
ISSN 0105-8517

Third Workshop and Tutorial on
Practical Use of Coloured Petri Nets
and the CPN Tools
Aarhus, Denmark,
August 29-31, 2001

Kurt Jensen
(Ed.)

DAIMI PB – 554
August 2001

DATALOGISK INSTITUT
AARHUS UNIVERSITET

Ny Munkegade, Bygn. 540
8000 Århus C

Preface

This booklet contains the proceedings of the Third Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, August 29-31, 2001. The workshop is
organised by the CPN group at Department of Computer Science, University of
Aarhus, Denmark. The papers are also available in electronic form via the web
pages: http://www.daimi.au.dk/CPnets/workshop01/

Coloured Petri Nets and the CPN tools are now used by more than 750
organisations in 50 countries all over the world (including 150 commercial
enterprises). The aim of the workshop is to bring together some of the users and in
this way provide a forum for those who are interested in the practical use of
Coloured Petri Nets and their tools.

The submitted papers were evaluated by a programme committee with the
following members:

Jonathan Billington Australia (j.billington@unisa.edu.au)
Søren Christensen Denmark (schristensen@daimi.au.dk)
Jorge de Figueiredo Brazil (abrantes@dsc.ufpb.br)
Nisse Husberg Finland (Nisse.Husberg@hut.fi)
Kurt Jensen (chair) Denmark (kjensen@daimi.au.dk)
Charles Lakos Australia (Charles.Lakos@adelaide.edu.au)
Alexander Levis USA (alevis@gmu.edu)
Daniel Moldt Germany (moldt@informatik.uni-hamburg.de)
Laure Petrucci France (petrucci@lsv.ens-cachan.fr)
Dan Simpson UK (Dan.Simpson@brighton.ac.uk)
Edwin Stear USA (estear@aol.com)
Robert Valette France (robert@laas.fr)
Rüdiger Valk Germany (valk@informatik.uni-hamburg.de)
Klaus Voss Germany (klaus.voss@gmd.de)
Jianli Xu Finland (jianli.xu@research.nokia.com)
Wlodek Zuberek Canada (wlodek@cs.mun.ca)

The programme committee has accepted 7 papers for presentation. Most of these
deal with different projects in which Coloured Petri Nets and their tools have been
put to practical use – often in an industrial setting. The remaining papers deal with
different extensions of tools and methodology.

The papers from the first two CPN Workshops can be found via the web pages:
http://www.daimi.aau.dk/CPnets/. After an additional round of reviewing and
revision, some of the papers have also been published as a special section in the
International Journal on Software Tools for Technology Transfer (STTT). For
more information see: http://sttt.cs.uni-dortmund.de/

Kurt Jensen

I

Table of Contents

Louise Lorentsen, Antti-Pekka Touvinene, and Jianli Xu
Modelling Feature Interaction Patterns in Nokia Mobile Phones using
Coloured Petri Nets and Design/CPN ...1

Monika Heiner, Ina Koch, and Klaus Voss
Analysis and Simulation of Steady States in Metabolic Pathways with
Petri Nets ...15

Bo Lindstrøm and Sajjad Haider
Equvivalent Coloured Petri Nets Models of a Class of Timed Influence
Nets with Logic ...35

Invited Talk:
Lin Zhang
Operational Planning: A Use Case for Coloured Petri Nets and
Design/CPN...55

Kjeld H. Mortensen
Efficient Data-Structures and Algorithms for a Coloured Petri Nets
Simulator ...57

Guy Gallasch and Lars M. Kristensen
Comms/CPN: A Communication Infrastructure for External
Communication with Design/CPN..75

Invited Talk:
Giuliana Franceschinis
Stochastic Well Formed Nets: an overview ..91

Lin Liu and Jonathan Billington
Modelling and Analysis of the CES Protocol of H.24595

Chun Ouyang, Lars Michael Kristensen, and Jonathan Billington
An Improved Architectual Specification of the Internet Open Trading
Protocol ...115

II

� ���������
	
�
���
�������
��������������������	 �!�#"$���%�����&�
'(��*)+�-,.	
�/� �10�	
�
�
"32
�!�
��'4�
'�	��
�657�!� �1�
�����8"9�:���&	;)+�:��'4�<�
�8=>��'�	 �!�@?!53"A)

BDCFE�GIHKJ�BDCML JONQP H JON�ROS�T!NUPKP GWVYX�J[Z\Z^]@_`EaCcb\GdNaJONfe^Sg]MN�hfiQGI]MN�jIG�k�Efe
lnm:oqpsr tvuxw�oqy[u�z�{%|�z�w�p^}~uxo�t`�~�q��oqyc�qo��c��yc����o�tx�v��u��<z�{g�`r
tx�O}^�

�n��� psr tx��oqyQ�^�`r��Mz���r��~o����~�sm:� �����
���;��D�` `�¡��¢£�~m¡¤�¢¡¥��D�`�¦�
§�¨
©~ª�«�¬[§�­�®O¯[ª�°MªU±n¯
©g±�®
²³K�Oz�{´u�µ�r txo � oq�Y�^ycz�¶�z��
�¸·\r
�Mz�tYr uxz�tv�[�c¢�z��O��r��Doq�voKr tx�¹��|�o�yOuxo¹t

ºa» ¼£»^½ zK¾-� ��¿ �FÀ � ¢ ������� �[Á£¢ ¼ � � �;Â�� ¼ � º �cÀ � ¢�·\�`¢`m
Ã Ä�Å[Æ�Æ ª�Ç ÈO¬
²�²c¯\±�É�©~¨�ÊOª Å ¬ Å�ËvÌ ª�¯ Å §�ª\±�Í�©cÎ ­ Å ¨ ²^ª�¯a±nÏ�¨q°

Ð-ÑÓÒqÔqÕ Ös×�Ô�Ø � �c���&p^r�pMo�t&�~oq�v��tx���Moq��ux�^oDÙ^tx�nu�txo��v}^¶�ux��z�{Ór£pctxz Úno���uDz�y-w�zO�coq¶�¶���y^��z
{Ó��w�pMz�tvuYr
y[u�{WoKr ux}ctxo��yOuxo¹tYr���ux��z�y-psr uvuxo�txy^�%z�{U¢�z��~��r�w�z��c��¶�oDp^�cz�y^o���}^�v��yc�¦|�z�¶�z�}ctxoK� º o�uvtx�M¢`o�ux� » �Ûw�zO�co�txy�w�z��^��¶�o`pc�^z�y^o�v}^pcpMz�tvux��w<r
y[�£{ÜoKr
ux}~txoq�qÝO��z����qo�r�y^���^r
uYr¡�Kr
¶�¶��q�Ouxo�¾Ou%w�oq�v�xr�����y^�c�OpMo¹tx�vz�ysr
¶M��yc{Wz
txw<r
ux��z�y<w<r
ysr���oqw�oqy[u
Þ p^�cz�y^o��Mz[z��@r�ys�@�Kr�¶�oqy^�^r
t¹ß¹��à.� º �~txzKµ&�v��yc�c����r�w�oq�q��o�ux� » �`¶�¶Dux�coq�vo¸{WoKr ux}ctxoq�!r
txo�p^r��Y��r
��oK�á��y[uxzrâ�^r�ys�~�vo�u¦µ&��ux�@râ�vw<r�¶�¶��v��txo�oqyár
ys�ãrâ�vpMoq�q��r
¶Dpc}ctxpMz��vo���o��~psr�� »�� �co1¶���w���uxoK�ã}c�vo�t<��y[uxo�tv{är
�qo¸r�y^�ux�^o��voqr�w�¶�oq�v����y[uxo�tvu�µ&��y^��yc�åz�{:¶�z������Kr
¶�¶��æ�voqpsr tYr
uxo1{ÜoKr
ux}~txoq�<�Kr�}c�vo¸w<r�y[��pctxz��^¶�oqw��¦��yãux�^o1�vz
{Üu�µ�r
txo�coq��oq¶�z�p^w�o�yOu�z
{&ux�^o<}^�vo�t£��y[uxo�tv{är
�qo!z
{Dw�z��^��¶�o�p^�cz�ycoq� »Ó� y
ux�^���£p^r�pMo�tK�Uµ�o<¶�z[z���r u£ux�co<pctxz��c¶�oqwçz�{{WoKr ux}ctxo!��y[uxo�tYr
��ux��z�yè��y�ux�^o-}^�vo�t���y[uxo�tv{Wr��qo!z�{D¢�z��O�´r¸w�z��^��¶�o!pc�^z�ycoq� » àåo!p~txoq�voqy[u¦r¸�Kr uxoq��z
tx��éKr
ux��z�yz�{a{ÜoKr
ux}~txo£��y[uxo�tYr��¹ux��z�y^�`r�y^���coq�v�¹tx���Mo�z�}ct�r�p^p~txz�r
�¹�1uxz¦ux�co¡w�zO�coq¶�¶���y^��z
{a{WoKr ux}ctxo���yOuxo¹tYr���ux��z�yc�`}c�v��y^�|�z�¶�z�}~txoK� º o�uvtx�D¢�o¹ux� Þ | º�� y^o¹ux��z�t!| º ¢¡ß »�� �^o�| º ¢3w�zO�~oq¶&����o¹¾~uxo�ys�coq�èµ&��ux�æ�O���v}sr
¶����xr ux��z�yfr�y^���yOuxo¹tYr���ux��z�y�{är
�q��¶���ux��oq�¡uxz!r�¶�¶�zKµêux�^o�}^�vo�t:uxz<�qz�y[uvtxz�¶gr�y^����o�u:��y~{Wz�txw<r ux��z�y�{Ütxz�w3�v��w£}^¶�r
ux��z�y^��µ&��ux�^z�}cu��yOuxo¹tYr���ux��y^�.µ&��ux�@ux�^o!}^y^�co�tx¶��~��y^�å| º�� y^o¹ux� »�� �co¸| º ¢3w�zO�~oq¶�µ&��¶�¶D�Mo1}c�voK�è��yèux�^o1�coq�v����yæz�{�y^o�µ{WoKr ux}ctxoq��uxz£�´�~oqy[ux��{Ü�-r�y^�!r
ysr
¶��~�vo:ux�co���y[uxo�tYr���ux��z�y^�&z�{U{WoKr ux}ctxoq� »^� �^o�| º ¢ëw�zO�~oq¶M�qz�y^�nuvtx}^�¹uxoK�!��y<ux�^opctxz Únoq�¹u��v}c�q�qoq�v�n{Ü}^¶�¶��¦���coqy[ux��Ùsoq�£��y^�qz�y^�v���nuxoqyc�q��oq�%��y�ux�co��vpMoq�q��Ùs�qr
ux��z�yc� » À^}~tvux�^o�txw�z
txo�� ux�^o��qz�y^�nuvtx}c��ux��z�yz�{Óux�co�| º ¢ìw�zO�coq¶M�^r��&¶�oKr��-uxz���y[uxo�txoq�nux��y^�¦���~oKr���{Wz
tDpMz��v�v���^¶�o���w�pctxz ��oqw�oqy[ux�g��y1ux�^o�r
tx�Y�^��uxoq��ux}~txo¡z�{ux�^o¡w�z��^��¶�o:p^�cz�y^o�� � �vz
{Üu�µ�r
txo��n�~�nuxoqw »

í îcï`ðMñFò¡ó�ô�õ\ðFöYòDï
_<÷aJ
ø�CÓhaJ[L
Nìø�CMùgGdjäJ.úg÷�CFNaJOH1ú�L C~bÓGIhaJåGIN�û�L JO]MH
GINaüFjäýÛþn]MN�û�ý;]MNghëû�CFøèúgjäJ�ÿ þ�JO]sP EaL JOH�PKCáP ÷aJ�E�HKJ[L�bÓGI]
P ÷aJOGäLåE�HKJ[LåGINQPKJ[L
þ�]Mû�J �������	� _<÷aJOHKJèþ�JO]sP EaL JOH
]sL JæGIø�úgjIJOø�JONQPKJOh ùUý �
�]sú�úgjIGdû[]sP GäCFN�H.GdNêP ÷aJ@øèCMùgGIjäJ
úg÷aCFN�J ��� HKCMþ�P��¦]sL J!]sL�û
÷�GäPKJOû�P E�L J �
� N�P ÷aJ-h�J[bMJOjäCMúgø�JONUP�CMþ�P ÷aJ-EgHKJ[L�GINUPKJ[L þn]Mû�J-HKCMþ�P��¦]sL J-þ�CML£]�øèCMùgGIjäJ
úg÷aCFN�JMS%GäP-GdH!GIøèú�CML
P]MNQP<PKCáGIhaJONUP Gäþ�ýÛ]MN�h û[jäJO]sL�jäýfHKú�JOû[Gäþ�ýæP ÷�J.L
GäüF÷UP!GdNQPKJ[L
]Mû�P GICFN�H-ù�J[P��£J[JONëP ÷aJåHKJ[úaV
]sL
]sPKJâþ�JO]sP EaL
JOH-CMþ:P ÷aJ.øèCMùgGIjäJ¸úg÷�CFNaJ�]sP!]MN JO]sL
jäýáHKP]süMJâCMþ:P ÷aJâhaJ[bMJOjäCMúgø�JONUP � _-÷�GIH�÷aJOjäú%H�PKCã]ObMCFGdh
û�CFHKP jäýìhaJOjI]~ý\H.GINìP ÷aJãGINUPKJ[üML
]sP GäCFN úg÷�]MHKJ
CMþ�]ÛHKJ[P�CMþ¦GIN�haJ[ú�JON�h�JONQP jäýfh�J[bMJOjäCMú�JOhêþ�JO]sP E�L JOH ��� JO]sP E�L J
GINUPKJ[L
]Mû�P GäCFNæø�JO]MN�H¦]åhaJ[ú�JON�haJON�û�ý
CML¦GINQPKJ[L
úgjI]Oý�CMþDþ�JO]sP EaL
JOH � _-÷aJ-þ�JO]sP EaL J1GINQPKJ[L�]Mû�P GäCFN�H¦û[]MNãù�J1û�CFNÓV
û�J[ú�P E�]Mjdjäý.H GIøèúgjäJ£EgH]süMJ�haJ[ú�JON�haJON�û[GäJOH`CML�ø�CML J�û�CFø�ú%jäJ�ÿâû�CFøâùgGIN�]sP GäCFNgH`CMþ�GIN�haJ[ú�JON�h�JONQP`ù�JO÷g]ObÓGäCML
H �
X�L
JOû[GIHKJâh�JOH û�L
Gäú�P GICFN�H<CMþ¡P ÷aJåþ�JO]sP EaL J
GINQPKJ[L�]Mû�P GäCFN�H1]sL Jå]MjdHKCæN�J[JOhaJOh��!÷aJON ú%jI]MN�N�GIN�üåP ÷�JâPKJOHKP GdNaü@CMþ
P ÷aJ ��� HKCMþ�P��¦]sL J � _<÷aJ�P¹ýUú�JOH1]MN�hfP ÷aJâNUE�øâù�J[L-CMþ¡GINUPKJ[L
]Mû�P GäCFN�H1]�þ�JO]sP EaL Jå÷�]MH��!GäP ÷ÛCMP ÷aJ[L1þ�JO]sP E�L JOH
]sL J.hgGäL JOû�P<GIN�hgGIû[]sPKCML
H¦CMþ�P ÷aJ.û�CFHKP<CMþ¡haJ[bMJOjICMúgGINaü
P ÷aJ�þ�JO]sP EaL J��!÷�GIû
÷ GIH�GIø�ú�CML P]MNUP�GINaþ�CML
øè]sP GäCFNáþ�CML
P ÷aJ�ú%jI]MN�N�GIN�üâ]MN�hføã]MN�]süMJOø�JONUP-CMþ�P ÷aJ.haJ[bMJOjäCMú%ø�JONQP-J���CML P �

� NëP ÷�GIH!úg]sú�J[LOS���J�haJOH û�L
Gäù�JâP ÷aJ���CML Z;CMþ�]��qCFGINUP1ú�L C��KJOû�P1CMþ��-CMZÓGI]��<JOHKJO]sL�û
÷���JONUPKJ[L�]MN�hëP ÷aJ
�¦X��! 1L
CFEaú]sP<P ÷aJ � N�GIbMJ[L
H GäP¹ý@CMþ:T!]sL�÷UE�HOSgGIN��-÷�Gdû
÷���CFjäCFE�L JOhÛX�J[PKL
G��!J[P H � �¦X�VYNaJ[P H�CML��¦X"� ��#%$'&
]MN�h3GäP HæH Eaú�ú�CML P GIN�ü)(1JOH GIüFN+*,�¦X"�/PKCUCFj #%-'&]sL
JëE�H JOh PKC ø�CÓhaJOj-GIøèú�CML
P]MNQP@úg]sPKPKJ[L
N�H@CMþ¸þ�JO]sP E�L J
GINUPKJ[L
]Mû�P GäCFN�H�P ÷g]sP�û[]MNêC\û[û[E�L�GINëP ÷aJèE�HKJ[L�GINUPKJ[L þn]Mû�J�CMþ.�!CMZÓGI]áø�CMùgGIjäJåúg÷aCFN�JOH � �¦EaL L JONUP jäýMS�þ�JO]sP E�L J
GINUPKJ[L
]Mû�P GäCFN�H¦]sL J�NaCMP�HKýÓHKPKJOøè]sP GIû[]MjdjäýèhaCÓû[E�ø�JONUPKJOh �0/ þ�PKJONæP ÷aJ�ø�CFHKP�û�CFø�úgjIJ�ÿãGINQPKJ[L�]Mû�P GäCFN�H¦]sL J¸NaCMP
þnE�jIjäýáE�N�haJ[L�HKPKCUCÓhÛù�J[þ�CML J.P ÷aJâþ�JO]sP E�L JOH�]sL JâGIøèúgjäJOø�JONUPKJOh � _<÷�J.üMCF]MjIH!CMþ�P ÷�GIH��£CML
Zf]sL JâPKCæGIhaJONUP Gäþ�ý

1

û[]sPKJ[üMCML
GäJOH@CMþ�GINQPKJ[L�]Mû�P GäCFN�H�P ÷�]sP@]sL J HKú�JOû[G21gûæPKC P ÷�JfhaCFøè]MGIN]MNgh PKC û�L JO]sPKJ ù�JO÷�]~b\GICML
]Mj�ø�CÓhaJOjIH
P ÷�]sP.û[]súgP EaL JèP ÷aJãPYý\úgGIû[]Mj¡þ�JO]sP EaL JãGdNQPKJ[L
]Mû�P GICFN úg]sPKPKJ[L
NgH�GINêJO]Mû�÷$û[]sPKJ[üMCML ý � _<÷aJèøèC\haJOjdH�haJOH û�L
GIù�J
P ÷aJ@ù�JO÷g]ObÓGäCML.CMþ�P ÷aJ ���]sPâP ÷aJ@jIJ[bMJOj�P ÷�]sPâP ÷aJáE�HKJ[L.CMþ<];÷�]MN�h�H J[P.øè]Oý CMùgHKJ[L bMJæGäP � _<÷�Jãø�CÓhaJOjIH
�-GIjdj%÷aJOjIú@JOHKP Gdøè]sPKJ¸P ÷aJ�û�CFHKP�CMþ�haJ[bMJOjäCMúgGIN�üâP ÷aJ¸þ�JO]sP EaL JOH¦CMþ:]åú�L CÓh�E�û�P�þ�CML<]�H ú�JOû[G31gû �
� H PYýÓjäJMS�]MN�h
ø�CFHKP<Gdø�ú�CML P]MNQP jIý�P ÷aJ[ý4�!GIjIjg÷�JOjäúáP ÷aJ�haJOH GäüFNæCMþ ���]sú�úgjIGIû[]sP GICFN�H�ùUý@J�ÿ\ú�CFH GIN�üåû�L
GIP GIû[]Mj�ù�JO÷g]ObÓGäCML
]Mj
úg]sPKPKJ[L
NgH�CMþ!þ�JO]sP EaL JfGdNQPKJ[L
]Mû�P GICFN�H � _<÷aJ��¦X�� ø�CÓhaJOjIH5�!GIjIj�]MjIHKCê÷aJOjäú GIN]MH H JOH H GINaüê÷aC'�6��JOjIj¦P ÷aJ
û�CFøèø�CFN ��� HKCMþ�P��¦]sL J1]sL
û
÷�GIPKJOû�P EaL J!H
Eaú�ú�CML P H:P ÷aJ-h�J[bMJOjäCMúgø�JONUP�CMþ�þ�JO]sP E�L JOH�þ�CML£h�G2��J[L JONUP �
� H PYýÓjäJOH �

� P1GdH1N�JOû�JOH H]sL ýfPKCÛ÷�]~bMJ�ú�L JOû[GIH J.ù�JO÷�]ObÓGäCML
]Mj�haJOH û�L�Gäú�P GäCFN�H-CMþ�P ÷aJåPYý\úgGIû[]Mj:GINUPKJ[L
]Mû�P GäCFNëúg]sPKPKJ[L�N�H
P ÷�]sP�û[]MNëC\û[û[EaL�GIN;HKú�JOû[G21gû�HKP¹ý\jIJOH � _-÷aJ �
� haJOH GäüFN�J[L
H!]MNgh �
� HKCMþ�P��¦]sL J�haJOH GäüFNaJ[L�H7�-÷aCæ]sL J
haJ[bMJOjWV
CMúgGIN�ü.NaJ8� þ�JO]sP EaL JOH£þ�CML�]âHKú�JOû[G21gû �
� HKPYýÓjäJ
�-GIjIjaE�H J-P ÷aJ��¦X"�7ø�CÓhaJOjIH�PKCâGIhaJONUP Gäþ�ý�]MN�hã]MN�]MjIý\HKJ!P ÷aJ
GINUPKJ[L
]Mû�P GäCFNêú%]sPKPKJ[L
N�H�CMþ¦P ÷aJOGIL�NaJ8� þ�JO]sP EaL JOH ��� L CFø/P ÷aJ@HKCMþ�P���]sL
J@haJ[bMJOjäCMú%ø�JONQP.ú�CFGdNQP¸CMþ�b\GIJ8��S&GäP
GIH�GIø�ú�CML P]MNUP1PKCfû�L JO]sPKJã]áû�CFN�NaJOû�P GäCFNìþ�L CFø P ÷aJ
ù�JO÷�]~b\GäCML�]Mj`ú%]sPKPKJ[L
N�H�PKCÛPYý\úgGIû[]Mj:GIøèúgjäJOø�JONUP]sP GäCFN
úg]sPKPKJ[L
NgH�CMþ&P ÷�J �
�]sú�úgjIGdû[]sP GäCFN�H � _<÷�J-J�ÿÓúgjIGIû[GäP�ù�JO÷g]ObÓGäCML
]MjgøèC\haJOjdH�CMþ&P ÷aJ!PYý\úgGIû[]Mj�GINUPKJ[L
]Mû�P GäCFN@úg]sPqV
PKJ[L
N�H
�-GIjdj&]MjIHKC@üFE�GIhaJ�P ÷�JåhaJ[bMJOjICMúgø�JONUP-CMþ�P ÷aJåû�CFøèø�CFN �
� HKCMþ�P���]sL
J
]sL�û
÷�GäPKJOû�P E�L JâP ÷g]sP!ú�L
C~bÓGIhaJOH
P ÷aJ.GdNaþ�L�]MHKPKL
E�û�P EaL
J!þ�CML<L JO]MjIG39OGINaü
P ÷aJ�ù�JO÷�]~b\GäCML�]Mj�úg]sPKPKJ[L
N�H �

��CFjICFEaL JOhëX`J[PKL�G:�!J[P H � �¦X¡VYN�J[P H!CML;�¦X�� ��#%$'& GIH1]ãüML�]súg÷�GIû[]Mj`ø�C\h�JOjIjIGINaüèjd]MNaüFE�]süMJ<�-GäP ÷ë]=��JOjIjWV
haJ81gN�JOh HKJOøè]MNUP GIû[H1]MjIjäC'�-GINaüãH
GIøâEgjI]sP GäCFNÛCMþ¡P ÷aJâù�JO÷�]ObÓGäCFEaL1HKú�JOû[G21�JOhÛù\ýÛP ÷aJ5��X"�(ø�CÓhaJOjIH!]MH���JOjIj
]MH¦þ�CML
øè]Mj�]MN�]MjäýÓH GIH # >?&@�A� Náû�CFNQPKL
]MH P�PKCèøè]MNQýæCMP ÷aJ[L<ø�CÓhaJOjIjdGINaü.jI]MN�üFE�]süMJOH
�¦X�VYNaJ[P H�]sL J�ù�CMP ÷ÛHKP]sPKJ
]MN�hf]Mû�P GICFNfCML
GäJONUPKJOh � �¦X�VYNaJ[P H<÷�]MH-ú�L CcbMJONÛú�CB��J[L þ�Egj�þ�CML-øèC\haJOjdjIGINaüåCMþ¡û�CFN�û[EaL L JONUP<HKýÓHKPKJOøèH!]MN�hf]
N\E�ø.ù�J[L1CMþ�H E�û[û�JOH
HKþ�EgjDú�L
C��qJOû�P H¸÷�]~bMJèhaJOø�CFN�H PKL
]sPKJOhìGäP H�E�HKJ[þnE�jINaJOH H!GINëø�C\h�JOjIjIGINaüè]MNghë]MNg]Mjäý\H
GIH-CMþ
û�CFø�úgjIJ�ÿêH ý\HKPKJOøãH �DC ÿÓ]MøèúgjäJOH¸CMþ�P ÷�GdH�û[]MN ù�Jèþ�CFE�N�h GdN #%E'& �-÷gGIû
÷ GdH.]fjIGdHKP¸CMþ�úgEaùgjdGIH ÷aJOh;úg]sú�J[L
H
haJOH û�L�GäùgGINaü¦GIN�hgE�HKPKL
GI]MjsE�H J¡CMþA��X¡VYNaJ[P H � _<÷aJ�jIGIH P�GdH&øè]MGINUP]MGINaJOh�ù\ý�P ÷aJ.�¦X�� üML CFE�ú.]sPDP ÷aJ � N�GIbMJ[L
H GäP¹ý
CMþ¡T!]sL�÷UE�H �

_<÷�J-úg]sú�J[L¦GIH�CML üF]MNgGIHKJOhæ]MH£þ�CFjIjäC'�-H �0F JOû�P GäCFN E üFGIbMJOH�]MN@C~bMJ[L
b\GäJ8�7CMþ&P ÷�J!ú�L
C��qJOû�P�CML üF]MN�GIH
]sP GäCFN �
F JOû�P GäCFN $ û�CFNUP]MGIN�H¡]MN
GINUPKL CÓh�E�û�P GäCFNâPKC¸þ�JO]sP E�L JOH¡]MN�håþ�JO]sP E�L J�GINQPKJ[L�]Mû�P GäCFN�H¡GIN<�-CMZÓGI]�ø�CMùgGdjäJ£ú%÷aCFNaJOH
]MN�hÛh�GdH û[E�H HKJOH�]�û[]sPKJ[üMCML
GIH
]sP GäCFNÛCMþDþ�JO]sP EaL J�GdNQPKJ[L
]Mû�P GICFN�H ��F JOû�P GäCFN > ú�L
JOHKJONQP H�H JOjäJOû�PKJOhÛúg]sL P H�CMþ�P ÷aJ
�¦X�� ø�C\h�JOj �GF JOû�P GICFN - ú�L JOHKJONUP H�J�ÿ\PKJONgH GäCFN�H£PKC
P ÷aJH�¦X��çø�CÓhaJOjgGdø�úgjäJOø�JONUP GINaü.b\GIH
E�]MjIGIH]sP GICFNè]MN�h
GINUPKJ[L
]Mû�P GäCFN PKJOû�÷�N�G3I\EaJOH �J� GIN�]MjdjäýMS F JOû�P ��K û�CFNQP]MGdN�H�P ÷aJfû�CFN�û[jdE�H GäCFN�H
]MN�h]êhgGIH û[E�H H
GäCFN CMþ1þnEaP EaL J
��CML Z � _<÷aJ¸L JO]MhaJ[L!GIH�]MH H E�øèJOhÛPKCèù�J¸þ�]MøãGIjIGI]sLL�-GäP ÷áP ÷�J�ùg]MH GIû�GIh�JO]MH�CMþJM!GäüF÷aVYjäJ[bMJOj�X�J[PKL
G��!J[P H �

N OãñFòQP'R%õ\ðTSUR�VsõÓñQö�W�ðFöxòDï
_<÷aJ��£CML Zfh�JOH û�L
Gäù�JOhÛGIN P ÷�GIH�úg]sú�J[L1GIH-]sù�CFEaP<P ÷�JâøèGIhaVxPKJ[L
ø+L JOH EgjäP H<CMþ�]@û�CUCMú�J[L
]sP GäCFN ú�L C��KJOû�P-ù�J�V
P���J[JONX�-CMZÓGI]��-JOHKJO]sL
û�÷���JONUPKJ[L£]MNgh�P ÷aJH��X"�AüML CFEaúãþ�L CFø(P ÷�J � N�GäbMJ[L
H GIPYýåCMþ�T1]sL
÷\E�H � _-÷aJ�ú�L C��KJOû�P
GIH<û[]MjdjäJOhfP ÷aJ5Y[Z�\^]_Z �a` CÓhaJOjIjIGIN�üè]MN�hfT1N�]MjäýÓH GIH�CMþ � JO]sP EaL
J � NQPKJ[L�]Mû�P GäCFN�H1GINfø�CMùgGdjäJ¸úg÷aCFNaJ�T!L
û�÷�GWV
PKJOû�P EaL JOH � ú�L
C��qJOû�P � Y[Z�\^]_Z GdH.]MN$CFNaüMCFGINaüfúgL C��qJOû�PåHKP]sL PKJOh9GIN��!C~bMJOøâù�J[L E?b,b,b]MN�h P ÷aJãú%jI]MN�NaJOh
��CML Z
L JOHKCFEaL
û�JOH�þ�CML�P ÷aJ71�L
H P�ýMJO]sL£]sL J!]sù�CFE�P�c K øè]MNãø�CFNQP ÷gH �
� CFEaL£L JOHKJO]sL
û�÷aJ[L
H � c�þnE�jIjÓP GIø�J<]MNgh $
úg]sL P�P GIø�J � þ�L CFø P ÷�Jd�¦X"�e 1L
CFEaúã]MN�hãP���C.L JOHKJO]sL�û
÷aJ[L
H � úg]sL P�P GIø�J � þ�L CFøf�!CMZÓGI]��-JOHKJO]sL
û
÷g��JONUPKJ[L
]sL J.GdNQbMCFjäbMJOh GINáP ÷aJ¸ú�L C��KJOû�P � _-÷aJ¸]MGIø+CMþ:P ÷aJ¸ú�L C��KJOû�P-GIH<P ÷aL J[J[þ�CFjIhih
c � _`C�GIhaJONUP Gäþ�ý
P¹ýUúgGdû[]Mj�GdNQPKJ[L
]Mû�P GICFN@ú%]sPKPKJ[L
N�H�ù�J[P���J[JONáþ�JO]sP EaL
JOH�GIN4�!CMZÓGI]âøèCMùgGIjäJ!úg÷aCFNaJOH �kj J��-GIjIj

J�ÿÓúgjI]MGINáP ÷�J¸PKJ[L
øèHmlon�prq�s^t�n-]MN�hUuwv�q�n�txpryoq�uaz?váGIN F JOû�P �+$^�
E^� _`CèùgE�GdjIh���X"� ø�C\h�JOjIHL�-÷�GIû�÷Ûû[]sú�P EaL JOH-P ÷aJ¸úg]sPKPKJ[L
NgH-]MN�hÛbs]MjIGIhg]sPKJ1P ÷�JOHKJ.ø�CÓhaJOjIH �
$^� _`Cáú�L CÓh�E�û�J
haC\û[Egø�JONQP]sP GICFN;CMþ£P ÷aJ�GINUPKJ[L
]Mû�P GäCFNëúg]sPKPKJ[L
N�H�P ÷g]sP�û[]MNìù�J
E�HKJOhì]MN�hìE�N�h�J[L
HKPKC\C\h

ù\ý@P ÷�J ��� haJOH GIüFNaJ[L
H�]MN�h �
� HKCMþ�P��¦]sL J.haJ[bMJOjäCMú�J[L
H �
_<÷�JâGIN�GIP GI]Mj{�£CML
Zf÷�]MH-ù�J[JONëhaCFNaJ.]sPH�!CMZ\GI]X�<JOH JO]sL
û
÷|��JONUPKL J.PKCæbs]MjIGIh�]sPKJâP ÷aJâE�H J.CMþ��¦X�VYNaJ[P H

GIN øèC\haJOjdjIGINaüáþ�JO]sP EaL JãGINUPKJ[L
]Mû�P GäCFN$úg]sPKPKJ[L
NgH.GIN øèCMùgGIjäJ�úg÷�CFNaJOH¸ù�J[þ�CML
JèP ÷aJH�KCFGINUP�ú�L C��KJOû�PâHKP]sL
PKJOh �

2

_<÷aJ@L JOHKJO]sL
û�÷aJ[L
H
]sP5�-CMZÓGI]��-JOHKJO]sL
û�÷}�¦JONQPKL Já÷�]~bMJ@ú�L�]Mû�P GIû[]Mj�J�ÿÓú�J[L
GäJON�û�J4�-GäP ÷~�¦X¡VYNaJ[P Hå]MN�h$P ÷aJ
(1JOH GäüFN+*,��X"� PKC\CFjÓGINâCMP ÷aJ[Lm�-CMZÓGI]1L JOHKJO]sL�û
÷
ú�L C��KJOû�P H[SMHKC�P ÷aJ�ø�CÓhaJOjIjIGdNaü7��CML ZâHKP]sL
PKJOh�GIøèø�JOh�Gd]sPKJOjäý
]sP¡P ÷aJ¦ù�J[üFGIN�N�GdNaü<CMþ�P ÷aJ¦ú�L C��KJOû�P �k/ NaJ�L JOHKJO]sL
û�÷aJ[L�þ�L CFø P ÷aJ
�¦X"� üML CFEaú���CML ZMJOh
þ�EgjIjQP Gdø�J�]sPm�-CMZÓGI]
�<JOH JO]sL
û
÷���JONUPKJ[L¦þ�CML�H Gäÿ�øèCFNQP ÷�H�PKC�û�CFN�HKPKL�E�û�P£P ÷�J��¦X�� ø�CÓhaJOjIH�]MN�hãP ÷�J1NaJOû�JOH
H]sL ýãbÓGIH Eg]MjIGIH]sP GäCFN
þn]Mû[GIjIGäP GäJOH�þ�CML�P ÷aJ@ø�C\h�JOjJ�-GäP ÷ê÷aJOjIú þ�L
CFø P ÷aJ=�!CMZ\Gd]ÛL JOHKJO]sL
û�÷aJ[L
H �J/ P ÷aJ[L�úgL C��qJOû�P.PKJO]Mø�ø�JOøâù�J[L
H
þ�L CFø>P ÷aJ��¦X"�! 1L CFEaúÛ]sP¦P ÷aJ � N�GäbMJ[L
H GIPYýèCMþ�T!]sL
÷\E�H�ú�L Ccb\GdhaJ!üFEgGIh�]MN�û�J�]MN�hæPKJOû
÷�NgGIû[]Mj�H Eaú�ú�CML P£CFN
P ÷aJ.øèC\haJOjdjIGINaüå]MN�hfø�CÓhaJOj�]MN�]MjäýÓH GIHL��CML Z �

` CMùgGIjäJ�úg÷�CFNaJ �
� HKú�JOû[G21gû[]sP GäCFNáhaCÓû[E�ø�JONUP H�]MN�h �
� HKCMþ�P��¦]sL J.]sL
û�÷�GäPKJOû�P EaL
J�haJOH GäüFNáhaCÓû[E�ø�JONUP H
÷�]~bMJ�ù�J[JONÛHKP E�h�GäJOhæP ÷aCML
CFEaüF÷�jäýæGINæP ÷aJ¸JO]sL
jäýæúg÷�]MHKJ�CMþ�P ÷aJ¸ú�L C��KJOû�P[SaP ÷aJ¸ZÓNaCB�!jäJOhaüMJ¸üF]MGINaJOhÛ÷�J[L J�GIH
þnE�N�h�]Mø�JONUP]MjaPKCâP ÷aJ!ø�CÓhaJOjIjdGINaüH�£CML
Z � T!þ�PKJ[L£P ÷aJ1ø�CÓhaJOjIjIGIN�ü!þ�L
]Mø�J8��CML Zè]MN�h�P ÷�J!ø�CÓhaJOjIH¡CMþ&H J[bMJ[L
]Mj
ZMJ[ý þ�JO]sP EaL JOHã]MNgh P ÷aJOGäLãGdNQPKJ[L
]Mû�P GICFN�H���J[L J L
JO]MhaýMSm��J CML üF]MN�GdHKJOh]U��CML ZÓH ÷aCMú þ�CMLãúgL C��qJOû�PãPKJO]Mø
ø�JOøâù�J[L
H[S ��� haJOH GäüFN�J[L
H¦]MN�h ��� HKCMþ�P��¦]sL J�haJ[bMJOjäCMú�J[L
H¦þ�L CFø>ú�L CÓh�E�û�P¦haJ[bMJOjäCMúgøèJONQP�PKJO]MøèH � (1E�L
GINaü
P ÷aJ
�£CML ZÓH ÷aCMúæúg]sL P Gdû[Gäúg]MNUP H�þ�L CFø P ÷aJ1haJ[bMJOjäCMúgøèJONQP�PKJO]Mø>ú�L C~bÓGIhaJOhãb^]MjdE�]sùgjäJ�þ�J[JOhaùg]Mû
Zã]sù�CFEaP£÷aC'�
P ÷aJåø�C\h�JOjIH-]MN�h;ø�CÓhaJOj&bÓGIH E�]MjdGIH]sP GäCFNáþn]Mû[GIjIGäP GIJOH��-GIjIj&ù�JâE�HKJOh GdNfP ÷aJâú�L CÓh�E�û�P-haJ[bMJOjICMúgø�JONUP �Q` CML J
PYý\úgGIû[]Mj�û�CFø�úgjäJ�ÿìþ�JO]sP E�L JèGINUPKJ[L
]Mû�P GäCFN H û�JONg]sL
GäCFH���J[L Jãû�CFjIjIJOû�PKJOh h�EaL�GINaüá]MN�hê]sþ�PKJ[LâP ÷aJ���CML Z\H
÷aCMú �
_<÷aJëú�L C��KJOû�PáPKJO]Mø8÷�]MHáüMC\C\h7]MN�h3CFNaüMCFGIN�ü9û�CFNUP]Mû�P H]MN�h7û�CFøèøåE�N�Gdû[]sP GäCFN�HX�-GäP ÷AP ÷aJìHKCMþ�P���]sL
J
]sL
û�÷�GäPKJOû�P EaL J.PKJO]MøÛS �
� h�JOH GäüFNaJ[L
H�]MNgh ��� HKCMþ�P��¦]sL Jâh�J[bMJOjäCMú�J[L
H �

� N
P ÷aJ<û[EaL L
JONQP¡úg÷g]MHKJ¦CMþ%P ÷aJ�úgL C��qJOû�PJ��J�þ�C\û[E�H:CFNãø�C\h�JOjIjIGINaü1]MN�h�H GIøåE�jI]sP GICFNâCMþ�GIø�ú�CML P]MNUP¡]MN�h
û�CFø�úgjIJ�ÿ
þ�JO]sP EaL J�GINUPKJ[L
]Mû�P GäCFN@H û�JON�]sL
GäCFH£PKCâGdhaJONQP GIþ�ý
]MjIj�P ÷�J!GIø�ú�CML P]MNUP�GINUPKJ[L
]Mû�P GäCFNãúg]sPKPKJ[L
N�HOSUû
÷�JOû Z
P ÷aJOGäL�û�CML L JOû�P NaJOH
H£]MN�hæHKú�JOû[Gäþ�ýâP ÷�JOøf�-GIP ÷4�¦X"� øèC\haJOjdH �r� NèP ÷aJ1NaJ�ÿ\P£úg÷�]MHKJ-CMþ�P ÷aJ-ú�L
C��qJOû�P��£Jd�-GIjIj
þ�C\û[E�H.CFNêbs]MjIGIh�]sP GIN�üÛP ÷aJX�¦X��>øèC\haJOjdH¸]MN�h ÷aC'� PKC;ú�L CÓh�E�û�JèhaCÓû[E�ø�JONUP]sP GäCFN CMþ¦P ÷aJ@GINQPKJ[L�]Mû�P GäCFN
úg]sPKPKJ[L
NgH<E�H GIN�üåP ÷�J<�¦X"� ø�CÓhaJOjIH �

� �JRA��ðFô�ñrR îcï`ð,R�ñr��õ\ðFöxò`ï"VÛöYï!�$ò��¡ö@����ò��£ö��@R�OX��òDï"R�V

` C\haJ[L�N ø�CMùgGIjIJåú%÷aCFNaJOH¸]sL Jèþ�JO]sP EaL J�VxL�GIû
÷ ú�L CÓh�E�û�P H �i� JOH GIhaJOH�ùg]MH GIû�û�CFøèøåE�N�Gdû[]sP GäCFN û[]súg]sùgGdjIGäP GäJOH[S
J � ü � S�øè]sZÓGINaüê]MN�h L
JOû�JOGäb\GdNaüêû[]MjIjIH�]MN�h HKJONgh�GINaüì]MN�h L JOû�JOGäbÓGINaüêH ÷�CML P
PKJ�ÿ\PãøèJOH H]süMJOH[S�P ÷�J[ý9÷�]~bMJ
]MNëGINÓVxúg÷aCFN�J.h�GäL JOû�PKCML
ý � úg÷aCFNaJ[ù�C\CMZ � S�û[]MjIû[E�jI]sPKCMLOS�û[]MjäJON�hg]sLOSgüF]Mø�JOHOS j T1X7þ�CML�]Mû[û�JOH H GIN�ü4�-GIL JOjäJOH H
GINUPKJ[L
NaJ[P¡HKJ[L bÓGIû�JOH¡J[P û � _<÷aJ�NaJ�ÿÓP¡üMJONaJ[L
]sP GäCFN�CMþ�ø�CMùgGIjIJ¦h�J[b\GIû�JOH��!GIjIj\]Mh�h�jäCÓû[]sP GäCFN�HKJON�H GIP GäbMJ�HKJ[L bÓGIû�JOH
]MN�h$øâE�jIP GIø�JOh�GI]Ûû[]sú%]sùgGIjIGäP GIJOH � _<÷aJãhgGäbMJ[L
H G21%û[]sP GäCFN GIN P ÷aJãú�L
C\h�Egû�P¸þ�]MøèGdjIGäJOH�GIH.üML JO]sP
h�EaJèPKCëP ÷aJ
h�G���J[L JONUP<N�]sP GäCFN�]Mj�N�J[P���CML ZfHKP]MN�h�]sL�h�H�]MN�hføè]sL
ZMJ[P-HKJ[üFø�JONUP]sP GäCFN �

_<÷�JèE�HKJ[L�GINUPKJ[L þn]Mû�JèCMþ�]Ûø�CMùgGIjäJ
úg÷�CFNaJ�û[]MN ù�J�û
÷�]sL
]Mû�PKJ[L�G29[JOh$]MH�P]MHKZQVxCML�GäJONQPKJOh � _<÷�GdH1øèJO]MN�H
P ÷�]sPâP ÷aJãø�CMùgGdjäJ
úg÷aCFNaJ �
� GIH.haJOH
GäüFNaJOhìPKC;H
Eaú�ú�CML P¸h�GäL JOû�P jIý;P ÷aJ@øè]MGINêþnE�N�û�P GäCFNgH�CMþ�P ÷aJãhaJ[bÓGIû�J �
_<÷�GdH£GIH£bMJ[L ýæh�G���J[L JONQP¦þ�L CFø]åPKL
]Mh�GäP GäCFNg]Mj%XL� P ÷g]sP¦÷g]MH�]åüMJONaJ[L�GIû ��� P ÷g]sP<H Eaú�ú�CML P H£]��!GIhaJ1L
]MNaüMJ
CMþ�]sú�úgjdGIû[]sP GäCFN�H=�-GäP ÷]9E�N�GIþ�CML
ø���]~ý CMþ�jI]ME�N�û�÷�GINaü P ÷aJ;]sú�ú%jIGIû[]sP GäCFN�H@]MN�h3]Mû[û�JOH H GINaü$P ÷aJìh�]sP] �
� CML�J�ÿa]Mø�úgjäJMS�]ãú%÷aCFNaJ.øè]~ý;÷�]~bMJâZMJ[ýÓH�]MH H GäüFN�JOh ú�J[L
øè]MN�JONQP jäýáþ�CML�ù�J[üFGdN�N�GINaü�]MN�h;JON�h�GdNaüã]æû[]MjIj �
� EaL
P ÷aJ[LOSo�-÷�JON�ù�L C'�-H GIN�ü�P ÷aJ�û�CFNUP]Mû�P:GdNaþ�CML�øè]sP GäCFN�HKPKCML
JOh.GIN¸P ÷�J�úg÷aCFN�J[ù�C\CMZ1CML`û[]MjäJON�hg]sLOS~GäPDH
÷aCFE�jIh
]Mj2�¦]OýÓH¡ù�J£ú�CFH H
GäùgjäJ£PKC�û[]MjIjÓP ÷aCFHKJ¦úg]sL P GIJOH:ùUýå]1H
GINaüFjäJ�ú�L JOH H:CMþ�]�ZMJ[ý � _<÷�GIH:haJOH
GäüFNåúg÷�GIjäCFH CMúg÷Qý�H PKJOøèH
h�GäL
JOû�P jäý þ�L CFø/P ÷�JãhaCFøè]MGIN&S&G � J � S&þ�L CFø P ÷aJèL
JoIUE�GIL JOø�JONUP H�]MN�h NaJ[JOhgH¸CMþ�ø�CMùgGIjäJ�ú%÷aCFNaJèE�HKJ[L�H�]MN�h
þ�L CFø+P ÷aJ¸úg÷UýÓH GIû[]Mj�]MN�hÛJOû�CFN�CFøèGIû[]MjDû�CFNgHKPKL
]MGINUP H�CMþ:P ÷aJ�haJ[bÓGIû�JOH �

_<÷�J������@�An�y8u ��y	p,q�u�z,v0�æCMþ
] ú�L CÓh�E�û�PáGIHá]~�<L
GIPKPKJON3h�C\û[E�øèJONQPáP ÷�]sPfhaJ81%NaJ;P ÷�J]sú�ú�JO]sL
]MN�û�J
]MN�hãù�JO÷g]ObÓGäCML�CMþ�P ÷aJ!úg÷aCFNaJ-þ�JO]sP EaL
JOH � _<÷�J �
� H ú�JOû[G31gû[]sP GäCFN�H£û�CFøèøâEgN�GIû[]sPKJ-P ÷�J!haJOH GIüFNèCMþ�P ÷aJ1E�HKJ[L
GINUPKJ[L þn]Mû�J¦]MNgh.P ÷aJL��C'� CMþgE�HKJ[L:GINUPKJ[L
]Mû�P GäCFNåPKC�P ÷aJ ��� H CMþ�P���]sL J�haJ[bMJOjICMú�J[L�H � _-÷aJ�H ú�JOû[G31gû[]sP GäCFN�H`øè]Oý
]MjIHKCè÷g]ObMJ.haJOH
û�L
Gäú�P GäCFNgH�CMþ�P ÷aJ�GINUPKJ[L
]Mû�P GäCFN�H<ù�J[P��£J[JONfP ÷aJ¸þ�JO]sP E�L JOH � M!CB��J[bMJ[LOSgþ�JO]sP EaL J�GdNQPKJ[L
]Mû�P GICFN�H
]sL J�NaCMP<h�JOH û�L
Gäù�JOháGINá]�HKýÓHKPKJOøè]sP GIûH�¦]OýÛ]MN�h�1gNgh�GINaüå]MjIj�GINUPKJ[L
]Mû�P GäCFN�H¦CMþ:]
þ�JO]sP E�L J�ø�JO]MN�H�L
JO]Mh�GINaü
P ÷aL CFE�üF÷f]�jI]sL üMJ.]MøèCFE�NQP-CMþ�haCÓû[E�ø�JONUP H �

3

�!CMZ\Gd]�ø�CMùgGIjIJ�ú%÷aCFNaJOH¡÷�]~bMJ!HKJ[bMJ[L
]Mj%h�G���J[L JONUP ��� HKPYýÓjäJOH�þ�CML�hgG���J[L
JONQP¡þn]MøèGIjIGIJOH`CMþ�ú�L
C\h�Egû�P H � _<÷aJ
�
� H PYýÓjäJ@GIHâ]MN GIøèú�CML
P]MNQP�ú%]sL P�CMþ�P ÷aJèúgL C\hgE�û�P�ù�L
]MNgh]MN�h GIP.÷�]MH.] L JOjI]sP GäbMJOjIýìjICFNaü jIGäþ�J[P GIø�J �i� P
haJOH û�L�Gäù�JOH¦P ÷aJ¸úg÷Uý\H Gdû[]Mj�HKPKL
E�û�P EaL
J¸CMþ�P ÷�J ���]MN�hÛP ÷�J¸ùg]MH GIû¸ø�JOû�÷�]MN�GIH
øèH�CMþ:E�HKJ[L-GINUPKJ[L
]Mû�P GäCFN � _<÷aJ
�
� H PYýÓjäJãCMþ�]fø�CMù%GIjäJ�úg÷aCFN�Jãû[]sú�P EaL JOHâøè]MNUýì]MH
H E�ø�ú�P GICFN�H¸]sù�CFEaP�P ÷aJæNaJ[JOh�H[S&J�ÿÓú�JOû�P]sP GäCFN�H[S�]MN�h
jIGäþ�JOHKP¹ý\jäJãCMþ<P ÷aJ@GdNQPKJON�h�JOh E�HKJ[LåüML CFEaú%H � _<÷�J[L J[þ�CML
J@GäPåGIH.GIøèú�CML
P]MNQP�PKCêû�CFN�H
GIhaJ[Lâ]MjdHKC P ÷aJ@þ�JO]sP E�L J
GINUPKJ[L
]Mû�P GäCFNæGIH H E�JOH�]sP¦]MNãJO]sL
jIýèHKP]süMJ�CMþ�P ÷aJ1H ý\HKPKJOø þn]MøèGIjäý�û�CFN�û�J[ú�P GICFN=�-÷�JONãP ÷aJ!ZMJ[ýèþ�JO]sP EaL JOH¦]sL J
ù�JOGINaü-GdhaJONQP G31�JOh ��/ N�J£CMþaP ÷aJ�üMCF]MjIH�CMþ�P ÷aJ7Y[Z�\^]_Z@ú�L C��KJOû�P¡GIH&PKC¸haJ[bMJOjICMúå]�HKýÓHKPKJOøè]sP GIû�ø�J[P ÷aCÓhaCFjäCMüMý
þ�CML¦h�JOH û�L
GäùgGdNaü�GINUPKJ[L
]Mû�P GäCFN�H�ù�J[P���J[JONæúg÷aCFNaJ!þ�JO]sP EaL
JOH�]sP¦P ÷aJ�jäJ[bMJOj%CMþ&P ÷aJ1ù�JO÷�]ObÓGäCML¦]MH£CMù%HKJ[L bMJOhæùUý
P ÷aJèE�H J[L1CMþ�P ÷aJ�÷�]MN�hgHKJ[P �i� L CFø P ÷aJèH ý\HKPKJOø þn]MøèGIjIýfú�J[L
HKú�JOû�P GäbMJMS�P ÷aJ�GIhaJO]áGIH1PKCÛùgE�GdjIh;øèC\haJOjdH!CMþ
PYý\úgGIû[]Mj%GINUPKJ[L
]Mû�P GäCFN@úg]sPKPKJ[L
N�H£H ÷�]sL JOhãùUý�ú�L
C\h�Egû�P H�û�CFNaþ�CML
øèGINaü.PKC.P ÷aJ1H]Mø�J �
� HKPYýÓjäJ!P ÷�]sP£h�Gdû�P]sPKJOH
ø�CFHKPåCMþ�P ÷aJæGINQPKJ[L�]Mû�P GäCFN�H �:� N9] HKýÓHKPKJOø þn]MøèGIjäýMS&P ÷�JOHKJæøèC\haJOjdH.HKúg]MN$];N\E�øâù�J[L�CMþ<ú�L CÓh�E�û�P Hâ]MN�h
HKJ[bMJ[L
]MjDüMJONaJ[L
]sP GäCFNgH�CMþ:P ÷aJ ��� HKP¹ý\jIJ �

�i�a� �d���m�k�= �¡�¢:�k£A¤'¥�¦��¨§o©Q¤B�k¦�£Aª,¤�«¬ Q©��
� ýæH P E�haýÓGINaüåP ÷aJ ��� HKú�JOû[G21gû[]sP GäCFNgH���J�÷�]~bMJ.GIhaJONUP G21�JOhæP ÷aL J[J�øã]MGINæPYý\ú�JOH<CMþ`GINUPKJ[L
]Mû�P GäCFN�H<P ÷�]sP<]MjIj
HKPKJOø�þ�L
CFø h�G���J[L JONUP.HKCFEaL�û�JOH �:� JOjäC'�­��JãüFGIbMJ@] û[]sPKJ[üMCML�GIH]sP GäCFN9CMþ�P ÷aJ@P ÷aL J[JãP¹ýUú�JOH �]
®4]w]�] �	� T1N
GINUPKJ[L
]Mû�P GäCFNÛù�J[P��£J[JON P���Cãþ�JO]sP EaL JOH-û[]MNfþ�]MjIj�GdNQPKCãøèCML J¸P ÷�]MNÛCFNaJâû[]sPKJ[üMCML ý �
]�¯�_-÷aJ=1�L�HKP.û[]sPKJ[üMCML ý$CMþ-GINUPKJ[L
]Mû�P GäCFN�Håû�CFø�JOHåþ�L
CFø/P ÷aJáNaJ[JOh CMþ-P ÷aJãþ�JO]sP EaL JOHåPKC;EgHKJãJO]Mû�÷ CMP ÷aJ[L

� û[]MjIjIJOhãP ÷aJ<s^�8n�u¬v�q�n8t°p
yoq�uaz?v0� �	�A� CML<GIN�HKP]MN�û�JMSUP ÷aJ1P]MHKZQVxCML�GäJONQPKJOhÛEgHKJ[L�GdNQPKJ[L þn]Mû�J�haJOH GäüFNãL JoIUEgGäL JOH
P ÷�]sP=�-÷aJON ù�L
CB�-H GdNaüêP ÷aJÛúg÷aCFN�JfNUE�øâù�J[L
HèHKPKCML
JOh GIN P ÷aJ úg÷aCFNaJMS�] û[]Mjdj<û[]MN ù�Jføè]MhaJ PKC$]
N\E�øâù�J[L<hgGäL JOû�P jäý@þ�L CFø P ÷�J�ù�L C'�-HKJ[L � _<÷�GdH¦L J[ú�L JOHKJONUP H<]MNfGdNQPKJ[L
]Mû�P GICFNÛù�J[P���J[JONfP ÷aJ�±k²'³G´'µ?¶r³^³G·
]MN�h�¸d³G¶r¹»º µ)³r¼a¹ ½G¹»´�¾'¿°µ8ÀÂÁo¾kºÃº¡þ�JO]sP EaL JOHáP ÷�]sPÛGIHáNaJOû�JOH
H]sL ý PKC haJOjdGäbMJ[Læ] H øèCUCMP ÷7]MN�h7HKJO]MøèjIJOH H
HKJ[L
b\GIû�J¸PKCãP ÷aJ.E�HKJ[L �

]�]�¯�_<÷�J¦H JOû�CFN�hèû[]sPKJ[üMCML ý�CMþ�GINQPKJ[L�]Mû�P GäCFN�H�û�CFø�JOH�þ�L CFø4P ÷�J<NaJ[JOh
PKC�H ÷�]sL J¦P ÷aJ<jdGIøèGäPKJOh ��� L JOHKCFE�L
û�JOH[S
J � ü � S�P ÷aJ@H
û�L J[JON$]MNgh P ÷aJ@ZMJ[ýUúg]Mh&S`ù�J[P���J[JON9øè]MNQýêþ�JO]sP EaL JOHâP ÷�]sPåû[]MN ù�Jã]Mû�P Gäbs]sPKJOh GIN�haJ[ú�JONÓV
haJONUP jäýfCMþ�JO]Mû
÷êCMP ÷aJ[L �Q� JOû[]ME�HKJ�CMþ�P ÷aJ
ú�L
GäCML
GIP GIH]sP GäCFNÛCMþ£P ÷aJ
E�HKJ[L
H!P]MHKZÓH �]MN�hëP ÷aJå]MH
HKC\û[Gd]sPKJOh
þ�JO]sP EaL JOH � S%GIø�ú�CML P]MNUP�J[bMJONQP H1øè]OýÛGINUPKJ[L L
E�ú�P�jäJOH H�GIø�ú�CML P]MNUP<]Mû�P GäbÓGäP GäJOH[SaJ � ü � S
Ä]MN;GIN�û�CFøèGdNaüåû[]Mjdj&H û�L J[JON�H<úg÷aCFNaJ[ù�C\CMZ@ù�L
CB�-H GdNaü
þ�CML<P ÷�J�h�EaL
]sP GäCFNáCMþ:P ÷aJ�û[]Mjdj
Ä ÷g]MNaüsVYEaúfZMJ[ýÛHKPKCMúgH-HKJO]sL
û
÷ þ�L
CFø+úg÷aCFNaJ[ù�C\CMZ � P ÷aJ.ù�L CB�!HKJ[L-GIH�ZÓGIjIjIJOh �
Ä]MN$GIN�û�CFøèGdNaüÛû[]MjIj�H E�H ú�JONgh�H�]ÛüF]Mø�Jãù%EaP¸P ÷aJ�üF]Mø�JæGIH�H]~bMJOh HKCfP ÷�JãGäP�û[]MN ù�Jèû�CFNUP GIN\EaJOh

]sþ�PKJ[L-P ÷�J.û[]MjIj�GIH�PKJ[L�øèGIN�]sPKJOh
]�]�]�¯¸_<÷�J¡P ÷�GäL
h¸û[]sPKJ[üMCML ýâGINQbMCFjIbMJOHDGINUPKJ[L
]Mû�P GäCFN�H��-÷aJ[L J¡CFN�J�þ�JO]sP EaL J�]���JOû�P HDCMP ÷�J[L`þ�JO]sP EaL JOHDùUý¸øè]sZÓGINaü

P ÷aJOø E�Ng]Obs]MGIjI]sùgjäJ!CML¦ùUýãøèC\h�GIþ�ýÓGINaü¸P ÷aJOGIL�ù�JO÷�]~b\GICML�GINæHKCFø�J1CMP ÷aJ[LL�¦]Oý �A� CML<GINgHKP]MN�û�JMS\P ÷aJH¾k´BÅ
·ÆµÇÅ�¾k´BÈ°Émµ?¼�þ�JO]sP E�L Jãøè]sZMJOHâGäP�ú�CFH H Gäù%jäJâPKC;]MN�Hx��J[L.]MN GINgû�CFøèGINaüÛû[]MjIj¡ù\ýëú�L JOH H GdNaüÛ]MNQýìZMJ[ýìCFN
P ÷aJáZMJ[ý\úg]Mh]MN�h9P ÷aJ)·ÆµÇÅ)½0Ê�¾,¼_Àêþ�JO]sP EaL JfjäCÓû ZÓH
P ÷aJáZMJ[ýUú%]Mh þ�CMLè]Mû[û[GIh�JONQP]Mj�ZMJ[ý9ú�L JOH
HKJOH � _<÷aJ
û�CFøâùgGINaJOh J���JOû�P@CMþ1P ÷�JOHKJfþ�JO]sP EaL JOHãGdH�P ÷�]sP@GIþ�¾k´BÅ[·ÆµÇÅ�¾k´BÈ°Émµ?¼�GIH�JON�]sù%jäJOh]MN�hË·	µÇÅ)½0Ê?¾?¼_À9GIH
CFN�S�]MNìGIN�û�CFøèGdNaüãû[]MjIj�û[]MNëù�Jå]MN�Hx��J[L JOhëCFN�jäýÛù\ýfú�L JOH
H GINaüèP ÷�J4Ì�C?��VY÷aC\CMZ+Ì�ZMJ[ý � M-C'�£J[bMJ[L~S�CFN�û�J
P ÷aJâû[]MjIjDGIH<CMú�JON&Si·ÆµÇÅ�½0Ê�¾?¼¬À@GIH-h�GIH]sùgjIJOháþ�CML!P ÷aJ.h�EaL�]sP GäCFNÛCMþ:P ÷aJ.û[]MjIj`]MN�hÛP ÷aJON JON�]sùgjäJOh]süF]MGIN
]MEaPKCFøã]sP GIû[]MjIjäý � _<÷gGIH�H û�JON�]sL
GäCfû[]MN ù�J�øè]Mh�Jèø�CML J�û�CFø�úgjäJ�ÿê]MhêN�]ME�H JO]sP E�ø ù\ý;]Mh�h�GdNaüáCMP ÷aJ[L
H GdøâE�jIP]MNaJ[CFE�H¦J[bMJONUP H[SgJ � ü � S�û[]MjäJON�h�]sL-]Mjd]sL
ø�]MN�h��¦]sL
N�GIN�ü�CMþ�jäC'�çùg]sPKPKJ[L ýÛjäJ[bMJOj �
_<÷�J.E�HKJåGINQPKJ[L�]Mû�P GäCFN�H � P ÷�J�1�L�HKP-û[]sPKJ[üMCML ý �]sL J.P ÷aCML
CFEaüF÷�jäýÛHKú�JOû[G21�JOh GINfP ÷aJ ��� HKú�JOû[G21%û[]sP GäCFN�H

]MN�h¸P ÷�J[ý�]sL
J�NaCMP&ú�L
CMùgjäJOøè]sP GIû�þ�L CFø P ÷aJ£GIø�úgjäJOøèJONQP]sP GäCFN�ú�CFGINUP�CMþ\b\GäJ8� � M-C'�£J[bMJ[LOS^P ÷aJ�GdNQPKJ[L
]Mû�P GICFN�H
CMþ�P ÷aJ�HKJOû�CFN�h
]MN�hâP ÷aJ�P ÷gGäL
h.û[]sPKJ[üMCML�GäJOH¡]sL J¦øâE�û�÷
ø�CML J£hgG2Íãû[E�jäPDPKC1øè]MNg]süMJ�GIN.P ÷aJ¦HKCMþ�P���]sL
J¦h�JOH GäüFN
]MN�h@GIø�úgjäJOøèJONQP]sP GäCFN�ÎFP ÷aJ[ýè]MjIHKCåjI]Mû ZèH ý\HKPKJOøã]sP GIû!h�C\û[E�øèJONQP]sP GäCFN � _<÷aJ[L
J[þ�CML JMS\GäP�GIH�P ÷aJ-P]MH ZèCMþ�P ÷aJ

4

Y[Z�\^]_Z9ú�L
C��qJOû�P�PKCÛû�CFN�û�JONUPKL
]sPKJèCFNêø�CÓhaJOjIGIN�üã]MN�hìhaCÓû[E�ø�JONUP GINaüæP ÷aJ
PYý\úgGIû[]Mj�þ�JO]sP E�L J�GINQPKJ[L�]Mû�P GäCFN
úg]sPKPKJ[L
NgH�P ÷�]sP<ù�JOjäCFNaü�PKCãP ÷aJ�jI]sPKPKJ[L!û[]sPKJ[üMCML�GäJOH �

� NÛP ÷aJ�1�L
HKP�úg÷g]MHKJ¸CMþ¡P ÷aJ�ú�L
C��qJOû�P7��Jâ÷g]ObMJâøã]MGIN�jäýæû�CFN�û�JONQPKL�]sPKJOh;CFN GINQPKJ[L�]Mû�P GäCFN�H-GdNfû[]sPKJ[üMCML ý
Ï8Ï�CMþ�P ÷aJ.jdGIHKP�]sù�C~bMJ � _-÷�GIH¦GIH�L J8�gJOû�PKJOh GINáP ÷aJ���X"� ø�C\h�JOj�ú�L JOHKJONUPKJOh GIN F JOû�P �A>0�

Ð Ñ4O4�ÓÒ3ò¡ómR��!ò�Ô<�JRA��ðFô�ñrR îcï`ð,R�ñr��õ\ðFöxò`ï"VÛöYï!�+ò��£ö���R�OX��òDï"R�V
_<÷�GdH�H JOû�P GäCFNfú�L
JOHKJONQP H-HKJOjäJOû�PKJOhfú%]sL P H�CMþ�P ÷aJ<�¦X�� ø�CÓhaJOj�haJ[bMJOjICMú�JOhÛGdNáP ÷aJ<Y[Z�\^]_ZìúgL C��qJOû�P � _<÷aJ
�¦X��$ø�CÓhaJOjFh�CUJOH&N�CMPDû[]sú�P EaL J�P ÷aJ�þnE�jIjMø�CMùgGdjäJ:úg÷aCFNaJ �
� HKCMþ�P���]sL
J£]sL
û�÷�GäPKJOû�P EaL J�ùgEaPDGäP&û�CFNgû�JONQPKL
]sPKJOH
CFNæ].N\E�ø.ù�J[L£CMþ&HKJOjäJOû�PKJOhæþ�JO]sP E�L JOH�P ÷g]sP�]sL J1GINUPKJ[L JOHKP GINaü.þ�L CFø P ÷aJ!þ�JO]sP EaL
J1GINUPKJ[L
]Mû�P GäCFN@ú�J[L
HKú�JOû�P GäbMJ �
_<÷aJ�úgEaL
ú�CFH J�CMþgP ÷aJ¦HKJOû�P GäCFN�GdHDP��£CMþ�CFjIh �,� GäL
HKP[ScPKC�üFGäbMJ�]MNâCcbMJ[L bÓGäJ8� CMþgP ÷aJ7�¦X�� ø�CÓhaJOjU]MNghåH JOû�CFN�h�S
PKCèüFGäbMJâ]MNfGIhaJO]
CMþ:P ÷aJ�û�CFø�ú%jäJ�ÿÓGIPYýæCMþ�P ÷�J��¦X"� ø�CÓhaJOj&]MN�háP ÷aJâ]sùgHKPKL
]Mû�P GäCFN;jäJ[bMJOj&û�÷aCFHKJON �

Õ��a� Ö5×Q�k¦'×�«w�
ØÙ +¡7¤'Ú:��Û�Ü;ÝßÞà iáâ�^ã
� GäüFEaL Jàc üFGäbMJOHæ]MNAC~bMJ[L bÓGäJ8� CMþ¸P ÷aJ)�¦X�� ø�CÓhaJOj�ù\ý H ÷aCB�!GINaü ÷aC'� GIPã÷�]MH@ù�J[JONA÷�GäJ[L
]sL�û
÷�GIû[]Mjdjäý
HKPKL
Egû�P EaL JOhìGINUPKC E,E ø�CÓh�E�jIJOH � H E�ùgNaJ[P H �	� _<÷aJ
H Eaù%NaJ[P H�]sL J�GIN|�¦X"�(PKJ[L�øèGINaCFjäCMüMý;]MjIHKCáL J[þ�J[L L JOhëPKC
]MHåúg]süMJOH
]MN�h|��JX�-GIjIj�EgHKJãP ÷�GdH.PKJ[L
ø�P ÷aL CFE�üF÷aCFEaP.P ÷�J@úg]sú�J[L �:C]Mû
÷ NaCÓhaJæGIN � Gäü � c@L J[ú�L JOH JONQP H
]
úg]süMJ�CMþDP ÷�J��¦X�� ø�CÓhaJOj � T!Ná]sL
û1ù�J[P���J[JONáP���CèNaCÓhaJOH�GIN�h�GIû[]sPKJOH�P ÷�]sP¦P ÷aJ¸HKCFE�L
û�J1N�C\haJ�û�CFNUP]MGIN�H�]
HKCsVYû[]MjIjIJOhÛH EaùgHKP GIP EaP GäCFNæPKL
]MN�H GIP GäCFNX�-÷aCFHKJ�ù�JO÷�]ObÓGäCFEaL�GIH�h�JOH û�L
Gäù�JOhæGINáP ÷aJ�úg]süMJ�L J[úgL JOHKJONUPKJOháùUýæP ÷aJ
haJOHKP GdN�]sP GäCFNÛNaCÓhaJ �

PowerServer#40

Hierarchy#10010

ExitMenu#27

MenuServer#9

UIServer#16

Servers#19

EnterMenu#23

New#48

IdleState#5

UseMenuServ

Game#6

Submenu#24

Nokia#2 M

Prime

Reject#32

CallServer#18

Incoming#31

ReqResp#39

DisplayServer#41

Answer#34
Unhold#44

Call#15

Send_Receive#11

Hold#43
Applications#37

MultiCallHandling#2

INIT#13 M Prime

Terminate#35

AnyKeyAnswer#45

CommunicationKernel

KeyPressServer#2

GlobalDecl#1 Mimic_Display#3MSCinit#7 Generel

KeyGuard#10

New#12

New#14

InCallMenu#17

Phonebook#21

Alarm#25

Power#26

Profiles#28

AnyKeyAnswer
MultiCallHandling

IdleState

Call

Game

Incoming

Unhold
HoldTerminate

Answer
Reject

Servers

Applications

UI

C

Interrupt
resume

Interrupt
Escape
End
New
Restart

Quit
Select

Use

Use

MenuServer

Incoming
Power

keypress
DisplatServer

Enter

SubmenuExit

use ***

InCallMenu
Keyguard

Phonebook
Alarm Power

Profiles***

ä�åçæ Ø8è^Ø � �^o¡�^��o�tYr tx�¹�[�!psr
��o »

_<÷�J��¦X��+ø�C\h�JOj�û�CFN�H GdHKP H.CMþ�þ�CFEaL
øè]MGIN úg]sL P Håû�CML L JOHKú�CFN�h�GdNaüÛPKC;þ�CFEaL
û�CFN�û�J[ú�P HåCMþ�P ÷aJæø�CsV
ùgGIjIJ�úg÷aCFNaJ ��� H CMþ�P���]sL J
]sL
û�÷�GäPKJOû�P EaL J,h�]sú�ú%jIGIû[]sP GäCFN�HOS�HKJ[L bMJ[L
H[S �
� û�CFNQPKL CFjdjäJ[LOS�]MN�h û�CFøèøåE�N�Gdû[]sP GäCFN
ZMJ[L
NaJOj �

5

é �:��ã�«wªr£0¤'«w +©:�,��ê �r�+ëçu�y	p,q�uaz?v0�âGIøèúgjäJOø�JONUP�P ÷aJ@þ�JO]sP EaL
JOH.CMþ<P ÷�J@ø�CMùgGdjäJ�úg÷aCFNaJ � _<÷aJX��X"�+ø�CÓhaJOj
ú�L
JOHKJONQPKJOh;÷aJ[L J�GINgû[jIE�haJOHHc,c¸þ�JO]sP EaL JOH8h�¹ ÀAº µHÈx¿°¾'¿°µsSA½
¾k¸
µsS�Áo¾kº»º�Si¸�Êkº ¿	¹^Áo¾kºÃº+²�¾k´'À�ºì¹ç´B½�S{¹ç´oí�Áo¾kºÃº+¸
µ?´
ÊUS
¾k´oÅ)·ÆµÇÅT¾k´BÈ°Émµ?¼¹S�·ÆµÇÅg½0Ê?¾?¼_À�S.±
²�³G´'µ?¶r³^³G·sS�¾kº ¾,¼@¸.S�±r³8Émµ?¼YS:]MN�hÂ±?¼_³?î{º µ�È � T!ú�úgjIGdû[]sP GäCFN�H¸øè]sZMJæP ÷aJ
þ�JO]sP EaL J.]~b^]MGdjI]sùgjäJ¸PKCèP ÷�J�E�HKJ[L<bÓGI]�]èE�H J[L<GINQPKJ[L
þ�]Mû�J �

ï �k¦'×+�^¦'�r��ð n�tÇñ?n8tÆ�£Gdø�úgjäJOø�JONUP�P ÷aJ�ùg]MH GIû1û[]súg]sùgGIjdGäP GäJOH£CMþDP ÷aJ�úg÷aCFN�J � T!ú�úgjIGdû[]sP GäCFN�H�GIø�úgjäJOøèJONQP�P ÷aJ
ù�JO÷�]~b\GäCFE�L�CMþ!þ�JO]sP EaL JOHãùUý E�H GIN�üëP ÷�JfHKJ[L bÓGIû�JOH�CMþ¸HKJ[L bMJ[L
H � _<÷aJT�¦X�� ø�CÓhaJOj¦ú�L
JOHKJONQPKJOh ÷aJ[L J
GINgû[jIE�haJOH�P ÷�L J[JâHKJ[L
bMJ[L
H8h{Áo¾
º»ºkÈ�µ?¼3ò�µ?¼YSâ±r³8Émµ?¼JÈ�µ?¼2ò?µ?¼�]MN�h|¸dµ?´
Ê�È�µ?¼2ò?µ?¼ ��F J[L bMJ[L
H1haCæNaCMP!÷�]~bMJ�E�HKJ[L
GINUPKJ[L þn]Mû�JOH �

ó §�ªr Q©Q¤B¦' Qã�ã¬�^¦k� _<÷aJÛL CFjäJáCMþ1P ÷aJË���gyÆz?v+q�t°z?ëwë3n�tèGIH
PKC ÷�]MNgh�jäJáP ÷aJfE�HKJ[LèGdNQPKJ[L þn]Mû�JOHèE�H JOh ùUý9P ÷aJ
]sú�ú%jIGIû[]sP GäCFN�H¦PKC@ú�L JOHKJONUP<P ÷aJ.þ�JO]sP EaL
JOH-PKC@P ÷aJ.E�HKJ[L-CMþ�P ÷�Jâø�CMùgGdjäJ�úg÷aCFNaJ �QF E�û
÷fEgHKJ[L!GINUPKJ[L þn]Mû�JOH
GINgû[jIE�haJ<GIN�þ�CML
øã]sP GäCFNã]sù�CFEaP��-÷�GIû�÷èPKJ�ÿÓP[S\GIû�CFNgH[SQüML
]sú%÷�GIû[H£J[P û � H ÷�CFE�jIhèù�J-H
÷aCB�-N@CFN@P ÷aJ1hgGIHKúgjI]~ý
CMþ�P ÷�JìøèCMùgGIjäJ;úg÷aCFNaJMS�]9øã]sú�úgGINaü CMþâE�HKJ[LæZMJ[ý\ú�L JOH HKJOHáPKC J[bMJONUP H[S¦PKCFNaJOHáPKC ù�J úgjI]~ýMJOh7J[P û �
j ÷aJONìP ÷aJ�]sú�úgjdGIû[]sP GäCFN�H1]sL J�L
E�NgN�GINaüèP ÷�J[ý L JoI\EaJOHKP�P ÷aJ �
� û�CFNUPKL CFjIjäJ[L¸PKCf]Mû[û�JOH H�P ÷aJ ���Ç� _<÷aJ
]sú�ú%jIGIû[]sP GäCFN�H.ú�L Ccb\GIh�JãP ÷aJ ��� û�CFNQPKL CFjdjäJ[L5�-GäP ÷$P ÷aJ@üML�]súg÷�GIû[H[S`ZMJ[ý ú�L
JOH Hâøã]sú�úgGINaüaSDPKCFNaJOH
J[P û �
_<÷�J ��� û�CFNUPKL CFjIjäJ[L
�-GIjIj�ú�L JOH JONQP<P ÷�J.E�HKJ[L-GdNQPKJ[L þn]Mû�J�PKC@P ÷aJ.E�HKJ[L � E�H GINaü�P ÷�J.h�GIHKú%jI]OýMSÓPKCFNaJOH!J[P û �
CMþ¡P ÷aJåø�CMùgGIjIJ�úg÷aCFNaJ �]MN�h E�H J.P ÷aJâZMJ[ýÛú�L JOH H!øè]sú�úgGIN�üèPKC@øè]súìE�HKJ[L1GINaúgE�P�PKC@]Mû�P GäCFN�H
�-÷�Gdû
÷
�-GdjIj\ù�J�L
J[P EaL
NaJOh
PKC�P ÷�J<]sú�úgjIGIû[]sP GICFN � _<÷aJ[L J<]sL J-CMþ�PKJON@HKJ[bMJ[L
]Mjg]Mû�P GIbMJ-]sú�úgjIGdû[]sP GäCFN�H¡]sP�P ÷aJ!H]Mø�J
P GIøèJ � M!JON�û�JMS�P ÷aJ �
� û�CFNUPKL CFjIjäJ[LH�-GIjdjDNaJ[JOhëPKCÛ]sú�úgjäý;HKCFø�J�H û
÷�JOh�E�jIGIN�üãø�JOû
÷g]MN�GIH ø PKCÛû�CFNQPKL
CFj
P ÷aJæ]sú�úgjIGdû[]sP GäCFN�H8ÌD]Mû[û�JOH
HâPKCëP ÷aJájIGIøèGIPKJOh ��� L JOH CFEaL
û�JOH �âj J4�!GIjIj¡üFGäbMJæ]MN J�ÿa]Mø�úgjIJãCMþ�P ÷�GIHâGIN
F JOû�P �Q-^� c �

Û� QÞàÞU¥â©:«wªr£A¤'«w +©}ô+�k¦?©��Gã�� F J[L bMJ[L
H�]MNgh9]súgúgjIGIû[]sP GäCFNgH.]sL JÛû�CFøèøåE�N�GIû[]sP GdNaü;ù\ý$øèJO]MN�HåCMþ!]MHKýÓNÓV
û�÷aL CFNaCFE�H�ø�JOH H
]süMJ�ú%]MH H GINaü � _<÷aJ£øèJOH H]süMJOH¡]sL J¦HKJONUP`P ÷aL
CFEaüF÷�P ÷aJ�yÆz,õ<õ5sGvAuayÆp,q�uaz?vXö,n8t	v{n�ë8�-÷�Gdû
÷
GIøèúgjäJOø�JONUP HDP ÷�J�úgL CMPKC\û�CFjÓE�H JOhåGdN.P ÷aJ�û�CFøèøåE�N�Gdû[]sP GäCFNåù�J[P��£J[JON
P ÷�J¦]súgúgjIGIû[]sP GäCFNgH[ScHKJ[L
bMJ[L
H[SM]MN�h
P ÷aJâE�HKJ[L<GINUPKJ[L þn]Mû�J ����� û�CFNUPKL CFjIjäJ[L �	�
_<÷�Jâúg]süMJg÷�³G·�¹ ¾@haJ[úgGIû�PKJOhìGIN � Gäü �iE GdH-P ÷aJ
PKCMúaVYøèCFHKP�úg]süMJ
CMþ�P ÷aJ��¦X"� ø�C\h�JOj`]MN�hëú�L
C~bÓGIhaJOH

P ÷aJ ø�CFH P]sùgHKPKL
]Mû�P b\GäJ8� CMþåP ÷aJ øèCMùgGIjäJëúg÷aCFNaJ �
� HKCMþ�P���]sL
J]sL
û
÷gGäPKJOû�P EaL J � _-÷aJêúg]süMJ û�CFN�H GdHKP H
CMþ:þ�CFE�L<H EaùgHKP GIP EaP GäCFNáPKL
]MN�H
GäP GäCFN�H ��ø ±k±
ºÃ¹ Áo¾'¿Æ¹ ³G´BÈ[S�ù0µ?¼3ò�µ?¼3È[S�ú.ûçü{³G´'¿	¼¬³GºÃº µ?¼�]MN�h)üi³G¸�¸�Ê
´r¹ Áo¾'¿Æ¹ ³G´kýâµ?¼@´'µ?º �
û�CML L JOH ú�CFNgh�GINaü@PKCÛP ÷aJ
þ�CFEaL�úg]sL
P H¸ø�JONQP GICFNaJOhì]sù�CcbMJ � _<÷aJåúg÷aCFN�JâJOjäJOøèJONQP�]MN�hëP ÷aJ
P��£C]Mh?�K]Mû�JONUP
úgjI]Mû�JOH-]sL J.E�HKJOhfþ�CML<bÓGIH Eg]MjIGIH]sP GäCFNá]MN�h]sL J�NaCMP<úg]sL
P�CMþ�P ÷�J.X�J[PKL
G��!J[P-ø�CÓhaJOj�CMþ:ø�CMùgGIjäJ�úg÷�CFNaJ ���
HKCMþ�P��¦]sL Jâ]sL�û
÷�GäPKJOû�P E�L J.HKýÓHKPKJOø �

Display

DisplayCol

KeyPad

KeyPadCol

UIout

Msg

FG

Pout

UIin

Msg

FG

Pin

C
o
m
m
u
n
i
c
a
t
i
o
n

K
e
r
n
e
l

HS

UI
Controller

HS Applications

HS

Sout

Msg

FG

Sout

Sin

Msg

FG

Sin

Ain

Msg

FG

Ain

Aout

Msg

FG

Aout

Servers

HS

Initial

E
FG

Init_Initial
1‘e

ä�å»æ ØÆþQØ º r���o�ÿ������ � »

6

Õ���� 	 iáâ�Gãwã�«�©�
�¤'Ú:��¡��k£A¤'¥�¦��^�
� NèP ÷aJ<þ�CFjIjäC'�-GINaü���J-üMC
GINUPKC.ø�CML J1haJ[P]MGIjaCFNæ÷aC'� P ÷aJ!þ�JO]sP EaL
JOH�CMþ�P ÷aJ1ø�CMùgGIjäJ�ú%÷aCFNaJ-]sL J1ø�CÓhaJOjIjäJOh �
j JL�-GIjIjMEgHKJ�P ÷aJ.½
¾k¸
µ£þ�JO]sP E�L J�]MH�]MNåJ�ÿÓ]MøèúgjäJ � _-÷aJ�üF]Mø�J�þ�JO]sP EaL J¦GIHDû�÷aCFHKJON
]MH:]MN.J�ÿa]Mø�úgjäJ£ù�JOû[]ME�HKJ
GäP¸GIH�þn]MGäL
jäý;H GIø�úgjIJå]MN�hêGdNQP E�GIP GäbMJOjäýfû[jäJO]sL�ù%EaP¸HKP GIjIj:û�CFø�úgjIJ�ÿ;JONaCFEaüF÷ìPKC;GIjIjIE�H PKL
]sPKJâP ÷�JèGINQPKJ[L
JOHKP GINaü
]MHKú�JOû�P H<CMþ�P ÷aJ<��X"� ø�C\h�JOj �

� GäüFEaL
J $ H ÷aC'�-H1P ÷aJåúg]süMJ
�â¾k¸
µåø�C\h�JOjIjIGINaüãP ÷aJ5½
¾
¸dµåþ�JO]sP EaL
J �Q� N � GIü �i$ P ÷aJ
úgjI]Mû�JOH5û%À�º µsS�ù0µÇí
º µ8Á�¿°µ8À�S���º ¾ÇÅ
¹ç´B½aS\]MN�h=ù{Ê'È8±rµ?´'À
µ8Àå]MjIj�÷g]ObMJ1P ÷aJ-û�CFjäCFEaL�HKJ[P�������������������� ��S��-÷�GIû�÷èhaJONaCMPKJOH�].û[]sL PKJOH
GI]MN
ú�L CÓh�E�û�P�CMþ¦]MN]sú�úgjdGIû[]sP GäCFNì]MN�hêHKCFø�JèGdNQPKJ[L
Ng]Mj¡h�]sP]ÛCMþ�P ÷aJè]sú�úgjIGdû[]sP GäCFN�S�J � ü � SDþ�CML¸P ÷aJ�½
¾k¸
µ�þ�JO]^V
P EaL J��-÷aJ[P ÷aJ[L!P ÷aJ[L JâGdH<]ãH]~bMJOh üF]MøèJ � _<÷�JOHKJ�þ�CFEaL-úgjd]Mû�JOH-ø�CÓhaJOj�P ÷aJâú�CFH H GäùgjIJ�H P]sPKJOH-CMþ¡P ÷aJ�½
¾
¸dµ
þ�JO]sP EaL J �Aj J��-GIjIj%J�ÿ\ú%jI]MGINáP ÷aJ�L
JOHKP�CMþ:P ÷aJ¸úgjI]Mû�JOH<GdN � GIü �+$ jI]sPKJ[L �

Idle

Application

FG

Init_IdleG
ame

Selected

Application

Playing

Application

Select
HS

Quit
HS

Init

InitCol
init_Select()

Init

InitCol
init_Quit()

Init

InitCol
init_New()

Init

InitCol
init_Restart()

Restart
HS

New
HS

Init

InitCol
init_End()

End
HS

Init

InitCol
init_Escape()

Escape
HS

Interrupt
SelectedHS

Init

InitCol
init_Suspend()

Init

InitCol
init_Resume()

Resume
HS

Interrupted

Application

Init

InitCol
init_Suspend()

Interrupt
playing HS

ä�åçæ Ø"!QØ º r���o$#��&%�' »

� N�GäP GI]Mjdjäý$P ÷�J¨½
¾k¸dµ þ�JO]sP EaL JêGIH¨û%ÀAº µ � _-÷aJ;HKJOjIJOû�P GäCFN3CMþ.]9Z\GINgh CMþ�üF]Mø�J GdH@ø�CÓhaJOjIjIJOh ù\ý P ÷aJ
PKL
]MN�H
GäP GäCFNeù0µ?º µ8Á�¿�S7�!÷�GIû
÷ û[]MEgHKJOHfP ÷aJêüF]MøèJ PKCAû�÷�]MNaüMJ GäP H HKP]sPKJ þ�L CFø*ù�JOGINaüËû%ÀAº µêPKC ù0µ?º µ8Á�¿ µ8À �
_`L
]MN�H GäP GICFN)(�Êr¹ ¿1ø�CÓhaJOjIH1P ÷aJ�I\E�GäPKP GdNaüáCMþ£P ÷aJ�üF]MøèJèþ�JO]sP E�L Jã]MN�hêû[]ME�H JOH�P ÷aJ�üF]Mø�JãPKCfû
÷�]MNaüMJæGäP H
HKP]sPKJèþ�L CFø ù0µ?º µ8Á�¿ µ8À PKC|û%ÀAº µ � _-÷aJâPKL�]MN�H GäP GäCFNgH<÷�µÇÉ4]MN�h+*Qµ�Èx¿x¾?¼3¿1ø�CÓhaJOj�P ÷aJèHKP]sL P�CMþ¦]æN�J8�(üF]Mø�J
]MN�háL JOH P]sL P�CMþ�]
úgL J[b\GICFE�H jäýèH]~bMJOhfüF]Mø�JMSgL JOHKú�JOû�P GäbMJOjäýMSa]MN�hÛû[]ME�H JOH�P ÷aJ¸üF]Mø�J�PKCèû�÷�]MNaüMJ.GIP H�HKP]sPKJ
þ�L CFø ù0µ?º µ8Á�¿ µ8ÀëPKC,�:º ¾�Å
¹»´'½ � _<÷aJ�PKL�]MN�H GäP GäCFNgH.-+´�Àì]MN�h/-^È�Áo¾k±rµèø�CÓhaJOj¡P ÷aJèPKJ[L�øèGIN�]sP GäCFN CMþ¦]füF]Mø�J
]MN�hìP ÷aJ@H]ObMJã]MNghêJOH û[]sú�Jèþ�L CFø]ÛüF]Mø�J � �!÷�GIû
÷ìP ÷�JON û[]MNêù�J�L JOH E�øèJOhêjI]sPKJ[L � S�L JOHKú�JOû�P GäbMJOjIýMSD]MN�h
û[]ME�HKJOH-P ÷aJ¸üF]Mø�JâPKCãû
÷�]MN�üMJ.GäP H<HKP]sPKJâþ�L
CFø0��º ¾ÇÅ
¹ç´B½�PKC4ùAµ?º µ8Á�¿°µ8À �

j ÷�GIjäJ�]ãüF]Mø�J
GIH�ù0µ?º µ8Á�¿ µ8ÀæCML1��º ¾ÇÅ
¹ç´B½ãGäP!û[]MN ù�J.H EgHKú�JON�haJOháù\ýæCMP ÷�J[L!þ�JO]sP EaL JOH1GINÛP ÷aJåHKýÓHKPKJOøÛS
J � ü � S%]MN GIN�û�CFøèGIN�üèû[]MjIj � _<÷�GdH�GdH<ø�CÓhaJOjIjäJOhæù\ýæP ÷�J�P���CèPKL
]MN�H
GäP GäCFN�H7ù{Ê'È8±rµ?´'À^ù0µ?º µ8Á�¿°µ8À@]MNgh�ù{ÊBÈ8±rµ?´�À,í

7

�:º ¾ÇÅk¹»´B½��-÷�GIû�÷êû[]ME�HKJOHâP ÷aJèüF]Mø�J@PKC û
÷�]MN�üMJ@GäP H�H P]sPKJ@þ�L CFø ù0µ?º µ8Á�¿ µ8À;CML2�:º ¾�Å
¹»´'½aS&L JOHKú�JOû�P GäbMJOjIýMS&PKC
ù{Ê'È8±rµ?´'À
µ8À � T ùiÊBÈ8±rµ?´'Àkµ8ÀëüF]Mø�JÛû[]MN$ù�J@L JOH E�ø�JOh � _<÷�GdH.GIHâø�C\h�JOjIjäJOh ù\ýêP ÷aJæPKL
]MN�H GIP GäCFN3*{µ�È8Ê
¸dµ
�-÷�Gdû
÷fû[]ME�H JOH!P ÷�J�üF]Mø�JåPKCæû�÷�]MNaüMJâGIP H!HKP]sPKJåþ�L CFø ù{Ê'È8±rµ?´'Àkµ8ÀãPKC�ù0µ?º µ8Á�¿°µ8À � T!jdj�P ÷aJ.PKL�]MN�H GäP GäCFNgH<GIN
� Gäü �+$]sL JâH EaùgHKP GIP EaP GäCFNæPKL
]MN�H GIP GäCFN�H �

T1jIjÓHKP]sPKJ-û�÷�]MNaüMJOH�GdNâP ÷�J�½
¾
¸dµ�þ�JO]sP EaL JMSFG � J � SF]MjIjÓH E�ùgHKP GäP EaP GICFNâPKL�]MN�H GäP GäCFNgH�GdN � Gäü �
$ SFû�CML
L JOHKú�CFN�h
PKC�P ÷aJ�H]MøèJ¸C~bMJ[L
]MjIj&úg]sPKPKJ[L
NÛCMþ`ù�JO÷g]ObÓGäCFEaL¦ùg]MHKJOhÛCFNÛH JON�h�GINaü
]
L JoI\EaJOHKP�PKC�P ÷aJ �
� û�CFNUPKL CFjIjIJ[L-]MN�h
�¦]MGäP¦þ�CML<]MNf]Mû
Z\N�CB�-jäJOh�üMJOø�JONQP � _<÷aJ�C~bMJ[L
]Mjdj�úg]sPKPKJ[L
Nfû�CML L
JOHKú�CFN�h�H�PKC�P ÷aJ¸GäPKJOøèH�GINæP ÷aJ�jdGIHKP�ù�JOjäC'� �

c � _<÷�J!HKP]sPKJ¸û
÷g]MNaüMJ¸GIH�PKL
GIüMüMJ[L JOhæùUýè]MNæGIN�û�CFøèGdNaü.ø�JOH H
]süMJ1PKCåP ÷aJ1þ�JO]sP E�L JMSUJ � ü � Sa]åø�JOH H]süMJ1þ�L CFø
P ÷aJ ��� û�CFNQPKL
CFjIjäJ[L<L J[ú�CML P GdNaü�HKCFø�J.E�H J[L-]Mû�P GäCFN �

E^� _<÷�J@þ�JO]sP EaL JáL JoI\EaJOHKP H
P ÷aJ �
� û�CFNUPKL CFjIjäJ[L
PKCìúgEaP
]ìE�HKJ[L�GINUPKJ[L þ�]Mû�JáCFN P ÷aJÛh�GdHKúgjI]~ý � CMLèGIþ<P ÷aJ
þ�JO]sP EaL J.]MjIL JO]Mhaýá÷�]MH<]èE�H J[L<GINQPKJ[L
þ�]Mû�J.H
÷aCB�-NfCFNÛP ÷aJ.h�GdHKúgjI]~ýãPKCãEaú�h�]sPKJ�P ÷�]sP!E�HKJ[L-GINUPKJ[L þn]Mû�J �	�

$^� _<÷�J¸þ�JO]sP EaL
J;��]MGIP H�þ�CML!]MN]Mû ZÓNaC'�-jäJOhaüMJOø�JONUP-þ�L CFø+P ÷�J ��� û�CFNUPKL CFjIjäJ[L �
>0�7j ÷aJONÛL JOû�JOGIb\GIN�üåP ÷�J�]Mû ZÓNaCB�-jIJOhaüMJOø�JONUP<P ÷aJ¸þ�JO]sP EaL J�û�CFø�úgjIJ[PKJOH-GäP H�HKP]sPKJâû
÷�]MNaüMJâ]MN�hÛû
÷�]MN�üMJOH

GäP HÛGdNQPKJ[L
Ng]Mj1hg]sP]]Mû[û�CML
h�GINaüFjIýMS�J � ü � S��-÷aJON3L JOHKP]sL P GdNaü] ú�L J[bÓGäCFE�H jäý H
]ObMJOh üF]Mø�J P ÷aJ)½
¾
¸dµ
þ�JO]sP EaL J;�!GIjIj�û
÷�]MN�üMJ.GäP H<h�]sP]èþ�L CFø045��6�7�8èPKC9�:� ��;���<�;�7=4�4 �

_<÷�GdH¦C~bMJ[L
]MjIj&úg]sPKPKJ[L
N GdH�ø�C\h�JOjIjäJOhæùUýáP ÷aJ¸ú%]süMJ�ù0µ?´'À *{µ8Á8µ�¹ ò�µ�H ÷�CB�-NfGdN � GIü �A>0�

Start

Application

P Ge
n

wait

Application

End

Application

P Ge
n

send
request

[(#kind msg_in)=msgkind,
member_app(app_in,appmsg_list),
msg_out = find_msg(app_in,appmsg_list)]

receive
ack

[(#kind msg_in)=msgkind,
app_out=find_app(app_in,app_list),
msg_out = find_msg(app_in,appmsg_list)]

Ain

Msg

FG

Ain

Aout

Msg

FG

Aout

Ain

Msg

FG

Ain

Aout

Msg

FG

Aout

Init

InitCol

P Ge
n

app_in

app_in

app_in

app_out

msg_in

list_to_ms(msg_out)

msg_in

list_to_ms(msg_out)

((msgkind,appmsg_list),receive)

(send,(msgkind,app_list,msg_out))

ä�åçæ Ø?>\Ø º r���oA@B'"CED F�'HGH'�� IE' »

8

_<÷�J�úg]süMJ
ù0µ?´�À *Qµ8Á8µ�¹ ò�µ<û�CFNUP]MGIN�H�P ÷aL J[JL�0z?tÇq��+ë2pryÇnÇ�	hGùG¿x¾?¼3¿�S�-Q´'À.]MNgh û�´r¹ ¿ � X£jI]Mû�JOH�ùG¿x¾?¼3¿:]MN�h9-Q´�À
]sL J!ù�CFEgN�h�PKC.P ÷�J!GINaú%EaP:úgjI]Mû�J!]MNghèP ÷aJ!CFEaPKúgEaP�ú%jI]Mû�J-CMþ�P ÷aJ1H EaùgHKP GIP EaP GäCFN�PKL
]MNgH GäP GäCFN�SML
JOHKú�JOû�P GäbMJOjäý �
X�jd]Mû�J�û�´r¹ ¿1GIH�ù�CFEgN�hëPKCfP ÷aJèúgjd]Mû�Jãû�CFN�NaJOû�PKJOh PKCfP ÷aJãH E�ùgHKP GäP EaP GICFN;PKL�]MN�H GäP GäCFN)�!GäP ÷]ÛjIGIN�J �];jIGINaJ
û�CML L JOH ú�CFNgh�H�PKC;]MN$]sL
û��-GäP ÷]sL L CB�!÷aJO]Mh�H�GIN ù�CMP ÷ h�GäL JOû�P GäCFNgH �	� X�jI]Mû�JOH ø ¹»´æ]MN�h ø ³GÊ'¿¸ø�C\h�JOj¡P ÷aJ
GINaú%EaP£]MN�h@CFEaPKúgE�P£ùgE0��J[L
H�ù�J[P���J[JONáP ÷aJ¸û�CFøèøåE�N�GIû[]sP GICFNãZMJ[L
N�JOj�]MNgh@P ÷�J�]súgúgjIGIû[]sP GäCFN � HKJ[J � Gäü �AEr�	�
ø ¹ç´ �]MN�h ø ³GÊ'¿ �]sL JâHKú�JOû[G21gJOhf]MH-þnE�H GICFNfúgjI]Mû�JOH��-÷�GIû�÷ ø�JO]MNgH-P ÷�]sP1]MjIj&P ÷�J.úgjI]Mû�JOH!CÓû[û[EaL L
GIN�ü��-GäP ÷
N�]Mø�J ø ¹ç´ �]MN�h ø ³GÊ'¿ �]sL J�GdhaJONQP Gdû[]Mj%J[bMJONfP ÷aCFEaüF÷áP ÷aJ[ýá]sL J�haL
]B�-Ná]MH<GIN�hgGäb\Gdh�E�]MjÓúgjI]Mû�JOH � _<÷aJ�P���C
PKL
]MN�H
GäP GäCFN�H�ù0µ?´'ÀJ*{µ&KAÊ'µ�Èx¿`]MN�h2*{µ8Á8µ�¹ ò�µ ø Á?·�ø�CÓhaJOjIH`P ÷aJ�ùg]MH GIû�û�CFøèøåE�N�GIû[]sP GäCFNâúg]sPKPKJ[L
N�jdGIHKPKJOh.]sù�CcbMJ �
Ä ù0µ?´�À�*{µ&KAÊ�µ�Èx¿�ø�C\h�JOjIH�GäPKJOøèH c]MN�h E^� _<÷�JÛüFE�]sL
h û�÷aJOû ZÓHãP ÷g]sPMLN4 < ��� GIHè] ø�JOH
H]süMJ �-÷�Gdû
÷

PKL
GIüMüMJ[L
H.P ÷�J@HKP]sPKJáû
÷�]MN�üMJ � P ÷aJX1�L
H P.jIGINaJèGdNêP ÷aJãüFEg]sL
h � SDP ÷g]sPâP ÷aJæ]sú�úgjIGdû[]sP GäCFN GIHâGIN]ëHKP]sPKJ
�-÷�J[L J�GäP�GIH<]MjIjICB��JOhÛPKC�ú�J[L þ�CML�ø P ÷aJ�HKP]sPKJâû�÷�]MNaüMJ � P ÷�J.HKJOû�CFN�hfjdGINaJ�GINáP ÷aJ�üFE�]sL�h �]MN�h�1gN�]Mjdjäý
P ÷aJ¦üFE�]sL�hâJONgH EaL JOH�P ÷�]sPOLO4B< � P��.GIH�ù�CFE�N�hâPKC¸P ÷aJ�ø�JOH H]süMJOH¡H JONQP � P ÷aJ¦P ÷�GIL
hâjdGINaJ£GdNâP ÷�J�üFEg]sL
h �	�

Ä *{µ8Á8µ�¹ ò?µ ø Á?·�ø�CÓhaJOjIH-GIPKJOøèH $]MNgh >0� _<÷aJåüFE�]sL
hëû
÷�JOû ZÓH¸P ÷�]sPQLN4 < ���ëGIH1]MNì]Mû ZÓNaCB�-jIJOhaüMJOø�JONUP
þ�L CFø P ÷�J �
� û�CFNUPKL CFjIjIJ[L � P ÷aJ
1�L
HKP�jIGdNaJ<GIN�P ÷aJ!üFE�]sL
h � SQP ÷�]sP�P ÷aJ1]sú�úgjIGdû[]sP GäCFN
ú�J[L þ�CML�øèH¡P ÷aJ1HKP]sPKJ
û�÷�]MNaüMJ � P ÷aJ!HKJOû�CFNgh@jIGdNaJ<GINèP ÷�J<üFE�]sL
h �]MN�h�1%N�]MjIjäýåP ÷aJ-üFEg]sL
hèJON�H
EaL JOH�P ÷g]sPRLO4B< �5P��
GdH�ù�CFE�N�h
PKCèP ÷�J.ø�JOH H]süMJOH!HKJONUP � P ÷aJ�P ÷�GIL
hÛjIGINaJ�GINáP ÷aJ.üFE�]sL
h �	�
_<÷�Jâû�CFN�û�L J[PKJ�GIN�þ�CML
øã]sP GäCFNf]sù�CFEaP��!÷�GIû
÷;ø�JOH H]süMJOH5Ì�PKL�GäüMüMJ[L
H8Ì�P ÷aJ.J[bMJONUP[S{�-÷�GIû�÷ ø�JOH
H]süMJOH¸]sL J

HKJONUP[S'�!÷�]sP`û�÷�]MNaüMJ¦GIN.h�]sP]1]sL J�ú�J[L þ�CML�ø�JOh�J[P û � GIH&L
JO]Mhâþ�L CFø P ÷aJ � GdN�GäP GI]Mj � øã]sL Z\GdNaü<CMþaP ÷aJHû�´r¹ ¿�úgjI]Mû�J �
T1jIjDP ÷�JåH E�ùgHKP GäP EaP GICFNÛPKL
]MN�H GIP GäCFN�H1GINfP ÷aJåúg]süMJ
�â¾k¸
µåH ÷aC'�-NëGIN � Gäü �i$]sL J
ù�CFEgN�hfPKCáGIN�HKP]MNgû�JOH!CMþ
P ÷aJ!úg]süMJHùAµ?´'À *{µ8Á8µ�¹ ò?µ!H ÷�CB�-N@GIN � Gäü �k> �-GIP ÷èGIN�h�GIb\GIhgE�]MjÓGIN�HKP]MNUP GI]sP GäCFN�H�CMþ�P ÷aJ!û�CML
L JOHKú�CFN�h�GIN�ü�û�´r¹ ¿
úgjI]Mû�JOH �G� CML<P ÷aJ¸H]sZMJ¸CMþ�L JO]Mh�]sùgGIjdGäPYýè]MjIj�P ÷aJ¸GINgGäP GI]Mj�øè]sL ZÓGINaüFH�]sL J�HKú�JOû[G21�JOh@ùUýæø�JO]MN�H¦CMþ`þ�E�Ngû�P GäCFN�H
�-÷�Gdû
÷Û]MjIj�J[bs]MjIE�]sPKJ�PKCæû�CFN�HKP]MNUP H �

T1jIj�P ÷�J!þ�JO]sP EaL JOH¦GINãP ÷aJ���X"� ø�CÓhaJOj%þ�CFjIjICB� P ÷�J1H]MøèJ1GIh�JO].]MH�P ÷aJd½
¾
¸dµ-þ�JO]sP EaL J � M!JON�û�JMSG�-÷aJON
]Mh�h�GdNaü]ëNaJ8� þ�JO]sP EaL Já] ú%]süMJæø�CÓhaJOjIjdGINaüáP ÷aJæC~bMJ[L
]MjIj�HKP]sPKJÛû
÷g]MNaüMJOH
GIH.úgL C~bÓGIhaJOhêPKCMüMJ[P ÷�J[L��-GäP ÷
]êhaJOH û�L�Gäú�P GäCFN9CMþ1P ÷aJ h�GIH úgjI]Oý L JoIUE�JOHKP H[S�E�HKJáCMþ�HKJ[L bMJ[L
HãCML�CMP ÷aJ[L@]súgúgjIGIû[]sP GäCFNgHå]MNgh P ÷aJfGINUPKJ[L
N�]Mj
h�]sP]âCMþ&P ÷aJ1þ�JO]sP E�L J � _-÷�GIHm�¦]Oý@CMþDø�CÓhaJOjIjIGdNaü¸P ÷aJ1þ�JO]sP EaL
JOH�L J8�gJOû�P H¦P ÷aJ��¦]Oý@P ÷aJ!þ�JO]sP EaL JOH¦û[EaL
L JONQP jIý
]sL JæhaJOH û�L
Gäù�JOh+*^h�C\û[E�øèJONQPKJOhêGIN P ÷aJ �
� HKú�JOû[G21gû[]sP GäCFN�H � M-J[L
JèP ÷aJãþ�JO]sP EaL JOHå]sL Jãh�JOH û�L
Gäù�JOh E�H
GINaüf]
PKJ�ÿÓP E�]Mj<haJOH û�L�Gäú�P GäCFN$CMþ-P ÷aJÛú�CFH H
GäùgjäJæHKP]sPKJOHè]MN�h HKP]sPKJ;û
÷�]MNaüMJOHèCMþ-P ÷aJÛþ�JO]sP EaL JÛPKCMüMJ[P ÷aJ[L4�-GäP ÷]
haJOH û�L�Gäú�P GäCFN
CMþ�P ÷aJ-EgHKJ[L�GINUPKJ[L þn]Mû�JOH[SUE�H J<CMþ�CMP ÷aJ[L£]sú�ú%jIGIû[]sP GäCFN�HOSs]MNgh�P ÷aJ-L
JO]Mû�P GäCFN�H�CMþ�P ÷aJ-þ�JO]sP EaL
J<PKC
E�HKJ[L�ZMJ[ýãúgL JOH HKJOH � M-JONgû�JMS\P ÷�J��¦X�� ø�CÓhaJOjgCMþDP ÷aJ!þ�JO]sP EaL JOH¦û[jäCFH JOjäý�þ�CFjdjäCB�-H£ù�CMP ÷ãP ÷�J �
� haJOH GIüFNaJ[L
H8Ì
]MN�h ��� H CMþ�P���]sL J¸haJ[bMJOjICMú�J[L�H8ÌUû[EaL
L JONQP�E�N�haJ[L�HKP]MN�h�GIN�ü1CMþDþ�JO]sP EaL
JOH�]MH���JOjIjg]MH�P ÷aJ1û[EaL L JONUP�]~b^]MGdjI]sùgjäJ
haCÓû[E�ø�JONUP]sP GäCFNÛCMþ:P ÷aJ¸þ�JO]sP EaL JOH �

j Jè÷�]~bMJ�NaCB�(ú�L
JOHKJONQPKJOhëP ÷aJ=�¦X�� ø�CÓhaJOj`CMþ�P ÷aJ<½
¾k¸
µ
þ�JO]sP EaL JåPKCÛüFGäbMJ�]MNëGdhaJO]ãCMþ�P ÷aJ�û�CFø
V
úgjäJ�ÿaGäP¹ý.CMþgP ÷�J
�¦X"�Aø�C\h�JOj\]MNgh
P ÷aJ�J���CML
P H¡L JoI\E�GäL JOhåPKC�GIN�û[jdE�haJ£]�þ�JO]sP EaL J<GdNâP ÷�J<ø�C\h�JOj � T1H�û[]MN�ù�J
HKJ[JONëþ�L CFø P ÷�Jå]sù�C~bMJ
ú�L
JOHKJONQP]sP GICFN P ÷aJåC~bMJ[L�]MjIj:GINaþ�L
]MHKPKL
E�û�P E�L J�CMþ�P ÷aJ
ø�CMùgGdjäJ�úg÷aCFN�J �
� HKCMþ�P���]sL
J
HKýÓHKPKJOø/÷�]MH�ù�J[JONêøèC\haJOjdjäJOh;]MNgh]Mh�h�GIN�üæ]ÛNaJ8� þ�JO]sP EaL
JèGIH�L JOjI]sP GäbMJOjIý JO]MHKý �:` CML JãGdø�ú�CML P]MNQP jIý GIH
P ÷�]sP¸NaJ8�4þ�JO]sP EaL JOH�û[]MNìù�Jå]Mh�h�JOh��-GIP ÷aCFEaP�û
÷�]MNaüFGdNaü@P ÷�Jåø�CÓhaJOjIH!CMþ�P ÷�JâJ�ÿaGIHKP GIN�ü@þ�JO]sP EaL JOHd�-÷�Gdû
÷
øè]sZMJOH!GäP�bMJ[L ýáJO]MHKýáPKCã]Mh�hÛCML!h�GIH]sùgjIJ1þ�JO]sP EaL JOH-GINáP ÷aJ�þnEaP EaL J�þ�CML
øè]Mj&]MNg]Mjäý\H
GIH �

j J�ø�CÓhaJOj&P ÷�JâGIN�hgGäb\Gdh�E�]Mj�þ�JO]sP E�L JOH1CMþ¡P ÷aJåøèCMùgGIjäJ�ú%÷aCFNaJ.E�H
GINaüèP ÷aJ
H]Mø�J
GIhaJO]MH!]MH�haJOH û�L
Gäù�JOh
þ�CML£P ÷aJd½
¾k¸
µ!þ�JO]sP E�L J � _-÷aJ-þ�JO]sP EaL J�GINUPKJ[L
]Mû�P GäCFN�H¦]sL J1û[]sú�P EaL JOháGINãP ÷aJH�¦X��çø�CÓhaJOjg]MH�P ÷aJ1û�CFøèøåEÓV
N�GIû[]sP GICFNã]MN�h@GINQPKJ[L�]Mû�P GäCFNãù�J[P��£J[JONæP ÷aJ1GIN�h�GäbÓGIh�Eg]MjQþ�JO]sP EaL JOH�GINèP ÷�JH�¦X�� ø�C\h�JOj �r� NèP ÷aJ
1�L
HKP�ú%÷�]MHKJ
CMþ¡P ÷aJ�Y[Z�\^]_Z$ú�L C��KJOû�P���Jå÷g]ObMJ
E�HKJOhëH GIøåE�jI]sP GäCFN�H<CMþ¡P ÷aJ���X"�(ø�CÓhaJOj&PKCáhaJ[PKJOû�P�]MN�hëGINQbMJOH P GäüF]sPKJ
GINUPKJ[L
]Mû�P GäCFN�Hãù�J[P���J[JON P ÷aJ;þ�JO]sP EaL
JOHãGIN P ÷�J¨�¦X"� ø�CÓhaJOj �m� H GIN�ü H GIøåE�jI]sP GäCFN�H5��J ÷�]~bMJ;CMùgP]MGINaJOh
haJ[P]MGIjIJOh ZÓNaCB�!jäJOhaüMJá]sù�CFE�PâP ÷aJæþ�JO]sP EaL JÛGINUPKJ[L
]Mû�P GäCFN�H
]MN�h9GIhaJONUP G21�JOh P ÷aJæGdø�ú�CML P]MNQPåúg]sPKPKJ[L
NgHâCMþ
GINUPKJ[L
]Mû�P GäCFN � BD]sPKJ[L
úg÷g]MHKJOHåCMþ<P ÷aJæú�L C��KJOû�P��-GdjIj�GIN�û[jdE�haJèø�CML Jæþ�CML
øè]Mj�]MN�]MjäýÓH GIH[S`J � ü � S:H P]sPKJáH úg]Mû�J
]MN�]MjäýÓH GIHOS\CMþ:P ÷aJ���X"� ø�C\h�JOjIH �

9

S T:ö�Ò ô"�@��ðFöxò`ï"Væò�Ô.T¡õGRgïm��ñQöYò�V
_<÷aJ ��� haJOH GIüFNaJ[L
H�]MN�h ��� HKCMþ�P��¦]sL JáhaJ[bMJOjäCMú�J[L
H��!÷aC]sL JæhaJ[bMJOjäCMúgGIN�üfNaJ8� þ�JO]sP EaL JOH��-GIjIj¡E�H JèP ÷aJ
�¦X�� øèC\haJOjdH¦PKC@GIhaJONUP Gäþ�ýæ]MNghf]MN�]MjäýÓHKJ�P ÷aJâGINQPKJ[L�]Mû�P GäCFNfúg]sPKPKJ[L�N�H<CMþ:P ÷aJOGäL!NaJ8� þ�JO]sP EaL JOH �{/ NaJ;�¦]Oý
CMþ�E�H GdNaü P ÷aJU�¦X"� ø�CÓhaJOjIH@GIHèù\ý ø�JO]MN�H@CMþ�H GIøåE�jI]sP GICFNiÎ¡ù�CMP ÷ GINUPKJ[L
]Mû�P GäbMJOjäý � HKPKJ[úaVxù\ýQVYHKPKJ[ú � þ�CML
haJ[P]MGIjIJOh GINUbMJOHKP GäüF]sP GäCFN3CMþ¸P ÷aJëþ�JO]sP EaL J;GdNQPKJ[L
]Mû�P GICFN�Há]MN�h ø�CML
Jë]MEaPKCFøã]sP GIû[]MjIjäý þ�CMLæGdNQbMJOHKP GIüF]sP GäCFN
CMþ�jI]sL üMJ[LåH û�JON�]sL
GäCFH ��� N P ÷�GIH�HKJOû�P GICFN|��J=�-GIjdj`úgL JOHKJONUP�PKJOû
÷�NgG3IUE�JOH;�-÷�Gdû
÷ê]MjIjäC'� �
� haJOH GäüFNaJ[L�H�]MN�h
�
� HKCMþ�P���]sL
JåhaJ[bMJOjICMú�J[L�H � �-÷�C@]sL JåNaCMP-þn]MøèGIjIGd]sL7�-GäP ÷)�¦X¡VYNaJ[P H � PKCáû�CFNQPKL CFj:]MN�h üF]MGINëGINaþ�CML
øè]sP GäCFN
þ�L CFø H GIøåE�jI]sP GICFN�Hâ�-GäP ÷aCFEaP�GdNQPKJ[L
]Mû�P GdNaü�h�GäL JOû�P jIý��-GIP ÷
P ÷aJ<E�N�haJ[L�jäý\GdNaü���X¡VYNaJ[P�]MN�hãGäP H¡PKCMZMJON@üF]Mø�J �
F JOû�P GäCFN -^� c
úgL JOHKJONUP H!P��£C J�ÿ\PKJON�H
GäCFN�H1PKCáP ÷aJ=�¦X"� ø�C\h�JOj`úgL C~bÓGIh�GIN�üãGINaþ�CML
øè]sP GäCFNì]sù�CFEaP�H GIøåE�jI]^V
P GäCFN�H ��F JOû�P GäCFN -^�ÃE ú�L JOH JONQP H�P��£CfJ�ÿÓPKJON�H GICFN�H�PKCÛP ÷aJ=�¦X"� ø�CÓhaJOj:]MjIjäCB�!GINaüæP ÷aJ ��� haJOH GäüFN�J[L
H¸]MN�h
�
� HKCMþ�P��¦]sL JåhaJ[bMJOjäCMú�J[L
H�PKCãû�CFNUPKL CFj`H GIøåE�jI]sP GäCFN�H �

U{�a� Vg«w�B¥:£�ã�«w�o£0¤'«w Q©� +¡ ï «wÞU¥âãw£0¤'«w +©:�
_���C J�ÿÓPKJON�H GäCFNgH.]sL Jáøè]MhaJèPKCëP ÷aJg�¦X"�+ø�CÓhaJOj�]MjdjäCB�-GdNaüfP ÷aJæû[EaL L JONUP.HKP]sPKJáCMþ�P ÷aJg�¦X"� ø�CÓhaJOj
]MN�h$P ÷aJãù�JO÷�]~b\GICFEaL.CMþ<P ÷�Jg�¦X��+ø�CÓhaJOj�h�E�L
GINaüfH GdøâE�jd]sP GäCFNêPKCìù�Jèb\GdH E�]MjIGIH JOh ��� GäL
HKP jäýMS`P ÷aJáHKP]sPKJ
CMþ�P ÷aJfúg÷�CFNaJf]MHèP ÷aJ;E�HKJ[LèCMùgH J[L bMJOHãGäP�CFN P ÷aJf÷�]MN�hgHKJ[PãGIH
bÓGIH E�]MjdGIHKJOh9b\Gd]]MN]MN�GIøã]sP GäCFN CMþ�P ÷aJ
h�GIH úgjI]Oý ��F JOû�CFNgh�jäýMS�P ÷aJ4�¦X�� ø�CÓhaJOj¡GIH1J�ÿÓPKJON�haJOhU�-GIP ÷ ` JOH H]süMJ F JoI\EaJON�û�J4�¦÷�]sL
P H �a`¨F ��H ��# c & PKC
ù�Jå]ME�PKCFøè]sP GIû[]MjIjäý;û�CFN�HKPKL
E�û�PKJOhê]MH�üML�]súg÷�GIû[]Mj`þ�J[JOh�ùg]Mû Z;þ�L CFø H GdøâE�jd]sP GäCFN�H � _<÷aJåL JO]MHKCFN `)F �¦H�]sL J
û
÷�CFHKJON PKCêbÓGIH E�]MjIGdHKJãP ÷aJáù�JO÷�]~b\GäCFE�LåCMþ1P ÷aJ��¦X�� ø�CÓhaJOj¦GIH
P ÷�]sPèh�Gd]süML
]MøèHåbMJ[L ý û[jäCFHKJÛPKC `)F �¦H
]sL J�]MjäL
JO]MhaýæGdNæEgHKJ�GINæP ÷aJ�haJOH GIüFNáú�L CÓû�JOH H<]sP7�!CMZ\GI] ��`)F �¦H<P ÷aJ[L J[þ�CML J�]MjIjäC'� P ÷aJ¸ù�JO÷�]ObÓGäCFEaL�CMþ�P ÷aJ
�¦X��+ø�C\h�JOj�PKCëù�J@b\GdH E�]MjIGIH JOhêGIN]T��]~ý P ÷�]sP
GIH�þn]MøèGIjdGI]sL�PKCëP ÷aJ �
� haJOH GIüFNaJ[L
H.]MNgh �
� HKCMþ�P���]sL
J
haJ[bMJOjäCMú�J[L
H �

_<÷�J�HKP]sPKJ�CMþ%P ÷aJ¦úg÷aCFNaJ¦]MH�P ÷aJ�E�HKJ[L:CMùgHKJ[L
bMJOH¡GäP`CFN
P ÷�J¦÷g]MN�h�HKJ[P:GIH`b\GIH
E�]MjIGIHKJOh.b\Gd]1]MN
]MN�Gdøè]sP GäCFN
CMþ�P ÷aJ
h�GIH úgjI]Oý �+� GIüFEaL J - H ÷aC'�-H�]@H
N�]súgH ÷aCMP!CMþ�P ÷aJå]MN�GIøè]sP GäCFN;P]sZMJONêh�EaL�GINaüè]æH GIøåE�jI]sP GäCFN CMþ�P ÷aJ
�¦X�� ø�CÓhaJOj � _-÷aJåH
N�]súgH ÷aCMP�H ÷aC'�-Nëû�CML L JOHKú�CFN�h�H!PKCÛ]áHKP]sPKJ5�-÷aJ[L JåP ÷aJ<½
¾
¸dµåþ�JO]sP EaL
J
GdHdù0µ?º µ8Á�¿ µ8À
�]ìZÓGIN�h$CMþ-üF]Mø�JÛ÷�]MH
ù�J[JON HKJOjäJOû�PKJOh �]MNgh9÷g]MHå]êEgHKJ[L�GINQPKJ[L
þ�]Mû�JáCFN P ÷aJÛh�GIH úgjI]Oý � _<÷aJÛE�HKJ[L�NaC'�
÷�]MHáP ÷aJìú�CFH H GIùgGIjIGäP¹ý PKC JOGäP ÷aJ[LÛHKP]sL Pf] NaJ8� üF]Mø�J � PKL�]MN�H GäP GäCFN!÷�µÇÉ GdN � Gäü �7$r� S�L JOH P]sL Pf]MN7CFjIh
üF]Mø�J � PKL
]MNgH GäP GäCFNW*{µ�Èx¿°¾,¼3¿âGIN � Gäü �m$r� CMLèHKJ[P�P ÷aJÛjäJ[bMJOj¦CMþ!P ÷aJÛüF]Mø�J � NaCMPèGdN�û[jIE�haJOh$GIN9P ÷aJ��¦X"�
ø�CÓhaJOj �	� _-÷aJf]MN�GIøè]sP GICFN GIHãGdø�úgjäJOø�JONUPKJOh E�H GdNaüêP ÷aJ ` GIøèGdûÛjIGäù�L
]sL
ý #YX'& CMþ�(1JOH GäüFNQ*,�¦X"� �-÷�Gdû
÷
]MjIjäC'�-HæüML
]súg÷�Gdû[]Mj-CMùG�KJOû�P HÛPKC ù�JëhgGIHKúgjI]~ýMJOhA]MNgh3E�ú�hg]sPKJOh3hgEaL
GINaü$H GIøåE�jI]sP GäCFN�H � E�H GIN�ü$P ÷aJêû�CÓhaJ
HKJ[üFø�JONUP H<]MH H C\û[GI]sPKJOh �-GäP ÷æPKL
]MN�H GIP GäCFN�H�GIN�(!JOH
GäüFN+*,�¦X�� �	�0j J�÷�]~bMJ�]Mh�haJOhÛ]
û�CÓhaJ�HKJ[üFø�JONUP�PKC�P ÷aJ
PKL
]MN�H
GäP GäCFNëGIN P ÷�J �
� û�CFNUPKL CFjIjäJ[L�øèC\haJOjdjIGINaü�P ÷aJ�Eaú�h�]sPKJåCMþ�P ÷aJ�h�GdHKúgjI]~ýMS%G � J � S{�-÷aJONëP ÷aJåPKL
]MN�H
GäP GäCFN
CÓû[û[EaL
HèP ÷�J û�CML L JOHKú�CFN�hgGINaüêû�C\h�J HKJ[üFø�JONUPæGdH�J�ÿ\JOû[E�PKJOhAû[]ME�H
GINaüêP ÷aJë]MN�GIøè]sP GäCFN PKC ù�JfEaú�h�]sPKJOh �
M!JON�û�JMS�P ÷aJ.]MNgGIøè]sP GäCFNáL J8�gJOû�P H<P ÷aJ.û�CFNUPKJONUP H-CMþ�P ÷aJ.h�GdHKúgjI]~ýãh�EaL
GdNaü�H GIøåE�jI]sP GäCFN �

_<÷�J�]MN�GIøè]sP GäCFNáCMþ�P ÷aJ�h�GdHKúgjI]~ý��-GIjIj�ú�L
C~bÓGIhaJ¸GINaþ�CML
øè]sP GäCFNá]sù�CFEaP�P ÷aJ�H P]sPKJ.CMþ�P ÷aJ��¦X"� ø�CÓhaJOj
]MHâP ÷aJãE�HKJ[LâCMþ¦P ÷aJ@ø�CMù%GIjäJ
úg÷aCFNaJ=�-GIjIj:CMùgH J[L bMJ@GäP � M-C'�£J[bMJ[LOS�P ÷aJ ��� HKCMþ�P��¦]sL JáhaJ[bMJOjäCMú�J[LâGIH.]MjIHKC
GINUPKJ[L JOHKPKJOháGIN@üF]MGIN�GIN�üâGINaþ�CML
øè]sP GICFNã]sù�CFEaP�P ÷aJ �
� HKCMþ�P��¦]sL J¸HKýÓHKPKJOø]sP�]åøèCML J1h�J[P]MGIjäJOhæjäJ[bMJOj � _<÷�GIH
GIH¡CMùgP]MGINaJOhèP ÷�L CFEaüF÷èP ÷�J!E�HKJ-CMþ `)F �¦H"�-÷�GIû�÷èû[]sú�P EaL
J-P ÷aJ1û�CFøèøâEgN�GIû[]sP GäCFN�ù�J[P��£J[JONæ]sú�úgjIGdû[]sP GäCFN�H[S
HKJ[L bMJ[L�H<]MN�hÛP ÷aJ ��� û�CFNQPKL
CFjIjäJ[L-GINáP ÷�J.ø�CMùgGIjIJ1ú%÷aCFNaJ ��� HKCMþ�P��¦]sL Jå]sL
û
÷�GIPKJOû�P EaL J �

� GäüFEaL
J K H ÷aC'�-H¸]MN J�ÿa]Mø�úgjäJ�CMþ¦] `)F �]MEaPKCFøè]sP Gdû[]MjIjäýëüMJONaJ[L
]sPKJOh$þ�L CFø] H GIøåE�jI]sP GäCFNëCMþ¦P ÷aJ
�¦X�� ø�CÓhaJOj � _<÷aJ `)F �9û�CFNQP]MGdN�H�]�bMJ[L P GIû[]MjajdGINaJ�þ�CML¡JO]Mû�÷èCMþgP ÷�J�L JOjäJ[bs]MNQP¡]sú�úgjdGIû[]sP GäCFN�H:]MN�h�HKJ[L
bMJ[L
H
GINÛP ÷�J.úg÷aCFN�J ��� HKCMþ�P��¦]sL J
HKý\H PKJOø]MN�h]èbMJ[L P GIû[]Mj�jIGIN�J1þ�CML-P ÷�J �
� û�CFNUPKL CFjIjIJ[L!]MN�h P ÷aJâE�H J[L<CMþ¡P ÷aJ
÷�]MN�hgHKJ[P � _<÷�Jã]sL L C'�-H.ù�J[P��£J[JON9P ÷aJ@bMJ[L P GIû[]Mj�jIGINaJOH�û�CML
L JOHKú�CFN�h PKCëø�JOH H]süMJOH
HKJONUP
GINêP ÷aJáHKýÓHKPKJOø �
_<÷aJ�û�CFøèøåE�N�Gdû[]sP GäCFNêHKJoI\EaJON�û�Jèû�CFN�H GdhaJ[L JOhêû�CML L JOH ú�CFNgh�H1PKC]ÛH û�JON�]sL
GICX�!÷aJ[L J
P ÷aJèø�CMùgGdjäJ
úg÷aCFNaJ
L JOû�JOGäbMJOH�]MN;GIN�û�CFøèGIN�üãû[]MjIj��!÷�GIjäJ�P ÷aJåE�HKJ[L�GIH�úgjI]~ý\GdNaüã]èüF]MøèJ �]MNëGINUPKJ[L
]Mû�P GäCFN;ù�J[P��£J[JON;P ÷aJ�½
¾
¸dµ

10

ä�åçæ Ø"ZQØ �`yc��w<r ux��z�y1z
{aux�^o¡�~���vp^¶�rq�1}c�v��yc��ux�^o¡¥1��w����¡¶����ctYr tv�1z
{am:oq�v����y [�| º ¢ »

]MN�h�Áo¾kºÃº~þ�JO]sP EaL
JOH �	� _<÷aJ�H û�JONg]sL
GäC�û[]ME�HKJOH�P ÷aJ�þ�CFjdjäCB�-GdNaü1H JoIUEaJONgû�J<CMþ%J[bMJONUP H�PKC¸CÓû[û[EaL � _-÷aJ�NUE�øâù�J[L
H
GINáP ÷aJâjIGIHKP¦ù�JOjäCB�çû�CML
L JOHKú�CFN�háPKCèP ÷aJâjIGINaJ¸N\E�ø.ù�J[L
H¦þ�CFE�N�hÛGdNáP ÷aJ `¨F � �

Ä _<÷�J�E�HKJ[L-HKJOjIJOû�P H<]�ZÓGIN�hæCMþ:üF]Mø�J�þ�L CFø+P ÷aJ�ø�JON\E � jIGdNaJ�c �	� _<÷aJH½
¾k¸
µ�þ�JO]sP EaL
J.GIH�NaCMP G21gJOhf]MN�h
GäP�L
JoIUEaJOH P H�P ÷aJ.h�GdHKúgjI]~ý � jIGINaJOH E V $r�	�

Ä _<÷�J�EgHKJ[L�HKJOjäJOû�P H�PKCèHKP]sL
P<]åN�J8� üF]Mø�J � jIGINaJ >k�	� _<÷aJH½
¾k¸
µ�þ�JO]sP EaL J¸GIH�N�CMP G21�JOhá]MN�háGäP�û
÷�]MN�üMJOH
P ÷aJâû�CFNQPKJONUP H-CMþ�P ÷aJ.hgGIHKúgjI]~ýã]Mû[û�CML
h�GdNaüFjäý � jIGINaJOH - V Kr�	�

Ä T1N;GdN�û�CFøèGINaüæû[]MjIj�]sL L
GäbMJOH � _<÷aJ<Áo¾
º»ºaHKJ[L bMJ[L¸NaCMP G21�JOH!P ÷aJ5Áo¾kºÃºÓþ�JO]sP E�L J � jdGINaJOH]\ � �-÷gGIû
÷ L JoIUE�JOHKP H
P ÷aJâh�GIHKúgjd]Oý � jIGdNaJ Xr�	�

Ä _<÷�Jfh�GIHKúgjd]Oý$GdH�û[EaL L JONUP jäý E�HKJOh ù\ý9P ÷�Jg½
¾
¸dµfþ�JO]sP EaL J � _-÷aJ ��� HKJ[L bMJ[LæGINUPKJ[L L
Eaú�P H
P ÷�Jg½
¾
¸dµ
þ�JO]sP EaL J � jIGdNaJ_^ �]MN�hì]sþ�PKJ[L�P ÷aJ�GINUPKJ[L L
EaúgP GäCFN ÷�]MH�ù�J[JONì]Mû ZÓNaC'�-jäJOhaüMJOhêP ÷�J
hgGIHKúgjI]~ýfGIH1üML
]MNUPKJOh
PKCèP ÷�J�Áo¾kºÃºQþ�JO]sP EaL J � jdGINaJOH�c b VÆc,c �	�

Ä _<÷�J.E�HKJ[L!L J �qJOû�P H1P ÷aJåû[]MjIj � jdGINaJ�c Er�	� _<÷aJ�Áo¾kº»ºUþ�JO]sP EaL JåGIH-NaCMP G31�JOhf]MN�h P ÷aJâh�GdHKúgjI]~ýæGIH-L JOø�CcbMJOh
� jIGdNaJOH�c $ VÆc >k�	�

Ä _<÷�J�½
¾
¸dµ¸þ�JO]sP EaL J.GIH¦L
JOH E�ø�JOh � jdGINaJOH�c - VÆc Kr�	�

_<÷�Jâ]sù�C~bMJ
H û�JON�]sL
GIC@GIH!]MNfJ�ÿa]Mø�úgjäJâCMþ�]èþ�JO]sP EaL J
GINQPKJ[L�]Mû�P GäCFN ù�J[P��£J[JON;P ÷aJ�½
¾k¸dµâ]MN�h P ÷aJ�Áo¾kº»º
þ�JO]sP EaL JOH�GINåP ÷aJ<øèCMùgGIjäJ�úg÷aCFNaJ �
� HKCMþ�P��¦]sL J-H ý\HKPKJOø � _<÷aJ�GINUPKJ[L
]Mû�P GäCFN�GIH¡û[]ME�H JOh
ùUýåP ÷aJ�NaJ[JOh
þ�CML�P ÷aJ
½
¾k¸
µ�]MNgh)¹»´�Á8³G¸;¹»´'½=Áo¾kºÃºUþ�JO]sP EaL
JOH<PKCãH ÷g]sL J¸P ÷aJ�h�GIH úgjI]Oý@CMþ`P ÷�J.ø�CMùgGIjIJ1ú%÷aCFNaJ�]MN�háP ÷aJâGINQPKJ[L�]Mû�P GäCFN
P ÷aJ[L J[þ�CML J�þn]MjIjIH�GdNQPKCèû[]sPKJ[üMCML ý]�]�CMþ�P ÷aJ.û[]sPKJ[üMCML
G29O]sP GICFN üFGäbMJON GIN F JOû�P �Q$^�

�!CMPKJ¦P ÷�]sP`GIN.P ÷aJ£H
û�JON�]sL
GäC!P ÷aJ �
� û�CFNQPKL
CFjIjäJ[L:GIH&L JOH ú�CFNgH GäùgjäJ:þ�CML�÷g]MN�h�jIGIN�ü�P ÷aJ£GINUPKJ[L L
E�ú�P � jIGIN�JOHO^cV
c,c �]MN�h L JOH
E�ø�J � jdGINaJOH c - VÆc Kr� CMþ¸þ�JO]sP EaL JOH � M-JONgû�JMS£P ÷aJ;þ�JO]sP E�L JOH@h�C$NaCMPæ÷�]ObMJëPKC ZÓNaCB� �-÷�Gdû
÷
þ�JO]sP EaL JOH�P ÷aJ[ýæú�CMPKJONQP Gd]MjIjäý@GdNQPKJ[L L�Eaú�P¦CML-]sL J�GINUPKJ[L L
E�ú�PKJOhæùUý � _-÷�GIH¦øè]sZMJOH-GIP�bMJ[L
ýæJO]MH ý@PKCã]Mhghf]MN�h
L JOø�CcbMJ¸þ�JO]sP E�L JOH�þ�L CFø>P ÷aJ;�¦X��çø�CÓhaJOj��!GäP ÷aCFEaP�û
÷�]MNaüFGdNaüâP ÷�J1H E�ùgNaJ[P H�ø�C\h�JOjIjIGINaü.P ÷aJ!L
JOHKP£CMþ`P ÷aJ
þ�JO]sP EaL JOH � _-÷aJ
�¦X"�3ø�CÓhaJOjaú�L
JOHKJONQPKJOhã÷aJ[L J � �-÷�J[L J�P ÷aJ �
� û�CFNUPKL CFjIjIJ[L�GIH�GIN�û�÷�]sL üMJ!CMþ�P ÷�J<GINQPKJ[L
L
Eaú�P
]MN�h@L JOH E�øèJ<CMþ&þ�JO]sP EaL JOH � GIH�N�CMP£]åø�C\h�JOj�CMþ�P ÷aJ�û[EaL L JONUP£Gdø�úgjäJOø�JONUP]sP GäCFNãCMþ�P ÷aJ �
� û�CFNUPKL CFjIjäJ[L�ùgEaP
]MNÛGIø�úgL C~bMJOhÛhaJOH
GäüFNáH EaüMüMJOHKPKJOhf]MH�]
L
JOH E�jäP�CMþDP ÷aJ�øèC\haJOjdjIGINaü.]Mû�P GIb\GäP¹ýæGdN@P ÷�J;Y[Z:\k]¬Zìú�L C��KJOû�P �0j J
�-GIjdj%L
J[P EaL
NáPKCèP ÷�GdH�GIN F JOû�P �QK^�

11

MSC (1)

Call Server

7

Call

8

14

Game

3

6

10

11

16

UI

2

5

9

13

15

User

1

4

12

Select Game

Select Game

Display request

New Game

New Game

Update Display

Incoming Call

Display request

Interrupt

Update Display

Interrupt Ack

Reject Call

Reject Call

Remove Display

Resume

Update Display

ä�åçæ ØE`QØ �ë¥¸�^|Ûr�}~uxz�w<r
ux���Kr
¶�¶��!��o�y^o�tYr uxoK�!{Ütxz�w r��v��w�}^¶�r ux��z�y�z�{\ux�^o�| º ¢ìw�zO�co�¶ »

U{��� Û� +©Q¤B¦� +ã�ã�«�©O
�¤'Ú:� ï «�ÞU¥:ãw£0¤'«w Q©
_���C@J�ÿÓPKJON�H GICFN�H-÷�]~bMJ
ù�J[JONëøè]MhaJâPKC@P ÷�J��¦X��(ø�CÓhaJOj&PKCáøè]sZMJ�GäP<ú�CFH H GIùgjäJ¸PKCáû�CFNQPKL CFj�P ÷aJ
H GIøåEÓV
jI]sP GäCFNgH
�!GäP ÷aCFEaP¸h�GäL
JOû�P jäý GINUPKJ[L
]Mû�P GINaü��-GIP ÷;P ÷�JèE�N�haJ[L
jIý\GIN�üX�¦X¡VYN�J[P H � _<÷aJ<1�L
HKP�J�ÿÓPKJON�H GäCFNêøã]sZMJOH
GäP<ú�CFH H
GäùgjäJ�PKCáû�CFNQPKL CFj�H GIøåE�jI]sP GICFN�H�GINUPKJ[L
]Mû�P GINaü@ùUýÛø�JO]MN�H!CMþ:ZMJ[ýfú�L JOH
HKJOH7�-GIP ÷ÛP ÷aJâøèCFE�HKJ�CFN;P ÷aJ
úgGIû�P E�L J<CMþ�P ÷aJ�ø�CMùgGIjIJ�úg÷aCFNaJ1GIN � Gäü �0-]süF]MGINæE�H GIN�ü�P ÷aJ ` GIøèGdû<jIGäù�L�]sL ýâCMþ�(1JOH GIüFN+*,�¦X"� � (1G2��J[L JONUP
L J[üFGäCFNgH¸÷�]MH1ù�J[JONê]MH
HKC\û[Gd]sPKJOh)�-GäP ÷ëJO]Mû
÷êCMþ�P ÷aJ
ZMJ[ýÓH�GIN;P ÷aJ�úgGIû�P EaL
JâCMþ£P ÷aJ�ø�CMùgGIjäJåúg÷aCFN�J �Q� L
CFø
P ÷aJ�û�CÓhaJ�HKJ[üFø�JONUP�CMþ�P ÷aJ¸PKL
]MN�H GIP GäCFNáGINæP ÷aJ ��� û�CFNUPKL CFjIjäJ[L<ø�CÓhaJOjIjdGINaü.ZMJ[ý\ú�L JOH
HKJOH�þ�L CFø P ÷aJ�E�HKJ[L�CMþ
P ÷aJ.÷g]MN�h�HKJ[PL��J.û[]MjIj&] ` B þnE�N�û�P GICFN��-÷�GIû�÷áL JO]Mh�H��-÷gGIû
÷ÛL
J[üFGäCFN � G � J � S�ZMJ[ý � ÷�]MH<ù�J[JON HKJOjäJOû�PKJOh �

_<÷�J!HKJOû�CFN�hæJ�ÿÓPKJON�H GäCFNæøè]sZMJOH�GäP£ú�CFH H GäùgjIJ�PKCåHKJ[P¦Eaúá]âH
û�JON�]sL
GäCâPKCâù�J!H
GIøâEgjI]sPKJOh � _-÷aJ!H û�JONg]sL
GäC
û[]MNæù�J1HKú�JOû[G21gJOhã]MH¦]âH J[L
GäJOH�CMþ&J[bMJONUP H � PKCMüMJ[P ÷aJ[L7�-GäP ÷æ]MN@CML
haJ[L
GIN�ü.ù�J[P���J[JONáP ÷aJ1J[bMJONQP H �	� _-÷aJ!jäJ[þ�P
úg]sL P�CMþ � Gäü � \åH ÷aC'�-H�÷aC'�çP ÷aJ�H û�JON�]sL�GäCèû�CML L JOHKú�CFN�hgGINaü.PKCãP ÷aJ `¨F �3GIN � Gäü ��Kg� �-÷aJ[L J�P ÷aJ�øèCMùgGIjäJ
úg÷aCFN�J�L JOû�JOGäbMJOH�]MNëGIN�û�CFøèGIN�üèû[]MjIj��!÷�GIjäJ¸P ÷aJåE�HKJ[L1GIH<úgjd]OýÓGINaüã]ãüF]Mø�J � GIH-HKú�JOû[G21gJOh �0� N;P ÷�GIH7��]~ý GäP
GIH-ú�CFH
H GäùgjäJ¸PKCáGIN�H ú�JOû�P!GINQPKJ[L
JOHKP GINaüæH û�JON�]sL
GäCFH
�-GäP ÷�CFEaP-øè]MN\E�]MjIjäýáú�L
JOH H GINaüãP ÷aJ.ZMJ[ýÓH1CMþ�P ÷aJâøèCMùgGIjäJ
úg÷aCFN�J�GIN � Gäü � \ �

_<÷�J.L
GäüF÷UP1úg]sL P-CMþ � GIü � \ãH ÷aC'�-H!÷�CB�(]@û�CFjdjäJOû�P GäCFN;CMþ�H û�JON�]sL
GICFH!û[]MNëù�JâHKú�JOû[G21gJOh]MH�]ãú%]sL P GI]Mj
CML
haJ[L�CMþ�J[bMJONUP H[S%G � J � SaCFNgjäý@]
úg]sL
P GI]Mj�CML
haJ[L<GIH¦üFGIbMJONÛù�J[P���J[JONfP ÷aJ¸J[bMJONUP H � _<÷gGIH�J�ÿÓ]Mø�ú%jäJ�û�C~bMJ[L
H K?b
h�G���J[L JONUP:CML
haJ[L
GIN�üFHDCMþ�P ÷aJ�H GWÿ.J[bMJONUP H �rj J�J�ÿÓú�JOû�P¡P ÷�GIHâ�¦]OýåCMþ%HKú�JOû[Gäþ�ý\GdNaü � û�CFjIjIJOû�P GäCFN�H:CMþ � H û�JON�]sL�GäCFH
�-GIjdjgù�J¸bMJ[L ýáE�HKJ[þnE�j�GINájI]sPKJ[L!úg÷�]MHKJOH¦CMþ�P ÷aJ<Y[Z�\^]¬Zìú�L C��KJOû�P7�-÷aJ[L JH��J;�-GIjdj%û�CFN�û�JONUPKL
]sPKJåCFNÛþ�CML
øè]Mj
]MN�]MjäýÓH GIH£CMþ&þ�JO]sP EaL J�GINUPKJ[L
]Mû�P GäCFN�H¦]MN�háGINUbMJOHKP GäüF]sPKJ�P ÷aJ�E�HKJ1CMþâ�¦X��çø�CÓhaJOjIH�GdNãP ÷aJ1úgjI]MNgN�GINaü�CMþDPKJOHKP
û[]MHKJOH�GIN P ÷aJæþ�JO]sP EaL
JæhaJ[bMJOjICMúgø�JONUP � _<÷�Jãú�CFH H Gäù%jäJèCML
haJ[L�GINaüFH�CMþ-P ÷aJ@J[bMJONUP H�GIN P ÷aJ@ú%]sL P GI]Mj�CML�haJ[L
û�CML L JOH ú�CFNghêPKCfPKJOHKPåû[]MHKJOH.E�H JOhU�-÷aJONêPKJOH P GINaüfþ�JO]sP EaL JOHâ]MN�hêþ�JO]sP EaL J@GdNQPKJ[L
]Mû�P GICFN�H�GIN �
� HKCMþ�P���]sL
J
haJ[bMJOjäCMú%ø�JONQP@CMþ��-CMZÓGI] øèCMùgGIjäJÛúg÷�CFNaJOH �"� L
CFø P ÷aJ K?b ú�CFH H GIùgjäJáCML
haJ[L
GdNaüFH�CMþ�P ÷aJ;H
GWÿ9J[bMJONUP HáGIN

12

START

Select game

New game

Incoming call

Reject call

START

Select game

New game

End game

Reject call

Power low Incoming call

ä�åçæ ØbaFØ Â�}c�´�~oK�1�v��w�}c¶�r
ux��z�yc�Dz
{Óux�^o¡| º�� y^o¹u »

P ÷aJèJ�ÿa]Mø�úgjIJèCFN�jäý E�> CML�haJ[L
GINaüFH.]sL Jãbs]MjIGIh �]Mû[û�CML
hgGINaü PKCëhaJOH û�L
GIú�P GäCFNìCMþ¦P ÷aJãþ�JO]sP EaL JOHåGINêP ÷�J ���
HKú�JOû[G21gû[]sP GICFN�H�P ÷aJãGINgû�CFøèGINaüÛû[]MjIj�÷g]MH¸PKCfù�J�L J �KJOû�PKJOh ù�J[þ�CML
J�P ÷aJèüF]Mø�Jæû[]MNêú�L CÓû�J[JOh �	� T­�¦]OýìPKC
GINUbMJOHKP GäüF]sPKJ��-÷�Gdû
÷ CML�haJ[L
GINaüFHâû[]MN$]Mû�P Eg]MjIjäýêCÓû[û[EaL�GIN P ÷aJg�¦X"�+øèC\haJOj£GIHâPKCëû�CFøâùgGINaJ@P ÷aJáE�HKJãCMþ
P ÷aJOHKJ;úg]sL P GI]Mj-CML
haJ[L
GdNaüFH�PKCMüMJ[P ÷aJ[Lg�-GIP ÷ HKP]sPKJìHKúg]Mû�Jì]MN�]MjäýÓH GIH[S�û�CFNgHKPKL
E�û�P@P ÷aJ úg]sL
PãCMþ¸P ÷aJëHKP]sPKJ
HKúg]Mû�J
û�CML L JOH ú�CFNgh�GINaüèPKCæJ[bMJONUP H¸]MN�h CML�haJ[L
GINaüFH-CMþ�J[bMJONUP H¸]MjIjäCB��JOhëùUýÛP ÷�JåHKú�JOû[G21%û[]sP GäCFN üFGIbMJON bÓGI]
P ÷aJ£úg]sL P GI]MjQCML
haJ[L
GIN�ü<û[]MN.ù�J£û�CFNgHKPKL
E�û�PKJOh �'� N.P ÷�GIH���]~ý.]<úg]sL
P GI]MjQHKP]sPKJ¦HKúg]Mû�J�û[]sú�P EaL
GdNaü<P ÷aJ£ú�CFH
H GäùgjäJ
þ�JO]sP EaL JâGdNQPKJ[L
]Mû�P GICFN�H-û[]ME�H JOhfù\ýá]@H EaùaVYH J[P<CMþ:P ÷aJ.J[bMJONUP H-þ�CML-P ÷�J.þ�JO]sP EaL JOH-GdNÛP ÷aJâøèCMùgGIjäJ�úg÷aCFN�J.GIH
CMù�P]MGIN�JOh �

� N
P ÷aJL1�L
HKP:úg÷g]MHKJ¦CMþgP ÷aJ
Y[Z�\^]¬Záú�L C��KJOû�PJ�£J<÷�]~bMJ�CFN�jäýåGINQbMJOH P GäüF]sPKJOh�P ÷aJ¦ú�CFH H Gäù%GIjIGäP¹ý1CMþ�J�ÿÓPKJON�hÓV
GINaü¸P ÷�Jd�¦X"�7ø�CÓhaJOj0�!GäP ÷èH E�û�÷�üFE�GIh�JOhèH GIøåE�jI]sP GäCFNgH � _<÷aJ<ú�L
JOû[GIHKJ<haJ81gNgGäP GäCFN�SsJ � ü � S\P ÷aJ-jI]MNaüFEg]süMJ<PKC
haJOH û�L�Gäù�J-GäP¦]MN�hãJ[bs]MjIE�]sP GICFNãCMþ`P ÷aJ1]súgúgjIGIû[]sùgGdjIGäPYý��-GIjIjgù�J-J[bs]MjIE�]sPKJOháGINæjI]sPKJ[L¦úg÷�]MHKJOH£CMþ&P ÷aJ1ú�L C��KJOû�P �

c Ñ@òDï�õ0�¹ô"Vsöxò`ï"Vg��ï�ó ��ô¡ðFô�ñrRed ò&ñr�

` C\haJ[L�N$ø�CMù%GIjäJãú%÷aCFNaJOHâú�L C~bÓGIhaJæ]��!GIhaJãL�]MNaüMJ@CMþ-þ�JO]sP EaL
JOHâPKCìP ÷aJáE�HKJ[LåbÓGI] P ÷�JæE�H J[LåGINUPKJ[L þn]Mû�J �
(1J[PKJOû�P GINaü]MN�h haJOH
û�L
GäùgGIN�üfP ÷aJOHKJáþ�JO]sP EaL JÛGINUPKJ[L
]Mû�P GäCFN�H
GIHå]ìû�CFø�úgjIGIû[]sPKJOh]MN�h û[E�øâù�J[L
HKCFø�JæP]MHKZ
]MN�hÛû[EaL
L JONQP jIýãP ÷aJ�ø�CFH P<û�CFø�úgjäJ�ÿáGINQPKJ[L�]Mû�P GäCFN�H<]sL J�N�CMP�þ�E�jdjäýèE�N�haJ[L�HKPKCUCÓhæù�J[þ�CML J¸P ÷�J¸þ�JO]sP EaL
JOH<]sL J
GIø�ú%jäJOø�JONUPKJOh �:� N9P ÷�GIHåúg]sú�J[L���Já÷g]ObMJfú�L
JOHKJONQPKJOh~1gL
HKPåL JOH E�jäP HåCMþ1P ÷aJ�Y[Z�\^]_Z7ú�L
C��qJOû�P�GIN[�-÷�Gdû
÷
GIø�ú�CML P]MNUP.þ�JO]sP EaL JÛGINUPKJ[L
]Mû�P GäCFN$úg]sPKPKJ[L
NgHåGdNà�!CMZ\Gd];ø�CMù%GIjäJãú%÷aCFNaJOHåGIHâøèC\haJOjdjäJOh E�H
GINaü¨��CFjICFEaL JOh
X�J[PKL
G��!J[P H �

_<÷�Jåû[EaL
L JONQP;�¦X�� ø�CÓhaJOj:HKJ[L bMJOH¸]MH�]æþ�L
]MøèJ8�£CML Zë]MN�hëú�L Ccb\GIh�JOH-P ÷aJ
ùg]MH
GIû �
� GIN�þ�L
]MH PKL
E�û�P EaL J
�-÷aJ[L
J;�£J
û[]MN;úgjIEaüãGdNÛþ�JO]sP E�L JOH � _<÷aJ.ø�CÓhaJOjIjdGINaü�CMþ¡P ÷aJ ��� û�CFNUPKL CFjIjäJ[L�GIH-JOH HKJONUP GI]MjDGIN CMù�P]MGIN�GdNaüã]
�¦X�� ø�CÓhaJOj��!÷aJ[L Jåþ�JO]sP EaL
JOH¸û[]MNìù�Jå]Mh�haJOhì]MN�hëL JOø�CcbMJOh)�-GäP ÷aCFE�P1û�÷�]MNaüFGINaüæP ÷aJ�H Eaù%NaJ[P H-CMþ£P ÷aJ
L JOHKP�CMþ�P ÷aJ<þ�JO]sP EaL JOH�GIN�P ÷aJd��X"�7ø�CÓhaJOj � _<÷�J-û[EaL L JONUP.�¦X��7ø�C\h�JOj�NaCB�3GIN�û[jIEghaJOH¡]�þ�J8�AGIøèú�CML
P]MNQP
þ�JO]sP EaL JOH-]MNgh��£J.÷g]ObMJâ]MjIL JO]MhaýáGIhaJONUP G21�JOháHKCFø�J�ù%]MH GIû¸GINUPKJ[L
]Mû�P GäCFNÛú%]sPKPKJ[L
N�H �

j Já÷�]ObMJ@ú�L JOHKJONUPKJOh$P ÷aJ@ø�CÓhaJOjIGdNaüÛ]sú�ú�L CF]Mû�÷ PKC;CFEaLâGINUPKJ[L
N�]Mj�û[E�HKPKCFø�J[L
Hå]MN�h P ÷aJ[ýê÷�]ObMJá]Mû�V
û�J[ú�PKJOhãP ÷aJ�üMJONaJ[L
]Mj�GdhaJO] �rj J-]sL J!NaCB�]Mhgh�GINaü¸ø�CML J�þ�JO]sP EaL JOH�PKC�P ÷aJ<ø�CÓhaJOjÓPKC�ù%E�GIjIh
]¸û�CFø�ú�L
JO÷aJONÓV

13

H GäbMJ1HKJ[P�CMþDGINUPKJ[L
]Mû�P GäCFN@úg]sPKPKJ[L
N�H �0/ NaJ1GIø�ú�CML P]MNUP�P]MHKZ��!GIjIjÓù�J-PKC
jIGINaZåP ÷aJ�GINUPKJ[L
]Mû�P GäCFN@úg]sPKPKJ[L
N�H£PKC
J�ÿaGIHKP GINaü�GIøèúgjäJOø�JONUP]sP GäCFNáúg]sPKPKJ[L
NgH �

T1Nì]MHKú�JOû�P!CMþ�P ÷�J�Y[Z�\^]¬Z ú�L
C��qJOû�P�GIH!PKC@ú�L
C~bÓGIhaJâH
Eaú�ú�CML P-]MN�h;üMJONaJ[L
]sPKJèGdhaJO]MH-þ�CML1P ÷aJåøèCMùgGIjäJ
úg÷aCFN�J �
� HKCMþ�P��¦]sL Jf]sL
û
÷gGäPKJOû�P EaL JáhaJ[bMJOjäCMúgøèJONQP5��CML Z � _<÷aJáû�CFN�HKPKL�E�û�P GäCFN9]MN�h H GIøåE�jI]sP GäCFN CMþ<P ÷aJ
�¦X��çø�CÓhaJOj%÷g]MH�H
E�û[û�JOH HKþnE�jIjäýèGdhaJONQP G31�JOhãHKCFøèJ�H
÷aCML P û�CFøèGIN�üFH£CMþ`P ÷aJ�û[EaL L JONUP�h�JOH GäüFN � T!jdHKCåh�JOø�CFNÓV
HKPKL
]sP GICFN�H�CMþDP ÷aJ!û[EaL
L JONQP��¦X"� øèC\haJOjgPKC
CFEaL£GINUPKJ[L
N�]Mj%û[E�HKPKCFø�J[L�H�÷g]ObMJ�üMJONaJ[L
]sPKJOháh�GIH
û[E�H H GäCFNgH�]MN�h
GIhaJO]MH�þ�CML�ú�CFH H
GäùgjäJ¦GIø�ú�L
C~bMJOø�JONUP H�GIN
P ÷�J-ø�CMùgGIjIJ�ú%÷aCFNaJ ��� HKCMþ�P��¦]sL J1]sL
û
÷�GIPKJOû�P EaL J<PKC�CMùgP]MGIN�ù�J[PKPKJ[L
H Eaúgú�CML
P£þ�CML�þ�JO]sP E�L J�GINUPKJ[L
]Mû�P GäCFN�H<GdN@P ÷�J ��� HKCMþ�P���]sL
J.haJ[bMJOjäCMúgøèJONQP � _-÷aJ¸GIhaJONUP G21�JOháH ÷aCML P û�CFøãGINaüFH
]sL J

Ä _<÷�J-GIø�úgjIJOø�JONQPKJOh�h�JOH GäüFN�CMþ�P ÷aJ ��� û�CFNUPKL CFjIjäJ[L�GIH¡ùg]MHKJOhãCFNã]âHKPKL
]sPKJ[üMý��-÷aJ[L
J<þ�JO]sP E�L JOH�NaJ[JOhãPKC
ZÓNaCB�Ë�!÷�GIû
÷@CMP ÷aJ[L�þ�JO]sP EaL JOH�û�C\J�ÿÓGdHKP � T!jIH CåP ÷�J!ú�L�GäCML
GäP¹ýèCMþ&ú�CFH H Gäù%jäJ-J[bMJONUP H<NaJ[JOh�H�PKC
ù�J!ZÓNaC'�-N
�-÷�JONè]Mû[û�JOH H GIN�ü�P ÷aJ<h�GIH úgjI]OýâCMþ�P ÷aJ<ø�CMùgGIjIJ�úg÷aCFNaJ �,j J-÷g]ObMJ!H
EaüMüMJOHKPKJOhã]MN@GIhaJO]�þ�CML�NaJ8� h�JOH GäüFN
CMþ1P ÷aJ �
� û�CFNUPKL CFjIjIJ[L��-÷aJ[L JáP ÷aJ �
� û�CFNQPKL
CFjIjäJ[LèGIø�ú%jäJOø�JONUP H
P ÷aJÛú�L CMPKCÓû�CFj�þ�CMLã]Mû[û�JOH H GIN�ü P ÷aJ
h�GdHKúgjI]~ýÛCMþ£P ÷aJ
úg÷�CFNaJ � M!JON�û�JMS�P ÷aJ �
� û�CFNUPKL CFjIjIJ[L�GdH1GdNëû�÷�]sL üMJ�CMþ¦GINUPKJ[L L
Eaú�P GdNaüã]MN�hìL JOH
E�øèGINaü
þ�JO]sP EaL JOH � _<÷�GIH�GIH¦P ÷�J.haJOH GäüFNáúgL JOHKJONUPKJOhfGINáP ÷aJ<��X"� ø�C\h�JOj�GIN F JOû�P �A>0�

Ä T1ø.ù%GäüFE�GäP GäJOH`GINâP ÷aJ�H ú�JOû[G31gû[]sP GäCFNâCMþgû[]MjIjäJ[L�üML CFEaúgH:]MN�hâL
GIN�üFGINaü<PKCFNaJOHâ�-÷gGIû
÷�S^]MH¡]!û�CFNgHKJoIUE�JON�û�JMS
û[]MN jäJO]Mh$PKCê];H GIP E�]sP GäCFN|�!÷aJ[L JãP ÷�J@úg÷�CFNaJ@haC\JOHåNaCMPâú%jI]Oý];L
GINaüFGdNaüfPKCFNaJX�-÷aJON$P ÷aJ@øèCMùgGIjäJ
úg÷�CFNaJ�÷�]MH<]MNfGdN�û�CFøèGINaü�û[]MjIj �

Ä � N�û�CFN�H GdHKPKJON�û[GäJOH�]MNgh E�N�NaJOû�JOH
H]sL ýìû�CFøèøâEgN�GIû[]sP GäCFN GdNìP ÷aJãHKýÓHKPKJOø �-÷�JON ÷�]MN�h�jdGINaüáø�JONUEgH¸CFN
P ÷aJ�hgGIHKúgjI]~ý � T H Gdø�úgjäJ�û
÷�]MN�üMJ;�-÷�GIû�÷æL JOh�E�û�J�û�CFøèøåE�N�Gdû[]sP GäCFNÛù�J[P���J[JONÛP ÷aJ �
� û�CFNUPKL CFjIjIJ[L-]MN�h
P ÷aJâHKJ[L bMJ[L-÷�]MNgh�jIGINaüåP ÷aJ.øèJONUE�H �
� E�P EaL J���CML ZêGINìP ÷aJXY[Z:\k]¬Z ú�L
C��qJOû�P;�!GIjIj�þ�CÓû[E�H¸CFN P ÷aJãhaJ[PKJOû�P GICFN CMþ¦þ�JO]sP E�L J@GINUPKJ[L
]Mû�P GäCFNgH�GIN

P ÷aJd��X"�7ø�CÓhaJOj �,j J��!GIjIj\J[b^]MjdE�]sPKJ-P ÷aJ!E�HKJ[þnE�jINaJOH H:CMþ��¦X�VYNaJ[P H¡þ�CML£]MEaPKCFøã]sP GIû-haJ[PKJOû�P GICFNèCMþ�þ�JO]sP E�L J
GINUPKJ[L
]Mû�P GäCFN�Hå]MN�h$û�CFø�úg]sL J@CFEaLâPKJOû�÷�N�G3I\EaJèPKCëCMP ÷aJ[LåPKJOû
÷�NgG3IUE�JOHâû[EaL
L JONQP jIýëGIN$E�HKJæGINêP ÷aJ41�JOjIh CMþ
þ�JO]sP EaL JãGINUPKJ[L
]Mû�P GäCFNgH[S�J � ü � S # \US K'&@�:j Jã]sL Jèú%jI]MN�N�GIN�ü@PKC GdN�û[jIE�haJ
HKP]sPKJæHKúg]Mû�Jã]MN�]MjIý\H GdH[S�GINQbMJOH P GäüF]sPKJ
P ÷aJ
ú�CFH H Gäù%GIjIGäP¹ý@þ�CML�E�H GIN�üãP ÷aJ=�¦X�� ø�CÓhaJOjIH!PKCfH Eaú�ú�CML P!P ÷aJ
úgjI]MN�NgGINaüèCMþ£PKJOHKP�û[]MHKJOH[S&]MN�h¨��J��-GIjIj
þnEaL P ÷aJ[L<haJ[bMJOjICMú]MN�hÛJ[bs]MjIE�]sPKJ�P ÷�J.GIhaJO]
CMþ�üFE�GIhaJOhÛH
GIøâEgjI]sP GäCFN�H �

f RAÔ°R�ñrRgï£õGR�V
g »£�n� � Þ |�| ����� ß » �Doq�qz�w�w�oqys�cr
ux��z�yih » g �
� ÝU¥¸�c| »�� oq�¹�cy^���Kr
¶\txoqpMz�tvuK� � y[uxo�txysr ux��z�ysr
¶ � oq¶�oq��z�w�w�}cy^���Kr ux��z�y¸��yc��z�yU�

g?j"j �[»�O» ¤a¾^r
w�p^¶�oq��z
{ � ys�~}^�nuvtx��r�¶F�`�vo¡z�{%| ºa� yco�ux�&r�y^�1m:oq�v����y5[�| º ¢ » �D��r
��¶�r
�^¶�o:{Ütxz�w
k Æ�Æ"l�monpnEqbqpq ±�®O¯�ª�°Mª\±n¯ ©g±�®�² n"r È Å ¬ Æ « n ª Å[Æ&s ¨ n ¬ptO¯q° l §�¬O« ª Å ®�©g±�k Æ °s§ »� » � »�u oqy^�voqy »9v�wbxyw"z|{~}����O}���{�����}����������"�~���Mv�w"� ��}�� ���~�O�R�5�bx �E�~�����_}�����w?�"���"� �i��{��p�������~�bx�����}?�Q��wbx z| ¡}]¢E�N���"�~���
v�w"� ��}��B���Y» ¥1z�ycz��
tYr�p^�c�`��y � �coqz�txo¹ux���qr�¶�|�z�w�p^}cuxo¹tD�~�q��oqyc�qo » �~pctx��yc��o�t ��£ o�tx¶�r��c� g?j"j �[»� » � »Bu oqy^�vo�y »Av�wbxyw"z|{~}�����}���{�����}����������"�~���¤v�wE�5��}�� ���~���R�5�bx �E�~�����_}����:w?�"���"�5����{��p�������~�bxO����}?�¥��wbx z| Q}¥¦p�=�R�5�"x �"�~���
�_}�����w?�E�Y» ¥1z�ycz��
tYr�p^�c�`��y � �coqz�txo¹ux���qr�¶a|�z�w�p^}~uxo�t`�~�q��oqyc�qo » �~p~tx��yc��o�t ��£ o�tx¶�r��~� gHjbj � »Á » � »Nu o�y^�voqyQ�`� » |��~tx���nuxo�y^�voqyQ� ºa» `}^�Mo�tK��r�y^�;¥ » `z�¶�¶�r »¨§�}��~�ª©"�p«�v��J�­¬®}�¯?}�{~}�� ��}°�M�E�Bz��bx » m�oqpsr tvuxw�oqy[u!z
{|�z�w�pc}cuxo�t`�O�q��oqy^��o��^�`y^����o�tx�v��u��!z
{���r tx�O}^�q�cm:oqy^w<r tx�M� g?jbj Á »¼ y^¶���y^o�Ý k Æ�Æbl�monpn�qpqpq ±�®[¯[ª�°Mª\±�¯
©g±�®�² n ®[¬O«�ª�± Å:r Èp² n »

³ » ¥ » ¢:r
��r
w�}~tYr~�E´ » ��r
�~}^�^rO�[r�y^� ��» �¡���~}cy^z » �`ysr
¶���é���yc��y^z�y � �co�uxo�txw���yc���vwê��y�uxoq¶�oq�qz�w�w�}cy^���Kr
ux��z�y��vo�tx�O����oq��}^�v��yc�p � ��yO��r tx��r�y[u�z
{apMo�uvtx� � y^o�u�w�zO�coq¶ »Ó� y ��{�w?��}~}��"���&©"��wo¯R���B}�¢pµE���Q¶o·J·�·¸v�wE�?¯?}�{�}��5��}�w"�.v�wE R� z|��}�{$v�w" � �z|�B�����E����w"�B�
¹ ¶��Oº¼»¥v¼»J�¾½ ¿|À�Á �^p^r���oq� g � Á
��Â g � ³ � �U�`p~tx��¶ gHjbj ¿O»¿O» � » ºÓ»~º z�w<r��O����r
ys� uc» ¥ » ��ux¶�oqo » �`oqr��Y�sr��c��¶���u��-�`ysr
¶��c�v���%z�{\ÀÓoKr
ux}~txo � y[uxo�tYr
��ux��z�yc�qÝO� º txz���txoq�v���DoqpMz�tvu »U� o��¹�cy^���Kr�¶txoqpMz
tvuK�^m:o�psr
tvuxw�o�yOu�z�{%|�z�w�pc}cuxo�t`�O�q��oqy^��o��^�`y^����o�tx�v��u��<z�{aà�r uxo�tx¶�z[zc�cà�r
uxo¹tx¶�z[z~� ¼ y[uYr
tx��z~�M|�r
ysr��cr~� g?jbj Á »�~»�uc» · » ��r
�vw�}^�v�vo�yár�y^�á¥ » �~��y^��� »Ã�Ä�� ����o«�v��J�����ÆÅ�{������|���~�bxNÇB�� �z:xy�"����w"�È������x �����$¯Hw"{�§�}����y©"�p«�v��J���]����}�{B½ �
�M�"��z��bx » �`��r���¶�r��^¶�o:{´txz�w k Æ�Æ"l�monpnEqbqpq ±�®O¯�ª�°Mª\±n¯ ©g±�®�² n ®[¬O«�ªE± Å&r Èp² n »

14

Analysis and Simulation of Steady States in

Metabolic Pathways with Petri Nets

Monika Heiner
Computer Science Department

Brandenburg University of Technology at Cottbus
D-03013 Cottbus

Ina Koch
Department of Bioinformatics

Max-Planck-Institute for Molecular Genetics
D-14195 Berlin-Dahlem

Klaus Voss
SCAI – Institute for Algorithms and Scientific Computing

GMD – German National Research Center for Information Technology
D-53754 Sankt Augustin

Abstract

Computer assisted analysis and simulation of biochemical pathways can improve
the understanding of the structure and the dynamics of these systems considerably.
The construction and quantitative analysis of kinetic models is often impeded by the
lack of reliable data. However, as the topological structure of biochemical systems
can be regarded to remain constant in time, a qualitative analysis of a pathway model
was shown to be quite promising as it can render a lot of useful knowledge, e.g.,
about its structural invariants. This paper deals with pathways whose substances
have reached a dynamic concentration equilibrium (steady state). It is argued that
appreciated tools from biochemistry and also low-level Petri nets can yield only part
of the desired results, whereas executable high-level net models lead to a number of
valuable additional insights by combining symbolic analysis and simulation.

1 Introduction

With the rapidly growing amount of new experimental data, the modelling of biological
pathways occuring in the cell regained great interest. For this challenge in biosciences,
biologists need theoretical methods and computational tools in order to prove, analyse,
compare, and simulate these complex networks for different organisms and tissues. The
results are of major importance also for the biotechnology and the pharmaceutical industry.

“The main focus in the mathematical modelling in biochemistry has traditionally been
on the construction of kinetic models. The aim of these models is to predict the system
dynamics” [HeSc98]. Their analysis is commonly based on the solution of systems of
differential equations. In this way, numerous kinetic models for different metabolic systems
and membrane transport processes have been developped (for a review see [HeSc96]). A
severe restriction, often encountered in the construction of these models, is the imperfect
knowledge of the kinetic parameters.

15

On the other hand, a structural analysis of metabolic pathways mainly deals with the
topology of how substances are linked by reactions. A central role is played by stoichio-
metric matrices, which indicate how many molecules of each substance are consumed or
produced in the single reactions. Their analysis is based on the solution of algebraic equa-
tions, and is independent of any kinetic parameter. Of particular interest are biochemical
systems persisting in a steady state (see section 2), i.e., in which the concentrations of
their substances have reached an equilibrium. An elementary mode (this term has been
coined in [ScHi94]) can be regarded as a minimal set of reactions (resp. of the enzymes
catalyzing them) that can operate at steady state. Knowledge about the flux rates and the
elementary modes of a system allows “to define and comprehensively describe all metabolic
routes that are both stoichiometrically and thermodynamically feasible in a given group
of enzymes” [SFD00].

A metabolic system can be modelled as a Petri net in a straightforward way, as has been
demonstrated for low-level nets in [RML93, Hof94] and for high-level nets in [GKV00]. The
Petri net structure then truly reflects the biochemical topology, and the incidence matrix
of the net is identical to the stoichiometric matrix of the modelled metabolic system.
Accordingly, the mentioned structural invariants and elementary modes correspond almost
directly to the T-invariants known from the Petri net theory. An actual account of the
structural analysis of metabolic networks and the analogy to Petri nets is given in [SPM00].

The use of Petri nets for modelling quantitative (kinetic) properties of biochemi-
cal networks, especially for genetic and cell communication processes, was discussed in
[Hof94, HoTh98]. Other contributions followed, using various types of Petri nets like
stochastic nets [GoPe98, GoPe99] and hybrid nets [MDNM00]. Executable high-level net
models of metabolic pathways, and their (almost automated) construction, simulation,
and quantitative analysis are described in [GKV00].

The application of Petri nets to this field began in the nineties with the publications of
Reddy et al. [RML93, RLM96]. They present a low-level (place/transition) net to model
the structure of the combined glycolytic pathway (GP) and pentose phosphate pathway
(PPP) of erythrocytes. They use the well-known algebraic methods to compute S- and
T-invariants from the incidence matrix of the net. A thorough analysis of an extended
form of this pathway was performed by Koch et al. [KSH00], which forms the starting
point for this paper.

For computing conservation relations (S-invariants) and elementary modes (T-invari-
ants) of metabolic pathways, the software package METATOOL [Pfe99] has been devel-
opped (by biochemists) and successfully applied in a number of cases. However, merely the
integer weighted S-invariants are detected. Moreover, only the overall reaction equations,
i.e., the net effects of a pathway execution, can be computed, and any consideration of its
dynamics, in particular of the partial order of the reaction occurrences, is missing.

The main achievements reported in this paper rely on the use of executable high-level
net models and symbolic analysis. This allows to consider the following crucial aspects:

(a) It is well known that the detection and interpretation of invariants can substan-
tially improve the understanding of systems. In the context of certain problems, however,
the most interesting system properties are not invariant. In these cases, very often the
divergence of these structures from an invariant is of major importance as it indicates a
defect or effect of the substructure in question. We shall introduce and formally define
these concepts for high-level Petri nets in section 2 and use them extensively, in section 4,
for the symbolic structural analysis of the quite complex sample pathway presented in
section 3.

(b) In coloured nets, the model designer can distinguish tokens via their colours. This

16

is a prerequisite for overcoming the restrictions of low-level nets or METATOOL, i.e., for
both detecting a hitherto unknown S-invariant of our model and determining its partial
order dynamics, as shown in section 4.

The software tool of our choice – for graphical editing, analyzing and executing the
net models – is Design/CPN [Design].

2 Steady State Pathways, Elementary Modes

First some Petri net notions are recalled that we want to apply to metabolic pathways later
on. The algebraic analysis of Petri nets mainly relies on the notion of invariants. However,
in a great number of systems, like metabolic pathways, variable substructures (with non-
null defects or effects) deserve even more attention. Hence the following definitions (see
[Gen01]) will turn out to be useful.

Let N be a coloured Petri net with the sets S of places and T of transitions. The
incidence matrix C ofN is an |S|×|T |matrix whose elements cij are the positive (negative)
labels of the arcs pointing from (to) transition tj to (from) place si. A distribution is a
mapping transforming the elements (colours) of a colour set D into linear combinations of
elements of a not necessarily different colour set D′. Now let y (≥ O, the zero vector) be
an S-vector such that, for every place s, the component ys is a combination of distributions
of s, and all the ys have the same range. The transpose matrix CT can be multiplied by
the vector (one column matrix) y. An example is the S-vector σ′ in section 4.1.

The product CT · y is called the defect of y.
A (column) S-vector y ≥ O is called an S-invariant of N iff CT · y = O.

An S-invariant represents a state quantity of the net system, i.e., a quantity which, starting
from an initial state, is maintained during the whole life time of the system. It describes
a conservation rule, as known from many areas in (natural) science. Among others, such
a mandatory S-invariant can be a valuable means to detect inconsistencies of a system
specification or model. An example is the S-vector σ in section 4.1.

A process π is a partially ordered set of transition occurrences leading from a state M1

to a state M2, M1
π−→ M2. Ignoring the order of occurrences yields a T-vector x (≥ O)

of combinations of transition occurences which is called the action performed by π. Note
that, in each element of x, all variables have to be substituted by colours of the same colour
set. This corresponds to the bindings of the variables around a transition which determine
the particular kind of its occurrence. An example is the T-vector τ ′ in section 4.2.

The state difference ∆M = M1 −M2 = C · x is called the effect of x.
A (column) T-vector x ≥ O is called a T-invariant of N iff C · x = O.

A process M1
π−→ M2 performing a T-invariant leads from one state to the same state

again (M1 = M2), it re-generates the state M1. An example is the T-invariant τ in
section 4.2.

Next we shall introduce those notions from biochemistry that allow to characterize the
kind of metabolic pathways considered in this paper and to discuss the possibilities of
applying the Petri net theory to them.

A metabolic network consists of highly integrated chemical reactions. More than a
thousand chemical reactions take place even in such a simple organism as the bacteria
Escherichia coli. The chemical compounds in these reactions are called substrates or
metabolites. An enzymatic reaction is catalyzed by a reaction-characteristic enzyme. These
enzymes are needed for initializing the reaction and do not change their structures during
the reactions, whereas the substrates are converted into each other, thus changing their
concentrations. A great number of reactions can be treated as irreversible under normal

17

conditions. That means, such a reaction permanently occurs in a preferred direction,
consuming those substances called reactants and producing its products. In principle,
however, each enzymatic reaction is reversible. For given reactant concentrations, the
higher the concentrations of the products get, the slower the reaction will occur in the
preferred direction, and at a certain value of those concentrations the reaction will change
its direction, i.e., will consume the products and produce the reactants.

As mentioned in the introduction, the approach described in this paper concentrates
on the mere structure of the pathways, i.e., on the topology of the interconnections of
metabolites via enzymatic reactions. Hence, it is structural or qualitative as it does not
deal with the kinetic details of the reactions. Constructing a Petri net of a metabolic
pathway is straightforward, representing metabolites as places, reactions as transitions
and the stoichiometric relations by labelled directed arcs between them. Examples can be
found in [RML93, Hof94, RLM96, KSH00] (low-level nets), or in [GKV00] and section 3
of this paper (high-level nets). In the following, such a net is called the Petri net model
of the pathway.

In our context, a distinction is made between external and internal metabolites ac-
cording to whether or not they are involved in reactions outside the system considered.
External metabolites are called sources resp. sinks of the pathway if they are produced
resp. consumed by those (external) reactions. A metabolic pathway is said to persist in a
steady state if the concentrations of all internal substances have reached a dynamic equi-
librium: for each internal metabolite, the total rate of its consumption equals that of its
production. Assuming a constant activity of all enzymes involved in the system, many (but
not all) metabolic pathways reach such a dynamic equilibrium after some time.1 Struc-
tural analysis of metabolic systems in steady state aims at, among others, “elucidating
relevant relationships among system variables” [HeSc98] and does not rely on imperfectly
known or doubtful kinetic data.

A formalization of steady state and related notions is given in [SHWF96]. For our
paper, we need the following. The stoichiometric matrix N of a metabolic pathway with
n metabolites and r reactions, is an n× r matrix where the element Nij denotes the flux
from the i-th metabolite to the j-th reaction, i.e., the amount δci/δt of the metabolite
concentration produced or consumed by that reaction. Obviously, the stoichiometric ma-
trix of a pathway precisely corresponds to the incidence matrix of its low-level net model.
A metabolic pathway is in steady state if and only if the reaction rates fulfil the condition

δci/δt = Σr
j=1 Nij νj = 0, i = 1, ..., n, or, in matrix notation, N · ν = O,

for an integer vector ν = (ν1, ..., νr)T , called flux vector, where a component νj is an inte-
ger weight factor of the j-th reaction.

In biochemistry, ‘flux modes’ constitute the core concept of the algebraic analysis of
steady state metabolic pathways. “An elementary flux mode is a minimal set of enzymes
that could operate at steady state, with the enzymes weighted by the relative flux they
carry. ‘Minimal’ means that if only the enzymes belonging to this set were operating,
complete inhibition of one of these enzymes would lead to cessation of any steady-flux in
the system” [SFD00]. Before relating biochemical analysis methods to the corresponding
Petri net algorithms, two particular questions have to be discussed.

Firstly, in steady state analysis, those processes are of particular interest that start with
the source substances of the investigated pathway and finish with its sink substances. For

1That and how this happens, has been demonstrated for glycolysis, gluconeogenesis, citric acid cycle
(TCA), and combinations of them in [GKV00], by simulation runs of quantitative (i.e., including kinetic
reaction functions) high-level Petri net models.

18

these external metabolites, constant concentrations have to be assumed to reach a steady
state. Using METATOOL, this is achieved by excluding external metabolites from the stoi-
chiometry matrix, but including the reactions affecting them: hence, their concentrations
remain unchanged. In contrast, in our net models, we include the external substances and
introduce an extra transition StartEnd that closes the pathway to a cycle by supplying
the initially needed substrates and consuming the finally produced ones. This measure
enables us to also identify those internal metabolites requiring initial markings and to
compute their amounts.

Secondly, we have to take into account the reversibility of reactions. An obvious
solution is to admit negative factors in the T-vector to denote the occurrences of reversible
reaction transitions in the backward direction. This would lead to T-vectors x 6≥ O,
not satisfying the standard definition of T-invariants for Petri nets. However, instead of
deviating from this definition, we can – with (almost) the same result – introduce, for
every reversible transition t, an additional complementary (reverse) transition t′ to the
net. This t′ is then connected to the same set of neighbour places as t, but with all arcs
pointing in the opposite direction. Doing that, we introduce, for each reversible reaction
t, a potentially endless loop (t, t′, t, t′, ...) which is biochemically meaningless. This slight
disadvantage can be turned into an advantage in higher-level nets where we can and shall
discriminate the directions of certain reactions according to the flux modes to which they
belong.

3 Models of the Glycolysis and Pentose Phosphate Pathway

Any cell extracts energy from its environment and converts foodstuffs into cellular compo-
nents by its metabolism. One fundamental question in biology is, how do cells extract and
store energy from their environment. The main pathway for the generation of metabolic
energy is the glycolysis. The glycolysis pathway (GP) is a sequence of reactions that con-
verts glucose into pyruvate with the concomitant production of a relatively small amount
of ATP. Then, pyruvate can be converted into lactate. The version chosen for this paper
is that one for red blood cells, see [Str96]. In the Petri net P (Figure 1), the GP consists
of the reactions l1 to l8.

The pentose phosphate pathway (PPP), also called hexose monophosphate pathway,
again starts with glucose and produces NADPH and ribose-5-phosphate (R5P) which then
is transformed into glyceraldehyde-3-phosphate (GAP) and fructose-6-phosphate (F6P)
and thus flows into the GP . In Figure 1, the PPP consists of the reactions l1, m1 to m3,
r1 to r5, and l3 to l8. From now on we use acronyms for most metabolic substances; their
full names are listed in the Abbreviations appendix.

Whereas the GP generates primarily ATP with glucose as a fuel, the PPP generates
NADPH, which serves as electron donor for biosyntheses in cells. The interplay of the
glycolytic and pentose phosphate pathway enables the levels of NADPH, ATP, and building
blocks for biosyntheses, such as R5P and Pyr, to be continously adjusted to meet cellular
needs. This interplay is quite complex, even in its somewhat simplified version that shall
be discussed in this paper. In [RLM96], this pathway has already been modelled as a low-
level Petri net (place/transition net) and then – qualitatively – analyzed by means of the
well known linear algebraic methods. The analysis in [RLM96] is not completely correct,
and it yields neither a full S-invariant (i.e., comprising all substances from the sources to
the sinks) nor a non-trivial T-invariant. Hence it reveals some deficiencies that we will
overcome by switching to high-level (coloured) net models. Additionally, our models allow
not only to be analyzed but also to be executed (simulated).

19

It shall be noted that molecules like ADP, ATP, NAD+, Pi, and NADH play a some-
what special role in metabolic networks. They are called ubiquitous because they are found
in sufficiently large amounts in almost all organisms. For ease of distinction, the remaining
substances from Gluc to Lac shall be named primary in this paper. When talking about
reactions in the following, the involved ubiquitous molecules commonly are not mentioned
because the primary substances are those that characterize the reactions and hence are of
particular interest.

The construction of the low-level Petri net starts with a modest simplification of the
original pathway model. The left branch of Figure 1 represents the GP . Its second part is
a strictly linear path, transforming BPS into Lac via 3PG, 2PG, PEP, and Pyr (depicted
in the small box at the lower right hand of Figure 1). This path can and shall be reduced
to just one super-transition l8 (with the appropriate connections to ADP, ATP, NADH,
and NAD+) without altering the crucial properties of the net. In Design/CPN, such
a node is called a substitution transition: l8 stands for and equivalently represents the
mentioned linear path. With this modification and disregarding for a moment the guards
and replacing all arc labels by ‘1’, we get the place/transition net P of Figure 1, which is
identical to the net found in [RLM96].

In real organisms, the amount of the molecules is high enough to tolerate transient
deviations from the theoretically postulated equilibrium concentrations. In the long run,
a steady state is approximated: according to the kinetic equations, those reactions with
too high reactant (resp. too low product) concentrations are preferred to those with too
low (resp. too high) ones. When qualitatively analyzing metabolic models, however, one
is confronted with very few, even minimal numbers of molecules for which the desired
invariant properties have to be proven. Moreover, molecules of the same substance are
chemically undistinguishable although their ‘roles’ (weight factors in the invariant vectors)
may differ depending on the reaction environment in which they appear. As will be shown
in section 4, some invariant properties cannot be proven, and a proper simulation cannot
be performed as long as different roles of molecules cannot be respected.

To be more specific, the crucial point of using coloured instead of low-level Petri nets
is the following.2 Applying higher-level places allows to discriminate between different
molecules of the same metabolite via their identifiers (colours) C, D, F,3 This enables
the designer to separate different branches of the compound pathway and to distinguish
among molecules on the same place according to their origin and destination reaction.
Although this distinction is not motivated by the biochemical reality (where molecules of
the same substrate are identical), it increases the potential of the qualitative analysis we
have in mind (see chapter 2). Moreover, it is a prerequisite for executing such models
properly, e.g., without running into unexpected deadlocks or the like. We have simulated
all models in this paper, clearly not to get new results about their kinetics but mainly to

2Legend for the Design/CPN nets in this paper:
– All places have the colourset CS = {C,D,F,G,H,G′,H′}.
– The underlined inscription 1`D inside the place StartEnd denotes its initial marking.
– A term in brackets [] is a guard (boolean expression) of the transition. If the value of the guard is true

the transition may be enabled, if false it cannot.
– A place name in italics denotes a fusion place. All members of a fusion set are treated as the same place.

Their names are numbered consecutively.

– The places for the substrates NAD
+

, NADP
+

, Pi are named NADp, NADPp, Pi, respectively.
– A (dashed) transition t′ denotes the reverse counterpart of the reversible reaction t.

3Note that the (theoretical) distinction by colours applies to chemically identical molecules, e.g., a token
C on G6P is distinguished from a token G on G6P. On the other hand, the substance which a molecule
represents is unambiguously determined by the place it belongs to. Hence, a token C on G6P represents
a different substance than a C on F6P.

20

Gluc

l1

G6P

F6P1

FBP

GAP1

Lac

BPS

l2

l3

l4

l7

l8

l5

DHAP

ATP1

ADP1

ATP2

ADP2

NADp1

Pi

NADH1

ATP3

ADP3

NADH2

NADp2

m1

[x <> C]

Ru5P

NADPHNADPp

m2

GSSG GSH

m3

r1 r2

R5P

GAP2

F6P2

Xu5P

S7P

E4P

r3

r4

r5

!

Lac

BPS 3PG 2PG

PEPPyr

ADP ATP

NADp NADH ATP ADP

l6

[false]

x

x

C

C

x

D

D

D

D

D

D

D

D

D D

D

D

D

D

2`D

2`D

D

D

D

D

D

x

F

F

F

F

2`F

2`F

2`F

2`F G H

H

H

H

H

H

H

G

G

G

G

G

H

H

x

DD D

Figure 1: The original Petri net model P of glycolysis/pentose phosphate pathway

gain confidence in the chosen colour specifications.
What is the strategy of attributing colours to the tokens (molecules) along a given

pathway model? Starting with a primary source substance of the pathway, we look for
conflicts on the way to the sink(s). By definition, p is a conflict place if it has more than

21

one output transition, and all are enabled if p carries a suitable token. If one of these
alternative transitions occurs, all remaining transitions are disabled. In our context, a
conflict would cause no harm as long as all but one alternative paths starting at p would
end up again at this p without any lasting marking change. In general however, this is not
the case. When looking at the metabolism in one specific organism, alternative metabolic
paths most often result in different metabolic overall reactions. Therefore, they shall be
discriminated and must not be combined deliberately. This discrimination is performed
by attributing different identifiers to the molecules and by additionally blocking certain
transitions for particular molecules (using guards).

This shall be demonstrated by use of the sample net P, treated again as a low-level
net by disregarding all arc labels and guards. Starting with the source Gluc, the first
conflict is encountered at G6P which can be the reactant of either the reaction l2 or m1.
A G6P-molecule with destination l2 gets a colour, say C, and that one with destination
m1 gets a different colour (to be decided upon later). The guard [x 6=C] prevents a C-
token to be consumed by m1. Proceeding downwards the GP , at the left-hand side of the
figure, we examine F6P1, a fusion place. As F6P2, on the right-hand side, has no outgoing
arc, a conflict does not exist. The next conflict on the way down is found at GAP (the
fusioned GAP1 and GAP2), a conflict among the three transitions l6, l7 and r4. The
reaction l6 is trivial, and can be disabled by the guard [false], as the loop GAP1 → l6→
DHAP → l5 → GAP1 returns the token to GAP1 without affecting any other places.
The conflict between l7 and r4 is difficult to discuss at this moment without knowledge
about the situation in the PPP at GAP2. We postpone it to the end of this paragraph.
Instead, the path from G6P into the PPP , in the middle and right part of the figure,
shall be inspected. Choosing a separate colour F for the molecules of the middle part is
not mandatory because there is no conflict here; it is just a matter of taste. The next
conflict occurs at Ru5P with the choice to continue via r1 or r2. The colours of these two
molecules must be different from each other and from C; we choose G and H. The last
conflict at GAP is the postponed one. However, because the colour G has been maintained
from Ru5P via R5P until GAP2 and the tokens on GAP1 have the (different) colour D,
their distinction is accomplished already: the G-molecules are removed by reaction r4 and
the D-molecules by l7. The resulting model is again P, but now regarded as a coloured
net by including the arc labels and transition guards of Figure 1.

As mentioned in section 2, in case of a reversible transition t, we add its complementary
transition t′ to the net. In case of the sample net model P we know that the reactions
l1 and l3 are irreversible. The linear path from BPS to Lac, replaced by the substitution
transition l8, contains at least one irreversible reaction, namely from PEP to Pyr; thus
l8 should also be treated as irreversible. Hence we introduce the new complementary
transitions l2′, l4′, l5′, l7′, and r1′ to r5′ to the net P and thus obtain the model Prev in
Figure 2. Note that the transition l6 in the model P is identical to l5′ in Prev. Thus l6 in
the former net model is just replaced by l5′ in the latter.
Prev shall be used to compute the S-invariants (subsection 4.1).
The introduction of the reverse transitions in Prev may entail additional conflicts which

have to be resolved when dealing with T-vectors and simulation. We observe:
– l4′, l5′, l7′, and r1′ to r5′ merely create uncritical loops and can be deleted,
– l2′ must not appear in the GP . Hence, l2′ must be prevented from occurring for tokens
x = C. In the course of PPP , one G- and two H-molecules on G6P are transformed into
one H-token on GAP1 (via r5) and two H-tokens on F6P2 (via r4 and r5). For the latter
H-tokens there are three possibilities to be processed further:
(1) both move to FBP via l3 and continue on the ‘normal’ way to Lac,

22

Gluc

l1

G6P

F6P1

FBP

GAP1

Lac

BPS

l2

l3

l4

l7

l8

l5

l5'

DHAP

ATP1

ADP1

ATP2

ADP2

NADp1

Pi

NADH1

ATP3

ADP3

NADH2

NADp2

m1

[x <> C]

Ru5P

NADPHNADPp

m2

GSSG GSH

m3

r1 r2

R5P

GAP2

F6P2

Xu5P

S7P

E4P

r3

r4

r5

l2'

l4'

r1' r2'

r3'

r4'

r5'

l7'

x

x

C

C

x

D

D

D

x

x

D

D

D

D D

D

D

D

D

D

2`D

2`D

D

D

D

D

D

x

F

F

F

F

2`F

2`F

2`F

2`F

G H

H

H

H

H

H

H

G

G

G

G

H

H

H

x

x

D

D

G

G

G

G

G

H

H

H

H

H

H

HH

H

x

H

H

H

D

D

x

x

D

D

D

Figure 2: The Petri net Prev with reversible reactions

(2) both move to G6P via l2′ and thus regenerate the initial two H-tokens there,
(3) one of them is moved by l3 to FBP, and the second one by l2′ to G6P. This case is a
combination of glycolysis and gluconeogenesis, which cannot occur in steady state.

To distinguish the ‘normal’ PPP path (1) from the new reaction path (2) we have to
introduce new token-colours, G′ and H′ say, for (2). With exception of l2′, the processing
of G′ and H′ is very much the same as that of G and H; therefore in the PPP -branch,
the token colour instances (identifiers) are replaced by the variables x (for G or G′) and y

23

(for H or H′), and – a technicality – appropriate guards are attributed to the reactions r1
to r4. Finally, because the molecules moved onto F6P by the glycolysis resp. the ‘normal’
PPP are C resp. H, the reaction l2′ may be enabled only for H′-molecules. Hence the arc
pointing to l2′ gets the label H′ and the reaction l3 gets the guard [x <>H′].
This leads to P∗ in Figure 3 which is appropriate both for computing T-invariants and for
simulation (subsection 4.2) as unreasonable processes and cyclic loops have been excluded.

4 Defects, Effects and Invariants

The following calculations were made by use of an experimental software package SY,
written by H. Genrich in Standard ML, for the symbolic analysis of coloured Petri
nets.4 This package supports symbolic calculations based on the incidence matrix of
an executable coloured net in Design/CPN. It inspects and adopts the internal tables
produced by the Design/CPN simulator for the graphical model and its data base. It
allows, among others, to form symbolic dot products and matrix products, and to apply
useful reduction rules and different formats for presenting the results.

4.1 Defects and S-invariants

We start with looking for S-invariants in the net Prev of Figure 2. Obviously, there are
two pairs of ubiquitous substrates which, if produced or consumed by a reaction, are
transformed into each other, namely ADP and ATP, respectively NAD+ and NADH. This
is verified by applying the function DEFECT of the package SY to the S-vectors

[(ADP, 1`D), (ATP, 1`D)] resp. [(NADP+, 1`D), (NADPH, 1`D)] .
Doing this yields the null defect in both cases, which means that the S-vectors above
constitute S-invariants.5

Clearly, it is of much greater importance to deal with the full set of all primary (non-
ubiquitous) substances. In steady state, there should exist an S-invariant comprising that
full primary set. To find out the weight factors of a full S-vector, i.e., covering this set, we
proceed step by step. First we observe that each molecule of FBP is transformed into two
GAP-molecules by the reactions l4 and l5. We conclude that in any S-vector, to finally
become an invariant, the places (concentrations) of the glycolysis pathway GP from Gluc
unto FBP must get a weight factor twice as high as GAP and the following places down
to Lac. Trying to adopt the same principle to the pentose phosphate pathway PPP ,
however, leads to a non-null defect of the S-vector: applying the function DEFECT to

σ′ = [(Gluc, 2`D), (G6P, 2`D), (F6P, 2`D), (FBP, 2`D), (DHAP, 1`D),
(NADP+, 1`D), (NADPH, 1`D), (GSSG, 2`D), (GSH, 1`D),
(Ru5P, 2`D), (R5P, 2`D), (Xu5P, 2`D), (S7P, 2`D), (E4P, 2`D),
(GAP, 1`D), (BPS, 1`D), (Lac, 1`D)]

4Persons interested in this package should contact the author via email at hartmann.genrich@gmd.de.
5Usually, in tools like METATOOL and in low-level Petri nets, S-vectors are represented as n-tuples of

integers which are ordered according to a fixed sequence of the n metabolites (places). In this paper, the
conventions of the package SY are adopted in a simplified version: S-vectors are written as lists of pairs
(node name, weighted token name), where the second elements are composed of an integer factor followed
by a multiplicity sign ” ` ”, an optional boolean expression ” [bool] % ”, and finally a token name. This
latter construct represents a distribution (see section 2), mapping an element of the standard colourset CS
(see footnote 3) to a linear combination over CS.

The defect of an S-vector σ∗, computed symbolically by the function DEFECT, is given as a list, in which
each member t : lico(CS) denotes a linear combination lico(CS) of tokens that have to be added to an
input or output place of transition t to make σ∗ an S-invariant.

Dealing with the syntactic details of SY is beyond the scope of this paper.

24

Gluc1

l1

G6P1

F6P1

FBP

GAP1

Lac1

BPS

l2

l3[x<>H']

l4

l7

l8

l5

DHAP

ATP1

ADP1

ATP2

ADP2

NADp1

Pi1

NADH1

ATP3

ADP3

NADH2

NADp2

m1

[x <> C]

Ru5P

NADPHNADPp1

m2

GSSG1
GSH

m3

r1[x=G orelse
 x=G']

r2 [y=H orelse
 y=H']

R5P

GAP2

F6P2

Xu5P

S7P

E4P

r3
[(x=G andalso
 y=H) orelse (x=G'
 andalso y=H')]

r4
[(x=G andalso
 y=H) orelse (x=G'
 andalso y=H')]

r5

l2'

x

x

C

C

x

D

D

D

D

D

D

D

D

D D

D

D

D

D

2`D

2`D

D

D

D

D

D

x

F

F

F

F

2`F

2`F

2`F

2`F

x y

y

y

y

y

y

y

x

x

x

x

y

y

y

H'

H'

x

D

Figure 3: The net P∗ with three flux modes

yields the defect r3 : −D, r3′ :D, r4 :D, r4′ : −D, r5 : −D, r5′ :D .

To be more specific, the simulation of P∗ and also its T-invariants computed in the next
subsection show that, starting with 3 Gluc molecules, the GP produces 6, and the PPP
5 Lac molecules. Because these alternative paths share the metabolites G6P, F6P, FBP,

25

GAP, and BPS, it is not possible to find integer weight factors for these substances to make
the full S-vector an invariant, as long as the metabolites are represented as undistinguish-
able tokens. We conclude that it is impossible, in this case, to find a full S-invariant with
‘standard’ means like low-level Petri nets or the algebraic package METATOOL ([Pfe99]).
Hence, neither in [RLM96] nor in [SHWF96], a full S-invariant is reported.

Using high-level (coloured) nets with individual tokens offers the possibility to distin-
guish the mentioned metabolites according to the paths along which they are produced
and consumed. Having done this in Prev, the stepwise construction leads to the S-vector
σ = [(Gluc, 2`D), (G6P, 2`D), (F6P, 2`D), (FBP, 2`D), (DHAP, 1`D),

(NADP+, 1`D), (NADPH, 1`D), (GSSG, 2`D), (GSH, 1`D),
(Ru5P, 2`D), (R5P, 2`D), (Xu5P, 2`D), (S7P, 2`D), (E4P, 2`D),
(GAP, (1`[x=D] % D + 2`[x=G] % D + 2`[x=H] % D)),
(BPS, (1`[x=D] % D + 2`[x=G] % D + 2`[x=H] % D)),
(Lac, (1`[x=D] % D + 2`[x=G] % D + 2`[x=H] % D))] .

Applying the function DEFECT to σ yields the null defect. Hence, σ is an S-invariant.
A brief inspection of σ reveals that it suffices to choose the weight 2 for all metabolites

from Gluc unto FBP, F6P2, and E4P, irrespectively of the path on which they occur.
For GAP, a threefold distinction has to be made: GAP-molecules produced by r3 or r4′

([x=G]) or by r5 ([x=H]) get the weight 2, whereas those produced by l4 or l5 ([x=D])
get the weight 1. And this distinction is kept also for BPS and Lac.

The result then is that, in the GP/PPP network, the weighted sum of all metabolite
concentrations has to obey the conservation rule represented by the S-invariant σ.

4.2 Effects and T-invariants

Looking for T-invariants which describe the feasible processes in the net we stay, for a
moment, with Prev. Clearly, for each reversible reaction t and the reverse reaction t′, the
vector [(t, 1), (t′, 1)] is a T-invariant. But these T-invariants lack a sensible biochemical
interpretation: a reversible reaction occurring permanently in both directions does not
make sense. For this reason all reverse reactions except l2′ have been omitted at the end
of section 3. On the other hand, we observe that l2′ gives rise to a process that is different
from both the GP and the PPP , namely the gluconeogenesis. The tokens of that extra
process got the identifiers G′ and H′, leading to the net model P∗.

As with the S-vectors, also the T-vectors shall be established stepwise, i.e., not auto-
matically but systematically. Apart from being able to see, from the effects computed at
each step, the weight factor(s) of the transition(s) to be added successively to the T-vector,
there is still another advantage of this approach. If we proceed along the causal chain of
transitions, i.e., at each step selecting a subsequent transition which is enabled, we can
compile knowledge about the amount of molecules which are needed in course of the run
from Gluc to Lac and which have to be restored later during the run or after its end.
This information is not provided by the effect of the complete T-vector: it only shows the
overall effect of the vector.

When looking for the possible processes in the GP/PPP system P∗ we soon find out
that there are (at least) three sorts of processes (modes) that can be run totally inde-
pendent from each other. Therefore we can attribute to each of them a characteristic
parameter by which the weighted vector elements are multiplied additionally:

(G) Glycolysis: parameter GLY(),6 or gly for short,
6The parameters are implemented as so-called global functions, to facilitate the experimental computa-

tion of the T-invariants. For convenience, the short-hands are used in the following.

26

(P) Pentose (or hexose) phosphate pathway: parameter HEX(), or hex for short,
(R) A mode including the reverse reaction l2′: parameter REV(), or rev for short.

During the stepwise construction of the T-vector(s) we gather, on the one hand, infor-
mation about those molecules that are needed at the beginning or in the course of a run
to reach its end at Lac. These molecules and their amounts are:

Consumed Substances
ADP: (2 ∗ gly + 5 ∗ hex + rev)`D ATP: (2 ∗ gly + 5 ∗ hex + rev)`D
F6P: 2 ∗ rev`H′ Gluc: gly`C+hex`G+2 ∗ hex`H+rev`G′

GSSG: (6 ∗ hex + 6 ∗ rev)`F NAD+: (2 ∗ gly + 5 ∗ hex + rev)`D
NADP+: (6 ∗ hex + 6 ∗ rev)`F Pi: (2 ∗ gly + 5 ∗ hex + rev)`D

On the other hand, we gather information about those molecules that are provided
during or at the end of the full run. These molecules and their amounts are:

Produced Substances
ATP: (4 ∗ gly + 10 ∗ hex + 2 ∗ rev)`D F6P: 2 ∗ rev`H′

GSSG: (6 ∗ hex + 6 ∗ rev)`F Lac: (2 ∗ gly + 5 ∗ hex + rev)`D
NAD+: (2 ∗ gly + 5 ∗ hex + rev)`D NADP+: (6 ∗ hex + 6 ∗ rev)`F

The final result of the construction is the complete parameterized T-vector7

τ ′ = [(l1, [(1, gly`(x ← C)) , (1, hex`(x ← G)) ,
(2, hex`(x ← H)) , (1, rev`(x ← G′))]),

(l2, [(1, gly`())]),
(l3, [(1, gly`(x ← C)) , (2, hex`(x ← H))]),
(l4, [(1, (gly + 2 ∗ hex)`())]),
(l5, [(1, (gly + 2 ∗ hex)`())]),
(l7, [(1, (2 ∗ gly + 5 ∗ hex + rev)`())]),
(l8, [(1, (2 ∗ gly + 5 ∗ hex + rev)`())]),
(m1, [(1, hex`(x ← G)) , (1, rev`(x ← G′)) ,

(2, hex`(x ← H)) , (2, rev`(x ← H′))]),
(m2, [(6, (hex + rev)`())]),
(m3, [(6, (hex + rev)`())]),
(r1, [(1, hex`(x ← G)) , (1, rev`(x ← G′))]),
(r2, [(2, hex`(y ← H)) , (2, rev`(y ← H′))]),
(r3, [(1, hex`((x,y) ← (G,H))) , (1, rev`((x,y) ← (G′,H′)))]),
(r4, [(1, hex`((x,y) ← (G,H))) , (1, rev`((x,y) ← (G′,H′)))]),
(r5, [(1, hex`(y ← H)) , (1, rev`(y ← H′))]),
(l2′, [(2, rev`())])] .

Applying the function EFFECT from the package SY to τ ′ yields the effect
ADP: −2 ∗ gly`D −5 ∗ hex`D −rev`D
ATP: 2 ∗ gly`D +5 ∗ hex`D +rev`D

7Adopting the conventions of the package SY in a simplified version, T-vectors are written as lists
of pairs (transition name, list of weighted substitutions), see also footnote 5. A weighted substitution
consists of an integer, followed by a (parameter) integer, a multiplication sign ” ` ” and a substitution in
parentheses ” () ”. A substitution, represented by ”← ”, indicates which variable(s) of the arc labels have
to be substituted by which colour(s); if empty, the arc labels are constant colours and need no substitution.

The effect of a T-vector τ∗, computed symbolically by the function EFFECT, is presented as a list of
constructs s : lico(CS), each one denoting a linear combination of tokens, lico(CS), that has to be added
to (or subtracted from) place s to make τ∗ a T-invariant.

27

Gluc: −gly`C −hex`G −2 ∗ hex`H −rev`G′

Lac: 2 ∗ gly`D +5 ∗ hex`D +rev`D
Pi: −2 ∗ gly`D −5 ∗ hex`D −rev`D .

This leads to the parameterized equation for the effect of τ ′

(2 ∗ gly + 5 ∗ hex + rev)`ADP+(gly + 3 ∗ hex + rev)`Gluc+(2 ∗ gly + 5 ∗ hex + rev)`Pi

= (2 ∗ gly + 5 ∗ hex + rev)`ATP+(2 ∗ gly + 5 ∗ hex + rev)`Lac

yielding the three overall reaction equations

parameters overall reaction
(G) gly = 1, hex = 0, rev = 0 2 ADP + Gluc + 2 Pi = 2 ATP + 2 Lac
(P) gly = 0, hex = 1, rev = 0 5 ADP + 3 Gluc + 5 Pi = 5 ATP + 5 Lac
(R) gly = 0, hex = 0, rev = 1 ADP + Gluc + Pi = ATP + Lac

T-invariants describe processes in a Petri net which restore the marking with which
they started and thus can be executed cyclically. Obviously, τ ′ is not a T-invariant. A
thorough inspection of P∗ reveals that no full T-vector at all, i.e., comprising all primary
metabolites from Gluc to Lac, is an invariant. To find one, we have to modify the model
P∗. We do this by glueing P∗ with a subnet that closes the cycle from Lac to Gluc.
This subnet contains a place StartEnd, initially marked by a dummy token D, and the
transitions s1 for starting and s2 for ending a cyclic run. The transitions s1 and s2
are intended to compensate the non-null effects. To this end, we connect some of the
substances of P∗ (as fusion places) via arcs from s1 or to s2. At this stage, one of the
great advantages of the stepwise construction of the T-vector τ ′ becomes clear. The tables
Consumed Substances resp. Produced Substances, derived above, exactly inform about the
substances and their amounts which have to be provided by s1 resp. removed by s2 to
arrive at a (parameterized) null effect process. The resulting subnet Pse is depicted in
Figure 4.

Lac2 Gluc2

StartEnd

1`Ds2 s1

ATP4 ADP4

Pi2NADp3

NADPp2

GSSG2

G6P2

GLY()`C+
HEX()`G+

2*HEX()`H+
REV()`G'

(2*GLY()+
 5*HEX()+
REV())`D

D

(4*GLY()+
10*HEX()+
2*REV())`D

(2*GLY()+
5*HEX()+
REV())`D

(2*GLY()+
 5*HEX()+
REV())`D

(2*GLY()+
5*HEX()+
REV())`D

(2*GLY()+
 5*HEX()+
REV())`D

(2*GLY()+
 5*HEX()+
REV())`D

(6*HEX()+
6*REV())`F

(6*HEX()+
6*REV())`F

(6*HEX()+
6*REV())`F

(6*HEX()+
6*REV())`F

2*REV()`H'2*REV()`H'

D

Figure 4: The subnet Pse completing P∗ to form a cycle

28

Combining this subnet Pse with P∗ by means of the fusion places, yields the cyclic net
model that we aimed at. Let τ denote the T-vector achieved by adding the elements
(s1, [(1, ())]) and (s2, [(1, ())]) to τ ′. Then this T-vector τ has no effect and hence
is a parameterized T-invariant.

The minimal T-invariants (elementary modes) derived from τ by setting one of the
parameters gly, hex, or rev to 1 (and the remaining two to 0) are, in a short-hand notation,

gly = 1, hex = 0, rev = 0:
(tG) = [(l1, C), (l2, D), (l3, C), (l4, D), (l5, D), (l7, 2∗D), (l8, 2∗D), (s1, D), (s2, D)]

gly = 0, hex = 1, rev = 0:
(tP) = [(l1, G + 2∗H), (l3, 2∗H), (l4, 2∗D), (l5, 2∗D), (l7, 5∗D), (l8, 5∗D),

(m1, G + 2∗H), (m2, 6∗D), (m3, 6∗D),
(r1, G), (r2, 2∗H), (r3, (G,H)), (r4, (G,H)), (r5, H), (s1, D), (s2, D)]

gly = 0, hex = 0, rev = 1:
(tR) = [(l1, G′), (l2′, 2∗D), (l7, D), (l8, D), (m1, G′ + 2∗H′), (m2, 6∗D), (m3, 6∗D),

(r1, G′), (r2, 2∗H′), (r3, (G′,H′)), (r4, (G′,H′)), (r5, H′), (s1, D), (s2, D)] .

The three T-invariants (tG), (tP), (tR) are linearly independent, hence form a basis.

4.3 Biochemical Evaluation of the T-invariants

The software package METATOOL [Pfe99] allows to compute the elementary (flux) modes
(corresponding to the minimal T-invariants) of a metabolic pathway. For each elementary
mode, it computes (1) the T-vector, determining which reactions have to occur how often
to restore the initial concentrations (marking) and (2) the overall reaction equation.

With the coloured Petri net approach and applying the package SY, we get addi-
tional information not only about the T-invariants but also about the dynamics of the
system. The symbolic treatment of the T-vectors yields as one crucial result the marking
(amount of molecules), needed at the beginning and provided by the starting transition
s1, to run the system without deadlock from its source to the sink. This initial marking
is ‘appropriate’ because it is the minimum amount of molecules necessary for a simula-
tion with maximum concurrency. Moreover, the stepwise construction of the symbolic
parameterized T-invariants yields knowledge not only about the frequency of transition
occurrences (during a run along the invariant) but also about the partial order in which
these transitions have to occur.

An interesting question arises concerning the independence of the three T-invariants.
Theoretically, they are linearly independent from each other because the transitions l2 and
l2′ are treated as not being related to each other. If however l2 and −l2′ are identified,
as they represent complementary reactions, the T-vectors get linearly dependent. This
corresponds to the observation that the overall reactions (G), (P), (R) are related to each
other by the equation (P) = 2·(G) + (R).
The problem, however, lies in the fact that a steady state process including both a reaction
and its reverse is biochemically not feasible. And on the other hand, T-vectors with
negative elements cannot be T-invariants according to the definition given in section 2.

The construction of the compound net P∗ can also be looked at from a different
perspective, throwing more light on the nature of the token colours and the conflicts.
Let us discuss the three independent modes identified in the previous subsection 4.2, as
separate net models. They are depicted in a simplified version as Figure 5, omitting all
ubiquitous molecules and the ‘uncritical’ reactions m2 and m3.

The first mode (G), glycolysis, contains no conflict. So, in principle, only one token
colour would be needed. The colours C and D are retained merely to exhibit the relation

29

Gluc

l1

G6P

F6P1

FBP

GAP1

Lac

BPS

l3

l4

l7

l8

l5

DHAP

m1 Ru5P

r1 r2

R5P

GAP2

F6P2

Xu5P

S7P

E4P

r3

r4

r5

Gluc

l1

G6P

F6P1

GAP1

Lac

BPS

l7

l8

m1 Ru5P

r1 r2

R5P

GAP2

F6P2

Xu5P

S7P

E4P

r3

r4

r5

l2'

Gluc

l1

G6P

F6P

FBP

GAP

Lac

BPS

l2

l3

l4

l7

l8

l5

DHAP

(G) (P) (R)

x

x

x

D

D

D

D

D

D

D

D

D

x

G H

H

H

H

H

H

H

G

G

G

G

H

H

H

x

D

D

G'

G'

D

D

D

D

x

G' H'

H'

H'

H'

H'

H'

H'

G'

G'

G'

G'

H'

H'

H'

H'

H'

x

D

C

C

C

C

C

D

D

D

D

D

D

D

D

D

D

Figure 5: The (simplified) three modes of P∗

with P∗. The second mode (P) has two internal conflicts at Ru5P resp. GAP which are
decided by use of the two colours G and H resp. G and D. The third mode (R) contains
the same two conflicts as (P), solved by G′ and H′ resp. G′ and D.

These ‘mode specific’ conflicts describe (model) situations as happening in reality, with
a great number of molecules of every substance involved. From the definition of steady
state it follows that, sloppy speaking, no molecule inserted by the source may get stuck
on its way to the sink. If it would, the concentration of an intermediate substance would
be increased, contradicting the definition. Looking at the right hand branch of (P) in
Figure 5, the tokens entering that branch at Ru5P can leave it only as F6P- or GAP-
molecules by means of r4 and r5. The reaction r4 needs one G and one H, and r5 one
additional H. The one G resp. two H tokens can only be provided by r1 occurring once
resp. r2 occurring twice. In real organisms, with great molecule numbers, the molecules
of one substance cannot be distinguished and cannot be forced to choose one out of more

30

alternative paths. Yet, the transitory increase of a substance concentration leads to a
slowing down of reactions producing it and an acceleration of reactions consuming it.
The opposite happens in case of a concentration decrease. So, in the long run, a relative
occurrence ratio of 1:2 will be established among r1 and r2 if the pathway is in a steady
state.

In contrast to the mode specific conflicts, the remaining ones are consequences of glue-
ing the mode nets (G), (P), and (R) into one single model P∗. As these three processes
are independent from each other, performing linear independent T-invariants, the param-
eters gly, hex, rev can, in principle, be chosen arbitrarily. This implies that the relative
frequency among this kind of conflicting reactions, for example l2 and m1, depends merely
on the choice of the parameters and not on a biochemical law that would require a con-
stant frequency ratio. In a real organism, these reaction ratios are controlled mainly by
the relative activities and concentrations of the respective enzymes.

From a biochemical point of view, there exist further restrictions for the concurrent
execution of the three processes (G), (P), (R). For example, the concurrent execution of (G)
and (R) would require simultaneous activities of both reactions l2 and l2′, the reverse of l2.
However, as the direction in which a reversible enzymatic reaction occurs is controlled by
the concentrations of its reactants and products, it cannot run in both, opposite directions
in a steady state, with constant enzyme concentrations. These concentrations depend on
the current requirements of the cell.

In a real organism, the flow of G6P or Gluc depends on the need for NADPH, R5P,
and ATP in the cell. Based on experimental observation, biochemists distinguish between
four ‘modes’ (which we will call T-modes, in order to not mistake them for the elementary
flux modes) of the combined GP/PPP , see [Str96]. We finish this section with a short
discussion of these T-modes and their relationships to our results. Doing this, we shall
neglect the ubiquitous molecules H+, H2O, and CO2 mentioned in [Str96].

T-Mode 1 is adopted when more R5P than NADPH is required, for example in rapidly
dividing cells needing R5P for the synthesis of nucleotide precursors of DNA. Most of G6P
is converted into F6P and GAP by the GP (l2, l3, l4). Transaldolase (r4′) and transketolase
(r3′) then convert 2 F6P- and 1 GAP- into 3 R5P-molecules. The reaction reads

5 G6P + ATP → 6 R5P + ADP .
First, we recognize that we have to return to the model Prev which contains all reverse
reactions needed. Secondly, we observe that the process (reaction path) does not transform
Gluc into Lac, hence, does not represent a full T-vector. As a consequence, the chosen
token colours are no longer appropriate. Bearing this in mind, we construct the T-vector

[(l2, [(5, ())]), (l3, [(1, ()]), (l4, [(1, ()]), (l5, [(1, ()]), (r1, [(4, ()]),
(r5′, [(2, ()]), (r4′, [(2, ()]), (r3′, [(2, ()]), (r2′, [(4, ()])]

and compute its effect, yielding
ADP: D, ATP: − D, F6P: 5`C − 2`H − 3`x, G6P: − 5`C,
GAP: 2`D − 2`H, R5P: 6`G, Ru5P: − 4`G + 4`H .

By identifying all token colours with D, say, the effects for F6P, GAP, and Ru5P disappear,
leading to the desired overall effect ADP: D, ATP: − D, G6P: − 5`D, R5P: 6`D
which exactly reflects the reaction formula above.

T-mode 2 is adopted when the needs for NADPH and R5P are balanced. Then the
oxidative branch of the PPP is executed, converting G6P into NADPH and R5P (m1, r1).
The reaction formula is

G6P + 2 NADP+ → R5P + 2 NADPH .
For the T-vector [(m1, [(1, (x←G))]), (r1, [(1, ()])]
we verify the appropriate effect G6P: − G, NADPH: 2`F, NADP+: − 2`F, R5P: G .

31

T-modes 3 and 4 are adopted when much more NADPH than R5P is required.
T-mode 3 includes, apart from l4′ and l2′, a reaction catalyzed by fructose-1,6-biphos-

phatase which is part of the gluconeogenesis and hence outside the scope of the GP/PPP
system covered by the models of this paper. Note that, although the mentioned enzyme
converts FBP into F6P, it is not identical to the enzyme phosphofructokinase of l3 con-
verting F6P into FBP. Rather, both reactions are irreversible.

T-mode 4, according to [Str96], is characterized by the reaction formula
3 G6P + 6 NADP+ + 5 NAD+ + 5 Pi + 8 ADP
→ 5 Pyr + 6 NADPH + 5 NADH + 8 ATP .

If this process is expanded to start with Gluc (instead of G6P) and to end with Lac (instead
of Pyr), and if the reactions m2 and m3 are included, the result corresponds precisely to
the T-invariant (P) derived in the previous subsection 4.2.

5 Conclusions

To our best knowledge, this paper is the first one to apply higher-level Petri nets to the
design, qualitative analysis, and execution of metabolic steady state system models. Com-
pared to low-level Petri nets and to algebraic methods and tools from biochemistry, this
approach renders important new results about the invariants and the processes of (suf-
ficiently complex) metabolic pathways. The crucial point of using high-level nets is the
ability to discriminate metabolites, if necessary, according to their topological environ-
ment, i.e., the reaction chains in which they are involved. On this basis, models can be
developped which can be simulated smoothly and can be subjected to a rigorous symbolic
analysis. This has been demonstrated for the rather complex sample of the combined
glycolysis and pentose phosphate pathways. The main results reported in this paper are
the following.

Firstly, a full S-invariant of the sample net was found that represents an interesting,
non-trivial preservation law for the amounts of all metabolites in the system.

Secondly, the T-invariants and the overall reaction equations known from earlier publi-
cations have been verified. Moreover, not only the number of reaction occurrences related
to a T-invariant, but also their partial order has been determined.

Thirdly, the sample net model can be simulated cyclically, restoring the initial system
state at the end of each cycle, avoiding deadlocks, and with maximal concurrency.

Fourthly, a biochemical interpretation of high-level Petri net models of steady state
pathways and their invariants requires great care, but may throw a new light on the nature
of metabolic processes.

A most interesting topic for further research is the question whether or to which extent
the search for and the construction of S- and T-invariants can be automated. Moreover,
the significance and the biochemical interpretation of (full) S-invariants has been neglected
almost totally in the past, and deserves a thorough investigation. Finally, the application
of symbolic analysis to less understood metabolic systems is expected to lead to valuable
new insights.

Acknowledgements
We would like to thank the anonymous reviewers for their valuable hints and suggestions.

References

[Design] Design/CPN. http://www.daimi.au.dk/designCPN/

32

[Gen01] Genrich, H.: Dynamical Quantities in Net Systems. To appear in Formal
Aspects of Computing, 2001

[GKV00] Genrich, H., Küffner, R., Voss, K.: Executable Petri Net Models for the Ana-
lysis of Metabolic Pathways. In Jensen, K.: Practical Use of High-level Petri
Nets. Univ. of Aarhus, DAIMI PB–547, June 2000, 1-14.
Revised version to appear in Software Tools for Technology Transfer, Springer-
Verlag, Berlin

[GoPe98] Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in
molecular biology by using stochastic Petri nets. Proc.Natl.Acad.Sci.USA 95,
1998, 6750-6755

[GoPe99] Goss, P.J.E., Peccoud, J.: Analysis of the stabilizing effect of Rom on the ge-
netic network controlling ColE1 plasmid replication. Pac.Symp.Biocomp.′99,
Hawaii, 1999, 65-76

[HeSc96] Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Chapman &
Hall, New York, 1996

[HeSc98] Heinrich, R., Schuster, S.: The modelling of metabolic systems. Structure,
control and optimality. BioSystems 47, 1998, 61-77

[Hof94] Hofestädt, R.: A Petri Net Application of Metabolic Processes. Journal of
System Analysis, Modelling and Simulation 16, 1994, 113-122

[HoTh98] Hofestädt, R., Thelen, S.: Quantitative Modeling of Biochemical Networks.
In Silico Biol. 1, 1998, 980006

[KSH00] Koch, I., Schuster, S., Heiner, M.: Using time-dependent Petri nets for the
analysis of metabolic networks. In Hofestädt, R., Lautenbach, K., Lange, M.
(eds): DFG-Workshop: Informatikmethoden zur Analyse und Interpretation
großer genomischer Datenmengen, Magdeburg, 19. - 20.5.2000. Fakultät für
Informatik, Univ. Magdeburg, 2000, 15–21

[MDNM00] Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri Net Repre-
sentation of Gene Regulatory Network. In Proceedings of the Fifth Pacific
Symposium on Biocomputing, Hawai. World Scientific Press, 2000, 338-349

[Pfe99] Pfeiffer, T. et al.: METATOOL: For Studying Metabolic Networks. Bioinfor-
matics 15, 1999, 251-257

[RLM96] Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative Analysis of
Biochemical Reaction Systems. Comput. Biol. Med. 26(1), 1996, 9-24

[RML93] Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri Net Representa-
tion in Metabolic Pathways. In Hunter, L. et al. (eds.): Proc. First Intern.
Conf. on Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park,
1993, 328-336

[ScHi94] Schuster, R., Hilgetag, C.: On elementary flux modes in biochemical reaction
systems at steady state. J. Biol. Syst. 2, 1994, 165-182

[SFD00] Schuster, R., Fell, D.A., Dandekar, T.: Systematic exploration of the generic
metabolic potential of sets of enzymes. Nature Biotechnol. 18, 2000, 326-332

33

[SHWF96] Schuster, R., Hilgetag, C., Woods, J.H., Fell, D.A.: Elementary Modes of
Functioning in Biochemical Networks. In Cuthbertson, R., Holcombe, M.,
Paton, R.: Computation in Cellular and Molecular Biological Systems, World
Scientific, Singapore, 1996, 151-165

[SPM00] Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I., Dandekar, T.: Struc-
tural Analysis of metabolic Networks: Elementary Flux Modes, Analogy to
Petri Nets, and Application to Mycoplasma pneumoniae. In Bauer, E.-B.,
Rost, U., Stoye, J., Vingron, M. (eds): Proc.Germ.Conf.Bioinf., Heidelberg,
5.-7.10.2000, Logos Verlag Berlin, 2000, 115–120

[Str96] Stryer, L.: Biochemistry. W.H. Freeman and Co., New York, 1996

Abbreviations

Metabolites / Compounds

ADP Adenosine diphosphate ATP Adenosine triphosphate
BPS 1,3-Biphosphoglycerate DHAP Dihydroxyacetone phosphate
E4P Erythose-4-phosphate FBP Fructose biphosphate
F6P Fructose-6-phosphate GAP Glyceraldehyde-3-phosphate
Gluc Glucose GSH Glutathione
GSSG Glutathione disulfide G6P Glucose-6-phosphate
NADH Nicotinamide adenine dinucleotide, reduced form
NAD+ NADp, Nicotinamide adenine dinucleotide, oxidized form
NADPH Nicotinamide adenine dinucleotide phosphate, reduced form
NADP+ NADPp, Nicotinamide adenine dinucleotide phosphate, oxidized form
Lac Lactate PEP Phosphoenolpyruvate
Pi Orthophosphate, ionic form Pyr Pyruvate
Ru5P Ribulose-5-phosphate R5P Ribose-5-phosphate
S7P Sedoheptulose-5-phosphate Xu5P Xylulose-5-phosphate
2PG 2-Phosphoglycerate 3PG 3-Phosphoglycerate

Correspondence between Petri net transitions and enzymatic reactions

l1 Hexokinase l2 Phosphoglucose isomerase
l3 Phosphofructokinase l4 Aldolase
l5 Triosephosphate isomerase (forw.) l6 Triosephosphate isomerase (backw.)
l7 GAP dehydrogenase
l8 Reaction path consisting of: phosphoglycerate kinase, phosphoglycerate

mutase, enolase, pyruvate kinase, and lactate dehydrogenase
m1 G6P oxidation reactions m2 Glutathione reductase
m3 Glutathione oxidation reaction r1 Ribulose-5-phosphate isomerase
r2 Ribulose-5-phosphate epimerase r3 Transketolase
r4 Transaldolase r5 Transketolase

34

Equivalent Coloured Petri Net Models
of a Class of Timed Influence Nets with Logic

Bo Lindstrøm1 and Sajjad Haider2
1Department of Computer Science, University of Aarhus, Denmark

E-mail: blind@daimi.au.dk

2System Architectures Laboratory, George Mason University, Fairfax, VA, USA
E-mail: shaider1@gmu.edu

Abstract

This paper discusses coloured Petri net models of so-called timed influence nets with
logic. Previous work has developed a method to translate a timed influence net into a
coloured Petri net. The work in this paper describes a new and more compact translation
from timed influence nets with logic into coloured Petri nets. The translation has the prop-
erty that the net structure of the coloured Petri net will be the same for all translated timed
influence nets – only the initial marking changes depending on the actual timed influence
net. This more compact translation avoids the generation of simulation code for each timed
influence net. The paper also presents some validation results to establish that the coloured
Petri net models from the two methods are equivalent, i.e. that the new compact coloured
Petri net model gives the same simulation results as the old less compact model does.
Key words: Coloured Petri nets, Timed influence nets with logic, Equivalence, Folding,
Information assurance.

1 Introduction

When making decisions it may be very important to be able to maximise or minimise the proba-
bility of certain events to appear. Being able to solve this problem is relevant in several different
areas. For command and control systems in the military it is, e.g. important to take the best possi-
ble actions to maximise the probability that an enemy will surrender. For a system administrator
it is important to be able to minimise the down-time for some service.

This paper will use an example from the area of information assurance [12]. Information
assurance aims to minimise the probability that an intruder breaks into a system and accesses
secret information. Even though a lot of effort may be put into making systems secure, a system
will not be more secure than the weakest point of the system. Therefore, it is very important to be
able to analyse a system to find the probability that an intruder can access the secret information,
and to find the weak points in a system.

35

The method described in this paper makes it easier for an analyst to determine the probability
that an intruder can access the secret information. It requires a model of the environment to
be created by the analyst. The model is specified as a non-cyclic graph with probabilities to
determine how likely an event is to appear. The model will be specified using a slightly modified
version of influence nets [1,11] which is called timed influence nets with logic (TINL). TINL is a
variant of Bayesian nets [5] which makes it simple to specify probabilities. The logic of a TINL
has nothing to do with temporal logic, instead the word logic refers to different kinds of nodes in
a TINL. We will give more details on the definition of TINLs in Sect. 2.

Based on the specification of the TINL, coloured Petri nets (CP-nets or CPNs) [6–9] are used
to estimate the probability that a certain event occurs, and the time of the appearance. Most often
the analyst is only interested in the final probabilities, and is not at all interested in the details of
the CPN model. However, in some situations the details of how a simulation has evolved may be
of interest, e.g. the order of occurrences of binding elements may contain useful information.

Previous research in this field [14] has developed a method to automatically convert a TINL
into a CPN model using the tool Design/CPN [2]. Given a TINL specification file, the method
automatically creates a CPN model which has a net structure very similar to the TINL, i.e. for
each node in the TINL a specific part of the CPN model can be identified to model that node.
Therefore, the fact that the structure of the CPN model looks like the TINL means that it is easy
for an analyst to recognise nodes from the TINL in the CPN model. This close relationship
between the CPN model and the TINL has been important when trying to convince analysts who
are used to working with TINLs that CPN models are able to solve the problem and give the
correct results.

In a later project the method has been extended to give access to creating and simulating
models via a web browser. Given a TINL-specification file which is uploaded to a web server,
the method automatically generates the CPN model and the corresponding simulator code using
Design/CPN. Based on the simulator code, a CGI script [3] is automatically generated using the
method described in [10]. Using an automatically generated web page which contains TINL-
specific information, the user is able to set initial conditions for the simulator of the CPN model,
and to start a batch of simulations using the CGI script. After having performed a number of
simulations, results including graphics are displayed in the web browser. Figure 1 shows one of
the graphs that are included on a web page to display the results to the analyst using domain-
specific graphical user interfaces. The graphs show how the probabilities of certain nodes in the
TINL evolve during time. Using this web-based graphical user interface, the analyst will never
see the CPN model. Actually, the analyst does not even need to know that a CPN model is used
to produce the results.

The previous method performs its job as expected. However, the method has some draw-
backs. The fact that a completely new CPN model (with all the places and transitions) has to be
generated for every influence net, means that it takes rather long time to apply the method. Even
though the CPN model is generated automatically, it takes time both to generate the net structure
and declarations, and then afterwards to generate the executable simulator code for that specific
CPN model.

In this paper we describe how to avoid to generate simulator code for every instance of a
TINL. In that way we eliminate the time used for each TINL to both create the specific CPN

36

Figure 1: Graph from web page showing graphical analysis results of the TINL in Fig. 3.

model and to generate the corresponding simulator code. This is done by creating a general CPN
model (in the following referred to as the folded CPN model) which can simulate any TINL for
any set of parameter values, i.e. the whole class of TINLs. The general CPN model models the
actual computation or execution of a TINL, but it is not fixed to a specific TINL. The information
of a specific TINL is maintained using colours, and not net structure as in the former project. That
means that the folded CPN model is fixed to a specific influence net by using a specific initial
marking which contains information about the net-structure of the specific TINL. In other words,
the structure of the specific TINL is encoded in colours.

The old method which generates a CPN model with net structure similar to the structure
of the TINL (in the following referred to as the unfolded CPN model), is used in combination
with the folded CPN model. The folded CPN model is only used for automatic simulations, i.e.
simulations controlled via a web browser, while the unfolded CPN model is used when a person
with knowledge of TINLs has an interest in looking at the actual CPN model.

The fact that the behaviour of the two models is expected to be the same requires some vali-
dation. Figure 2 illustrates the method applied in this paper. From a TINL a specification file is
generated to contain all static information about a TINL. From that file, the old method developed
in the former project is used to generate the unfolded CPN model, and then the corresponding
state space is generated. The TINL specification file is also used to initialise the marking of the
folded CPN model to reflect the current TINL. The corresponding state space is also generated

37

TINL TINL Spec.
 File

Unfolded CPN
Model

State Space for
Unfolded CPN

Model

Initial Marking
for Folded
CPN Model

State Space for
Folded CPN

Model

Isomorphic?

Figure 2: Overview of the applied method.

for the folded CPN model after the initialisation. Finally, the the equivalence of the behaviour
of the two models has been validated by making a number of tests. This has been done by
comparing the state spaces from the two CPN models.

The paper is structured as follows. Section 2 presents TINLs informally, and introduces an
example which will be used for illustration purposes in the rest of this paper. Section 3 briefly
describes how an unfolded CPN model will look like when it is generated using the old method.
Section 4 describes the folded CPN model, and how it has been constructed from the unfolded
CPN model. Section 5 discusses how we have validated that the behaviour of the two models are
equivalent. Finally, in Sect. 6 we conclude and give directions for future work.

2 Timed Influence Nets with Logic

In this section we informally introduce timed influence nets with logic (TINL) by presenting an
example in the field of information assurance. The example will be used as a running example
in the following sections.

TINLs can be used to estimate the probability of a certain event when that event depends
on other events which contains an element of uncertainty. Like e.g. Petri nets, TINLs have both
a graphical and a mathematical representation. They are specified as directed acyclic graphs
where the nodes represent events as random variables (a numerical quantity defined in terms
of the outcome of a random experiment, p. 110 in [4]), while the arcs represent dependencies
between the events. In addition timing information and probabilities are specified for the nodes.

Consider Fig. 3 which contains an example of a TINL. The purpose of the TINL is to estimate
the probability that an intruder can unlock a door. To unlock the door two options exist. It is
possible to unlock the door using both a password and an access card. It is also possible to unlock
the door using a physical key and the same password which is used with the access card. It is of
interest to an analyst to know which of the two options is most likely to be broken by an intruder,
and how long time it will take to do it.

An intruder may be able to find either a physical key or an access card somewhere. The
probability that the intruder finds a key is estimated to 30% (which is indicated by a so-called
baseline probability b=0.3 next to the node Find Key with number 4) while it is 40% for the
access card (node number 3). The h = 0.68 on the arc to the node Have Key and Password

38

5:Find Password

2:Detect Password
from Keypad

8:Have Key
and Password

1:Have Card
and Password

4:Find Key

 3:Find Accesscard

 7:Get
Password 9:Unlock Door

h=0.68
g=-0.93

h=0.87
g=-0.73

h=0.92
g=-0.49

h=0.87
g=-0.9

h=0.68
g=-0.86

h=0.68
g=-0.93

h=0.68
g=-0.75

h=0.69
g=-0.75

b=0.3, @+4

b=0.15, @+1

b=0.1, @+0

b=0.4, @+1

and

and

oror

@+1

@+0

@+1

@+1

Figure 3: An example of an influence net for information assurance.

indicates that there is 68% probability that the node Have Key and Password will be true if the
node Find Key is true. Likewise g = −0.93 indicates that there is 93% probability that the node
Have Key and Password will be false if the node Find Key is false. The time to find a key is
estimated to 4 time-units, which is indicated by the expression @+4 below the node Find Key.

The intruder is assumed to be able to obtain the password in two different ways. Either the
intruder can find the password on a piece of paper Find Password with an estimated probability
of 15%, or a special device can be used to detect the password from the keypad where the users
types in the password Detect Password from Keypad with an estimated probability of 10%.

The node Get Password indicate the event that the intruder has obtained the password in
some way, and therefore now knows the password. Notice that the node is a so-called or-gate
which is reflected by the or in the upper right corner of the node. This indicates that we are only
interested in the probability of the predecessor-event which has the highest probability, i.e. the
post probability of the node is only to be based on the probability of the node with the maximal
probability of all the predecessor nodes. Assume that n7 denotes the random variable of the node
Get Password and the predecessor nodes are denoted by p2 and p5. Then the probability of the
or-gates is computed using the following formula:

P (n7) = Max[P (n7|p2)P (p2) + P (n7|¬p2)P (¬p2), P (n7|p5)P (p5) + P (n7|¬p5)P (¬p5)]

Probabilities denoted by, e.g. P (n7|p2) are so-called conditional probabilities. A conditional
probability denotes the probability that a random variable (n7) will be true when another random
variable (p2) is assumed to be true. Conditional probabilities are computed using the g and h
values included in the TINL. We will not go into more details with how the probabilities are
computed, but will refer to [13] for further details.

The two nodes Have Key and Password and Have Card and password indicate the events of
having obtained two of the necessary items to unlock the door. These nodes are so-called and-
gates which means that we require both predecessor events to be true. Therefore, the probability
of the node will depend on both of the predecessor nodes, and not only one of them as it is the
case for or-gate nodes. Consider node Have Key and Password and assume that n8 denotes the

39

random variable of the node and that the predecessor nodes are denoted by p4 and p7. The proba-
bility of and-gates is computed using the following formula (where e.g. P (n8|p4, p7) denotes the
probability that n8 is true when the two conditional random variables p4 and p7 are true):

P (n8) = P (n8|p4, p7)P (p4)P (p7)+
P (n8|p4,¬p7)P (p4)P (¬p7)+
P (n8|¬p4, p7)P (¬p4)P (p7)+
P (n8|¬p4,¬p7)P (¬p4)P (¬p7)

Again, the conditional probabilities can be computed based on the g and h values on the arcs from
the predecessor nodes. Notice that the formula for computing the probability of an and-gate is
more complex than the formula for or-gates due to the fact that it requires conditional probabili-
ties for more than one predecessor, e.g. the conditional probability stated by P (n8|p4, p7).

Finally, the node Unlock Door indicate the event that we are actually interested in, i.e. to esti-
mate the probability that an intruder is able to unlock the door using any of the legal possibilities.
This node is also specified as an or-gate because we do not care which of the predecessor events
are true. It is sufficient that one of them are true to be able to unlock the door.

When having specified probabilities for an influence net, an algorithm using the two formulas
stated above can be used to propagate the probabilities forward through the net. The propagation
algorithm starts by updating the initial nodes (nodes without predecessors). Then it updates the
successor nodes using the newly computed values, and continues to update nodes until no more
successor nodes exists. Therefore, for each initial node the probability is propagated through the
TINL to the terminal nodes.

Figure 1 from Sect. 1 actually shows a graph showing the evolution during time of the proba-
bilities of the intermediate and terminal nodes of the TINL presented in this section. We see that
the probability for unlocking the door (Node 9) will be about 17.6 after time 4.

To complete this informal presentation of TINLs, we briefly relate TINLs to two closly re-
lated classes of nets which are also used to estimate probabilities. TINLs are a variant of influence
nets which again are a variant of Bayesian nets [5]. The difference is that for influence nets the
predecessor nodes of a node are assumed to be independent from each other, while in Bayesian
nets the predecessor nodes are not assumed to be independent. The independence of predeces-
sor nodes in influence nets simplifies both the specification of probabilities in an influence net,
and the actual computation of the probabilities. TINLs extend influence nets with the so-called
or-gate, and with a time-concept.

3 Old Approach: Unfolded CPN Model

In this section we will briefly summarise how a CPN model of a TINL looks like when con-
structed using the method presented in [14]. However, the method has been slightly modified
and extended to handle the or-gate discussed in Sect. 2 as well. Focus will be on the general pat-
tern of a CPN model created from a TINL. We will not go into details with how to automatically
generate the CPN model. Details on the automatic generation of a CPN model can be found in
the paper [14].

40

Revisit the TINL in Fig. 3 in Sect. 2. Notice the three different types of nodes: initial (nodes
without predecessors), intermediate (nodes with both predecessors and successors), and terminal
nodes (nodes without successors).

Figure 4 presents the net-structure of an automatically generated CPN model for the TINL in
Fig. 3. Each of the three types of nodes in the TINL is converted into one of three standardised
subnets. Each rounded box models exactly one node in the TINL. Notice for later use in Sect. 4
the similar net-structure of the subnets, and that the subnets are connected only via places with
colour-set Store.

A5

Fact

N5

Result

T
d

T
c

R5 B5

A4

Fact

N4

Result

T
d

T
c

R4 B4

A3

Fact

N3

Result

T
d

T
c

R3 B3

A2

Fact

N2

Result

T
d

T
c

R2 B2

N7
Result

T
d

R7 B7

O7

N8

Result

T
d

R8 B8

O8

S2to7
Store

S5to7
Store

S7to8 Store

S4to8
Store

S7to1 Store

S8to9 Store

N9

Result

T
c

R9

T
d

B9

O9

N1

Result

T
d

T
c

R1 B1

O1

S1to9 Store

S3to1
Store

Node 4: Initial Node

Node 5: Initial Node

Node 3: Initial Node

Node 2: Initial Node

Node 9:
Terminal Node

Node 7: Intermediate Node

Node 1: Intermediate Node

Node 8: Intermediate Node

Figure 4: Net-structure of CPN model for the TINL in Fig. 3.

The number of predecessor and successor nodes of a given node may be different. Therefore,
the number of Store places may be different for different subnets. Notice in Fig. 4 that the
intermediate node number 8 has one successor node (S8to9) while intermediate node number 7
has two successor nodes (S7to8 and S7to1).

The model has two types of transitions and five types of places. The transitions named Tc are
used to calculate new probabilities while the transitions named Td are used to distribute the newly
calculated probabilities to the successor nodes. Figure 5 shows the details of the intermediate
node number 7.

Places with the timed color-set Fact contain pairs of node id and the corresponding probabil-
ity. These places are used to model the initial probabilities of a node (also called initial beliefs).

Places with color-set Store has a similar purpose as the Fact places. Like colour-set Fact, the
colour-set Store contains a node id and a probability. However, in addition it contains a boolean

41

S7to1
Store

(7,(R2I 0.234),0)

S7to8
Store

(7,(R2I 0.234),0)

N7

Result

T
d

[fifo=count]T
c [c2=1 orelse

 c1=1]

R7 Rule
(7,OR_Gate,(D2T 1),0, R2I 0.5,
[(R2I ~0.75,R2I 0.68),(R2I ~0.75,R2I 0.7)],
map R2I ([0.031,0.391,0.417,0.952]))

B7
Buffer

1

S2to7
Store

(2,(R2I 0.1),0)

S5to7
Store

(5,(R2I 0.15),0)

O7
Result(7,fifo,prob)

(7, count+1,
comppostprob(g,[2,5],[c2,c1],
[p2,p1],conp,bl,gnhs))@+dl

(self,g,dl,count,
bl,gnhs,conp) count

get_effect(7,fifo,prob)(2,p2,c2)

(5,p1,c1) (7,oldprob,0)

(7,oldprob,0)

set_control(7,prob)

count+1

set_control(7,prob)

(self,g,dl,count+1,
bl,gnhs,comp)

reset_control(2,p2,c2)

reset_control(5,p1,c1)

Figure 5: Details of intermediate node 7 in Fig. 4.

control value which is used to indicate whether the probability of that store has been recalculated
by the predecessor node and not yet been processed by the successor node. This control value is
used to propagate newly computed values forward.

The timed color-set Result is also a triple. It contains a node id, a sequence number, and the
probability of the node. The purpose is to capture the resulting probabilities so that the analyst
can inspect the values of the tokens when a simulation ends.

Color-set Rule is a 7-tuple. First of all, it contains the node id. The second value is the gate
value indicating whether the node is an and-gate or an or-gate. The third value is the time-delay
of the node which indicate how much time it takes to perform the action represented by the node.
The fourth value is a counter used to give tokens a sequence number to be used for “first in, first
out” handling of tokens. The fifth value is the baseline value of the node. The sixth value is
a list of the g and h values described in Sect. 2. Finally, the last value is a list of conditional
probabilities. The values in the list gives all the conditional probabilities stating how likely the
node is to be true when any subset of the predecessors are true.

Finally, color-set SeqNo is a counter or sequence number which is used to ensure a first in,
first out protocol when distributing tokens to the successor nodes.

As mentioned above, the transition Tc calculates the probability of the node given the prob-
abilities of the predecessors. The function comppostprob computes the value based on prob-
abilities from the predecessor stores and the values at the Rule place. However, for the interme-
diate and terminal nodes, the guard of the transition prevents the transitions from being enabled
unless the probability of at least one predecessor node has been recalculated. That is done using
the control value of the tokens on the predecessor Store places. When the tokens are put back
to the Store places, the control value is reset to indicate that the probability has been propagated
forward. This is the essential control mechanism of the forward propagation algorithm used for
TINLs.

42

The transition Td is used to distribute computed probabilities to the successor nodes, and to
the result place. The transition gets the next probability from the place N in fifo order, i.e. the
token which has first arrived to the place N is first removed. In addition the transition removes
the old probability from the successor-Store places, and replace these tokens with the new prob-
ability, and sets the control variable of these tokens to indicate that a new probability has been
calculated.

The most important part of this section is to understand the general pattern used for con-
structing subnets for the individual nodes, and that any CPN model of a TINL can be created by
combining these subnets into a complete CPN model. The detailed behaviour of the model is of
secondary importance. In the next section we will describe the general or folded model which
does not have so much net structure, but is instead able to model any TINL.

4 New Approach: Folded CPN Model

The method described in [14] generates a new CPN model for every different TINL as discussed
in Sect. 3. In this section we describe a CPN model which can simulate any TINL when initialised
with a proper marking. The CPN model (folded CPN model) is created as a folding of the CPN
model (unfolded CPN model) presented in Sect. 3. This has several advantages: it is easy to
validate that the folded CPN model has behaviour equivalent to the behaviour of the unfolded
CPN model; when one knows the details of one of the models it is easy to learn the details of the
other model; and it is easy to modify and maintain the models.

4.1 Hierarchy Page

The folded CPN model is created as a hierarchical CPN model with the hierarchy page depicted
in Fig. 6. The CPN model has two prime pages. The page InitModel is used to load and set the
initial markings of the CPN model, and will be discussed in the end of this section. The page Top
is the top-page of the model which gives an overview of the CPN model. The three pages Initial
Node, Intermediate Node, and Terminal Node models the three different types of TINL nodes.

Hierarchy#10Menu#9

Top#4 Prime

Definition#1

Intermediate#6

Initial#7

Terminal#10

InitModel#8 Prime

Figure 6: Hierarchy page for the folded CPN model.

43

4.2 Top Page

After being initialised, the transition Driver on the top page of the CPN model in Fig. 7 starts to
activate the simulation of the TINL nodes. First at least one initial node must be activated, next
all three kinds of nodes may be activated. The left part (left of the substitution transition Initial
Node) and the output place O is similar to the same page in the unfolded CPN model except that
in the unfolded CPN model, one output places existed for each node with output. In other words,
we have folded several output places from the unfolded CPN model into a single output place O
in the folded CPN model. The colour-set Result includes the id of the node. That implies that
it is possible to distinguish tokens belonging to different nodes even though they are stored on a
single output place.

A

Fact

O

Result

Trigger

FactTimeFG

Driver
@+td

ATKsetTaken

ATKsSET

Fire
Sequence

 Sequence

1

StorexDsts
FG

ntermediate
Node HS

Initial
Node HS

Final Node
HS

(f,prob,td)

(f,seq,prob)

(f,prob)

seq seq+1

Figure 7: Top page of folded CPN model.

4.3 Folding Initial, Intermediate, and Terminal Nodes

Revisit Fig. 4 in Sect. 3. Notice that the structure of all initial nodes (nodes 2-5) is the same.
Each initial node consist of four places and two transitions. The structure of the intermediate
nodes (nodes 1, 7, and 8) is also the same like it is for terminal nodes (node 9). Only the number
of Store places representing connections between nodes may be different.

Let us consider intermediate nodes in more detail. As mentioned above, all intermediate
nodes have the same net structure. That means that we can fold all intermediate nodes into a
single general folded node. Figure 8 shows the CPN model of the folded intermediate node
which is a generalisation of nodes like Fig. 5.

4.3.1 Folding Places

The folded intermediate node has been obtained by folding all similar places and transitions. In
this section we focus on folding places, while we consider folding transitions in Sect. 4.3.2.

Revisit Fig. 4 and focus on the places of the intermediate nodes 1, 7, and 8. Places with the
same colour-set are folded into one place. E.g. the rule places (Ri, where i is the node id) are
folded into one place (R in Fig. 8) representing rules for all intermediate nodes.

44

T
c

[input_stores = ((allstores with_ids_in preset) have_dst self),
any_recalculated input_stores]

R

Rule

FG

N
Result

T
d

[output_stores=((allstores have_dst_in postset) have_source self),
fifo=count, all_not_recalc(output_stores)]

S

StorexDsts

P I/O

O

Result

P Out

B
FIDxBuffer

FG

Structure

NodeRule
FG

(self,fifo,prob)

(self, count+1,
comppostprob(g, preset, getControlList(preset,input_stores),
 get_prob_list (preset, input_stores),conp,bl,gnhs))@+dl

(self,g,dl,count,
bl,gnhs,conp)

(self,
count)

get_effect(self,fifo,prob)

list_sort((reset_all_control(input_stores))^^
(allstores except input_stores))

allstores

{NodeID=self,
 PreSet=preset,
 PostSet=postset}

{NodeID=self,
 PreSet=preset,
 PostSet=postset}

allstores

list_sort((set_all_control(output_stores,prob))^^
(allstores except output_stores))

(self,
 count+1)

(self,g,dl,count+1,
bl,gnhs,conp)

Figure 8: Folded intermediate page.

The actual folding has been done using the well-known method of adding a unique identity
to each token to indicate which place in the unfolded CPN model the token belongs to. The
colour-set Rule already contains the node id which makes the tokens from different nodes distin-
guishable or unique. In a similar manner the place N has been obtained by folding all places Ni,
and the place O by folding places Oi. The place B in the folded CPN model is also a folding of
all Bi places from the unfolded model. However, this colour-set has been modified to include the
node id to make it possible to distinguish tokens from different nodes.

The colour-set StorexDsts of the place S in the folded model is the colour-set which has been
changed the most. It is indeed the folding of all places Sitoj, where i and j are respectively the
ids of the predecessor node and the successor node. The colour-set Store in the unfolded model
already contains the id of the predecessor node. However, as discussed above, a node may have
several successors (node 7 has both nodes 1 and 8 as successor nodes in Fig. 4). Therefore, the id
of the successor node (or destination) has been added to the colour-set StorexDsts to be able to
distinguish tokens belonging to different successor nodes. For reasons related to the effectiveness
of calculating enablings during simulations in Design/CPN, the colour-set is changed to a list of
tokens. In summary, the place S contain a list of tokens from the places Sitoj from the unfolded
CPN model which are made unique by adding the id of the successor node to each token.

We have added one new place which does not exist in the unfolded CPN model. It is the
place Structure. It contains information about how intermediate nodes are connected to other
nodes, i.e. structural information about how intermediate nodes are connected in the TINL. The
colour-set NodeRule is a record with three values. The value NodeID is the id of the node. The
values PreSet and PostSet contains lists of the ids of the predecessor and successor nodes

45

of the current node. As an example, a token representing all the arcs to/from the Store-node 7
in Fig. 5 is: 1‘{NodeID=7,PreSet=[2,5],PostSet=[1,8]}. The nodes 2 and 5 are
predecessors of node 7 while nodes 1 and 8 are successors. Using this place it is possible to
encode all arcs between nodes into colours, and by initialising this place with tokens containing
the appropriate information we can model different dependencies between nodes in a TINL.

4.3.2 Folding Transitions

Let us now consider the transitions Tc and Td in Fig. 8 for intermediate nodes. Like for the
places, these two transitions are foldings of all intermediate Tc and Td transitions in the unfolded
CPN model in Fig. 4. When a transition occurs in the folded model it reflects the behaviour of
the occurrence of exactly one transition in the unfolded model.

Let us consider how transition Tc can be enabled. The simulator starts by taking a random
token from the places R and Structure which has the same node id (self). The variable all-
stores on the arc from the place S to transition Tc binds to the single list on the place S.

Now the guard of transition Tc is evaluated. First the variable input_stores is assigned
the list of values returned by evaluating the expression ((allstores with_ids_in pre-
set) have_dst self). This expression runs through the list of all the stores and finds the
stores with ids in the preset variable from the Structure place which have destination (or suc-
cessor) self. Now the variable input_stores contains a list of the stores of the predecessor
nodes of the currently considered node. Next, the expression any_recalculated stores
tests if any of the input_stores have the control value set to indicate that they have been
recalculated by predecessor nodes. This function corresponds to the guard of Tc in the unfolded
CPN model. If the guard (the function any_recalculated) evaluates to true, the transition
can occur.

When the transition Tc occurs a token is put on the place N to indicate that the node is in
the process of being updated. The function comppostprob is exactly the same function as
used in the unfolded model (see the corresponding arc expression in Fig. 5). By using the same
function in the folded model, we avoid introducing errors by writing new functions for computing
the probabilities. The functions getControlList and get_prob_list returns the control
and probability lists from the input_stores. The control values of the input_stores are
reset using the function reset_all_control on the arc from Tc to S, and appended to the
unchanged stores (allstores except input_stores). The resulting list is sorted using
the function list_sort to make a canonical representation of the list. The reason is related to
generating the state-space for the model which is used for validation in Sect. 5. If we do not sort
the list, the order of interleavings of transitions in the CPN model will have impact on e.g. the
multi-set bounds of the place S.

Consider transition Td which distributes the newly computed probabilities to the S place.
First the transition match the token on place N, the counter-token on place B, and the token
on the place Structure with the corresponding node id. It also binds the variable allstores
to the list on place S. A guard somewhat similar to the guard on transition Tc calculates the
output_stores corresponding to the node which is currently considered. The expression
((allstores have_dst_in postset) have_source self) returns the list of all

46

the stores with node id in the postset-list of the node – but only those which have source
or node id self. The expression fifo=count in the guard ensures fifo-handling of the
tokens on place N. This is similar to the guard in the unfolded model. Finally, the function
all_not_recalc tests if all of the output_stores have control value equal to 0. This
corresponds to the 0 in Fig. 5 on the arc from S7to8 to Td.

When transition Td occurs it updates the probability and the control field of the corresponding
output_stores, and returns the list to the place S added to the remaining stores.

The folding of the initial and terminal nodes is conducted in a way similar to the one described
above for intermediate nodes, and is therefore not included here.

4.4 Initialisation of the CPN Model

The fact that the folded CPN model is to simulate any TINL means that the model has to be
initialised with appropriate data to reflect the structure of a specific TINL. This data is loaded
into the model from a TINL-specification file. This file is generated using the CAT-tool1 and
contains all data needed to create the initial marking. The file is exactly the same file as the one
used to create the unfolded model as described in details in [14].

Figure 9 depicts the page where tokens are computed and distributed to the places of the
CPN model. The transition Distribute Tokens is the only transition being enabled initially. When
it occurs, several things happens. First, the code segment of the transition loads the TINL-
specification files for initialising the CPN model. Then multi-sets of tokens are generated using
functions like createBufferTokens in Fig 10. Given a list of node ids from the TINL-
specification file, the recursive function generates for each node id, a token 1‘(nid, 1). The
rest of the markings for the remaining places are generated using similar more or less complex
functions.

InitR

Rule

InitB

FIDxBuffer

 Init
Structure

NodeRule

Start
E

1‘e

Distribute
Tokens S

StorexDsts
Trigger

FactTime

IntermR

Rule

IntermB

FIDxBuffer

Interm
Structure

NodeRule

TermR

Rule

TermB

FIDxBuffer

Term
Structure

NodeRule

Terminal Page

Intermediate Page

Initial Page

e

initRule

initBuffer
initStructure

allstorestrigger

intermRule intermBuffer

intermStructure
termRule

termBuffer

termStructure

Figure 9: Loading and distributing initial tokens.

1CAT is the Effects Based Campaign Planning and Assessment Tool under development at the US Air Force
Research Laboratories (AFRL/IF).

47

fun createBufferTokens ([]): FIDxBuffer ms = empty
| createBufferTokens (nid::rest) =

1‘(nid,1) ++ (createBufferTokens rest);

Figure 10: Create tokens with nid and a counter with initial value 1.

The distribution of the tokens is done by means of fusion places. For example, the places
IntermR, IntermB, IntermStructure, and S are fused with the corresponding places (R, B, Struc-
ture, and S) on the intermediate page in Fig. 8. In this way tokens are loaded and computed on
a single page of the CPN model, but are distributed to the places on several pages of the CPN
model.

5 Validation

In this section we describe how we have validated that the folded CPN model and the unfolded
CPN models gives the same simulation results. The folded CPN model is constructed from the
unfolded CPN model in a way which makes us expect that the state spaces from the two CPN
models will be equivalent.

The fact that the folded CPN model can model any TINL by being initialised with different
initial markings means that we have a whole class of different CPN models. That means that
when we have an initial marking of the folded CPN model, then we have one unfolded CPN
model which has the same behaviour, and vice versa.

We could have conducted a mathemathical proof to prove that the two CPN models have
equivalent behaviour. This would ensure that the equivalence holds for any TINL. However, we
have chosen to use state space analysis to check that for the given TINLs, the equivalence is
likely to hold. We will show that given a specific initial marking, the behaviour of the folded
CPN model is equivalent to the behaviour of the unfolded CPN model. We will focus on sizes
of the state spaces, boundedness properties, and paths in the state spaces. We have used the state
space tool of Design/CPN for the analysis to be presented in this paper.

5.1 Model Similarities and Statistical Information of the State Space

Before we go into details with how the equivalence has been validated, we will briefly mention a
few important issues related to how the folded CPN model has been obtained from the unfolded
CPN models.

As mentioned in Sect. 4, when we have a transition in the folded CPN model, then this
transition is the folding of a number of transitions in a unfolded CPN model. In other words,
when we have a binding of a transition in the unfolded model, exactly one binding of a transition
exists in the folded CPN model. The only exception from the correspondence between transitions
in the folded and the unfolded CPN models is the transition Distribute Tokens depicted in Fig. 9
in Sect. 4. This transition has no counterpart in the unfolded CPN model. However, it is the first

48

transition to occur in the initial marking of the folded CPN model, and it will only be enabled
once. That means that the impact on the state space is the addition of exactly one node and one
arc to the state space for the folded CPN model. However, to avoid this extra node we first let the
transition Distribute Tokens occur, and then start to generate the state space. That implies that
we have the exact same number of nodes and arcs in the two state spaces. When we refer to the
state space of the folded CPN model in the following, we will refer to the state space without the
first node.

The fact that the folded CPN model has been constructed in the way mentioned above, makes
it easier to check the equivalence of the folded and unfolded CPN models. The reason is that the
number of nodes and arcs in the state space for each of the two models are equal, i.e. when there
is one node in one of the state spaces, then there will be a similar node in the other state space,
and similar for arcs. Therefore, ignoring this first node and arc from the state space makes the
state spaces equivalent for a given initial marking of the two CPN models.

As an example, consider the TINL depicted in Fig. 3 in Sect. 2. We have generated the state
space for both the unfolded and the folded CPN models. By generating the state space report for
this example we obtain the statistical information in Table 1. The state space for the folded CPN
model contains exactly the same number of nodes as the unfolded CPN model, and likewise for
arcs. This gives us strong evidence to believe that the structure of the state spaces are identical.

Unfolded CPN model Folded CPN model
Nodes: 13930 Nodes: 13930
Arcs: 29595 Arcs: 29595
Secs: 301 Secs: 642
Status: Full Full

Table 1: Statistics for the state space for the TINL in Fig. 3.

We have also generated the strongly connected component graphs (SCC-graphs) for both
CPN models, and they have exactly the same number of nodes and arcs as the corresponding
state spaces. This was expected because TINLs are acyclic directed graphs, and thus the state
space of the corresponding CPN model is to be an acyclic graph.

The pairwise equivalent nodes in the two state spaces are expected to have the same number
of input and output arcs. In other words, from a given marking in either of the two CPN models,
the same number of binding elements can be concurrently enabled. We have checked that this is
the case by counting the nodes with the same number of input and output arcs {(0 input arcs, 0
output arcs), (0 input arcs, 1 output arc), ..., (n input arcs, n output arcs)}. As expected, it turned
out that we got the same numbers from both CPN models. This check gives us further reason to
believe that the statical structure of the TINL represented in the folded CPN model is correct.

5.2 Boundedness Properties

In this section we will focus on the results or markings produced by the CPN models – rather
than the structure of the state spaces. We will show that for representative examples the two
models give the same results. We will focus on the output places of the CPN models because the

49

Place Upper Bound Lower Bound
PN1’O1 3 0
PN1’O7 2 0
PN1’O8 3 0
PN1’O9 6 0

Table 2: Unfolded CPN model: integer bounds.

Place Upper Bound Lower Bound
Top’O 14 0

Table 3: Folded CPN model: integer bounds.

marking of these places are the ones showing the actual results of interest to the person simulating
the model. In addition, the markings of these places are highly correlated with the correctness
of the CPN models because the markings are based on the forward propagation of probabilities
from the initial parameters.

Integer Bounds

First we consider integer bounds. Integer bounds give information about the maximal and mini-
mal number of tokens which may be located on the individual places within the reachable mark-
ings. We can use that to check if the number of tokens in the folded and unfolded CPN models
have the same bounds.

Table 2 shows the upper and lower integer bounds for output places (Oi) of the unfolded CPN
model for our example TINL. We are able to use integer bounds only because the markings of
these places are monotonically increasing, i.e. tokens are added but no tokens are removed from
these places. From the table we see that in total there can be up to 14 (2+3+3+6) tokens on the
output places during a simulation (in our case it will be at the end of a simulation), while the
lower bounds are 0 for all output places which means that they are empty initially.

Table 3 shows the bounds for the folded CPN model. This model has only one output place
which is the folding of the four places of the unfolded CPN model. We notice that the upper
bound is 14 like the sum of the upper bounds for the unfolded CPN model. Also for this model
the lower bounds is 0. Now we know that the bounds of the output places in the two models are
the same which means that we are more confident that the two models gives the same number of
outputs when given the same input parameters.

Multi-set Bounds

We will now focus on the actual values of the tokens in the two models. The multi-set bounds
give us information about the values which the tokens may carry. By definition, the upper multi-
set bound of a place is the smallest multi-set which is larger than all reachable markings of the
place. We consider the multi-set bounds for the output places. From the upper multi-set bounds
we will be able to see which probability values may be calculated during executions of the two
models.

50

Place Best Upper Multi-set Bounds
PN1’O1 1‘(1,1,(ii ("56131")))++ 1‘(1,1,(ii ("65095")))++

1‘(1,2,(ii ("56131")))++ 1‘(1,2,(ii ("65035")))++
1‘(1,3,(ii ("65035")))

PN1’O7 1‘(7,1,(ii ("196500")))++ 1‘(7,2,(ii ("233750")))
PN1’O8 1‘(8,1,(ii ("45673"))) ++ 1‘(8,2,(ii ("51935")))++

1‘(8,3,(ii ("51935")))
PN1’O9 1‘(9,1,(ii ("294572")))++ 1‘(9,1,(ii ("300891")))++

1‘(9,2,(ii ("171766")))++ 1‘(9,2,(ii ("294572")))++
1‘(9,2,(ii ("300849")))++ 1‘(9,3,(ii ("171766")))++
1‘(9,3,(ii ("176807")))++ 1‘(9,3,(ii ("300849")))++
1‘(9,4,(ii ("171766")))++ 1‘(9,4,(ii ("176807")))++
1‘(9,4,(ii ("300849")))++ 1‘(9,5,(ii ("176807")))++
1‘(9,6,(ii ("176807")))

Table 4: Unfolded CPN model: best upper multi-set bounds.

Place Best Upper Multi-set Bounds
Top’O 1‘(1,1,(ii ("56131")))++ 1‘(1,1,(ii ("65095"))) ++

1‘(1,2,(ii ("56131")))++ 1‘(1,2,(ii ("65035"))) ++
1‘(1,3,(ii ("65035")))++
1‘(7,1,(ii ("196500")))++ 1‘(7,2,(ii ("233750")))++
1‘(8,1,(ii ("45673"))) ++ 1‘(8,2,(ii ("51935")))++
1‘(8,3,(ii ("51935"))) ++
1‘(9,1,(ii ("294572")))++ 1‘(9,1,(ii ("300891")))++
1‘(9,2,(ii ("171766")))++ 1‘(9,2,(ii ("294572")))++
1‘(9,2,(ii ("300849")))++ 1‘(9,3,(ii ("171766")))++
1‘(9,3,(ii ("176807")))++ 1‘(9,3,(ii ("300849")))++
1‘(9,4,(ii ("171766")))++ 1‘(9,4,(ii ("176807")))++
1‘(9,4,(ii ("300849")))++ 1‘(9,5,(ii ("176807")))++
1‘(9,6,(ii ("176807")))

Initial’Structure 1‘{NodeID = 2,PreSet = [],PostSet = [7]}++
1‘{NodeID = 3,PreSet = [],PostSet = [1]}++
1‘{NodeID = 4,PreSet = [],PostSet = [8]}++
1‘{NodeID = 5,PreSet = [],PostSet = [7]}

Intermediate’Structure 1‘{NodeID = 1,PreSet = [3,7],PostSet = [9]}++
1‘{NodeID = 7,PreSet = [2,5],PostSet = [8,1]}++
1‘{NodeID = 8,PreSet = [7,4],PostSet = [9]}

Terminal’Structure 1‘{NodeID = 9,PreSet = [1,8],PostSet = []}

Table 5: Folded CPN model: best upper multi-set bounds.

51

Compare Tables 4 and 5 containing the multi-set bounds for the output places in the two
models for our example TINL. Notice that e.g. the place PN1’O7 in the unfolded CPN model
contains two tokens with node id 7, sequence numbers 1 and 2, and probabilities 196500 and
233750. From the upper multi-set bounds for the place Top’O in the folded CPN model we see
that these tokens will also be present in this model. By comparing the rest of the upper multi-set
bounds we see that they are equal as well.

We have also included multi-set bounds for the places Structure in the folded CPN model
(see Fig. 8 for details). From these bounds we see that the tokens describing the structure of
the TINL are indeed as expected. This can be observed by comparing preset and postset of the
individual nodes with the structure of the corresponding unfolded CPN model in Fig. 4.

5.3 Equivalent Paths in State Spaces

In addition to checking the equivalence of the behaviour of the two models only by means of
the above mentioned techniques, we have tried to compare paths in the state spaces of the two
models. We have checked that, whenever one of the models can make a step (let a transition
occur) then the other model must also be able to make a step. This was done by exploring paths
through the state space. We considered the arcs on the path in the state space of the unfolded
CPN model. For every binding of a transition on the path in this CPN model, we checked if the
corresponding folded transition in the folded CPN model was enabled. This was indeed the case
for the paths that we followed. In addition, we checked that for every node on the path, the same
number of successor nodes existed in both CPN models. From this comparison we get even more
confident in the equivalence of the two CPN models.

However, we plan to do this more consequently than what we have done so far. We will define
a mapping Munfold from states in the folded CPN model into states in the unfolded CPN model.
This mapping should be based on the equivalence between markings in the folded and unfolded
CPN models. A similar mapping BEunfold should be defined for mapping binding elements in
the folded CPN model into binding elements in the unfolded CPN model. Then the two mappings
Munfold and BEunfold should be applied to the state space of the folded CPN model to show that
resulting state space is identical to the state space of the unfolded CPN model (modulo the extra
initialisation marking and arc in the folded CPN model).

6 Conclusion and Future Work

When using CP-nets for creating models one have to be careful to choose the right level of
folding. This paper shows that it is sometimes useful to have co-existing models with different
degrees of folding.

One CPN model with a relatively extensive net structure to be used for understanding the
model and for reference to the modelled system. This may require that the level of folding is
kept so low that a new CPN model has to be created for each instance of the problem. However,
if the model can be generated automatically as for the models presented in this paper, it may not
be a problem.

52

The second model should focus on modelling the entire class of problems. This model is
typically a folded version of the other one, which implies that the one and only model can be
used for any instance of the problem. That means that the general CPN model will typically have
relatively little net structure compared to the specific models.

A method for validating the equivalence between the folded and unfolded models has suc-
cessfully been applied to several different TINLs with different time delays. Therefore, we be-
lieve in that the behaviour of the models are equivalent. However, we have not proved or verified
that they are equivalent.

Future work will first of all focus on verification of the equivalence of the behaviour of the
models. In particular we want to get more confident that the structure of the state spaces from
the different models are equivalent. We plan to establish a formal proof to prove the equivalence
of the behaviour of the models.

We will also experiment with alternative graphical interfaces for the simulators of the CPN
models. The current web-based graphical interface is only useful for non-interactive simulations.
By being able to interact with the simulator during simulations it will be possible to access the
current state of the TINL represented by the CPN model during a simulation. This may be useful
if the simulator is integrated with the CAT-tool (using TCP/IP communication) which is used
to create the TINL. That would make it possible to display the results in the CAT-tool during
simulations.

Acknowledgements. This research was conducted at the C3I Center of George Mason Univer-
sity (GMU), VA, USA, with partial support provided by the U.S. Air Force Office for Scientific
Research under Grant No. F49620-98-1-0179. The work in this paper proposing or-gates in influ-
ence nets for information assurance is based on work done by Insub Shin, GMU. Special thanks
goes to Alexander H. Lewis and Lee W. Wagenhals, GMU, for valuable discussions and support
during the project. Finally, we also want to thank Kurt Jensen and the anonymous referees for
constructive critique and usefull suggestions on improving the paper.

References

[1] R.T. Clemen. Making Hard Decisions: An Introduction to Decision Analysis. Duxbury
Press, 1996. 2nd edition.

[2] Design/CPN, Online: http://www.daimi.au.dk/designCPN/.

[3] Shishir Gundavaram. CGI Programming on the World Wide Web. O’Reilly & Associates,
Inc., 1996.

[4] Paul G. Hoel, Sidney C. Port, and Charles J. Stone. Introduction to Probability Theory.
Houghton Mifflin, 1971.

[5] J.V. Jensen. An Introduction to Bayesian Networks. UCL Press, 1996.

53

[6] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Vol. 1, Basic Concepts. Monographs in Theoretical Computer Science. Springer-Verlag,
1997. 2nd corrected printing.

[7] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Vol. 2, Analysis Methods. Monographs in Theoretical Computer Science. Springer-Verlag,
1997. 2nd corrected printing.

[8] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Vol. 3, Practical Use. Monographs in Theoretical Computer Science. Springer-Verlag,
1997.

[9] L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to Coloured
Petri Nets. International Journal on Software Tools for Technology Transfer, 2(2):98–132,
December 1998.

[10] B. Lindstrøm. Web-Based Interfaces for Simulators of Colored Petri Net Models. To appear
in: International Journal on Software Tools for Technology Transfer, 2001.

[11] J.A. Rosen and W.L. Smith. Influence Net Modelling with Causal Strengths: an Evolu-
tionary Approach. In Proc. Command and Control Research and Technology Symposium,
pages 699–708. Naval Post Graduate School, Monterey, CA, USA, 1996.

[12] B. Schneier. Secrets and Lies: Digital Security in a Networked World. John Wiley And
Sons Ltd., 2000.

[13] L.W. Wagenhals. Course of Action Development and Evaluation using Discrete Event
System Models of Influence Nets. PhD Dissertation, GMU/C3I/SAL-212-TH. C3I Center,
George Mason University, Fairfax, VA, USA, January 2000.

[14] L.W. Wagenhals, I. Shin, and A.H. Lewis. Creating Executable Models of Influence Nets
with Colored Petri Nets. International Journal on Software Tools for Technology Transfer,
2(2):168–181, December 1998.

54

Operational Planning: A Use Case for
Coloured Petri Nets and Design/CPN

Lin Zhang
Senior Research Scientist
Systems Simulation and Assessment Group
Information Technology Division
Defence Science and Technology Organisation
PO Box 1500, Salisbury, SA 5108
Australia

Abstract

Operational planning is one of the key Command and Control (C2) functions performed by
commanders and staff in military Headquarters. Effective operational planning must take into
account of all aspects of an operational environment that is often extremely complex and
uncertain. Software tools for planning with embedded reasoning capabilities would help improve
efficiency of a planning process and facilitate effective planning and decision-making by
commanders and staff. This talk presents a case for the Coloured Petri Nets (CPN) formalism
and the Design/CPN tool to be used as a major part of a solution to the challenging problems in
operational planning.

There are two parts in this presentation. Part One reports the modelling work in support of
planning processes. It focuses on the use of coloured Petri nets in the modelling and analysis of
planning processes in operational Headquarters in order to support the development of efficient
and doctrine-based standard operating procedures (SOP). The process models developed with
Design/CPN are hierarchical. With animated interactive simulation, the models can be used in
military education and training of planning processes. State space analysis of the models is
conducted to identify critical staff resources in terms of both concurrency and resource usage.
Analytical results are also used to identify all possible flows of a process, and to observe effects
of different resource allocations.

The second part of this presentation reports the modelling work in support of planning products.
It is mainly concerned with the use of CPN and Design/CPN in conjunction with probabilistic
modelling techniques in supporting the development and analysis of military courses of action
(COA). It outlines the concept of an integrated modelling environment (InMODE) for
operational planning that is currently being developed in Australia. Design/CPN is used as part
of the reasoning engine in InMODE, contributing towards automated sequencing of tasks
determined by planners in terms of their individual attributes such as pre-conditions, effects, and
military resources. State-space analysis of the task models helps determine the feasibility of
COAs.

55

56

Efficient Data-Structures and Algorithms

for a Coloured Petri Nets Simulator

Kjeld H. Mortensen
Department of Computer Science, University of Aarhus,

Aabogade 34, DK-8200 Aarhus N, Denmark
k.h.mortensen@daimi.au.dk

Abstract

In this paper we describe how efficient data-structures and algorithms are used to dramat-
ically improve the performance of a simulator for Coloured Petri Nets compared with earlier
versions.

We have improved the simulator with respect to three areas: Firstly we have improved
the transition occurrence scheduler algorithm so that we use lazy calculation of event lists.
We only keep track of disabled transitions which we have discovered during the search for
an enabled transition, and use the locality principle for an occurring transition in order to
minimise the changes of enabling status of other transitions. Secondly we have improved the
data-structures which hold multi-sets for markings. A kind of weight-balanced trees, called
BB-trees, are used instead of lists as in the original version of the simulator. Although this
kind of trees are more difficult to maintain at run-time they are surprisingly efficient, even
for small multi-sets. Thirdly we have improved the search for enabled binding elements. We
use the first enabled binding element we find in a fair search and make it occur immediately
instead of calculating all bindings and then randomly select one. The search is guided by a
binding “recipe” which is specially generated and optimised for each individual transition.

The improved simulator is implemented in both the Design/CPN and CPN Tools software
packages, and has been used in several industrial projects.

1 Introduction

The first version of the Design/CPN [3] tool was completed in 1989. It included, among other
things, a simulation engine for Coloured Petri Nets (CP-nets or CPN). In this paper we refer to this
simulator as the old simulator. In 1994 the Design/CPN simulator was redesigned from scratch
and the results were documented in a masters thesis by Haagh and Hansen [5]. We refer to this
simulator as the new simulator. After several years of further development and implementation
the new simulator was made publicly available in early 2000 in a release of Design/CPN. In
Design/CPN the user can choose between the old and new simulator. In the meantime a new user
interface has been developed, CPN Tools [2], which exclusively uses the new simulator. It is the
intention that also the performance and state space tools eventually will use the new simulator
engine.

The old simulator was made with data-structures and algorithms which were natural to use
given the expectations of how the users would create CPN models. It was not anticipated that
users would create models with hundreds of transitions, and places containing thousands of tokens
on each. Markings of places are implemented by means of lists, and they work well for small multi-
sets. Unfortunately we experience a performance penalty when we have a place with thousands
of tokens which is frequently updated. Although the old simulator performs well for many known
models we encounter more and more models for which it does not. Apart from the problem with
large multi-sets we also see performance problems with timed simulations. The reason is that
the old simulator calculates all enabled binding elements and then selects one of them. This is

57

expensive when we need to advance the simulation clock because we recalculate enabling for all
transitions in order to find the smallest time value at which some binding element is enabled.

The new simulator project was a consequence of the increasing user demand for faster simula-
tion support. Hence, for the new simulator we designed sophisticated data-structures for markings
of places and fast algorithms for checking enabled transitions. These are the main topic of this
paper and we explain the details of such data-structures and algorithms. The description of the
design and implementation in this paper is a compact and updated version of the thesis work by
Haagh and Hansen in [5].

We use the classical view of discrete event simulation (DES) where the central component is a
scheduler with an event queue. However, instead of using a generic DES design pattern we adapt
the design directly to central properties of CP-nets, such as the locality principle. On one hand
we get a specialised design but on the other we obtain a very efficient implementation.

We have chosen not to go in depth with describing the performance experiments with various
data-structures and CPN models. This is described in detail in [5]. Although the experiments
provide the bases for deciding which data-structure performs best, we only note here that the
performance results are still valid for the present version of the simulator.

We have also chosen not to attempt to directly compare the performance of the new simulator
with the old simulator. The reason is that we believe it is very hard to construct experiments
which will produce useful performance measurements. We have indeed tested a lot of small models
and a handful of industrial models. Most of these ran faster in the new simulator, and it is just
a matter of adding more tokens to the models in order to get results more in favour of the new
simulator. One model, however, has exhibited the same performance in both the old and new
simulator [13]. In this model most places use list encoded colour sets for the old simulator in order
to avoid large markings and poor simulation performance. Hence there are only a few tokens and
many list operations while simulating. Surely the new simulator will get the advantage if this
model would have been built without a particular simulator in mind.

We assume the reader is familiar with the concepts of CP-nets from [8] and [9]. It is also an
advantage to be experienced with writing Standard ML (SML) expressions and functions, since
we show several extracts of source code from the simulator implementation. The source code has
been collected in appendices and can be skipped without loss of continuity. We refer to [6] for
more information on SML.

The paper is divided into the following sections. We use the main part of the paper to describe
the scheduler algorithm in Sect. 2, data-structures for multi-sets for place markings in Sect. 3, and
the techniques for calculating enabled bindings in Sect. 4. Each of these sections is divided into
subsections for simulation without and with time respectively. Subsequently we provide a short
survey of related work in Sect. 5, and conclude the paper with Sect. 6. Note also a number of
appendices with source code listings at the end of the paper right after the bibliography.

2 Transition Occurrence Scheduler Algorithm

The central component in a discrete event simulator is the scheduler. It selects events which
should occur (be executed) in the next step. This is also the case for our CPN simulator, where
events are transition occurrences. The scheduler we describe in the following is optimised for CP-
nets. A limitation of the scheduler is that it only supports interleaving semantics and does not
exploit concurrently occurring transitions. In practice this does not cause any further problems
but rather simplifies the implementation drastically. If we, on the other hand, should implement
true concurrency it is necessary to make a complicated calculation of a non-conflicting multi-set
of binding elements for each simulation step. In the following we separately describe the two cases
with untimed and timed CP-nets.

58

T1
(add token)

Enabled

T4

T2

T3
(remove token)

Enabled

Figure 1: CP-net sketches to illustrate dependencies.

2.1 Scheduling without Time

The locality principle of CP-nets is essential to the scheduler of the new simulator. This principle
states that an occurring transition will only affect the marking on immediate neighbour places,
and hence the enabling of a limited set of neighbour transitions. For instance, consider the CP-
nets sketched in Fig. 1. They illustrate the only two cases where transitions can change enabling
status (T 2 and T 4) when tokens are added to (T 1) respectively removed from (T 3) a place. We
assume that the places have some arbitrary marking and T 1 and T 3 are enabled. If transition T 2
is disabled it may become enabled if T 1 occurs, but if T 2 is enabled it will remain so if T 1 occurs.
If transition T 4 is enabled it may become disabled if T 3 occurs, but if T 4 is disabled it will remain
so if T 3 occurs. A dependency relation is used in the scheduler based on the locality principle.

In the following we describe how the new simulator schedules transitions for occurrence. The
main idea is to check enabling of a transition only when absolutely necessary, because it is com-
putationally relatively expensive to do so. This is the motivation for introducing a status for
transitions, which can be disabled or unknown. When initialising the scheduler all transitions are
given the status unknown, i.e., we do not know if the transitions are enabled or disabled. If we
somehow discover that a transition is disabled, it will get the status disabled. All other transitions
that we have not investigated will still have status unknown. Upon occurrence of a transition
we update the status of neighbouring transitions while taking into account the before mentioned
neighbourhood dependencies. We summarise these ideas in an algorithm given in Alg. 1.

T , set of transition instances in the given CP-net
Tdisabled ← ∅, subset of T with elements having status disabled
Tunknowns ← T , subset of T with elements having status unknown
step← 0, the simulation step counter

while Tunknowns �= ∅ do
tcandidate ← 〈〈random element from Tunknowns〉〉
status← 〈〈Try finding an enabled binding for tcandidate, make it occur

and return occurred. Otherwise return enabling status.〉〉
if status = disabled then
〈〈move tcandidate from Tunknowns to Tdisabled〉〉

else if status = occurred then
step← step + 1
Tdependents ← ({tcandidate}•)•
〈〈move Tdependents ∩ Tdisabled from Tdisabled to Tunknowns〉〉

end if
end while

Algorithm 1: CPN simulation transition occurrence scheduling algorithm.

59

Notice that in the present version of Alg. 1 there are no stop criteria built in, but it can easily
be extended for example so that the simulator will stop after a given number of steps. Another
improvement which can be considered is where we calculate Tdependents. Here we take into account
dependencies originating from double headed arcs. Actually they are not necessary and can safely
be removed from the dependency set. Finally note that we do not calculate all enabled bindings,
but rather choose the first enabled binding encountered in a fair manner. We elaborate on this
later in Sect. 4.

The scheduler in automatic simulation mode in the old simulator is different from Alg. 1. In
fact the old simulator does not even take into account the neighbourhood dependency relation of
transitions. Basically the scheduler has a list of transitions and it searches this list cyclically for
enabled transitions in a fixed order. The scheduler makes transitions occur immediately when they
are determined to be enabled. An unfortunate property of this simple algorithm is a shadowing
effect where an occurring transition higher on the list will always disable a transition lower in the
list. This is typically the case where two transitions are in conflict. Shadowing is not a problem
in the new simulator.

2.2 Scheduling with Time

Simulation with timed CP-nets is realised with a global clock (also called the model time) and
time-stamps on tokens [9]. If there are no more enabled transitions at a particular time we increase
the model time until a transition is enabled. Naively this involves calculating all colour enabled
binding elements and then finding the one resulting in the smallest model time. In the following
we describe a scheduler algorithm which is much more efficient in practice compared with the
naive solution.

The main idea is that instead of calculating exactly how much the model time should be
increased before we know that at least one transition is enabled, we only make a safe approximation.
When asking a transition to attempt to find an enabled binding it may answer that it is not enabled
at this time, and additionally propose when it may be enabled. We postpone the technical details
of exactly how the transition calculates the approximate time to Sect. 4.2. Once we know the
time proposal from all transitions we advance the model time to the smallest of these, and then
we start the search for an enabled transition again. These ideas are summarised in an algorithm
which can be found in Alg. 2.

The algorithm in Alg. 2 is an extension of Alg. 1 where we handle the extra time information.
Notice that we introduce a priority queue, Tmaybes, which holds transitions that are not enabled
now, but instead we have estimated the time at which they may be enabled. Note also that the
algorithm can both handle CP-nets with and without time, and can be simplified to Alg. 1 in case
the given CP-net has no timed elements.

3 State Representation

A marking (or state) is a multi-set of token elements, i.e., the distribution of tokens on places
at a given moment. Hence, in order to make a representation of a marking we need to have a
data-structure for multi-sets. Colour sets are types on places which determine the element type
of our multi-set data-structures. Hence our data-structures for multi-sets are also directly related
to colour sets, and we need to have efficient data-structures to hold elements of a variety of types.

In the old simulator multi-sets are represented by means of SML lists. As we discussed in the
introduction we cannot rely on lists with the increasing demand for large multi-sets from users.
In this section we present an improved data-structure with logarithmic searching time complexity
which is suitable for representing very large multi-sets.

Based on our experience with the old simulator and practical use of CP-nets for modelling
systems we give a number of general requirements for the data-structures:

• Tokens are frequently added and removed from places during simulation. Hence the data-
structure must be able to re-structure itself efficiently.

60

• We need to lookup and search for tokens on places. This means that we can only handle
colour sets where equality (=-operator) is supported. In particular for sorted data-structures
there must additionally be support for a <-operator.

• We need to support draws at random of tokens and generate random permutations from the
data-structure. This is needed for supporting fair calculation of bindings. We also need to
be able to mark individual tokens as reserved during the binding process, in order to ensure
that the same token is never used several times for any binding.

• Efficient data-structures may be complex and hence we do not wish that the user access
the internal representations directly. Instead we should provide a secondary external simple
representation for the user.

Note that the SML type real does not support equality in the SML/NJ compiler we rely on and
hence we cannot use this kind of colour set in the simulator. An alternative to real is the IntInf
type, which is an unbounded integer type which supports the standard comparison operators.

T , set of transition instances in the given CP-net
Tdisabled ← ∅, subset of T with elements having status disabled
Tunknowns ← T , subset of T with elements having status unknown
Tmaybes ← ∅, priority queue, smallest time value has highest priority
step← 0, the simulation step counter
model time← 0, the simulation model time, never decreasing

while Tunknowns �= ∅ and Tmaybes �= ∅ do
while Tunknowns �= ∅ do

tcandidate ← 〈〈random element from Tunknowns〉〉
status← 〈〈Try finding an enabled binding for tcandidate, make it occur

and return occurred. Otherwise return enabling status.〉〉
if status = disabled then
〈〈move tcandidate from Tunknowns to Tdisabled〉〉

else if status = occurred then
step← step + 1
Tdependents ← ({tcandidate}•)•
〈〈move Tdependents ∩ Tdisabled from Tdisabled to Tunknowns〉〉

else if status = maybe enabled at(time proposal) then
Tmaybes ← (time proposal, tcandidate)
〈〈remove tcandidate from Tunknowns〉〉

end if
end while

if Tmaybes �= ∅ then
model time← 〈〈time proposal of highest priority element in Tmaybes〉〉
〈〈move trans. from Tmaybes to Tunknowns with time = model time 〉〉

end if
end while

Algorithm 2: CPN simulation transition occurrence scheduling algorithm which handles models
with or without time.

3.1 Multi-Sets without Time

We first treat the more simpler case of multi-sets without time. In Sect. 3.2 we extend the data-
structure proposed in this section so that timed multi-sets also can be handled efficiently.

61

A number of standard data-structures has been investigated and empirically compared. These
comparisons can be found in [5]. A few data-structures were not even considered for implemen-
tation. Hash tables were one of these which are otherwise a popular choice for many different
applications. The biggest obstacle with these is to devise a hash function which is sufficiently
general to cover a large variety of multi-sets. Another obstacle is that allocation of each hash
table will take up a lot of memory. One solution could be to let the user specify the hash function,
but it would require advanced SML experience and hence make our tools more complicated to use.

3.1.1 Bounded Balanced Trees

In the new simulator the choice of data-structure for representing multi-sets fell on a kind of
trees called bounded balanced trees (abbreviated as BB-trees). The implementation of BB-trees
is based on work by Adams [1], Mehlhorn [12], and Nievergelt and Reingold [16]. In [5] empirical
data is provided which suggests that BB-trees has the most favourable time complexity of all the
candidate data-structures. The experiments surprisingly suggest that BB-trees are competitive
even for small multi-sets.

BB-trees are in the family of weight-balanced binary trees, which is different from the height-
balanced tree family such as splay-trees and 2-4-trees. There is the following invariant for all
subtrees in a BB-tree, BBT :

1/α ≤ |BBTl|
|BBTr| ≤ α

where BBTl and BBTr are the left and right siblings respectively, and α is called the weight ratio
(and sometimes results in the name BB[α]-trees).

A useful property of the weight-balanced tree family (in contrast to height-balanced trees)
is that they are easier to re-balance. This is important in our case because we expect that
tokens are frequently added and subtracted from multi-sets, and this suggests a lot of re-balancing
during simulation. Weight-balanced trees furthermore allows a trade-off between search time and
rebalancing time by choosing the weight ratio α. Adams [1] use α = 5 and we have adopted the
same ratio in the implementation without further consideration.

When an element has been inserted or deleted in a BB-tree, the tree may be out of balance, i.e.,
the above mentioned invariant is temporarily broken. The invariant is reestablished immediately
by means of rotations of nodes, so that larger subtrees are positioned higher in the tree than
smaller subtrees. Two kinds of rotations are used, namely single rotations and double rotations.
These are illustrated in Fig. 2. It is important to note that a rotation preserves the order of the
elements.

Functional languages, such as SML as we use here, make very elegant implementations of
trees such as BB-trees. Extracts of the source code from the new simulator can be viewed in
Appendix A.

3.1.2 Special Structures for Small Colour Sets

Small colour sets with only a few different elements can be treated as special cases with very
efficient data-structures. Colour sets such as unit and bool are represented with special data-
structures. In these cases we can do with an integer counter for each colour in the multi-set.
For unit we only need one counter and two for bool. Hence searching is reduced to comparison
of integers, and removal of elements is reduced to integer subtraction (similar for addition of
elements).

This reduction is welcome because both unit and bool are colour sets which are used relatively
often in practice. It results in even faster simulations and less usage of run-time memory.

3.2 Multi-Sets with Time

Representation of multi-sets and markings on places with timed colour sets requires that we handle
time-stamps on tokens. We discuss this issue in the following.

62

1

1

A

A

B

3

C

2

2

1

2

A

1

Double rotation

BA

3

C

2

B

B

C

D C D

Single rotation

Figure 2: Rotation of nodes in BB-trees. Circles represent elements and triangles represent sub-
trees.

The first observation to make for timed CP-nets is that a state at a given moment is a marking
together with the model time. Tokens with time-stamps greater than the model time cannot
participate in the calculation of enabled binding elements. They are in some sense hidden from
the simulator and waiting in a queue. When we need to estimate at what time a transition can
be enabled we need to find tokens with the smallest time-stamp (see details in Sect. 4.2). This
suggests that we need an additional data-structure which can hold the tokens with time-stamps
greater than the model time. A priority queue is a useful structure for this case because we can
lookup the element with the highest priority (lowest time-stamp) in constant time. Tokens held
in the priority queue are called waiting tokens.

Tokens with time-stamps less than or equal to the model time are called ready tokens. For
these we simply use the BB-tree representation from before. Note that we are only interested in
the ready tokens when we search for an enabled binding, and hence can ignore waiting tokens in
this case.

In summary the marking of a timed place is, in the new simulator, represented by two data-
structures. One for ready tokens (BB-trees) and one for waiting tokens (priority queue). When
model time progresses, we move tokens from the waiting structure to the ready structure, so that
only tokens with time-stamps greater than the model time is left in waiting.

As a new feature (i.e., not present in the old simulator) we can also handle non-zero time-
stamps on input arc expressions. Consider the example in Fig. 3. For instance, if time exp is a
positive value, we need to move more tokens from waiting to ready of the place. We in some sense
look into the future of the marking of the place. This is simple and efficient to implement in the
case where time exp is a constant, because we only need to add the model time and time exp, and
then move tokens from waiting in the usual fashion. If a place has more output arcs with non-zero
constant time-stamps we simply use the largest value for reasons of efficiency and simplicity. This
is a safe approximation to make and the implementation is not further complicated because the
binding algorithm already takes into account the time-stamps of tokens. In the general case where

63

time exp is not constant we have not yet found an efficient implementation. This is left to future
work.

CS
1‘exp @+ time_exp

Figure 3: CP-net where the arc has an expression with a time-stamp.

4 Calculation of Enabled Transition Bindings

In this section we describe how the new simulator finds enabled binding elements. In Sect. 2 we
described that the simulator is using interleaving semantics. This simplifies the implementation
because we then know that at most one transition at any moment will access the data-structures
of the places.

The implementation of the binding calculation is directed by a number of design criteria which
are listed in the following:

• The first enabled binding we find will immediately be used for occurrence. For this to work
we also need to ensure that the search algorithm is, in some sense, fair so that every enabled
binding has a non-zero probability of being used.

• Variables in arc expressions and guard of a transition are grouped so that variables in different
groups can be bound independently. For instance, two variables in the same arc expression
are dependent with respect to binding and therefore grouped. Taking the transitive closure
of this dependency relation induces independent groups of variables which, as we explain
later, may result in significantly fewer binding combinations to search for.

• Instead of making a single general binding algorithm which can handle all kinds of tran-
sitions during simulation, we generate an individually optimised binding recipe (procedure
for binding variables) for each transition. As an additional optimisation we only generate
a binding recipe for each of the groups mentioned above which reduces the complexity of
optimising recipes.

In the following we elaborate on the criteria above, and also divide the description into two sections
which cover the case without and with time respectively.

[v4=v2]p1

p2

p4

p6

p3

p5
1‘7

1‘v1
1‘(v1,v2)

1‘v1++1‘v2

1‘v2

1‘f(v3,v4)

Figure 4: CP-net with different expression classes.

64

4.1 Binding Calculation without Time

The central task of the binding calculation is to bind each variable of a transition to a value.
Our approach is to make a dependency analysis of expressions and variables for a transition,
and then generate a sequence of binding operators which constitute a recipe (or procedure) for
making a complete binding. The goal is that we, for each transition, can take such a sequence and
automatically translate (compile) it into SML source code. This is a very powerful approach and
permits us to make optimisations analogous to those used in compilers.

4.1.1 Binding Language

The analysis of arc and guard expressions induces a classification. The classification is dependent
on the expression language used, which in this case is SML. Consider a number of different expres-
sion classes of Fig. 4. Each class requires a different technique for binding variables. We identify
these based on the mentioned example:

• On the arc from the place p1 there is a constant value expression. In this case we only need
to check that the value exists on p1.

• The expressions on the arcs from p2, p3, and p4 are all SML patterns. The variables can be
bound by pattern matching with a random token from the place markings.

• With the expression on the arc from p4 we could alternatively already have bound one of
the variables, say v1, by means of another expression. In this case we need to bind v2 by
looking up tokens by means of the known value of v1. This is also called key-lookup.

• On the arc from p5 there is a function f with two variables as argument. In this case we
must bind the two variables and subsequently test if the token f(v3, v4) exists on the place.

• On the arc from place p6 we have an expression which is dividable in the sense that we can
split the arc into two, one for each addend.

• The guard can be used to bind either v4 or v2 if one of them is already bound. If both
variables are bound we can use the guard to test if the binding is enabled.

We can use the above observations to identify six different binding operators, which are sum-
marised in Table 1. These are the binding operators we use in the new simulator in order to create
recipes for binding transitions.

Operator Purpose
BP pat Bind variables in the pattern pat by choosing a random token on

the place.
BK pat Bind a subset of variables in the pattern pat with key-lookup

by means of the values of the already bound variables.
BC pat Bind a subset of variables in the pattern pat in case they are of a

small colour set (unit, bool, enumeration, index, and subsets),
simply by an exhaustive search through all values of the colour set.

TA exp Assuming that all variables in the expression exp are bound, we test
if the value of exp exists on the place.

BG pat = exp In the guard: Bind variables in pattern pat by means of the
expression exp.

TG exp In the guard: Assuming that all variables in the expression exp
are bound, we test if the guard is true for the given binding.

Table 1: Binding operators and their purpose.

65

Table 1 does actually cover all kinds of expressions we use, however this is not so obvious
from the table. We have included two figures which makes this more clear. The figures illustrate
the decision trees we use in order to determine the appropriate binding operation for a given
expression. Figure 5 depicts the decision tree for all arc expression classes while Fig. 6 depicts
the decision tree for all guard expression classes. In the next section we describe how to create
sequences of operators in order to make a complete binding recipe.

4.1.2 Binding Operator Sequence

For a given transition we can usually construct several sequences of binding operators which
completely binds all variables. Some sequences are more efficient than others. In this section we
describe how we can identify an efficient binding sequence. It is, however, an open question how
to find the optimal sequence.

Syntax error

Small CS?

SML pattern?

All variables bound?

B

no

no

no

no yes

yes

C

n

A

(bind. op ; ...; bind. op ; T)1 A

"exp ++...++exp "?1 n

T

Some variables bound?

B B

yes

yes

yes

no

KP

Figure 5: Decision tree for the class of arc expressions. Given an expression we answer the
questions in order to find the appropriate binding operator.

All variables bound?

no

no

no

"pat = exp"?

Small CS?

Syntax error

G

yes

yes

yes

T

B

B

G

C

Figure 6: Decision tree for the class of guard expressions. Given an expression we answer the
questions in order to find the appropriate binding operator.

The idea is to make a heuristic based on our experience with binding operators which are more
successful than others. We can control this by assigning a weight to each binding operator and
then consider the binding sequence problem as an optimisation problem. The problem is then
reduced to finding the binding sequence which has the lowest sum of weights. The weights we
have good experience with so far are as follows (a weight of 1000 is not meant to be exactly a
thousand times worse than a weight of 1 but rather suggests that we wish to emphasise that BC

usually should appear last in a binding sequence):

66

Operator Weight
BP pat 100
BK pat 20
BC pat 1000
TA exp 10
BG pat = exp 1
TG exp 2

For finding all the binding sequences we are interested in we surprisingly discovered that 1-safe
P/T Nets [15] can be applied. The P/T Net is constructed as follows:

• For each input arc and guard expression we have a marked place, and for each variable we
have an empty place in the P/T Net. A marked expression place means that the expression
has not been used yet for binding, and a marked variable place means that the variable has
been bound.

• We add a transition for each combination of binding operators, patterns, and expressions,
and then make arcs to/from the relevant places if the occurrence of the transition results in
an expression being used or a variable being bound.

Based on the resulting P/T Net we construct its full state space. We can then extract all
possible binding sequences by selecting those paths in the state space which starts in the initial
marking (no expressions used and no variables bound), and ends in a state where all variables are
bound and all expressions used.

We provide an example on how to find the binding sequence with the smallest weight in the
next section after we have described variable groups.

4.1.3 Variable Groups

We can use variable groups in order to split a binding sequence into independent sequences so
that we can reduce the binding search space significantly. We make a relation between variables
so that groups of variables can be bound independently. Assume that we have two independent
variables, v1 and v2. Without grouping we need, in general, to check all possible values for v2, for
each possible value of v1. This means we need to check |v1||v2|1 combinations in the worst case.
If we can bind the two variables independently of each other we simply just bind, say, v1 first and
then v2. In this case we only need to check |v1|+ |v2| combinations in the worst case. We explain
the variable grouping relation in the following.

The main idea of the relation between variables is to let two variables be in relation if they
appear in the same expression. Making the transitive closure of the relation (taking into account
relations across different expressions) results in an equivalence relation which partitions the set of
variables. An equivalence class of variables induces a group of expressions where these variables
occur. Each group of expressions can be bound independently by a binding sequence. Hence
we apply the binding sequence construction method described in Sect. 4.1.2 on each group of
expressions.

Consider the example in Fig. 7. We observe that the transition of the CPN model has two
variable groups, namely {x1, y1} and {x2, y2, z2}. The example in the figure considers the former
group, and hence the P/T Net and state space depicted in the figure is for this group. From
the state space we can see that two binding sequences are possible: One with weight 110 and
the other with weight 120. Since we search for the binding sequence with the lowest weight we
choose binding sequence 1 for the transition. This is also the choice we would have made should
we construct the binding sequence manually.

Notice that without variable groups in the example of Fig. 7 we would, in the worst case,
need to search through all binding combinations for x1, y1, x2, y2, and z2, and for each check

1By |variable| we here mean the size of the domain of variable, i.e., the number of different values that variable
can be bound to.

67

if the binding is enabled. In this case we need to search through 25 = 32 bindings. If we take
into account the variable groups we should only check 22 + 23 = 12 combinations, and with the
resulting binding sequence we only need to search 22 + 22 = 8 combinations. Imagine that the
colour set B instead was integers from 1 to 1000. This would result in a combinatorial explosion
when searching for bindings without variable groups and binding sequences.

We use binding sequences to automatically generate an implementation of the binding function
of each transition. In Appendix B we have extracted some of the code generated for the example
from Fig. 7.

color B = bool;
var x1,y1,x2,y2,z2: B;
color BxB = product B * B;

B B

BxB BxB

[y2=z2]

var
x1

var
y1

exp
x1

exp
(x1,y1)

Bp x1 Ta x1 Ta (x1,y1)Bp (x1,y1) Bk (X1,y1)

Bp x1 Bp (x1,y1)

Ta x1Bk (x1,y1)

CPN model:

1-safe P/T Net for variable group {x1,y1}:

State space of P/T Net: Binding sequences and weights:

Binding seq. 1: Bp (x1,y1); Ta x1

Binding seq. 2: Bp x1; Bk (x1,y1)

Weight: 110

Weight: 120

x1

(x1,y1) (x2,y2)

z2

Figure 7: CPN model, the P/T-net for determining binding sequences, the state space, and the
resulting sequences with weights.

68

4.2 Binding Calculation with Time

Binding variables for timed CP-nets is just as binding variables for CP-nets without time. The
only difference is when we cannot find a binding. In this case we need to calculate a time value
at which the transition may be enabled. This time value is needed by the scheduler algorithm as
explained in Sect. 2.

If we wish to calculate the exact time value at which the transition is enabled we need in the
worst case to calculate all bindings in order to find the combination of tokens and time-stamps
which results in the smallest increase of the model time. This is contradicting one of our design
goals for the binding algorithm that we only wish to use the first enabled binding we discover and
then make it occur in the next step.

Instead we present an approximation for solving this problem. Observe that we can make a
guess at the model time at which a transition is enabled without causing any harm, as long as it
is smaller than the actual time at which it really is enabled. Recall from Sect. 3.2 that each timed
place has a structure with waiting tokens with time-stamps greater than the model time. Consider
a transition and lookup the token in the waiting structure on each input place which has the lowest
time-stamp (highest priority). As we described earlier, this can be done in constant time for each
place. We then find the lowest time-stamp among the set of time-stamps just found, and use this
value as an approximation for the next model time at which the transition is potentially enabled.
In Sect. 2.2 we explained how this approximation value is used in the scheduler.

In the old simulator all enabled binding elements are calculated in order to determine accu-
rately the smallest value of the model time at which there is an enabled transition. This can
for some CP-nets be rather time consuming, while for the new simulator we only make a fast
approximation based on token time-stamps on input places. Hence the new simulation scheduler
is a big improvement for timed CP-nets.

5 Related Approaches

In this section we make a short survey of related work. There are several papers on simulation
data-structures and algorithms for various kinds of high-level Petri Nets. Mäkelä made recently a
query on the PetriNets Mailing List [17] which resulted in several references. We discuss some of
these in the following.

Mäkelä [11] calculates enabled binding elements by means of a unification technique. The
kind of Petri Nets used is Algebraic System Nets which have similar challenges when searching
for enabled bindings as with the case of CP-nets. Unification is in some sense a more systematic
approach than ours which is based on heuristics on finding optimised binding operator sequences.

Sanders [19] views the problem of finding enabled binding elements as a constraint satisfaction
problem. The kind of Petri Nets used is CP-nets, but expressions on input arcs are unfolded
to elementary multi-set expressions on the form n‘exp. This is not possible for arbitrary SML
functions. In our tools we permit arbitrary SML functions as arc expressions We think that the
required unfolding to elementary multi-set expressions is too restrictive for practical purposes.

Gaeta [4] has studied algorithms for Stochastic Well-Formed Nets. Among other techniques,
he uses a heuristics for determining if a transition is disabled. Tokens are counted on input places
and compared with the number of tokens removed from input arcs. The transition is certainly
disabled if there are not a sufficient amount of tokens on the place compared with the number of
tokens to be removed via the arc. We have developed the same technique, and we find it to be a
very efficient technique with a simple implementation.

Ilie et al. [7] use, among other things, caching techniques on enabled binding elements for
simulating Well-Formed Nets. We do not use any caching techniques in our work, although the
technique could be used with CP-nets. We do not use caching now but have considered to do
it. The drawback with caching is that it is very difficult to implement without compromising fair
choice of bindings.

Reinke [18] translates CP-nets to the functional programming language called Haskell. How-

69

ever, there is no focus on optimised algorithms and data-structures but rather a demonstration of
Haskell used as both an inscription language and a language for simulator implementation. We
use SML for the same purpose. Kummer et al. [10] use Java both for inscriptions and simulator
implementation.

6 Conclusion

This work demonstrates that the application of sophisticated data-structures for place markings
and algorithms for transition binding and scheduling have significantly improved the performance
of our CPN simulation tools. We have implemented and released the simulator together with
Design/CPN and CPN Tools.

The simulator has been applied successfully in an industrial project. It is a project accom-
plished together a Danish security company, Dalcotech, where we have used Design/CPN with the
new simulator to automatically generate an implementation of an access control system based on
the CPN model of the system [14]. In the project it was a great advantage to use a fast running
simulator because the automatically generated implementation was required to run on hardware
with limited processor power.

Future Work

An ongoing project is a re-design project similar to the one described in this paper. A new state
space tool is being designed where we expect that sophisticated algorithms and data-structures will
result in significant performance improvements. The state space tool will use the new simulator
and even get a new interface when we build it into the CPN Tools software package.

We are also working on improving the syntax check and simulation interface for the new sim-
ulator in the CPN Tools software package. In particular we are currently working on incremental
syntax checking of models. The idea is that syntax checking should be transparent to the user so
that the tool in principle always is ready to simulate immediately after the user has made changes
to a CPN model. Incremental syntax checking has already been used in CPN Tools by students
in a course where CPN Tools is used, and it is clear that the immediate feedback when editing a
model is important for their success as novices.

References

[1] S. Adams. Functional Pearls, Efficient Sets — A Balancing Act. Journal of Functional
Programming, 3(4):553–561, 1992.

[2] M. Beaudouin-Lafon, W.E. Mackay, M. Jensen, P. Andersen, P. Janecek, M. Lassen, K. Lund,
K. Mortensen, S. Munck, A. Ratzer, K. Ravn, S. Christensen, and K. Jensen. CPN/Tools:
A Post-WIMP Interface for Editing and Simulating Coloured Petri Nets. In M. Koutny
and J.-M. Colom, editors, 22nd International Conference on Application and Theory of Petri
Nets, Lecture Notes in Computer Science, Newcastle upon Tyne, United Kingdom, June 2001.
Springer-Verlag. To appear.

[3] Design/CPN Online. WWW Site. URL: www.daimi.au.dk/designCPN.

[4] R. Gaeta. Efficient Discrete-Event Simulation of Colored Petri Nets. IEEE Transactions on
Software Engineering, 22(9):629–639, September 1996.

[5] T.B. Haagh and T.R. Hansen. Optimising a Coloured Petri Net Simulator. Mas-
ter’s thesis, University of Aarhus, Department of Computer Science, Denmark, 1994.
www.daimi.au.dk/CPnets/publ/thesis/HanHaa1994.pdf.

[6] M.R. Hansen and H. Rischel. Introduction to Programming Using SML. Addison-Wesley,
1999.

70

[7] J.-M. Ilié and O. Rojas. On Well-formed Nets and Optimizations in Enabling Tests. In M.A.
Marsan, editor, 14th International Conference Application and Theory of Petri Nets, volume
691 of Lecture Notes in Computer Science, pages 300–318, Chicago, Illinois, USA, June 1993.
Springer-Verlag.

[8] K. Jensen. Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical Use.
Volume 1, Basic Concepts. Monographs in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, 1992.

[9] K. Jensen. Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical Use.
Volume 2, Analysis Methods. Monographs in Theoretical Computer Science. Springer-Verlag,
1994.

[10] O. Kummer. Simulating Synchronous Channels and Net Instances. In J. Desel, P. Kem-
per, E. Kindler, and A. Oberweis, editors, Forschungsbericht: 5. Workshop Algorithmen und
Werkzeuge für Petrinetze, pages 73–78. Universität Dortmund, Fachbereich Informatik, 1998.
Published as Forschungsbericht: 5. Workshop Algorithmen und Werkzeuge für Petrinetze,
number 694.

[11] M. Mäkelä. Optimising Enabling Tests and Unfoldings of Algebraic System Nets. In
M. Koutny and J.-M. Colom, editors, 22nd International Conference on Application and
Theory of Petri Nets, Lecture Notes in Computer Science, Newcastle upon Tyne, United
Kingdom, June 2001. Springer-Verlag. To appear.

[12] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 1984.

[13] K. H. Mortensen, S. Christensen, L.M. Kristensen, and J.S. Thomasen. Capacity Planning
of Web Servers using Timed Hierarchical Coloured Petri Nets. In HP Openview University
Association (HP-OVUA’99) 6th Plenary Workshop, Bologna, Italy, 1999.

[14] K.H. Mortensen. Automatic Code Generation Method Based on Coloured Petri Net Models
Applied on an Access Control System. In M. Nielsen and D. Simpson, editors, 21st Interna-
tional Conference on Application and Theory of Petri Nets, volume 1825 of Lecture Notes in
Computer Science, pages 367–386, Aarhus, Denmark, June 2000. Springer-Verlag.

[15] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77(4):541–580, 1989.

[16] J. Nievergelt and E.M. Reingold. Binary Search Tree of Bounded Balance. Siam Journal of
Computing, 2:33–43, 1973.

[17] Petri Nets World. WWW Site. URL: www.daimi.au.dk/PetriNets.

[18] C. Reinke. Haskell-Coloured Petri Nets. In Implementation of Functional Languages, 11th
International Workshop, IFL’99, volume 1868 of Lecture Notes in Computer Science, pages
165–180, Lochem, The Netherlands, September 1999. Springer-Verlag.

[19] M.J. Sanders. Efficient Computation of Enabled Transition Bindings in High-Level Petri Nets.
In Proceedings of the 2000 IEEE International Conference on Systems, Man and Cybernetics,
pages 3153–3158, Nashville, TN, USA, October 2000.

A SML Listing for Multi-Set Data-Structures

In the following we list some SML fragments which presents a basic implementation of multi-sets
with BB-trees. The background for the implementation can be found in Sect. 3. The listings have
been edited for presentation purposes. Code has been left out in locations where “. . .” is used.

First we declare a recursive BB-tree data-type, and a useful function for creating new nodes:

71

datatype ’a tree = TreeNil
| TreeNode of {value: ’a , size : int ,

left : ’ a tree , right : ’ a tree}
fun new(v,l,r) = TreeNode{value= v, size= 1+(size l)+(size r),

left = l , right= r}
Single and double clockwise rotation has simple functions. Similarly for counterclockwise rotation
(not listed here):

fun single rotate cw
(y, TreeNode{value=x,left=s1,right=s2,...}, s3)

= new(x, s1, new(y,s2,s3))

fun double rotate cw
(z , TreeNode{value=x,

left =s1,
right=TreeNode{value=y,left=s2,right=s3,...},
...},

s4)
= new(y, new(x,s1,s2), new(z,s3,s4))

While inserting or deleting elements in the BB-tree we may find that the tree is out of balance
and we then call one of the above rotation functions. The value ratio is the weight ratio α as we
described in Sect. 3.1.1.

fun balance (p as (v, l , r)) =
let

val ln = size l
val rn = size r

in
if ln+rn < 2 then
new p

else if rn > ratio ∗ ln then
let

val (rl , rr) = sons r
in

if size rl < size rr
then single rotate ccw p
else double rotate ccw p

end
else if ln > ratio ∗ rn then

let
val (ll , lr) = sons l

in
if size lr < size ll
then single rotate cw p
else double rotate cw p
end

else
new p

end

The balance function is called immediately after each addition or deletion of an element in the
tree.

B SML Source Code for a Small Example Model

The following source code listing is the simulation code automatically generated for the example
model in Fig. 7. The idea is to give the reader an impression of the structure of the automatically

72

generated code. The listing has been edited for presentation purposes. Code has been left out in
locations where “. . .” is used. We have also added extra comments with the usual SML notation
“(* ... *)”.

(∗ colour set B = bool ∗)
structure B = CPN’ColorSets.BoolCS (val arg= NONE);
type B = B.cs;
(∗ BB−tree for B ∗)

5 structure CPN’B pims1 = CPN’BoolPIMS(structure cs = B);

(∗ colour set BxB = product B ∗ B ∗)
type BxB = {1:B,2:B}
structure BxB = struct

10 type cs = BxB
...

end;
(∗ BB−tree for BxB ∗)
structure CPN’BxB pims21 =

15 CPN’MakeTreeListPIMS(structure cs = BxB;
val cmp:BxB ∗ BxB −> order = ...);

(∗ Places and initial markings ∗)
structure CPN’place4 =

20 CPN’Place.MakePlace (structure ims = CPN’BxB pims21; val no of inst = 1);
val = (CPN’place4.init mark:= ([]);

CPN’Place.init mark funs::= CPN’place4.set init mark;
CPN’place4.set init mark());

...
25

(∗ The transition ∗)
fun CPN’transition8 (CPN’mode,CPN’inst) =
let
val CPN’id = ”8”

30 (∗ Storage for binding of group {x2,y2,z2} ∗)
val CPN’bh1 = ref(nil: {z2: B,y2: B,x2: B} list)
(∗ Storage for binding of group {x1,y1} ∗)
val CPN’bh2 = ref(nil: {y1: B,x1: B} list)
(∗ First check if there are enough tokens on the input places ∗)

35 val (CPN’enough tokens, CPN’answer) =
(CPN’Sim.each place
(1 <= CPN’place6.init(CPN’inst),
CPN’Sim.each place(1 <= CPN’place7.init(CPN’inst),

CPN’Sim.each place(1 <= CPN’place4.init(CPN’inst),
40 (true,CPN’Sim.is disabled)))))

(∗ Function for searching for an enabled binding ∗)
fun CPN’bindfun () =
let

45 fun CPN’bf3() = ()
fun CPN’bf2() =
let (∗ B p (x1,y1) binding operator ∗)
val = CPN’BxB pims21.init res(CPN’place6.mark CPN’inst)
fun CPN’bf() =

50 let
(∗ Pick random token from place ∗)
val (x1,y1) =

CPN’BxB pims21.random res BindFatalFailure
(CPN’place6.mark CPN’inst)

55 in

73

((∗ T a x1 ∗)
(if CPN’B pims1.member (!(CPN’place7.mark CPN’inst),x1) then

(CPN’bh2::= {y1=y1,x1=x1}; (∗ binding found ∗)
CPN’bf3())

60 else raise BindFailure
) handle BindFailure => CPN’bf()

)
end handle Bind => CPN’bf()

in
65 CPN’bf()

end
fun CPN’bf1() =
let (∗ B p (x2,y2) binding operator ∗)
val = CPN’BxB pims21.init res(CPN’place4.mark CPN’inst)

70 fun CPN’bf() =
let
(∗ Pick random token from place ∗)
val (x2,y2) =

CPN’BxB pims21.random res BindFatalFailure
75 (CPN’place4.mark CPN’inst)

in
((∗ B g z2=y2 binding operator ∗)
(let

val z2 = y2
80 in

(CPN’bh1::= {z2=z2,y2=y2,x2=x2}; (∗ binding found ∗)
CPN’bf2())

end handle Bind => raise BindFailure
) handle BindFailure => CPN’bf())

85 end handle Bind => CPN’bf()
in
CPN’bf()

end
in

90 CPN’bf1()
end

(∗ Function for making an enabled binding occur ∗)
fun CPN’occfun ({z2,y2,x2},{y1,x1}) =

95 let
(∗ Remove tokens from input places ∗)
val = (CPN’BxB pims21.delete(CPN’place6.mark CPN’inst,(x1,y1));

CPN’B pims1.delete(CPN’place7.mark CPN’inst,x1);
CPN’BxB pims21.delete(CPN’place4.mark CPN’inst,(x2,y2)));

100 (∗ Add tokens to output places ∗)
val = (CPN’B pims1.insert(CPN’place5.mark CPN’inst,z2));

in
(CPN’Sim.is executed,
...)

105 end

in (∗ CPN’transition8 ∗)
if CPN’enough tokens then
(CPN’bindfun();

110 CPN’occfun (CPN’hd(!CPN’bh1),CPN’hd(!CPN’bh2))
) handle BindFatalFailure => (CPN’answer,nil)

else (CPN’answer,nil)
end

74

Comms/CPN: A Communication Infrastructure for External

Communication with Design/CPN

Guy Gallasch and Lars Michael Kristensen

Computer Systems Engineering Centre

School of Electrical and Information Engineering

University of South Australia

Mawson Lakes Campus, SA 5095, AUSTRALIA

Email: fgalgy002@students.unisa.edu.au,lars.kristensen@unisa.edu.aug

Abstract. In this paper the development of Comms/CPN is presented. Comms/CPN is a

Standard ML library that augments Design/CPN with the necessary infrastructure to estab-

lish communication between CPN models and external processes. Comms/CPN is potentially

bene�cial in a number of areas such as allowing external visualisations of simulations, providing

CPN models with their own Graphical User Interface, and allowing CPN models to interact with

the physical environment. Comms/CPN has been successfully applied for providing external vi-

sualisation of the simulation of a CPN model within the area of avionics mission systems.

1 Introduction

Coloured Petri Nets (CPNs) [11,13], when constructed and simulated using the Design/CPN

tool [21], are restricted in their ability to interact with external processes. Extending the

Design/CPN tool by providing a communication infrastructure allows communication to

be established between CPN models and external processes. The Comms/CPN library [6]

presented in this paper has been developed to extend Design/CPN with such external com-

munication facilities.

The motivation behind developing external communication facilities comes from the desire

to visualise the simulation of CPN models. As demonstrated in [2, 23], it is often bene�cial

to extend CPN models with application speci�c graphics. The behavior of the system under

consideration can be visualised using di�erent kinds of graphical feedback. This provides a

view of system behavior useful for system developers and analysts, and can also be useful

for conveying knowledge and results about CPN models to people not familiar with CPN

modelling and analysis.

Currently, Design/CPN provides visualisation capabilities in two forms. The �rst is the

token game which displays the simulation of a CPN model in a very detailed fashion. The

second is by using high-level application speci�c graphics that can be added on top of a CPN

model. Mimic/CPN [1] and the Message Sequence Chart library [18] provide such high-

level graphics. However these methods are not always satisfactory. The token game is often

too detailed, and the application speci�c graphics are sometimes limited in capability and

capacity, and are tied to the Graphical User Interface (GUI) of Design/CPN. It is therefore

of interest to conduct visualisation using an external application. External applications can

be developed with greater graphical capabilities than those of Design/CPN, and there is the

potential to execute the external application on a remote machine.

The Comms/CPN library has been developed to allow communication between De-

sign/CPN and external processes via TCP/IP [4]. The main bene�ts that the Comms/CPN

infrastructure will provide in the context of visualisation are:

75

{ The infrastructure makes it possible to visualise the behavior of CPN models and control

their simulation independently of the Design/CPN GUI.

{ The infrastructure provides
exibility, since other graphical libraries and packages are

likely to provide better support for visualisation than Design/CPN.

{ The infrastructure makes it possible to do the visualisation on remote machines provided

they support TCP/IP communication.

It should be stressed that Comms/CPN is not limited to use in external visualisation.

Comms/CPN has the potential to be bene�cial in many other areas. As an example, it could

be used to provide CPN models with their own GUI. The Design/CPN simulator is built

on the Standard ML (SML) [20,27] compiler and Comms/CPN is also implemented in SML.

This means that the Design/CPN GUI could be separated from the simulator, and a GUI

speci�c to the CPN model could be used instead. An example where this may be useful is when

applying CPN models in decision making processes, as shown in [15]. Using Comms/CPN,

it is also conceivable that CPN models could interact with the physical environment. Exam-

ples include temperature and light sensors, keypads, and displays (although such experiments

have not yet been conducted). Situations may also arise where computationally expensive al-

gorithms and procedures are needed withinDesign/CPN. With Comms/CPN, these can be

implemented and executed on remote machines, and the results can be sent back to the CPN

model. An example of this can be found in [17] where the condensed state space tool of De-

sign/CPN [12] relied on the GAP programming enviroment [7] for eÆcient manipulation of

algebraic groups. More generally, Comms/CPN makes it possible to integrate Design/CPN

and external applications via TCP/IP.

Comms/CPN was developed as a Practical Industrial Experience project in Computer

Systems Engineering at the University of South Australia. The development is part of a re-

search project being undertaken by the Air Operations Division (AOD) within the Australian

Defence Science and Technology Organisation (DSTO) [24] and the Computer Systems Engi-

neering Centre (CSEC) [3] at the University of South Australia. It involves the modelling and

analysis of Avionics Mission Systems (AMS) for testing and evaluation. Part of this research

involves providing visualisation of the simulation of CPN models by extending them with ap-

plication speci�c graphics. The external communication facilities provided by Comms/CPN

allow this visualisation to take place using an external visualisation package. The external

visualisation package itself is currently in the process of being developed, but a prototype

demonstrating a proof-of-concept exists.

The development of Comms/CPN is based upon previous work, in particular the Mas-

ter's thesis [19]. The work done in [19] however has some drawbacks as it was primarily

an encapsulation of TCP/IP. Only one connection could be opened, and this connection is

made to a location �xed at compile time, i.e. it could not be changed without re-switching

the CPN model. Comms/CPN extends the work presented in [19] in several ways. Firstly,

Comms/CPN allows dynamic creation of connections (also during the simulation of a CPN

model), the external process to which connections are being made is not �xed, and multiple

simultaneous connections are supported. Secondly, Comms/CPN implements a protocol on

top of TCP/IP for passing messages between Design/CPN and the external application.

It is planned to make Comms/CPN available for public use via the Design/CPN home

page [21].

This paper is organised as follows. Section 2 provides a description of the design and

requirements of the Comms/CPN library. Section 3 describes the implementation of the

76

Comms/CPN library. An example of the use of Comms/CPN for visualisation of the sim-

ulation of an AMS CPN model is presented in Section 4. Section 5 sums up the conclusions

and outlines future work in further developing Comms/CPN. The reader is assumed to be

familiar with CPN models and the Design/CPN tool.

2 Design Overview and Requirements

Comms/CPN is designed to act as an interface between CPN models and TCP/IP. Figure 1

shows the overall architecture of Comms/CPN and how it relates to Design/CPN and

TCP/IP. Comms/CPN consists of three main modules, organised as layers. The Communi-

cation Layer contains the interface to the underlying transport protocol, in this case TCP/IP,

and contains all TCP/IP and socket related primitive functions. The Messaging Layer is re-

sponsible for transforming the reliable byte stream service provided by the transport layer

into a service suitable for passing messages between Design/CPN and external applications.

The Connection Management Layer allows users to open, close, send to, and receive from

multiple connections. The Connection Management Layer is the layer that the CPN model

will normally interface to. When relating this to the Open Systems Interconnectivity (OSI)

model [26], Comms/CPN can be viewed as the session layer. The Communication Layer

provides an interface to TCP/IP, the transport layer of the OSI model. The Connection

Management Layer provides an interface to Design/CPN, the presentation layer.

CPN Model

Comms/CPN

Communication Layer

Messaging Layer

Connection Management Layer

TCP/IP

Fig. 1. Overall Architecture of Comms/CPN.

The design of all three layers has been based on �ve functional requirements representing

the services expected of the library. They are that Comms/CPN shall provide means for CPN

models to open connections to external processes, accept incoming connections requested by

external processes, send data to external processes, receive data from external processes, and

close connections to external processes. Comms/CPN has been designed as an SML library

to re
ect the non-functional requirements of allowing easy integration with the Design/CPN

tool, and so that the communication facilities are separate from the Design/CPN GUI. This

allows the communication facilities to be accessed using library functions that can be included

in code segments of transitions, auxiliary boxes, or in the top loop of the Design/CPN

simulator.

77

During the design and requirements processes of this architecture, three key design is-

sues were identi�ed. These are the Fundamental Method of Communication, Connections and

Connection Management, and Data Transfer. The design and requirements re
ect a desire to

make Comms/CPN applicable to the widest range of applications possible. In the following

subsections we discuss each of these design issues in detail.

2.1 Fundamental Method of Communication

The design decision was made for the underlying communication protocol to be TCP/IP.

This comes from the requirement that data transmissions must be error free and in-order,

and TCP/IP is a transport protocol that achieves this. TCP/IP is also desirable as it is

a standard protocol, and most devices implement a TCP/IP stack and most programming

environments (including SML) provide an interface to it through TCP/IP sockets.

Master thesis [19] examined the use of TCP/IP to communicate between Design/CPN

and external processes. It summarised the ideas and concepts from various papers and pub-

lications. Of particular importance was [14], focussing on interaction between Design/CPN

and Java processes. Two solutions were presented in [19] as to how TCP/IP communication

between Design/CPN and external processes could be realised. The �rst was called the Pure

TCP Solution in whichDesign/CPN connected directly to external applications via TCP/IP

using functions in a communication library. The second was called the Messenger Solution

in which library functions were used to communicate (via Unix pipes) with an external mes-

senger subprocess written in Java. The Java subprocess then used TCP/IP to communicate

with external processes.

Both the Pure TCP and Messenger solutions would provide usable communication facil-

ities. The fundamental design choice for Comms/CPN was made to choose the Pure TCP

solution for the design of Comms/CPN. Pure TCP provides for easier and tighter integra-

tion with Design/CPN, and can be used wherever Design/CPN is used. The Messenger

solution (following the suggested implementation in [19]) does not provide for easy or tight

integration because it uses a programming language other than SML. The Communication

Layer re
ects this decision. This layer provides an interface to TCP/IP for the Comms/CPN

library. The primitives provided in this layer are used by the Connection Management Layer

to establish TCP/IP connections to external processes, send and receive data in the form of

streams of bytes, and to close TCP/IP connections to external processes. Moreover, it is pos-

sible to implement an architecture similar to the the Messenger solution of [19] based purely

on Comms/CPN.

2.2 Connections and Connection Management

A connection represents a communication channel between a CPN model and an external

process. It is the Connection Management Layer that manages connections between CPN

models and external processes by creating, storing, and removing connection information.

Non functional requirements of the library state that the library must be capable of handling

multiple connections, and that these connections can be established dynamically during the

simulation of a CPN model. Also, requirements state that the library must provide a mecha-

nism for identifying connections and abstracting from low level socket identi�ers. The design

of the Connection Management Layer re
ects these requirements.

78

Connection Identi�cation. The connection identi�cation strategy adopted in the design of the

Connection Management Layer is to assign a unique string to each connection as it is made.

String identi�ers o�er the advantage of being more human-readable and recognisable than an

integer or a low level socket identi�er. A string can be provided by the user (to further aid

in recognisability) or it could be provided internally by Comms/CPN. Strings can easily be

used as tokens within a CPN model to pass connection identi�ers around during simulation

of the CPN model.

Connection Attributes. When a connection is created, it is necessary for information about

this connection to be recorded. These connection attributes must allow the connection to be

identi�ed and used. In order to identify the connection, the unique string identi�er must be

stored, and in order to use the connection, the low level TCP/IP socket identi�er must be

stored. The unique string identi�er allows connections to be identi�ed within CPN models, and

the low level TCP/IP socket is needed in order to send and receive data. Without recording

these two pieces of information, the establishment of connections becomes useless as there is

no way to identify them or to use them. Before a connection is established, a check is made

to ensure that the given unique string identi�er is in fact unique. If not, the connection is not

established. Multiple connections can be open simultaneously, so a data structure is needed

to store the connection attributes of more than one connection. The Connection Management

Layer contains a mechanism to do this, called the Connection Storage Mechanism, and a data

structure in which the attributes are stored. The data structure must allow new information

to be stored, existing information to be retrieved, and old information to be removed.

2.3 Data Transfer

A non functional requirement of Comms/CPN is that the library must have the capability to

send and receive all types of data, including user de�ned types (colour sets). This is important

in increasing the overall usefulness of Comms/CPN. TCP/IP dictates that data must be in

the form of a sequence of bytes for transmission across a network, so data objects must be

converted into this form for transmission.

The Messaging Layer ofComms/CPN within the Connection Management Layer provides

a solution. Generic send and receive functions that send and receive sequences of bytes,

regardless of the type of the data objects being transmitted, can be written and included

in the Connection Management Layer. This provides a way for users to send and receive

sequences of bytes without having the responsibility of implementing the actual sending and

receiving functions themselves.

In order to convert data objects to and from sequences of bytes, encoding and decoding is

necessary. An encoding function converts a data object into a form suitable for transmission

via TCP/IP, and a decoding function converts a sequence of bytes into a data object. SML,

being a functional programming language, allows functions to be passed as parameters. In

this way, encoding and decoding functions can be written for any data type desired, and can

then be passed as parameters to the generic send and receive functions. The generic send

function applies the encoding function to a data object in order to convert it to a suitable

form for transmission. Similarly, the generic receive function applies the decoding function to

a received sequence of bytes to form data objects. In this way, any type of data can be sent

or received, provided the corresponding encoding and decoding functions have been written.

Encoding and decoding functions for commonly used data types are supplied with the library,

e.g. for strings and integers.

79

Another non functional requirement is to ensure that data sent and received has a con-

sistent format regardless of its type. The virtual byte stream service provided by TCP/IP

allows for the transmission and reception of sequences of bytes. However, when dealing with

many di�erent types of data (including user de�ned types) this is not always adequate. A

more structured approach is required to delineate items of data from the virtual byte stream

to provide a better service than just a stream of bytes. Data needs to be packetised for trans-

mission so that when an item of data is sent, the receiver knows when all of it has arrived.

The solution to achieve this atomicity is to segment the stream of bytes, and to provide each

segment with a header that describes it. A segment of bytes (payload) together with its header

make up a data packet. A message is one or more of these packets.

The packet format chosen for Comms/CPN consists of a one byte header and a maximum

of 127 bytes of payload data. This is illustrated in Figure 2. Seven bits of the header indicate

the length of the payload data attached to it (i.e. 27 � 1 = 127 bytes) and the remaining

bit indicates whether this is the last packet in the transmission of the data item, in the case

where a data item is greater than 127 bits in length. In this way, the header allows variable

length data packets to be handled. It must be stressed that the maximum of 127 bytes of

payload data can easily be changed by choosing a di�erent sized header. What is important

is that the peer entity in the external process (with which communication is taking place)

implements the same protocol at the Messaging Layer.

The choice of a one-byte header is somewhat arbitrary, as there does not appear to have

been any studies conducted regarding ideal packet length when transferring data between

Design/CPN and external processes. It should be mentioned that other segmentation and

assembly protocols could be used to achieve the same service.

up to 127 bytes payload dataheader

1 byte

up to 128 bytes

Fig. 2. Packet format for transmission of data.

3 Implementation

This section describes the implementation of the design into a working Standard ML [8]

library. The implementation consists of SML library �les, one for each of the layers described

previously in Sect. 2.

3.1 The Communication Layer

The Communication Layer is implemented with TCP/IP as the underlying transport protocol.

It is designed to encapsulate the TCP/IP protocol and to provide users of this layer with a

shielded interface to the network functions provided by TCP/IP. The SML/NJ standard

library [25] contains a structure called Socket in which primitive operations on sockets are

available. The Communication Layer is based on this library.

80

Figure 3 lists the COMMS LAYER SML signature. This signature is implemented by

the CommsLayer structure constituting the Communication Layer. We describe each of the

primitives provided by the Communication Layer in more detail below.

signature COMMS_LAYER =

sig

type channel

exception BadAddr of string

val connect : string * int -> channel

val accept : int -> channel

val send : channel * Word8Vector.vector -> unit

val receive : channel * int -> Word8Vector.vector

val disconnect : channel -> unit

end;

Fig. 3. SML signature for Communication Layer.

Most of the implementation of the Communication Layer comes directly from [25]. The only

new datatype introduced is called channel. Its purpose is to allow the Connection Management

Layer to map string identi�ers to TCP/IP sockets without using any TCP/IP related code.

Below we give a brief description of each of the primitives.

connect Creates a connection, acting as a client, to an external process. The �rst argument

is used to specify the hostname of the external application, and the second argument is

used to specify the port number.

accept Waits for an incoming connection on the port speci�ed as the argument. The primitive

blocks until an external application connects, and the connection is then established.

send Sends the sequence of bytes speci�ed as the second argument on the channel speci�ed

as the �rst argument.

receive Receives the number of bytes speci�ed as the second argument on the channel spec-

i�ed as the �rst argument. The primitive will block until the speci�ed number of bytes

have been received on the channel.

disconnect Closes the connection speci�ed as the argument.

3.2 Messaging Layer

The Messaging Layer is implemented on top of the Communication Layer. Figure 4 lists the

MESSAGING LAYER SML signature. This signature is implemented by the MessagingLayer

structure constituting the Messaging Layer. The send function implements the transmission

of messages (speci�ed as a sequence of bytes) according to the protocol discussed in Sect. 2.3.

The data provided is segmented and appropriate headers are added to each segment. This

forms packets of data that are sent to the external process using the send function from the

Communication Layer. The receive function implements the reception of messages. It reads

one byte (the header byte) and the corresponding number of payload bytes from the channel

using the receive function from the Communication Layer. The InvalidDataExn exception will

be raised if received data does have the format speci�ed in Fig. 2.

81

signature MESSAGING_LAYER =

sig

type channel

exception InvalidDataExn of string

val send : channel * Word8Vector.vector -> unit

val receive : channel -> Word8Vector.vector

end

Fig. 4. SML signature for Messaging Layer.

3.3 Connection Management Layer

The Connection Management Layer builds on top of the Communication and Messaging Lay-

ers by providing the ability and interface to communicate with multiple external processes.

The connection storage mechanism is implemented in this layer. The Connection Management

Layer is implemented independently of TCP/IP and sockets. Instead it uses the services pro-

vided the Communication Layer and the Messaging Layer to interact indirectly with TCP/IP.

It is the functions in this layer that would normally be used in a CPN model.

Figure 5 lists the CONN MANAGEMENT LAYER SML signature. This signature is im-

plemented by the ConnManagementLayer structure constituting the Connection Management

Layer. The signature speci�es the type Connnection used to identity connections. The type

has been implemented as strings. We describe each of the primitives provided by the Com-

munication Layer in more detail below.

signature CONN_MANAGEMENT_LAYER =

sig

type Connection

exception ElementMissingExn of string

exception DupConnNameExn of string

val openConnection : Connection * string * int -> unit

val acceptConnection : Connection * int -> unit

val send : Connection * 'a * ('a -> Word8Vector.vector) -> unit

val receive : Connection * (Word8Vector.vector -> 'a) -> 'a

val closeConnection : Connection -> unit

end

Fig. 5. SML signature for Connection Management Layer.

openConnection Allows users to connect to external processes as a client. It takes three

input parameters. The �rst of these is the unique string identi�er (of type Connection)

to be associated with the new connection. The second and third are the host name and

port number that make up the address of an external process. The function �rst checks

to ensure the string identi�er given is unique, by searching the existing connections. A

DupConnNameExn exception is raised if this is not the case. The function then attempts

to create a connection to the external process by using the primitives from the Commu-

82

nication Layer. If successful, the appropriate information is stored and added to the list

of connections. The return type of this function is type unit.

acceptConnection Provides server behaviour, and allows external processes to connect to

Design/CPN. This function takes a Connection (string identi�er) and a port number as

input. The function checks that the given string identi�er is unique, and then listens on the

given port for incoming connection requests. This causes Design/CPN to block until an

incoming connection request is received. When this happens, a connection is established

with the external process requesting the connection.

send Allow users to send any type of data to external processes. The function is polymorphic,

in the sense that the data passed to it for sending can be of any type, including user de�ned

types. Three parameters are passed to this function as input. The �rst is a string identi�er

for the connection, the second is the data to send, and the third is a function to encode

the data to send. The purpose of the encoding function is to encode the data to send into

a sequence of bytes. This allows the data to be of any type, provided an encoding function

exists for that type. The send function retrieves the connection corresponding to the given

string identi�er. It then invokes the send primitive at the Messaging Layer. The return

type of this function is type unit.

receive Allows users to receive any type of data from an external process. The receive func-

tion is polymorphic in the same way as the send function. The parameters to this function

are a string identi�er and a decoding function, to decode the received byte vector into the

appropriate data type. The function begins by retrieving the connection from which data

will be received. It then invokes the receive from the Messaging Layer to receive the data.

The payload data (which was stored in the correct order when it was read) is then passed

to the decoding function. The resulting decoded data is then returned.

closeConnection Allows users to close a connection. The string identi�er of the connection

to be closed is passed to this function as the argument. A search of the connections is

conducted to ensure that a connection exists with that string identi�er. If the connection

does not exist, an ElementMissingExn exception is raised. The connection itself is closed

by calling the disconnect function from the Communication Layer. The stored connection

information is then removed from the list of connections. The return type of this function

is type unit.

4 Application of Comms/CPN

An external communication infrastructure was required as part of the research project on mod-

elling and analysis of avionics mission systems mentioned in the introduction. Comms/CPN

was developed for the purpose of providing external visualisation of the simulation of an

Avionics Mission System (AMS) CPN model.

Figure 6 illustrates the architecture of the visualisation facilities, and how Comms/CPN

�ts into this architecture. The idea is that Comms/CPN will provide the necessary commu-

nication infrastructure to allow data to be sent from the CPN model to an external animation

package which will then interpret this data and update the animation as necessary. The ar-

chitecture consists of three applications (processes). The Design/CPN GUI (left), the SML

process (middle), and the external Visualisation Package (right). The Design/CPN GUI

and the simulator part of the SML process communicates (in the usual way) for visualising

the token game during simulation in the Design/CPN GUI. This communication is done

via TCP/IP using the DMO module of the Design/CPN simulator. In addition to this, the

83

simulator part of the SML process now also communicates with the external Visualisation

Package via Comms/CPN.

Design/CPN GUI SML Process Visualisation Package

Simulator

Design/OA

Simulator

DMO
Comms/
CPN

 AMS
Visualisation

Java/CPN

TCP/IP

Fig. 6. Comms/CPN in the context of external visualisation.

The external visualisation package is currently under development. It is being implemented

in Java [10] and consists of two main modules. The AMS Visualisation module is the mod-

ule that provides the visualisation facilities. This module has been implemented using the

Java Swing library [9]. The Java/CPN module is the peer module of Comms/CPN at the

Java side. The Java/CPN module contains primitives similar to those in Comms/CPN to

enable communication, and implements the protocol described in Sect. 2.3. We describe the

Java/CPN module, the AMS visualisation module, and how it interacts with the AMS CPN

model in more detail in the following subsections.

4.1 Java/CPN

The purpose of Java/CPN is to allow Java processes to communicate with Design/CPN

through Comms/CPN. The current implementation of Java/CPN is the minimal imple-

mentation necessary to enable communication. It incorporates the equivalent functionality

of the Messaging and Communication layers from Comms/CPN. The Communication Layer

functionality from Comms/CPN and TCP/IP is already encapsulated in the Socket objects

provided by Java through the use of Socket methods and the input and output streams avail-

able from the socket itself.

No connection management has been implemented within Java/CPN as this is a minimal

implementation, however the important thing is that it implements the same protocol as the

Messaging Layer from Comms/CPN as described in Sect. 2.3 . The interface of Java/CPN

is shown in Figure 7. As in Comms/CPN, generic send and receive functions have been

provided at the level of the Messaging Layer, meaning that sequences of bytes are passed to

the send method and returned from the receive method. The connect, accept, and disconnect

methods have been provided at the level of the Communication Layer from Comms/CPN.

The deliberate attempt was made to make the interface as close to that of Comms/CPN as

possible. We describe each of the methods within Java/CPN in more detail below.

The connect method acts in the same way as the connect method from the Communication

Layer of Comms/CPN. It takes a host name and port number as arguments, and attempts

to establish a connection as a client to the given port on the given host. This method does

not return a value. Once the connection has been established (i.e. the socket opened) input

84

import java.util.*;

import java.net.*;

import java.io.*;

public interface JavaCPNInterface

{

public void connect(String hostName, int port);

public void accept(int port);

public void send(ByteArrayInputStream sendBytes) throws SocketException;

public ByteArrayOutputStream receive() throws SocketException;

public void disconnect();

}

Fig. 7. Interface to Java/CPN.

and output streams are extracted from the socket to enable the transmission and reception

of bytes.

The accept method also acts in the same way as the accept method from the Communica-

tion Layer of Comms/CPN. It takes a port number as an argument and, acting as a server,

listens on the given port number for an incoming connection request. When received, it es-

tablishes the connection. Again, once the connection has been established, input and output

streams are extracted from the socket to enable the transmission and reception of bytes. This

method does not return a value.

The send method takes a ByteArrayInputStream object (a Java object for holding se-

quences of bytes, acting as input) as the argument. The segmentation into packets occurs in

a similar way to that which occurs in the Messaging Layer of Comms/CPN. Bytes are read

from the ByteArrayInputStream object, a maximum of 127 at a time, and a header added as

described in Sect. 2.3. The data packets formed are then transmitted to the external process

through methods acting on the output stream of the socket. The send method does not return

a value.

The receive method has no arguments. It uses methods that act on the input stream of the

socket to �rstly receive a header byte, and then receive the number of payload bytes speci�ed

in the header, from the external process. The payload bytes are stored in a ByteArrayOut-

putStream object (a Java object for storing bytes as output) as each segment of payload

data is received. This process is repeated until all data has been received for the current

implementation. The receive method returns the ByteArrayOutputStream object.

The disconnect method has no arguments, and returns no value. It acts in the same way

as the disconnect function from the Communication Layer of Comms/CPN, except that it

also closes the input and output streams from the socket before the socket itself is closed.

Methods external to the Java/CPN class must be used to convert from data (i.e. a string)

into a ByteArrayInputStream object, and from a ByteArrayOutputStream object back into

data. This is akin to the encoding and decoding functions passed into the send and receive

functions of the Connection Management Layer in Comms/CPN.

85

4.2 Visualisation of Avionics Mission Systems

An Avionics Mission System (AMS) consists of a number of subcomponents connected via

a serial data bus. The serial data bus (SDB) is controlled by the Mission Control Computer

(MCC), and subcomponents communicate by the exchange of data across the SDB. An initial

CPN model of a generic AMS [16,22] has been constructed, capturing the AMS at a high level

of abstraction, including communication between subcomponents. In this section we show how

Comms/CPN can be used to visualise this communication.

A snapshot from a prototype display of the visualisation package is shown in Figure 8.

The display shows the various subcomponent of the AMS connected to the SDB. Each time

two components communicate via the SDB, the external visualisation package will show this

communication by highlighting the two subcomponents and the SDB. The simulation will

then block until the user clicks on the Continue button.

Fig. 8. Snapshot from the external visualisation package.

In order to provide external communication facilities, the Comms/CPN library must be

included in the CPN model. This consists of loading a number of SML �les using the SML use

command. For the AMS CPN model, the visualisation is done using code segments attached

to the transitions. Opening and closing the connection to the external Visualisation Package

is done by evaluating SML code in auxiliary boxes.

Of particular interest in providing visualisation of SDB communication is the Serial-

DataBus subpage of the AMS CPN model. This page is shown in Figure 9. Each subcompo-

nent of the AMS has a unique address associated with it, and the Transmit transition on this

subpage models the actual transmission of messages across the SDB. Two auxiliary boxes con-

tainingComms/CPN primitives have been added to the top left of this page. When evaluated,

the �rst opens a connection using the openConnection primitive in the ConnManagement-

Layer structure, and the second closes the connection using the closeConnection primitive in

the ConnManagementLayer structure which constitutes the Connection Management Layer

of Comms/CPN.

A code segment has been attached to the Transmit transition. This code segment calls

the function shown in Figure 10. The purpose of this function is to take the addresses of the

sender and receiver, map them to integers, transmit these two integers to the external visu-

alisation package, and then await a response before continuing the simulation. The external

visualisation package interprets the two integers as the corresponding sender and destination

and updates the animation to re
ect this data transfer. The Comms/CPN send primitive is

86

SDB

P I/O

ComponentxSDBMsg

Transmit

[destcomp = (#dest sdbmsg)]

C

input (sdbmsg);
output ();
action
 DisplayComm(sdbmsg);

ConnManagementLayer.openConnection(extdisplay, "localhost", 9000);

ConnManagementLayer.closeConnection(extdisplay);

(SDB,sdbmsg)

(destcomp,sdbmsg)

Fig. 9. The SerialDataBus page of the AMS CPN model.

used to send the two integers, and the receive primitive is used to receive the response from

the visualisation package caused by the user clicking on the Continue button.

val extdisplay = "extdisplay"; (* --- name of connection --- *)

(* --- map subcomponent to an identifier --- *)

fun ComponentOpcode (MCC _) = "1"

| ComponentOpcode (DISPLAYPROC (DISPLAY HUD)) = "2"

| ComponentOpcode (DISPLAYPROC (DISPLAY MPD)) = "3"

| ComponentOpcode (SENSOR ADC) = "4"

| ComponentOpcode (SENSOR RADAR) = "5"

| ComponentOpcode (SENSOR RALT) = "6"

| ComponentOpcode (SENSOR WRW) = "7"

| ComponentOpcode (SENSOR INS) = "8";

(* --- update the external display and wait for Continue --- *)

fun DisplayComm ({src,dest,...} : SDBMsg) =

let

val (src', dest') = (ComponentOpcode src, ComponentOpcode dest)

in

ConnManagementLayer.send(extdisplay,src'^","^dest',stringEncode);

ConnManagementLayer.receive(extdisplay, stringDecode);

()

end;

Fig. 10. SML functions for visualising SDB communication.

5 Conclusions and Future Work

Comms/CPN originated from a desire to provide visualisation of the simulation of AMS CPN

models. Existing methods of visualisation were not satisfactory in this case, either through

being too detailed or by having limited capability and being tied to theDesign/CPN GUI. By

developing an external visualisation package, access to greater graphical capabilities becomes

87

possible and visualisation is no longer tied to the Design/CPN GUI. Comms/CPN provides

the necessary communication infrastructure to allow the external visualisation to take place.

The functional and non functional requirements of this library were considered and it was

determined that �ve main functions must be provided, i.e. opening and accepting connec-

tions, sending data to and receiving data from external processes, and closing connections.

It was also determined that the library must support multiple simultaneous connections and

allow dynamic creation of connections. From these requirements, the library was designed.

Three areas of design were considered. They were the fundamental method of communication,

connection management, and data transfer. The architecture of Comms/CPN was de�ned

to consist of three layers, sitting between Design/CPN and TCP/IP. The Communication

Layer provides the interface to TCP/IP, the Messaging Layer introduces message passing

scheme, and the Connection Management Layer provides the interface to Design/CPN.

The current implementation of the library poses some diÆculties when it comes to ac-

cepting incoming connection requests and receiving data. When listening for an incoming

connection request, Design/CPN blocks causing the simulation of the CPN model to block

also. The same situation occurs when a receive operation is called but there is no data to

receive. This blocking property is unfortunate if Design/CPN is performing a simulation,

because it causes the entire simulation to block (as Design/CPN is purely single threaded.)

One possible area for investigation in the future is to provide non-blocking options for both

the receive and accept operations. This is one area where using a messenger subprocess would

have provided a relatively simple solution, as discussed Sect. 2. There is a possibility that in

the future, Comms/CPN could be used in conjunction with an external subprocess, to form

a hybrid Pure TCP and Messenger solution. A system call similar to the select call in the C

programming language would also provide a solution. Using Concurrent ML (CML) [5] instead

of SML as the programming language for the Design/CPN simulator and for Comms/CPN

would eliminate the blocking issues and so would also provide a solution.

Currently, the library only facilitates each connection to be connected to a single external

process. To connect to more than one external process, multiple connections are used. It

may be possible to extend the library functions to allow multicasting whereby more than one

external process can receive the same data from a single connection. In this way multiple

external processes will receive exactly the same data. Such multicasting would be useful when

using this library for the purposes of visualisation of Design/CPN simulations because it

would allow exactly the same visualisation to be seen on di�erent remote machines.

When a connection is created, the current implementation requires the user to provide the

unique identi�er. Future implementations of this library may give Design/CPN the ability

to provide this unique identi�er itself, and to return this automatically generated identi�er

to the user for subsequent use.

Another area of future development would involve the creation of communication modules

like Java/CPN for other programming languages, such as C/CPN, Perl/CPN and so on.

Another issue to consider as part of future work is to make Comms/CPN and Java/CPN

libraries more fault tolerant.

Acknowledgments. The work presented in this paper was supported by the Australian Defence

Science and Technology Organisation (DSTO) under contract no. 687237, and by a Divisional

Small Grant from the University of South Australia. The authors also acknowledge valuable

comments and feedback from Prof. Jonathan Billington.

88

References

1. Animation by Mimic/CPN. http://www.daimi.au.dk/designCPN/libs/mimic/.

2. C. Capellmann, S. Christensen, and U. Herzog. Visualising the Behaviour of Intelligent Networks. In

Services and Visualisation, Towards User-Friendly Design, volume 1385 of Lecture Notes in Computer

Science, pages 174{189. Springer-Verlag, 1998.

3. Computer Systems Engineering Centre. http://www.unisa.edu.au/eie/csec.

4. D. E. Comer. Computer Networks and Internets. Prentice-Hall International, Inc., 1997.

5. Concurrent ml. http://cm.bell-labs.com/cm/cs/who/jhr/sml/cml/index.html.

6. G. Gallasch and L. M. Kristensen. Comms/CPN library.

http://www.daimi.au.dk/designCPN/libs/commscpn/.

7. The GAP Group, Aachen, St Andrews. GAP { Groups, Algorithms, and Programming, Version 4.2, 1999.

(http://www-gap.dcs.st-and.ac.uk/~gap).

8. R. Harper. Programming in Standard ML. School of Computer Science, Carnegie Mellon University,

http://www.cs.cmu.edu/ rwh/introsml/, 2000.

9. Java swing library. http://java.sun.com/products/jfc/tsc/index.html.

10. java.sun.com - The Source for Java(TM) Technology. http://www.java.sun.com/.

11. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1, Basic

Concepts. Monographs in Theoretical Computer Science. Springer-Verlag, 1992.

12. J. B. J�rgensen and L. M. Kristensen. Design/CPN Condensed State Space Tool Manual. Department of

Computer Science, University of Aarhus, Denmark, 1996.

Online: http://www.daimi.au.dk/designCPN/.

13. L. M. Kristensen, S. Christensen, and K. Jensen. The Practitioner's Guide to Coloured Petri Nets.

International Journal on Software Tools for Technology Transfer, 2(2):98{132, 1998.

14. O. Kummer, D. Moldt, and F. Wienberg. A Framework for Interacting Design/CPN- and Java-Processes.

In J. Kleijn and S. Donateli, editors, Applications and Theory of Petri Nets, volume 1639 of Lecture Notes

in Computer Science. Springer-Verlag, 1999.

15. B. Lindstr�m. Web Based Interfaces for Simulation of Coloured Petri Net Models. In K. Jensen,

editor, Proceedings of Workshop on Practical Use of High-level Petri Nets, pages 15{32. Depart-

ment of Computer Science, University of Aarhus, Denmark, 2000. DAIMI PB-547. Available via

http://www.daimi.au.dk/pn2000/proceedings/.

16. C. Douglass Locke, L. Lucas, and J. B. Goodenough. Generic Avionics Software Speci�cation. Technical

Report CMU/SEI-90-TR-8, Software Engineering Institute, Carnegie Mellon University, December 1990.

17. L. Lorentsen and L. M. Kristensen. Exploiting Stabilizers and Parallelism in State Space Generation

with the Symmetry Method. In Proceedings of International Conference on Application of Concurrency

in System Design (ICACSD'2001), pages 211{220. IEEE Computer Society, 2001.

18. Design/CPN Message Sequence Charts library.

http://www.daimi.au.dk/designCPN/libs/mscharts/.

19. S. Nimsgern and F. Vernet. Communication between Coloured Petri Net Simulations and External Pro-

cesses. Master's thesis, Department of Computer Science, University of Aarhus, 2000.

20. Standard ML of New Jersey. http://cm.bell-labs.com/cm/cs/what/smlnj/.

21. Design/CPN Online. http://www.daimi.au.dk/designCPN/.

22. Z. Qureshi, L. M. Kristensen, and J. Billington. Towards Modelling and Analysis of Avionics Mission

Systems using Coloured Petri Nets and Design/CPN. Technical report, Defense Science and Technology

Organisation, 2001. Divisional Dissussion Paper.

23. J. L. Rasmussen and M. Singh. Designing a Security System by Means of Coloured Petri Nets. In

Proceedings of ICATPN'96, volume 1091 of Lecture Notes in Computer Science, pages 400{419. Springer-

Verlag, 1996.

24. Australien Defence Science and Technology Organisation.

http://www.dsto.defence.gov.au.

25. SML/NJ library.

http://cm.bell-labs.com/cm/cs/what/smlnj/doc/smlnj-lib/index.html.

26. W. Stallings. Data and Computer Communications. Prentice-Hall, 2000.

27. J. D. Ullman. Elements of ML Programming. Prentice-Hall, 1998.

89

90

Stochastic Well Formed Nets: an overview
Giuliana Franceschinis

DISTA - University of Eastern Piedmont, ”A. Avogadro”
Corso Borsalino, 54, 15100 Alessandria, Italy

e-mail: giuliana@mfn.unipmn.it
tel: +39 0131 287445; fax: +39 0131 287440

Among the different proposals of high level extensions of Generalized Stochas-
tic Petri Nets (GSPNs) [1] available in the literature, Stochastic Well-formed
Nets (SWNs) [9] have gained a considerable success due to the possibility they
offer of effectively coping with the state space explosion problem by exploiting
the behavioural symmetries present in the model. The SWN formalism can
be regarded as a dialect of Colored Petri Nets, however it adopts a particular
syntax to specify color domains, arc functions and predicates that allow the au-
tomatic detection of the model symmetries and their exploitation in the model
solution. In fact the main interest in SWN is due to the Symbolic Marking
(SM) and Symbolic Firing notions that allow to build a reduced representation
of the reachability graph called Symbolic Reachability Graph (SRG); the SRG
nodes are no longer states but classes of states of the system. The SRG can be
used for performance evaluation purposes [9] as well as for qualitative analysis
(both basic properties like deadlock-freeness or reversibility [10], and temporal
logic properties [16]). In some cases the SRG technique can be combined with
orthogonal ones, like the Krocnecker algebra decomposition approaches [18].

The gain in state space reduction can be relevant if the models to be anal-
ysed are highly symmetric. However in practice it is often the case that a system
behaves in a symmetric way in most situations, while in exceptional situations
asymmetries arise. The SRG approach is such that an exceptional asymmetry
may destroy any possibility of exploiting symmetries. For this reason an exten-
sion of the SRG technique (Extended SRG -ESRG) was proposed [17], able to
exploit the symmetries whenever possible, and to deal with asymmetries only
when they arise [6, 7].

The Symbolic Marking notion can be profitably used also in conjunction
with discrete event simulation[14]: it allows to reduce the average event list
size, the marking size and speed up the check for enabled transition instances.

Very important is the issue of compositionality. Even if the use of colours
allows to reduce the model size, real system models (even rather abstract ones)
can be handled only using a divide and conquer approach. A lot of literature
exists in this broad field, and in particular for high level models. Concerning
SWNs, some work has been done in different directions: [19], [3], [4].

Last but not least, tool support for designing and analysing SWN models is
provided by the GreatSPN package[11] (http://www.di.unito.it/∼greatspn). It
includes several analysis modules for SWN models, in particular a module for
the construction of either the SRG or the ordinary RG and of the corresponding
CTMC, and a module for symbolic or ordinary simulation. Moreover it has been
recently integrated with a new tool, called algebra, for composition of SWN
models.

91

SWNs are still evolving, active research is ongoing in different research
groups involving both the development of new analysis algorithms for SWN
models and of methodologies based on the SWN models supporting the design
of systems. The practical interest of SWNs is witnessed by the several case
studies present in the literature showing the applicability of the SWN formal-
ism in different fields, e.g. control systems[2, 4], communication systems[13, 15],
contact centers[12], fault tolerant systems[5, 8], etc., to study different aspects,
from verification of properties, to performance and dependability analysis.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel
Computing, 1995.

[2] C. Anglano, S. Donatelli, G. Franceschinis and O. Botti, “Performance
prediction of a reconfigurable high voltage substation simulator: a case
study using SWN” In Proc. 7th International Workshop on Petri Nets and
Performance Models, St. Malo, France , June 1997.

[3] P. Ballarini, C. Donatelli, and G. Franceschinis. Parametric stochastic well-
formed nets and compositional modelling. In Proc. of the 21th International
Conference in Application Theory of Petri Nets (ICATPN 2000), volume
1825 of Lecture Notes in Computer Science, pages 43–62. Springer-Verlag,
2000.

[4] S. Bernardi, S. Donatelli, and A. Horáth. Compositionality in the Great-
SPN tool and its use to the modelling of industrial applications. Accepted
for publication on Software Tools for Technology Transfer.

[5] A. Bobbio, G. Franceschinis, L. Portinale, and R. Gaeta, “Dependability
Assessment of an Industrial Programmable Logic Controller via Parametric
Fault-Tree and High level Petri Net” In Proc. 9th International Workshop
on Petri Nets and Performance Models - PNPM01. IEEE Computer Soci-
ety, 2001.

[6] L. Capra, C. Dutheillet, G. Franceschinis and J.M. Ilie, “Towards Per-
formance Analysis with Partially Symmetrical SWN”, In Proc. 7th Inter-
national Symposium on Modeling, Analysis and Simulation, College Park,
MD, USA, October 1999.

[7] L. Capra, C. Dutheillet, G. Franceschinis and J.M. Iliè, “Exploiting Partial
Symmetries for Markov Chain Aggregation ”, In Proc. of First workshop
on Models for Time-Critical Systems (MTCS 2000), Satellite workshop of
CONCUR2000, Electronic Notes in Theoretical Computer Science, Volume
39, Issue 3

[8] L. Capra, R. Gaeta and O. Botti, “SWN Nets as a Framework for the Spec-
ification and the Analysis of FT Techniques Adopted in Electric Plant Au-
tomation”, In Lecture Notes in Computer Science, Vol. 1630: Application

92

and Theory of Petri Nets 1999, 20th International Conference, ICATPN’99,
Williamsburg, Virginia, USA, pages 168-187. Springer-Verlag, June 1999.

[9] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. “Stochastic
well-formed coloured nets for symmetric modelling applications” IEEE
Transactions on Computers, 42:1343–1360, 1993.

[10] G.Chiola, C.Dutheillet, G.Franceschinis, and S.Haddad, “A Symbolic
Reachability Graph for Coloured Petri Nets”, Theoretical Computer Sci-
ence B (Logic, semantics and theory of programming), Vol. 176, n. 1&2,
April 1997, pp. 39-65.

[11] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. “GreatSPN 1.7:
GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets” Per-
formance Evaluation, 24:47–68, 1995.

[12] G. Franceschinis, C. Bertoncello, G. Bruno, G. Lungo Vaschetti, A. Pigozzi,
“SWN models of a contact center: a case study” In Proc. 9th International
Workshop on Petri Nets and Performance Models - PNPM01. IEEE Com-
puter Society, 2001.

[13] G. Franceschinis, A. Fumagalli and A. Silinguelli “Stochastic Colored Petri
Net Models for Rainbow Optical Networks” Special issue of Advances
of Petri Nets on Communication Network Applications, Lecture Notes in
Computer Science, Springer Verlag, LNCS 1605, April 1999.

[14] R. Gaeta, “Efficient discrete-event simulation of colored Petri nets” IEEE
Transaction on Software Engineering, 22(9), September 1996.

[15] R.Gaeta and M.Ajmone Marsan, “SWN Analysis and Simulation of Large
Knockout ATM Switches” volume 1420 of LNCS, Proc. of 19th Inter-
national Conference on Application and Theory of Petri Nets. Springer-
Verlag, June 1998.

[16] S. Haddad, J-M Ilie, and K. Ajami, A Model Checking Method for Partially
Symmetric Systems, Proc. of of FORTE XIII, Pisa, Italy, October 2000.

[17] S. Haddad, J-M Ilie, M. Taghelit, and B. Zouari, “Symbolic marking graph
and partial symmetries”, In Proc. of 16th Int. Conference on Application
and Theory of Petri Nets, ICATPN ’95, pp. 238-257, Torino, Italy, June
1995.

[18] S. Haddad and P. Moreaux, “Evaluation of High Level Petri Nets by Means
of Aggregation and Decomposition” In Proc. of 6th International Workshop
on Petri Nets and Performance Models, N. Carolina, USA, pages 11-20.
1995.

[19] I. C. Rojas M., Compositional construction and Analysis of Petri net Sys-
tems. PhD thesis, University of Edinburgh, 1997.

93

94

Modelling and Analysis of the CES Protocol of H.245

Lin Liu and Jonathan Billington

Computer Systems Engineering Centre

University of South Australia

SCT Building, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia

liuly002@students.unisa.edu.au, jonathan.billington@unisa.edu.au

Abstract. This paper analyses part of ITU-T recommendation H.245, \Control protocol for

multimedia communication". This is a pilot study of an ongoing project on modelling and

analysing Internet multimedia communication standards with Coloured Petri Nets (CPNs).

The Capability Exchange Signalling (CES) protocol of H.245 is modelled with CPNs. Analysis

of the models shows that this protocol performs well in general, but some inadequacies also have

been found. Firstly, this protocol could fail if the wrapping of the sequence numbers used by

the protocol can happen, no matter whether the underlying medium of this protocol is reliable

or not. Secondly, if the problem with sequence number wrap can be avoided, then, when the

transport medium is unreliable, this protocol may be ineÆcient.

1 Introduction

Recommendation H.245 [8] is the control protocol for multimedia communication developed by the

Telecommunication Standardization Sector of International Telecommunication Union (ITU-T) and

has been used by a series of ITU-T multimedia system standards. These include recommendation

H.310 [3] for broadband audiovisual communication, H.324 [4] for low bit-rate multimedia communi-

cation, and H.323 [6] for packet-based multimedia communication.

With the rapid growth of the Internet, techniques and standards for multimedia communications

over packet-based networks are of increasing importance. At present, H.323 is the key recommenda-

tion for multimedia applications, e.g. IP (Internet Protocol) telephony and multimedia conferencing,

over IP-based networks, including the Internet [9]. H.323 is a series of recommendations comprising,

besides H.323 itself, H.225.0 (call setup and admission control) [5], H.245 (media channel and con-

ference control) [8], and other related protocols [15]. The H.323 series of recommendations describes

systems, logical components, messages and procedures that enable real-time multimedia calls to be

established between two or more parties on a packet network. The packet network is not required to

provide a guaranteed Quality of Service (QoS). The H.323 series also speci�es the interoperation with

multimedia systems over di�erent networks, e.g. the Integrated Services Digital Network (ISDN) and

the Public Switched Telephone Network (PSTN).

The research presented here is part of a research project [11] on modelling and analysing the H.323

standard with Coloured Petri Nets (CPNs) [10]. Previous work on modelling and analysing multi-

media communication systems using Petri net techniques has concentrated on multimedia streams

synchronization[1, 14] and QoS issues [16]. Little work has been done on protocols such as H.323

which are related to the general architecture, control and procedures of multimedia systems over the

Internet. This proposed research is expected to expand the application domain of Petri net techniques

into the Internet multimedia communication area and to investigate the analysis techniques which

are most appropriate for the veri�cation of Internet multimedia communication systems.

H.245 is chosen as the �rst standard to be modelled and analysed in this research, and some

initial results have been presented in [13]. Although there is some ambiguity in the de�nition of

H.245, compared with other recommendations of the H.323 series, H.245 is more mature and better

described. Moreover, H.245 is one of the core protocols of the H.323 series. Hence we �rst investigate

H.245 to lay the foundations for the study of other H.323 protocols.

In [13], an initial CPN model of the Capability Exchange Signalling (CES) protocol of H.245 was

created and analysed, and it was assumed that the transport layer of the CES protocol is reliable. The

major part of [13], however, is on the methodology for modelling and analysis of Internet multimedia

95

protocols. This paper aims to further model and analyse the CES protocol. A number of modi�cations

are made to the initial model presented in [13], which is re-analysed when the underlying transport

medium is reliable. Moreover, the CES protocol is also analysed under the assumption that the

underlying transport medium may be unreliable. The properties of this protocol are investigated by

state space analysis of the CPN models and some interesting results are obtained. The models and

the analysis are discussed in detail.

This paper is organised as follows. Section 2 reviews the CES protocol. Sections 3 and 4 present

the CPN models of the protocol and their analysis results when the underlying transport medium is

reliable and unreliable respectively. Finally, Section 5 summarises the results and points out future

directions of research.

2 The CES Protocol

Since di�erent parties involved in a multimedia call may have di�erent transmit and/or receive ca-

pabilities, they need to make their capabilities known to each other. Thus the multimedia streams

sent by an end can be understood appropriately by its peer end(s). The CES protocol is used by

a multimedia communication end to inform a peer end of its capabilities. It should be made clear

that, although this protocol is named as capability exchange signalling protocol, it is not used by

two ends to exchange and/or negotiate their capabilities. The initiator of the signalling sends out its

capabilities and expects an acknowledgment from the responder side. Once the responder receives

the capabilities, it is only expected to acknowledge the initiator whether it can accept them or not.

Meanwhile, the responder side does not send its own capabilities to the initiator side. To be consistent

with [8], however, we still use the terminology exchange in the following.

As de�ned in [8], the CES protocol consists of a set of capability exchange messages and pro-

cedures, and the CES Entities (CESEs). There is an outgoing CESE and an incoming CESE. For

a particular capability exchange, an outgoing CESE is active at the initiator side and an incoming

CESE is active at the responder side.

The H.245 protocols, including the CES protocol, are designed to be independent of the underlying

transport medium [8], which means that they can operate over either a reliable or an unreliable

transport layer. When these protocols are used in an H.323 system, however, they are required to run

above a reliable transport layer, e.g. a TCP (Transmission Control Protocol) connection.

This section introduces the CES protocol and clari�es the inconsistencies found in the protocol

de�nition. Sections 2.1 and 2.2 describe the CES protocol as it is de�ned in H.245 [8]. We use the

same headings for these two sections (and their lower level headings) as those used in [8]. Section

2.3 lists the inconsistencies found in the CES protocol de�nition. All of the tables and �gures in this

section are taken from [8].

2.1 Communication between CESE and CESE User

2.1.1 Primitive De�nition

Table 1 de�nes the CES primitives and their parameters. The CESE and the CESE user communicate

using these primitives. The four TRANSFER primitives are used to transfer capabilities. The two

REJECT primitives are used to reject a capability descriptor entry, and to terminate a current capabil-

ity transfer. Primitives TRANSFER.request and TRANSFER.indication have the same parameters.

PROTOID speci�es the version of the recommendation in use. MUXCAP indicates the multiplexing

capabilities of the outgoing end, and the multimedia receive and transmit capabilities are given by

CAPTABLE and CAPDESCRIPTORS. The CAUSE parameter of a REJECT primitive indicates

the reason for rejecting a CAPTABLE or CAPDESCRIPTORS parameter. The SOURCE parameter

of the REJECT.indication indicates the source of the rejection, either USER or PROTOCOL.

2.1.2 CESE States

There are two states de�ned for an outgoing CESE: IDLE (ready to initiate a capability exchange);

and AWAITING RESPONSE (waiting for a response from the peer CESE). Similarly, two states are

de�ned for an incoming CESE: IDLE; and AWAITING RESPONSE, which indicates that the CESE

is waiting for a response from its user.

96

Table 1. Primitives and parameters

Generic name
Type

request indication response confirm

TRANSFER PROTOID

MUXCAP

CAPTABLE
CAPDESCRIPTORS

PROTOID
MUXCAP

CAPTABLE
CAPDESCRIPTORS

- (Note 1)

REJECT CAUSE SOURCE
CAUSE

not defined (Note 2) not defined

NOTE 1 - "-" means no parameters.
NOTE 2 - "not defined" means that this primitive is not defined.

-

2.2 Peer-to-peer CESE Communication

2.2.1 Messages

There are four kinds of CES messages that may be transmitted for a capability exchange (Table 2).

The TerminalCapabilitySet message is sent by the outgoing CESE to indicate the capabilities of the

outgoing end. Messages TerminalCapabilitySetAck and TerminalCapabilitySetReject are the positive

response (for accept) and negative response (for reject) from the incoming CESE respectively. Termi-

nalCapabilitySetRelease is sent by the outgoing CESE to the incoming CESE to request termination

of the current exchange when possible.

Table 2. CESE message names and �elds

Function Message Direction Field

transfer TerminalCapabilitySet O -> I sequenceNumber
protocolIdentifier
multiplexCapability
capabilityTable
capabilityDescriptor

TerminalCapabilitySetAck O <- I sequenceNumber

reject TerminalCapabilitySetReject O <- I sequenceNumber
cause

reset TerminalCapabilitySetRelease O -> I -

NOTE - Direction: O - Outgoing, I - Incoming.

The �rst three messages contain a transaction identi�er called sequenceNumber. This message �eld

ensures that the outgoing CESE can correlate a response to the corresponding TerminalCapabilitySet

message, and inform its user of the expected response. The other �elds of TerminalCapabilitySet are

obtained from the parameters of the TRANSFER.request. The \cause" �eld of TerminalCapability-

SetReject has the same value as the parameter CAUSE of the primitive REJECT.request issued by

the incoming CESE user.

2.2.2 CESE State Variables

A state variable, out SQ, is de�ned for the outgoing CESE. It is used to indicate the most recent

TerminalCapabilitySet message. Once a TRANSFER.request primitive is issued by the outgoing

user, this variable is incremented by one (modulo 256) and is written into the sequenceNumber �eld

of TerminalCapabilitySet before its transmission. Correspondingly, there is a state variable, in SQ,

at the incoming side to store the value of the sequenceNumber �eld of the most recently received

TerminalCapabilitySet message. This value will be written into the sequenceNumber �eld of the

TerminalCapabilitySetAck message or the TerminalCapabilitySetReject message before it is sent to

the outgoing CESE.

97

2.2.3 CESE Procedures

In H.245, the CESE procedures are de�ned in SDL (Speci�cation and Description Language) [7] as

shown in Fig. 1. For each CESE, there are two SDL diagrams, one for each CESE major state (IDLE

and AWAITING RESPONSE).

Referring to Fig. 1, a capability exchange is initiated when a TRANSFER.request is issued by

the outgoing CESE user (Fig. 1.a). The CESE increments its state variable, out SQ, sends a Ter-

minalCapabilitySet message to the incoming CESE, starts a timer, and enters the AWAITING RE-

SPONSE state. Upon receiving the TerminalCapabilitySet message, the incoming CESE copies the

sequenceNumber �eld into variable in SQ (Fig. 1.c), informs the user (TRANSFER.indication) and

changes state from IDLE to AWAITING RESPONSE. The user accepts the capabilities by issuing

a TRANSFER.response (Fig. 1.d), or rejects them (REJECT.request). Accordingly, a TerminalCa-

pabilitySetAck message or a TerminalCapabilitySetReject message is sent to the peer CESE and the

state of the incoming CESE becomes IDLE. At the outgoing side (Fig. 1.b), if the response message

is received before the timer expires, the outgoing CESE noti�es the user by submitting a TRANS-

FER.con�rm or a REJECT.indication (depending on the message it receives), and returns to IDLE

after resetting the timer. If the timer expires before any response is received, a TerminalCapability-

SetRelease message is sent to the peer CESE, a REJECT.indication primitive (with SOURCE set to

PROTOCOL) is issued to the user, and the CESE's state returns to IDLE. When the TerminalCa-

pabilitySetRelease message arrives at the incoming side, if the incoming CESE is in the AWAITING

RESPONSE state (Fig. 1.d), it will submit a REJECT.indication (with its SOURCE parameter set

to PROTOCOL) to the user to terminate the current exchange. If it is IDLE, i.e. the release message

arrives after the incoming user has issued the response (Fig. 1.c), this message will be ignored.

We noted earlier that, all H.245 protocols are designed to operate over a transport layer that can be

reliable or unreliable. In the CES protocol, the timer and sequence numbers are used to deal with the

unreliability of the transport layer. It is possible that a response message is received by the outgoing

CESE after the timer expires and the outgoing CESE is IDLE (Fig. 1.a), or a new TerminalCapabil-

itySet message has been sent out and the CESE is AWAITING RESPONSE (Fig. 1.b), waiting for

the response to the most recently sent TerminalCapabilitySet message. Then this late response will

be ignored (when the CESE is IDLE) or discarded (when the CESE is AWAITING RESPONSE).

Also, it is possible for the incoming CESE to receive a new TerminalCapabilitySet message when it

is in the AWAITING RESPONSE state (Fig. 1.d), waiting for the response from the user to the last

TerminalCapabilitySet message. In this case, the incoming CESE will issue a REJECT.indication

primitive (according to the text of H.245, its SOURCE parameter has the default value USER) to

the user to terminate the current exchange. After the REJECT.indication, a TRANSFER.indication

primitive is issued to the user to indicate the arrival of the new TerminalCapabilitySet message.

2.3 Inconsistencies in the CES Protocol De�nition

The following inconsistencies were found in the CES protocol de�nition [8].

{ In Fig. 1.a, \:=" is used in expression \out SQ := out SQ + 1". From the narrative description we

know that the function of this expression should be to increment out SQ by 1. So \:=" is used as

an assignment symbol. In contrast, the two \in SQ = TerminalCapabilitySet.sequenceNumber"

expressions of the incoming CESE SDL (Fig. 1.c and Fig. 1.d), use \=" to assign the value of

the sequenceNumber �eld of the TerminalCapabilitySet message to the state variable, in SQ. In

the following sections, we interpret these two \=" as assignment symbols.

{ In the narrative description of the CES protocol, it is stated that when a TRANSFER.request

primitive is issued by the outgoing user, the state variable out SQ is incremented by 1, modulo

256. However in Fig. 1.a, the increment operation is shown as\out SQ := out SQ + 1", without

indicating that modulo arithmetic must be used.

{ In the SDL diagrams, the procedure for writing the values of the state variables, out SQ and

in SQ, into the corresponding messages is not stated explicitly. We believe it should be.

98

IDLE

TRANSFER.
request

out_SQ :=
out_SQ + 1

set timer
T 101

Terminal
Capability

Set

AWAITING
RESPONSE

IDLEIDLE

Terminal
Capability

Terminal
Capability

SetAck SetReject

0

0 0

1

RESPONSE
AWAITING 1

IDLE
0

IDLE
0

IDLE
0

AWAITING
RESPONSE

1

Terminal
Capability

SetAck

Terminal
Capability
SetReject

timer expiry

T 101TerminalCapability
SetAck.sequenceNumber

= out_SQ
FALSE

FALSE

TRUE

reset timer
T 101

TRANSFER.
confirm

TerminalCapabilitySet
Reject.sequenceNumber

= out_SQ

CAUSE =
TerminalCapability

SetReject.cause

reset timer
T 101

REJECT.
indication

Terminal
Capability
SetRelease

REJECT.
indication

SOURCE =
PROTOCOL

TRUE

b. Outgoing CESE SDL (2)

IDLE

AWAITING
RESPONSE

IDLE

Terminal
Capability

Terminal
Capability

Set SetRelease

0

0

1

TRANSFER.
indication

in_SQ =
TerminalCapability

Set.sequenceNumber

RESPONSE
AWAITING 1

IDLE
0

IDLE
0

REJECT.
indication

TRANSFER.
indication

SOURCE =
PROTOCOL

IDLE
0

Terminal
Capability

Terminal
Capability

in_SQ =
TerminalCapability

Set.sequenceNumber

TRANSFER.
response

Terminal
Capability

SetAck

REJECT.
request

Terminal
Capability
SetReject

SetRelease Set

REJECT.
indication

AWAITING
RESPONSE

1

d. Incoming CESE SDL (2)

a. Outgoing CESE SDL (1) c. Incoming CESE SDL (1)

F
ig
.
1
.
T
h
e
o
u
tg
o
in
g
C
E
S
E
a
n
d
in
co
m
in
g
C
E
S
E
S
D
L
s

99

3 Modelling and Analysing the CES Protocol

It is required by recommendation H.323 that the H.245 control channel of an H.323 system is a reliable

channel, e.g. a TCP connection is used for an H.323 system on the Internet. Since the application of

H.245 to H.323 systems is our interest, in this section we model and investigate this protocol operating

over a reliable transport layer.

3.1 Modelling Assumptions

3.1.1 Transport Medium

According to H.323 [6], a reliable transport channel must preserve sequence, be error-free, and provide

ow controlled transmission of messages. Our CPN model re
ects this requirement.

3.1.2 Interpretation of the CES Protocol De�nition

The CPN model is based on the SDL diagrams shown in Fig. 1, modi�ed according to our interpre-

tations explained in Section 2.3.

3.2 Conventions Used in the CPN Model

Figure 2 (ignoring the dashed part attached to transition TRANSFERreq and the guard of this transi-

tion) is the CPN model created for the CES protocol when the transport channel is reliable. We call

it the \original model". In this model, we use the following conventions:

{ Service primitives are modelled as transitions. The rules for naming the transitions from the

corresponding primitive names are: the general primitive names are preserved, e.g. TRANSFER

still appears as TRANSFER in the corresponding transition names; the \." in the name is omitted;

the type names of primitives are abbreviated to their �rst 3 letters (e.g. \request" becomes

\req"); when modelling REJECT.indication, two separate transitions are used to distinguish

the SOURCE of rejection, so following the type name, a capital letter \U" (USER), or \P"

(PROTOCOL), is attached; to distinguish primitives with the same name but at di�erent ends

(e.g. REJECT.indication), the suÆx \out" is added to a transition name to show that it is at the

outgoing end, and suÆx \in" for the incoming end.

{ All the message names are abbreviated. Referring to Table 2, the pre�x \Terminal" is omitted

from all the message names, \Capability" is abbreviated to \Cap" and \Set" is omitted from the

names of all the messages except the TerminalCapabilitySet message.

{ The states' names of the outgoing and incoming CESEs are modi�ed. IDLE is changed to lower

case representation \idle" and AWAITING RESPONSE is simpli�ed as \awaiting" in lower case.

3.3 The CPN Model of the CES Protocol

This section introduces the original CPN model of the CES protocol (Fig. 2) in detail. In the following

descriptions, all the names of the transitions, places, variables and functions used in this model are

highlighted by using the courier font. This model is composed of four parts described below.

3.3.1 Declarations

At the bottom of Fig. 2 is the declaration node of this CPN. We introduce these declarations in the

order they are declared. Colour st de�nes all the possible states of the outgoing and incoming CESEs,

and colour sequenceNum speci�es the range of the sequenceNumber �eld of the CES messages, as well

as the range of the value of state variables out SQ and in SQ. The Cartesian product of sequenceNum

and st forms the colour states. This colour is used to type the state places outgoingCESE and

incomingCESE. Colour outM de�nes the messages that can be sent to the incoming CESE. Colour

outMessages combines sequenceNum with outM. Colour outMessage queue forms a list of outgoing

100

outgoingCESE
states

1‘(0, idle)

incomingCESE
states

1‘(0,idle)

revChannel

inMessage_queue

1‘[]

forChannel

outMessage_queue

1‘[]

TRANSFERcon

[iSQ=oSQ]

TRANSFERind

REJECTindUout

[iSQ=oSQ]

TRANSFERres

TRANSFERreq

[n<2]

REJECTreq

REJECTindPin

color st = with idle | idlT | awaiting ; color sequenceNum = int with 0..255;
color states = product sequenceNum*st; color outM = with CapSet | CapRelease;
color outMessages = product sequenceNum*outM; color outMessage_queue = list outMessages;
color inM = with CapAck | CapReject; color inMessages = product sequenceNum*inM;
color inMessage_queue = list inMessages;
var mO : outMessage_queue; var mIn: inMessage_queue; var inMes : inM; var oSQ, iSQ : sequenceNum;
fun incMod256 (oSQ) = (oSQ+1) mod 256;

REJECTindUin

DISCARD

[oSQ<>iSQ]

IGNOREout

REJECTindPout IGNOREin

TRANSFERindTcounter

count

1‘0

mO^^[(incMod256(oSQ), CapSet)]
(oSQ, CapSet)::mO

(oSQ, awaiting)

(oSQ, idle)

(oSQ, awaiting)

(oSQ, idle)

(iSQ, CapReject)::mIn

(iSQ, CapAck)::mIn

mIn^^[(iSQ, CapReject)]

mIn^^[(iSQ, CapAck)]

(iSQ,awaiting)

(iSQ,idle)

(iSQ, awaiting)

(iSQ,idle)

(iSQ, awaiting)

(iSQ,idle)

(oSQ, CapSet)::mO

mO

(oSQ, awaiting)
(oSQ,idlT)

mO

(incMod256(oSQ), awaiting)

(oSQ, idle)

(oSQ, idle)

(oSQ, awaiting)

(iSQ, inMes)::mIn
(iSQ, inMes)::mIn

(oSQ, idle)

mO^^[(0,CapRelease)]

mO

mIn
mIn

mIn

mIn

(iSQ,idle) (oSQ, awaiting)

(iSQ,idle)

mInmIn

mO

(0,CapRelease)::mO
(0,CapRelease)::mO

mO

(iSQ, awaiting)

mO

(iSQ,idlT)

(iSQ, awaiting)

n

n+1

Fig. 2. CPN model of the CES protocol with reliable transport layer

messages and is used to type the place forChannel. Similarly, colour inMessage queue types place

revChannel.

Variables mO and mIn range over outMessage queue and inMessage queue respectively. Variable

inMes has colour inM, and is used to discard messages from place revChannel (transitions IGNOREout

and DISCARD). Variables oSQ and iSQ are integers within the range of the sequenceNumber �elds of

the CES messages and the range of the CESEs' state variables. Lastly function incMod256(oSQ)

increments the value of variable oSQ by 1, modulo 256.

3.3.2 The Outgoing CESE

The left part of this CPN describes the outgoing CES protocol entity. Place outgoingCESEmodels the

states of the CESE which control the sequence of operations of the CESE, including the state variable,

out SQ. We de�ne the colour set of this place as states. Every time a TRANSFER.request primitive

is issued by the user (i.e. TRANSFERreq occurs), function incMod256 increments oSQ (which represents

the previous value of out SQ) by 1, modulo 256, and writes the result into the sequenceNumber �eld

of message CapSet. Then this message is concatenated to the tail of the queue in place forChannel.

The value of out SQ stored in place outgoingCESE is incremented by 1, modulo 256, and the state

of outgoingCESE is updated to awaiting when transition TRANSFERreq occurs.

There is no sequenceNumber �eld de�ned for message TerminalCapabilitySetRelease. In order

not to make the type of place forChannel complicated, we still use a pair (i.e. (0, CapRelease)) to

represent this message, but set the �rst item of the pair to 0 in all cases.

Transitions TRANSFERreq, TRANSFERcon, REJECTindUout and REJECTindPout correspond to the

service primitives at the outgoing end. On their occurrence, a corresponding CES message will be

sent or received by the outgoing CESE. Also, transition REJECTindPoutmodels the behaviour of the

timer implicitly. The guards attached to transitions, TRANSFERcon and REJECTindUout, ensure that

the CESE accepts a response with the right sequence number. Transitions IGNOREout and DISCARD

are used to discard a message received when the outgoing CESE is not in the right state (IGNOREout)

or when the message received has a di�erent sequence number from that being expected by the

outgoing CESE (DISCARD). Each transition in this part corresponds to a SDL state transition (i.e. a

SDL diagram branch leading from one state to another state) in Fig. 1.

101

3.3.3 The Underlying Transport Medium

The two places in the middle, forChannel and revChannel, model the underlying transport medium,

over which the CES messages are transmitted. We have assumed that the channel is reliable, so the

two directions of transmission are modelled as two independent FIFO (First In First Out) queues

without message loss or duplication. Place forChannel models the FIFO queue for messages
owing

from the outgoing CESE to the incoming CESE. Similarly, place revChannel represents the FIFO

queue from the incoming CESE to the outgoing CESE.

3.3.4 The Incoming CESE

The right hand side of this CPN models the behaviour of the incoming CESE. Place incomingCESE

corresponds to the state of the incoming CESE, including the state variable in SQ.

Transitions REJECTreq and TRANSFERres correspond to primitives REJECT.request and TRANS-

FER.response respectively. Transition REJECTindPinmodels a REJECT.indication with the source of

rejection being PROTOCOL (corresponding to a timeout at the outgoing end). Transition IGNOREin

is used to ignore a CapRelease message received when the incoming CESE is IDLE.

According to the right most SDL state transition of Fig. 1.d, when the incoming CESE is in

the AWAITING RESPONSE state and another TerminalCapabilitySet message is received, it will

terminate the previous exchange by issuing a REJECT.indication primitive to its user. Immediately

following this, a TRANSFER.indication primitive is issued by the incoming CESE, and it returns to

the AWAITING RESPONSE state.

Since the occurrences of service primitives are considered as separate atomic events, we model this

SDL state transition as two CPN transitions, REJECTindUin and TRANSFERindT. They correspond

to the two primitives, REJECT.indication (with parameter USER) and TRANSFER.indication, in

this SDL state transition (Fig. 1.d). We introduce a temporary state idlT for the incoming CESE.

Once transition REJECTindUin occurs, the CESE will move to idlT. Immediately following this, only

transition TRANSFERindT can occur at the incoming side, which models the SDL state transition

faithfully. Finally, when it is IDLE, the incoming CESE can issue a TRANSFER.indication primitive

when it receives a TerminalCapabilitySet message, which is modelled as transition TRANSFERind.

3.4 State Space Analysis

It is not hard to see that the original model in Fig. 2 has an in�nite state space. This is caused

by the unlimited occurrence of the transition sequence TRANSFERreq followed by REJECTindPout

(unlimited timeouts). Therefore an in�nite number of messages can be put into place forChannel

and subsequently into revChannel, thus producing an in�nite state space.

To apply state space analysis to this model, some measures to limit the size of the state space

are needed. We do this in two ways. The �rst is to limit the queue length of places forChannel

and revChannel, and the second is to limit the number of times transitions TRANSFERreq and/or

REJECTindPout occur. Both methods have inadequacies. Limiting queue length will prevent us from

obtaining some possible sequences. For example if the queue length of place forChannel is set to

1, then transition REJECTindPout can not occur immediately after transition TRANSFERreq, because

the queue is occupied by message CapSet. In fact, transition REJECTindPout should be allowed to

occur as long as the outgoing CESE is in the AWAITING RESPONSE state. In practice, however,

it is seldom that a timeout can occur before the message has been received by the peer end. Even

so, to obtain more general analysis results, in the following investigation in Section 3.4.1, we assume

that the queue length of places forChannel and revChannel is 3. This will include the rare situation

where a timeout can occur before the CapSet message is received by the incoming CESE, which may

happen when the network is congested.

Limiting the occurrence times of transitions TRANSFERreq and/or REJECTindPout will not a�ect

the sequence, but another problem arises. If we limit the times of occurrence to n and observe the

properties of the protocol, we would need a proof by induction to generalise the results for arbitrary

n. Nevertheless these methods are very useful when we are interested in investigating some particular

behaviour of the protocol, and generally, they are complementary. Additionally, to reduce the size of

the state space and to simplify its analysis, the sequence number size also needs to be reduced.

102

The initial marking of the CPN model is shown in Fig. 2. The outgoing and incoming CE-

SEs are IDLE and the initial values of the state variables are both \0" (M0(outgoingCESE) =

M0(incomingCESE) = 1`(0; idle)). Both forChannel and revChannel are marked by the empty

list indicating that both channels are empty.

3.4.1 Analysis of Model A

Firstly, we assume that the allowable range of the sequence numbers is f0,1g (modulo 2 arithmetic

instead of 256). This is the smallest range we can use without losing the generality of di�erent sequence

numbers. Then we limit the queue length of places forChannel and revChannel to 3. By doing so, we

allow the timeout to occur before the incoming CESE receives the CapSet message. Also, because the

range of the sequence numbers is f0,1g, if it is possible for 3 messages to exist in place forChannel

or revChannel at the same time, we model the case of the wrapping of sequence numbers, which can

be observed by examining the markings of these two places (For example, in Fig. 3, from the marking

of node 148, we observe that a CapAck message and a CapReject message with the same sequence

number \1" coexist in place revChannel (i.e. revCh). Explicit observations like this will facilitate the

analysis later).

This simpli�ed model is called \Model A" in the following. We use the OG (Occurrence Graph)

tool of Design/CPN [2] to obtain and analyse the state space of this model.

Table 3 shows part of the state space report of the limited model. The �rst part of this table shows

the statistics for the OG and the SCC (Strongly Connected Component) graph. The OG has 4828

nodes and 13480 arcs, and took 54 seconds to calculate using a PC with an Intel Celeron 500MHz

CPU and 128MB of RAM. There is only one node for the SCC graph, which implies that in the OG,

every node is reachable from every other node. This is consistent with the Home Properties which

show that every node in the OG is a home marking.

Table 3. Part of the state space report for Model A

Statistics

Home
Properties

Liveness
Properties

Occurrence Graph SCC Graph
 Nodes: 4828
 Arcs: 13480
 Secs: 54
 Status: Full

Nodes: 1
Arcs: 0
Secs: 5

Home Markings: All

Dead Markings: None
Dead Transition Instances: None
Live Transition Instances: All

The Liveness Properties tell us that there is no dead marking, no dead transition instance and all

transitions are live transition instances. These properties generally are expected for a protocol.

However, for this model, we expect transitions REJECTindUin and TRANSFERindT to be dead. From

Fig. 2, we see that to enable transition REJECTindUin, we need a CapSet message in the forChannel

while the incomingCESE is awaiting. This means that two successive CapSet messages have to be

sent by the outgoing CESE, where the �rst is used to bring the incomingCESE to be awaiting (via

the occurrence of TRANSFERind), and after this, the latter is used to enable transition REJECTindUin.

However, if the protocol performs as expected, and the underlying transport medium is reliable, it

is not possible for two CapSet messages to be sent successively without receiving a response from the

incoming CESE. We know that the outgoing CESE can send a CapSetmessage either when it receives

an expected response, or when the timer expires before the response is received (i.e. REJECTindPout

occurs). When the outgoingCESE receives an expected response, the incomingCESE must be idle.

So even if the incoming CESE receives a CapSet message at this time, REJECTindUin can not be

enabled. When there is a timeout at the outgoing side, the incomingCESE may be awaiting, but

a CapRelease message has to be sent to the forChannel �rst, before another CapSet can be sent.

Then if the incomingCESE is awaiting, this CapRelease message will enable REJECTindPin, and its

occurrence will return the incomingCESE to idle. If the incomingCESE is idle, then the occurrence

103

of IGNOREin will discard this CapRelease message and the incomingCESE will stay in idle. Hence,

transition REJECTindUin can not be enabled in either case.

Moreover, transition TRANSFERindT can be enabled only after REJECTindUin occurs so that the

incomingCESE can be in the temporary state idlT. Thus we would have expected that transitions

REJECTindUin and TRANSFERindT would not have been enabled at all in this model, and should have

been reported as dead transition instances. From the above analysis it is obvious that this is not

related to the limitation of the queue length of places forChannel and revChannel. We checked the

model with the protocol speci�cation given in H.245, and believe that it re
ects the speci�cation.

So we think this unexpected result indicates that some inadequacies or errors exist in this protocol

de�nition.

3.4.2 Further Analysis of Model A

The OG was analysed in more detail, and found the unexpected states that cause this problem,

and some other unexpected occurrence sequences. Figure 3 shows a part of the OG that includes

some examples of the unexpected sequences showing the wrong operation of the protocol. In this

diagram, all the transition and place names are abbreviated. Place outgoingCESE and incomingCESE

are named as \outCESE" and \inCESE" respectively, and \forCh" and \revCh" are the abbreviations

of place names forChannel and revChannel. The abbreviated transition names will be annotated

immediately following the transition names when they �rst appear in the following text.

Starting from node 1, i.e. the initial state of this model, transition TRANSFERreq (Treq) occurs,

state variable out SQ is increased from 0 to 1, and a CapSet message with sequence number 1 is

sent to the forChannel. Then TRANSFERind (Tind) occurs followed by TRANSFERres (Tres) at the

incoming side, so a CapAck message with sequence number 1 is sent back via the revChannel (node

5). Before the outgoing CESE receives this message, the timer expires, transition REJECTindPout

(RindPo) occurs and a CapRelease message is sent to the forChannel. Because the incomingCESE

is idle, this release message is ignored (IGNOREin, i.e. IGi in the OG).

Now a new TRANSFERreq is issued and the procedure is just the same as before, but the sequence

numbers have been changed. The response message is created by the incoming CESE, and the timer

expires again before this message is received by the outgoing side. At this stage there are two re-

sponse messages with di�erent sequence numbers in the revChannel, as shown in node 68. A new

TRANSFERreq occurs and the outgoing CESE is now waiting for the response message with sequence

number 1 again, and the sequence number for the newly sent CapSet message also is 1 (node 87).

Then something interesting happens. If we look at the right branch of this diagram �rst, it describes

one of the possible situations where the outgoing CESE takes the �rst item in the revChannel and

transition TRANSFERcon (Tcon) occurs. This primitive con�rms the wrong capabilities. The CapAck

message with sequence number 1 is the response to the CapSetmessage (with sequence number 1) sent

in the �rst round of the sequence numbers (i.e. the CapSet message shown in node 2). The outgoing

CESE can not identify the wrong response and treats this old response as the current one. Thus the

user may receive an incorrect acknowledgment. Not only that, because TRANSFERreq can occur again,

two successive CapSet messages can exist in the forChannel (node 142). Now TRANSFERind occurs

and awaiting is in place incomingCESE (node 185), so that it is possible for transitions REJECTindUin

(RindUi) and TRANSFERindT (TindT) to occur. Then the outgoing CESE again delivers an old CapAck

when TRANSFERcon occurs.

Similarly, for the left branch starting from node 87, the outgoing CESE also takes an old CapAck,

and in this case, it is even worse. As shown in node 148, the corresponding (correct) response in the

revChannel is a negative response (i.e. the last element of the queue, which was concatenated to the

queue when REJECTreq (Rreq) occurred), but when TRANSFERcon occurs, the outgoing CESE takes

the �rst element in the queue which is a positive response. This means that although the incoming

end did not accept the capabilities of the outgoing end, the outgoing end believes that the incoming

end has accepted its capabilities. This could cause a failure of the associated multimedia session, and

is thus a serious error.

From the analysis above, we can conclude that this protocol could fail if wrapping of sequence

numbers (modulo 2) can happen, while 2 acknowledgments are still outstanding (not yet received).

This could occur when the timer is set too short and/or the range of the sequence numbers is not big

104

1
8:1

1
outCESE: 1‘(0,idle)
inCESE: 1‘(0,idle)
revCh: 1‘[]
forCh: 1‘[]

2
5:2

2
outCESE: 1‘(1,awaiting)
inCESE: 1‘(0,idle)
revCh: 1‘[]
forCh: 1‘[(1,CapSet)]

3
4:3

3
outCESE: 1‘(1,awaiting)
inCESE: 1‘(1,awaiting)
revCh: 1‘[]
forCh: 1‘[]

5
3:2

5
outCESE: 1‘(1,awaiting)
inCESE: 1‘(1,idle)
revCh: 1‘[(1,CapAck)]
forCh: 1‘[]

10
6:3

10
outCESE: 1‘(1,idle)
inCESE: 1‘(1,idle)
revCh: 1‘[(1,CapAck)]
forCh: 1‘[(0,CapRelease)]

16
9:2

16
outCESE: 1‘(1,idle)
inCESE: 1‘(1,idle)
revCh: 1‘[(1,CapAck)]
forCh: 1‘[]

24
6:3

24
outCESE: 1‘(0,awaiting)
inCESE: 1‘(1,idle)
revCh: 1‘[(1,CapAck)]
forCh: 1‘[(0,CapSet)]

33
4:4

33
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,awaiting)
revCh: 1‘[(1,CapAck)]
forCh: 1‘[]

41
3:2

41
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,idle)
revCh: 1‘[(1,CapAck),(0,CapAck)]
forCh: 1‘[]

53
6:3

53
outCESE: 1‘(0,idle)
inCESE: 1‘(0,idle)
revCh: 1‘[(1,CapAck),(0,CapAck)]
forCh: 1‘[(0,CapRelease)]

68
9:2

68
outCESE: 1‘(0,idle)
inCESE: 1‘(0,idle)
revCh: 1‘[(1,CapAck),(0,CapAck)]
forCh: 1‘[]

87
6:3

87
outCESE: 1‘(1,awaiting)
inCESE: 1‘(0,idle)
revCh: 1‘[(1,CapAck),(0,CapAck)]
forCh: 1‘[(1,CapSet)]

113
4:4

113
outCESE: 1‘(1,awaiting)
inCESE: 1‘(1,awaiting)
revCh: 1‘[(1,CapAck),(0,CapAck)]
forCh: 1‘[]

148
1:2

148
outCESE: 1‘(1,awaiting)
inCESE: 1‘(1,idle)
revCh: 1‘[(1,CapAck),(0,CapAck),(1,CapReject)]
forCh: 1‘[]

177
9:2

177
outCESE: 1‘(1,idle)
inCESE: 1‘(1,idle)
revCh: 1‘[(0,CapAck),(1,CapReject)]
forCh: 1‘[]

111
9:3

111
outCESE: 1‘(1,idle)
inCESE: 1‘(0,idle)
revCh: 1‘[(0,CapAck)]
forCh: 1‘[(1,CapSet)]

142
6:3

142
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,idle)
revCh: 1‘[(0,CapAck)]
forCh: 1‘[(1,CapSet),(0,CapSet)]

185
5:5

185
outCESE: 1‘(0,awaiting)
inCESE: 1‘(1,awaiting)
revCh: 1‘[(0,CapAck)]
forCh: 1‘[(0,CapSet)]

225
4:4

225
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,awaiting)
revCh: 1‘[(0,CapAck)]
forCh: 1‘[]

281
8:3

281
outCESE: 1‘(0,idle)
inCESE: 1‘(0,awaiting)
revCh: 1‘[]
forCh: 1‘[]

235
3:3

235
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,idlT)
revCh: 1‘[(0,CapAck)]
forCh: 1‘[]

Treq

Tind

Tres

RindPo

IGi

Treq

Tind

Tres

RindPo

IGi

Treq

Tind

Rreq

Tcon

Tcon

Treq

Tind

RindUi

Tcon

TindT

Fig. 3. Partial OG of Model A showing faulty behaviour

105

enough. In the example shown in Fig. 3, the timer is set too short for the given range of sequence

numbers, and it expires consecutively 2 times after the �rst TerminalCapabilitySet message has been

sent. Then, as shown in node 87, the third TerminalCapabilitySet messages is sent, and the wrapping

of sequence numbers occurs when there are two outstanding responses in the revChannel. Thus it

makes possible for the outgoing CESE to mistake the old responses for the expected ones.

3.4.3 Analysis of Model B

To further analyse the behaviour of the protocol, we limit the maximum number of times TRANSFERreq

can occur to 2. Then only two sequence numbers, 1 and 0, can occur, and only occur once for each, so

wrapping of sequence numbers is not possible. We add a counter to the original model, which is shown

as the dashed part connected to transition TRANSFERreq (Fig. 2). The colour set of the place counter

is count, which is de�ned as the set f0,1,2g. The n appearing on the dashed arcs is a variable of

type count. The declaration of colour count and variable n is not included in the declaration node

of the original model. Also, a guard [n<2] is added to transition TRANSFERreq to check the value of

the counter. Furthermore, we do not limit the queue size of places, forChannel and revChannel, to

obtain all the sequences and states in this situation. We name this model, \Model B".

Table 4 is part of the state space report for Model B, Fig. 4 is the OG obtained and Table 5 is the

state table showing all the node information of the OG. All the names of the transitions and places

in the OG and state table are abbreviated as in Fig. 3, with four more abbreviations: \RindUo",

\RindPi"\IGo" and \DIS". \RindUo" represents REJECTindUout, \RindPi" is the abbreviation of

REJECTindPin, \IGo" is for IGNOREout and \DIS" stands for DISCARD. The OG for Model B is much

smaller, comprising 57 nodes and 120 arcs. The SCC graph has the same size as that of the OC,

which indicates that there is no in�nite occurrence sequence of transitions, i.e. no loops in the OG.

Table 4. Part of the state space report for Model B

Statistics

Home
Properties

Liveness
Properties

Occurrence Graph SCC Graph
 Nodes: 57
 Arcs: 120
 Secs: 0
 Status: Full

Nodes: 57
Arcs: 120
Secs: 0

Home Markings: [36]

Dead Markings: [36]
Dead Transition Instances: REJECTindUin & TRANSFERindT
Live Transition Instances: None

From the Home Properties we see that there is only one home marking, i.e. node 36 in the OG,

which is also the only dead marking of this model. This implies that all sequences terminate at this

state and we know from Table 5 that this state is the expected terminal state. In this state both

the outgoing and incoming CESEs are IDLE, no message is left in either channel and the counter

has reached its limit. Moreover, Table 4 shows that transitions REJECTindUin and TRANSFERindT

no longer occur in this case. This is consistent with our expectation before and also implies that if

the transport layer is reliable and there is no possibility of sequence number wrapping, these two

transitions cannot occur.

3.4.4 Further Analysis of Model B

By investigating the full OG (Fig. 4) of Model B, we can see that this protocol works as desired when

there is only one round of sequence numbers, since there is no confusion of sequence numbers during

the running of the protocol. Firstly, in Fig. 4, the sequence highlighted (bold) shows the two successful

capability exchanges. This sequence shows that, under the limitation of Model B, it is possible for

this protocol to carry out consecutively successful capability exchanges.

Secondly, when a timeout (i.e. transition REJECTindPout) occurs, that is to say, the outgoing side

wants to terminate the current exchange before it recieves the response, this protocol can operate

correctly as well.

106

1
0:1

2
1:2

3
1:3

4
1:2

7
2:4

8
1:2

5
1:2

6
1:2

12
2:4

13
1:1

10
2:3

11
2:3

9
6:1

20
2:315

2:3
18
2:3

14
5:2

16
2:2

19
1:2

17
1:2

24
2:2

26
2:2

22
5:1

27
2:3

23
3:2

25
2:3

21
3:3

35
1:4

34
2:2

31
3:1

33
1:4

32
2:2

30
4:3

28
3:2

29
3:2

43
1:2

44
1:2

42
2:4

40
1:2

41
1:2

39
2:4

37
4:2

38
4:2

36
8:0

52
2:2

51
2:2

53
1:1

49
2:2

48
2:2

50
1:1

45
2:1

47
3:1

46
3:1

57
1:1

56
1:1

55
1:1

54
1:1

Treq

Tind RindPo

Tind TreqTres Rreq RindPo

Tind RindPo

Tres

Treq
Rreq

RindPi
RindUo

RindPo

Tcon
RindPo

Tind

Tres

Rreq

RindPi RindPo

Treq
IGo

IGiTreq

IGoIGi

Treq

Tres

Rreq

RindPi

Treq

IGo

DIS RindPo

IGi

Treq

IGo

Treq

IGi

DIS

RindPo

IGi

Tind

RindPo

Tind

DIS

RindPo

IGo

IGi
Tind

DIS

RindPo

IGo

IGi

RindPo

IGi

Tind

Tres Rreq

RindPo

Tres

Rreq

DIS

RindPo

Tind

IGo

Tres

Rreq

DIS

RindPo

Tind

IGo

IGi

Tres Rreq

RindPi

RindUo

RindPo

Tcon

RindPo
DIS

RindPo

DIS

RindPo

Tres

Rreq

RindPi

IGo

DIS

RindPo

DIS

RindPo

Tres

Rreq

RindPi

IGo

IGo

IGi

IGo

IGi

IGo

IGo

IGi

IGo

IGiIGo

IGo

IGi

IGo

IGi

IGo

IGo

IGi

IGo

IGo

IGo

IGo

Fig. 4. The OG of Model B

107

Table 5. State table of Model B

NO. counter outCESE inCESE forCh revCh

1 1`0 1`(0,idle) 1`(0,idle) 1`[] 1`[]

2 1`1 1`(1,awaiting) 1`(0,idle) 1`[(1,CapSet)] 1`[]

3 1`1 1`(1,awaiting) 1`(1,awaiting) 1`[] 1`[]

4 1`1 1`(1,idle) 1`(0,idle) 1`[(1,CapSet),(0,CapRelease)] 1`[]

5 1`1 1`(1,awaiting) 1`(1,idle) 1`[] 1`[(1,CapAck)]

6 1`1 1`(1,awaiting) 1`(1,idle) 1`[] 1`[(1,CapReject)]

7 1`1 1`(1,idle) 1`(1,awaiting) 1`[(0,CapRelease)] 1`[]

8 1`2 1`(0,awaiting) 1`(0,idle) 1`[(1,CapSet),(0,CapRelease),(0,CapSet)] 1`[]

9 1`1 1`(1,idle) 1`(1,idle) 1`[] 1`[]

10 1`1 1`(1,idle) 1`(1,idle) 1`[(0,CapRelease)] 1`[(1,CapAck)]

11 1`1 1`(1,idle) 1`(1,idle) 1`[(0,CapRelease)] 1`[(1,CapReject)]

12 1`2 1`(0,awaiting) 1`(1,awaiting) 1`[(0,CapRelease),(0,CapSet)] 1`[]

13 1`2 1`(0,idle) 1`(0,idle) 1`[(1,CapSet),(0,CapRelease),(0,CapSet), 1`[]

(0, CapRelease)]

14 1`2 1`(0,awaiting) 1`(1,idle) 1`[(0,CapSet)] 1`[]

15 1`2 1`(0,awaiting) 1`(1,idle) 1`[(0,CapRelease),(0,CapSet)] 1`[(1,CapAck)]

16 1`1 1`(1,idle) 1`(1,idle) 1`[(0,CapRelease)] 1`[]

17 1`1 1`(1,idle) 1`(1,idle) 1`[] 1`[(1,CapAck)]

18 1`2 1`(0,awaiting) 1`(1,idle) 1`[(0,CapRelease),(0,CapSet)] 1`[(1,CapReject)]

19 1`1 1`(1,idle) 1`(1,idle) 1`[] 1`[(1,CapReject)]

20 1`2 1`(0,idle) 1`(1,awaiting) 1`[(0,CapRelease),(0,CapSet),(0,CapRelease)] 1`[]

21 1`2 1`(0,awaiting) 1`(0,awaiting) 1`[] 1`[]

22 1`2 1`(0,idle) 1`(1,idle) 1`[(0,CapSet),(0,CapRelease)] 1`[]

23 1`2 1`(0,awaiting) 1`(1,idle) 1`[(0,CapRelease),(0,CapSet)] 1`[]

24 1`2 1`(0,idle) 1`(1,idle) 1`[(0,CapRelease),(0,CapSet),(0,CapRelease)] 1`[(1,CapAck)]

25 1`2 1`(0,awaiting) 1`(1,idle) 1`[(0,CapSet)] 1`[(1,CapAck)]

26 1`2 1`(0,idle) 1`(1,idle) 1`[(0,CapRelease),(0,CapSet),(0,CapRelease)] 1`[(1,CapReject)]

27 1`2 1`(0,awaiting) 1`(1,idle) 1`[(0,CapSet)] 1`[(1,CapReject)]

28 1`2 1`(0,awaiting) 1`(0,idle) 1`[] 1`[(0,CapAck)]

29 1`2 1`(0,awaiting) 1`(1,idle) 1`[] 1`[(0,CapReject)]

30 1`2 1`(0,idle) 1`(0,awaiting) 1`[(0,CapRelease)] 1`[]

31 1`2 1`(0,idle) 1`(1,idle) 1`[(0,CapRelease),(0,CapSet),(0,CapRelease), 1`[]
(0,CapRelease)]

32 1`2 1`(0,idle) 1`(1,idle) 1`[(0,CapSet),(0,CapRelease)] 1`[(1,CapAck)]

33 1`2 1`(0,awaiting) 1`(0,awaiting) 1`[] 1`[(1,CapAck)]

34 1`2 1`(0,idle) 1`(1,idle) 1`[(0,CapSet),(0,CapRelease)] 1`[(1,CapReject)]

35 1`2 1`(0,awaiting) 1`(0,awaiting) 1`[] 1`[(1,CapReject)]

36 1`2 1`(0,idle) 1`(0,idle) 1`[] 1`[]

37 1`2 1`(0,idle) 1`(0,idle) 1`[(0,CapRelease)] 1`[(0,CapAck)]

38 1`2 1`(0,idle) 1`(0,idle) 1`[(0,CapRelease)] 1`[(0,CapReject)]

39 1`2 1`(0,idle) 1`(0,awaiting) 1`[(0,CapRelease)] 1`[(0,CapAck)]

40 1`2 1`(0,awaiting) 1`(0,idle) 1`[] 1`[(1,CapAck),(0,CapAck)]

41 1`2 1`(0,awaiting) 1`(0,idle) 1`[] 1`[(1,CapAck),(0,CapReject)]

42 1`2 1`(0,idle) 1`(0,awaiting) 1`[(0,CapRelease)] 1`[(1,CapReject)]

43 1`2 1`(0,awaiting) 1`(0,idle) 1`[] 1`[(1,CapReject),(0,CapAck)]

44 1`2 1`(0,awaiting) 1`(0,idle) 1`[] 1`[(1,CapReject),(0,CapReject)]

45 1`2 1`(0,idle) 1`(0,idle) 1`[(0,CapRelease)] 1`[]

46 1`2 1`(0,idle) 1`(0,idle) 1`[] 1`[(0,CapAck)]

47 1`2 1`(0,idle) 1`(0,idle) 1`[] 1`[(0,CapReject)]

48 1`2 1`(0,idle) 1`(0,idle) 1`[(0,CapRelease)] 1`[(1,CapAck),(0,CapAck)]

49 1`2 1`(0,idle) 1`(0,idle) 1`[(0,CapRelease)] 1`[(1,CapAck),(0,CapReject)]

50 1`2 1`(0,idle) 1`(0,idle) 1`[] 1`[(1,CapAck)]

51 1`2 1`(0,idle) 1`(0,idle) 1`[(0,CapRelease)] 1`[(1,CapReject),(0,CapAck)]

52 1`2 1`(0,idle) 1`(0,idle) 1`[(0,CapRelease)] 1`[(1,CapReject),(0,CapReject)]

53 1`2 1`(0,idle) 1`(0,idle) 1`[] 1`[(1,CapReject)]

54 1`2 1`(0,idle) 1`(0,idle) 1`[] 1`[(1,CapAck),(0,CapAck)]

55 1`2 1`(0,idle) 1`(0,idle) 1`[] 1`[(1,CapAck),(0,CapReject)]

56 1`2 1`(0,idle) 1`(0,idle) 1`[] 1`[(1,CapReject),(0,CapAck)]

57 1`2 1`(0,idle) 1`(0,idle) 1`[] 1`[(1,CapReject),(0,CapReject)]

108

If a timeout occurs after the response has been sent out by the incoming CESE, then the outgoing

CESE can recognise the expired response correctly and discard it. Also, the CapRelease message

sent after the occurrence of REJECTindPout can be ignored by the incoming CESE. For example,

when the sequence number is 1 (i.e. the �rst capability exchange), nodes 5 and 6 (Fig. 4) are the

states where the response has been sent out by the incoming CESE and the outgoing CESE is

waiting for the response. Following these two states, if REJECTindPout occurs, the system transits

to state 10 or 11 respectively. The deferred responses eventually are discarded (when the CESE is

AWAITING RESPONSE) or ignored (when the CESE is IDLE) properly by the outgoing CESE

(via the occurrences of DISCARD or IGNOREout). Also, the CapRelease messages are ignored by the

occurrence of IGNOREin. Similarly, nodes 28 and 29 are the two states where the sequence number is

0, the response has been sent out and the outgoing CESE is waiting for them. If we follow the OG

carefully and refer to the state table, we can also see that, if REJECTindPout occurs, these responses

can also be discarded or ignored properly.

If a timeout occurs and the incoming CESE has received a TerminalCapabilitySetRelease message

in time, i.e. before it receives the response from its user, then transition REJECTindPin can occur to

inform its user to terminate the current exchange. Therefore no response is generated by the incoming

side. The sequence accompanied with a dashed line illustrates two successive exchanges which are

terminated by both ends.

In general, we can conclude from the OG that, under the limitation of Model B, this protocol can

perform well.

4 The CES Protocol Operating over an Unreliable Transport Layer

Although in an H.323 system the CES protocol operates over a reliable H.245 control channel, as

modelled and analysed above, it is interesting as well to investigate this protocol's behaviour when

the transport medium is not reliable. For example, REJECTindUin and TRANSFERindT of the Model

B discussed in Sections 3.4.3 and 3.4.4 are dead transitions, are they also dead transitions when the

underlying medium is unreliable ? In other words, why the protocol function modelled by these two

transitions is designed ?

As speci�ed in H.323, an unreliable transport medium may have message loss, duplication, and

the ordering of the messages sent may not be preserved. In the following, we will discuss the CPN

model and analyse the properties of the CES protocol using such an unreliable transport medium.

Also, the assumption regarding the CES protocol de�nition made in Section 3.1.2 is also applicable

to the CPN model in this section.

4.1 Modi�cations of the CPN Model

In the case of an unreliable transport medium, the CPN model of both the outgoing CESE and the

incoming CESE is still the same as that of the reliable medium case. To model the unreliable transport

medium, we modify the middle part of the CPN model of Fig. 2 (including the arcs connecting places

forChannel and revChannel and the outgoing CESE and incoming CESE parts) to obtain a new

CPN model as shown in Fig. 5. Again, the dashed part attached to transition TRANSFERreq and the

guard of this transition are ignored for the moment.

For each transfer direction, one place and two transitions are used to model the characteristics of

the channel. The messages sent may be overtaken, lost or duplicated in the channels. In the following,

we use the channel in the forward direction (i.e. from the outgoing side to the incoming side) as an

example to illustrate how these two transitions and one place model the properties of this unreliable

channel. For the reverse direction, a similar modelling mechanism is used.

4.1.1 Modelling of Message Overtaking

In Fig. 5, the messages sent by the outgoing CESE are �rst put into place forChannel. This place no

longer stores a list of messages, and thus does not preserve message order. The colour set of this place

is outMessagesT, a product of colour outMessages and colour dupTag. The colour outMessages is

the same as the outMessages in Fig 2. It speci�es the sequenceNumber �eld and the content of each

message sent by the outgoing CESE. The colour dupTag is used as a duplication tag of a message.

109

outgoingCESE
states

1‘(0, idle)

incomingCESE
states

1‘(0,idle)

TRANSFERcon

[iSQ=oSQ]

TRANSFERind

REJECTindUout

[iSQ=oSQ]

TRANSFERres

TRANSFERreq

[n<2]

REJECTreq

REJECTindPin

color st = with idle | idlT | awaiting ; color sequenceNum = int with 0..255;
color states = product sequenceNum*st; color outM = with CapSet | CapRelease;
color outMessages = product sequenceNum*outM; color dupTag = with N | Y;
color outMessagesT = product outMessages*dupTag; color inM = with CapAck | CapReject;
color inMessages = product sequenceNum*inM; color inMessagesT = product inMessages*dupTag;
var oMes : outMessages; var iMes: inMessages; var inMes : inM; var oSQ, iSQ : sequenceNum; var d: dupTag;
fun incMod256(oSQ) = (oSQ+1) mod 256;

REJECTindUin

DISCARD

[oSQ<>iSQ]

IGNOREout

REJECTindPout IGNOREin

TRANSFERindT

forChannel

outMessagesT

forDUPforLOSE

revChannel

inMessagesT

revDUP revLOSE

counter

1‘0

count

((incMod256(oSQ), CapSet) ,N) ((oSQ, CapSet),d)

(oSQ, awaiting)

(oSQ, idle)

(oSQ, awaiting)

(oSQ, idle)

((iSQ, CapReject),d)

((iSQ, CapAck),d)

((iSQ, CapReject),N)

((iSQ, CapAck),N)

(iSQ,awaiting)

(iSQ,idle)

(iSQ, awaiting)

(iSQ,idle)

(iSQ, awaiting)

(iSQ,idle)

((oSQ, CapSet),d)

(oSQ, awaiting)
(oSQ,idlT)

(incMod256(oSQ), awaiting)

(oSQ, idle)

(oSQ, idle)

(oSQ, awaiting)

((iSQ, inMes),d) ((iSQ, inMes),d)

(oSQ, idle)

((0,CapRelease),N)

(iSQ,idle)
(oSQ, awaiting)

(iSQ,idle)

((0,CapRelease),d)
((0,CapRelease),d)

(iSQ, awaiting)

(iSQ,idlT)

(iSQ, awaiting)

(oMes,N)
(oMes,d)

(iMes,N)
(iMes,d)

2‘(oMes,Y)

2‘(iMes,Y)

n

n+1

Fig. 5. CPN model of the CES protocol with unreliable transport layer

4.1.2 Modelling of Message Duplication

The transition forDUP is used to duplicate the messages sent to forChannel. In practice, a message

can rarely be duplicated multiple times, and allowing arbitrary times of duplication can result in an

in�nite state space of the model, so we assume that all the messages can only be duplicated once at

most. To implement this, a duplication tag is attached to each message, i.e. the dupTag item of colour

outMessagesT. When a message is sent by the outgoing CESE, its duplication tag is set to N (which

means that the message has not been duplicated by the channel yet). When messages are put into

place forChannel, they may be duplicated via the occurrence of transition forDUP. Once a message

is duplicated, the duplication tags of the message and its copy are set to Y (which means that the

message has already been duplicated). Only messages with duplication tag N can be duplicated so

that each message can be duplicated only once.

4.1.3 Modelling of Message Loss

This property of the channel is modelled by transition forLOSE. Messages and their duplicates are

lost from the forChannel when transition forLOSE occurs.

4.2 State Space Analysis

The model in Fig. 5 also has an in�nite state space because of the unlimited occurrence sequence

of transition TRANSFERreq followed by transition REJECTinPout. It is also obvious that when the

underlying medium is unreliable this protocol also could fail if the wrapping of sequence numbers can

happen. In order to make the state space tractable to investigate the protocol properties of interest,

as with Model B discussed in Sections 3.4.3 and 3.4.4, we also limit the maximum number of times

transition TRANSFERreq can occur to 2. As before, this is realised by a counter modelled by the

dashed part and the guard of transition TRANSFERreq in Fig. 5. The de�nitions of colour set count

and variable n is the same as those for Model B, and these de�nitions again are not included in the

declaration node of the model in Fig. 5.

Table 6 shows part of the state space report. We see that even though we only allow two sequence

numbers and only one round of them, the state space is large, with 40011 nodes and 385314 arcs. The

result was obtained on another machine with a Pentium 733MHz CPU and 256MB of memory. Figure

110

6 shows part of the OG and it is used in the following to illustrate the analysis results. In this �gure,

again all the names of the transitions and places are abbreviated as in Fig. 3. Those abbreviations

which do not appear in Fig. 3 will be explained when they are used.

Table 6. Part of the state space report for the limited model in Fig. 5

Statistics

Home
Properties

Liveness
Properties

Occurrence Graph SCC Graph
 Nodes: 40011
 Arcs: 385314
 Secs: 497
 Status: Full

Nodes: 40011
Arcs: 385314
Secs: 69

Home Markings: None

Dead Markings: [575, 583]
Dead Transition Instances: None
Live Transition Instances: None

It is immediately found from the liveness properties that there is no dead transition instance, which

means that REJECTindUin and TRANSFERindT can occur when the transport medium is unreliable. We

can imagine, for example, if a CapReleasemessage is lost in the forChannel, it is possible that when

awaiting is in place incomingCESE and another CapSetmessage is received, transition REJECTindUin

is enabled, and thus can occur. The branch marked with (3) in Fig. 6 shows the occurrence sequence

of this example. It explains why this mechanism is designed for the CES protocol.

There are two dead markings, nodes 575 and 583, as reported in Table 6. Referring to Fig. 6, we

can see that node 575 is an expected terminal state where there are no messages left in the channel,

both the outgoing and incoming CESEs are IDLE with the state variable zero and the counter at

its limit. For node 583, there is also no message left in either channel and both the outgoing and

incoming CESEs are IDLE. The only di�erence from node 575 is that the state variable in SQ has

value 1. As we know, however, as long as out SQ has been set back to its initial value, 0, it does not

matter which value in SQ can have. So node 583 is also a reasonable terminal state.

Terminal state, node 583, is caused by the lossy channel. For example, as shown in Fig. 6, starting

from the initial state (node 1), a transfer is initiated (Treq), the incoming CESE receives a CapSet

message (with sequence number 1) successfully and informs its user (Tind). State variable in SQ is

set to 1 (node 3). If we look at the branch marked with (4), the incoming user refuses this capability

set (Rreq), and a CapReject message is sent to the outgoing CESE. The outgoing user is noti�ed of

this rejection (RindUo, i.e. transition REJECTindUout) (node 17). Then a second capability exchange

is initiated (Treq), but the CapSetmessage is lost in the forChannel (fLOSE for forLOSE). A timeout

occurs at the outgoing side (transition REJECTindPout (RindPo)) and a CapReleasemessage is sent to

the incoming CESE. Because there is an idle in place incomingCESE, this release message is ignored

(IGi) and the idle stays in incomingCESE, with state variable kept as 1, as shown in marking 583.

The OG for this model is too large to be drawn and visualised fully, however, it is possible to

illustrate sequences of transitions and the related states of interest. In the following, we describe more

results observed from the partial OG shown in Fig. 6.

The branch marked with (1) gives the sequence of two successful capability exchanges, which

demonstrates desired behaviour.

However, there are some other sequences which are not ideal, e.g. the sequence marked with (2) in

Fig. 6. After the state of the model moves to node 3 as in other branches, transition REJECTindPout

occurs, a CapRelease message is sent to the forChannel, and the state transits to node 9. If

TRANSFERres occurs, a CapAck message is put into place revChannel (node 18). Since now there

is an idle in place outgoingCESE, transition TRANSFERreq occurs again, a CapSet message with se-

quence number 0 is sent to the forChannel (node 45). This CapSetmessage overtakes the CapRelease

message and is passed to the incoming CESE (Tind and node 116). So the CapReleasemessage is still

left in the forChannel. Following this, the CapRelease message is received by the incoming side and

terminates the current exchange (node 275), but this CapRelease message was sent by the outgoing

side to terminate the �rst exchange. Then the response to the �rst CapSet message is transferred to

the outgoing side. Fortunately, the state variable out SQ has value 0, i.e. the outgoing CESE is waiting

111

1
0:1

1
outCESE: 1‘(0,idle)
inCESE: 1‘(0,idle)
forCh: empty
revCh: empty
counter: 1‘0

2
1:4

3
9:3

9
14:6

18
11:7

45
11:10

116
18:9

275
20:4

173
22:1

363
31:3

575
30:0

575
outCESE : 1‘(0,idle)
inCESE : 1‘(0,idle)
forCh: empty
revCh: empty
counter : 1‘2

7
6:4

25
19:3

62
16:6

144
20:2

112
22:3

264
22:4

8
6:4

17
19:1

44
16:4

115
21:1

270
30:3

583
29:0

583
outCESE: 1‘(0,idle)
inCESE: 1‘(1,idle)
forCh: empty
revCh: empty
counter: 1‘2

112
22:3

17
19:1

44
16:4

264
22:4

2
outCESE: 1‘(1,awaiting)
inCESE: 1‘(0,idle)
forCh: 1‘((1,CapSet),N)
revCh: empty
counter: 1‘1

3
outCESE: 1‘(1,awaiting)
inCESE: 1‘(1,awaiting)
forCh: empty
revCh: empty
counter: 1‘1

7
outCESE: 1‘(1,awaiting)
inCESE: 1‘(1,idle)
forCh: empty
revCh: 1‘((1,CapAck),N)
counter: 1‘1

9
outCESE: 1‘(1,idle)
inCESE: 1‘(1,awaiting)
forCh: 1‘((0,CapRelease),N)
revCh: empty
counter: 1‘1

8
outCESE: 1‘(1,awaiting)
inCESE: 1‘(1,idle)
forCh: empty
revCh: 1‘((1,CapReject),N)
counter: 1‘1

17
outCESE: 1‘(1,idle)
inCESE: 1‘(1,idle)
forCh: empty
revCh: empty
counter: 1‘1

44
outCESE : 1‘(0,awaiting)
inCESE: 1‘(1,idle)
forCh: 1‘((0,CapSet),N)
revCh: empty
counter: 1‘2

112
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,awaiting)
forCh: empty
revCh: empty
counter: 1‘2

18
outCESE: 1‘(1,idle)
inCESE: 1‘(1,idle)
forCh: 1‘((0,CapRelease),N)
revCh: 1‘((1,CapAck),N)

45
outCESE: 1‘(0,awaiting)
inCESE: 1‘(1,idle)
forCh: 1‘((0,CapSet),N)++ 1‘(
(0,CapRelease),N)
revCh: 1‘((1,CapAck),N)
counter: 1‘2

116
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,awaiting)
forCh: 1‘((0,CapRelease),N)
revCh: 1‘((1,CapAck),N)
counter: 1‘2

275
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,idle)
forCh: empty
revCh: 1‘((1,CapAck),N)
counter: 1‘2

173
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,idle)
forCh: empty
revCh: empty
counter: 1‘2

363
outCESE: 1‘(0,idle)
inCESE: 1‘(0,idle)
forCh: 1‘((0,CapRelease),N)
revCh: empty
counter: 1‘2

25
outCESE: 1‘(1,idle)
inCESE: 1‘(1,awaiting)
forCh: empty
revCh: empty
counter: 1‘1

62
outCESE: 1‘(0,awaiting)
inCESE: 1‘(1,awaiting)
forCh: 1‘((0,CapSet),N)
revCh: empty
counter: 1‘2

144
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,idlT)
forCh: empty
revCh: empty
counter: 1‘2

115
outCESE: 1‘(0,awaiting)
inCESE: 1‘(1,idle)
for: empty
revCh: empty
counter: 1‘2

264
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,idle)
forCh: empty
revCh: 1‘((0,CapAck),N)
counter: 1‘2

270
outCESE: 1‘(0,idle)
inCESE: 1‘(1,idle)
forCh: 1‘((0,CapRelease),N)
revCh: empty
counter: 1‘2

112
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,awaiting)
forCh: empty
revCh : empty
counter: 1‘2

264
outCESE: 1‘(0,awaiting)
inCESE: 1‘(0,idle)
forCh: empty
revCh: 1‘((0,CapAck),N)
counter: 1‘2

17
outCESE: 1‘(1,idle)
inCESE: 1‘(1,idle)
forCh: empty
revCh: empty
counter: 1‘1

44
outCESE : 1‘(0,awaiting)
inCESE: 1‘(1,idle)
forCh: 1‘((0,CapSet),N)
revCh: empty
counter: 1‘2

Note: in order to show the individual sequences clearly, some nodes are duplicated in this figure (e.g. node 264).

(1)

(2) (3)

(4)

Treq

Tind

Tres

Treq

Tind

RindPi

DIS

RindPo

IGi

Tres
RindPo

fLOSE

Treq

RindUi

TindT

Tres

Rreq

Treq

fLOSE

RindPo

IGi

Tcon

Tind

RindUo

Treq

Tres

Tcon Tcon

Fig. 6. Partial OG of the limited model in Fig. 5

112

for the response to the second CapSet message with sequence number 0, so the old CapAck message

with sequence number 1 is discarded (DIS). It is not possible for the sequence numbers to be wrapped

under the limitation that we have made on this model. Therefore, transition REJECTindPout has to

occur, a CapRelease message is sent to place forChannel (node 363), transferred to the incoming

side, which ignores it and the system moves to the terminal state, node 575.

From this occurrence sequence we can see that if we limit the occurrence times of transition

TRANSFERreq, it is not possible for the outgoing side to accept the wrong response, so no fatal

error occurs. We also have observed that the exchange was terminated improperly due to message

overtaking. Although no response has been accepted incorrectly, no successful capability exchange

has occurred. This shows that this protocol does not allow the wrong acceptance of a response (if the

problem of wrapping of sequence numbers is ignored), nevertheless it may not work eÆciently.

5 Conclusion and Future Work

As the pilot study of the research project proposed in [11], this paper has modelled and analysed the

CES protocol of H.245 with CPNs. The following results have been obtained.

{ The complete CPN models of this protocol when it operates over both a reliable and unreliable

transport layer have been created. These CPN models remove the ambiguity in the CES protocol

de�nition given in H.245, thus they provide a more rigorous speci�cation of the CES protocol.

{ By analysing these models, we found that:

� When the wrapping of sequence numbers (modulo 2) is not possible while there are 2 out-

standing acknowledgments (i.e. not yet received by the outgoing CESE), this protocol can

carry out the capability exchange function properly. An induction proof is needed to generalise

this conclusion for arbitrary modulo arithmetic.

� This protocol could fail if wrapping of the sequence numbers can happen, either when the

underlying medium is reliable or not. However, this protocol could work properly if the pro-

tocol had a mechanism for not sending out a TerminalCapabilitySet message if there are n

outstanding acknowledgments, for modulo n arithmetic. Then it could time-out and report a

problem to the user, rather than operating incorrectly.

� If wrapping of sequence numbers is not possible, then when the transport medium is unreliable,

this protocol can work, but may be ineÆcient.

As the next step, we plan to verify the CES protocol against its service speci�cation. However the

service de�nition of the CES protocol is not de�ned completely in H.245. We have created a complete

and general CES service speci�cation in the form of a CPN model [12]. Currently, we are working

on generating the CES service language from this service model. After the CES service language is

generated, the CES protocol can be veri�ed against the CES service speci�cation.

Based on the experience and methodology gained from this pilot study, we shall investigating

other parts of H.323 with CPNs. Hopefully, the work on H.323 will contribute to the development of

Internet multimedia standards.

References

1. M. Diaz and P. S�enac. Time Stream Petri Nets, A Model for Timed Multimedia Information. In

Proceedings of the 15th International Conference on Application and Theory of Petri Nets, June 1994.

2. Design/CPN homepage. http://www.daimi.au.dk/designCPN/.

3. ITU-T. ITU-T Recommendation H.310, Broadband audiovisual communication systems and terminals,

September 1998.

4. ITU-T. ITU-T Recommendation H.324, Terminal for low bit-rate multimedia communication, February

1998.

5. ITU-T. ITU-T Recommendation H.225.0, Call Signalling Protocols and Media Stream Packetization for

Packet-Based Multimedia Communication Systems, September 1999.

6. ITU-T. ITU-T Recommendation H.323, Packet-Based Multimedia Communications Systems, September

1999.

113

7. ITU-T. ITU-T Recommendation Z.100, Speci�cation and Description Language (SDL), November 1999.

8. ITU-T. ITU-T Recommendation H.245, Control protocol for multimedia communication, November 2000.

9. ITU-T. MEDIACOM 2004, A Framework for Multimedia Standardization, Project Description - Version

1.1, March 2001.

10. Kurt Jensen. Coloured Petri nets: Basic Concepts, Analysis Methods and Practical Use, Volume 1.

Springer, second edition, 1997.

11. Lin Liu. Modelling and Analysis of Internet Multimedia Communication Systems. PhD Research Pro-

posal, University of South Australia, July 2000.

12. Lin Liu and Jonathan Billington. Investigating the CES Protocol of H.245 Using CPNs - A Pilot Study

of the H.323 Standard. Technical report, Computer Systems Engineering Centre, University of South

Australia, May 2001.

13. Lin Liu and Jonathan Billington. Modelling and Analysis of Internet Multimedia Protocols - Methodology

and Initial Results. In Proceedings of INCOSE2001, the Eleventh Annual International Symposium of the

International Council on Systems Engineering, Melbourne, Australia, 1-5, July 2001.

14. P. S�enac, M. Diaz, A. L�eger, and P.de Saqui-Sannes. Modeling Logical and Temporal Synchronization in

Hypermedia Systems. Journal on Selected Areas in Communications, 14(1):84{103, January 1996.

15. H.323 Information Site. http://www.packetizer.com/iptel/h323/.

16. M.E. Villapol and J. Billington. Modelling and Initial Analysis of the Resource Reservation Protocol

using Coloured Petri Nets. In Proceedings of the Workshop on Practical Use of High-Level Petri Nets,

Aarhus, Denmark, pages 91{110, June 2000.

114

An Improved Architectural Speci�cation of the

Internet Open Trading Protocol?

Chun Ouyang, Lars Michael Kristensen??, and Jonathan Billington

Computer Systems Engineering Centre

School of Electrical and Information Engineering

University of South Australia

Mawson Lakes Campus, SA 5095, AUSTRALIA

chuoy001@students.unisa.edu.au flars.kristensen,jonathan.billingtong@unisa.edu.au

Abstract. The Internet Open Trading Protocol (IOTP) is an international standard (RFC

2801) currently being developed by the Internet Engineering Task Force. IOTP aims at providing

an interoperable framework for electronic commerce (e-commerce) over the Internet. IOTP is

expected to evolve into one of the central building blocks for the developing of next generation

e-commerce on the Internet. We apply Coloured Petri Nets and Design/CPN for modelling and

analysing IOTP, focussing on its protocol architecture. The contribution of this paper is the

construction of a CPN speci�cation of RFC 2801. Based on the constructed CPN model, we

propose a complete and simpli�ed architecture of IOTP compared with the partial architectural

speci�cation given in the RFC. We apply simulation, message sequence charts, and state space

analysis to validate the CPN models of IOTP exchanges and transactions, and to validate that

the suggested protocol architecture conforms to the speci�cation of IOTP given in the RFC.

1 Introduction

Today's Internet is revolutionising commerce. It provides the �rst a�ordable and secure way

to link people and computers spontaneously across organisational boundaries. Electronic com-

merce (e-commerce), traditionally conducted with the use of information technologies based

on Electronic Data Interchange (EDI) over proprietary Value Added Networks (VAN), is

rapidly moving onto the Internet [17]. With the advent of Internet-based e-commerce, such as

online shopping and online retailing, a multitude of technology standards and speci�cations

have been (or are being) developed to build the required communication infrastructures.

The Internet Open Trading Protocol (IOTP) [3, 4] is a standard being developed by the

Internet Engineering Task Force (IETF) [7], and is expected to evolve into one of the central

building blocks for the developing of next generation e-commerce on the Internet. IOTP aims

at providing an interoperable framework for e-commerce over the Internet. It is designed to

specify the communication protocols to complete an electronic business transaction between

two parties which have no prior association. The initial focus of IOTP is on the payment and

delivery aspects of business-to-consumer (b-c) e-commerce.

Concurrently with the speci�cation work being conducted within IETF, a number of

research groups and companies are planning and working on the �rst trial implementations of

selected parts of IOTP. This includes the project of the Open Trading Protocol toolkit for Java

? Supported by (1) Australian Technology Network (ATN) Small Research Grant, and (2) University of South

Australia Divisional Small Grant.
?? Supported by the Danish Natural Science Research Council.

115

(JOTP) in Xenosys Corporation [9], and the project of the Standard sMart card Integrated

settLEment system (SMILE) [14] conducted by Hitachi [8]. There is however still no complete

implementation of IOTP, and an interoperability test between independent implementations

has not yet been conducted. As an emerging communication protocol, the development of

IOTP is still in an early stage and can therefore bene�t from the use of formal methods for

modelling and analysis before becoming an Internet standard. Moreover, there are several

aspects of IOTP that need development. First of all, IOTP lacks a detailed speci�cation

of its protocol architecture and as a consequence the internal organisation of IOTP needs

clari�cation. Apart from that, RFC 2801 contains several ambiguities in the speci�cation of

the IOTP protocol itself.

In this paper we present our results from applying Coloured Petri Nets (CP-nets or CPNs)

[10, 11] and the Design/CPN tool [13] for the modelling and analysis of IOTP. The primary

focus of the work presented has been on the speci�cation of the IOTP protocol architecture

based on the modelling of the IOTP baseline transactions. The set of baseline transactions is

what constitutes the main service provided by IOTP. The construction of the CPN models

has identi�ed the important protocol layers and components, and clari�ed their relationship.

This paper is organised as follows. Section 2 gives a brief overview and introduction to

IOTP using the IOTP purchase transaction as an example. Section 3 gives an overview of

the CPN model of IOTP. Sections 4 and 5 explain how the set of IOTP transactions and

exchanges have been modelled. Section 6 presents the simulation and the state space analysis

results. Section 7 presents the IOTP protocol architecture derived from the constructed CPN

model. Finally, in Section 8 we summarize our contribution and discuss future work. The

reader is assumed to be familiar with Coloured Petri Nets and Design/CPN.

2 The Internet Open Trading Protocol

In this section we introduce the basic concepts of IOTP. Baseline IOTP [3] de�nes eight

transactions: Authentication, Deposit , Withdrawal , Purchase, Refund , Value Exchange, In-

quiry , and Ping . The �rst six transactions are designed for business interactions and will be

referred to as trading transactions1. The last two transactions are independent of business

processes and are so-called infrastructure transactions. Baseline IOTP trading transactions

are consumer oriented. The Authentication transaction supports the authentication of a party

involved in a transaction to validate that the party is who it claims to be. The Purchase trans-

action is carried out for the purchase of goods or services using some payment method. The

Refund transaction occurs when the refund of a payment is required, usually as a result of

an earlier purchase. The Deposit and the Withdrawal transactions are used for the deposit or

the withdrawal of electronic cash at a �nancial institution. Finally, Value Exchange transac-

tion supports the transfer or the conversion of an amount of electronic cash in one currency

using one payment method to an amount of electronic cash in the same or another currency

using the same or another payment method. The Inquiry transaction can be used to obtain

information on the status of an ongoing or completed trading transaction, while the Ping

transaction tests basic connectivity between parties involved in a trading transaction. Below

we use the Purchase transaction to illustrate the basic operation of IOTP.

1 In RFC 2801 [3], they are referred to as Authentication- and Payment-related IOTP Transactions (A-P

Transactions).

116

2.1 IOTP Purchase Transaction

The Purchase transaction can be used when one party wants to purchase goods or services

from another party over the Internet. Figure 1 shows a possible sequence of messages ex-

changed between the parties involved in a Purchase transaction. Each column of the Message

Sequence Chart (MSC) corresponds to a so-called trading role. Trading roles are used to iden-

tify the di�erent roles that organisations can play in a trade. IOTP de�nes �ve trading roles:

Consumer , Merchant , Payment Handler , Delivery Handler , and Merchant Customer Care

Provider . The Consumer is the organisation which receives and pays for the goods/services.

The Merchant supplies the goods and receives payment for them. The Payment Handler is

the organisation receiving the money from the Consumer on behalf of the Merchant . The

Delivery Handler is the organisation responsible for delivering the goods to the Consumer on

behalf of the Merchant . Finally, the Merchant Customer Care Provider (which we will not

consider further in this paper) is the organisation responsible for resolving Consumer disputes

and problems on behalf of the Merchant .

Purchase Request

Trading Protocol Options

Trading Protocol Selection

Offer Response

Payment Request

Payment Protocol Data

Payment Response

Delivery Request

Delivery Response

Consumer Merchant

Payment Handler

Delivery Handler

Goods Delivery

Proof of Delivery

IOTP Message Exchanges Outside the scope of IOTP

Fig. 1: A possible message
ow in a Purchase transaction.

In the following we consider in detail the messages exchanged between trading roles in

a Purchase transaction as shown in Fig. 1. The �rst phase in the Purchase transaction is

the negotiation between the Consumer and Merchant regarding the payment brand and the

payment protocol to be used. At some point the Consumer decides to buy goods from the

Merchant, and sends a Purchase Request to the Merchant by, e.g., clicking on a button in a

117

web browser. Whereas this is outside the scope of IOTP, it enables the start of the Purchase

transaction at the other side, i.e., the Merchant side. The Merchant then starts the Purchase

transaction upon receiving the Purchase Request from the Consumer. The Merchant o�ers a

list of Trading Protocol Options to the Consumer. The Trading Protocol Options include a list

of payment brands (e.g., Visa Credit, MasterCard, Mondex card) that are accepted by the

Merchant and the correspondant payment protocols available (e.g., SET2, Mondex VTP3).

The Consumer selects the payment brand (e.g. MasterCard) and the payment protocol (e.g.

SET) among the options o�ered by the Merchant, and sends them back to the Merchant in

a Trading Protocol Selection. The Merchant uses the selection made by the Consumer and

the related information to create the O�er Response, and sends it to the Consumer. The O�er

Response contains details of the goods, pay amount, and delivery instructions. More generally,

the O�er Response can be considered as an invoice before the actual payment is carried out.

The next phase in the transaction is the payment. After checking the payment information

contained in the O�er Response, the Consumer sends a Payment Request to the Payment

Handler. The Payment Handler checks the information provided (such as a signature) in the

Payment Request. If the information is valid, the payment is carried out via the exchange

of Payment Protocol Data between the Consumer and the Payment Handler. This data could

be SET protocol data if the SET protocol was selected as the payment protocol. When the

payment exchanges �nish, the Payment Handler sends a Payment Response which includes the

payment receipt and an optional signature. This provides the Consumer with proof of the

payment.

The �nal phase in the transaction is the delivery of the goods. The Consumer checks the

delivery instructions in the O�er Response, and uses the payment receipt as authorisation

in the Delivery Request that is sent to the Delivery Handler. The Delivery Handler starts or

schedules the delivery, and sends a delivery note in the Delivery Response to the Consumer.

The delivery of the goods might be a physical delivery, or an on-line delivery if the goods are

electronic such as an electronic journal. Finally, the Consumer sends Proof of Delivery to the

Delivery Handler upon receiving the goods. It should be mentioned that the last two steps in

the phase of delivery, i.e., the actual delivery of goods/service and the proof of delivery, are

outside the scope of IOTP.

From the above it can be seen that a Purchase transaction is conducted in three phases.

At �rst, the choice of available payment brand and payment protocol is negotiated between

Consumer and Merchant. Secondly, the payment is made between Consumer and Payment

Handler. Thirdly, the delivery occurs between Consumer and Delivery Handler. A Purchase

transaction can therefore be seen as being divided into three sub-transactions. IOTP de�nes

two sets of such sub-transactions called trading exchanges and document exchanges. Each

document and trading exchange involves a set of messages exchanged between trading roles.

All eight IOTP baseline transactions can be expressed as combinations of such document and

trading exchanges. Document exchanges are constructed from trading exchanges by grouping

together parts of trading exchanges. One of the contributions of this paper is to merge the

set of trading and document exchanges into one common set which we call IOTP exchanges

leading to a simpler speci�cation and architecture of IOTP.

2 Secure Electronic Transaction (SET) is an open technical standard developed by Visa and MasterCard to

facilitate secure payment card transactions on the Internet [16].
3 Mondex Value Transfer Protocol (VTP) enables a secure and legitimate transfer between two Mondex

cards [15].

118

3 Overview of CPN IOTP Model

A CPN model has been constructed for each of the six trading transactions of IOTP. All

six CPN models have a similar structure and share a common set of pages. All the CPN

models could in principle be integrated into one single CPN model capturing all trading

transactions. This has however not yet been done. We therefore focus on the CPN model

of the Purchase transaction. The CPN models of the other trading transactions are similar.

Since the Purchase transaction involves all types of IOTP exchanges, it can be considered a

representative example.

Figure 2 shows the hierarchy page of the CPN model. The prime page Purchase provides

the most abstract view of the Purchase transaction and has �ve subpages. Four of these

subpages: Consumer, Merchant, PHandler, and DHandler correspond to the four trading roles

involved in a Purchase transaction, and they specify how a Purchase transaction is imple-

mented for each of the trading roles. We will refer to these pages as trading role pages. The

prime page and the trading role pages constitute the transaction layer in the protocol ar-

chitecture of IOTP which we will specify in Sect. 7. The speci�cation of the transactions

are presented in detail in Sect. 4. The last subpage of Purchase is Transport. It models the

transport medium over which the trading roles communicate. In this paper we will not go

into detail with the modelling of the transport layer.

Consumer#11

Purchase#1

Transport#2

Merchant#12 PHandler#13 DHandler#14

AutEe#111 AutOr#121

C_BDOff#112

C_BIOff#113

C_Pay#114

C_PDlv#115

C_Deliv#116 DH_Dlv#146

M_BIOff#123

M_BDOff#122

PH_Pay#134

PH_PDlv#135

Consumer Merchant

Transport

PHandler DHandler

Authentication Authentication

Brd_D_Offer

Brd_I_Offer

Payment

Delivery

Brd_D_Offer

Brd_I_Offer

Pay_Deliv

Delivery

Payment

Pay_Deliv

Fig. 2: The hierarchy page of the CPN Purchase transaction model.

The 12 subpages of the four trading role pages speci�es the IOTP exchanges in a Pur-

chase transaction. Baseline IOTP de�nes six document exchanges: Authentication, Brand

Dependent O�er , Brand Independent O�er , Payment , Delivery , and Payment with Deliv-

ery . The Authentication exchange (subpages AutEe and AutOr) allows one trading role (the

119

authenticator) to authenticate another trading role (the authenticatee), i.e. to validate that

the organisation is the one it claims to be. The Brand Dependent O�er exchange (subpages

C BDO� and M BDO�) allows the Merchant to provide a list of payment brands to the Con-

sumer for selection. The selected payment brand is to be used to carry out the payment.

The Brand Independent O�er exchange (subpages C BIO and M BIO) allows the Merchant

to specify (without Consumer selection) which payment brand is to be used for the payment.

The Payment exchange (subpages C Pay and PH Pay) supports payment using some payment

brand to be made by the consumer to the payment handler. The Payment with Delivery

exchange (pages C PDlv and PH PDlv) supports a combined payment and delivery. The De-

livery exchange (subpages C Deliv and DH Deliv) supports the delivery of goods. The IOTP

exchanges are combined to implement the di�erent transactions. For example, the Purchase

transaction shown in Fig. 1 consists of a Brand Dependent O�er, a Payment, and a Delivery

exchange. Considering that each IOTP exchange is de�ned as a bilateral business interaction

between two trading roles, each exchange has been modelled as a pair of subpages { one for

each trading role side. For example, the subpages C Pay and PH Pay represent the payment

exchange carried out between the Consumer and the Payment Handler trading role. We will

go into more detail with the speci�cation of the IOTP exchanges in Sect. 5.

3.1 Trading Roles and Messages

An IOTP transaction consists of a set of IOTP Messages exchanged between trading roles.

Figure 3 depicts the prime page Purchase. This page has a substitution transition for each

of the four trading roles in a Purchase transaction. The substitution transition Transport

represents the transport medium by means of which the trading roles communicate. Each

trading role has two associated places modelling an input and an output message bu�er.

Merchant
Trading Role

HS

Payment Handler
Trading Role

HS

Delivery Handler
Trading Role

HS

ConSendMsg

TRxMsg

ConRecMsg

TRxMsg

MerRecMsg

TRxMsg

PHSendMsg

TRxMsg

DHSendMsg

TRxMsg

MerSendMsg

TRxMsg

PHRecMsg

TRxMsg

DHRecMsg

TRxMsg

Consumer
Trading Role

HS

Transport Mechanism

HS

Fig. 3: Top level structure of IOTP Purchase transaction.

Figure 4 lists the de�nition of the colour sets used to model IOTP messages. The colour

set TRxMsg (line 5) is used to model the message bu�ers containing IOTP messages to be

transmitted or received. For an example, a token residing in a place that models a bu�er

for sending messages (e.g., ConSendMsg) speci�es the message receiver trading role and the

message itself. In the other case, a token residing in a place that models a bu�er for receiving

messages (e.g., ConSendMsg) speci�es the message sender trading role and the message itself.

IOTP messages are modelled by the colour set IotpMsg (line 4) which is derived from

the XML (eXtensible Markup Language) de�nition of IOTP messages given in [3]. An IOTP

120

message consists of a list of so-called Trading Blocks modelled by the colour set TradingBlk

(line 3). The colour set ProcessState (line 2) represents the ProcessState attribute of an

Authentication Status Block . It contains two values, indicating whether the result of the

Authentication exchange is successful (CompletedOk) or has failed (Failed). The representation

of IOTP messages in the CPN model is a simpli�ed and abstract representation of IOTP

messages as speci�ed in [3]. The reason is that not all attributes of an IOTP message are

required at the level of abstraction where the trading transactions are being modelled here.

1 color TradingRole = with Consumer | Merchant | PHandler | DHandler;

2 color ProcessState = with CompletedOk | Failed;

3 color TradingBlk = union AuthReq + AuthResp + AuthStatus: ProcessState

+ TPO + TPOSelection + OfferResp

+ PayReq + PayExch + PayResp

+ DeliveryReq + DeliveryResp

+ Cancel;

4 color IotpMsg = list TradingBlk;

5 color TRxMsg = product TradingRole * IotpMsg;

Fig. 4: Colour sets for modelling IOTP trading roles and messages.

4 IOTP Transaction Layer

The IOTP transactions are implemented via combinations of IOTP exchanges at each trading

role side. The Purchase transaction is the most complex trading transaction involving four

trading roles and covers six IOTP exchanges. The transaction level pages in the CPN model

are composed of four trading role pages. Each trading role page describes how the trading

role operates in combining the IOTP exchanges to the Purchase transaction. In the following

subsections we consider each of the trading roles at the transaction layer in detail.

4.1 Consumer Trading Role

The IOTP transactions are consumer oriented. Therefore, the Consumer is the most important

trading role in the Purchase transaction. As de�ned in IOTP, the bilateral communications

during the Purchase are always carried out between the Consumer and one of the other three

trading roles. As a result, all the procedures for the Purchase transaction are performed at

the Consumer side. Figure 5 depicts the page Consumer modelling the Consumer side of a

Purchase transaction. IOTP de�nes the valid combinations of IOTP exchanges to implement

an IOTP transaction. In Fig. 5, the IOTP exchanges that are part of a Purchase transaction

are all represented by means of substitution transitions. A purchase transaction consists of an

optional Authentication exchange, followed by an O�er exchange, and then either a Payment

exchange followed by a Delivery exchange, a Payment exchange only, or a Payment with

Delivery exchange.

121

C_Auth
CSxTR

C_Offer
ConState

C_P/PD
ConState

C_PorPD

C_Dlv
ConState

Brand Independent
Offer Exchange

HS

Brd_I_Offer

Brand Dependent
Offer Exchange

HS

Brd_D_Offer

Payment Exchange
HS

Payment

Payment with
Delivery Exchange

HS

Pay_Deliv

 Authentication
Exchange

HS

Authentication

OffToPay

PayToDlv

AuthToOff

D_Stop

Delivery Exchange
HS

Delivery

ConSendMsg
TRxMsg

Out

ConRecMsg

In

TRxMsg

P/PD_Stop

[sc=P_stop
 orelse
 sc=PD_stop]

PorPD_Stop

Consumer
ConStateready

Auth

Offer

[m<>[AuthReq]]

A_Cnl

[sc=A_cancel
 orelse
 sc=A_fail]

O_Cnl

P/PD_Cnl

PorPD_Cnl

D_Cnl

(A_stop, Merchant)

P_ready

P_stop

D_ready

O_stop

readyready

O_ready (A_ready, Merchant)

(sc, Merchant)

O_cancel

P_cancel

D_cancel

cancel

cancel

cancel

cancel

D_stop

sc

stopstop

O_ready

(Merchant, m)

(Merchant, [AuthReq])

Fig. 5: Purchase transaction { Consumer trading role.

The �ve places Consumer, C Auth, C O�er, C PayDlv, and C Deliv are used to model the

state of the Consumer during the execution of the Purchase transaction. The place Consumer

(top) models the initial state ready and the two terminal states cancel and stop for a trans-

action. The other four places model the states of the Consumer in the six di�erent IOTP

exchanges involved in the transaction. Except for the arcs between the places and the substitu-

tion transitions, each input or output arc of these places has a constant in the arc expression.

The constant represents the initial or the terminal state(s) of an IOTP exchange. The colour

set ConState attached to these �ve places contains all the possible states of the Consumer,

while the colour set CSxTR of place C Auth also speci�es the trading role corresponding to

the other party. We will return to the de�nitions of these two colour sets when we explain

how the IOTP exchanges have been modelled.

The Consumer is initially in the state ready. If the �rst IOTP message received from

the Merchant is an Authentication Request message represented by a single-element list [Au-

thReq], an Authentication exchange will start by putting a token with colour (A ready, Mer-

chant) in place C Auth, indicating that the Consumer is now ready to be authenticated by

the Merchant. Otherwise, the Consumer will directly start an O�er exchange by putting an

O ready token in place C O�er. The occurrence of the transition Auth or O�er indicates that

the Purchase transaction is carried out with an optional Authentication exchange. Moving

122

onto the O�er exchange, the Consumer will then start a Brand Dependent O�er exchange or

a Brand Independent O�er exchange. The socket place C O�er is common to the two sub-

stitution transitions Brand Dependent O�er Exchange and Brand Independent O�er Exchange.

This indicates that only one of the two O�er exchanges can occur in a Purchase transaction.

A similarly choice is made in the next phase between a Payment exchange and a Payment

with Delivery exchange. Finally, the Consumer can start a Delivery exchange (D ready) only

if the last IOTP exchange carried out was a Payment exchange. This is modelled by the tran-

sition PaytoDlv with an input arc containing only one token value P stop, which represents

the successful terminal state of a Payment exchange.

The four transitions A Cnl, O Cnl, P/PD Cnl, and D Cnl are used to collect the terminal

state cancel from the four places modelling the Consumer states in the six IOTP exchanges.

Occurrences of these transitions indicate that the cancellation of some IOTP exchange re-

sults in the cancellation of the whole Purchase transaction at that time. The two transitions

P/PD Stop and D Stop are used to collect the terminal state P stop, PD stop, or D stop from

the two places modelling the Consumer states in the Payment, the Payment with Delivery, or

the Delivery exchanges. Occurrences of these transitions indicate the successful completion of

the Purchase transaction after any of these three IOTP exchanges.

4.2 Merchant Trading Role

Figure 6 depicts page Merchant which speci�es how the Merchant operates during the execu-

tion of a Purchase transaction. This page is structured in a similar way to the Consumer page

with substitution transitions representing the IOTP exchanges on the Merchant side of the

transaction. The Merchant is initially ready and makes a choice as to whether the optional Au-

thentication Exchange should be conducted �rst. After the optional Authentication exchange

there is a choice between doing a Brand Dependent O�er Exchange or a Brand Independent

O�er Exchange.

M_Auth
MSxTR

M_Offer
MerState Brand Independent

Offer Exchange
HS

Brd_I_Offer

Brand Dependent
Offer Exchange

HS

Brd_D_Offer

Authentication
Exchange

HS

Authentication

Offer

MerSendMsg

TRxMsg

Out

MerRecMsg

TRxMsg

P In

Merchant
MerStateready

Auth

A_Cnl

[sm=A_cancel
 orelse
 sm=A_fail]

O_Cnl

O_Stop

AuthToOff

O_ready

ready

(A_ready, Consumer)

O_cancel

(sm, Consumer)

cancel

cancel

O_stop

(A_stop, Consumer)

O_ready

ready

stop

Fig. 6: Purchase transaction { Merchant trading role.

123

4.3 Payment Handler Trading Role

Figure 7 depicts page PHandler which speci�es how the Payment Handler operates in a Pur-

chase transaction. The Payment Handler is initially ready and will start either a Payment

Exchange or a Payment with Delivery Exchange once receiving the message [PayReq] from the

Consumer.

PH_P/PD

PHState

PH_PorPD Payment with
Delivery Exchange

HS

Pay_Deliv

Payment Exchange
HS

PHSendMsg

TRxMsg

Out

PHRecMsg

TRxMsg

In

P/PD_Stop
[sph=P_stop
 orelse
 sph=PD_stop]

PorPD_Stop

P/PD_Cnl

PorPD_Cnl

PHandler

PHStateready

Pay / PDlv
PayOrPDlv

ready

P_ready

P_cancel

cancel

sph

stop

(Consumer, [PayReq])

Fig. 7: Purchase transaction { Payment Handler trading role.

4.4 Delivery Handler Trading Role

Figure 8 depicts page DHandler which speci�es how the Delivery Handler operates in a Pur-

chase transaction. The Delivery Handler is initially ready and will start the Delivery Exchange

as soon as the message [DeliveryReq] is sent from the Consumer indicating a delivery request.

DH_Dlv
DHState

Delivery Exchange
HS

Delivery

DHSendMsg

TRxMsg

Out

DHRecMsg

TRxMsg

In

D_Stop

D_Cnl

DHandler

DHStateready

Deliver

ready

cancelstop D_ready

D_cancel

D_stop

(Consumer, [DeliveryReq])

Fig. 8: Purchase transaction { Delivery Handler trading role.

5 IOTP Exchange Layer

We now consider the speci�cation of IOTP exchanges. The same modelling approach has been

applied to the six exchanges constituting a Purchase transaction. We therefore only give a

detailed account and description of how the Payment exchange has been modelled.

124

5.1 State De�nitions for Trading Roles

First we consider the declarations related to the states of the trading roles. It should be

mentioned that there are no direct de�nitions of states for trading roles in the RFC [3],

and they are thus indirectly derived from the RFC based on the messages sent and received

by the trading roles. Figure 9 lists de�nitions of the colour sets relating to the states of

trading roles. Colour set State (line 1) contains the states of all trading roles in a Purchase

transaction. It has four subsets: ConState (line 2), MerState (line 3), PHState (line 4), and

DHState (line 5). Each of them indicates the possible states of the corresponding trading role,

i.e., Consumer, Merchant, Payment Handler, and Delivery Handler. The colour sets CSxTR

and MSxTR contain a trading role component, and are used only for the Authentication

exchange. This is needed because only one party (the Consumer) is �xed in an Authentication

exchange whereas the other party could be any of the other trading roles. As part of its state

the Consumer therefore needs to know who the other party is. In the following we explain

each value in the colour set State in detail.

{ ready, cancel or stop represents the initial state, the aborted terminal state, and the suc-

cessful terminal state, respectively, of a trading role in a transaction. By adding a pre�x to

the above three states, corresponding states are obtained at the level of IOTP exchanges.

For example, if the pre�x is set to A for Authentication exchange, A ready, A cancel and

A stop then represent the initial state, and the two terminal states of a trading role in

an Authentication exchange. Similarly, the pre�x O stands for the two O�er exchanges,

P stands for both the Payment and the Payment with Delivery exchanges, and D stands

for the Delivery exchange. The only exception is the de�nition of the successful terminal

state for the Payment with Delivery exchange. It is de�ned as PD stop, which is di�erent

from P stop for the Payment exchange.

{ A fail represents the unsuccessful terminal state for an Authentication exchange.

{ wait represents the generic state indicating that a trading role is waiting for an IOTP

message from another trading role.

{ proAuthReq indicates that the trading role is in the state of processing an Authentication

Request Message. Here, pro is a pre�x standing for message processing, while AuthReq

stands for the corresponding IOTP message. In this way, the various message processing

states have been de�ned.

5.2 IOTP Payment Exchange

The Payment exchange allows a payment using some payment brand to be made by the

Consumer to the Payment Handler. The RFC [3] de�nes a set of message processing guidelines

for each exchange. As shown in Fig. 1, the messages exchanged in a successful Payment

exchange consist of:

{ A Payment Request Message sent from the Consumer to the Payment Handler to start

the payment.

{ A set of Payment Exchange Messages exchanged between the Consumer and the Payment

Handler to process the payment.

{ A Payment Response Message sent to the Consumer from the Payment Handler to com-

plete the payment.

125

1 color State = with ready | wait | cancel | stop |

A_ready | proAuthReq | proAuthRsp | A_cancel | A_stop | A_fail |

O_ready | proTPO | proTPOSel | O_cancel |O_stop |

P_ready | proPayReq | proPayExch | P_cancel |P_stop | PD_stop |

D_ready | proDelivReq | D_cancel |D_stop;

2 color ConState = subset State with [ready, cancel, wait, stop,

A_ready, proAuthReq, A_cancel, A_stop, A_fail,

O_ready, proTPO, O_cancel, O_stop,

P_ready, proPayExch, P_cancel, P_stop, PD_stop,

D_ready, D_cancel, D_stop];

3 color MerState = subset State with [ready, cancel, wait, stop,

A_ready, proAuthRsp, A_cancel, A_stop, A_fail,

O_ready, proTPOSel, O_cancel, O_stop];

4 color PHState = subset State with [ready, cancel, wait, stop,

P_ready, proPayReq, proPayExch, P_cancel, P_stop,

PD_stop];

5 color DHState = subset State with [ready, cancel, wait, stop,

D_ready, proDelivReq, D_cancel, D_stop];

6 color CSxTR = product ConState * TradingRole;

7 color MSxTR = product MerState * TradingRole;

8 var sc: ConState; var sm: MerState; var sph: PHState;

Fig. 9: Colour sets and variables for modelling states of trading roles.

During a Payment exchange, both the Consumer and the Payment Handler may cancel

the payment by sending a Cancel Message to the other side. As a result, the payment should

be cancelled at both sides resulting in a cancelled Payment exchange. The page specifying the

Payment exchange has been developed according to the above message processing guidelines.

It captures not only the successful Payment exchange, but all the possible executions of it.

Figure 10 depicts the page C Pay (of Fig. 2) specifying the Consumer side of a Payment

exchange. Figure 11 depicts the page PH Pay specifying the Payment Handler side of a Pay-

ment exchange. In these two pages, each transition represents the event of sending or receiving

a message. Then, the message to be transmitted contains not only the message content, but

also the receiver trading role, while the message received contains the content together with

the sender trading role.

We now illustrate how the pages shown in Fig. 10 and Fig. 11 re
ect the Payment exchange.

Both trading roles are initially in state P ready. The payment starts when the Consumer sends

[PayReq] to PHandler. On receiving [PayReq] from the Consumer, the Payment Handler checks

the message and thus is in the state of proPayReq. If the result is valid, [PayExch] is sent to

the Consumer. Otherwise, the Payment Handler will send a [Cancel] to cancel the payment.

In Fig. 11 this is indicated by transition SendPayExch and SendPayCnl. In Fig. 10, identically

named transitions are also used to indicate the same events are carried out by the Consumer

126

ConRecMsg
TRxMsg

P In

ConSendMsg
TRxMsg

Out

C_Pay

ConState

P I/O

SendPayReq

SendPayCnl

SendPayExch

RecPayRsp

RecPayExch

RecPayCnl

wait

wait

proPayExch

proPayExch

P_cancel

wait

P_stop

(PHandler, [Cancel])

(PHandler, [Cancel])

(PHandler, [PayExch])

(PHandler, [PayReq])

proPayExch

wait

P_ready

wait

P_cancel

(PHandler, [PayExch])

(PHandler, [PayResp])

Fig. 10: The Payment Exchange { Consumer.

PHSendMsg
TRxMsg

Out

PHRecMsg
TRxMsg

In

PH_Pay
PHState

P I/O

RecPayReq

RecPayCnl

RecPayExch

SendPayRsp

SendPayExch

SendPayCnl

[sph=proPayReq orelse sph=proPayExch]

proPayReq

proPayReq

wait

wait

P_cancel

proPayExch

P_stop

(Consumer, [Cancel])

(Consumer, [Cancel])

(Consumer, [PayExch])

(Consumer, [PayReq])

wait

proPayExch

P_ready

sph

P_cancel

(Consumer, [PayExch])

(Consumer, [PayResp])

Fig. 11: The Payment Exchange { Payment Handler.

after receiving [PayExch], while the occurrence of RecPayCnl results in the cancellation of

payment on the Consumer side after [cancel] is received. Then, on receiving the [PayExch],

the Payment Handler may either send [PayResp] to complete the payment, or send [PayCnl]

to cancel the payment. A successful Payment exchange will be completed on both sides when

the Consumer receives [PayResp].

127

6 Validation of CPN IOTP Model

In this section, we apply simulation and state space analysis to validate the CPN model of the

Purchase transaction. The simulation results are presented using Message Sequence Charts

(MSCs) [1] as implemented in the MSC library of Design/CPN [12]. State space analysis

has been conducted using the state space report produced by Design/CPN, and standard

query functions. Simulation and state space analysis similar to the one presented for the

Purchase transaction in this section has been conducted for the CPN models of the other

IOTP transactions.

6.1 Simulation Analysis

The aim of the simulation analysis is to validate that the constructed CPN model of the

Purchase transaction conforms with the speci�cation of the Purchase transaction in the RFC.

We do so by demonstrating that the CPN model of the Purchase transaction can generate the

same set of message exchanges between trading roles as speci�ed for the Purchase transaction

in the RFC. The RFC speci�es the message exchanges between trading roles in a Purchase

transaction using MSCs. To make it easy to compare the message exchanges between trading

roles as speci�ed by the CPN model and as speci�ed by the RFC, the CPN model has been

instrumented so that MSCs displaying the message exchanges between trading roles can be

automatically produced during a simulation. Figures 12-14 show three representative MSCs

resulting from simulation of the CPN model. Each of them shows the message exchanges

between the trading role entities (i.e., Consumer, Merchant, Payment Handler, and Delivery

Handler) during a Purchase transaction. Time increases from the top of the chart to the

bottom.

Figure 12 shows a successful completed Purchase transaction. The �rst three events are

concerned with an Authentication exchange (labelled as event 1-3 in the �gure). After that, a

Brand Dependent O�er exchange is represented by the following 3 events (event 4-6). Next, a

Payment exchange is carried out (event 7-10). Finally, the last two events shows the occurrence

of a Delivery exchange (event 11-12). Therefore, Fig. 12 also provides the MSCs for these four

IOTP exchanges, and each of them matches the corresponding MSCs from the RFC as shown

in Fig. 1. However, Fig. 12 di�ers to Fig. 1 in two points. First, Fig. 12 contains the MSC for

an initial Authentication exchange between Consumer and Merchant as part of a Purchase

transaction, while there is no Authentication considered in Fig. 1. Second, messages outside

the scope of IOTP are shown in Fig. 1 but become invisible in Fig. 12.

The speci�cation of IOTP transactions in the RFC contains only the MSCs for those IOTP

exchanges that are completed successfully without any cancellation during their execution. In

contrast, the CPN model of the Purchase transaction speci�es all the possible executions of

a Purchase transaction. Figure 13 shows examples of a cancelled and a failed authentication

exchange, and Figure 14 shows that the Payment exchange can be cancelled at two di�erent

stages during the transactions. These unsuccessful exchanges then result in the cancellation

of the transaction they are part of.

6.2 State Space Analysis

The aim of the state space analysis is to investigate the behaviour of the CPN model as

well as to validate and verify the functional correctness of the Purchase transaction. A full

128

[AuthReq]

[AuthResp]

[AuthStatus(CompletedOk)]

[TPO]

[TPOSelection]

[OfferResp]

[PayReq]

[PayExch]

[PayExch]

[PayResp]

[DeliveryReq]

[DeliveryResp]

Consumer Merchant Payment Handler Delivery HandlerEvent No

1

4

3

2

5

6

7

8

9

10

11

12

Fig. 12: The MSC for a successful Purchase transaction.

[AuthReq]

Consumer Merchant

[Cancel]

Consumer MerchantConsumer Merchant

[AuthStatus(Failed)]

Consumer MerchantConsumer MerchantConsumer Merchant

[AuthReq]

[AuthResp]

Fig. 13: The MSC for cancelled Authentication exchanges.

[PayReq]

[PayExch]

Consumer Payment Handler

[PayReq]

[PayExch]

[Cancel]

Consumer Payment Handler

[PayExch]

[Cancel]

[PayReq]

Consumer Payment Handler

[Cancel]

Fig. 14: The MSC for cancelled Payment exchanges.

state space report for the Purchase transaction model has been generated. The statistical

information shows that the state space (OCC) has 244 nodes and 490 arcs.

Table 1 shows the home and the liveness properties and has been extracted from the state

space report. There are �ve dead markings representing the terminal states of a Purchase

transaction. Table 2 lists the corresponding states of each trading role in the �ve dead mark-

ings. Marking 164 and 243 represent the two possible successful executions of a Purchase

transaction. In marking 164, the Purchase transaction is completed at the end of a Payment

or a Payment with Delivery exchange between the Consumer and the Payment Handler. The

129

Delivery Handler is therefore never active and is in state ready at the end of the transaction.

In marking 243, the purchase is completed with a Delivery exchange after the payment. The

cancelled Purchase transactions are represented by the other three dead markings. Marking

57 corresponds to the state in which the transaction is cancelled during the Authentication

exchange or one of the two O�er exchanges between the Consumer and the Merchant. The

transaction can also be cancelled during the Payment exchange or the Payment with Deliv-

ery exchange, as indicated by marking 126. Finally, marking 244 represents the state where

the transaction is cancelled during the Delivery exchange. Carefull inspection of Table 2 also

shows that the states which the trading roles are in upon termination of the transaction are

consistent. Therefore, investigating all the dead markings shows that the Purchase transac-

tion terminates properly. The set of dead markings also constitutes a home space, i.e. it is

always possible during the execution of the Purchase transaction to reach one of the dead

markings. This has been checked using the query functions HomeSpace and ListDeadMarkings

of the state space tool.

Table 1: Home and liveness properties.

Home Markings None

Dead Markings [57,126,164,243,244]

Dead Transitions Instances None

Live Transitions Instances None

Table 2: Trading role states in the dead markings.

Trading role Dead marking

[57] [126] [164] [243] [244]

Consumer 1`cancel 1`cancel 1`stop 1`stop 1`cancel

Merchant 1`cancel 1`stop 1`stop 1`stop 1`stop

Payment Handler 1`ready 1`cancel 1`stop 1`stop 1`stop

Delivery Handler 1`ready 1`ready 1`ready 1`stop 1`cancel

Table 3 lists upper and lower integer bounds of the places modelling the message bu�ers

(see Fig. 3). The boundedness results show that the minimal number of messages in each

of the bu�ers is zero, which corresponds to the terminal states of the Purchase transaction.

The maximum number of messages is 1 except that both the Consumer receiving bu�er

(ConRecMsg) and the Merchant sending bu�er (MerSendMsg) may contain 2 at a time. The

corresponding markings can be identi�ed using the PredAllNodes query function of the state

space tool, and an execution of the transaction leading to such marking can be found using

the NodesInPath function. To understand why these two bu�ers may contain two messages

at the same time consider the MSC in Fig. 12. The events 3 and 4 show that the Merchant

sends the TPO message ([TPO]) directly after the successful Authentication status message

([AuthStatus(ComletedOk)]) with no con�rmation message from the Consumer in between.

The Consumer may receive the second message before processing the �rst one. Inspection of

the multi-set bounds in the state space report shows that the trading roles do enter their

expected states during the transaction, and that the messages exchanged between them are

as expected.

130

Table 3: Upper and lower integer bounds.

Place Upper Lower Place Upper Lower

ConRecMsg 2 0 MerRecMsg 1 0
ConSendMsg 1 0 MerSendMsg 2 0
DHRecMsg 1 0 PHRecMsg 1 0

DHSendMsg 1 0 PHSendMsg 1 0

7 IOTP Protocol Architecture

The RFC for IOTP does not contain a precise and detailed speci�cation of the protocol

architecture and the internal organisation of the individual layers. In this section we present

our initial proposal for a protocol architecture of IOTP. The proposed protocol architecture

is derived from the constructed CPN models of the trading transactions.

IOTP is clearly an application protocol in the context of the OSI reference model [2]

possibly operating across di�erent transport protocol services for transmission of IOTP mes-

sages. This is also evident from the prime page of the CPN model shown in Fig. 3. From the

hierarchy page of the CPN model shown in Fig. 2, IOTP itself can be seen as consisting of

two layers: a transaction layer and a exchange layer , where the transaction layer uses the

services provided by the exchange layer to implement the trading transactions.

IOTP protocol entities are not designed to work solely as stand alone applications. An

IOTP protocol entity will typically be embedded in other applications such as HTTP clients

and HTTP servers when, e.g., the Consumer trading role entity is implemented in a HTTP

web browser and the Merchant trading role entity is implemented in a HTTP web server

for trading across the Internet. Moreover, IOTP will in most cases operate across the same

transport service as the application it is part of. This transport service will typically vary

depending on the application and the underlying communication medium. This suggests the

existence of a transport adaption layer . This layer makes it possible to adapt the transport

service of the speci�c application to the service required by IOTP.

Figure 15 shows the proposed protocol architecture of IOTP with the four main protocol

layers as identi�ed above. In the following we discuss the service provided by individual layers

as well as their internal organisation in more detail.

Transactions Layer. This layer implements the IOTP trading and infrastructure transac-

tions. For baseline IOTP this layer implements Deposit , Withdrawal , Purchase, Refund ,

Value Exchange, Inquiry , and Ping transactions.

Exchange Layer. This layer implements the IOTP exchanges. For baseline IOTP this layer

implements Authentication, Brand Dependent O�er , Brand Independent O�er , Payment ,

Delivery , and Payment with Delivery exchanges. The CPN model presented in this pa-

per speci�es in detail how the individual trading transactions can be implemented as

combinations of these exchanges.

Payment Sublayer. IOTP can support di�erent payment instruments (such as VISA, Mas-

terCard, and Mondex Card) by encapsulating the underlying payment protocols (such as

131

SET, Mondex VTP) during the payment-related exchanges. The payment sublayer has

been de�ned as a sublayer embedded in the exchange layer since the payment scheme

component de�ned in IOTP will be used to encapsulate the payment protocol data, e.g., a

SET message, during a Payment exchange. One component of the payment sublayer is the

so-called IOTP payment bridges speci�ed in the Internet Draft for IOTP Payment API [6].

These payment bridges specify the interface and interaction between IOTP exchanges and

the payment system.

Application Transport Adaption Layer. This layer interfaces IOTP to the underlying

transport layer and transport service. This layer will ensure that the IOTP messages,

which are well-formed XML documents, are carried successfully between the trading role

entities. Typically, the application transport adaptation layer includes the mechanisms

which support the mapping of the IOTP data format to the underlying transport layer,

e.g., an XML to HTTP mapping.

Application Transport Layer. This is the basic transport service on top of which the

IOTP entities are operating. This layer could be TCP/IP as well as other higher level

transport protocols such as HTTP and SMTP. It might also be the Wireless Application

Protocol (WAP) [5] transport service if IOTP is used in wireless e-commerce such as

mobile commerce (m-commerce) applications. This layer can also provide session layer

services such as those provided by Secure Socket Layer (SSL) for encryption.

Transaction Layer

Exchange Layer

Application Transport Adaption Layer

Payment Protocol Sublayer

Application Transport Layer

Fig. 15: The layered IOTP architecture.

The protocol architecture above has only one concept of IOTP exchanges { constituting the

exchange layer. This contrast with the RFC which operators with two notions of exchanges:

document Exchanges and trading exchanges. The CPN models of the IOTP transactions and

the validation presented in Sect. 6 show that the concept of document exchanges suÆces,

since it can implement all the IOTP trading transactions. As a simpli�cation of the IOTP

speci�cation we therefore propose to eliminate the concept of trading exchanges since it is

not required from a protocol perspective.

132

8 Conclusions

We have presented a hierarchical CPN model of IOTP based on RFC 2801. The validation

results demonstrate that our CPN IOTP model conforms to the speci�cation given in the

RFC. We have also proposed a complete and simpli�ed architecture for IOTP based on the

constructed CPN models. In addition, we propose the merging of the two unclari�ed notions

of trading exchanges and document exchanges into one concept which we call IOTP exchanges

leading to a simpler speci�cation and architecture for IOTP.

For the current modelling of the IOTP transactions, we have a number of simplifying

assumptions and abstractions. These simpli�cations are primarily related to IOTP error han-

dling. For example, we have only investigated IOTP over a perfect transport medium without

any message loss. Besides the error handling, the arbitrary cancellation during a transaction

has not yet been taken into consideration. As part of future work we plan to include more

internal operations in each layer such as the error handling and the arbitrary cancellation in

our CPN model. However, the assumptions and simpli�cations will not a�ect the proposed

protocol architecture.

Investigating the IOTP service speci�cation will be another challenging part of future

work, since there are no concepts of IOTP service de�ned in the RFC. The IOTP architecture

proposed in this paper not only leads to a protocol speci�cation, but also presents a �rst step

towards developing a service speci�cation for IOTP.

References

1. ITU Recommendation Z.120, Message Sequence Chart, 1992.

2. ITU-T Recommendation X.200, Information Technology - Open Systems Interaction - Basic Reference

Model, July 1994.

3. D. Burdett. Internet Open Trading Protocol - IOTP. RFC 2801. IETF Trade Working Group, April 2000.

Version 1.0.

4. D. Burdett, D. Eastlake, and M. Goncalves. Internet Open Trading Protocol. McGraw-Hill, 2000.

5. WAP Forum. Wireless Application Protocol Architecture Speci�cation. Available via

http://www.wapforum.org/, 30 April 1998.

6. W. Hans, Y. Kawatsura, and M. Hiroya. Payment API for v1.0 Internet Open Trading Protocol (IOTP).

IETF Trade Working Group, April 2001.

7. The Internet Engineering Task Force - IETF. http://www.ietf.org/.

8. Hitachi Research Topics IOTP. http://www.hitachi.co.jp/english/topics/

t iotp/iotp.html.

9. JOTP Open Trading Protocol Toolkit For Java. http://www.livebiz.com/.

10. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume-1, Basic

Concepts. Monographs in Theoretical Computer Science. Springer-Verlag, 1992.

11. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner's Guide to Coloured Petri Nets. Inter-

national Journal on Software Tools for Technology Transfer, 2(2):98{132, 1998. Springer-Verlag.

12. Design/CPN Message Sequence Chart Library. Department of Computer Science, University of Aarhus,

Denmark., 1998. Version 1.1. Available via http://www.daimi.au.dk/designCPN/.

13. Design/CPN online. Available via http://www.daimi.au.dk/designCPN/.

14. Hitachi Smiles. http://www.hitachi.co.jp/Div/nfs/whats new/smiles.html.

15. Mondex USA. http://www.mondexusa.com/html/content/secur/security.htm.

16. Visa and MasterCard. SET Secure Electronic Transaction Speci�cation. Volume-1,2,3, May 1997. Version

1.0.

17. V. Zwass. Structure and Macro-Level Impacts of Electronic Commerce: From Technological Infrastructure

to Electronic Marketplaces. In Foundations of Information Systems. McGraw-Hill, 1998.

133

