ISSN 0105-8517

Third Workshop and Tutorial on
Practical Use of Coloured Petri Nets
and the CPN Tools

Aarhus, Denmark,
August 29-31, 2001

Kurt Jensen

(Ed.)

DAIMI PB - 554
August 2001

DATALOGISK INSTITUT ‘ W ‘ E
AARHUS UNIVERSITET

Ny Munkegade, Bygn. 540
8000 Arhus C

TH]
L0
aall =
L

Preface

This booklet contains the proceedings of the Third Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, August 29-31, 2001. The workshop is
organised by the CPN group at Department of Computer Science, University of
Aarhus, Denmark. The papers are also available in electronic form via the web
pages: http://www.daimi.au.dk/CPnets/workshop01/

Coloured Petri Nets and the CPN tools are now used by more than 750
organisations in 50 countries all over the world (including 150 commercial
enterprises). The aim of the workshop is to bring together some of the users and in
this way provide a forum for those who are interested in the practical use of
Coloured Petri Nets and their tools.

The submitted papers were evaluated by a programme committee with the
following members:

Jonathan Billington ~ Australia (j.billington@unisa.edu.au)

Sgren Christensen Denmark (schristensen@daimi.au.dk)

Jorge de Figueiredo Brazil (abrantes@dsc.ufpb.br)

Nisse Husberg Finland (Nisse.Husberg@hut.fi)

Kurt Jensen (chair) Denmark (kjensen@daimi.au.dk)

Charles Lakos Australia (Charles.Lakos@adelaide.edu.au)
Alexander Levis USA (alevis@gmu.edu)

Daniel Moldt Germany (moldt@informatik.uni-hamburg.de)
Laure Petrucci France (petrucci@Isv.ens-cachan.fr)

Dan Simpson UK (Dan.Simpson@brighton.ac.uk)
Edwin Stear USA (estear@aol.com)

Robert Valette France (robert@Ilaas.fr)

Ridiger Valk Germany (valk@informatik.uni-hamburg.de)
Klaus Voss Germany (klaus.voss@gmd.de)

Jianli Xu Finland (jianli.xu@research.nokia.com)
Wilodek Zuberek Canada (wlodek@cs.mun.ca)

The programme committee has accepted 7 papers for presentation. Most of these
deal with different projects in which Coloured Petri Nets and their tools have been
put to practical use — often in an industrial setting. The remaining papers deal with
different extensions of tools and methodology.

The papers from the first two CPN Workshops can be found via the web pages:
http://www.daimi.aau.dk/CPnets/. After an additional round of reviewing and
revision, some of the papers have also been published as a special section in the
International Journal on Software Tools for Technology Transfer (STTT). For
more information see: http://sttt.cs.uni-dortmund.de/

Kurt Jensen

Table of Contents

Louise Lorentsen, Antti-Pekka Touvinene, and Jianli Xu
Modelling Feature Interaction Patterns in Nokia Mobile Phones using

Coloured Petri Nets and DeSign/CPNcccooeiiiiiniinic e

Monika Heiner, Ina Koch, and Klaus Voss
Analysis and Simulation of Steady States in Metabolic Pathways with

PRETT N LS ettt e et s

Bo Lindstrgm and Sajjad Haider
Equvivalent Coloured Petri Nets Models of a Class of Timed Influence

NELS WIth LOGIC ..o

Invited Talk:
Lin Zhang
Operational Planning: A Use Case for Coloured Petri Nets and

DESIGNICPN ...ttt e beeae e

Kjeld H. Mortensen
Efficient Data-Structures and Algorithms for a Coloured Petri Nets

SIMUIBTON <.

Guy Gallasch and Lars M. Kristensen
Comms/CPN: A Communication Infrastructure for External

Communication With DeSIgN/CPNL............cccciveiiiiieieeie e

Invited Talk:
Giuliana Franceschinis

Stochastic Well Formed NetS: an OVEIVIEWoooveeeeeeeeie

Lin Liu and Jonathan Billington

Modelling and Analysis of the CES Protocol of H.245ccceevene

Chun Ouyang, Lars Michael Kristensen, and Jonathan Billington
An Improved Architectual Specification of the Internet Open Trading

PIOTOCON .. e et a e

Modelling Feature Interaction Patterns in Nokia Mobile
Phones using Coloured Petri Nets and Design/CPN

Louise Lorentsen', Antti-Pekka Tuovinen 2, and Jianli Xu 2

'Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 ARHUS N, DENMARK,
louisel@daimi.au.dk
2Software Technology Laboratory, Nokia Research Center
P.O. Box 407, FIN-00045 NOKIA GROUP, FINLAND

{Antti-Pekka.Tuovinen,Jianli.Xu}@nokia.com

Abstract. This paper describes the first results of a project on modelling of important feature
interaction patterns of Nokia mobile phones using Coloured Petri Nets. A modern mobile phone
supports many features: voice and data calls, text messaging, personal information management
(phonebook and calendar), WAP browsing, games, etc. All these features are packaged into
a handset with a small screen and a special purpose keypad. The limited user interface and
the seamless intertwining of logically separate features cause many problems in the software
development of the user interface of mobile phones. In this paper, we look at the problem of
feature interaction in the user interface of Nokia mobile phones. We present a categorization
of feature interactions and describe our approach to the modelling of feature interactions using
Coloured Petri Nets (CP-nets or CPN). The CPN model is extended with visualisation and
interaction facilities to allow the user to control and get information from simulations without
interacting with the underlying CP-nets. The CPN model will be used in the design of new
features to identify and analyse the interactions of features. The CPN model constructed in the
project successfully identified inconsistencies in the specifications. Furthermore, the construction
of the CPN model has lead to interesting ideas for possible improvements in the architecture of
the mobile phone UI software system.

1 Introduction

The modern mobile phones provide increasingly fancy and complex features to the user via
their user interface (UI). These features are implemented by UI applications in the mobile
phone Ul software architecture. In the development of the user interface software for a mobile
phone, it is important to identify and clearly specify the right interactions between the sep-
arate features of the mobile phone at an early stage of the development. This helps to avoid
costly delays in the integration phase of a set of independently developed features. Feature
interaction means a dependency or interplay of features. The feature interactions can be con-
ceptually simple usage dependencies or more complex combinations of independent behaviors.
Precise descriptions of the feature interactions are also needed when planning the testing of
the UI software. The types and the number of interactions a feature has with other features
are direct indicators of the cost of developing the feature which is important information for
the planning and management of the development effort.

In this paper, we describe the work of a joint project of Nokia Research Center and the
CPN Group at the University of Aarhus, in which Coloured Petri Nets (CP-nets or CPN)[3]
and its supporting Design/CPN tool [5] are used to model important patterns of feature
interactions that can occur in the user interface of Nokia mobile phones. Currently, feature
interactions are not systematically documented. Often the most complex interactions are not
fully understood before the features are implemented. The goals of this work are to identify

categories of interactions that are specific to the domain and to create behavioral models
that capture the typical feature interaction patterns in each category. The models describe
the behavior of the Ul at the level that the user of a handset may observe it. The models
will help estimate the cost of developing the features of a product for a specific UI style, and
most importantly they will help the design of UI applications by exposing critical behavioral
patterns of feature interactions. The CPN models will also help in assessing how well the
common UT software architecture supports the development of features for different UT styles.

It is necessary to have precise behavioral descriptions of the typical interaction patterns
that can occur in specific styles. The Ul designers and Ul software designers who are devel-
oping new features for a specific Ul style will use the CPN models to identify and analyse the
interaction patterns of their new features. From the software development point of view, it
is important to create a connection from the behavioral patterns to typical implementation
patterns of the UI applications. The explicit behavioral models of the typical interaction pat-
terns will also guide the development of the common UI software architecture that provides
the infrastructure for realizing the behavioral patterns.

Coloured Petri Nets (CP-nets or CPN)[3] is a graphical modelling language with a well-
defined semantics allowing simulation of the behaviour specified by the CPN models as well
as formal analysis [4]. In contrast to many other modelling languages CP-nets are both state
and action oriented. CP-nets has proven powerful for modelling of concurrent systems and a
number of successful projects have demonstrated its usefulness in modelling and analysis of
complex systems. Examples of this can be found in [2] which is a list of published papers
describing industrial use of CP-nets. The list is maintained by the CPN group at the University
of Aarhus.

The paper is organised as follows. Section 2 gives an overview of the project organisation.
Section 3 contains an introduction to features and feature interactions in Nokia mobile phones
and discusses a categorisation of feature interactions. Section 4 presents selected parts of the
CPN model. Section 5 presents extensions to the CPN model implementing visualisation and
interaction techniques. Finally, Sect. 6 contains the conclusions and a discussion of future
work. The reader is assumed to be familiar with the basic ideas of High-level Petri Nets.

2 Project Description

The work described in this paper is about the mid-term results of a cooperation project be-
tween Nokia Research Center and the CPN group from the University of Aarhus. The project
is called the MAFIA (Modelling and Analysis of Feature Interactions in mobile phone Archi-
tectures) project. MAFIA is an ongoing project started in November 2000 and the planned
work resources for the first year are about 16 man months. Four researchers (1 full time and 3
part time) from the CPN Group and two researchers (part time) from Nokia Research Center
are involved in the project. The aim of the project is threefold:

1. To identify typical interaction patterns between features in Nokia mobile phones. We will
explain the terms feature and interaction in Sect. 3.

2. To build CPN models which captures the patterns and validate these models.

3. To produce documentation of the interaction patterns that can be used and understood
by the UI designers and UI software developers.

The initial work has been done at Nokia Research Centre to validate the use of CP-nets
in modelling feature interaction patterns in mobile phones before the joint project started.

The researchers at Nokia Research Centre have practical experience with CP-nets and the
Design/CPN tool in other Nokia research projects, so the modelling work started immediately
at the beginning of the project. One researcher from the CPN group worked full time at Nokia
Research Center for six months to construct the CPN models and the necessary visualisation
facilities for the model with help from the Nokia researchers. Other project team members
from the CPN Group at the University of Aarhus provide guidance and technical support on
the modelling and model analysis work.

Mobile phone UI specification documents and UI software architecture design documents
have been studied thoroughly in the early phase of the project, the knowledge gained here is
fundamental to the modelling work. After the modelling framework and the models of several
key features and their interactions were ready, we organised a workshop for project team
members, Ul designers and Ul software developers from product development teams. During
the workshop participants from the development team provided valuable feedback about how
the models and model visualisation facilities will be used in the product development. More
typical complex feature interaction scenarios were collected during and after the workshop.
The project team has good and ongoing contacts and communications with the software
architecture team, Ul designers and Ul software developers.

In the current phase of the project we focus on modelling and simulation of important and
complex feature interaction scenarios to identify all the important interaction patterns, check
their correctness and specify them with CPN models. In the next phase of the project we will
focus on validating the CPN models and how to produce documentation of the interaction
patterns using the CPN models.

3 Feature Interactions in Nokia Mobile Phones

Modern mobile phones are feature-rich products. Besides basic communication capabilities,
e.g., making and receiving calls and sending and receiving short text messages, they have
an in-phone directory (phonebook), calculator, calendar, games, WAP for accessing wireless
internet services etc. The next generation of mobile devices will add location sensitive services
and multimedia capabilities. The diversification in the product families is great due to the
different national network standards and market segmentation.

The user interface of a mobile phone can be characterized as task-oriented. This means
that the mobile phone Ul is designed to support directly the main functions of the device.
This is very different from a traditional PC that has a generic Ul that supports a wide range
of applications with a uniform way of launching the applications and accessing the data.
For example, a phone may have keys assigned permanently for beginning and ending a call.
Further, when browsing the contact information stored in the phonebook or calendar, it should
always be possible to call those parties by a single press of a key. This design philosophy stems
directly from the domain, i.e., from the requirements and needs of mobile phone users and
from the physical and economical constraints of the devices.

The UI specifications of a product is a written document that define the appearance
and behavior of the phone features. The Ul specifications communicate the design of the user
interface and the flow of user interaction to the Ul software developers. The specifications may
also have descriptions of the interactions between the features. However, feature interactions
are not described in a systematic way and finding all interactions of a feature means reading
through a large amount of documents.

Nokia mobile phones have several different Ul styles for different families of products. The
UT style is an important part of the product brand and it has a relatively long lifetime. It
describes the physical structure of the UI and the basic mechanisms of user interaction. The
UI style of a mobile phone captures many assumptions about the needs, expectations, and
lifestyle of the intended user groups. Therefore it is important to consider also the feature
interaction issues at an early stage of the system family conception when the key features are
being identified. One of the goals of the MAFIA project is to develop a systematic methodology
for describing interactions between phone features at the level of the behavior as observed by
the user of the handset. From the system family perspective, the idea is to build models of
typical interaction patterns shared by products conforming to the same Ul style that dictates
most of the interactions. In a system family, these models span a number of products and
several generations of the Ul style.

3.1 Types of Feature Interactions

By studying the UI specifications we have identified three main types of interactions that all
stem from different sources. Below we give a categorisation of the three types (I - 111). An
interaction between two features can fall into more than one category.

I. The first category of interactions comes from the need of the features to use each other
(called the use interactions). For instance, the task-oriented user interface design requires
that when browsing the phone numbers stored in the phone, a call can be made to a
number directly from the browser. This represents an interaction between the phonebook
and mobile originated call features that is necessary to deliver a smooth and seamless
service to the user.

11. The second category of interactions comes from the need to share the limited UI resources,
e.g., the screen and the keypad, between many features that can be activated indepen-
dently of each other. Because of the prioritisation of the users tasks (and the associated
features), important events may interrupt less important activities, e.g.,

— an incoming call screens phonebook browsing for the duration of the call

— hang-up key stops search from phonebook (the browser is killed)

— an incoming call suspends a game but the game is saved so the it can be continued
after the call is terminated

1. The third category involves interactions where one feature affects other features by making
them unavailable or by modifying their behavior in some other way. For instance, the any
key answer feature makes it possible to answer an incoming call by pressing any key on
the keypad and the key guard feature locks the keypad for accidental key presses. The
combined effect of these features is that if any key answer is enabled and key guard is
on, an incoming call can be answered only by pressing the ’off-hook’ key. However, once
the call is open, key guard is disabled for the duration of the call and then enabled again
automatically. This scenario can be made more complex ad nauseatum by adding other
simultaneous events, e.g., calendar alarm and warning of low battery level.

The use interactions (the first category) are thoroughly specified in the UT specifications
and they are not problematic from the implementation point of view. However, the interactions
of the second and the third categories are much more difficult to manage in the software design
and implementation; they also lack systematic documentation. Therefore, it is the task of the

MAFIA project to concentrate on modeling and documenting the typical feature interaction
patterns that belong to the latter categories.

In the first phase of the project we have mainly concentrated on interactions in category
IT of the list above. This is reflected in the CPN model presented in Sect. 4.

4 CPN model of Feature Interactions in Mobile Phones

This section presents selected parts of the CPN model developed in the MAFIA project. The
CPN model does not capture the full mobile phone UT software architecture but it concentrates
on a number of selected features that are interesting from the feature interaction perspective.
The purpose of the section is twofold. First, to give an overview of the CPN model and second,
to give an idea of the complexity of the CPN model and the abstraction level chosen.

4.1 Overview of the CPN model

Figure 1 gives an overview of the CPN model by showing how it has been hierarchically
structured into 22 modules (subnets). The subnets are in CPN terminology also referred to
as pages and we will use this term throughout the paper. Each node in Fig.1 represents a
page of the CPN model. An arc between two nodes indicates that the source node contains a
so-called substitution transition whose behaviour is described in the page represented by the
destination node.

.............

.........................
.............

.............

.

Fig. 1. The hierarchy page.

The CPN model consists of four main parts corresponding to four concepts of the mo-
bile phone UI software architecture: applications, servers, Ul controller, and communication
kernel.

Applications. Applications implement the features of the mobile phone. The CPN model
presented here includes 11 features: idle state, game, call, multi call handling, in-call menu,
any key answer, key guard, phonebook, alarm, power, and profiles. Applications make the
feature available to the user via a user interface.

Servers. Servers implement the basic capabilities of the phone. Applications implement the
behaviour of features by using the services of servers. The CPN model presented here
includes three servers: call server, power server and menu server. Servers do not have user
interfaces.

UI controller. The role of the UI controller is to handle the user interfaces used by the
applications to present the features to the user of the mobile phone. Such user interfaces
include information about which text, icons, graphics etc. should be shown on the display
of the mobile phone, a mapping of user keypresses to events, tones to be played etc.
When the applications are running they request the UI controller to access the Ul. The
applications provide the UI controller with the graphics, key press mapping, tones etc.
The UI controller will present the user interface to the user (using the display, tones etc.
of the mobile phone) and use the key press mapping to map user input to actions which
will be returned to the application. There are often several active applications at the same
time. Hence, the UT controller will need to apply some scheduling mechanism to control
the applications’ access to the limited Ul resources. We will give an example of this in
Sect. 5.1.

Communication kernel. Servers and applications are communicating by means of asyn-
chronous message passing. The messages are sent through the communication kernel which
implements the protocol used in the communication between the applications, servers, and
the user interface (UI controller).

The page Nokia depicted in Fig. 2 is the top-most page of the CPN model and provides
the most abstract view of the mobile phone Ul software architecture. The page consists
of four substitution transitions (Applications, Servers, UlController and CommunicationKernel)
corresponding to the four parts mentioned above. The phone element and the two adjacent
places are used for visualisation and are not part of the Petri Net model of mobile phone Ul
software architecture system.

—0S-0X SO—-mpo—-353c3300

Fig. 2. Page Nokia.

4.2 Modelling the features

In the following we go into more detail on how the features of the mobile phone are modelled.
We will use the game feature as an example. The game feature is chosen as an example because
it is fairly simple and intuitively clear but still complex enough to illustrate the interesting
aspects of the CPN model.

Figure 3 shows the page Game modelling the game feature. In Fig. 3 the places Idle, Se-
lected, Playing, and Suspended all have the colour set Application, which denotes a cartesian
product of an application and some internal data of the application, e.g., for the game fea-
ture whether there is a saved game. These four places model the possible states of the game
feature. We will explain the rest of the places in Fig. 3 later.

Application

Selec Quit’E

InitCol InitCol
init_Select() init_Quit()

Selected Jr = = = = = — — — — — — —m ——————— = _—

f f Application) ‘I
v I :

g‘éfg&gﬁt‘g New] Restart @ Escap?r Resum’elTS

InitCol InitCol InitCol = InitCol A
init_End() init_Escape() J init_Resume() X

InitCol
init_Suspend() : init_New() L init_Restart()

Application
|

E a

]
A 4

1
I
I
I
1
1
1
1
Interrupt 1
1
1
1
1

)

layin
InitCol Py QW
init_Suspend() |

1
I
I
I
1
1
I
1
|
|
|
!
(

————————————————————— Interrupted T T T T TS TS TS m e

Application

Fig. 3. Page Game.

Initially the game feature is Idle. The selection of a kind of game is modelled by the
transition Select, which causes the game to change its state from being ldle to Selected.
Transition Quit models the quitting of the game feature and causes the game to change its
state from Selected to Idle. The transitions New and Restart model the start of a new game
and restart of a previously saved game, respectively, and causes the game to change its state
from Selected to Playing. The transitions End and Escape model the termination of a game
and the save and escape from a game (which then can be resumed later), respectively, and
causes the game to change its state from Playing to Selected.

While a game is Selected or Playing it can be suspended by other features in the system,
e.g., an incoming call. This is modelled by the two transitions SuspendSelected and Suspend-

Playing which causes the game to change its state from Selected or Playing, respectively, to
Suspended. A Suspended game can be resumed. This is modelled by the transition Resume
which causes the game to change its state from Suspended to Selected. All the transitions in
Fig. 3 are substitution transitions.

All state changes in the game feature, i.e., all substitution transitions in Fig. 3, correspond
to the same overall pattern of behaviour based on sending a request to the UI controller and
wait for an acknowledgement. The overall pattern corresponds to the items in the list below.

1. The state change is triggered by an incoming message to the feature, e.g., a message from
the UI controller reporting some user action.

2. The feature requests the UI controller to put a user interface on the display (or if the
feature already has a user interface shown on the display to update that user interface).

3. The feature waits for an acknowledgement from the UI controller.

4. When receiving the acknowledgement the feature completes its state change and changes
its internal data accordingly, e.g., when restarting a previously saved game the game
feature will change its data from saved to in_progress.

This overall pattern is modelled by the page Send_Receive shown in Fig. 4.

Application
app_in
:
oo msem [(#kind msg_in)=msgkind,
\I member_app(app_in,appmsg_list),
Msg v msg_out = find_msg(app_in,appmsg_list)]
send
Aot | At |- """t TTTmmT S
request ((msgkind,appmsg_list),receive)
Craude, | '
ot /
list_to_ms(msg_out)
Msg
app_in
A 4 [Plee]
G
Application InitCol
apptn

msg_in [(#kind msg_in)=msgkind,
0 __________ o app_out=find_app(app_in,app_list),

+V msg_out = find_msg(app_in,appmsg_list)] |

receive | ...
ack (send,(msgkind,app_list, msg_out))

--------- /

list_to_ms(msg_out)

app_out

REIM 4
End

Application

Fig. 4. Page Send_Receive.

The page Send_Receive contains three port places: Start, End and Init. Places Start and End
are bound to the input place and the output place of the substitution transition, respectively.
Place Init is bound to the place connected to the substitution transition with a line (a line
corresponds to an arc with arrowheads in both directions). Places Ain and Aout model the
input and output buffers between the communication kernel and the application (see Fig. 2).
Ain (and Aout) are specified as fusion places which means that all the places occurring with
name Ain (and Aout) are identical even though they are drawn as individual places. The two
transitions SendRequest and ReceiveAck models the basic communication pattern listed above.

— SendRequest models items 1 and 2. The guard checks that msg_in is a message which
triggers the state change (the first line in the guard), that the application is in a state
where it is allowed to perform the state change (the second line in the guard) and finally
the guard ensures that msg_out is bound to the messages sent (the third line in the guard).

— ReceiveAck models items 3 and 4. The guard checks that msg_in is an acknowledgement
from the UI controller (the first line in the guard), that the application performs the state
change (the second line in the guard) and finally the guard ensures that msg_out is bound
to the messages sent (the third line in the guard).

The concrete information about which messages ’triggers’ the event, which messages are
sent, what change in data are performed etc. is read from the (initial) marking of the Init place.
All the substitution transitions in the page Game shown in Fig. 3 are bound to instances of
the page Send_Receive shown in Fig. 4 with individual instantiations of the corresponding Init
places. For the sake of readability all the initial markings are specified by means of functions
which all evaluate to constants.

All the features in the CPN model follow the same idea as the game feature. Hence, when
adding a new feature a page modelling the overall state changes is provided together with
a description of the display requests, use of servers or other applications and the internal
data of the feature. This way of modelling the features reflects the way the features currently
are described/documented in the UI specifications. Here the features are described using a
textual description of the possible states and state changes of the feature together with a
description of the user interfaces, use of other applications, and the reactions of the feature to
user key presses. Hence, the CPN model of the features closely follows both the Ul designers’
and UI software developers’ current understanding of features as well as the current available
documentation of the features.

We have now presented the CPN model of the game feature to give an idea of the com-
plexity of the CPN model and the efforts required to include a feature in the model. As can be
seen from the above presentation the overall infrastructure of the mobile phone Ul software
system has been modelled and adding a new feature is relatively easy. More importantly is
that new features can be added without changing the models of the existing features which
makes it very easy to add or disable features in the future formal analysis.

We model the individual features of the mobile phone using the same ideas as described
for the game feature. The feature interactions are captured in the CPN model as the commu-
nication and interaction between the individual features in the CPN model. In the first phase
of the MAFIA project we have used simulations of the CPN model to detect and investigate
interactions between the features in the CPN model. Using simulations we have obtained
detailed knowledge about the feature interactions and identified the important patterns of
interaction. Later phases of the project will include more formal analysis, e.g., state space
analysis, of the CPN models.

5 Simulations of Scenarios

The UT designers and Ul software developers who are developing new features will use the
CPN models to identify and analyse the interaction patterns of their new features. One way
of using the CPN models is by means of simulation; both interactively (step-by-step) for
detailed investigation of the feature interactions and more automatically for investigation
of larger scenarios. In this section we will present techniques which allow UI designers and
UI software developers (who are not familiar with CP-nets) to control and gain information
from simulations without interacting directly with the underlying CP-net and its token game.
Section 5.1 presents two extensions to the CPN model providing information about simula-
tions. Section 5.2 presents two extensions to the CPN model allowing the UI designers and
UT software developers to control simulations.

5.1 Visualisation of Simulations

Two extensions are made to the CPN model allowing the current state of the CPN model
and the behaviour of the CPN model during simulation to be visualised. Firstly, the state
of the phone as the user observes it on the handset is visualised via an animation of the
display. Secondly, the CPN model is extended with Message Sequence Charts (MSCs)[1] to
be automatically constructed as graphical feedback from simulations. The reason MSCs are
chosen to visualise the behaviour of the CPN model is that diagrams very close to MSCs
are already in use in the design process at Nokia. MSCs therefore allow the behaviour of the
CPN model to be visualised in a way that is familiar to the Ul designers and UI software
developers.

The state of the phone as the user observes it on the handset is visualised via an animation
of the display. Figure 5 shows a snapshot of the animation taken during a simulation of the
CPN model. The snapshot shown corresponds to a state where the game feature is Selected
(a kind of game has been selected) and has a user interface on the display. The user now
has the possibility to either start a new game (transition New in Fig. 3), restart an old
game (transition Restart in Fig. 3) or set the level of the game (not included in the CPN
model). The animation is implemented using the Mimi