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Preface

This booklet contains the proceedings of the third international workshop on "Modelling of
Objects, Components, and Agents" (MOCA'04), October 11-13, 2004. The workshop is
organized by the "Coloured Petri Net" Group at the University of Aarhus, Denmark and the
"Theoretical Foundations of Computer Science" Group at the University of Hamburg,
Germany. The homepage of the workshop is: http://www.daimi.au.dk/CPnets/workshop04/

Objects, components, and agents are fundamental concepts often found in the modelling of
systems. Even though they are used intensively in software engineering, the relations and
potential of mutual enhancements between Petri-net modelling and the three paradigms
have not been finally covered. The intention of this workshop is to bring together research
and application to have a lively mutual exchange of ideas, view points, knowledge, and
experience. The submitted papers were evaluated by a programme committee, which was
supported by several members of their groups resulting in three to five reviews per
submitted paper. The programme commitee consists of:

Wil van der Aalst The Netherlands
Rémi Bastide France

Didier Buchs Switzerland
Piotr Chrzastowski-Wachtel Poland
Jose-Manuel Colom Spain

Jorg Desel Germany
Giuliana Franceschinis Italy

Tom Holvoet Belgium

Nisse Husberg Finland

Jens Bak Jorgensen Denmark
Ekkart Kindler Germany
Gabriele Kotsis Austria

Fabrice Kordon France

Charles Lakos Australia
Rainer Mackenthun Germany
Daniel Moldt (Chair) Germany
Francisco José Camargo Santacruz  México
Riidiger Valk Germany
Tomas Vojnar Czech Republic
Wlodek M. Zuberek Canada

The programme committee has accepted 12 papers for presentation. They tackle the
concepts of objects, components, and agents from different perspectives. Formal as well as
application aspects demonstrate how wide the range can be within which Petri nets can be
used and illustrate at the same time that there is a tendency to use more high-level concepts
for the analysis and design of Petri-net based models.

Daniel Moldt
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Unifying The Integration Of Real Time Computing Systems -
An Abstract Machine To Specify Required Constraints

Rainer Mackenthun *

Abstract

This paper presents an abstract machine approach to specify required constraints. The
specification is formal and contains functional and temporal system requirements. This
approach is of special importance for integrators of Real Time Computing Systems, since
they have to specify the required constraints in such a way, that it can be understood by
developers and implementators in different domains, in different companies in different
countries.

1 Introduction

Real Time Computing Systems (RTCS) have an increasing influence on any body’s life. One
of the major challenges is to integrate systems from different areas. A lot of effort has been
invested in unifying the integration by standardizations of modeling languages, methodologies
and processes. As the complexity of these integrated system explodes, it becomes obvious
that the investments where mainly in specifying the solution design and the implementation
of service platforms. The specifications of the required constraints is still far from standard-
ization. This means, in an integration scenario, we are not able to formulate even important
constraints in a precise way and we are not able to support the validation of RTCS suffi-
ciently. A situation that should be changed, since integrated RTCS more and more conquer
the area of dependable systems. We present an approach that could be a milestone on the
way to a formal and therefore precise specification of required constraints formulated in the
international language of mathematics.

The first half of this paper (section 2 to 4) describes the problem in detail, the second half
(section 5 to 8) presents the solution.

2 RTCS Integration: Processes and Unified Methodologies

To explain the range of our work, we show the integration process in the context of systems
evolution in figure 1. For a moment, let us assume that there exists only a single integration
process. The integration process exchanges information with several development processes,
integrates them and if the integration was successful give them to the implementation pro-
cesses. This first integration is often called virtual integration. The result of the virtual
integration is the specification.

The results of the implementation processes is running back to the integration process.
This integration is often called real integration. The results of the real integration can be
tested against the specification. These test are called conformance tests.

*Rainer Mackenthun, Fraunhofer ISST, Berlin, Germany, Rainer.Mackenthun@isst.fraunhofer.de
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Figure 1: System Evolution Process

If there would be only one integration process, the modelling language used in this process
could be the common language. As there are more than one, the standard modelling language
must be a common agreement. This is a time consuming work, but the benefit is high: In
principle, all developers can work with all integrators and all integrators can work with all
implementators.

We conclude, that one of the main task for unifying the integration of RTCS is the
definition of a standard description language of the specification and a standard for the
implementation results.

We would like to go a step further an also unify the integration methodology. This
requires to standardize not only the specification information, consisting of the description of
the required constraints, the designed solutions and the implemented service platforms. In
addition, the results of assisting activities should be described in a standardized way and the
methodologies, how to come from one result to another. Figure 2 shows the results in our
approach. The diagonal from the upper left to the lower right rectangle shows the results
that belongs to the specification.

The other results are assisting description. Top down, the lines contain the constraint
model, the design model and the implementation model. From the left to the right the
columns contain the requirements, the solutions and the service platform. Our approach is
different from the traditional computer science approach, as shown in figure 3. They defined
three descriptions: requirements specification, design and implementation. Besides those,
who just use this structure of results, there are still some people who belief in the existence
of a solution generator. There belief is given by two axioms:

1. If we have a lot of experience in implementation, we can make such good design model,
that we can generate implementation models from the design models.

2. If we have a lot of experience in design, we can make such good requirements models,
that we can generate design models from these requirements models.
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Figure 2: Results of the Integration

The final conclusion is, that one day we are so experienced, that we can generate new solutions
from good requirements models. Philosophically seen, this is the acceptance of Aristoteles’
induction axiom, that experience leads to stable abstract axioms from which the solutions
can be deduced. Experience proves axioms.

We follow Karl R. Popper [Popper 34] who has argued against this belief and we are in
line with many people in industry, with whom we discussed intensively in the past.

To analyse the belief in more detail, we switch to our approach and show the belief in
our result structure (see figure 4A). The belief is, that we can come from the implementation
results at the bottom to the specification results in the the diagonal by Aristoteles’ induction.
The rest, going upward from the specification is just abstraction of details from the solution
design and the implementation of the service platform.

When we discuss with solution engineers in industry, they tell us, that we cannot find new
design solutions for a concrete problem by induction on old implementations. This would
mean: No steady experience field, no pure inductive learning, no generator for new solutions.

Our approach for requirements specification will introduce the requirements specification
as the specification of that constraints, the integrator requires the system to do and that he
wants to validate. Using Aristoteles’ induction would mean that human beings eventually
have experience of all the requirements, human beings can have on that system. This is
against all our experience with human beings. If the believers are wrong, and we are right
this would mean: no steady experience field, no pure inductive learning, no generators for
new solutions.

To avoid confusion: we do not refuse generation and configuration as instrument to pro-
duce approved part of the system, that have only limited interaction with other parts of the
system like subsystems, solution components and implementation components. We just ar-
gue for the use of creativity as the efficient instrument to bring innovations into a system.
In the contrary, we encourage the use of generation and configuration so that the creative
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Figure 3: Traditional Computer Science Approach And The Generation Dream

resources in the system evolution process can concentrate on building dependable innovative
solutions. We ourselves work in the area of domain engineering (saving the approve parts)
and product lines engineering (choosing common parts in a product line). Both engineering
approaches produce results, capable for generation and configuration. We think that the
domain engineering is the area to use Aristoteles’ induction.

We will no longer discuss this subject in this paper but offer our research results as an
alternative approach. Let the industrial practice prove the hypotheses.

So we just remove Aristoteles’ induction from our methodologies (see figure4B) and moves
it to the domain engineering dimension that is not shown in the figure. We see innovations
in the specification results as products of creativity. We propose to start with the require-
ments specification. As the requirements are on the abstract constraint level they should be
validated via Popper’s deduction (see figure4C). The requirements are deduced to design and
implementation level in shape of case studies to check, if the constraint is implementable.
This leads to a falsification or an approval of the constraint as requirements. Note, that the
directed arcs in the figure describe the sequence of finishing the results. The black arcs of
Popper’s deduction seem to show in the wrong direction. But anyone who knows about Pop-
per’s theory is aware, that an abstract result is not established, until it is sufficient approved
by concrete case studies. Even though we have to start with the abstract result and then
deduce the concrete case studies, the ending of the activities is the other way round.

While the requirements specification is worked out, the service platform should be de-
scribed. At a certain point in time, when the requirements specification exists and we have
enough information from the service platform specification, we can start the creative process
of solution design. The implementation on the solution can be done by Aristoteles’ deduction,
as there exist enough information from the implementation case studies and the service plat-
form implementation to deduce solution implementations from the more abstract designed
solutions.

We still use the abstraction from details for the other three results (grey arcs) and end
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Using Models

up with three models of the system that could be validated : the implementation model, the
design model and the constraints model.

When we assess todays situation in industry, we come to figure 4D. To our knowledge at
least certain parts of industry are doing quite well using models for design and implementa-
tion of solutions and service platform. The AUTOSAR initiative in the area of automotive
electronic networks is a good example for this (cf. [Hardt, Feldo 04]). But the abstraction
of a useful constraint model and the choice of useful case studies is still an open and heavily
discussed question.

We offer as solution an approach for requirements specification that gives orientation for
the choice of useful case studies and an abstraction level for constraint models.

3 Integrating The Object and Information World Solutions

We use requirements specification to give the integrator of a system an instrument to describe
what he wants the system to do. We should be aware of two different philosophies that exists
in the world of computing solutions. We call them object world solutions and information
world solutions. The integrator can be in charge to integrate RT'CS from both worlds.

As shown in figure 5 the requirements description should be unique for both worlds, since
the worlds cannot be separated for the existence of hybrid solutions. Hybrid solutions e.g.
start in one world and end in the other. The changeover between these worlds is organized
via gateways.
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The information world solutions are influenced by the object-oriented paradigm. The
solutions of this world have been influenced by the need for more features. The need for
computer performance has always been satisfied by the hardware. So the solutions do not
not really care about hardware performance. Performance just exists in a sufficient amount.
Services in this world mean processing or task services. Send a task to the processing service
and it will be processed in time. The axiom of (nearly) unlimited resources is fundamental
to this world.

The principles of the information world solutions are shown in 6. Part A show the archi-
tecture, part B an example run.

Software solutions components are defined. If a solution component is instantiated to a
solution task it needs a management service that, for instance, brings the task to the right
execution place and a calculation service, that calculates the contents of the task. Solution
components can communicate with each other via interfaces. So during the run, the tasks
have to be synchronized to communicate with each other.

The task management is symbolized by the task management cycle. It contains task
management units that are processes cyclically. During the run the task management units
contain tasks to process. The task calculation works in a similar way. The task manage-
ment controller is responsible to assign task to task management units, the task calculation
controller is responsible to assign task to task calculation services.

In the first instance, specifying of temporal system requirements seems to be of no im-
portance for this world. Unfortunately, the information world solutions are traditionally not
used for dependable system, since they are not very reliable. The main problem is that for
the high complexity, the synchronisation of tasks is not always successful. For the high com-
plexity of the programs and therefore the tremendous amounts of possible execution situation
this cannot always be checked sufficiently. For this purpose the definition of deadlines is of
great importance. For instance if a system is able to calculate a number of tasks in half of the
reaction time needed, one can put the deadline to this point in time. If it is not finished, you
assume that the situation is deadlocked and the system may choose an alternative calculation.
This is no guarantee for success but improves the dependability a lot.

In contrary to the information world, the object world has taken concepts from the real
world like distribution, services that encapsulate the use of limited local resources or commu-
nication resources and resource controllers, that guarantee the avoidance of resource conflicts.
The principles of this world are shown in figure 7. The axiom of limited resources is funda-
mental for the solutions in this world.
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Figure 6: Architecture (A) and Run (B) of the Object World

Software solution components are defined. If a solution component is instantiated to a
solution task it may need local services, e.g. to access a shared memory resource. Solution
components can communicate with each other via interfaces. If a communication takes place,
a communication service is needed to use a shared communication resource.

The local controller is responsible for the coordination of local service accesses. The com-
munication controller is responsible for the coordination of communication service accesses.
Software solution components are assigned to controllers, that are responsible for their ser-
vice accesses. The location of a software component is identical to the location of the local
controller, the software component is assigned to. Location are abstracted by actors that
represent distributed hardware components.

To compare both approaches, in the information world the fast computing of many features
play an important role. Distribution of task on hardware is abstracted in the management
and calculation cycle. The model of runs should focus on task synchronization. In the
object world limited resources and - for the limited communication services - distribution is
important. Models of a run must respect this.
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Figure 7: Architecture (A) and Run (B) of the Object World

4 Benefits Of Our Formal Requirements Specification

We focus on a requirements specification for the integration process. The requirements spec-
ification has to describe what the integrator wants the system to do and what he wants to
check. What kind of properties could this be? For instance the integrator is interested that
components that are build by different developers meet the deadline in every execution sit-
uation. Another property might be that hybrid solution meets deadlines when a changeover
to the other world is necessary.

We would like to stress, that we do not try to achieve the goal of a formal correctness
proof of a RTCS via the requirements specification. If properties can be proved, this should
be done, but proving correctness is not the major objective. The requirements engineer in the
integration process should get an instrument to describe important features of the system in
a precise and understandable way. The important features we call the missions of the RT'CS.
As we use an abstract machine approach we call the executable requirements specification
abstract requirements machine (ARM).

The benefits of the ARM are twofold. At first they can be used to improve the system



evolution process. Secondly they can be used to improve the system by integrating the ARM
at runtime to improve the dependability or the security of the system.
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Figure 8: Benefits: A) Improving Integration Views B) Improving Evolution Process C)
Improving System D) Improving Security of the System

Figure 8A shows that formal requirements specification would improve any view on the
system integration model. We just mention those views, where the requirements specification
has a direct influence. The specification view gets an international and easy understandable
description of the system requirements. The constraint view is completed so that it can
be used for validation and the requirements view is completed by adding the most abstract
component which subsumes a lot of information that are currently redundantly contained in
different requirements specification on an inconsistent abstraction level.

Figure 8B shows that a unified description of requirements is a major improvement for the
early phases of the evloution process of the specification. This avoids conflict about subjects
at the end of the process that could have been discussed at the beginning.

The right side of figure 8C shows the improvement of the system. The left side shows the
usage of the ARM for testing the implementation. The right side shows the integration at
runtime. For instance, the ARM could take the task of checking the deadline and to enable
an alternative calculation.

As shown in Figure 8D the ARM can also be used to check the system for prohibited
access scenario on an abstract level and therefore can be used to increase security of the
system.



5 The Abstract Machine Approach For Constraint Models

Our solution for a constraint model uses abstract machines. These machine simulate the
behaviour of our system on constraint level. We have chosen this approach for several reasons.

The number of system requirements is enormous. The most critical thing is, that these
requirements are depending on the run of the system. This leads to a an enormous number
of constraints even though we restrict to missions and makes it impossible to describe the
requirements as rules. These direct approaches are rejected for their complexity, that must
be managed.
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Figure 9: The Abstract Machine Approach For The Constraint Model

Alternative to the rule approaches there exists requirements specification that describe
requirements scenarios implicitly . Timed and Coloured Petri nets, temporal logic and several
other techniques are used for this purpose (see for instance [Bellini et. al. 00],[Heitmeyer,
Mandrioli 95]). The scenarios are the partial ordered runs of specified executable models.
Unfortunately there exists no sufficient techniques that is already available for requirements
specification of real world RTCS in industry.

From our point of view, the main problems are, that the formal requirements specifica-
tion is designed under the major objective of proving correctness and that the scenarios are
described implicitly. This makes these approaches hard to use. In our approach the partial
ordered runs are explicitly contained and manipulated. Our point of view towards correctness
proofs is already mentioned above.

As we see before, we need the ARM as an instrument to formulate required constraints
for the system, which are the abstract starting points - the theories - for Popper’s deduction
methodology. We use the formalization for the reason of preciseness and general understand-
ability. So again, our objectives of the formalism is, that the requirements are simple to
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formulate and simple to understand by human beings without misunderstanding that are
founded in an unprecise semantics of the description language.

So it seems to be like the “egg of Columbus” . We solved the problem, by giving up an
assumed necessity: the prove of correctness. This does not mean that no property can be
proved. But this is not the major objective.

Figure 9 shows the principle idea of abstract machines for the constraint level. You find 5
machines. On top we see the ARM that is presented in this paper. A certain use scenario is
send to the requirements machine. This machine generates a system requirements scenario.

Later on, during validation the ARM is synchronously executed with the other four ma-
chines. There are two solution machines, one for the object world and one for the information
world. The use scenario is also send to the two solution machines. These machines gener-
ate resource request and solution task scenarios. The resource service and the task service
machine are as well executed synchronously. Analysers may validate the model at the shown
interfaces.

Note that the solution and service machines are abstractions of other activities in the
integration process as mention above. What kind of language should be chosen for the models?
For the object world, we are working on a variant of the ARM, for the information world we
see a lot of connections to the work in [Valk 98][Maier, Moldt 01].

A pragmatic approach could be to use - for the solution and service platform - the imple-
mentation instead of the models, as long as the models do not exist. The runnable implemen-
tation of solutions and the service platform can be included via monitoring. A precondition
is that the implementations can be triggered in such a way, that a synchronous execution is
possible.

6 The Abstract Requirements Machine

The abstract requirements machine is shown in figure 10. It is defined as a coloured Petri net
(cf. [Jensen 97]). The details are explained in this section.
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Figure 10: The Abstract Requirements Machine
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A main concept of our work is the mission. A mission of a RTCS is one of the important
functions, a RTSC has to perform successfully. An airbag system has to perform the firing of
an airbag in time if needed. The mission is the function the requirements engineer concentrates
on.
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Figure 11: Specifiying the ARM: A) Fusion Place for the Situation B) Coloured Places for the
Results C) Transitions as Mission Definition Transition (left) and the Scenario Generation
Transition (right)

In a system, a lot of other work has to be done. We call portions of this other work
jobs. In our requirements models, jobs are only considered by reserving time frames for
them. Our approach meets the opinion of requirements engineers that the structuring of the
requirements specification is different to the structuring of the designed solutions. On solution
level, components are structured towards a design architecture e.g. to reduce the impact of
a change. On requirements level the system activities are grouped along the missions and
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e.g. the missions are structured in such a way, that responsibilities for failures can clearly be
investigated.

The ARM generates mission situations for use case scenarios. The mission situation
are equal to the requirements scenarios and describe functional and temporal requirements
constraints on the system.

Figure 11 shows the concepts, that have to be specified to generate the required con-
straints. The concepts are introduced and applied in the next section.

A) The situation is represented by a token on the bold rimmed fusion place situation. The
token contains a value of a composed data type and behaves like a variable. The data type
has to be specified by defining the scenarios type (data type SC), the execution situation
type (data type ES), and the mission situation (data type MS). The situation type is the
composed type: (data type SI = SC x ES x MS). The composed data type is the token
colour of the fusion place situation.

B) The results that are exchanged between the yellow mission definition transitions are
values of data type that are defined by the help of the following sets: the missions M, decision
points D P, mission activities M A and mission parts MP C M x (DP x M A x DP) that
are mission activities with the surrounding decision points. To define the token colours we
further need an index set ID for the current instance of a mission, a set of points in time T’
that is equal to the set of natural numbers and a set {b,e} that represent the two elements
begin and end of an interval. The figure shows the token colours of the places of the light
rimmed grey places.

C) The yellow mission definition transitions represent executable descriptions of an al-
gorithm that is executed during the firing of the transition. The figure indicates that the
description must offer an algorithm that can be time triggered. Every time the transition is
fired, one time step of the algorithm is executed. The following specification activities have
to be performed: Specifying the mission identification (result as transition identify missions)
means describing scenarios in which a mission could be started. Specifying the missions accep-
tance (transition accept missions) means restricting the number of missions that are accepted
in dependence of the current mission situation. For instance it might not be useful to start
an airbag calculation, if another airbag calculation is already running. Specifying the mission
planning (transition plan missions) means to describe which mission part is planned in de-
pendence on the situation. Not all mission parts are planned at once. The mission planning
can still decide about the next mission parts, when the mission is already running in another
part. Specifying the mission scheduling (transition schedule missions) means to describe the
assignment of time frame to a mission part in dependence on the situation. Here the reser-
vation of certain time frames for jobs must be taken into account. Specifying the mission
timing (transition timing missions) gives detailed time frame in which the mission parts will
be executed in dependence of the situation. The green use scenario generator transition is
similar to the yellow transition but does not send results but only changes the scenario part
of the situation variable. Specifiying the use scenario generator transition means to describe
how the use scenarios variable changes over the time.

The abstract machine will execute the use scenario generator transition and the mission
definition transitions as specified and will build up the mission situation that represent the
system requirements scenarios. The black mission composition transitions are automatically
defined from the specified information. The missions situation is build up as a partial order of
mission parts rsp. functional requirements (add functional system requirements) with assigned
time interval attributes (add temporal system requirements). The current mission situation is

13



updated by a clock transition (execute mission time step). The current mission situation is
reported by a reporter transition (report mission situation) that updates the mission situation
part of the situation variable.

We define modi for the abstract machine runs e.g. non-deterministic modus, where the
values of the execution situation are changed in a non-deterministic way, test modus, where
the values of the execution situation are changed as described in a test sequence, or run
modus, where the values of the execution situation are monitored in the running systems.
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Figure 12: Mission Composition Transition: A) An Extended Causal Net on Place System
Requirements Scenario B) An Effect Of Transition Add Functional System Requirements

Figure 12 and 13 show for an example of the mission situation rsp. the system require-
ments scenario how the black mission composition transitions effect the mission situation.
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The mission situation at time 8 is shown in A). You see two missions m1:1 (first instance of
mission m1) and m2:1 (first instance of mission m2). Mission m1:1 is consisting of partially
ordered mission parts. Before, between and after mission activities are decision points. Some
of the mission activities have assigned time frames. Mission activity ma2:m1:1 has not yet
got the time frames completely, but only the begin time stamp. The mission state is shown
by the black token, also known as a cut. Figure B) shows an action of transition add func-
tional requirements. Mission m2:1 is extended by mission activity ma2:m2:1 at decision point
d1:m2:1. Note that the time has not yet changed. We are still observing the construction of
a new mission situation.

d0:m1:1 mal:ml:1 dliml:1 ma2:ml:1 d3:ml:1 Time: 8
i: D—’%a&mlzl d4:ml:1
> :@ R
d2:ml:1
d0:m2:1 dl:m2:1
mal:m?2:1 ma2:m2:1 d2:m2:1

®© O O

[2.8][10..12]

C
dO0:ml:1 mal:ml:1 dl:ml:1 ma2:ml:1 d3:ml:1 Time: 9
. VAN R
Q v [\9!‘12] @\na&ml:l d4:ml:1
[2.8] -
. B @
d2:ml:1
d0:m2:1 mal:m2:1 dlI:m2:1 ma2:m2:1 d2:m2:1
[2..8][ 10..12]
D

Figure 13: Mission Composition Transition C) An Effect Of Transition Add Temporal System
Requirements D) An Effect Of Transition Ezecute Mission Time Step

Figure C) shows the effect of the transition add temporal system requirements. It just
assigns the end of the time frame to mission activity ma2:mq:1. In Figure D) the transition
execute mission time step that changes the mission status. The time is set to 9 and the token
from d2:m1:1 is moved to mp2:m2:1.

Now we can imagine the colour of the system requirements scenario rsp. the data type of
the mission situation. It is the set of extended causal nets that can build upon the mission
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activity instances and the decision point instances. The transition add functional requirements
just build the union of two extended causal nets to build a new extended causal net. The
transition add temporal system requirements changes time attributes of the current extended
causal net and the execute mission time step changes the state attributes of the current
extended causal net. For details on the formalization see [Mackenthun04].

The execution sequence of the ARM is a simple cycle. During each time step the following
sequence is fired: generate use scenario, identify missions, accept missions, plan mission,
add functional system requirements,schedule mission, timing mission, add temporal system
requirements, execute mission time step, report mission situation.

The success of the ARM will depend on two factors that we have stated before. At first the
requirements engineer must be able to formulate the requirements specification as mentioned
above. Secondly, the designer must be able to understand the requirements scenarios that
are produced by the machine.

We see no problems in defining sets and data type or to understand produced requirements
scenarios. To convince the reader that also the formulation of the mission definition transition
is performable we show the definition of a transition plan mission in the next section for an
example.

7 A Small Example: An Airbag Control System

We present a small example for a fictive airbag control calculation that is specified by the
integrator of a car. An airbag control solution might consist of many software solution compo-
nents. We assume that the integrator is interested in the interaction of solution components
that are developed by different suppliers. So he has to specify the requirements in such a
way that the interaction of software of different suppliers can be checked. Do not confuse
the system requirements scenarios with the run of a solution, even though they look similar.
Solutions are specified on a different abstraction levels. In this example we concentrate on
explaining mission definition transition plan mission and the functional system requirements.

Figure 14 shows four principle system requirements scenarios form the integrator’s view.
The airbag calculation is performed in two activities airbag! and airbag2. For airbagl exists
a solution from supplier sp! (named airbag_sp1) and from sp3 and for airbag2 exists solutions
from supplier sp2 and sp3. We assume that on the one hand the solutions form supplier sp1
and sp2, and on the other hand the solutions from supplier sp3 fit together. We have the
following requirements scenarios. In A) is is assumed that the result of the first calculation
is that no firing of the aribag is needed. In B) we assume that the situation after the first
calculation is critical. The airbag needs to be fired. Therefore the second calculation has
to take place. In C) and D) the first calculation has not met the deadline. An alternative
calculation is required. In C) the alternative calculation ends in a normal, in D) in a critical
situation. In the figure to each decision point the assumed decision condition is assigned
(airbag-normal etc). They have to be evaluated on the execution situation.

From these scenarios we can extract the information for the coloured
places in the machine: The mission are M={airbag} and the set of mis-
sion  parts is  MP={(airbag,(b1,airbagl_sp1,pel)), (airbag, (pel,airbag2-sp2,el)),
(airbag, (b2,airbagl_sp3,pe2)), (airbag,(pe2,airbag2-sp2,e2))}. This determines all colours of
the grey result places.

Figure 15 shows the decision tree described as another coloured net. When a mission
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Figure 14: The airbag: A) calculated, not fired B) calculated, fired C) calculated, deadlocked,
calculated, not fired D) calculated, deadlocked, calculated, fired

exists the identifier of that mission is lying on the starting place of the decision tree. When a
time trigger occurs and the condition airbag_init holds, the first mission part is planned and
send to the transition, who adds it to the functional requirements scenario. At the end of
each path of the tree the respective scenario of figure 14 is mentioned. The black transitions
wait for a trigger. The white transitions are fired immediately after the black, when their
condition is true.

This decision tree as coloured net should just show one possibility of a description language
for executable models of an algorithm for the plan mission transition that can be activated
via time-triggering. We will not fix the description language in our approach.

In figure 16 we show an example of the work of the machine. Transition plan mission
detects that condition airbag_fire is true and lets the machine send a respective token to
transition add functional system requirements that changes the requirements.

8 Discussion, Conclusion and Future Work

The paper shows an approach to specify required constraints via an abstract requirements
machine. With this machine functional and temporal requirements scenarios can be gener-
ated. The starting point for this approach was the lack of definition of system requirements
scenarios. Some approaches define system requirements as rules. For RTCS these are to in-
flexible. Describing the required behaviour where the requirements can change dramatically
because a deadline is missed, cannot be defined by rules because the complexity of the pre-
condition of that rule would become an unmanageable complexity. So we decided to build a
machine that generates the system requirements scenario depending on the current execution
situations. This leads us to the formal specification approaches. The implicit definition of
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Figure 15: Decision Tree

partial ordered requirements scenarios by the formal specification approaches do not fulfil the
needs for an easy formulation of requirements specification. Therefore we move to the explicit
description of the requirements scenarios and their manipulation - the ARM.

The ARM is a coloured Petri net. We restricted the machine according to our method-
ological needs.

We define one of the places as the the location where system requirements scenarios are
built. The token on that place is again a kind of Petri net: an extended causal net. This
follows an idea in [Valk 91] who describes partial ordered task systems which are moving
through a network of functional units. The network of functional units was a Coloured net,
where the token where causal nets representing the task systems. By this, we meet the needs
for easily understandable requirements scenarios.

The second restriction of the coloured Petri net is the definition of five mission definition
transitions. This restriction is according to a natural way of defining missions: identification,
acceptance, planning, scheduling, timing. This restriction allows the requirements engineer
to specify the mission definitions rsp. the requirements scenarios definitions in a natural way.

The computer takes an assisting role, as for human beings, the generation of scenarios
from different models in the way, the ARM works is hard work. The user of the require-
ments definition has to switch from one model semantics to another. This could leads to
comprehension errors even though the requirements are specified in a mathematical precise
way.

To conclude, we see the ARM as an important milestone on the way to dependable an
secure RTCS. In detail, some of the benefits have already been discussed in section 4.

Our next steps are the application of the ARM in industrial projects and the description
of the results of the integration activities that depends on the requirements specification: the
requirements models for design and implementation and the constraint model for solution
and service platform.
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Figure 16: Example of machine work

Beside the requirements specification, Fraunhofer ISST is working on the model basing of
the development and the integration processes and their connection via model repositories and
transformations. In addition, the model basing of the domain engineering and the product
line engineering belong to our research portfolio. We have already achieved a lot of results
in these areas (e.g. [Billig 03] [Borusan et. al. 04],[GroSe-Rhode, Mann 04al,[Grofie-Rhode,
Mann 04b],[Hardt, Feldo 04],[Hardt et. al. 04]) and still see an increasing number of challenges
for applied researcher in the future.
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Abstract: Soundness is the key property for evaluating “good” workflow nets (WF-nets). In
this paper, we examine several kinds of WF-nets with well-known properties and prove that for
these WF-nets, 1-soundness implies soundness. For Free-choice WF-nets and Well-handled
WHF-nets, 1-soundness, hence soundness, can be solved in polynomial time. Based on these
results, we introduced a special kind of WF-nets — WRI WF-nets which is inherently sound and
powerful enough for many modeling problems.

Keywords: Workflow nets; 1-soundness; Soundness; WRI WF-nets

Introduction

Petri nets are frequently used to model and analyze workflows. In [1], W.M.P van der Aalst used
workflow nets (WF-nets) to model workflow processes. In [2], Kees van Hee et al. proposed the
notion of k-soundness and soundness for WF-nets to judge whether a workflow model would
behave correctly when executed. A WF-net is k-sound if any marking reached from k tokens in
the initial place can reach the same k-tokens in the final place. Soundness is the property of
k-soundness for every natural number k.

Soundness property is important for workflow models and could be preserved during
workflow composition, which is a key mechanism in workflow modeling. It also allows us to
analyze the concurrent execution of several workflow instances without introducing id-tokens.
In [3], Kees van Hee et al. proved that soundness of WF-nets is decidable. A decision procedure
was proposed to verify the soundness of arbitrary WF-nets. However, it is still to be investigated
how to solve the problem of soundness efficiently and what complexity the algorithm would
have.

In this paper, we try to tackle the problem of soundness for some kinds of WF-nets in
another way, by establishing the relationship between 1-soundness and soundness. For these
kinds of WF-nets, we prove that 1-soundness implies soundness. For Free-choice WF-nets and
Well-handled WF-nets, the soundness problem can be decided in polynomial time.

In many cases, workflow models with balanced “split” and “merge” nodes and regular
iterations are powerful enough for modeling problems. We introduce a special kind of WF-net —
WRI WF-nets which have the above property and prove that they are inherently sound. WRI
WEF-nets support hierarchical workflow modeling naturally and ensure the soundness without
the need of verification.

* Supported by NNSFC (60273034, 60233010), 863 Program of China (2002AA116010, 2001AA113090), 973
Program of China (2002CB312002), JSFC (BK2002203, BK2002409)
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The remainder of the paper is organized as follows: the next section presents the basic
concepts and notations of Petri nets. In Section 3, WF-nets and their soundness are defined,
basic properties about soundness and composition of WF-nets are described. Section 4
establishes the relationship between 1-soundness and soundness for some kinds of WF-nets with
well-known properties. In Section 5, we introduce WRI WF-nets and prove that they are
inherently sound. The rationality of using WRI WF-nets to model workflow is described.
Section 6 concludes the paper.

2 Basic Definitions and Notations of Petri nets

Definition 2.1 (Petri net).

(1) APetrinetisa 3-tuple PN = (P, T, F) where
(@) PandT are finite and disjoint sets
(b) FS(PxT)u (TxP)

The elements of P are called places and the elements of T transitions.

(2) The preset ofanode xePuU Tisdefinedas ex={yePUT]|(y,x)eF}
The postset of xe P U T is defined asxe={yePUT| (X, y)eF}
The preset (resp. postset) of a set is the union of the presets (resp. postsets) of is
elements.

(3) The state (marking) of a Petri net is the distribution of tokens over places. Let M be a
marking of net PN, p is one of its places. M(p) is the number of token in p at state M.
For two markings of PN: M; and M, M; < M, iff V pe P, My(p) < M,(p). For M, < My,
the marking M = M; — (+) M, iff V peP, M(p) = My(p) — (+) Ma(p). Let p be a place
and M be a marking, M|p is such a marking that M|p(p) = M(p) and M|(g) = 0 for g+ p.

The number of tokens may change during the execution of the net. Transitions are the
active components in a Petri nets: they change the state of the net according to the following
firing rule:

(1) A transition tis said to be enabled iff each input place p of t contains at least one token.

(2) An enabled transition may fire. If transition t fires, t consumes one token from each
input place p of t and produces one token for each output place p of t.

Given a Petri net PN = (P, T, F) and a state M, we get a Petri net system (PN, M) (We also
call (PN, M) a Petri net for simplicity). We have the following notations:

(1) My—— My: transition t is enabled in state Mg and firing t in Mg results in state M;.

(2) Afiring sequence is describedas o =t;t;...... t, IFMg—s M) —25 ... 2 s M,.
A state M, is called reachable from M, (notation Mq—=— M,) iff there exists a firing
sequence o=t t; ... t; so that Mp—:5>M; —2 5 ... —= 5 M,. We use [My> to represent the set

of all markings reachable from M. For a place p, we use [p] ([p*]) to represent the marking that
place p has only one token (k tokens) and no other place in a net has any token.

Definition 2.2 (Liveness). A Petri net system (PN, M) is live iff for every reachable state M’
and every transition t there is a state M" reachable from M’, which enables t.
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Definition 2.3 (Boundness, Safeness). A Petri net (PN, M) is bounded iff for every place p
there exists a natural number bound n so that for each state M' e [M>, M'(p) <n. The net is safe
iff for each place the bound is 1.

Definition 2.4 (Path, Elementary). Let PN = (P, T, F) be a Petri net. A path C from a node n;
to a node ng is a sequence <n; N, ...... n> such that <n;, nix1>e F for 1<i<k-1. C is elementary
iff, for any two nodes n; and nj on C, iZj=n;=n;. Let a (C) = {ny, ny ... , n}. C,C;
represents the concatenation of paths C; and C, if the last node of C; and the first of C, are
identical.

Definition 2.5 (Siphon, Trap, Marked trap, Siphon-trap property). LetPN=(P, T, F) bea
Petri net. A non-empty set HC P is called a siphon (trap) iff eHcHe (He — eH). LetH bea
siphon (trap), H is called minimal iff there is no siphon (trap) included in H as a proper subset.
A trap is marked iff at least one place in the trap is marked. A Petri net system (PN, M) holds
siphon-trap property if every siphon of PN contains a marked trap at M.

Definition 2.6 (Well-formedness). A net PN is well-formed if there exists a marking Mg of
PN such that (PN, My) is a live and bounded system.

Definition 2.7 (Free-choice, Extended Free-choice, Asymmetric choice). LetPN=(P, T, F)
be a Petri net. PN is a free-choice net iff YpeP |pe| < 1 or e(pe) = {p}; PN is an
extended free-choice net iff V p;, poeP pie M p,e#g = p;e= p,e; PN is an
asymmetric choice net iff ¥V p, p,eP pie M p®e #@8 = pi®e C pxe® Or pi® D pre.

Definition 2.8 (State machine, S-component, S-coverable). Let PN = (P, T, F) be a Petri net.
PN is a state machine iff VteT |te|=1and |et| = 1. Asubnet PNs= (Ps, T, F) is called an
S-component of PN if P, P, T, T, FsCF, PN is strongly connected, PN is a state machine,

and for every qePs and teT : (g, )eF=(q, t)eFs and (t, q)e F=(t, q)eF,. PN is
S-coverable iff for any node (transitions and places) there exists an S-component which contains
this node.

3 Workflow Nets, Its Soundness and Composition

3.1 Workflow Nets, Its 1-soundness, K-soundness and Soundness

Definition 3.1 (WF-net [1]). A Petri net PN = (P, T, F) is a WF-net (Workflow net) iff:

(1) PN has two special places: i and o. Place i is a source place:ei = @. Place o is a sink
place: o e = g.

(2) If we add a transition t” to PN so that et = {0} andt e = {i}, then the resulting Petri
net is strongly connected.

Definition 3.2 (K-soundness [12]). A WF-net PN = (P, T, F) is k-sound for a natural number
k if and only if:
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1) VM ([ —5M) = (M—[d)
(2) VM ([i"] =M A M2[0]) = M=[0")
() VteT AMM ["] =M M

Remark: In Definition 3.2, the second requirement could be omitted since requirement (1)
implies it. If the requirement (1) is met and there is a reachable marking M > [0"], then from M,
the state [0*] can be reached. But this is impossible since o is a sink place. We just retain it here
to let our definition be conformed to the original definition made in [1] and [12].

Definition 3.3 (Soundness). A WF-net PN is sound iff it is k-sound for every natural number
k.

Definition 3.4 (Extended WF-net [1]). Given a workflow net PN = (P, T, F), the extended
Petri net of PN, represented by PN" = (P*, T', F"), is defined as follows:

(1) P"=P

() T =Tu{t}

3 F =Fu{(, 1), (t, i}

Proposition 3.1 ([1]). A WF-net PN is 1-sound iff (PN", [i]) is live and bounded.

Since when we use WF-nets in workflow modeling, the 1-soundness property is the basic
property WF-nets should have, it is reasonable to examine the k-soundness (k > 2) and
soundness of WF-nets under the presumption that they are 1-sound. Now we give some intuitive
results toward k-soundness of WF-nets. In next section, we would investigate the soundness
property under the presumption of 1-soundness for several kinds of WF-nets.

Proposition 3.2 If a 1-sound WF-net PN is k-sound, then for all natural numbers p <k, PN is
p-sound.

Proof. Suppose there is a natural number p <k so that PN is not p-sound. Since PN is 1-sound,
requirement (3) for g-soundness (q > 1) must be met. Then the first requirement for p-soundness
in Definition 3.2 must not hold for PN. For (PN, [i]), there would be a firing sequence o ; so
that [i]—= [0]. For (PN, [i’]), there would be a firing sequence o , so that [i’] —==»M and
[0°] can not be reached from M. Now for (PN, [i]), we can fabricate such firing sequence that
o = (c)*P o, Let [i]—=s (M+[0®P]), since o is a sink place, from (M+[o®™]), the
marking [0"] can not be reached. This contradicts with the fact that PN is k-sound. So PN must
also be p-sound.

Proposition 3.3 If a 1-sound WF-net PN is not k-sound, then for all natural numbers p > k, PN
is not p-sound.

Proof. Can be proved analogously as Proposition 3.2.

The above properties do not hold if the WF-net is not 1-sound. For example, in Figure 3.1,
PN is 3-sound but neither 1-sound nor 2-sound.
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Figure 3.1  3-sound WF-net but neither 2-sound nor 1-sound

3.2 Composition of WF-nets

Composition is a key mechanism in workflow modeling. The k-soundness/soundness property is
meaningful largely because 1-soundness is not compositional. In this section, we provide a way
to realize composition of workflow for the convenience of introducing iteration to our WRI
WHF-nets later in this paper. This way of composition coincides exactly with the “transition
refinement” introduced in [2].

Theorem 3.1. Let PN; = (P, Ty, F1), PNz = (P, T, F;) be two WF-nets such that the source
and sink places in PN, are i, and 0,, TN T, = 9, PL1NP, = g, t1eTy and t, t, ¢ T U To.
PNz = (Ps, T3, F3) is the composition of PN; and PN, obtained by replacing t; in PN; by PN,
(PN; = PN; ® t; PNy) if:

P;=P,UP;

To=(T{t}) VT U {ty, to}

Fa={(Xx, V) | (X, y)eFianx#tiAy=t}U{(X )| (X y)eF}uU

{(x ta) | (x, t)) e Fi} O {(to, ¥) | (tr, y) € Fi} U {(ta, 12), (02, to)}

t

Figure 3.2  Composition of WF-nets
In [2], it is proved that soundness is compositional. Now we prove that when we compose a

k-sound WF-net with a sound one, the k-soundness property is also maintained. This property is
useful during workflow composition when we only want to ensure the 1-soundness of the result
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WEF-net.

Proposition 3.4 ([2]). Let PNy, PN, be sound WF-nets and t be a transition of PN;, WF-net
PN; = PN; ®t PN, is also sound.

Theorem 3.2. Let PN; be k-sound WF-net, PN, be sound WF-net and t be a transition of PNj.
PN; = PN; ®t PN, is also k-sound.

Proof. By the proofs of Theorem 7, Lemma 8 and Theorem 9 of [2], we relabel all the
transitions of PN, and t, as 7, PN; and PN; are weakly WF-bisimilar [2]. Now suppose
[i]—— M within PNj, there exists a state M" of PN; with M R M (R is the WF-bisimulation
relation describe in [2]) such that [i]—— M within PN;. Since PN; is k-sound, we have
M —5[0"], then there exists a state M" of PN; such that M'——sM" and M~ = [0*] within PNs.
So requirement (1) of k-soundness holds for PNs. In PN3, for those transitions also in PN; and
the transition t,, they have the chance to fire since PN3 and PN, are weakly WF-bisimilar and
they can be fired in PNy; for those transitions in PN, and ty, they can be fired since PN; is sound
and t, can be fired. So requirement (3) also holds and PN is k-sound.

4 Establishing Relationship with 1-soundness and Soundness

In [3], Kees van Hee et al. proved that soundness of workflow nets is decidable. Although their
definition of soundness is a little different from ours (they omit the requirement (3) of
Definition 3.2 but deals with the same criterion in BWF-nets [3]), using the decision procedure
they provided, the soundness problem in our paper could also be solved. However, as stated in
[3], for the soundness decision procedure, the authors focused on clarity rather than efficiency;
it is still to be investigated how to solve the soundness in an efficient manner and what
complexity the decision algorithm would have.

In this section, we try to solve the soundness problem for several kinds of WF-nets in a
different manner. By proving that for these WF-nets, 1-soundness implies soundness, we only
need to verify the 1-soundness to ensure soundness. For those WF-nets such as Free-choice
WF-nets and Well-handled WF-nets whose 1-soundness could be solved effectively, so does the
soundness problem for them.

4.1 Free-Choice, Extended Free-Choice and ST-Asymmetric Choice WF-nets

Free-choice nets, extended free-choice nets and asymmetric choice nets are three kinds of
related Petri nets which have been studied extensively. The liveness of these nets has strong
relation with siphons and traps. For free-choice and extended free-choice nets, efficient
algorithms exist to determine their well-formedness. In [1], the author states that for almost all
WFMS, only constructs that are comparable to free-choice WF-net are allowed. Therefore, it
makes sense to study the soundness of workflow nets that are free-choice.

Definition 4.1 (FC WF-net, EFC WF-net). A WF-net PN is a FC WF-net (Free-Choice
WHF-net) if PN is a free choice net. A WF-net PN is an EFC WF-net (Extended Free-Choice
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WEF-net) if PN is an extended free choice net.

Before we prove that for FC WF-nets and EFC WF-nets, their 1-soundness implies
soundness, we study a more general kind of WF-net — ST-AC WF-nets and prove for them,
1-soundness implies soundness.

Definition 4.2 (ST-AC WF-net). A WF-net PN is a ST-AC WF-net if PN" is an asymmetric
choice net and every siphon of it contains at least a trap.

Lemma 4.1. LetPN= (P, T, F) be a 1-sound ST-AC WF-net, then for any natural number k,
(PN”, [i*]) is live and bounded.

Proof.  Since PN is a 1-sound ST-AC WF-net, (PN", [i]) is live and bounded and it is a ST-AC
Petri net. Then every minimal siphon of PN" is marked at [i] (Theorem 5.1 [5]). Then at
marking [i*], every siphon of PN" must also be marked. So (PN", [i*]) is also live and bounded
(Theorem 5.1 [5]).

Theorem 4.1. Let PN = (P, T, F) be a 1-sound ST-AC WF-net, PN is k-sound for any natural
number k.

Proof. For an arbitrary natural number k, since PN is 1-sound, the third requirement of
k-soundness in Definition 3.2 holds. We only need to prove requirement (1). Now suppose PN is
a 1-sound ST-AC WF-net and for (PN, [i*]), 3 M reachable from [i"] so that from marking M,
[0¥] could not be reached. Let M—<— M’ for PN so that from M’ no more transitions could put
tokens in i. For (PN”, [i¥]), M is also reachable from [i*], from marking M, we have M—=—s M’
for PN". Since (PN", [i¥]) is live, M'(0) > 0. Let M" = M" — M'|o, since for PN from M no more
tokens could be put into the sink place, for PN", for each marking reachable from M, t* would
not be enabled. So (PN", M") is not live but bounded. For PN, every minimal siphon is an
S-component (Theorem 4.2 [5]) and since (PN”, [i¥]) is live, every minimal siphon must contain
place i. For (PN”, [i“]), every siphon has k tokens; at M, they would also has k tokens. Since
M'(0) < k (otherwise (PN", [i¥]) would not be bounded), at M”, every siphon of PN" would be
marked. According to Theorem 5.1 in [5], (PN", M") is live which contradicts with our previous
assertion. So we can conclude requirement (1) must also holds and PN is k-sound for any
natural number k.

Corollary 4.1. For ST-AC WF-net, 1-soundness implies soundness.

Now we can conclude that for FC WF-nets and EFC WF-nets, 1-soundness implies
soundness since if they are 1-sound, then they are also 1-sound ST-AC WF-nets.

Corollary 4.2. For EFC WF-net, 1-soundness implies soundness.

Proof. For 1-sound EFC WF-net PN, PN" is live and bounded. Then every siphon of PN
must contain a trap (Commoner’s Theorem [4]). So PN is also a ST-AC WF-net which has the
property that 1-soundness implies soundness.
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Corollary 4.3. For FC WF-net, 1-soundness implies soundness.
Proof. A FC WF-net is also an EFC WF-net, so its 1-soundness also implies soundness.

Proposition 4.1. The following problem could be solved in polynomial time:

Given an EFC WF-net, to decide if it is 1-sound.

Proof. Since the problem of deciding whether an extended free-choice system is live and
bounded could be solved in polynomial time (Corollary 6.18 [4]), according to Proposition 3.1,
the above problem could also been solved in polynomial time.

The following corollary shows that, for FC WF-nets and EFC WF-nets, there are efficient
algorithms to decide soundness.

Corollary 4.4. The following problem could be solved in polynomial time:
Given an EFC WF-net or FC WF-net, to decide if it is sound.

4.2 Well-handled WF-nets and ENSeC WF-nets

The well-handled property is also a desired property of workflow net mentioned in [1]. From a
modeler’s view, such property enforces the balance of “split” and “merge” nodes which could
help prevent ill behavior in workflow execution.

Definition 4.3 (Well-handledness [1]). A Petri net PN is well-handled iff, for any pair of
nodes x and y such that one of the nodes is a place and the other a transition and for any pair of
elementary paths C1 and C2 leading fromxtoy, « (Cl) mn a (C2)={x,y} = Cl=C2

Definition 4.4 (WH WF-net). A WF-net PN is a WH WF-net (Well-handled WF-net) iff PN
is well-handled.

We also find that for a kind of WF-nets more general than WH WF-nets, their soundness
could be implied by 1-soundness. Therefore, we also solve the problem that for WH WF-nets,
1-soundness implies soundness.

Definition 4.5 (Conflict-free, ENSeC net [6]). Let PN be a Petri net and C = <ny, ..., n,> be
a path in PN, C is conflict-free iff for any transition n; of the path, j#i-1 = n;¢ en;. Let PN
be a Petri net, PN is an Extended Non-Self Controlling (ENSeC) net iff for every pair of
transitions t; and t, such that et; m et, # g, there does not exist a conflict-free path leading
from t; to t,.

Definition 4.6 (ENSeC WF-net). A WF-net PN is an ENSeC WF-net iff PN” is a ENSeC net.
Proposition 4.2 ([6]). Let (PN, Mo) be a marked ENSeC net. If (PN, My) is live and bounded,

PN is S-coverable. And if (PN, My) is bounded, the four following properties are equivalent:
(1) (PN, My) is live
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(2) Every minimal siphon is a trap and no siphon is empty in Mg
(3) Every minimal siphon is a marked state-machine in My
(4) The siphon-trap property holds for (PN, M)

Lemma4.2. LetPN=(P, T, F) be a 1-sound ENSeC WF-net, then for any natural number k,
(PN7, [i*]) is live and bounded.

Proof.  Since PN is 1-sound, by Proposition 4.2, PN" is S-coverable. Then it is obvious that
(PN’, [i*]) is bounded since in any S-component of PN, the token number would not change.
Also we have that the siphon-trap property holds for (PN, [i¥]) since it must hold for (PN, [i]).
By Proposition 4.2, (PN", [i¥]) must also live. So we get that (PN", [i]) is live and bounded.

Theorem 4.2. Let PN = (P, T, F) be a 1-sound ENSeC WF-net, PN is k-sound for any natural
number k.

Proof. PN is 1-sound, so the requirement (3) of k-soundness holds. We only need to prove the
requirement (1) of k-soundness. Now suppose PN is a 1-sound ENSeC WF-net and for (PN, [i]),
3IM reachable from [i¥] so that from marking M, [0] could not be reached. For PN, let
M —2_ M’ so that from M’ no more transitions could put tokens into i. For (PN”, [i]), M is also
reachable from [i*], from marking M, we have M—=M’. Since (PN, [i*]) is live,
M'(0) > 0. Let M" = M — Mo, since in PN from M" no more tokens could be put into the sink
place, for PN", no marking reachable from M~ would enable t". So (PN", M") is not live but
bounded. Since every minimal siphon in PN” is a state-machine and must contain place i, which
implies that at M', every siphon would also have k tokens. Because M'(0) < k (otherwise (PN’
[i¥]) would not be bounded), at M", every minimal siphon would also be marked. By Proposition
3.2, we have that (PN", M) is live which contradicts with the previous assertion that (PN", M")
is not live. Now we can conclude that requirement (1) of k-soundness also holds and PN is
k-sound.

Corollary 4.5. For ENSeC WF-net, 1-soundness implies soundness.

Corollary 4.6. For WH WF-net, 1-soundness implies soundness.

Proof. For a WH WF-net PN, we prove that it is also an ENSeC WF-net. Suppose that PN is
not an ENSeC WF-net, then for PN” there must be two transitions t; and t, in conflict so that
there exists a conflict-free path C leading from t; to t,. Let p € ot; M ot,, then p must not
appear in C since otherwise C would not be conflict-free. Then from p to t,, there exist two
different paths C, = <p, t,> and C, = <p, t,>C so that « (C1) m « (C2) = {p, t,} and PN" must
not be well-handled which contradicts with the fact that PN is WH WF-net. Now the corollary
follows immediately from the fact that for ENSeC WF-net, 1-soundness implies soundness.

Proposition 4.3 [1]. The following problem could be solved in polynomial time:
Give a WH WF-net, to decide if it is 1-sound.

The following corollary shows that, for WH WF-nets, there are efficient algorithms to
decide soundness.
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Corollary 4.7. The following problem could be solved in polynomial time:
Given a WH WEF-net, to decide if it is sound.

5 WRI WF-nets

In the previous section, we examined several kinds of WF-nets whose soundness can be implied
by 1-soundness. Upon some of them, deciding soundness could even be solved in polynomial
time. Using them in workflow modeling is promising. However, for many business processes
encountered in practice, these restricted workflow models are still too complex. We found in
many cases, workflow models with balanced “split” and “merge” node and regular iterations are
powerful enough for modeling problems. In this section, we introduce a kind of such WF-nets
and prove that they are inherently sound. Thus, we can use them in workflow modeling without
the verification of soundness.

5.1 WA WF-nets

WA WF-nets are WF-net that are well-handled and acyclic (cycle-free). While they could not
model iterations, they make of the fundamental building blocks of WRI WF-nets described later.

Definition 5.1 (WA WF-net). A WF-net is a WA WF-net iff it is well-handled and acyclic

Proposition 5.1. For a WA WF-net PN, PN is free-choice.

Proof. We first prove that PN is free-choice. Suppose PN is not free-choice, then there must
be two transition t; and t, such that et; N et, # g and et; \ et, # @. But this will
violate the well-handled property of PN (see Figure 5.1). Since PN is free-choice, PN" is also
free-choice.

Figure 5.1  Violation of well-handled property: <t ... py, t, ... p>and <t ... pp, t; ... p>

Proposition 5.2. For a WA WF-net PN, PN" is well-handled.

Proof.  Suppose PN is not well-handled, then there are two elementary paths C;, C,, a place p
and a transition t in PN” so that o (C1) M a (Cy) = {p, t}. Let C, and C, lead from p to t. It is
easy to see that one of these two paths would contain the nodes i, 0 and t” but the other contains
neither of them since PN is well-handled. See Figure 5.2, C; is the path which does not contain i,
oand t. C, = Cyt Cy is the other path. From t we make a path C, in PN towards place o, let
the node p’ be the first node in C, that is also in C,1; p must be a place since p is a place. Let the
subpath of C, from t to p’ be Cs; the subpath of C,; from p to p’ be Cs. Similarly, we lead a path
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C, in PN from i to p and let t' be the last node in C, that is also in Cy; t is a transition since tis a
transition. Let the subpath of C, from t to p be C,4, the subpath of C,, from t to t be Cq. Since
PN is acyclic, there is no identical node in C3; and C,. Now we get two paths C, = C4Cs and Cy, =
CsCsso that a (Co) M a (Cy) = {p, t'} which contradicts with the fact that PN is well-handled.
In case that C,, C, are from t to p, such contradiction could be gotten analogously. So PN" must
also be well-handled.

Figure 5.2  Violation of well-handled property: C¢ C3 and C4Cs

Lemma5.1. If PN is a WA WF-net, then (PN, [i]) is safe

Proof. Since PN” is well-handled, it’s easy to see that no circuit of PN has a PT- or
TP-handle [7]. Then (PN", [i]) is bounded and covered by S-components [7]. We could know
(PN’, [i]) is safe since every S-component of it must have the place i (otherwise the
S-component would not be strongly connected) and at the initial marking, only place i has one
token.

Lemma5.2. LetPN = (P, T, F) be a WA WF-net, then (PN, [i]) is live.

Proof.  From Proposition 5.1 we know that PN = (P", T", F) is free-choice. Now we prove
that every minimal siphon of PN" is a trap. Let H be an arbitrary minimal siphon of PN”, let the
subnet PH = (H, eH, ¢F") in which ¢F = F " ((Hx eH)uU (eHxH)), PH is strongly
connected [13]. Then it’s easy to see that PH contains place i and 0. Now suppose H is not a trap,
there must be a transition te He such that te M H = g. In PN there must be a path C from t to
0, and let x be the first node in C that is contained in HU e H. Such node x must exist for place
0 is in the path and is also contained in HU e H. The node x could not be a place since all
transitions in ex must also in HU e H and x would then not be the first node of path C in
Hw e H. Thus, x is a transition, let the subpath of C from t to x be Cy. Let pe ot and peH,
since PH is strongly connected, let the elementary path in PH from p to x be C,. Now we got
two elementary paths C; = <p, t>C, and C, so that « (C;) n « (C,) = {p, x} but p is a place, x
is a transition. This would contradict with the fact that PN” is well-handled (Proposition 5.2). So
there must be no such te He and we have He = e H which implies that every minimal siphon
in PN is a marked trap at [i]. From Commoner’s Theorem, (PN", [i]) is live.

Theorem 5.1. If PN is a WA WF-net, then PN is 1-sound
Proof. Follows immediately from Lemma 5.1 and Lemma 5.2.
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Corollary 5.1. If PN is a WA WF-net, then PN is sound.
Proof.  Follows immediately from Theorem 5.1, Proposition 5.1 and Corollary 4.3.

5.2 WRI WF-nets

Since WA WF-nets are acyclic, they could not model iteration, which is one of the most
important routing structures in workflow process. WRI (Well-handled with Regular Iterations)
nets add regular iterations to WA WF-nets. In many cases, they are capable of modeling
workflow process effectively.

Definition 5.2.

(1) AWAWF-net is a WRI WF-net.

(2) Let PN; = (P, Ty, F1), PN,
PN; = PN; ® (PN, is a WRI WF-net.

(3) Let PN; = (P, Ty, F1), PN,
PNz = PN; ® (PN, is a WRI WF-net.

(4) WRI WEF-nets could only be obtained by (1), (2) and (3).

(P2, T, F,) be two WRI WF-nets and teT;.

(P2, T, F,) be two WRI WF-nets and teT;.

Remark: In Definition 5.2(3), the PN, is not a WF-net. But we realize the composition
with the same way we use in Theorem 3.1, that is, we add t, and t, as the pre-transition and
post-transition of place i and o in PN, and replace t; by the new net.

From the definition above, we can see that the iterations in WRI WF-nets are regular
iterations, that is, iterations formed by a set of nodes with an entrance node and an exit node.
The subnet formed by this set of nodes is strongly connected; the entrance node is the only node
in the set that its preset contains nodes which is not in the set; the exit node is the only node in
the set that its postset contains nodes which is not in the set. Iterations that are not regular are
not allowed in WRI WF-nets.

Now we prove that for WRI WF-nets, they are inherently sound.

Theorem 5.2.  WRI WF-nets are 1-sound

Proof. Suppose PN; = (P4, Ty, F1), PNy = (Py, Ty, F,) be two WRI WF-nets. PN; = (P3, Ts, F3)
is the WRI WF-net obtained by replacing t; in PN; by PN,or PN, It is easy to see that if
(PNy, [i]) and (PN, [i]) are live and safe, then (PN3, [i]) is live and safe. According to our
definition of WRI WF-nets, for each WRI PN,, PN, must be live and safe since the extended net
of each WA WF-net is live and safe. According to Proposition 3.1, every WRI WF-net is
1-sound.

Proposition 5.3. For a WRI WF-net PN, PN free-choice.

Corollary 5.2. If PN is a WRI WF-net, then PN is sound.
Proof. Follows immediately from Theorem 5.2, Proposition 5.2 and Corollary 4.3.
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5.3 Use WRI WF-nets to Model Workflow Processes

The most obvious restrictions upon WRI WF-nets are: (1) the “split” and “merge” nodes must
be balanced; (2) only regular iterations are allowed. However, these two restrictions are
reasonable and also appear in many other workflow models. In [8], two structural conflicts in
workflow process model are identified: deadlock and lack of synchronization. Join OR-SPLIT
paths with an AND-MERGE results into a deadlock conflict. Similarly, joining AND-SPLIT
concurrent paths with an OR-MERGE results into unintentional multiple activation of nodes,
which is called “lack of synchronization”. The well-handled property of WF-nets can balance
AND/OR-SPLITS and AND/OR-MERGES to avoid “deadlock” and “lack of synchronization”.
The main reason why we provide regular iterations as the only way to model loop control is
somewhat similar to the reason why ‘goto’ is forbidden in many programming languages. Using
only regular iterations ensures that the activities within the iteration part do not activate some
other objects outside the iteration path while the iteration is in progress. Otherwise, such an
activation would result in unintentional multiple execution of a workflow path that is not part of
the iteration and to analyze the dynamic behavior of a workflow model would become difficult.
In [9], iterations in workflow model that are not regular are regarded as syntactical errors. In
CPMS system [11], our workflow model also could only depict regular iterations and software
companies using our system to model their software processes did not complain about this
restriction.

Since WRI WF-nets are capable of modeling sequential, parallel and iteration routings and
are inherently sound, it is promising to model workflow process using WRI WF-nets. The
recursive definition of WRI WF-nets suggests that WRI WF-nets supports hierarchical modeling:
(1) First, the sketch of a workflow process is modeled by a WA WF-net; those iterations and
subnets to be refined are represented by special transitions in the initial net. (2) Then, these
special transitions are replaced by WA WF-nets or by WA WF-nets’ extended nets in which
special transitions may also exist to represent the subnets or iterations to be modeled next. We
will continue this building process as long as there are still special transitions in our WF-net.
After all these special transitions are replaced in this way, we get a sound workflow model
depicted by a WRI WF-net. An example of this building process is described by the Figure 5.3
(special transitions are shaded).

The example first appeared in [1]. We use this example here to illustrate the power of WRI
WHF-nets in workflow modeling. The workflow depicts the processing of complains. First the
complaint is registered (task register), then in parallel a questionnaire is sent to the complainant
(task send_questionnaire) and the complaint is evaluated (task evaluate). If the complainant is
not returned within two weeks, the result of questionnaire is discarded (task time_out). Based on
the result of evaluation, the complaint is processed or not. The actual processing of the
complaint (task process_complaint) is performed until the result is checked (task
check_processing) and passed. Here we use WRI WF-nets along with the stepwise modeling
method described above to construct this workflow process. At first, the sketch of the workflow
model is depicted by PN;. Note that PN; is a WA WF-net and the tasks, ‘handle_questionnaire’
and ‘processing’, need further refinement. Then we use two WA WF-nets, PN, and PN, to
replace these two tasks (transitions). In PNz, the task ‘process_until_OK’ is a special transition;
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we need an iteration of several tasks -- ‘process_complaint’, ‘check_processing’ and
‘process_NOK’ -- to represent it. Here we use PNy, the extended net of a WA WF-net, to model
this iteration. After these steps, there are no more special transitions that need further refinement
and we get a sound workflow model depicted by a WRI WF-net.
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dummy task archive 2
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Figure 5.3  Ahierarchical WRI-net for the processing of complaints

The major strength of the above modeling style lies in two aspects. (1) It ensures that the
soundness property is preserved through WF-nets composition: For WF-nets, 1-soundness is not
compositional. Even 1-soundness is maintained when we use a 1-sound WF-net to replace a
transition of another 1-sound and safe one [1], the result WF-net in not necessarily safe which
prevents us from making more compositions. Since the composition results in the above
modeling procedure is WRI WF-nets, we can ensure the soundness of them. (2) At each step of
modeling, the verification task is relatively simple: There exists a polynomial time algorithm to
check whether a WF-net is a WRI WF-net, but we do not include it in this paper. We think that
the desired way to use WRI WF-nets is to construct WF-nets by composition but not to create a
WHF-net at will and to check whether it is a WRI WF-net. During each step of constructing, the
WEF-net we use is often rather simple; we can even check whether they are WRI WF-nets
manually.

WRI WF-nets do not fit for all workflow models. When complex synchronizations exist in
workflow models, it may be hard to use WRI WF-nets to model them. The following example in
Figure 5.4 adds a synchronization before the task process_complaint so that it can be invoked
only if task time_out or process_questionnaire is finished. However, if we try to model it as in
Figure 5.3, we must add arcs between PN; and PN, and the result would not be a WRI WF-net.
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Figure 5.4 A workflow model that is hard to model by WRI WF-net

6 Conclusion

In this paper, we examined the relationship between 1-soundness, k-soundness and soundness of
WHF-nets. We first give some intuitive properties about the relation of 1-soundness and
k-soundness, along with the k-soundness preservation during workflow composition. Then we
proved that for several kinds of WF-nets, their 1-soundness implies soundness. Among these
WF-nets, the FC WF-nets and WH WF-nets have particular practical value. We also introduced
a special kind of WF-nets — WRI WF-nets with balanced “split” “merge” nodes and regular
iterations which are inherently sound. In many cases, modeling problem could be solved by
them.

Future work For more general kinds of WF-nets, it is still a question whether their 1-soundness
could imply soundness. For example, it seems that for the AC WF-nets (WF-nets which are
asymmetric choice) which is a superset of ST-AC WHF-nets, the relationship between
1-soundness and soundness also holds, but we have not proved it yet. Other important properties
of WRI WF-nets, e.g. efficient algorithm for determining reachability, are still under
investigation.
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Abstract:

This paper presents a component model inspired by the CORBA Component Model, and an
associated formal notation based on Petri nets and dedicated to the modelling of concurrent and
distributed components. The model is illustrated by a case study that illustrates its hierarchical
features, and shows how the main features of components can be mapped to the constructs of
the Petri net.
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1 Introduction

The main contenders in the domain of industrial software component models currently appear to
be the Microsoft .Net framework [11], java-based components such as JavaBeans [4] and the
Corba Component Model (CCM) [14]. Although they differ widely in the details, they have
settled on a core of common concepts, which indicates that this domain has reached some
maturity. These common concepts are:
e Considering a component as a black box that is accessed through exposed software
interfaces. These interfaces define the contract offered by the component,
e Providing for multicast, event-based communication as well as for unicast method
invocation,
e Providing for the design-time assembly and configuration of components, and in
particular,
e Design-time configuration of components through exposed properties.

Component-based programming emerged mainly thanks to the software industry, which was
concerned in improving the reusability of software artefacts. It is now firmly established as a
commercial market. A lot of work has been devoted to practical usability concerns in an
industrial setting, such as deployment facilities for example.

Much less work has been devoted ahead of time to the formal and theoretical foundations of
component-based programming. The research community, witnessing the industrial success of
component-based programming, has started in the last few years devoting a lot of activity to
laying out such foundations, notably through workshops such as MOCA [9] or symposiums
such as FMCO [5].

This paper presents a formal model of components, and in particular aims at providing a formal
semantics framework for the main concepts of software components as stated above. To this
aim, we define five steps:

e Define a component model. We have chosen a component model strongly inspired by
the Corba Component Model (CCM), yet simpler and more precise. In particular, we
focus on a behavioural semantics of component activity, and leave out many practical
aspects of CCM (such as deployment) that are fundamental in an industrial setting, but
mainly resort to “plumbing” and convey little theoretical interest.
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e Propose a notation to formally specify the internal behaviour of a software component.
Our formal approach is based on High-Level Petri nets [6], and builds upon our
previous work on formal specification of Corba objects [1]. It may be considered as an
extension of this previous, object-oriented work to component-oriented programming.
Its Petri net foundations makes it particularly well suited to the modelling of concurrent,
distributed or event-driven systems [2], and amenable to formal verification.

e Define a mapping from the constructs of the component models (e.g. facets, receptacles,
event sources and sinks) to the constructs of our Petri-net based behavioural formalism
(e.g. places, transitions, etc.).

e Provide a formal definition of inter-components communication primitives, (invocation
of methods, event-based communication and access to properties). This definition is
also given in terms of Petri nets.

e Provide a denotational semantics of an assembly of components, in order to define the
behaviour of such a system in terms of the individual behaviour of each component and
of the formal definition of inter-component communication primitives.

The expected benefits of such an approach are threefold:

e Offer a convenient notation for describing the internal behaviour of concurrent and
distributed components,

e Provide a formal, unambiguous semantics of component features such as event
multicast or properties, especially inter-components communication,

e And, with the previous two being necessary conditions, offer some means to reason
about assemblies of components designed with this approach, in particular to
mathematically verify properties on them.

For space reasons, all five aspects cannot be presented in depth within this paper. We will focus
on presenting the component model, and, through a case study, illustrate how our notation can
be used to model the internal behaviour of software components. We thus leave out the formal
semantics of inter-components communication, and the verification of models.

2 CompoNets, our component model

Our component model is called CompoNets (a contraction of Component and Petri nets). Its
features are strongly inspired by CORBA CCM [14]. In particular, we follow the CCM
philosophy to treat the features required by a component on par with the features it offers to
other components.

A CompoNet presents to the external world an Enveloppe made of several Ports, through which
other components will be able to communicate (Figure 1). Ports may be of different categories
(Facet, Receptacle, Event Source, Event Sink or Property), but each port is defined by a pair
(Name, Java interface').

" The choice of using Java interfaces instead of some more abstract and technology independent notation
may be a little surprising. Actually, the current version of our object-oriented tool, PetShop [13], uses
CORBA-IDL interfaces. The existence of such a programming-language neutral Interface Definition
Language might be a benefit in an industrial setting, where access to legacy applications and
interoperability is a major concern. However, we work in a research setting where our primary concern is
to explore formal component-based specifications, and we have found that using CORBA-IDL was for us
a hindrance rather than a benefit: it forced us to first think in terms of the CORBA-IDL, and then to work
on the java mapping of these interfaces when it came to using our (java-based) tool. Java interfaces being
expressive enough for our purpose, we have chosen to use them directly, thus avoiding the cumbersome
mapping. Although we use the Java syntax to describe software interfaces, our model is not dependent on
Java and could be easily adapted to other languages for interface definition. The implementation of our

38



e Facets: a facet represents a set of functional features offered to other components.
These features are represented by the methods in the Java interface associated to the
facet. The same Java interface may be used in different facets, with different names.

e Receptacles: a receptacle represents a set of functional features that are required by the
CompoNet to fulfil its function. Like for a facet, these features are represented by the
methods of the associated Java interface.

e Event Sources: an event source describes a set of semantically related events that may
be emitted by the CompoNet. The fact that a CompoNet offers an event source implies
that it will be able to multicast these events to a set of receivers who have manifested
their interest for these events. Event sources are also described by a Java Event
interface, each of the methods in this interface representing one particular event. Event
interfaces have two syntactic constraints: 1) they must be derived from the standard java
interface java.util.EventListener. 2) The methods they specify must return
no result (i.e., in Java, return void), so that they can be called asynchronously, and
must take one single argument of type java.util.EventObject (actually any
subclass thereof, as allowed by the Java semantics of polymorphism). These constraints
are essentially the same as the one used in the JavaBeans framework.

e Event Sinks: an event sink describes a set of events that the CompoNet is willing to
receive. The definition of an event sink is the same as for an event source, with the
same constraints.

e Properties: a CompoNet offers a set of configurable properties, which affect somehow
its behaviour, and are meant to be specified at design time, when the component is
combined with other to form an executable sub-system. Their value will usually be
some form of constant (e.g. an instance of java.awt.Color). While all other ports are
specified using Java interfaces, properties are defined with Java classes, or primitive
types (integer, boolean, etc.), since an actual value for them has to be provided by
assembly tools. They have no graphic representation.

FacetName:
interface
EventSourceName: EventSinkName:
interface interface
ComponentName: L

ComponentClass

ReceptacleName:
interface

Figure 1: Graphic syntax of CompoNets

2.1 Ports of a CompoNet: a gesture recognizer

To illustrate various types of ports offered by a CompoNet, we will use a simple but realistic
example. We want to describe as a CompoNet a piece of software encapsulating several 2D
gesture recognition algorithms a la Rubine [12]. Such a component handles low-level mouse or

model that we are developing, on the other hand, is Java-based and aims at an easy interoperability with
other Java technologies, mainly the Swing library for user interfaces.
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pen-generated events, and generates higher level events when a specific gesture (e.g. a gesture

for cut, copy or duplicate) is recognized.

public interface MouseListener

extends EventListener {
public void mouseClicked(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent ¢);

public interface MouseMotionListener
extends EventListener {
public void mouseDragged(MouseEvent e);
public void mouseMoved(MouseEvent e);

}

public interface MouselnputListener
extends MouseListener,MouseMotionListener {

}

public interface ActionListener
extends EventListener {
public void actionPerformed(ActionEvent ¢);

}

public interface GestureRecognizer {
public void start();
public void stop();

}

Figure 2: Java interfaces of the GestureRecognizer component

Figure 2 illustrates the Java interfaces used to describe the Gesture Recognizer CompoNet. One
of them (GestureRecognizer) has been defined ad hoc, while the other ones come straight
from the Java standard libraries. MouseListener and MouseMotionListener describe
common mouse events and are combined for convenience into MouseInputListener,
while ActionListener is an “all purpose” event interface commonly used to notify that

“something interesting” has happened.

Recognizer:

GestureRecognizer

ActionListener

Input : MouselnputListener

Gesture Recognizer

Copy: ActionListener

Figure 3: Ports of the GestureRecognizer component

Duplicate: ActionListener

The CompoNet in Figure 3 specifies that a Gesture Recognizer needs to receive mouse events
(the event sink named “Input”), and eventually produces actionPerformed events (trough the
ActionListener interface) when specific gestures (in this case Cut, Copy or Duplicate) are
recognized. This is modelled by the three event sources of the same names. It also presents the
facet Recognizer associated with the interface GestureRecognizer, which allows for starting and

stopping the recognition.
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2.2 Assemblies: wiring CompoNets together

CompoNets treat the ports offered by a component (facets and event sources) on par with the
ports they require (receptacles and event sinks). This allows combining several components by
wiring together compatible ports, thus forming a sub-system of linked components. A receptacle
(resp. event source) is compatible with a facet (resp. event sink) if the Java interface associated
to the latter is assignable to the one of the former, with the usual Java polymorphism semantics.
Such a sub-system of wired CompoNets is called an Assembly.

For example, the Gesture Recognizer in Figure 3 could be wired into an executable Java
application by linking it to a Java component that triggers mouse events, ant to another one that
consumes actionPerformed events.

Modyse: MouselL.istener JPanel

Gesture Logger

. \
MouseMotion: Action: ActionLjstener

MouseMotionListener A

Gest cognizer

l

v

Cu
GestureRecognizer —
C

opy: Actionllistener

t:>:tion Ligtener

Input: MouselnputListene

=

L L
Dupjicale: ActionListener

Figure 4: an Assembly using the Gesture Recognizer

In Figure 4 we use a standard Swing component (JPanel) that is a source of mouse events. The
event sources it features could be automatically detected using the Java introspection
mechanism. It’s Mouse and MouseMotion event sources can be wired to the /nput event sink of
the Gesture Recognizer since their interfaces are compatible in the Java sense. We can also
postulate the existence of a Gesture Logger component that accepts actionPerformed events and
logs them somewhere as they occur. Such a component can be wired to the event sources of the
Gesture Recognizer as illustrated by Figure 4. The hierarchic structure of CompoNets (i.e. the
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ability to define a CompoNet as a multi-level hierarchy of other CompoNets) will be further
described in §3.

3 Case study: Head Gesture Recognition

Y-Displacement (mm)

Time (seconds)

| A

ops 0.8 o0.8WH 24 208244 B4 324 364 404 444 484 524 564 B.dd

W4

L4

Durstion

Typical head nod (above) and shake sequence (bottom) of

Snapshot from the bead gesture recognition system. varying duration, intensity, energy and energy rates.

Figure 5: The head gesture recognition system

The case study used to illustrate our approach comes from the domain of Human-Computer
Interaction. It uses computer vision and image recognition to allow the user to answer to yes/no
dialogues using head nods and shakes as an alternative to clicking on yes/no buttons in a
conventional dialog box. This study was presented in [7] without reference to component-based
programming, and using finite state machines as a modelling tool.

We can provide a component-oriented view of this system using the CompoNet notation (Figure

6).

This model features 3 sub-components:

VideoAnalyser : the role of this component is to process each video frame in order, and
to detect moves of the user’s head on the horizontal an vertical axes. It features an event
sink (NextVideoFrame) that will allow it to be notified when a new video frame is
available for processing. It also features two event sources (DeltaX and DeltaY) that it
will use to notify that a move has been detected along the horizontal axis (DeltaX) or
the vertical axis (DeltaY). These three ports are all defined using the standard java
ActionListener event interface (Figure 2).

Two instances of the LinearMovementDetector component. The role of this component
is to detect a series of moves along the same axis. To this end, this component has two
event sinks (MainAxis and OtherAxis) through which it will be informed that a
movement has been detected along one or the other axis. When a linear movement has
been detected, the component will notify this through its event source LinearMove. 1t is
interesting to notice the connexions between VideoAnalyser and the two instances of
LinearMovementDetector, which are identical except for reversing the roles of the two
axes.
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NextVideoFrame :
ActionListener

NextVideoFrame :
ActionListener

LinearMove:
ActionListener

LinearMove:
ActionListener

DeltaX : ActionListene VideoAnalyser
P
DeltaY : ActionListener
MainAxis : ActionListener
- > B
Horizontal :
LinearMovementDetector
—— | I—
OtherAxis : ActionListener
MainAxis : ActionListener
Vertical
> LinearMovementDetector
| S — E—
OtherAxis : ActionListener

No : ActionListener

Yes : ActionListener

Figure 6: the CompoNet assembly

The hierarchical structure of CompoNets is illustrated on Figure 6 and Figure 7, the latter being
the hierarchical view of the former. Hierarchy consists in hiding, promoting and renaming
features at the upper level. Here, for examples, the two LinearMove event sources are promoted
and renamed Yes and No. According to the axis considered, this series of moves will be
considered as a head nod (Yes) or shake (No). NodAndShakeRecognizer can be reused as a

black-box component in other assemblies, without caring for its internal structure.

NextVideoFrame :
ActionListener

No : ActionListener

NodAndShakeRecognizer

Yes : ActionListener

Figure 7: Hierarchical view of the NodAndShakeRegognizer
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4 Formal Behaviour Specification

The notation we use for specifying the behaviour of components is based on high-level Petri
nets. The main idea is to define a mapping between the features of the component model as
described in §2 and the constructs of the Petri net.

We have developed this notation in previous work, to specify the behaviour of CORBA objects
[3]. This previous work was concerned by augmenting CORBA-IDL interfaces with a
behavioural specification based on Petri nets. The basic CORBA object model is based on
unicast synchronous inter-object communication through the invocation of methods. The
signatures of methods supported by a CORBA object are described in a programming-language
independent notation, CORBA-IDL. In [3] and [1], we have shown how a Petri net (called the
ObCS for Object Control Structure) can be used to specify the internal behaviour of an object
conformant to a CORBA-IDL interface. The semantics of inter-object communication is also
given in terms of Petri nets, using the well-known “client-server” Petri net pattern first
described in [10]. Having both the internal behaviour and the communication protocol described
in terms of Petri nets enables us to provide a formal semantics in a “denotational” way, i.e. the
semantics of an object system of objects is given by an algorithm, that, given in input the ObCS
of all classes in the system and the initial system configuration, can produce a single,
unstructured high-level Petri net, which models the behaviour of the system as a whole. In our
new CompoNet model, CORBA-IDL interfaces are superseded by Facet / Receptacles but the
principles remain basically the same.

The main innovation of the CompoNet model is the introduction of multicast asynchronous
event-based communication through event sources and sinks.

Mapping for event sinks:

Event sinks model set of events that will be received by the component, originating from other
components in the system. In the Petri net that models the behaviour of a CompoNet, we can
define synchronized transitions [8] that will occur when such an event is received, if they are
enabled in the Petri net. Syntactically, transitions are associated to incoming events by their
names, e.g. in Figure 8 all transitions whose name is in the form
X-MainAxis#ActionPerformed (e) are related to the event ActionPerformed in the
event sink called MainAxis. e is the event variable associated with the event. When an event
occurs and no associated transition is enabled, the event is simply ignored.

Mapping for event sources

Event sources model the availability to multicast events to all interested receivers. In the Petri
net, an event source is represented by the possibility to trigger events as a result of the
occurrence of any transition. Syntactically, this is model by an action in the transition of the
form: trigger EventSourceName#EventName (EventParameter) .

4.1 Specification of the LinearMovementDetector

The formal specification of the component class LinearMovementDetector is given in Figure 8
as a Petri net using the mapping described above.

This net can be described informally as follows: It tries to detect a series of movements on its
main axis (this is modelled by the 3 transitions X-MainAxis#ActionPerformed. In this example,
we suppose that a series of 30 movements along the same axis will be considered as a nod or
shake, because the head cannot possibly move infinitely along one axis, but is forced to reverse
its movement. When this series has been detected, an event is triggered through the LinearMove
event source (Transition 3-MainAxis#ActionPerformed). If a movement is detected along the
other axis, the detection is reset (transition otherAxis#ActionPerformed). Conversely, if a
timeout occurs during detection (the head stands still for a given amount of time), the detection
is also reset (Transition TimeOQut?2). Finally, after a linear move has been detected, some timeout



is also applied before starting the new recognition, to prevent several linear movements to be
detected if the user shakes her head too long (Transition TimeQutl).

2-MainAxis#actionPerformed (e)
co < 30

newCount = count + 1;

3-MainAxis#actionPerformed (e)
- LinearMovelnitiated ——~  _qnt { count == 30

<newCounts ‘}Erlgqer(“LlnearMoVe#actionPerfcrmed (e)") s
<count> <corm> <tount>
TimeOut2 | 1-Malm\x{15§oaut;t:tlnPDe;rf)urmed(e) I otherAxis#actionPerformed - LinearMoveConfirmed
A
© /dle D= Timeoutl

Figure 8: Petri net of the LinearMovementDetector

5 Conclusion and future work

We have presented some aspects of our formal model of components, called CompoNets,
mainly the component model itself and the Petri net-based notation used to specify the internal
behaviour of components. We have presented a small but illustrative case study, showing in
particular the hierarchical aspects of the model.

In previous work, we have developed a software environment for the design, analysis and
interpretation of our CORBA-based object-oriented models [13]. We are now working on a
component-based environment supporting our new model. In particular we aim at providing a
lot of flexibility for the designer, allowing her to seamlessly use Petri nets or plain Java to
implement the behaviour of components. For instance, in our case study, the
LinearMovementDetector component is elegantly modelled as a Petri net because of its event-
driven and time-driven nature, while the VideoAnalyzer component, which is mainly
algorithmic, would more simply be expressed in Java. This leaves the opportunity for the
designer to use the tool best suited to the problem, and to perform formal analysis on parts of
the system that particularly deserve it.
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Abstract. ECATNets are a category of algebraic Petri nets based on a sound combination of algebraic abstract types
and high level Petri nets [Bet92]. The most distinctive feature of ECATNets is that their semantics is defined in terms
of rewriting logic [Mes95], allowing us to built models by formal reasoning. Automated techniques such as model
checking [Bcm92] are efficient for specifying and verifying finite-state models. However, they are not suitable for
specifying infinite-state systems. The rewriting logic language Maude allows model checking only for finite-state
system. The verification based model checking in ECATNet is possible thanks to their integration in Maude. In the
objective to extend this possibility to deal with infinite-state system, we propose in this paper dynamic analysis for
ECATNet based on construction of their reachability graph for infinite-state model as well as finite-state one.
Dynamic analysis is well defined for standard Petri nets and high-level Petri nets. The lack of any work related to
dynamic analysis in order to profit effectively of ECATNets advantages motivated us to perform this work. Such

proposition allows in the future the development of dynamic analysis tool by using Maude system.

Keywords : ECATNet, Rewriting Logic, Maude, Dynamic Analysis, finite-state systems, infinite-state systems.

1. Introduction

ECATNets [Bet92] are a kind of net/data model combining the strengths of Petri nets
with those of abstract data types. The most distinctive feature of ECATNets is that their
semantics is defined in terms of rewriting logics [Mes96], allowing us to built models by formal
reasoning. Motivating ECATNets (Extended Concurrent Algebraic Term Nets) leads to
motivating Petri nets, abstract data types, as well as their association into a unified framework.
Petri nets are used for their foundation in concurrency and dynamics, while abstract data types
are used for their data abstraction power and solid theoretical foundation. Their association into

a unified framework is motivated by the need to explicitly specify process behavior and
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complex data structures in real systems. ECATNets have been used in the area of manufacturing
systems [Bet93, Bet94, Bet97]. In addition of the modeling, the ECATNets permit already
validation and the simulation of concurrent programs [Bet96, Bet97]. In this paper, we look at
the side of verification.

Automated techniques such as model checking [Bcm92] are efficient for specifying and
verifying finite-state models. However, they are not suitable for specifying most infinite-state
systems. The rewriting logic language Maude [Mes92, Man99] implements LTL (linear
Temporal logic) model checking [Mcc03]. This one allows only the verification of finite-state
systems. The fact that ECATNet formalism is integrated [Bel0O] in rewriting logic and so in its
language Maude, benefit of the possibility of the verification based on model checking of a
system described by using ECATNet. However, as told above, it is not possible to do the
verification of liveness proprieties for example for infinite-state models. In the goal of extending
these possibilities of verification for ECATNet formalism, we propose in this paper reachability
analysis for ECATNet based on construction of their reachability graph for infinite-state model
as well as finite-state one. For it, we study first the case of unbounded places. The creation of
dynamic analysis tool of the ECATNets is foreseeable by using Maude system. Such tool is a

basic element to construct an exhaustive environment for ECATNet.

1.1 Paper Organization

The remainder of this paper is organized as follows: the section 2 is a general
presentation of the ECATNets and their description in rewriting logic. A detailed study
of non-bounded places case is presented in the section 3. The section 4 is dedicated to
the proposition of recovery of the infinite increase of numbers of elements of a multi-
set. Section 5 contains our proposed algorithm of ECATNets dynamic analysis. In
section 6, an example of an ECATNet and the construction of its reachability graph are

given. Section 7 concludes the paper.

2. ECATNets

ECATNets [Bet92] are a kind of net/data model combining the strengths of Petri nets
with those of abstract data types. The most distinctive feature of ECATNets is that their
semantic is defined in terms of rewriting logics [Mes96], allowing us to built models by formal
reasoning. Motivating ECATNets (Extended Concurrent Algebraic Term Nets) [Bet91] leads to
motivating Petri nets, abstract data types, as well as their association into a unified framework.

Petri nets are used for their foundation in concurrency and dynamics, while abstract data types
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are used for their data abstraction power and solid theoretical foundation. Their association into
a unified framework is motivated by the need to explicitly specify process behavior and
complex data structures in real systems. ECATNets have been used in the area of manufacturing

systems [Bet93, Bet94, Mao97].

2.1 The Syntax

From a syntactic point of view, places are marked with multisets of algebraic terms.
Input arcs of each transition t ,i.e. (p,t), are labeled by two inscriptions IC(p,t) (Input
Conditions) and DT(p,t) Destroyed Tokens), output arcs of each transition t, i.e. (t,p'), are
labeled by CT(t,p') (Created Tokens), and finally each transition t is labeled by TC(t)
(Transition Conditions). IC(p,t) specifies the enabling condition of the transition t, DT(p,t)
specifies the tokens (a multiset) which have to be removed from p when t is fired, CT(t,p")
specifies the tokens (a multiset) which have to be added to p' when t is fired. Finally, TC(t)
represents a boolean term which specifies an additional enabling condition for the transition t.
The current ECATNets state is given by the union of terms having the following form (p, M(p)).
As an example, the distributed state s of a net having one transition t and one input place p

marked by the multiset a @ b @ c, and an empty output place p', is given by the following
multiset : s =(p,a® b® c) ® (p', 9).

p IC(p, ©) CT(, p*) P
DT(p, t)

Fig 1. A generic ECATNet

2.2 The Semantic

It is worthwhile to mention that it is not easy to explain the behavior of ECATNets
merely by giving the equivalent of a firing-like rule [Bet92]. This is because of their level of
abstraction as well as their concurrent behavior. However, this behavior may be informally
commented in the following way. A transition t is enabled when various conditions are
simultaneously true. The first condition is that every IC(p,t) for each input place p is enabled.
The second condition is that TC(t) is true. Finally the addition of CT(t,p") to each output place p'
must not result in p' exceeding its capacity when this capacity is finite. When t is fired DT(p,t) is
removed from the input place p and simultaneously CT(t,p") is added to the output place p'.

Transition firing and its conditions are formally expressed by rewrite rules which are strongly
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depending on the form of the syntactic notation used for representing IC(p,t). Such rules act in
reality as the axioms of the rewrite logic mentioned above. The basic notions of this logic in
relation of its use with ECATNets are summarized as follows. The axioms are in reality
conditional rewriting rules describing transitions effects as elementary types of changes. The
deduction rules allow us to draw valid conclusions about the evolution of the ECATNet from
these changes. A rewrite rule is a structure of the form "t: u — v if boolexp"; where u and v are
respectively the left and the right-hand sides of the rule, t is the transition associated with this
rule, and boolexp is a Boolean term. More precisely u and v are multisets of pairs of the form
(p, [m] ), where p is a place of the net, [m], a multiset of algebraic terms, and the multiset
union on these terms, when the terms are considered as singletons. The multiset union on the
pairs ((p, [m] ,) will be denoted ®. We let [x] , denote the equivalence class of x, w.r.t. the ACI
(Associativity Commutativity Identity) axioms for ®. An ECATNet state is itself represented by
a multiset of such pairs where each place p is found at least once. Given a set R of rewriting
rules (defining all the elementary types of changes), we say that R entails a sequent s — '
(defining a global change from a state s to a state s') iff s — s' can be obtained by finite and
concurrent applications of the following rules of deduction: Reflexivity, Congruence,
Replacement [Mes 96]; Splitting, Recombination, and Identity [Bet92]. The Reflexivity rule
says that everything may be transformed into itself. The Congruence rule says that elementary
changes have to be correctly propagated. The Replacement rule is used when variable,
instantiations are necessary. The Splitting and Recombination rules allow us, by "judiciously"
splitting and recombining different multisets of equivalence classes of terms, to detect
ECATNet computations exhibiting a maximum of parallelism. The Identity rule allows to relate
0p (i.e., the identity element of @ with ¢g(i.e., the identity element of ®. We now recall the

forms of the rewrite rules (i.e., the metarules) to associate with the transitions of a given

ECATNet.

IC(p,t) is of the form [m]

casel [IC(p,0], = [DT(p,» I,

The form of the rule is then given by:
t:(p, IC(p .tl, — (p', [CT(t.p) ],

where t is the involved transition, p its input place, and p' its output place.

case2 [IC(p,t) I, N [DT(p,t) 1, = du
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This situation corresponds to checking that IC(p,t) is included in M(p) and, in the positive case,
removing DT(p,t) from M(p). In the case where DT(p,t) is not included in M(p), we have to
remove the elements which are common to these two multisets.

The form of the rule is given by:

t:(p, [IC(p.t) 1, ® (p, [DT(p.t) 1, N [M(p) 1, = (p, IC(p.H) 1, ® (p"[CT(t.p") 1)

Case3 [IC(p,t)] N [DT(p,t)] # dm

This situation corresponds to the most general case. It may however be solved in an elegant way
by remarking that it could be brought to the two already treated cases. This is achieved by
replacing the transition falling into this case by two transitions which, when fired concurrently,
give the same global effect as our transition (see [Bet92] for more detail). In reality, this
replacement shows how ECATNets allow to specify a given situation at two levels of
abstraction. The forms of the axioms associated with the extensions are, w.r.t. the explanation

already given, evident and thus not commented.

IC(p,t) is of the form "[m],

The form of the rule is given by:

t: (p, [DT(p,H)]l, N M(p) I, = (PLICT(tp) 1) if ([IC(p.tl, \ (HC(p,H) 1, N [M(p) o) = Om —
[false]

IC(p,t) = empty

The form of the rule is given by:

t: (p, [DT(p,tl, N [M(p) M) — (p,[CT(t,p) M) if ([M(p) N — Om

When the place capacity C(p) is finite, the conditional part of the rewrite rule will include the
following component:

([CT(p.v) 1,® [M(pl,) N [C(p) ], — [CT(p,v) 1,® [M(p)] |, (Cap)

In the case where there is a transition condition TC(t), the conditional part of our rewrite rule

must contain the following component: TC(t) — [true] (see [Bet 92] for more details).

3. Study of Unbounded Places Case

For a dynamic analysis of an ECATNet, the construction of reachability graph is
foreseeable. The development of an algorithm that detects and covers all cases of unbounded
places in an ECATNet is a delicate problem. It is about an unbounded place when the number of

algebraic terms in this place increases infinitely.
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The study of case of an unbounded place comes back to study monotony property. In an
ECATNet, this property depends strongly on assignments of algebraic term variable that label
arcs joining places and transitions. We separate three cases of the ECATNets : Simple
ECATNet (without conditions of transitions and ECATNet's places with infinite capacity),
ECATNet with conditions of transitions and places with infinite capacity, ECATNet without
conditions of transitions and places with infinite capacity, and of course the general case.

In the case of ECATNet with places with infinite capacity, the property of monotony is
respected. In the case of the places with finite capacity, the monotony may exist or not.

We focus in our study on the case when IC(p,t) is of the form [m], and we exclude from

the two other cases (IC(p,t) is of the form "[m],, and IC(p,t) = empty).

3.1 ECATNet's Places with Infinite Capacity

We have in following some propositions and their proofs. We focus in these

propositions on the ECATNet of the first case ([IC(p,t)], = [DT(p,t) ],). We obtained the same
result for the two other cases (IC(p,t) 1, N [DT(p,t) 1, = ¢um and [IC(p,t)] N [DT(p,t)] # Om).

3.1.1 Absence of Transitions Conditions
Proposition 1. LetM , M " two markings and S a sequence of transitions ; if M S

and M cM' then M'——

Proof 1. We make call to the proof by recurrence. For S =t (one transition), if ¢ is enabled

since M , then we have :

vpe P IC(p,t)cM(p) or DT(p,t)c M(p)
Vpe P if M(p)cM'(p) then IC(p,t)cM'(p) or DT(p,t)c M'(p)

Consequently, ¢ is enabled at M ". Let’s assume that this property is verified for S =¢,..f, and

we prove that it is for S =1¢,..1,¢,,, . We have:

M—%s M, —5 M

k+1
By supposition, M < M' then M'—:%—M',

Know, is #,,, enabled since M, ?
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Wehave M ——>M,—2>M,..—+—>M,
vpeP M, (p)=M(p)\DT(p,t,)) U CT(p,t,)
If IC(p,t;)cM(p) et DT(p,t;)cM(p)

Such that \ and U are subtraction and union of multi-sets. While DT (p,t,) € M (p) then,

without risks in multi-sets, we can write :

M, (p)=M(p)UCT(p,t;))\DT(p,t,)

M, (p)=M, (p)oCT(p,t,_ )\DT(p,t,_,)
Then :
M, (p)=((M,_,(p)OCT(p,t, ,)N\DT(p,t,_,)) VCT(p,t,_)\DT(p,t,_)

We can write :
M, (p)=((M,,(p)OCT(p,t,,) OCT(p,t,_ )N\(DT(p,t,_,) DT (p,t,_))

Consequently, we can write :

k k
M, (p)=(M(p)w (U CT(p,t))\( U DT(p.1)))
=1 =1

Moreover, we have another side :

| : k k
M, (p)=(M (p)o (U CT(pt)N\( U DT(p.1)))
=1 =1

, k k
It M, (p)cM,(p) then M(p)u(U CT(p.5))cM'(p)o( U CT(p.1)))
=1 =1

And then

k k : k k
M(p)o U CT(p.tyN\CU DT(p.t))cM (p)o (U CT(p.1))\( U DT(p.)))
=1 =1 =1 =1
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k k ,
Because J DT(p,tl)gM(p)u( U CT(p,tl)) thatistosay M, (p) c M ,(p)

If #,,, isenabled since M, then it is enabled since M, .

If M1 5 and M < M' then M — 5 Tt means that the property of monotony is

verified.

Proposition 2. If M —— M, and M C M, then p place, such that M (p) € M ,(p) is an

unbounded place.

Proof 2. We have in this case :

M ——M,.—— M, When k offers toward the infinite withM c M, M, c M, and
M., cM,
For pe P if M(p)cM,(p) then dIm#¢ M,(p)=mUM(p) (m is non-empty

k k
multi-set). On the other hand M ,(p)=((M,(p)u( U CT(p,tl M\ U DT(p,tl )
=1 =1

k k
Consequently, M,(p)=((mUM(p)o( U CT(p,t)N\CU DT(p.t)))
=1 =1

k k
Without risk, we write M (p)=m U (M (p)u ( U CT(p,tl)))\( U DT(p,tl))
=1 =1
Which means that M ,(p)=m UM (p) or M,(p)=mumUM(p)
We have m c muUm andthen M (p)c M ,(p) cM,(p)

By recurrence, we will have M(p)c Ml(p) C Mz(p) c..C Mk (p) or

M X (p)=mu..umuUM(p) That is to say, that if k offers toward the infinite, then the

k time

number of the algebraic terms in place p increase toward the infinite.

Interpretation 2. For one transition ¢, we have :
Vpe't M (p)=M(p)\DT(p,1) if IC(p.,t) = M(p)

Vpet' M (p)=M(p)UCT(p,t)



For pet” M(p)c M (p) then M(p)c M (p)VCT(p,1)
It is achieved some either circumstances.
pe’'t M(p)c M (p) then M(p)c M (p)\DT(p,1)
It is possible, only in two cases :
e DT(p,t) =¢ ,we sensitize without withdrawing
e input place is always output place DT (p,t) < CT(p,t)

We add more algebraic terms than we have just withdrawn.

3.1.2 Presence of Transitions Conditions

The presence of a condition for a transition does not make any problems with regard to
the preservation of monotony. A condition of a transition is true if values that give back it true
are inside its input places. While increasing multi-sets in these places, these values always exist
and the condition is always true. That wants to say, if a transition is enabled since a marking M ,

it is always asince M ' such that M < M.

3.2 ECATNet's Places with Finite Capacity

We distinguish tow cases. We discuss them in the following propositions.

Proposition 3. if M ——M"' and M c M and for every finite place p, M(p) = M'(p), then

every infinite place p'such M (p') c M'(p') is an unbounded place.

Proof 3. Immediate.

Proposition 4. if M —5 sM' and M < M' and the first transition in S become not

enabled since M. If it exists S’ such that M'—-—M" S' stops when S become enabled. If

we have the following case :

M S Mv S’ Mll N Mnl and ivagMnl and MV'(p) QM(p) for each

place p with bounded capacity yielding S disabled at M', then every infinite place p' such
M'(p')c M"'(p") is an unbounded place.

Interpretation 4. The alone reason that makes the first transition of S disabled is the problem of

the overtaking of certain places capacities. S’ makes lower the algebraic terms in places
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suffering of overflow. For it, S becomes again enabled, then we get M'". Then, we get the

infinity in certain places with infinite capacities.

4. Recovery of the Infinite Increase of Elements Numbers in Multi-set

For every multi-set whose elements are of type 7, we create @y which covers the
increase of number of elements in this multi-set. Being given m a multi-set whose elements
areof type T ,then: Vin: T muwr=@, mcoy, orf\m=wr, or Cor. ©r Jor=
@r
Such \, € , U are in the same way the classic operation extension symbol on the multi-sets.
The new operations apply on the union of the composed whole of all multi-sets of elements of
type T and the new multi-set @r.

We don’t need the operation @, the operation ® is sufficient while basing on the
concept of decomposition. If a place contains many algebraic terms, for example (p, a @ b), than
we can write it as (p, a) ® (p, b) when a, b are elementary algebraic terms.

We interpret previous ideas concerning the recovery of the infinite increase of elements

numbers in a multi-set by using rewriting logic :
- (p, @) ® (p, ®r) = (p, Or)
- (p,e) ® (p, or) = (p, ®r) where e is an algebraic term of type T. By recurrence:
(p,e) ®...® (p, e,) ® (p, W) = (p, ®r) where ey, ..., e, are of type Tand n =1
- If we have a rewriting rule of the shape : (p, /) ®...®(p, e,) ® m — m' if C (m doesn't
concern p), then we add rewriting rule :

(p, 1) ®m — (p, ®y) ®m'if C.

5. An Algorithm to Construct Reachability Graph for ECATNets

First, we define some functions that will be used in the framework of our algorithm:

SubMarking(m, m') : returns true if m is included in m'.

StSubMarking(m, m') : returns true if m is sub-marking of m' and m #m'".
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ReachableMarking(m, 1) : it is the function that returns a marking after have apply the
rewriting rule 1 on the marking m. So ReachableMarking(m, 1) = ¢, then m doesn't have a

successor while using the rule L.

CoveredPlaceInMarking(p, m) : for p place. It returns an marking that is sub-marking of m
after have covering the sub-marking of m that concerns p. that is to say: if m = (p, &) ® ...® (p,

e,) ® m' (m’ is independent from p and n = 1), then CoveredPlaceInMarking(p, m) = (p, &) ®

m

CoveredSetPlaceInMarking(P, m) : for a set of places P.

ProjectMarkingOnPlace(m, p) : it gives a marking that is sub-marking of m concerning the

place p.

PlacesTobeCovered(m, m', IP, 1) : this function returns a set of unbounded places E, a subset
of IP. For every p of E, the function look if there is an effective augmentation of tokens in this
place when comparing between m' and m. i.e, ProjectMarkingOnPlace(m', p) is strictly sub-
marking of ProjectMarkingOnPlace(m, p). A small algorithm for this function is described as

follows :

function PlacesTobeCovered(m, m', IP, 1) : set of places;

var E, F : set of places;

E:={}; F:=IP;

forp e Fdo

if StSubMarking(ProjectMarkingOnPlace(m', p), ProjectMarkingOnPlace(m, p)) = true then
begin E := E U({p}; F:=F/{p}; end;

return(E);

Now, we give our proposed algorithm for the construction of reachability graph for ECATNet.

Algorithm Construction of reachability graph for ECATNet
Input : ECATNet N without arcs inhibitor, P: set of places of N, P = FPUIP, FP : set of finite places and

IP is the set of infinite places, FPHIP = ¢. L : set of transitions (rewriting rules) of N.

Qutput : Finite reachability graph for N.
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Method :
var E : set of places
1. The root is labeled by the initial marking my
2. A marking m doesn't have a successor if and only if:
- for each rewriting rule I, ReachableMarking(m, 1) = ¢
- it exists on the path of my to m another marking m' = m
3. if the two conditions are not verified, let m" be the marking such m —L s m"
Jfor each rule I, where ReachableMarking(m, 1) # ¢ do
if Im': marking on the path of my until m & m'is a sub-marking of ReachableMarking(m, 1)
then if Vp €FP:

ProjectMarkingOnPlace(ReachableMarking(m, 1), p)= ProjectMarkingOnPlace(m',p)
then FE := PlacesTobeCovered(ReachableMarking(m, 1), m', IP, 1);
m'" := CoveredSetPlacelnMarking(E, ReachableMarking(m, [));

else if 4 (i=I 2)e L& l;#, on the path from m' until m such that
& Fnl, m2 tow markings on the path from m'until m
& m'i> m; and m; L) my and m; L) ReachableMarking(m, 1)
& SubMarking(m', ml) = true
& ReachableMarking(ml, 1;) = ¢
& V'p € FP: ProjectMarkingOnPlace(m2, p)

is sub-marking of ProjectMarkingOnPlace(m’, p)

then E := PlacesTobeCovered(m, m', IP,l);
m' = CoveredSetPlacelnMarking(E, ReachableMarking(m, l));

endif;
endif;
else m" = ReachableMarking(m, 1);
endif;
6. Example

The subject of this section is the application of previous algorithm on simple industrial
case. This example is presented in [Lin95] and it is described by using ECATNet formalism in
[Mao97]. We take this description with some modifications. This example presents an infinite-

state real system.
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Table B

Table A

Fig 2. Production Cell

6.1 Example Presentation

The example is about a cell of production that manufactures forged pieces of metal with
the help of a press. This cell is composed of a table A that serves to feed the cell by raw pieces,
of a robot of handling, a press and a table B that serves to the storage of forged pieces. The robot
includes two arms, disposed at right angles on one same horizontal plan, interdependent of one
same axis of rotation and without vertical mobility possibility. The figure 2 represents the
spatial disposition of elements of the cell. The robot can seize a raw piece of the table A and to
put down it in the press with the help of the arm 1. It can also seize a forged piece of the press
and can put down it on the table of storage B with the help of the arm 2. In short, the robot can
do two movements of rotation. The first allows it to pass from its initial position to its secondary
one. This movement permits the robot to deposit a raw piece in the press and possibly the one of
a forged piece on the table of storage B. The second the fact to pass its secondary position

toward its position initial and permits it to pursue the cycle of rotation.

6.2 ECATNet Model of the Example
Figure 3 represents the ECATNet model of production cell. The symbol ¢ is used to
denote the empty multi-set in arcs inscriptions. Please note that r denotes raw' and f denotes

'forge'. If the inscriptions IC(p, t) and DT(p, t) are equals, then we present just IC(p,t) on the arc
@ 0.

ECATNet Places.

Ta : table A ; set, possibly empty, of raw pieces.
Tb : table B ; set, possibly empty, of raw pieces.
Arl : arm 1 of robot ; at most a raw piece.

Ar2 : arm 2 of robot ; at most a forge piece.
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Pr : press ; at most a raw piece or a forge piece.

Pos-1 : initial spatial position of robot ; it is marked "ok" if it is the current position of robot.
Pos-S : secondary spatial position of robot ; it is marked "ok" if it is the current position of
robot.

EA : this place is added for testing if the tow arms of robot are empty.

ECATNet Transitions.

T1 : Taking of a raw piece by the arm 1 of the robot.

T2 : Taking of a forge piece by the arm 2 of the robot.

D1 : deposit of a raw piece in the press.

D2 : deposit of a forge piece on the table B.

TS1, TS2 : rotation of the robot from its initial position towards its secondary position.
TI : rotation of the robot from its secondary position towards its initial position.

F : forge of the raw piece introduced in the press.

E : deposit of a raw piece on the table A.

R : removing forge pieces from the table A.

Rewriting Rules.
[T1] : (Ta, raw) — (Arl, raw) if (M(Pos-I) — ok)

and ((Arl, raw) ® M(Arl) N C(Arl)) — (Arl, raw) ® M(Arl)
[T2] : (Pr, forge) — (Ar2, forge) if (M(Pos-I) — ok)

and ((Ar2, raw) ® M(Ar2) N C(Ar2)) — (Ar2, raw) ® M(Ar2)
[D1] : (Arl, raw) — (Pr, raw) & (Ea, Earl) if (M(Pos-S) — ok)
[D2] : (Ar2, forge) — (Tb, forge) ® (Ea, Ear2) if (M(Pos-S) — ok))

[TS1] : (Pos-1I, ok) — (Pos-S, ok) if (M(Arl) — raw)
[TS2] : (Pos-1I, ok) — (Pos-S, ok) if (M(Ar2) — forge)
[TI] : (Pos-S, ok) ®(Ea, Earl) & (Ea, Ear2)— (Pos-1, ok) if (M(Pos-S) — ok)

[F] : (Pr, raw) — (Pr, forge)
[E] : ¢ —(Ta, raw)

[R] : (Tb, forge)— ¢
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i

TS1

Fig 3. ECATNet Model of the cell

6.3 Reachability Analysis of the Example

For simplicity, we give just a part of reachability graph (one path) obtained by using
previous algorithm. Initial marking is in line 1. The unique enabled transition is E. The firing of
this transition since the initial marking makes the marking (Ta, r) ® (Pos-I, ok) ® (Ea, Ear2).
We note that initial marking is included in this marking and places with finite capacity have
constant marking along this path. The place Ta is unbounded, then we cover the infinite
augmentation of markings in this place by using the symbol ®g,y, when Raw is the enumerated
type containing the value raw. At each accessible marking, the transition E is always enabled.
The firing of E since such marking gives the same marking. The marking in line 7 is included in
the marking of in the line 8. However, the place Pr is a finite place. The firing of the transition
D2 is enabled since marking in line 11. The firing of this transition gives the marking : (Ta,
ORray) ® (Pos-S, ok) ® (Pr, r) ® (Ea, Earl) ® (Ea, Ear2) ® (Tb, forge). We note that the
marking in line 5 is included in the one of line 12. In addition to that, for every finite place p,
ProjectMarkingOnPlace(ReachableMarking(t,;, 1), p)) is equal to ProjectMarkingOnPlace(ts, p).
By applying the previous algorithm, the place Tb is unbounded and we replace this obtained

marking by one described in line 12.
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1. (Pos-I, ok) ® (Ea, Ear2) ——>

2. (Ta, Wran) @ (Pos-I, ok) @ (Ea, Ear2) ———>

3. (Ta, Whu) @ (Pos-I, k) ® (Arl, r) & (Ea, Ear2) ———>

4. (Ta, (ko) ®(Pos-S, ok) ® (Arl, r) & (Ea, Ear2) —2—>

5. (Ta, k) @ (Pos-S, ok) ® (Pr, r) ® (Ea, Earl) & (Ea, Ear2) ——>
6. (Ta, Wray) ® (Pos-S, ok) & (Ea, Earl) @ (Ea, Ear2) & (Pr, f) ———>
7. (Ta, Whan) © (Pos-1, ok) ®(Pr, ) ———>

8. (Ta, Wkaw) @ (Pos-1, ok) ®(Pr, ) ®(Arl, r) L)

TS1,7S2
9. (Ta, (hay) ® (Pos-, ok) @ (Ar2, f) @ (Arl, r) —22

10. (Ta, Wka,) ® (Pos-S, ok) ®(Ar2, f) ®(Arl, r) LN
11. (Ta, Wka) @ (Pos-S, ok) ®(Ar2, f) ®(Pr, r) & (Ea, Earl) L)

12. (Ta, Wkav) @ (Pos-S, ok) ®(Pr, r) ®(Ea, Earl) ®(Ea, Ear2) & (Tb, Wryree)

7. Conclusion

In this paper, we presented a proposition of an algorithm to construct reachability graph
for ECATNets. We exclude in this algorithm arcs inhibitor study. This proposition is motivated
by the fact that model checking cannot deal with infinite-state model in terms of verification. In
addition to that, unlike Petri nets and high level Petri nets, ECATNet formalism doesn't possess
any dynamic analysis algorithm. This proposition permits the development of a dynamic
analysis tool subsequently for the ECATNets. The development of a tool for the construction of
reachability graph is not complicated. The construction of reacahbility graph for finite-state
system is already developed by using Maude system. This is possible thanks to the reflectivity
of Maude language. We can describe an ECATNet in Maude and this description become as
input to another program written in Maude itself. Another interesting step in our work is to

extend this algorithm to deal with ECATNets containing arcs inhibitor.
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Abstract Heterogenous teams working geographically distributed on software projects
present a challenge for the development of supporting development environments. Many
tasks that are easy in a local context are much more difficult to handle in these environ-
ments, especially those of coordination and cooperation.

This paper outlines a possible architecture for an agent-based software system to assist with
the development process. For the description of the agent interaction in this paper as well
as for the actual implementation high-level Petri nets will be used.

Keywords: Agent, Software development, IDE, MULAN, nets within nets, Petri nets, RENEW

1 Introduction

More and more software projects are concepted and implemented by teams of experts
working geographically distributed. This creates new challenges for the organisation of
the development processes as well as for the coordination of work and the collaboration
towards a common goal. Traditional development environments are centered on the in-
dividual developer, sometimes integrating tools for version management. An integrated
environment for distributed software development however must center on the aspect of
collaboration among the whole team involved and facilitate the communication between
team members.

This paper outlines a multi-agent system (MAS) for distributed software development.
It is conceived as a collection of different tools, each one implemented as an agent, working
together with each other and with the user of the system. The paper concentrates on the
design of the system, using high-level Petri nets as a formalism for the design. The actual
implementation will be covered in later publications. It is envisioned to use high-level Petri
nets for the implementation as well, based on the works of Rolke [9] [8], Duvigneau [2] and
others.

Section 2 will describe possible uses of the system. Section 3 will cover the different
agents the system consists of and their interaction. Section 4 will outline the different
agents and their interactions more detailed in a Petri net notation to show the patterns
of communication to be used. Finally, section 5 summarises the results and shows the
direction in which further work will be made to implement the system designed here.

2 Application Context

This section describes use cases for the MAS designed in the later sections. Therefore,
some example applications will be given that can be integrated into the system along with
one more detailed example used in the following sections to describe the architecture.
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2.1 Usage Scenarios

We envision this system to be used as a complete development tool for distributed teams.
All useful applications one could need will be available from within one interface. This
involves single user tools like source code beautifier as well as groupware tools such as
whiteboards, source code control, workflow management or discussion boards.

When working on a team, the project manager would assign a couple of tools to
every team member, for example source code control and workflow execution, then special
tools for different roles in the team like documentation or testing. Also, everyone might
choose some tools they like or even build their own team specific tools to create their own
individual IDE (Integrated Development Environment).

For example there could be agents used to schedule meetings and coordinate the cal-
endars of the team members, autonomous agents performing automatic tests on the code
base, which is maintained by another agent, that would also notify users about changes in
files they are interested in.

2.2 Example: Whiteboard

An example application that will be used to explain the agent interaction envisioned is a
whiteboard. This can be used for general discussion or collaborative design. It consists of
one server that provides the whiteboard (essentially a text or graphic object). Every team
member can then access the whiteboard through the system, read it, write comments or
change the contents of the board.

Of course a whiteboard system is nothing new, nor is its client-server like implemen-
tation. It is only used here to show how different aspects of the system can work together.
Instead of adding all kinds of functionality into one centralized server application, it will
be possible to just add the server agent and a factory for the client agents to the system.
Using mobile agents this can be highly scalable.

2.3 Comparison with other Solutions

In Computer supported collaborative work (CSCW) a lot of effort has been made to
facilitate the working together of team members towards a common goal. Most of these
systems use a client-server concept of organising the participants and the ressources of the
system. Usually all data is stored on a central server to which all participants connect via
some kind of client program [1].

This is only useful for collaboration within one enterprise or if one enterprise dominates
the others in a cooperation. For virtual teams, assembled dynamically for each task, more
flexible solutions are needed.

[5] describes a system for cross-organizational workflow, based on service contracts.
This is not a multi-agent system, but based on traditional software components adhering
to certain agreed-upon standards.

The system proposed here will allow a flexible combination of ressources to teams
without a centralized controlling server. New participants can enter the system and offer
new services or use existing ones in a flexible way.
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3 Agent Interaction

This section covers the different agents that make up the system and their interaction.
Every user of the system will be represented by a “user agent”, acting on his behalf and
presenting the possible functions to the user.

The user agent does not provide functionality by itself but instead relies on different
“tool agents” to provide different functions. The tool agents can be wrappers around legacy
applications, provide useful functionality on their own or facilitate the communication with
a server such as a file server or a whiteboard server or between tool agents. One tool agent
will only be employed by one user agent at a time.

Figure 1 shows the composition of user and tool agents. The user agent registers itself
with a tool agent, using a defined interface. The tool agent then provides functionality
to the user agent. This connection is only virtual, because interaction between the agents
only happens via message-passing. However, in some cases it might be beneficial if the tool
agent resides locally close to the user agent so that shorter response times can be achieved.
If the tool agent needs access to a user’s local files, it is necessary that it is located on the
same machine as the user agent.

This shows how an agent can also act like an agent platform, hosting other agents and
providing ressources to them. This housing of other agents can be virtual, a tool agent
might even be plugged into several different user agents or it might be a physical moving
of the tool agent into the execution environment of the user agent.

L=ser Agent
Legacy
Toal Agent
‘e App.
]
TA
Sener
| Agent
TA
User Agent
]
TA
L

Figurel. Interaction between the different agents in the MAS

3.1 User Agents

The user agent is the users way of communication with the rest of the multi-agent system.
It will provide some kind of graphical user interface and a possibility to add tool agents
to its repertoire.
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To add a new tool agent to a user agent, the tool agent must first be found, for example
through some kind of directory service! or created for the user agent by another agent in
the system. For example a whiteboard server agent could create a new whiteboard tool
agent and send it to the requesting user agent instead of talking to the user agent directly.

3.2 Tool Agents

Tool agents provide functionality to users by plugging into a user agent. When binding
to a user agent a tool agent will provide its user interface to the user agent, so that it
can be displayed to the user. This can either be accomplished through a list of possible
commands or through a special interface, e.g. a GUI-object to be integrated into the users’
workspaces.

The agent then waits for requests from the user agent or may act proactively depending
on the task it is meant for. This might involve acting as a wrapper around a legacy appli-
cation, communicating with other tool agents or with other agents not directly involved
with the system’s users.

In the example of the whiteboard system, there would be one whiteboard server agent
and several whiteboard tool agents, one for each user accessing the whiteboard. The server
agent would not communicate directly with the user agents, but have the tool agents act
instead. They would provide the functionality of the server, like “read”, “write” to the user
agent, in the simplest case just forwarding the requests to the server. To save bandwidth,
the tool agent might also choose to only submit changes to the server instead of the whole
new content.

3.3 Other Agents

Apart from these two types of agents there can also be others present in the system. This
could be server agents, as mentioned in the whiteboard example, that offer services used
by multiple tool agents, or services that work without user supervision, like agents for
automated testing or documentation.

4 Petri Net Model

The interaction between the agents can be modelled with reference nets [6] as shown in
figures 2 and 3. The net models here are only schematic and are not executable as they are
right now. However, once the modelling gets more concrete the models will be executable
in Renew [7].

The first net shows the user agent. Its interactions with the user are modelled by the
transitions of the upper region of the net and the place *

A user initiates a request to find a new agent for a specific task, which results in
sending a request to the directory facilitator (DF). The DF sends a reply with a reference
to an agent capable of providing the desired functionality. That agent is sent a “register”
request and stored in the user agent’s “TA’s” place for future reference.

‘vision”.

! In a FIPA-compliant MAS [4], this would be the directory facilitator agent
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Figure2. Petri net model of the user agent
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Figure3. Petri net model of the tool agent
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The tool agents that are known to the user agent are registered in the place “TA’s”.
The user agents can make calls to the tool agents, by use of the “perform” transition, gets
state updates that reflect on the visional feedback the user gets and can unregister the
agent.

The net on bottom shows the corresponding tool agent. It holds a reference to the user
agent in the place “UA” and an internal state, however structured, in the place “state”.

5 Discussion

This paper could only sketch out a basic plan for further work on implementing a MAS
for distributed SW-development. The actual implementation along with a lot of details
has been left open. Nevertheless, it has pointed out the direction of further research to
be made in the next time, leading to a potentially very powerful distributed collaboration
tool.

For the implementation of this MAS we will use the multi-agent platform MULAN]9]
[8], which allows the modelling of agent interaction with reference nets while providing
the complete infrastructure of agent creation, message passing, etc. With its extension
CapA[3] we will also get FIPA-compliance and a directory service to build on.

Building on this foundation, we will build simple versions of the user agent along
with one or two tool agents to experiment with different strategies of initialisation and
functionality publishing. Later on other functions will have to be added, among others
persistance and workflow management.
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This paper deals with the design of critical control-command industrial applications.
This kind of applications has to respect some real time constraints. A component-based
approach called function blocks (IEC 61499 standard) is classically used to specify such
software and its execution support. A function block is defined as an event trigger com-
ponent. To validate temporal properties, we propose a state machine model compliant
with this standard. Nevertheless, a function block cannot handle simultaneous input event
occurrences. During the execution, some event occurrences may be lost leading to non
predictable behavior. For critical systems, events loosing is not suitable. We propose to
design offline scheduling of FBs execution in order to avoid simultaneous event occurrences.
The scheduling construction relies on sufficient schedulability conditions that we propose.
Finally, we verify the scheduling correctness using the state machine model.

Keywords. Function Blocks, IEC 61499, Timed Automata, Real Time, offline schedul-
ing, composition.

1 Introduction

Nowadays, developing industrial control applications remains an expensive and complex
activity. Indeed, such applications have to be certified with regard to several functional and
extra-functional properties. Since they control critical processes, one of the most important
property deals with Real Time behavior. Several approaches have been proposed to develop
safe control applications. They allow to model applications at design time [2, 16, 19].
Nevertheless, it is difficult to evaluate real-time behavior without modeling the execution
support.

The IEC 61499 standard [10] is one of the most known approaches allowing to design
applications as well as the execution support. It is a component-based methodology [4].
According to such standard, a component (named Function Block) is a reusable functional
unit of software that has its own data structure manipulated by one or more algorithms.

A function block interacts with its environment thanks to event and data inputs and
outputs. Event inputs trigger the function block activation while data inputs provide
algorithms parameters. The composition of function bocks consists in linking inputs and
outputs via channels. Therefore, a control application is specified by a so called “function
block network”. This functional specification can be distributed among various physical
devices connected on a field bus network.

Several real applications have been specified using FBs [11]. Moreover, Function block
libraries already exist [9]. The component-based approach allows modular verificaion avoid-
ing combinatory explosion. Therefore, this approach is a good framework to validate a
priori temporal properties.
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Nevertheless, in the standard, a function block cannot handle simultaneous input event
occurrences. It selects one occurrence and discards the others. During the execution, some
event occurrences may be lost. This phenomena can lead to non predictable behavior. For
critical systems, event loosing is not suitable [14].

In this paper, we propose to model applications built according to the standard using
timed state machines [1]. Thanks to the UPPAAL model checker tool [13], it is possible to
check and simulate an application on a resource and to verify temporal properties. Face to
previous approaches [18, 20, 6], we model a function block as an autonomous component
responsible for the input event management. Moreover, we take into account scheduler
inside a resource model. This allows to validate not only a function block, but also a
complete application executed on one resource.

To solve event occurrence loosing, we characterize the temporal application behavior.
Based on this temporal specification, we propose to define sufficient schedulability condi-
tions avoiding simultaneous occurrences. We construct safe offline scheduling policy for the
resource. Finally, we propose to validate our scheduling policy using the state machines
model.

In the next section 2, we briefly present the IEC 61499 standard. Then, we discuss
some previous modeling approaches. The section 4 describes our model based on state
machines. In the section 5, we present the schedulability conditions. Finally, we illustrate
our approach thanks to a classical example.

2 The IEC 61499 concepts

We present the main concepts of the IEC 61499 Function Block standard. This standard
is an extension of the IEC 61131.3 [12] for the Programmable Logic Controller. We can
divide its description into two parts: the static description and the behavior one.

2.1 Static description

An application function block (FB) is a functional unit of software that supports some
functionalities of an application (see Figure 1). It is composed by an interface and an
implementation. The interface contains data/event inputs and outputs supporting the
interaction with the environment. Events are responsible for the activation of the function
block while data contain valued information. According to the standard, the association
between an event input and a data input is modelled by a link connecting them. The
implementation consists of a body and a head.

The body is composed of internal data and algorithms implementing the block func-
tionalities. Each algorithm gets values in the input data channel and produces values in
the output data channels. They are programmed in structured text (ST) language [12].

The block head is connected to event flows. It selects the sequence of algorithms to
execute with regard to an input event occurrence. The selection mechanism of the event
occurence is encoded in a state machine called Execution Control Chart (ECC). At the end
of the algorithms execution, the ECC sends the corresponding output event occurrence.

In the standard, a function block network defines the functional architecture of a control
application. Each function block event input (resp. output) is linked to an event output
(resp. input) by a channel. Otherwise, it corresponds to a global application input (resp.
output). Data inputs and outputs follow the same rules.

The execution support architecture (i.e. the industrial control system) is defined by a
devices network (figure2). A device is composed of one processing unit,sensors, actuators
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(scheduling, communications and process mapping)

Figure 1: The Function Block concept.

and network interfaces. In order to manage the scheduling, a device contains several
resources. A resource is a logic execution unit corresponding to a periodic and fixed time
slot of the processing unit. It provides scheduler for a set of Function Blocks.

The operational architecture corresponds to a distribution of the application function
blocks over the different ressources of the execution support architecture. Note that several
applications can be distributed over the same execution support architecture[14]. The
advantage of such approach is to take into account hardware and software components.

Communications interface
Communications Resource 1 Resource 2 Communications
v mapping mapping"
I H H Fr H H |
[ 1 [ 1 [ 1 [ 1 [ 1 [ 1
Al Al i R Al i Applicati Applicati
FB | FB B FB n B[] B[] FB
“Proqes_s_
Scheduling function Scheduling function mapping
Process interface

Figure 2: A device architecture.

2.2 Behavior description

Let turn to the behavior description of a function block. Note that only algorithms execu-
tions spend time. In a given function block, the ECC is said #dle if there is no algorithm
execution. Otherwise, the ECC is busy. As in synchronous programming [3], all events

occurring when the ECC is busy are considered simultaneous. We can devise the ECC
behavior into three steps:

e First, it selects one input event occurrence according to priority rules defined in the

resource. Then, it clears all the event input buffers. Note that the other simultaneous
event occurrences are lost.
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e [t activates the algorithm sequence corresponding to the selected event. Then, it
waits for the resource scheduler to process the sequence.

e When the execution sequence ends, it emits the corresponding output event occur-
rence.

In the standard, the resource scheduler applies only non preemptive policies.

3 Previous modeling approaches

In order to validate the behavior of an operational architecture, several modeling ap-
proaches have been proposed.

The first one [20] is based on the NET Condition Event Systems as extension of the
Petri Nets formalism [8]. To specify the FB behavior, five modules are proposed. For
each FB event input, an Event Input State Machine (EISM) and an Event Input Variables
Storage (EIVS) must be instantiated. The EISM module encodes the behavior of the event
input while the EIVS stores the occurrence in a variable. An EC Operation State Machine
(ECO-SM) is proposed to control the ECC module. A module for each event output
variable stores the results. The modeling complexity of a function block (five modules)
can lead to a combinatorial explosion when we validate real applications. Moreover, in this
model, event selections are performed outside the Function Block. Therefore, Function
Block components are not autonomous. Finally, the approach does not model the function
block scheduling. Therefore, this work cannot validate temporal behavior of the whole
application|[19].

The second approach [6] proposes to model FB using a synchronous language called
SIGNAL [3]. It uses clocks to assure the synchronization between the ECC and the input
events in order to avoid occurrence loosing. Therefore, this approach is not fully compliant
with the standard.

The last approach [17] uses the Timed Automata formalism|[1]. It specifies a FB be-
havior thanks to two kind of modules: one state machine per each event input and one for
the ECC. It models a resource with two modules : one ECC invocation automaton and one
event input clear state machine per each Function Block. The authors propose resource
scheduler accepting requests only when the processor is free. Nevertheless, the model does
not specify a scheduling policy for managing the queue. Therefore, the scheduling can be
non deterministic. Moreover, as for the first approach, the event input management is
dedicated to the resource: FB components are not autonomous.

4 The Function Block Model

We propose a way for the implementation of a FB that is compliant to the standard IEC
61499 and based on a formal approach. For this purpose, we use the timed automata
formalism. A FB is modeled with two kinds of modules: one state machine per each event
input and one automaton for the ECC. In each block, an event input is characterized by
a unique priority. Different event inputs have different priorities. Furthermore, each FB
memorizes the highest priority of events occured from the last invocation of the ECC and
discards the other ones.

Therefore, the use of an invocator as in |20, 18| is useless. Interactions between the
event inputs and the ECC occur directly inside the FB. Note that our approach models
the occurrence loosing.
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We use the timed automata formalism of the UPPAAL tool [13]. For sake of conciseness,
we only consider one device containing one resource. Therefore, temporal behavior of the
application only depends on the FB network.

We first present the Function Block model. Then, we propose the resource model.

4.1 The Function block model

Let F'Bjbe a function block composed by

e 1 event inputs denoted by E X1, .., EX,.
e m event outputs denoted by EXOq, .., EXO,,. where m <n

e n algorithms denoted by Alg; 1), .-, Alg(jn)-
In this paper, we take the “connections” FBs model as a model for our theoretical approach.
Therefore, we suppose that for each input event EX;, we associate one and only one
correspondent algorithm Alg(; ;) and an output event EXOe.

Since we want to validate temporal behavior, we only focus on the control flows defined
by events occurrences. We do not consider data flows. Each algorithm Algi is classically
characterized by:

¢ a minimum execution time BCET(Alg; ;) (Best Case Execution Time).

e a maximum execution time WCET(Alg; ;) (Worst Case Execution Time).

Note that these values correspond to the execution of the algorithm alone on the considered
device.

4.1.1 The Event Input Model

We present the state machine modeling one Event input. Let priority(EX;) be the priority
level of EX; as defined for this Function Block FB;. The higher level is 0 and the lower
one is n-1. We use a variable termed a Waiting Highest Priority and denoted by W HP.
This variable stores the highest priority of events occured from the last invocation of the
ECC. At the beginning, W HP is initialized to n.

The Figure 3 displays the generic model of the event input E.X;.

When an event occurrs on FX;, two cases exist:

1. if the WHP is lower than its priority level, then there exists (on another input) a
current occurrence with a higher level priority. In this case, the occurrence on EX;
is discarded.

2. Otherwise, it has the highest priority. In this case:
e WHP is updated with its priority.

e the state machine waits the ECC.

When the ECC will be waiting for intern, the selected occurrence (on the highest
priority input) is stored in the variable selectAlg(j) (where j is the FB identifier). This
identifier is used by the ECC to identify algorithm to perform. Then the W H P is initialized
to n to start the next selection process.
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Figure 3: The generic model of an event input.

Note that the UPPAAL tool doesn’t support the event broadcast. Therefore, we pro-
pose a solution based on recursive clear. If a state machine of an event input EX; receives
a clear event, it sends it to the automata of the input FX;;.

We can simplify this generic model into three sub models. The Figure 4 shows the

models of:

e the event input having the highest priority (a),
e the event input with the lowest priority (b),

e the rest of event inputs (with neither the highest nor the lowest priority) (c).

4.1.2 The ECC model.

We extend the ECC model proposed in [17] (see Figure 5). For sake of clarity, we consider
that the event input EX; corresponds to the invocation of the algorithm Algy; ;).

Let consider the function block F'Bj. If the ECC is idle, then it waits for the intern
event from one of the event input state machines. Once the intern event occurs (the
occurrence input is selected), the ECC waits the resource scheduler. The latter authorizes
the execution by sending the event Exe F B when the variable procF B is equal to j.

At the completion of the algorithm, the ECC receives the event end FEzec from the
scheduler. Finally, the ECC sends an occurrence in the corresponding output event channel.
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2clear_EXi WHP == ;’))nori:]y(EXi)
seleclAIg(j) =i

Iclear_EXi+1

?ext EXi

(¢) The event input (with neither the
highest nor the lowest priority)

Figure 4: Event Input models.
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?exec_FB

selectAlg(procFB) ==n

IEXO1
selectAlg(procFB) == 1

?end_EXE

S

Figure 5: The ECC model.

4.2 The Resource Model

The resource behavior is controlled by a scheduler. This control can be modeled as a state
machine. We consider a periodic offline scheduling stored in an array called Sched. We
postpone the Sched construction to the section 5. The figure 6 displays the scheduler state

machine.

procFB := sched(k)

lend_Exec
k = k+1 % size(sched) lexec_FB
t>= t=0

Minexec(procFB, selectAlg(procFB)) f

Alg(procFB, selectAlg(procFB))
t <= WCET(Alg(procFB, selectAlg(procFB)))

Figure 6: The scheduler model.

When the scheduler is idle, then it authorizes the execution of the next Function block
FB; according to the Sched array. The execution time of the selected algorithm Algy; ;)

is encoded in the state Ss.

e If the scheduler implements idling policy, then the execution time is equal to WCET (Algy; ;))-
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Minezec(j,i) = WCET (Alg(; )

e Otherwise, it is bounded between BCET(Alg(;;)) and WCET (Alg;))-

J»1)
Minegec(j,i) = BCET(Alg ;)

The ECC signals the execution end with the event end exec and it becomes idle.

5 Offline scheduling design

According to the ITEC 61499 standard, the proposed model allows occurrences loosing
[6]. This problem can be critical for some applications that becomes non deterministic.
therefore, we propose a condition to construct non-preemptive offline scheduling [5, 7]
avoiding simultaneous event occurrences for a given Function Block.

We first characterize the input events arriving law for a function block. Then, we
propose a sufficient condition of schedulability to avoid occurrences loosing. Finally, if the
condition is satisfied, we compute the emission law for the output events.

5.1 Characterization of input events

Let FB; be a function block having n event inputs EX;, EXs, ..., EX,,. We classically
define the input occurrences arriving law. We only consider periodic input events E.X;.
Let denote by:

e Of(EX;) the offset of the event (it corresponds to the arrive time of the first occur-
rence),

e P(EX;) the period,

e G(EX;) the jitter (it corresponds to the maximum deviation of the period for the
arrive time of an occurrence).

Let denote by t(EX;,,,) the arrive time of the occurrence m of the event EX;. Such
occurrence is denoted by (EX;,,). Such time is bounded as follows:

Of(EX;) + [m.P(EX;)]

’

<
HEX;m)
<

5.2 Schedulability condition

This characterization of input events allows to define sufficient conditions to ensure that
all the events are taken into account. An E X, occurrence is taken into account if it has the
highest priority between all current occurrences. Therefore, to accept all the occurrences,
we have to avoid several simultaneous ones. Let define the minimum duration between two
occurrences to ensure that they are not simultaneous.

We denote WCET _MAX(FB;) the maximum algorithm worst case execution time
for the function block FB;.

WCET _MAX(FBj) = Mazc;; y{WCET(Alg)}
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We define the AP(FBj) as the biggest activation period of the ECC. It corresponds
to the maximum period where the ECC is busy. Therefore, all the events arriving during
this period can be considered by the ECC as simultaneous occurrences.

AP(FBj) is composed by the maximum waiting time for the ECC to obtain the sched-
uler PW (F' B;) and the worst case execution time of the function block (WCET _MAX (F B;)).

AP(FB;) = PW(FB;) + WCET _MAX(FB;)

Note that the waiting time of the scheduler (PW (FB;)) depends on the scheduling
policy. The figure 7 presents an execution sequence corresponding to a given scheduling
policy. For example, the period “events selection 3” corresponds to the maximum dura-
tion where arriving occurrences can involve in the selection for the execution windows 3.
Therefore, they can be considered as simultaneous.

1 1 1
4 ECC allocation ! A ECC allocation |
AN ] A
Events selection 2 yd Events selection 3 " Events selection 4
> < >

FBj FBj FBj

< AP(FBj) >

<4——PW(FBj) —»

~@¢—WCET_MAX(FBj) —»

Figure 7: An execution scenario in a resource.

To ensure that there is no simultaneous occurrences, we propose a sufficient condition
on the scheduling policy.

Theorem 1 (schedulability condition). The scheduling policy avoids loosing occur-
rences for the Function Block FB if it respects the condition:
Vi=1.n,Vj=1.nVk,meN, such as (EX;}) # (EXjm)

PW (FB)
<
| Of(EX;) + (k.P(EX;)) — Of(EX;) — (m.P(EX;)) — G(EXj) |

~WCET _MAX(FB)

Proof. To avoid the loosing phenomena, the duration between two different event oc-
currences must be greater than AP(FB). If we consider two periodic events, the minimum
interval occurs when the first EX; occurrence arrives late (i.e. with the jitter) and the
second EX; occurrence arrives in time (i.e. without any jitter). We obtain the following

formula:
Vi=1..n,Vj =1.nVk,meN, such as (EX;}) # (EXjm)

| Of(EX;) + (k-P(EX;)) — Of(EX;) — (m.P(EXj)) — G(EXj) |
>
AP(FB)
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where
AP(FB) = PW(FB)+WCET MAX(FB)
Therefore, we obtain the theorem condition.

Remarks.

e In particular, if ¢ = j and m = k — 1, two successive occurrences have to respect the
condition:

| P(EX;) — G(EX;) |> AP(FB).

e This theorem presents sufficient condition. Since we only consider maximum times,
if two occurrences don’t respect the condition, then they can not be considered
simultaneous in some executions.

5.3 Characterization of output events

In order to be able to compose the function blocks, we have to characterize the output
events that can be input events for the next FB. such characterization depends on the
scheduling policy.

Let consider an input occurrence (EXj; ) of a function block F'B;. We want to compute
the time ¢(EXO;,,) of the corresponding output occurrence EXO;,. We can compute a
lower bound and an upper one (see figure 8).

The lower bound occurs when the following conditions are satisfied:

e (EX; ) arrives with no jitter: tmin(EX;,) = Of(EX;) + [n.P(EX;)]

e (EX;,) arrives when the ECC is idle.

e (EX;y,) arrives when an execution window for FB starts.

e The Alg(;; execution time corresponds to the minimum execution time Minewzec(j, 7).

The upper bound occurs when the following condition are satisfied:

e (EX,;,) arrives with a jitter: tmaz(EX;,) = Of(EX;) + [n.P(EX;)] + G(EX;)

(EX, ) arrives when the ECC is busy.

e (EX;y) arrives at the beginning of the selection period for the execution window 2.

The Alg(; ;) execution time corresponds to the maximum execution time WCET (Alg; ;))-

Therefore, we obtain the following formula :

Of(EX;) + [n.P(EX;)] + Minezec(j,1)
<
t(EXOi’n)
<
Of(EX;) + [n.P(EX;)]| + G(EX;)
+2PW (FB) + WOET _MAX(FBj) + WCOET (Alg; )
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tmin(EXi, n)

Of(EXi) + n * p(EXi)

‘ i

-------------- ' tmin(EXOIi) S
e IECC allocation by |
! A 4 EXi event input !
{ Exec Window B ettt
<>
| minexec(j, i ; tmax(EXOi)
] / f
| ) /! H
H tmax(EXi, n) 7 !
H
)

Events selection 2 2

- - -
E G(EXi) WCET_MAX(FB) WCET(Alg(j, i)
! ~4PW(FB) > ~PW(FB)

< AP(FB) >

Figure 8: A temporal characterization of an output event.

The output event EXOi has the following characteristics:
e Of(EXO;)= Of(EX;)+ Minexec(j,1)
e P(EXO;)= P(EX;)

G(EXO;) = G(EX;)+2PW (FB)+WCET MAX(FB)
+(WCET(Alg(; ;) — Minewec(j, 1))

To be considered as a periodic event, the EXO; jitter has to be lower than the period
(G(EXO;) < P(EX;)). Therefore, we can deduce an additional condition of the scheduling
policy.

Theorem 2 (schedulability condition 2). To obtain a periodic output event, the
scheduling policy has to respect the condition:
VEzi input periodic event of F'B.

PW (FB)
<
(1/2).(P(EX;) — G(EX;) — WCET MAX (FB;)
—WCET(Alg;zy) + Minexec(j, )

Proof. The proof is straightforward.
We classically distinguish two policy types:

e Non idling policy: the scheduler signals the end of algorithm execution as soon as it
occurs. In this case, we have:

Minezec(j,i) = BOET(Alg;))-

e Idling policy: the scheduler waits during WCET of the algorithm before signaling
the end of the execution. In this case, we have:

Minezxec(j,i) = WCET(Alg(j,i))'
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6 Example.

To illustrate the approach, we present the classical saw tooth application. A full description
of this example can be found in [14] . The Saw tooth is an application specified by a network
of FBs (figure 9). We first describe the application. Then we characterize the temporal
behavior and we propose an idling and non-idling policy.

6.1 Application description

Ramp

—l—’ X0 Comparei
—

X1 Out

[ E2_Run E_Exo |
Cycle j: Cycle - -
Duration Duration  Hold

| Ramp1 |
E_Init E_Rdy E_Rdy

E_Run —I—/ E1_Run E_Exo |
| E_Exo

E GT
PV

Compare

E2
| E_Merge |

Target Y X0 \l— Out
| Mergei |
E_lInit ET EO

Figure 9: The sawtooth application design.

The application goal is to provide an output value “Out” that follows a ’sawtooth’
profile. In fact, it repeatedly increases the output from 0.0 to a "Target’ value and then
resets and restarts the ramp again from 0.0.

The application is initialized using an initialization event E_init. When E_init occurs,
the input values for X0, X1, Cycle and Duration are stored within the 'Rampl’ input
variables. In the example, X0 and X1 are constants (X0=0, X1=1000) and bound the
Ramp output variable ’Out’. The values of Cycle and Duration come from values provided
at the external interface of the application. They define the timing characteristics of the
‘saw tooth’ wave form. The Ramp Function block is composed of two algorithms:

e Alg init corresponding to the Ramp initialization

e ALG_E1 RUN invoked by the event E1 RUN.

After initialization, the application is ready to receive a regular stream of events at the event
input E1 _Run. Each E1 _Run event occurrence triggers the Rampl block to increment its
output 'Out’ towards the upper limit set by X1. Each time the Ramp]1 internal algorithm
completes its execution, an output event E Exo is passed to the Compare block. It checks
the value of ’Out’ (stored in X) in the block against the 'Target’ value (stored in Y). If the
X is lower than Y, then the compare block outputs the value of X to output XO and issues
event E_Exo. Otherwise, the compare block triggers its output event E _GT. This event
is fed back to the Mergel block which produces a new initialization event for the Rampl
block. The Rampl is then re-initialized and the output is reset to 0.0.
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The slope of the saw tooth profile can be changed by re-initializing the block with an
initialization event at event input E_init issued with a different Duration value. Mergel is
an instance of one of the standard event function blocks and provides a means for multiple
events to be merged into a new stream of events. In this case, Merge is used to allow the
Ramp block to be initialized either by an external event on the event input E_init or from
an internally generated event coming from the compare block. We suppose that it doesn’t
consume processor time.

In the example, we are interested to characterize the application behavior in the order
to guarantee that each E1 Run event is taken into account. We suppose also that the
input event E_Init is not periodic but it has the higher priority than the input event
E1 Run. Therefore, we only consider the execution between two E_init occurrences.

6.2 initial temporal characterization
Let E1 _Run be a periodic event with the following characteristics.
e Of(E1_Run) = 5 (relatively to the last E_Init occurrence).
e P(E1_Run) = 40.
e G(E1_Run) = 2.
For the Function Block Rampl, we define:
e WCET(Alg E1 Run) = 4.
e BCET(Alg E1 Run) = 2.
e WCET(Alg E_init) = 4.
e WCET MAX(Ramp) = 4.
For the Function Block Comparel, we define:
e WCET(Alg E2 Run) = 2.
e BCET(Alg E2 Run) = 0.
e WCET MAX(Compare) = 2.

6.3 Non-idling scheduling policy

To have a correct behavior of the Ramp FB, we must respect the two scheduling conditions
(theoreml and 2) where Minexec=BCET.

PW(Ramp) <| P(E1_Run) — G(E1_Run) | -WCET _MAX(Ramp)

PW(Ramp) < (1/2).(P(E1_Run) — G(E1_Run) — WCET MAX(Ramp) —
WCET(Alg_El1 Run)+ BCET(Alg_E1_Run))

In result, we have as temporal condition:

| PW (Ramp) < 16 |
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We compute the event output E_ Exo is characteristics.
e Of(E_Exo0) = 7.

e P(E_Exo) = 40.

e G(E_Exo0) = 8 + 2 * PW(Ramp).

Note that the E_Exo characteristics correspond to the E2 Run ones. To have a correct
behavior of the Compare FB, We must respect the two scheduling conditions

PW (Compare) <| P(E2_Run) — G(E2_Run) | —-WCET _MAX (Compare)
PW(Compare) < (1/2).(P(E2_Run) — G(E2_Run) — WCET MAX (Compare) —
WCET(Alg_E2 Run)+ BCET(Alg _E2_ Run))

Instantiating the variables, we obtain:

| PW (Compare) <| 32 — 2« PW (Ramp) | -2 |
| PW (Ramp) + PW (Compare) < 14 ‘

Let consider the cyclic scheduling:
e Sched(0)=Ramp
e Sched(1)=Compare

In this case, we have to prove that the execution of Ramp (resp. Compare) can be included
during the Waiting time (PW) of Compare (resp. Ramp):

| WCET _MAX (Ramp) < PW (Compare) |

| WOET _MAX (compare) < PW (Ramp) |

Since these 5 inequations have a solution, the scheduling avoids events loosing.

6.4 Idling scheduling policy

Applying the same method as described in the previous section, we obtain the following
inequations for Idling scheduling policy (i.e. Minexec=WCET).

| PW (Ramp) < 17 |

| PW (Compare) <| 34 — 2« PW (Ramp) | —4 |
| PW(Ramp) + PW (Compare) < 17 |

Let consider the same cyclic scheduling:
e Sched(0)=Ramp
e Sched(1)=Compare

In this case, we have to prove that the execution of Ramp (resp. Compare) can be included
during the Waiting time (PW) of Compare (resp. Ramp):

| WCET _MAX (Ramp) < PW (Compare) |

| WCET _M AX (compare) < PW (Ramp) |

Since these 5 inequations have a solution, the scheduling avoids events loosing.
Using the model described in section 4 and the UPPAAL tool, we verify that the
application scheduling avoids the loosing phenomena and lets to a correct behavior.
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7 Conclusion and future works

This paper presents contributions to develop industrial control applications. It is based on
the IEC 61499 defining a modular approach for application and execution support design.
We propose a state machine model to validate temporal properties. It takes into account
the functional specification and its distribution over the execution support. Moreover, we
define a resource scheduler able to take into account offline scheduling policy.

Once defining the scheduling policy, such model allows to verify that an execution is free
of simultaneous events. Nevertheless, it cannot help for designing a safe scheduling policy.
Therefore we propose two schedulability conditions based on the temporal characterization
of the application. On the saw tooth example, we construct offline scheduling policies
(idling and non-idling) compliant with these conditions.

We are currently working on a method to automatically generate safe ofHline scheduling
policy. We also develop an on-line scheduler [16] able to dynamically evaluate and handle
deadline for each FB execution. We extend our model in order to take into account several
resources on one device. Then we plan to consider parallel execution distributed on devices
network.

In future works, we will study decomposition of temporal property in order to perform
modular validation of a function blocks application. The goal is to replace a FB by an
equivalent one (regarding to the property) without checking the whole application.
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Abstract. Mobility induces new challenges for dynamic systems, which need a
new conceptional treatment: systems, that deal for example with mobile agents,
need extended security concepts to handle the risks, induced by foreign, un-
trusted agents.

In this work we apply structural analysis methods for object nets — namely place
invariants — to a case study modelling mobile agents.

Keywords: agent system, compositionality, mobility, nets as tokens, object
nets, security

1 Introduction

The general context of this presentation is mobility in open systems, with a
special emphasis on multi-agent systems to illustrate the underlying concepts.
In this context the question of security issues arises, especially the questions
of how platforms can be protected against malicious agents.! As discussed in
[Ch98], security issues, which arise due to the mobility of agents, are conceptu-
ally different from those in traditional systems.

So, a natural questions arise in this context: “How can integrity of platforms
be achieved without having knowledge about the agents in advance?” There are
two approaches to establish the platform security (cf. [Ts99]). The first approach
demands a proof of the agent, that it is harmless. This approach is known as
“proof-carrying code” (cf. [NL97]). The second approach is to encapsulate each
agent in an environment — called “sandbox” — which enforces harmless processes.
A prominent example is the security mechanism in Java (cf. [Sun97]).

Here, we propose to use object nets as a formalism for mobile agents. Ob-
ject nets are well suited to express mobility (cf. [KMRO03]). Beside the modelling
aspect object nets provide the possibility of structural analysis by using linear
invariants. The invariant calculus for object nets has the property of compo-
sitionality, i.e. structural properties of platforms can be proven independently
from those of the mobile agents. This implies the key issue that structural anal-
ysis can used (a) to prove that an agent is harmless and (b) to prove that a
platform enforces harmless processes for each possible agent moving onto it.

Currently the concept of mobile entities is an research area of actual interest.
Most of the work on mobility is based on mobility calculi, like the ambient-

! For the opposite question, how agents could be protected against untrusted platforms,
[ST98] formulates a principle solutions based on cryptographic methods.
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[CGGI9], seal [VCIS8] or m-calculus [MPW92]. For this area verification relies on
the notion of bisimulation rather than invariant analysis. Practical approaches
in form of graphical modelling languages like AUML (Agent Unified Modelling
Language) (cf. [BOPO00]) are not equipped with an exact formalism.

Petri nets provide both a graphical and a formal representation of systems
in the notion of the token game. For the application area of mobility the for-
malism of Mobile Object Net Systems [KRO03] (based on the nets-within-nets
paradigm of [Va98]) provides a suitable conceptual framework, since nets are
allowed as tokens. The paradigm of nets-within-nets has been adopted by other
approaches, for example the formalism of Nested Petri Nets [Lo00]. Its rela-
tionship to linear logic has been discussed by [Fa00]. Another example for the
use of Petri nets in the context of mobility is the formalism of Mobile Petri
Nets [Bu99], which provides a description of mobility by an embedding of the
m-calculus. For an overview of the relationship of Petri nets and mobility cf.
[KMRO03,KR04].

The paper has the following structure: Section 2 gives a short introduction
into the paradigm of nets-within-nets. The formal definition of the semantics
of mobile object net systems is given. In Section 3 we give a description how
nets-within-nets are used in the concrete context of mobility in open systems.
Mobile agents and their environment can be regarded as a two-level hierarchy
of nets. In Section 4 a case study is analysed using structural approaches.

2 Object Systems

The simplest model of “nets-within-nets” are “Unary Elementary Object Sys-
tems” (Eos for short) defined by [Va98]. They are called “elementary” since
the nesting hierarchy is limited to a depth of two. On the top level there is one
so called system-net which has instance of one — therefore the term unary —
object-net. Here, we give a generalised version of E0S, since Place/ Transition
nets (short: P/T-nets) are considered (instead of EN systems as in [Va98]).

In Figure 1 a firing sequence is illustrated. The firing of ¢; created two net
tokens, which are copies of the original one. The marking of the net token on pq
is distributed to the copies. The distribution chosen in this sequence allows the
two synchronisations (te,t11) and (t3,t12). The effect of firing (t2,¢11) modifies
the marking of the net token on place so, but not the copy on s3 — similarly for
(t3,t12). Since the tokens on s;3 and si4 are in different net tokens, transitions
t13 is mot enabled. The two net copies have to be recombined by the system-net
transition t4, resulting in a net token with the marking si3 + s14.

It can be concluded, that object systems are very intuitive when dealing
with mobile objects in a distributed system, since each place denotes a location
for the net tokens independent from all other locations.

In the following we use the notation x for elements of the whole object-net
system, & for elements of the object-net, and x for elements of the system-net.

Definition 1. An object system is a tuple OS = (N, N,p), such that:

— The system-net N = (P, T, pre, post, My) is a P/T-net with |*t|,|t*| > 0 for
allt €T.
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Fig. 1. Firing Sequence

— The object-net N = (P, T, pre, post, My) is a P/T-net disjoint from the
system-net: (PUT)N(PUT) = 0.
— p C T x T is the interaction relation.

The set of synchronising transitions in the system-net is T}, := (pT) The
set of synchronisation free transitions is T, := T \ T,. Analogously, the set
of synchronising transitions in the Object—net is T » = (T'p). The set of syn-
chronisation free transitions is T =T \ Tp. Thus, the set of transitions is
T = (T,UT,Up).

Marklngs are described by nested multisets. For EOs the nesting level is
fixed with one level of nesting.

Definition 2. A marking of OS is a multiset M € Mv = MS(P x MS(P PY).
The initial marking of an Eos OS is Mo((p, M)) = My(p) if M = My and 0

otherwise.

By using projections on the first or last component of an E0OS marking
M, it is possible to compare object system markings. The projection IT!(M)
on the first component abstracts away the substructure of a net token, while
the projection IT2(M) on the second component can be used as the abstract
marking of the net tokens without considering their local distribution within
the system-net.

Definition 3. Let M = >"" | (p;, M;) be a marking of an Eos OS = (N, N, p).

1. Abstraction from the token substructure: IT*(3°1_ (p;, Mz)) =5 1 Pi
2. Summation of the distributed markings: IT*(31" (pi, M;)) = S0, M;

The Eos firing rule is defined for three cases: system-autonomous firing,
object-autonomous firing, and synchronised firing. A transition can only occur
autonomously if there exists no synchronisation partner in p, i.e. if 7 € (T [—,UTﬁ).
Otherwise if 7 € p, only synchronous firing is possible.

The autonomous firing of a system-net transition ¢ removes net tokens in
the pre-conditions together with their individual internal markings. Since the
markings of E0S are higher-order multisets, we have to consider terms PRE €
M, that correspond to the pre-set of ¢ in their first component: IT'(PRE) =
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pre(t). In turn, a multiset POST € M, is produced, that corresponds with the
post-set of ¢ in its first component. Thus, the successor marking is M’ = M —
PRE + POST, in analogy to the successor marking M’ = M — pre(t) 4 post(t)
of P/T-nets. The firing of ¢t must also obey the object marking distribution
condition IT?(PRE) = IT?(POST), ensuring that the sum of markings in the
copies of a net token is preserved.?

An object-net transition ¢ is enabled autonomously if in M there is an ad-
dend (p, M ) in the sum and M enables t. For synchronous firing, a combination
of both is required.

Definition 4. Let OS = (N, N,p) be an UEOS. Let M,M’ € M, be markings
wrt. value semantics of OS. Then M é M’ iff there exists PRE,POST €

M, such that PRE < M, M’ = M — PRE + POST, and the following holds:

T:teﬂf¢ﬂﬂPREy_md)AHHPOST%:WQ@A
I1?(POST) = II?(PRE) A
=(t,t)ep= HI(PR ) = pre(t) A IT'(POST) = post(t) A
II*(PRE) > pre(t) A
IT?(POST) = IT%(
r=1teT,=3p: I'(PRE) = II
II?(PRE) > pre(t) A
I12(POST) = II2(PRE) — pre(f) + post(f)

PRE) — pre(t) —|—post( £) A
L(POST) = p A

The following properties characterise the symmetries in the behaviour of an
Eos.?

Proposition 1. Let OS be an EOS as in Def. 1.

1. The abstract behaviour — determined by the projection IT' — on the system
level of an EOS corresponds to the behaviour of the system-net viewed as a
P/T-net: M Ot—S> M’ implies IT' (M) % ITY(M), and IT*(M') is uniquely
determined.

2. The distributed object-net marking is invariant under autonomous actions
of the system-net: M Ot—s> M’ implies IT*(M) = IT?>(M).

3. The behaviour of the distributed object-net is determined by II? and is a
sub-behaviour of the object-net viewed as a P/T-net: M % M’ implies

II?’(M) —t% II?(M), and IT>(M) is uniquely determined.
4. The abstract state of the system-net is invariant under object-autonomous

actions: M Ot—s> M’ implies IT*(M) = IT*(M).

2 This represents the main difference of Eos compared with Valk’s object systems [Va9§],
which require that each net token in POST hold all tokens IT?(PRE) of the net tokens
from the pre-set. This kind of multiplication of system resources is inhibited in E0S. Note,
that almost all propositions exploit this symmetry.

3 Note, that not all properties hold in he semantics presented in [Va98], Since each net token
in POST holds all tokens IT?(PRE) of the net tokens from the pre-set (i.e. tokens are
duplicated) the distributed object-net marking IT?(M) cannot be preserved. So, Prop. 1
(2) and (5) become invalid for the semantics presented in [Va98].
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5. Synchronisation is an action composed of two sub-actions:
M —>(;;) M’ implies HI(M) Ti? Hl(M’) as well as HQ(M) _t_) HQ(M’)_
N

Furthermore, IT'(M') and IT*(M') are uniquely determined.
Proof. Immediate from Definition 4. O

The compositionality of invariants is interesting for E0s. In the following
we investigate how the invariant calculus of P/T-nets extends for Eos. Let
N = (P, T,pre, post, My) be a P/T-net. The incidence matrix A is defined by
A(p, t) := post(t)(p) — pre(t)(p). A P-invariant ¢ € ZIFl i # 0 is a vector that
fulfils 2/ - A = 0. Then every reachable marking M fulfils the linear equation
- M =1-M,.

The following theorem states that invariants for a EOS can easily be com-
posed from the invariants of the components.

Proposition 2. Let OS = (N,N,p) be an Eos as in Def. 1 and let i € ZIF!
be an invariant of the system-net and i € ZIP! one of the object-net. Then for
all reachable marking M € M, it holds:

i-ITY(M) =4 - IT' (M) and - IT2(M) = ¢ - IT>(M)

Proof. For a system-autonomous step M = M’ we have IT'(M) % (M)

by Prop. 1(1). Since 4 is an invariant of N we have 4 - IT*(M) = 4 - IT*(M’).
Also, we have 7 - [T2(M) = 1 - IT%(My), since II2(M) = I12(M’) by Prop. 1(2).
Analogously with Prop. 1(3) and (4) for object-autonomous and steps and with
Prop. 1(5) for synchronisations. 0

3 Types of Mobility

It is quite natural to use object nets to model mobility and mobile agents. Each
place of the system net describes a location that hosts agents, which are net
tokens. Mobility can be modelled by moving the net token from one place to
another. This hierarchy forms a useful abstraction of the system: on a high level
the agent system and on a lower level of the hierarchy the agent itself.

travel

spontaneous subjective travel objective " consensual
move move ticket move ticket move
O—TF—0 O —0 OO0 @O0

location X location Y location X~ &Move()  jocation Y location X location Y location X amove()  location Y

Fig. 2. Types of mobility

Without the viewpoint of nets as tokens, the modeller would have to encode
the agent differently, e.g. as a data-type. This has the disadvantage, that the
inner actions cannot be modelled directly, so, they have to be lifted to the
system net, which seems quite unnatural. By using nets-within-nets we can
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investigate the concurrency of the system and the agent in one model without
loosing the abstraction needed.

Following [KMRO03], we distinguish four different kinds of mobility, which
are know as spontaneous, subjective, objective and consensual moves of the
mobile agent (cf. Figure 2, where A is the agent net as a net token):

— Spontaneous Move: Neither the agent nor its environment initiate the trans-
port. The movement can take place, but it is not enforced. No coupling of
the environment and the agent is needed.

— Subjective Move: The agent itself initiates the movement, so agent and
environment have to be coupled. This is described by the channel move,
which has to be enabled in the agent. The movement takes places if the
environment is able to execute it.

— Objective Move: The environment initiates the movement of the agent. The
agent is forced to be transported. The initiative of the environment is mod-
elled by the place travel ticket.

— Consensual move: Both the environment and the agent come to an agree-
ment on the movement. This is modelled by a combination of the channel
move, which has to be enabled in the agent, and the external condition
modelled by the travel ticket.

The multi-agent architecture MULAN [KMRO1] provides facilities for sub-
jective moves as well as for objective moves.

4 An Example Model

As mentioned in the introduction structural analysis is useful for the system’s
as well as for the mobile agent’s side.

Analysis of the Platform The case study is given in Fig. 3. The parameter
n € N denotes the capacity of the public location. Here only the agent system
(i.e. the system net N) is shown, since an agent (i.e. N) cannot be restricted by
platform in advance. The synchronisation relation is also omitted for the same

reason.

There are three locations: pool, public, and private. The pool location is
the initialisation area; the public area is open for any agent, while the private
area has restricted access: It is allowed that many agents are simultaneously
in the public location, but there has to be at most one agent in the private
location. This prevents agents from being spied out like for a pooling booth. The
transitions between the locations model movement, which are either objective
or consensual (depending on the synchronisation relation).

4 In fact it is just the object-net variant of the reader/writer problem.
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In the following the system net NV is analysed using invariants. The incidence

pool
(M)

move

public -> pool

move /\ move

pool -> private

pool -> public

public

matrix is given as:

=
/

semaphor

prvivate

Fig. 3. The Multi-Agent System

move
private -> pool

pool — pub|pub — pool|pool — prv|prv — pool
pool -1 1 -1 1
A = |public 1 -1
semaphor -1 1 -n
private -1 1

Solving the equation i-A = 0 we obtain 4] = (0,1,1,n) and i, = (1,0,
as invariants of the system-net. Using Proposition 2 we have 2; -
i1 - IT*(My) for all reachable markings M:

~1,0)
') =

iy - ITY (M) = M (public) + M (semaphor) 4+ n - M (public) = i1 - IT' (M) = 0

and

io - IT' (M) = M(pool) — M (semaphor) = iy - IT*(Mg) =n

Addition of these two linear equations results in:
M (public) + M (pool) + n - M (private) = n

Therefore M (private) > 0 implies M (private) = 1 and M (public)
0 which is the desired property.

= M (pool) =

Note, that property can be proven without having any knowledge about the
structure of the agent (i.e. object net).

Analysis of an Agent In the following an example agent is analysed using
invariants. The agent net IV is given in Fig. 4. The two places flag, and flag,
are used to toggle the agent’s choice between the public and the private place.?

5 Note, that due to this the agent activates the infinite firing sequence
w = ((move pool — public)(public — pool)(pool — private)(private — pool))*.
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The incidence matrix is given as:

pool — pub|pub — pool|pool — prv|prv — pool
ready public -1 1
public 1 -1
A = |ready private -1 1

private 1 —1
flag, —1 1
flags 1 —1

ready for p“b"?iv:w' priva:;o.:epool ready for

public private

move
pool -> private

move
pool -> public [ ]

prvivate

public

Fig.4. The Agent

Solving the equation - A = 0 we obtain & = (1,0,1,1,1,1) as the invariants
of the agent-net. Using Proposition 2 we have i - IT>(M) = 27 - IT?(Mj) for all
reachable markings M:

i - IT2(M) = M (public) + M (private) + M(flag,) + M (flag,)
=4 I1*(Mp) =1

This implies: X X
M (public) + M (private) < 1

So, the agent proves that it does not attempts to enter the private and the
public place at the same time.

5 Conclusion

In this presentation we have introduced the formalism of object nets and its
invariant calculus, which has the compositionality property, i.e. invariants of the
whole system are deducible from the components. The usefulness of structural
analysis combined with compositionality of multi-agent systems is obvious in
the context of mobility, since the system is open and only parts of the systems
are known in advance. Using this approach we could establish a correctness
proof for our example scenario without any knowledge about the structure of
the mobile agents in the system.

It is our aim to model the concepts of mobile agents in terms of Petri nets,
which is different from using Petri nets as a formalism to implement mobile
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agents, like in [XD00]. Especially, we tackle the general description of mobility
as a concept on its own to have a direct focus on the main problems. So, mobile
agents are just an example of the general approach to the concept of mobility.
The formal model of nets-within-nets is used to define security properties of the
system. The formal analysis is directly integrated into an existing multi-agent
system architecture MULAN [KMRO1].
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Abstract

We demonstrate how Coloured Petri Nets (CPN) can be used to en-
hance a traditional software specifications document for an elevator con-
troller. The traditional specification is given in a textbook. It includes a
description of the desired functionality of the controller and a description
of the subject domain (floors, buttons, cages, etc.). Based on the given
specification, we build a CPN model, which is a coherent description that
ties together different pieces of the given specification. The CPN model
is used to argue for the correctness of the specification. Using simulation,
we investigate a number of scenarios. For each scenario, we check that
if a controller is implemented in compliance with the specification, it can
ensure the desired effects in the subject domain (e.g., that each request
can eventually be served).

Topics: Petri nets: embedding in traditional software engineering
approaches; Modelling: methodologies, paradigms and principles.

1 Introduction

In this paper, we give an example on how Coloured Petri Nets (CPN) [13, 18] can
be used to enhance a traditional software specification. We consider specification
of an elevator controller.

The elevator controller must work in a ten floor building in which there are
two elevator cages. The main responsibility of the controller is to control the
movement of these cages. Movement is triggered by pushes on buttons. On each
floor, there are buttons which can be pushed to call the elevator; there are both
up and down buttons. Inside each cage, there are buttons, which can be pushed
to request to be carried to a particular floor. In addition to controlling the
movement of the cages, the controller is responsible for providing feedback to
the elevator users. Inside each cage, there is a location indicator, which displays
the current floor of the cage. On each floor, there is a direction indicator for each
of the two cages showing the current direction of travel, if any. The controller
is responsible for updating the location and direction indicators.

The elevator example have appeared often in the literature, e.g., in Jackson’s
work [9, 10, 11, 23]. Here, we use Wieringa’s rendering. In [22], Wieringa gives
a mission statement outlining the overall purpose of the controller, a dictionary
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fixing the meaning of terms in the subject domain, a set of entity-relationship
diagrams of the subject domain, a set of statecharts [7] specifying the assumed
behaviour of entities in the subject domain, and a set of statecharts specifying
the desired behaviour of the entities to be controlled by the elevator controller.
Moreover, the specification includes a number of alternative requirements-level
architectures, represented as a kind of generalised data flow diagrams that out-
line the software structure of the controller together with the subject domain.

The contribution of this paper is to demonstrate how CPN can be used to
enhance and argue for the correctness of the given specification. We create a
CPN model that ties pieces of the given specification together and thus con-
tributes to providing an overview. We explain how the CPN model serves as an
alternative specification of a requirements-level architecture.

Many values gained by adding a CPN model are, of course, well-known. In
particular, by creating and simulating a model, we gain insights and the model
can be used as documentation. We will not comment these values much in this
paper. Our focus is to make two main points. The first point is to explain the
link between the given specification and the CPN model, e.g., how entities of
entity-relationship diagrams are represented as tokens and how given statecharts
are emulated in the CPN model. The second point is to describe how the CPN
model is used to make what Wieringa calls the system engineering argument:
to argue that under the given assumptions about the subject domain, with the
current specification, certain desired properties will hold in the subject domain
as controlled by the controller (e.g., that each request can eventually be served).

The remainder of this paper is structured as follows: Section 2 is excerpts of
Wieringa’s specification of the elevator controller. Section 3 describes the CPN
model and discusses its relation to the given specification. Section 4 demon-
strates how the CPN model is used to make the system engineering argument.
Section 5 discusses more broadly a number of perspectives on using CPN in soft-
ware engineering. Section 6 concludes the paper and includes a list of subjects
for further discussion and investigations.

2 Given Specification

We now present excerpts of the specification of the elevator controller as pre-
sented i App. D of [22]. We describe (1) the desired functionality of the con-
troller, (2) entities in the subject domain, and (3) the desired behaviour of the
subject domain as controlled by the controller.

2.1 Desired Functionality

The mission statement outlines the overall purpose of the elevator controller:
“to coordinate the movements of a number of elevator cages in order to provide
optimal service to passengers waiting for service or travelling in the elevator”.

The mission statement is supplemented with a function refinement tree,
which specifies the functionality to be provided in a tree structure. The main
functionality is: passenger support, maintenance support, installation support,
and operation support. Wieringa restricts himself to consider the passenger
support functions in the remainder of the case study; so do we. The passenger
support functions are:
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e collect passengers;
e deliver passengers;
e show floor;

e show direction.

These four functions are described in natural language in terms of their
triggering events and the service delivered. We will discuss them in more detail
in Sect. 4, where we make the system engineering argument.

The description of desired functionality is concluded with the partial context
diagram reproduced in Fig. 1 (reproductions not completely identical to originals
with respect to graphical layout).

Request Ele‘:atﬁr Direction Passenger
button controfler indicator >
N
Passenger A \push direction,
N Location
\ N N indicator
Entry \
sensor 4
| pass nupMser
~
~
A
Elevator
L open,
) dose ™ door
amve’v
-~ [ light on,
Cage Arrival L Iigmcﬂ
> < N,
sensor ; \
7 N Request
/ \ button
4 Y
/become start up \
, 4 closed start down
, stop "
Elevator Motor Cage
door >

Figure 1: Partial context diagram.

The context diagram depicts the elevator controller and relevant entities in
the subject domain. Also, the diagram indicates communication lines between
different entities, e.g., that when a passenger pushes a request button, the ele-
vator gets a push stimulus. The diagram indicates that the elevator controller
may respond with, among other things, generating a start up response to the
motor and a light on response to the request button.

2.2 Entities in Subject Domain

The subject domain specification includes a number of entity-relationship dia-
grams (ERDs) of parts of the subject domain. The diagram depicting entities
related to an elevator cage is reproduced in Fig. 2.

The ERD shows entities that can exist in the subject domain. It also shows
how many entities that can exist and how entities may be related. Thus, from
Fig. 2, we can see that the elevator controller will work in an environment
consisting of entry sensors, elevator doors, elevator cages, motors, location in-
dicators, destination buttons, and floors. We can also see, e.g., that there are
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Location indicator (2)

number: Natural
Indicating

<<stimuli>>
set number(n: Natural)

1
1

Elevator cage (2)
Motor (2)
Elevator door (2) planned direction:
{up,down,none}
Entry sensor (2) \dle
Opened Moving
doors | Closing doors cage JOpened
Closed i
1 1 1 1 |/Closing 1 1
<<responses>> /Stationary
pass <<stimuli>>
open <<stimuli>>
close start up
<<responses>> cage 1 0.2 start down
closed stop
10 1 current floor
Destination button (20) Floor (10)

Figure 2: ERD for entities related to a cage.

exactly two elevator cages and exactly two elevator doors, and that each elevator
door is related to exactly one elevator cage.

The entities in Fig. 2 are given; the elevator controller must be designed to
work properly together with them, and with other given entities. Therefore, it
is important that the designers of the elevator controller know exactly how the
given entities work. The behaviour of direction indicators, location indicators,
request buttons, elevator cages and motors, and elevator doors is specified in
a set of statecharts. In the sense of the Robertsons’ Volere requirements pro-
cess [21], these statecharts give constraints for the elevator controller. In the
sense of Jackson [10], the statecharts are indicative descriptions, which describe
assumed behaviour of entities in the subject domain.

2.3 Desired Behaviour of Subject Domain

We now turn our attention to the desired behaviour of the subject domain to
be brought about by the controller; this is an optative description [10]. A set
of statecharts is used to specify the desired behaviour of the location indication
process, of the allocation of requests to cages, and of the elevator cage movement.
Figure 3 reproduces the statechart for desired elevator cage movement.

An example of the behaviour described in Fig. 3 is the following: The ele-
vator cage is idle — the statechart is in the Idle(c) state. A request is made
and the cage start to move — the statechart makes a transition from Idle(c)
to Moving(c), triggered by the event allocate(b,c) and assuming that the
guard [not Atfloor(b,c)] is true. The cage arrives at a floor for which a re-
quest has been made and opens its doors. — the statechart makes a transition
from Moving(c) to Opened(c). Finally, the elevator cage’s doors close and the
elevator cage becomes idle again — the statechart makes two transition; first
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b: Request button
c: Elevator cage

closed(c)[not Service required(c)]/stop showing direction(c)

allocate(b,c)/ )
allocate(b,c) [not Atfloor(b,c)] / (decide to serve immediately(b,c))
start motor(b,c) dle(c) {serve(b,c)}
| |

allocate(b,c)
[Vacuous request(b,c)/
light off(b){serve(b,c)}

pass doors(c)

A 4

Movin_]g(c) arrive(b,c)/(decide to serve(c)){serve(b,c)} Opened(c)

time to close doors(c)/
close doors(c)

(decide to reope|
{serve(b,c)}

closed(c)[Downstream required(b,c)]/
continue(c), stop showing direction(c)

.

closed(c)[Upstream required(b,c) and not Downstream required(b,c)}/
reverse(c), stop showing direction(c)

Closing(c)

Figure 3: Statechart for desired behaviour of elevator cage movement.

from Opened(c) to Closing(c) and then from Closing(c) to Idle(c).

The statechart of Fig. 3 is in [22] supplemented with tables specifying the de-
tails of the three complex transitions decide to serve immediately, decide
to serve, and decide to reopen.

3 CPN Model

We now present the CPN model we have built based on the specification of the
previous section; the model is built with CPN Tools [24].

We describe how the CPN model represents (1) entities in the subject do-
main, (2) the controller itself, and (3) the desired behaviour of the subject
domain as controlled by the controller. We also explain how the CPN model
serves as an alternative specification of a requirements-level architecture.

3.1 Representation of Entities in Subject Domain

Many entities in the subject domain are represented via colour set declarations.
These declarations are derived directly from the ERD of Fig. 2 and other ERDs
of [22], not shown in this paper. As examples, there are colour set declarations
for the entities elevator cage, location indicator, destination button, and floor,
which appear in Fig. 2.

The colour set used to represent the elevator cages consists of 4-tuples
(cageid,floor,requestlist,direction); cageid identifies the cage, floor
is the number of the floor the cage currently is at (if the cage is stationary)
or has last visited (if the cage is moving), requestlist is a list of the request
that the cage is about to serve (represented as a list of floor numbers), and
direction holds the current direction of the cage (up, down, or none).
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3.2 Representation of Controller

The controller itself is represented as a set of functions. The control-movement
functions are:

setdirection: called when the motor of an idle cage is about to start; deter-
mines whether the cage should move up or down, based on the current
floor of the cage and its request list (it is assumed that the controller will
maintain a request list for each cage recording the outstanding requests
currently allocated to that particular cage).

stophere: called when the cage is in the final approach to a floor, triggered by
a sensor; determines whether the cage should stop here. The cage stops if
the floor number is in its request list; otherwise it continues.

turnidle: called when the cage’s doors are closing; determines whether the
cage should turn idle at the current floor. The cage should turn idle if it
has no outstanding requests; otherwise, it should continue.

servenow: called when an idle cage with an empty request list receives its first
request; determines whether that request can be served immediately. This
is possible only if the request comes from the cage’s current floor. In this
case, the cage can just open its doors; it is not necessary to start the
motor.

resetdirection: called when the doors of a cage with outstanding requests
have closed; determines whether the cage should move up or down, based
on the current direction of the cage and its request list. If there are any
requests in the list that can be served in the current direction, the cage
continues. Otherwise, it shifts to moving in the opposite direction.

addrequest: called when a new request is made; adds a request to the request
list of a cage.

removerequest: called when a cage opens its doors at a certain floor. The
requests corresponding to that floor are removed from the cage’s request
list.

The elevator controller should also supply two information-display functions
updatelocationindicators and updatedirectionindicators. However, we
have only included the first of these in the CPN model. The second could easily
be added, but we have chosen not to include update of direction indicators in
the current version of the model in order not to clutter up the graphics.

3.3 Desired Behaviour of Subject Domain

The desired behaviour of the subject domain as controlled by the controller is
described via net structure and comprises the following three modules:

e Basic Cage Movement;
e Requests and Allocation;

e Up/down and Indicators.
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Basic Cage Movement
The Basic Cage Movement module is shown in Fig. 4

Requests and
Allocations
(c,cf,rl,no)

Requests \

CAGE initCages()
(c,cf furl,cd) (c,cffurl,cd)

(cfd)
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Figure 4: Basic Cage Movement module of CPN model.

The major part of Fig. 4 is the result of a straightforward manual translation
of the statechart of Fig. 3. The states of the statechart have been translated
into places in the CPN model. As example, the states Idle(c) and Moving(c)
of the statechart are translated into the places Idle and Moving in the CPN
model, respectively. The events, actions, and guards have been translated into
transitions surrounded with arcs with appropriate inscriptions. As example, the
action start motor(b,c) appearing in the statechart on the arc from Idle(c)
to Moving(c) is translated into the transition Start Motor of the CPN model.

In the statechart, the action start motor(b,c) has the triggering event
allocate(b,c), which corresponds to the request b being allocated to the cage
¢ in the subject domain. Moreover, start motor(b,c) has the guard [not
Atfloor(b,c)], which corresponds to the elevator cage ¢ not currently being
at floor b in the subject domain. The CPN model models allocation of request b
to cage c in the subject domain by occurrence of a transition (on the Requests
and Allocation module), which causes a token to appear on the Idle place,
which matches the pattern (c,cf,f::rl,cd) appearing on the arc from Idle
to the Start Motor transition. The guard of the transition Start Motor in the
CPN model being true models that the cage ¢ is not currently at floor b in the
subject domain.

In this way, the arc from Idle(c) to Moving(c) in the statechart corresponds
to the same subject domain phenomena as the transition Start Motor of the
CPN model.
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The two substitution transitions Requests and Allocations and UpDown
and Indicators in Fig. 4 have no counterparts in the statechart of Fig. 3. These
transitions tie the Basic Cage Movement module of the CPN model together
with other modules, and this is not done in the statechart. The Idle socket place
is bound to a port place with the same name on the Requests and Allocation
module and the Moving socket place is bound to a port place with the same name
on the Up/down and Indicators module.

Also, the two places Floor Buttons and Cage Buttons, used to model the
floor buttons and the cage buttons, have no counterparts in the shown state-
chart. We will discuss them further below.

Requests and Allocation

The Requests and Allocation module is shown in Fig. 5.

initFloorButtons 10 (f.no) [d<>no]

Floor Push Floor (td) Floor () | Allocate Floor
Buttons Button Req P Request

FLOORBUTTON (f.d)

FLOORREQUEST

Push Cage Cage Allocate Cage
Button Requests Request

CAGEBUTTON (c,f::bl) CAGEREQUEST
[Eusion 2]
ason (c,cf,addrequest f rl,cd)

(c.cf.rl,cd), (c,cf,addrequest f rl,cd)

initCageButtons () (c.bl)

()

initCages()

CAGE

Figure 5: Request and Allocation module of CPN model.

Each of the two places Floor Buttons and Cage Buttons are fused with
the place with the same name on the Basic Cage Movement module.

Occurrence of the Push Floor Button transition models that a passenger
pushes a floor button, either in the direction up or down. In the subject domain,
this will cause the floor button to light up, modelled in the CPN model by an
update of a floor button token on the Floor Buttons place (that the light of the
floor button is eventually turned off again is modelled by occurrence of one of the
transitions Serve or Decide To Serve on the Basic Cage Movement module
(Fig. 4)).

The occurrence of Push Floor Button also causes a FLOORREQUEST token
to be added to the Floor Requests place. Subsequently, this may cause the
transition Allocate Floor Request to become enabled. It is the Allocate
Floor Request transition, which models assignment of a given floor request to
one of the two elevator cages. In the current version of the model, the scheduling
policy is very simple: It models that a random idle elevator is chosen. We discuss
more advanced scheduling policies in Sect. 5.4.

The Push Cage Button transition models that a passenger pushes a cage
button inside an elevator cage. Similarly to Push Floor Button, this causes an
update of a token on the Cage Buttons place modelling that the button lights
up. It also causes a CAGEREQUEST token to appear on the Cage Requests place.
Occurrence of the transition Allocate Cage Request models that the request
is added to the request list of the cage in which the button is pushed.
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Up/down and Indicators

The Up/down and Indicators module is shown in Fig. 6.
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LOCATIONINDICATOR CAGE

updatelocation¥\dicators ¢ | down

Move (c,cf-1,rl,cd)
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[cd=down, cf>1, not(stophere cf rl)]

Figure 6: Up/down and Indicators module of CPN model.

The Moving place is conceptually glued with the place with the same name
in the Basic Cage Movement module.

The Move One Up transition models movement of an elevator cage one floor
up. When it occurs, the floor entry of the CAGE token on Moving is incre-
mented. The guard of Move One Down consists of three Boolean expressions
and should be read as a conjunction. The expressions cd=up and c£<10 models
properties that are inherent to the subject domain: that the cage actually is
moving upwards and that it cannot move up if it is at the topmost floor. The
expression not (stophere (c,cf,rl,cd)) models a condition that is enforced
by the elevator controller: that the cage only moves if it should not stop — it
should stop if there is a request. The Move One Down transition works similarly
to Move One Up.

Tokens on the Location Indicators place model the location indicators
for the two elevator cages. The state of Location Indicator is updated each
time either Move One Up or Move One Down occurs. The call of the function
updatelocationindicators emulates the controller’s responsibility of ensuring
that each location indicator correctly displays the actual current floor of the
elevator cage. In terms of the CPN model, this means that the floor entry
of each of the tokens on Location Indicators must be equal to the floor
entry of the corresponding CAGE token — which is on one of the places Idle,
Moving, Opened, or Closed (this property could be formally described using a
place invariant).

3.4 CPN Model as Requirements-level Architecture

In Wieringa’s terms, a requirements-level architecture is a kind of generalised
data flow diagrams that outline:

1. the processes and data stores that make up a system;

2. entities in the subject domain;
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3. possible internal communications in the system;

4. possible communications between the system and entities in the environ-
ment.

A requirements-level architecture is determined by, indeed, the requirements
to the system to be developed and by the environment of use. It is a description,
which is independent of any specific implementation platform.

Wieringa presents two different requirements-level architectures for the ele-
vator controller. Both architectures have resemblance with the context diagram
reproduced in Fig. 1 in the sense that the architecture diagrams show entities
of the subject domain plus the controller itself. The difference is that in Fig. 1,
the controller is shown as a black box, whereas the architecture diagrams also
show the internal structure of the controller. In the Von Neumann architectural
style (Fig. D.20 of [22]), data storage and data processing are kept separate;
data stores never process data themselves and data transformations have no
memory to store data. In the subject-oriented decomposition, object-oriented
architectural style (Fig. D.24 of [22]), the internal structure of the controller is
made up of objects that encapsulate behaviour and data transformations that
correspond to aspects of the subject domain.

The CPN model may be seen as an alternative requirements-level architec-
ture in the following way:

1. The processes that make up the elevator controller are represented by the
functions described in Sect. 3.2. The data stores of the system appear in
tokens such as the requestlist component of CAGE tokens.

2. Entities in the subject domain of the controller are represented via colour
set declarations and tokens as described in Sect. 3.1.

3. Possible internal communications in the controller are described via tran-
sitions. As examples, the two transitions Allocate Floor Request and
Allocate Cage Requestonthe Requests and Allocation module shown
in Fig. 5 model the allocation of requests to cages. Occurrence of these
transitions correspond to internal communications.

4. Possible communications between the controller and entities in the envi-
ronment are also described via transitions. As examples, the two transi-
tions Push Floor Button and Push Cage Button on the Requests and
Allocation module correspond to communications between buttons (ex-
ternal entities) and the controller.

4 The System Engineering Argument

As discussed in the introduction, the system engineering argument consists in
arguing that under the given assumptions about the subject domain, with the
current specification, certain desired properties will be true for the subject do-
main as controlled by the controller.

We now describe (1) that the CPN model gives prerequisites for making
the argument, (2) the desired properties we are considering, and (3) how the
argument is made using simulation.
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4.1 Prerequisites for the Argument

The prerequisites for the argument are two basic properties of the CPN model:

e The CPN model is a coherent description (as we will argue below).

e The CPN model is executable.

The CPN model is a coherent description in the sense that it ties together
different pieces of Wieringa’s specification. In the first place, it ties together
descriptions of entities in the subject domain with descriptions of behaviour.
As an example, large parts of the ERD of Fig. 2 and the statechart of Fig. 3 are
brought together in the CPN model. The statechart is emulated in the Basic
Cage Movement module of the CPN model, and entities of the ERD appear as
tokens in the CPN model.

Secondly, the CPN model ties together a number of Wieringa’s statecharts
behavioural descriptions. As an example, the statechart describing assumed
behaviour of request buttons (Fig. D.8 of [22], not shown in this paper) is
reflected in the Requests and Allocations module of the CPN model, shown
in Fig. 5. As we have seen previously, the desired behaviour of elevator cage
movement is represented both in the statechart of Fig. 3 and in the module of
the CPN model shown in Fig. 4. In this way, the CPN model ties together the
given behavioural descriptions for request buttons and for movement of elevator
cages. Thus, the CPN model describes causalities that the elevator controller
must deal with — the pushing of a request button generates an event, which
may trigger that an elevator cage starts to move.

4.2 Desired Properties

The desired properties that we must consider to make the system engineering
argument for the elevator controller are provision of the passenger support func-
tions mentioned in Sect. 2.1: collect passengers, deliver passenger, show floor,
and show direction.

Let us consider Wieringa’s description of the first of these properties:

Name: Collect passengers
Triggering event: A passenger pushes a floor button at floor F.

Delivered service: The controller ensures that an elevator cage stops at floor
F and allows passengers to enter. Average round-trip time when a cage is
used at 80% of the guaranteed load should be no more than 60 seconds.

Thus, to make the system engineering argument, we must argue that each
time a passenger pushes a floor button at floor F, the controller ensures that
an elevator cage eventually stops at floor F and allows passengers to enter (es-
timating round-trip times is outside the scope of this paper).

4.3 Making the Argument via Simulation

We use simulation to investigate different scenarios and check that in each one,
when the model emulates that a passenger pushes floor button F in the subject
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domain, eventually the model can be in a state, which corresponds to an elevator
cage being present at floor F with its doors open. As an example, consider a
situation in which both elevator cages are idle at the first floor. There are no
outstanding requests. Let’s say that the floor button in pushed at the 4th floor;
the passenger wants to travel up.

In the model, the corresponding event is that the transition Push Floor
Button (see Fig. 5) occurs with its FLOOR variable £ bound to the value 4 and
its DIRECTION variable d bound to the value up. The assumed subject domain
situation implies that two CAGE tokens are present at the Idle place (both
have empty request lists). Therefore, the transition Allocate Floor Request
becomes enabled. When it occurs, we can see in the model that a request from
the 4th floor is properly added to the request list of one of CAGE tokens on the
Idle place, say cage cg(1), by the function addrequest.

In the current marking, the transition Start Motor (Fig. 4) is enabled; the
guard [not (servenow cf (f::rl))] is true because cf=1 (the cage’s current
floor) and £=4 (the number of the floor on which the considered request was
made), and servenow just checks if cf is equal to £. When Start Motor occurs,
the CAGE token for cage cg(1) is removed from the Idle place and added to
the Moving place. We can check that the direction of movement is correctly set
to up, by the expression setdirection(c,cf,f::rl,cd) because cf=1 and £=4
and setdirection results in cd=up when cf is less than f.

The transition Move One Up (Fig. 6) is now enabled; the guard [stophere
cf rl] evaluates to false because cf=1 and r1=[4] and stophere just checks
if cf is member of rl. The occurrence of Move One Up causes the floor entry
in the CAGE token on the Moving place to change from 1 to 2. In general, each
time Move One Up occurs, the floor entry is incremented. Thus, when Move
One Up has occurred two additional times, the floor entry is 4. Now, the guard
[stophere cf rl] evaluates to true because 4 is member of [4]. Therefore,
the transition Decide To Serve (Fig. 4) becomes enabled. When it occurs, the
cg(1l) CAGE token is removed from the Moving place and added to the Opened
place. This corresponds to the subject domain event that elevator cage number
one arrives at the 4th floor and opens its doors; passengers are allowed to enter,
and, thus, in this case, the desired property can be ensured.

We have simulated a number of scenarios, also much more complex scenarios
than the one we have described in detail here. In each case, we have observed
that any time a request made in the model, we can bring the model in a state,
which corresponds to the request eventually being served. In this way, we have
used simulation to make the system engineering argument for a number of sce-
narios and thus to increase our confidence of the specification.

We can make similar arguments for the other desired properties (except
the last one regarding direction indicators, which we have not included in the
current version of the model). In all cases, we can observe, via simulation, that
the desired behaviour of the subject domain can be achieved for the considered
scenarios with the current specification of the controller.

5 Perspectives on CPN in Software Engineering

In this section, we go from considering the elevator controller example to a dis-
cussion of more general perspectives on the use of CPN in software engineering,
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including use together with more traditional software development methods.

5.1 Problem Frames

Wieringa’s emphasis on and rendering of the system engineering argument is
highly inspired by Jackson’s decades-long work on the relationship between the
real world and the computer systems (machines) we develop.

The basic perspective in Jackson’s newest book on problem frames [10] is that
software development is an undertaking in which problems in the real world are
solved with the help of machines. Various problems in software engineering
can sometimes be fit into a particular frame, which can be used to analyse
and structure the description of a particular problem. Problem frames are a
problem-side counterpart to the more well-known design patterns of object-
oriented software development [6] on the solution-side.

The control-movement part of the elevator controller problem we have con-
sidered in this paper fits the commanded behaviour problem frame, and the
system engineering argument we have made is an address of the frame concern.
In general, this consists in the first place of making appropriate descriptions of
the problem domain (subject domain), the requirements to be satisfied, and the
specification of a machine. Secondly, based on these descriptions, a convinc-
ing argument must be given that the machine and the given domain properties
together entail that the requirements are fulfilled.

This is what we have done for the elevator controller in this paper. We
described the problem domain in Sects. 2.2 and 2.3. We looked in at the re-
quirements to be satisfied, first in Sect. 2.1 and then in more detail in Sect. 4.2.
We specified the machine in Sect. 3.2. In Sect. 4, we argued that if an elevator
controller is implemented, which is compliant with the specification, and if the
given entities of the problem domain (buttons, doors, motors, etc.) work as
assumed, then the requests we have considered can eventually be served.

The system engineering arguments for the show floor and show direction
requirements (see Sects. 2.1 and Sect. 4.2) fit the information display problem
frame.

We have previously used CPN models to make system engineering arguments
in [15]. Here, we addressed the frame concern for a commanded behaviour
problem in a complex biddable domain [10] involving people: support of the
work process medicine administration as carried out by nurses working at a
hospital. Thus, in summary, CPN is useful to address the frame concern in
various problem frames.

5.2 Jackson’s Basic Tenets

In continuation of the discussion of Jackson’s problem frames above, we now
consider three basic tenets for making descriptions in software development,
stated by Jackson in [11]. These are: 1. Distinguish the machine from the
problem domain; 2. Don’t restrict description to the machine; 3. State explicitly
what is described.

With the descriptions given in this paper, Wieringa and we adhere to these
tenets. In particular, the elevator controller is an embedded system and as such
only visible to its users via the effect it has in the subject domain. Therefore,
we have emphasised giving descriptions of the subject domain, in accordance
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with tenet 2. However, we have realised tenet 2 fundamentally different from
the recommendation of [11], which is to make separate descriptions of on one
hand the system to be built and on the other hand the environment in which the
system will be used. Not making the separation is seen by Jackson as a major
cause of confusion. The risk is that desired properties of the system under design
are mixed up with inherent and given properties of the environment.

While we agree that it is important to distinguish between indicative and
optative descriptions, we disagree that it is necessary to keep the descriptions of
the environment and the description of the machine separate. On the contrary,
we believe that it is possible and indeed quite useful to gather descriptions of
the environment and the machine in one single integrated description. In fact,
this is what we have done with the CPN model.

The CPN model is an optative description; it describes a future, desired
behaviour in the subject domain. It is the responsibility of the designers of the
controller to specify controller functions such as setdirection in such a way
that the desired effect in the subject domain is achieved.

5.3 Executable Software Specifications

The work in this paper is inspired by our work on Ezecutable Use Cases [14, 16].
Executable Use Cases are an approach to requirements engineering, in which
new work processes and their proposed computer support are represented via
three tiers. Tier 1 consists of traditional UML-style use cases [3, 12], tier 2 is
a formal model (e.g., a CPN model) built from tier 1, and tier 3 is a graphical
animation based on tier 2. An executable use case enables stakeholders to
interactively investigate system requirements in the context of the envisioned
work processes.

This can be generalised to executable software specifications. Instead of
merely having a natural-language use case at tier 1, in executable software
specifications, we can have any given specification for a software system. The
given specification may encompass, e.g., ERDs and statecharts describing as-
sumed and desired behaviour as we saw for the elevator controller. The role of
tier 2, the CPN model, is to be a a coherent and executable description, which
formalise and tie together pieces from tier 1.

If tier 3, a graphical animation, is added, we get support for communication
with clients with a non-technical background, if desired (this is not necessarily
relevant for the elevator controller). In general, tier 3 makes it possible to view
the executable software specification as a context-descriptive prototype [2].

Executable software specifications might candidate to be used in develop-
ment projects tailored from the widely used Rational Unified Process (RUP) [19].
RUP emphasises the use of UML models as key artifacts in software develop-
ment. However, if a deviation from UML is acceptable by the project stake-
holders, creating and executing CPN models fit well in the elaboration phase or
the inception phase of RUP.

5.4 Statecharts and CPN

Relationship between traditional software specifications in the form of various
UML diagrams and CPN are discussed in [5] and [17]. In both these papers,
CPN models are seen as alternatives to UML state machines or statecharts.
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More generally, a number of authors have compared and proposed combined
use of statecharts and various kinds of Petri nets, see, e.g., [4, 20].

For the elevator controller, if we want to use the specification as a basis
for experimentation or prototyping, there seems to be an inherent need to go
beyond behavioural descriptions in the form of statecharts. The reason is that
a key problem that must be a solved by the elevator controller is the scheduling
problem: Given a request, a decision must be made about which of the two
elevator cages that should handle the request.

Wieringa’s specification is not in itself a proper basis for experiments. The
statechart of Fig. 3 models the life cycle of one single elevator cage. In order
to have a basis for specifying and designing scheduling, we need to consider the
two cages at the same time. This is done in the CPN model. The CPN model
can conveniently be used to experiment with and investigate the consequences of
different proposals for scheduling policies. In the current version of the model, as
we saw in Sect. 3.3, any floor request is assigned to a randomly chosen idle cage.
By adding a guard to the transition Allocate Floor Request (see Fig. 5), we
could instantly change the policy so that, e.g., if a request is made on floor
f, and cage c is idle at floor f, then f is assigned to c¢. Other straightforward
scheduling policies could be to ensure that a floor request was assigned to the
nearest cage or to the cage with the shortest request list. We could investigate
consequences of considered changes via simulation.

Another point in the comparison of statecharts and CPN is that CPN’s
extensive state concept is an advantage in the specification of the elevator con-
troller. As an example, it is in CPN very convenient to maintain lists of requests.
Doing so with statecharts is awkward and does not scale well (a similar obser-
vation for another example is reported in [17]).

6 Conclusions and Discussion

It might be possible to base the system engineering argument for the elevator
controller on Wieringa’s specification alone — although Wieringa does not make
the argument himself in [22]. Reconsider the two prerequisites for making the
system engineering argument in Sect. 4.1: that the CPN model is executable
and coherent. We can observe in the first place that with proper tool support,
e.g., the Statemate tool [8], it is straightforward to make the statecharts of
Wieringa’s specification executable. In the second place to make a convincing
system engineering argument seems to assume that the given statecharts can be
seen as a set of interacting and communicating statecharts (Wieringa does not
guide us to do so in [22]). However, if this assumption is true, some description,
e.g., in prose, can be made like: if this action happens in this statechart, then
that action happens in that statechart, etc. (similarly to what we did for the
CPN model in Sect. 4.3)

In comparison, we believe that a system engineering argument based on a
CPN model is relatively simple and reliable. If we in addition keep the general
advantages of CPN in mind, there are certainly benefits obtained by adding a
CPN model to the given specification.

On the other hand, it is still an open question whether these benefits out-
weighs the cost of creating and simulating the model. The alternative we must
compare with is to start implementing the controller based on Wieringa’s specifi-
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cation alone. To investigate which alternative is best would require a substantial
and difficult effort. Moreover, it would be difficult to estimate to which extent
the findings generalise to other similar development projects. However, if we
want to promote the CPN-based approach, we should be ready to address a
number of concerns, some of which we will discuss below.

6.1 Gap Between Model and Implementation

A very general concern often raised when model-based development is discussed
is the inherent gap between an abstract specification or model and a specific
implementation. This gap is the main reason to the current momentum of
the Extreme Programming (XP) [1] approach to software development, with its
principle of not, or only very scarcely, using models.

The CPN model merely is an abstract specification of the elevator controller
in terms of a set of Standard ML functions (and the effect that the specification
has in the subject domain). There is a gap between the specification and an im-
plementation of the controller, both because (1) the CPN model does not cover
all relevant issues that the implementation must eventually deal with, e.g., the
logics in handling of failures of external entities like motors, doors, and sensors;
but also because (2) the CPN model does not deal with the implementation
platform for the controller.

Issue (1) above can be dealt with by more work on the CPN model. Issue
(2), however, is difficult. How to take the step from a CPN model to a real
implementation is a possible subject for future research.

6.2 Size and Quality of Given Specification

The size of the given specification is a factor to take into account if we consider
adding a CPN model. Although it has been demonstrated convincingly that
large CPN models can be built and executed (see, e.g., Vol. 3 of Jensen [13]),
scalability of the applicability of CPN to make the system engineering argument
is a genuine concern.

The elevator controller example is relatively simple, although sufficiently
complex, we believe, to justify making an addition to the given specification
allowing us to tie pieces together, to get an overview, and to provide support
for making the system engineering argument. But what if the given specification
consists of hundreds or thousands of pages? Does it then at all make sense to try
to make a clean, academic system engineering argument? Of course, at least, it
requires that the argument somehow can be made in a modular fashion.

The quality of the given specification is another factor: The given speci-
fication for the elevator controller is of a quality worth to make it part of a
textbook and as such very well worked out, mature, and consistent. This made
it straightforward to build the CPN model. However, this is not the kind of
specifications normally found in real development projects. On the contrary,
real-world specifications often have significant lacks, inconsistencies, flaws, etc.
In such cases though, making a CPN model is a possible means to improve the
quality of the specification (but again, whether it is worthwhile to do depends on
a cost-benefit analysis in each specific project in which the option is considered).
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6.3 Improvement of System Engineering Argument

A subject for future work is to use the elevator controller CPN model to make
not only a system engineering argument, but a possibly more convincing system
engineering proof.

State space analysis [13] may enable a more solid address of the frame con-
cerns than we did in Section 4. Here, we merely argued that for each considered
request, it is possible to bring the CPN model in a state corresponding to the
request being served; we did not argue that this does always happen. Moreover,
we may be able to analyse more advanced behavioural properties than is possi-
ble with simulation, such as fairness properties, e.g., the possibility of requests
being starved. However, if we want to pursue state space analysis, we must
probably do it for a simplified version of the model in which only a few button
pushes are allowed and the building has only a few floors — and even perhaps
there is only one elevator cage. State space analysis is hampered by the state
explosion problem and does not scale well to large problems.

Whether a formal verification of a simplified version of the model or a
simulation-based argumentation of the many button pushes, ten-floor, two-cage
CPN model, which describes the real situation to be dealt with, is the best way
to carry out the system engineering argument is a debatable point.
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Abstract

Two components are compatible if any sequence of operations requested by one of
these components can be provided by the other component. If the set of all requested
sequences is denoted by L and the set of all provided sequences of operations by
Lp, then the two components are compatible if Lr C Lp. This paper uses Petri
nets to model the interface behaviours of interacting components (i.e. the languages
Lr and Lp) and formally defines the composition of components. Compatibility
of components is verified by checking if the composed models contain deadlocks.
Simple examples illustrate the proposed approach.

Keywords : component compatibility, component interfaces, software architecture,
component-based software, Petri nets, deadlock detection

1 Introduction

The difficulties involved in the development of large-scale software architectures are well
documented and, over the years, numerous strategies have been developed to help mit-
igate these difficulties [1]. Object-oriented programming [2] and numerous architectural
description languages [3] have been introduced in order to make the development of
software systems more tractable. During recent years, component based software en-
gineering (CBSE) has been emerging as viable means of software construction whereby
pre-manufactured software substructures with well-defined interfaces are designed and
implemented and subsequently incorporated into larger software systems [4]. While this
approach has met with some degree of success, there remains the problem of determining
compatibility between components.

Classical techniques of determining compatibility have typically focused on compile-
time metrics such as consistency between the numbers and types of method arguments
and on appropriate use of a method return type. While such static checks are clearly
important, they are insufficient in establishing the dynamic or behavioural compatibility
between two software components. For example, it is possible for a server component
to provide methods that exactly match the method requirements of a client component.
However, if the service component imposes a rigid ordering upon the sequence of these
method calls that are not adhered to by the client, it is still possible for the two compo-
nents to exhibit conflicting behaviours. Such conflicts result in component incompatibil-

ity.
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This paper provides the foundation for a formal model of component interaction by
representing component interfaces using Petri nets [5, 6]. Interface compatibility is es-
tablished by determining those interfaces that, when connected, are free of deadlock.
The “requires” and “provides” relationships will be discussed in the context of the inter-
section of formal languages generated by the corresponding Petri nets in a component’s
deployment environment. By treating component behaviour as a language, compatibility
between components is tested and verified.

A model of component interfaces that employs Petri nets and the notion of interface
languages are introduced in Section 2. Section 3 describes the composition of compo-
nent interfaces and provides a formal framework for establishing compatibility between
two components using the Petri net model and deadlock detection. In Section 4, some
examples that demonstrate the model are provided. Finally, Section 5 provides some
applications of the model and discusses future work.

2 Petri Net Component Models

Several attempts have been made to define a component: many of these attempts have
been summarized in [7]. Informally, a component can be thought of as a cohesive logical
unit of abstraction with a well-defined interface that provides services to its environment.
In order to behave correctly, the component would also likely require the services of other
components in its environment. Some attempts have been made to formally define a
component and its behaviour. Such definitions have even made extensive use of Petri
nets [8].

For the purposes of this model, the low-level, internal behaviour of the component
will be disregarded as it is not important in the formalism discussed below. The focus of
attention is on the behaviour at the scope of the components’ interfaces and not the inter-
nal dynamics of the components themselves. While it is certainly true that there may be
an inseparable relationship between a component’s internal behaviour and the dynamics
manifested at the component’s interface, this model will concentrate only upon the inter-
face itself. The relevant behavioural properties that are necessary to ensure compatibility
between components manifest themselves at the components” interface, thereby render-
ing communications that are strictly internal to the component irrelevant for the purposes
of this discussion. Therefore, this proposal is not so much a model of a component as it
is a model of a component’s interface.

2.1 Interface Models

A component’s interface is defined in terms of a labelled Petri net:
M; = (B, T, Ai, Siy iy mi)

In this definition, P; and T; are disjoint sets of places and transitions, respectively, A; C
P, x T; U T; x Pjisasetof directed arcs, S; is an alphabet representing a set of services
which are associated with labelled transitions, ¢; : T; — S; U {€} is a labelling function (e
is the empty label), finally, m; : P, — { 0, 1,... } is the initial marking function. The Petri
net model representing an individual interface must be deadlock-free. Although it is not
necessary for the presented approach, it is assumed that the interfaces are represented
by cyclic nets. A simple example of an appropriately marked and labelled interface is
presented in Figure 1.
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Figure 1: A component interface with services a,b,c and d

Note that a simple loop, using an unlabelled transition, can be introduced in the inter-
face net at the initially marked place. This cycle can represent ancillary processing done
by the component that is not directly related to the interface interaction. This processing
may also involve the component’s eventual termination, if desired.

In any software system, there will naturally be many components and each compo-
nent can have several interfaces. In order to represent communication between compo-
nents, the interfaces are divided into provider interfaces (p-interfaces) and requester inter-
faces (r-interfaces) [9].!

In the context of a provider interface, a labelled transition can be thought of as a ser-
vice provided by that component. Labelled transitions on the provider essentially denote
an entry point into the component. It should be noted that it is possible to have unla-
belled transitions on an interface (denoted by ¢ in the labelling function ¢; above). Such
transitions may be needed to implement behavioural logic of the interface and do not
actually constitute a service.

It is assumed that each service in each p-interface has exactly one labelled represen-
tation, so as to prevent ambiguity in the interaction of the component interfaces:

Vti,t]‘ eT: g(tl) = g(t]‘) =>1; = tj.

The label assigned to a transition represents a service or some unit of behaviour. For
example, the label could conceivably represent a conventional function or method call.
The return type and parameters are all encapsulated or abstracted by the label and are
of no concern to the model as a whole. It will be assumed that if the p-interface requires
parameters from the r-interface, then the appropriate number and types parameters will
be delivered by the r-interface. Similarly, it will be assumed that the p-interface will
generate an appropriate return value to the r-interface, if required.

Another assumption is that if an r-interface requests any arbitrary service a of a
provider component that supports that particular service via its p-interface, then the
provider component will be able to satisfy that service (i.e. the component servicing the
request will not fail due to lack of resources or software faults, for example).

2.2 Interface Languages

Some proposals have restricted interface behaviour by basing the protocol on regular lan-
guages, or modest variations thereof [10]. However, by employing Petri nets, this model
allows for significant flexibility in the protocol language between components, indeed

"Note that this model does not prevent a component from having a provider interact with a requester
interface belonging to the same component. This would be an example of a recursive or feedback component.
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even permitting interface languages recognizable by Turing machines. For example, the
protocol languages could conceivably be context-free, which, in the context of modelling
the behaviour of a relatively simple data structure, such as a stack, could be quite useful.

Possible sequences of services provided by a p-interface are determined by firing se-
quences in the Petri net model of an interface, M; = (P;, T;, A, Si, £;, m;). That is to say,
o = ti t, .. . t;, is an initial firing sequence in M, iff there exists a sequence of markings
Mg, My, - - -, M4, such that ¢;, is enabled (or fireable) by m;, ,, m;, is obtained by firing
ti, inm;, , fori =1,2,...,k, and m;, = m; is the initial marking function of M;. The
set of all initial firing sequences of M; is denoted by F(M;). Formally, the (initial) firing
sequence o is defined as:

t
0 =15t ... Ly, & myg =my; A (V 0<j<k: ti]. S E(mij_l) VAN mi; - mij),

where E(m) is the set of transitions enabled by m.
Finally, the language of M;, denoted by £(M;), is the set of all strings over .S; ob-
tained by labelling complete initial firing sequences:

L(M;)={{l(o)| o€ F(M;) N £(0o) is a complete sequence of operations }

where £(t;, ... t;,) = U(t;,) ... U(t;,). A complete sequence of operations represents a firing
of all relevant transitions involved in a provider/requester interaction. As an exam-
ple, the language associated with the behaviour of the interface presented in Figure 1 is
(a(blc)*d)*. In this case, a complete sequence in a provider/requester interaction would
be any repetition of a sequence which started with a and ended with d and had any
number of intervening b or ¢ operations.

3 Component Composition and Compatibility

Component composition and compatibility assessment using Petri net models is well
established in the literature [11, 12]. Related to this area is the composition and inter-
operability of web services [13] and verification of workflow composition [14]. While
the method presented herein shares concepts with those presented in the literature, es-
pecially with respect to the deadlock-free nature of the composition of compatible nets,
this paper proposes another method of composition and compatibility assessment that is
fundamentally different from those proposed by earlier efforts. In particular, the compo-
sition strategy is based on sharing the labels rather than elements of net models, so the
interface is composed of services rather than messages or message channels. Interface
compatibility is determined by studying the languages generated by the labelled transi-
tions of the provider and requester Petri net interface.

Compeatibility of two components is dictated primarily by the behaviour at their re-
spective interfaces. For two components to interact, the provided and requested services
must be compatible with one another. This means that not only must all the services
required by the requester be made available by the provider, but that the sequence of ser-
vices that the requester demands must be compatible with the sequence that the provider
imposes upon the services being invoked.

This leads to the following definition of compatible interfaces: The interface models of
requester M; and provider M; are compatible iff £L(M;) C L(M;). Observe that this
definition implies that the alphabet S; must be a superset of S;, S; C S;.
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3.1 Composition of Interfaces

Informally, the composition can be modelled by “melding” the r-interface, M;, and p-
interface, M, together into a single Petri net M;; = (P, Tij, Aij, Si, {ij, mij), assuming
PNP =T,NT; = (.2 The composition is denoted by M; > M j with an r-interface as
the left-hand argument and a p-interface as the right-hand argument.

The definition of M;; is based on those transitions in the p-interface and r-interface
that have non-empty labels. Let:

T, = {tETZ’I&(t)#E‘},
Ty = {teTj:4(t) #e}

In the composed net, in addition to the existing places in the two interfaces, three more
places are added for each requested/provided service. One place is added to the r-
interface domain of the resulting net and two places are added to the p-interface domain
of the combined net. The purpose of these three places is to act as synchronization points
between the requester and provider:

Pz‘j:PiUPjU{pti:tiETi}U{p;j,pgj:tjGTj}.

The pairs of places added to the p-interface limit the number of additional places in-
troduced during composition when multiple r-interfaces are allowed to interact with a
single p-interface.

With respect to the transitions, all those transitions in the r-interface that have non-
empty labels are replaced by a pair of transitions which envelop the additional place
introduced in the r-interface domain above:

T'Z‘j:TiUTj—j_‘iU{tg,t;/:tZ'E’fi}.
The new places are connected to the transitions as shown in Figure 2.

Aij = AZ'UA]'—R XTi—ﬁXPiU
{ (pza t;)a (t;7ptz)a (ptzatgl)v (tilapk‘)’ (tivp;])’ (pgjatj)v (tjvpg])a (pg]at;l) :
t; € Tz Ntje T] A\ &(tl) = gj(tj) A (pi,ti) €A N (ti,pk> € A; }
The labelling function of the composed net is defined by combining the labelling func-
tions of the two interfaces:
Zi(t), ift € T;,
VtETij :Eij(t)z ﬁj(t), iftETj,

£, otherwise.

Finally, the composite net has the following marking function which is based upon
the markings of the interface nets of the underlying pair of interacting components:

mi(p), ifpe B,
Vp € Fij :mij(p) = § m;(p), ifpe P,
0, otherwise.

Note that the composition technique described in this section precludes the possi-
bility of value failures since all parameter types and return values associated with each

At should be observed that the condition i # j is not needed because an r-interface cannot be a p-interface.
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Figure 2: Composing component interfaces

service are abstracted by the transition label — the model assumes that traditional static
checking has been performed and that no errors of this nature are possible. Omission
failures are successfully identified because if a service is required by the requester, then
the corresponding service must be offered by the provider, otherwise the two nets can
be immediately deemed to be incompatible. The current model cannot, unfortunately,
handle timing failures, but this may be addressed in the future by employing timed Petri
nets.

3.2 Compatibility Verification

Interface compatibility means that each sequence of service requests (from an r-interface)
is matched by a sequence of identical services in the corresponding p-interface.

Corollary 1
The language of the composition of two interfaces with the same alphabet S, an r-interface M,
and a p-interface M, M; > M, is the intersection of L(M;) and L(M;),

L(M; > Mj) =L(M;)N [,(/\/lj).

The corollary is a straightforward consequence of the definition of interface composition.
In particular, note that the composition technique leaves the structure of both interfaces
essentially intact. The primary difference is that token firing is interleaved over the se-
quence of services of each interface. Ultimately, within the isolated context of each inter-
face, the flow relation remains undisturbed as a result of the composition. Therefore any
string generated by the resulting composition can also be generated by each interface.
Corollary 1 is supported by the following corollary:
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Corollary 2

Let M;; = M; > M and S; = S;. Each firing sequence o; in M; such that {(o;) € L(M;;)
corresponds to a firing sequence ¢; in M,; which is obtained from o; = t;,t;, ... t;, by replacing
each occurrence of each transition t; such that ((t;) # € by a triple of transitions t}, t; and t!
where ((t}) = L(t]) = &, 50 £(0;) = £(F;).

This corollary is another consequence of the definition of interface composition, as shown
in Figure 2.

Theorem 1
Two deadlock-free interfaces with the same alphabet S, an r-interface M, and a p-interface M
are incompatible iff the composition M;; = M; > M; contains a deadlock.

Proof:
An r-interface M; is incompatible with a p-interface M if L(M;) D L(M;).

1. L(M;) D L(M;) = M;; contains a deadlock.

If L(M;) D L(M,), there exists an initial firing sequence & in M; such that ¢(5) ¢
L(M;j). The sequence & cannot be an initial firing sequence in M,;, which means
that it must contain a transition ¢;, which is not enabled in M;;, so ¢ must lead to a
deadlock in M;;.

2. M;; contains a deadlock = L(M;) D L(M;).

By contradiction. The claim is not true, so M;; = M, > M, contains a deadlock
and L(M;) C L(M;). If M;; contains a deadlock, then there exists a finite firing
sequence o = t;,t;, ...t; such that E(my) = 0 where m; > my.. However, in M;,
o can be continued (M; does not contain a deadlock), so the deadlock can be due
only to composition with M, i.e., {(c) ¢ L(M;). This however contradicts the
assumption L(M;) C L(M;).

In summary, the issue of component interface compatibility can be reduced to a prob-
lem of detecting deadlocks in a net that results from the composition of two interfaces. It
is believed that this model can be extended to handle several requesters interacting with
a single provider, possibly through the introduction of coloured Petri nets. Needless to
say, as the number of interacting components increases, the problem of deadlock detec-
tion in the resulting net becomes increasingly difficult. This challenge may be mitigated
by adopting an incremental approach towards interface composition.

4 Examples

This section provides some examples which demonstrate the composition of provider
and requester component interfaces using the construction technique presented in the
previous sections. To demonstrate the concepts, the example of a database client interact-
ing with a database server will be used. The examples will also highlight the importance
of being able to represent interface protocols whose languages are not regular.
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Figure 3: Database requester and provider interfaces

4.1 Database Transactions

As a simple example of the composition of a requester and provider interface modelled
as Petri nets, consider Figure 3 which represents a simple database client (requester) and
a database server (provider).

The first operation or requested service is denoted by a which could represent a
service that opens the database and prepares it for queries, for example. The interface
then requests a sequence of operations in which each operation b is followed by a cor-
responding operation C (these could represent read and write operations to the database,
respectively). Finally, the requester invokes service d which could represent the closing
of the database. The behaviour of the requester interface can therefore be represented by
the regular language (a(bc)*d)*. The provider interface, which represents the database
server, imposes the restriction that the a service must be invoked first followed by any
sequence of b and/or ¢ services, followed finally by the d service. The behaviour of the
database server is therefore denoted by the language (a(b|c)*d)*.

The composition of interfaces shown in Figure 3 results in the net shown in Fig-
ure 4. This composition is achieved by using the construction technique presented in
Section 3.1.

It should be noted that the composition given in Figure 4 enforces the restriction that
the database must be opened by the client (requester) before any operations take place
upon the database server (provider). Similarly, the requester must close the database in
order to satisfy the constraints of the provider. In other words, the net resulting from the
composition will be deadlocked if the requester did not perform the a operation first and
the d operation last, thereby implying that under such circumstances, the two compo-
nents would be incompatible.

As another example of a deadlock situation, consider the case where the p-interface
and r-interface from the previous example are swapped, so the language of the requester
is (a(blc)*d)* and the provider’s language is (a(bc)*d)*, and the two nets are recomposed.
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Figure 4: Composition of database requester and provider interfaces

The resulting net would exhibit deadlock as demonstrated by the composition shown
in Figure 5. This results in a deadlock situation when the requester invokes service ¢
immediately after invoking a but the provider requires that service b be invoked before
service C can be requested. This deadlock demonstrates incompatibility between the two
interfaces. In this case, the language of the requester is a superset of the language of the
provider.

4.2 Database with Nested Transactions

The example discussed in the previous subsection models a “flat-transaction” system in
which open and close pairs do not nest. Client interaction with a database component that
supports nested transactions can also be represented by the model. This highlights the
importance of a model being able to represent the context-free nature of the interaction
between the client and server as each “opening” of a nested transaction must be matched
against a corresponding “closing” of the transaction, which is a behaviour that cannot be
modelled with a regular language.

A requester and provider interface that employ nested database transactions can be
represented by the Petri nets given in Figure 6.> The provider interface keeps track of the
number of opened transactions by accumulating a corresponding number of tokens in its
top-most place. Similarly, the number of tokens in the bottom-most place of the requester
indicate how many transactions have been opened.

These two interfaces can then be composed by applying the composition strategy de-
scribed in Section 3.1. The resulting net, shown in Figure 7 does not exhibit any deadlock,
therefore implying that the the interfaces are indeed compatible.

3Note that in the figure, the requester Petri net prohibits the opening of a new transaction in between the
b service and ¢ service. This can be easily rectified by introducing a new arc from the b transition to the
top-most place in the requester
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Interfaces whose behaviours are much more complicated can also be represented by
the model. Indeed, with the introduction of inhibitor arcs in the Petri net of an inter-
face, any interface protocol whose language is recognizable by a Turing machine can be
modelled by this approach.

5 Applications and Future Work

Currently, work is underway to design and implement software tools to model the in-
terfaces of generic components. These utilities could conceivably be used to model the
dynamic interactions of several components in a theoretical software system. The viabil-
ity of the interface net model in the context of a software system could be tested using
such tools.

Many conventional applications are not overly time dependent with respect the in-
teractions amongst components and modest latencies between component interaction
(whether due to hardware or network limitations) are usually acceptable. However, in
the case of embedded real-time systems, timing issues are of paramount importance. The
model proposed above is insufficient in determining temporal compatibility of two com-
ponents. Fortunately, through the use of timed Petri nets [15], such timing aspects can be
easily added to the model.

Hierarchical composition of components may be represented by the proposed model
by constructing a hierarchy of Petri net interfaces [16]. Instead of acting as peers, in-
terfaces can serve as mediators between different levels of a software hierarchy lead-
ing to both vertical and horizontal communication within a deployed component-based
architecture during compatibility checking. The model presented in this paper is also
amenable to establishing the feasibility of replacing an existing component with a new
component in a hierarchy. This substitutability aspect can serve to make the upgrading of
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Figure 6: Database requester and provider interfaces using nested transactions

existing systems easier and may also help promote reuse in a software architecture [17].

One issue not fully addressed by this paper is how can one construct the Petri net
for an interface when given the corresponding code that implements the interface? Static
analysis of the code can, at the very least enumerate the services provided or requested by
a component’s interface. Static analysis may also reveal, to a limited degree, the sequence
of service invocations. However, to accurately determine the complete set of sequences in
which the services occur, a dynamic approach must be taken during which all branches
of execution must be exercised before a complete Petri net can be deduced.

Another important pragmatic concern that has yet to be resolved is when should the
compatibility check occur. If the compatibility check can be deferred as late as when
the component is deployed into a running environment, then this could allow for the
possibility of a software architecture that can dynamically reconfigure itself, potentially
giving rise to autonomous, self-assembling software systems that exhibit behaviours that
are consistent with a formal requirements specification. Naturally, issues related to state
transfer from an old component to a new component would have to be addressed before
this possibility can become a reality.

6 Concluding Remarks

Determining the degree to which components are compatible with one another is a multi-
faceted problem that, in the general case, requires a comprehensive understanding of
both the static and dynamic nature of the components involved. However, by abstract-
ing away the internal, low-level behaviour of components and concentrating solely upon

127



Requester

Provider

Figure 7: Composition of database requester and provider interfaces using nested trans-
actions

the static and dynamic nature exhibited at their respective interfaces, one can establish
whether or not the two components will be able to communicate effectively. This pa-
per presents a formal strategy for composing two components by integrating the Petri
nets that represent their interfaces into a single net. If the resulting net does not exhibit
deadlock, then the two components are compatible and can function effectively together.

There are several approaches to deadlock detection in Petri nets. The most general
one is based on exhaustive exploration of the state space; deadlock states are states which
have no next states, so they are easily identifiable, but the generation of the entire state
space may exhibit the so-called state-explosion phenomenon, i.e. the number of states
can be an exponential function of some model parameters (e.g. the number of interfaces).
More efficient methods identify deadlocks on the basis of structural properties and, in
particular, siphons and traps [18, 19]. Models of interfaces presented in this paper are
composed of multiple cyclic subnets, it is thus expected that structural methods can be
used for deadlock detection in this context.

Establishing a well defined and formal method for determining the extent to which
two components are able to successfully interact will serve to significantly enhance reuse
of software components in a given software architecture and can contribute to the reliable
evolution of a deployed component-based software system.
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Towards an Aspect-Oriented approach of Multi-Agent
Programming

M. Amiguet*, A. Nagy', J. Baez'.

Abstract

Programming large systems requires to cut them in smaller pieces (modules, ob-
jects, components, agents, ...). In all but trivial cases, choices must be made about
what will be the pieces, and some aspects are inevitably spread out over several parts.
In Object-Oriented Programming, these have been identified as “Crosscutting Con-
cerns”, and Aspects-Oriented Programming is about a re-unification of these transver-
sal aspects of the system. In multi-agent programming, one of these crosscutting
concerns is interaction.

In this paper, we present a multi-agent model that allows to design agents and in-
teraction patterns independently, as first-order objects, and combine them at runtime.
The result is a two-dimensional, orthogonal approach of multi-agent systems.

This model features a very flexible agent architecture due to its componential
nature. It is targeted towards independance of agents and of interaction patterns,
hence increasing their reusability. The model is formalized in an Object-Z/Statechart
mixed formalism, and fully implemented in Java.

1 Introduction

Programming large systems requires to cut them in smaller pieces (modules, objects, com-
ponents, agents, ...). The aims of such a decomposition are, now, obvious. However, in all
but trivial cases, choices must be made about what will be the pieces, and some aspects
are inevitably spread out over several parts.

In Object-Oriented Programming (OOP), these have been identified as “Crosscutting
Concerns”, and Aspect-Oriented Programming (AsOP) is about a re-unification of these
transversal aspects of the system to facilitate its build, maintenance, customizability and
evolution. While the tendency in OOP is to find similarity among classes and push it up
in the inheritance tree, ASOP attempts to realize scattered concerns as first-class elements,
eject them horizontally from the object structure and then offer a way to compose them.

In Agent-Oriented Programming (AgOP), the primary structuration is evidently the
separation into agents. In this case, important crosscutting concerns include interactions.
An “aspect-oriented multi-agent programming” would therefore include the possibility to
design interaction patterns separately from the agents and combine them afterwards (at
design or run time).

Although much work has been done about communication or interaction patterns in
Multi-Agent Systems (MAS), few approaches really allow the programmer to do this. In
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this paper, we will present an approach called MOCA! which is probably the closest existing
approach to an “aspect-oriented multi-agent programming” paradigm.

The rest of this article is organized as follows. Next section discusses the state of the
art of AsOP. Section 3 exposes the main concepts of our architecture and how they are
related. Section 5 introduces related works. And finally section 6 discusses the strength
and weakness of our approach, together with research perspectives.

2 Aspect Oriented Programming

2.1 General Presentation

In software engineering, architecture and design, the separation of concerns became a long-
established principle (many AsOP authors refer to the founding principles expressed by
Parnas and Djikstra) and many techniques as role and pattern-oriented programming, sub-
ject oriented programming, feature-oriented development, co-exist. Among the separation
of concerns directions, the increased interest in Aspect-Oriented Programming techniques
appeared from the remark that important concerns of modern applications are not easily
expressed in a modular way, but often split all-over the code. Aspect-oriented software
development was proposed in order to improve the separation of concerns all along the
life-cycle of software development.

According to IEEE, a concern is "a set of interests which pertain to the system’s
development, its operations and any other aspects that are critical or otherwise important
to any of its stackholders". Generally, a concern can be any property or matter of interest
in a software system. A space of concerns is understood by (Sutton Jr. and Rouvellou,
2002) as an organised set of concerns with their respective relationships. Such a space of
concerns has the following properties:

e it is multi-dimensional, in the sense that multiple concerns of multiple types may
apply to one software unit at a given time. Multi-dimensional separation of concerns
(MDSOC (Ossher and Tarr, 2000)) allows multiple and distinct decompositions of
a system to co-exist as modules, which overlap and carve up the system in various
ways (Elrad et al., 2001a).

e it is highly structured: concerns may be organised by multiple (in)dependent rela-
tionships and they commonly have a hierarchical or lattice-like organisation.

The present section gives a glimpse of the main issues and challenges in AsOP and sets
the basic definitions. Notions as aspects, cross-cutting concerns, decomposition, modular-
ization, join points and weaving are recalled.

Aspect oriented programming deals with a particular type of concerns, the aspects. As-
pects are properties which cannot be encapsulated in a general software unit or - as defined
by (Kiczales et al., 1997) - an aspect is "a modular unit of crosscutting implementation."
Actually, it is the focus on cross-cutting concerns that really distinguishes AsOP from other
separation of concerns methods. Two concerns cross-cut if the methods related to those
concerns - that is methods which contribute to their design, description or implementation
- intersect. One of the difficult issues about cross-cutting concerns is to understand what
cuts across what.

Identifying, separately expressing various aspects of a system and describing their rela-
tionships allow developers to design a system out of orthogonal concerns. AsOP techniques

!Note that the name clash with the name of the present workshop is accidental!
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rely both on this decomposition and on particular mechanism to compose or weave concerns
together in an over-all system.

Orthogonal decompositions are represented as distinct modules, at design time. Aspect-
oriented techniques aim to preserve the design modularity, while representing a given design
structure into a program structure. A software preserves modularity (i.e. independence
of key parameters belonging to distinct modules) if independent parameters in the design
are represented by independent constructs in the program. As indicated in (Sullivan et al.,
2002) one special case where modularity is not preserved "occurs when each of a set of
apparently independent design parameters is represented by a corresponding program con-
struct, but where the representation of some other design parameter is distributed (cuts)
across and is merged into the previous program constructs."

(Sullivan et al., 2002) distinguishes between two situations: when a program structure
can be said to be an aspect, and when a design parameter can be said to be an aspect. (In
this paper we shall see that both these types of aspects coexist in MOCA..)

Other classifications of cross-cutting concerns are

e related to the level implied: high-level notions as the security or the optimization, or
low level notions as caching or buffering;

e functional concerns vs. non-functional (systemic) concerns,
e behaviour concerns vs. structural concerns, etc.

We have seen that the purpose of AsOP is to provide tools for separating components
(objects) and aspects (cross-cutting concerns) from each other.

It implies that AsOP deals with two types of first-order elements: components of the
structural realization of the system (objects, classes, interfaces, etc), on the one hand, and
scattered concerns, whose identification allows them being extracted from the program
structure, on the other hand. Behaviour that would have been spread over the final code is
finally congealed in a single structure, by aggregation of aspects into cross-cutting concerns.

The separation of objects and aspects requires a mechanism to recombine (weave) them
later, into an over-all system. A compiler, called weaver, intertwines the objects (describing
functions requested for system) and aspects (that describe cross-cutting concerns). The
central notion in the weaving process is the one of join points. A join point is generally
an element of the program’s semantics with which aspect elements coordinate; that is
a point where a hook is placed to combine objects and aspects. According to the way
concerns and objects are woven, we distinguish two types of composition: static, when the
composition of concerns is realized at compile time, and dynamic, that is done along the
system’s execution. MOCA relies on a dynamic composition of concerns.

Among of the main problems to develop an aspect-oriented system (Elrad et al., 2001b)
and (Elrad et al., 2001a) mention the following which are relevant for MOCA:

e modularization: the way the AsOP system specifies aspects (aspect description),
defines the join points and the behaviour at join points, etc.

e composition mechanisms (weaving), deciding whether a dominant decomposition ex-
ists or whether the system is based on multidimensional separation of concerns, where
concerns belonging to various dimensions are treated as equals;

e visibility of aspects and conflict mechanisms among aspects

e implementation mechanisms, including - among other features - the decision whether
compositions are determined statically or dynamically
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2.2 Some Important Approaches
2.2.1 Hyper/J

Hyper/J (IBM, 2004) is based on the notion of multi-dimensional separation of concerns
(MDSOC) (Ossher and Tarr, 2000). Its objective is to permit the encapsulation of arbitrary
kind of concerns and the integration of separate ones. This approach allows developers
to decompose their software so it encapsulates all relevant kind (dimensions) of concerns
simultaneously, without more than those necessary and without one dominating the others.
MDSOC also includes composition ability to allow developers to integrate these separate
pieces. A concrete realization of MDSOC for Java is the tool called Hyper/J.

Hyper/J allows a developer to compose a collection of separate models, called hyper-
slices, each encapsulating a concern, by defining and implementing a (partial) class hier-
archy appropriate for that concern. The models typically overlap, and might or might not
cut one another. Each model can be understood independently. Hyper/J doesn’t require a
dominating class hierarchy and doesn’t make any distinction between classes and aspects,
allowing any hyperslice to extend, adapt, and be integrated with another one. Hyperslices
are loosely coupled, since they never refer directly to one another. This point is achieved
through abstract methods: an abstract method in an hyperslice has to be concreted in
another one. The developer can integrate separate hyperslices in an unique Java class.
To do so Hyper/J operates on class files using hypermodule declaration indicating which
hyperslices are to be composed to obtain the final program.

2.2.2 Composition Filter

The filters in the composition filters (CF) (Aksit et al., 1992) model can express crosscutting
concerns by modular and orthogonal enhancements to objects. Modularity, since filters
have well-defined interfaces and are conceptually independent of the implementation of
the object. Orthogonality, since filter specifications do not refer to other filters. Since the
observable behavior of an object is determined by the messages it receives and sends, filters
can express category of concerns such as inheritance and delegation, synchronization, real-
time constraints, and interobject protocols. Filters are attached to objects as enhancement.
A CF class aggregates zero or more internal classes and composes their behavior using one
or more filters, divided in two sets: input and output filters. An internal class may be
again a CF class or it may be a standard one.

Whenever a message arrives at the filter, a matching is initiated. The matching process
primarily involves the targeted (named object) and the selector of the message. If the
matching succeeds, the message is said to be accepted by the filter (and it is sent to the
target), if not, the message is said to be rejected. Some filter types are:

e Dispatch which sends the message to its target if accepted, if not continues with the
next filter;

e FError which sends the message to its target if accepted, if not an exception is raised;

e Meta which sends the message as parameter of a new one to a new target if accepted,
if not continues with the next filter.

2.2.3 Aspect]J

In AspectJ (Kiczales et al., 2001), a join point is the point in the execution flow of a program
when a method is called, and when method returns. Each method call itself is one join
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point. Pointcut designators are used to identify a subset of all the join points in the program
flow. Programmers can define named pointcut designators, and pointcut designators can
identify join points from many different classes, AspectJ also allows specification of a
pointcut in terms of properties of methods rather than their exact name. In AspectlJ,
advice declarations are used to define additional code that runs at join points. Before
advices run before the method begins running. After advices run just after the method
has run. Around advices run when the join point is reached and has explicit control over
whether the method itself is allowed to run at all. Pointcut designators can expose certain
values in the execution context at join points and those values can be used in advice
declarations. Finally, AspectJ is easy to use but the fact that aspects often cannot be
understood without references to their model reduces their reusability.

2.2.4 DJ Library

DJ Library’s aim is to allow Java programmers to experiment with AsOP without having
to learn an extension of Java or to preprocess source files. This library is based on the
idea of adaptive methods (known in (Lieberherr, 1996) as propagation pattern). Such a
method encapsulates the behavior of an operation into one place, avoiding to disseminate
an operation across several classes, but also abstract over the class structure, avoiding
to tangle to much information about the structure of classes. To do this, the behavior
is expressed as a high-level description of how to reach the classes participating in an
operation (a traversal strategy) and what to do when the participants have been reached
(adaptive visitor). The class structure (to traverse) is directly the one used by Java at
run-time: the DJ Library exploits the reflection ability of Java to know it. The join points
are those defined by the traversal of the structure. Then the class structures, the traversal
strategy and the visitors can easily evolve independently. This library is easy to use but
only a limited class of behavioral concerns can be expressed as adaptive methods.

2.3 Overview of Recent Works

Although recent works on aspects are often Java-based, many other languages benefit from
aspectual extensions: C+-+, C# and the .NET framework, Smalltalk, Python, Perl and
Ruby among others (see (The AOSD Steering Committee, 2004) for details). Works are
also done towards an aspect-oriented extension of UML (Clarke and Walker, 2002).
Whatever language is used, one key issue is when and how classes and aspects are
“woven”. Many approaches do this at compile time; however, other possibilities exist:

e Load time weaving. This can be very useful e.g. in situations where one wants to
modify or adapt a third-party library of which one doesn’t have the sources (Kniesel
et al., 2004).

e Run time weaving (also called dynamic weaving). This kind of weaving allows for
dynamic program adaptation to runtime circumstances (Schult and Polze, 2003;
Popovici et al., 2002)

As a general rule, a later weaving is more flexible, but also entails more overhead and
a greater difficulty to ensure correct execution.

Modularity and reusability are two keywords of AsOP. As they also are center concepts
in component-based approaches, it is no wonder to find several works about aspect-oriented
components. (Grundy, 2000) proposes a decomposition in “vertical slices” (components)
and “horizontal slices” (aspects) to improve readability and reusability of code. The Dy-
namic Aspect-Oriented Platform (Pinto et al., 2002) proposes a similar approach including
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runtime weaving of aspects. QCSS (Sassen et al., 2002) proposes a methodology based on
aspects, components and contracts to guarantee functional behaviour, structural properties
and synchronization.

Although AsOP is a relatively new area of research, several applications have been
proposed in very various fields like prefetching in OS development (Coady et al., 2001),
bug tracking (Bodkin, 2003) and Quality of Service (Schantz et al., 2002).

3 MOCA: An Aspect Oriented Multi-Agent Approach

In the context of this workshop, we suppose the reader familiar with general Agent-Oriented
programming concepts and we will directly proceed to the presentation of the MOCA
model. For the sake of clarity, we will provide a presentation in a traditional multi-agent
style and delay the AsOP discussion until the end of the section.

From an Agent-Oriented point of view, MOCA has the following characteristics:

1. It is a dynamic behaviorist organizational model. This means that agents can take
and leave roles at runtime, and that taking a role entails to follow a given behavior.

2. Agents have a componential architecture.

3. Agents can take several roles simultaneously, and a role conflicts management mech-
anism is provided.

4. The model is fully implemented in Java above the MadKit multi-agent platform.

The next section will briefly present MadKit and its underlying model Aalaadin, as
well as their relationships to MOCA. Section 3.2, will then present the main concepts of
the model; sections 3.3 and 3.4 will go into deeper detail. Sections 3.5 and 3.6 will give an

overview of organizational dynamics and role conflicts management. Finally, section 3.7
will discuss links between MOCA and AsOP.

3.1 Aalaadin, MadKit and MOCA

MOCA is based on the Aalaadin methodology (Ferber and Gutknecht, 1998), which in-
cludes two conceptual levels: the concrete level, which includes the notions of agent, group,
and role (only as names for agents in a group), implementing the actual multi-agent struc-
ture; the abstract level describes valid interactions and structures of groups (which we call
organizations). However, the abstract level is methodological: although the concrete level
is fully formalized (Ferber and Gutknecht, 1999), the abstract level is never formalized
nor implemented. In (Hiibner et al., 2002), both levels are formalized but only from a
specification perspective.

MadKit (Ferber et al., 2004) is a multi-agent platform based on the Agent-Group-
Role model (Ferber and Gutknecht, 1998), on which the Aalaadin methodology is targeted
(Ferber and Gutknecht, 1998). The services provided by this platform are of two kinds:
(1) The agent services (Management of messages, Agent life cycle and acquaintances); (ii)
The group services (group creation, entering and leaving, information).

Note that a group is explicitly not a recursive notion in MadKit in the sense that a
group cannot be an agent.

Even if methodologically the groups are thought as instantiations of organizations and
roles are seen as instances of behaviour patterns, this is not implemented in the platform.
In fact, roles and groups are just names for structuring the MAS architecture. In order to
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overcome this limitation, we want to introduce explicitly organization and role descriptions
as first order objects of which groups and roles are instantiations. Therefore, our contri-
bution with MOCA is to propose formalizations for representing the concepts of Aalaadin
and to enrich MadKit with a reification of the abstract level concepts, thus providing a
complete, operational formalism to build multi-agent systems in an organizational-centered
approach (Lemaitre and Excelente, 1998). MOCA is implemented in such a way that any
multi-agent platform providing communicating agents and group structures could be used
in place of MadKit.

Additionally, to ensure orthogonality and hence improve reusability of organizations
and role descriptions, we limit the possible interactions to those that take place inside a
given group. The only opportunity for two different groups to exchange and cooperate
is when some agents participate in both of them at the same time. This last option is
mentioned in the Aalaadin methodology but not currently enforced by MadKit.

3.2 Overview of MOCA Concepts

To describe the organizational structure on the one hand and the multi-agent system on
the other, our model is composed of two different levels: the descriptive or organizational
level and the executive or multi-agent level. Additionally, we distinguish the external
or behaviorist point of view on the system from the internal point of view of the agent.
In the external point of view we observe interacting (through influence) agents achieving
acquaintance structures or groups whose recurrence can be abstracted away as relational
structures forming organizations. In the internal point of view, we describe the agent
architectures classified into agent types (Reactive, deliberative, BDI, etc.) and providing
competences. Role descriptions and their instantiations articulate both by providing at the
same time the recurrent pattern of interactions from an external point of view and the way
it is achieved from an internal point of view, using and relying on agent competences. Most
probably, separating these two aspects would allow further flexibility but have not been
taken into account in MOCA. Figure 1 represents the important concepts for each level
and from each point of view and the correspondence between them. Figure 2 describes the
links between the internal concepts.

Organization Level | Multi-Agent Level
< Organisation Group
o] Relation Acquaintance
0 Influence type Influence
= Role description— | Role |
GE) Competence description ~ Competence
j= Agent type Agent

Figure 1: The concepts of MOCA

Most of the notions of the MAS level exist in MadKit, except for the notions of influence
and competence which will be described further in this section. Our major contribution
from an AgOP point of view is hence the explicit representation of the Organization level.

Agents in MOCA must have a very flexible architecture because of their possibility
to take and leave roles at runtime. To achieve this flexibility, we chose a componential
approach. A full description of the componential aspects of MOCA is out of the scope of
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Figure 2: The internal concepts of MOCA

this paper, but this presentation will introduce the minimal concepts needed for a good
understanding of the model.
In the next subsections, we will describe in detail the notions of figures 1 and 2.

3.3 The Organization Level
3.3.1 Organizations and Relationships

An organization is defined as a recurrent pattern of interactions from a given point of
view (financial exchanges, goods exchanges, ants collective behavior, etc.) and very often
attributed with a rationale (ensure equilibrium, feed the ant colony, etc.). In our case, it
is formalized as a set of role descriptions and relationships between them. Cardinalities
can be specified on both role descriptions and relationships, to describe how many times
they can be instantiated as roles and acquaintances, respectively. Figure 3 pictures an
example of an organization for the FIPA Contract Net protocol (Collective, 2003). There
are two role descriptions in this organization: the initiator and the participant; in a given
instantiation of the organization, there can be only one initiator, but of course several
participants, each of them being possibly in acquaintance with the initiator.

initiator (1)1 n | participant (n)

Figure 3: A simple organization for the Contract Net Protocol

3.3.2 Influence Types

The influence type specifies the kind of interaction a role can receive and generate. In
order to be general, we use the term influence to cover in the same abstraction forces for
physically situated roles, events and up to speech acts (ACL, KQML, etc.) for socially
situated roles (Ferber and Miiller, 1996).

3.3.3 Role Descriptions

A role is defined as a recurrent behavioral pattern within an organization. The role descrip-
tion represents the way this behavioural pattern is generated, being the internal account
of the external pattern. To formalize it, we chose to use a formalism strongly based on
(Hilaire, 2000), which is a combination of Statecharts (Harel, 1987) and Object-Z (Duke
et al., 1991). The formalism is quite intuitive, so we expose it quickly on an example,
without further formal description (for details refer to (Hilaire, 2000)).

Figure 4 pictures a typical role description corresponding to the initiator role of figure
3.
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propositions : P Proposition
chosen : Proposition

req_competences = {send, evaluate, timeout }
prov_competences = {delegate_task}

__delegate_task

generate_event (start)

__add_prop
Apropositions
prop?

propositions' = propositions U prop?

__choose

Achosen

V' p € propositions e evaluate(chosen') > evaluate(p)

__send_answers

V' p € propositions — {chosen} e send(p, reject)
send(chosen, accept)

Figure 4: The initiator role description

This description is based on Hilaire’s framework (Hilaire, 2000), which can be seen in
the inheritance statement of the first line. The heart of the description is of course the
statechart specifying the behavior. Statecharts are an extension of finite state automata
used in UML, with and-or hierarchy of states; hence the dotted line in figure 4 means
that the two halves of the super-state have to run in parallel. Note that we use a slightly
non-standard notation for default states, which are pictured as gray boxes.

Transitions are labeled with three-parts expressions of the form influence[condition]/ac-
tion. This means that the arrival of influence triggers the firing of the transition, which
can take place only if condition holds. If the transition is fired, then action is executed.
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Each part of the expression can be omitted.

Actions can be calls to agent competences (e.g. send); the required competences of the
agent must be listed (variable req competences) in order to check if the agent is able to
take the role. Usually, at least send will be listed there, as it corresponds to the capacity
of sending influences to other agents. Our model also allows for internal methods and
variables, specified in object-Z notation (e.g. add_prop).

An important feature of MOCA roles is that they can also provide competences to the
agent. Thus endorsing a role can give the agent new abilities, permanently or not. For
example, the role described here provides the competence delegate task, which can be used
by another role in the agent to delegate a task to another agent. When this competence is
called, the execution of the role is started (through the generation of the start event).

From a componential point of view, roles are a particular kind of component, and
required and provided competences correspond to its input and output ports, respectively.

3.3.4 Competence Descriptions

The competence descriptions are specifications of the services an agent has to provide in
order to be able to play the role; typical examples are the ability to send and to receive
messages, to compute an offer or evaluate between offers for a contract net. This notion
allows the description of the role at a very abstract level, essentially the management of
interactions.

3.4 The Multi-Agent Level

At the multi-agent level we find the instantiation of the various concepts at the organiza-
tional level.

3.4.1 Groups

A group is an instance of an organization made of agents playing the various roles of the
organization. The only difference from the same notion in MadKit is that this instantiation
is made explicit.

3.4.2 Roles

The role in MadKit is just a name in a group; it is not expected that roles with the
same name in different groups are linked to the same behavior. In our higher abstraction
level, two roles with the same name in two different organizations can produce different
behaviors, but two roles with the same name in two different groups instantiating the same
organization will have the same behavior. Each role in an agent is the instantiation of the
role’s state (automaton state and internal variables) and a reference to the role description.

3.4.3 Acquaintances

The acquaintances of an agent are, as usual, the agents it can communicate with. The
link between acquaintances and relationships is that an agent can be in acquaintance with
another agent if and only if there is at least one relationship between the roles played by
the respective agents.
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3.4.4 Agents, Influences and Competences

An agent is an autonomous entity able to create new groups by instantiating organizations,
to take and to leave roles in existing groups. An agent can play none to many roles at any
given time. The typical execution of an agent includes:

1. Get the influences coming from other agents dispatch them on the different roles.
2. Manage components communication (incl. competence calls).

3. Send the influences emitted by its roles to other agents.

4. Control the execution of its components in order to avoid negative interferences.

5. Manage its components (incl. taking and leaving roles).

The three first tasks are more or less straightforward.

The fourth one is more problematic and will be described in section 3.6.

As for the last task, it is out of the scope of MOCA: the very idea of the approach is to
provide tools that allow an agent to take and leave roles at runtime, but the reason why
he would do so is left to the designer of the system.

3.5 Organizational dynamics

In order to be able to create a group instantiating an organization and to enter and leave
it, we need a mechanism to do so. This is clearly a “meta” level with respect to the
organizational one, but to preserve conceptual homogeneity of our model, we choose to
implement this mechanism as an organization.

The idea is to have a Managing group in the system in which all agents take part?.
The corresponding Managing organization has three role descriptions (RD’s) which are the
YellowPages RD, the Manager RD and the Requester RD.

We are not going to describe the details of the organizational mechanisms in MOCA
(for more details refer to (Amiguet, 2003; Amiguet et al., 2002)), but they allow for group
creation and management without any inter-group communication. However, if we want
our system to be more than a few groups functioning independently, we have to provide a
collaboration mechanism between groups. The way to do this without introducing explicit
inter-group communication is to allow agents to have several roles in different groups at
the same time.

Hence the local coordination of roles inside the agents achieves groups coordination
at the system level. The way roles are coordinated by an agent is of course part of the
agent’s autonomy, but in order to ease the agent’s design we provide a generic and powerful
implicit communication mechanism: we allow roles to provide competences to the agent.
Hence the role executions rely only on agent competences, but the agent has the possibility
to use roles to implement some of them. This allows elegant implicit role communication
inside the agent, but to be effective, it requires a way of dealing with role conflicts.

3.6 Role Conflicts Management

Whenever roles imply a given behavior, the problem arises of roles conflicts; to cope with
that, we introduce the notion of mutual ignorance. A system is said to ensure mutual

%In a large system, it is possible to have several of them to avoid a bottleneck effect.
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ignorance on roles if roles can execute without having to know whether the agent has other
roles running.

In MOCA, mutual ignorance is generalized on components execution and is ensured by
the following mechanism:

1. Whenever a component A calls a competence of component B, A is registered as
a user of B. When A makes its last call to this competence, B will be notified
automatically.

2. Component B has the possibility to accept or reject competence calls. An acceptance
policy must be provided to determine whether B accepts one or several users, or one
“full” user and several “read-only users”, etc.

3. If the call is rejected, A will block the corresponding transition in its statechart. B
will notify A when it is ready again to get calls.

This provides only a very coarse idea of the role conflict mechanism in MOCA (for
more details refer to (Amiguet, 2003)). The result is a mutual exclusion on zones which
are automatically determined at runtime depending on the participating components and
the nature of the involved resource. This mechanism can be proved to ensure mutual
ignorance, and this with minimal exclusion zones (Amiguet, 2003).

3.7 MOCA and AsOP

The MOCA approach allows the programmer to design separately agents on the one hand
and organizations on the other hand, and then combine these elements freely in a running
system.

This is clearly a two-dimensional separation of concerns: agents, as the primary decom-
position, form “vertical slices” and organizations form “horizontal slices”. Orthogonality is
ensured by the two characteristics that agents cannot communicate outside of a group and
groups cannot communicate without a shared agent.

In other terms, in any MAS, interaction protocols crosscut over agents. MOCA allows
them to be represented as unified aspects, called organizations.

This is the main contribution of MOCA towards an Aspect-Oriented Agent Program-
ming. However, the treatment of other (crosscutting) concerns can also be simplified with
this approach: see (Ferber and Gutknecht, 1998) for a reflexion about how MadKit-based
approaches enhance security and (Amiguet, 2003) for perspectives on formal validation of
MOCA-based systems.

From a pure AsOP perspective, MOCA has the outstanding characteristic that it offers
runtime weaving of aspects including a mechanism to resolve conflicts.

4 Example of Use

This architecture has been tested on a number of examples among them the famous
prey/predator benchmark (Miiller et al., 2001) and a foot-and-mouth epidemic simula-
tion. This last example was first proposed by (Durand, 1996), and was restated in a
somewhat simplified formulation by (Hilaire, 2000). We have based our experiment on
Hilaire’s model.

Figure 5 pictures the structure of the system, which consists of three agent types
and two organizations. The meaning of the Stockbreeder and Livestock agent types is
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straightforward; note that the Disease has also been reified as an agent. We now quickly
describe the two organizations:

Disease Organization

Production Organization Medical Follow-u Contaminant Sit|
Herd Manageme]:l—l Production

[Anademy]

Agent types

[Stockbreeddr [CivestocK [Diseasé¢

Figure 5: The foot-and-mouth epidemic example

The Production Organization is composed of two roles: the Herd Management role is
responsible for selling animals, and moving them to grass-land in spring and back to
stalls in fall. The Production role is responsible for simulating the birth of calves.

The Disease Organization is composed of three roles: the Medical Follow-up role is
responsible for detecting the presence of the disease and initiating a treatment; The
Contaminant Site role deals with the effect of the treatment and the Anademy role
simulates contagion and healing.

A more complete description of this simulation, including the full specification of the roles,
can be found in (Hilaire, 2000).

Figure 6 pictures the result of the simulation: the number of sick animals increases in
winter, because they are located in stalls, were contamination rate is high; it decreases in
summer when the animals are outside. The total number of cows varies as a result of the
births and selling. Our results are very similar to those of (Hilaire, 2000) and could be
obtained with a low cost in term of development time.

5 Related works

As noted in (Garcia et al., 2002), software engineering approaches for MAS development
fall in two categories: (i) agent-based software engineering, and (ii) object-oriented software
engineering for agent systems. Both can take advantage of aspect-oriented approaches.

(Garcia et al., 2002) is an example of an aspectual approach of the second category,
where aspects are used to modularize agent capacities and properties. Note that the aspects
usually don’t cut across agents; the approach is therefore quite similar to coarse-grained
component-based approaches like Voyelles (Ricordel, 2001).

MOCA falls into the first category. We don’t know of any other agent-based SE ap-
proach explicitly referring to AsOP; however, several organization-based works bear some
similarities with our proposal.

As in MOCA, the focus of (Durand, 1996), Aalaadin (Ferber and Gutknecht, 1998),
(Ferber and Gutknecht, 1999), Opera (Dury, 2000), the model of (Hilaire, 2000), MOiSE+
(Hiibner et al., 2002), Gaia (Wooldridge et al., 2000), and other related models is on
the organizational structure of a multi-agent system, as well as on the study of agents’
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Figure 6: The results of the simulation

behaviour induced by this structure. (Unlike in MOCA, social dynamics is missing in
several of these models).

The works on Aalaadin (Gutknecht, 2001) and MadKit (www.madkit.org) are based
on the Agent-Group-Role model which allows for a structuration of the MAS in levels and
for an organizational dynamics, while considering concerns as security, heterogeneity of
agents and reusability. However, roles in Aalaadin are not given a behavioural content and
the notions of organisation and group are abstract concepts. Cassiopee (Collinot et al.,
1996) relies on the expression of both collective behaviours and elementary behaviours of
agents. It follows that the behavioural dimension is strongly present, but the model has no
structuration in levels and no reified organizational concepts. MOCA inherits equally from
Hilaire’s Object-Z /statechart model (Hilaire, 2000), employed to represent behaviours asso-
ciated to roles, which allows for the abstraction and formalization of collective behaviours.
While Hilaire’s model covers the design and test of organizational structures, it neither
covers the conceptual dimension, nor allows for organizational dynamics or conflict man-
agement for multiple role endorsement. Opera (Dury, 2000) is built around a specification
of interactions, which is revisited within the Role description concept of MOCA. However,
MOCA allows for richer behaviours associated to roles, and for a finer management of role
conflicts within an agent.

In (Wooldridge et al., 2000, and related papers) Gaia represents an organizational
methodology for agent-oriented analysis and design, which bears some similarities with
MOCA, as it is based onto two abstract models - a “mixed” role model and an interaction
model. While Gaia is a valuable methodology for Agent-Oriented Software Engeneering,
organizational concepts are present only at design phase while nothing is said about multi-
organizational systems and multiple role endorsement.

In MOISE + (Hiibner et al., 2002; Hiibner, 2003), whose initial purpose was to reconcile
organizational and global-plan centered models, three dimensions are used to describe a
MAS: the structure expressed through roles and groups, the functioning (global plans and
tasks) and deontic relations or other norms (agents’ obligations, norms, responsibilities,
permissions etc.) The structural dimension is centered on three main concepts - roles, role
relations and groups - which are employed to build the individual, social, and collective
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structural levels of an organization. MOISE + doesn’t rely on a behavioural definition of
roles, but sees a role as a set of constraints that an agent ought to follow when it accepts
to enter a group. The constraints imposed by the role are defined in relation to other
roles (in the collective structural level) and in relation to global plans. the social level is
used to specify relations between roles, that is links used to constrain agents after they
have accepted to play a role. The collective level imposes some constraints regarding the
roles an agent can play at the same time. The functional dimension describes the way
global goals are decomposed by plans and distributed to the agents by missions. This
decomposition supposes, at collective level, a global plan decomposed as a social schema
and, at individual level, missions an agent may commit to. Deontic dimension relates the
structural and functional dimensions. The functional and deontic dimensions insure an
organizational dynamics. Besides the attribution of behaviours to roles, the reification of
the notions of organization and role, MOCA relies on other choices different from MOISE
+: on a specification of roles in the organizational structure (lack of inheritance) and on the
fact that role endorsement is not only multiple but equally a matter of agents’ autonomy,
as driven by agents’ internal goals.

6 Conclusion

In allowing the programmer to design organizations and agents independently, the MOCA
model can be seen as an Aspect-Oriented approach of agent-oriented software design. From
this point of view, agents form “vertical slices” and groups “horizontal slices” in the MAS.
MOCA enforces a complete orthogonality of these slices, thus allowing to develop very
reusable modules (both agents and organizations).

For the time being, MOCA has only been tested on relatively small systems (Amiguet,
2003; Amiguet et al., 2002). One important perspective is therefore larger scale testing.
As MOCA is planned to be included in the next version of MadKit, this will probably
encourage its use on larger-scale systems.

The current implementation, though functional, is more a proof of the concept than
a production-ready platform (due, among others, to its heavy use of Java reflection). A
reimplementation is in work as a part of the MIMOSA project (Collective, 2004) that
should result in a more efficient and user-friendly platform.

Objects, components and agents provide very powerful structuring paradigms for build-
ing software systems. However, a stronger structuration also implies a stronger splitting
of some concerns over the different parts of the system. It is therefore necessary to explore
ways of dealing with these crosscutting concerns to keep them under control. MOCA is
an attempt to provide solutions to some of the problems occurring along this way. Even
if this model is far from perfect, we think that multi-agent programming could benefit a
lot from a deeper understanding of AsOP techniques. Along the way, techniques could
be developed (like, MOCA’s conflicts management mechanism) that are of interest to the
AsOP community.
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Abstract

The development of modern distributed applications is stretching the limits in term of de-
sign complexity and manageability. In order to develop reliable distributed applications new
tools and methods must be developed. We propose a solution based on a modeling language
LfP and and associated development methodology. This paper shortly presents our general
methodology and the LfP language. It then focuses on formal verification of LfP specifica-
tions.

1 Introduction

The rapid advance of distributed technology has lead to systems stretching limits in terms of
complexity and manageability [11]. This problem is crucial for reliable distributed systems
which are required to have a deterministic behavior. To solve these development problems, it
is of interest to consider development model based development approach [4].

Such an approach distinguishes two strong components [9]:
e a model on which any type of validation or verification techniques may be applied,
o the programs that implement this model and which are generated from it.

Such approaches become widely accepted under various names. As an example, MDA
[13] (Model Driven Architecture) may be considered as a similar approach.

A distributed application is made of two orthogonal aspects: the control aspect, and the
computational aspect. The control aspect manages the global state of the application whereas

*The work presented in this paper is being performed within the MORSE project. MORSE is a French government
founded research project (RNTL) with industrial partners (Sagem, Aonix) and academic partners (LIP6 - Univ. P. & M.
Curie, LaBRI - Univ. Bordeaux I).
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the computational aspect covers the domain specific computational components. Model-
Based development is of particular interest for distributed systems for two main reasons. First,
they are very difficult to develop since they are very undeterministic ; thus, some apparently
minor choices may have dramatic influences on the system behavior. Second, control aspects
(the difficult part to build) strongly interact with both the execution environment and compu-
tational aspects, these interactions have to be carefully studied to avoid unexpected behaviors.

In that context, formal methods are of particular interest since they allow to prove the
system using model checking techniques for example. However, [12] demonstrated that a
major problem for the use of formal methods is the large education required by engineers to
use them. The idea is then to encapsulate them using “more common” languages for which
no particular (or less) training is required. As an example, a similar approach is used in
BLAST [6] that allows the use of C programs as inputs for model checking.

We have designed LfP (Language for Prototyping) [14], a formal notation dedicated to the
specification, verification and code generation of distributed systems. LfP aims at providing
a high level notation that fits the needs for describing the control part of a distributed system
in a way that makes it usable for engineers. A first experience for verification from LfP
specifications is described in [10] and [15]; it is based on a Petri net generated from the LfP
specification for verification purposes.

This paper presents direct model checking on LfP specifications; which means that model
checking is performed on the LfP specification instead of the corresponding Petri net like
in [10, 15]. The symbolic model checker presented here is based on DDD (Data Decision
Diagrams) that are an extension of BDD for discrete types [3]. We explain how we represent
an LfP state using DDDs and the mechanisms we use to perform the state exploration. The
key issues related to the formal verification of LfP specifications are related to the dynamic
aspects of this language such as processes creation, RPC mechanisms, addressing, etc.

Section 2, briefly presents the overall methodology. We then present LfP in section 3 and
finally detail in section 4 why DDD are well suited to represent LfP programs, our coding
technique of LfP programs as well as issues and problems raised in this study.

2 Object Oriented Methodology

We propose a methodology to handle the specific issues of distributed applications. Its goal is
to help the designer to achieve the development of a distributed application.

Computational
aspect

High level

Specification

External

-

Components

Formal model \/

Generation

Forma.l DISTR
Analysis E—

Code Generation

Figure 1: Development methodology associated to LfP

As shown on figure 1, our methodology relies on the separation between the control as-
pect and the data computation aspect in distributed systems. The control aspect handles the
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distribution of the application over the network, and the interaction protocols between the
components of an application. The data computation aspect handles the domain specific cal-
culus required to produce the results.

Our methodology starts with a high level description of the application written in UML.
This specification should outline the interaction between the computational aspect and the
control aspect of the system. We focus on the modelling of the control aspect since it is related
to the specific issues identified in the development of distributed applications. Therefore,
this control aspect of the specification is translated into LfP a formal language specifically
designed to model distributed applications control aspect.

The interactions between the control aspect and the computational aspect are modeled
using constructions of the LfP language very similar to private types defined in the Ada lan-
guage [7].

The formal model obtained from the specification can then be formally checked against
its requirements. State properties can be stated in the UML description in OCL, but properties
which involve series of actions must be stated in temporal logic directly on the LfP specifi-
cation. Formal verification of LfP specifications is the heart of this paper and will be fully
described in section 4.

Once the model meets all its requirements, we provide a code generator for the LfP lan-
guage. Automatic code generation translates the LfP semantics to provide an effective imple-
mentation of the specification and ensures the correctness of the implementation. It uses the
description of the interactions between the control and the computational aspects to link the
generated code to the external components. The underlying mechanism of code generation
from an LfP model have been discussed in [5].

3 The LfP language

This section will present the LfP language through a simple client / server example. We show
that LfP provides the appropriate abstractions to model interactions between components of
an application.

server

T client
han M_roquost(num:OhutOhtogor) |

RPC

Figure 2: Simplified class diagram of the client server example

Let us first introduce our example with the simplified UML class diagram of figure 2 that
shows the main model components. The client calls method handle_request on the server
through a Remote Procedure Call implemented by the RPC interaction class. The server then
returns a value through the in out parameter of this method. We will now present the LfP
model corresponding to this system. First we will focus on the static description, then on the
dynamic behavior of the components.

3.1 Static structure of the model

The static structure of an LfP model is described with an architecture diagram. Figure 3
shows the architecture diagram corresponding to the class diagram of figure 2. The main
elements of the class diagram appear on the architecture diagram:

e interaction classes are translated into LfP media which are components that define the
low level interaction protocol between the application components;

e classes of the model are translated into LfP classes which implements the control as-
pects in application components.
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type simple_port is port (integer); c1 : client with (id => 1) ;
c2 : client with (id => 2) ;

i

o=

s1 : server with () ; c3 : client with (id => 3) ;
s2 : server with () ; c4 : client with (id => 4) ;
all 1
S a0
server.itf Client.itf
6 8
fifo fifo

Figure 3: Architecture diagram of the client / server example

In order to link the components and define the message queues of the application, the
architecure diagram introduces binders to link the classes and media of the model. They for-
malize the message transmission between the components of the model. They are referenced
in the components with variables of type port identified in the binder’s binding attribute.
These variables are of type simple_port defined in the diagram’s definitions.

The architecture diagram also defines the static instances of the model: two instances of
server and four instances of client are created on application start up. Each instance of the
client has one of its attribute initialized with a value that identifies it.

On this specific architecture diagram, the binder that relates RPC to clients has multiplicity
1, there is one binder instance for each instance of class client. The binder that relates RPC
to Server has mutiplicity all which means that the binder is shared by all the instances of
the class. A message in this binder may be read and handled by any server.

3.2 Dynamic behavior of model components

The dynamic behavior of the components is defined by their behavioral diagrams. This is an
automaton that defines the actions performed by the LfP component in response to an event.

3.2.1 The RPC media

This media is in charge to implement the “Remote Procedure Call” protocol between the client
and the server, it is shown on figure 4. This means that the media must send the message
provided by the client to the server, read the return message from the server and send it to the
client.

[id1=id2]
msg : message; &input [id1] :msg; &target :msg; &target[id2] :msg; &input:msg;
input : simple_port;
target : simple_port;
id1, id2 : integer;

Figure 4: Behavioral diagram of media RPC

The media is related to client by input and to the server by target; both ports must be
initialized by the component that creates the instance of RPC.

The first transition of the media reads a message on its input port and stores the discrimi-
nant in idl. This discriminant should identify the component that sent the message. Then the
message puts the message in the target port.

The media then reads a message from the target port and only accepts it if its discriminant
is equal to id1, that is if it was sent by the component that has sent the request. Finally the
return message is sent back to the client, the media jumps to its initial state and is ready to
handle a new message.
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3.2.2 The client class

This class implements the client side of the system and is displayed on figure 5. This class
first creates an instance of the RPC media to handle its communication with the server. Then
it starts a loop that calls method handle_request. This means that a message requesting the
execution of the method is put in the port itf, with a discriminant that contains the identifier
of the client instance. The transition that contains this instruction is a call transition which
also waits for the method’s return message which updates the value of parameter 1.

i : integer := 0 ;
id : integer ;
itf : simple port ; link := rpc(target => Server.itf,
link : rpc ; input => itf)
[i>5] [i<=5] &itf [id] :handle_request (i);

Figure 5: Behavioral diagram of class client

When the value of i becomes greater than five, the loops ends and the client finishes its
execution.

3.2.3 The server class

The class server handles the request. Its main diagram is displayed on figure 6(a). When
instanciated, a server keeps waiting for the activation of method handle_request. The be-
havior of this method is displayed on figure 6(b). It is activated by the arrival of an activation
message on port itf which is the shared binder between the RPC media and the server class
on the architecture diagram of figure 3.

itf : simple_port ;
procedure handle_request (num - inout integer) ; procedure handle_request (num : inout integer) is end;

&itf; num:=integer'succ (num) ;
.thandle_request o ,E >O—> |—,©

(a) main diagram of the class (b) behavioral diagram of method
handle_request

Figure 6: Behavioral diagrams of class server

The method simply increases the value of its actual parameter and returns. Since the
parameter mode is inout, the new value is sent through a return message to the caller. This
message is implicitly sent on the method’s activation port when the method returns. Since the
discriminant of the return message is not specified, the discriminant of the activation message
is used. In this case, it means that the discriminant of the return message contains the identifier
of the client that sent the request.

4 Formal Verification

The verification of embedded distributed applications expressed in LfP covers a large num-
ber of properties. The verification process reduces to computing the reachability set of the
program, which is the set of all possible states, and then evaluate assertions on the obtained
set.
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A data structure capable of representing large number of states must enable efficient op-
erations such as equality test, set-theoretic operations, LfP specific operations, as well as a
compact representation in memory.

We illustrate with a simple example a verification approach methodology based on the use
of DDD (Data Decision Diagrams) for the symbolic computation of reachable states.

The first section introduces the DDD.

Section 2,3,4 successively describe the steps used for producing a verification program
from an LfP specification:

e deriving an adequate model for verification purpose,
e computation of the reachable states,
e evaluation of assertions on the reachability set.

These steps are illustrated with the verification of the simple client/server application.

4.1 The Data Decision Diagrams (DDD)

The purpose of this paper is not to provide a complete definition of the DDD structure. Theo-
retical aspects of DDD are addressed in [3].

Data Decision Diagrams (DDDs) are concise data structures for representing finite sets
of assignment sequences of the form (e := x1;ep 1= x2;---;e, := Xx,,) Where e¢; are variables
and x; are values. When an ordering on the variables is fixed and the variables are boolean,
DDDs coincides with the well-know Binary Decision Diagrams [1, 2]. If an ordering on
the variables is the only assumption, DDDs are the specialized version of the Multi-valued
Decision Diagrams representing characteristic function of sets. For Data Decision Diagram,
we assume no variable ordering and, even more, the same variable may occur many times in an
assignment sequence, allowing the representation of dynamic structures: for a stack variable
a, the sequence of assignments (a := x;a := xp;---;a := x,) may represent the stack content
X1X2 " Xp.

Figure 7: Two Data Decision Diagrams.

Traditionally, decision diagrams are often encoded as decision trees. Internal nodes are
labeled with variables, arcs with values (of the adequate type) and leaves with either O or 1.
Figure 7, left-hand side, shows the decision tree for the set S = {(a:= 1;a:=1),(a:= l;a:=
2;b:=0),(a:=2;b:=3)} of assignment sequences. As usual, 1-leaves stand for accepting
terminators and O-leaves for non-accepting terminators. Since there is no assumption on the
cardinality of the variable domains, we consider O as the default value. Therefore O-leaves are
not depicted in figure 7.

Unfortunately, any finite set of assignment sequences cannot be represented. Thus, we
introduce a new kind of leaf label: T for undefined. Intuitively, T represents any finite set
of assignment sequences. Figure 7, right-hand side, gives an approximation of the set SU
{(a:=2;a:=3)}. Indeed, an ambiguity is introduced since after the assignment a := 2, two
assignments have to be represented: a := 3 and b := 3. These two assignments affect two
distinct variables so they can not be represented, as two distinct arcs outgoing from the same

154



node cannot be labeled with the same value (in other words, non-determinism is not authorized
in the decision tree).

However, since our verification approach only considers well formed assignments se-
quences with no compatibility issues regarding operations, we will consider T leafs as the
result of an error in the state set computation. We now give an overview of DDDs, for a more
formal and detailed presentation including theoretical aspects regarding T, we refer the reader
to [3].

4.1.1 Syntax and semantics of DDDs

In the following, E denotes a set of variables, and for any e in E, Dom(e) represents the
domain of e.

Definition 1 (Data Decision Diagram) The set ID of DDDs is inductively defined by d € 1D
e de{0,1,T}or
o d=(e,0) with:
—eck
- o.:Dom(e) — ID, such that {x € Dom(e) | o(x) # 0} is finite.

We denote e —— d, the DDD (e, o) with ai(z) = d and a(x) = 0 for all x # z.

Intuitively, a DDD can be seen as atree. DDDs 0, 1 and T are leaves, and a DDD of the form
(e,0) is a tree whose root is labeled with variable e, and with an outgoing arc labeled with x
to a subtree ai(x) foreach value x € Dom(e). From a practical point of view, as non-accepting
branches (i.e. branches ending with a 0-leaf) are not encoded, the “finite support” condition for
a ensures that DDDs can be implemented (even when variables range over infinite domains).

The meaning [[d]] of a DDD d is a set of finite sets of assignment sequences. In particular,
[T] is the (infinite) set of all finite sets of asssignment sequences. When T does not appear
in a DDD, the DDD represents a unique finite set of assignment sequences (i.e. its meaning is
a singleton). Hence, such a DDD yields an exact (non approximate) representation and it is
called well-defined.

The unique set in the meaning of a well-defined DDD d is the set of assignment sequences
corresponding to accepting branches (i.e. branches ending with a 1-leaf) in the tree repre-
sentation of d. In particular, we have [[0]] = {0} and [[1]] = {{()}} (where () is the empty
sequence of assignments).

Equivalence checking for DDDs is crucial when DDDs are used to represent sets of states.
Fortunately, DDDs admit canonical forms so that equivalence checking for DDDs in canonical
form reduces to (syntactic) equality.

Intuitively, from the tree representation point of view, the canonical form of a DDD is
obtained by replacing with O all sub-trees that have only 0-leaves and by sharing all subtrees
which are equivalent. Two DDDs in canonical form are equivalent if and only if they are equal.
Moreover, every DDD is equivalent to a DDD in canonical form.

In the following, we only consider DDDs that are in canonical form.

4.1.2 Operations on DDDs

First, we generalize the usual set-theoretic operations — sum (union), product (intersection)
and difference — to finite sets of assignment sequences expressed in terms of DDDs. The
crucial point of this generalization is that all DDDs are not well-defined and furthermore that
the result of an operation on two well-defined DDDs is not necessarily well-defined. The sum
+, the product * and the difference \ of two DDDs are inductively defined in the following
tables. In these tables, for any o € {+,*,\}, ot; ¢ oz stands for the mapping in Dom(e;) — ID
defined by (0t o a2)(x) = o (x) © a2 (x) for all x € Dom(ey ).
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| (e2,00)
(€2,000)
T
T

(er,o+0n) ife;=en
(er,01) || (er,0u) T ife;#er

— [ =[=[~
— | =]

| (e2,00) |
0
0
T
(e],Oh *062) ife] =e)
(er,au) 0 ifey#ep

o |o|lolo|lo
S | ==
— || H

| (e2,00) |
0
1
T
(e],Oh \062) ife1 =e)
(e],Oh) ife1 7562

These set-theoretic operations on DDDs actually produce the best possible approximation
of the result. More precisely, if d and d’ are two DDDs, then the sum d +d’ (resp. the
product d x d’, the difference d \ d’) is the “best defined” DDD whose meaning contains the set
{SUS’'|S€[d] and S’ € [[d']} (resp. the set {SNS’|S € [d], S’ € [d']|}, the set {S\S'|S € [d]
and S’ € [d']}).

The concatenation operator defined below corresponds to the concatenation of language
theory.

0
0
1

=

EE=lE=]E

~ ||| o[

(er,00) || (er,0u) | (er,0u)

0 ifd=0vd =0
d ifd=1
! _
d-d =9 1 ifd=TAd #0

(e,o-d") ifd= (e, )
Notice that any DDD may be defined using constants 0, 1, T, the elementary concatenation

e—*.d and operator +, as shown in the following example.

Example 1 Let ds be the DDD represented in left-hand side of Fig. 7, and dp the right-hand
side one.

da al (a1 +a 2 %1 ) +a2p 301

ds = a's(a1+a2b%1)+a 2T

Let us now detail some computations:

dA+ai>ai>1 = a (a1 +a2p %0 +ai>(bi>1+ai>l)
= a(al1+a 20 %) +a 2T
= dp
(agl)l*aiﬂ)*T = O*T:O#a%l*(ail*T):aLI*T:T
di\ds = a2 (b\T)=a 2T

dg-c-2,1 ats (atse 251+ aib&ciﬂ) +a-2T
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4.1.3 Homomorphisms on DDDs

In order to iteratively compute the reachability set of an LfP program, we need to translate
LfP instructions into DDD operations. These complex operations on DDDs are described
by homomorphisms. Basically, an homomorphism is any mapping & : ID — ID such that
®(0) = 0 and such that ®(d;) + P(d») is better defined than ®(d; + d») for every d;,d € ID.
The sum and the composition of two homomorphisms are homomorphisms.

So far, we have at one’s disposal the homomorphism d * Id which allows to select the se-
quences belonging to the given DDD d; on the other hand we may also remove these given
sequences, thanks to the homomorphism Id \ d. The two other interesting homomorphisms
Id-d and d - 1d permit to concatenate sequences on the left or on the right side. For instance,
a widely used left concatenation consists in adding a variable assignment e; = x; that is de-
noted e; X,1d. Of course, we may combine these homomorphisms using the sum and the
composition.

However, the expressive power of this homomorphism family is limited; for instance we
cannot express a mapping which modifies the assignment of a given variable. A first step
to allow user-defined homomorphism @ is to give the value of ®(1) and of ®(e-*.d) for
any e—d. The key idea is to define ®(e,at) as ¥ yepom(e) Ple—-0(x)) and ®(T) =T. A
sufficient condition for @ being an homomorphism is that the mappings ®(e,x) defined as
®(e,x)(d) = d(e—*-d) are themselves homomorphisms. For instance, inc(e,x) = e*L1d
and inc(1) = 1 defines the homomorphism which increments the value of the first variable. A
second step introduces induction in the description of the homomorphism. For instance, one
may generalize the increment operation to the homomorphism inc(e; ), which increments the
value of the given variable e;. A possible approach is to set inc(e1)(e,x) = e**L1d whenever
e = e; and otherwise inc(e;)(e,x) = e—1sinc(e;). Indeed, if the first variable is ej, then
the homomorphism increments the values of the variable, otherwise the homomorphism is
inductively applied to the next variables.

The formal definition of inductive homomorphisms can be found in [3]. The two following
examples illustrate the usefulness of these homomorphisms to design new operators on DDD.
The first example formalizes the increment operation. The second example is a swap operation
between two variables. It gives a good idea of the techniques used to design homomorphisms
for some variants of Petri net analysis.

Example 2 This is the formal description of increment operation:

x+1 o
inc(en)(ex) = § ¢ M Te=e

e —inc(e;) otherwise
incler)(1) = 1

Let us now detail the application of inc over a simple DDD:

inc(b)(a—sb2c3.d2.1) = alsine(b)(b—2c2od-2,1)
= ab 3 0d(c2.d-40)

= a 1_,b_>3 c_>3 d—>4 1

Example 3 The homomorphism swap(ey,ez) swaps the values of variables e| and e). It is
designed using three other kinds of homomorphisms: rename(e1), down(ey,x1), up(ey,x1).
The homomorphism rename(e1) renames the first variable into e; down(ey,x1) sets the vari-
able ey to x| and copies the old assignment of e; in the first position; up(e1,x1) puts in the
second position the assignment e] = x.
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rename(ey) odown(ez,x) ife=e;

swap(ey,e2)(e,x) = rename(ey) odown(ey,x) ife=en
e — swap(ey,ez) otherwise
swap(er,ez)(1) - T
rename(e;)(e,x) = e 1
rename(ey)(1) = T
X X1 .

Id ife=e

d _ e—e— 1
own(er,x1)(e,%) { up(e,x) odown(ey,x1)  otherwise

down(ey,x1)(1) = T
up(er,x)(ex) = e—el—1d
up(ey,x1)(1) = T

Let us now detail the application of swap over a simple DDD which enlights the role of the
inductive homomorphisms:

a—Lswap(b,d)(b—2c2d 2.1)

swap(b,d)(a—b2c3d 2.1) ,d)
= a—Yrename(b) o down(d,2)(c—>-d—*,1)
a—Lrename(b) o up(c,3) o down(d,2)(d 1)
a—Lrename(b) oup(c 3) (d—»d—»l)

a—Lrename(b)(d—2,c3,d2.1)

a—>bi>c—>di>l

One may remark that swap(b,e)(a——b_2,c>.d 2,1y =a_ LT,

Basically, the DDD data structure provides a compact encoding and a usage of memory
similar to the BDD (Binary Decision Diagram). The operations calls and their results are
stored in an operation cache. Data are stored in a unicity table based on a hash table. A canon-
ical representation of the states allows for efficient comparison of diagrams. Set-theoretic
operations are defined and families of inductive homomorphisms representing the operations
of the LfP language can be user defined. The DDD structure meets both the requirement of
efficiency and compacity.

4.2 Deriving an adequate model for verification purpose

The direct computation of reachable states from the initial model may be impossible in many
cases. The combinatory explosion can have different origins: inherent complexity of the
problem, level of detail of the model, size of the model, concurrency.

One main difficulty is to evaluate the complexity of the model and identify modifications
in order to enable reachability set computation. Different models may have to be derived in
accordance to the properties to be verified.

We distinguish two ways of making changes to the model: quantitative and qualitative
modifications. The only purpose of these modification is to focus on the search of potential
problems.

4.2.1 Quantitative alteration

The quantitatives modifications often lead to a redimensionning of data. Such modifications
are easy to achieve if the size of components are clearly visible in the design. The choice is
guided by the effect of the change on the complexity and by considering the symmetries of
the system. It may also permit to study different phases in the execution of the model, for
instance initialisation, termination.
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Example 4 For instance, the simple model presented in this article depicts a client/server
application composed of 4 clients communicating with 2 servers. Each client invokes 5 times
a service that increment of 1 a parameter value. The service is supported by both servers, any
available server can execute the service.

Ifwe call F(M, S, C) the number of possibles sequences of M messages by C clients to S
server, a preliminary complexity analysis gives:

F(M,1,C) =F(M,1,(C—1))*(((C—1)*M+1)M)

SF(M,1,(C—1))*(((C—1)xM)M)
SE(M,1,(C—2)) % (((C—2) «M)M) % ((C—1)* M)M)
> (((C— 1)1 M)

F(M, S, C) >SFM.10)

In the case of our example, we reach a number of sequences F(6, 2, 4)= 271.03 e+28
that doesn’t even considers the additional complexity from the model. It becomes necessary
to modify the model in order to compute the reachable states. We have been able to verify
properties by reducing the size of the message sequence in various ways.

However, resizing the application for verification purpose may not be an acceptable so-
lution. We currently study other approaches using abstract representations of set of states by
means of DDD, [16].

4.2.2 Qualitative alteration

The qualitative changes include:
e simplification of the model that preserves information of the properties to be verified,

e addition of working hypothesis often linked to the domain of application and restricting
the set of reachable states.

The simplification of the model often leads to the abstraction of some mechanisms. For
instance, the merging of two transitions when conditions allow it, will reduce the interleaving
and thus, will reduce the size of the reachability set. Such simplification may be acceptable
when the validity of properties remain unaffected.

A working hypothesis defines what is a consistent state and what is a discardable state.
Applying a working hypothesis on a set of states filters all inconsistent states with respect to
the hypothesis.

Example 5 For instance, additional hypothesis have been added to the initial model of a
train system [8]. This model was describing the interactions and the behavior of a set of
trains. The global state of the system was composed of the state of each train. The model
was quite complex (>100 transitions) and its parallelism complicated the computation of the
reachability set when dealing with a complex scenario. As time was not explicitly part of the
model, valid states computed by firing sequences in the model would never exist in reality.
The hypothesis that has been added had the effect of discarding all global states that
consider the positions of trains at different dates. The application of this hypothesis had an
immediate effect on state computation and allowed the verification of complex situations.

4.3 Computation of the reachable states

The computation of the reachable states consists in encoding the state of an LfP program
by means of DDD and implementing the homomorphisms that compute the new states corre-
sponding to the firing of transitions in the model.

4.3.1 Coding of a state

The state of an LfP specification is encoded into a DDD. Variables of the system are vari-
ables of the DDD and their values are attached to the arcs. The coding of the state represents
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Type declaration of v DDD

Array v; v i,y ez

Set v; y Sy el ez
VectorMultiSet v; y novegt y vectlsizel y vectlelil  vecrleli2

Table 2: Data types representation by means of DDD.

a mapping of variables that can only be accessed sequentially by the inductive homomor-
phisms. Thus, the implementation of homomorphisms strongly depends on the coding of the
state. Three important issues have to be solved in the encoding of an LfP state by means of
DDD as done in [16]. First, a canonical form must be defined and conserved during the state
computation. Second, the particular encoding of an LfP state must support several dynamic
aspects. And last, the encoding of the state must guarantee the compatibility with theoretic-set
operators.

Canonicity is a fundamental requirement that allows reachable state computation. A
canonical representation of the state allows to reduce the comparison between DDD to a
pointer comparison (O(1)). Canonicity is achieved by imposing construction constraints on all
structures. The operations that manipulate the state or any structure within the state produce
states that respect the constraints. For instance, an absolute order between elements of a set
must be defined. Operations on a sets must respect the order.

The coding of the state requires a coding of the data structures and associated operations
supported by the input language that respect the canonical form. In the case of LfP, we need
to implement the following features:

e multi-sets of vectors, local and class),
e sets and multi-sets of scalars,
. . e arrays,
e instances of classes and media,
e variables at all scopes (global, instance, e stacks.

Dynamicity causes the handling of states with varying size while respecting the constraints
of canonicity and operation compatibility. LfP provides dynamic features that are integrated
in the state encoding:

e creation and destruction of instances,
e structures such as sets and multi-sets, FIFOs,

e method of function calls (stack).

By definition of the DDD structure, only one arc with a given value can be the output of a
node. Thus, dynamicity can cause compatibility problems when adding DDD.

Example 6 The following example recalls a typical case of incompatibility. The addition of
the 2 DDD produces an invalid result where the node ’a’ get 2 arcs valued 'V'1°.
aa P e o ra e e i =aM,

We used prefixing techniques to construct DDD that are always compatible. For instance,
a set is identified by one variable 'v’. A DDD representing the set "y’ can be seen as an
assignment sequence using the same variable. Prefixing a set with a variable containing the
size of the set will enforce the compatibility between DDD containing sets.

Typically, arrays and structures are coded using one variable. The semantic of a value
(size, value, ...) depends on its position. The inductive homomorphisms use the position of
the value to decode the structures.

The table 2 summarizes the encoding of some common structures.
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Now that we can code all basic structures by means of DDD, we can show the encoding
of the whole state. At the top of the hierarchy the different components of an LfP program
appear in the following order:

1. global variables, 3. instances,

2. global binders (binder all), 4. end of state (special marker).

Each component is a DDD that represents a structure or a single variable like, for exam-
ple, a special marker. The different fragments represented here are then assembled using the
concatenation operator.

A canonical representation requires a particular ordering of object instances: the instances
are grouped by class and an order must be defined in such a way that order of the instance
remains the same whatever is the sequence of insertions. All object instances have the same
structure shown below:

1. begin instance (special marker), instance variables,

instance marker, program counter (PC),

local media, stack (empty if not within a call),

Eal
® N W

local binders, end of instance marker.

The structure of the local media is simple:

1. media id (variable me),
2. message storage (multiset of vectors),

3. program counter (PC),

A block pushed on the stack is defined for each method. This block represents local data
used by the method call. The corresponding DDD has the following shape:

1. parameters,
2. local variables,

3. return state.

Example 7 The following DDD is an example of a global state of the client/server application
with 1 client and 1 server. The variables prefixed with 'GIb’ are the global variables, then
comes the global binders and then the instances. In some cases, the use of symbols instead
of values has been used to improve the legibility. Variables of the media in the client instance
are easily recognized with the prefix 'RPC’.

Glb.tmpl -, Glb.tmp2 %, Glb.tmp3 -, Glb.tmp4 .,

binder_all_in _°, binder_all_out °,

__BeginOfinstance *"¢""

0 . . 0 _none_begin
server.mk — server.iv._discr — server.pc = — 8

_EndOfInstance 2,

__BeginOfinstance CHENT-mk

CLIENT.mk -,

RPC.me _°, RPC.loc_set ., RPC.loc.discr s RPC.loc.idl _° RPC.loc.id? _°.,
RPC.pc _nmﬂ)egin

CLIENT. locbinder -, CLIENT.locbinder-out -,

CLIENT.iv.i -° CLIENT.iv.id ',

CLIENT.pc ~""e-besin

_EndOfInstance 2,
__EndOfState Ny
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4.3.2 A set of basic Homomorphisms for LfP

A set of basic homomorphisms has been implemented to realize simple operations of the
LfP language. The composition operation (o) allows to combine the operations in order to
design the often complex homomorphism that represents the firing of a transition. A basic
homomorphism takes as input a set of states and produces a set of intermediate states.

We summarize in the table 4 the homomorphisms that deal with the functionning of the
state machines and the evaluation of boolean guards. Table 6 describes the homomorphisms
that deal with communications and media.

Typically, an homomorphism associated to a transition starts by checking if all boolean
conditions are satisfied, using the MarkFireable homomorphism. MarkFireable creates a
new state where one instance that satisfies the condition is marked. If multiple instances
qualify, then a state will be created for each one of them. All the other homomorphisms use
the mark to identify the instance to be processed.

When the computation of the new states obtained by the firing of a transition is finished,
the homomorphism ResetMark concludes the firing by reseting all markers from the new
states.

State  Machine | Parameters Description
Homomorphisms
MarkFireable Class, ExprG, | Mark exactly one instance of an object of Class if its state satisfies
ExprL the global boolean expression ExprG and the local boolean expres-
sion ExprL. Returns an empty set of states if no instance qualifies.
AssignVar Class, Var, Expr | Assigns to the variable Var the result of the evaluation of the expres-
sion Expr. Variables in the expression and the assigned variable are
assumed to be in the scope of the marked instance of class Class.
ResetMark Class Reset the marker of a marked instance of Class. This homomorphism
concludes any transition firing.
Goto Class, State Assign the program counter of the marked instance of Class with the
new automaton state State.
ResetGlbTmp Initialize all temporaries to 0, in order to avoid duplicated states.
VarAdd Class, Var, Inc, | Increments the variable Var in the scope of the marked instance of
Modulo Class with Inc and Modulo parameters.
ProcessKill Class Destroy (remove from the state) the marked instance of Class.
InsertInstance Class Insert an instance of Class in the state.

Table 4: Homomorphisms related to state machines.

4.3.3 Coding of a transition

In most of the cases, each transition is associated to an homomorphism. For performance
reason, an homomorphism is associated to states with multiple output branches and processes
all transitions at the head of each branch.

A transition homomorphism can be seen as the composition of a precondition evaluation
homomorphism and a postcondition homomorphism.

The following fragment of code shows an example of a C++ function returning the com-
position of the two homomorphisms that constitutes the firing of the transition. The operator
o is implemented with the C++ operator &. Operands of & appear in the inverse order of their
application.

The parameter gs is an instance of the class descriptor of the application. It provides the
capabilities to generate the DDD structure corresponding to the initial state of the system and
ways to refer to variables within the DDD structure.

GHom FIRE_SERVER_handle_request_succ (GenAppState &gs)
{

return
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Communication Parameters Description

Homomorphism

SendCallMeth Class, Binder, | Generate a message containing a remote call of procedure Meth by
Target, Meth, | an instance of Class to Target and store it in Binder. Parameters
NbParam, Param | Param List are in the scope of the initiating instance. The binder
List can be either multi set, FIFO, local or global.

SendCallVMeth same as SendCall- | Same as SendCallMeth, except that the method is the value of a
Meth, Var variable Var in the scope of the emitting instance.

ProcessReturn Class, Binder, | Process a return message concluding a remote procedure call (RPC)
NbParam, Param. | initiated by Class after reception of the message in Binder. Assign
List values stored in the message to the list of variables passed in the

parameter list Param. List.

ReceiveMethCall Class, Binder, Lo- | Process the reception of an RPC message emitted by an instance of
cals, NextState, Re- | Class and stored in Binder. Save the context on the local stack of
turnState the receiving instance, push local variables Locals and ReturnState,

set program counter value to NextState.

Select Class, Binder, | Process a branch (state with multiple output arcs) with boolean and
Branch Descr. message guards in an instance of Class . Messages are read from

Binder. A descriptor Branch Descr specifies the precondition and
postcondition starting each branch.

Binder2Media Binder Transfer messages from a binder to a media. The message contains
the id of the destination. Binder can be multi set or FIFO, local or
global.

PurgeMedia Empty the Media

Media2Binder Binder Transfer messages from a Media to a Binder. Binder can be multi
set, FIFO, local or global.

Table 6: Homomorphisms related to Communications.

POST_SERVER_handle_request_succ(gs) &
TEST_SERVER_handle_request_succ(gs);

According to the LfP specification, the second transition of method handle_request in-
crements the value of num and terminates the method call (cf fig. 6(b)). For implementation
purpose, name are given to objects: the transition is called SERV ER _handle request _succ and
the state precondition of the transition is called SERVER _handle_request _start.

The following code implements the precondition and postcondition homomorphisms for

this transition.

The TEST _SERVER _handle_request _succ homomorphism creates states with one marked
instance of class Server that satisfies the transition precondition.

GHom TEST_SERVER_handle_request_succ (GenAppState &gs)

{

return

MarkFireable<GenCSServer> (

Cst (1), // no condition on global variables, always true
(Var (GenCSServer::PC) == // precondition is only testing the state
Cst (AllStates::SERVER_handle_request_start)));

The POST _SERVER_handle_request _succ homomorphism realizes the action associated
to the transition. The composition starts by incrementing the local variable num by the con-
stant 1.

Then a return message from RPC is generated. This message carries a discriminant value
gs.Server._discr that was set when the RPC was initiated. It contains the identifier of the initia-
tor. The identifier of the message is AllStates :: SERVER__none_ret _handle _request specifies
the type of the message. The message contains only one parameter : num.
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Note that the construction of gs follows the same hierarchy as the original LfP pro-
gram. For example gs.Server.handle_request.num refers to the local variable of method
handle_request. The value of the C++ variable contains the identifier of the corresponding
variable in the DDD.

The Pop homomorphism restores the context at the end of the method call. The AssignVar
homomorphism resets the value of a local variable in order to limitate the generation of states.
The ResetMark homomorphism concludes the firing of the transition by reseting the instance
marker.

GHom POST_SERVER_handle_request_succ (GenAppState &gs)
{
ResetMark<GenCSServer>()& // reset the mark concluding
AssignVar<GenCSServer> (gs.Server._discr, Cst(0))& // reset this local variable
Pop(gs.Server) & // exit from the method call
scSendCallMeth<GenCSServer> (true, gs.BinderAllId_out,
gs, gs.Server._discr,
AllStates::SERVER__none__ret_handle_request,
1, gs.Server.handle_request.num) &
Add<GenCSServer>(gs.Server.handle_request.num, 1, -1);

4.3.4 Reachable states computation

The simple computation of the reachable state space is an iterative process where all transi-
tions are applied during one iteration.

Begin

DDD CURRENT

Set of transitions TSET

Create the initial state CURRENT

DDD ACC=NULL
Repeat
DDD OLD_CURRENT=CURRENT
For each transition T in TSET:
CURRENT=CURRENT+T (CURRENT)
BOOL GotNew= (ACC+CURRENT !=ACC)
ACC=ACC+CURRENT
CURRENT=CURRENT-OLDCURRENT
Until (!GotNew)
Return ACC
End

A preliminary filtering allows to eliminate transitions that have no chance to be fired. In
our case this preliminary filtering is done by testing the simple condition on the program
counter of each instance. A static structure generated by the verification program gives the list
of potentially firable transitions for each value of the program counter of any instance. The
list of potentially firable transition is updated on the fly when new states are computed. This
improvement made a noticeable difference in performance.

A number of algorithms can be applied for the computation of the reachable states. Their
study is beyond the scope of this paper.

4.4 Verification of properties

The verification process handles generic properties of distributed systems such as liveness,
search for deadlocks, coverage, and specific properties tied to the system such as assertions
on variables of the state. In any case, the verification of a property consists in expressing it by
means of an homomorphism that will be applied to the set of reachable states.
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4.4.1 Searching for deadlocks

If T1,.. Tn are the transitions of the system and Hom_T1,.. Hom_Tn the corresponding homo-
morphisms. Let Hom_Sum be the sum Hom_Sum=Hom_T1 + Hom_T2 + .. Hom_Tn. Hom_Sum
will return the nul/l homomorphism if it applies to a blocking state.

We reproduce the output generated by the verification program in the computation of
blocking states of the system with 2 servers, 2 clients sending 2 messages. To simplify the
reading, the DDD containing the state of the system is displayed by putting between parenthe-
sis the value associated to a variable. Comments have been added to improve legibility. In the
following, only one instance of each class is shown to save space.

[ TERMINALS =
// global variables:
Glb.tmpl (0) Glb.tmp2(0) Glb.tmp3(0) Glb.tmp4 (0)

//global binders:
binder_all_in(0) binder_all_out (0)

// instances

__BeginOfInstance (server.mk)

// marker

server.mk (0)

//instance variables & program counter
server.iv._discr(0) pc=server.pc(_none_begin)
__EndOfInstance(0)

. // others instance of server

__BeginOfInstance (CLIENT.mk)
CLIENT.mk (0)

//media of client, instance variables
RPC.me (0) RPC.loc_set (0) RPC.loc.discr(l) RPC.loc.idl(1l) RPC.loc.id2 (1)
pc=RPC.pc (_none_begin)

// client local binders
CLIENT.locbinder (0) CLIENT.locbinder_out (0)

//client instance variables
CLIENT.iv.i(2) CLIENT.iv.id(1)

pc=CLIENT.pc (_none_end)
_ _EndOfInstance(0)

. // others instance of client

__EndOfState(0)]

Only one state has been found with the following characteristics:
e no communication are pending

e all servers are ready to process a request

e all clients are terminated

So the only blocking state is a final state as it is defined in the model. This model has no
invalid deadlocks.
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4.4.2 Coverage test

A routine showing a compact view of the state space shows all possible values assigned to
all variables composing the state. A look at the program counter of all instances shows that
all the states have been explored. Additional states may be added to the model to deal with
transitions sharing the same input and output state. This test can also be useful to:

e cstimate or determine the size of the communication buffers (binders),

e define the domain of variables
In this example we only show the results for one instance of each class.

[ COVERAGE =
Glb.tmpl (0) Glb.tmp2(0) Glb.tmp3(0) Glb.tmp4 (0)

binder_all in(0 1 2 ) binder_all out(0 1 2 )

__BeginOfInstance (536870922 )

server.mk (0 )

server.iv._discr(0 1 2 )

server.pc (_none_begin handle_request_begin handle_request_start)
__EndOfInstance (0 )

__BeginOfInstance (536870931 )

CLIENT.mk (0 )

RPC.me (0 ) RPC.loc.discr(0 1 ) RPC.loc.idl1(0 1 ) RPC.loc.id2(0 1 )
RPC.pc(_none_begin _none_pl _none_p2 _none_p3 )

CLIENT.locbinder (0 1 ) CLIENT.locbinder_out (0 1 )
CLIENT.iv.i(0 1 2 ) CLIENT.iv.id(1 )

CLIENT.pc (_none_begin _none_start _none_process _none__wait_handler_request _none_end ),
_ EndOfInstance (0 )

__ EndOfState (0 )
]

4.4.3 Assertions on variables

An assertion on a variable can be easily translated into an homomorphism that evaluates the
boolean expression corresponding to the negation of the assertion. This homomorphism is
applied on the set of reachable states and should return the empty set, if the original assertion
is satisfied.

Example 8 The computation of states of the system with 2 servers, 2 clients sending 2 mes-
sages has been performed.

We now would like to show that the set of states that satisfy the negation of the expression
((Client .PC = client_none_end) = (client.i = 2)) is empty.

The computation of such a set can be easily done by building the homomorphism that will
check the existence of such states. We directly reuse the MarkFireable homomorphism that
allows for checking boolean expressions on states.

GHom CheckAssertTerm(GenAppState &gs) {
return
MarkFireable<GenCSClient> (
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Cst (1), // no condition on global variables, always true

(Var (GenCSClient::PC) == Cst(AllStates::CLIENT__ none_end)) &&
(Var (gs.Client.i) ! !=2)
)i

5 Conclusion and future work

In this paper, we have presented how we could handle the model checking of LfP, a high-
level specification language. The main problem raised in this study resides in dynamic aspects
proposed in LfP: creation of processes, RPC mechanisms, addressing, etc.

DDD were successfully used for the analysis of Petri nets [3] and were also experimented
successfully for LfP. To achieve model checking, a basic set of homomorphisms has been de-
fined and implemented to enable the computation of the reachability set of an LfP specifica-
tion. An execution environment supporting basic debugging capabilities and the computation
of the reachable set of an LfP model has been implemented. We have started developing a
code generator that translates an XML file containing the LfP program and generates C++
files that will be linked to the execution environment.

The efficiency of the DDD operations and the compacity of the structure allowed the com-
putation of large reachability sets [8] of complex LfP models. We summarized the main
technical difficulties in the representation of a LfP program by means of DDD: canonical rep-
resentation of the state, support for dynamicity, diversity and complexity of the mechanisms
to implement.

We also address complexity issues that may be solved by modification of the model. The
derivation of models for specific verification purposes is currently mostly supported by the
user expertise. We believe that an abstract representation of the state may help solving these
issues [16].

Compiler optimization techniques will be developed to optimize the construction of ho-
momorphisms. A language for the specification of properties needs to be developed as well
as associated translation tools to generate the homomorphisms.

The development of such tools will provide a wide access to the efficiency of the DDD
structure and will free the user from the tedious manual implementation of homomorphisms.
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Abstract

We present, in this paper, a formal and generic framework, called DIMA-
Maude, supporting a formal description and validation of DIMA (Development
and Implementation of Multi-Agents systems) agents. The framework is
described using the formal and object-oriented language Maude. Based on
rewriting logic, the Maude language offers an interesting way for concurrent
systems formal specification and programming. In its present version, the
proposed DIMA-Maude framework allows describing DIMA communicating
agents. Their meta-behavior is described using an ATN (Augmented
Transition Network). The main objectives of our work are essentially: (1) to
specify formally multi-agents systems' behavior, (2) to provide a sound
description preserving the consistency in their behavior and (3) to develop an
approach supporting their validation process. The Maude descriptions,
generated in the framework of our approach, have been validated using the
platform supporting the Maude language.

Key words: Multi-Agent Systems, Quality Assurance, DIMA, Communicating
Agents, Maude, Formal Specification, Behavior, Validation.

1 Introduction

A large number of models, languages and architectures supporting the development
process of Multi-Agents Systems (MAS) have emerged during the last decade. They
allowed bringing interesting solutions to several problems related to the development
and the validation of MAS. However, only few papers addressed their formal
specification. In the field of agents” behavior specification, three major approaches
emerge in the literature: state-charts based approaches [Tra99, Pau03], Petri Nets (PN)
based approaches [Cos99, Bak00] and, finally, approaches representing adaptation of
object-oriented specification methods [Ode00, Ode01]. Using such approaches, MAS'
behavior is generally specified in a diagrammatic or semi-formal way. This weakness,
combined with the inherent problems of MAS’ specification, often generates several
difficulties and problems in their development process. MAS' behavior needs to be
clearly specified, validated and correctly implemented [Pau02]. The numerous
underlying concepts of multi-agents models, as well as their complexity, require a
powerful formal model in terms of description. Furthermore, this model must be able
to support the description of diverse important aspects related to MAS' behavior, such
as interactions between agents and their concurrence at different levels. The presence
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of a tool supporting the model, particularly for simulation and verification objectives,
is in our opinion essential.

DIMA model’s architecture [Gue03] is one of the interesting proposals in the field of
MAS development. Thanks to its modularity features, DIMA helps to decompose the
complex behavior of an agent within a set of specialized behaviors. Those diverse
behaviors can eventually be described by a meta-behavior [Gue03]. Otherwise, DIMA
model offers a rich library composed of basic bricks allowing the construction of
various agents' models. Moreover, DIMA offers different frameworks (ATN-based
framework, Rule-based framework, Case-based framework, etc). The main objective of
our work is to develop a formal framework, using the Maude language, supporting the
construction of formal models for DIMA agents. Our first interest is related to the
communicating agents of the DIMA model. Their meta-behavior is described by an
ATN (Augmented Transition Network).

Knowing the richness and the complexity of the DIMA model, we retained in our
approach the formal and object-oriented language Maude [Mes92, Man99]. The
constructs offered by this language allow capturing the multiple aspects of the DIMA
model. Maude is in fact a formal language based on a sound and complete logic called
the rewriting logic [Mes92]. On certain aspects, it is close to the language Troll [Saa93],
also having a sound semantics. However, the absence of concurrence in Troll makes
Maude more advantages. The G-ECATNets [Cha01], also represent another interesting
and very expressive candidate. They present an interesting integration of ECATNets
[Bet92] and of the object paradigm. The ECATNets are also high-level Petri Nets. They
integrate abstract algebraic types and Petri Nets” formalism. The G-ECATNets have, in
fact, a representation in the Maude language, making them a particular case of Maude.
Furthermore, the G-ECATNets do not dispose of a tool independent of Maude. An
execution of a description in G-ECATNets is exactly like executing their representation
in Maude. In this paper, we demonstrate the feasibility as well as the interest of
formalizing the behavior (individual and social) of the ATN-based communicating
agents of the DIMA model using the Maude language. The elaborated formal approach
allows capturing the inherent aspects of the DIMA model. The Maude descriptions
generated in the framework of our approach have been validated using the platform
supporting this language.

The remainder of the paper is organized as follows: Section 2 outlines the major
related work. We briefly present, in section 3, the DIMA multi-agents model. In
Section 4, we introduce briefly the rewriting logic as well as the Maude language.
Section 5 illustrates the process we propose to formalize the DIMA communicating
agents using Maude. Section 6 presents the application of our approach on a concrete
case study. In section 7, we discuss our present work and give some conclusions and
future work directions.

2 Related Work

We already mentioned, in the previous section, some approaches that have been
proposed in the literature to describe multi-agents systems' behavior. The formalism
supporting the RCA roles protocol's descriptions proposed in [Tra99] is also used to
describe agents' behavior. It is based on statecharts including seven states and two
transitions. These seven states are: the initial state, the final state, the elementary action
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state, the composite action state, the state of communication, and states of waiting. The
two types of transitions are the internal transition and the external transition. It is easy,
using this formalism, to recognize coordination points between dual protocols.

Cost and al. [Cos99] proposed an approach that allows representing the
conversations between agents using Colored Petri Nets. They have explored the use of
model-based conversation specification in the context of MAS supporting
manufacturing integration [Pen99]. In such an approach, agents are developed using
the Jackal agent development platform [Sco98]. They communicate using the KQML
agent communication language [Tim97]. Moreover, one of the most recent approaches
for modeling agent-specific features is the AUML [Ode00]. As part of AUML, the
authors suggest an extension of the UML by introducing a new type of diagrams called
protocol diagrams. These diagrams combine elements of UML interaction diagrams and
state diagrams to model the roles that can be played by an agent while interacting with
other agents. The introduced diagram allows specifying multiple threads within an
interaction protocol and supporting protocol nesting and protocol templates based on
generic protocol description. These different approaches represent certainly several
elements of response to some problems related to MAS development, but it remains
that they only offer a partial formalization of MAS.

Our approach is similar, in terms of objectives, to previously quoted approaches.
Essentially, it consists of supporting the important step of the specification of agent’s
behavior. However, we preferred to adopt a more formal way in our approach because
of the different advantages it procures. It is based on the formal and object-oriented
Maude language [Mes92, Man99, McC03].

3 DIMA Multi-Agents Model

MAS' design, as mentioned by many authors, is still anticipated. One of the major
reasons is related to the fact that no standard exists nowadays for an agent’s definition
or its internal architecture [Fra00]. Throughout our approach, we opted for the DIMA
agents’ model, proposed by Guessoum in [Gue03]. This model is illustrated in figure 1.

o — Data
Supervision  \ Control
>

Meta-behavior

e

Behaviors

Fiaure 1 : DIMA . aaents’ model

The DIMA model is a Java multi-agents platform built as an extension of Object-
Oriented Programming. It provides a generic and modular agent architecture with
several facilities (message passing, distribution, etc.), and allows high heterogeneity in
agent architectures (reactive, deliberative and hybrid), and various customizations. The
model of DIMA agents” architecture proposes to decompose an agent in different
components whose goal is to integrate some existing paradigms, notably of artificial
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intelligence paradigm. An agent can have one or several components that can be
reactive or cognitive.

Simple component

or
Composite component ProactiveComponent
perception action
IsAlive()
4{ Environment <— Step()
Figure 2: DIMA agents’ architecture Figure 3: General structure of a proactive component

An agent is a simple component, or a composite component as illustrated by figure 2,
that manages the agent’s interaction with its environment and represents its internal
behavior. The environment regroups all other agents as well as entities that are not
agents. The basic brick of this architecture is represented by a proactive component
(figure 3) on which are founded the different models of agents. A proactive component
must describe:

- Goal: implicitly or explicitly described by the method IsAlive ().

- Basic behaviors: a behavior could be implemented as a method.

- Meta-behavior: it defines how the behaviors are selected, sequenced and
activated. It relies on the goal (use of the method Step ()).

3.1 ATN-Based Communicating Agents

A communicating agent is a proactive agent that introduces new functionalities of
communication. Every communicating agent must have:

- A Mailbox to stock its messages.

- A communication component (figure 4) for managing the sending and the

reception of messages.
- Possibly, a list of its acquaintances.

CommunicationComponent

ReceiveMesage()
SendMesage()
SendAll()

Figure 4: General Structure of a communication component

The meta-behavior of communicating agents is, in the adopted approach, described by
an ATN. This last is defined by a finished set of states and transitions. A state of an
ATN describes the agent’s state [Gue96]. To define an ATN, we must:

- Define states: There are three types of states, initial (one), final (zero or more)
and intermediate (zero or more).

- Define transitions: Every transition has conditions (one or more), actions (one
or more) and a target state.

- Attach transitions to states.
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The development of a proactive agent requires the description of its behaviors and its
meta-behavior by inheriting the ProactiveComponent class. We must also describe the
agent’s goal by describing the method IsAlive(). In the case of agents whose meta-
behavior is described by an ATN, such as ATN-based communicating agents, the
method IsAlive() tests if the final state is not reached. For the same type of agents, the
method Step(), describing a cycle of the meta-behavior of the proactive component,
allows activating from the current state of an agent a transition whose condition is
verified.

4 Rewriting Logic and Maude Language
4.1 Rewriting Logic

The rewriting logic, having a sound and complete semantics, was introduced by
Meseguer [Mes92]. It allows describing concurrent systems. This logic unifies all the
formal models that express concurrence [Mes90]. In rewriting logic, the logic formulas
are called rewriting rules. They have the following form: R:[t] = [t'] if C. Rule R
indicates that term t becomes (is transformed into) ¢’ if a certain condition C if verified.
Term t represents a partial state of a global state S of the described system. The
modification of the global state S of the system to another state S’ is realized by the
parallel rewriting of one or more terms that express the partial states. The distributed
state of a concurrent system is represented as a term whose sub-terms represent the
different components of the concurrent state. The concurrent state’s structure can have
a variety of equivalent representations because it satisfies certain structural laws
(equivalence class). For example, in an object-oriented system, the concurrent state that
is usually called configuration has the structure of a multi-set of objects and messages.
Therefore, we can see the constructed configurations by a binary operator applied to
binary sets:

. sort Configuration .

sort Object .

sort Msg .

. subsort Object < Configuration .

. Ssubsort Msg < Configuration .

. op null : -> Configuration .

op_ _ : Configuration Configuration -> Configuration [assoc comm id : null] .

NO O A WN S

Figure 5 : Example of a portion of the Maude program

The illustrated portion of program in figure 5 gives a definition of three types:
Configuration, Object and Msg. In lines 4 and 5, Object and Msp are sub types of
Configuration. Objects and messages are in fact multi-set configuration singletons.
More complex configurations are generated from the application of the union on these
multi-set singletons (objects and messages). Where there is neither floating messages
nor live objects, we have in this case an empty configuration (line 6). The construction
of a new configuration in terms of other configurations is done with line 7’s operation.
We can see that this operation has no name and that the two sub lines indicate the
positions of two parameters of configuration type. This operation, which is the multi-
set union, satisfies the structural laws of association and of commutation. It also
possesses a neutral element null. For example, if we have a message M1 that represents
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a configuration, and an object <O : Clatts > (please note that O an object’s identifier, C
the class to which it belongs and atts is the list of its attributes) that represents in itself
another configuration, then we can construct another configuration in terms of those
two configurations: M1 < O:C | atts >. This one is equivalent to the configuration < O
: C | atts > M1 because the __ operation is commutative.

4.2 Maude

Maude is a specification and programming language based on the rewriting logic
[Mes92, Man99]. Three types of modules are defined in Maude. The functional modules
allow defining data types and their functions through equations theory. The system
modules define the dynamic behavior of a system. This type of module extends the
functional modules by the introduction of rewriting rules. A maximal degree of
concurrence is offered by this type of module. Finally, there are the object-oriented
modules that can be reduced to system modules. In relation to the system modules, the
object-oriented modules offer a more appropriate syntax to describe the basic entities
of the object paradigm, like messages or configuration for example. Only one rewriting
rule allows expressing the consumption of certain floating messages, the sending of
new messages, the destruction of objects, the creation of new objects, state change of
certain objects, etc.

4.2.1 Functional modules

Functional modules define data types and their related operations using equation
theories [Man03]. Functional modules support multiple sorts, subsort relations,
operator overloading, and assertions of membership in a sort. A functional module is
declared in Maude as follows:

fmod <ModuleName> is <DeclarationsAndStatements> endfm

4.2.2 System modules

A system module in Maude specifies a rewrite theory. A rewrite theory has sorts, kinds,
and operators, and can have three types of statements : equations, memberships, and
rules. A system module is declared in Maude as follows:

mod <ModuleName> is <DeclarationsAndStatements> endm

4.2.3 Object-oriented modules

Object-oriented modules define the concurrent object-oriented systems using a syntax
more convenient than that a system module because it assumes acquaintance with the
basic entities, such as objects, messages and configuration, and supports linguistic
distinctions appropriate for the object-oriented case. An object-oriented module is
declared in Maude as follows:

omod <ModuleName> is <DeclarationsAndStatements> endom

174



5 Modeling of Communicating Agents of the DIMA Model

We developed a formal framework allowing the construction of communicating
agents. Their meta-behavior is described by an ATN. The framework is composed, as
illustrated by figure 6, of several modules: an object-oriented module (ATN-BASED
COMMUNICATING-AGENT) and several functional modules (the remainder of
modules).

| PROACTIVE-COMPONENT [ : Module
STATE — : Import
—— ATN
CONDITION USER-ATNT
ATN-BASED-
ACTIONS ATN-LINK COMMUNICATING-
MESSAGE AGENT
| IDENTIFICATION MAILBOX
| ACQUAINTANCE-LIST ’\A{ COMMUNICATING-COMPONENT

Figure 6 : DIMA-Maude frameworks’ architecture.

e The functional module STATE (figure 7) contains the different necessary type
declarations for the definition of a state (line [1]) and, on the other hand, the
definition of operations used for the construction and the manipulation of a state
(lines [2, 3, 4, 5, 6]), as well as equations implementing these operations (lines [7, 8,

9)).

(fmod STATE is

sorts State KindState NameState . ***1]
ops initial final ordinary : -> KindState . 2]
op AgentState : NameState KindState -> State . ***[3]
op Islnitial : State -> Bool . ***[4]
op IsOrdinary : State -> Bool . ***[5]
op IsFinal : State -> Bool . ***[6]

var k : KindState .
var ns : NameState .

eq IsInitial(AgentState(ns, k)) = if k == initial then true 7]
else false fi .

eq IsOrdinary(AgentState(ns, k)) = if k == ordinary then true  ***[8]
else false fi .

eq IsFinal(AgentState(ns, k)) = if k == final then true ***[9]
else false fi .

endfm)

Figure 7: The functional module STATE.

¢ In module CONDITIONS (figure 8), in addition of the type Condition, we define the
constant NoCondition of type Condition to indicate that a transition is unconditional.
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(fmod ACTIONS is

sort Action .

op NoAction : -> Action .

op IsInternalAction : Action -> Bool .
op IsSendingAction : Action -> Bool .

’ NDITIONS i op IsReceivingAction : Action -> Bool .
(sr:;rct)g g&dition(.) Sis op IsSendingActionToAll : Action -> Bool .
op NoCondition : -> Condition . endfm)
endfm)
Figure 8: The functional module CONDITIONS. Figure 9: The functional module ACTIONS.

e In module ACTIONS (figure 9), in addition of the type Action, we define the constant
NoAction that expresses the fact that at the time of the appearance of an event no
action will be done. The IsInternalAction function serves to determine if an action is
internal. The two IsSendingActions and IsReceivingActions operations are used to
indicate if an action is of type communication (of sending reception) or no.
Otherwise, the IsSendingActionToAll function indicates if it is necessary to send an
action to all acquaintances of an agent.

To define an ATN, we propose the ATN module (figure 10). This module reuses the
STATE, CONDITIONS and ACTIONS modules. It includes the definition of two
operations: TargetState that determines the state destination according to a state
source and a condition, and the AccomplishedAction operation to determine the action
executed according to a state and a condition.

(fmod ATN is

protecting STATE .

protecting CONDITIONS .

protecting ACTIONS

op TargetState : State Condition -> State .

op AccomplishedAction : State Condition -> Action .
endfm)

Figure 10: The functional module ATN.

e For the construction of an ATN for an application, we propose to spread the ATN
module in another module USER-ATN (figure 11). In this module the user must:

- mention all states constituting the ATN,

- define all conditions and actions,

- attach conditions and actions to states, using the two TargetStates and
Accomplished Actions functions,

- specify if action is type communication or no, using the IsInternalActions,
IsSendingActions,

IsReceivingActions and IsSendingActionToAll functions are defined in module
ACTIONS. To each category of agents (play the same role) is associated a module

USER-ATN.

(fmod USER-ATN is
extending ATN .
***User part™**
endfm)

Figure 11: The functional module USER-ATN.
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e To respect the protocol of interaction used between agents, we propose to make a
sort of link between the ATNs of different agents. This link consists in guaranteeing
that at the time of the reception of a message, an agent cannot consume such a
message except if it is in the corresponding state to the state of the agent sender.
What implies is that there is a correspondence between different agent states. As a
sending action accomplished by an agent sender represents an event for an agent
receiver. Therefore there is a correspondence between sending actions of the sender
and events received by the receiver. For that, the user must develop the ATN-LINK
module (figure 12) that contains the correspondence on the one hand between
different agent states, and on the other hand between actions of senders and
conditions of receivers.

(fmod ATN-LINK is
protecting USER-ATN .
op CorrspondingAgentState : State -> State .

op CorrspondingCondition : Action ->Condition . (fmod IDENTIFICATION is
wwx ) ree sorts Agentldentifier .
dfser Pa subsort Agentldentifier < Oid .
endfm) endfm)
Figure 12: The functional module ATN-LINK. Figure 13: The functional module IDENTIFICATION.

e To describe the identification mechanism of agents, we define the functional module
IDENTIFICATION (figure 13).

e The form adopted in our approach for messages is defined in the functional module
MESSAGE (figure 14). This last imports modules IDENTIFICATION and ACTIONS.

(fmod MESSAGE is
protecting IDENTIFICATION .
protecting ACTIONS .

sorts Message Content .
subsort Action < Content .

op _:_:_:Agentldentifier Content Agentldentifier -> Message .
endfm)

Figure 14: The functional module MESSAGE.

e The communicating agents are generally endowed with a Mailbox containing the
received messages of other agents. For that, we define a functional module
MAILBOX to manage Mailboxes of agents. This module imports the functional
module MESSAGE.

e An agent must be endowed with a list of its acquaintances. In this way, it can
exchange messages with other agents. For that, we define a functional module
ACQUAINTANCE-LIST to manage lists of agent acquaintances. Due to limitation of
space and the important size of these last two modules, we don't present them in this

paper.
e The communicating agents are endowed with a module of communication that

manages the exchange of messages between agents. In our approach, we define a
functional module COMMUNICATION-COMPONENT (figure 15) that imports the
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two ACQUAINTANCE-LISTS and MESSAGE modules. In this module, we define
three messages: SendMessages and ReceiveMessages that have as parameter a message
of the form defined in the module MESSAGE.

(fmod COMMUNICATION-COMPONENT is
protecting ACQUAINTANCE-LIST .
protecting MESSAGE .

subsort acquaintance < Agentldentifier .
op SendMessage : Message -> Msg .

op ReceiveMessage : Message -> Msg .
endfm)

Figure 15: The functional module COMMUNICATION-COMPONENT.

e Indeed, a communicating agent is first a proactive agent that has a goal to achieve
described by the function IsAlive (figure 16). The Parameters and Void types are
generic. They can be replaced by other types in modules wanting to reuse the
PROACTIVE-COMPONENT module, provided that these new types are under-types
of Parameters and/or Void. The basic cycle of the meta-behavior of proactive
component described by method step() is modeled by rewriting rules of the module
ATN-BASED-COMMUNICATING-AGENT of the figure 17.

(fmod PROACTIVE-COMPONENT is
sort Parameters Void .

op IsAlive : Parameters -> Bool .

op Step : Parameters -> Void .
endfm)

Figure 16: The functional module PROACTIVE-COMPONENT.

e The object-oriented module ATN-BASED-COMMUNICATING-AGENT (figure 17) is
the main module. It imports the PROACTIVECOMPONENTS, ATN-LINK,
COMMUNICATION-COMPONENT and MAILBOX modules. For a formal
description of communicating agents, we propose the class Agent (line [1]). The
definition of this class has the CurrentStates, MBox, and AccList attributes, to contain,
in this order, the current state of the agent, its Mailbox and the list of its
acquaintances. For ATN-based communicating agents, the description of the goal
requires redefining the IsAlive function of the figure 16. We use a state as parameter
of this function (line [5]) that returns a Boolean. This function returns the Boolean
value true if the current state is final otherwise it returns false. The State type is an
under-type of Parameters. The apparition of an event is expressed by message Event
(line [2]) having as parameters an agent, a state and a condition. The execution of the
corresponding action to this event is described either by the message Execute (line [3])
if it is internal, either by one of the two SendMessages or ReceiveMessages defined in
the module COMMUNICATION-COMPONENT. The GetEvent message (line [4]) is a
message used temporarily during the execution of rewriting rules.
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(omod ATN-BASED-COMMUNICATING-AGENT is
protecting PROACTIVE-COMPONENT .

protecting ATN-LINK.

protecting COMMUNICATION-COMPONENT .
protecting MAILBOX .

subsort State < Paramaters .

class Agent | CurrentState : State, MBox : MailBox, AccList : acquaintanceList . **[1]
Msg Event : Agentldentifier State Condition -> Msg . >**[2]
Msg Execute : Action -> Msg . ***[3]
Msg GetEvent : Agentldentifier State Condition -> Msg . ***[4]

vars A A1: Agentldentifier . var NS : NameState . var KS : KindState . vars S S1 : State .
var Cond : Condition . var Act : Action . vars MB MB1 : MailBox . vars ACL ACL1 : acquaintanceList .

eq IsAlive (AgentState(NS, KS)) = IsFinal(AgentState(NS, KS)) . ***[5]
First case
crl [StepCaser1] : Event(A, S, Cond) < A : Agent | CurrentState : S, MBox : MB, AcclList : ACL >
=> Execute(AccomplishedAction(S, Cond)) GetEvent(A, S, Cond)
< A : Agent | CurrentState : S, MBox : MB, AccList : ACL >
if (IsAlive(S) == false) and
(IsInternalAction(AccomplishedAction(S, Cond)) == true) .

rl [StepCase11] : GetEvent(S, Cond) Execute(Act)
< A : Agent | CurrentState : S, MBox : MB, AccList : ACL >
=> < A:Agent | CurrentState : TargetState(S, Cond), MBox : MB, AccList : ACL > .

Second case
crl [StepCase?] : Event(A, S, Cond) < A : Agent | CurrentState : S, MBox : MB, AcclList : ACL >
< A1 : Agent | CurrentState : S1, MBox : MB1, AcclList : ACL1 >
=> SendMessage(A : AccomplishedAction(S, Cond) : A1) GetEvent(A, S, Cond)
< A : Agent | CurrentState : S, MBox : MB, AccList : ACL >
< A1 : Agent | CurrentState : S1, MBox : MB1, AcclList : ACL1 >
if (IsAlive(S) == false) and
(IsSendingAction(AccomplishedAction(S, Cond)) == true) .

rl [StepCase21] : GetEvent(A, S, Cond) SendMessage(A : Act : A1)
< A : Agent | CurrentState : S, MBox : MB, AccList : ACL >
=> Event(A1, CorrespondingAgentState(S), CorrspondingCondition(Act))
< A : Agent | CurrentState : TargetState(S, Cond), MBox : MB, AcclList : ACL >

Third case
crl [StepCase3] : Event(A, S, Cond) < A : Agent | CurrentState : S, MBox : MB, AccList : ACL >
=> ReceiveMessage(A1 : AccomplishedAction(S, Cond) : A) GetEvent(A, S, Cond)
< A : Agent | CurrentState : S, MBox : InsertinMBox( (A1 : AccomplishedAction(S, Cond) : A), MB),
Acclist : ACL >
if (IsAlive(S) == false) and (IsReceivingAction(AccomplishedAction(S, Cond)) == true) .

rl [StepCase31] : GetEvent(A, S, Cond) ReceiveMessage(A1 : Act : A)
< A : Agent | CurrentState : S, MBox : MB, AccList : ACL >
=> < A : Agent | CurrentState : TargetState(S, Cond), MBox : MB, AccList : ACL > .
Fourth case
crl [IniSendingToAllAct] : Event(A, S, Cond) < A : Agent | CurrentAgentState : S, MBox : MB, AcclList : ACL >
=>

SendMessage(A : AccomplishedAction(S, Cond) : HeadA(ACL)) GetEvent(A, S, Cond)

< A : Agent | CurrentAgentState : S, MBox : MB, AccList : TailA(ACL) >

if (IsAlive(S) == false) and (IsSendingActionToAll(AccomplishedAction(S, Cond)) == true)

and (Head(ACL ) =/= Erroracquaintance) .

crl [IniSendingToAllAct] : GetEvent(A, S, Cond) SendMessage(A : Act : A1)
< A : Agent | CurrentAgentState : S, MBox : MB, AccList : ACL >
=>
Event(A, S, Cond)
< A : Agent | CurrentAgentState : S, MBox : MB, AccList : ACL >
Event(A1, CorrespondingAgentState(S), CorrespondingCondition(Act))
if Head(ACL) =/= Erroracquaintance .
endom)

Figure 17: The object-oriented module ATN-BASED-COMMUNICATING-AGENT.
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The meta-behavior, in the framework of our formalization approach, is expressed in
four possible cases. The first case, when the action to execute is a simple internal action.
In this case, the meta-behavior is described by the two rewriting rules of the first case
(figure 17). One of the three remaining cases is used when it is about an action of
communication. If the action of communication is a sending action, the meta-behavior
is described, either by the two rewriting rules of the second case (if the destination is
only one agent), or by the two rewriting rules of the fourth case (if the message is sent
to all agents). The two rewriting rules of the third case describe the meta-behavior in
the case where the action of communication is a reception action. Indeed, there is a
serialization in the same way between every two rules. Triggering the second rule
requires the execution of the first. The first rule of each part is conditional. We note that
conditions are composed and the intersection of different rule conditions is the
condition (IsAlive(S) == false). This last means that the execution of an action from a
state S and requires that this state must not be final.

The two rules of the fourth case, present the sending of a message by the agent A to
all its acquaintances. Such rules present a conditional loop. Indeed, they allow to
browse the agent’s acquaintances list ACL, using the two operations HeadA
determining the element that is in head of such list, and TailA to determine the
remainder of the list. Such a loop stops when the list is browsed completely. To every
iteration, the second rule generates an event destined to the current agent (that is in
head of acquaintances list ACL) corresponds to the action sent by the agent A.

6 Case Study: Auction Application

This section illustrates the application of our approach on a concrete example. It is
about a simple example of an auction. We have two kinds of agents: Auctioneer and
Bidder. Each auction involves one Auctioneer and several Bidders. The Auctioneer has
a catalog of products. Before starting the auction, the Auctioneer sends the catalog to
all the participants. Then it starts the auction for all the products. The products are
therefore proposed sequentially to the participants. In this example we use the iterated
contract net protocol. Figures 18.a and 18.b describe respectively the meta-behavior of
the Auctioneer, and the Bidder.

NoExpTimeOut/

TrueCond/
SendCFP

NoMail/ ReceiveAccProp/
Wait NoAction

ReceiveRejProp/
NoAction

IsAccepted/

ReceiveCFP/ SendProp

NoProp/NoAction
oProp/NoActio DecProcess

IsRefused/
SendReject

TrueCond/
SendAccProp
SendRejProp

(@) (b)

Figure 18 : ATNs that describe respectively the meta-behavior of the Auctioneer and the Bidder.
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6.1 Application of the Translation Process

The formal description of the behavior of an ATN-based communicating agent implies
all previously defined modules with the definition of the modules USER-ATN and
ATN-LINK. Figures 19 and 20 illustrate respectively the defined modules according to
the meta-behaviors of the Auctioneer and the Bidder. The correspondence between the
ATNs of the Auctioneer and Bidder is presented in figure 21.

(fmod USER-ATNT1 is
extending ATN .
***definition of states constituting the ATN
ops Startl Waitl OfferEvaluation]l CommitmentDecision Successl Failurel : -> NameState . ***[1]
ops AgentState(Startl, initial) AgentState(Waitl, ordinary) AgentState(OfferEvaluationl, ordinary)
AgentState(CommitmentDecisionl, ordinary) AgentState(Successl, final)
AgentState(Failurel, final) : -> State . **2]

***definition of conditions and actions of the ATN
ops TrueCondition NoExpiredTimeOutl HasMail HasProposal NoProposal : -> Condition.  ***/3]
ops SendCFP Waitl ReadAllMsg DecisionProcess! SendAccpetProposal

SendRejectProposal :-> Action . ***[4]
*** determination of the target state according to a state source and a condition ***********
eq TargetState(AgentState(Startl, initial), TrueCondition) = AgentState(Waitl, ordinary) . ***[5]
*** determination of the action to execute according to a state and a condition ******
eq AccomplishedAction(AgentState(Startl, initial), TrueCondition) = SendCFP . ***6]
***Determination of the type of an action******«xxx#xxxxwxx
eq IsInternalAction(DecisionProcessl) = true . 7]
eq IsSendingActionToAll(SendCFP) = true . ***[8]
endfm)

Figure 19: The module USE-ATN corresponding to the agent Auctioneer

In figure 19, we define the different states of the agent Auctioneer (lines [1, 2]). For
example, the state AgentState(Startl, Initial) means that the state named Startl is an
initial state (see figure 18.a). The conditions and actions given in figure 18.a are
described respectively by (line [3, 4]). To determine the target state (line [5]) according
to a source state and a given condition, we used the operation TargetState defined in
figure 10. If the agent Auctionner is in its initial state Startl, and the condition
TrueCondition is satisfied, the target state of this transition must be the ordinary state
Waitl. The accomplished action depends on a source state and a condition. SendCFP is
the action according to the condition TrueCondition when the Auctioneer is in its initial
state Startl (line [6]). To select the conditional rule (see figure 17) to be executed, it's
necessary to know the action type. For example, line [7] indicates that the action
DecisionProcessl is an internal action, and line[8] indicate that the action SendCFP must
be sent by the Auctioneer to all Bidders.

In the agent community, interaction protocols play a primordial role. They facilitate the
coordination between agents to achieve their goals. To respect the used protocol, we
propose to establish a correspondence between states of agents (see figure 21).
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(fmod USER-ATN2 is

extending ATN .

***definition of states constituting the ATN

ops StartP WaitP OfferEvaluationP SuccessP FailureP : -> NameState .

ops AgentState(StartP, initial) AgentState(WaitP, ordinary) AgentState(OfferEvaluationP, ordinary)
AgentState(SuccessP, final) AgentState(FailureP, final) : -> State .

***definition of conditions and actions of the ATN
ops ReceiveCFP NoMail IsAccepted IsRefused ReceiveAcceptProposal ReceiveRejectProposal : -> Condition
ops DecisionProcessP WaitP SendPropose RejectPropose :-> Action .

*** determination of the target state according to a state source and a condition
eq TargetState(AgentState(StartP, initial), ReceiveCFP) = AgentState(OfferEvaluationP, ordinary) .

Fkkk Kk k kK kk

Hokkk ek

***determination of the action to execute according to a state and a condition
eq AccomplishedAction(AgentState(StartP, initial), ReceiveCFP) = DecisionProcessP .
***Determination of the type of an action™*****xx*x*xxxxwxix
eq IsinternalAction(DecisionProcessP) = true .

eq IsSendingAction(SendPropose) = true .

endfm)

Figure 20 : The module USE-ATN corresponding to the agent Bidder.

For example, if the agent Auctioneer is in its initial state Starl, a Bidder must be in its
initial state StartP (line[1]). In the same way, if the Bidder is in its ordinary state
OfferEvaluation (line [3]), the Auctioneer must wait its decision. Indeed, the conditions
of transitions described in an ATN test the occurrence of an asynchronous event
(message reception, new data, ...) or an internal state change. Therefore, a sending
action of a sender agent corresponds to an event for the agent receiver. For example,
when the Auctioneer launches a call-for—proposal (SendCFP), the agent Bidder receives
the event call-for-proposal (ReceiveCFP). This is expressed by the equation of line [2].

fmod ATN-LINK is
protecting USER-ATN1 .
protecting USER-ATN2 .

op CorrespondingAgentState : State -> State .
op CorrespondingCondition : Action -> Condition .

rexsrerseenes AUctionner part Rk eees
eq CorrespondingState(AgentState(startl, initial)) = AgentState(startP, initial) . ***[1]
eq CorrespondingState(AgentState(commitmentdecisionl, ordinary)) = AgentState(waitP, ordinary) .

eq CorrespondingCondition(SendCFP) = ReceiveCFP . 2]
eq CorrespondingCondition(SendAcceptProposal) = ReceiveAcceptProposal .

il =TT o =) ¢ part ok ek ko dekok ok ok

eq CorrespondingState(AgentState(waitP, ordinary)) = AgentState(offerEvaluationl, ordinary) . 3]
eq CorrespondingState(AgentState(offerEvaluationP, ordinary)) = AgentState(waitl, ordinary) .

eq CorrespondingCondition(SendPropose) = HasProposal . **[4]
eq CorrespondingCondition(SendReject) = NoProposal .

endfm

Figure 21 : The module ATN-LINK .
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6.2 Validation of the Generated Description

The rewriting logic offers a great flexibility in terms of simulation of a specification, in
particular, concerning the choice of the initial configuration. This choice plays a
primordial role in the validation of the description of a system. Using all the system’s
description, we can validate a part of the system without involving the rest. We
worked on the simulation of several features related to the dynamic behavior of the
agents. We also consider: (1) the behavior that starts by sending a CFP message by the
Auctioneer to the Bidders and finishes by a success after sending a message of accept
proposal to one of the Bidders, and (2) the behavior that begins by sending a CFP
message by the Auctioneer to the Bidders, and finishes by a failure after Bidders refuse
to propose. We take an example (Figure 22) of the first case with a given initial
configuration. The unlimited rewriting process (without indicating the number of
rewriting steps) of this configuration gives the result illustrated in figure 23.

< "Auctioneer" : Agent | CurrentAgentState : AgentState(startl, initial), MBox : EmptyMailBox, AcclList : “Bidder” >
< "Bidder" : Agent | CurrentAgentState : AgentState(startP, initial), MBox : MB1, AccList : “Auctioneer” >
Event("Auctioneer", AgentState(startl, initial), TrueCondition)

Event("Bidder", AgentState(offerEvaluationP, ordinary), IsAccepted)

Event("Auctioneer", AgentState(waitl, ordinary), HasMail)

Event("Auctioneer", AgentState(commitmentdecisionl, ordinary), TrueCondition) .

Figure 22: initial configuration

< "Auctioneer" : Agent | CurrentAgentState : AgentState(successl, final), MBox : EmptyMailBox, AccList : “Bidder” >
< "Bidder" : Agent | CurrentAgentState : AgentState(successP, final), MBox : MB1, AccList : “Actioneer” >

Figure 23: Auctioneer and Bidder finish in success.

The Auctioneer sends a CFP to the Bidders. After evaluating the proposals, the
Auctionner chooses one of the Bidders, by sending it a message of accept proposal.
This last receives the message and finishes by a success. To show the second case, we
choose the initial configuration of figure 24. The unlimited rewriting of this
configuration gives the result illustrated by figure 25.

< "Auctioneer" : Agent | CurrentAgentState : AgentState(startl, initial), MBox : EmptyMailBox, AccList : “Bidder” >
< "Bidder" : Agent | CurrentAgentState : AgentState(startP, initial), MBox : MB1, AccList : “Auctioneer” >
Event("Auctioneer", AgentState(startl, initial), TrueCondition)

Event("Bidder", AgentState(offerEvaluationP, ordinary), IsRefused)

Event("Auctioneer", AgentState(waitl, ordinary), HasMail) .

Figure 24: initial configuration

< "Auctioneer" : Agent | CurrentAgentState : AgentState(Failurel, final), MBox : EmptyMailBox, AccList : ACL >
< "Bidder" : Agent | CurrentAgentState : AgentState(FailureP, final), MBox : MB1, AccList : ACL1 >

Figure 25: Auctioneer and Bidder finish in Failure.

The auctioneer sends a CFP and launches its process of evaluation after a given
deadline. It finds no proposition. Therefore, all agents finish in failure.
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6.2 Implementation

Figure 26 illustrates a part of the code we developed. It visualizes, on the one hand, the
rewriting rule that describes the agent's behavior in the case where the final state
would not even extinct and, on the other hand, the limited rewriting (after 10 steps) of
the same initial configuration illustrated by figure 22.

mmand Prompt - edit

File Edit Search Uiew Optionz Help
F:“Haudellindows“maude—windows~atnl

crl [Stepll] : Event{A. %, Cond> < A : Agent ! CurrentAgentState = 5, MBox =
< Al = Agent | CurrentAgentState : 51, MBox : MB1,. AccList : AC
b d
SendMessage(A = AccomplishedActiond{S, Cond> : A1l> GetEvent<{A. S
< A = Agent | CurrentAgentState = &, MBox = MB. AccList = ACL >
< A1l - Agent | CurrentAgentState : 51, MBox : MB1,. AccList : A
if (I=Alived8> == falsze> and

(IsSendingAction{fAccomplishedfiction<{S,. Cond?»>» == truel .

endm

JE-JeE- 30 -3ef-J0f e -uE-JoE - o -ToE-Jo o -Jof-ef-Tof - Init ial chf iglll\atiunﬂ*ﬂ—mﬂﬂﬂmmﬂm

rew [18] £ "Auctioneer" : Agent | CurrentAgentState - AgentStatedstartl, initi
< "Bidder'" : Agent | CurrentfAgentState : AgentStatedstartP. initiall.
Event{"Auctioneer", AgentState<startl, initial?,. TrueCondition>
Event{"B AgentStatelofferEvaluationP,. ordinary>. IsfAccepted?

AgentStatedwaitl, ordinary?,. HazMail>
Event{"Auctioneer". AgentStatel{commitmentdecisionl. ordinary?. TrueCo

Figure 26: Part of the developed code.

The result of limited rewriting of the initial configuration indicated in figure 26 is
illustrated by figure 27. The Auctioneer launches its process of decision and the Bidder
waits its response.

WaudeWindowsmaude-windows\linetlinexec.exe

;mod COMMUNICAT I ON—COMPONMENT
redefining module

BASED—COMMUNI
redef ini .

rewrite [18]1 in ATH-BASED-COMMUNICATIMNG—AGENT : <({<{(Event{"Auctioneer',
AgentState<waitl,. ordinary?. HasMail) Event{("Auctioneer"', AgentState(
commitmentdecisionl,. ordinary),. TrueCondition?) Event("Bidder'". AgentState(
of ferEvaluationP,. ordinary). IsAccepted?) Event("Auctioneer'. AgentStated
startl, initial), TrueCondition2?»> < "Bidder' : Agent | CurrentAgentState =
AgentStatelstartP, initial).MBox : MB1.AccList = "Auctioneer" >3 <
"Auctioneer" : Agent | CurrentAgentState : AgentState{startl, initial>.MBox
: EmptyMailBox . AccList = "Biddewr' > .

reuvrites: 1208

result Configuration: < "Auctioneer" : Agent | CurrentAgentState : AgentStated

commitmentdecisionl,. ordinary).MBox : EmptyMailBox.AccList : "Bidder" > <

"Bidder" = Agent | CurrentAgentState : AgentStatedwaitP. ordinary>.MBox :

MBi.AccList : "Auctioneer" > Event("Auctioneer'. Agentitatec

commitmentdecisionl, ordinary), TrueCondition?

Figure 27 : Intermediate result of the limited rewriting process (after 10 steps) of the initial configuration.
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7 Conclusions and Future Work

Formal specification is an important issue in MAS development. Several approaches
addressing the specification of multi-agent's behavior have been proposed during the
last years. They are based on different formalisms (statechart, Petri Net or AUML).
Such formalisms adopt, in general, a diagrammatic or semi-formal notations.
Furthermore, such approaches only offer a partial formalization of multi-agents
systems. Using formal notations to specify MAS' behavior makes it possible to produce
precise descriptions. This also offers a better support to their verification and
validation process. In this paper, we presented a formal framework called DIMA-
Maude for supporting the formal description and validation of DIMA models. The
framework is described using the formal language Maude. The developed framework,
in its present version, is extensible. It is composed of several modules representing the
basic bricks for the formal description and validation of DIMA communicating agents
whose meta-behavior is described by an ATN. The Maude language is supported by a
tool. It allowed us, in addition of modeling, validating (based on a simulation) our
approach. Moreover, our model is reusable. This reusability is expressed essentially by
the decomposition that we performed. Furthermore, we plan to extend our approach
by integrating possibilities offered by the Maude language (model-checker) to verify
some properties of the specification of the DIMA model described in Maude. In this
future direction, we will verify, on the one hand, the internal behavior of a DIMA agent
and, on the other hand, the collective behavior of a group of DIMA agents.
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