Partial Evaluation for Class-Based
Object-Oriented Languages™

Ulrik Schultz
DAIMI, University of Aarhus

ups@daimi.au.dk

November 20, 2000

Abstract

Object-oriented programming facilitates the development of generic
software, but at a cost in terms of performance of the final pro-
gram. We use partial evaluation to automatically map generic object-
oriented software into specific implementations. In this paper we give
a concise and formalized description of how partial evaluation special-
izes an object-oriented program.

1 Introduction

The object-oriented style of programming naturally leads to the development
of generic program components. Encapsulation of data and code into objects
enhances code resilience to program modifications and improves the possi-
bilities for direct code reuse. Message passing between objects in the form
of virtual dispatches lets program components communicate without relying
on a specific implementation; this decoupling enables dynamic modification
of the program structure to react to changing conditions. Genericity imple-
mented using these language features is however achieved at the expense of
efficiency. Encapsulation isolates individual program parts and increases the
cost of data access. Message passing is implemented using virtual dispatch-
ing, which obscures control flow, thus blocking traditional optimizations at
both the hardware and software level.

*Based on work done in the Compose Group at IRISA/INRIA, Rennes, France; sup-
ported in part by Bull.

Partial evaluation is an automated technique for mapping generic pro-
grams into specific implementations dedicated to a specific purpose. Partial
evaluation has been investigated extensively for functional [5, 7], logical [16]
and imperative [2, 4, 8] languages, and has recently been investigated for
object-oriented languages by Schultz et al., in the context of a prototype
partial evaluator for Java [25]. However, no precise specification of partial
evaluation for object-oriented languages has thus far been given.

In this paper, we give a concise description of the effect of partial evalu-
ation on an object-oriented program, and formalize how an object-oriented
program can be specialized using an off-line partial evaluator. The partial
evaluation principles that we describe form the basis of a complete partial
evaluator for Java, described elsewhere [23, 24]. We consider class-based
object-oriented languages; partial evaluation for object-based object-oriented
languages is future work.

Overview: First, Section 2 gives a concise description of the effect of par-
tial evaluation on an object-oriented program. Then, Section 3 defines a
small object-oriented language based on Java, and Section 4 defines a two-
level version of this language. Section 5 gives well-annotatedness rules for this
language, Section 6 gives evaluation rules, and Section 7 gives a constraint
system for deriving well-annotated programs. Afterwards, Section 8 summa-
rizes the features needed to scale up partial evaluation to specialize realistic
Java programs. Last, Section 9 investigates related work, and Section 10
concludes and discusses future work.

2 Specializing Object-Oriented Programs

To describe the effect of applying partial evaluation to an object-oriented
program, we first describe the basic principles for specializing object-oriented
programs, and then give an example.

2.1 Basic principles

From a global point of view, the execution of an object-oriented program can
be seen as a sequence of interactions between the objects that constitute the
program. Certain parts of this interaction may become fixed when particular
program input parameters are fixed. Given fixed program input parameters,
the purpose of partial evaluation should be to simplify the object interaction
as much as possible, by evaluating the static (known) interactions, leaving
behind only the dynamic (unknown) interactions.

Objects interact by using virtual calls to invoke methods. We can spe-
cialize the interaction that takes place between a collection of objects by spe-
cializing their methods for any static arguments. Each specialized method
is added to the object where the corresponding generic method is defined,
under a new name. Using this approach, the specialized object interaction is
expressed in terms of the specialized methods: a specialized method interacts
with some object by calling specialized methods on this object.

A method is specialized to a set of static values by propagating these
values throughout the body. A lookup of a static value stored in a field
of a static object yields a value that can be used to specialize other parts
of the program. A virtual dispatch is akin to a conditional that tests the
type of the receiver object and subsequently calls the appropriate receiver
method. When the receiver object is static, the virtual dispatch can be
eliminated, and the body of the method unfolded into the caller. When
the receiver object is dynamic but is passed static arguments, the virtual
dispatch can be specialized speculatively; each potential receiver method is
specialized for the static arguments, and a virtual dispatch to the specialized
methods is residualized. Object-oriented languages often include features
from functional or imperative languages; such features can be specialized
according to the known partial evaluation principles for these languages.

For a class-based object-oriented language, the result of specializing a
program is a collection of specialized methods to be introduced into the
classes of the program. Introducing these methods directly into the classes
of the program is problematic: encapsulation invariants may be broken by
specialized methods where safety checks have been specialized away, and this
mix of generic and specialized code obfuscates the appearance of the program
and complicates maintenance. A representation of the specialized program
is needed that preserves encapsulation and modularity.

We observe that the dependencies between the specialized methods follow
the control flow of the program, which cuts across the class structure of
the program. This observation brings aspect-oriented programming to mind;
aspect-oriented programming allows logical units that cut across the program
structure to be separated from other parts of the program and encapsulated
into an aspect [15]. The methods generated by a given specialization of
an object-oriented program can be encapsulated into a separate aspect, and
only woven into the program during compilation. Access modifiers can be
used to ensure that specialized methods only can be called from specialized
methods encapsulated in the same aspect, and hence always are called from
a safe context. Furthermore, the specialized code is cleanly separated from
the generic code, and can be plugged and unplugged by selecting whether to
include the aspect in the program.

class Binary { class Power {

int eval(int x, int y) { int exp; Binary op; int neutral;
return this.eval(x,y); Power(int exp, Binary op,
} int neutral) {
} super () ;
class Add extends Binary { this.exp = exp;
int eval(int x, int y) { this.op = op;
return x+y; this.neutral = neutral;
} }
} int raise(int base) {
class Mult extends Binary { return loop(base,this.exp);
int eval(int x, int y) { }
return xxy; int loop(int base, int e) {
} return e==
} ? this.neutral

: this.op.eval(base,
this.loop(base, e-1));
}
}

Figure 1: Binary operators and a power function.

2.2 Example: power

As an example of how partial evaluation for object-oriented languages spe-
cializes a program, we use the collection of Java classes shown in Figure 1.
These classes implement an object-oriented version of the power function,
parameterized not only by the exponent, but also by the operator to apply
and the base value. The hierarchy of binary operators has the class Binary
as a common superclass (rather than using an abstract class, we for sim-
plicity use a class with diverging methods). The class Power has a method
raise that computes the exponent over some base value, using the auxiliary
method loop.

We can specialize the method raise of the class Power in a number of
ways, all of which are illustrated in Figure 2. First, assume that the exponent
field is known; propagating the value stored in the exponent field through-
out the program allows the recursion of the method raise to be unfolded.
The result is shown in the aspect Exp Known. We use an aspect syntax based
on the AspectJ language [29]; an introduction block lists a set of methods
to introduce into the class named by the block header. Next, assume that
the operator and neutral values also are known; the virtual dispatch to the
binary operator can be resolved and unfolded, and the neutral value directly
residualized. The result is shown in the aspect Exp_Op_Neutral Known; opti-

aspect Exp_Known {
introduction Power {
int raise_3(int base) {
return this.op.eval(

base,
this.op.eval(
base,
this.op.eval(
base,
this.neutral)));
}
}

}

aspect Exp_Op_Neutral_ Known {
introduction Power {
int raise_3_Mult_1(int base) {

return basex*(base*(basex1));

}
}

}

aspect Exp_Op_Neutral_Known_Opt {
introduction Power {

int raise_3_Mult_1_opt(int base) {

return base*base*base;
}
}

aspect Exp_Base_Known {
introduction Power {
int raise_3_2(0) {
return this.op.eval_2(
this.op.eval_2(
this.op.eval_2(
this.neutral)));
}
}
introduction Binary {
int eval_2(int y) {
return this.eval_2(y);
}
}
introduction Add {
int eval_2(int y) {
return 2+y;
}
}
introduction Mult {
int eval_2(int y) {
return 2xy;
}
}
}

Figure 2: Various specializations of the power example.

mizing the residual program using arithmetic simplifications yields the result
shown in the aspect Exp_Op_Neutral Known Opt. Last, assume that only the
exponent and base value are known; speculative specialization allows each
eval method to be specialized for the known base value, as shown in the
aspect Exp_Base_Known.

To evaluate the effect of specialization on the power program, we have
measured the benefit due to specialization when using the this program to
compute 5%, Experiments were performed on two different machines, a
SPARC and an [A32. Benchmarks are done using Sun’s JDK 1.2.2 JIT com-
piler [26], Sun’s JDK 1.3 beta 2 [27] HotSpot compiler (both in interpretive
and compilation mode), IBM’s JDK 1.3 JIT compiler [13], and the Harissa
off-line bytecode compiler [18]. The results are shown in Table 1; the result-
ing speedup ranges from 3.3 times (interpreter on a SPARC) to 11.6 times
(Harissa compiler on SPARC).

Running time, SPARC Running time, 1A32
Execution system | Generic Specialized Speedup | Generic Specialized Speedup

HotSpot, interpret | 438.63s 131.20s 3.3 90.78s 19.84s 4.6
JIT (Sun/IBM) 38.13s 5.01s 7.6 7.39s 1.42s 5.2
HotSpot, compile 23.15s 4.75s 4.9 7.67s 1.39s 5.5
Harissa 37.92s 3.28s 11.6 9.72s 1.28s 7.6

Table 1: Specialization of the power example.

P € Program 2= ({CLi,...,CL,},e)
CL € Class = class C extends C {C; f1;...;Cp f,; K My...Ms}
K € Constructor = C(C; f1,...,C,)
{super(fl, . I this.f;y1 = f,41;...;this.f,, = fn;}
M € Method x= T m(C; x1,...,Cp %) {return e;}
e € Expression x= x| e.f | e.m(er,...,e,) | new Cler,...,e,) | (Ce
Values that result from evaluation:
v € Value = objectg(vy,...,vy,)

Figure 3: EFJ syntax (program and values)

3 Eager Featherweight Java

To define partial evaluation for object-oriented languages, we use a small
class-based object-oriented language based on Java [11] named Eager Feath-
erweight Java (EFJ, after Featherweight Java [14]). EFJ is intended to
constitute a least common denominator for class-based languages so that
any partial evaluation principles developed for EFJ will apply to most other
class-based languages as well. EFJ is a subset of Java, and an EFJ program
behaves like the syntactically equivalent Java program. EFJ incorporates
classes and inheritance in a statically typed setting, fields, methods with
formal parameters, and object constructors. To simplify the presentation
there are no side-effects on fields nor formal parameters; it is well-known
how to handle imperative features in a partial evaluator [2, 3, 8], and the
principles developed in this paper are independent of the presence of side-
effects. EFJ does not include conditionals, base-type values, and operators.
While these would be natural to include in a realistic language, we choose
to omit them for clarity. It is trivial to extend the principles developed in
this paper to support these language features, as shown in the author’s PhD
dissertation [23].

3.1 EFJ syntax

The syntax of EFJ is given in Figure 3. A program is a collection of classes
and a main expression. Each class in the program extends some superclass,
declares a number of fields, a constructor, and a number of methods. A
constructor always calls the constructor of the superclass first and then ini-
tializes each field declared in the class afterward; the constructor is the only
place where fields can be assigned values. The definition of a constructor is
fixed given the fields of a class and its superclass, and the semantics of object
initialization is not defined in terms of the constructor but is defined directly
in terms of the fields of the class. However, writing out the constructor al-
lows us to retain a Java-compatible syntax. The body of a method is a single
expression. An expression can be a variable, a field lookup, a virtual method
invocation, an object instantiation, or a class cast. Values are objects, which
are represented as a tuple of values labeled with the name of the class of the
object.

The special class Object cannot be declared but is part of every program.
This class extends no other class, and has no methods and no fields; with
the exception of this class, all classes referenced in the program must also
be defined in the program. Furthermore, there should be no cycles in the
inheritance relation between classes.

3.2 EFJ typing

Like Java, EFJ is a statically-typed object-oriented language. The typing
rules ensure that evaluation never goes wrong: a well-typed program either
reduces to a value, stops at an illegal type cast, or diverges. A type cast
is illegal when an object of a more general type is cast to a more specific
type. We will not define the EFJ typing rules here; we refer to the original
presentation of Featherweight Java [14] or the author’s PhD dissertation [23]
for a description of the EFJ typing rules. It is only the subtyping relation
between classes that is directly used in our formalization; subtyping follows
the class hierarchy, and is denoted “<:”.

3.3 EFJ evaluation

We define EFJ computation using the eager big-step semantics shown in Fig-
ure 4. The auxiliary functions fields and mbody are summarized in the figure
and defined in the appendix. The evaluation rules define reduction of an ex-
pression into a value, as follows. A new expression creates an object holding
the value of each expression passed to the constructor (r-New). A reference

e, — V;

R-N
new C(ei,...,en) — objectg(vi,...,vp) (R-NEwW)
e — objecto(vy, ..., vy)
elds(C) =Ty f1,...,Tp £
ﬁ ()e £ 1—3‘\/' -z (R-FIELD)
1 K3
e — objectg(vi,...,vy) & — d';
mbody(C,m) = ((x1,...,%Xk), €0)
[d'l/xl, . ,d/k/Xk, objectc(vl, . ,vn)/this]eo — v -
em(dy,...,dg) — v/ (R-Irvi)
e — objectg(vy,...,v,) C <: D (R-Cas™)

(D)e — objectg(vy,. .. ,vy)

fields(C) = fields of class C
mbody(C,m) = body of method m defined in class C

Figure 4: EFJ computation

to a field retrieves the corresponding value (r-Fmrn). Method invocation first
reduces the self expression to decide the class of the receiver object, which
determines what method is called; the method body is reduced after substi-
tution of the the self object for the special variable this and substitution of
the values of the arguments for the formal parameters (rR-invk). Class casts
can be reduced when the class of the concrete object is a sub-class of the
casted type (r-Cast); if the concrete object is not a sub-class, the expression
cannot be reduced. To compute the value of a complete program, the main
expression of the program must be evaluated in an environment that defines
the values of any free variables in the main expression.

4 Two-level Language

We formalize EFJ specialization as execution in a language with a two-level
syntax. The two-level separation of a program corresponds to the separation
of a program into static and dynamic parts. During evaluation of a two-level
program, static expressions are reduced away, and dynamic expressions are
residualized.

We extend EFJ into a two-level language by adding dynamic counterparts
to the EFJ syntax, as shown in Figure 5; we name this language Two-Level
EFJ (2EFJ). Static 2EFJ constructs are written as their EFJ counterparts,
whereas dynamic constructs are underlined. We use monovariant binding

2P u= ({2CLy,...,2CL,},2e)

2CL = class C extends C {C; f1;...;Cp f,; 2K 2M;y...2M;}
2K = K|K
K 2= C(C; f1,...,C, £,,)
{super(f;,...,f;); this.f; = fy;...;this.f, = £,}

2M = C m(2Dy,...,2D,) {return 2e;}

| C m(2Dy,...,2D,) {return 2e;}
2D = Cx|Cx
2e = e | x| 2e.f, . .c | eMycy,..c3(2€1,...,2e,)

| new C(2e1,...,2e,) | (C)2e
e = x| e.fg . | €M, co1(2e1,...,2e,) | new Cley,...,e,) | (Ce
Values that result from evaluation:
v u= objectg(vy,...,v,) | residual program part

Figure 5: 2EFJ syntax

times, which means that there is exactly one binding time associated with
each program point.

For simplicity, we assign the same binding time to all objects of the same
class, which we indicate by a binding-time annotation on the constructor
of the class. We refer to a class with a statically-annotated constructor
as a static class, and similarly for dynamic annotations. When a class is
dynamic, all field references and method invocations on objects of that class
are considered dynamic and will be residualized. Conversely, when a class
is static, all field references and method invocations on objects of that class
are removed by specialization.

For a method invocation, the binding-time annotation on the class indi-
cates the binding time of the self; the binding time of each parameter other
than the self depends on the binding times of the arguments that the method
may be passed. The annotation on the return keyword of a method indicates
the binding time of the method return value. The domain of values computed
by the program is extended to include residual program parts.

To simplify partial evaluation for our language, we annotate field accesses
and method invocation expressions with the list of possible classes of the self
object; the binding time of a field access or method invocation expression
is determined using the binding times of the classes included in the type
annotation. The type annotations can trivially be computed using the EFJ
type inference rules: for a given inferred type, an expression is annotated
with the complete set of possible subtypes. More precise type annotations
(i.e., including a smaller set of types) can be obtained in many cases by
using a more precise type-inference algorithm, several of which are presented
in literature [19, 20, 22].

5 Well-Annotatedness

We now define a set of rules that ensure 2EFJ well-annotatedness: a well-
annotated (and well-typed) 2EFJ program either diverges, stops at the reduc-
tion of an illegal type cast, or reduces to a specialized program. In this sec-
tion, we present the binding times that we use to describe well-annotatedness,
consider what it means for a program to be well-annotated, and finally give
a type system that defines well-annotatedness for 2EFJ programs.

5.1 Binding times

We use D to indicate a dynamic binding time and S to indicate a static
binding time. For simplicity, we let all fields that belong to the same class
have the binding time of the class. Our language has no base-type values, and
we do not allow objects to be lifted, so there is no need to discern liftable
values from non-liftable values. Object lifting would have to be done by
generating new expressions, which would duplicate computation if the same
object were residualized in many places. Besides being inefficient, creating
duplicate objects would cause inconsistency problems in a language where
object references can be compared.

5.2 Considerations

The binding time of two objects that are used at the same program point
(through field lookup or method invocation) must be equal. Fields common
to these two objects must have the same binding times, and all possible
receiver methods must have equivalent binding times for the self and any
other arguments. For a given field lookup or method invocation qualified by
a type @, the annotations will contain the set of sub-types of) as possible
types. Thus, with the exception of the special class Object, a class will
have the same binding time as its superclass. The class Object is implicitly
exempted since it has neither fields nor methods, and thus never can occur
in an expression type annotation

5.3 Well-annotatedness rules

We define well-annotatedness of a 2EFJ program using the rules of Figure 6.
These rules ensure that during evaluation of a 2EFJ program, no residual
program parts appear where a value is expected, and vice versa. In these
rules, an environment 7 is a finite mapping from variables to binding times.

The well-annotatedness judgment for expressions has the form 7 F e : T,

10

Expressions:

Thx:7(x) (W-Var)

ThHe:S The:D
ld-bt(Cs,£) = S ld-bt(Cs,f) =D
fie () (W-S-FIELD) fie () (W-D-FIELD)
T = e.f{cl,___yck} : S T = ei{cl,...,ck} : D
The;: S The;: D
class-bt(C) = S WS Now class-bt(C) = D WoD-Now
ThHnewC(es,...,en): S (W-8-New) T+ new C(eq,...,en) : D (W-D-New)
The:S WS The:D WoD-C
S _S-CAs _ -D-CAs
TF(Cle: S () T (Cle: D (sT)
ThHe:S 7TFei:T; bt-signature(Cy,m) = S.(Ty,...,T,) — Tr
(W-S-INVK)
Them, cy(e1,--.,en): Tr

ThHe:D thkei:T; bt-signature(Cj,m) = D.(Ty,...,T,) — D

Them, . cy(er,...,en): D

(W-D-INVK)

Methods:

bt-signature(C,m) = To.(T1, ..., T,) — S
T = build-env(no-bt(P), Ty, (Th,...,T,)) ThFe=S
Tm(P) { returne; } WFINC

(W-S-METHOD)

bt-signature(C,m) = To.(T4, ..., T,) — D
T = build-env(no-bt(P), Ty, (T1,...,T,)) TFHe=D
Tm(P) { returne; } WFINC

(W-D-METHOD)

Classes:

k€e2K M; WF IN C
class C extends D { C; £15...; Cp, £, K My ... M, } WF

Program:
VCL € CLy,...,CLy : CLWF 7ok e€T

(CLy,...,CL,,e) WF IN 7,

Binding times BT: S, D, with S = D

Binding-time environment 7 : Var — BT

class-bt(C) = binding time of class C

field-bt(C, £) = binding time of field f in class C

bt-signature(C,m) = binding-time signature of m in class C

no-bt: maps a 2EFJ program part into the corresponding EFJ program part

build-env: builds a binding-time environment from a list of formal parameters and
a list of binding times to associate with these parameters

Figure 6: Rules for well-annotatedness

11

meaning “in the environment 7, expression e has binding time 7.” The
well-annotatedness rules are syntax directed, and use a number of auxiliary
definitions; these definitions are summarized in the figure, and described in
detail in the appendix.

The well-annotatedness rules for expressions are defined as follows. The
binding-time annotation of a variable is given by the environment 7 (W-var).
The binding-time annotation of a field access must correspond to the binding
time of the field across all classes that may be used at this program point
and is equivalent to the binding time of the classes that contain the field
(w-s-Fiero and w-p-Feen). The binding time of an object instantiation must be
equivalent to the binding time of the class that is being instantiated (W-s-New
and w-D-New). Similarly, the binding time of a cast must be equivalent to
the binding time of the class that it is being cast to (w-s-casr and w-D-Casr).
For a method invocation, the binding time of the self object must correspond
to the binding time of the classes of the possible receiver objects, and the
binding times of the parameters must correspond to the binding times of the
actual arguments.

For the binding-time annotations of a method declaration to be well-
formed, the binding time of its body must correspond to the binding-time
annotation on the return statement. The binding time of the body is checked
using the well-annotatedness rules for expressions, in an environment defined
by the binding-time annotations on the class and the method formal param-
eters. For the binding-time annotations of a class to be well-formed, the
binding-time annotation of each method must be well-formed. Similarly, for
the binding-time annotations of a program to be well-formed in an environ-
ment 7y that provides binding times for any free variables, the binding-time
annotation of the main expression and each class must be well-formed.

6 Specialization

For a given 2EFJ program, the static parts can be reduced away, leaving
behind only the dynamic parts. Evaluation of a static part of the program is
done using the standard evaluation rules of EFJ, and yields either a value or
a specialized program part. Evaluation of a dynamic program construct is
done using a new set of rules, and yields a residual program part. We consider
evaluation of well-annotated 2EFJ programs, so evaluation either diverges,
stops at an illegal static type cast, or results in a specialized program.

12

FEach EFJ evaluation rule from Figure 4 is extended to collect residual
specialized methods in the same way as the 2EFJ evaluation rules below.
The 2EFJ version of an EFJ rule (R-x) is named (2RS-x), giving the rules
(2RS-NEW), (2RS-FIELD), (2RS-INVK), and (2RS-CAsT).

vn = name(x)

x — (build-var(vn), 0) (2RD-VAR)

e; — (riy M;) cn = name(C)

2RD-N
new C(eq, ..., e,) — (build-new(en, (r1,...,r,)), UM;) (EW)

e— (r,M) fn= name(f)
efic,,..c) — (build-field-lookup(fu, r), M)

(2RD-FIELD)

e; — (ri, Mz)

a; = make-subst(C;,m, (r1,...,7)) mbody(Ci,m) = ((...),d;) a;d; — (d}, M])
N = (UM;)U (UM/) mn = new-name(N,m) m; = build-method(C;, m, mn, d})
eomgc, .c} (€1, -, en) — (build-invoke(m,mn, rq, (r1,...,mn)), N U{mi,...,mp})

(2RD-INVK)

e — (r,M) cn = name(C)
(C)e — (build-cast(cn,r), M)

(2RD-CAsT)

Residual methods produced M: {(Class, Type,Method,(Varx. .. xVar),Exp)}
build-X(v1, . . ., v,)=residual form X with subcomponents v1,..., v,
name(x)=residual representation of variable x
new-name(M, m)=new method name based on m but not defined in M or the program
make-subst(C,m, (e1, ..., e,))=substitution of the parameters of m for ey, ..., e,
build-method(C,m, mn, d) =new method “mn” in class C with body d,

with the dynamic formal parameters of m.

Figure 7: Specialization as two-level execution

6.1 2EFJ expression evaluation

Figure 7 shows the definition of 2EFJ evaluation. The evaluation rules reduce
an expression into a tuple; the first member is a value (possibly in the form
of a residual expression), and the second member is a set of fresh method
definitions to introduce into the classes of the program.

The static parts of a 2EFJ expression reduce into values using a set of
rules that are counterparts to the standard EFJ evaluation rules of Figure 4,
extended to collect specialized methods. Evaluation of a static expression
can only produce new residual methods by evaluation of a sub-expression,
so the extended EFJ rules simply thread the set of new methods through
the evaluation of each sub-expression. The 2EFJ counterpart of an EFJ

13

evaluation rule r-x is named 2rs-x (reduce static). The evaluation rules for
static 2EFJ expressions are straightforward except for method invocations.
A method invocation with a static self object but a dynamic return value
will produce a residual expression that is unfolded into the calling context;
any arguments, be they values or residual program parts, are substituted
throughout the body of the method (2rS-1xvk).

With the exception of method invocation, all evaluation rules for dynamic
constructs are straightforward: each sub-component is reduced into a resid-
ual expression, and used to rebuild the construct (2rD-Var, 2RD-NEw, 2RD-Frrrp,
2rD-Cast). To reduce a dynamic method invocation, a new set of virtual
methods must be generated, one for each possible receiver class (2rD-Invx).
To this end, the arguments and the self object of the method invocation are
first reduced; then, each possible callee is specialized. The specialized body
of each callee is obtained by evaluation after substitution of its static pa-
rameters throughout the body of the generic method. Each resulting body
is inserted into a fresh method which has the same name across all of the
possible receiver classes, and which is added to the set of produced meth-
ods. The evaluation rule for method invocation uses two auxiliary definitions
(make-subst and build-method) that are defined in the appendix.

6.2 Evaluation of a program

Evaluation of a 2EFJ program produces a specialized main expression and
a collection of specialized methods; this representation can be transformed
into the aspect syntax of Figure 8a. We use introduction blocks to introduce
specialized methods into classes, and a special main block to replace the main
expression of a program. The rules for transforming the tuple resulting from
2EFJ evaluation into an aspect are shown in Figure 8b. The aspect produced
by specialization can be woven into the main program using a simple weaver
weave, defined by the evaluation rule of Figure 8c. The overall effect is that
each specialized method is inserted into the class for which it was specialized,
and that the generic main expression is replaced by the specialized main
expression.

6.3 Improved 2EFJ expression evaluation

The 2EFJ evaluation rules for method invocation shown in Figure 7 suffer
from two major problems. First, the rule for reducing a static method invoca-
tion can cause code duplication, when a residual program part is substituted
for a parameter. This problem can be solved by the introduction of let-blocks
into our language, which would allow a let-block to be used to locally bind

14

AsPECT = aspect {
(INTRODUCTION)* main EFJ-EXPRESSION

}

INTRODUCTION = introduction EFJ-CrLASS-NAME {
(EFJ-METHOD)*

}

(a) Aspect syntax for program with main expression

e — (¢/, M)
{M$.. MG} = {Cm (x4,...,%){ return e; }|(C;, C,m, (x4, .. .,%x),€) € M}
I; = introduction C; { MY ... M& }
({C1,...,Cn},e) — aspect {I;...I, main e’}

(b) Specialization into an aspect

I; = introduction C; { M'y,... .My } C; =classCextendsD {...;KM;... My}
C; =class CextendsD {...;KM;... M, Mj... M }

weave(({Cy,...,Cn},€),aspect { I1,...,I, maine’ }) — ({Ci,...,CL},¢)

(¢) Weaving of aspect and program

Figure 8: Specialization of a program into an aspect

formal parameters. Second, the rule for reducing a dynamic method invo-
cation cannot reduce a method that performs recursive calls under dynamic
control, since an infinite number of specialized methods are generated. To
address this problem, a method cache can be introduced to permit methods
currently being specialized to a specific set of values to be used in expressing
the result of specializing other methods. These problems and their solution
are well-known from partial evaluation for functional languages.

In the 2EFJ evaluation rule for dynamic method invocation, we exploit
the fact that our type inference algorithm always includes the class of the
qualifying type (the type by which the object is referenced in the program)
in the set of classes used to annotate virtual dispatches. Thus, a specialized
method is always generated for the class of the qualifying type. If this were
not the case, the residualized virtual dispatch might be illegal: there could be
a residual virtual dispatch to a virtual method not defined in the class of the
qualifying type. To circumvent the problem when using a more precise type

15

inference algorithm, a dummy method could be introduced into the class of
the qualifying type, to ensure a correct program.

7 Binding-Time Analysis

Binding-time analysis of an EFJ program derives the binding-time annota-
tions that divide the program into static and dynamic 2EFJ program parts.
The binding-time analysis is supplied the binding times of the free variables
of the main expression, and the derived annotations must respect the well-
annotatedness rules while making static as large a part of the program as is
possible. We express the binding-time analysis as constraints on the binding
times of the program, and then use a constraint solver to find a consistent
solution that assigns binding times to the program.

7.1 Constraint system

We generate one or more constraints for every program part. We associate
constraint variables with expressions, classes, method returns, method formal
parameters, and the free variables of the program main expression. We use
the constraint variable T, to constrain the binding time of an expression e.
We use Tt to constrain the binding time of a class C. For a method m in the
class C with formal parameters x1,...,X,, We use T¢greturn 10 constrain the
binding time of the method return value, and 7,4, to constrain the binding
time of each method parameter (the binding time of the self argument is
constrained by T¢). We use the special naming convention 7g o, to indicate
a constraint on a free variable x of the main expression of the program. Apart
from equality between binding times, we use the constraint operator 17 > T5
to express a dependency between 77 and 75, as defined in Figure 9.

7.2 Constraint generation

The constraint system generator is shown in Figure 9, and is derived directly
from the rules for well-annotatedness. The binding-time constraints for an
expression e in a method m of the class C are generated using CE(C,m,e).
Constraint generation is straightforward, except for method invocation. For
a method invocation, the binding times of the arguments should correspond
to the binding times of the formal parameters of each callee, the binding time
of the self should correspond to the binding time of the possible classes of the
self, and the binding time of the complete expression should correspond to

16

CE(C,m,e) = case e of

[]

ler-fc,,. 0]

[new C(eq, ..., en)]
[(C)ea]

[[el.m{01 _____ Ci} (dl, ey dn)]]

{TC.m.x - Te}
{T61 =TT, = Tci} UCE(Cama 61)
{Tei = Tc,Te = Tc} UCE(C,III, 61')
{T., =T.} UCE(C,m,e1)
{Tdi = TCJ- .X5 0 T61 = TCia Te = TCi.m.return}
UCE(Cym,e;) UCE(C,m, d;)
CM(C; m, 6) = {TC.m.return = Te: TC > TC.m.return} U CE(Ca m, 6)
C%(class C extends D {...;KM;...M}) = UCM(C,my,e;),
M; =Tm(...) { returne;; }
CP({Cy,...,Ca},e, 1) = TUCE(O,O,e) U (UCY(Cy))

Constraints: Ty > Ty < (Th = D = Th, = D)

LR

Figure 9: Constraint generation

the binding time of the return value of each callee. To generate constraints
for a program, constraints are generated for all methods of all classes.

7.3 Constraint solving

To efficiently solve the constraint system generated for an EFJ program,
we can directly use the constraint solver of the C-Mix partial evaluator for
C [1, 2]. We only make use of two sorts of constraints (=,>), both of which
are identical in C-Mix. We map our set of binding times {5, D} into C-Mix
binding times using a mapping a:

a(S)=*S a(D)=D

In C-Mix, the binding time %S indicates a pointer value, which is non-liftable
in C. Solving our constraint system does not generate new forms of binding
times, even though the C-Mix constraint solver treats a richer set of binding
times. Thus, to obtain the result of the binding-time analysis after having ap-
plied the C-Mix constraint solver, we can simply employ the obvious reverse
mapping of a. The solution produced by the C-Mix constraint solver directly
defines binding times for all dynamic program parts; all other program parts
are assigned static binding time.

8 Scaling Up to Realistic Java Programs

In the development of our complete partial evaluator for Java, we have ex-
tended the principles presented in this paper to deal with the complete set

17

of language features found in Java. We have determined that the following
features are essential for specialization of realistic Java programs:

Modular specialization: Modular specialization [8] allows a slice of a pro-
gram to be specialized and reinserted into the generic code; the partial
evaluation principles presented in this paper preserve the class struc-
ture of the program, thus facilitating modular specialization.

Use sensitivity: Use-sensitivity [12] allows an object to remain static al-
though it appears in a dynamic context, and allows partially static
objects without breaking the program structure (as is done with struc-
ture splitting).

Polyvariance: Objects are often used to implement containers (e.g., lists) or
basic entities (e.g., complex numbers) that are reused across a program
with different binding times; binding times must be computed individ-
ually for each object instance of a given type (type polyvariance) and
for each method invocation (method polyvariance).

These features are all implemented JSpec, which treats the entire Java lan-
guage excluding exception handlers [23, 24]. JSpec was used to automatically
specialize the power example shown in Section 2.

9 Related Work

On-line partial evaluation for object-oriented languages is feasible, as shown
by Marquard and Steensgaard [17]. They developed a partial evaluator for a
small object-based object-oriented language based on Emerald. However, the
primary focus is on issues in on-line partial evaluation, such as termination
and resource consumption during specialization. There is no description
of how partial evaluation should specialize an object-oriented program, and
virtually no description of how their partial evaluator handles object-oriented
language features.

Partial evaluation can be done based on constructor parameters at run
time for C++ programs, as shown by Fujinami [10]. Annotations are used
to indicate member methods that are to be run-time specialized; a method
is specialized using standard partial evaluation techniques for C and by re-
placing virtual dispatches through static object references by direct method
invocations. Furthermore, if a virtual method invoked through a static ob-
ject reference has been tagged as inline, it is inlined into the caller method
and further specialized. This approach to partial evaluation for an object-
oriented language concentrates on specializing individual objects. On the

18

contrary, we specialize the interaction that takes place between multiple ob-
jects based on their respective state, resulting in global specialization of the
program.

Templates in C++ can be used to perform partial evaluation at com-
pile time, as demonstrated by Veldhuizen [28]. By using a combination of
template parameters and C++ const constant declarations, arbitrary com-
putations over base type values can be performed at compile time. Compared
to our definition of partial evaluation for object-oriented languages, special-
ization with C++ templates is limited in a number of ways. First, the values
that can be manipulated are more restricted; for example, objects cannot be
dynamically allocated. Second, the computations that can be simplified are
more limited; for example, virtual dispatches cannot be simplified. Last, an
explicit two-level syntax must be used to write programs; as a consequence,
binding-time analysis must be performed manually, and functionality must
be implemented twice if both a generic and a specialized behavior is needed.

Customization and selective argument specialization are highly aggres-
sive yet general-purpose object-oriented compiler optimizations [6, 9]. Se-
lective argument specialization (the more general of the two optimization
techniques) specializes methods for those of their arguments that are known.
Specialization is done by eliminating virtual dispatches over objects with
known types. Type information and execution time information is dynam-
ically gathered to direct optimizations. Compared to these optimizations,
partial evaluation for object-oriented languages is more thorough and more
aggressive: it propagates values of any type globally throughout the program
and reduces any computation that depends only on known information. Nev-
ertheless, these optimizations can be complementary to partial evaluation,
since they can be used to optimize program parts of a more dynamic nature,
where no static information is known.

10 Conclusion and Future Work

We have given a formal definition of partial evaluation for a minimal class-
based object-oriented language, and thus made clear how partial evaluation
can specialize object-oriented programs. Given the widespread popularity
of object-oriented languages and the performance problems associated with
frequent use of object-oriented abstractions, we expect that partial evaluation
can be a useful software engineering tool when implementing object-oriented
software.

We leave as future work the formal proof that the binding-time analysis
derives well-annotated programs and that well-annotated (and well-typed)

19

programs always reduce safely. Also, we have concentrated on class-based
object-oriented languages. Nonetheless, we consider object-based languages
to be an interesting target for partial evaluation, and are working on giving
a concise definition of partial evaluation for this language type.

References

1]

2]

LL.O. Andersen. Binding-time analysis and the taming of C pointers. In
PEPM’93 [21], pages 47 58.

L.O. Andersen. Program Analysis and Specialization for the C' Program-
ming Language. PhD thesis, Computer Science Department, University
of Copenhagen, May 1994. DIKU Technical Report 94/19.

K. Asai, H. Masuhara, and A. Yonezawa. Partial evaluation of call-
by-value lambda-calculus with side-effects. In ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-Based Program Manipu-
lation (PEPM’97), pages 12-21, Amsterdam, The Netherlands, June
1997. ACM Press.

R. Baier, R. Glick, and R. Zochling. Partial evaluation of numerical
programs in Fortran. In ACM SIGPLAN Workshop on Partial Fval-
uation and Semantics-Based Program Manipulation (PEPM’94), pages
119-132, Orlando, FL, USA, June 1994. Technical Report 94/9, Univer-
sity of Melbourne, Australia.

A. Bondorf. Self-Applicable Partial Evaluation. PhD thesis, DIKU,
University of Copenhagen, Denmark, 1990. Revised version: DIKU
Report 90/17.

C. Chambers and D. Ungar. Customization: Optimizing compiler tech-
nology for SELF, A dynamically-typed object-oriented programming
language. In Bruce Knobe, editor, Proceedings of the SIGPLAN 89 Con-
ference on Programming Language Design and Implementation (PLDI
'89), pages 146-160, Portland, OR, USA, June 1989. ACM Press.

C. Consel. A tour of Schism: a partial evaluation system for higher-order
applicative languages. In PEPM’93 [21], pages 66-77.

C. Consel, L. Hornof, F. Noél, J. Noyé, and E.N. Volanschi. A uniform
approach for compile-time and run-time specialization. In O. Danvy,
R. Gliick, and P. Thiemann, editors, Partial Fvaluation, International

20

[15]

[16]

Seminar, Dagstuhl Castle, number 1110 in Lecture Notes in Computer
Science, pages 54—72, February 1996.

J. Dean, C. Chambers, and D. Grove. Selective specialization for object-
oriented languages. In Proceedings of the ACM SIGPLAN °95 Confer-
ence on Programming Language Design and Implementation (PLDI’95),
pages 93-102. ACM SIGPLAN Notices, 30(6), June 1995.

N. Fujinami. Determination of dynamic method dispatches using run-
time code generation. In X. Leroy and A. Ohori, editors, Proceedings of
the Second International Workshop on Types in Compilation (TI1C"98),
volume 1473 of Lecture Notes in Computer Science, pages 253 271, Ky-
oto, Japan, March 1998.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, 1996.

L. Hornof, J. Noyé, and C. Consel. Effective specialization of realistic
programs via use sensitivity. In P. Van Hentenryck, editor, Proceedings
of the Fourth International Symposium on Static Analysis (SAS°97), vol-
ume 1302 of Lecture Notes in Computer Science, pages 293-314, Paris,
France, September 1997. Springer-Verlag.

IBM. IBM JDK 1.3, 2000. Accessible from http://www.ibm.com/java/
jdk.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A mini-
mal core calculus for Java and GJ. In L. Meissner, editor, Proceedings
of the 1999 ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages € Applications (OOPSLA99), volume 34(10)
of ACM SIGPLAN Notices, pages 132-146, Denver, Colorado, USA,
November 1999. ACM Press.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, Proceedings of the European Conference on Object-
oriented Programming (ECOOP’97), volume 1241 of Lecture Notes
i Computer Science, pages 220-242, Jyvaskyla, Finland, June 1997.
Springer.

J.W. Lloyd and J.C. Shepherdson. Partial evaluation in logic program-
ming. Journal of Logic Programming, 11:217-242, 1991.

21

[17]

M. Marquard and B. Steensgaard. Partial evaluation of an object-
oriented imperative language. Master’s thesis, University of Copen-
hagen, April 1992.

G. Muller and U. Schultz. Harissa: A hybrid approach to Java execution.
IEEE Software, pages 44-51, March 1999.

N. Oxhgj, J. Palsberg, and M. Schwartzbach. Making type inference
practical. In O.L. Madsen, editor, Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP’92), volume 615 of Lec-
ture Notes in Computer Science, pages 329 349, Utrecht, The Nether-
lands, 1992. Springer-Verlag.

J. Palsberg and M. Schwartzbach. Object-oriented type inference.
In N. Meyrowitz, editor, OOPSLA’91 Conference Proceedings, volume
26(11), pages 146-161. ACM Press, November 1991.

Partial Fvaluation and Semantics-Based Program —Manipulation
(PEPM’93), Copenhagen, Denmark, June 1993. ACM Press.

J. Plevyak and A.A. Chien. Precise concrete type inference for object-
oriented languages. In OOPSLA’9 Conference Proceedings, volume
29:10 of SIGPLAN Notices, pages 324-324. ACM Press, October 1994.

U. Schultz. Object-Oriented Software Engineering Using Partial Evalua-
tion. PhD thesis, University of Rennes I, December 2000. Forthcoming.

U. Schultz and C. Consel. Automatic program specialization for Java.
DAIMI Technical Report PB-551, DAIMI, University of Aarhus, De-
cember 2000. Submitted for publication.

U. Schultz, J. Lawall, C. Consel, and G. Muller. Towards automatic
specialization of Java programs. In Proceedings of the Furopean Con-
ference on Object-oriented Programming (ECOOP’99), volume 1628 of
Lecture Notes in Computer Science, pages 367-390, Lisbon, Portugal,
June 1999.

) Sun Microsystems, Inc. Sun JDK 1.2.2; 1999. Accessible from http:

//java.sun.com/products/j2se.

Sun Microsystems, Inc. Sun JDK 1.3, 2000. Accessible from http:
//java.sun.com/products/j2se.

22

Class table lookup:

({cL1,...,CLn},) is current program .
class C extends D { ...} € {CL1,...,CLy} Method body lookup:

CT(C) = class C extends D { ...}

CT(C) =class C extends D { ...M;...M, }
Cm(Cy x1,...,Ck xx) { return e; }

mbody(m, C) = ((x1,...,xk),e)

Field lookup:

fields(Object) = € CT(C) =class C extends D { ...M;...Mp }
m is not defined in My, ... ,Mp

} mbody(m,C) = mbody(m,D)

CT(C) = class C extends D

ﬁEZdS(D) = Dl g1;--- 7Dn gn
fields(C) =D1 g1,...,Dn gn,C1 £1,...,.Cn fn

Figure 10: EFJ auxiliary definitions

[28] T.L. Veldhuizen. C++ templates as partial evaluation. In ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM’98), pages 13-18, San Antonio, TX, USA, Jan-
uary 1999. ACM Press.

[29] AspectJ home page, 2000. Accessible as http://aspectj.org.

A Auxiliary definitions

The definitions in Figure 10 are used to extract information from the pro-
gram; they are used throughout the paper. The function C'T maps a class
name to its definition, the function fields maps a class name to a list of its
fields, the function mbody maps a method name and a class name to the
formal parameters and body of this method. As is the case for the original
FJ presentation, we have chosen the notion of a “current program” to avoid
threading the program definition through all rules.

Figure 11 defines the auxiliary definitions used in Figures 6 and 7. The
function make-subst builds a substitution for a method invocation that only
includes the static formal parameters. The function build-method creates a
new specialized method. The function no-bt removes all binding-time anno-
tations from an expression. The function build-env builds a type environment,
for analysis of a method. The function class-bt returns the binding-time of
a class, and the function field-bt returns the binding-time of a given field of
a class. Last, the function bt-signature returns the binding-time signature
of a method, and the function param-bt is an auxiliary function used in the
definition of bt-signature.

23

mbOdy(C7 m) = ((x17 LR XD): 6)
bt-signature(C,m) = D.(T1,...,Tn) — D B; = mk-subst(T;, x4, 1)

make-subst(C,m, (T11,...,7n)) =B1...0n

mk-subst(S, x,r) = [r/x] mk-subst(D,x,r) =]

build-method(C,m, mn, d) =new method “mn” in class C with body d,
with the dynamic formal parameters of m.

no-bt(e) = e with all binding-time annotations removed
build-env((x1,...,%a), To, (T1,...,Tn)) = [this — Tp,x1 +— T4, ..., Xn +— Th]

CT(C) = class Cextends D {...; K ...} CT(C) =class CextendsD {...; K ...

class-bt(C) = S class-bt(C) = D

class-bt(C) =T
field-bt(C.) = T

CT(C) =class C extends D { ...Mj...Mg
M; =Cm(P) { return e } T§ = class-bt(C) T] = param-bt(#i(P)),i # 0

bt-signature(C,m) = T4.(T1,...,T}) — S

CT(C) =class C extends D { ...Mj...Mg }
M; =Cm(P) { return e } T§ = class-bt(C) T} = param-bt(#i(P)),i # 0

bt-signature(C,m) = T4.(Ty,...,T}) — D

CT(C) =class C extends D { ...Mj...Mg }
m not defined in My, ... Mg

bt-signature(C,m) = bt-signature(D,m)

param-bt(x) =S param-bi(x,T) = D

Figure 11: Auxiliary definitions for Figures 6 and 7

24

