
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

ISSN 0105-8517

August 2002

DAIMI PB - 560

Kurt Jensen (Ed.)

Fourth Workshop and Tutorial on
Practical Use of Coloured Petri Nets
and the CPN Tools
Aarhus, Denmark, August 28-30, 2002

Preface

This booklet contains the proceedings of the Fourth Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, August 28-30, 2002. The workshop is
organised by the CPN group at Department of Computer Science, University of
Aarhus, Denmark. The papers are also available in electronic form via the web
pages: http://www.daimi.au.dk/CPnets/workshop02/

Coloured Petri Nets and the CPN tools are now used by 1000 organisations in
60 countries all over the world (including 200 commercial enterprises). The aim
of the workshop is to bring together some of the users and in this way provide a
forum for those who are interested in the practical use of Coloured Petri Nets and
their tools.

The submitted papers were evaluated by a programme committee with the
following members:

Jonathan Billington Australia (j.billington@unisa.edu.au)
Søren Christensen Denmark (schristensen@daimi.au.dk)
Jorge de Figueiredo Brazil (abrantes@dsc.ufpb.br)
Nisse Husberg Finland (Nisse.Husberg@hut.fi)
Kurt Jensen Denmark (chair) (kjensen@daimi.au.dk)
Daniel Moldt Germany (moldt@informatik.uni-hamburg.de)
Laure Petrucci France (petrucci@lsv.ens-cachan.fr)
Dan Simpson UK (Dan.Simpson@brighton.ac.uk)
Edwin Stear USA (estear@aol.com)
Robert Valette France (robert@laas.fr)
Rüdiger Valk Germany (valk@informatik.uni-hamburg.de)
Klaus Voss Germany (klaus.voss@gmd.de)
Lee Wagenhals USA (lwagenha@gmu.edu)
Jianli Xu Finland (jianli.xu@research.nokia.com)
Wlodek Zuberek Canada (wlodek@cs.mun.ca)

The programme committee has accepted 8 papers for presentation. Most of these
deal with different projects in which Coloured Petri Nets and their tools have been
put to practical use – often in an industrial setting. The remaining papers deal with
different extensions of tools and methodology.

The papers from the first three CPN Workshops can be found via the web
pages: http://www.daimi.au.dk/CPnets/. After an additional round of reviewing
and revision, some of the papers have also been published as a special section in
the International Journal on Software Tools for Technology Transfer (STTT). For
more information see: http://sttt.cs.uni-dortmund.de/

Kurt Jensen

Table of Contents

Invited Talk:
W.M.P. van der Aalst and A.H.M. ter Hofstede
Workflow Patterns: On the Expressive Power of (Petri-net-based)
Workflow Languages.. 1

Mathew Elliot, Jonathan Billington and Lars Michael Kristensen
Using Design/CPN to Design Extensions to Design/CPN................................ 21

Bo Lindstrøm and Lisa Wells
Annotating Coloured Petri Nets.. 39

Invited Talk:
Lin Zhang
Model-based Operational Planning Using Coloured Petri Nets 59

Jens Bæk Jørgensen
Coloured Petri Nets in UML-Based Software Development - Designing
Middleware for Pervasive Healthcare... 61

Wlodek Zuberek
Performance Study of Distributed Generation of State Spaces using
Colored Petri Nets... 81

Invited Talk:
Kim Guldstrand Larsen
Verification of Timed and Hybrid Systems .. 99

Guy Edward Gallasch, Lars Michael Kristensen and Thomas Mailund
Sweep-Line State Space Exploration for Coloured Petri Nets 101

Louise Lorentsen
Coloured Petri Nets and State Space Generation with the Symmetry
Method .. 121

Thomas Jacob, Olaf Kummer, Daniel Moldt, and Ulrich Ultes-Nitsche
Implementation of Workflow Systems using Reference Nets - Security
and Operability Aspects .. 139

Workflow Patterns: On the Expressive Power of
(Petri-net-based) Workflow Languages

W.M.P. van der Aalst1;2 and A.H.M. ter Hofstede2

1 Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl
2 Queensland University of Technology, School of Information Systems

P.O. Box 2434, Brisbane Qld 4001, Australia.
a.terhofstede@qut.edu.au

Abstract. Contemporary workflow management systems are driven by explicit
process models, i.e., a completely specified workflow design is required in or-
der to enact a given workflow process. Creating a workflow design is a compli-
cated time-consuming process which is often hampered by the limitations of the
workflow language being used. To identify the differences between the various
languages, we have collected a fairly complete set of workflow patterns. Based
on these patterns we have evaluated 15 workflow products and detected consid-
erable differences in expressive power. Languages based on Petri nets perform
better when it comes to state-based workflow patterns. However, some patterns
(e.g. involving multiple instances, complex synchronizations or non-local with-
drawals) are not easy to map onto (high-level) Petri nets. These patterns pose
interesting modeling problems and are used for developing the Petri-net-based
language YAWL (Yet Another Workflow Language).

1 Introduction

Workflow technology continues to be subjected to on-going development in its tra-
ditional application areas of business process modeling and business process coor-
dination, and now in emergent areas of component frameworks and inter-workflow,
business-to-business interaction. Addressing this broad and rather ambitious reach, a
large number of workflow products, mainly workflow management systems (WFMS),
are commercially available, which see a large variety of languages and concepts based
on different paradigms (see e.g. [1, 4, 12, 19, 23, 28, 31, 30, 40, 47]).

As current provisions are compared and as newer concepts and languages are em-
barked upon, it is striking how little, other than standards glossaries, is available for
central reference. One of the reasons attributed to the lack of consensus of what con-
stitutes a workflow specification is the variety of ways in which business processes are
otherwise described. The absence of a universal organizational “theory”, and standard
business process modeling concepts, it is contended, explains and ultimately justifies
the major differences in workflow languages - fostering up a “horses for courses” di-
versity in workflow languages. What is more, the comparison of different workflow
products winds up being more of a dissemination of products and less of a critique of

1

workflow language capabilities - “bigger picture” differences of workflow specifica-
tions are highlighted, as are technology, typically platform dependent, issues.

Workflow specifications can be understood, in a broad sense, from a number of dif-
ferent perspectives (see [4, 23]). The control-flow perspective (or process) perspective
describes activities and their execution ordering through different constructors, which
permit flow of execution control, e.g., sequence, choice, parallelism and join synchro-
nization. Activities in elementary form are atomic units of work, and in compound form
modularize an execution order of a set of activities. The data perspective layers business
and processing data on the control perspective. Business documents and other objects
which flow between activities, and local variables of the workflow, qualify in effect
pre- and post-conditions of activity execution. The resource perspective provides an or-
ganizational structure anchor to the workflow in the form of human and device roles
responsible for executing activities. The operational perspective describes the elemen-
tary actions executed by activities, where the actions map into underlying applications.
Typically, (references to) business and workflow data are passed into and out of ap-
plications through activity-to-application interfaces, allowing manipulation of the data
within applications.

Clearly, the control flow perspective provides an essential insight into a workflow
specification’s effectiveness. The data flow perspective rests on it, while the organiza-
tional and operational perspectives are ancillary. If workflow specifications are to be
extended to meet newer processing requirements, control flow constructors require a
fundamental insight and analysis. Currently, most workflow languages support the ba-
sic constructs of sequence, iteration, splits (AND and XOR) and joins (AND and XOR)
- see [4, 30]. However, the interpretation of even these basic constructs is not uniform
and it is often unclear how more complex requirements could be supported. Indeed,
vendors are afforded the opportunity to recommend implementation level “hacks” such
as database triggers and application event handling. The result is that neither the cur-
rent capabilities of workflow languages nor insight into more complex requirements of
business processes is advanced.

We indicate requirements for workflow languages through workflow patterns [5–8,
48]. As described in [36], a pattern “is the abstraction from a concrete form which
keeps recurring in specific nonarbitrary contexts”. Gamma et al. [17] first catalogued
systematically some 23 design patterns which describe the smallest recurring interac-
tions in object-oriented systems. The design patterns, as such, provided independence
from the implementation technology and at the same time independence from the essen-
tial requirements of the domain that they were attempting to address (see also e.g. [15]).

We have collected a set of about 30 workflow patterns and have used 20 of these pat-
terns to compare the functionality of 15 workflow management systems (COSA, Visual
Workflow, Forté Conductor, Lotus Domino Workflow, Meteor, Mobile, MQSeries/Work-
flow, Staffware, Verve Workflow, I-Flow, InConcert, Changengine, SAP R/3 Workflow,
Eastman, and FLOWer). The result of this evaluation reveals that (1) the expressive
power of contemporary systems leaves much to be desired and (2) the systems support
different patterns. Note that we do not use the term “expressiveness” in the traditional
or formal sense. If one abstracts from capacity constraints, any workflow language is
Turing complete. Therefore, it makes to sense to compare these languages using for-

2

mal notions of expressiveness. Instead we use a more intuitive notion of expressiveness
which takes the modeling effort into account. This more intuitive notion is often referred
to as suitability. See [27] for a discussion on the distinction between formal expressive-
ness and suitability.

The observation that the expressive power of the available workflow management
systems leaves much to be desired, triggered the question: How about high-level Petri
nets (i.e., Petri nets extended with color, time, and hierarchy) as a workflow language?

Petri nets have been around since the sixties [35] and have been extended with
color [24, 25] and time [32, 33] to improve expressiveness. High-level Petri nets tools
such as Design/CPN (University of Aarhus, http://www.daimi.au.dk/designCPN/) and
ExSpect (EUT/D&T Bakkenist, http://www.exspect.com/) incorporate these extensions
and support the modeling and analysis of complex systems. There are at least three
good reasons for using Petri nets as a workflow language [1]:

1. Formal semantics despite the graphical nature.
2. State-based instead of (just) event-based.
3. Abundance of analysis techniques.

Unfortunately, a straightforward application of high-level Petri nets does not yield the
desired result. There seem to be three problems relevant for modeling workflow pro-
cesses:

1. In a high-level Petri net it is possible to use colored tokens. Although it is possible
to use this to identify multiple instances of a subprocess, there is no specific support
for patterns involving multiple instances and the burden of keeping track, splitting,
and joining is carried by the designer.

2. Sometimes two flows need to be joined while it is not clear whether synchronization
is needed, i.e., if both flows are active an AND-join is needed otherwise an XOR-
join. Such advanced synchronization patterns are difficult to model in terms of a
high-level Petri net because the local transition rule is either an AND-join or an
XOR-join.

3. The firing of a transition is always local only based on the tokens in the input places
and only affecting the output places. However, some events in the workflow may
have an effect which is not local, e.g., because of an error tokens need to be removed
from various places without knowing where the tokens reside. Everyone who has
modeled such a cancellation pattern (e.g., a global timeout mechanism) in terms
of Petri nets knows that it is cumbersome to model a so-called “vacuum cleaner”
removing tokens from selected parts of the net.

In this paper, we discuss the problems when supporting the workflow patterns with high-
level Petri nets. We also briefly introduce a workflow language under development:
YAWL (Yet Another Workflow Language). YAWL is based on Petri nets but extended
with additional features to facilitate the modeling of complex workflows.

2 Workflow patterns

Since 1999 we have been working on collecting a comprehensive set of workflow
patterns [5–8]. The results have been made available through the “Workflow patterns

3

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)
• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and
Synchronization Patterns

• Pattern 6 (Multi - choice)
• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns
• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns
• Pattern 16 (Deferred

Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns
• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-
ing (Pattern 1) to complex patterns involving complex synchronizations such as the
discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most
relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow
languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the
basic patterns to allow for more advanced types of splitting and joining behavior.
An example is the Synchronizing merge (Pattern 7) which behaves like an AND-
join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly
identifies entry and exit points is quite natural. In graphical languages allowing for
parallelism such a requirement is often considered to be too restrictive. Therefore,
we have identified patterns that allow for a less rigid structure.

4. Patterns involving multiple instances. Within the context of a single case (i.e., work-
flow instance) sometimes parts of the process need to be instantiated multiple times,
e.g., within the context of an insurance claim, multiple witness statements need to
be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events
and not on states. This limits the expressiveness of the workflow language because
it is not possible to have state dependent patterns such as the Milestone pattern
(Pattern 18).

4

6. Cancellation patterns. The occurrence of an event (e.g., a customer canceling an
order) may lead to the cancellation of activities. In some scenarios such events can
even cause the withdrawal of the whole case.

Figure 1 shows an overview of the 20 patterns grouped into the six categories. A detailed
discussion of these patterns is outside the scope of this paper. The interested reader is
referred to [5–8, 48].

We have used these patterns to evaluate 15 workflow systems: COSA (Ley GmbH,
[43]) , Visual Workflow (Filenet, [13]), Forté Conductor (SUN, [14]), Lotus Domino
Workflow (IBM/Lotus, [34]), Meteor (UGA/LSDIS, [41]), Mobile (UEN, [23]), MQ-
Series/Workflow (IBM, [22]), Staffware (Staffware PLC, [44]), Verve Workflow (Ver-
sata, [46]), I-Flow (Fujitsu, [16]), InConcert (TIBCO, [45]), Changengine (HP, [21]),
SAP R/3 Workflow (SAP, [39]), Eastman (Eastman, [42]), and FLOWer (Pallas Athena,
[9]). Tables 1 and 2 summarize the results of the comparison of the workflow manage-
ment systems in terms of the selected patterns. For each product-pattern combination,
we checked whether it is possible to realize the workflow pattern with the tool. If a
product directly supports the pattern through one of its constructs, it is rated +. If the
pattern is not directly supported, it is rated +/-. Any solution which results in spaghetti
diagrams or coding, is considered as giving no direct support and is rated -.

pattern product
Staffware COSA InConcert Eastman FLOWer Domino Meteor Mobile

1 (seq) + + + + + + + +
2 (par-spl) + + + + + + + +
3 (synch) + + + + + + + +
4 (ex-ch) + + +/- + + + + +

5 (simple-m) + + +/- + + + + +
6 (m-choice) - + +/- +/- - + + +
7 (sync-m) - +/- + + - + - -
8 (multi-m) - - - + +/- +/- + -

9 (disc) - - - + +/- - +/- +
10 (arb-c) + + - + - + + -
11 (impl-t) + - + + - + - -

12 (mi-no-s) - +/- - + + +/- + -
13 (mi-dt) + + + + + + + +
14 (mi-rt) - - - - + - - -
15 (mi-no) - - - - + - - -
16 (def-c) - + - - +/- - - -

17 (int-par) - + - - +/- - - +
18 (milest) - + - - +/- - - -
19 (can-a) + + - - +/- - - -
20 (can-c) - - - - +/- + - -

Table 1. The main results for Staffware, COSA, InConcert, Eastman, FLOWer, Lotus Domino
Workflow, Meteor, and Mobile.

5

pattern product
MQSeries Forté Verve Vis. WF Changeng. I-Flow SAP/R3

1 (seq) + + + + + + +
2 (par-spl) + + + + + + +
3 (synch) + + + + + + +
4 (ex-ch) + + + + + + +

5 (simple-m) + + + + + + +
6 (m-choice) + + + + + + +
7 (sync-m) + - - - - - -
8 (multi-m) - + + - - - -

9 (disc) - + + - + - +
10 (arb-c) - + + +/- + + -
11 (impl-t) + - - - - - -

12 (mi-no-s) - + + + - + -
13 (mi-dt) + + + + + + +
14 (mi-rt) - - - - - - +/-
15 (mi-no) - - - - - - -
16 (def-c) - - - - - - -

17 (int-par) - - - - - - -
18 (milest) - - - - - - -
19 (can-a) - - - - - - +
20 (can-c) - + + - + - +

Table 2. The main results for MQSeries, Forté Conductor, Verve, Visual WorkFlo, Changengine,
I-Flow, and SAP/R3 Workflow.

Please apply the results summarized in tables 1 and 2 with care. First of all, the
organization selecting a workflow management system should focus on the patterns
most relevant for the workflow processes at hand. Since support for the more advanced
patterns is limited, one should focus on the patterns most needed. Second, the fact that
a pattern is not directly supported by a product does not imply that it is not possible to
support the construct at all.

From the comparison it is clear that no tool supports all the of the 20 selected pat-
terns. In fact, many of the tools only support a relatively small subset of the more
advanced patterns (i.e., patterns 6 to 20). Specifically the limited support for the dis-
criminator, and its generalization, the N -out-of-M -join, the state-based patterns (only
COSA), the synchronization of multiple instances (only FLOWer) and cancellation ac-
tivities/cases, is worth noting.

The goal of providing the two tables is not to advocate the use of specific tools.
However, they illustrate that existing tools and languages are truly different and that
most languages provide only partial support for the patterns appearing in real life work-
flow processes. These observations have been our main motivation to look into the
expressiveness of high-level Petri nets (Section 3) and come up with a new language
(Section 4).

6

3 Limitations of Petri nets

Given the fact that workflow management systems have problems dealing with work-
flow patterns it is interesting to see whether established process modeling techniques
such as Petri nets can cope with these patterns. The table listed in the appendix shows
an evaluation of high-level Petri nets with respect to the patterns. (Ignore the column
under YAWL for the time being.) We use the term high-level Petri nets to refer to Petri
nets extended with color (i.e., data), time, and hierarchy [4]. Examples of such lan-
guages are the colored Petri nets as described in [25], the combination of Petri nets and
Z specification described in [20], and many more. These languages are used by tools
such as Design/CPN (University of Aarhus, http://www.daimi.au.dk/designCPN/) and
ExSpect (EUT/D&T Bakkenist, http://www.exspect.com/). Although these languages
and tools have differences when it comes to for example the language for data transfor-
mations (e.g., arc inscriptions) there is a clear common denominator. When we refer to
high-level Petri nets we refer to this common denominator. To avoid confusion we use
the terminology as defined in [25] as much as possible. It is important to note that for
the table shown in the appendix we have used the same criteria as used in tables 1 and 2
for the 15 workflow systems (i.e., a “+” is only given if there is direct support).

Compared to existing languages high-level Petri nets are quite expressive. Recall
that we use the term “expressiveness” not in the formal sense. High-level Petri nets are
Turing complete, and therefore, can do anything we can define in terms of an algorithm.
However, this does not imply that the modeling effort is acceptable. By comparing the
table in the appendix with tables 1 and 2, we can see that high-level nets, in contrast to
many workflow languages, have no problems dealing with state-based patterns. This is
a direct consequence of the fact that Petri nets use places to represent states explicitly.
Although high-level Petri nets outperform most of the existing languages, the result is
not completely satisfactory. As indicated in the introduction we see serious limitations
when it comes to (1) patterns involving multiple instances, (2) advanced synchroniza-
tion patterns, and (3) cancellation patterns. In the remainder of this section we discuss
these limitations in more detail.

3.1 Patterns involving multiple instances

Suppose that in the context of a workflow for processing insurance claims there is a
subprocess for processing witness statements. Each insurance claim may involve zero
or more witness statements. Clearly the number of witness statements is not known
at design time. In fact, while a witness statement is being processed other witnesses
may pop up. This means that within one case a part of the process needs to be instanti-
ated a variable number of times and the number of instances required is only known at
run time. The required pattern to model this situation is Pattern 15 (Multiple instances
without a priori runtime knowledge). Another example of this pattern is the process
of handling journal submissions. For processing journal submissions multiple reviews
are needed. The editor of the journal may decide to ask a variable number of review-
ers depending on the nature of the paper, e.g., if it is controversial, more reviewers are
selected. While the reviewing takes place, the editor may decide to involve more re-
viewers. For example, if reviewers are not responsive, have brief or conflicting reviews,

7

then the editor may add an additional reviewer. Other examples of multiple instances
include orders involving multiple items (e.g., a customer orders three books from an
electronic bookstore), a subcontracting process with multiple quotations, etc.

It is possible to model a variable number of instances executed in parallel using a
high-level Petri net. However, the designer of such a model has to keep track of two
things: (1) case identities and (2) the number of instances still running.

At the same time multiple cases are being processed. Suppose x and y are two active
cases. Whenever, there is an AND-join only tokens referring to the same case can be
synchronized. If inside x part of the process is instantiated n times, then there are n
“child cases” x:1 : : : x:n. If for y the same part is also instantiated multiple times, saym,
then there are m “child cases” y:1 : : : y:m. Inside the part which is instantiated multiple
times there may again be parallelism and there may be multiple tokens referring to
one child case. For a normal AND-join only tokens referring to the same child case
can be synchronized. However, at the end of the part which is instantiated multiple
times all child cases having the same parent should be synchronized, i.e., case x can
only continue if for each child case x:1 : : : x:n the part has been processed. In this
synchronization child cases x:1 : : : x:n and child cases y:1 : : : y:m should be clearly
separated. To complicate matters the construct of multiple instances may be nested
resulting in child-child cases such as x.5.3 which should be synchronized in the right
way. Clearly, a good workflow language does not put the burden of keeping track of
these instances and synchronizing them at the right level on the workflow designer.

Besides keeping track of identities and synchronizing them at the right level, it is
important to know how many child cases need to be synchronized. This is of particular
relevance if the number of instances can change while the instances are being pro-
cessed (e.g., a witness which points out another witness causing an additional witness
statement). In a high-level Petri net this can be handled by introducing a counter keep-
ing track of the number of active instances. If there are no active instances left, the
child cases can be synchronized. Clearly, it is also not acceptable to put the burden of
modeling such a counter on the workflow designer.

3.2 Advanced synchronization patterns

Consider the workflow process of booking a business trip. A business trip may involve
the booking of flights, the booking of hotels, the booking of a rental car, etc. Suppose
that the booking of flights, hotels, and cars can occur in parallel and that each of these
elements is optional. This means that one trip may involve only a flight, another trip may
involve a flight and a rental car, and it is even possible to have a hotel and a rental car
(i.e., no flight). The process of booking each of these elements has a separate description
which may be rather complex. Somewhere in the process these optional flows need to
be synchronized, e.g., activities related to payment are only executed after all booking
elements (i.e., flight, hotel, and car) have been processed. The problem is that it is not
clear which subflows need to be synchronized. For a trip not involving a flight, one
should not wait for the completion of booking the flight. However, for a business trip
involving all three elements, all flows should be synchronized. The situation where there
is sometimes no synchronization (XOR-join), sometimes full synchronization (AND-

8

join), and sometimes only partial synchronization (OR-join) needed is referred to as
Pattern 7 (Synchronizing merge).

It is interesting to note that the Synchronizing merge is directly supported by InCon-
cert, Eastman, Domino Workflow, and MQSeries Workflow. In each of these systems,
the designer does not have to specify the type of join; this is automatically handled by
the system.

In a high-level Petri net each construct is either an AND-join (transition) or an
XOR-join (place). Nevertheless, it is possible to model the Synchronizing merge in
various ways. First of all, it is possible to pass information from the split node to the
join node. For example, if the business trip involves a flight and a hotel, the join node is
informed that it should only synchronize the flows corresponding to these two elements.
This can be done by putting a token in the input place of the synchronization transition
corresponding to the element car rental. Second, it is possible to activate each branch
using a “Boolean” token. If the value of the token is true, everything along the branch is
executed. If the value is false, the token is passed through the branch but all activities on
it are skipped. Third, it is possible to build a completely new scheduler in terms of high-
level Petri nets. This scheduler interprets workflow processes and uses the following
synchronization rule: “Fire a transition t if at least one of the input places of t is marked
and from the current marking it is not possible to put more tokens on any of the other
input places of t.” In this last solution, the problem is lifted to another level. Clearly,
none of the three solutions is satisfactory. The workflow designer has to add additional
logic to the workflow design (case 1), has to extend the model to accommodate true and
false tokens (case 2), or has to model a scheduler and lift the model to another level
(case 3).

It is interesting to see how the problem of the Synchronizing merge has been han-
dled in existing systems and literature. In the context of MQSeries workflow the tech-
nique of “dead-path elimination” is used [31, 22]. This means that initially each input
arc is in state “unevaluated”. As long as one of the input arcs is in this state, the activity
is not enabled. The state of an input arc is changed to true the moment the preceding
activity is executed. However, to avoid deadlocks the input arc is set to false the moment
it becomes clear that it will not fire. By propagating these false signals, no deadlock is
possible and the resulting semantics matches Pattern 7. The solution used in MQSeries
workflow is similar to having true and false tokens (case 2 described above). The idea
of having true and false tokens to address complex synchronizations was already raised
in [18]. However, the bipolar synchronization schemes presented in [18] are primar-
ily aimed at avoiding constructs such as the Synchronizing merge, i.e., the nodes are
pure AND/XOR-splits/joins and partial synchronization is not supported nor investi-
gated. In the context of Event-driven Process Chains (EPC’s, cf. [26]) the problem of
dealing with the Synchronizing merge also pops up. The EPC model allows for so-
called ∨-connectors (i.e., OR-joins which only synchronize the flows that are active).
The semantics of these ∨-connectors have been often debated [3, 11, 29, 37, 38]. In [3]
the explicit modeling is advocated (case 1). Dehnert and Rittgen [11] advocate the use
of a weak correctness notion (relaxed soundness) and an intelligent scheduler (case 3).
Langner et al. [29] propose an approach based on Boolean tokens (case 2). Rump [38]
proposes an intelligent scheduler to decide whether an ∨-connector should synchronize

9

or not (case 3). In [37] three different join semantics are proposed for the ∨-connector:
(1) wait for all to come (corresponds to the Synchronizing merge, Pattern 7), (2) wait
for first to come and ignore others (corresponds to the Discriminator, Pattern 9), and
(3) never wait, execute every time (corresponds to the Multi merge, Pattern 8). The
extensive literature on the synchronization problems in EPC’s and workflow systems
illustrates that patterns like the Synchronizing merge are relevant and far from trivial.

3.3 Cancellation patterns

Most workflow modeling languages, including high-level nets, have local rules directly
relating the input of an activity to output. For most situations such local rules suffice.
However, for some events local rules can be quite problematic. Consider for example the
processing of Customs declarations. While a Customs declaration is being processed,
the person who filed the declaration can still supply additional information and notify
Customs of changes (e.g., a container was wrecked, and therefore, there will be less
cargo as indicated on the first declaration). These changes may lead to the withdrawal
of a case from specific parts of the process or even the whole process. Such cancella-
tions are not as simple as they seem when for example high-level Petri nets are used.
The reason is that the change or additional declaration can come at any time (within a
given time frame) and may affect running and/or scheduled activities. Given the local
nature of Petri net transitions, such changes are difficult to handle. If it is not known
where in the process the tokens reside when the change or additional declaration is re-
ceived, it is not trivial to remove these tokens. Inhibitor arcs allow for testing whether
a place contains a token. However, quite some bookkeeping is required to remove to-
kens from an arbitrary set of places. Consider for example 10 parallel branches with 10
places each. To remove 10 tokens (one in each parallel branch) one has to consider 10 10

possible states. Modeling a “vacuum cleaner”, i.e., a construct to remove the 10 tokens,
is possible but results in a spaghetti-like diagram. Therefore it is difficult to deal with
cancellation patterns such as Cancel activity (Pattern 19) and Cancel case (Pattern 20)
and anything in-between.

In this section we have discussed serious limitations of high-level Petri nets when it
comes to (1) patterns involving multiple instances, (2) advanced synchronization pat-
terns, and (3) cancellation patterns. Again, we would like to stress that high-level Petri
nets are able to express such routing patterns. However, the modeling effort is consid-
erable, and although the patterns are needed frequently, the burden of keeping track of
things is left to the workflow designer.

4 YAWL: Yet Another Workflow Language

In a joint effort between Eindhoven University of Technology and Queensland Univer-
sity of Technology we are currently working on a new workflow language based on
Petri nets. The goal of this joint effort is to overcome the limitations mentioned in the
previous section by adding additional constructs. A detailed description of the language
is beyond the scope of this paper. Moreover, the language is still under development.

10

The goal of this section is to briefly sketch the features of this language named YAWL
(Yet Another Workflow Language).

Condition

Input condition

Output condition

Atomic task

AND-split task

XOR-split task

Composite task

Multiple instances
of an atomic task

Multiple instances
of a composite task

OR-split task

AND-join task

XOR-join task

OR-join task

... remove tokens

Fig. 2. Symbols used in YAWL.

Figure 2 shows the modeling elements of YAWL. YAWL extends the class of work-
flow nets described in [2, 4] with multiple instances, composite tasks, OR-joins, re-
moval of tokens, and directly connected transitions. A workflow specification in YAWL
is a set of extended workflow nets (EWF-nets) which form a hierarchy, i.e., there is a
tree-like structure. Tasks1 are either (atomic) tasks or composite tasks. Each composite
task refers to a unique EWF-net at a lower level in the hierarchy. Atomic tasks form
the leaves of the tree-like structure. There is one EWF-net without a composite task
referring to it. This EWF-net is named the top level workflow and forms the root of the
tree-like structure.

Each EWF-net consists of tasks (either composite or atomic) and conditions which
can be interpreted as places. Each EWF-net has one unique input condition and one
unique output condition (see Figure 2). In contrast to Petri nets, it is possible to connect
“transition-like objects” like composite and atomic tasks directly to each other without
using a “place-like object” (i.e., conditions) in-between. For the semantics this construct
can be interpreted as a hidden condition, i.e., an implicit condition is added for every
direct connection.

1 Note that in YAWL we use the term task rather than activity to remain consistent with earlier
work on workflow nets [2, 4].

11

Each task (either composite or atomic) can have multiple instances as indicated in
Figure 2. It is possible to specify a lower bound and an upper bound for the number
of instances created after initiating the task. Moreover, it is possible to indicate that the
task terminates the moment a certain threshold of instances has completed. The moment
this threshold is reached, all running instances are terminated and the task completes. If
no threshold is specified, the task completes once all instances have completed. Finally,
there is a fourth parameter indicating whether the number of instances is fixed after
creating the instance. The value of the parameter is ”fixed” if after creation no instances
can be added and ”var” if it is possible to add additional instances while there are
still instances being processed. Note that by extending Petri-nets with this construct
with four parameters (lower bound, upper bound, threshold, and fixed/var), we directly
support all patterns involving multiple instances (cf. Section 3.1, and in addition, the
Discriminator pattern (Pattern 9) under the assumption of multiple instances of the same
task. In fact, we also support the more general n-out-of-m join [6].

We adopt the notation described in [2, 4] for AND/XOR-splits/joins as shown in
Figure 2. Moreover, we introduce OR-splits and OR-joins corresponding to respectively
Pattern 6 (Multi choice) and Pattern 7 (Synchronizing merge), cf. Section 3.2.

Finally, we introduce a notation to remove tokens from places independent of the
fact if and how many tokens there are. As Figure 2 shows this is denoted by dashed
circles/lines. The enabling of the task does not depend on the tokens within the dashed
area. However, the moment the task executes all tokens in this area are removed. Clearly,
this extension is useful for the cancellation patterns, cf. Section 3.3. Independently, this
extensions was also proposed in [10] for the purpose of modeling dynamic workflows.

As indicated earlier, YAWL is still under development and the goal of this paper is
not to introduce the language in any detail. Therefore, we restrict ourselves to simply
applying YAWL to some of the examples used in the previous section.

4.1 Example: Patterns involving multiple instances

Figure 3 shows three workflow specifications dealing with multiple witness statements
in parallel. The first workflow specification (a), starts between 1 and 10 instances of
the composite task process witness statement after completing the initial task regis-
ter witness. When all instances have completed, task archive is executed. The second
workflow specification shown in Figure 3(b), starts an arbitrary number of instances
of the composite task and even allows for the creation of new instances. The third
workflow specification (c) starts between 1 and 10 instances of the composite task pro-
cess witness statement but the finishes if all have completed or at least three have com-
pleted. The three examples illustrate that YAWL allows for a direct specification of the
patterns 14, 15, and 9.

4.2 Example: Advanced synchronization patterns

As explained in Section 3.2 an OR-join can be interpreted in many ways. Figure 4
shows three possible interpretations using the booking of a business trip as an example.
The first workflow specification (a) starts with an OR-split register which enables tasks
flight, hotel and/or car. Task pay is executed for each time one of the three tasks (i.e.,

12

register_
witnesses

archive
process_
witness_

statements

[1,10,inf,fixed]

(a) A workflow processing between 1 and 10 witness statements
without the possibility to add witnesses after registration (Pattern 14).

(b) A workflow processing and arbitrary number of witnesses with
the possibility to add new batches of witnesses (Pattern 15).

register_
witnesses

archive
process_
witness_

statements

[1,10,3,fixed]

(c) A workflow processing between 1 and 10 witness statements
with a threshold of 3 witnesses (extension of Pattern 9).

register_
witnesses

archive
process_
witness_

statements

[1,10,inf,var]

Fig. 3. Some examples illustrating the way YAWL deals with multiple instances.

13

register

(a) Task pay is executed each time one of the three preceding task
completes (Pattern 8).

flight

hotel

car

pay

register

(b) Task pay is executed only once, i.e., when all started tasks have
completed (Pattern 7).

flight

hotel

car

pay

register

(c) Task pay is executed only once, i.e., when the first task has
completed (Pattern 9).

flight

hotel

car

pay

Fig. 4. Some examples illustrating the way YAWL deals with advanced synchronization patterns.

14

flight, hotel, and car) completes. This construct corresponds to the Multi merge (Pattern
8). The second workflow specification shown in Figure 4(b) is similar but combines
the individual payments into one payment. Therefore, it waits until each of the tasks
enabled by register completes. Note that if only a flight is booked, there is no synchro-
nization. However, if the trip contains two or even three elements, task pay is delayed
until all have completed. This construct corresponds to the Synchronizing merge (Pat-
tern 7). The third workflow specification (c) enables all three tasks (i.e., flight, hotel, and
car) but pays after the first task is completed. After the payment all running tasks are
canceled. Although this construct makes no sense in this context it has been added to
illustrate how the Discriminator can be supported (Pattern 9) assuming that all running
threads are canceled the moment the first one completes.

4.3 Example: Cancellation patterns

Figure 5 illustrates the way YAWL supports the two cancellation patterns (patterns 19
and 20). The first workflow specification (a) shows the Cancel activity pattern which
removes all tokens from the input places of task activity. In the second workflow speci-

(a) Cancel activity (Pattern 19).

(b) Cancel case (Pattern 20).

cancel_activity

activity

Fig. 5. Some examples illustrating the way YAWL deals with cancellation patterns.

15

fication (b) there is a task removing all tokens and putting a token in the output condition
thus realizing the Cancel case pattern.

The examples given in this section illustrate that YAWL solves many of the problems
indicated in Section 3. The table in the appendix shows that YAWL supports 19 of the
20 patterns used to evaluate contemporary workflow systems. Implicit termination (i.e.,
multiple output conditions) is not supported to force the designer to think about termi-
nation properties of the workflow. It would be fairly easy to extend YAWL with this
pattern (simply connect all output conditions with an OR-join having a new and unique
output condition). However, implicit termination also hides design errors because it is
not possible to detect deadlocks. Therefore, there is no support for this pattern.

5 Conclusion

The workflow patterns described in previous publications [5–8, 48] provide functional
requirements for workflow languages. Unfortunately, existing workflow languages only
offer partial support for these patterns. Compared with the workflow languages used by
commercial tools, high-level Petri nets are acceptable. Nevertheless, when it comes
to patterns involving multiple instances, advanced synchronization, and cancellation,
high-level Petri nets offer little support. Therefore, we are working towards a more
expressive Petri-net-based language supporting most patterns. Moreover, we hope that
the modeling problems collected in this paper will stimulate other researchers working
on high-level Petri nets to develop mechanisms, tools, and methods providing more
support.

References

1. W.M.P. van der Aalst. Chapter 10: Three Good reasons for Using a Petri-net-based Workflow
Management System. In T. Wakayama, S. Kannapan, C.M. Khoong, S. Navathe, and J. Yates,
editors, Information and Process Integration in Enterprises: Rethinking Documents, volume
428 of The Kluwer International Series in Engineering and Computer Science, pages 161–
182. Kluwer Academic Publishers, Boston, Massachusetts, 1998.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process Chains. Infor-
mation and Software Technology, 41(10):639–650, 1999.

4. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

5. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Advanced
Workflow Patterns. In O. Etzion and P. Scheuermann, editors, 7th International Confer-
ence on Cooperative Information Systems (CoopIS 2000), volume 1901 of Lecture Notes in
Computer Science, pages 18–29. Springer-Verlag, Berlin, 2000.

6. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. BETA Working Paper Series, WP 47, Eindhoven University of Technology, Eind-
hoven, 2000.

16

7. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Work-
flow Patterns. Technical report, Eindhoven University of Technology, Eindhoven, 2002.
http://www.tm.tue.nl/it/research/patterns.

8. W.M.P. van der Aalst and H. Reijers. Adviseurs slaan bij workflow-systemen de plank regel-
matig mis. Automatisering Gids, 36(15):15–15, 2002.

9. Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Netherlands, 2001.
10. P. Chrzastowski-Wachtel. Top-down Petri Net Based Approach to Dynamic Workflow Mod-

eling (Work in Progress). University of New South Wales, Sydney, 2002.
11. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R. Dittrich,

A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th International Conference on
Advanced Information Systems Engineering (CAiSE’01), volume 2068 of Lecture Notes in
Computer Science, pages 157–170. Springer-Verlag, Berlin, 2001.

12. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone
Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, Berlin, 1993.

13. FileNet. Visual WorkFlo Design Guide. FileNet Corporation, Costa Mesa, CA, USA, 1997.
14. Forté. Forté Conductor Process Development Guide. Forté Software, Inc, Oakland, CA,

USA, 1998.
15. M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, Mas-

sachusetts, 1997.
16. Fujitsu. i-Flow Developers Guide. Fujitsu Software Corporation, San Jose, CA, USA, 1999.
17. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Professional Computing Series. Addison Wesley, Reading, MA,
USA, 1995.

18. H. J. Genrich and P. S. Thiagarajan. A Theory of Bipolar Synchronization Schemes. Theo-
retical Computer Science, 30(3):241–318, 1984.

19. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3:119–153, 1995.

20. K.M. van Hee. Information System Engineering: a Formal Approach. Cambridge University
Press, 1994.

21. HP. HP Changengine Process Design Guide. Hewlett-Packard Company, Palo Alto, CA,
USA, 2000.

22. IBM. IBM MQSeries Workflow - Getting Started With Buildtime. IBM Deutschland En-
twicklung GmbH, Boeblingen, Germany, 1999.

23. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

24. K. Jensen. Coloured Petri Nets: A High Level Language for System Design and Analysis. In
G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer
Science, pages 342–416. Springer-Verlag, Berlin, 1990.

25. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1992.

26. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für
Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbrücken, 1992.

27. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Australia, 2002.

28. T.M. Koulopoulos. The Workflow Imperative. Van Nostrand Reinhold, New York, 1995.
29. P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event driven Process

Chains. In J. Desel and M. Silva, editors, Application and Theory of Petri Nets 1998, volume
1420 of Lecture Notes in Computer Science, pages 286–305. Springer-Verlag, Berlin, 1998.

17

30. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John
Wiley and Sons, New York, 1997.

31. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall
PTR, Upper Saddle River, New Jersey, USA, 1999.

32. M. Ajmone Marsan, G. Balbo, and G. Conte. A Class of Generalised Stochastic Petri Nets
for the Performance Evaluation of Multiprocessor Systems. ACM Transactions on Computer
Systems, 2(2):93–122, May 1984.

33. M. Ajmone Marsan, G. Balbo, and G. Conte et al. Modelling with Generalized Stochastic
Petri Nets. Wiley series in parallel computing. Wiley, New York, 1995.

34. S.P. Nielsen, C. Easthope, P. Gosselink, K. Gutsze, and J. Roele. Using Lotus Domino Work-
flow 2.0, Redbook SG24-5963-00. IBM, Poughkeepsie, USA, 2000.

35. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathe-
matik, Bonn, 1962.

36. D. Riehle and H. Züllighoven. Understanding and Using Patterns in Software Development.
Theory and Practice of Object Systems, 2(1):3–13, 1996.

37. P. Rittgen. Modified EPCs and their Formal Semantics. Technical report 99/19, University
of Koblenz-Landau, Koblenz, Germany, 1999.

38. F. Rump. Erreichbarkeitsgraphbasierte Analyse ereignisgesteuerter Prozessketten. Technis-
cher Bericht, Institut OFFIS, 04/97 (in German), University of Oldenburg, Oldenburg, 1997.

39. SAP. WF SAP Business Workflow. SAP AG, Walldorf, Germany, 1997.

40. T. Schäl. Workflow Management for Process Organisations, volume 1096 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1996.

41. A. Sheth, K. Kochut, and J. Miller. Large Scale Distributed Information Systems (LSDIS)
laboratory, METEOR project page. http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

42. Eastman Software. RouteBuilder Tool User’s Guide. Eastman Software, Inc, Billerica, MA,
USA, 1998.

43. Software-Ley. COSA 3.0 User Manual. Software-Ley GmbH, Pullheim, Germany, 1999.

44. Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire, United Kingdom,
2000.

45. Tibco. TIB/InConcert Process Designer User’s Guide. Tibco Software Inc., Palo Alto, CA,
USA, 2000.

46. Verve. Verve Component Workflow Engine Concepts. Verve, Inc., San Francisco, CA, USA,
2000.

47. WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-1011).
Technical report, Workflow Management Coalition, Brussels, 1996.

48. Workflow Patterns Home Page. http://www.tm.tue.nl/it/research/patterns.

A A comparison of high-level Petri nets and YAWL using the
patterns

The table shown in this appendix indicates for each pattern whether high-level Petri
nets/YAWL offers direct support (indicated by a “+”), partial direct support (indicated
by a “+/-”), or no direct support (indicated by a “-”).

18

pattern high-level Petri nets YAWL
1 (seq) + +

2 (par-spl) + +
3 (synch) + +
4 (ex-ch) + +

5 (simple-m) + +
6 (m-choice) + +
7 (sync-m) −(i) +
8 (multi-m) + +

9 (disc) −(ii) +
10 (arb-c) + +
11 (impl-t) −(iii) −(iv)

12 (mi-no-s) + +
13 (mi-dt) + +
14 (mi-rt) −(v) +
15 (mi-no) −(vi) +
16 (def-c) + +

17 (int-par) + +
18 (milest) + +
19 (can-a) +=−(vii) +
20 (can-c) −(viii) +

(i) The synchronizing merge is not supported because the designer has to keep track
of the number of parallel threads and decide to merge or synchronize flows (cf.
Section 3.2).

(ii) The discriminator is not supported because the designer needs to keep track of the
number of threads running and the number of threads completed and has to reset
the construct explicitly by removing all tokens corresponding to the iteration (cf.
Section 3.2).

(iii) Implicit termination is not supported because the designer has to keep track of
running threads to decide whether the case is completed.

(iv) Implicit termination is not supported because the designer is forced to identify one
unique final node. Any model with multiple end nodes can be transformed into a
net with a unique end node (simply use a synchronizing merge). This has not been
added to YAWL to force the designer to think about successful completion of the
case. This requirement allows for the detection of unsuccessful completion (e.g.,
deadlocks).

(v) Multiple instances with synchronization are not supported by high-level Petri nets
(cf. Section 3.1).

(vi) Also not supported, cf. Section 3.1.
(vii) Cancel activity is only partially supported since one can remove tokens from the

input place of a transition but additional bookkeeping is required if there are multi-
ple input places and these places may be empty (cf. Section 3.3).

(viii) Cancel activity is not supported because one needs to model a vacuum clearer to
remove tokens which may of may not reside in specific places (cf. Section 3.3).

19

20

���������
	����
������������� ���
	����
�������
�����
���! "�����#�
�"���%$'&(�
�)���
�����+*,�.-/	����
�������������

02143�57698;:=<><>?A@B39CEDF@FGE143�5E1BGIHJ?><><K?>G7LB3M@FGNCO1BGEPIQR14S"T.0VUXWYS"?>T�3M6,GETM6,G
Z�[�\^]`_badcfeRg,hbijadck\^imlEn`o�pqnrckcfedpsn`o^Z�ckn9atedc

gbuwv`[9[�xy["zXlXxsckufatedpsuM{"xO{"n4|�}~nrz�[�ed\!{"adps[�nYlXnro�psn`cfcfedpsn`o
� n`ps��cfeditp�a~h�["zXgb[�_radv��R_`ijatew{"xsp�{

� {k�mit[�n(��{���ckiRZ
{�\^]`_rik�`gr���"�����,�F� � gb�
���R�y}��lE\!{�psxA��� � {"advrcf��� lXxsxsps[�a���|rijad[b� |rcfz�ckn`ukc�� o�[��F� {"_y�y��[�n`{"adv`{�ny� ��psxsxspsn`o�ad[�nB��_rn`psid{b� cM|b_y� {�_��xq{"edik� �9edpsijadckn`itckn4��_`nrpqid{,� cM|r_�� {"_F�

 .¡O¢k£k¤�¥4¦�£�§ �
vrpqim]`{�]BcfeNedck]B["etadim[�n�advrc�_`itc�[�zXZ�[�xq[�_redcM|�¨Ocfatedpy©Rcfadi�ªKZ
¨E©�i�«�{�n`|�¬)­r®f¯�°�±y²,³�´
µ¶psn
adv`c�|bck��ckxs[�]`\^ckn9aN["zX{#]red["ad[9uk[�x�ad[#it_`]r]B[�etamadv`c��bpsit_`{�xspsid{"adps[�n({"n4|·{"n`ps\!{"adps[�n�[�zX{=ew{"n`o�c�[�z7ijhbijadck\^i
adv4{�aNuM{�n�¸Bc�\^[,|bckxsxqck|._ritpqnro^Z
¨E©�ik�r�
v`c�|rck��cfxq[�]BcM|!]red[�ad[9uf[�xFzA{�ufpqxsp�aw{"adcfi¹advrc�uk["º~["ew|rpsn4{�adps[�n�¸Bc�a��
cfckn
{Y¬=­b®k¯�°�±y²,³�´
µ»itps\=_`xq{"adps[�n��O{"n4|�{"n½¼¿¾�ÀKÁ�ÂwÃBÄ�Å#ÆyÇ�ÈwÉrÄ�Å Ç�ÈfÄ�ÀÊÇ>Ë�ÃÍÌ¹Ä�ÎwÏ�ÄMÐ9Á��E�
v`c^]bed[�ad[9uk[�x
psi=\^[,|bckxsxscM|
{�n`|½{"n4{"xshbitcM|Ñ_ritpqnro�Z
¨E©�i=ufedcM{�adcM|½_ritpsn`oÒ¬=­b®k¯�°�±y²,³�´
µJ�E�
v`c�{�n`{�x�hbitpqi#itv`[M�mi#adv4{�a#advrc.]bed[�ad[9uk[�x
�
["ed�biR{�i¹edcMÓ9_`p�edcM|·{"n4|�uf[�n9aw{�psn`i¹n`[!|bcM{�|bxs[9u��,ik�B�
vrc�]4{�]Bc�e�{"xqit[.{"n4{�x�hbitckiR{J\^[�edc�ed[�¸r_`ija¹��cfeditps[�nY[�z
adv`c�]bed[�ad[9uk[�x>�

Ô2Õ�ÖN×�ØXÙ`ÚRÛFÜmÝ�6,T"?ALFG¿ÞBßJà=á;:�â�3M6,GET"?A@FGET9C7ã·?>T�äE1B<K?>T�143�?A@FGNCOå�GE?>æç143�?A@FGè@Bé�ßJà=áê0ë@OP76,<>T

ì írîRïBðFñ�ò)ó)ô�ïFõwñ¹î
ö÷576,G�äXT�?>G7LY3�576Yß#@F<A@Fä7S"6,Pçà�693MS"?¿á�693YødßJà)áYù!úsûyCdürý
3M@y@F<tC7þ�ÿ��������	��

��� ú�����ýdCOäXTM69S"T)14S"6�<>?>æ½?A3M6,PÑ?>G
3�576��O?>T�äX1B<>?>T�143�?A@FGXTR3�5X143��91BG��
6��
69S�é�@BS"æÑ6,PNU4ö÷5E?><>T�3=þ�ÿ�����������
������ES"@��O?>P76,T	�B69S��çP7693�1B?K<A6,P ��?KT�äE1B<�!
?>T�143�?>@FGET�?>G½3�576!é�@BS"æ @BéN3�576#"k3M@�$B6,G LF1BæÑ6&%Ò3�5E6,TM6�14S�6�G7@B3)6,1BT�?K<'�ÑäEGEP769S"T�3M@y@OP �(�)�
69@��X<>6!äEG7éj1Bæç?><>?>14S
8.?A3�5½ß^à)á�T9U+*!5769S�6!14S"6^@B3�5769S=TM@Bé�3w8J14S�6��¿1���$414LB6,T)3�5E143��ES�@��O?>P76^5E?>LF5769S�<A6��B6,<��O?>T�äE1B<K?>T�143�?A@FGET�é�@BS#þ�ÿ-,
�������	��

���½C
T�ä.�"521BT�/0�213��45��

��� ú���ý�1BGEPë3�576 0ë6,T�T�14LB676�6&8�ä76,G.��6Íß^5E14S�3.<>?9�ES"14S���ú���:`ýdC
5E@b8#6��B69S
3�576,TM6;�X1���$414LB6,TÑ14S�6 G7@B3Ò1B<A8J1&�OT�T�143�?>TMéj1���3M@BS��¶é�@BS<�414S"?A@FäETÒS�6,1BTM@FGET9C�?>G.�9<>äXPE?>G7L 3�576½éj1���3Í3�5E143Ò3�576��
S�6,<'� @FG 3�576 þ�ÿ=���2�>����

�
��LBS"1?�X5X?9�91B<NäETM69S.?KG�3M69S�éj1���6�øA@�B�C�ù�U

à)S�@Fæ)�E3M6,PD�E� 3�576ë<>?Kæç?A3�143�?A@FGETÑ?Kæ)�
@FTM6,PF�(� 3�576G�O?>T�äX1B<>?>T�143�?A@FG 3M@�@F<>T7�9äES�S�6,Gy3�<'� 1��`1B?K<>1?�X<A6 é�@BS
þ�ÿ��&�2�>����

���/8=6·P76&�9?>PE6,Pç3M@H��S"6,143M6·1BGJILKNMPO�QSR�T?UWV�XZYS[�T?U�XZY\T�M]X�^�R#_3T+`\a�T&b(O9U(*!5E63$B6��ç?>P76,1BTc�
6,5E?>GEP
3�5E?>T�I�K+MPO�QSR�T?U7V>XZYS[�T?U�X9Y�T�M]X2^+RF_3T+`\a�T&b(O�14S"6�d�3�5E143)��?KT�äE1B<>?>T"143�?A@FGET<�91BGe��6èP76��B6,<A@��
6,P 8.?>3�5 LBS"6,143M69S
LBS"1?�X5X?9�91B<��91?�X1?�¿?><>?A3�?A6,T�ø�é~@BS#6�âO1Bæ��X<A6.äET"?>G7L D�1&�41 <>?9�ES"14S"?A6,T�ùm3�5X1BG½3�57@FT�6�@BéRþ�ÿ��&�2�>����

�
��fO1BGEP�3�576
�O?>T�äE1B<>?KT�143�?A@FGg��@FäE<>Ph�
6)��69S"é~@BS"æç6,P'143Í1ëS�6,æÑ@B3M6 <A@E�9143�?>@FGNCR?>GXP76��
6,GEP76,Gy3�<'�I@Bé^3�576 þ�ÿ�����������
����
@�B�C�U
6Oä��"5è1<�O?>T�äX1B<>?>T�143�?A@FGç3M@y@F<
5E1BTi�
696,Gj��S�6,143M6,P 1BTi�X14S�3#@Bém3�576lk�R.X2m T+M]X2^�RJn5TN`&XoUpX2M]X�O\Y�q�^�Q�r O�q&O�R�`SO

s�t YSMPO&mHY uv^&w(O\U2UpX2RNb;�ES�@yxM6&��3 ú z4ý{��@FGEPEä.��3M6,Ph�(��3�576#B�GE?9�B69S"T�?A3|�2@Bé�6�@FäE3�5'å�äXTM3MS"1B<>?>1Ié~@BS 3�576½å�äET}!
3MS"1B<>?K1BG Ý�69é�6,G.��6~6-�9?>6,G.��6(1BGEPJ*R6&�"5EG7@F<>@BL��J��S"LF1BGE?>T�143�?A@FG¶øjÝl6-*��Òù�U.*!576·8=@BS�$�8J1BT!äEGEPE69S�3�1?$B6,Gj�(�
1�LBS�@Fä���@Bé�3w8#@ TM3�äEP76,Gy3�T�é~@BS�3�576,?AS
�XGE1B<>�B6,14SY57@FG7@Fä7S�T3�ES"@yxk6&��39CN1 æç1BGEPE143M@BS�����@Fæ)�
@FG76,G�3�@Bé)1#z
�B6,14S�H#1���576,<A@BSÍ@Bé^:)G7LF?>GE6969S"?>G7L ?>G ßJ@Fæ)�Xä73M69S~6-��TM3M6,æ½T(:)G7LF?KG76969S"?>G7L 143 3�5767B�GE?'�B69S"T�?>3P��@Bé36�@Fä73�5
å�äETM3MS"1B<>?K1OU�*.576)�ES�@yxM6&��3Ò5E1BP¶3�8=@2T�ä��
69S��O?>TM@BS"T�é�S�@Fæ 3�576�B�GE?'�B69S"T"?A3P� @BéW6O@Fä73�5'å�äETM3MS"1B<>?K1OC
1BGXP'1BG
6�âO3M69S"GE1B<mT�ä.��69S���?>T�@BS^é~S�@Fæ Ý�6�*��ÍC78.57@)�XS�@��O?>P76,PèS�6&8�äE?AS"6,æÑ6,G�3�T!é~@BS!3�5E6l��?KT�äE1B<>?>T"143�?A@FG#�X1���$414LB6BU�å
S�6&8�äE?AS�6,æç6,G�3Y@Bé{�XGE1B<L�B6,14SH��@Fæ)�XäE3M69S T��OTM3M6,æçTÒ6,G7LF?>G76969S"?KG7LJ�ES�@yxM6&��3�TÒ?>T(3�5E143Ò3�576��¶æÍäETM3Yé�@F<><A@r8�1
éjäE<><�T��OTM3M6,æçTÍ6,G7LF?KG76969S"?>G7L21?�.�ES�@F1���5NU�*.5E?>T(?>G(�B@F<'�B6,TÍé�@BS�3�GE?ALF5y3�<'�¶æÑ69693�?>G7LFTÍ8.?>3�5'3�576 T�ä��
69S��O?>TM@BS"T9C
�"5X1B?AS�6,P �E� 3�576!T�3�äEP76,Gy3�T9CB3M@ÒPE?>T��9äET�T��ES�@yxM6&��3��ES�@BLBS�6,T"T9U+�7@BS"æç1B<Xæç?>G�ä73M6,T�@Bé¿3�5E6!æÑ69693�?>G7LFT�14S"6^3�1?$B6,G

21

3M@ëS"6&��@BS"P PE6&�9?>T�?A@FGETÒ1BGEPV1���3�?A@FG ?A3M6,æçT,C¹1BGEPv�XS�@BLBS�6,T�T S�6��
@BS�3�T(14S�6 T�ä��Xæ½?A3M3M6,P¶é�@BS 6,1���5 æç69693�?>G7L7U
*!576 TM3�äXP76,G�3�TÑæÍäETM3ÑT�ä.�Xæç?A3 é~@BSç1BT�T�6,T�T�æÑ6,Gy3ç1�é�äX<><=T�693Ñ@Bé�P7@-�9äEæÑ6,Gy3�143�?A@FG é�@BSÑ3�576J�ES�@yxM6&��3�3�5E143
?>G.�9<KäEP76,T�d�1~�ES"@yxk6&��3i�X<>1BGNCyS�6&8�äE?AS�6,æÑ6,Gy3�T#T��
6&�9?'���9143�?A@FGNCOP76,T�?>LFG�P76,T���S"?'�E3�?A@FGmCF3M6,TM3{�X<>1BGNCy3M6,TM3^T��
6&�9?'��!
�9143�?A@FGNC�3M6,TM3#S�6��
@BS�39C�äET�69S#æç1BG�äE1B<tCy1BGEP�T���TM3M6,æ�æç1BG�äE1B<tUE*!576.TM3�äXP76,G�3�T#1B<>TM@ LF?'�B6·1ÒTM6,æç?KGE14S)@FG�3�576
�ES�@yxM6&��39CX1BGEPG�ES�@��O?>P76YP76,æç@FGETM3MS"143�?A@FGXTJ@Bé�1ç8=@BS�$O?>G7L �ES"@�PEä���39C�8�5E?9�"5 ?KT!1BT�TM6,T�T�6,PJ�(�è?>GEPE6���6,GXP76,G�3
1��91BP76,æç?Z�(TM3�1y��U.CfGë1BPEPE?A3�?A@FGmCO5E@FG7@Fä7S"T^TM3�äXP76,G�3�T.G7696,P 3M@ç8!S�?A3M6(1ÑS�6,TM6,14S��"5G�XS�@��
@FT�1B<
1BGEPJ�X1?�
69S,U
*!5E6)�ES�@yxM6&��3Y@��7�9?>1B<><'����@Fæ)�ES"?KTM6,TY1J8yäX14S�3M69S(@BéJ1J�B6,14S&�sT(8#@BS�$ é~@BSÒ3�576Ñ3w8#@ëTM3�äEPE6,G�3�T9CmT�@ 3�5E143

3�576�3M@B3�1B<)6\�
@BS�3Òé�@BSÒ3�5X?>T��ES�@yxM6&��3Ò8J1BT @Bé#3�5E6½@BS"P769SÒ@Bé3�J�
69S"TM@FG'æç@FG�3�5ET,U¹Ý·ä7S"?>G7L 3�5X?>TY3�?>æÑ6BCR3�576
TM3�äEPE6,G�3�T)�XS�@�PXä.��6,P 1?�
@Fä737�?:�:v�X14LB6,T½@BéYå3zVPE@E�9äEæç6,G�3�143�?A@FG é~@BSç3�5E6G�ES�@yxM6&��39U�*!5E?KT �X1?�
69Sç?>Tç1
T�?ALFGX?'���91BGy3ÍS"6���?>T"?A@FG @Bé�3�576 S"6,TM6,14S��"5e�X1?�
69SÑ8!S"?A3M3M6,GF�E� 3�5E6J�ES"TM3Ñ1Bä73�57@BSÑ3M@Vé�äE<9�X<><�3�5E6 S�6,TM6,14S���5
�X1?�
69S^S�6&8�äE?AS�6,æç6,G�3^é�@BS.57@FG7@FäES"T^TM3�äEP76,Gy3�T9U
*!5E6(LB@F1B<¹@Bé�3�576H�ES�@yxM6&��3!8J1BT.3M@ 1BPEPG�O?>T�äE1B<K?>T�143�?A@FGèéj1��9?><>?A3�?>6,TJ3M@�1 ß^à)áêæÑ@OP76,<N@Bé�1BGë1���?A@FGX?9�9T

æç?>T"T�?A@FG¶T��OTM3M6,æ øjå�0�6Eù�U�å�G å�0�6'?KTY6,T�TM6,Gy3�?>1B<><'�¶12<A@E�91B<=14S�6,1���@Fæ��Xä73M69S�G7693w8#@BS�$v��@FGET�?KTM3�?>G7LI@Bé
106O69S"?>1B<.Ý·143�1 HJäET2øA67Ý�H!ùç3�5E143j��@FGEG76&��3�Tè1 T�693½@Bél��@Fæ)�
@FG76,Gy3�Tè?>G.�9<>äEPX?>G7L�1 02?>T�T�?>@FG�ß#@FGy3MS�@F<
ß#@Fæ)�¿ä73M69S øt0�ß!ß!ù�C��414S"?A@FäET!T�6,GETM@BS"T9CEPX?>T��X<>1���T,CO1BGXP GE1&�O?ALF143�?A@FG2T���T�3M6,æçT9U
*!5E6���?>T"äE1B<>?>T�143�?>@FG�3M@�@F<mä73�?K<>?>TM6,T#3�576)
���1
1
�?��

����<K?'�ES"14S��ëú���C}�rýdCX3M@½T�6,GEPI?>G7é�@BS"æç143�?>@FGè3M@ç3�576

ILKNMPO�QSR�T?U)V�XZYS[�T?U�XZY\T�M]X�^�R�_3T+`\a�T&b(O���I�V�_�� ��?K1�*�ßJàJÞ�Cfà�ú��rýdU��Eä7S�3�5E69S,CR1BG 1?�.�X<>?Z�9143�?A@FGv�ES"@B3M@E��@F<#?>T
S�6&8�äE?AS�6,P 3M@çT�ä.�.�
@BS�3=3�5E6Y6�â-��5E1BG7LB6(@Bé���?KT�äE1B<>?>T"143�?A@FG7��@Fæçæ½1BGEPETW�
693w8#696,G2þ�ÿ��&�2�>����

�
��1BGEPè3�576
:�ã·à�U�*!576�T�3�äEP76,Gy3�T#PE6��B6,<A@��
6,P 1BGXP�?>æ��X<A6,æÑ6,Gy3M6,P�1~�ES"@B3M@E��@F<�é�@BS#3�5X?>T��¿ä7S��
@FTM6!8.5X?9�"5 ?>TJT��
6&�9?'�E6,P
?>Gè3�576 6�@Bé~3�8#14S"6ÒÝ�6,T�?ALFGIÝ�6,T���S"?9�E3�?A@FGVú��rýdU�*.576(TM3�äEP76,Gy3�T^é�@F<><A@r8=6,PI1çS"1?�X?>Pj�ES"@B3M@B3P�E�X?>G7L)�X14S�1BPE?ALFæ C
3M@j�ES�@���?>PE6 1�S�@Fä7LF5��ES"TM3
�9ä73·?>æ)�X<A6,æç6,G�3�143�?A@FG23M@è3M6,TM3·@Fä73
��?>T"äE1B<>?>T�143�?>@FGI?>P76,1BT9C
TM@ 3�5E143·é~696,P.�X1���$
��@FäE<>P��
6�@��E3�1B?>G76,P�é�S�@Fæ 3�576)�9äET�3M@FæÑ69S�øjÝl6-*��(ù�143Y3�576�6,14S"<K?A6,TM3·@��.�
@BS�3�äEGE?>3P�BU�*¹@ 1BPEP�S�?ALB@Fä7S·3M@
3�576I1?�.�XS�@F1��"5 é�@BSç3�576I5E@FG7@Fä7S"T ��@Fæ)�
@FG76,Gy39C)?A3�8J1BTçP76&�9?>P76,P 3M@���S�6,143M6ë1�é�@BS"æç1B<^æÑ@OP76,<J@Bé�3�5E?>T
1?�.�X<K?9�9143�?A@FGj�ES�@B3M@-��@F<mäET"?>G7L½ßJà)á�T9U
*!5E6��Xä7S��
@FTM6�@Bé�3�5E?>T{�X1?�
69S!?>TJ3M@��XS�6,TM6,Gy3^@Fä7S!8#@BS�$�@FGëæÑ@�PE6,<><>?>G7L 3�5E?>T���X9Y\[-T�UpXZY\T�M]X�^�R;�ES�@B3M@-��@F<

1BGEP�3M@G�B69S�?Aéo� 3�5E143Ò?>3·?KTYP76,1BPE<A@-��$�1BGEP'<>?9�B6,<A@E��$ëé�S�696½1BGEPg��@FGEé~@BS"æ½TY3M@ë1 TM6&8�ä76,G.�9?>GELG��@FGETM3MS"1B?>Gy39U
*!576��O?>T�äX1B<>?>T�143�?A@FG#�ES"@B3M@E��@F<m?KTJ3�576,G 6�âO3M6,GEP76,Pë1BGXP S�6\!w1BGE1B<'�OTM6,PNU
*!5E6~�¿1?��69SY?>T�@BS�LF1BGX?>TM6,P�1BT·é~@F<K<A@b8.T,U56O6&��3�?A@FGv�;�ES�@��O?>P76,T·TM@Fæç6�?KGET�?ALF5y3�?KG�3M@è3�576ÑGE143�ä7S"6Í@Bé#1BG

å·0�6�CN1BGEP�3�5E6~�O?>T�äX1B<>?>T�143�?A@FGXT!3�5E143Y8#69S�6Ñ?>æ)�X<>6,æÑ6,G�3M6,PmU¿ö¶6çP76,T���S"?'�
6Ò3�576)�O?>T�äX1B<>?>T�143�?A@FG��ES�@B3M@-��@F<
1BGEP ?A3�T�TM6&8�ä76,G.�9?>G7L���@FGETM3MS"1B?KG�3�T�?>G TM6&��3�?A@FGD�21BGEP 1�ßJà=á æÑ@OP76,<)@Bé.3�576j��?>T"äE1B<>?>T�143�?>@FGg�ES�@B3M@-��@F<
?>G¶TM6&��3�?>@FGvz7U�*!5E6çæÑ@�PE6,<�?>TY1BGE1B<'�OTM6,P'?>G¶T�6&��3�?A@FG���U�6O6&��3�?A@FGh� P76,T���S"?'�
6,T·1BG'6,GE5E1BG���6,Pg�ES�@B3M@-��@F<tC
8.5E?Z�"5�1B<><A@b8�Tèþ�ÿ��&�2�>����

�
� 3M@0�
6 ?>GEé~@BS"æç6,P @Bé(3�576�T�ä.����6,T"T�@BSèéj1B?><>ä7S"6I@Bé(6,1��"5��O?>T�äX1B<>?>T�143�?A@FG
��@Fæçæç1BGXPNU�*!576�6,GE5E1BG.��6,PIßJà=á æÑ@OP76,<
1BGEPè?A3�TJ1BGE1B<'�OT�?>T#14S�6��ES�6,TM6,Gy3M6,Pè?>G�T�6&��3�?A@FGET.û 1BGEP ü�CO8.?A3�5
@Fä7S~��@FG.�9<>äET�?>@FGET��ES�@���?KP76,PV?>GVTM6&��3�?A@FGF��U�*!5E6çS�6,1BP769SÍ?>TÒ1BT�T"äEæÑ6,P'3M@��
6çéj1Bæç?><>?>14SY8�?A3�5 ßJà=á�T úsûbý
1BGEP2þ�ÿ=���2�>����

�
� ú�����ýdU

� �j�> Eð���õA �¡ ñ5¢Òï�£� �¤~¥�ï� Eð�î�¦�§3¨VõP©4ó�¦�§�õP©y¦�ïFõdñ¹î«ª ¦
ôN¬=¦�­5

*!576<�Xä7S��
@FTM6Y@Bé�3�576Ò6�â�3M69S"GX1B<��O?>T�äE1B<K?>T�143�?A@FGj�X1���$`14LB6�?>T.3M@7�ES�@���?KP76ÒP7@Fæç1B?KGIT��
6&�9?'�����O?>T�äX1B<>?>T�143�?A@FG
éj1��9?><>?A3�?A6,Tçé~@BS 3�576�1&�O?A@FGE?9�9T�æç?>T�T�?>@FG»T��OTM3M6,æ æÑ@�PE6,<.143è1V5E?ALF5E69S,C)æÑ@BS�6�1?�XTM3MS�1���3 <A6��B6,<�3�5E1BG�3�576
þ�ÿ��&�2�>����

��� 3M@�@F<	�91BG��ES�@��O?>P76BU�*!576,T�6 éj1��9?><>?A3�?>6,T�14S�6�3M@j�ES�@OPEä.��6~�O?>T�äE1B<>?KT�143�?A@FGET.3�5E143Y14S�6ÑæÑ@BS�6
TM3MS�@FGELF<'�IS�6,<>143M6,P 3M@è3�576~�X5(��T�?Z�91B<RT��OTM3M6,æ®�
6,?>G7L æÑ@�PE6,<><A6,PI3�5X1BG ?KT��91?�X1?�¿<A6�8.?A3�5 þ�ÿ=���2�>����

�
�½U
*!5E?KT�?KT�?Kæ)�
@BS�3�1BG�3·é�S�@Fæ 1 T��OTM3M6,æ P76��B6,<>@��XæÑ6,Gy3���69S�T��
6&��3�?'�B6Ñ1BTY8=6,<K<�1BTÒ1 æç14S�$B693�?>G7LI1BGXP¶æç1BG-!
14LB6,æÑ6,Gy3��
69S"T���6&��3�?9�B6���6&�91BäXTM6 ?A3!?KT.<>?'$B6,<9��3�5E1BGë3�576,TM6l�
69@��X<>6(8=@FäX<>PJ�
6(äEG7éj1Bæç?><>?K14S!ß^à)áêT��
6&�9?'���
��@FG.��6��E3�T,U�*!576Yé�@Fä7S��O?>T�äE1B<K?>T�143�?A@FGET#S�6&8�äE?AS"6,P�3M@7��6(T"ä��.�X<>?>6,P7�E��3�5E6~I�V�_ 8#69S�6�d

22

¯5°p± §�²4§ ��xs[9u���|rpq{�o"ew{�\ itvr[��mpsnro^uk[�\^]B[�n`ckn9adiN[�z�adv`c�� � gB�

�4U.å®�X<A@-��$ PE?K14LBS"1Bæ @Bé·3�5762å·0�6 1BGEP ?>3�T���@Fæ)�
@FG76,Gy3�T9U=å�G 6�â71Bæ)�X<A6 @Bé·3�5E?KT��91BG³�
6ITM696,G�?>G
��?ALFä7S"6H�4C�8.5E?9��5½T�57@r8.T=3�576�02?>T�T�?>@FG ß#@FGy3MS�@F<Nß#@Fæ)�Xä73M69S·øt0 ß.ß!ù�C(CkG769S�3�?K1B<Xá�1&�O?ALF143�?A@FGG6E�OTM3M6,æ
ø2Cká�6Xù�C!å�?AS Ý·143�1»ß#@Fæ)�¿ä73M69SVøjå�Ý(ß!ù�C�´�1BPE14S,CW´.1BPX14SIå�<A3�?KæÑ693M69S'ø�´.å�QE*�ù�C�´.1BPE14S ö'14S"GX?>G7L
´.6&��6,?'�B69Sëø�´mö�´�ù�C�µ�6,1BPET B3� Ý·?>T��X<K1&�»ø�µ
B�Ý(ù�C�0ëäX<A3�?�!wà)äES��
@FTM6½Ý·?>T��X<K1&�»øt02à)Ý(ù�C�1BGEPe6�69S"?>1B<
Ý·143�1½HJäET øA6OÝ·H^ù���@Fæ)�
@FG76,Gy3�T^@Bé�3�576(å�0�6�U

��U.åêPE?>14LBS�1Bæ T�57@r8.?>G7LÑ3�576H�ES�@BLBS�6,T"T^3�57S�@Fä7LF5E@Fä73.1çæç?KT�T�?A@FGNU�*!5X?>T^?>T!T�?Kæ)�X<'� 1)�X14S3��5E14S�3.8�?A3�5I1
<>?KG76YT�57@b8�?>G7L�3�576l�ES"@BLBS�6,T�T^3�57S"@Fä7LF5 3�576(æç?KT�T�?A@FGè1BT.1���69S���6,G�3�14LB6H��693�8=696,G�:Ñ1BGEPv��:�:OU

��U�0ë@BS�6½P7693�1B?K<A6,P'?>G7é�@BS"æç143�?>@FG�@FG¶3�576�0�ß!ßê1BGEP06OÝ·H¶��@Fæ)�
@FG76,G�3�TÒ8.?A3�5E?KG23�5E6çå�0�6¶1BT ?><><>äET�!
3MS"143M6,P2?>GJ��?ALFä7S�6<��U

z7U�0ë6,T�T�14LB6ÍTM6&8yäE6,G.��6<�"5X14S�3�T!3M@½T"57@b8 ?KGETM3MS"ä.��3�?>@FGET^TM6,Gy3W��693�8=696,G���@Fæ)�
@FG76,Gy3�T!@Bé�3�576Òå·0�6�U

å�éjä7S�3�5769S�P76&�9?KT�?A@FGÍ8#1BT=æç1BP76^3M@ÒPE6,T�?ALFGÑ3�576�I7V·_¶14S��"5E?>3M6&��3�ä7S�6!3M@l�
6W¸E6�â7?'�X<>6=6,G7@FäELF5Ñ3M@Ò1B<><A@r8
3�576(äET�6Y@Bé�PE?'��69S�6,Gy3W�O?>T�äE1B<>?KT�143�?A@FG <>?'�ES"14S�?A6,T9U(*.576YS"143�?A@FGE1B<>6���6,5X?>GEP�3�5E?>TJ8J1BT^3�5E143!3�576HI7V·_D��@FäE<>P
�
6YS�6,äETM6,Pè3M@7��?>T"äE1B<>?>TM6Yæç1BG(�èPE?��
69S�6,G�3!T���TM3M6,æ½T^S"143�5769S!3�5X1BG x�äETM3^1&�O?A@FGE?9�9T.æç?>T�T�?>@FG T���T�3M6,æçT9U

0.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x10
2

0 2 4 6 8 10 12

Load on MCC vs Time

Time

L
o
a
d

o
n

M
C
C
%

¯5°p± §�¹F§+º cfaw{�psxscM|·�,pscf�ë[�zOadvrc � ZNZ uk[�\^]B[�n`ckn9aM�

23

» ¨VõP©4óL¦�§wõ|©y¦¿ïFõwñ¹î¼ª�ðFñNïBñ�ôOñ�§
��?ALFä7S�6W�·T�57@r8.T�3�576^@��B69S�1B<><714S��"5X?A3M6&��3�ä7S�6J@Bé�3�576^T���T�3M6,æê3�5E143�?>G.�9<>äEPE6,T¹3�5763I7V·_^Uy*!5E6i�O?>T�äX1B<>?>T�143�?A@FG
�ES�@B3M@-��@F<�?>T
�
693w8#696,G¶3�5767k
u s V>X9Y\[�T?UpXZY\T+M]X2^�Rg_WQSX2m~X2M]X2�yOSY��X<A@-��$I@FG�3�576½þ�ÿ��&�2�>����

�
� T�?>P76�1BGEP
3�576�V>XZYS[�T?U�X9Y�T�M]X2^+RJrHXZYA½=U'T t @FGI3�576(:�ã·à�T"?>P76BU�*!576��ES"@B3M@E��@F<m?>3�TM6,<Aé	��@Fæ)�ES"?>T�6,T�d
�4U�ßJ<K?A6,G�3^T�?KP76�d73�5E?>T^?>T�þ�ÿ�����������
�����?>Gè3�5E?KT!?>æ)�X<>6,æÑ6,G�3�143�?>@FGj�Xä73W��@FäE<>PJ�
6Y1BG(�è1?���X<>?9�9143�?A@FGmU
��U
6�69S��B69S.T�?>P76�d73�5E6~I�V�_ 8.5E?Z�"5èS�6&��6,?'�B6,T.3�576l�O?>T�äE1B<K?>T�143�?A@FG ?>GETM3MS�ä.��3�?A@FGET9U

User User

Design/CPN
GUI

Design/CPN
Simulator

AMS
Visualisation

Primitives

Visualisation
Display

AMS
Visualisation

Library

Comms/CPN Comms/JAVA

TCP

Visualisation Package
External

Design/CPN

Session Layer

Transport Layer

¯5°p± §�¾�§(¿ ��c�ew{�xsx º ckuk[�\^]B[�itp�adpq[�n·[�z7advrc�l�Àbadc�edn4{�xNÁ�psit_`{�xspsid{"adps[�n(¨7{"u���{�o�c��

Â�Ã]Ä ÅJÆ Û�Ç>È�É Æ Û&È�Ê Æ Ø·Ë³Ì&ËRÛ�ÊbÙ?Ç�Í+Ê Æ Ø=ËRÛ
å÷P7693�1B?><A6,P½T��
6&�9?'���9143�?A@FG�é�@BS)3�5E?KT��ES�@B3M@-��@F<X1BT=äETM6,Pç?>G�3�5E6.:�âO3M69S"GE1B<7ã·?>T�äX1B<>?>T�143�?A@FGÑà�1���$`14LB6��91BG7�
6
é�@FäEGEP ?>G 3�5E6~6�@Bé�3w8J14S�6 Ý�6,T�?ALFGëÝ�6,T���S"?'�E3�?A@FG ú��rýdU=*!576��XS�@B3M@E��@F<¹é�1��9?K<>?A3�143M6,T^3�576 TM6,GEPE?>GELÍ@Bé�?>GXTM3MS"ä.�S!
3�?A@FGET3�
693w8#696,GI3�576~�9<>?A6,Gy39C�þ�ÿ��������	��

���½C¿1BGXPI3�576ÒT�69S��B69S,CX3�5E6 :�âO3M69S"GE1B<mã�?>T"äE1B<>?>T�143�?>@FG à�1���$`14LB6BU
*!576,T�6'?>GETM3MS"ä���3�?A@FGET ?>G7é�@BS"æ 3�576g�O?>T�äE1B<>?KT�143�?A@FGÎ�X1���$414LB6V@BéÍ3�576v��@Fæ)�
@FG76,Gy3�T S�6&8�äE?AS�6,P�é�@BSG�O?>T�ä-!
1B<>?>T"143�?A@FG 1BGEP 3�576J�O?>T�äX1B<>?>T�143�?A@FGXT 3�5X143½14S�6I3M@v�
6j�
69S�é�@BS"æÑ6,PNUc�·G 3�5E6 þ�ÿ��������	��

��� T�?KP76BC�3�576
?>GET�3MS"ä.��3�?A@FGET)14S�6�T�6,G�3^1BGEP�S�6&��6,?'�B6,P äET�?>GELÒ3�576<
���1
1��y��

�
� <>?9�ES"14S�� ú���CA�rý¹1BGEP 576,G.��6���@FæçæÍäEGE?�!
�9143�?A@FG��
693w8#696,Gë3�576H�9<>?A6,Gy3.1BGEPëT�69S��B69S�?KTW��?K1�*�ßJàJÞ�Cfàêú��rýdU¿å�T3*�ß^à#Þ�Ckà�?>T���@FGET�?>PE69S�6,P 3M@7�XS�@��O?>P76
1ÑS�6,<K?>1?�X<A6·3MS"1BGET���@BS"3JT�69S���?Z��6BCX?A3!?>T!1BT"T�äEæÑ6,P 3�5X143.1B<><m?>GXTM3MS"ä.��3�?A@FGXT#T�6,G�3.14S"S"?'�B6ÒT�ä�����6,T�TMéjäE<><'�½1BGXPI?>G
@BS"P769SbU
*^8#@ TM693�T·@Bé=?KGETM3MS"ä.��3�?>@FGET�14S"6�T�6,G�3��
693w8#696,GVþ�ÿ��������	��

��� 1BGEP 3�576Ñ:�âO3M69S"GE1B<�ã·?>T�äE1B<K?>T�143�?A@FG

à�1���$414LB6BU�ÏSR.X2M]X�T?UpXZY\T+M]X2^�RGÏSR-Y\M]Q�[�`�M]X2^�R�YJ1BT^<>?KTM3M6,Pè?>G;*�1?�X<A6)�·14S�6(äET�6,P�3M@ç?KGE?A3�?>1B<>?KTM6!3�576Y:�âO3M69S"GE1B<�ã·?�!
T�äE1B<K?>T�143�?A@FGçà�1���$`14LB6��
69é�@BS�6�1BG(���O?>T�äE1B<>?KT�143�?A@FG)�91BG @E���9äES,U(*!5E6.TM6&��@FGEPèTM693=@Bé¹?>GETM3MS�ä.��3�?A@FGET�6,GX1?�X<A6,T
3�576JI�V�_ 3M@��
69S�é~@BS�æ 1BGE?>æ½143�?A@FGETÒ?KGN�B@F<'�O?>G7L 3�5E6#��@Fæ)�
@FG76,Gy3�TÍT��
6&�9?'�E6,PVäXT�?>G7L 3�576è?>GE?>3�?>1B<>?>T�143�?>@FG
��@Fæçæç1BGXPET9UFå�T�3�576W�O?>T�äE1B<>?KT�143�?A@FG~�ES�@B3M@-��@F<E?>T�P76,T"?ALFG76,P�é�@BS���?>T"äE1B<>?>T�143�?>@FG @Bé
å���?A@FGX?9�9T�0ë?KT�T�?A@FG�6E�OT}!
3M6,æçT9COæç1BG(�Ñ@Bém3�576,TM6·?>GET�3MS"ä.��3�?A@FGET)14S�6�T���6&�9?9���^3M@Í3�576,TM6·T���T�3M6,æçT9U-*!576�V>XZYS[�T?U�X9Y�T�M]X2^+R#ÏSR-Y\M]Q�[�`&M]X�^�R-Y
14S�6(LF?9�B6,GI?>GJ*�1?�X<A6<��U

24

ÐÒÑ ¢k£f¤�Ó�¦�£ °pÔ�Ñ Õ Ó�¤�Ö Ô ¢}×
É,ÈkÁAØOÇ9ÙfÂtÄ"Â|Ú gb]BckufpÜÛ`cki
adv`c��,psit_4{"xspqid{�adps[�nYxsps¸rew{"eth.ad[J¸Bc�_ritcM|�¸9h!adv`c�¼JÆ4ÌN�
ÎfÂdÁtÄ�ÀKÁ�ÝXË�Þ>ßbË�ÃFÁ�Ã`À Z¿edcM{"adcfim{�n�psnrijaw{�n`ufc�[�zO{=uk[�\^]B[�nrckn9a�ad[#¸BcR_`itcM|!¸9hJadv`c�¼^Æ4Ì
�
ÇÊÃ`ÇÊÀ�ÝXË�Þ�ßBÅqÁfÀKÁ gb]BckufpÜÛ`cki�adv`{"aOadvrc�psn`p�adpq{�xspsid{"adps[�n^psi7uk[�\^]`xscfadc��bªApA� c���adv4{�aE{�xsx,uk[�\Jº

]B[�nrckn9adi
ad[J¸Bc�_`itck|�¸9h^adv`c)¼JÆBÌÑv4{M��c�¸Bcfckn·ufedcM{�adcM|�� «
à ¥`¡�áâ× ²4§ �
v`c�ãwÃrÇAÀÊÇ>Ä�Å ÇÊÈ�Ä�ÀÊÇAË�Ã
ãwÃ`ÈwÀÊÂwÉ`ÎkÀÊÇAË�Ã`ÈN_ritcM|.�mp�advrpqn�adv`c��,psit_4{�xspsid{"adps[�nY]red[�ad[9uf[�xA�

Ð|Ñ ¢k£k¤�ÓO¦�£ °pÔ�Ñ Õ Ó�¤�Ö Ô ¢}×
Ç�È�ÝXË�ÞiÞ#É,ÃrÇ>ÎdÄ�ÀÊÇÊÃ,Ð |rpsit]`xq{khbiNadv4{"a¹{=it]Bckukp�Û4cM|�uk[�\^]B[�n`ckn9ampsimuk[�\^\=_`n`psuM{�adpsn`or�
ÈwÀ>Ë|ßSßrÁAä�ÝXË�ÞiÞ=ÉbÃrÇ>ÎdÄ�ÀÊÇÊÃ9Ð |rpsit]`xq{khbiNadv4{"a¹{=it]Bckukp�Û4cM|�uk[�\^]B[�n`ckn9ampsimn`[�amuf[�\^\#_rn`psuM{�adpqnror�
ÎfÂtÁtÄ�ÀKÁAØ7ÇÊÃ,Ï ufedcM{�adcki¹{=�,psitpq¸rxsc�xspqnr�^¸Bcfa���ckckn.a��
[=uk[�\^]B[�n`ckn9adi
_ritcM|^�mpsadvrpsn·{=�,psit_4{"xspqid{�adps[�ny�
å Ý�ÝEØyËMÄ\ä�ãwÃ?ä�Ç>ÎdÄ�ÀÊÇ>Ë�Ã |rpsit]`xq{khbiNadv`c�xs[�{�|·[�n.adv`c � ZNZèuk[�\^]B[�n`ckn9aM�
æ&ç�è�Ø�ËMÄ\ä�ãwÃ�ä"Ç>ÎdÄ�ÀÊÇ>Ë�Ã |rpsit]`xq{khbiNadv`c�xs[�{�|·[�n�{�n(g º � uk[�\^]B[�n`cfn,aM�
Ð9ÁfÀâãwÃrÈwÀÊÂ�ÉrÎkÀÊÇ>Ë�Ã �
v`psi�psi�advrc#[�nrx�hY�,pqit_`{�xspsid{"adps[�n uk[�\^\!{"n4|�adv`{"a�c|Àr]Bcfufadi�{^edckit]B[�nritc=z�ed[�\�adv`c

�,pqit_`{�xspsid{"adps[�n^itc�ed��cfeM���
v`psiEpqnrijated_`ufadps[�n#cÒÀb]BckufadiOadvrc
itcfed��c�e7ad[�edck]`x�h��mp�adv#ckp�advrcfe
{gétgr� ¿ ¨.ê½[�e({gétZ ¿ ©���ê�\^cfitid{�o�c��m}~z={héjgr� ¿ ¨.ê�itpso�n4{�x�psi�edcfukckps��cM|èadv`c
atew{�nrijzÊcfe¿[�zBz�_retadv`c�e¿�,psit_4{"xspqid{�adps[�n!uk[�\^\!{"n4|biOpsi¿ijad[�]`]BcM|F���
vrc3éjZ ¿ ©���ê�itpso�n`{�x
{�xsxs[M�mi�\^[�edc��bpsit_`{�xspsid{"adps[�nYuk[�\^\!{�n`|ri�ad[J¸Bc�itcfn,aM�

à ¥`¡�áp×<¹F§ �
vrc�ÆyÇ�ÈwÉrÄ�Å Ç�ÈfÄ�ÀÊÇ>Ë�Ã
ãwÃ`ÈwÀÊÂwÉrÎkÀÊÇ>Ë�Ã`È
_`itcM|!�mpsadvrpsn�adv`c��,psit_4{"xspqid{�adps[�n(]red["ad[9uk[�xA�

*!5E6Ò@BS"P769S·?>Gë8.5E?9��5I3�576,TM6Í?>GETM3MS�ä.��3�?A@FGET�æ äET�33�
6ÒTM6,Gy3�é�@BS·T�ä.����6,T�TMéjäE<���?>T"äE1B<>?>T�143�?>@FGI?>T.PE6��XG76,P
�E��3�576ÒS�69LFäE<>14S^6�â-�ES�6,T�T"?A@FGVú��rýAd

ë=ìyí&îcïPðSñyòEñ?ó;ô\ñ�í&ò(õ�í�ö�÷?ø~ù=÷?ú5í�ú�õ}û�ïAú�ï]õ�ö�÷?ø~ù=ü]í�õ�í úÜý ïPì�ë�òEü�ïPì�òNõ}ïA÷?ú�þNú5ì�õÒñ?ë=ô�õ}ïA÷?ú5ì ý û ø}�bù
8.5769S"6Yú ã·?>T�äX1B<>?>T�143�?A@FG~CkGETM3MS"ä���3�?A@FGETkýE14S�6!1BG(� @Bé�3�576�V>X9Y\[�T?UpXZY\T+M]X2^�R7ÏSR�YSM]QS[-`�M]X2^+R-Y�PE6��XG76,P�?>G)*�1?�X<A6���U

Â�ÃZÿ � É Æ Õ-Ë·Ê
*!576 �9<>?A6,Gy3(þ�ÿ�����������
���� TM6,GEPET�@Fä73<ÏSR.X2M]X2T�UpXZY\T�M]X�^�RgÏSR-YSM]QS[�`&M]X�^�R-Y�Cm1BT�PE6��XG76,P ?>G�*R1?�X<>6#�4C
3M@ ?>GE?�!
3�?>1B<>?KTM6!3�576
��?KT�äE1B<>?>T"143�?A@FGÑ3M@�@F<tUNCf3=3�5E6,G�TM6,GXPET;V>X9Y\[�T?UpXZY\T+M]X2^�RjÏSR-YSM]QS[�`&M]X�^�R-Y�øj<K?>TM3M6,P½?KG7*�1?�X<A6
�Fù�C7äEGy3�?><
?A3Ò?KTÒ?>G7é�@BS"æÑ6,P'3M@2TM3M@��0�(�'1ëS�6��X<'� @Bé�6-*��Yà�ø�3M@23�576#bEO�MZÏSR-Y\M]Q�[�`&M]X�^�Ryù(@BSÍ3�5769S�6�14S"6�G7@ æÑ@BS�6��O?�!
T�äE1B<K?>T�143�?A@FGD��@Fæçæ½1BGEPETç3M@ TM6,GEPNUL*.5E?>T �ES�@BLBS"6,T�T�?A@FG @BéY?>GXTM3MS"ä.��3�?A@FGXTÑ?>TçT��
6&�9?'�E6,Pe�(� 3�576IS"69LFäE<>14S
6�â-�ES�6,T�T�?>@FG'øj:�8�äE143�?A@FGv�bù#LF?9�B6,Gë?>G TM6&��3�?>@FG���U9�4U

Â�Ã9Â � Õ�Ù���ÕyÙ
*!576JV>X9Y\[-T�UpXZY\T�M]X�^�R s O�QS�yO&QmS�6&��6,?9�B6,T�?>GETM3MS"ä���3�?A@FGETmé�S�@Fæ þ�ÿ��&�2�>����

���¼�O?>1.3�5E6JT�6,T�T�?A@FGÍTM69S��O?9��6BU?*!576
TM69S��B69S!?KT)S�6,T���@FGXT�?'�X<A6.é~@BS^P7693M69S"æ½?>GE?>G7L ?Aém3�576Y?>GET�3MS"ä.��3�?A@FG�?>Ti�`1B<>?KP2øj?A6BUAC7?>T#3M@ �
6�1���3M6,P ä��
@FG¿ù�UECfé¹1BG
?>GET�3MS"ä.��3�?A@FGÑ?>T=P7693M69S"æç?KG76,PÑ3M@<�
6.?KGN�41B<>?>PNCEø�é�@BS=6�â71Bæ)�X<>6.1ÒäET�6,Q¹?'�ES�14S��Í?KGETM3MS"ä.��3�?>@FGÑ?>T�S�6&��6,?9�B6,P½14é�3M69S
3�576Ò<K?'�ES"14S��½3M@��
6·äXTM6,PI5E1BT!1B<>S�6,1BP��#��696,GëT��
6&�9?'�E6,P¿ù�CO3�576Ò?KGETM3MS"ä.��3�?>@FG ?KT^T�?>æ)�X<9�½PE?>T��914S�P76,PNU

� ª½ðFñNïBñ�ôOñ�§��;ª��
	 ñ�ò� �§
�5Ã]Ä � ØNÚ�Õ-É2É Æ Ë�
������RÙ`Ø�È.Í��
å�<A3�57@Fä7LF5 3�5E6 ßJà)á æÑ@OP76,<N@Bé�3�576l�ES�@B3M@-��@F<m?>T3��@FGETM3MS"ä.��3M6,Pë@FG @FG76Ò<>6��B6,<tC¹ø�3�5769S�6Ò14S"6ÒG7@½T�ä.�XTM3�?A3�ä-!
3�?A@FGè3MS"1BGXT�?A3�?A@FGET�ù�C�?A3J?>T{�9<A6,14S"<9��TM6��X14S�143M6,P ?>G�3M@�3�57S"696(TM6&��3�?A@FGET�dO3�576Òþ�ÿ��&�2�>����

�
� 6O?>æÍäE<>143M@BS&f�3�576

25

6�6,T�T"?A@FGG6�69S��O?9��6�f�1BGXP�3�5E6·:�â�3M69S�GE1B<�ã�?>T"äE1B<>?>T�143�?>@FG�à�1���$414LB6BC¿1BTW�91BGj�
6·TM696,G ?>G#��?ALFä7S�6�z7U���?ALFä7S�6�z
8.?><K<��
6è6�âE�¿<>1B?>G76,P ?>G æÑ@BS"6IP7693�1B?><^?>G 3�576 é�@F<><A@r8.?>G7L�T�ä��¿TM6&��3�?A@FGET9U�ö¶6ëæç@�P76,<J3�5E6J�ES�@B3M@-��@F<!143½1
T��OTM3M6,æçT!PE6,T�?ALFGI<A6��B6,<¹1BGEP æç1?$B6Ò3�5E6Yé~@F<><>@b8.?>GEL�1BT"T�äEæ)�E3�?>@FGET�d
�4U3*!5E6G��@FG�3M6,Gy3½@Bé�3�576I?>GET�3MS"ä.��3�?A@FGET�TM6,Gy3ç3M@V1BGXP é~S�@Fæ 3�576ITM69S��B69S 14S�6IG7@B3½?>æ���@BS"3�1BG�3�é�@BSç3�576
@��
69S"143�?A@FGI@BéR3�576<�ES�@B3M@-��@F<tU

��U
�·GX<'�½@FG76 ?>GETM3MS"ä���3�?A@FGj�91BGG�
6��ES�@-��6,T�TM6,PI143.1ç3�?>æÑ6(143!3�576 TM69S��B69S,U
��U3*!5E6(TM6,T�T�?A@FGëTM69S��O?9��6(?>TJé�S�696(@Bé�69S�S�@BS"T9CE1BGXPJ�ES�6,TM69S��B6,T^3�576ÒTM6&8�ä76,G.��6Ò@Bé�æÑ6,T"T�14LB6,T9U
z7U.åêTM6,T�T"?A@FG ?>T!1B<AS"6,1BP��½6,TM3�1?�¿<>?>T�576,Pj�
693�8=696,G���@B3�5I6,GEPET9U
��U.å�<><�3�576GV�XZYS[�T?U�XZY\T�M]X�^�R7ÏSR-Y\M]Q�[�`&M]X�^�R-Y�P76��XG76,P�?>G *�1?�X<A6���CB6�â���6��E3�LB693�CfGXTM3MS"ä.��3�?A@FGÑ1BT�3�5X?>T�S�6&8yäX?AS�6,T
1¶S"6��X<'�Vé�S�@Fæ 3�5E6ëTM69S��B69S,C=14S�6ë1?�XTM3MS�1���3M6,P»?>Gy3M@¶@FG76ëæÑ6,T"T�14LB6��91B<><>6,PDB�à=Ý!å�*!:i@�B3C�Uc*!5X?>TÑ?>T
�
6&�91BäETM6·3�576,T�6�ã·?>T�äX1B<>?>T�143�?A@FG7CfGXTM3MS"ä.��3�?A@FGXT�x�äETM3^ä��NPE143M6�3�576���?>T"äE1B<>?>T�143�?>@FGç8.?A3�5E@Fä73=8J1B?A3�?>GEL é�@BS
1ÑS"6��X<'�½é�S�@Fæ 3�5E6(TM69S��B69S,U�*.5769S�69é�@BS�6Y3�576l�
6,5E1���?A@FäES^é~@BS.1B<K<
@Bé�3�5E6,TM6Ò?>GET�3MS"ä.��3�?A@FGETJ?>TJ3�5E6ÒT�1BæÑ6BU

requestLibrary

[length(dataq)<maxqsize]

Client_Output_Stream

DATACHAN

1‘[]

visualisationCommands

[length(dataq)<maxqsize]

Client_Input_Stream

REPLYQ

1‘[]

getReply

processCreate
ComponentInstruction

process
VisualisationInstruction

Design/CPN Simulation Session Service External Visualisation Package

Design_CPN_state

DESIGNCPNSTATE

IDLE

createComponent

[length(dataq)<maxqsize]

process
UseLibraryInstruction

dataq^^[(USELIBRARY)]

dataq

dataq

dataq^^[(visCommands visC)]

rep::replyq

replyq

(crCommands crC)::dataq

dataq

(visCommands visC)::dataq

dataq

if(visC=GETINSTRUCTION)
 then replyq^^[rep]
else replyq

replyq

IDLE

LIBRARY_SET

if (visC<>GETINSTRUCTION)
 then VISUALISATION_READY
else WAIT_FOR_REPLY

WAIT_FOR_REPLY

if (rep<>STOP)
 then VISUALISATION_READY
else STOPPED

if(crC=INIT_COMPLETE) then
 VISUALISATION_READY
else
 LIBRARY_SET

dataq^^[(crCommands crC)]

dataq

(USELIBRARY)::dataq

dataq

LIBRARY_SET

VISUALISATION_READY

¯�°â± §���§ � [,|rcfxy["z7adv`c�¸`{�itpsu�]red[�ad[9uf[�xA�

�5ÃZÿ � È�Ê�È � ÊbÙyÇ>Í�Ê�ÇRÙ`ÕyÛ;È�Ë¹Ú � Õ(Í(ÉoÈXÙ�È�Ê Æ Ø·Ë¹Û
��?ALFä7S�63�(T�57@b8�T�3�5763��@F<A@FäES)TM693�T)äXTM6,Pç?>G�3�576·ßJà)á�æÑ@OP76,<tU+*!576�ßW´ ß3�Y0ëà{�·á�:)á
* ß��(0202å�á�Ý
��@F<A@Fä7S!T�693.?>T^äETM6,Pè3M@çPE6��XG76·3�576Y3w8#@½?>GX?A3�?>1B<>?>T"143�?A@FG½?>GXTM3MS"ä.��3�?A@FGXT�`�Q}O�T�MPO���^+m�½�^�R=O�R�M3T�R�w#X2R.XoM���^+m��
½=U9O�MPO)1BTL�ES"6���?A@FäXT�<'� PE6��XG76,PNU+*!5E6^ã�C�6Eß��Y0 02å�á�Ýl6)��@F<A@Fä7S=TM693=P76��¿G76,T�3�576��O?>T�äX1B<>?>T�143�?A@FG�?>GXTM3MS"ä.�S!
3�?A@FGET 3�5E143 �91BGh�
6 TM6,G�3Í3M@ 3�576JI7V·_^U�*!576#��@F<A@Fä7S�TM693�Ý!å�*Rå ?>T(3�5E6 äEGX?A@FG¶@Bé!3�576è?>GE?>3�?>1B<>?>T�143�?>@FG
?>GET�3MS"ä.��3�?A@FGET,C�3�576��O?>T�äE1B<K?>T�143�?A@FG ?>GXTM3MS"ä.��3�?A@FGXTç1BGEP 3�5E6�[(Y�O���X! �Q}T�Q t ?>GE?A3�?K1B<>?>T�143�?A@FG ?KGETM3MS"ä.��3�?>@FGNC�TM@
3�5E143J1B<><E3|�(�
6,T=@Bém?>GETM3MS�ä.��3�?A@FGET�æ½1&���
63�¿ä73)?>G½3�576��9<>?>6,G�3=@Fä73��Xä73i8yä76,äE6BU(*!576�Ý!å�*�å.ß{µ�å�á ��@F<>@Fä7S
TM693Y?>T·T�?>æ��X<'�I1è<>?>TM3�@Bé)3�5E6�Ý.å�*Rå ��@F<A@Fä7SYTM6939CN8�5E?9�"5�?>T·äET�6,P23M@ æÑ@OP76,<�3�576ÑTM6,T�T"?A@FG�TM69S��O?9��6BU�*!576
´.:=à)Q#" ��@F<A@Fä7S�TM693.6,G�äEæÑ69S�143M6,T.3�576H�`1B<K?>P S�6��X<K?A6,T^é�S�@Fæ 3�576)I�V�_ øA6�*��·à @BS(ß��·á
WCká�B�:#ù�U=!576
´.:=à)Q#"%$ ��@F<A@Fä7S�TM693Í?>TÒäET�6,P'3M@���S"6,143M6è12<>?>TM3Y@Bé^3�5E6;´.:=à)Q#" ��@F<A@Fä7SÍTM693Òé�@BSÍ3�576½@Fä73��¿ä73<8�ä76,ä76
@Bé^3�576GI�V�_JU�*.5767�XGX1B<���@F<A@Fä7S�TM6939C�Ý·:i6EC�@·áYßJà)á�6-*�å�*!:!C�?>TÒäET�6,PV3M@ 6,GyäXæÑ69S"143M6 3�576�TM3�143M6,T�@Bé
3�576Iþ�ÿ��������	��

��� T�?>P76BU�*!576#�9<>?A6,Gy3 ?>T 6,?A3�5769S~CfÝ·QR:!C�8#1B?A3�?KG7Lë3M@¶TM6,GEP 3�576jB�67:)Q5CkH{´.å
´�" ?>GE?�!
3�?>1B<>?KT�143�?A@FG ?>GET�3MS"ä.��3�?A@FGNC�Q5CkH{´.å
´�" 6O:�* 8.576,G 3�576GB�6O:)Q�CfH{´�å�´�" ?>GETM3MS�ä.��3�?A@FG 5E1BT)�
696,G TM6,Gy3
1BGEP�3�576��9<K?A6,G�3#?>T)GE@b8�6,?A3�5769S{��S�6,143�?>G7L~��@Fæ)�
@FG76,G�3�T#@BSJTM6,GEPE?KG7LY3�576 XoR.X2M���^�m3½=U9O�MPO#?>GXTM3MS"ä.��3�?A@FGmCFã�C|!
6-B�å�Q�C�67å�*WC��Yá ´.:)å�Ý&"�CB8.576,G�TM6,GEPX?>G7L
��?>T"äE1B<>?>T�143�?>@FG ?>GXTM3MS"ä.��3�?A@FGXT9Cbö�å3C}* �>��´ ´�:)à)Q#"�8.576,G

26

')(+*)(�,.-�/�0�-2143+5�1�6+7+62890�-2143+32:�6+;=<�>�?4@)AB-�/)72:+8)79-+143+5�146)7+628DCFE�6GE�890)-2143)5+H+728)7JI
')(+*)(�,�KGE)L�-2143+32:�6+;�L.<�>G?4@�ABM�728�E�6�L�8)/)N9-)8�E)146OCPN+;
')(+*)(�,�;2:+8):B<RQ+SG?�(4ST'4,2-+(VU+U�W4S+X�Y[ZF-�/�0�-2143+5�1�6+7+62890�-2143+32:�6+;=\�]9?+Y�-2(VU)U�W4S2X�Y^Z_KGE)L)-21�3+32:)6+;9L`\RNGL47+H�E�a+/2:)/)bcI
')(+*)(�,�;2:+8):2-�d2:)6e<`*2?+Y4@�;+:+8+:JI
')(+*)(�,�/+7+5)H+be<R>G?�@)AB-2146+8�E�6)N27DC_L�89145cI
')(+*)(�,�/+7+5)H+b�f)<2*+?+Y4@./+7+5+H)bcI
')(+*)(�,�;+7�L+E�M�69-�5)6�L�8+:+8�7g<h>G?4@)ATE�;+H+7DCPH�E�a+/2:)/)b�0+L4728DCiKGE)L�N9:�HGE)L�:+89E)146�04/)72:);+b

CPj+:�E4890�k214/�04/+7)5+H+blC_L�891�5+5+7+;cI

]9W+*�U�W�m+n�Y)?4o2p+<rq�I
]9W�,�,2p�s�*�t)nuZ_/+7+5)H+b�fvI
]9W�,�,2p�suZw/+7+5+H+bJI
]9W�,�X9W�@9W�n[Zx;2:+8+:+-�d2:)6cI
]9W�,�]�?+Y�-[Z_KGE)L)-21�3+32:)6+;9LvI
]9W�,B'4,2-[Zx-�/�0)-21�3+5�146+7)62890)-21�3+32:)6+;JI

¯5°p± §�y�§ Z�[�xq[�_reRitcfaR|rckufx�{�ew{"adps[�nrik�
8J1B?A3�?>G7LYé�@BS=1ÒS�6��X<'�BCB@BS�6-*��·à=à):=Ý�8�576,GçG7@Òæç@BS�6.?>GET�3MS"ä.��3�?A@FGET�14S"6.3M@<�
6!TM6,Gy39Uyå÷TM693=@Bé��`14S"?K1?�X<A6,T
G7696,P76,Pë?>GI14S��Y6�â-�ES�6,T"T�?A@FGET^1BGEPILFäE14S"PET9CE14S"6ÒP76&�9<>14S�6,PmCX1BGEP 3�576<�`1B<>äE6Y@Bé�3�5E6l��@FGETM3�1BGy39C�æç1`â�8�T�?{z96BC
?>T^P76��¿G76,PNC73M@½<>?Kæç?A3#3�576ÒT�?{z96Y@Bé�3�576ÒT�6,T�T�?A@FG TM69S���?9��6H8yä76,äE6,T9U

�5Ã9Â | É2È.ÍFÕ�Û
*!576 þ�ÿ=���2�>����

�
��T�?>P76·@Bé�3�576��ES"@B3M@E��@F<5��@FGXT�?>TM3�T^@Bé�1çT�?KG7LF<A6��X<>1���6BC=r OSY\XpbNR �5_~} Y\MAT�MPO^3�5X143.P76\!
T���S"?9��6,T�3�576çTM3�143M6Ñ@Bé=3�576��9<>?A6,Gy39U�C�3�TY?KGE?A3�?>1B<Ræç14S�$O?>G7Lè?>T
CfÝ·Q¹:.U5*^8#@#�¿<>1���6,Tçø2��UpX]O�R�M ÏSR?½·[-M s M]Q}O�T�m
1BGEPg��UpX]O�R�M �W[-Mâ½·[-M s M]Q�O�T�m�ù�14S"6#äET�6,PÒ3M@�S�6��ES�6,T�6,G�3�3�576#3MS"1BGET�æç?KT�T�?A@FGY@Bé¿?>GETM3MS"ä���3�?A@FGET��
693w8#696,G½þ�ÿ-,
�������	��

��� 1BGEPÍ3�576�I�K+MPO&Q�R�T�UcV�XZYS[�T?U�XZY\T�M]X�^�R�_�T+`�a?T&bEO�U�*!576,T�6#3�8=@<�X<>1���6,T�5E1��B6��
696,GÍ?Kæ)�X<A6,æÑ6,Gy3M6,P
1BTi�>C}�>�«8�ä76,ä76,T�øjå�T�T�äXæ)�E3�?A@FG#�(?>Gj6�6&��3�?A@FG;z7U9�bù�U-*.576.?>GE?>3�?>1B<7æç14S�$O?>G7L(é�@BSi��@B3�5½@Bém3�576,TM6��X<>1���6,T#?>T
1BGè6,æ)�E3|� <K?>TM39U�*!576Y:�âO3M69S"GE1B<
ã·?>T�äX1B<>?>T�143�?A@FG à�1���$414LB6ÍT"?>P76���@FG�3�1B?>GXT!G7@ �X<>1���6,T!1BGXPè3�5yäET,COGE@çTM3�143M6
?>G7é�@BS"æç143�?>@FGNU5*!5E?>TY?KT(PEä76ç3M@23�576½P76,T"?ALFG'@BéJ3�576½T�69S��B69S,C¹8�5E?9�"5V5E1BGEPE<A6,TÒ?>GETM3MS"ä���3�?A@FGET·S�6&��6,?'�B6,P ?>G
1BG(� @BS�P769S,U

�5Ã{� � ÙyÈ�ËRÛ Æ Ê Æ Ø=ËRÛ
*!576Ñþ�ÿ��������	��

��� T�?>æÍäE<>143M@BS�T�?>P76~��@FGET�?>TM3�T�@Bé�é�@Fä7S�3MS�1BGET�?A3�?A@FGXT9U�*!57S"696Ò@Bé�3�576,T�6 3MS"1BGXT�?A3�?A@FGET�14S�6
äETM6,P23M@ TM6,GEP ?>GETM3MS�ä.��3�?A@FGET^3M@è3�576�ILKNMPO�QSR�T?UlV>X9Y\[-T�UpXZY\T�M]X�^�R�_�T+`�a?T&bEO�@BS"P769S�6,P23M@ T"143�?>TMé2�I3�576ÍS�69LFä-!
<>14S·6�â-�ES�6,T�T�?>@FG T"57@b8.G�?>G26&8�äE143�?A@FG ø}�bù�?>G TM6&��3�?A@FGv��U9�4U5*!5E6#Q�O���[�O\YSM��LX� &QÒT�Q t 3MS"1BGET"?A3�?A@FG ?>T·äETM6,P 3M@
�X<>1���6Í1;B�6O:=Q5CkHi´�å�´�"�?KGETM3MS"ä.��3�?>@FGI?>Gy3M@½3�576 8yäE6,ä76BU=*!5E6Ò3MS"1BGET"?A3�?A@FGNC>`�Q}O�T�MPO���^+m�½�^�R=O�R�MjC¹?>T�äETM6,P
3M@��Xä73�6,?A3�5769S�1(ß{´.:=å�*!:#ß��(0ëà{�·á�:=á�* @BS	Cfá�C}*�ß��Y02à)QR:�*!:�?>GET�3MS"ä.��3�?A@FG ?>G�3M@·3�576{8�ä76,ä76BU?*!576
��XZYS[�T?U�XZY\T�M]X�^�R���^�m m)T�R�w?Y�3MS"1BGET"?A3�?A@FGJ�X<K1���6,T!6,?A3�5769S�1;@·:c*WCfá�6-*�´{BYß{*WC��·á;@BS�B�à)Ý!å�*!:{@�B�C.?>G-!
TM3MS"ä���3�?A@FG�?>G�3M@·3�576W8�ä76,ä76BUBå�<><�3�57S�696J3MS"1BGET�?>3�?A@FGET�5E1&�B6!1·LFäE14S�P 3M@(<K?>æç?A3m3�5E6JG�äEæH�
69S�@Bé�?>GETM3MS�ä.��3�?A@FGET
�X<>1���6,P ?>Gy3M@½3�576~8yäE6,ä76Ò3M@#�ES�6��B6,Gy3�1BG ?>G��¿GE?A3M6(TM3�143M6ÑT��X1���6 8.576,G��
69S�é~@BS�æç?>G7Lç1BGE1B<9��T�?KT9U�*!576<�XGE1B<
3MS"1BGET"?A3�?A@FGNC.b(O&M���O|½·U t C¿?KT^äETM6,P 3M@çS"6&��6,?'�B6Ò1ÑS�6,T���@FGXTM6·é~S�@Fæ 3�576Ò:�ã·à @FäE3��Xä73!TM3MS�6,1BæIU
*!5E6�:�ã·à2T�?KP76�@BéO3�576#ßJà=á���@FGy3�1B?>GET¹3�57S�696�3MS"1BGXT�?A3�?A@FGET=½�QÒ^&`SOSY�Y#�>Y�O4�LX� &QÒT+Q t ÏSR-Y\M]Q�[�`&M]X�^�R7Cy½�QÒ^&`SOSY�Y)�

�	Q�O�T�MPO���^�m3½-^�R=O&R.MZÏSR-YSM]QS[�`&M]X�^�R7C�1BGEPG½·Q}^&`�O\Y�Y-V>XZYS[�T?U�X9Y�T�M]X2^+R(ÏSR-YSM]QS[�`&M]X�^�R7C�8.5E?Z�"5 14S�6ÑäETM6,P23M@è5X1BGEPE<A6
3�576Y?>G.��@Fæ½?>G7LH��@Fæ½æç1BGEPET9U-*!5763½·Q}^&`�O\Y�Yv��Y&O4��X! �Q}T�Q t ÏSR-YSM]QS[�`&M]X�^�R7C
1BGEP7½·QÒ^�`�OSY�Y��	Q�O�T�MPO���^�m3½-^�R=O&R.MZÏSRc�
YSM]QS[�`&M]X�^�R7C73MS"1BGXT�?A3�?A@FGET#T�?>æ��X<'��S�6,æÑ@��B6Y3�576Y?>G.��@Fæç?>GEL ?>GET�3MS"ä.��3�?A@FG½é~S�@Fæ�3�576�8�ä76,ä76BC71BTJG7@Ñ?>G7é�@BS"æç1y!
3�?A@FG ?>TJTM6,Gy3W�X1���$¿U�*.576�½·QÒ^�`�OSY�Y-V>X9Y\[�T?UpXZY\T+M]X2^�REÏSR-YSM]QS[�`&M]X�^�Rè3MS"1BGET�?>3�?A@FG#��69S"é~@BS"æ½T=3�5E6·T"1BæÑ6Yé�äXG.��3�?A@FG�f

27

57@r8=6��B69SÒ?>é)1G@·:�*WCká�6-*�´{B·ßW*WC��Yá ?>T�S�6&��6,?'�B6,PNC
6,?A3�5E69S·1�6�*��·à�@BS ß��·á
*êT�?ALFGE1B<�?>T·TM6,Gy3��X1���$�U
*!5E?KT)S�6��XS�6,TM6,Gy3�T^3�576YäETM69S!T��
6&�9?Aé2�O?>G7LÒ8�57693�5769S^3M@���@FGy3�?>GyäE6�8�?A3�5 3�576���?KT�äE1B<>?>T"143�?A@FGç@BS.T�3M@��mC71BGEP ?>T
5E1BGEPX<A6,PèG7@FGIP7693M69S"æ½?>GE?>T�?>3�?9�91B<><'�ç143!3�5X?>TJ3�5E?>T^<A6��B6,<m@Bé�1?�¿TM3MS"1���3�?A@FGNU

� �¶îL¦�§!�L©4õP© ñ�¢Yï+£L 0¨VõP©4óL¦�§�õP©y¦�ïBõwñ¹î¼ª�ðFñNïBñ�ôOñ�§
��?ALFä7S�6���T"57@b8.Tç3�576 S�6,1��"5X1?�X?><>?A3|� LBS�1?�X5 @Bé·3�5762ßJà)á æÑ@OP76,<^P76,T���S�?'�
6,P ?KG T�6&��3�?A@FGÎ��U9�IäXT�?>G7L¶1
8�ä76,ä76�T�?{z96Ò@Bé=@FG76BU
å�T��91BG��
6ÍTM696,G 3�5769S"6Í?>T�@FGE<'� @FGE6 3M69S"æ½?>GE1B<�æç14S�$O?>G7Lçé�@BS·3�576Ñß^à)á C¿8.5X?9�"5 ?>T
<A@-�9143M6,PÑ143�G7@�PE6
���4U+*!5E6#æç14S�$�?>GEL�143�G7@OP76����^T"57@b8.T�3�5E143�1B<><�3�576W8�ä76,ä76,T�14S�6J6,æ)�E3|� 1BGEPÍ3�5E143�@FGE<9�
1�6�*��·à)à=:)Ý�3M@�$B6,G 6�âO?>T�3�TÒ?>GV3�576#r OSY\XpbNR �5_i} YSMAT+MPO<½=U'T+`�O9U>*!5E?KT(?>TY3�576�6�âE�
6&��3M6,P 1BGEP'P76,T"?AS�6,P
S�6,T�äX<A39U>*!5E67�O?>T�äE1B<>?KT�143�?A@FG'5E1BT 6,GEP76,P 8.?A3�5 G7@�?>GETM3MS"ä���3�?A@FGET(?>G 3�576j8yäE6,ä76,T9U>*.5E?>TÒ?KGEPE?9�9143M6,TÒ3�5E143
�
@B3�5Ñ6,GEPET�14S"63��@BS�S�6&��3�<'�ÑT��OG.��57S�@FGE?>T�6,PNUBá.@OP76<���!?KT�1Y57@FæÑ6.T�3�143M6BC�8.5E?Z�"5Ñ?>T�1B<KTM@(P76,T�?AS�1?�X<A6{�
6&�91BäETM6
3�5E?>TÍæÑ6,1BGETÍ3�5E143Í3�576j�ES�@B3M@-��@F<#1B<A8#1���TÑ5X1BT 3�5E6;�
@FT�T�?9�X?><>?A3|�ë3M@�3M69S"æç?KGE143M6 T"ä.����6,T�TMéjäE<><'��é�S�@Fæ 1BGN�
TM3�143M6 3�5E143!3�576��ES"@B3M@E��@F<Ræç1&�j�
6Y?>GNU

1
0:1

1
Client_Input_Stream: 1‘[]
Design_CPN_state: 1‘IDLE
Client_Output_Stream: 1‘[]

2
1:1

3
2:2

4
1:1

5
1:1

6
4:2

7
1:2

8
1:2

9
1:1

10
1:1

11
1:0

11
Client_Input_Stream: 1‘[]
Design_CPN_state: 1‘STOPPED
Client_Output_Stream: 1‘[]

requestLibrary

processUseLibraryInstruction

createComponent:
{dataq=[],
crC=INIT_COMPLETE}

createComponent:
{dataq=[],crC=CREATECOMPONENT}

processCreateComponentInstruction:
{dataq=[],crC=CREATECOMPONENT}

processCreateComponent
Instruction:
{dataq=[],
crC=INIT_COMPLETE}

visualiationCommands:
{visC=UPDATEGUI,
dataq=[]}

visualisationCommands:
 {visC=GETINSTRUCTION,
dataq=[]}

processVisualisationInstruction:
{visC=GETINSTRUCTION,replyq=[],
rep=STOP,dataq=[]}

processVisualisation
Instruction:
{visC=GTINSTRUCTION,
replyq = [],
rep=CONTINUE,
dataq=[]}

ProcessVisualisationInstruction
{visC=UPDATEGUI.rep=STOP,
replyq=[],dataq=[]}

processVisualisation
Instruction:
{visC=UPDATEGUI,
rep=CONTINUE,
replyq=[],dataq=[]}

getReply:
{replyq=[],
rep=CONTINUE}

getReply:
{replyq=[],
rep=STOP}

¯5°p± §4�F§ �¹cM{"u�v`{�¸`psxsp�a�h.o�ew{"]`v·["z7adv`c�¨7ed[�ad[9uf[�xEZ
¨E©=�

*!5E6 s M]QÒ^+RNb�U t ��^+R.R=O�`�MPO�w.��^�m3½-^+R=O�R.MW� s �w�=�JLBS"1?�X5�8J1BT)1B<>TM@l�91B<Z�9äE<>143M6,Pç1BGEPÑ?KT�T�57@b8�Gç?>G)��?AL?!
ä7S�6(ûyU.*!576·éj1���3^3�5E143J3�576<6Eß!ß»LBS"1?�X5J��@FGy3�1B?>GET^<>6,T�TJG7@�PE6,T=3�5X1BGè3�576·S�6,1��"5E1?�¿?><>?A3|�½LBS"1?�X5è?>GXPE?9�9143M6,T
3�5E143Í3�5769S�6è14S�6;�\�-�9<A6,TÍ8.?A3�5X?>G¶3�576;�ES�@B3M@-��@F<tC�1B<>3�57@Fä7LF5 PEä76ç3M@ 3�576 é�1���3Í3�5E143Í3�576�3M69S�æç?>GE1B<=TM3�143M6

28

~1:
#Nodes: 1

~2:
#Nodes: 1

~3:
#Nodes: 2

~4:
#Nodes: 1

~5:
#Nodes: 4

~6:
#Nodes: 1

~7:
#Nodes: 1

SccToNodes(
ListHomeScc());

val it = [11] : Node list

1

1 1

1

11

¯5°p± §)�F§ grZNZèo�ew{�]rv�zÊ["eRadvrc��
{"itpquLÁRpqit_`{�xspsid{"adps[�nÒ¨7ed[�ad[9uk[�xA�

?>T�1�57@Fæç6 TM3�143M6�3�5769S�6�1B<A8J1&�OT�6�âO?>T�3�T.3�576H�
@FT�T�?'�X?K<>?A3P��é~@BS�3�576~�ES�@B3M@-��@F<¹3M@ 3M69S"æç?KGE143M6 T�ä�����6,T�TMéjäE<><'�BU
å�G 6�â71Bæ)�X<>6�@Bé�@FG76è@Bé.3�576,TM6J�\�-�9<A6,T �91BGF�
6 TM696,G é�S�@Fæ G7@OP76,T)��C�ü21BGXP ��: @Bé�3�576èS�6,1��"5E1?�¿?><>?A3|�
LBS"1?�X5mU�C�é�3�576�þ�ÿ��&�2�>����

�
�êT�?>æÍäE<>143M@BS)T�6,GEPET�1H@·:c*WCká�6-*3´iBYß{*WC��·á�1BGEPçæÑ@��B6,T)3M@Ò3�576!ö�å3C}*{!
Cká�@ �>��´ ´�:)à=Q�" T�3�143M6BC#3�5E6,G»3�576vI�V�_ S�6��X<>?A6,Tç8.?A3�5�ß3�·á�*�Cfá
B�:.C=1BGEP»3�576'þ�ÿ�����������
����
T�?>æÍäE<>143M@BS��91BG214LF1B?>GëT�6,GEPè3�576~@·:c*WCká�6-*3´iBYß{*WC��·á«��@Fæçæç1BGEPNU.*.5E?>TW�\�-�9<A6<��@FäE<>PJ��@FGy3�?>G�ä76(é�@BS�!
6��B69S,U�*.576j�ES�@B3M@-��@F<^?>T �ES�@��B6,G 3M@v�
6 <>?9�B6,<A@E��$Vé�S�696J�
6&�91BäETM6è3�576�6Eß.ß LBS�1?�X5D��@FG�3�1B?KGETÑ@FGE<'� @FG76
3M69S"æç?KGE1B<NG7@OP76Y8.5E?9��5J��@FG�3�1B?KGET^3�576ÒPE6,T�?AS�6,P G7@OP76)���(@Bé�3�576(S"6,1��"5E1?�X?K<>?A3P��LBS"1?�X5NU
CkG.��S�6,1BT�?KG7Lë3�576#8yäE6,ä76 <>6,G7LB3�5v�
6��B@FGEP @FG76j�91BäETM6,TÍ3�576�T�3�143M6èT��X1���6�3M@ LBS�@r8(U�µ�@b8#6��B69S½?>G 1B<><

6�â71Bæç?>G76,PH�91BTM6,T�ä��(3M@·138�ä76,ä76)<A6,GELB3�5(@Bé�z+:�øj1.G7@OP76���@FäEGy3�@Bé����BüFûBù¹3�5769S"6)6�â7?>TM3�TR@FGE<'��@FG76)3M69S"æ½?>GE1B<
G7@OP76J8.?A3�5�?>P76,Gy3�?9�91B<-�"5X14S"143M69S"?>TM3�?Z�9T�3M@(G7@�PE6
���4UFö¶6^3�5E69S�69é~@BS"6���@FGyxk6&��3�äES�6^3�5E143�3�576W8�ä76,ä76^T�?{z96^P7@�6,T
G7@B3!6\�
6&��3.3�5E6Y@���69S�143�?A@FG @Bé�3�576��ES�@B3M@-��@F<tC.�¿ä73^@FGE<'� 1y��6&��3�T�3�576ÒG�äEæH��69S^@Bé�?>GET�3MS"ä.��3�?A@FGETJ3�5X1433�91BG
�
6l8yäE6,ä76,P ?>Gè3�576ÒGE693w8#@BS�$ 143.1BGN�è3�?>æç6BU
*!5X?>TJæÑ@�PE6,<�T"57@b8.TJ3�5X143!3�576���?KT�äE1B<>?>T"143�?A@FG7�XS�@B3M@E��@F<¹T�143�?>T��E6,T^?>3�Tc�¿ä7S��
@FTM6�@Bé>�ES"@��O?>PE?>G7LH��?KT�äE1B<�!

?>T�143�?>@FG¶?>G7é�@BS"æç143�?A@FG 3M@I3�576;I7V·_�8�?A3�57@Fä73��
6,?>G7L#�ES�@FG76Ñ3M@IPE6,1BPE<A@-��$OTY@BS(<>?'�B6,<A@-��$OT9CN6��B6,G¶3�5E@Fä7LF5
�\�-�9<A6,T�14S�6W�
@FT�T�?9�X<A6BU?µ.@r8=6��B69S#3�5769S�6!?>T�1Òæç1�xk@BS�<K?>æç?A3�143�?A@FGÍ@Bé�3�576W�ES�@B3M@-��@F<tUN*.5E?>T�<>?>æç?>3�143�?A@FG ?KT�3�5E143
3�576Ñ?>GET�3MS"ä.��3�?A@FGET�TM6,Gy3(14S�6)�ES�6,T"äEæÑ6,P 3M@J�
6~��@BS�S"6&��39U�*!5E?>T�æÑ6,1BGET·3�5X143(äETM69S"T·@Bé=3�576 �ES�@B3M@-��@F<�14S�6
"M<A69é�3l�X<>?KGEP.% G7@B3l$OG7@b8.?KG7L ?Aé=3�5E6½?>GETM3MS�ä.��3�?A@FGET�3�576��;x�äETM3(TM6,Gy3(8#69S�6��41B<>?>PNU�*R@I@��B69S���@Fæç6�3�5E?KT9Cm1BG
143M3M6,æ)�E3(5X1BT��
696,G¶æç1BPE6 3M@IT��
6&�9?Aé2�I1 æÑ@BS�6ÍS�@��XäXTM3���?>T"äE1B<>?>T�143�?>@FGG�ES�@B3M@-��@F<tCN?>Gg6�6&��3�?A@FGv��C
8.5E?Z�"5
TM6,GEPXTJS�6��X<>?A6,T{�¿1���$èé~@BS.6,1��"5���?>T"äE1B<>?>T�143�?>@FG ?KGETM3MS"ä.��3�?>@FG�S"6&��6,?'�B6,PNU

� ��	 ñmðN ���ñ��#ó�©rï�ª�ðFñNïBñ�ôOñ�§3¢kñmð�¤~¥�ï? Xð�îL¦�§3¨VõP©4óL¦�§wõ|©y¦¿ïFõwñ¹î

*!576 ?>æ)�ES"@��B6,P���?>T"äE1B<>?>T�143�?>@FGg�ES�@B3M@-��@F<=?KG.�9<>äEP76,T 1IS�6,T���@FGXTM6½é�@BS 6,1���5 ?>GETM3MS�ä.��3�?A@FGVT�6,G�39U	*!5E?>TÒS�6\!
T��
@FGETM6J?>GEPX?9�9143M6,T�8.57693�5769S�3�576^?>GET�3MS"ä.��3�?A@FG 8#1BT�T"ä.����6,T�TMéjäE<�@BS�G7@B39CB1BGEP�?AéX1BGÑ?>GXTM3MS"ä.��3�?A@FG éj1B?><A6,PNC`3�576
S�6,1BTM@FGç8.5N�Í?>T�LF?'�B6,G�3M@Ò?KG7é~@BS�æ äXTM69S"T�@Bé¿3�5E6W�ES�@B3M@-��@F<tU+*!576^T�ä.����6,T"T�@BS�é�1B?K<>ä7S�6#@Bé¿3�5E6,TM6!?>GETM3MS�ä.��3�?A@FGET
?>TYP7693M69S�æç?>G76,P��E��3�576ç1B<><A@r8#1?�X<>6çTM6&8yäE6,G.��6,TÒ1BT(T���6&�9?9�E6,P��(� 3�576ÑS�69LFäX<>14S(6�â-�ES�6,T�T�?>@FG¶?>G�6&8yäX143�?A@FG
ø}�bù#@Bé�6�6&��3�?A@FG���U9�4U
*!5E6;ILK+MPO&Q�R=T?UHV>X9Y\[-T�UpXZY\T�M]X�^�Rh_3T+`\a�T&b(O(T�?>P76�@BéJ3�576)�ES�@B3M@-��@F<)5X1BT��
696,G'æÑ@OPE?'�E6,P�T�?ALFGX?'���91BGy3�<'�

3M@ P7693M69S"æç?KG76 ?Aé�1#�O?>T�äE1B<K?>T�143�?A@FG2?>GETM3MS"ä���3�?A@FGë?>T�1�����6��E3�1?�X<>6BU�*.576ÍT�69S��B69SY8.?><><m6,?A3�5769S·S�6,T��
@FGEPë8.?A3�5
6Nøjä.����6,T"T�ù^@BS��^øj1B?><~ù.P76��
6,GEPE?KG7Lç@FG23�576~�9äES�S�6,Gy3�TM3�143M6�@Bé�3�5E6)I7V·_�1BGEP23�576�?>GETM3MS"ä���3�?A@FGIS�6&��6,?9�B6,PNU
*!576è1�����6��E3�1?�X?K<>?A3P� @Bé�1BG ?>GXTM3MS"ä.��3�?A@FG ?>T�P7693M69S"æ½?>G76,P äET�?>G7L 3�576è@BS"P769S�3�5E143ç?KGETM3MS"ä.��3�?>@FGET<�91BGD�
6
S�6&��6,?'�B6,P�?>G�é�@BS=1(T�ä�����6,T�TMéjäE<-��?KT�äE1B<>?>T"143�?A@FGÍ3M@(@E���9äES,UN*!5E?KT�@BS"P769S)?>T�3�5E6.T�1BæÑ6.1BT)3�576!@BS"PE69S)T��
6&�9?'�E6,P
?>G¶6&8�äE143�?A@FGÎ�çäET�?KG7LI1���C}�>� 8�ä76,ä76Ñ6,GXT�ä7S�6,TÒ3�5E143Ò?>GET�3MS"ä.��3�?A@FGETY14S"6½S�6&��6,?'�B6,P ?>G�3�576 T�1BæÑ6ç@BS�P769S
3�5E143!3�5E6��è14S"6(TM6,G�39U
*!5E6��9<>?A6,Gy3=5X1BTL�
696,G�æç@�PE?9�E6,PÑ3M@Í8#1B?A3=é~@BSJ1 S�6��X<'�Íé~S"@Fæ 3�576�:�ã·à 6,1��"5è3�?>æÑ6�1BG�?KGETM3MS"ä.��3�?>@FGç?>T

TM6,Gy39U�*!576#S�6��X<'�Y?>T�3�576,GÍ1BGE1B<'�OTM6,PÍ3M@YTM696#?>é73�576^?>GETM3MS"ä���3�?A@FGÒT�ä�����696,P76,PÍ@BS�éj1B?><A6,PmCb8.5E?Z�"5Í1B<><A@b8�T�äXTM69S"T
@Bé73�576L�XS�@B3M@E��@F<y3M@�5X1BGEPE<A6�3�576,T�6)6��B6,Gy3�T�1?���ES�@��ES"?K143M6,<'�BU&*!5E?>T¹5E1BTm3�576#1BP��41BG�3�14LB6#@Bé��ES�@���?>PX?>G7L^1�¸E@r8

29

��@FGy3MS�@F<tCXø�8.5E?Z�"5�1B<>TM@·6,<>?>æ½?>GE143M6,T�3�576!TM3�143M6!T��¿1���6^6�âE�X<>@FT�?A@FG¿ù�Cy�Xä73�1B<>TM@Y?>Gy3MS�@OPEä.��6,T�S�@FäEGXP 3MS�?'�ÑP76,<>1&�
8.5E?Z�"50��@FäE<>P���6 T�?ALFGE?9���91BG�3 @FG G7693w8#@BS�$OT 8�?A3�5 <K14S�LB6;�XS�@��X14LF143�?A@FG P76,<>1���T,U�å�TÒ3�5E6#�O?>T�äX1B<>?>T�143�?A@FG
3M@�@F<m?>T!?>Gy3M6,GEP76,Pè3M@7��6(äXTM6,Pè@FGë1Ñ<A@-�91B<m14S�6,1½G7693w8#@BS�$è3�5E?>T!?KT^G7@B3.TM696,GI1BT�1)�ES�@��¿<A6,æ U

� �;ª���	 ñ�ò� �§�ñ5¢(ï+£L íG���=ðFñ��> Xò�ª½ðFñNïBñ�ôOñ�§
Ý·ä76^3M@(?A3�T�LBS�6,143M69Si��@Fæ)�X<A6�â7?A3P�BCB3�5E6J?Kæ)�ES�@��B6,P �ES�@B3M@-��@F<XßJà)á�æÑ@�PE6,<75E1BT	�
696,G~��@FGXTM3MS"ä.��3M6,Pç5X?A69S"14S�!
�"5X?9�91B<><'�BU?��?ALFä7S�6^ü�T�57@b8�TR3�5E6#3M@��ç<>6��B6,<y@Bé¿3�576^5E?A69S"14S��"5(�BU?*.576#æç@�P76,<y@BéX3�5E6J?Kæ)�ES�@��B6,PH�O?>T�äX1B<>?>T�143�?A@FG
�ES�@B3M@-��@F<���@FGET�?>T�3�T=@Bé¹é~@Fä7Si�
@BS�3i�X<>1���6,TJ1BGEP�é~@Fä7S^T�ä.�XTM3�?A3�ä73�?>@FGç3MS"1BGET"?A3�?A@FGET9U(*!576·T�1BæÑ6Y1BT�T�äEæ��E3�?A@FGET
5E1��B6<�
696,G æç1BP76Ò1BT!8=69S�6 T��
6&�9?'�E6,P ?>G�6�6&��3�?>@FG���U9�4U

Design_CPN_state

SIMULATORSTATE

IDLEP I/O

Issue_Instruction
HS

Get_Response
HS

To_server

DATACHAN

1‘[]P I/O

Discard_Instruction

HS

Accept_Instruction

HS

Vis_Server_State

P I/O

SERVERSTATE

SERVER_IDLE

From_server

REPLYQ

1‘[]P I/O

Design/CPN Side Session Service External Visualisation Package

¯�°â± §���§ ��[�]Y�yck��ckxy["z7}�\^]bed[���cM|�Á�psit_4{"xqpsid{�adpq[�n(¨Eed["ad[9uk[�xA�

� Ã]Ä � È�Ê�È � ÊbÙyÇ>Í�Ê�ÇRÙ`ÕyÛ;È�Ë¹Ú � Õ(Í(ÉoÈXÙ�È�Ê Æ Ø·Ë¹Û
��?ALFä7S�6l��T�5E@b8.TJ3�576·S�6��O?>TM6,P PE6&�9<>14S"143�?A@FGET,U-*.576��"5E1BG7LB6,T!8.?A3�5 S�6,T��
6&��3J3M@7��?ALFä7S�6���14S�6(1BT^é�@F<><A@r8.T9U
!5E6�Cká�6��´{B·ß{*�C��·á 6�*Rå�*�B�6;��@F<A@Fä7S^TM693!?>TJäET�6,P 1BTJ1 �
@�@F<A6,1BG½3M@çPE6&�9<>14S�6Y?Aém1BG ?>GET�3MS"ä.��3�?A@FG

8J1BT�T"ä.����6,T�TMéjäE<F@BS�G7@B3�d � ?>GEPX?9�9143M6,T¹T�ä�����6,T�TR1BGXP�� ?>GEPE?Z�9143M6,TR1��E1B?><tU?*!576i��@F<A@Fä7S�TM693�å
´�@l6ÒT��
6&�9?'�E6,T
3�576(S"6,1BTM@FGI8.5(�è1BGë?>GET�3MS"ä.��3�?A@FGèéj1B?><A6,PNU.�E@BS.6�â71Bæ)�X<A6(8�576,GI1)�O?>T�äE1B<K?>T�143�?A@FGj��@Fæçæç1BGXPë?>T^S"6&��6,?'�B6,P
�
69é~@BS"6^3�576.?>GE?>3�?>1B<>?>T�143�?>@FG ?>T���@Fæ)�X<A693M6BCF3�5E6!S�6,1BTM@FG½é~@BS�éj1B?><>äES�6J8=@FäE<KP ��6WCká�CÒ* á���* ß3�Y0ëà=Q¹:c*!:!U
ö÷576,G'1BGV?KGETM3MS"ä.��3�?>@FG¶?>TYT�ä.����6,T�T�é�äE<�3�576çå�´�@ ?>TYá�å øjá�@B3 å��.�X<K?9�91?�X<A6rù�CNäEGE<>6,T�TY?A3(?>T(1IS�6,T��
@FGETM6
3M@I3�576çåRö�å3C}*WCká�@�?KGETM3MS"ä.��3�?>@FG ?KG�8.5E?9��5��91BT�6ç3�576çå
´W@ 8.?><><>�
6Ñ6,?A3�5769S ß��Yá�*ê@BS~6�*��·à�U�*!576
��@F<A@Fä7S#TM693�´�:)à)Q#" ?>T)3�576��ES�@OPEä.��3�@Bé
3�576���@F<A@Fä7S=T�693�T�Cká�6�*�´{B·ß{*�C��·á 6-*�å�*�B�6Ñ1BGEP½å�´�@l6½1BGEP
P76��XGE6,TÍ1 S�6��¿<'�g�(� 3�576 TM69S��B69S,U�*!5E6J6O:c´mã·:�´�6-*Rå�*.:¶��@F<A@Fä7SÑTM693�6,GyäXæÑ69S"143M6,TÑ3�576è3�57S"696èT�3�143M6,T
@Bé!3�576èã·?>T�äE1B<K?>T�143�?A@FG'à�1���$`14LB6BUW6O:�´¹ã�:c´ CkÝ·Q¹:/?>GXPE?9�9143M6,T 8.576,G 3�576 T�69S��B69Sç5E1BT�G7@B3ÍS�6&��6,?'�B6,P 1
B�6O:)Q�CfH{´.å
´�" ?>GETM3MS"ä���3�?A@FGNCmQ5CkH{´.å
´�"l6O:c* ?>GXPE?9�9143M6,T(1�B�6O:=Q5CkH{´.å
´�" ?>GXTM3MS"ä.��3�?A@FGV5E1BTl�
696,G
S�6&��6,?'�B6,P7�Xä73�3�5E6�Cfá�C}*�ß��Y02à)QR:�*!:'?KGETM3MS"ä.��3�?>@FGÑ5E1BT)G7@B39Cy1BGEP)Cká3C}*�ß��Y02à)QR:�*!:V?>GEPE?9�9143M6,T�3�5E143
3�576Ò?KGE?A3�?>1B<>?KT�143�?A@FG½?KT���@Fæ)�X<A693M6BU
!5E6#��@F<A@FäESÍTM69376ECM0�B�QRå����´
6�*Rå�*!:ê?>TÍäETM6,P 3M@ S�6��ES�6,T�6,G�3�3�576#�`14S�?A@FäETÍTM3�143M6,T�@Bé!3�576ëþ�ÿ-,

�������	��

��� T�?>P76BU·*!5E?>T�TM3�143M6Ñ?>T�CfÝ·QR: ?>GEPE?9�9143�?KG7Lç3�5E143·1jB�6O:=Q5CkH{´.å
´�" ��@Fæçæç1BGEP�5E1BT·G7@B3
�B693
�
696,G'T�ä.����6,T"TMé�äX<><'�2T�6,G�39CRö å�CÒ* �>��´ Q5CkH ´.:=à)Q#" 8.576,G¶3�576;�9<>?A6,Gy3(?>TY8J1B?A3�?>G7LIé�@BSÒ1 S"6��X<'� 3M@21
B�6O:)Q�CfH{´.å
´�"÷?KGETM3MS"ä.��3�?>@FGNCrQ�CfH{´.å
´�" 6O:c* ?>GEPE?9�9143�?KG7L�3�5X143�3�576WB�6O:=Q5CkH{´.å
´�" ��@Fæçæç1BGXPÑ5E1BT
�
696,GèT�ä.����6,T�TMéjäE<><9��T�6,G�3^1BGEP 3�576��9<>?A6,Gy3#8.?><><ET�6,GEP 6,?A3�5769S.ß{´.:=å�*!:#ß3�Y0ëà{�·á�:)á
»@BSWCká3C}�ß��(0J!
à)QR:�*!: ?>GETM3MS"ä���3�?A@FGET9C�ö�å3C}* ����´ ß{´ ß��Y02ài�Yá�:=á�* ´.:=à)Q#" ?KGEPE?9�9143�?>GEL23�5E143½3�576G�9<>?A6,Gy3ç?>T
8J1B?A3�?>G7L(é�@BSJ1ÒS�6��¿<'� 3M@Í3�576Yß{´.:=å�*!:#ß��(0ëà{�·á�:=á�*(CFö å�C}* ����´ Cfá�C}* ß��(0ëà=Q¹:�*.: ´�:)à=Q�"
?>GEPX?9�9143�?>G7L!3�5X143�3�5E6i�9<>?>6,G�3�?>TR8#1B?A3�?KG7L�é�@BS�1.S"6��X<'�Y3M@Y1BG~Cfá�CÒ* ß��(0ëà=Q¹:�*.: ?KGETM3MS"ä.��3�?>@FGNC,ã
C�6-B�å�Q�!
C�6Oå�*WC��·á ´.:=å�Ý&";8.576,G��O?>T�äX1B<>?>T�143�?A@FG½?>GETM3MS"ä���3�?A@FGET�14S�6��
6,?>G7LÒTM6,Gy39C�ö å�CÒ* �>��´ ´.:)à=Q#" 8.576,G
3�576��9<>?>6,G�3�?>T�8J1B?A3�?>GELYé~@BS)1·S"6,T��
@FGETM6J3M@Ò1��O?>T�äE1B<K?>T�143�?A@FGÍ?>GETM3MS�ä.��3�?A@FG�1BGEP)�XGX1B<><'�~@·:c* ´.:i67ài�·á�6O:
8.576,Gè3�5E6<�9<>?A6,Gy3!?>TJ8J1B?A3�?>G7LÑé�@BS.1ÑS�6,T���@FGXTM6·3M@ç6,?A3�5769S3��@FGy3�?>G�ä76(@BS.T�3M@��ë3�576��O?>T�äE1B<K?>T�143�?A@FGNU

30

')(+*)(�,.-�/�0�-2143+5�1�6+7+62890�-2143+32:�6+;=<�>�?4@)AB-�/)72:+8)79-+143+5�146)7+628DCFE�6GE�890)-2143)5+H+728)7JI
')(+*)(�,�KGE)L�-2143+32:�6+;�L.<�>G?4@�A.:)j2:�E�8�E�69M�C~N25+;2:+8�79M4NrE#I

')(+*)(�,�;2:+8):B<RQ+SG?�(4ST'4,2-+(VU+U�W4S+X�Y Z�-�/�0�-2143+5�1�6+7+62890�-2143+32:�6+;g\
]�?+Y4-2(VU+U�W�S2X�Y[ZxKGE)L�-2143+32:�6+;�L`\RNGL�7+HGE�a+/+:)/+bcI

')(+*)(�,�;2:+8):2-�d2:)6e<`*2?+Y4@�;+:+8+:JI
')(+*)(�,eE�6�L48)/)N�-)89E)146�0+L48+:+8�NGL�<�>G?4@)A�L�C{kJI

')(+*)(�,`:)/9M+L)<�>G?4@)A�HGE�a+/2:�/+b�046�14890+L4728OCPH�E�a+/2:)/)b�0�:)H+/)72:);+b�0)L4728�C
E�6GE4890�6�1�890)-+143+5+H+7+8)7�Ci62:�C_-+14628�CwL�89145cI

')(+*)(�,�/+7+5)H+be<Rs2,2(�X)QG'4@TE�6�L�8)/)N9-)8�E)14690+L�8+:+84NGL2�4:)/2M2LvI
')(+*)(�,�/+7+5)H+b�f)<2*+?+Y4@./+7+5+H)bcI

')(+*)(�,BL47+/)K+7+/�L�8):+8)7T<�>G?4@�AeL47+/+K)7+/�02E�;)H+7DC&HGE�a)/2:)/+b�L�728 CFE�6GE�82-2143+5)H+728)7cI
')(+*)(�,BL2E�3�N2H2:+891�/�L�8+:+8�7g<h>G?4@)A¡E�;+H+7 CiHGE�a+/2:�/+b�0+L47+8OC

KGE)L�N9:�HGE)L�:+89E)146�04/)72:);+b�CPj2:�E�890�k914/904/+7+5+H)b�CwL�89145+5)7+;DCwM�7+8904/+7�L�5�146�L47OC
j2:�E48904k914/�0)-4/�0)-2143)5�146+7+6+8904/+7+5)H+b¢CPj2:9E4890�k91�/�02E�6GE�890)-2143)5+H+728)7904/+7+5+H)b¢C
j2:�E48904k914/�04H�E�a�04/+7)5+H+bcI

]9W�,B'4,2-[Zx-�/�0)-21�3+5�146+7)62890)-21�3+32:)6+;JI
]9W�,�X9W�@9W�n[Zx;2:+8+:+-�d2:)6cI
]9W�,�]�?+Y�-[Z_KGE)L)-21�3+32:)6+;9LvI
]9W�,�,2p�s�*�t)nuZ_/+7+5)H+b�fvI
]9W�,�,2p�suZw/+7+5+H+bJI
]9W�,BY4£¤Z¥E�6�L�8)/)N9-)8�E)14690+L�8+:+84NGLvI
]9W�,.W�,+¦�Y�Zx:)/9M2LvI
]9W�,BY�p),9L�@2W�@2pJZ§L47)/+K+7+/�L48+:+8)7cI

]9W+*�U�W�m+n�Y)?4o2p+<rq�I

¯5°p± §�¨F§+º ckukxq{"ew{�adps[�n`imzÊ["eRadvrc�Z
¨E©�[�zE}~\^]red[���cM|WÁ�psit_`{�xspsid{"adps[�nÒ¨7ed[�ad[9uk[�x>�

� ÃZÿ | É2È.ÍFÕ�Û
*!576.þ�ÿ��&�2�>����

�
� T"?>P76^5E1BT�1YT�?>GELF<A6c�¿<>1���6BCNr~O\YSX�b+R �5_~} YSMAT�MPO9CFäETM6,P�3M@YS�6&��@BS"P�3�5E6{�9äES�S�6,Gy3�TM3�143M6
@Bé)3�5E6�þ�ÿ�����������
���� T�?>P76�@Bé=3�576)�ES�@B3M@-��@F<tCN1�����@BS"PE?>GEL 3M@I?>3�T·3P�E��6BC>6-Ck0�B�QRå�*���´�6-*Rå�*.:!U�*!576
© ^ Y�O�QS�yO&Q·1BGEP;n�Q}^�m s O&Q��?O�Q
�X<>1���6,T�T"57@b8.G½?>G���?ALFä7S�6.üYS�6��ES�6,TM6,Gy3�3�576���UpX]O�R.M �W[-Mâ½·[-M s M]Q}O�T�m�1BGEP
��U�X�O&R.M ÏSRy½·[-M s M]Q}O�T�m �X<K1���6,T#1BT#S�6,T���6&��3�?9�B6,<'�½PE?>T��9äET�TM6,P�?>Gj6O6&��3�?A@FG#z7UE*!5E6�:�â�3M69S"GX1B<Xã·?>T�äE1B<K?>T�143�?A@FG
à�1���$414LB6Í5X1BT!1çT�?>GELF<A6��X<>1���6Y3M@�T�3M@BS�6(3�576(TM3�143M6 @BéR3�5E6~I�V�_ TM69S��B69SbU

� Ã9Â � Ç�ªRÛ&Ê Æ Ê�Ç5Ê Æ Ø·Ë � ÙyÈ�ËRÛ Æ Ê Æ Ø=ËRÛ
*!576<CfT�T"ä76 CkGETM3MS�ä.��3�?A@FGIT�ä.�.�X14LB6 ?KT.T�57@r8.Gë?KGG��?ALFä7S�6#��:OU=Cf3�T3�¿ä7S��
@FTM6(?>T.3M@;�X<K1���6<��@Fæçæç1BGEPXT�?>Gy3M@
3�576<8�ä76,ä76(?KGè3�576Y@BS"P769S.T���6&�9?9�E6,P ?>G�6�6&��3�?A@FG���U9�4U
��?ALFä7S"6����JP76��XG76,TR3�576�@�693 ´!6,T��
@FGETM6JT�ä����X14LB6BCb8.5X?9�"5 S�6&��6,?'�B6,T�S�6,T��
@FGET�6,T¹é�S�@Fæ;3�576#T�69S��B69S�T�?>P76BU

*!576�bEO�M���X! �Q}T�Q t ��O|½=U t 3MS"1BGET"?A3�?A@FG S�693MS"?A6��B6,TY1èS"6,T��
@FGETM6Íé~S�@Fæ 3�5E6 B�6O:=Q5CkHi´�å�´�"�?>GETM3MS"ä���3�?A@FG�!^?>é
3�576·?>GETM3MS�ä.��3�?A@FGç8J1BTJT�ä.����6,T�T�é�äE<X3�576,G 3�576��9<>?A6,Gy3)8.?><K<��
6�1BPEP76,P�3M@�3�576·Q5CkHi´�å�´�" 67:�*�TM3�143M6BCO@B3�5-!
69S�8.?KTM6J3�576!TM69S��B69S)?KTRS"693�ä7S"G76,P�3M@�CkÝ·Q¹:!U+*.576�b(O�M��	Q�O�T+MPO���^�m3½-^�R·O�R.M���OÒ½=U t 3MS�1BGET�?A3�?A@FG�?>T�S"6,T��
@FGET�?'�X<>6
é�@BS�PE693M69S"æç?>GE?KG7L 8.57693�5769SÍ@BSÑG7@B3�1�ß{´�:)å�*!:Jß��Y02ài�·á�:)á
�?>GETM3MS"ä���3�?A@FG'8J1BT�T�ä.����6,T�TMéjäE<tU>!576
b(O&MZÏSR.X2M���^�m3½=U'O&MPO4��OÒ½=U t �X<>1���6,T(3�5767�9<>?A6,Gy3(?>G�3�576½ã�C�6-B�å�Q�C�6Oå�*�C��·á ´�:)å�Ý&" TM3�143M6�?>é)3�576½T�69S��B69S

31

S�6��X<K?A6,TJ8.?A3�5 1ÑT�ä�����6,T�T!3M@ç3�5E6lCfá�C}* ß��(0ëà=Q¹:�*.: ?>GETM3MS�ä.��3�?A@FGNCO@B3�5769S�8�?>TM6·3�576ÒTM69S��B69S�?>TJS�693�äES"G76,P
3M@I3�576çQ�CfH{´�å�´�" 6O:c*/TM3�143M6BU>´.6,T��
@FGETM6,T·3M@I1BG'?KGETM3MS"ä.��3�?>@FG T�6,G�3Y3M@I3�5E6;I�V�_÷14S�6ÑS�693MS"?>6��B6,Pg�(�
3�5763bEO�M���O\YA½-^�R�Y�O)3MS"1BGET�?>3�?A@FGNU?*!576W�XGE1B<�3MS"1BGXT�?A3�?A@FGNC+bEO�M���OÒ½=U t CF@��X3�1B?>GET�1·S�6,T��
@FGET�6#é�S�@Fæ/3�5E6!:�ã·à'?>G
S�6,T��
@FGET�6^3M@Ò1BGçåRö å�CÒ*�Cfá�@ ?>GXTM3MS"ä.��3�?A@FGmU?*.5E?>T�3MS"1BGET"?A3�?A@FGÑ?>T�PX?>TM3�?>G.��3�é�S�@Fæ/3�576.LB693�´!6,T��
@FGETM6.3MS"1BG-!
T�?A3�?>@FGG�
6&�91BäETM6Í3�576�14S�LFäEæÑ6,Gy3�T�@Bé�3�576�6Nøjä.����6,T�T�ù!S�6,T��
@FGET�6 14S�6�?>GET��
6&��3M6,P23M@ T�696�?>é�3�5E6~��@Fæçæ½1BGEP
?>T.ß��Yá�* @BS�6-*��·à�U

requestLibrary

visualisationCommands

Design_CPN_state

SIMULATORSTATE

IDLE

P I/O Client_Output_Stream

DATACHAN

1‘[]

P I/OcreateComponent

IDLE

VISUALISATION_READY

if (visC<>AWAITING) then
 GET_RESPONSE
else WAIT_FOR_REPLY

WAIT_FOR_LIB_REPLY

dataq^^[(USELIBRARY)]

dataq

dataq

dataq^^[(visCommands visC)]

LIBRARY_SET

if(crC=INIT_COMPLETE) then
 WAIT_FOR_INIT_COMPLETE_REPLY
else WAIT_FOR_CR_COMPONENT_REPLY

dataq^^[(crCommands crC)]

dataq

¯5°p± §\²9«�§ g,_`¸r]4{�o�c�zÊ["eRadvrc�}�itit_rc }~n`ijated_rufadps[�n�atew{"n`itp�adps[�n��

getReply

Design_CPN_state

SIMULATORSTATE

IDLE

P I/O

getResponse

Client_Input_Stream

REPLYQ

1‘[]

P I/O

getLibraryReply

getCreateComponentReply

getInitCompleteReply

WAIT_FOR_REPLY

GET_RESPONSE

VISUALISATION_READY

if (sf=F) then
 VISUALISATION_READY
else if(args=STOP) then STOPPED
 else VISUALISATION_READY

replyq

replyq

(sf,args)::replyq

WAIT_FOR_LIB_REPLY

if(sf=S) then
 LIBRARY_SET
else IDLE

replyq

(sf,args)::replyq

replyq

(sf,args)::replyq

LIBRARY_SET

WAIT_FOR_CR_COMPONENT_REPLY

WAIT_FOR_INIT_COMPLETE_REPLY

if(sf=S) then
 VISUALISATION_READY
else LIBRARY_SET

replyq

(sf,args)::replyq

(sf,args)::replyq

¯5°p± §�²?²`§ g,_`¸r]4{�o�c�zÊ["emadv`c~¬�cfa �Rckit]B[�n`itc�atew{"n`itp�adps[�n��

*!5E69S�6Í14S"6ÍT�?AâI3MS"1BGET�?A3�?>@FGET���@FGy3�1B?>G76,P 8.?>3�5E?>G 3�576ÑT�ä.�.�X14LB6Ò@Bé=3�576�å�����6��E3 CkGETM3MS"ä���3�?A@FGëT�ä.�XTM3�?�!
3�ä73�?A@FG 3MS"1BGXT�?A3�?A@FG 1BTÑT�57@r8.G ?>GF��?>LFä7S�6��&��UL*!576,TM6 3MS"1BGET�?>3�?A@FGETÍ14S�6I1���3�?'�4143M6,P 8.576,G ?>GETM3MS�ä.��3�?A@FGET
14S�S"?9�B6�?>G�3�576���@BS�S�6&��3J@BS"P769SbUE*!5E6�½·Q}^&`SOSY�Yv��Y&O4�LX� &QÒT�Q t ÏSR-YSM]QS[�`&M]X�^�R�3MS"1BGET�?A3�?>@FG�?>T=6,GE1?�X<>6,P½@FGE<9�Ñ8.576,G
I�V�_ ?KT�CfÝ·QR: 1BGEP 1GB�67:)Q5CkH{´.å
´�" ?KGETM3MS"ä.��3�?>@FG¶?>TYS�6&��6,?'�B6,PmU�*!5767B�6O:=Q5CkHi´�å�´�" ?>GET�3MS"ä.��3�?A@FG
?>TÒS�6,æÑ@��B6,P é�S�@Fæ 3�5E6;8�ä76,ä76�1BGXPV1 s S�6��¿<'�¶?>TÒ?>T"T�ä76,P¶3M@ T�?ALFGE?Aé2� 3�5E143 3�5E6�?>GET�3MS"ä.��3�?A@FG¶8J1BTÍT�ä.�S!

32

Client_Output_Stream

DATACHAN

1‘[]

P I/O

Client_Input_Stream

REPLYQ

1‘[]

P I/O

processInitialisation
CompleteInstruction

processGUIUpdate
Instruction

replyToAwaiting
WithCont

Server_State

SERVERSTATE

SERVER_IDLE

P I/O

processCreate
ComponentInstruction

processUseLibrary
Instruction

replyToAwaiting
WithStop

(crCommands INIT_COMPLETE)::dataq

dataq

(visCommands UPDATEGUI)::dataq

dataq

replyq^^[(S,CONT)]

replyq

(visCommands AWAITING)::dataq

dataq

INITCOMPLETE

INITCOMPLETE

SERVER_IDLE

LIBRARYSET

LIBRARYSET

LIBRARYSET

INITCOMPLETE

(USELIBRARY)::dataq

dataq

(crCommands CREATECOMPONENT)::dataq

dataq

replyq

replyq

replyq

replyq

replyq^^[(S,NA)]

replyq^^[(S,NA)]

replyq^^[(S,NA)]

replyq^^[(S,NA)]

INITCOMPLETE

(visCommands AWAITING)::dataq

dataq

replyq^^[(S,STOP)]

replyq

¯�°â± §�²�¹�§ g,_`¸`]`{�o�c�zÊ[�emadvrc��Rukufck]ra }�nrijated_`ufadps[�n�atew{�n`itp�adps[�n��

��6,T�TMéjäE<tUc*!576J½�QÒ^&`SOSY�Y��	Q�O�T�MPO���^�m3½-^�R=O&R.MZÏSR-YSMPQ�[�`&M]X�^�R�3MS"1BGET"?A3�?A@FG»?KTç6,GE1?�X<>6,P @FGE<'� 8�576,G 3�576gI�V�_
?>TÍ?>G 3�576 Q5CkHi´�å�´�"<6O:�*�æÑ@OP76è1BGEP 1¶ßW´.:)å�*.:#ß��Y02ài�Yá�:=á�*�?>GETM3MS�ä.��3�?A@FGV?KT S"6&��6,?'�B6,PNU	*!576
ß{´�:)å�*!:Jß��Y02ài�·á�:)á
* ?>GETM3MS"ä���3�?A@FG÷?>TèS�6,æÑ@��B6,P é~S"@Fæ 3�576v8yäE6,ä76'1BGEP 1 s S�6��¿<'��?>Tè?>T"T�ä76,PNU
*!576H½·Q}^&`SOSY�Y�ÏSR.X2M]X2T?U�XZY\T�M]X�^�R���^�m3½=U9O�MPO�ÏSR-YSMPQ�[�`&M]X�^�RV3MS"1BGET�?A3�?>@FG ?KT·6,GE1?�X<A6,P�@FGE<9�ë8.576,G�3�5E6;I�V�_�?>TY?>G
3�576JQ5CkH{´.å
´�"<6O:c* æç@�P76J1BGEP�1BG~Cfá�C}* ß��(0ëà=Q¹:�*.: ?KGETM3MS"ä.��3�?>@FGÒ?>TRS�6&��6,?'�B6,PNU�*!5E6#?>GXTM3MS"ä.��3�?A@FG ?>T
S�6,æÑ@��B6,Pçé�S�@Fæ/3�576�8�ä76,ä76!1BGXPç1 s S�6��¿<'� ?>T�?KT�T�ä76,PNC43�576�I7V·_¶TM3�143M6�?>T�3�5E6,G��"5E1BGELB6,Pç3M@lCká3C}*�ß��(0J!
à)QR:�*!:.U+*!576�_�QÒ^&`SOSY�Y�­��5Ï#�.½-wNT�MPO�ÏSR-Y\M]Q�[�`�M]X2^�Rç3MS"1BGET�?A3�?>@FGÑ?>T�6,GE1?�X<>6,P�@FGE<'�Í8.576,Gç1BG;B�à=Ý!å�*!:i@�B3C
?>GET�3MS"ä.��3�?A@FG ?>TÒS"6&��6,?'�B6,P 1BGEP 3�576GI�V�_ ?KT ?>G 3�576#Cfá�C}*�ß��Y02à)QR:�*!:êæÑ@OP76BU	*!576jB�à=Ý!å�*!:i@�B3C
?>GET�3MS"ä.��3�?A@FG ?>TÍS�6,æÑ@��B6,P é~S"@Fæ
3�5E6j8�ä76,ä76 1BGEP 1 s S�6��¿<'�V?>TÍ?>T�T�äE6,PNU�*.576�Q�O|½·U t © ^�k¥®LT�X2M]XoR(b�¯JX2M±°#�
��^�R.MJ3MS�1BGET�?A3�?A@FG ?>TÍ6,GE1?�X<>6,P 8�576,G 1BG å¹ö�å3C}*WCká�@®��@Fæ½æç1BGEP ?>T S�6&��6,?'�B6,P 1BGXP 3�5E6èT�69S��B69Sç?>T�?>G
3�576�Cfá�CÒ*�ß��Y02à)Q¹:c*!: T�3�143M6BUi*!5E6ëå¹ö�å�CÒ*WCká�@ ?>GXTM3MS"ä.��3�?A@FG»?>TÑS�6,æÑ@��B6,P�é~S�@Fæ 3�576�8�ä76,ä76 1BGEP
1 � sJ² �&�~} © � S�6��X<'�¶?>TÍTM6,Gy39U�*.5767�XGX1B<�3MS"1BGET"?A3�?A@FGNC�Q�O|½·U t © ^�k¥®LT�X2M]XoR(b�¯JX2M±° s MA^�½�C)?>T 6,GE1?�X<A6,PV8.576,G
1BGVåRö�å3C}*WCká�@ ��@Fæçæç1BGEP'?KTYS�6&��6,?'�B6,P 1BGEP'3�576�TM69S��B69S ?KT(?>G�3�576�Cká�CÒ*�ß3�Y0ëà=Q¹:c*!: TM3�143M6BU�*!576
åRö å�CÒ*�Cfá�@/?>GXTM3MS"ä.��3�?A@FGè?>T!S�6,æÑ@��B6,Pëé~S"@Fæ 3�576l8�ä76,ä76(1BGEPI1h� sJ²�s © ��_��(S"6��X<'�è?>T^TM6,Gy39U

*!5E6�é�@Fä7S!3MS�1BGET�?A3�?A@FGXTi��@FGy3�1B?>G76,PI8.?A3�5E?>G�3�576(Ý·?>T��914S�P CkGETM3MS"ä���3�?A@FG T�ä��XT�3�?A3�ä73�?A@FG�3MS"1BGET�?>3�?A@FGJ�91BG
�
6�T�696,G ?KG;��?ALFä7S"6H�&��U�*!576,TM6�3MS"1BGET"?A3�?A@FGET#14S�6·1���3�?'�`143M6,PI8.576,G 1BG ?KGETM3MS"ä.��3�?>@FG½14S�S"?9�B6,T=@FäE3=@Bém@BS�P769S
1BGEPI?KT^576,G.��6ÒPE?KT��914S"P76,PNU

33

Client_Output_Stream

DATACHAN

1‘[]

P I/O

Client_Input_Stream

REPLYQ

1‘[]

P I/O

Server_State

SERVERSTATE

SERVER_IDLE

P I/O

discardUseLibrary
Instruction

[serState<>SERVER_IDLE]

discardCreate
Instruction

[serState<>LIBRARYSET]

discardInitialisation
CompleteInstruction

[serState<>LIBRARYSET]

discardVisualisation
Instruction

[serState <> INITCOMPLETE]

serState

dataq

(crCommands CREATECOMPONENT)::dataq

dataq

(crCommands INIT_COMPLETE)::dataq

dataq

serState

serState

serState

(visCommands visC)::dataq

dataq

replyq

replyq

replyq

replyq

replyq^^[(F,LIBRARY_ALREADY_SET)]

replyq^^[(F,LIBRARY_NOT_SET)]

replyq^^[(F,LIBRARY_NOT_SET)]

replyq^^[(F,INIT_NOT_COMPLETE)]

(USELIBRARY)::dataq

¯�°â± §�²�¾�§ g,_`¸`]`{�o�c�zÊ[�emadvrc º psituM{"ew| Á�psi }�nrijated_`ufadps[�n�atew{�n`itp�adps[�n��

³ �¶îL¦�§!�L©4õP© ñ�¢Yï+£L íG���)ð�ñ��� ¿ò ¨Võ|©4óL¦�§wõ|©�¦�ïFõdñRî¼ª½ð�ñNïBñ�ôOñ>§

��?ALFä7S�6~�\zÑT�57@b8�T=3�5E6�S�6,1���5E1?�X?><K?A3P�ÑLBS"1?�¿5�é�@BSJ3�576·?>æ)�ES�@��B6,P7�XS�@B3M@E��@F<�8.?>3�5�1~8yäE6,ä76�<>6,G7LB3�5½@Bé¹@FG76BU
å�T.8.?>3�5I3�576 @BS"?ALF?>GE1B<5�ES�@B3M@-��@F<tCX3�5769S"6 ?>T.@FGE<'�è@FG76Ò3M69S�æç?>GE1B<Ræç14S�$O?>G7L7CE8.5X?9�"52?>T.143�G7@�PE6;�&��U�*!5E?>T
G7@OP76(5E1BT!T"?>æç?><>14SW��5E14S"1���3M69S"?>T�3�?9�9T!3M@½GE@�P76)��� ?>GJ��?ALFä7S�6l��U

Hi�è6�âO1Bæ½?>GE?>G7L�3�576YS"6,1��"5E1?�X?K<>?A3P� LBS"1?�X5I8=6<�91BGI@��XTM69S��B6(3�5E6(é~@F<K<A@b8.?KG7L�d

´ *!5E6 @-���9ä7S�6,G.��6�@Bé=3�576 �X?>GEPE?KG7Lç6,<A6,æÑ6,Gy3�T)�?d9�S!¶µ(��C��Ed ��!¶µN��C>�Ed ��!¶µ+zIT�57@r8.T·1jB�6O:=Q5CkH{´.å
´�"�?>G-!
TM3MS�ä.��3�?A@FG ?>TJTM6,Gy3!1BGEPèS�6��X<K?A6,P½3M@çT"ä.��6,T�TMéjäE<><'�BC�3�5E?>T{��@BS�S"6,T��
@FGEPET#3M@Ñ3�576YäETM6,QR?'�X14S"1��7�X14S�3J@Bé�3�576
S�69LFäX<>14S!6�â-�ES�6,T�T�?>@FGj�ES�6,TM6,Gy3M6,PI?>G�6�6&��3�?>@FG���U9�4U

´ åJ3.GE@�P76�zç3�8=@7�X143�5ET^æç1��#�
6·é�@F<><A@b8#6,PNUEHi� 3�576Y@E���9äES�S�6,G.��6(@Bé��X?>GXPE?>G7L(6,<>6,æÑ6,G�3�T
�Ed�z?!¶µN��CNû(d ��!
µyüè1BGEPv�Edqü�!¶µ+z7C¹8#6��91BG'TM696Ñ3�5E143(?A3(?KT��
@FT�T"?'�X<A6 3M@ëTM6,GEP¶1BT(æ½1BGN�'ß{´.:=å�*!: ß��Y02ài�·á�:)á
*
?>GXTM3MS"ä.��3�?A@FGXT#1BT.8=6Y8J1BGy3.8.?A3�5è6,1���5G�
6,?>G7L�é�@F<><A@r8=6,PJ�E�è1çT�ä.����6,T�T�é�äE<
S"6,T��
@FGETM6BU�*!5E?>T{�¿143�5G�91BG
�
6Ñ3�1?$B6,G·z969S�@I@BS æç@BS�6ç3�?>æÑ6,T,U5*!576Ñ@FGE<'� @B3�5769SH�X143�5¶3�5E143~�91BGg�
6Ñ3�1?$B6,GVé�S�@Fæ G7@OP76)zë?KT��(�
3�576 @E���9äES�S�6,G.��6(@Bé��¿?>GEPE?>GEL 6,<A6,æç6,G�3�T3z�d�z?!¶µN�#�Ed ��!¶µyû½1BGEP üEd�û�!¶µN��C�8.5E?9��5G�91BäETM6,T�3�576ÒT�6,GEPE?>G7LÑ@Bé
3�5763Cfá�CÒ* ß��Y02à)QR:�*!:h��@Fæçæç1BGEPÑé�@F<><A@r8=6,P7�(��1(T�ä�����6,T�TMéjäE<OS�6,T��
@FGETM6^é�S�@Fæ/3�5E6!TM69S��B69S,UN*.576,TM6
3�8=@H��@FT"T�?'�X?><K?A3M6,T>��@BS"S�6,T��
@FGEPÑ3M@(3�5E6.TM6&��@FGEP�1BGEPÑ3�5E?AS�P�3M69S"æçT�@Bé
3�576!S"69LFäE<>14S�6�â-�ES�6,T�T"?A@FG~!��
6,?>G7L
��S�6,143M6rßJ@Fæ)�
@FG76,G�3 û ?>GE?A3�ß#@Fæ��X<A693M6BU

´ *!5E6YS�6,æç1B?>GE?KG7LH�¿?>PE?>G7L 6,<A6,æÑ6,Gy3�T.T�5E@b8 3�576(T�6,GEPE?>G7L�1BGEP S"6&��6,?'��?KG7L�S�6,T��
@FGETM6,TJ3M@��O?>T�äX1B<>?>T�143�?A@FG
?>GXTM3MS"ä.��3�?A@FGXT9C43�576,TM6���@BS"S�6,T��
@FGEP�3M@Ò3�5E6!é~@FäES�3�5Ñ3M69S"æ�?>GÑ3�576!S"69LFäE<>14S�6�â-�ES�6,T�T"?A@FG !#ú ã·?>T�äE1B<K?>T�143�?A@FG
CkGETM3MS"ä���3�?A@FGETký û U

34

1
0:1

1
Top_Level’Design_CPN_state: 1‘IDLE
Top_Level’To_server: 1‘[]
Top_Level’Vis_Server_State: SERVER_IDLE
Top_Level’From_server: 1‘[]

2
1:1

3
1:1

4
2:2

5
1:1

6
1:1

8
1:1

7
1:1

9
3:2

10
1:1

11
1:2

13
1:1

14
1:1

12
1:1

15
1:0

15
Top_Level’Design_CPN_state: 1‘STOPPED
Top_Level’To_server: 1‘[]
Top_Level’Vis_Server_State: 1‘INITCOMPLETE
Top_Level’From_server: 1‘[]

Binding Elements
1:1->2
Send_Vis_Instruction’
requestLibrary: {dataq=[]}

2:2->3
Process_Vis_Command
processUseLibraryInstruction:
{replyq=[],dataq=[]}

3:3->4
Get_Vis_Response
getLibraryReply:
{sf=S,replyq=[],args=NA}

4:4->5
Send_Vis_Instruction’
createComponent:
{dataq=[],crC=INIT_COMPLETE}

5:4->6
Send_Vis_Instruction
createComponent:
{dataq=[],crC=CREATECOMPONENT}

7:6->8
Process_Vis_Command’
processCreateComponentInstruction
:{replyq=[],dataq=[]}

6:5->7
Process_Vis_Command’
processInitialisationInstruction:
{replyq=[],dataq=[]}

9:8->4
Get_Vis_Response
getCreateComponentReply:
{sf=S,replyq=[],args=NA}

8:7->9
Get_Vis_Response’
getInitCompleteReply:
{sf=S,replyq=[],args=NA}

10:9->10
Send_Vis_Instruction’
visualisationCommands:
{visC=UPDATEGUI}
11:9->11
Send_Vis_Instruction’
visualisationCommands:
{visC=AWAITING}

13:11->13
Process_Vis_Command’
replyToAwaitingWithCont:
{replyq=[],dataq=[]}

14:11->14
Process_Vis_Command’
replyToAwaitingWithStop:
{replyq=[],dataq=[]}

12:10->12
Process_Vis_Command’
processGUIUpdateInstruction:
{replyq=[],dataq=[]}

17:14->15
Get_Vis_Response’
getReply:
{sf=S,replyq=[],args=STOP}

16:13->9
Get_Vis_Response’
getReply:
{sf=S,replyq=[],args=CONT}

15:12->9
Get_Vis_Response
getResponse:
{sf=S,replyq=[],args=NA}

¯�°â± §�²2��§ �¹cM{�uwv4{"¸`psxspsa~h��Rn4{"x�hritpsiNzÊ["e � [,|bckx�[�zE}�\^]bed[���cM|!¨Eed["ad[9uk[�xA�
CkG'T�äEæçæ½14S��BCN8=6;�91BGVTM696ç3�5X143Ò3�5767�9<K?A6,G�3(T�6,GEPETY3�576ç?KGETM3MS"ä.��3�?>@FGETY?>G�3�576ç@BS�P769SÒT��
6&�9?'�E6,P��E��3�576
S�69LFäE<K14S�6�â-�ES�6,T�T"?A@FG ø�6&8�äE143�?A@FGD�bù�CN1BGEP23�5E143·3�576��ë14S"6�1B<KTM@�S"6&��6,?'�B6,P��(�ë3�576ÍT�69S��B69S(?>GI3�5E6 ��@BS"S�6&��3
@BS"P769SbC73�5769S�69é�@BS�6(8#6<�91BGIT�1�� 3�5E143^3�576Ò?>æ��ES�@��B6,PG�ES�@B3M@-��@F<��
6,5E1&�B6,T�1BT!6�â-��6&��3M6,PmU
��?ALFä7S"6h�&�'T�5E@b8.T�3�576 s M]Q}^�RNb+U t ��^�R�R=O�`�MPO�wD��^�m3½-^�R·O�R.MJ� s �w�=� LBS"1?�X5³�91B<Z�9äE<>143M6,P�é~S�@Fæ 3�576

ßJà=áÒU7å�TJ8.?A3�5�3�576·@BS"?ALF?>GE1B<=�ES�@B3M@-��@F<tCO3�576<6Eß!ß»LBS"1?�¿5#��@FGy3�1B?>GET^<>6,T�TJG7@�PE6,T=3�5X1BGè3�576·S�6,1��"5E1?�¿?><>?A3|�
LBS"1?�X5mCE?>GEPE?9�9143�?KG7L�3�5E143!3�5769S�6 14S�6<�\�-�9<A6,T��ES"6,TM6,G�39U¿å�<>T�@çT�57@b8�GI57@b8#6��B69S·?>T^3�576(éj1���3.3�5X143!3�576(@FGE<9�
3M69S"æç?KGE1B<mG7@OP76(@Bé�3�576 6Eß!ß���@FGy3�1B?>GET�3�576 GE@�P76Ò3�5E143�?>T!3�576 P76,1BP2æç14S�$O?>G7L7CXGE@�P76;�&��U·*!5X?>T{�ES�@��B6,T
3�5E143!3�5E69S�6Ò14S�6(G7@�<>?'�B6,<A@-��$OTJ8.?A3�5E?KG�3�5E6l�ES�@B3M@-��@F<tU
CkG.��S�6,1BT�?KG7Lç3�576~8yä76,äE6Ò<A6,G7LB3�5��
6��B@FGEPh� 5E1BT.G7@�6\��6&��3·1BT�G7698;?>GXTM3MS"ä.��3�?A@FGXT!14S�6 GE@B33�X<>1���6,P2?>G

3�576l8�ä76,ä76(äEGy3�?><
3�576��XS�6���?>@FäET#@FG76Ò?>T^1���$�G7@r8.<A6,P7LB6,PmU�*!576Y@FGE<9��T�?>PE6�6\�
6&��3.@Bé�3�576(G7698 �ES�@B3M@-��@F<m?>T
3�5E143�?A3.?>T^S"6,PEä.��6,PI3M@ 1çTM3M@���1BGEPI8J1B?A3��XS�@B3M@E��@F<R1BT�14é�3M69S�6,1��"5 ?>GETM3MS"ä���3�?A@FG ?>T.T�6,G�3�3M@½3�576~I7V·_ ?A3
8J1B?A3�T�é~@BS�1.S"6,T��
@FGETM6BU�*.5E?>Tm8�?><><F<A6,1BP 3M@�S�6,PEä.��6,PH�
69S�é~@BS�æç1BG.��6)@FG�1�G7693w8#@BS�$(8�?A3�5Ò5E?>LF5 <>143M6,G��\�ÒPEä76
3M@½3�5E6(é�1���3�3�5E143.?KG7é~@BS�æç143�?A@FGI5E1BT.3M@½3MS"1��B6,<R?KGJ�
@B3�5IPE?AS�6&��3�?>@FGET^8.5769S"6,1BT.?>G 3�5E6Ò@BS"?ALF?KGE1B<��ES�@B3M@-��@F<
?>G7é�@BS"æç143�?>@FGè8#1BT!T�6,G�3.?KGè@FGE<'� @FG76ÒPE?AS"6&��3�?A@FG 1Ñæç1�xM@BS"?A3P�è@Bé�3�576(3�?>æç6BU

35

~1:
#Nodes: 1

~2:
#Nodes: 1

~3:
#Nodes: 1

~4:
#Nodes: 3

~5:
#Nodes: 1

~6:
#Nodes: 1

~7:
#Nodes: 5

~8:
#Nodes: 1

~9:
#Nodes: 1

SccToNodes(ListHomeScc()); val it = [15] : Node list

11

1

1 1

1

11

¯5°p± §�²9y�§ g`ZNZèo�ew{"]`v�z�[�emadv`c�}~\^]red[���cM|�Á�psit_`{�xspsid{"adps[�n(¨7ed[�ad[9uk[�xA�
¸ ��ñ¹î)ô�§�ó�©4õdñRî�©
*!5E?KT��X1?�
69S·T�57@b8�T�3�5X143�3�576 �O?>T�äE1B<K?>T�143�?A@FGJ�XS�@B3M@E��@F<��ES"6,TM6,G�3M6,P�5769S"6Í?>T�1�����6��E3�1?�X<>6BC
?>é�G7@B3��
69S�é�6&��3
øjPEä76�3M@ 3�576Ñéj1���3Y3�576çTM6,GXP769S·@Bé#?>GXTM3MS"ä.��3�?A@FGXT�?>T·G7@B3(?KG7é~@BS�æÑ6,P @Bé)69S�S�@BS�T�ù�U5*!576 �ES�@B3M@-��@F<�1B<><A@r8.TY1
�9<>?A6,Gy3!1?�.�X<K?9�9143�?A@FG 3M@çS�6&8�ä76,TM3.1�S"6,æÑ@B3M6Ò1)�O?>T�äE1B<K?>T�143�?A@FG�@Bé�T���T�3M6,æ �
6,5E1&�O?A@Fä7S!äET"?>G7L�3�576HILKNMPO�QSR�T?U
V>X9Y\[-T�UpXZY\T�M]X�^�RJ_�T+`�a?T&bEO�U-Cf3#5E1BT{�
696,G#�ES�@��B6,P 3�5E143^3�576
�ES�@B3M@-��@F<N?>T=PE6,1BPE<A@-��$�1BGXP <K?'�B6,<A@-��$çé�S�696Y1BGEP
��@Fæ)�X<K?A6,T^8.?A3�5I3�576 T��
6&�9?'�=�9143�?A@FG @Bé�3�576 @BS"P769S�?KG 8.5E?9��5I?>GET�3MS"ä.��3�?A@FGETW�91BG��
6ÒTM6,Gy39U�Cf3�?>T!3�5769S�69é�@BS�6
T�14é�6(3M@½äET�6BU

å�G¶?>æ)�
@BS�3�1BGy3�<>6,T�TM@FG�<A6,14S"Gy3·é~S�@Fæ 3�5X?>T.8#@BS�$28#1BTY3�5X143�3�5E6çæÑ@�PE6,<><>?>G7L�1BGEP�1BGE1B<'�OT�?>T�6�â�69S��9?>TM6
PE?>PèS"6��B6,1B<¹3�5E143.3�576l�ES"T�33�9ä73.?>æ��X<A6,æÑ6,Gy3�143�?A@FGè@Bé�3�576<�XS�@B3M@E��@F<=øjG7@B3�æÑ@OP76,<><>6,P ?>G 3�5E?>T{�¿1?��69S�ùJPE?>P
T�ä-�
69S½é�S�@Fæ 3w8#@��ES"@��X<A6,æçT9UL��?AS�TM3�<'�BC�3�5E143�3�576I@BS"PE69S½@Bé(?>GET�3MS"ä.��3�?A@FGET�8J1BT G7@B3�1BPE5E69S�6,P 3M@÷øj1BGN�
@BS"P769S^8J1BT^1B<><A@r8=6,P�ù#1BGEPè3�5E143J3�576(?>æ)�¿<A6,æÑ6,Gy3�143�?A@FGj��@FäE<>PèP76,1BPE<A@-��$�U�*!5E?>TJ5E1BT{�O?>GEPX?9�9143M6,P 3�576YäETM6
@Bé�é~@BS"æ½1B<NæÑ693�57@OPETJ?>Gè3�5E?>Ti�ES�@yxM6&��39U�*!5E6·äXTM6·@Bé�ßJà=á�T^5X1BT{�ES�@��B6,PI3M@)�ES�@��O?>P76YäET�69é�äE<
?>GXT�?ALF5y3#?>Gy3M@
3�576#�ES�@B3M@-��@F<]�sTH��6,5X1&�O?A@Fä7S,U�*.5E?>T(8J1BT�1��"5E?>6��B6,P 3�5ES�@Fä7LF5 TM6��B69S"1B<J?A3M69S"143�?A@FGXTÒ@Bé^3�576èæÑ@OP76,<L�
69é�@BS�6
3�576ÒPE6,T�?AS�6,P S�6,T�äX<A3^8#1BT!@��E3�1B?>G76,PNU
B�T�?>G7LÑßJà)á�T9C�3�5E?>T��X1?�
69S#5E1BTJ1B<>T�@ÍT��
6&�9?'�X6,P½1BG ?>æ)�ES�@��B6,P#�ES�@B3M@-��@F<tCy3�5X143=S�693�äES"GET#?>G7é�@BS"æç143�?A@FG

1?�
@Fä73ç3�576 T�ä.����6,T�T�@Bé(1BG�?>GETM3MS"ä���3�?A@FG 3M@ 3�5E6��9<>?A6,Gy39Uc*!5X?>TÑ8.?><K<^1B<><A@b8 äETM69S"T½@BéY3�576��XS�@B3M@E��@F<.3M@
�ES�@���?KP76 é�@BSY69S�S�@BSY5E1BGXPE<>?>G7L7U·*!576�?>æ)�ES"@��B6,P��ES�@B3M@-��@F<	�ES�6,T�69S��B6,P 3�576ÑT�1BæÑ6çP76,T�?>S�6,P��XS�@��
69S�3�?A6,T·1BT
3�576^@BS"?>LF?>GE1B<E�ES�@B3M@-��@F<tU+*!576^P7S�1,8��X1���$ 3M@Yé�696,P��X1���$Ñ1?��@FäE3�3�5E6!?>GETM3MS"ä���3�?A@FG�TM6,G�3�?KTR3�5X143�3�576^1BæÑ@FäEGy3
@Bé^PE143�1ITM6,Gy3Ò@FGV3�576½G7693�8=@BS�$�?KT(1B<>æÑ@FTM3 P7@Fä��X<A6,P¶1BT ?>G7é�@BS"æç143�?A@FG¶?KT(TM6,Gy3Ò?>Gg�
@B3�5'PE?>S�6&��3�?A@FGET·é�@BS
6,1��"5;?>GETM3MS�ä.��3�?A@FGNC#8.5769S�6,1BT ?KG÷3�576¶@BS"?ALF?>GX1B<3�ES"@B3M@E��@F<tC!?KG7é~@BS�æç143�?A@FG ¸E@b8 8#1BTJ�XS"?>æç14S"?K<'� ?>G÷@FG76
PE?AS"6&��3�?A@FGNU.*!5E?KT^?>T!G7@B3�TM696,Gë1BT�1)�ES�@��X<>6,æ é~@BS�3�576(6,G(��?KT�14LB6,Pë1?�.�¿<>?9�9143�?A@FGè6,G(��?>S�@FGEæÑ6,Gy3!@Bé�1½<A@-�91B<
14S�6,1çGE693w8#@BS�$¿U
Cf3.?>T^1B<>T�@��9<A6,14S.3�5E143.3�576(1BGE1B<'�OT�?>TJ@Bé�3�5E?>T{�XS"1���3�?9�91B<m1?�.�¿<>?9�9143�?A@FG 8J1BT!8#6,<><
8.?A3�5E?KG�3�5E6Ò<>?>æç?>3�T=@Bé

þ�ÿ��&�2�>����

����¹'���91?�X1?�¿?><>?A3�?A6,T,C�1BT#3�576�T�3�143M6·T��X1���6,T#S�6,æç1B?>G76,P;�B69S��½T"æç1B<><tUE*!5E?>T=5E1BT=1B<K<A@b8#6,Pèæ ä.��5
LBS�6,143M69S<��@FG.�XP76,G.��6�3M@J�
6 LF1B?KG76,P�?>G 3�576ÑP76,T�?ALFG @Bé)3�5X?>T
�ES�@B3M@-��@F<�1BGEP�T�57@FäE<>P26,G.��@Fä7S�14LB6Ñ3�576ÑäETM6
@Bé�3�576,TM6Y3M6&��5EGE?98�ä76,T!?>G T"?>æç?><>14S^PE?KTM3MS"?'�XäE3M6,P T���TM3M6,æ½TW�ES�@yxM6&��3�T9U
k�`\ayR=^º®{U'O�w&b+m�O&R.M2Y ö¶6Y8#@FäE<>Pè<>?9$B6�3M@Ñ3�5X1BG�$j@·ä.�j@·1B<><K1BT��"5NC7é�@BS!1BT�T�?KTM3�1BG.��6Y?>G 3�576Y@BS"?ALF?KGE1B<¿PE6,T�?ALFG
@Bé�3�576H��?>T"äE1B<>?>T�143�?>@FGJ�ES�@B3M@-��@F<R1BGXPIé�@BS�1BT�T"?>TM3�1BG.��6 8.?A3�5I3�5E6 <>1��B@Fä73�@Bé�3�5X?>T��X1?�
69S,UXö¶6 8#@FäE<>P21B<>TM@
<>?'$B6è3M@¶3�5E1BG.$ æÑ6,æH�
69S"T�@Bé.3�5E6Iå�?AS;����69S�143�?A@FGET�Ý·?'��?KT�?A@FG @Bé�Ýl6-*
� é~@BSÑ3�576,?>SÑé~696,P��¿1���$ @FG 3�576
ã·?>T�äE1B<>?KT�143�?A@FG 3M@y@F<dU

�� .¢} Eð+ Xî=ô- �©
» �^�¹n`ps\!{"adps[�n.¸9h � pq\^psu�¼�Z
¨X©)� A2@+@)s�Z±½+½4>+>+>c¾¿X9W2?¶U�?v¾�W4Q�¾�X�ÀG½�X2p2Y+?4¦+S9-�5)6G½+*2?�ÁrY)½¶Uº?¶U�?+')½ �
Â � º �rlN�BZ�[�\^cfeM�LÝXË�Þ�ß`ÉrÀKÁ�ÂÄÃ�ÁfÀÆÅ¿Ë�ÂdÏ"È)Ä"Ã�äiãwÃ4ÀKÁ�ÂwÃFÁfÀÊÈd�
¨7edckn9adpsukcfº�Ç�{"xsx�}�n9adcfedn`{"adps[�n`{�xA�r}�n`u��q� » ���+È9�

36

É � � {�adv`cf� lXxsxsps[�a!{"n4|h¬�_rhÊ¬�{�xsxq{�ituwvy��ËOpsn4{�xÍÌ�cM{�e^¨7ed[4Î�ckufa^�¹ck]B[�etaM�Egb[�z�a��
{"edc º ckitpso�n º ckitu�edpq]badps[�ny� ��cfu�vrn`psuM{�xedck]B["etaM� � n`ps��cfeditp�a~h![�z¿gb[�_radv��R_`ijatew{"xsp�{,� Â ��� » �
Ï � � {�adv`cf�2lExqxsps[�aR{"n4|¥¬�_bhF¬�{�xsxq{�ituwvy�ÐËOpsn4{�xºÌ�cM{"eR¨7ed[4Î�ckufa¹�Rcf]B[�etaM�4gb[�z�a��
{"edc�¨7ed[4Î�ckufa � {�n`{�o�cf\^ckn9a¹¨Xxq{�n��¿��ckuwvrºnrpquk{�xFedck]B[�etaM� � nrpq��cfeditp�a�h.[�zXg,[�_badv·�R_rijatew{�xspq{b� Â ��� » ��9�_¬=��¬�{�xsxq{�ituwv({�n`|��X� � ��Ñ�edpsijadcknritckny�X�
vrc�uk[�\^\^iÒ¼�Z
¨X©2xspq¸bew{"eth9�
A2@)@)s�Z�½+½�>+>+>�¾¿X2W2?¶Uº?v¾±W4Q�¾¿X�À�½�X2p9Y+?�¦)S9-�526�½)*2?4ÁGY)½2'�(�U+UºY+'4s+S9½ �

Ó �_¬=�º¬�{�xsxq{�itv {�n4|��X� � �rÑ�edpqijadcfn`itckn��RZ�[�\^\^iÒ¼�Z
¨E©=�4�'Z�[�\^\=_`n`psuM{�adps[�n·}~nrz�ew{"ijated_`ufad_bedc�zÊ[�e�l.À,adcfedn`{�xOZ�[�\^\#_bºnrpquk{"adps[�nÍ�mp�adv º cfitpqo�nº¼�Z
¨X©)�·}�n�ÌNÂjËMÎ�Ô¹Ë±Õ_Ö�Â]ä.×·Ë�ÂtÏ"È�ØrË|ßèÄ�Ã�äRÙrÉbÀ>Ë�ÂwÇ>Ä�Å
Ë"Ã�Ì
ÂtÄ�ÎkÀÊÇ>ÎdÄ�ÅPÚ�ÈkÁ.Ë�Õ�ÝXË�ÅsË�É,ÂdÁ]ä�ÌRÁfÀÊÂwÇ
Ã�ÁfÀÊÈ�Ä"Ã�ä^ÀÛØ`ÁiÝyÌÐÃ¤Ù4ËMË�Å È~ÜAÝyÌÐÃ¥Ý Þ+ßáàM�b]4{"o�cki�È"��â9� É � º ck]`{"etad\^ckn9a¿[�zOZ�[�\^]r_radcfeNgbukpscknrukc�� � nrpq��cfeditp�a�h^["zO�R{"edv,_`ik�
Â ��� » � º �R} � }�¨X�¿º���� Ï �

È9�&ÑJ�m��ckn`itckn���ÝXË�ÅsË"ÉbÂtÁ]ä�Ì¹ÁfÀÊÂ�ÇiÃ�ÁfÀÊÈ¶Ô�èRÄ�ÈdÇ>Î7ÝXË�ÃBÎwÁoßBÀÊÈäãiå�ÃBÄ�Å Ú"ÈdÇÊÈ å ÁfÀÛØrË�ä"È�Ä�Ã?ä�Ì
ÂtÄ�ÎkÀÊÇAÎwÄ�Å¥ÚyÈfÁ�Ô(ÆrË�Å É&Þ^Á�Èæß4ç¿Ö��
� [�n`[�o"ew{�]rv`impsnY�
v`ck["edcfadpsuM{�x7Z�[�\^]`_badcfe¹g,ukpsckn`ukc��Fgb]bedpsn`o�c�etºoÁXcfedxq{�ob� » ���)È,�

è �^�E� � ��Ñ�edpsijadckn`itckn��¹gF�mZ�vredpsijadckn`itcfny�¹{�n`|.ÑJ�m��cknritckny� �
v`c ¨Eew{"ufadp�adpq[�n`cfe�é i%¬�_rp�|bc ad[�Z�[�xs[�_redcM|ë¨Xc�atedp�©�cfadik�
ãwÃ`ÀKÁ�Â�Ã4Ä�ÀÊÇ>Ë�Ã4Ä�Åvê,Ë�É,ÂwÃBÄ�ÅOË�Ã�æBË�Õ�ÀÆÅ�Ä"ÂdÁ�Ù4ËMË�Å ÈcÕkË�ÂxÙBÁtÎÒØ,Ã4Ë�ÅsËdÐ�Ú�ÙrÂtÄ"Ã`ÈÛÕMÁ�Âw� Â ª Â «w� � è â »�É)Â � » ��� è ��,�&Ñ�cknrn`cfadv�ZR�`�y[�_`|rckn���ÝXË�Þ�ß`ÇAÅqÁ�ÂWÝXË�Ã`ÈwÀÊÂwÉrÎkÀÊÇ>Ë�Ã�ëyÌNÂwÇÊÃ4ÎfÇ ßBÅqÁ�È�Ä�Ã?ä)ÌNÂjÄ�ÎkÀÊÇ>ÎwÁ��
¨Jìëg�¨E_`¸rxspqitvrpsn`o!Z�[�\^]4{�n9h9� » ���+È9�

» �,� º cfitpqo�nº¼�Z
¨X© � cfitid{�o�c#gbckÓ,_rckn`ufc�Z�v4{�etadi¹xsps¸rew{�eth9�
A2@)@)s�Z�½+½�>+>+>�¾¿X2W2?¶Uº?v¾±W4Q�¾¿X�À�½�X2p9Y+?�¦)S9-�526�½)*2?4ÁGY)½VU�Y2'�A�W�,2@�Y�½ �

»)» � º cfitpqo�nº¼�Z
¨X© ¿ nrxspqnrc�� A2@+@)scZ�½+½4>+>)>�¾¿X9W2?áUº?v¾�W4Qc¾¿X�ÀG½�X+p9Y+?4¦)S2-�526�½ �

37

38

Annotating Coloured Petri Nets

Bo Lindstrøm and Lisa Wells

Department of Computer Science, University of Aarhus,
IT-Parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{blind,wells}@daimi.au.dk

Abstract. Coloured Petri nets (CP-nets) can be used for several fundamentally different purposes like
functional analysis, performance analysis, and visualisation. To be able to use the corresponding tool
extensions and libraries it is sometimes necessary to include extra auxiliary information in the CP-net.
An example of such auxiliary information is a counter which is associated with a token to be able to
do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific
use may lead to creation of several slightly different CP-nets – only to support the different uses of
the same basic CP-net. One solution to this problem is that the auxiliary information is not integrated
into colour sets and arc inscriptions of a CP-net, but is kept separately. This makes it easy to disable
this auxiliary information if a CP-net is to be used for another purpose. This paper proposes a method
which makes it possible to associate auxiliary information, called annotations, with tokens without
modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for
determining the behaviour of the system being modelled, but are rather added to support a certain use
of the CP-net. We define the semantics of annotations by describing a translation from a CP-net and
the corresponding annotation layers to another CP-net where the annotations are an integrated part of
the CP-net.

1 Introduction

Coloured Petri nets (CP-nets or CPNs) were formulated by Kurt Jensen [8, 9] with the primary purpose of
specifying, designing, and analysing concurrent systems. The tools Design/CPN [3, 5] and CPN Tools [4]
have been developed to give tool-support for creating and analysing CP-nets. Ongoing practical use of
CP-nets and Design/CPN in industrial projects [10] have identified the need for additional facilities in the
tools.

One industrial project described in [2] illustrated that CP-nets can be used for performance analysis by
predicting the performance of a web server using a CPN model. As part of this project, the Design/CPN
Performance Tool [12] was developed as an integrated tool extension supporting data collection during
simulations. Later, work was done to extend and generalise these data collection facilities to serve as a
basis for a common so-called monitoring framework [13]. Other projects have shown that visualisation
of behaviour using so-called message sequence charts (MSCs) [7] is very useful in combination with CP-
nets. As a consequence, a library [14] has been developed for creating MSCs during simulations. Other
similar libraries are Mimic [15], which is used for visualisation, and Comms/CPN [6], which is used for
communicating with external processes.

The fact that a CPN model can be used for several fundamentally different purposes like functional
analysis, performance analysis, and visualisation means that it is desirable that the tool extensions and
libraries can be used without having to modify the CPN model itself. It should be possible to use a CPN
model, for e.g. performance analysis, without having to add extra places, transitions, and colour sets purely
for the purpose of collecting data. Optimally, the auxiliary information should not be integrated into colour
set and arc inscriptions of a CPN model, but should be kept separately, so that it is easy to disable this
information if the CPN model is to be used for something else.

Up to this point it has only been partially possible to use a CPN model for different purposes without
having to change the CPN model itself. With the current tools, it is indeed possible to do, e.g. performance
analysis without adding transitions and places for the sole purpose of doing the performance analysis.
Unfortunately however, it is often necessary to add extra information to colour sets and arc inscriptions to
hold, e.g. performance-related information such as the time at which a certain event happened.

39

This paper presents work on separating auxiliary information from a CPN model by proposing a method
which makes it possible to associate auxiliary information, calledannotations, with tokens without mod-
ifying the colour sets of the CPN model. Annotations are pieces of information that are not essential for
determining the behaviour of the system being modelled, but rather are added to support a certain use of
the CPN model. A CP-net that is equipped with annotations is referred to as anannotated CP-net. In an
annotated CP-net, every token carries a token colour, and some tokens carry both a token colour and an
annotation. A token that carries both a colour and an annotation is called anannotated token. Just like a
token value, an annotation may contain any type of information, and it may be arbitrarily complex.

Annotations are defined inannotation layers. Defining annotations in layers makes it possible to make
modular definitions of both a CP-net and one or more layers of auxiliary information that can be used
for varying purposes. By defining several different layers of annotations, it is possible to maintain several
versions of a CP-net and thereby to use the same basic CP-net for various purposes by adding, removing,
or combining annotation layers. An advantage of the annotation layers is that they are defined so that they
affect the behaviour of the original CP-net in a very limited and predictable way. Every marking of an
annotated CP-net is the same as a marking in the original CP-net, if annotations are removed.

In the following, we will assume that the reader is familiar with CP-nets as defined in [8]. The first
half of this paper provides an informal introduction to annotations and an example of how annotations can
be used in practice. The second half of the paper provides a formal definition of annotations and proof of
the fact that annotations affect the behaviour of a CP-net in a very limited way. In this paper, we will only
discuss how to annotate non-hierarchical, untimed CP-nets. However, timed and hierarchical CP-nets can
also be annotated using similar techniques.

The paper is structured as follows. Section 2 presents the well-known resource allocation system CP-
net, which will be used as a running example throughout the paper, and discusses existing ways of including
auxiliary information in CP-nets. In Sect. 3 we informally introduce our proposal for how to annotate CP-
nets. Section 4 discusses how multiple annotation layers can be used for visualisation using MSCs. In
Sect. 5 we give the formal definitions for annotating CP-nets. Finally, in Sect. 6 we conclude and give
directions for future work.

2 Motivation

It is seldom the case that the exact same CP-net can be used for a variety of different purposes, as it is
frequently necessary to make small modifications to a CP-net in order to obtain a CP-net that is appropriate
for a given purpose. Consider for example the resource allocation system that is found in Jensen’s volumes
on CP-nets [8, 9]. At least three variations of the resource allocation CP-net can be found in these volumes:
abasicversion (shown in Fig. 1) suitable for full state space analysis; anextendedversion (shown in Fig. 2)
which is extended with cycle counters for thep andq processes; and atimedversion with cycle counters
and timing information which could be used for performance analysis.

The basic version in Fig. 1 purely models the basic aspects of the resource allocation system, and
thereby only models the parts of the system that are common for any use of the CP-net. However, even
for such a simple system as the resource allocation system, it is indeed necessary to have slightly different
versions of the same CP-net in order to support different kinds of use. In other words, modifications of
the basic CP-net are made only to support a certain use, and the modifications may limit other uses of the
modified CP-net because the modifications may change the behaviour.

An example of a situation where the basic version does not contain sufficient information is when we
need to be able to count how many cycles each of thep andq processes make in the resource allocation
system. The extended CP-net in Fig. 2 shows how the basic CP-net can be extended with such auxiliary
information. First of all, the colour setU has been extended to the product colour setUxI to include an
integer for the counter in every process token. In addition, the arc inscriptions have been modified to pass
on and to update the cycle counters. The cycle counters for thep andq processes are increased each time
a p or q token passes the transitionT5. The initial marking has also been modified to include the initial
values of the cycle counters. Using this extended CP-net it is possible to determine the number of cycles a
process has completed by inspecting the counter of the corresponding tokens.

The version extended with the cycle counters is not useful for all kinds of analysis. This is due to
the fact that the cycle counters for thep and q processes increase each time thep and q tokens pass

40

AU
3‘q

BU
2‘p

CU

DU

EU

T1

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

S
E

3‘e

T

E

2‘e

x

x

x

x

x

x

x

x

x

if x=q
then 1‘q
else empty

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘p
else empty

Fig. 1.The basic CP-net for the resource allocation sys-
tem.

AUxI

3‘(q,0)

BUxI

2‘(p,0)

CUxI

DUxI

EUxI

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color I = int;
color UxI = product U * I;
color E = with e;
var x : U;
var i : I;

S
E

3‘e

T

E

2‘e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

if x=q
then 1‘(q,i+1)
else empty

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘(p,i+1)
else empty

Fig. 2. The CP-net for the resource allocation system ex-
tended with a counter.

transitionT5, thus resulting in an infinite state space. Therefore, the extended version with cycle counters
may be inappropriate for certain kinds of state space analysis. The effect of the cycle counters on the state
space can be factored out using equivalence classes, however, it may be annoying to have to remember to
manually take care of such auxiliary information before doing state space analysis. In contrast, the state
space for the basic CP-net without the cycle counters is finite. This means that the full state space can be
generated and analysed, e.g. to prove that the system never reaches a deadlocked state.

Analysing the performance of the resource allocation system is another kind of analysis that requires
auxiliary information to be maintained for the tokens in the CP-net. The timed CP-net from [9] could be
used to measure the average processing times for each of the two processes. This timed CP-net can be
created by modifying the CP-net in Fig. 2 by changing the colour setUxI to a timed colour set, and by
adding an auxiliary component to the colour set to be used for recording the time when a process restarts a
cycle,1 i.e the time at which aq process is removed from placeA or the time at which ap process is removed
from placeB. This value can then be used to calculate the processing time for a given process when it passes
theT5 transition. If the timed CP-net should be used for a purpose where the auxiliary information should
be ignored, it should often be removed. In the tool Design/CPN, it is easy to disable time, i.e. to consider
a timed CP-net as an untimed CP-net. However, auxiliary components that have been added to the colour
sets also need to be removed by manually modifying the colour sets and arc inscriptions.

From the examples presented above it should now be clear that when using CP-nets for different pur-
poses it is often necessary to maintain different versions of a CP-net with slightly different behaviour. The
reason for maintaining different versions is, as mentioned, that it may be necessary to be able to include
auxiliary information in tokens. However, the auxiliary information may be extraneous or even disastrous
for other uses, e.g. consider the effects of the cycle counters on the size of the state space. Including ex-
tra information in a CP-net often requires modification of colour sets, arc expressions, and initialisation
expressions.

1 The colour setUcould be modified to consist of pairs (u,t) where u∈U is a process and t∈TIME is the time at which
the process started processing.

41

3 Informal Introduction to Annotated CP-nets

In this section we will informally present a method for augmenting tokens in a CP-net with extra or auxiliary
information that affects the behaviour of the CP-net in a very limited and predictable manner. To do this we
introduce the concept of anannotationwhich is very similar to a token colour in that an annotation is an
additional data value that can be attached to a token. Anannotation layeris used to define annotations and
how these annotations are to be associated with tokens in a particular CP-net. An annotation layer cannot
be defined independently from a specific CP-net. Therefore, it is always well-defined to refer to the unique
CP-net for which an annotation layer is defined. We will refer to this unique CP-net as theunderlying
CP-net of an annotation layer. Anannotated CP-netis a pair consisting of an annotation layer and its
underlying CP-net. We define the semantics of annotations by describing a translation from an annotated
CP-net to a CP-net without annotations, referred to as thematching CP-net. In practice, the annotations are
integrated into the matching CP-net when the translation is made. Section 3.1 gives an informal introduction
to annotations and annotation layers. Section 3.2 describes the intuition of how to translate an annotated
CP-net to a matching CP-net. Section 3.3 discusses the behaviour of the matching CP-net, and it discusses
how the behaviour of the matching CP-net is similar to the behaviour of the underlying CP-net. The formal
definition of annotated CP-nets follows in Sect. 5.

3.1 Annotation Layer

To get an intuitive understanding of how annotations can be used, let us see how the cycle counters that
were discussed in Sect. 2 can be added as annotations. Recall that Fig. 2 shows how the CP-net from Fig. 1
can be modified to include the cycle counters as part of the token colours.

Figure 3 contains an annotated CP-net for the basic CP-net for the resource allocation system from
Fig. 1. In Fig. 3 the elements from the annotation layer are shown in black, whereas the underlying CP-
net is shown in grey. The annotation layer containsauxiliary declarationsandauxiliary net inscriptions,
where the auxiliary net inscriptions consist of auxiliary arc expressions, auxiliary colour sets, and auxiliary
initialisation expressions.

AU I

3‘q 0

BU
I

2‘p 0

CU I

DU I

EU I

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

S
E

3‘e

T

E

2‘e

color I = int;
var i : I;

x i

x i

x i

x i

x i

x i

x i

x i

x i

if x=q
then 1‘q
else empty
i+1

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘p
else empty
i+1

Fig. 3. Annotated CP-net for the resource allocation system.

42

The colour setI is declared in the first line of the auxiliary declarations. PlacesA, B, C, D andE have
auxiliary colour setI which means that tokens on these places will be annotated tokens that carry integer
annotations. A token that carries the annotationn has completed the cyclen times. Places with auxiliary
colour sets are calledannotated places. The token value for a token on an annotated place has both a token
colour and an annotation. Not all places will contain annotated tokens, therefore, some places will not have
an associated auxiliary colour set.

All of the annotated places that have an initialisation expression in the underlying CP-net must also
have anauxiliary initialisation expressionin the annotation layer. PlacesA andB have the auxiliary initial
expression0. This expression means that all tokens on placesA andB will have annotation0 in the initial
marking.

All arcs that are connected to annotated places have anauxiliary arc expression. In Fig. 3, most auxiliary
arc expressions consist of the variablei which has typeI . Variablei is declared in the annotation layer,
therefore, it may only be used within the annotation layer, i.e. it cannot be used in the underlying CP-net.
In contrast, variables, colour sets, functions, etc. that are declared in the underlying CP-net may be used
both in the underlying CP-net and in the annotation layer. However, certain conditions must be fulfilled in
order to ensure that using the same elements in both the annotation layer and the underlying CP-net does
not affect the behaviour of the underlying CP-net. These conditions will be discussed further in Sect. 5.2.

Let us consider the intuition behind the auxiliary arc expressions on the arcs surrounding transitionT5.
In the underlying CP-net,T5 can occur whenever there is one token on placeE, and this must still be true
in an annotated version of the CP-net. Informally, the interpretation of the two types of arc expressions
surroundingT5 is that when transitionT5 occurs with, e.g. binding<x=q, i=5>, one token with colourq
and annotation5 will be removed from placeE. One token with colourq and annotation5+1=6 will be
added to placeA, and the empty multi-set of annotated tokens will be added to placeB. On the other hand,
if T5 occurs with binding<x=p, i=3>, then one token with colourp and annotation3+1=4 will be added
to placeB, and no tokens will be added to placeA. In both bindings, multi-sets of (non-annotated)e tokens
are also added to placesT andS, which are non-annotated places.

The intuition behind the auxiliary inscriptions that have been discussed until now is fairly straightfor-
ward. There are, however, some restrictions on the kinds of auxiliary arc expressions that are allowed in
order to ensure that annotations have only limited influence on the behaviour of the underlying CP-net.
All of the auxiliary arc expressions on arcs from annotated places to transitions consist only of variables,
and this is not accidental. For example, the auxiliary arc expressioni on the arc fromC to T3 must not
be replaced with, e.g. the constant4, which would require that when removing a token fromC the annota-
tion must be4. Allowing such an auxiliary arc expression would mean that the behaviour of the matching
CP-net and the underlying CP-net would no longer be similar. Sections 5.2 and 5.3 discuss the restrictions
about which kinds of auxiliary arc expressions are allowed.

3.2 Translating an Annotated CP-net to a Matching CP-net

Rather than defining the semantics for annotated CP-nets, we will define the semantics of annotations by
describing how an annotated CP-net can be translated to an ordinary CP-net, which is referred to as the
matching CP-net. The discussion above should have provided a sense of what kinds of annotations the
tokens should have and of how an annotated CP-net for the resource allocation system should behave. The
annotation layer (referred to asA and shown in black in Fig. 3) and the underlying CP-net (referred to
as CPN and shown in Fig. 1) constitute an annotated CP-net for the resource allocation system. In this
section, we will show how the various auxiliary inscriptions fromA and the inscriptions from CPN are
translated to inscriptions in the matching CP-net (referred to as CPN∗ and shown in Fig. 4). The general
rules for translating an arbitrary annotation layer and its underlying CP-net are presented in Sect. 5.3. In
the following, we shall say that a place/arc is annotated/non-annotated in a matching CP-net (like Fig. 4) if
it is annotated/non-annotated in the corresponding annotated CP-net (like Fig. 3).

The rules are simple for translating an annotated CP-net to a matching CP-net. CPN and CPN∗ have
the same net structure. The colour sets for non-annotated places in CPN∗ are unchanged with respect to
CPN; in the example, the colour sets for placesR, S andT are unchanged. The colour sets for the annotated
places are now product colour sets which are products of the original colour sets and the auxiliary colour
sets. The colour set for annotated placesA-E in CPN∗ is UxI which is a product of colour setU (the colour

43

AUxI
Annotate (3‘q) 0

BUxI
Annotate (2‘p) 0

CUxI

DUxI

EUxI

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

color I = int;
var i : I;
color UxI = product U * I;

S
E

3‘e

T

E

2‘e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

Annotate
(if x=q
then 1‘q
else empty)
(i+1)

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

Annotate
(if x=p
then 1‘p
else empty)
(i+1)

Fig. 4. Matching CP-net for the resource allocation system.

set of placesA-E in CPN) and auxiliary colour setI (the auxiliary colour sets fromA). The tokens on an
annotated place p in CPN∗ are said to have an annotated colour(c,a) , wherec is a colour (from the
colour set of p in CPN), anda is an annotation (from the auxiliary colour set of p inA). The set of colour
sets for CPN∗ is the union of the set of colour sets from CPN, the set of auxiliary colour sets fromA, and
the set of product colour sets for annotated places.

In the previous section, the intuitive meaning of several auxiliary expressions was that a given annota-
tion should be added to all elements in a multi-set of colours. This is the meaning of, for example, all of
the auxiliary initial expressions. Let us define a functionAnnotate that, given an arbitrary multi-set and
an arbitrary annotation, will annotate all of the elements in the multi-set with the annotation. This function
is used in several net inscriptions in CPN∗.

Let us consider how the initialisation expressions are created for CPN∗. The initialisation expressions
for non-annotated places (R, S andT) are unchanged, and evaluating these expressions yields non-annotated
multi-sets (1`e,3 `e, and2`e respectively). The initial markings for annotated places in CPN∗ must be
multi-sets of annotated colours. PlaceA has the initialisation expressionAnnotate (3 `q) 0 , which
evaluates to3`(q,0) tokens which correspond to the desired multi-set of three annotated tokens, each
with colourq and annotation0. Note, in particular, that if the annotations are removed from the multi-set
3 (̀q,0) , then we obtain the multi-set3`q which is exactly the multi-set that is obtained when evaluating
the initialisation expression forA in the underlying CP-net. Similarly, placeB has an initial marking of two
tokens, each with colourp and annotation0. The initial markings of the remaining places are empty.

The arc expressions of CPN and the auxiliary arc expressions ofA are combined in a similar manner to
create arc expressions for CPN∗. If the type of an arc expression in CPN,expr , is a single colour, then the
arc expression in CPN∗ is the pair(expr, aexpr) , whereaexpr is the auxiliary arc expression inA.
The arc expressions for most annotated arcs in Fig. 4 have this form. When the type of an arc expression is a
multi-set of colours, then the arc expression for CPN∗ is Annotate expr aexpr . The arc expressions
for the arcs from transitionT5 to placesA andB were created in this manner. The next section discusses
how the behaviour of the matching CP-net is similar to the behaviour of the underlying CP-net.

44

3.3 Behaviour of Matching CP-nets

In a matching CP-net some places contain annotated tokens, other places contain non-annotated tokens,
and occurrences of binding elements can remove and add both regular, non-annotated tokens and annotated
tokens. Figure 5 shows a marking of the matching CP-net, CPN∗. The marking of placeA contains two
tokens – one with colour(q,4) , the other with colour(q,5) . This corresponds to a marking in the
annotated CP-net of Fig. 3 whereA has one token with colourq and annotation4 and another token
with colourq and annotation5. Similarly, placeB contains three tokens with colours(p,5) , (p,6) and
(q,1) . This corresponds to a marking in the annotated net whereB has one token with colourp and
annotation5, another token with colourp and annotation6, and a third token with colourq and annotation
1. Finally, placesS andT each contain two non-annotated tokens with coloure.

AUxI
Annotate (3‘q) 0 2 1‘(q,4)+1‘(q,5)

BUxI
Annotate (2‘p) 0 3

1‘(p,5)+1‘(p,6)+
1‘(q,1)

CUxI

DUxI

EUxI

T1 [x=q]

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

color I = int;
var i : I;
color UxI = product U * I;

S
E

3‘e

2 2‘e

T

E

2‘e

2 2‘e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

Annotate
(if x=q
then 1‘q
else empty)
(i+1)

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

Annotate
(if x=p
then 1‘p
else empty)
(i+1)

Fig. 5. Marking of the matching CP-net for the resource allocation system.

We say that the behaviour of the matching CP-netmatchesthe behaviour of its underlying CP-net. In-
formally this means that every occurrence sequence in the matching CP-net is also an occurrence sequence
in the underlying CP-net if annotations are ignored. Furthermore, for every occurrence sequence in the
underlying CP-net, it is possible to find at least one matching occurrence sequence in the matching CP-net
which is identical to the occurrence sequence from the underlying CP-net when annotations are ignored.
Consider, for example, a marking, M, of the basic CP-net from Fig. 1, in which there are twoe tokens
on placesS andT, two q tokens on placeA, and twop tokens and oneq token on placeB. The binding
element (T2, 〈x=p〉) is enabled in M. The marking of the matching CP-net in Fig. 5 is the same as marking
M if annotations are ignored. The occurrence of either (T2, 〈x=p, i=5〉) or (T2, 〈x=p, i=6〉) in the matching
CP-net will result in markings that are equal M′ where M[(T2, 〈x=p〉)〉M′ when annotations are ignored. A
formal definition of matching behaviour can be found in Sect. 5.4.

45

4 Using Annotation Layers in Practice

This section discusses how to use several annotation layers for the basic CP-net of the resource allocation
system presented in Fig. 1 in Sect. 2. The purpose of this section is to illustrate that multiple annotation
layers can be added on top of each other without changing the original model, and to illustrate some
of the uses of annotations. We will discuss an example of how annotations can be used for visualising
simulation results. In particular we will consider how message sequence charts (MSCs) can be created
using annotations.

A MSC can be used, e.g. to visualise the use of resources. Figure 6 depicts a MSC for the basic CP-
net of the resource allocation system. The MSC contains two vertical lines which represent the activities of
allocating and deallocating resources in the resource allocation system. An arrow represents the dependency
between the allocation and deallocation of anS or anR resource.

The MSC in Fig. 6 visualises a sequence of allocations of resources by thep andq processes. The
arrows forp processes are dashed. The MSC shows that first theq process makes a full cycle where it
first allocates anR and anS resource whenT1 occurs, and an additionalS resource whenT2 occurs. The
R resource is deallocated whenT3 occurs, and the twoS resources are deallocated whenT5 occurs. The
last five arrows show a situation where twop processes interleave with aq process. First theq process
allocates anRand anS resource, but then two cycles ofp processes appear (the two dashed arrows) before
theq process continues the cycle. This interleaving is explicitly visualised by the arrows started byT1 and
ended byT3 andT5, and crossing the arrows representing the twop processes.

Allocate
Resource

T1
T2

T1

T2

T2

T2

Deallocate
 Resource

T3

T5

T5

T5

T3
T5

R(q)
S(q)

S(q)

2*S(p)

2*S(p) R(q)S(q)

S(q)

Fig. 6.Message sequence chart for the resource allocation system.

A MSC can be generated automatically from a simulation of a CP-net. However, first it is necessary to
specify which occurrences of binding elements in the CP-net should generate which arrows in the MSC.
Normally, an arrow in a MSC is created when a single transition occurs. However, arrows as illustrated
above correspond to two events: one for creating the start-point and one for creating the end-point of an
arrow. Such arrows are defined by means of these two points. First the start-point of the arrow is given.
Then some other events may appear, and then the event leading to ending the arrow is given. For CP-nets
this means that the occurrence of one transition may define the start-point of an arrow while the occurrence
of another transition may define the end-point of an arrow. We call such arrowstwo-event arrows.

When using two-event arrows, it is often necessary to annotate a token to hold information of which
arrows have been started but not ended yet. In other words, a token must hold the arrow-id of the start-
point of the arrow when the first transition occurs and keep it until a transition supposed to end the arrow
consumes the token. To avoid modifying the colours of the the CP-net, annotations can be used. Figure 7

46

depicts how the basic CP-net for the resource allocation system can be annotated to generate the MSC in
Fig. 6. The contents of the annotation layer are shown in black, while the underlying CP-net is shown in
grey. The annotation colourMSCis an integer which has the purpose of holding the start-point id of an
arrow, while the annotation colourMSCsis a list of MSC ids. We do not give the details of the functions
msc_start andmsc_stop here, however, they are used to set the start-point and end-point of each ar-
row. In addition each of the functions return a list of arrow-ids of the non-stopped arrows. This list becomes
an annotation for the underlying colour. As this example illustrates, we allow auxiliary arc expressions to
have side effects. However, the side effects may not affect the behaviour of the underlying CP-net.

AU
3‘q

BU
2‘p

CU

DU

EU

T1

T2

T3

T4

T5

R
E

1‘e

color U = with p | q;
color E = with e;
var x : U;

S
E

3‘e

T

E

2‘e

[]

[]

MSCs

MSCs

MSCs

MSCs

MSCs

msc_start([(R,x,1),(S,x,1)], m)

msc_stop([(S,x,5)],m)

msc_stop([(R,x,3)],m)

msc_start([(S,x,2)], m)

m

m

m

m

mcolor MSC = Int;
color MSCs = list MSC;
var m: MSCs;

x

x

x

x

x

x

x

x

x

if x=q
then 1‘q
else empty

e

if x=q then 1‘e
else empty

case x of
 p => 2‘e
| q => 1‘e

2‘e

e

if x=p then 1‘e
else empty

e

case x of
 p => 2‘e
| q => 1‘e

if x=p
then 1‘p
else empty

Fig. 7. Resource allocation system with MSC annotation layer.

The annotation layer in Fig. 3 from Sect. 3.1 adds a cycle counter to the CP-net. The value of the
cycle counter could be included on the arrows in Fig. 6 in addition to the type of resource and process.
To obtain this, an annotation layer that resembles theMSC Annotation Layer in Fig. 7 can be added on top
of the cycle counter annotation layer in Fig. 3. We will refer to this new annotation layer asCycle MSC
Annotation Layer. In theCycle MSC Annotation Layer it is possible to refer to the annotations of theCycle
Counter Annotation Layer from theMSC Annotation Layer.

Figure 8 depicts some of the possible ways to add annotation layers on top of each other. Notice that
an alternative to adding theCycle MSC Annotation Layer on top of theCycle Counter Annotation Layer, is
to add the originalMSC Annotation Layer on top of theCycle Counter Annotation Layer. This makes sense
even though the annotations inCycle Counter Annotation Layer are not used in theMSC Annotation Layer.

If we had not been able to use an annotation layer for creating the MSC, we would have had to create
a new CP-net by adding and modifying the colours of the basic CP-net. For example, the colour sets of the
placesA, B,C, D, andE should also hold theMSCscolour set. In addition, so-called code-segments possibly
had to be added to execute the themsc_start andmsc_stop function calls, and the arc-expressions
had to be modified to include the MSC variablem. In other words, we had to modify the CP-net model
itself to generate the MSCs. If the information for updating MSCs is included directly in the CP-net, then
it would be difficult to disable the updating of the MSCs, and there is no guarantee that the modifications
would not affect the behaviour of the underlying CP-net in unexpected ways.

47

Basic CP-net

MSC
Annotation Layer

Cycle Counter
Annotation Layer

Cycle MSC
Annotation Layer

Fig. 8.Structure of annotation layers for a basic CP-net.

5 Formal Definition of Annotated CP-nets

In this section, we will formally define annotated CP-nets. We will start by introducing some new terminol-
ogy. We will then define annotation layers, and we will discuss how an annotation layer and a CP-net can
be translated into a matching CP-net. We want to define the annotation rules so that they are straightforward
to use and understand. To achieve this it turns out to be convenient only to allow annotation of those input
arcs of transitions where the arc expressions are uniform with multiplicity one (i.e. always evaluate to a
single token colour). For output arcs there are no similar restrictions. If an input arc expression is uniform
with multiplicity larger than one, it is usually easy to split the arc into a number of arcs that each have
multiplicity one. The requirement can be formally expressed as:

Requirement 1.Let CPN=(Σ, P, T, A, N, C, G, E, I) be a CP-net as defined in Def. 2.5 in [8]. Let PA⊆P be
the set ofannotated places. The following must hold in order to be able to annotate CPN:

∀ p∈PA: ∀ a∈A such that N(a)=(p,t), E(a) must be uniform with multiplicity 1.

This requirement may seem very restrictive. However, in our experience, the kinds of arc inscriptions
that are currently not possible to annotate are rarely used in practice. Therefore, the definitions presented
here should prove to be useful for annotating many of the CP-nets that are used in practice.

Section 5.1 introduces terminology regarding multi-sets of annotated colours. Section 5.2 defines anno-
tation layers by describing the auxiliary net inscriptions that are allowed in the annotation layer. Section 5.3
presents rules for translating a CP-net and an annotation layer into the matching CP-net, and it discusses
the relationship between markings, binding elements, and steps in a matching CP-net and its underlying
CP-net. Section 5.4 defines matching behaviour. Finally, Sect. 5.5 discusses the use of multiple annotation
layers.

5.1 Multi-sets of Annotated Colours

In the previous section we used expressions such as:1̀ (p,5)+1 (̀p,6)+1 (̀q,1) to denote the marking
of annotated places2 in a matching CP-net. This indicates that the marking consists of three tokens with
colours(p,5),(p,6) and(q,1) . However, within the context of annotated CP-nets, this marking can
also be interpreted to represent a multi-set of annotated tokens: two tokens with colourp and annotations
5 and6, and one token with colourq and annotation1. Multi-sets of annotated elements are ordinary
multi-sets3 of so-calledannotated elements.

2 The first paragraph in Sect. 3.2 explains what we mean when we refer to an annotated place in a matching CP-net.
3 Multi-sets as defined in Def. 2.1 in [8]

48

Definition 1. For a non-empty set of elements, S, and a non-empty set of annotations, AN, anannotated
element(from S) is a pair (s,a), where s∈S and a∈AN. π((s,a))=s is the projection of the annotated element
(s,a) onto the non-annotated element s.

A multi-set of annotated elementsover S×AN is a multi-set over S×AN.

If amis a multi-set of annotated elements (of S), thenamdeterminesan ordinary (non-annotated) multi-set
amπ over S, whereamπ(s) = (

∑
a∈AN am(s, a))`s. π(am) is theprojectionof amonto the non-annotated

multi-set determined byam.

If amis multi-set over S×AN, mis a multi-set over S, andπ(am)=m, thenamis said tocoverm, and we say
thatmis coveredby am.

In Sect. 3.2 we informally defined the functionAnnotate that will add a given annotation to all ele-
ments in a given multi-set. Let us now formally defineAnnotate .

Definition 2. Given an annotationa∈AN and a multi-setm=
∑

s∈S m(s)`s over a set S, the function
Annotate is defined to be:

Annotate m a =
∑
s∈S

m(s)`(s, a)

which is a multi-set of annotated elements of S, i.e. a multi-set with type (S×AN)MS .

As a consequence of Defs. 1 and 2,π(Annotate m a) = m, for all multi-setsmand all annotationsa.

5.2 Annotation Layer

We are now ready to define an annotation layer. An annotation layer is used solely to determine how to
add annotations to tokens for a subset of the places in a CP-net. An annotation layer consists of elements
that are similar to their counterparts in CP-nets. An annotation layer contains auxiliary net inscriptions, and
each auxiliary net inscription is associated with an element of the net structure of the underlying CP-net.
When translating an annotation layer and its underlying CP-net to the matching CP-net, these auxiliary
net expressions will be combined with their counterparts from the underlying CP-net to create colour sets,
initialisation expressions and arc expressions for the matching CP-net. There are, however, additional re-
quirements for each of the concepts. An explanation of each item in the definition is given immediately
below the definition. A similar remark applies for many of the other definitions in this paper.

Definition 3. Let CPN=(Σ, P, T, A, N, C, G, E, I) be a CP-net. Anannotation layerfor CPN is a tuple
A=(ΣA, PA, AA, CA, EA, IA) where

i. ΣA is a finite set of non-empty sets, calledauxiliary colour sets, whereΣ⊆ΣA.
ii. PA⊆P is a finite set ofannotated places.
iii. AA⊆A is the finite set ofannotated arcs, where AA= A(PA).
iv. CA is anauxiliary colourfunction. It is a function from PA into ΣA.
v. EA is anauxiliary arc expressionfunction. It is defined from AA into expressions such that:

∀ a∈AA: Type(EA(a))=CA(p(a))∧ Type(Var(EA(a)))⊆ΣA
vi. IA is anauxiliary initialisation function. It is a function from PA into closed expressions such that:

∀ p∈PA: Type(IA(p))=CA(p).

i. The set ofauxiliary colour setsis the set of colour sets that determine the types, operations and functions
that can be used in the auxiliary net inscriptions. The auxiliary colour sets determine the type of annotations
that the tokens on the annotated places carry. All colour sets from the underlying CP-net can be used as
auxiliary colour sets. Additional auxiliary colour sets may be declared within an annotation layer.

ii. The set of annotated places are the only places that are allowed to contain annotated tokens.

iii. The annotated arcs are exactly the surrounding arcs for the places in PA.

49

iv. The auxiliary colour function, CA, is a function from PA into ΣA, and is defined analogously to the
colour function for CP-nets. Thus, for all p∈PA, CA(p) is the auxiliary colour set of p.

v. Auxiliary arc expressions are only allowed to evaluate to a single annotation of the correct type. If the
arc expression of an arc is missing in CPN, then we require that its auxiliary arc expression is also missing
inA.

vi. The auxiliary initialisation function maps each annotated place, p, into a closed expression which must
be of type CA(p), i.e. a single annotation from CA(p). If the initial expression of place p is missing in CPN,
then we require that its auxiliary initial expression is also missing inA.

5.3 Translating Annotated CP-nets to Matching CP-nets

We will now define how to translate an annotated CP-net, (CPN,A), to a new CP-net, CPN∗, which is
called a matching CP-net. CPN∗ and CPN have the same net structure. Net inscriptions for non-annotated
places, non-annotated arcs, and transitions in CPN∗ are unchanged with respect to CPN. In contrast, net
inscriptions for annotated places and annotated arcs in CPN∗ are obtained by combining net inscriptions
from CPN with their counterpart auxiliary net inscriptions inA. A matching CP-net is defined below.

Definition 4. Let (CPN,A) be an annotated CP-net, where CPN=(Σ, P, T, A, N, C, G, E, I) andA=(ΣA,
PA, AA, CA, EA, IA) is a annotation layer. We define thematching CP-netto be CPN∗=(Σ∗, P∗, T∗, A∗, N∗,
C∗, G∗, E∗, I∗) where

i. Σ∗=ΣA∪{C(p)×CA(p) | p∈PA}.
ii. P∗=P
iii. T ∗=T
iv. A∗=A
v. N∗=N

vi. C∗(p) =
{

C(p) if p/∈PA
C(p)×CA(p) if p∈PA

vii. G∗=G

viii. E∗(a) =
{

E(a) if a/∈AA
Annotate E(a) EA(a) if a∈AA

ix. I∗(p) =
{

I(p) if p /∈PA
Annotate I(p) IA(p) if p∈PA

i. {C(p)×CA(p) | p∈PA} is the set of product colour sets for the annotated places in CPN∗.

ii. + iii. + iv. + v. The places, transitions, arcs, and node function in CPN∗ are unchanged with respect to
CPN.

vi. Defining the colour function C∗ is straightforward. The colour set for a non-annotated place in CPN∗ is
the same as its colour set in CPN. The colour set for an annotated place p in CPN∗ is C(p)×CA(p).

vii. The guard function in CPN∗ is unchanged with respect to CPN.

viii. The arc expression for a non-annotated arc a in CPN∗ is the same as the arc expression for a in CPN.
If the arc expression for a is missing in CPN, then its arc expression will also be missing in CPN∗. This
is shorthand for empty, as usual for CP-nets. The arc expression for an annotated arc a in CPN∗ is derived
from the arc expression for a in CPN and the auxiliary arc expression for a inA. The expressionAnno-
tate (E(a)) (E A(a)) will yield a multi-set with type (C(p(a))×Type(EA(p(a))))MS which is exactly
(C(p(a))×CA(p(a)))MS, as required. If an arc expression (for an annotated arc) evaluates to a single colour
in CPN, then we allow the arc expression for CPN∗ to be the pair(E(a), E A(a)) where the first ele-
ment is the arc expression from CPN, and the second element is the auxiliary arc expression fromA. This
is shorthand for the multi-set1`(E(a), E A(a)) .

50

ix. If p is not an annotated place, then the initial expression of p in CPN∗ is unchanged with respect to
CPN. If the initial expression of a place is missing in CPN, then its initial expression will also be missing
in CPN∗. A missing initial expression is shorthand for the empty. For an annotated place p, the expression
Annotate (I(a)) (I A(a)) will yield a multi-set with type (C(p(a))×Type(IA(p(a))))MS which is
exactly (C(p(a))×CA(p(a)))MS, as required. I∗(p) is a closed expression for all p, since I(p) is a closed ex-
pression for all p, and IA(p) is closed for all p∈PA. When the type of the initial expression for an annotated
place in the underlying CP-net is a single colour, then we allow the the initial expression in CPN∗ to be the
pair (I(p),I A(p)) that is uniquely determined by the initial expression of p in CPN and the auxiliary
initial expression of p inA. This is shorthand for1`(I(p),I A(p)) .

Covering Markings, Bindings and Steps We will now define what it means for markings, bindings and
steps of a matching CP-net to cover the markings, bindings and steps of its underlying CP-net.

Definition 5. Let (CPN,A) be an annotated CP-net with matching CP-net CPN∗. We then define three
projection functionsπ that map a marking M∗ of CPN∗ into a marking M of CPN, a binding b∗ of a
transition t in CPN∗ into a binding b of t in CPN, and a step Y∗ of CPN∗ into a step Y of CPN, respectively.

i. ∀p∈P∗: (π(M∗))(p) =
{

M∗(p) if p/∈PA
π(M∗(p)) if p∈PA

ii. ∀ v∈Var(t): (π(b∗))(v)=b∗(v), where Var(t) are the variables of t in CPN.

iii. (π(Y∗)) =
∑

(t,b∗)∈Y ∗ (Y∗(t,b∗))`(t,π(b∗))

If π(M∗)=M, π(b∗)=b, andπ(Y∗)=Y, then we say that M∗, b∗, and Y∗ coverM, b, and Y, respectively. We
also say that M, b, and Y arecoveredby M∗, b∗, and Y∗, respectively.

i. Given a marking of a matching CP-net,π will remove the annotations from the tokens on annotated
places, and it will leave the markings of non-annotated places unchanged. A marking of a matching CP-
net covers a marking of its underlying CP-net, if the two markings are equal when annotations in the first
marking are ignored.

ii. Given a binding of a transition in CPN∗, π removes the bindings of the variables in Var∗(t)\Var(t), i.e.
π removes the bindings of the variables of t that are not found in CPN. A binding of a transition in CPN∗

covers a binding of the corresponding transition in CPN when the variables that are found in both CP-nets
are bound to the same value.

iii. For each binding element (t,b∗) in Y∗, π removes the bindings of the variables of t that are not found in
CPN.

We define similar functions that map the set of markings (M
∗), the set of steps (Y

∗), the set of token
elements (TE∗), and the set of binding elements (BE∗) of CPN∗ into the corresponding sets in CPN:

π(M∗)={π(M∗): M∗∈M
∗}

π(TE∗)={ (p, c∗) | p/∈PA and c∗∈C∗(p)} ∪ { (p, π(c∗)) | p∈PA and c∗∈C∗(p)}
π(Y∗)={π(Y∗): Y∗∈Y

∗}
π(BE∗) = { (t,π(b∗))| (t,b∗)∈BE∗}

Sound Annotation Layers Definition 3 defines the syntax for elements in annotation layers, but it does
not guarantee that annotations do not affect the behaviour of the underlying CP-net. Instead of specifying
which kinds of auxiliary arc inscriptions are allowed, we will define a more general property that has to be
satisfied.

51

Definition 6. Let (CPN,A) be an annotated CP-net with matching CP-net CPN∗.A is asoundannotation
layer if the following property is satisfied:

∀M∈M, ∀ Y∈Y, ∀M∗∈M
∗: M[Y 〉 ∧ π(M∗)=M ⇒ ∃ Y∗∈Y

∗: π(Y∗)=Y ∧ M∗[Y∗〉

whereM andY are the set of markings and the set of steps, respectively, for CPN, andM
∗ andY

∗ are the
analogous sets for CPN∗.

Assume that the step Y is enabled in the marking M in the underlying CP-net. Let M∗ be a marking of
CPN∗ that covers M. Definition 6 states that it must be possible to find a step Y∗ that covers Y, and Y∗ must
be enabled in M∗. The soundness of an annotation layer is essential for showing that for every occurrence
sequence in the underlying CP-net, there is at least one matching occurrence sequence in the matching
CP-net which is identical to the occurrence sequence from the underlying CP-net when annotations are
ignored.

The auxiliary arc expressions on input arcs to a transition will be used, in part, to determine if the tran-
sition is enabled in a given state of the matching CP-net. By limiting the kinds of auxiliary arc expressions
that are allowed on input arcs to transitions, it is possible to guarantee that annotations cannot restrict the
enabling of a transition in the matching CP-net with respect to what is allowed in the underlying CP-net.
Exactly which kinds of auxiliary arc expressions should be allowed may be decided by the implementors
of tools supporting CP-nets. It is also the responsibility of tool implementors to prove that their allowable
set of auxiliary arc expressions fulfil Def. 6. An example of an allowable auxiliary arc expression for arc
a is a single variablev . However,v must also fulfil the following:v may not found in any arc expressions
for the arcs surrounding t(a), andv may not be found in any other auxiliary arc expression for input arcs to
t(a).

5.4 Matching Behaviour

In the previous sections we have stated that the behaviour of a matching CP-netmatchesthe behaviour
of its underlying CP-net. Informally this means that every occurrence sequence in a matching CP-net cor-
responds to an occurrence sequence in the underlying CP-net, and for every occurrence sequence in the
underlying CP-net, it is possible to find at least one corresponding occurrence sequence in the matching
CP-net. If a matching CP-net is derived from a CP-net and asoundannotation layer, then the following
theorem shows how the behaviour of the matching CP-net matches the behaviour of its underlying CP-net.

Theorem 1. Let (CPN,A) be an annotated CP-net with a soundannotation layer. Let CPN∗ be the match-
ing CP-net derived from (CPN,A). Let M0, M, andY denote the initial marking, the set of all markings,
and the set of all steps, respectively, for CPN. Similarly, let M∗

0, M
∗, andY

∗ denote the same concepts for
CPN∗. Then we have the following properties:

i. π(M∗)=M ∧ π(M∗
0)=M0.

ii. π(Y∗)=Y.
iii. ∀ M∗

1, M∗
2∈M

∗, ∀ Y∗∈Y
∗: M∗

1[Y∗〉M∗
2 ⇒ π(M∗

1)[π(Y∗)〉π(M∗
2)

iv. ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M∗

2∈M
∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y∗〉M∗

2 ∧ π(M∗
2)=M2

i. The markings of a matching CP-net cover the markings of its underlying CP-net. The markings of the
underlying CP-net are covered by the markings of the matching CP-net. The initial marking of a matching
CP-net covers the initial marking of its underlying CP-net.

ii. The steps of a matching CP-net cover the steps of its underlying CP-net. The steps of the underlying
CP-net are covered by the steps of the matching CP-net.

iii. An occurrence sequence of length one in the matching CP-net covers an occurrence sequence of length
one in its underlying CP-net. In other words, if marking M∗

2 is reached by the occurrence of Y∗ in marking

52

M∗
1 in CPN∗, thenπ(M∗

2) will be reached by the occurrence ofπ(Y∗) in π(M∗
1) in CPN.

iv. An occurrence sequence of length one in the underlying CP-net can be covered by an occurrence se-
quence of length one in the matching CP-net. If M2 is reached by the occurrence of Y in M1 in CPN,
and if marking M∗

1 in CPN∗ covers M1, then it is always possible to find a step Y∗ in CPN∗, such that Y∗

covers Y and is enabled in M∗1. If the occurrence of Y∗ in M∗
1 yields the marking M∗2, then M∗

2will cover M2.

The proof for Theorem 1 can be found in Appendix A.

5.5 Multiple Annotation Layers

The previous sections have discussed how to create a single annotation layer for a CP-net. The purpose
of introducing an annotation layer is to make it possible to separate annotations from the CP-net, and to
annotate a CP-net for several different purposes like, e.g. performance analysis and MSCs. However, if only
one annotation layer exists, then it is not possible to easily disable, e.g. only the annotations for performance
analysis, while still using the annotations for MSCs. The reason is, that all annotations have to be written
in the one and only annotation layer. This motivates the need for multiple layers of annotations. When
multiple annotation layers are allowed, then independent annotations can be written in separate annotation
layers, and thereby making it easy to enable and disable each of the independent annotation layers.

Definition 7 defines multiple annotation layers. Multiple annotation layers are defined using the fact
that a single annotation layer,A1, and a CP-net, CPN, is translated to another CP-net, CPN∗

1. Seen from an-
other annotation layer,A2, CPN∗

1 is essentially the same as CPN aside from the added annotations, and can
therefore be annotated with an annotation layerA2. The consequence of this definition is thatA2 can refer
to annotations inA1. In general, annotations in annotation layerAi can refer to annotations in annotation
layerAj whenj ≤ i.

Definition 7. Let CPN be a CP-net and letA1,A2, ...,An be annotation layers for CPN. Letτ be the
translation from an annotation layerA and a corresponding CP-net CPN to CPN∗, as defined in Sect. 5.3.
Then CPN∗ with multiple annotation layers is defined by:

CPN∗ = τ(. . . τ(τ(CPN,A1),A2),An)

6 Conclusion

In this paper we have discussed annotations for CP-nets where annotations are used to add auxiliary in-
formation to tokens. Auxiliary information is needed to support different uses of a single CP-net, such as
for performance analysis and visualisation, thus the information should not have influence on the dynamic
behaviour of a CPN model. One of the advantages of using annotations instead of manually extending
the colour sets in a CPN model is that annotations are specified separately from the colour sets and arc
inscriptions. That means that it is easy to enable and disable annotations from being part of the simulation.
This is a great advantage when using a model for several purposes such as functional analysis, performance
analysis, and visualisation. In addition, it is a great advantage that the behaviour of the matching CP-net
matches the behaviour of the underlying CP-net in a very specific and predictable way.

Related work is considered in, e.g. Lakos’ work on abstraction [11], where behaviour-respecting ab-
stractions of CP-nets have been investigated, and a so-called colour refinement is proposed. This colour
refinement is used to specify more detailed behaviour in sub-modules by extending colour sets to larger
domains. The refined colours are only visible in the sub-modules, and the refined colours will typically
contain information that is necessary for modelling the behaviour of the system in question. This colour
refinement somewhat corresponds to our way of extending colour sets by adding annotations to colours.
We are not aware of any other work that addresses the problem of introducingauxiliary information into
a CP-net (or any other type of simulation model) while at the same time preserving the behaviour of the

53

CP-net. Nor do we know of any other method that can be used to automatically enable or disable different
kinds of instrumentation when analysing different aspects of one particular model.

ExSpect[1] is another tool for CP-nets. The tool provides libraries of so-called building blocks that
provide support for, e.g., creating message sequence charts and performance analysis. Each building block
is similar to a substitution transition and its subpage in Design/CPN. In ExSpectall information that is
necessary for updating a MSC or for collecting performance data is included in token colours. Reading the
relevant data from token values and processing it is also encoded directly into the model via the building
blocks. For example, the building block that can be used to calculate performance measures contains a
place which holds the current result. When a certain transition occurs, a new value can be read from a
binding element, and the result on this place is updated accordingly. While the building blocks are very
easy to use, no attempt is made to separate auxiliary information from a CP-net, and the behaviour of the
CP-net also reflects behaviour that is probably not found in the system being modelled.

There are many issues that can be addressed in future work regarding annotations. The techniques
that have been presented here have not yet been used in practice. Clearly, it is important that support for
annotations be implemented in a CPN tool in order to investigate the practicality and usefulness of the
proposed method. Future work includes additional research on dealing with arc inscriptions that do not
evaluate to a single colour on input arcs to transitions. In addition, further work is required to improve our
proposal of how to add annotations to multi-sets of tokens. The definition of annotation layers states that it
is only possible to add one particular annotation to all elements in a multi-set that is obtained by evaluating
either an initial expression or an arc expression on an output arc from a transition. This is unnecessarily
restrictive, and it should be generalised to make it possible to add different annotations to different elements
in a multi-set. Practical experience with annotations may also show that the definition of annotation layers
should be extended to include the possibility of defining guards in annotation layers.

In this paper we have only considered how to add annotations to existing arcs expressions, and thereby
only considered how to annotate existing tokens. However, it might be useful also to be able to add net
structure to the annotation layers. As an example, a place could be added only to the annotation layer with
a token to hold a counter with the number of occurrences of a transition. Allowing additional net structure
at the annotation layers would make it possible to take advantage of the powerfulness of the graphical
notation of CP-nets when encoding the logics of the annotations.

We have only discussed separating the auxiliary annotations and the CP-net from each other. This could
be generalised to also allow splitting a CP-net into layers where more layers can be combined to specify
the full behaviour of a CP-net. In other words, the specification of the behaviour in a CP-net could be
split in more layers. As an example, reconsider the resource allocation CP-net in Fig. 1 in Sect. 2. The
loop handling the resource on the placeR (R, T1, B, T2, C, andT3) is to some extent independent from
the remaining model (even though it has impact on the behaviour). This loop could be separated from the
remaining CPN model into a new layer to emphasise the fact that the loop is an extra requirement that can
be added to the system. This facility could turn out to be very useful when a modeller is simplifying a CP-
net to, e.g. be able to generate a sufficiently small state space to be able to analyse it. It would be a matter of
moving the parts of the net structure that should not be included when generating the state space to another
layer, and then only conduct the analysis on the remaining parts of the CP-net. This could be obtained by
disabling the layer with the unneeded behaviour, and the state space could be generated. The advantage is
that now a single model exists with layers specifying different behaviour which can be enabled or disabled
– instead of having several similar models. Finally, such layers can also make it easier to develop tools
where more people can work on a model concurrently, when they operate on different layers.

AcknowledgementsWe would like to thank Kurt Jensen who has read several drafts of this paper and
has provided invaluable comments and feedback. We would also like to thank Søren Christensen, Louise
Elgaard and Thomas Mailund who have also read and commented on previous drafts of this paper. Finally,
we would also like to thank the anonymous reviewers for their comments and suggestions.

References

1. W. v. d. Aalst, P. d. Crom, R. Goverde, K. v. Hee, W. Hofmann, H. Reijers, and R. v. d. Toorn. ExSpect 6.4 –
An Executable Specification Tool for Hierarchical Coloured Petri Nets. In M. Nielsen and D. Simpson, editors,

54

Proceedings of the 21st International Conference on Application and Theory of Petri Nets, volume 1825 ofLNCS,
pages 455–464. Springer-Verlag, 2000.

2. CAPLAN Project, Online: http://www.daimi.au.dk/CPnets/CAPLAN/.
3. S. Christensen, J. Jørgensen, and L. Kristensen. Design/CPN – A Computer Tool for Coloured Petri Nets. In

E. Brinksma, editor,Proceedings of TACAS’97, volume 1217, pages 209–223. Springer-Verlag, 1997.
4. CPN Tools, Online: http://www.daimi.au.dk/CPnets/CPN2000/.
5. Design/CPN, Online: http://www.daimi.au.dk/designCPN/.
6. G. Gallasch and L. Kristensen. Comms/CPN: A Communication Infrastructure for External Communication

with Design/CPN. In K. Jensen, editor,Third Workshop and Tutorial on Practical Use of Coloured Petri
Nets and the CPN Tools, pages 79–93. University of Aarhus, Department of Computer Science, 2001. Online:
http://www.daimi.au.dk/CPnets/workshop01/.

7. ITU-T Recommendation Z.120, Message Sequence Chart (MSC), 1996.
8. K. Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 1, Basic Concepts.

Monographs in Theoretical Computer Science. Springer-Verlag, 1997. 2nd corrected printing.
9. K. Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 2, Analysis Methods.

Monographs in Theoretical Computer Science. Springer-Verlag, 1997. 2nd corrected printing.
10. K. Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 3, Practical Use.

Monographs in Theoretical Computer Science. Springer-Verlag, 1997.
11. C. Lakos. On the Abstraction of Coloured Petri Nets. InProceedings of the 18th International Conference on

Application and Theory of Petri Nets, volume 1248 ofLNCS, pages 42–61. Springer-Verlag, 1997.
12. B. Lindstrøm and L. Wells.Design/CPN Performance Tool Manual. Department of Computer Science, University

of Aarhus, Denmark, 1999. Online: http://www.daimi.au.dk/designCPN/man/.
13. B. Lindstrøm and L. Wells. Towards a Monitoring Framework for Discrete-Event System Simulations. InTo

appear in Proceeding of Workshop on Discrete Event Systems, October 2002.
14. Message Sequence Charts in Design/CPN, Online: http://www.daimi.au.dk/designCPN/libs/mscharts/.
15. J. L. Rasmussen and M. Singh.Mimic/CPN: A Graphic Animation Utility for Design/CPN. Department of

Computer Science, University of Aarhus, Denmark. Online: http://www.daimi.au.dk/designCPN/libs/mimic/.

A Proof of Matching Behaviour

Theorem 1(same as in Sect. 5.4)Let (CPN,A) be an annotated CP-net with a soundannotation layer. Let
CPN∗ be the matching CP-net derived from (CPN,A). Let M0, M, andY denote the initial marking, the
set of all markings, and the set of all steps, respectively, for CPN. Similarly, let M∗

0, M
∗, andY

∗ denote the
same concepts for CPN∗. Then we have the following properties:

i. π(M∗)=M ∧ π(M∗
0)=M0.

ii. π(Y∗)=Y.
iii. ∀ M∗

1, M∗
2∈M

∗, ∀ Y∗∈Y
∗: M∗

1[Y∗〉M∗
2 ⇒ π(M∗

1)[π(Y∗)〉π(M∗
2)

iv. ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M∗

2∈M
∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y∗〉M∗

2 ∧ π(M∗
2)=M2

Proof: The proof is a simple consequence of earlier definitions and Jensen’s definitions for CP-nets [8].
Let TE, (t,b), and BE denote the set of all token elements, a binding element, and the set of all binding
elements, respectively, for CPN. Similarly, let TE∗, (t,b∗), BE∗ denote the same concepts for CPN∗.

Before showing that the above properties hold, we will show that the following holds for all annotated arcs:
∀ (t,b∗), ∀ a∈AA∩A(t): π(E∗(a)〈b∗〉)=E(a)〈π(b∗)〉. (†)

Let (t,b∗) and a∈AA∩A(t) be given.

π(E∗(a)〈b∗〉) Def. 4.viii
= π((Annotate E(a) EA(a))〈b∗〉) Defs. 1&2

= E(a)〈b∗〉 Def. 5.ii
= E(a)〈π(b∗)〉

Property i. We will show thatM=π(M∗). It is straightforward to show thatπ(M∗)=(π(TE∗))MS, and the
proof is therefore omitted. From Def. 2.7 in [8] we have thatM=TEMS. Thus it is sufficient to show that
TE=π(TE∗). The definition ofπ(TE∗) gives us:

π(TE∗)={ (p, c∗) | p/∈PA and c∗∈C∗(p)} ∪ { (p, π(c∗)) | p∈PA and c∗∈C∗(p)}

which by the definition of C∗ (Def. 4.vi) is equivalent to:

55

π(TE∗)={ (p, c) | p/∈PA and c∈C(p)} ∪ { (p,π(c∗)) | p∈PA and c∗∈C(p)×CA(p)}
which by the definition of the projection of annotated elements (Def. 1) is equivalent to:

π(TE∗)={ (p, c) | p/∈PA and c∈C(p)} ∪ { (p, c) | p∈PA and c∈C(p)}
the two sets can be combined and we have:

π(TE∗)={ (p, c) | p∈P and c∈C(p)} Def. 2.7in [8]
= TE

To show thatπ(M∗
0)=M0, we will show that∀p∈P∗: (π(M∗

0))(p)=M0(p).
Consider non-annotated places:

∀p/∈PA: (π(M∗
0))(p)

Def. 5.i
= M∗

0(p) = I∗(p)
Def. 4.ix

= I(p) = M0(p)

Consider annotated places:

∀p∈PA: (π(M∗
0))(p)

Def. 5.i
= π(M∗

0(p)) = π(I∗(p))
Def. 4.ix

= π(Annotate I(p) IA(p)) Defs. 1&2
= I(p) = M0(p)

Property ii. We must show thatY=π(Y∗). It is straightforward to show thatπ(Y∗)= (π(BE∗))MS, therefore
the proof is omitted. From Def. 2.7 in [8] we have thatY=BEMS, therefore it is sufficient to show that
BE=π(BE∗), which we will do by showing: (t,b′)∈π(BE∗)⇔ (t,b′)∈BE.

Let us show⇒: Let (t, b′)∈π(BE∗) be given. There exists (t,b∗)∈BE∗ such that (t,π(b∗))=(t, b′) (by def-
inition of π(BE∗)). b∗ is a binding of t in CPN∗, therefore for all v∈Var∗(t), where Var∗(t) is the set of
variables for t in CPN∗, b∗(v)∈Type(v), and b∗ fulfils the guard of t in CPN∗, i.e. G∗(t)〈b∗〉.

From Def. 5.ii we have that for all v∈Var(t), (π(b∗))(v)=b∗(v), and we know that b∗(v)∈Type(v). Since
G∗(t)=G(t) (Def. 4.vii) and Var(G(t))⊆Var(t), we can conclude that G(t)〈π(b∗)〉, i.e.π(b∗) fulfills the guard
of t in CPN. From the definition of a binding (Def. 2.6 in [8]), we have thatπ(b∗) is a binding for t in CPN,
therefore (t,π(b∗))=(t,b′) is a binding element for CPN, i.e. (t, b′)∈BE.

Let us show⇐: Let (t, b′)∈BE be given. Using arguments that are similar to the above it is straightforward
to show that b′ fulfills the guard for t in CPN∗, i.e. G∗(t)〈b′〉. The binding b′ does not bind the variables in
Var∗(t)\Var(t). Define a new function b∗ on Var∗(t):

b∗(v) =
{

b′(v) if v∈Var(t)
an arbitrary value from Type(v) if v∈Var∗(t)\Var(t)

According to Def. 2.6 in [8], b∗ is a binding for t in CPN∗. Therefore, (t, b∗) is a binding element for CPN∗.
By definition of b∗, we have thatπ(b∗)=b′, and as a result, (t, b′)∈π(BE∗).

Property iii. We must show that∀ M∗
1, M∗

2∈M
∗, ∀ Y∗∈Y

∗: M∗
1[Y∗〉M∗

2 ⇒ π(M∗
1)[π(Y∗)〉π(M∗

2)

We will first show thatπ(M∗
1)[π(Y∗〉. By theenabling rule(Def. 2.8 in [8]) we have that:

∀p∈P∗:
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉 ≤ M∗
1(p) (∗)

Consider non-annotatedplaces and non-annotated arcs. Since E∗=E for all non-annotated arcs (by Def. 4.viii),
and M∗

1=π(M∗
1) for all non-annotated places (by Def. 5.i), it follows from (∗) that:

∀p/∈PA:
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉 ≤ (π(M∗
1))(p)

which by the fact thatπ(b∗)=b∗ for all variables in Var(E(a)) (by Def. 5.ii) and the definition ofπ(Y∗)
(Def. 5.iii) is equivalent to:

∀p/∈PA:
∑

(t,π(b∗))∈π(Y ∗)

∑
a∈A(p,t)

E(a)〈π(b∗)〉 ≤ (π(M∗
1))(p) (∗∗)

Consider annotated places and annotated arcs. From Def. 1 and (∗), it follows that:

∀p∈PA: π(
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉) ≤ π(M∗
1(p))

which by Defs. 1 and 5.i is equivalent to:

56

∀p∈PA:
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

π(E∗(a)〈b∗〉) ≤ (π(M∗
1))(p)

which by (†) and the definitions ofπ(b∗) andπ(Y∗) is equivalent to:
∀p∈PA:

∑
(t,π(b∗))∈π(Y ∗)

∑
a∈A(p,t)

E(a)〈π(b∗)〉 ≤ (π(M∗
1))(p)

which together with (∗∗) and the enabling rule gives us thatπ(M∗
1)[π(Y∗)〉.

Next we have to prove that the marking reached when Y∗ occurs in M∗
1 covers the marking that is reached

whenπ(Y∗) occurs inπ(M∗
1), i.e. thatπ(M∗

1)[π(Y∗)〉π(M∗
2). A proof similar to the above can be used to

show this, and the proof is therefore omitted.

Property iv. We must show that∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M∗

2∈M
∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y∗〉M∗

2 ∧ π(M∗
2)=M2

Let M1[Y〉M2 in CPN be given. It is straightforward to show that it is always possible to find M∗
1∈M

∗

such thatπ(M∗
1)=M1, thus the proof is omitted. Since CPN∗ is a matching CP-net that is derived from an

annotated CP-net with a sound annotation layer, andπ(M∗
1)=M1, Def. 6 tells us that there exists Y∗∈Y

∗

such thatπ(Y∗)=Y and M∗
1[Y∗〉.

We have only left to show that the marking reached after Y occurs in M1 is covered by the marking reached
when Y∗ occurs in M∗. Since M1[Y〉M2 in CPN, theoccurrence rule(Def. 2.9 in [8]) gives us that:

∀ p∈P: M2(p) = (M1(p) -
∑

(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉) +
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉 (�)

Since M∗
1[Y∗〉 in CPN∗, the occurrence rule gives us that:

∀p∈P∗: M∗
2(p) = (M∗

1(p) -
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉) +
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E∗(a)〈b∗〉 (��)

In other words, M∗1[Y∗〉M∗
2. We must now show thatπ(M∗

2)=M2.

We will show thatπ(M∗
2)=M2 for non-annotated places. We have found M∗

1, such thatπ(M∗
1)=M1. We have

that M∗
1=π(M∗

1) and M∗
2=π(M∗

2) for non-annotated places (by Def. 5.i). For all non-annotated arcs E∗=E
(by Def. 4.viii). It follows from these facts and (��) that:

∀p/∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉) +
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E(a)〈b∗〉

which by the fact thatπ(b∗)=b∗ for all variables in Var(E(a)) (by Def. 5.ii) and the fact thatπ(Y∗)=Y is
equivalent to:

∀p/∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉) +
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉 (� � �)

We will show thatπ(M∗
2)=M2 for annotated places. From the definition ofπ for multi-sets and markings

(Defs. 1 and 5.i) and from (��), it follows that :
∀p∈PA: (π(M∗

2))(p) = ((π(M∗
1))(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

π(E∗(a)〈b∗〉)) +
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

π(E∗(a)〈b∗〉)

which by (†) and the fact thatπ(M∗
1)=M1 is equivalent to:

∀p∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉) +
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E(a)〈b∗〉

which by the definitions ofπ(b∗) andπ(Y∗), and the fact that all variables in E(a) are bound byπ(b∗) is
equivalent to:

∀p∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉) +
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉

which together with (�) and (� � �) gives us thatπ(M∗
2)=M2.

ut

57

58

Model-based Operational Planning Using Coloured
Petri Nets

Lin Zhang
Systems Simulation and Assessment Group
Command and Control Division
Defence Science and Technology Organisation
PO Box 1500, Edinburgh SA 5111
Australia

Abstract

This talk describes a model-based approach towards the development of software tools to support operational
planning in the Australian Defence Force. An overview of the military planning process is provided for the purpose of
identifying key concepts in operational planning. Models of the key concepts are then developed and formalised by
the construction of a CPN model of an abstract operational task. The CPN model specifies the execution of tasks in a
Course of Action (COA). During planning, the CPN model is instantiated with concrete tasks for execution and
analysis. The model-based approach is illustrated by a prototype COA Scheduling Tool (COAST) that supports
sequencing and scheduling of tasks in planning. COAST has a client-server architecture. The client provides a
graphical user interface for task instantiation and COA analysis. The server uses the instantiated CPN model to
conduct state space analysis for generating and analysing sequences of tasks in a COA.

59

60

Coloured Petri Nets in

UML-Based Software Development –

Designing Middleware for Pervasive Healthcare

Jens Bæk Jørgensen
Centre for Pervasive Computing

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

email: jbj@daimi.au.dk

Abstract

Nowadays, the Unified Modeling Language, UML, is almost univer-
sally accepted by the software industry as the modelling language. How-
ever, the language has severe shortcomings. While UML is well suited to
model the static aspects of software systems, the language as it is currently
standardised strongly needs improvements with respect to modelling be-
haviour. Thus, for development of software components with complex
behaviours, UML often cannot stand alone. The main contribution of
this paper is to position and discuss promotion of Coloured Petri Nets, or
more generally high-level Petri nets, as a supplement in UML-based soft-
ware development. We make the case on a specific example, development
of middleware to support what is termed pervasive healthcare, but the
observations hold in general for many systems with complex behaviours.

Topics: Relationship between CPN and UML, promotion of CPN in
the software industry, system design, application of CPN to pervasive and
mobile systems.

1 Introduction

This paper considers design of a system to support pervasive and mobile comput-
ing [7, 17, 21] at hospitals, the pervasive healthcare middleware system, PHM [2].
The system is being developed in a joint project by the hospitals in Aarhus
County, Denmark, the software company Systematic Software Engineering [50],
and the Centre for Pervasive Computing [42] at the University of Aarhus.

In the development of PHM, the Unified Modeling Language, UML [32, 35,
13, 12], is applied. By many of its proponents, UML is touted as a complete
modelling language in the sense that it supports all modelling needs in all soft-
ware development phases, from requirements specification through analysis, de-
sign, and implementation to the final system test. Indeed, UML has many
advantages, e.g., it is general-purpose and extensible, it is standardised, a large
selection of tools and text books is available, industrial acceptance is overwhelm-
ing, and success stories can be counted in hundreds or more [51]. However, the

61

language is certainly not perfect [37], and use of UML as the one and only mod-
elling language in the software industry can of course, from an academic point
of view, be challenged. On the other hand, seen from the point of view of an
industrial software developer, or his manager, an advocate of an alternative to
UML has the burden of proof. The language is a de facto industrial standard,
and with this status, it is the default choice of a modelling language in industrial
software projects, much in the same way as Java is today’s default choice of a
programming language within many organisations.

In this paper, we challenge the exclusive use of UML in the design phase of
the development of PHM. Here, we will suggest applying Coloured Petri Nets,
CPN [23, 25, 43], in conjunction with UML. The proposal to combine Petri nets
and UML in software development is not new, see, e.g., [39, 40]. However, the
combination is often discussed in general terms only. The main contribution of
this paper is to demonstrate in detail that CPN is a powerful supplement to
UML, by pinpointing a number of specific, important PHM design issues that
can be addressed properly in CPN, but not at all or not as easily in UML.
Another contribution is considerations on the general positioning of UML and
CPN in the software industry, and a discussion of how to better promote CPN.
With this paper, we hope to help answering the frequently asked question: Why
don’t you just use UML?

A deliberate restriction of scope is that this paper does not consider formal
verification. In many industrial software development projects, formal verifi-
cation is not seen as an option at all, for reasons like needs, traditions, time
schedules, shortcomings in verification methods and tools, and insufficiently
trained software developers. Ensuring software quality is often done by system-
atic and thorough testing alone (whether this is wise, is a discussion beyond the
scope of this paper).

This paper is structured as follows: Section 2 introduces the domain of our
case study, healthcare information technology in general, pervasive healthcare
in particular, and the PHM system itself. The design of a central component
of PHM, the so-called session manager, by means of CPN is presented and
discussed in Section 3. Section 4 provides a primer on UML, while Section 5
discusses a UML design of the session manager and compares the CPN and
UML design approaches. Section 6 considers the general positioning of UML
and CPN, and promotion of the latter, in the software industry. The conclusions,
including a discussion of related work, are drawn in Section 7.

2 Healthcare Information Technology

The application area for PHM, the healthcare sector, is a hot topic in the pub-
lic debate in Denmark, and probably also in many other countries. Everybody
agrees that patients should be given the best treatment possible with the avail-
able resources. Therefore, rationalisation of hospital work processes is highly
desired seen from the perspective of any stakeholder, from the minister of health-
care who wants to keep his budget, down to the nurses who have a strong need
for alleviation in their busy work days.

An essential element in the rationalisation is to apply information technology
to a much larger extent than has been done previously. A first step in this
direction is the introduction of electronic patient records, which is going on in

62

many places right now [5]. One of these places is Aarhus County, whose new
electronic patient record EPR [41] will soon replace today’s paper-based records.
EPR is a comprehensive, general-purpose hospital IT system with a budget of
approximately 15 million US dollars. It will be initially fielded later this year
and put into full operation in 2004. The first version of EPR is made available
from desktop PCs placed in hospital offices. However, the EPR users, i.e., the
nurses and doctors, are away from their offices and on the move a lot of the
time, e.g., seeing patients in the wards. Therefore, stationary desktop PCs in
hospital offices are insufficient to support the hospital work processes in the best
way, and taking advantage of the emerging possibilities for pervasive and mobile
computing is crucial for the next version of EPR.

In the remainder of this section, we describe the notion of pervasive health-
care, and we introduce the pervasive healthcare middleware, PHM, the software
system we are considering, and the session manager component, whose design
will be the focus for our discussion.

2.1 Pervasive Healthcare

In the ideal situation, the healthcare professionals should bring the patient
records with them, wherever they go. Thus, up-to-date information about pa-
tients, diagnoses, treatment plans, medication etc. would always be available at
any time, in any given situation. The challenge seen from an IT perspective is
to develop computer support for such new ways of working, and one potential
approach is to exploit pervasive and mobile computing.

The term pervasive healthcare [47] covers the healthcare services that can
be offered when the hospital staff has access to relevant data and functionality
wherever they are. With pervasive healthcare, there may be computers “every-
where”, e.g., in the room where the nurses prepare the prescribed medicine for
patients, and in the trolleys used to transport trays with medicine. There may
be large-screen computers in the wards so it is easy to show pictures like X-rays
to the patients. Doctors and nurses may carry small personal digital assistants,
PDAs, with which they can, e.g., access EPR and control other devices such as
TV sets.

A specific example of a future pervasive healthcare scenario is the following:
A nurse is about to prepare a round to the wards to give medicine to patients.
The nurse wears a badge that emits a signal enabling various computers to
sense her location. While she is approaching the room where the medicine
is kept, a computer in this room automatically accesses EPR and fetches the
medication plans for the patients that the nurse is responsible for. The computer
presents these plans on the screen. The nurse prepares the medicine trays and
uses the computer to acknowledge for each patient when the medicine has been
poured correctly. Finally, all trays are put on a trolley. The trolley is equipped
with a location-sensitive computer, and when the trolley approaches a ward,
the medication plans for the patients in that ward are automatically fetched
and presented on the screen. In this way, it is fast and easy for the nurse to
acknowledge to the system when a patient has taken the medicine. If a patient
has a question regarding the medicine, the nurse is able to answer supported
by accessing medicine handbooks on-line using her PDA and perhaps using the
TV set in the ward to display information.

63

2.2 The Pervasive Healthcare Middleware – PHM

The pervasive healthcare middleware, PHM, is a new computer system designed
to support pervasive healthcare. PHM is a distributed system consisting of
a number of components running in parallel on various mobile and stationary
computing devices, and communicating over a wireless network. Some com-
ponents run on a central background server, while others are deployed on the
mobile devices. An early, overall design for PHM is proposed in [2]. Figure 1
shows selected components of the PHM architecture – the names hint their
functionality.

Mobile device

Viewer
component

Controller
component ...

Background server (with model components)

Session
manager

Component
manager ...

Notification
manager

Lookup and
discovery manager

Wireless
network

Figure 1: Selected components of PHM.

The scope of this paper is restricted to discussing design of the session man-
ager component, shown with thick border in Figure 1.

A session comprises a number of devices that are joined together, sharing
data, and communicating in support of some specific work process. A session is
appropriate, e.g., if a nurse wants to use her personal digital assistant, PDA, to
control a TV set in a ward in order to show an X-ray picture to a patient. In
this case, the TV and the PDA must be joined in a session. Another example
is a nurse who wishes to discuss some data, e.g., electronic patient record data,
or audio and video in a conference setting, with doctors who are in remote
locations. Here, the relevant data must be shown simultaneously on a number
of devices joined in a session, one device for the nurse and one device for each
doctor.

In general, session data is viewed and possibly edited by the users through
their devices. The PHM architecture is based on the Model-View-Controller
pattern [8]. The model part administers the actual data being shared and
manipulated in a session. Each participating device has both a viewer and a
controller component which are used as, respectively, interface to and manipula-
tor of the session data. Model, viewer, and controller components communicate
over the wireless network.

2.3 The Session Manager

Sessions are managed by the session manager, which is one of the most central
and most complex components of PHM. The session manager manages zero to
any number of sessions, and a session comprises one or more devices. Seen
from the point of view of the session manager, a device is either inactive, i.e.,
not currently participating in any session, or active, i.e., participating in some
session. A device participates in at most one session at a time.

The operations that the session manager must provide can be grouped into
three main functional areas:

1. Configuration management: Initiation, reconfiguration (i.e., supporting
devices dynamically joining and leaving), and termination of sessions.

64

2. Lock management: Locking of session data. Session data is shared and
must be locked by a device, which wants to edit it.

3. Viewer/controller management: Change of viewers and controllers for ac-
tive devices, e.g., if a nurse enters a room containing a TV, she may wish
to view something on the large TV screen instead of on her small PDA
display. In this case, viewer and controller replacement on the PDA and
the TV is needed.

Devices interact with the session manager by invoking its operations. One
interaction scenario is shown in Fig. 2, which illustrates the communication
between the session manager and two devices, d1 and d2.

Session
manager d1 d2

createSession (1)

defaultViewer

defaultController

defaultViewer

defaultController

joinSession (1)

setLock (1)

releaseLock (1)

leaveSession (1)

leaveSession (1)

Figure 2: Session manager / device communication.

First, d2 creates a session, which gets the session identifier 1. The session
manager responds to the creation request by providing d2 with a default viewer
and a default controller for the new session. Then, d1 joins the session, and
also gets a default viewer and a default controller from the session manager.
At some point, d1 locks the session, probably does some editing, commits, and
later releases the lock. Finally, d2 and then d1 leave the session.

3 Session Manager Design in CPN

Figure 2 is an example illustrating one single possible sequence of interactions
between the session manager and some devices. In the session manager design,
of course much more is needed. It is crucial to be able to specify and investigate
the general behavioural properties of session management.

We now present a CPN model, whose purpose is to constitute an initial
design proposal for the session manager, by identifying and giving an overall
characterisation of the operations to be provided, with focus both on their in-
dividual behaviour and their interplay. The static architecture of the session
manager in terms of classes and relationships between classes is outside the

65

scope of the use of CPN (here, a fine job can be done with UML). The CPN
model is created with Design/CPN [44].

It should be noted that the intention of this paper is not to present a large
and complex CPN model. The aim is to create a model, which in the first
place serves its purpose in the PHM development by being a design of the
session manager, but secondly and equally important, is sufficiently tractable to
constitute the foundation for the comparison of CPN and UML to be made in
Section 5. In fact, the moderate size of the model to be presented is an advantage
for the purpose to promote CPN. As we will argue, even for a modelling task
of this size, UML is not sufficient, and the problems encountered in UML are
exacerbated for larger models.

3.1 Net Structure and Declarations

The net structure of the CPN model consists of four modules (pages). The top-
level of the model is the SessionManagermodule, shown in Figure 3, where the
three main functional areas are represented by means of substitution transitions.
In this way, each main functional area is modelled by an appropriately named
sub-module, ConfigurationManager, LockManager, and ViewCtrManager, re-
spectively.

Inactive

DEVICE

DEVICE

Sessions

SESSION

Active

DEVICExVIEWERxCONTROLLER

ConfigurationManager

HS

LockManager

HS

ViewCtrManager

HS

Figure 3: SessionManager module.

Figure 4 shows the declaration of constants, colour sets, and variables.
It can be seen that the model contains declarations of simple index colour

sets for devices (DEVICE), viewers (VIEWER), and controllers (CONTROLLER). In
addition, there are Cartesian product colour sets used to model when devices
are associated with viewers and controllers. Sessions are modelled using the
SESSION colour set, whose elements are triples (s,dl,l), where s is a session
identifier, dl is a list of devices, and l is a lock indicator.

The operations of the session manager correspond to the transitions of the
CPN model. The detailed behaviour of the operations may immediately be de-
rived from the arc expressions and guards. The latter corresponds to checks
that the session manager must carry out before allowing the corresponding op-
eration to be executed. We have chosen to use function calls consistently as
arc expressions and guards, e.g., a function call like “createSession s d” in-
stead of the expression “(s,[d],NO LOCK)”. In this way, the sub-routines of the
session manager operations are explicitly identified.

In the following, we describe the model modules corresponding to the three
main functional areas of the session manager. For each module, the correspond-
ing session manager operation sub-routines are listed in terms of signatures for
the functions used in inscriptions on that module.

66

(* Constant declarations *)
val NO OF DEVICES = ...;
val NO OF VIEWERS = ...;
val NO OF CONTROLLERS = ...;

(* Colour set declarations *)
color DEVICE = index de with 1..NO OF DEVICES declare ms;
color INDEX = int with 1..NO OF DEVICES;
color VIEWER = index vi with 1..NO OF VIEWERS;
color CONTROLLER = index co with 1..NO OF CONTROLLERS;
color DEVICExVIEWERxCONTROLLER =

product DEVICE * VIEWER * CONTROLLER;
color DEVICExVIEWER = product DEVICE * VIEWER;
color DEVICExCONTROLLER = product DEVICE * CONTROLLER;
color SESSION ID = int;
color DEVICELIST = list DEVICE;
color LOCK = union L: DEVICE + NO LOCK;
color SESSION = product SESSION ID * DEVICELIST * LOCK;

(* Variable declarations *)
var d,d1,d2: DEVICE;
var i: INDEX;
var v: VIEWER;
var c: CONTROLLER;
var s: SESSION ID;
var dl: DEVICELIST;
var l: LOCK;

Figure 4: Declaration of constants, colour sets, and variables.

3.2 Configuration Management

The ConfigurationManager module is shown in Figure 5. It has four places,
Inactive, Active, Sessions, and Next id. Initially, all devices are inactive,
corresponding to all the DEVICE tokens initially being at the Inactive place.
The only transition which is enabled in the initial marking is Create session.
When it occurs, triggered by an initiating device d, a new session is created.
The session gets a fresh session id from the Next id place, starts in unlocked
mode, and a token corresponding to the new session is put on the Sessions
place. The token corresponding to the initiating device is augmented with a
default viewer and controller, and that triple is put on the Active place.

The transition Join session adds devices to sessions. Any join must be pre-
ceeded by a permission check, modelled by the guard function joinOK. When
a device d joins a session (s,dl,l), the appropriate token residing on the
Sessions place is updated accordingly, by use of the joinSession function.
Moreover, the d token is removed from the Inactive place, augmented with
a default viewer and controller, and put on the Active place. The transition
Leave session works similarly, but reversely, to joinSession. Upon leaving,

67

Inactive

DEVICE

P DEVICE

Sessions

SESSION

P

Active

DEVICExVIEWERxCONTROLLER

P

Create
session

Join
session

[joinOK d (s,dl,l)]

Leave
session

[leaveOK d (s,dl,l)]

Next
id

SESSION_ID

1

leaveSession d (s,dl,l)

(* Configuration management functions *)
fun createSession: SESSION_ID -> DEVICE -> SESSION
fun joinOK: DEVICE -> SESSION -> bool
fun joinSession: DEVICE -> SESSION -> SESSION
fun leaveOK: DEVICE -> SESSION -> bool
fun leaveSession: DEVICE -> SESSION -> SESSION
fun defaultViewer: DEVICE -> VIEWER
fun defaultController: DEVICE -> CONTROLLER
fun detachViewCtr: DEVICE * VIEWER * CONTROLLER -> DEVICE

d

(d, defaultViewer d, defaultController d)

createSession s d

d

joinSession d (s,dl,l)

(d,v,c)

(s,dl,l)

s

s+1

(d, defaultViewer d, defaultController d)

detachViewCtr (d,v,c)

(s,dl,l)

Figure 5: ConfigurationManager module.

the applicable viewer and controller for the device are detached.

3.3 Lock Management

The LockManager module is shown in Figure 6.

Active

DEVICExVIEWERxCONTROLLER

P

Sessions

SESSION

P

Set
lock

[not(sessionLocked (s,dl,l)) andalso
participant d (s,dl,l)]

Release
lock

[hasLock d (s,dl,l)]

(* Lock management functions *)
fun hasLock: DEVICE -> SESSION -> bool
fun sessionLocked: SESSION -> bool
fun setLock: DEVICE -> SESSION -> SESSION
fun releaseLock: DEVICE -> SESSION -> SESSION
fun participant: DEVICE -> SESSION -> bool

(s,dl,l) (s,dl,l)

setLock (s,dl,l) d releaseLock (s,dl,l) d

(d,v,c)(d,v,c)

Figure 6: LockManager module.

LockManager contains the two places Active and Sessions, which are al-
ready described. In addition, the module contains the two transitions Set lock
and Release lock. When Set lock occurs, the selected session (s,dl,l) is
locked by the requesting device, which is identified by the d part of the (d,v,c)
token. The session can only be locked if it is not locked already and if the re-
questing device is currently a participant in that session. These two conditions
are checked by the guard of Set lock. The effect of the transition Release
lock is to release the lock of the current session. This is only possible if the

68

requesting device is the actual lock holder, modelled by the hasLock function
of the guard.

3.4 Viewer/Controller Management

The ViewCtrManager module is shown in Figure 7.

Active

DEVICExVIEWERxCONTROLLER

P

Detach
viewer

Attach
viewer

[hasViewer d (de i)]

Detach
controller

Attach
controller

[hasController d (de i)]

No
viewer

DEVICExCONTROLLER

No
controller

DEVICExVIEWER

(* Viewer/controller management functions *)
fun hasViewer: DEVICE -> DEVICE -> bool
fun hasController: DEVICE -> DEVICE -> bool
fun detachViewer: DEVICE * VIEWER * CONTROLLER -> DEVICE * CONTROLLER
fun detachController: DEVICE * VIEWER * CONTROLLER -> DEVICE * VIEWER
fun attachViewer: DEVICE -> DEVICE -> VIEWER
fun attachController: DEVICE -> DEVICE -> CONTROLLER

(d,v,c)

detachViewer (d,v,c)

(d,c)

(d,v,c)

detachController(d,v,c)

(d,v)

(d,attachViewer d (de i),c) (d,v,attachController d (de i))

Figure 7: ViewCtrManager module.

In addition to the place Active already described, the ViewCtrManager
module contains the two places No viewer and No controller. A token on
either No viewer or No controller models that the corresponding device is
suspended – even though the device is participating in a session. This means
that the device is temporarily not able to read and write data (only those
devices whose tokens are currently on the Active place are able to read and, if
an appropriate lock is set, write data).

Viewers and controllers are not replaced in one atomic action. The replace-
ment mechanism is modelled by four transitions. The two Detach transitions
do, as the names indicate, detach the viewer or controller, respectively. There
is no precondition for allowing this. The Attach viewer transition checks that
the viewer that some device requests actually can be provided. The request is
checked by the guard “hasviewer d (de i)”, which evaluates to true if it is
possible to equip device d with a viewer for device number i, de i (as can be
seen from Figure 4, the devices are indexed and i is a free variable over the in-
dex range). The guard function hasViewer enforces that some viewers fit with
some devices and not with others. The Attach controller transition works in
a similar fashion.

3.5 Module Dependencies

The interplay between the three main functional areas of the session manager is
reflected in dependencies between the three corresponding modules of the CPN

69

model, e.g., there is a dependency between lock management and configuration
management, because a device in the process of editing session data is not
allowed to abruptly leave the session. We require that the lock is released before
permission to leave can be granted. Similarly, there is a dependency between
viewer/controller management and configuration management. A temporarily
suspended device in the process of replacing its viewer or controller is not allowed
to leave the session, because the device might have the session lock set.

3.6 Modelling Decisions

The CPN model is an abstract view of the session manager. Some modelling
decisions have been made in order to keep the model relatively simple, but
still serving its purpose as constituting an initial design of the session manager.
In particular, we have assumed reliable communication and that devices do not
crash, i.e., errors in the communication between devices and the session manager
are not modelled, and a question like what should happen if the device that is
currently having a lock on session data crashes cannot be answered from the
CPN model.

In a hectic and busy work day with the PHM system at the hospitals, com-
munication errors will happen on the wireless network, and devices will crash,
e.g., be turned off accidentally or run out of battery. To investigate such prob-
lems and strategies for coping with them, the CPN model could be extended.
However, for the purpose of keeping a clear focus when we make comparative
discussions of CPN and UML, we do not discuss how to model these issues in
this paper.

4 The Unified Modeling Language – UML

We want to compare the proposed CPN design of the session manager with a
design made exclusively in UML. For that purpose, and in order to make this
paper relatively self-contained, in this section, we provide a primer on essential
elements of the Unified Modeling Language, UML. The section may be skipped
by readers already familiar with UML.

4.1 UML Background

UML supports object-oriented software development and offers a number of di-
agram types to model various views or perspectives of systems. Some views
capture static aspects and other views describe behavioural aspects. UML as
a whole is very big with an abundance of concepts and features, and the inter-
ested reader is referred to, e.g., [35, 13] for a more thorough description. The
authoritative language documentation is the standard [32], but this massive and
complex document cannot serve as an introduction.

The first version of UML appeared in 1997 as a result of an effort to unify
a number of different, older object-oriented modelling methods. The current
standard is UML 1.4 [32] dated May 2001. A major revision, UML 2.0, is
expected to be approved late this year (2002). The main organisational body
for the development and standardisation of UML is the Object Management
Group, OMG [46]. UML is supported by many commercial tools, e.g., the

70

market-dominant Rational Rose suite from Rational Software Corporation [48]
and the Rhapsody suite from I-Logix [45].

4.2 Diagram Types

UML offers the following diagram types:

• Class diagrams
• Object diagrams
• Use case diagrams
• Component diagrams
• Deployment diagrams
• State machines
• Activity diagrams
• Sequence diagrams
• Collaboration diagrams

A class diagram is used to describe the architectural, structural composition
of a system by identifying classes and their interrelations, and an object diagram
is a structural description on the object level. A use case diagram is applied
to capture and describe the future users’ requirements for a system to be built.
A component diagram reflects the actual implementation of a system, and a
deployment diagram covers the physical architecture in terms of the hardware
and software that make up a system.

The behaviour of a system is modelled using state machines, activity di-
agrams, sequence diagrams, and collaboration diagrams. A state machine is
used to describe the behaviour of objects instantiated from a certain class, and
captures the states and the events that may happen in each state. State ma-
chines may communicate with each other, thus allowing modelling of the com-
bined behaviour of a number of interacting objects. State machines are derived
from statecharts [18, 20]. In general, statecharts augment conventional state-
transition diagrams with notions of hierarchy, concurrency, and a special kind
of broadcast communication. In particular, a state of a state machine may be a
compound state comprising other states and events. In this way, a state may to
some extent correspond to a substitution transition of a CPN model. An activ-
ity diagram is a special kind of state machine, where there are slightly different
rules for trigging and execution of events than for a pure state machine.

Both sequence diagrams and collaboration diagrams show selected examples
of communication between the objects of a distributed system. A sequence dia-
gram resembles a message sequence chart [22] and focus is on time (an example
of a sequence diagram is shown in Figure 2). A collaboration diagram is a kind of
annotated object diagram, and focus is on objects and their relations, together
with their communication. Sequence numbers are attached to arrows between
objects to describe a certain chain of communications.

71

5 Comparative Session Manager Design in UML

In this section, we consider design of the session manager using UML exclusively.
As with CPN, we focus on the behaviour of the session manager rather than its
static architecture. However, in UML, the two aspects are not separated, and
both must be dealt with. Application of UML’s behavioural diagrams assumes
the existence of well-defined classes, e.g., a state machine always specifies the
behaviour of a certain class, and a sequence diagram always shows the commu-
nication between objects instantiated from certain classes. Therefore, before we
model behaviour, we must define classes. For this reason, Figure 8 shows the
main classes and relationships of concern for session management.

SessionManager Session Device
1 1

1
1..**

*

active

inactive

managed

Figure 8: Session management class diagram.

Based on this class diagram, it was attempted to model the general be-
havioural properties of session management. This requires specification of both
the individual behaviour of device and session manager objects, and the com-
bined behaviour when these objects interact. The only UML behavioural di-
agram types which are candidates to be used in the general design are state
machines and activity diagrams. Sequence and collaboration diagrams can only
be used to show specific scenarios, i.e., they do not describe the general be-
haviour.

Therefore, it was attempted to create communicating state machines for the
SessionManager and Device classes, and subsequently investigate their individ-
ual and combined behaviour. In this process, a number of severe problems were
encountered. The problems that will be discussed in this paper are described
below, and are all instances of more general shortcomings in UML behavioural
modelling. The problems may be alleviated by using CPN as a supplement to
UML, as we will argue below.

5.1 Executable Models

The first shortcoming in UML is lack of executable models. Without executable
models, it is in practice impossible to investigate behavioural consequences of
various design proposals for session management, prior to implementation. Exe-
cutable models presume a well-defined formal execution semantics, which UML
is currently lacking. None of the diagrams, in particular none of the behavioural
diagrams, of the current UML standard [32] have a well-defined formal seman-
tics, whereas the original statecharts of [18] do, defined in later papers, e.g., [19].
However, because of alterations made from statecharts to UML state machines,
this well-defined semantics has been obscured – or, some would say, deliberately
relaxed to become more “user-friendly”.

If the lack of executable models was the only problem encountered in UML, it
might be alleviated by using UML tools from, e.g., I-Logix’s Rhapsody suite [45]
or Rational’s Rose RealTime [48] that do offer execution of UML behavioural

72

diagrams – with execution algorithms which are, by necessity, based on propri-
etary semantic decisions. A formal execution semantics will most likely sooner
or later be part of the UML standard (but we need it now for the PHM project).
State machines already have an informal, textually described semantics in the
current standard [32].

As we know very well, CPN has formal execution semantics in terms of the
enabling and occurrence rules, and consequently, CPN does indeed offer exe-
cutable models. Therefore, CPN models allow us to investigate the behavioural
consequences of alternative design choices, and, thus, there is a sound and con-
venient foundation for pursuing improvements. In the PHM project, the CPN
model of Section 3 reflects a number of design decisions for the session man-
ager, many of which may be argued, e.g., would it be better to allow a device
to have more than one viewer and one controller at a time instead of just one
of each; or should a session always be explicitly terminated by the initiating
device instead of being implicitly terminated when the last participating device
leaves. Alternatives can be modelled and investigated by making modifications
and simulations of the CPN model.

5.2 Modelling of Dependencies

The UML state machines for the SessionManager and Device classes are closely
interrelated. For both classes, all state changes of concern are consequences of
devices invoking operations in the session manager. We have had difficulties in
describing individual state machines for the two classes, while at the same time
properly capturing their communicating behaviour.

The difficulties are caused by the interplay between the three main func-
tional areas of the session manager. The interplay materialises as dependencies
between various model entities, as discussed in Section 3.5. It is difficult to
capture such dependencies in a proper way with state machines. Undesired in-
terferences between the three main functional areas must be precluded, e.g., that
a device loses its lock on session data during viewer/controller replacement. We
have tried to use various advanced features of state machines, e.g., concurrent
and-states and the history mechanism (the latter is controversial [37]), but have
not been able to describe the dependencies between the three main functional
areas in a satisfactory way.

In theory, it is possible to create state machines that capture all depen-
dencies, simply by introducing a sufficient number of states, e.g., instead of
two individual states like Has lock and Is replacing controller, introduce
states with more complex interpretations like Has lock and is replacing
controller. However, the approach does not scale well – the size of the state
machines grows quickly with the number of dependencies to be modelled. As an
example, state machines are not feasible to describe a more fine-grained lock-
ing scheme than the current coarse-grained one. Allowing locking of subsets of
session data requires simultaneous management of several locks and introduces
many dependencies.

Functional area dependencies can be properly described in CPN because
of the fine-grained nature of CPN models. In the CPN model of the session
manager, e.g., lock management and viewer/controller management cannot in-
terfere with each other in an undesired way. Whether a session is locked or not
is captured by a value in the SESSION token on the Sessions place. As can

73

be seen from Figure 3, replacement of viewers and controllers (modelled by the
substitution transition ViewCtrManager) does not involve the Sessions place
at all.

In contrast to state machines, CPN models scale well, e.g., a more fine-
grained locking scheme, can be modelled based on letting SESSION tokens com-
prise lists of locks, instead of just one single lock. Moreover, it would be straight-
forward to extend the CPN model to do deal with unreliable communication and
device crashes, as discussed in Section 3.6. It would be much harder to model
these issues in UML, because they introduce more dependencies to be handled.

5.3 Modelling of Bookkeeping

A key task of session management is bookkeeping by tracking which devices
are currently joined in sessions. Bookkeeping records must be updated each
time a device creates, joins, or leaves a session. Proper investigation of session
bookkeeping requires container-like data structure such as sets or lists to be
supported in the session management behavioural models, e.g., to describe that
in the current state, there are two sessions, one with devices {d1,d2,d3} and
one with devices {d4,d5}. The state notion offered by UML state machines
does not allow us to express this in a feasible way.

In the CPN model of the session manager, the place Sessions has a struc-
tured colour set defined and used with the purpose to do the desired bookkeep-
ing, i.e., tracking which devices are in sessions together.

5.4 UML State Machines Versus Petri Nets

UML state machines have some resemblance with low-level Petri nets. The
modelling of dependencies and of bookkeeping would also have caused problems
if we had chosen low-level Petri nets as our modelling language to describe
the behaviour of the session manager. These issues are dealt with smoothly in
CPN, exactly because of the increased modelling convenience that characterises
high-level Petri nets in general compared to low-level Petri nets.

As an aside, the original statecharts paper [18] sketches a rough idea about
parameterised states, which has some similarity with high-level Petri nets. Also,
in [18] Petri nets are recognised as a powerful means to describe behaviour, but it
is noted as a main problem that Petri nets cannot be hierarchically decomposed.
Since the publication of [18] in 1987, as we know, this problem has indeed been
solved [23].

6 UML and CPN in the Software Industry

As demonstrated above, CPN may be used to alleviate general and severe prob-
lems encountered in UML. Therefore, one might argue that CPN often should
be an obvious choice for industrial software developers engaged in modelling
behaviour. Why this is not the case anyway is discussed in this section, where
we state general observations regarding use of UML and CPN in the software
industry, and where we also consider how to better promote CPN.

First of all, UML had a head start in comparison with CPN in the soft-
ware industry, because the two modelling languages had very different starting

74

points. UML came out of the object-oriented programming community, which
set the dominating trend for industrial software development over more than
the last decade. Therefore, from its advent, UML has enjoyed much attention
in the software industry. In contrast, Petri nets and CPN emerged from math-
ematics and theoretical computer science as a model for concurrency, and have
gained attention mostly within academia. Moreover, from the very beginning,
UML became the subject for an attractive commercial market for tool vendors,
consultants, etc., which all contributed to the boost of the language. We have
not seen anything similar for CPN, or for Petri nets in general.

6.1 UML in the Software Industry

Many software companies are continuously applying UML, typically for the
description of static, architectural properties of systems, by creation of primarily
class diagrams. A software developer’s incentive to use class diagrams is high,
both because they are a very usable and convenient abstraction, but also because
it is common functionality of UML tools to be able to generate source code level
class skeletons automatically from class diagrams. In this way, the artifacts
produced during design, i.e., the class diagrams, save the developer for some
amounts of work during implementation.

Often, class diagrams suffices, e.g., for traditional administrative systems
with the major part of the functionality being database access, such as the first
version of EPR, Aarhus County’s electronic patient record. For such systems,
complex behavioural issues, e.g., involving communication, synchronisation and
resource sharing are handled within standard off-the-shelf software components
like database management systems and various middleware components such as
application servers. Consequently, application-level software developers do not
have to deal directly with the complexities themselves. However, when focus
moves from database access to developing systems with complex behaviour,
UML sometimes needs a supplement.

There are many speculations, not the least in the academic UML community
itself, see, e.g., [34], that in many cases, the UML behavioural diagram types are
not sufficient, and, as a consequence, not that widely used. In particular, UML
state machines and activity diagrams are the only options to describe general
behaviour, and they are not always feasible. There are a number of reasons
for this. A main reason is the lack of executable models, which, together with
the accompanying issue of formal semantics, are hot research topics within the
academic UML community, see, e.g., [10]. Many proposals to define formal se-
mantics for various kinds of UML diagrams are published, e.g. [4, 14, 26], and
some implementations exist, but none are currently widely accepted and cer-
tainly none are standardised. Other reasons which may render UML behavioural
diagrams insufficient include the dependencies and bookkeeping issues discussed
in Section 5, which both are of a general, often encountered, and severe nature.

6.2 CPN in the Software Industry

A number of industrial CPN projects have taken place, see, e.g., [43] or [24].
Typically, the initiators of a project is a group of CPN experts from a university
or another research institution, who establishes a cooperation with a small num-
ber of software engineers from some company. Often, such a project happens in

75

isolation, in the sense that it is carried out, some experiences are gained, and
a report or paper is written. However, when the project ends and the CPN
experts walk away, the use of CPN within the company is in many cases dis-
continued. CPN seems to have a problem with manifesting itself broadly in the
software industry.

If we want to advocate wide-spread and long-term use of CPN in some
company, we have to convince not only the software developers, but also some
higher-level decision makers like business managers or project managers. In
conversations with the latter, we should stress the key business question: How
does my company save time and money by using CPN? Sometimes, we should
perhaps talk about reducing time to market, increasing return of investment,
and limitation of risks, instead of about, e.g., nice theoretical properties like
formal semantics. Moreover, in many cases, the arguments should stress CPN
as a powerful vehicle to investigate behaviour and dynamic properties by sim-
ulation, much more than CPN as a means for formal verification. The latter
is used and appreciated in a number of specialised application areas, but is far
beyond interest and reach in very many software companies.

One approach to ensure continuous use of CPN in a company could be to
define a step in the company’s software development process, where complex
components are identified and afterwards modelled and simulated using CPN.
A written software development process is demanded on higher maturity levels
of the Capability Maturity Model, CMM [33], which is gaining momentum in
the industry right now. However, a proposal to add a step to a software devel-
opment process has a high risk of being received with hesitation and eventually
be rejected. Real-life software development projects are often characterised
with extremely tight budgets and very hard deadlines, and decision makers and
company management may think that introducing an additional step in the
development process will do exactly the opposite of saving time and money.

A potential, genuine disadvantage of CPN in otherwise UML-based software
engineering is that it indeed is a deviation from an established standard. How-
ever, UML itself allows various kinds of tailoring (in terms of what is known
as constraints, tagged values, and stereotypes) to accommodate the language
to situations where the standardised version is not applicable. In many cases,
it may well be that the use of CPN is not a more dramatic deviation than the
tailoring approved by the UML standard.

A severe drawback of using CPN is that the step from software design, i.e.,
CPN models, to implementation in an object-oriented programming language
typically must be done manually. In the PHM project, the implementation of
the CPN design models will involve manual coding. This is a general drawback
of CPN, whose elaborated data type concept often is an advantage when creating
models, but on the other hand makes automatic code generation from CPNmod-
els more complicated than, e.g., code generation from various versions of state
machines and statecharts, for which there are many code generators available,
e.g., [38]. Therefore, when use of CPN is considered in a software development
project, a trade-off must be made between the desire to have strong, executable
design models on one side, and ease of implementation on the other. With
this remark, it is not said that automatic code generation from CPN models
is impossible. CPN and Design/CPN have been used for automatic code gen-
eration to other target languages than object-oriented ones, even in industrial
settings [29].

76

7 Conclusions

The use of UML in conjunction with Petri nets has been studied intensively
in recent years. Much of the work done is concerned with automatic transla-
tion from certain types of UML diagrams into Petri nets, often aimed at formal
verification, e.g., [36]. Also, Petri nets have been used to give precise execu-
tion semantics to different classes of UML diagrams, e.g., [3]. A small number
of examples of combined use of UML and CPN in software development have
appeared in the literature, e.g., design of user interfaces is described in [11].
High-level Petri nets in general in conjunction with mobile computing has been
investigated in [31], where, again, the focus is on formal verification. Much
research has addressed development of concepts and theories that combine the
ideas of object-orientation in general (not just UML) and Petri nets [1]. Specif-
ically in [27], Object Petri Nets are defined, which extend CPN with object-
oriented features like inheritance and polymorphism. Other examples on work
in this area are [6, 15, 28].

In this paper, we have taken the practitioner’s pragmatic attitude, by sug-
gesting to apply both UML and CPN in the design of the PHM system, by
taking immediate advantage of the best of both worlds. More specifically, we
propose using UML to describe static aspects and using CPN as a supplement
to model behavioural aspects of complex components. We believe that this
proposal carries over to projects, where there really is a need for executable
models and a fine-grained investigation of behaviour. In [12], it is stated that
UML lacks facilities to model the interaction between system components in
a sufficiently fine-grained way. This general-term observations is sustained in
this paper, where we have pointed out issues that are addressed better with
CPN than with UML. The problems with modelling of dependencies and book-
keeping in UML arise exactly because the UML behavioural diagrams are too
coarse-grained. Moreover, in this paper, we have discussed how to position CPN
in the UML-dominated world of software engineering. In particular, we have
addressed a question posed in [39], where it is recognised that one of the key
challenges in promoting Petri nets is to find the right projects and the right
development phases to apply Petri nets in otherwise UML-dominated software
engineering. One type of projects where Petri nets may be used successfully
could be design of systems to support pervasive and mobile computing. Such
systems are characterised by classical and well known complications that apply
to many distributed systems [9], plus a number of new behavioural problems
to be tackled, e.g., regarding mobility. Moreover, off-the-shelf standard middle-
ware components supporting pervasive and mobile computing architectures are
not well-established on the market yet.

With the success of UML, the software industry has in large scale adopted
modelling as such as a valuable discipline, and today, modelling is generally
accepted as a natural ingredient in everyday software development. Many soft-
ware developers appreciate UML class diagrams as a productive asset to help
them in their work. Those who have tried also to model behavioural aspects
in UML might have encountered problems such as the ones discussed in this
paper. Therefore, for many developers, the motivation to use a supplementary
modelling language together with UML may be quite high. In this way, the
success of UML can be seen as a good chance to establish CPN more broadly
in the software industry.

77

References

[1] G. Agha, F.D. Cindio, and G. Rozenberg, editors. Concurrent Object-
Oriented Programming and Petri Nets, volume 2001 of Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[2] J. Bardram and H.B. Christensen. Middleware for Pervasive Healthcare,
A White Paper. In Workshop on Middleware for Mobile Computing, Hei-
delberg, Germany, 2001.

[3] L. Baresi and M. Pezzé. On Formalizing UML with High-Level Petri Nets.
In Agha et al. [1].

[4] M.v.d. Beeck. Formalization of UML-Statecharts. In Gogolla and Kobryn
[16].

[5] M. Berg. Accumulating and Cordinating: Occasions for Information Tech-
nologies in Medical Work. In Computer Supported Cooperative Work, vol-
ume 8, 1999.

[6] O. Biberstein, D. Buchs, and N. Guelfi. Object-Oriented Nets with Alge-
braic Specifications: The CO-OPN/2 Formalism. In Agha et al. [1].

[7] J. Burkhardt, H. Henn, S. Hepper, K. Rintdorff, and T. Schäck. Pervasive
Computing – Technology and Architecture of Mobile Internet Applications.
Addison-Wesley, 2002.

[8] F. Buschmann, R. Meunier, H. Rohnert, and P. Sommerlad. Pattern-
Oriented Software Architecture. John Wiley and Sons, 1996.

[9] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems – Con-
cepts and Design. Addison-Wesley, 2001.

[10] W. Damm. Understanding UML, Pains and Rewards. In Gogolla and
Kobryn [16].

[11] M. Elkoutbi and R.K. Keller. User Interface Prototyping Based on UML
Scenarios and High-Level Petri Nets. In Nielsen and Simpson [30].

[12] G. Engels, R. Heckel, and S. Sauer. UML – A Universal Modeling Lan-
guage? In Nielsen and Simpson [30].

[13] H.E. Eriksson and M. Penker. UML Toolkit. John Wiley and Sons, 1998.

[14] R. Eshuis and R. Wieringa. An Execution Algorithm for UML Activity
Graphs. In Gogolla and Kobryn [16].

[15] H. Giese, J. Graf, and G. Wirtz. Closing the Gap Between Object-Oriented
Modeling of Structure and Behaviour. In R. France and B. Rumpe, editors,
�UML� 1999 - The Unified Modeling Language, 2th International Con-
ference, volume 1723 of Lecture Notes in Computer Science, Fort Collins,
Colorado, 1999. Springer-Verlag.

[16] M. Gogolla and C. Kobryn, editors. �UML� 2001 - The Unified Modeling
Language, 4th International Conference, volume 2185 of Lecture Notes in
Computer Science, Toronto, Canada, 2001. Springer-Verlag.

78

[17] U. Hansmann, L. Merk, M.S. Nicklous, and T. Stober. Pervasive Comput-
ing Handbook. Springer Verlag, 2001.

[18] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8, 1987.

[19] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts.
ACM Transactions on Software Engineering, 5(4), 1996.

[20] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts:The
STATEMATE Approach. McGraw-Hill, 1998.

[21] A. Helal, B. Haskell, J.L. Carter, R. Brice, D. Woelk, and M. Rusinkiewicz.
Any Time, Anywhere Computing – Mobile Computing Concepts and Tech-
nology. Kluwer Academic Publishers, 1999.

[22] ITU-T Recommendation Z.120: Message Sequence Chart. Interna-
tional Telecommunication Union; Telecommunication Standardization Sec-
tor (ITU-T), 1999.

[23] K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag, 1992.

[24] K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods and
Practical Use. Volume 3, Practical Use. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag, 1997.

[25] L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide
to Coloured Petri Nets. International Journal on Software Tools for Tech-
nology Transfer, 2(2), 1998.

[26] S. Kuske. A Formal Semantics of UML State Machines Based on Structured
Graph Transformations. In Gogolla and Kobryn [16].

[27] C.A. Lakos. Object-Oriented Modelling with Object Petri Nets. In Agha
et al. [1].

[28] C. Maier and D. Moldt. Object Coloured Petri Nets – A Formal Technique
for Object Oriented Modelling. In Agha et al. [1].

[29] K.H. Mortensen. Automatic Code Generation Method Based on Coloured
Petri Net Models Applied on an Access Control System. In Nielsen and
Simpson [30].

[30] M. Nielsen and D. Simpson, editors. 21st International Conference on
Application and Theory of Petri Nets 2000, volume 1825 of Lecture Notes
in Computer Science, Aarhus, Denmark, 2000. Springer-Verlag.

[31] L. Ojala, N. Husberg, and T. Tynjälä. Modelling and Analysing a Dis-
tributed Dynamic Channel Allocation Algorithm for Mobile Computing
Using High-Level Net Methods. In K. Jensen, editor, Workshop on Prac-
tical Use of High-level Petri Nets, Aarhus, Denmark, 2000.

79

[32] OMG Unified Modeling Language Specification, Version 1.4. Object Man-
agement Group (OMG); UML Revision Taskforce, 2001.

[33] M.C. Paulk, C.V. Weber, and B. Curtis. The Capability Maturity Model:
Guidelines for Improving the Software Process. Addison Wesley, 1995.

[34] J. Rumbaugh. The Preacher at Arrakeen. In Gogolla and Kobryn [16].

[35] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison Wesley, 1999.

[36] J. Saldhana and S.M. Shatz. UML Diagrams to Object Petri Net Models:
An Approach for Modeling and Analysis. In International Conference on
Software Engineering and Knowledge Engineering, Chicago, Illinois, 2000.

[37] A.J.H. Simons and I. Graham. 30 Things That Go Wrong in Object Mod-
elling with UML 1.3. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Be-
havioral Specifications of Businesses and Systems. Kluwer Academic Pub-
lishers, 1999.

[38] J. Staunstrup. IAR visualSTATE Concept Guide, version 4. IAR Systems,
1999. www.iar.com.

[39] G. Wirtz. Application of Petri Nets in Modelling Distributed Software Sys-
tems. In D. Moldt, editor,Workshop on Modelling of Objects, Components,
and Agents, Aarhus, Denmark, 2001.

[40] J. Xu and J. Kuusela. Analyzing the Execution Architecture of Mobile
Phone Software with Coloured Petri Nets. International Journal on Soft-
ware Tools for Technology Transfer, 2(2), 1998.

[41] Aarhus Amt Electronic Patient Record. www.epj.aaa.dk.

[42] Centre for Pervasive Computing. www.pervasive.dk.

[43] Coloured Petri Nets at the University of Aarhus. www.daimi.au.dk/CPnets.

[44] Design/CPN. www.daimi.au.dk/designCPN.

[45] I-Logix. www.ilogix.com.

[46] Object Management Group. www.omg.org.

[47] Pervasive Healthcare. www.healthcare.pervasive.dk.

[48] Rational Software Corporation. www.rational.com.

[49] Systematic Software Engineering A/S. www.systematic.dk.

[50] Unified Modeling Language. www.uml.org.

80

Performance Study of Distributed Generation of

State Spaces Using Colored Petri Nets

W.M. Zuberek

Department of Computer Science
Memorial University

St.John's, Canada A1B 3X5

Abstract

The performance of many distributed applications depends upon the ratio of

computation to communication times. In the case of distributed generation of

state spaces for timed Petri nets, this ratio is determined by the partitioning

function which assigns generated states to classes associated with processors; if

the partition classes correspond to clusters of states with only a few connections

between clusters, the required communication is minimized, and the perfor-

mance is maximized. The e�ects of state clustering are analyzed by simulating

a colored timed Petri net modeling the distributed state space generation.

1. Introduction

Actual implementation of complex, real-world systems is usually preceded by thorough

studies, performed on a formal model of the original system. For systems which exhibit

concurrent activities, Petri nets are a popular choice of the modeling formalism, because of

their ability to express concurrency, synchronization, precedence constraints and nondeter-

minism. Moreover, Petri nets \with time" (stochastic or timed) include the durations of

modeled activities and this allows to study the performance aspects of the modeled system

[1, 14, 21].

The basic analysis of net models, based on exhaustive generation of all reachable states,

is known as reachability analysis. In reachability analysis, the states of the model and the

transitions between states are organized in the so called reachability graph which is used

for verifying the required qualitative properties (such as absence of deadlocks or liveness).

For timed and stochastic Petri nets (with deterministic or exponentially distributed times),

this graph is a Markov chain, so its stationary probabilities of states can be determined

using known numerical methods [19]. These stationary probabilities are used to derive

performance measures of the model [1, 6, 21].

For large net models, the state space can easily exceed the resources of a single computer

system. The availability of clusters of (inexpensive) workstations and portable libraries for

distributed computing make distributed generation of the state space quite an attractive

alternative to the traditional sequential approach.

In distributed generation of the reachability graph, the (yet unknown) state space is

partitioned into n disjoint regions, R1; R2; :::; Rk, and these regions are constructed inde-

pendently by k identical processes running concurrently on di�erent machines. At the end,

the regions can be integrated in one state graph if needed.

There are several approaches to the distributed generation of reachability graphs. Many

results and implementation details for parallel reachability graph generation on shared{

memory multiprocessors are given in [2, 3, 4, 5]. In shared{memory systems, however, the

81

processors are tightly connected, so inter{processor communication is quite eÆcient, which

makes such systems signi�cantly di�erent from clusters of workstations or PCs. Distributed

state space generation described in [12] is organized into a sequence of phases, and each

phase contains processing of currently available states followed by communication in which

non-local states are sent to their regions (i.e., processors). The next phase begins only

after completion of all operations of the previous phase. Reasonable values of speedup were

reported for small numbers of processors (2 to 4) and for large state spaces.

The purpose of this paper is to present a simple colored Petri net model of a generation

of the reachability graphs for timed Petri nets using a cluster of processors connected by

a switch, and to illustrate the e�ects of state space partitioning on the performance of

distributed generation. In particular, it has been observed that for some types of timed

Petri nets, the straightforward partitioning algorithm [16, 17] results in poor speedups, so a

more sophisticated partitioning algorithm, taking into account structural properties of the

model, may be required to improve the performance of distributed state space generation.

Section 2 provides a brief overview of basic concepts of timed Petri nets which are

relevant to this paper. Section 3 outlines the distributed generation of the state space for

timed Petri nets. A simple colored timed Petri net model of a cluster of processors connected

by a switch is presented in Section 4, while Section 5 discusses the results obtained from the

presented model. A simpli�ed approach to performance evaluation is outlined in Section 6.

Section 7 contains several concluding remarks.

2. Timed Petri Nets

A timed Petri net is a triple T = (M; c; f) where M is a marked (place/transition)

net, M = (P; T;A;m0), with P denoting the set of places, T { the set of transitions, A

{ the set of directed arcs, A � P � T [T � P , and m0 { the initial marking function,

m0 : P ! f0; 1; 2; :::g. M can be extended in a number of ways if needed; for example, it

can include a set of inhibitor arcs B � P �T ,M = (P; T;A;B;m0), A\B = ;, or multiple

arcs described by a weight function w : A ! f1; 2; :::g, M = (P; T;A;w;m0), and so

on. c is a con
ict-resolution function which assigns probabilities to con
icting transitions,

c : T ! [0; 1], in such a way that for each free-choice class of transitions the sum of

assigned probabilities is equal to 1. For more general con
icts, the probabilities assigned to

transitions represent relative frequencies of transition �rings, which are used to determine

the probabilities of state transitions [10]. f is the �ring time function which assigns the �ring

times to transitions, f : T ! R
+, where R+ denotes the set of nonnegative real numbers;

if �ring times are constant, the nets are called D{timed; if they are random variables with

(negative) exponential distributions (described by their average values), the nets are called

M{timed (or Markovian); other distributions can also be used.

In timed nets, it is assumed that each transition which can �re, initiates its �ring

in the same instant of time in which it becomes enabled, and the �rings of transitions

occur in \real time", i.e., the tokens are removed from the input places at the beginning

of the �ring interval, and they are deposited into the output places at the end of this

interval. Consequently, the behavioral description of a timed net must take into account

the places (i.e., the remaining tokens) as well as the �ring transitions of a net [21]. For

D{timed nets, a state of a net, s, is a triple, s = (m;n; r), where m is a marking function,

m : P ! f0; 1; 2; :::g, n is a �ring function, n : T ! f0; 1; 2; :::g, which indicates, for each

transition, the number of its �rings occurring in this state, and r is a (partial) remaining-

�ring-time function, r : T ! (R+)�, which indicates, for each �ring of each transition,

the remaining time of �ring (D{timed nets do not have the memoryless property, so the r

82

components of state descriptions represents a \history" of �rings; for M{timed nets, this

last component of state descriptions is not used at all).

For example, let the �ring times associated with the transitions of the D{timed net

shown in Fig.2.1 be f(t1) = 1:0, f(t2) = 0:9, f(t3) = f(t4) = 0:1, and f(t5) = 0:8.

t1 t2 t3

p5

p6

p2

p1 p3

p4

t4 t5

Fig.2.1. D{timed net.

For the initial marking shown in Fig.2.1, the net has two initial states, one corresponding

to t1's �ring and the second corresponding to t2's �ring; these two initial states are as follows

(the m, n and r components of states are separated by semicolons; unde�ned values of r

are indicated by `{'):

s1 = (0; 0; 0; 1; 1; 0; 1; 0; 0; 0; 0; 1:0;�;�;�;�);

s2 = (0; 0; 0; 1; 1; 0; 0; 1; 0; 0; 0;�; 0:9;�;�;�):

The holding times (or durations) of s1 and s2 are equal to 1.0 and 0.9 (time units)

respectively; at the end of the �ring time, a token is deposited in p1, so t3 can initiate its

�ring, which is represented by s3:

s3 = (0; 0; 0; 1; 0; 0; 0; 0; 1; 0; 0;�;�; 0:1;�;�):

The holding time of s3 is 0.1, at the end of which tokes are deposited in p2 and p6,

enabling t1, t2 and t4, so there are two possible next states, s4 with t1 and t4 �ring concur-

rently, and s5 with t2 and t4 �ring concurrently:

s4 = (0; 0; 0; 0; 0; 0; 1; 0; 0; 1; 0; 1:0;�;�; 0:1;�);

s5 = (0; 0; 0; 0; 0; 0; 0; 1; 0; 1; 0;�; 0:9;�; 0:1;�):

Both these states have holding times equal to 0.1, at the end of which the �ring of t4
ends (while t1 or t2 continues its �ring, with the remaining �ring time equal to 0.9 and 0.8,

respectively), and t5 initiates its �ring, creating states s6 (from s4) and s7 (from s5):

s6 = (0; 0; 0; 0; 1; 0; 1; 0; 0; 0; 1; 0:9;�;�;�; 0:8);

s7 = (0; 0; 0; 0; 1; 0; 0; 1; 0; 0; 1;�; 0:8;�;�; 0:8):

The holding times of s6 and s7 are both 0.8. At the end of s6, t1 continues to �re (with

the remaining �ring time equal to 0.1) creating state s8:

s8 = (0; 0; 0; 1; 1; 0; 1; 0; 0; 0; 0; 0:1;�;�;�;�);

while the end of s7 corresponds to the termination of its both �rings, tokens are deposited

in p1 and p4, and t3 can initiate its �ring; this is s3 again.

The state graph (or the reachability graph) for this example is shown in Fig.2.2 with

the state holding times shown in parentheses).

83

s2(0.9)s1(1.0)

s3(0.1)

s6(0.8)

s4(0.1)

s8(0.1) s7(0.8)

s5(0.1)

Fig.2.2. State graph for the net shown in Fig.2.1.

It should be noticed that for di�erent values of �ring times, the reachability graph for

the net shown in Fig.2.1 may be signi�cantly di�erent from the one shown in Fig.2.2.

Timed colored Petri nets are extensions of place/transitions timed nets; a timed colored

Petri net is also a triple T = (M; c; f) where M is a colored net, M = (P; T;C;A; e;m0),

with P , T and A as before, C denoting a set of attributes called \colors", e assigning

expressions (over colors and color variables) to arcs of the set A, the initial marking function

extended to m0 : P � C ! f0; 1; 2; :::g, and the choice and �ring time functions extended

to: c : T � B ! [0; 1] and f : T � B ! R
+, where B denotes the set of bindings, i.e.,

assignments of colors from the set C to variables used in arc expressions.

An outline of a \standard" approach to the (sequential) generation of state space (just

the states, without arcs) can be as follows:

1. State space generation:

2. var States := ;; (* set of states *)

3. unexplored := ;; (* queue of states *)

4. begin

5. for each s in IntitalStates(m0) do

6. States := States [fsg;
7. insert(unexplored; s)

8. endfor;

9. while nonempty(unexplored) do

10. state := remove(unexplored);

11. for each s in NextStates(state) do

12. if s =2 States then

13. States := States [fsg;
14. insert(unexplored; s)

15. endif

16. endfor

17. endwhile

18. end.

where function IntialStates(m) determines the set of initial states corresponding to the

marking function m, and function NextStates(s) determines the set of successor states of s.

3. Distributed State Space Generation

In distributed generation of the state space, the partitioning function assigns each state

to the region to which it belongs. The number of disjoint regions is usually equal to the

number of available processors, kp.

A straightforward partitioning function is based on the de�nition of the state, similarly

to the one used in [12]. For timed nets, however, the partitioning function also takes into

account the �ring transitions:

84

region(s) = [

jP jX

i=0

�i m(pi) +

jT jX

i=0

�i n(ti)] mod (kp)

where jP j is the cardinality of the set of places P , jT j is the cardinality of the set of

transitions T , the coeÆcients �i and �i are integer numbers, and m and n are marking and

�ring components of a state s [21].

Three kinds of (logical) processes are used in distributed generation of the state space

[16], as shown in Fig.3.1: a process starting the distributed system and initiating the com-

putations, called Spawner; several processes constructing the regions of the state space,

called Generators, and a process collecting and integrating the results, called Collector.

CollectorSpawner

Generator 1

Generator 4

Generator 2
Generator 3

Fig.3.1. Distributed state space generation system.

The execution begins with the Spawner which creates the Collector and spawns kp
Generators on the hosts of the cluster; it also collects the identi�ers of all created processes

and broadcasts them to all processes so each process can send messages to any other one

[16]. In its �nal phase, the Spawner sends the initial states to the appropriate Generators.

An outline of the Spawner process is as follows [16]:

1. Spawner:

2. var m0; (* initial marking *)

3. k; (* the number of hosts *)

4. proc table[]; (* processor identi�ers *)

5. begin

6. input virtual machine and model descriptions;

7. spawn Collector on this host;

8. for i := 1 to k do

9. proc table[i] :=spawn Generator on host[i]

10. endfor;

11. broadcast(proc table);

12. for each s in InitialStates(m0) do

13. send(proc table[region(s)]; s)

14. endfor

15. end.

For each state belonging to region Ri, the Generatori determines all successor states.

A successor state can be in the same region (in which case it is called a local state) or in

a di�erent region (in which case it is called an external state). Each Generatori sends all

external states to the Generators determined by the partitioning function.

In order to perform state processing concurrently with communication, each Generator

is composed of three processes: the Analyzer, responsible for processing the states, the

85

Sender, responsible for sending messages to other processes, and the Receiver, responsible

for receiving messages from other processes and for the termination detection. When the

Spawner creates the Generators, it actually creates Analyzer processes. As its �rst step,

each Analyzer creates its Receiver and Sender processes [16].

The Analyzer, Receiver, and Sender processes of each Generator reside on the same

processor. Their communication is based on shared variables, as shown �n Fig.3.2.

Sender

Receiver external states

non−local states

recv_buffer

send_buffer

terminate

termination
detection

Analyzer

Fig.3.2. The structure of a Generator.

Each Generator processes the states from the internal queue unexplored (local states)

and from recv bu�er (non{local states), with non{local states taking priority over local ones.

1. Analyzeri:

2. var Statesi := ;; (* set of states *)

3. unexplored := ;; (* queue of states *)

4. cont := true; (* continuation
ag *)

5. begin

6. spawn Receiver; Sender on this host;

7. while cont do

8. if empty(recv bu�er) ^ nonempty(unexplored) then

9. state := remove(unexplored);

10. new := true

11. else

12. state :=get(recv bu�er);
13. if state = null then

14. cont :=false

15. else

16. new := state =2 Statesi;

17. if new then

18. Statesi := Statesi [fstateg
19. endif

20. endif

21. endif;

22. if cont ^ new then

23. for each s in NextStates(state) do

24. if region(s) = i then

25. if not s =2 Statesi then

26. Statesi := Statesi [fsg;
27. insert(unexplored; s)

28. endif

29. else

30. put(send bu�er; s)
31. endif

32. endfor

33. endif

34. endwhile

35. end.

86

An important aspect of distributed applications is the termination condition which iden-

ti�es the situation when no processor can continue its execution. The completion of all cur-

rent tasks by any one of processors does not imply the overall termination, as some other

processors may still continue and generate new states for processing. On the other hand, the

processors cannot just wait for each other forever. A global termination detection algorithm

[8] is interleaved with the computations, repeatedly checking if all processors have �nished

their tasks [16]. When global termination is detected (i.e., when all Analyzer processes are

waiting on get operation { line 12), a special null state is sent to all Analyzer processes to

terminate their operation (lines 13, 14).

Processes residing on di�erent hosts constitute a \virtual machine"; they communicate

by exchanging messages using the popular PVM (Parallel Virtual Machine) message passing

library [9].

4. Petri Net Model

An outline of a cluster of (four) workstations connected to a switch is shown in Fig.4.1

(typically clusters contain more workstations, e.g., 16 or 32).

SwitchWorkstation Workstation

Workstation

Workstation

Fig.4.1. An outline of a cluster of 4 workstations.

A Petri net model of a single processor connected to a switch, with independent processes

for state generation and for message passing to other processors, is shown in Fig.4.2.

The processing of states is represented by transition tip with the average time of process-

ing a single state assigned to it as the �ring time. The queue of states waiting for processing

is represented by place pir, which, in Fig.3.2, contains 2 tokens (i.e., 2 states waiting for

processing).

tsi psi

pis
tis

tio

pii

pio

tii piptip

pir

pin

Fig.4.2. Petri net model of a processor and its link.

Transitions tis and tsi represent message passing to and from the switch, respectively.

Since the messages share the same link, place pii is a shared resource (the link) which can

be used either for sending (tis) or for receiving (tsi) a message.

For a 4{machine cluster (Fig.4.1), the switch connecting the processors is outlined in

Fig.4.3; each of messages incoming from four directions (p1s, p2s, p3s and p4s) has a free{

choice structure which forwards the message to one of the other processors connected to

87

the switch (more precisely, the messages are �rst sent to psi, which represents a queue of

messages waiting for forwarding to processor i; the messages are forwarded from psi to the

processor, pir, one message at a time, as shown in Fig.4.2). If the states are uniformly

distributed over the regions, all free{choice probabilities associated with selections within

the switch are equal to 1=(kp � 1), so, in Fig.4.3, are equal to 1/3.

p1s

ps1

ps4 p4s

p3s

ps3

ps2p2s

Fig.4.3. Petri net model of a switch.

In Fig.4.2, the result of processing a state is a new state, which, after termination of

tip's �ring, is inserted into place pin. If this new state is local, it is forwarded, by �ring tii,

to the waiting queue pir for further processing; if the new state is external, it is sent to pio
by �ring tio, and then to its target host by �ring �rst tis and then tsj of the selected host j

(the selection is made within the switch).

Place pin is a free{choice place, and the selection of local or external state is described by

free{choice probabilities associated with tii and tio; for a cluster of kp machines, assuming

uniform distribution of states over regions, the free{choice probabilities are 1=kp for tii and

(kp� 1)=kp for tio. Since, within the switch, the free{choice transitions connected to places

pis have the free{choice probabilities equal to 1=(kp � 1), all hosts are selected with the

same probabilities equal to 1=kp.

The probability associated with tii, denoted c(tii), is an important parameter for the

performance analysis of distributed state space generation. Its value greater than 1=kp (the

value corresponding to uniform distribution of states over the hosts) indicates \locality" of

the partitioning function, created by clusters of states within regions.

tsi psi

pis
tis

tio

pii

pio

tii piptip

pir

pin

tsw

Fig.4.4. Colored Petri net model of a cluster.

Since the model of a complete cluster contains many identical (sub)models of processors,

colored Petri nets [11] can be used to \fold" all these replications into a compact model of

the cluster, as shown in Fig.4.4, in which the number of colors is equal to kp, the number

88

of processors, and the switch is represented by a single transition tsw with the number of

occurrences equal to kp � (kp � 1), grouped into kp free{choice structures corresponding to

the outline shown in Fig.4.3.

5. Performance Results

The performance of distributed applications depends upon several factors, which include

the balancing of the workload among the processors, and also the amount of communication

that is needed for the execution of distributed tasks.

The net model shown in Fig.4.4 contains two timing parameters, the �ring time of tip,

representing the (average) time required to process a single state, and the �ring times of

tis and tsi, that represent the (average) time required for sending a single state description

between a processor and the switch. Since the performance of the model depends upon the

ratio of these two parameters rather than on their speci�c values, it is convenient to use

just one parameter which characterizes model's temporal properties. The computation{to{

communication ratio, rcomp=comm, is the ratio of the (average) state processing time to the

(average) time needed for sending a single state description between two processors (which

is assumed to be the same for all pairs of processors in a cluster).

In order to represent the behavior of the state generation process, some simplifying

assumptions are made. It is assumed that a �nite (but large) state space is generated in

a \steady" manner, i.e., that the size of the unexplored queue in the scheme outlined at

the end of Section 2, is approximately constant for the most part of the generation process.

This assumption is not always valid, but is reasonable for many net models (in particular for

models which contain bu�ers with large capacities, in which case the state space generation

basically repeats similar groups of states for di�erent \states" of the bu�er(s)).

A practical consequence of the \steady" generation assumption is that each analyzed

state generates one new state (i.e., a state can generate several next states, but, on average,

only one of these states is new).

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

number of processors

Processor utilization

Tcomp/Tcomm

init mark: 2

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.5.1. Utilization of processors for m0(pir) = 2.

The workload of the system is controlled by the initial distribution of states among the

processors (the initial marking of pir in Fig.4.2 and Fig.4.4). Two cases are analyzed: (i)

when the same initial conditions are used for all processors, irrespective of their number (this

is called \proportional load" as the total load is proportional to the number of processors),

and (ii) the \shared load", when the (total) initial marking is the same for di�erent numbers

89

of processors, so as the number of processors increases, the load assigned to each processor

decreases.

For proportional load, the utilization of processors, for di�erent values of rcomp=comm

(from 0.1 to 1.5) and for several di�erent numbers of processors (from 2 to 16), is shown

in Fig.5.1 for small workload (the initial marking of pir equal to 2), and in Fig.5.2 for high

workload (the initial marking of pir equal to 8).

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

number of processors

Processor utilization

Tcomp/Tcomm

init mark: 8
pr

oc
es

so
r

ut
ili

za
tio

n

Fig.5.2. Utilization of processors for m0(pir) = 8.

The results have similar character, and it can be observed that the utilization increases

with the increase of the workload; Fig.5.2 shows some \saturation e�ects" for values of

rcomp=comm greater than 1. Moreover, for communication times signi�cantly greater than the

computation time (i.e., for rcomp=comm less than 0.5), processor's utilization is consistently

poor, below 50%, and practically linearly tends to 0 with the value of rcomp=comm.

For the case of shared load, similar results are shown in Fig.5.3 for small workload (the

initial marking of 8 is shared among all the processors), and in Fig.5.4 for high workload

(the initial marking of 32 is shared among the processors, so the plots for kp = 16 in Fig.5.4

and Fig.5.1 are the same; both correspond to the initial marking of pir equal to 2).

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

number of processors

Processor utilization

Tcomp/Tcomm

(shared)

init mark: 8

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.5.3. Utilization of processors, low shared load (m0 = 8).

In the model shown in Fig.4.2, the (free{choice) probability associated with tii, c(tii),

90

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

number of processors

Processor utilization

Tcomp/Tcomm

(shared)

init mark: 32

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.5.4. Utilization of processors, high shared load (m0 = 32).

represents the probability that a new, generated state is a local one. Its default value, for

uniform distribution of states over the nodes of the cluster of workstations, is 1=kp.

Fig.5.5 and Fig.5.6 correspond to Fig.5.1 and Fig.5.2 but assume that 50% of new states

in each region are local states, while the remaining 50% are uniformly distributed over the

other regions.

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of processors

Processor utilization

Tcomp/Tcomm

int prob: 0.5

init mark: 2

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.5.5. Utilization of processors for m0(pir) = 2 and c(tii) = 0:5 .

Increased values of c(tii) correspond to the clustering of states in the regions, i.e., the

situations when many states generated by each processor are local states, so they do not

require any communication, and this improves the utilization of processors. Increased uti-

lization of processors results in increased speedup.

The speedup S(kp) of a kp{processor system is usually de�ned as the ratio of execution

time of an application on one processor, T (1), to the application's execution time on kp
processors, T (kp) [20]:

S(kp) =
T (1)

T (kp)
:

For the ideal, uniform distribution of workload among the processors, the execution time

on kp processors can be expressed as:

91

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

number of processors

Processor utilization

Tcomp/Tcomm

int prob: 0.5

init mark: 8

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.5.6. Utilization of processors for m0(pir) = 8 and c(tii) = 0:5 .

T (kp) =
T (1)

kp

1

up(kp)

where up(kp) is the utilization of each processor in a kp{processor system, and then the

speedup is simply:

S(kp) = kpup(kp):

Fig.5.7 and Fig.5.8 show the speedup as a function of the number of processors, kp,

for medium (proportional) workload (m0(pir) = 4) and several values of c(tii), and for two

di�erent values of rcomp=comm; in Fig.5.7 rcomp=comm = 1, and in Fig.5.8 rcomp=comm = 0:25.

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16
number of processors

(1)
(2)
(3)

speedup

Fig.5.7. Speedup as a function of kp; rcomp=comm = 1:0,

(1) c(tii) = 1=kp, (2) c(tii) = 0:5, (3) c(tii) = 0:75 .

It can be observed that, by increasing the value of c(tii), a signi�cant improvement of the

speedup can be obtained in cases when the communication is critical (i.e., rcomp=comm < 0:5),

as shown in Fig.5.8; for rcomp=comm � 1 the e�ect of state clustering is quite negligible

(Fig.5.7); in this case, the communication is not critical to the performance of the system.

The value of c(tii), the probability that a new, generated state is local, depends primarily

upon the partitioning function which assigns states to the regions of the distributed state

92

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16
number of processors

(3)

(2)

(1)

speedup

Fig.5.8. Speedup as a function of kp; rcomp=comm = 0:25,

(1) c(tii) = 1=kp, (2) c(tii) = 0:5, (3) c(tii) = 0:75 .

space. Finding a partitioning function which takes the properties of the net model into

account in a way that maximizes the value of c(tii), i.e., maximizes the clustering of states

within regions, is an interesting area of research.

6. Simpli�ed Performance Evaluation

In simulation{based performance evaluation, the simulation time depends more than

linearly upon the size of the modeled cluster. A natural question is then if there is a need

to model all the processors of the cluster to obtain the performance results.

For the shared workload, if the total token count of the initial marking is m0 tokens,

and the cluster is composed of kp processors, the average load per processor is equal to

m0=kp. The same average load per processor exists in a cluster with k0
p processors and

with the initial marking containing m0 � k
0
p=kp tokens. Consequently, instead of simulating

a 16{processor cluster with the total workload of 32 tokens, a 4-processor cluster can be

simulated with the load of 8 tokens. Fig.6.1 and Fig.6.2 show the results obtained for a

4{processor cluster with the load adjusted to the case shown in Fig.5.3 and Fig.5.4.

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

number of processors

Processor utilization

Tcomp/Tcomm

(shared)

init mark: 8

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.6.1. Utilization of processors, low shared load (m0 = 8).

It can be observed that the results shown in Fig.6.1 and Fig.5.3 as well as Fig.6.2 and

Fig.5.4 are practically the same.

93

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

number of processors

Processor utilization

Tcomp/Tcomm

(shared)

init mark: 32

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.6.2. Utilization of processors, high shared load (m0 = 32).

For proportional load, the performance is practically independent of the number of

processors for kp greater than 3, as can be observed in Fig.5.1 and Fig.5.2. This is due to

the model of the switch which does not introduce any delays of forwarded messages (all

delays are associated with the links).

7. Concluding Remarks

The paper shows that the performance of distributed state space generation can be

improved, sometimes quite signi�cantly, if the partitioning function assigns clusters of states

to regions associated with independent processors. More speci�cally, if the communication

is the bottleneck of a distributed application, i.e., if the computation to communication

ratio is less than 1, any reduction of the amount of required communication improves the

performance of the distributed application. However, designing a partitioning function with

good locality properties is not an obvious task.

For example, the net model of the bounded bu�er communication scheme, shown in

Fig.7.1 (both producer and consumer are represented by simple free{choice structures), has

a reachability graph with systematic structure, in which a section of the graph is repeated

for each additional token in p5 and/or p6 (i.e., another unit of space in the bu�er).

t1 t2 t3

p5

p6

p2

p1 p3

p4

t4

K

t5 t6

Fig.7.1. Net model of a bounded{bu�er synchronization.

Fig.7.2 shows the initial part of the reachability graph for the model shown in Fig.7.1,

with two di�erent partitioning functions: (a) groups the nodes into regions with only a

very few connections between the regions while (b) shows regions in which only a few nodes

are connected within the same region, so there are very few local nodes. Case (a) has

94

signi�cantly less communication than case (b), and the partitioning function in this case

should take into account only the marking of place p5 (or place p6).

(a) (b)

5

8

13
9

18

4

7

3

6

10

11

19

12 16
14

17
15

25
20

22

27

24

21

23

26

29

32

33

35
41

28
30

31

5

8

13
9

18

4

7

3

6

10

11

19

12 16
14

17
15

25
20

22

27

24

21

23

26

29

32

33

35
41

28
30

31

Fig.7.2. Part of the reachability graph for the net in Fig.7.1

with two di�erent partitioning functions.

The very simple model of distributed state space generation, described in this paper,

assumes that the temporal behavior can be described by constant times, i.e., that the analy-

sis of each state requires the same amount of time, and that sending the state description

from one processor to another also requires the same amount of time for each state. The

�rst assumption (that the state processing time is constant) is not very realistic because

the amount of (processing) time required for the generation of all \next states" depends

upon the topology of the net (i.e., whether the current state is a con
ict{free, free{choice or

more general con
ict state). However, it appears that the e�ects of variable state processing

times are not very signi�cant. Fig.7.3 shows the utilization of the processors for the case

of shared load when the state processing time is exponentially distributed with the average

value that is equal to the (constant) value used in Fig.5.3. It can be observed that the

utilization shown in Fig.5.3 is slightly better than in Fig.7.3, but the di�erences are not

signi�cant.

Similarly, Fig.7.4 shows the utilization of processors for high shared load with random

state processing times (also exponentially distributed), and the average value equal to that

used for Fig.5.4. Again, the results shown in Fig.7.4 and Fig.5.4 are quite similar.

The assumption that the time required for sending a state description from one processor

95

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

number of processors

Processor utilization (exp)

Tcomp/Tcomm

(shared)

init mark: 8

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.7.3. Utilization of processors, low shared load (m0 = 8).

2
4

6
8

10
12

14
16

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

number of processors

Processor utilization (exp)

Tcomp/Tcomm

(shared)

init mark: 32

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.7.4. Utilization of processors, high shared load (m0 = 32).

to another is the same for all states is based on typical characteristics of the message sending

time as a function of message length which, for typical message{passing libraries (such as

PVM or MPI) practically does not depend upon the message length for short (i.e., in the

range of Kbytes) messages [18]; a representation of a state with 100 marked places and 100

�ring transitions (which would typically correspond to a model with thousands of places and

thousands of transitions) requires, without any \compaction", about 1.6 Kbytes assuming

the \standard" 4-byte representation of integers.

In order to capture the steady{state behavior of distributed generation of the state space,

it was assumed that each analyzed state generates one new state. For many net models

the state space is not generated in such a steady way, and the number of \unexplored"

states changes in a very broad range during the generation. It is expected that the e�ects

of such variations can be represented by an extension of the presented mode, and then the

(average) performance can be studied in a similar way.

The presented approach is not restricted to the discussed application; it can be used to

represent the behavior of many other applications which use reachability analysis, such as

model checking [7] or automated veri�cation of discrete{event systems [13].

All simulations of net models were performed using the TPN-tools package [22], [23].

96

The simulation runs corresponded to processing at least 100,000 states (for the shared load

cases). Although the con�dence intervals were not determined for these experiments, the

results are presented without any \smoothing" operations, which indicates rather small

variances of the obtained results.

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada partially supported

this research through grant RGPIN-8222.

Several constructive and insightful comments and remarks of four anonymous reviewers,

an expecially reviewer A, are gratefully acknowledged.

References

[1] M. Ajmone Marsan, G. Balbo, and G. Conte, 1984. \A class of generalized stochastic

Petri nets for the performance evaluation of systems"; ACM Transactions on Computer

Systems, vol.2, no.2, pp.93{122.

[2] S.C. Allmaier and G. Horton, 1997. \Parallel shared-memory state-space exploration

in stochastic modeling"; Solving Irregularly structured Problems in Parallel (IRREGU-

LAR'97), Lecture Notes in Computer Science, vol.1253, pp.207{218, Springer-Verlag.

[3] S.C. Allmaier, S. Dalibor, and D. Kreische, 1997. \Parallel graph generation algorithms

for shared and distributed memory machines"; Parallel Computing: Fundamentals,

Applications and New Directions (Proc. of the Conference ParCo'97), Advances in

Parallel Computing, vol.12, pp.581{588, Elsevier, North-Holland.

[4] S.C. Allmaier, M. Kowarschik, and G. Horton, 1997. \State space construction and

steady state solution of GPSN on a shared memory multiprocessor"; Proc. IEEE Int.

Workshop Petri Nets and Performance Models (PNPM '97), pp.112{121.

[5] S.C. Allmaier and D. Kreische, 1999. \Parallel approaches to the numerical transient

analysis of stochastic reward nets"; in Application and Theory of Petri Nets 1999

(Proc. 20th International Conference, IACTPN'99), (Lecture Notes in Computer Sci-

ence 1639), pp.147{167, Springer-Verlag.

[6] F. Bause and P. Krinzinger, 1996. Stochastic Petri Nets - An Introduction to the Theory.

Vieweg.

[7] E.M. Clarke, O. Grumberg, D. Peled, 1999. Model checking. MIT Press.

[8] E. Dijkstra, W. Feijen, and A. van Gasteren, 1983. \Derivation of a termination detec-

tion algorithm for distributed computations"; Information Processing Letters, vol.16,

no.5, pp.217{219.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, 1994.

PVM: Parallel Virtual Machine. A Users' Guide and Tutorial. MIT Press.

[10] M.A. Holliday, M.K. Vernon, \Exact performance estimates for multiprocessor memory

and bus interference"; IEEE Trans. on Computers, vol.36, no.1, pp.76{85, 1987.

[11] K. Jensen, 1987. \Coloured Petri nets"; in Advanced Course on Petri Nets 1986 (Lec-

ture Notes in Computer Science 254), pp.248{299, Springer{Verlag.

[12] P. Marenzoni, S. Caselli, and G. Conte, 1997. \Analysis of large GSPN models: a

distributed solution tool"; Proc. IEEE Int. Workshop on Petri Nets and Performance

Models (PNPM'97), pp.122{131.

97

[13] K.L. McMillan, 2000. \A methodology for hardware veri�cation using compositional

model checking", Science of Computer Programming, vol.37, no.1-3, pp.279-309.

[14] T. Murata, 1989. \Petri nets: properties, analysis, and applications"; Proceedings of

the IEEE, vol.77, no.4, pp.541{580.

[15] J. Peterson, 1981. Petri Net Theory and the Modeling of Systems. Prentice Hall.

[16] I. Rada, 2000. \Distributed generation of state space for timed Petri nets"; M.Sc.

Thesis, Department of Computer Science, Memorial University of Newfoundland,

St.John's, Canada. o

[17] I. Rada, W.M. Zuberek, \Distributed generation of state space for timed Petri nets";

Proc. High Performance Computing Symposium 2001, Seattle, WA, pp.219{227, 2001.

[18] M.R. Steed, M.J. Clement, 1996. \Performance prediction of PVM programs"; Proc.

10-th Int. Parallel Processing Symposium (IPPS-96), pp.803-807.

[19] W. Stewart, 1994. Introduction to the Numerical Solution of Markov Chains. Princeton

University Press.

[20] B. Wilkinson, 1996. Computer Architecture { Design and Performance (2-nd ed.). Pren-

tice Hall.

[21] W.M. Zuberek, 1991. \Timed Petri nets, de�nitions, properties, and applications";

Microelectronics and Reliability, vol.31, no.4, pp.627{644.

[22] W.M. Zuberek, 1996. \Modeling using timed Petri nets { model description and rep-

resentation"; Technical Report #9601, Department of Computer Science, Memorial

University, St.John's, Canada A1B 3X5.

[23] W.M. Zuberek, 1996. \Modeling using timed Petri nets - event-driven simulation";

Techical Report #9602, Department of Computer Science, Memorial University,

St.John's, Canada A1B 3X5,

98

Verification of Timed and Hybrid Systems
Kim G Larsen
BRICS
Aalborg University
Denmark

Abstract

UPPAAL is a tool for modelling, simulating and verifying real-time and hybrid systems, developed collaboratively by
BRICS at Aalborg University and Department of Computer Systems at Uppsala University since the beginning of
1995 (see www.uppaal.com). The theoretical foundation of UPPAAL is that of timed automata and the early
decidability results provided by Alur and Dill in 1990.

The presentation will contain a description and demonstration of the main components of newest release of UPPAAL.
Particular focus will be on the evolution of the algorithms and datastructures underlying the tool and their dramatic
impact on performance. The presentation will enclude recent work on exact acceleration and other abstraction
techniques for tackling the problem of fragmentation experienced during model checking of real-time systems with
hughly varying time-scales, e.g. in verification of the run-time behaviour of LEGO Mindstorms programs.

99

100

Sweep-Line State Space Exploration

for Coloured Petri Nets?

Guy Edward Gallasch1, Lars Michael Kristensen1, and Thomas Mailund2

1 Computer Systems Engineering Centre

University of South Australia

Mawson Lakes Campus, SA 5095, AUSTRALIA

Email: guy.gallasch@postgrads.unisa.edu.au, lars.kristensen@unisa.edu.au
2 Department of Computer Science, University of Aarhus

IT-parken, Aabogade 34, DK-8200 Aarhus N, DENMARK

Email: mailund@daimi.au.dk

Abstract. The basic idea of the sweep-line state space method is to exploit a

formal notion of progress found in many concurrent and distributed systems.

Exploiting progress makes it possible to sweep through the state space of a

CP-net while storing only a small fragment of the states in memory at any

time. Properties of the system can then be veri�ed on-the-
y during the sweep

of the state space. This can lead to signi�cant savings in peak memory usage

and computation time. Examples of systems possessing progress are transport

protocols, transactions protocols, work
ow models, and systems modelled with

Timed CP-nets. We present Sweep/CPN, a library extension to Design/CPN

supporting the sweep-line method, and demonstrate its use.

Keywords: State space methods, State explosion problem, extensions to De-

sign/CPN, Veri�cation and validation.

1 Introduction

State space exploration and analysis is a powerful way to investigate the cor-

rectness of distributed and concurrent systems, and is one of the main analysis

methods for Coloured Petri Nets (CP-nets or CPNs) [11, 12]. The basic idea

behind state space exploration is to construct a directed graph (called the state

space, or the reachability/occurrence graph) representing all reachable states of

the system and the transitions between these states. From this graph a large

number of dynamic properties of the system can be analysed algorithmically.

The main drawback of using state spaces for analysis of systems is the state ex-

plosion problem: even for systems of moderate complexity the number of reach-

able states can be astronomical, and storing the state space in the available

computer memory might not be feasible.

In an attempt to alleviate the state explosion problem a number of state

space reduction methods and techniques have been developed. These techniques

can be split into three main classes. The �rst are those methods that represent

the state space in a compact or condensed form. Symmetry reduction [4, 5, 13]

is an example of this, where a representative state is used to represent a set of

symmetric states. The second class of methods represent only a subset of the full

state space. Such methods include partial order reduction methods [17, 20, 21]

? Supported by an Australian Research Council (ARC) Discovery Grant (DP0210524).

101

where only some orderings of independent events and not all orderings are

stored. The reduction is done in such a way that the answers to veri�cation

questions can still be determined from the reduced state space.

The third class of reduction techniques involve deleting states or state infor-

mation during state space exploration. Such methods include hash-compaction

[18,22] and bit-state hashing [8,9] in which a hash-value is calculated from the

state and only the hash-value { not the entire state { is stored. The state space

caching method [6,10], is another method based on deleting information during

exploration. State space caching exploits the fact that during a depth-�rst ex-

ploration of the state space, only the states on the depth-�rst stack need to be

stored to ensure termination. States not on the stack can be deleted once mem-

ory becomes scarce without compromising the termination of the state space

exploration.

The sweep-line method [3, 15] is a state space method belonging to the

third category. It is aimed at systems for which the notion of progress can be

formalised as a progress measure mapping from markings to a set of ordered

progress values. The sweep-line method uses the progress values on markings

to determine which states can safely be deleted. Progress measures provide a

conservative estimate of reachability: For a marking to be reachable from the

set of unprocessed markings, it would have to have a progress value larger

than at least one of the unprocessed markings. Markings with progress value

smaller than all unprocessed markings can therefore safely be deleted while still

guaranteeing termination of the state space exploration. Progress measures will

often be speci�c to the system under consideration, such as sequence numbers

and retransmission counters in communication protocols, and the control
ow

of the system. However in some instances a progress measure can be de�ned

based on the modelling language itself, and such progress measures then apply

to all models of systems constructed using this modelling language. The global

clock representing time in Timed Coloured Petri Nets [12] is an example of one

such progress measure. The sweep-line method was used in [7] for veri�cation

of transactions in the Wireless Application Protocol (WAP) with a reduction in

peak memory usage to 20%. The use of the sweep-line method on Timed CP-

nets was studied in [2]. The sweep-line method is not tied to CP-nets, but can

be applied to all modelling languages where state space methods are applicable.

The contribution of this paper is to study the sweep-line method in the

context of CP-nets, and to present Sweep/CPN [16], a library extension to the

Design/CPN state space tool [1] implementing the basic sweep-line method

from [3] for CP-nets. Consequently there is a shift in the focus of the paper,

from a theoretical introduction to the sweep-line method to a description of the

Sweep/CPN implementation, which could be regarded as a high level manual

for practitioners.

The rest of this paper is organised as follows. Section 2 introduces the stop-

and-wait protocol which we will use as a running example throughout this

paper. Section 3 gives the necessary background information on state spaces

for CP-nets, while Sect. 4 and 5 present the sweep-line method and the appli-

cation of Sweep/CPN to the stop-and-wait protocol. Section 6 presents the

set of generic state space exploration functions available for veri�cation using

102

Sweep/CPN. Section 7 shows how the generic state space exploration func-

tions can be specialised for the veri�cation of standard dynamic properties of

CP-nets. Finally, in Sect. 8 we sum up with a conclusion and discuss future

work.

2 The Stop-and-wait Communication Protocol

To introduce the sweep-line method and demonstrate the use of Sweep/CPN,

we will use a simple communication protocol as a running example. The pro-

tocol under consideration is a stop-and-wait communication protocol from the

datalink control layer of the OSI (Open Systems Interconnection) network ar-

chitecture. The CPN model of the stop-and-wait protocol is taken from [14]. The

stop-and-wait protocol is not a sophisticated protocol, however it is interest-

ing enough to deserve closer investigation, and complex enough to demonstrate

the use of Sweep/CPN. In this paper we only explain the part of the CPN

model necessary to understand the application of Sweep/CPN. A complete

description of the CPN model can be found in [14].

Figure 1 shows the prime page of the CPN model. The system consists

of a Sender (left) transmitting data packets to a Receiver (right) across a bi-

directional Communication Channel (bottom). The packets to be transmitted are

stored in a Send bu�er at the sender side, and the packets received by the re-

ceiver are stored in a Received bu�er. The Communication Channel is unreliable,

which means that loss and overtaking is possible, however for simplicity only

loss is considered in this example. The data packets in the Send bu�er have to

be delivered over the communication channel exactly once, and in the correct

order, to the Received bu�er. A stop-and-wait strategy is employed to achieve

this, whereby the sender will send a data packet and continue to retransmit

the same data packet until a matching acknowledgement is received, at which

point the next data packet can be transmitted. The number of retransmissions

of a data packet allowed by this stop-and-wait protocol is unbounded for sim-

plicity. In order to make the CPN model tractable for state space analysis, the

bu�ers between the sender, receiver, and communication channel (TransmitData,

ReceiveAck, TransmitAck, ReceiveData) have been modelled with a maximum

capacity of one packet each. This still allows for unbounded retransmissions,

whilst ensuring the state space will be �nite.

3 State Spaces of CP-nets

In this section we brie
y recall the basic ideas of full state space exploration for

CP-nets [12]. The state space of a CP-net can be characterised as a directed

graph G = (V;E), where V = [M0i (the set of nodes or markings reachable from
the initial markingM0), and E = f(M; (t; b);M 0) 2 V �BE�V jM [(t; b)iM 0g,
i.e., there is an arc (M; (t; b);M 0) in the state space if the binding element (t; b)

(belonging to the set of all binding elements BE) is enabled in the marking M

and its occurrence leads to the marking M 0.

103

Send

PacketBuffer

Sender
HS Sender#4

Receiver
HS Receiver#5

Communication Channel
HS ComChannel#3

Received

PacketBuffer

TransmitData

Frame

ReceiveAck

Frame

TransmitAck

Frame

ReceiveData

Frame

Fig. 1. Stop-and-wait Communication Protocol.

Figure 2 shows a variant of the classical algorithm for generating the state

space of a CP-net. The algorithm operates on two sets: Nodes and Unpro-

cessed. The set Nodes holds all markings generated so far, and the set Un-

processed holds the markings for which successor markings have not yet been

calculated. Initially (line 1) Unprocessed contains only M0. As long as there

are unprocessed markings, the algorithm selects one marking among the un-

processed (line 4) and calculates all its successors (line 5). If a successor has

not been processed and is not contained in Nodes, it is added to Nodes and

Unprocessed (lines 6-9). When the algorithm terminates, Nodes contains all

reachable markings.

1: Unprocessed fM0g

2: Nodes fM0g

3: while : Unprocessed.Empty() do

4: M Unprocessed.GetNextElement()

5: for all ((t; b);M 0) such that M [(t; b)iM 0 do

6: if :(Nodes.Contains(M 0)) then

7: Nodes.Add(M 0)

8: Unprocessed.Add(M 0)

9: end if

10: end for

11: end while

Fig. 2. Full state space exploration algorithm.

Figure 3 shows a snapshot of the state space generation for the stop-and-

wait protocol. Dashed nodes are fully processed markings (i.e. markings that are

stored in memory and all their successor markings have been calculated). Nodes

with a thick solid black border are unprocessed nodes (i.e. nodes that are stored

in memory, but their successor markings have not yet been calculated). Nodes

with a thin solid black border are markings that have not yet been calculated.

Node 1 corresponds to the initial marking. In order to make the state space

fragment comprehendable, the situations where packets are lost on the com-

104

munication channel have been ignored. The states in this fragment have been

arranged into two layers: Layer 1, where no packets have yet been received by

the Receiver, and Layer 2, where one packet has been received. Such an ordering

is useful for explaining the concept of progress in the next section. Arcs have

been labelled with their corresponding action in the CPN model. Accept Packet

0 indicates that the Sender has accepted the �rst packet for sending. Send Packet

0 indicates that the Sender has placed the packet in the Communication Channel.

Transmit Packet 0 indicates that the Communication Channel has (successfully)

transmitted the packet from the sender to the receiver. Receive Packet 0 shows

the Receiver receiving the packet from the Communication Channel. Send Ack

indicates that the Receiver has placed an acknowledgement into the Commu-

nication Channel. TimeOut shows an occurrence of the Sender timing out (i.e.

expiration of a timer) because it has not yet received an acknowledgement.

1 2 3

5

4

6

9

7 8

12

Accept Packet 0

Send Packet 0

TimeOut

Transmit
Packet 0

Send Packet 0

Receive
Packet 0

Receive
Packet 0

Receive
Packet 0

TimeOut

Send Ack

TimeOut

TimeOut

Transmit
Packet 0

Receive
Packet 0

1814 15 16 1713

Send Ack

Transmit
Packet 0

Send Ack
Transmit
Packet 0

Send Ack

TimeOutSend Packet 010 11

Layer 1:
0 Packets Received

Layer 2:
1 Packets Received

Fig. 3. Initial fragment of state space.

If we analyse states on-the-
y, the set Nodes in Fig. 2 is used solely for de-

termining whether successor states of a given state have already been examined,

or whether they should be considered unprocessed. However, at any time some

states in Nodes are no longer reachable from the states in Unprocessed, and

will not be used for this test in the further processing. These states could be

removed from Nodes, and the algorithm would still visit each reachable state.

The problem with this approach is, of course, determining whether a state is

reachable from one of the unprocessed states. The sweep-line method uses a

notion of progress to obtain a conservative estimate of the reachability relation,

and uses this estimate to reduce Nodes.

4 The Sweep-Line Method

The concept of progress exploited by the sweep-line method can be thought of

in terms of how far we have moved towards a desired end-state or a prede�ned

goal, or towards the termination of execution of a system. To give an example

of each of these, consider a farmer who has a number of �elds to plow. If we

consider the goal of the farmer to have all �elds plowed, we can then consider

the progress made by the farmer towards achieving this goal. Progress could be

measured in terms of number of �elds plowed. In this case, we have a prede�ned

105

goal, which is to have all �elds plowed. The farmer would start with no �elds

plowed, and plow �eld after �eld until all �elds had been plowed. Progress could

also be measured in terms of total time spent plowing. We can see that at any

given time during the plowing, the farmer would have plowed the same amount

or more than at any given time previous to this. In this case we do not know how

long the plowing will take to complete, so we cannot specify a prede�ned goal,

but we can work towards the termination of the system whereby the farmer has

completed plowing.

There is an intuitive presence of progress in the stop-and-wait protocol as

more and more packets are being transferred from the sender to the receiver.

This progress is also re
ected in the state space of the CPN model, an initial

fragment of which was shown in Fig. 3. The key observation to make is that

progress in the stop-and-wait protocol manifests itself by the property that

a marking in a given layer has successor markings either in the same layer

or in some layer with a higher number, but never in a layer with a smaller

number. The idea underlying the sweep-line method is to exploit such progress

by deleting markings on-the-
y during state space exploration. The deletion is

done such that the state space exploration will eventually terminate and upon

termination all reachable markings will have been explored exactly once.

Examining the initial state space fragment shown in Fig. 3, if the state

space exploration algorithm processes markings according to the progress of the

protocol they correspond to, node 8 will be the marking among the unprocessed

markings that will be selected for processing next. This will add node 12 to the

set of stored markings and mark it as unprocessed. At this point it can be

observed that it is not possible for any of the unprocessed markings to reach

one of the markings 1-8. The reason is that nodes 1-8 represent markings where

the protocol has not progressed as far as in any of the unprocessed markings, i.e.

no packets have been received by the receiver. Hence, it is safe to delete nodes

1-8, as they cannot possibly be needed for comparison with newly generated

markings when checking (during the state space exploration) whether a marking

has already been visited. In a similar way, once all the markings in the second

layer have been fully processed, these nodes can be deleted from the set of nodes

stored in memory. Intuitively, one can think of a sweep-line being aligned with

the layer currently being processed, i.e. the layer that contains unprocessed

markings. During state space exploration, unprocessed markings are selected

for processing in a least-progress-�rst order causing the sweep-line to move

forwards. Markings will thereby be added in front of the sweep-line and deleted

behind the sweep-line.

The progress exploited by the sweep-line method is formally captured by a

progress measure. A progress measure consists of a progress mapping assigning

a progress value to each marking, and a partial order on the progress values.1

Moreover, the partial ordering of the progress values is required to preserve the

reachability relation between markings of the CP-net. The de�nition of progress

measure below is identical to Def. 1 in [3] except that we give the de�nition in

1 A partial order (O;v) consists of a set O and a relation v � O � O which is re
exive,

transitive, and antisymmetric.

106

a CP-net formulation. In the de�nition M denotes the set of all markings. If a

marking M 0 is reachable from a marking M via some occurrence sequence, we

write this as M 0 2 [Mi. In particular M 2 [Mi for all markings M 2 M , since

the empty occurrence sequence leads from M to M .

De�nition 1. (Def. 1 in [3]) A progress measure is a tuple P = (O;v;)
such that (O;v) is a partial order and : M ! O is a progress mapping from

markings into O satisfying: 8M;M 0 2 [M0i :M
0 2 [Mi) (M) v (M 0).

Exploring the state space using the sweep-line method is based on the algo-

rithm used for conventional state space construction. Figure 4 shows the state

space exploration algorithm for the sweep-line method. It is derived from the

standard algorithm by including deletion of states that can no longer be reached

by states still to be explored, and by exploring the states in Unprocessed ac-

cording to their progress values. In each iteration (lines 3-15) a new unprocessed

marking is selected (line 4) such that this node has a minimal progress value

among the states in Unprocessed. After a marking has been processed, states

with a progress value strictly smaller than the minimal progress value among

the markings in Unprocessed can be deleted (line 14). In the case of a total

order, there will only be one minimal progress value. In the more general case

of a partial order, it is possible for all unprocessed states to have di�erent, in-

comparable progress measures. Hence, in the worst case, the progress measure

of a state needs to be compared to each of them in order to determine whether

it can be deleted or not. The condition that the progress measure preserves the

reachability relation is checked on-the-
y when successors of a marking are be-

ing calculated (lines 6-8). State space exploration is terminated if the progress

measure is not valid, and a triple (M; (t; b);M 0) is given to demonstrate why

the progress measure was not valid.

1: Unprocessed fM0g

2: Nodes fM0g

3: while : Unprocessed.Empty() do

4: M Unprocessed.GetMinElement()

5: for all ((t; b);M 0) such that M [(t; b)iM 0 do

6: if (M) 6v (M 0) then

7: Stop(\Progress measure rejected:",(M; (t; b);M 0))

8: end if

9: if :(Nodes.Contains(M 0)) then

10: Nodes.Add(M 0)

11: Unprocessed.Add(M 0)

12: end if

13: end for

14: Nodes.Delete(minf (M) jM 2 Unprocessedg)

15: end while

Fig. 4. The sweep-line state space exploration algorithm.

In order to maximise the number of states that can be deleted in each

garbage collection (or memory reclaim), the unprocessed state chosen by the

107

GetMinElement() method (line 4) should always return (as the name im-

plies) a state with a minimal progress measure among the states in Unpro-

cessed. If the progress measure maps to a total order (as has been the case

for all our applications) then Unprocessed can be implemented as a priority

queue using the progress measure as the priority, and v as the ordering. A

breadth-�rst generation (with respect to progress measure) of the state space

will result, ensuring that the number of states that can be deleted is maximised.

5 Sweep-Line Exploration of the Stop-and-Wait Protocol

The Sweep/CPN library supports progress measures based on total orderings,

and consists of a set of Standard ML [19] �les which can be loaded into the

Design/CPN state space tool [1]. Currently there is no graphical user inter-

face (GUI) support associated with Sweep/CPN, and all interaction with the

library is via evaluation of auxiliary boxes containing SML code. The GUI of

the Design/CPN state space tool can however be used to draw nodes and arcs

of the state space.

The user speci�es the progress measure to be used by writing an SML

function mapping from the markings into unbounded integers, that is, from the

type SLMark into IntInf.int. Veri�cation of the user speci�ed progress measure is

done on-the-
y as described in the previous section, whereby validity is checked

upon the calculation of the successors of a marking. The progress measure for

the stop-and-wait protocol based on the number of packets received by the

receiver can be implemented as follows. An explanation of the function is given

below.

fun SWPM M = IntInf.fromInt

(List.length (ms_to_col (SLMark.SWProtocol'Received 1 M)));

For a marking M, the function works by extracting the marking of place Received

on instance 1 of the page SWProtocol. (Page SWProtocol is the name of the

prime page of the CPN model shown in Fig. 1.) This is done by using the

accordingly named function of the SLMark structure. The marking of place

Received is a multi-set containing a single token which is a list of the packets

received until now. The list of received packets is extracted from the multi-set

using the function ms to col. Finally, the function List.length is used to obtain

the length of the list, and the function IntInf.fromInt is used to convert the

integer denoting the length of the list into an in�nite (unbounded) integer.

A number of functions are available in Sweep/CPN for state space explo-

ration with the sweep-line method. These will be discussed in more detail in

the following section. However, in order to provide the complete picture for the

stop-and-wait protocol, the simplest of these functions will be described. This

is the SL.ExploreStateSpace function. For the stop-and-wait protocol example,

the SL.ExploreStateSpace function is used as follows:

SL.ExploreStateSpace{PM=SWPM,

GC = 100,

108

Secs = 300,

Logfile = (SOME "/tmp/SW.dat")

};

The function takes a record with four �elds, the sweep options, as an argument

and conducts sweep-line state space exploration according to the values of these

�elds. The �rst �eld of the sweep options, PM, speci�es the progress measure to

use. For this stop-and-wait example, it is the progress measure de�ned by the

SWPM function speci�ed above. The GC �eld speci�es the garbage collection

threshold. This is the number of additional nodes that have to be explored

before a deletion of markings is initiated in line 14 of the algorithm in Fig. 4.

In this case, garbage collection of nodes will occur every time 100 new nodes

are explored. The Secs �eld speci�es an upper bound (in seconds) on the time

that the state space exploration will run for. Once this time limit is reached the

state space exploration will terminate regardless of whether the exploration is

complete. The �le speci�ed in the Log�le �eld will contain a log generated by

Sweep/CPN during state space exploration. The log �le will contain statistical

information about the state space exploration.

Table 1 lists statistics for the application of the sweep-line method for dif-

ferent con�gurations of the stop-and-wait communication protocol. The results

were obtained when garbage collecting after each 2000 new nodes (markings).

The table consists of four columns. The Packets column gives the con�guration

under consideration, i.e. the number of packets that must be delivered in order

and without loss to the receiver from the sender. The Full State Spaces column

gives the number of markings in the full state space and the amount of CPU

time needed to generate it. The third column, Sweep-Line Method, gives the

maximum number of markings stored in memory at any given instance during

the sweep-line state space exploration, and the time it took to sweep through the

entire state space. The Reduction gives the reduction in the number of markings

required to be stored (and thus the reduction in memory consumption) as well

as the reduction in time taken to generate the full state space, when using the

conventional Design/CPN state space tool and when using the Sweep/CPN

library. All results were obtained using an Athlon XP 2000+ with 1Gb DDR

memory.

Table 1. Experimental results { Stop-and-Wait Communication Protocol.

Full State Spaces Sweep-Line Method Reduction

Packets Markings Time Markings Time Markings Time

10 2,576 0:00:01 2,001 0:00:01 22.3% 0.0%

50 13,416 0:00:05 2,280 0:00:04 83.0% 20.0%

100 26,966 0:00:14 2,280 0:00:07 91.5% 50.0%

200 54,066 0:00:42 2,280 0:00:14 95.8% 66.7%

500 135,366 0:03:11 2,287 0:00:38 98.3% 80.1%

1000 270,866 0:11:21 2,287 0:01:21 99.2% 88.1%

2000 541,866 0:47:10 2,287 0:03:05 99.6% 93.5%

109

Table 1 shows that the use of Sweep/CPN saves both memory and time.

For example, when there are 50 packets to be delivered from sender to receiver,

the reduction in the number of markings that must be stored in memory at

one time is 83%, while the reduction in time is 20%. In addition to this, the

savings in memory consumption and time grow larger as the size of the full

state space grows larger. This can be seen when examining the situation where

2000 packets must be delivered from the sender to the receiver. The saving in

memory consumption is 99.6%, and the saving in time is 93.5%.

Savings in memory consumption were expected since markings are being

deleted on-the-
y during state space exploration. The saving in runtime is per-

haps more surprising. The explanation can be found in the test for whether

successor states are new or have previously been processed (in line 9 of the

algorithm in Fig. 4). By keeping the set Nodes small we avoid this runtime

performance penalty. For this example at least, Table 1 indicates that using

Sweep/CPN and the sweep-line method is faster than generating the full state

space by conventional means. The time overhead required to perform garbage

collection (delete states on-the-
y) is more than compensated for by having

signi�cantly fewer states to compare with when determining whether a newly

generated marking has already been visited.

6 State Space Exploration

The general sweep-line algorithm was introduced in Section 4. This algorithm

demonstrates how a state space can be explored using the sweep-line method.

Using conventional state space exploration, analysis can be done by examining

all states in the state space once the entire state space has been constructed.

However, since states are deleted during the state space exploration when using

the sweep-line method, properties must be veri�ed on-the-
y. The general al-

gorithm from Section 4 must be augmented so that it provides not just a sweep

through the state space, but also the possibility for veri�cation and analysis of

properties of the system.

Figure 5 shows the sweep-line state space exploration algorithm augmented

with hooks for analysing state-related properties (e.g. boundedness, other model-

speci�c properties such as duplication of packets), arc-related properties (e.g

dead transition instances) and dead markings. The analysis is done through

three procedures: ExploreNode, ExploreArc, and ExploreDead, oper-

ating on the variables NodeResult, ArcResult, and DeadResult respec-

tively. The three variables,NodeResult,ArcResult andDeadResult along

with the set Nodes are assumed to have a scope that includes these procedures.

The analysis procedures are shown in Fig. 6, Fig. 7, and Fig. 8. As seen, they

are all more or less of the same form: A predicate, e.g. NodePred, selects

whether a node or arc should be analysed. If it should, then an evaluation func-

tion, e.g. NodeEval, extracts a value from the node or arc. This value is then

combined, via a combine function e.g. NodeComb, with the result so far. Pred-

icate, evaluation functions, and combination functions are all user speci�ed. The

value so far is stored in the respective result variable, NodeResult, ArcRe-

sult, and DeadResult, which are all initialised with user provided values

110

NodeInit, ArcInit, and DeadInit. Additional predicates, NodeStore and

DeadStore, once again user speci�ed, are used to prevent garbage collection

for selected nodes.

1: Unprocessed fM0g

2: Nodes fM0g

3: NodeResult NodeInit

4: ArcResult ArcInit

5: DeadResult DeadInit

6: while : Unprocessed.Empty() do

7: M Unprocessed.GetMinElement()

8: ExploreNode(M)

9: if Dead(M) then

10: ExploreDead(M)

11: end if

12: for all ((t; b);M 0) such that M [(t; b)iM 0 do

13: ExploreArc(M; (t; b);M 0)

14: if (M) 6v (M 0) then

15: Stop(\Progress measure rejected:",(M; (t; b);M 0))

16: end if

17: if :(Nodes.Contains(M 0)) then

18: Nodes.Add(M 0)

19: Unprocessed.Add(M 0)

20: end if

21: end for

22: Nodes.GarbageCollect(minf (M)M 2 Unprocessedg)

23: end while

Fig. 5. The augmented sweep-line state space exploration algorithm.

The �rst procedure, ExploreNode, is invoked for every marking M en-

countered during the sweep. An example of how this can be used would be to

inspect all markingsM to determine the best upper integer bound on a partic-

ular place. The best upper bound of a place is the maximum number of tokens

that may reside on a place in any reachable marking. In this case, NodeResult

would be of type integer, NodePred would always return true, and the num-

ber of tokens for this particular place in M would be returned by NodeEval.

NodeComb would then determine whether the number of tokens as returned by

NodeEval is larger than the best upper integer bound computed until now (in

NodeResult) and update NodeResult if necessary. The second procedure,

ExploreArc, is called for every arc (edge) encountered during the sweep. It

works in a very similar way to ExploreNodes, except that it works on arcs

rather than nodes, and there is no provision for the storage of arcs. The third

procedure, ExploreDead, is only evaluated for markings that have no sucessor

markings, but otherwise works in a similar way to ExploreNodes.

The augmented sweep-line algorithm has been implemented in Sweep/CPN

as the exploration function called SL.Explore. The function is parameterised with

15 arguments. To provide for more convenient use of Sweep/CPN, three spe-

cialisations to SL.Explore have been added to the library. These are SL.Explore-

States, SL.ExploreArcs, and SL.ExploreDead, and are specialisations to examine

all nodes, all arcs, and all dead markings of the state space respectively. Dead

111

1: procedure ExploreNode(M) do

2: if NodePred(M) then

3: NodeResult NodeComb(NodeResult, NodeEval(M))

4: end if

5: if NodeStoreM) then

6: Nodes.MarkPersistent(M)

7: end if

8: end procedure

Fig. 6. The ExploreNode procedure.
1: procedure ExploreArc(M; (t; b);M 0) do

2: if ArcPred(M; (t; b);M 0) then

3: ArcResult ArcComb(ArcResult, ArcEval(M; (t; b);M 0))

4: end if

5: end procedure

Fig. 7. The ExploreArc procedure.

markings are treated as a separate case to ordinary nodes/markings, because

of the underlying structure and implementation of the existing state space tool.

As an example, the function SL.ExploreStates has the following type:

SL.ExploreStates : {PM : SLMark -> IntInf.int,

GC : int,

Secs : int,

Logfile : string option,

Init : 'a,

Comb : 'a * 'b -> 'a,

Eval : SLMark -> 'b,

Pred : SLMark -> bool,

Store : SLMark -> bool} -> 'a

The �rst four �elds in the record (PM, GC, Secs, Log�le) correspond to the four

sweep options discussed in Section 5 and are the progress measure, garbage

collection threshold, exploration time-out and log�le location respectively. Init

allows the user to provide the initial value for the Comb funtion. The Comb is

the combination function on nodes, Eval is the evaluation function on nodes, and

Pred is the predicate on nodes. Store is a function which determines if the nodes

should be made persistent. The types of SL.ExploreArcs and SL.ExploreDead are

1: procedure ExploreDead(M) do

2: if DeadPred(M) then

3: DeadResult DeadComb(DeadResult, DeadEval(M))

4: end if

5: if DeadStore(M) then

6: Nodes.MarkPersistent(M)

7: end if

8: end procedure

Fig. 8. The ExploreDead procedure.

112

similar to SL.ExploreStates. We give examples of the use of these functions in

the next section.

7 Standard Query Functions

We now present the set of standard query functions available in Sweep/CPN

for verifying a subset of the standard dynamic properties of CP-nets as de�ned

in [12]. The standard dynamic properties of CP-nets are often the �rst set of

properties investigated for the system under consideration. In addition to pre-

senting the available standard query functions, we also show how some of these

have been implemented by means of the generic state space exploration func-

tions presented in Sect. 6. The structure of Sweep/CPN (i.e. as a set of query

functions) has been inspired by the structure of the existing state space ex-

ploration tool, which was in turn partially inspired by functional programming

concepts such as mapping and folding [19]. The standard dynamic properties

of CP-nets are informally introduced throughout this section. The reader in-

terested in the full and formal de�nition of the standard dynamic properties of

CP-nets is referred to [12].

7.1 Reachability Properties

A marking is said to be reachable, if it is reachable via some occurrence se-

quence starting in the initial marking. The function Reachable is available for

determining whether a reachable marking exists satisfying a given predicate:

SLReachable : SweepSpec * (SLMark -> bool) * bool -> bool

The �rst parameter (of type SweepSpec) is a record which provides the parame-

ters for the sweep-line exploration. This is the same record as shown in Section 6,

where the four arguments (progress measure, garbage collection threshold, up-

per bound on the time for state space exploration, and the log �le name and

location) are given. The second argument is the predicate on markings. The

third argument determines whether the encountered markings which satisfy

the marking predicate should be available upon the completion of the sweep.

To illustrate the use of SLReachable, we will show how it can be used to

investigate whether the stop-and-wait protocol may duplicate packets. If the

stop-and-wait protocol can duplicate packets, a reachable marking will exist

in which some packet occurs twice or more in the list on place Received. The

following marking predicate DupPackets determines whether this is the case in

a marking M . The function remdupl removes duplicates from a list.

fun DupPackets M =

let

val packets = (ms_to_col (SLMark.Receiver'Received 1 M))

in

List.length (remdupl packets) <> (List.length packets)

end;

113

The DupPackets predicate can now be used in an invocation of the SLReachable

query function as follows:

SLReachable ({PM=SWPM,GC=100,Secs=300,Logfile=NONE},

DupPackets, true);

In this case, markings satisfying DupPackets will not be deleted during the

sweep. Reachability of a speci�c markingM can be checked by using a predicate

as argument to SLReachable which evaluates to true only on M .

The SLReachable function has been implemented using the SL.ExploreStates

function as follows:

fun SLReachable ({PM=pm,GC=gc,Secs=secs,Logfile=logfile},

markpred,keep) =

(SL.ExploreStates

{PM=pm,GC=gc,Secs=secs,Logfile=logfile,

Pred = markpred,

Store = keep,

Eval = (fn _ => 1),

Comb = (fn (a,b) => a+b),

Init = 0}) > 0;

The sweep speci�cation is given by the sweep speci�cation provided as the

�rst argument to SLReachable. The evaluation (Eval) and combination (Comb)

functions are used to count the number of times the marking predicate evaluates

to true. If it evaluates to true at least once, a marking exists satisfying the

predicate.

7.2 Boundedness Properties

The boundedness properties are concerned with the number of tokens on places

and their possible colours. We �rst consider integer bounds. The best upper

integer bound of a place is the maximum number of tokens present on the

place in any reachable marking. Similarly, the best lower integer bound is the

minimum number of tokens present on the place in any reachable marking. Two

functions are available for determining the integer bounds of a place:

SLBestUpperInteger : SweepSpec * (SLMark -> int) -> int

SLBestLowerInteger : SweepSpec * (SLMark -> int) -> int

Both functions take the sweep speci�cation as their �rst argument. The sec-

ond argument is a function mapping from markings into integers. The following

shows how the functions can be used to obtain the best upper and best lower

integer bound of the place TransmitData (see Fig. 1). The function Transmit-

DataCount counts the number of tokens on the place TransmitData in a marking

M . The function mssize returns the number of tokens in a multi-set.

fun TransmitDataCount M = mssize (SLMark.Sender'TransmitData 1 M);

114

SLBestUpperInteger ({PM=SWPN,GC=100,Secs=300,Logfile=NONE},

TransmitDataCount);

SLBestLowerInteger ({PM=SWPN,GC=100,Secs=300,Logfile=NONE},

TransmitDataCount);

The SLBestUpperInteger and SLBestLowerInteger functions are both implemented

using the SL.ExploreStates function. Below we give the implementation of SLBestUp-

perInteger. The implementation of SLBestLowerInteger is similar.

fun SLBestUpperInteger ({PM=pm,GC=gc,Secs=secs,Logfile=logfile},

evalfun) =

(SL.ExploreStates

{PM=pm,GC=gc,Secs=secs,Logfile=logfile,

Pred = (fn _ => true),

Store = (fn _ => false),

Eval = evalfun,

Comb = (fn (a,b) => Int.max(a,b)),

Init = 0})

The predicate function (Pred) ensures that the evaluation function is invoked on

each marking encountered. The maximum function on integers (Int.max) is used

to obtain the maximum value resulting from the invocation of the evaluation

function.

Multi-set boundedness is similar to integer boundedness, except we are no

longer dealing with the size of the multi-set of tokens on a particular place, but

rather with the multi-set of tokens itself. For a particular place, it is possible

to �nd the smallest multi-set of tokens that is larger than any of the multi-

sets of tokens found on this place in any reachable marking. This multi-set

is called the best upper multi-set bound for this particular place. Finding the

upper multi-set bound can be done by examining the marking of this place for

every reachable marking, and by using multi-set operations to determine the

multi-set comprising the best upper multi-set bound. Similarly, the best lower

multi-set bound can also be found. This is the largest multi-set that is smaller

than all multi-sets found on the particular place, for every reachable marking.

Sweep/CPN provides two query functions to �nd multi-set bounds. The

�rst is SLBestUpperMultiSet, to �nd the best upper multi-set bound, and the

second is SLBestLowerMultiSet, to �nd the best lower multi-set bound:

SLBestUpperMultiSet : SweepSpec -> (SLMark -> ''a ms) -> ''a ms

SLBestLowerMultiSet : SweepSpec -> (SLMark -> ''a ms) -> ''a ms

These are similar to the functions for integer bounds except that they work

on the level of multi-sets, not integers. The argument of type SweepSpec is again

a record that gives the sweep-line parameters (progress measure, garbage collec-

tion threshold, exploration time-out, log �le.) The second argument is again an

evaluation function, but it returns the multi-set of tokens on the speci�ed place

upon evaluation, not an integer. Below we show how functions can be used to

�nd the best upper and best lower multi-set bound of the place TransmitData.

115

SLBestUpperMultiSet ({PM=SWPM,GC=100,Secs=300,Logfile=NONE},

(SLMark.Sender'TransmitData 1));

SLBestLowerMultiSet ({PM=SWPM,GC=100,Secs=300,Logfile=NONE},

(SLMark.Sender'TransmitData 1));

The functions SLBestUpperMultiSet and SLBestLowerMultiSet have been imple-

mented based on the SL.ExploreStates function in a similar way to the query

functions for integer bounds.

7.3 Liveness Properties

Dead markings are the reachable markings of the CPN model without enabled

binding elements. These correspond to the states of the system where it has

terminated. Finding such dead markings is often an important step in the anal-

ysis of a system. Sweep/CPN provides a function SLListDeadMarkings which

performs a sweep of the state space and records all of the dead markings found

in the process. Upon termination of the sweep, the list of dead markings/nodes

is returned.

SLListDeadMarkings : SweepSpec -> Node list

The argument of type SweepSpec is the same as in previous functions, it

is a record containing the sweep parameters. The return type of this function

is Node list, a list of the dead markings found during the sweep. For the stop-

and-wait communication protocol, the SLListDeadMarkings function would be

invoked as follows:

SLListDeadMarkings {PM=RNPM,GC=100,Secs=300,Logfile=NONE};

The returned list of nodes can then be examined further in any way desired

by the user, e.g., by drawing the nodes using the state space tool, and then by

inspecting the descriptors of the nodes which give details about the marking of

each place. The SLListDeadMarkings function has been implemented using the

SL.ExploreDeadStates function as follows:

fun SLListDeadMarkings {PM=pm,GC=gc,Secs=secs,Logfile=logfile} =

SL.ExploreDeadStates {PM=pm,GC=gc,Secs=secs,Logfile=logfile,

Pred = (fn _ => true),

Store = (fn _ => true),

Eval = GetNodeNo,

Comb = (fn (a,b) => b::a),

Init = []};

The function GetNodeNo maps from markings into node numbers. The store

functions ensure that the dead markings are available after the sweep, and

the combination function is used to accumulate the node numbers of the dead

markings encountered.

In a manner similar to obtaining dead markings, Sweep/CPN provides a

function for obtaining dead transition instances. A dead transition instance is a

116

transition instance that is not enabled in any marking reachable from the initial

marking. The function is called SLListDeadTIs and has the type shown below:

SLListDeadTIs : SweepSpec -> TI.TransInst list

As has been the case for all sweep-line state space exploration functions

so far, this function performs a sweep of the state space and thus the sweep

parameters are supplied by the argument of type SweepSpec. The return value is

of type TI.TransInst list, a list of transition instances representing the dead

transition instances. To �nd the dead transition instances of the stop-and-wait

communication protocol example, SLListDeadTIs would be invoked as follows:

SLListDeadTIs {PM=RNPM,GC=100,Secs=300,Logfile=NONE};

The function has been implemented based on the SL.ExploreArcs function. The

implementation is shown below. The function SLArcToTI maps an arc of the

state space into the corresponding transition instance. The function RemoveTI

removes a transition instance (t) from a list of transitions instances (ts). The

constant TI.All is the list of all transition instances of the CPN model.

fun SLArcToTI (_,b,_) = BEToTI b;

fun RemoveTI (ts,t) = List.filter (fn t' => t' <> t) ts;

fun SLListDeadTIs {PM=pm,GC=gc,Secs=secs,Logfile=logfile}) =

SL.ExploreArcs

{PM=pm,GC=gc,Secs=secs,Logfile=logfile,

Pred = (fn _ => true),

Eval = SLArcToTI,

Comb = RemoveTI,

Init = TI.All};

8 Conclusions and Future Work

We have presented Sweep/CPN, an extension to the Design/CPN state space

analysis tool which supports state space exploration with the basic sweep-line

method as given in [3]. Moreover, we have demonstrated the use of Sweep/CPN

on a small example of a communication protocol.

Future work on Sweep/CPN will consider the further development of

Sweep/CPN to support also the generalised sweep-line method presented

in [15]. The basic sweep-line method is only useful in situations where the

strongly connected component graph is non-trivial (i.e. has multiple nodes) and

cannot be used on fully reactive systems. The generalised sweep-line method

in [15] supports a relaxed notion of progress compared to the monotone notion

of progress considered in this paper. With the relaxed notion of progress, it is

possible to have arcs in the state space leading from states with high progress

values to states with lower progress values. This is achieved by detecting such

117

cases and conducting multiple sweeps of parts of the state space. The generalised

sweep-line method can be used on fully reactive systems.

In this paper we have shown how the sweep-line method can be used to

determine standard dynamic properties of CP-nets such as reachability and

boundedness properties, and dead markings. Future work will be concerned

with extending the set of properties that can be veri�ed. It follows from the

de�nition of progress measures that all markings in a strongly connected com-

ponent of the state space will have the same progress value. This means that

markings belonging to a given strongly connected component will be stored

simultaneously in memory at some point during the sweep. This observation

holds the key to extending the properties that can be veri�ed to home mark-

ings, home spaces, and fairness properties.

Another topic of future work is also the generation of counter examples

(error-traces). With the sweep-line method, part of the path leading from the

initial marking to a marking satisfying, e.g., a given marking predicate might

have been deleted, and needs to be reconstructed to obtain an error-trace.

Combining the sweep-line method with disk-based storage seems a promising

approach to obtain error-traces with the sweep-line method. With the sweep-

line method, markings can be written to disk as they are deleted from main

memory, and there is no need to search for markings on disk. In this way,

the usual run-time penalty encountered in disk-based searching is avoided al-

together. To obtain the error trace one can work backwards (on disk) from

the marking satisfying the marking predicate to the initial marking. This can

be done eÆciently by storing information about predecessor markings on the

disk instead of successor markings. This approach may not give the shortest

error-trace in terms of occurrences of transitions, but it can be used to obtain

a shortest error-trace in terms of how far the system has progressed according

to the progress measure.

References

1. S. Christensen, K. Jensen, and L.M. Kristensen. Design/CPN Occurrence Graph Man-

ual. Department of Computer Science, University of Aarhus, Denmark. On-line version:

http://www.daimi.au.dk/designCPN/.

2. S. Christensen, K. Jensen, T. Mailund, and L. M. Kristensen. State Space Methods for

Timed Coloured Petri Nets. In Proceedings of 2nd International Colloquium on Petri Net

Technologies for Modelling Communication Based Systems, Berlin Germany, September

2001.

3. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State Space

Exploration. In Proceedings of TACAS 2001, volume 2031 of LNCS, pages 450{464.

Springer-Verlag, 2001.

4. E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting Symmetries in Temporal Logic

Model Checking. Formal Methods in System Design, 9(1/2):77{104, 1996.

5. E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal Methods in System

Design, 9(1/2):105{131, 1996.

6. P. Godefroid, G.J. Holzmann, and D. Pirottin. State-Space Caching Revisited. Formal

Methods in System Design, 7(3):227{241, 1995.

7. S. Gordon, L.M. Kristensen, and J. Billington. Veri�cation of a Revised WAP Wireless

Transaction Protocol. In Proceedings of ICATPN'02, volume 2360 of LNCS, pages 182{

202. Springer-Verlag, 2002.

118

8. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall International

Editions, 1991.

9. G.J. Holzmann. An Analysis of Bitstate Hashing. Formal Methods in System Design,

13(3):287{305, 1998.

10. C. Jard and T. Jeron. Bounded-memory Algorithms for Veri�cation On-the-
y. In Pro-

ceedings of CAV'91, volume 575 of LNCS, pages 192{202. Springer-Verlag, 1991.

11. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol-

ume 1, Basic Concepts. Monographs in Theoretical Computer Science. Springer-Verlag,

1992.

12. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.

Volume 2, Analysis Methods. Monographs in Theoretical Computer Science. Springer-

Verlag, 1994.

13. K. Jensen. Condensed State Spaces for Symmetrical Coloured Petri Nets. Formal Methods

in System Design, 9(1/2):7{40, 1996.

14. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner's Guide to Coloured

Petri Nets. International Journal on Software Tools for Technology Transfer, 2(2):98{132,

1998.

15. L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety Properties.

In Proceedings of FME'02, volume 2391 of LNCS, pages 549{567. Springer-Verlag, 2002.

16. L.M. Kristensen, T. Mailund, and G. Gallasch. Sweep/CPN. Department of Computer

Science, University of Aarhus, 2002. www.daimi.au.dk/designCPN/libs/sweepcpn/.

17. D. Peled. All from One, One for All: On Model Checking Using Representatives. In

Proceedings of CAV'93, volume 697 of LNCS, pages 409{423. Springer-Verlag, 1993.

18. U. Stern and D.L. Dill. Improved Probabilistic Veri�cation by Hash Compaction. In P.E.

Camurati and H. Eveking, editors, Correct Hardware Design and Veri�cation Methods,

volume 987, pages 206{224. Springer-Verlag, 1995.

19. J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1998.

20. A. Valmari. A Stubborn Attack on State Explosion. In Proceedings of CAV'90, volume

531 of Lecture Notes in Computer Scienc, pages 156{165. Springer-Verlag, 1990.

21. P. Wolper and P. Godefroid. Partial Order Methods for Temporal Veri�cation. In Pro-

ceedings of CONCUR'93, volume 715 of LNCS, pages 233{246. Springer-Verlag, 1993.

22. P. Wolper and D. Leroy. Reliable Hashing withoug Collision Detection. In Proceddings of

CAV'93, volume 697 of LNCS, pages 59{70. Springer-Verlag, 1993.

119

120

Coloured Petri Nets and State Space Generation

with the Symmetry Method

Louise Lorentsen

Department of Computer Science, University of Aarhus

IT-parken, Aabogade 34, DK-8200 Aarhus N, DENMARK.

louisel@daimi.au.dk

Abstract. This paper discusses state space generation with the symmetry method in the

context of Coloured Petri Nets (CP-nets). The paper presents the development of the De-

sign/CPN OPS tool which, together with the Design/CPN OE/OS tool, provides fully au-

tomatic generation of symmetry reduced state spaces for CP-nets with consistent symmetry

speci�cations. Practical experiments show that the practical applicability of the symmetry

method is highly depended on eÆcient algorithms for determining whether two states are

symmetric. We present two techniques to obtain an eÆcient symmetry check between mark-

ings of CP-nets: a technique that improves the generation time and a technique that reduces

the memory required to handle the symmetries during calculation. The presented algorithms

are implemented in the Design/CPN OPS tool and their applicability is evaluated based on

practical experiments.

1 Introduction

The state space of a system is a directed graph with a node for each reachable state of the system

and an arc for each state change. From the state space it is possible to verify whether the system

possesses a set of desired properties, e.g., the absence of deadlocks, the possibility to always reenter

the system's initial state, etc. However, the practical use of state spaces for formal analysis and

veri�cation of systems is often limited by the state explosion problem [17]: even small systems

may have a large (or in�nite) number of states, thus making it impossible to construct the full

state space of the system. Several reduction techniques have been suggested to alleviate the state

explosion problem. An example of such a reduction technique is the symmetry method [3, 9, 4, 6].

The symmetry method is not restricted to a speci�c modelling language. In this paper we work

with the symmetry method for Coloured Petri Nets (CP-nets or CPN) [8, 9]. The basic observation

behind the symmetry method is that many concurrent and distributed systems posses a degree

of symmetry which is also re
ected in the state space. The idea behind the symmetry method is

to factor out this symmetry and obtain a condensed state space which typically is much smaller

than the full state space, but from which the same properties can be veri�ed without unfolding

to the full state space. The symmetries in such systems can be described by algebraic groups of

permutations. For CP-nets the symmetries used for the reduction are induced by algebraic groups

of permutations on the atomic colour sets of the CP-net. Hence, we will also use the term state

spaces with permutation symmetries (SSPSs) to denote the condensed state spaces obtained by

using the symmetry method.

In the context of CP-nets the theory of the symmetry method is well developed [9, 8] and a

computer tool (the Design/CPN OE/OS tool [11, 10]) that supports state space generation with

the symmetry method has been developed. However, the symmetry method in the context of CP-

nets has only few applications in practice, e.g. [14, 5]. One of the drawbacks of the Design/CPN

OE/OS tool is that it requires the user to implement two predicates determining whether two

states/actions are symmetric or not. This requires both programming skills and a deep knowledge

of the symmetry method. This is especially the case if the predicates are required to be eÆcient.

However, when constructing SSPSs for CP-nets, it can be observed that the predicates can be

automatically deduced [8] provided the algebraic groups of permutations used for the reduction

121

have been speci�ed1. The above observation has motivated the construction of a tool (the De-

sign/CPN OPS tool [13]) which, given an assignment of algebraic groups of permutations to the

atomic colour sets of the CPN model, generates the predicates for the Design/CPN OE/OS tool

expressing whether two states/actions are symmetric.

The problem of determining whether two states/actions are symmetric is in literature also

referred to as the orbit problem and an eÆcient solution to this problem is a central issue for the

applicability of the symmetry method. The computational complexity of the orbit problem has

been investigated in [3] showing that in general it is at least as hard as the graph isomorphism

problem for which no polynomial time algorithm is known. However, in the context of CP-nets

symmetry can be determined eÆciently in a number of special cases, e.g., when the CP-net only

contains atomic colour sets [1, 8]. This is, however, not true in general; the problem of determining

symmetry between states/actions is complicated by the fact that colour sets can contain arbitrary

structural dependencies.

During development of the Design/CPN OPS tool a number of practical experiments have

been performed with di�erent strategies for the implementation of the predicates. The practical

experiments show that the chosen strategy for the implementation of the predicates greatly in
u-

ences whether the symmetry method for CP-nets is applicable in practice. The algebraic groups

of permutations used for the reduction potentially becomes very large as the system parameters

grow. The number of symmetries used for the reduction is potentially �
A2�A

jAj! where �A denotes

the atomic colour sets of the CPN model. Hence, eÆcient handling of the symmetries used for the

reduction becomes an important aspect when developing algorithms for the predicates used in the

symmetry method.

In this paper we present techniques and algorithms which implements an eÆcient solution to

the orbit problem in SSPS generation for CP-nets. The algorithms presented in this paper are

based on general techniques which can be applied independently of model speci�c details. Hence,

the predicates can be automatically constructed by the tool.

The paper is structured as follows. Section 2 presents the symmetry method for CP-nets

by means of an example. Section 3 presents the basic generation algorithm for SSPSs. Section 4

introduces a basic solution to the orbit problem for CP-nets that will be used for reference purposes.

Section 5 presents algorithms that improve the run-time of the basic algorithm. Section 6 presents

algorithms that ensure an compact representation of the symmetries throughout calculation of the

SSPSs. Finally, Sect. 7 contains the conclusions.

2 The Symmetry Method for CP-nets

In this section we introduce the symmetry method for CP-nets by means of an example. We will

use the example of a distributed database from Sect. 1.3 in [7]. Section 2.1 presents the CPN

model of the distributed database and show how the symmetry method can be used to reduce the

size of the state space. Section 2.2 explains how the symmetries used in the symmetry method are

speci�ed as permutations of atomic colours. Finally, Sect. 2.3 presents a data structure which can

be used to represent sets of symmetries in a CP-net.

2.1 Example: Distributed Database

The CP-net for the distributed database is shown in Fig. 1. The CP-net models a simple distributed

database with n di�erent sites. Each site contains a copy of all data and this copy is handled by

a database manager. Each database manager can change its own copy of the database and send

a message to all other database managers requesting them to update their copy of the database.

1 There are two main approaches in the literature: either the permutations can be automatically deduced

from the model, e.g., [2, 16], or explicitly speci�ed by the modeller [8, 9]. The latter approach is based

on the belief that the modeller, who constructs the model is familiar with the system modelled and has

an intuitive idea of the symmetries present in the model [8].

122

The distributed database system uses the indexed colour set DBM to model the database managers,

the enumeration colour set E to model whether the protocol is active, and the product colour set

MES to model the messages. The content of the database and the messages are not modelled. Only

header information (the sender and the receiver) is contained in a message.

The distributed database system possesses a degree of symmetry. The database managers are

treated similarly, only their identities di�er. This symmetry is also re
ected in the state space

of the distributed database system. The state space for the CPN model with three database

managers is shown in the left-hand side of Fig. 2. The idea behind SSPSs is to factor out this

symmetry and obtain a smaller state space from which the properties of the distributed database

system can be veri�ed without unfolding to the full state space. When constructing the SSPS

for the database system we consider two markings/binding elements to be symmetric if they are

equal except for a bijective renaming of the database managers. This kind of symmetry (based

on bijective renamings) induces two equivalence relations; one on the set of markings and one on

the set of binding elements [8]. The basic idea when constructing the SSPS is to lump together

symmetric markings/binding elements into one node/arc, i.e., only store one representative from

each equivalence class. The right-hand side of Fig. 2 shows the SSPS for the distributed database.

The nodes in the full state space (in the left-hand side of the �gure) are coloured such that nodes

corresponding to symmetric markings have the same colour. The same colours are used in the

SSPS (in the right hand side of the �gure). From the �gure it can be seen that the SSPS only

contains one node per equivalence class of symmetric markings.

2.2 Symmetry Speci�cation

The symmetries used for the reduction are obtained from permutations of the atomic colours in

the CPN model. Let �A denote the set of atomic colour sets of the CPN model. For each atomic

colour set in the CPN model, A 2 �A, we de�ne an algebraic group of permutations �A, i.e., a

subgroup of [A! A]. A symmetry � of the system is a set of permutations of the atomic colour sets

of the model, i.e., � = f�A 2 �AgA2�A . In the rest of the paper we will use the term permutation

symmetry to denote a set of permutations of the atomic colour sets of a CPN model.

The symmetry considered in the distributed database system is a bijective renaming of the

database managers. This is obtained by allowing all permutations of the atomic colour set DBM.

Hence a permutation symmetry in the distributed database system is a set � = f�E 2 �E ; �DBM 2
�DBMg, where �DBM = [DBM ! DBM] and �E = f�idg (where �id is the identity permutation,

i.e., �id(e)=e). From the permutation symmetries of the CPN model we derive permutations of

the structured colour sets, multi-sets, markings and binding elements as described in [8].

A symmetry speci�cation of a CP-net is an assignment of algebraic groups of permutations

to each of the atomic colour sets of the CP-net and hence determines a group of permutation

Receive all
Acknowledg-

ments

RecAck

Update
and

Send Messages

SendMes

Send an
Acknowledg-

ment

SendAck

Receive
a

Message

RecMes

Performing

DBM

Inactive
DBM

DBM
Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passiv

E

e

val n = 3;
color DBM =
index d with 1..n declare ms;
color PR =
product DBM * DBM declare mult;
fun diff(x,y) = (x<>y);
color MES =
subset PR by diff declare ms;
color E =
with e declare ms;
fun Mes(s) = mult’PR(1‘s,DBM--1‘s);
var s, r : DBM;

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Fig. 1. CP-net for the Distributed Database example.

123

1
3:3

2
1:2 3

1:2
4
1:2

9
1:2

10
1:2

7
1:2

8
1:2

5
1:2

6
1:2

19
1:1

18
2:2

17
1:1

16
1:1

15
2:2

14
1:1

13
1:1

12
2:2

11
1:1

25
2:1

24
2:1

23
2:1

22
2:1

21
2:1

20
2:1

28
2:1

27
2:1

26
2:1

1
1:1

2
1:1

3
1:2

4
1:1

5
1:1

6
2:1

7
1:1

Fig. 2. The full state space (the left-hand side) and SSPS (the right-hand side) of the CP-net for the

distributed database example with 3 symmetric database managers(n = 3).

symmetries. The symmetry speci�cation is required to be consistent [8] which means that it is

required to only express symmetries that are actually present in the system. We will use �SG to

denote the group of permutation symmetries given by a consistent symmetry speci�cation SG. In

the rest of the paper we assume that a CP-net with places P = fp1; p2; :::; png is given together with
a consistent symmetry speci�cation SG which determines a group �SG of permutation symmetries.

2.3 Restriction Sets

A consistent symmetry speci�cation SG determines a group of permutation symmetries �SG.

During generation of the SSPS we need some kind of representation of �SG. One possibility is to

list the permutation symmetries. Since the symmetry groups used for the reduction can be very

large, this is not a feasible solution.

A set of permutations of an atomic colour set can instead be represented as a restriction set.

Restriction sets are introduced in [8] and formally de�ned in [1]. Here we will introduce restriction

sets by means of an example. Below we use a restriction set to represent a subset of [DBM ! DBM].

The set of permutations mapping d(1) to d(2) and the set fd(2),d(3)g to the set fd(1),d(3)g
can be represented by the following restriction set:

d(1) d(2)

d(2) d(3) d(1) d(3)

Each row in the restriction set introduces a requirement for the set of permutations represented

by the restriction set. The individual restrictions (rows) express that the colours on the left-hand

side must be mapped into the colours of the right-hand side. In [1] it is proven that restriction

sets can be eÆciently intersected (while maintaining the compact representation) and that an

arbitrary set of permutations can be represented by a set of restriction sets. Hence, restriction sets

provide a potentially compact representation of sets of permutations. In the rest of the paper we

will use restriction sets to represent sets of permutations of atomic colour sets. Hence, a symmetry

speci�cation can be represented by a set of restriction sets for each atomic colour set in the CP-net.

3 Condensed State Space Generation

In this section we give an introduction to the standard algorithm Generate-SSPS for construc-

tion of the SSPS of a CP-net [8]. Nodes and Arcs are sets of states (markings) and actions (binding

elements), respectively, and it contains the states and actions that are included in the SSPS. Unpro-

cessed is a set of states, and contains the states for which we have not yet calculated the successor

124

states. M0 denotes the initial state. Next(M) is a function calculating the set of possible next

moves (an action and the resulting state) from the state M . Node(M) is a function that checks

whether a node symmetric to M is already included in the SSPS. If not, M is added to Nodes

and Unprocessed. Similarly, Arc(M1,b,M2) is a function that checks whether a symmetric arc is

already included in the SSPS, i.e., an arc consisting of a binding element symmetric to b from a

marking symmetric to M1 to a marking symmetric to M2. If not, (M1,b,M2) is added to Arcs.

Algorithm: GenerateSSPS () =

1: Nodes fM0g
2: Arcs ;
3: Unprocessed fM0g
4: repeat

5: select M1 2 Unprocessed

6: for all (b,M2) 2 Next(M1) do

7: Node(M2)

8: Arc(M1,b,M2)

9: end for

10: Unprocessed := Unprocessed n fM1g
11: until Unprocessed = ;

The algorithm proceeds in a number of iterations. In each iteration a state (M1) is selected from

Unprocessed and the successor states (and actions) are calculated using the Next function. For

each of the successor states, M2, it is checked whether Nodes already contains a state symmetric

toM2. If notM2 is added to both Nodes and Unprocessed. Similar checks are made for the actions.

The check for symmetric states and symmetric actions are instances of the orbit problem. From the

basic generation algorithm it can be seen that eÆcient generation of the SSPS is highly dependent

on the eÆciency of the algorithms for determining the following two problems: 1) When reaching

a new marking M during generation of the SSPS, is there a marking symmetric to M already

included in the SSPS? And 2) When reaching a new arc (M1; b;M2) during generation of the

SSPS, is there a symmetric arc already included in the SSPS?

GenerateSSPS is implemented in the Design/CPN OE/OS tool and used when calculating

SSPSs for CP-nets. In Design/CPN a hash function is used when storing the markings during

generation of the SSPS. When reaching a new marking during generation of the SSPS each marking

stored with the same hash value is checked to see if it is symmetric to the newly reached marking,

i.e., symmetry checks are performed locally between markings in the collision lists. The user of

the tool is free to use his own hash function. The only requirement is that the hash function

used is symmetry respecting, i.e., symmetric states are mapped to the same hash value. This is

the case for the default hash function used in Design/CPN. Hence, when using the Design/CPN

OE/OS tool for the generation of SSPSs eÆcient generation is dependent on the eÆciency of the

two predicates, PM and PBE , determining symmetry between markings and binding elements,

respectively.

PM : Given M1;M2 2 M determine whether 9� 2 � s.t. �(M1) =M2.

PBE : Given (t1; b1); (t2; b2) 2 BE determine whether 9� 2 � s.t. �(t1; b1) = (t2; b2).

The Design/CPN OE/OS tool requires PM and PBE to be implemented by the user. Implementing

such predicates is error-prone for large CPN models and requires both programming skills and

a detailed knowledge of the symmetry method. This is especially the case if the predicates are

required to be eÆcient. The required user implementation of PM and PBE in the Design/CPN

OE/OS tool has motivated the development of the Design/CPN OPS tool which given a CP-net

and a consistent symmetry speci�cation automatically generates the two predicates, PM and PBE ,

needed by the Design/CPN OE/OS tool. In the rest of the paper we will present techniques and

algorithms to obtain implementations of PM and PBE in the Design/CPN OPS tool which are

125

eÆcient in practice. The algorithms are independent of the speci�c CP-net. Hence, the predicates

can be automatically generated.

In the following discussions we will concentrate on the markings since the symmetry check

between binding elements can be viewed as a special case of symmetry checks between markings:

Given a transition t with variables v1; v2; : : : ; vm, a binding b of t can be viewed as a vector

of singleton multi-sets (1`b(v1); 1`b(v2); : : : ; 1`b(vm)), where b(v) denotes the value assigned to v

in the binding b. Since transitions cannot be permuted by permutation symmetries in CP-nets

determining symmetry between binding elements is the same as determining symmetry between

markings. Hence, in the rest of the paper we will present techniques and algorithms to obtain

an eÆcient implementation of PM , i.e., given M1;M2 2 M determine whether 9� 2 � such that

�M (M2) =M1.

4 Basic Algorithm for PM

In this section we will present a basic algorithm which implements the predicate PM . Section 4.1

presents the algorithm. Section 4.2 presents experimental results obtained using the Design/CPN

OPS tool where the basic algorithm presented in this section is used to determine symmetry

between markings.

4.1 Presentation of the Algorithm

The algorithm is based on a simple approach where �SG, i.e., the group of permutation symmetries

allowed by the symmetry speci�cation SG, is iterated to determine whether 9� 2 �SG s.t. �(M1) =

M2. The algorithm PBasic
M is given below.

Algorithm: PBasic
M (M1;M2)

1: for all � 2 �SG do

2: if �(M1) =M2 then

3: return true

4: end if

5: end for

6: return false

The algorithm repeatedly selects a permutation symmetry � from �SG (line 1) and tests whether

� is a symmetry between the two markings, M1 and M2 given as input (lines 2-4). The iteration

stops when a permutation symmetry � for which �(M1) =M2 is found (line 3) or the entire �SG
has been iterated (line 6).

The algorithm PBasic
M potentially tests fewer permutation symmetries than j�SGj. This is

however not the case if M1 and M2 are not symmetric. In that case the algorithm checks the

whole �SG. Hence, P
Basic
M is only useful for CP-nets with few permutation symmetries. This is

also supported by the experimental results presented below.

However, before we present the experimental results of the PBasic
M algorithm we will brie
y

introduce how it is tested whether a permutation symmetry � maps a marking M1 to another

marking M2 (line 2 in PBasic
M). In [1] it is shown how the set of permutation symmetries between

two markings can be determined as the intersection of the sets of permutation symmetries between

the markings of the individual places. Hence, to determine whether a permutation symmetry � 2
�SG is a symmetry between two markings M1 and M2, we in turn test the multi-sets constituting

the markings of pi 2 P . Note that if a permutation symmetry is not a symmetry for the marking

of a place pi 2 P , i.e., �(M1(pi)) 6= M2(pi) the permutation symmetry � cannot be a symmetry

between M1 and M2 and therefore there is no need to test the remaining places in P . Using

126

the ideas presented in [1] we obtain an algorithm TestPermutationSymmetry which given a

permutation symmetry � and two markings, M1 and M2, tests whether �(M1) =M2.

Algorithm: TestPermutationSymmetry(�,M1,M2) =

1: for all pi 2 P do

2: if �(M1(pi)) 6=M2(pi) then

3: return false

4: end if

5: end for

6: return true

The algorithm repeatedly selects a place pi 2 P of the CP-net (line 1) and tests whether � is

a symmetry between the markings of pi in M1 and M2 (line 2-4). If not, � is not a symmetry

between M1 and M2, otherwise a new place is tested. The iteration proceeds until a place pi 2 P
for which � is not a symmetry is found (line 3) or all places have been tested (line 6).

4.2 Experimental Results of the PBasic
M Algorithm

This section presents experimental results obtained using the Design/CPNOPS tool. The following

results are obtained using an implementation of PBasic
M to determine whether two markings are

symmetric. A similar approach is used for the implementation of PBE .

The Design/CPN OPS tool represents �SG as a restriction set. When checking symmetry

between two markings using PBasic
M �SG is listed and the permutation symmetries from the list

are removed and tested until a permutation symmetry � is found for which �(M1) = M2 or the

list is empty.

SSPSs have been generated for two di�erent CP-nets in a number of con�gurations. The CP-

nets used in the experiments are brie
y described below. For a detailed description of the CP-nets

we refer to [8, 12].

Commit [12]. A CP-net modelling a two-phase commit protocol with a coordinator and w sym-

metrical workers.
Distributed database [8]. The CP-net presented in Sect. 2 modelling the communication be-

tween n symmetrical database managers.

Table 1 shows the generation statistics for of the SSPS for di�erent con�gurations of the two

CP-nets using the PBasic
M algorithm. The CP-net column gives the name (C stands for commit

and D stands for distributed database) and con�guration of the CP-net for which the SSPS is

generated as well as the number of permutation symmetries given by the symmetry speci�cation

SG used for the reduction. The Count column gives two numbers: the total number of times the

PM predicate is called during calculation of the SSPS and the number of calls which evaluate to

true, i.e., the number of those calls which determine that the two markings are symmetric. The

Tests column presents statistics on the number of permutation symmetries applied to markings

during generation of the SSPS: Total gives the total number of permutation symmetries applied

to markings during generation of the SSPS, PBasic
M gives the average number of permutation

symmetries applied in each call of PBasic
M , PBasic

M =true gives the average number of permutation

symmetries applied in each call of PBasic
M which evaluates to true (the case where iteration of

the entire �SG is potentially avoided), and �nally, % j�SGj gives the average percentage of the

permutation symmetries which are tested in a call of PBasic
M . Finally, the Time column gives the

number of seconds it took to generate the SSPS for the given CP-net. A '{' in an entry means

that the SSPS could not be generated within 600 seconds. All experimental results presented in

this paper are obtained on a 333MHz PentiumII PC running Linux. The machine is equipped with

128 Mb RAM.

From Table 1 it can be seen that when system parameters increase the number of permutation

symmetries tested increase signi�cantly. This is caused by the increasing size of �SG. From the

127

PBasicM

CP-net Count Tests Time

Con. j�SGj PM PM=true Total PBasicM PBasicM =true % j�SGj Secs

C2 2 11 7 19 1.73 1.57 78.5 0

C3 6 26 19 90 3.46 2.53 42.0 0

C4 24 53 41 488 9.21 4.88 20.3 0

C5 120 95 76 3,242 34.1 12.7 10.5 0

C6 720 157 127 27,297 174 44.86 6.2 23

C7 5,040 { { { { { { {

D2 2 4 2 7 1.75 1.50 75.0 0

D3 6 14 6 61 4.36 2.17 36.0 0

D4 24 35 15 533 15.2 3.53 14.7 0

D5 120 71 31 5,037 70.9 7.64 6.37 0

D6 720 126 56 51,693 410 23.1 3.20 16

D7 5,040 { { { { { { {

Table 1. Generation statistics for SSPS generation using the PBasic
M algorithm.

% j�SGj column it can be seen that the average percentage of �SG which are tested in PBasic
M

decreases when the system parameters increase. However, the increasing size of �SG makes it im-

possible to generate the SSPS for the two CP-nets when system parameters, i.e., the number of

concurrent readers or database managers, becomes greater than 6. This is also caused by the ap-

proach where �SG is listed before the permutation symmetries are tested. For systems of increasing

size j�SGj imply that the entire �SG cannot be represented in memory and, thus, generation of

the SSPS is not possible. It should be noted that the results presented in Table 1 depends on the

order in which the permutation symmetries are applied. The order used for the experiments is the

same order in each call of PBasic
M based on a recursive unfolding of the restriction set.

We conclude that the experiments performed using PBasic
M in generation of SSPSs show that

the run-time incurred by the iteration of �SG becomes signi�cant when system parameters grow.

Hence, in order to make the calculation of SSPSs for CP-nets applicable in practice we need to

carefully consider the number of permutation symmetries tested in the generation of the SSPSs.

The next section presents techniques which improve PBasic
M in this direction.

5 Approximation Techniques

In this section we will present an algorithm which presents an improved implementation of the

predicate PBasic
M . Section 5.1 presents the algorithm. Section 5.2 presents experimental results

obtained using the Design/CPN OPS tool where the improved algorithm presented in this section

is used to determine symmetry between markings.

5.1 Presentation of the Algorithm

The problem when using PBasic
M for the symmetry check between markings is that in the worst case

j�SGj permutation symmetries will be checked. When determining symmetry between markings a

selection of simple checks can in many cases determine that two markings are not symmetric or

determine a smaller set of permutation symmetries that have to be checked.

In this section we will present a new algorithm for PM which given two markings,M1 and M2,

calculates a set 	M1;M2
such that f� 2 �SG j �(M1) = M2g � 	M1;M2

� �SG. Hence, 	M1;M2

is a super-set of the set of permutation symmetries mapping M1 to M2. If 	M1;M2
= ; we can

conclude that M1 and M2 are not symmetric. However, if 	M1;M2
is non-empty we have to test

the individual permutation symmetries in 	M1;M2
. In worst case j	M1;M2

j permutation symmetries

have to be checked. This is the case if M1 andM2 are not symmetric. IfM1 andM2 are symmetric

then in worst case j	M1;M2
j � jf� 2 �SG j �(M1) = M2gj + 1 permutation symmetries have to

be checked. Hence, the goal of the approximation technique is to construct 	M1;M2
as close to

f� 2 �SG j �(M1) =M2g as possible.

128

In [1] it was shown that if a CP-net only contains atomic colour sets then the set f� 2
�SG j �(M1) = M2g can be determined eÆciently. This is, however, not the case if the CP-net

contains structured colour sets. Nevertheless, we will use the technique to eÆciently obtain an

approximation 	M1;M2
of f� 2 �SG j �(M1) = M2g, thus reducing the number of permutation

symmetries which have to be checked compared to the approach used in PBasic
M . This is obtained at

the cost of doing the approximation. In the following we will show how such an approximation can

be obtained eÆciently when �SG is represented as a restriction set. The approximation technique

is based on ideas from [8, 1].

The set of permutation symmetries mapping a marking M1 to another marking M2 can be

found as the intersection of sets of permutation symmetries mapping M1(pi) to M2(pi) for all

pi 2 P . Similarly, it is shown in [8] and proved in [1] how the set of permutation symmetries

between such markings of places, i.e., multi-sets, can be determined as the intersection over sets of

symmetries between sets with equal coeÆcient in the multi-sets, i.e., for a permutation symmetry

to be a symmetry between ms1 and ms2 it must ensure that a colour appearing with coeÆcient c

in ms1 must be mapped into a colour appearing with the same coeÆcient in ms2. We will illustrate

using the CP-net of the Distributed Database (Fig. 1) as an example.

Let ms1=1`d(2)+1`d(3) and ms2=1`d(1)+1`d(2) be two markings of a the place Inactive

with colour set DBM. In ms1 two colours (d(2) and d(3)) appear with coeÆcient 1 and one colour

(d(1)) appear with coeÆcient 0. We can express the multi-set of coeÆcients as 2`1+1`0. In ms2
it is also the case that two colours (d(1) and d(2)) appear with coeÆcient 1 and one colour

(d(3)) appear with coeÆcient 0. Hence, ms2 has the same multi-set of coeÆcients as ms1 namely

2`1+1`0. A permutation �DBM of the colour set DBM is a permutation mapping ms1 to ms2 if

�DBM ensures that a colour appearing with coeÆcient 1 in ms1 is mapped to a colour appearing

with coeÆcient 1 in ms2, and similar for the rest of the coeÆcients (here just 0). Hence, we

can construct a restriction set representing the set of permutations between ms1 and ms2 by

constructing a restriction for each of the coeÆcients appearing in ms1 and ms2.

CoeÆcient 0:

CoeÆcient 1:

d(1) d(3)

d(2) d(3) d(1) d(2)

In the above example the two multi-sets had the same multi-sets of coeÆcients. This is a necessary

requirement for the two multi-sets to be symmetric [1]. If not, the left and right-hand sides of the

constructed restrictions do not contain the same number of elements, and thus does not represent

a valid set of permutations. Multi-sets of coeÆcients are formally de�ned in [1]. We de�ne multi-

sets of coeÆcients using the notation used in this paper below and present an algorithm which

calculates the set of permutation symmetries between two multi-sets over an atomic colour set.

De�nition:

For a multi-set ms over a colour set C we de�ne CoefficientsC (ms) as the set of coeÆcients

appearing in ms:

CoefficientsC (ms) = fi 2 Nj9c 2 C such that ms(c) = ig

Let ms be a multi-set over a colour C. For i 2 CoefficientsC(ms) we de�ne the i-coeÆcient-class

for ms as the set of colours in C appearing with coeÆcient i:

Ci(ms) = fc 2 Cjms(c) = ig

We de�ne the multi-set of coeÆcients for ms by

Cfms(ms) = fms(i)`igi2CoeÆcientsC(ms)

129

Based on the above de�nitions we formulate an algorithm FindPermutations which given two

multi-sets ms1 and ms2 over an atomic colour set A 2 �A calculate the set f�A 2 �A j �A(ms1) =

ms2g.

Algorithm: FindPermutationsms(ms1,ms2)

1: if Cfms(ms1) = Cfms(ms2) then

2: return f(Ci(ms1),Ci(ms2)gi2CoeÆcients(ms1)

3: else

4: return ;
5: end if

The algorithm tests whether Cfms(ms1) = Cfms(ms2) (line 1), i.e., the multi-set of coeÆcients

are equal. If not ms1 and ms2 are not symmetric [1], i.e., the empty set is returned (line 4),

otherwise a restriction set is constructed containing a restriction (Ci(ms1),Ci(ms2)) for each of

the coeÆcients i in Coefficients(ms1) (line 2).

Given two markings,M1 andM2, the algorithm FindPermutationSymme-triesM calculates

the a set of permutation symmetries 	M1;M2
as the intersection of �SG and the sets of permu-

tations between the markings of the individual places with atomic colour sets (calculated using

FindPermutationsms).

Algorithm: FindPermutationSymmetriesM (M1,M2) =

1: �0 �SG
2: for all p 2 fp0 2 P j p0 has an atomic colour setg do
3: �0 �0\ FindPermutationsms(M1(p),M2(p))

4: end for

5: return �0

If the CP-net only contains places with atomic colour sets the set 	M1;M2
of permutation symme-

tries calculated using FindPermutationSymmetriesM is equal to the set f� 2 �SG j �(M1) =

M2g. If the CP-net also contains places with structured colour sets then 	M1;M2
is a super-

set of f� 2 �SG j �(M1) = M2g, i.e, f� 2 �SG j �(M1) = M2g � 	M1;M2
. We will use

FindPermutationSymmetriesM to improve the PBasic
M algorithm presented in Sect. 4, i.e., to

reduce the number of permutation symmetries which have to be checked. The new algorithm

P
Approx
M is presented below.

Algorithm: P
Approx
M (M1;M2)

1: for all � 2 FindPermutationSymmetriesM (M1,M2) do

2: if TestPermutationSymmetry' (�,M1,M2) then

3: return true

4: end if

5: end for

6: return false

The algorithm repeatedly selects a permutation symmetry � from the set of permutation sym-

metries approximated using FindPermutationSymmetriesM (line 1) and tests whether � is a

symmetry between the two markings (lines 2-4). The iteration stops when a permutation symme-

try � for which �(M1) =M2 is found (line 3) or the entire set has been iterated (line 6). P
Approx
M

(M1;M2) uses TestPermutationSymmetry' (�,M1,M2), a modi�ed version of the algorithm

TestPermutationSymmetry presented in Sect. 4, to determine whether �(M1) = M2. The

di�erence is that given a permutation symmetry � and two markings, M1 and M2, TestPermu-

130

tationSymmetry' only test � on the places which have a structured colour set. The markings

of the places with atomic colour sets are already accounted for in the approximation and do not

have to be tested again.

The complexity of the calculation of FindPermutationSymmetriesM is independent of

j�SGj. This is a very attractive property, since the experimental results presented in Sect. 4

showed that iterating the group of permutation symmetries is not applicable in practice when

the symmetry speci�cation determines a large set of permutation symmetries.

If the CP-net contains places with atomic colour sets P
Approx
M potentially tests fewer per-

mutation symmetries than PBasic
M . In PBasic

M at most j�SGj � jf� 2 �SG j �(M1) = M2gj + 1

permutation symmetries are checked when determining whether two markings are symmetric,

whereas at most jFindPermuta-tionSymmetriesM (M1;M2)j � jf� 2 �SG j �(M1) =M2gj+1

permutation symmetries are tested using P
Approx
M . The experimental results presented later in this

section show that for the two CP-nets used in the experiments the approximation is very close (or

even equal) to the exact set of permutation symmetries mapping M1 to M2. Hence, the number

of permutation symmetries which have to be tested is very low in practice. Furthermore, if the

multi-sets of coeÆcients are di�erent for markings no permutation symmetries have to be tested to

determine that the markings are not symmetric. It should be noted that a necessary requirement

for two markingsM1 andM2 to be symmetric is that Cfms(M1(pi)) =Cfms(M2(pi)) for all places

pi 2 P (also for places with structured colour sets). Hence, an obvious way to improve P
Approx
M

is to test the equality of multi-sets of coeÆcients for places with structured colour sets before

checking any permutation symmetries. Places with atomic colour sets are already accounted for

in the approximation.

5.2 Experimental Results of the P
Approx

M Algorithm

In this section we will present experimental results obtained using an implementation of PM based

on the P
Approx
M algorithm. The approximation operated directly on the restriction sets and the

approximate set 	M1;M2
is also represented as a restriction set. Before checking the permutation

symmetries in 	M1;M2
the approximated set is represented as a list. The permutation symmetries

from the list are removed and checked until a permutation symmetry � is found for which �(M1) =

M2 or the list is empty. The experimental results are obtained using the two CP-nets presented

in Sect. 4.

Table 2 presents generation statistics for SSPSs for di�erent con�gurations of the two CP-nets

using the P
Approx
M algorithm. The �rst four columns are the same as the �rst four columns in

Table 1 presenting the generation statistics using the PBasic
M algorithm. The CP-net column gives

the name and con�guration of the CP-net for which the SSPS is generated as well as the number

of permutation symmetries given by the symmetry speci�cation. The Count column gives two

numbers: the total number of times the PM predicate is called during calculation of the SSPS and

the number of calls of PM which evaluate to true, i.e., the number of calls which determines that the

two markings are symmetric. The last six columns are speci�c to the P approx
M algorithm. The Cfms

column gives the number of calls of P
Approx
M for which the multi-sets of coeÆcients are di�erent for

the two markings, i.e., the number of calls of P
Approx
M where no permutation symmetries are tested.

The Tests column presents statistics on the number of permutation symmetries applied to markings

during generation of the SSPS: Total gives the total number of permutation symmetries applied

to markings during generation of the SSPS, P
Approx
M gives the average number of permutation

symmetries applied in each call of P
Approx
M , P

Approx
M =true gives the average number of permutation

symmetries applied in each call of P
Approx
M which evaluates to true (the case where iteration of

the entire �SG potentially is avoided), and �nally, %j�SGj gives the average percentage of the

permutation symmetries which are tested in a call of P
Approx
M during generation of the entire

SSPS. Finally, the Time column gives the number of seconds it took to generate the SSPS for the

CP-net in the given con�guration.

From Table 2 it can be seen that checking the multi-sets of coeÆcients before testing any per-

mutation symmetries in P
Approx
M reduces the number of permutation symmetries tested compared

131

to PBasic
M . It is worth noticing that in all calls of PApprox

M which evaluated to false no permutation

symmetries are tested, i.e., in all cases the multi-sets of coeÆcients di�er. This is of course highly

dependent on the CPN model and is a question of the amount of redundancy encoded in markings

of places with structured colour sets. Furthermore, all calls of P
Approx
M which evaluated to true

only in average requires one permutation symmetry to be tested. This is not a general fact of the

technique. However, it is our experience from other experiments that in practice many CP-nets

contains a degree of redundancy such that the approximation based on the atomic colour sets of

the CP-net often is very close (or equal) to the exact set of permutation symmetries mapping one

marking to another.

Even though the number of permutation symmetries tested after approximating the set of

permutation symmetries is 1 for both CP-nets in all con�gurations it can be seen that SSPSs

could not be generated for more than 7 database managers or workers. The reason is the memory

required by P
Approx
M : in the implementation of P

Approx
M used for the practical experiments the

approximated set of permutation symmetries is listed before testing the permutation symmetries.

Hence, even though the approximation determines the exact set of permutation symmetries in

worst case j�SGj permutation symmetries are listed. Thus, in order to make the method applicable

in practice we need to carefully consider the representation of the sets of permutation symmetries

during generation of the SSPSs. This is the topic of the next section.

6 Lazy Listing

In the previous sections we have used sets of restriction sets to represent sets of permutation

symmetries. The approximation technique presented in Sect. 5 operates directly on the restriction

sets. However, in the implementations of both PBasic
M and P

Approx
M the permutation symmetries

are listed before they are checked. The major drawback of the approach presented in the previous

section is that even though the approximation is exact or very close to f� 2 �SG j �(M1) =M2g,
i.e., only few permutation symmetries have to be checked, the entire approximated set is listed. The

experimental results presented in Sect. 5 also showed that this approach is not applicable in practice

since the memory use becomes a serious bottleneck as system parameters grow. The main goal of

this section is therefore to improve the P
Approx
M algorithm such that a compact representation of

the approximated set of permutation symmetries is maintained during calculation of PApprox
M .

In this section we will present an algorithm which is an improved implementation of the predi-

cate P
Approx
M . Section 6.1 presents the algorithm. Section 6.2 presents experimental results obtained

using the Design/CPN OPS tool where the improved algorithm presented in this section is used

to determine symmetry between markings.

P
Approx

M

CP-net Count cfms Tests Time

Con. j�SGj PM PM=true Total P
Approx

M
P
Approx

M
=true %j�SGj Secs

C2 2 11 7 4 7 1 1 50.0 0

C3 6 26 19 7 19 1 1 16.7 0

C4 24 53 41 12 41 1 1 4.17 0

C5 120 95 76 19 76 1 1 0.83 0

C6 720 157 127 30 127 1 1 0.14 1

C7 5,040 242 197 45 197 1 1 0.02 60

C8 40,320 { { { { { { { {

D2 2 4 2 2 2 1 1 50 0

D3 6 14 6 8 6 1 1 16.67 0

D4 24 35 15 20 15 1 1 4.17 0

D5 120 71 31 40 31 1 1 0.83 0

D6 720 126 56 70 56 1 1 0.14 0

D7 5,040 204 92 112 92 1 1 0.02 7

D8 40,320 { { { { { { { {

Table 2. Generation statistics for SSPS generation using the P
Approx

M algorithm.

132

6.1 Presentation of the Algorithm

One way of viewing a set of permutation symmetries (represented as a set of restriction sets) is as

a tree. Each level in the tree corresponds to possible images of a given colour. Hence, leafs in the

tree represent the permutation symmetries given by the permutation of the individual elements

found by following the path from the root to the leaf. Figure 3 shows a tree representing �SG for

the CPN model of the distributed database with 3 database managers and a consistent symmetry

speci�cation SG which allow all possible permutations of the atomic colour set DBM. The leafs of

the tree represent the 6 di�erent permutations symmetries in �SG. Below each leaf the permutation

symmetry is represented by a restriction set.

e

d(1) d(2) d(3)

d(2)d(3)

d(2) d(3)

d(3)

d(3) d(2)

d(2) d(1)

d(1)

d(1)

d(1)

e

d(1)

d(2)

d(3)

e

d(1)

d(2)

d(3)

e

d(3)

d(1)

d(2)

e

d(1)

d(2)

d(3)

e

d(1)

d(3)

d(2)

e

d(1)

d(2)

d(3)

e

d(2)

d(1)

d(3)

e

d(1)

d(2)

d(3)

e

d(2)

d(3)

d(1)

e

d(1)

d(2)

d(3)

e

d(3)

d(2)

d(1)

e

d(1)

d(2)

d(3)

e

d(1)

d(2)

d(3)

e e

d(1) d(2) d(3) d(1) d(2) d(3)

E:

DBM:

Fig. 3. All permutation symmetries in �SG represented as a tree.

When testing a set of permutation symmetries on a marking in the PBasic
M and P

Approx
M algo-

rithms we �rst unfolded the restriction sets to a list of permutation symmetries and then applied

the permutation symmetries from an end (until one was found or the entire set was checked).

With the approach presented in this section we instead make recursive unfoldings of restriction

sets based on a depth �rst generation of the 'tree view'; each node in the tree corresponds to a

recursive call. Each time a leaf is reached the corresponding permutation symmetry is checked. If

the permutation symmetry is a symmetry between the two markings checked we conclude that the

markings are symmetric (and the iteration stops) otherwise the permutation symmetry is thrown

away and the algorithm backtracks to generate the next permutation symmetry. In this way at

most one permutation symmetry is contained in memory at a time. In a recursive call correspond-

ing to the ith layer of the tree the algorithm only needs to keep track of the restriction set in the

root as well as the images of the colours corresponding to the layers 1; ::; (i � 1). Hence, instead

of listing potentially �
A2�A

jAj! permutation symmetries the algorithm needs to represent in the

worst case images of at most �A2�A jAj colours plus the restriction set in the root. An algorithm

133

for such lazy listing of permutations symmetries represented by sets of restriction sets is shown

below.

Algorithm: LazyList (i,�0,M1,M2)

1: if SinglePermutationSymmetry(�0) then

2: � GetPermutationSymmetry(�0)

3: return TestPermutationSymmetry(�;M1;M2)

4: else

5: col GetColour(i)

6: images GetImages(�0,col)

7: found false

8: repeat

9: select col0 2 images

10: images imagesnfcol'g
11: found LazyList(i+ 1,Split(�0,col,col',M1,M2))

12: until images = ; _ found = true

13: end if

14: return found

The algorithm takes four arguments: i is the depth of the call (corresponds to the level in the

tree), �0 is a set of restriction sets representing a set of permutation symmetries, and M1 and M2

are the two markings which are checked. First LazyList (i,�0,M1,M2) tests whether the set of

restriction sets �0 given as input represents a single permutation symmetry (line 1). If this is the

case a leaf in the tree is reached and the result of applying the permutation symmetry is returned

(lines 2-3). If the set of restriction sets represents more than one permutation symmetry (line 4)

we have reached an internal node in the tree and a number of depth-�rst recursive calls are made

(lines 8-12). The algorithm uses a number of functions which we will brie
y describe below.

SinglePermutationSymmetry(�0) returns true if �0 represents a set of a single permutation

symmetry and false otherwise.

GetPermutationSymmetry(�0) returns one of the permutation symmetries in the set repre-

sented by the set of restriction sets �0.

TestPermutationSymmetry(�;M1;M2) tests whether �(M1) =M2.

GetColour(i) returns the colour associated to the i'th level in the tree.

GetImages(�0,col) returns the possible images of col, i.e., the right-hand side of the restriction

in � in which col is contained in the left-hand side.

Split(�0,col,col') returns a new set of restriction sets which is similar to �0 except that the

restriction containing col has been split into two: one containing col in the left-hand side and

col' in the right-hand side and one containing the remaining colours.

An algorithm combining approximation and lazy listing in the symmetry check between markings

is given below.

Algorithm: P
Approx+Lazy
M (M1,M2)

1: �0 FindPermutationSymmetriesM (M1,M2)

2: return LazyList (1,�0,M1,M2)

The algorithm approximates the set of permutation symmetries using the technique presented in

Sect. 5 (line 1). To avoid the lengthy listing the permutation symmetries in the approximated set

are checked using the LazyList algorithm (line 2).

134

6.2 Experimental Results of the P
Approx+Lazy

M Algorithm

In this section we present experimental results obtained using an implementation of PM based on

the P
Approx+Lazy
M algorithm. The implementation represents the approximated set of permutation

symmetries as a set of restriction sets. During calculation a compact representation is maintained

using depth-�rst recursive unfoldings.

Table 3 presents the generation statistics for the generation of the SSPS for di�erent con-

�gurations of the two CP-nets using the P
Approx+Lazy
M algorithm. The CP-net column gives the

name and con�guration of the CP-net for which the SSPS is generated as well as the number of

permutation symmetries given by the symmetry speci�cation. The next three columns give the

time it took to generate the corresponding SSPS using the three algorithms PBasic
M , P

Approx
M , and

P
Approx+Lazy
M , respectively.

CP-net j�SGj Time (secs)

PBasicM P
Approx

M
P
Approx+Lazy

M

C2 2 0 0 0

C3 6 0 0 0

C4 24 0 0 0

C5 20 0 0 0

C6 720 23 1 0

C7 5,040 { 60 1

C8 40,320 { { 1

C9 362,880 { { 2

C10 3,628,800 { { 3

C15 1.3 � 1012 { { 77

D2 2 0 0 0

D3 6 0 0 0

D4 24 0 0 0

D5 120 0 0 0

D6 720 16 0 0

D7 5,040 { 7 1

D8 40,320 { { 2

D9 362,880 { { 4

D10 3,628,800 { { 8

D12 4.7 � 108 { { 30

D15 1.3 � 1012 { { 151

Table 3. Generation statistics for SSPS generation using the P
Approx+Lazy

M algorithm.

From Table 3 it can be seen that using the P
Approx+Lazy
M algorithm it is possible to generate

SSPSs for CP-nets with very large symmetry groups. When applying P
Approx+Lazy
M for testing the

permutation symmetries the same number of permutation symmetries is of course tested as if the

permutation symmetries are listed beforehand using the P
Approx
M approach. However, the compact

representation maintained during calculation saves space since the permutation symmetries are

represented by sets of restriction sets. Hence, when combining the idea of lazy listing with the

idea of approximations as presented in Sect. 5 signi�cant speed up is gained. The reason is that in

practice the approximations are often very close to or even equal to the exact set of symmetries

between two markings. Thus, the number of permutation symmetries which have to be tested from

large permutation groups is usually very small. Furthermore, the memory use of P
Approx+Lazy
M

caused by the size �SG is no longer a bottleneck of the practical applicability of the method.

7 Conclusions

We have presented techniques and algorithms to determine whether two markings of CP-nets are

symmetric. The algorithms presented are based on general and model independent techniques.

Hence, the algorithms can be automatically generated for arbitrary CP-nets. The techniques are

implemented in the Design/CPN OPS tool [13] which automatically generates the predicates PM

135

and PBE needed for the Design/CPN OE/OS Tool [11, 10]. The Design/CPN OPS tool has been

used to conduct the experimental results presented in this paper.

The approximation technique that P
Approx
M is based on is introduced in [8, 1]. The contribution

of this paper is to automate and implement the technique as well as integrate the technique into

SSPS generation. The technique is speci�c to markings of CP-nets and is as such not general for

the symmetry method.

The need for compact representations and avoidance of testing the entire group of permutation

symmetries is, however, not speci�c to CP-nets. The algorithms and experimental results presented

in this paper are therefore also relevant in other formalisms than CP-nets.

During SSPS generation we store an arbitrary marking from each equivalence class (the �rst

state from the equivalence class encountered during generation of the SSPS). Another strategy is

to calculate a canonical representative for each equivalence class. The symmetry check can then

be reduced to a simple equivalence check. In [15] we have presented an algorithm for calculation

of canonical markings of CP-nets. The algorithm requires the calculation of the minimal marking

obtained as a result of applying a set of permutation symmetries. The algorithm for calculation

of canonical markings of CP-nets presented in [15] encounters the same problem as the PBasic
M

algorithm presented in Sect. 4: applying the entire group of permutation symmetries is unfeasible

in practice. In [15] we use algebraic techniques to reduce the number of iterations. Even with the

use of algebraic techniques the canonicalization of markings experiences problems in practice due

to the memory use required when working with large sets of permutation symmetries. The lazy

listing approach presented in this paper can directly be used in the problem studied in [15] and

it is envisioned that the lazy listing approach can alleviate the bottleneck caused by the memory

use in [15].

It is possible to combine the use of algebraic techniques and the techniques presented in this

paper to obtain a solution for PM . However, since the approximation techniques only applies when

two markings are compared the approximation techniques presented in this paper cannot be used

directly in the algorithm for calculation of canonical markings of CP-nets.

References

1. R.D. Andersen, J.B. J�rgensen, and M. Pedersen. Occurrence Graphs with Equivalent Markings and

Self-Symmetries. Master's thesis, Department of Computer Science, University of Aarhus, Denmark,

1991. Only available in Danish: Tilstandsgrafer med �kvivalente m�rkninger og selvsymmetrier.

2. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed Coloured Nets and Their

Symbolic Reachability Graph. In K. Jensen and G. Rozenberg, editors, High-level Petri Nets, pages

373{396. Springer-Verlag, 1991.

3. E.M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetries in Temporal Model Logic Model Checking.

In Springer-Verlag, editor, Proceedings of CAV'93, volume 697 of Lecture Notes in Computer Science

(LNCS), pages 450{462. Springer-Verlag, 1993.

4. E.A. Emerson and A. Prasad Sistla. Symmetry and Model Checking. Formal Methods in System

Design, 9, 1996.

5. D.J. Floreani, J. Billington, and A. Dadej. Designing and Verifying a Communications Gateway

Using Coloured Petri Nets and Design/CPN. In J. Billington and W. Reisig, editors, Proceedings

of ICATPN'96, volume 1091 of Lecture Notes in Computer Science, pages 153{171. Springer-Verlag,

1996.

6. C.N. Ip and D.L. Dill. Better Veri�cation Through Symmetry. Formal Methods in System Design, 9,

1996.

7. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1,

Basic Concepts. Monographs in Theoretical Computer Science. Springer-Verlag, 1992.

8. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 2,

Analysis Methods. Monographs in Theoretical Computer Science. Springer-Verlag, 1994.

9. K. Jensen. Condensed State Spaces for Symmetrical Coloured Petri Nets. Formal Methods in System

Design, 9, 1996.

10. J.B. J�rgensen and L.M. Kristensen. Design/CPN OE/OS Graph Manual. Department of Computer

Science, University of Aarhus, Denmark, 1996.

Online: http://www.daimi.au.dk/designCPN/.

136

11. J.B. J�rgensen and L.M. Kristensen. Computer Aided Veri�cation of Lamport's Fast Mutual Exclusion

Algorithm Using Coloured Petri Nets and Occurrence Graphs with Symmetries. IEEE Transactions

on Parallel and Distributed Systems, 10(7):714{732, July 1999.

12. L. M. Kristensen. State Space Methods. PhD thesis, Department of Computer Science, University of

Aarhus, Denmark, 2000.

13. L. Lorentsen. Design/CPN OPS Graph Manual. Department of Computer Science, University of

Aarhus, Denmark, 2002.

Online: http://www.daimi.au.dk/�louisel/.

14. L. Lorentsen and L.M. Kristensen. Modelling and Analysis of a Danfoss Flowmeter System. In

M.Nielsen and D.Simpson, editors, Proceedings of the 21th International Conference on Application

and Theory of Petri Nets (ICATPN'2000), volume 1825 of Lecture Notes in Computer Science, pages

346{366. Springer-Verlag, 2000.

15. L. Lorentsen and L.M. Kristensen. Exploiting stabilizers and paralellism in state space generation

with the symmetry method. In Proceedings of the Second International Conference on Application of

Concurrency to System Design (ICACSD'01), pages 211{220. IEEE, 2001.

16. K. Schmidt. How to Calculate Symmetries of Petri nets. Actae Informaticae, 36(7):545{590, 2000.

17. A. Valmari. The State Explosion Problem. In W. Reisig and G. Rozenberg, editors, Lectures on Petri

Nets I: Basic Models, volume 1491 of Lecture Notes in Computer Science, pages 429{528. Springer-

Verlag, 1998.

137

138

Implementation of Work
ow Systems using

Reference Nets

|

Security and Operability Aspects

Thomas Jacoba, Olaf Kummerb, Daniel Moldtc, and Ulrich Ultes-Nitsched

aFachbereich Informatik, Universit�at Hamburg, Vogt-K�olln-Str. 30, 22527 Hamburg,

Germany, e-mail: mail@ThomasJacob.de
bCoreMedia AG, Erste Brunnenstr. 1, 20459 Hamburg,

e-mail: olaf.kummer@coremedia.com
cFachbereich Informatik, Universit�at Hamburg, Vogt-K�olln-Str. 30, 22527 Hamburg,

Germany, e-mail: moldt@informatik.uni-hamburg.de
dDepartment of Electronics and Computer Science, University of Southampton,

Southampton, SO17 1BJ, United Kingdom, e-mail: uun@ecs.soton.ac.uk

Abstract. We present in this paper a generic approach to designing and

running work
ows in a
exible way. Our language of choice is reference

nets, a version of high-level Petri nets that allow creation of new net

instances as well as communication between net components in an object-

based way.

We discuss the general approach to work
ow design as well as the speci�cs

of reference-net-speci�ed work
ow: their
exibilities and, related to this,

security aspects of reference-net work
ows. Reference nets allow the im-

plementation of even elaborate security concepts for work
ow systems in

an elegant and simple way.

1 Introduction

To support complex business processes, work
ow systems are promoted by var-

ious institutions and IT companies. Their aim is to use information technology

to manage the di�erent tasks that must be completed in order to complete a

business process successfully. In addition, work
ow systems must deal with in-

complete tasks, missed deadlines, etc.

Various approaches have been proposed for describing work
ows. We present

in this paper a Petri-net-based approach, using reference nets [6]. Reference nets

allow object-based design of a work
ow, and the run-time environment Renew

(REference NEt Workshop) [6] can be used as the basis for the work
ow engine

executing reference-net work
ows. Some of the modelling concepts have been

introduced in [10]. However, support by a tool was missing.

We discuss how the Renew tool has been extended to create a work
ow engine

[3]: A task symbol has been introduced to reference nets to allow for a more

compact representation of work
ows. The task symbol does not at all change

139

the abilities of reference nets as they can be easily compiled to a three-transition

reference-net structure. In fact, tasks only occur on the graphical level of the

Renew editor, but are resolved into the aforementioned reference-net structure

in the internal representation of reference-net work
ows. The work
ow engine,

as an extension to the Renew simulation engine, can handle tasks and the way

how users select and perform tasks.

In addition, we present how the system, supporting the general concepts

of reference nets, can be used to implement elaborate access controls to tasks

and data. To each task, we propose the implementation of a task rule, which

is simply a Java method that evaluates to type boolean, deciding whether or

not access to a task will be granted (see [3] for details). This will enable us, for

instance, to implement simple role-based access controls as well as sophisticated

content-dependent ones [8] such as \need-to-know" access controls [1]. Having

de�ned a generic approach, we can integrate any available information in the

access control decision procedure.

Our paper is structured as follows: After a brief introduction of reference

nets using an example taken from [6] in the next section, we introduce work
ow

speci�cations in the third section. Section 4 contains a discussion of the work
ow

engine, followed by Section 5 on work
ow security. An example in section 6

illustrates some features for our work
ow engine.

2 Reference Nets

Reference nets are high-level Petri nets that implement the nets-within-nets

concept (see [9]) and incorporate Java annotations. In [6] a formal de�nition is

given. The Java annotations control enabling a transition and can create side

e�ects when a transition is �red. Firing a transition can also create a new instance

of a subnet in such a way that a reference to the new net instance will be put

as a token into a place. A net instance can communicate with the subnets it

has created if it possesses a reference to the subnets. Communication occurs

through synchronous channels associated with transitions. A net instance can

also communicate with nets whose subnet it is. Subsequently, we introduce the

di�erent concepts present in reference nets using an example taken from [6]. We

assume the reader's familiarity with the general notions of place/transition nets

(P/T nets) and coloured Petri nets.

We start with the simple P/T net depicted in Figure 1. It describes two people

who either work at home or in the oÆce, earn money when communicating with

one another while both being in the oÆce and spend money by commuting to

and from the oÆce.

If we move in this example from P/T nets to coloured Petri nets [4], we can

fold the two subnets representing A and B into a single coloured Petri net, which

is presented in Figure 2.

To introduce the �rst concept, synchronous channels (see [5] and [2]), in this

paper we extend our example slightly: We separate the \money storage" part

140

money of A money of B

 talk
business

A at
work

B at
work

commute commute

A at
home

B at
home

Fig. 1. P/T net example: Co-operation of two business people.

xx

y y

"A";"B"

at home money

"A";"A";"A";"B";"B";"B"

x

at work

x

y

x

y talk
business

Fig. 2. Coloured Petri net version of the example.

from the \working life" part in our net by creating a simple bank account model.

The model is shown in Figure 3.

xx

y y

"A";"B"

at home at work

x

y money

"A";"A";"A";"B";"B";"B"
x

y

x

talk
business

deposit

withdraw

Fig. 3. Separation of \working life" and \money storage".

The model with separate account and person speci�cations will not provide

the functionality of our initial simple model without the de�nition of some means

of co-ordination between the two separate nets. The co-ordination concept we use

is communication via parameterised synchronous channels. In this concept, one

transition \owns" a channel, which is labelled with :channelName(parameters).

Other transitions can be synchronised with transitions using the channel by la-

belling them with netName:channelName(parameters). If the channel is used

for synchronisation within the same net, netNamewill be this. Otherwise netName

is the name of the net, which contains the transition owning the channel. A tran-

sition owning a channel is enabled if and only if it is enabled in the usual sense

141

as well as all transitions elsewhere whose label refers to the channel are enabled

in the usual sense. This includes taking into account the value bindings of vari-

ables that can occur as channel parameters. A transition using but not owning a

channel will be enabled whenever the transition owning the channel is enabled.

Enabled transitions sharing a channel will �re at the same time, i.e. in a syn-

chronous fashion. Figure 4 shows the net from Figure 3 extended by channels

deposit(,) and withdraw() to co-ordinate the two subnets.

xx

y y

"A";"B"

at home at work money

"A";"A";"A";"B";"B";"B"
x

y

x

this:withdraw(x) :withdraw(x)

y

x :deposit(x,y)this:deposit(x,y)

deposit

withdraw

talk
business

Fig. 4. Introducing synchronous channels.

By using a channel twice in a transition, we can enforce �ring another tran-

sition two times as a kind of atomic event. Figure 5 shows this concept in a net,

which is behaviourally equivalent to the one in Figure 4.

xx

y y

"A";"B"

at home at work money

"A";"A";"A";"B";"B";"B"
x

x

this:withdraw(x) :withdraw(x)

y

x :deposit(x)

deposit

withdraw

talk
business

this:deposit(y)
this:deposit(x)

Fig. 5. Multiple channels at one transition.

Instead of dealing with the multiplicity of similarly named tokens (e.g. \A")

to represent A's credit balance, we will be dealing with integer values. This idea

is introduced in Figure 6.

Having introduced synchronous channels will allow us to create instances

of subnets and to communicate with subnets in an object-like way. Using this

concept enables us to use di�erent instances of the same account net to handle

the accounts in our example separately. A new instance of a subnet is created by

using the construct name:new netName where new is a keyword and name and

netName are a reference to the new instance of the net and the name of the net,

respectively. Figure 7 shows the account subnet and Figure 8 the (main) person

subnet of our �nal speci�cation.

142

xx

y y

"A";"B"

at home at work

x

y

this:deposit(y,1)

["A",3];["B",3]

accounts

[x,a+m] [x,a-m]

[x,a] [x,a]

this:deposit(x,1)
:deposit(x,m)

this:withdraw(x,1)

talk
business

withdrawdeposit

:withdraw(x,m)

Fig. 6. Introducing integers.

a+m a-m

:withdraw(m):deposit(m) a

:open(a)

a

a money

Fig. 7. Description of an account.

xx

y y

"A";"B"

at home at work
yacc:deposit(1)
xacc:deposit(1)

acc:withdraw(1)
[x,acc]

acc:open(a)
acc:new account

init

["A",3];["B",3]

[x,a]

x

y

accounts
[x,acc]

[x,xacc];[y,yacc]

Fig. 8. Description of person.

143

Initially, two instances of net account will be created and references to the

two instances will be stored as part of the tokens in place accounts. Com-

munication with the net instances occurs as before via named, parameterised

synchronous channels.

Presenting Figures 7 and 8 completes our brief overview of the capabilities of

reference nets. It should be mentioned, �nally, that reference nets allow for Java

annotations (objects and methods) as net inscriptions, resulting in a
exible

modelling language for work
ows. The reference net tool Renew (REference

NEt Workshop), extended in a suitable way, will then provide us with a runtime

environment for work
ow processes.

3 Work
ow Speci�cations using Reference Nets

The aim of a work
ow speci�cation is to unambigously describe the control
ow

as well as the tasks that together implement a business process. Tasks are the

atomic work items that need to be completed in order to successfully complete

the business process. Control
ow is the co-ordination process that controls the

order of tasks to be performed, including dependencies between the tasks and

their possibly various outcomes.

Petri nets, and reference nets in particular, are a very natural approach to

describe the control
ow in a work
ow: Their strength is indeed the description

of the
ow of information through the net's structure and, by the �ring rules of

transitions, to describe dependencies between various events. Even though it is

fairly evident that tasks will be somehow related to transitions, as transitions are

the actions in a Petri net speci�cation, the atomicity of transitions is slightly too

strict for mapping tasks onto transitions directly. We will clarify this statement

subsequently, which will lead to the de�nition of a task object, which we then

will map onto a net structure formed by three transitions.

Before discussing its formalisation, we �rst have to clarify what the basic

ingredients of a task are in a work
ow. In crude terms: a task is an atomic unit

of work that will be completed by an individual. Its support can range from

completely manual (no support at all) to complete automation (no involvement

of an individual but only software). The result of a task can be either positive

or negative. In the positive case, the task will be completed, usually creating

some kind of output which will then be provided to control the work
ow and

subsequent tasks. In the negative case, the task will be terminated unsuccessfully,

a case in which the state of the work
ow has to be reset to the one prior to

the attempt of performing the task. So, even though a task is atomic within a

work
ow, it has some structure from the modelling point of view.

We will therefore model a task using three transitions representing entering

the task as well as either success or failure of completing a task. Firing the

entry transition will create an instance of a task-related object, which could

include instantiation of a sub-net, creating e.g. a sub-work
ow, instantiation

of a software object needed to deal with the task, and extension of a to-do

list of work items. When the task is completed, its result will tell whether the

144

success or failure transition has to �re. There are no time constraints imposed on

the duration between entering and leaving the task. We hence have inherently

solved an additional requirement for modelling tasks: performing tasks requires

time. The lower part of Figure 9 shows the basic structure of a task construct

in our reference-net-based modelling technique. Please note that the topmost

entry places are chosen arbitrarily as well as the output places at the bottom of

Figure 9.

zx

yx y z zx

[task,param,result]

y

yresult

result y

[[x,y,z],_WF_activity]

[[x,y,z],_WF_activity]

[[x,y,z],_WF_activity]

:_WF_request([task,param],_WF_activity)

:_WF_confirm(_WF_activity,result)

:_WF_cancel(_WF_activity)

Fig. 9. Speci�cation of a work
ow task.

WF request([task,param], WF activity) is the transition that will be

�red to invoke the task. In case of an unsuccessful task termination, transi-

tion WF cancel(WF activity) will �re. Note that WF cancel(WF activity)

145

will put back all tokens initially taken from the entry places when �ring tran-

sition WF request([task,param], WF activity). This restores the work
ow

state prior to entering the task. In case of a successful task completion, �ring

transition WF confirm(WF activity,result) will make the result of the task

available to subsequent tasks. It can also be used for control
ow purposes.

The subnet in the gray box will always have exactly the same structure. What

will vary are the input and output places to the task. For the convenience of the

presentation as well as the speci�cation, we introduce therefore a new symbol

that represents a task speci�cation. As depicted, we represent the subnet shown

in the lower part of Figure 9 by using the task symbol, which is presented in its

upper part.

4 The Runtime Environment

The runtime environment is basically provided by the tool REference NEt Work-

shop (Renew). Renew provides a full simulation environment for reference nets,

including the invocation of Java methods that occur as reference-net inscrip-

tions and the handling of concurrent net processes. In particular, it handles

the synchronisation of �ring transitions based on their channel inscriptions. To

make Renew incorporate a complete work
ow engine, Tasks, WorkItems, and

Activities as well as their storage and handling have been implemented in

additional packages to the Renew system.

4.1 The Speci�cation Language

The Renew system has been extended to deal with task symbols. They will be

compiled down to reference-net structures as presented in Figure 9 for an exam-

ple task. The compilation process was integrated fairly easily into Renew because

of Renew's general structure: Between the level of the graphical editor, which

has been extended by the task symbol, and the level of the simulator, Renew

contains an additional layer called the shadow level. The shadow level uses an

internal representation of the net drawn on the net-editor level. The translation

process from the editor to the shadow level could therefore be extended by a

compiler for task symbols that replaces each task symbol by the three-transition

sub-net it represents (Figure 9). On the shadow level we end up with only refer-

ence nets without task symbols, which then can be fed into the simulation engine

as usual. To add task-speci�c functionality to the simulation engine, it has been

extended by a work
ow engine.

4.2 The Work
ow Engine

The work
ow engine comprises as one of its main features an interface to work-

ow users: Users will be able to access their agendas, i.e. task lists, using the

work
ow engine. These task lists will be �ltered so that a user sees only tasks

she/he is authorised to work on (see next section). Users can then select a task

146

from their task list to deal with it and inform the system about the successful or

unsuccessful completion (termination) of a task. The entire handling of tasks lies

within the packages that have been added to Renew's simulation engine. This in-

cludes returning un�nished (unsuccessfully terminated) tasks to task lists, restor-

ing state information in case of unsuccessful termination of tasks, dealing with

automatic tasks (tasks that can be performed without direct user involvement),

and so on. It should be noted that the additional packages provide interfaces

to functionality already present in Renew, controlling, for instance, the �ring of

transitions according to the state of tasks. They also comprise a task database

for the eÆcient storage of tasks and their inclusion to the aforementioned task

lists.

The work
ow engine ful�lls therefore two tasks: the control of work
ow pro-

cesses via the Renew simulation engine and the management of tasks, users,

and the processing of tasks by users. As mentioned above, tasks may only be

processed by a user if she/he has the authority to do so. The handling of access

rights is done by rules added to tasks, which form the major part of the work
ow

security system.

5 Work
ow Security

In this section we will give a short overview of security issues in the context of

work
ow systems. The �rst subsection covers general aspects while the second

one covers how access control has been integrated in our work
ow concept and

work
ow engine.

5.1 Overview

The discussion of security in work
ow systems can basically be reduced to dis-

cussing access control. In all other aspects, such as con�dentiality of messages,

authentication, etc., work
ow systems are no di�erent from other applications.

The access-control aspect of work
ow systems deals with issues like: \Who is

responsible for performing a task and therefore needs access to data and soft-

ware supporting working on the task?" Also delegation of work and related

access rights are important issues within a work
ow system. We will discuss in

this section how reference-net-based work
ow speci�cation supports an elaborate

access-control mechanism.

We use in our approach an extension to the role-based approach.1 In role-

based access controls, users are assigned roles. Roles are simply named collections

of users, where a single user can appear in multiple roles. There is also a sub-role

relation that holds true, if all users in one role (the sub-role) are also contained

in another role (the super-role). For the ease of discussion, we will view users

subsequently as singleton roles. They are the only \roles" than can log-in to the

system.

1 Role-based access controls are sometimes also called group-based.

147

In the purely role-based approach, rights to perform speci�c tasks (and there-

fore access rights to the relevant software) are assigned to roles. A role inherits

access rights from its super-roles. This is all that is possible in a purely role-

based access control. To extend it slightly by supporting delegation, to perform

a single task (and using the relevant software) a role may pass on its own ac-

cess rights temporarily to another role. This temporary extension of a role's

access rights will expire as soon as the task is completed (either successfully or

unsuccessfully).

Even though delegation of access rights makes role-based access controls in

a work
ow environment more
exible, it is still a quite static concept. Very

frequently, access permissions to data or software will vary over time; i.e. in

di�erent work
ow states, access rights be assigned di�erently. So more
exible

access-controls have emerged. The idea of context-dependent access controls, for

instance, takes into account that access to particular data will normally only

be important to perform one task in a work
ow, but not another task. So state

information about the work
ow is combined with role information to compute

access rights. This context-dependent concept, where the context is the work
ow

state, can be applied to work
ows in environments in which state-dependent

protection of data is legally required, for instance in clinical trials.

In the approach we present in this paper we go even one step further and

allow all available information to be part of the access control decision, i.e. we

keep the role concept but combine it with information about the work
ow's

state, data-base information, states of running programs, states of other work-

ow instances, etc. The aim is to be as
exible as possible. Obviously the utmost

exibility will never be needed. So, in practice, restrictions will apply. However,

in di�erent environments, in which work
ow systems can support daily work,

security requirements di�er. Our approach can therefore be adapted to the dif-

ferent environments by simply not using all its possibilities. In that sense, the

approach we present in this paper is a generic one.

5.2 Access Control in a Reference-Net Work
ow

As mentioned in the previous sub-section, the aim of access controls in work
ows

is to de�ne who is and who is not allowed to perform a task and access relevant

data for this task. The access control system is the implementation of such an

access control policy. In the modelling technique we are using, we will assign an

access rule to each task. The rule will be evaluated to check the authority of an

attempt to perform a task.

The �rst thing to note is that by moving the access control to the task level,

our access control is a context-dependent one: Aiming to perform a task will

only be possible if the role trying to do so has the authority for performing the

task and if the work
ow is in a state such that the task is active. However, an

access rule for a task is in principle a method of type boolean that checks the

authority of a request to perform the task. It may use any information available

in its environment, including remote information if it has network access. This

o�ers the greatest
exibility possible.

148

Our approach, as a generic one, is open to where the access control is imple-

mented in the work
ow. There are basically two options: in the control
ow or

in the task inscription.

{ (Control
ow:) We can specify the work
ow in such a way that, by using

control input places to tasks, tasks will only be enabled to be performed

by a role, if all other requirements constraining the access to a task are

satis�ed (i.e. the rule is satis�ed). The satisfaction or dissatisfaction of these

requirements will be re
ected by the availability or unavailability of tokens

in a task's control input place necessary to enable the task.

{ (Task inscription:) As reference net's allow for the inscription of transitions

with Java code, we can implement the access control method to a task by an

inscription of the entry transition of the task. The task will only be enabled

when its entry transition is enabled, and the entry transition can only be

enabled by being in the correct work
ow state plus the evaluation of the

access control method to true.

Obviously we can mix the two concepts as we like in a reference-net work
ow

speci�cation, controlling one task using the control-
ow scheme and another task

by a task inscription. However, in practice, combining the two approaches in one

speci�cation is probably not a good idea as it will decrease the readability of the

speci�cation and probably increase the likelihood of introducing errors.

6 An Example Work
ow

This section presents an example of a work
ow for a mobile-phone shop. It con-

tains several aspects of the work
ow engine. In this contribution we include

only the pure nets which have been executed by our work
ow engine. The en-

vironment, the data description, and some other auxilary classes are not shown

here.

Figure 10 represents the main net of a mobile-phone shop. Figure 11 contains

the check of some customer data and Figure 12 contains the delivery of the goods

as well as the check if a lower bound for the amount of goods has been reached.

The main net starts with a transition labeled with manual (that is the new

customer transition): A new order form is created. Then the EnterOrderData-

task is displayed at all salesmen displays. After its completion a new instance of

the form exists.

The larger places in the net are used to represent the existing orders for a

customer. The actual order now lies in place unchecked orders.

For this order a WorkflowTask for the check of the order (a net instance

of Figure 11) is instanciated. :start(activity,order) allows the access to the

order within the net instance of Figure 11. Within this net a WorkItem will be

o�ered to the oÆce workers in both cases (payment by credit card or bank).

Depending on the result of the check a check of the address may be performed.

The main net in Figure 10 now will continue according to the result. In the

149

[order,result]

new customer

unchecked orders

new orders

all orders all customers

new HashSet()

checked orders

order

newFrm

order

guard result.equals(PSResultImpl.ERROR);
action oldFrm = order.toForm()

[order,oldFrm]

["EnterOrderData",
oldFrm,newFrm]

order

[order,frm]

[order,oldFrm]

[order,newFrm]

guard result.equals(PSResultImpl.OK)

order

order

order

[order,result]

action order.setFrom(frm)

problematic orders

[order,result]

["SendDenial",order]

order

new ArrayList()

order

orders customers

order

action order = new PSOrderImpl();
action order.setFrom(frm)

frm

action newFrm = FormImpl
.createInstance("phoneshop.Order");

manual

["DeliverOrder",order]

order

order

order

order

["RequestNumbers",order]

["SendConfirmation",order]

guard result.equals(PSResultImpl.DENIED)

action orders.add(order);
action customers.add(order.getCustomer())

frm

["EnterOrderData",newFrm,frm]
newFrm

import de.renew.workflow.form.*;
import java.util.*;
import phoneshop.*;

["CheckOrder",order,result]

[order,result]

Fig. 10. Main net: Mobile-phone Shop

150

[activity,order]

[activity,order,result]

[activity,order] [activity,order]

:start(activity,order)

["CheckCreditCard",frm,result]

[activity,order,frm]

guard order.getPayment().getMode().equals(
PSPaymentModeImpl.CREDIT_CARD);
action frm=order.getPayment().toForm()

[activity,order,result]

[activity,order,resultVal]

guard order.getPayment().getMode().equals(
PSPaymentModeImpl.BANK);
action frm=order.getPayment().toForm()

action resultVal = PSResultImpl
.getInstance(result.get("result"))

[activity,order,result]

[activity,order,resultVal]

["CheckBank",frm,result]

guard resultVal.equals(PSResultImpl.OK);
action frm=order.getCustomer().toForm()

:end([activity,PSResultImpl
.getInstance(result.get("result"))],dummy)

[activity,result]

[activity,result]

[activity,order,frm]

["CheckAddress",frm,result]

[activity,order,resultVal]

guard !resultVal.equals(PSResultImpl.OK);
:end([activity,resultVal],dummy)

[activity,order,frm]

[activity,order,frm]

[activity,order,frm]

[activity,order,frm]

import de.renew.workflow.form.*;
import java.util.HashSet;
import phoneshop.*;

Fig. 11. Check order limit

151

[activity,order]

[activity,order]

order

activity

[activity,order]
order

activity

["PrepareDelivery",order] ["SendPackage",order]

[activity,order,frm]

["FindCarrier",frm,result]

[activity,order,frm]

[activity,order]

[activity,order]

[activity,order]

[activity,order,result] [activity,order,result]

:start(activity,order);
action frm=order.toCarrierForm() action order.setCarrierFrom(result)

:end([activity,null],dummy)

import phoneshop.*;
import java.util.HashSet;

["OrderProduct",order.getProduct()]

guard !order.getProduct()
.hasCriticalLevel()

order

guard order.getProduct()
.hasCriticalLevel()

order

order

Fig. 12. Shipping of goods

152

positive case it will continue with the request for phone numbers and then with

the sub-work
ow in Figure 12 where the shipping is handled.

This last net shows the possibility to �nish a work
ow for the upper level

by calling the :end(activity,dummy) transition and still having active parts

within the net. Once they are �nished the whole net instance is removed from

the system if there is no log function in the system. This is possible due to the

automatic garbage collection of the tool Renew. The designer of the net has

to ensure that the nets are designed in a way that allows to use this feature,

however, we will not deepen the discussion here.

This example covers only the operability, however, security issues can be

added as described in the sections above. The full modelling (or programming)

power of the work
ow engine can be seen when looking at the possibilities of

the net concepts that can be used and the inscriptions which cover nearly all

kind of Java code. One main attempt of our research is now to �nd the right re-

strictions and short cuts when designing work
ow systems. Following our overall

approach we aim at the integration of modelling and implementation. Without

tool support this does not seem to be feasible.

7 Conclusion

We have discussed in this paper how reference nets can be used to specify work-

ows and how the REference NEt Workshop (Renew) tool [6] can be extended

to form the corresponding work
ow engine. The major additional concept intro-

duced was that one of a task. We were able to reduce the concept of a work
ow

task to a three-transition reference-net structure. Such a structure has been inte-

grated into the three-layer architecture of Renew [3]. By adding a component to

handle tasks, tasks lists of user, etc., Renew was turned into a complete run-time

environment for reference-net work
ows. The basic mechanism of the work
ow

engine has successfully been used in the context of mobile devices (see [7]).

The concept of adding rules to tasks enabled us to develop a generic con-

cept for access controls in the work
ow engine. As these rules are simply Java

methods of type boolean, we can
exibly implement any existing access control

scheme into our formalism, including role-based and content-dependent access

controls [1, 8], based on the implemented features (see [3]). The
exibility of the

concept allows for including any other kind of information to check the authority

of an access request to a task, such as date and time, states of other work
ows,

system parameters, and so on. It should be noted that, because of the
exi-

bility of the approach, we only have created a generic concept for the design

and implementation of secure work
ows. The framework will have to be �lled

with design strategies that will again impose constraints on the
exibility of im-

plementing task rules. Otherwise the entire approach can become too complex

when specifying concrete work
ows, which can lead to undetected introduction

of security holes hidden behind a too complex mechanism. It will, together with

applying our approach to case studies, be part of future work to de�ne such

security design strategies.

153

References

1. RALPH HOLBEIN. Secure Information Exchange in Organisations. Dissertation.

Institute for Computer Science, University of Z�urich, Switzerland, 1996. (Pub-

lished by Shaker Verlag, Aachen, Germany, 1996.)

2. S�REN CHRISTENSEN and NIELS DAMGAARD HANSEN. Coloured Petri

Nets Extended with Place Capacities, Test Arcs and Inhibitor Arcs in: Marsan,

Marco Ajmone (Ed.). 14th Internation Conference on Application and Theory

of Petri Nets. LNCS 691, Berlin Heidelberg New York: Springer Verlag, pages

186{205, 1993

3. THOMAS JACOB. Implementierung einer sicheren und rollenbasierten

Work
owmanagement-Komponente f�ur ein Petrinetzwerkzeug. Diploma Thesis.

Department for Informatics, University of Hamburg, Germany, 2002.

4. KURT JENSEN. Coloured Petri Nets. EATCS Monographs on Theoretical Com-

puter Science. 3 Volumes, Berlin Heidelberg New York: Springer Verlag, 1992,

1994, and 1997.

5. OLAF KUMMER. A Petri Net View on Synchronous Channels. In: Petri Net

Newsletter 56: 7{11, 1999.

6. OLAF KUMMER. Referenznetze. Dissertation. Department for Informatics, Uni-

versity of Hamburg, Germany, 2002.

7. STEFAN M�ULLER-WILKEN and WINFRIED LAMERSDORF. JBSA: An In-

frastructure for Seamless Mobile Systems Integration. In: Claudia Linnho�-Popien

and Heinz-Gerd Hegering (Eds.): Proc. 3rd IFIP/GI International Conference on

Trends towards a Universal Service Market (USM 2000), Berlin Heidelberg New

York: Springer Verlag, 164-175, 2000

8. ULRICH ULTES-NITSCHE and STEPHANIE TEUFEL. Secure Internet-Access

to Medical Data. In: Informatik | Journal of the Swiss Chapter of the ACM.

No. 1, February 2001. Special Issue on IS and the Transformation of Health Care,

pages 23{26.

9. R�UDIGER VALK. Petri Nets as Token Objects: An Introduction to Elementary

Object Nets. In: 19th Internation Conference on Application and Theory of Petri

Nets. LNCS 1420, Berlin Heidelberg New York: Springer Verlag, pages 1{25, 1998.

10. WIL M.P. VAN DER AALST, DANIEL MOLDT, R�UDIGER VALK, and

FRANK WIENBERG. Enacting Interorganizational Work
ows Using Nets in

Nets. In: Proceedings of the 1999 Work
ow Management Conference \Work
ow-

base Applications". University of M�unster, Germany, pages 117{136, 1999.

154

