
Technical report DAIMI-PB-569

Declarative Specialization for

Object-Oriented-Program Specialization

Helle Markmann Andersen∗ Ulrik Pagh Schultz
Department of Informatics DAIMI/ISIS

County of Aarhus University of Aarhus

May 12, 2004

Abstract

The use of partial evaluation for specializing programs written in im-
perative languages such as C and Java is hampered by the difficulty of
controlling the specialization process. We have developed a simple, declar-
ative language for controlling the specialization of Java programs, and in-
terfaced this language with the JSpec partial evaluator for Java. This lan-
guage, named Pesto, allows declarative specialization of programs written
in an object-oriented style of programming. The Pesto compiler auto-
matically generates the context information needed for specializing Java
programs, and automatically generates guards that enable the specialized
code in the right context.

Word count (detex | wc): 5039

1 Introduction

Partial evaluation is an automated technique for mapping generic programs into
specific implementations dedicated to a specific purpose. Partial evaluation has
been investigated extensively for functional [4, 5], logical [14] and imperative [2,
3, 6] languages, and has recently been investigated for object-oriented languages
by Schultz et al. [19, 20, 21].

To specialize a program the user must specify the context for which the
program is to be specialized. For imperative languages, not only must the
binding times of the entry point parameters be specified, but alias relations
and the individual binding times of each heap location of the context must also
be specified. A partial evaluator must provide an interface for specifying this
information, but use of this interface is typically tedious and error-prone. Worse,
the specialized code is only correct in the context it was specialized for, but the

∗Based on work done while a student at the University of Aarhus

decision of when to use the specialized code must by implemented manually
by the user. To remedy this problem, Volanschi et al. defined the language
specialization classes, that allows the user to declaratively specify the context
for which the program should be specialized [24]. When using this language
to specify the context, guards are automatically generated that execute the
specialized code only in the right context.

Specialization classes were however defined before partial evaluation for
object-oriented languages was fully developed. Although conceptually appro-
priate for controlling the specialization of object-oriented programs, in prac-
tice specialization classes suffer from a number of limitations which makes
it difficult to use them to specialize programs written in an object-oriented
style [18, 20, 21, 22]. Furthermore, the specialization classes compiler is not
integrated with a partial evaluator, so manual work is still needed.

We have developed an extended version of the specialization classes language,
named Pesto, which addresses the shortcomings of specialization classes. The
contributions of this paper are as follows:

• Extension of the syntax and semantics of declarative specialization to sup-
port specialization of programs written in an object-oriented style of pro-
gramming.

• Integration with an existing state-of-the-art partial evaluator for Java:
automatic generation of the context used for binding-time analysis, the
context used for specialization, and the guards used at run-time to select
the specialized code.

• Encapsulation of the residual code and associated guards into a single
module, using aspect-oriented programming.

Although Pesto as presented here is integrated with a specific partial evaluator,
we believe that the same principles would be usable with other partial evaluators
for object-oriented languages.

Specialization classes vs. Pesto

Our work is based on the concept of declarative specialization, as represented
by specialization classes [23, 24]. Nevertheless, the syntax and semantics has
evolved to the extent that we first present Pesto independently of specialization
classes, and then afterwards compare Pesto to specialization classes.

Overview

The rest of this paper is organized as follows. We first cover background and
motivation (Section 2), and then Section 3 presents the Pesto language. The
compilation of Pesto to a JSpec context is detailed in Section 4, Section 5 ex-
perimentally assesses the overhead due to using guards, and Section 6 discusses
related work. Last, Section 7 presents our conclusions and outlines future work.

2

2 Background and Motivation: Object-Oriented-

Program Specialization

2.1 Partial evaluation

Partial evaluation is a program transformation technique that optimizes a pro-
gram fragment with respect to information about a context in which it is used,
by generating an implementation dedicated to this usage context. Partial eval-
uation works by aggressive inter-procedural constant propagation of values of
all data types [10]. Partial evaluation thus adapts a program to known (static)
information about its execution context, as supplied by the user (the program-
mer). Only the program parts controlled by unknown (dynamic) data are recon-
structed (residualized). In this paper, we work with off-line partial evaluation,
where a preprocessing phase, the binding-time analysis, separates the program
into its dynamic and static parts, after which a specialization phase evaluates
the static parts of the program.

2.2 Partial evaluation for object-oriented languages

Partial evaluation of an object-oriented program is based on the specialization
of its methods [21]. The optimizations performed includes eliminating virtual
dispatches with static receivers, reducing imperative computations over static
values, and embedding the values of static (known) fields within the program
code. A specialized method thus has a less general behavior than the unspecial-
ized method, and it accesses only those parts of its parameters (including the
this object) that were considered dynamic.

Typically, an object-oriented program uses multiple objects that interact us-
ing virtual calls. For this reason, the specialized methods generated for one class
often need to call specialized methods defined in other classes. Thus, partial
evaluation of an object-oriented program creates new code with dependencies
that tend to cross-cut the class hierarchy of the program. This observation
brings aspect-oriented programming to mind; aspect-oriented programming al-
lows logical units that cut across the program structure to be separated from
other parts of the program and encapsulated into an aspect [12]. The meth-
ods generated by a given specialization of an object-oriented program can be
encapsulated into a separate aspect, and only woven into the program during
compilation. Access modifiers can be used to ensure that specialized methods
only can be called from specialized methods encapsulated in the same aspect,
and hence always are called from a safe context. Furthermore, the specialized
code is cleanly separated from the generic code, and can be plugged and un-
plugged by selecting whether to include the aspect in the program.

Example: generic power function

Figure 1 shows an implementation of the classic power function parameterized
by an exponent and a binary operator (which must be a subclass of BinOp). The

3

public abstract class BinOp {

public abstract int

apply(int x, int y);

public abstract int neutral();

}

public class Mul extends BinOp {

public int apply(int x, int y) {

return x*y;

}

public int neutral() {

return 1;

}

}

public class Add extends BinOp {

...

}

public class Power {

BinOp op;

int exp;

public Power(BinOp op, int exp) {

this.op=op; this.exp=exp;

}

public int raise(int base) {

int r=op.neutral();

int e=this.exp;

while(e-->0)

r=op.apply(r,base);

return r;

}

}

Figure 1: Generic power program

class Power could be used as follows:

(new Power(new Mul(),3)).raise(x)

This expression computes x3. We can specialize the method Power.raise for this
exponent and operator, to obtain a more efficient version. The result is shown in
Figure 2, in AspectJ [11, 25] syntax. The aspect lists two methods to introduce
into the classes of the program. The method raise_spec is public and is therefore
visible outside the aspect. In this method, the loop has been unrolled, and a
virtual dispatch is no longer needed when invoking the binary operator. The
method apply_0 is private to the aspect and is therefore only visible to other
methods defined within the same aspect.1 When the programmer knows that
the cubic operation is needed, the method raise_spec can simply be called on
an instance of class Power.

2.3 The JSpec partial evaluator

JSpec is an off-line partial evaluator for the Java language, excluding excep-
tion handlers, multithreading, reflection and finally regions. It takes as in-
put Java bytecode and native functions, and generates residual code in As-
pectJ [11, 25] syntax. The JSpec binding-time analysis is context-sensitive,

1The method apply_0 could in this case easily be inlined into the caller. Nevertheless, in
general methods cannot always be inlined between classes, because they may need to access
private members in the residual program. Moreover, in the case of Java, inlining is often best
left to the dynamic compiler [21]. For these reasons, we do not use method inlining in this
paper.

4

public aspect Cube {

public int Power.raise_spec(int base) {

int r=1;

r=Mul.apply_0(r,base); r=Mul.apply_0(r,base); r=Mul.apply_0(r,base);

return r;

}

private static int Mul.apply_0(int x, int y) {

return x*y;

}

}

Figure 2: Power program specialized for three multiplications

class-polyvariant (each object creation site is assigned a binding time individ-
ually), use-sensitive [8], and flow-sensitive. JSpec is applied to a user-selected
program slice, which allows time-consuming analyses and aggressive transfor-
mations to be directed towards critical parts of the program.

JSpec is nonetheless not an easy tool to use. A major usability issue is the
way the programmer interacts with the partial evaluator. To specialize a pro-
gram slice, the user is required to describe the context of this slice to the partial
evaluator. For Java, the context includes information on the binding time and
alias relation of the parameters of the method to be specialized, including the
this object and any objects it may refer to. This information is communicated
to the partial evaluator by writing a piece of code that computes the context
for which the method is to be specialized. This approach allows an arbitrary
context to be created, but is often more general than what is needed. Moreover,
programming the context correctly is difficult, even for an expert programmer.

Example: the context of the power function

A general context which allows JSpec to specialize the power program of Figure 1
for any exponent and any of the two binary operators is shown in Figure 3. The
class AnalysisContext defines a static field for each of the parameters of the entry
point and the static method set initializes these fields to the context required
for analysis. This method uses a static conditional to select which operator to
use. This idiom indicates to the partial evaluator that the operator is statically
known and is either of class Mul or class Add. The class SpecializationContext

is similarly constructed, but reads the concrete choice of operator and exponent
from a file. Reading this information from a file avoids having to recompile the
specializer every time the context changes. Both these classes must however be
written by the user, which is tedious and error-prone.

5

public class AnalysisContext {

public static Power _this;

public static int base;

public static void set() {

BinOp op;

int exp;

if(StaticValue.get_boolean())

op=new Mul();

else

op=new Add();

exp=StaticValue.get_int();

_this=new Power(op,exp);

}

}

public class SpecializationContext {

public Power _this;

public int base;

public void set() {

BinOp op;

int exp;

try {

DataInputStream in=...;

String operator=in.readLine();

if(operator.equals("*"))

op=new Mul();

...

} catch(IOException e) {

throw new ConfigurationError();

}

_this=new Power(op,exp);

}

}

Figure 3: General analysis and specialization context for the power example

3 Pesto

Pesto is a declarative language that allows the user to declare invariants for
specialization scenarios in a high-level and modular way. The Pesto compiler
automatically generates all context and configuration information needed to use
the JSpec partial evaluator, and automatically generates guards that selects the
specialized code when the invariants are satisfied. This section describes the
Pesto language; the compilation process is described in Section 4 and the BNF
of Pesto is given in the appendix.

3.1 Introducing Pesto

The Pesto language allows the user to declare quasi-invariants: invariants that
often hold and therefore are worth specializing for. The specialized code is
automatically generated based on the invariants and is automatically used when
and only when the quasi-invariants are satisfied. Specifically, quasi-invariants
can be declared for every class in the program, and a single method can be
specialized based on these invariants. The specification of quasi-invariants is
separated into two phases, matching the way binding-time analysis is done before
specialization.

A generic specialization scenario is described using specialization class dec-
larations, which can declare invariants over fields and method parameters. As
an example, the specialization class SpecPower for the power example is shown
in Figure 4, left. The exponent is declared to be static (designated using the ex-
clamation mark), the operator is declared to be static and an instance of either

6

specclass SpecPower specializes Power {

exp == !;

op: Mul | Add;

public int raise(int base);

}

SpecPower {

exp = 3;

op: Mul;

}

Figure 4: Specializing Power.raise using Pesto

class Mul or class Add, and the method raise is designated as the specialization
entry point.

Invoking the Pesto compiler with SpecPower as an argument causes the power
program to be analyzed by JSpec and a value template to be generated. This
value template is edited by the user to instantiate the specialization class with
concrete values, as shown in Figure 4, right. This values file is passed as argu-
ment to the Pesto compiler, which generates the specialized program shown in
Figure 5. Here, all methods are declared as private, implying that they cannot
be called from an arbitrary context. The pointcut declaration designates the
method Power.raise, and is used to specify an action that happens around this
method when it is invoked. The action is to invoke the guard to determine
whether the Power object is in the state specified in the specialization context
and, if so, invoke the specialized method. Conversely, if the Power object is
not in the correct state, the generic method is invoked. Since all methods of
the aspect are private, multiple specializations each encapsulated into their own
aspect can be compiled into the program.

3.2 Specialization module

A specialization module is a collection of specialization classes which describe a
general specialization scenario. Exactly one of these specialization classes must
specify an entry point. Only methods from the classes listed in the module are
considered for specialization.

A specialization class C specifies quasi-invariants for a Java class J, as follows:

specclass C specializes J { ..body.. }

The body can contain predicates on the fields of J and optionally an entry point
that must be a method of J. The entry point can define predicates on the formal
parameters of the method. Specialization is done for the context defined by the
predicates, and the guards which are generated by the compiler test the same
predicates.

A predicate on a variable (field or formal parameter) can either be fixed
static, static, or dynamic. A fixed static predicate indicates that the variable is
static and always has this specific value in the given scenario. A static predicate
indicates that the variable is static but can vary with each instance of the
scenario. Variables not mentioned in any predicates are considered dynamic.
Static predicates allow binding-time analysis to be performed independently of
the concrete values. Concrete values are nonetheless needed to complete the

7

public aspect Cube{

private int Power.raise_spec(int base) { ... }

private static int Mul.apply_0(int x, int y) { ... }

private boolean Power._guard_Cube(int base){

if (!(this.exp == 3)) return false;

if (!(this.op.getClass() == Mult.class)) return false;

return true;

}

pointcut _raise_entrypoint (Power _power, int _raise_base):

call (int Power.raise(int))

&& args(_raise_base)

&& target(_power);

int around(Power _power, int _raise_base):

_raise_entrypoint(_power, _raise_base) {

if (_power._guard_Cube(_raise_base)) {

return _power._raise_spec(_raise_base);

} else {

return proceed(_power, _raise_base);

}

}

}

Figure 5: Specialized program generated by the Pesto compiler for the Cube
specialization class

specialization process. These are communicated to Pesto using a values file
which contains the concrete values for a specific scenario.

3.3 Predicates on fields

A fixed static predicate on a primitive field x can be declared as: “x == 3;”,
indicating that in this scenario x always has the value 3. A static predicate
for the same field is simply declared as: “x == !;”. Conversely, a fixed static
predicate on a reference field y is written: “y: C;”. This indicates that the field
y references an object of class C. Specifically, the predicate is true when the
concrete type of the object referred to by y is C; subclasses of C are not allowed.
A static predicate on a field indicates the set of possible classes that the field
may refer to: “y: C1 | ... | Cn;”. To express predicates on an object referred
to by a field, the field is qualified by a specialization class rather than a Java
class, e.g. “y: C;” meaning that y must fulfill the predicates declared in the
specialization class C.

8

3.4 Entry point declaration

The entry point is the method that is targeted by the specialization process,
along with any callees defined in other classes of the specialization module.
The entry point specifies a method signature in standard Java syntax, but can
optionally also specify predicates on the formal parameters. For example:

int raise(int base) { where base == 2; }

To specify that the Power.raise method is to be specialized with 2 as the base
value. The same predicates as were usable on fields are usable on formal pa-
rameters, with identical syntax.

3.5 Arrays

Predicates over references to arrays can be used to specify the type of the
array object, the length of the array, and the contents the array. The predicate
“x: Power[!]” indicates that the variable x refers to an array of type Power[]

with a statically known length (a fixed length could also have been specified).
The contents of a fixed static array can be specified as follows:

x: BinOp[2] = { Mul, Add };

This predicate indicates that x references an array of size 2 where the first
element has concrete type Mul and the second element has concrete type Add.
Similarly, the contents of a static array can be specified as follows:

x: BinOp[!] = [Mul | Add];

This predicate indicates that x references an array with static length, and that
the objects contained in the array have concrete types Mul or Add. As was the
case earlier, specialization classes can be used in the place of concrete classes to
specify invariants over the fields of the objects contained in the array.

3.6 Declaring alias information

Alias information is a critical part of the program context, since side-effects are
traced using an alias analysis. The semantics of Pesto is that each specialization
class represents one or more objects of the Java class that is specialized by the
specialization class. These objects are assumed to be aliased, whereas the sets
of objects represented by other specialization classes are assumed to be disjoint
from this set. Likewise, predicates that qualify a reference by a Java class are
assumed to refer to disjoint sets of objects.

The specialization phase operates on a concrete context where object in-
stances are manipulated by the static code parts. These object instances must
correspond to the concrete instances from the context, so all aliasing must be
disambiguated. This is done in the values file, by annotating the specialization
class instantiations with variant numbers. For example, Mul#1 and Mul#2 denotes

9

Exp left ;

return env [identifier];

int identifier
Unary
Exp arg;

*

float eval env[]float()float eval env[]float()

return left. eval (env)+ right.eval (env);

return −arg;

Calculate

 return
}

(e,
e.

calcpublic float Exp float [] env) {
eval

Multiplication

Constant
float

return

Exp

right;
value;

value;

Binary

Exp

2

*

float)[]eval float(env

1

Variable

)[] envfloatfloat eval (float eval)env[]float(

float eval (float [] env)Addition

return left. eval (env)* right.eval (env);

(env);

Negation

Figure 6: Class diagram of arithmetic expression interpreter

two different instances of the class Mul. Instances without variant numbers are
assigned the default number zero.

A guard that unambiguously recognizes a specific aliasing context must com-
pare the identity of all objects in the context, for example to determine if two
fields that were declared to refer to different objects refer to the same object.
Performing such a comparison is non-trivial and is computationally expensive
(quadratic in the number of objects). Nonetheless, precise treatment of aliases
is not always required, so the programmer should be allowed to select between
precise and approximate guarding with regards to alias information. The cur-
rent implementation of Pesto only supports approximate guarding, where the
fields of each object are inspected, but the identity of each object is not tested.

Example: arithmetic expression interpreter

As an example, we use the arithmetic expression interpreter summarized in
the class diagram of Figure 6. Here, the recursive method eval is defined by
each class, and takes an environment that maps each variable (numbered by
an integer) to its value. The method calc can be specialized for a concrete
expression, to produce a compiled Java expression.

An excerpt of the required specialization module is shown in Figure 7. The
specialization class SpecExp describes the entry point. Each type of node is spe-
cialized by a specific specialization class with static references to all other kinds
of nodes, describing a mutually recursive data structure. The values file shown
in Figure 8 contains the instantiated specialization classes for the expression
“87*(x*x)”. The two multiplication nodes are represented as separate objects,
as are the objects of class Variable. Nevertheless, the guards which Pesto gener-
ates for this expression cannot differentiate between representing this expression
as a tree and as a DAG. In this particular case, since there are no side-effects on

10

specclass SpecExp specializes Calculate {

public float calc(Exp e, float []env) {

where e: SpecMult | SpecAdd | SpecConst | SpecVar | SpecNeg;

where env: float[!];

}

}

specclass SpecMult specializes Multiplication {

left: SpecMult | SpecAdd | SpecConst | SpecVar | SpecNeg;

right: SpecMult | SpecAdd | SpecConst | SpecVar | SpecNeg;

}

...

specclass SpecConst specializes Constant {

value == !;

}

Figure 7: Specialization module for the program of Figure 6

the nodes and no object identity comparisons, both a tree context and a DAG
context is correct for the specialized code.

4 Compiling Pesto

We describe the compilation of a simplified version of Pesto to Java by a syntax-
directed translation. Pesto supports all Java primitive types and arrays; the
simplified version of Pesto that we describe only supports integer as a primitive
type and does not support arrays. The compilation of predicates involving
arrays are described informally at the end of this section.

4.1 Overview

Compilation of a specialization module generates the analysis context, special-
ization context, and values file template. The guards are generated by the
specialization context, when the concrete specialization context has been com-
puted. The guards are combined with the output of JSpec to form a complete
residual program. Compilation also generates a configuration file based on op-
tions declared directly in the specialization module; we refer to the first author’s
MS for details [1].

The current version of Pesto uses no-argument constructors to create object
instances and directly assigns values to fields. Thus, any class which is to be
specialized must contain a no-argument constructor and must declare its fields
as public (these limitations are however not intrinsic to Pesto, as described in
Section 7).

11

SpecExp {

public float calc(Exp e, float []env) {

where e: SpecMult#0;

where env: float[1];

}

}

SpecMult#0 {

left: SpecConst#0;

right: SpecMult#1;

}

SpecConst#0 {

value = 87;

}

SpecMult#1 {

left: SpecVar#0;

right: SpecVar#1;

}

SpecVar#0 {

identifier = 1;

}

SpecVar#1 {

identifier = 1;

}

Figure 8: Values file containing instantiated specialization classes for the sce-
nario described in Figure 7

4.2 Analysis context

Figure 9 shows the top-level translation for the analysis context. The first rule
takes a specialization class E containing an entry point and a number of spe-
cialization classes, S1, . . . , Sm. They are translated to the class AnalysisContext
which contains the method set. The rule D declares the fields required by
JSpec, e.g., _this and the parameters of the entry point. The rule I produces
a declaration of an object instance for each specialization class. In the JSpec
binding-time analysis, an object allocation site is interpreted as producing one
or more objects, which matches the semantics of Pesto. To produce the required
context, assignments are made to the fields of these object instances.

Figure 10 shows the assignment of binding times and alias relations for pred-
icates; the rule lhs (left hand side) abstracts over whether a variable is an in-
stance variable or a parameter. The methods in the classes StaticValue and
DynamicValue are provided by the JSpec environment, and are used to obtain
static and dynamic values, respectively. The method DynamicValue.get_object()

represents an allocation site which can produce an object of any class used in
the program (the set of all classes is known when the partial evaluator processes
the program).

A predicate on a reference qualified by a Java type J is handled by assigning
a new object of class J , which gives the field static binding time and sets the alias
relation to this object. A static predicate uses the static conditional idiom to
associate the variable with the set of possible classes. The rule for ”v:S” handles
fixed static predicates that bind a variable to a specialization class by assigning
the variable to the corresponding instance that represents the specialization
class.

12

[[E S1 S2 . . . Sm]] →

public class AnalysisContext {
D[[E]]
public static void set() {

I[[E]] I[[S1]] I[[S2]] . . . I[[Sm]]
[[E]] [[S1]] . . . [[Sm]]
_this = inst_E;

}

}

D[[specclass E specializes J{ p1 p2 ...pk e }]] → public static J _this; D[[e]]

D[[public int f(T1 p1, T2 p2, ...,Th ph) {where p1 ... where pk }]] →

public static T1 p1;
...

public static Th ph;

I[[specclass N specializes J{ p1 p2 ...pk e }]] → J inst_N = new J();

Figure 9: Top-level declarations for the analysis context

[[specclass E specializes J{ p1 p2 ...pk e }]] → [[p1]](E) [[p2]](E) . . . [[pk]](E) [[e]]

[[specclass Si specializes Ji { p1 p2 ...pk }]] → [[p1]](Si) [[p2]](Si) . . . [[pk]](Si)

[[public int f(r1, r2,..., rh) {where p1 ... where pk }]] →

[[p1]](ε) [[p2]](ε) . . . [[pk]](ε)

[[v == !]](L) → lhs(L, v) = StaticValue.get_int();

[[v == number]](L) → lhs(L, v) = StaticValue.get_int();

[[d]](L) → lhs(L, d) = DynamicValue.get_int();
for each primitive field d not declared in L

[[v:J]](L) → lhs(L, v) = new J();

[[v:S]](L) → lhs(L, v) = inst_S;

[[v: T1|T2|...|Tk;]](L) →

if (StaticValue.get_boolean()) {

[[v: T1]](L)
} else {

[[v: T2|T3|. . . |Tk]](L)
}

[[d]](L) → lhs(L, d) = (J)DynamicValue.get_object();
for each reference type field d of type J not declared in L

lhs(C, v) = inst_C.v
lhs(ε, v) = v

Figure 10: Translation of predicates for the analysis context

13

[[E S1 S2 . . . Sm]] →

public class SpecializationContext {
[[E]] [[S_1]] . . . [[S_m]]

}

[[specclass E specializes J {p1 p2 ...pk e}]] →

public static J _this;

D[[e]]
public static void set() {

_this = meth_E(0);
}

public static J meth_E(int n) {

J inst_E = new J();

S [[p1]](E, ε) S [[p2]](E, ε) . . . S [[pk]](E, ε) S [[e]](ε, ε)
A[[p1]](E) A[[p2]](E) . . . A[[pk]](E) A[[e]](ε)
return inst_E;

}

[[specclass Si specializes Ji{ p1 p2 ...pk e }]] →

public static Ji meth_Si() {

Ji inst_Si = new Ji();

S [[p1]](Si, ε) S [[p2]](Si, ε) . . . S [[pk]](Si, ε)
A[[p1]](Si) A[[p2]](Si) . . . A[[pk]](Si)
return inst_Si;

}

D[[public int f(T1 r1, T2 r2, ...,Th rh) {where p1 ...where pk}]] →

public static T1 r1;

public static T2 r2;
...

public static Th rh;

Figure 11: Top-level declarations for the specialization context

4.3 Specialization context

The specialization context creates the concrete context for which the program
slice is to be specialized. The values file containing the concrete specializa-
tion class instantiations is parsed during specialization and used to compute
the context. Generation of guards is performed by the code generated for the
specialization context, but we for clarity present this separately.

The translation from declarations to specialization context is shown in Fig-
ure 11. For each specialization class in the file, a method is generated which
creates and initializes an instance of this specialization class; it takes as argu-
ment an integer which indicates the variant to generate (see Section 3.6). The
generation of each predicate uses two rules, S and A. The rule S generates
code to obtain the concrete value either implicitly from the specialization class

14

S[[v == number]](C, m) → String str(C, v) = number;

S[[v == !]](C, m) → String str(C, v) = getValue(“C”, “vn(m, v)”, n);

S[[v:J]](C, m) → ObjectValue str(C, v) = new ObjectValue(“J”, n);

S[[v:S]](C, m) → ObjectValue str(C, v) = getTypeValue(“C”, “vn(m, v)”, n);

S[[v: T1|T2|...|Tk;]](C, m) →

ObjectValue str(C, v) = getTypeValue(“C”, “vn(m, v)”, n);

S[[public int f(T1 r1, T2 r2, ...,Tl rl) {where p1 ...where pk }]](C, m) →

S[[p1]](C, f) S[[p2]](C, f) . . . S[[pk]](C, f)

vn(m, v) = m(v)
vn(ε, v) = v

str(C, v) = s_C_v

str(ε, v) = s_v

Figure 12: Collecting concrete values in the specialization context

(fixed static predicate) or by reading it from the values file. This rule uses two
arguments: the name of the specialization class and the name of the method
if the predicate concerns the entry point. The rule A assigns the value just
obtained to the appropriate variable.

The definition of S is shown in Figure 12. For a fixed static predicate, the
value is stored in the variable denoted by str(C, v). Otherwise, the method
getValue is called with the name of the specialization class, the name of the
variable, and the variant number as arguments; this method reads the concrete
value from the values file. The same construction is used for reference types,
except that the value is stored in an ObjectValue object.

After collecting the concrete values, they are assigned to the appropriate
variables, as shown in Figure 13. In general, the value is obtained from the
variable created in S, str(C, v). The rule “v:S” assigns a value by recursively
calling the method meth_S with the specialization class variant number as an
additional argument. The rule “v: T1|T2|. . . |Tn” generates code to recursively
call the correct method depending on the value read from the values file.

4.4 Guards

Guards are used at runtime to select the specialized entry point when it is called
from the context for which it was specialized. The concrete context which was
computed by the method SpecializationContext.set during specialization is
used to generate the guards, so all predicates can be treated as if they were
fixed static. The guards are encapsulated into the same aspect as the specialized
code, and are introduced as private methods into the concrete Java classes they
need to inspect.

There are primarily two kinds of guards: call-time guards which check the
entire context when the entry point is called and modification-time guards which

15

A[[v == number]](C) → lhs(C, v) = number;

A[[v == !]](C) → lhs(C, v) = Integer.valueOf(str(C, v)).intValue();

A[[v:J]](C) → lhs(C, v) = new J();

A[[v:S]](C) → lhs(C, v) = meth_S(str(C, v).n);

A[[v: T1|T2|...|Tn;]](C) →

if (str(C, v).value.equals(“T1”)) {

A[[v : T1]](C) ;

} else {

A[[v : T2|. . . |Tn]](C)
}

A[[public int f (T1 r1,T2 r2,..., Th rh){where p1... where pk}]](C) →

A[[p1]](ε) A[[p2]](ε) . . .A[[pk]](ε)

str(C, v) = s_C_v

str(ε, v) = s_v

Figure 13: Assigning the concrete values in the specialization phase.

incrementally check the context every time a field is modified. Depending on the
scenario, modification-time guards may be more efficient than call-time guards,
but are more limited: only private fields can safely be guarded. Since arrays
effectively only contain public fields (the length and the contents), modification-
time guards cannot be used to protect them. Moreover, predicates on entry point
parameters are only meaningful with call-time guards. Pesto only implements
call-time guards; we consider the support for modification-time guards to be
future work.

The specialization module is translated into an aspect where the specialized
methods must be inserted. Each specialization class is translated into a guard
method, as shown in Figure 14. The rule G shown in Figure 15 generates the
code needed to check each predicate. All predicates must be true for the guard
to be satisfied.

4.5 Arrays

The analysis context initializes array objects according to the specialization class
declaration, making use of the fact that JSpec does not differentiate between
array indices, so initializing a single index of the array creates the right context.
The specialization context reads the contents of the array from the values file.
The guards generated for an array object inspect the length and each index of
the array, as required by the predicate.

16

[[E S1 S2 . . . Sm]] →

[[E]] [[S_1]] . . . [[S_m]]

[[specclass E specializes J{p1 p2 ...pk e}]] →

public aspect E{

public boolean J .guard_E(P [[e]]) {

G[[p1]](this.) G[[p2]](this.) . . . G[[pk]](this.) G[[e]](ε)
return true;

}

pointcut entrypoint (J _j, P [[e]]):
call (int R.f(T1, T2, . . . , Th))

&& args(_r1, _r2, . . . ,_rh)

&& target(_r);
int around(R _r, T1 _r1, T2 _r2, . . . , Th _rh):

entrypoint(_r, _r1, _r2, . . . , _rh) {

if (_r.guard_L(_r1, _r2, . . . ,_rh)

return _j._f_spec(_r1, _r2, . . . ,_rh);
} else {

return proceed(_R, _r1, _r2, . . . , _rh);
}

}

}

where e = public int f(T1 r1, T2 r2, . . . ,Th rh) {where . . . }
r = lowercase(R) and j = lowercase(J)

[[specclass Si specializes Ji{p1 p2 ...pk e}]] →

public boolean Jii._guard_Si(){

G[[p1]](this.) G[[p2]](this.) . . .G[[pk]](this.)
return true;

}

P[[public int f(T1 r1, T2 r2, ...,Th rh) { where p1 ... where pk}]] →

T1 r1, T2 r2, . . . , Th rh

Figure 14: Top-level declarations for guards

G[[v == number]](p) → if (!(pv == number)) return false;

G[[v:J]](p) → if (!(pv.getClass() == J .class)) return false;

G[[v:S]](p) → if (!(pv.getClass() == RS .class)) return false;
if (!(((RS)pv)._guard_S())) return false;

where RS = rootclass(S)

G[[public int f(T1 r1, T2 r2, ..., Th rh) { where p1 ... where pl}]](p) →

G[[p1]](p) G[[p2]](p) . . .G[[pk]](p)

Figure 15: Translation of predicates for guards

17

class Test {

public int outer(Power p) {

int result=0;

for(int i=0; i<MAX; i++)

result+=inner(p,i);

return result;

}

public int inner(Power p, int i) {

return p.raise(i);

}

}

// Outer placement scenario

specclass Outer specializes Test {

int outer(Power p) {

where p: SpecPower;

}

}

// Inner placement scenario

specclass Inner specializes Test {

int inner(Power p, int i) {

where p: SpecPower;

}

}

Figure 16: Inner and outer placement of guards for the power example, using
definitions from Figures 1 and 4

5 Experiments

The placement of guards is crucial for the execution time of a specialized pro-
gram. Guard placement is decided by the programmer when choosing the entry
point. As it is relatively expensive to test the guard, it should not be placed in a
critical execution path, if possible. In our experiments, we compare the speedup
which results from specialization with guards that target an entry point placed
inside a critical loop and guards that target an alternate entry point placed
outside the same loop, as exemplified for the power program in Figure 16.

We measure the overhead due to guards using four benchmark programs:
the power program from Figure 1, a simulated robot controller program written
using the observer design pattern (specialization can be done for the concrete
observers) [1, 7], the arithmetic interpreter from Figure 6, and a reimplemen-
tation of the OoLaLa object-oriented linear library [16] (specialization of the
norm operation for a specific representation and iterator direction [21]).2 All
programs are declaratively specialized using Pesto with JSpec as the underlying
partial evaluator. Experiments are performed a Dual Pentium III CPU 1 GHz
machine running Linux 2.4.18 with 16 Kb+16 Kb level-one cache, 256 Kb level-
two cache on each processor, and 1 Gb RAM. We use Sun’s JDK 1.4 HotSpot
compiler with server mode enabled and IBM’s JIT compiler [9].

The experimental results are shown in Table 1. TG is the running time of
the generic program, TSI is the running time of the specialized program with
the guard placed inside the loop, and TSO is the running time with the guard
placed outside the loop. There are significant speedups in all cases when the
guards are placed outside the loop. When the guards are placed inside the loop,
slowdown can result (Arith-Int on IBM’s JIT), but significant speedups are still
obtained in some cases (Power on HotSpot, Controller in both cases, OoLaLa
in both cases).

2The OoLaLa library is not publicly available, but was implemented faithfully by the
second author based on information from Luján’s MS [15].

18

IBM JIT 1.3.1 Sun Hotspot 1.4 -server
Experiment TG TSI speedup TSO speedup TG TSI speedup TSO speedup

Power 747 653 14% 168 345% 1343 319 321% 168 700%
Controller 1498 1012 48% † † 1528 1036 47% † †

Arith-Int 1036 653 -3% 62 1571% 1259 1077 17% 506 149%
OoLaLa 1538 712 116% 648 137% 1314 863 52% 894 47%

(†: The context varies with each iteration, so only TSI can be measured.)

Table 1: Experimental results, times are real-time measured in milliseconds

6 Related Work

The specialization classes language and compiler presented by Volanschi et al.
are the basis of our work [24]. The main limitation of specialization classes is the
lack of support for specifying precise invariants over reference types, which is a
core feature of Pesto. Other limitations include the lack of predicates on method
parameters and the lack of proper support for off-line specialization. Conversely,
the specialization classes compiler supports modification-time guards, which in
many cases are more efficient than the call-time guards offered by Pesto (but
which suffer from other limitations, as discussed in Section 4.4). Moreover,
specialization classes support a notion of inheritance which can be used to define
a precedence between entry points; we expect that a similar feature can be used
in a future version of Pesto. Last, we note that Pesto is the only system of
the two to have been completely integrated with a partial evaluator, and that
the use of aspect-oriented programming in Pesto is an improvement over the
parser/prettyprinter-based approach of specialization classes.

The specialization modules language of Le Meur et al. can be seen as a
version of specialization classes for a modular version of C [13, 17]. Compared
to Pesto, the main advantage of specialization modules is that binding-time
declarations are checked during binding-time analysis, so that an analysis er-
ror is generated if the declared binding times are inconsistent with the derived
binding times. Moreover, the tool support is much more mature, simplifying
the use of partial evaluation as a configuration tool. On the other hand, spe-
cialization modules do not offer automatic generation of guards, and it is not
possible to specify complex specialization contexts with aliasing such as the one
required for the arithmetic interpreter. Nonetheless, specialization modules are
integrated with Tempo, so an interesting improvement of Pesto would be to
generate specialization modules that could be used in JSpec, thus unifying the
two approaches.

7 Conclusion and Future Work

The Pesto language allows precise declaration of specialization scenarios for
programs written in an object-oriented style of programming. The implementa-
tion is integrated with the JSpec partial evaluator, and automatically generates

19

both the context information needed for the specialization of Java programs
and guards that select the specialized code in the appropriate context. In our
experience, these features dramatically improve the ease with which a partial
evaluator such as JSpec can be used. We believe that declarative front-ends
should be considered an essential part of any partial evaluator.

In terms of future work, we are interested in generalizing Pesto by factoriz-
ing the JSpec-specific features of the compiler into a pluggable back-end. The
current approach of relying on a default constructor and public fields would then
simply be one available back-end. Alternate back-ends could use Java reflection,
AspectJ, or an interface specific to the partial evaluator which e.g. allows access
to private fields (such an interface is under development for JSpec).

References

[1] H. Markmann Andersen. Deklarativ specialisering af objektorienterede
sprog. Master’s thesis, DAIMI, University of Aarhus, May 2003.

[2] L.O. Andersen. Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, Computer Science Department, University of
Copenhagen, May 1994. DIKU Technical Report 94/19.

[3] R. Baier, R. Glück, and R. Zöchling. Partial evaluation of numerical pro-
grams in Fortran. In ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM’94), pages 119–132,
Orlando, FL, USA, June 1994. Technical Report 94/9, University of Mel-
bourne, Australia.

[4] A. Bondorf. Self-Applicable Partial Evaluation. PhD thesis, DIKU, Uni-
versity of Copenhagen, Denmark, 1990. Revised version: DIKU Report
90/17.

[5] C. Consel. A tour of Schism: a partial evaluation system for higher-order
applicative languages. In Partial Evaluation and Semantics-Based Program
Manipulation (PEPM’93), pages 66–77, Copenhagen, Denmark, June 1993.
ACM Press.

[6] C. Consel, L. Hornof, F. Noël, J. Noyé, and E.N. Volanschi. A uni-
form approach for compile-time and run-time specialization. In O. Danvy,
R. Glück, and P. Thiemann, editors, Partial Evaluation, International Sem-
inar, Dagstuhl Castle, number 1110 in Lecture Notes in Computer Science,
pages 54–72, Dagstuhl Castle, Germany, February 1996. Springer-Verlag.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[8] L. Hornof, J. Noyé, and C. Consel. Effective specialization of realistic
programs via use sensitivity. In P. Van Hentenryck, editor, Proceedings of
the Fourth International Symposium on Static Analysis (SAS’97), volume

20

1302 of Lecture Notes in Computer Science, pages 293–314, Paris, France,
September 1997. Springer-Verlag.

[9] IBM. IBM JDK 1.3.1, 2001. Accessible from http://www.ibm.com/java/jdk.

[10] N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. International Series in Computer Science. Prentice-
Hall, June 1993.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An overview of AspectJ. In J.L. Knudsen, editor, Proceedings of the
European Conference on Object-Oriented Programming (ECOOP’01), vol-
ume 2072 of Lecture Notes in Computer Science, pages 327–353, Budapest,
Hungary, 2001.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Aksit and S. Mat-
suoka, editors, Proceedings of the European Conference on Object-oriented
Programming (ECOOP’97), volume 1241 of Lecture Notes in Computer
Science, pages 220–242, Jyväskylä, Finland, June 1997. Springer.

[13] A.F. Le Meur, J.L. Lawall, and C. Consel. Towards bridging the gap
between programming languages and partial evaluation. In Proceedings of
the 2002 ACM SIGPLAN workshop on Partial evaluation and semantics-
based program manipulation, pages 9–18. ACM Press, 2002.

[14] J.W. Lloyd and J.C. Shepherdson. Partial evaluation in logic programming.
Journal of Logic Programming, 11:217–242, 1991.

[15] M. Luján. Object oriented linear algebra. Master’s thesis, University of
Manchester, December 1999.

[16] M. Luján, T.L. Freeman, and J.R. Gurd. OoLaLa: an object oriented anal-
ysis and design of numerical linear algebra. In M.B. Rosson and D. Lea, ed-
itors, OOPSLA’00 Conference Proceedings, ACM SIGPLAN Notices, pages
229–252, Minneapolis, MN USA, October 2000. ACM Press, ACM Press.

[17] A.F Le Meur, J.L. Lawall, and C. Consel. Specialization scenarios: A
pragmatic approach to declaring program specialization. Higher-Order and
Symbolic Computation. To appear.

[18] U.P. Schultz. Object-Oriented Software Engineering Using Partial Evalua-
tion. PhD thesis, University of Rennes I, Rennes, France, December 2000.

[19] U.P. Schultz. Partial evaluation for class-based object-oriented languages.
In O. Danvy and A. Filinski, editors, Symposium on Programs as Data
Objects II, volume 2053 of Lecture Notes in Computer Science, pages 173–
197, Aarhus, Denmark, May 2001.

21

[20] U.P. Schultz, J. Lawall, C. Consel, and G. Muller. Towards automatic
specialization of Java programs. In R. Guerraoui, editor, Proceedings of
the European Conference on Object-oriented Programming (ECOOP’99),
volume 1628 of Lecture Notes in Computer Science, pages 367–390, Lisbon,
Portugal, June 1999. Springer-Verlag.

[21] U.P. Schultz, J.L. Lawall, and C. Consel. Automatic program specialization
for Java. TOPLAS, 25:452–499, July 2003.

[22] U.P. Schultz, J.L. Lawall, C. Consel, and G. Muller. Specialization pat-
terns. In Proceedings of the 15th IEEE International Conference on Auto-
mated Software Engineering (ASE 2000), pages 197–206, Grenoble, France,
September 2000. IEEE Computer Society Press.

[23] E.N. Volanschi. Une approche automatique à la spécialisation de com-
posants système. Thèse de doctorat, University of Rennes I, February 1998.

[24] E.N. Volanschi, C. Consel, G. Muller, and C. Cowan. Declarative specializa-
tion of object-oriented programs. In OOPSLA’97 Conference Proceedings,
pages 286–300, Atlanta, GA, USA, October 1997. ACM Press.

[25] AspectJ home page, 2000. Accessible from http://aspectj.org. Xerox Corp.

22

A Pesto grammar

pesto_file → specialization_class*

main_file

(extra_classes)?

(entrypoint_overwrite)?

specialization_class → specclass specclass_name specializes class_name {

(predicate_declaration;)*

method_declaration?

}

predicate_declaration → variable_declaration == value_declaration
| variable_declaration : type_declaration

method_declaration → method_prototype parameter_declaration
variable_declaration → field_name

| parameter
parameter_declaration → where predicate_declaration;

| {(where predicate_declaration;)+}

| ;

value_declaration → value
| !

type_declaration → array_type ([array_index])+(= contents_declaration)?

| types
array_type → (type (| type)+)

| type
array_index → integer

| !

types → type (| type)*

type → specclass_name
| class_name
| type_name

contents_declaration → [types]

| {types (, types)*}
| {value (, value)*}

specclass_name → identifier
main_file → main file: identifier.java

extra_classes → extra classes: {identifier.java (, identifier.java)*}
entrypoint_overwrite → entrypoint overwrite: (binding_time (, binding_time)*)
binding_time → S

| D

23

