# 5.1# 21()I#)<<'6/)517# 5'# UW^U#

<1-7<#)# 6'++)-7# 5'# ',1-# 5.1# :)6QA,# 6/26A/5# :21)Q12<# UW$U#)-7# UW$W# @2'+# 5.1#

<A:<5)5/'-#^PB"##

#

Diagnosis
Analysis

Diagnosis Analysis

SC Capacitor
Bank

MNEMONIC3

SC Feeder

MNEMONIC3

SC MV Bus

MNEMONIC3

Damaged
Transformer

MNEMONIC3

SC Bay
Transformer

MNEMONIC3

SC TL or
HV Bus

MNEMONIC3

SC TL

MNEMONIC3

SC HV Bus

MNEMONIC

Open
Circuit Breaker

1`("NVR","12","L1","50BF", 0)++
1`("NVR","12","L2","50BF",0)

MNEM3

Tripped
Function

1`("NVR","12","N1","51C", 0)++
1`("NVR","12","N1","51C",0)

MNEM3

Diagnosis Analysis

1

1`[("NVR","12","L1","50BF",0),("NVR",
"12","L2","50BF",0)]

1

1`[("NVR","12","N1","51C",0),("NVR",
"12","N1","51C",0)]

#

?/3A21#UU"##G.1#/-/5/)(#+)2Q/-3#@'2#)#7/<5A2:)-61#/-#)#52)-<+/<</'-#(/-1"##

#

?/3A21# UU# ,21<1-5<# 5.1# +)/-# ,)31# '@# 5.1# &D^W# /-# H./6.# 5.1# 7)5)# @2'+# &D^U#

6'+1<#/-5'#5'#:1#)-)(IC17#+)Q/-3#/5#5.1#?KE\?A((^15#),,2')6."#G.1#7)5)#)21#):'A5#5.1#

6/26A/5# :21)Q12<# L_^PB`N_UW`N_$U`N_Zj;?`N#jM#)-7# L_^PB`N_UW`N_$W`N_Zj;?`NjM# 5.)5#

.)>1# :11-# <H/56.17# '@@# ,()617# /-# 5.1# <')"& /2# ,()61#)-7#):'A5# 5.1# 21()I#

L_^PB`N_UW`N_^U`N_ZU&`N#jM#5.)5#.)<#52/,,17#)-7#,()617#/-#5.1#:0!'').&;1"(#!8"#,()61"##

G.1#<A:<5/5A5/'-#52)-</5/'-#K/)3-'</<#!-)(I</<#(1)7<#5'#5.1#<A:,)31#'@#5.1#<)+1#

-)+1N#,21<1-517# /-#?/3A21#UW"#?'(('H/-3# 5.1# 52)-</5/'-#?)A(5#!-)(I</<# @/2/-3N# /5#6)-#:1#

-'517# 5.)5# 5.121# H)<# @)/(A21# '@# ',12)5/'-# /-# 5.1# 21()517# 1JA/,+1-5# :16)A<1# 5.1# ,()61#

;$!%).#.)<#)#5'Q1-#H/5.#5.1#6/26A/5#:21)Q12#5.)5#.)<#@)/(17#LWmL_^PB`N#_UW`N#_^U`N#_?`MM"##

G.1# <A:<5/5A5/'-# 52)-</5/'-#K/)3-'<1<# (1)7<# 5'# 5.1# <A:,)31# '@# 5.1# <)+1# -)+1N#

,21<1-517#/-#?/3A21#UX"#G.1#<I<51+#,2'5165/'-#71>/61<#'@# 5.1#+'-/5'217#,'H12#<I<51+#

)21# 213/<51217# /-# 5./<# <A:,)31# H/5.# 5'Q1-<# /-# 5.1# ,()61<# @!")& F"'1#N# @!")& <1#'1#N#

:0$"*580A)0N# D?& 21*N# ;)).)0N# /$'$(!#80& 2$"3"# R-# 5./<# ,)31# 5.121# /<#)(<'# 5.1#

<A:<5/5A5/'-# 52)-</5/'-<# 21()517# 5'# 5.1# (/Q1(I# 7/)3-'</<"# R-# ?/3A21# UX# 5.1# <A:<5/5A5/'-#

52)-</5/'-# K/)3-'<1<# /<# 1-):(17N# H./6.# /-@'2+<# 5.)5#)# @)A(5# .)<# 5)Q1-# ,()61# /-#)#

52)-<+/<</'-#(/-1"#

191

Fault
Analysis

Fault Analysis

Diagnoses

Diagnoses

Opened

MNEMONIC3

Failed

MNEMONIC3

Tripped
Function

In
MNEM3

Open
Circuit Breaker
In MNEM3

Tripped

MNEMONIC3

Damaged
Transformer

Out
MNEMONIC3

SC Capacitor
Bank

Out
MNEMONIC3

SC Feeder

Out
MNEMONIC3

SC MV Bus

Out
MNEMONIC3

SC Bay
Transformer

Out

MNEMONIC3

SC TL or
HV Bus

Out
MNEMONIC3

SC TL

Out
MNEMONIC3

SC HV Bus

Out
MNEMONIC

Circuit
Breaker

MNEMONIC3

Out Out
Out Out Out Out OutOut

InIn

Diagnoses

Fault Analysis

2

1`("NVR","12","L1","A",0)++
1`("NVR","12","L2","A",0)

2

2`("NVR","12","N1","F",0)

1

1`[]

1
1`[]

2

2`("NVR","12","N1","51C",0)

2

2`("NVR","12","N1","51C",0)

#

?/3A21#UW"#F)2Q/-3#/-#5.1#<A:,)31#K/)3-'</<#!-)(I</<#)@512#5.1#52)-</5/'-#?)A(5#
!-)(I</<#/<#@/217#:16)A<1#'@#)#@)A(5#/-#)#52)-<+/<</'-#(/-1"##

#

##############G.1#<A:<5/5A5/'-#52)-</5/'-#$/-1<#(1)7<#5'#5.1#<A:,)31#'@#5.1#<)+1#-)+1N#<.'H-#

/-# ?/3A21# UYN#)-7# @/21<# H.1-#)# @)A(5# '66A2<# /-#)# 52)-<+/<</'-# (/-1N# /71-5/@I/-3# 5.1#

52)-<+/<</'-#(/-1"#R-#5.1#</5A)5/'-#/-#)-)(I</<#5.1#(/-1#/-#@)A(5#/<#)#</-3(1#6/26A/5#('6)517#

:15H11-#5.1#<A:<5)5/'-<#^PB#)-7#&!GN#)<#/5#6)-#:1#<11-#/-#?/3A21#UjN#)-7#@'2#5.)5#5.1#

1-):(17# 52)-</5/'-# /<# 5.1# E/-3(1# $/-1"# G./<# 52)-</5/'-# 6'+,)21<# 5.1# 71>/61<# 5.)5# .)>1#

',12)517#H/5.#5.'<1#,2'5165/'-#71>/61<#/-#5.1#/-,A5#(/-1#/-#<A:<5)5/'-#&!G#1#5.1#'A5,A5#

(/-1#/-#<A:<5)5/'-#^PB"##

?/3A21#UZ#<.'H<#5.1#<A:,)31#$/-1<#)@512#5.1#52)-</5/'-#E/-3(1#$/-1#/<#@/217"#G.1#

5'Q1-#L_^PB`N_&!G`#_UW^U`N_ZU&`NjM#/<#/-#5.1#,()61#E&#$G"#G./<#5'Q1-#/-@'2+<#5.)5#

)#@)A(5#.)<#5)Q1-#,()61#/-#5.1#52)-<+/<</'-#(/-1#UW^U#:15H11-#5.1#<A:<5)5/'-#^PB#)-7#&!G"###

###########G.1#+)/-#,)31#H/5.#5.1#@/-)(#+)2Q/-3#'@#5.1#,2','<17#?KE\?A((^15#),,(/6)5/'-#

,2'32)+#/<#<.'H-#/-#?/3A21#U["#G.1#@/-)(#,()61#H/5.#5'Q1-#,'/-5<#'A5#5.1#<'25#'@#,2':(1+#

)-7#5.1#5'Q1-#/71-5/@I#5.1#1JA/,+1-5#A-712#@)A(5"#G.A<N# 5.1#@/-)(#+)2Q/-3#,21<1-517#/-#

?/3A21#U[#/-7/6)51<#5.1#@'(('H/-3#7/)3-'</<f#_E.'25\6/26A/5# /-#G2)-<+/<</'-#$/-1#UW^U#

^PB\&!G#H/5.#5.1#52/,,/-3#'@#5.1#,2'5165/'-#@A-65/'-#ZU#,.)<1#&`"#

192

Capacitor
Bank

Capacitor Bank

Feeder

Feeder

Transformer

Transformer

No Equipment at the
Opposite Side of the Circuit

One Circuit Breaker

HV Bus

HV Bus

Damaged
Transformer

Out
MNEMONIC3

Capacitor
Bank

1`("ARU","11","H1","N",1)++
1`("ARU","11","H3","N",1)++
1`("ARU","11","H4","N",1)++
1`("IBP","11","H1","N",1)++
1`("IBP","11","H2","N",1)++
1`("INH","11","H1","N",1)++
1`("INH","11","H2","N",1)++
1`("NVR","11","H1","N",1)++
1`("NVR","11","H2","N",1)

MNEMONIC3

SC Capacitor
Bank

Out
MNEMONIC3

Feeder

MNEMONIC3

1`("INH","11","B1","N",1)++
1`("NVR","11","B1","N",1)++
1`("INH","11","D1","N",1)++
1`("ARU","12","D1","N",1)++
1`("NVR","11","D1","N",1)

1`("ARU","12","T1","Y",2,"ARUB")++
1`("ARU","12","T2","Y",2,"ARUB")++
1`("ARU","11","T1","Y",2,"ARUB")++
1`("ARU","11","T2","Y",2,"ARUB")++
1`("CRE","12","T1","Y",1,"CREB")++
1`("CRE","11","T1","Y",1,"CREB")++
1`("IBP","12","T1","Y",1,"IBPB")++
1`("IBP","11","T1","Y",1,"IBPB")++
1`("INH","12","T1","N",1,"INHB")

MNEMONIC

MNEMONIC

Line
Input

MNEMONIC

SC Feeder

Out
MNEMONIC3

MNEMONIC3

MNEMONIC3MNEMONIC3

SC HV Bus

Out
MNEMONIC

SC TL or
HV Bus

Out
MNEMONIC3

SC Bay
Transformer

Out
MNEMONIC3

Out

OutOut

Out Out

Out

HV Bus One Circuit Breaker Transformer

Feeder Capacitor Bank

Lines

LinesLines

SC TL

OutOut

1`("CRE","12","J1","Y",3,"SBD")++
1`("CRE","12","J6","Y",3,"SBD")++
1`("CRE","12","J7","Y",3,"SBD")++
1`("ARU","12","C4","Y",2,"CRE")++
1`("ARU","12","C2","Y",2,"CRE")++
1`("NVR","12","L1","Y",3,"ARU")++
1`("NVR","12","L2","Y",3,"ARU")++
1`("CAT","12","N1","Y",1,"NVR")++
1`("INH","12","P2","Y",1,"IBP")++
1`("NVR","12","R1","Y",3,"CRE")

Line
Output

1`("CRE","12","C1","N",1,"IBP")++
1`("CRE","12","C4","Y",2,"ARU")++
1`("CRE","12","C2","Y",2,"ARU")++
1`("ARU","12","J1","Y",1,"ARD")++
1`("ARU","12","L1","Y",3,"NVR")++
1`("ARU","12","L2","Y",3,"NVR")++
1`("NVR","12","N1","Y",1,"CAT")++
1`("CAT","12","C1","Y",1,"CAT")++
1`("IBP","12","P2","Y",1,"INH")++
1`("CRE","12","R1","Y",3,"NVR")

Circuit
Breaker

InIn

Transformer

MV Bus

MNEMONIC3

MV Bus

MV BusMV Bus

SC MV Bus

OutOut

1`("ARU","21","Y1","N",1)++
1`("ARU","21","Y2","N",1)++
1`("ARU","21","Y4","N",1)++
1`("ARU","21","Y5","N",1)++
1`("ARU","21","Y6","N",1)++
1`("ARU","21","Y7","N",1)++
1`("ARU","21","Y8","N",1)++
1`("CRE","21","C2","N",1)++
1`("ARU","21","C4","N",1)++
1`("IBP","21","I1","N",1)++
1`("IBP","21","I2","N",1)++
1`("IBP","21","I3","N",1)++
1`("IBP","21","I4","N",1)++
1`("INH","21","I2","N",1)++
1`("INH","21","I3","N",1)++
1`("INH","21","I4","N",1)++
1`("INH","21","I5","N",1)++
1`("INH","21","I6","N",1)++
1`("NVR","21","N1","N",1)++
1`("NVR","21","N2","N",1)++
1`("NVR","21","N3","N",1)++
1`("NVR","21","N5","N",1)

9

1`("ARU","11","H1","N",1)++
1`("ARU","11","H3","N",1)++
1`("ARU","11","H4","N",1)++
1`("IBP","11","H1","N",1)++
1`("IBP","11","H2","N",1)++
1`("INH","11","H1","N",1)++
1`("INH","11","H2","N",1)++
1`("NVR","11","H1","N",1)++
1`("NVR","11","H2","N",1)

22

1`("ARU","21","C4","N",1)++
1`("ARU","21","Y1","N",1)++
1`("ARU","21","Y2","N",1)++
1`("ARU","21","Y4","N",1)++
1`("ARU","21","Y5","N",1)++
1`("ARU","21","Y6","N",1)++
1`("ARU","21","Y7","N",1)++
1`("ARU","21","Y8","N",1)++
1`("CRE","21","C2","N",1)++
1`("IBP","21","I1","N",1)++
1`("IBP","21","I2","N",1)++
1`("IBP","21","I3","N",1)++
1`("IBP","21","I4","N",1)++
1`("INH","21","I2","N",1)++
1`("INH","21","I3","N",1)++
1`("INH","21","I4","N",1)++
1`("INH","21","I5","N",1)++
1`("INH","21","I6","N",1)++
1`("NVR","21","N1","N",1)++
1`("NVR","21","N2","N",1)++
1`("NVR","21","N3","N",1)++
1`("NVR","21","N5","N",1)

10

1`("ARU","12","C2","Y",2,"CRE")++
1`("ARU","12","C4","Y",2,"CRE")++
1`("CAT","12","N1","Y",1,"NVR")++
1`("CRE","12","J1","Y",3,"SBD")++
1`("CRE","12","J6","Y",3,"SBD")++
1`("CRE","12","J7","Y",3,"SBD")++
1`("INH","12","P2","Y",1,"IBP")++
1`("NVR","12","L1","Y",3,"ARU")++
1`("NVR","12","L2","Y",3,"ARU")++
1`("NVR","12","R1","Y",3,"CRE") 10

1`("ARU","12","J1","Y",1,"ARD")++
1`("ARU","12","L1","Y",3,"NVR")++
1`("ARU","12","L2","Y",3,"NVR")++
1`("CAT","12","C1","Y",1,"CAT")++
1`("CRE","12","C1","N",1,"IBP")++
1`("CRE","12","C2","Y",2,"ARU")++
1`("CRE","12","C4","Y",2,"ARU")++
1`("CRE","12","R1","Y",3,"NVR")++
1`("IBP","12","P2","Y",1,"INH")++
1`("NVR","12","N1","Y",1,"CAT")

2

2`("NVR","12","N1","51C",0)

9

1`("ARU","11","T1","Y",2,"ARUB")++
1`("ARU","11","T2","Y",2,"ARUB")++
1`("ARU","12","T1","Y",2,"ARUB")++
1`("ARU","12","T2","Y",2,"ARUB")++
1`("CRE","11","T1","Y",1,"CREB")++
1`("CRE","12","T1","Y",1,"CREB")++
1`("IBP","11","T1","Y",1,"IBPB")++
1`("IBP","12","T1","Y",1,"IBPB")++
1`("INH","12","T1","N",1,"INHB")

5

1`("ARU","12","D1","N",1)++
1`("INH","11","B1","N",1)++
1`("INH","11","D1","N",1)++
1`("NVR","11","B1","N",1)++
1`("NVR","11","D1","N",1)

#

?/3A21#UX"#F)2Q/-3#/-#5.1#<A:,)31#K/)3-'<1<#@'2#5.1#6)<1#<5A7I#U"##

#

1`(x1,y1,y2,z1,p)++
1`m3

1`(x,y1,y2,z1,p)

1`(x,x2,y1^y2,z1,p)

1`(x1,x,y1^y2,z1,p)

1`(x,y1,y2,z,k,x2)

1`(x1,y1,y2,z,k,x)1`(x,y1,y2,z,k,x1)

Single Line

[z<>"N"
andalso k=1]

Parallel Line
[z<>"N"
andalso k<>1,
(#1 m3)=x,
(#2 m3)=y1,
(#3 m3)=y2,
(#5 m3)=p]

CC
LT

Out
MNEMONIC3

Line
Output

In MNEMONIC

Line
Input

In

MNEMONIC

Circuit
Breaker

In MNEMONIC3InIn
In

Out

10

10

2

2`("NVR","12","N1","51C",0)

##

1`(x1,y1,y2,z1,p)++
1`m3

1`(x,y1,y2,z1,p)

1`(x,x2,y1^y2,z1,p)

1`(x1,x,y1^y2,z1,p)

1`(x,y1,y2,z,k,x2)

1`(x1,y1,y2,z,k,x)1`(x,y1,y2,z,k,x1)

Single Line

[z<>"N"
andalso k=1]

Parallel Line
[z<>"N"
andalso k<>1,
(#1 m3)=x,
(#2 m3)=y1,
(#3 m3)=y2,
(#5 m3)=p]

CC
LT

Out
MNEMONIC3

Line
Output

In MNEMONIC

Line
Input

In

MNEMONIC

Circuit
Breaker

In MNEMONIC3InIn
In

Out

1

1`("NVR","CAT","12N1","51C",0)

10

10

1

1`("NVR","12","N1","51C",0)

#

?/3A21#UY"##R-/5/)(#+)2Q/-3#/-#5.1#####
<A:,)31#$/-1<#

?/3A21#UZ"#?/-)(#+)2Q/-3#/-#5.1######
<A:,)31#$/-1<#

193

####

Diagnosis
Analysis

Diagnosis Analysis

SC Capacitor
Bank

MNEMONIC3

SC Feeder

MNEMONIC3

SC MV Bus

MNEMONIC3

Damaged
Transformer

MNEMONIC3

SC Bay
Transformer

MNEMONIC3

SC TL or
HV Bus

MNEMONIC3

SC TL

MNEMONIC3

SC HV Bus

MNEMONIC

Open
Circuit Breaker

1`("NVR","12","L1","50BF", 0)++
1`("NVR","12","L2","50BF",0)

MNEM3

Tripped
Function

1`("NVR","12","N1","51C", 0)++
1`("NVR","12","N1","51C",0)

MNEM3

Diagnosis Analysis

2

2`("NVR","CAT","12N1","51C",0)

1

1`[]

1

1`[]

#

?/3A21#U["#?/-)(#+)2Q/-3#3/>1-#:I#5.1#,2','<17#?KE\?A((^15##
@'2#)#@)A(5#/-#)#</-3(1#52)-<+/<</'-#(/-1"##

#

YAN"4)0*"1&$+2"NZ"19'5&"4-58$-&"-/")"[\@O"V$0""

&'-</712#)#<.'25\6/26A/5# LE&WM# /-# 5.1#[pQP#:A<#'@# 5.1#<A:<5)5/'-#&B0#L&)2/24MN#

<.'H-# /-# ?/3A21# Uj"#K)5)#)21# 2161/>17# @2'+#E&!K!# 5.2'A3.# 5.1# /-,A5# /-512@)61#)-7#

52)-<@'2+17# /-# /-/5/)(#+)2Q/-3# /-# 5.1#&D^U#-15"#c.1-# 5.1#&D^U# /<# 2A-# /5#,2'>/71<# 5.1#

@/-)(# +)2Q/-3#):'A5# 5.1# 6/26A/5# :21)Q12<# 5.)5# .)>1# <H/56.17# '@@# L_&B0`N# _UW`N# _iU`N#

ZU&`N#jMN# L&B0`N#_UW`N#_i[`N#_ZU&`N#jM#)-7# L_&B0`N#_UW`N#_ib`N#_ZU&`N#jM#)-7# 5.1#

21()I<#L_&B0`N#_UW`N#_iU`N#_ZU&`N#jMN#L_&B0`N#_UW`N#_i[`N#_ZU&`N#jM#)-7#L_&B0`N#_UW`N#

_ib`N#_ZU&`N#jM# 5.)5#.)>1#52/,,17"# #G.1<1#5'Q1-<#@'2+#5.1#/-/5/)(#+)2Q/-3#'@# 5.1#&D^W#

-15#7/<,'<17#)66'27/-3(I#/-#5.1#<')"&/2#)-7#:0!'').&;1"(#!8"#/-,A5#,()61<"#?/3A21#Ub#

<.'H<# 5.1# +)/-# ,)31# '@# 5.1# &D^W# -15# H/5.# 5.1# /-/5/)(# +)2Q/-3"# !<# 5.1# 6'++)-717#

6/26A/5#:21)Q12<#.)>1#-'5#@)/(17N#/5#6)-#:1#-'517#5.)5#5.1#5'Q1-<#/-#:'5.#,()61<#<')"&/2#

)-7#:0!'').&;1"(#!8"#)21#5.1#<)+1"##

Diagnosis
Analysis

Diagnosis Analysis

SC Capacitor
Bank

MNEMONIC3

SC Feeder

MNEMONIC3

SC MV Bus

MNEMONIC3

Damaged
Transformer

MNEMONIC3

SC Bay
Transformer

MNEMONIC3

SC TL or
HV Bus

MNEMONIC3

SC TL

MNEMONIC3

SC HV Bus

MNEMONIC

Open
Circuit Breaker

1`("CRE", "12", "J1", "51C", 0)++
1`("CRE", "12", "J6", "51C", 0)++
1`("CRE", "12", "J7", "51C", 0)

MNEM3

Tripped
Function

1`("CRE", "12", "J1", "51C", 0)++
1`("CRE", "12", "J6", "51C", 0)++
1`("CRE", "12", "J7", "51C", 0)

MNEM3

Diagnosis Analysis

1

1`[("CRE","12","J1","51C",0),("CRE","
12","J6","51C",0),("CRE","12","J7","5
1C",0)]

1

1`[("CRE","12","J1","51C",0),("CRE","
12","J6","51C",0),("CRE","12","J7","5
1C",0)]

#

?/3A21#Ub"#G.1#/-/5/)(#+)2Q/-3#/-#5.1#+)/-#,)31#'@#5.1#&D^W#-15#@'2#)#@)A(5#/-#)#:A<"##

#

R5# 6)-# :1# ':<12>17# /-# ?/3A21# U]# 5.)5# 5.121# H)<# -'# 6/26A/5# :21)Q12# @)/(A21# /-# 5./<#

7/<5A2:)-61#@'2#5.1#,()61#;$!%).#/<#>'/7#'@#5'Q1-<"###

194

Fault
Analysis

Fault Analysis

Diagnoses

Diagnoses

Opened

MNEMONIC3

Failed

MNEMONIC3

Tripped
Function

In
MNEM3

Open
Circuit Breaker
In MNEM3

Tripped

MNEMONIC3

Damaged
Transformer

Out
MNEMONIC3

SC Capacitor
Bank

Out
MNEMONIC3

SC Feeder

Out
MNEMONIC3

SC MV Bus

Out
MNEMONIC3

SC Bay
Transformer

Out

MNEMONIC3

SC TL or
HV Bus

Out
MNEMONIC3

SC TL

Out
MNEMONIC3

SC HV Bus

Out
MNEMONIC

Circuit
Breaker

MNEMONIC3

Out Out
Out Out Out Out OutOut

InIn

Diagnoses

Fault Analysis

1

1`[]

1
1`[]

3

1`("CRE","12","J1","51C",0)++
1`("CRE","12","J6","51C",0)++
1`("CRE","12","J7","51C",0)

3

1`("CRE","12","J1","51C",0)++
1`("CRE","12","J6","51C",0)++
1`("CRE","12","J7","51C",0)

"
?/3A21#U]"#F)2Q/-3#/-#5.1#<A:,)31#K/)3-'</<#!-)(I</<#)@512#5.1#52)-</5/'-#?)A(5#

!-)(I</<#/<#@/217#7A1#5'#)#@)A(5#/-#)#<A:<5)5/'-#:A<"##

#

R-#?/3A21#Up#5.1#<A:<5/5A5/'-#52)-</5/'-#OP#;A<#/<#1-):(17N#/-7/6)5/-3#5.)5#)#<.'25#6/26A/5#

.)<#5)Q1-#,()61#/-#)#./3.#>'(5)31#:A<"##

Capacitor
Bank

Capacitor Bank

Feeder

Feeder

Transformer

Transformer

No Equipment at the
Opposite Side of the Circuit

One Circuit Breaker

HV Bus

HV Bus

Damaged
Transformer

Out
MNEMONIC3

Capacitor
Bank

1`("ARU","11","H1","N",1)++
1`("ARU","11","H3","N",1)++
1`("ARU","11","H4","N",1)++
1`("IBP","11","H1","N",1)++
1`("IBP","11","H2","N",1)++
1`("INH","11","H1","N",1)++
1`("INH","11","H2","N",1)++
1`("NVR","11","H1","N",1)++
1`("NVR","11","H2","N",1)

MNEMONIC3

SC Capacitor
Bank

Out
MNEMONIC3

Feeder

MNEMONIC3

1`("INH","11","B1","N",1)++
1`("NVR","11","B1","N",1)++
1`("INH","11","D1","N",1)++
1`("ARU","12","D1","N",1)++
1`("NVR","11","D1","N",1)

1`("ARU","12","T1","Y",2,"ARUB")++
1`("ARU","12","T2","Y",2,"ARUB")++
1`("ARU","11","T1","Y",2,"ARUB")++
1`("ARU","11","T2","Y",2,"ARUB")++
1`("CRE","12","T1","Y",1,"CREB")++
1`("CRE","11","T1","Y",1,"CREB")++
1`("IBP","12","T1","Y",1,"IBPB")++
1`("IBP","11","T1","Y",1,"IBPB")++
1`("INH","12","T1","N",1,"INHB")

MNEMONIC

MNEMONIC

Line
Input

MNEMONIC

SC Feeder

Out
MNEMONIC3

MNEMONIC3

MNEMONIC3MNEMONIC3

SC HV Bus

Out
MNEMONIC

SC TL or
HV Bus

Out
MNEMONIC3

SC Bay
Transformer

Out
MNEMONIC3

Out

OutOut

Out Out

Out

HV Bus One Circuit Breaker Transformer

Feeder Capacitor Bank

Lines

LinesLines

SC TL

OutOut

1`("CRE","12","J1","Y",3,"SBD")++
1`("CRE","12","J6","Y",3,"SBD")++
1`("CRE","12","J7","Y",3,"SBD")++
1`("ARU","12","C4","Y",2,"CRE")++
1`("ARU","12","C2","Y",2,"CRE")++
1`("NVR","12","L1","Y",3,"ARU")++
1`("NVR","12","L2","Y",3,"ARU")++
1`("CAT","12","N1","Y",1,"NVR")++
1`("INH","12","P2","Y",1,"IBP")++
1`("NVR","12","R1","Y",3,"CRE")

Line
Output

1`("CRE","12","C1","N",1,"IBP")++
1`("CRE","12","C4","Y",2,"ARU")++
1`("CRE","12","C2","Y",2,"ARU")++
1`("ARU","12","J1","Y",1,"ARD")++
1`("ARU","12","L1","Y",3,"NVR")++
1`("ARU","12","L2","Y",3,"NVR")++
1`("NVR","12","N1","Y",1,"CAT")++
1`("CAT","12","C1","Y",1,"CAT")++
1`("IBP","12","P2","Y",1,"INH")++
1`("CRE","12","R1","Y",3,"NVR")

Circuit
Breaker

InIn

Transformer

MV Bus

MNEMONIC3

MV Bus

MV BusMV Bus

SC MV Bus

OutOut

1`("ARU","21","Y1","N",1)++
1`("ARU","21","Y2","N",1)++
1`("ARU","21","Y4","N",1)++
1`("ARU","21","Y5","N",1)++
1`("ARU","21","Y6","N",1)++
1`("ARU","21","Y7","N",1)++
1`("ARU","21","Y8","N",1)++
1`("CRE","21","C2","N",1)++
1`("ARU","21","C4","N",1)++
1`("IBP","21","I1","N",1)++
1`("IBP","21","I2","N",1)++
1`("IBP","21","I3","N",1)++
1`("IBP","21","I4","N",1)++
1`("INH","21","I2","N",1)++
1`("INH","21","I3","N",1)++
1`("INH","21","I4","N",1)++
1`("INH","21","I5","N",1)++
1`("INH","21","I6","N",1)++
1`("NVR","21","N1","N",1)++
1`("NVR","21","N2","N",1)++
1`("NVR","21","N3","N",1)++
1`("NVR","21","N5","N",1)

9

1`("ARU","11","H1","N",1)++
1`("ARU","11","H3","N",1)++
1`("ARU","11","H4","N",1)++
1`("IBP","11","H1","N",1)++
1`("IBP","11","H2","N",1)++
1`("INH","11","H1","N",1)++
1`("INH","11","H2","N",1)++
1`("NVR","11","H1","N",1)++
1`("NVR","11","H2","N",1)

22

1`("ARU","21","C4","N",1)++
1`("ARU","21","Y1","N",1)++
1`("ARU","21","Y2","N",1)++
1`("ARU","21","Y4","N",1)++
1`("ARU","21","Y5","N",1)++
1`("ARU","21","Y6","N",1)++
1`("ARU","21","Y7","N",1)++
1`("ARU","21","Y8","N",1)++
1`("CRE","21","C2","N",1)++
1`("IBP","21","I1","N",1)++
1`("IBP","21","I2","N",1)++
1`("IBP","21","I3","N",1)++
1`("IBP","21","I4","N",1)++
1`("INH","21","I2","N",1)++
1`("INH","21","I3","N",1)++
1`("INH","21","I4","N",1)++
1`("INH","21","I5","N",1)++
1`("INH","21","I6","N",1)++
1`("NVR","21","N1","N",1)++
1`("NVR","21","N2","N",1)++
1`("NVR","21","N3","N",1)++
1`("NVR","21","N5","N",1)

10

1`("ARU","12","C2","Y",2,"CRE")++
1`("ARU","12","C4","Y",2,"CRE")++
1`("CAT","12","N1","Y",1,"NVR")++
1`("CRE","12","J1","Y",3,"SBD")++
1`("CRE","12","J6","Y",3,"SBD")++
1`("CRE","12","J7","Y",3,"SBD")++
1`("INH","12","P2","Y",1,"IBP")++
1`("NVR","12","L1","Y",3,"ARU")++
1`("NVR","12","L2","Y",3,"ARU")++
1`("NVR","12","R1","Y",3,"CRE") 10

1`("ARU","12","J1","Y",1,"ARD")++
1`("ARU","12","L1","Y",3,"NVR")++
1`("ARU","12","L2","Y",3,"NVR")++
1`("CAT","12","C1","Y",1,"CAT")++
1`("CRE","12","C1","N",1,"IBP")++
1`("CRE","12","C2","Y",2,"ARU")++
1`("CRE","12","C4","Y",2,"ARU")++
1`("CRE","12","R1","Y",3,"NVR")++
1`("IBP","12","P2","Y",1,"INH")++
1`("NVR","12","N1","Y",1,"CAT")

3

1`("CRE","12","J1","51C",0)++
1`("CRE","12","J6","51C",0)++
1`("CRE","12","J7","51C",0)

9

1`("ARU","11","T1","Y",2,"ARUB")++
1`("ARU","11","T2","Y",2,"ARUB")++
1`("ARU","12","T1","Y",2,"ARUB")++
1`("ARU","12","T2","Y",2,"ARUB")++
1`("CRE","11","T1","Y",1,"CREB")++
1`("CRE","12","T1","Y",1,"CREB")++
1`("IBP","11","T1","Y",1,"IBPB")++
1`("IBP","12","T1","Y",1,"IBPB")++
1`("INH","12","T1","N",1,"INHB")

5

1`("ARU","12","D1","N",1)++
1`("INH","11","B1","N",1)++
1`("INH","11","D1","N",1)++
1`("NVR","11","B1","N",1)++
1`("NVR","11","D1","N",1)

#

?/3A21#Up"#F)2Q/-3#/-#5.1#<A:,)31#K/)3-'<1<#7A1#5'#)#@)A(5#/-#)#<A:<5)5/'-#:A<"#

##

G.1# <A:<5/5A5/'-# 52)-</5/'-# OP# ;A<# <A:# ,)31# /<# <.'H-# /-# ?/3A21# Wj"# G./<#

<A:,)31#,'/-5<#'A5# 5.)5#)# <.'25# 6/26A/5# .)<# 5)Q1-#,()61# /-#[pQP#:A<#)-7# /71-5/@/1<# 5.1#

:A<"#!<#5.121#)21#5.211#/-6'+/-3#52)-<+/<</'-#(/-1#6/26A/5<#)5#5.1#<A:<5)5/'-#:A<#&B0N#)<#

/5# 6)-#:1# <11-# /-#?/3A21#UjN# 5.1# 52)-</5/'-#;A<X# /<# 1-):(17N# /-7/6)5/-3# 5.)5# 5.211# /-,A5#

(/-1<#)21# 6'--16517# 5'# 5.1#:A<"#G.1# 52)-</5/'-#;A<X# 5.1-#6'+,)21<# 5.1# 1JA/,+1-5# 5.)5#

195

.)<# ',12)517# L5'Q1-<# /-# 5.1#<')"& /2# ,()61M# H/5.# 5.1# 216'2717# /-,A5# (/-1# ,2'5165/'-#

71>/61<#L5'Q1-<#/-#5.1#@!")&F"'1##,()61M"##

#

1`(x,y,y1,z1,p)++
1`(x,y,y2,z1,p)++
1`(x,y,y3,z1,p)++
1`(x,y,y4,z1,p)1`(x,y,y1,z1,p)++

1`(x,y,y2,z1,p)++
1`(x,y,y3,z1,p)

1`(x,y1,y2,z1,p,x2)

1`(x,y1,y2,z1,p,x2)

1`(x,y,y1,z,k,x1)++
1`(x,y,y2,z,k,x2)++
1`(x,y,y3,z,k,x3)++
1`(x,y,y4,z,k,x4)

1`(x,y,y1,z,k,x1)++
1`(x,y,y2,z,k,x2)++
1`(x,y,y3,z,k,x3)

1`(x,y1,y2,z1,p,x2)

1`(x,y1,y2,z1,p)++
1`(x,y1,y3,z1,p)

1`(x,y1,y2,z,k,x1)++
1`(x,y1,y3,z,k,x2)

1`(x,y1,y2,z1,p)

1`(x,y1,y2,z1,p,x1)

1`(x,y1,y2,z,k,x1)

Bus4

[z<>"N"
andalso k=4]

Bus3

[z<>"N"
andalso k=3]

Bus2

[z<>"N"
andalso k=2]

Bus

[z<>"N"
andalso k=1]

Circuit
Breaker

In

MNEMONIC3

SC HV Bus

Out
MNEMONIC

Line
Input

In

MNEMONIC

In

Out

In

3

1`("CRE","12","J1","51C",0)++
1`("CRE","12","J6","51C",0)++
1`("CRE","12","J7","51C",0)

10

"

1`(x,y,y1,z1,p)++
1`(x,y,y2,z1,p)++
1`(x,y,y3,z1,p)++
1`(x,y,y4,z1,p)1`(x,y,y1,z1,p)++

1`(x,y,y2,z1,p)++
1`(x,y,y3,z1,p)

1`(x,y1,y2,z1,p,x2)

1`(x,y1,y2,z1,p,x2)

1`(x,y,y1,z,k,x1)++
1`(x,y,y2,z,k,x2)++
1`(x,y,y3,z,k,x3)++
1`(x,y,y4,z,k,x4)

1`(x,y,y1,z,k,x1)++
1`(x,y,y2,z,k,x2)++
1`(x,y,y3,z,k,x3)

1`(x,y1,y2,z1,p,x2)

1`(x,y1,y2,z1,p)++
1`(x,y1,y3,z1,p)

1`(x,y1,y2,z,k,x1)++
1`(x,y1,y3,z,k,x2)

1`(x,y1,y2,z1,p)

1`(x,y1,y2,z1,p,x1)

1`(x,y1,y2,z,k,x1)

Bus4

[z<>"N"
andalso k=4]

Bus3

[z<>"N"
andalso k=3]

Bus2

[z<>"N"
andalso k=2]

Bus

[z<>"N"
andalso k=1]

Circuit
Breaker

In

MNEMONIC3

SC HV Bus

Out
MNEMONIC

Line
Input

In

MNEMONIC

In

Out

In

1

1`("CRE","J7","J6","51C",0,"SBD")

10

"
?/3A21#Wj"#R-/5/)(#+)2Q/-3#/-#5.1#

<A:,)31#;A<#
?/3A21#WU"#?/-)(#+)2Q/-3#/-#5.1#######

<A:,)31#;A<#

#

R-#?/3A21#WU#/5#6)-#:1#':<12>17#5.)5#5.1#<A:,)31#;A<#)@512#5.1#52)-</5/'-#;A<X#/<#

@/217"# !5# 5.1# @/-)(# ,()61# E&# OP# ;A<# /<# 5.1# 5'Q1-# L_&B0`N_ib`N_i[`N_ZU&`NjM# H./6.#

<.'H<#5.)5#)#<.'25#6/26A/5#.)<#5)Q1-#,()61#)5#5.1#:A<#/-#5.1#<A:<5)5/'-#&B0"##R-#6)-#)(<'#

:1#-'5/617#/-#?/3A21#WU#5.)5#5.1#+'71(#6'-</712<#A,#5'#@'A2#/-6'+/-3#52)-<+/<</'-#(/-1<#

H./6.#6'>12<# 5.1#+)S/+A+#-A+:12#'@# /-6'+/-3# 52)-<+/<</'-# (/-1<#H/5./-# 5.1#&'1(61#

<I<51+"#

###########G.1# +)/-# ,)31# H/5.# 5.1# @/-)(# +)2Q/-3# /<# ,21<1-517# /-# ?/3A21# WW"# G.1# @/-)(#

+)2Q/-3#+1<<)31#7/<,()I17#5'#5.1#',12)5'2#/-#5.1#6'-52'(#&1-512#<)I<f#_E.'25\6/26A/5#/-#

[pQP#;A<#)5#5.1#<A:<5)5/'-#&B0#H/5.#5.1#52/,,/-3#'@#5.1#,2'5165/'-#@A-65/'-#ZU#,.)<1#&`"###

Diagnosis
Analysis

Diagnosis Analysis

SC Capacitor
Bank

MNEMONIC3

SC Feeder

MNEMONIC3

SC MV Bus

MNEMONIC3

Damaged
Transformer

MNEMONIC3

SC Bay
Transformer

MNEMONIC3

SC TL or
HV Bus

MNEMONIC3

SC TL

MNEMONIC3

SC HV Bus

MNEMONIC

Open
Circuit Breaker

1`("CRE", "12", "J1", "51C", 0)++
1`("CRE", "12", "J6", "51C", 0)++
1`("CRE", "12", "J7", "51C", 0)

MNEM3

Tripped
Function

1`("CRE", "12", "J1", "51C", 0)++
1`("CRE", "12", "J6", "51C", 0)++
1`("CRE", "12", "J7", "51C", 0)

MNEM3

Diagnosis Analysis

1

1`("CRE","J7","J6","51C",0,"SBD")

1

1`[]

1

1`[]

"
?/3A21#WW"#?/-)(#+)2Q/-3#3/>1-#:I#5.1#,2','<17#?KE\?A((^15##
@'2#)#@)A(5#/-#)#:A<#H/5.#/-6'+/-3#,)2)((1(#52)-<+/<</'-#(/-1<"##

196

[A"4L74RM1IL7""

&'-</712/-3# 5.1# -A+:12# '@# (/Q1(I# 5','('3/1<#)-7#)22)-31+1-5<# '@# 5.1# ,'H12#

<I<51+<N#5.1#A<1#'@#&'('217#D152/#^15<#/<#)-#)71JA)51#5''(#@'2#5.1#71>1(',+1-5#'@#?)A(5#

K/)3-'</<#EI<51+<"#!#&D\-15#:)<17#+15.'7#.)<#:11-#<.'H-#5.)5#/<#/-71,1-71-5#'@#5.1#

,'H12#<I<51+#</C1"#:16)A<1#5.1#,'H12#<I<51+#5','('3I#/<#216'2717#)<#/-/5/)(#+)2Q/-3#/-#

5.1# 1S51-717# &D\-15# ,2','<17"# E'N# 5.1# +)/-51-)-61# '@# 5.1# ?KE#),,(/6)5/'-# ,2'32)+#

A-712#,12+)-1-5#6.)-31<# /-# 5.1#,'H12#<I<51+#5','('3I# /<#JA/51#</+,(1N#H./6.#6)-#:1#

6)22/17#'A5#:I#5.1#/-6(A</'-#'@#-1H#5'Q1-<#'2#5.1#A,7)5/-3#'@#5.1#'-1<#)(21)7I#/-"#G./<#

21,21<1-5<#)-#)7>)-61#/-#21()5/'-#5'#5.1#?KE#:)<17#'-#)#(''QA,#5):(1N#H./6.#21JA/21<#)-#

'@@\(/-1#<5A7I#:I#)-#1S,125#'@#5.1#<I<51+#-1H#6'-@/3A2)5/'-#/-#'2712#5'#A,7)51#5.1#5):(1#

H/5.#5.1#@)A(5#7/)3-'</<"#

G.1# ,),12# .)<# ,21<1-517#)# 61-52)(/C17# @)A(5# 7/)3-'</<# <I<51+N# ('6)517#)5# 5.1#

6'-52'(#61-512N#H./6.#/<#):(1#5'#7/)3-'<1#@)A(5<#-'5#'-(I#/-#,'H12#<A:<5)5/'-<#:A5#)(<'#/-#

5.1#52)-<+/<</'-#)-7#7/<52/:A5/'-#-15H'2Q<"#G.1#7/)3-'</<#21,'25<#6)-#/71-5/@I#5.1#@)A(5#

('6)5/'-N#5.1#21()I#@A-65/'-#)-7#5.1#@)A(517#,.)<1L<M"##

G.1#),,(/6)5/'-# ,2'32)+# .)<# :11-# 51<517# @'2# +)-I# 7/<5A2:)-61<#)-7# 5H'# 21)(#

7/<5A2:)-61# 6)<1<# .)>1# :11-# 1>)(A)517"# G.1# ,2'32)+# ,12@'2+17#)66A2)51(I# :2/-3/-3#

):'A5#)#@)<5#)-7#<A66/-65#7/)3-'</<#5'#5.1#<I<51+#',12)5'2"#G.1#),,(/6)5/'-#5''(#/<#>12I#

+A6.#>)(A):(1# 5'# 5.1# <I<51+#',12)5'2#)-7# 6'-52/:A51<# 5'#)# 21(/):(1# 7/)3-'</<#)-7# @)<5#

21<5'2)5/'-#'@#5.1#,'H12#<I<51+"##

#

]A"KP#PKP74P1"

TUV!O"\i"# $11N# ;"\E"# !.-#)-7# o"\F"# D)2QN" ^!# @)A(5# 7/)3-'</<# 1S,125# <I<51+# @'2#

7/<52/:A5/'-# <A:<5)5/'-<_>" FGGG& :0$"*H& 8"& I8J)0& B)%!7)0-9# P'("# UZN#^'"UN#i)-"# Wjjj#

,,"pW\pb"#

TWV!i"#&"#E"#E'AC)N#F"#!"#D"#B'72/3A1<N#F"#G."#E6./((/-3N#)-7#F"#;"#K"#&"#?/(.'N#_?)A(5#

('6)5/'-#/-#1(1652/6)(#,'H12#<I<51+<#A</-3#/-51((/31-5#<I<51+<#516.-/JA1<`#FGGG&:0$"*H&

8"&I8J)0&B)%!7)0-N#P'("#U[N#^'"UN#i)-"WjjUN#,,"#Zpr[b"##

TXV!s"#F"#E/(>)N#;"#!"#E'AC)#)-7#^"#E"#K"#;2/5'N#_?)A(5#715165/'-#)-7#6()<</@/6)5/'-#/-#

52)-<+/<</'-#(/-1<#:)<17#'-#H)>1(15#52)-<@'2+#)-7#!^^`N#FGGG&:0$"*$(#!8"*&8"&I8J)0&

B)%!7)0-N#P'("#WUN##^'"#YN##e65"#Wjj[N#,,"WjZ]#r#Wj[X"#

TYV!c1-N# ?"N# O)-N# t"# LUppZM# ?)A(5# E165/'-# 0<5/+)5/'-# /-# D'H12# EI<51+<# =</-3# !#

%1-15/6#!(3'2/5.+"#G%)(#0!(&I8J)0&6-*#)A*&,)*)$0(K&LMN#,,#U[Z\UbW"#

197

TZV!O"\&"# &./-N# _?)A(5# <165/'-# 7/)3-'</<# '@# ,'H12# <I<51+# A</-3# @ACCI# ('3/6`>" FGGG&

:0$"*$(#!8"*&8"&I8J)0&6-*#)A*N#P'("#U]N#^'"#UN#?1:"#WjjXN#,,"WYZrWZj"#

T[V!s"#$#$'N#O"#E"##^3#)-7#i"#G216)5"#D'H12#EI<51+<#?)A(5#K/)3-'</<#=</-3#D152/#^15<"#

R-N& FGG&I08()).!"C*& 8"&O)")0$#!8"9& :0$"*A!**!8"& $".&B!*#0!=1#!8"N#P'("# UYYN#^'"# XN#

F)I"#UppbN#,,"#WXU\WX["#

TbV!s"#$"#$'N#O"#E"#^3N#K"#F"#%2)-5#)-7"# i"#G216)5N# _0S51-717#D152/#^15<#F'71(<# @'2#

?)A(5#K/)3-'</<#?'2#EA:<5)5/'-#!A5'+)5/'-`"# FGG&I08(HPO)")0H&:0$"*AH&B!*#0!=H#P'("#

UY[N#^'"#XN#,,"#WWp\WXYN#F)I"#Uppp"#

T]V!i"# EA-N# E"\o"# u/-#)-7# o"\O"# E'-3N# _?)A(5# K/)3-'</<# '@# 0(1652/6# D'H12# EI<51+<#

;)<17# '-# ?ACCI# D152/# ^15<`N# FGGG& :0$"*$(#!8"*& 8"& I8J)0& 6-*#)A*N# P'("# UpN# ^'"# YN#

^'>1+:12#WjjYN#,,"WjZX\WjZ]"#

TpV!G"#FA2)5)N#_D152/#-15<f#D2',125/1<N#)-)(I</<#)-7#),,(/6)5/'-<"#R-f#R000#D2'6117/-3<N#

P'("YN#^'"YN#!,2/(#Up]pN#,,"ZYU\Z]j"#

TUjV! i1-<1-N# s"N# _&'('A217# D152/# ^15<f# ;)</6# &'-61,5<N# !-)(I</<# F15.'7<#)-7#

D2)5/6)(#=<1`"#P'(#"UN#W-7#07/5/'-N#E,2/-312\P12()3N#Uppb"#

TUUV! ;1C122)N#i"#B"N#&)15)-'N#F"N#E'AC)N#i"#B"N#?A25)7'N#B"N#;)22'<'N#%"N#$1v'N#B"#D"#

E"N#_=+)#!:'27)31+#,)2)#K/)3-w<5/6'#71#?)(5)<#1+#EA:1<5)*x1<#71#E/<51+)<#0(452/6'<#

71#D'5y-6/)#=<)-7'#B171<#71#D152/`N#PR#E/+,w</'#;2)</(1/2'#71#!A5'+)*v'#R-51(/31-51"#

;)A2A#\#EDN#E151+:2'N#WjjX"##

TUWV! E)+,)/'N#B"#?"g#;)22'<'N#%"#&"g# E'A<)N# i"#B"#;"g# $1v'N#B"# D"# E"#!-#!7>)-617#

?A-65/'-# @'2# 5.1# EA,12>/<'2I# EI<51+# '@#)-# 0(1652/6)(# K/<52/:A5/'-# EA:<5)5/'-f# !-#

!,,(/6)5/'-#A</-3#&'('217#D152/#^15<"#R-f#R)<517#R-512-)5/'-)(#&'-@121-61#\#WjjXN#D)(+#

E,2/-3<#\#=E!N#REE^f#UjWU\]U]U"#,,"UpW\Upb"##

TUXV! F171/2'<N#0"#;"g#;)22'<'N#%"#&"g#&'()*'N#!"#$"#%"g#E)-5'<#?/(.'N#?"#%"g#E)+,)/'N#

B"#?"#g#$1v'N#B"#D"#E"#g#P/1/2)N#i"#F"g#$'A21-*'N#G"#%"#Fg#!A3A<5'#iA-/'2N#F"#?"#g?)A(5#

K/)3-'</<# EI<51+# @'2# D'H12# EI<51+<# ;)<17# '-# &'('A217# ,152/# ^15<"# R-f# zRR# $)5/-\

!+12/6)-#&'-321<<# '-#!A5'+)5/6# &'-52'(N# Wjj[N# E)(>)7'2\;)./)"# D2'6117/-3<# '@# 5.1#

zRR#$)5/-\!+12/6)-#&'-321<<#'-#!A5'+)5/6#&'-52'(N#Wjj["#,"#UbW\Ubb"#

TUYV! E)-5'<N#?"#%"#?/(.'N#_K/)3-w<5/6'#71#?)(5)<#1+#E/<51+)<#0(452/6'<#;)<1)7'#1+#

B171<#71#D152/#&'('2/7)<#1#G46-/6)<#71#E/<51+)<#0<,16/)(/<5)<`N#=-/>12</7)71#?1712)(#

7'#&1)28#r#=?&N#WjjbN#p[,"##

198

Towards an Open and Extensible Business

Process Simulation Engine

Luciano Garćıa-Bañuelos� and Marlon Dumas

Department of Computer Science
University of Tartu, Estonia

{luciano.garcia,marlon.dumas}@ut.ee

Abstract. This paper outlines the architecture and initial proof-of-
concept implementation of an open and extensible business process model
simulator based on CPN tools. The key component of the simulator is a
transformation from BPMN process models to CPNs. This transforma-
tion is structured as a set of templates that can be extended and modified
by developers in order to incorporate new functionality into the simula-
tor. The paper illustrates how this templating mechanism can be used
to capture different types of tasks and resource allocation policies.

1 Introduction

Business process simulation is a widely used technique for analyzing business
process models with respect to performance metrics such as cycle time, cost and
resource utilization. Many commercial business process modeling tools incor-
porate a simulation component, e.g. TIBCO Business Studio, IBM Websphere
Business Modeler (WBM), ARIS, FileNet and Protos [5]. However, these process
simulators have two architectural limitations:

1. Only models designed with the tools themselves can be simulated.
2. No extensibility mechanism is provided to add new features or change the

pre-built simulation and reporting options.

The first limitation stems from two factors. Firstly, the simulation compo-
nent is generally hidden inside the tool, meaning that it does not expose an
Application Programming Interface (API). Secondly, there is a long-standing
problem of lack of business process model interoperability. The Business Process
Modeling Notation (BPMN) – particularly its upcoming version 2 – attempts to
address this issue by providing a standard business process meta-model with an
interoperable XML serialization. While BPMN does not define any simulation
parameters (e.g. arrival times and branching probabilities), it includes extensi-
bility mechanisms that allow one to add such details.

The second limitation is to a large extent connected to the first one: since
the tools do not offer an explicit interface for their simulation component, it
� On leave from Autonomous University of Tlaxcala; work funded by the ERDF

through the Estonian Centre of Excellence in Computer Science.

199

is not possible to plug-in additional functionality into it. This limitation has
been raised in recent work [7]. Motivated by simulation requirements found in
supply chain management, the authors introduce an extensibility mechanism into
IBM WBM. The idea is to allow developers to attach scripts to processes and
tasks. Six types of scripts are supported: pre-processing scripts (executed before
a task/process is activated), post-processing scripts, delay scripts (to introduce
waiting times), cost, revenue and duration scripts. However, this mechanism is
limited – it does not allow one to extend the execution semantics that drives the
simulation engine. For example, one cannot apply such extensibility mechanism
in order to simulate advanced resource allocation patterns [10] nor to capture
control-flow connectors beyond those offered by the modeling tool.

In this paper, we outline the architecture and current implementation status
of OXProS - an Open and Extensible Process Simulator for BPMN. OXProS
provides a RESTful service interface allowing third-party applications to submit
BPMN process models for simulation. Simulation parameters are incorporated
into the process model using BPMN’s extensibility mechanism. OXProS uses
CPN Tools as its underlying execution environment. In other words, BPMN
models are translated into CPNs for simulation purposes. This translation is
based on a templating mechanism that enables developers to extend OXProS by
adding new templates or modifying existing ones.

In the rest of the paper we present the architecture of OXProS and its
template-based extensibility mechanism. We present the current implementa-
tion status of OXProS and a roadmap for future work.

2 Architecture

Figure 1 depicts the architecture of OXProS. In this figure, the yellow boxes
represent OXProS components, the light-blue boxes represent CPN Tools and
associated components, and the white boxes correspond to third-party software.

At the architectural level, OXProS is structured as a set of XML over HTTP
Web services, designed according to the principles of RESTful service archi-
tectures [3]. A simulation is treated as a resource that can be created/started
through a POST operation. Subsequently, the status of the simulation and its
output can be retrieved using GET operations. As a shortcut, it is possible to
create a simulation model and retrieve its results through a single POST oper-
ation.

OXProS accepts either BPMN process models (enhanced with simulation
attributes) or CPN models. If a BPMN model is submitted, it is transformed
into a CPN model and passed on to the CPN simulation service. At present, there
is no standard serialization of BPMN. It is expected that the upcoming BPMN
2.0 standard will have its own XML serialization format. In the meantime, the
BPMN simulation service assumes that the input models are serialized using the
XML Process Definition Language (XPDL) version 2.1 [1].

The services provided by OXProS are implemented using Java Servlets. The
CPN simulation servlet is built on top of Access/CPN [13] – a tool that enables

200

programmatic access to the CPN Tools Simulator. Since Access/CPN is imple-
mented as a set of OSGi bundles/components, its implementation relies on the
HTTP Service provided by Equinox – the Eclipse OSGi implementation1.

!"#$%&'()*+,(

"-.(/012(,%*%,

345$1%67/+'-)

"-.(/0%&.(2(&.(&'

345$1%67/+'-)

!"#859

:";

:<7%&-=$2/+'*-)6

9>"

:
<
7
%&
-
=
$

?
@
@
4
$1
(
)A

345$1%67/+'%-&$1()A/('

!%67/+'-)$

2)-=B

345$6-.(/$

6+&+C(6(&'

!"#$%&"'()*+,-./0+12)

*345.30

4)-"345#%D)+)B
$E)B=$:.%'-)

F4"5!%6$

G(.%'-)$(='HI
F4"5J345

!"#$6&"'(

7)*+,8)9/0/ K4L#$*%/(

GM%'N$1%6H$.+'+I

345$*%/(!%67/+'%-&$

/-C$*%/($

G"K"#I

:;;3**%<"$)

=4101;1.

Fig. 1. OXProS architecture

When the CPN simulation servlet receives a simulation model, it invokes Ac-
cess/CPN to check the submitted CPN and starts the simulation on the back-
ground simulator daemon. Upon completion of the simulation, an MXML log
file is generated from the simulation output. The produced MXML log file can
be analyzed off-line using the ProM framework2 (e.g. to extract key performance
indicators). In order to generate MXML log files, we make use of the ProM CPN
Library [6].

In the current prototype, BPMN processes are modeled with the Oryx Edi-
tor3. We extended the Oryx front-end to allow users to add simulation param-
eters into a BPMN process model. This Oryx extension is called BPMNSim.
Moreover, we extended the Oryx back-end with a module that generates CPNs
from Oryx’s internal representation of process models. In the future, it is ex-
pected that Oryx will support generation of standard BPMN models so that
these models can be submitted to the BPMN simulation servlet.

3 Template-based Generation of CPNs

The key component of OxProS is the transformation from extended BPMN
models to CPNs. This transformation is designed using a templating approach.
To illustrate the transformation, we consider the simplified “teleclaims” process
of an insurance company, presented in Figure 2. This process handles insurance
claims made by phone. The process is supported by staff in a call center and in
a claims handling department.

In the basic form, a BPMN process diagram consists of events (circles), ac-
tivities (rounded rectangles) and gateways (diamonds). Events denote the start,
1 http://www.eclipse.org/equinox/server
2 http://www.processmining.org
3 http://oryx-editor.org

201

!"#$%&
'()*+,-.'*(&
-/-'0-1'0'.2

3#4'5.#+&
$0-',

6#.#+,'(#&
0'%#0'"**7
*)&$0-',

855#55&
$0-',

9"*(#
$-00

:('.'-0';#&
<-2,#(.

87/'$#&$0-',-(.&
*(&

+#',1=+5#,#(.

!0*5#&$0-',

(*.&#(*=4"&'()*+,-.'*(

(
*
(
&0
'-
1
0#

$
0-
',
&+
#
>#
$
.#
7

!"""#$%%&'(#
)*+%+

,"#+%)-./+

01"#+%)-./+

1"#+%)-./+

22"#+%)-./+

34"#+%)-./+

31"#+%)-./+

,"#+%)-./+

1"5

4"5

305

405

3"5

!"5

Fig. 2. Insurance claim handling process (adapted from [12])

the end of a process case or something that happens during the process execu-
tion. In the running example, we used a “message start event” to specify that
a case starts with the reception of a “Phone call”. Activities denote work that
must be done, for example, an agent in the call center executes the task “Check
information availability”. Gateways are routing constructs. The two basic types
of gateways are AND gateways (marked with a “+” symbol) and XOR gateways
(“X” symbol). A gateway is either to be a split gateway if it has multiple outgo-
ing flows or a join gateway if it has multiple incoming flows. An XOR-split is a
decision point, meaning that one outgoing path is taken according to the result
of the evaluation of a logical condition. For instance, in the running example,
10% of cases are rejected due to insufficient information. A XOR-join is a merg-
ing point. An AND-split starts two or more parallel threads. For instance, tasks
“Advice claimant on reimbursement” and “Initialize payment” are executed in
parallel. Finally an AND-join synchronizes parallel threads.

In order to simulate a BPMN process model, a number of simulation param-
eters need to be specified. These include: (i) the arrival rate of new cases and
its associated distribution (e.g. exponential); (ii) the branching probabilities for
each arc (flow) leaving an XOR-split, and a number of performance attributes
attached to activities/events, such as time, cost and revenue. These attributes
are generally represented using a mean value and a probability distribution (e.g.
normal). A simulation model includes a number of resource pools denoting sets
of resources. Each activity may be associated to a resource pool and at runtime,
one resource from the pool is selected to perform the activity based on a resource
allocation policy.

!"#$%&'())
*"%'+&,$-#./(0,#$&

(1(,)(2,),03
45 64),0747

48

49
!"#$%:'()) *"%'+&,$-#./(0,#$&(1(,)(2,),03 64),07

*;6< *;6<

*;6<

*;6<

Fig. 3. Mapping of the root process

Given a BPMN model
extended with simulation at-
tributes, we generate a hi-
erarchical CPN, with two top-
level pages: one for the con-
trol flow perspective and the other for resource perspective. Figure 3 presents
a partial view of the CPN model for the control-flow of the insurance claim
process.

202

from
Phone_call

Check_information_availability
start

info

p6

info

to
Split1

info

Out

CASEIn

Check_information_availability
complete

info

CASE

CASE

allocated
In

RES

released

e
@+execTimeCIA()

RES

e

Out

Check_information_availability
enable

p5

info

info

CASE

enabled
Out

CASE

info

(a) Task

!"#$

%&#'()*+&!#"$,-.#&*/0,.1,213

451.-6

.&5'-7.&!#58

#'-5'-7.&!#95,-)8

,:-.#&

13-;0,1;5;<;=.>:"3-37?9@@8;.&

;;.!;5A@?;-)3&;7.&!#59;?8

;;31>3;7.&!#59;68

3&=

.&!#5

5B

7.&!#95,-)8

451.-6;5,-)? 451.-6;5,-)6

7.&!#95,-)87.&!#95,-)8

C5,-)<6DC5,-)<?D

-#

E3(.>-3"*:1,.$

-#

F#"*G#.&

.&!# .&!#

+&

H'- H'-

I/4%

I/4%F+JK

I/4% I/4%

(b) XOR (split) gateway

Fig. 4. Default mapping of tasks and XOR-split gateways

In order to make the mapping as modular as possible, every element in a
process model is mapped to an individual page. For example, Figure 4(a) presents
the page with the mapping of task “Check information availability” from the
running example. It contains two places to synchronize the start and completion
of the task, to model the control flow perspective. Additionally, the page includes
three other places to handle the assignment of the task to a staff member for
execution. A simulation would occur as follows. First, the task gets enabled
and waits until a staff member takes it. The timing annotation on transition
“Check information availability start” generates a random simulation time that
is associated to the execution of the task. When the task is completed, the
resource is released.

Let us now consider the case of data-based XOR split gateways. The corre-
sponding CPN must handle the selection of a path according to a probability
distribution. Figure 4(b) presents the page for the first XOR gateway in the run-
ning example. The transition “Split1” generates a random value between 0 and
99. For every path, there is a guarded transition which is activated according to
the value of the variable “path”. Thus, the transition “Split1” sets “path” to 0
in 90% of the cases and it sets “path” to 1 in the remaining 10% of the cases.

In addition to the XOR decision gateway discussed above (called data-driven
decision gateway), BPMN features a so-called event-driven XOR decision gate-
way. The data-based and the event-based XOR gateways are similar in that they
pass the flow of control along one of their outgoing paths only – thus, they rep-
resent a ”choice”. However, whilst in a data-based XOR gateway the choice is
performed by the system based on boolean conditions, in the case of an event-
based XOR gateway, the choice is made by the environment. Specifically, an

203

!"#$%&'()%"#

!(#!*++()%"#

)%'*,"-)

(a) BPMN

!"#$%&'(

')*+

,-.!

('/0#+1(23)20&&3('+) 2+)*'4/3('+)

564+1)78)+4/3&89:;<;=#:;<;>>564+1)78)+4/3&89:;<;=#:;<;>>569?;

')*+

')*+

(b) Mapping with independent events

!"#$%&'()*+

,-./0123

/456'7")5

'()*8

9:;%<#=!#%;>(7!?@8A8&5@8A8++

9:;%<#=!#%;>(7!?@8A8&5@8A8++

9:?B8

/456'7")
/456'7")5

!);(#6+

"#$%'

"#'<)!"#$%'+

%<)'<)!"#$%&'()*+

(C)"%#

7D)5E(75'5F5="6C;D)D!8&GG+5"#

55"$5'HG85)*D#5!"#$%'&58+

55D76D5!"#$%'&5I+

D#=

'I

'J

'?

/456'7")5

'()*I

/456'7")5

'()*J

'K

'@

'B

C%#$";>()"%#

C(#CD77()"%#

)">D5%<)

!

!"#$%&'()*+

!"#$%&'()*+

!"#$%&'()*+

!"#$%&'()*+

!"#$%&'()*+

L'()*FIM

L'()*F8M

,-./

,-./

,-./

,-./

"#$%

"#$%

"#$%

"#$%

"#$%

"#$%

"#$%"#$%

"#$%

"#$%

,-./0123

,-./0123

(c) Mapping with dependent events

Fig. 5. The BPMN Event-based XOR gateway

event-based XOR gateway is directly followed by two or more events. When the
gateway is reached, the flow of control stops at that point until one of the events
in question occurs. The first event to occur determines which path is taken. Fig-
ure 5(a) shows a typical scenario involving an event-based XOR gateway. In this
example the process waits for either a confirmation or a cancellation message
from the customer, or a time-out.

Multiple approaches can be adopted to simulate BPMN models with event-
based XOR gateways. One approach is to capture it purely using delays: each
event is annotated with a delay, that may be a fixed duration (in the case of time
events with constant values), or a probability distribution (in the case of mes-
sage events or time events with a dynamically-evaluated duration). Figure 5(b)
illustrates this approach. Here, the delays of the two message events (cancella-
tion and confirmation) follow a normal distribution with identical means and
standard deviations. This mapping works under the assumption that the two
events are independent.

However, in this example one would expect that these two events are not
independent, but rather exclusive: if a confirmation message is received, no can-
cellation message will arrive and vice-versa. Figure 5(c) presents an alternative
mapping that captures this exclusion dependency. In this case, the customer re-

204

!"#$%

"

!"#$%

"&&'(")*

+

+*&*"#*

+*#',+(*#

-./

-./

-./

*

01/.

!"#$2

!"

!"#$2

!##$%!&'"

("

('#'!)'"

-./ -./

'"

01/.

(a) Role-based distribution

!"#$%

"

!"#$%

"&&'(")*

+

+*#',+(*#

-./

-./

-./

*

01/.

!"#$2

!"

!"#$2

!##$%!&'"

("

('#'!)'"

-./ -./

'"

01/.

(b) Chained execution

Fig. 6. Two templates for resource allocation

sponds with a confirmation message in 90% of the cases or with a cancellation
message in 10% of the cases. The ML annotation on the first transition activates
the path to the “time-out” event and to one of the other two paths (the con-
firmation path and the cancellation path). From that point on, there is a race
between the time event and one of the two message events, reflecting the fact
that only one of the two message events may eventually occur.

In order to implement this alternative mapping, one has to extend BPMN
with the ability to express exclusion dependencies between events that are con-
nected to a common event-based gateway. In the current BPMN standard, when
two events are attached to an event-based gateway, it might be that either event
may occur or that both events may occur (even though the second one to occur
may be discarded). In the above example, the case where both messages are
eventually received by the process is excluded. In other words, the events are
not in a “race” but rather in an exclusion relation. While this exclusion relation
between message events is not relevant for execution purposes, it is relevant for
(stochastic) simulation since it means that their occurrence should be drawn
from a common probability distribution. In OXProS, we rely on a non-standard
extension of event-based decision gateways to capture this exclusion dependency.

In OXProS, CPN simulation models are generated using templates. A tem-
plate takes as input a BPMN element of a given type, and produces a CPN
page. Multiple templates can exist for a given type of BPMN element. Since
each BPMN construct is mapped to a separate page, the mapping of a type of
element (e.g. task, event-based XOR gateway) can be replaced by a different
mapping without affecting other elements, so long as the inputs/output places
of the page generated by the new mapping are compatible with those of the
previous mapping.

Templates are also used for capturing resource management. For example,
Figure 6 shows two templates for resource allocation. The first one – Figure 6(a)
– corresponds to the “Role-based distribution” workflow resource pattern [10].4
The idea behind this pattern is that at runtime the execution engine routes the

4 For readability reasons, we omitted some details on the colored Petri nets in Figure 6.

205

task to the worklist of the resources that can perform a given task, e.g. staff
members with a particular profile/role. Eventually, one of those resources will
remove the workitem from worklist and perform it. This can be simulated with
an ML code attached to the transition “allocate”, and a timing annotation can
be used to record the waiting time. When the task is completed, the resource is
sent back to the resource pool by transition “release”. Existing business process
simulation tools generally implement this approach. However, there exist other
resource allocation patterns. As an example, consider the CPN shown in Figure
6(b) that captures the so-called “Chained execution” pattern. In this case, the
two subsequent tasks are assigned to the same resource. Both of these templates
are provided in OXProS, and developers may introduce additional alternative
templates. When a BPMN model is submitted to OXProS for simulation, the
request may refer to a simulation profile that determines which template should
be used for which BPMN construct. If no profile is specified, the default profile
is used.

4 Related work

Many commercial business process modeling tools incorporate a simulation com-
ponent, e.g. TIBCO Business Studio, IBM Websphere Business Modeler, ARIS,
FileNet and Protos, among others. Jansen-Vullers and Netjes [5] survey a num-
ber of process simulation tools and evaluate their suitability with respect to a
number of requirements. They conclude that no tool covers all the requirements,
and that CPN tools is a suitable option in terms of expressiveness but that it
may be too complex for use by business analysts.

A translation of Protos simulation models to CPN models is presented in [4].
This translation is rather straightforward because Protos models have many
commonalities with Petri nets. The authors also describe an extension of their
translation to handle configurable process models. A configurable process model
provides an integrated view of multiple process model variants. The tool pre-
sented in [4] is geared towards comparing the performance of multiple process
model variants captured in a given configurable process model.

Rozinat et al. [8] present an approach to mining simulation models from
event logs. The idea is to automatically generate a process model, represented
as a CPN, which will behave in a similar way as the process model that gen-
erated the original event log. Depending on the richness of the event log, the
resulting CPN may cover not only the control-flow perspective, but also the
data perspective (e.g. data attributes and branching conditions), the organiza-
tional perspective (e.g. roles, resources) and the performance perspective (e.g.
distribution of execution times). The authors follow the approach of mapping
each activity in the process to a separate sub-page, an idea which is also followed
in OXProS.

CPN tools has been used for generating synthetic logs to be used in the design
and testing of Process Mining algorithms [6]. In contrast to real-life data, the
log generated by simulation is free of noise and will include the perspectives that

206

are important for tuning a given mining algorithm. In [6], the authors outline a
set of ML functions to extend CPN tools in order to generate logs in the MXML
format. This is the format used by several process mining tools. OXProS follows
the idea of representing the simulation output in MXML and reuses the library
of MXML generation functions defined in [6].

In [11], the authors argue that current approaches to model resource alloca-
tion for process simulation are not realistic. For instance, scenarios where the
same resource is assigned to multiple processes (and thus needs to split its time
between them) are not supported by existing tools. Also, existing tools fail to
take into account that people work in batches and that they divide their time into
discrete intervals (“chunks”) that they allocate to different types of tasks. They
present a novel approach to capturing simulation models in which each resource
is captured as a separate CPN page. The CPN page of a resource captures the
resource’s lifecycle. Therefore, each resource (or each resource class) may have a
different lifecycle. While this approach leads to more realistic resource models,
one has to note that implementing such an approach requires significant input
from the modeler, since the modeler has to provide additional information for
each resource (class) and this information may not be available in some cases.

In line with the above body of research, we adopt CPNs as a basis for business
process model simulation. Unlike this body of work however, we adopt BPMN
as the notation for modeling business processes, since it is a widely-adopted
standard that strikes a tradeoff between ease-of-use for business analysts and
expressiveness. While some of the previous work can be easily adapted to sup-
port the simulation of BPMN models, BPMN brings in certain specificities that
warrant further study. Specifically, BPMN has a rich set of event types and
events can be used in different settings (e.g. event-based gateways, error events).
We have shown in this paper that there are multiple possible approaches for
simulating process models with event-based gateways and message events. Each
of these approaches strikes a different tradeoff between the amount of input data
required for simulation and the precision with which the simulation reproduces
the real-world phenomenon. The multiplicity of possible approaches justifies the
need for an extensible architecture which is one of the driving requirements of
OXProS.

5 Outlook

The current implementation of OXProS supports a restricted subset of BPMN
– XOR/AND gateways, tasks, plain events and start message events. Ongoing
work aims at extending the coverage of BPMN by adding templates incremen-
tally. The majority of these templates will be designed on the basis of the BPMN
to plain Petri nets transformation outlined in [2].

In order to validate the suitability of the template-based extensibility mecha-
nisms, we then plan to simulate process models from the logistics domain, where
resources (e.g. trucks) have capacity and speed constraints that cannot be cap-
tured using commercial business process simulation tools.

207

The current OXProS architecture is only able to generate MXML simulation
logs and leaves it up to the user to analyze these raw logs. In future, we plan to
incorporate analytics services into the OXProS architecture in order to compute
key performance indicators from the simulation logs. Another avenue for future
work is to allow OXProS to take as input not only process models with simulation
attributes, but also process execution logs, in order to simulate process models
based on real past executions and starting from a given state [9].

References

1. Workflow Management Coallition. Process Definition Interface – XML Process
Definition Language, October 2008.

2. R. Dijkman, M. Dumas, and C. Ouyang. Formal Semantics and Analysis of BPMN
Process Models. Information and Software Technology, 50(12):1281–1294, 2008.

3. Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

4. F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers, and H. M. W.
Verbeek. Protos2CPN: using colored Petri nets for configuring and testing busi-
ness processes. International Journal on Software Tools for Technology Transfer,
10(1):95–110, December 2007.

5. M.H. Jansen-Vullers and M. Netjes. Business Process Simulation – A tool survey.
In Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, 2006.

6. A. K. Alves De Medeiros and C. W. Günther. Using CPN Tools to Create Test
Logs for Mining Algorithms. In Proceedings of the Sixth Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools, pages 177–190, 2005.

7. C. Ren, W. Wang, J. Dong, H. Ding, B. Shao, and Q. Wang. Towards a Flexible
Business Process Modeling and Simulation Environment. In WSC ’08: Proceedings
of the 40th Winter Simulation Conference, pages 1694–1701, 2008.

8. A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst. Discovering
Colored Petri Nets from Event Logs. International Journal on Software Tools for
Technology Transfer, 10(1):57–74, December 2007.

9. A. Rozinat, M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C.J.
Fidge. Workflow Simulation for Operational Decision Support. Data & Knowledge
Engineering, 68(9):834–850, 2009.

10. N. Russell, W.M. P. van der Aalst, A.H. M. ter Hofstede, and D. Edmond. Work-
flow Resource Patterns: Identification, Representation and Tool Support. In 17th
International Conference on Advanced Information Systems Engineering (CAiSE),
Porto, Portugal, June 13-17, 2005, pages 216–232. Springer, 2005.

11. W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business Process
Simulation: How to get it right? Technical Report BPM-08-07, BPMcenter.org,
2008.

12. W.M.P. van der Aalst, M. Rosemann, and M. Dumas. Deadline-based Escalation
in Process-Aware Information Systems. Decision Support Systems, 43(2):492–511,
2007.

13. Michael Westergaard and Lars Kristensen. The Access/CPN Framework: A Tool
for Interacting with the CPN Tools Simulator. Applications and Theory of Petri
Nets, pages 313–322, 2009.

208

Relaxed Timed Coloured Petri Nets - A Motivational Case

Study !

Guy Edward Gallasch and Jonathan Billington

Computer Systems Engineering Centre
University of South Australia

Mawson Lakes Campus, SA, 5095, AUSTRALIA
Email: guy.gallasch@unisa.edu.au

Abstract. Transitions in a Timed Coloured Petri Net exhibit an eagerness-to-execute property
due to the time semantics employed. Every transition will occur at the earliest model time that
it becomes enabled, unless conflict prevents it from doing so. It is known that this property may
preclude discovery of optimal schedules, i.e. those that achieve the goal in the shortest time. In
this paper we propose a relaxation of the time semantics that eliminates the eagerness-to-execute
property. We provide motivation for our proposal in the context of task scheduling and describe
an attempt to model the effect of our proposal.
Keywords: Timed Coloured Petri Nets, Eagerness-to-Execute, Task Scheduling.

1 Introduction

The Computer Systems Engineering Centre has long been involved in collaborative projects
that apply Coloured Petri Nets (CPNs) [11] to industrial-scale systems. Two significant
projects have been with Australia’s Defence Science and Technology Organisation (DSTO) [3]
(and later with National Information and Communication Technology Australia [14]) on the
topic of operational planning [4, 5, 10, 12, 13, 15, 16], and modelling logistics processes [6–9].
We have used both untimed and Timed CPNs within these projects.

Timed CPNs incorporate a time semantics that causes an eagerness-to-execute behaviour
to be exhibited by transitions: transitions will occur at the earliest model time that they
become enabled (colour enabled and ready [11]) unless conflict results in them becoming
disabled. We have observed that when using CPNs to model a process for the scheduling of
tasks with fixed durations (as part of the operational planning work) that this eagerness-to-
execute property manifests itself as task schedules in which all tasks are executed as early as
possible. When producing schedules of tasks that are intended to achieve a particular goal,
this behaviour may preclude discovery of the optimal schedule, as it is possible that delaying
particular tasks may result in a schedule with a smaller makespan (time taken to achieve the
goal). An example of this is given in [5]. We have made similar observations in our modelling
work on logistics processes.

Early work (e.g. [2]) on scheduling used Timed Petri Nets, where durations are associated
with transitions, and considered cyclic systems. Closest to our work is that of van der Aalst [1]
who considered non-cyclic scheduling problems when using a timed Petri net formalism that
associates timestamps with tokens. The timestamps are incremented when transitions fire, by
a value associated with the transition. This is very close to the semantics of Timed CPNs,
which are a generalisation of this formalism. Aalst’s formalism thus possesses the same eager-
to-execute semantics and he recognised the same problem with failing to discover optimum

! This work was stimulated by the NICTA-UniSA Research Agreement “Modelling and Analysis of Operations
Planning using Untimed CPNs” of April 2006.

209

schedules. He discusses removing the restriction that transitions must fire as soon as possible
to allow discovery of optimal schedules from the reachability graph (RG), however, the results
in [1] are restricted to eager-to-execute semantics.

As suggested by Aalst [1], in this position paper, we propose a modified semantics for
Timed Coloured Petri nets that eliminates the eagerness-to-execute property by removing
the restriction that transitions must fire as soon as possible. Section 2 relates our experience
with using both untimed and Timed CPN models for the purpose of task scheduling. In
Section 3 we present our proposal and illustrate it with a simple example. We discover that
in some situations, such as task scheduling, relaxation of the time semantics in this way is
problematic, hence we present a refined proposal in Section 4. An attempt to model the effect
of our proposal is given in Section 5 in the context of task scheduling. The paper concludes
in Section 6.

2 Timed or Untimed?

A simple task-scheduling CPN model, presented in [4], was developed as part of the oper-
ational planning work that did not use conventional timestamps but encoded time within
tokens. The rationale behind the development of that model was to avoid the eagerness-to-
execute property of Timed CPNs, so that the execution of a task could be delayed and not
necessarily occur as soon as all of its starting requirements were satisfied.

As we discovered, using untimed CPNs and modelling time within tokens was not restric-
tive enough. This methodology resulted in sequences of actions in the RG that were, in fact,
inconsistent with the encoded timing information in the corresponding nodes and arcs [4],
so-called infeasible schedules. This stems from the lack of a synchronisation mechanism in
the untimed model, such as that provided by the global clock in Timed CPNs. Because of
this lack, the occurrence of transitions in the untimed model was not forced to obey tem-
poral constraints in the sequencing of task starting and terminating events, as the encoded
time information was calculated on a ‘per transition’ basis and written into tokens, somewhat
independently of the sequence of transition occurrences.

One way of addressing this shortcoming of the untimed model is to generate the infeasible
schedules but remove them or simply ignore them when analysing the RG. This is undesir-
able, as it addresses the effect of the problem but doesn’t tackle its source. Another, more
satisfactory solution is to not generate the infeasible schedules in the first place, but not pre-
clude any feasible sequences. This is the motivation for our proposal in this position paper in
Sections 3 and 4.

2.1 Using Untimed CPNs that Encode Time

In order to force transition occurrences in the model to obey temporal constraints, a syn-
chronisation mechanism needs to be implemented, to prevent events occurring before they
are ‘allowed to’, based on the timing information contained in the tokens. For example, if
two tasks start at time 0, one with a duration of 5 and the other with a duration of 10, then
the task with a duration of 10 cannot terminate before the task with a duration of 5 (when
considering fixed durations).

The RG of an untimed model will capture all interleavings of (concurrently) enabled tran-
sitions. It is this property of untimed CPNs that makes them desirable for the discovery of
all schedules of tasks, as this property manifests itself as the ability to delay the start of

210

tasks. However, this strength is also a weakness when modelling time within tokens. Because
a nondeterministic choice is made whenever more than one transition is (concurrently) en-
abled, there is nothing to prevent the occurrence of a particular transition from being delayed
indefinitely (provided that at least one other transition is always enabled). There is no simple
net structure mechanism to force a transition to occur ‘at a particular time’.

2.2 An Approach Based on Timed CPNs

Thankfully, however, Timed CPNs do provide such a synchronisation mechanism, that does

force transitions to occur at a particular model time. However, as we know, it forces all
transitions to occur as soon as they are able. What we would like to do is to allow some

transitions to be delayed.
The problem can be summarised as follows: Untimed CPNs provide the flexibility to delay

transitions, but not easily enforce time constraints, whereas Timed CPNs enforce timing
constraints but do not allow transitions to be delayed. In a sense, these two approaches sit
either side of the solution we are looking for. Our investigations in [5] indicate that it is
simpler to relax the behaviour of Timed CPNs than introduce rigidity into Untimed CPNs.

3 Removing the Eagerness to Execute Property

In a Timed CPN, in any given marking, the next transition to fire is nondeterministically
selected from only those colour-enabled transitions that are ready at the earliest model time.
The gist of our proposal is to allow this selection to be made from all colour-enabled transi-
tions. This is essentially how untimed CPNs behave, but with the global clock advancing to
the appropriate value (the amount required to enable the selected colour-enabled transition).
This follows the proposal given in [1].

This requires but a minor change to the definition of the enabling rule of Timed CPNs as
given in [11]. In terms of steps (multisets of binding elements), Definition 11.6 in [11] specifies
that a step, Y , is enabled at time t′ in a timed marking, (M, t∗) (where t∗ is the value of the
global clock in marking M), if and only if the following properties are satisfied:

1. all binding elements in the step satisfy the guard of the corresponding transition;
2. sufficient tokens exist in all untimed input places to satisfy the untimed input arcs for all

binding elements in the step;
3. appropriate timed tokens exist in all timed input places to satisfy the timed input arcs at

time t′ for all binding elements in the step;
4. the current global clock, t∗, is less than or equal to t′; and
5. t′ is the smallest time value for which there exists a step satisfying conditions 1 to 4.

Our proposal modifies the fifth condition so that any step can be considered, not just the
steps enabled at the smallest time value. We propose condition 5 to become:

5. t′ is the smallest time value that satisfies conditions 1 to 4 for step Y .

Hence, we do not require t′ to be the smallest time that satisfies conditions 1 to 4 over all
possible steps, thereby allowing any step that is colour enabled to be executed, and the model
time to advance only to the necessary time to enable that step. Note that condition 4 is still
valid with our proposed time semantics, as t′ does not need to be the minimum time at which

211

(a)

(b)

Fig. 1. (a) an Untimed CPN model and its Reachability Graph; and (b) a corresponding Timed CPN model
and its Reachability Graph.

step Y is enabled, but rather greater than or equal to that minimum time. Our intention is
for the modified condition 5 to allow steps to be enabled at times larger than the minimum
required to enable a step, i.e. if step Y1 is enabled at the earliest at time 5, and step Y2 is
enabled at the earliest at time 10, step Y2 can occur at time 10, causing step 5 to be delayed
until at least time 10. This modification still allows transitions to occur at the time they first
become enabled, but it also allows transitions to be delayed. The delay is not arbitrary, but
rather it corresponds to the increase in the global clock resulting from the occurrence of one
or more other transitions.

As an example, consider the Untimed CPN and its RG in Fig. 1 (a). ABC is an enumerated
colour set containing the values a, b and c. The three transitions, A, B and C, are concurrently
enabled and can occur in any order, which is reflected in the RG. RGs are generated using
interleaving and hence arcs of the RG represent a single binding element. In general a step
enabled in the initial marking (marking 1) could comprise, for example, all three transitions.
This corresponds to moving from marking 1 to marking 8 in one step.

Figure 1 (b) shows a Timed CPN version of the net in Fig. 1 (a) and its RG, in which the
global clock is 0 in the initial marking. From the five conditions given above for the existing
time semantics, the only step enabled by the initial marking is the step comprising transition
A at time 5: A’s guard is satisfied (condition 1); there are no untimed input places (condition
2); an ‘a’ token with timestamp 5 marks Place (condition 3); the current global clock, 0, is
less than or equal to 5 (condition 4); and no other step exists that is enabled at a time less
than 5 (condition 5). Transition A will occur at time 5, and for the same reasons B will occur
at time 10, and C at time 15. From the firing rule of Timed CPNs, the values for the global
clock for markings 2, 3 and 4 are 5, 10 and 15 respectively.

In the case of our relaxed timed semantics, the example in Fig. 1 (b) has 7 steps enabled
in the initial marking (we omit the empty binding, 〈〉, from each binding element): 1‘A, 1‘B,
1‘C, 1‘A++1‘B, 1‘A++1‘C, 1‘B++1‘C, and 1‘A++1‘B++1‘C. Condition 1 is satisfied because

212

all guards are true; there are no untimed input places so condition 2 is satisfied; there are
sufficient timed tokens on all timed input places and t′ can be set to 5, 10 or 15 as necessary
(condition 3); initially the global clock is zero, t∗ = 0, so t∗ ≤ t′ (condition 4); and t′ = 5
for 1‘A, t′ = 10 for 1‘B and 1‘A++1‘B; and t′ = 15 for the remaining four steps, to satisfy
condition 5. When generating the RG we only consider interleaving and hence only the first
3 steps (1‘A, 1‘B and 1‘C). On their occurrence we obtain markings 2, 3 and 4 shown in
Fig. 1 (a), except that timing information has been added: timestamps as in Fig. 1 (b) and
the value of the global clock being 0 for the initial marking, 15 for marking 2, 10 for marking
3 and 5 for marking 4 according to the firing rule for Timed CPNs. In marking 2, we can see
that transitions A and B are concurrently enabled at t′ = 15. t′ must be set to 15 to satisfy
both conditions 4 and 5. This leads to the successor markings 5 and 6, and their successor,
marking 8, with the global clock remaining at 15 (t∗ = 15). In marking 3, t∗ = 10. C is enabled
with t′ = 15, to satisfy conditions 3 and 5 (thus condition 4 also holds), leading to marking 5
with t∗ = 15. A is enabled with t′ = 10 (to satisfy conditions 4 and 5) and results in marking
7, with t∗ = 10. In marking 4, t∗ = 5. B is enabled with t′ = 10 (to satisfy conditions 3 and
5), leading to marking 7 and similarly C is enabled with t′ = 15, resulting in marking 6. In
marking 7, C is enabled with t′ = 15 to satisfy conditions 3 and 5 (condition 4 is satisfied as
t∗ = 10), and when it occurs results in marking 8 (t∗ = 15). Hence we can see that in this
case the RG with relaxed time semantics is isomorphic to the untimed RG. This illustrates
how our relaxed time semantics allows transitions to be delayed until after the occurrence of
one or more other transitions enabled by a larger global clock.

4 Refining our Relaxed Time Semantics

The proposal in Section 3 follows our own initial belief and coincides with the proposal
in [1]. But we have found situations in which this particular relaxation of the time semantics
introduces behaviour that we do not desire. For example, our task scheduling models (see
e.g. [13]) execute tasks of fixed duration using one transition to represent the start of the task
and another transition to represent the termination of the task. If such a task has a fixed
duration, d, then we desire the task termination transition to occur exactly d time units after
the task start transition, and not be delayed. The time semantics resulting from our proposed
change are too relaxed in this sense, as we can no longer enforce the execution of transitions
at specific model times.

A refinement to our proposal is thus to allow only a subset of transitions to be delayed
within a Timed CPN model. It is possible to modify the definition of Timed CPNs from [11]
(Definition 11.4, for non-hierarchical Timed CPNs) so that the definition of transitions recog-
nises two disjoint classes of transition: fixed transitions (not delayable) and delayable transi-
tions; such that point 2 of Definition 11.4 from [11] becomes:

2. T = Tf∪Td is a finite set of transitions comprising fixed transitions, Tf , and delayable

transitions, Td, such that Tf ∩ Td = ∅ and P ∩ T = ∅.

The enabling rule must then be modified to disallow the enabling of any step that would
require the global clock to advance past the model time at which any fixed transition is
enabled. To do this, condition 5 of Definition 11.6 from [11] can be further modified from that
in Section 3 to become:

213

5. t′ is the smallest time value that satisfies conditions 1 to 4 for step Y , and there does
not exist any other step comprising at least one fixed transition that is enabled at a time
value less than t′.

By doing so, we are able to prevent certain transitions from being delayed, and hence in the
context of task scheduling enforce fixed task durations. This proposal is more general than
our first proposal in Section 3 in the sense that we can capture all the behaviour of the first
proposal but also enforce the eagerness-to-execute behaviour exhibited by the current time
semantics of Timed CPNs, whereas our first proposal cannot enforce such behaviour.

One of the motivations given in [11] for adopting the particular time semantics for Timed
CPNs is to preserve occurrence sequences between the timed model and its corresponding
untimed equivalent: the occurrence sequences exhibited by a Timed CPN model will be a
subset of those exhibited by its corresponding Untimed CPN model [11]. This means that
turning an untimed model into a timed model cannot introduce new behaviour in terms of
occurrence sequences. A second motivation, for considering that the occurrence of transitions
is an instantaneous event, is that the set of reachable markings of the Timed CPN is a subset
(when excluding the global clock and timestamps) of those of the corresponding Untimed
CPN, i.e. no new markings are introduced when time is introduced into an untimed model.

We conjecture that our proposal for relaxing the time semantics of Timed CPNs also
preserves these properties. Further, we contend that the reachability graphs of relaxed timed
CPNs (with no fixed transitions) are isomorphic to the corresponding untimed model.

5 Modelling our Proposal

In [5] we have attempted to produce a highly simplified version of the task scheduling model
from [13] that exhibits behaviour similar to that which would result from implementation of
the proposed time semantics from Section 4. We do so by using additional net structure to
induce a delay.

Figure 2 shows the simplified task execution engine from [5]. The two transitions, Start

and Terminate, model the start and termination of tasks. Tasks to be executed initially reside
in the Idle Tasks place, moving to the Executing place while executing, and ending up in the
Terminated place once executed. Resources and conditions provide constraints on the specific
tasks that can be executed, and when. We wish for Start to be able to be delayed, but not
Terminate, so that fixed durations for tasks can be enforced by the model. More details of the
basic operation of the complete model, from which this highly simplified version was derived,
can be found in [13].

In bold are two places, Semaphore 1 and Semaphore 2, both members of the Semaphore

fusion set (but drawn separately for convenience), and arcs that connect these two places to
the Start and Terminate transitions. These two places and their associated arcs implement the
mechanism that mimics a relaxed time semantics, along with the net shown in Fig. 3, which
we now explain.

In Fig. 3 is a place, Semaphore, and a transition, InduceDelay. The sole purpose of this page
is to allow the model time to advance instead of a timed transition being forced to occur. The
Semaphore place, part of the same fusion set as the two semaphore places in Fig. 2, contains
a single token comprising a boolean and a time value. InduceDelay is enabled whenever the
boolean part is true, and its occurrence changes the boolean part to false without changing
the time value stored in the token.

214

IdleTasks

Task

P In

Start

[StartingRequirementsSatisfied
(task,allConditions,allResources)]

Resources

ResourceList

P I/O

Executing

Task

Conditions

ConditionList

P I/O

Terminate

Terminated

Task

Ready

E

FG Ready

Semaphore
1

SEMAPHOREFG Semaphore

1‘(true,IntInf.fromInt(0))

Semaphore
2

SEMAPHORE
FG Semaphore

1‘(true,IntInf.fromInt(0))

task

SetTaskStartTime(task)
@+(#duration(task))

task

task

allResources

allConditions

UpdateConditions
(task,allConditions)

allConditions

e

ReturnResources
(task,allResources)

ResourcesNotRequired
(task,allResources)

allResources

(true,sematime)

(if sematime <> curTime()
then true else b, curTime())

(b,sematime)

Fig. 2. Part of a Simplifed Task Execution Engine Model from [5].

Figure 2 shows how the token in Semaphore can be used to delay transitions. Transitions
that we want to be able to delay are connected to the Semaphore place with an arc inscrip-
tion requiring the semaphore to be true, as is the case with the Start transition in Fig. 2.
InduceDelay is enabled at model time 0, and hence any number of transitions can occur at
time 0 (provided they are colour-enabled and ready) before InduceDelay nondeterministically
sets the semaphore to false. So, suppose Start was enabled at time 0. If InduceDelay occurs
first, Start becomes disabled, and will not be enabled again until the semaphore is again set
to true. Alternatively, Start could have occurred at time 0. Transitions that we don’t wish to
delay are connected to the Semaphore place by arcs that reset the boolean to true and update
the time value to the current model time, as is the case with the Terminate transition. Once
such a transition occurs, the timed transitions that were previously disabled (delayed) can
now occur, if all other enabling conditions are still satisfied.

One emergent property of this implementation was that transitions can be delayed indefi-
nitely, and indeed never occur. This is either a limitation or a bonus, depending on your point
of view. For our operational planning work this was a bonus, as we also wanted to model
the ability of tasks to be delayed indefinitely. Unfortunately, implementing a solution in this
way results in state explosion caused by the additional InduceDelay transition and Semaphore

place, and is not straightforwardly extended to larger models with more complex transition
interactions.

215

InduceDelay

Semaphore

SEMAPHOREFG Semaphore

1‘(true,IntInf.fromInt(0))

(false,sematime)(true,sematime)

Fig. 3. The InduceDelay Transition to mimic our proposed relaxed time semantics.

6 Conclusions and Future Work

In this paper we propose a relaxation of the time semantics of Timed CPNs to allow some or
all transitions to be excluded from the eagerness-to-execute behaviour imposed by the existing
time semantics of Timed CPNs. This new time semantics has application in the area of task
scheduling, including the modelling of logistics systems and operational planning.

The relaxed semantics is a true relaxation in the sense that it permits all behaviour of
the current time semantics of Timed CPNs while also permitting all behaviour allowed by
our first proposal in Section 3. Our intial proposal did also capture the eagerness-to-execute
behaviour given by the current time semantics but not without also allowing the possibility
that all transitions could be delayed, whereas our second proposal has the capability to enforce
eagerness-to-execute behaviour.

If our conjecture that occurrence sequences and markings are preserved from Untimed
CPNs under our new time semantics, it may follow that many, if not all, of the theory
surrounding the properties and analysis capabilities of Timed CPNs will also hold for our
new time semantics. Hence, our new time semantics has the potential to be used for the
analysis of any system currently analysed by Timed CPNs. Establishing a firm theoretical
foundation is thus of high significance and priority. If this can be established, and our proposal
given tool support, we would like to investigate the use of this modified time semantics in a
case study of significance, such as the operational planning work in [5,13].

In the previous section we illustrated an attempt to model our proposed time semantics,
however this becomes cumbersome and error-prone for large-scale models, as we discovered
when we attempted to do something similar to the logistics distribution network model in [6,8].
Implementing the modified time semantics in a tool will allow the operational planning models
to be used without any modification.

References

1. W.M.P. van der Aalst. Petri net based scheduling. OR Spectrum, 18:219–229, 1996.
2. J. Carlier and P. Chretienne. Timed Petri Net Schedules, volume 340 of Lecture Notes in Computer Science,

pages 62–84. Springer, 1988.

216

3. Defence Science and Technology Organisation (DSTO). http://www.dsto.defence.gov.au.
4. B. Han G. E. Gallasch and J. Billington. COAST User Interface Design, Integration and Support, and the

Development of an Untimed COAST Server. Technical Report CSEC-22, Computer Systems Engineering
Centre Report Series, University of South Australia, June 2005, revised July 2005. (93 pages).

5. G. E. Gallasch and J. Billington. Modelling and Analysis of Operations Planning Using Untimed and Timed
CPNs. Technical Report CSEC-27, Computer Systems Engineering Centre Report Series, University of
South Australia, September 2006. (73 pages).

6. G. E. Gallasch, N. Lilith, and J. Billington. A Coloured Petri Net Model of a Defence Logistics Physical
Network. Technical Report CSEC-25, Computer Systems Engineering Centre Report Series, University of
South Australia, August 2006. (140 pages).

7. G. E. Gallasch, N. Lilith, and J. Billington. Coloured Petri Net Modelling of Defence Logistics. Technical
Report CSEC-33, Computer Systems Engineering Centre Report Series, University of South Australia,
July 2008. (198 pages).

8. G. E. Gallasch, N. Lilith, J. Billington, L. Zhang, A. Bender, and B. Francis. Modelling Defence Logistics
Networks. International Journal on Software Tools for Technology Transfer, special section on CPN’06,
10(1):75–93, 2008.

9. G. E. Gallasch, C. Moon, B. Francis, and J. Billington. Modelling personnel within a defence logistics
maintenance process. In Proceedings of 1st International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems (SIMUTools 2008), March 2008. (10 pages).

10. G. E. Gallasch J. Freiheit and J. Billington. About the Use of Untimed CPN Models for COAST and
Further COAST Client Development Support. Technical Report CSEC-20, Computer Systems Engineering
Centre Report Series, University of South Australia, December 2004. (33 pages).

11. K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of Concurrent Systems.
Springer, 2009.

12. L. M. Kristensen. The COAST Server, Design and Implementation. Technical Report CSEC-5, Computer
Systems Engineering Centre Report Series, University of South Australia, July 2002.

13. L. M. Kristensen, P. Mechlenborg, L. Zhang, B. Mitchell, and G. E. Gallasch. Model-based Development
of a Course of Action Scheduling Tool. International Journal on Software Tools for Technology Transfer,
special section on CPN’06, 10(1):5–14, 2008.

14. NICTA - Australia’s ICT Research Centre of Excellence. http://www.nicta.com.au.
15. L. Zhang, L. M. Kristensen, C. Janczura, G. E. Gallasch, and J. Billington. A Coloured Petri Net based Tool

for Course of Action Development and Analysis. In Formal Methods in Software Engineering and Defence
Systems 2002, Proceedings of the Satellite Workshops on Software Engineering and Formal Methods and
Formal Methods Applied to Defence Systems, volume 12 of Conferences in Research and Practice in
Information Technology Series, pages 125–134. Australian Computer Society Inc., 2002.

16. L. Zhang, L. M. Kristensen, B. Mitchell, G. E. Gallasch, P. Mechlenborg, and C. Janczura. COAST -
An Operational Planning Tool for Course of Action Development and Analysis. In Proceedings of the
9th International Command and Control Research and Technology Symposium (ICCRTS), Copenhagen,
Denmark., 2004.

217

218

Search-Order Independent State Caching!

Sami Evangelista1,2 and Lars Michael Kristensen3

1 Computer Science Department, Aarhus University, Denmark
2 LIPN, Université Paris 13, France

sami.evangelista@lipn.univ-paris13.fr
3 Department of Computer Engineering, Bergen University College, Norway

lmkr@hib.no

Abstract. State caching is a memory reduction technique used by mo-
del checkers to alleviate the state explosion problem. It has traditionally
been coupled with a depth-first search to ensure termination. We propose
and experimentally evaluate an extension of the state caching method
for general state exploring algorithms that are independent of the search
order (i.e., search algorithms that partition the state space into closed
(visited) states, open (to visit) states and unmet states).

1 Introduction

Model checking is one of the techniques used to detect defects in system designs.
Its principle is to perform an exhaustive exploration of all system states to track
erroneous behaviors. Although it provides some advantages compared to other
verification methods, its practical use is sometimes prohibited by the well-known
state explosion problem: the state space of the system may be far too large to
be explored with the available computing resources.

The literature is replete with examples of techniques designed to tackle, or at
least postpone, the state explosion problem. While some techniques, like partial
order reduction [12], reduce the part of the state space that must be explored
while still guaranteeing soundness and completeness, more pragmatic approaches
make a better use of available resources to extend the range of systems that
can be analyzed. State compression [16], external memory algorithms [1], and
distributed algorithms [24] are examples of such techniques. In this paper we
focus on the state caching method first proposed by Holzmann in [14].

State caching is based on the idea that, in depth-first search (DFS), only the
states on the current search path need to be in memory to detect cycles. All
states that have been visited but have left the DFS stack can thus be deleted
from memory without endangering the termination of the search. This comes at
the cost of potentially revisiting states and for many state spaces, time becomes
the main limiting factor.

The state caching method has been developed and mostly studied in the
context of depth-first search since this search order makes it easy to guarantee

! Supported by the Danish Research Council for Technology and Production.

219

termination. In this paper we propose an extension of state space caching to
General State Exploring Algorithms (GSEA). Following the definition of [5], we
put in this family all algorithms that partition the state space into three sets:
the set of open states that have been seen but not yet expanded (i.e., some of
their successors may not have been generated); the set of closed states that have
been seen and expanded; and the set of unseen states. DFS, BFS, and directed
search algorithms [8] like Best-First Search and A! are examples of such general
state exploring algorithms.

The principle of our extension is to detect cycles and guarantee termination
by maintaining a tree rooted in the initial state and covering all open states.
States that are part of that tree may not be removed from the cache, while others
are candidates for replacement. Hence, any state that is not an ancestor in the
search tree of an unprocessed state can be removed from memory. This tree is
implicitly constructed by the state caching algorithm in DFS, since DFS always
maintains a path from the initial state to the current state, while for GSEA it
has to be explicitly built. However, our experimental results demonstrate that
the overhead both in time and memory of this explicit construction is negligible.

The generalized state caching reduction is implemented in our model checker
ASAP [26]. We report on the results of experiments made to assess the benefits of
the reduction in combination with different search orders: BFS, DFS, and several
variations and combinations of these two; and with the sweep-line method [20]
which we show is compatible with our generalized state caching reduction. The
general conclusions we draw from these experiments are that (1) the memory
reduction is usually better with DFS than with BFS although we never really
experienced with BFS a time explosion; (2) BFS is to be preferred for some
classes of state spaces; (3) a combination of BFS and DFS often outperforms DFS
with respect to both time and memory; (4) state caching can further enhance
the memory reduction provided by the sweep-line method.

Structure of the paper. Section 2 presents the principle of a general state
exploring algorithm, and Section 3 describes our state caching mechanism for
the general algorithm. In Section 4 we put our generalized state caching method
into context by discussing its compatibility with related reduction techniques.
Section 5 reports on the results of experiments made with the implementation
of the new algorithm. Finally, Section 6 concludes this paper.

Definitions and notations. From now on we assume to be given a universe of
system states S, an initial state s0 ∈ S, a set of events E , an enabling function
en : S → 2E and a successor function succ : S × E → S; and that we want to
explore the state space implied by these parameters, i.e., visit all its states. A
state space is a triple (S, T, s0) such that S ⊆ S is the set of reachable states
and T ⊆ S × S is the set of transitions defined by:

S = {s0} ∪ { s ∈ S | ∃s1, . . . , sn ∈ S with s = sn ∧ s1 = s0 ∧
∀i ∈ {1, . . . , n − 1} : ∃ei ∈ en(si) with succ(si, ei) = si+1}

T = {(s, s′) ∈ S × S | ∃e ∈ en(s) with succ(s, e) = s′}

220

Related work. The principle of state caching dates back to an article of Holz-
mann [14] in 1985. He noted that, in DFS, cycles always eventually reach a state
on the stack and, hence, keeping in memory the states on the current search path
ensures termination. Forgetting other states comes at the cost of potentially re-
exploring them. In the worst case, if any state leaving the stack is removed from
memory, a state will be visited once for each path connecting it to the initial
state leading to a potential explosion in run-time. Hence, depending on available
memory, a set of states that have left the stack are cached in memory.

The question of the strategy to be used for replacing cached states has been
addressed in several papers: [11,14,15,17,18,23]. States can be chosen according
to various criteria (e.g., in- and out-degree, visit frequency, stack entry time) or
in a purely random way. The experiments reported in [23] stress that no strategy
works well on all models and that strategies are, to some extent, complementary.

The sleep-set reduction technique [12] is fully compatible with state caching
[13]. This reduction eliminates most “useless” interleavings by exploiting the
so-called diamond property of independent transitions: whatever their execution
order they lead to the same state. This has the natural consequence to limit
revisits of states removed from the cache. For some protocols (e.g., AT&T’s
Universal Receiver Protocol, MULOG’s mutual exclusion protocol), the result
of this combination is impressive: at a reasonable cost in time, the cache size can
be reduced to less than 3% of the state space.

All the related work discussed above are coupled with depth-first search. To
the best of our knowledge, the only work exploring the combination of state
caching with BFS is [21] which is more closely related to our work. Termination
in [21] is ensured by taking snapshots of the state space, i.e., memorizing full
BFS levels. By increasing the period between two snapshots it is guaranteed
that cycles will eventually reach a “pictured” state. This approach is in general
incomparable with the present work. The algorithm of [21] has to keep full levels
in memory while ours stores some states of each level. Besides this algorithm, [21]
also introduces some hierarchical caching strategies and learning mechanisms.

Some other reduction techniques share the philosophy of state caching: only
store a subset of the state space while still guaranteeing termination. Examples
include the “to-store-or-not” method [3] and the sweep-line method [20]. The
compatibility of our algorithm with these two works is discussed in Section 4.

2 General State Exploring Algorithm

A general state exploring algorithm is presented in Fig. 1. It operates on two
data structures. The set of open states, O, contains all states that have been
reached so far, but for which some successor(s) have not yet been computed.
Once all these successors have been computed, the state is moved from O to
the set of closed states C. Initially, the closed set is empty, and the open set
only contains the initial state. A set of events evts is associated with each open
state. It consists of its enabled events that have not been executed so far. In each
iteration, the algorithm selects an open state s (l. 3), picks one of its executable

221

1: C := ∅ ; O := {s0} ; s0.evts := en(s0)
2: while O += ∅ do
3: s := choose from O
4: if there exists e ∈ s.evts then

5: s.evts := s.evts \ {e}
6: s′ := succ(s, e)
7: if s′ /∈ C ∪O then
8: O := O ∪ {s′}
9: s′.evts := en(s′)

10: if s.evts = ∅ then
11: C := C ∪ {s} ; O := O \ {s}

Fig. 1. A general state exploring algorithm

events e (if any, since the state may
be a terminal state) and removes it
from the set of events to execute
s.evts (ll. 4–5). The successor state
s′ of s reached via the execution of
e is computed, and if it is neither
in the closed nor in the open set (ll.
7–9), it is put in O to be later vis-
ited and its enabled events are com-
puted. Once the successor is com-
puted, we check if all the enabled
events of s have been executed (ll.
10–11), in which case we move s
from O to the closed set C.

In the rest of this paper we shall
use the following terminology. Ex-
panding a state s consists of executing one of its enabled events and putting
its successor in the open set if needed (ll. 6–9). A state s will be characterized
as expanded if all its successor states have been computed, i.e., s.evts = ∅, and
it has been moved to the closed set; and as partially expanded if some of its
successors have been computed, but s is still in the open set. A state s generates
state s′ if succ(s, e) = s′ for some e ∈ en(s) and s′ /∈ C ∪O when expanding s.
In this case, the transition (s, s′) is said to be the generating transition.

The algorithm in Fig. 1 differs slightly from explicit state space search algo-
rithms usually found in the literature, e.g., like the GSEA of [5]. In an iteration,
the algorithm only executes one event rather than all executable events of a
state. This variation is more flexible as it allows us to have open states that
are partially expanded. Hence, it naturally caters for search order independence.
Depending on the implementation of the open set, the search strategy can be,
for instance, depth-first (with a stack), breadth-first (with a queue), or best-first
(with a priority queue). Since each search order has its pros and cons, it is of
interest to design reduction techniques working directly on the generic search
order independent template, e.g., like the partial order reduction proposed in
[5], rather than on a specific instance.

3 State Caching for GSEA

The key principle of state caching for depth-first search is that cycles always
eventually reach a state on the DFS stack. Hence, it is only necessary to keep
this stack in memory to ensure termination of the algorithm. In breadth-first
search, or more generally for a GSEA, we do not have such a structure to rely
on in order to detect cycles. Hence, a BFS naively combined with state caching
may never terminate.

To overcome this limitation, we propose to equip GSEA with a mechanism
that allows it to avoid reentering cycles of states and thereby ensures termination.

222

The principle of this modification is to maintain, as the search progresses, a so-
called termination detection tree (TD-tree). The TD-tree is rooted in the initial
state s0 and keeps track of unprocessed states of the open set as explained below.
To formulate the requirements of the TD-tree we shall use the term search tree.
The search tree is the sub-graph of the state space which at any moment during
the execution of GSEA covers all open and closed states, and contains only
generating transitions. In other words, it consists of the state space explored so
far from which we remove transitions of which the exploration led to an already
seen state, i.e., in the set C ∪O.

The three following invariants related to TD-tree must be maintained during
the state space search:

I1 The TD-tree is a sub-tree of the search tree;
I2 All open states are covered by the TD-tree;
I3 All the leaves of the TD-tree are open states.

A sufficient condition for the modified GSEA to terminate is that we always
keep in memory the states belonging to the TD-tree. Intuitively, when expanding
a state s picked from the open set, we are sure (provided invariants I1 and I2 are
valid) that any cycle covering s will at some point contain a state s′ belonging
to the TD-tree. States that can be deleted from memory are all closed states
that are not part of the TD-tree: their presence is not required to detect cycles.
Note that only the two first invariants are required for termination. Invariant I3
just specifies that the TD-tree is not unnecessarily large, i.e., it does not contain
states we do not need to keep in the closed set to detect cycles. To sum up, all
the states that may not be removed from the cache are (besides open states)
all closed states that generated (directly or indirectly through a sequence of
generating transitions) a state in the open set.

As an example, let us see see how a BFS extended with this mechanism will
explore the state space of Fig. 2(top left). Each state is inscribed with a state
number that coincides with the (standard) BFS search order. The TD-tree has
been drawn in the right box for several steps of the algorithm. The legend for
this box is shown in the bottom left box of the figure. Note that these graphical
conventions are used throughout the paper. Some reference counters used to
maintain the TD-tree appear next to the states. They will not be discussed now.
Their use will become clear after the presentation of the algorithm.

After the expansion of the initial state 0, the queue contains its two successor
states 1 and 2 and the TD-tree is equivalent to the search tree (see Step 1). At
the next level, we expand open states 1 and 2. State 1 first generates states 3
and 4. As state 4 is already in the open set when state 2 is expanded, this one
does not generate any new states, which means that at Step 2, state 2 does not
have any successors in the search tree. It is deleted from the TD-tree, and we
assume that the algorithm also removes it from the closed set. The expansion of
open states 3 and 4 at the next level generates the three states 5, 6 and 7. At
Step 3 all the states that were expanded at level 2 generated at least one (new)
state. Hence, no state is deleted from the TD-tree. Level 3 is then processed.

223

2

0

3

5
0

6
0

3
0

6 75

4

1

0 1

11

21
3

1

2

closed state candidate for
replacement in the cache
and removed from the !tree

closed state not candidate
for replacement in the cache

0

1 2

3

65

4

7

4

0

1 2

Step 4Step 3

2

1 1

1 1

1

02

1

1 1

4

1

0

2

1

1

7

open state

Step 1 Step 2

1

TD

Fig. 2. A state space (top left), the TD-tree at three different stages of a BFS
(right) and the legend for the right box (bottom left). Step 1: after the expansion
of state 0. Step 2: after the expansion of states 1 and 2. Step 3: after the expansion
of states 3 and 4. Step 4: after the expansion of states 5, 6 and 7.

States 5 and 6 do not have any successors and state 7 has a single successor,
state 2, which has been visited but deleted from memory. Hence, it is put in the
open set. States 5 and 6 can be deleted from the TD-tree at Step 4 since they are
terminal states and do not have any successors in the TD-tree. After the deletion
of state 5, state 3 is in the same situation and becomes a leaf of the TD-tree.
It is thus also deleted. The queue now only contains state 2 that had already
been previously expanded. Its only successor, state 4, belongs to the TD-tree and,
hence, is present in memory. The algorithm thus detects the cycle 2→4→7→2.
After this last expansion, the queue is empty and algorithm terminates.

The operation of our algorithm is similar to the basic state caching reduction
for DFS with the difference that the TD-tree is implicitly maintained by the DFS
state caching algorithm: it consists of all the open states located on the DFS
stack. Closed states have left the stack so they have not generated the states
currently on the stack and do not need anymore to be part of the TD-tree.

We now introduce the algorithm of Fig. 3, a GSEA extended with the state
caching mechanism we described above. The main procedure (on the left column)
works basically as the algorithm of Fig. 1 except that we inserted the lines
preceded by a ! to manage the state cache. Apart from the closed set C and
open set O, the algorithm also uses a set D ⊆ C that contains all states candidate
for deletion if memory becomes scarce, i.e., all the states that left the TD-tree.
Hence, the TD-tree is composed of the states in (C ∪O) \ D.

224

1: C := ∅ ; O := {s0} ; s0.evts := en(s0)
2: ! D := ∅ ; s0.refs := 1 ; s0.pred := nil

3: while O "= ∅ do

4: s := choose from O
5: if there exists e ∈ s.evts then

6: s.evts := s.evts \ {e}
7: s′ := succ(s, e)
8: if s′ /∈ C ∪O then

9: O := O ∪ {s′}
10: s′.evts := en(s′)
11: ! s.refs := s.refs + 1
12: ! s′.refs := 1 ; s′.pred := s
13: ! garbageCollection()
14: if s.evts = ∅ then

15: C := C ∪ {s} ; O := O \ {s}
16: ! unref (s)

17: procedure unref(s) is

18: s.refs := s.refs − 1
19: if s.refs = 0 then

20: D := D ∪ {s}
21: if s.pred "= nil then

22: unref (s.pred)
23:

24: procedure garbageCollection() is

25: if |O| + |C| > MaxMemory then

26: if D = ∅ then

27: report “out of memory”
28: else

29: s := choose from D
30: C := C \ {s}
31: D := D \ {s}

Fig. 3. A general state exploring algorithm combined with state caching

After each state expansion, the algorithm calls the garbageCollection proce-
dure (l. 13) that checks if the number of states kept in memory exceeds some
user-defined limit MaxMemory. In that case, one of the candidates for replacement
is selected from D according to a replacement strategy and deleted from both C
and D (ll. 29–31) to make room for the state newly inserted in O. If there is no
candidate (ll. 26–27), the algorithm terminates with a failure: the TD-tree is too
large to fit within user-defined available memory.

In order to maintain the TD-tree, two additional attributes are associated with
states. The first one, pred , identifies the predecessor of the state that previously
generated it, i.e., its predecessor in the search tree. It is set at l. 12 when a new
state s′ is generated from s. The second attribute, refs , is a reference counter
used by the garbageCollection procedure to determine when a closed state leaves
the TD-tree and can become a candidate for replacement. The following invariant
is maintained by the algorithm for any s ∈ C ∪O:

I4 s.refs = |{s′ ∈ C ∪O with s′.pred = s ∧ s′.refs > 0}| +

{

0 if s /∈ O
1 if s ∈ O

In other words, s.refs records the number of successors of s in the TD-tree in-
cremented by 1 if s is an open state. It directly follows from invariant I4 that
any state s with s.refs = 0 must be moved to D and deleted from the TD-tree in
order to satisfy invariant I3. This is the purpose of procedure unref called each
time a state s leaves the open set (ll. 15–16). Its counter is decremented by 1,
and if it reaches 0 (ll. 19–22), s is put in the candidate set and the procedure is
recursively called on its predecessor in the TD-tree (if any).

Let us consider again the TD-trees depicted in Fig.2(right). Reference counters
are given next to the states. At Step 4, after the expansion of states 5, 6, and
7 of level 3, the reference counter of 5 and 6 reaches 0: they have left the open

225

set and have no successors in the search tree, i.e., they did not generate any
new state. They can therefore be put in the candidate set and leave the TD-tree.
unref is then also recursively called on states 3 and state 4 and their counters are
decremented to 0 and 1, respectively. Hence, state 3 is also put in the candidate
set. This finally causes unref to decrement the reference counter of state 1 to 1.

Lemma 1. The algorithm of Fig.3 terminates after visiting all states.

Proof. Let T be the (only) sub-tree of the search tree that satisfies invariants
I1, I2 and I3 and assume that the states belonging to T always remain in set
C∪O. Let s1, . . . , sn ∈ S be a cycle of states with ∀i ∈ {1, . . . , n} : succ(si, ei) =
si mod n+1, and such that s1 is its first state to enter O. This cycle is necessarily
detected, i.e, during the search we reach some si ∈ C ∪ O. Let us suppose the
contrary. Then, each state si ∈ {s1, . . . , sn−1} generates the state sj = si+1, i.e.,
sj /∈ C ∪O when event ei is executed from si. Hence, after the execution of en−1

by the algorithm it holds from invariants I1 and I2 that {s1, . . . , sn} ⊆ T since
sn ∈ O and each sj ∈ {s2, . . . , sn} was generated by sj−1. Thus, s1 ∈ C ∪ O
when event en is executed from sn, which contradicts our initial assumption.

It is straightforward to see from invariant I4 that s.refs > 0 ⇔ s ∈ T . After
an iteration of the algorithm (ll.3–16), invariant I4 is trivially ensured. This
implies that any s ∈ C with s.refs = 0 (⇔ s ∈ D) can be deleted from C.

The modified GSEA of Fig. 3 consumes slightly more memory per state to
represent the pred and refs attributes. In our implementation pred is encoded
with a 4 byte pointer and refs using a single byte. Nevertheless, these 5 bytes are
usually negligible compared to the size of the bit vector used to encode states.

4 Compatibility with Other Reduction Techniques

We discuss in this section several aspects of our algorithm and its combination
with some selected reduction techniques.

4.1 Single-Successor States Chain Reduction

Closely related to state caching, the idea of [3] is to use a boolean function
that, given a state, determines if the state should be kept in the closed set or
not. The paper proposes functions that guarantee the termination of the search.
One is to only store states having several successors. The motivation is that the
revisit of single-successor and deadlock states is cheap. It consists of reexecuting
a sequence until reaching a branching state (which has several successors and
which is therefore stored). To avoid entering cycles of single-successor states, the
kth state of these sequences is systematically stored.

In order to combine this reduction of [3] with our state caching mechanism we
have to carefully reduce chains that are part of the TD-tree. First we notice that
we do not have to worry about cycles of single-successor states: they will eventu-
ally reach a state of the TD-tree and all their states will immediately leave the TD-
tree becoming candidates for replacement. To reduce chains of single-successor

226

states we associate with each open state s an attribute ancestor that points to
the branching state that generated the first state of the chain which s belongs
to, or is equal to nil if s is a branching state. The following piece of code specifies
how this attribute is used to remove such chains from the TD-tree. It must be
inserted after the generation of state s′ from s at line 12.

s′.ancestor :=







if |en(s′)| = 1 and s.ancestor = nil then s
if |en(s′)| = 1 and s.ancestor += nil then s.ancestor
else nil

if s′.ancestor = nil and s.ancestor += nil then

a := s.ancestor ; s′.pred := a ; a.refs := a.refs + 1 ; unref (s)

ancestor is first set when a single-successor state is generated from a branching
state and then propagated later along all the states of the chain. If s′ is a
branching state and s.ancestor points to some state, this means that we just left
a chain. The reduction is done by directly linking s′ to s.ancestor and removing
all the states of the chain from the TD-tree, by unreferencing s.

Step 2

Step 1
s1

s1

a sn

a sn s

Fig. 4. Reduction of a single-
successor state chain

Fig. 4 shows an example of this reduc-
tion. Dotted arcs graphically represent the pred
pointer of each state in the TD-tree. At Step
1, s1, . . . , sn form a reducible chain of single-
successor states. All their ancestor field points
to a, the branching state that generated the first
state of the chain. State sn then generates s
that has several successors (see Step 2). Hence
s.ancestor = nil += sn.ancestor and a reducible
chain is detected. The consequence is to break
the link from s to sn and make s.pred directly
point to sn.ancestor = a. The chain is then re-
moved from the TD-tree by invoking unref (sn).

4.2 Distributed Memory Algorithms

Most works in the field of distributed verification follow the seminal work of Stern
and Dill [24]. Their algorithm partitions the state space upon several processes
using a partition function mapping states to processes. Each process involved in
the verification is responsible of storing and exploring the states it is assigned
by this function. Whenever a process p generates a state owned by process q += p
it has to pack it into a message and send it to q that, upon reception, will store
it in its open state and expand it later.

Our reduction is compatible with this algorithm. The only issue is raised by
the unref procedure, used to maintain the TD-tree. This one has to access the
ancestors of the unreferenced state — ancestors that may be located on another
process — hence generating communications. A possible way to overcome this
problem is to only call that procedure when memory becomes scarce. Processes
then enter a garbage collection phase where they clean the TD-tree and delete
states from memory. Thus, if the aggregated memory is large enough to solve the

227

process 13

0 1

1

0 1 1

1process 0

t0
t2

t1

s0

s
′

s

Fig. 5. A distributed TD-tree

problem without any reduction then there
is no time overhead. This might also help
to group states sent to the same owner and
thereby reduce communication.

Another solution is to associate with each
new state s received from another process a
reference number of 2 (rather than 1) to en-
sure it will never leave the TD-tree (and that
no communication will occur). It is then not
necessary that the source state of the transi-
tion that generated the message keeps a ref-
erence to s. An example of a TD-tree (actually a forest) distributed over two
processes can be seen in Fig 5. Dashed transitions are not part of the TD-tree.
The reference counter of state s is set to 3 whereas it is closed and only has 2
successors. The reason is, it has been first discovered upon its reception by pro-
cess 1. Hence, it will never leave the TD-tree guaranteeing that the cycle t0.t1.t2
will be detected whatever order states are visited. Another difference with a “se-
quential” TD-tree is that the counter of s0 is set to 1 instead of 2 since it only has
one successor in the TD-tree on the same process. Hence, although s will remain
in the memory of process 1, s0 will eventually be allowed to leave the cache.

Both solutions should benefit from a partitioning exhibiting few cross tran-
sitions linking states belonging to different processes. This will limit communi-
cations for the first solution and enhance the reduction in the second case.

4.3 Reductions Based on State Reconstruction

Our GSEA is also compatible with the reduction techniques proposed in [10]
and [27]. Instead of keeping full state vectors in the closed and open sets, their
principle is to represent a state s as a pair (pred , e) where pred is a pointer to
the state s′ that generated s during the search, and e is the event such that
succ(s′, e) = s. States can be reconstructed from this compressed representation
by reexecuting the sequence of events that generated it. At a reasonable cost
in time, it allows each state to be encoded by 12–16 bytes whatever the system
being analyzed. This reduction fits nicely with the algorithm of this paper. The
TD-tree can be compactly stored using this representation of states and, actually,
both methods store with each state a pointer to its generating predecessor. The
only states that have to be fully stored in memory are those who left the TD-tree
since their generating predecessor may not be present anymore in memory.

4.4 The Sweep-Line Method

A sweep-line based algorithm alternates between exploration phases where states
are visited and their successor(s) generated; with garbage collection phases where
states are removed from memory. A key feature of the method is the progress
measure ψ mapping states to (ordered) progress values. It is used to estimate
“how far” states are from the initial states and guides the garbage collection

228

procedure: if the minimal progress value found in the set of open states is αmin =
mins∈O ψ(s) then all closed states s with ψ(s) < αmin can be deleted from
memory. The underlying idea is that if the progress mapping is monotonic, i.e.,
all transitions (s, s′) are such that ψ(s) ≤ ψ(s′), then a visited state s with a
progress ψ(s) < αmin will not be visited again. In [20] the method is extended
to support progress measures with regress transitions, i.e., transitions (s, s′)
with ψ(s) > ψ(s′), that with the basic method of [6] cause the algorithm to
not terminate. The principle of this extension is to mark destination of regress
transitions as persistent to prevent the garbage collector from deleting them.

The sweep-line method can also be used in conjunction with our reduction.
This stems from the fact that the algorithm of [20] is also an instance of the
GSEA of Fig. 1 that keeps open states in a priority queue (priority being given
to states having the lowest progression). However, one has to proceed carefully
when combining both methods: the unref procedure of our algorithm may not
put in the set D of candidates for replacement an unreferenced state (i.e., with
s.refs = 0) that has been marked as persistent by the sweep-line reduction. Note
that the predecessor of a persistent state may however be unreferenced.

Running the sweep-line algorithm in combination with our state caching
algorithm causes the deletion of non-persistent states stored in the TD-tree. This
means that we only store the parts of the TD-tree corresponding to the states
determined to be in memory by the sweep-line method. The role of the TD-tree
(which now becomes a forest) is to ensure termination of each of the phases of
the sweep-line method, while the overall termination of the combined search is
guaranteed by the persistent states stored by the sweep-line method.

5 Experiments

The technique proposed in this paper has been implemented in the ASAP veri-
fication tool [26]. ASAP can load models written in DVE [7], the input language
of the DiVinE verification tool [2]. This allowed us to perform numerous exper-
iments with models from the BEEM (BEnchmarks for Explicit Model check-
ers) database [22] although “Puzzles” and “Planning and scheduling” problems
were not considered. These are mostly toy examples having few characteristics
in common with real-life models. We performed two experiments, studying the
performance of our reduction in combination with basic search algorithms for
the first one; and with the sweep-line method for the second one. Due to lack of
space, some data has been left out in this section but may be found in [9].

5.1 Experiment 1: State Caching with Basic Search Strategies

State caching is a rather unpredictable technique in the sense that its perfor-
mance depends on a large range of parameters, e.g., the size and replacement
strategy for the cache, the characteristics of the state space. It is usually hard to
guess which configuration should be used before running the model checker. State
caching must therefore be experimented with in a wide range of settings and with

229

BFSDFS

BFS

BFS

DFS

DFS

Alt(2, 2) BBFS(3)

Fig. 6. Snapshot of the search trees with different search strategies.

many different state spaces in order to get a good insight into its behavior. In
this experiment we performed more than 1,000,000 runs using different search
algorithms, caching strategies, cache sizes, and state space reduction techniques.

Experimentation context

Search strategies. Several preliminary experiments revealed important variations
of our state caching reduction when combined with DFS or BFS. Therefore, it
seemed interesting to combine both algorithms to observe is such a combination
could improve on pure breadth- or depth-first searches. Thus, in addition to DFS
and BFS, we also experimented with the two following variations of these search
strategies devised for the sake of our experimentation.

– Alternation of breadth- and depth-first search. This search strategy is para-
metrized by two integers b and d. It starts breadth-first on the b first levels.
Then for the states at level b the search switches to a DFS until the depth
b + d is reached. At that point, the algorithm mutates back to a BFS and so
on. This search will be denoted by Alt(b, d) in the following.

– Bounded-width breadth-first search. This search strategy, denoted BBFS(w),
proceeds as a BFS except that the queue at each level may not contain more
than w states (the width of the search). Open states of previous levels are
kept in a stack to be expanded later when all next levels have been processed.

Note that DFS and BFS are special instances of these search strategies since
it holds that DFS ≡ BBFS(1) ≡ Alt(0, ∞) and BFS ≡ BBFS(∞) ≡ Alt(∞, 0).

A snapshot of the search trees of different state spaces induced by these
different strategies can be seen in Fig. 6. With DFS (left), all states outside the
stack are candidates for replacement in the cache. With BFS (second left), any
ancestor in the search tree of an open state must remain in the cache while others
may be replaced. Open states, with algorithm Alt(2, 2) (second right) are those

230

still present in the stacks and queues used to perform “local” DFSs and BFSs.
At last, the tree of BBFS(3) (right) is a BFS tree where each level can contain
at most 3 states. Unlike BFS, some previous levels may contain open states as
is the case here with the penultimate level.

All these algorithms are implemented using the generic template of Fig. 3
and parametrized by the type of the O data structure. BFS is implemented with
a queue, DFS with a stack, BBFS(w) with a stack of arrays of size w, and Alt(b,
d) with a stack containing single states for DFS levels and queues for BFS levels.

Cache replacement strategies. We implemented various strategies from the lit-
erature. The garbage collector can select states according to their in- and out-
degree, their distance from the initial state (i.e., the depth at which the state has
been generated), or in a purely random fashion. Stratified caching [11] has also
been implemented. Due to a lack of space, we will not compare these strategies
here. For DFS, the reader may consult the large body of work on that subject,
e.g., [11,23]. With BFS, distance seems to be criterion with most impact.

State space reduction. Sleep-set reduction has been shown in [13] to drastically
reduce the state revisits when using state caching. Rather than sleep-sets, we
implemented the reduction of [4] which proposes a sleep-set like technique for
both DFS and BFS that has two advantages over it: it does not require any
memory overhead whereas the algorithm of [13] associates a set of transitions
(the sleep set) with each closed and open set; and it is easier to implement.

We also implemented and experimented with the single-successor state chain
reduction of [3] which is compatible with our algorithm as explained in Sec-
tion 4.1. This reduction will be denoted by CR in the following.

Table 1 summarizes the different parameters and instances we experimented
with. Unlike the reduction of [4] which was always turned on, the reduction of
[3] was a parameter of each run. A run ended in one of three situations:

success The search could finish within allocated resources.
out of memory The cache was two small to contain the TD-tree.
out of time The algorithm visited more states than the specified threshold.

Experimental results

Experimental data is reported in Table 2. Due to space constraints, the table
only contains data for 25 selected instances although the average on all instances
experimented with is reported on the last line. Under each instance name, we
give its number of states |S| and its average degree d as the ratio of transitions
over states. All tests performed for each instance were divided into 8 groups
according to the search algorithm they used (columns DFS, BFS, BBFS, and
Alt) and according to whether or not they used the chain compression reduction
(column CR). We then ordered, within each group, all successful runs first by

231

Table 1. Instances and parameters used during Experiment 1

Selected instances 135 instances with { 1,000, . . . , 1,000,000 } states
Maximal state visits 5 · |S| (where |S| is the state space size)

Cache size
{ 5, 10, 15, 20, . . . } (as a % of the state space size)
until a successful run could be found

Cache replacement 60 caching strategies selected after experimentation
strategy with a small sample of 10 instances

Search strategy
DFS, BFS, BBFS(w) for w ∈ {4, 16, 256}, Alt(b, d)
for b, d ∈ {1, 4, 8}

Reductions used Reduction of [4] for all runs and CR for some runs

ascending cache size (i.e., memory) and then by ascending number of state visits
(i.e., time). Each cell of the table contains data for the best run according to
that order: the number of stored states, i.e., the cache size, (column S) and
visited states (column V) both expressed as a percentage of the state space.
Additionally, for algorithms Alt and BBFS, columns (b, d) and w specify the
parameters of the search that the best run used.

State caching apparently provides a better memory reduction when coupled
with DFS than with BFS. The size of the TD-tree, with BFS, is lower bounded
by the width of the state space, i.e., the size of the largest level, which can be
high for some models. The DFS stack can also contain a large proportion of the
state space but the reduction of [4] not only reduces interleavings but also the
stack size, whereas it is not helpful in BFS.

We still found some models for which BFS outperformed DFS with re-
spect to both time and memory. This is the case for instances extinction.3,
firewire tree.4 and leader election.4. We will see later why BFS is to be
preferred for these models.

Some instances like cambridge.5 have typical characteristics that make state
caching inadequate: many cycles and a high degree. This inevitably leads to a
time explosion with DFS even using partial order reduction. BFS seems to be
more resilient with respect to these instances. We found a couple of similar
instances during our experiments.

Although state caching is generally more memory efficient when coupled with
DFS, BFS still provides a notable advantage: it is less subject to a time explosion.
Even in cases where the cache size was close to its lower bound, i.e., the maximal
size of the TD-tree, the time brutally increased in very few cases. With BFS, the
distribution of run failures is the following: 98% are “out of memory”, and 2%
are “out of time”. With DFS, these percentages become respectively 61% and
39%. Even in cases where BFS “timed out”, increasing the maximal number of
state visits from 5 · |S| to 20 · |S| could turn all these runs into successes. This is,
from the user point of view, an appreciable property. With DFS, when the user
selects a small cache size, and the search lasts for long, he/she can not know if
it is due to a high rate of state revisits or if it is because the state space is very
large and state caching is efficient. This situation never occurred with BFS.

232

Table 2. Summary of data for Experiment 1

Model CR DFS BFS BBFS Alt
S V S V S V w S V (b,d)

at.2 no 35 228 40 130 30 369 4 30 219 (8,4)
|S|=49,443 d=2.9 yes 30 428 40 130 30 373 4 30 222 (8,4)

bakery.4 no 20 271 25 216 25 173 4 20 185 (8,4)
|S|=157,003 d=2.6 yes 20 271 25 149 25 168 4 20 185 (8,4)

bopdp.2 no 15 215 30 149 15 246 4 15 213 (1,8)
|S|=25,685 d=2.8 yes 10 437 25 162 10 398 4 10 406 (1,8)

brp.3 no 5 235 15 112 5 163 256 5 160 (8,8)
|S|=996,627 d=2.0 yes 5 152 10 116 5 168 256 5 153 (8,8)

brp2.5 no 5 141 30 112 5 130 4 5 135 (8,1)
|S|=298,111 d=1.4 yes 5 140 20 103 5 131 4 5 137 (8,1)

cambridge.5 no 45 285 35 121 45 203 4 45 232 (8,4)
|S|=698,912 d=4.5 yes 45 287 35 120 45 200 16 45 233 (8,8)

collision.3 no 10 484 30 119 10 487 16 10 239 (8,1)
|S|=434,530 d=2.3 yes 10 338 25 169 10 412 16 10 286 (8,1)

extinction.3 no 10 185 10 100 10 186 4 10 176 (4,4)
|S|=751,930 d=3.5 yes 10 184 10 100 10 187 4 10 176 (4,4)

firewire link.7 no 5 327 25 101 5 278 256 5 214 (8,1)
|S|=399,598 d=2.7 yes 5 321 20 101 5 348 256 5 230 (8,1)

firewire tree.4 no 10 337 10 100 15 190 4 10 313 (4,4)
|S|=169,992 d=3.7 yes 10 345 10 100 15 191 4 10 311 (4,4)

gear.2 no 15 109 10 100 10 100 256 10 102 (4,4)
|S|=16,689 d=1.3 yes 15 106 5 102 5 101 256 10 101 (4,4)

iprotocol.2 no 5 359 20 132 5 250 4 5 296 (8,1)
|S|=29,994 d=3.3 yes 5 364 20 132 5 245 16 5 294 (1,1)

lamport nonatomic.3 no 45 398 50 120 45 257 4 45 237 (8,8)
|S|=36,983 d=3.3 yes 45 366 50 119 45 260 4 45 232 (8,1)

leader election.4 no 15 450 10 100 15 456 16 15 273 (4,1)
|S|=746,240 d=5.0 yes 15 316 10 100 15 453 16 15 275 (4,1)

lifts.6 no 5 123 15 123 5 125 4 5 124 (1,1)
|S|=333,649 d=2.1 yes 5 124 15 112 5 132 4 5 124 (1,1)

lup.2 no 30 478 30 142 40 369 4 15 429 (8,8)
|S|=495,720 d=1.8 yes 30 294 30 142 35 324 4 15 428 (8,8)

needham.3 no 5 412 30 100 5 409 256 5 435 (1,1)
|S|=206,925 d=2.7 yes 5 415 30 100 5 417 256 5 435 (1,1)

peterson.3 no 25 345 35 142 25 374 4 25 329 (1,8)
|S|=170,156 d=3.1 yes 25 331 35 136 25 356 4 25 320 (8,8)

pgm protocol.7 no 10 152 10 106 5 360 16 5 493 (8,1)
|S|=322,585 d=2.5 yes 10 152 5 112 5 392 4 10 145 (4,1)

plc.2 no 5 100 30 100 10 101 4 5 100 (1,8)
|S|=130,777 d=1.6 yes 5 100 10 100 5 113 4 5 101 (8,8)

production cell.4 no 10 176 10 100 10 162 4 10 157 (8,1)
|S|=340,685 d=2.8 yes 10 175 10 100 10 162 4 10 158 (8,1)

rether.3 no 30 118 40 104 35 132 256 25 113 (8,1)
|S|=305,334 d=1.0 yes 25 152 15 111 15 117 256 15 128 (8,1)

synapse.6 no 5 148 30 111 5 133 16 5 129 (8,8)
|S|=625,175 d=1.9 yes 5 118 25 296 5 136 16 5 129 (8,8)

telephony.3 no 30 394 50 124 25 482 256 25 368 (8,1)
|S|=765,379 d=4.1 yes 25 491 50 123 25 470 16 25 388 (8,1)

train-gate.5 no 10 114 20 100 10 110 4 10 102 (4,1)
|S|=803,458 d=2.1 yes 10 114 20 100 10 105 256 10 102 (4,1)

Average on no 18.5 259 30.1 131 19.4 236 16.4 239
135 models yes 17.7 251 26.3 143 17.4 241 15.5 249

233

In general, we found out that BFS is far less sensitive to the caching strategy
than DFS. For a specific cache size, it was not unusual, with DFS, that only one
or two replacement strategies could make the run successful. Whereas, with BFS,
once a successful run could be found with some strategy, it usually meant that
many other runs using different strategies (and with the same cache size) could
also terminate successfully. On an average made on all models we calculated
that, with DFS and for the smallest cache size for which at least a run turned
out to be successful, only 25% of all runs were successful. With BFS, this same
percentage goes up to 66%.

These observations are in line with a remark made in [21], p. 226: “Com-
pared to BFSWS [BFS With Snapshots], the success of DFS setups differs a lot
from one case to another.” One of our conclusions is indeed that BFS has the
advantage to exhibit more predictable performance.

The effect of reduction CR is more evident in the case of BFS. The cache
size could be further reduced by an average of 4–5% for a marginal cost in time,
whereas with DFS the reduction achieved is negligible. On some instances, BFS
could, with the help of this reduction, significantly outperform DFS with respect
to memory consumption. This is for instance the case for rether.3 which has a
majority of single-successor states.

Lastly, we notice that Alt and BBFS sometimes cumulate the advantages of
both BFS (w.r.t. time) and DFS (w.r.t. memory) and perform better than these,
e.g., at.2, bakery.4, firewire link.7 and lup.2. Search Alt also seems to be
more successful than BBFS. It could on average reduce the cache size from 17
to 15% of the state space, when compared to DFS.

Influence of the State Space Structure in BFS. We previously noticed that the
width of the graph is a lower bound of the TD-tree in BFS. More generally, there is
a clear link between the shape of the BFS level graph and the memory reduction
in BFS. Figure 7 depicts this graph for several instances that are of particular
interest to illustrate our purpose. For each BFS level, the value plotted specifies
the number of states (as a percentage of the full state space) belonging to a
specific level. For instances telephony.3 and synapse.6, a large proportion of
states is gathered on a few neighbor levels. The algorithm will thus have to store
most states of these levels and it is not surprising to observe on Table 2 that state
caching is not efficient in these cases. Instances pgm protocol.7 or gear.2 have
the opposite characteristic: the distribution of states upon BFS levels is rather
homogeneous and there is no sequence of neighbor levels containing many states.
This explains the good memory reduction observed with BFS on these examples.

With DFS, the time increase is closely related to the average degree of the
state space. This factor has a lesser impact with BFS: the proportion of backward
transitions1 plays a more important role. Indeed, the search order of BFS implies
the destination state of a forward transition to necessarily be in the open set.
Hence, only backward transitions may be followed by state revisits. Instances

1 (s, s′) is a backward transition if the BFS levels d and d′ of s and s′ are such that
d ≥ d′. The length of (s, s′) is the difference d − d′.

234

 0

 1

 2

 3

 4

 5

 6

 7

 8
synapse.6
70 levels

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

telephony.3
62 levels

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
pgm_protocol.7
434 levels

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3
gear.2
603 levels

Fig. 7. BFS level graph of some instances.

extinction.3 and firewire tree.4 have rather high (3–5) degrees but few or
no backward transitions, which led to very few state revisits with BFS; whereas
using DFS we often experienced a time explosion with these instances. The fact
that state spaces of real-world problems often have few backward transitions [25]
may explain the small state revisit factors usually observed with BFS.

5.2 Experiment 2: State Caching with the Sweep-Line Method

In a second experiment we studied how our state caching algorithm combines in
practice with the sweep-line method, as described in Section 4.4. We analyzed
the same instances used in the first experiment. We automatically derived from
their full state spaces several progress measures identified by a level ranging
from 0 to 5. The higher the level, the more precise the progress mapping and
the more aggressive the reduction. Our progress measures are abstractions in
that they project states to some components of the underlying system. At level
0, the progress mapping is guaranteed to not generate any regress transition
since we only consider components having a monotonic progression, e.g., an
increasing sequence number; and as the level progresses, the mapping is refined
by including in it more and more components in order to multiply the different
progress values possible and increase the potential of the reduction (while also
introducing more regress transitions). Progress values are then fixed-size vectors

235

Table 3. Summary of data for Experiment 2

Model |S| PM SL SL + SC
S V P L S V

bopdp.2 25,685 3 52.4 231 0.5 51.9 20.4 498
4 26.8 242 0.8 26.0 14.9 480
5 13.7 259 1.9 8.3 12.7 482

brp.3 996,627 2 13.3 145 0.1 8.3 4.9 203
3 10.6 126 0.5 2.9 9.7 154
4 10.0 122 2.4 0.3 9.9 120
5 8.1 124 3.8 0.1 8.2 119

collision.3 434,530 4 24.1 100 0.0 24.1 13.5 482
5 21.1 232 9.0 12.2 16.0 337

iprotocol.1 6,814 5 50.4 100 0.0 47.3 21.0 416
lifts.4 112,792 5 33.3 100 0.0 33.3 8.5 489
needham.3 206,925 5 20.9 100 0.0 0.1 21.0 101

pgm protocol.3 195,015 3 2.4 144 1.1 0.0 2.1 129
4 3.2 110 3.1 0.0 3.1 110
5 9.0 110 8.9 0.0 9.0 108

plc.2 130,777 3 1.8 100 0.0 1.7 0.6 102
4 1.2 105 1.2 0.0 1.3 105
5 1.2 105 1.2 0.0 1.3 105

production cell.4 340,685 4 27.7 100 0.0 22.7 14.1 485
5 11.1 100 2.0 6.9 5.5 438

rether.3 305,334 4 25.3 161 3.9 21.8 5.0 200
5 6.3 152 6.0 0.6 6.1 144

synapse.6 625,175 3 26.6 100 0.0 26.6 7.4 477
4 27.4 316 2.7 16.4 17.2 477
5 18.1 150 10.8 2.9 17.4 136

of (selected) components that can be compared via a lexical ordering. Each level
corresponds to an estimation of the upper bound of the proportion of regress
transitions: level 0 → no regress transition, level 1 → at most 1% of regress
transitions, level 2 → 2%, level 3 → 5%, level 4 → 10% and level 5 →20%.

Table 3 summarizes the data collected during this experiment for some se-
lected instances and progress measures. For each instance (column Model) and
progress measure (of which the level appears in column PM) we performed a first
run with the sweep-line algorithm of [20] (column SL) and then several runs with
the same algorithm extended with our state caching reduction (column SL + SC)
using different cache sizes. We used a variation of the stratified caching strategy
[11] that revealed to be the most efficient one during the first experiment. As in
the first experiment we only kept, for algorithm SL + SC, the “best” run, that
is, the one that used the smallest amount of memory with a state visit factor
less than 5. For these two runs columns S and V provide the number of stored
and visited states. Additionally, for algorithm SL the table gives in column P
the number of persistent states at the end of the search ; and in column L the
size of the largest class of states sharing the same progress value and present

236

in memory at the same time (before being garbage collected). All these values
are expressed as a percentage of the state space size given in column |S|. The
data of the run that provided the best memory reduction for a model has been
highlighted using a gray background.

To have a better understanding of these results it seems necessary to briefly
recall the principle of algorithm SL. At each step the algorithm explores a class
of states sharing a common progress value ψ. All their successors are put in
the priority queue implementing the open set, and once this expansion step is
finished, i.e., no state with progress value ψ is in the queue, the algorithm deletes
from memory all expanded states. It then reiterates this process with the next
progress value found in the queue until it is empty. The size of the largest class
of states with the same progress value given in column L is thus a lower bound
on the memory consumption of the algorithm. By implementing state caching
on top of this algorithm we can hope to reduce only the class of states the
algorithm is currently working on. Indeed if we note ψ the progress value of
this class then all the states with a progress value ψ′ < ψ have been garbage
collected by the sweep-line reduction and states with a progress value ψ′ > ψ
present in memory are necessarily in the open set and hence can not be removed
from the cache. The potential of the state caching reduction is thus given by
the ratio L

S
(in column SL). It is therefore not surprising that the gain of using

state caching depends on the size L of this largest class. Instances brp.3, plc.2
and pgm protocol.3 are the typical examples of models for which the sweep-line
method is well suited: they have long state spaces with a clear progression which
enables progress mappings to be defined that divide the state space into many
small classes. Hence, the sweep-line method used solely can provide a very good
reduction that can not be significantly enhanced by state caching.

Increasing the PM level has three noteworthy consequences.

First, for most models, the peak number of states stored by SL decreases
although this is not always the case: by refining the progress mapping we usually
increase the proportion of regress transitions generating persistent states that
will never be garbage collected. Instance pgm protocol.3 is a good illustration.

Second, by multiplying progress values we naturally decrease the effect of
state caching since, as we previously saw, state caching is helpful to reduce
classes of states sharing the same progress value. We indeed observe that the
values in column L decrease as we increase the PM level, with the consequence
that numbers converge to the same values with both algorithms.

A last observation is that, regarding the number of states stored, SL and SL
+ SC often follow opposite behaviors. For instances brp.3, collision.3, plc.2,
rether.3 and synapse.6, SL consumes less memory when we refine the progress
measure whereas SL + SC needs a larger cache. More generally, we observed that
the average ratio of the number of states stored by SL over the number of states
stored by SL + SC is maximal at level 3 (2.93) and then decreases to 1.97 at level
5. This is an interesting property from a user perspective. This indeed means
that he/she does not necessarily have to provide a very fine tuned progress
mapping to the model checker. In many cases, a basic mapping that extracts

237

some monotonic component(s) from the model will be sufficient: the state caching
reduction will then fully complement the sweep-line reduction flaws and provide
an even better reduction compared to a very precise progress mapping that will
cancel the benefits of state caching.

6 Conclusion

In this paper we have proposed an extension of state caching to general state
exploring algorithms. Termination is guaranteed by maintaining, as the search
progresses, a tree rooted in the initial state that covers all open states. This en-
sures that any cycle will eventually reach a state of the tree. Closed states that
have left the tree can therefore be deleted from memory without endangering
the termination of the algorithm. Extensive experimentation with models from
the BEEM database has revealed that state caching can reduce the memory
requirements of a BFS by a factor of approximately 4. Although this is usually
not as good as the reduction observed with DFS, BFS offers an advantage in
that the reduction comes almost for free: the average increase in run-time that
we observed with BFS was usually around 30–40%, and we observed very few
cases of time explosion, whereas this is quite common with DFS even when using
partial order reduction. Combining both search strategies can also bring advan-
tages: in some cases, we found that state caching coupled with a combination
of BFS and DFS could bring the same (or an even better) reduction as with
DFS while limiting the run-time explosion that could occur with this one. Last
but not least, our experiments revealed that our reduction can also enhance the
sweep-line method as the algorithm it relies on is also an instance of the GSEA.

The algorithm we proposed is fully language-independent in that it only re-
lies on a successor function to explore the state space. Nevertheless, it should be
worth experimenting it with other formalisms than DVE and especially Colored
Petri Nets (CPN) [19]. It is possible that the high level constructs provided by
CPN to express the successor function may impact the structural characteristics
of state spaces that, as previous works on state caching and our own experi-
ments revealed, are tightly linked to the performance of state caching. Such an
experimentation is therefore the next research direction we focus on.

References

1. T. Bao and M. Jones. Time-Efficient Model Checking with Magnetic Disk. In
TACAS’2005, vol. 3440 of LNCS, pp. 526–540. Springer, 2005.

2. J. Barnat, L. Brim, I. Cerná, P. Moravec, P. Rockai, and P. Simecek. DiVinE - A
Tool for Distributed Verification. In T. Ball and R.B. Jones, editors, CAV’2006,
vol. 4144 of LNCS, pp. 278–281. Springer, 2006.

3. G. Behrmann, K.G. Larsen, and R. Pelánek. To Store or Not to Store. In
CAV’2003, vol. 2725 of LNCS, pp. 433–445. Springer, 2003.

4. D. Bosnacki, E. Elkind, B. Genest, and D. Peled. On Commutativity Based Edge
Lean Search. In ICALP’2007, vol. 4596 of LNCS, pp. 158–170. Springer, 2007.

238

5. D. Bosnacki, S. Leue, and A. Lluch-Lafuente. Partial-Order Reduction for Gen-
eral State Exploring Algorithms. In SPIN’2006, vol. 3925 of LNCS, pp. 271–287.
Springer, 2006.

6. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State
Space Exploration. In TACAS’2001, vol. 2031 of LNCS, pp. 450–464. Springer,
2001.

7. DVE Language. http://divine.fi.muni.cz/page.php?page=language.
8. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed Explicit-State Model

Checking in the Validation of Communication Protocols. STTT, 5:247–267, 2004.
9. S. Evangelista and L.M. Kristensen. Search-Order Independent State Caching.

Technical report, 2009. http://daimi.au.dk/~evangeli/doc/caching.pdf.
10. S. Evangelista and J.-F. Pradat-Peyre. Memory Efficient State Space Storage in

Explicit Software Model Checking. In SPIN’2005, vol. 3639 of LNCS, pp. 43–57.
Springer, 2005.

11. J. Geldenhuys. State Caching Reconsidered. In SPIN’2004, vol. 2989 of LNCS,
pp. 23–38. Springer, 2004.

12. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems,
vol. 1032 of LNCS. Springer, 1996.

13. P. Godefroid, G.J. Holzmann, and D. Pirottin. State-Space Caching Revisited. In
CAV’1992, vol. 663 of LNCS, pp. 178–191. Springer, 1992.

14. G.J. Holzmann. Tracing Protocols. AT&T Technical J., 64(10):2413–2434, 1985.
15. G.J. Holzmann. Automated Protocol Validation in Argos: Assertion Proving and

Scatter Searching. IEEE Trans. Software Eng., 13(6):683–696, 1987.
16. G.J. Holzmann. State Compression in Spin: Recursive Indexing and Compression

Training Runs. In SPIN’1997, 1997.
17. C. Jard and T. Jéron. On-Line Model Checking for Finite Linear Temporal Logic

Specifications. In Automatic Verification Methods for Finite State Systems, vol.
407 of LNCS, pp. 189–196. Springer, 1989.

18. C. Jard and T. Jéron. Bounded-memory Algorithms for Verification On-the-fly.
In CAV’1991, vol. 575 of LNCS, pp. 192–202. Springer, 1991.

19. K. Jensen and L.M. Kristensen. Coloured Petri Nets — Modeling and Validation
of Concurrent Systems. Springer, 2009.

20. L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety
Properties. In FME’2002, vol. 2391 of LNCS, pp. 549–567. Springer, 2002.

21. R. Mateescu and A. Wijs. Hierarchical Adapatative State Space Caching Based on
Level Sampling. In TACAS’2009, vol. 5505 of LNCS, pp. 215–229. Springer, 2009.

22. R. Pelánek. BEEM: Benchmarks for Explicit Model Checkers. In SPIN’2007, vol.
4595 of LNCS, pp. 263–267. Springer, 2007.

23. R. Pelánek, V. Rosecký, and J. Sedenka. Evaluation of State Caching and State
Compression Techniques. Technical report, Masaryk University, Brno, 2008.

24. U. Stern and D. L. Dill. Parallelizing the Murphi Verifier. In CAV’1997, vol. 1254
of LNCS, pp. 256–278. Springer, 1997.

25. E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting Tran-
sition Locality in Automatic Verification. In CHARME’2001, vol. 2144 of LNCS,
pp. 259–274. Springer, 2001.

26. M. Westergaard, S. Evangelista, and L.M. Kristensen. ASAP: An Extensible Plat-
form for State Space Analysis. In ATPN’2009, vol. 5606 of LNCS, pp. 303–312.
Springer, 2009.

27. M. Westergaard, L.M. Kristensen, G. Stølting Brodal, and L. Arge. The Comback
Method - Extending Hash Compaction with Backtracking. In ATPN’2007, vol.
4546 of LNCS, pp. 445–464. Springer, 2007.

239

240

On Extending the Sweep-Line for Language Equivalence

Checking

Guy Edward Gallasch

Computer Systems Engineering Centre
University of South Australia

Mawson Lakes Campus, SA, 5095, AUSTRALIA
Email: guy.gallasch@unisa.edu.au

Abstract. A vital step in formal protocol verification is the comparison of the externally visible
behaviour exhibited by a protocol (the protocol language) with that allowed by its service (the
service language). Sometimes, it is sufficient to check for language inclusion, which verifies that
the protocol language is contained within the service language, i.e. the protocol does not exhibit
behaviour that is not in its service. This is a specific instance of model checking a safety property,
where the service language becomes the safety property to check. However, it is important
to know also if all behaviour allowed by the service is exhibited by the protocol. Thus, the
problem becomes one of checking language equivalence, which cannot be formulated as safety
property. The Sweep-line method, designed to alleviate the problem of state explosion, was
recently extended to allow on-the-fly checking of language inclusion (safety properties). This
paper presents the genesis of a further extension to allow on-the-fly verification of language
equivalence.
Keywords: Language Equivalence, Sweep-line Method, State Space Explosion.

1 Introduction

This paper is motivated by the area of protocol verification [3]. Protocols should satisfy a set
of properties that encapsulate their desired behaviour, including the service that the protocol
should provide to its users. This is known as a service specification. Protocol verification in-
volves proving that a protocol does satisfy its specification. [3] provides a protocol verification
methodology that uses Coloured Petri Nets [16] for the specification of protocol behaviour.
The ‘verification’ part of protocol verification can be broken into two main activities. One
involves checking that a number of general properties hold for the protocol, such as verifying
the absence of undesired terminal states, dead transitions and livelocks. The other, which is
of interest to us here, involves checking that all sequences of user-observable actions of the
protocol conform to those given in the service specification. Here, the user-observable actions
are called service primitives, the set of allowable sequences of service primitives as given in
the service specification is called the service language, LS, and the set of sequences of service
primitives exhibited by the protocol is called the protocol language, LP .

Comparing the protocol and service languages implies a notion of language equivalence. As
an aside, as pointed out in [3], many notions of equivalence exist (van Glabbeek [13] pointed
out 155 in 1993), such as Valmari’s Chaos-Free Failures Divergences (CFFD) equivalence [24],
that take into account branching behaviour, which allow deadlock and livelock properties to
be preserved. However, these properties can be determined from the protocol’s Reachability
Graph, without reference to another specification. This is normally done first, as they are
fundamental to good protocol design. Once these basic properties are proved, then we con-
sider the more specific property of correct sequencing of service primitives. Hence language
equivalence is sufficient, as it is precisely the property of interest.

241

We would like to ensure that both languages are equivalent, i.e. that they capture the same
set of sequences of user-observable events. This implies that all user-observable behaviour
exhibited by the protocol is allowed by the service (LP ⊆ LS) and that all behaviour defined
by the service is actually implemented in the protocol (LS ⊆ LP). There are situations in
which the weaker notion of Language Inclusion (that LP ⊆ LS) is sufficient for protocol
verification, e.g. the Internet Open Trading Protocol [4] implemented an acceptable subset
of its service [22, 23], however the key in that situation was knowing what sequences in the
service language were missing from the protocol language, and determining what constituted
an acceptable subset of behaviour for the protocol.

Languages can be represented by automata. A common approach (e.g. [14,22]) for checking
LP = LS has involved representing the protocol and service languages as deterministic Finite
State Automata (FSA) [1] and using language comparison tools such as the FSM Library of
AT&T [8]. The protocol language FSA and service language FSA must both be ε-free and
deterministic in order to use the fsmequiv tool of [8]. We denote these DFSAP and DFSAS

respectively. DFSAP can be extracted from the Reachability Graph (RG) of the CPN model
of the protocol, by firstly defining a mapping from binding elements (arc labels) to service
primitives or epsilon (ε, the empty move), defining an initial state (usually the initial state of
the CPN model), and defining halt states (usually the terminal markings, as a minimum) [3].
ε removal and determinisation procedures [1,15] are then used to obtain a deterministic, ε-free
representation of the protocol language. Unless the service specification is exceedingly simple,
a CPN is often constructed in order to produce DFSAS in the same way.

The downside of this approach is that it requires the complete protocol RG to be generated
and in memory at one time. This can be problematic due to the well-known state explosion

problem [24]. Fortunately, it is usually possible to perform determinisation of automata on-
the-fly, e.g. [17,18] and is certainly possible for Finite State Automata.

The Sweep-line method [6,20] is a state space exploration technique that uses a notion of
progress within the system being modelled. The successful application of this method usually
involves defining a sensible progress mapping, ψ : M → V , a mapping from states to progress

values, V , that reflects the notion of progress within the system being modelled. The Sweep-
line’s algorithm explores states in a least-progress-first manner. The exploration algorithm
uses the progress mapping to determine when it is likely that particular states (those with
smaller progress values) will not be visited again in the future, and hence can usually be
safely deleted from memory. However, it is possible that the notion of progress captured by
the progress mapping may be violated, i.e. an arc in the reachability graph moves the system
from a state with a higher progress value to one with a lower progress value. This phenomenon
is known as regress, and the offending edge as a regress edge. The generalised algorithm given
in [20] is able to cope with this situation, at the cost of potentially exploring parts of the
state space more than once.

In [12] we extended the Sweep-line method with the ability to check safety properties on-
the-fly by performing an on-the-fly parallel composition of DFSAS (known a priori) and the
protocol RG, by mapping the RG to a FSA on-the-fly. (This was originally presented in [11] in
the context of protocol verification, for on-the-fly language inclusion checking.) In this paper
we present some preliminary steps toward extending the Sweep-line method for language
equivalence checking. Primarily, the contribution of this paper is to show how to combine the
Sweep-line method with on-the-fly determinisation, which may also have significance generally
in the model checking world beyond our intial application of language equivalence checking.
Section 2 gives some further motivation and background details of the extension of Sweep-line

242

1

0

2

Send

ReceiveAbort

(a)

1

0

2

Send

Send Trap

Send
| Receive
| Abort

Send | Receive | Abort

Receive

Receive

Abort

(b)

0

5

Receive Receive

1 2

3 4

Send

Send

ε

ε

ε

(c)

(0,2)

(0,0)

Send

(1,4)

Receive

(2,5)

(1,3)

Receive

Send

(1,1)

(Trap,5)

Receive

Send

(1,2)

(Trap,4)

ε

ε

ε

(d)

Fig. 1. Finite State Automata depicting (a) DFSAS, representing the service language, LS ; (b) DFSAS ,
representing the complement of LS ; (c) FSAP , representing the corresponding protocol language, LP ; and (d)
the parallel composition of DFSAS and FSAP .

to checking safety properties on-the-fly. Section 3 states our preliminary ideas for extending
this to language equivalence. Finally, Section 4 outlines areas of future work.

Due to length restrictions, we assume that the reader is familiar with the workings of the
Sweep-line method. Details can be found in [6,20].

2 Language Inclusion Checking with the Sweep-line Method

Model checking of safety properties is well known, e.g. [2,7,21,25]. All of these techniques use
automata to represent both the system and the safety property to check. Safety properties
deal only with finite behaviours [24], hence it was reasoned in [12] that Finite State Automata
(FSAs) [1] were adequate for this purpose. To verify a safety property on-the-fly with the
Sweep-line method, the method adopted in [12] was to compose [5,19] the FSA representations
of the system and the complement of the safety property.

For the sake of continuity with the ideas presented in Section 3, we shall use language
inclusion checking as an example of on-the-fly checking of a safety property. We give such an
example in Figure 1. Figure 1 (a) presents a simple service language comprising two sequences:

243

LS = {Send Receive, Send Abort}. The deterministic FSA in Figure 1 (a) is DFSAS and the
set of service primitives is Send, Receive and Abort. The initial state is indicated by a bold
circle and the halt state by a double circle. Figure 1 (c) presents a FSA produced by applying
an appropriate mapping to the binding elements of the RG of an (erroneous) protocol, and
identifying the initial state (state 0) and halt states (in this case state 5). We denote this
FSA FSAP , representing the protocol language LP . Note that FSAP does not need to be
deterministic for language inclusion checking.

To check that language inclusion holds, we can check that no sequences in the protocol
language are contained in the complement of the service language, i.e. LS ∩ LP = ∅. Hence,
we derive the the FSA representation of the complement of the service language, DFSAS , as
shown in Figure 1 (b). The process of complementation relies on DFSAS being deterministic.
This complement is then composed (parallel composition) with FSAP (Figure 1 (c)) with the
result shown in Figure 1 (d), to obtain LS ∩LP . Essentially, the Sweep-line in [12] sweeps the
FSA in Figure 1 (d), so it is possible (likely) that not all of Figure 1 (d) will be in memory
at one time.

The parallel composition has an accepting state containing the Trap state of the service,
indicating erroneous behaviour on the part of the protocol. Hence LS ∩ LP %= ∅ and we have
detected that our protocol is erroneous. However, we have only checked LP ⊆ LS . Note that
the protocol does not exhibit the behaviour corresponding to the sequence Send Abort, so the
protocol may be erroneous in this sense also. This cannot be detected by checking language
inclusion only.

3 Toward On-the-Fly Language Equivalence Checking with the Sweep-line
Method

One solution to performing the additional check of LS ⊆ LP to verify language equivalence is
to compose the service language FSA with the complement of the deterministic protocol lan-
guage FSA. However, obtaining DFSAP from the RG of the protocol is not straightforward,
as often the RG is prohibitively large (hence our desire to apply the Sweep-line method). We
can overcome this by extending the Sweep-line method with on-the-fly determinisation and
complementation capabilities.

As a first step, we consider the situation in which progress increases monotonically, i.e.
there are no regress edges. The ability to cope with regress is discussed in Section 3.3. The ap-
proach we propose below is based on the Sweep-line exploration algorithm having explored all
states with a given (minimum) progress value and this fragment of RG having been mapped
to a FSA (easily done) before the process of determinisation, complementation and parallel
composition are undertaken for that fragment of FSA. Mapping the fragment of RG to a FSA,
complementation and parallel composition are not discussed below, as they are straightfor-
ward processes that can be applied on a state-by-state and arc-by-arc basis once we know
that the outgoing arcs of the states involved are deterministic. We hence limit our discussion
to the most critical step - on-the-fly determinisation. [1] advocates a two-step method for
determinisation: removing empty cycles and empty moves, then eliminating the remaining
nondeterminism. This technique is much more suited to on-the-fly determinisation than the
subset (power set) construction technique of [15], which requires power sets of states to be
generated - a procedure that is counterproductive to state space reduction. However, we dis-
cuss the possibility of applying subset construction with lazy subset evaluation in Section 4.
We illustrate our proposal with a series of RG snapshots.

244

A
B

C

E

D

ε

ε

ε

εψ = x
ε

ψ = x + c

M1 M

M2

M3

M4

M ′

(a)

E

C

D

B
A

ψ = x

ψ = x + c

Mm

M

(b)

Fig. 2. (a) Epsilon cycles and empty moves within one progress level; and (b) after epsilon removal.

3.1 Removing Empty Moves

Figure 2 (a) presents two scenarios that are straightforwardly dealt with by the algorithms
in [1]. On the left is an empty cycle (states M1, M2, M3 and M4) and on the right is an
empty move from M to M ′ that is not part of a cycle. As is shown in Figure 2 (b), the states
forming the cycle are merged into Mm and the other empty move is eliminated by adding
appropriately labelled arcs from M to the successors of M ′ and deleting M ′. Although not
explicitly pictured in Figure 2, the algorithms in [1] cater for chains of ε-moves of arbitrary
length, and for situations in which a merged state has predecessors that were not directly
involved in the ε-removal process. The remaining examples in this paper can be extended in
a similar way.

Figure 3 (a) illustrates two situations in which empty moves involve states in two ‘progress
levels’. On the left is a situation in which the removal of the empty move originating at state
M1 results in a new arc being added that spans two progress values. Given that the successors
of M ′

1 would have already been calculated, M ′′

1 will be in memory, and hence removal of this
ε-move causes no problems. On the right is a less benign situation: the empty move from
state M2 corresponds to an increase in progress. In the normal course of events, the Sweep-line
method should delete all states with progress value x (once all such states have been explored).
However, this is not possible, as at this stage we cannot yet eliminate this ε move as we do
not know the successors of M ′

2. We would like to retain M2 in memory until the successors of
M ′

2 have been calculated. To do this, we introduce the notion of transient states: states that
should not be deleted immediately. Unlike the notion of a persistent state introduced in [20]
to cope with regress edges, a transient state need only be retained in memory until the ε-move
originating from it can be eliminated - it can be safely deleted at some point in the future.
The result of both of these situations is shown in Figure 3 (b), where the transient state is
indicated by a shaded circle. Transient states can be used for multiple successive ε-moves in
a chain spanning any number of progress levels.

3.2 Determinisation of Non-Empty Moves

When all ε-moves have been eliminated, with the exception of situations such as that depicted
at the right of Figure 3 (a), determinisation of the remaining non-ε moves can proceed.
Following the procedures of [1], this is done by the merging of states. Figure 4 (a) shows
two situations that are handled straightforwardly by these procedures. On the left is the
situation where two states, M ′

1 and M ′′

1 , are to be merged within the same progress level
as the originator, M1. On the right is the situation where two states, M ′

2 and M ′′

2 , are to be

245

C
A B

D

M2ψ = x

M1

ε

ε

M ′
1

M ′
2ψ = x + c M ′′

1

(a)

C
A B

D

ψ = x

M1

ε

M ′
2ψ = x + c M ′′

1

M2

(b)

Fig. 3. (a) Epsilon moves involving two progress levels; and (b) removal of the epsilon move from M1 to M
′

1,
and marking M2 as transient.

A B

D

A
CC

M2ψ = x

M ′
1

M ′′
1

ψ = x + c

M1

M ′
2

M ′′
2

(a)

A B

CD

M2ψ = x

ψ = x + c

M1

(b)

Fig. 4. (a) Nondeterminism involving non-ε moves; and (b) merging of states to remove this nondeterminism.

A B

A

C

D

ψ = x

ψ = x + c M2

M1

M

(a)

A B

D
C

ψ = x

ψ = x + c

Mm
M

(b)

Fig. 5. (a) Nondeterminism of non-ε actions across two progress levels; and (b) marking states as transient to
allow this nondeterminism to be removed once successors of M2 are known.

merged in the same progress level, but which have a higher progress value than the originator,
M2. The result is shown in Figure 4 (b).

Figure 5 depicts a situation where merging of states occurs across two progress levels. In
Figure 5 (a) ψ(M1) = x but ψ(M2) = x + c. In this situation, it is not possible to merge M1

and M2 yet, as M2 has yet to be explored (the dashed arcs and nodes in Figure 5 (a)). Our
proposed solution is to mark M , M1 and all successors of M1 as transient, until the successors
of M2 have been calculated. At this point, the merging can occur, and we propose to give the
merged state the progress value min(ψ(M1),ψ(M2)) = x, as illustrated in Figure 5 (b). The
reason for this is simple: we wish to avoid regress edges in order to minimise the potential
for re-exploration of parts of the state space. This can be generalised to the merging of any
number of states in a straightforward manner.

3.3 Coping with Regress

Regress edges complicate matters in two ways. The first is that empty cycles may now exist
that span multiple progress levels, as shown at the left of Figure 6 (a), and that ε-moves may

246

B

A

ε

M4
ε

M1

ε

ε

M5

M6

ψ = x

ψ = x + c

ε

M2
M3

(a)

A B

M6

ε

M5

Mm

ψ = x

ψ = x + c

(b)

Fig. 6. (a) Empty cycles spanning two progress levels, and an ε-move outside a cycle corresponding to a regress
edge; and (b) merging of the states in the empty cycle.

A

B

C

D D

E

M1 M2

ψ = x

ψ = x + c
M

(a)

A

B

C

E

D

Mm

ψ = x

ψ = x + c M

(b)

D D

A

B

E

D

C

M1 M2
Mm

ψ = x

ψ = x + c
M

(c)

Fig. 7. (a) Two persistent states, M1 and M2, to be merged; (b) merging of M1 and M2 to Mm on a subsequent
sweep; and (c) rediscovery of M1 and M2.

correspond to regress edges, as shown at the right of Figure 6 (a). The Sweep-line has marked
M4 and M6 as persistent (solid circles). Our proposed method for ε-removal from Section 3.1
has marked M1, M2, M3 and M5 as transient. The second complication is that determinisation
may require a persistent state to be deleted. For example, the existence of an empty cycle
across multiple progress levels implies that at least one state in that cycle has been marked as
persistent (in this case M4). Determinisation will also require M6 to be deleted (following the
algorithm in [1]) as it is the destination of an ε-move and has no successors. We propose to
treat these two complications by merging the empty cycle as before, but to assign the merged
state the minimum progress value over all the states being merged (holding to the heuristic
of minimising the number of regress edges) and to mark the merged state as persistent, as
shown in Figure 6 (b), in the same way that merged states become halt states if any of their
component states are halt states [1]. To eliminate the ε-move at the right of Figure 6 (a) it
is a matter of exploring the successors of M6. The only additional step in our proposal is to
mark the successors of M6 as persistent because M6 was persistent, in the same way that the
successors of M6 would become halt states if M6 were a halt state [1]. The same procedure

247

should be applied when merging/deleting persistent states as a result of determinisation of
non-empty moves.

As a consequence of our method of coping with regress and the deletion of persistent
states, we must consider what will happen if a merged/deleted persistent state is re-explored.
Consider Figure 7 (a), in which two regress edges from M induce two persistent states, M1

and M2. They cannot be merged until the successors of both are known. We propose that M

be marked as transient until such time as M1 and M2 can be merged into Mm, as shown in
Figure 7 (b). Then, re-exploration from the successors of Mm once again discovers the two
persistent states from Figure 7 (a), as shown in Figure 7 (c). Because Mm was marked as
persistent, we need to explore M1 and M2 again only as far as is necessary to merge them
and rediscover Mm. An implementation that would produce this effect would be to mark the
immediate successors (once ε-removal is complete) of the merged states as persistent, hence
re-exploration is limited only to the successor states (exploration is truncated at persistent
states visited for the second time).

4 Conclusions and Future Work

In this paper we have presented one possible genesis for an extension of the Sweep-line method
to handle language equivalence checking, an extension of importance to protocol verification.
However, substantial effort is required to bring this proposed extension to fruition. This work
must be formalised to produce an extended Sweep-line algorithm, implemented and evaluated
using a case study. There are also many avenues that remain to be investigated.

The discussion of determinisation presented in this paper is based on all states with the
minimum progress value having been explored before determinisation/complementation/par-
allel composition begins. However, it should be possible to interleave the exploration, de-
terminisation, complementation and parallel composition procedures. This may provide a
significant saving in the time taken to detect violations of the language equivalence property,
particularly if there are many states with identical progress values.

One aspect of this proposal that has not yet been discussed is the choice of progress
mapping. Although progress mappings may be arbitrary, previous experience (e.g. [9,10]) has
indicated that the choice of progress mapping plays a pivotal role in the performance of the
Sweep-line method. The author believes that there is no inherent problem with a progress
mapping that results in the merging of states with different progress values, as the progress
mapping may depend on internal protocol actions and changes of state within protocol entities
that are not part of the protocol’s user-observable behaviour.

Although we have used the two-step process of [1] for determinisation, it may be possible
to use the method of subset construction with lazy subset evaluation [15] for both epsilon
removal and determinisation in a single step. For each new state encountered, its transitive
closure comprising only empty moves is calculated. This subset of states becomes the state of
the deterministic FSA. However, such a subset may contain states of many different progress
values, hence the order of state exploration may violate the least-progress-first policy of the
Sweep-line method. This may be able to be overcome by delaying completion of the con-
struction of the subset using transient states in a similar way to the process described in this
paper. However, this will reduce the effectiveness of the Sweep-line method as a state space
reduction technique, as more transient states will remain in memory for longer.

In terms of simply detecting a violation of language equivalence, it may be possible to
take a more direct approach under some conditions. If the parallel composition of DFSAS

248

and DFSAP (not its complement) is calculated on-the-fly, it may be possible to examine each
composed state to see what actions are allowed by the corresponding states in DFSAS and
DFSAP . If they don’t match, we have a violation of language equivalence. This approach
relies on knowing that livelocks do not exist in either the protocol or service specifications,
but would not require the complement of the protocol FSA to be calculated on-the-fly.

Acknowledgments

The author would like to express his sincere thanks to Prof. Lars Kristensen for productive
discussions in 2005 and for originally proposing the idea of transient states, and to Prof.
Jonathan Billington for providing valuable comments on preliminary versions of this paper.

References

1. W.A. Barrett, R. M. Bates, D. A. Gustafson, and J.D. Couch. Compiler Construction: Theory and Practice.
Science Research Associates, 2nd edition, 1986.

2. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph. Schnoebelen. Systems and
Software Verification - Model-Checking Techniques and Tools. Springer, 2001.

3. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol Verification.
In Lectures on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098 of Lecture Notes in
Computer Science, pages 210–290. Springer-Verlag, 2004.

4. D. Burdett. Internet Open Trading Protocol - IOTP Version 1.0. RFC 2801, IETF, April 2000.
5. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer Academic Publishers,

1999.
6. S. Christensen, L. M. Kristensen, and T. Mailund. A Sweep-Line Method for State Space Exploration. In

Proceedings of TACAS 2001, volume 2031 of Lecture Notes in Computer Science, pages 450–464. Springer-
Verlag, 2001.

7. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 2000.
8. FSM Library, AT&T Research Labs. http://www.research.att.com/∼fsmtools/fsm/.
9. G. E. Gallasch, B. Han, and J. Billington. Sweep-line Analysis of TCP Connection Management. In

Proceedings of the International Conference on Formal Engineering Methods (ICFEM’05), volume 3785 of
Lecture Notes in Computer Science, pages 156–172. Springer-Verlag, 2005.

10. G. E. Gallasch, C. Ouyang, J. Billington, and L. M. Kristensen. Experimenting with Progress
Mappings for the Application of the Sweep-Line Analysis of the Internet Open Trading Proto-
col. In Fifth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, pages 19–38. Department of Computer Science, University of Aarhus, 2004. Available via
http://www.daimi.au.dk/CPnets/workshop04/cpn/papers/.

11. G. E. Gallasch, S. Vanit-Anunchai, J. Billington, and L. M. Kristensen. Checking Language Inclusion
On-The-Fly with the Sweep-line Method. In Proceedings of CPN’05, Department of Computer Science
Technical Report, DAIMI PB 576, pages 1–20. University of Aarhus, 2005.

12. G. E. Gallasch, S. Vanit-Anunchai, J. Billington, and L. M. Kristensen. Checking Safety Properties On-
The-Fly with the Sweep-line Method. International Journal on Software Tools for Technology Transfer,
9(3-4):371–392, 2007.

13. R. J. van Glabbeek. The Linear Time - Branching Time Spectrum II: The semantics of sequential systems
with silent moves (extended abstract). In Proceedings of the 4th International Conference on Concurrency
Theory (CONCUR’93), volume 715 of Lecture Notes in Computer Science, pages 66–81. Springer, 1993.

14. B. Han. Formal Specification of the TCP Service and Verification of TCP Connection Management. PhD
thesis, Computer Systems Engineering Centre, UniSA, Adelaide, Australia, December 2004.

15. J. E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 2nd edition, 2001.

16. K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of Concurrent Systems.
Springer, 2009.

17. T. Jéron, H. Marchand, and V. Rusu. Symbolic Determinisation of Extended Automata. In Proceedings
of 4th IFIP International Conference on Theoretical Computer Science (TCS 2006), volume 209 of IFIP
International Federation for Information Processing, pages 197–212. Springer Boston, 2006.

249

18. T. Jussila, K. Heljanko, and I. Niemelä. BMC via On-the-Fly Determinisation. International Journal on
Software Tools for Technology Transfer, 7(2):89–101, 2005.

19. D. C. Kozen. Automata and Computability. Springer-Verlag, 1997.
20. L. M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety Properties. In Proceedings

of FME’02, volume 2391 of Lecture Notes in Computer Science, pages 549–567. Springer-Verlag, 2002.
21. O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. Formal Methods in System Design,

19(3):291–314, 2001.
22. C. Ouyang. Formal Specification and Verification of the Internet Open Trading Protocol using Coloured

Petri Nets. PhD thesis, Computer Systems Engineering Centre, UniSA, Adelaide, Australia, June 2004.
23. C. Ouyang and J. Billington. On Verifying the Internet Open Trading Protocol. In Proceedings of 4th

International Conference on E-Commerce and Web Technologies (EC-Web), volume 2738 of Lecture Notes
in Computer Science, pages 292–302. Springer, 2003.

24. A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic Models, volume 1491 of
Lecture Notes in Computer Science, pages 429–528. Springer-Verlag, 1998.

25. M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verification. In
Proceedings of 1st Symposium on Logic in Computer Science, Cambridge, USA, pages 332–344. IEEE
Computer Society Press, 1986.

250

