
DEPARTMENT OF COMPUTER SCIENCE������������������������������
 AARHUS UNIVERSITY��

IT-parken, Aabogade 34��������������������������������������
DK-8200 Aarhus N, Denmark�����������������������������������

ISSN 0105-8517��

October 2011��

DAIMI PB - 595��

 ���
 ���
Morten Tranberg Hansen �������������������������������������

TinyDebug ��
Multi-Purpose Passive Debugging Framework ������������������

for Embedded Wireless Systems�������������������������������

 ���

TinyDebug: Multi-Purpose Passive Debugging Framework
for Embedded Wireless Systems

Morten Tranberg Hansen
Department of Computer Science

Aarhus University
mth@cs.au.dk

ABSTRACT

Debugging embedded wireless systems can be cumbersome
due to low visibility. To ease the task of debugging this
paper present TinyDebug which is a multi-purpose passive
debugging framework for developing embedded wireless sys-
tems. TinyDebug is designed to be used throughout the
entire system development process, ranging from simulation
to actual deployment. TinyDebug provides out-of-the-box
message oriented debugging and event logging mechanism
while enabling more advanced debugging techniques to pro-
cess the same debug events.

We present the TinyDebug framework with all its features
from event logging to extraction and show how the frame-
work improves upon existing message based and event log-
ging debugging techniques while enabling distributed event
processing. We also present a number of optional event anal-
ysis tools demonstrating the generality of the TinyDebug
debug messages.

1. INTRODUCTION
An important aspect of any system development is de-

bugging. Being able to debug a system means that the de-
veloper can validate that a system performs as intended.
In embedded wireless systems debugging is especially hard
due to low visibility and unpredictable environmental effects
that might change over time. To cope with this, embedded
wireless systems need to be extensively tested throughout
its development process in different environments before an
actual deployment.

An embedded wireless system development process will
normally start out in a simulator, validating that the logic
of the application works in a (to some degree) simplified en-
vironment where it’s easy to reproduce event traces. The
next step would be to validate the system behavior on real
hardware. This often includes testing on a local testbed con-
sisting of a small number of nodes wired to a PC. Such a
setup does not enable one to do much network analysis, so
the next step would be to validate the system on a larger

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright October 2011 Aarhus University.

spatially distributed testbed, possible with a wired or wire-
less back channel for increased visibility. This is often done
indoor or in close proximity of an office building and hence
might not reflect the actual target environment. Thus the fi-
nal test should be done with a real deployment in the target
environment where a wired or wireless back channels would
not be possible.

Going through the development process debugging chan-
nels becomes unavailable and resource consumption becomes
more critical, so the further the developer gets the more the
cost of debugging needs to be considered. In simulation re-
sources are not a concern and hence advanced debugging
methods can be used without considering the costs. Taking
the development a step further from simulation, a testbed
(at any scale) is limited by the capacity of its back-channel,
and a real deployment can be limited down to a few flags
embedded in a data packet. These limitations can make it
impossible to employ advanced user-driven interactive de-
bug methods [12, 13, 14, 3] and hence one would have to
do with some form of passive debugging mechanism which
is the subject of this paper.

We argue that passive debugging mechanisms are a vital
part of any sensor network system (even as a basic build-
ing block for more advanced user-driver interactive debug
mechanism), and can be divided into three categories: mes-
sage based debugging, event logging and analysis, and dis-
tributed event processing. Message based debugging refers
to the printf like family of debug statements which outputs
a human-readable message whenever an event occurs [6].
Event logging sacrifices the human readability of the mes-
sage based debugging for efficiency and only outputs and
identifier (ID) and its arguments whenever and event occurs
[1, 2]. Finally, with distributed event processing the events
are not directly outputted but instead processes internally
and only sent whenever a change is detected [7]. Although
these methods are not mutually exclusive, they are often
used in separation: message based debugging is used in sim-
ulation and in a small local testbed when during initial de-
velopment of an application, event logging and analysis is
used at large scale experiments where the resource restric-
tions prevents text messages from being used, and finally
distributed event processing is used in deployments where
event logging is either too expensive or not feasible. Thus,
developers tend to change debugging strategy throughout
the development of an application, which does not only in-
crease the complexity of application development but also
makes it harder to reproduce bugs in different environments.

To ease debugging throughout the development process

DebugListen

DebugLog

debug(<ID>,<MSG>,<ARG_1>,...,<ARG_N>)

debug_flush() TinyDebug

Figure 1: Overview of the TinyDebug embedded ar-
chitecture and the syntax of its debug function. De-
bug events are internally processed in TinyDebug
and provided to applications through a listen and a
logging interface.

we present TinyDebug: a multi-purpose passive debugging
framework for developing embedded wireless systems. Tiny-
Debug enables message oriented debugging with the effi-
ciency of event logging, event logging with variable num-
ber and types of arguments, and easy accessible hooks for
distributed event processing—all based on the same user in-
serted debug statements.

The paper is organized as follows. Section 2 present the
TinyDebug framework with emphasis on its features and
related tools. Section 3 explores a number of TinyDebug
use cases and evaluate how it performs compared to current
practice, while Section 4 concludes the paper. The TinyDe-
bug code presented in this paper is made public available at
https://github.com/mortenthansen/tinyos/tree/tinydebug-1.

0.

2. TINYDEBUG
TinyDebug is a multi-purpose passive debugging frame-

work for developing embedded wireless systems. It is indeed
not the first attempt to debug embedded wireless networks
but are, to best of our knowledge, the first attempt to de-
sign a multi purpose debugging framework that support the
entire application development process ranging from initial
simulations to actual real-world deployments.

For efficiency the design of TinyDebug is kept simple.
TinyDebug unifies event logging, collection and processing
by providing an efficient passive debugging mechanism which
can be used out-of-the-box or as a basic building block to
implement advanced debugging techniques in different envi-
ronments. This includes logging mechanisms such as code
annotations [13] or automatic insertions [5, 11], event col-
lection mechanisms [9, 7], event trace analyzers [5, 11, 8],
or user interactive debugging methods [13, 14, 3] . Hence,
TinyDebug does not enable any novel debugging methods
but instead unifies existing once by providing an efficient
general purpose event logging mechanism which can be used
by the developer at all stages in the development process.

Systems can interact with TinyDebug through two system
calls (debug and debug_flush) while software components
can subscribe to TinyDebug events through a listening or
a logging interface. Figure 1 shows an overview of TinyDe-
bug embedded architecture including the syntax of its debug
function.

2.1 Debug Function
A core component of TinyDebug is its generic debug func-

tion which is used to log an event. The syntax of the TinyDe-

Format Argument
%hhu 8bit unsigned integer
%hu 16bit unsigned integer
%lu 32bit unsigned integer
%llu 64bit unsigned integer
%hhi 8bit signed integer
%hi 16bit signed integer
%li 32bit signed integer
%lli 64bit signed integer
%hhx 8bit unsigned hexadecimal
%hhx 16bit unsigned hexadecimal
%hhx 32bit unsigned hexadecimal
%f 32bit float

Figure 2: TinyDebug supported arguments. The
format of the arguments is embedded in order in
the message string. This is similar to the well known
printf family of debug statements. Note that Tiny-
Debug support float arguments.

bug debug function is inspired by the TOSSIM dbg function
[6] and takes two mandatory string parameters, an ID and
a message, together with an optional number of arguments.

The ID string is used to identify a particular event. Tiny-
Debug uses a hierarchical ID name-space where the hierar-
chical levels are separator by a “,”. This makes filtering of
events and the task of avoiding unwanted ID name clashes
a lot easier. The message string is a human-readable text
string describing the event and its arguments. Arguments
are described in the familiar printf way by embedding their
type into the message string using the special format strings
shown in Figure 2.

The fact that the TinyDebug debug function makes use
of two string argument is a tradeoff between program mem-
ory efficiency and usability. First, the use of an ID string
was chosen so that it could have a meaningful name and
that it did not have to be previously defined (which would
have been the case if an enumeration constant was used).
Secondly, the use of a message string was done to enable
message based debugging and in order to support a variable
number and type of arguments to the same unified debug

function.
TinyDebug does not specify how calls to the debug func-

tions are inserted into an application and assume that these
are already there. In some systems they could be automat-
ically inserted [3, 11], but in the most common case they
would be manually inserted. One might consider this a cum-
bersome approach, but we argue that any developer would
use some form of message oriented debug mechanisms (in-
cluding printf, TOSSIM dbg, or assertions) during initial
development of a module. Thus, if the developer used the
TinyDebug debug function in that initial development, the
statements would already be present and available in the
later stages of the development process.

2.2 Message Format
Internally in TinyDebug all calls to the debug functions

are processed and translated into the generic TinyDebug
debug message format shown in Figure 3. This includes
a length field specifying the length of the debug message, a
unique UID identifying the specific call to the debug function
(note that this is not the same as the ID string parameter
from the debug function), a time-stamp, a sequence num-

length uid timestamp seqno args

1 byte 1 byte 4 bytes 1 byte length-7 bytes

Figure 3: TinyDebug debug message format. All
TinyDebug events are transformed into debug mes-
sages of this format before being provided to any
embedded listeners or loggers.

i n t e r f a c e DebugListen {
async command void handle (const char∗ id ,

debug msg t ∗ debug) ;
}

Figure 4: Debug Listen interface which is used every
time a TinyDebug debug event is processed. Once a
call to the handle command returns the ownership of
the allocated debug message returns to TinyDebug.

ber, and the variable number of arguments given. The UID
is used as a reference to the specific debug call and hereby
the human-readable message and the number and types of
arguments which, for efficiency, is not stored with every de-
bug message. The fact that the UID is only one byte long
limit a system to 255 different debug statements. In systems
where this is not enough the UID field can be extended to
two bytes, enabling 65536 different debug statement, which
should be enough for even the most avanced embedded sys-
tem. The time-stamp is in local millisecond time but is
transfered into a global time when the debug message is col-
lected from the embedded device, and the sequence number
can be used to detect any missing debug messages.

2.3 Event Distribution
TinyDebug provide two ways for other modules to receive

debug messages: as a logger or a listener. A logger is a
module meant for storing traces of debug messages for later
inspection and a listener is a local module interested in the
debug messages triggered by the running system.

TinyDebug internally keeps a buffer from which space for
new debug messages are allocated. A listener is handed a de-
bug message immediately upon generation and is expected
to just do a fast inspection of the debug message and then
return whereas logging of a debug message depends on pe-
ripherals and hence can be a more time consuming task.
Therefore, in order to not interfere with the running system,
logging is only done whenever instructed to by the applica-
tion through a call to the debug_flush function or whenever
the internal buffer is almost full. If the logging is triggered
by the buffer almost being full, TinyDebug generates a spe-
cial debug message informing the developer that this was the
case and that logging might have interfered with the appli-
cation. The fact that logging is deferred means that in the
common case more than one debug message will be logged
at a time which increases energy efficiency when logging to
a device such as a flash disk. The TinyDebug listening and
logging interfaces is shown in Figure 4 and Figure 5, respec-
tively.

If the rate of logged events (calls to the debug function) is
higher than the rate events can be flushed from the debug
buffer, debug messages can be lost. If this happens, Tiny-
Debug generates a special debug message informing the de-
veloper that debug messages has been lost. The developer

i n t e r f a c e DebugLog {
command void f l u s h (u i n t 8 t ∗ buf , u i n t16 t l e n) ;
event void f lushDone () ;

}

Figure 5: Debug Log interface which is used when-
ever instructed to by a call to the debug flush func-
tion or the internal TinyDebug buffer is almost
full. The ownership of the allocated debug messages
(stored in buf) does not return to TinyDebug until
the callee signals flushDone.

can then refer to the debug messages sequence numbers in
order to figure out how many were lost. Note that Tiny-
Debug always leaves buffer space for its own special debug
messages so that these can always be logged.

2.4 Event Logging
TinyDebug comes with two standard ways of logging de-

bug messages: directly to the serial or the radio, or to flash
for later extraction through the serial or radio.

In theory there is no restriction on the length of a debug
message which depends on the number and types of the ar-
guments, but in practice with a 1 byte length field, they are
limited by a max length of 255. When logging a debug mes-
sage to flash, this length is not an issue as most block sizes
are larger than 255, but when logging a debug message over
the serial or radio it could be. TinyDebug handles this with
fragmentation. It adds a one byte fragment header to all
debug messages sent over the serial or radio where the first
four bits describe the number of fragments a debug message
has been divided into and the last four bits describe the
current fragment number. Fragmented debug messages can
then be assembled at the receiver (see next subsection).

Every debug message contains a local time-stamp from the
time of creation. When a debug message is transferred to
another node the time-stamp is transferred into the receivers
time. TinyDebug does this by modifying the time-stamp
before transmission to be the difference between the event
time and the transmission time. At the receiving side, this
difference will then have to be subtracted the receiver’s local
time of reception, and hence the time-stamp will be in the
receiver’s local time. This is similar to the time-stamping
approach taking in RITS [10] which reports an accuracy in
the order of few tens of micro seconds.

2.5 TinyDebug Client
TinyDebug provides a PC side TinyDebug client which is

able retrieve debug messages from a number of nodes simul-
taneously while handling possible fragmentation that might
occur due to debug message being longer than the links pay-
load size. The fact that the same TinyDebug client, running
on the same host PC, receives data from all nodes enable it
to transform the time since an event from the received de-
bug messages into global POSIX time based on the same PC
clock. Furthermore, if debug messages are stored in flash
for later retrieval, the TinyDebug client will send a retrieval
command to the nodes upon connection which will initiate
the retrieval of all stored debug messages.

TinyDebug include a fetch script which automatically fetches
an applications calls to the debug function and their respec-
tive UID, ID string and message string from the source code

<global timestamp>, <nodeid>, <seqno>, <ID>, <arg1>, ..., <argN>
POSIX time integer integer integer integerstring

Figure 6: TinyDebug client output CSV data for-
mat. Integers are represented by their base 10 value.

right after it has been compiled. This information is then
fed into the TinyDebug client which processes the incoming
debug messages according to their UID, and outputs an easy
parsable comma separated value (CSV) string of events, or
the corresponding human readable text.

The CSV format is shown in Figure 6 and consists of a
global time-stamp, a node identifier, the node sequence num-
ber ranging from 0 to 255, the message ID string, and the
arguments. TinyDebug does not enforce any method or tool
for how this data is processed, but in the following section
we will suggest a few approaches.

2.6 Implementation Details
TinyDebug is implemented for TinyOS where it is inte-

grated into the TinyOS tool-chain as an extra make target.
Thus TinyDebug can be easily enabled or ignored per appli-
cation when compiling a program.

It is no secret that processing TinyDebug events takes
resources and hence when compiling a program with Tiny-
Debug one might not want to process all event embedded in
the code. For efficiency, TinyDebug uses a filter or an ig-
nore list to enable a developer to filter or ignore some debug
messages. These lists are given as compile time constants in
TinyDebug.

The syntax of the TinyDebug debug is similar to the
TinyOS TOSSIM dbg function so when compiling TinyDe-
bug for TOSSIM each call to the TinyDebug debug function
is accompanied by a similar call to the TOSSIM dbg func-
tion. Thus one can use the TinyDebug debug function as a
replacement for the TOSSIM dbg function which means that
when developing with TOSSIM one would not need to make
use of the TOSSIM serial connection when doing message
based debugging.

The TinyDebug client is implemented similar to its TinyOS
Printf client counterpart and takes a “-comm” parameter
specifying where a sensor node is connected. Furthermore,
it can also take a list of connection points as standard input
which it will try and connect to. This enables the Tiny-
Debug to collect debug data from multiple sensor nodes,
simultaneously, and then write this data into one combined
CSV log file. This comes especially handy when dealing
with testbeds where mulitple nodes might be logging debug
events simultanously to a wired or wireless back-channel.

3. USE CASES
In this section we show how TinyDebug can be used for

simple message based debugging, event logging and analysis,
and simple distributed event processing.

3.1 Message Based Debugging
The printf family of message based debugging functions is

used when debugging various systems. They provide, even
in embedded systems, a convenient way to debug an appli-
cation. The fact that TinyDebug makes use of a human
readable message string makes it compatible with printf.

In embedded systems printf is often implemented by com-
piling a character string on the embedded device and then

Hi I am writing to you from my TinyOS application!!
Here is a uint8: 123
Here is a uint16: 12345
Here is a uint32: 1234567890

Figure 7: Message based debugging application out-
put of the default TinyOS printf test application.
TinyDebug improves the communication overhead
of this output compared to printf with 63%

sending the entire character string over the serial to a ter-
minal on a PC. This is expensive and scales with the size of
the message. TinyDebug improves upon this by only sending
the UID and the arguments over the serial and then compil-
ing the character string in the TinyDebug client on the PC.
Thus instead of scaling with the message size TinyDebug
scales with the arguments.

To illustrate the improvement of TinyDebug compared to
printf we compare the communication overhead of the de-
fault TinyOS printf test application using the default printf
implementation and our TinyDebug implementation. The
application is very simple and only prints the four lines of
text with embedded integers shown in Figure 7 when started.
Using printf the total amount of data sent over the serial
when the application is started is 180 bytes whereas with
TinyDebug it is 67 bytes. This is an improvement of 63%.

In addition to this improvement TinyDebug, as opposed
to print, handles floats as one would handle integers (see Fig-
ure 2). With the TinyOS printf implementation, floats has
to be printed as two integers: one representing the integer
value and one representing the rest with some granularity.

3.2 Event Logging
When debugging advanced distributed protocols at a larger

scale, the number of events increases and the overhead of tra-
ditional message oriented debugging becomes unacceptable.
In such cases, more space efficient events represented by an
event UID and a number of arguments is used. A widely
used example of this is the TinyOS collection debug mes-
sages [1] which is used to debug collection protocols such as
the well known Collection Tree Protocol (CTP) [4]. The col-
lection debug messages does not support variable numbers
and types of arguments and consist of an UID, a sequence
number, and three 16 bit unsigned integer argument. Hence
whenever a debug message does not make use of all three
argument space is wasted.

To illustrate the improvement of TinyDebug compared to
the TinyOS collection debug messages we ran CTP with
the two approaches on a 25 node grid network while logging
30000 events. Collection debug events are already embedded
into the CTP code but TinyDebug events are not. Instead of
embedding TinyDebug events into the CTP code we made a
collection debug to TinyDebug adapter which translates the
collection debug events to corresponding TinyDebug events
with similar arguments. Thus we do not have to modify the
existing CTP code in order to debug it with TinyDebug.
Note that this adapter approach can be applied in general
to existing code already including some form of debugging
mechanism.

The 30000 CTP debugging events using the collection de-
bug messages results in 510000 bytes of debug data whereas
TinyDebug produces 525715 bytes of debug data. This is a
3% increase caused by the fact that TinyDebug debug mes-

>> nodes(2)
ans =

id: 1
Collection__FE_ARRIVED_MSG: []

Collection__FE_DUPLICATE_CACHE: []
Collection__FE_DUPLICATE_QUEUE: []

Collection__FE_FORWARD_MSG: []
Collection__FE_LOOP_DETECTED: []
Collection__FE_RECEIVED_MSG: []

Collection__FE_SENDDONE_WAITACK: [11x4 double]
Collection__FE_SEND_QUEUE_EMPTY: [196x4 double]

Collection__FE_SENT_MSG: [195x4 double]
Collection__TREE_NEW_PARENT: [2x4 double]

Collection__TREE_RECEIVED_BEACON: [313x4 double]
Collection__TREE_SENT_BEACON: [15x4 double]

Figure 8: Matlab processed TinyDebug event data
for a TinyOS CTP run. The event data is stored in
a per node structure where the events are identified
by a Matlab compatible message ID string.

sages includes an extra 4 byte time-stamp. If we leave out
the time-stamp from TinyDebug debug messages it will only
produce 405715 bytes of data which is a 20% improvement
compared to the collection debug messages.

A related TinyOS debug mechanism is DiagMsg [2] which
supports variable number and type of arguments by prepend-
ing every argument with a 4bit type field. DiagMsg will out-
perform collection debug messages if the event arguments
vary a lot whereas if there are always three 16 bit integer
arguments the type fields become redundant, and the col-
lection debug message approach becomes the preferred one.
The beauty of TinyDebug is that it will always have mini-
mal overhead as the number and type of arguments are not
embedded in the debug messages. However, one limitation
of TinyDebug compared to DiagMsg is that it is currently
limited to 255 different debug events, but as discussed in
Section 2.2 this can be extended by increasing the size of
the UID’s.

3.3 Event Analysis
Event logging is tightly coupled to event analysis. Event

analysis is application specific and cannot be completely
generalized which is why TinyDebug does not enforce any
method or tool for how the event data shown in Figure 6
is processed. However, TinyDebug provides a couple of op-
tional tools which can ease the task of event analysis.

First, TinyDebug comes with a speed optimized debug2mat

script which converts TinyDebug event data into easy acces-
sible binary Matlab data. The Matlab data is a node array
where each element is a structure containing the node ID
and its event data identified by its message ID string (where
“,” is substituted with “ ” for Matlab compatibility). Each
event is represented by its time-stamp and its arguments.
The Matlab data format for a the CTP TinyDebug run dis-
cussed in the previous subsection is shown in Figure 8. This
format enables one to do easy per node event analysis with
human readable event names. Furthermore, once the data
is saved as a Matlab binary file it is a lot faster to load it
into Matlab. For small experiments with limited event data
this is not a concern, but for longer experiments, where the
CSV data can be in the order of mega bytes, only having to
process this once makes a big difference.

TinyDebug also comes with a network visualization tool
called DVIZ which provides a graphical online or off-line rep-

resentation of the network dynamics and statistics based on
the TinyDebug debug messages. DVIZ processes per node
events and based on their message ID string either ignores
the event, count the number of event, accumulate an event
argument, or show the latest value of an event argument.
The action to be taken for each event is given as input to
DVIZ but defaults to counting the number of events if noth-
ing is specified for a certain message ID string. DVIZ also
shows a graph of the network where the edges from a node
to another is set upon reception of a certain argument of
a specified parent event. The parent event and argument
is specified by its message ID string and argument number,
and is given as input to DVIZ. For the convenience of the
user, DVIZ is able to automatically layout the network graph
with a minimal number of overlapping edges but also enable
the user to statically specifying the locations of nodes. The
location of nodes is specified in a special topology file which
is optionally given as input to DVIZ. The format of this
topology file is similar to the once produced by the widely
used TinyOS TOSSIM link generator based on a USC link
model [15].

Figure 9 shows a screen-shot of DVIZ while running the
25 node CTP experiments from the previous subsections. In
this example argument 2 of the“Collection FE SENT MSG”
event is used as the parent identifier and DVIZ is given the
fixed grid topology as input. In the figure, the user has se-
lected node 0, 1, 5, and 6, which means that the statistics
of these nodes are shown in the table in the bottom of the
figure. In this example all events are simply counted ex-
cept for the “Collection FE ARRIVED MSG” event which
shows the source of the last arrived message.

3.4 Distributed Event Processing
When debugging a system in a resource restricted real

world deployment logging entire event traces might be con-
sidered too expensive or not feasible. Hence one might want
to process the events locally and then only inform the user
whenever something important changes. To enable this,
TinyDebug provides the debug listen interface which a cus-
tomized distributed event processing solutions can hook into
and then get immediate information about debug events.

On top of listening to debug events any such distributed
event processing solution will need a way to inform the user
of changes. If it is considered too expensive to do this by
sending specialized messages over the serial, radio, or to the
flash disk it would have to prepend any such information to
already existing messages sent. To ease the task of doing this
TinyDebug comes with a specialized debug header compo-
nent which can be wired into any communication stack with
the standard TinyOS send, receive and packet interfaces.
This component provides the type parameterized interface
shown in Figure 10 where a distributed event processing so-
lution should take the appropriate actions to either read or
set the header hdr from message msg in the send, intercepted,
received, or snooped events.

An example of a distributed event processing solution is a
simple network diagnostic tool reporting a nodes next hop
during collection in a sensor network. Such a solution could
embed a couple of bytes representing a node and its parent
in all data packet using the debug header component. A
node will only have to report this whenever a new parent is
reported by the “Collection TREE NEW PARENT” event
which it would have to listen too through the debug listen

Figure 9: DVIZ Graphical Network Analyzer. DVIZ workspace is divided into three sections: a network
graph showing the current network topology (left), a control panel (right), and a table showing statistics for
the nodes selected in the network graph (bottom).

i n t e r f a c e DebugHeader<t> {
event void sendHeader (t∗ hdr , message t∗ msg) ;
event void in te rceptHeader (t∗ hdr , message t∗ msg) ;
event void rece iveHeader (t∗ hdr , message t∗ msg) ;
event void snoopHeader(t∗ hdr , message t∗ msg) ;

}

Figure 10: Debug header interface which can be
used by any distributed event processing solution
that want to embed debug information into existing
data packets.

interface. At the origin the embedded parent information
will be set on a data packet in the sendHeader event, if
changed, and at any intermediate node in the path of the
data packet, it would be done in the interceptHeader event,
if it has changed and is not already set by any of its children.
Assuming a relative stable network, the root of the collec-
tion will over time have a complete overview of the current
network topology without receiving specialized debug mes-
sages and without the developer having to modify existing
source code to report the change of parent.

It is important to note that prepending debug messages
to existing messages can introduce new bugs in a system
and hence should be done at all stages of the system devel-
opment process if needed in the final deployment in order
to eliminate Heisenbugs (which is a bug that disappear or
alters its behavior when an attempt to isolate it is made).

4. CONCLUSIONS
This paper presented TinyDebug as a multi-purpose pas-

sive debugging framework usable in all levels of the embed-
ded wireless system development process.

We presented TinyDebug’s generic debug function and
showed how calls to this is processed and converted into
generic debug messages. We showed how TinyDebug en-
able these messages to either be buffered for later extraction
through the radio or serial, or internally processed by some
distributed event processing solution. TinyDebug is not only
an embedded framework, it also comes with a TinyDebug
client designed to extract debug messages from multiple em-
bedded system while handling possible fragmentation.

By case studies we demonstrated how TinyDebug improves
upon existing embedded message based and event logging
debugging techniques, and how it can easily be used to im-
plement more advanced distributed event processing debug-
ging techniques. More specifically, we showed that TinyDe-
bug decreases the amount of data sent over the serial with
message based debugging with 63% for the standard TinyOS
printf test application and with 20% for 30000 debug events
with CTP running on a 25 grid network when the the over-
head of the extra TinyDebug time-stamps are neglected.

The TinyDebug code presented in this paper is made pub-
lic available at https://github.com/mortenthansen/tinyos/
tree/tinydebug-1.0.

5. REFERENCES

[1] TinyOS Collection Debug Message.
http://code.google.com/p/tinyos-main/source/

browse/\#svn\%2Ftrunk\%2Ftos\%2Flib\%2Fnet, Oct.
2011.

[2] TinyOS Diagnostic Message.
http://code.google.com/p/tinyos-main/source/

browse/\#svn\%2Ftrunk\%2Ftos\%2Flib\%2Fdiagmsg,
Oct. 2011.

[3] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse,
and L. Luo. Declarative tracepoints: a programmable
and application independent debugging system for
wireless sensor networks. In Proceedings of the 6th
ACM conference on Embedded Network Sensor
Systems, SenSys ’08, pages 85–98, 2008.

[4] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection Tree Protocol. In Proceedings of
the 7th ACM Conference on Embedded Network
Sensor Systems, SenSys ’09, 2009.

[5] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F.
Abdelzaher, and J. Han. Dustminer: troubleshooting
interactive complexity bugs in sensor networks. In
SenSys ’08: Proceedings of the 6th ACM conference on
Embedded network sensor systems, pages 99–112, New
York, NY, USA, 2008. ACM.

[6] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems,
SenSys ’03, pages 126–137, 2003.

[7] K. Liu, M. Li, Y. Liu, M. Li, Z. Guo, and F. Hong.
Passive diagnosis for wireless sensor networks. In
Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, SenSys ’08, pages 113–126,
2008.

[8] H. Pham and J. Mazzola Paluska. PerViz: Painkillers
for pervasive application debugging. pages 208–216,
Mar. 2010.

[9] S. Rost and H. Balakrishnan. Memento: A Health
Monitoring System for Wireless Sensor Networks. In
2006 3rd Annual IEEE Communications Society on
Sensor and Ad Hoc Communications and Networks,
volume 2, pages 575–584. IEEE, Sept. 2006.

[10] J. Sallai, A. Lédeczi, and P. Dutta. On the Scalability
of Routing Integrated Time Synchronization.

[11] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and
K. Whitehouse. Macrodebugging: global views of
distributed program execution. In Proceedings of the
7th ACM Conference on Embedded Networked Sensor
Systems, SenSys ’09, pages 141–154, New York, NY,
USA, 2009. ACM.

[12] G. Tolle and D. Culler. Design of an
application-cooperative management system for
wireless sensor networks. In Proceeedings of the Second
European Workshop on Wireless Sensor Networks,
EWSN ’05, pages 121–132, Feb. 2005.

[13] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim,
J. Jeong, J. Hui, P. Dutta, and D. Culler. Marionette:
using RPC for interactive development and debugging
of wireless embedded networks. In Proceedings of the
5th International Conference on Information
Processing in Sensor Networks, IPSN ’06, pages

416–423, 2006.

[14] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse.
Clairvoyant: a comprehensive source-level debugger
for wireless sensor networks. In Proceedings of the 5th
International Conference on Embedded Networked
Sensor Systems, SenSys ’07, pages 189–203, 2007.

[15] M. Zuniga and B. Krishnamachari. Analyzing the
transitional region in low power wireless links. In In
First IEEE International Conference on Sensor and
Ad hoc Communications and Networks (SECON,
pages 517–526, 2004.

