
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

ISSN 0105-8517

August 2002

DAIMI PB - 561

Daniel Moldt (Ed.)

Second Workshop on Modelling of
Objects, Components and Agents
Aarhus, Denmark,
August 26-27, 2002

Preface

This report contains the proceedings of the workshop Modelling of Objects, Components, an
Agents (MOCA’02), August 26-27, 2002. The workshop is organized by the “Coloured Petri
Net” Group at the University of Aarhus, Denmark and the “Theoretical Foundations of
Computer Science” Group at the University of Hamburg, Germany. The homepage of the
workshop is: http://www.daimi.au.dk/CPnets/workshop02/

Objects, components, and agents as fundamental concepts are often found in the modelling of
systems. Even though they are used intensively in software engineering, the relations and
potential of mutual enhancements between Petri-net modelling and the three paradigms have not
been finally covered. The intention of this workshop is to bring together research and application
to have a lively mutual exchange of ideas, view points, knowledge, and experience.

The programme committee that selected the papers consists of:

Wil van der Aalst The Netherlands
Remi Bastide France
Jonathan Billington Australia
Didier Buchs Switzerland
Henrik Bærbak Christensen Denmark
Jose-Manuel Colom Spain
Jörg Desel Germany
Susanna Donatelli Italy
Nisse Husberg Finland
Jens Bæk Jørgensen Denmark
Francisco José Camargo Santacruz México
Ekkart Kindler Germany
Gabriela Kotsis Austria
Fabrice Kordon France
Sadatoshi Kumagai Japan
Rainer Mackenthun Germany
Daniel Moldt (Chair) Germany
Tadao Murata USA
Dan Simpson United Kingdom
Rüdiger Valk Germany
Tomas Vojnar Czech Republic
Wlodek M. Zuberek Canada

The programme committee has accepted 8 papers for presentation. They tackle the concepts of
objects, components, and agents from different perspectives. Formal as well as application
aspects demonstrate the wide range within which Petri nets can be used. At the same time they
illustrate that there is a tendency to use more high-level concepts for the analysis and design of
Petri-net-based models.

Daniel Moldt

Reviewers

The organisers of MOCA’02 would like to express their appreciation for the work of the
reviewers listed below.

Wil van der Aalst Eindhoven University of Technology (EUT),
Netherlands

Remi Bastide University of Toulouse, France
Jonathan Billington University of South Australia, Australia
Didier Buchs Swiss Federal Institute of Technology Lausanne,

Switzerland
Henrik Bærbak Christensen University of Aarhus, Denmark
Jose-Manuel Colom University of Zaragoza, Spain
Jörg Desel Catholic University of Eichstätt-Ingolstadt, Germany
Susanna Donatelli University of Torino, Italy
Nisse Husberg Helsinki University of Technology, Finland
Jens Bæk Jørgensen University of Aarhus, Denmark
Francisco José Camargo Santacruz Technological Education of State of Mexico, México
Ekkart Kindler University of Paderborn, Germany
Michael Köhler University of Hamburg, Germany
Fabrice Kordon University Pierre an Marie Currie of Paris, France
Gabriela Kotsis University of Vienna, Austria
Sadatoshi Kumagai University of Osaka, Japan
Gabriela Lindemann Humboldt University Berlin, Germany
Rainer Mackenthun Fraunhofer Institute for Software and Systems

Engineering, Germany
Tadao Murata University of Illinois at Chicago, USA
Heiko Rölke University of Hamburg, Germany
Dan Simpson University of Brighton, UK
Mark-Oliver Stehr University of Hamburg, Germany
Rüdiger Valk University of Hamburg, Germany
Tomas Vojnar Technical University of Brno, Czech Republic
Klaus Voss German National Research Center for Information

Technology (GMD), Germany
Bin YuNorth Carolina State University, USA
Wlodek M. Zuberek Memorial University of Newfoundland, Canada

Table of Contents

Invited Talk:
Hans-Dieter Burkhard
Software-Architectures for Agents and Mobile Robots...................................... 1

Mao Xinjun, Wu Gang, Wang Huaimin, and Zhao Jianming
Formal Model of Joint Achievement Intention... 19

H. Djenidi, A. Ramdane-Cherif, C. Tadj and N. Levy
Generic Multi-Agent Architectures for Multimedia Multimodal Dialogs........ 29

F. Franceschinis, M. Gribaudo, M.Iacono, N. Mazzocca, and V. Vittorini
Towards an Object Based Multi-Formalism Multi-Solution Modeling
Approach... 47

Jukka Järvenpää and Marko Mäkelä
Towards Automated Checking of Component-Oriented Enterprise
Applications .. 67

Invited Talk:
Søren Christensen
Moddeling with Coloured Petri Nets .. 87

Jens Bæk Jørgensen and Claus Bossen
Executable Use Cases for Pervasive Healthcare... 89

W.M.P van der Aalst
Inheritance of Dynamic Behaviour in UML... 105

Danny Weyns and Tom Holvoet
A Coloured Petri Net for a Multi Agent Application 121

Michael Köhler and Heiko Rölke
Modelling Mobility and Mobile Agents using Nets within Nets.................... 141

Software-Architectures for Agents and Mobile Robots

Hans-Dieter Burkhard

Institute of Informatics

Humboldt University

Berlin, Germany

hdb@informatik.hu-berlin.de

Abstract

Agents and mobile robots are implemented to act "autonomously on behalf of
their user/owner". They have to interact with virtual or real-world environments.
This leads to a �rst "horizontal" modularization according to perception, control, and
actuation. Reactive behavior is implemented by simple translations from sensors to
actuators, deliberative behavior includes complex goal selection and planning. Hybrid
architectures combine both approaches using layered architectures, which leads to
a second vertical modularization. The synchronization and interaction between the
modules poses serious problems when the agents/robots have to work on complex tasks
in dynamic environments. Persistent states are used to maintain past oriented and
future oriented information: The world model combines new perceptions with previous
ones, and the commitment maintains plans for the achievements of long term goals.
Special e�orts are needed to keep balance between stabile behavior and adaptation to
new situations. The implementation of "bounded rationality" needs new architectures
behind the scope of the classical ones.

1 Introduction

Control of autonomous robots in dynamical environments is interesting from a cognitive

point of view as well as under application view points. Technical requirements are estab-

lished to construct intelligent autonomous systems in virtual worlds like the internet as

well as in the real world. But still there is an ongoing debate about the best way to control

intelligent behavior. Examples from nature include

1. Immediate reactions to inputs from the real world [Maes90], [Brooks91]:

This approach can lead to surprisingly complex behavior if the stimulus-response

actions are well tuned. The basic idea behind this approach is to use the complexity

of the environment for control: The best model of the world is the world itself,

complex behavior emerges from the interaction with the world. But note that virtual

reality worlds must simulate the physical relations including substitutes for body

sensors to a very detailed level to allow eÆcient stimulus-response behaviors.

2. Actions following long term plans [Bratman87], [Rao/George�91]:

The control uses complex internal models which are analyzed for reachable goals.

Plans are developed to achieve the goals. It needs a lot of e�orts to make appropriate

models even for simple behaviors like following a path while avoiding obstacles in

a dynamically changing environment. But complex behavior (e.g. playing chess or

constructing an air plan) needs a lot of appropriate proactivity.

1

3. Swarm intelligence [Parunak97]: Complex behavior emerges from the interaction of

large groups of simple agents. This approach can be seen as an extension of the �rst

one using cooperation. Cooperation emerges by similar reactions of the agents to

similar sensory inputs. Moreover, the results of the activities in the world are used

as stimuli of other agents (e.g. the use of chemical substances as markers by insects).

Flexibility and adaptation are realized by a certain randomness of actions.

The paper is concerned with individual agents, i.e. with the �rst two approaches. Layered

architectures are used for combination [Arkin98, Murphy00]: Lower layers implement fast

reactions using "behaviors", higher layers implement the guidance of behaviors by plans.

The higher layers are called with lower frequencies and have longer reaction times.

Di�erent behavior needs di�erent triggers. Simple stimulus-response behavior is triggered

by recent sensory data only. But often the environment does not provide appropriate

sensory data for triggering the achievement of a long term goal (e.g. running to intercept

a ball coming from behind - this point will be discussed in more detail below). This

means the agent needs some knowledge about the situation in the outside world behind

the sensory data and some knowledge about its goals and plans.

More abstractly spoken, the agent possesses "persistent" (mental) states to memorize

world models and goals, respectively. We call them "persistent" states to emphasize

their persistence over longer time intervals. This is necessary to make a clear distinc-

tion concerning certain software aspects: During complex computation processes we have

"intermediate" states. Often used methods for action selection are decision trees, state

machines, rule bases etc. These methods may go through di�erent "intermediate" states

while performing the selection process. But these intermediate states are forgotten when

the process is �nished. But if the result of the process needs to be stored (like a goal to

be achieved in the future), then this is realized using a persistent state. It is used as an

internal trigger for forthcoming decision processes.

Commonly used notions are "reactive" and "deliberative" behavior, respectively. Reactive

behavior is mostly understood as simple behavior, without (persistent) commitment to

goals and plans. Deliberative behavior is identi�ed with complex decisions. There are

di�erent aspects mixed in these notions as

� complexity of the decision process,

� ability to anticipate possible future developments,

� planning capabilities,

� persistent states concerning the past (persistent worldmodel),

� persistent states concerning the future (persistent commitments).

As an example we may consider a chess program: It can anticipate future situations

considering the possible moves of both players starting with the recent situation. It can

evaluate reachable future "goals" using complicated evaluation procedures. Finally it

comes up with simply the next move, and all intermediate results are forgotten. After

the opponent's move, the same process starts again for the new situation without any

reference to the previous computations. Is it a reactive behavior? We cannot solve these

terminological problems in this paper, but we will discuss some of its aspects and the

reasons behind.

The practical problems concern rapid reactions to fast changes in the environment. Reac-

tive behaviors are considered appropriate for rapid reactions, while deliberative ones are

2

concerned with long term planning. If long term planning is used in dynamically chang-

ing environments, both approaches are needed, but then they are in con
ict concerning

their synchronization. Layered architectures combine deliberative "higher" layers with

reactive "lower" layers. Di�erent synchronization strategies are in use, but usually the

higher layers have some delay because they are computationally expensive. Hence only

lower reactive layers react dynamically. Thereby they act according to the long term goals

de�ned by the higher deliberative layers. But this goals remain the old ones as long as

there is no redeliberation regarding the new requirements. In fact, there is a real time

control problem concerning fast redeliberations.

To allow some kind of short term redeliberation in complex environments, it is inevitably

to restrict the search space for rapid decisions. This corresponds to concepts of bounded

rationality, where a special "screen of admissibility" ([Bratman87]) is introduced for the

restriction of deliberation processes. The proposal in this paper is a new architecture with

two separated passes through all levels of control as an attempt to combine complex long

term decisions with short term behaviors under real time conditions.

The paper is organized as follows: General aspects of robot controls in dynamical environ-

ments are considered in Section 2 using the scenario of soccer playing robots (RoboCup).

Control architectures are discussed in Section 3. Section 4 continues the discussion of

control problems, the impacts of these problems to the design of control architectures are

investigated. This analysis leads to the proposal of an hierarchically structured control

architecture in Section 5. It allows for long term and short term decisions on all levels of

the hierarchy. In contrast to other layered architectures, just-in-time decisions are possible

on the higher levels, too. An extended version of the paper will appear in Fundamenta

Informaticae [Burkhard02].

The author likes to thank the members of the teams "AT Humboldt" and "German Team"

in the RoboCup for a lot of fruitful discussions. The work is granted by the German

Research Association (DFG) in the research program 1125 "Cooperating teams of mobile

robots in dynamic and competitive environments".

2 Robot Control in Dynamic Environments

Dynamic environments are characterized by fast changes, such that plans may become

invalid by unpredictable events. The robot football (European "football", i.e. "soccer")

scenario promoted by the RoboCup initiative [RoboCup] [Kitano-et-al-97] is best suited as

an illustrative example. It provides a dynamic environment for the football/soccer playing

robots. Special characteristics are the presence of adversaries and the availability of only

incomplete, imprecise data. One may theoretically think about a plan to play the ball via

several players from the goal-kick to the opponents goal, but nobody would expect that

plan to work. Note that there is a great di�erence to a chess program: It is easy to write a

program for �nding the ultimate best moves, it is "only" a question of complexity to run

this program. But nobody is able to write a similar program for football/soccer playing

robots.

It is important to realize that the robots have to work autonomously without any outside

control. Moreover, there is no global control in our scenario: Each robot has to decide for

its own with restricted knowledge about the environment and about other robots. Some

communication is provided, but not enough to exchange detailed information about the

situation and about decisions (the amount of data is restricted).

Control structures for intelligent robots/agents include

� sensors and perception unit to get inputs from the environment,

3

� behavior control (with di�erent complexities ranging from simple stimulus response

behavior to long term deliberative behavior as discussed in this paper),

� actors and basic action control to act in the environment (sometimes using direct

feed back with sensors),

� operating system for synchronizing the di�erent activities (using parallel processing

if possible).

Communication capabilities are included in the sensors and actors, respectively. There

exist a lot of di�erent approaches for controls of intelligent agents and intelligent robots

(cf. e.g. [Arkin98, Murphy00, Wei�99]).

2.1 Basic Skills

The football/soccer scenario provides a lot of di�erent situations to illustrate the needs of

agent architectures for dynamic environments. They range from basic skills up to complex

cooperative behavior.

� The raw input information provided by sensors is processed to yield a perception.

The resulting data structure models the environment including the robot itself (es-

pecially positions and movements of the ball and of the players). It is called the

"worldmodel".

� The information provided by sensors in a single moment is incomplete (the ball may

be covered by other players) and imprecise (due to noisy data). It is possible to

build a more complete worldmodel using information from the past together with

the new perception. For example, the movement of a ball which is covered by other

players can be anticipated using information from the old worldmodel.

The important aspect of such a worldmodel is its persistence with respect to the time

scale induced by sensor inputs and e�ector outputs. The agent maintains such a

worldmodel as a persistent state with updates according to new sensory information.

Since it is oriented to information from the past, it is called past-oriented mental

state.

� Interception of a moving ball illustrates simple problems of the dynamic environment:

A very simple "stimulus-response player" would run straight line to the place where

he sees the ball. As the ball is moving he has to adjust its direction every time he

looks for the ball, and he will perform a curved path as the result. A more skillful

player could anticipate the optimal point for interception and run directly to this

point.

� Now we discuss such a procedure for the anticipation of the optimal point for inter-

ception. It calculates the speed vector v for the optimal run to the ball depending

on the recent position p and the speed u of the ball (relative to the player). It may

use additional parameters according to opponents, whether conditions, noise etc.

The calculation may explicitly exploit physical laws (including e.g. the expected

delay of the ball). It may use simulation (forward model) for possible speed vec-

tors v of the player. If an inverse model is available, the optimal speed vector v

may be calculated directly. Calculations of v may use a neural network which has

been trained by real or simulated data. (Which of these methods should be called

"reactive"?)

4

� We still consider the optimal interception of a moving ball using calculations of the

speed vector v. The calculation can be repeated whenever new sensor information is

available. Therewith it always can regard newest information and hopefully obtain

the best speed vector v. Alternatively, the player may keep moving according to v

for a longer time. Therefore he needs another kind of persistent state to memorize

this goal. Since this state is oriented to information concerning the future, it may be

called future-oriented mental state. It can save computation time, and it is useful

to keep stable behavior (see below).

If the ball is not observable for some time (e.g., if it is covered by another player), then

the persistent goal is used as the trigger to keep running. Alternatively, simulating

the ball in the worldmodel can also be a trigger to continue the interception process.

� Problems with the reliability of the computed speed vector v arise due to noise in

the sensory data (and may be due to imprecise calculations themselves). Repeated

calculations may hence result in oscillations and sub-optimal behavior (as reported

e.g. in [M�uller-Gugenberger/Wendler98]). It may be better to follow the old speed

vt as long as the di�erence to the new speed vt+1 is not too large. Keeping vt in

a future oriented mental state provides the necessary means. Exploiting the inertia

of the robot provides another way using the physical world directly. A complete

analysis of the problems behind stability and
exibility go behind the scope of this

paper (cf. e.g. [Bratman87],[Burkhard00]).

The discussion shows a lot of di�erent approaches and implementations for the simple

behavior "follow a moving object". In most cases there is a lot of redundancies which

can be exploited for eÆcient and more reliable controls in di�erent ways. It is a typical

observation in robot control that the same behavior can be realized in di�erent ways

yielding di�erent trade o�s. Since single methods are often of restricted reliability, the

appropriate combination (regarding the overall system) is a challenging design problem.

To summarize: Two concepts of persistent ("mental") states have been introduced. It

is commonly accepted that some form of persistent state is essential even for primitive

beings. The worldmodel as a persistent state concerning the past compensates missing

sensory information from the outside world. The persistent state concerning the future

may be not really necessary at the level of basic skills.

2.2 Coordination

More complex problems of dynamic environments are illustrated by coordination. The

decision processes become more and more complex (and subject to stability problems)

as the time horizon is enlarged. Even in the recent Simulation League of RoboCup (the

competitions in a virtual environment which do not su�er from the physical robot prob-

lems), a coordinated behavior like a double pass emerges only sometimes by chance, not by

planned activities. Here are some examples of decision processes in the RoboCup scenario:

� A player decides if he can intercept the ball, i.e. if the ball is reachable during its

move on the playground. The decision process can use the procedures for computing

v from above to calculate the interception point and time.

� A player decides if he can intercept the ball before any other player. Therefore he

has to compare his own chances with the interception times of other players (e.g.

using the methods to calculate v from the view point of other players).

5

� A player decides not to intercept the ball even if he is the �rst to reach the ball. The

reason may be a team mate in a better position for continuation.

Next we had to discuss the optimal behavior for all the players which are not in a position

to control the ball directly. Their optimal behavior is determined by long term strategic

items, and it is important for the success of a robot team. Humans often use prede�ned be-

havior patterns for coordination, like change of wings, double pass etc. in football/soccer.

The reader is invited to think about the related problems as discussed above for intercep-

tion: maintenance of information from the past, anticipation of future chances, managing

of stability and optimality, { all under the conditions of dynamic changes and incomplete

imprecise information. There is a growing value of global (symbolic) descriptions of situ-

ations and behaviors in order to guide short term behavior by long term goals. Goals and

plans are memorized by future oriented persistent states for at least two reasons, namely

eÆciency (repeated computations should be avoided) and stability (needed for cooperation

of team mates).

3 Architecture Models

3.1 A Simple State Model

The notions of persistent states are discussed somewhat more formally in this section. A

discrete control of the agent is considered for the sake of simplicity. There is some freedom

for choosing the time steps t = 0; 1; 2; : : : . There are good reasons to identify the time

steps with the arrival of sensory data ("input") at the control unit (e.g. we have some

kind of event driven control). Note that persistence depends on this de�nition: We call

a state a persistent state if and only if it keeps information from one step to the next.

The chess program considered in Section 1 does not have persistent states. It needs no

persistent worldmodel if all board positions are used as input, and it needs no memorizing

of goals if evaluation of possible moves starts from scratch for the new situation.

Computed goals and plans of a football/soccer robot are not persistent as long as they

cannot be used by the decision process in the next time step. (Our implementation of

the control architecture in [Burkhard et al.98] was based on the notions of belief, desire

and intentions to describe intermediate results. Actually, the concepts did not stand

for persistent states since the decision process was started from the beginning in each

time step. But then certain stability problems occurred like oscillating directions while

intercepting the ball. They were solved by references to old intentions later.)

A generic agent-oriented control architecture with a simple cyclic process ("sense-think-

act"-cycle) is widely used. The cycle is performed at each time step t.

1. Input (sense): Data have been collected by the agent. They may come from outside

(sensors), via communication and by body information (proprioceptive sensors). The

data is preprocessed yielding some internal representation of the environment which

is called "worldmodel". (Here the notion "worldmodel" may stand for non-persistent

data, too.)

2. Commit (think): The control unit analyses the worldmodel. It may evaluate pos-

sible courses of actions and possible future situations. It commits for actions to be

performed immediately and perhaps for long term behavior.

3. Output (act): The control unit outputs the advice for actions to be performed

by the agent immediately. The actions are performed (may be after some further

processing) by e�ectors, and by communicators.

6

The most simple architecture is an architecture without any persistent state as in Figure

1. Only the most recent input can be used for the control. This causes no problems if the

input is complete and reliable as far as necessary for commitments.

for t=0,1,2,... do

worldmodelt := perceive(inputt);

commitmentt := deliberate(worldmodelt);

outputt := execute(commitmentt);

Figure 1: Stimulus-response Architecture without Persistent World model

The deliberate-function can be a simple table, a neural network or a complicated decision

process using goals and plans { remember the chess program. But the commitments are

used only for the recent output, then they are completely forgotten in the case of stimulus-

response architectures.

Next the stimulus-response architecture with persistent world model is considered as in

Figure 2. A persistent worldmodel allows to regard former inputs. The agent can try to

maintain a complete worldmodel even if the most recent sensor information is incomplete.

The new input is integrated into the existing worldmodel, missing facts can be simulated

to some extend. This means that the agent has the ability to anticipate world states. It is

common understanding that the persistent worldmodel is used only as a "past-oriented"

state which memorizes information concerning the situation of the outside world: It serves

as a substitute for a complete and precise sensory information by the input. Again the

deliberate-function can be very simple or complex, respectively. Commitments are used

only for the recent output.

for t=0,1,2,... do

worldmodelt := update(worldmodelt�1, inputt);

commitmentt := deliberate(worldmodelt);

outputt := execute(commitmentt);

Figure 2: Stimulus-response architecture with Persistent World Model

As discussed above, eÆciency and stability are reasons to memorize previous commitments

to guide further decisions and actions. The deliberate-function can use complicated

processes to evaluate possible future situations, it can make plans to guide the behavior

for a longer time regarding coordination with other robots. It may be useful or even

necessary (for stability) to consider the same commitment over several time steps. This

means to have additional persistent states related to the future. This is considered by the

architecture with persistent states for worldmodel and commitment as given in Figure 3.

The essential di�erence to the stimulus response architectures is the treatment of com-

mitment as a persistent mental state. It can be split further e.g. into desires, inten-

tions, plans (BDI-architecture) with a lot of variants in the literature (cf. [Wooldridge99],

[Burkhard00]). It serves for eÆciency as well as for stability.

7

for t=0,1,2,... do

worldmodelt := update(worldmodelt�1, inputt);

commitmentt := deliberate(commitmentt�1, worldmodelt);

outputt := execute(commitmentt);

Figure 3: Architecture with Persistent States for Worldmodel and Commitment

3.2 Layered Architectures

The concept of persistent states works �ne as long as there is enough time for the calcula-

tions in a single interval between two time points t and t+ 1. But real time architectures

in dynamical environments usually allow for fast action control (by execute) in short

intervals, while sensor integration and update of the worldmodel as well as commitment

need more time. There are severe synchronization problems.

A common used model is a hierarchical architecture where execute performs "low level"

behavior with short time horizon and fast speci�cation time, e.g. for collision avoidance.

Each such low level behavior is realized by simple methods, e.g. prede�ned scripts or

in the form of stimulus response behavior. The aim of the deliberate-function on the

higher level is the choice of such a script, the computation of a plan etc. Following the

necessities of "bounded rationality", the deliberate process constitutes a reduced "screen

of admissibility" [Bratman87]:

If the environment is complex then longer computation time is necessary to analyze the

global situation (e.g. for image processing and interpretation, modeling of other players,

calculation of the utilities of di�erent strategies etc.). But not all aspects of the global

situation are subject to fast changes (e.g. the ball possession may change very rapidly, but

the positions of players do not). Hence there is the possibility of shared work: Complex

analysis is performed by the "global" deliberate calculations leading to search space

reduction for "local" short time decisions of execute.

Classical layered two pass architectures have a control
ow bottom up from lower layers to

higher layers and then back again to the lowest layer. To act in time, the higher layers are

used only if needed, or with lower frequency. In the �rst approach, the lower layers must

decide if higher layers have to be involved. This can yield context problems as discussed

in Section 4.2. In the second approach, higher layers have delays.

Layered one pass architectures have only one control
ow through the layers. To act in

time, the higher layers are called with lower frequencies. Implementations of one pass top-

down architectures can use stack-oriented programming paradigms. Actions are pushed

onto a stack. The action a from the top is executed if a is low level, otherwise it is replaced

by lower level actions a1; : : : ; an, respectively (cf. e.g. [dMARS]). Subroutine calls as used

in (procedural) programming implement the same principle (using the run time stack).

The computed commitment activates a subroutine which performs the necessary actions

for the achievement of the committed goal. The control turns back to the higher level

deliberation process for a new commitment when the subroutine has �nished.

Such layered models have di�erent time scales on their layers. This means that the syn-

chronization between deliberate and execute is somewhat di�erent to the description

by Figure 3. The commitment can be understood as a (may be conditional) plan or script

computed on the higher levels (by deliberate) at time t such that

8

commitmentt = stept, stept+1,..., stept+k .

The low level execute-function computes the outputs for i = t; : : : ; t+k according to that

script:

outputi := execute(stepi, inputi) .

The most recent input inputi (or the worldmodel if available in time) is used for adapta-

tion. A temporary stimulus response behavior is realized if identical steps stepi are used.

As an example we may think of the commitment to run to a certain position, where the

execute-function has to realize the necessary movements over a longer time.

While execute is active at each time step t, the higher level commitments may remain

unchanged over longer time intervals in the layered architectures. In fact, using the

subroutine-paradigm, the higher level processes are inactive until the lower level processes

are �nished. A problem of these approaches is the diÆculty of fast reactions on the higher

levels to unexpected changes in the environment. The problem cannot be overcome by

concurrent computations as far as the complete analysis of a global situation (including

time consuming sensor processing and integration for the worldmodel, and future simu-

lations, evaluations and means-ends-analysis for the commitment, respectively) consumes

more time than only a single interval between two time points t and t+1. We will discuss

this matter in Section 4, and the proposal of the "Double Pass Architecture" in Section 5

is an attempt to overcome the problem. The name "Double Pass Architecture" refers to

a di�erence to the one pass and two pass architectures, such that two independent passes

are performed top-down for the deliberate- and execute-functions, respectively.

4 Problems of Control

This section discusses some details of the problems concerning eÆcient controls. EÆ-

ciency means optimal behavior with respect to given constraints, especially complexity

constraints ("bounded rationality").

4.1 Trade-o�s

As discussed for layered architectures, worldmodel update and deliberation can be time

consuming processes. An accurate analysis of the situation (i.e. by complex picture

processing algorithms) is worthless if it comes too late. There is a time-trade-o� between

� Precise decisions based on a suÆcient analysis of the situation: It needs time for

computing the perception from sensory data, its integration into the worldmodel,

the calculation of possible outcomes of available activities, generation of appropriate

plans etc.

versus

� Immediate fast responses to the most recent sensory data: It leaves no time for

complex deliberation.

Layered architectures distinguish between long term decisions (deliberations { which may

need more time), and short term decisions (executions) guided by the long term ones. The

guidance by the long term ones means a smaller scope of possible choices for the short

term decisions and hence shorter computation times.

A problem of these architectures are delayed reconsiderations of long term plans: In the

case of unexpected events, the adaptation of the long term commitments may come too

9

late. Therefore collision avoidance is usually part of the low level behavior. In foot-

ball/soccer, the ball handling can be considered as low level behavior, too. But for the

other players, their low level behavior (e.g. running) is not related directly to the ball.

Nevertheless, they should react quickly e.g. in cases when a team mate looses the ball.

The stability-trade-o� concerns the consideration and optimal handling of (unexpected)

changes in the environment. It is a trade-o� between

� Fast adaptation to new situations in order to act according to the most recent data,

and according to the most promising alternatives, respectively,

versus

� Stabile following of old plans in order to pursue an intention. Stabile behavior is

important for resolved acting and for cooperation (to ensure trustiness).

Both alternatives have their drawbacks: Stability has the danger of fanaticism, i.e. pursu-

ing of unachievable goals, like keep on running for a pass when the ball is already controlled

by the opponents. Adaptation may lead to permanent changes of behavior like oscillations,

e.g. changing directions while running to an object.

Adaptation may be very ineÆcient if the costs for adaptation itself are high over time

(think of an undecided goalie which permanently revises the place of the ball for a goal

kick). Therefore, the costs of adaptation have to be considered, too. The appreciation of

adaptation costs and consequences are a matter of the time trade-o�.

The both trade-o�s are directly connected with persistent commitments: Time can be

saved by memorizing commitments. The distinction between short and long term decisions

helps to react faster. Stability needs the consideration of former decisions which can

be memorized by persistent commitments. (But there exist other possibilities, e.g. the

exploitation of physical properties like inertia.)

There are much more alternatives concerning the construction of robot controls. If the

robot performs exact movements then the e�orts of motion control can be reduced. Vice

versa, inexact movements may be compensated by extensive motion control to some ex-

tend. This is a another trade o� with consequences to deliberation and execution proce-

dures.

4.2 Context

The context problem is best illustrated by the behavior of a player which does not control

the ball. All he can do is changing his position using simple behaviors like run/walk/stay.

Good positions are essential for the success of the team. The player has a lot of di�erent

alternatives related to many di�erent goals. More than for the ball controlling agent, the

optimal behavior depends on the global situation, i.e. of the context (like defensive or

o�ensive play, distance to the ball / to other players / to the goals, actual score etc.).

In our �rst RoboCup implementations, position changing was handled on a global level.

A unique procedure had to compute utilities for all situations. The calculation of useful

utilities becomes more and more diÆcult with growing numbers of contexts. Thus, our

results were rather raw.

A reasonable principle of agent architectures are hierarchical structures: Complex skills use

simpler skills, complex options are structured by simpler options. Di�erent positioning

options can be embedded into larger options like goal defense, double pass etc. This

makes deliberation easier: First the agent decides for a double pass, then he decides for

the appropriate positioning actions in this context.

In the classical, sequential, stack-oriented software architectures this can be implemented

by successively called subroutines: The "play soccer method" calls the "o�ensive play

10

method" which calls the "double pass method" which calls the "positioning method" at the

right time. Only the most recently called method/procedure is active (here: "positioning

method"), the callers wait for the termination of this method. Each subroutine in the

stack can be considered as a "level" of hierarchically ordered commitments. The number

of levels is not restricted. In contrast, classical layered architectures have a very limited

number of layers (e.g. two or three) which implement di�erent reasoning methods and

which are called with di�erent frequencies.

In the case of unexpected events, the successively called subroutines can react only on

the lowest level, i.e. by the active subroutine. Classical layered architectures have related

problems, they react only on the lowest layer. This is suÆcient as long as the higher layers

need no fast changes according to unexpected events. The long term goal of an unmanned

ground vehicle usually does not change because of an unexpected obstacle. After drawing

aside it will continue its way to the former goal. If there are still serious problems, it can

stop for deliberation. Hence the concept of fast low level reactions works well for such

scenarios.

But, if fast changes are needed on higher levels, then the considerations of unexpected

events could be done best in the appropriate context. For example, the loss of the ball by

the second player during a double pass should be handled by the "play soccer method".

It should lead to termination of the "o�ensive play method" and its successively called

methods ("double pass method", "positioning method"). At the same time, the "play

soccer method" should activate the "defensive play method" with appropriate submethods,

e.g. for attacking the opponents.

If only the "change position method" is active (e.g. as the active subroutine), all necessary

computations (analysis of the situation, test of conditions, termination of higher level

routines up to the "o�ensive play method") must performed by this method. This leads

to a very complex and ineÆcient "change position method". Moreover, since the "change

position method" is used in many other contexts, this method becomes overwhelming

complex. Alternatively, di�erent "change position method" could be implementing for

di�erent contexts. But this would lead to multiple copies of code.

The problem can be solved if the execute procedure has access to all levels, and if the

decisions to be performed can be restricted. A solution is proposed in the following Section

5. The Double Pass architecture is intended to permit real time redeliberation on all levels

using principles of bounded rationality.

5 The Double Pass Architecture

This section proposes an architecture which deals with the above problems in a reasonable

way. It uses persistent mental states for the past (worldmodel) and for the future (commit-

ment). It can implement goal-directed approaches, e.g. the BDI-approach [Bratman87]. It

uses a hierarchical structure and a least commitment strategy. The hierarchical structure

provides options on di�erent levels. It is traversed by two independently running passes.

The hierarchy allows to describe behaviors and plans in a unique way, ranging from single

actions on the lowest level up to long term plans on the highest levels . The lower level

behaviors are combined to higher level plans. The passes perform di�erent tasks:

The Deliberator performs time consuming processes regarding all aspects of the recent

situation like choice of goals and long term planning. It sets up a partial hierarchical

plan. Following the least commitment idea, the plan is re�ned as time goes on.

Normally the deliberator does not have time problems since he works with suÆcient

forerun. Time critical decisions are left to the executor.

11

Figure 4: Option Tree with Intention Subtree

The Executor performs the contemporary decisions. Based on the preparatory work of

the deliberator, its search space is restricted to a minimum of decisions using the

most recent sensory information. In contrast to classical layered architectures, the

executor considers all levels in real time.

Both lines of operation are independently running passes through all (!) levels of the

hierarchy: Thus we have a "Double Pass" run time structure. This is in contrast to

runtime organization in layered architectures (where short time decisions only a�ect the

lowest level) and in programming languages (where only the procedure on the top of the

stack is active).

5.1 Options

The data structure from which goals (or desires and intentions) are chosen from are the

options. The set of options can be considered as a (virtual) tree structure with long term

options near the root and speci�c short term actions near the leaves. An example from the

football/soccer domain is given in Figure 4. The numbers (e.g. in DoublePass/1) denote

the role (�rst player) in a cooperative behavior.

An option is performed by appropriate suboptions as de�ned by the tree. There are two

kinds of connections between options and suboptions:

� Choice-Options can be performed by di�erent, alternative suboptions (e.g. a pass

can be performed by a forward-kick, a sideward-kick etc.), cf. Figure 5 for a Petri Net

description of the alternatives of an o�ensive option. Transition �ring depends on

side conditions. "MaxUtility" means temporal priority for the transition with highest

utility according to the recent situation. Other conditions are boolean valued.

� Sequencing-Options are performed by a sequence of suboptions (e.g. the suboptions

of a double pass as described above), cf. Figure 6 for a Petri Net depicting the

suboptions of the double pass option from the perspective of the player with the role

DoublePass/1.

For clarity, the both kinds of connections are not mixed. This is similar to Prolog concepts:

alternative suboptions correspond to di�erent clauses of a predicate, sequenced suboptions

correspond to the subgoals in a clause.

12

Figure 5: Example of a Choice-Option

Choice-options describe the di�erent possibilities in the context of that option. Delib-

erator activities consist of choices from the alternative suboptions (e.g. using utilities),

calculating appropriate parameters (e.g. the player to cooperate with in a double pass)

and decisions concerning the termination (or cancellation) of intended activities. Alterna-

tive plans can be provided if a plan is canceled. The hierarchical structure allows for local

decisions. Redeliberation (if needed) is performed in a given context.

Sequencing options describe the steps (suboptions) needed to perform a higher level option.

There have to be well-de�ned criteria for the transitions from one suboption to the next

one. The evaluation of these criteria is time critical because they are performed by the

executor when acting in response to the newest sensory data.

According to deliberation and execution, options can be in di�erent states. The delib-

erator chooses options/suboptions to be executed as intentions/subintentions, their state

is then called "intended". They build a subtree of the option-tree as shown for a double

pass in Figure 4. The complete intention subtree must contain one subintention for each

choice-option starting in the root down to some leaves, and all subintentions for each se-

quencing option. Using the least commitment principle, the intention tree has the form of

a hierarchical partial plan. Subintentions describe the plan parts on di�erent levels.

At any concrete time point, there exists a unique path in the intention subtree (cf. Figure

4) from the root to a leave consisting of the active options. This path is called activation

path. At the time when the �rst player passes to the second one, the activation path con-

sists of "PlaySoccer"{"O�ensive"{"DoublePass/1"{"Pass"{ ... down to a concrete action

(e.g. a kick-command with speci�ed power and direction).

The executor performs the transition (as soon as the related condition is satis�ed) from an

active option to the subsequent option (as provided by the plan in the form of a sequencing

option), and then the subsequent option becomes active. For example, after the pass is

�nished, the player starts running for a new position (cf. Figure 6). Transitions are

checked (and performed if conditions are ful�lled) by the executor on all levels following

the activation path.

Besides intentions, the deliberator can also prepare desires as candidates for forthcoming

or alternative intentions. Desires build a subtree similar to intentions. The deliberator

13

Figure 6: Example of a Sequencing Option

may choose between di�erent desires when he has to decide for an intention. Desires can

be used as fast available alternatives for the executor when he has to stop a plan according

to unexpected situations. As an example we might think about the fast switch to scoring

a goal (because the situation allows it) instead of continuing the double pass (a related

transition can be added to the Petri Net in Figure 5).

5.2 Deliberator

The aim of the deliberator is the preparation of intentions as partial hierarchical plans

(built from options) without any time stress (cf. Figure 4). It can prepare this plan (as a

desire) while the executor is still performing an old intention. For example, the deliberator

evaluates the available plans after an intercept while the robot is still running for the ball.

At the same time, other players can evaluate their contributions to the possible plans

of their team mate. As in real football/soccer, planning from stretch is diÆcult because

of the indetermination of other player's behavior. Instead we can use so-called standard

situations.

Standard situations provide generic cases of cooperative play. Using methods from Case

Based Reasoning (CBR, cf. [Lenz-et-al98]), a concrete situation can be matched to the

standard situation. For example, a triggering feature for the double pass is an opponent

on the way of an o�ensive player controlling the ball. The standard situation (the "case")

provides a standard scheme ("solution") for an intention. Using CBR methods for adap-

tation, a concrete intention can be speci�ed. The option hierarchy serves as a structure

for describing cases (cf. Section 6).

The deliberator computes long term decisions. It can be understood as the deliberate-

function from Figure 3.

5.3 Executor

Short time behavior should rely on the newest available data: Hence there is no place

for time consuming deliberations. The advances and the drawbacks of stimulus-response

approaches and layered deliberative approaches have already been discussed. Stimulus-

response architectures allow for fast reactions, but cannot handle complex long term be-

havior, while layered deliberative architectures can handle complex long term behavior,

but have problems with dynamically changing situations.

The concept of the special executor pass through all layers is proposed as a solution. It

works according to the recent activity path in the intention subtree. It starts from the

root and proceeds level by level down to the leave which speci�es the next output action

to be executed by the robot. On each level it performs certain tests (e.g. if a subintention

should terminate or stop), and it can calculate parameters according to the newest data

(e.g. for performing an optimal kick). If a subintention is terminated, it performs the

14

transition to the next subintention. It may also switch to a desire and make it the new

intention.

It is essential that all tests and calculations of the executor can be performed in short time,

and that they are performed on the appropriate level. All time consuming computations

should be performed by the deliberator in time before. The structure of options must be

designed for these purposes.

The executor works as soon as new actions are to be performed, and as late as the newest

data relevant for these actions can be analyzed. This can be done concurrently to the work

of the deliberator - which at the same time prepares and speci�es later activities for the

executor. In a strictly sequential approach, the executor must interrupt the interpreter.

Concrete implementations are possible in di�erent ways, they are still in an experimental

state.

The executor operates over the restricted search space of the intention tree provided by

the deliberator. It can be understood as the implementation of the execute-function from

Figure 3, but regarding all levels.

5.4 Main Features of the Double Pass Architecture

The option hierarchy allows for unique descriptions of behaviors and plans on di�erent

levels. All levels are treated the same way. An important feature of the Double Pass

Architecture is the possibility of immediate reactions on all levels. It can be described

as a "doubled one-pass-architecture": One-pass-architectures have a control
ow which

passes through each level only once. In our case, the control
ow is directed top-down

from the highest level to the lowest one. The di�erence consists in the fact, that there are

two separated passes: One pass for the deliberator which prepares commitments (e.g. goal

and plans), and another path for the executor which allows for real time reactions on all

levels. The executor allows for a certain kind of stimulus-response behavior on all levels,

where the stimulus-response behavior has been prepared by the deliberator. The executor

realizes real-time behavior, while the deliberator acts without short time constraints.

Classical layered one- and two-pass architectures in complex dynamical environments have

serious synchronization problems. Computations on higher (deliberative) layers are per-

formed in longer time intervals, and rapid responses to changes in the environment are

possible only at the lower (reactive) layers. The executor of the Double Pass Architecture

works in short time intervals like the reactive components of classical layered architectures,

but it passes through the higher levels, too. This is possible without synchronization prob-

lems since the deliberator prepares a restricted search space (the intention tree) for the

executor.

The requirement to run through all levels by the executor needs a special runtime organi-

zation. Most runtime organization methods in programming are based on stacks, where a

higher level method is called again only when the lower level has terminated. This holds for

imperative languages as well as for descriptive ones, and it is used in agent architectures,

too. The implementation of the new runtime strategy is still under work.

6 Conclusion, Further Work

The paper has discussed di�erent aspects of basic approaches for robot/agent control.

The notions of persistent states (concerning the past and the future, respectively) have

been identi�ed as characteristic concepts. Di�erent approaches can be classi�ed along

these lines. They provide more clear di�erences than the classical notions of reactive

and deliberative behavior. The classi�cation helps to identify the problems of real time

15

controls in dynamical environments when long term planning is involved. The Double Pass

Architecture was proposed to avoid the diÆculties of layered architectures in dynamically

changing environments. It allows for fast adaptations to new situations even on the higher

levels.

Future plans include the use of the new architecture for robot learning. The project

"Architectures and Learning on the Base of Mental Models" of the research program 1125

"Cooperating teams of mobile robots in dynamic and competitive environments" granted

by the German Research Association (DFG) investigates the usage of CBR methods for

control of robots. The cases correspond to generic behavior which can be speci�ed and

adapted according to the current situation. There are two main goals for using CBR:

The �rst goal is the eÆcient control, while the second goal is learning from experience.

Learning can be twofold: New cases can be acquired as templates for behavior, and the

usage of existing cases can be improved by better analysis and adaptation methods.

There have already been some attempts to use CBR-methods for Robot Control, e.g.

for opponent positioning models [Wendler/Lenz98], and for problems of self localization

[Wendler et. al.00]. The investigations in opponent modeling have discovered a problem of

dynamics when using CBR for low level behavior: As soon as the team tries to adapt to the

opponents positions, the opponents did change to other positions. In the consequence, we

need adaptation to higher level strategies. The option hierarchy serves as a structure for

describing higher level cases. It gives room for o�-line learning as well as on-line learning.

References

[Arkin98] Arkin, R.C.: Behavior Based Robotics. MIT Press,1998.

[Bratman87] M.E. Bratman. Intentions, Plans, and Practical Reason. Harvard University

Press, Massachusetts, 1987.

[Brooks91] Brooks, R.A.: Intelligence without reason. Proceedings IJCAI-91, 569-595.

[Burkhard00] H.D. Burkhard: Software-Agenten. In: G�unther G�orz, Claus-Rainer

Rollinger, Josef Schneeberger: Einf�uhrung in die K�unstliche Intelligenz. Oldenbourg

2000, 941-1015. (In German)

[Burkhard02] H.D. Burkhard: Real Time Control for Autonomous Mobile Robots. To

appear in Fundamenta Informaticae.

[Burkhard et al.98] Burkhard, H.D., Hannebauer, M. and Wendler, J.: Belief-Desire-

Intention Deliberation in Arti�cial Soccer. AI Magazine 19(3): 87{93. 1998.

[dMARS] dMARS: Technical Overview - 25 JUN 1996.

www.aaii.oz.au/proj/dmars tech overview/dMARS-1.html

[George�/Kinny97] George�, M.P.; Kinny, D.N.: Modeling and Design of Multi-Agent

Systems. In: M"uller, J.P.; Wooldridge, M.J.; Jennings, N.R. (Hrsg.): Intelligent

Agents III, LNAI 1193, 1{20, Springer-Verlag, 1997

[George�/Lansky87] M.P. George�, A.L.Lansky: Reactive reasoning and planning. Proc.

AAAI-87, 677{682, 1987.

[Kitano-et-al-97] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsub-

ara. RoboCup: A challenge problem for ai. AI Magazine, 18(1):73{85, 1997.

16

[Lenz-et-al98] Lenz, M., Bartsch-Sp�orl, B., Burkhard, H. D., Wess, S. (Eds.): Case Based

Reasoning Technology. From Foundations to Applications. LNAI 1400, Springer 1998.

[Maes90] Maes, P. (Hrsg.): Designing Autonomous Agents. Theory and Practice from

Biology to Engineering and Back. MIT Press 1990

[JPM�uller96] M"uller, J.P.: The Design of Autonomous Agents { A Layered Approach.

LNAI 1177, 1996.

[M�uller-Gugenberger/Wendler98] M�uller-Gugenberger, P. and Wendler, J.: AT Hum-

boldt 98 | Design, Implementierung und Evaluierung eines Multiagentensystems f�ur

den RoboCup-98 mittels einer BDI-Architektur. Diploma Thesis. Humboldt University

Berlin, 1998.

[Murphy00] Robin R. Murphy: Introduction to AI. MIT Press, 2000.

[Parunak97] Van Parunak: 'Go to the Ant': Engineering Principles from Natural Agent

Systems. Annals of Operations Research, 1997.

[Rao/George�91] A. S. Rao and M. P. George�. Modeling agents within a BDI-

architecture. In R. Fikes and E. Sandewall, editors, Proc. of the 2rd Int. Conf. on

Principles of Knowledge Representation and Reasoning (KR'91), 1991.

[RoboCup] RoboCup. The Robot World Cup Initiative: www.robocup.org

Annual Proceedings of the RoboCup Workshops/Symposia appear in the Springer

LNAI-Series.

[Russell/Norvig95] Russell, S., Norvig, P.: Arti�cial Intelligence: A Modern Approach.

Prentice-Hall, 1995.

[Wei�99] Wei�, G. (Hrsg.): Multiagent Systems. A Modern Approach to Distributed Ar-

ti�cial Intelligence, MIT Press 1999.

[Wendler et. al.00] J.Wendler, S.Br�uggert, H.D.Burkhard, H.Myritz: Fault-tolerant Self

Location by Case Based Reasoning. In P.Stone, T.Balch, G.Kraetzschmar (eds.):

RoboCup 2000: Robot Soccer World Cup IV. Springer LNAI 2019, 259-268.

[Wendler/Lenz98] J.Wendler and M.Lenz: CBR for Dynamic Situation Assessment in

an Agent-Oriented Setting. In D.Aha and J.Daniels (eds.): Proc. of the AAAI-98

Workshop on Case-Based Reasoning Integrations, 1998, Madison, USA.

[Wooldridge99] Wooldridge, M.: Intelligent Agents. In [Wei�99], pp. 27{78.

17

18

Formal Model of Joint Achievement Intention *

Mao Xinjun1 Wu Gang1 Wang Huaimin1 Zhao Jianming2
1 (National Lab. for Parallel and Distributed Processing, China)

2 (School of Computer Science, Zhejiang Normal University, China)
E-mail: xjmao21@21cn.com

Abstract: The joint achievement intention represents the common task of agents to achieve
collectively and is an important concept to specify and analyze the social behaviors in
multi-agent system. The paper discusses the meaning and characteristics of joint achievement
intention, analyzes the limitation and problems in existing work, defines the joint achievement
intention with new and clear semantics based on the logic framework of multi-agent system,
specifies and proves its important properties. The novel formal model of joint achievement
intention can be used to effectively support the development of multi-agent system.
Key words: multi-agent system, joint achievement intention, belief

1. Introduction

Agent is an encapsulated computational entity that is situated in some environment, and that is
capable of flexible, autonomous action in that environment in order to meet design objectives
[11]. Multi-agent system is composed of a number of interacting and cooperating agents, each
of them having limited capabilities and resources. As the abstract model that agent techniques
provide can express the computational entities and problem-solving manner in applications
more naturally and effectively, much attention has been imposed on the researches of agent
techniques nowadays.

In multi-agent system, as the dependencies among agents’ actions, the limitation of each
agent’s capabilities, and the distribution of system’s resources, the joint work among agents is
absolutely necessary to meet global constraints and natural problem solving. The joint work
among agents represents the social behaviors in multi-agent system. In order to develop the
multi-agent system, we must put forward some effective tools to specify and analyze such social
behaviors, for instance, what is the social behaviors among agents, how will it affect agent’s
actions, how is it related with agent’s internal state such as belief and intention, etc.

In the area of artificial intelligence, agent is taken as an intentional system with such
cognitive components as belief, goal, intention, etc. The representative work is the BDI agent
architecture. However, the agent’s internal cognitive components only define individual
behaviors and, as such, are an insufficiently rich base on which to build a principled
representation of social behaviors. There are two main limitations with the individualistic
approach. Firstly, joint action is more than just the sum of individual action, even if the action
happens to be coordinated. For example, it will be somewhat unrealistic to claim that there is

* The paper is supported by Natural Science Foundation of China with Granted No: 60003002 and 60103009, and
National 973 Project G1999032700, and ZheJiang Natural Science Foundation with Granted No ZD0108.

19

mailto:xjmao21@21cn.com

any real teamwork involved in ordinary automobile traffic, even though the drivers act
simultaneously and are coordinated by traffic signs. Secondly, there is a fundamental difference
between individuals and groups [10]. Therefore, some new abstract concept model is needed to
describe and investigate the joint social behaviors in multi-agent system.

Joint achievement intention is an important abstract concept in distributed artificial
intelligence to examine the social behaviors in multi-agent system. The paper is structured as
follows. The paper discusses the meaning and characteristics of joint achievement intention
informally (see section 2), introduces the existing research work on joint achievement intention
and analyzes their limitation (see section 3), and based on logical framework of multi-agent
system (see section 4), defines the formal and rigorous semantics of joint achievement intention,
specifies and proves its properties (see section 5). The final section concludes the paper and
outlines directions for future work.

2. Characteristics of Joint Achievement Intention

The joint achievement intention of agent means that agents will together achieve some
preposition by joint behaviors and represents the common task of agents to achieve. It
corresponds to the joint intention concept in [2,3,4,11]. In multi-agent system, the purposes of
joint social behaviors among agents are not only to achieve some collective tasks, but also to
maintain the system state. For instance, there are two robot agents in some environment, which
are assigned the task to move objects from one place to another place cooperatively. In order to
meet the system constraints, some restriction that the object must be moved horizontally and
stably are imposed on the joint social behaviors of the two agents. Obviously, such a restriction
will affect the action choice of the related agent in the process of the coordination. However, the
traditional meaning and theory of joint intention concept cannot represent and analyze such
system constraints, which widely exist in multi-agent system. Therefore, we have introduced a
new and novel concept of joint maintenance intention (the work is introduced in other paper). In
order to distinguish the joint intention from joint maintenance intention, we give a new name to
joint intention as joint achievement intention.

Intuitively, the joint achievement intention has the following properties.
− Action choice, which exhibits some rational choice for future joint behaviors and will

restrict the agents’ actions. The joint achievement intention is the factor that promotes
agents to take joint social behaviors;

− Relativity, including mutual belief and cooperation during the process of joint social
behaviors;

− Satisfiable, which means that the joint achievement intention of agents is achievable;
− Persistent, which means agents will not abandon their joint achievement intention in the

process of joint social behaviors, and exhibits some commitment to joint social behaviors;
− Consistent, which means that it is consistent among several joint achievement intentions,

and agents’ joint achievement intention should be consistent with individual agent’s
internal state;

− Non-conflict, which means that there is no conflict among several joint achievement

20

intentions of agent;
− Consistent with belief, which means that agents’ joint achievement intention should be

consistent with agents’ belief. If agents have some joint achievement intention, then they
should believe that the joint achievement intention should be achievable.

3. Evaluation of Existing Work

There are many researchers in the area of computer science and philosophy investigating joint
intention. The representative research is Cohen and Levesque’s work [2], which introduces joint
intention concept to handle cooperative intentions. Joint intentions are intended to clarify the
relationships among beliefs, desires and intentions for multiple agents.

Joint intentions’ theory of Cohen and Levesque is developed in three levels. Firstly, they
define weak goals, which specify the conditions under which an agent holds a goal, and the
actions it must take if the goal is satisfied or impossible.

WG(x, y, p) = (¬Bel(x,p) ∧ Goal(x, p)) ∨ (Bel(x,p) ∧ Goal(x, MB(x, y, p)))
∨ (Bel(x, �¬p) ∧ Goal(x, MB(x,y, �¬p)))

The above definition means that WG(x, y, p) is satisfied if and only if one of the following
conditions hold: (1) agent x believes that p is not true and desires p to be true at some future
time; (2) agent x believes that p is already true and desires that y also mutually believes that p is
true; (3) agent x believes that p will never be satisfied and wants y to mutually believes that p
will never be satisfied.

Secondly, they define joint persistent goals for multiple agents.
JPG(x,y,p,q) = MB(x, y, ¬p) ∧ MG(x, y, p) ∧
Until(MB(x,y,p) ∨ MB(x,y, �¬p) ∨ MB(x,y, ¬q) , MB(x,y,(MG(x,y,p) ∧ MG(y,x,p))))
In order to hold a joint persistent goal, agents must therefore: (1) Mutually believe that the

p is not satisfied; (2) Hold p as a mutual goal; (3) Hold p as a weak mutual goal until either they
mutually believe that p is satisfied, or they mutually believe that p will never be satisfied, or
they mutually believe that some other condition q will never be satisfied.

Finally, they define joint intentions in terms of weak goals and joint persistent goals.
JI(x,y,a,q) = JPG(x,y,DONE(x,y, Until(DONE(x,y,a), MB(x,y,DOING(x,y,a)))?;a),q)
The theory of Cohen and Levesque gives entire meaning of joint intention. However, there

are a number of limitations and shortcomings in it. Firstly, action choice is the basic and
essential characteristics of joint intention. Their work defines the semantics of joint intention
concept based on the linear temporal logic and possible world model. Therefore, the semantics
definition of joint intention cannot well capture the action choice characteristics. Secondly, the
semantics definition of joint intention includes the modification strategy of joint intention,
which not only cannot well describe the essential meaning of joint intention, but also make the
theory much more complicated. Thirdly, the semantics definition is based on possible world
model, which has logical omniscience problem.

Other researches include Nunes, Raimo, Jennings’s work [3,4,10]. Some of them extend
Cohen and Levesque’s theory, others investigate the joint intention from the point of philosophy.
Here we will not introduce and give comments on them.

21

4. Logical Framework

The semantics definition of joint intention is based on logical framework of multi-agent system,
which includes three parts: syntax, model and semantics.The formal languageＬis the extension
of branch temporal logic CTL*[7], which is composed of two parts: state formulas Lt and path
formulas Ls defined in the follows. Let Φ is the atomic proposition symbol set, Constag agent
symbol set. To simplify description, the paper has the following symbol convention: p, q,… as
proposition symbol, and ϕ, ψ, … as formula, and x, y, … as agent symbol.

Definition 4.1 (Syntax of Language L) The formal language L is the smallest closed set
defined by the following rules

(1) if p∈ , then p∈LΦ t
(2) if ψ, ϕ∈Lt and x, y∈Constag, then ¬ϕ, ψ∧ϕ, Bel(x, ϕ), MB(x, y, ϕ), AI(x, y, ϕ),

MAI(x, y, ϕ), MAB(x, y, ϕ) , WAC(x, y, ϕ) , MAC(x, y, ϕ), JAI (x, y, ϕ)∈Lt
(3) Lt ⊆ Ls
(4) if ψ, ϕ∈Ls , x∈Constag, then ¬ϕ, ψ∧ϕ, ψ Until ϕ, ψUntil∀ ϕ ∈Ls
(5) if ϕ∈Ls, then Aϕ∈Lt
Definition 4.2 (Formal Model of L) The formal model of L is defined as M = < T, <, Uag, π,

[], B, C >, where T is moment set, each member of which representing a world state. < is a
partial order on T, which describes the temporal order among moments. The past of each
moment is deterministic and linear. It’s future may be branching. Figure1 give a schematic
description of formal model that is tree-like structure. Uag is an agent set. π: Φ →℘(T) defines
the moment set at which p is satisfied. [] defines the assignment to agent symbol. B: Uag

→℘(T×T), (t, t′)∈B(x) means that at moment t agent believes that moment t′ is possible and is
used to define agent’s belief.

A path at moment t describing some way that the world may evolve is a branch that evolves
from t and is composed of future moment of t.

Definition 4.3 (Path) A path of moment t is a set S ⊆ T which satisfies：(1) t∈S；(2) ∀t1,
t2∈S：(t1<t2) ∨ (t2<t1) ∨ (t1= t2)；(3) ∀t1, t2∈S; t3∈T：(t1<t3<t2) ⇒ (t3∈S)；(4) ∀t1∈S; t2∈T：(t1<
t2) ⇒ (∃t3∈S：(t1<t3) ∧ ¬ (t3 < t2))；(5) ∀t1∈S : (t = t1) ∨ (t < t1)

(1) denotes that the path of moment t contains t; (2) describes the linearity property of the
path; (3) describes the density property; (4) describes the relative maximum; (5) denotes the
initiate of the path . Let St the set of all paths at moment t, SΣ the set of all paths.

In multi-agent system, each agent takes actions concurrently and asynchronously. At any
moment, agent can take action to influence and control the way that the world evolves. However,
such an influence is limited, because the way that the world may evolve is also influenced and
controlled by the environment events and the actions that other agents take. All of the actions
taken by agents in multi-agent system and the environment events together determine the
evolution way of the world.

For example, Figure1 describes a formal model of a multi-agent system composed of two
agents. The node in the figure denotes moment represented by a set of propositions. The edge
denotes the combination of actions taken by all agents. The symbol “||” denotes that the actions
of several agents are taken concurrently. In order to simplify description, we assume that the

22

action symbol on the left part of “||” represents the action of agent1 and the right part represents
the action of agent2. At moment t0 agent1 can take action a to make the world evolve to the
moment t1 or t2, or take action b to make the world evolve to the moment t3 or t4. But when
agent1 take action a, whether the world evolves toward moment t1 or moment t2 is also depended
on the action taken by agent2. When agent2 takes action c, then the world evolves to moment t1.
If agent2 takes action d, then the world evolves to moment t2.

 b||e

 b||d

 b||d

 b||c

 a||d

 a||c
t6

t5

t8

t7

t4

t3

t2

t1

t0
t9

t10

…S1

…S2

…S3

…S4…S5

…S6

…S7…S8

Figure1. formal model of multi-agent system
C：Uag×T→℘(SΣ) is to define joint intention of agent, where C(x, t) is the path set that

agent chooses at moment t and C(x,t)⊆St. To simplify research, there is a model constraint:
∀t∈T, x∈Uag: C(x, t) ≠ ∅ .

The satisfactory semantics of the formula in Lt is defined by model M and moment t. M |=t

ϕ denotes that formula ϕ is satisfied at the moment t in model M. The satisfactory semantics of
the formula in Ls is defined by model M, path S and moment t. M |=s,t ψ denotes that formula ψ
is satisfied at moment t on path S of moment M.

Definition 4.4 (Semantics of L)
(1) M |=t p iff t∈π (p)
(2) M |=t ψ ∧ ϕ iff M |=t ψ and M |=t ϕ
(3) M |=t ¬ϕ iff M |≠t ϕ
(4) M |=t Aϕ iff ∀S: S∈St ⇒ M|=s,t ϕ
(5) M |=t Bel(x, ϕ) iff ∀t′: (t, t′)∈B([x)) ⇒ M |=t′ ϕ
(6) M |=t MB(x, y, ϕ) iff M |=t Bel(x, ϕ) and M |=t Bel(y, ϕ)
(7) M |=s,t ψ ∧ ϕ iff M |=s,t ψ且 M |=s,t ϕ
(8) M |=s,t ¬ϕ iff M |≠s,t ϕ
(9) M |=s,t ψUntilϕ iff ∃t′∈S: (t ≤ t′) and (M |=s,t′ ϕ) and (∀t′′: t ≤ t′′ < t′ ⇒ M |=s,t′′ψ)
(10) M|=s, t ψUntil∀ ϕ iff ∀t′∈S: (∀t′′: t ≤ t′′ ≤ t′ ⇒ M |=s, t′′ ¬ϕ) ⇒ M |=s, t′ψ
(11) M |=s,t ϕ iff M |=t ϕ , where ϕ∈Lt．

Other operators can be derived based on the above semantics definition. Until is a “until”
operator, Until∀ is a weak “until” operator. Fϕ = true Until ϕ is existential temporal operator. G
is the dual of F and is universal temporal operator. A is universal path operator, Aϕ is satisfied
at moment t if and only if ϕ is satisfied on all paths of moment t. E is the dual of A, that is Eϕ =
¬A(¬ϕ), therefore E is existential path operator. Bel(x, ϕ) denotes that agentx has belief ϕ. Here,
we assume that B(x) is reflexive and transitive. Therefore Bel corresponds to the modal operator
in S4 normal modal system.

23

Theorem 4.1 Bel has the following properties:
(1) |= Bel(x, ϕ) → ϕ
(2) |= Bel(x, ϕ) → Bel(x, Bel(x,ϕ))
(3) |= Bel(x, ϕ) ∧ Bel(x, ϕ→ψ) → Bel(x, ψ)
(4) if |= ϕ, then |= Bel(x, ϕ)

5. Joint Achievement Intention Theory

We will extend the intention theory in [1] to establish the theory framework of joint
achievement intention in multi-agent system, investigate the relationship between joint
achievement intention with the belief and intention of individual agent.

5.1. Intention
The achievement intention of individual agent means that agent intends to achieve some
preposition, which is the abstract representation of agent’s task and goal. The formal model of
multi-agent system is a tree-like structure, each branch at any moment denoting the possible
choice that agent may select. The achievement intention ϕ of agent means that agent selects the
world evolving paths, on each of which agent believes that ϕ will be satisfied eventually.

Definition 5.1.1 (Achievement Intention) M|=t AI(x, ϕ) iff
M|=t Bel(x, ¬ϕ) and (∀S: S∈C(x, t) ⇒ M |=s,t FBel(x, ϕ))

The above semantics defines the basic characteristic of achievement intention, i.e., action
choice. Different from existing methods, we define achievement intention as the choice of the
world evolving paths, not the accessible relationship between possible worlds. In the formal
model, the world evolving path is related to agent’s action. Such a definition not only clearly
describes the choice characteristic of achievement intention and how agent’s intention will
restrict agent’s future behaviors.

5.2. Joint Achievement Intention
Action choice and relativity are the basic and essential characteristics of joint intention. In the
following we will define the semantics of joint intention based on the two characteristics,
analyze and validate its important properties. One of the preconditions of joint intention is that
the both sides of agents have the common choice, viz. with the same achievement intention.

Definition 5.2.1 (Common Achievement Choice) MAI(x, y, ϕ) = AI(x, ϕ) ∧ AI(y, ϕ)
Two agents having the common choice do not mean that they have the joint intention. The

relativity condition must be satisfied before forming joint intention, which includes two parts:
mutual belief intention and cooperation.

Definition 5.2.2 (Mutual Achievement Belief) MAB(x, y, ϕ)= MB(x, y, AI(x, ϕ)∧AI(y, ϕ))
 MAB(x, y, ϕ) means agentx and agenty mutual know that the two sides have the
achievement intention ϕ. In order to define the semantics of mutual achievement cooperation,
we firstly introduce the “weak achievement cooperation” concept.

Definition 5.2.3 (Weak Achievement Cooperation) WAC(x, y, ϕ) =

24

(Bel(x, ϕ)∧¬Bel(x, Bel (y, ϕ)) AI(x, MB(x, y, ϕ))) ∧
(Bel(x, AG¬ϕ)∧¬Bel(x, Bel(y, AG¬ϕ)) AI(x, MB(x, y, AG¬ϕ)))

AG¬ϕ means that ϕ will never be satisfied on all paths. WAC(x, y, ϕ) denotes that agentx
has weak achievement cooperation with agenty with regard to ϕ. WAC(x, y, ϕ) is satisfied, if
and only if, when agentx knows that ϕ is satisfied and does not know that agenty knows ϕ is
satisfied, then agentx intend to let two sides know ϕ is satisfied, and when agentx knows that ϕ
will never be satisfied and does not know that agenty knows ϕ will never be satisfied, then
agentx intend to let two sides know ϕ will never be satisfied. In term of the weak achievement
cooperation, the semantics of mutual achievement cooperation is defined as follows.

Definition 5.2.4 (Mutual Achievement Cooperation) M |=t MAC(x, y, ϕ) iff
(∀S: S∈C(x,t) ⇒ M |=s,t (MB(x, y, WAC(x, y, ϕ) ∧ WAC(y, x, ϕ))) Until ¬AI(x, ϕ))

and (∀S: S∈C(y,t) ⇒ M |=s,t (MB(x, y, WAC(x, y, ϕ) ∧ WAC(y, x, ϕ))) Until ¬AI(y, ϕ))
 MAC(x, y, ϕ) denotes that agentx and agenty have the mutual achievement cooperation ϕ.
MAC(x, y, ϕ) is satisfied if and only if the both sides mutual know that they will cooperate with
each other until they drop their achievement intention.

Definition 5.2.5 (Joint Achievement Intention)
JAI(x, y, ϕ) = MAI(x, y, ϕ) ∧ MAB(x, y, ϕ) ∧ MAC(x, y, ϕ)

JAI(x, y, ϕ) denotes that agentx and agenty have the joint achievement intention ϕ. JAI(x, y,
ϕ) is satisfied, if and only if, that they have the common choice, and they know their common
choice, and they know they will cooperation with each other during the process of achieving
joint intention. The above semantics definition clearly and exactly describes the essential
characteristic of joint achievement intention, viz. action choice and relativity. Based on the
semantics, a number of important properties of joint achievement intention can be specified and
proved.

Theorem 5.2.1 |= JAI(x, y, ϕ) → MB(x, y, ¬ϕ)
The theorem describes the condition under which agents will accept or drop their joint

achievement intention. agentx and agenty have joint achievement intention ϕ only if agentx and
agenty mutual believe that ϕ is not satisfied. Rational agents will not jointly achieve proposition
that is already satisfied. The theorem can be proved by the semantics definition of JAI, MB and
AI.

Theorem 5.2.2 (Consistent) |=¬(JAI(x, y, ϕ) ∧ JAI(x, y, ¬ϕ))
The theorem denotes that the joint achievement intentions of agents should be consistent.

At any moment, agents cannot have the joint achievement intention ϕ and at the same time have
the joint achievement intention ¬ϕ. The theorem can be proved by theorem 5.2.1 and theorem
4.1.

Theorem 5.2.3 (Consistent with individual’s achievement intention)
|=¬ (JAI(x, y, ϕ) ∧ (AI(x, ¬ϕ) ∨ AI(y, ¬ϕ)))
The above theorem shows that agent’s joint achievement intention is consistent with

individual agent’s internal achievement intention. At any moment, agent will not have the joint
achievement intention ϕ and at the same time have the achievement intention ¬ϕ. According to
the theorem 4.2.1, together with the semantics of JAI、MB and AI, the theorem can be proved.

Theorem 5.2.4 (Satisfiable) |= JAI(x, y, ϕ) → MB(x, y, EFϕ)
EFϕ denotes that there exists a path on which ϕ will be eventually satisfied. Agents’ joint

25

achievement intention should be satisfiable, or achievable. If agentx and agenty have the joint
achievement intention ϕ, then they should mutual believe that ϕ is satisfiable. The theorem can
be proved according to semantics of JAI, MAB, AI, and the model constraint: ∀t∈T, x∈Uag：

C(x, t) ≠ ∅ in section 4.
Theorem 5.2.5 (Consistency with belief)
|=¬ (JAI(x, y, ϕ) ∧ (Bel(x, ¬EFϕ) ∨ Bel(y, ¬EFϕ)))
The theorem shows that agents’ joint achievement intention should be consistent with

agents’ belief. Agent will not have the joint achievement intention ϕ and at the same time
believes that ϕ is not achievable. The theorem can be proved by theorem 5.2.4 and theorem 4.1.

Theorem 5.2.6 (Non-Conflict) |= JAI(x, y, ϕ) ∧ JAI(x, y, ψ) → MB(x, y, E(Fϕ ∧ Fψ))
The theorem shows that the joint achievement intentions of agent should be non-conflict. If

agentx and agenty have joint achievement intention ϕ and ψ, then they mutually believe that
there exists a path on which ϕ and ψ will be eventually satisfied respectively. The theorem can
be proved by semantics of JAI, MAB, AI, and theorem 4.1.

Persistency is another important property of joint achievement intention. The joint
achievement intention has the following persistency axiom.

Axiom 5.2.1 (Persistency Axiom)
A(JAI(x, y, ϕ) → JAI(x, y, ϕ) Until∀ (MB(x, y, ϕ) ∨ MB(x, y, ¬EFϕ)))
The above axiom shows that if agentx and agenty have the joint achievement intention ϕ,

then agent will persistently hold the joint achievement intention until they know that ϕ is
satisfied or is impossible to achieve. In order to make the axiom sound, some constraint is
imposed on the formal model: ∀t∈T; S∈ SΣ; x, y∈Uag: M|=t JAI(x, y, ϕ) ⇒
 (∀t′∈S: (∀t′′:t ≤ t′′≤ t′⇒ M|=t′′¬(MB(x, y, ϕ)∨MB(x, y, ¬EFϕ))) ⇒ M |=t′ JAI(x, y, ϕ))

6. Conclusion

The paper explains the significance and importance of making research on the joint achievement
intention, analyzes the existing work and its limitations, discusses the characteristics of joint
achievement intention. Based on the logical framework of multi-agent system, the new
semantics of joint achievement intention is defined, a number of important properties are
specified and proved. Different from existing work, the semantics definition of joint
achievement intention is not based on the possible world accessible relation, but on the choice
of world evolving paths in the formal model. We don’t incorporate the modification strategy of
joint achievement intention into its semantics definition. Such a semantics definition clearly
captures and describes the basic and essential characteristics of joint achievement intention.

The theorem framework of joint achievement intention can effectively support analysis and
design of multi-agent system, especially investigation of social behaviors of multi-agent system.
The further work includes to specify and validate the interaction behaviors and cooperation
model based on the theorem framework.

26

Reference

1. P.R.Chen, H.J.Levesque.Intention is choice with commitment. Artificial Intelligence, 1990,
42(2-3) : 213~261.

2. P.R.Chen and H.J.Levesque. Teamwork. Nous, 21, 1991.
3. Raimo Tuomela. Collective and joint intention. Proceeding of cognitive theory of social

action, 1998.
4. Raimo Tuomela. Philosophy and distributed artificial intelligence: The case of joint

intention. Foundation of distributed artificial intelligence, John Wiley&Sons, 1996:
487~504.

5. Mao Xinjun, Wang Huaiming. The intention theory of agent computing in multi-agent
system, Journal of software, 1999, 10(1): 43~48.

6. Singh M P. Multiagent System: A Theoretical framework for Intentions, Know-how, and
Communications. Berlin, Heidelberg: Springer-Verlag, 1994.

7. B.Chellas. Modal logic: an introduction. Cambridge University Press, Cambridge,
MA,1980.

8. B. Dunin-Keplicz and R.Verbrugge. Collective Commitment. In Proceeding of the second
international conference on multi-agent system, Menlo Park,CA,1996.

9. Panzarasa, P and N.R.Jennings. Social mental shaping: Modelling the impact of sociality
on the mental state of autonomous agents. Computational Intelligence, 2001.

10. N.R.Jennings. Specification and implementation of belief-desire-joint intention architecture
for collaborative problem solving. Journal of Intelligent and Cooperative Information
Systems, 1993, 2 (3): 289~318.

11. N.R.Jennings. Building complex software system: the case for an agent-based approach.
Communication of ACM, 2001.

27

28

Generic Multi-Agent Architectures for Multimedia Multimodal Dialogs

H. DJENIDI(1), A. RAMDANE-CHERIF(2), Pr. C. TADJ(1) and Pr. N. LEVY(2)

(1)Electrical Engineering Department, École de Technologie Supérieure
1100, Notre-Dame Ouest, H3C 1K3, Montreal, Quebec, Canada.

{hdjenidi,ctadj}@ele.etsmtl.ca

(2)PRiSM, Université de Versailles St.-Quentin,
45, Avenue des Etats-Unis, 78035 Versailles Cedex, France

{rca, nlevy}@prism.uvsq.fr

Abstract: The multimodal featuring fusion for natural human-computer interaction involves
complex intelligent architectures facing unexpected errors and mistakes made by users. These
architectures should react to events that occur simultaneously with eventual redundancy from
different input media. In this paper, intelligent agent based generic architectures for multimedia
multimodal dialog protocols are proposed. Global agents are decomposed into their relevant
components. Each element is modeled separately using timed Colored Petri networks. The
elementary models are then linked together to obtain the full architecture. Hence,
maintainability, understandability and the modification of the architecture are facilitated. For
validation purpose, the proposed multi-agent architectures are applied on a practical example.

Keywords: Multimedia multimodal dialog fusion, Multi-agent architecture, Timed Colored
Petri networks.

1 Introduction

With the growing technology, many applications supporting more transparent and flexible
human computer interactions have emerged. This results in an increasing need for more
powerful communication protocols, especially when several media are involved. Multimedia
multimodal applications mean systems combining natural input modes, such as speech, touch,
manual gestures, etc. Thus, a comprehensive command or a meta-message is generated by the
system and sent to multimedia output devices. A system-centered definition of multimodality is
used in this paper. The multimodality conveys two striking features that are relevant to the
software design of multimodal systems:
• the fusion of different types of data from different Input devices, and
• the temporal constraints imposed on information processing from/to Input/Output devices.
Since the first rudimentary but pertinent system, "Put That There" [1], which processes speech
in parallel with manual pointing, different multimodal applications have been developed [2, 3,
4]. Each application is based on a dialog architecture combining modalities to match and
elaborate on the relevant multimodal information. In such elaborations, projects usually begin
from scratch and are generally based exclusively on the experiences of the designers.
Consequently, they remain replications of previous results and limited synergy among parallel
ongoing efforts. Today, there is no agreement on generic architectures that reflects a dialog
implementation, independently of the application type. The main objective of this paper is to
propose a generic architecture to analyze and extract the collective and recurrent properties,
implicitly used in such dialogs.

This paper presents architectural paradigms for multimedia multimodal fusion. These
paradigms use the agent architectural concept to achieve their functionalities and unify them

29

into generic structures. The modular structure of the proposed architecture allows easy
monitoring of the global template.

The next Section summarizes the real time requirements of such dialog architectures for
multimedia multimodal applications. Section 3 presents generic multi-agent architectures based
on the previous analysis. Section 4 discusses the use of timed Colored Petri Networks (CPN) to
model such architecture. Section 5 illustrates the proposed architecture with a stochastic timed
CPN [5, 6] example of the classical "Copy and Paste" operations. Simulation tests are processed
using Design CPN Tool Kit [7].

2 Multimodal Dialog Architectures: Overview and Requirements

With the increasing complexity of multimedia applications, a single modality becomes
insufficient to allow the user to interact effectively across environments. A basic multimedia
multimodal system as shown in Figure 1, offers the user the possibility to decide which
modality or combination of modalities are better suited, depending on the task and environment
contexts (see examples in [8, 9]).

Fig. 1. Basic multimedia multimodal model (↔: interaction, →: action).

The environmental conditions could lead to more constrained architectures that have to be
adaptable during the continuous change of either external perturbations or the user’s actions.
In this context a first framework is introduced in [10] to classify interactions. It considers two
dimensions (‘engagement' and ‘distance’) and decomposes the user/system dialog into four
types.

Engagement Distance Type of System
Conversation Small high-level language
Conversation Large low-level language
model world Small direct manipulation
model world Large low-level world

Table 1. Interaction Systems.

The ‘engagement’ characterizes the depth implication of the user in the system. The user feels
that an intermediary subsystem performs the task, in ‘conversation’ case, and that he can act
directly on the system components in ‘model world’ case. The `distance' represents the user
cognitive effort taken.
This framework reaches the idea that two kinds of multimodal architectures are possible [11].
The first one makes fusions based on feature signal recognition. The recognition process steps
of one modality guide and influence the other modalities in their own recognition steps [12, 13].
The second architecture uses individual recognition systems for each modality. Such systems
are associated with an extra process that performs semantic fusion of the individual recognized

Input
Media 1

Input
Media n

USER(S)

TASK ENVIRONMENT

…

INPUT MODALITIES

Output
Media 1

Output
Media n

…

OUTPUT MODALITIESFUSION

DIALOG
CONTROL

30

signal elements [1, 3, 14]. A third hybrid architecture is possible by mixing the two previous
types: signal feature level and semantic information level.

At the core of multimodal system design, the information fusion of the input modes is
the main challenge. The input modes can be equivalent, complementary, specia lized or
redundant as described in [15]. In this context, the multimodal system designed with one of the
previous architectures (features or/and semantic levels) needs the integration of the temporal
information. Figure 2 (left) shows the possible type of multimodality depending on the time
proximity of the input signals. Time granularity is an important decision criterion when we
generate a multimodal semantic sequence as shown in Figure 2 (right). In this example, it shows
that the chosen multimodality type, for mouse clicks and speech, is the synergistic one. This is
obvious in the example, because the click occurs only during the time when a sentence is said.
The synergistic mouse/speech actions correspond to one statement and the tactile screen action
to another one. Both statements are performed in parallel and could be independent, equivalent,
complementary, specialized and/or redundant.
In other words, the temporal aspect in multimodal architecture does not only handle signals
overlapping. It helps to decide whether two signal parts should belong to a multimodal fusion
set or whether they should be considered as separate modal actions. Therefore, multimodal
architectures are better able to avoid and recover errors that mono-modal recognition systems
can’t recover [14, 11]. This property results in a more robust, natural, human-machine language.
Another property is that, the more timed combinations of signal information or semantic multi-
signal grow, the more equivalent formulations of the same command are possible. For example,
[“Copy that there”], [“copy” (click) “there”] and [“copy that” (click)] are various ways to
represent three statements of a same command (copying a object in place), if speech and mouse
clicking are used. This redundancy also increases the robustness in terms of error interpretation.

Parallel Synergistic

 Synergistic

Simultaneous Parallel

Alternate

Alternate Parallel

Exclusive
Parallel

Exclusive

“put that” “there”

click click

Pointing Menu
(copy command)

Pointing
(object)

 time

 speech

 mouse

 tactile
 screen

Media

Example of Parallel Synergistic multimodality:

Because of the time information, ‘tactile screen, is in parallel
with the synergistic ‘mouse/speech’ actions

Fig. 2. Inclusion relations between types of multimodality (left), and a three timed media example (right) [25].

Figure 3 summarizes the main requirements and characteristics needed in multimodal dialog
architectures. As shown in this figure, five characteristics can be used in the two different levels
of the fusion operations: the ‘early fusion’ at the feature fragments level and the ‘late fusion’ at
the semantic one [11].
The Asynchronous property gives the architecture the flexibility to handle multi external events
while parallel fusions are still processing. The specialized fusion operation deals with an
attribution of a same modality to a same statement type. (For example, in drawing applications,
speech is specialized for color statements and pointing for basic shape statements.)

31

The granularity of the semantic and statistic knowledge depends on the media nature of each
input modality. This knowledge leads to important functionalities. It lets the system accept or
refuse the multi input information for several possible fusions (selection process); and it helps
the architecture choose, between several fusions, the most suitable command to execute or
message to send to an output media (decision process).
The property of parallelism is, obviously, inherent to such applications involving multi inputs.

DIALOG ARCHITECTURE REQUIREMENTS

Pattern of Operations Sets for
equivalent, complementary,

specialized or/and redundant Fusion

Parallelism AsynchronousTime-sensitivity

Semantic-knowledge

Semantic
information

level

Feature
fragment

level

Stochastic-knowledge

Fig. 3. The main requirements for multimodal dialog architecture (→: used by).

The whole requirements suggest strongly intelligent multi-agent architectures, which are the
purpose of the next section.

3 Generic Multi-Agent Architectures

The Agents are entities that can interact and collaborate with dynamic and synergy for
modality combination issues. The interactions should occur between agents and agents should
also get information from users. An intelligent agent has three properties. It reacts in its
environment at certain times (reactivity), takes initiatives (pro-activity) and interacts with other
intelligent agents or users (sociability) to reach goals [16, 17, 18]. Therefore each agent could
have several input ports to receive messages and/or several output ports to send ones.
The level of intelligence of each agent varies according to two major options coexisting today in
the field of Distributed Artificial Intelligence [19, 20, 21]. The first one, corresponding to the
cognitive school, attributes the level to the cooperation of very complex agents. This approach
deals with agents with strong granularity assimilated to expert systems.
In the second school the agents are simpler and less intelligent but more active. This reactive
school presupposes that it is not necessary to each agent to be individually intelligent to reach an
intelligent total behavior [22]. This approach deals with a cooperative team of working agents
with low granularity, which can be matched to finite automate.
Both approaches can be matched to the late and early fusions of multimedia multimodal
architectures.
Obviously, there are all the possible intermediaries between these options of multi-agent
systems. One can easily imagine systems based on a modular approach, putting sub-modules in
competition, each sub-module being itself a universe of overlapping components. This word is
usually employed for ‘sub-agents’.
Identifying the generic parts of multimodal multimedia applications and binding them into an
intelligent agent architecture require the determination of common and recurrent communication
protocols and their hierarchical and modular properties in such applications.

32

: Binding

: Message

Input
modality

Recognition
system

Vocabulary Agent

Output
Media

Sentence Generation Agent

Grammar
Component

Time
 Component

Redundancy
Component

 Serialization Component

Output
Message

Agent

…

fragment #2 fragment #3

fragment #4 end

end

fragment #1

…

: Input

: Output

: I/O port

Parallel flows
binding
another
LANGUAGE
AGENT
or a
PARALLEL
CONTROL

: Serial

LANGUAGE AGENT

Fig. 4. Generic Language Agent corresponding to an input modality.

In most multimodal applications, the speech, as input modality, offers speed, a large information
spectrum and relative facility of use. It lets both the user’s hands and eyes free to work in other
necessary tasks present, for example, in driving or moving cases. More over, speech involves a
generic communication language pattern between the user and the system.
This pattern is described by a grammar with production rules, able to serialize possible
sequences of the vocabulary symbols produced by users. The vocabulary could be word set,
phoneme set or another signal fragment set depending on the feature level of the recognition
system. The goal of the recognition system is to identify signal fragments. Then, an agent
organizes the fragments in a serial sequence according to his grammar knowledge and asks
others agents for possible fusion at each step of the serial regrouping. The whole interaction can
be synthesized in a first generic agent architecture, as shown in Figure 4, called Language Agent
(LA).
Each input modality must be associated with an LA. For basic modalities like manual pointing
or mouse clicking, the complexity of the LA is strongly reduced. The ‘Vocabulary Agent’ that
checks whether or not the fragment is known, is, obviously, no longer necessary. The ‘Sentence
Generation Agent’ is also reduced into a simple event thread whereon another external control
agent could possibly make parallel fusions. In such a case, the external agent could handle
‘Redundancy’ and ‘Time’ information, with to corresponding components. These two
components are agents that, respectively, check redundancies and time neighborhood of the
fragments during their sequential regrouping (Figure 4). The ‘Serialization Component’
processes this regrouping. Thus, depending on the input modality type, the LA could be
assimilated to an expert system or to a simple thread component.
Two or more LAs can communicate directly for early parallel fusions or, through another
central Agent, for late ones (Figure 5). This central agent is called Parallel Control Agent.

33

 EARLY FUSION ARCHITECTURE

 LA LA LA

 SnGnA

RCo
GCo

TCo
SA

SeCo

SnGnA

RCo

GCo

TCo
SA

SeCo

 SnGnA

 RCo
 GCo

TCo
 SA

SeCo

LATE FUSION ARCHITECTURE

 LA PCA LA

 SnGnA

SeCo

GCo

RCo

SFCo

RMCo

TMCo

SnGnA

SeCo

GCo

RCo

… …

Fig. 5. Principles of early and late fusions architectures (L: language, P: parallel, C: control, A: agent, G: grammar,
S: semantic, Sn: sentence, Gn: generation, F: fusion, Se: serialization, Co: component, T: time, R: redundancy and

M: management). More connections (arrows) could be added or removed by the agents to gather fusion information.

In the first case, the ‘Grammar Component’ of one of the LAs must carry an extra semantic
knowledge for the parallel fusion purpose. This knowledge could also be distributed between
the LA’s ‘Grammar Components’, as shown in Figure 5 (left). Several Serializing Components
share their common information until one of them gives the sequential parallel fusion output. In

: Binding

: Message

PARALLEL CONTROL AGENT Output
Media

Time
 Management
 Component

Redundancy
 Management
 Component

Semantic Fusion
Component Output

Message
Agent

…

 (Media#1-Fragment#3)//
 (Media#3-Fragment#4).

…

….end

end

(Media.#1-Fragment#1)//
(Media#2-Fragment#1).

Media#3-

: Input

: Output
: I/O port

Parallel flows

 binding
several

LANGUAGE
 AGENTS : Serial

//: Parallel
fusion

Fig. 6. Generic Parallel Control Agent for central parallel multimodal fusions.

the other case (Figure 5 right), a ‘Parallel Control Agent’ (PCA) handles and centralizes the
parallel fusions of different LA information. For this purpose, the PCA has two intelligent
components for, respectively, Redundancy and Time managements (Figure 6). These agents
exchange information with other components to elaborate the decision. Then, generated
authorizations are sent to the Semantic Fusion Component (SFCo). Based on these agreements,

34

the SFCo carries the steps of the semantic fusion process. As shown in Figure 6, Redundancy
and Time Management Components receive the redundancy and time information via the
Semantic Fusion Component or directly from the LA, depending on the complexity of the
architecture and the designer choices.
The paradigms proposed in this section constitute an important step in the software development
of multimodal user interface (Figure 7). Another important phase of the software
development, for such

: Data or
Knowledge

: Activity

: Product

: next step
: used by

Model (Timed CPN,
ATN, B-Method, etc.)

Choose a Model

Apply to the
problem

Choose an architecture
style

Generic Multi Agent
Architecture

Model of the
System

Instantiate the
Architecture style

Architecture Instance Refinements

Requirements
for multimodal

dialog

StyleModel

Fig. 7. The software development phases of multimedia multimodal dialog architecture.
(ATN: Augmented Transition Nets)

applications, concerns the modeling aspect. Different methods like B_method [24], Augmented
Transition Networks [25], or Timed CPN [6, 7], can be used to model the multi-agent dialog
architectures. The next Section discusses the choice of Colored Petri Networks to model these
architectures.

4 Petri Nets Modeling

Recently small augmented finite-state machines like augmented transitions networks
have been used in the multimodal presentations system [26]. These networks easily
conceptualize the communication syntax between input and/or output media streams. However,
they have limitations when important constraints such as temporal information and stochastic

35

behaviors need to be modeled in protocols of fusion. Timed Stochastic Colored Petri Networks
offer a more suitable pattern [5, 6, 7] to design such constraints in multimodal dialog.

For modeling purpose, each input modality is assimilated to a thread where signal
fragments flow. Multimodal inputs are parallel threads corresponding to a changing
environment that describes different internal states of the system. Multi-agent systems are multi-
threaded: each agent has a control on one or several threads. Intelligent agents observe the states
of one or several threads for which it is designed. Then, the agents execute actions that modify
the environment. In a more formal way [17],

if A = {{a1; a2; … }} (1),

and O = {{ o1; o2; … }} (2),

are the sets of actions and observations of an agent, respectively

and if, S= {{ s1; s2; … }} (3),

is the set of states with which the environment is described (including intermediary states), then
the Petri network models two kind of activities described by the functions

Observation_function : S O (4),

Environment_function : SxA 2S (5).

The first function describes what an agent observes, in a certain state si. The second one
describes how the environment develop the state si when an action ai is executed.
The Petri network models also the actions of the agents described by the function

Action_function : O A (6).

The characteristic behavior of an agent action in an environment is the set ‘History’:

History = {{ h1, h2, …hi, … }} (7)

of all sequences of the observations defined by

hi: (s 0) —a0— (s1) —a1— … (si) —ai— … (8)

with ai = Action_function (<s0, …, si >), ∀∀ i (9)

and si = Environment_function (si – 1, ai -1),∀∀ i, i ≠ 0 (10)

(s0 is the initial state of the system).

To summarize the precedent transaction, the Petri network has to model the functions (4), (5),
(6) and also the input media threads with the design CPN toolkit [7]. In the following, it is
assumed that this toolkit and its semantics are known. The Petri network is a diagram flow of
interconnected places (or locations represented by ellipses) and transitions (represented by
boxes). Labeled arcs connect places to transitions. The CPN is managed by a set of rules. The
rules determine when an activity can occur and specify how its occurrence changes the state of
the places by changing their colored marks. The set of colored marks in all places before an
occurrence of the CPN is equivalent to an observation sequence of a multi-agent system. Each

36

mark is a symbol that could represent signal fragments (pronounced words, mouse clicks, etc.),
serialized or associated fragments (comprehensive sentences or commands) or simply a
variable. In CPN each mark can be of all the data types generally available in a computer
language: integer, real, string, Boolean, list, record and so on. These types are called colorsets.
Thus, a CPN is a graphical structure with associated computer language statements. A transition
represented by a box can model an agent. The observation function of an agent is simply
modeled by input arc inscriptions and also by the conditions in each transition guard
(symbolized by [conditions] under a box in the example represented figures 12). Input arc
inscriptions specify data that must exist for an activity to occur. When a transition is fired (an
activity occurs), a mark is removed from an input place and the transition activity modifies the
data associated to the mark and thereby changes the state of the system (by adding a mark in an
output place). If there are colorset modifications to perform, they are executed by a program
associated to the transition (The program is written in a dashed line box close to the concerned
transition as shown in figures 12 (a) and (b) and the symbol c specifies that a code is attached
to the transition). Also, output arc inscriptions specify data that will be produced if an activity
occurs. Thus, CPN provide an extremely effective dynamic modeling paradigm. In summary,
the set of colored marks in all places before an occurrence of the net is equivalent to an
observation sequence of a multi-agent system. A transition represented by a box can model an
agent as shown in the examples of Figure 8.

Input Thread 2

Intelligent
Parallel
Fusion
Agent

Input Thread 1…

…

Output
Thread …

(fragment1,(p11,p12…))

(fragment2,(p21,p22…))

(fusionfragments1and2,(p11,p12…), (p21,p22…))

HS

Output
Thread

… …

(Serialfragments1and2,(p11,p12…), (p21,p22…))

HS

Input Thread n

…

…

…

…

Output
Thread …

1’(fragment1,(p11,p12…))
++1’(fragment2,(p21,p22

1’(fragment3,(p31,p32…))
++1’(fragment4,(p41,p42

1’(fragment i,(pi1,pi2…))
++1’(fragmentk ,(pk1,pk2

(SP,((p31,p32…), (p41,p42…),(p11,p12…),
(p21,p22…),(pi1,pi2…), (pk1,pk2…)))

HS

Intelligent
Serial

Parallel
Fusion
Agent

Intelligent
Serial
Fusion

Input Thread 1

Input Thread 1

Input Thread 2

1’(fragment1,(p11,p12…))
++1’(fragment2,(p21,p22

[condition1]

[condition2]

[condition3]

Fig. 8. Principle of parallel, serial and serial→parallel fusions modeled by Petri Nets.

In Figure 8, the variables, like ‘p11’, ‘p12’, etc (beginning with the character ‘p’), are used to
represent the time, grammatical and semantic informations of the signal fragments. The next
section shows the use of variables in a practical example. The observation function of an agent
is simply modeled by the conditions in each transition guard. The transition activity modifies
data and thereby changes the states of the system.

37

5 Simulation example

In this section a typical example of a distributed architecture is presented. The ‘Copy
and Paste’ architecture chosen involves a high level LA, for speech modality, linked, by a PCA,
to a rudimentary mouse clicking LA. Tables 2 and 3 give the vocabulary, used by the speech
LA, and the basic corresponding grammar. Each word has a label used in the network design.

Word Word label
open 1
close 2
delete 3
copy 4
paste 5
cancel 6
that 7

Table 2. Vocabulary

Symbolic regular expressions are used to represent semantic elements. These expressions use
the arrow operator for sequential concatenation in the time domain. For example, in the
semantic expression:

 (word 1→word 2)

word 1 is simply followed by (or contiguous to) word 2. In the following table, the codes (last
column) are simply obtained by summing the word labels of each semantic code. The obtained
codes give information used by the speech LA for serial constructions of sentences.

Set of Sentences Command meaning
Set of corresponding

semantic codes
Set of corresponding

codes
{ (open→that); (open) } Open object { (1→7); (1) } { (8); (1) }
{ (close→that); (close) } Close object { (2→7); (2) } { (9); (2) }

{ (delete→that); (delete).} Delete object { (3→7); (3) } { (10); (3) }
{ (paste) } Past last copied object { (5) } { (5) }

{ (copy→that); (copy) } Copy object { (4→7); (4) } { (11); (4) }
{ (cancel)} Cancel last command { (6) } { (6) }

Table 3. Grammar of authorized sentences.

The word ‘cancel’ is a command that automatically cancels the last action among the authorized
sentences. Therefore, if the user says one of the words labeled in the set {1, 2, 3, 4, 5} just after
“cancel”, the time proximity between the two words is the decision criterion for suppressing the
second word or taking it as a next command. For the proposed architecture both scenarios are
processed.Non-authorized sentences used in this architecture are given in Table 4.

Non authorized
Sentences

Corresponding semantic codes Corresponding codes

(that), (that →…) (7), (7→…) (7), (8)…(13)
(paste→that) (5→7) (12)

Table 4. Grammar of non-authorized sentences and their codes.

The multimodal dialog gives for each sentence a set of possible redundant fusions. The symbol
// models these concurrent associations in regular expressions. For example, depending upon

38

temporal information, the first command given in Table 3 is an element of the following
semantic fusion set:

{{ (click →→ open →→ that); (open →→ click); (click →→ open); (click // open); ((click // open)→→ that); (click // (open→→ that))}}.

This semantic set includes the grammatical sentences corresponding to the command ‘Open
object’. Words temporally isolated and labeled in the set {{1, 2, 3, 4, 7 }} are not considered by the
PCA. The remaining fusion entities like ((close→→ open) // click), (click // (delete →→ open)), etc.
or isolated clicks are also ignored by the system. The whole sets constitute the semantic
knowledge. The main focus in this paper is how to use a timed semantic knowledge to achieve a
multimodal fusion.The global declaration page, used in the timed CPN example, is shown in
Figure 9 below.

 (*GLOBAL DECLARATION PAGE*)
(*=========================*)

 (*Proximity time between two events*)
(*=========================*)
 val ProxyTime = 100;
(*Average Inter_arrival*)
(*===============*)
 val ClickArrival = ref 1.0;
 val WordArrival = ref 10.0;
 (* Color sets *)
(*========*)
 color Int =int;
 color Attribute = product Int * Int * Int;

 (* Color sets for mouse event *)
(************************)
color MouseClick = with ClickEvent;
color ClickxAttribute = product MouseClick * Attribute timed;

 color ME = with me timed;
 (* Color sets for speech*)
(*******************)
 color WordSaid = with Word;
color WordxAttribute = product WordSaid * Attribute * Int timed;

 color WE = with we timed;
 (* Color sets for fusion event*)
(************************)
color FusedEvents = with Fused;
color FAttrib =product Int * Int;
color FusedxAttribute = product FusedEvents * FAttrib * FAttrib * FAttrib timed ;

(*Variables*)
(*=======*)
var Word1, Word2,Word3 :WordSaid;
var n, Fn, Fm, Fm1, Fm2, Fm3, m, m1, m2, m3, p, Fp : Int;

(* Variables for Time *)
(******************)
var NextClick, NextWord, ArrivalTimeC, ArrivalTimeW1, ArrivalTimeW2,
ArrivalTimeW3, ArrivalTimeWp, ArrivalTimeW: Int ;
(* Variables for word labels *)
(***********************)
var wt, wtype, wtype1, wtype2, wtype3 : Int;

(* Functions *)
 (*========*)
fun intTime()=IntInf.toInt(time());
fun round x =floor(x+0.5);
fun ExpLaw x= round(exponential(x));

Fig. 9. Global declaration page.

39

Also, a place filled with a pattern symbolizes a thread with input and output ports, as shown in
Figure 10.

Thread Input Port Output PortThread

Output Port

⇔
A A A A

A

Fig. 10. Symbolic representation used in figures 12 (a) and (b).

Input (P In) and output (P Out) ports of the Petri network correspond as well to the
architecture ones (see Figures 4 and 6). The associated network, as shown in Figures 12 (a) and
(b), uses two random generators to design the arrival time of the input media events. The
generators are drawn in the top of Figure 12 (a) with dashed non-bold lines and both are
modeled with the transitions named ‘Click’ and ‘WordSaid’. The inter-arrival time between
two pronounced words as well as the time between two consecutive ‘clicks’, are exponentially
distributed. Events (like words and clicks) are generated or arrived in two different threads (the
places ‘ThreadofClick’ and ‘ThreadofWords ’). The time between two click (respectively
word) arrivals has a mean = ClickArrival (respectively = WordArrival). The inter-arrival time
between 2 click (respectively word) events has an exponential distribution with parameter r
=1/ClickArrival (respectively 1/WordArrival). (Mean: 1/r and Variance: 1/(r2)). The density
function of the inter-arrival time between 2 events is f (x) =r * exp (- r * x), if x is greater than 0
and f (x) = 0 elsewhere. The inter-arrival time follows an exponential law, for the words and
also for the clicks. If the proximity time between a word event and a click event is below
ProxyTime and if these two events verify the grammatical and semantic conditions then these
two events are fused into one command. The transitions drawn with bold dashed lines model the
PCA components distributed over the network. Transitions, with bold lines, model the speech
LA components in Figures 12 (a) and (b). The mouse click LA is reduced to a simple thread:
‘ThreadofClicks’. The figures 11 (a), (b) and (c) show the simulation results for
WorArrival=ClickArrival=5000ms and ProxyTime =10000ms. Figure 11 (c) presents the
number of achieved fusions in the time (or the number of marks in the place ‘FusionedMedia’
of the CPN). In the same way, a command can be cancelled if the user says the word 'cancel'
just after an achieved command (the proximity time between the two events: the command and
the word 'cancel' is chosen below (ProxyTime /25)). Figure 11 (b) shows the accumulation of
words in the corresponding thread (or the number of marks in the place ‘ThreadofWords ’).
Figure 11 (a) shows the resulting cancelled commands in the time (or the number of marks
arrived in the place ‘CanceledCommand’). The transition ‘RecognitionSystem’ (Figure 12
(a)) assigns a random label ‘wtype ’ to each word present in the place ‘WaitRecognition’. This
random assignation does not model a real flowing speech because automatic modeling of user
speech is outside the scope of this paper.

The symbol HS in LA transition means that such transition is a Hierarchical Substitution ones.
The network in Figure 12 (b) describes interactions at a sublevel of the network in Figure 12 (a).

The symbol FG in identical places indicates that the places are ‘global fusion places’ [7]. These
identical places are simply a unique resource shared over the net by a simple graphical artifact:
the representation of the place and its elements is replicated with the symbol FG.

40

Fig. 11. (a) Simulation Results: Canceled commands

Fig. 11. (b). Simulation Results: Thread of words.

Fig. 11. (c) Simulation Results: Achieved fusions.

Modeling with timed colored Petri nets leads multiple advantages. First of all, These nets can
validate a model of timed fusion engine (as shown by the results in figures 11 (a), (b) and (c)).
The arrival time between two consecutive events and the processing time by an agent are
adjustable. These settings can follow laws of probability (exponential, Erlang etc.). Secondly,
the nets are suitable to a distributed modeling where each transition assumes the function of a
specialized agent. The function of each agent is easily modifiable (by changing the guard

Thread of Words

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000 2500

time (x10 ms)

N
um

be
r

of
 w

or
ds

Canceled commands

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

time (x10ms)

N
u

m
b

er
 o

f C
an

ce
ls

 Achieved semantic fusions

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500

time (x10 ms)

N
um

be
r

of
 f

us
io

ns

41

conditions or the code associated to the transition). Besides, modeling a 'fission' (opposite
process of a fusion) is simple to implement because the colorsets of fused marks can keep all the
information for that purpose. For example, on Figures 12 (a) and 12 (b), the input arc
inscription (to the ‘FusionedMed place) has event numbers m and n corresponding to
pronounced word and click events respectively. Finally processing concurrent independent tasks
is easy.

6 Conclusion

In this paper we have proposed a new agent based architectural paradigms for
multimedia multimodal fusion purpose. These paradigms lead to new generic structures that
unify the several applications in multimedia multimodal dialog. They also offer to developers a
framework specifying different functionalities used in multimodal software implementation. In
a first phase, we have gathered the main common requirements and constraints that multimodal
dialogs need. We have then identified two interaction types related to the early and late fusions.
After identifying the generic recurrent characteristics shared by all modalities, each input media
is associated to a specific Language Agent (LA). The LAs are interconnected directly or through
a Parallel Control Agent (PCA) to perform the dialog. The architecture of the PCA is
decomposed into intelligent components, which provides a modular structure. These
components manage temporal, redundant and grammatical conflicts. The proposed architectures
are modeled with timed Colored Petri Networks and support both parallel and serial fusions. A
typical simulation example, with random input flows, has illustrated our approach. The
simulation allowed us to verify that the proposed architectures performed correctly the expected
fusions.

Acknowledgments : We wish to acknowledge the financial support of the Natural Sciences and
Engineering Research Council (NSERC) of Canada

42

(Word, (m,
 ArrivalTimeW,
Fm), wtype)

input();
output(wtype);
action
10*rint(1,7);

Click

me
me@+NextClick

 meMouseEv

FNumberC

0

Fn
input();
output(NextClick);
action
Explaw(1.0/(!ClickArrival));

WordSaid

we

we@+NextWord

 weWordEv

FnumberW

Int

0

Fm input();
output(NextWord);
action
Explaw(1.0/(!WordArrival));

WordType
0

NextEventNumber

wt

n
n+1

m
m+1

1

p+1
 p

WaitRecognition

(Word, (m, intTime(), Fm), tm)

WordxAttribute

RecognitionSystem

(Word, (m, intTime(), Fm), wtype div 10) @ +wtype

RecognizedWord

(Word, (m, ArrivalTimeW, Fm), wtype)

LanguageAgent

(Word, (m, intTime(), Fm), wtype)

ThreadofWords

WordxAttribute

LangageAgent
ClickxAttribute

(ClickEv, (n,
 intTime(),
Fn))

SemanticFusionComponent

 NumFuSuivant

Fp

1

FusionedMed

(ClickEvent,
(n,

 ArrivalTimeC,
 Fn))

(Fused, (n,m),
(p, intTime()),
(Fp, wt))

[abs(ArrivalTimeC - ArrivalTimeW)
<< abs(ProxyTime)
andalso
abs(n-m) << abs (100)]

FusedxAttribute

CancelWordAgentCancelCommandAgent

(Fused, (n,m2),
(p, ArrivalTimeWp),
(Fp, wt))

(Word, (m,
ArrivalTimeW,
Fm), w type)

(Word3, (m3,
ArrivalTimeW3,
Fm3), wtype3)

CanceledCommand CanceledWord

FusedxAttribute

(Fused, (n,m2),
(p, intTime()),
(Fp, wt))

(Fused, (m3,m),
(p, intTime()),
(Fm, wtype3))

[abs(ArrivalTimeWp -
ArrivalTimeW)
<< abs(ProxyTime div 25)
andalso wtype = 6 andalso
abs(p-m) << abs (10)]

[abs(ArrivalTimeW3 -
ArrivalTimeW)
<< abs(ProxyTime div 25)
andalso wtype = 6 andalso
abs(m3-m) << abs (10)]

c

c

c

WordxAttribute

(Word, (m,
ArrivalTimeW, Fm),
wtype)

(Word, (m, ArrivalTimeW, Fm), wt)

FG ClicksWait

HS SentenceGeneration

FG FusionedMed

 Fig. 12. (a). Bimodal fusion dialog.

43

Fig.12 (b). Bimodal fusion dialog (Sub level).

[wtype<>6]

RecognizedWord
P In

WordxAttribute

VocabularyAgent

VocabularyAgent

[wtype<>6 andalso wtype <>7]

ThreadofWord

 P Out

WordxAttribute

(Word, (m, ArrivalTimeW, Fm), wtype)

 NextEventNumber

 FG NextEventN

Int

 p+1 p

 NextFuNumber

 FG NextFuN

Int

Fp

SemanticFusionComponent

[abs(ArrivalTimeC-ArrivalTimeW)
< abs(1*ProxyTime) andalso
abs(n -m) < abs (100)]

WaitSerialFusion

1’(Word1, (m1, ArrivalTimeW1, Fm1),
twtype1) ++
1’(Word2, (m2, ArrivalTime2, Fm2),
twtype2)

(Word, (m, ArrivalTimeW),
Fm), wtype)

(Word, (m, ArrivalTimeW,
Fm), wtype)

(Word, (m, ArrivalTimeW,
 Fm), wtype)

SerializationComponent

[(wtype1+wtype2)<>7 andalso
((wtype1+wtype2)<>12 andalso
((wtype1 <>7 andalso m1 < m2) orelse
(wtype2 <>7 andalso m2 <m1))]

LangageAgent

FG ClicksWait

ClickxAttribute

(Word, (m,
ArrivalTimeW,
Fm), wtype)

1’(Word1, (m1, Arriv alTimeW1, Fm1),
wtype1) ++
1’(Word2, (m2, ArrivalTimeW2, Fm2),
wtype2)(ClickEvent,

 (n,
 ArrivalTimeC,
 Fn))

 FusionedMeda

FG FusionedMedia

(Fused, (n,m),(p, intTime()), (Fp, wt))

FusedxAttribute

 FormedSentence

WordxAttribute

(Word, (m1+m2, imax(ArrivalTimeW1,
ArrivalTimeW2), Fm1+Fm2+1),
wtype1+ wtype2)

Int

 p+1 p

 NextFuNumber

FG NextFuSN

Int

Fp

SemanticFusionComponent

 NextEventNumber

FG NextEventN

[abs(ArrivalTimeC- ArrivalTimeW)< abs(1* ProxyTime) andalso abs(n -m) < abs (100)]

(Word, (m, ArrivalTimeW), Fm), wtype)

(Fused, (n,m),(p, intTime()), (Fp, wt))
(ClickEvent,
 (n,
 ArrivalTimeC,
 Fn))

WordxAttribute

44

REFERENCES

1. Bolt, R.A., Put that there: Voice and gesture at the graphics interface, ACM Computer
Graphics 14,3, 262-270, 1980.

2. Crowley, J.L. and Bérard, F. Multimodal tracking of faces for video communications, In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’97), San Juan, IEEE Press, NY, June, 1997.

3. Bellik Y., Burger D., Multimodal Interfaces: New Solutions to the Problem of the
Computer Accessibility for the Blind. Proc. CHI’94, Boston, 24-28 April 1994.

4. McGee, D.R., Cohen, P.R., and Wu, L., Something from nothing: Augmenting a paper-
based work practice with multimodal interaction, in the Proceedings of the Conference
on Designing Augmented Reality Environments, ACM Press, Helsingor, Denmark, 71-
80, April 12-14, 2000.

5. Jensen, K., Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use,
Volume 1, Basic Concepts. Monographs in Theoretical Computer Science, Springer-
Verlag, 2nd corrected printing, ISBN: 3-540-60943-1, 1997.

6. Jensen, K., Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use,
Volume 2, Analysis Methods. Monographs in Theoretical Computer Science, Springer-
Verlag, 2nd corrected printing, ISBN: 3-540-58276-2, 1997.

7. Jensen, K., Christensen, S., Huber, P and Holla, M., Design/CPN Reference Manual,
Department of Computer Science, University of Aarhus, Denmark,
http://www.daimi.au.dk/designCPN/, 1995.

8. Oviatt, S.L., Multimodal Signal Processing in Naturalistic Noisy Environments, In B.
Yuan, T. Huang and X. Tang Eds., Proceedings of the International Conference on
Spoken Language Processing (ICSLP’2000), Vol. 2, pp. 696-699, Beijing, China:
Chinese Friendship Publishers, 2000.

9. Oviatt, S.L., Multimodal System Processing in Mobile environments, Proceedings of the
Thirteenth Annual ACM Symposium on User Interface Software Technology
UIST'2000, pp. 21-30, New York: ACM Press, 2000.

10. Hutchins, E. L., Holland, J. D. and Norman, D. A., Direct manipulation interfaces, In
Norman, D. A. and Draper, S. W. Eds., User centred system design: new perspectives
on human computer design, Hillsdale, NJ, Lawrence Erlbaum, 1986.

11. Oviatt, S.L., Cohen, P.R., Wu, L., Vergo, J., Duncan, L., Suhm, B., Bers, J., Holzman,
T., Winograd, T., Landay, J., Larson, J. and Ferro, D., Designing the user interface for
multimodal speech and gesture applications: State-of-the-art systems and research
directions, Human Computer Interaction, vol. 15, no. 4, pp. 263-322, 2000.

12. Bregler, C., Manke, S., Hild, H., and Waibel, A. Improving connected letter recognition
by lip reading, Proceedings of the International Conference on Acoustics, Speech and
Signal Processing, 1, pp. 557-560. IEEE Press, 1993.

13. Projet AMIBE, Rapport d’activité, GDR |n° 9, GDR-PRC Communication Homme-
Machine, CNRS, MESR, 1994, pp. 59-70 (Technical Report in french), 1994.

14. Oviatt, S. L., Mutual disambiguation of recognition errors in a multimodal
architecture, Proceedings of Conference on Human Factors in Computing Systems:
CHI '99, New York, N.Y., ACM Press, 576-583, 1999.

15. Coutaz, J., Nigay, L., Les propriétés CARE dans les interfaces multimodales, IHM’94.
Sixièmes journées sur l’ingénierie des Interfaces Homme-Machine, Lilles, 8-9 Déc,
(French paper), 1994.

16. Jennings, N. R. and Wooldridge, M. J., “Applications of Intelligent Agents” in “Agent
Technologies: Foundations, Applications and Markets”, Eds. N. R. Jennings and M.
Wooldridge, 3-28, 1998.

17. Weiss, G., Multiagent Systems, MIT-Press Ed., 1999.

45

18. Bird, S.D., Toward taxonomy of multi-agents systems, International Journal of Man-
Machine Studies, 39, 689-704. 1993.

19. Bond, A.H. and Gasser, L., Readings in Distributed Artificial Intelligence, San Mateo,
Calif.: Morgan Kaufmann, 1988.

20. Ishida, T., Real-Time Search for Learning Autonomous Agents, Kluwer Academic
Publishers, 1997.

21. Muller, H. J., Negotiation principles, In G. M. P. O’Hare and N. R. Jennings, eds,
Foundations of Distributed Artificial Intelligence, pp. 211-229, Wiley, 1996.

22. Cohen, P. R., Levesque, H. R., and Smith, I., On team formation, Hintikka, J. and
Tuomela, R. (Eds.) Contemporary Action Theory. Synthesis, 1997.

23. Tambe M., Johnson W. L., Jones E. M., Koss F., Laid J. E., Rosenblum P. S., and
Schwamb K., Intelligent agents for interactive simulation environments, Al Magazine,
16(1), pp. 15-39, 1995.

24. Abrial J.-R, The B-Book: Assigning Programs to Meanings, Cambridge University
Press, 1996.

25. Bellik Y., : Thèse de Doctorat de l’Université de Paris XI, spécialité
informatique.« Interfaces multimodales : concepts modèles architectures » soutenue le
30Mai 1995 par Yacine Bellik PHD Thesis of univerity au ParisXI (France)

26. Chen, S.-C. and Kashyap, R. L., Temporal and spatial semantic for multimedia
presentations, International Symposium on Multimedia Information Processing, pp.
441-446, Dec.11-13, 1997.

46

Towards an object based multi-formalism multi-solution

modeling approach

G. Franceschinis(1), M. Gribaudo(2), M. Iacono(3), N. Mazzocca(3) and V. Vittorini(4) �

(1) Univ. del Piemonte Orientale, Alessandria, Italy, giuliana@mfn.unipmn.it

(2) Univ. di Torino, Torino, Italy, marcog@di.unito.it

(3) Seconda Univ. di Napoli, Aversa, Italy, fn.mazzocca,mauro.iaconog@unina2.it

(4) Univ. di Napoli "Federico II", Napoli, Italy, vittorin@unina.it

Abstract

Analysis and simulation of complex systems is an hard task that requires the use of
proper modeling formalisms and tools. In many cases, no single analysis and modeling
method can successfully cope with the growing complexity of a real system. A multi-
formalism multi-solution approach is very appealing, since it allows to cope with the
complexity of the problem by using di�erent formalisms to model and analyze di�erent
subsystems and also to de�ne reusable building blocks. Nevertheless problems arise
at many levels. The major concerns are: the interoperability of di�erent formalisms
and analysis/simulation tools, the de�nition and the implementation of mechanisms
to guarantee the
exibility and the scalability of the modeling frameworks and the
development of proper strategies for the analysis of multi-formalism multi-solution
models.

This paper describes a multi-formalism multi-solution approach to the construction
of models based on the integration of di�erent graph-based formalisms. The proposed
approach is based on an object oriented construction method and it is supported
by the DrawNET++ framework through a proper interface to the external solvers
(analysis/simulation engines) realized by means of the XML and XSL technologies.

A simple dependability example is used throughout the paper to describe the
modeling process and the possibility of analyzing a system by integrating two di�erent
formalisms: Fault Trees (FT) and Generalized Stochastic Petri Nets (GSPN).

Keywords: Object Oriented composition of models, multi-formalism modeling, Petri

Nets, Fault Trees.

1 Introduction

Analysis and simulation of complex systems is an hard task that requires the use of proper

modeling formalisms and tools. The complexity of modeling and analysis of real systems

can be mastered through a \divide and conquer" approach: indeed modular approaches to

models construction allow to cope with the complexity of models by de�ning libraries of

reusable building blocks (sub-models) and encouraging a modeling discipline. Moreover,

modular approaches enable the construction of multi-formalism models and stimulate the

development of multi-solution techniques that take advantage from eÆcient formalism-

speci�c solution methods.

�This work is partially supported by the MIUR (Project "ISIDE").

47

Some formalisms directly support composition in their de�nition (as Process Algebras),

others do not include any support to composition/re�nement of models in their original

de�nition, but several proposals for adding these features a-posteriori have appeared in

the literature [2, 17].

In the context of multi-formalism multi-solution modeling, it is interesting to observe

that despite the fact that composition techniques of distinct classes of formalisms seem

di�erent, they often have several common aspects. It is thus natural to think of a frame-

work for the composition of multi-formalism models. Some results in this direction have

been achieved within the M�obius project [9]. Nevertheless, much more work should be

done in this line since problems arise at many levels. The major concerns are: composi-

tion issues when integrating sub-models, the interoperability of di�erent formalisms and

analysis/simulation tools, the de�nition and the implementation of proper mechanisms to

guarantee the
exibility and the scalability of the modeling framework.

This paper describes a multi-formalism multi-solution approach to the construction

of models based on the integration of di�erent graph-based formalisms, using an example

from the area of dependability. The proposed approach is based on (a) an Object Oriented

(OO) methodology and (b) a proper interface to external solvers (analysis/simulation

engines). At the state of our research, the presented methodology is partially supported

by the DrawNET++ framework [14, 13].

With respect to point (a), the proposed method exploits composition, facilitating the

model structuring and (sub)model reuse in a style inspired by the OO paradigm. Some OO

features are present also in other existing frameworks (for example Tangram-II [6]). Our

proposal goes one step further. The key concepts behind our OO construction method are

model metaclasses (allowing formalisms de�nition and inheritance), model classes, model

instances (objects), weak and strong aggregation.

With respect to point (b), new graph-based formalisms can be created and easily inte-

grated in the DrawNET++ framework without any programming e�ort. In particular, the

nodes of a graph may represent domain speci�c sub-models expressed in some underlying

formalism by an expert model designer, and presented to the �nal user as black boxes with

proper interface and connectors. In order to allow the di�erent formalisms and solution

methods to inter-operate an XML description of the sub-models is used. The back end

of the framework is an interface towards the solvers that consists of (1) XSL �lters to

translate the XML representation of the DrawNET++'s models into the formats used by

the external solvers, (2) scripts for running solvers, (3) �lters to feed the results back into

the XML models representation.

This approach di�ers substantially from that advocated in the M�obius project [9] where

new formalisms, composition operators and solvers are actually implemented within a

unique comprehensive tool but all formalisms are required to be described in terms of a

prede�ned general framework [10].

The paper is organized as follows. Sec. 2 brie
y places our work in the context of the

fault trees analysis techniques and introduces the simple example we will use throughout

the paper. In Sec. 3 the OO model construction method is described and applied to the

example. Sec. 3 mainly deals with multi-formalism modeling, whereas Sec. 4 presents a

new multi-solution strategy developed for the class of applications of the running example

which combines Fault Trees (FT) and Generalized Stochastic Petri Nets (GSPN). Finally,

Sec. 5 describes the architecture of the DrawNET++ interface to solvers needed to support

the FT/GSPN integrated solution approach.

48

2 A primer on FTs and mixed FT analysis techniques

FTA (Fault Tree Analysis) techniques are widely used to model the failure modes of de-

pendable systems [15, 16]. A minimal cut set (MCS) of FTA shows a minimal combination

of component failures (or Basic Events, BEs) leading to system failure (the Top Event,

TE), i.e. to the occurrence of an undesirable event. FTA tools allow to compute all the

minimal cut sets for a given FT model as well as their probability, and the probability

of the TE. Such analysis methods are eÆciently applicable only under quite restrictive

hypothesis. The quantitative analysis of Fault Trees (FT) models assumes independence

among component failures and it is based on combinatorial solution methods. State space

solution methods are necessary to include more
exibility and expressive power (e.g. de-

pendence between basic faults, repair, complex fault tolerance strategies).

Mixed solution methods are however possible, based on the concept of \minimal"

independent subtree [1, 12]; in this case a state space method can be applied only to the

smallest sub-models that actually need it. The result of the subtree analysis can then

be fed back into the upper FT part to perform combinatorial analysis. To perform state

space based analysis, a suitable formalism must be used: we have chosen GSPN, since

automatic translation from FT to GSPN formalism is possible.

Complex gates may be included in this case, as well as subsystem repair facilities

(with or without constraints on the number of available repair facilities). It turns out that

GSPNs can be used to express the most common repair strategies, and a repair GSPN

sub-model can be easily composed (using a place superposition operator) with the GSPN

automatically obtained from a FT. This leads to a multi-formalism model of a dependable

system, allowing to combine FT and GSPN sub-models and to apply a multi-solution

method to solve the resulting model.

In this paper we will use a FT case study to present our approach which wants to

exploit the advantages of an OO modular approach to the modeling of systems. In order

to represent repairs at the FT level, we compose FT models with pre-de�ned blocks

representing GSPN sub-models of repairs (i.e. Repair Blocks, RBs).

The FT example used throughout the paper is presented in Fig. 1, where (k:n) gates

are used. It is the FT model of a highly redundant multiprocessor system which consists

of three subsystems SUBi, i 2 f1; 2; 3g, a shared memory Ms and two buses connecting

the subsystems and the shared memory.

Each subsystem SUBi consists of a processing unit CPUi, a local memory Mi and two

disks Di;j, j 2 f1; 2g.

Redundancy is adopted at the system level (through the two bus lines) and at the local

level (the two disks contains the same data). Moreover, the shared memory may be used

to replace each local memory if it fails. Note that, as a matter of fact, a FT model can be

an acyclic graph, since one or more BEs may be common to di�erent subtrees (like Ms in

the example).

At the system level a fault occurs if the two buses fail or two out of three subsystems

simultaneously fail. At the subsystem level a fault occurs in the following cases: either

the CPU fails, or both the disks fail, or both the shared and the local memory fail.

The presence of a shared memory introduces a dependence among the subsystem, since

the BE representing the related fault is a leaf that is common to the subtrees representing

the three subsystems in Fig. 1. A slightly di�erent version of this example will be also

used in the paper where Ms is removed and a redundant local memory is added to each

subsystem. In this case the subsystem fails when both its memories fail.

49

AndNet

SUB_1

OrCDMM_1

SUB_2

CD_2

OrCD_1

OrCD_2

D_1

MM_2

CD_3

OrCD_3

SUB_3

OrCDMM_3AndM3

AndD3

AndD1

AndM1

CPU_1

Disk1_1

Disk2_1

M1

CPU_2

Disk1_2

Disk2_2

M2

Ms CPU_3

Disk1_3

Disk2_3

M3

AndD2

AndM2

MM_1

D_2

D_3

MM_3

OrCDMM_2
G2of3 Proc

Bus

net2

net1
CD_1

OrSys

Top Event

Figure 1: A FT model of the multiprocessor system

In the next sections, we will extend the FT model of the multiprocessor system with

repair actions in order to evaluate the system unavailability when a preventive maintenance

policy is implemented, e.g. the repair of a subsystem or the repair of one part of any

subsystem is activated as soon as it fails.

3 The OO model construction methodology

In this section we introduce a new approach to multi-formalism modeling of systems. In

order to de�ne scalable and
exible mechanisms to integrate di�erent formal languages

we are developing a framework based on the concept of Metaformalism and an object

oriented methodology to create models and reusable models libraries. All the concepts

introduced in the following will be illustrated in the next subsections by means of the

running example.

A Metaformalism is a language used to describe graph-based formalism, i.e. for-

malisms whose elements are nodes and edges, such as Petri Nets, Queueing Networks,

Fault Trees. In other words a Metaformalism is a formal language that allows to easily

de�ne any graph-based formalism within our modeling framework.

According to our methodology the development of a model is accomplished by adopt-

ing an object oriented approach. Paraphrasing Booch's de�nition of object oriented pro-

gramming [5], we want to provide \a modeling method in which a model is organized

as cooperative collection of sub-models1(objects), each of which represents an instance of

some model class, and whose classes are all members of a hierarchy of model classes united

1Since in our approach each model can be regarded as a part of a more complex system, in the following

50

via inheritance relationships".

To this purpose we de�ne a three level object oriented system:

� Level 1: Model Metaclasses. The �rst level addresses the formal languages to be

used in the modeling framework. The formal languages are all described through

the rules expressed by the Metaformalism. We call Model Metaclass (Metaclass for

short) any formalism description expressed through the Metaformalism. The FT

formalism is described by the FT Metaclass, since it de�nes the elements that can

be used to build FT models.

� Level 2: Model Classes. The second level addresses the sub-models speci�cation. A

sub-model at this level is not a concrete entity existing in time and space yet. It is just

an abstraction, called Model Class, which facilitates the grouping of set of objects

sharing a common structure consisting of nodes and edges and a set of parameters

to be de�ned at object instantiation time. Such structure must be compliant to its

Metaclass, i.e. a Model Class is speci�ed by means of the elements described by its

Metaclass.

� Level 3: Model Objects. The third level addresses the sub-models instantiation. At

this level sub-model (Model Objects) are created and used to build a complete model.

A Model Object is a tangible entity completely characterized by the actual value of

all the parameters speci�ed in the structure of its Model Class, for example the

�ring rates of the timed transitions or the initial marking if its reference formalism

is GSPN.

At the state of our research, the inheritance relation is introduced at the level of the

Model Metaclasses. It is possible to build hierarchies of Metaclasses and it is also possible

to build hierarchies of elements within a Metaclass. For example it is possible to de�ne the

GSPN formalism by inheriting from the Petri Net (PN) formalism, moreover is possible

to de�ne both the AND node and the OR node of the FT formalism by inheritance from

the a common ancestor, the GATE node.

Metaclasses inheritance implements the well known \is a" relationship. If the Metaclass

D is derived from the Metaclass B, the structure of D shares the elements de�ned by the

structure of B. The advantage of using Metaclass hierarchies is that through the hierarchy

a better abstraction is realized that allows to identify the common properties of models.

Elements inheritance inside a Metaclass is still an \is a" relationship at a lower level.

An example of use is for the de�nition of edges that must be able to connect di�erent

types of nodes belonging to the same \family" (e.g., in the FT formalism event nodes can

be connected to GATEs, independently of the speci�c gate type).

To support submodel composition it may be necessary to explicitly de�ne interface

elements and interface connection edges in a proper \wrapper" formalism, in particular

when submodels (explicitly) de�ned through a formalism F1 are included into models

described in a di�erent formalism F2, then it is mandatory to de�ne in a third "wrapper"

formalism new edges that can connect elements belonging to F1 and F2. .

A complete model can be built in two di�erent ways:

1. A
at model is a model built by using the formalism elements de�ned by a given

Metaclass, e.g. a Fault Tree model obtained by using the FT Metaclass, or a GSPN

the word 'model' is often used interchangeably with the word 'sub-model'.

51

model obtained by using the GSPN Metaclass. A
at model may be a complete

model or it can also be stored as a Model Class to be reused.

2. A composed model is a model containing at least one Model Object or at least

one Model Class. In the former case it is usually intended to be a �nal model, in

the latter it is intended to be a new Model Class.

The composition (also referred as aggregation in the following) is accomplished by

connecting the interfaces of the objects through proper edges and operators. We call

this operation a \weak aggregation".

If the composed model is built to be a new Model Class, (some of) the interface nodes

that have been used to create the composed model might have to be hidden. We

call this operation \strong aggregation", since it is a form of aggregation association

with strong ownership and coincident \lifetime" of the contained objects as part of

the whole.

The described methodology supports the multi-formalism modeling in a very natural

way. Di�erent formalisms can coexist in the same model implicitly or explicitly. An

implicit multi-formalism model is de�ned at the Model Metaclasses level by extending the

formalism de�nitions with implicit nodes. An implicit node represents a part of the model

that is not de�ned at the speci�cation and design time, but it contains all the information

necessary to de�ne it. In other words, an implicit node could be replaced by a sub-model

expressed through a di�erent formalism. The implicit nodes may be added into an existing

formalism by Metaclass inheritance.

An explicit multi-formalism model is de�ned by allowing to de�ne composed models in

which Model Objects or Model Classes are included that are de�ned by means of di�erent

Metaclasses.

In this paper we will use the implicit multi-formalism approach by de�ning a Repairable

Fault Tree Metaclass (RFT), inheriting from the FT Metaclass. The implicit node de�ned

by the RFT Metaclass is a Repair node (called Repair Block in the rest of the paper) which

implicitly de�nes a GSPN model of a repair action. The proposed framework however

allows also the explicit version, since repair nodes may be replaced by submodels described

according to a GSPN Metaclass de�nition.

In the following we discuss the implementation of our method within the DrawNET++

framework [14, 13].

3.1 Metaformalism and Metaclasses

DrawNET++ supports the proposed methodology since it allows to de�ne and manipulate

graph based formalisms and provides some OO features. It relies upon the XML technol-

ogy: an XML description of the formalism must be de�ned to customize the DrawNET++

graphical editor to design models based on that formalism and generate an XML descrip-

tion of the model.

Thus, it is straightforward to express the Metaformalism by a Document Type De�ni-

tion (DTD) and the Metaclasses by XML speci�cations compliant to the Metaformalism

de�nition.

The FT Metaclass (partially) reported in Fig. 2 describes the formalism used to model

the multiprocessor system introduced in Sec. 2.

52

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE formalism SYSTEM "formalism.dtd">
<formalism parent="" name="FT">
<propertyType name="Title" default=""/>

<nodeType parent="" name="Event0">
<propertyType name="Label" default=""/>
</nodeType>
<nodeType parent="Event0" name="Event"/>
<nodeType parent="Event0" name="BasicEvent">
<propertyType name="Distribution" default="ALL EXP 1.0"/>
</nodeType>

<nodeType parent="" name="Gate"/>
<nodeType parent="Gate" name="And"/>
<nodeType parent="Gate" name="Or"/>

<nodeType parent="" name="G2of3"/>

<edgeType parent="" name="Arc">
<constraint fromType="Gate" fromCardinality="1"
 toType="Event" toCardinality="1"/>
<constraint fromType="G2of3" fromCardinality="1"
 toType="Event" toCardinality="1"/>
<constraint fromType="Event0" fromCardinality=""
 toType="Gate" toCardinality=""/>
<constraint fromType="Event0" fromCardinality=""
 toType="G2of3" toCardinality="3"/>
</edgeType>
</formalism>

Definition of
nodes "Event"

and "Basic Event",
 both inheriting
from "Event0"

Definition
of gate types

Definition of all arcs,
with constraints

on nodes connections

Figure 2: The XML de�nition of the FT Metaclass

A Metaclass de�nes the kind of nodes and edges that a model may include, e.g. types

of events, gates and arcs in Fig. 2. Nodes, edges, and formalisms themselves are all called

elements.

Edges have also associated a set of constraints that tell which kind of elements that edge

may connect. For example, the \Arc" element de�ned in Fig. 2 speci�es which connections

are allowed between events and gates. Constraints can also specify a cardinality: that is

the maximum number of edges of that kind that may start \from" or end \to" a particular

element.

Since constraints are expressed in terms of elements, an edge can connect not only two

nodes, but also other edges and sub-models. As a result, Model Classes or Model Objects

can be handled as they were nodes.

All elements have one or more \properties" that are the private attributes of the

Model Classes and that will be set when creating a Model Object. An additional attribute

called visibility is used to de�ne the interface elements: the edges can connect elements

according to their constraints, and also the elements of sub-models that have the visibility

property set to true.

Turning to our example, an extension of the FT Metaclass with a Repair Event (RE)

is necessary to extend the FT formalism and analysis techniques by adding repair actions.

In Fig. 3 the RFT Metaclass is shown that inherits from FT and extends it by adding

a \Repair" node and a proper edge so that the \Repair" node can be linked to one of

the events in the tree. The \Repair" node is an implicit node: it relies on an external

speci�cation of the repair policy.

A \Repair" node corresponds to a RB (Repair Block), and since several repair policies

53

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE formalism SYSTEM "formalism.dtd">
<formalism parent="FT.xml" name="RFT">

<nodeType parent="BasicEvent" name="RepBE">
<propertyType name="RepairDistribution" default="EXP 1.0"/>

</nodeType>

<nodeType parent="" name="RepairNode">
<propertyType name="Name" default=""/>
<propertyType name="RepairDistribution" default="EXP 1.0"/>
<propertyType name="Policy" default="SingleRepairTime"/>

</nodeType>

<edgeType parent="" name="RepairArc">
 <propertyType name="RepLabel" default=""/>
 <propertyType name="EventLabel" default=""/>
 <constraint fromType="RepairNode" fromCardinality="1"
 toType="Event" toCardinality="1"/>

</edgeType>
</formalism>

Figure 3: The RFT Metaclass derived from FT

are possible, it must include some information on the particular policy it represents. In

this paper we assume that a repair block causes the elimination of the fault event by

eliminating all its potential causes. The properties \Policy" and \RepairDistribution"

will be used to de�ne the implicit behavior at the solution time.

Finally, the RFT Metaclass rede�nes the \BasicEvent" node ('RepBE' in Fig. 3) by

adding a new property \RepairDistribution" used to specify the time distribution of the

repair action needed when that BE occurs.

3.2 Model Classes and Model Objects in DrawNET++

Classes are useful to create a library of sub-models to be used by an end user. Fig. 4 shows a

FT
at model representing a subsystem of the second version of the multiprocessor system

(with no shared memory). A FT sub-model is a subtree whose interface is de�ned to be

the top event of the subtree.

Once the FT
at model of the subsystem has been created, it can be saved as a Model

Class, since it represents an abstraction of a system component. The �nal model of the

multiprocessor system will be a composed model containing three instances of this Model

Class, i.e. the three Model Objects SUB�IND1; SUB�IND2; SUB�IND3 graphically

represented by squares in Fig. 5 (a). They are obtained by specifying di�erent names for

each object and giving distinct values to the properties of the elements of the Model Class

in Fig. 4, for example the proper values of the fault rates of the BEs. The model in Fig. 5 (a)

is a weak aggregation (i.e., a model obtained by instantiating and connecting submodels).

Fig. 5 (b) shows a high level representation of the system obtained after applying strong

aggregation (i.e. transforming the model in Fig. 5 (a) into a new submodel which hides the

interfaces of the three submodels composing it). The interfaces (events SUBi, i 2 f1; 2; 3g)

54

Figure 4: An example of Model Class

used to connect the three Model Objects to the G2of3 gate (in Fig. 5 (a)) have been hidden

and they are no longer visible. The whole processor subsystem has been encapsulated in

a Model Class whose instance named \processing" is used to build the complete model.

4 GSPN representation of RFTs

This section introduces the basic concepts needed to describe the multi-solution method

of Sec. 5. In particular it is explained how an RFT component can be transformed into

a GSPN model by (1) automatic translation of FT objects and (2) composition with the

GSPN implicitly de�ned by each RB.

Automatic translation of a FT into a GSPN. Let us brie
y explain the FT to

GSPN translation algorithm: for more details the reader can refer to [11, 4]. Each Basic

Event BE in the FT is modeled with the subnet in Fig. 6(a): the �ring time associated

with the timed transition represents the time to failure of that BE. Each gate in the

FT is translated into one or more transitions, connected to the places representing the

input/output events of the gate (see Fig. 6(b) and (c)).

The subnet representing all BEs, and those representing the gates, are then superposed

on places with equal label, forming the logic structure of the FT. An example is given in

Fig. 6(d), where the translation of the subtree of the multiprocessor FT starting at event

CD1 is shown. The state space of the GSPN represents all possible evolutions of the model

through its possible failure states.

GSPN models of repair boxes. Let us introduce some possible semantics for the RBs

and their translation in terms of a GSPN that can be automatically composed (through

55

STEP 1

STEP 2

STEP 2

STEP 3

(a)

(b)

Figure 5: An example of weak and strong aggregation: the FT model of (a) the processor

subsystem and (b) the multiprocessor system

56

(a) (b)
(c)

BEFail Be

E1

En

E1

En

E2
E2

tAND

tOR,1

tOR,2

tOR,m

OEkOEk

E1

En

OEk

E1

En

OEk
BE

CPU1

(d)

Disk12Disk11

D1

CD1

CPU1FailDisk12FailDisk11Fail

t_and

t_or2t_or1

Figure 6: FT to GSPN translation rules: (a) BE (b) OR (c) AND (d) a subtree

place and transition superposition) with the GSPN of the FT (generated as explained in

the previous subsection).

Let OE1 be a repairable event of an FT (i.e. an event connected with an RB): it

identi�es a subtree of all events that may lead to the occurrence of OE1. Let us assume

that OE1 represents the failure of a given system component C: depending on the type

of tree originating in OE1, the repair actions allowing to bring component C back into

the operational state may di�er. Hence the RB should include enough information to

express the repair strategy to be followed: in the rest of this section we shall consider a

repair strategy called complete repair, consisting of repairing all the basic subcomponents

corresponding to the BE leaves of the subtree originating in OE1 (which has the side

e�ect of repairing all the events on the path from the leaves to OE1). Other strategies

are conceivable, and in principle any strategy that may be modeled by a GSPN might be

directly embedded in the RB node by explicitly associating a GSPN submodel to it. In

this section we show how the GSPN of the complete repair strategy can be described in

parametric form and automatically generated.

Let us consider the multiprocessor FT example in Fig. 1. If a repair box is connected to

event CD1, the complete repair strategy would require to repair the BE Disk11, Disk12

and CPU1 (and hence indirectly also D1). Observe that repairing CD1 may a�ect also

the fault status of SUB 1, Proc and the TE.

There are some possible choices in modeling the complete repair strategy:

(1) the time required to perform the whole repair may be modeled by a single timed

transition or as a (parallel or sequential) composition of several times, one for each occurred

BE in the subtree; in the former case, this time should depend on which subset of BE has

caused failure event OE1;

(2) possibility of new BE occurrence during the repair of OE1: when component C is

under repair, is it possible that some not yet failed BE fails during the repair? And once

a subcomponent has been repaired, may it fail again before the whole repair of C has

completed? (this last case of course can be considered only if the OE1 repair action is

modeled as a set of separate repair actions, one for each basic subcomponent);

(3) in�nite versus �nite repair facilities: it might be necessary to consider the fact that

a repair action can take place only if a repair facility is available to perform it. Repair

facilities may be local to a RB, or shared by several RBs. If at most n repair facilities are

available to a given RB, the time needed to complete the repair will have to be adjusted

57

accordingly. Moreover if the repair facilities are shared, we may want to establish a policy

for the assignment of such facilities to RBs (e.g. a policy based on priorities, with or

without preemption).

Let us sketch two parametric GSPNs modeling the repair of a given component, both

assuming that new BEs may occur during the repair, and di�ering in the number of timed

transitions used to represent the whole repair. In case several timed transitions are used

to model the repair we assume that an already repaired BE cannot occur again before the

whole component C repair has completed. For the sake of space we make a simplifying

assumption: the subtree originating in OE1 does not contain any shared BE (in other

words, any path from the TE to the leaves of OE1, contain OE1). Observe that shared

BEs may exist since an FT may actually be a DAG instead of a tree (as is in the case

of the running example when a unique shared memory is used for replacing a failed local

memory).

The two GSPN models of a repair box for CD1 are depicted in Fig. 7 and Fig. 8: the

subtree originating in CD1 includes the event D1 and basic events Disk11;Disk12 and

CPU1. Moreover, on the path from the TE to CD1 there are two events, namely SUB 1

and Proc. The two models can be easily generalized to an arbitrary number of BEs and

intermediate events (by repeating the same pattern for each BE and event in the sub-

tree). The �rst model comprises an immediate transition and a place (StartRepCD1 and

RepCD1) representing the start of repair, a timed transition RepTimeCD1 modeling the

time needed to complete the repair and a subnet for the deletion of the tokens representing

a failure from all places corresponding to events in CD1 subtree, as well as from the places

corresponding to the TE and the events on the path from the TE to CD1 (in the example

SUB 1 and Proc). By so doing, not only all events potentially causing CD1 are cleared

upon repair, but the e�ect of the repair is also propagated to all the events which depend

on CD1, all the way up to the TE: in case the repair of CD1 is not suÆcient to make the

upper events operational, then the GSPN shall automatically regenerate the appropriate

tokens in the corresponding places using the immediate transitions representing the FT

gates logic (transitions t or1; t or2 and t and in the example of Fig. 6(d)).

The second model is slightly more complex, since several timed transitions are included

(RepDisk11, RepDisk12 and RepCPU1), representing the repair time of a single basic

subcomponent. The enabling of this transitions is conditioned on the fact that the corre-

sponding failure has occurred (e.g. input place CPU1 ko) and that the repair action has

started (input place RepCD1). When the repair has completed, place CPU1 rep becomes

marked, place CPU1 ko is emptied, while place CPU1 remains marked (preventing the

occurrence of further failures for CPU1). The same holds for each basic event BEi in the

subtree. When all BEs are OK (places BEi ko all empty) the repair has �nished, and all

failure tokens can be removed (by the same subnet of high priority immediate transitions

already explained for the GSPN in Fig. 7). Observe that in this model we are assuming

that there are at least as many repair facilities as the number of BEs in the subtree: in

fact, the repair actions of all BEs can proceed in parallel.

Other variants of these models are possible, for example for handling shared BEs, for

modeling limited repair facilities, or for forcing a given order in the repair of the BE in a

subtree: for space reason they are not presented in this paper.

The repair submodel(s) can be composed with the GSPN representation of the FT by

applying a composition operator which glues together two models by superposing places

or transitions with same label in the two nets: in our case the models should be super-

posed over the places representing events, and on the transitions BEiFail, representing the

58

D1

TE

Proc

CPU1Disk12

CD1RepCD1

RemoveFailure

SUB_1

Disk11

CPU1FailDisk12FailDisk11fail

RepTimeCD1

StartRepCD1

 2π

EndRepCD1

 3π

ClearD1

 4π

ClearCPU1

 4π

ClearDisk12

 4π

ClearDisk11

 4π

ClearCD1

 4π

ClearProc

 4π

ClearTE

 4π

ClearSUB_1

 4π

RemoveFailure

ClearTE

RemoveFailure

ClearTE

RemoveFailure

ClearProc

RemoveFailure

ClearProc

A symbol �i next to an immediate transition t means that t has priority i.

Figure 7: Sketch of repair net with only one repair time

Disk11ko

Disk11rep Disk12rep

CPU1ko

CPU1rep

Disk12ko
CPU1

D1

Proc

TE

RepCD1

Disk12

CD1

RemoveFailure

SUB_1

Disk11

RepDisk11 RepDisk12 RepCPU1

Disk12Fail CPu1FailDisk11Fail

EndCD1Rep

StartRepCD1

 2π

EndRepCD1

 3π

ClearSUB_1

 4π

ClearCPU1

 4π

ClearD1

 4π

ClearDisk12

 4π

ClearDisk11

 4π

ClearCD1

 4π

ClearTE

 4π

ClearProc

 4π

RepCD1

RepDisk11

RepCD1

RepDisk11

RepCD1

RepDisk12

RepCD1

RepDisk12

RepCD1

RepCPU1

RepCD1

RepCPU1
RemoveFailure

ClearProc

RemoveFailure
ClearProc

RemoveFailure

ClearTE

RemoveFailure

ClearTE

RepCD1

EndCD1Rep

RepCD1

EndCD1Rep

Figure 8: Sketch of repair net with several repair times.

59

occurrence of basic failure event BEi. Once the complete GSPN has been obtained, the

unavailability probability of the TE at a given time t can be computed (e.g. using the

transient analysis module of the GreatSPN package [7]).

5 Solving the model

In this section a strategy is presented to solve the composed models described in the pre-

vious sections. The logical architecture of the interface to the involved solvers is outlined.

Indeed, our methodology requires that solving strategies and their related solution proce-

dures are de�ned in order to achieve multi-solution analysis of multi-formalism models.

5.1 A multi-solution strategy

A central issue in approaching complex FT models analysis is choosing the most eÆcient

solution method. State space based solution techniques can be very computation intensive:

on the other hand the eÆciency of combinatorial methods can be exploited only at the

price of giving up advanced features such as repair. For this reason a modular approach

is proposed in this paper to take advantage of both techniques.

Our method is based on the identi�cation of the set of independent modules to be

solved with di�erent techniques.

We introduce the following de�nitions:

De�nition 1 An independent subtree without repair, also called combinatorial solu-

tion module (CSM), is a subtree that (a) does not share any event with other subtrees,

(b) does not contain any RB, (c) none of its ancestors is connected to an RB. A CSM is

maximal if it is not contained in another CSM.

De�nition 2 An independent repairable subtree, also called state space solution mod-

ule, (SSM), is a subtree of the whole FT that (a) does not share any event with other

subtrees, (b) contains at least one RB, (c) none of its ancestors is connected to an RB. A

SSM is minimal if it does not contain neither a CSM nor a (smaller) SSM.

De�nition 3 Let F be a FT including a SSM or CSM module M. A M� reduced FT

FR
M

can be obtained from F by substituting M by a Basic Event BEM \equivalent" to M.

A Basic Event BEM is said to be equivalent to a module M if its occurrence probability

at a given time t is equal to the occurrence probability of the Top Event of M at time t.

The basic idea of the multi-solution strategy consists of iteratively reducing the whole

FT by substituting independent subtrees with an equivalent BE whose occurrence proba-

bility is obtained by solving the corresponding subtree.

Observe that it may be the case that the combinatorial techniques apply some form of

decomposition for eÆciency reasons: we do not deal with this aspect in this paper.

Fig. 9 shows an example of reduction applied to the multiprocessor system with no

shared memory and with repairable subsystems SUB i (i.e., we are assuming that a RB

has been connected to each event SUB i). In this case the three SUBi subsystems are SSM

60

(a) (c)

(b)

(b)

Figure 9: FT decomposition: independent subtrees. (a) the complete FT (b) repairable

subsystems (SSM modules) (c) the reduced FT after SSMs substitution

61

modules. Each one is translated into a GSPN net and solved by a proper analysis tool,

e.g. GreatSPN, as explained in Sec. 4.

The resulting fault probability is the occurrence probability of the equivalent BE

\SUBiBE". The resulting FT model can be solved by combinatorial analysis techniques,

e.g. by means of the SHARPE package [18].

Fig. 10 shows an example of reduction applied to the multiprocessor system with

shared memory, assuming that event MMi is repairable (Fig. 10(a)). The presence of Ms

introduces a dependence in the system. The reduction can be initially performed on the

three CSM modules consisting of the CPUi and the local disks (CDi subtree). Each of

them is solved by the SHARPE tool. The resulting fault probabilities are the occurrence

probability of the equivalent BEs \CDi" in Fig. 10(a). Then the whole processing subtree

is translated into a GSPN and solved by GreatSPN. The obtained fault occurrence is

assigned to the equivalent BE \processing" (see Fig. 10) and the resulting FT is solved by

the SHARPE tool.

5.2 The logical architecture of the interface to the solvers

Fig. 11 describes the DrawNET++ interface to the solvers. In this case we suppose that the

analysis tools to be used in the multi-solution technique are the GreatSPN and SHARPE

packages.

The architecture consists of two levels:

1. The RFT hierarchical pre-processor level, that is responsible for analyzing the XML

representation of the model produced by DrawNET++, identifying and separating

the XML parts describing SSM and CSM modules. The RFT hierarchical pre-

processor has also to manage the RFT structural information to insert the failure

probability of the equivalent BEs into the higher level modules in the hierarchy.

2. The Translator level, that is responsible for the processing of the XML description of

the SSM and CSM modules. In particular the tools at this level have to: a) generate

the GSPN translation of the Repair Blocks (RFT2PN); b) generate a GSPN model

representing the FT component of the RFT module (FT2PN); c) generate the proper

XML format versus external tools by means of XSL �lters (FT2SHARPE).

The GSPN net produced by the RFT2PN and FT2PN module are then composed with

the ALGEBRA tool [3] which returns the complete GSPN RFT module.

Where XML is not employable in the translation versus external solvers, due to the

need for proprietary formats, an appropriate translation is performed to/from XML to

normalize parameter exchange.

Finally, global results are translated in XML and returned to DrawNET++ so that

they can be shown to the user by the graphical interface.

6 Conclusions

In this paper we have shown the feasibility of a multi-formalism multi-solution approach

based on the de�nition of a simple language (Metaformalism) to de�ne graph formalisms

62

SUB3=SUB2

SUB1=SUB2

(a)

(b)

Figure 10: FT decomposition: (a) a SSM module including several dependent subtrees

(SUBi) (b) the reduced FT after SSM substitution

GreatSPN
PN Solver

ALGEBRA
PN Composer

SHARPE
FT Solver

RFT
Hierarchical
Preprocessor

DrawNET++

FT2 SHARPE
Translatorcsm xml

modules

RFT xml

GreatSPN
GSPN Format

SHARPE
FT Format

GreatSPN
GSPN
Format

GreatSPN
GSPN Format

Results

Results

Results XML

Submodels

ssm xml
modules PFT2PN

Translator

RFT2PN
Translator

Figure 11: The interface to SHARPE and GreatSPN

63

and on a OO methodology to develop multiformalism models. Multi-solution is achieved

by de�ning a proper back-end interface versus di�erent solvers. The overall approach is

partially supported by the DrawNET++ framework. With respect to other approaches,

we allow to easily design new formalisms and models structuring and composition schemes,

as well as support to interoperability of di�erent solvers.

The application example used throughout the paper concerns the construction and

analysis of dependability models using two di�erent formalisms, namely FTs and GSPNs.

The proposed method however is by no means limited to this application domain nor to

these formalisms, on the contrary the
exibility of the approach allows to apply it to any

application area and model description formalism and related solution methods and tools.

The dependability example considered in the paper is based on a user level formal-

ism appearing as a simple extension to FT, called RFT, including Repair Blocks (RB);

both formalisms can be easily de�ned within DrawNET++ using its Metaformalism lan-

guage. Several di�erent repair strategies can be de�ned and embedded into the RB nodes,

in the form of a parametric GSPN model representation, with an interface suitable for

composition with the GSPN translation of the repairable subtrees in the FT.

Models can be structured in a hierarchy of submodels, allowing to both manage the

complexity of the model design process, and also partition the model in such a way

that it suggests how a multi-solution algorithm may be applied (with the support of

DrawNET++). An architecture has been de�ned for a DrawNET++ back-end that con-

stitutes an interface between DrawNET++ and the SHARPE FT solver and the GreatSPN

GSPN solver. The basic idea consists of repeatedly applying the most appropriate solu-

tion algorithm to the FT submodels (starting from the inner ones in the hierarchy), and

bringing the result back into the upper level models. An additional module could be inte-

grated in the post processor, implementing an algorithm to check the proposed hierarchical

structure, and possibly modify it (in a user transparent way) for achieving a more eÆcient

combination of solution techniques.

In the proposed example the hierarchical nature of the model suggests a simple hi-

erarchical solution scheme, however any (more complex) scheme might be embedded in

the back end, based on the assumption that the model structure (implicitly or explic-

itly) includes all the needed information to decide how to decompose it for applying the

multi-solution algorithm, and that there is a way to make the solvers interact (typically

by feeding the results from one solver into the input model of another solver). Of course

the implementation of the back end realizing the connection between di�erent formalisms

and solvers is not trivial, however we believe that this approach is appealing because it

enables the reuse of existing solvers, and allows to quickly experiment in a
exible way

combinations of di�erent solvers.

64

References

[1] A. Anand and A.K. Somani. Hierarchical analysis of fault trees with dependencies,

using decomposition, In Proc. IEEE Annual Reliability and Maintainability Sympo-

sium, pp. 69-75, 1998.

[2] P.Ballarini, S.Donatelli and G.Franceschinis. Parametric Stochastic Well-Formed Nets

and Compositional Modelling, In Proc. 21st International Conference on Application

and Theory of Petri Nets, Aarhus, Denmark, June 26-30, 2000.

[3] Bernardi S., Donatelli S., Horv�ath A., Special section on the practical use of high-level

Petri Nets: Implementing Compositionality for Stochastic Petri Nets. Int. Journal of

Software Tools for Technology Transfer (STTT), Springer Verlag ed. - vol.3 issue 4,

August 2001, pages 417{430.

[4] A. Bobbio, G. Franceschinis, R. Gaeta and G. Portinale. Dependability Assessment

of an Industrial Programmable Logic Controller via Parametric Fault-Tree and High

Level Petri Net, In Proc. 9th International Workshop on Petri Nets and Performance

Models, Aachen, Germany, Sept. 2001.

[5] G. Booch. ObjectOriented Design, BenjaminCummings, Redwood City, CA, 1991.

[6] R.M.L.R. Carmo, L.R. de Carvalho, E. de Souza e Silva, M.C. Diniz and R.R. Muntz.

Performance/availability modeling with the Tangram-II modeling environment, Per-

formance Evaluation 33 (1998), pp.45-46.

[7] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: GRaphical

Editor and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation,

vol. 24, no.1-2, Nov. 1995, 1995, pp.47-68. http://www.di.unito.it/�greatspn/

[8] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed

coloured nets for symmetric modelling applications, IEEE TOC, vol.42 pp.1343-1360,

1993.

[9] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. Doyle, W. Sanders,

P. Webster. The M�obius modeling tool, In Proc. 9th Int. Workshop on Petri Nets

and Performance Models, Aachen, Germany, Sept. 2001, pp. 241-250.

[10] D. Deavours and W. Sanders. M�obius: Framework and Atomic Models, In Proc. 9th

International Workshop on Petri Nets and Performance Models, Aachen, Germany,

September 2001.

[11] R. Gaeta, A. Bobbio, G. Franceschinis and G. Portinale. Exploiting Petri Nets to

support Fault Tree based dependability analysis, In Proc. 8th International Workshop

on Petri Nets and Performance Models, Zaragoza, Spain, September 1999.

[12] Y. Dutuit and A. Rauzy. A linear-time algorithm to �nd modules of fault trees, IEEE

Transactions on Reliability, Vol. 45, No. 3, September 1996.

[13] G. Franceschinis, M. Gribaudo, M. Iacono, N. Mazzocca and V. Vittorini.

DrawNET++: Model Objects to Support Performance Analysis and Simulation

of Complex Systems, In Proc. 12th International Conference on Modelling Tools

65

and Techniques for Computer and Communication System Performance Evaluation

(TOOLS 2002), London, UK, Lecture Notes in Computer Science, Volume 2324,

Springer, pp. 233-238, April 2002.

[14] M. Gribaudo, A. Valente. Framework for Graph-based Formalisms, In Proceeding

of the �rst International Conference on Software Engineering Applied to Networking

and Parallel Distributed Computing 2000, SNPD'00, pages 233-236 Reims, France,

May 2000, ACIS.

[15] H. Henley and H. Kukamoto. Reliability Engineering and Risk Assessment, Prentice-

Hall, Englewood Cli�s, 1981.

[16] N. Leveson. Safeware: System Safety and Computers, Addison-Wesley, 1995.

[17] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical

Use, Vol. 1: Basic Concepts, EATCS Monographs on Theoretical Computer Science.

Berlin: Springer-Verlag, 1992.

[18] R.A. Sahner, K.S. Trivedi, and A. Pulia�to. Performance and Reliability Anal-

ysis of Computer Systems, An Example-Based Approach Using the SHARPE

Software Package, Kluwer Academic Publisher, November 1995, Boston, 1995.

http://sun195.iit.unict.it/GISharpe/index.html

66

Towards Automated Checking of
Component-Oriented Enterprise Applications

Jukka Järvenpää Marko Mäkelä∗
Laboratory for Theoretical Computer Science,

Helsinki University of Technology,
P.O.Box 9205, 02015 HUT, Finland

July 29, 2002

Abstract

Building enterprise applications using component-based frameworks has been suggested
as a way to help companies manage their software assets. We propose tool support for man-
aging these high-level data-centric applications with formal methods. Our method is based
on extracting a system model from the models of components and from the application code
which glues the components together. This model is used for generating state spaces that can
be checked for desired or undesired properties. In order to manage the state space explosion
problem we propose that the application developer controls some parameters of the model.
Even though the insight of the application developer is still needed, we believe that creating
tool support for the proposed method could contribute to the success of the component-based
approach.

Keywords. software components, transactions, abstractions, verification, Java

1 Introduction

Enterprise application systems have traditionally been used to integrate internal business processes
within companies.

The current trend is to expand integration across organisations. The objective is to create
more dynamic trading partner relationships, to reduce costs and to increase the productivity of
companies participating in a networked economy. This trend sets high demands for companies to
maintain and modify their core systems.

Enterprise application systems have often evolved from in-house development projects. The
alternative is to buy a packaged solution from an outside software vendor. Compared to a packaged
product, an internally developed system could better match the needs of the company. On the other
hand, in-house development costs must be carried solely by the company, while software vendors
can distribute their costs to a larger number of clients. Also, the package vendor gains experience

∗This research was financed by the Helsinki Graduate School on Computer Science and Engineering, by Jenny and
Antti Wihuri Fund, and by Academy of Finland (Project 47754).

67

when delivering solutions to different companies, which allows it to incorporate best practice into
the package. With internal development this is harder to achieve.

Buying a packaged solution does not come without difficulties either. When the package is
installed and configured, the final result can be more determined by the abilities and options of
the package rather than the needs of the organisation [12]. Choosing a monolithic package is a
commitment that locks the customer into a business relationship with the vendor for a long time.
Sometimes this is mutually beneficial, but it could turn out to become harmful if the vendor is not
capable of offering the support needed, or goes out of business.

1.1 The Component Approach

A middle course between the “make” and “buy” approaches is to build the system from reusable
components. In this approach, the core system contains only minimal functionality, and the nec-
essary tailoring is done by composing distinct encapsulated entities within the system framework.
Component-based frameworks are partial implementations that provide fundamental elements,
structural integrity and extension points.

Components are packaged software artifacts that provide functionality through a set of well
defined interfaces. Component-based systems are expected to become a key business productivity
solution for suppliers and consumers in the application market [22]. The anticipated benefit is
a flexible and economical infrastructure, where organisations have a considerable choice of pro-
curement to create customised solutions [22]. System acquisition and modifications should also
become more manageable, because the modular architecture allows components to be deployed
and updated individually [12]. Well-defined interfaces isolate component development from the
rest of the system.

Figure1 gives a simplified picture of a component-based framework application. The picture
demonstrates how the framework invokes application code, which extends and refines the frame-
work. The application code acts as glue between the framework and the components. Some of the
business rules are contained within the application code, but most program code, such as database
access, is hidden behind the component interfaces.

We believe that there is a great demand for tool support for managing applications built using
component-based frameworks. This article presents a proposal for extracting models from applica-
tion code and the components it accesses. These formal models can be explored to check whether
the application behaves as required. Many problems must be solved to make such an approach
possible. Among other things, the process of extracting a model should be highly automated, and
the state spaces generated by the resulting model should at the same time be both manageable and
correspond to the implemented behaviour. Last but not least, application coders must be able to
specify the system requirements and to see the error traces in terms familiar to them.

1.2 Outline

The rest of this article is organised as follows. Section2 discusses the economic and environ-
mental preconditions that must be satisfied before software verification can be used for manag-
ing component-based framework applications. Section3 describes an application environment in
terms of architecture, software processes and tools that make it possible to extract verifiable mod-
els from applications developed in the environment. It also contains a code excerpt from a sample

68

Client

Client

Client

Client

Client

Component

Component

Component

Framework

A
pp

lic
at

io
n

co
de

invokes in
transaction

Relational
Database

Figure 1:Simplified view of an application in a component-based framework.

application we use to clarify our method. Section4 defines our modelling framework of enterprise
applications at a conceptual level. It describes what kind of questions the model should be able to
answer, and it discusses some modelling considerations, which must be taken into account. Sec-
tion 5 revisits our example and shows how a developer might use the proposed tool. Finally, we
discuss some related work and conclude our presentation.

2 Preconditions for Component Software Verification

2.1 Economic and Environmental Preconditions

The component approach, as such, does not guarantee to solve all the problems in enterprise
application software management. The components and the framework must be designed to meet
industry requirements—not a trivial task at all. Everything must adapt to the customer environment
and be manageable by both the customer and the vendor. The integrity and the functionality of
the system must be guaranteed even when third party components are integrated. Conventional
software engineering practices, such as requirements analysis, system modelling, version control,
testing and documentation, retain their importance in component-based system development.

More advanced software engineering techniques, such as automated software verification,
could contribute to the success of component-based systems. Applying formal methods to com-
ponent systems gives a profoundly different starting point for third-party component markets. A
formal model—an abstract description of a system—can be thoroughly analysed by computer tools
to increase confidence in the system working according to the specification. System models can be
derived by composing the high-level application logic with models of the system framework and
the components. Verification techniques have the potential to decrease maintenance costs, too.
Costs could be saved by simulating or verifying the impact of application changes on a formal
model. Automated verification runs could replace some of the otherwise required testing.

2.2 Architecture, Process and Tool Preconditions

To successfully apply verification techniques in industrial-scale application development, the en-
vironment has to fulfil a number of requirements:

Precisely defined architecture. As verification is based on a model, the results are meaningful
only if the model corresponds to the executable application on an abstract level. This requires that
the application structure is precisely defined and implemented.

69

High quality repeatable processes. In the same way, the correspondence between the model
and the application necessitates that the design processes used to create the executable code and
the verifiable model are repeatable and of such quality that small deviations in the design process
do not lead to substantial differences.

Integrated tool support in the development environment. Constructing verifiable models
manually would consume too much time and require highly specialised skill. Automated tool
support eliminates these problems as well as errors in translation. Verification tools should accept
input directly from the elements created by the developer in the design domain and map the output
back to the design domain.

3 The Environment of the Component Framework

3.1 Enterprise Application Architecture

Enterprise applications are data-centric systems where persistent data is stored in databases and
processed by application programs. Typically, enterprise applications build upon a client–server
architecture where business rules are implemented on the server side, and clients take care of the
user interface.

In industrial software packages, databases usually follow the relational model [23, Chapter
2.3]. The conflicts that may arise when several processes access the database simultaneously are
resolved usingtransactions[23, Chapter 9]—atomic sequences of operations. Either the effect of
all operations are committed to the database, or the whole transaction is rejected.

In a database management system, operations belonging to different transactions are inter-
leaved with each other for performance reasons. In a formal model, the operations of database
management system can be abstracted by serialising the transactions, allowing the model to pro-
cess only one transaction at a time.

3.2 An Example Application: Processing Orders

To gain more insight into component-based enterprise application frameworks, we show an extract
from an example application in Figure2(a). The application code1 is invoked by the framework
when an order is entered. The involved components are shown in the UML diagram of Figure2(b).
The code retrieves customer and item information from the database, updates the order with this
information and stores the order into the database.

The semantics of the example deserves some additional remarks:

• If the method raises an exception or returns the error code offalse, the framework will roll
back the transaction, so that no changes are committed to the database.

• The method does not store any internal state between successive calls. The persistent state
is kept in the database.

• Most of the implementation is hidden behind component interfaces.

1This method could be implemented in the J2EE architecture [21] in a session bean.

70

(a) a method implemented in Java

private boolean process_OrderEntry(Order o)
throws Exception {
Customer c = dbCustomer.load(o.getCustomer_id());
if (c == null) {

error_notfound(o.getOrder_id(), o.getCustomer_id());
return false;

}
Item i = dbItem.load(o.getItem_id());
if (i == null) {

error_notfound(o.getOrder_id(), o.getItem_id());
return false;

}
o.updateOrder(c, i);
dbOrder.store(o);
report_ok(o.getOrder_id(), "order entry");
return true;

}

(b) the components

Order

Customer

Item

Figure 2:An application for processing orders.

– The objectsdbCustomer anddbItem are simple components, whoseload methods sim-
ply retrieve objects from the database.

– The composite componentdbOrder hides a more complicated implementation. In this
example, we assume that the methodstore tries to combine the new order with an open
order the customer might have. If no such order exists, a new order is stored into the
database.

• Some code, such as calls to the logging facilitieserror_notfound and report_ok, does not
affect the state of the application and should be omitted from the model.

3.3 Software Processes

Maintaining a component-based software system requires that repeatable processes be followed to
manage the framework, the components, and the application code. The majority of the application
lifetime costs are incurred by the maintenance period [20, Chapter 30]. From the customers’
point of view, most maintenance tasks are likely to concern application code modifications and
occasional deployment of new components.

In order to make application modifications more effective, we propose that automated veri-
fication takes place before system level testing. The objective is to gain more insight into the
application than could be achieved by pure static analysis techniques. In this step, a system
model—derived from the application code and the components—is explored with a verification
tool that presents any errors as executions of the application code.

The proposed automated verification step requires that for each deployed component, there is a
model of its implementation. In order to guarantee this, both the models and the implementations
should be the results of the component design process.

71

The tools that assist in these processes are described in the following section.

3.4 Tool support

To automate the verification step, we need a tool which parses the application code, accesses a
library of component models, composes the parsed application code with the component models
and feeds the result to a model checker. This tool should also map any error traces from the model
checker back to execution traces of the application code.

To ensure that a component implementation conforms to its model, we propose the following
procedures to be aided by tools:

Automated derivation of simple models. Models for simple components could be produced
automatically from the same repository information from which the implementations are gener-
ated. Examples of such components are object/relational mapping routines, which allow the data
in relational databases to be stored and retrieved as objects.

Automated derivation of composite models. When a component is implemented by wrapping
other components together with application code, its model can be derived automatically by com-
posing the parsed application code with the models of the wrapped components. This can be
accomplished with the same tool that creates system models.

Manually maintained models. Models for the most complex components must be maintained
manually. This is tedious, but the involved cost is justified if the component can be sold to several
installation sites.

Manual work easily leads to differences between the model and the implementation. Confor-
mance testing [8] could help to locate the errors. The manually constructed component model acts
as the specification that the implementation can be formally tested against. Again, conformance
testing should be supported by tools.

4 Formalising Component-Based Applications

In order to analyse a system, an automated tool needs a description of both the implemented
and the desired behaviour. The system implementation is transformed into a formal model that
generates a state space, such as a high-level Petri net. The desired properties are formulated in
logic or as automata. Some properties can be derived automatically, others are retrieved from a
library or specified by the application developer.

A model of an enterprise application is bound to have a huge number of reachable states.
Therefore, the model must be structured and designed carefully. This section describes the main
elements of the model and how they relate to the application. It also discusses the properties we
would like to extract from the state space graph, and how the model should be built to limit the
effects of the state space explosion as much as possible.

72

4.1 Modelling Elements

The core model can be mapped to shared memory multiprocessing. The shared memory is the
database, and the competing processes are the transactions initiated by the environment.

These elements relate to the architecture in Figure1 in the following way:

Environment. The environment models the application framework and the inputs from the
clients. When state space exploration techniques are applied to a model, the model must rep-
resent a closed system, which means that the behaviour of the environment must be specified. The
environment invokes methods of the application code, initiating a transaction for each request.

Transactions. Transactions model service execution within the application framework. If all
operations succeed within the application code and within the components invoked to serve a
request, the changes made to the persistent objects are committed to the database. Otherwise, the
persistent state remains unchanged as the transaction is rolled back.

Application code. Application code may implement business logic or components, or extend or
connect existing components.

To ease the extraction of models, application code is written in a subset of the Java program-
ming language, comprising assignments, conditions, loops and virtual method calls. Some con-
structs, such as threads, have been deliberately excluded.

Simple components. These are the basic building blocks made available to application develop-
ers. Each operation in the component interface is defined with one or more transitions. The model
can behave nondeterministically.

Database. The database is the persistent data-store of the application. Operations are grouped
in transactions, which can be either committed or rolled back.

4.2 The Properties

Verification or model checking refers to the process of checking whether a model of a system
behaves according to its specification. Automating this step requires that both the model and the
behaviour requirements are in machine readable format.

Model checking is a useful tool in situations where new functionality is added to the system.
Implementing the functionality might require changes to be made in several locations in the appli-
cation code, and the application coder would like to gain assurance that he has correctly identified
these locations.

When a property is violated, the verification tool should report an error trace, an execution
sequence leading from the initial state of the system to the error. At the coarsest level, the error
trace should display the names and parameters of the components that are executed. Sometimes
the user would like to view parts of the trace in more detail, showing individual statements and
variables in the application code.

In enterprise applications, many properties can be derived automatically from database defini-
tions and program code. Only high-level requirements need to be formulated interactively.

73

4.2.1 Safety Properties

Safety properties are requirements on finite executions. Intuitively, they are statements of the form
“nothing bad happens”. For example, if a business function requires that a new database field is
always initialised in certain business situations, the application coder can phrase rules or assertions
such as “Fieldx is set whenevery holds.”

Enterprise application databases are most likely designed to contain fields recording status
information, such as whether an order has been accepted, or whether it has resulted in a delivery
or a sent invoice. Safety properties can express requirements which may refer not only to several
such status fields at once, but also to a history of states. This allows us, for example, to verify that
the status fields fulfil a requirement such as “if an invoice is sent, a delivery must have occurred
and the order must have been accepted.”

Data integrity rules. Many relational database management systems have built-in mechanisms
for ensuring the integrity of stored data. It is possible to restrict the set of allowed tuples by
defining row constraints (e.g., “the delivery date of an order must be either null or later than the
registration date”) or foreign keys (e.g., “each order item row must refer to an existing order”).

Whenever a tuple is inserted, modified or removed, the database management system checks
all relevant rules and rolls back the transaction if any rule is violated. The rules form a safety
net against errors that may occur in exceptional situations. These rules might never be violated in
basic tests, but exhaustive verification will find all violations by testing all possible cases.

Assertions in program code. Many programming frameworks include an assertion facility. The
program code may be instrumented with Boolean conditions that reflect the programmer’s assump-
tions. Rules can be specified for the data passed to or returned by methods, or as arguments to a
special “assert” macro that aborts program execution if the specified condition does not hold.

Such assertions can be automatically transformed to safety properties of the model. Similarly
to database integrity rules, the assertions are most likely to fail in exceptional situations that can
be best found in exhaustive testing.

Identifier pool alert. Section4.3.2explains why abstract identifiers are needed in the model
and describes our solution for managing the state space explosion problem by using small enough
data domains. Deadlocks may occur if these identifiers run out. This is not necessarily an error
in the application, but it may be caused by the model where the number of available identifiers is
limited. A safety guard can assist the user in managing the identifier domain sizes. When the last
identifier is taken, the safety guard is triggered to indicate a potential problem. The occurrence of
this event would suggest that the domain should be enlarged. Such checks should be optional.

4.2.2 Liveness Properties

Verifying that a system never reaches an erroneous state is a very powerful way to increase con-
fidence in the correctness of the system. However, sometimes this is not enough, and we want to
claim that “something good eventually happens,” such as “an order entered into the system will
eventually also be processed.”

74

A liveness property is violated if there is an infinite execution where progress is not guaranteed.
Usually this means that some actions can be repeated infinitely in the system, and the same states
are visited again and again.

When expressing liveness properties we need also to assume that certain actions receive fair
treatment. When strong fairness is assumed for a transition, it must be executed infinitely often if
it becomes enabled infinitely often.

In our example, where orders are entered and processed separately, we must assume that nei-
ther transaction is neglected in order to verify that each order eventually results in a delivery.

Some of the more complicated application behaviour requirements can only be specified by
the designer, who expects the application to behave in a certain way. This task can be eased by
providing the designer withspecification patterns[6], templates of formulae or property automata.

4.3 Modelling Considerations

We shall now consider the modelling elements from Section4.1 in more detail.

4.3.1 The Environment

Domains of transaction parameters. The domains of transaction parameters greatly affect the
number of reachable model states. Validated input is stored into a database, which can become
quite large. This behaviour is reflected in the model so that enlarging the input domains result
in even larger state spaces. In order to manage the state explosion problem, we have to limit the
domains. When the application developer is allowed to select the input domain sizes individually,
he can check different aspects of the system. Obviously this approach relies on the intelligence
of the user and does not prove the absence of errors. However, checking a restricted model might
reveal errors more easily than testing or simulating a more complete model.

Automatic unification of transaction parameter domains. The application code is statically
analysed to identify the relations between database fields and transaction parameters. Each group
of related fields and parameters is assigned an own domain. Developers cannot be assumed to
keep such mappings up to date, as the system is maintained over a long period of time by different
persons. Unifying the domains is essential for models with scalable domain sizes.

Controlling transaction invocations. One way to attack the state space explosion is to guide
the search by restricting the behaviour of the environment. For instance, transactions for filling in
basic information could have priority over the actual processing transactions. One way to arrange
this is to divide the behaviour of the environment into phases where only certain transactions will
be invoked. Formally, the environment can be defined as a finite automaton whose actions are
labelled with transactions.

4.3.2 The Database and the Transactions

Initialising the database. In the initial state of the model, the database is empty. The model
generates all the possible database states allowed by the application logic, as the environment
nondeterministically initiates transactions.

75

d e

a b c

d
a d

b d
c d

e
a e

b e
c e

a
b

c
d
a

b
c d

e

e

a
b

c

(a) the transactions (b) interleaved executions (c) resource token abstraction

Figure 3:The effect of a resource token on scheduling two transactions.

commit

rollback

commit

rollback
(a) a true model (b) utilising deadlocks

Figure 4: Modelling a rolled back transaction. Solid arrows denote committed transactions that
lead from one persistent state to another. A rollback (dotted arrow) leads back to the originating
persistent state, or to an artificial deadlock.

Symmetry reduction of transaction parameter domains and object identifiers. Identifier val-
ues model objects references in the application code and surrogate keys in the database, such as
item numbers. Symmetry reduction [14] can lead to exponential savings by exploiting the fact that
the actual values of these identifiers are irrelevant.

Static analysis can determine the set of operations performed on each domain. Symmetry
reduction is only compatible with assignment and equality test. For instance, integer arithmetics
requires a (limited) domain of integers or equivalence classes.

For each identifier domain, the model contains a pool of available values.

Transactions and resource tokens. Since the database management system isolates transac-
tions from each other, the transactions can be modelled to be mutually exclusive. This can be
arranged by introducing aresource token[11] that must be “possessed” by the active transaction.

Figure3 illustrates the effect of a resource token. There are two enabled transactions, consist-
ing of 2 and 3 operations. Depending on the order in which the operations in the transactions are
performed, the system will follow different paths to the final state, shown rightmost in Figures3(b)
and3(c). Only the corner states of the depicted lattices arepersistent, meaning that the database
is in a committed state. Some of thetransientstates have been eliminated in Figure3(c).

The resource token abstraction may interfere with partial order reductions [9]. Those tech-
niques work best when the processes in the system are as independent as possible. The resource
token makes all transactions depend on each other. Also, verifying liveness properties requires a
strong fairness assumption for the first transition of each transaction and a weak fairness assump-
tion for the transitions that return the resource token. The model checker algorithm inMARIA [15]
manages these assumptions in an efficient way.

Rolling back transactions. When a transaction is rolled back, the requested changes to the
persistent data must be ignored. This can be accomplished in two ways (Figure4):

(a) by restoring the persistent data from a back-up copy, or

(b) by setting a “rollback” flag that disables all transitions in the model—an artificial deadlock.

76

Translating rolled back transitions to deadlocks simplifies both the model and its state space. In a
real system, rolling back a transaction should restore the database to its original state, as depicted
in Figure4(a). In exhaustive state space enumeration, all reachable states of the system are con-
sidered, and deadlock states pose no problem. The search algorithm can still distinguish genuine
deadlock states of the system from these artificial deadlocks by examining the “rollback” flag.

4.3.3 Components and Application Code

Mapping objects to relations. There are two types of data in enterprise applications. The tran-
sient data that is being processed is managed in objects, while the persistent data in the database
is stored as tuples from relational calculus. The models of the components that provide mappings
between tuples and objects must address the following issues:

object identifiers: Compared to the relational data model, the object model adds a level of indi-
rection in the form of object identifiers. A unique identifier or reference is assigned to each
created object. When an object is no longer needed, the identifier can be freed. The dy-
namic allocation of identifiers can lead to a combinatorial explosion unless some reduction
techniques are applied. Our model limits the explosion by purging all objects and identifiers
upon entering a persistent states.

existence tests:Databases are often tested for the existence of records. For instance, the compo-
nentdbOrder introduced in Section3.2 must determine whether the customer has an open
order, and place a new order if necessary. In Petri nets, transitions are enabled if enough
items exist in their input places. Defining an action for the case when something is absent
requires a modelling trick, such as using a complement place or a counter, or reserving a
special value for denoting absent items.

aggregate operations:Sometimes it is necessary to perform an operation on a group of data, such
as all items that belong to an invoice. The total invoiced amount is the sum of the prices of
the ordered items multiplied by the ordered quantities. When an invoice header is deleted,
the invoice lines listing the billed quantities and identifying the items are deleted as well.
This kind of operations can be modelled in high-level nets by making use of inhibitor arcs,
as Billington demonstrates [3, Chapter 8], or by introducing auxiliary attributes that can be
used to limit dynamic quantifications in theMARIA net class [16]. For instance, there could
be a derived place that maps invoice identifiers to invoice line counts.

Components and their composition. Component services can be modelled as transitions that
define the effect of invoking the service interface. Nondeterminism can be modelled by defining
conflicting transitions for a service. We call this kind of model elementssimple components.

Transitions can be difficult to derive automatically, if the logic of the program code is com-
plicated. This limits the use of simple components. More complicated cases can be maintained
manually as discussed in Section3.4. Another possibility is to create composite component mod-
els. They are derived automatically from the application code. Each statement in the application
code is assigned a program counter value within the composite component. A statement corre-
sponds to a transition that performs a computation step and updates the program counter.

77

Composite components allow program logic to be extracted automatically from the application
code. The program counter values increase the state space, even though the counter is reset when
the transaction is completed. However, this information is relevant when mapping an error trace to
application code statements. The source code file names and line numbers can be encoded either
in enumerated program counter values or in transition names.

Simple components do not need program counters. Thus, they can be composed with the rest
of the application model by transition substitution. Modelling component execution with a single
transition does not introduce intermediate states in the same way as using a program counter does.

Path compression and nondeterministic choices.Eliminating interleavings with the resource
token, as illustrated in Figure3, can result in some non-branching state sequences in the state
graph. Such sequences can be collapsed by applying path compression [17].

Nondeterministic components and conditions within application code introduce branches in
the state space. The branch target states cannot be eliminated by path compression. However,
MARIA is able to distinguish “visible” and “hidden” states. Only the visible states, corresponding
to the persistent states of the model, need to be permanently stored.

Eliminating input validation code with static analysis. Typically, application code validates
its input. Nearly half the code in Figure2(a) deals with erroneous input. This code can be omitted
from the formal model if the environment is constrained in such a way that it sends only such
parameter combinations to the method that would pass the validation. This may lead to significant
reductions at the cost of additional static analysis.

Method calls. Object-oriented programs typically contain a large number of method calls. When
avirtual methodis called, the run-time system must determine the type of the object anddispatch
the call to the applicable method. Sometimes the call target can be determined at compilation time.

The translation of virtual method calls can be simplified by generating a dispatcher method for
each virtual method. The dispatcher contains aswitch block that branches according to the type of
the object. In each branch, the dispatcher jumps to a method of a derived class. In this way, each
virtual method invocation can be implemented as a non-virtual call to a dispatcher procedure.

Method calls involve some overhead of storing return addresses and copying parameters. For
short methods, it is more efficient to substitute calls to the method with the program code in the
method body. This technique is referred to asinlining. It can eliminate trivial intermediate states,
but it may also produce significantly bigger models. In essence, it is a tradeoff between the model
size and the number of reachable states.

Folding. Some entities can be modelled as a single high-level Petri net place or as a collection
of simpler places. The choice whether to fold may affect the space and time requirements of state
space enumeration. Folding places adds flexibility to transitions.

For instance, when the control flow of a program is modelled with a single high-level “program
counter” place, aswitch statement can be translated into a single transition that jumps to one of the
case labels. If there was a separate program counter place for each statement in the program, the
program flow might be more clearly visible from a graphical presentation of the net, but translating
theswitch statement would require more transitions, in fact one for eachcase label.

78

enter

accept

deliver

cancel

create

merge

sendorder delivery invoice

Figure 5:An abstract view of an order processing application.

Similar choices can be made in data type definitions. When a class hierarchy is translated to a
single data type definition, objects of a base class can be stored in the same place, no matter which
derived class it belongs to. Defining separate data types for derived classes requires a set of places
(and transitions) for each derived class.

5 Analysing the Example Application

To evaluate the feasibility of the presented approach, we manually constructed a high-level Petri
net model for our example application that was introduced in Section3.2.

Figure5 presents a simplified view of the main information flows of the application as a Petri
net like graph. The processing starts when an order is entered into the system. Deliveries are
controlled by a separate system, to which the order processing system sends a delivery request
message, once the order has been accepted.

The delivery system informs the order processing system of completed deliveries. Either sys-
tem may also initiate a procedure to discard the order and the delivery request.

A delivery confirmation message is transformed into an invoice that will be sent later. If there
is an unsent invoice for the customer who made the order, the delivery is merged with this invoice.
The last step in the processing chain is to send the invoice to the customer.

5.1 The Model of the Demo Application

In the generated model of the application, each transaction comprises a simple component. Since
there are no program counters, all reachable states of this model are persistent database states.

This model was hand crafted, and some abstractions were made. Most notably, the database
tables “customer” and “item” were eliminated, because they do not control the behaviour of the
transactions we are interested in.

The implementation of the application contains functions for entering and updating informa-
tion that does not control the application logic, such as names, addresses and prices. Without
loss of generality, the domains of these data fields were restricted to one value, which essentially
removes the fields from the formal model.

The “order” table contains, among others, three columns for quantities: the quantity of ordered
items, the quantity of delivered items, and the quantity of items that have been invoiced. The last
column is redundant, as its data can be derived from deliveries and invoices. Databases sometimes
contain redundant information, either because deriving the information is computationally too
expensive or because the data used for deriving the information might be cleaned up later from the
live database to a data warehouse system. Such redundancy could be detected in static analysis,

79

which may be expensive. On the other hand, eliminating redundant fields does not reduce the
number of reachable states, but the space needed for representing a state.

Invoices are stored in two tables. The “invoice row” table links deliveries to the header table
“invoice.” In the implementation, the invoice rows are numbered, so that invoices can be retrieved
in a consistent order. While the order of invoiced items may be relevant in printed documents, it
does not matter in our formal analysis. Therefore, the row number column was abstracted away.

The resulting model inMARIA format [18] has 12 transitions and 10 places. Four places
correspond to the modelled database tables. The markings of the remaining six places are functions
of the database contents. Three places are identifier pools of unassigned order, delivery and invoice
numbers and one place counts the lines belonging to each invoice. Two places—which would be
connected to the transitionscreate and merge depicted in Figure5—indicate which customers
have unsent invoices and which do not.

5.2 A Usage Scenario

In this example scenario, an application coder wants to verify that all the referential integrity rules
are respected, and that an order entered will eventually be processed. Processing an order means
that the order is delivered and invoiced, or it is cancelled.

The referential integrity rules are translated into safety properties, and the liveness require-
ments are specified in LTL. Both are checked on the fly by theMARIA tool.

The application designer is likely to begin the analysis of the model by assigning all data
domains the cardinality 1. In this configuration, some transactions are permanently disabled. For
instance, the transitionmerge of Figure5 cannot be enabled unless there may be multiple orders
and deliveries.MARIA can detect and report dead transactions.

Next, the user might want to enlarge some domains in order to enable more behaviour in the
model. Increasing the cardinalities may reveal spurious errors. For instance, when the database
accepts multiple orders but only has room for one invoice, it will be impossible to invoice all
deliveries unless they can be combined to the single invoice.

Verifying high-level liveness properties is an interactive procedure where the domain sizes,
fairness assumptions and the environment need to be adjusted if an unjustified error is reported.

5.3 Some Results

As Table1 shows, the state space of the model grows significantly when any of the domains is
enlarged. Some of the growth is inherent in the application, as discussed in Section4.3.1, but much
of it is due to the lack of symmetry reduction in the tool we used. Because the system behaviour
does not depend on actual data values, exploiting symmetries could lead to exponential savings.

Some domains have a greater impact on the state space size than others. If the system accepts
at most one order, it does not matter much how many customers there are who can place the order
or how many items are available to be ordered. But as soon as there can be multiple orders and
deliveries, the state space explosion breaks loose.

In Table1, not all parameters of the system are varied. Orders are never cancelled, and the
database has room for only one invoice. The system has a large state space, and only parts of it
can be viewed at a time. When one parameter is incremented, other parameters must be limited
and some transactions may need to be disabled. Obviously, not all errors can be guaranteed to be

80

Table 1:Sizes of reachability graphs generated by the model without and with path compression
reduction when at most one invoice can be generated and orders cannot be cancelled. Increasing
the cardinalities of orders and deliveries (O), customers (C) or items (I) affects the numbers of
reachable states|V| and transition occurrences|E|.

O=1 Original Reduced
C I |V| |E| |V| |E|
1 1 16 19 7 11
1 2 31 46 13 29
1 3 46 81 19 55
1 4 61 124 25 89
2 1 43 58 25 41
2 2 85 148 49 113
2 3 127 270 73 217
2 4 169 424 97 353
3 1 82 117 46 82
3 2 163 306 91 235
3 3 244 567 136 460
3 4 325 900 181 757
4 1 133 196 73 137
4 2 265 520 145 401
4 3 397 972 217 793
4 4 529 1,552 289 1,313

O=2 Original Reduced
C I |V| |E| |V| |E|
1 1 427 986 409 1,003
1 2 1,609 4,616 1,537 4,591
1 3 3,547 12,042 3,385 11,915
2 1 2,665 7,376 2,521 7,279
2 2 10,369 38,432 9,793 37,759
2 3 23,113 106,992 21,817 105,263
3 1 8,227 26,118 7,741 25,595
3 2 32,329 145,368 30,385 142,703
3 3 72,307 419,958 67,933 413,531

O=3 Original Reduced
C I |V| |E| |V| |E|
1 1 14,680 49,341 14,518 50,809
1 2 107,983 447,870 106,687 451,345
2 1 194,923 794,226 192,331 798,889
2 2 1,496,197 8,197,284 1,475,461 8,175,073

found in this kind of analysis, but even partial verification has better coverage than testing. None
of the data integrity rules built in the model are violated in the combinations we checked.

6 Related Work

Modelling database systems with Petri nets is nothing new. One earlier method is NetCASE [19],
a Petri net based computer aided software engineering (CASE) technique that covers everything
from requirements analysis to code generation. It may be hard to apply this kind of methods in
practice, where things tend to be built on top of existing systems. We believe in automated reverse
engineering, the opposite of code generation.

The PathStar project at Bell Labs [10] showed that a programming language can be treated as
a formal model, provided that the source code is annotated appropriately for an automated trans-
lator that makes suitable abstractions. In that project, verification experts translated requirement
specifications from English prose to LTL and maintained the abstraction rules of the translator, so
that it was possible to model check the software under development on a daily basis.

The Bandera [5] and SLAM [2] toolkits create abstract verification models from source code.
Bandera inputs the abstractions from the user, while SLAM iteratively refines them by itself.
Neither tool seems to support the composition of derived models with hand-crafted fragments.

Lie et al. [13] present a method for automatically extracting models from low level software
implementations. The extracted model is combined with a model of the hardware. Their approach

81

SQL

Java

components

compose MoLa

parameters

translate IFL model check

Modelling Language

Intermediate Formal Language

Figure 6:A block diagram of the proposed tool. The prototype will be based onMARIA , but our
Intermediate Formal Language can be easily interfaced with other model checkers.

is similar to ours, except that we combine models extracted from high level program code with
abstract models of software components.

7 Conclusion and Future Work

Component based software systems are expected to create a flexible and economical infrastruc-
ture where companies have a considerable choice of procurement to create customised solutions.
When components can be deployed and updated individually, system acquisition and modifica-
tions should become more manageable than before. With a simple example, we demonstrated how
these data-centric applications are constructed and what their environment looks like.

The architectural style of component-oriented applications, where functionality is hidden be-
hind high-level interfaces, creates an opportunity for applying formal methods, such as state space
analysis. Our approach is based on extracting a formal system model from the models of software
components and from the application code which glues the components together. This model is
formally checked for desired or undesired properties.

Adopting advanced software engineering techniques, such as model checking, in an industrial
setting requires well integrated and automated tool support. We propose a tool that allows software
maintainers to verify the correctness of systems before system level testing. The objective of this
verification step is to gain more insight than could be achieved by pure static analysis techniques.

This tool, depicted in Figure6, transforms application code, database schema and a reposi-
tory of component models into a verifiable model of the system. Many desired properties of the
system are derived automatically from database definitions and assertions in the application code.
Some safety guards, such as the identifier pool alert, are optional. Verifying high-level liveness
properties is likely to be an interactive procedure, where the user is required to control the fairness
assumptions and the model parameters, such as input domain sizes, if an unjustified error trace is
reported. If errors are found, they are presented in terms of the application code.

The application behaviour is mapped to a formal model based on shared memory multipro-
cessing. In the model, the shared memory is the database and the competing processes are the
transactions initiated by the environment. The structure of the application is restricted in such a
way that the relations between transaction parameters and database contents can be derived auto-
matically. Each group of related fields and parameters is assigned an own domain.

The state explosion problem is tackled from two directions. Primarily, we rely on the user
managing the parameters of the model. Secondly, we build the model in such a way that state
space reduction can be accomplished in verification tools.

82

The state explosion problem can be alleviated by keeping the data domains small. Minimising
the data domains could result in some of the application behaviour missing from the model. Here
we rely on the user insight and allow him to individually select the sizes of various data domains.
The developer may also specify how the environment should behave: which transactions should
be invoked and in which order. In this way, users can generate state spaces revealing different
aspects of the application behaviour. This partial verification resembles testing, but it can have
better coverage.

Our modelling framework abstracts from the inner workings of database management systems.
Only one database transaction is processed at a time. Ideally, we would like to store only the
persistent database states and the transitions between these states. The state explosion can also be
attacked with symmetry reduction [14]. It relies on the fact that the actual values of identifiers are
irrelevant, as long as only assignments and equality tests are applied to them. These conditions
can be checked by the tool that constructs the verifiable model.

We believe that the proposed tool could help in reducing application maintenance costs. Sav-
ings are possible if some of the otherwise required testing can be substituted with verification
runs. Applying formal methods to component systems gives a profoundly different starting point
for third-party component markets. A formal model—an abstract description of a system—can be
thoroughly analysed by computer tools to increase confidence in the system working according
to the specification. Without such confidence, customers are easily locked in ordering all further
development from the original system vendors.

This article describes “work in progress.” Sections4 and5 were mainly written by the second
author, while the idea of applying state space analysis to component-based software originated
from the first author who is preparing his licentiate’s thesis on the subject. His plans include writ-
ing a front-end for theMARIA tool [16] and using it in simulated application maintenance work.
If the results are positive, it will be most interesting to find industrial applications and to see how
our approach could be augmented by modelling the business processes [1] and database perfor-
mance [4]. Also, conformance testing of components [8] could be implemented in the framework.

Acknowledgements

The authors would like to thank Charles Lakos—especially regarding the identifier pool alert—and
Nisse Husberg and the anonymous referees for their comments and suggestions.

References

[1] Wil M. P. van der Aalst. Making work flow: On the application of Petri nets to business
process management. In Esparza and Lakos [7], pages 1–22.

[2] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety properties
of interfaces. In Matthew B. Dwyer, editor,Proceedings of the 8th International SPIN
Workshop, volume 2057 ofLecture Notes in Computer Science, pages 103–122, Toronto,
Canada, May 2001. Springer-Verlag.

83

[3] Jonathan Billington. Extensions to coloured Petri nets and their application to protocols.
Technical Report 222, University of Cambridge, Computer Laboratory, Cambridge, England,
May 1991.

[4] Ing-Ray Chen and Rajakumar Betapudi. A Petri net model for the performance analysis
of transaction database systems with continuous deadlock detection. In Hal Berghel, Terry
Hlengl and Joseph Urban, editors,Proceedings of the 1994 ACM symposium on Applied
computing, pages 539–544, Phoenix, AZ, USA, March 1994. ACM Press, New York, NY,
USA.

[5] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S. Păs̆areanu,
Robby, and Hongjun Zheng. Bandera: Extracting finite-state models from Java source code.
In Carlo Ghezzi, Mehdi Jazayeri, and Alexander Wolf, editors,Proceedings of the 22nd

International Conference on Software Engineering, pages 439–448, Limerick, Ireland, June
2000. ACM Press, New York, NY, USA.

[6] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifi-
cations for finite-state verification. In Barry Boehm, David Garlan, and Jeff Kramer, editors,
Proceedings of the 21st International Conference on Software Engineering, pages 411–420,
Los Angeles, CA, USA, May 1999. IEEE Computer Society Press, Los Alamitos, CA, USA.

[7] Javier Esparza and Charles Lakos, editors,Application and Theory of Petri Nets 2002, 23rd

International Conference, ICATPN 2002, volume 2360 ofLecture Notes in Computer Sci-
ence, Adelaide, Australia, June 2002. Springer-Verlag.

[8] Leonard Gallagher. Conformance testing of object-oriented components specified by
state/transition classes. Draft technical report, Information Technology Laboratory, National
Institute of Standards and Technology, Gaithersburg, MD, USA, April 6, 1999.

[9] Patrice Godefroid, Doron Peled and Mark Staskauskas. Using partial-order methods in the
formal validation of industrial concurrent programs.IEEE Transactions on Software Engi-
neering, 22(7):496–507, July 1996.

[10] Gerard J. Holzmann and Margaret H. Smith. Software model checking: extracting verifica-
tion models from source code.Software Testing, Verification & Reliability, 11:65–79, 2001.

[11] Nisse Husberg and Tapio Manner. Emma: developing an industrial reachability analyser for
SDL. In Jeannette M. Wing, Jim Woodcock and Jim Davies, editors,World Congress on
Formal Methods in the Development of Computing Systems, volume 1708 ofLecture Notes
in Computer Science, pages 642–661, Toulouse, France, September 1999. Springer-Verlag.

[12] Kuldeep Kumar and Jos van Hillegersberg. ERP experiences and evolution.Communications
of the ACM, 43(4):23–26, 2000.

[13] David Lie, Andy Chou, Dawson Engler and David L. Dill. A simple method for extracting
models from protocol code.Proceedings of the 28th Annual International Symposium on
Computer Architecture, ISCA 2001, pages 192–203, Göteborg, Sweden, July 2001. IEEE
Computer Society.

84

[14] Tommi Junttila. Finding symmetries of algebraic system nets.Fundamenta Informaticae,
37(3):269–289, February 1999.

[15] Timo Latvala. Model checking LTL properties of high-level Petri nets with fairness con-
straints. In José-Manuel Colom and Maciej Koutny, editors,Application and Theory of
Petri Nets 2001, 22nd International Conference, volume 2075 ofLecture Notes in Computer
Science, pages 242–262, Newcastle upon Tyne, England, June 2001. Springer-Verlag.

[16] Marko Mäkelä. Maria: Modular reachability analyser for algebraic system nets. In Esparza
and Lakos [7], pages 427–436.

[17] Marko Mäkelä. Efficiently verifying safety properties with idle office computers. In Charles
Lakos, Robert Esser, Lars M. Kristensen and Jonathan Billington, editors,Formal Methods in
Software Engineering and Defence Systems 2002, volume 12 ofConferences in Research and
Practice in Information Technology, pages 11–16, Adelaide, Australia, June 2002. Australian
Computer Society Inc.

[18] Marko Mäkelä. Maria model of the Jive demo application.http://www.tcs.hut.fi/
maria/samples/jive/ .

[19] Thomas Marx. NetCASE—a Petri net based method for database application design and
generation. Research report 11-95, University of Koblenz, Germany, September 1995.

[20] Roger S. Pressman.Software Engineering: A Practitioner’s Approach, European Adapta-
tion. McGraw-Hill International Editions, 2000.

[21] Bill Shannon.Java 2 Platform, Enterprise Edition: Platform and Component Specifications.
Addison-Wesley, 2000.

[22] David Sprott. Componentizing the enterprise application packages.Communications of the
ACM, 43(4):63–69, 2000.

[23] Jeffrey D. Ullman.Principles of Database and Knowledge-Base Systems. Volume I: Classi-
cal Database Systems. Computer Science Press, 1988.

85

86

Modelling with Coloured Petri Nets
Søren Christensen
Department of Computer Science
University of Aarhus
Denmark

Abstract

Engineers have used construction of models to investigate properties of designs, before implementations, for
generations. This trend is gradually being transferred to the software engineering. Today UML is well established in
the modelling of applications where the structure of data is the main concern, e.g. traditional office applications and
applications for database access. During the process of creating and testing the models the designers gain insight
which allow them to improve their designs and try different solutions before crucial design decisions are made.

Coloured Petri Nets and the tools Design/CPN and CPN Tools offers a supplement to the mainly data driven models
of UML, and we will show examples of models where Coloured Petri Nets are used to capture essential behavioural
properties of systems. We address important issues of the modelling process, such as: finding the right level of
abstraction, how to structure large models and what not to model.

For the modelling to be successful it is equally important that we have rich formalisms, powerful computer tools, and
skilled engineers. Only this combination will allow us to build the increasingly complex systems needed in the future.

87

88

Executable Use Cases for Pervasive Healthcare

Jens Bæk Jørgensen and Claus Bossen
Centre for Pervasive Computing

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

email: jbj@daimi.au.dk, bossen@daimi.au.dk

Abstract

Using a pervasive healthcare system as example, a new approach to
specification of user requirements for pervasive IT systems is presented.
A formal modelling language, Coloured Petri Nets, is applied to describe
what we call Executable Use Cases, EUCs. EUCs are precise, detailed,
and executable descriptions of future work processes and their computer
support. In particular, EUCs allow user requirements specifications to
take the frequently changing context of the users, e.g. their location and
equipment in possession, into account.

Topics: Specification of user requirements, use cases, Unified Mod-
eling Language (UML), application of Coloured Petri Nets to pervasive
systems, context awareness.

1 Introduction

Worldwide, many hospitals are in the process of introducing electronic patient
records, EPRs, or have already done so [1]. Though a vision of an EPR already
appeared in the late 1960s, IT technology apparently only reached a level that
enabled workable solutions in the 1990s, when the spread of EPRs began to
gain momentum [6]. In Denmark, Aarhus County has initiated development
of an EPR [18] that will substitute several paper-based core documents used
for documentation and communication within hospitals today. The aim is to
enhance the quality of healthcare, e.g. by allowing multiple users to work on
the same, always up-to-date patient record at the same time.

The EPR of Aarhus County, and indeed any EPR, solves obvious problems
occurring with paper-based patient records such as being not always up-to-
date, mislaid, or even lost. However, EPRs also have their drawbacks and
potentially induce at least two central problems for their users. The first prob-
lem is immobility: in contrast to a paper-based record, an EPR accessed from
stationary desktop PCs cannot be easily transported. The second problem is
time-consuming login and navigation: EPR requires user identification and login
to ensure information confidentiality and integrity, and to start using EPR for
clinical work, a logged-in user must navigate, e.g. to find a specific document for
a specific patient. Pervasive computing [2, 7, 8] is a candidate approach to alle-
viate these two problems. Specifically, a new pervasive healthcare system [3, 21]

89

is being envisioned in a joint project between Aarhus County Hospital, the soft-
ware company Systematic Software Engineering A/S [23], and the Centre for
Pervasive Computing [19] at the University of Aarhus. This paper focuses on
specification of the user requirements for that system.

One of the dominant approaches to specify user requirements in today’s
object-oriented system development projects is use cases [4, 9, 12] as defined in
the Unified Modeling Language, UML [13, 15]. Use cases model work processes
to be supported by a new IT system, and a set of use cases is interpreted as user
requirements for that system. However, UML use cases have several general and
known shortcomings, see e.g. [16] which points out a number of problems under
headlines like use case modelling misses long-range logical dependency and use
case dependency is non-logical and inconsistent. For pervasive systems, new
complexities are added to the specification of user requirements in order to cope
with issues like mobility and context awareness, i.e. the ability of the IT system
to react sensibly to various changes of context such as users moving from one
location to another.

For these reasons, we will suggest a new notion of use cases. Inspired by
the UML use case approach, we will also create models of work processes, but
will do so in the formal modelling language Coloured Petri Nets, CPN [10, 11,
20]. CPN models are precise, detailed, and, as a particularly valuable asset,
executable. Furthermore, as we will show, CPN is suitable to describe context
aware systems. Contexts can be captured by an elaborated state notion of
CPN, and the functionality of a system in a current context can be modelled
by an appropriate action notion of CPN. The main contribution of the paper is
to introduce and justify the notion of Executable Use Cases, EUCs, based on
CPN, for the specification of user requirements for pervasive IT systems.

The paper provides a basis introduction to CPN, and, thus, does not assume
the reader to be familiar with neither CPN, nor Petri nets [14] in general. The
structure is as follows: Section 2 describes the concept of pervasive healthcare
and the pervasive medicine administration work process that will be used as
running example. Section 3 is a primer on CPN, and Section 4 presents an
EUC for pervasive medicine administration. In Section 5, we report on how to
interpret an EUC as actual user requirements. The conclusions are drawn in
Section 6.

2 Pervasive Healthcare

The pervasive healthcare system considered in this paper was envisioned in a
series of workshops with participation of physicians, nurses, computer scientists,
and an anthropologist (one of the authors). Moreover, input came from ethno-
graphic fieldwork by the anthropologist, who spent two months at a department
at Aarhus County Hospital in spring 2001. Observation of existing work pro-
cesses and use of the paper-based patient records confirmed that immobility and
time-consuming login and navigation procedures are severe, potential obstacles
to the success of EPR.

90

2.1 Characteristics of Hospital Work Processes

The EPR immobility problem should be solved in order to preserve the inher-
ent mobility of hospital work processes. Paper patient records are very mobile
and now frequently moved, e.g. between the nurses’ office, the medicine cab-
inet room, and the wards with patient beds. The other anticipated problem,
time-consuming login and navigation, is crucial to overcome in order to allow
healthcare personnel to make flexible and smooth transition from one work pro-
cess to another. This is needed, because interruption and later resumption of
work processes are frequent: the personnel continuously have to reschedule their
plans for their shift, since new tasks are often added to their list of what to do.
New, acutely ill patients are admitted to the department, examinations show
a need for immediate action, the condition of a patient deteriorates suddenly,
scheduled examinations at other departments are cancelled, etc.

The present plans for EPR deployment entails an additional, severe problem:
restricted access to the patient records. The paper-based patient record com-
prises three separate documents for each patient, a physician’s patient record,
a nurse’s patient record, and a medicine plan. These documents are kept at
different places most of the day. Thus, even though only one person can access
a specific part of a patient record at a time, there are in the considered depart-
ment, with 25 patients, nevertheless 75 different access points to the records
(three per patient). With EPR, accessibility is proportional with the number of
available computers – an obvious bottleneck. The department at present bud-
gets for eight desktop PCs to be placed in offices and two laptops which can be
brought along to the wards. In this way, the existing 75 access points decrease
to only 8+2=10.

The work process in focus in this paper is medicine administration, i.e. han-
dling of medicine for patients. It involves medicine plans, which for each patient
specify the prescribed medicine, and are used by the nurses to acknowledge when
medicine has been poured and given. Medicine plans are usually kept by the
medicine cabinet and often taken to the wards together with the medicine. This
allows nurses to promptly acknowledge giving of medicine at the wards and
to answer questions from patients about their medication. To enable a smooth
medicine administration process with EPR, possible solutions with today’s tech-
nology seem to be computers in each ward or widespread use of personal digital
assistants, PDAs – laptops are too heavy to be regularly carried around.

2.2 Pervasive Healthcare System Design Principles

A prototype of the pervasive healthcare system has been created and subse-
quently tested by healthcare personnel from Aarhus County Hospital [3]. The
prototype is built upon three general design principles. The first principle is
context awareness. This means that the system is able to register and react
upon certain changes of context. More specifically, nurses, medicine trays, pa-
tients, beds, and other items are equipped with radio frequency identity, RFID,
tags [22], such that presence of such items can be detected automatically by
involved context aware computers, e.g. located by the medicine cabinet and by
the patient beds.

The second design principle is that the system is propositional, in the sense
that it makes qualified propositions, or guesses. Context changes may result

91

in automatic generation of buttons, which appear at the taskbar of computers.
Users must explicitly accept a proposition by clicking a button – and implicitly
ignore or reject it by not clicking. The presence of a nurse holding a medicine
tray for patient P in front of the medicine cabinet is a context that triggers au-
tomatic generation of a button Medicine plan: Patient P, because in many
cases, the intention of the nurse is now to navigate to the medicine plan for
patient P. If the nurse clicks the button, she is logged in and taken to patient
P’s medicine plan. It is of course impossible always to guess the intention of a
user from a given context, and without the propositional principle, automatic
shortcutting could become a nuisance, because of guesses that would sometimes
be wrong.

The third design principle is that the system is non-intrusive, i.e not inter-
fering with or interrupting hospital work processes in an undesired way. Thus,
when a nurse approaches a computer, it should react on her presence in such
a way that a second nurse, who may currently be working on the computer,
is not disturbed or interrupted. The last two design principles cooperate to
ensure satisfaction of a basic mandatory user requirement: important hospital
work processes have to be executed as conscious and active acts by responsible
human personnel, not automatically by a computer.

2.3 Pervasive Medicine Administration

Work process descriptions in natural language were made as a result of the work-
shops, and these descriptions formed the basis for the prototype discussed above.
The work process constituting the scope of this paper is pervasive medicine ad-
ministration. It covers medicine administration as carried out by personnel
supported by the pervasive healthcare system, and is outlined in the following
in a style resembling a main constituent of a traditional UML use case.

Assume that nurse N wants to pour medicine into a medicine tray and give it
to patient P. First, the nurse goes to the room containing the medicine cabinet.
Here is a context aware computer on which the buttons Login: Nurse N and
Patient list: Nurse N appear on the taskbar, when the nurse approaches.
Assume that the second button is clicked. Then, N is logged in and a list of
those patients for which she is in charge is displayed on the computer.

A medicine tray must be associated with each patient. If a medicine tray is
already associated with patient P, the button Medicine plan: Patient P will
appear on the taskbar of the computer, when the nurse takes the tray nearby,
and a click will make P’s medicine plan appear on the display. However, if
P is a newly admitted patient, it is necessary to associate a medicine tray to
him. Nurse N does so by taking an empty tray from a shelf and making the
association. In either case, N pours medicine into the tray, acknowledges this
in EPR, and is automatically logged out, when she leaves the medicine cabinet
area.

Nurse N now takes patient P’s medicine tray and goes to the ward where
P lies in a bed, which is supplied with a context aware computer. When
N approaches, the buttons Login: Nurse N, Patient list: Nurse N, and
Medicine plan: Patient P will appear on the taskbar. If the last button is
clicked, the medicine plan for P is displayed. Finally, N gives the medicine tray
to P, acknowledges the giving in EPR, and is automatically logged out again,
when she leaves the bed area.

92

This rather straight flow of events has numerous variations, e.g. medicine
may be poured for one or more patients, for only one round of medicine giving,
all four regular rounds of a 24 hours period, or for ad hoc giving; a nurse may
have to fetch trays left at the wards prior to pouring; a nurse may approach the
medicine cabinet without intending to pour medicine, but only to log into EPR
or wanting to check an already filled medicine tray. To enable a smooth pervasive
medicine administration work process, the pervasive healthcare system must be
specified to handle all these variations and many more. The Executable Use
Case, EUC, apparatus is able to do that. We will present an EUC for pervasive
medicine administration in Section 4, but first give an informal and general
introduction to some fundamental concepts of the EUC modelling language
CPN in the following section.

3 EUC Modelling Language – CPN

Coloured Petri Nets, CPN [10, 11, 20], is a mature and well-proven modelling
language suitable to describe the behaviour of systems with concurrency, re-
source sharing, and synchronisation. A CPN model resembles a board game,
with strict rules that define the possible executions of the model. The CPN
modeller’s task is to specify an appropriate board, tokens, and playing rules to
reflect the domain being modelled.

We will introduce the basic CPN concepts by means of the simple Provide
trays model, shown in Figure 1. This model describes how nurses provide
medicine trays prior to pouring, checking, and giving medicine.

TRAY

Trays by
medicine cabinet

NURSE

Ready

1‘(n1,notrays)+1‘(n2,notrays)

Associate
free tray
with patient

TRAY

4‘(0,nomedicine)

Free trays
Fetch tray
at ward

TRAY

Trays at
wards

Return trays to
medicine cabinet
area

[trays <> notrays]

(nurseid,trays)

(0,nomedicine)

(nurseid,trays)

(patid,medicine)

(nurseid,trays)

releasetrays (nurseid,trays)

(nurseid,notrays)

(patid,medicine)(patid,nomedicine)

Figure 1: Provide trays.

3.1 Modelling of States

A CPN model describes both the states and the actions of a system. States
capture the contexts in which actions may take place. The state of a CPN
model is a distribution of tokens on the places. Each place is drawn as an
ellipse and has an associated data type, written in italic capital letters, which
determines the kinds (“colours”) of tokens the place is allowed to contain.

In Figure 1, a token on the Ready place models that a real-life nurse is in
a situation where she is ready to carry out work, e.g. she sits at her office.

93

Thus, Ready has the data type NURSE, denoting nurses. A nurse is represented
as a pair (nurseid,trays), where nurseid identifies the nurse and trays is
a container data structure holding the medicine trays that this nurse currently
has in possession.

The places Trays at wards and Trays by medicine cabinet have data
type TRAY, and model the trays which currently are at the indicated locations. A
tray is modelled as a pair (patid,medicine), where patid identifies the patient
that the tray is associated with, and medicine is a container data structure
holding the medicine that currently is in the tray. The place Free trays also
has data type TRAY. It holds tokens corresponding to trays which are not yet
associated with patients. The patient id 0 is a special value, used in TRAY
tokens on the form (0,nomedicine), which represent empty trays, not currently
associated with any patient.

The initial state describes the start state of the model, before execution
begins. In the initial state, there are two NURSE tokens on the Ready place,
n1 and n2, both with no trays, and four empty, non-associated TRAY tokens on
the Free trays place, as indicated by the inscriptions close to the places (an
expression like c1‘e1 denotes a multiset (a bag) containing c1 appearances of e1
tokens). The places Trays at wards and Trays by the medicine cabinet
are empty in the initial state.

3.2 Modelling of Actions

The actions of a CPN model are represented using transitions, drawn as rectan-
gles. Thus, in Figure 1, a nurse who is ready – corresponding to a token in the
Ready place – may choose to do one of three possible actions, modelled by the
three transitions named Associate free tray with patient, Return trays
to medicine cabinet area, and Fetch tray at ward.

A transition and a place may be connected by an arc. Solid arcs show
the flow of NURSE tokens, and dashed arcs the flow of TRAY tokens (different
graphical appearances are used only to enhance readability, and have no formal
meaning). The actions of a CPN model consist of transitions removing tokens
from input places and adding tokens to output places, often referred to as the
token game. Input/output relationship between a place and a transition is
determined by the direction of the connecting arc. A place may be both input
and output, e.g. Ready relative to all three transitions – a double arc is a
shorthand for one arc in each direction. The tokens removed and added are
determined by arc expressions, e.g. the expression (nurseid,trays) on the
arc from the Ready place to the Return trays to medicine cabinet area
transition, where nurseid and trays are variables that can be assigned data
values.

The executability of CPN models comes from the fact that the CPN mod-
elling language has a formal, operational semantics. A transition which is ready
to remove and add tokens is said to be enabled, and requires two kinds of con-
ditions to be fulfilled. The first kind is that appropriate tokens are present
on the input places. This means that one condition for enabling of the transi-
tion Return trays to medicine cabinet area is that the only input place,
Ready, contains some token matching the expression (nurseid,trays). The
second kind of condition comes from the guard, which is a boolean expression
optionally assigned to a transition, and which must evaluate to true for the

94

transition to be enabled. Return trays to medicine cabinet area has the
guard [trays<>notrays]. This means that a nurse may return trays to the
medicine cabinet area, only when she has some in possession.

An enabled transition may occur. The occurrence of Return trays to
medicine cabinet area models that a nurse takes all the trays she is cur-
rently possessing and returns them to the medicine cabinet area, and afterwards
is ready again. In the CPN model, this is reflected by a token (nurseid,trays)
removed from Ready, a token (nurseid,notrays) added to Ready, and a token
determined by the expression releasetrays(nurseid,trays) added to Trays
by medicine cabinet.

4 Pervasive Medicine Administration EUC

We have now introduced the necessary CPN concepts, allowing us to present an
EUC for pervasive medicine administration. The EUC models the work process
from the point of view of a nurse, and a prime focus is to describe how the
computers which are by the medicine cabinet and by the patient beds react on
context changes and how they support the nurses.

In general, a CPN model consists of a number of modules organised in a
hierarchical fashion – Section 3 presented just one single module. The pervasive
medicine administration EUC CPN model consists of 11 modules, with a total
of 54 places and 29 transitions. We will provide a general overview of the model
and supplement it with a detailed explanation of one selected typical module.

4.1 Model Overview

An overview of the model in terms of a hierarchy with a node for each module
and arcs showing the relationship between the modules is given in Figure 2. The
figure shows how the work process pervasive medicine administration is split
into sub work processes. An arc between two nodes indicates that the module
of the source node contains a substitution transition, whose detailed behaviour
is described on the module of the destination node, called the sub-module.

Pervasive
medicine
administration

Provide trays Give medicinePour/check
trays

Pour/check
tray

Find plan/tray
(cabinet)

Pour and
acknowledge

Get trays Give
medicine to
patients

Find plan
(bed)

Give and
acknowledge

Figure 2: Overview of pervasive medicine administration EUC.

The topmost module Pervasive medicine administration of Figure 2 is
shown in Figure 3 and contains a very high-level and abstract description of the

95

work process. All three transitions in Figure 3 are substitution transitions – as
indicated by the small HS (hierarchy substitution) tag. They correspond to the
three arcs emanating from the Pervasive medicine administration node in
Figure 2, and are briefly described below.

Ready
NURSE

1‘(n1,notrays)+1‘(n2,notrays)

Give
medicin

HS

Pour/check
trays

HS

Provide
trays

HS

TRAY

Trays by
medicine cabinet

TRAY

Trays at
wards

Figure 3: Pervasive medicine administrationmodule (topmost node of Fig-
ure 2).

4.1.1 Provide trays

We have previously presented and explained this module in Figure 1 in Section 3.
From Figure 3, it is possible to see that a nurse sometimes provides trays, by
carrying out the action corresponding to the Provide trays transition. It is not
possible to see how she does it. The sub-module that is bound to the substitution
transition Provide trays, shown in Figure 1, contains the detailed description
of how trays can be provided.

The individual modules of a CPNmodel interact when the model is executed.
In the modules of Figures 3 and 1, places with the same name (e.g. the two
Ready places) are conceptually glued together, thus allowing exchange of tokens
between the modules when the token game is played.

4.1.2 Pour/check trays

As can be seen from Figure 2, the module Pour/check trays (note plural ’s’ in
trays) uses a sub-module called Pour/check tray. Pour/check traysmodels
how trays are poured and/or checked for a number of patients. Pour/check
tray models how a tray is poured and/or checked for one single patient. The
module Pour/check trays may be seen as similar to a loop statement in a
programming language and Pour/check tray as the body of the loop.

Pour/check tray is itself taking advantage of two sub-modules, one called
Find plan/tray (cabinet) and one called Pour and acknowledge. The first
module, Find plan/tray (cabinet) models how the nurse gets the medica-
tion plan for a given patient presented on the screen of the medicine cabinet
computer and/or how she provides the patient’s tray – as can be seen on Fig-
ure 2, possibly using the Provide trays module already described. The Pour
and acknowledge module models how the nurse actually pours medicine into
the tray and how she acknowledges to the pervasive healthcare system when a
certain medicine type has been poured.

96

4.1.3 Give medicine

As can be seen from Figure 2, the module Give medicine uses two sub-modules,
Get trays and Give medicine to patients. Get traysmodels how the nurse
collects a number of trays (corresponding to a number of patients), before she
embarks on a round to the wards to give medicine. This preparation process
may involve checking and additional pouring of existing partly or fully filled
trays, and therefore Get trays uses the Pour/check trays module. The Give
medicine to patients and its two sub-modules Find plan (bed) and Give
and acknowledge are similar to the Pour/check tray (cabinet) and its two
sub-modules.

4.2 Module Example – Pour/check trays

We now present and explain a typical module from the model, the Pour/check
trays module, shown in Figure 4.

Ready

NURSE

1‘(n1,notrays)+
1‘(n2,notrays)

By medicine
cabinet

NURSE

Trays by
medicine cabinet

TRAY

Medicine
cabinet
computer

COMPUTER

1‘(1,blank,
nobuttons,nousers)

Approach
medicine cabinet

Leave medicine
cabinet area

Pour/check
tray

HS

Enter EPR via
login button

[loginAllowed nurse
(compid,display,
taskbar,users)]

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

tray

(compid,display,taskbar,users)

(compid,display,taskbar,users)

(compid,display,
addMedicineCabinetButtons nurse taskbar,
users)

if loggedin nurse (compid,display,taskbar,users) then
 (compid, blank, removeMedicineCabinetButtons nurse taskbar, removeUser nurse users)
else
 (compid, display, removeMedicineCabinetButtons nurse taskbar, users)

(compid,display,taskbar,users)

(compid,display,
removeLoginButton nurse taskbar,
addUser nurse users)

Figure 4: Pour/check trays module.

On this module, the medicine cabinet computer is in focus. The computer
is modelled by a token on the Medicine cabinet computer place having data
type COMPUTER – a 4-tuple (compid,display,taskbar,users) consisting of a
computer identification, its display (main screen), its taskbar, and its current
users. Long-dashed arcs show the flow of the COMPUTER token. Recall that the
medicine cabinet computer is context aware, i.e. it is able to sense the proximity
of both nurses and trays.

In the initial state, two nurses n1 and n2 are ready and have no trays,
corresponding to two tokens in the Ready place. The medicine cabinet com-
puter is idle, with a blank display, no taskbar buttons, and no current users.

97

Occurrence of the Approach medicine cabinet transition models that a nurse
changes from being ready to being busy nearby the medicine cabinet. Moreover,
at the same time, two buttons are added to the taskbar of the medicine cabinet
computer, namely one login button for the nurse and one patient list button for
the nurse. In the CPN model, these taskbar buttons are added by the function
addMedicineCabinetButtons appearing on the arc going from the transition
Approach medicine cabinet to the place Medicine cabinet computer.

The possible actions for a nurse who is by the medicine cabinet are modelled
by the three transitions Pour/check tray, Enter EPR via login button, and
Leave medicine cabinet area. Often, a nurse by the medicine cabinet wants
to pour and/or check some trays. How this pouring and checking is carried
out is modelled on the sub-module Pour/check tray, which is bound to the
substitution transition having the same name (as can be seen from Figure 2).

The Enter EPR via login button transition models that a nurse clicks on
the login button and makes a general-purpose login to EPR. It is outside the
scope of the model to describe what the nurse subsequently does – the domain
of the model is specifically pervasive medicine administration, not general EPR
use. The transition has a guard which ensures that only a user who is not
currently logged into EPR can do so. When a nurse logs in, the login button
for that nurse is removed from the taskbar of the computer, modelled by the
removeLoginButton function on the arc from Enter EPR via login button
to the Medicine cabinet computer place. Moreover, the nurse is added to the
set of current users by the function addUser appearing on the same arc.

The Leave medicine cabinet area transition models that a nurse has
done the pouring and checking that she wants for now, and leaves the area.
Upon leaving, it is checked whether the nurse is currently logged in, modelled
by the function loggedIn appearing in the if-then-else expression on the arc go-
ing from Leave medicine cabinet area to the Medicine cabinet computer
place. As can be seen further from the expression on that arc, if the nurse is
logged in, the medicine cabinet computer automatically blanks off the screen,
removes her taskbar buttons (removeMedicineCabinetButtons), and logs her
off (removeUser). If she is not logged in, the buttons generated because of her
presence are removed, but the state of the computer is otherwise left unaltered.
When a nurse leaves the medicine cabinet area, the corresponding token is put
back on the Ready place.

5 EUCs as User Requirements

From the EUC for pervasive medicine administration, a list of user requirements
can be produced by focusing on the model transitions which manipulate the
involved computers. Each transition connected to the places Medicine cabinet
computer (shown) and Bed computers (not shown) must be taken into account.
As examples, the requirements below are induced by the transitions on the
module Pour/check trays shown in Figure 4:

• When a nurse approaches the medicine cabinet area, the medicine cabinet
computer must add a login button and a patient list button for that nurse
to the taskbar.

• When a nurse leaves the medicine cabinet area, if she is logged in, the

98

medicine cabinet computer must blank off its display, remove the nurse’s
login button and patient list button from the taskbar, and log her off.

• When a nurse logs into EPR, her login button must be removed from the
taskbar of the computer, thus disallowing the nurse to log in again, if she
already is.

The first two of these three user requirements can also partly be derived
from the prose English description of pervasive medicine administration in Sec-
tion 2.3, i.e. these two requirements were known after the workshops, prior to
creation of the EUC. However, the EUC states the requirements more precisely
and with more details, e.g. the EUC specifies that the computer display should
be blanked when a logged in nurse leaves the medicine cabinet area, and it also
describes what should happen when a nurse, who is not logged in, leaves.

In general, a user requirements specification should be precise and address
as many issues as possible. We will argue that to a higher extent than reading
a static prose descriptions of future work processes as the one in Section 2.3,
application of EUCs forces many questions to be asked. An EUC is a dynamic,
executable model, allowing the behaviour of a future work process to be visu-
alised and investigated. Playing the token game of an EUC typically catalyses
the participants’ cognition and generates new ideas. In this way, it often hap-
pens that questions that the participants had not thought about earlier appear.
Examples of questions (Qs) that have appeared during execution of the EUC of
Section 4, and corresponding answers (As), are:

• Q: what happens if two nurses both are close to the medicine cabinet com-
puter? A: the computer generates login buttons and patient list buttons
for both of them.

• Q: what happens when a nurse carrying a number of medicine trays ap-
proaches a bed? A: in addition to a login button and a patient list button
for that nurse, only one medicine plan button is generated – a button for
the patient associated with that bed.

• Q: is it possible for one nurse to acknowledge pouring of medicine for a
given patient while another nurse at the same time acknowledges giving
of medicine for that same patient? A: no. That would require a systems
architecture allowing a higher degree of concurrency and a more fine-
grained concurrency control exercised over the patient records.

Questions like the ones above may imply changes to be made to the EUC,
because emergence of a question indicates that the current version of the EUC
does not reflect the future work process properly. As a concrete example, in
an early version of the pervasive medicine administration EUC, the exit of any
nurse from the medicine cabinet area resulted in the computer screen being
blanked off. To be compliant with the non-intrusive design principle, the exit
of a nurse who is not logged in, should of course not disturb another nurse who
might be working at the computer, and the EUC had to be changed accordingly.

Specification of user requirements is a prominent, general problem in the
software industry today. In many development projects, the user requirements
are initially too vaguely specified and too poorly understood. This is quite

99

unfortunate, because a user requirements specification for a software system is
often an essential part of a legal contract between a customer, e.g. a hospital,
and a software company. Questions like the three above may easily be sub-
ject to dispute. However, if the parties have agreed that pervasive medicine
administration should be supported, and have the overall stipulation that the
EUC presented in the previous section is the authoritative description, many
disagreements can quickly be settled, because of the formality and unambiguity
of the EUC.

EUCs are not a panacea. Their purpose is solely to describe the user re-
quirements of a future pervasive IT system, relative to the work flow to be
supported. A number of other user requirements issues regarding IT systems
support of pervasive medicine administration cannot be addressed properly by
EUCs, e.g.:

• User interface, e.g. where are the buttons placed, what do they look like,
and how is a medication plan presented on the computer screen?

• Response times, e.g. how long should a nurse wait before her buttons
appear on the screen?

• Distance, e.g. how close should a nurse be to a computer, before it is
aware of her presence?

6 Conclusions

The pervasive healthcare system, and many pervasive systems in general, are
characterised by classical and well known complications that apply to many dis-
tributed systems [5], plus a number of new problems to be tackled, e.g. regarding
context awareness and mobility. With more complex systems come increased
demands to the modelling languages that we use for their specification and de-
velopment. In this paper, the notion of Executable Use Cases, EUCs, based
CPN, is introduced. CPN is one dialect of Petri nets [14], and various kinds
of Petri nets have previously been used for modelling of work flows [17], much
in the same way as in the EUC approach. However, application of Petri nets
to specification of user requirements for pervasive systems is, to the best of our
knowledge, new.

UML is a de facto standard for object-oriented modelling in the software
industry, and UML use cases are very popular for specification of the user re-
quirements for many of today’s IT systems. We believe that UML use cases
are not always sufficient for pervasive systems. A viable alternative is EUCs,
which have three main strengths compared to UML use cases in general: preci-
sion, detail, and executability, cf. the comparison in Section 5 of the UML use
case style prose description of pervasive medicine administration of Section 2.3
and the EUC of Sect. 4. An additional strength of EUCs and CPN is the rich,
elaborated, and precise notion of state, which is not commonly found in other
modelling languages, and certainly not in UML. With the state notion, the
modelling of contexts comes very natural, e.g. the frequently occurring context
element location is conveniently captured by means of CPN places, cf. place
names like By medicine cabinet in the EUC of this paper. This makes EUCs
suitable to specify user requirements for pervasive, context aware systems.

100

As cited in the introduction, one of the main critiques raised against UML
use cases is that they promote a highly localised perspective [16], and do not
properly capture dependencies between various sub work processes. For the
pervasive medicine administration work process, this general problem has ma-
terialised as being difficult and cumbersome to describe with prose text in a
sufficiently precise fashion the many dependencies between the involved sub
work processes. Such dependencies are explicitly and precisely captured in the
EUC, cf. the EUC overview in Figure 2.

EUCs, of course, have potential drawbacks. One drawback is that CPN
is indeed a formal language (in other situations, an advantage, though), and
thus difficult to use as a means of communication between system developers
and non-technical end users. In contrast, one of the often cited strengths of
UML use cases is that they are non-formal and easy to understand for users.
Like UML use cases, for the best result, EUCs should be worked out with
participation of the future system users, in an iterative fashion going from a
coarse and probably not entirely correct representation of a future work process,
to more and more mature versions of the EUC, where precision and detail are
added in each iteration. To ease communication with healthcare personnel, we
have started a project to make the EUC CPN model of this paper the logical
controller of a small movie-like computer animation displaying work processes
at a hospital department with nurses, medicine trays, medicine cabinets, wards,
beds, computers, etc. In this way, instead of looking directly at the token
game of the CPN model, the nurses and physicians will see their future work
situation illustrated in a fashion which is much more natural for them, and where
the motions of pictures are controlled by, and thus guaranteed to be consistent
with, the execution of the CPN model.

Another drawback of EUCs is that CPN is often thought of as being rather
complex and time-consuming to learn and to apply. It is true that it takes an
effort to learn. However, once learned, it is quite efficient to apply. The EUC
of this paper was created by the authors of this paper using a total effort of
approximately 60 man hours, 50 hours used by a computer scientist, who is
an experienced CPN modeller, and 10 hours used by the anthropologist who
has a detailed knowledge of the work processes at the hospitals. The EUC was
created in four iterations where the computer scientist was the active modeller
and the anthropologist a participant in executions of the various versions of the
EUC, and the main source for questions that provided input to the next, more
complete, more detailed, and more precise version of the EUC.

Compared to UML use cases, EUCs do potentially require an extra effort
during specification of user requirements. However, we think that in many cases,
the investment is well justified. Even though many contracts recognise that the
user requirements may change during a project (incurring a price adjustment),
it is wiser, cheaper, less frustrating, and more efficient for all parties to properly
address as many issues as possible already in the initial specification.

References

[1] M. Berg. Accumulating and Cordinating: Occasions for Information Tech-
nologies in Medical Work. In Computer Supported Cooperative Work, vol-
ume 8, 1999.

101

[2] J. Burkhardt, H. Henn, S. Hepper, K. Rintdorff, and T. Schäck. Pervasive
Computing – Technology and Architecture of Mobile Internet Applications.
Addison-Wesley, 2002.

[3] H.B. Christensen, J. Bardram, and S. Dittmer. Theme One: Administra-
tion and Documentation of Medicine. Report and Evaluation. TR-3. Tech-
nical report, Centre for Pervasive Computing, Aarhus, Denmark, 2001.

[4] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

[5] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems – Con-
cepts and Design. Addison-Wesley, 2001.

[6] R.S. Dick, E.B. Steen, and D.E. Detmer. The Computer-Based Patient
Record: An Essential Technology for Health Care. National Academy Press,
1997.

[7] U. Hansmann, L. Merk, M.S. Nicklous, and T. Stober. Pervasive Comput-
ing Handbook. Springer Verlag, 2001.

[8] A. Helal, B. Haskell, J.L. Carter, R. Brice, D. Woelk, and M. Rusinkiewicz.
Any Time, Anywhere Computing – Mobile Computing Concepts and Tech-
nology. Kluwer Academic Publishers, 1999.

[9] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-Oriented
Software Engineering: A Use Case Driven Approach. Addison-Wesley,
1992.

[10] K. Jensen. Coloured Petri Nets — Basic Concepts, Analysis Methods and
Practical Use. Volume 1-3. Monographs in Theoretical Computer Science.
An EATCS Series. Springer-Verlag, 1992-97.

[11] L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide
to Coloured Petri Nets. International Journal on Software Tools for Tech-
nology Transfer, 2(2):98–132, 1998.

[12] D. Kulak, E. Guiney, and E. Lavkulich. Use Cases: Requirements in Con-
text. Addison-Wesley, 2000.

[13] OMG Unified Modeling Language Specification, Version 1.4. Object Man-
agement Group (OMG); UML Revision Taskforce, 2001.

[14] W. Reisig. Petri Nets, an Introduction. Springer-Verlag, 1985.

[15] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[16] A.J.H. Simons and I. Graham. 30 Things That Go Wrong in Object Mod-
elling with UML 1.3. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Be-
havioral Specifications of Businesses and Systems. Kluwer Academic Pub-
lishers, 1999.

[17] W.M.P. van der Aalst and K. van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002.

102

[18] Aarhus Amt Electronic Patient Record. www.epj.aaa.dk.

[19] Centre for Pervasive Computing. www.pervasive.dk.

[20] Coloured Petri Nets at the University of Aarhus. www.daimi.au.dk/CPnets.

[21] Pervasive Healthcare. www.healthcare.pervasive.dk.

[22] Radio Frequency Identification. www.rfid.org.

[23] Systematic Software Engineering A/S. www.systematic.dk.

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

