
Facilitating the Practical Use of
Coloured Petri Nets

Bo Lindstrøm

PhD Dissertation

Department of Computer Science
University of Aarhus

Denmark

Facilitating the Practical Use of
Coloured Petri Nets

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

Explore Discover

OrganiseShare

Research

by
Bo Lindstrøm
30. July 2002

The future throws its shadow

at the present

in the light of the past

– Bo Lindstrøm, 1993.

Preface

Summary

Design and development of systems is a complex task which is even more com-
plex if the systems are distributed and concurrent. Therefore models are often
created of such systems to investigate the systems in various ways. Due to the
complexity of such models it is essential that modelling tools exist with support
for examining the models.

Coloured Petri nets (CP-nets or CPNs) is a formally founded graphical
language for modelling and analysis of concurrent and distributed systems.
The industrial use of CP-nets has increased during the latest years. This is in
particular due to the extensive development of tools supporting various uses of
CP-nets.

The primary purpose of this dissertation is to investigate and advance tools
for practical use of CP-nets. This includes development of facilities for creating
domain-specific graphical user interfaces, a proposal for facilities for including
auxiliary information in a CP-net without modifying the CP-net itself, and de-
velopment of general facilities for extracting information from a CP-net during
simulations. The tool facilities have been developed based on concrete needs
arising during practical projects, and have when possible been tested in these
projects.

The dissertation consists of two parts. Part I is the mandatory overview
paper which summarises the research. Part II is composed of five individual
papers and constitutes the core of this dissertation. All five papers have been
published or accepted for publication as workshop or journal papers.

The overview paper introduces CP-nets, motivates the research presented
in this dissertation, and summarises the contents and main contributions of the
five individual papers. A substantial part of the overview paper has also been
devoted to a discussion of related work for considering the results presented in
the papers from a broader perspective.

The first paper describes an approach which allows users without knowledge
of CP-nets to control simulations of CPN models and interpret the results ob-
tained from simulations via web-based interfaces. It describes the architecture
design of facilities in a simulation tool for making it possible to simulate a CPN
model via a web-based interface. The approach is based on giving the modeller
the ability to easily create a stand-alone program containing the entire simu-
lator. The initial conditions of the simulator for running several simulations
can then be specified via a web page. The fact that the initial conditions of a

vii

simulation can be specified via a domain-specific and user-relevant form, gives
users without knowledge of CP-nets and the actual simulation tool the ability
to use the pre-constructed simulators for specific analysis purposes. The paper
also illustrates that creating so-called batch scripts has some advantages. Batch
scripts give the user the ability to run several simulations after having specified
initial conditions for each simulation. Thus the user will be able to first specify
input via a web page and then based on that input run several simulations.

The second paper discusses CPN models of so-called timed influence nets
with logic which is a probabilistic modelling language. Previous work has de-
veloped a method to translate a timed influence net into a CP-net. The work
in this paper describes a new and more compact translation from timed influ-
ence nets with logic into CP-nets. The translation has the property that the
net structure of the CP-net will be the same for all translated timed influence
nets – only the initial marking changes depending on the actual timed influence
net. This more compact translation avoids the generation of simulation code
for each timed influence net. The paper also presents some validation results to
establish that the CPN models from the two methods are equivalent, i.e. that
the new compact CPN model gives the same simulation results as the old less
compact model does.

The third paper presents an environment for web-based simulation of in-
fluence nets to be used for operational planning. This paper combines the
methodologies developed in the first and second paper to conduct temporal
evaluation of plans via a web-based graphical user interface for the influence
net simulator implemented using CP-nets. Simulating the CP-net in a web en-
vironment makes it easy for a subject matter expert to use the CPN simulator
for planning without knowing the underlying CPN formalism and tools. This
paper discusses the use of influence nets for operational planning, a simula-
tor for influence nets implemented using CP-nets, and the architecture of the
complete web-site which can be used for operational planning.

The fourth paper presents a framework for designing and implementing
monitoring facilities in simulation tools. Monitoring is any activity related to
observing, inspecting, and controlling a simulation of a model. Several libraries
and tool extensions have been developed for facilitating visualisation of simula-
tion results, communication with external processes, and performance analysis.
Many of these extensions are enabled by integrating ad-hoc code into the CPN
model itself. The monitoring framework generalises the monitoring to a uniform
and flexible framework which can be used to create various types of monitoring
tools without changing the CPN model itself. The framework is presented in
general terms that are not specific for CP-nets. The goal of the framework is
that it should serve as a reference for implementing different types of monitors
in discrete-event system simulators.

The fifth paper discusses how auxiliary information can be added to CP-
nets. CP-nets can be used for several fundamentally different purposes like
functional analysis, performance analysis, and visualisation. To be able to use
the corresponding tool extensions and libraries it is sometimes necessary to
include extra auxiliary information in a CP-net. An example of such auxiliary
information is packet delay which is associated with a token to be able to do

viii

performance analysis. Modifying colour sets and arc inscriptions in a CP-net
to support a specific use may lead to creation of several slightly different CP-
nets – only to support the different uses of the same basic CP-net. The paper
proposes a method which makes it possible to associate auxiliary information,
called annotations, with tokens without modifying the colour sets of the CP-
net. The set of legal annotations is restricted so that annotations are guaranteed
to affect the behaviour of the basic CP-net in a very limited and predictable
manner. Annotations are created in annotation layers which makes it easy to
disable a set of annotations when using the CP-net for a purpose where the
annotations must be disabled.

ix

Acknowledgements

First and foremost, I want to thank Søren Christensen and Kurt Jensen for
supervision and inspiration during my Ph.D. studies. Also thanks for hiring me
as a student programmer for the Caplan project, and for giving me the oppor-
tunity to participate in various workshops, conferences, and summer schools.

Being a member of the Coloured Petri Nets Group (CPN group) at the
Department of Computer Science, University of Aarhus, thoughout my Ph.D.
study has been very rewarding. In particular because the CPN group consists
of people with different views and competences from whom I have learned a
lot. They have always been willing to comment on ideas and papers whenever I
needed it. I want especially to thank Lisa Wells, Louise Lorentsen, and Thomas
Mailund for various discussions and for sharing various opinions. In addition,
I am very grateful to Lisa Wells for excellent cooperation on both our common
Master’s thesis and on common projects during the past three years. I also
wish to thank Lars M. Kristensen for help, advise, and inspiration thoughout
our common time in the CPN group.

Janice Bogorad and Jan S. Thomasen from Hewlett-Packard also deserve to
be thanked for cooperation in the Caplan project and later in projects within
the HP-CPN centre.

Thanks to Alexander H. Levis and Lee W. Wagenhals for giving me the
opportunity to get insight into the research conducted on military systems by
hosting a five months visit to George Mason University (GMU), VA, USA in
the spring of 2001. During the visit I also had the pleasure to work with
several people whom I am all grateful. Especially, I am very grateful to Lee W.
Wagenhals, Sajjad Haider, Insub Shin, and Daesik Kim for good friendship and
for various cooperations in the CAESAR project. I also wish to thank Sajjad
Haider and Lee W. Wagenhals for participating in writing two of the papers
which are part of this dissertation.

Thanks to Ann Eg Mølhave for proof-reading the overview paper contained
in this dissertation.

I also wish to thank my parents for raising me to get a natural thirst for
knowledge, and for giving me my stubbornness and self-discipline from which I
have often benefitted.

Last, but not least, I am deeply grateful for the remarkable patience, sup-
port, and encouragement that my girlfriend, Anette, has given me throughout
my study.

The work accomplished in this dissertation has been supported by grants
from Hewlett-Packard and the Danish National Centre for IT research.

Bo Lindstrøm,
Århus, 30. July 2002

xi

Contents

Preface vii
Summary . vii
Acknowledgements . xi

I Overview 1

1 Introduction 3
1.1 Coloured Petri Nets . 3
1.2 Motivation and Aims of Dissertation 5
1.3 Outline of Dissertation . 6

1.3.1 Reader’s Guide . 7

2 Web-Based Simulation of CPN Models 9
2.1 Introduction and Background . 9
2.2 Main Contributions . 11

2.2.1 Domain-Specific GUIs for CPN Simulators 11
2.2.2 CPN Simulators for Influence Nets 14

2.3 Related Work . 15

3 Monitoring Framework 21
3.1 Introduction and Background . 21
3.2 Main Contributions . 22
3.3 Related Work . 24

4 Annotating Coloured Petri Nets 29
4.1 Introduction and Background . 29
4.2 Main Contributions . 31
4.3 Related Work . 33

5 Conclusions and Future Work 35
5.1 Summary of Contributions . 35
5.2 Future Work . 36

5.2.1 Web-Based Interfaces and Influence Nets 36
5.2.2 Monitors . 36
5.2.3 Annotations . 37

xiii

II Papers 39

6 Web-Based Interfaces for Simulators of CPN Models 41
6.1 Introduction . 43
6.2 Example: Backup Company . 45
6.3 Design of the Web-Based Approach 47
6.4 Implementation in Design/CPN 52

6.4.1 Disabling the GUI of Design/CPN 52
6.4.2 Creating CGI Scripts . 53
6.4.3 High-level Functions . 55

6.5 Creating CGI Scripts in Design/CPN 56
6.6 Conclusion and Future Work . 58
6.7 Acknowledgements . 61

7 Equivalent CPN Models of a Class of TINLs 63
7.1 Introduction . 65
7.2 Timed Influence Nets with Logic 68
7.3 Old Approach: Unfolded CPN Model 71
7.4 New Approach: Folded CPN Model 73

7.4.1 Hierarchy Page . 73
7.4.2 Top Page . 74
7.4.3 Folding Initial, Intermediate, and Terminal Nodes 75
7.4.4 Initialisation of the CPN Model 77

7.5 Validation . 78
7.5.1 Model Similarities and Statistical Information of the State

Space . 79
7.5.2 Boundedness Properties 80
7.5.3 Equivalent Paths in State Spaces 82

7.6 Conclusion and Future Work . 82

8 Operational Planning using Web-Based Interfaces to a CPN
Simulator of Influence Nets 85
8.1 Introduction . 87
8.2 Practical Use of the Operational Concept 90

8.2.1 Stage 1: Creating Influence Nets 90
8.2.2 Stage 2: Temporal Evaluation using CP-Nets 92

8.3 CPN Simulator for TINLs . 96
8.3.1 Motivation for the Generic CPN Model 96
8.3.2 Overview of the Generic CPN Model 97
8.3.3 Top Module . 97
8.3.4 Intermediate Nodes . 98
8.3.5 Initialisation of the CPN Model 100

8.4 Web-Based Simulation Environment 101
8.4.1 Structure of Web Environment 102
8.4.2 Controlling the TINL CPN Simulator from a Web Envi-

ronment . 103
8.4.3 Why Choosing a Web-Based Simulation Environment . . 105

xiv

8.5 Performance Results on Execution Time 105
8.6 Conclusion . 107

9 Towards a Monitoring Framework for DES Simulations 109
9.1 Introduction . 111
9.2 Example:Monitoring a Communication Protocol 113

9.2.1 The Communication Protocol 113
9.2.2 The Monitors . 114

9.3 Monitoring Framework . 117
9.3.1 Functionality of Monitors 117
9.3.2 Interface of Monitors . 119

9.4 Concrete Monitors . 120
9.4.1 Creating a Log-File Monitor 120
9.4.2 Standard and User-Defined Monitors 123

9.5 Conclusion and Future Work . 124

10 Annotating Coloured Petri Nets 125
10.1 Introduction . 127
10.2 Motivation . 129
10.3 Informal Introduction to Annotated CP-nets 131

10.3.1 Annotation Layer . 131
10.3.2 Translating an Annotated CP-net to a Matching CP-net . 133
10.3.3 Behaviour of Matching CP-nets 135

10.4 Using Annotation Layers in Practice 135
10.5 Formal Definition of Annotated CP-nets 139

10.5.1 Multi-sets of Annotated Colours 140
10.5.2 Annotation Layer . 140
10.5.3 Translating Annotated CP-nets to Matching CP-nets . . . 142
10.5.4 Matching Behaviour . 145
10.5.5 Multiple Annotation Layers 146

10.6 Conclusion . 147
10.A Proof of Matching Behaviour . 149

List of Figures 153

List of Tables 155

Bibliography 157

xv

Part I

Overview

1

Chapter 1

Introduction

This part of the dissertation provides an overview of the research conducted by
the author during the past three years. In addition to the overview part, this
dissertation consists of five individual papers.

This chapter is organised as follows. Section 1.1 gives a brief introduction
to coloured Petri nets (CP-nets or CPNs). Section 1.2 motivates and gives the
aims of the research presented in this dissertation. Section 1.3 gives a brief
overview of the research presented in this dissertation, and gives an outline of
the remaining chapters in this overview paper.

1.1 Coloured Petri Nets

CP-nets was formulated by Jensen [44, 45, 46] as a formally founded graphically
oriented modelling language. CP-nets are useful for specifying, designing, and
analysing concurrent systems. In contrast to ordinary Petri nets, CP-nets pro-
vide a very compact way of modelling complex systems, which makes CP-nets
a powerful language for modelling and analysing industrial-sized systems. This
is achieved by combining the strengths of Petri nets with the expressive power
of high-level programming languages. Petri nets provides the constructions for
specifying synchronisation of concurrent processes, and the programming lan-
guage provides the constructions for specifying and manipulating data values.

Practical use of CP-nets has been facilitated by developing tools to support
construction and analysis of systems by means of CP-nets. The Design/CPN
tool [27] is a tool supporting CP-nets which uses a variant of the programming
language Standard ML [83] as inscription language, i.e. the programming
language used for specifying data types and for manipulating data values.

Figure 1.1 shows an example of a simple CPN model which models a cal-
culator. The purpose of the figure is to give the reader an idea of what a CPN
model looks like. The CPN model is divided into two parts. The leftmost part
(left of the vertical dashed line) models a cycle of the graphical user interface
where a user types in two arguments and an operator on the buttons of the
calculator. This is followed by displaying the result of the computation. The
rightmost part models the computation based on the numbers and the operator
typed in by the user.

3

4 Chapter 1. Introduction

Result

Int

Calculate

color E = with e;
color Int = int;
color Operation = with add | sub | mul;
var operator: Operation;
var arg, arg1, arg2, result:Int;

Operator

Operation

Enter
Argument 1 Register 1

Int

Enter
Operator

Idle

E

1‘e

Continue

E

Enter
Argument 2

Continue

E

Register 2

Int

Waiting
for Results

E

Display
Result

Idle

E

1‘e

arg1

arg2

case operator of
 add => arg1+arg2
 | sub => arg1-arg2
 | mul => arg1*arg2operator

arg

operator

e

e

e

e

e

e

arg

e

e

result

e

e

Figure 1.1: CPN model of a simple calculator.

The syntactical elements of a CP-net consist of places (drawn as ellipses),
transitions (drawn as rectangles), arcs (connecting places and transitions), and
inscriptions (text strings associated with places, transitions, and arcs). Places
are used to model the state in a system. A state in the context of CP-nets is
called a marking which represent a distribution of data values (called tokens)
on the places of the CP-net. Each place has a colour set (or type) which
specifies the colours (or values) of the tokens that the place can hold. The
initial distribution of tokens is called the initial marking. Transitions are used
to model the dynamics or actions in the system. Arcs pointing to a transition
are called input arcs, while arcs pointing from a transition are called output arcs.
The arc expressions on input arcs determine what tokens have to be present on
input places to enable the transition. The arc expressions on output arcs specify
the tokens that will be added to the output places when the transition occurs.
In other words, when a transition is enabled, it may occur and thereby remove
tokens from the input places as specified by the expressions on the input arcs,
and add the tokens to the output places as specified by the expressions on the
output arcs.

A simulation is a sequence of consecutive occurrences of transitions, and

1.2. Motivation and Aims of Dissertation 5

corresponds to a single execution of the model. Instead of considering a single
simulation of a CP-net, a state space can be generated to represent all possible
simulations of the CP-net. A state space for a CP-net represents all reachable
states and state changes of the system, and can be represented as a directed
graph. Each node in the graph represents a reachable marking and each arc
represents an occurring binding element. A binding element is a pair consisting
of a transition and an assignment of data values to the variables appearing in
the expressions associated with the transition and the surrounding arcs of the
transition. From a state space it is possible to use state space analysis to answer
a large set of analysis and verification questions concerning the behaviour of the
modelled system, e.g. to prove the absence of dead-locks. Given a CP-net, the
state space can be generated automatically and analysed in the Design/CPN

tool using the Design/CPN State Space Tool [47].

1.2 Motivation and Aims of Dissertation

The work presented in this dissertation has been motivated by experiences with
practical use of CP-nets in industrial-sized project. When the work on this dis-
sertation was initiated in 1999, most practical use of CP-nets was conducted by
people who had knowledge and experience with CP-nets and the corresponding
modelling and analysis tools. However, in particular one industrial project [3]
showed that it is sometimes useful to be able to visualise simulations using
domain-specific graphics instead of inspecting the token values visually in the
CP-net. In other words, the information in the CP-net should be mapped to
concepts from the domain of the modelled system. This makes it possible for
people without knowledge of CP-nets and the corresponding tools to easily
understand and use simulations of CP-nets.

In many industrial projects, CP-nets are used primarily for modelling and
evaluating designs. Afterwards, a programming language like e.g. C++ [94]
is used for implementing the selected design. However, the project discussed
in [3] showed that the modelling language, CP-nets, used for modelling and
evaluating the design can also be used as the final implementation language. In
the project they extracted the simulator code from Design/CPN and used that
simulator code as the final implementation of the application. In other words,
CP-nets were not used only in the design phase of the project for creating and
analysing a model – they were also used as the implementation language. The
main motivations for the work presented in this dissertation comes from using
CP-nets as a grahical high-level implementation language and from creating
domain-specific graphical user interfaces (GUIs) for CPN simulators.

In order to make practical use of CP-nets accessible to people without knowl-
edge of CP-nets, it was necessary to develop a general method to abstract from
the CPN-specific concepts of the interaction with the CPN tools1. In other
words, facilities were needed for creating domain-specific GUIs for the CPN
tools so that it is possible to interact with the CPN tool using domain-specific

1The name CPN tools refers to any tool used for modelling using CP-nets, and not exclu-
sively to the tool CPN Tools.

6 Chapter 1. Introduction

concepts instead of CPN-specific concepts. To fulfil these needs, a method
had to be developed for creating domain-specific interfaces for simulators of
CP-nets. This includes facilities for scripting and customising the control of
simulators and analysis tools, and for creating a suitable GUI.

The research during the last years has shown that CP-nets are useful for
other purposes than those where CP-nets have their obvious strengths, i.e.
modelling and verification of concurrent systems. The need for performance
analysis of industrial-sized systems is just one field where the expressive power
of CP-nets has proved to be very useful [20, 24, 49, 63]. Performance analysis
using CP-nets is often based on data collected during simulations. Another area
is data collection for visualisation purposes. Using the programming language
Standard ML (SML) which is the inscription language in the Design/CPN

tool, it is relatively easy to add SML code to a CPN model for extracting such
data. However, when a CPN model is constructed, it is often used for several
purposes. The modifications of the CPN model required to conduct a certain
analysis, like e.g. performance analysis, may make it difficult to use the CPN
model for different purposes. This motivates a need for ways to annotate a
CP-net with auxiliary information which can easily be added or removed from
a CP-net. In addition, improved facilities for extracting information from a
CP-net during simulations are also motivated by this need.

The main objective of the work presented in this dissertation has been to
design and develop extensions to CP-nets and facilities for the supporting CPN
tools to remedy the shortcomings discussed above.

1.3 Outline of Dissertation

The work presented in this dissertation has been documented in five papers
[54, 55, 56, 61, 62]. The papers are contained in Part II in Chaps. 6-9 of this
dissertation. Each of these chapters first contain a short description of the pub-
lication history and the status of the paper contained in the chapter.

The remaining chapters of Part I are organised as follows:

Chapter 2 summarises three papers which document the research results from
the CAESAR project conducted in cooperation with George Mason Uni-
versity (GMU), VA, USA.

The first paper is entitled Web-Based Interfaces for Simulators of Coloured
Petri Net Models [54]. The paper has been published in International
Journal on Software Tools for Technology Transfer (STTT), Volume 3,
Number 4, pages 405-416, Springer-Verlag, September 2001. The paper
is contained in full in Chap. 6.

The second paper is entitled Equivalent Coloured Petri Net Models of a
Class of Timed Influence Nets with Logic [55]. The paper is joint work
with Sajjad Haider from GMU and has been published in the proceedings

1.3. Outline of Dissertation 7

of Third Workshop and Tutorial on Practical Use of Coloured Petri Nets
and the CPN Tools, pages 35-54, DAIMI PB–544, Department of Com-
puter Science, University of Aarhus, 2001. The paper is contained in full
in Chap. 7.

The third paper is entitled Operational Planning using Web-Based In-
terfaces to a Coloured Petri Net Simulator of Influence Nets [56]. The
paper is joint work with Lee W. Wagenhals from GMU and has been pub-
lished in Formal Methods in Software Engineering and Defence Systems
2002, Conferences in Research and Practice in Information Technology,
Volume 12, pages 115-124, Australian Computer Society Inc., 2002. The
paper is contained in full in Chap. 8.

Chapter 3 summarises the paper Towards a Monitoring Framework for Dis-
crete-Event System Simulations [62]. The paper is joint work with Lisa
Wells and will be published in the proceedings of Workshop on Discrete
Event Systems (WODES’02), IEEE, 2002. The paper is contained in full
in Chap. 9.

Chapter 4 summarises the paper Annotating Coloured Petri Nets [61]. The
paper is joint work with Lisa Wells and will be published in the proceed-
ings of Fourth Workshop and Tutorial on Practical Use of Coloured Petri
Nets and the CPN Tools, 2002. The paper is contained in full in Chap. 10.

Chapters 2-4 are each divided into three sections. First an introduction and
some background for the research is given. Next a summary of the main contri-
butions presented in the paper(s) is given. Finally, related work is considered.
Chapter 5 concludes on the work presented in this dissertation, and discusses
ideas and directions for future work.

1.3.1 Reader’s Guide

The reader is not required to have detailed knowledge of CP-nets and the cor-
responding tools. However, a basic knowledge of Petri nets will be assumed.
Readers without such knowledge are advised to read [48] which gives a gen-
eral introduction to CP-nets. The papers in Part II may be read in any order.
However, the papers are organised in the order that appears to be most natural.

Readers with interest in web-based interfaces and simulators for influence
nets may read only Chaps. 6-8, while readers with interest only in defence
systems may read only Chap. 8. Readers with interest only in annotations and
monitoring of CP-nets, may read only Chaps. 9-10.

Chapter 2

Web-Based Simulation of CPN Models

This chapter considers three papers documenting the part of the research in
the CAESAR project that the author of this dissertation has participated in.
The three papers are entitled Web-Based Interfaces for Simulators of Coloured
Petri Net Models [54], Equivalent Coloured Petri Net Models of a Class of Timed
Influence Nets with Logic [55], and Operational Planning using Web-Based In-
terfaces to a Coloured Petri Net Simulator of Influence Nets [56]. Section 2.1
gives some background on the CAESAR project and contains a brief intro-
duction to the results in the papers. Section 2.2 gives a summary of the main
contributions of the three papers. Section 2.3 contains a discussion of related
work.

2.1 Introduction and Background

When the work on this dissertation began in 1999, most uses of CP-nets in
Design/CPN were conducted by people who are experienced with using CP-
nets and the corresponding tools. Simulation results were most often interpreted
directly from the markings displayed in the CPN tools. As a result, knowledge
of CP-nets and CPN tools was often required to be able to use CP-nets.

In the CAESAR research project at George Mason University (GMU) in
USA, CP-nets are used to simulate so-called influence nets1 [90]. Influence
nets are probabilistic state-equilibrium net models which are proposed to be
used in the US military for modelling and evaluating military plans. Figure
2.1 contains an example of an influence net with six nodes modelling a military
situation. Influence nets are well suited for modelling probabilistic behaviour.
However, no time concept exists for influence nets, and it is not possible to
execute influence nets. The consequence is that by using influence nets only, it
is not possible to obtain a time ordered plan specifying when to conduct the
various activities in the plan.

The researchers at GMU decided to define a translation from influence nets
to CP-nets. The major advantage of translating influence nets to CP-nets, is

1In this overview paper we only use the term influence nets when referring to either influ-
ence nets or to timed influence nets with logics (TINLs). The reason is that in the overview
paper the difference is not considered as important.

9

10 Chapter 2. Web-Based Simulation of CPN Models

28:Fed forces are
in position to strike
Borg DS capability
0.0

25:Fed NCA
pledges not to use

DS first
1.0

29:Fed press
reports major

demonstrations in
Fed against war

0.5 0.5

26:Borg believes
use of strat DS is
counterproductive
0.1 0.5

30:Borg believes
use of DS will push

Fed to negotiate
0.7 0.5

27:Borg decides to
use DS option

0.4 0.5

h=0.33
g=-0.33

h=-0.33
g=0.33

h=0.67
g=-0.33

h=0.67
g=-0.33

h=-0.67
g=0.0

h=0.67
g=0.0

h=-0.99
g=0.33

h=0.67
g=-0.67

Figure 2.1: An influence net.

A25

Fact

N25

Result

T
d

T
c

R25 B25

A28

Fact

N28

Result

T
d

T
c

R28 B28

N29

Result

T
d

R29 B29

O29

N26

Result

T
d

R26 B26

O26

S28to29
Store

S25to29
Store

S25to26
Store

S29to30 Store

S26to27 Store

N27

Result

T
c

R27

T
d

B27

O27

N30

Result

T
d

T
c

R30 B30

O30

S30to27 Store

S28to30
Store

Node 25: Initial Node

Node 28: Initial Node Node 27:
Terminal Node

Node 29: Intermediate Node

Node 30: Intermediate Node

Node 26: Intermediate Node

S28to26
Store

Figure 2.2: CP-net structure for the influence net in Fig. 2.1.

that the time concept for CP-nets can be used to add a time concept to influence
nets. In addition, the translation makes it possible to simulate an influence net
[105]. The researchers at GMU implemented a completely automatic translation
from an influence net to a CP-net in Design/CPN [108]. The essential net
structure of the automatically generated CP-net for the influence net in Fig. 2.1
is contained in Fig. 2.2. To apply the translation, a file specifying a concrete
influence net is first exported from the tool used to create the influence net.
Next, an algorithm within Design/CPN uses the file to automatically generate
places, transitions, arcs, and declarations to create a full CP-net. As seen from
Figs. 2.1 and 2.2, the CP-net has a net structure which is very similar to the
net structure of the influence net. The similar net structure makes it easy to
relate the two nets to each other, if necessary.

The turn-around time for applying the translation method is relatively long.
Even though the process is entirely automatic, it takes minutes to translate an

2.2. Main Contributions 11

influence net to a CP-net and afterwards to generate the corresponding simula-
tor code. Efforts was made by researchers at GMU to optimise the translation
algorithm, but for non-trivial influence nets, most time was spent internally in
Design/CPN for generating the simulator code, and therefore they had limited
success with the optimisation.

The people going to apply the translation and afterwards simulate the CP-
net are military analysts without knowledge of CP-nets. It would therefore be
useful for these people, if it is possible to create a domain-specific graphical user
interface (GUI) which uses concepts from their application domain instead of
CPN terminology. In other words, the GUI of the CPN tool should be hidden
behind a customised GUI which is created to fit the given application domain.

2.2 Main Contributions

The research presented in the three papers [54, 55, 56] discussed in this chapter
is divided in two main areas. First we describe, a method which has been devel-
oped to create domain-specific GUIs for CPN simulators. A general description
of how to apply the method in a CPN tool can be found in [54], and practical
use of the method in the CAESAR project is presented in [56]. Secondly, we
focus on the automatic method for translating influence nets to CP-nets. The
translation has been modified to speed up the overall turn-around time of the
process. This has been documented in [55, 56]. In the following we will discuss
these two main areas separately.

2.2.1 Domain-Specific GUIs for CPN Simulators

As part of the CAESAR project, the author of this dissertation participated
in designing and implementing a domain-specific GUI for the CPN simulator of
influence nets. Instead of using the GUI of the CPN tool, the interaction with
the CPN simulator is done via a GUI which uses concepts well-known for the
people with knowledge of the influence net, and thereby the GUI completely
hides the CPN-specific concepts. The technology chosen for creating the GUI
and for communicating with the CPN simulator is based on the web technology
available in the year 1999 when this work was conducted. Ordinary HTML
forms [102] are used for specifying input parameters to the CPN simulator,
while so-called common gateway interface (CGI) scripts [35] are used to invoke
the CPN simulator. A CGI script is essentially a program that can be executed
from a web page, and then dynamically produces a new web page.

In the CAESAR project, a complete web site has been developed, intended
to support simulation of influence nets for operational planning in the US mili-
tary. The web site is highly dynamical due to the fact that most of the web site
is generated automatically before or while simulating influence nets. As part of
this generation, simulation results are stored as HTML documents with graph-
ics, text, and raw data. These simulation results can then later be accessed
from the web site and used for further analysis, e.g. by generating comparison
profiles for comparing simulation results from different simulations of an influ-
ence net. Figure 2.3 depicts an example of an automatically generated web

12 Chapter 2. Web-Based Simulation of CPN Models

Figure 2.3: Web page to specify input to a CPN simulator for influence nets.

page containing an HTML form used to input a number of parameters for the
CPN simulator of influence nets. Notice that the text in the HTML form is
taken from the influence net in Fig. 2.1. When the HTML form is submitted
the parameters are transferred to the web server and given as parameters to the
CGI script. The CGI script initialises the CPN simulator with the parameters
and runs a simulation. During the simulation, data is collected and is used to
generate simulation results. These simulation results will be both displayed in
the web browser and saved in files for later use. Figure 2.4 shows an example of
some of the graphical output which can be automatically generated as simula-
tion results. The graphs shows the changes in the probabilities as a function of
time for three influence net nodes. This graph gives a very compact overview
of the changes in probabilities. Several other similar graphs are generated to
give more detailed information of the probabilities of the individual nodes.

The web environment has been evaluated in the war game Naval War Col-
lege Global 2001 by US military people from the Office of Naval Research and
by researchers from GMU [106, 107]. The purpose of the war game was to gain
insight into the potential of different applications supporting course of action
(COA) development and evaluation, and to provide insight into how the devel-
oped concepts can be incorporated into real-world operational environments. As
part of the war game, models of complete battle plans were built and evaluated
using the web environment. The war game showed that the web environment is
indeed useful in practice by making it possible for people without knowledge of
CP-nets to translate influence nets to CP-nets, perform simulations of CP-nets,
and to interpret simulation results via the domain-specific GUI.

From the experiences with creating the GUI for the CAESAR project, a
general method for creating domain-specific GUIs for CPN simulators using
HTML forms and CGI scripts has been defined and documented in [54]. We

2.2. Main Contributions 13

Figure 2.4: Graph generated as part of the simulation output.

discuss this general method in more details in the following.
There are a few essential requirements for a CPN tool to be controlled via

HTML forms and CGI scripts. First of all, the CPN tool should be able to start
a simulation of a specific CPN model without requiring a user to interact with
the tool-specific GUI. For example, it should not be necessary to use dialog
boxes in the CPN tool to start a simulation – instead it should be possible
to automatise such actions in, e.g. a script. Therefore, the CPN tool should
allow a user to create scripts for e.g. retrieving input parameters, saving files,
and printing to standard output. The reason for these requirements is that
because a CGI script is invoked via an HTML form, the CGI script must be
able to control everything related to reading input from the HTML form, setting
the initial state of the CPN simulator, starting the simulation, and producing
simulation results to be included in the resulting HTML document which will
be displayed in the web browser.

In Design/CPN it is indeed possible to customise control of the tool. A
so-called batch script [57] can be used to specify a sequence of commands that
must be executed when the CGI script is invoked. The programming language
SML is used to specify batch scripts. Due to the fact that SML is used both
as inscription language in Design/CPN and to implement the CPN simulator,
it is possible to access all the functionality of the CPN simulator from a batch
script. The modeller who creates the CPN model is also expected to have a
certain knowledge of SML, which should make it rather easy for the modeller
to create a batch script based on examples of other batch scripts.

Another issue which makes CGI scripts easy to produce in Design/CPN

is that it is possible to isolate the CPN simulator and batch script from the
GUI of Design/CPN. This means that it is easy to create a CGI script as a
stand-alone program containing only the batch script and the CPN simulator
for the specific CP-net.

14 Chapter 2. Web-Based Simulation of CPN Models

HTML forms and CGI scripts are only suitable for non-interactive simula-
tions due to the fact that all parameters are given before starting a simulation.
In other words, using HTML forms and CGI scripts, it is not possible to interact
with the CPN simulator during a simulation. However, it is our experience that
often all parameters are available before the simulation is started, and therefore
the approach presented here is sufficient.

2.2.2 CPN Simulators for Influence Nets

In this section we consider the CP-nets for simulating influence nets. As men-
tioned above, the translation developed by researchers at GMU creates a CP-net
that is specific for a given influence net. Thus any time a new influence net has
to be investigated, a completely new CP-net must be generated and the CPN
simulator for this specific CP-net must be generated. We denote this CP-net
by the fixed CP-net to reflect the fact that the CP-net is fixed to a specific
influence net and cannot be used for simulating other influence nets2. In the
application envisioned in the CAESAR project, it is likely that influence nets
changed frequently. This requires time to conduct the translation and genera-
tion of the CPN simulator. Users of the web environment must therefore first
instruct the server to generate and compile the fixed CP-net before being able
to simulate it.

In [55] we have developed an alternative approach. Instead of generating
a new CP-net for each influence net, we have developed a generic CP-net3.
Thus, while a fixed CP-net has net structure, inscriptions, and colours fixed
to the specific influence net, the generic CP-net has only the initial marking
depending on the specific influence net. In other words, everything in the CP-
net is constant for all influence nets – except the values of tokens. This means
that the generic CP-net can be fixed to a specific influence net by setting an
initial marking to reflects the structure of the specific influence net. Using a
batch script as discussed in the previous section, a set of parameters determining
the initial marking are specified automatically from the same influence net file
as used for generating a fixed CP-net.

Let us consider how the generic CP-net has been created. It is largely
inspired by the automatic translation for fixed CP-nets. The translation to
fixed CP-nets maps each node in an influence net to small CPN-subnets, as
indicated in Fig.2.2. All these subnets are then connected via places constituting
the interface between the subnets. These interface places represent the arcs
connecting nodes in the influence net. So the complete fixed CP-net consists
essentially of several structurally equal subnets and a number of connecting
places. The generic CP-net has been created by folding all these subnets to a few
general subnets. To know which subnet (i.e. node in the influence net) a token
belongs to, the colour sets have been extended with a node id to specify which
node in the influence net the token corresponds to. Instead of modelling the
arcs in the influence net with interface places in the CP-net, the arcs connecting
the influence net nodes are modelled using tokens specifying the source and

2In [55] the term unfolded CP-net is used instead of the term fixed CP-net.
3In [55] the term folded CP-net is used instead of the term generic CP-net.

2.3. Related Work 15

destination of the nodes in the influence net. In this way it is possible to model
any influence net by setting the initial marking of the generic CP-net.

For a given influence net, the fixed and generic CP-nets are expected to give
the same simulation results. This has been validated using state space analysis
for samples of influence nets. For each sample of influence nets, the correspond-
ing fixed CP-net was generated and the initial marking of the generic CP-net
was set to reflect the influence net. Then the state spaces were generated for
each of the CP-nets and compared using various state space analysis techniques.

In [56] we have considered the performance of the obtained influence net
simulator using the generic CP-net compared to using the fixed CP-net. In
the generic CP-net, the number of tokens on each place increases linearly with
the number of nodes in the influence net. As a consequence, the enabling
computation of the Design/CPN simulator is slowed down for larger influence
nets, and can therefore potentially result in very slow simulations (minutes or
even hours). Due to the fact that the generic CP-net was developed mainly to
improve the effectiveness of the overall method, it is not acceptable that the
simulation time for the generic CP-net increases so much that the total time is
larger than for the fixed CP-net. The solution for reducing the simulation time
was to use the new simulator of Design/CPN which has been optimised for
CP-nets with many tokens [77]. Using the new simulator, the total time used
for applying the generic CP-net is in most cases reduced to a few seconds which
is fully acceptable for web-based simulations.

2.3 Related Work

Web-based simulation is getting more and more attention during these years.
Almost every computer is connected to the Internet. This makes it easy for
many people to access programs on web servers. Therefore, it is obvious to
investigate the new potential advantages from conducting web-based simula-
tions. The rapid advances in web technology has the consequence that the web
technology of today will be considered to be old-fashioned in a year from now.
Therefore, the current research on web-based simulations may be considered as
pioneering in the field.

In the following, we will consider work related to the main topics discussed
in Sect. 2.2. Translations from other languages to CP-nets will be discussed.
A few simulation tools where the GUI can be customised, and other ways of
creating domain-specific GUIs, will also be discussed.

Translating other Languages to CP-nets

The fact that CP-nets can be executed and have a formally defined semantics is
one of the reasons why CP-nets are very popular. Languages without a formal
semantics and without the ability to be executed, but where these properties
are needed, are sometimes translated to CP-nets. In the CAESAR project
presented above, influence nets are created in an influence net tool. Afterwards,
the influence net is automatically translated to CP-nets where time is added,

16 Chapter 2. Web-Based Simulation of CPN Models

and thereby CP-nets defines the formal semantics of influence nets. Finally, the
influence net can be executed.

A similar idea has been applied in a project from 1991 described in [78].
A structured analysis and design technique (SADT) was used to create CPN
models of a nuclear waste programme. A tool supporting the SADT technique
was used to create workflow descriptions of the activities to be performed in
the waste management programme as a set of so-called IDEF0 diagrams. The
SADT model was then translated into a CP-net. In contrast to the CAESAR

project, the translation was only partially automatic meaning that inscriptions
had to be added manually by CPN modellers. The SADT tool was operated
by people with knowledge of SADT – but without knowledge of CP-nets. The
manual part of the translation from SADT to CP-nets and the simulations was
conducted by CPN experts.

The SADT project had a similar need for presenting simulation results to
the SADT experts using concepts from their specific domain. For this purpose
ad-hoc diagrams were created containing no CPN concepts but using solely
concepts from the SADT environment.

The CP-nets created from SADT diagrams has net structure and inscrip-
tions which are fixed to the concrete diagram. This is similar to the original
translation method from influence nets to fixed CP-nets. As mentioned, the
translation from SADT diagrams to CP-nets includes manual work by CPN
experts where inscriptions are added and unspecified behaviour is resolved. By
creating a generic SADT diagram simulator and a domain-specific GUI for this
simulator, it would maybe be possible to supply the manually added information
using domain-specific concepts. Likewise the simulation and post-processing of
simulation results could be generated automatically. The consequence is that
the CPN experts are not needed in the process. Based on the SADT project
described above and an earlier similar project [84], a work flow tool [72] was
later developed making the translation completely automatic for a restricted
set of SADT models.

ExSpect [1, 25, 26] is a workflow modelling and simulation tool supporting
a variant of CP-nets. Facilities have been created in ExSpect to translate from
workflow modelling tools like, e.g. PROTOS [4], to ExSpect models. In the
process of creating an ExSpect model from a PROTOS model, the translation
uses predefined building blocks from a workflow library of ExSpect building
blocks.

The unified modelling language UML [29] is a standardised graphical mod-
elling language which is widely used for object-oriented modelling. Researchers
at George Mason University, USA, have defined a translation from so-called
UML activity diagrams to CP-nets to obtain an executable UML specifica-
tion [104].

SDL [11] is another visual modelling language which is widely used in the
tele communication area. Research on a fully automatic translation from SDL
diagrams to variants of Petri nets has been conducted in [41].

2.3. Related Work 17

Domain-Specific GUIs for CPN Simulators

The fact that the GUI of the Design/CPN tool uses CPN-specific concepts has
been challenged in several projects. Several efforts have been made to interact
with a simulation and to present results using domain-specific concepts.

In 1995 a project with participants from both industry and universities
developed a CP-net of an alarm system [86]. During the project a graphical
animation library called Mimic was developed for Design/CPN [87]. During
simulations, the Mimic library animates the simulation within Design/CPN

by showing, moving, and hiding graphical objects in a drawing of the building
containing the alarm system. The user can inspect the state of the simulator
via graphical objects instead of investigating tokens in the CP-net. By clicking
on the icons, the user can provide input to the CPN simulator. The project
illustrated that the Mimic library made it possible for people without knowledge
of CP-nets to interact with a Design/CPN simulator of CP-nets using domain-
specific graphics.

The need for domain-specific presentation and interaction with CPN simu-
lators was also illustrated in a project at Nokia research centre in Finland in
2001 [66, 67]. The goal of the project was to model feature interactions in mobile
phones using CP-nets to test feature interactions. Interaction with the CP-net
was done via a picture of a mobile phone. The picture was instrumented with
Mimic code such that interaction could be conducted by clicking and looking
at the picture of the mobile phone. The consequence was that people without
knowledge of CP-nets could experiment with different features to test if the
phone behave as expected.

Message sequence charts (MSCs) [40] is a telecommunication standard for
specifying and visualising communication patterns in protocols. During a tele-
communication project [9], a MSC library for Design/CPN was developed for
automatic generation of MSCs. Several projects [16, 66] have proved that such
automatic generation of MSCs to visualise communication patterns during a
single simulation of a CP-net is very useful. The MSCs are useful for discussing
the behaviour of different scenarios without having to show the details of the
CP-net. In the project discussed in [66] it was illustrated that it is useful to
generate MSCs with different levels of abstraction, i.e. some MSCs give a very
detailed description while others describe the communication patterns at a more
abstract level.

The workflow tool ExSpect has recently isolated the core parts of the tool
engine in a so-called component. A component is a unit with contractionally
specified interfaces and explicit context dependencies, and it is subject to com-
position by third parties [96]. Essentially, the ExSpect component makes it
easy to develop applications with ExSpect inside to provide the workflow en-
gine. Technically, the application programming interface (API) of the ExSpect

component provides a number of methods which can be accessed by the applica-
tion to control the component. Related work for Design/CPN has been done
in a Master’s thesis (co-supervised by the author of this dissertation) [81]. A
simple simulation control protocol was implemented on top of the communica-
tion protocol TCP/IP [22]. Based on the control protocol, a Java Applet [42]

18 Chapter 2. Web-Based Simulation of CPN Models

was used to visualise and interactively control a Design/CPN simulation of
the well-known dining philosophers example. This work was the basis for the
development of the Comms/CPN library for Design/CPN [30].

It is not only simulation tools that can take advantage of domain-specific
GUIs. For analysis tools used for e.g. state space analysis, much effort is put
into automatising the use of the methods and to hide as many irrelevant techni-
cal details as possible. The purpose is to make it possible for people to use these
analysis methods in practice even though they do not have detailed knowledge
of the mathematical background of the analysis methods and algorithms. As
an example, the Design/CPN State Space Tool [48, 18] is able to generate
a report containing several model-independent analysis results. No knowledge
of state space analysis is necessary to generate this report which relies on rela-
tively complex mathematically defined analysis methods. The contents of the
report can also be understood with only limited knowledge of the analysis con-
cepts. In [45, 65, 64] permutation symmetries for CP-nets are exploited to
generate reduced state spaces. The user is required to provide the permutation
symmetries. Afterwards, a consistency check must be performed to check that
the permutation symmetry is actually consistent for the given CP-net. As part
of the project [64], a semi-automatic check for consistency was developed in
Design/CPN to make the method more accessible to people without detailed
knowledge of the analysis method.

In [112] work very similar to the work presented in Sect. 2.2 and in [56]
is presented. A tool, called COAST, based on CP-nets and Design/CPN

supporting operations planning in the Australian Defence Force has been de-
veloped. The core part of the COAST tool consists of a CP-net which models
the execution of tasks. During planning, the CP-net is instantiated with con-
crete tasks for execution and analysis in the same way as our generic influence
net CPN simulator from the CAESAR project. The COAST tool does not
support web-based simulations. The tool is implemented as a client-server ar-
chitecture where the client consists of a domain-specific GUI implemented in
Java [42], while the server uses the Design/CPN State Space Tool to
analyse the given model. The GUI supports creation of models and display of
analysis results. This means that the user does not need to switch applications
when modelling and analysing a model, like it is necessary in the CAESAR

tool.
Other variants of Petri nets have also identified some of the advantages of

web-based interfaces to Petri net tools. In [39, 7] a tool named WebSPN sup-
porting stochastic Petri Nets is described. The GUI of the tool is implemented
as a Java Applet. Java Applets can be included in a web page, and started
when the web page is accessed. The GUI presented in the paper is Petri net
specific, and it is not discussed whether domain-specific GUIs are supported.

In [8], web-based simulations of models based on so-called fuzzy sets [111] is
described. They stress the fact that end-users can take advantage of interact-
ing directly with the model using a domain-specific web-based GUI to obtain
better validation of a model. The alternative is that the end-users have to com-
municate with model-experts by explaining their needs for results to modellers
which can then conduct simulations, and finally explain the simulation results

2.3. Related Work 19

to the end-users using domain-specific terms. The application is implemented
as a Java Applet with both the GUI and the simulation program contained
in the Java Applet. This is in contrast to the CAESAR simulation environ-
ment where the simulator is running on the web server, and only the GUI is
downloaded to the client.

A general discussion and overview of different web technologies support-
ing web-based simulations is contained in [75]. Technologies in the spectrum
from download-and-run applications to very thin clients are briefly discussed.
Concrete examples of technologies are Java Applets, Java Servlets, Java

Beans, and CORBA. The simulation tool discussed in [75] is called JSIM and
it supports creation of general simulation packages not necessarily based on
Petri nets. The general idea is that a simulation model can be turned into a
simulation component, and several simulation components can be combined to
a large simulation model which can both be simulated from web-applications
and integrated into other applications. However, it seems like the tool lacks a
formal foundation, and therefore do not support formal analysis.

Chapter 3

Monitoring Framework

This chapter treats the paper Towards a Monitoring Framework for Discrete-
Event System Simulations [62] which is written in cooperation with Lisa Wells,
University of Aarhus. Section 3.1 gives a brief introduction to the results in
the paper. Section 3.2 gives a summary of the main contributions in the paper.
Section 3.3 contains a discussion of related work.

3.1 Introduction and Background

Simulation of discrete-event systems may be conducted to obtain knowledge
about the behaviour of the modelled system. During simulations, it may there-
fore be necessary to examine the states and events of the system and then
periodically extract or collect data from the states and events. Collecting data
may be conducted by augmenting the model itself with ad-hoc code for col-
lecting data or by using integrated facilities in the simulation tool. In other
words, either the model itself or the simulation tool can be augmented with
data collection facilities.

Integrated tool-support for collecting numeric data is present in the De-

sign/CPN tool, and is called the Design/CPN Performance Tool [58].
The Design/CPN Performance Tool was designed and implemented by
the authors of the paper as part of their Master’s thesis [59], and the work pre-
sented here is a continuation of this work. The Design/CPN Performance

Tool makes it possible for a user to automatically extract data from complex
token values and binding elements in a CP-net during simulations. By accessing
a binding element it is possible to extract the values bound to variables when
the corresponding transition occurs. Furthermore, data can be collected from
places in the entire CP-net which means that it is possible to access the marking
of the entire CP-net when defining how to collect data. To define what data
should be collected during a simulation, the modeller must define when and
how data should be collected. In the Design/CPN Performance Tool this
is done by specifying two functions separately from the CP-net. A predicate
function named check is invoked after each step in a simulation. If it evaluates
to true, then a function named observe is invoked to extract or calculate the
actual value to be collected. The tool uses these functions to collect data, and it

21

22 Chapter 3. Monitoring Framework

automatically saves the collected data in files or uses it for computing statistics
of the observed numbers.

When designing the Design/CPN Performance Tool, the intention was
to create a tool supporting simulation based performance analysis [60]. During
experiments, it became clear that the collected data can be used for several
other purposes than performance analysis. Examples are visualisation of the
behaviour using e.g. message sequence charts [71], transmission to external pro-
cesses using TCP/IP communication [81, 30], and for stopping the simulation
when a certain state is reached.

In addition to using collected data for several purposes, we realised that the
tool can also be used in the process of post-processing the collected data. In
the three examples mentioned above, the tool can be manually customised by
the modeller to invoke the libraries used for visualisation, communication, and
simulation control after having collected each piece of data. These additional
possible uses are due to a general design of the Design/CPN Performance

Tool and the possibility for the user to customise the facilities. These findings
have served as a basis for generalising the Design/CPN Performance Tool

to a so-called monitoring framework for discrete-event systems.

3.2 Main Contributions

Based on our experiences with implementing and using Design/CPN, we have
observed that the design and implementation of efficient tool support for a
specific formalism is generally focused on the formalism, while extracting infor-
mation for other purposes is typically done using ad-hoc methods. This means
that when a new way is needed for processing information from a simulation,
then a new mechanism and a new way to define how to extract the information
is invented and implemented in the tool. Some of these ad-hoc methods are
directly reflected in the models, e.g. via added events that are used solely to
extract information. Adding such events may introduce errors into the models.
From our point of view, there should be a clear distinction between modelling
the behaviour of a system and monitoring the behaviour of the model.

Even though the information extracted during a simulation may be used
for various purposes, the way the information is extracted can be unified. This
means that it is possible to create a common and general mechanism for defining
how to extract information from a model, and this is the main objective of the
research presented in the paper.

In the paper, we use the concept monitor to refer to a mechanism which
inspects or monitors the states and events of a discrete-event system model,
and which can take an appropriate action based on the observations. The
concept, monitoring is defined in the paper as any activity related to observing,
inspecting, controlling, or modifying a simulation of a model. For example, a
monitor in a model of a communication protocol could inspect the events during
a simulation of the model and update a message sequence chart each time an
event appears that corresponds to the transmission of a message. Furthermore,
we make a distinction between modifying monitors which can influence the state

3.2. Main Contributions 23

of a model during a simulation and inspecting monitors which are unable to alter
the state of a simulation model.

The goal of the research presented in the paper was to develop a monitoring
framework for discrete-event system simulators that can be used to standardise
monitors within a given tool and to unify interaction with monitoring facilities.
In other words, we have developed a general and flexible framework that can
be used for defining many different types of monitors. It is our experience with
practical use of ad-hoc monitoring techniques in Design/CPN and our expe-
rience with the Design/CPN Performance Tool that is the motivation for
developing the monitoring framework. The monitoring framework has evolved
as a generalisation of the data collection facilities in Design/CPN Perfor-

mance Tool to support other activities than collecting data for performance
analysis. The goal was also to extend the scope of the framework from CP-nets
to discrete-event system models in general.

The main observation leading to the definition of the monitoring framework
is that in the Design/CPN Performance Tool the user can define when and
how to extract data, and the tool then decides what to do with the data. In other
words, the user cannot define what to do with the data. By allowing the user
to define what to do with the data after having collected it, it becomes possible
to use the tool for several purposes not related to data collection. The what is
specified by allowing the user to create a function named act, analogously to the
functions check and observe specifying when and how to monitor. Theerefore,
the most essential parts of a monitor are these three functions:

i. Check: When or how often should the monitor be invoked to make an
observation.

ii. Observe: How is the observation computed.

iii. Act: Based on the observation, what action should be made.

Often some of these three functions are independent of the model. There-
fore, it is possible to predefine some of these functions to support a certain
use. For example, a data collection monitor may be predefined by creating
an act function which takes care of saving the observation from the observe
function in a file or using it for updating statistics. The user then only needs
to manually define the check and observe functions which are the only func-
tions depending on the model. Likewise, a simulation stop monitor may be
predefined by creating an act function which sets a stop flag in the simulator
causing the simulation to be stopped. The user then only needs to manually
define the check function, while leaving the observe empty due to the fact
that no value should be observed to stop the simulation; it is sufficient that the
check function specifies when to cause the act function to be invoked.

Being able to predefine some parts of a monitor as described above, makes
it possible to support a design requirement saying that often used monitoring
must be easy to do, while rarely used and complex model dependent monitoring
should be possible. Therefore it is possible to create a tool-box of monitors
which can easily be used by a user with minimal effort. However, if the modeller

24 Chapter 3. Monitoring Framework

has a very special kind of monitoring need, more work may have to be done
manually than if the kind of monitoring is often used and independent of the
given model.

It is our experience that the monitoring framework makes a clear separation
of monitoring facilities from other facilities of a discrete-event system simulation
tool. The framework is designed such that it can be used to create a monitoring
component to be plugged into a simulation tool and thereby extend the given
tool with extra monitoring facilities.

3.3 Related Work

Monitoring facilities are available in several different tools. However, monitoring
is rarely identified explicitly as a general methodology but is rather implicitly
contained in specific facilities like, e.g. performance analysis facilities. In the
following, we will discuss and relate some of these tools to the monitoring
framework discussed above.

Monitoring in Petri Net Tools

For Petri net tools, monitoring is most often based on simulations. Some tools
only contain fixed built-in facilities for monitoring, while others allow some kind
of customisation of the facilities.

Simulation based performance analysis of Petri nets is one field where moni-
toring is particularly widespread. The purpose of simulation based performance
analysis is to simulate a model to reveal information about the performance of
the system in question. In practice, it is conducted by monitoring events and
states during simulations.

The tool UltraSAN [97, 98] is based on Stochastic Activity Nets (SANs)
[73, 79, 91]. SANs are basically low-level Petri nets with stochastic time and a
few other extensions which are not important for this discussion. UltraSAN

supports user-defined performance measures meaning that the user can specify
performance measures. This is done by specifying a so-called reward function. A
reward function is very similar to a data collection monitor in our monitoring
framework. A reward function is defined by two components: a rate reward
function and an impulse reward function. The rate reward function is used to
extract data from markings of places, while the impulse reward function is used
to extract data when activities (transitions) complete.

Rate reward functions are defined by means of a check function and an
observation function like for a monitor. These rate reward functions can refer
to the markings of different places. SANs are low-level nets, so only the sizes
of the markings are returned by the marking functions. This is different from
what is possible when considering CP-nets. In CP-nets, tokens are coloured, i.e.
it is possible to distinguish between tokens with different colours in one place.

Impulse reward functions are associated with transitions. When defining an
impulse reward function it is possible to specify that for a specific transition
occurrence, a constant must be added to the reward function. This means that

3.3. Related Work 25

it is not possible to compute a value based on e.g. markings, when a transition
occurs and then return the value, as proposed in the monitoring framework.

In UltraSAN, the data collected by the reward functions are used inter-
nally, e.g. to maintain statistics and to generate graphs. When considering the
monitoring framework, this means that the act function is fixed to a specific
use. Therefore, the user is not able to affect how the data should be used,
except from choosing among the predefined alternatives.

The tool GreatSPN [14, 33] supports generalised stochastic Petri nets
(GSPNs) [2]. In short, GSPNs differ from CP-nets in that they have uncoloured
tokens and three different types of transitions (deterministic, exponential and
immediate, which refer to the distribution of firing delay). GreatSPN is a
prevalent tool that is widely used for creating and conducting performance
analysis of GSPNs. The analysis may be conducted using both simulation and
analytic analysis. Like for UltraSAN it is possible to create user-defined
performance measures in GreatSPN. It is also possible to monitor several
places in the model using a single performance measure. However, there is not
an explicit separation between specifying when and how to monitor as proposed
in our monitoring framework.

The CPN/DESIR [85] is a tool for debugging and simulating CP-nets.
With this tool, which is integrated in the CPN-AMI tool [70], the user can
associate a script with a transition. When a transition is fired, the associated
script is interpreted. A script is a sequence of elementary instructions. Among
others, the instructions can be used to do data extraction by printing or saving
e.g. the marking of a place. The check for when to execute an action is specified
by associating the script to certain transitions. The contents of the script defines
what to monitor and what to do with the monitored data. This is very similar
to how code-segments are used in Design/CPN.

The Design/CPN State Space Tool [47] supports state space analysis
of CP-nets. The analysis is conducted by investigating the state space for the
given CP-net. This investigation can be considered as monitoring the state
space. In the Design/CPN State Space Tool so-called queries are used to
analyse state spaces. A query is a function which can be mapped on a state
space for extracting certain information from both markings and binding ele-
ments. Essentially, a query is specified by means of three functions. A predicate
function specifies which states or binding elements should be investigated, an
evaluation function specifies how to extract information from the given state
or binding element, and finally, a combination function specifies what to do
with the extracted information. The Design/CPN State Space Tool al-
lows user-defined queries for model-dependent analysis and standard queries
for model-independent analysis. The standard queries are often-used queries
that can be applied to any model without or with limited customisation. These
concepts are very similar to the concepts of the monitoring framework. The
three functions used to define a query are similar to, and have essentially the
same domain and range as the corresponding functions for monitors. Likewise,
monitors and queries can both be user-defined or predefined.

26 Chapter 3. Monitoring Framework

Other Tools with Monitoring Facilities

The widget observation, simulation, and inspection tool (WOSIT) [110, 13]
by MITRE [76] is a software instrumentation tool for X-Windows applications.
The purpose of WOSIT is to support embedded training systems for end users
by monitoring and interacting with the GUI of any X-Windows applications. In
general, when a software application is instrumented, internal states and pro-
cesses of that application become accessible from the WOSIT tool. WOSIT

supports instrumentation of the GUI of an X-Windows application in a manner
that requires no modifications to the source code of the instrumented applica-
tion. WOSIT acts as an intermediary between the instrumented application
and a client application. It enables the client application to observe the user’s
manipulations of the GUI of the target application (e.g. button presses, changes
to text fields), and to inspect states of the GUI (e.g. the contents of text fields
and the state of radio buttons). In addition, WOSIT enables the client to initi-
ate certain actions on the GUI of the target application. This is very similar to
how monitors in our monitoring framework interacts with a model and a sim-
ulator. To use a monitor, no modifications need to be made to the model itself
just like no modifications should be made to an application to be monitored by
WOSIT.

Another tool which monitors and interacts with an application is the Mi-
crosoft Office Assistant known from e.g. Microsoft Word [74]. This program
monitors GUI interactions performed by the user, and proposes help if it seems
like the user needs help. Microsoft also provide other types of monitoring pro-
grams. For example, accessibility of programs for people with disabilities is
improved by a screen-reader for blind people. This program can access the text
contained in an application and interpret it to voice.

Frameworks and Design Patterns

One of the purposes of creating the monitoring framework was to provide a
uniform design for implementing future monitors of various kinds. This was
motivated by the fact that our experience was that data collection monitors
in Design/CPN Performance Tool are sufficiently general to be used for
other purposes and for other kinds of discrete event systems than CP-nets.
Thus, we wanted to reuse the design for many purposes in the specific context
of discrete event systems. In fact, a framework is characterised in [31] as a
set of cooperating classes that make up a reusable design for a specific class of
software, and it captures the design decisions that are common to its application
domain. This fits very well with our monitoring framework.

If we turn to reusing a design in different contexts, so-called design patterns
are often used [31]. A design pattern considers a problem which occurs over
and over again in an environment, and then describes the core of a solution
to that problem in a way that can be used in any context. Thus, a design
pattern gives a general description of communicating objects and classes that
have been customised to solve a general problem in a particular context. In
contrast to a concrete framework, a concrete design pattern can be applied in

3.3. Related Work 27

different application domains.
Actually, the monitoring framework is intended to be realised using a design

pattern, called observer (p. 293 in [31]). The intent of the observer design
pattern is to define a one-to-many dependency between objects so that when
one object (called subject) changes state, all its dependents (called observers)
are notified and updated automatically. If we consider the state of the simulator
to be a subject, then the individual monitors will be the observers. When the
state of the simulator changes, only the monitors interested in that particular
change should be notified.

Research on design patterns for Petri nets is contained in [34, 80] with fo-
cus on collecting and distributing Petri net modelling knowledge in the form
of building blocks and pattern descriptions, in order to make Petri nets more
popular for the use in industrial sized applications. The authors of the pa-
pers [80, 34] believe that the increasing use of patterns in ordinary software
engineering domain may be transferred to Petri net modelling and thereby im-
prove the use of Petri nets as part of software engineering. Design patterns for
workflows have been investigated in [101, 100]. We believe that design patterns
are very useful to make it possible for people with limited experiences to create
models. However, if a model is going to be analysed using state space analysis,
precautions should be taken for creating huge models by composing a set of
building blocks. If not, then a state explosion is very likely to appear.

Chapter 4

Annotating Coloured Petri Nets

This chapter treats the paper Annotating Coloured Petri Nets [61]. Section 4.1
gives a brief introduction to the results in the paper. Section 4.2 gives a sum-
mary of the main contributions of the paper. Section 4.3 contains a discussion
of related work.

4.1 Introduction and Background

Coloured Petri nets (CP-nets) can be used for fundamentally different purposes
like functional analysis, performance analysis, and visualisation. To be able to
use the corresponding tool extensions and libraries, practical use has shown that
it is sometimes necessary to include extra auxiliary information in the CP-net.
An example of such auxiliary information is packet delay which is associated
with a token to be able to do performance analysis. Modifying colour sets and
arc inscriptions in a CP-net to support a specific use may lead to creation of
several slightly different CP-nets – only to support the different use of the same
basic CP-net.

The resource allocation system CP-net in Jensen’s volumes on CP-nets
[44, 45] perfectly illustrates the need for several slightly different versions of
a CP-net. Two of these versions are contained in Fig. 4.1. Figure 4.1(a) con-
tains a basic CP-net which is suitable for state space analysis due to the finite
state space. Figure 4.1(b) contains the basic CP-net extended with process
counters for the p and q processes. The extended CP-net has been obtained
by augmenting the process colour set U in the basic CP-net with an integer
counter, and by modifying the arc expressions and initial markings to reflect
the slightly modified or extended behaviour. Here it is important to notice that
the addition of the process counter to the basic CP-net has not restricted the
behaviour in the sense that if a transition is enabled in a reachable marking in
the basic CP-net, then the same marking will be enabled in the extended CP-
net – independently of the value bound to the cycle counter. In other words,
every reachable marking in the extended version will be identical to a marking
in the basic version when the cycle counters are removed. In fact, this has been
proved in [45].

The fact that a CP-net – like the basic resource allocation CP-net presented

29

30 Chapter 4. Annotating Coloured Petri Nets

AU
3‘q

BU
2‘p

CU

DU

EU

T1

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

S
E

3‘e

T

E

2‘e

x

x

x

x

x

x

x

x

x

if x=q
then 1‘q
else empty

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘p
else empty

AUxI

3‘(q,0)

BUxI

2‘(p,0)

CUxI

DUxI

EUxI

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color I = int;
color UxI = product U * I;
color E = with e;
var x : U;
var i : I;

S
E

3‘e

T

E

2‘e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

if x=q
then 1‘(q,i+1)
else empty

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘(p,i+1)
else empty

(a) (b)

Figure 4.1: Different CP-nets modelling a resource allocation system. (a) The
basic CP-net. (b) The basic CP-net extended with a process counter.

above – can be used for different purposes means that it is desirable if the tool
extensions and libraries can be used without modifying or extending the CP-net
itself. For example, it should be possible to use a CP-net for e.g. performance
analysis, without having to add extra places, transition, and extend colour
sets with the only purpose of supporting data collection. In particular, when
considering industrial sized CP-nets it is very useful to be able to use a single
CP-net for several purposes without having to maintain different copies of the
same basic CP-net. From our point of view, it is best if the auxiliary information
is not integrated into colour sets and arc inscriptions of a CP-net, but is kept
separately, so that it is easy to disable this information if the CP-net is to be
used for something else.

In Chap. 3 a monitoring framework was presented. It defines a consis-
tent way to separate the code used for monitoring from a CP-net. Instead of
integrating the monitoring facilities into the CP-net, the monitoring code is
defined separately from the CP-net and is then able to refer to the elements of
the CP-net. By separating the monitoring code from the CP-net it is often not
necessary to add extra places, transitions, and net structure to a CP-net for the
specific monitoring purpose. However, even though the monitoring framework
is used, it is still often necessary to modify colour sets and arc-inscriptions in
a CP-net to be able to use a CP-net for different kinds of analysis. This issue
has been addressed in the paper discussed in this chapter.

4.2. Main Contributions 31

4.2 Main Contributions

The paper proposes that auxiliary information is not integrated into colour sets
and arc inscriptions of a CP-net, but is kept separately. The separation makes
it easy to disable this auxiliary information if a CP-net is to be used for another
purpose. A method is proposed which makes it possible to augment tokens with
auxiliary information, called annotations, without modifying the colour sets of
the CP-net. Annotations are pieces of information that are not essential for
determining the behaviour of the system being modelled, but are rather added
to support a certain use of the CP-net – like the process cycle counter in the
resource allocation system discussed in the previous section.

A CP-net that is equipped with annotations is referred to as an annotated
CP-net. In an annotated CP-net, every token carries a token colour, and some
tokens carry both a token colour and an annotation. Annotations are defined
in a manner similar to how timed CP-nets are defined in the sense that some
tokens carry time stamps while others do not. A token that carries both a
colour and an annotation is called an annotated token. Just like a token value,
an annotation may contain any type of information, and it may be arbitrarily
complex.

Annotations are defined in annotation layers. An annotated version of the
basic CP-net in Fig. 4.1(a) is contained in Fig. 4.2(a) with an annotation layer
modelling the cycle counter. The annotations in the annotation layer are black,
while the CP-net itself is grey. Notice that an auxiliary colour set I is declared
as auxiliary colour set for the places A-E to indicate the colour set for the legal
annotations.

Defining annotations in layers makes it possible to make modular definitions
of both a CP-net and one or more layers of auxiliary information that can be
used for varying purposes. By defining several different annotation layers on
top of each other, it is possible to maintain several versions of a CP-net using
one basic CP-net, and thereby to use the same basic CP-net for various pur-
poses by adding or combining annotation layers. The modeller can for example
create one annotation layer containing annotations for performance analysis,
another annotation layer for visualisation using message sequence charts, and
yet another annotation layer for communication with external processes which
may even access information in the underlying annotation layers. By using
separate annotation layers for different uses, it will be easy in a tool to enable
and disable each individual annotation layer when necessary.

The semantics of annotations is established by defining a translation from
an annotated CP-net to another CP-net where the annotations are an inte-
grated part of the CP-net. This new CP-net is called the matching CP-net. A
matching CP-net for the annotated CP-net of the resource allocation system
in Fig. 4.2(a) is contained in Fig. 4.2(b). We will not discuss the translation
here but refer to the paper for further details. The relationship between the
behaviour of the original CP-net and the behaviour of the matching CP-net
is discussed in the paper using occurrence sequences. Informally it is required
that every occurrence sequence in a matching CP-net corresponds to an occur-
rence sequence in the underlying CP-net, and for every occurrence sequence in

32 Chapter 4. Annotating Coloured Petri Nets

AU I

3‘q 0

BU
I

2‘p 0

CU I

DU I

EU I

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

S
E

3‘e

T

E

2‘e

color I = int;
var i : I;

x i

x i

x i

x i

x i

x i

x i

x i

x i

if x=q
then 1‘q
else empty
i+1

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘p
else empty
i+1

AUxI
Annotate (3‘q) 0

BUxI
Annotate (2‘p) 0

CUxI

DUxI

EUxI

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

color I = int;
var i : I;
color UxI = product U * I;

S
E

3‘e

T

E

2‘e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

Annotate
(if x=q
then 1‘q
else empty)
(i+1)

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

Annotate
(if x=p
then 1‘p
else empty)
(i+1)

(a) (b)

Figure 4.2: Resource allocation system: (a) An annotated CP-net with a cycle
counter in an annotation layer. (b) A matching CP-net generated from the
annotated CP-net in (a).

the underlying CP-net it must be possible to find at least one corresponding
occurrence sequence in the matching CP-net.

Apart from defining annotations formally, the paper also gives concrete
examples of how annotations can be used in practice. Support for creating an-
notations have not been implemented yet. However, from the examples consid-
ered manually, the proposal looks promising by separating auxiliary information
from the CP-net in a very clear and clean way. By implementing the proposal
in a tool and by using it for creating larger annotated CP-nets, experiences will
probably indicate directions for future improvements.

In the following we summarise the advantages of annotations as proposed
in the paper. One of the major advantages is that, annotations are defined
so that they are ensured to affect the behaviour of the original CP-net in a
very limited and predictable way. This guarantees that the overall behaviour
of a CP-net is not accidentally changed when adding annotations. Therefore
the behaviour from the original CP-net is preserved. Another advantage is
that the semantics of annotations is defined via a translation from a CP-net
and an annotation layer to another (matching) CP-net. In this way no new
semantics is introduced to CP-nets. From the current definition of annotations,
the translation can be conducted fully automatically. This means that the
modeller do not need to know the details of the translation to be able to use
annotations in practice. Defining annotations in annotation layers stresses the
fact that annotations are easy to separate from the CP-net itself, and the fact
that it is easy to add several different annotation layers on top of each other.

The current proposal for annotating CP-net is by no means perfect. The

4.3. Related Work 33

current major disadvantage is the lack of tool support for annotations. In
addition, the current restrictions on annotations are quite strong and have
primarily been made to keep the notation as simple and intuitive as possible.
Only by applying annotations on industrial sized examples we will be able to
determine if the current proposal with the strong restrictions and limitations
on annotations will be useful in practice.

4.3 Related Work

The further development of PT-nets to high-level Petri nets has made com-
pact representations of systems possible. Adding information or data to tokens
was the key-element in obtaining this compact representation. Annotations also
heavily exploits colours in the process of adding auxiliary information to tokens.
From an abstract point of view we can consider annotations as a way to add
additional information to tokens – and thereby we are able to distinguish anno-
tated tokens even though some tokens may have the same (underlying) colour.
Therefore, there is a close relationship between adding colours to tokens and
adding annotations to tokens.

Extending CP-nets with channels for synchronous communication is con-
sidered in [15]. The motivation for this extension came from practical use of
CP-nets where it is often required to add extra places and transition to model
synchronous communication. This motivated the need for explicit support for
synchronous channels in CP-nets. The motivation from practical use was also
one of the reasons for developing annotations to remedy laborious work with
adding auxiliary information to a CP-net. The paper [15] also shows how a CP-
net with channels can be transformed into a behaviourally equivalent CP-net.
Like for a matching CP-net obtained from translating the underlying CP-net
and the corresponding annotation layer, the behaviourally equivalent CP-net,
obtained from translating a CP-net with channels, is not intended to be gen-
erated when using channels in practice. Instead, the translation is used only
to define the semantics of synchronous channels and in the process of formally
deriving properties of CP-nets with channels. Synchronous channels are cur-
rently not part of the distributed version of Design/CPN, but are included
in the tool Renew [89] supporting reference nets [99]. Reference nets are es-
sentially an extended version of CP-nets where tokens can be reference nets
themselves. This means that tokens are not only static information, but may
have dynamic behaviour and change its own value (or state). Communication
between reference nets (in tokens) is conducted using synchronous channels.

Parameterised CP-nets have been examined in [19, 69]. The fundamental
idea of parameterisation is to represent only the part common for all objects in
a family and characterise holes of interest (parameters) which can be filled in
later. In other words, when a part of a model can be used in several contexts
while only modifying certain parts, these parts can be declared as parameters.
The parameters can then be bound to different entities for each different use.
In the papers [19, 69], different kinds of parameterisation is proposed, such as
type, expression, and net parameters.

34 Chapter 4. Annotating Coloured Petri Nets

The lack of behaviour-respecting abstractions in hierarchical CP-nets has
been investigated by Lakos in [50, 51]. His main purpose is not to support
annotations, but rather to make it easier to prove properties about modelled
systems. He proposes introducing so-called abstraction morphisms between CP-
nets to guarantee that the structural abstraction, represented by e.g. a substi-
tution transition, will be respected in the behaviour of the refined CP-net. As
part of this proposal he defines so-called type (or colour)-refinements used to
refine colours from a CP-net when used in a refined net. In other words, a
type refinement incorporates additional information in the tokens of the refined
CP-net than in the abstract CP-net. As part of the abstraction morphism,
this additional information is removed when projected onto tokens in the ab-
stract CP-net. Even though Lakos’ intention is different from ours, his research
stresses the fact that it is indeed necessary to be able to maintain several slightly
different CP-nets of a system – and that it is important to know exactly what
are the differences between these CP-nets.

In object-oriented programming languages like e.g. Beta [68], classification
hierarchies are used for classifying objects which relate to each other with re-
spect to certain characteristics. For example, consider an animal. A cat and
and a bird are different animals, and can therefore themselves be considered as
individual subclasses of the class animal. All animals have a mechanism which
makes them able to move, e.g. cats have feet while birds have wings. In Beta,
virtuality makes it possible to specify that an attribute may be specialised in
a subclass – but still be manipulated at an abstract level. For example, the
move-mechanism for animals is specialised to feet for cats and to wings for
birds. When animals including both cats and birds are asked to move, the
cat-animal will use its specialised behaviour, i.e. its feet, to move while the
bird-animal will use its wings. This is somewhat similar to the way annota-
tions extend tokens with auxiliary information. From the point of view of the
underlying CP-net, a token is represented without the additional behaviour of
the annotation layer, while in the matching CP-net the behaviour is extended
as described by the annotation layer.

Chapter 5

Conclusions and Future Work

This chapter concludes the work discussed in this dissertation and presents
directions of future work. Section 5.1 contains a brief summary of the main
contributions of this dissertation. Section 5.2 presents some directions of future
work.

5.1 Summary of Contributions

The focus of the research has been on providing better facilities for practical
use of CP-nets. This includes facilities for creating domain-specific GUIs for
CPN simulators using the tool Design/CPN, improved facilities for monitoring
simulations and for annotating CP-nets. The main contributions of the work
are summed up below.

• The development of tool facilities for creating web-based domain-specific
GUIs for CPN simulators using Design/CPN. Creation of a domain-
specific GUI makes it possible to hide a CP-net and the corresponding
simulator behind a customised GUI. The developed method provides a
fast way of creating a domain-specific GUI for a CPN simulator.

• A simulator for influence nets has been implemented and validated using
CP-nets and Design/CPN. The simulator is created by translating an
influence net to a CP-net which is then simulated using the Design/CPN

simulator. The simulator is extracted from the Design/CPN tool and
hidden behind an automatically generated web-based GUI which is used
for controlling the simulator and for displaying simulation results using
domain-specific concepts. The usability of the method has been estab-
lished via evaluations with participants from the US military.

• A monitoring framework has been developed. The purpose is to separate
from models the code defining how to extract and process data from
simulations. Essentially, a monitor specifies when it should be activated
during a simulation, how data should be extracted, and what to do with
the data. Monitors can be either customised or predefined to e.g. save data
in files, control stop criteria of the simulator, update message sequence
charts, or send data to external processes.

35

36 Chapter 5. Conclusions and Future Work

• Separation of auxiliary information from CP-nets is proposed by intro-
ducing annotations and annotation layers in CP-nets. Annotations make
it possible to associate auxiliary information with tokens without modi-
fying colour sets of a CP-net. Annotation layers make it easy to maintain
several different sets of annotations when using a CP-net for different
purposes – instead of maintaining several slightly different copies of the
same basic CP-net. In addition, the overall behaviour of the CP-net is
preserved when adding annotation to a CP-net.

5.2 Future Work

The motivation and objective for the work presented in this dissertation has, as
stated in Sect. 1.2, been to provide better facilities for conducting practical use
of CP-nets. From the contributions described in Sect. 5.1 we claim that this
has been achieved. Facilities have been developed and practical projects have
shown the usability of these facilities. However, the work presented here can be
improved in many ways. In this section we discuss a few ideas and directions
for future work.

5.2.1 Web-Based Interfaces and Influence Nets

Currently work is conducted at George Mason University to change the in-
fluence net tool to make it possible to specify timing parameters within the
influence net tool instead of specifying these parameters via the web browser.
By using the influence net CPN simulator as an integrated component in the
influence net tool, both input and output can be managed directly from the
GUI of the influence net tool. In other words, the influence net tool itself will
completely hide the fact that a CPN simulator is used internally for simulating
influence nets with timing information. For some users this approach may be
more appealing than having to use two different tools for creating and analysing
influence nets.

Due to the interest from the US military in using CPN simulators for in-
fluence nets, it may also be worth while to investigate how influence net CPN
simulators can be integrated with other simulation models. The main reason
why this may be relevant is that the US military put great effort into devel-
oping a high-level architecture (HLA) [93]. HLA supports the combination of
several simulation models into so-called federations of simulation models. In
other words, the architecture makes it easy to create a distributed environment
for running several interacting simulation models.

5.2.2 Monitors

In the paper on monitors we claim that the monitoring framework can probably
be used for any discrete-event system formalism. This claim has to be investi-
gated further in the future by investigating and evaluating other discrete-event
system tools.

5.2. Future Work 37

As mentioned previously, the monitoring framework has been developed as
a generalisation of the data collection facilities in the Design/CPN Perfor-

mance Tool. The Design/CPN Performance Tool has been used in
several projects, and was integrated in version 4.0 of Design/CPN released
in September, 1999. In contrast, only a prototype of the monitoring frame-
work has been implemented and applied to a few CP-nets. Future work should
focus on completing the implementation of the monitoring framework. This in-
cludes extending the GUI of CPN Tools [23] which is the tool going to replace
Design/CPN in the near future. In this tool the design of the GUI for the
monitoring framework should use the new advanced user interaction techniques
as described in [6, 5].

Future work could also continue our undocumented work on batch monitors.
The monitors described in the monitoring framework are primarily intended to
be applied during a single simulation. When using a model for e.g. performance
analysis it is often necessary to run several simulations – possibly with slightly
different parameters. To support monitoring during such batches of simula-
tions we have considered how batch monitors could be designed. We believe
that there is a great potential for batch monitors, and it should definitely be
investigated further in the future.

5.2.3 Annotations

There are many issues regarding annotations that can be addressed in the fu-
ture. First of all, the ideas on annotations presented here have not yet been
used in practice due to lack of tool-support. It is of high priority to develop
a prototype of a tool supporting annotations. Only by using annotations in
practice on concrete CP-nets, it is possible to determine if annotations will
make it easier for the modeller to maintain auxiliary information within a CP-
net. The prototype of a GUI supporting annotations should be implemented
in CPN Tools where the design of the GUI could use the new advanced user
interaction techniques of CPN Tools.

Further research is required on annotating arc expressions on arcs that eval-
uate to multi-sets instead of single colours. The current proposal where all
colours in the multi-set will get the same annotation may be too restrictive in
practice. However, if the notation of annotations is too complex, then users
may be reluctant with learning how to use annotations. Therefore, the limita-
tions have been made to make the annotation notation as simple as possible
– and thereby to make it easier to design tools with user-friendly support for
annotations.

Guards are not considered in the proposal for annotations. The main reason
is that guards are often added to restrict the enabling of transitions. However,
guards can also be used for binding free variables. A future proposal for annota-
tions should consider the ability of binding free auxiliary variables in annotation
layers by means of guards.

Our proposal only considers how to add annotations to existing initialisation
and arc expressions, and thereby only considers how to annotate existing tokens.
However, it might be useful also to be able to add auxiliary net structure to

38 Chapter 5. Conclusions and Future Work

the annotation layers. As an example, a place could be added only to the
annotation layer with a token holding a counter with the number of occurrences
of a transition. Allowing such additional net structure in the annotation layers
would make it possible to take advantage of the powerfulness of the graphical
notation of CP-nets when encoding the logics of annotations.

Another issue that should be addressed in the future is whether or not
the translation from a CP-net and the corresponding annotation layer to the
matching CP-net should be conducted in a tool. The author of this disserta-
tion currently believes that the translation should be conducted implicitly by
modifying the simulator in the tool. The simulator should be modified so that
the annotations are handled explicitly by the simulation tool instead of being
integrated into the CP-net. In other words, the translation should only be used
for defining the semantics of annotations and should not be applied to every
annotated CP-net. However, this should be investigated in the future.

Finally, the similarities between the monitoring framework and annotations
could be considered. Both monitors and annotations aim at separating code and
information from a CP-net. Annotation layers have the advantage compared
to monitors, that there is a tight coupling between the annotations and the
graphics of the CP-net while still easily being able to disable annotations when
needed. Therefore, it should be investigated how these advantages can be used
for integrating monitors into annotation layers.

Part II

Papers

39

Chapter 6

Web-Based Interfaces for Simulators of

Coloured Petri Net Models

The paper presented in this chapter was first published in the proceedings of
the Workshop on the Practical Use of High-Level Petri Nets 2000. Later the
paper was accepted for publication in the International Journal on Software
Tools for Technology Transfer (STTT), 2001.

[53] B. Lindstrøm. Web-Based Interfaces for Simulators of Coloured Petri Net
Models. In K. Jensen, editor, Workshop on the Practical Use of High-
Level Petri Nets, DAIMI PB–547, pages 15–33. University of Aarhus, De-
partment of Computer Science, 2001. Online: http://www.daimi.au.dk/-
pn2000/proceedings.

[54] B. Lindstrøm. Web-Based Interfaces for Simulators of Coloured Petri Net
Models. International Journal on Software Tools for Technology Transfer,
3(4):405–416, September 2001.

Except for minor typographical changes the content of this chapter is equal
to the STTT paper in [54].

41

6.1. Introduction 43

Web-Based Interfaces for Simulation
of Coloured Petri Net Models

Bo Lindstrøm∗

Abstract

This paper describes an approach which allows users without knowl-
edge of coloured Petri nets to control the simulation of coloured Petri net
models and interpret the results obtained from simulations via web-based
interfaces. We describe the architecture design of facilities in a simulation
tool for making it possible to simulate a coloured Petri net model via a
web-based interface. The approach is based on giving the modeller the
ability to easily create a CGI script containing the entire simulator. The
initial conditions of the simulator for running several simulations can then
be specified via a so-called HTML form on a web page. The fact that the
initial conditions of a simulation can be specified via a domain specific
and user-relevant form, gives users without knowledge of coloured Petri
nets and the actual simulation tool the ability to use the pre-constructed
simulators for specific analysis purposes. The paper also illustrates that
integrating so-called batch scripts into a CGI script has some advantages.
Batch scripts give the user the ability to run several simulations after hav-
ing specified initial conditions for each simulation. Thus we will be able to
first specify input via a web page and then based on that input run several
simulations. As a representative example we show how to implement the
approach in the Design/CPN tool.
Key words: Coloured Petri nets – Batch simulations – CGI scripts –
Design/CPN – HTML forms – Web interfaces.

6.1 Introduction

There are many situations in which we can use models of systems to help in
making decisions about the operation of the modelled system. In many cases
discrete event models are the most appropriate computational engines for these
decision support tools. Petri nets, in general, and coloured Petri nets [44]
(CPNs or CP-nets) in particular, are general modelling languages for creating
discrete event system models. Petri nets support both analysis of the logical
properties of systems and simulation, so that logical properties and behaviour
of systems can be examined [45]. Petri nets can also be used to investigate
the performance of systems. While Petri net tools, such as Design/CPN [27],

∗Department of Computer Science, University of Aarhus, Denmark, E-mail:
blind@daimi.au.dk

44 Chapter 6. Web-Based Interfaces for Simulators of CPN Models

Create
CPN Model

CPN
Model

Simulate
CPN Model

Simulation
Results

GUI of CPN
Tool

Set Initial
Conditions

Show
Results

Initialised
CPN Model

Start

Figure 6.1: Original approach for cre-
ating and simulating CPN models.

Create CPN
Model and GUI

CPN
Model

Simulate
CPN Model

Simulation
Results

GUI of CPN
Tool

Set Initial
Conditions

Show
Results

Initialised
CPN Model

Start

GUI of
CPN model

CPN Expert

Application User

Figure 6.2: New approach for simulat-
ing CPN models via a web browser.

offer powerful capabilities for verification [47] and performance analysis [58]
of models, their complexity and the need for understanding Petri net theory
requires specially trained personnel.

The motivation behind this paper has been to make Petri net technology
available for application users who are not experienced with Petri nets. The
development of CP-nets and their tools has progressed to an industrial strength
modelling language that retains the theoretical foundation of Petri net theory.
However, not much focus has been on integrating simulation models into real
applications.

Until now, the same graphical user interface (GUI) is often used for all ac-
tivities involved in creating, simulating and analysing CPN models. Figure 6.1
illustrates this approach. First, the GUI (the dashed place) is used to create
the CPN model. Then the same GUI is used for simulation activities, such as
setting the initial state or initial conditions of the model, and afterwards, it is
used for simulating the CPN model. Finally, the simulation output produced
during simulations is often also displayed using the same GUI.

The architecture envisioned in this paper is to leave the creation of the
CPN models to CPN experts, and let the application users simulate the models

6.2. Example: Backup Company 45

using another domain specific interface (see Fig. 6.2). First of all, the CPN
expert creates a CPN model together with a suitable GUI for applying the
CPN model. Creating the CPN model and the GUI tailored to the CPN model
allows application users without knowledge of the simulation tool to simulate
the CPN model over a range of conditions (initial markings). Application users
use the specially tailored GUI to set the initial state/conditions of the CPN
model and then to run the simulation. Finally, the domain tailored or domain
specific GUI may be used to display the results of the simulation.

The architecture described above using domain tailored GUIs was expanded
to provide the application user with remote access to the simulator of a CPN
model using web technology such as so-called Common Gateway Interface scripts
(CGI scripts) [35]. Thus, the application user has the advantage of having access
to a rigorous discrete event system model of a complex distributed or concurrent
system over a network using any web browser. The application user controls the
executable model through a Hyper Text Markup Language (HTML) [102] form
that provides inputs to the CPN model. The output will possibly be returned
to the web browser of the application user. In this manner, the application
user can perform analysis of the CPN model of the system without needing to
understand or even see either the CPN models and CPN formalism or the user
interface of the CPN tool. Thus, the application user simply provides input via
a form in a HTML document which is tailored to the specific CPN model and
uses terminology and concepts from the application domain, while the actual
CPN model and the modelling tool are never seen by the application user. The
remaining sections of this paper provide a detailed description of the design,
implementation, and use of the approach outlined above. The Design/CPN
tool was used as a basis for the implementation of the approach.

The paper is organised as follows. Section 6.2 presents a simple but realistic
example which illustrates the approach for accessing simulators of discrete event
systems via a web browser. This example will be used as a running example
throughout the rest of the paper. Section 6.3 contains a general discussion of the
design considerations related to developing the approach. Section 6.4 describes
how to realise the design in the Design/CPN tool. Section 6.5 illustrates the
amount of code a CPN expert using Design/CPN needs to write to apply the
approach to a specific CPN model. Finally, section 6.6 concludes the paper and
gives suggestions for future work.

6.2 Example: Backup Company

This section gives an example of a scenario, where a web-based interface for
simulating CPN models can be very useful. We will use the example presented
in this section for illustration purposes in the rest of the paper. We will not
describe the CPN model itself because it is not necessary to understand the
details of the CPN model in order to understand the approach of simulating a
CPN model via a web browser. In later sections we will discuss how to modify
the environment of a CPN model in order to allow it to be simulated via a web
browser. We stress that the company presented in the example is fictive, but

46 Chapter 6. Web-Based Interfaces for Simulators of CPN Models

the example is simple and illustrates the possibilities of the approach.
A company sells backup devices from a web site. When a customer needs

to decide which backup device to buy for a complex network environment, it is
necessary to take several factors into account. The customer needs to consider
his existing system in order to obtain the most suitable backup system. In
particular he needs to consider the following factors.

• What is the network bandwidth on the local area network?

• How many machines exist of each type: servers and workstations?

• How much disk capacity is present?

• Which is most important: price or performance?

Today many of the customers call the company and ask what components
they should buy for their particular system. The company has created a CPN
model that can provide a specification of the needed backup system given system
requirements like the ones stated above. The CPN model helps the employees
answering the phone calls to answer the questions of the customers.

It takes a lot of time for the company to answer questions from customers
who ask what to buy for their specific system. Therefore, the company wants
to provide their potential customers with a tool that can help decide which
components to buy. An obvious solution would be to simply give the customers
access to the CPN model from a web page. In this way both answering technical
questions about what to buy and placing an actual order can be handled via
the Internet. This means that customers do not have to call the company to
figure out what to buy, thus reducing the service costs for the company.

After having applied the approach described in this paper to the CPNmodel,
it is possible to simulate the CPN model via a web browser. A customer who
wants to buy some backup devices accesses the web page containing an HTML
form, like the one in Fig. 6.3, which is the interface to a simulator of the CPN
model. The customer types in the data of the existing system together with
the requirements of the new system into the form.

The system replies after having simulated the CPN model based on the
input given in the form (see Fig. 6.4). Different kinds of output are produced.
A textual description of the necessary backup components is given, and the
expected performance of alternative components is illustrated using graphs.

The CPN model used in this example is a customised model which can
simulate any backup device the company sells. The model is fixed to a specific
backup device by using different initial markings.

To determine which backup device is the most suitable for a customer, the
CPN model is simulated several times with different initial markings – once for
each backup device that the company produces. Based on the results obtained
from the simulations, the most suitable ones are selected and displayed for the
customer.

6.3. Design of the Web-Based Approach 47

Figure 6.3: HTML form as interface to the CPN model.

6.3 Design of the Web-Based Approach

The general description of the approach for creating web-based interfaces for
simulating CPN models introduced in Sect. 6.1 will be considered further in
this section. Section 6.4 will focus on how to implement the design in the
Design/CPN tool.

Several different options exist for executing and controlling a program via
a web browser. In this paper we describe an approach for controlling sim-
ulations using so-called Forms and Common Gateway Interface scripts (CGI
scripts) [35], which are both well-known Internet techniques.

Figure 6.5 illustrates the setup for using CGI scripts, while the message
sequence chart in Fig. 6.6 illustrates what happens when a CGI script is ac-
tivated by submitting a form from a web browser. Assume that a hypertext
document (backup form.html) is located on Computer B which is a web server
(HTTP server B). The document could, e.g. be an HTML document producing
a form like the one in Fig. 6.3. The application user using the web browser at
Computer A downloads the HTML document. The application user then fills
out and submits the form. When the application user submits the form, a link
(URL) to a file on Computer C that holds the CGI script (backup.cgi) will
be followed. (The CGI script may also be placed on the same computer as the
HTML form.) This link is a ”normal” HTTP link, but the file on the web server
on Computer B is stored in such a way that the web server on Computer C can
tell that the file contains a CGI script that is to be executed, rather than a doc-
ument that is to be sent to the client as usual. The web server then executes the
CGI script which can read the input that the user typed into the form. Based
on the input the CGI script dynamically generates an HTML document. The
HTML document is sent to the client while it is being generated as a stream.
The web browser on the client computer displays the document while receiving

48 Chapter 6. Web-Based Interfaces for Simulators of CPN Models

Figure 6.4: An HTML document containing the results of simulating the CPN
model.

the stream of HTML code from the web server, as it would display any other
HTML document. The HTML document being received could, e.g. be like the
one in Fig. 6.4.

Forms are very useful for specifying textual input via a web browser. Fur-
thermore, they provide a simple mechanism for submitting the contents of the
form to a CGI script. The HTML code for specifying a form is also very sim-
ple. Figure 6.7 shows the HTML code used to display the HTML document
in Fig. 6.3. The URL www.daimi.au.dk/cgi-sim/cpn.cgi in line 3 identifies
the CGI script to be activated when the user submits the form. The button for
submitting the form is created using line 15 in Fig. 6.7. Lines 9 – 14 specify that
five fields for input should be created. The input fields are named uniquely in
the form using names (bandwidth, servers, clients, disk, and price). These
names are used by the CGI script to access the values of the fields when the
form is submitted.

Note that only a few lines of HTML code are necessary to create a form,

6.3. Design of the Web-Based Approach 49

 backup_form.html

 HTTP Server

 Computer B

Internet
 HTTP Server

 Web Browser

 Computer A

backup.cgi

 Computer C
URL

Figure 6.5: A web browser and two web servers.

 HTTP Server B Web Browser A

Fill form

Submit form

HTTP Server C

Start CGI script

End CGI script

get_URL(backup_form.html)

backup_form.html

get_URL(CGI script)

HTML result

HTML result

Figure 6.6: A web browser requests a CGI script to be executed.

thus most people who can read CPN models and do some basic programming
should be able to learn to write such HTML code without too much difficulty.

The program or CGI script that reads the information submitted in the
form and that processes the information is more complex. Specialised scripts
are required to handle the incoming form information. CGI scripts may be
written in scripting languages like Perl [109] or in programming languages like
C and Standard ML (SML) [83]. In general, a CGI script can be considered as
an executable program that can be executed on a web server by request from a
web browser.

To be able to simulate CPN models using CGI scripts in a controllable
manner there are some requirements of the Petri net tool. First of all, the Petri
net tool should be able to start a simulation of a specific CPN model without
requiring a user to interact with the tool-specific GUI. For example, it should
not be necessary to use dialog boxes in the Petri net tool to start a simulation
– it should be possible to automate everything in a script. The tool should
allow users to write user-defined functions, e.g. for retrieving input, saving
files, and printing to standard output. The reason for these requirements is
that because a CGI script is invoked via a form, the CGI script must be able
to control everything related to reading input from the form, setting the initial
state, starting the simulation, and producing results.

To make the CGI script as user-configurable as possible with respect to
controlling a simulation, the CGI script must be able to control the simulation

50 Chapter 6. Web-Based Interfaces for Simulators of CPN Models

<HTML><BODY> 1
<FORM method=GET

action="http://www.daimi.au.dk/cgi-sim/cpn.cgi"> 3
<CENTER>
<H1>Backup Unlimited Inc.</H1> 5
<H3>Input your data and requirements for a backup system</H3>
<H3>- and we will provide you with what you need for your system.</H3> 7

</CENTER>
Network bandwidth: <INPUT size=15 type=text name=bandwidth value=5>Mbps
 9
Number of servers: <INPUT size=15 type=text name=servers value=1>

Number of workstations: <INPUT size=15 type=text name=clients value=10>
11
Disk capacity: <INPUT size=15 type=text name=disk value=10>GB

Is price more important than performance: 13

<INPUT size=15 type=checkbox name=price>

<INPUT type=submit value=" Submit Requirements "> 15

</FORM></BODY>
</HTML> 17

Figure 6.7: HTML code for creating a form.

tool in the following way: when the CGI script is executed from a web browser,
it should automatically execute a sequence of commands. In the following we
will refer to this sequence of commands as a batch script [57]. A batch script
can be considered as a simulation control script with the purpose of specifying
exactly what the CGI script is intended to do – including when to start a
simulation. In this context, a CGI script will be defined as an executable CPN
simulator together with a batch script which defines what happens when the
CGI script is executed.

To give the user the largest possible freedom for defining CGI scripts the
batch script needs to be able to be specified by the user. In the context of
CGI scripts the batch script typically has a certain structure which is likely to
include the following actions:

i. Retrieve parameters from the form (see Fig. 6.7 for example of HTML
code for a form).

ii. While there are more simulations to run do the following:

(a) Calculate markings to be used to initialise the state of the CPN
model.

(b) Initialise the state of the simulator.

(c) Run simulation – and collect data.

(d) Save results and/or send HTML code to the client web browser.

iii. Quit the CGI script.

First of all, the batch script needs to retrieve the parameters that are sent to
the CGI script from the form. After having extracted the data from the input
fields in the form, the batch script needs to specify how to run the simulation(s).

6.3. Design of the Web-Based Approach 51

<HTML><BODY> 1
<FORM method=GET action="http://www.daimi.au.dk/cgi-sim/place_order.cgi">
<CENTER> 3
<H1>Backup Unlimited Inc.</H1>
</CENTER> 5
We have now simulated a model of your system using your specified
requirements. We propose that you buy the following backup devices: 7
Backup device B1 or Backup device B2. You can decide which best
suits your needs from the graphs below: 9

<CENTER> 11

</CENTER> 13
I order the following item: <input size=15 type=text name=no value=B1>

<INPUT type=submit value=" Place Order ">

 15

</FORM></BODY>
</HTML> 17

Figure 6.8: HTML code for creating the form in Fig. 6.4.

The batch script often starts by calculating the markings for the initial state.
The calculation is likely to use input parameters from the form or results from
previous simulations. Now the state of the simulator is ready for starting the
simulation.

While the simulation runs, data is often collected and saved in files for later
processing. Therefore, the model often needs to be instrumented to collect
the needed data. When a simulation has finished, the results collected during
simulations may be sent directly to the web browser (by printing HTML code
to standard output). In addition, results from the simulation may be saved
to files for later post-processing. Finally, the batch script may decide that
more simulations are to be performed. Then the batch script may continue by
restarting the script, otherwise the CGI script terminates.

Simulation tools that support converting a simulator into a CGI script may
also include some auxiliary and high-level facilities. Examples of such high-
level facilities are facilities for creating graphs to be saved in files, and facilities
for printing HTML code for referring to graphs in the HTML document being
generated by the CGI script. This makes it possible for the web browser to
download the image containing the graph while displaying the HTML docu-
ment. Such an image result.graph.png was included in the HTML document
in Fig. 6.4 in Sect. 6.2 using HTML code like line 12 in Fig. 6.8.

If the simulation tool does not contain the needed post-processing facilities
itself, it may possibly use external programs for post-processing of the data.
There are only two requirements of the post-processing tool to allow using it
from the CGI script. The first one is that the tool should support being executed
from the command line using a script containing all the needed commands to
create the graph. Secondly, the tool should be able to save the output to files.
Gnuplot [32] is an example of a tool that can be used for generating plots and
graphs, and it supports command line scripts, too.

Given a CPN tool that fulfills the above mentioned requirements by allowing

52 Chapter 6. Web-Based Interfaces for Simulators of CPN Models

to create batch scripts and then be remotely controlled, it is possible to create
CGI scripts that fulfil many needs for simulation of CPN models from web
browsers. In total the CPN expert needs to create two different files: an HTML
form (like Fig. 6.7) to be used for specifying input to the CGI script, and the
batch script for retrieving input from the form, running the simulation, and for
producing results to be displayed at the web browser.

In the approach described in this paper, all input from the application user
should be ready before submitting the form. In this situation it is not possible to
control the simulation after it is started – the simulation will be non-interactive
but results can be shown gradually as they are generated. In Sect. 6.6 we discuss
future work which addresses how to obtain interactive simulations within the
approach.

6.4 Implementation in Design/CPN

Design/CPN [27] is a widely used tool supporting editing, simulation and ver-
ification of CPN models. In this paper, Design/CPN is used to prove the
usefulness of the CGI concept for simulating CPN models via a web browser.
In this section we describe some of the design considerations and facilities that
are implementation specific for Design/CPN.

According to the description in Sect. 6.3, a CGI script is nothing more than
a program that can be executed from a web page and then dynamically produces
a new web page. A few modifications are made to Design/CPN in order to make
it possible to turn the simulator of Design/CPN into a CGI script, or rather to
drive the Design/CPN simulator from a CGI script. To understand why these
changes need to be done, we need to describe some of the architecture of the
Design/CPN tool.

Design/CPN is divided into two parts: one part implementing the GUI, and
another part containing a simulation engine for simulating a CPN model. When
a CPN expert has created a CPN model (see Fig. 6.9), simulator code can be
generated containing the simulation engine and some model dependent code.
This code contains everything needed to simulate that specific CPN model.
Figure 6.9 differs a little from Fig. 6.1 in that a simulator is generated from
the CPN model before being able to perform the actual simulation. However,
when the simulator has been generated once and for all, it may be used to run
any number of simulations.

In the context of CGI scripts only the simulator of Design/CPN is of in-
terest. The reason is that it contains the entire executable simulator which is
generated from the CPN model created in the editor of Design/CPN. Thus, the
Design/CPN simulator is the only part of Design/CPN that needs to be used
when creating a CGI script.

6.4.1 Disabling the GUI of Design/CPN

Due to the fact that the simulator and the graphical user interface (GUI) of
Design/CPN communicate with each other, the Standard ML (SML) [83] func-
tions contained in the simulator for updating the GUI of Design/CPN should

6.4. Implementation in Design/CPN 53

Create
CPN Model

CPN
Model

Simulate
CPN Model

Simulation
Results

Design/CPN
GUI

Set Initial
Conditions

Initialised
Simulator

Generate
Simulator

Design/CPN
Simulator

Show
Results

Start

Figure 6.9: Design/CPN approach for creating and simulating CPN models.

be modified in order to not update the GUI while simulating. The reason
for this modification is that the GUI of Design/CPN is not present in a CGI
script. Only the code constituting the simulator and user-defined functions is
contained in a CGI script. Remember that a CGI script is invoked from a form
in a browser, while the CGI script itself is running on the web server. Therefore,
the web page shown by the web browser can be considered to be the GUI of
the CGI script.

6.4.2 Creating CGI Scripts

Another modification of Design/CPN makes it possible to save a CGI script in
an executable file. The executable file will contain the entire simulator code
for the CPN model and a user-defined function. The simulator code is model
dependent SML code which is automatically generated by Design/CPN. This
code makes it possible to simulate the CPN model. The user-defined function
will be a batch script, as described in Sect. 6.3. Batch scripts in Design/CPN
are written in SML.

An example of a batch script can be found in Fig. 6.10. The function
getValOfField reads the value that the user has typed into the form in the field

54 Chapter 6. Web-Based Interfaces for Simulators of CPN Models

fun batch script (,) =
let fun parse form input () =

{diskField=getValOfField "disk",. . .};
fun cycle script () =

(calculate initial marking();
init state(); (* Initialise state of the simulator *)
simulate(); (* Run the simulation *)
save results();
if not finished() then cycle script ()
else ());

in
(parse form input ();
cycle script ())

end

Figure 6.10: A simple batch script.

Design/CPN
simulator

Save
Executable
CGI script

Batch
Script

CGI script

Generate
simulator

CPN model

Figure 6.11: Creating a CGI script from Design/CPN.

named by disk which is the name of the field with the title “Disk Capacity” in
Fig. 6.3. The function parse form input is simplified here to only read the field
disk. The user may want to do some calculations (calculate initial marking)
before initialising the state of the simulator by means of the function init state.
The simulation is started using the function simulate. The function save results
saves results in files and/or sends them to the web browser.

When the user has finished creating the batch script to be included in the
CGI script, the actual CGI script can be generated. The CGI script is generated
and saved in a file by simply invoking a SML function. The overall approach
for creating a CGI script using Design/CPN is illustrated in Fig. 6.11. First
the model is created and the simulator is generated using Design/CPN. Then
a batch script is created by the CPN expert to control the actions of the CGI
script. Finally, the CGI script containing the batch script and the Design/CPN
simulator is generated and saved in a file.

6.4. Implementation in Design/CPN 55

fun print header n =
(print ("Results from running "^

(Int.toString n)^
" simulations"));

Figure 6.12: Print HTML code to a web browser.

6.4.3 High-level Functions

Due to the fact that SML is the language used for specifying CGI scripts which
contain the Design/CPN simulator, or in particular that the batch script con-
tained in the CGI script is written in SML, the CPN expert can use the full
power of the language SML for getting input and producing output from the
CGI script. This section describes some auxiliary and high-level functions that
may be useful when creating batch scripts to be used in CGI scripts. In par-
ticular we will focus on functions for reading input from HTML forms and
generating HTML code as simulation output.

We will now describe how to read the parameters entered in the browser
from the CGI script. When discussing the general structure of a batch script
in Fig. 6.10, we introduced the SML function getValOfField. This function is
very useful when reading a value that an application user has input in a form.
The function can be used to read any input field in a form, thus it is very
general. The only parameter given to the function is the name of the field in
the form. The function retrieves the input sent from the form and returns the
value contained in the field.

When we want to produce an HTML document as output from running
a CGI script, the CGI script needs to print some HTML code to standard
output. SML provides the function print for printing to standard output. By
printing HTML code to standard output it is possible to create complex web
pages. The HTML document may even include embedded graphics, so-called
Java scripts [95], and Java applets which allow programs to be executed directly
on the client machine holding the web browser. Figure 6.12 illustrates a simple
SML function which prints some simple HTML code.

It may also be useful to save HTML documents as files. This is particularly
useful if several data files and figures are generated by the CGI script. In this
way it is possible to divide the results of running the CGI script over several
HTML documents. The page printed directly to the browser could simply be
a kind of index page for the rest of the HTML documents. In this way the
results of executing the CGI script may be shown in a structured manner.
SML contains several functions for creating files and directories. Thus, it is
immediately possible to save several HTML documents, to be referred to from
other HTML documents.

Results or raw data obtained during or after a simulation can also be saved
in files. Collecting data can, e.g. be done using the Design/CPN Performance
Tool described in [58]. By printing HTML code which provides an URL link
to the data file (see Fig. 6.13) to the web browser, the user can download the

56 Chapter 6. Web-Based Interfaces for Simulators of CPN Models

fun print url (URL, description) =
(print (""^description^""));

print url ("www.daimi.au.dk/res1.txt",
"Results from simulation");

Figure 6.13: Print URL to a web browser.

fun gen gnuplots
{filenamesxtitles : (string * string) list,
title : string,
xlabel : string,
ylabel : string,
dest filename : string,
gnuplot path : string}

Figure 6.14: Interface to Gnuplot function.

result files when the CGI script (or simulation) ends. After downloading the
file, the user can analyse the results produced using his favourite analysis tool.
As an alternative to downloading the raw data, the CGI script can post-process
the data itself.

In Sect. 6.3 we discussed generating graphics using external programs di-
rectly from the CGI script. We said that Gnuplot [32] is a tool that can be
controlled from a CGI script. To make it as easy as possible to create plots
using Gnuplot, and because Gnuplot is a non-commercial product, we provide
a SML function for plotting graphs using Gnuplot. Figure 6.14 contains the
interface of the Gnuplot SML function. The function is simply called with a
list of titles and file names of the raw data files and some textual information to
be included in the graph. Finally, the user also needs to specify a destination
file name where the plot is supposed to be saved. This SML function implies
that users not familiar with Gnuplot are also able to easily create plots using
the tool. The plot in Fig. 6.4 was generated using this function.

6.5 Creating CGI Scripts in Design/CPN

In this section we give an overview of how simple it is to create CGI scripts
from Design/CPN. In particular we illustrate how a typical batch script to be
included in a CGI script will look.

Below we include most of the SML code for creating the CGI script used in
Sect. 6.2. The purpose of including the code is to give the reader an idea of the
complexity and the amount of code to be written to create CGI scripts. It is not
important to understand every detail of the code. Some of the functions which
are not directly associated with CGI scripts and batch scripts are not defined
here. Please note that the code is rather general and can easily be modified to
be used for another CPN model – or even be generated automatically.

6.5. Creating CGI Scripts in Design/CPN 57

fun batch script (,)=
((* Retrieve parameters from form *) 2

update model(retrieve input ());
4

(* Run one simulation for the 20 different backup devices *)
run simulations (1, 20); 6

(* Generate output *) 8

gen output ());

Figure 6.15: Batch script.

(* Retrieve data from the form *)
fun retrieve input () = 2

{networkField = getValOfField "bandwidth",
serversField = getValOfField "servers", 4

workstationsField = getValOfField "workstations",
diskField = getValOfField "disk", 6

priceField = getValOfField "price"}

Figure 6.16: Retrieve input.

Figure 6.15 contains the SML function which is to be invoked when the CGI
script is executed. First the function retrieves the input that an application user
has entered in the form, and then updates the CPN model with the extracted
data. The function update model is not included here. Then 20 simulations
are executed to investigate the CPN model using the input parameters just
retrieved from the form. Finally, some output is generated and sent to the web
browser.

The function retrieve input for retrieving the data input by an application
user in the HTML form is contained in Fig. 6.16. The contents of each field is
retrieved using the predefined function getValOfField. The function is very
simple, and in the future it may be possible to generate the code for the function
automatically.

When all parameters are retrieved from the form, we define how to run
the simulations. Figure 6.17 describes how to configure the CPN model, run
the simulations, save results, and finally decide if further simulations are to be
performed.

The function load model configuration parameters is not contained here.
The purpose of this function is to load some configuration parameters into the
CPN model. These parameters are supposed to specify initial markings which
do not depend on the input from the form. In the context of the backup CPN
model, these parameters would specify the configuration of the specific backup
device to be simulated, e.g. capacity on tape, speed, etc.

After loading configuration parameters, the state of the CPN model can be
initialised using the function init state. To collect the needed results from the
simulation, the CPN expert may have defined some functions for collecting data.

58 Chapter 6. Web-Based Interfaces for Simulators of CPN Models

(* Specification of how to run simulations *)
fun run simulations (i, (n:int)) = 2

if (i <= n) then
(load model configuration parameters i; 4

init state();
createDataCollectors i; 6

simulate(); (* Simulate the CPN model *)
if (do results suit user needs ()) then 8

remember model no i
else (); 10

run simulations (i+1, n))
else (); 12

Figure 6.17: Run simulations.

We assume that this is done using a function named createDataCollectors.
Now the CPN model is ready to be simulated. The simulation is executed
using the function simulate. When the simulation ends we can examine the
state, and observe if the results obtained suits the needs that the applica-
tion user has initially requested using the form. We assume that the function
do results suit user needs takes care of that. Finally we call the function
run simulations recursively for possibly running yet another simulation.

Figure 6.18 contains the function gen output which produces the HTML
document to be displayed at the web browser. The output includes both textual
information and a graph. The graph is plotted using the function in Fig. 6.19.
The graph is saved in a file with a unique file name, and appropriate HTML
code referring to the graph is printed to standard output. In this way the web
browser receiving the HTML code from the CGI script automatically downloads
and displays the graph.

6.6 Conclusion and Future Work

In this paper we have described how a web interface to a simulator of coloured
Petri net models can be designed. In particular we have illustrated how it has
been done in the Design/CPN tool. The approach is based on giving CPN
experts the ability to easily create a CGI script containing the entire simulator.
The initial conditions of the simulator can be specified via an HTML form on a
web page. The fact that the initial conditions of a simulation can be specified
via a domain specific form, gives users without knowledge of either CPN or
Design/CPN the ability to use pre-constructed simulators for specific analysis
purposes.

The paper has also illustrated that integrating batch scripts into a CGI
script has some advantages. Batch scripts give the user the ability to run
several simulations after having specified input for all the simulations. Thus we
will be able to first specify input via a web page and then based on the input run
several simulations. The fact that the input to the CGI script can be specified
in a HTML form on a web page means that the interface to the simulator can

6.6. Conclusion and Future Work 59

fun gen output () =
((* Print HTML directly to web browser *) 2

print "Content-type: text/html\n\n"; (* CGI-header *)
print "<HTML><BODY BGCOLOR=#FFFFFF>"; 4

print ("<FORM method=GET action=\"http://"^

"www.daimi.au.dk/cgi-sim/place_order.cgi\">"); 6

print "<CENTER>";
print "<H1>Backup Unlimited Inc.</H1>"; 8

print "</CENTER>";
10

(* Print the results of running the simulations *)
print ("We have now simulated a model of your system "^ 12

"using your specifiedrequirements. We propose "^

"that you buy the following backup devices:"); 14

print (model alternatives (!alternatives));
print "You can decide which best suits your needs "^ 16

"from the graphs below:
";
print "<CENTER>"; 18

(* Generate graphics using Gnuplot *)
print graphics (data files()); 20

print "</CENTER>";
print "I order the following item: <input size=15 "^ 22

"type=text name=item_no>
";
print "<INPUT type=submit value=\" Place Order \">"^ 24

"

";
print "</FORM></BODY></HTML>"); 26

Figure 6.18: Generate output similar to Fig. 6.4.

be domain specific and configurable. The domain specific and user-relevant
graphical interface to simulators makes simulations of CPN models accessible
for non-CPN experts.

Some Petri net based tools allow a similar architecture to the one presented
in this paper. A tool like e.g. ExSpect [28] can be used as a COM component
which makes it possible to create facilities similar to the ones described in
this paper. Furthermore, ExSpect allows using so-called dashboards which is a
domain specific interface for a Petri net based engine.

Future work may include investigating the ability to explore state spaces via
a browser – again possibly with a domain tailored web page as graphical inter-
face. This will also make it possible for non-experts to use the power of state
spaces for answering questions by querying the state space of a CPN model.
This could be obtained using the occurrence graph tool [47] of Design/CPN via
a CGI script. It will be immediately possible to explore state spaces from a
web page using the approach described in this paper. In Design/CPN it is just
a matter of saving a CGI script after generating code for the occurrence graph
tool instead of the code for the simulator.

Another interesting area is interactive simulation control via Java applets
[95] embedded in HTML documents. It will be possible to implement a domain
specific GUI giving interactive control of the simulator of Design/CPN using
a Java applet. Java applets are small Java programs that are automatically

60 Chapter 6. Web-Based Interfaces for Simulators of CPN Models

(* Create a plot using Gnuplot *) 2

fun print graphics (datafilesxtitles) =
let val unique filename = get unique filename (); 4

in (gen gnuplots {filenamesxtitles = datafilesxtitles,
title= ("Backup Device Model "^ 6

(model alternatives (!alternatives))),
xlabel = "GB Processed", 8

ylabel = "Process time (minutes)",
dest filename = unique filename, 10

gnuplot path = "/usr/local/bin/gnuplot"};
print ("<IMG SRC=\"http://www.daimi.au.dk/"^ 12

unique filename^"\" >
"))
end; 14

Figure 6.19: Create a plot using Gnuplot.

downloaded from a web server when a user requests an HTML document refer-
ring to the Java applet. When the Java applet is downloaded it is automatically
started within the browser using a Java interpreter on the client machine. Us-
ing Java applets the simulator on the web server and the Java applet on the
client machine can communicate during a simulation. By using Java applets it
is possible to obtain interactive simulations via the web browser. To be able to
use Java applets there are some extra requirements for the simulation tool re-
lated to communication between the Java applet and the simulator. It requires
TCP/IP communication between the applet in the browser and the simulator
residing on a server.

Finally, future work may also include developing auxiliary functions for
generating templates of code for batch scripts and HTML forms. In particular
template code for retrieving data from input fields in forms would be easy to
generate automatically. The CPN expert could annotate the relevant system
parameters in the CPN model and then the coloured Petri net tool could auto-
matically generate a HTML form including fields for the annotated variables.
Furthermore, it could also create functions for parsing the fields of the form and
for assigning the system parameters in the CPN model to the values entered in
the form by the application user. Experiments will show whether creating such
template code will be useful in practice. One thing that will indeed be gained
from generating both the HTML form and the functions for parsing the form is
consistency between the HTML form and the CGI script, i.e. it will be possible
to avoid some errors due to inconsistency between the names of the fields in the
HTML form and the names referred to by functions for retrieving data from a
form.

In conclusion, this paper has described a technique for making simulation
of CPN models usable for people without knowledge of the technical details of
CPN models. Thus, the paper has opened for using CPN simulators behind
services on the Internet.

6.7. Acknowledgements 61

6.7 Acknowledgements

The ideas presented in this paper have been developed during a project con-
ducted in cooperation with Søren Christensen, University of Aarhus, Lee W.
Wagenhals, Insub Shin and Daesik Kim from George Mason University, Fair-
fax, VA, USA. We want to thank these people for valuable discussions during
the development of the CGI approach. In particular, we want to thank Lee W.
Wagenhals for his involvement in writing early versions of this paper. Finally,
we also thank the CPN Group at University of Aarhus and the anonymous
reviewers for their careful and valuable comments on this paper.

Chapter 7

Equivalent Coloured Petri Net Models of a

Class of Timed Influence Nets with Logic

The paper presented in this chapter has been published in the proceedings of
the Third Workshop and Tutorial on Practical Use of Coloured Petri Nets and
the CPN Tools (CPN’01).

[55] B. Lindstrøm and S. Haider. Equivalent Coloured Petri Net Models of
a Class of Timed Influence Nets with Logic. In K. Jensen, editor, Third
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools, DAIMI PB–544, pages 35–54. University of Aarhus, De-
partment of Computer Science, 2001. Online: http://www.daimi.au.dk/-
CPnets/workshop01/.

Except for minor typographical changes the content of this chapter is equal
to the original paper in [55].

63

7.1. Introduction 65

Equivalent Coloured Petri Net Models
of a Class of Timed Influence Nets with Logic

Bo Lindstrøm∗ Sajjad Haider†

Abstract

This paper discusses coloured Petri net models of so-called timed influ-
ence nets with logic. Previous work has developed a method to translate
a timed influence net into a coloured Petri net. The work in this paper
describes a new and more compact translation from timed influence nets
with logic into coloured Petri nets. The translation has the property that
the net structure of the coloured Petri net will be the same for all trans-
lated timed influence nets – only the initial marking changes depending on
the actual timed influence net. This more compact translation avoids the
generation of simulation code for each timed influence net. The paper also
presents some validation results to establish that the coloured Petri net
models from the two methods are equivalent, i.e. that the new compact
coloured Petri net model gives the same simulation results as the old less
compact model does.
Key words: Coloured Petri nets, Timed influence nets with logic, Equiv-
alence, Folding, Information assurance.

7.1 Introduction

When making decisions it may be very important to be able to maximise or
minimise the probability of certain events to appear. Being able to solve this
problem is relevant in several different areas. For command and control systems
in the military it is, e.g. important to take the best possible actions to maximise
the probability that an enemy will surrender. For a system administrator it is
important to be able to minimise the down-time for some service.

This paper will use an example from the area of information assurance [92].
Information assurance aims to minimise the probability that an intruder breaks
into a system and accesses secret information. Even though a lot of effort may
be put into making systems secure, a system will not be more secure than the
weakest point of the system. Therefore, it is very important to be able to
analyse a system to find the probability that an intruder can access the secret
information, and to find the weak points in a system.

∗Department of Computer Science, University of Aarhus, Denmark.
E-mail: blind@daimi.au.dk.

†System Architectures Laboratory, George Mason University, Fairfax, VA, USA.
E-mail: shaider1@gmu.edu.

66 Chapter 7. Equivalent CPN Models of a Class of TINLs

The method described in this paper makes it easier for an analyst to de-
termine the probability that an intruder can access the secret information. It
requires a model of the environment to be created by the analyst. The model
is specified as a non-cyclic graph with probabilities to determine how likely an
event is to appear. The model will be specified using a slightly modified version
of influence nets [90, 21] which is called timed influence nets with logic (TINL).
TINL is a variant of Bayesian nets [43] which makes it simple to specify prob-
abilities. The logic of a TINL has nothing to do with temporal logic, instead
the word logic refers to different kinds of nodes in a TINL. We will give more
details on the definition of TINLs in Sect. 7.2.

Based on the specification of the TINL, coloured Petri nets (CP-nets or
CPNs) [44, 45, 46, 48] are used to estimate the probability that a certain event
occurs, and the time of the appearance. Most often the analyst is only interested
in the final probabilities, and is not at all interested in the details of the CPN
model. However, in some situations the details of how a simulation has evolved
may be of interest, e.g. the order of occurrences of binding elements may contain
useful information.

Previous research in this field [108] has developed a method to automatically
convert a TINL into a CPN model using the tool Design/CPN [27]. Given a
TINL specification file, the method automatically creates a CPN model which
has a net structure very similar to the TINL, i.e. for each node in the TINL a
specific part of the CPN model can be identified to model that node. Therefore,
the fact that the structure of the CPN model looks like the TINL means that it
is easy for an analyst to recognise nodes from the TINL in the CPN model. This
close relationship between the CPN model and the TINL has been important
when trying to convince analysts who are used to working with TINLs that
CPN models are able to solve the problem and give the correct results.

In a later project the method has been extended to give access to creat-
ing and simulating models via a web browser. Given a TINL-specification file
which is uploaded to a web server, the method automatically generates the
CPN model and the corresponding simulator code using Design/CPN. Based
on the simulator code, a CGI script [35] is automatically generated using the
method described in [54]. Using an automatically generated web page which
contains TINL-specific information, the user is able to set initial conditions for
the simulator of the CPN model, and to start a batch of simulations using the
CGI script. After having performed a number of simulations, results including
graphics are displayed in the web browser. Figure 7.1 shows one of the graphs
that are included on a web page to display the results to the analyst using
domain-specific graphical user interfaces. The graphs show how the probabil-
ities of certain nodes in the TINL evolve during time. Using this web-based
graphical user interface, the analyst will never see the CPN model. Actually,
the analyst does not even need to know that a CPN model is used to produce
the results.

The previous method performs its job as expected. However, the method
has some drawbacks. The fact that a completely new CPN model (with all the
places and transitions) has to be generated for every influence net, means that
it takes rather long time to apply the method. Even though the CPN model is

7.1. Introduction 67

Figure 7.1: Graph from web page showing graphical analysis results of the
TINL in Fig. 7.3.

generated automatically, it takes time both to generate the net structure and
declarations, and then afterwards to generate the executable simulator code for
that specific CPN model.

In this paper we describe how to avoid to generate simulator code for every
instance of a TINL. In that way we eliminate the time used for each TINL to
both create the specific CPN model and to generate the corresponding simulator
code. This is done by creating a general CPN model (in the following referred to
as the folded CPN model) which can simulate any TINL for any set of parameter
values, i.e. the whole class of TINLs. The general CPN model models the actual
computation or execution of a TINL, but it is not fixed to a specific TINL.
The information of a specific TINL is maintained using colours, and not net
structure as in the former project. That means that the folded CPN model is
fixed to a specific influence net by using a specific initial marking which contains
information about the net-structure of the specific TINL. In other words, the
structure of the specific TINL is encoded in colours.

The old method which generates a CPN model with net structure similar
to the structure of the TINL (in the following referred to as the unfolded CPN
model), is used in combination with the folded CPN model. The folded CPN
model is only used for automatic simulations, i.e. simulations controlled via
a web browser, while the unfolded CPN model is used when a person with
knowledge of TINLs has an interest in looking at the actual CPN model.

68 Chapter 7. Equivalent CPN Models of a Class of TINLs

TINL TINL Spec.
 File

Unfolded CPN
Model

State Space for
Unfolded CPN

Model

Initial Marking
for Folded
CPN Model

State Space for
Folded CPN

Model

Isomorphic?

Figure 7.2: Overview of the applied method.

The fact that the behaviour of the two models is expected to be the same re-
quires some validation. Figure 7.2 illustrates the method applied in this paper.
From a TINL a specification file is generated to contain all static information
about a TINL. From that file, the old method developed in the former project
is used to generate the unfolded CPN model, and then the corresponding state
space is generated. The TINL specification file is also used to initialise the mark-
ing of the folded CPN model to reflect the current TINL. The corresponding
state space is also generated for the folded CPN model after the initialisation.
Finally, the the equivalence of the behaviour of the two models has been vali-
dated by making a number of tests. This has been done by comparing the state
spaces from the two CPN models.

The paper is structured as follows. Section 7.2 presents TINLs informally,
and introduces an example which will be used for illustration purposes in the
rest of this paper. Section 7.3 briefly describes how an unfolded CPN model will
look like when it is generated using the old method. Section 7.4 describes the
folded CPN model, and how it has been constructed from the unfolded CPN
model. Section 7.5 discusses how we have validated that the behaviour of the
two models are equivalent. Finally, in Sect. 7.6 we conclude and give directions
for future work.

7.2 Timed Influence Nets with Logic

In this section we informally introduce timed influence nets with logic (TINL)
by presenting an example in the field of information assurance. The example
will be used as a running example in the following sections.

TINLs can be used to estimate the probability of a certain event when that
event depends on other events which contains an element of uncertainty. Like
e.g. Petri nets, TINLs have both a graphical and a mathematical representation.
They are specified as directed acyclic graphs where the nodes represent events
as random variables (a numerical quantity defined in terms of the outcome of a
random experiment, p. 110 in [37]), while the arcs represent dependencies be-
tween the events. In addition timing information and probabilities are specified
for the nodes.

Consider Fig. 7.3 which contains an example of a TINL. The purpose of the
TINL is to estimate the probability that an intruder can unlock a door. To

7.2. Timed Influence Nets with Logic 69

unlock the door two options exist. It is possible to unlock the door using both
a password and an access card. It is also possible to unlock the door using a
physical key and the same password which is used with the access card. It is
of interest to an analyst to know which of the two options is most likely to be
broken by an intruder, and how long time it will take to do it.

5:Find Password

2:Detect Password
from Keypad

8:Have Key
and Password

1:Have Card
and Password

4:Find Key

 3:Find Accesscard

 7:Get
Password 9:Unlock Door

h=0.68
g=-0.93

h=0.87
g=-0.73

h=0.92
g=-0.49

h=0.87
g=-0.9

h=0.68
g=-0.86

h=0.68
g=-0.93

h=0.68
g=-0.75

h=0.69
g=-0.75

b=0.3, @+4

b=0.15, @+1

b=0.1, @+0

b=0.4, @+1

and

and

oror

@+1

@+0

@+1

@+1

Figure 7.3: An example of an influence net for information assurance.

An intruder may be able to find either a physical key or an access card
somewhere. The probability that the intruder finds a key is estimated to 30%
(which is indicated by a so-called baseline probability b=0.3 next to the node
Find Key with number 4) while it is 40% for the access card (node number 3).
The h = 0.68 on the arc to the node Have Key and Password indicates that there
is 68% probability that the node Have Key and Password will be true if the node
Find Key is true. Likewise g = −0.93 indicates that there is 93% probability
that the node Have Key and Password will be false if the node Find Key is false.
The time to find a key is estimated to 4 time-units, which is indicated by the
expression @+4 below the node Find Key.

The intruder is assumed to be able to obtain the password in two different
ways. Either the intruder can find the password on a piece of paper Find Password

with an estimated probability of 15%, or a special device can be used to detect
the password from the keypad where the users types in the password Detect

Password from Keypad with an estimated probability of 10%.
The node Get Password indicate the event that the intruder has obtained the

password in some way, and therefore now knows the password. Notice that the
node is a so-called or-gate which is reflected by the or in the upper right corner
of the node. This indicates that we are only interested in the probability of the
predecessor-event which has the highest probability, i.e. the post probability of
the node is only to be based on the probability of the node with the maximal
probability of all the predecessor nodes. Assume that n7 denotes the random
variable of the node Get Password and the predecessor nodes are denoted by p2

and p5. Then the probability of the or-gates is computed using the following
formula:

70 Chapter 7. Equivalent CPN Models of a Class of TINLs

P (n7) =
Max[P (n7|p2)P (p2) + P (n7|¬p2)P (¬p2), P (n7|p5)P (p5) + P (n7|¬p5)P (¬p5)]

Probabilities denoted by, e.g. P (n7|p2) are so-called conditional probabilities. A
conditional probability denotes the probability that a random variable (n7) will
be true when another random variable (p2) is assumed to be true. Conditional
probabilities are computed using the g and h values included in the TINL. We
will not go into more details with how the probabilities are computed, but will
refer to [103] for further details.

The two nodes Have Key and Password and Have Card and password indicate the
events of having obtained two of the necessary items to unlock the door. These
nodes are so-called and-gates which means that we require both predecessor
events to be true. Therefore, the probability of the node will depend on both
of the predecessor nodes, and not only one of them as it is the case for or-gate
nodes. Consider node Have Key and Password and assume that n8 denotes the
random variable of the node and that the predecessor nodes are denoted by p4

and p7. The probability of and-gates is computed using the following formula
(where e.g. P (n8|p4, p7) denotes the probability that n8 is true when the two
conditional random variables p4 and p7 are true):

P (n8) = P (n8|p4, p7)P (p4)P (p7)+
P (n8|p4,¬p7)P (p4)P (¬p7)+
P (n8|¬p4, p7)P (¬p4)P (p7)+
P (n8|¬p4,¬p7)P (¬p4)P (¬p7)

Again, the conditional probabilities can be computed based on the g and h
values on the arcs from the predecessor nodes. Notice that the formula for
computing the probability of an and-gate is more complex than the formula for
or-gates due to the fact that it requires conditional probabilities for more than
one predecessor, e.g. the conditional probability stated by P (n8|p4, p7).

Finally, the node Unlock Door indicate the event that we are actually inter-
ested in, i.e. to estimate the probability that an intruder is able to unlock the
door using any of the legal possibilities. This node is also specified as an or-gate
because we do not care which of the predecessor events are true. It is sufficient
that one of them are true to be able to unlock the door.

When having specified probabilities for an influence net, an algorithm using
the two formulas stated above can be used to propagate the probabilities for-
ward through the net. The propagation algorithm starts by updating the initial
nodes (nodes without predecessors). Then it updates the successor nodes using
the newly computed values, and continues to update nodes until no more succes-
sor nodes exists. Therefore, for each initial node the probability is propagated
through the TINL to the terminal nodes.

Figure 7.1 from Sect. 7.1 actually shows a graph showing the evolution
during time of the probabilities of the intermediate and terminal nodes of the
TINL presented in this section. We see that the probability for unlocking the
door (Node 9) will be about 17.6 after time 4.

To complete this informal presentation of TINLs, we briefly relate TINLs to
two closly related classes of nets which are also used to estimate probabilities.

7.3. Old Approach: Unfolded CPN Model 71

TINLs are a variant of influence nets which again are a variant of Bayesian
nets [43]. The difference is that for influence nets the predecessor nodes of a
node are assumed to be independent from each other, while in Bayesian nets
the predecessor nodes are not assumed to be independent. The independence of
predecessor nodes in influence nets simplifies both the specification of probabili-
ties in an influence net, and the actual computation of the probabilities. TINLs
extend influence nets with the so-called or-gate, and with a time-concept.

7.3 Old Approach: Unfolded CPN Model

In this section we will briefly summarise how a CPN model of a TINL looks like
when constructed using the method presented in [108]. However, the method
has been slightly modified and extended to handle the or-gate discussed in Sect.
7.2 as well. Focus will be on the general pattern of a CPN model created from a
TINL. We will not go into details with how to automatically generate the CPN
model. Details on the automatic generation of a CPN model can be found in
the paper [108].

Revisit the TINL in Fig. 7.3 in Sect. 7.2. Notice the three different types
of nodes: initial (nodes without predecessors), intermediate (nodes with both
predecessors and successors), and terminal nodes (nodes without successors).

Figure 7.4 presents the net-structure of an automatically generated CPN
model for the TINL in Fig. 7.3. Each of the three types of nodes in the TINL
is converted into one of three standardised subnets. Each rounded box models
exactly one node in the TINL. Notice for later use in Sect. 7.4 the similar net-
structure of the subnets, and that the subnets are connected only via places
with colour-set Store.

A5

Fact

N5

Result

T
d

T
c

R5 B5

A4

Fact

N4

Result

T
d

T
c

R4 B4

A3

Fact

N3

Result

T
d

T
c

R3 B3

A2

Fact

N2

Result

T
d

T
c

R2 B2

N7
Result

T
d

R7 B7

O7

N8

Result

T
d

R8 B8

O8

S2to7
Store

S5to7
Store

S7to8 Store

S4to8
Store

S7to1 Store

S8to9 Store

N9

Result

T
c

R9

T
d

B9

O9

N1

Result

T
d

T
c

R1 B1

O1

S1to9 Store

S3to1
Store

Node 4: Initial Node

Node 5: Initial Node

Node 3: Initial Node

Node 2: Initial Node

Node 9:
Terminal Node

Node 7: Intermediate Node

Node 1: Intermediate Node

Node 8: Intermediate Node

Figure 7.4: Net-structure of CPN model for the TINL in Fig. 7.3.

72 Chapter 7. Equivalent CPN Models of a Class of TINLs

The number of predecessor and successor nodes of a given node may be
different. Therefore, the number of Store places may be different for different
subnets. Notice in Fig. 7.4 that the intermediate node number 8 has one suc-
cessor node (S8to9) while intermediate node number 7 has two successor nodes
(S7to8 and S7to1).

The model has two types of transitions and five types of places. The tran-
sitions named Tc are used to calculate new probabilities while the transitions
named Td are used to distribute the newly calculated probabilities to the suc-
cessor nodes. Figure 7.5 shows the details of the intermediate node number 7.

S7to1
Store

(7,(R2I 0.234),0)

S7to8
Store

(7,(R2I 0.234),0)

N7

Result

T
d

[fifo=count]T
c [c2=1 orelse

 c1=1]

R7 Rule
(7,OR_Gate,(D2T 1),0, R2I 0.5,
[(R2I ~0.75,R2I 0.68),(R2I ~0.75,R2I 0.7)],
map R2I ([0.031,0.391,0.417,0.952]))

B7
Buffer

1

S2to7
Store

(2,(R2I 0.1),0)

S5to7
Store

(5,(R2I 0.15),0)

O7
Result(7,fifo,prob)

(7, count+1,
comppostprob(g,[2,5],[c2,c1],
[p2,p1],conp,bl,gnhs))@+dl

(self,g,dl,count,
bl,gnhs,conp) count

get_effect(7,fifo,prob)(2,p2,c2)

(5,p1,c1) (7,oldprob,0)

(7,oldprob,0)

set_control(7,prob)

count+1

set_control(7,prob)

(self,g,dl,count+1,
bl,gnhs,comp)

reset_control(2,p2,c2)

reset_control(5,p1,c1)

Figure 7.5: Details of intermediate node 7 in Fig. 7.4.

Places with the timed color-set Fact contain pairs of node id and the corre-
sponding probability. These places are used to model the initial probabilities
of a node (also called initial beliefs).

Places with color-set Store has a similar purpose as the Fact places. Like
colour-set Fact, the colour-set Store contains a node id and a probability. How-
ever, in addition it contains a boolean control value which is used to indicate
whether the probability of that store has been recalculated by the predecessor
node and not yet been processed by the successor node. This control value is
used to propagate newly computed values forward.

The timed color-set Result is also a triple. It contains a node id, a sequence
number, and the probability of the node. The purpose is to capture the resulting
probabilities so that the analyst can inspect the values of the tokens when a
simulation ends.

Color-set Rule is a 7-tuple. First of all, it contains the node id. The second
value is the gate value indicating whether the node is an and-gate or an or-gate.
The third value is the time-delay of the node which indicate how much time
it takes to perform the action represented by the node. The fourth value is a
counter used to give tokens a sequence number to be used for “first in, first
out” handling of tokens. The fifth value is the baseline value of the node. The
sixth value is a list of the g and h values described in Sect. 7.2. Finally, the
last value is a list of conditional probabilities. The values in the list gives all

7.4. New Approach: Folded CPN Model 73

the conditional probabilities stating how likely the node is to be true when any
subset of the predecessors are true.

Finally, color-set SeqNo is a counter or sequence number which is used to
ensure a first in, first out protocol when distributing tokens to the successor
nodes.

As mentioned above, the transition Tc calculates the probability of the node
given the probabilities of the predecessors. The function comppostprob com-
putes the value based on probabilities from the predecessor stores and the values
at the Rule place. However, for the intermediate and terminal nodes, the guard
of the transition prevents the transitions from being enabled unless the prob-
ability of at least one predecessor node has been recalculated. That is done
using the control value of the tokens on the predecessor Store places. When the
tokens are put back to the Store places, the control value is reset to indicate
that the probability has been propagated forward. This is the essential control
mechanism of the forward propagation algorithm used for TINLs.

The transition Td is used to distribute computed probabilities to the suc-
cessor nodes, and to the result place. The transition gets the next probability
from the place N in fifo order, i.e. the token which has first arrived to the place
N is first removed. In addition the transition removes the old probability from
the successor-Store places, and replace these tokens with the new probability,
and sets the control variable of these tokens to indicate that a new probability
has been calculated.

The most important part of this section is to understand the general pattern
used for constructing subnets for the individual nodes, and that any CPN model
of a TINL can be created by combining these subnets into a complete CPN
model. The detailed behaviour of the model is of secondary importance. In the
next section we will describe the general or folded model which does not have
so much net structure, but is instead able to model any TINL.

7.4 New Approach: Folded CPN Model

The method described in [108] generates a new CPN model for every different
TINL as discussed in Sect. 7.3. In this section we describe a CPN model which
can simulate any TINL when initialised with a proper marking. The CPN
model (folded CPN model) is created as a folding of the CPN model (unfolded
CPN model) presented in Sect. 7.3. This has several advantages: it is easy to
validate that the folded CPN model has behaviour equivalent to the behaviour
of the unfolded CPN model; when one knows the details of one of the models
it is easy to learn the details of the other model; and it is easy to modify and
maintain the models.

7.4.1 Hierarchy Page

The folded CPN model is created as a hierarchical CPN model with the hierar-
chy page depicted in Fig. 7.6. The CPN model has two prime pages. The page
InitModel is used to load and set the initial markings of the CPN model, and
will be discussed in the end of this section. The page Top is the top-page of the

74 Chapter 7. Equivalent CPN Models of a Class of TINLs

model which gives an overview of the CPN model. The three pages Initial Node,
Intermediate Node, and Terminal Node models the three different types of TINL
nodes.

Hierarchy#10Menu#9

Top#4 Prime

Definition#1

Intermediate#6

Initial#7

Terminal#10

InitModel#8 Prime

Figure 7.6: Hierarchy page for the folded CPN model.

7.4.2 Top Page

After being initialised, the transition Driver on the top page of the CPN model
in Fig. 7.7 starts to activate the simulation of the TINL nodes. First at least one
initial node must be activated, next all three kinds of nodes may be activated.
The left part (left of the substitution transition Initial Node) and the output
place O is similar to the same page in the unfolded CPN model except that in
the unfolded CPN model, one output places existed for each node with output.
In other words, we have folded several output places from the unfolded CPN
model into a single output place O in the folded CPN model. The colour-set
Result includes the id of the node. That implies that it is possible to distinguish
tokens belonging to different nodes even though they are stored on a single
output place.

A

Fact

O

Result

Trigger

FactTimeFG

Driver
@+td

ATKsetTaken

ATKsSET

Fire
Sequence

 Sequence

1

StorexDsts
FG

ntermediate
Node HS

Initial
Node HS

Final Node
HS

(f,prob,td)

(f,seq,prob)

(f,prob)

seq seq+1

Figure 7.7: Top page of folded CPN model.

7.4. New Approach: Folded CPN Model 75

7.4.3 Folding Initial, Intermediate, and Terminal Nodes

Revisit Fig. 7.4 in Sect. 7.3. Notice that the structure of all initial nodes (nodes
2-5) is the same. Each initial node consist of four places and two transitions.
The structure of the intermediate nodes (nodes 1, 7, and 8) is also the same like
it is for terminal nodes (node 9). Only the number of Store places representing
connections between nodes may be different.

Let us consider intermediate nodes in more detail. As mentioned above, all
intermediate nodes have the same net structure. That means that we can fold
all intermediate nodes into a single general folded node. Figure 7.8 shows the
CPN model of the folded intermediate node which is a generalisation of nodes
like Fig. 7.5.

T
c

[input_stores = ((allstores with_ids_in preset) have_dst self),
any_recalculated input_stores]

R

Rule

FG

N
Result

T
d

[output_stores=((allstores have_dst_in postset) have_source self),
fifo=count, all_not_recalc(output_stores)]

S

StorexDsts

P I/O

O

Result

P Out

B
FIDxBuffer

FG

Structure

NodeRule
FG

(self,fifo,prob)

(self, count+1,
comppostprob(g, preset, getControlList(preset,input_stores),
 get_prob_list (preset, input_stores),conp,bl,gnhs))@+dl

(self,g,dl,count,
bl,gnhs,conp)

(self,
count)

get_effect(self,fifo,prob)

list_sort((reset_all_control(input_stores))^^
(allstores except input_stores))

allstores

{NodeID=self,
 PreSet=preset,
 PostSet=postset}

{NodeID=self,
 PreSet=preset,
 PostSet=postset}

allstores

list_sort((set_all_control(output_stores,prob))^^
(allstores except output_stores))

(self,
 count+1)

(self,g,dl,count+1,
bl,gnhs,conp)

Figure 7.8: Folded intermediate page.

Folding Places

The folded intermediate node has been obtained by folding all similar places
and transitions. In this section we focus on folding places, while we consider
folding transitions in Sect. 7.4.3.

Revisit Fig. 7.4 and focus on the places of the intermediate nodes 1, 7, and
8. Places with the same colour-set are folded into one place. E.g. the rule places
(Ri, where i is the node id) are folded into one place (R in Fig. 7.8) representing
rules for all intermediate nodes.

The actual folding has been done using the well-known method of adding
a unique identity to each token to indicate which place in the unfolded CPN
model the token belongs to. The colour-set Rule already contains the node id
which makes the tokens from different nodes distinguishable or unique. In a
similar manner the place N has been obtained by folding all places Ni, and the
place O by folding places Oi. The place B in the folded CPN model is also a
folding of all Bi places from the unfolded model. However, this colour-set has

76 Chapter 7. Equivalent CPN Models of a Class of TINLs

been modified to include the node id to make it possible to distinguish tokens
from different nodes.

The colour-set StorexDsts of the place S in the folded model is the colour-
set which has been changed the most. It is indeed the folding of all places
Sitoj, where i and j are respectively the ids of the predecessor node and the
successor node. The colour-set Store in the unfolded model already contains
the id of the predecessor node. However, as discussed above, a node may have
several successors (node 7 has both nodes 1 and 8 as successor nodes in Fig.
7.4). Therefore, the id of the successor node (or destination) has been added to
the colour-set StorexDsts to be able to distinguish tokens belonging to different
successor nodes. For reasons related to the effectiveness of calculating enablings
during simulations in Design/CPN, the colour-set is changed to a list of tokens.
In summary, the place S contain a list of tokens from the places Sitoj from the
unfolded CPN model which are made unique by adding the id of the successor
node to each token.

We have added one new place which does not exist in the unfolded CPN
model. It is the place Structure. It contains information about how intermediate
nodes are connected to other nodes, i.e. structural information about how inter-
mediate nodes are connected in the TINL. The colour-set NodeRule is a record
with three values. The value NodeID is the id of the node. The values PreSet
and PostSet contains lists of the ids of the predecessor and successor nodes of
the current node. As an example, a token representing all the arcs to/from the
Store-node 7 in Fig. 7.5 is: 1‘{NodeID=7,PreSet=[2,5],PostSet=[1,8]}. The
nodes 2 and 5 are predecessors of node 7 while nodes 1 and 8 are successors.
Using this place it is possible to encode all arcs between nodes into colours, and
by initialising this place with tokens containing the appropriate information we
can model different dependencies between nodes in a TINL.

Folding Transitions

Let us now consider the transitions Tc and Td in Fig. 7.8 for intermediate nodes.
Like for the places, these two transitions are foldings of all intermediate Tc and
Td transitions in the unfolded CPN model in Fig. 7.4. When a transition occurs
in the folded model it reflects the behaviour of the occurrence of exactly one
transition in the unfolded model.

Let us consider how transition Tc can be enabled. The simulator starts by
taking a random token from the places R and Structure which has the same node
id (self). The variable allstores on the arc from the place S to transition Tc

binds to the single list on the place S.
Now the guard of transition Tc is evaluated. First the variable input stores

is assigned the list of values returned by evaluating the expression ((allstores
with ids in preset) have dst self). This expression runs through the list
of all the stores and finds the stores with ids in the preset variable from
the Structure place which have destination (or successor) self. Now the vari-
able input stores contains a list of the stores of the predecessor nodes of the
currently considered node. Next, the expression any recalculated stores
tests if any of the input stores have the control value set to indicate that

7.4. New Approach: Folded CPN Model 77

they have been recalculated by predecessor nodes. This function corresponds
to the guard of Tc in the unfolded CPN model. If the guard (the function
any recalculated) evaluates to true, the transition can occur.

When the transition Tc occurs a token is put on the place N to indicate
that the node is in the process of being updated. The function comppostprob
is exactly the same function as used in the unfolded model (see the corre-
sponding arc expression in Fig. 7.5). By using the same function in the folded
model, we avoid introducing errors by writing new functions for computing
the probabilities. The functions getControlList and get prob list returns
the control and probability lists from the input stores. The control values
of the input stores are reset using the function reset all control on the
arc from Tc to S, and appended to the unchanged stores (allstores except
input stores). The resulting list is sorted using the function list sort to
make a canonical representation of the list. The reason is related to generating
the state-space for the model which is used for validation in Sect. 7.5. If we do
not sort the list, the order of interleavings of transitions in the CPN model will
have impact on e.g. the multi-set bounds of the place S.

Consider transition Td which distributes the newly computed probabili-
ties to the S place. First the transition match the token on place N, the
counter-token on place B, and the token on the place Structure with the cor-
responding node id. It also binds the variable allstores to the list on place
S. A guard somewhat similar to the guard on transition Tc calculates the
output stores corresponding to the node which is currently considered. The
expression ((allstores have dst in postset) have source self) returns
the list of all the stores with node id in the postset-list of the node – but
only those which have source or node id self. The expression fifo=count in
the guard ensures fifo-handling of the tokens on place N. This is similar to the
guard in the unfolded model. Finally, the function all not recalc tests if all
of the output stores have control value equal to 0. This corresponds to the 0
in Fig. 7.5 on the arc from S7to8 to Td.

When transition Td occurs it updates the probability and the control field
of the corresponding output stores, and returns the list to the place S added
to the remaining stores.

The folding of the initial and terminal nodes is conducted in a way similar
to the one described above for intermediate nodes, and is therefore not included
here.

7.4.4 Initialisation of the CPN Model

The fact that the folded CPN model is to simulate any TINL means that the
model has to be initialised with appropriate data to reflect the structure of a
specific TINL. This data is loaded into the model from a TINL-specification
file. This file is generated using the CAT-tool1 and contains all data needed to
create the initial marking. The file is exactly the same file as the one used to
create the unfolded model as described in details in [108].

1CAT is the Effects Based Campaign Planning and Assessment Tool under development
at the US Air Force Research Laboratories (AFRL/IF).

78 Chapter 7. Equivalent CPN Models of a Class of TINLs

Figure 7.9 depicts the page where tokens are computed and distributed to
the places of the CPN model. The transition Distribute Tokens is the only transi-
tion being enabled initially. When it occurs, several things happens. First, the
code segment of the transition loads the TINL-specification files for initialising
the CPN model. Then multi-sets of tokens are generated using functions like
createBufferTokens in Fig 7.10. Given a list of node ids from the TINL-
specification file, the recursive function generates for each node id, a token
1‘(nid, 1). The rest of the markings for the remaining places are generated
using similar more or less complex functions.

InitR

Rule

InitB

FIDxBuffer

 Init
Structure

NodeRule

Start
E

1‘e

Distribute
Tokens S

StorexDsts
Trigger

FactTime

IntermR

Rule

IntermB

FIDxBuffer

Interm
Structure

NodeRule

TermR

Rule

TermB

FIDxBuffer

Term
Structure

NodeRule

Terminal Page

Intermediate Page

Initial Page

e

initRule

initBuffer
initStructure

allstorestrigger

intermRule intermBuffer

intermStructure
termRule

termBuffer

termStructure

Figure 7.9: Loading and distributing initial tokens.

fun createBufferTokens ([]): FIDxBuffer ms = empty
| createBufferTokens (nid::rest) =

1‘(nid,1) ++ (createBufferTokens rest);

Figure 7.10: Create tokens with nid and a counter with initial value 1.

The distribution of the tokens is done by means of fusion places. For ex-
ample, the places IntermR, IntermB, IntermStructure, and S are fused with the
corresponding places (R, B, Structure, and S) on the intermediate page in Fig.
7.8. In this way tokens are loaded and computed on a single page of the CPN
model, but are distributed to the places on several pages of the CPN model.

7.5 Validation

In this section we describe how we have validated that the folded CPN model
and the unfolded CPN models gives the same simulation results. The folded
CPN model is constructed from the unfolded CPN model in a way which makes
us expect that the state spaces from the two CPN models will be equivalent.

The fact that the folded CPNmodel can model any TINL by being initialised
with different initial markings means that we have a whole class of different CPN

7.5. Validation 79

models. That means that when we have an initial marking of the folded CPN
model, then we have one unfolded CPN model which has the same behaviour,
and vice versa.

We could have conducted a mathemathical proof to prove that the two CPN
models have equivalent behaviour. This would ensure that the equivalence holds
for any TINL. However, we have chosen to use state space analysis to check that
for the given TINLs, the equivalence is likely to hold. We will show that given
a specific initial marking, the behaviour of the folded CPN model is equivalent
to the behaviour of the unfolded CPN model. We will focus on sizes of the
state spaces, boundedness properties, and paths in the state spaces. We have
used the state space tool of Design/CPN for the analysis to be presented in this
paper.

7.5.1 Model Similarities and Statistical Information of the State
Space

Before we go into details with how the equivalence has been validated, we will
briefly mention a few important issues related to how the folded CPN model
has been obtained from the unfolded CPN models.

As mentioned in Sect. 7.4, when we have a transition in the folded CPN
model, then this transition is the folding of a number of transitions in a unfolded
CPN model. In other words, when we have a binding of a transition in the
unfolded model, exactly one binding of a transition exists in the folded CPN
model. The only exception from the correspondence between transitions in the
folded and the unfolded CPN models is the transition Distribute Tokens depicted
in Fig. 7.9 in Sect. 7.4. This transition has no counterpart in the unfolded CPN
model. However, it is the first transition to occur in the initial marking of the
folded CPN model, and it will only be enabled once. That means that the
impact on the state space is the addition of exactly one node and one arc to
the state space for the folded CPN model. However, to avoid this extra node
we first let the transition Distribute Tokens occur, and then start to generate the
state space. That implies that we have the exact same number of nodes and
arcs in the two state spaces. When we refer to the state space of the folded
CPN model in the following, we will refer to the state space without the first
node.

The fact that the folded CPN model has been constructed in the way men-
tioned above, makes it easier to check the equivalence of the folded and unfolded
CPN models. The reason is that the number of nodes and arcs in the state space
for each of the two models are equal, i.e. when there is one node in one of the
state spaces, then there will be a similar node in the other state space, and
similar for arcs. Therefore, ignoring this first node and arc from the state space
makes the state spaces equivalent for a given initial marking of the two CPN
models.

As an example, consider the TINL depicted in Fig. 7.3 in Sect. 7.2. We have
generated the state space for both the unfolded and the folded CPN models.
By generating the state space report for this example we obtain the statistical
information in Table 7.1. The state space for the folded CPN model contains

80 Chapter 7. Equivalent CPN Models of a Class of TINLs

exactly the same number of nodes as the unfolded CPN model, and likewise for
arcs. This gives us strong evidence to believe that the structure of the state
spaces are identical.

Unfolded CPN model Folded CPN model
Nodes: 13930 Nodes: 13930
Arcs: 29595 Arcs: 29595
Secs: 301 Secs: 642
Status: Full Full

Table 7.1: Statistics for the state space for the TINL in Fig. 7.3.

We have also generated the strongly connected component graphs (SCC-
graphs) for both CPN models, and they have exactly the same number of nodes
and arcs as the corresponding state spaces. This was expected because TINLs
are acyclic directed graphs, and thus the state space of the corresponding CPN
model is to be an acyclic graph.

The pairwise equivalent nodes in the two state spaces are expected to have
the same number of input and output arcs. In other words, from a given marking
in either of the two CPN models, the same number of binding elements can be
concurrently enabled. We have checked that this is the case by counting the
nodes with the same number of input and output arcs {(0 input arcs, 0 output
arcs), (0 input arcs, 1 output arc), ..., (n input arcs, n output arcs)}. As
expected, it turned out that we got the same numbers from both CPN models.
This check gives us further reason to believe that the statical structure of the
TINL represented in the folded CPN model is correct.

7.5.2 Boundedness Properties

In this section we will focus on the results or markings produced by the CPN
models – rather than the structure of the state spaces. We will show that for
representative examples the two models give the same results. We will focus
on the output places of the CPN models because the marking of these places
are the ones showing the actual results of interest to the person simulating the
model. In addition, the markings of these places are highly correlated with the
correctness of the CPN models because the markings are based on the forward
propagation of probabilities from the initial parameters.

Integer Bounds

First we consider integer bounds. Integer bounds give information about the
maximal and minimal number of tokens which may be located on the individual
places within the reachable markings. We can use that to check if the number
of tokens in the folded and unfolded CPN models have the same bounds.

Table 7.2 shows the upper and lower integer bounds for output places (Oi)
of the unfolded CPN model for our example TINL. We are able to use integer
bounds only because the markings of these places are monotonically increasing,
i.e. tokens are added but no tokens are removed from these places. From the

7.5. Validation 81

Place Upper Bound Lower Bound
PN1’O1 3 0
PN1’O7 2 0
PN1’O8 3 0
PN1’O9 6 0

Table 7.2: Unfolded CPN model: integer bounds.

Place Upper Bound Lower Bound
Top’O 14 0

Table 7.3: Folded CPN model: integer bounds.

table we see that in total there can be up to 14 (2+3+3+6) tokens on the output
places during a simulation (in our case it will be at the end of a simulation),
while the lower bounds are 0 for all output places which means that they are
empty initially.

Table 7.3 shows the bounds for the folded CPN model. This model has only
one output place which is the folding of the four places of the unfolded CPN
model. We notice that the upper bound is 14 like the sum of the upper bounds
for the unfolded CPN model. Also for this model the lower bounds is 0. Now
we know that the bounds of the output places in the two models are the same
which means that we are more confident that the two models gives the same
number of outputs when given the same input parameters.

Multi-set Bounds

We will now focus on the actual values of the tokens in the two models. The
multi-set bounds give us information about the values which the tokens may
carry. By definition, the upper multi-set bound of a place is the smallest multi-
set which is larger than all reachable markings of the place. We consider the
multi-set bounds for the output places. From the upper multi-set bounds we
will be able to see which probability values may be calculated during executions
of the two models.

Compare Tables 7.4 and 7.5 containing the multi-set bounds for the output
places in the two models for our example TINL. Notice that e.g. the place
PN1’O7 in the unfolded CPN model contains two tokens with node id 7, sequence
numbers 1 and 2, and probabilities 196500 and 233750. From the upper multi-
set bounds for the place Top’O in the folded CPN model we see that these tokens
will also be present in this model. By comparing the rest of the upper multi-set
bounds we see that they are equal as well.

We have also included multi-set bounds for the places Structure in the folded
CPN model (see Fig. 7.8 for details). From these bounds we see that the
tokens describing the structure of the TINL are indeed as expected. This can
be observed by comparing preset and postset of the individual nodes with the
structure of the corresponding unfolded CPN model in Fig. 7.4.

82 Chapter 7. Equivalent CPN Models of a Class of TINLs

Place Best Upper Multi-set Bounds
PN1’O1 1‘(1,1,(ii (”56131”)))++ 1‘(1,1,(ii (”65095”)))++

1‘(1,2,(ii (”56131”)))++ 1‘(1,2,(ii (”65035”)))++
1‘(1,3,(ii (”65035”)))

PN1’O7 1‘(7,1,(ii (”196500”)))++ 1‘(7,2,(ii (”233750”)))
PN1’O8 1‘(8,1,(ii (”45673”))) ++ 1‘(8,2,(ii (”51935”)))++

1‘(8,3,(ii (”51935”)))
PN1’O9 1‘(9,1,(ii (”294572”)))++ 1‘(9,1,(ii (”300891”)))++

1‘(9,2,(ii (”171766”)))++ 1‘(9,2,(ii (”294572”)))++
1‘(9,2,(ii (”300849”)))++ 1‘(9,3,(ii (”171766”)))++
1‘(9,3,(ii (”176807”)))++ 1‘(9,3,(ii (”300849”)))++
1‘(9,4,(ii (”171766”)))++ 1‘(9,4,(ii (”176807”)))++
1‘(9,4,(ii (”300849”)))++ 1‘(9,5,(ii (”176807”)))++
1‘(9,6,(ii (”176807”)))

Table 7.4: Unfolded CPN model: best upper multi-set bounds.

7.5.3 Equivalent Paths in State Spaces

In addition to checking the equivalence of the behaviour of the two models only
by means of the above mentioned techniques, we have tried to compare paths in
the state spaces of the two models. We have checked that, whenever one of the
models can make a step (let a transition occur) then the other model must also
be able to make a step. This was done by exploring paths through the state
space. We considered the arcs on the path in the state space of the unfolded
CPN model. For every binding of a transition on the path in this CPN model,
we checked if the corresponding folded transition in the folded CPN model was
enabled. This was indeed the case for the paths that we followed. In addition,
we checked that for every node on the path, the same number of successor nodes
existed in both CPN models. From this comparison we get even more confident
in the equivalence of the two CPN models.

However, we plan to do this more consequently than what we have done so
far. We will define a mapping Munfold from states in the folded CPN model
into states in the unfolded CPN model. This mapping should be based on
the equivalence between markings in the folded and unfolded CPN models. A
similar mapping BEunfold should be defined for mapping binding elements in
the folded CPN model into binding elements in the unfolded CPN model. Then
the two mappings Munfold and BEunfold should be applied to the state space of
the folded CPN model to show that resulting state space is identical to the state
space of the unfolded CPN model (modulo the extra initialisation marking and
arc in the folded CPN model).

7.6 Conclusion and Future Work

When using CP-nets for creating models one have to be careful to choose the
right level of folding. This paper shows that it is sometimes useful to have

7.6. Conclusion and Future Work 83

Place Best Upper Multi-set Bounds
Top’O 1‘(1,1,(ii (”56131”)))++ 1‘(1,1,(ii (”65095”))) ++

1‘(1,2,(ii (”56131”)))++ 1‘(1,2,(ii (”65035”))) ++
1‘(1,3,(ii (”65035”)))++
1‘(7,1,(ii (”196500”)))++ 1‘(7,2,(ii (”233750”)))++
1‘(8,1,(ii (”45673”))) ++ 1‘(8,2,(ii (”51935”)))++
1‘(8,3,(ii (”51935”))) ++
1‘(9,1,(ii (”294572”)))++ 1‘(9,1,(ii (”300891”)))++
1‘(9,2,(ii (”171766”)))++ 1‘(9,2,(ii (”294572”)))++
1‘(9,2,(ii (”300849”)))++ 1‘(9,3,(ii (”171766”)))++
1‘(9,3,(ii (”176807”)))++ 1‘(9,3,(ii (”300849”)))++
1‘(9,4,(ii (”171766”)))++ 1‘(9,4,(ii (”176807”)))++
1‘(9,4,(ii (”300849”)))++ 1‘(9,5,(ii (”176807”)))++
1‘(9,6,(ii (”176807”)))

Initial’Structure 1‘{NodeID = 2,PreSet = [],PostSet = [7]}++
1‘{NodeID = 3,PreSet = [],PostSet = [1]}++
1‘{NodeID = 4,PreSet = [],PostSet = [8]}++
1‘{NodeID = 5,PreSet = [],PostSet = [7]}

Intermediate’Structure 1‘{NodeID = 1,PreSet = [3,7],PostSet = [9]}++
1‘{NodeID = 7,PreSet = [2,5],PostSet = [8,1]}++
1‘{NodeID = 8,PreSet = [7,4],PostSet = [9]}

Terminal’Structure 1‘{NodeID = 9,PreSet = [1,8],PostSet = []}

Table 7.5: Folded CPN model: best upper multi-set bounds.

co-existing models with different degrees of folding.
One CPN model with a relatively extensive net structure to be used for

understanding the model and for reference to the modelled system. This may
require that the level of folding is kept so low that a new CPN model has to
be created for each instance of the problem. However, if the model can be
generated automatically as for the models presented in this paper, it may not
be a problem.

The second model should focus on modelling the entire class of problems.
This model is typically a folded version of the other one, which implies that the
one and only model can be used for any instance of the problem. That means
that the general CPN model will typically have relatively little net structure
compared to the specific models.

A method for validating the equivalence between the folded and unfolded
models has successfully been applied to several different TINLs with different
time delays. Therefore, we believe in that the behaviour of the models are
equivalent. However, we have not proved or verified that they are equivalent.

Future work will first of all focus on verification of the equivalence of the
behaviour of the models. In particular we want to get more confident that the
structure of the state spaces from the different models are equivalent. We plan
to establish a formal proof to prove the equivalence of the behaviour of the

84 Chapter 7. Equivalent CPN Models of a Class of TINLs

models.
We will also experiment with alternative graphical interfaces for the simu-

lators of the CPN models. The current web-based graphical interface is only
useful for non-interactive simulations. By being able to interact with the sim-
ulator during simulations it will be possible to access the current state of the
TINL represented by the CPN model during a simulation. This may be useful if
the simulator is integrated with the CAT-tool (using TCP/IP communication)
which is used to create the TINL. That would make it possible to display the
results in the CAT-tool during simulations.

Acknowledgements. This research was conducted at the C3I Center of George
Mason University (GMU), VA, USA, with partial support provided by the U.S.
Air Force Office for Scientific Research under Grant No. F49620-98-1-0179.
The work in this paper proposing or-gates in influence nets for information
assurance is based on work done by Insub Shin, GMU. Special thanks goes
to Alexander H. Lewis and Lee W. Wagenhals, GMU, for valuable discussions
and support during the project. Finally, we also want to thank Kurt Jensen
and the anonymous referees for constructive critique and usefull suggestions on
improving the paper.

Chapter 8

Operational Planning using Web-Based

Interfaces to a Coloured Petri Net

Simulator of Influence Nets

The paper presented in this chapter has been published in the proceedings of
the Workshop on Formal Methods Applied to Defence Systems which was held
as a satellite event at the Petri Nets 2002 conference in Adelaide, Australia.

[56] B. Lindstrøm and L. Wagenhals. Operational Planning using Web-
Based Interfaces to a Coloured Petri Net Simulator of Influence Nets.
In C. Lakos, R. Esser, L. Kristensen, and J. Billington, editors, Formal
Methods in Software Engineering and Defence Systems 2002, volume 12 of
Conferences in Research and Practice in Information Technology, pages
115–124. Australian Computer Society Inc., June 2002.

Except for minor typographical changes the content of this chapter is equal
to the original paper in [56].

85

8.1. Introduction 87

Operational Planning using Web-Based Interfaces

to a Coloured Petri Net Simulator
of Influence Nets

Bo Lindstrøm∗ Lee W.Wagenhals†

Abstract

We present an environment for web-based simulation of influence nets
to be used for operational planning. Previous work in this field has shown
how influence nets, which are used for probabilistic modelling, can be
extended with time and then translated into a coloured Petri net to do
temporal evaluation of plans. Simulating the coloured Petri net model
in a web environment makes it easy for a subject matter expert to use
the simulator for planning without knowing the underlying coloured Petri
net formalism and tools. This paper discusses the use of influence nets
for operational planning, a simulator for influence nets implemented using
coloured Petri nets, and the architecture of the complete web-site which
can be used for operational planning.
Keywords: Operational planning, Courses of action, Effects based oper-
ations, Influence nets, Coloured Petri nets, Web-based simulation.

8.1 Introduction

Planning an operation to achieve objectives can be a very complex task. A plan
may depend on interplay between several different complex events, where only
some of the events are controllable. In many cases, plans are developed to try
to compel an adversary to take actions or make decisions that the adversary is
not pre-disposed to make.

The operational planning method presented in this paper has been moti-
vated by a concept called effects based operations (EBO). EBO is the notion

∗Department of Computer Science, University of Aarhus, Denmark.
Email: blind@daimi.au.dk.

†System Architectures Laboratory, George Mason University, VA, USA.
Email: lwagenha@gmu.edu.

Copyright c© 2002, Australian Computer Society, Inc. This paper appeared at the Work-
shop on Formal Methods Applied to Defence Systems, Adelaide, Australia, June 2002. Con-
ferences in Research and Practice in Information Technology, Vol. 12. L.M. Kristensen and J.
Billington, Eds. Reproduction for academic, not-for profit purposes permitted provided this
text is included.

88 Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

of selecting actions based on their collective contribution to desired and unde-
sired effects. The set of selected actions is called a course of action (COA). To
support EBO, at least two problems must be addressed. The first is to relate
effects to actionable events. In this problem, we need to define the set of desired
and undesired effects on the adversary. From these effects we work backwards,
from effects to causes, and identify actions which we believe to have impact
on the effects. Finally, we arrive at the actions that we have at our disposal
for achieving the effects. In the second problem, called the COA problem, we
must select from the set of all possible actions those subsets that will yield,
with high probability, the effects we wish to achieve, and with low probability
the undesirable effects. Then, taking into consideration constraints associated
with specific actions or combinations of actions, the selected actions must be
sequenced and time phased. This timing of the actions is important to be able
to know in which order and when the controllable actions should be done to
obtain the best possible conditions for a successful operation. The result is a
set of alternative COAs. These COAs are then evaluated against requirements
to determine the COA that provides the best likelihood of causing the desired
effects to occur and the undesired effects to not happen.

Probabilistic models like, e.g. Bayesian inference nets [43] and influence
nets [90], can be used to model a situation to determine which actions to take
to optimise the outcome of an operation. However, these models do not include
the temporal aspect of the planning.

Previous research on influence nets is presented in, e.g. [108] and has demon-
strated how timing information can be added to influence nets by translating
the influence net and a timing profile to a coloured Petri net (CP-net or CPN).
This CP-net can then be simulated both to estimate the probability of a success-
ful operation, and to evaluate a plan for timing the operation. The translation
from the influence net and the timing profile to the CPN model is done com-
pletely automatically, i.e. the places, transitions, and declarations of the CPN
model are generated without user interaction. In this paper we will refer to a
CP-net generated using this method as a fixed CPN model.

The influence net formalism has been extended slightly to include so-called
logical gates. An influence net with logical gates together with timing informa-
tion is in the following called a timed influence net with logic (TINL).

Recent work, presented in [55], has developed a generic CPN model that is
able to simulate any TINL. In other words, a TINL CPN simulator has been
implemented. The advantage of the generic CPN model is that time is saved
during the translation, because a new CPNmodel does not need to be generated
each time a new TINL needs to be examined as it had to when generating fixed
CPN models. Instead, the generic CPN model within the TINL CPN simulator
is initialised with appropriate tokens to reflect the concrete TINL. One issue of
concern was that the simulation time for the generic TINL CPN simulator would
be much longer due to the complex colour sets and potential large number of
tokens in places required by the generic CPN model. Experiments presented in
this paper has shown that using a more effective CPN simulator has overcome
this problem.

It is essential that tool support is available to and usable by (1) the team of

8.1. Introduction 89

intelligence analysts and other subject matter experts (SMEs) responsible for
analysing a situation in terms of actions and effects and (2) operational planners
who perform resource allocation and scheduling to cause actions to occur. A
modelling tool that can be used by these teams called CAESAR II/EB [106]
has been built to focus on the belief and reason aspects of an adversary so
that potential actions can be related to effects. The tool incorporates influence
nets as the probabilistic modelling technique and the TINL CPN simulator to
support the temporal aspects of COA evaluation. These two formalisms enable
the modeller to create the structure of actions, effects, beliefs, decisions, and
the influencing relationships between them.

A two stage operational concept that uses the two modelling techniques to
perform COA analysis has evolved through tests in realistic scenarios [106].
Figure 8.1 illustrates the two stages in applying the CAESAR II/EB tool. In
the first stage, intelligence analysts and SMEs develop an influence net to specify
the probability of effects given sets of actions. Once the influence net has been
created, it is exported to an influence net specification file so that operational
planners can perform temporal evaluation in stage two. The goal of stage two is
to determine and recommend the timing of the set of actions that give the best
set of acceptable probabilities for all effects. In stage two, a delay file for the
influence net is created by the operational planner to specify a full TINL. Then
temporal analysis can be conducted to analyse different COAs by simulating
the TINL using the TINL CPN simulator. The simulation results provide, for
a given timed sequence of actions, the probability of effects over time, in the
form of a probability profile [105]. Probability profiles indicate how long it will
take for a specific COA to achieve the desired effects, reveal time windows of
risk when the probability of effects is unacceptable, and provide time windows
for indicators of success or failure. Changing the timing of selected actions can
significantly change the probability profiles.

Thus, a tool like CAESARII/EB can be used to support an overall plan-
ning process in which a situation analysis team creates a model with the tool
that relates potential actions to overall effects that can be used by a team of
operational planners that perform the resource allocation and scheduling func-
tion to evaluate plans. The operational planners execute the model using the
tool to evaluate proposed plans for acceptability and may adjust the timing of
actions within resource constraints until acceptable outcomes in terms of the
timed phased probability of effects is achieved.

One problem of translating an influence net to a CP-net is that the analysis
is conducted using another formalism than the one which is used for specifying
the influence net. In practice, neither the intelligence analyst nor the SME nec-
essarily knows the CPN formalism or the CPN tools. Therefore, the translation
puts an extra, unnecessary skill-requirement onto the SME. As a consequence,
an alternative domain-specific graphical user interface (GUI) for the TINL CPN
simulator has been developed, and is presented in this paper. The GUI is cre-
ated using simple so-called HTML documents and CGI scripts [35], and is based
on the tool Design/CPN [27] and on the method presented in [54]. Simulating
the CPN model using a domain-specific GUI makes it easy for the SME to use
the simulator for planning without knowing the underlying CPN formalism and

90 Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

Figure 8.1: Two-stage operational concept.

tools. The main objective of this paper is to illustrate how to create and use
a domain-specific GUI in a web-based environment for simulating TINLs to be
used for operational planning.

The paper is structured as follows. Section 8.2 describes how influence
nets and the TINL CPN simulator can be applied in practice for operational
planning. Section 8.3 discusses the generic CPN model. Section 8.4 describes
the web-site used to control the TINL CPN simulator. Section 8.5 compares
the speed of executing alternative CPN models that have been proposed for
simulating TINLs. Finally, Sect. 8.6 concludes and gives directions for future
work.

8.2 Practical Use of the Operational Concept

In this section we describe the two stages of the operational concept. First we
describe stage 1 by introducing influence nets and discussing how an influence
net can be created to support effects based operations. Next, in stage 2 the
execution of an influence net using the TINL CPN simulator from the web
environment is described.

8.2.1 Stage 1: Creating Influence Nets

Influence nets, a variant of Bayesian nets, have been used since 1994 [52, 90]
to depict the causal relationships between actions and events. They are acyclic
directed graphs. A small example of an influence net with six nodes is shown in
Fig. 8.2, and will be used for illustration in this paper. The modelled situation
is that Fed wants to set the conditions so that Borg will not use the weapon of
mass destruction called a death star (DS) against Fed in a war. The leftmost
nodes in an influence net represent actionable events which are events that can
be controlled. The rightmost nodes represent the decisions or effects that are
either desired or undesired – seen from the point of view of the SME. In the
middle are the nodes relating actions to effects.

8.2. Practical Use of the Operational Concept 91

28:Fed forces are
in position to strike
Borg DS capability
0.0

25:Fed NCA
pledges not to use

DS first
1.0

29:Fed press
reports major

demonstrations in
Fed against war

0.5 0.5

26:Borg believes
use of strat DS is
counterproductive
0.1 0.5

30:Borg believes
use of DS will push

Fed to negotiate
0.7 0.5

27:Borg decides to
use DS option

0.4 0.5

h=0.33
g=-0.33

h=-0.33
g=0.33

h=0.67
g=-0.33

h=0.67
g=-0.33

h=-0.67
g=0.0

h=0.67
g=0.0

h=-0.99
g=0.33

h=0.67
g=-0.67

Desired/Undesired
 Decisions
 (Effect Nodes)

Actionable Events
 (Action Nodes)

Relating Actions
 to Effects

Figure 8.2: Example of an influence net.

The nodes in an influence net represent statements or beliefs with which a
probability value can be associated. For example, the upper-middle node 26
represents the statement that “Borg believes use of strat DS is counterproduc-
tive”. Each node with parents has a parameter called the baseline probability
which indicates the probability that the event can be true independently of all
other modelled events. The baseline probability is positioned in the lower right
corner of the nodes with parents in an influence net (0.5 for node 26).

A directed arc represents a directed binary relationship between two nodes.
Two numbers, called influences, characterise the relationship and are denoted
by h and g. The first one, h, represents the strength of the influence that a
parent node has on a child node, if the parent node was to be true. The second
one, g, reflects the strength of the influence if the parent node was not true.
Both h and g can take values in the closed interval [-1, 1] which means that the
binary relations can be either promoting (+) or inhibiting (–). For example,
the SME believes that node 25 (upper left) has impact on node 26. In the
actual application, the analyst generally uses a set of qualitative statements
that map to a set of values in the interval [-1, 1]. The typical statements
and their corresponding values are as follows. Significantly less likely: -0.99,
moderately less likely: -0.67, slightly less likely: -0.33, no effect: 0, slightly more
likely: 0.33, moderately more likely: 0.67, significantly more likely: 0.99. For
example, to set an h value, the analyst will select an answer from the question:
if the parent were to be true, the impact on the child would be to make it e.g.
“slightly more likely” (select the best statement from the list). In the example,
the analysts estimate is that when node 25 is true, then the node 26 will be
slightly more likely to be true (thus h = 0.33), and when node 25 is false, then
node 26 will be slightly less likely to be true (g = -0.33).

After an analyst has created an influence net and assigned the values of
the g, h, and baseline probability parameters throughout the net, the values
are translated into conditional probabilities for each node with parents using
an algorithm called CAST (for Causal Strength) [12]. The influence net can
then be used to propagate probabilities from the leftmost nodes with no parents

92 Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

(action nodes) to the rightmost nodes with no children (effect nodes). In this
paper we have used the CAT-tool1 to create influence nets. In addition, the
CAT-tool has been used to automatically convert the influences (h’s and g’s)
between parent and child nodes to the conditional probabilities via the CAST
algorithm.

Once the influence net has been completed, it can be used to evaluate the
impact of actions on the effects (decisions) of interest. This can be accomplished
by sensitivity analysis or by executing the influence net. The sensitivity analysis
consists of finding those actionable events that have most impact on the effects
of interest. This analysis makes it possible to use only those actionable events
which have the most impact on the effect nodes. To execute the influence net,
the analyst sets the probabilities of a set of actionable (leftmost) events to either
zero or one, depending on whether the action is planned or not, and evaluates
the influence net. Then the tool propagates these probabilities from left to
right until all effects are accounted for in the rightmost nodes representing
main effects. An analyst can experiment with the influence net by changing the
probabilities of one or more of the actionable events and seeing what the effect
is on the key decision nodes.

Once the specification of the influence net has been completed, and the
actionable events have been selected then the influence net is exported from
the CAT tool to a so-called influence net specification file. This file is a textual
representation of the influence net with the static information which is necessary
to simulate an influence net. The file is then transferred to a web server where
it is used by a script to specify the initial markings of the generic CP-net within
the TINL CPN simulator.

8.2.2 Stage 2: Temporal Evaluation using CP-Nets

The next activity involves the operational planners who assess the availability
of resources to carry out the tasks that will result in the occurrence of the
actionable events. The resulting plan will indicate when each actionable event
will occur. Selecting the set of actions that will lead to achieving the overall
desired effects while not causing the undesired ones is not the only important
task. Determining the timing of those actions is critical to achieving the desired
outcomes. It is not possible to evaluate the impact of the timing in the CAT-tool
because influence net does not contain temporal information. However, because
influence nets assume the independence of causal influences, it is possible to
associate time with either the nodes or the arcs of the influence net. The time
delays represent the amount of time it takes for knowledge about a change in
the status of any node to be propagated by some real world phenomenon to the
node that is affected by that change. The update in the marginal probability
(the current probability) of a node occurs immediately after the time delay.
It is these time delays, along with the timing of the actions, that causes the
generation of probability profiles which are graphs depicting the probability of
each node as a function of time.

1CAT is the Effects Based Campaign Planning and Assessment Tool developed by the US
Air Force Research Laboratories (AFRL/IF) and George Mason University.

8.2. Practical Use of the Operational Concept 93

Figure 8.3: Two COAs with the same actions but different time-phases.

In this paper we will consider only two types of temporal information. The
first one is the timing of the actionable events, i.e. the specification of when
the controllable actions should be carried out. The second type of delay is the
estimated time it takes before the consequence of each event represented in the
influence net can be seen. This second timing information is expected to be
constant for several COAs. An example of these two types of timing information
is that the event represented by node 25 in Fig. 8.2 may be initiated after two
hours and then the effect of the event will be seen after three hours.

The input scenario is described in terms of the actions chosen from the set
of actionable events, in the selection of the COA and the time at which these
actions occur. The actions are modelled as events, which means that they
occur instantaneously. To give an idea of different scenarios, an example with
two COA scenarios is shown in Fig. 8.3. The actions and their timing of COA1
are indicated below the time line while the same set of actions with different
timing that comprise COA2 is shown above the time line.

Let us now turn to how the CAESAR II/EB tool is used for temporal
evaluation. An analyst uses a web browser to specify the temporal information
and to simulate the influence net under a variety of initial conditions. This
is done by filling out a set of HTML forms that are automatically generated
using a so-called CGI script [35]. A CGI script is a program that runs on a web
server, and it can be started, for example, by submitting an HTML form from
a web browser.

First, the temporal information must be specified by the analyst. The in-
fluence net specification file from the CAT tool is used by a CGI script to
automatically generate an HTML document, where the operational planner
can input the time delays of the individual nodes. Figure 8.4 contains such an
HTML document for the influence net in Fig. 8.2. The HTML forms contains
an entry for each node in the influence net with the text from the correspond-
ing node in the influence net. When the form is submitted, the information is
saved, and can later be accessed using the delay name specified in the form.

Once the time delays have been specified, the operational planner is ready
to analyse different COAs using the TINL CPN simulator. This is done by first
requesting the generation of a new HTML document where the input scenario
can be specified. Figure 8.5 contains an example of such a document. The
document contains two forms where input can be given. The first form is for
specifying the timing for the actionable events that should be included in the

94 Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

Figure 8.4: Web page to specify time delays.

Figure 8.5: Web page to specify a COA and to select nodes for display of
probability profile.

COA. The second form is used for two things. First, the operational planner
must specify if there is strong evidence that some of the events are already true.
For those events, the effect is set to 100% in the form. Secondly, it is specified
for which of the nodes, the probability profile should be included in the graph
of the probability profile.

When the HTML document is submitted, the web server sets the initial
marking of the generic CPN model within the TINL CPN simulator and sim-
ulates the CPN model. During the simulation, the server automatically stores
the values needed to plot the probability profiles in a file for later use in compar-

8.2. Practical Use of the Operational Concept 95

Figure 8.6: Plot of probability profile.

ing COAs. When the simulation ends, graphs are generated which contain the
probability profiles that show the marginal probability for the selected nodes
in the influence net as a function of time, and are then displayed in the web
browser. The probability profiles indicate how long it will take for the effects of
the actionable events to affect various nodes in the influence net and time win-
dows when probabilities may have unacceptable values. By changing the timing
of the actions in the COA, the analyst may be able to eliminate these unac-
ceptable windows. The analyst will most likely concentrate on the probability
profiles of the key decision nodes, i.e. the nodes with no children.

An example of three probability profiles for a single COA is shown in
Fig. 8.6. The graphs contains plots of an extended version of the influence
net for the Borg-example. The annotation boxes in the plot have been added
manually for clarity. For this COA, the probability profile for node 30 indi-
cates that after 5 hours Borg wants to negotiate with a probability of about
62%. The likelihood that Borg will decide to use weapons of mass destruction
(WMD) decreases and then increases before it finally reaches a very low value.
This indicates that there is some risk associated with this COA. The analyst
will attempt to find an alternative timing scheme that will reduce this risk
caused by the rise in the likelihood of WMD use.

To compare multiple COAs the analyst can fill out another HTML form in
the web browser to generate plots that show the probability profiles of nodes for
different COAs. Figure 8.7 contains an example of such an HTML document
for the Borg example. In the first form a single node is selected, and two COAs
are selected in the second form. When the HTML document is submitted, the
probability profiles for the selected node and COAs will be displayed based
on the data that was collected when the simulations were initially made. The
ultimate output of the analysis of multiple COAs is a recommendation, along
with the supporting rationale, for a particular COA.

96 Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

Figure 8.7: Web page to select nodes and multiple COAs for comparison of
probability profiles.

In rapidly evolving situations, it is typical for analysts to continually modify
the influence net model as new information about the situation becomes known.
With the original CAESAR II/EB tool using fixed CPN models, each time a
change was made in an influence net, a new CP-net had to be automatically
created and compiled before any temporal analysis could be done. This can
be time consuming in a situation where speed of analysis is important. The
new technique of creating a CP-net that provides a generic representation of
any influence net means that changes in the influence net do not require the
generation of a CP-net. The implementation of this generic CP-net and more
details on the web environment are discussed in the next sections.

8.3 CPN Simulator for TINLs

In this section we describe the generic CPN model [55] that can simulate any
TINL when initialised with a proper marking. We remind that, in this context,
a TINL consists of an influence net and timing information for the influence
net. The purpose of this section is to illustrate how a simulator of TINLs can
be implemented using CP-nets. Next, Sect. 8.4 will discuss technical issues on
the architecture of the web-based environment for the TINL CPN simulator.

8.3.1 Motivation for the Generic CPN Model

In [108] a translation from TINLs to CP-nets has been developed. The transla-
tor takes a TINL specification file as input and automatically generates a fixed
CPN model which can simulate that specific TINL. It is expected that the SME

8.3. CPN Simulator for TINLs 97

InitModel

Terminal

Intermediate

Top

Initial

Figure 8.8: Overview of the generic CPN model.

wants to analyse several TINLs and COAs within a short time frame. There-
fore, the time used to apply the method is of great importance. The most time
consuming part of the method described in [108] is that for each TINL that
needs to be investigated, a complete CPN model needs to be generated with
places, transitions, declarations, etc., and afterwards the simulator code should
also be generated. As we will see in Sect. 8.5, the turn-around time for gen-
erating the CPN model, the simulator code, and then running the simulation
is relatively high for non-trivial TINLs. Even though a CPN model and the
corresponding simulator code of the old translation method can be generated
completely automatically, it is still a relatively time consuming job to apply the
method with the tools currently available.

Based on these experiences, the generic CPN model has been developed.
The advantage of this CPN model is that the simulator code is generated once,
and only once. In other words, we not only avoid generating a new CPN model
for each TINL, but we also eliminate the need for generating simulator code
for each TINL. The generic CPN model which is used to simulate any TINL,
is constructed such that its behaviour is equivalent to the fixed CPN models
which are generated using the old translation method. The equivalence has
been investigated in [55].

8.3.2 Overview of the Generic CPN Model

The generic CPN model is a hierarchical CPN model. An overview of the
modules in the CPN model is given in Fig.8.8. The module InitModel is used to
load the TINL specification file and the other parameters into the CPN model,
and will be discussed in the end of Sect. 8.3.5. The Top module of the CPN
model gives the most abstract view. The three modules Initial, Intermediate, and
Terminal model three different types of TINL nodes. Initial nodes represent
actionable events, i.e. nodes without predecessors, while the terminal nodes
represent the decisions nodes, i.e. nodes without successors. The intermediate
nodes represent the remaining nodes with both predecessor and successor nodes.

8.3.3 Top Module

The net structure in the CP-net models the flow in the probability propagation
algorithm, while colours are used to model the nodes, arcs and probabilities

98 Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

A

Fact

O

Result

Trigger

FactTimeFG

Driver
@+td

COAsetTaken

COAsSET

Fire
Sequence

 Sequence

1

Arcs
StorexDsts

FG

ntermediate
Node HS

Initial
Node HS

Final Node
HS

(node,prob,td)

(node,seq,prob)

(node,prob)

seq seq+1

Figure 8.9: Top module of the generic CPN model.

of a specific influence net. Therefore, most of the colour sets include the node
identity so that it is possible to distinguish tokens belonging to different nodes
even though they are located at the same place. For example, in the Top

module, shown in Fig. 8.9, the leftmost place Trigger contains triples of node
identity, the corresponding probability and initial time delay. The initial delays
and probabilities for each of the nodes representing actionable (or controllable)
events have been given as input in the HTML forms in Figs. 8.4 and 8.5 via the
web browser.

Let us now turn to how the CPN model simulates a specific influence net.
The transition Driver in the Top module starts by removing tokens from the
Trigger place and adds tokens to the place A with the initial time delays (td).
That corresponds to activating the actionable events for each node at different
points in time. Next, the probabilities can be propagated forward from the
initial nodes via the intermediate nodes to the terminal nodes.

8.3.4 Intermediate Nodes

Let us consider how the nodes of a TINL are simulated by investigating interme-
diate nodes only. The initial and terminal nodes are modelled in a similar way
and will, therefore, not be discussed here. All intermediate nodes are modelled
using the same net structure. Figure 8.10 shows the CPN model for intermedi-
ate nodes. The model has two transitions and six places. The general idea of
this module is that the transition Compute Prob models the computation of a new
probability based on probabilities of the predecessor nodes, while the transition
Distribute Probs models the distribution of the newly calculated probability to
the successor nodes.

Places and Colour Sets

In this section we discuss how the static information of a TINL is modelled by
describing some of the places and colour sets of the intermediate module. In
the next section we will consider the modelling of the probability propagation
of a TINL.

Consider the place Arcs which models the arcs in a TINL. This place always

8.3. CPN Simulator for TINLs 99

Compute
Prob.

[input_arcs = get_input_arcs(preset, node, allarcs),
any_recalculated input_arcs]

Rule RuleFG

N
Result

Distribute
 Probs.

[output_arcs=get_output_arcs(node, postset, allarcs),
all_not_recalc(output_arcs), fifo=count]

Arcs
StorexDsts

P I/O

O

Result

P Out

Buffer FIDxBufferFG

Structure
NodeRule

FG

(node,fifo,prob)

(node, count+1,
comppostprob(input_arcs,preset,conp,g,bl,gnhs))@+dl

(node,g,dl,count,
bl,gnhs,conp)

(node,
count)

get_effect(node,fifo,prob)

reset_input_controls(input_arcs,allarcs)

allarcs

{NodeID=node,
 PreSet=preset,
 PostSet=postset}

{NodeID=node,
 PreSet=preset,
 PostSet=postset}

allarcs

set_output_controls(output_arcs,prob,allarcs)

(node,
 count+1)(node,g,dl,count+1,

bl,gnhs,conp)

Figure 8.10: Intermediate module of the generic CPN model.

holds a single token which is a list containing an entry for each arc in the TINL.
Each arc entry contains a source and a destination node id, a probability value,
and a boolean control value. The control value indicates whether or not the
probability of the predecessor node of the arc has been recalculated and is ready
to be processed by the successor node. In other words, the control value is used
to check if newly computed probabilities have been propagated forward or not.
To model the arcs in Fig. 8.2 in Sect. 8.2 a list with eight entries is needed, i.e.
one entry for each pair of connected nodes.

Apart from modelling the relationships between nodes, the static informa-
tion of each node in the TINL must also be modelled to be able to compute
the probability of each node. For that purpose, the place Rule has a token for
each node in the TINL. To model a specific node, first of all, it contains the
node identity of the node in the TINL so that it is possible to identify the token
for a given node. The remaining values are the gate type (not discussed here),
the time delay of the node from the delay file, a counter, the baseline proba-
bility, the h and g values, and a list of conditional probability weights stating
how likely the node is to be true when any subset of the predecessors are true.
Based on these values, it is possible to compute the post probability for a node
when new probabilities arrive at the input arcs to the node.

Let us now turn to the place Structure. It contains static structural infor-
mation about how each intermediate node is connected to other nodes in the
TINL. The purpose is, for a given node to have an easy way to find the input and
output arcs from the list of arcs on the place Arcs. For that purpose, the place
holds a token, for each node, with a list of identities of the input (PreSet) and
output (PostSet) nodes. As an example, a token representing arcs to node 26
in Fig. 8.2 in Sect. 8.2 from predecessor nodes 25 and 28, and the arc from node
26 to successor node 27 is: 1‘{NodeID=26,PreSet=[25,28],PostSet=[27]}.
Using such tokens it is possible to encode the arcs of each node into colours,
and by initialising the place with tokens containing appropriate information we
can model different connections between nodes in a TINL.

To model the fact that the events in a TINL takes a certain amount of time,
the place N is used. This place holds newly computed probability values until
the time elapses and then the probability can be propagated forward.

100Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

Transitions

Now the modelling of the dynamics of a TINL is discussed. When a node has
propagated a new probability value forward to a successor node, the successor
node must then recalculate its own probability, and then also propagate its
new probability value forward to its own successor nodes, etc. This is modelled
using the transitions Compute Prob. and Distribute Probs. in Fig. 8.10.

First consider when a node must compute its probability. It must be com-
puted whenever one of its predecessor nodes has changed its probability. In
terms of the CPN model, this means that the transition Compute Prob must
occur when any of the input arcs to a given node has the control value set to
one. To model this, the simulator first takes one token from each of the places
Rule and Structure with the same node number (node). The variable allarcs on
the arc from the place Arcs to transition Compute Prob binds to the single list on
the place Arcs. Now the guard of transition Compute Prob is evaluated. First the
variable input arcs is assigned to the list of input arcs for the node by selecting
those arcs from allarcs in the TINL that have endpoint in the in node. These
arcs are exactly those having source in preset and destination in node. Next,
the function any recalculated tests if any of the input arcs have the control
value set to indicate that they have been recalculated by predecessor nodes.

When the transition Compute Prob occurs, a token is put on the place N with
a time delay dl to indicate that the node is in the process of being updated.
The probability of the node is calculated using the function comppostprob
based on the probabilities of the input arcs, and the static data on the place
Rule. Finally, the control values of the input arcs are reset using the function
reset input controls on the arc from Compute Prob to Arcs to indicate that
the probability has been propagated forward.

When the time delay has elapsed, the probability value must be forwarded
to the successor nodes. In the CPN model this means that the output arcs of
the node must be updated. The transition Distribute Probs first matches a token
on place N, a counter-token on place Buffer, and a token on the place Structure

with the corresponding node. The guard calculates the output arcs from list
allarcs, based on the list postset for the given node. This is exactly those arcs
which connect the node with its successor nodes. The function all not recalc
ensures that all of the output arcs have not set the control value. This is done
to ensure that the probabilities have been propagated further on.

When transition Distribute Probs occurs it updates the probabilities, sets the
control value of the corresponding output arcs, and then returns the list to
the place Arcs.

8.3.5 Initialisation of the CPN Model

The generic CPN model has to be initialised with appropriate markings to
reflect the structure of a specific TINL. The data is loaded into the CPN model
from the TINL-specification file, which is exported from the CAT-tool and
contains all data needed to create the initial marking. The file is exactly the
same file as the one used to create the fixed model as described in [108].

8.4. Web-Based Simulation Environment 101

Rule

Rule

Buffer

FIDxBuffer

Start
E

1‘e

Distribute
Tokens C

Arcs

StorexDsts

Trigger

FactTime

Structure

NodeRule

e

rulebuffer

allarcstrigger

structure

Figure 8.11: Loading and distributing initial tokens.

fun createBufferTokens ([]): FIDxBuffer ms = empty
| createBufferTokens (nid::rest) =

1‘(nid,1) ++ (createBufferTokens rest);

Figure 8.12: Create tokens with a node id and a counter with initial value 1.

Figure 8.11 depicts the module where tokens are created and distributed to
the places of the CPN model. The transition Distribute Tokens is the only tran-
sition being enabled initially. When it occurs, several things happens. First,
the code segment of the transition loads the TINL-specification files for ini-
tialising the CPN model. The filename is read from the HTML form used to
start the simulation. Then multi-sets of tokens are generated using functions
like createBufferTokens in Fig 8.12. Given a list of node ids from the TINL-
specification file, the recursive function generates for each node id nid, a token
1‘(nid, 1). The rest of the markings for the remaining places are generated
using similar functions.

The distribution of the tokens is done by means of fusion places. The places
Buffer, Structure, Rule, and Arcs are fused with the corresponding places on the
intermediate module in Fig. 8.10, and the initial and terminal modules. The
place Trigger is fused with the one in Fig. 8.9. In this way tokens are loaded
and computed in a single module of the CPN model, but are distributed to the
places of several modules of the CPN model.

8.4 Web-Based Simulation Environment

To get an impression of the complexity of the web-site for the TINL CPN
simulator, this section first describes the relatively complex structure of the
web-site and describes how results can be produced via the web environment.
Secondly, the actions for controlling the TINL CPN simulator are discussed.
Finally, we discuss why we found using HTML forms and CGI scripts to be a
good choice for this project.

102Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

EB
Top directory

for COA

CGI-scripts

Models

delay_D_coa_C

Results

Model M

Models

index.html

menu.cgi, coarun.cgi, cpn.cgi,
dly_pre_create.cgi, dly_create.cgi,
mcoasn.cgi, mcoasnplot.cgi,
results.cgi, simulator

Modelname.net

Delay files

index.html,
detailedresults.html,
res<node_no>.png,
comp.png.gpl, comp.png,
run-cpn.html

delay_D.dly

Fixed strucure (TINL independent)

Dynamic structure (TINL dependent)

Figure 8.13: Directory structure for the web-site.

8.4.1 Structure of Web Environment

The directory structure on the web server is depicted in Fig. 8.13. The topmost
directories are fixed and TINL independent. The remaining directories depend
on the concrete TINLs, and are created and maintained automatically by CGI
scripts while the user interacts with the GUI of the web browser.

The topmost directory is the EB directory where the HTML document
index.html is located. This file is the entry to the web-site. In addition
to this file, two directories (CGI-scripts and Models) are present.

The directory Models holds a directory (Model M) for each of the TINLs
that is examined using the TINL CPN simulator. Therefore, when a new TINL
is added to the web-site, a directory is created in the Models directory, and the
TINL-specification file is put in this new directory. The directory Delay files
holds each of the delay profiles that are created from the web environment.
Results of simulating this specific TINL are put in the Results directory. A
new directory is created for each pair of delay files and COAs (delay D coa C).
The files in the delay D coa C directories are all generated automatically from
the TINL CPN simulator while simulating the given TINL. The purpose of the
files is to make the simulation results persistent as HTML documents, graphics,
and raw data. Later it is possible to query the persistent results and to display
the results as HTML documents.

The directory CGI-scripts serves to hold all CGI scripts for the web-site
and the TINL CPN simulator for the generic CPN model. The CGI scripts

8.4. Web-Based Simulation Environment 103

are all simple Perl scripts [109]. We will not give all details of the CGI scripts
here, but only the overall idea of what they are used for.

The CGI script models.cgi is used to create an HTML document which
gives overview and access to each of the existing TINL models. When a specific
TINL has been selected from the menu, the CGI scripts dly pre create.cgi
can be used to create an HTML form where the operational planner can specify
delay information of the nodes in the TINL. An example of this HTML form
is shown in Fig. 8.4 in Sect. 8.2. When the form is submitted, the CGI script
dly create.cgi creates a delay file which can be used to specify delays of the
nodes during a simulation.

The CGI script coarun.cgi is used to create HTML forms for specifying a
COA. An example of such HTML forms is depicted in Fig. 8.5 in Sect. 8.2. In
the HTML forms, probabilities and delays of actionable events (initial nodes)
can be specified. When the form is submitted, the CGI script cpn.cgi executes
the TINL CPN simulator by invoking the batch script contained in the TINL
CPN simulator. The batch script will be discussed in Sect. 8.4.2. The results of
the simulation are displayed as an HTML document which e.g. includes graphs
like Fig. 8.6 in Sect. 8.2.

At any point in time, the simulation results which have been generated dur-
ing a single COA of a previous simulation can be inspected. This is done using
the CGI script results.cgi which gives access to the index files index.html
for the individual COAs in the delay D coa C directories.

After simulating several COAs and thereby generated simulation results for
each of the COAs, it is useful to be able to compare these COAs with each other.
The “multiple COAs, single node” approach is used to inspect simulation results
from several COAs with respect to a single node. The CGI script mcoasn.cgi
can generate an HTML form which is used to select a single node and some of
the existing COAs. An example of output from this CGI script was given in
Fig. 8.7 in Sect. 8.2. Afterwards, the CGI script mcoasnplot.cgi is executed
to find the simulation results from the selected COAs, and then plot probability
profiles of the node for these COAs. In this way, it is possible to first run a
number of COAs, and then later compare the effects of the COAs to find the
best possible COA for the plan.

All interactions with the CGI scripts are done by following links from web
pages or by submitting HTML forms. Therefore, the operational planner does
not need to know anything about the CGI scripts; they are hidden behind the
web browser.

8.4.2 Controlling the TINL CPN Simulator from a Web Envi-
ronment

In this section we describe how the TINL CPN simulator can be controlled
from a web environment. We describe how the parameters for the model are
retrieved from the web browser, how the simulator is initialised, and how the
results from simulating the TINL are produced and shown in the web browser.
The control is completely hidden from the operational planner behind the web-
based interface. The technical details of the method which is used for controlling

104Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

the CPN simulator from a web browser is described in detail in [54].
The simulator is controlled automatically by a batch script when the CGI

script is executed. The source code for the batch script is not included here.
Instead, we will discuss the elements of the batch script at a conceptual level.
Below we first show the sequence of actions in the batch script used for control-
ling the TINL CPN simulator when the CGI script is invoked from an HTML
form. Afterwards, we discuss more details on the actions of the batch script.

i. Retrieve the model name and delay name from the HTML form.

ii. Load a TINL-specification file and a delay file.

iii. Retrieve the TINL specific parameters from the HTML form.

iv. Create output directories.

v. Save an HTML document with input parameters.

vi. Calculate initial marking.

vii. Run simulation and collect data.

viii. Generate and save graphics using gnuplot.

ix. Produce and save HTML documents containing results for later use.

x. Send the summary HTML document to the web browser.

xi. Quit the CGI script.

When the CGI script is invoked, the batch script retrieves the parameters
from the HTML form. However, the parameters are dependent on the given
TINL. Therefore, it first retrieves the model name and the delay name to know
in which directory the TINL specification file and the delay file can be found.
Based on the information in the TINL specification file, the remaining param-
eters can be retrieved from the HTML form.

The next action is to prepare for producing output while simulating the
model. Therefore the necessary output directories are created, and an HTML
document (run-cpn.html) equal to the one used for setting parameters for this
simulation – but including the values typed in by the operational planner – is
saved to store all initial parameters for this specific delay file and COA. This
document can be used to run a similar COA with a few changed parameters.
This makes it easy to specify several similar COAs.

The parameters of the simulator are then initialised with the values from
the TINL specification file, the delay file, and the HTML form. Afterwards, the
simulator is ready to be started. While simulating, data will be collected and
stored in the output directory.

After the simulation has stopped, the data which has been collected during
the simulation is used for generating graphs. The graphs are created by first
generating a file with a script for the graph plotting tool gnuplot [32], and then
gnuplot is executed with the script as parameter. A graph (res<nodeno>.png)

8.5. Performance Results on Execution Time 105

is created for each of the nodes which the operational planner has marked as
observable in the input HTML form. These graphs are used to give a very
detailed profile of each individual node. Another graph (comp.png) which con-
tains graphs from all observable nodes is also generated. It is used to compare
the profiles of the observable nodes with each other. An example of such a
graph was given in Fig. 8.6 in Sect. 8.2.

Next, the file detailedindex.html, containing an HTML document in-
cluding the graphs of the individual observable nodes, is generated and saved.
Finally, an HTML document (index.html) is generated to give an overview and
access to all the HTML documents and simulation results. This document is
saved in a file, but is also sent to the web browser to give the SME immediately
access to an overview of the simulation results.

8.4.3 Why Choosing a Web-Based Simulation Environment

A web environment is useful for this project due to the fact that the SMEs can
easily access the simulation application from anywhere. From the modeller’s
point of view it is also easy to create a domain-specific GUI using standard web
techniques.

Using HTML forms and CGI scripts for controlling the simulation envi-
ronment has turned out to be a good choice for this application. First of all,
because it requires only a few basic programs like the interpreter Perl [109]
and the Standard ML runtime environment to be installed on the web-server.
Secondly, the CGI script containing the TINL CPN simulator code is generated
completely automatically from Design/CPN, and is only generated once when
installing the web-site.

The most notable disadvantage is that the TINL CPN simulator has a size
of about 12 MB, and the memory image which takes up the memory while
executing the CGI script is also rather large. However, one of the assumptions
of the web environment is that only a few SMEs are using the CGI scripts at
the same time. Therefore, the relatively large memory requirement of the web
server is not a critical problem. If it turns out to be a problem in practice,
then the TINL CPN simulator of the CGI scripts may be distributed to other
machines.

8.5 Performance Results on Execution Time

In this section we present results on the time-effectivity2 of the developed
TINL CPN simulators. As mentioned previously, the time it takes to apply
the method is relevant because the generic CPN model has been developed to
be able to do faster analysis of TINLs than previous CPN models. We compare
the effectivity of the generic CPN model presented in Sect. 8.3 with the fixed
CPN models obtained using the method presented in [108]. In addition, the
generic CPN model has been simulated using both the old simulator and the
new simulator [77] of Design/CPN. The reason for using the new simulator of

2We have used a Sun 4, 128 MB RAM, sparc-solaris 5.8.

106Chapter 8. Operational Planning using a CPN Simulator of Influence Nets

#TINL Model Simulator Draw Switch Simulate Total Time
Nodes CP-net

Fixed Old 21,390 86,000 100 107,490
5 Generic Old – – 140 140

Generic New – – 20 20
Fixed Old 24,860 396,000 390 421,250

30 Generic Old – – 320,440 320,440
Generic New – – 520 520

Table 8.1: Execution time in milliseconds for different models using different
simulators.

Design/CPN is that it turned out that the old simulator was too slow for the
folded CPN model. Table 1 contains execution time in milliseconds for two
TINLs with 5 and 30 nodes. A 30 node TINL can be considered as a TINL
with a real-world size.

For the fixed CPN models there are extra time penalties for drawing the
actual CPN model which are not present for the generic CPN model. The table
shows that it takes more than 20 seconds to draw the full CPN model. In
addition, extra time is needed for generating simulation code (switch) for the
CPN model. The switch time depends heavily on the number of nodes in the
TINL. The 5-node TINL takes about 86 seconds to switch, while the 30-node
TINL takes about 396 seconds. The simulation time for the fixed models is very
low. The reason is that the old simulator code is quite effective for CP-nets
with few tokens on each place, which is the case for the fixed CPN models. The
overall time it takes to draw, switch, and simulate the CP-net of a TINL using
the fixed CPN model is relatively high: more than 100 seconds for a small TINL
with only 5 nodes.

The generic CPN model avoids the need of drawing and switching a CPN
model each time a new TINL is to be analysed. The switch is made only once for
the generic model, and the simulator can be applied to any TINL afterwards.
Therefore, the switching time is not included in the table. Simulating the
generic CPN model using the old simulator is comparable to simulating the
fixed model for very small TINLs. However, as the simulation time of the
30-node TINL shows, it takes longer time to simulate the generic CPN model
for TINLs with 30 nodes. The reason is that the old simulator is ineffective
when simulating CPN models with many tokens on a place. When considering
the total time, the generic CPN model using the old simulator is almost as
inefficient as using the fixed CPN model.

The large simulation time of the generic CPN model has been solved using
the new CPN simulator which is optimised for simulations with many tokens on
a place. The improvement can be seen from the fact that the simulation time
of the generic CPN model using the new simulator is close to the simulation
time of the fixed CPN model using the old simulator. The simulation time for
the generic CPN model includes the first step where the data is loaded into the

8.6. Conclusion 107

model and tokens are generated. However, for the 30-node TINL specification
file the first step takes only about 50 milliseconds. In conclusion we note that
the simulation time using the new simulator and the generic CPN model is fully
acceptable for web simulations.

8.6 Conclusion

In this paper we have presented a web-site which contains a CPN simulator for
effect based operational planning. The CPN model is used to evaluate alterna-
tive COAs with respect to timing and probability profiles. The input for the
model consists of a complete influence net, a timing profile for actionable events,
and estimated probabilities for the events in the influence net. The results of
simulating the CPN model are, e.g. graphs displaying expected probabilities
for each of the observable nodes at different points in time. This information
can be used in the process of timing an operation by selecting the best of the
examined COAs.

Future work may include embedding the TINL CPN simulator into the CAT
tool as a component. The simulation results could then be displayed within the
CAT tool, and thereby lead to a more iterative evolution of TINLs. It would
probably be more effective to apply the method if, when adding an extra node to
a TINL, one could see the consequences on the simulation results immediately
after adding the node.

The IEEE 1516 standard called High Level Architecture (HLA) [93] can be
used for interconnecting simulation models to become so-called federations of
simulation models. By creating an interface for the HLA runtime infrastructure
to the TINL CPN simulator, it would be possible to use output from simulations
of e.g. a war game as input to the simulator. There exist simulation models at
different strategic levels of war planning, and the outcome of using the TINL
simulator in such a federation could be a method to easily determine the effect
of alternative COAs based on these other simulation models.

Acknowledgements. This research was conducted in cooperation between Uni-
versity of Aarhus and the C3I Center of George Mason University, with par-
tial support provided by the U.S. Office of Naval Research under Grant No.
N00014-01-1-0538.

Chapter 9

Towards a Monitoring Framework for

Discrete-Event System Simulations

The paper presented in this chapter will be published in the proceedings of the
6th International Workshop on Discrete-Event Systems 2002 (WODES’02).

[62] B. Lindstrøm and L.Wells. Towards a Monitoring Framework for Discrete-
Event System Simulations. To appear in Proceeding of Workshop on
Discrete Event Systems, October 2002.

Except for minor typographical changes the content of this chapter is equal
to the original version of the paper in [62].

109

9.1. Introduction 111

Towards a Monitoring Framework
for Discrete-Event System Simulations

Bo Lindstrøm∗ Lisa Wells∗

Abstract

This paper presents a framework for tools for monitoring discrete-event
system models. Monitoring is any activity related to observing, inspecting,
controlling or modifying a simulation of the model. We identify general
patterns in how ad hoc monitoring is done, and generalise these patterns
to a uniform and flexible framework. A coloured Petri net model and
simulator are used to illustrate how the framework can be used to create
various types of monitoring tools. The framework is presented in general
terms that are not specific to any particular formalism. The framework
can serve as a reference for implementing different types of monitors in
discrete-event system simulators.
Key words: Discrete-event system simulation, coloured Petri nets, com-
puter tools.

9.1 Introduction

A variety of formalisms, e.g. finite-state machines [38], statecharts [36], and
Petri nets [88], exist and are used in practice for modelling and analysing
discrete-event systems. Furthermore, mature and well-tested tools exist for
building and analysing models based on these formalisms. Such tools are pri-
marily focused on providing support for the formalism and related analysis
methods, such as simulation or state space exploration. However, in many
situations it has proven to be useful to be able to augment rigorously based
tools with additional functionality that is not directly related to the formal-
ism. For example, during a simulation of a high-level Petri net model it can
often be useful to examine the states and events of the system, periodically ex-
tract information from the states and events, and then use the information for
very diverse purposes, such as: stopping the simulation when a certain state is
reached, visualisation of behaviour using message sequence charts [40] (MSC),
or data collection for performance analysis.

Based on our experiences with implementing and using Design/CPN [27]
which is a tool for coloured Petri nets (CP-nets or CPN) [44, 45], we have ob-
served that the design and implementation of efficient and effective tool support

∗Department of Computer Science, University of Aarhus, Denmark.
E-mail: {blind,wells}@daimi.au.dk.

112 Chapter 9. Towards a Monitoring Framework for DES Simulations

for a specific formalism is generally focused on the formalism, while extracting
information for other purposes is typically done using ad hoc methods. That
means that for each different kind of information that can be extracted from a
simulation and processed, a new mechanism is implemented for extracting the
information. Some of these ad hoc methods are directly reflected in the mod-
els, e.g. it becomes necessary to add new events that are used solely to extract
information. This can introduce errors into the models and is undesirable.

Even though the extracted information may be used for different purposes,
the way the information is extracted is often similar. This means that it is
possible to create a general mechanism for defining how to extract information
from a model. In this paper, we will use the term monitor to denote any mecha-
nism which inspects or monitors the states and events of a discrete-event system
model, and which can take an appropriate action based on the observations.
For example, a monitor of a communication protocol model could inspect the
events during a simulation of the model and update a message sequence chart
each time an event corresponding to the transmission of a message takes place.

The purpose of this paper is to present a general monitoring framework
for discrete-event system simulators that can be used to standardise monitors
within a given tool and to unify interaction with monitoring facilities. In other
words, we present a flexible framework that can be used for defining many
different types of monitors. It is our experiences with implementing the data
collection facilities [58] and using other ad hoc monitoring techniques in De-
sign/CPN that has inspired us to create the monitoring framework. The data
collection facilities were designed and implemented such that they could be
used without having to make any modifications to a model. One of the goals of
the monitoring framework is to make it possible to use monitors to inspect or
control a simulation without having to alter models. With monitors it becomes
possible to make an explicit separation between modelling the behaviour of the
system and monitoring the behaviour of the model.

There are several advantages of using a common framework for defining
monitors. One advantage of having a common interaction technique for all
monitors in one simulator is that it may be easier for users to learn and use a
variety of existing monitors. We also believe that the use of standards improves
the extensibility of tools. In other words, it should become easier to add new
monitoring techniques without using ad hoc solutions, and the implementation
of new monitors may be simpler due to reuse of code.

Flexible and standardised monitoring facilities should also make it easier to
extend the use of monitoring to a wider area, by making it easier to define and
integrate new monitors into a tool using the monitoring framework. In addition,
we believe that a standardised and common approach where the monitoring,
to some extent, is independent of the model itself will extend the usability
of analysis tools for discrete-event systems. For example, using monitors for
communicating with external processes or for updating domain-specific graphics
may extend the use-domain of formal methods, as it becomes possible for people
unfamiliar with a given formalism to use monitors to interact with a “black box”
containing the formalism in order to do system analysis.

The framework will be described using general terms from discrete-event

9.2. Example: Monitoring a Communication Protocol 113

systems. When we discuss concrete monitors, coloured Petri nets will be used
as a representative example of a formalism for modelling and analysing discrete-
event systems. It should, however, be easy to translate the meaning to any
discrete-event system formalism with concepts for states and events.

The paper is structured as follows: Section 9.2 motivates the framework by
presenting a CPN model of a communication protocol. The model is used to
illustrate some of the monitors which can be used, e.g. to gain knowledge about
the behaviour of the model. Section 9.3 presents the general monitoring frame-
work for simulation models of discrete-event systems. Section 9.4 describes how
the monitors presented in Sect. 9.2 can be realised using the general framework
presented in Sect. 9.3. Finally, Sect. 9.5 concludes and gives directions for future
work.

9.2 Example: Monitoring a Communication Protocol

In this section, we will present an example model and then use it to illustrate
how different monitoring tools can be used. Even though the model itself is
fairly simple, many realistic and practical monitors can be used to inspect and
modify the state of the model during simulations. The model is taken from [45]
which contains a detailed description of both the model and timed coloured
Petri nets.

9.2.1 The Communication Protocol

The example that we will consider is a model of a simple communication pro-
tocol. This protocol is used to ensure reliable transmission of packets across
an unreliable network, i.e. a network in which overtaking and packet loss can
occur. Each packet includes a sequence number which is used to ensure that
packets are received once and only once, and in the proper order. After a
packet has been received, an acknowledgement is returned to the sender. This
acknowledgement contains the sequence number of the packet that the receiver
expects to receive next. Since both packets and acknowledgements can be lost,
the sender uses a timeout mechanism to trigger periodic retransmission of a
packet which has not yet been acknowledged.

Figure 9.1 shows a timed CPN model of this communication protocol. The
model was created in Design/CPN, in which prototype monitoring facilities
have been developed. The model consists of a Sender part (left-hand side), the
Network part (middle), and a Receiver part (right-hand side).

The sender sends packets (Send Packet), where a packet consists of a sequence
number and the data to be sent. Moreover, the sender has a counter (NextSend)
which indicates the number of the next packet to be sent. This counter is
updated whenever an acknowledgement is received (Receive Ack). A constant
timeout period of wait units of time is defined, and a packet is retransmitted if
an acknowledgement is not received within this period of time.

The network transmits packets (Transmit Packet) from the sender/network
interface (A) to the network/receiver interface (B). Similarly, acknowledgements
are transmitted (Transmit Ack) from the receiver to the sender. Packet loss is

114 Chapter 9. Towards a Monitoring Framework for DES Simulations

Send
Packet

@+9

Transmit
Packet

@+Delay()

Receive
Packet

@+17

Receive
Ack

@+17

Transmit
Ack

@+Delay()

Send
INTxDATA

NextSend
INT

1

A

INTxDATA

D
INT

C
INT

B

INTxDATA

Received
DATA

NextRec
INT

1

Sender Network Receiver

(n,p) (n,p)

if OK()
then 1‘(n,p)
else empty (n,p)

if n=k
then k+1
else kn

k

if n=k
then k+1
else k

if OK()
then 1‘n
else empty

n

k n

n n

(n,p) (n,p)@+wait
if n=k
then 1‘p
else empty

Figure 9.1: Timed communication protocol.

modelled by the OK function which is non-deterministic. The time that it takes
to transmit packets and acknowledgements is determined by the Delay function.

Each time the receiver receives a packet (Receive Packet), it must decide
whether to accept or reject the packet. For this purpose the receiver maintains
a counter (NextRec) indicating which packet should be accepted next. If the
expected packet arrives, then the packet is saved (Received), the counter is in-
cremented, and an acknowledgement with the next expected sequence number
is sent back to the sender. When an unexpected packet arrives, the packet
is discarded, the counter remains unchanged, and an acknowledgement is sent
back to the sender.

9.2.2 The Monitors

Several different types of monitors can be used both to control and modify a
simulation of this model and to examine the behaviour of the model. All of the
described monitoring activities could be incorporated directly into the model at
the cost of modifying the model to contain states or events that are not found
in the communication protocol.

In our work, we have observed a number of monitoring activities that can
be described by the following categories, and specific examples of each category
will be described in detail below. File access monitors are used to read and write
information in files. Simulation control monitors are used e.g., to start and stop
simulations, to determine the length of sub-simulations, or to select the order in
which certain events occur. Visualisation monitors can be used to visualise the
behaviour of the system during a simulation, e.g. by updating message sequence
charts or domain-specific graphics. Performance monitors measure and report

9.2. Example: Monitoring a Communication Protocol 115

Packet 1 received at time 190, EXPECTED

Packet 1 received at time 255, DISCARD - expecting 2

Packet 2 received at time 337, EXPECTED

Figure 9.2: Excerpt from the log file for the receiver.

on the performance of the system. Communication between a simulator and
an external process can be controlled via communication monitors. Finally,
property monitors can be used to do functional analysis of a model. Functional
analysis is concerned with proving that the system behaves as expected or that
certain state and/or event properties hold for the system. Let us now consider
specific examples from these categories of monitors.

Simulation Stop Monitor Suppose the simulation of the communication
model should be stopped after a given number of packets have been received
in the correct order. This type of stop criteria is completely dependent on the
model and the system, in contrast to more general and model-independent types
of stop criteria such as stopping after a given number of events have taken place
or after a certain amount of model time has passed. Stopping a simulation after
a certain number of packets have arrived using only general stop criteria would
generally require modifying the model, e.g. by adding an event that could occur
only after the required packets have arrived. In contrast, a simulation control
monitor could be used to inspect either the states or the events of the system
and then stop the simulation when the required packets had arrived without
having to modify the model.

Log-File Monitor It may be useful to maintain a receiver log file containing
information about the packets that were received. For example, the log file could
contain the sequence numbers of the packets that were received, the time at
which they were received, as well as noting which packets were received in the
correct order. Figure 9.2 shows an excerpt from a file that was generated by
a log-file monitor when simulating the protocol model. Such a log file could
be used for debugging purposes or for analysing the system, e.g. for analysing
arrival rates. A log-file monitor is a file access monitor which can only write
strings in a file.

Message Sequence Chart Monitor MSCs have proven to be useful for
visualising the behaviour of communicating processes. In the context of UML,
MSCs are used for specifying communication patterns, while they are often used
for analysing communication patterns within the context of CP-nets. MSCs
provide a high-level view of communication patterns that may not be obvi-
ous if one were restricted to inspecting every simulation event involving the
communicating processes.

Figure 9.3 is a MSC that was generated by a visualisation monitor. The
MSC shows that the packet with sequence number 1 (Packet 1) was sent to the
network by the sender three times. The first time Packet 1 was sent, it was lost
on the network. Then Packet 1 was sent, transmitted across the network, and
received by the receiver. The receiver responded by sending an acknowledge-
ment with the sequence number for the next expected packet (Ack 2) back to
the sender across the network. Finally, a timeout occurred, and Packet 1 was

116 Chapter 9. Towards a Monitoring Framework for DES Simulations

Communication Protocol (1)

Sender Network

Packet 1 lost

Receiver

 Send Packet 1

Send Packet 1

Transmit Packet 1

Receive Packet 1

Send Ack 2

Transmit Ack 2

Send Packet 1

Transmit Packet 1

Receive Ack 2

Receive Packet 1

Send Ack 2

Figure 9.3: MSC for communication protocol.

sent one last time before the acknowledgement from the receiver was received
by the sender.

Data Collection Monitor Monitors can also be used to measure the per-
formance of a system by collecting numerical data during a simulation. The
data that is collected can be used to calculate statistics or saved in files which
can be post-processed after a simulation finishes. For example, the protocol
model could be used to measure the proportion of received packets that are dis-
carded. This performance measure could be of particular interest when using
simulation to find a reasonable value for the timeout period when the approx-
imate network delay and rate of packet loss are known. A data collection
monitor, which is one type of performance monitor, measuring the ratio of dis-
carded packets among all received packets would simply have to observe the
events corresponding to the reception of packets (Receive Packet), and calculate
the proportion of discarded packets in an appropriate manner.

Communication Monitors Communication with external processes can
be very useful when simulating models of discrete-event systems, as the external
processes can augment the functionality of the simulation tool in a variety of
ways. For example, an external process could provide input or workload for the
model, or the external process could also be used to process data that has been
extracted from the model during simulation.

Communication channels can also be used for two-way communication be-
tween a simulator and an external process. The external process could be, for
example, a real system that is built on top of the communication protocol. Al-
ternatively, the external process could be another simulator that is simulating
a model of a system that is built on top of the communication protocol.

State Property Monitor Ideally, functional analysis of a discrete-event
system should be done by examining all of the reachable states and state tran-
sitions of the system, i.e. the full state space of the system. However, in many

9.3. Monitoring Framework 117

cases, it may not be possible to analyse (or even generate) a full state space
due to the state explosion problem. In such a situation, an alternative, albeit
somewhat unsatisfactory, solution is to determine whether or not the property
holds for selected simulations using property monitors.

A state property for the communication protocol that ought to hold for all
states is that the value of the counter in the sender (NextSend) should always be
either less than or equal to the value of the counter in the receiver (NextRec).
This property can be checked during a simulation by a property monitor that
examines and compares the value of these two counters in every state during
a simulation. At the end of the simulation, the monitor will report whether or
not the property held.

It is important to remember that a property monitor that is used during
a simulation cannot necessarily prove that a property holds for a model, as
the monitor only examines one sequence of states and state transitions that
correspond to a partial state space. While a property monitor cannot prove that
a property holds, they can be helpful when debugging and validating models.

9.3 Monitoring Framework

In this section we describe a general monitoring framework which can be used
to create different types of monitors in modelling tools for discrete-event sys-
tems. In Sect. 9.3.1 we give a description of the essential parts of a monitor.
Section 9.3.2 presents the interface of a monitor. To use the framework in a
concrete tool, the tool must be able to inspect or access both events and states
of a model during a simulation.

9.3.1 Functionality of Monitors

In this section we present our proposal for the architecture of a monitor. We
describe the components of a monitor and how the components interact with
each other.

Architecture of Monitors In Sect. 9.2 several different monitors were pre-
sented, e.g. monitors for collecting data, maintaining message sequence charts,
and communicating with external processes. By considering these monitors in
detail, we identify a common pattern in how these monitors operate. Each
monitor can be divided into three logical parts:

i. Check: When should the monitor make an observation.

ii. Observe: How is the observation computed.

iii. Act: Based on the observation, what action is to be made.

As an example, consider the log-file monitor in Sect. 9.2.2. For the log-file
monitor, the check determines that the file should be updated when a packet is
received (Receive Packet). The observation defines the string that is to be added

118 Chapter 9. Towards a Monitoring Framework for DES Simulations

if check (event, state) 1

then act (observe (event, state), state) 2

Figure 9.4: Relation between monitor functions.

to the file. The action updates the file with the observed string. The state of
the model is left unchanged.

Figure 9.4 illustrates the general functionality of a monitor. When, what and
how an action is to be made is defined by three functions: the check function,
the observe function, and the act function. For most monitors the following
control flow takes place. First, the check function is evaluated to determine
when an action is to be performed. When the check function evaluates to true,
then the observe function is evaluated to observe a value. Finally, the act
function uses the observed value to do a specific and monitor-dependent action.
In other words, the observed value can be used to update the state of the model,
the state of the simulator, and/or the environment of the simulator (e.g. file
system or communication channels).

A monitor must be activated periodically during a simulation, i.e. the state-
ment from Fig. 9.4 needs to be evaluated occasionally for each monitor. How-
ever, a monitor must only be activated at well-defined points during a simulation
to avoid inconsistency. Some obvious examples of points for activating a moni-
tor during a simulation are the following: after each event during a simulation;
after certain events occurs; after a certain amount of time; after a specific num-
ber of events. Furthermore, it must be possible to examine one or more states of
the model, each time the monitor is activated. In our experience with monitors
for CP-nets, it has been sufficient to activate monitors after events have com-
pleted, at which point the current state of the model can be inspected. In other
words, after an event occurs, the statement from Fig. 9.4 is evaluated for each
monitor, and both the check and observe functions are able to inspect both
the current state of the model and the most recently occurring event. However,
the future may show that some monitors may need to be able to inspect, e.g.
all previous states and occurring events, or all potential next events which can
occur from the current state.

Domain and Range of Monitors We have indicated in Fig. 9.4 that a
monitor must at least be able to inspect the current state of the model and the
most recently occurring event during a simulation. In addition to the current
state and the most recently occurring event, it is useful that both the check,
observe, and act functions have access to the simulator of the model, and to the
simulator environment. Access to the simulator makes it possible to, e.g. stop
a simulation, while access to the simulator environment may give additional
possibilities such as accessing global variables, functions, and external files.
Accessing the simulator environment is necessary when implementing a log-file
monitor, since a log-file monitor needs to access the file system to be able to

9.3. Monitoring Framework 119

save files.
Monitors where the act function updates the simulator environment are

only inspecting the behaviour of the system, and do not change the state of the
model or the simulator. However, monitors where the act function modifies the
state of the model or controls the simulator have to be handled with care. If it
is possible to change the state of the model during a simulation, the semantics
of the formalism can be violated if used improperly.

Initialising and Concluding Monitors Before a monitor can be used it
may need to be initialised. In addition, after having used the monitor for moni-
toring a model, it may need to wrap up the work. These activities are different
than the normal invocation of the monitor; they are related to initialising and
concluding a monitor. For example, before the log-file monitor can write to a
file, the file needs to be opened, and the file should be closed at the end of a
simulation.

For several different kinds of monitors it is useful to be able to perform
special activities before the check function is evaluated for the first time, and
after the act function has been evaluated for the last time. In our experience
the following different points of automatically initialising a monitor are useful:
never, when the state of the model is initialised, or before each (sub-)simulation.
Similarly, we have observed that there are two useful options for automatically
concluding a monitor: never or after each simulation.

9.3.2 Interface of Monitors

In this section we provide a detailed specification for the interface of a monitor.
Figure 9.5 shows the interface of a monitor, which is specified as a Standard
ML [82] signature.

A monitor contains four local types: event, state, observeType, and
actState. The type event defines what events the monitor can inspect. The
state type defines the part of the state of the model which the monitor can in-
spect. The observeType type defines the return type for the observe function.
The actState type defines the return type for the act function. The actState
type is unit for monitors which are only inspecting the model and its environ-
ment, but which do not update the state of the model or the simulator. For
monitors which can modify the state of the model or simulator, the type will
be given by the type of the state of the simulator.

Once the local types of the monitor have been defined, the functions check,
observe, and act can be created. Based on the current state and the most
recently occurring event, the check function must be defined to return true
only when the observe and act functions should be invoked. In other words,
the check function defines when the monitor should be activated. When the
check function evaluates to true, the observe function is invoked. The purpose
of the observe function is to inspect the state of the model or the most recently
occurring event (or the environment) and to extract the value to be used by
the act function which takes the appropriate action for the monitor.

120 Chapter 9. Towards a Monitoring Framework for DES Simulations

datatype monitorInitMode = NeverInit | AtInitState | AtSimStart
datatype monitorConcludeMode = NeverConclude | AfterSim

signature MONITOR = sig
type event
type state
type actState
type observeType

val check : event * state −> bool
val observe : event * state −> observeType
val act : observeType * state −> actState
val monitor : event * state −> unit

val init : state −> state
val conclude : state −> state

val init mode : monitorInitMode
val conclude mode : monitorConcludeMode

end

Figure 9.5: Interface of a monitor.

The monitor function is called by the simulation tool during a simulation to
activate the monitor. The monitor function takes care of invoking the check,
observe, and act functions in the correct order as illustrated in Fig. 9.4. In
other words, it is the responsibility of the simulation tool to call the monitor
function often enough so that the check function is is able to detect the points
at which the observe and act functions are to be called.

The functions taking care of initialising and concluding a monitor are speci-
fied by the init and conclude functions. As mentioned in the previous section,
a monitor may be initialised and concluded at different points during its use.
That information is stored in the variables init mode, and conclude mode using
the corresponding data types monitorInitMode and monitorConcludeMode.

9.4 Concrete Monitors

In this section we will discuss how monitors for simulations of CPN models
can be created based on the framework presented in Sect. 9.3. We will also
discuss the advantages of providing support for both standard and user-defined
monitors.

9.4.1 Creating a Log-File Monitor

In this section we describe a log-file monitor which is a monitor that can be
used for any CPN model. Most of a log-file monitor can be predefined, i.e. it
will be the same for all log-file monitors, independent from the model being

9.4. Concrete Monitors 121

Send
Packet

@+9

Transmit
Packet

@+Delay()

Receive
Packet

@+17

Receive
Ack

@+17

Transmit
Ack

@+Delay()

Send
INTxDATA

NextSend
INT

1

A

INTxDATA

D
INT

C
INT

B

INTxDATA

Received
DATA

NextRec
INT

1

(n,p) (n,p)

if OK()
then 1‘(n,p)
else empty (n,p)

if n=k
then k+1
else kn

k

if n=k
then k+1
else k

if OK()
then 1‘n
else empty

n

k n

n n

(n,p) (n,p)@+wait
if n=k
then 1‘p
else empty

Figure 9.6: Determining events and states to monitor.

monitored. Only minor parts of the monitor have to depend on the specific
model. A log-file monitor contains predefined functions for opening, updating,
and closing a file. In other words, the init, act, and conclude functions will
be predefined. Only the check and observe functions have to be created by
the user for defining when to observe the model and how to create the string
to be saved.

Let us see how the log-file monitor from Sect. 9.2.2 can be created. Recall
that the log-file monitor should update a file each time the receiver receives a
packet. Each update should contain information that is specific for the partic-
ular packet that was received, i.e. the sequence number of the packet, the time
the packet was received, and whether or not the packet contained the expected
sequence number. The black parts of Fig. 9.6 indicate the parts of the protocol
model which provide relevant information for creating a log-file monitor that
will generate such a log file for the receiver.

In a CPN tool, it is possible for a user to select parts of a model and
then have the tool automatically deduce which elements represent (part of) the
state of the system and which elements represent events in the system. This
is due to the fact that CPN models consist of only two types of nodes: places
(represented by ellipses) which model the state of the system, and transitions
(represented by rectangles) which model the events of the system. Using the
information selected by a user, it is possible for the tool to generate much of the
information that is required for creating a monitor that satisfies the interface
shown in Fig. 9.5. This particular log-file monitor updates a file after each
event that corresponds to the receiver receiving a packet, and these events are
modelled by the transition Receive Packet and the arcs surrounding the transition.
The variables in the arc inscriptions contain information specific to the event
of receiving a packet: k is the value of the counter in the receiver, and (n,p) is
the packet that has been received, where n is the sequence number, and p is the
payload or data of the packet.

Defining the log-file monitor is fairly easy in Design/CPN. The complete
code for the log-file monitor can be seen in Fig. 9.7, and a description of how the

122 Chapter 9. Towards a Monitoring Framework for DES Simulations

datatype ReceiverLogEvent = 1

Receive Packet of {n: INT, p: DATA, k: INT} 2

3

structure ReceiverLog : MONITOR = struct 4

5

type event = ReceiverLogEvent 6

type state = unit 7

type actState = unit 8

type observeType = string 9

10

fun check (Receive Packet {n,p,k}, currentState) = true 11

12

fun observe (Receive Packet {n,p,k}, currentState) = 13

"Packet "^Int.toString(n)^ 14

" received at time"^ 15

timeToString(time())^", "^ 16

(if n=k then "EXPECTED\n" 17

else ("DISCARD - expecting "^ 18

Int.toString(k)^"\n")) 19

20

val fileID = ref TextIO.stdOut 21

22

fun act (observeStr, currentState) = 23

(TextIO.output(!fileID,observeStr); ()) 24

25

fun init (currentState) = 26

((fileID := TextIO.openOut("ReceiverLog")); 27

currentState) 28

fun conclude (currentState) = 29

(TextIO.closeOut(!fileID); currentState) 30

val init mode = AtSimStart 31

val conclude mode = AfterSim 32

33

fun monitor(anEvent, currentState) = 34

if check (anEvent, currentState) 35

then act (observe (anEvent, currentState), 36

currentState) 37

else () 38

end 39

Figure 9.7: Code for log-file monitor.

code was generated follows. After the user selected the Receive Packet transition,
Design/CPN generated template code for the check and observe functions for
the log-file monitor, and the template code that was generated is equivalent
to lines 11 and 13 in Fig. 9.7. Since the user selected only the Receive Packet

transition, it is implicitly assumed in Design/CPN that the check function
returns false after all other events in the system. As a consequence, the check
function should always return true, since the log file should always be updated
when a packet is received, regardless of the particular values of the sequence

9.4. Concrete Monitors 123

number, the payload, or the receiver’s counter. Therefore, the user does not
need to make any changes to the template code for the check function. The
body of the observe function is the only part of this monitor that the user had
to define. In this case, the user only had to write a few lines of SML code (lines
14-19 in Fig. 9.7) in order to generate a file that resembles the excerpt shown
in Fig. 9.2.

After the user defined the check and observe functions, Design/CPN checked
the syntax of the functions and automatically generated the code that is shown
in Fig. 9.7. Note that the user never needs to see more than the check and
observe functions. The user chose to name the monitor ReceiverLog. The
type event for this monitor corresponds to the occurrences of the event Receive

Packet. The monitor does not explicitly examine any portion of the state of
the model, therefore the type state is a trivial data type. However, the mon-
itor will implicitly examine some of the state, e.g. the value of the counter in
the receiver, but this information is available in the specification of the event
Receive Packet. A log-file monitor cannot be used to change the state of the
model or the simulator, therefore the actState is also a trivial data type. The
observeType for the monitor will be string, since the observe function must
generate a string which will be saved in the file. The log file will be opened at
the start of the simulation (AtSimStart) when the init function is called by
the simulator. Similarly, the file is closed by the conclude function at the end
of a simulation (AfterSim).

The monitor will be invoked only when a packet is received by the receiver.
This is achieved by augmenting the implementation of the event Receive Packet

to call the monitor function for the log-file monitor. As mentioned previously,
the check function should always return true (because it will only be evaluated
when a packet is received), the observe function will return a string that is
dependent on the contents of the packet, and the predefined act function will
save the string in a file.

9.4.2 Standard and User-Defined Monitors

Based on the monitoring framework presented in Sect. 9.3, it is possible to
construct many different types of monitors. More specifically, it is possible to
construct all of the different types of monitors that were discussed in Sect. 9.2.
At first glance, it appears that many of the monitors are dependent on the
model that they inspect. This would seem to indicate that it would be rather
time consuming and difficult for users to define and use monitors. However, it
turns out that many monitors can be constructed so that they are (relatively)
independent of the specific model. That makes it possible to integrate so-called
standard monitors into the tool. Using standard monitors the user only needs
to specify minor parts of the monitor – the rest of the monitor is predefined.

The example of the log-file monitor for the receiver’s log is an excellent
example of a standard monitor. By simply selecting a portion of a model, the
majority of the code for the monitor can be automatically generated by the
tool, and the user only needs to make simple modifications to the code that is
generated. For this standard log-file monitor, it is only possible for the user to

124 Chapter 9. Towards a Monitoring Framework for DES Simulations

change the body of the check and observe functions
There are likely to be other situations in which such a log-file monitor is

insufficient or too rigidly defined. In the example above, it is impossible to read
from the file in question. Therefore, it would be helpful for a tool to support
a variety of monitors with varying degrees of flexibility. For example, support
could be provided for file access monitors that only read or only write strings
in files, that record the sequence of events that occur in a simulation, or that
observe the state of model and open a file for reading when certain conditions
are fulfilled.

In other cases it may be useful to be able to create new types of monitors
or monitors that are completely model-dependent. Therefore, it is also useful
that the user can create monitors from scratch. If users create monitors that
conform to the interface shown in Fig. 9.5, it should be relatively easy for tool
developers to incorporate the new monitors into the tool or to create libraries
of monitors that can be shared among users, thus extending the usability and
flexibility of a simulation tool.

9.5 Conclusion and Future Work

In this paper we have presented a framework for monitoring simulations of
discrete-event systems. The purpose of the monitoring framework is to serve as
a reference for implementing different types of monitors in discrete-event system
modelling tools. The reason for developing this monitoring framework is that
most monitors we have seen use the same way to define when to monitor, what
to monitor, while only the action based on the monitoring will be different for
different monitors. Prototype monitoring facilities based on the framework have
been developed and used, and some of the monitors that we have considered are:
data collection monitors, message sequence chart monitors, and communication
monitors. These examples show that monitors can be used for widely different
purposes. This paper is one step in the direction of unifying how monitors are
implemented within a given tool.

There are several ideas for future work in this field. In this paper we have
only considered monitoring of simulations. However, most of the monitors may
also be applied to state spaces. The implication of applying the same monitors
to both simulations and state spaces is twofold. Consider a data collection
monitor to be used to collect data during simulations. It cannot only be applied
to simulations, it can also be applied to paths in the state space to collect data
from the entire state space of a model. Likewise, property monitors applied to
state spaces may also be applied on simulations. The implication is that early
model checking or simple analysis of a model can be conducted during initial
simulations of a model – during the modelling phase – without constructing
state spaces. After completing a model, the same monitors can be applied to
the complete state space. The consequence is that time is saved by using the
same monitors for both simulation and state space analysis.

Chapter 10

Annotating Coloured Petri Nets

The paper presented in this chapter will be published in the proceedings of the
Fourth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools (CPN’02).

[61] B. Lindstrøm and L. Wells. Annotating Coloured Petri Nets. To ap-
pear in proceedings of K. Jensen, editor, Fourth Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools. Univer-
sity of Aarhus, Department of Computer Science, August 2002. Online:
http://www.daimi.au.dk/CPnets/workshop02/.

Except for minor typographical changes the content of this chapter is equal
to the original version of the paper in [61].

125

10.1. Introduction 127

Annotating Coloured Petri Nets

Bo Lindstrøm∗ Lisa Wells∗

Abstract

Coloured Petri nets (CP-nets) can be used for several fundamentally
different purposes like functional analysis, performance analysis, and vi-
sualisation. To be able to use the corresponding tool extensions and li-
braries it is sometimes necessary to include extra auxiliary information in
the CP-net. An example of such auxiliary information is a counter which
is associated with a token to be able to do performance analysis. Mod-
ifying colour sets and arc inscriptions in a CP-net to support a specific
use may lead to creation of several slightly different CP-nets – only to
support the different uses of the same basic CP-net. One solution to this
problem is that the auxiliary information is not integrated into colour sets
and arc inscriptions of a CP-net, but is kept separately. This makes it
easy to disable this auxiliary information if a CP-net is to be used for
another purpose. This paper proposes a method which makes it possible
to associate auxiliary information, called annotations, with tokens without
modifying the colour sets of the CP-net. Annotations are pieces of infor-
mation that are not essential for determining the behaviour of the system
being modelled, but are rather added to support a certain use of the CP-
net. We define the semantics of annotations by describing a translation
from a CP-net and the corresponding annotation layers to another CP-net
where the annotations are an integrated part of the CP-net.

10.1 Introduction

Coloured Petri nets (CP-nets or CPNs) were formulated by Kurt Jensen [44, 45]
with the primary purpose of specifying, designing, and analysing concurrent sys-
tems. The tools Design/CPN [17, 27] and CPN Tools [23] have been developed
to give tool-support for creating and analysing CP-nets. Ongoing practical use
of CP-nets and Design/CPN in industrial projects [46] have identified the need
for additional facilities in the tools.

One industrial project described in [10] illustrated that CP-nets can be used
for performance analysis by predicting the performance of a web server using
a CPN model. As part of this project, the Design/CPN Performance Tool [58]
was developed as an integrated tool extension supporting data collection during
simulations. Later, work was done to extend and generalise these data collection
facilities to serve as a basis for a common so-called monitoring framework [62].

∗Department of Computer Science, University of Aarhus, Denmark.
E-mail: {blind,wells}@daimi.au.dk.

128 Chapter 10. Annotating Coloured Petri Nets

Other projects have shown that visualisation of behaviour using so-called mes-
sage sequence charts (MSCs) [40] is very useful in combination with CP-nets.
As a consequence, a library [71] has been developed for creating MSCs during
simulations. Other similar libraries are Mimic [87], which is used for visuali-
sation, and Comms/CPN [30], which is used for communicating with external
processes.

The fact that a CPN model can be used for several fundamentally different
purposes like functional analysis, performance analysis, and visualisation means
that it is desirable that the tool extensions and libraries can be used without
having to modify the CPN model itself. It should be possible to use a CPN
model, for e.g. performance analysis, without having to add extra places, tran-
sitions, and colour sets purely for the purpose of collecting data. Optimally,
the auxiliary information should not be integrated into colour set and arc in-
scriptions of a CPN model, but should be kept separately, so that it is easy to
disable this information if the CPN model is to be used for something else.

Up to this point it has only been partially possible to use a CPN model
for different purposes without having to change the CPN model itself. With
the current tools, it is indeed possible to do, e.g. performance analysis without
adding transitions and places for the sole purpose of doing the performance
analysis. Unfortunately however, it is often necessary to add extra information
to colour sets and arc inscriptions to hold, e.g. performance-related information
such as the time at which a certain event happened.

This paper presents work on separating auxiliary information from a CPN
model by proposing a method which makes it possible to associate auxiliary
information, called annotations, with tokens without modifying the colour sets
of the CPN model. Annotations are pieces of information that are not essential
for determining the behaviour of the system being modelled, but rather are
added to support a certain use of the CPN model. A CP-net that is equipped
with annotations is referred to as an annotated CP-net. In an annotated CP-net,
every token carries a token colour, and some tokens carry both a token colour
and an annotation. A token that carries both a colour and an annotation is
called an annotated token. Just like a token value, an annotation may contain
any type of information, and it may be arbitrarily complex.

Annotations are defined in annotation layers. Defining annotations in layers
makes it possible to make modular definitions of both a CP-net and one or
more layers of auxiliary information that can be used for varying purposes. By
defining several different layers of annotations, it is possible to maintain several
versions of a CP-net and thereby to use the same basic CP-net for various
purposes by adding, removing, or combining annotation layers. An advantage
of the annotation layers is that they are defined so that they affect the behaviour
of the original CP-net in a very limited and predictable way. Every marking
of an annotated CP-net is the same as a marking in the original CP-net, if
annotations are removed.

In the following, we will assume that the reader is familiar with CP-nets as
defined in [44]. The first half of this paper provides an informal introduction to
annotations and an example of how annotations can be used in practice. The
second half of the paper provides a formal definition of annotations and proof of

10.2. Motivation 129

AU
3‘q

BU
2‘p

CU

DU

EU

T1

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

S
E

3‘e

T

E

2‘e

x

x

x

x

x

x

x

x

x

if x=q
then 1‘q
else empty

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘p
else empty

Figure 10.1: The basic CP-net for
the resource allocation system.

AUxI

3‘(q,0)

BUxI

2‘(p,0)

CUxI

DUxI

EUxI

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color I = int;
color UxI = product U * I;
color E = with e;
var x : U;
var i : I;

S
E

3‘e

T

E

2‘e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

if x=q
then 1‘(q,i+1)
else empty

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘(p,i+1)
else empty

Figure 10.2: The CP-net for the
resource allocation system extended
with a counter.

the fact that annotations affect the behaviour of a CP-net in a very limited way.
In this paper, we will only discuss how to annotate non-hierarchical, untimed
CP-nets. However, timed and hierarchical CP-nets can also be annotated using
similar techniques.

The paper is structured as follows. Section 10.2 presents the well-known
resource allocation system CP-net, which will be used as a running example
throughout the paper, and discusses existing ways of including auxiliary infor-
mation in CP-nets. In Sect. 10.3 we informally introduce our proposal for how
to annotate CP-nets. Section 10.4 discusses how multiple annotation layers
can be used for visualisation using MSCs. In Sect. 10.5 we give the formal
definitions for annotating CP-nets. Finally, in Sect. 10.6 we conclude and give
directions for future work.

10.2 Motivation

It is seldom the case that the exact same CP-net can be used for a variety of
different purposes, as it is frequently necessary to make small modifications to
a CP-net in order to obtain a CP-net that is appropriate for a given purpose.
Consider for example the resource allocation system that is found in Jensen’s
volumes on CP-nets [44, 45]. At least three variations of the resource allocation
CP-net can be found in these volumes: a basic version (shown in Fig. 10.1)
suitable for full state space analysis; an extended version (shown in Fig. 10.2)
which is extended with cycle counters for the p and q processes; and a timed
version with cycle counters and timing information which could be used for
performance analysis.

The basic version in Fig. 10.1 purely models the basic aspects of the resource

130 Chapter 10. Annotating Coloured Petri Nets

allocation system, and thereby only models the parts of the system that are
common for any use of the CP-net. However, even for such a simple system as
the resource allocation system, it is indeed necessary to have slightly different
versions of the same CP-net in order to support different kinds of use. In other
words, modifications of the basic CP-net are made only to support a certain
use, and the modifications may limit other uses of the modified CP-net because
the modifications may change the behaviour.

An example of a situation where the basic version does not contain sufficient
information is when we need to be able to count how many cycles each of the p
and q processes make in the resource allocation system. The extended CP-net
in Fig. 10.2 shows how the basic CP-net can be extended with such auxiliary
information. First of all, the colour set U has been extended to the product
colour set UxI to include an integer for the counter in every process token. In
addition, the arc inscriptions have been modified to pass on and to update the
cycle counters. The cycle counters for the p and q processes are increased each
time a p or q token passes the transition T5. The initial marking has also been
modified to include the initial values of the cycle counters. Using this extended
CP-net it is possible to determine the number of cycles a process has completed
by inspecting the counter of the corresponding tokens.

The version extended with the cycle counters is not useful for all kinds of
analysis. This is due to the fact that the cycle counters for the p and q processes
increase each time the p and q tokens pass transition T5, thus resulting in an
infinite state space. Therefore, the extended version with cycle counters may
be inappropriate for certain kinds of state space analysis. The effect of the
cycle counters on the state space can be factored out using equivalence classes,
however, it may be annoying to have to remember to manually take care of
such auxiliary information before doing state space analysis. In contrast, the
state space for the basic CP-net without the cycle counters is finite. This means
that the full state space can be generated and analysed, e.g. to prove that the
system never reaches a deadlocked state.

Analysing the performance of the resource allocation system is another kind
of analysis that requires auxiliary information to be maintained for the tokens
in the CP-net. The timed CP-net from [45] could be used to measure the
average processing times for each of the two processes. This timed CP-net can
be created by modifying the CP-net in Fig. 10.2 by changing the colour set
UxI to a timed colour set, and by adding an auxiliary component to the colour
set to be used for recording the time when a process restarts a cycle,1 i.e the
time at which a q process is removed from place A or the time at which a p
process is removed from place B. This value can then be used to calculate the
processing time for a given process when it passes the T5 transition. If the timed
CP-net should be used for a purpose where the auxiliary information should
be ignored, it should often be removed. In the tool Design/CPN, it is easy to
disable time, i.e. to consider a timed CP-net as an untimed CP-net. However,
auxiliary components that have been added to the colour sets also need to be

1The colour set U could be modified to consist of pairs (u,t) where u∈U is a process and
t∈TIME is the time at which the process started processing.

10.3. Informal Introduction to Annotated CP-nets 131

removed by manually modifying the colour sets and arc inscriptions.
From the examples presented above it should now be clear that when us-

ing CP-nets for different purposes it is often necessary to maintain different
versions of a CP-net with slightly different behaviour. The reason for main-
taining different versions is, as mentioned, that it may be necessary to be able
to include auxiliary information in tokens. However, the auxiliary information
may be extraneous or even disastrous for other uses, e.g. consider the effects
of the cycle counters on the size of the state space. Including extra informa-
tion in a CP-net often requires modification of colour sets, arc expressions, and
initialisation expressions.

10.3 Informal Introduction to Annotated CP-nets

In this section we will informally present a method for augmenting tokens in
a CP-net with extra or auxiliary information that affects the behaviour of the
CP-net in a very limited and predictable manner. To do this we introduce the
concept of an annotation which is very similar to a token colour in that an
annotation is an additional data value that can be attached to a token. An
annotation layer is used to define annotations and how these annotations are to
be associated with tokens in a particular CP-net. An annotation layer cannot
be defined independently from a specific CP-net. Therefore, it is always well-
defined to refer to the unique CP-net for which an annotation layer is defined.
We will refer to this unique CP-net as the underlying CP-net of an annotation
layer. An annotated CP-net is a pair consisting of an annotation layer and
its underlying CP-net. We define the semantics of annotations by describing
a translation from an annotated CP-net to a CP-net without annotations, re-
ferred to as the matching CP-net. In practice, the annotations are integrated
into the matching CP-net when the translation is made. Section 10.3.1 gives
an informal introduction to annotations and annotation layers. Section 10.3.2
describes the intuition of how to translate an annotated CP-net to a matching
CP-net. Section 10.3.3 discusses the behaviour of the matching CP-net, and it
discusses how the behaviour of the matching CP-net is similar to the behaviour
of the underlying CP-net. The formal definition of annotated CP-nets follows
in Sect. 10.5.

10.3.1 Annotation Layer

To get an intuitive understanding of how annotations can be used, let us see how
the cycle counters that were discussed in Sect. 10.2 can be added as annotations.
Recall that Fig. 10.2 shows how the CP-net from Fig. 10.1 can be modified to
include the cycle counters as part of the token colours.

Figure 10.3 contains an annotated CP-net for the basic CP-net for the re-
source allocation system from Fig. 10.1. In Fig. 10.3 the elements from the
annotation layer are shown in black, whereas the underlying CP-net is shown
in grey. The annotation layer contains auxiliary declarations and auxiliary net
inscriptions, where the auxiliary net inscriptions consist of auxiliary arc expres-
sions, auxiliary colour sets, and auxiliary initialisation expressions.

132 Chapter 10. Annotating Coloured Petri Nets

AU I

3‘q 0

BU
I

2‘p 0

CU I

DU I

EU I

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

S
E

3‘e

T

E

2‘e

color I = int;
var i : I;

x i

x i

x i

x i

x i

x i

x i

x i

x i

if x=q
then 1‘q
else empty
i+1

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘p
else empty
i+1

Figure 10.3: Annotated CP-net for the resource allocation system.

The colour set I is declared in the first line of the auxiliary declarations.
Places A, B, C, D and E have auxiliary colour set I which means that tokens on
these places will be annotated tokens that carry integer annotations. A token
that carries the annotation n has completed the cycle n times. Places with
auxiliary colour sets are called annotated places. The token value for a token
on an annotated place has both a token colour and an annotation. Not all
places will contain annotated tokens, therefore, some places will not have an
associated auxiliary colour set.

All of the annotated places that have an initialisation expression in the
underlying CP-net must also have an auxiliary initialisation expression in the
annotation layer. Places A and B have the auxiliary initial expression 0. This
expression means that all tokens on places A and B will have annotation 0 in
the initial marking.

All arcs that are connected to annotated places have an auxiliary arc ex-
pression. In Fig. 10.3, most auxiliary arc expressions consist of the variable
i which has type I. Variable i is declared in the annotation layer, therefore,
it may only be used within the annotation layer, i.e. it cannot be used in the
underlying CP-net. In contrast, variables, colour sets, functions, etc. that are
declared in the underlying CP-net may be used both in the underlying CP-net
and in the annotation layer. However, certain conditions must be fulfilled in
order to ensure that using the same elements in both the annotation layer and
the underlying CP-net does not affect the behaviour of the underlying CP-net.
These conditions will be discussed further in Sect. 10.5.2.

Let us consider the intuition behind the auxiliary arc expressions on the arcs
surrounding transition T5. In the underlying CP-net, T5 can occur whenever

10.3. Informal Introduction to Annotated CP-nets 133

there is one token on place E, and this must still be true in an annotated version
of the CP-net. Informally, the interpretation of the two types of arc expressions
surrounding T5 is that when transition T5 occurs with, e.g. binding <x=q,
i=5>, one token with colour q and annotation 5 will be removed from place E.
One token with colour q and annotation 5+1=6 will be added to place A, and
the empty multi-set of annotated tokens will be added to place B. On the other
hand, if T5 occurs with binding <x=p, i=3>, then one token with colour p and
annotation 3+1=4 will be added to place B, and no tokens will be added to place
A. In both bindings, multi-sets of (non-annotated) e tokens are also added to
places T and S, which are non-annotated places.

The intuition behind the auxiliary inscriptions that have been discussed
until now is fairly straightforward. There are, however, some restrictions on
the kinds of auxiliary arc expressions that are allowed in order to ensure that
annotations have only limited influence on the behaviour of the underlying
CP-net. All of the auxiliary arc expressions on arcs from annotated places to
transitions consist only of variables, and this is not accidental. For example,
the auxiliary arc expression i on the arc from C to T3 must not be replaced
with, e.g. the constant 4, which would require that when removing a token from
C the annotation must be 4. Allowing such an auxiliary arc expression would
mean that the behaviour of the matching CP-net and the underlying CP-net
would no longer be similar. Sections 10.5.2 and 10.5.3 discuss the restrictions
about which kinds of auxiliary arc expressions are allowed.

10.3.2 Translating an Annotated CP-net to a Matching CP-net

Rather than defining the semantics for annotated CP-nets, we will define the
semantics of annotations by describing how an annotated CP-net can be trans-
lated to an ordinary CP-net, which is referred to as the matching CP-net. The
discussion above should have provided a sense of what kinds of annotations the
tokens should have and of how an annotated CP-net for the resource allocation
system should behave. The annotation layer (referred to as A and shown in
black in Fig. 10.3) and the underlying CP-net (referred to as CPN and shown
in Fig. 10.1) constitute an annotated CP-net for the resource allocation system.
In this section, we will show how the various auxiliary inscriptions fromA and
the inscriptions from CPN are translated to inscriptions in the matching CP-net
(referred to as CPN∗ and shown in Fig. 10.4). The general rules for translat-
ing an arbitrary annotation layer and its underlying CP-net are presented in
Sect. 10.5.3. In the following, we shall say that a place/arc is annotated/non-
annotated in a matching CP-net (like Fig. 10.4) if it is annotated/non-annotated
in the corresponding annotated CP-net (like Fig. 10.3).

The rules are simple for translating an annotated CP-net to a matching
CP-net. CPN and CPN∗ have the same net structure. The colour sets for non-
annotated places in CPN∗ are unchanged with respect to CPN; in the example,
the colour sets for places R, S and T are unchanged. The colour sets for the
annotated places are now product colour sets which are products of the original
colour sets and the auxiliary colour sets. The colour set for annotated places
A-E in CPN∗ is UxI which is a product of colour set U (the colour set of places

134 Chapter 10. Annotating Coloured Petri Nets

AUxI
Annotate (3‘q) 0

BUxI
Annotate (2‘p) 0

CUxI

DUxI

EUxI

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

color I = int;
var i : I;
color UxI = product U * I;

S
E

3‘e

T

E

2‘e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

Annotate
(if x=q
then 1‘q
else empty)
(i+1)

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

Annotate
(if x=p
then 1‘p
else empty)
(i+1)

Figure 10.4: Matching CP-net for the resource allocation system.

A-E in CPN) and auxiliary colour set I (the auxiliary colour sets fromA). The
tokens on an annotated place p in CPN∗ are said to have an annotated colour
(c,a), where c is a colour (from the colour set of p in CPN), and a is an
annotation (from the auxiliary colour set of p inA). The set of colour sets for
CPN∗ is the union of the set of colour sets from CPN, the set of auxiliary colour
sets fromA, and the set of product colour sets for annotated places.

In the previous section, the intuitive meaning of several auxiliary expressions
was that a given annotation should be added to all elements in a multi-set
of colours. This is the meaning of, for example, all of the auxiliary initial
expressions. Let us define a function Annotate that, given an arbitrary multi-
set and an arbitrary annotation, will annotate all of the elements in the multi-set
with the annotation. This function is used in several net inscriptions in CPN∗.

Let us consider how the initialisation expressions are created for CPN∗. The
initialisation expressions for non-annotated places (R, S and T) are unchanged,
and evaluating these expressions yields non-annotated multi-sets (1 è,3 è, and
2`e respectively). The initial markings for annotated places in CPN∗ must
be multi-sets of annotated colours. Place A has the initialisation expression
Annotate (3`q) 0, which evaluates to 3̀ (q,0) tokens which correspond to the
desired multi-set of three annotated tokens, each with colour q and annotation
0. Note, in particular, that if the annotations are removed from the multi-set
3 (̀q,0), then we obtain the multi-set 3 q̀ which is exactly the multi-set that is
obtained when evaluating the initialisation expression for A in the underlying
CP-net. Similarly, place B has an initial marking of two tokens, each with colour

10.4. Using Annotation Layers in Practice 135

p and annotation 0. The initial markings of the remaining places are empty.
The arc expressions of CPN and the auxiliary arc expressions ofA are com-

bined in a similar manner to create arc expressions for CPN∗. If the type of
an arc expression in CPN, expr, is a single colour, then the arc expression in
CPN∗ is the pair (expr, aexpr), where aexpr is the auxiliary arc expression
inA. The arc expressions for most annotated arcs in Fig. 10.4 have this form.
When the type of an arc expression is a multi-set of colours, then the arc ex-
pression for CPN∗ is Annotate expr aexpr. The arc expressions for the arcs
from transition T5 to places A and B were created in this manner. The next
section discusses how the behaviour of the matching CP-net is similar to the
behaviour of the underlying CP-net.

10.3.3 Behaviour of Matching CP-nets

In a matching CP-net some places contain annotated tokens, other places con-
tain non-annotated tokens, and occurrences of binding elements can remove
and add both regular, non-annotated tokens and annotated tokens. Figure 10.5
shows a marking of the matching CP-net, CPN∗. The marking of place A con-
tains two tokens – one with colour (q,4), the other with colour (q,5). This
corresponds to a marking in the annotated CP-net of Fig. 10.3 where A has
one token with colour q and annotation 4 and another token with colour q
and annotation 5. Similarly, place B contains three tokens with colours (p,5),
(p,6) and (q,1). This corresponds to a marking in the annotated net where
B has one token with colour p and annotation 5, another token with colour p
and annotation 6, and a third token with colour q and annotation 1. Finally,
places S and T each contain two non-annotated tokens with colour e.

We say that the behaviour of the matching CP-net matches the behaviour
of its underlying CP-net. Informally this means that every occurrence sequence
in the matching CP-net is also an occurrence sequence in the underlying CP-
net if annotations are ignored. Furthermore, for every occurrence sequence in
the underlying CP-net, it is possible to find at least one matching occurrence
sequence in the matching CP-net which is identical to the occurrence sequence
from the underlying CP-net when annotations are ignored. Consider, for ex-
ample, a marking, M, of the basic CP-net from Fig. 10.1, in which there are
two e tokens on places S and T, two q tokens on place A, and two p tokens
and one q token on place B. The binding element (T2, 〈x=p〉) is enabled in M.
The marking of the matching CP-net in Fig. 10.5 is the same as marking M
if annotations are ignored. The occurrence of either (T2, 〈x=p, i=5〉) or (T2,
〈x=p, i=6〉) in the matching CP-net will result in markings that are equal M′

where M[(T2, 〈x=p〉)〉M′ when annotations are ignored. A formal definition of
matching behaviour can be found in Sect. 10.5.4.

10.4 Using Annotation Layers in Practice

This section discusses how to use several annotation layers for the basic CP-
net of the resource allocation system presented in Fig. 10.1 in Sect. 10.2. The
purpose of this section is to illustrate that multiple annotation layers can be

136 Chapter 10. Annotating Coloured Petri Nets

AUxI
Annotate (3‘q) 0 2 1‘(q,4)+1‘(q,5)

BUxI
Annotate (2‘p) 0 3

1‘(p,5)+1‘(p,6)+
1‘(q,1)

CUxI

DUxI

EUxI

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

color I = int;
var i : I;
color UxI = product U * I;

S
E

3‘e

2 2‘e

T

E

2‘e

2 2‘e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

Annotate
(if x=q
then 1‘q
else empty)
(i+1)

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

Annotate
(if x=p
then 1‘p
else empty)
(i+1)

Figure 10.5: Marking of the matching CP-net for the resource allocation system.

added on top of each other without changing the original model, and to illustrate
some of the uses of annotations. We will discuss an example of how annotations
can be used for visualising simulation results. In particular we will consider how
message sequence charts (MSCs) can be created using annotations.

A MSC can be used, e.g. to visualise the use of resources. Figure 10.6
depicts a MSC for the basic CP-net of the resource allocation system. The
MSC contains two vertical lines which represent the activities of allocating and
deallocating resources in the resource allocation system. An arrow represents
the dependency between the allocation and deallocation of an S or an R resource.

The MSC in Fig. 10.6 visualises a sequence of allocations of resources by
the p and q processes. The arrows for p processes are dashed. The MSC shows
that first the q process makes a full cycle where it first allocates an R and
an S resource when T1 occurs, and an additional S resource when T2 occurs.
The R resource is deallocated when T3 occurs, and the two S resources are
deallocated when T5 occurs. The last five arrows show a situation where two p
processes interleave with a q process. First the q process allocates an R and an
S resource, but then two cycles of p processes appear (the two dashed arrows)
before the q process continues the cycle. This interleaving is explicitly visualised
by the arrows started by T1 and ended by T3 and T5, and crossing the arrows
representing the two p processes.

A MSC can be generated automatically from a simulation of a CP-net.
However, first it is necessary to specify which occurrences of binding elements
in the CP-net should generate which arrows in the MSC. Normally, an arrow in

10.4. Using Annotation Layers in Practice 137

Allocate
Resource

T1
T2

T1

T2

T2

T2

Deallocate
 Resource

T3

T5

T5

T5

T3
T5

R(q)
S(q)

S(q)

2*S(p)

2*S(p) R(q)S(q)

S(q)

Figure 10.6: Message sequence chart for the resource allocation system.

a MSC is created when a single transition occurs. However, arrows as illustrated
above correspond to two events: one for creating the start-point and one for
creating the end-point of an arrow. Such arrows are defined by means of these
two points. First the start-point of the arrow is given. Then some other events
may appear, and then the event leading to ending the arrow is given. For CP-
nets this means that the occurrence of one transition may define the start-point
of an arrow while the occurrence of another transition may define the end-point
of an arrow. We call such arrows two-event arrows.

When using two-event arrows, it is often necessary to annotate a token to
hold information of which arrows have been started but not ended yet. In other
words, a token must hold the arrow-id of the start-point of the arrow when
the first transition occurs and keep it until a transition supposed to end the
arrow consumes the token. To avoid modifying the colours of the the CP-net,
annotations can be used. Figure 10.7 depicts how the basic CP-net for the
resource allocation system can be annotated to generate the MSC in Fig. 10.6.
The contents of the annotation layer are shown in black, while the underlying
CP-net is shown in grey. The annotation colour MSC is an integer which has the
purpose of holding the start-point id of an arrow, while the annotation colour
MSCs is a list of MSC ids. We do not give the details of the functions msc start
and msc stop here, however, they are used to set the start-point and end-point
of each arrow. In addition each of the functions return a list of arrow-ids of
the non-stopped arrows. This list becomes an annotation for the underlying
colour. As this example illustrates, we allow auxiliary arc expressions to have
side effects. However, the side effects may not affect the behaviour of the
underlying CP-net.

The annotation layer in Fig. 10.3 from Sect. 10.3.1 adds a cycle counter to
the CP-net. The value of the cycle counter could be included on the arrows
in Fig. 10.6 in addition to the type of resource and process. To obtain this,
an annotation layer that resembles the MSC Annotation Layer in Fig. 10.7 can

138 Chapter 10. Annotating Coloured Petri Nets

AU
3‘q

BU
2‘p

CU

DU

EU

T1

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

S
E

3‘e

T

E

2‘e

[]

[]

MSCs

MSCs

MSCs

MSCs

MSCs

msc_start([(R,x,1),(S,x,1)], m)

msc_stop([(S,x,5)],m)

msc_stop([(R,x,3)],m)

msc_start([(S,x,2)], m)

m

m

m

m

mcolor MSC = Int;
color MSCs = list MSC;
var m: MSCs;

x

x

x

x

x

x

x

x

x

if x=q
then 1‘q
else empty

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘p
else empty

Figure 10.7: Resource allocation system with MSC annotation layer.

be added on top of the cycle counter annotation layer in Fig. 10.3. We will
refer to this new annotation layer as Cycle MSC Annotation Layer. In the Cycle

MSC Annotation Layer it is possible to refer to the annotations of the Cycle Counter

Annotation Layer from the MSC Annotation Layer.
Figure 10.8 depicts some of the possible ways to add annotation layers on

top of each other. Notice that an alternative to adding the Cycle MSC Annotation

Layer on top of the Cycle Counter Annotation Layer, is to add the original MSC

Annotation Layer on top of the Cycle Counter Annotation Layer. This makes sense
even though the annotations in Cycle Counter Annotation Layer are not used in the
MSC Annotation Layer.

Basic CP-net

MSC
Annotation Layer

Cycle Counter
Annotation Layer

Cycle MSC
Annotation Layer

Figure 10.8: Structure of annotation layers for a basic CP-net.

If we had not been able to use an annotation layer for creating the MSC, we
would have had to create a new CP-net by adding and modifying the colours
of the basic CP-net. For example, the colour sets of the places A, B,C, D, and
E should also hold the MSCs colour set. In addition, so-called code-segments

10.5. Formal Definition of Annotated CP-nets 139

possibly had to be added to execute the the msc start and msc stop function
calls, and the arc-expressions had to be modified to include the MSC variable
m. In other words, we had to modify the CP-net model itself to generate the
MSCs. If the information for updating MSCs is included directly in the CP-
net, then it would be difficult to disable the updating of the MSCs, and there
is no guarantee that the modifications would not affect the behaviour of the
underlying CP-net in unexpected ways.

10.5 Formal Definition of Annotated CP-nets

In this section, we will formally define annotated CP-nets. We will start by
introducing some new terminology. We will then define annotation layers, and
we will discuss how an annotation layer and a CP-net can be translated into
a matching CP-net. We want to define the annotation rules so that they are
straightforward to use and understand. To achieve this it turns out to be con-
venient only to allow annotation of those input arcs of transitions where the arc
expressions are uniform with multiplicity one (i.e. always evaluate to a single
token colour). For output arcs there are no similar restrictions. If an input arc
expression is uniform with multiplicity larger than one, it is usually easy to split
the arc into a number of arcs that each have multiplicity one. The requirement
can be formally expressed as:

Requirement 10.1: Let CPN=(Σ, P, T, A, N, C, G, E, I) be a CP-net as defined
in Def. 2.5 in [44]. Let PA⊆P be the set of annotated places. The following must
hold in order to be able to annotate CPN:

∀ p∈PA: ∀ a∈A such that N(a)=(p,t), E(a) must be uniform with multi-
plicity 1.

This requirement may seem very restrictive. However, in our experience,
the kinds of arc inscriptions that are currently not possible to annotate are
rarely used in practice. Therefore, the definitions presented here should prove
to be useful for annotating many of the CP-nets that are used in practice.

Section 10.5.1 introduces terminology regarding multi-sets of annotated
colours. Section 10.5.2 defines annotation layers by describing the auxiliary net
inscriptions that are allowed in the annotation layer. Section 10.5.3 presents
rules for translating a CP-net and an annotation layer into the matching CP-
net, and it discusses the relationship between markings, binding elements, and
steps in a matching CP-net and its underlying CP-net. Section 10.5.4 defines
matching behaviour. Finally, Sect. 10.5.5 discusses the use of multiple annota-
tion layers.

140 Chapter 10. Annotating Coloured Petri Nets

10.5.1 Multi-sets of Annotated Colours

In the previous section we used expressions such as: 1̀ (p,5)+1̀ (p,6)+1̀ (q,1)
to denote the marking of annotated places2 in a matching CP-net. This indi-
cates that the marking consists of three tokens with colours (p,5),(p,6) and
(q,1). However, within the context of annotated CP-nets, this marking can
also be interpreted to represent a multi-set of annotated tokens: two tokens
with colour p and annotations 5 and 6, and one token with colour q and anno-
tation 1. Multi-sets of annotated elements are ordinary multi-sets3 of so-called
annotated elements.

Definition 10.1 For a non-empty set of elements, S, and a non-empty set of
annotations, AN, an annotated element (from S) is a pair (s,a), where s∈S
and a∈AN. π((s,a))=s is the projection of the annotated element (s,a) onto
the non-annotated element s.

A multi-set of annotated elements over S×AN is a multi-set over S×AN.

If am is a multi-set of annotated elements (of S), then am determines an ordi-
nary (non-annotated) multi-set amπ over S, where amπ(s) = (

∑
a∈AN am(s, a))̀ s.

π(am) is the projection of am onto the non-annotated multi-set determined by am.

If am is multi-set over S×AN, m is a multi-set over S, and π(am)=m, then am is
said to cover m, and we say that m is covered by am.

In Sect. 10.3.2 we informally defined the function Annotate that will add
a given annotation to all elements in a given multi-set. Let us now formally
define Annotate.

Definition 10.2 Given an annotation a∈AN and a multi-set m=
∑

s∈S m(s)`s
over a set S, the function Annotate is defined to be:

Annotate m a =
∑
s∈S

m(s)`(s, a)

which is a multi-set of annotated elements of S, i.e. a multi-set with type
(S×AN)MS.

As a consequence of Defs. 10.1 and 10.2, π(Annotate m a) = m, for all multi-
sets m and all annotations a.

10.5.2 Annotation Layer

We are now ready to define an annotation layer. An annotation layer is used
solely to determine how to add annotations to tokens for a subset of the places
in a CP-net. An annotation layer consists of elements that are similar to their

2The first paragraph in Sect. 10.3.2 explains what we mean when we refer to an annotated
place in a matching CP-net.

3Multi-sets as defined in Def. 2.1 in [44]

10.5. Formal Definition of Annotated CP-nets 141

counterparts in CP-nets. An annotation layer contains auxiliary net inscrip-
tions, and each auxiliary net inscription is associated with an element of the net
structure of the underlying CP-net. When translating an annotation layer and
its underlying CP-net to the matching CP-net, these auxiliary net expressions
will be combined with their counterparts from the underlying CP-net to create
colour sets, initialisation expressions and arc expressions for the matching CP-
net. There are, however, additional requirements for each of the concepts. An
explanation of each item in the definition is given immediately below the def-
inition. A similar remark applies for many of the other definitions in this paper.

Definition 10.3 Let CPN=(Σ, P, T, A, N, C, G, E, I) be a CP-net. An
annotation layer for CPN is a tupleA=(ΣA, PA, AA, CA, EA, IA) where

i. ΣA is a finite set of non-empty sets, called auxiliary colour sets, where
Σ⊆ΣA.

ii. PA⊆P is a finite set of annotated places.

iii. AA⊆A is the finite set of annotated arcs, where AA= A(PA).

iv. CA is an auxiliary colour function. It is a function from PA into ΣA.

v. EA is an auxiliary arc expression function. It is defined from AA into
expressions such that:

∀ a∈AA: Type(EA(a))=CA(p(a)) ∧ Type(Var(EA(a)))⊆ΣA

vi. IA is an auxiliary initialisation function. It is a function from PA into
closed expressions such that:

∀ p∈PA: Type(IA(p))=CA(p).

i. The set of auxiliary colour sets is the set of colour sets that determine the
types, operations and functions that can be used in the auxiliary net inscrip-
tions. The auxiliary colour sets determine the type of annotations that the
tokens on the annotated places carry. All colour sets from the underlying CP-
net can be used as auxiliary colour sets. Additional auxiliary colour sets may
be declared within an annotation layer.

ii. The set of annotated places are the only places that are allowed to contain
annotated tokens.

iii. The annotated arcs are exactly the surrounding arcs for the places in PA.

iv. The auxiliary colour function, CA, is a function from PA into ΣA, and is
defined analogously to the colour function for CP-nets. Thus, for all p∈PA,
CA(p) is the auxiliary colour set of p.

v. Auxiliary arc expressions are only allowed to evaluate to a single annotation
of the correct type. If the arc expression of an arc is missing in CPN, then we
require that its auxiliary arc expression is also missing inA.

142 Chapter 10. Annotating Coloured Petri Nets

vi. The auxiliary initialisation function maps each annotated place, p, into a
closed expression which must be of type CA(p), i.e. a single annotation from
CA(p). If the initial expression of place p is missing in CPN, then we require
that its auxiliary initial expression is also missing inA.

10.5.3 Translating Annotated CP-nets to Matching CP-nets

We will now define how to translate an annotated CP-net, (CPN,A), to a new
CP-net, CPN∗, which is called a matching CP-net. CPN∗ and CPN have the
same net structure. Net inscriptions for non-annotated places, non-annotated
arcs, and transitions in CPN∗ are unchanged with respect to CPN. In contrast,
net inscriptions for annotated places and annotated arcs in CPN∗ are obtained
by combining net inscriptions from CPN with their counterpart auxiliary net
inscriptions inA. A matching CP-net is defined below.

Definition 10.4 Let (CPN, A) be an annotated CP-net, where CPN=(Σ, P,
T, A, N, C, G, E, I) and A=(ΣA, PA, AA, CA, EA, IA) is a annotation layer.
We define the matching CP-net to be CPN∗=(Σ∗, P∗, T∗, A∗, N∗, C∗, G∗, E∗,
I∗) where

i. Σ∗=ΣA∪{C(p)×CA(p) | p∈PA}.
ii. P∗=P

iii. T∗=T

iv. A∗=A

v. N∗=N

vi. C∗(p) =
{

C(p) if p/∈PA
C(p)×CA(p) if p∈PA

vii. G∗=G

viii. E∗(a) =
{

E(a) if a/∈AA
Annotate E(a) EA(a) if a∈AA

ix. I∗(p) =
{

I(p) if p/∈PA
Annotate I(p) IA(p) if p∈PA

i. {C(p)×CA(p) | p∈PA} is the set of product colour sets for the annotated
places in CPN∗.

ii. + iii. + iv. + v. The places, transitions, arcs, and node function in
CPN∗ are unchanged with respect to CPN.

vi. Defining the colour function C∗ is straightforward. The colour set for a
non-annotated place in CPN∗ is the same as its colour set in CPN. The colour
set for an annotated place p in CPN∗ is C(p)×CA(p).

vii. The guard function in CPN∗ is unchanged with respect to CPN.

viii. The arc expression for a non-annotated arc a in CPN∗ is the same as the
arc expression for a in CPN. If the arc expression for a is missing in CPN, then
its arc expression will also be missing in CPN∗. This is shorthand for empty, as

10.5. Formal Definition of Annotated CP-nets 143

usual for CP-nets. The arc expression for an annotated arc a in CPN∗ is derived
from the arc expression for a in CPN and the auxiliary arc expression for a in
A. The expression Annotate (E(a)) (EA(a)) will yield a multi-set with type
(C(p(a))×Type(EA(p(a))))MS which is exactly (C(p(a))×CA(p(a)))MS , as re-
quired. If an arc expression (for an annotated arc) evaluates to a single colour in
CPN, then we allow the arc expression for CPN∗ to be the pair (E(a), EA(a))
where the first element is the arc expression from CPN, and the second ele-
ment is the auxiliary arc expression fromA. This is shorthand for the multi-set
1`(E(a), EA(a)).

ix. If p is not an annotated place, then the initial expression of p in CPN∗ is
unchanged with respect to CPN. If the initial expression of a place is missing
in CPN, then its initial expression will also be missing in CPN∗. A miss-
ing initial expression is shorthand for the empty. For an annotated place
p, the expression Annotate (I(a)) (IA(a)) will yield a multi-set with type
(C(p(a))×Type(IA(p(a))))MS which is exactly (C(p(a))×CA(p(a)))MS , as re-
quired. I∗(p) is a closed expression for all p, since I(p) is a closed expression for
all p, and IA(p) is closed for all p∈PA. When the type of the initial expression
for an annotated place in the underlying CP-net is a single colour, then we
allow the the initial expression in CPN∗ to be the pair (I(p),IA(p)) that is
uniquely determined by the initial expression of p in CPN and the auxiliary
initial expression of p inA. This is shorthand for 1`(I(p),IA(p)).

Covering Markings, Bindings and Steps

We will now define what it means for markings, bindings and steps of a match-
ing CP-net to cover the markings, bindings and steps of its underlying CP-net.

Definition 10.5 Let (CPN,A) be an annotated CP-net with matching CP-net
CPN∗. We then define three projection functions π that map a marking M∗

of CPN∗ into a marking M of CPN, a binding b∗ of a transition t in CPN∗

into a binding b of t in CPN, and a step Y∗ of CPN∗ into a step Y of CPN,
respectively.

i. ∀p∈P∗: (π(M∗))(p) =
{

M∗(p) if p/∈PA
π(M∗(p)) if p∈PA

ii. ∀ v∈Var(t): (π(b∗))(v)=b∗(v), where Var(t) are the variables of t in CPN.

iii. (π(Y∗)) =
∑

(t,b∗)∈Y ∗ (Y∗(t,b∗))`(t,π(b∗))

If π(M∗)=M, π(b∗)=b, and π(Y∗)=Y, then we say that M∗, b∗, and Y∗ cover
M, b, and Y, respectively. We also say that M, b, and Y are covered by M∗, b∗,
and Y∗, respectively.

144 Chapter 10. Annotating Coloured Petri Nets

i. Given a marking of a matching CP-net, π will remove the annotations from
the tokens on annotated places, and it will leave the markings of non-annotated
places unchanged. A marking of a matching CP-net covers a marking of its un-
derlying CP-net, if the two markings are equal when annotations in the first
marking are ignored.

ii. Given a binding of a transition in CPN∗, π removes the bindings of the
variables in Var∗(t)\Var(t), i.e. π removes the bindings of the variables of t
that are not found in CPN. A binding of a transition in CPN∗ covers a binding
of the corresponding transition in CPN when the variables that are found in
both CP-nets are bound to the same value.

iii. For each binding element (t,b∗) in Y∗, π removes the bindings of the
variables of t that are not found in CPN.

We define similar functions that map the set of markings (M∗), the set of
steps (Y∗), the set of token elements (TE∗), and the set of binding elements
(BE∗) of CPN∗ into the corresponding sets in CPN:

π(M∗)={π(M∗): M∗∈M
∗}

π(TE∗)={(p, c∗) | p/∈PA and c∗∈C∗(p)} ∪ {(p, π(c∗)) | p∈PA and c∗∈C∗(p)}
π(Y∗)={π(Y∗): Y∗∈Y

∗}

π(BE∗) = {(t,π(b∗))| (t,b∗)∈BE∗}

Sound Annotation Layers

Definition 10.3 defines the syntax for elements in annotation layers, but it does
not guarantee that annotations do not affect the behaviour of the underlying
CP-net. Instead of specifying which kinds of auxiliary arc inscriptions are al-
lowed, we will define a more general property that has to be satisfied.

Definition 10.6 Let (CPN,A) be an annotated CP-net with matching CP-net
CPN∗. A is a sound annotation layer if the following property is satisfied:

∀M∈M, ∀ Y∈Y, ∀M∗∈M
∗: M[Y〉 ∧ π(M∗)=M ⇒ ∃ Y∗∈Y

∗: π(Y∗)=Y ∧ M∗[Y∗〉

where M and Y are the set of markings and the set of steps, respectively, for
CPN, and M

∗ and Y
∗ are the analogous sets for CPN∗.

Assume that the step Y is enabled in the marking M in the underlying CP-
net. Let M∗ be a marking of CPN∗ that covers M. Definition 10.6 states that
it must be possible to find a step Y∗ that covers Y, and Y∗ must be enabled in
M∗. The soundness of an annotation layer is essential for showing that for every
occurrence sequence in the underlying CP-net, there is at least one matching
occurrence sequence in the matching CP-net which is identical to the occurrence
sequence from the underlying CP-net when annotations are ignored.

10.5. Formal Definition of Annotated CP-nets 145

The auxiliary arc expressions on input arcs to a transition will be used, in
part, to determine if the transition is enabled in a given state of the matching
CP-net. By limiting the kinds of auxiliary arc expressions that are allowed on
input arcs to transitions, it is possible to guarantee that annotations cannot
restrict the enabling of a transition in the matching CP-net with respect to
what is allowed in the underlying CP-net. Exactly which kinds of auxiliary
arc expressions should be allowed may be decided by the implementors of tools
supporting CP-nets. It is also the responsibility of tool implementors to prove
that their allowable set of auxiliary arc expressions fulfil Def. 10.6. An example
of an allowable auxiliary arc expression for arc a is a single variable v. However,
v must also fulfil the following: v may not found in any arc expressions for
the arcs surrounding t(a), and v may not be found in any other auxiliary arc
expression for input arcs to t(a).

10.5.4 Matching Behaviour

In the previous sections we have stated that the behaviour of a matching CP-
net matches the behaviour of its underlying CP-net. Informally this means that
every occurrence sequence in a matching CP-net corresponds to an occurrence
sequence in the underlying CP-net, and for every occurrence sequence in the
underlying CP-net, it is possible to find at least one corresponding occurrence
sequence in the matching CP-net. If a matching CP-net is derived from a CP-
net and a sound annotation layer, then the following theorem shows how the
behaviour of the matching CP-net matches the behaviour of its underlying CP-
net.

Theorem 10.1 Let (CPN,A) be an annotated CP-net with a sound annotation
layer. Let CPN∗ be the matching CP-net derived from (CPN,A). Let M0, M,
and Y denote the initial marking, the set of all markings, and the set of all
steps, respectively, for CPN. Similarly, let M∗

0, M
∗, and Y

∗ denote the same
concepts for CPN∗. Then we have the following properties:

i. π(M∗)=M ∧ π(M∗
0)=M0.

ii. π(Y∗)=Y.

iii. ∀ M∗
1, M∗

2∈M
∗, ∀ Y∗∈Y

∗: M∗
1[Y

∗〉M∗
2 ⇒ π(M∗

1)[π(Y∗)〉π(M∗
2)

iv. ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M

∗
2∈M

∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y

∗〉M∗
2 ∧ π(M∗

2)=M2

i. The markings of a matching CP-net cover the markings of its underlying
CP-net. The markings of the underlying CP-net are covered by the markings
of the matching CP-net. The initial marking of a matching CP-net covers the
initial marking of its underlying CP-net.

ii. The steps of a matching CP-net cover the steps of its underlying CP-net.
The steps of the underlying CP-net are covered by the steps of the matching
CP-net.

146 Chapter 10. Annotating Coloured Petri Nets

iii. An occurrence sequence of length one in the matching CP-net covers an
occurrence sequence of length one in its underlying CP-net. In other words, if
marking M∗

2 is reached by the occurrence of Y∗ in marking M∗
1 in CPN∗, then

π(M∗
2) will be reached by the occurrence of π(Y∗) in π(M∗

1) in CPN.

iv. An occurrence sequence of length one in the underlying CP-net can be
covered by an occurrence sequence of length one in the matching CP-net. If M2

is reached by the occurrence of Y in M1 in CPN, and if marking M∗
1 in CPN∗

covers M1, then it is always possible to find a step Y∗ in CPN∗, such that Y∗

covers Y and is enabled in M∗
1. If the occurrence of Y

∗ in M∗
1 yields the marking

M∗
2, then M∗

2will cover M2.

The proof for Theorem 10.1 can be found in Appendix 10.A.

10.5.5 Multiple Annotation Layers

The previous sections have discussed how to create a single annotation layer for
a CP-net. The purpose of introducing an annotation layer is to make it possible
to separate annotations from the CP-net, and to annotate a CP-net for several
different purposes like, e.g. performance analysis and MSCs. However, if only
one annotation layer exists, then it is not possible to easily disable, e.g. only
the annotations for performance analysis, while still using the annotations for
MSCs. The reason is, that all annotations have to be written in the one and only
annotation layer. This motivates the need for multiple layers of annotations.
When multiple annotation layers are allowed, then independent annotations can
be written in separate annotation layers, and thereby making it easy to enable
and disable each of the independent annotation layers.

Definition 10.7 defines multiple annotation layers. Multiple annotation lay-
ers are defined using the fact that a single annotation layer,A1, and a CP-net,
CPN, is translated to another CP-net, CPN∗

1. Seen from another annotation
layer, A2, CPN∗

1 is essentially the same as CPN aside from the added anno-
tations, and can therefore be annotated with an annotation layer A2. The
consequence of this definition is thatA2 can refer to annotations inA1. In gen-
eral, annotations in annotation layerAi can refer to annotations in annotation
layerAj when j ≤ i.

Definition 10.7 Let CPN be a CP-net and let A1, A2, ..., An be annotation
layers for CPN. Let τ be the translation from an annotation layer A and a
corresponding CP-net CPN to CPN∗, as defined in Sect. 10.5.3. Then CPN∗

with multiple annotation layers is defined by:

CPN∗ = τ(. . . τ(τ(CPN,A1),A2),An)

10.6. Conclusion 147

10.6 Conclusion

In this paper we have discussed annotations for CP-nets where annotations are
used to add auxiliary information to tokens. Auxiliary information is needed to
support different uses of a single CP-net, such as for performance analysis and
visualisation, thus the information should not have influence on the dynamic
behaviour of a CPN model. One of the advantages of using annotations instead
of manually extending the colour sets in a CPN model is that annotations are
specified separately from the colour sets and arc inscriptions. That means that
it is easy to enable and disable annotations from being part of the simulation.
This is a great advantage when using a model for several purposes such as
functional analysis, performance analysis, and visualisation. In addition, it
is a great advantage that the behaviour of the matching CP-net matches the
behaviour of the underlying CP-net in a very specific and predictable way.

Related work is considered in, e.g. Lakos’ work on abstraction [50], where
behaviour-respecting abstractions of CP-nets have been investigated, and a so-
called colour refinement is proposed. This colour refinement is used to specify
more detailed behaviour in sub-modules by extending colour sets to larger do-
mains. The refined colours are only visible in the sub-modules, and the refined
colours will typically contain information that is necessary for modelling the
behaviour of the system in question. This colour refinement somewhat corre-
sponds to our way of extending colour sets by adding annotations to colours.
We are not aware of any other work that addresses the problem of introducing
auxiliary information into a CP-net (or any other type of simulation model)
while at the same time preserving the behaviour of the CP-net. Nor do we
know of any other method that can be used to automatically enable or dis-
able different kinds of instrumentation when analysing different aspects of one
particular model.

ExSpect [1] is another tool for CP-nets. The tool provides libraries of so-
called building blocks that provide support for, e.g., creating message sequence
charts and performance analysis. Each building block is similar to a substitution
transition and its subpage in Design/CPN. In ExSpect all information that is
necessary for updating a MSC or for collecting performance data is included in
token colours. Reading the relevant data from token values and processing it
is also encoded directly into the model via the building blocks. For example,
the building block that can be used to calculate performance measures contains
a place which holds the current result. When a certain transition occurs, a
new value can be read from a binding element, and the result on this place is
updated accordingly. While the building blocks are very easy to use, no attempt
is made to separate auxiliary information from a CP-net, and the behaviour of
the CP-net also reflects behaviour that is probably not found in the system
being modelled.

There are many issues that can be addressed in future work regarding anno-
tations. The techniques that have been presented here have not yet been used in
practice. Clearly, it is important that support for annotations be implemented
in a CPN tool in order to investigate the practicality and usefulness of the pro-
posed method. Future work includes additional research on dealing with arc

148 Chapter 10. Annotating Coloured Petri Nets

inscriptions that do not evaluate to a single colour on input arcs to transitions.
In addition, further work is required to improve our proposal of how to add
annotations to multi-sets of tokens. The definition of annotation layers states
that it is only possible to add one particular annotation to all elements in a
multi-set that is obtained by evaluating either an initial expression or an arc
expression on an output arc from a transition. This is unnecessarily restrictive,
and it should be generalised to make it possible to add different annotations
to different elements in a multi-set. Practical experience with annotations may
also show that the definition of annotation layers should be extended to include
the possibility of defining guards in annotation layers.

In this paper we have only considered how to add annotations to existing
arcs expressions, and thereby only considered how to annotate existing tokens.
However, it might be useful also to be able to add net structure to the anno-
tation layers. As an example, a place could be added only to the annotation
layer with a token to hold a counter with the number of occurrences of a tran-
sition. Allowing additional net structure at the annotation layers would make
it possible to take advantage of the powerfulness of the graphical notation of
CP-nets when encoding the logics of the annotations.

We have only discussed separating the auxiliary annotations and the CP-
net from each other. This could be generalised to also allow splitting a CP-net
into layers where more layers can be combined to specify the full behaviour of a
CP-net. In other words, the specification of the behaviour in a CP-net could be
split in more layers. As an example, reconsider the resource allocation CP-net
in Fig. 10.1 in Sect. 10.2. The loop handling the resource on the place R (R,
T1, B, T2, C, and T3) is to some extent independent from the remaining model
(even though it has impact on the behaviour). This loop could be separated
from the remaining CPN model into a new layer to emphasise the fact that the
loop is an extra requirement that can be added to the system. This facility
could turn out to be very useful when a modeller is simplifying a CP-net to,
e.g. be able to generate a sufficiently small state space to be able to analyse
it. It would be a matter of moving the parts of the net structure that should
not be included when generating the state space to another layer, and then
only conduct the analysis on the remaining parts of the CP-net. This could
be obtained by disabling the layer with the unneeded behaviour, and the state
space could be generated. The advantage is that now a single model exists with
layers specifying different behaviour which can be enabled or disabled – instead
of having several similar models. Finally, such layers can also make it easier to
develop tools where more people can work on a model concurrently, when they
operate on different layers.

Acknowledgements We would like to thank Kurt Jensen who has read sev-
eral drafts of this paper and has provided invaluable comments and feedback.
We would also like to thank Søren Christensen, Louise Elgaard and Thomas
Mailund who have also read and commented on previous drafts of this paper.
Finally, we would also like to thank the anonymous reviewers for their comments
and suggestions.

10.6. Conclusion 149

10.A Proof of Matching Behaviour

Theorem 10.1 (same as in Sect. 10.5.4) Let (CPN,A) be an annotated CP-net
with a sound annotation layer. Let CPN∗ be the matching CP-net derived from
(CPN,A). Let M0, M, and Y denote the initial marking, the set of all markings,
and the set of all steps, respectively, for CPN. Similarly, let M∗

0, M
∗, and Y

∗

denote the same concepts for CPN∗. Then we have the following properties:

i. π(M∗)=M ∧ π(M∗
0)=M0.

ii. π(Y∗)=Y.

iii. ∀ M∗
1, M

∗
2∈M

∗, ∀ Y∗∈Y
∗: M∗

1[Y
∗〉M∗

2 ⇒ π(M∗
1)[π(Y

∗)〉π(M∗
2)

iv. ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M

∗
2∈M

∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y

∗〉M∗
2 ∧ π(M∗

2)=M2

Proof: The proof is a simple consequence of earlier definitions and Jensen’s
definitions for CP-nets [44]. Let TE, (t,b), and BE denote the set of all token
elements, a binding element, and the set of all binding elements, respectively,
for CPN. Similarly, let TE∗, (t,b∗), BE∗ denote the same concepts for CPN∗.

Before showing that the above properties hold, we will show that the following
holds for all annotated arcs:

∀ (t,b∗), ∀ a∈AA∩A(t): π(E∗(a)〈b∗〉)=E(a)〈π(b∗)〉. (†)
Let (t,b∗) and a∈AA∩A(t) be given.

π(E∗(a)〈b∗〉)Def. 10.4.viii
= π((Annotate E(a) EA(a))〈b∗〉)

Defs. 10.1&10.2
= E(a)〈b∗〉

Def. 10.5.ii
= E(a)〈π(b∗)〉

Property i. We will show that M=π(M∗). It is straightforward to show that
π(M∗)=(π(TE∗))MS, and the proof is therefore omitted. From Def. 2.7 in [44]
we have that M=TEMS. Thus it is sufficient to show that TE=π(TE∗). The
definition of π(TE∗) gives us:

π(TE∗)={(p, c∗) | p/∈PA and c∗∈C∗(p)} ∪ {(p, π(c∗)) | p∈PA and c∗∈C∗(p)}

which by the definition of C∗ (Def. 10.4.vi) is equivalent to:
π(TE∗)={(p, c) | p/∈PA and c∈C(p)}

∪ {(p, π(c∗)) | p∈PA and c∗∈C(p)×CA(p)}
which by the definition of the projection of annotated elements (Def. 10.1) is
equivalent to:

π(TE∗)={(p, c) | p/∈PA and c∈C(p)} ∪ {(p, c) | p∈PA and c∈C(p)}
the two sets can be combined and we have:

π(TE∗)={(p, c) | p∈P and c∈C(p)} Def. 2.7in [44]
= TE

To show that π(M∗
0)=M0, we will show that ∀p∈P∗: (π(M∗

0))(p)=M0(p).
Consider non-annotated places:

150 Chapter 10. Annotating Coloured Petri Nets

∀p/∈PA: (π(M∗
0))(p)

Def. 10.5.i
= M∗

0(p) = I∗(p) Def. 10.4.ix
= I(p) = M0(p)

Consider annotated places:

∀p∈PA: (π(M∗
0))(p)

Def. 10.5.i
= π(M∗

0(p))
= π(I∗(p))

Def. 10.4.ix
= π(Annotate I(p) IA(p))

Defs. 10.1&10.2
= I(p)
= M0(p)

Property ii. We must show that Y=π(Y∗). It is straightforward to show that
π(Y∗)= (π(BE∗))MS, therefore the proof is omitted. From Def. 2.7 in [44] we
have that Y=BEMS, therefore it is sufficient to show that BE=π(BE∗), which
we will do by showing: (t,b′)∈π(BE∗)⇔ (t,b′)∈BE.

Let us show ⇒: Let (t, b′)∈π(BE∗) be given. There exists (t,b∗)∈BE∗ such
that (t, π(b∗))=(t, b′) (by definition of π(BE∗)). b∗ is a binding of t in CPN∗,
therefore for all v∈Var∗(t), where Var∗(t) is the set of variables for t in CPN∗,
b∗(v)∈Type(v), and b∗ fulfils the guard of t in CPN∗, i.e. G∗(t)〈b∗〉.

From Def. 10.5.ii we have that for all v∈Var(t), (π(b∗))(v)=b∗(v), and we know
that b∗(v)∈Type(v). Since G∗(t)=G(t) (Def. 10.4.vii) and Var(G(t))⊆Var(t),
we can conclude that G(t)〈π(b∗)〉, i.e. π(b∗) fulfills the guard of t in CPN. From
the definition of a binding (Def. 2.6 in [44]), we have that π(b∗) is a binding for t
in CPN, therefore (t, π(b∗))=(t,b′) is a binding element for CPN, i.e. (t, b′)∈BE.

Let us show ⇐: Let (t, b′)∈BE be given. Using arguments that are similar to
the above it is straightforward to show that b′ fulfills the guard for t in CPN∗,
i.e. G∗(t)〈b′〉. The binding b′ does not bind the variables in Var∗(t)\Var(t).
Define a new function b∗ on Var∗(t):

b∗(v) =
{

b′(v) if v∈Var(t)
an arbitrary value from Type(v) if v∈Var∗(t)\Var(t)

According to Def. 2.6 in [44], b∗ is a binding for t in CPN∗. Therefore, (t, b∗)
is a binding element for CPN∗. By definition of b∗, we have that π(b∗)=b′, and
as a result, (t, b′)∈π(BE∗).

Property iii. We must show that ∀ M∗
1, M

∗
2∈M

∗, ∀ Y∗∈Y
∗: M∗

1[Y
∗〉M∗

2 ⇒
π(M∗

1)[π(Y
∗)〉π(M∗

2)

We will first show that π(M∗
1)[π(Y

∗〉. By the enabling rule (Def. 2.8 in [44]) we
have that:

∀p∈P∗:
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉 ≤ M∗
1(p) (∗)

Consider non-annotated places and non-annotated arcs. Since E∗=E for all
non-annotated arcs (by Def. 10.4.viii), and M∗

1=π(M∗
1) for all non-annotated

places (by Def. 10.5.i), it follows from (∗) that:

10.6. Conclusion 151

∀p/∈PA:
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉 ≤ (π(M∗
1))(p)

which by the fact that π(b∗)=b∗ for all variables in Var(E(a)) (by Def. 10.5.ii)
and the definition of π(Y∗) (Def. 10.5.iii) is equivalent to:

∀p/∈PA:
∑

(t,π(b∗))∈π(Y ∗)

∑
a∈A(p,t)

E(a)〈π(b∗)〉 ≤ (π(M∗
1))(p) (∗∗)

Consider annotated places and annotated arcs. From Def. 10.1 and (∗), it
follows that:

∀p∈PA: π(
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉) ≤ π(M∗
1(p))

which by Defs. 10.1 and 10.5.i is equivalent to:
∀p∈PA:

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

π(E∗(a)〈b∗〉) ≤ (π(M∗
1))(p)

which by (†) and the definitions of π(b∗) and π(Y∗) is equivalent to:
∀p∈PA:

∑
(t,π(b∗))∈π(Y ∗)

∑
a∈A(p,t)

E(a)〈π(b∗)〉 ≤ (π(M∗
1))(p)

which together with (∗∗) and the enabling rule gives us that π(M∗
1)[π(Y

∗)〉.

Next we have to prove that the marking reached when Y∗ occurs in M∗
1 covers

the marking that is reached when π(Y∗) occurs in π(M∗
1), i.e. that π(M∗

1)[π(Y
∗)〉

π(M∗
2). A proof similar to the above can be used to show this, and the proof is

therefore omitted.

Property iv. We must show that ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M

∗
2∈M

∗:
M1[Y〉M2 ∧ π(M∗

1)=M1 ⇒ ∃Y∗∈Y
∗: π(Y∗)=Y ∧ M∗

1[Y
∗〉M∗

2 ∧ π(M∗
2)=M2

Let M1[Y〉M2 in CPN be given. It is straightforward to show that it is always
possible to find M∗

1∈M
∗ such that π(M∗

1)=M1, thus the proof is omitted. Since
CPN∗ is a matching CP-net that is derived from an annotated CP-net with
a sound annotation layer, and π(M∗

1)=M1, Def. 10.6 tells us that there exists
Y∗∈Y

∗ such that π(Y∗)=Y and M∗
1[Y

∗〉.

We have only left to show that the marking reached after Y occurs in M1 is
covered by the marking reached when Y∗ occurs in M∗. Since M1[Y〉M2 in
CPN, the occurrence rule (Def. 2.9 in [44]) gives us that:

∀ p∈P: M2(p) = (M1(p) -
∑

(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉)

+
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉 (�)

Since M∗
1[Y

∗〉 in CPN∗, the occurrence rule gives us that:
∀p∈P∗: M∗

2(p) = (M∗
1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉)

+
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E∗(a)〈b∗〉 (��)

In other words, M∗
1[Y

∗〉M∗
2. We must now show that π(M∗

2)=M2.

152 Chapter 10. Annotating Coloured Petri Nets

We will show that π(M∗
2)=M2 for non-annotated places. We have found M∗

1,
such that π(M∗

1)=M1. We have that M∗
1=π(M∗

1) and M∗
2=π(M∗

2) for non-
annotated places (by Def. 10.5.i). For all non-annotated arcs E∗=E (from
Def. 10.4.viii). It follows from these facts and (��) that:

∀p/∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉)

+
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E(a)〈b∗〉

which by the fact that π(b∗)=b∗ for all variables in Var(E(a)) (by Def. 10.5.ii)
and the fact that π(Y∗)=Y is equivalent to:

∀p/∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉)

+
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉 (� � �)

We will show that π(M∗
2)=M2 for annotated places. From the definition of π for

multi-sets and markings (Defs. 10.1 and 10.5.i) and from (��), it follows that:
∀p∈PA: (π(M∗

2))(p) = ((π(M∗
1))(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

π(E∗(a)〈b∗〉))

+
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

π(E∗(a)〈b∗〉)

which by (†) and the fact that π(M∗
1)=M1 is equivalent to:

∀p∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉)

+
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E(a)〈b∗〉

which by the definitions of π(b∗) and π(Y∗), and the fact that all variables in
E(a) are bound by π(b∗) is equivalent to:

∀p∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉)

+
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉

which together with (�) and (� � �) gives us that π(M∗
2)=M2.

List of Figures

1.1 CPN model of a simple calculator. 4

2.1 An influence net. 10
2.2 CP-net structure for the influence net in Fig. 2.1. 10
2.3 Web page to specify input to a CPN simulator for influence nets. 12
2.4 Graph generated as part of the simulation output. 13

4.1 Different CP-nets modelling a resource allocation system. (a)
The basic CP-net. (b) The basic CP-net extended with a process
counter. 30

4.2 Resource allocation system: (a) An annotated CP-net with a
cycle counter in an annotation layer. (b) A matching CP-net
generated from the annotated CP-net in (a). 32

6.1 Original approach for creating and simulating CPN models. . . . 44
6.2 New approach for simulating CPN models via a web browser. . . 44
6.3 HTML form as interface to the CPN model. 47
6.4 An HTML document containing the results of simulating the

CPN model. 48
6.5 A web browser and two web servers. 49
6.6 A web browser requests a CGI script to be executed. 49
6.7 HTML code for creating a form. 50
6.8 HTML code for creating the form in Fig. 6.4. 51
6.9 Design/CPN approach for creating and simulating CPN models. 53
6.10 A simple batch script. 54
6.11 Creating a CGI script from Design/CPN. 54
6.12 Print HTML code to a web browser. 55
6.13 Print URL to a web browser. 56
6.14 Interface to Gnuplot function. 56
6.15 Batch script. 57
6.16 Retrieve input. 57
6.17 Run simulations. 58
6.18 Generate output similar to Fig. 6.4. 59
6.19 Create a plot using Gnuplot. 60

7.1 Graph from web page showing graphical analysis results of the
TINL in Fig. 7.3. 67

7.2 Overview of the applied method. 68

153

154 Chapter 10. Annotating Coloured Petri Nets

7.3 An example of an influence net for information assurance. 69
7.4 Net-structure of CPN model for the TINL in Fig. 7.3. 71
7.5 Details of intermediate node 7 in Fig. 7.4. 72
7.6 Hierarchy page for the folded CPN model. 74
7.7 Top page of folded CPN model. 74
7.8 Folded intermediate page. 75
7.9 Loading and distributing initial tokens. 78
7.10 Create tokens with nid and a counter with initial value 1. 78

8.1 Two-stage operational concept. 90
8.2 Example of an influence net. 91
8.3 Two COAs with the same actions but different time-phases. . . . 93
8.4 Web page to specify time delays. 94
8.5 Web page to specify a COA and to select nodes for display of

probability profile. 94
8.6 Plot of probability profile. 95
8.7 Web page to select nodes and multiple COAs for comparison of

probability profiles. 96
8.8 Overview of the generic CPN model. 97
8.9 Top module of the generic CPN model. 98
8.10 Intermediate module of the generic CPN model. 99
8.11 Loading and distributing initial tokens. 101
8.12 Create tokens with a node id and a counter with initial value 1. . 101
8.13 Directory structure for the web-site. 102

9.1 Timed communication protocol. 114
9.2 Excerpt from the log file for the receiver. 115
9.3 MSC for communication protocol. 116
9.4 Relation between monitor functions. 118
9.5 Interface of a monitor. 120
9.6 Determining events and states to monitor. 121
9.7 Code for log-file monitor. 122

10.1 The basic CP-net for the resource allocation system. 129
10.2 The CP-net for the resource allocation system extended with a

counter. 129
10.3 Annotated CP-net for the resource allocation system. 132
10.4 Matching CP-net for the resource allocation system. 134
10.5 Marking of the matching CP-net for the resource allocation system.136
10.6 Message sequence chart for the resource allocation system. . . . 137
10.7 Resource allocation system with MSC annotation layer. 138
10.8 Structure of annotation layers for a basic CP-net. 138

List of Tables

7.1 Statistics for the state space for the TINL in Fig. 7.3. 80
7.2 Unfolded CPN model: integer bounds. 81
7.3 Folded CPN model: integer bounds. 81
7.4 Unfolded CPN model: best upper multi-set bounds. 82
7.5 Folded CPN model: best upper multi-set bounds. 83

8.1 Execution time in milliseconds for different models using different
simulators. 106

155

156 Chapter 10. Annotating Coloured Petri Nets

Bibliography

[1] W. v. d. Aalst, P. d. Crom, R. Goverde, K. v. Hee, W. Hofmann, H. Rei-
jers, and R. v. d. Toorn. ExSpect 6.4 – An Executable Specification Tool
for Hierarchical Coloured Petri Nets. In M. Nielsen and D. Simpson, edi-
tors, Proceedings of the 21st International Conference on Application and
Theory of Petri Nets, volume 1825 of LNCS, pages 455–464. Springer-
Verlag, 2000.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis. Modelling with Generalized Stochastic Petri Nets. Wiley Series in
Parallel Computing. John Wiley & Sons, 1995.

[3] T. Andersen. Improved Methodology for the Design of Communication
Protocols in Security Systems. In Technical Report. Dalcotech A/S, Den-
mark, May 1996.

[4] P. Athena. PROTOS User Manual. Pallas Athena BV, Plasmolen, The
Nederlands, 1997.

[5] M. Beaudouin-Lafon et al. CPN/Tools: A Post-WIMP Interface for Edit-
ing and Simulating Coloured Petri Nets. In J.-M. Colom and M. Koutny,
editors, Application and Theory of Petri Nets 2001, volume 2075 of Lec-
ture Notes in Computer Science, pages 71–80. Springer, 2001.

[6] M. Beaudouin-Lafon and W. E. Mackay. Reification, Polymorphism and
Reuse: Three Principles for Designing Visual Interfaces. In Proceedings
of Advanced Visual Interfaces, pages 102–109. ACM Press, 2000.

[7] A. Bobbio, A. Puliafito, M. Scarpa, and M. Telek. WebSPN: A WEB-
accessible Petri Net Tool. In Proceedings of International Conference on
Web-Based Modeling and Simulation, San Diego, CA, January 1998.

[8] A. Campos and D. Hill. Web-Based Simulation of Agent Behaviours.
Technical report, ISIMA, Computer Science & Modelling Institute, Blaise
Pascal University, France, 1998.

[9] C. Caoellmann and H. Dibold. Formal Specifications of Services in an
Intelligent Network Using High-Level Petri Nets. In Case Study Proceed-
ings of the 15th International Conference on Application and Theory of
Petri Nets, Zaragoza, Spain, 1994.

157

158 Bibliography

[10] CAPLAN Project, Online: http://www.daimi.au.dk/CPnets/CAPLAN/.

[11] CCITT. Specification and Description Language SDL, Recommendation
Z100-Z104,. Technical report, ITU, 1992.

[12] K. Chang, P. Lehner, A. Levis, A. Zaidi, and X. Zhao. On Causal Influence
Logic. Technical report, Center of Excellence for C3I, George Mason
University, 1994.

[13] B. Cheikes and A. Gertner. Software Instrumentation for Intelligent
Embedded Training. The MITRE Corporation, Bedford, MA, USA.
http://www.mitre.org/support/papers/.

[14] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7:
Graphical Editor and Analyzer for Timed and Stochastic Petri Nets. Per-
formance Evaluation, 24(1&2):47–68, November 1995. Special issue on
Performance Modeling Tools.

[15] S. Christensen and N. Hansen, editors. Coloured Petri Nets Extended with
Channels for Synchronous Communication, Daimi PB - 390, April 1992.

[16] S. Christensen and J. Jørgensen. Analysis of Bang & Olufsen’s BeoLink
Audio/Video System Using Coloured Petri Nets. In Proceedings of the
18th International Conference on Application and Theory of Petri Nets,
volume 1248 of LNCS. Springer-Verlag, 1997.

[17] S. Christensen, J. Jørgensen, and L. Kristensen. Design/CPN – A Com-
puter Tool for Coloured Petri Nets. In E. Brinksma, editor, Proceedings
of TACAS’97, volume 1217, pages 209–223. Springer-Verlag, 1997.

[18] S. Christensen and L. Kristensen. State Space Analysis of Hierarchical
Coloured Petri Nets. In B. Farwer, D. Moldt, and M. Stehr, editors,
Proceedings of Workshop on Petri Nets in System Engineering (PNSE’97)
Modelling, Verification, and Validation, Hamburg, Germany, volume 205,
pages 32–43. University Hamburg, Fachberich Informatik, 1997.

[19] S. Christensen and K. Mortensen. Parameterisation of Coloured Petri
Nets. In Technical Report DAIMI PB-521. Department of Computer Sci-
ence, University of Aarhus, Denmark, March 1997.

[20] H. Clausen and P. Jensen. Validating and Performance Analysis of Net-
work Algorithms by Coloured Petri Nets. In Proceedings of the 5th Inter-
national Workshop on Petri Nets and Performance Models, pages 280–
289. IEEE Computer Society Press, 1993.

[21] R. Clemen. Making Hard Decisions: An Introduction to Decision Analy-
sis. Duxbury Press, 1996. 2nd edition.

[22] D. Comer. Internetworking with TCP/IP, volume 1. Prentice Hall, 1995.

[23] CPN Tools, Online: http://www.daimi.au.dk/CPnets/CPN2000/.

Bibliography 159

[24] J. C. A. de Figueiredo, B. Lindstrøm, L. M. Kristensen, J. Bogorad,
S. Christensen, K. Jensen, K. H. Mortensen, J. S. Thomasen, and L. M.
Wells. The Desktop ClassRoom. HP-CPN Project Report Series HP-
CPN-3. HP-CPN Centre, Department of Computer Science, University
of Aarhus, May 1999.

[25] Deloitte and T. Bakkenist. ExSpect. Product Management
ExSpect, P.O. Box 23103, 1100 DP Amsterdam, The Nederlands.
http://www.exspect.com.

[26] Deloitte and T. Bakkenist. ExSpect User Manual. Product Management
ExSpect, P.O. Box 23103, 1100 DP Amsterdam, The Nederlands.

[27] Design/CPN, Online: http://www.daimi.au.dk/designCPN/.

[28] Sun, Online: http://www.exspect.com.

[29] M. Fowler and K. Scott. UML Distilled – A Brief Guide to the Standard
Object Modelling Language. Addison-Wesley, second edition, 1999.

[30] G. Gallasch and L. Kristensen. Comms/CPN: A Communication Infras-
tructure for External Communication with Design/CPN. In K. Jensen,
editor, Third Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools, DAIMI PB–544, pages 79–93. Uni-
versity of Aarhus, Department of Computer Science, 2001. Online:
http://www.daimi.au.dk/CPnets/workshop01/.

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[32] Gnuplot, Online: http://www.cs.dartmouth.edu/gnuplot info.html.

[33] GreatSPN. Online: http://www.di.unito.it/∼greatspn/.

[34] M. Gries, J. Janneck, and M. Naedele. Reusing Design Experience for
Petri Nets Through Patterns. In Proceedings of High Performance Com-
puting ’99, pages 453–458, 1999.

[35] S. Gundavaram. CGI Programming on the World Wide Web. O’Reilly &
Associates, Inc., 1996.

[36] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts.
McGraw-Hill, 1998.

[37] P. G. Hoel, S. C. Port, and C. J. Stone. Introduction to Probability Theory.
Houghton Mifflin, 1971.

[38] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2nd edition, 1979.

[39] A. Horváth, A. Pufliafito, M. Scarpa, M. Telek, and O. Tomarchio. Design
and Implementation of a WEB-based non-Markovian Stochastic Petri Net
Tool. Technical report, University of Catania, 95125 Catania, Italy, 1998.

160 Bibliography

[40] ITU-T Recommendation Z.120, Message Sequence Chart (MSC), 1996.

[41] F. J. and E. Dimitrov. Verification of SDL Protocol Specifications using
Extended Petri Nets. In J. Billington and M. Diaz, editors, Workshop on
Petri Nets and Protocols of the 16th International Conference on Appli-
cation and Theory of Petri Nets, pages 1–12, 1995.

[42] Java, Online: http://developer.java.sun.com/.

[43] J. Jensen. An Introduction to Bayesian Networks. UCL Press, 1996.

[44] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Vol. 1, Basic Concepts. Monographs in Theoretical Com-
puter Science. Springer-Verlag, 1997. 2nd corrected printing.

[45] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Vol. 2, Analysis Methods. Monographs in Theoretical Com-
puter Science. Springer-Verlag, 1997. 2nd corrected printing.

[46] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Vol. 3, Practical Use. Monographs in Theoretical Com-
puter Science. Springer-Verlag, 1997.

[47] K. Jensen, S. Christensen, and L. M. Kristensen. Design/CPN Occurrence
Graph Manual. Department of Computer Science, University of Aarhus,
Denmark, 1996. Online: http://www.daimi.au.dk/designCPN/man/.

[48] L. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Tech-
nology Transfer, 2(2):98–132, December 1998.

[49] L. M. Kristensen, J. Bogorad, S. Christensen, K. Jensen, B. Lindstrøm,
K. H. Mortensen, J. S. Thomasen, and L. M. Wells. HTTP Web Servers
– Part A. HP-CPN Project Report Series HP-CPN-1. HP-CPN Centre,
Department of Computer Science, University of Aarhus, May 1998.

[50] C. Lakos. On the Abstraction of Coloured Petri Nets. In Proceedings
of the 18th International Conference on Application and Theory of Petri
Nets, volume 1248 of LNCS, pages 42–61. Springer-Verlag, 1997.

[51] C. Lakos. Composing Abstraction of Coloured Petri Nets. In M. Nielsen
and D. Simpson, editors, Proceedings of the 21st International Conference
on Application and Theory of Petri Nets, volume 1825 of LNCS, pages
323–345. Springer-Verlag, 2000.

[52] A. Levis. Course of Action Development for Information Operations. In
Phalanx, volume 33, No. 4. Military Operations Research Society, 2000.

[53] B. Lindstrøm. Web-Based Interfaces for Simulators of Coloured
Petri Net Models. In K. Jensen, editor, Workshop on the Practi-
cal Use of High-Level Petri Nets, DAIMI PB–547, pages 15–33. Uni-
versity of Aarhus, Department of Computer Science, 2000. Online:
http://www.daimi.au.dk/pn2000/proceedings.

Bibliography 161

[54] B. Lindstrøm. Web-Based Interfaces for Simulators of Coloured Petri Net
Models. International Journal on Software Tools for Technology Transfer,
3(4):405–416, September 2001.

[55] B. Lindstrøm and S. Haider. Equivalent Coloured Petri Net Mod-
els of a Class of Timed Influence Nets with Logic. In K. Jensen,
editor, Third Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools, DAIMI PB–544, pages 35–54. Uni-
versity of Aarhus, Department of Computer Science, 2001. Online:
http://www.daimi.au.dk/CPnets/workshop01/.

[56] B. Lindstrøm and L. Wagenhals. Operational Planning using Web-
Based Interfaces to a Coloured Petri Net Simulator of Influence Nets.
In C. Lakos, R. Esser, L. Kristensen, and J. Billington, editors, Formal
Methods in Software Engineering and Defence Systems 2002, volume 12 of
Conferences in Research and Practice in Information Technology, pages
115–124. Australian Computer Society Inc., June 2002.

[57] B. Lindstrøm and L. Wells. Batch Scripting Facilities for Design/CPN.
In K. Jensen, editor, Second Workshop on Practical Use of Coloured
Petri Nets and Design/CPN, DAIMI PB–541, pages 79–97. Univer-
sity of Aarhus, Department of Computer Science, 1999. Online:
http://www.daimi.au.dk/CPnets/workshop99/.

[58] B. Lindstrøm and L. Wells. Design/CPN Performance Tool Manual. De-
partment of Computer Science, University of Aarhus, Denmark, 1999.
Online: http://www.daimi.au.dk/designCPN/man/.

[59] B. Lindstrøm and L. Wells. Performance Analysis using Coloured Petri
Nets. Master’s thesis, Department of Computer Science, University of
Aarhus, Denmark, May 1999.

[60] B. Lindstrøm and L. Wells. Tool Support for Simulation Based Perfor-
mance Analysis using Coloured Petri Nets, 1999. Department of Com-
puter Science, University of Aarhus, Denmark.

[61] B. Lindstrøm and L. Wells. Annotating Coloured Petri Nets. In K. Jensen,
editor, To Appear in Proceedings of Fourth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools. University
of Aarhus, Department of Computer Science, August 2002. Online:
http://www.daimi.au.dk/CPnets/workshop02/.

[62] B. Lindstrøm and L. Wells. Towards a Monitoring Framework for
Discrete-Event System Simulations. In To appear in Proceeding of Work-
shop on Discrete Event Systems. IEEE, October 2002.

[63] B. Lindstrøm, L. M. Wells, J. Bogorad, S. Christensen, K. Jensen, L. M.
Kristensen, K. H. Mortensen, and J. S. Thomasen. HTTP Web Servers
– Part B. HP-CPN Project Report Series HP-CPN-2. HP-CPN Centre,
Department of Computer Science, University of Aarhus, November 1998.

162 Bibliography

[64] L. Lorentsen and L. Kristensen. Modelling and Analysis of a Danfoss
Flowmeter System using Coloured Petri Nets. In M. Nielsen and D. Simp-
son, editors, Proceedings of the 21st International Conference on Appli-
cation and Theory of Petri Nets, volume 1825 of LNCS, pages 346–366.
Springer-Verlag, 2000.

[65] L. Lorentsen and L. Kristensen. Exploiting Stabilizers and Parallelism
in State Space Generation with the Symmetry Method. In Proceedings
of the Second Internationel conference on Application of Concurrency to
System Design, pages 211–220. IEEE, 2001.

[66] L. Lorentsen, A.-P. Tuovinen, and J. Xu. Modelling Feature Interac-
tion Patterns in Nokia Mobile Phones using Coloured Petri Nets and De-
sign/CPN. In K. Jensen, editor, Third Workshop and Tutorial on Prac-
tical Use of Coloured Petri Nets and the CPN Tools, DAIMI PB–544.
University of Aarhus, Department of Computer Science, 2001. Online:
http://www.daimi.au.dk/CPnets/workshop01/.

[67] L. Lorentsen, A.-P. Tuovinen, and J. Xu. Modelling Feature Interactions
in Mobile Phones. In Feature Interaction in Composed Systems. ECOOP
2001 Workshop, June 2001.

[68] O. Madsen, B. Pedersen, and K. Nygaard. Object-Oriented Programming
in the BETA Programming Language. Addison-Wesley, 1993.

[69] T. Mailund. Parameterised Coloured Petri Nets. In K. Jensen, editor,
Proceedings of Second Workshop on Practical Use of Coloured Petri Nets
and Design/CPN, pages 133–151. Department of Computer Science, Uni-
versity of Aarhus, Denmark, 1999.

[70] MARS-Team. CPN-AMI Home page. http://www-src.lip6.fr/cpn-ami.

[71] Message Sequence Charts in Design/CPN, Online:
http://www.daimi.au.dk/designCPN/libs/mscharts/.

[72] Meta Software Corporation, 125 Cambridge Park Drive, Cambridge MA
02140, USA. Work Flow Analysis. User’s Manual, 1994.

[73] J. Meyer, A. Movaghar, and W. Sanders. Stochastic Activity Networks:
Structure, Behavior, and Application. In Proceedings of International
Conference on Timed Petri Nets, pages 106–115, Torino, Italy, July 1985.

[74] Microsoft. Online: http://www.microsoft.com.

[75] J. Miller, A. Seila, and X. Xiang. The JSIM Web-Based Simulation
Environment. Technical report, University of Georgia, Computer Science
Department, 415 GSRC, Athens, GA, 30602-7404, 1999.

[76] MITRE. Online: http://www.mitre.org.

Bibliography 163

[77] K. Mortensen. Efficient Data-Structures and Algorithms for a Coloured
Petri Nets Simulator. In K. Jensen, editor, Third Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools, DAIMI PB–
544, pages 57–74. University of Aarhus, Department of Computer Science,
2001. Online: http://www.daimi.au.dk/CPnets/workshop01/.

[78] K. Mortensen and V. Pinci. Modelling the Work Flow of a Nuclear Waste
Management Program. In R. Valette, editor, Proceedings of the 15th In-
ternational Conference on Application and Theory of Petri Nets, volume
815 of LNCS, pages 376–395. Springer-Verlag, June 1994.

[79] A. Movaghar and J. Meyer. Performability Modeling with Stochastic Ac-
tivity Networks. In Proceedings of Real-Time Systems Symposium 1984,
Austin, TX, December 1984.

[80] M. Naedele and J. Janneck. Design Patterns in Petri Net System Mod-
eling. In Proceedings of 4th IEEE International Conference on Engineer-
ing of Complex Computer Systems (ICECCS’98), pages 47–54, Monterey,
CA, August 1998.

[81] S. Nimsgern and F. Vernet. Communication between Coloured Petri Net
Simulations and External Processes. Master’s thesis, Department of Com-
puter Science, University of Aarhus, Denmark, 2000.

[82] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 2nd edition, 1996.

[83] L. C. Paulson. ML for the Working Programmer, 2nd edition. Cambridge
University Press, July 1996.

[84] V. Pinci and R. Shapiro. An Integrated Software Development Methodol-
ogy Based on Hierarchical Coloured Petri Nets. In G. Rozenberg, editor,
Advances in Petri Nets, volume 524 of LNCS, pages 227–252, 1991.

[85] D. Poitrenaud and D. Prun. CPN/DESIR version 1.0 – User Guide.
MASI Lab, Blaise Pascal Institute, University P. & M. Curie, Paris,
France.

[86] J. Rasmussen and M. Singh. Designing a Security System by Means of
Coloured Petri Nets. In J. Billington and W. Reisig, editors, Proceedings
of the 17th International Petri Net Conference, volume 1091 of LNCS,
pages 400–419. Springer-Verlag, 1996.

[87] J. L. Rasmussen and M. Singh. Mimic/CPN: A Graphic Animation Utility
for Design/CPN. Department of Computer Science, University of Aarhus,
Denmark. Online: http://www.daimi.au.dk/designCPN/libs/mimic/.

[88] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets 1: Basic
Models, volume 1491 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

164 Bibliography

[89] Renew. Online: http://www.renew.de.

[90] J. Rosen and W. Smith. Influence Net Modelling with Causal Strengths:
an Evolutionary Approach. In Proceedings of Command and Control Re-
search and Technology Symposium, pages 699–708. Naval Post Graduate
School, Monterey, CA, USA, 1996.

[91] W. H. Sanders. Construction and Solution of Performability Models Based
on Stochastic Activity Networks. PhD thesis, University of Michigan,
USA, 1988.

[92] B. Schneier. Secrets and Lies: Digital Security in a Networked World.
John Wiley and Sons Ltd., 2000.

[93] Simulation Interoperability Standards Organisation (SISO),
http://www.sisostds.org/stdsdev/hla/. HLA Standards Development.

[94] B. Stroustrup. The C++ Programming Languages. Addison-Wesley, 2000.

[95] Sun, Online: http://developer.java.sun.com/.

[96] C. Szyperski and C. Pfister. Component-Oriented Programming. In
M. Muehlhaeuser, editor, WCOP’96 Workshop Report, Special Issues in
Object Oriented Programming. dpunkt Verlag, 1997.

[97] UltraSAN.
Online: http://chaos.crhc.uiuc.edu/UltraSAN/UltraSAN.html.

[98] UltraSAN User’s Manual: Version 3.0. Center for Reliable and High-
Performance Computing Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, 1995.

[99] R. Valk. Petri Nets as Token Objects: An Introduction to Elementary
Object Nets. In J. Desel and M. Silva, editors, Application and Theory
of Petri Nets, volume 1420 of LNCS, pages 1–25. Springer-Verlag, 1998.

[100] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Ad-
vanced Workflow Patterns. In O. Etzion and P. Scheuermann, editors, 7th
International Conference on Cooperative Information Systems (CoopIS
2000), volume 1901 of LNCS, pages 18–29, Berlin, 2000. Springer-Verlag.

[101] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Work-
flow Patterns. BETA Working Paper Series, WP 47. Technical report,
Eindhoven University of Technology, Eindhoven, The Nederlands, 2000.

[102] W3C, http://www.w3.org/TR/html/. Hyper Text Markup Language
(HTML), W3C Recommendation.

[103] L. Wagenhals. Course of Action Development and Evaluation using
Discrete Event System Models of Influence Nets. PhD Dissertation,
GMU/C3I/SAL-212-TH. C3I Center, George Mason University, Fairfax,
VA, USA, January 2000.

Bibliography 165

[104] L. Wagenhals, S. Haider, and A. Levis. Synthesizing Executable Models
of Object Oriented Architectures. In C. Lakos, R. Esser, L. Kristensen,
and J. Billington, editors, Formal Methods in Software Engineering and
Defence Systems 2002, volume 12 of Conferences in Research and Practice
in Information Technology, pages 85–94. Australian Computer Society
Inc., June 2002.

[105] L. Wagenhals and A. Levis. Course of Action Development and Evalua-
tion. In Proceedings of Command and Control Research and Technology
Symposium, Naval Academy, Annapolis, MD, USA, 2000.

[106] L. Wagenhals and A. Levis. Modeling Effects-Based Operations in Sup-
port of War Games. In A. Sisti and D. Trevisani, editors, Enabling Tech-
nology for Simulation Science V, volume 4367, pages 365–376. Interna-
tional Society for Optical Engineering, September 2001.

[107] L. Wagenhals, I. Shin, and A. Levis. Effects-based Course of Action Anal-
ysis in Support of War Games. In A. Sisti and D. Trevisani, editors, En-
abling Technology for Simulation Science VI, volume 4716. International
Society for Optical Engineering, April 2002.

[108] L. Wagenhals, I. Shin, and A. Lewis. Creating Executable Models of
Influence Nets with Colored Petri Nets. International Journal on Software
Tools for Technology Transfer, 2(2):168–181, December 1998.

[109] L. Wall, T. Christiansen, and R. L. Schwartz. Programming Perl, 2nd
edition. O’Reilly & Associates, Inc., September 1996.

[110] WOSIT. Online: http://www.mitre.org/technology/wosit/wosit/.

[111] L. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965.

[112] L. Zhang, L. Kristensen, C. Janczura, G. Gallasch, and J. Billington. A
Coloured Petri Net based Tool for Course of Action Development and
Analysis. In C. Lakos, R. Esser, L. Kristensen, and J. Billington, editors,
Formal Methods in Software Engineering and Defence Systems 2002, vol-
ume 12 of Conferences in Research and Practice in Information Technol-
ogy, pages 125–134. Australian Computer Society Inc., June 2002.

