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Software-Architectures for Agents and Mobile Robots

Hans-Dieter Burkhard
Institute of Informatics
Humboldt University
Berlin, Germany
hdb@informatik.hu-berlin.de

Abstract

Agents and mobile robots are implemented to act ”autonomously on behalf of
their user/owner”. They have to interact with virtual or real-world environments.
This leads to a first ”horizontal” modularization according to perception, control, and
actuation. Reactive behavior is implemented by simple translations from sensors to
actuators, deliberative behavior includes complex goal selection and planning. Hybrid
architectures combine both approaches using layered architectures, which leads to
a second vertical modularization. The synchronization and interaction between the
modules poses serious problems when the agents/robots have to work on complex tasks
in dynamic environments. Persistent states are used to maintain past oriented and
future oriented information: The world model combines new perceptions with previous
ones, and the commitment maintains plans for the achievements of long term goals.
Special efforts are needed to keep balance between stabile behavior and adaptation to
new situations. The implementation of ”bounded rationality” needs new architectures
behind the scope of the classical ones.

1 Introduction

Control of autonomous robots in dynamical environments is interesting from a cognitive
point of view as well as under application view points. Technical requirements are estab-
lished to construct intelligent autonomous systems in virtual worlds like the internet as
well as in the real world. But still there is an ongoing debate about the best way to control
intelligent behavior. Examples from nature include

1. Immediate reactions to inputs from the real world [Maes90], [Brooks91]:
This approach can lead to surprisingly complex behavior if the stimulus-response
actions are well tuned. The basic idea behind this approach is to use the complexity
of the environment for control: The best model of the world is the world itself,
complex behavior emerges from the interaction with the world. But note that virtual
reality worlds must simulate the physical relations including substitutes for body
sensors to a very detailed level to allow efficient stimulus-response behaviors.

2. Actions following long term plans [Bratman87], [Rao/Georgeff91]:
The control uses complex internal models which are analyzed for reachable goals.
Plans are developed to achieve the goals. It needs a lot of efforts to make appropriate
models even for simple behaviors like following a path while avoiding obstacles in
a dynamically changing environment. But complex behavior (e.g. playing chess or
constructing an air plan) needs a lot of appropriate proactivity.



3. Swarm intelligence [Parunak97]: Complex behavior emerges from the interaction of
large groups of simple agents. This approach can be seen as an extension of the first
one using cooperation. Cooperation emerges by similar reactions of the agents to
similar sensory inputs. Moreover, the results of the activities in the world are used
as stimuli of other agents (e.g. the use of chemical substances as markers by insects).
Flexibility and adaptation are realized by a certain randomness of actions.

The paper is concerned with individual agents, i.e. with the first two approaches. Layered
architectures are used for combination [Arkin98, Murphy00]: Lower layers implement fast
reactions using ”behaviors”, higher layers implement the guidance of behaviors by plans.
The higher layers are called with lower frequencies and have longer reaction times.
Different behavior needs different triggers. Simple stimulus-response behavior is triggered
by recent sensory data only. But often the environment does not provide appropriate
sensory data for triggering the achievement of a long term goal (e.g. running to intercept
a ball coming from behind - this point will be discussed in more detail below). This
means the agent needs some knowledge about the situation in the outside world behind
the sensory data and some knowledge about its goals and plans.

More abstractly spoken, the agent possesses ”persistent” (mental) states to memorize
world models and goals, respectively. We call them ”persistent” states to emphasize
their persistence over longer time intervals. This is necessary to make a clear distinc-
tion concerning certain software aspects: During complex computation processes we have
”intermediate” states. Often used methods for action selection are decision trees, state
machines, rule bases etc. These methods may go through different ”intermediate” states
while performing the selection process. But these intermediate states are forgotten when
the process is finished. But if the result of the process needs to be stored (like a goal to
be achieved in the future), then this is realized using a persistent state. It is used as an
internal trigger for forthcoming decision processes.

Commonly used notions are "reactive” and ”deliberative” behavior, respectively. Reactive
behavior is mostly understood as simple behavior, without (persistent) commitment to
goals and plans. Deliberative behavior is identified with complex decisions. There are
different aspects mixed in these notions as

e complexity of the decision process,

e ability to anticipate possible future developments,

e planning capabilities,

e persistent states concerning the past (persistent worldmodel),

e persistent states concerning the future (persistent commitments).

As an example we may consider a chess program: It can anticipate future situations
considering the possible moves of both players starting with the recent situation. It can
evaluate reachable future ”goals” using complicated evaluation procedures. Finally it
comes up with simply the next move, and all intermediate results are forgotten. After
the opponent’s move, the same process starts again for the new situation without any
reference to the previous computations. Is it a reactive behavior? We cannot solve these
terminological problems in this paper, but we will discuss some of its aspects and the
reasons behind.

The practical problems concern rapid reactions to fast changes in the environment. Reac-
tive behaviors are considered appropriate for rapid reactions, while deliberative ones are



concerned with long term planning. If long term planning is used in dynamically chang-
ing environments, both approaches are needed, but then they are in conflict concerning
their synchronization. Layered architectures combine deliberative ”higher” layers with
reactive "lower” layers. Different synchronization strategies are in use, but usually the
higher layers have some delay because they are computationally expensive. Hence only
lower reactive layers react dynamically. Thereby they act according to the long term goals
defined by the higher deliberative layers. But this goals remain the old ones as long as
there is no redeliberation regarding the new requirements. In fact, there is a real time
control problem concerning fast redeliberations.

To allow some kind of short term redeliberation in complex environments, it is inevitably
to restrict the search space for rapid decisions. This corresponds to concepts of bounded
rationality, where a special ”screen of admissibility” ([Bratman87]) is introduced for the
restriction of deliberation processes. The proposal in this paper is a new architecture with
two separated passes through all levels of control as an attempt to combine complex long
term decisions with short term behaviors under real time conditions.

The paper is organized as follows: General aspects of robot controls in dynamical environ-
ments are considered in Section 2 using the scenario of soccer playing robots (RoboCup).
Control architectures are discussed in Section 3. Section 4 continues the discussion of
control problems, the impacts of these problems to the design of control architectures are
investigated. This analysis leads to the proposal of an hierarchically structured control
architecture in Section 5. It allows for long term and short term decisions on all levels of
the hierarchy. In contrast to other layered architectures, just-in-time decisions are possible
on the higher levels, too. An extended version of the paper will appear in Fundamenta
Informaticae [Burkhard02].

The author likes to thank the members of the teams ” AT Humboldt” and ” German Team”
in the RoboCup for a lot of fruitful discussions. The work is granted by the German
Research Association (DFG) in the research program 1125 ”Cooperating teams of mobile
robots in dynamic and competitive environments”.

2 Robot Control in Dynamic Environments

Dynamic environments are characterized by fast changes, such that plans may become
invalid by unpredictable events. The robot football (European ”football”, i.e. ”soccer”)
scenario promoted by the RoboCup initiative [RoboCup] [Kitano-et-al-97] is best suited as
an illustrative example. It provides a dynamic environment for the football/soccer playing
robots. Special characteristics are the presence of adversaries and the availability of only
incomplete, imprecise data. One may theoretically think about a plan to play the ball via
several players from the goal-kick to the opponents goal, but nobody would expect that
plan to work. Note that there is a great difference to a chess program: It is easy to write a
program for finding the ultimate best moves, it is "only” a question of complexity to run
this program. But nobody is able to write a similar program for football/soccer playing
robots.

It is important to realize that the robots have to work autonomously without any outside
control. Moreover, there is no global control in our scenario: Each robot has to decide for
its own with restricted knowledge about the environment and about other robots. Some
communication is provided, but not enough to exchange detailed information about the
situation and about decisions (the amount of data is restricted).

Control structures for intelligent robots/agents include

e sensors and perception unit to get inputs from the environment,



e behavior control (with different complexities ranging from simple stimulus response
behavior to long term deliberative behavior as discussed in this paper),

e actors and basic action control to act in the environment (sometimes using direct
feed back with sensors),

e operating system for synchronizing the different activities (using parallel processing
if possible).

Communication capabilities are included in the sensors and actors, respectively. There
exist a lot of different approaches for controls of intelligent agents and intelligent robots
(cf. e.g. [Arkin98, Murphy00, Weif}99]).

2.1 Basic Skills

The football/soccer scenario provides a lot of different situations to illustrate the needs of
agent architectures for dynamic environments. They range from basic skills up to complex
cooperative behavior.

e The raw input information provided by sensors is processed to yield a perception.
The resulting data structure models the environment including the robot itself (es-
pecially positions and movements of the ball and of the players). It is called the
"worldmodel”.

e The information provided by sensors in a single moment is incomplete (the ball may
be covered by other players) and imprecise (due to noisy data). It is possible to
build a more complete worldmodel using information from the past together with
the new perception. For example, the movement of a ball which is covered by other
players can be anticipated using information from the old worldmodel.

The important aspect of such a worldmodel is its persistence with respect to the time
scale induced by sensor inputs and effector outputs. The agent maintains such a
worldmodel as a persistent state with updates according to new sensory information.
Since it is oriented to information from the past, it is called past-oriented mental
state.

e Interception of a moving ball illustrates simple problems of the dynamic environment:
A very simple ”stimulus-response player” would run straight line to the place where
he sees the ball. As the ball is moving he has to adjust its direction every time he
looks for the ball, and he will perform a curved path as the result. A more skillful
player could anticipate the optimal point for interception and run directly to this
point.

e Now we discuss such a procedure for the anticipation of the optimal point for inter-
ception. It calculates the speed vector v for the optimal run to the ball depending
on the recent position p and the speed u of the ball (relative to the player). It may
use additional parameters according to opponents, whether conditions, noise etc.

The calculation may explicitly exploit physical laws (including e.g. the expected
delay of the ball). It may use simulation (forward model) for possible speed vec-
tors v of the player. If an inverse model is available, the optimal speed vector v
may be calculated directly. Calculations of v may use a neural network which has
been trained by real or simulated data. (Which of these methods should be called
"reactive”?)



e We still consider the optimal interception of a moving ball using calculations of the
speed vector v. The calculation can be repeated whenever new sensor information is
available. Therewith it always can regard newest information and hopefully obtain
the best speed vector v. Alternatively, the player may keep moving according to v
for a longer time. Therefore he needs another kind of persistent state to memorize
this goal. Since this state is oriented to information concerning the future, it may be
called future-oriented mental state. It can save computation time, and it is useful
to keep stable behavior (see below).

If the ball is not observable for some time (e.g., if it is covered by another player), then
the persistent goal is used as the trigger to keep running. Alternatively, simulating
the ball in the worldmodel can also be a trigger to continue the interception process.

e Problems with the reliability of the computed speed vector v arise due to noise in
the sensory data (and may be due to imprecise calculations themselves). Repeated
calculations may hence result in oscillations and sub-optimal behavior (as reported
e.g. in [Miiller-Gugenberger/Wendler98]). It may be better to follow the old speed
v; as long as the difference to the new speed v;11 is not too large. Keeping v; in
a future oriented mental state provides the necessary means. Exploiting the inertia
of the robot provides another way using the physical world directly. A complete
analysis of the problems behind stability and flexibility go behind the scope of this
paper (cf. e.g. [Bratman87],[Burkhard00]).

The discussion shows a lot of different approaches and implementations for the simple
behavior ”follow a moving object”. In most cases there is a lot of redundancies which
can be exploited for efficient and more reliable controls in different ways. It is a typical
observation in robot control that the same behavior can be realized in different ways
yielding different trade offs. Since single methods are often of restricted reliability, the
appropriate combination (regarding the overall system) is a challenging design problem.
To summarize: Two concepts of persistent ("mental”) states have been introduced. It
is commonly accepted that some form of persistent state is essential even for primitive
beings. The worldmodel as a persistent state concerning the past compensates missing
sensory information from the outside world. The persistent state concerning the future
may be not really necessary at the level of basic skills.

2.2 Coordination

More complex problems of dynamic environments are illustrated by coordination. The
decision processes become more and more complex (and subject to stability problems)
as the time horizon is enlarged. Even in the recent Simulation League of RoboCup (the
competitions in a virtual environment which do not suffer from the physical robot prob-
lems), a coordinated behavior like a double pass emerges only sometimes by chance, not by
planned activities. Here are some examples of decision processes in the RoboCup scenario:

e A player decides if he can intercept the ball, i.e. if the ball is reachable during its
move on the playground. The decision process can use the procedures for computing
v from above to calculate the interception point and time.

e A player decides if he can intercept the ball before any other player. Therefore he
has to compare his own chances with the interception times of other players (e.g.
using the methods to calculate v from the view point of other players).



e A player decides not to intercept the ball even if he is the first to reach the ball. The
reason may be a team mate in a better position for continuation.

Next we had to discuss the optimal behavior for all the players which are not in a position
to control the ball directly. Their optimal behavior is determined by long term strategic
items, and it is important for the success of a robot team. Humans often use predefined be-
havior patterns for coordination, like change of wings, double pass etc. in football/soccer.
The reader is invited to think about the related problems as discussed above for intercep-
tion: maintenance of information from the past, anticipation of future chances, managing
of stability and optimality, — all under the conditions of dynamic changes and incomplete
imprecise information. There is a growing value of global (symbolic) descriptions of situ-
ations and behaviors in order to guide short term behavior by long term goals. Goals and
plans are memorized by future oriented persistent states for at least two reasons, namely
efficiency (repeated computations should be avoided) and stability (needed for cooperation
of team mates).

3 Architecture Models

3.1 A Simple State Model

The notions of persistent states are discussed somewhat more formally in this section. A
discrete control of the agent is considered for the sake of simplicity. There is some freedom
for choosing the time steps t = 0,1,2,... . There are good reasons to identify the time
steps with the arrival of sensory data ("input”) at the control unit (e.g. we have some
kind of event driven control). Note that persistence depends on this definition: We call
a state a persistent state if and only if it keeps information from one step to the next.
The chess program considered in Section 1 does not have persistent states. It needs no
persistent worldmodel if all board positions are used as input, and it needs no memorizing
of goals if evaluation of possible moves starts from scratch for the new situation.
Computed goals and plans of a football/soccer robot are not persistent as long as they
cannot be used by the decision process in the next time step. (Our implementation of
the control architecture in [Burkhard et al.98] was based on the notions of belief, desire
and intentions to describe intermediate results. Actually, the concepts did not stand
for persistent states since the decision process was started from the beginning in each
time step. But then certain stability problems occurred like oscillating directions while
intercepting the ball. They were solved by references to old intentions later.)

A generic agent-oriented control architecture with a simple cyclic process (”sense-think-
act”-cycle) is widely used. The cycle is performed at each time step t.

1. Input (sense): Data have been collected by the agent. They may come from outside
(sensors), via communication and by body information (proprioceptive sensors). The
data is preprocessed yielding some internal representation of the environment which
is called ”worldmodel”. (Here the notion ”worldmodel” may stand for non-persistent
data, too.)

2. Commit (think): The control unit analyses the worldmodel. It may evaluate pos-
sible courses of actions and possible future situations. It commits for actions to be
performed immediately and perhaps for long term behavior.

3. Output (act): The control unit outputs the advice for actions to be performed
by the agent immediately. The actions are performed (may be after some further
processing) by effectors, and by communicators.



The most simple architecture is an architecture without any persistent state as in Figure
1. Only the most recent input can be used for the control. This causes no problems if the
input is complete and reliable as far as necessary for commitments.

for t=0,1,2,... do
worldmodel; := perceive(inputy);
commitment; := deliberate(worldmodel;);
output; := execute(commitment,) ;

Figure 1: Stimulus-response Architecture without Persistent World model

The deliberate-function can be a simple table, a neural network or a complicated decision
process using goals and plans — remember the chess program. But the commitments are
used only for the recent output, then they are completely forgotten in the case of stimulus-
response architectures.

Next the stimulus-response architecture with persistent world model is considered as in
Figure 2. A persistent worldmodel allows to regard former inputs. The agent can try to
maintain a complete worldmodel even if the most recent sensor information is incomplete.
The new input is integrated into the existing worldmodel, missing facts can be simulated
to some extend. This means that the agent has the ability to anticipate world states. It is
common understanding that the persistent worldmodel is used only as a ”past-oriented”
state which memorizes information concerning the situation of the outside world: It serves
as a substitute for a complete and precise sensory information by the input. Again the
deliberate-function can be very simple or complex, respectively. Commitments are used
only for the recent output.

for t=0,1,2,... do
worldmodel; := update(worldmodel; ;, input;);
commitment; := deliberate(worldmodel;);
output; := execute(commitment,);

Figure 2: Stimulus-response architecture with Persistent World Model

As discussed above, efficiency and stability are reasons to memorize previous commitments
to guide further decisions and actions. The deliberate-function can use complicated
processes to evaluate possible future situations, it can make plans to guide the behavior
for a longer time regarding coordination with other robots. It may be useful or even
necessary (for stability) to consider the same commitment over several time steps. This
means to have additional persistent states related to the future. This is considered by the
architecture with persistent states for worldmodel and commitment as given in Figure 3.
The essential difference to the stimulus response architectures is the treatment of com-
mitment as a persistent mental state. It can be split further e.g. into desires, inten-
tions, plans (BDI-architecture) with a lot of variants in the literature (cf. [Wooldridge99],
[Burkhard00]). It serves for efficiency as well as for stability.



for t=0,1,2,... do
worldmodel; := update(worldmodel; ;, inputy);
commitment; := deliberate(commitment;_;, worldmodel;);
output; := execute(commitment;) ;

Figure 3: Architecture with Persistent States for Worldmodel and Commitment

3.2 Layered Architectures

The concept of persistent states works fine as long as there is enough time for the calcula-
tions in a single interval between two time points ¢ and ¢ + 1. But real time architectures
in dynamical environments usually allow for fast action control (by execute) in short
intervals, while sensor integration and update of the worldmodel as well as commitment
need more time. There are severe synchronization problems.

A common used model is a hierarchical architecture where execute performs ”low level”
behavior with short time horizon and fast specification time, e.g. for collision avoidance.
Each such low level behavior is realized by simple methods, e.g. predefined scripts or
in the form of stimulus response behavior. The aim of the deliberate-function on the
higher level is the choice of such a script, the computation of a plan etc. Following the
necessities of "bounded rationality”, the deliberate process constitutes a reduced ”screen
of admissibility” [Bratmang87]:

If the environment is complex then longer computation time is necessary to analyze the
global situation (e.g. for image processing and interpretation, modeling of other players,
calculation of the utilities of different strategies etc.). But not all aspects of the global
situation are subject to fast changes (e.g. the ball possession may change very rapidly, but
the positions of players do not). Hence there is the possibility of shared work: Complex
analysis is performed by the ”global” deliberate calculations leading to search space
reduction for ”local” short time decisions of execute.

Classical layered two pass architectures have a control flow bottom up from lower layers to
higher layers and then back again to the lowest layer. To act in time, the higher layers are
used only if needed, or with lower frequency. In the first approach, the lower layers must
decide if higher layers have to be involved. This can yield context problems as discussed
in Section 4.2. In the second approach, higher layers have delays.

Layered one pass architectures have only one control flow through the layers. To act in
time, the higher layers are called with lower frequencies. Implementations of one pass top-
down architectures can use stack-oriented programming paradigms. Actions are pushed
onto a stack. The action a from the top is executed if a is low level, otherwise it is replaced
by lower level actions a1, ..., ay,, respectively (cf. e.g. [IMARS]). Subroutine calls as used
in (procedural) programming implement the same principle (using the run time stack).
The computed commitment activates a subroutine which performs the necessary actions
for the achievement of the committed goal. The control turns back to the higher level
deliberation process for a new commitment when the subroutine has finished.

Such layered models have different time scales on their layers. This means that the syn-
chronization between deliberate and execute is somewhat different to the description
by Figure 3. The commitment can be understood as a (may be conditional) plan or script
computed on the higher levels (by deliberate) at time ¢ such that



commitment; = step;, stepiti,-..., Stepiyi -

The low level execute-function computes the outputs for i = ¢,...,t+ k according to that
script:
output; := execute(step;, input; ) .

The most recent input input; (or the worldmodel if available in time) is used for adapta-
tion. A temporary stimulus response behavior is realized if identical steps step; are used.
As an example we may think of the commitment to run to a certain position, where the
execute-function has to realize the necessary movements over a longer time.

While execute is active at each time step ¢, the higher level commitments may remain
unchanged over longer time intervals in the layered architectures. In fact, using the
subroutine-paradigm, the higher level processes are inactive until the lower level processes
are finished. A problem of these approaches is the difficulty of fast reactions on the higher
levels to unexpected changes in the environment. The problem cannot be overcome by
concurrent computations as far as the complete analysis of a global situation (including
time consuming sensor processing and integration for the worldmodel, and future simu-
lations, evaluations and means-ends-analysis for the commitment, respectively) consumes
more time than only a single interval between two time points ¢ and ¢+ 1. We will discuss
this matter in Section 4, and the proposal of the ”Double Pass Architecture” in Section 5
is an attempt to overcome the problem. The name ”"Double Pass Architecture” refers to
a difference to the one pass and two pass architectures, such that two independent passes
are performed top-down for the deliberate- and execute-functions, respectively.

4 Problems of Control

This section discusses some details of the problems concerning efficient controls. Effi-
ciency means optimal behavior with respect to given constraints, especially complexity
constraints ("bounded rationality”).

4.1 Trade-offs

As discussed for layered architectures, worldmodel update and deliberation can be time
consuming processes. An accurate analysis of the situation (i.e. by complex picture
processing algorithms) is worthless if it comes too late. There is a time-trade-off between

e Precise decisions based on a sufficient analysis of the situation: It needs time for
computing the perception from sensory data, its integration into the worldmodel,
the calculation of possible outcomes of available activities, generation of appropriate
plans etc.
versus

e Immediate fast responses to the most recent sensory data: It leaves no time for
complex deliberation.

Layered architectures distinguish between long term decisions (deliberations — which may
need more time), and short term decisions (executions) guided by the long term ones. The
guidance by the long term ones means a smaller scope of possible choices for the short
term decisions and hence shorter computation times.

A problem of these architectures are delayed reconsiderations of long term plans: In the
case of unexpected events, the adaptation of the long term commitments may come too



late. Therefore collision avoidance is usually part of the low level behavior. In foot-
ball/soccer, the ball handling can be considered as low level behavior, too. But for the
other players, their low level behavior (e.g. running) is not related directly to the ball.
Nevertheless, they should react quickly e.g. in cases when a team mate looses the ball.
The stability-trade-off concerns the consideration and optimal handling of (unexpected)
changes in the environment. It is a trade-off between

e Fast adaptation to new situations in order to act according to the most recent data,
and according to the most promising alternatives, respectively,
versus

e Stabile following of old plans in order to pursue an intention. Stabile behavior is
important for resolved acting and for cooperation (to ensure trustiness).

Both alternatives have their drawbacks: Stability has the danger of fanaticism, i.e. pursu-
ing of unachievable goals, like keep on running for a pass when the ball is already controlled
by the opponents. Adaptation may lead to permanent changes of behavior like oscillations,
e.g. changing directions while running to an object.

Adaptation may be very inefficient if the costs for adaptation itself are high over time
(think of an undecided goalie which permanently revises the place of the ball for a goal
kick). Therefore, the costs of adaptation have to be considered, too. The appreciation of
adaptation costs and consequences are a matter of the time trade-off.

The both trade-offs are directly connected with persistent commitments: Time can be
saved by memorizing commitments. The distinction between short and long term decisions
helps to react faster. Stability needs the consideration of former decisions which can
be memorized by persistent commitments. (But there exist other possibilities, e.g. the
exploitation of physical properties like inertia.)

There are much more alternatives concerning the construction of robot controls. If the
robot performs exact movements then the efforts of motion control can be reduced. Vice
versa, inexact movements may be compensated by extensive motion control to some ex-
tend. This is a another trade off with consequences to deliberation and execution proce-
dures.

4.2 Context

The context problem is best illustrated by the behavior of a player which does not control
the ball. All he can do is changing his position using simple behaviors like run/walk/stay.
Good positions are essential for the success of the team. The player has a lot of different
alternatives related to many different goals. More than for the ball controlling agent, the
optimal behavior depends on the global situation, i.e. of the context (like defensive or
offensive play, distance to the ball / to other players / to the goals, actual score etc.).

In our first RoboCup implementations, position changing was handled on a global level.
A unique procedure had to compute utilities for all situations. The calculation of useful
utilities becomes more and more difficult with growing numbers of contexts. Thus, our
results were rather raw.

A reasonable principle of agent architectures are hierarchical structures: Complex skills use
simpler skills, complex options are structured by simpler options. Different positioning
options can be embedded into larger options like goal defense, double pass etc. This
makes deliberation easier: First the agent decides for a double pass, then he decides for
the appropriate positioning actions in this context.

In the classical, sequential, stack-oriented software architectures this can be implemented
by successively called subroutines: The ”play soccer method” calls the ”offensive play
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method” which calls the ”double pass method” which calls the ”positioning method” at the
right time. Only the most recently called method/procedure is active (here: "positioning
method”), the callers wait for the termination of this method. Each subroutine in the
stack can be considered as a ”level” of hierarchically ordered commitments. The number
of levels is not restricted. In contrast, classical layered architectures have a very limited
number of layers (e.g. two or three) which implement different reasoning methods and
which are called with different frequencies.

In the case of unexpected events, the successively called subroutines can react only on
the lowest level, i.e. by the active subroutine. Classical layered architectures have related
problems, they react only on the lowest layer. This is sufficient as long as the higher layers
need no fast changes according to unexpected events. The long term goal of an unmanned
ground vehicle usually does not change because of an unexpected obstacle. After drawing
aside it will continue its way to the former goal. If there are still serious problems, it can
stop for deliberation. Hence the concept of fast low level reactions works well for such
scenarios.

But, if fast changes are needed on higher levels, then the considerations of unexpected
events could be done best in the appropriate context. For example, the loss of the ball by
the second player during a double pass should be handled by the ”play soccer method”.
It should lead to termination of the ”offensive play method” and its successively called
methods (”double pass method”, ”positioning method”). At the same time, the ”play
soccer method” should activate the ” defensive play method” with appropriate submethods,
e.g. for attacking the opponents.

If only the ”change position method” is active (e.g. as the active subroutine), all necessary
computations (analysis of the situation, test of conditions, termination of higher level
routines up to the ”offensive play method”) must performed by this method. This leads
to a very complex and inefficient ”change position method”. Moreover, since the ”change
position method” is used in many other contexts, this method becomes overwhelming
complex. Alternatively, different ”change position method” could be implementing for
different contexts. But this would lead to multiple copies of code.

The problem can be solved if the execute procedure has access to all levels, and if the
decisions to be performed can be restricted. A solution is proposed in the following Section
5. The Double Pass architecture is intended to permit real time redeliberation on all levels
using principles of bounded rationality.

5 The Double Pass Architecture

This section proposes an architecture which deals with the above problems in a reasonable
way. It uses persistent mental states for the past (worldmodel) and for the future (commit-
ment). It can implement goal-directed approaches, e.g. the BDI-approach [Bratman87]. It
uses a hierarchical structure and a least commitment strategy. The hierarchical structure
provides options on different levels. It is traversed by two independently running passes.
The hierarchy allows to describe behaviors and plans in a unique way, ranging from single
actions on the lowest level up to long term plans on the highest levels . The lower level
behaviors are combined to higher level plans. The passes perform different tasks:

The Deliberator performs time consuming processes regarding all aspects of the recent
situation like choice of goals and long term planning. It sets up a partial hierarchical
plan. Following the least commitment idea, the plan is refined as time goes on.
Normally the deliberator does not have time problems since he works with sufficient
forerun. Time critical decisions are left to the executor.
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Figure 4: Option Tree with Intention Subtree

The Executor performs the contemporary decisions. Based on the preparatory work of
the deliberator, its search space is restricted to a minimum of decisions using the
most recent sensory information. In contrast to classical layered architectures, the
executor considers all levels in real time.

Both lines of operation are independently running passes through all () levels of the
hierarchy: Thus we have a ”Double Pass” run time structure. This is in contrast to
runtime organization in layered architectures (where short time decisions only affect the
lowest level) and in programming languages (where only the procedure on the top of the
stack is active).

5.1 Options

The data structure from which goals (or desires and intentions) are chosen from are the
options. The set of options can be considered as a (virtual) tree structure with long term
options near the root and specific short term actions near the leaves. An example from the
football/soccer domain is given in Figure 4. The numbers (e.g. in DoublePass/1) denote
the role (first player) in a cooperative behavior.

An option is performed by appropriate suboptions as defined by the tree. There are two
kinds of connections between options and suboptions:

e Choice-Options can be performed by different, alternative suboptions (e.g. a pass
can be performed by a forward-kick, a sideward-kick etc.), cf. Figure 5 for a Petri Net
description of the alternatives of an offensive option. Transition firing depends on
side conditions. "MaxUtility” means temporal priority for the transition with highest
utility according to the recent situation. Other conditions are boolean valued.

e Sequencing-Options are performed by a sequence of suboptions (e.g. the suboptions
of a double pass as described above), cf. Figure 6 for a Petri Net depicting the
suboptions of the double pass option from the perspective of the player with the role
DoublePass/1.

For clarity, the both kinds of connections are not mixed. This is similar to Prolog concepts:
alternative suboptions correspond to different clauses of a predicate, sequenced suboptions
correspond to the subgoals in a clause.
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Figure 5: Example of a Choice-Option

Choice-options describe the different possibilities in the context of that option. Delib-
erator activities consist of choices from the alternative suboptions (e.g. using utilities),
calculating appropriate parameters (e.g. the player to cooperate with in a double pass)
and decisions concerning the termination (or cancellation) of intended activities. Alterna-
tive plans can be provided if a plan is canceled. The hierarchical structure allows for local
decisions. Redeliberation (if needed) is performed in a given context.

Sequencing options describe the steps (suboptions) needed to perform a higher level option.
There have to be well-defined criteria for the transitions from one suboption to the next
one. The evaluation of these criteria is time critical because they are performed by the
executor when acting in response to the newest sensory data.

According to deliberation and execution, options can be in different states. The delib-
erator chooses options/suboptions to be executed as intentions/subintentions, their state
is then called ”intended”. They build a subtree of the option-tree as shown for a double
pass in Figure 4. The complete intention subtree must contain one subintention for each
choice-option starting in the root down to some leaves, and all subintentions for each se-
quencing option. Using the least commitment principle, the intention tree has the form of
a hierarchical partial plan. Subintentions describe the plan parts on different levels.

At any concrete time point, there exists a unique path in the intention subtree (cf. Figure
4) from the root to a leave consisting of the active options. This path is called activation
path. At the time when the first player passes to the second one, the activation path con-
sists of 7 PlaySoccer”—" Offensive”—”DoublePass/1”—"Pass”— ... down to a concrete action
(e.g. a kick-command with specified power and direction).

The executor performs the transition (as soon as the related condition is satisfied) from an
active option to the subsequent option (as provided by the plan in the form of a sequencing
option), and then the subsequent option becomes active. For example, after the pass is
finished, the player starts running for a new position (cf. Figure 6). Transitions are
checked (and performed if conditions are fulfilled) by the executor on all levels following
the activation path.

Besides intentions, the deliberator can also prepare desires as candidates for forthcoming
or alternative intentions. Desires build a subtree similar to intentions. The deliberator
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may choose between different desires when he has to decide for an intention. Desires can
be used as fast available alternatives for the executor when he has to stop a plan according
to unexpected situations. As an example we might think about the fast switch to scoring
a goal (because the situation allows it) instead of continuing the double pass (a related
transition can be added to the Petri Net in Figure 5).

5.2 Deliberator

The aim of the deliberator is the preparation of intentions as partial hierarchical plans
(built from options) without any time stress (cf. Figure 4). It can prepare this plan (as a
desire) while the executor is still performing an old intention. For example, the deliberator
evaluates the available plans after an intercept while the robot is still running for the ball.
At the same time, other players can evaluate their contributions to the possible plans
of their team mate. As in real football/soccer, planning from stretch is difficult because
of the indetermination of other player’s behavior. Instead we can use so-called standard
situations.

Standard situations provide generic cases of cooperative play. Using methods from Case
Based Reasoning (CBR, cf. [Lenz-et-al98]), a concrete situation can be matched to the
standard situation. For example, a triggering feature for the double pass is an opponent
on the way of an offensive player controlling the ball. The standard situation (the ”case”)
provides a standard scheme (”solution”) for an intention. Using CBR methods for adap-
tation, a concrete intention can be specified. The option hierarchy serves as a structure
for describing cases (cf. Section 6).

The deliberator computes long term decisions. It can be understood as the deliberate-
function from Figure 3.

5.3 Executor

Short time behavior should rely on the newest available data: Hence there is no place
for time consuming deliberations. The advances and the drawbacks of stimulus-response
approaches and layered deliberative approaches have already been discussed. Stimulus-
response architectures allow for fast reactions, but cannot handle complex long term be-
havior, while layered deliberative architectures can handle complex long term behavior,
but have problems with dynamically changing situations.

The concept of the special executor pass through all layers is proposed as a solution. It
works according to the recent activity path in the intention subtree. It starts from the
root and proceeds level by level down to the leave which specifies the next output action
to be executed by the robot. On each level it performs certain tests (e.g. if a subintention
should terminate or stop), and it can calculate parameters according to the newest data
(e.g. for performing an optimal kick). If a subintention is terminated, it performs the
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transition to the next subintention. It may also switch to a desire and make it the new
intention.

It is essential that all tests and calculations of the executor can be performed in short time,
and that they are performed on the appropriate level. All time consuming computations
should be performed by the deliberator in time before. The structure of options must be
designed for these purposes.

The executor works as soon as new actions are to be performed, and as late as the newest
data relevant for these actions can be analyzed. This can be done concurrently to the work
of the deliberator - which at the same time prepares and specifies later activities for the
executor. In a strictly sequential approach, the executor must interrupt the interpreter.
Concrete implementations are possible in different ways, they are still in an experimental
state.

The executor operates over the restricted search space of the intention tree provided by
the deliberator. It can be understood as the implementation of the execute-function from
Figure 3, but regarding all levels.

5.4 Main Features of the Double Pass Architecture

The option hierarchy allows for unique descriptions of behaviors and plans on different
levels. All levels are treated the same way. An important feature of the Double Pass
Architecture is the possibility of immediate reactions on all levels. It can be described
as a ”"doubled one-pass-architecture”: One-pass-architectures have a control flow which
passes through each level only once. In our case, the control flow is directed top-down
from the highest level to the lowest one. The difference consists in the fact, that there are
two separated passes: One pass for the deliberator which prepares commitments (e.g. goal
and plans), and another path for the executor which allows for real time reactions on all
levels. The executor allows for a certain kind of stimulus-response behavior on all levels,
where the stimulus-response behavior has been prepared by the deliberator. The executor
realizes real-time behavior, while the deliberator acts without short time constraints.
Classical layered one- and two-pass architectures in complex dynamical environments have
serious synchronization problems. Computations on higher (deliberative) layers are per-
formed in longer time intervals, and rapid responses to changes in the environment are
possible only at the lower (reactive) layers. The executor of the Double Pass Architecture
works in short time intervals like the reactive components of classical layered architectures,
but it passes through the higher levels, too. This is possible without synchronization prob-
lems since the deliberator prepares a restricted search space (the intention tree) for the
executor.

The requirement to run through all levels by the executor needs a special runtime organi-
zation. Most runtime organization methods in programming are based on stacks, where a
higher level method is called again only when the lower level has terminated. This holds for
imperative languages as well as for descriptive ones, and it is used in agent architectures,
too. The implementation of the new runtime strategy is still under work.

6 Conclusion, Further Work

The paper has discussed different aspects of basic approaches for robot/agent control.
The notions of persistent states (concerning the past and the future, respectively) have
been identified as characteristic concepts. Different approaches can be classified along
these lines. They provide more clear differences than the classical notions of reactive
and deliberative behavior. The classification helps to identify the problems of real time
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controls in dynamical environments when long term planning is involved. The Double Pass
Architecture was proposed to avoid the difficulties of layered architectures in dynamically
changing environments. It allows for fast adaptations to new situations even on the higher
levels.

Future plans include the use of the new architecture for robot learning. The project
” Architectures and Learning on the Base of Mental Models” of the research program 1125
”Cooperating teams of mobile robots in dynamic and competitive environments” granted
by the German Research Association (DFG) investigates the usage of CBR methods for
control of robots. The cases correspond to generic behavior which can be specified and
adapted according to the current situation. There are two main goals for using CBR:
The first goal is the efficient control, while the second goal is learning from experience.
Learning can be twofold: New cases can be acquired as templates for behavior, and the
usage of existing cases can be improved by better analysis and adaptation methods.
There have already been some attempts to use CBR-methods for Robot Control, e.g.
for opponent positioning models [Wendler/Lenz98], and for problems of self localization
[Wendler et. al.00]. The investigations in opponent modeling have discovered a problem of
dynamics when using CBR for low level behavior: As soon as the team tries to adapt to the
opponents positions, the opponents did change to other positions. In the consequence, we
need adaptation to higher level strategies. The option hierarchy serves as a structure for
describing higher level cases. It gives room for off-line learning as well as on-line learning.
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Abstract: The joint achievement intention represents the common task of agents to achieve
collectively and is an important concept to specify and analyze the social behaviors in
multi-agent system. The paper discusses the meaning and characteristics of joint achievement
intention, analyzes the limitation and problems in existing work, defines the joint achievement
intention with new and clear semantics based on the logic framework of multi-agent system,
specifies and proves its important properties. The novel formal model of joint achievement
intention can be used to effectively support the development of multi-agent system.

Key words: multi-agent system, joint achievement intention, belief

1. Introduction

Agent is an encapsulated computational entity that is situated in some environment, and that is
capable of flexible, autonomous action in that environment in order to meet design objectives
[11]. Multi-agent system is composed of a number of interacting and cooperating agents, each
of them having limited capabilities and resources. As the abstract model that agent techniques
provide can express the computational entities and problem-solving manner in applications
more naturally and effectively, much attention has been imposed on the researches of agent
techniques nowadays.

In multi-agent system, as the dependencies among agents’ actions, the limitation of each
agent’s capabilities, and the distribution of system’s resources, the joint work among agents is
absolutely necessary to meet global constraints and natural problem solving. The joint work
among agents represents the social behaviors in multi-agent system. In order to develop the
multi-agent system, we must put forward some effective tools to specify and analyze such social
behaviors, for instance, what is the social behaviors among agents, how will it affect agent’s
actions, how is it related with agent’s internal state such as belief and intention, etc.

In the area of artificial intelligence, agent is taken as an intentional system with such
cognitive components as belief, goal, intention, etc. The representative work is the BDI agent
architecture. However, the agent’s internal cognitive components only define individual
behaviors and, as such, are an insufficiently rich base on which to build a principled
representation of social behaviors. There are two main limitations with the individualistic
approach. Firstly, joint action is more than just the sum of individual action, even if the action
happens to be coordinated. For example, it will be somewhat unrealistic to claim that there is

* The paper is supported by Natural Science Foundation of China with Granted No: 60003002 and 60103009, and
National 973 Project G1999032700, and ZheJiang Natural Science Foundation with Granted No ZD0108.
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any real teamwork involved in ordinary automobile traffic, even though the drivers act
simultaneously and are coordinated by traffic signs. Secondly, there is a fundamental difference
between individuals and groups [10]. Therefore, some new abstract concept model is needed to
describe and investigate the joint social behaviors in multi-agent system.

Joint achievement intention is an important abstract concept in distributed artificial
intelligence to examine the social behaviors in multi-agent system. The paper is structured as
follows. The paper discusses the meaning and characteristics of joint achievement intention
informally (see section 2), introduces the existing research work on joint achievement intention
and analyzes their limitation (see section 3), and based on logical framework of multi-agent
system (see section 4), defines the formal and rigorous semantics of joint achievement intention,
specifies and proves its properties (see section 5). The final section concludes the paper and
outlines directions for future work.

2. Characteristics of Joint Achievement Intention

The joint achievement intention of agent means that agents will together achieve some
preposition by joint behaviors and represents the common task of agents to achieve. It
corresponds to the joint intention concept in [2,3,4,11]. In multi-agent system, the purposes of
joint social behaviors among agents are not only to achieve some collective tasks, but also to
maintain the system state. For instance, there are two robot agents in some environment, which
are assigned the task to move objects from one place to another place cooperatively. In order to
meet the system constraints, some restriction that the object must be moved horizontally and
stably are imposed on the joint social behaviors of the two agents. Obviously, such a restriction
will affect the action choice of the related agent in the process of the coordination. However, the
traditional meaning and theory of joint intention concept cannot represent and analyze such

system constraints, which widely exist in multi-agent system. Therefore, we have introduced a

new and novel concept of joint maintenance intention (the work is introduced in other paper). In

order to distinguish the joint intention from joint maintenance intention, we give a new name to
joint intention as joint achievement intention.
Intuitively, the joint achievement intention has the following properties.

— Action choice, which exhibits some rational choice for future joint behaviors and will
restrict the agents’ actions. The joint achievement intention is the factor that promotes
agents to take joint social behaviors;

— Relativity, including mutual belief and cooperation during the process of joint social
behaviors;

—  Satisfiable, which means that the joint achievement intention of agents is achievable;

—  Persistent, which means agents will not abandon their joint achievement intention in the
process of joint social behaviors, and exhibits some commitment to joint social behaviors;

—  Consistent, which means that it is consistent among several joint achievement intentions,
and agents’ joint achievement intention should be consistent with individual agent’s
internal state;

—  Non-conflict, which means that there is no conflict among several joint achievement
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intentions of agent;

—  Consistent with belief, which means that agents’ joint achievement intention should be
consistent with agents’ belief. If agents have some joint achievement intention, then they
should believe that the joint achievement intention should be achievable.

3. Evaluation of Existing Work

There are many researchers in the area of computer science and philosophy investigating joint
intention. The representative research is Cohen and Levesque’s work [2], which introduces joint
intention concept to handle cooperative intentions. Joint intentions are intended to clarify the
relationships among beliefs, desires and intentions for multiple agents.

Joint intentions’ theory of Cohen and Levesque is developed in three levels. Firstly, they
define weak goals, which specify the conditions under which an agent holds a goal, and the
actions it must take if the goal is satisfied or impossible.

WG(x, y, p) = (—Bel(x,p) A Goal(x, Op)) v ( Bel(x,p) A Goal(x, OMB(X, vy, p)) )

v (Bel(x, [I—p) A Goal(x, OMB(x,y, [I—p)) )

The above definition means that WG(Xx, y, p) is satisfied if and only if one of the following
conditions hold: (1) agent x believes that p is not true and desires p to be true at some future
time; (2) agent x believes that p is already true and desires that y also mutually believes that p is
true; (3) agent x believes that p will never be satisfied and wants y to mutually believes that p
will never be satisfied.

Secondly, they define joint persistent goals for multiple agents.

JPG(x,y,p,q) = MB(X, y, =p) A MG(X, y, p) A

Until(MB(x,y,p) v MB(x,y, =p) v MB(x,y, =q) , MB(x,y,(MG(x,y,p) A MG(y,x,p))) )

In order to hold a joint persistent goal, agents must therefore: (1) Mutually believe that the
p is not satisfied; (2) Hold p as a mutual goal; (3) Hold p as a weak mutual goal until either they
mutually believe that p is satisfied, or they mutually believe that p will never be satisfied, or
they mutually believe that some other condition q will never be satisfied.

Finally, they define joint intentions in terms of weak goals and joint persistent goals.

JI(x,y,a,q) = JPG(x,y,DONE(x,y, Until(DONE(x,y,a), MB(x,y,DOING(x,y,a)))?;a),q)

The theory of Cohen and Levesque gives entire meaning of joint intention. However, there
are a number of limitations and shortcomings in it. Firstly, action choice is the basic and
essential characteristics of joint intention. Their work defines the semantics of joint intention
concept based on the linear temporal logic and possible world model. Therefore, the semantics
definition of joint intention cannot well capture the action choice characteristics. Secondly, the
semantics definition of joint intention includes the modification strategy of joint intention,
which not only cannot well describe the essential meaning of joint intention, but also make the
theory much more complicated. Thirdly, the semantics definition is based on possible world
model, which has logical omniscience problem.

Other researches include Nunes, Raimo, Jennings’s work [3,4,10]. Some of them extend
Cohen and Levesque’s theory, others investigate the joint intention from the point of philosophy.
Here we will not introduce and give comments on them.
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4. Logical Framework

The semantics definition of joint intention is based on logical framework of multi-agent system,
which includes three parts: syntax, model and semantics.The formal language L is the extension
of branch temporal logic CTL*[7], which is composed of two parts: state formulas L, and path
formulas L, defined in the follows. Let ® is the atomic proposition symbol set, Const,, agent
symbol set. To simplify description, the paper has the following symbol convention: p, q,*** as
proposition symbol, and ¢, v, ... as formula, and x, y, ... as agent symbol.

Definition 4.1 (Syntax of Language L) The formal language L is the smallest closed set
defined by the following rules

(1)ifpe @, then peL,

(2) if y, peL, and x, yeConst,,, then =@, yAQ, Bel(x, ¢), MB(X, y, ¢), AI(X, y, ),

MAI(x,y, ¢), MAB(X,y, @) , WAC(X, y, ©) , MAC(X, y, ¢), JAI (X, y, )L,

QB)Lc L,

4) if y, peL,, xeConst,g, then —@, yAQ, v Until ¢, yUntil,; ¢ €L,

(5) if peL,, then Apel,

Definition 4.2 (Formal Model of L) The formal model of L is defined as M = < T, <, Uy, 7,
[1, B, C >, where T is moment set, each member of which representing a world state. < is a
partial order on T, which describes the temporal order among moments. The past of each
moment is deterministic and linear. It’s future may be branching. Figurel give a schematic
description of formal model that is tree-like structure. U,y is an agent set. m: ® — ¢ (T) defines
the moment set at which p is satisfied. [] defines the assignment to agent symbol. B: U,
— 0 (TxT), (t, t')eB(x) means that at moment ¢ agent believes that moment ¢ is possible and is
used to define agent’s belief.

A path at moment t describing some way that the world may evolve is a branch that evolves
from t and is composed of future moment of t.

Definition 4.3 (Path) A path of moment t is a set S < T which satisfies: (1) teS; (2) Vty,
HeS: (t<ty) v (t<t)) v (t;=t)); (3) Vt;, eS; t;eT: (t<tz<ty) = (€S); (4) Vt,€S; t,eT: (<
t) = (Ft3€S: (<) A= (:<t)); G)VueS:(t=t)v(t<t)

(1) denotes that the path of moment t contains t; (2) describes the linearity property of the
path; (3) describes the density property; (4) describes the relative maximum; (5) denotes the
initiate of the path . Let S, the set of all paths at moment t, Sz the set of all paths.

In multi-agent system, each agent takes actions concurrently and asynchronously. At any
moment, agent can take action to influence and control the way that the world evolves. However,
such an influence is limited, because the way that the world may evolve is also influenced and
controlled by the environment events and the actions that other agents take. All of the actions
taken by agents in multi-agent system and the environment events together determine the
evolution way of the world.

For example, Figurel describes a formal model of a multi-agent system composed of two
agents. The node in the figure denotes moment represented by a set of propositions. The edge
denotes the combination of actions taken by all agents. The symbol “||”” denotes that the actions
of several agents are taken concurrently. In order to simplify description, we assume that the
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action symbol on the left part of “||” represents the action of agent; and the right part represents
the action of agent,. At moment t, agent; can take action a to make the world evolve to the
moment t; or t,, or take action b to make the world evolve to the moment t; or t;. But when
agent; take action a, whether the world evolves toward moment t; or moment t; is also depended
on the action taken by agent,. When agent, takes action ¢, then the world evolves to moment t;.
If agent, takes action d, then the world evolves to moment t,.

oooSl

...SZ

oooS3

...S4

".Sﬁ

t
. oSy 10

Figurel. formal model of multi-agent system

C: UyxT— 9 (Ss) is to define joint intention of agent, where C(x, t) is the path set that
agent chooses at moment ¢ and C(x,t)cS;. To simplify research, there is a model constraint:
VteT, xeUy: C(x, t) # D .

The satisfactory semantics of the formula in L, is defined by model M and moment z. M |=
¢ denotes that formula ¢ is satisfied at the moment ¢ in model M. The satisfactory semantics of
the formula in L; is defined by model M, path S and moment t. M |=; v denotes that formula
is satisfied at moment 7 on path S of moment M.

Definition 4.4 (Semantics of L)

(HOM |=p iff tem(p)

@M=ynae iff M=y and M|=0

G)M|=—e iff M#0o

A M |5 A9 iff VS:SeS; = M=, 0

5)M = Bel(x, @) iff Vit (t,t)eB([X))=>M|=¢

(6) M |-, MB(x, y, ) iff M |= Bel(x, @) and M |= Bel(y, ¢)

(DM =y re  iff M=y H M=o

@ Ml=,—e iff M£ @

DM |=, wUntilo iff Ft'eS:(t<t)and (M =, @) and (Vt'": t <t <t' = M |[=5¥)

(10) M|= ywUntily o ifft Vt'eS: (V" t<t" <t = M |5, —0) > M |= vy

(A M=, 0 iff M=, where peL,.

Other operators can be derived based on the above semantics definition. Until is a “until”
operator, Until, is a weak “until” operator. F¢ = true Until ¢ is existential temporal operator. G
is the dual of F and is universal temporal operator. A is universal path operator, Ao is satisfied
at moment ¢ if and only if @ is satisfied on all paths of moment ¢. E is the dual of A4, that is Ep =
—A(—0), therefore E is existential path operator. Bel(x, ¢) denotes that agent, has belief ¢. Here,
we assume that B(x) is reflexive and transitive. Therefore Bel corresponds to the modal operator
in S4 normal modal system.
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Theorem 4.1 Bel has the following properties:
(1) [=Bel(x, 9) = ¢

(2) |= Bel(x, ¢) > Bel(x, Bel(x,p))

(3) |= Bel(x, ¢) A Bel(x, p—>y) — Bel(x, y)

(4) if |= @, then |= Bel(x, @)

5. Joint Achievement Intention Theory

We will extend the intention theory in [1] to establish the theory framework of joint
achievement intention in multi-agent system, investigate the relationship between joint
achievement intention with the belief and intention of individual agent.

5.1. Intention

The achievement intention of individual agent means that agent intends to achieve some
preposition, which is the abstract representation of agent’s task and goal. The formal model of
multi-agent system is a tree-like structure, each branch at any moment denoting the possible
choice that agent may select. The achievement intention ¢ of agent means that agent selects the
world evolving paths, on each of which agent believes that ¢ will be satisfied eventually.

Definition 5.1.1 (Achievement Intention) M|= AI(x, ¢) iff

M= Bel(x, —) and (VS: SeC(x, t) = M |=, FBel(x, ¢))

The above semantics defines the basic characteristic of achievement intention, i.e., action
choice. Different from existing methods, we define achievement intention as the choice of the
world evolving paths, not the accessible relationship between possible worlds. In the formal
model, the world evolving path is related to agent’s action. Such a definition not only clearly
describes the choice characteristic of achievement intention and how agent’s intention will
restrict agent’s future behaviors.

5.2. Joint Achievement Intention

Action choice and relativity are the basic and essential characteristics of joint intention. In the
following we will define the semantics of joint intention based on the two characteristics,
analyze and validate its important properties. One of the preconditions of joint intention is that
the both sides of agents have the common choice, viz. with the same achievement intention.

Definition 5.2.1 (Common Achievement Choice) MAI(X, y, ¢) = AI(x, ¢) A AI(y, ©)

Two agents having the common choice do not mean that they have the joint intention. The
relativity condition must be satisfied before forming joint intention, which includes two parts:
mutual belief intention and cooperation.

Definition 5.2.2 (Mutual Achievement Belief) MAB(x, y, 9)= MB(X, y, AI(X, 9)AAI(y, ¢))

MAB(x, y, ¢) means agent, and agent, mutual know that the two sides have the
achievement intention ¢. In order to define the semantics of mutual achievement cooperation,
we firstly introduce the “weak achievement cooperation” concept.

Definition 5.2.3 (Weak Achievement Cooperation) WAC(X, y, ¢) =

24



(Bel(x, o)A—Bel(x, Bel (y, 0))2>AI(x, MB(x, y, ©))) A
(Bel(x, AG—@)~—Bel(x, Bel(y, AG—))>AI(x, MB(X, y, AG—)))

AG— means that ¢ will never be satisfied on all paths. WAC(X, y, ¢) denotes that agent,
has weak achievement cooperation with agent, with regard to ¢. WAC(X, y, ¢) is satisfied, if
and only if, when agent, knows that ¢ is satisfied and does not know that agent, knows ¢ is
satisfied, then agent, intend to let two sides know ¢ is satisfied, and when agent, knows that ¢
will never be satisfied and does not know that agent, knows ¢ will never be satisfied, then
agent, intend to let two sides know ¢ will never be satisfied. In term of the weak achievement
cooperation, the semantics of mutual achievement cooperation is defined as follows.

Definition 5.2.4 (Mutual Achievement Cooperation) M |= MAC(x, y, ¢) iff

(VS: SeC(x,t) = M |=; (MB(x, y, WAC(X, y, ©) A WAC(y, x, 9))) Until —AI(x, ¢))
and (VS: SeC(y,t) = M |=;  MB(x, y, WAC(X, y, ¢) A WAC(y, X, 90))) Until —AI(y, ¢))

MAC(x, y, ¢) denotes that agent, and agent, have the mutual achievement cooperation ¢.
MAC(X, y, ¢) is satisfied if and only if the both sides mutual know that they will cooperate with
each other until they drop their achievement intention.

Definition 5.2.5 (Joint Achievement Intention)

JAI(X, y, ) = MAI(X, y, ) A MAB(X, y, ) A MAC(X, y, ©)

JAI(x, y, ¢) denotes that agent, and agent, have the joint achievement intention ¢. JAI(X, y,
¢) is satisfied, if and only if, that they have the common choice, and they know their common
choice, and they know they will cooperation with each other during the process of achieving
joint intention. The above semantics definition clearly and exactly describes the essential
characteristic of joint achievement intention, viz. action choice and relativity. Based on the
semantics, a number of important properties of joint achievement intention can be specified and
proved.

Theorem 5.2.1 |= JAI(X, y, ¢) > MB(X, y, —0)

The theorem describes the condition under which agents will accept or drop their joint
achievement intention. agent, and agent, have joint achievement intention ¢ only if agent, and
agent, mutual believe that ¢ is not satisfied. Rational agents will not jointly achieve proposition
that is already satisfied. The theorem can be proved by the semantics definition of JAI, MB and
AL

Theorem 5.2.2 (Consistent) |=—(JAI(X, y, ¢) A JAI(X, y, =())

The theorem denotes that the joint achievement intentions of agents should be consistent.
At any moment, agents cannot have the joint achievement intention ¢ and at the same time have
the joint achievement intention —¢. The theorem can be proved by theorem 5.2.1 and theorem
4.1.

Theorem 5.2.3 (Consistent with individual’s achievement intention)

== (JAI(x, y, 9) A (AI(x, —¢) v AI(y, —0) ))

The above theorem shows that agent’s joint achievement intention is consistent with
individual agent’s internal achievement intention. At any moment, agent will not have the joint
achievement intention ¢ and at the same time have the achievement intention —¢. According to
the theorem 4.2.1, together with the semantics of J4I. MB and A1, the theorem can be proved.

Theorem 5.2.4 (Satisfiable) |= JAI(X, y, ¢) > MB(x, y, EF)

EFo denotes that there exists a path on which ¢ will be eventually satisfied. Agents’ joint
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achievement intention should be satisfiable, or achievable. If agent, and agent, have the joint
achievement intention ¢, then they should mutual believe that ¢ is satisfiable. The theorem can
be proved according to semantics of J4I, MAB, Al, and the model constraint: VteT, xeU,,:
C(x, t) # J in section 4.

Theorem 5.2.5 (Consistency with belief)

|=— (JAI(X, y, ©) A (Bel(x, =EFQ) v Bel(y, ~EF)) )

The theorem shows that agents’ joint achievement intention should be consistent with
agents’ belief. Agent will not have the joint achievement intention ¢ and at the same time
believes that ¢ is not achievable. The theorem can be proved by theorem 5.2.4 and theorem 4.1.

Theorem 5.2.6 (Non-Conflict) |= JAI(X, y, ) A JAI(X, y, ) > MB(X, y, E(FQ A Fy))

The theorem shows that the joint achievement intentions of agent should be non-conflict. If
agent, and agent, have joint achievement intention ¢ and vy, then they mutually believe that
there exists a path on which ¢ and y will be eventually satisfied respectively. The theorem can
be proved by semantics of JAI, MAB, AI, and theorem 4.1.

Persistency is another important property of joint achievement intention. The joint
achievement intention has the following persistency axiom.

Axiom 5.2.1 (Persistency Axiom)

AJAIX, y, ¢) = JAI(X, y, ©) Untily (MB(x,y, ¢) v MB(X, y, = EF@)) )

The above axiom shows that if agent, and agent, have the joint achievement intention ¢,
then agent will persistently hold the joint achievement intention until they know that ¢ is
satisfied or is impossible to achieve. In order to make the axiom sound, some constraint is
imposed on the formal model: VteT; Se Sy; X, yeU,e: M= JAI(X, y, ) =

(Vt'eS: (Vt":t < t"'<t'= M= —(MB(X, y, 9)VMB(X, y, ~EFQ))) = M |= JAI(X, y, ®) )

6. Conclusion

The paper explains the significance and importance of making research on the joint achievement
intention, analyzes the existing work and its limitations, discusses the characteristics of joint
achievement intention. Based on the logical framework of multi-agent system, the new
semantics of joint achievement intention is defined, a number of important properties are
specified and proved. Different from existing work, the semantics definition of joint
achievement intention is not based on the possible world accessible relation, but on the choice
of world evolving paths in the formal model. We don’t incorporate the modification strategy of
joint achievement intention into its semantics definition. Such a semantics definition clearly
captures and describes the basic and essential characteristics of joint achievement intention.

The theorem framework of joint achievement intention can effectively support analysis and
design of multi-agent system, especially investigation of social behaviors of multi-agent system.
The further work includes to specify and validate the interaction behaviors and cooperation
model based on the theorem framework.
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Abstract: The multimodal featuring fusion for natural human-computer interaction involves
complex intelligent architectures facing unexpected errors and mistakes made by users. These
architectures should react to events that occur simultaneously with eventual redundancy from
different input media. In this paper, intelligent agent based generic architectures for multimedia
multimodal dialog protocols are proposed. Global agents are decomposed into their relevant
components. Each element is modeled separately using timed Colored Petri networks. The
elementary models are then linked together to obtain the full architecture. Hence,
maintainability, understandability and the modification of the architecture are facilitated. For
validation purpose, the proposed multi-agent architectures are applied on a practical example.

Keywords: Multimedia multimodal dialog fusion, Multi-agent architecture, Timed Colored
Petri networks.

1 Introduction

With the growing technology, many applications supporting more transparent and flexible
human computer interactions have emerged. This results in an increasing need for more
powerful communication protocols, especially when several media are involved. Multimedia
multimodal applications mean systems combining natural input modes, such as speech, touch,
manual gestures, etc. Thus, a comprehensive command or a meta-message is generated by the
system and sent to multimedia output devices. A system-centered definition of multimodality is
used in this paper. The multimodality conveys two striking features that are relevant to the
software design of multimodal systems:
« the fusion of different types of data from different Input devices, and
* the temporal constraints imposed on information processing from/to Input/Output devices.
Since the first rudimentary but pertinent system, "Put That There" [1], which processes speech
in parallel with manual pointing, different multimodal applications have been developed [2, 3,
4]. Each application is based on a dialog architecture combining modalities to match and
elaborate on the relevant multimodal information. In such elaborations, projects usually begin
from scratch and are generally based exclusively on the experiences of the designers.
Consequently, they remain replications of previous results and limited synergy among parallel
ongoing efforts. Today, there is no agreement on generic architectures that reflects a dialog
implementation, independently of the application type. The main objective of this paper is to
propose a generic architecture to analyze and extract the collective and recurrent properties,
implicitly used in such dialogs.

This paper presents architectural paradigms for multimedia multimodal fusion. These
paradigms use the agent architectural concept to achieve their functionalities and unify them
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into generic structures. The modular structure of the proposed architecture allows easy
monitoring of the global template.

The next Section summarizes the real time requirements of such dialog architectures for
multimedia multimodal applications. Section 3 presents generic multi-agent architectures based
on the previous analysis. Section 4 discusses the use of timed Colored Petri Networks (CPN) to
model such architecture. Section 5 illustrates the proposed architecture with a stochastic timed
CPN [5, 6] example of the classical "Copy and Paste" operations. Simulation tests are processed
using Design CPN Tool Kit [7].

2 Multimodal Dialog Architectures: Overview and Requirements

With the increasing complexity of multimedia applications, a single modality becomes
insufficient to allow the user to interact effectively across environments. A basic multimedia
multimodal system as shown in Figure 1, offers the user the possibility to decide which
modality or combination of modalities are better suited, depending on the task and environment
contexts (see examples in [8, 9]).

N
FUSION OUTPUT MODALITIES 1\

Output
Media 1

USER(S)

CONTROL

Input | Output
Media n Media n
n |
N \ i - :
o 7 ! N ____ _.

Fig. 1. Basic multimedia multimodal model (¢>: interaction, —: action).

i DIALOG |

The environmental conditions could lead to more constrained architectures that have to be
adaptable during the continuous change of either external perturbations or the user’s actions.

In this context a first framework is introduced in [10] to classify interactions. It considers two
dimensions (‘engagement' and ‘distance’) and decomposes the user/system dialog into four

types.

Engagement Distance Type of System
Conversation Small high-level language
Conversation Large low-level language
model world Small direct manipulation
model world Large low-level world

Table 1. Interaction Systems.

The ‘engagement’ characterizes the depth implication of the user in the system. The user feels
that an intermediary subsystem performs the task, in ‘conversation’ case, and that he can act
directly on the system components in ‘model world’ case. The "distance' represents the user
cognitive effort taken.

This framework reaches the idea that two kinds of multimodal architectures are possible [11].
The first one makes fusions based on feature signal recognition. The recognition process steps
of one modality guide and influence the other modalities in their own recognition steps [12, 13].
The second architecture uses individual recognition systems for each modality. Such systems
are associated with an extra process that performs semantic fusion of the individual recognized
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signal elements [1, 3, 14]. A third hybrid architecture is possible by mixing the two previous
types: signal feature level and semantic information level.

At the core of multimodal system design, the information fusion of the input modes is

the main challenge. The input modes can be equivalent, complementary, specialized or
redundant as described in [15]. In this context, the multimodal system designed with one of the
previous architectures (features or/and semantic levels) needs the integration of the temporal
information. Figure 2 (left) shows the possible type of multimodality depending on the time
proximity of the input signals. Time granularity is an important decision criterion when we
generate a multimodal semantic sequence as shown in Figure 2 (right). In this example, it shows
that the chosen multimodality type, for mouse clicks and speech, is the synergistic one. This is
obvious in the example, because the click occurs only during the time when a sentence is said.
The synergistic mouse/speech actions correspond to one statement and the tactile screen action
to another one. Both statements are performed in parallel and could be independent, equivalent,
complementary, specialized and/or redundant.
In other words, the temporal aspect in multimodal architecture does not only handle signals
overlapping. It helps to decide whether two signal parts should belong to a multimodal fusion
set or whether they should be considered as separate modal actions. Therefore, multimodal
architectures are better able to avoid and recover errors that mono-modal recognition systems
can’t recover [14, 11]. This property results in a more robust, natural, human-machine language.
Another property is that, the more timed combinations of signal information or semantic multi-
signal grow, the more equivalent formulations of the same command are possible. For example,
[ “Copy that there” ], [ “copy” (click) “there” ] and [ “copy that” (click) ] are various ways to
represent three statements of a same command (copying a object in place), if speech and mouse
clicking are used. This redundancy also increases the robustness in terms of error interpretation.

/ Example of Parallel Synergistic multimodality:
Parallel Synergistic
L ™\ Because of the time information, ‘tactile screen, is in parallel
Synergistic with the svneraistic ‘mouse/speech’ actions
\ Media
Simultaneous Parallel A Vel ™\
Alternate speech “put that” “there”
Alternate Parallel mouse _!| click ® click ®
Y\
Exclusive
Parallel
Exclusive tactile —
|/ screen A A
\ / Pointing Menu Pointing
\ / (copy command) (object)
_\ ) | B
time

Fig. 2. Inclusion relations between types of multimodality (left), and a three timed media example (right) [25].

Figure 3 summarizes the main requirements and characteristics needed in multimodal dialog
architectures. As shown in this figure, five characteristics can be used in the two different levels
of the fusion operations: the ‘early fusion’ at the feature fragments level and the ‘late fusion’ at
the semantic one [11].

The Asynchronous property gives the architecture the flexibility to handle multi external events
while parallel fusions are still processing. The specialized fusion operation deals with an
attribution of a same modality to a same statement type. (For example, in drawing applications,
speech is specialized for color statements and pointing for basic shape statements.)
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The granularity of the semantic and statistic knowledge depends on the media nature of each
input modality. This knowledge leads to important functionalities. It lets the system accept or
refuse the multi input information for several possible fusions (selection process); and it helps
the architecture choose, between several fusions, the most suitable command to execute or
message to send to an output media (decision process).

The property of parallelism is, obviously, inherent to such applications involving multi inputs.

DIALOG ARCHITECTURE REQUIREMENTS

[Time-sensitivity ] [ Parallelism ][ Asynchronous ]

y ! v

~Semantic Pattern of Operations Sets for Feature
information equivalent, complementary, fragment
level specialized or/and redundant Fusion level

Stochastic-knowledge Semantic-knowledge

Fig. 3. The main requirements for multimodal dialog architecture (—: used by).

The whole requirements suggest strongly intelligent multi-agent architectures, which are the
purpose of the next section.

3 Generic Multi-Agent Architectures

The Agents are entities that can interact and collaborate with dynamic and synergy for
modality combination issues. The interactions should occur between agents and agents should
also get information from users. An intelligent agent has three properties. It reacts in its
environment at certain times (reactivity), takes initiatives (pro-activity) and interacts with other
intelligent agents or users (sociability) to reach goals [16, 17, 18]. Therefore each agent could
have several input ports to receive messages and/or several output ports to send ones.

The level of intelligence of each agent varies according to two major options coexisting today in
the field of Distributed Artificial Intelligence [19, 20, 21]. The first one, corresponding to the
cognitive school, attributes the level to the cooperation of very complex agents. This approach
deals with agents with strong granularity assimilated to expert systems.

In the second school the agents are simpler and less intelligent but more active. This reactive
school presupposes that it is not necessary to each agent to be individually intelligent to reach an
intelligent total behavior [22]. This approach deals with a cooperative team of working agents
with low granularity, which can be matched to finite automate.

Both approaches can be matched to the late and early fusions of multimedia multimodal
architectures.

Obviously, there are all the possible intermediaries between these options of multi-agent
systems. One can easily imagine systems based on a modular approach, putting sub-modules in
competition, each sub-module being itself a universe of overlapping components. This word is
usually employed for ‘sub-agents’.

Identifying the generic parts of multimodal multimedia applications and binding them into an
intelligent agent architecture require the determination of common and recurrent communication
protocols and their hierarchical and modular properties in such applications.
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Fig. 4. Generic Language Agent corresponding to an input modality.

In most multimodal applications, the speech, as input modality, offers speed, a large information
spectrum and relative facility of use. It lets both the user’s hands and eyes free to work in other
necessary tasks present, for example, in driving or moving cases. More over, speech involves a
generic communication language pattern between the user and the system.

This pattern is described by a grammar with production rules, able to serialize possible
sequences of the vocabulary symbols produced by users. The vocabulary could be word set,
phoneme set or another signal fragment set depending on the feature level of the recognition
system. The goal of the recognition system is to identify signal fragments. Then, an agent
organizes the fragments in a serial sequence according to his grammar knowledge and asks
others agents for possible fusion at each step of the serial regrouping. The whole interaction can
be synthesized in a first generic agent architecture, as shown in Figure 4, called Language Agent
(LA).

Each input modality must be associated with an LA. For basic modalities like manual pointing
or mouse clicking, the complexity of the LA is strongly reduced. The ‘Vocabulary Agent’ that
checks whether or not the fragment is known, is, obviously, no longer necessary. The ‘Sentence
Generation Agent’ is also reduced into a simple event thread whereon another external control
agent could possibly make parallel fusions. In such a case, the external agent could handle
‘Redundancy’ and ‘Time’ information, with to corresponding components. These two
components are agents that, respectively, check redundancies and time neighborhood of the
fragments during their sequential regrouping (Figure 4). The ‘Serialization Component’
processes this regrouping. Thus, depending on the input modality type, the LA could be
assimilated to an expert system or to a simple thread component.

Two or more LAs can communicate directly for early parallel fusions or, through another
central Agent, for late ones (Figure 5). This central agent is called Parallel Control Agent.
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Fig. 5. Principles of early and late fusions architectures (L: language, P: parallel, C: control, A: agent, G: grammar,
S: semantic, Sn: sentence, Gn: generation, F: fusion, Se: serialization, Co: component, T: time, R: redundancy and
M: management). More connections (arrows) could be added or removed by the agents to gather fusion information.

In the first case, the ‘Grammar Component’ of one of the LAs must carry an extra semantic
knowledge for the parallel fusion purpose. This knowledge could also be distributed between
the LA’s ‘Grammar Components’, as shown in Figure 5 (left). Several Serializing Components
share their common information until one of them gives the sequential parallel fusion output. In
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Fig. 6. Generic Parallel Control Agent for central parallel multimodal fusions.

the other case (Figure 5 right), a ‘Parallel Control Agent’ (PCA) handles and centralizes the
parallel fusions of different LA information. For this purpose, the PCA has two intelligent
components for, respectively, Redundancy and Time managements (Figure 6). These agents
exchange information with other components to elaborate the decision. Then, generated
authorizations are sent to the Semantic Fusion Component (SFCo). Based on these agreements,



the SFCo carries the steps of the semantic fusion process. As shown in Figure 6, Redundancy
and Time Management Components receive the redundancy and time information via the
Semantic Fusion Component or directly from the LA, depending on the complexity of the
architecture and the designer choices.

The paradigms proposed in this section constitute an important step in the software development
of multimodal user interface (Figure 7). Another important phase of the software
development, for such
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Fig. 7. The software development phases of multimedia multimodal dialog architecture.
(ATN: Augmented Transition Nets)

applications, concerns the modeling aspect. Different methods like B_method [24], Augmented
Transition Networks [25], or Timed CPN [6, 7], can be used to model the multi-agent dialog
architectures. The next Section discusses the choice of Colored Petri Networks to model these
architectures.

4 Petri Nets Modeling
Recently small augmented finite-state machines like augmented transitions networks
have been used in the multimodal presentations system [26]. These networks easily

conceptualize the communication syntax between input and/or output media streams. However,
they have limitations when important constraints such as temporal information and stochastic
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behaviors need to be modeled in protocols of fusion. Timed Stochastic Colored Petri Networks
offer a more suitable pattern [5, 6, 7] to design such constraints in multimodal dialog.

For modeling purpose, each input modality is assimilated to a thread where signal
fragments flow. Multimodal inputs are parallel threads corresponding to a changing
environment that describes different internal states of the system. Multi-agent systems are multi-
threaded: each agent has a control on one or several threads. Intelligent agents observe the states
of one or several threads for which it is designed. Then, the agents execute actions that modify
the environment. In a more formal way [17],

if A={a; a;...} (1),
and O={0;05...} (2),
are the sets of actions and observations of an agent, respectively

and if; S={si;8:5... } 3),

is the set of states with which the environment is described (including intermediary states), then
the Petri network models two kind of activities described by the functions

Observation_function: S O 4),
Environment_function : SxA 2° (5).

The first function describes what an agent observes, in a certain state s;. The second one

describes how the environment develop the state s; when an action a; is executed.

The Petri network models also the actions of the agents described by the function
Action_function : O A (6).

The characteristic behavior of an agent action in an environment is the set ‘History’:

HiStOI‘y = { hl, hz, ...hi, eos } (7)

of all sequences of the observations defined by

hi: (S 0) —adg— (S]) — A7 e (Si) —aAi— ... (8)
with a; = Action_function (<sy, ..., s;>), Vi 9
and s; = Environment_function (s;_;, a;;),V ,i# 0 (10)

(so is the initial state of the system).

To summarize the precedent transaction, the Petri network has to model the functions (4), (5),
(6) and also the input media threads with the design CPN toolkit [7]. In the following, it is
assumed that this toolkit and its semantics are known. The Petri network is a diagram flow of
interconnected places (or locations represented by ellipses) and transitions (represented by
boxes). Labeled arcs connect places to transitions. The CPN is managed by a set of rules. The
rules determine when an activity can occur and specify how its occurrence changes the state of
the places by changing their colored marks. The set of colored marks in all places before an
occurrence of the CPN is equivalent to an observation sequence of a multi-agent system. Each
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mark is a symbol that could represent signal fragments (pronounced words, mouse clicks, etc.),
serialized or associated fragments (comprehensive sentences or commands) or simply a
variable. In CPN each mark can be of all the data types generally available in a computer
language: integer, real, string, Boolean, list, record and so on. These types are called colorsets.
Thus, a CPN is a graphical structure with associated computer language statements. A transition
represented by a box can model an agent. The observation function of an agent is simply
modeled by input arc inscriptions and also by the conditions in each transition guard
(symbolized by [conditions] under a box in the example represented figures 12). Input arc
inscriptions specify data that must exist for an activity to occur. When a transition is fired (an
activity occurs), a mark is removed from an input place and the transition activity modifies the
data associated to the mark and thereby changes the state of the system (by adding a mark in an
output place). If there are colorset modifications to perform, they are executed by a program
associated to the transition (The program is written in a dashed line box close to the concerned
transition as shown in figures 12 (a) and (b) and the symbol IEI specifies that a code is attached
to the transition). Also, output arc inscriptions specify data that will be produced if an activity
occurs. Thus, CPN provide an extremely effective dynamic modeling paradigm. In summary,
the set of colored marks in all places before an occurrence of the net is equivalent to an
observation sequence of a multi-agent system. A transition represented by a box can model an
agent as shown in the examples of Figure 8.

Input Threa (fragment1,(p11,p12...)) Intelligent |(fusionfragmentstand2,(p11,p12...), (p21,022...
pen » gen O " n
Parallel LU

A

» Thread

Fusion
@ (fragment2,(p21,p22..)) [  Agent
[condition1]
1’(fragment1,(p11,p12...)) . (Serialfr 1and2,(p11,p12...), (p21,p22...))
Input Threa ++1’(fragment2,(p21,p22 '"te"'ge”t Output
» Serial p( Thread
Fusion
condition2]

1’(fragment1,(p11,p12...))

@ ++1’(fragment2,(p21,p22
1'(fragment3,(p31,p32...)) Intelligent | (sp ((p31,p32...), (p41,p42...),(p11,p12...),

Input Threa ++1'(fragment4,(p41,p42 [  Serial (p21,p22....),(pi1,pi2...), (pk1,pk2...))) Output

Parallel P\ Jhread

Fusion
Agent

A

1’(fragmenti,(pi1,pi2...))

Input Threa ++1’(fragmentk,(pk1,pk2

[condition3]

A

Fig. 8. Principle of parallel, serial and serial—parallel fusions modeled by Petri Nets.

In Figure 8, the variables, like ‘p11°, ‘p12’, etc (beginning with the character ‘p’), are used to
represent the time, grammatical and semantic informations of the signal fragments. The next
section shows the use of variables in a practical example. The observation function of an agent
is simply modeled by the conditions in each transition guard. The transition activity modifies
data and thereby changes the states of the system.
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5 Simulation example

In this section a typical example of a distributed architecture is presented. The ‘Copy
and Paste’ architecture chosen involves a high level LA, for speech modality, linked, by a PCA,
to a rudimentary mouse clicking LA. Tables 2 and 3 give the wocabulary, used by the speech
LA, and the basic corresponding grammar. Each word has a label used in the network design.

Word Word label

open 1
close 2
delete 3
copy 4
paste 5
cancel 6
that 7

Table 2. Vocabulary

Symbolic regular expressions are used to represent semantic elements. These expressions use
the arrow operator for sequential concatenation in the time domain. For example, in the
semantic expression:

(word 1—-word 2)

word 1 is simply followed by (or contiguous to) word 2. In the following table, the codes (last
column) are simply obtained by summing the word labels of each semantic code. The obtained
codes give information used by the speech LA for serial constructions of sentences.

Set of corresponding  Set of corresponding

Set of Sentences Command meaning semantic codes codes
{ (open—that); (open) } Open object {(1-7; (D)} {®); M)}
{ (close—that); (close) } Close object {2-7;2)} {9 @)}
{ (delete—sthat); (delete).} Delete object {3-7):03)} {(10); 3) }
{ (paste) } Past last copied object {5} {5}
{ (copy—that); (copy) } Copy object {(4-7); 4 } {aD; 4 }
{ (cancel)} Cancel last command {(6)} {(6) }

Table 3. Grammar of authorized sentences.

The word ‘cancel’ is a command that automatically cancels the last action among the authorized
sentences. Therefore, if the user says one of the words labeled in the set {1, 2, 3, 4, 5} just after
“cancel”, the time proximity between the two words is the decision criterion for suppressing the
second word or taking it as a next command. For the proposed architecture both scenarios are
processed.Non-authorized sentences used in this architecture are given in Table 4.

Non authorized Corresponding semantic codes Corresponding codes
Sentences
(that), (that—...) ), (7-..) (7), (8)...(13)
(paste—that) (5-7) (12)

Table 4. Grammar of non-authorized sentences and their codes.

The multimodal dialog gives for each sentence a set of possible redundant fusions. The symbol
// models these concurrent associations in regular expressions. For example, depending upon
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temporal information, the first command given in Table 3
semantic fusion set:

is an element of the following

{(click—open—that); (open—>click); (click—>open); (click // open); ((click // open)—>that); (click / (open—>that))}.

This semantic set includes the grammatical sentences corresponding to the command ‘Open

object’. Words temporally isolated and labeled in the set {1, 2,

3, 4, 7} are not considered by the

PCA. The remaining fusion entities like ((close—>open) // click), (click // (delete—open)), etc.
or isolated clicks are also ignored by the system. The whole sets constitute the semantic

knowledge. The main focus in this paper is how to use a timed

semantic knowledge to achieve a

multimodal fusion.The global declaration page, used in the timed CPN example, is shown in

Figure 9 below.

(*GLOBAL DECLARATION PAGE¥*)

(*
(*Proximity time between two events*)

*)

%

val ProxyTime = 100;
(*Average Inter_arrival*)
val ClickArrival = ref 1.0;
val WordArrival = ref 10.0;
(* Color sets *)

*

color Int =int;
color Attribute = product Int * Int * Int;
(* Color sets for mouse event *)
s sk s o sk ok sk sk sk ok stk sk okoskok ok stk sk ook
color MouseClick = with ClickEvent;
color ClickxAttribute = product MouseClick * Attribute timed;
color ME = with me timed;
(* Color sets for speech™)
(*******************)
color WordSaid = with Word;
color WordxAttribute = product WordSaid * Attribute * Int timed;
color WE = with we timed;
(* Color sets for fusion event*)
3 3k sk sk sk sk sk sk sk sk sk sk sk skokok sk sk skokoskoskoskosk
color FusedEvents = with Fused;
color FAttrib =product Int * Int;
color FusedxAttribute = product FusedEvents * FAttrib * FAttrib
(*Variables*)
)
var Word1l, Word2,Word3 :WordSaid;
var n, Fn, Fm, Fm1, Fm2, Fm3, m, m1, m2, m3, p, Fp : Int;
(* Variables for Time *)
(******************)

)

* FAttrib timed ;

var NextClick, NextWord, ArrivalTimeC, ArrivalTimeW1, ArrivalTimeW?2,

ArrivalTimeW3, ArrivalTimeWp, ArrivalTimeW: Int ;
(* Variables for word labels *)
(***********************)
var wt, wtype, wtypel, wtype2, wtype3 : Int;

(* Functions *)

fun intTime()=IntInf.toInt(time());
fun round x =floor(x+0.5);
fun ExpLaw x= round(exponential(x));

Fig. 9. Global declaration page.
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Also, a place filled with a pattern symbolizes a thread with input and output ports, as shown in
Figure 10.

A A A A
ﬂ o o S| ot
[

Fig. 10. Symbolic representation used in figures 12 (a) and (b).

Input (P i) and output (P| [Ouf) ports of the Petri network correspond as well to the
architecture ones (see Figures 4 and 6). The associated network, as shown in Figures 12 (a) and
(b), uses two random generators to design the arrival time of the input media events. The
generators are drawn in the top of Figure 12 (a) with dashed non-bold lines and both are
modeled with the transitions named ‘Click’ and ‘WordSaid’. The inter-arrival time between
two pronounced words as well as the time between two consecutive ‘clicks’, are exponentially
distributed. Events (like words and clicks) are generated or arrived in two different threads (the
places ThreadofClick’ and ThreadofWords’). The time between two click (respectively
word) arrivals has a mean = ClickArrival (respectively = WordArrival). The inter-arrival time
between 2 click (respectively word) events has an exponential distribution with parameter r
=1/ClickArrival (respectively 1/WordArrival). (Mean: 1/r and Variance: 1/(r’) ). The density
function of the inter-arrival time between 2 events is f (x) =r « exp (- 1 « x), if x is greater than 0
and f (x) = 0 elsewhere. The inter-arrival time follows an exponential law, for the words and
also for the clicks. If the proximity time between a word event and a click event is below
ProxyTime and if these two events verify the grammatical and semantic conditions then these
two events are fused into one command. The transitions drawn with bold dashed lines model the
PCA components distributed over the network. Transitions, with bold lines, model the speech
LA components in Figures 12 (a) and (b). The mouse click LA is reduced to a simple thread:
‘ThreadofClicks’. The figures 11 (a), (b) and (c) show the simulation results for
WorArrival=ClickArrival=5000ms and ProxyTime=10000ms. Figure 11 (c) presents the
number of achieved fusions in the time (or the number of marks in the place ‘FusionedMedia’
of the CPN). In the same way, a command can be cancelled if the user says the word 'cancel'
just after an achieved command (the proximity time between the two events: the command and
the word 'cancel' is chosen below (ProxyTime/25)). Figure 11 (b) shows the accumulation of
words in the corresponding thread (or the number of marks in the place ‘ThreadofWords’).
Figure 11 @) shows the resulting cancelled commands in the time (or the number of marks
arrived in the place ‘CanceledCommand’). The transition RecognitionSystem’ (Figure 12
(a)) assigns a random label ‘wtype’ to each word present in the place “WaitRecognition’. This
random assignation does not model a real flowing speech because automatic modeling of user
speech is outside the scope of this paper.

The symbol in LA transition means that such transition is a Hierarchical Substitution ones.
The network in Figure 12 (b) describes interactions at a sublevel of the network in Figure 12 (a).

The symbol in identical places indicates that the places are ‘global fusion places’ [7]. These

identical places are simply a unique resource shared over the net by a simple graphical artifact:
the representation of the place and its elements is replicated with the symbol .

40



Canceled commands

6
§5 °
£ 4 —
3 /
% 3
°
5 Y
5 {
Zz 1 . 2
0

0 500 1000 1500 2000 2500

time (x10ms)
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Fig. 11. (¢) Simulation Results: Achieved fusions.

Modeling with timed colored Petri nets leads multiple advantages. First of all, These nets can
validate a model of timed fusion engine (as shown by the results in figures 11 (a), (b) and (c)).
The arrival time between two consecutive events and he processing time by an agent are
adjustable. These settings can follow laws of probability (exponential, Erlang etc.). Secondly,
the nets are suitable to a distributed modeling where each transition assumes the function of a
specialized agent. The function of each agent is easily modifiable (by changing the guard
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conditions or the code associated to the transition). Besides, modeling a 'fission' (opposite
process of a fusion) is simple to implement because the colorsets of fused marks can keep all the
information for that purpose. For example, on Figures 12 ( a ) and 12 ( b ), the input arc
inscription (to the ‘FusionedMed place) has event numbers m and n corresponding to
pronounced word and click events respectively. Finally processing concurrent independent tasks
is easy.

6 Conclusion

In this paper we have proposed a new agent based architectural paradigms for
multimedia multimodal fusion purpose. These paradigms lead to new generic structures that
unify the several applications in multimedia multimodal dalog. They also offer to developers a
framework specifying different functionalities used in multimodal software implementation. In
a first phase, we have gathered the main common requirements and constraints that multimodal
dialogs need. We have then identified two interaction types related to the early and late fusions.
After identifying the generic recurrent characteristics shared by all modalities, each input media
is associated to a specific Language Agent (LA). The LAs are interconnected directly or through
a Parallel Control Agent (PCA) to perform the dialog. The architecture of the PCA is
decomposed into intelligent components, which provides a modular structure. These
components manage temporal, redundant and grammatical conflicts. The proposed architectures
are modeled with timed Colored Petri Networks and support both parallel and serial fusions. A
typical simulation example, with random input flows, has illustrated our approach. The
simulation allowed us to verify that the proposed architectures performed correctly the expected
fusions.

Acknowledgments : We wish to acknowledge the financial support of the Natural Sciences and
Engineering Research Council (NSERC) of Canada
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Abstract

Analysis and simulation of complex systems is an hard task that requires the use of
proper modeling formalisms and tools. In many cases, no single analysis and modeling
method can successfully cope with the growing complexity of a real system. A multi-
formalism multi-solution approach is very appealing, since it allows to cope with the
complexity of the problem by using different formalisms to model and analyze different
subsystems and also to define reusable building blocks. Nevertheless problems arise
at many levels. The major concerns are: the interoperability of different formalisms
and analysis/simulation tools, the definition and the implementation of mechanisms
to guarantee the flexibility and the scalability of the modeling frameworks and the
development of proper strategies for the analysis of multi-formalism multi-solution
models.

This paper describes a multi-formalism multi-solution approach to the construction
of models based on the integration of different graph-based formalisms. The proposed
approach is based on an object oriented construction method and it is supported
by the DrawNET++ framework through a proper interface to the external solvers
(analysis/simulation engines) realized by means of the XML and XSL technologies.

A simple dependability example is used throughout the paper to describe the
modeling process and the possibility of analyzing a system by integrating two different
formalisms: Fault Trees (FT) and Generalized Stochastic Petri Nets (GSPN).

Keywords: Object Oriented composition of models, multi-formalism modeling, Petri
Nets, Fault Trees.

1 Introduction

Analysis and simulation of complex systems is an hard task that requires the use of proper
modeling formalisms and tools. The complexity of modeling and analysis of real systems
can be mastered through a “divide and conquer” approach: indeed modular approaches to
models construction allow to cope with the complexity of models by defining libraries of
reusable building blocks (sub-models) and encouraging a modeling discipline. Moreover,
modular approaches enable the construction of multi-formalism models and stimulate the
development of multi-solution techniques that take advantage from efficient formalism-
specific solution methods.

*This work is partially supported by the MIUR (Project ”ISIDE”).
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Some formalisms directly support composition in their definition (as Process Algebras),
others do not include any support to composition/refinement of models in their original
definition, but several proposals for adding these features a-posteriori have appeared in
the literature [2, 17].

In the context of multi-formalism multi-solution modeling, it is interesting to observe
that despite the fact that composition techniques of distinct classes of formalisms seem
different, they often have several common aspects. It is thus natural to think of a frame-
work for the composition of multi-formalism models. Some results in this direction have
been achieved within the M&bius project [9]. Nevertheless, much more work should be
done in this line since problems arise at many levels. The major concerns are: composi-
tion issues when integrating sub-models, the interoperability of different formalisms and
analysis/simulation tools, the definition and the implementation of proper mechanisms to
guarantee the flexibility and the scalability of the modeling framework.

This paper describes a multi-formalism multi-solution approach to the construction
of models based on the integration of different graph-based formalisms, using an example
from the area of dependability. The proposed approach is based on (a) an Object Oriented
(OO) methodology and (b) a proper interface to external solvers (analysis/simulation
engines). At the state of our research, the presented methodology is partially supported
by the DrawNET++ framework [14, 13].

With respect to point (a), the proposed method exploits composition, facilitating the
model structuring and (sub)model reuse in a style inspired by the OO paradigm. Some OO
features are present also in other existing frameworks (for example Tangram-II [6]). Our
proposal goes one step further. The key concepts behind our OO construction method are
model metaclasses (allowing formalisms definition and inheritance), model classes, model
instances (objects), weak and strong aggregation.

With respect to point (b), new graph-based formalisms can be created and easily inte-
grated in the DrawNET++ framework without any programming effort. In particular, the
nodes of a graph may represent domain specific sub-models expressed in some underlying
formalism by an expert model designer, and presented to the final user as black boxes with
proper interface and connectors. In order to allow the different formalisms and solution
methods to inter-operate an XML description of the sub-models is used. The back end
of the framework is an interface towards the solvers that consists of (1) XSL filters to
translate the XML representation of the DrawNET++’s models into the formats used by
the external solvers, (2) scripts for running solvers, (3) filters to feed the results back into
the XML models representation.

This approach differs substantially from that advocated in the Mdbius project [9] where
new formalisms, composition operators and solvers are actually implemented within a
unique comprehensive tool but all formalisms are required to be described in terms of a
predefined general framework [10].

The paper is organized as follows. Sec. 2 briefly places our work in the context of the
fault trees analysis techniques and introduces the simple example we will use throughout
the paper. In Sec. 3 the OO model construction method is described and applied to the
example. Sec. 3 mainly deals with multi-formalism modeling, whereas Sec. 4 presents a
new multi-solution strategy developed for the class of applications of the running example
which combines Fault Trees (FT) and Generalized Stochastic Petri Nets (GSPN). Finally,
Sec. 5 describes the architecture of the DrawNET++ interface to solvers needed to support
the FT/GSPN integrated solution approach.
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2 A primer on FTs and mixed FT analysis techniques

FTA (Fault Tree Analysis) techniques are widely used to model the failure modes of de-
pendable systems [15, 16]. A minimal cut set (MCS) of FTA shows a minimal combination
of component failures (or Basic Events, BEs) leading to system failure (the Top Event,
TE), i.e. to the occurrence of an undesirable event. FTA tools allow to compute all the
minimal cut sets for a given FT model as well as their probability, and the probability
of the TE. Such analysis methods are efficiently applicable only under quite restrictive
hypothesis. The quantitative analysis of Fault Trees (FT) models assumes independence
among component failures and it is based on combinatorial solution methods. State space
solution methods are necessary to include more flexibility and expressive power (e.g. de-
pendence between basic faults, repair, complex fault tolerance strategies).

Mixed solution methods are however possible, based on the concept of “minimal”
independent subtree [1, 12]; in this case a state space method can be applied only to the
smallest sub-models that actually need it. The result of the subtree analysis can then
be fed back into the upper FT part to perform combinatorial analysis. To perform state
space based analysis, a suitable formalism must be used: we have chosen GSPN, since
automatic translation from FT to GSPN formalism is possible.

Complex gates may be included in this case, as well as subsystem repair facilities
(with or without constraints on the number of available repair facilities). It turns out that
GSPNs can be used to express the most common repair strategies, and a repair GSPN
sub-model can be easily composed (using a place superposition operator) with the GSPN
automatically obtained from a FT. This leads to a multi-formalism model of a dependable
system, allowing to combine FT and GSPN sub-models and to apply a multi-solution
method to solve the resulting model.

In this paper we will use a FT case study to present our approach which wants to
exploit the advantages of an OO modular approach to the modeling of systems. In order
to represent repairs at the FT level, we compose FT models with pre-defined blocks
representing GSPN sub-models of repairs (i.e. Repair Blocks, RBs).

The FT example used throughout the paper is presented in Fig. 1, where (k:n) gates
are used. It is the F'T model of a highly redundant multiprocessor system which consists
of three subsystems SUB;, ¢ € {1,2,3}, a shared memory M; and two buses connecting
the subsystems and the shared memory.

Each subsystem SUB; consists of a processing unit CPUj;, a local memory M; and two
disks Di’j, jE {1,2}

Redundancy is adopted at the system level (through the two bus lines) and at the local
level (the two disks contains the same data). Moreover, the shared memory may be used
to replace each local memory if it fails. Note that, as a matter of fact, a FT model can be
an acyclic graph, since one or more BEs may be common to different subtrees (like M in
the example).

At the system level a fault occurs if the two buses fail or two out of three subsystems
simultaneously fail. At the subsystem level a fault occurs in the following cases: either
the CPU fails, or both the disks fail, or both the shared and the local memory fail.

The presence of a shared memory introduces a dependence among the subsystem, since
the BE representing the related fault is a leaf that is common to the subtrees representing
the three subsystems in Fig. 1. A slightly different version of this example will be also
used in the paper where My is removed and a redundant local memory is added to each
subsystem. In this case the subsystem fails when both its memories fail.
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OrCDMM_1 Top Event

OrCDMM_2

OrCDMM_3

Figure 1: A FT model of the multiprocessor system

In the next sections, we will extend the FT model of the multiprocessor system with
repair actions in order to evaluate the system unavailability when a preventive maintenance
policy is implemented, e.g. the repair of a subsystem or the repair of one part of any
subsystem is activated as soon as it fails.

3 The OO model construction methodology

In this section we introduce a new approach to multi-formalism modeling of systems. In
order to define scalable and flexible mechanisms to integrate different formal languages
we are developing a framework based on the concept of Metaformalism and an object
oriented methodology to create models and reusable models libraries. All the concepts
introduced in the following will be illustrated in the next subsections by means of the
running example.

A Metaformalism is a language used to describe graph-based formalism, i.e. for-
malisms whose elements are nodes and edges, such as Petri Nets, Queueing Networks,
Fault Trees. In other words a Metaformalism is a formal language that allows to easily
define any graph-based formalism within our modeling framework.

According to our methodology the development of a model is accomplished by adopt-
ing an object oriented approach. Paraphrasing Booch’s definition of object oriented pro-
gramming [5], we want to provide “a modeling method in which a model is organized
as cooperative collection of sub-models!(objects), each of which represents an instance of
some model class, and whose classes are all members of a hierarchy of model classes united

!Since in our approach each model can be regarded as a part of a more complex system, in the following
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via inheritance relationships”.
To this purpose we define a three level object oriented system:

e Level 1: Model Metaclasses. The first level addresses the formal languages to be
used in the modeling framework. The formal languages are all described through
the rules expressed by the Metaformalism. We call Model Metaclass (Metaclass for
short) any formalism description expressed through the Metaformalism. The FT
formalism is described by the FT Metaclass, since it defines the elements that can
be used to build FT models.

e Level 2: Model Classes. The second level addresses the sub-models specification. A
sub-model at this level is not a concrete entity existing in time and space yet. It is just
an abstraction, called Model Class, which facilitates the grouping of set of objects
sharing a common structure consisting of nodes and edges and a set of parameters
to be defined at object instantiation time. Such structure must be compliant to its
Metaclass, i.e. a Model Class is specified by means of the elements described by its
Metaclass.

e Level 3: Model Objects. The third level addresses the sub-models instantiation. At
this level sub-model (Model Objects) are created and used to build a complete model.
A Model Object is a tangible entity completely characterized by the actual value of
all the parameters specified in the structure of its Model Class, for example the
firing rates of the timed transitions or the initial marking if its reference formalism

is GSPN.

At the state of our research, the inheritance relation is introduced at the level of the
Model Metaclasses. It is possible to build hierarchies of Metaclasses and it is also possible
to build hierarchies of elements within a Metaclass. For example it is possible to define the
GSPN formalism by inheriting from the Petri Net (PN) formalism, moreover is possible
to define both the AND node and the OR node of the FT formalism by inheritance from
the a common ancestor, the GATE node.

Metaclasses inheritance implements the well known “is a” relationship. If the Metaclass
D is derived from the Metaclass B, the structure of D shares the elements defined by the
structure of B. The advantage of using Metaclass hierarchies is that through the hierarchy
a better abstraction is realized that allows to identify the common properties of models.

Elements inheritance inside a Metaclass is still an “is a” relationship at a lower level.
An example of use is for the definition of edges that must be able to connect different
types of nodes belonging to the same “family” (e.g., in the FT formalism event nodes can
be connected to GATEs, independently of the specific gate type).

To support submodel composition it may be necessary to explicitly define interface
elements and interface connection edges in a proper “wrapper” formalism, in particular
when submodels (explicitly) defined through a formalism F1 are included into models
described in a different formalism F2, then it is mandatory to define in a third "wrapper”
formalism new edges that can connect elements belonging to F1 and F2. .

A complete model can be built in two different ways:

1. A flat model is a model built by using the formalism elements defined by a given
Metaclass, e.g. a Fault Tree model obtained by using the FT Metaclass, or a GSPN

the word 'model’ is often used interchangeably with the word ’sub-model’.
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model obtained by using the GSPN Metaclass. A flat model may be a complete
model or it can also be stored as a Model Class to be reused.

2. A composed model is a model containing at least one Model Object or at least
one Model Class. In the former case it is usually intended to be a final model, in
the latter it is intended to be a new Model Class.

The composition (also referred as aggregation in the following) is accomplished by
connecting the interfaces of the objects through proper edges and operators. We call
this operation a “weak aggregation”.

If the composed model is built to be a new Model Class, (some of) the interface nodes
that have been used to create the composed model might have to be hidden. We
call this operation “strong aggregation”, since it is a form of aggregation association
with strong ownership and coincident “lifetime” of the contained objects as part of
the whole.

The described methodology supports the multi-formalism modeling in a very natural
way. Different formalisms can coexist in the same model implicitly or explicitly. An
implicit multi-formalism model is defined at the Model Metaclasses level by extending the
formalism definitions with implicit nodes. An implicit node represents a part of the model
that is not defined at the specification and design time, but it contains all the information
necessary to define it. In other words, an implicit node could be replaced by a sub-model
expressed through a different formalism. The implicit nodes may be added into an existing
formalism by Metaclass inheritance.

An explicit multi-formalism model is defined by allowing to define composed models in
which Model Objects or Model Classes are included that are defined by means of different
Metaclasses.

In this paper we will use the implicit multi-formalism approach by defining a Repairable
Fault Tree Metaclass (RFT), inheriting from the FT Metaclass. The implicit node defined
by the RFT Metaclass is a Repair node (called Repair Block in the rest of the paper) which
implicitly defines a GSPN model of a repair action. The proposed framework however
allows also the explicit version, since repair nodes may be replaced by submodels described
according to a GSPN Metaclass definition.

In the following we discuss the implementation of our method within the DrawNET++
framework [14, 13].

3.1 Metaformalism and Metaclasses

DrawNET++ supports the proposed methodology since it allows to define and manipulate
graph based formalisms and provides some OO features. It relies upon the XML technol-
ogy: an XML description of the formalism must be defined to customize the DrawNET++
graphical editor to design models based on that formalism and generate an XML descrip-
tion of the model.

Thus, it is straightforward to express the Metaformalism by a Document Type Defini-
tion (DTD) and the Metaclasses by XML specifications compliant to the Metaformalism
definition.

The FT Metaclass (partially) reported in Fig. 2 describes the formalism used to model
the multiprocessor system introduced in Sec. 2.
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<!DOCTYPE formalism SYSTEM "formalism.dtd">
<formalism parent="" name="FT">
<propertyType name="Title" default=""/>

/’<?xm1 version="1.0" encoding="UTF-8" standalone="no"?> \7

Definition of
nodes "Event"

<nodeType parent="" name="Event0"> and "Basic Event",
<propertyType name="Label" default=""/> both inheriting
</nodeType> from "Event0"

<nodeType parent="Event0" name="Event"/>
<nodeType parent="EventO" name="BasicEvent">
<propertyType name="Distribution" default="ALL EXP 1.0"/>

</nodeType>
Definition
of gate types
<nodeType parent="" name="Gate"/>

<nodeType parent="Gate" name="And"/>
<nodeType parent="Gate" name="Or"/> Definition of all arcs,
with constraints

<nodeType parent="" name="G20£3"/> on nodes connections

<edgeType parent="" name="Arc">
<constraint fromType="Gate" fromCardinality="1"
toType="Event" toCardinality="1"/>
<constraint fromType="G20f3" fromCardinality="1"
toType="Event" toCardinality="1"/>
<constraint fromType="Event0" fromCardinality=""
toType="Gate" toCardinality=""/>
<constraint fromType="Event0" fromCardinality=""
toType="G20f3" toCardinality="3"/>
</edgeType>
\‘</forma1ism> Y,

Figure 2: The XML definition of the FT Metaclass

A Metaclass defines the kind of nodes and edges that a model may include, e.g. types
of events, gates and arcs in Fig. 2. Nodes, edges, and formalisms themselves are all called
elements.

Edges have also associated a set of constraints that tell which kind of elements that edge
may connect. For example, the “Arc” element defined in Fig. 2 specifies which connections
are allowed between events and gates. Constraints can also specify a cardinality: that is
the maximum number of edges of that kind that may start “from” or end “to” a particular
element.

Since constraints are expressed in terms of elements, an edge can connect not only two
nodes, but also other edges and sub-models. As a result, Model Classes or Model Objects
can be handled as they were nodes.

All elements have one or more “properties” that are the private attributes of the
Model Classes and that will be set when creating a Model Object. An additional attribute
called wvisibility is used to define the interface elements: the edges can connect elements
according to their constraints, and also the elements of sub-models that have the visibility
property set to true.

Turning to our example, an extension of the FT Metaclass with a Repair Event (RE)
is necessary to extend the FT formalism and analysis techniques by adding repair actions.
In Fig. 3 the RFT Metaclass is shown that inherits from FT and extends it by adding
a “Repair” node and a proper edge so that the “Repair” node can be linked to one of
the events in the tree. The “Repair” node is an implicit node: it relies on an external
specification of the repair policy.

A “Repair” node corresponds to a RB (Repair Block), and since several repair policies
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/'<?xml version="1.0" encoding="UTF-8" standalone="no"?> N
<!DOCTYPE formalism SYSTEM "formalism.dtd">
<formalism parent="FT.xml" name="RFT">

<nodeType parent="BasicEvent" name="RepBE">
<propertyType name="RepairDistribution" default="EXP 1.0"/>
</nodeType>

<nodeType parent="" name="RepairNode">
<propertyType name="Name" default=""/>
<propertyType name="RepairDistribution" default="EXP 1.0"/>
<propertyType name="Policy" default="SingleRepairTime"/>
</nodeType>

<edgeType parent="" name="RepairArc"s>
<propertyType name="RepLabel" default=""/>
<propertyType name="EventLabel" default=""/>
<constraint fromType="RepairNode" fromCardinality="1"
toType="Event" toCardinality="1"/>

</edgeType>

</formalism>

Figure 3: The RFT Metaclass derived from FT

are possible, it must include some information on the particular policy it represents. In
this paper we assume that a repair block causes the elimination of the fault event by
eliminating all its potential causes. The properties “Policy” and “RepairDistribution”
will be used to define the implicit behavior at the solution time.

Finally, the RFT Metaclass redefines the “BasicEvent” node ('RepBE’ in Fig. 3) by
adding a new property “RepairDistribution” used to specify the time distribution of the
repair action needed when that BE occurs.

3.2 Model Classes and Model Objects in DrawNET++

Classes are useful to create a library of sub-models to be used by an end user. Fig. 4 shows a
FT flat model representing a subsystem of the second version of the multiprocessor system
(with no shared memory). A FT sub-model is a subtree whose interface is defined to be
the top event of the subtree.

Once the FT flat model of the subsystem has been created, it can be saved as a Model
Class, since it represents an abstraction of a system component. The final model of the
multiprocessor system will be a composed model containing three instances of this Model
Class, i.e. the three Model Objects SUB_IND1,SUB_IND?2,SUB_IN D3 graphically
represented by squares in Fig. 5 (a). They are obtained by specifying different names for
each object and giving distinct values to the properties of the elements of the Model Class
in Fig. 4, for example the proper values of the fault rates of the BEs. The model in Fig. 5 (a)
is a weak aggregation (i.e., a model obtained by instantiating and connecting submodels).
Fig. 5 (b) shows a high level representation of the system obtained after applying strong
aggregation (i.e. transforming the model in Fig. 5 (a) into a new submodel which hides the
interfaces of the three submodels composing it). The interfaces (events SUB;, i € {1,2,3})
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Figure 4: An example of Model Class

used to connect the three Model Objects to the G20f3 gate (in Fig. 5 (a)) have been hidden
and they are no longer visible. The whole processor subsystem has been encapsulated in
a Model Class whose instance named “processing” is used to build the complete model.

4 GSPN representation of RFTs

This section introduces the basic concepts needed to describe the multi-solution method
of Sec. 5. In particular it is explained how an RFT component can be transformed into
a GSPN model by (1) automatic translation of FT objects and (2) composition with the
GSPN implicitly defined by each RB.

Automatic translation of a FT into a GSPN. Let us briefly explain the FT to
GSPN translation algorithm: for more details the reader can refer to [11, 4]. Each Basic
Event BE in the FT is modeled with the subnet in Fig. 6(a): the firing time associated
with the timed transition represents the time to failure of that BE. Each gate in the
FT is translated into one or more transitions, connected to the places representing the
input/output events of the gate (see Fig. 6(b) and (c)).

The subnet representing all BEs, and those representing the gates, are then superposed
on places with equal label, forming the logic structure of the FT. An example is given in
Fig. 6(d), where the translation of the subtree of the multiprocessor FT starting at event
CD1 is shown. The state space of the GSPN represents all possible evolutions of the model
through its possible failure states.

GSPN models of repair boxes. Let us introduce some possible semantics for the RBs
and their translation in terms of a GSPN that can be automatically composed (through
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place and transition superposition) with the GSPN of the FT (generated as explained in
the previous subsection).

Let OFE; be a repairable event of an FT (i.e. an event connected with an RB): it
identifies a subtree of all events that may lead to the occurrence of OF;. Let us assume
that OF) represents the failure of a given system component C: depending on the type
of tree originating in OFq, the repair actions allowing to bring component C back into
the operational state may differ. Hence the RB should include enough information to
express the repair strategy to be followed: in the rest of this section we shall consider a
repair strategy called complete repair, consisting of repairing all the basic subcomponents
corresponding to the BE leaves of the subtree originating in OFE; (which has the side
effect of repairing all the events on the path from the leaves to OF;). Other strategies
are conceivable, and in principle any strategy that may be modeled by a GSPN might be
directly embedded in the RB node by explicitly associating a GSPN submodel to it. In
this section we show how the GSPN of the complete repair strategy can be described in
parametric form and automatically generated.

Let us consider the multiprocessor FT example in Fig. 1. If a repair box is connected to
event C'D1, the complete repair strategy would require to repair the BE Disk1l, Disk12
and CPU1 (and hence indirectly also D1). Observe that repairing C D1 may affect also
the fault status of SUB_1, Proc and the TE.

There are some possible choices in modeling the complete repair strategy:

(1) the time required to perform the whole repair may be modeled by a single timed
transition or as a (parallel or sequential) composition of several times, one for each occurred
BE in the subtree; in the former case, this time should depend on which subset of BE has
caused failure event OFEj;

(2) possibility of new BE occurrence during the repair of OF;: when component C is
under repair, is it possible that some not yet failed BE fails during the repair? And once
a subcomponent has been repaired, may it fail again before the whole repair of C has
completed? (this last case of course can be considered only if the OF; repair action is
modeled as a set of separate repair actions, one for each basic subcomponent);

(3) infinite versus finite repair facilities: it might be necessary to consider the fact that
a repair action can take place only if a repair facility is available to perform it. Repair
facilities may be local to a RB, or shared by several RBs. If at most n repair facilities are
available to a given RB, the time needed to complete the repair will have to be adjusted
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accordingly. Moreover if the repair facilities are shared, we may want to establish a policy
for the assignment of such facilities to RBs (e.g. a policy based on priorities, with or
without preemption).

Let us sketch two parametric GSPNs modeling the repair of a given component, both
assuming that new BEs may occur during the repair, and differing in the number of timed
transitions used to represent the whole repair. In case several timed transitions are used
to model the repair we assume that an already repaired BE cannot occur again before the
whole component C repair has completed. For the sake of space we make a simplifying
assumption: the subtree originating in OF; does not contain any shared BE (in other
words, any path from the TE to the leaves of OF;, contain OF;). Observe that shared
BEs may exist since an FT may actually be a DAG instead of a tree (as is in the case
of the running example when a unique shared memory is used for replacing a failed local
memory).

The two GSPN models of a repair box for CD1 are depicted in Fig. 7 and Fig. 8: the
subtree originating in C' D1 includes the event D1 and basic events Diskll, Disk12 and
CPU1. Moreover, on the path from the TE to C'D1 there are two events, namely SUB_1
and Proc. The two models can be easily generalized to an arbitrary number of BEs and
intermediate events (by repeating the same pattern for each BE and event in the sub-
tree). The first model comprises an immediate transition and a place (StartRepCD1 and
RepCD1) representing the start of repair, a timed transition RepTimeCD1 modeling the
time needed to complete the repair and a subnet for the deletion of the tokens representing
a failure from all places corresponding to events in C' D1 subtree, as well as from the places
corresponding to the TE and the events on the path from the TE to CD1 (in the example
SUB_1 and Proc). By so doing, not only all events potentially causing C'D1 are cleared
upon repair, but the effect of the repair is also propagated to all the events which depend
on CD1, all the way up to the TE: in case the repair of C' D1 is not sufficient to make the
upper events operational, then the GSPN shall automatically regenerate the appropriate
tokens in the corresponding places using the immediate transitions representing the FT
gates logic (transitions ¢_orl,t_or2 and t_and in the example of Fig. 6(d)).

The second model is slightly more complex, since several timed transitions are included
(RepDiskll, RepDiskl12 and RepCPU1), representing the repair time of a single basic
subcomponent. The enabling of this transitions is conditioned on the fact that the corre-
sponding failure has occurred (e.g. input place CPU1 ko) and that the repair action has
started (input place RepCD1). When the repair has completed, place CPU1_rep becomes
marked, place CPUl ko is emptied, while place CPU1l remains marked (preventing the
occurrence of further failures for CPU1). The same holds for each basic event BEi in the
subtree. When all BEs are OK (places BEi ko all empty) the repair has finished, and all
failure tokens can be removed (by the same subnet of high priority immediate transitions
already explained for the GSPN in Fig. 7). Observe that in this model we are assuming
that there are at least as many repair facilities as the number of BEs in the subtree: in
fact, the repair actions of all BEs can proceed in parallel.

Other variants of these models are possible, for example for handling shared BEs, for
modeling limited repair facilities, or for forcing a given order in the repair of the BE in a
subtree: for space reason they are not presented in this paper.

The repair submodel(s) can be composed with the GSPN representation of the FT by
applying a composition operator which glues together two models by superposing places
or transitions with same label in the two nets: in our case the models should be super-
posed over the places representing events, and on the transitions BEiFail, representing the
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occurrence of basic failure event BEi. Once the complete GSPN has been obtained, the
unavailability probability of the TE at a given time ¢ can be computed (e.g. using the
transient analysis module of the GreatSPN package [7]).

5 Solving the model

In this section a strategy is presented to solve the composed models described in the pre-
vious sections. The logical architecture of the interface to the involved solvers is outlined.
Indeed, our methodology requires that solving strategies and their related solution proce-
dures are defined in order to achieve multi-solution analysis of multi-formalism models.

5.1 A multi-solution strategy

A central issue in approaching complex FT models analysis is choosing the most efficient
solution method. State space based solution techniques can be very computation intensive:
on the other hand the efficiency of combinatorial methods can be exploited only at the
price of giving up advanced features such as repair. For this reason a modular approach
is proposed in this paper to take advantage of both techniques.

Our method is based on the identification of the set of independent modules to be
solved with different techniques.

We introduce the following definitions:

Definition 1 An independent subtree without repair, also called combinatorial solu-
tion module (CSM), is a subtree that (a) does not share any event with other subtrees,
(b) does not contain any RB, (c) none of its ancestors is connected to an RB. A CSM is
mazimal if it is not contained in another CSM.

Definition 2 An independent repairable subtree, also called state space solution mod-
ule, (SSM), is a subtree of the whole FT that (a) does not share any event with other
subtrees, (b) contains at least one RB, (c) none of its ancestors is connected to an RB. A
SSM is minimal if it does not contain neither a CSM nor a (smaller) SSM.

Definition 3 Let F be a FT including a SSM or CSM module M. A M — reduced FT
Fj& can be obtained from F by substituting M by a Basic Event BEy, “equivalent” to M.
A Basic Event BE A, is said to be equivalent to a module M if its occurrence probability
at a given time t is equal to the occurrence probability of the Top Event of M at time t.

The basic idea of the multi-solution strategy consists of iteratively reducing the whole
FT by substituting independent subtrees with an equivalent BE whose occurrence proba-
bility is obtained by solving the corresponding subtree.

Observe that it may be the case that the combinatorial techniques apply some form of
decomposition for efficiency reasons: we do not deal with this aspect in this paper.

Fig. 9 shows an example of reduction applied to the multiprocessor system with no
shared memory and with repairable subsystems SUB.i (i.e., we are assuming that a RB
has been connected to each event SUB_i). In this case the three SUB; subsystems are SSM
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modules. Each one is translated into a GSPN net and solved by a proper analysis tool,
e.g. GreatSPN, as explained in Sec. 4.

The resulting fault probability is the occurrence probability of the equivalent BE
“SUB;BE”. The resulting FT model can be solved by combinatorial analysis techniques,
e.g. by means of the SHARPE package [18].

Fig. 10 shows an example of reduction applied to the multiprocessor system with
shared memory, assuming that event M M; is repairable (Fig. 10(a)). The presence of M,
introduces a dependence in the system. The reduction can be initially performed on the
three CSM modules consisting of the CPU; and the local disks (CD; subtree). Each of
them is solved by the SHARPE tool. The resulting fault probabilities are the occurrence
probability of the equivalent BEs “C'D;” in Fig. 10(a). Then the whole processing subtree
is translated into a GSPN and solved by GreatSPN. The obtained fault occurrence is
assigned to the equivalent BE “processing” (see Fig. 10) and the resulting FT is solved by
the SHARPE tool.

5.2 The logical architecture of the interface to the solvers

Fig. 11 describes the DrawNET-++ interface to the solvers. In this case we suppose that the
analysis tools to be used in the multi-solution technique are the GreatSPN and SHARPE
packages.

The architecture consists of two levels:

1. The RFT hierarchical pre-processor level, that is responsible for analyzing the XML
representation of the model produced by DrawNET++, identifying and separating
the XML parts describing SSM and CSM modules. The RFT hierarchical pre-
processor has also to manage the RFT structural information to insert the failure
probability of the equivalent BEs into the higher level modules in the hierarchy.

2. The Translator level, that is responsible for the processing of the XML description of
the SSM and CSM modules. In particular the tools at this level have to: a) generate
the GSPN translation of the Repair Blocks (RFT2PN); b) generate a GSPN model
representing the FT component of the RFT module (FT2PN); c¢) generate the proper
XML format versus external tools by means of XSL filters (FT2SHARPE).

The GSPN net produced by the RFT2PN and FT2PN module are then composed with
the ALGEBRA tool [3] which returns the complete GSPN RFT module.

Where XML is not employable in the translation versus external solvers, due to the
need for proprietary formats, an appropriate translation is performed to/from XML to
normalize parameter exchange.

Finally, global results are translated in XML and returned to DrawNET++ so that
they can be shown to the user by the graphical interface.

6 Conclusions

In this paper we have shown the feasibility of a multi-formalism multi-solution approach
based on the definition of a simple language (Metaformalism) to define graph formalisms
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and on a OO methodology to develop multiformalism models. Multi-solution is achieved
by defining a proper back-end interface versus different solvers. The overall approach is
partially supported by the DrawNET++ framework. With respect to other approaches,
we allow to easily design new formalisms and models structuring and composition schemes,
as well as support to interoperability of different solvers.

The application example used throughout the paper concerns the construction and
analysis of dependability models using two different formalisms, namely FTs and GSPNs.
The proposed method however is by no means limited to this application domain nor to
these formalisms, on the contrary the flexibility of the approach allows to apply it to any
application area and model description formalism and related solution methods and tools.

The dependability example considered in the paper is based on a user level formal-
ism appearing as a simple extension to FT, called RFT, including Repair Blocks (RB);
both formalisms can be easily defined within DrawNET++ using its Metaformalism lan-
guage. Several different repair strategies can be defined and embedded into the RB nodes,
in the form of a parametric GSPN model representation, with an interface suitable for
composition with the GSPN translation of the repairable subtrees in the FT.

Models can be structured in a hierarchy of submodels, allowing to both manage the
complexity of the model design process, and also partition the model in such a way
that it suggests how a multi-solution algorithm may be applied (with the support of
DrawNET++). An architecture has been defined for a DrawNET++ back-end that con-
stitutes an interface between DrawNET++ and the SHARPE FT solver and the GreatSPN
GSPN solver. The basic idea consists of repeatedly applying the most appropriate solu-
tion algorithm to the FT submodels (starting from the inner ones in the hierarchy), and
bringing the result back into the upper level models. An additional module could be inte-
grated in the post processor, implementing an algorithm to check the proposed hierarchical
structure, and possibly modify it (in a user transparent way) for achieving a more efficient
combination of solution techniques.

In the proposed example the hierarchical nature of the model suggests a simple hi-
erarchical solution scheme, however any (more complex) scheme might be embedded in
the back end, based on the assumption that the model structure (implicitly or explic-
itly) includes all the needed information to decide how to decompose it for applying the
multi-solution algorithm, and that there is a way to make the solvers interact (typically
by feeding the results from one solver into the input model of another solver). Of course
the implementation of the back end realizing the connection between different formalisms
and solvers is not trivial, however we believe that this approach is appealing because it
enables the reuse of existing solvers, and allows to quickly experiment in a flexible way
combinations of different solvers.
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Abstract

Building enterprise applications using component-based frameworks has been suggested
as a way to help companies manage their software assets. We propose tool support for man-
aging these high-level data-centric applications with formal methods. Our method is based
on extracting a system model from the models of components and from the application code
which glues the components together. This model is used for generating state spaces that can
be checked for desired or undesired properties. In order to manage the state space explosion
problem we propose that the application developer controls some parameters of the model.
Even though the insight of the application developer is still needed, we believe that creating
tool support for the proposed method could contribute to the success of the component-based
approach.

Keywords. software components, transactions, abstractions, verification, Java

1 Introduction

Enterprise application systems have traditionally been used to integrate internal business processes
within companies.

The current trend is to expand integration across organisations. The objective is to create
more dynamic trading partner relationships, to reduce costs and to increase the productivity of
companies participating in a networked economy. This trend sets high demands for companies to
maintain and modify their core systems.

Enterprise application systems have often evolved from in-house development projects. The
alternative is to buy a packaged solution from an outside software vendor. Compared to a packaged
product, an internally developed system could better match the needs of the company. On the other
hand, in-house development costs must be carried solely by the company, while software vendors
can distribute their costs to a larger number of clients. Also, the package vendor gains experience

*This research was financed by the Helsinki Graduate School on Computer Science and Engineering, by Jenny and
Antti Wihuri Fund, and by Academy of Finland (Project 47754).
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when delivering solutions to different companies, which allows it to incorporate best practice into
the package. With internal development this is harder to achieve.

Buying a packaged solution does not come without difficulties either. When the package is
installed and configured, the final result can be more determined by the abilities and options of
the package rather than the needs of the organisat®@n Choosing a monolithic package is a
commitment that locks the customer into a business relationship with the vendor for a long time.
Sometimes this is mutually beneficial, but it could turn out to become harmful if the vendor is not
capable of offering the support needed, or goes out of business.

1.1 The Component Approach

A middle course between the “make” and “buy” approaches is to build the system from reusable
components. In this approach, the core system contains only minimal functionality, and the nec-
essary tailoring is done by composing distinct encapsulated entities within the system framework.
Component-based frameworks are partial implementations that provide fundamental elements,
structural integrity and extension points.

Components are packaged software artifacts that provide functionality through a set of well
defined interfaces. Component-based systems are expected to become a key business productivity
solution for suppliers and consumers in the application magkdt [The anticipated benefit is
a flexible and economical infrastructure, where organisations have a considerable choice of pro-
curement to create customised solutioBg].[ System acquisition and modifications should also
become more manageable, because the modular architecture allows components to be deployed
and updated individuallyl?]. Well-defined interfaces isolate component development from the
rest of the system.

Figurel gives a simplified picture of a component-based framework application. The picture
demonstrates how the framework invokes application code, which extends and refines the frame-
work. The application code acts as glue between the framework and the components. Some of the
business rules are contained within the application code, but most program code, such as database
access, is hidden behind the component interfaces.

We believe that there is a great demand for tool support for managing applications built using
component-based framewaorks. This article presents a proposal for extracting models from applica-
tion code and the components it accesses. These formal models can be explored to check whether
the application behaves as required. Many problems must be solved to make such an approach
possible. Among other things, the process of extracting a model should be highly automated, and
the state spaces generated by the resulting model should at the same time be both manageable and
correspond to the implemented behaviour. Last but not least, application coders must be able to
specify the system requirements and to see the error traces in terms familiar to them.

1.2 Outline

The rest of this article is organised as follows. SecRogiscusses the economic and environ-
mental preconditions that must be satisfied before software verification can be used for manag-
ing component-based framework applications. Se@idescribes an application environment in
terms of architecture, software processes and tools that make it possible to extract verifiable mod-
els from applications developed in the environment. It also contains a code excerpt from a sample
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application we use to clarify our method. Sectibdefines our modelling framework of enterprise
applications at a conceptual level. It describes what kind of questions the model should be able to
answer, and it discusses some modelling considerations, which must be taken into account. Sec-
tion 5 revisits our example and shows how a developer might use the proposed tool. Finally, we
discuss some related work and conclude our presentation.

2 Preconditions for Component Software Verification

2.1 Economic and Environmental Preconditions

The component approach, as such, does not guarantee to solve all the problems in enterprise
application software management. The components and the framework must be designed to meet
industry requirements—not a trivial task at all. Everything must adapt to the customer environment
and be manageable by both the customer and the vendor. The integrity and the functionality of
the system must be guaranteed even when third party components are integrated. Conventional
software engineering practices, such as requirements analysis, system modelling, version control,
testing and documentation, retain their importance in component-based system development.

More advanced software engineering techniques, such as automated software verification,
could contribute to the success of component-based systems. Applying formal methods to com-
ponent systems gives a profoundly different starting point for third-party component markets. A
formal model—an abstract description of a system—can be thoroughly analysed by computer tools
to increase confidence in the system working according to the specification. System models can be
derived by composing the high-level application logic with models of the system framework and
the components. Verification techniques have the potential to decrease maintenance costs, too.
Costs could be saved by simulating or verifying the impact of application changes on a formal
model. Automated verification runs could replace some of the otherwise required testing.

2.2 Architecture, Process and Tool Preconditions
To successfully apply verification techniques in industrial-scale application development, the en-
vironment has to fulfil a number of requirements:

Precisely defined architecture. As verification is based on a model, the results are meaningful
only if the model corresponds to the executable application on an abstract level. This requires that
the application structure is precisely defined and implemented.

69



High quality repeatable processes. In the same way, the correspondence between the model

and the application necessitates that the design processes used to create the executable code and
the verifiable model are repeatable and of such quality that small deviations in the design process
do not lead to substantial differences.

Integrated tool support in the development environment. Constructing verifiable models
manually would consume too much time and require highly specialised skill. Automated tool
support eliminates these problems as well as errors in translation. Verification tools should accept
input directly from the elements created by the developer in the design domain and map the output
back to the design domain.

3 The Environment of the Component Framework

3.1 Enterprise Application Architecture

Enterprise applications are data-centric systems where persistent data is stored in databases and
processed by application programs. Typically, enterprise applications build upon a client—server
architecture where business rules are implemented on the server side, and clients take care of the
user interface.

In industrial software packages, databases usually follow the relational nk&jeChapter
2.3]. The conflicts that may arise when several processes access the database simultaneously are
resolved usingransactiong 23, Chapter 9]—atomic sequences of operations. Either the effect of
all operations are committed to the database, or the whole transaction is rejected.

In a database management system, operations belonging to different transactions are inter-
leaved with each other for performance reasons. In a formal model, the operations of database
management system can be abstracted by serialising the transactions, allowing the model to pro-
cess only one transaction at a time.

3.2 An Example Application: Processing Orders

To gain more insight into component-based enterprise application frameworks, we show an extract
from an example application in Figu&a). The application codds invoked by the framework
when an order is entered. The involved components are shown in the UML diagram of Elgure
The code retrieves customer and item information from the database, updates the order with this
information and stores the order into the database.

The semantics of the example deserves some additional remarks:

o If the method raises an exception or returns the error cotkdsef the framework will roll
back the transaction, so that no changes are committed to the database.

e The method does not store any internal state between successive calls. The persistent state
is kept in the database.

e Most of the implementation is hidden behind component interfaces.

1This method could be implemented in the J2EE architecFifi a session bean.
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private boolean process_OrderEntry(Order 0)
throws Exception {
Customer ¢ = dbCustomer.load(o.getCustomer_id()); Customer
if (c == null) {
error_notfound(o.getOrder_id(), o.getCustomer_id());
return false;
}
Item i = dbltem.load(o.getltem_id());
if (i == null) { Order
error_notfound(o.getOrder_id(), o.getltem_id());
return false;
}
o.updateOrder(c, i);
dbOrder.store(0);
report_ok(o.getOrder_id(), "order entry"); ltem
return true;
}
(a) a method implemented in Java (b) the components

Figure 2:An application for processing orders.

— The objectglbCustomer anddbltem are simple components, whdsad methods sim-
ply retrieve objects from the database.

— The composite componedbOrder hides a more complicated implementation. In this
example, we assume that the methktde tries to combine the new order with an open
order the customer might have. If no such order exists, a new order is stored into the
database.

e Some code, such as calls to the logging facilittesr_notfound andreport_ok, does not
affect the state of the application and should be omitted from the model.

3.3 Software Processes

Maintaining a component-based software system requires that repeatable processes be followed to
manage the framework, the components, and the application code. The majority of the application
lifetime costs are incurred by the maintenance per® Chapter 30]. From the customers’

point of view, most maintenance tasks are likely to concern application code modifications and
occasional deployment of new components.

In order to make application modifications more effective, we propose that automated veri-
fication takes place before system level testing. The objective is to gain more insight into the
application than could be achieved by pure static analysis techniques. In this step, a system
model—derived from the application code and the components—is explored with a verification
tool that presents any errors as executions of the application code.

The proposed automated verification step requires that for each deployed component, there is a
model of its implementation. In order to guarantee this, both the models and the implementations
should be the results of the component design process.

71



The tools that assist in these processes are described in the following section.

3.4 Tool support

To automate the verification step, we need a tool which parses the application code, accesses a
library of component models, composes the parsed application code with the component models
and feeds the result to a model checker. This tool should also map any error traces from the model
checker back to execution traces of the application code.

To ensure that a component implementation conforms to its model, we propose the following
procedures to be aided by tools:

Automated derivation of simple models. Models for simple components could be produced
automatically from the same repository information from which the implementations are gener-
ated. Examples of such components are object/relational mapping routines, which allow the data
in relational databases to be stored and retrieved as objects.

Automated derivation of composite models. When a component is implemented by wrapping
other components together with application code, its model can be derived automatically by com-
posing the parsed application code with the models of the wrapped components. This can be
accomplished with the same tool that creates system models.

Manually maintained models. Models for the most complex components must be maintained
manually. This is tedious, but the involved cost is justified if the component can be sold to several
installation sites.

Manual work easily leads to differences between the model and the implementation. Confor-
mance testingd] could help to locate the errors. The manually constructed component model acts
as the specification that the implementation can be formally tested against. Again, conformance
testing should be supported by tools.

4 Formalising Component-Based Applications

In order to analyse a system, an automated tool needs a description of both the implemented
and the desired behaviour. The system implementation is transformed into a formal model that
generates a state space, such as a high-level Petri net. The desired properties are formulated in
logic or as automata. Some properties can be derived automatically, others are retrieved from a
library or specified by the application developer.

A model of an enterprise application is bound to have a huge number of reachable states.
Therefore, the model must be structured and designed carefully. This section describes the main
elements of the model and how they relate to the application. It also discusses the properties we
would like to extract from the state space graph, and how the model should be built to limit the
effects of the state space explosion as much as possible.
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4.1 Modelling Elements

The core model can be mapped to shared memory multiprocessing. The shared memory is the
database, and the competing processes are the transactions initiated by the environment.
These elements relate to the architecture in Fidurethe following way:

Environment. The environment models the application framework and the inputs from the
clients. When state space exploration techniques are applied to a model, the model must rep-
resent a closed system, which means that the behaviour of the environment must be specified. The
environment invokes methods of the application code, initiating a transaction for each request.

Transactions. Transactions model service execution within the application framework. If all
operations succeed within the application code and within the components invoked to serve a
request, the changes made to the persistent objects are committed to the database. Otherwise, the
persistent state remains unchanged as the transaction is rolled back.

Application code. Application code may implement business logic or components, or extend or
connect existing components.

To ease the extraction of models, application code is written in a subset of the Java program-
ming language, comprising assignments, conditions, loops and virtual method calls. Some con-
structs, such as threads, have been deliberately excluded.

Simple components. These are the basic building blocks made available to application develop-
ers. Each operation in the component interface is defined with one or more transitions. The model
can behave nondeterministically.

Database. The database is the persistent data-store of the application. Operations are grouped
in transactions, which can be either committed or rolled back.

4.2 The Properties

Verification or model checking refers to the process of checking whether a model of a system
behaves according to its specification. Automating this step requires that both the model and the
behaviour requirements are in machine readable format.

Model checking is a useful tool in situations where new functionality is added to the system.
Implementing the functionality might require changes to be made in several locations in the appli-
cation code, and the application coder would like to gain assurance that he has correctly identified
these locations.

When a property is violated, the verification tool should report an error trace, an execution
sequence leading from the initial state of the system to the error. At the coarsest level, the error
trace should display the names and parameters of the components that are executed. Sometimes
the user would like to view parts of the trace in more detail, showing individual statements and
variables in the application code.

In enterprise applications, many properties can be derived automatically from database defini-
tions and program code. Only high-level requirements need to be formulated interactively.
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4.2.1 Safety Properties

Safety properties are requirements on finite executions. Intuitively, they are statements of the form
“nothing bad happens”. For example, if a business function requires that a new database field is
always initialised in certain business situations, the application coder can phrase rules or assertions
such as “Fieldk is set whenevey holds.”

Enterprise application databases are most likely designed to contain fields recording status
information, such as whether an order has been accepted, or whether it has resulted in a delivery
or a sent invoice. Safety properties can express requirements which may refer not only to several
such status fields at once, but also to a history of states. This allows us, for example, to verify that
the status fields fulfil a requirement such as “if an invoice is sent, a delivery must have occurred
and the order must have been accepted.”

Data integrity rules. Many relational database management systems have built-in mechanisms
for ensuring the integrity of stored data. It is possible to restrict the set of allowed tuples by
defining row constraints (e.g., “the delivery date of an order must be either null or later than the
registration date”) or foreign keys (e.g., “each order item row must refer to an existing order”).

Whenever a tuple is inserted, modified or removed, the database management system checks
all relevant rules and rolls back the transaction if any rule is violated. The rules form a safety
net against errors that may occur in exceptional situations. These rules might never be violated in
basic tests, but exhaustive verification will find all violations by testing all possible cases.

Assertions in program code. Many programming frameworks include an assertion facility. The
program code may be instrumented with Boolean conditions that reflect the programmer’s assump-
tions. Rules can be specified for the data passed to or returned by methods, or as arguments to a
special “assert” macro that aborts program execution if the specified condition does not hold.

Such assertions can be automatically transformed to safety properties of the model. Similarly
to database integrity rules, the assertions are most likely to fail in exceptional situations that can
be best found in exhaustive testing.

Identifier pool alert. Section4.3.2 explains why abstract identifiers are needed in the model
and describes our solution for managing the state space explosion problem by using small enough
data domains. Deadlocks may occur if these identifiers run out. This is not necessarily an error
in the application, but it may be caused by the model where the number of available identifiers is
limited. A safety guard can assist the user in managing the identifier domain sizes. When the last
identifier is taken, the safety guard is triggered to indicate a potential problem. The occurrence of
this event would suggest that the domain should be enlarged. Such checks should be optional.

4.2.2 Liveness Properties

Verifying that a system never reaches an erroneous state is a very powerful way to increase con-
fidence in the correctness of the system. However, sometimes this is not enough, and we want to
claim that “something good eventually happens,” such as “an order entered into the system will
eventually also be processed.”
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A liveness property is violated if there is an infinite execution where progress is not guaranteed.
Usually this means that some actions can be repeated infinitely in the system, and the same states
are visited again and again.

When expressing liveness properties we need also to assume that certain actions receive fair
treatment. When strong fairness is assumed for a transition, it must be executed infinitely often if
it becomes enabled infinitely often.

In our example, where orders are entered and processed separately, we must assume that nei-
ther transaction is neglected in order to verify that each order eventually results in a delivery.

Some of the more complicated application behaviour requirements can only be specified by
the designer, who expects the application to behave in a certain way. This task can be eased by
providing the designer witBpecification patterngg], templates of formulae or property automata.

4.3 Modelling Considerations

We shall now consider the modelling elements from Sectidnin more detail.

4.3.1 The Environment

Domains of transaction parameters. The domains of transaction parameters greatly affect the
number of reachable model states. Validated input is stored into a database, which can become
quite large. This behaviour is reflected in the model so that enlarging the input domains result
in even larger state spaces. In order to manage the state explosion problem, we have to limit the
domains. When the application developer is allowed to select the input domain sizes individually,
he can check different aspects of the system. Obviously this approach relies on the intelligence
of the user and does not prove the absence of errors. However, checking a restricted model might
reveal errors more easily than testing or simulating a more complete model.

Automatic unification of transaction parameter domains. The application code is statically
analysed to identify the relations between database fields and transaction parameters. Each group
of related fields and parameters is assigned an own domain. Developers cannot be assumed to
keep such mappings up to date, as the system is maintained over a long period of time by different
persons. Unifying the domains is essential for models with scalable domain sizes.

Controlling transaction invocations. One way to attack the state space explosion is to guide
the search by restricting the behaviour of the environment. For instance, transactions for filling in
basic information could have priority over the actual processing transactions. One way to arrange
this is to divide the behaviour of the environment into phases where only certain transactions will
be invoked. Formally, the environment can be defined as a finite automaton whose actions are
labelled with transactions.

4.3.2 The Database and the Transactions

Initialising the database. In the initial state of the model, the database is empty. The model
generates all the possible database states allowed by the application logic, as the environment
nondeterministically initiates transactions.

75



d e
a b c¢
—

(a) the transactions  (b) interleaved executions (c) resource token abstraction

Figure 3:The effect of a resource token on scheduling two transactions.
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Figure 4: Modelling a rolled back transaction. Solid arrows denote committed transactions that
lead from one persistent state to another. A rollback (dotted arrow) leads back to the originating
persistent state, or to an artificial deadlock.

Symmetry reduction of transaction parameter domains and object identifiers. ldentifier val-

ues model objects references in the application code and surrogate keys in the database, such as
item numbers. Symmetry reductioty] can lead to exponential savings by exploiting the fact that

the actual values of these identifiers are irrelevant.

Static analysis can determine the set of operations performed on each domain. Symmetry
reduction is only compatible with assignment and equality test. For instance, integer arithmetics
requires a (limited) domain of integers or equivalence classes.

For each identifier domain, the model contains a pool of available values.

Transactions and resource tokens. Since the database management system isolates transac-
tions from each other, the transactions can be modelled to be mutually exclusive. This can be
arranged by introducing i@source tokel1] that must be “possessed” by the active transaction.
Figure3 illustrates the effect of a resource token. There are two enabled transactions, consist-
ing of 2 and 3 operations. Depending on the order in which the operations in the transactions are
performed, the system will follow different paths to the final state, shown rightmost in Figfimes
and3(c). Only the corner states of the depicted latticespamsistent meaning that the database
is in a committed state. Some of ttransientstates have been eliminated in FigG(e).
The resource token abstraction may interfere with partial order reduc®hng iose tech-
niques work best when the processes in the system are as independent as possible. The resource
token makes all transactions depend on each other. Also, verifying liveness properties requires a
strong fairness assumption for the first transition of each transaction and a weak fairness assump-
tion for the transitions that return the resource token. The model checker algoriMaRm [15]
manages these assumptions in an efficient way.

Rolling back transactions. When a transaction is rolled back, the requested changes to the
persistent data must be ignored. This can be accomplished in two ways (&jgure
(a) by restoring the persistent data from a back-up copy, or

(b) by setting a “rollback” flag that disables all transitions in the model—an artificial deadlock.
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Translating rolled back transitions to deadlocks simplifies both the model and its state space. In a

real system, rolling back a transaction should restore the database to its original state, as depicted
in Figure4(a). In exhaustive state space enumeration, all reachable states of the system are con-
sidered, and deadlock states pose no problem. The search algorithm can still distinguish genuine
deadlock states of the system from these artificial deadlocks by examining the “rollback” flag.

4.3.3 Components and Application Code

Mapping objects to relations. There are two types of data in enterprise applications. The tran-
sient data that is being processed is managed in objects, while the persistent data in the database
is stored as tuples from relational calculus. The models of the components that provide mappings
between tuples and objects must address the following issues:

object identifiers: Compared to the relational data model, the object model adds a level of indi-
rection in the form of object identifiers. A unique identifier or reference is assigned to each
created object. When an object is no longer needed, the identifier can be freed. The dy-
namic allocation of identifiers can lead to a combinatorial explosion unless some reduction
techniques are applied. Our model limits the explosion by purging all objects and identifiers
upon entering a persistent states.

existence tests:Databases are often tested for the existence of records. For instance, the compo-
nentdbOrder introduced in Sectio.2 must determine whether the customer has an open
order, and place a new order if necessary. In Petri nets, transitions are enabled if enough
items exist in their input places. Defining an action for the case when something is absent
requires a modelling trick, such as using a complement place or a counter, or reserving a
special value for denoting absent items.

aggregate operations: Sometimes it is necessary to perform an operation on a group of data, such
as all items that belong to an invoice. The total invoiced amount is the sum of the prices of
the ordered items multiplied by the ordered quantities. When an invoice header is deleted,
the invoice lines listing the billed quantities and identifying the items are deleted as well.
This kind of operations can be modelled in high-level nets by making use of inhibitor arcs,
as Billington demonstrate8, Chapter 8], or by introducing auxiliary attributes that can be
used to limit dynamic quantifications in tiARIA net class16]. For instance, there could
be a derived place that maps invoice identifiers to invoice line counts.

Components and their composition. Component services can be modelled as transitions that
define the effect of invoking the service interface. Nondeterminism can be modelled by defining
conflicting transitions for a service. We call this kind of model elememigle components
Transitions can be difficult to derive automatically, if the logic of the program code is com-
plicated. This limits the use of simple components. More complicated cases can be maintained
manually as discussed in Secti®d. Another possibility is to create composite component mod-
els. They are derived automatically from the application code. Each statement in the application
code is assigned a program counter value within the composite component. A statement corre-
sponds to a transition that performs a computation step and updates the program counter.
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Composite components allow program logic to be extracted automatically from the application
code. The program counter values increase the state space, even though the counter is reset when
the transaction is completed. However, this information is relevant when mapping an error trace to
application code statements. The source code file names and line numbers can be encoded either
in enumerated program counter values or in transition names.

Simple components do not need program counters. Thus, they can be composed with the rest
of the application model by transition substitution. Modelling component execution with a single
transition does not introduce intermediate states in the same way as using a program counter does.

Path compression and nondeterministic choices. Eliminating interleavings with the resource
token, as illustrated in Figurg, can result in some non-branching state sequences in the state
graph. Such sequences can be collapsed by applying path comprds$ion [

Nondeterministic components and conditions within application code introduce branches in
the state space. The branch target states cannot be eliminated by path compression. However,
MARIA is able to distinguish “visible” and “hidden” states. Only the visible states, corresponding
to the persistent states of the model, need to be permanently stored.

Eliminating input validation code with static analysis. Typically, application code validates

its input. Nearly half the code in Figug§a) deals with erroneous input. This code can be omitted
from the formal model if the environment is constrained in such a way that it sends only such
parameter combinations to the method that would pass the validation. This may lead to significant
reductions at the cost of additional static analysis.

Method calls. Object-oriented programs typically contain a large number of method calls. When

avirtual methodis called, the run-time system must determine the type of the objeatiapaltch

the call to the applicable method. Sometimes the call target can be determined at compilation time.
The translation of virtual method calls can be simplified by generating a dispatcher method for

each virtual method. The dispatcher contaisgigch block that branches according to the type of

the object. In each branch, the dispatcher jumps to a method of a derived class. In this way, each

virtual method invocation can be implemented as a non-virtual call to a dispatcher procedure.
Method calls involve some overhead of storing return addresses and copying parameters. For

short methods, it is more efficient to substitute calls to the method with the program code in the

method body. This technique is referred tardming. It can eliminate trivial intermediate states,

but it may also produce significantly bigger models. In essence, it is a tradeoff between the model

size and the number of reachable states.

Folding. Some entities can be modelled as a single high-level Petri net place or as a collection
of simpler places. The choice whether to fold may affect the space and time requirements of state
space enumeration. Folding places adds flexibility to transitions.

For instance, when the control flow of a program is modelled with a single high-level “program
counter” place, awitch statement can be translated into a single transition that jumps to one of the
case labels. If there was a separate program counter place for each statement in the program, the
program flow might be more clearly visible from a graphical presentation of the net, but translating
theswitch statement would require more transitions, in fact one for eastilabel.
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Figure 5:An abstract view of an order processing application.

Similar choices can be made in data type definitions. When a class hierarchy is translated to a
single data type definition, objects of a base class can be stored in the same place, no matter which
derived class it belongs to. Defining separate data types for derived classes requires a set of places
(and transitions) for each derived class.

5 Analysing the Example Application

To evaluate the feasibility of the presented approach, we manually constructed a high-level Petri
net model for our example application that was introduced in Se8tdn

Figure5 presents a simplified view of the main information flows of the application as a Petri
net like graph. The processing starts when an order is entered into the system. Deliveries are
controlled by a separate system, to which the order processing system sends a delivery request
message, once the order has been accepted.

The delivery system informs the order processing system of completed deliveries. Either sys-
tem may also initiate a procedure to discard the order and the delivery request.

A delivery confirmation message is transformed into an invoice that will be sent later. If there
is an unsent invoice for the customer who made the order, the delivery is merged with this invoice.
The last step in the processing chain is to send the invoice to the customer.

5.1 The Model of the Demo Application

In the generated model of the application, each transaction comprises a simple component. Since
there are no program counters, all reachable states of this model are persistent database states.

This model was hand crafted, and some abstractions were made. Most notably, the database
tables “customer” and “item” were eliminated, because they do not control the behaviour of the
transactions we are interested in.

The implementation of the application contains functions for entering and updating informa-
tion that does not control the application logic, such as names, addresses and prices. Without
loss of generality, the domains of these data fields were restricted to one value, which essentially
removes the fields from the formal model.

The “order” table contains, among others, three columns for quantities: the quantity of ordered
items, the quantity of delivered items, and the quantity of items that have been invoiced. The last
column is redundant, as its data can be derived from deliveries and invoices. Databases sometimes
contain redundant information, either because deriving the information is computationally too
expensive or because the data used for deriving the information might be cleaned up later from the
live database to a data warehouse system. Such redundancy could be detected in static analysis,
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which may be expensive. On the other hand, eliminating redundant fields does not reduce the
number of reachable states, but the space needed for representing a state.

Invoices are stored in two tables. The “invoice row” table links deliveries to the header table
“invoice.” In the implementation, the invoice rows are numbered, so that invoices can be retrieved
in a consistent order. While the order of invoiced items may be relevant in printed documents, it
does not matter in our formal analysis. Therefore, the row number column was abstracted away.

The resulting model ilMARIA format [18] has 12 transitions and 10 places. Four places
correspond to the modelled database tables. The markings of the remaining six places are functions
of the database contents. Three places are identifier pools of unassigned order, delivery and invoice
numbers and one place counts the lines belonging to each invoice. Two places—which would be
connected to the transitiorseate and merge depicted in Figurés—indicate which customers
have unsent invoices and which do not.

5.2 A Usage Scenario

In this example scenario, an application coder wants to verify that all the referential integrity rules
are respected, and that an order entered will eventually be processed. Processing an order means
that the order is delivered and invoiced, or it is cancelled.

The referential integrity rules are translated into safety properties, and the liveness require-
ments are specified in LTL. Both are checked on the fly byMiaIA tool.

The application designer is likely to begin the analysis of the model by assigning all data
domains the cardinality 1. In this configuration, some transactions are permanently disabled. For
instance, the transitiomerge of Figure5 cannot be enabled unless there may be multiple orders
and deliveriesMARIA can detect and report dead transactions.

Next, the user might want to enlarge some domains in order to enable more behaviour in the
model. Increasing the cardinalities may reveal spurious errors. For instance, when the database
accepts multiple orders but only has room for one invoice, it will be impossible to invoice all
deliveries unless they can be combined to the single invoice.

Verifying high-level liveness properties is an interactive procedure where the domain sizes,
fairness assumptions and the environment need to be adjusted if an unjustified error is reported.

5.3 Some Results

As Tablel shows, the state space of the model grows significantly when any of the domains is
enlarged. Some of the growth is inherent in the application, as discussed in Se8tibhut much

of it is due to the lack of symmetry reduction in the tool we used. Because the system behaviour
does not depend on actual data values, exploiting symmetries could lead to exponential savings.

Some domains have a greater impact on the state space size than others. If the system accepts
at most one order, it does not matter much how many customers there are who can place the order
or how many items are available to be ordered. But as soon as there can be multiple orders and
deliveries, the state space explosion breaks loose.

In Table 1, not all parameters of the system are varied. Orders are never cancelled, and the
database has room for only one invoice. The system has a large state space, and only parts of it
can be viewed at a time. When one parameter is incremented, other parameters must be limited
and some transactions may need to be disabled. Obviously, not all errors can be guaranteed to be
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Table 1:Sizes of reachability graphs generated by the model without and with path compression
reduction when at most one invoice can be generated and orders cannot be cancelled. Increasing
the cardinalities of orders and deliveries (O), customers (C) or items (I) affects the numbers of
reachable stateg¥ | and transition occurrencéss).

0=1 Original Reduced 0=2 Original Reduced

C | |v[ [El Vv [E cC | \ E| \ E|

1 1 16 19 7 11 1 1 427 986 409 1,003

1 2 31 46 13 29 1 2 1,609 4,616 1,537 4,591

1 3 46 81 19 55 1 3 3,547 12,042 3,385 11,915
1 4 61 124 25 89 2 1 2,665 7,376 2,521 7,279

2 1 43 58 25 41 2 2 10,369 38,432 9,793 37,759
2 2 85 148 49 113 2 3 23,113 106,992 21,817 105,263
2 3 127 270 73 217 3 1 8,227 26,118 7,741 25,595
2 4 169 424 97 353 3 2 32,329 145,368 30,385 142,703
3 1 82 117 46 82 3 3 72,307 419,958 67,933 413,531
3 2 163 306 91 235

3 3 244 567 136 460 0O=3 Original Reduced

3 4 325 900 181 757 C | V| |E| V| |E|

4 1 133 196 73 137 1 1 14,680 49,341 14,518 50,809
4 2 265 520 145 401 1 2 107,983 447,870 106,687 451,345
4 3 397 972 217 793 2 1 194,923 794,226 192,331 798,889
4 4 529 1552 289 1,313 2 21,496,197 8,197,284 1,475,461 8,175,073

found in this kind of analysis, but even partial verification has better coverage than testing. None
of the data integrity rules built in the model are violated in the combinations we checked.

6 Related Work

Modelling database systems with Petri nets is nothing new. One earlier method is NetCASE |

a Petri net based computer aided software engineering (CASE) technique that covers everything
from requirements analysis to code generation. It may be hard to apply this kind of methods in
practice, where things tend to be built on top of existing systems. We believe in automated reverse
engineering, the opposite of code generation.

The PathStar project at Bell Labs(] showed that a programming language can be treated as
a formal model, provided that the source code is annotated appropriately for an automated trans-
lator that makes suitable abstractions. In that project, verification experts translated requirement
specifications from English prose to LTL and maintained the abstraction rules of the translator, so
that it was possible to model check the software under development on a daily basis.

The Banderaq] and SLAM [2] toolkits create abstract verification models from source code.
Bandera inputs the abstractions from the user, while SLAM iteratively refines them by itself.
Neither tool seems to support the composition of derived models with hand-crafted fragments.

Lie et al. [L3] present a method for automatically extracting models from low level software
implementations. The extracted model is combined with a model of the hardware. Their approach
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Figure 6:A block diagram of the proposed tool. The prototype will be baseMamriA, but our
Intermediate Formal Language can be easily interfaced with other model checkers.

is similar to ours, except that we combine models extracted from high level program code with
abstract models of software components.

7 Conclusion and Future Work

Component based software systems are expected to create a flexible and economical infrastruc-
ture where companies have a considerable choice of procurement to create customised solutions.
When components can be deployed and updated individually, system acquisition and modifica-
tions should become more manageable than before. With a simple example, we demonstrated how
these data-centric applications are constructed and what their environment looks like.

The architectural style of component-oriented applications, where functionality is hidden be-
hind high-level interfaces, creates an opportunity for applying formal methods, such as state space
analysis. Our approach is based on extracting a formal system model from the models of software
components and from the application code which glues the components together. This model is
formally checked for desired or undesired properties.

Adopting advanced software engineering technigues, such as model checking, in an industrial
setting requires well integrated and automated tool support. We propose a tool that allows software
maintainers to verify the correctness of systems before system level testing. The objective of this
verification step is to gain more insight than could be achieved by pure static analysis techniques.

This tool, depicted in Figuré, transforms application code, database schema and a reposi-
tory of component models into a verifiable model of the system. Many desired properties of the
system are derived automatically from database definitions and assertions in the application code.
Some safety guards, such as the identifier pool alert, are optional. Verifying high-level liveness
properties is likely to be an interactive procedure, where the user is required to control the fairness
assumptions and the model parameters, such as input domain sizes, if an unjustified error trace is
reported. If errors are found, they are presented in terms of the application code.

The application behaviour is mapped to a formal model based on shared memory multipro-
cessing. In the model, the shared memory is the database and the competing processes are the
transactions initiated by the environment. The structure of the application is restricted in such a
way that the relations between transaction parameters and database contents can be derived auto-
matically. Each group of related fields and parameters is assigned an own domain.

The state explosion problem is tackled from two directions. Primarily, we rely on the user
managing the parameters of the model. Secondly, we build the model in such a way that state
space reduction can be accomplished in verification tools.
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The state explosion problem can be alleviated by keeping the data domains small. Minimising
the data domains could result in some of the application behaviour missing from the model. Here
we rely on the user insight and allow him to individually select the sizes of various data domains.
The developer may also specify how the environment should behave: which transactions should
be invoked and in which order. In this way, users can generate state spaces revealing different
aspects of the application behaviour. This partial verification resembles testing, but it can have
better coverage.

Our modelling framework abstracts from the inner workings of database management systems.
Only one database transaction is processed at a time. Ideally, we would like to store only the
persistent database states and the transitions between these states. The state explosion can also be
attacked with symmetry reductio@4]. It relies on the fact that the actual values of identifiers are
irrelevant, as long as only assignments and equality tests are applied to them. These conditions
can be checked by the tool that constructs the verifiable model.

We believe that the proposed tool could help in reducing application maintenance costs. Sav-
ings are possible if some of the otherwise required testing can be substituted with verification
runs. Applying formal methods to component systems gives a profoundly different starting point
for third-party component markets. A formal model—an abstract description of a system—can be
thoroughly analysed by computer tools to increase confidence in the system working according
to the specification. Without such confidence, customers are easily locked in ordering all further
development from the original system vendors.

This article describes “work in progress.” Secti@gnsnd5 were mainly written by the second
author, while the idea of applying state space analysis to component-based software originated
from the first author who is preparing his licentiate’s thesis on the subject. His plans include writ-
ing a front-end for theM ARIA tool [16] and using it in simulated application maintenance work.

If the results are positive, it will be most interesting to find industrial applications and to see how
our approach could be augmented by modelling the business proctkaesd [database perfor-
mance fl]. Also, conformance testing of componer$¢ould be implemented in the framework.
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Modelling with Coloured Petri Nets

Saren Christensen

Department of Computer Science
University of Aarhus

Denmark

Abstract

Engineers have used construction of models to investigate properties of designs, before implementations, for
generations. Thistrend is gradually being transferred to the software engineering. Today UML iswell established in
the modelling of applications where the structure of datais the main concern, e.g. traditional office applications and
applications for database access. During the process of creating and testing the models the designers gain insight
which allow them to improve their designs and try different solutions before crucial design decisions are made.

Coloured Petri Nets and the tools Design/CPN and CPN Tools offers a supplement to the mainly data driven models
of UML, and we will show examples of models where Coloured Petri Nets are used to capture essential behavioural
properties of systems. We address important issues of the modelling process, such as: finding the right level of
abstraction, how to structure large models and what not to model.

For the modelling to be successful it is equally important that we have rich formalisms, powerful computer tools, and
skilled engineers. Only this combination will allow us to build the increasingly complex systems needed in the future.
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Abstract

Using a pervasive healthcare system as example, a new approach to
specification of user requirements for pervasive I'T systems is presented.
A formal modelling language, Coloured Petri Nets, is applied to describe
what we call Executable Use Cases, EUCs. EUCs are precise, detailed,
and executable descriptions of future work processes and their computer
support. In particular, EUCs allow user requirements specifications to
take the frequently changing context of the users, e.g. their location and
equipment in possession, into account.

Topics: Specification of user requirements, use cases, Unified Mod-
eling Language (UML), application of Coloured Petri Nets to pervasive
systems, context awareness.

1 Introduction

Worldwide, many hospitals are in the process of introducing electronic patient
records, EPRs, or have already done so [1]. Though a vision of an EPR already
appeared in the late 1960s, IT technology apparently only reached a level that
enabled workable solutions in the 1990s, when the spread of EPRs began to
gain momentum [6]. In Denmark, Aarhus County has initiated development
of an EPR [18] that will substitute several paper-based core documents used
for documentation and communication within hospitals today. The aim is to
enhance the quality of healthcare, e.g. by allowing multiple users to work on
the same, always up-to-date patient record at the same time.

The EPR of Aarhus County, and indeed any EPR, solves obvious problems
occurring with paper-based patient records such as being not always up-to-
date, mislaid, or even lost. However, EPRs also have their drawbacks and
potentially induce at least two central problems for their users. The first prob-
lem is immobility: in contrast to a paper-based record, an EPR accessed from
stationary desktop PCs cannot be easily transported. The second problem is
time-consuming login and navigation: EPR requires user identification and login
to ensure information confidentiality and integrity, and to start using EPR for
clinical work, a logged-in user must navigate, e.g. to find a specific document for
a specific patient. Pervasive computing [2, 7, 8] is a candidate approach to alle-
viate these two problems. Specifically, a new pervasive healthcare system [3, 21]
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is being envisioned in a joint project between Aarhus County Hospital, the soft-
ware company Systematic Software Engineering A/S [23], and the Centre for
Pervasive Computing [19] at the University of Aarhus. This paper focuses on
specification of the user requirements for that system.

One of the dominant approaches to specify user requirements in today’s
object-oriented system development projects is use cases [4, 9, 12] as defined in
the Unified Modeling Language, UML [13, 15]. Use cases model work processes
to be supported by a new IT system, and a set of use cases is interpreted as user
requirements for that system. However, UML use cases have several general and
known shortcomings, see e.g. [16] which points out a number of problems under
headlines like use case modelling misses long-range logical dependency and use
case dependency is non-logical and inconsistent. For pervasive systems, new
complexities are added to the specification of user requirements in order to cope
with issues like mobility and context awareness, i.e. the ability of the IT system
to react sensibly to various changes of context such as users moving from one
location to another.

For these reasons, we will suggest a new notion of use cases. Inspired by
the UML use case approach, we will also create models of work processes, but
will do so in the formal modelling language Coloured Petri Nets, CPN [10, 11,
20]. CPN models are precise, detailed, and, as a particularly valuable asset,
executable. Furthermore, as we will show, CPN is suitable to describe context
aware systems. Contexts can be captured by an elaborated state notion of
CPN, and the functionality of a system in a current context can be modelled
by an appropriate action notion of CPN. The main contribution of the paper is
to introduce and justify the notion of Executable Use Cases, EUCSs, based on
CPN, for the specification of user requirements for pervasive IT systems.

The paper provides a basis introduction to CPN, and, thus, does not assume
the reader to be familiar with neither CPN, nor Petri nets [14] in general. The
structure is as follows: Section 2 describes the concept of pervasive healthcare
and the pervasive medicine administration work process that will be used as
running example. Section 3 is a primer on CPN, and Section 4 presents an
EUC for pervasive medicine administration. In Section 5, we report on how to
interpret an EUC as actual user requirements. The conclusions are drawn in
Section 6.

2 Pervasive Healthcare

The pervasive healthcare system considered in this paper was envisioned in a
series of workshops with participation of physicians, nurses, computer scientists,
and an anthropologist (one of the authors). Moreover, input came from ethno-
graphic fieldwork by the anthropologist, who spent two months at a department
at Aarhus County Hospital in spring 2001. Observation of existing work pro-
cesses and use of the paper-based patient records confirmed that immobility and
time-consuming login and navigation procedures are severe, potential obstacles
to the success of EPR.
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2.1 Characteristics of Hospital Work Processes

The EPR immobility problem should be solved in order to preserve the inher-
ent mobility of hospital work processes. Paper patient records are very mobile
and now frequently moved, e.g. between the nurses’ office, the medicine cab-
inet room, and the wards with patient beds. The other anticipated problem,
time-consuming login and navigation, is crucial to overcome in order to allow
healthcare personnel to make flexible and smooth transition from one work pro-
cess to another. This is needed, because interruption and later resumption of
work processes are frequent: the personnel continuously have to reschedule their
plans for their shift, since new tasks are often added to their list of what to do.
New, acutely ill patients are admitted to the department, examinations show
a need for immediate action, the condition of a patient deteriorates suddenly,
scheduled examinations at other departments are cancelled, etc.

The present plans for EPR deployment entails an additional, severe problem:
restricted access to the patient records. The paper-based patient record com-
prises three separate documents for each patient, a physician’s patient record,
a nurse’s patient record, and a medicine plan. These documents are kept at
different places most of the day. Thus, even though only one person can access
a specific part of a patient record at a time, there are in the considered depart-
ment, with 25 patients, nevertheless 75 different access points to the records
(three per patient). With EPR, accessibility is proportional with the number of
available computers — an obvious bottleneck. The department at present bud-
gets for eight desktop PCs to be placed in offices and two laptops which can be
brought along to the wards. In this way, the existing 75 access points decrease
to only 84-2=10.

The work process in focus in this paper is medicine administration, i.e. han-
dling of medicine for patients. It involves medicine plans, which for each patient
specify the prescribed medicine, and are used by the nurses to acknowledge when
medicine has been poured and given. Medicine plans are usually kept by the
medicine cabinet and often taken to the wards together with the medicine. This
allows nurses to promptly acknowledge giving of medicine at the wards and
to answer questions from patients about their medication. To enable a smooth
medicine administration process with EPR, possible solutions with today’s tech-
nology seem to be computers in each ward or widespread use of personal digital
assistants, PDAs — laptops are too heavy to be regularly carried around.

2.2 Pervasive Healthcare System Design Principles

A prototype of the pervasive healthcare system has been created and subse-
quently tested by healthcare personnel from Aarhus County Hospital [3]. The
prototype is built upon three general design principles. The first principle is
context awareness. This means that the system is able to register and react
upon certain changes of context. More specifically, nurses, medicine trays, pa-
tients, beds, and other items are equipped with radio frequency identity, RFID,
tags [22], such that presence of such items can be detected automatically by
involved context aware computers, e.g. located by the medicine cabinet and by
the patient beds.

The second design principle is that the system is propositional, in the sense
that it makes qualified propositions, or guesses. Context changes may result
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in automatic generation of buttons, which appear at the taskbar of computers.
Users must explicitly accept a proposition by clicking a button — and implicitly
ignore or reject it by not clicking. The presence of a nurse holding a medicine
tray for patient P in front of the medicine cabinet is a context that triggers au-
tomatic generation of a button Medicine plan: Patient P, because in many
cases, the intention of the nurse is now to navigate to the medicine plan for
patient P. If the nurse clicks the button, she is logged in and taken to patient
P’s medicine plan. It is of course impossible always to guess the intention of a
user from a given context, and without the propositional principle, automatic
shortcutting could become a nuisance, because of guesses that would sometimes
be wrong.

The third design principle is that the system is non-intrusive, i.e not inter-
fering with or interrupting hospital work processes in an undesired way. Thus,
when a nurse approaches a computer, it should react on her presence in such
a way that a second nurse, who may currently be working on the computer,
is not disturbed or interrupted. The last two design principles cooperate to
ensure satisfaction of a basic mandatory user requirement: important hospital
work processes have to be executed as conscious and active acts by responsible
human personnel, not automatically by a computer.

2.3 Pervasive Medicine Administration

Work process descriptions in natural language were made as a result of the work-
shops, and these descriptions formed the basis for the prototype discussed above.
The work process constituting the scope of this paper is pervasive medicine ad-
ministration. It covers medicine administration as carried out by personnel
supported by the pervasive healthcare system, and is outlined in the following
in a style resembling a main constituent of a traditional UML use case.

Assume that nurse N wants to pour medicine into a medicine tray and give it
to patient P. First, the nurse goes to the room containing the medicine cabinet.
Here is a context aware computer on which the buttons Login: Nurse N and
Patient list: Nurse N appear on the taskbar, when the nurse approaches.
Assume that the second button is clicked. Then, N is logged in and a list of
those patients for which she is in charge is displayed on the computer.

A medicine tray must be associated with each patient. If a medicine tray is
already associated with patient P, the button Medicine plan: Patient P will
appear on the taskbar of the computer, when the nurse takes the tray nearby,
and a click will make P’s medicine plan appear on the display. However, if
P is a newly admitted patient, it is necessary to associate a medicine tray to
him. Nurse N does so by taking an empty tray from a shelf and making the
association. In either case, N pours medicine into the tray, acknowledges this
in EPR, and is automatically logged out, when she leaves the medicine cabinet
area.

Nurse N now takes patient P’s medicine tray and goes to the ward where
P lies in a bed, which is supplied with a context aware computer. When
N approaches, the buttons Login: Nurse N, Patient list: Nurse N, and
Medicine plan: Patient P will appear on the taskbar. If the last button is
clicked, the medicine plan for P is displayed. Finally, N gives the medicine tray
to P, acknowledges the giving in EPR, and is automatically logged out again,
when she leaves the bed area.
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This rather straight flow of events has numerous variations, e.g. medicine
may be poured for one or more patients, for only one round of medicine giving,
all four regular rounds of a 24 hours period, or for ad hoc giving; a nurse may
have to fetch trays left at the wards prior to pouring; a nurse may approach the
medicine cabinet without intending to pour medicine, but only to log into EPR
or wanting to check an already filled medicine tray. To enable a smooth pervasive
medicine administration work process, the pervasive healthcare system must be
specified to handle all these variations and many more. The Executable Use
Case, EUC, apparatus is able to do that. We will present an EUC for pervasive
medicine administration in Section 4, but first give an informal and general
introduction to some fundamental concepts of the EUC modelling language
CPN in the following section.

3 EUC Modelling Language — CPN

Coloured Petri Nets, CPN [10, 11, 20], is a mature and well-proven modelling
language suitable to describe the behaviour of systems with concurrency, re-
source sharing, and synchronisation. A CPN model resembles a board game,
with strict rules that define the possible executions of the model. The CPN
modeller’s task is to specify an appropriate board, tokens, and playing rules to
reflect the domain being modelled.

We will introduce the basic CPN concepts by means of the simple Provide
trays model, shown in Figure 1. This model describes how nurses provide
medicine trays prior to pouring, checking, and giving medicine.
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Figure 1: Provide trays.

3.1 DModelling of States

A CPN model describes both the states and the actions of a system. States
capture the contexts in which actions may take place. The state of a CPN
model is a distribution of tokens on the places. Each place is drawn as an
ellipse and has an associated data type, written in italic capital letters, which
determines the kinds (“colours”) of tokens the place is allowed to contain.

In Figure 1, a token on the Ready place models that a real-life nurse is in
a situation where she is ready to carry out work, e.g. she sits at her office.
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Thus, Ready has the data type NURSE, denoting nurses. A nurse is represented
as a pair (nurseid,trays), where nurseid identifies the nurse and trays is
a container data structure holding the medicine trays that this nurse currently
has in possession.

The places Trays at wards and Trays by medicine cabinet have data
type TRAY, and model the trays which currently are at the indicated locations. A
tray is modelled as a pair (patid,medicine), where patid identifies the patient
that the tray is associated with, and medicine is a container data structure
holding the medicine that currently is in the tray. The place Free trays also
has data type TRAY. It holds tokens corresponding to trays which are not yet
associated with patients. The patient id 0 is a special value, used in TRAY
tokens on the form (0,nomedicine), which represent empty trays, not currently
associated with any patient.

The initial state describes the start state of the model, before execution
begins. In the initial state, there are two NURSE tokens on the Ready place,
nl and n2, both with no trays, and four empty, non-associated TRAY tokens on
the Free trays place, as indicated by the inscriptions close to the places (an
expression like c1¢el denotes a multiset (a bag) containing c1 appearances of el
tokens). The places Trays at wards and Trays by the medicine cabinet
are empty in the initial state.

3.2 Modelling of Actions

The actions of a CPN model are represented using transitions, drawn as rectan-
gles. Thus, in Figure 1, a nurse who is ready — corresponding to a token in the
Ready place — may choose to do one of three possible actions, modelled by the
three transitions named Associate free tray with patient, Return trays
to medicine cabinet area, and Fetch tray at ward.

A transition and a place may be connected by an arc. Solid arcs show
the flow of NURSE tokens, and dashed arcs the flow of TRAY tokens (different
graphical appearances are used only to enhance readability, and have no formal
meaning). The actions of a CPN model consist of transitions removing tokens
from input places and adding tokens to output places, often referred to as the
token game. Input/output relationship between a place and a transition is
determined by the direction of the connecting arc. A place may be both input
and output, e.g. Ready relative to all three transitions — a double arc is a
shorthand for one arc in each direction. The tokens removed and added are
determined by arc expressions, e.g. the expression (nurseid,trays) on the
arc from the Ready place to the Return trays to medicine cabinet area
transition, where nurseid and trays are variables that can be assigned data
values.

The executability of CPN models comes from the fact that the CPN mod-
elling language has a formal, operational semantics. A transition which is ready
to remove and add tokens is said to be enabled, and requires two kinds of con-
ditions to be fulfilled. The first kind is that appropriate tokens are present
on the input places. This means that one condition for enabling of the transi-
tion Return trays to medicine cabinet area is that the only input place,
Ready, contains some token matching the expression (nurseid,trays). The
second kind of condition comes from the guard, which is a boolean expression
optionally assigned to a transition, and which must evaluate to true for the
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transition to be enabled. Return trays to medicine cabinet area has the
guard [trays<>notrays]. This means that a nurse may return trays to the
medicine cabinet area, only when she has some in possession.

An enabled transition may occur. The occurrence of Return trays to
medicine cabinet area models that a nurse takes all the trays she is cur-
rently possessing and returns them to the medicine cabinet area, and afterwards
is ready again. In the CPN model, this is reflected by a token (nurseid,trays)
removed from Ready, a token (nurseid,notrays) added to Ready, and a token
determined by the expression releasetrays (nurseid,trays) added to Trays
by medicine cabinet.

4 Pervasive Medicine Administration EUC

We have now introduced the necessary CPN concepts, allowing us to present an
EUC for pervasive medicine administration. The EUC models the work process
from the point of view of a nurse, and a prime focus is to describe how the
computers which are by the medicine cabinet and by the patient beds react on
context changes and how they support the nurses.

In general, a CPN model consists of a number of modules organised in a
hierarchical fashion — Section 3 presented just one single module. The pervasive
medicine administration EUC CPN model consists of 11 modules, with a total
of 54 places and 29 transitions. We will provide a general overview of the model
and supplement it with a detailed explanation of one selected typical module.

4.1 Model Overview

An overview of the model in terms of a hierarchy with a node for each module
and arcs showing the relationship between the modules is given in Figure 2. The
figure shows how the work process pervasive medicine administration is split
into sub work processes. An arc between two nodes indicates that the module
of the source node contains a substitution transition, whose detailed behaviour
is described on the module of the destination node, called the sub-module.

Pervasive

medicine
administration

Pour/check
trays

o

Pour/check Get trays Give
tray medicine to
patients
Find plan/tray Pour and Find plan Give and
(cabinet) acknowledge (bed) acknowledge

Figure 2: Overview of pervasive medicine administration EUC.

The topmost module Pervasive medicine administration of Figure 2 is
shown in Figure 3 and contains a very high-level and abstract description of the
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work process. All three transitions in Figure 3 are substitution transitions — as
indicated by the small HS (hierarchy substitution) tag. They correspond to the
three arcs emanating from the Pervasive medicine administration node in
Figure 2, and are briefly described below.

1‘(n1,notrays)+1‘(n2,notrays)
»( Ready )«

Provide Give
IF trays medicin
| | |
| | |
! N « ————— - 4
1
1
1

Figure 3: Pervasive medicine administrationmodule (topmost node of Fig-
ure 2).

4.1.1 Provide trays

We have previously presented and explained this module in Figure 1 in Section 3.
From Figure 3, it is possible to see that a nurse sometimes provides trays, by
carrying out the action corresponding to the Provide trays transition. It is not
possible to see how she does it. The sub-module that is bound to the substitution
transition Provide trays, shown in Figure 1, contains the detailed description
of how trays can be provided.

The individual modules of a CPN model interact when the model is executed.
In the modules of Figures 3 and 1, places with the same name (e.g. the two
Ready places) are conceptually glued together, thus allowing exchange of tokens
between the modules when the token game is played.

4.1.2 Pour/check trays

As can be seen from Figure 2, the module Pour/check trays (note plural ’s’ in
trays) uses a sub-module called Pour/check tray. Pour/check trays models
how trays are poured and/or checked for a number of patients. Pour/check
tray models how a tray is poured and/or checked for one single patient. The
module Pour/check trays may be seen as similar to a loop statement in a
programming language and Pour/check tray as the body of the loop.

Pour/check tray is itself taking advantage of two sub-modules, one called
Find plan/tray (cabinet) and one called Pour and acknowledge. The first
module, Find plan/tray (cabinet) models how the nurse gets the medica-
tion plan for a given patient presented on the screen of the medicine cabinet
computer and/or how she provides the patient’s tray — as can be seen on Fig-
ure 2, possibly using the Provide trays module already described. The Pour
and acknowledge module models how the nurse actually pours medicine into
the tray and how she acknowledges to the pervasive healthcare system when a
certain medicine type has been poured.
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4.1.3 Give medicine

As can be seen from Figure 2, the module Give medicine uses two sub-modules,
Get traysand Give medicine to patients. Get trays models how the nurse
collects a number of trays (corresponding to a number of patients), before she
embarks on a round to the wards to give medicine. This preparation process
may involve checking and additional pouring of existing partly or fully filled
trays, and therefore Get trays uses the Pour/check trays module. The Give
medicine to patients and its two sub-modules Find plan (bed) and Give
and acknowledge are similar to the Pour/check tray (cabinet) and its two
sub-modules.

4.2 Module Example — Pour/check trays

We now present and explain a typical module from the model, the Pour/check
trays module, shown in Figure 4.
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(compid,display,taskbar,users)
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medicine cabinet [~ — — — — __
(compid,display, T — — —
addMedicineCabinetButtons nurse taskbar,
users) \

(nurse trays)

Pour/check tray Trays by |
medicine cabine!

tray

|
|
|
] .
|
|
|
|

1/(n1,notrays)+ TRAY
1(n2,notrays) (nurse,trays) \
By medicine
6@ cabinet \
NURSE (nurse,trays) || 2a,blank,
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Enter EPR via
login button

[loginAllowed nurse (compid,display,
(compid,display, removeLoginButton nurse taskbar, COMPUTER
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!
(compid,display,taskbar,users) . /

Leave medicine
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if loggedin nurse (compid,display,taskbar,users) then

(compid, blank, removeMedicineCabinetButtons nurse taskbar, removeUser nurse users)
else

(compid, display, removeMedicineCabinetButtons nurse taskbar, users)

g (nurse trays)

Figure 4: Pour/check trays module.

On this module, the medicine cabinet computer is in focus. The computer
is modelled by a token on the Medicine cabinet computer place having data
type COMPUTER — a 4-tuple (compid,display,taskbar,users) consisting of a
computer identification, its display (main screen), its taskbar, and its current
users. Long-dashed arcs show the flow of the COMPUTER token. Recall that the
medicine cabinet computer is context aware, i.e. it is able to sense the proximity
of both nurses and trays.

In the initial state, two nurses nl and n2 are ready and have no trays,
corresponding to two tokens in the Ready place. The medicine cabinet com-
puter is idle, with a blank display, no taskbar buttons, and no current users.
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Occurrence of the Approach medicine cabinet transition models that a nurse
changes from being ready to being busy nearby the medicine cabinet. Moreover,
at the same time, two buttons are added to the taskbar of the medicine cabinet
computer, namely one login button for the nurse and one patient list button for
the nurse. In the CPN model, these taskbar buttons are added by the function
addMedicineCabinetButtons appearing on the arc going from the transition
Approach medicine cabinet to the place Medicine cabinet computer.

The possible actions for a nurse who is by the medicine cabinet are modelled
by the three transitions Pour/check tray, Enter EPR via login button, and
Leave medicine cabinet area. Often, a nurse by the medicine cabinet wants
to pour and/or check some trays. How this pouring and checking is carried
out is modelled on the sub-module Pour/check tray, which is bound to the
substitution transition having the same name (as can be seen from Figure 2).

The Enter EPR via login button transition models that a nurse clicks on
the login button and makes a general-purpose login to EPR. It is outside the
scope of the model to describe what the nurse subsequently does — the domain
of the model is specifically pervasive medicine administration, not general EPR
use. The transition has a guard which ensures that only a user who is not
currently logged into EPR can do so. When a nurse logs in, the login button
for that nurse is removed from the taskbar of the computer, modelled by the
removeLoginButton function on the arc from Enter EPR via login button
to the Medicine cabinet computer place. Moreover, the nurse is added to the
set of current users by the function addUser appearing on the same arc.

The Leave medicine cabinet area transition models that a nurse has
done the pouring and checking that she wants for now, and leaves the area.
Upon leaving, it is checked whether the nurse is currently logged in, modelled
by the function loggedIn appearing in the if-then-else expression on the arc go-
ing from Leave medicine cabinet area to the Medicine cabinet computer
place. As can be seen further from the expression on that arc, if the nurse is
logged in, the medicine cabinet computer automatically blanks off the screen,
removes her taskbar buttons (removeMedicineCabinetButtons), and logs her
off (removeUser). If she is not logged in, the buttons generated because of her
presence are removed, but the state of the computer is otherwise left unaltered.
When a nurse leaves the medicine cabinet area, the corresponding token is put
back on the Ready place.

5 EUCs as User Requirements

From the EUC for pervasive medicine administration, a list of user requirements
can be produced by focusing on the model transitions which manipulate the
involved computers. Each transition connected to the places Medicine cabinet
computer (shown) and Bed computers (not shown) must be taken into account.
As examples, the requirements below are induced by the transitions on the
module Pour/check trays shown in Figure 4:

e When a nurse approaches the medicine cabinet area, the medicine cabinet
computer must add a login button and a patient list button for that nurse
to the taskbar.

e When a nurse leaves the medicine cabinet area, if she is logged in, the
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medicine cabinet computer must blank off its display, remove the nurse’s
login button and patient list button from the taskbar, and log her off.

e When a nurse logs into EPR, her login button must be removed from the
taskbar of the computer, thus disallowing the nurse to log in again, if she
already is.

The first two of these three user requirements can also partly be derived
from the prose English description of pervasive medicine administration in Sec-
tion 2.3, i.e. these two requirements were known after the workshops, prior to
creation of the EUC. However, the EUC states the requirements more precisely
and with more details, e.g. the EUC specifies that the computer display should
be blanked when a logged in nurse leaves the medicine cabinet area, and it also
describes what should happen when a nurse, who is not logged in, leaves.

In general, a user requirements specification should be precise and address
as many issues as possible. We will argue that to a higher extent than reading
a static prose descriptions of future work processes as the one in Section 2.3,
application of EUCs forces many questions to be asked. An EUC is a dynamic,
executable model, allowing the behaviour of a future work process to be visu-
alised and investigated. Playing the token game of an EUC typically catalyses
the participants’ cognition and generates new ideas. In this way, it often hap-
pens that questions that the participants had not thought about earlier appear.
Examples of questions (Qs) that have appeared during execution of the EUC of
Section 4, and corresponding answers (As), are:

e QQ: what happens if two nurses both are close to the medicine cabinet com-
puter? A: the computer generates login buttons and patient list buttons
for both of them.

e (Q: what happens when a nurse carrying a number of medicine trays ap-
proaches a bed? A: in addition to a login button and a patient list button
for that nurse, only one medicine plan button is generated — a button for
the patient associated with that bed.

e (: is it possible for one nurse to acknowledge pouring of medicine for a
given patient while another nurse at the same time acknowledges giving
of medicine for that same patient? A: no. That would require a systems
architecture allowing a higher degree of concurrency and a more fine-
grained concurrency control exercised over the patient records.

Questions like the ones above may imply changes to be made to the EUC,
because emergence of a question indicates that the current version of the EUC
does not reflect the future work process properly. As a concrete example, in
an early version of the pervasive medicine administration EUC, the exit of any
nurse from the medicine cabinet area resulted in the computer screen being
blanked off. To be compliant with the non-intrusive design principle, the exit
of a nurse who is not logged in, should of course not disturb another nurse who
might be working at the computer, and the EUC had to be changed accordingly.

Specification of user requirements is a prominent, general problem in the
software industry today. In many development projects, the user requirements
are initially too vaguely specified and too poorly understood. This is quite
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unfortunate, because a user requirements specification for a software system is
often an essential part of a legal contract between a customer, e.g. a hospital,
and a software company. Questions like the three above may easily be sub-
ject to dispute. However, if the parties have agreed that pervasive medicine
administration should be supported, and have the overall stipulation that the
EUC presented in the previous section is the authoritative description, many
disagreements can quickly be settled, because of the formality and unambiguity
of the EUC.

EUCs are not a panacea. Their purpose is solely to describe the user re-
quirements of a future pervasive IT system, relative to the work flow to be
supported. A number of other user requirements issues regarding IT systems
support of pervasive medicine administration cannot be addressed properly by
EUCs, e.g.:

e User interface, e.g. where are the buttons placed, what do they look like,
and how is a medication plan presented on the computer screen?

e Response times, e.g. how long should a nurse wait before her buttons
appear on the screen?

e Distance, e.g. how close should a nurse be to a computer, before it is
aware of her presence?

6 Conclusions

The pervasive healthcare system, and many pervasive systems in general, are
characterised by classical and well known complications that apply to many dis-
tributed systems [5], plus a number of new problems to be tackled, e.g. regarding
context awareness and mobility. With more complex systems come increased
demands to the modelling languages that we use for their specification and de-
velopment. In this paper, the notion of Executable Use Cases, EUCs, based
CPN, is introduced. CPN is one dialect of Petri nets [14], and various kinds
of Petri nets have previously been used for modelling of work flows [17], much
in the same way as in the EUC approach. However, application of Petri nets
to specification of user requirements for pervasive systems is, to the best of our
knowledge, new.

UML is a de facto standard for object-oriented modelling in the software
industry, and UML use cases are very popular for specification of the user re-
quirements for many of today’s IT systems. We believe that UML use cases
are not always sufficient for pervasive systems. A viable alternative is EUCs,
which have three main strengths compared to UML use cases in general: preci-
sion, detail, and executability, cf. the comparison in Section 5 of the UML use
case style prose description of pervasive medicine administration of Section 2.3
and the EUC of Sect. 4. An additional strength of EUCs and CPN is the rich,
elaborated, and precise notion of state, which is not commonly found in other
modelling languages, and certainly not in UML. With the state notion, the
modelling of contexts comes very natural, e.g. the frequently occurring context
element location is conveniently captured by means of CPN places, cf. place
names like By medicine cabinet in the EUC of this paper. This makes EUCs
suitable to specify user requirements for pervasive, context aware systems.
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As cited in the introduction, one of the main critiques raised against UML
use cases is that they promote a highly localised perspective [16], and do not
properly capture dependencies between various sub work processes. For the
pervasive medicine administration work process, this general problem has ma-
terialised as being difficult and cumbersome to describe with prose text in a
sufficiently precise fashion the many dependencies between the involved sub
work processes. Such dependencies are explicitly and precisely captured in the
EUC, cf. the EUC overview in Figure 2.

EUCs, of course, have potential drawbacks. One drawback is that CPN
is indeed a formal language (in other situations, an advantage, though), and
thus difficult to use as a means of communication between system developers
and non-technical end users. In contrast, one of the often cited strengths of
UML use cases is that they are non-formal and easy to understand for users.
Like UML use cases, for the best result, EUCs should be worked out with
participation of the future system users, in an iterative fashion going from a
coarse and probably not entirely correct representation of a future work process,
to more and more mature versions of the EUC, where precision and detail are
added in each iteration. To ease communication with healthcare personnel, we
have started a project to make the EUC CPN model of this paper the logical
controller of a small movie-like computer animation displaying work processes
at a hospital department with nurses, medicine trays, medicine cabinets, wards,
beds, computers, etc. In this way, instead of looking directly at the token
game of the CPN model, the nurses and physicians will see their future work
situation illustrated in a fashion which is much more natural for them, and where
the motions of pictures are controlled by, and thus guaranteed to be consistent
with, the execution of the CPN model.

Another drawback of EUCs is that CPN is often thought of as being rather
complex and time-consuming to learn and to apply. It is true that it takes an
effort to learn. However, once learned, it is quite efficient to apply. The EUC
of this paper was created by the authors of this paper using a total effort of
approximately 60 man hours, 50 hours used by a computer scientist, who is
an experienced CPN modeller, and 10 hours used by the anthropologist who
has a detailed knowledge of the work processes at the hospitals. The EUC was
created in four iterations where the computer scientist was the active modeller
and the anthropologist a participant in executions of the various versions of the
EUC, and the main source for questions that provided input to the next, more
complete, more detailed, and more precise version of the EUC.

Compared to UML use cases, EUCs do potentially require an extra effort
during specification of user requirements. However, we think that in many cases,
the investment is well justified. Even though many contracts recognise that the
user requirements may change during a project (incurring a price adjustment),
it is wiser, cheaper, less frustrating, and more efficient for all parties to properly
address as many issues as possible already in the initial specification.
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Abstract. One of the key issues of object-oriented modeling and design is in-
heritance. It allows for the definition of subclasses that inherit features of some
superclass. Inheritance is well defined for static properties of classes such as at-
tributes and operations. However, there is no general agreement on the meaning of
inheritance when considering the dynamic behavior of objects, captured by their
life cycles. This paper studies inheritance of behavior in the context of UML. This
work is based on a theoretical framework which has been applied and tested in
both a process-algebraic setting (ACP) and a Petri-net setting (WF-nets). In this
framework, four inheritance rules are defined that can be used to construct sub-
classes from (super-)classes. These rules and corresponding techniques and tools
are applied to UML activity diagrams, UML statechart diagrams, and UML se-
quence diagrams. It turns out that the combination of blocking and hiding actions
captures a number of important patterns for constructing behavioral subclasses,
namely choice, sequential composition, parallel composition, and iteration. Both
practical insights and a firm theoretical foundation show that our framework can
be used as a stepping-stone for extending UML with inheritance of behavior.

1 Introduction

The Unified Modeling Language (UML) [11, 21] has been accepted throughout the soft-
ware industry as the standard object-oriented framework for specifying, constructing,
visualizing, and documenting software-intensive systems. One of the main goals of
object-oriented design is the reuse of system components. A key concept to achieve
this goal is the concept of inheritance. The inheritance mechanism allows the designer
to specify a class, the subclass, that inherits features of some other class, its superclass.
Thus, it is possible to specify that the subclass has the same features as the superclass,
but that in addition it may have some other features.

The concept of inheritance is usually well defined for the static structure of a class
consisting of the set of operations (methods) and the attributes. However, as mentioned,
a class should also describe the dynamic behavior of an object. We will use the term
“object life cycle” to refer to this behavior. The current version of UML, Version 1.4
[11], supports nine types of diagrams: class diagrams, object diagrams, use case di-
agrams, sequence diagrams, collaboration diagrams, statechart diagrams, activity di-
agrams, component diagrams, and deployment diagrams. Four of these types of dia-
grams, namely sequence diagrams, collaboration diagrams, statechart diagrams, and
activity diagrams capture (part of) the behavior of the modeled system. Sequence di-
agrams and collaboration diagrams typically only model examples of interactions be-
tween objects (scenarios). Activity diagrams emphasize the flow of control from activity
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to activity, whereas statechart diagrams emphasize the potential states and the transi-
tions among those states. Both statechart diagrams and activity diagrams can be used
to specify the dynamics of various aspects of a system ranging from the life cycle of
a single object to complex interactions between societies of objects. Activity diagrams
typically address the dynamics of the whole system including interactions between ob-
jects. Statechart diagrams are typically used to model an object’s life cycle. Note that
UML joins and/or is inspired by the earlier work on Message Sequence Diagrams [20]
(for sequence diagrams), Statecharts [13] (for statechart diagrams), and Petri nets [19]
(for activity diagrams).

Looking at the informal definition of inheritance in UML, it states the following:
“The mechanism by which more specific elements incorporate structure and behavior
defined by more general elements.” [21]. However, only the class diagrams, describing
purely structural aspects of a class, are equipped with a concrete notion of inheritance.
It is implicitly assumed that the behavior of the objects of a subclass is an extension
of the behavior of the objects of its superclass. Clearly, this is not sufficient to realize
the full potential of inheritance [8, 14,22, 23]. Therefore, our ultimate quest is to extend
each diagram type of UML with suitable notions of inheritance. For this purpose we use
theoretical results presented in [1-3, 5, 6] as a stepping stone. These results provide four
notions of behavioral inheritance, inheritance preserving transformation rules, transfer
rules, and advanced notions such as the Greatest Common Divisor (GCD) of a set of
behavioral models.

sequence collaboration statechart activity
diagram diagram diagram diagram

----- —> UML diagrams

intermediate
-— - —> semantic
domains

ACP term
(process-algebraic

- im_“@ _____ _> core semantic

domain

object life cycle/
WEF-net
(Petri-net setting)

transition
system

Fig. 1. Mapping UML behavior diagrams onto three semantic domains.

In this paper we follow the approach proposed in [8], i.e., instead of trying to give
full formal semantics for UML we focus on selected parts of UML and map these
parts onto a so-called semantic domain. A semantic domain is some formal language
allowing for a precise definition of inheritance and equipped with analysis techniques
to verify whether one process is a subclass of another process. Based on the theoretical
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results presented in [1-3,5, 6] we can use three semantic domains. This is illustrated in
Figure 1. The core semantic domain is formed by transition systems using branching
bisimilarity as an equivalence relation [6]. The mapping from specific models in both
a Petri-net and process-algebraic setting to transition systems is given in [1-3,5, 6].
In this paper, we explore the mapping from UML behavior diagrams to these seman-
tic domains in order to incorporate inheritance of behavior in UML. A direct mapping
from sequence, collaboration, statechart, and activity diagrams to the core semantic do-
main (i.e., transition systems) allows for full flexibility. An indirect mapping through
one of the intermediate semantic domains (i.e., WF-nets and object life cycles in the
Petri-net setting and ACP terms in the process-algebraic setting) allows for powerful
analysis techniques, cf. the structure theory of Petri nets (e.g., invariants) and the equa-
tional theory of ACP. Moreover, the UML behavior diagrams are closely related to the
two intermediate semantic domains. Consider for example the relation between activity
diagrams and Petri nets.

Note that it is not our goal to provide a precise semantics for UML. This topic is
relevant and has be debated many times before [7,9], but is outside the scope of this
paper.

The remainder of this paper is organized as follows. First, the theoretical results
presented in [1-3, 5, 6] are introduced. Then, the four notions of inheritance are applied
to sequence diagrams (Section 3), statechart diagrams (Section 4), and activity diagrams
(Section 5). To conclude, we provide pointers to related work and summarize the main
results.

2 Inheritance of behaviour

The goal of this section is to introduce four notions of inheritance and highlight some
of the results theoretical results presented in [1-3, 5, 6]. Some of these results have been
developed in a Petri-net setting (cf. [1-3, 5, 6]) others have been developed in a process-
algebraic setting (cf. [5,6]). However, the main ideas are generic and can be applied
to any of the behavior diagrams in UML (i.e., sequence diagrams, activity diagrams,
collaboration diagrams, and statechart diagrams). Therefore, we present the intuition
behind our results and demonstrate their applicability to sequence diagrams, activity
diagrams, and statechart diagrams.

2.1 An informal introduction to the four notions of inheritance

Diagrams such as sequence diagrams, activity diagrams, and statechart diagrams spec-
ify behavior of an object or system. The most elementary way of modeling behavior is
the so-called labeled transition system. We consider this to be the core semantic domain
(cf. Figure 1). A labeled transition system is a set of states plus a transition relation on
states. Each transition is labeled with an action. Figure 2 shows a simple transition sys-
tem representing an order processing system with five states (s/, s2, s3, s4, and s5).
There are five transitions each labeled with a different action. The transition labeled
with accept_order moves the system from the state s/ to the state s2. For simplicity we
assume that each transition system has one initial state (e.g., s/ in Figure 2) and one
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final state (e.g., s5 in Figure 2). Note that any transition system with multiple initial
and/or final states can be transformed in a transition system with one initial and one
final state.

reject
order
' receive qep’t—\. 'Shlp close '
s1 S s3 S S
order order order order

Fig. 2. A labeled transition system specifying an order processing system (7'S1).

States, transitions, and actions of a transition system should not be confused with
the meaning of these notions in UML. In the context of this paper, the interpretation
of these concepts depends on the UML diagrams being considered. For example, in a
UML statechart diagram with a composite state consisting of multiple concurrent sub-
states the composite state may correspond to many states in the corresponding labeled
transition system (all possible combinations of states of the concurrent substates). In a
UML sequence diagram, sending a message (i.e., a stimulus) corresponds to the execu-
tion of transition having the appropriate action label. In a UML activity diagram, there
are action states which correspond to actions in the corresponding labeled transition
system. In this section, we use the terms state, transition, and action in the context of
a labeled transition system. In subsequent sections we will put these concepts in the
context of UML diagrams specifying behavior.

We distinguish between visible actions and invisible actions. For comparing the
behavior of two labeled transition systems only the visible actions are considered. The
distinction between visible and invisible actions is fairly standard in process theory (see
[6, 10] for pointers). Since it is not possible to distinguish between individual invisible
actions (also referred to as silent actions), these actions are labeled 7. Two labeled
transition systems are considered equivalent if their observable behaviors coincide, i.e.,
after abstracting from 7-actions one cannot detect any differences. From a formal point
of view, branching bisimulation [6, 10] is used as an equivalence relation. However, we
will avoid getting into formal definitions. Instead we refer to [1-3, 5, 6] for details.

In this paper, we focus on inheritance of dynamic behavior. Translated to labeled
transition systems this translates to the following question: When is one labeled tran-
sition system a subclass of another labeled transition system? There seem to be many
possible answers to this question. It is important to note that we have to ask this question
from the viewpoint of the environment.

Assume that p and ¢ are two labeled transition systems. The first answer is as fol-
lows.

If it is not possible to distinguish the external behavior of p and ¢ when only
actions of p that are also present in q are executed, then p is a subclass of q.

Intuitively, this basic form of inheritance conforms to blocking actions new in p. In the
remainder, labeled transition system p is said to inherit the protocol of g; the resulting
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fundamental form of inheritance is referred to as protocol inheritance. Note that pro-
tocol inheritance specifies a lower bound for the behavior offered, i.e., any sequence
of actions invocable on the superclass can be invoked on the subclass. Therefore, it is
sometimes also referred to as “invocation consistency” [8, 22, 23].

The second answer to the above question is as follows.

If it is not possible to distinguish the external behavior of p and ¢ when arbitrary
actions of p are executed, but when only the effects of actions that are also
present in q are considered, then p is a subclass of q.

This second basic form of inheritance of behavior conforms to hiding the effect of
actions new in p. Transition system p inherits the projection of transition system p
onto the actions of g; the resulting form of inheritance is called projection inheritance.
Note that projection inheritance can be considered as an upper bound for the behavior
offered, i.e., any sequence of actions observable from the subclass should correspond to
an observable sequence of the superclass (after abstraction). Therefore, it is sometimes
also referred to as “observation consistency” [8, 22, 23].

To illustrate these two basic notions of inheritance we consider the labeled transition
system specifying an order processing system shown in Figure 2. Suppose that this is
the superclass named 7'S;. Figure 3 shows another labeled transition system named
TS,. TS, is a subclass with respect to protocol inheritance because if we block the
new actions, the observable behavior of TSy coincides with the observable behavior
T'S,. If action subcontract_order is never executed, the original behavior is preserved.
Note that in Figure 3 and subsequent figures new actions (i.e., action not appearing in
Figure 2) are highlighted. Also note that T'S is not a subclass of T'S; with respect to
projection inheritance. If we hide the two new actions, there is an occurrence sequence
where receive_order is directly followed by close_order without executing reject_order
or accept_order and ship_order in-between. Clearly this behavior is not possible in 7' .

receive
confirmation

reject
order

accept'. ship "
order S2 order S3 order S4 order SO

order

Fig. 3. A subclass with respect to protocol inheritance (T°S5).

Labeled transition system 7'S3 shown in Figure 4 is a subclass with respect to pro-
jection inheritance. The new action send_invoice is executed in parallel with ship_order.
(We are assuming interleaving semantics here.) If send_invoice is renamed to 7, then
action accept_order is always followed by ship_order which in turn is followed by
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close_order. Therefore, the observable behavior of T'S3 coincides with the observable
behavior of T'S; after abstracting from send_invoice, i.e., T'Ss is a subclass of 7'S; with
respect to projection inheritance. Note that 7'Ss is not a subclass of T'.S; with respect to
protocol inheritance. If send_invoice is blocked, the process gets stuck after executing
ship_order.

reject
order

. receive
s1

order

s2 order send

invoice

close '
s5

order

send
invoice

‘ ship >

order

s4

Fig. 4. A subclass with respect to projection inheritance (7°S3).

There are essentially two ways to combine the two basic notions of inheritance
into stronger or weaker notions of inheritance. Protocol/projection inheritance is the
most restrictive form of inheritance which combines both basic notions at the same
time. If p is a subclass of g with respect to protocol/projection inheritance, then p is a
subclass of g with respect to protocol inheritance and projection inheritance. Life-cycle
inheritance is the most liberal form of inheritance: The set of new actions is partitioned
into hidden and blocked such that the observable behavior of the subclass equals the
behavior of the superclass. Note that protocol and/or projection inheritance implies life-
cycle inheritance.

answer reject
order

receive accept . ship close .
1 order $2 order S3 order $4 order SO

Fig. 5. A subclass with respect to protocol/projection inheritance (7'S4).

TS4 shown in Figure 5 is a subclass of 7'S; with respect to protocol/projection
inheritance because either blocking or hiding the two new actions results the observable
behavior of 7'S;. If action guestion is blocked, the new behavior is never activated. If
actions question and answer are renamed to 7, their presence cannot be observed.

Labeled transition system 7'Ss shown in Figure 6 is a subclass of TSy with respect
to life-cycle inheritance. By blocking the new action subcontract_order and hiding ac-
tion send_invoice the resulting observable behavior coincides with 7°'S;. Note that 7'S5
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receive
confirmation

reject

subcontract
order

order

. receive accept
ST order S2 order

end
invoice

ship f close'.5
order S

Fig. 6. A subclass with respect to life-cycle inheritance (T'S5).

is not a subclass of 7'S; with respect to any of the other three notions of inheritance.
All the other notions either block and/or hide all the new actions while for life-cycle in-
heritance each individual new action is either blocked or hidden. Note that T'S5 is also
a subclass of TSy with respect to projection inheritance. Moreover, T'S; is a subclass
of T'S5 with respect to protocol inheritance.

To summarize, we have identified four notions of inheritance based on two fun-
damental mechanisms: hiding and blocking. The most restrictive notion of inheritance
is protocol/projection inheritance. Of the four transition systems T'Sy, T'S3, T'Sy, and
TS5 only T'S4 is a subclass of T'S; with respect to protocol/projection inheritance.
Life-cycle inheritance is the most liberal form of inheritance and each of the four tran-
sition systems T'Ss, T'S3, T'S4, and T'Sy is a subclass of T'S; with respect to life-cycle
inheritance.

2.2 Inheritance preserving transformation rules and other results

Based on the four notions of inheritance, we have developed a set of tools (e.g., Woflan
[24]) and obtained powerful theoretical results. These theoretical results have been pre-
sented in [1-3, 5, 6] and in this section we only highlight some of them.

In both a Petri-net and a process-algebraic setting we have developed a comprehen-
sive set of inheritance preserving transformation rules (cf. Table 1). A detailed descrip-
tion of these rules is beyond the scope of this paper. Therefore, we give an informal
description of four inheritance preserving transformation rules: PP, PT, PJ, and PJ3.
Transformation rule PP is used to add loops such that each loop eventually returns to the
state where it was initiated. If these loops contain only new or invisible actions, proto-
col/projection inheritance, and therefore also the other three notions of inheritance, are
preserved. T'S4 can be constructed from 7'S; using this rule, and therefore, it automat-
ically follows that T'Sy is a subclass of 7'S; under protocol/projection inheritance. PT
preserves protocol inheritance and adds alternative behavior. T'Sy can be constructed
from 7S} using this rule. PJ and PJ3 both preserve projection inheritance. PJ can be
used to insert new actions in-between existing actions. PJ3 can be used to add parallel
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behavior. 'S5 can be constructed from 7°Sy using rule PJ3. The four rules (PP, PT, PJ,
and PJ3) correspond to design constructs that are often used in practice, namely iter-
ation, choice, sequential composition, and parallel composition. If the designer sticks
to these rules, inheritance is guaranteed. It should be noted that the precise formulation
of these rules depends of the modeling language being used and is not as straightfor-
ward as it may seem (e.g., the added parts should not introduce deadlocks and terminate
properly). The four inheritance preserving transformation rules have been formulated
in terms of object life cycles and WF-nets (Petri-net-based modeling languages, cf. [1—
3,5, 6]) but also in terms of ACP (a process-algebraic language, cf. [5, 6]). Moreover,
in the process-algebraic setting additional rules (PJ2, LC1, LC2, and LC3) have been
formulated [5, 6].

name|adds preserves
PP |(loops containing new behavior all notions of inheritance
PT |new alternatives starting with a new action  |only protocol and life-cycle inheritance
PJ |new actions inserted in-between existing ones|only projection and life-cycle inheritance
PJ3 |new actions in parallel with existing ones only projection and life-cycle inheritance

Table 1. Overview of inheritance preserving transformation rules.

Based on the inheritance preserving transformation rules we have also developed
a comprehensive set of transfer rules. These transfer rules can be used to migrate in-
stances from a subclass to a superclass and vice versa. Suppose that p is a subclass of ¢
constructed using the rules PP, PT, PJ, and PJ3. For any state in p it is possible to transfer
an instance (e.g., an object of a class whose life-cycle is specified by transition system
p) to ¢ such that the transfer is instantaneous (i.e., no postponements needed) and does
not introduce syntactic errors (e.g., deadlocks, livelocks, and improper termination) nor
semantic errors (e.g., the double execution of actions or unnecessary skipping of ac-
tions). Moreover, it is also possible to transfer instances from subclass p to superclass g
without any problems. Note that the transfer rules are derived from the transformation
rules introduced earlier. The transfer rules to move a case to a subclass are: rpr, rpp,
rpJ, rpj3,c and rpys, p. The transfer rules to move a case to a superclass are: rl}hc,

r;}, P r;}), r;.},, and r;}3. See [3] for the specification of these transfer rules in a
Petri-net setting.

Each of the four inheritance relations provides an ordering on labeled transition sys-
tems and can be used to define concepts such as the GCD (Greatest Common Divisor)
of two processes. The concept of GCD was introduced in [3] and a detailed analysis
of this concept is given in [2]. Since none of the inheritance relations is a lattice, there
is a trade-off between “uniqueness” and “existence”. By using a weak notion of GCD,
existence is guaranteed but there may be multiple GCD’s. By using a stronger notion,
existence is no longer guaranteed but if the GCD exists, it is unique. Given this tradeoff,
we define the notion of Maximal Common Divisor (MCD). An MCD is a “smallest”
superclass of both p and ¢ under life-cycle inheritance. If a set of labeled transition sys-
tems is related under inheritance via subclass-superclass relationships, it is generally
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quite easy to find the GCD. If this is not the case, the computation of a GCD is more in-
volved and there are typically multiple candidates (i.e., MCD’s). Similarly results hold
for LCM’s (Least Common Multiple) and MCM’s (Minimal Common Multiple) [2, 3].

These results illustrate the strong theoretical foundation for inheritance of dynamic
behavior. Unfortunately, its application has been limited to the workflow domain [3].
In this paper, we want to demonstrate that these results can also be used as a stepping
stone for extending the behavior diagrams in UML (i.e., sequence diagrams, activity
diagrams, collaboration diagrams, and statechart diagrams) with inheritance.

2.3 Checking inheritance using Wolfan

To illustrate the applicability of the four inheritance concepts we refer to our workflow
analysis tool Woflan [24]. Woflan is based on Petri-nets and aims at the verification of
workflow processes. Besides checking for deadlocks and other design errors, Woflan
also supports the four notions of inheritance. Given two workflow models, Woflan is
able to check whether one model is a subclass of the other model. The current ver-
sion assumes that these models are expressed in terms of Petri nets. However, we have
developed translations from concrete systems such as COSA (COSA Solutions/Thiel
AQG), Staffware (Staffware PLC), and Protos (Pallas Athena) and alternative modeling
techniques such as workflow graphs and event-driven process chains [3]. Moreover, the
inheritance-checker is relatively independent of the modeling language used and the re-
sults are not restricted to workflow processes but apply to any behavioral model. These
practical results demonstrate the practical potential of the results presented in [1-3, 5,
6] in the context of UML.

3 Sequence diagrams

The first diagram type we consider is the UML sequence diagram. A sequence diagram
has two dimensions: (1) the vertical dimension represents time and (2) the horizon-
tal dimension represents different instances. Sequence diagrams are typically used to
describe specific scenarios of interaction among objects. Although UML allows for
variations such as iteration, conditional, and timed behavior, we assume that the se-
quence diagram is restricted to lifelines, messages (i.e., communications of type proce-
dure call, asynchronous, and return), activation, and concurrent branching. Under these
assumptions it is fairly straightforward to map a sequence diagram onto an labeled tran-
sition system (core semantic domain) or a Petri net (intermediate semantic domain) [16,
20]. In fact, under these assumptions any sequence diagram corresponds to a so-called
marked graph [19], i.e., a Petri net where places cannot have multiple inputs/outputs.
This observation indicates that only projection inheritance is relevant for this diagram
type. (If there are no choices, it makes no sense to block behavior since this will only
cause deadlocks.) As a result, only the projection-inheritance preserving transformation
rules are relevant.

Consider the two sequence diagrams shown Figure 7. The right-hand side diagram
is a subclass of the left-hand side diagram under projection inheritance. There are two
ways to verify this. First of all, we can map both sequence diagrams onto any of the
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Fig.7. A subclass sequence diagram constructed using rules PJ and PJ3.

semantics domains shown in Figure 1 and then check inheritance in the corresponding
domain. Second, one can apply the projection-inheritance preserving transformation
rules PJ and PJ3 described in Section 2.2. PJ can be used to add action prepare_bill and
PJ3 can be used to add the lifeline worker and the actions inform, order, and complete.
Note that in Figure 7 we assumed a one-to-one correspondence between messages and
actions. Moreover, we did not use communications of type procedure call, activation,
and concurrent branching. However, translation of PJ and PJ3 to sequence diagrams can
easily deal with these concepts.

Collaboration diagrams are closely related to sequence diagrams. In essence they
provide a different view on the identical structures [21]. Therefore, the results obtained
for inheritance of sequence diagrams can easily be transferred to collaboration dia-
grams.

4 Statechart diagrams

In contrast to sequence diagrams, statechart diagrams are typically not used to specify
scenarios. Instead they are used to model the life cycle of object. Since the 1987 paper
by David Harel [13] there has been an ongoing discussion on the semantics of state-
charts. Clearly, any of these semantics can be mapped onto our core semantic domain
(transition systems) and thus implicitly use the four notions of inheritance described in
Section 2.1. Moreover, in [8] a partial mapping onto CSP is given (we can use a similar
semantic mapping to ACP) and in [22,23] a mapping onto object behavior diagrams
is given. Instead of providing yet another mapping of statechart diagrams onto some
semantic domain we provide two examples to demonstrate our inheritance notions and
the related transformation rules.
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Fig. 8. A subclass statechart diagram constructed using rules PP and PT.

Figure 8 shows two statechart diagrams. The right-hand side diagram is a subclass
of the left-hand side diagram under protocol inheritance. Any sequence of actions pos-
sible in the left-hand side diagram is also possible in the right-hand side diagram. The
superclass statechart diagram models a Dutch traffic light which is either in state blink-
ing or in composite state 7L. The composite state is decomposed in three substates: red,
green, and yellow. The subclass statechart diagram extends the superclass in two ways.
First of all, the self transition blink is added. Second, the composite state is extended to
allow for a traffic light which fails. State no_light corresponds to a malfunctioning traf-
fic light which is shut down. The extension involving transition blink can be realized
by applying PP, this is the protocol/projection inheritance preserving transformation
rule which introduces loops which can be blocked or hidden. The extension involving
state no_light can be realized by applying PT, this is the protocol inheritance preserving
transformation rule which introduces alternatives which can be blocked.

Another example illustrating the application of our framework to statechart dia-
grams is given in Figure 9. The right-hand side diagram is a subclass of the left-hand
side diagram under projection inheritance. The subclass statechart diagram (right) ex-
tends the superclass (left) in two ways. First of all, the traffic light has four phases
instead of three including a state red+yellow. Second, the composite state 7L has now
two concurrent regions: one corresponding to the original traffic light with one addi-
tional phase and one corresponding to a mechanism to count the number of cars. If we
abstract from this new mechanism and the additional phase, we obtain the original traf-
fic light. Therefore, it is easy to verify that the right-hand side diagram is a subclass of
the left-hand side diagram under projection inheritance. However, it is also possible to
demonstrate this by applying the two projection inheritance preserving transformation
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rules PJ and PJ3 mentioned in Section 2.2. PJ can be used to insert the additional state
red+yellow and PJ3 can be used to add the concurrent region for counting cars.

5 Activity diagrams

An activity diagram is a variation of a state machine in which the states represent the
performance of actions or subactivities and the transitions are triggered by the comple-
tion of the actions or subactivities. Activity diagrams are typically used for modeling
behavior which transcends the life cycle a single object. Therefore, it supports nota-
tions such swimlanes and is often used for workflow modeling. Compared to classical
statecharts, activity diagrams allow for actions states, subactivity states, decisions and
merges (both denoted by a diamond shape), object flows, and concurrent transitions (to
model synchronization and forks). Note that swimlanes do not influence the behavior of
an activity diagram. The semantics of activity diagrams is still under discussion. How-
ever, clearly many ideas have been adopted from Petri nets and in the proposal for UML
2.0 token passing is used as the main mechanism to specify the semantics of activity
diagrams [12]. Therefore, we use WF-nets [3] as the semantic domain to map activity
diagrams on. Concurrent transitions are mapped Petri-net 7 transitions, decisions and
merges are mapped onto places, actions states are mapped onto Petri-net transitions, ob-
ject flows are mapped onto places, transitions are mapped onto 7 transitions and places,
etc.

Again we use an example to illustrate the application of our inheritance notions.
Consider the two activity diagrams shown in Figure 10. The right-hand side diagram
is a subclass of the left-hand side diagram under life-cycle inheritance. Note that the
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Fig. 10. A subclass activity diagram constructed using rules PT and PJ3.

right-hand side diagram is not a subclass under any of the other three notions of inheri-
tance: Action send_invoice needs to be hidden while action subcontract_order needs to
be blocked, therefore none of the other notions applies. Also note that left-hand side
diagram corresponds to the labeled transition system shown in Figure 2. The right-hand
side diagram corresponds to the labeled transition system shown in Figure 6. The sub-
class activity diagram (right) extends the superclass (left) in two ways: (1) send_invoice
can be added using projection inheritance preserving transformation rule PJ3, and (2)
the alternative sequence starting with subcontract_order can be added using protocol
inheritance preserving transformation rule PT.

In Section 2.3 our verification tool Woflan [24] was already mentioned. Using a
straightforward mapping of activity diagrams onto WF-nets, we can use Woflan to
check whether the right-hand side activity diagram in Figure 10 is a subclass of the left-
hand side diagram under life-cycle inheritance. As Figure 11 shows, this is indeed the
case. The interested reader can download Woflan from http://www.tm.tue.nl/it/woflan.

6 Related work

The literature on object-oriented design and its theoretical foundations contains several
studies related to the research described in this paper. In [26], abstraction in a process-
algebraic setting is suggested as an inheritance relation for behavior. Other research on
inheritance of behavior or related concepts such as behavioral subtyping are presented
in [4,15,17,18,25]. The variety of inheritance relations reported in the literature is
not surprising if one considers, for example, the large number of semantics that ex-
ist for concurrent systems (see, for example, [10]). For an elaborate overview of other
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Fig. 11. Woflan shows that the right-hand side activity diagram in Figure 10 is indeed a subclass
of the left-hand side diagram under life-cycle inheritance.

approaches we refer to [6]. Although many authors mention the need for inheritance
of behavior in the context of UML, in most cases the application to concrete UML dia-
grams is missing. Consider for example the work presented in [14]. The authors provide
a rigorous framework for behavioral inheritance, but do not “lift” the framework to the
level of statechart or activity diagrams. Other authors focus specifically on inheritance
of statecharts [8,22,23]. In [8] inheritance of statechart diagrams is investigated using
CSP as a semantic domain. In [22,23] Object/Behavior Diagrams are used as a seman-
tic domain. It is encouraging to see that in [8, 22, 23] similar notions of inheritance are
used: “invocation consistency” corresponds to our protocol inheritance and “observa-
tion consistency” corresponds to our projection inheritance. Note that we allow for two
additional notions of inheritance (protocol/projection inheritance and life-cycle inheri-
tance), provide inheritance preserving transformation and transfer rules, and also extend
our work to sequence and activity diagrams.

7 Conclusion

In this paper, we investigated the applicability of the theoretical results on behavioral
inheritance presented in [1-3,5, 6] to the UML diagrams dealing with behavior. Al-
though these theoretical results have been developed in the context of specific models
for concurrency (i.e., Petri-nets and process algebra) there is a common core which has
been illustrated using labeled transition systems (our core semantic domain). We have
demonstrated that this core can be lifted to the level of concrete UML diagrams. In par-
ticular, we have applied the four inheritance notions and corresponding transformation
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rules to sequence diagrams, activity diagrams, and statechart diagrams. In this paper,
we used a rather pragmatic approach not aiming at the full expressive power of UML.
The full UML standard simply contains too many features and is not defined (yet) suf-
ficiently to allow for our ultimate quest: Defining inheritance for sequence diagrams,
activity diagrams, and statechart diagrams as it is defined for object diagrams. How-
ever, the examples presented in this paper show that the theoretical results can be lifted
to the level of concrete UML diagrams.
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Abstract

In this paper we present a Colored Petri Net (CPN) for a multi-agent application. In particular we modeled
the Packet-World. In our research we use the packet-world as a case to study the fundamentals of agents’
social behavior. Our approach is to combine experiments with conceptual modeling. We start from a very
basic model and then add social skills in a modular way. Integrating new social skills by means of adding
new modules offers us a clear conceptual view on the evolution of agents and the environment. With a
conceptual view we mean. (i) which concepts does an agent need in order to acquire a new kind of social
ability, (ii) which infrastructure is necessary in the environment to support these abilities, (iii) how do these
concepts relate to each other? With the insights we learn from the case study, we gradually develop a
generic conceptual model for social agents situated in a MAS. In this paper we first present a CPN for a
basic model of the packet-world. This model consists of agents that can only interact through passive
objects in the environment. Because interaction is the central issue of multi-agent systems, we have
incorporated basic infrastructure for agent coordination straight away into our basic model. Then we
extend the model, making it possible for the agents to communmicate information with each other.
Communication is the basis for social organization. Besides the concrete realization of a CPN for a multi-
agent application, the model we present in this paper has the potential to support our future research of
agents' social behavior. Our major motives for using CPNs as modeling tool are (i) CPNs gives a clear
conceptual view on agents and the environment wherein they live, and (ii) CPNs support neat verification

and formalization.
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1. Introduction

In this introduction we first situate our research goals in the domain of Multi-Agent Systems (MAS).
Next we explain how we tackle the problems we want to solve and motivate our choice for Colored
Petri Nets (CPN) as a tool for modeling MASs. Then we situate the subject of this paper in our
research. We conclude with an overview of the paper.

1.1 Fundamentals of Sociality in MASs

The importance of MASs as a design concept for today’s software is beyond dispute. A MAS
models a part of the world as a community of autonomous agents that interact in an environment. In
a MAS the activity is distributed over the agents of the community. The intelligence of the systems
comes from the interaction between the agents, rather then from their individual capabilities. This
contrasts to the approach of the classical artificial intelligence where an agent acts as an independent
“cognitive reasoning machine”.

A MAS is a society of agents that live and work together. Living in a community requires a number
of social skills. Until now the agent research community has paid little attention to the fundamentals
of sociality in MASs. Many unanswered questions remain. The lack of insight in agents' sociality
limits the potential of the agent-based approach. We quote N. Jennings in [6]:

“To realize the full potential [of MASs], a better understanding is needed of the impact
of sociality [..] on an individuals behavior and of the link between the behavior of the
individual agents and that of the overall system.”

Until now, research about the fundamentals of agents’ sociality can be divided into two approaches.
In the first approach research is mainly experiment-oriented. Some references are [8][9][10][11][12].
These projects explore new kind of interactions and rules for setting up social structures. What we
can see is that from the interaction of the agents new functionality's emerge that go beyond the sum
of the capabilities of the individuals. The second approach intends to conceptualize the social aspects
of agents in a MAS. Some examples are [6][13][14][15]. One group of researchers has integrated
certain aspects of agents' sociality in a formal model of an agent (e.g. the BDI-model). Another
group has set out some thoughts how agents’ sociality and the organization of a MAS might be
structured.

We conclude that most of the work that has been done so far, has one or more of the following
characteristics:

e the research focuses on one particular aspect of sociality in MAS
e the research starts from a particular point of view
e most of the research is done separately from one another

e the focus is mainly directed on Aow social behavior could emerge in a MAS, much less
attention is devoted to the questions why and when social behavior arises

1.2 The goals of our research

The goal of our research is to get a better understanding of sociality in MASs. Therefore we intend
to build a generic conceptual model of social agents situated in a MAS. Our approach is to combine
experiments with conceptual modeling, the two approaches we mentioned in the previous section. We
use a case application to explore different kind of social behaviors. Parallel with experiments we
build a conceptual model. We start from a very basic model and then add social skills in a modular
way. Integrating new social skills by means of adding new modules offers us a clear conceptual view
on the evolution of agents and the environment. With a conceptual view we mean: (i) which concepts
does an agent need in order to acquire a new kind of social ability, (ii) which infrastructure is
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necessary in the environment to support these abilities, (iii) how do these concepts relate to each
other? With the insights we learn from the case study, we gradually will develop a generic
conceptual model for social agents situated in a MAS. Therefore we have to generalize the insights
we learned from the case application in order to build abstract models for different classes of social
skills.

1.3 Modeling MASs with Colored Petri Nets

When we set out our approach the question arises how we should model the case application. Since
Petri nets [1] have a long tradition to describe and analyze concurrent processes, they where
excellent candidates. Colored Petri Nets (CPN) [2] combine the best of classical Petri nets and high
level programming languages, and are for that very popular. CPNs have an intuitive graphical
representation that paves the way for clear conceptual modeling of complex systems. The behavior
of a system modeled with a CPN can be analyzed, not only by means of a simulation but also on a
formal base. It is remarkable that CPNs, which offer most of the ingredients to tackle the complexity
of multi-agent systems, are little used to model and study them. Some interesting references are
[16][17][18][19][20][21][22]. The most far-reaching use of CPNs for modeling MASs is from
Ferber. Ferber developed a formalism called “Basic Representation of Interactive Components”
(BRIC). BRIC is based on a component approach, each of the primitive components (“bricks”)
described with a CPN. In his standard work “Multi-Agent Systems” [3], Ferber proposes an
extensive set of BRIC components, each of them representing a generic model for a specific part of a
MAS. Inspired by his ideas we decided to use CPNs in our research. In contrast with Ferber, who
uses CPNs for an operative representation of the functioning of a MAS we use CPNs for a
conceptual modeling of sociality in MASs.

1.4 Situating the paper in our research, overview of the paper

The multi-agent application we use in our research is that of the Packet-World. Originally, Huhns
and Stephens proposed this application in [7] as a research topic to investigate sociality in MASs.
The packet-world consists of a number of different colored packets that are scattered over a
rectangular grid. Agents that live in this virtual world have to collect those packets and bring them to
their corresponding colored destination. The agents have only a limited view on the world. The
packet-world offers a rich set of fundamental characteristics for a broad range of multi-agent
systems. E.g., agents may perform better their job when they share their information or when they set
up a form of cooperation. In this paper we describe two models of the packet-world. These two
models form a solid basis for our future research of agents’ social behavior. After an intuitive
description of the packet-world, in section 3 we present a CPN for a basic model. This model
consists of agents that can only interact through passive objects in the environment. Next in section
4, we extend the model, making it possible for the agents to communicate information with each
other. Communication is the basis of social organization. In section 5 we give results of our first
experiments with the two models. Finally, we conclude and look to future work in section 6.

The CPNs that we present in this paper are designed with the Design/CPN tool [4][5]. In order to
keep a clear view on the models, we limit the number of agents to two.

2. The packet-world

2.1 Introduction

Consider a rectangular grid of size S. The grid contains a number of colored packets and agents. It is
the agents’ job to collect the packets and bring them to their corresponding colored destinations. The
grid contains one destination for each color. Figure 1 shows an example of a packet-world of size 8
with 3 agents.

In the packet-world agents can interact with the environment in a number of ways. We allow agents
to perform a number of basic interactions with the passive objects of the environment. First, an agent

123



can make a step to one of the free neighbor fields around him. Second, if an agent is not carrying any
packet, he can pick up one from one of his neighbor fields. Third, an agent can put down the packet
he carries on one of the free neighbor fields around him or of course on the destination field of that
particular packet. Finally an agent may wait for a while and do nothing.

=
H|H |t

il

Figure 1. The packet-world (squares are packets, circles are delivering points)

It is important to notice that each agent has only a limited view on the world. This view covers only a
small part of the environment around the agent. This property of limited knowledge is typical for the
agents of a multi-agent system. In our model, the view-size of the world expresses how far (i.e. how
many squares) an agent can “see” around him.

In our model we use a simple measure to indicate how efficient the agents perform their job. Each
time an agent makes a step or moves a packet (by picking it up, putting it down or step with it) a
counter is incremented. At each point in time the value of this counter indicates how much energy the
agents have invested in their work so far.

In the basic model for the packet-world we limit the agents possible interactions with the
environment to the basic set we mentioned above. We modeled the basic agents without any social
skills. Their goal is to collect the packets of the world and bring them to their destinations. This
general goal can be divided into a set of primary goals. In short, those agents act in a repeating cycle
driven by two primary goals: look for a packet and pick it up, look for the destination and deliver the
packet.

In the extended model, agents can interact with each other. This interaction is the foundation of
cooperation between the agents. For the packet-world one can imagine different kinds of cooperation.
Agents can for example agree on a plan to form a chain and pass on packets to each other. We
modeled another form of cooperation. In the extended model we present in this paper, we integrated
facilities into the basic model to let agents communicate with each other. In particular, agents are
extended with functionality to request information from each other. Instead of exploring the world to
find a target an agent does not see, the agent now can ask a visible colleague for the desired
information. If the requested agent knows or sees the asked information he can respond the query
with the information. This allows the requesting agent to act more efficient.

2.2 Actions, influences and reactions

Agents of a multi-agent system are endowed with autonomy. They are driven by a set of goals. In
order to achieve those goals agents undertake actions. When an agent acts in the environment, e.g. he
picks up a packet next to him he has no full guarantee that this action will succeed. Another agent
might be trying to pick up the same packet at about the same time. As a consequence only one of
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them will get the packet leaving the other with empty hands. Therefore we say that an action of an
agent results in an influence in the environment. Influences result in reactions from the environment.
Each influence can succeed or fail. For example if an agent performs the action “pick” he invokes
the influence “perform pick” on the environment. If the action succeeds, the environment reacts with
the reaction “do pick”, if the action fails the reaction will be “can’t pick”. So it is only after the
reaction of the environment to all the performed influences (at about the same point of time) that the
agents actually experience the result of their intended actions. When an agent is notified about the
result of the action he undertook, we say that the agent consumes the result of his produced
influence.

2.3 Agent state

An agent can only decide to perform an action if he is endowed with some attitudes and has some
information at his deposal. In section 2.1, we mentioned an agent is driven by a set of primary goals.
Agents act to achieve those goals. Therefore they perform influences into the environment, as
described in section 2.2.

When an agent selects an action, he has to take the state of the world into account. If an agent for
example decides to pick up a packet, first of all, he must be aware of the fact he actually does not
carry a packet. In general this means the agent must possess some state of his own. In our model of
the packet-world an agent maintains the state of his position and whether he actually carries a packet
or not. Further, the agent must "see" the packet near to him. He needs some information about the
environment around him in order to act. We call this information the view of the agent. In our model,
regularly each agent gets an update of its own view on the world. As mentioned in section 2.1, this
view covers only a small part of the environment around the agent. A special synchronization module
is responsible for the timing of the updates of the agents’ views. We explain this synchronization
process in detail later.

As an alternative, the agent might “know” something about the world in order to take a decision
what to do. It is for example not necessary that an agent “sees” the destination for his packet if he
“knows” the location of the destination. In our model we therefore endowed an agent with a belief
base. This belief base contains records with information that the agent has collected in the past. It is
clear that some of this information is volatile. A destination for a particular color of packets will
never change, but a packet located at a certain field might have disappeared after a while. In our
model agents “know” which beliefs unconditionally can be trusted and which are not trustable.
Agents revise suspicious beliefs as soon as they get information about them from their percept
update, i.e. as soon as the subject of the belief comes inside a certain range of their vision.

2.4 A job and the states of the world

At start time the packet-world is in an initial state. Packets are scattered over the grid, and the agents
are located between them. The counter that measures the agents’ performance is initialized to zero.
We define a job as the task of the agents to collect all the packets and deliver them at the right
destinations. A job starts when a synchronization module triggers the environment to send the agents
their view. Driven by their goals, agents select an action to perform. These actions result in a
transformation of the state of the packet-world. This cycle repeats until the whole grid is cleared.
Each time the action of an agent modifies the state of the world the performance counter is increased.
As soon as all packets are delivered at their destination the synchronization module stops the process
of updating the view of the agents. This informs the agents that the job has come to an end. The
packet-world is then in the end state. The transformation of the world can be described as a dynamic
process that transforms the initial state of the world along a sequence of discrete states into the final
state by means of performing synchronized actions of the agents.

2.5 Conflict resolution and synchronization
When the agents act, the environment reacts. Thereby it takes the influences of the agents into
account and produces a new consistent world. In our model we distinguish between two levels of
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synchronization. First we have synchronization at the level of concurrent actions. We call this system
synchronization. This level of synchronization guarantees that the "laws of the world" are respected.
For example, only one agent at a time can step to a particular free field. System synchronization is
implicitly integrated into a CPN. A second level of synchronization is situated at a higher level of
interaction between agents. We call this the level of functional synchronization. Functional
synchronization offers support for coordination of actions between agents. All actions of the agents
are synchronized in action cycles as shown in Figure 2.

A cycle starts with updating the perception of each agent. Based on its state and the new percept he
receives, each agent then can reason about what he wants to do. The agent selects an action and
produces an influence invoked on the environment. The environment calculates the reactions of all
performed influences and notifies the agents by means of a consumption for each of them. As soon
as all reactions are completed the environment will be triggered to calculate a new percept for each
agent, and that starts a new action cycle. In our model functional synchronization is realized by
means of the synchronization module.

percept synchronization

—| sync module

percept calculation reactions

ﬁ ’_L environment

percept update
reasoning influences

consumption

R |_L agent 1
|_L agent 2

Figure 2. Functional synchronization.

1 action cycle
< >
< >

One might wonder why we decided to introduce functional synchronization. After all it limits the
freedom of action of the agents. Agents are no longer allowed to handle on their own rhythm. But
this is just the point. The problem solving power of a multi-agent system arises from the interaction
between the agents of the system. In order to cooperate, agents have to coordinate their actions.
Coordinating actions between two (or more) autonomously running agents is hard to achieve.
Therefore we introduced functional synchronization. For the price of some individual freedom we
offer the agents a clean framework to coordinate their interactions. We fit in communication into this
model. This means that sending a question or responding to it by means of sending an answer, are
both integrated into the extended model as first class actions.

3. Modeling the basic components of the packet-world

In this section we discuss how we modeled the basic model of the packet-world by means of a CPN.
First we give a high level overview of the model. This identifies the different modules of the multi-
agent system. Next we discuss the CPN for each separated module.

We bring the separated modules together in a global net after discussing the integration of
communication into the basic model in section 4.
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3.1 High level model

We have divided the basic model for the packet-world into three separated modules, each
representing one fundamental component of the packet-world. We distinguish between the
environment (box), the agents (rounded boxes) and the synchronization module (diamond).

As shown in Figure 3 agents in the basic model only interact with the environment. The white arrows
represent the influences performed by the agents. The gray arrows represent the consumptions and
percepts for the agents. The synchronization module regulates the updates of the latter.

4 N
Agent 1 Agent 2
T I
— Environment

Figure 3. High level basic model with 2 agents.

Before we go into the separate CPNs for the different modules we first have to tell something about
our approach for modeling modularity. In each module there are two kinds of places. There are
circles that represent internal places and ovals that represent interface places. Interface places are
similar to the notion of fitsion places as defined in [4].

Different modules can be combined with each other by merging overlapping interface places. Note
that we distinguished only between internal and interface places to indicate that some places of a
module will overlap with similar places of other modules when a global CPN is composed. The
graphical distinction has no particular semantic meaning related to places of a CPN in general.

3.2 Model of the environment

The environment models the world in which the agents live. For our packet-world we modeled the
environment as one centralized entity. The agents can interact with the environment by means of a
set of actions. The concurrent actions of the agents lead to the modification of the world. Agents are
notified of those transformations by means of (i) consumptions (i.e. what they get from their invoked
influences) and (ii) percepts (i.e. a partial view of the state of the world around the agent). The
environment keeps track of how efficient the agents perform their job. We have modeled this
efficiency tracker as a simple counter that is incremented each time an agent invests a relevant
portion of energy, i.e. makes a step or moves a packet. Figure 4 shows the CPN for the environment.

The data of the environment is modeled as a token of the colorset World, located in the place
ENVIRONMENT. This token is a list of /tem, each item being a record with two components:
color Item = record name:Name * coord:Coordinate;

color World = list Item with 1.. (worldsize*worldsize);

The performance efficiency of the agents at a certain point in time is modeled as a set of anonymous
tokens collected in the place COUNT.

The reactions of the environment are modeled as transitions. A reaction takes an influence and the
state of the world as input. In case the reaction produces a successful action the involved part of the
world is modified. Otherwise the world is left untouched.

Furthermore a reaction produces a consumption for the agent that is sent to the corresponding
interface place and a synchronization token that is sent to the synchronization module.
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Whether an action ends successfully or not depends on the actual state of the world. This is tested by
means of the guards of the transitions. Let us look at one example.

[ CPN for the environment of the Packet-world
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O @ position Performpick ) m
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a 2
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DO_PICK
Tokel 5
SE - token CANT_PICK
.
1token 1'token .
4—‘]« SYNG )<t Tioken
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Figure 4. CPN for the environment of the packet-world.

Suppose an agent intends to make a step. Therefore he puts a token m of the colorset Move into the
interface place “Performstep*. The token m contains information about the identity of the agent and
the coordinate of the square that he wants to step to. The reaction of the world will be one of the two
following possibilities:

1. If the action succeeds the transition DO_STEP with the following guard will fire:
(*w models the world, m the invoked influence and a the consumption *)

[canStep (w,m) ,wl=updateWorldStep (w,m) , a=updateCoord(m) ]

2. If the action fails the transition CANT _STEP will fire:
[not (canStep (w,m) ) ,a=getMAgent (m) ]

In the first case the condition canStep (w,m) is fulfilled and the state of the world as well as the
position for the agent are updated. In the second case canStep (w, m) fails. In this case the original
location of the agent is copied into the consumption for the agent.

The last part of the environment concerns the production of the agents’ percepts, modeled as the
transition PRODUCE PERCEPT. As soon as a token arrives at the "syncout" place of the
synchronization module, this transition fires. It reads the world, produces the agents’ updated views
and puts them in the interface place “Percept”. There the agents can pick them up. Note that the
environment only produces percepts as long as the produce percept transition can read a token from
the PACKET COUNT place. Initially this place contains one anonymous token for every packet on
the grid. Later on, each time an agent delivers a packet on its destination, one token is consumed
from the packet count place. Finally when the latest packet is delivered there remain no longer tokens
in the packet count place and that ends the production of new percepts.

3.3 Model of a basic agent
Agents are the active entities of the packet-world. Each agent is endowed with a number of
operations in order to act in the environment. He can perceive information and use it instantly or
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register it for later use. He can act in the environment and manipulate things. The CPN model for a
basic agent is shown in Figure 5.
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st (1) ‘ CPN for a basic agent of the Packet-world
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Figure 5. CPN for a basic agent of the packet-world.

All actions an agent undertakes are driven by a set of goals. The goals of our basic agent are quite
limited. In case the agent hands are free he will look for a packet and pick it up. As soon as the agent
holds a packet he will look for the destination and deliver it there. All actions available for an agent
to fulfill its first goal (go for a packet) can only be started when a token of the colorset Agent is
located in the place "lookforP". Performing one of the actions available to fulfill the second goal
(deliver a packet) requires an Agent token in the "lookforD" place. An Agent token contains the state
of the agent he maintains about himself. Such a token consists of three parts:

color Agent = record name:Name * coord:Coordinate * carry:Name;

Initially the Agent token is located in the place “ready”. When the execution starts, the “startup”
transition fires. This passes the Agent-token to the “lookforP” place. At the same time the name of
the agent is placed in the “identity” place. The agents’ identity will be used later on to dispatch the
percepts of the environment to the various agents.

The state an agent maintains about the world around him is modeled as tokens of the colorset Belief
stored in the place “beliefbase’:

color BeliefSubj = with pRec | dRec;

color Belief = record subj:BeliefSubj * item:Item;
In our basic model a belief contains information about an item of the world (for the definition of an
Item, see section 3.2). We have provided two kind of beliefs, one for a packet (subj = pRec) and one
for a destination (subj = dRec). Our basic agents actually use their belief base only passive and in a

limited way. In fact they will only look for a packet or the destination of a packet in the base when
they do not see it. So only when the programmer has given the agents some initial information (by
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means of an initial marking of the belief base) they take profit of their belief base, otherwise it is of
no help.

An agent trusts the beliefs about a destination but he revises beliefs about a packet as soon as he
approaches the subject of the belief. This is done by means of the revise (Belief, View) function in
the guard of the transition “pick”.

The agents view on the world is modeled as tokens of the colorset View:

color View = list of Item with 1.. (worldsize*worldsize);

In practice this list never contains all items of the world. The head of the list is always the item that
corresponds to the agent himself. Thereafter the environment copies only the items around the agent
in a range defined by the variable “view-size”. Figure 6 illustrates the limited view an agent has on
the world. In this example the size of the view is 2.

Figure 6. View on the world of Agent 2.

Now we discuss the action set of the agent. Each action is modeled as a transition. Such a transition
consumes at least one token of the colorset Agent and one of the View set. Optionally the belief base
is consulted. If the Agent token is located in the “lookforP” place the agent can make a step, pick up
a packet or skip. If the token is in the “lookforD” place the agent can make a step, put its packet
down or skip. In each case, the selection of the action is based on the criteria described in the guards
of the transitions. We illustrate this for the action “put”:

(* v models the view of the agent, a the intern data of the agent, r
one of the beliefs of the agent and m the invoked influence *)

[atD(v) andalso dRec(r) ,m=putP(a,v,r)]

The action “put” will be selected only if the agent is next to the destination of the packet he carries,
i.e. the atD(v) condition. The record with possible information about the destination is selected
from the belief base with the dRec (r) condition. If this record contains the coordinate of the
destination, the agent creates an influence m at once, delivering its packet. If the destination is
unknown he searches it from its actual view and creates a similar influence. The influence m is sent
to the “Performput” interface place, where the environment takes it up for handling. An influence is
modeled as a token of the colorset Move:

color Move = product Agent * Coordinate;

This tuple contains the Agents’ identification (see section 3.3) and the coordinate (i.e. a tuple (x,y))
of the square where he intends to perform some influence. A Move token together with the place
where it lands offers the environment enough information to determine the action an agent intends to
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perform. The percepts from the environment come from the interface place “Percept”. As soon as a
new percept arrives the agent must identify himself in order to obtain the new information. Therefore
the “updateview” transition reads the agents’ identity. If there is a match, the view will be accepted
and broadcast over the possible actions of which one is selected for execution during the next action
cycle. The reactions to the influences are consumed from “Consumeposition” and “Consumepacket”.
Here a similar identification scenario is used. After accepting a consume the Agent token is directed
to one of the main places “lookforP” or “lookforD” according to the fact the agent carries a packet
or not.

3.4 Model for the synchronization module

The synchronization module models the notion of functional synchronization as we already
described in section 2.5. It offers the agents an implicit framework for coordinating their
interactions. Figure 7 shows the module with its connections to the environment.

[CPN for the sync module of the Packet-world ]
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Figure 7. Synchronization module for the packet-world.
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The behavior of the module is straightforward. Each time the agents performs their actions, the
environment will react on them. For each reaction in particular, an anonymous synchronization token
is produced and placed in the “SYNCE” place. These tokens are sent to the “syncin” interface place
of the synchronization module. From there on, the tokens are collected in the “syncaccumul” place.
When the actions for all agents are handled this place contains a number of tokens equal to the
number of agents living in the packet-world. This triggers the output transition to fire, placing an
anonymous token in the “syncout” place. On his turn this enables the PRODUCE PERCEPT
transition of the environment, such that new percepts can be calculated and sent to the agents. This
starts a new action cycle (see section 2.5).

3.5 Complete CPN for the basic version of the packet-world

With de separated modules we now can compose the complete CPN for the packet-word. This
model, depicted in Figure 8, gives a detailed picture of the high level model we presented in Figure 3.
All interface places are combined according to the techniques we mentioned earlier in the paper. To
keep a clear overview we limited the number of agents to two. In general however, a MAS may be
composed of much more agents. In our model each agent has its own CPN module.
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Figure 8. CPN for the basic model of the packet-world
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If we want to model a MAS with more agents we can combine the modules in a hierarchical CPN.
However we do not discuss this further in this paper. To illustrate the purposes of this paper a model
with two agents is sufficient.

4. A CPN for communicating agents

In this section we extend the basic model of the packet-world in a way the agents can communicate
information with each other. Communication enables agents to coordinate their actions and behavior,
resulting in a multi-agent system that is more coherent. Agents can use their abilities to communicate
to better achieve the goals they are driven by.

Communication is part perception (the receiving of messages) and part action (the sending of
messages). The conversation between two agents follows a protocol. A protocol enables agents to
exchange and understand messages. To extend a basic agent with functionality for communication
we build a “communication module” that can be plugged into the basic model of that agent.
Furthermore the environment must be equipped with infrastructure to handle messages (mail).
Therefore, we build a “postal service module” that can be plugged into the environment.

In this section we first introduce the communication protocol for our agents. Then we give a high
level overview of our extended model for the packet-world, including communication. Next, we
present the new modules necessary for communication and conclude with the complete CPN for the
extended model.

4.1 Communication protocol

Basically the agents in our packet-world all have the same capabilities. This is reflected in the roles
they play in a dialogue. As long as an agent “sees” another agent he is capable of sending a message
to that peer colleague. For the moment we only model question/answer types of messages. In
particular we limit the subject of the messages to requests for information. Figure 9 shows the
different steps in a dialogue. The syntax of the protocol is described in section 4.3.

questioner addressee

compose msg [

T——Sndms |
» accept msg

look for info

w
S
process answer I:

:I ™

other activities

v v

Figure 9. Communication among the agents.

An agent delivers a composed message at the “inbox™ of the postal service. This service has
knowledge of the mailboxes of the agents and routes the message to the mailbox of the addressee. As
soon as the message arrives, the addressee can pick it up from his mailbox. In our model an agent is
not obliged to handle an incoming message at once.

When the addressee decides to read the message, he will look for the requested information. If he
knows the information he sends an answer, otherwise he informs the requester he can’t help him for
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the moment. When the reply arrives the information will be processed and possibly update the belief
base of the requester.

4.2 High level model of the packet-world with communication extension

Figure 10 shows a high level model for the packet-world in which agents are equipped with
functionality to communicate. The basic agents of our basic model are now extended with a
communication module. This module permits an agent to interact with a colleague.

Postal Service

1! rd

[Communication] [Communication]

module modulc

Ve Y
Basic Basic
agent 1 agent 2

N J

v
0 0
Sync .
Module Environment

Figure 10. High level model of with functionality for inter-agent communication.

The arrows above the agents model the communication channels with the postal service module. This
latter is responsible for delivering posted messages in the mailboxes of the addressees. Note that the
postal service module too can produce functional synchronization pulses.

4.3 Model of the communication module for the agents
The communication module assembles functionality for an agent to send requests, respond to
questions and process answers. The CPN for such a module is depicted in Figure 11.

In our model, agents can gather information from a colleague about the location of a packet or a
particular destination according to its actual state. Asking for information is modeled as a transition,
respectively “askforP” and “askforD”. To fire one of these transitions (i.e. compose a message) a
number of conditions must be fulfilled.

These conditions are described in the guards of the transitions. Let us look to one example, the
“askforD” transition:

(* a models the internal state of the agent, v its current view *)
[canCallD(a,v),question=askForD(a,v) ]
The function canCallD (a,v) returns true only if (i) the agent actually does not see the destination
of its packet and (ii) he sees a colleague on which he can ask the information. If canCallD(a,v)

succeeds, the function askForD(a,v) produces a question that as a token of the colorset Message
is delivered in the inbox of the communication module.

A Message has the following structure:
color Performative =
with questP | answP | noanswP | questD | answD | noanswerD;
color Message =

record from:Name * to:Name * perform:Performative * content: Item;
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CPN for the communication module of the Packet-world ‘

Message

Message
msg

msg

answer
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[isAQuestion(msg), rightRec(msg, ), angwer = composeAnswer(v,r,msg)]

[canCallP(a,v),question = askForP(a,v)]

»rightF rin) Ip in,msg)]
[canCallDfa,v},question = askForD(a,v)]

processanswer

ar ar
gt if pRec(rin) then 14qt1 else empty 1qt1
if[dRec(rin) then 1qt1 else empty

View

1rout
1in

Agent Belief 1Prect ++ 1'Drect

beliefbase
lookforP

Figure 11. Communication module for an agent.

The performative informs the addressee about the type of message that is been sent. The content of a
question is an item structure that has to be completed by the addressee. If for example an agent “al”
asks an agent “a2” for the location of the destination for yellow packets he will compose the
following message:

{from="al”, to="a2"”,perform=questD, item={name="yellowDest”, coord=null}};

When agent “a2” receives this message he knows exactly what “al” is asking for. He will uses his
belief base and actual view to find the coordinate of the “yellowDest”. If he finds e.g. at coordinate
(4,3) the yellow destination, he replies the following message :

{from="a2",to="al”,perform=answD, item={name="yellowDest”,coord=(4,3)"}}

Replying to a message is performed in the transition “response”. To fire this transition a view is
consumed together with the message from the mailbox. The information in the believe base is only
consulted as an extra information source.

The model prevents an agent to send messages for information over and over again. The
“queueregulation” places contain a limited number of tokens that are consumed each time a question
is sent and only restored when the answer is processed. Processing an answer comes down to update
the belief base for the case the answer contains new information, otherwise the answer is thrown
away.

4.4 Model of the posting service module

The postal service is responsible for delivering the mail of the agents at the right mailbox. Figure 12
shows the CPN for this module. The postal service has one “inbox” place where agents can leave
their messages. Each message is accepted in the transition “acceptmsg”. This transition puts the
message in the “msgbuffer” place and produces three other tokens. The first token goes to the
“msgeount” place where the user can read the total number of messages the postal service has
handled so far. The second token goes to the “msglog” place, where a log of all messages is saved.
The third token is sent to the “syncP” place from where it is directed to the “syncin” place of the
synchronization module. This means that in our model, sending messages is coordinated with the
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other actions agents can perform. This fits in our concept of functional synchronization, offering a
solid base for the agents to coordinate their activities.

[ CPN for postal service of the Packet-world }

if d = mailbox2 then 1'msg else empty

MailBox
Message
1oken addresses
1'mailbox1 ++ 1‘mailbox2

d Message msg
d

[d = destination(msg)]
deliver msg

if d = mailbox1 then 1'msg else empty
Message

mailbox1

Message
mailbox2

Figure 12. Postal service module.

When a message resides in the “msgbuffer” it is delivered to the addressee by firing the “delivermsg”
transition. This transition consults the “addresses” place where the references to the different
mailboxes are stored. Based on the mapping between the addressee indicated in the message and the
information of the mailbox references, the message is delivered in the mailbox of the addressee where
he can pick it up later on.

4.5 Complete CPN for the packet-world with communicating agents
With de separated modules we have proposed in the previous sections, we now can compose the
complete CPN for the packet-word with communicating agents. This model, depicted in Figure 13,
gives a detailed picture of the high level model we presented in Figure 10.

5. First experiments

In this section we briefly give an overview of the results of our first experiments with the CPNs for
the basic version of the packet-world and the extended version with functionality for communication.
We first discuss results of simulations; next we look to a number of verifications.

5.1 Simulations

With the Design/CPN tool a CPN can be executed, automatically or interactive. This allows us to
follow the successive actions of the agents. We did tests on a world with size 5 and one with size 8.
For both we changed the view-size for the agents. Table 1 gives an overview of the results. The
numbers are rounded averages for 5 jobs.

Table 1. Simulation results.

‘World view-size Kind of model COUNT % gain msgcount

world-size = 5 2 basic 26 . B
nbAgents =2 communication 18 4
nbPackets = 5 3 basic 15 ; N
communication 14 2

wotld-size = 8 3 basic 167 - -
nbAgents =2 communication 129 16
nbPackets = 16 4 basic 110 ) -
communication 108 2

136



wa) w

e

Hexelaind=urooup ogerue ()]

]

ooy}

L

Kulebyye0=z{wmingesion]

o)

W

& 1420834730008

Hulpveoyppes=z"fuiwldeisued) jou]

a @
L

30NAS) ueuifs

[ulosemmos{elamaduriiiar] s | oy

usion) o oLy

adns Ja

w

wio)

,|i_.§

=

{penunoung] | 2040

=
=,

fdue ede e, v (Eum g

w | 20010} +42000d)

B 690210, LW (WIOOLD 1 | Aydus st 20 Ve {wood

Vo o 1

2o
oo ] = s o veu Gy .wf :
oot \/ Wby u

= vu

I aby o E
(onepBa) (ionertal
b \zaenbent zaenanb ) )

[Rlgrogse= sentRlaRow]

)i ise=uonsend eigreouw]

|

waysend

pliom-19oed 8y} 10} NdD g

[(
:

uagsor

{MZRANED,), ++ {8 waNe,|

neuns v+ iwans
womsod "
oy darmioned oo
wan won
wos w [rwpsreporieelarad-aare] s
fons)
e
ol [ sae| (6 amd=utooup ovepve (are] N =
o
[rn— i Gl Ty Agperunours] 3 > o
L Lt [
o B ) )
e 7
\atas
epamauns [ oo W
)
b

o
oy | bsopRel Tk 0% % v PV ¢

lielewmnpnes=ul

5 Ju say Tnen
i T, > v
Adu 059 7, || uay} {Ejiumo. B
T NS SO ey
® ) (0o oyEpUe {{A)giou]

for n o
Ly [ ewasuevan s /.&Jn:v‘ 6
ety G

Aaduss 6519 1) Ueu{1iko0p 1 4xiwe 830 by} usul ook 5 B [iepumnvpe=ul
0 i Hb * 1enyers
‘wopenBa: uopanbes ®
—— J
RV e ‘. (@)
el welarow] ) . el = ponsenue) reoues] e
==
ot
T
Bsu s
Voo
aessapy

foswlvayansep =pl

A0 090 65, | v ZX0qEU =P 1

P
ZromaL ++ poaruL 9 gy

e esp BsuL} v, |roarw =p

e

& e L]

Figure 13. Complete CPN for the packet-world with two communicating agents.
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If we compare the results for one kind of model (basic or communication), we see that increasing the
view-size significantly reduces the number of steps the agents need to complete a job. The obvious
explanation is that a greater view-size increases the information for the agents, so they can act more
efficiently. When we compare the results between the two kinds of models for one view-size we
notice that for small view-sizes the communicating model scores significantly better then the basic
version. For greater view-sizes the gain is only marginal. In the first case agents communicate
information to each other, so they can act more efficiently. In the latter case the view of the agents
covers a great part of the world, so they mostly “see” what they are looking for, and there is no need
to request information from each other. Our first tests confirm the value of information interchange
between agents, but for better-founded conclusions we need to do more tests, especially with greater
worlds and more agents.

5.2 Verifications

Besides simulation, the Design/CPN tool offers support for formal verifications of CPNs by means
of the Occurrence Graph Tool [4]. An occurrence graph is a directed graph with a node for each
reachable marking and an arc for each occurring binding element. With such occurrence graphs we
did a number of formal verifications for the CPNs of the packet-world. We discuss here some results
for the basic version of a world of size 5 with 2 agents that have to collect 5 packets.

The tool generates a standard report (for more information see [5]) that already gives a lot of
information. E.g., the “Liveness Properties” gives the “Dead Transitions Instances” for the
occurrence graph. If e.g. CANT PICK is such a dead transition instance this means that for the
given packet-world there where no conflicts between the agents with picking up packets. Contrary if
e.g. CANT STEP is not a dead transition instance we are sure both agents must have stepped at
least once to the same square. To investigate the CPN in more detail the occurrence graph tool offers
a lot of standard query functions. Besides, users can formulate their own customized queries too. To
do a number of formal verifications, we extended the CPN for the packet-world with an extra “test-
module”, depicted in Figure 14.

We added four more places to the Petri Net, PACKETS ON_GRID, CARRIED PACKETS,
DELIVERED PACKETS and FINISCH JOB, as well as two more transitions FINISH JOB and
TEST END JOB. Initially PACKETS ON _GRID contains nbPackets anonymous tokens, while
CARRIED_PACKETS and DELIVERED PACKETS are empty.

When an agent picks up a packet (i.e. DO_PICK fires) one token from PACKETS ON_GRID is
passed to CARRIED PACKETS. When an agent delivers a packet at its destination (i.e. DO_PUT
fires) the token is further passed from CARRIED PACKETS to DELIVERED PACKETS. At the
end of the job all packets are delivered, so PACKETS ON_GRID and CARRIED PACKETS are
empty, while DELIVERED PACKETS contains nbPackets anonymous tokens. When for each
agent (during the final action cycle) the Agent token reaches the “lookforP” place and a new
synchronization token reaches the “syncout” place, the FINISH JOB transition is enabled and will
fire. This clears the Petri Net and an anonymous token arrives in the END JOB place. This enables
the TEST _END_JOB transition that from then on will fire forever.

The packet-world is free of deadlocks. To prove that no deadlock appears we have to prove that
there exists a path from each node in the occurrence to the node that represents the final marking,
representing the state in the END _JOB place. That particular node, the leaf node of the occurrence
graph, is shown with its predecessors in Figure 14. The proof is straightforward. The SearchNodes
function “PROOQOF 1” in Figure 14 searches the number of nodes that have no path to the leaf node.
Since this number is zero we have proven that the packet-world is deadlock free.
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Figure 14. Test module for the packet-world.

A job is correctly solved in a limited number of steps. To prove that a job of the packet-world is
correctly solved in a limited number of steps we have to take two steps. First we have to prove that
the following place-invariant holds:

“the sum of anonymous tokens (each representing a packet) for the places
PACKETS ON GRID, CARRIED PACKERTS and DELIVERED PACKETS is
constant and equal to nbPackets in each node of the occurrence graph, except in the
leaf node”

This invariant tells us that neither strange packets enter the packet-world, nor any packet is lost
during a job. The SearchNode function of “PROOF 2” in Figure 14 shows that the invariant holds.
To complete the proof we must demonstrate that the number of steps to reach a solution (i.e. the
TEST END JOB is enabled) is limited.

Since “PROOF 17 tells us that there exists a path from each node in the graph to the leaf node, we
can conclude that execution always ends in a limited number of steps.

6. Conclusions and future work

In this paper we presented a CPN for the packet-world, a multi-agent application. In our research we
use this application as a case to study the fundamentals of sociality in MASs.

Let us now reflect and verify that our expectations from using CPNs have been worked out. An
important argument for using CPNs was its strong graphical expressiveness. We build up the
packet-world by means of compositional modules. When we integrate communication infrastructure
into the basic model we got a clear view on how this impacts the agents and the environment.
Building an executable CPN leaves no escape for the designer. Every aspect must be modeled
explicitly and unambiguously. Therefore we are forced to find concrete solutions for several
problems. One typical example is the way we realized functional synchronization. One can talk al lot
about such an aspect, but modeling it in a CPN brings the designer to the very essence of it. As
such, we can state that we learned a lot about MASs, using CPNs to model them. Another argument
why we have chosen CPNs was the possibility of simulation. Simulating a MAS like the packet-
world can be done in different ways. Executing a CPN is not always the most attractive way to
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simulate such a problem. But in fact, that is not the point. What is important is the fact that the
execution of a CPN is a direct simulation of the model itself. So the simulation directly shows us the
value of the model we have built. A last argument for CPNs we mention here is the possibility of
formal verification. The MAS community has a strong tradition in formal description and
verification of its ideas. CPNs join this approach. Formal verification lets the designer proof the
correctness of (parts of) his model. Without the Design/CPN tool it would be very hard to prove that
our packet-world has a correct solution in a limited number of steps. With the tool it is quite simple
to proof this property.

This paper reflect our first experiences with CPNs as a tool to model agents’ sociality. The model we
have developed forms a solid basis for future research of agents' social behavior. We conclude with
some thoughts about our future work. It is our intention to build modules for a number of other
social skills for the agents of the packet-world. Examples are agents that cooperate by forming a
chain and passing packets to each other, or agents that coordinate their actions avoiding future
conflicts (e.g. 2 agents who both step a long way to the same packet). Building such models will gain
us more in-depth knowledge about the fundamentals of sociality in MASs. To manage the
complexity of extensive models we can use hierarchical CPNs. Later on we intend to generalize the
insights we learned from the packet-world. We intend to build abstract models for different classes
of social skills. The aggregate of these models can serve as a well defined and easy to communicate
formal model for social agents in MASs.
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Abstract. Mobility creates a new challenge for dynamic systems in all
stages of modelling, execution, and verification.

In this work we present an application area of the paradigm of “nets
within nets”. Nets within nets are well suited to express the dynamics of
open, mobile systems. The advantages of Petri nets — intuitive graphical
representation and formal semantics — are retained and supplemented
with a uniform way to model mobility and mobile (agent) systems.
First the modelling of mobility is introduced in general, the results are
carried forward to model mobility in the area of agent systems. The
practicality of the approach is shown in a second step by modelling a
small case study implementing a household robot system.

Keywords: agent, mobile agent system, mobility, nets within nets, Petri
nets, Mulan, Renew

1 Introduction

The general context of this paper is mobility in open multi agent systems. The
main question is how to model mobility in an elegant and intuitive manner
without losing formal accuracy. The modelling language should feature a graph-
ical representation to be used in a software engineering process. The modelling
paradigm should be capable of expressing the different kinds of agent mobility.
The models should build upon a formalism that has a formal semantics to sup-
port verification and execution. The (direct) execution of the models prohibits
errors of manual translation from models e.g. to program code. Executable mod-
els support the validation process.

Here, we present a proposal, how the paradigm of “nets within nets” can be
used to describe mobility. The paper consists of two parts: First it is shown how
“mobility” in general can be expressed (environment, moved entity, different
types of movement). In the second part these results are used to support the
engineering of mobile agent systems.

Most of the work on mobility is based on calculi. Mobility calculi like in
[CGGI9], [VCI8] or in [MPW92] formalise mobility without having a visual rep-
resentation, thus being unsuited for the software-technical modelling of mobile
entities. Mobile Petri nets [AB96] provide a description of mobility by embedding

141



the m-calculus into the formalism of ordinary Petri nets. Since the formalism is
far from the general intuition of a token game, it cannot be used here for the
proposed goal of supporting the specification process of complex software sys-
tems.

Structure of the paper In section 2 general statements on mobility are given:
minimal preconditions for a formalism to express mobility are suggested as well
as our needs for an intuitive modelling. A selection of formalisms is compared
on this basis. We present a short introduction to the paradigm of nets within
nets and show how this paradigm can be used to model mobility. In section 3
we give a description how this paradigm is used in the specific context of open
multi agent systems. Section 4 presents a small case study of a mobile agent
system using the modelling proposals. The paper closes with a conclusion and
an outlook to further work.

2 Nets within Nets and Mobility

Figure 1 shows the mandatory elements of a system to become a mobile sys-
tem. The overall system is divided into separate locations. At least two different
locations are necessary. Locations host entities (some of) which are able (under
certain circumstances) to undertake a movement from one location to another,
which means that the environment of the entity changes.!

(mobile) entity

location I1

12

system

Fig. 1. Elements of mobile systems
! This changing may either be logical or physical. The modelling of real-world scenarios

makes it necessary to cope with the additional problems of physical movements —
which may be mapped to a logical changing of the environment.
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An important point of mobility is the embeddedness of the mobile entity:
each entity is embedded in a local environment (location) that assists the entity
by offering some services and restricts it by declining others (or not having the
potential to offer them). If all locations look the same to the mobile entity and
no difference is made in local versus remote communication, movements are
transparent to the mobile entity. This is an important feature for example in
load balancing systems. The systems we are considering usually show several
differences between the locations and hence are more interesting to model, since
these differences cause the complexity of the systems.

Modelling opportunities To argue why we are not using a common mobility
calculus, we take the Seal Calculus [VC98] as an example. In the Seal Calculus
a process term P with locality is denoted as E[P]. Mobility is described by
sending seals over channels. The term Z*{y}.P describes a process, which can
receive a seal y over the channel £* and then behaves like P. For receiving the
term 2*{z}.Q describes a process, which receives the seal z, substitutes this seal
for every occurrence of z in @ and then behaves like this new Q.2

Mobility calculi like the Seal Calculus offer about the same modelling power
while being (partly) easier to analyse than our extended Petri net formalism. We
favour nets within nets for the description of mobility, since Petri net models are
easier to read without losing the exactness. This is the main difference to models
based upon calculi or logic, like HIMAT of Cremonini et al. [COZ99]. Nets within
nets can be used for modelling purposes in our MULAN? architecture as well
as for analysis purposes. Additionally, our formalisation allows the description
of location and concurrency in an integrated way, which would not have been
possible with simple Petri nets or mobility calculi alone.

Buchs and Hulaas [HB01] use an extended variant of high-level algebraic
Petri nets to model mobile (agent) systems. The difference to this approach is the
approach to mobility: Their system uses a w-calculus like style, e.g. mobility via
passing of names. In our opinion it is more intuitive to remove the mobile entity
from one location and let it enter a new one. This will be shown in subsection
2.2. Nevertheless, it is possible to simulate our approach with m-calculus like
mobility and vice versa.

The use of widespread (graphical) modelling formalisms like UML is not
possible, because all included types of diagrams (e.g. class diagrams, activity
diagrams, state charts) are static and/or do not offer a notion of (dynamic)
embeddedness. Additionally they lack a formal semantics. This is especially the
case for the deployment diagram, that was originally used to model the static
allocation of objects among different computers (clients and servers).

In the majority of cases mobile agents are directly implemented using a
programming language like Java [Sun]. As an example we cite Uhrmacher et

2 The Seal Calculus thus describes a spontaneous move. See Figure 4 in subsection
2.3.

3 MuLAN stands for MULti Agent Nets and is an approach to cover a complete agent
framework (specification, design, implementation, and execution) on Reference nets
and Java [Ro6102].
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al. [UTTO0] (representative for other publications): The implementation is done
using Java whilst the mobility aspect of the system is presented using simple
graphics (without semantics). In contrast to this approach we try to unify illus-
tration and implementation using the same (Petri net) model for both purposes.

Summing up these arguments we decided to use an extended Petri net for-
malism, that will now be introduced.

2.1 Nets within Nets

The paradigm of “nets within nets” due to Valk [Val98,Val00] is based on the
former work on task-flow nets [Val87]. The paradigm formalises the aspect that
tokens of a Petri net can also be nets. Taking this as a view point it is possible
to model hierarchical structures in an elegant way.

We will now give a short introduction to the paradigm of Reference nets
[Kum02,KW98], an implementation of certain aspects of nets within nets. It
is assumed throughout this text that the reader is familiar with Petri nets in
general as well as coloured Petri nets. Reisig [Rei85] gives a general introduction,
Jensen [Jen92] describes coloured Petri nets.

A net is assembled from places and transitions. Places represent resources
that can be available or not, or conditions that may be fulfilled. Places are
depicted in diagrams as circles or ellipses. Transitions are the active part of a
net. Transitions are denoted as rectangles or squares. A transition that fires
(or occurs) removes resources or conditions (for short: tokens) from places and
inserts them into other places. This is determined by arcs that are directed from
places to transitions and from transitions to places.

Reference nets [Kum98] are so-called high-level Petri nets, a graphical nota-
tion that is especially well suited for the description and execution of complex,
concurrent processes. As for other net formalisms there exist tools for the sim-
ulation of reference nets [KWDO01]. Reference nets offer some extensions related
to “ordinary” coloured Petri nets: net instances, nets as token objects, commu-
nication via synchronous channels, and different arc types. Beside this they are
quite similar to coloured Petri nets as defined by Jensen. The differences are now
shortly introduced.

Net instances Net instances are similar to objects of an object oriented program-
ming language. They are instantiated copies of a template net like objects are
instances of a class. Different instances of the same net can take different states
at the same time and are independent from each other in all respects.

Nets as tokens Reference nets implement the “nets within nets” paradigm of
Valk [Val98]. This paper follows his nomenclature and denominates the sur-
rounding net system net and the token net object net. Certainly hierarchies of
net within net relationships are permitted, so the denominators depend on the
beholders viewpoint.
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Synchronous channels A synchronous channel [CH94] permits a fusion of tran-
sitions (two at a time) for the duration of one occurrence. In reference nets (see
[Kum98]) a channel is identified by its name and its arguments. Channels are
directed, i.e. exactly one of the two fused transitions indicates the net instance
in which the counterpart of the channel is located. The other transition can cor-
respondingly be addressed from any net instance. The flow of information via a
synchronous channel can take place bi-directional and is also possible within one
net instance. It is possible to synchronise more than two transitions at a time
by inscribing one transition with several synchronous channels.

Arc types In addition to the usual arc types reference nets offer reservation
arcs and test arcs. Reservation arcs carry an arrow tip at both endings and
reserve a token solely for one occurrence of a transition. They are a short hand
notation for two opposite arcs with the same inscription connecting a place and
a transition. Test arcs do not draw-off a token from a place allowing a token to
be tested multiple times simultaneously, even by more than one transition (test
on existence).

2.2 Modelling Mobility

The intuition of nets within nets is, that the token nets are “lying” as tokens in
places just as one is used to have ordinary tokens. This is illustrated in the figures
2 and 3. When modelling more widespread nets a displaying as in the mentioned
figures is not practical. Therefore the modelling tool Renew implements a kind
of pointer concept: net tokens are references (hence the name) to nets each
displayed in a window of their own.*

on on

=]

on:ch()

Fig. 2. Object net embedded in system net

To give an example we consider the situation where we have a two-level
hierarchy. The net token is then called the “object net”, the surrounding net is
called the “system net”. Figure 2 illustrates this situation: The object net in the
left place of the system net can be bound to the arc inscription on. Doing so,
transition M is activated with this possible binding. In addition M is inscribed

4 There is another difference between the Reference nets of Renew and the intuitive
modelling, namely the use of reference versus value semantics. This topic is covered
by Valk [Val00].
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with a synchronous channel (on:ch()). This inscription means that for the object
net on to become an actual binding of transition M an adequate counterpart
has to be found within on — an enabled transition inscribed with the channel
:ch(). This precondition is fulfilled by transition f of the object net. So the
synchronous firing of object and system net can take place and leads to the
situation in Figure 3.

on l? on
L=

on:ch()

Fig. 3. Object and system net after firing

The object net is moved to the right place of the system net. Synchronously
the marking of the object net changed so that another firing of transition f is
not possible.

The example gives an idea how the interplay between object net and system
net can be used to model mobile entities manoeuvring through a system net,
where the system net offers or denies possibilities to move around while the
mobile object net moves at the right time by activating a respective transition
that is inscribed with the counterpart of the channel of the move transition of
the system net.

Without the viewpoint of nets as tokens, the modeller would have to encode
the agent somehow. This has the disadvantage, that the inner actions cannot be
modelled directly, so, they have to be lifted up to the system net, which seems
quite unnatural. By using nets within nets we can investigate the concurrency
of the system and the agent in one model without losing the needed abstraction.

2.3 Types of Mobility

The interplay between object net and system net induces four possibilities for
an object net to move or to be moved, respectively.

1. The object net is moved inside the system net, neither object nor system net
controls the move. (Spontaneous Move)

2. The object net triggers the movement, the system net has no influence.
(Subjective Move)

3. The system net forces the object net to move. (Transportation, Objective
Move)

4. Both nets come to an agreement on the movement. (Consensual Move)
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Fig. 4. Spontaneous Move

on:ch()

Fig. 5. Subjective Move: Object net triggers movement

If neither object net nor system net influence the movement it may happen
spontaneously. This is the situation in Figure 4. There is no pre- or side condition
for the movement.

One may argue that the second possibility does not exist, because the system
net offers the ways for object nets to move from one location to another. So the
system net “decides” which movements can be carried out and which can not.
But in a given system net it is possible for an object net to control the movement
as shown in Figure 5.

In the figure the only condition for the movement to be carried out is the
synchronous channel (see transition M). The synchronous channel is activated if
its counterpart inside the object net is also activated (that means, it is inscribed
to an enabled transition). So the movement depends on the (firings of the) object
net only. This movement is called subjective because the mobile entity itself is
subject of the execution.

Fig. 6. Transportation: System net triggers movement
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If Figure 4 is extended with some kind of condition for transition M, the
system net may control the movement, the object net is transported from one
location to another. Figure 6 shows only one possibility of how the system net
may control the transition M, another one is for example a guard (see Figure 7).

movement

. preconditions

guard (on may move)

Fig. 7. Consensual Move

By combining Figure 5 and Figure 6 both object and system net influence
transition M. For the transition to be enabled, they have to agree upon the move-
ment. For this reason this kind of movement is called consensual. An example
for such a move is shown in Figure 7.

The figure shows another way of modelling a (side) condition for transition M:
a combination of a place holding movement conditions and an appropriate guard.
The guard monitors the movement conditions, transition M is only enabled if
the object net is allowed to move.

3 Agent Systems

In the following section we lift the general insights of how mobility can be mod-
elled to a special form of multi agent systems. The modelling of a mobile agent
(object net) moving through a “world” of several locations (system net) allows
for an intuitive reproduction of real-world scenarios.

First the multi agent architecture MULAN is introduced, that also profits
from the use of nets within nets.

3.1 Multi Agent Architecture Mulan

The multi agent system architecture MULAN [KMRO1] is based on the “nets
within nets” paradigm, which is used to describe the natural hierarchies in an
agent system. MULAN is implemented in RENEwW [KW98], the IDE (Integrated
Development Environment) and simulator for reference nets. MULAN has the
general structure as depicted in Figure 8: Each box describes one level of ab-
straction in terms of a system net. Each system net contains object nets, which
structure is made visible by the ZOOM lines.® The figure shows a simplified

® This zooming into net tokens should not to be confused with place refining.
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version of MULAN, since for example several inscriptions and all synchronous
channels are omitted. Nevertheless this is an executable model.

The net in the upper left of Figure 8 describes an agent system, which places
contain agent platforms as tokens. The transitions describe communication or
mobility channels, which build up the infrastructure. The multi agent system
net shown in the figure is just an illustrating example, the number of places and
transitions or the interconnections have no further meaning.

. 00O
multi agent system Z_ — - agent platform
~
A
/ .
internal external
platforms
communication
structure
mobility
structure receive send \
agent agent 1
|
/
agent ¥
incoming outgoing
P
protocol X
oull:' |:|in
start subcall process stop

Fig. 8. Agent systems as nets within nets

By zooming into the platform token on place pl, the structure of a platform
becomes visible, shown in the upper right box. The central place agents hosts
all agents, which are currently on this platform. Each platform offers services to
the agents, some of which are indicated in the figure.® Agents can be created
(transition new) or destroyed (transition destroy). Agents can communicate by
message exchange. Two agents of the same platform can communicate by the
transition internal communication, which binds two agents, the sender and the
receiver, to pass one message over a synchronous channel.” External communi-

6 Note that only mandatory services are mentioned here. A typical platform will offer
more and specialised services, for example implemented by special service agents.

" This is just a technical point, since via synchronous channels provided by RENEW
asynchronous message exchange is implemented.

149



cation (external communication) only binds one agent, since the other agent is
bound on a second platform somewhere else in the agent system. Also mobil-
ity facilities are provided on a platform: agents can leave the platform via the
transition send agent or enter the platform via the transition receive agent.

A platform is therefore quite similar to a location in the general mobility
scenario as it was introduced in the beginning of section 2.

Agents are also modelled in terms of nets. They are encapsulated, since the
only way of interaction is by message passing. Agents can be intelligent, since
they have access to a knowledge base. The behaviour of the agent is described in
terms of protocols, which are again nets. Protocols are located as templates on
the place protocols. Protocol templates can be instantiated, which happens for
example if a message arrives. An instantiated protocol is part of a conversation
and lies in the place conversations.

The detailed structure of protocols and their interaction have been addressed
before in [KMRO01], so we skip the details here and proceed with the modelling
of agent migration.

3.2 Mobility as a system view

When modelling a complex system it is often undesirable to see the overall
complexity at every stage of modelling and execution (simulation in our case).
Therefore the notion of a system view is introduced. Several views on an agent
system are possible, for example the history of message transfer (message pro-
cess), the ongoing conversations and/or active protocols (actual dynamic state)
or the distribution of agents among a system of several locations (platforms).

Using nets within nets as a modelling paradigm allows for the direct use of
system models at execution time. This can be exploited as follows: The overall
system is designed as a system net with places defining locations and transitions
representing possible moves from one location to another. This is a direct trans-
formation of the general mobility modelling ideas of section 2. The adaption to
host platforms (that encapsulate the mobile agents) instead of agents directly is
straightforward (adding one level of indirection) and can be omitted here.

Figure 9 shows an example of such a system net. Places are locations (rooms)
in or in front of a house, transitions model possible movements between the
rooms. The walls of the house are drawed in for illustrationary purposes only.
This example is carried forward in the next section (4).

The interesting point is that it is possible to “decorate” the places in the
system net with additional interesting features, for example a characteristic sub-
set of the services of the hosted platform together with some of the pre- and
postconditions of these services. The beholder of such an enhanced system net
is provided with a complete view of important system activities without having
to deal with the underlying complexity.

8 This is illustrated in the next section: The mobility system net is just a small part
of the overall system consisting of several agents, platforms, technical substructure
e.g. for the remote communication and so on. This is hidden from the user as long
as the user does not wish to see the implementation details.
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frontyard

house

kitchen

living room

next room

enter
next room;

Fig. 9. Example system net

The difference between this proposal and a visualisation tool that shows some
activities of e.g. a program running in background is twofold: First, using our
proposal, the modelling process concludes with a running system model. A nor-
mal modelling process requires at least three stages to gain a comparable result:
(a) model the system, (b) implement the model, and (¢) write a visualisation
for the program. Second, the visualisation of a system model at execution time
is indeed the implementation of the system. This eliminates several potential
sources of errors shifting from model to implementation to visualisation in an
ordinary software design process.

4 Mobile Robot Case Study

To illustrate the modelling method introduced before, we introduce a small case
study, a mobile household robot, unfortunately just a software bot.

4.1 Specification

The robot is internally implemented according to the MULAN architecture intro-
duced in subsection 3.1. But that is not what the supervisor of the robot wants
to know and see. What he requires is a simple view on his household, the robots
location and state, and maybe some supplementary information. That is just
what we provide with the extended system net view on the agent system.
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Fig. 10. Household System Net
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The household is represented by the system net in Figure 10.° The household
consists of several rooms (locations): hall, living room, kitchen, next room, and
the front yard (dark places). Each room offers special services to the robot: it can
fetch coffee in the kitchen, serve it in the living room, fetch mail in the front yard,
open and close the door in the hall, and so on (light transitions). The possible
movements from one location to another are displayed as dark transitions. Note
that moving from room to room is not symmetric in this scenario. For example
it is not possible to move directly from the kitchen to the next room. Service
transitions are supplemented with additional information (service state/buffer,
light places) showing for instance if new mail has arrived, coffee is available and
so on. Extraneous actions not accessible for the robot are displayed as thin-lined
transitions: arrival of new mail, new assignments for the robot etc.

The door of the house is used to show another possibility of viewing special
parts of the system: the state of the door (open/closed) is directly modelled.
This system state is not belonging to a single service (as for example the state
of the mailbox), but is queried by a couple of service transitions including the
movements into and out of the house.

This model of the household is filled with life by implementing an appropriate
robot agent and defining the desired services for the platforms. The behaviour
modelling for this kind of agents has been introduced elsewhere [KMRO1].

Having defined the functionality of platforms and agents the parts are in-
serted in the household system net, which is a straightforward operation that
claims for automation (tool support). After that the system is ready for execu-
tion.

4.2 Execution

Figure 11 shows an early state of a sample simulation of the agent system. For
illustration purposes some nets that normally work “behind the scenes” are made
visible in this screen shot. An ordinary simulation would just show the net house2
in the middle of the figure. It is outside the scope of this paper to explain the
full functionality of the MULAN agent framework, so just the mobility overview
net is regarded. 19

Taking a closer view on the central household system net an additional feature
becomes visible: Tokens can be visualised by an intuitive image. In the figure
the incoming mail is visible in the upper left, and a fresh coffee on the lower
right side. This is a one-to-one matching between token and image — whenever
such a token is produced, moved, or deleted, the image follows. The case of the
robot in the next room (lower middle) is a little bit more tricky (to implement),
because what is really lying on the location place is a platform hosting the robot

9 The use of colour greatly supports the differentiation of different types of places,
transitions, or arcs. Unfortunately this is — even in the adapted form as in the
figures not so obvious in a black and white representation.

10 Details of the MULAN framework are topic of an ongoing diploma thesis [Duv02] and
a technical report [R6102] as well as other papers, e.g. [DMRO02]
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agent, and not the robot itself. What can be seen in the system net is actually
a dynamic token figure of the platforms showing representatives of the agents
hosted by the respective platform (empty platform means no image).

It is now easy to see the state of the overall system by looking at the system
net. All the simplifications in presentation do not mean a loss of generality in
the system’s implementation. It is possible to take control of the whole agent
system implementing the robot scenario by just double clicking on one of the
tokens. The tool RENEW will then display the respective net (similar to those
introduced in subsection 3.1), allowing for a complete inspection of the running
system without having to interrupt.

In further execution steps the robot will receive one or more assignments,
for example to serve fresh coffee in the living room. Its internal representation
says that coffee is only available in the kitchen, so it moves there to look for the
coffee service of the kitchen platform. In the scenario of Figure 11 this service
is available, so the robot fetches the coffee and moves to the living room, where
it serves the coffee. The robot ends the assignment by moving back to the next
room and waiting for orders.

The behaviour modelling and planning the robot carries out to perform its
tasks is outside the scope of this paper. The mobility system net helps greatly
in validating a certain robot planning algorithm, for instance by unmasking bad
habits of the robot like fetching the coffee, leaving the house for mail, returning
to the living room later and serving cold coffee.

5 Conclusion and Outlook

In this article we have presented the paradigm of “nets within nets” for the
modelling of mobility. Nets within nets are attractive, since the concept allows for
an intuitive representation of mobile entities as well as an operational semantics
which is implemented in the RENEW-simulator.

We have shown how this approach can help in modelling and executing mobile
agent systems and underpinned our proposal with a small case study.

Besides the software-technical aspects, the exact semantics of nets within nets
—in principal — allows for an analysis of mobile applications. This still needs more
work, a starting point is [K6h02]. Formal treatment of mobile (agent) systems
may prevent “classical” problems like deadlocks because of insufficient resources,
but also helps in “modern” problems like security.

The use of an intuitive graphical formalism like Petri nets offers the room for a
more widespread use as a modelling tool in agent oriented software engineering
(AOSE) as opposed to text-based formalisms (mobile calculi), as the use of
graphic modelling is an accepted technique in mainstream software engineering
(see for example the Unified Modelling Language (UML) [Fow97]).

Additional formal results will be directly integrated in the design of the Petri
net based multi agent system architecture MULAN.
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