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Abstract

The object-oriented style of programming facilitates program adap-
tation and enhances program genericness, but at the expense of ef-
ficiency. We demonstrate experimentally that state-of-the-art Java
compilation technology fails to compensate for the use of object-oriented
abstractions to implement generic programs, and that program spe-
cialization can be used to eliminate these overheads. We present an
automatic program specializer for Java, and demonstrate experimen-
tally that significant speedups in program execution time can be ob-
tained through automatic specialization. Although automatic pro-
gram specialization could be seen as overlapping with existing opti-
mizing compiler technology, we show that specialization and compiler
optimization are in fact complementary.

1 Introduction

Object-oriented languages encourage a style of programming that facilitates
program adaptation. Encapsulation enhances code resilience to program
modifications and increases the possibilities for direct code reuse. Message
passing lets program components communicate without relying on a specific
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implementation; this decoupling enables dynamic modification of the struc-
ture of the program in reaction to changing conditions. The use of these
object-oriented abstractions in well-tested object-oriented designs (such as
design patterns [11]) naturally leads to the development of generic program
components.

Program genericness is however achieved at the expense of efficiency. En-
capsulation isolates individual program parts and increases the cost of data
access. Message passing is implemented using virtual dispatching; virtual
dispatching not removed by a compiler can be a major overhead in the exe-
cution of a program. Due to the complex interaction that takes place between
objects in a generic program part, virtual dispatching in generic code is in-
herently difficult to remove using compiler optimizations. A virtual dispatch
obscures program control flow and blocks traditional hardware and software
optimizations. In this paper, we experimentally demonstrate that state-of-
the-art Java compiler technology fails to completely eliminate the overheads
due to the use of object-oriented abstractions to implement generic programs.

The overheads due to genericness implemented using object-oriented ab-
stractions can be eliminated using program specialization. Program special-
ization is a technique for adapting a program to a given execution context;
when applied within the object-oriented paradigm, program specialization
simplifies the interactions that take place between the program objects. This
simplification is based on a global knowledge of these interactions. In this
paper, we experimentally demonstrate that program specialization gives sig-
nificant speedups when combined with state-of-the-art Java compiler tech-
nology.

We have developed an automatic program specializer for Java, named
JSpec. JSpec is targeted towards optimizing realistic Java programs. It
combines static analyses with aggressive global optimizations. JSpec auto-
matically derives specialized programs that execute significantly faster than
their generic counterparts. In this paper, we describe how JSpec specializes
Java programs, and experimentally demonstrate that it automatically elim-
inates overheads due to the use of object-oriented abstractions in writing
generic programs.

Earlier work has addressed the declaration of what to specialize, in the
form of specialization classes [29], described an early prototype of JSpec [24],
and addressed the issue of selecting where to specialize [25]. Here, we present
the complete Java-to-Java specialization performed by JSpec, and experimen-
tally demonstrate the advantage of program specialization on a wide selection
of generic benchmark programs. Lastly, we here demonstrate that automatic
program specialization does not overlap with existing optimizing compiler
technology, but instead is complementary.
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class Power {
int exp; Binary op; int neutral;
Power( int exp, Binary op, int neutral ) {
this.exp = exp;
this.op = op;
this.neutral = neutral;
}
int raise( int base ) {
int result = neutral, e = exp;
while( e-- > 0 )
result = op.eval(result,base);
return result;
}
}

abstract class Binary {
abstract int eval( int x, int y );
}
class Add extends Binary {
int eval( int x, int y ) {
return x+y;
¥
}
class Mult extends Binary {
int eval( int x, int y ) {
return x*y;
¥
}

Figure 1: Binary operators and a power function.

Overview

First, Section 2 describes how object-oriented programs can be automati-
cally specialized, and outlines the JSpec implementation. Then, Section 3
investigates the relation between automatic program specialization and ag-
gressive object-oriented compiler optimizations. Section 4 describes a set of
benchmark programs and presents the result of applying automatic program
specialization to these programs. Last, Section 5 discusses related work, and
Section 6 presents our conclusion and discusses future work.

Terminology

The terminology used in the fields of object-oriented programming and pro-
gram specialization overlap, which can lead to confusion. First, in some
object-oriented languages, class fields and class methods are referred to as
static fields and static methods. The word “static” is however used in pro-
gram specialization to indicate information known during the specialization
phase. To resolve the conflict, we never refer to class fields and class methods
as static fields and static methods. Second, a subclass is often said to “spe-
cialize” its superclass. To avoid confusion, we refer to the relation between
a subclass and its superclass in terms of inheritance (the subclass inherits
from the superclass) or in terms of the subclass/superclass relation (one class
subclasses some other class, or one class is the superclass of some other class).

Example

As an example of program specialization, Figure 1 shows a collection of four
classes, Binary, Add, Mult, and Power. The class Binary defines a standard
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Figure 2: Generic interaction with Power object.

type for the concrete binary operators Add and Mult. The Power class can
be used to apply a Binary operator a number of times to a base value. The
Power class can be used as follows:

(new Power( y, new Mult(), 1 )).raise( x )

to compute x¥. The object diagram of this program is shown in Figure 2,
along with the object interaction diagram that results from computing 3.
We can specialize this program for the object interaction that takes place
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Figure 3: Specialized interaction with Power object.




when computing z°. Sending the message raise(x) to the Power object gives
rise to a series of object interactions between the Power object and the Mult
object that result in the return value x*x*x. To optimize for the case where
the Power object is used to compute z*, we can enable this object to directly
produce the result of x*x*x. Specifically, we can add a method

int raise_cube( int base ) {

return base * base * base;

}

to the class Power, and any clients can use this new method to compute
the result. The object state used for specialization and the resulting ob-
ject interaction are shown in Figure 3. A client that is specialized with this
state can use the raise_cube method to compute the result more efficiently.
Automatic program specialization, as defined in the next section, can auto-
matically derive such a specialized program. As shown in the experiments
reported in Section 4, such simple specialization of the Power object produces
a speedup of 4-7 times when compiled using state-of-the-art Java compilers.

2 Java Program Specialization

We now give an overview of automatic program specialization, explain how
an object-oriented program can be specialized, and last describe the imple-
mentation of our automatic program specializer for Java.

2.1 Automatic program specialization

Program specialization optimizes a program fragment with respect to in-
formation about the context in which it is used, by generating an imple-
mentation dedicated to a given usage context. One approach to automatic
program specialization is partial evaluation, which performs aggressive inter-
procedural constant propagation of all data types, and performs constant
folding and control-flow simplifications based on the usage context. Par-
tial evaluation adapts a program to known (static) information about its
execution context, leaving behind only the program parts controlled by un-
known (dynamic) data. Partial evaluation has been extensively investigated
for functional [3, 5], logic [19], and imperative [1, 2, 6] languages. In this
paper, we only consider off-line partial evaluation, where the program is first
divided into static and dynamic computations using a binding-time analysis,
and then specialized according to a concrete context by executing the static
program parts on known data.



In contrast with most optimizing compilers, partial evaluation does not
impose any bounds on the amount of computation that can be used to opti-
mize a program. However, partial evaluation relies on the user to direct the
specialization process towards the program parts which contains specializa-
tion opportunities. Furthermore, the user may have to control some trans-
formations. Incorrect user guidance may result in over-specialization (code
explosion) or under-specialization (no benefit from specialization). Because
partial evaluation relies on highly accurate and complex analyses and the
identification of specialization candidates, in practice it cannot be applied
to complete programs. Instead, the strategy for applying this technique is
usually to extract a specific slice from a program, specialize it, and then re-
insert it into the original program [6]. An abstract description of the parts
outside the program slice must be given to ensure that correct binding times
are derived. For an object-oriented program, the program parts to special-
ize and a description of the specialization context can be declared using the
specialization class framework [29)].

2.2 Object-oriented program specialization

Let us now describe in detail how automatic program specialization trans-
forms an object-oriented program. We first give a global overview of the
specialization process, describe how specialization transforms the methods
of the program, and address the issue of how to express the specialized pro-
gram. Then, we discuss the features that are needed from a program spe-
cializer to effectively specialize object-oriented programs. Last, we discuss
issues pertaining to specialization of object-oriented features in Java.

From a global point of view, the execution of an object-oriented program
can be seen as a sequence of interactions between the objects that constitute
the program. Fixing particular parts of the program context can fix certain
parts of this interaction. Program specialization simplifies the object inter-
action as much as possible, by evaluating the static (known) interactions,
leaving behind only the dynamic (unknown) interactions. We refer to pro-
gram specialization for object-oriented languages as object-oriented program
specialization.

Objects interact by using virtual calls to invoke methods. We can spe-
cialize the interaction that takes place between a collection of objects by
specializing their methods for any static arguments. Methods are specialized
with respect to the static part of their arguments (including the this argu-
ment), and are introduced in the original object under a new name. This
transformation enables the object to respond to a new specialized message
that other specialized methods can send to the object.



A method is specialized by optimizing any use of encapsulated values,
any virtual dispatches, and any imperative computations:

Encapsulation: Data that are encapsulated inside an object can control
computations elsewhere in the program. When such data are consid-
ered static by the specializer, they can be propagated to wherever they
are used; computations that depend on these data can be reduced.
Besides static computations, specialization also reduces the operation
needed to access the data (an indirect memory reference).

Virtual dispatching: The callee selection that implicitly takes place in a
virtual dispatch can be seen as a decision over the type of the this
argument. If the this argument is static, the decision of which method
to invoke can be made during specialization. The callee method can be
specialized based on information about its calling context. The special-
ized callee can either be added to the receiver object, or be unfolded
into the caller. Eliminating the virtual dispatch removes an indirect
jump, which in turn simplifies the control flow of the program, and
improves traditional compiler optimizations as well as branch predic-
tion and pipelining performed by the processor. If the this argument
is dynamic, each potential receiver method can be specialized specula-
tively on the assumption that it was chosen: each method is specialized
to any static arguments (but with a dynamic this argument). In this
case, a virtual dispatch to the specialized methods is generated.

Imperative computations: Methods are specialized using transformations
common to imperative program specializers, such as constant propa-
gation (of all data types), constant folding, conditional reduction, and
loop reduction. In the Java specialization experiments reported in Sec-
tion 4, most specialization scenarios require treating a mix of object-
oriented and imperative constructs.

To complete the specialization process, the specialized program must be
expressed as source code. The specialized methods must be added to the
classes of the program. Introducing these methods directly into the classes
of the program is problematic: encapsulation invariants may be broken by
specialized methods where safety checks have been specialized away, and this
mix of generic and specialized code obfuscates the appearance of the program
and complicates maintenance. A representation of the specialized program
that preserves encapsulation and modularity is needed.

The dependencies between the specialized methods follow the control flow
of the program, which cuts across the class structure of the program. Aspect-
oriented programming is an approach which allows logical units that cut
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across the program structure to be separated from other parts of the pro-
gram and encapsulated into an aspect [17]. We encapsulate the methods
generated by a given specialization of an object-oriented program into a sep-
arate aspect, and weave the methods into the program during compilation.
Access modifiers can be used to ensure that specialized methods can only be
called from specialized methods encapsulated in the same aspect, and hence
always are called from a safe context. Furthermore, the specialized code is
cleanly separated from the generic code, and can be plugged and unplugged
by selecting whether to include the aspect in the program.

A program specializer that targets realistic object-oriented programs must
consider each use of an object individually when determining its binding time.
Objects often act as basic entities (e.g., complex numbers) or as containers;
restricting all objects of the same class to have the same binding time will
often result in these objects being considered dynamic, which again results
in under-specialization. Specifically, to ensure adequate binding times, a
use of a static object in a dynamic context must not force this object to
be considered dynamic; the data stored in each object instance must be
given individual binding times; and, each invocation of a method must be
considered individually.

A language like Java has no syntax for expressing direct calls to ordinary
methods; a virtual dispatch simplified by specialization into a call to a single
specialized method is expressed using a downwards type cast to the concrete
type of the receiver object, and the specialized method is generated as a
final method. Methods declared in an abstract class or in an interface can
be specialized similarly to ordinary virtual methods; we refer to the first
author’s PhD dissertation [23] for details.

2.3 JSpec

JSpec is an off-line automatic program specializer for the Java language,
which integrates a wide range of state-of-the-art analysis and specialization
features, and offers several input and output language options:

e JSpec treats the entire Java language excluding exception handlers and
finally regions. It takes as input either Java source code, Java byte-
code, or native functions.

e JSpec is integrated with an extended version of the specialization class
framework, which allows the binding times of the targeted program
slice to be specified separately from the program using a declarative
language.



e The JSpec binding-time analysis is context-sensitive, type-polyvariant
(objects of same type are given individual binding times), use-sensitive [14],
and flow-sensitive; object values are treated individually for each in-
stance. This strategy ensures a consistent behavior that does not im-
pose arbitrary limitations on the specialization process.

e Specialized programs are generated either as Java source code encap-
sulated in an AspectJ [30] aspect, C source code for execution in the
Harissa [21] environment, or binary code generated at run time for
direct execution in the Harissa environment.

e JSpec is applied to a user-selected program slice, which allows time-
consuming analyses and aggressive transformations to be directed to-
wards the critical parts of the program.

In this paper we only consider Java-to-Java specialization; we refer to earlier
work [24] and the first author’s PhD dissertation [23] for more information
on using C as input or output language.

JSpec has been designed with an emphasis on re-use of existing technol-
ogy. In particular, JSpec uses a specializer for C programs, named Tempo [6],
as its partial evaluation engine. This approach allows us to take advantage
of the advanced features found in a mature partial evaluator. C is used as
intermediate language in JSpec; the low-level nature of C makes it possible
to represent the semantics of Java programs. A Java-to-C compiler, called
Harissa [21], is used to translate Java programs into C. A dedicated back-
translator maps the C representation of a specialized Java program back into
Java. Finally, Aspect] is used to weave the specialized Java program with
the generic program to produce a complete, specialized program.

Java features such as exceptions, multi-threading and dynamic loading
must be taken into account. JSpec does not support exception handlers in
the program slice being specialized, and can therefore consider throw state-
ments to terminate the program. JSpec only specializes a single thread of
control, and speculatively evaluates code inside synchronized regions; while
not appropriate in all situations, this approach offers a simple and predictable
behavior. Dynamic loading is implicitly handled since JSpec only specializes
a given program slice: classes that may be dynamically loaded by the pro-
gram must either be explicitly included in the program slice to be specialized,
or considered external code and be abstractly described.



aspect Cube {
introduction Power {
int raise_cube(int base) {
return base*base*base;
}
}
}

(a) Exponent, operator, neutral value static

aspect PowerOfTwo {
introduction Binary {
int eval(int x) { throw new JSpecExn(); }
}
introduction Add {
int eval_2(int x) { return x+2; }
}
introduction Mult {
int eval_2(int x) { return x*2; }
}
introduction Power {
int raise_pow2() {
int result = neutral, e = exp;
while( e-— > 0 ) result = op.eval_2(result);
return result;
}
}
}

(b) Base value static

Figure 4: Various specializations of Power.
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2.4 The Power example revisited

Having outlined the specialization process, let us revisit the Power example
of the introduction. In this example, the Power object is static, as is all of its
fields. The virtual dispatches to the method eval are reduced, and the result
can be expressed using AspectJ syntax. The result is shown in Figure 4a
encapsulated in the aspect Cube. An aspect is a named list of introduction
blocks; an introduction block lists a collection of methods to introduce into
the class given at the head of the introduction block. Alternatively, we
can specialize for the inverse scenario. When all fields of the Power object
are dynamic and the parameter base is static, the eval methods are specu-
latively specialized for the base value, as shown in Figure 4b in the aspect
Power0fTwo. (The method introduced into the Binary class is needed to make
a correct program, but is not created as an abstract method; indeed, using
an abstract method would force any subclass outside the targeted program
slice to implement this method.)

3 Specialization vs. Compiler Optimization

Automatic program specialization and compilers rely on similar optimiza-
tions. However, as we describe in this section, compilers perform optimiza-
tions not considered in automatic program specialization, and automatic
program specialization performs optimizations beyond the capabilities of a
compiler. Based on these observations, we argue that program specialization
and compiler optimizations are complementary.

3.1 Common points

Automatic program specialization uses type information to eliminate vir-
tual dispatches; this is a technique often employed by aggressive compilers
for object-oriented languages. The most common techniques are customiza-
tion [4] and the more general selective argument specialization [7]. Both au-
tomatic program specialization and selective argument specialization create
new specialized methods by propagating type information about the this and
the formal parameters of a method throughout the program, and introduce
new specialized methods into the class of the corresponding unspecialized
method.
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3.2 Compiler optimization capabilities

Most compiler optimizations are targeted towards optimizing all parts of a
program, and improving performance regardless of the usage scenario. In
contrast, automatic program specialization only optimizes a specific aspect
of a program (that depends on static parts of the context), and reproduce
all other parts of the program verbatim. Therefore, program specialization
is dependent on a compiler for traditional intra-procedural optimizations
such as copy propagation, common subexpression elimination, loop invariant
removal, etc. that are essential for performance. Furthermore, optimizations
that are not expressible at the language level, such as register allocation and
(e.g., in Java) array bounds check elimination, cannot be performed by the
program specializer, and must be handled by the compiler.

Customization and selective argument specialization can both optimize
methods for type information even when no information can be statically
deduced about their type. Profiling can be used to gather information about
the types of objects often passed to a given method. Multiple versions of
the method can be generated, each specialized to one of these types. On the
contrary, although program specialization can speculatively specialize the
receivers of a virtual dispatch with a dynamic this, these receiver methods
are not specialized for the this: the this is dynamic and thus not available
during specialization.

3.3 Program specialization advantages

Program specialization allows the user to control the optimization process by
supplying program configuration parameters. User control allows overheads
to be targeted that are not normally eliminated by an optimizing compiler.
For example, overheads that are distributed across the entire structure of a
program and are hard to detect using automated profiling techniques can be
eliminated using program specialization.

Compared to a compilation technique such as selective argument spe-
cialization, program specialization is more thorough, more aggressive, and
more pervasive. Program specialization is more thorough because it propa-
gates known values of any kind (even completely or partially known objects)
throughout the program. This propagation is not only done through for-
mal parameters and local variables, but also through object fields. Program
specialization is more aggressive because it reduces any computation that is
based solely on known information. No resource bound restricts the amount
of simplification to be performed. Program specialization is more pervasive
than aggressive compilation because it uses global knowledge about the ob-
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ject behavior and object structure to propagate information globally and to
reduce computations wherever possible.

The experiments reported in the next section clearly show that program
specialization enhances the performance of programs beyond the capabilities
of state-of-the-art Java compilers that employ profile-directed optimizations.

3.4 Specialization and compiler optimization working
together

There is an overlap between object-oriented program specialization and object-
oriented compiler optimizations: both aim to eliminate virtual dispatching
to enhance the performance of the program. Nevertheless, when the critical
parts of a program are highly polymorphic in their use of different objects, an
optimizing compiler cannot easily determine the object interaction, and will
fail to generate efficient code. In this case, automatic program specialization
can be supplied information about those parts of the execution context that
control object interaction at critical program points, and then be used to
simplify the object interaction at these points. The resulting program has a
simpler object interaction, which makes it easier to use profile information to
determine how the remaining parts of the program can be optimized. When
the behavior of a program part changes in unpredictable ways, or when pro-
gram specialization cannot determine that certain program parts behave in
a fixed way, profile-guided optimization may still be able to optimize the
program.

4 Experimental Study

In this section, we compare the execution time of generic programs to the
execution time of specialized programs. With the exception of the benchmark
programs classified as “imperative,” the programs are written using object-
oriented abstractions where appropriate. The programs are compiled using
a selection of state-of-the-art Java compilation systems. Our goal is to show
that the specialized programs execute faster than their generic counterparts.
If the specialized programs execute faster, then JSpec and the optimizing
compilers do not overlap; that is, the genericness of the benchmark programs
is not (or is partially) eliminated by the optimizing compilers.
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4.1 Benchmark programs

To properly assess the performance improvements due to partial evaluation,
we have considered a wide selection of generic benchmark programs. The pro-
grams are grouped by the primary kind of specialization opportunity they
expose, namely imperative, object-oriented, and mized. The programs are
written in a generic programming style; this design decision is an advantage
in terms of software engineering, but is a disadvantage in terms of perfor-
mance. All benchmark programs are computationally intensive. They do not
perform a large amount of 1/0, do not allocate a large amount of memory,
and do not contain multi-threaded code. In all of the benchmark programs,
we have avoided the use of access modifiers, to enable JSpec to perform un-
inhibited inlining as a post-specialization optimization; although unrealistic,
this choice allows us to measure the benefit due to the inlining that can be
performed by JSpec.

Imperative opportunities

Some object-oriented programs are primarily imperative in nature, although
they may benefit from object-oriented constructs to provide structuring or
data encapsulation. The benchmark programs that exhibit imperative oppor-
tunities for specialization could have been written in an imperative language
and then specialized using a partial evaluator for this language. However,
little is known about the efficiency of imperative Java programs after par-
tial evaluation; therefore, we consider it interesting to include such programs
in our benchmark suite. In each program, base-type data in the execution
context is static.

FFT: The Fast-Fourier Transform benchmark taken from the Java Grande bench-
mark suite [9]. The radix size is static, and the data being transformed is
dynamic. Specialization is done for three different radix sizes, 16, 32, and 64.

Power-1: A standard version of the power function, written using a loop and with
a fixed operator (multiplication) and neutral value. The exponent is static, and
the base value being raised is dynamic. Specialization is done for an exponent
value of 16. (This benchmark is a classical partial evaluation example.)

Compilers normally do not perform aggressive optimizations over base-type
values, and thus cannot perform optimizations similar to those performed by
program specialization.
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Object opportunities

The adaptive behavior of some object-oriented programs is completely con-
trolled through object-oriented mechanisms; such programs can be said to
provide pure object-oriented specialization opportunities. Simplification of
virtual dispatches without taking imperative features such as loops, con-
ditionals, and other computations into account is sufficient for specializing
these programs. In each of these programs, the object composition is fixed in
the program, and the program can be optimized without the use of additional
configuration information.

Builder: Matrices with a dense or sparse representation are created using the
builder design pattern and subsequently exponentiated. The choice of builder
pattern is static, and the matrix dimensions and contents are dynamic.

Bridge: A Mandelbrot fractal is computed using complex numbers. The complex
numbers are separated into an interface and an implementation (cartesian or
polar coordinates) using the bridge design pattern. The bridge coupling is
static, and the actual complex numbers manipulated are dynamic.

Iterator: A set data structure is implemented over an underlying primitive data
structure (array or linked list). The iterator design pattern is used in the im-
plementation of member and intersection operations. The choice of underlying
data structure is static, and the data being manipulated is dynamic.

Compilers for object-oriented languages are geared towards optimizing these
kinds of programs well, and so we expect the gains due to program special-
ization to be limited.

Mixed opportunities

In many object-oriented programs, the adaptive behavior is controlled by a
mix of object-oriented mechanisms and imperative constructs. In the pro-
grams exhibiting “mixed” specialization opportunities, specializing the pro-
gram to a static input requires treating a mix of object operations and im-
perative computations. In each program, both base-type data and object
data in the execution context is static.

Arithint: A simple arithmetic expression interpreter, used to compute the maxi-
mal value of a function supplied as data. The arithmetic expression is static,
and the contents of the environment is dynamic. Specialization is done for a
function mapping integer planar coordinates into an integer value.
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ChkPt: The checkpointing example of Lawall and Muller [18]: a generic check-
pointing routine for a binding-time analysis implementation is specialized to
object composition properties specific to each phase of the binding-time anal-
ysis. Specialization and benchmarking are done for the binding-time analysis
phase only.

Fold: A binary operator folded over a list. In experiment LS, the list contents
are static, and the operator and initial value are dynamic. In experiment OP,
the operator and initial value are static, and the list contents are dynamic.
Specialization is done for a list of length 50 and a multiplication operator.

IP: An generic image filtering program, where the image representation and the
filter to apply are abstracted using design patterns [24]. Specialization is done
for blurring convolution filters of size 3 x 3 and 5 x 5.

Pipe: Simple mathematical functions composed together to form a pipe, applied
to a single input value. The function composition is static, and the value input
to the function pipe is dynamic.

Power-2: The power example from Section 1, with the exponent, operator and
neutral values as static, and the base value as dynamic. Specialization is done
for a combination of two objects of class Power with different operators.

Strategy: A number of single-pixel image operators (e.g., change pixel brightness)
encapsulated into separate algorithms using the strategy design pattern are
applied to an image. The choice of operators is static, and the image data is
dynamic.

We expect that program specialization will improve the efficiency of these
programs, since the program will be simplified beyond what we can expect
from ordinary compiler optimizations.

4.2 Methodology

Experiments were performed on two different machines, a SPARC and an
[A32. The SPARC machine is a Sun Enterprise 250 running Solaris 2.7, with
two 300MHz Ultra-SPARC processors (all benchmarks are single threaded).
The TA32 machine is a Dell OptiPlex GX1 running Linux 2.2, with a single
600MHz Pentium III processor.

All benchmarks are automatically specialized using JSpec. Compilation
from Java source to Java bytecode is done using Sun’s JDK 1.1 javac com-
piler with optimization selected (JSpec by default uses Sun’s JDK 1.1 tools
to produce a set of specialized class files). We use JIT, dynamic and off-
line compilers to compare the performance before and after specialization.
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The JIT benchmarks are performed on SPARC using Sun’s JDK 1.2.2 JIT
compiler [26], and on [A32 using IBM’s JDK 1.3 JIT compiler [15]. The
dynamic compilation benchmarks are performed using the HotSpot compiler
included with Sun’s JDK 1.3 beta 2 [27] running in “server” compilation
mode; HotSpot is available both for SPARC and IA32. The off-line compi-
lation benchmarks are done using the Harissa bytecode compiler [21], with
optimization level E03, except for the ChkPt benchmark where optimization
level EO1 was selected to limit resource consumption during compilation. The
maximal heap size was set to 96Mb for all systems except Harissa (Harissa
does not provide any means of limiting the amount of memory allocated by
the program).

Each benchmark is structured as follows: a benchmark performs ten main
iterations that are timed individually, and each such main iteration consists
of some number of minor iterations of the actual test. The first five main
iterations are discarded to allow JI'T and dynamic compilers to optimize the
program. All execution times are reported in seconds, and the number of
minor iterations is adjusted to ensure that each main iteration runs long
enough to give consistent time measurements. All benchmarks compute and
print a checksum value which is threaded through the computation of each
iteration of the benchmark, to prevent compiler optimizations such as loop
invariant removal or dead code elimination from removing the code that is
being benchmarked.

The current implementation of JSpec does not automatically generate
the code needed for transparent reintroduction of specialized code into a
program. For this reason, the call to the specialization entry point is man-
ually created. All benchmarks except ChkPt are automatically specialized;
due to implementation limitations, the ChkPt benchmark requires patching
after specialization.

4.3 Results

With the current implementation of JSpec, specialization always increases
program size, since new methods are added to the program and no methods
are removed. The size of the program slice targeted with JSpec ranges from
roughly 10 lines (Power-1) to roughly 1100 lines (ChkPt) of Java source code.
We measure the size increase due to specialization as the ratio between the
size of the unspecialized program slice and the resulting AspectJ aspect. In
the FFT and Fold:LS benchmarks there is a large size increase of the program
code due to specialization: in FFT:64 there is an 11-times size increase, and
in Fold:LS there is a 40-times size increase. Across all other benchmarks,
there is an average 2.8-times size increase due to specialization.
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The execution time variation due to specialization is shown in Figures 5
(execution on SPARC) and 6 (execution on IA32). Execution times have been
normalized between 0 and 10 seconds. The speedup due to specialization is
shown in Figures 7 (execution on SPARC) and 8 (execution on IA32). Here,
the execution time of each generic program is compared to the execution time
of the specialized program; a result of 1.0 means that there is no speedup due
to specialization. Results are shown only in the form of bar charts; we refer
to the first author’s PhD dissertation [23] for tables with absolute execution
times. No results are shown for IBM’s JIT on the IP benchmarks, since a
runtime error was (incorrectly) generated when running this benchmark on
this system.

On both architectures, there are high speedups for the Arithint, Fold:LS,
Pipe, Power-2, and Strategy benchmarks. Furthermore, on SPARC, there
are high speedups for the FFT, Iterator (HotSpot only), and IP benchmarks.
The high speedup for the Fold:LS benchmark when executing with HotSpot
on SPARC is due to arithmetic simplifications carried out by the compiler;
although a correct benchmark, we consider the speedup to be artificially high.
Moreover, on SPARC there are significant speedups for Builder and ChkPt,
and on [A32 there are significant speedups for Builder, Iterator, and ChkPt.

The results of performing JSpec inlining optimization after specialization
is not illustrated in the figures (we again refer to the first author’s PhD disser-
tation for details). JSpec inlining optimization provides a significant benefit
in some cases with Sun’s JIT and in a few cases with Harissa on IA32. How-
ever, inlining optimization is often detrimental to performance, especially
on HotSpot. Indeed, JSpec inlining optimization is never an advantage on
HotSpot.

4.4 Assessment

We observe that the average speedup gained by specialization across all com-
pilers is 3.0 on SPARC and 2.4 on TA32 (averages are shown in Table 1). We
attribute the greater benefit on SPARC to the fact that the SPARC is a
RISC architecture, and thus to a higher degree depends on the compiler to
optimize the program before execution.

As for the selection of compilers included in the study, on SPARC there
is a significant difference between the execution time average for Sun’s JI'T
and the execution time averages for HotSpot and Harissa. On TA32, there
is little difference between execution time averages. Looking closer at the
results for SPARC, it appears that the more aggressive the compiler, the
greater the benefit from specialization. However, a larger selection of Java
compilers would be necessary to completely study the relation between the
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SPARC 1A32 | average
JIT 2.0 2.4 2.2
HotSpot! 3.3 26 3.0
Harissa 3.8 2.1 3.0
average 3.0 2.4 2.7

T: excluding Fold:LS on SPARC

Table 1: Average speedups from Figures 7 and 8.

aggressiveness of compiler optimizations and the speedup due to specializa-
tion.

We conclude that JSpec inlining optimization is unnecessary in most sce-
narios. Programs can be specialized effectively without applying inlining op-
timization, which avoids problematic issues related to access modifiers when
generating the specialized program as source code. After specialization the
compiler can perform inlining optimization on the generated program with-
out any concern for access modifiers, and can even take the configuration of
the target machine into account.

5 Related Work

The optimization techniques most directly related to our work are customiza-
tion and selective argument specialization; their comparison to program spe-
cialization has been detailed in Section 3. In essence, program specialization
is more thorough, more aggressive, and more pervasive than these techniques.
Static analyzes such as precise type inference [22] or CHA [8] can be used
to eliminate virtual dispatching, but only when there is a single possible
receiver; in highly generic code, there typically are multiple receivers for vir-
tual dispatches. Nonetheless, a virtual call can be replaced with an explicit
selection of which callee to invoke with a direct call [12, 13]. This highly ag-
gressive optimization must be guided with profile information to avoid code
explosion, and retains the cost of a runtime decision.

The rest of this section covers an automatic program specializer for Emer-
ald, an automatic program specializer for C++, and a discussion of the in-
trinsic specialization model built into the C++ language.

Program specialization for object-oriented languages can be done using
on-line [16] specialization techniques, as shown by Marquard and Steens-
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gaard [20]. They developed a program specializer for a subset of Emerald
— an object-based language. However, this work focuses on on-line special-
ization. There are no consideration on how program specialization should
transform an object-oriented program, and virtually no description of how
their program specializer handles object-oriented language features.

Program specialization can be done based on constructor parameters at
run time for C++ programs, as shown by Fujinami [10]. Annotations are used
to indicate member methods that are to be run-time specialized; a method
is specialized using standard program specialization techniques for C and by
replacing virtual dispatches through static object references by direct method
invocations. Furthermore, if a virtual method invoked through a static object
reference has been tagged as inline, it is inlined into the caller method and
specialized. This approach to program specialization for an object-oriented
language concentrates on specializing individual objects. On the contrary,
we specialize the interaction that takes place between multiple objects based
on their respective state, resulting in global program specialization.

Templates in C++ can be used to perform program specialization at com-
pile time, as demonstrated by Veldhuizen [28]. By using a combination of
template parameters and C++ const constant declarations, arbitrary com-
putations over base type values can be performed at compile time. Compared
to our definition of program specialization for object-oriented languages, spe-
cialization with C++ templates is limited in a number of ways. First, the
values that can be manipulated are more restricted; for example, objects
cannot be dynamically allocated. Second, the computations that can be
simplified are more limited; for example, virtual dispatches cannot be sim-
plified. Last, an explicit two-level syntax must be used to write programs;
as a consequence, binding-time analysis must be performed manually, and
functionality must be implemented twice if both a generic and a specialized
behavior is needed.

6 Conclusion and Future Work

The development of generic software components is a growing trend in soft-
ware development; however, this trend comes at the expense of performance.
We argue that program specialization is a key technology to reconcile gener-
icness and performance in that it enables a single component, designed to
handle a whole family of problems, to be instantiated into an efficient imple-
mentation.

In this paper, we identify the overheads introduced by the development
of generic object-oriented programs. We demonstrate that these overheads
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can be automatically eliminated by program specialization, and present the
techniques used to specialize object-oriented programs. To validate our ap-
proach in practice, we have developed a program specializer for Java, named
JSpec. Finally, we characterize the benefits of program specialization by
conducting an experimental study on a variety of Java programs. This study
shows that not only can JSpec produce a speedup of 2.7 on average but it is
complementary to optimizing Java compilers.

Our next step is to tackle run-time specialization for Java. This form
of specialization allows specialized programs to be generated at run time,
with respect to values unavailable at compilation time. Run-time special-
ization could be done by dynamically generating bytecode encapsulated into
classes; this strategy would preserve the platform-independence feature of
Java. However, the specialization principles presented in this paper rely on
adding new methods to existing classes, which cannot be done at run time
in Java. Changes to our specialization approach are needed to enable run-
time specialization while complying with the restrictions of the Java virtual
machine.

Availability

JSpec will be made publicly available at
http://www.irisa.fr/compose/jspec
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