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Preface
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The programme committee was assisted by the following referees:

S. Christensen C. Dutheillet L. M. Kristensen B. Lindstrgm
T. Mailund K. H. Mortensen E. Paviot-Adet D. Poitrenaud
T. Warecham L. M. Wells

The programme committee has accepted 8 papers for presentation. Most of these deal with
different projects in which high-level nets and their tools have been put to practical use —
often in an industrial setting. The remaining papers deal with different extensions of tools
and methodology.

After an additional round of reviewing and revision, some of the best papers from the work-
shop will be published as a special section in the International Journal on Software Tools

for Technology Transfer (STTT). For more information see: http://sttt.cs.uni-dortmund.de/

Kurt Jensen
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Executable Petri Net Models for the Analysis
of Metabolic Pathways

Hartmann Genrich, Robert Kiiffner, Klaus Voss

GMD — German National Research Center for Information Technology
Institute for Algorithms and Scientific Computing (SCAI)
Schloss Birlinghoven, D-53754 Sankt Augustin, Germany

Abstract

Computer simulation of biochemical processes is a means to augment the knowledge
about the control mechanisms of such processes in particular organisms. This knowl-
edge can be helpful for the goal oriented design of drugs. Normally, continuous models
(differential equations) are chosen for modelling such processes. The application of
discrete event systems like Petri nets has been restricted in the past to low-level mod-
elling and qualitative analysis. To demonstrate that Petri nets are indeed suitable for
simulating metabolic pathways, the glycolysis and citric acid cycle are selected as well
understood examples of enzymatic reaction chains (metabolic pathways). The paper
discusses the steps that lead from gaining necessary knowledge about the involved en-
zymes and substances, to establishing and tuning high-level net models, to performing
a series of simulations, and finally to analysing the results. We show that the consis-
tent application of the Petri net view to these tasks has considerable advantages, and
— using advanced net tools — reasonable simulation times can be achieved.

1 Introduction

Finding promising targets for the development of new drugs very much depends on certified
knowledge about the metabolism (metabolic processes in the human organisms). Then,
this knowledge can be exploited to avoid unnecessary, costly and dangerous experiments
and to conduct the remaining unavoidable experiments effectively to the goal of finding
drug targets.

Traditionally, the dynamics of metabolic processes is investigated by simulations on
the basis of differential equations (e.g. [FrCa84, LePa92, ScHo95]). This is usually done by
providing a particular kinetic equation for each reaction of the pathway requiring a consid-
erable number of kinetic constants derived from experimental data. The simulation then
proceeds by executing cyclically these equations (and updating the concentrations of the
involved substances) in very small timesteps. A prominent example is E-CELL ([Tom99)),
a particular software environment for whole-cell simulation. E-CELL offers, among others,
graphical user interfaces to observe the cell’s state and manipulate it interactively.

An alternative is the simulation by discrete event systems. Petri nets have been pro-
posed in [RML93] because of their appropriate semantics (occurrence rule), the inherent
precise concurrency notion, their intuitive graphical representation and their capabilities
for (mathematical) analysis. [RLM96] stresses the straightforward representation of a



metabolic reaction (cf. section 2). It demonstrates the significance of net abstraction,
boundedness, S-invariants, T-invariants and liveness to draw important ” preliminary con-
clusions about the metabolic pathway”. However, the approach in [RLM96] aims at a
purely qualitative analysis of biochemical pathways and does not allow to simulate quan-
titative kinetic effects. This is motivated by the fact that "modelling a complex biochem-
ical system involves data that are incomplete, uncertain or unreliable”. Fortunately, the
availability of reliable data has improved during the last years although it still remains a
serious problem.

To our knowledge, attempts to simulate metabolic pathways by Petri nets, up to
now, are restricted to relatively small reaction chains modelled as low-level nets which
are constructed more or less by hand. In [MDNMOO0], so-called ”hybrid Petri nets” are
chosen to model and simulate a gene regulatory network. This low-level net class contains
discrete as well as continuous nodes, where continuous places are marked with real numbers
(instead of unit tokens). Section 2 shows, however, that time intervals and real numbers
can be handled easily in timed high-level nets and, hence, there is no obvious need to leave
the standard Petri net classes with their advanced theory and tools.

What we aim at next, is the automatic creation and implementation of high-level Petri
net models which allow the simulation and quantitative discussion of networks of metabolic
processes. This paper describes a promising first step towards this goal and demonstrates
it by use of a well-known example.

Section 2 introduces the basic notions and concepts used for representing a metabolic
reaction as a Petri (sub-)net, and it discusses our choice of the kinetic reaction function.
Section 3 deals with the problem of systematically constructing pathways for metabolic
processes and of assembling the reactions and metabolic constants for the chosen pathways
from the databases. Section 4 then explains the most prominent features of the Petri net
models that have been developed for investigating the well-known processes contributing
to the glycolysis and — in connection with this — the citric acid cycle. Section 5 presents
some typical simulation results and performance figures, followed by a short paragraph
with conclusions and some suggestions for the future work.

The discussed application runs on a Power Macintosh G3, using the software packages
[Design/CPN] (for modelling and simulation), Excel (for plotting) and MacPerl (for data
extraction from databases).

2 A Sample of a Reaction and the Kinetic Function

An enzymatic reaction changes the concentrations of the involved substrates (the sub-
stances participating in the reaction), catalyzed by a reaction-characteristic enzyme. Some
reactions may be slowed down by substances called inhibitors. In principle, every enzy-
matic reaction is reversible; however, most of them have a preferred direction. Therefore,
the substrates whose concentrations are decreased in this preferred mode are called reac-
tants (called educts in this paper), those with increased concentrations are called products.
The speed of the reaction is the amount of the concentration change within a time unit,
Ac/ At.

An enzymatic reaction can be modelled as a high-level Petri net transition in a straight-
forward manner (figure 1). Every substrate is represented as a place connected through
an outgoing and an ingoing arc to the transition. For each of these places, its colour set
is chosen to be a set of pairs, each consisting of the name and the concentration of a
particular substrate. The code section of the transition calls two functions: «) the kinetic
function R_kin that determines the speed of the reaction (see below) and () the function
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input (z,r,x,pl,y,p2,v,q1,w,q2,u,t,s);
output (p1',p2',9q1',q2',s");
action
[r>00 t>=00] State let val (delta_c,delta_G,s_) =
R_kin {enzyme=(z,r),
educts= [(x,p1),(y,p2),(u.t)],
products= [(v,q1),(w,q2)],
step= s}
val (p1_,p2_,91_,92 )=
(p1-delta_c,p2-delta_c,ql+delta_c,g2+delta_c)

1

in

map UpdateConc [(x,p1_), (y,p2_), (v,ql_), (w,q2_),
(z™"_dv",delta_c/CurrSpeed()/real(s)),
(z™"_dG",delta_G)];

(P1_p2_q1_02 )

end;

Figure 1: The model of an enzymatic reaction

UpdateConc that writes selected values, in particular the just computed new concentra-
tions, into a plot file. After the end of the simulation, the plot file serves as input to Excel
to produce a plot diagram of these values as a function of time.

For the calculation of the reaction speed we use a general (reaction independent) kinetic
function R_kin. It is a reversible Michaelis Menten equation augmented by an additional
term for the free reaction energy, thus combining kinetic and thermodynamic information.
The parameters of the kinetic function R_kin are the current concentrations of all involved
substances. It (essentially) computes the reaction speed, i.e., the decrease resp. increase Ac
(in time unit 1) of the concentrations of the educts resp. products. The concentrations of
the enzyme — being a catalyst — and of the inhibitor(s) remain unchanged. In the present
implementation, R_kin only needs a few chemical and enzyme specific constants for its
computation. Before starting any simulation, the constants of all relevant enzymes are
extracted from the database [BRENDA] (see section 3) and collected in a data structure
called enzyme catalog. Given a reaction (without inhibitors) catalyzed by enzyme e, let
S resp. P denote the set of its educts resp. products. The concentration of a substance x
shall be denoted by [z]. Then a slightly simplified version of R_kin reads:

Ac= (K — K) % keat * e % (K % Q + K * Q)

with -
AG = AGO+ R+ T« in Jses sl
Hpep [p]
— 1 — K
K — o—AG/RsT _ _
€ » K 1+ K’ K 1+ K
- . [s] = . [p]
== M s —, g M - - -
Q m GS [S] + Kms Q aneP [p} + Kmp



where R, T are constants of nature and k.q:, AGO, Km, are enzyme constants contained
in the enzyme catalog.
The feasibility of R_kin can be checked by applying it to four particular situations.

1 In the irreversible case it degenerates to the well known Michaelis-Menten
equation Ac = kg * [€] x [s] / ([s] + Kms).

2 Always, Ac < keqt * [e] holds.

3 In case Z)zé: 1, Ac only depends on]?—]?.
4 AG=0=Ac=0, AG<0=Ac>0, AG>0=Ac<0."!

3 Metabolic Pathways

As main sources of information on metabolic pathways the internet-accessible databases
[BRENDA], [ENZYME] and [KEGG] are used. Entries of these databases describe one
enzymatic function each and are indexed via their EC-number.? The chemical reaction
equations contained in the database entries can be used for two purposes: first to define
transitions of a Petri net, and second, to define a network of enzyme—substrate—enzyme
edges via matching and identifying the educts and products of reactions.

The key problem here is the unification of the substrate names, due to different naming
conventions. By manually augmenting existent alias lists, detection of typos etc. the
contents of the diverse databases can be compared and compiled into a unified Petri net.
In the actual state of the databases the unified Petri net contains about 3 200 EC-entries,
11 300 reactions (transitions) and 12 300 substrates (places) leading to 164 000 enzyme—
substrate—enzyme edges.

For the purpose of simulating metabolic pathways derived from the databases (see
below) kinetic enzyme parameters (Michaelis-Menten constants K'm,, of the substrates z,
maximum reaction velocity keq * [€] of the enzyme e) are needed. Fortunately, BRENDA
covers these parameters for a wide range of enzymes, substrates and organisms. However,
only for a subset of the well known pathways those parameters are complete. So, in this
paper, we restrict our analysis to the best examined pathways like glycolysis and citrate
cycle.

The next step to go comprises developing an appropriate language to access the various
entries of a database from within the CPN model. This language can then be applied to
find the relevant reactions and to compute the necessary metabolic constants. Having
checked these data for completeness, they can be inserted into the enzyme catalog which
in turn will be inspected by the kinetic function R_kin during a simulation to compute
the actual reaction speed (cf. section 2).

A (metabolic) path is a coherent set of enzymatic reactions. The reactions are inter-
connected via the substrates (educts and products) they act upon. In contrast to naive
graphs, Petri nets allow for representing and distinguishing different constellations in bio-
chemical networks which is a prerequisite for the systematic construction of pathways in

'Hence, AGO, the change of the free enthalpy under standard conditions, determines that constellation
of concentrations at which the (reversible) reaction changes its direction, i.e., the sign of Ac.

2The EC-numbers reflect the official classification of the enzymes. The first three numerals in the
EC-number hierarchically define the type of the enzymatic function, the fourth numeral increments over
different enzymes which catalyze the same function.



such nets. In particular, the difference between branching reactions (one reaction produc-
ing more than one product) and conflicting reactions (several reactions competing for the
same educt) is of substantial importance (see below).

In the following, three rules are defined which shall serve to find sensible and manage-
able (in size and speed) pathways among the millions of possibilities.

32321413

Figure 2: The complete glycolysis pathway

First rule. Inspired by the occurrence rule of Petri nets, only those paths — then
called pathways — shall be considered which are closed in the sense that they take care of
the availability of all educts and the consumption of all intermediate products. The result
of the first rule is that there are no loose ends in such a pathway. An exception from this
rule are small molecules like HoO, NADH, ADP,CQO5 found in sufficiently large amounts
in all organisms, called ubiquitous molecules.

The essential task prior to constructing a metabolic Petri net model is the sensible
selection of the pathways to be modelled. To start with, the initial and final substrates,
i.e., the source and the sink of the envisaged metabolic process have to be determined.

For example, the glycolysis comprises all metabolic processes leading from glucose as
the initial to pyruvate as the final substance. An unrestricted search in the database
[BRENDA] would result in about 500 000 paths (of a length of at most 9; not shown).
Applying the above mentioned first rule leads to figure 2, showing about 80 000 paths.
Clearly, the resulting number of pathways is still much too large to be handled.

Hence, a second rule is applied which mirrors the observation that very long paths
connecting two substances contribute much less to the concentration changes of these
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Figure 3: Pathway reduction principles
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Figure 4: Glycolysis pathways reduced to length 9 and width 1



substrates than short ones. This second rule is depicted in figure 3. It cuts off all those
paths which exceed a certain length and a certain width (max ST-cut). Delimiting the
length of the glycolysis pathways to 9 and their width to 1, leads to figure 4 which contains
170 pathways. However, to include the simplified glycolysis as presented in most textbooks
(figure 5), the width has to be at least 2, rendering 541 pathways (not shown).

As a third rule, which in practice should not be applied after but before or in conjunc-
tion with the former two rules, we restrict those pathways to contain only enzymes which
exist in the organism under examination. Most of the mentioned metabolic databases
include this information. For the sample organism yeast this finally results in 8 pathways
for the glycolysis.

4 The Petri Net Models

Having chosen a set of closed pathways, we are at first interested in finding constellations
for which its execution reaches a dynamic (i.e. flow) equilibrium: Given steady sources
and steady sinks of a pathway, each substrate concentration must converge. To reach that
goal, we model such pathways as a Petri net and then simulate it with diverse parameters.

Our first attempt to model metabolic pathways consists in simply concatenating the
particular reactions by identifying the products of any reaction with the educts of the
following one(s). In case of the textbook glycolysis pathway this leads to the intuitive
model A of figure 5.

Gl_ E_2'7'1'1 E_5'3'1'9 E_2'7'1'11 E_4'1'2'13

Glucose DacP

E_5'3'1'1

Citrate

E_1'2'1'12 E_4'2'1'11 E_2'7'1'40

Glyc_1'3 Glyc_3P Glyc_2P Pyruvate

NAD  NADH

Figure 5: The model A of the textbook glycolysis

The model A is a timed high-level net diagram as expressed by Design/CPN.? Every

30bserve that, in figure 5, the arcs connecting the transitions with the substrates places are directed
merely to indicate the preferred direction of the reaction (cf. section 2). In the corresponding subpages
they are replaced by a pair of arcs, one pointing to and one from the transition because the substrate
concentrations are changed by a transition occurrence. Undirected arcs (between enzyme places and
reaction transitions) indicate that the enzyme concentrations stay unchanged but are needed for the kinetic
reaction function. — A similar remark holds true for figure 8.



reaction in figure 5 is a substitution transition standing for the transition of a subpage
like that shown in figure 1. Of course, the substituting subpages have to fit to the actual
numbers of educts, products and inhibitors. Thus we have one subpage for every possible
combination of these numbers (not shown in the paper).

Initially, we assume that all reactions run at the same step width of 1, increasing the
simulation time after each occurrence by 1. This is achieved by setting the delay expression
s’ of the arc pointing to the place state of figure 1. It can be noticed, however, that the
speed of certain reactions are rather robust whereas others change quite dramatically in
case of slight enzyme or substrate concentration deviations. The latter enzymes — called
key enzymes — constitute the target of control mechanisms in the organism that regulate the
metabolic processes according to the actual situation. This observation is taken advantage
of in our model by adapting the step width (i.e., the time increment s’) to the current speed
of the reaction. If, for example, its actual speed is very low then the next occurrence of this
reaction may be delayed by more than the actually specified time unit (not exceeding a
maximum value of, say, 12), and if the speed is very high then the actual delay expression
may be decreased (with a minimum value of 1). To find out an appropriate function for
the speed dependent adjustment of the step width of the individual reactions is a tricky
task. We checked out several strategies, but we shall not discuss this problem further in
the paper. The effect of applying this step adjustment function leads to an acceleration
of the simulation because, in every time step, only a subset of the reactions have to be
executed.

After it became evident that A constituted a sensible model that could be generalized
to arbitrary metabolic pathways, a software package* was developed that automatically
generates such a model from the data extracted from the databases. The resulting model
can be executed immediately in the simulation mode. No much attention was paid to the
graphical layout of the model: the reactions are simply arranged in lines until a page is
filled, and then a new page is started. Afterwards, a final manual revision of the diagrams
is advisable. The glycolysis model of figure 5 was constructed this way.

The simulation performance of the model A on a Power Macintosh G3 was not satisfactory
(cf. the figures in section 5). Therefore, we built a new model B (not shown) by folding
all places with the substrate concentrations into a single one, doing the same with the
enzyme places, and connecting these two places to one single reaction transition. With a
new simulator version of Design/CPN developed by the CPN group at Aarhus University,
this would have lead to a better performance. As we did not intend to use this simulator at
the moment, not surprisingly the performance got even worse: The calculation of enabling
leads to a combinatorial explosion if the number of tokens in the places is very high. —
Hence we looked for a more appropriate solution.

In the models A and B, all substrate and enzyme places are always marked. This means
that all reaction transitions are, in principle, always enabled. What changes are the second
elements of the pairs in the substrate places, i.e., the concentrations. Even when an enzyme
is transitorily de-activated — which was necessary for the experiments to be conducted —,
this was achieved by setting its concentration r to zero; the corresponding transition in
this case is disabled due to its guard [r > 0.0, ...] (figure 1).

If we focus on those transitions which are not enabled permanently, we can omit all
reaction transitions or replace them all by just one transition. The current substrate

4Standard ML was used as programming language because of its flexibility, its integration in De-
sign/CPN and its use for the annotations in CPN models.



GlobalMode

input (enzlst,reglst,md);

OpMode output (enzlst',dse,reglst',dsr,dt);
action
let
md 0@+dt val ((enl,dse),(rgl,dsr),dt) =
if md=0 then (* execute reactions *)
(exec_step(ENZYM,enzlst),
exec_step(ENVIR,reglst),0)
else if md=(~1) then (*initialize lists *)

reglst'@+dsr enzlst @+dse (init_list('\pEnz_List,md),
init_list(!pReg_List,md),1)
reglst enzlst else (*md>0*) (* update lists *)
0 0 (upd_list('pEnz_List,enzlst,md),

TrState TrState upd_list('pReg_List,reglst,md),1)
in (enl,dse,rgl,dsr,dt)

Regulator_State Enzyme_State &9

Figure 6: The kernel page of the net model C

concentrations can be stored in a particular concentrations record. This leads to the new
model C, in which there exists just one transition setconc comprising all reactions (figure 6).
Model C is behaviourly equivalent to model A. However, the intuitive pathway diagram
(figure 5) is no longer needed, and the automatic construction of model C degenerates
to the generation of the enzyme catalog and figure 6. This figure shall now be discussed
briefly.

The colour set TrState consists of one list in which the necessary variables for the
enzymes and the step width are encoded. To be more specific, this colour set is a list of
pairs (time ¢, sublist(t)) whose first member, ¢, determines the simulation time at which
those reactions included in the sublist(t) have to occur next. Thus, at each simulation time
t, only the sublist(t) has to be inspected for the reactions to be executed. The members
of each sublist are quadruples containing the enzyme name (characterizing the reaction),
its concentration (constant), the last step width and the last speed of the reaction.

The place Enzyme_State stores all information for the proper execution of the en-
zymatic reactions through the function R_kin. As mentioned above, R_kin takes the
metabolic constants of the enzyme from the enzyme catalog and the current concentrations
of the substrates from the concentrations record.

The place Regulator_State deals with metabolic processes that are attributed to the
environment of the modelled (glycolysis) pathway. Such reactions are necessary, e.g., to
regulate particular ubiquitous molecules or to provide for steady sources and sinks of
the entire pathway (cf. section 3). Normally this kind of reaction is not catalyzed by
an enzyme, rather its speed is controlled by a (properly chosen) factor which — in this
context — can be treated like an enzyme.

The transition setconc serves three purposes, distinguished by the value of md, the
global mode.

1. At the beginning of the simulation (md = —1) the lists in Enzyme_State and Regu-
lator_State are initialized via the function init_list.

2. Later, during the simulation (md = 0), the function ezec_step is applied, which
invokes R_kin for all enzymatic and environment reactions that are due at the current
time, say tc, i.e., are a member of the sublist(tc). These reactions are executed in a
random sequence to take into account their inherent concurrency. After the execution of a
reaction, yielding a new step width dsz, an updated entry for the reaction is inserted into
the appropriate sublist(tc + dsz). In this manner, the new lists enzlst’ resp. reglst’ are
generated which, at the end of this process, replace the old lists in the places Enzyme_State



resp. Regulator_State.

Provision is taken in our metabolic net models that the set of enzymes (and hence
of the enzymatic reactions) can be altered during the simulation, splitting the simulation
into several so-called simulation intervals.® Prior to running the simulation, these intervals
have to be specified. Each of them is characterized by one specific global mode value md
with md € {—1,1,2,3,...}. For each interval, the corresponding enzymes and substrates
together with their initial (w.r.t. the interval) concentrations have to be specified in a
particular mode file. Moreover, for every interval, a reaction speed factor sp and the
model time te of its end has to be chosen in advance. A typical interval definition could
read (md = —1,sp = 0.2,te = 600). In this case, every reaction speed dc computed by
R_kin is multiplied by the factor sp. This finer granularity of the reactions is mainly
needed to cope with substrate concentrations near zero to avoid meaningless negative
concentrations.® As a result, if the total model time te equals 600 and sp = 0.2, then the
total simulation time” would become t,.q = te/sp = 3000.

3. Whereas the global mode value md = —1 is reserved for the initialization and
md = 0 for the "normal” processing (see 1. and 2. above), modes with md > 0 are used
to cope with a switch between intervals. To perform such a switch the function upd_list is
applied. It updates the concentrations of the involved substances and initializes the lists
in Enzyme_State and Regulator_State for the new interval to be encountered.

The entire net model C of the textbook glycolysis pathway consists of three pages. The
most prominent one, modelling the metabolic processes, has been shown as figure 6. The
other pages shall only be mentioned here.

One of them deals with the quite simple initialization of different values. The last page
controls the management of the global mode values and the writing into the plot file from
which — after the end of the simulation — a variety of plot diagrams can be constructed
which depict the development of the concentrations (and of other values) as a function of
time.

5 Simulation Results and Performance

The result of each simulation is usually represented as a graph that shows the concen-
tration/time curves for the substrates involved. These diagrams are drawn by use of
Microsoft Excel with some VBA macros. A typical example of such a plot diagram is
figure 7 showing the concentration curves of the substrates participating — during a first
interval of 1000 model time steps — in the (textbook) glycolysis, followed — in a second
interval also of 1000 time steps — by the gluconeogenesis. As can be observed, towards the
end of the entire simulation, each of the substrate concentrations converges, i.e., a flow
equilibrium is reached.

For analysing the metabolic processes, also the temporal development of other values,
e.g. of the reaction speed dc, may be of interest. This allows to identify, most often after
a number of experimental steps, the cause of a deviation from the expected equilibria and
to alter the responsible values. Such a series of experimental simulation runs can lead to
identifying the key enzymes which most efficiently control and influence the entire pathway

50bviously, it would make no sense to choose totally divergent sets of enzymes (and substrates) for the
intervals. Rather the intervals should, taken together, constitute again a closed metabolic pathway.

A negative concentration is the result of a too wide extrapolation, an ”over-reaction”. Anyhow, to be
on the safe side, a resulting negative concentration is always cut off to zero.

"The simulation time must not be confused with the real (clock) time that a simulation run takes.
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Figure 7: A concentration diagram for the glycolysis followed by gluconeogenesis

’ Pathway ‘ Model ’ simulation time ‘ number of steps | real time (sec) ’

Glycolysis A 6051 45 669 1127
C 6 050 6174 70

Glycolysis,

Glyc. & Gluconeogen., A 7551 59 524 1579

Glycolysis C 7551 7705 78

Glycolysis & A 5051 42 351 1070

Citric Acid Cycle C 5050 5154 69

Table 1: Performance figures for models A and C

processes.
Before presenting performance figures of a few typical simulation runs, it should be
emphasized that the simulations have been performed on a Power Macintosh G3 under
OS 8 using Design/CPN 3.0.5. Hence, we did neither profit from more powerful computers
nor from the improved versions of Design/CPN developed recently by the CPN group in
Aarhus.
Table 1 originates in the simulation of three different pathways:
— (textbook) glycolysis,
— glycolysis, then combination of glycolysis and gluconeogenesis, then again glycolysis,
— combined glycolysis and citric acid cycle.
Each pathway has been simulated, under identical conditions, with the models A and C.
As mentioned in the previous section 4, before a simulation run is started, among other
parameters, the maximal simulation time has to be set. In principle, at every simulation
time instance, several transition occurrences, i.e. steps, may happen.



In the model A, each reaction is represented by one separate transition. Hence, the
total number of steps is always much greater than the maximum simulation time. In
model C, however, one single transition stands for the set of all reactions. Thus the
number of steps should be equal to the simulation time.®

A considerable part of the real time consumed for a simulation run is used for calcu-
lating the enabled transitions. As a consequence, the simulations with model C are much
faster than with model A (factors 16.1, 20.2, 15.5, respectively). As can be seen from the
table above, instead of about 20 minutes, a typical experiment with model C now takes a
bit more than one minute.

6 Conclusions

The use of Petri nets to model and analyse metabolic pathways is promising. It renders
intuitive diagrams and allows the automatic generation of the net models. The simulation
speed — one of the crucial shortcomings as compared to differential equation models — can
be substantially increased by choosing an appropriate modelling approach.

To summarize, applying the rules for equivalence transformations of high-level Petri
nets implies a substantial flexibility in constructing net models that serve different in-
tentions but behave equivalently. The models A, B and C represent the same metabolic
processes, their execution renders identical results, although their graphical appearance
and their performance differs strongly. The merits of model A lies in its graphical struc-
ture which directly reflects the connections among the biochemical reactions. This appeal
of intuition is lost in the model C for the sake of a considerable performance improvement.

Regulatory_Protein_CATS8

E_4'1'1'32 E_3'1'3'11

Pyruvate PEP F16P F6P

Figure 8: The model of a regulated pathway (gluconeogenesis)

In this paper we restrict ourselves to metabolic networks and leave out the so-called
regulatory mechanisms? (enzymes directly activating or inactivating other enzymes by
modifying them). The kinetic mechanism of regulatory enzymatic reactions is much less

8The number of steps is slightly greater because the transitions that are in charge of writing the actual
values into the plot file have to be added.

9Regulatory mechanisms include
(1) Transcription Control: control of biosynthesis of enzyme proteins through regulator proteins,
(2) Interconversion: switching enzyme from active to inactive, and vice versa, through (de—)activating
enzymes by signals of e.g. hormones via Second Messengers,
(3) Modulation by ligands, e.g., by coenzymes or diverse inhibitors.
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understood compared to metabolic ones. Modelling regulatory enzyme relations as a Petri
net would create no major difficulties. A sample is shown in figure 8 (cf. footnote 3).

Prospective future work in the area of metabolism is mainly determined by the needs
and plans of the project in biochemistry we are collaborating with at GMD-SCAI. One
research direction shall make use of annotated sequence databases and organism-specific
databases to complement the metabolic information to get a more complete coverage of
the functions coded in a genome. This means that we get regulatory proteins which can
activate or de-activate certain enzymes of the pathway, leading to structures like the one
sketched in figure 8.
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Abstract

There are many situations in which we can use models of systems to help make deci-
sions about their operation. This paper describes an approach which allows users without
knowledge of Coloured Petri Nets to control the simulation of Coloured Petri Net models
and interpret the results obtained from simulations via web based interfaces. We describe
the architecture design of facilities in a simulation tool for making it possible to simulate a
Coloured Petri Net model via a web based interface. As a representative example we show
how to implement the approach in the Design/CPN tool.

Keywords. Coloured Petri Nets, Web Interfaces, Design/CPN, CGI Scripts, HTML Forms,
Batch Simulations.

1 Introduction

There are many situations in which we can use models of systems to help make decisions about
their operation. In many cases discrete event models are the most appropriate computational
engines for these decision support tools. Petri Nets, in general, and Coloured Petri Nets [4]
(CPNs or CP-nets) in particular, are general modelling languages for creating discrete event
system models of systems. Petri Nets support both analysis of the logical properties of systems
and simulation so that logical properties and behaviour of systems can be examined [5]. Petri
Nets can also be used to investigate the performance of systems [9]. While Petri Net tools, such
as Design/CPN [1], offer powerful capabilities for verification [6] and performance analysis [3]

of models, their complexity and the need for understanding Petri Net theory requires specially
trained personnel.

The motivation behind this paper has been to put Petri Net technology in the hands of appli-
cation users who are not experienced with Petri Nets. The development of CP-nets and their tools
has progressed to an industrial strength modelling language that retains the theoretical founda-
tion of the CP-net theory. Though, not much focus has been on integrating simulation models
into real applications.
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Until now, the same graphical user interface (GUI) is often used for all activities involved
in creating, simulating and analysing CPN models. Figure 1 illustrates this approach. First, the
GUIl is used to create the CPN model. Then the same GUI is used for simulation activities, such
as setting the initial state/conditions of the model, and afterwards, it is used for simulating the
CPN model. Finally, the simulation output produced during simulations is often displayed using

the same GUI.
Com D

Create
GUI of CPN «—> Create CPN
/ ’ CPN Model Model and GUI

Model Model

Set Initial Set Initial

Conditions Conditions
A 4 \ 4 A 4 v

GUI of CPN Initialised GUI of Initialised
Tool CPN Model CPN model CPN Model

A A
\ 4 \ 4
Simulate Simulate
CPN Model

CPN Model
Simulation Simulation
Results Results

\ Show / \ Show /
Results

Results

Figure 1: Original approach for creating  Figure 2: New approach for simulating
and simulating CPN models. CPN models via a web browser.

The architecture envisioned in this paper is to leave the creation of the CPN models to CPN
experts, and let the application users simulate the models using another domain specific interface
(see Fig. 2). First of all the CPN expert creates a CPN model together with a suitable GUI
for the CPN model. Creating the CPN model and the GUI tailored to the CPN model allows
application users without knowledge of the simulation tool to simulate the CPN model over a
range of conditions (initial markings). Application users use the specially tailored GUI to set the
initial state/conditions of the CPN model and then to run the simulation. Finally, the CPN model
dependent GUI may be used to display the results of the simulation.
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The architecture described above was expanded to provide the application user with remote
access to the simulator of a CPN model using web technology such as so-called Common Gate-
way Interface scripts (CGI scripts) [3]. Thus, the application user has the advantage of having
access to a rigorous discrete event system model of a complex distributed or concurrent system
over a network using any web browser. The application user would control the executable model
through aHyper Text Markup Language (HTML) [12] form that provides inputs to the CPN
model. The output would possibly be returned to the web browser of the application user. In
this manner, the application user could perform analysis of the CPN model of the system without
needing to understand or even see either the Petri Net models and Petri Net formalism nor the
user interface of the Petri Net tool. Thus, the application user simply provides input via a form
in a HTML document which is tailored to the CPN model, while the actual CPN model and
the modelling tool are never seen by the application user. The remaining sections of this paper
provide a detailed description of the design, implementation, and use of the approach outlined
above. The Design/CPN tool will be used as a basis for the implementation of the approach.

The paper is organised as follows. Section 2 presents a realistic example which illustrates the
approach for accessing simulators of discrete event systems via a web browser. This example will
be used as a running example throughout the rest of the paper. Section 3 contains a discussion
of the design considerations related to developing the approach. This includes both a general
discussion not related to a specific tool, and a discussion of how to realise the design in the
Design/CPN tool. Section 5 illustrates the amount of code a CPN expert using Design/CPN
needs to write to apply the approach to a specific CPN model. Finally, Section 6 concludes the
paper and gives suggestions for future work.

2 Example: Backup Company

This section gives an example of a realistic scenario, where a web based interface for simulating
CPN models would be very useful. We will use the example presented in this section for illus-
tration purposes in the rest of the paper. We will not describe the CPN model itself because it is
not necessary to understand the CPN model in order to understand the approach of simulating a
CPN model via a web browser. In later sections we will discuss how to modify the environment
of a CPN model to allow being simulated via a web browser.

A company sells backup devices from a web site. When a customer needs to decide which
backup devices to buy for a complex network environment, it is necessary to take several factors
into account. The customer needs to consider his existing system in order to obtain the most
suitable backup system. In particular he needs to consider the following factors.

e What is the network bandwidth on the local area network?
¢ How many machines do exist of each type: servers and workstations?
e How much disk capacity is present?

e Which is most important: price or performance?
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Today many of the customers call the company and ask what components they should buy for
their particular system. The company has created a CPN model that can provide a specification
of the needed backup system given system requirements like the ones stated above. The CPN
model helps the employees answering the phone calls to answer the questions of the customers.

It takes a lot of time for the company to answer questions from customers who ask what to
buy for their specific system. Therefore, the company wants to provide their potential customers
with a tool that can help decide which components to buy. An obvious solution would be to
simply give the customers access to the CPN model from a web page. In this way both answering
technical questions about what to buy and placing an actual order can be handled via the Internet.
This means that customers do not have to call the company to figure out what to buy, thus
reducing the production costs for the company.

After having applied the approach described in this paper to the CPN model, it is possible to
simulate the CPN model via a web browser. A customer who wants to buy some backup devices
accesses the web page containing an HTML form, like the one in Fig. 3, which is the interface to
a simulator of the CPN model. The customer types the data of the existing system together with
the requirements to the new system into the form.

Backup Unlimited Ine.
Input your data and requirements for a backap system

- and we will provide you with whar you need Tor your system.

Bletwork bandwrdth |:. b} | Mbps

Blumber of Dervers I ] I

Blumber of warkatalicns: I". i} |

Disk capacity: 20 |5B

L2 prios more Lmportant than performance: (8

Submit Reguirements |

Figure 3: HTML form as interface to the CPN model.

The system replies after having simulated the CPN model based on the input given in the
form, see Fig. 4. Different kinds of output are produced. A textual description of the neces-
sary backup components is given, and the expected performance of alternative components is
illustrated using graphs.

The CPN model used in this example is a general model which can simulate any backup
device the company sells. The model is fixed to a specific backup device by using different
initial markings.

To determine which backup device is the most suitable for a customer, the CPN model is
simulated several times with different initial markings — once for each backup device that the
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Backup Unlimited Inc.

We have now simulated a model of Your system using Four specified requirements. We
propose that wou buy the following backup devices: MoBackup mode] B1 or MoBackup
medel B2, Yo can decide winich best suits pour nesds from the graphs belown
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Figure 4: An HTML document containing the results of simulating the CPN model.

company produces. Based on the results obtained from the simulations, the most suitable ones
are selected and displayed to the customer.

3 Design

The general description of the approach for creating web based interfaces for simulating CPN
models introduced in Sect. 1 will be considered further in this section. The section describes the
general design. Section 4 will focus on how to implement the design in the Design/CPN tool.

Several different options exist for executing and controlling a program via a web browser. In
this paper we describe an approach for controlling simulations using so-€atled and Com-
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mon Gateway I nterface scripts (CGlI scripts) [3], which are both well-known Internet techniques.
Figure 5 illustrates the setup for using CGI scripts, while the message sequence chart in
Fig. 6 illustrates a scenario where a CGI script is activated by submitting a form from a web
browser. The scenario is as follows: a hypertext documeaat kup_f or m ht m ) is located
on Computer B which is a web server (HTTP server B). The document could, e.g. be an HTML
document like the one in Fig. 3. The application user using the web browser at Computer A
downloads the HTML document. The application user then fills out and submits the form. When
the application user submits the form, a link (URL) to a file on Computer C that holds the
CGl script packup. cgi ) will be followed. (The CGI script may also be placed on the same
computer as the HTML form.) This link is a "normal” HTTP link, but the file on the web server
on Computer B is stored in such a way that the web server on Computer C can tell that the
file contains a CGI script that is to be executed, rather than a document that is to be sent to the
client as usual. The web server then executes the CGI script which can read the input that the
user typed into the form. Based on the input the CGI script dynamically generates an HTML
document. The HTML document is sent to the client while it is being generated as a stream. The
web browser on the client computer displays the document while receiving the stream of HTML
code from the web server, as it would display any other HTML document. The HTML document
being received could, e.g. be like the one in Fig. 4.

Computer B

Computer A backup_form.htnp |

J HTTP Server \JURL

1
/
backup.cgi o

HTTP Server ‘

Computer C
Figure 5: A web browser and two web servers.

Forms are very useful for specifying textual input via a web browser. Furthermore, they
provide a simple mechanism for submitting the contents of the form to a CGI script. The HTML
code for specifying a form is also very simple. Figure 7 shows most of the HTML code (it
has been shortened where the. are placed) used to display the HTML document in Fig. 3.
The URLwww. dai mi . au. dk/ cgi - si m cpn. cgi in line 2 identifies the CGI script to be
activated when the user submits the form. The button for submitting the form is created using
line 9 in Fig. 7. Lines 6 and 8 specify that two fields for input should be created. The input fields
are named uniquely in the form using namearfe=di sk andnane=pri ce). These names
are used by the CGI script to access the values of the fields when the form is submitted.

Note that only a few lines of HTML code are necessary to create a form, thus most people
who have learned to create CPN models and do some basic programming should be able to learn
to write such HTML code without too much difficulty. Though, in the future it will be possible
to generate most of this code automatically.
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HTTP Server B

Web Browser

HTTP Server C

L1 1 ]
< get URL(docl. htm)
docl. htni
Fill Lform
Submi g form

get URL(CA script)

Start Cq script
HTM. result

A

HTM. result

A

End CA/ scri pt

L] 1

Figure 6: A web browser requests a CGl script to be executed.

<HTM_> 1
<FORM et hod=GET
action="http://ww. dai m.au.dk/cgi-sinmcpn.cgi"> 3

D sk capacity: 5
<I NPUT si ze=15 type=text name=di sk val ue=10> GB <BR>
|s price nore inportant than perfornmance: 7
<I NPUT si ze=15 type=checkbox nanme=pri ce><BR><BR>
<I NPUT type=submt val ue=" Submit Requirenents "> 9
</ FORM>
</ HTM_> 11

Figure 7. HTML code for creating a form.

The program or CGI script that reads the information submitted in the form and processes
it is more complex. Specialised scripts are required to handle the incoming form information.
CGil scripts may be written in scripting languages like Perl [13] or in programming languages
like C and Standard ML (SML) [10]. In general, a CGI script can be considered as an executable
program that can be executed on a web server on request from a web browser.

To be able to simulate CPN models using CGI scripts in a controllable manner there are
some requirements to the Petri Net tool. First of all, the Petri Net tool should be able to start a
simulation of a specific CPN model without requiring a user to interact with the Petri Net tool
via a GUI. For example, it should not be necessary to use dialog boxes to start a simulation —
it should be possible to automate everything in a script. The tool should allow users to write
user-defined functions, e.g. for retrieving input, saving files, and printing to standard output. The
reason for these requirements is that because a CGI script is invoked via a form, the CGI script
must be able to control everything related to reading input from the form, setting the initial state,
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starting the simulation, and producing results.

To make the CGI script as user-configurable as possible with respect to controlling a simu-
lation, the CGI script must be able to control the simulation tool in the following way. When
the CGI script is executed from a web browser, it should automatically execute a sequence of
commands. In the following we will refer to this sequence of commands as a batch script [7].
A batch script can be considered as a simulation control script with the purpose of specifying
exactly what the CGI script is intended to do — including when to start a simulation. Figure 8
illustrates the architecture of a CGI script using a batch script to control the simulator. In this
context, a CGl script will be defined as an executable CPN simulator together with a batch script
which defines what happens when the CGI script is executed.

Gty o
Scrlpt Script

e

Simulator

=

Simulation
Results

Figure 8: The architecture of a CGl script for simulating CPN models.

To give the user the largest possible freedom for defining CGI scripts the batch script needs
to be specified by the user. In the context of CGI scripts the batch script typically has a certain
structure which is likely to include the following actions:

1.

N g M Db

Retrieve parameters from the form (see Fig. 7 for example of HTML code for a form).

Calculate markings to be used to i
Initialise the state of the simulator.

Run simulation — and collect data.

nitialise the state of the CPN model.

Save results and/or send HTML code to the client web browser.

Goto 2 if the batch script is not finished.

Quit the CGI script.

First of all, the batch script needs to retrieve the parameters that are sent to the CGI script
from the form. After having extracted the data from the input fields in the form, the batch script
needs to specify how to run the simulation(s). The batch script often starts by calculating the
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markings for the initial state. The calculation is likely to use input parameters from the form
or results from previous simulations. Now the state of the simulator is ready for starting the
simulation.

While the simulation runs, data is often collected and saved in files for later processing.
Therefore, the model often needs to be instrumented to collect the needed data. When a simula-
tion has finished the results collected during simulations may be sent directly to the web browser
(by printing HTML code to standard output). In addition results from the simulation may be
saved to a file for later post processing. Finally, the batch script may decide that yet another
simulation is to be performed. Therefore, the batch script may continue by restarting the script,
otherwise the CGI script terminates.

Simulation tools that support converting a simulator into a CGI script may also include some
auxiliary and high-level facilities. Examples of such high-level facilities are facilities for creating
graphs to be saved in files, and printing HTML code for referring to graphs in the HTML doc-
ument being generated by the CGI script. Then the web browser will download the image con-
taining the graph while displaying the HTML document. Such an intaeggeul t . gr aph. png
was included in the HTML document in Fig. 4 using HTML code like line 5 in Fig. 9

<HTM_> 1
<H1>Backup Unlimted Inc.</Hl> 3
<IM5 SRC="http://ww. dai m . au. dk/ resul t. graph. png"> 5

</ HTM.> 7

Figure 9: HTML code for creating a form.

If the simulation tool does not contain the needed post processing facilities itself, it may possibly
use external programs for doing the post processing of the data. There are only two require-
ments of the post processing tool to be used from the CGlI script. The first one is that the tool
should support being executed from the command line using a script containing all the needed
commands to create the graph. Secondly, the tool should be able to save the output to files. Gnu-
plot [2] is an example of a tool that can be used for generating plots and graphs, and it supports
command line scripts, too.

Given a Petri Net tool that fulfils the above mentioned requirements by allowing to create
batch scripts and then be remotely controlled, it is be possible to create CGI scripts that fulfil
many needs for simulation of CPN models from web browsers. In total the CPN expert needs
to create two different files: an HTML form (like Fig. 7) to be used for specifying input to the
CGil script, and the batch script for retrieving input from the form, running the simulation, and
for producing results to be displayed at the web browser.

In the approach described in this paper, all input from the application user should be ready
before submitting the form. In this way it is not possible to control the simulation after it is
started — the simulation will be non-interactive but results can be shown gradually. In Sect. 6 we
discuss future work which addresses this issue
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4 Implementation in Design/CPN

Design/CPN [1] is a widely used tool supporting editing, simulation and verification of CPN
models. In this paper, Design/CPN is used to prove the usefulness of the CGI concept for simu-
lating CPN models via a web browser. In this section we describe some of the design considera-
tions and facilities that are implementation specific for Design/CPN.

According to the description in Sect. 3, a CGI script is nothing more than a program that can
be executed from a web page and then dynamically produces a new web page. A few modifica-
tions are made to Design/CPN in order to make it possible to turn the simulator of Design/CPN
into a CGI script, or rather to drive the Design/CPN simulator from a CGI script. To under-
stand why these changes need to be done, we need to describe some of the architecture of the
Design/CPN tool.

Design/CPN is divided into two parts: one part implementing the GUI, and another part
containing a simulation engine for simulating a CPN model. When a CPN expert has created
a CPN model using the editor (see Fig. 10), simulator code can be generated containing the
simulation engine and some model dependent code. This code contains everything needed to
simulate the CPN model. Figure 10 differs a little from Fig. 1 in the sense that a simulator is
generated from the CPN model before being able to do the actual simulation.

Create
CPN Model

Design/CPN
Simulator

A 4

AR
@ICPN>
GUI

'y

A

Set Initial
Conditions

Initialised
imulatg

Simulate
CPN Model

Simulation
Result:

Show
Results

Figure 10: Design/CPN approach for creating and simulating CPN models.

In the context of CGI scripts only the simulator of Design/CPN is of interest. The reason is
that it contains the entire executable simulator which is generated from the CPN model created
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in the editor of Design/CPN. Thus, the Design/CPN simulator is the only part of Design/CPN
that need to be used when creating a CGlI script.

4.1 Disablingthe GUI of Design/CPN

Due to the fact that the simulator and the GUI of Design/CPN communicate with each other,
the SML functions contained in the simulator for updating the graphical user interface (GUI) of
Design/CPN should be modified to not update the GUI while simulating. The reason for this
modification is that the GUI of Design/CPN is not present in a CGI script. Only the code con-
stituting the simulator and user-defined functions is contained in a CGlI script. Remember that a
CGl script is invoked from a form in a browser, while the CGlI script itself is running on the web
server. Therefore, the web page shown by the web browser can be considered to be the GUI of
the CGI script.

4.2 Creating CGIl Scripts

Another modification of Design/CPN makes it possible to save a CGlI script in an executable
file. The executable file will contain the entire simulator code for the CPN model and some user-
defined functions. The simulator code is model dependent SML code which is automatically
generated by Design/CPN. This code makes it possible to simulate the CPN model. The user-
defined function will be the batch script, as described in Sect. 3. Batch scripts in Design/CPN
are written in SML.

An example of a batch script can be found in Fig. 11. The funagetvalOfField reads
the value that the user has input in the form in the field namediltsk which is the name
of the field with the title “Disk Capacity” in Fig. 3. The user may want to do some calcu-
lations alculate_initial_marking) before initialising the state of the simulator by means of
the functioninit_state. The simulation is started using the functisimulate. The function
save_results is supposed to save results in files and/or send them to the web browser.

When the user has finished creating the batch script to be included in the CGI script, the final
CGil script can be generated. The CGI script is generated and saved in a file by simply invoking
a SML function. The overall approach for creating a CGI script using Design/CPN is illustrated
in Fig. 12. The model is created and the simulator is generated using Design/CPN. Then a batch
script is created by the CPN expert to control the actions of the CGI script. Finally, the CGI
script containing the batch script and the Design/CPN simulator is generated and is then saved in
afile.

4.3 High-level Functions

Due to the fact that SML is the language used for specifying CGI scripts which contain the
Design/CPN simulator; or in particular that the batch script contained in the CGI script is written
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fun batchscript (-, -) =
let fun parseform_input () = getValOfField" di sk";
fun cycle_script () =
(calculateinitial_marking);
init_statd); (* Initialise state of the simulator *)
simulatd); (* Run the simulation *)
saveresultg);
if notfinished) then cycle script ()
_ else ());
in
(parseform_input ();
cycle_script ()
end

Figure 11: A simple batch script.

Create
CPN Model

Create Batch
Script

Design/CPN
GUI

CPN Generate Design/CPN Save Batch
Model Simulator simualtor Executable Script

Figure 12: Creating a CGl script from Design/CPN.

A

in SML, the CPN expert can use the full power of the language SML for getting input and
producing output from the CGI script. This section describes some auxiliary and high-level
functions that may be useful when creating batch scripts to be used in CGI scripts. In particular
we will focus on functions for reading input from HTML forms and generating HTML code as
simulation output.

We will now describe how to read the parameters entered in the browser from the CGI script.
When discussing the general structure of a batch script in Fig. 11, we introduced the SML func-
tion getValOfField. This function is very useful when reading a value that an application user
has input in a form. The function can be used to read any input field in a form, thus it is very
general. The only parameter given to the function is the name of the field in the form. The
function retrieves the input sent from the form and returns the value contained in the field.

When we want to produce an HTML document as output from running a CGl script, the CGl
script needs to print some HTML code to standard output. SML provides the furpstiarfor
printing to standard output. By printing HTML code to standard output it is possible to create
complex web pages. The HTML document may even include embedded graphics, so-called Java
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scripts [11], and Java applets which allow programs to be executed directly on the client holding
the web browser. Figure 13 illustrates a simple SML function which prints some simple HTML
code.

fun print_header n=
(print (" <B><FONT S| ZE=+2>Resul t s of runni ng"*
(Int.toString N
" simul ati ons</ FONT></ B>"));

Figure 13: Print HTML code to a web browser.

It may also be useful to save HTML documents as files. This is particularly useful if several
data files and figures are generated by the CGI script. In this way it is possible to divide the
results of running the CGI script over several HTML documents. The page printed directly to
the browser could simply be a kind of index page for the rest of the HTML documents. In this
way the results of executing the CGlI script may be shown in a structured manner. SML contains
several functions for creating files and directories. Thus, itis immediately possible to save several
HTML documents, to be referred to from other HTML documents.

Results or raw data obtained during or after a simulation can also be saved in files. Collecting
data can, e.g. be done using the Design/CPN Performance Tool described in [8]. By printing
HTML code which provides a URL link to the data file (see Fig. 14) to the web browser, the user
can download the result files when the CGI script (or simulation) ends. After downloading the
file, the user can analyse the produced results using his favourite analysis tool. As an alternative
to downloading the raw data, the CGlI script can post process the data itself.

fun print_url (URL, description =
(print (" <A HREF=\""AURL""\ " >" Adescription" </ A>"));

print_url (" www. dai m . au. dk/resl. txt", "Results fromsinul ati on");

Figure 14: Print URL to a web browser.

In Sect. 3 we discussed generating graphics using external programs directly from the CGI
script. We said that Gnuplot [2] is a tool that can be controlled from a CGI script. To make
it as easy as possible to create plots using Gnuplot, and because Gnuplot is a non-commercial
product, we provide a SML function for plotting graphs using Gnuplot. Figure 15 contains the
interface of the Gnuplot SML function. The function is simply called with a list of file names
of the raw data files and some textual information to be included in the graph. Finally, the user
also needs to specify a destination file name where the plot is supposed to be saved. This SML
function implies that users not familiar with Gnuplot are also able to easily create plots using the
tool. The plot in Fig. 4 was generated using this function.
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fun gen.gnuplots
{filenamesxtitles: (string * string) list,

title : string,
xlabel : string,
ylabel : string,

destfilename: string,
gnuplotpath : string}

Figure 15: Interface to Gnuplot function.

5 An Exampleof aCGlI Scripts

In this section we give an overview of how simple it is to create CGI scripts from Design/CPN.
In particular we illustrate how a typical batch script to be included in a CGI script will look.

Below we include most of the SML code for creating the CGI script used in Sect. 2. The
purpose of including the code is to give the reader an idea of the complexity and the amount of
code to be written to create CGI scripts. Itis notimportant to understand every detail of the code.
Some of the functions which are not directly associated with CGI scripts and batch scripts are
not defined here. Please note that the code is rather general and can easily be modified to be used
for another CPN model — or even be generated automatically.

Figure 16 contains the SML function which is to be invoked when the CGlI script is executed.
First the function retrieves the input that an application user has entered in the form, and then
updates the CPN model with the extracted data. The funcipatate_model is not included
here. Then 20 simulations are executed to investigate the CPN model using the input parameters
just retrieved from the form. Finally, some output is generated and sent to the web browser.

fun batchscript (-, )=
((* Retrieve parameters from form *) 2
updatemodel(retrieveinput ());

(* Run one simulation for each of 20 different backup devices *)

run_simulations(1, 20); 6
(* Generate output *) 8
gen.output ());

Figure 16: Batch script.

The functionretrieve_input for retrieving the data input by an application user in the HTML
form is contained in Fig. 17. The contents of each field is retrieved using the predefined function
getValOfField. The function is very simple, and in the future it may be possible to generate the
code for the function automatically.

When all parameters are retrieved from the form, we define how to run the simulations.
Figure 18 describes how to configure the CPN model, run the simulations, save results, and
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(* Retrieve data from the form *)

fun retrieveinput () = 2
{networkField = getValOfField " net wor k",
serversField = getValOfField" servers", 4
workstationsField= getValOfField " wor kst ati ons™",
diskField = getValOfField " di sk", 6
priceField = getValOfField" pri ce"}

Figure 17: Retrieve input.

finally decide if further simulations are to be performed.

The functionload_model_configuration_parameters is not contained here. The purpose
of this function is to load some configuration parameters into the CPN model. These parameters
are supposed to specify initial markings which do not depend on the input from the form. In
the context of the backup CPN model, these parameters would specify the configuration of the
specific backup device to be simulated, e.g. capacity on tape, speed, etc.

After loading configuration parameters, the state of the CPN model can be initialised using
the functioninit_state. To collect the needed results from the simulation, the CPN expert may
have defined some functions for collecting data. We assume that this is done using a function
namedcreateDataCollectors. Now the CPN model is ready to be simulated. The simulation
is executed using the functismulate. When the simulation ends we can examine the state,
and observe if the results obtained suits the needs that the application user has initially requested
using the form. We assume that the functaim results_suit_user_needs takes care of that.
Finally we call the functiomun_simulations recursively for possibly running yet another simu-
lation.

(* Specification of how to run simulations *)

fun run_simulations(i, (n:int)) = 2

if (i <= n) then
(load_-model configurationparameters; i 4
init_state);
createDataCollectors i 6
simulat€); (* Smulate the CPN model *)
if (do_resultssuit.userneeds()) then 8

remembermodelno i

dse (); 10
run_simulations(i+1, n))

ese (); 12

Figure 18: Run simulations.

Figure 19 contains the functiogen_output which produces the HTML document to be
displayed at the web browser. The output includes both textual information and a graph. The
graph is plotted using the function in Fig. 20. The graph is saved in a file with a unique file
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name, and appropriate HTML code referring to the graph is printed to standard output. In this
way the web browser receiving the HTML code from the CGI script automatically downloads
and displays the graph.

fun genoutput () =

((* Print HTML directly to web browser *) 2
print "Content -type: text/htm\n\n"; (* CGl-header *)
print " <HTML><BODY BGCOLOR=#FFFFFF>"; 4
print (" <FORM net hod=CGET acti on=\"http://ww. dai m . au. dk/"*
"cgi-sinlplace_order.cgi\">"); 6
print " <CENTER>" ;
print " <H1>Backup Unlinited I nc. </ HL>"; 8

print " </ CENTER>" ;
10
(* Print the results of running the simulations *)
print ("We have now si mul at ed a nmodel of your systemusing your specified "" 12
"requi rements. We propose that you buy the foll owi ng backup devi ces:");

print (modelalternatives(lalternativey); 14
print " You can deci de whi ch best suits your needs fromthe graphs bel ow. <BR>";
print " <CENTER>" ; 16
(* Generate graphics using Gnuplot *)

print_graphics (datafiles()); 18

print " </ CENTER>" ;

print "I order the following item <input size=15 type=text nanme=item no><BR>"; 20
print " <I NPUT type=subm t value=\" Place Order \"><BR><BR>";

print " </ FORM></ BODY></ HTML>"); 22

Figure 19: Generate output similar to Fig. 4.

(* Create a plot using Gnuplot *) 2
fun print_graphics(datafilesxtitley =
let val uniquefilename= getuniquefilename (); 4
in (gengnuplots{filenamesxtitles= datafilesxtitles
titte= (" Backup Devi ce Model "~* 6
(modelalternatives(lalternativey)),
xlabel = "GB Processed"”, 8
ylabel = "Process tine (m nutes)",
destfilename = uniquefilename 10
gnuplotpath = "/ usr /I ocal / bi n/ gnupl ot "};
print (" <l MG SRC=\"htt p: // www. dai nmi . au. dk/ " ~uniquefilenameé "\ " ><br >")) 12
end;

Figure 20: Create a plot using Gnuplot.
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6 Conclusion

In this paper we have described how a web interface to a simulator of Coloured Petri Net models
can be designed. In particular we have illustrated how it has been done in the Design/CPN tool.
The approach is based on giving CPN experts the ability to easily create a CGI script containing
the entire simulator. The initial conditions of the simulator can be specified via an HTML form
on a web page. The fact that the initial conditions of a simulation can be specified via a domain
specific form, gives users without knowledge of Design/CPN the ability to use pre-constructed
simulators for specific analysis purposes.

The paper has also illustrated that integrating batch scripts into a CGI script has some advan-
tages. Batch scripts give the user the ability to run several simulations after having specified input
for all the simulations. Thus we will be able to first specify input via a web page and then based
on the input run several simulations. The fact that the input to the CGlI script can be specified in
a HTML form on a web page means that the interface to the simulator can be domain specific
and configurable. The domain specific and user-relevant graphical interface to simulators makes
simulations of CPN models interesting for non-CPN experts.

Future work may include investigating the ability to explore state spaces via a browser - again
possibly with a user relevant web page as graphical interface. This will also make it possible for
non-experts to use the power of state spaces for answering questions by querying the state space
of a CPN model. This could be obtained using the occurrence graph tool [6] of Design/CPN via
a CGl script. It will be immediately possible to explore state spaces from a web page using the
approach described in this paper. In Design/CPN it is just a matter of saving a CGI script after
generating code for the occurrence graph tool instead of the code for the simulator.

Another interesting area is interactive simulation control via Java applets [11] embedded in
HTML documents. It will also be possible to implement a domain specific GUI giving interactive
control of the simulator of Design/CPN using a Java applet. Java applets are small Java programs
that are automatically downloaded from a web server when a user requests an HTML document
referring to the Java applet. When the Java applet is downloaded it is automatically started within
the browser using a Java interpreter on the client machine. Using Java applets the simulator on
the web server and the Java applet on the client machine can communicate during a simulation.
By using Java applets it is possible to obtain interactive simulations via the web browser. To
be able to use Java applets there are some extra requirements for the simulation tool related to
communication between the Java applet and the simulator. It requires TCP/IP communication
between the applet in the browser and the simulator residing on a server.

Finally, future work may also include developing auxiliary functions for generating templates
of code for HTML forms and template code for batch scripts. In particular template code for
retrieving data from input fields in forms would be easy to generate automatically. The CPN
expert could annotate the relevant variables in the CPN model and then the Coloured Petri Net
tool could automatically generate a HTML form including fields for the annotated variables.
Furthermore, it could also create functions for parsing the fields of the form and for setting the
variables in the CPN model to the values entered in the form by the application user. Experiments
will show whether creating such template code will be useful in practice. However, one thing
that will be gained from generating both the HTML form and the functions for parsing the form
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is consistency between the HTML form and the CGl script, i.e. it will be possible to avoid some
errors due to inconsistency between the names of the fields in the HTML form and the names
referred to by functions for retrieving data from a form.

In conclusion, this paper has described a technique for making simulation of CPN models
usable for people without interests in the technical details of CPN models. Thus, the paper has
opened for using CPN simulators behind services on the Internet.
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Abstract. This paper introduces a new direction in formalizing sociological models. Sociological
theories are a field of application for computer science, hence sociologists describe a theory in in-
formal ways. These theories are transformed into computational models which can be studied and
investigated with formal methods. We have chosen to formalize a common model of sociological
theory, the Garbage Can Model of Organizational Choice. This model refers to organizations as
organized anarchies. Bounded rationality leads to ambiguous decision situations.

Colored Petri nets offer formal semantics, graphical representation, means to model concurrency, and
immediate executability and, thus, seem to be well suited to present complex sociological dependen-
cies. Our approach uses a special formalism of high-level Petri nets, called Reference nets, which is
applicable to present the individual parts of the model.

By the executable Petri net model of the Garbage Can theory, central notions like concurrency,
conflict, and confusion — known in the Petri net theory — could be directly expressed and presented
to sociologists and lead to new insights to the sociological theory.

Keywords: Garbage Can Model of Organizational Choice, Net Instances, Object-oriented modeling,
Reference Nets, Synchronous Channels

1 Introduction

“Socionics” as understood in this context stands for an interdisciplinary research field be-
tween sociology and computer science. Research aims at the question how models of the
social environment can contribute to the development of intelligent computer technologies.
The modern society delivers a rich reservoir of ideas for the modeling of multi agent sys-
tems. Vice versa sociology may benefit from computer science by using computer science
techniques for the validation and discussion of their terms, models, and theories. Finally
future applications of “hybrid communities” are a special challenge to both disciplines (see
[Mal99]).

Finding a formal description for sociological theories is a problem. Sociologists formu-
late their theories usually only in a textual form. This does not allow the application of
more formal methods to validate their theories. One of the main ideas presented here is
to formalize the theories by building Petri net models. A model which can be executed
by computers and validated by sociologists is desirable. This paper focuses on the socio-
logical theory of the Garbage Can Model of Organization Choice by Cohen, March, and
Olsen ([CMO72]). Here a Fortran program was used, later Masuch and LaPotin in [ML89]
presented an implementation with a functional language. The main drawback is that these
models can be interpreted by computers, but not by many sociologists. The Garbage Can
Petri net model is a first step to develop a special Petri net formalism which allows soci-
ologists to directly identify their concepts.
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Besides notions of multi agent systems from Distributed Artificial Intelligence Petri
net modeling seems to be a promising approach. Object-oriented concepts in the context
of programming languages (e. g. [Lou93|) and the Unified Modeling Language (UML)
([JBR99]) combined with high-level Petri nets are the techniques used in this paper.

Petri nets provide concurrency, conflicts, confusions, active and passive views (see
[Pet81], [Rei92]). Sociologists use similar terms to describe their models. Object-orientation
is used for finding the overall structure because objects represent real-world phenomena.
[Val96] introduced the notion of “nets in nets”, [Mol96] presented a general approach us-
ing Object-oriented Colored Petri Nets. Adding net references and integrating concepts of
object-oriented programming resulted in a high-level Petri net formalism called Reference
Nets (see [Kum99]). Theory was put into practice by the implementation of Renew, the
Reference Net Workshop (see [KW99]).

In this paper the application of Reference Nets to the Garbage Can Model of Organiza-
tion Choice ([CMO72]) is featured. [CMO72] is a fundamental paradigm of behaviouristic
organizational theory. The article has been and still is widely received among sociologists.
An illustrative, but semantically precise model of the sociological theory which can easily
be simulated is the socionical contribution of this work. An early version of the work in
progress was presented in [HMM99].

In the scope of the socionics project at the University of Hamburg different formal
approaches to sociology need to be considered. This paper focuses on the application of
one selected formalism to one sociological theory. In section 2 the interconnection between
Petri nets and object-orientation is described. Section 3 gives an insight to the Garbage Can
Model of Organizational Choice of Cohen, March, and Olsen ([CMO72]). A reference net
model for a generalized version of the theory is introduced in section 4. Then this version
is extended to a larger model which captures all aspects of [CMO72] in section 5. Section 6
discusses the Petri net approach, concludes by evaluating the results, and provides ideas
for future work.

2 Basic Notions

The basic concepts of object-orientation that are relevant for this paper are shortly intro-
duced. Then the basics of Petri nets are explained. Both concepts are then integrated in
the object-oriented Petri nets. Further extensions lead to Reference nets which are used as
the modeling technique.

2.1 Object-Orientation and Petri Nets

Object-oriented analysis is the here chosen method for transforming sociological texts into
a formal descriptions. Petri nets are used as the formal language. To bridge the gap between
object-oriented methodology and Petri nets as description technique, concepts of the former
are adopted in the latter.

Object-oriented analysis The notions of objects and classes of this paper follow closely
the ideas of Louden in [Lou93]. Diagrams follow UML (see [JBR99]). In sociology it is not
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common to structure models or even theories in that way. Understanding the main ideas
of the sociological model and capturing the notions in terms of objects and classes is one
aim of this work. The structure of the Petri net models follows the ideas of encapsulation
and partitioning common to object-orientation.

Petri Nets A detailed description of the historical development — given by Jensen —
can be found in [Jen92]. The basic concepts are concurrency and conflicts, active and
passive parts, and the movement of tokens. It is important to provide a visual technique to
sociologists since there is a common rejection of formal notions. The few concepts of active
(transitions) and passive (places) parts of a system with the restricted relation between
them is straightforward and easy to understand.

A first Petri net version of the Garbage Can Model has been developed by Valk. It has
been used in lectures of a sociology course at the sociology institute of the University of
Hamburg. Sociology students had few problems to understand the model. It even turned
out that the Petri net was faster to understand than a natural text, which was taught in
previous years.

However, due to the very basic constructs of elementary Petri nets larger models become
difficult to handle. This general phenomenon is not specific to sociology. Many high-level
dialects of Petri nets have been developed in the last years.

Synchronous communication On the one hand objects can communicate asynchronously
by message passing, on the other hand they can communicate synchronously. For example,
in programming languages function calls can be used for synchronization and communica-
tion. Christensen and Hansen combined this mechanism in [CH94] with Petri nets by in-
troducing typed communication through synchronous channels for Petri nets. Synchronous
channels allow different transitions to be synchronized and exchange data.

Object-Oriented Petri Nets (OOPN) Besides the concepts of object-orientation (like
object, class, inheritance, and association) the partitioning of large models into special parts
has been tackled by computer science (see the work of Lakos in [Lak95], Sibertin-Blanc in
[SB94] and Moldt in [Mol96]). Various approaches how to combine object-orientation and
Petri nets have been made. Here the idea that an object is a net is followed. The net as
an object has a specific interface which allows access to the methods and has an unique
identity. Similar objects can be folded to classes. Thus, object nets can be seen as instances
of net classes (or templates).

An object-oriented Petri net is a Petri net with a special net structure. For a more
compact notation usually Coloured Petri nets are used (see [Jen92]). The structure ensures
that a certain kind of interface of the object is implemented. Each method is represented
by a transition (with some kind of inscription), each variable can be represented by a place
with a certain color set. By the appropriate marking the state of the variable (and of the
object) is represented. The identity is ensured by the net structure itself. When Colored
Petri nets are used, these ordinary nets can be folded and then the color determines the
right assignment of each net element. The tokens are related by appropriate kinds of tuples.
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Object Petri Nets (OPN) As objects are instances of a certain net class each object has
an unique identity. This identity can be referenced by other objects an arbitrary number
of times. Thus, the reference to a net is the token of another net. Due to the reference
semantics! the nets are objects which are located somewhere and the tokens are only
references.

This leads to the question, whether nets could be regarded as tokens and to the topic
of self reflexivity in the Petri net theory. The instrument of “nets as tokens in a net” of
[Val98| defines system nets which provide the environment for object-nets to move and
communicate. This idea is illustrated in fig. 1, where one can see a system net having an
object net as its token. The object net behaves like a token, so if the transition t; fires it
removes the object net from place s; and outputs two nets — one in place s, and one in
s3. This is quite different from the meaning of reference semantics — illustrated in fig. 2 —
where two references to one single object net would have been placed in s; and s;.

As discussed in different works (cf. [Val96] and [K6h99,K6h00]), we obtain problems, if
we regard these tokens as a whole net with its own marking (as in fig. 1) and also, if we
regard these tokens as references to the original net (as in fig. 2).

<a2>
| 12 +—»
/ s2 s4
\ <al>
12—
s3 s5

Fig.1. An object net as a marking of the system net

SN s2 s4
O O

sl

(e—11]

b2 <t2>
2

. ON

Fig. 2. An object net as a reference token

! Reference and value semantics for Petri nets should be understood analogous to the concepts in programming
languages.
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We use a conceptional notation — besides the concrete syntax of the Renew conventions
— for synchronous channels. A transition ¢ could be labeled with another transition, like
(a,b). This means, that the transition ¢ must fire synchronously either with transition a or
with transition b. In our example the transition ¢, is labeled with (as), so ¢t and a; must
fire synchronously.

The benefit to use references to nets is efficiency of implementation and the well known
behavior as used in usual programming languages.

From a formal point of view, the reference semantics destroys the Petri net paradigm
of locality. As we have decided to use the reference semantics for our implementation of
the garbage can problem, our design has to take care of the loss of the locality argument.
The solution here is to use only one reference to a net to overcome this design problem.
This is a special case of the approach in [K6h00].

Have a look at figure 2, where we have one object-net and one system net. In figure 3
one can see the a firing sequence, which is possible under the assumption of reference
semantics.

7’ 14 Y’ 1“" )/

. - -7
b2 <t2> b3
O OO0

Object-net Object-net Object-net

b1l <t3> <t2> b1l <t3> <t2> b3 bl <t3>

b2 b3
OO0  O—=—©

Fig. 3. Snapshots, reference semantics

You see, that our intuition to have two independent copies of our object net is defeated.
Instead, firing of a transition changes the marking of a place somewhere else in the net.

If we try to fire this sequence again with a value-oriented semantics we run into trouble,
as one can see in figure 4. In the situation of the right net in figure 4 no transition is
activated, since the two copies of the object net are unrelated in their markings.

On the other hand, one can show, that a value oriented semantics — in such a simple
way, as presented here — also has its disadvantages. To overcome these problems, Valk has
introduced a “process semantics” for markings — an idea, which is not going to be discussed
here.

2.2 Reference Nets

In this paper the formalism of reference nets is used which incorporates the concept of Valk
in [Val98]. Reference nets — as implemented by the Renew tool — are a special high-level
Petri net formalism that provide dynamic creation of net instances, references to other net
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<t3> <t2> <t3> <t2>
bl b2 b3 bl b2 b3
O—{=—0O—=—0O O—Af—O—=—0O

Object—net Objekt-net

AY . #
13 12 13 12
b1 <t3> o2 <t2> w3 b1 <t3> w2 <t2> 3
O—{=—C—=—0O O—&g—E—{=—0O
Object-net Objekt-net

Fig. 4. Snapshots, value semantics

references as tokens, and communication via synchronous channels ([Kum98]). Java is used
as the inscription language.

Basic elements Reference Nets (as Petri nets) consist of three types of elements: places,
transitions, and arcs. Semantic inscriptions can be added to each net element. Places can
have a place type and arbitrary number of initialization expressions. On creation of a net
instance the initialization expression are evaluated and lead to the initial marking of the
net. Arcs can have arc inscriptions. The arc inscriptions are evaluated when a transition
fires and the results determine the consumption and creation of tokens. Transition may
carry diverse inscriptions. There are expression inscriptions which are performed when the
transitions fires. Guard inscriptions are preconditions to the transitions, i.e. the transition
is only activated if all attached guard expressions evaluate to true. Action inscriptions
start with the keyword action and are only evaluated when the transition fires. Creation
inscriptions (consisting of a variable name, a colon, the reserved word new and the name of
a class net) create new instances of nets. Synchronous channels synchronize two transitions
which atomically fire at the same time.

Synchronous Channels Synchronous channels synchronize two transitions which both
fire atomically at the same time. Both transitions must agree on the name of the channel
and on a set of parameters before they can synchronize. This concept is generalized by
allowing transitions in different net instances to synchronize.

The initiating transition must have a special inscription, a so-called downlink, which
makes a request at a designated subordinate net. The syntax for a downlink consists of
the name of the net reference, a colon (:), the name of the channel, and an optional list
of arguments. The requested transition must have an uplink as an inscription which serves
requests from every other net instance. Every time a synchronous channel is invoked, the
channel expressions on both sides are evaluated and unified.

An uplink is specified as a transition inscription :channelname(expr, expr,...). A
downlink is specified as a transition inscription netexpr:channelname (expr, expr,..).
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This syntax illustrates the semantic difference between uplinks and downlinks because
the invoked object net must be known before the actual synchronization can begin. A tran-
sition can have an arbitrary number of downlinks, but at most one uplink and a transition
with an uplink can not fire without being requested explicitly by another transition with
a matching downlink.

Net Instances and Net References When a net is constructed, it is a template with-
out any marking that is used to create an arbitrary number of net instances during the
simulation. These instances have got a marking, which can change over time.

A net instance is created by using the reserved word new, a variable and a net name in
the following syntax var:new netname. This means that a new instance of the template
netname is created and bound to the variable var.

Whenever a simulation is started, new net instances are created by transitions that
carry the above mentioned creation inscriptions. For any further access on those new net
instances now their references, which are tokens, are used.

The powerful formalism allows to model technical applications as well as business ap-
plications, especially workflow systems. In this paper the applicability to a sociological
example is challenged. To find a reasonable starting point an example from organizational
theory has been chosen.

2.3 Workflow concepts

To describe the control flow within net models capturing the organizational structure of
a company the workflow nets of van der Aalst [Aal97] can be considered as a kind of
standard. Within this contribution organizational aspects are of central interest, however,
the main emphasis is not the economical point of view, but the sociological one. Even so the
modeling requires to adequately present the control flow. Therefore, the structure of the
nets is designed to fulfill the definition of Wil van der Aalst from a structural point of view.
The extension to colored Petri nets and especially reference nets can briefly be described
as providing no dynamic violation of the workflow net criteria, even if the structural design
with respect to places, transitions, and arcs violates it. This is due to the net inscriptions.

Looking at the examples in the next chapter will reveal that the control flow could
even be designed in a very rigorous way for the Garbage Can model. Nevertheless, the
aspects of workflow are not discussed here any further. A more intensive discussion can be
found in [MVO00] and [AMVW99]. There the relations between object-orientation and nets
as tokens and workflows are discussed. Furthermore, an architecture for a workflow engine
is presented.

3 A Garbage Can Model of Organizational Choice

In sociology decisions are seen as one of the main outcome of organizations (see Luhmann
in [Luh88]). This section introduces the Garbage Can Model of Organizational Choice by
Cohen, March, and Olsen (see [CMO72]). Then a generalized version of the original work
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is presented. This will be the basis for the executable Reference net model of the following
section.

The article of Cohen, March, and Olsen is a fundamental and often cited contribution
to behaviouristic organization theory ([Imh99]). The model combines empirical character-
istics, theory, and simulation aspects. It also deals with the essential sociological task how
organizations can survive in an ambiguous and complex environment. The Garbage Can
Model represents a criticism to common rational choice theories because decision making
is seen as an ambiguous situation. It is argued that the behavior of at least parts of any
organization can be described with this model.

The Garbage Can Model considers organizations as organized anarchies where decision
situations are characterized by three general properties: problematic preferences, unclear
technology, and fluid participation. It is argued that a decision is the outcome or interpre-
tation of several relatively independent streams within an organization:

— A stream of problems: Problems are determined by inner and outer organizational
circumstances and require attention of participants. Problems are looking for situations
in which they might be raised.

— A stream of energy from participants: Participants come and go. It is assumed that
they provide energy for organizational decision making.

— A stream of solutions: Participants of the organization produce solutions. Solutions
move around, actively looking for questions to which they might provide an answer.

— A stream of choices: Choice opportunities represent the point of time when a decision
is required by the organization. Each choice opportunity can be seen as a garbage can
into which diverse problems and participants are dumped.

Organizations can be viewed as collections of choices, problems and participants. Par-
ticipants and problems migrate between the different garbage cans. If a participant meets
a choice under the right circumstances, a decision can be made. If there is at least one
problem attached to the choice, the making of a decision leads to a rational outcome (de-
cision by resolution), the problem is solved. Or the making of a decision takes too long
and no problems are solved (decision by flight). If the decision is made so quickly that no
problem has the chance to come up, it was made by oversight.

Masuch and LaPotin provide in [ML89] a metaphorical view on the basic Garbage Can
processes of decision making:
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.. reconsider the finale of the James Bond movie A view to kill’. Agent 007
balances on the main cable of the Golden Gate Bridge, a woman in distress clinging
to his arm, a blimp approaching for rescue. In terms of the Garbage Can Model, the
blimp is a solution, Agent 007 a choice opportunity, and the woman a problem. In the
picture’s happy ending, the hero is finally picked up, together with the woman, and
a solution by resolution takes place; the problem is solved. Now imagine numerous
blimps, women, and heroes, all arriving out of the blue in random sequence. Heroes
take their positions on the main cable. Women cling to heroes, blimps hover above
the scene. Heroes may or may not be able to hold an unlimited number of women,
but the blimps carrying capacity is limited; heroes with too many women cannot be
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rescued. Blimps are retrieving rescuable, i.e., not-too-heavy, heroes. Women in dis-
tress are aware of that and switch heroes opportunistically, choosing the hero closest
to retrieval. As women, as well as blimps, make their choices independently of each
other, a light hero, on the verge of rescue, may suddenly find himself overburdened.
Heavy heroes, in turn, may become rescuable all of a sudden as their women desert
them.”

This coming and going is the mechanism called fluid participation. Women may not
be saved at all if they change between heroes disadvantageously and all of their heroes
of choice turn out to be too heavy; then, these problems are not solved. Heroes may be
saved when all women just have left; this is called a decision by flight. Also, heroes can
be rescued before any distressed women was able to hold on to him; then, a decision by
oversight has occurred.

Let’s come back to the grounds of organizational theory and sum up the terminology:
the bridge is an organization, heroes are choices, women are problems, and blimps are so-
lutions. Choices attract problems and solutions. A choice is made if there is an appropriate
solution to its problems. Three styles of decision making may appear, but only one of them
solves problems.

One might wonder where the participants have gone. In this rather generalized version
by Masuch and LaPotin in [ML89] participants do not appear. They remain backstage and
have an indirect impact on the organization. They produce solutions and throw them into
the scene. Because the participants are mentioned explicitly in the original Garbage Can
Model by [CMO72], they will appear instead of solutions in the following Petri Net models
for a better understanding of the decision making process.

4 The Executable Reference Net Model

The results of the above mentioned prototyping approach are three different Petri net
versions of the Garbage Can Model.

1. The first version by Valk, regarding the metaphorical view of Masuch and LaPotin
([ML89)), is a non-executable Place/Transition net because it uses a special kind of
arc which allows to remove all tokens of place atomically without knowing the exact
number of tokens. This Petri net version is very generalized and reduced. It has been
developed to give an impression how to apply Petri nets to sociological theories. It
visualizes the essentials of the Garbage Can decision making processes and inspired the
following models.

2. The second one is an executable reference Petri net which was created by folding the
Place/Transition net of Valk in order to overcome the constrains of the first version.
Colored Petri nets as a higher Petri net level are used. Still, this is a generalized version
which illustrates more of the basic behavior of the Garbage Can model without taking
care of all the details.

3. The third version is an executable reference net model (see [HM99]) consisting of eight
large collaborating nets which captures all aspects of the original Garbage Can Model by
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[CMO72]. It deals with several modeling problems which occured during the prototyping
process. Presenting the whole model would certainly be far out of scope in this context.

Since the second version of the Garbage Can Model is presented to full extend in
this paper, there will be two nets (Organization and Choice) picked out exemplarily and
compared to the complex third version in order to discuss the prototyping approach and
the modeling experience. In the following chapter it will be described, how structures of
the nets could be reused in more complex models.

In this section the second version of the reference net model is presented. The results of
an object-oriented analysis are transformed into object nets. The structure and interaction
of these nets are described. Characteristics of the presented model are discussed.

An object-oriented analysis of the generalized Garbage Can Model — as described in
the above-cited text by Masuch and LaPotin ([ML89]), but translated into the terms of
the original model — leads to the identification of classes and associations (Fig. 5). In terms
of Valk (in [Val98]), where Petri nets are used as token objects of other nets, a net which
provides the environment and the control for the others is called system net. Tokens of
the system net are simply named object nets. In this context there are one system net
and three object nets. The methods of the objects are already listed in the class diagram,
however, they are explained later in the context of the single classes.

Organization

detach(Problem)
/ attach(Problem) \
/ allProblemssolved()
pickupProblem(Problem) \
/ 7 be_made(Int)
2 concerns \m akes \

Problem N
Participant

cling_on(Choice) < — — — -solves— — — —— —— : :
swap(Choice, Choice) makeChoice(Choice)
be_solved()

Fig. 5. Class diagram in UML notation

The Garbage Can Reference Net consists of five net classes:

1. the Organization which keeps track of the net instances involved and which controls
the interactions among those instances,



2. the Choices which are the crucial elements of the decision making process and which

represent the link between problems and participants,
3. the Storages, which are a special construct of the choices supporting the administration

of the problems
4. the Problems which attach themselves to choices and are solved eventually, and
5. the Participants which bring relief to the distressed situation and lead to decision mak-

ing.

The storage is intentionally not mentioned in the class diagram because it is just an
auxiliary net for the choice and has nothing to do with the Garbage Can model.

There will be one instance of the net class Organization which is the system net (Fig. 6).
The organization is responsible for instantiating and controlling all other objects involved.

decision made

choice

choice:allProblemssolved() decision made and problems solved

make decision

participant finds
choice

hoice fetch roblem . . .
SEER ICTEES (relE: participant:makeChoice(choice)

choice:pickupProblem(problem) L

problem choice
problems attached switch old_choice
to choices D, problem new_choice choices participants
problem:swap(old_choice,new_choice) available
problem
cling on [T problem:cling_on(choice) choice participant
problem
free problems <>
problem
new PR problem: new problem choice: new choice new CH new PA
problem: new() choice: new() participant: new participant

participant: new()

Fig. 6. System net Organization

Choices, problems, and participants are instantiated by calling their “new”-methods.
Each transition of the system net calls methods of referenced object nets.

For example, when the transition “cling on” of the system net fires, one instance of
problem (precisely, one reference to an instance of a class is meant) and one instance of
choice are selected, and the problem’s method “cling_on(choice)” is called.

The problem is put into the place “problems attached to choices” and the choice is
returned to its previous place. Once again in different wording: transition “cling on” of the
system net Organization is synchronized with transition “cling on(choice)” of one instance
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of object net Problem. At the same time a synchronous channel called “cling_on” is agreed
on by Organization and Problem. A reference to a choice is passed through this channel.

The transition “switch” tells the problem to leave its old choice and cling to a new
one. One problem and two choices are referenced. The latter are passed to the problem
net via the synchronous channel “swap”. The large gray-shaded box in Fig. 6 can be seen
as one large transition which represents the making of a decision. Due to characteristics
of the Petri net formalism it has to be split into three single transitions (“participant
finds choice”, “choice fetches problem”, and “decision made and problems solved”). When
a participant has been generated and a choice is “available”, the transition “participant
finds choice” is enabled. After firing the choice moves on in order to solve all the problems
attached to it. Eventually, the attached problems are being fetched, i.e. solved. After all
problems of the choice have been removed, the decision making process can be completed
(decision made and all problems solved).

:attach(problem) solved
y  storage:put(problem)

storage

ready for problems
to attach

storage f\ storage — storage M\ storage
(. Q 1
new() :be_made(participant,n) :allProblemssolved()
storage: new storage storage:getNumberofEntries(n) storage:allProblemssolved()
storage storage
:pickupProblem(probem)
Y _ :detach(problem) storage:solve(problem)
|__—, storage:get(problem) problem:be_solved()

Fig. 7. Object net Choice

Each new instance of the net Choice (Fig. 7) also produces a new instance of the
net Storage (Fig. 8) and the reference to this instance is returned and bounded to the
variable storage. It is put in the place “ready for problems to attach” at first. Problems
may cling to an instance of choice or switch between those. The choice is informed about
these changes by the methods “attach” and “detach” and delivers this information to its
storage via synchronous channels (put and get), where the amount of attached problems is
saved. As soon as a decision has been made with the help of a participant (it has received
the “be_made(n)” message where “n” represents the number of problems attached to the
choice which is passed to the participant through the synchronous channel :be made) it
can neither be left by any of its problems nor can it be clung to by new problems. It
is now in the state “decision made” and its “attach” and “detach”-methods cannot be
called anymore. The choice’s “pickupProblem(problem)”-method is called and returns the
attached problems one by one. After all problems have been reported and “solved” by
the storage, the transition “allProblemspickedup()” is enabled. It fires when the decision
making process is complete.
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[[] :getNumberofEntries(n)

number_total

number of entries
:allProblemssolved

guard(number_solved

==number_total)
n+l

n number_solved

e

ntries
problem o) problem number of

solved entries

:put(problem)

:solve(problem)

problem
entries solved

Fig. 8. Object net Storage

The object net Storage is a special construct to support the Choice with its admin-
istration of the attached problems. Basically it serves as a memory for each choice and
stores the actual references of the attached problems (“entries”) and the number of those
references (“number of entries”). Furthermore the storage can move problems to the state
entries solved and keeps track of this with a counter of saved problems. By calling the
“getNumberofEntries(n)”-Method this number “n” of problems is returned. The Methods
put(problem) and get(problem) add and remove entries and change the number of entries
simultaneously. The “solve”-Method removes solved problems from the place “entries” and
puts them into the place “entries solved” so that is not possible for solved problems to
switch any more. The transition “allProblemssolved()” is enabled, when there are as many
problems solved as there are stored.

|:| :swap(old_choice,new_choice)

|:| “new() old_choice:detach(this)
new_choice:attach(this)
old_choice new_choice
new_choice choice
free  :cling_on(new_choice) clinging to:be_solved()  solved
new_choice:attach(this) choice

Fig. 9. Object net Problem
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After the Problem net (Fig. 9)has been instantiated it will be “free” and looking for a
choice at first. Then it can cling to a choice, swap between choices several times and will
finally be solved.

:new()
] participant’s energy

energy

choice
=O choice made

:makeChoice(choice)
guard(n<=energy)
choice:be_made(this,n)

Fig. 10. Object net Participant

An instance of the Participant net (Fig. 10) approaches the scene and will eventually
be relevant to one of the choices. If the choice’s number of problems does not exceed the
participant’s energy, the choice can be made.

The Petri net model puts this version of the Garbage Can Model into a computer
executable form. Each object of the sociological theory, except for the storage, can be
found and analyzed separately. Also sociologists were satisfied with the visualization and
readability of the results.

The basic phenomena of the original Garbage Can Model appear in this simulation.
Especially the three decision styles can be observed. They can easily be visualized by firing
sequences of the net during the simulation. Intentionally additional features do not appear
in this version which should be seen as an illustrative introduction to the basic behavior
of the Garbage Can Model.

5 Extensions of the reference net model

In this section the further development of the Garbage Can reference net model (see sec-
tion 4) will be discussed and illustrated by comparing two nets from the generalized model
with the corresponding two nets of the extended model (namely choice and choice (large),
organization and organization (large)). Similarities and differences between the net struc-
tures will be examined.

The above mentioned reference net model has been extended in [HM99]. The result is
a complex reference net model which captures the whole functionality of the Garbage Can
Model of Organizational Choice [CMO72], which is far more complex than the metaphorical
approach of Masuch and LaPotin ([ML89)).

The focus during the modeling process was to find basic and reusable structures. This
approach was chosen in order to be able to add all the features of the original model
without having to change the nets that has been developed so far.
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The most important features, which refer to the problems and participants, are the
strategy of finding the most attractive choice before clinging on it and the organizational
structures which constrain the access to choices (see [CMOT72]).

As mentioned in section 3 there is a stream of energy from the participants that is
necessary to solve organizational problems. This energy is called “energy available”. It
characterizes the participants ability of solving problems. The more “energy available” a
participant provides, the more skilled he is.

There is an opposite tendency in an organization, which behaves complementary to-
wards the energy available. This is expressed in the “energy required”, which characterizes
the difficulty of the problems. The more “energy required” a problem has, the harder it is
to solve it.

Choices attract participants and problems. So a choice receives both types of energy,
the “energy available” and the “energy required”. A decision can be made if there is as
much “energy available” as “energy required”. A decision can be made if there is at least
as much “energy available” as “energy required”. Finding the most attractive choice is
done by calculating the difference between those energies: Only if the difference is zero or
positive, a decision is made.

One can recognize this behavior in the net structure of Fig. 12 looking at the places
which store the energies and the transitions which update and compare them. In [HM99] the
afore mentioned organizational structures are also considered. These extensions, strategy
and organizational structures, have been modeled by using additional reference nets (i.e. a
net called oracle which has information about all object nets involved and which answers
questions, or a net called multiset, which administers IDs, energies and checks the access
to choices). Since not all details can be presented here, the focus is on the choice and the
organization reference nets.

Moving from Fig. 6 to Fig. 11 there is not very much added to the net Organization
(large). One can easily recognize the same structure of the net by looking at it. What has
been changed is the number of participating objects which is limited following [CMO72],
which means that there are ten participants (new PA), ten choices (new CH) and twenty
problems (new PR).

Now every instantiation of new objects is reported to the above mentioned object net
oracle. Before clinging to a choice or before swapping to another choice problems have
to ask the object net oracle for the most attractive choice. Before spending their energy
available, participants follow the same strategy as the problems and also ask the oracle for
the most attractive choice. There are several more details in this model which can not be
explained in the scope of this paper. Participants can spend their energy several times on
different choices before they leave the organization by calling the “leave()”-method. The
solution process of Fig. 11 is very similar to Fig. 6 if one compares the gray-shaded boxes
(“make decision”) and the inscriptions of the transitions involved. When all problems are
solved there is a statistic module which analyses the style of decision making.

Comparing Fig. 7 and Fig. 12 again one can point out the same basic structure of the
nets. The behavior is basically similar apart from additional places for the energies, the
counters and some transition inscriptions.
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Fig.11. Object net Organization

oracle: new()
oracle:new oracle

50

participant:leave()

participant

participants

participant



choice

storage: new storage oracle:updateChoice(this,cID,energy_reg-newEA)

oracle:checkin(this,cID) this:getCid(cID)
:new(oracle,cID) this:get(oracle)
ora | :acceptEnergy(n)
- .@ oracle 0
D :get(oracle) energy_req energy_avail
. this:buffer() energy
this:get(oracle) required
this:getCid(cID) _
storage:put(problem) newER=energy_req*tm
problem:getEnergyReq(m)
oracle:updateChoice(this,cID,newER-energy_avail) .
‘attach(problem newEA=energy_avail+n
cID (P ) €nergy_req
energy_avail
[id |
:getCid(cID) energy
available
energy_req energy_avalil
pmewER=energy_req-m
storage

detach

this:buffer2() energy_req
this:getCid(cID)

this:get(oracle)

problem:getEnergyReq(m)
oracle:upda(tecgloice)(this,clD,newER-energy_avaiI)
storage:get(problem

storage :detach(problem)

energy_avail

C'/ solve
ready for storage guard(energy_avail>=energy_req)
problems this:getCid(cID)
this:get(oracle
to attach oracle:checkout(this,clD
:solve()
[storage,energy_avail-energy_req]
[storage,wasted]
:buffer2()
|:| storage:solve(problem) waiting for problems
:solveProblem(problem) in solution process [storage.wasted]
y+1 y
:allProblemssolved()
#detached storage:allProblemssolved()
y [storage,wasted]
:check_buffer(x) :check_buffer2(y)
solved

Fig. 12. Object net Choice
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The choice produces a reference to its storage while being instantiated and remains
ready for problems to attach until problems start attaching and detaching. The choice has
two places for energies (“energy required” and “energy available”). It can accept energy
with the :acceptEnergy(n)-Method. It has an ID in order to be identified and a reference
to the oracle. The number of attachments and detachments is stored in the two counters
#detached and #attached which is relevant for the statistics at the end of the simulation.
Finally, if choices have more energy available than energy required a decision can be made
and the storage is emptied gradually (waiting for problems in solution process) until all
problems are solved. The detailed interaction with the other nets involved unfortunately
can not be explained here.

6 Conclusion and Outlook

Starting from the problem of formalizing sociological theories a concrete one has been
chosen and successfully modeled. By applying Petri nets an operational semantics could
be given to the Garbage Can Model of Organizational Choice.

Petri nets and in our case Reference nets have been successfully applied and showed
the advantages of its underlying concepts. These are:

— The generally well known advantages of Petri nets, especially the explicit expression of
concurrency, conflicts, and confusion.

— The object-orientation to identify objects in the sociological application area, even if
advanced concepts like inheritance or polymorphism have not been used.

— The concept of nets as active tokens to separate environment, active elements, and their
interaction.

— The synchronous channels and the net instances of the net templates allowed a clear
separation of the model and a clear dynamic behavior.

It should be noted that the success of the project so far crucially depended on the
tool Renew, without which the modeling and execution of the model would not have been
possible in such a compact way. By treating actors and active parts of the sociological
theory as objects for sociologists an intuitive model could be developed.

As a result of the modeling process and the discussion about it new questions concerning
the sociological theory could be found for and by the sociologists in our group. These are:

— Many aspects of the sociological model remain implicit and are not well structured.

— Global Knowledge is assumed.

Structural dependencies of the relations between the actors of the model exist.

Linkage to other theories, which are faded out by the original Garbage Can model, are

unreflected.

Confusion can be seen as a basic phenomena.

— Concurrency and causal dependencies need to be handled.

Different context levels in the sense of environment and the restrictions of communica-

tion exist.

— The main principle of the Garbage Can model as a chaotic system is questioned, since
local rationality is observable.
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— It is necessary to formalize action oriented aspects more detailed than in the original
model.

Overall it was interesting to see that the incremental prototyping approach was very
successful and that the extension was relatively easy due to the overall object-orientation
and the internal organization of the objects in a special kind of scenario nets or workflow
nets as described in [Mol96] and [MV00].

The gained improvements and especially the results were inspiring the sociologists in our
group to reformulate some parts of the theory. This shows the weaknesses of the traditional
view and also allows to extend the Garbage Can theory by some other theories, especially
those related to behavioral theories. The structures and processes induced by the additional
aspects will lead to better models of organizational choices and will allow our group to apply
this new theory to organizational units within public institutions. Especially, we plan to
look at decision procedures within universities.

The means to express these new theories shall be done on the basis of the “nets as
active tokens” concept. This should allow for a separate adaptation of the environment
and its objects acting within it, capturing the aspects of local changes and of mobility.
Furthermore the concepts of agents with some sociological properties can be developed
according to [MW97].

With the here presented model a new application area has been tackled the first time.
The high-level Petri net formalism could be applied by the computer scientists to a “prac-
tical” problem of sociology. Within our project we will extend this even further to other
theories. Doing so the results shall be used to enhance agent architectures and shall lead
to generalized sociological theories.
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Abstract. Since several years, we are in charge of a course on specifi-
cation and validation of concurrent and reactive systems. At the end of
this course, the students must carry out a project on a model railway.
They have to specify the railway, to validate their model and finally to
translate it into a program running the model railway with up to five
trains.

In this paper, after presenting the problem, we describe how it is speci-
fied and checked, step by step, by the students. We also explain how the
analysis results lead to a policy for the switches management. Finally,
we give some hints about the implementation.

1 Presentation of the Problem

In this paper, we report about a teaching experience for a group of twenty grad-
uate students, during their second year in engineer school. Their background
consist of two years studies in mathematics and physics, followed by one year in
computer science. During the previous year they learned the basics of computer
programming, operating systems (in particular Unix processes) and concurrent
programming concepts. Our course is optional and is composed of several topics:
communicating automata, coloured Petri nets, temporal logics, tools for spec-
ification and verification (DESIGN/CPN, SPIN, ESTEREL), real-time systems.
After 80 hours of lectures and exercise courses, the students have to carry out a
project by themselves. They spend roughly 70 hours of personal work, to com-
plete the project from specification to hardware implementation. The students
choose among the three previous tools. Here, we will focus on the use of DE-
sIGN/CPN only.

1.1 Goals of the Project

Teaching programming of concurrent systems is not so obvious, as the students
are used to programming in a sequential style. In order to alleviate this difficulty,
we decided to have them manage a system with intrinsic parallelism. A model
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railway, allowing several trains, is altogether well-known, convenient, inexpensive
and appealing to students. Moreover, such a system can be used to tackle real-
time concepts and tools. Therefore, we decided to create a course including
all aspects of parallel programming, from the specification phase to the real-
time programming and implementation on the physical model. Nevertheless,
this course is still being further developped, we have not yet addressed time
aspects. This can be done in the future using interval timed coloured Petri nets
as in [dAO94].

1.2 What is Asked from the Students

The students’ project was not only designed as an approach to parallel program-
ming, but also to emphasize the benefits of specification and validation prior to
programming. In particular, the students were asked to produce a graphical
model, having the same aspect as the physical railway. It should be pointed out
that this is not demanded for esthetic reasons but it helps a lot to understand
whether a configuration of the railway is normal or not. This facilitates a bor-
ing and error-prone effort to synthesize a long firing sequence. It represents an
important benefit for debugging.

So far, the hierarchical coloured Petri nets ([Jen92]) have been chosen as a
model, due to their support of hierarchies, simulation, occurrence graph require-
ments. Hierarchies allow a structured design, where the top-level net sticks to
the hardware layout. The use of high-level nets allows both to capture several
cases in a single transition and group the parameters of trains and tracks sec-
tions into one place. The use of an ordinary net leads to unreadable intricate
graphics. The tool used to support this model is DEsiGN/CPN ([CPN96]).

Two views were considered in order to exploit the physical railway.

The first view, which will be named “real railway view”, is meant to operate
as a real railways, with the same rules. Effectively, the students are asked to
design a system where each train is assigned a route. They must prove that
some security requirements are satisfied (no collision, no more than one train
per section) as well as efficiency (no deadlock). Once the model has been proved
correct, the students must figure out how to translate the net into a set of pro-
cesses, synchronized using semaphores, which can be run on the model railway.
The transformation must be systematic, its soundness and the preservation of
properties proved must be justified.

The second view is not intended to mimic a real railway system. Rather, it is
related to an adaptative routing system, and henceforth will be named hereafter
the “adaptative routing system view”. The behavior of trains must be adapted
to local conditions. Namely, at each switch, their route can be chosen among
several tracks and a train may even go back when impossible to continue for-
ward. Although surprising at first glance, such behavior of trains offers several
complex routing possibilities and thus appears as a challenge. The students must
design a routing policy so that the same security and efficiency requirements as
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before are fulfilled. Then they have to deduce from the net the program of a
controller, and implement it on the railway system.

2 The Model Railway

The model railway is depicted in figure 1. It consists of about 15 meters of
tracks, divided in 16 sections (blocks Bl to B16) plus 2 sidetracks (ST1 and
ST2), linked using 4 double or triple switches and one crossing. The way the
trains can circulate on the switches and the crossing is indicated by the arrows
in figure 1. The traffic on all tracks can go both ways. Although one can notice
that switch 1 (and also switch 2) is composed of two elementary ones, it is
managed as a single unit, due to the short distance between the two physical
components. The railway is connected to a computer via a serial port which
allows to read information from sensors and send orders to trains through the
tracks or directly to switches. A section is equipped with one sensor at each end,
thus allowing to detect the entrance or exit of a train. The orders sent to trains
can be either stop or go forward/backwards at a given speed.

3 Specification Using Coloured Petri Nets

In this section, we describe the different steps encountered by a typical student®
following the second view, i.e. the adaptative routing system described at the
end of section 1). We will give hints about the differences with the real railway
view in section 3.6.

The student is asked to proceed step by step in the construction of the
coloured net representing the model railway. At first, the model only describes
the main loop, i.e. the railway without the 2 sidetracks and the crossing. The
analysis of this net is performed for three, four and five trains. At first there is
an obvious deadlock which is corrected. Then another one arises when adding
an extra train. This is repeated until we obtain a model which is satisfactory
for five trains. All the corrections made correspond to a policy for managing the
four switches and moving between contiguous sections. Then the two sidetracks
are added and the analysis is done directly for five trains. Finally, the crossing
is added. Due to the large amount of memory (and time spent) to generate the
occurrence graph and check properties, the verification is first performed for four
and then for five trains.

3.1 Design of a Hierarchical Coloured Petri Net

One of the requirements of such a project is to obtain a model which can easily be
understood. This allows, as we will see later on, to facilitate the understanding of
errors encountered when analyzing the model with the occurrence graph. Their
correction also becomes much more natural.

! in fact, each project is conducted by a pair of students.
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Fig. 1. The tracks of the model railway.
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To do so, the use of page hierarchies was required: the prime page represents
the whole railway, without any consideration of the policy used to move from one
section to the next. This policy is described in subpages, corresponding to the
different switches and moves between contiguous sections. A single look at this
prime page shows the current state, i.e. where the different trains are located.
The similarity between the physical railway model (figure 1) and the prime page
(figure 2 for a partial representation and figure 7 for the full one) is easily noticed.
The places represent the sections (they have the same names in both figures),
while the transitions indicate the possible moves.

3.2 Model of the Main Loop

The students were asked to design their model step by step. Therefore, they
started with just the main loop, i.e. the railway without the two sidetracks nor
the crossing in the middle.

The prime page of the first net is shown in figure 2. Each place represents
the railway section with the same name. It always contains one token, with a
value characterizing the state of the section, i.e. either a train is in the section,
or the fact that there is none. This is expressed with the union type:

color section = union t:train + none;

To stick to the real system as much as possible, the student generally chooses to
describe trains with both a name and the way they are running, namely clockwise
(c1) or anti-clockwise (acl).

All the transitions are substitution transitions, i.e. they must be substituted
by a net with the same input and output places. This can be seen for e.g. transi-
tion t1 of figure 2, which has a box next to it with the name of the subpage to be
substituted to the transition (changesect) and the correspondence between the
names of input and output places of both nets (place B3 of figure 2 corresponds
to place P2 of figure 3). The transitions are of two kinds:

— those allowing to move between two contiguous sections with no choice;
a reasonable hypothesis is that all transitions of this kind have the same
behavior. Therefore, all these substitution transitions will refer to the same
subpage. Initially, we will assume that a train can move to the next section
if this section is empty, as depicted in figure 3.

— the switches which can permit either to move from a unique section to two
different ones or vice-versa. This is described in figure 4, where the net
corresponds to one possible direction of trains (switch 1). Another page
describes the other way round. These nets could have been merged into a
single one, with a place containing the direction used by the switch. That
choice would have lead to a less intuitive interpretation of the prime page,
and to a unique page used by all the switches. Moreover, when enhancing the
model to add the other parts of the railway, the switches become different.
Similarly, some students have used two instances of the net in figure 3 to
model the simple switch, but then, when changing the policy for moving
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[Plvo] p1
section /‘\

t (tr,acl) \

t (tr,acl)

section

po [PI0]

Fig. 3. Moving between two contiguous sections.

from one section to the next, the management of switches was also modified.
This is often undesirable.

[p][uo]

section
B3

none

Y

Bl section

none

section
B4

none

Fig. 4. A simple switch.

Once the net is designed, the students starts examining its behavior. It is
obvious that the initial marking (with 3 trains) given in figure 2 is a deadlock.
Thus, the student must design a less simple policy for switches, depicted in
figure 5.

The switches are (for the moment) composed of two tracks arriving from the
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same direction (such as B3 and B4) and one from the other side (as B1). When
3 trains arrive altogether on the switch in a deadlock situation, the new policy
consists in having the train on the single track side (e.g. the train on B1) go
backwards. Such a possibility takes sense only in the adaptative routing system,
but not in a real railway system. This is modeled by transition retB1 in figure 5.

none

[p][uo]

section
B3

none

[p[wo]

Bl section

t (tr2,acl)

—
—

section
B4

none

Fig. 5. New policy for switches.

It is easily noticed that the initial marking with three trains will enable only
the new transition, and thus only the train going anti-clockwise will change
direction. Thereafter, all the trains will go in the same direction, i.e. clockwise.
To have interesting results, the student adds an extra train, and analyses his
new net.

3.3 Verification with Four Trains

Now, the new policy for switches is used and a fourth train is added, by chang-
ing the initial marking of place B3 into t (4,acl), and the value n=4 in the
declaration node.

The analysis of the model is performed by means of DESIGN/CPN occur-
rence graph tool ([Jen94], [CPNY96]). Once the graph is generated, a standard
report and some additional properties are checked. This allows to discover nodes
satisfying undesired properties, as explained later. To facilitate the understand-
ing of the trains situation, the feature provided by DEsIGN/CPN which allows
to transform a state of the occurrence graph into the corresponding marking
in the simulator is used. Thus, the prime page is updated with the unwanted
marking, and the user can see in a glimpse the locations of trains.
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Analysis Results After a single occurrence graph generation, faced with the
huge number of states, the student often guesses that the trains names highly
contribute to the state space explosion, although they are useless, from a verifi-
cation point of view. Effectively, in the problem considered, it is not necessary
to know where a particular train is, but only that there is a train in a particular
section, and also where it is heading. This could be formalized using symmetries,
but we lack time to teach the theoretical and syntactical aspects. Moreover, the
marking equivalence derived from this symmetry is totally obvious.

Occurrence Graph with Trains Names The occurrence graph obtained with four
named trains contains 21.574 nodes and 72.026 arcs. It is computed in 334 sec-
onds?. The strongly connected components (SCC) graph has 1.243 SCCs and
6.666 arcs. It is calculated in 18 seconds.

Occurrence Graph without Names When removing the trains names, i.e. only the
direction the train goes is kept in the token value, the occurrence graph obtained,
still with four trains, has 2.166 nodes and 7.157 arcs. It takes 5 seconds to obtain
it. The SCC graph has 237 nodes and 1.245 arcs. It is computed in 1 second.
The following step in the project is the verification of the net. The student
must formalize what does a correct behavior of the system mean, and indicate the
properties that should be satisfied. Having some experience, through exercises,
of the properties provided by the standard report of DEsIGN/CPN, the student
tries to figure out how they can be used in order to prove the correctness of his
model. This function allows to obtain in a file a textual result for the usual net
properties (e.g. bounds, dead markings, liveness, ... ). It turns out that most
properties are safety properties and can be checked using only the standard
features.
The results and their interpretation are the following :

— all the lower and upper best integer bounds are 1. Thus there is always
exactly one token in each place;

— all the best upper multi-set bounds are 1¢t(cl)++ 1¢t(acl)++ 1‘none.
This property, together with the previous one, shows that each section can
contain either exactly one train going one way or the other, or none;

— there are 6 dead markings. At first, the student is surprised. The evaluation
of function ListDeadMarkings(); provides him with the list of all dead
markings. Then, he visualizes each of these markings on the prime page,
using the feature of DESIGN/CPN which puts a given marking of the oc-
currence graph into the simulator. Three of the dead markings have a train
going clockwise in B15 and a train going anti-clockwise in B16. The three
other ones are similar, with sections B2 and B1.

The student comes to the conclusion that the policy to move between two
contiguous sections with no choice has to be improved.

2 all the results in this paper were obtained on the same machine: a Linux PC Pentium

II 450 MHz with 256 Mb of memory. The computation times are those given by
DEsIGN/CPN.
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Policy Adopted In order to avoid the previous situation, the student decides
to have both trains go backwards, as modeled by transition retboth in figure 6,
giving the following arguments:

— if both trains return where they come from, they will not travel in the same
direction, thus such a policy should limit or delay the possibilities for all
trains to go in the same direction;

— both trains are treated in the same manner, there is no priority.

The new model is then analyzed for four and five trains. The results with
five trains will now be discussed.

[Plvo] p1

section //‘\\
/,7 none

retboth 1

section

po [PI0]

Fig. 6. New policy to move between two contiguous sections.

3.4 Verification with Five Trains
A fifth train going anti-clockwise is added in place B2.

Analysis Results The occurrence graph obtained for five trains has 24.556
nodes and 97.020 arcs. It is computed in 430 seconds. Its SCC graph has 615
nodes, 3.128 arcs and was calculated in 18 seconds. The properties obtained from
the standard report, show that the bounds are the same as previously, there is
no dead marking nor home marking.

This last property is quite intriguing for the student. He decides to have a closer
look to the terminal SCCs. Therefore, he used the following functions (where
the result is given after the arrow):

PredAllSccs SccTerminal; -> [¥615,7534]
length(SccToNodes("615)) ; -> 792
length(SccToNodes("534)) ; -> 792
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The first function gives the list of all terminal SCCs. They are two, numbered
“615, and “534. Then, the number of nodes in each of these terminal SCCs is 792.
After looking at a marking of each component, the student concludes that this
is a normal situation: in SCC 7615, all trains go clockwise while in SCC 7534,
all trains go anti-clockwise. The two SCCs remain separated as, considering the
routing rules adopted, a train cannot go backwards if it does not meet a train
gong in the opposite direction. So, such situations are acceptable w.r.t. the initial
requirements.

3.5 The Complete Railway

When the main loop works correctly, the student enhances his model by adding
the two sidetracks and the crossing.

Final Model The prime page of the model of the complete railway (see figure 7)
has 6 additional places corresponding to the 2 sidetracks and the 4 inner sections,
and one extra substitution transition which models the crossing.

A subpage, presented in figure 8, is added to represent the inner crossing in
the railway. It takes into account all the possible moves on the inner crossing,
as described in section 2. Moreover, the case where four trains want to enter the
crossing — and will then be blocked — is treated by forcing the train on B5 to go
backwards.

The four switches subpages are modified to take into account the new possible
movements, but their general policy remains the same, just taking into account
more possibilities for a train to enter and exit a switch. The nets in figures 9,
10, and 11 give an idea of the complexity of the complete model.

The fourth switch can easily be deduced from the third one, by changing the
place names and direction of trains.

Analysis Results As a lot of time is needed to build the occurrence graph of
the full model, it was first done with four trains and then with five.

The occurrence graph with four trains contains 48.957 nodes, 228.790 arcs and
was calculated in 2.991 seconds (50 minutes). Its SCC graph has 1 node, no arc
and is obtained in a bit less than 2 minutes.

The standard report gives us the same integer and multi-set bounds as before.
All the reachable states are home markings. This is interesting, because it shows
that any reachable train distribution can always be reached again. There is no
deadlock. But transition retB2 of subpage switch2 is dead. This means that
with these four trains, the situation were a train going anti-clockwise on section
B2 is blocked can never occur. When looking at the design of the railway, the
student notices that this is normal as there are 4 possibilities for this train to go
forward, and only three can be occupied by the other trains. The question now
is: what happens with a fifth train?

65



2d<-G19
9#109sabueyo

uonoas
1 zd<gtd)

! Td<-849
9#109sabueyo

uonoas uonoss

0T}

, 2d<vig,
Td<-/9!

© gHEYOIM

- ey

uonoas uonoas

uonoss uonoss
B L
, Td<-919, , 2d<-zd,
, Td<-19,
91 ] ——Tn | 9#109sabueyo

ol ST
uonoss

uonoas uonoss

T Td<-0Td!
¢d<-vg!
9#109sabueyo

uonoas uonoss

: Td<-69'
, zd<-€a’
' gesabueyd 01
e s s s ' ToRNIBpIS
—
joe

TSUOU + UTell:] Uoun = uoRoss
“loe | oo yim TS

U0 1108S 10 |00
= urell Jo|od

Fig. 7. The prime page of the model railway hierarchical coloured Petri net.

66



[P]0] &s none none E B11
sectiol

section n

B6 none none B12

G o

Fig. 8. The subpage modeling the inner railway crossing.
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section
B4

\_ tacl

B5

section

[p)[wo]

Fig. 9. The first switch (transition t21 of figure 7).
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none

none

section

B8 none
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gp section
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section
B7
N\ tol tel Y,
\_ " J
e
none G2B2 none

Fig. 10. The second switch (transition t20 of figure 7).
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section

none
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Fig. 11. The third switch (transition t19 of figure 7).

The Occurrence Graph with Five Trains has 274.082 nodes, 1.500.384 arcs and
was computed in 103.221 seconds (1 day, 4 hours and 40 minutes)*, approxi-
mately the same time was necessary for the SCC graph which finally contains 1
node and no arc. This informs the student that, as for four trains, all the reach-
able states are home markings. There is still no deadlock and all the transitions
are live. Thus the model meets the initial requirements : allow up to 5 trains,
avoid collisions and deadlocks.

3.6 Modeling the “Real Railway System”

When the first view (i.e. mimicking a real railway system) is considered, a route
must be assigned to each train. This has three consequences: First, when a train
enters a switch, it must exit it as specified in its own route, and not by a ran-
domly chosen exit. As a second consequence, trains must keep their identity and
cannot become anonymous. Finally, a train may have to book several sections
in advance in order to avoid deadlocks: e.g. if a train in B7 wants to enter B2,
it should also make the reservation for B1, otherwise it can be blocked by a
train coming the other way round. As concerns modeling, a transition must not
only be connected by the arcs to places representing the next and/or previous
resource, but also to the places representing the resources necessary one or more
steps later. Hence, the net is graphically less close to the physical railway, and
also it is more difficult to create a hierarchical net as there are special transitions

3 with intensive use of the 1Gb swap space
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associated with each train.

The number of states in the occurrence graph strongly depends on the length
and the complexity of the routes designed by the students. Another big differ-
ence with the second approach is that verification mainly consists in deadlock
detection between trains. It is obvious that complex routes and the simultaneous
reservation of four sections can lead to deadlocks very difficult to foretell. To con-
clude, the complexity of the model and the possibility to fully check it depends
a lot on the options chosen by the student. This is the reason for explaining the
other view.

4 From the Specification to the Implementation

When the model of the net has been analyzed, and its desired properties proved,
the student has to translate it into a C program, having a behavior as close as
possible to the net’s one. To do so, he has roughly two solutions: the first one
consists in writing a controller (a Petri net simulator), the second is to split the
net into a set of synchronized processes. The student naturally tends towards the
first solution, which is closer to sequential programming and automata theory,
but, after a deeper insight, some of the students accept to try the second solution.
We shall now describe both in more detail.

In the simulator approach, the color sets and associated operators are trans-
lated into C data structures and functions. Then, each transition is splited into a
boolean precondition function and a post function. The former allows to check if
the transition is firable, while the latter is called when firing to change the mark-
ing and transmit orders to the hardware. The core of the simulator is an endless
loop which, at each step, scans the transitions list to see which ones are firable,
then fires some of them. It should be noticed that, contrary to what happens
in a general simulator, the binding of variables of transitions is quite easy since
each place contains exactly one token. Nevertheless, when several transitions are
enabled, a fair choice must be provided, using for instance a random number
generator. A companion process is in charge of reading the information from the
hardware, and update accordingly the state variables.

In the second solution, which is more natural when using the “real railway
view” because the trains are seen as independent entities which travel along a
route, the set of transitions of the net must be partitioned in order to build up
processes which have to synchronize using semaphores. The most intuitive and
logical way to do so is to associate each train with a proper process. With this
approach, each part of the railway must be considered as a critical resource.
The student can directly apply the classical Dijkstra method([Dij65]) to access
resources. Each resource is described by a set of state variables. Processes must
request resources using a general mutual exclusion semaphore. If a process is
blocked, it leaves the critical section and hangs up on a private semaphore until
it is awaken by another process. With this approach, no fairness problem appears
at first, provided that semaphores have FIFO queues. However such a problem
arises when a train arrives at a fork with several possible exits, and several

70



are compatible with the route. The student must add a mechanism to choose
randomly which transition to try. As in the previous approach a companion
process handles the hardware inputs.

The program obtained is then downloaded on the PC which monitors the
train model and the student may conduct some experiments. The program is
often rapidly effective, after some tuning (speed of trains), addition of hardware
commands (switches, crossing), and detail improvements (traffic lights). The stu-
dent can see that no real problem arises, except from bad hardware management
(if a sensor does not “see” a train, this one becomes a “crazy train” which must
be physically removed as soon as possible). However, most of times a long run
results in a periodic behavior, even if the theoretical analysis predicted a less
rigid scheme. This is due to the fact that even with a fair program, first come
trains are also first served ones at critical points, and the delay to run through a
block depends mainly on its length. So, the model train can adopt only a subset
of behaviors of its theoretical model. The exact analysis would require to take
into account time aspects, but it was not tried yet.

5 Conclusion

In this paper, we have reported a teaching experience using a train model and
high-level nets. A similar experience for modeling a train system is described in
[HURKY9S], but the students could not achieve verification.
In spite of its childish aspect, the train model forces students to touch, master
and manage all the notions rendering parallel programs error prone: critical sec-
tion, deadlock, fairness, time and combinatorial explosion. Moreover, it is a very
strong evidence that such programs cannot be developed from scratch (bottom-
up style) as students tend to do, but must be rigorously modeled and analyzed
before implementation. An additional benefit from this project consists in tack-
ling a process control problem.
From students’ opinion, it appears that handling a real system helps and moti-
vates both to model the system and to formalize the properties that it should
satisfy. However, they are disappointed by the state space explosion problem
which arises quite early in the verification. Thus only restricted or more ab-
stracted problems can be validated.

A further step would be to manage time aspects. An automatic code gen-
eration feature would have helped a lot for the last step of the project, i.e. the
implementation part.
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Abstract

A Distributed Dynamic Channel Allocation algorithm has been proposed in [PSS95].
In this paper the algorithm is modelled using Predicate/Transition nets. The same
model can be used for any number of cell and channel configurations. The Maria
reachability analyser has been used to analyse the protocol for some configurations
and these have been deadlock-free and are shown to satisfy the requirement that the
same channel never is allocated to two neighbouring cells. The suitability of high
level nets for the modelling and analysis of distributed algorithms is discussed.

1 Introduction

The development of mobile computing over the last decade has raised many requirements
on wireless communication networks. The radio spectrum is limited so frequencies and
channels must be reused to accommodate for the ever growing user population and their
increasing demands on service. In the scope of mobile computing hand-held terminals,
laptops, and mobile phones connect to a telecommunications network (and possibly to the
Internet) via a radio frequency interface.

Mobile computing faces challenges in the form of coping with low bandwidth, high
bandwidth variability, heterogeneous networks and security risks [FZ94]. The future net-
works must provide the user with fast access, information on-demand and foolproof security
and do all this cost effectively. Excellent channel management and reuse are a prerequisite
for the success of mobile computing.
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The development in this area is fast and new systems appear all the time. For some
time it will be the case that new and better systems must be created to cope with the
tremendous increase. This requires tools which rapidly can verify the correctness of new
protocols and algorithms. Traditional testing is too slow and costly and does not guarantee
the correctness in all cases.

The Maria reachability analyser [Mar] is designed to verify industrial size systems in
an easy way. This work is also a test of the applicability of the design concepts, mainly the
adequacy of the input language of the analyser. A first version of the model was presented
earlier [OHB99], but it was not complete (lacking timestamps and threshold) and was not
analysed in Maria (which was not implemented at that time). The concrete analysis also
brought some changes to the model.

In this paper, however, we present the DDCA (Distributed Dynamic Channel Alloca-
tion) algorithm [PSS95] using high level Petri Nets, specifically Pr/T (Predicate/Transition)
nets [Gen87|. Inhibitor arcs are used as a shorthand notation in the model which is general,
non tool-specific, allowing for analysis using any high level Petri net tool. The net model
used in the analysis, however, contains no inhibitor arcs.

Section 2 presents the DDCA algorithm in general and Section 3 the complete high
level Petri Net model of the algorithm. Section 4 presents the analysis results produced by
the Maria analyser. Section 5 shows the direction of work to be undertaken in the future.

2 The Distributed Dynamic Channel Allocation Al-
gorithm

The mobile computing world is normally seen as a collection of base stations (BS) connected
together via a fixed network. The area covered by each BS is referred to as a cell. Each
cell has a set of neighbouring cells. The users carry mobile hosts (MH) which connect to
the fixed network via the cells.

There are two ways of handling the reuse of channels. The first way is called fixed
channel allocation and the second one is called dynamic channel allocation [Lee93]. In
fixed channel allocation the reuse patterns of radio channels are determined a priori based
on the geographical layout of the cells. This approach is fast (it can be hard coded) but it
is not very maintainable or scalable.

In dynamic channel allocation, channels are assigned according to an algorithm run by
a central control or by the base stations. The algorithms are based on determining the
channel occupancies of neighbouring cells or on measuring co-channel interference directly.
In performance measurements the algorithm measuring co-channel interference is found to
be more spectrally efficient [CC96]. In this work we concentrate on traffic measuring based
dynamic channel allocation presented in [PSS95].

The algorithm handles a set of Ny channels which are ordered. The channel with the
lowest frequency is the first channel, and the channel with highest frequency is the nth
channel where 7 is the number of channels. The set of all channels is denoted by Spectrum.
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The cells in the network have a fixed set of neighbours Nbr. Normally these cells are
hezagonal — that is, each has six neighbours (Figure 1). Our model does not assume any-
thing about the number of neighbours. The channels allocated to a cell C; are represented
by the set Allocated;. Each allocated channel is in one of three subsets: Busy;, Transfer;,
or Available;. The set Busy; contains all the channels that are currently used in active
communication. The set Transfer; contains those channels that will be transferred to a
neighbouring cell to support a communication session. If a channel is allocated to a certain
cell but not busy or being transferred, it is in Awvailable;. Note that all these sets change
dynamically. In the terminology used in this paper free channels are not allocated to any
cell.

RPRRPRRRN
OUAWNWW
NNOUOTA NS
cooooowu
000000 ®
cococococo-~

Nbr =

Figure 1: Hexagonal cell configuration.

The brief description of the original algorithm, as written in [PSS95] is as follows:
"When a new communication request originates in C;, one of the non-busy channels in
Allocate; is assigned to support the communication session. If there is no such channel,
then after a round of message exchange with the neighbours, a channel that is in the
Spectrum, but not in Allocate set of the cell or any of its neighbours is added to Allocate;
as well as Busy;. This channel is used to support the session. If such an attempt fails, C;
tries to transfer a non-busy channel from the Allocate set of its neighbours to Allocate;.
If such a transfer is not possible, the communication request is dropped. Otherwise, the
communication is successfully completed.”

3 Petri Net Model of the DDCA Algorithm

We present a complete Pr/T net model of the DDCA algorithm in this section. The
presentation is divided into four phases corresponding closely to the steps of the algorithm
as given in [PSS95]. A first version of the Pr/T net model of DDCA algorithm was given
in [OHB99], but this version contains so many changes and additions that it is necessary
to present the whole net model.

In the model there are N, cells connected to neighbouring cells as described by the
neighbourhood relation Nbr: i — 2%, where 1<i<N,. An example of a hexagonal config-
uration using a matrix can be found in Figure 1. This relation assigns a set of neighbour
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cells C;; to each cell C;. Here 1<j<6 (if the cell layout is hexagonal), and ii; for all
j. The number of channels which may be in each cell is represented by the constant Ny.
Changing the configuration of the net is simply changing the neighbourhood relation.

There are two very important places in the Pr/T net model. The first of these, Pch
(referred to in all parts of the net), contains always N x Ny tokens. The tokens are triples
of the form < k,i,s >. Here k is a channel number (1<k<Ny) and i is a cell number
(1<i<N,). The third element, s, represents the status of the channel k in the cell C;. The
status s can have four distinct values, s€{a,b,f,t}; a denotes that a channel is available,
b that it is busy, f that it is free and t that it is in transfer status.

The other important place in the Pr/T net model is Pcl in Figure 2 which keeps track of
the connection attempts. This place contains a token i for each cell C;. When a connection
attempt originates from the cell C;, the token i is removed from the place Pcl. When the
attempt either succeeds or fails the token i is replaced in the place Pcl.

In the initial state of the net, all the channels are free, i.e. all tokens in place Pch have
the status field f, and the place Pcl contains exactly one token i for each cell C;.

In the original algorithm, the sets Allocate;, Busy;, and Transfer; are extensively used in
set operations. For example, the Free; set is calculated from the above sets (when Spectrum
is known). In our Pr/T net model we have avoided the necessity of set calculations by
having a token for each channel in each cell in the place Pch. Pch can be seen as a global
database for channel information but note that the cells can not read the status of the
channels in other cells in this model because it would destroy the distributed nature of the
algorithm.

The spontaneous off-hook, on-hook behaviour is modelled by transitions Tin and Tout
in Figures 2 and 6 respectively. In the analysis we had to limit the number of off-hook
transitions in order to get a finite reachability graph.

To make it more readable the net model has been divided into five figures. Places with
the same name may appear in several different figures, but these multiple “instances” of the
same place represent only one place in the whole net. Places which can be found in several
figures are drawn with thicker border lines. In Figures 4 and 6 arcs extend from the word
Prqt and to the word Pcl. These represent connections from/to the places named Prqt
and Pcl and are denoted in this way only to save space.

3.1 Phase 1 - Available Channel in the Same Cell

When a connection attempt originates from cell C;, we first check whether there are any
available channels in that cell (Figure 2). This is modelled by the off-hook transition
Tin which places a token i in place Pin when it fires. If an available channel is found
in the same cell, the &' channel will be put into busy status. This is modelled by the
transition Tha with the condition condh which selects the highest available channel and
may be expressed as “the channel k’ satisfying Vk,3k' k' > k,”. The transition Tha
takes all tokens with cell index field i and status field a, i.e. all channels which are
available in cell C;, from the place Pcl and returns them unchanged except for the token
with k> which will have a status field with the constant b. This is handled by the token
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Figure 2: The internal phase.

sums SUMia = ¥,cn, < ky,1,a >, where a is the status constant a (for available) and
SUMib = (X,en, < ky,i,a>) — <k'Ji,a>+ <k',i,b >, i.e. only the status of the
highest order channel is changed into busy. This ends the connection request cycle.

If there are no available channels in cell C;, i.e. no tokens < k,,i,a > for any n, the
transition T'srq will fire. Here, the inhibitor arc with the arc expression <x,i,a> will be
active only if there is no such token in place Pch. Thus the transitions Tha and Tsrq are
complementary.

The firing of transition Tsrq is synonymous with sending a request for a new channel
to all neighbours of the cell C;. This is modelled in the Pr/T net by sending a set of tokens
REQ = Yjcny; < 1,j,ci+ 1 > to place Prq. The term ’ci’ is actually a timestamp. The
DDCA algorithm uses Lamport’s logical clocks [Lam78] for timestamps which here are
modelled by tokens in place Ptime. Also, the transition Tsrq inserts a tuple <i,ci+ 1 >
into place Prqt and takes a token < i > away from place Pcl. The place Prqt is used as
a bookkeeping place for pending requests from a cell C;. This information is necessary in
the next step of the algorithm, when the request with the lowest timestamp is served first.

The places Prq and Prqt represent the “communication medium” between the different
cells. The neighbouring cells may read requests for a new channel from these places. The
marking S < i > of the place Pcl is equivalent to the sum of tokens < i > for 1<i<N..
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3.2 Phase 2 - Requesting a New Channel

Figure 3 shows the second phase of the algorithm — namely, how the requests for a new
channel are received by neighbours and how the replies are returned. The transition Trc
represents the reception of request-messages by the neighbours C; of cell C;. It simply
forwards the tokens < i, j, ci > to the place Prcrq and updates the timestamps according
to Rule 2 in [PSS95]. Because high-level nets are used this place represents the folding of
all individual cells. In the high-level model the tokens are tagged with the number of the
individual cells (j in the token < 1i,j,ci >).

The replies are returned through two transitions, Trep and Trep2. The transition
Trep ensures that the request containing the lowest timestamp gets served first, i.e. if
C; and C; both have pending requests, C; sends its local information first to C; if its
timestamp is higher than C;’s. If there are no pending requests from any of the neighbours
Cj, the transition Trep2 fires. This represents the sending of C;’s local information to the
cell C;. This occurs through the place Prep and transition Trcrep. The local channel
information is contained in the sum SUMj = ¥,cn, < kn,J, Sn >.

The reply tokens sent by transitions Trep and Trep2 all go to the place Prep because
all the cell models are folded. Thus a method to distinguish the destination of the reply
tokens is needed. The solution is to tag each reply token with the index number ¢ of the
cell which sent the requests. Thus the sum SUMji is constructed from SUMj as follows:
SUMji = Y,en, < Kn,Jj,sn, 1 >. Informally this means: “Send the channel information
from cell C; to cell G;”.

The transition Tint collects all the reply tokens from the neighbours, and once all are
received, combines them with the tokens modelling the channel information of cell C;. This
corresponds to the algorithm step A.4 in [PSS95], where unions of the Allocate; set and
the Allocate sets received in the replies are stored in the Interfere; sets.

The token sums are forwarded to place Pint, which is an “interference place” used to
avoid interference between channels in neighbouring cells, i.e. the same channels may not
be busy in adjacent cells. The token sum representing the replies from the neighbours C; of
cell G; is SUMjiCh = Yjcnpr, Xnen, < Kn,J, Sn, i > whereas the local channel information
is SUMi = Y, ¢cn, < kp, 1,5, >. Simultaneously the token < i > is placed into Pfree.

3.3 Phase 3 - Choosing a Channel in the Neighbourhood

Once the replies from Phase 2 have been received, the algorithm chooses a channel which
will be used to support the communication session. Figure 4 shows the Pr/T net model of
this phase of the algorithm.

When there is a token < i > in place Pfree one of two transitions may fire. Transition
Thf fires if there is a token sum SUMYS in Pint, i.e. when there is a channel that is free in
cell C; as well as in all its neighbours as in step A.5 in the algorithm. This channel must
not be allocated to any cell in the neighbourhood. The tokens in place Pint model both
the sets Interfere; and Free; in the algorithm, because it is more efficient to store also the
tokens corresponding to the sets Free; in place Pint.
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Note that the tokens in place Pint are constructed in one transition (Tint) only in
the model, while the sets Interfere; and Free; are calculated twice in the algorithm (also
in step A.6). This is not necessary in the net model because all necessary information is
available in place Pint and can be obtained by using suitable arc expressions.

Thus it is possible to use the token sum SUMTf together with the transition condi-
tion condh denoting Vk,3k' k' > k, to select k' as in Phase 1. The testing if there
is a channel which is free in the whole neighbourhood is handled by the arc expressions
SUMS = Ejcnpr; Znen, (< kn, j, f,1 >+ < kyp, i, >) from place Pint. If the transition can
fire the token < k’,i,f > is read from place Pch.

A successfully chosen channel token < k';i,b > is returned to place Pch (note that
the status changes from free to busy). The token sum SUMT is returned to place Pint to
allow for an easier clean-up operation. Also, as a result of the firing of Thf a token < i >
is inserted into place Pb.

The transition Tb ends the (successful) cycle for channel request by cleaning up place
Pint (removing all tokens connected to the request), removing a pending request from place
Prqt (token < 1i,ci>) and allowing a new request to be handled in cell C; by returning
the token < i > into place Pcl. The sum involved in the clean-up of place Pint is
SUMn = ZjENbMEnENk(< kn;j; Sn,i >+ < kn, i, Sn >)

The complement of the transition Thf is the transition Trqtrf, which fires when there
is no token sum SUMY in place Pint, i.e. no channel that is free in cell C; and all its
neighbours. In that case the algorithm tries to transfer an allocated channel from the
neighbourhood to the cell C; and the net model forwards the token < i > to place Pav.

When the control (token < i >) is in place Pav, one of two complementary transitions
will fire. If there is no channel that is either available or freein cell C; and all its neighbours,
the transition Tno will fire. Tno cleans up the places Pint and Prqt as described above
and returns the token < i > to place Pcl. In this case the connection attempt fails. The
token sum modelling the checking of available or free channels in the neighbourhood is
SUMaf = (z =a) V (. = f)Zjcnor, Znen, < Kn, j, X, 1 > + < kn,1,x >.

If a channel is found that is either free or available in cell C; and all its neighbours, i.e.
SUMaf exists in place Pint, the transition Tla will fire. The condition condl will select
the lowest order of these channels (denoted by k”) by requiring that Vk,3k" k" < k,,. The
channel is subsequently assigned the busy status (by sending token < k” j, b > to place
Pch), and the control token < k”,i > is forwarded to place Pt.

Finally, the algorithm will send {¢ransfer messages to all the neighbours of cell C;
that have channel k" allocated (ie. any status but free). In the model, however, trans-
fer messages are sent to all the neighbours, because it is more efficient (a sum can be
used over Nbr;). The transition Ttrf takes tokens < k” j,s,i> from SUMn which
have channel field k" and cell field j (j € Nbr;) and constructs transfer messages from
these. The transfer messages are represented by the sum SUMt = X ey, if not(s =
f) then <X" j, t,i> else < k" j, f,i>. This token sum is forwarded to place Ptrf which
is a folding of the places modelling the communication links between a cell and its neigh-
bours. The constant t in the sum means that this is a transfer message. The transition Ttrf
also cleans up the place Pint as described earlier. The tagging of tokens in SUM{t with i
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is necessary to avoid confusion with other transfer attempts from the same neighbourhood.

3.4 Phase 4 - Double Checking with the Neighbours

Once a channel for transfer is found, we must double check the choice with the neighbours.
It may happen that after a channel is chosen as a candidate for transfer, this channel
switches to the busy status in some cell (before the transfer messages are received in the
cell). In that case the transfer is no longer possible.

Figure 5 represents this double-checking with the neighbours. The transition Trctrf
represents the reception of transfer messages by the neighbours of C;. The sum in the
input arc of the transition is denoted by SUMtr = X;cn, < k, j, 85,1 >. This token sum
is forwarded to place Prctrf which is a folded place representing all the neighbour cells
but the tag j determines which cell gets the transfer request.

The two transitions Tref and Tagr take individual tokens (transfer messages destined
to the cell C;). Tref fires if there is a token <k, j,p,i> in place Prctrf and a token
< k,j,s > in place Pch such that s = b Vs = t (denoted by s=b,t in Figure 5). The
value of the variable p in the arc expression < k, j, p,i > is not important. This models
the case that the channel & in a cell C; (j € Nbr;) has status busy or transfer. In that case
the transfer of the channel k from cell C; is unsuccessful and the channel status in cell C;
will be unchanged (the token is returned unchanged to place Pch).

Tagr models the case when the channel & in a cell C; is available or free. The annotation
s=a,f in transition Tagr denotes the condition s = a Vs = f. In that case, the transfer
of the channel k from cell C; is successful (the token < k,j,s > is returned to place Pch
with status field t).

The unsuccessful transfer of a channel &k from cell C; is coded into a token < k, j, b,i >
that is forwarded to place Pstr. Similarly, the successful transfer of a channel is coded
into a token < k,j,f,i > that is placed into Pstr. Thus the b in token < k,j, b,i > does
not mean the status busy but is just a convenient way of coding that the transfer request
was unsuccessful in cell C; (“refuse message”). Likewise the token < k, j, f,i > means that
the transfer request for cell C; was successful (“agree message”).

Once all the neighbouring cells have either agreed or refused a channel transfer, the
transition T'str can fire. This transition models the sending of answers from the all the
neighbours (SUMtr) to the cell C; (place Ptrep). The sum makes certain that all the cells
have replied before the cell C; will start evaluating the answers. Note that the interpretation
of SUMtr is different from the token sums with the same name annotating arcs around
transition Trctrf although the token structures are the same.

3.5 Phase 5 - Cleaning up

Once the “agree” or “refuse” messages have arrived from the neighbours of the cell C;,
i.e. the token sum SUMtr has arrived at the place Ptrep, one of two complementary
transitions can fire (Figure 6). If there is even a single “refuse” message in the replies to
cell C;, i.e. the condition Js; s; = b (annotated by exist b) is satisfied meaning that
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Figure 5: Double checking the chosen channel.
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Tkeep

Figure 6: Cleaning up.
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there is at least one token < k,j, b,i > in place Ptrep, the transition Tiref will fire. This
transition sends a token < k,i > to the place Pkeep. Also, the channel £ in cell C; that
was set to busy status will be assigned the free status (token < k,i,b > in place Pch is
replaced by < k,i,f >).

The place Pkeep models the fact that the cell C; is sending “keep” messages to the
neighbourhood. Tkeep sets those channels that are in the transfer status back into avail-
able status in the cells C;. This is handled by the two sums SUMjt = ¥;cyu, < k, j, 55 >
and SUMja = Xjcnp, if (s; =t) then <k,j,a> else <k,j,s; >.

If no “refuse” messages are returned, i.e. the condition —3s; s; = b (annotated in
transition Tiagr by no b) is satisfied meaning that no token <k,j, b,i > is found in
place Ptrep the transition Tiagr will fire denoting a successful transfer of a channel. This
transition sends a token < k,i > into place Prel, which models the sending of “release”
messages from the cell C; to the neighbourhood. The transition Trel cleans up the place
Prqt and returns the token ji; to place Pcl. It will also set those channels that are in the
transfer status in the neigbour cells C; into the free status by replacing token sum SUMjt
with SUMJf = Ejcnpr, if (s; =1) then <k, j, f > else <k,j,s; >.

The original algorithm has a THRESHOLD parameter that tells how many times the
algorithm will try to transfer a channel before giving up. This behaviour is modelled by
places Ptry and Pthr and transitions Tagain and Tquit in Figure 6. The place Pthr
initially contains ny,, tokens of the form < i,1 > where ny, = THRESHOLD. Each
time an unsuccessful transfer takes place (and transition Tagain fires), a tuple < i,1 > in
place Pthr is replaced with < i,0 > and control is given to place Pav in Figure 4 (a new
transfer attempt is started).

If there are only < i,0 > tuples left in place Pthr, the transition Tquit will fire ending
the transfer attempt cycle. In this case we replace all the tuples of the form <i,0 >
(SUM3) with <1i,1 > (SUM2).

If the transfer attempt was successful (Tiagr fires) then Trel replaces all the tokens
of the form <i,r> (SUM1) with tokens <i,1 > (SUM2). The sums involved in this
THRESHOLD part of the algorithm are:

SUM1 = Yjcqi. ) <i,r>,
SUM2 = ¥jcqi.m,,,} <1,1>, and
SUM3 = EjE{l...ntm} < i, 0>.

The transition Tout models the spontaneous on-hook behaviour. It may fire at any

time.

4 Reachability Analysis

The general Petri net model shown here was analysed with the Maria analyser [Mar| and
in that process a few changes had to be made to the model because the input language
of Maria does not support inhibitor arcs and some expressions. The inhibitor arcs were
used in the general model only to avoid that the figures would be too cluttered - inhibitor
arcs can always be replaced by other constructs. In the Maria net model the complexity of
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the net is much larger than in this abstract version. This is mainly due to dividing some
transitions. It does not add to the size of the reachability graph but makes the net model
less readable. This is not so important because the net description language of Maria is
designed as an intermediate language although it has very powerful high-level features and
a complete type system. Also for Petri net modelling front-ends are planned which handle
the interface to the user, for example using the well-known Design/CPN.

The main effort in this work is without doubt in the modelling (comprising many man-
months and going through many versions), but of course it is also important to analyse some
properties of the model (and the algorithm). This model was also used in the development
work of the Maria analyser. The results given here are from the first experimental version
of the analyser and are only representative for the modelling power of this first version.

Creating a Maria model was also useful to detect errors in the more general net model.
Even before the analysis was performed we detected a few mistakes by just using the
simulation facility of marde, the Maria debugging tool. Especially using high level nets
which are heavily folded the inscriptions in the net may be so complex that it is difficult
to see errors just by inspecting. In many respects the modelling process is analogous to
program design and this is certainly the case for Maria which has a very developed data
type system and a very powerful expression syntax.

As an example of the Maria input language (version 0.1) the transition Trep in Figure 3
is shown:

// Define a new place for the replies of type reqreply.

typedef struct{channel k; cell j; state s; cell i} reqreply;
place Prep reqreply;

trans Trep
{ channelstate s; }

in {

Prcrq: {i,j,ci};

Prqt: {j,cj};

Pch: channel k (k>=1): {k,j,s[kl}; // SUMj
}

out {

Prqt: {j,cj};

Pch: channel k (k>=1): {k,j,s[k]}; // SUMj
Prep: channel k (k>=1): {k,j,s[k],i}; // SUMji
}

gate ci<cj;

Note the coding of the sums. For SUMj the last line in the in arc definition means
that from place Pch all tokens {k,j,s[k]} are taken for all channels & if & >= 1. The value

86



of j is determined from the places Prcrq and Prcrq. The SUMji is constructed from the
available values of &, j and s[k] with the addition of the value of i determined from place
Prcrq.

Although Maria has many powerful constructs which make the modelling of distributed
algorithms easy there are a few additional features which would be most useful like quan-
tifiers. It is often necessary to express that a transition should fire (or not fire) if there
exists a token of a certain kind or if all tokens have a certain property. Thus existential
and universal quantifiers would be quite useful, especially in modelling protocols like this
one.

In the Maria model of the DDCA algorithm we could not yet make the net completely
parameterised, i.e. make its structure insensitive to changes in the cell configuration. Thus
some transitions had to be split into several transitions - one for each cell. We hope to add
features to Maria to make a completely parameterised model possible in the future.

An exhaustive reachability analysis for a complex configuration with a large number of
channels and many concurrent channel requests (call attempts) is very difficult because the
size of the reachability graph explodes. It is therefore necessary to check the function of the
DDCA algorithm for relatively small examples. We analysed two special configurations,
one with seven cells and one with three cells. In both cases the number of channels was
only two, but the number of concurrent channel requests varied.

Cell 3-

Channels 1&2 | Channels 1&2 | Channels 1&2

Figure 7: The three cell configuration.

Whereas the general model (presented in Figures 2-6) has 25 transitions the Maria
model for three cells and two channels (Figure 7) has 66 transitions and 41 places. The
model with seven cells in Figure 1 has 63 transitions and 46 places.

We considered a set of three cells each having two channels as in Figure 7. Initially,
all the channels in every cell were free. The size of the reachability graph was limited by
constraining the number of concurrent connection attempts to one, two and three respec-
tively. Note that there could be a maximum of one connection attempt in any given time
at a given cell (ie. no concurrent connection attempts from the same cell).

The results of the reachability analysis are given in Table 1. The analysis uncovered
no deadlocks in the execution of the algorithm. Moreover, a Linear-Time Temporal Logic
formula was verified ensuring that no neighbouring cells can use the same channel at the
same time. In effect, the property was verified by considering the marking at place Pch in
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three cells seven cells

no. of con- | number of | number of | number of | numbers of
current re- | markings arrows markings arrows
quests

|1 | 105 | 163 | 4551 | 19387 |
| 2 | 4557 | 11490 | - | - |
13 | 18528 | 48603 | - | - |

Table 1: Statistics for the reachability analysis.

each reachability marking. This was the key property that the protocol had to satisfy to
be correct.

The corresponding analysis for seven cells generated a much larger number of states
already with one request and was very slow. For two requests the analysis was stopped
after a few hours. The Maria analyser is actively developed and new versions with better
efficiency and new features appear at a steady pace. The most important improvement in
the analysis will, however, be in using reduction methods and other techniques for handling
large reachability graphs.

Making relatively small changes in the net model influenced the reachability analysis
substantially and the figures in Table 1 should be seen as indicative only and bound to
change.

5 Further Work

The basic algorithm given in [PSS95] has been since augmented to contain mobile base
stations [PN99]. The natural continuation of this work is to extend the model to the case
where the base stations are mobile. Work on this extension is already going on and a first
version will be reported in [OHT].

The basic DDCA algorithm has been modelled and analysed in this work using the
Maria reachability analyser, but it still seems to be possible to gain from small changes in
the model in order to get a more efficient analysis.

Much also remains to be done in developing the power of the expressions in Maria and
also in the analysis methods. The expressiveness is not only needed in order to keep models
small and readable but also to make them parameterised, i.e. easy to alter for different
configurations. The inclusion of quantifiers would be very useful in this kind of models
and for the DDCA algorithm we would also need the possibility to choose “maximal” and
“minimal” token from a place. This should be easy in Maria because the data types are
totally ordered [Mar].

It is very difficult to analyse this model for big configurations, but already in these
simple cases some mistakes in the model have been found and the use of an analyser, even
in debugging (or simulation) mode, is considered very useful for the modelling process.

88



The further development of marde, the debugging tool therefore would be important.
Especially the inspection of paths in the reachability graph is useful in checking if the
model works as intended.

The reachability analysis results must also be investigated in order to check how the
analysis can be made more efficient. The Maria analyser will soon have also reduction
methods implemented (the same as in PROD) and the influence of these could be inter-
esting.

6 Conclusions

An algorithm for distributed dynamic channel allocation for mobile computing has been
successfully modelled using Predicate/Transition nets. The general high-level Petri net
model is quite compact with only 22 places and 25 transitions and it can be used for
any number of cells and channels with any configuration. It would be difficult to achieve
without a very expressive high-level net language. It was a nontrivial undertaking to model
the DDCA algorithm and this is the first complete model of the algorithm.

The algorithm has been analysed by the Maria analysis tool and has been found
deadlock-free for some simple configurations. Moreover, the algorithm ensures that the
same channel is never allocated in contiguous cells for the verified cases. Further analysis
should be carried out, but the algorithm seems to be correct and implementable in real
systems.
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Abstract

The Resource Reservation Protocol (RSVP) conveys Quality of Service information along the
path of a data flow. It is intended to support the new emerging Internet applications which
require a guaranteed level of service to achieve their functionality. The aim of this paper isto use
Coloured Petri Netsto model some features of the protocol over a simple unicast network. Initial
analysis of the model shows that it is working correctly, in other words, as described in RSVP
specification document. However, further analyses are required to validate the CPN model.

1. Introduction

Traditionally, Internet applications, such as File Transfer (FTP) and Telnet, use a best-effort
service with no service guarantees [6]. In the last decade, however, new applications have
emerged. These applications, such as multimedia and real-time applications, generate not only
data but also images, video and voice. They require different levels of quality of service (QoS)
regarding, for example, delay and throughput. Thus, the Internet Engineering Task Force
(IETF)!, a volunteer organisation that discusses operational and technical problems of the
Internet, has worked on extending the Internet architecture to support such new applications.

Although the original plan of the IETF was to create an unified model for the Internet, today
several service models have been developed [2] [3]. One of the proposals is the Internet
Integrated Service Model (IntServ) [3]. IntServ supports not only best-effort applications but also
real-time applications. In addition, the Resource Reservation Protocol (RSVP) [4][7][18]
conveys QoS parameters and sets up QoS information along the path of a data flow.

Formal methods provide techniques to support the design and maintenance of communication
protocols [1]. They have aready been applied to protocol engineering activities [15][16].
Coloured Petri Nets (CPN) [10][11] are aformal technique with a solid mathematical foundation
which has been used for modelling many systems such as communication protocols [12].

The authors have found that formal techniques have been seldom applied to the Internet protocol
engineering activities. In this paper, CPNs, with the aid of a software tool called Design/CPN
[14], are used to model the operation of RSVP and to analyse it based on the RSV P specification
[4]. This initial model includes some basic features of RSVP working on a simple network
topology supporting unicast traffic (ie a sequence of packets travelling from a sender to a single
receiver ).

! See IETF home page at http://www.ietf.org
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The paper has been organised as follows. Section two presents an overview of RSVP which
includes its characteristics, operation and relationship with other protocols. Section three
includes a description of the CPN model of RSVP. In addition, the assumptions and requirements
taken into account for this model are presented. The model is analysed in section four. It includes
some simulation results and an initial state space analysis. In addition, previous CPN models of
the protocol are compared in terms of the size of the occurrence graphs. Finally, section five
concludes this paper.

2. Resource Reservation Protocol (RSVP) Overview
2.1 Characteristics

RSVP is a signalling protocol developed to create and maintain resource reservations on each
link along the transport path. It is also used by a host to request a particular QoS for each
application.

The design principles of RSVP are outlined in [18]. A detailed description of those principles is
beyond the scope of this paper. However, the main characteristics of RSVP, which are closely
related to those principles, are summarised as follows:

* Receiver-based: receiversinitiate the resource reservation along the path between the source
and destination of a data flow, since receivers know the resource availability and limitations
[4][18].

»  Soft-state reservations. the reservations along a path are considered non permanent, so they
must be refreshed periodically. If a reservation is not refreshed before a timeout occurs, the
reservation is cancelled, so, the reservations may adapt to dynamic routing changes and the
QoS reserved for aflow may be changed at any time.

* Flow oriented: RSVP reserves resources on a flow basis. A data flow is a distinguishable
packet stream which results from a single user/application activity and requires the same
QoS.

» Unidirectional: RSVP reserves resources in one direction.

= Heterogeneous receivers. each receiver requests resources to support its own QoS
requirements.

» Support of multicast sessions: RSVP makes resource reservations for both unicast and
multicast applications.

2.2 Architectural Overview

Figure 1 shows the TCP/IP protocol stack extended to support QoS provision. It includes several
protocols which support the transfer of data from the applications. RSVP is located on top of |P*
at the level of a transport protocol. It does carry control information (ie RSVP signalling
messages) intended to create, manage, and remove reservations associated with user data. A
description of these protocols, apart from RSVP, is beyond the scope of this paper; however
there isawide range of literature related to the Internet protocols (eg see [6][8]).

1 RSVP may also run on top of UDP as explained in RFC 2205 [4]. However, for simplicity, it isnot shown in figure
1
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Application Control

Applications
RSVP

TCP/UDP

IPv4/IPv6

Data Link + Physical Layer
Figure 1: RSVP inthe TCP/IP architecture.

Figure 2 shows the software architecture of a host and a router which supports RSV P. The host
and router systems are the same except that the application block in the host is replaced by a
routing block in the router.

An application must be able to interact with RSV P in order to communicate traffic characteristics
of the data flow and their QoS requirements. RSV P signalling messages will be encapsulated
into 1P packets and travel hop-by-hop from the sender to the receiver(s). At each node, if the
node supports RSV P, the message must be processed. Some nodes in the network may not be
able to process RSVP messages, thus they will be forwarded without further processing [4]. At
each router, RSVP interacts with a routing protocol to obtain the IP address of the next hop on
the route of the data flow.

Traffic control, which includes the classifier, packet scheduler and admission control [3], is
responsible for alocating network resources according to QoS information carried into RSVP
messages. Thus, the classifier classifies IP packets according to a set of service classes and
assigns them to different queues. The packet scheduler determines which of the set of IP packets
will be served next. Finally, admission control decides whether there are sufficient resources
available to grant the requested QoS for adata flow.

RSVP may also communicate with a policy control component which decides if the user
requesting a reservation is permitted to do so. Policy control mechanisms may involve, for
example, the identity of the user and application, traffic and data rate requirements, and security
considerations[7].

Application
RSVP RSVP
I signaling signaling
RSVP > Rovp * >
process Routing J’ process
o Policy Process Policy
ez Control ‘ Control
Admission Admission
Control Control
— —
- [T
Classifier= (T P Classifier= LT
LT~ Y
Packet Schedul er Packet Scheduler
Host Router

Figure 2: QoS software architecture.

93



2.3 RSVP specification
Sessions and datafl ows

A session is a data flow with a particular destination and transport-layer protocol and is
identified by an IP destination address (unicast or multicast) of the data flow, IP protocol 1D, and
destination port (optional) (eg UDP/TCP dedtination port field) [4].

Traffic and QoS parameters

The RSVP specification defines a reservation request in terms of a filter specification (filter
spec) and a flow specification (flow spec) [4]. The former defines the sequence of packets or data
flow to receive the QoS specified in a flow specification. A filter specification together with a
session ID is used to identify a flow which will receive the QoS. The latter defines a desired QoS
for the flow and defines its traffic characteristics. It includes a service class, a Reservation
specification (Rspec), and a Traffic specification (Tspec). A traffic specification (Tspec) defines
the traffic characteristics of the flow, for example, the peak rate. A reserve specification (Rspec)
defines the reservation (ie. desired QoS) characteristics of the flow, for example, the service rate.
The formats of a Tspec and Rspec are not defined by the RSV P specification.

A filter specification is used by the classifier to assign the data flow to a queue and a flow
specification is used by the packet scheduler to alocate the corresponding QoS and to schedule
packets based on their traffic characteristics.

Soft state

RSVP soft gate reservations deal with occasional loss of RSVP messages and route changes at
any point on the path of a data flow. Thus, reservation and path states set up by RSVP along the
route of a data flow must be refreshed periodically, otherwise they will be removed. The refresh
timeout determines when a refresh message must be generated, while the cleanup timeout
determines the maximum period of time that a node waits to receive a refresh message, before it
removes the associated state information.

RSVP operation

RSVP uses several messages in order to create, maintain, and release state information for a
session between one or more senders and one or more receivers (see fig. 3). Sequences of
packets travelling in opposite directions may follow different routes. In RSVP, reservation
requests travel from receivers to the sender(s), in the opposite direction to the user data flow for
which such reservation is being requested. Path Messages are used to set up a route for the
reservation requests along the same path of the corresponding data flow. They set up and
maintain path information (eg the IP address of the previous host and traffic characteristics of a
data flow).

A path refresh is the result of either a state refresh timeout or the modification of a path state (as

mentioned before). Once a path is established, a node periodically (ie every refresh timeout
period) sends path refresh messages (ie Path messages).
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Figure 3: Flow of RSVP messages.

Resv messages travel upstream from the receiver(s) to the sender. They carry reservation requests
(e.g. for bandwidth and buffers) used to set up reservation state information along the route of a
dataflow. At any intermediate node, areservation request may be rejected by Admission Control
because there are not sufficient resources to guarantee the requested QoS. Also, reservation
requests which arrive at a router are merged. The aim of merging is to control the overhead of
reservation messages by making them carry more than one flow and filter specification [4][18].
Thus, the effective filter and flow specifications, which are carried in a reservation message, are
the result of merging reservations from several requests.

A reservation refresh is the result of either a state refresh timeout or the modification of a
reservation state (as mentioned before). Like path states, reservation states need to be refreshed.
Thus, a receiver periodically sends reservation refresh messages (ie Resv messages) to the
sender.

RSVP tear down messages are intended to speed up the removal of path and reservation state
information from the nodes. They may be triggered because a state timeout occurs (as explained
before) or an application wishes to finish a session (ie service preemption). A PathTear message
travels downstream from a sender to the receiver(s) and deletes any path state information and
dependent reservation associated with the session and sender. A ResvTear message travels from
areceiver to a sender and removes any reservation information state associated with one or more
data flows.

In addition, there are two error messages, Path Error and Resv Error, which are used to report
problems associated with processing or installing Path/Resv information or to report
administratively defined constraints imposed on the setup of a reservation state [7]. They travel
hop-by-hop from the point where the error was found.

Optionally, a receiver may ask for a confirmation for its reservation by including a RESV
conformation object® in the Resv message (ie reservation request). A ResvConf message is used
to notify the receiver that the reservation request was successful. In the simplest case, a
ResvConf message is generated by the sender (see fig. 3).

1 A RSV P message comprises a message header and a set of objects. Objects contain information necessary to
process the message at each RSV P node it arrives [4][7].
2 For more information about ResvConf message see [4]
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Figure 4: Application/RSVP interface.

2.4 Application/RSVP interface

An application which requires QoS guarantees from the network must communicate with RSVP
and provide the QoS and traffic characteristics of the data flow. Braden et a [4] describes a
generic interface between an application and RSV P which includes the following calls (see fig.

4):

1.
2.

Session: creates a RSV P session.

Sender: is used to define or to modify the characteristics of a data flow (eg peak data rate).
The first call triggers RSVP to send Path Messages. Future cals will make RSVP send
modified Path Messages (eg including a different T Spec).

Reserve: isused to create or to modify a resource reservation (eg the size of a buffer). The
first call will initiate the transmission of Resv Messages. Future calls will change the existing
reservations.

Release: isused by the sender application leaving a session. It removes any existing path and
corresponding reservation state information. A receiver application uses this call to remove
one or more reservations for the session.

Also, some upcalls have been defined. They indicate an error or event:

5.

6.
7.
8.
9

3.

Path_Event: indicates that the first Path message for the session has been received or the
path has been changed.

Resv_Event: indicates that the first Resv message for the session has been received or the
reservation has been changed.

Path_Error: indicates a Path Error message has arrived or alocal error has occurred.
Resv_Error: indicates a Resv Error message has arrived or alocal error has occurred.
Resv_Confirm: indicates that a ResvConf message has been received.

CPN Modéd of RSVP

RSVP is a complex protocol whose features have been outlined in this paper. In order to
facilitate the design and debugging of the CPN model, an incremental approach was adopted.
Several versions of the model were created, gradually including more features. The last version
of the model comprises the features of the protocol which have been modelled in this paper. It is
described as follows. Then, section 3.4 describes briefly previous versions of the model.
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3.1 Requirementsand assumptions

The CPN model of RSVP has been developed based on the operation of the protocol given in
section two and in the protocol specification [4]. The network topology comprises two hosts
(sender and receiver) and a single router between them (figure 3). Also, the following
assumptions have been made:

1.

Just one session is necessary to study the functional behaviour of RSV P, since RSVP treats
each session independently [4].

In order to smplify the modelling of RSV P, only one data flow may flow between the sender
and receiver. Future models of RSV P will consider more than one application and/or sender,
so more than one flow.

Traffic and QoS parameters of a data flow are carried in Path and/or Resv messages as RSVP
message objects [4][7]. Any change in the value of those parameters must be propagated to
all nodes along the way of the data flow. Each node makes the appropriate adjustment in the
path and/or reservation states. However, for simplicity, the model presented in this paper is
focused on RSV P messages which do not change installed states at the nodes but keep them
on place. After checking that the current model is working as specified, it will be extended to
considered traffic and QoS changes.

Since RSVP is running on top of IP, which is not a reliable protocol, messages may be lost.
As mentioned before, RSVP Path and Resv refresh messages deal with occasional loss of
RSV P messages. Although, message losses have not been considered in the model presented
here, the mechanisms for dealing with that are modelled. In future, the model will be
extended to include message losses.

An RSVP network may include several nodes (eg sender and receiver hosts and routers).
The model presented in this paper is based on a simple topology in order to facilitate analysis
of the model. Thus, route changes are not possible. However, RSVP Path refresh messages
deal with route changes. Future models of RSVP will consider more complex topologies
which may support route changes.

The RSV P specification [4] only suggests the basic functions which may be performed for an
Application/RSVP interface. Protocol implementors may not only create real detailed
interfaces but also define the sequence of Application/RSVP calls. Thus, it is necessary to
make some assumptions about sequences of Application/RSVP calls (see section 2.4). In
particular, it has been assumed that the receiver application will send a Reserve call (so the
RSVP entity will start sending Resv messages) after it receives a PathEvent call indicating
that the first path message has arrived.

Since there are few reasons why a Path must be rejected [4], it has been assumed that a path
can not be rejected. Therefore, Path Error messages will not be required. This simplifies the
initial analysis of the model. Future models will include Path Error messages.

This initial model of RSVP is intended to include only the compulsory features of the
protocol. Thus, optional features, such as reservation confirmation, are not considered.
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Figure 5: Top-level structure.

3.2 Top-level structure

Figure 5 shows the top level architecture of RSV P, where there is only one router in the network.

An application may request a particular QoS by interacting with the RSVP entity (see section

2.4) which attempts to reserve the necessary resources in the router, by signalling to the router’s
RSVP entity and then to the sender’'s RSVP entity.

3.3 Detailed model

3.3.1 General structure

The detailed model of RSVP consists of ten pages (figure 6). The hierarchical view has been
designed based on the network topology and the functionality of RSVP entities at each node. The
subpages (eg Resv Setup) represent the more complex functions.

The top level model of RSVP shows the interaction between the RSVP nodes (figure 7). The

three transitions of the top level of the model (ie Sender, Router, and Receiver) represent the
RSVP entities at each node and are shown as hierarchical transitions.

(Hierarchy#10 ) (" GlobalDec#11 )

RSVPNetwork#1

Router

() [Frme ]

Receiver

2 v
Sender#2 Router#3 Receiver#4
ResvSetup / J7
ResvErrorEven] ResvSetup PathSetup PathSetup ResvErrorEvent
SenderResvSetup#5 (RouterRestrrorEvem#B ] (RouterResvSeIup#7) [RouterPathSetup#S ] [ ReceiverPathSetup#9 ] (RcvRestrrorEvem#lO ]

Figure 6: CPN hierarchy page.
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Figure 7: Top-level of the CPN model.

3.3.2 Global declaration

Figure 8 shows the colour sets, variables, and functions from the global declaration node. The
colour RSVPSate indicates the possible states of the RSVP entity. Those states have been chosen
based on the description of RSV P state blocks givenin [5]:

e CLOSED: when the sender is in this state, it has closed the session. If the receiver is in this
state, the receiver application has torn down the existing reservation for the session.

* NOSTATEINFO: thereis no state information in the node.

WAITINGRESV: means that a path has been established but as yet no reservation request
has been received.

« RESVREADY: meansthat a path and reservation have been established.

It may be noted that the CLOSED and NOSTATEINFO states are similar, however the former
state is used to limit the model simulation to one Sender session and one receiver application’s
release call (see section 2.4) .

The subseRouterSate indicates the possible states of the Router, which does not require the
CLOSED state.

(* States of RSVP entities*)

col or RSVPState = w th CLOSED| NOSTATEI NFQ WAI TI NGRESV| RESVREADY;
col or RouterState =subset RSVPState with

[ NOSTATEI NFO, WAI TI NGRESV, RESVREADY] ;

(* RSVP Messages *)
col or UpstreanmMVessages = wi th RESVMSE RESVTEAR;
col or Downstreanmvessages = with PATHVSG RESVERR| PATHTEAR;

(* Variables *)
var sta: RSVPState;

(* Functions *)
fun pathexists (s: RSVPSt at e)
fun resvexists (s: RSVPSt at e)

s= WAI TI NGRESV or el se s=RESVREADY;
s = RESVREADY;

Figure 8: Detail ed nodel decl aration.
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P UpstreamMessages
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ResvTear <
if sta= RESVREADY then RESVTEAR

WAITINGRESV
else
sta

Figure 9: Sender CPN page.

There are five basic RSVP messages represented by the colour sets UpstreamMessages and
DowstreamMessages. The former represents the messages that travel from the receiver to the
sender, while the second represents the messages travelling from sender to receiver (see fig. 3).
The colour set UpstreamM essages contains the following set of enumerated values:

* RESVMSG: represents a Resv message.
* RESVTEAR: represents a Resv Tear message.

The colour set DowstreamM essages represents the following set of enumerated values:

 PATHMSG: represents a Path message.
 PATHTEAR: represents a Path Tear message.
» RESVERR: represents a Resv Error message.

The variable sta is typed by any RSVP State. The functions are used to simplify guard
inscriptions. A pathexists function means the path state has been established in the correspondent
node (ie the RSVP entity — sender, router or receiver places - is in WAITING or RESVREADY

state). Aresvexists function means that a reservation has been established (ie the correspondent
RSVP entity is in RESVREADY state).

3.3.3 Structureof CPN subpages

In this section, the three main component pages (ie Sender, Router, and Receiver pages) of the
model and some subpages are described (figures 9 to 13).

Sender

In this section, the model of the Sender RSVP entity (see fig. 9) is explained. The Sender’s
RSVP entity begins in the “NOSTATEINFO” state — the Sender place has an initial marking of
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1'NOSTATEINFO. When the RSVP sender process receives a Sender Call from its application
(modelled by the Sender transition), it will build and send a PATHMSG downstream to the
router, and wait for areservation request.

After a path has been established in a node (ie the RSVP entity is in the WAITINGRESV or
RESVREADY state), it must be refreshed every path refresh period (see section 2.3). The
transition PRefreshTimeOut models the action taken when a path refresh timeout occurs. It may
be noted that this transition does not change the Sender state, it only sends a path refresh
message (ie a Path Message) to the router.

A RESVMSG, generated by arouter, may eventually get to the Sender. The ResvSetup subpage
models the reservation establishment actions, such as reservation rejection, successful
reservation setup or reservation refresh (if areservation isrejected a RESVERR will be sent back
to the router).

If the RSVP entity does not receive a RESVMSG before a reservation cleanup timeout occurs,
the transition ResvCleanup will remove any reservation state information stored in the node.

The RSVP entity may receive a RESVTEAR from the router because of one of the two reasons
explained in section 2.3 (ie state cleanup or service preemption). The transition ResvTear models
the action taken when a node receives such a message.

Finally, a sender application, which wishes to finish a session, sends aRelease Call to the RSVP
entity. It is modelled by the RelSender transition. It will remove any path state and dependent
reservation information and send a PATHTEAR to the receiver. It may be noted that the end of a
session is modelled by the CLOSED state.

Router

Figure 10 shows the model of the Router's RSVP entity. Like the Sender's RSVP entity, the
Router’s RSVP entity begins in the “NOSTATEINFO” state. PathSetup subpage (figure 11)
models the action taken when a RSVP entity receives a PATHMSG. The traNsitiBath sets

up new path information, and the transiti®athRefresh refreshes any existing path state
information.

In the Router page, the transitiBRefreshTimeOut models the action taken when a path refresh
timeout occurs.

When the RSVP entity does not receive a PATHMSG before a path cleanup timeout occurs, the
transition PathCleanup will remove any state information stored in the router and send a
PATHTEAR to the receiver. The entity may also receive a PATHTEAR from the sender, thus
the transitiorPathTear will remove any existing path information and dependent reservation.

The router may receive a reservation request (ie RESVMSG) from the receiveResI&etup

subpage models the action taken by the RSVP entity to setup a reservation state ( figure 12). The
transition AcceptNewResv models the action taken when a new reservation request (ie RSVP
entity is in WAITINGRESV state) is accepted by admission control (ie there is sufficient
resources available to grant the requested QoS). Otherwise, the traRgititiResv rejects the

request and sends a RESVERR to the receiver. The trarR#swRefresh refreshes reservation
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Figure 10: Router CPN page.

R s [pathexists (sta)] DownstreamMessages
outerState
sta PATHMSG 7]
[P] PathRefresh < SOutgoingMsgs
sta [pathexists (sta)=false]
PATHMSG DownstreamMessages
NewPath <+ ]
—»( RIncomingMsgs
WAITINGRESV PATHMSG

Figure 11: Router Path Setup subpage.

state information upon receiving a refresh message (a RESVMSG) from the receiver. The
transition NoPath models the action taken when a reservation request arrives but there is no path
information stored in the router. It sends a RESVERR to the receiver.
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Figure 12: Router Resv Setup subpage.

The router may also receive an error indication (ie RESVERR) from the sender. The
ResvErrorEvent subpage (in the Router page) models the actions taken in this case.

Once areservation has been established in the router (ie the RSVP entity is in the RESVREADY
state), the reservation state information (see section 2.3) must be refreshed, otherwise it will be
removed. The transition RRefreshTimeOut models the action taken when a reservation refresh
timeout occurs. It does not change the Router state, but sends a reservation message to the
sender.

As pointed out before, if a reservation has been established in arouter and the RSV P entity does
not receive a RESVMSG before a reservation cleanup timeout occurs, the transition
ResvCleanup will remove any reservation state information stored in the node. In addition, it
generates and sends a RESVTEAR to the sender. The RSVP entity may also receive a
reservation tear down request (ie RESVTEAR) from the receiver. The transition ResvTear will
remove any reservation state and send a RESVTEAR to the sender.

Receiver

The Receiver page is shown in figure 13. The RSVP entity (ie Receiver place) begins in the
NOSTATEINFO state, as the other two RSV P entities described before. Similarly to the Router
page, there is a PathSetup subpage which models the path establishment actions, such as new
path state setup or path refresh, taken when a PATHMSG arrives to the receiver.

Similarly to the Router's RSVP entity, when the RSVP entity does not receive a PATHMSG
before a path cleanup timeout occurs, the transifathCleanup will remove any state
information stored in the receiver. The entity may also receive a path teardown request (ie
PATHTEAR) from the router, thus the transiti®tathTear will remove any path state and
dependent reservation state information.

After a path state has been established in a receiver, the application mayResad/@call to
RSVP, which is modelled by the transitiRaserve. Thus, RSVP will start sending RESVMSGs
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Figure 13: Receiver CPN page.

to the sender. The transition RrefreshTimeOut generates and sends RESVMSG every reservation
refresh timeout period.

The subpage ResvErrorEvent will model the actions taken when the RSVP entity receives an
error indication (ie RESVERR) because a reservation setup has failed in either a Sender or
Router.

Finally, a receiver application, which wishes to tear down its current reservation, sends a
Release Call to the RSVP process. It is modelled by the RelReceiver transition. It will remove
any reservation state information and send a RESVTEAR to the receiver, if it is necessary (ie
there is a current reservation).

3.4 Overview of the previous versions of the model

As mentioned previously, the model design was based on an incremental approach where the
features of RSV P were included gradually, creating several versions of the CPN model. In this
section, previous versions of the CPN model of RSVP are described in terms of the features of
RSVP, aready introduced before. They are presented incrementally from the simplest model,
which includes very basic features of RSV P, to the most complex model which comprises all the
features presented in section 3.3.

1. ResvSetup model: models path and reservation setup procedures. Neither path nor
reservation refresh procedures are considered. Path and reservation requests may be rejected,;
however, that situation is not reported to either the sender or the receiver because error
notification procedures are not modelled in this version.

2. ResvSetupWithErrors model: models the same features of RSVP as the ResvSetup model
but it also models path and reservation error procedures by using Path and Resv Error

messages, respectively.

104



3. PathTear model: models the same features as the previous versions. In addition, it models
Path Tear Down procedures initiated by the sender application using a Rel Sender call.

4. ResvTear model: models the same features of RSV P as the previous versions. In addition, it
models the Resv Tear Down procedures initiated by the receiver application using a
RelReceiver call.

5. Refresh model: models the same features of RSVP as the previous versions except that
neither path nor resv tear down procedures are considered. It also models path and
reservation refresh procedures.

6. RSVP model: was described in section 3.3. It models the same features as the Refresh model
but it also models path and reservation tear down procedures. In addition, the model is
limited to one session. Thus, once a sender application closes a session it is not opened again.
Once the receiver application releases its current reservation it is not established again either.

7. RSVP with multiple sessions model: is the same as the RSVP model except that a sender
application may initiate a session which has been closed previously.

4. Simulation and analysis

Design/CPN was used to smulate and analyse the model. Interactive graphical and automatic
simulations were used during its development. In this section, the results of the simulations are
presented. Firstly, some results are shown using the message sequence chart (MSC) tool
provided by Design/CPN. Then, the results of the state space (occurrence graph), calculated for
the CPN model, are analysed briefly.

4.1 Message sequence charts

Message sequence charts (MSC) provide a mechanism to visualise the execution of selected
traces of communication scenarios [9]. The MSC tool provided by Design/CPN has been useful
to check and to visualise the sequence of RSVP events, which may occur during a single
simulation run. A MSC for RSVP is given in figure 14. It shows the message interchange
between the communicating entities (ie Sender, Router, and Receiver) intended to establish,
refresh, tear down, and release a reservation. Vertical lines on the picture represent
communicating entities. Small squares on vertical lines describe RSVP events (eg application
calls and time outs). Finally, horizontal lines are used to represent message flow. Time increases
from the top of the chart, to the bottom of the chart.

Figure 14 shows a simple RSVP message interchange. For smplicity, message overtaking has
not been considered for this simulation. The first eight communicating events (represented by
arrows and small squares) are concerned with reservation establishment (see fig. 14, event no 1-
8), which was explained in section 2. After that, a possible refresh sequence is presented by the
following eight events (event no 9-16). Next, aresv cleanup time out occurs as indicated by the
small square (event no 17). Thus a reservation is torn down in both the router and the sender
(event no 18). Following that, the receiver sends a resv refresh, which propagates to the sender
and reestablishes the reservation state on both the router and sender host (event no 19-22).
Finally, the sender application finishes a session using a RelSender call, and the sender sends a
PathTear message which will propagate to the receiver (event no 23-25).
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Since, the RSVP specification does not include any MSCs [4], the MSC tool is useful for
providing the sequences of protocol events between the different network entities.

4.2 Occurrence graph analysis

The state space (occurrence graph) tool of Design/CPN was used to investigate some dynamic
properties of the CPN model such as boundedness, liveness, and home properties as well as to
check the behaviour of the protocol. It was produced by Design/CPN on a Linux PC with 128
MB RAM.

4.2.1 Comparison of several versions of RSVP model

In section 3.4 , several versions of the RSVP model were introduced. Table 1 compares these
models in terms of the size of the (full) occurrence graphs (number of nodes and arcs), the time it
took to generate them, and the size of the strongly connected component (SCC) graphs. Each
node of the SCC graph includes all markings, which are mutually reachable from each other
[10][13].

It may be seen from table 1 that, in the first four versions of the model, the sizes of the OCC and

SCC graphs are the same. Thus there are no loops in the state space graph as expected. The next

three versions model RSVP’s soft state feature, based on refresh messages and state timeout.
Two things may be seen from table 1. Firstly, the sizes of the OCC and SCC graphs are not the
same, so there are loops in the state space graph. Those loops are the result of the periodic state
refresh and state cleanup. Secondly, the size of the state space has been increased. Those results
are expected.
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OCC graph SCC graph
M odel Nodes Arcs Secs Nodes Arcs Secs
ResvSetup | 11 10 0 11 10 0
ResvSetup | 17 16 0 17 16 0
WithErrors
PathTear 67 105 0 67 105 0
ResvTear 182 400 0 182 400 1
Refresh 613 3584 6 10 379 0
RSVP 13570 96837 536 2601 43493 69
RSVP 24576 199360 18105 1 0 988
(with
multiple
SEssions)
Table 1: A comparison of several versions of RSVP modedl.

In the following sections, the occurrence graph for the RSVP model (the shadowed row in table
1) isanalysed. This model includes all the features presented in section 3.3.

4.2.2 Behavioural properties of the model

A full state report for the RSVP model was generated. The statistical information about the size
of the full state space and SCC graph is shown in table 1 (the shadowed row). Since there are less
SCC nodes (2601) than OCC nodes (13570), it may be concluded that there are some loops. As
mentioned before, those loops are due to two reasons. Firstly, the RSVP entities at each node
have to send path and refresh messages to avoid the removal of the existing state information.
Secondly, any path and reservation state information (represented by the WAITINGRESV and
RESVREADY dtates) may be removed after the correspondent state cleanup occurs and
established again by refresh messages.

The state report also shows the home and liveness properties (see table 2). Marking 6 is the only
dead marking. This marking corresponds to the state where the sender has finished a session, the
receiver has torn down any existing reservation and all messages have been removed from the
communication places (see figure 15). Thus, for the initial marking, the protocol behaves as
expected (ie no deadlocks). Since this marking is also a home marking the protocol always
terminates correctly [10].

Home Markings (6]
Dead Markings (6]
Dead Transitions Instances None
Live Transitions | nstances None

Table 2: Home and liveness properties.

Table 3 shows some information about integer bounds. The minimal number of messages in the
communication places is zero, which corresponds of the terminal state to the system. The
maximal number of messages is 3 for the Dowstream communication places (SOutgoingM sgs
and RIncomingMsgs) and 2 for the upstream communication places (SlncomingMsgs and
ROutgoingMsgs). Those results are in alignment with figure 3 except that ResvConf and PathErr
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6

RSVPNetwork’SOutgoingMsgs 1: empty
RSVPNetwork’RIncomingMsgs 1: empty
RSVPNetwork’SIncomingMsgs 1: empty
RSVPNetwork’ROutgoingM sgs 1: empty
Sender'Sender 1: 1'CLOSED
Router’Router 1: 1'NOSTATEINFO
Receiver’Receiver 1: 1'CLOSED

Figure 15: Terminal marking state (node 6).

Places Upper Lower
RIncomingMsgs 3 0
RoutgoingMsgs 2 0
SlhcomingMsgs 2 0
SOutgoingMsgs 3 0
Sender 1 1
Router 1 1
Receiver 1 1
Table 3: Upper and lower integer bounds.
Places Upper multi-set bounds
RIncomingMsgs 1'PATHMSG+ 1'RESVERR+ 1'PATHTEAR
ROutgoingMsgs 1'RESVMSG+ 1'RESVTEAR
SlhcomingMsgs 1'RESVMSG+ 1'RESVTEAR
SOutgoingMsgs 1'PATHMSG+ 1'RESVERR+ 1'PATHTEAR
Sender 1'CLOSED+ 1'NOSTATEINFO+
1I'WAITINGRESV+ 1'RESVREADY
Router 1'NOSTATEINFO+ 1'WAITINGRESV +
1'RESVREADY
Receiver 1'CLOSED+ 1'NOSTATEINFO+
T'WAITINGRESV+ 1'RESVREADY
Table 4: Upper multi-set bounds.

messages have not been considered. The number of tokens located in the state places (Sender,
Router, and Receiver) is always one, corresponding to each RSV P entity in a particular state.

Table 4 shows some information about multi-set bounds. It shows the messages which can be
exchanged between the nodes, both downstream and upstream. The table also shows that all the
RSVP entities can be in all the expected states (eg WAITINGRESV date). It means, for
example, that a path sate can be established in any node. Those results are expected.

4.2.3 Overtaking of M essages

Given the size of the model, visual inspection was just used for some part of the OCC graph. It

was used to debug the model (eg finding errors in the arc inscriptions) and to check the

behaviour of the protocol. For example, RSVP does not provide any mechanism to deal with

message overtaking. Instead it uses refresh messages and periodic cleanups to solve that

problem. RSV P nodes can reach an undesirable state when some messages arrive out of order.

Checking the OCC graph may easily identify those states. In figure 16, the sender sends a Path

message (transition Sender’'Sender occurs). After that, it closes the session and sends a Path Tear
message downstream (transition Sender'RelSender occurs). The Path Tear message arrives at the
router before the Path message (transition Router’PathTear occurs). Once the Path message
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2:1->3
Sender'Sender

8:3->8
Sender'RelSender

17:8->15
Router'PathTear

48:15->32
RouterPathSetup’NewPath

32

Sender'Sender 1: 1'CLOSED
Receiver'Receiver 1: 1'NOSTATEINFO
Router'Router 1: 1'WAITINGRESV

123:32->31
Router’PathCleanup

120:31->66
Receiver'PathTear

287.66->77
Receiver'RelReceiver

313:77->6
ReceiverPathSetup’NoSession

Figure 16: Occurrence sequence showing message overtaking.

arrives at the router, a new path is established (transition Router’PathSetupNewPath occurs).
Marking 32 shows an undesirable state, since there is a path established in the router (Router is
in WAITINGRESV state). Instead, it is expected that, after a sender has closed a session, all
existing path and dependent reservations are removed by the Path Tear message and no further
path requests are generated by the sender. Fortunately, later on, the transition
Router’PathCleanup removes any state information in the router and the protocol is able to finish
in an expected terminal state (marking 6, see figure 15).

5. Conclusions

In this paper, Coloured Petri Nets have been used to provide an initial model of RSVP based on a
number of simplifying assumptions. The simplest network topology (one sender, communicating
with a receiver via a single router) and unicast operation was assumed, and only the basic
features of the protocol were modelled. The model was developed incrementally and checked at
each stage to reduce the possibility of modelling errors.

The main problem found during modelling was the lack of a well-defined specification of RSVP
[4], where only a narrative description is provided.

Interactive graphical and automatic simulations were used to examine behaviour and to debug
the model. Firstly, the MSC tool was useful for providing a graphical overview of the sequence

of RSVP events between different network entities. Secondly, the initial analysis of the model
based on the state space shows that RSVP terminates correctly. However, the sequence of events
described in figure 16 shows the existence of states which are undesirable, though temporary.
Further analyses are required to validate the current model. Given the size of the state space and
the limited computing resources, it may be necessary to explore some other existing techniques
to make the model tractable for state space analysis, such as reduction techniques [11] [17].
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This work extends the application of CPNs to a new protocol, proposed for providing QoS
guarantees over the Internet. Further work may include: modelling the RSVP service,
performance analysis of RSVP using time facilities provided by Design/CPN, employing state
space reduction techniques, and extending the RSV P model to a multicast network topology.
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Abstract

Toolsfor statespacesxploration,or reachabilityanalyserswork by incrementallycon-
structinga setof reachablestates Theapplicabilityof theseoolsis limited by thevaststate
spaceof real systems.Oneway to attackthis problemaredifferentreductionmethods—
anotherapproachs to comeup with techniquedor representinghe setof reachablestates
in acompactway.

The state—omarking—ofa high-level Petrinetcanbe viewed asa sequencef finite
multi-sets.A methodfor encodingmarkingscontainingstructuredvaluesis describedand
acomparisorto anearlierimplementatioris presented.

Keywor ds. Petrinets,reachabilityanalysis gncodingmulti-sets ordereddatatypes

1 Introduction

The limited amountof systemmemoryis a major bottleneckin reachabilityanalysis. Algo-
rithmsfor reachabilityanalysisand modelcheckingneedto keeptrack of the statesthat have
beenexplored. In thatway, they candetectcyclic behaiour andlimit theinvestigationof suc-
cessorgo truly new states.

Thereare sometechniqueghat only managethe setof reachablestatesand utilise simi-
larities betweerthe states.One of them, Binary DecisionDiagrams[1, Chapter5], hasbeen
successfullyappliedmainly in the verification of digital circuits. Techniquesappliedon the
analysisof softwaresystemsncludea statecompactiormethodfor productautomatg5] anda
methodknown asGraphEncodedTuple Sets[6].

Oneproblemwith theseso calledsymbolictechniquess thatinsertinga statemay involve
globalchangesslowing down disk-basedmplementationsAnotherproblemis thatstateshave
noidentities:thereis nowayto retrieve astatefrom thestructureby specifyinganindex number
Using sucha structurefor anything elsethan searchingor statesfulfilling a predicateor for
determiningwhethera particularstatehasbeenexploredis tricky.

*This researclwasfinancedby the NationalTechnologyAgeng of Finland(TEKES),the Nokia Corporation,
the Helsinki TelephoneCorporationandthe FinnishRail Administration.
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Explicit techniqueswhich storeeachstateseparatelymake it possibleto navigatein the
generatedeachabilitygraphandto performall sortsof querieson it afterwards. Whenthe
statesarestoredseparatelythey canbeassignedndex numbersandit is easyto encodeavents,
the edgesof the reachabilitygraph,astriples of two statenumbersanda labelidentifying the
action.

Thiswork describesnexplicit techniquea methodof encodingsequencesf multi-setsin
a string of binary digits. Symbolictechniquesappearmromising,but we believe that explicit
techniquedhave anadwantagen someapplicationssuchasin the analysisof generalsoftware
systemswhich cannotbecharacterisetly simplelaws andwhich make heavy useof structured
datatypes.Our method,implementedn MARIA [11], hasturnedoutto yield up to anorderof
magnitudesmallerencodingghanthe methodusedin PrRoD [15], althoughMARIA allowsthe
userto definedatatypesjustlik e in programminganguages.

Sinceour techniquesarenot specificto ary particularclassof high-level Petrinets,we try
to write in generalterms. Evenif all datatypesin MARIA have a finite domain,we shall see
thatour approactcanalsohandleinfinite-domaindatatypes,suchaslists.

2 TheReachability Graph

Thereachabletatespaceof amodelcanberepresentedsareachabilitygraph,adirectedgraph
whoseverticescorrespondo reachabletatesandedgescorrespondo actionsleadingfrom one
stateto another

In high-level Petrinets,the statesare calledmarkingsandthe actionsare calledtransition
instances A transitioninstanceconsistsof a high-level transitionand an assignmenftor the
variablesghatappeain thearcsandguardsconnectedo thetransition.

2.1 Managing the State Spacein the File System

Applying explicit analysistechniqueso modelscomprisingtensor hundredsof millions of
reachablstatesisuallycallsfor theuseof disk storage Typicalreachabilityanalysisalgorithms
requirerandomaccesso the setof statesxploredsofar. A similar structureis notrequiredfor
actions;for mostpurposesthey canbe storedsequentially

To optimiseaccesgo the storedstatespnecancalculatehashvaluesof the states Whenan
analysisalgorithmwantsto determinevhethera particularstatehasbeenexplored,it computes
a hashvalueof the stateandsearchegor it in a memory-basedatastructurethat mapshash
valuesto statenumbers.Only if a hashvaluematchis found, the disk addresof the encoded
stateis fetchedfrom a directoryfile andthe stateis retrievedfrom a statefile for comparison.

If theencodedstatesarevery small,the memory-basedapfrom hashvaluesto statenum-
bersmay exceedthe memorylimit beforethe statefile exceedsthe sizelimit imposedby the
file system.This problemcanbe addressetly maintainingthe mapin a disk-base®-tree[13,
Ch. 18]. In thatcase the systemmemoryconsumptiorremainsboundedhroughouthe analy-
sis,unlesssomedatastructuredor on-the-flymodelcheckingarekeptin themainmemory

Theedgesf thereachabilitygraph,consistingof sourceandtargetstatenumbersandof an
encodedransitioninstancearebeststoredin aseparatdile. Becausehelengthof theencoded
transitioninstancamay vary, alsothelengthis encodedn thefile.
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2.2 Encoding the Edges and Vertices
2.2.1 Mapping Itemsto Bit Strings

In orderto representhe verticesand edgesof the reachabilitygraphas sequencesf binary
digits, we have to definehow the entitiesthey consistof aremappedo suchsequences.

Places and Transitions If we denotethe setof the placesof a Petrinet modelwith 2 and
assumehatthereis a bijective mapping

op:P—{0,...,|P -1}

we canuniquelyrepreseneachplacewith a string of [log, |P|] binary digits. If |?| < 1, no
bits arerequired.The sameappliesfor transitionscharacterisetdy the set7 andtheordero.

Data Items A valueof afinite-domaindatatype D canberepresentedsa [log, |D|]-digit
binarynumber possiblyspanningseveralmachinewords. This requiresatotal order

<pCDxD

for eachdatatype D. For simpletypes,suchasintegersandenumerationgjefiningtheorderis
straightforvard. For structuredypes,suchastuples taggedunionsandfixed-lengthor variable-
lengthvectors,the ordercanbe definedlexicographically e.g. so that variable-lengthvectors
with lesselementscomefirst, andthatthe lastcomponenbdf a structureis the mostsignificant
one.This hasbeenimplementedn MARIA alsofor nestedstructuredypes.

Oncethereis atotal orderamongdataitems,we candefinea mappingfrom the dataitems
to integers:

0p:D—{0,....|D|-1}:d— |{ke D|| k<p d}|.

It is easyto seethatthe mappingis bijective andthatit preseresthe orderof themappedtems.
Because< p is atotal order D canbewrittenas

D = {do,...,0nh-1}
suchthatd;_1 < d; for all 0 < i < n. Now 0 mapseachd;, 0 <i < n, to auniquevalue:

op(di) = |{ke D[ k<ypdi}|

= |{do,...,di_1}|
= I

Sinceoy(di) =1, it holdsthato,(di) < 05(d)) if andonlyif i < j, ordi <4 dj. Thus,04 isan
orderpreservingnapping.

MARIA allows the domainsof datatypesto be restrictedwith type constraintsjnternally
representedsan orderedlist of closedranges.Our implementatiorof o, (d) for constrained
typescompareghe valued to the endpointsof eachrangein the constraintand performssub-
tractionsandadditions.

Mappingsfor unconstrainedtructuredvaluesare constructedhroughmultiplication and
additionfrom mappeccomponenvalues.Thisis similarto thetechniqueepresenteth [2], but
we managealsodeeplystructuredvaluesandconstraintonsistingof severaldisjointranges.
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Structuredypescaneasilyhave a biggernumberof distinctvaluesthanonemachineword
canrepresent.Our implementationdoesnot cornvert valuesof suchtypesto a single binary
number but it handlesthem componenby component.For example,let therebe a variable-
lengthvectortype

K
D = Dk
i=0
Dy = Dex--XDe
—_———
i times

with |D| sobig thatit doesnot fit in a machineword. To corvertavectorvalue(ds,...,d) €
D to a sequencef binary digits, our implementatiorencodes asa [log, k]-bit numberand
cornvertseachelementds, ..., d; separatelyo abit string. If alsothe elementype D is alarge
structuredype, the elementsarehandledin a similar way; otherwise the mappingo,,, canbe
applied.

Taggedunionsare handledin an analogousvay: First, the active componentis identified
with a binary number Thenthe encodedepresentationf the active componenis appended
to the bit string. Tuplesand fixed-lengtharraysare simpler, sincethe numberand type of
componentsemainconstant.

All datatypesthatcanbedefinedin MARIA have afinite domain.Also thevariable-length
buffer datatype is assigneda capacity the maximumnumberof elementsa buffer value can
contain. If therewereary infinite-domaindatatypes! they could be handledin a similar way
with large structuredypes. For instanceanunboundedstring or linkedlist of anitem type D
canberepresentetly encodingeachitem separatelyandby usinga specialvaluefor signalling
the end of the sequencelf |D| canbe representedn a machineword, it canbe usedasthe
specialvalue.Otherwisejt is easiesto useoneextrabit perdataitem astheendmarler.

2.2.2 Encoding Edges

An edgeof the reachabilitygraphconsistsof two numbersidentifying the sourceand target
statesandof a transitioninstanceconsistingof a transitionidentifierandan assignmentor the
variablesrequiredfor firing thetransition.

If thereis no statisticalinformationavailableon thetransitionenablingsthetransitionscan
beassumedo occurwith equalprobabilities.In thatcase our representationf the transitions
t € 7 with [log, |T|]-digit binarynumber+(t) is closeto theoptimumdefinedby theentropy
of thesystem[ 14, Ch.6-7].

Whenthevariablesof the transitioninstanceareprocesseth a systematiorder it suffices
to encodeonly the valuesof the variablesandto appendhemto the bit string representinghe
label of the edge. Similarly, if the analysergeneratesill successorsf a statein one step, it
sufficesto storethe sourcestatenumberonly oncefor a bunchof edgesoriginating from the
state.Keepingtrack of the numberof stateggeneratedgofar allows the encodetto uselessbits
for representinghe statenumbers.

lwe restrictedoursehesto finite typesto avoid difficultieswith verificationalgorithmsthatoperateon unfolded
nets.
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If the formalismallows someof the variablesof an enabledtransitionto be undefined—
thatis, if all arcexpressionandgatescanbe evaluatedwithout dereferencing variable—the
encodemustuseonebit for signallingwhetherthevariablehasbeenassigned value.

All thisdatacanbeencodednto onesequencef binarydigits. Whenthebinarydigit string
is writtento afile, it is goodto alignit atabyte or machineword boundary

In someapplicationsjt is not necessaryo storethe labelsof the edgessincethey canbe
reconstructetdy analysingall enabledransitioninstancesn thesourcestate andby findingthe
instanceghatleadto the specifiedargetstate.This is computationallyexpensve, but if it only
hasto be donewhendisplayingto the usera counter@amplepathof at mosta few hundredor
thousandstepsthe costof saving tensof megabytef disk spacemightbeonly afew seconds
of wastedprocessotime.

2.2.3 Encoding Vertices

In the caseof high-level Petri nets, the verticesof the reachabilitygraph are markings. A
markingis a family of multi-sets,indexed by places.A multi-setover a setis a mappingfrom
theitemsof thesetto thesetof naturalnumberspu: A— N. Unlike normalsetsamulti-setmay
containmorethanoneinstanceof anitem. The numberof timesanitema € A is containedn
amulti-setp is calledthemultiplicity p(a). Theunionoperationof normalsetscanbeextended
to multi-setsasan operationthataddsmultiplicities.

Whenthe placesp € P are mappedto numberso,(p), the marking canbe viewed asa
sequencef multi-sets. The multi-setat the positionos (p) of the sequenceorrespondso the
local markingof the placep.

A straightforvard implementatiorencodessachmulti-setin the sequenceeparatelyand
appendst to a bit string representinghe marking. The detailsare shovn in the following
section.

3 Storing Markings

Storing sequencesf multi-setsin finite spaceinvolvesa fundamentaproblem: the rangeof
a multi-set i is the infinite setof naturalnumbers. An implementationin a finite-memory
computemustrestrictthechoiceof themultiplicities p(a) to afinite set,typically 0 < p(a) < 2"
with n=160orn= 32.

Sincethe multi-setsin the reachablenarkingsof practicalmodelsusuallymapmostitems
to zeromultiplicity, it makessenseo represeneachmulti-setasa sequencef pairs(u(a), a)
having u(a) > 0.

An implementatiorthatenforcesalimit 0 < p(a) < 2" couldencodehemultiplicity of each
(u(a),a) pairin n binary digits andmark the endof the sequencavith a string of n zerobits.
Sucha simpleencodingrequires(|?| + d) n bits for storingthe multiplicities of amarkingof a
|P|-placenetcontainingd distincttokens.
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3.1 Representing Multiplicities

A multi-setp over a setA canbe characterisetby two quantities:the cardinality or the total

numberof items
t=>5 @
2

d=[{ac Al u(@) > 0}|.

andthe numberof distinctitems

The cardinality cantheoreticallybe arny naturalnumber but a finite-memoryimplementation
limits it, typically 0 <t < 2" for somen.

An userdefinedcapacityconstiaint, aBooleanconditionont, canreducehenumberof bits
requiredfor representing. If therearem differentpossibilitiesfor the total numberof tokens
in a place,the actualnumbert canbe representedising [log, m| bits, sincea k-digit binary
numbercanrepreseng® differentthings.

Encodingthe cardinalityt beforethe numberof distinctitemsd hasone advantage:it is
straightforvardto seethatl < d <t whent is nonzero.Therefored canberepresentedsing
[log,t] bits.

For thegreatesmultiplicity pmax in the multi-setit holdsthat

H < Mmax< 1+t—d.

If umax IS atits upperboundl +t — d, the otherd — 1 distinctitemsmusthave a multiplicity of
1in orderfor the total numberof itemsto bet. Similarly, if ymax= [é] the multiplicities of
theremainingitemsmustbe equalto pmax Or Umax— 1.

So,thegreatestnultiplicity pmax Canalwaysberepresentedvith

fogy(2+1-a-[])]

binary digits. After decodingumax the decoderknows the remainingcardinalityt’ =t — pYmax
andthe numberof remainingdistinctitemsd’ = d — 1. If the multiplicities are encodedin
descendingrder the encoderalways selectsthe greatesiof the remainingmultiplicities and
represent# usinglessandlessbits.

This encodingof multiplicities appeardo be quite compactevenwhencapacityconstraints
arenotused.For representingl = 5 multiplicities, thesimpleencodingdescribedn Section2.2
would use6n bits. The optimisedencodingneedsn bits for representinghe cardinality As-
sumingthatit is 8, the numberof distincttokensis encodedn 3 bits. The greatesmultiplicity
lies between[%] = 2 and8—5+ 1= 4; thereforat canberepresentedith 2 bits. Clearly, the
improvedencodingequiredessthann+ 3+ 5- 2= n+ 13bits. Thedifferencebetweertn and
n+ 13is tangiblealreadywhenn = 16.

Our encodingschemefor multiplicities is a variable-lengthcode. In the bestcase,when
d =1 or d =t, our codeonly requires[log,t]| bits for representingl—no further bits are
requiredfor representinghe multiplicities. Figure 1 compareghe performanceof our code
againsta fixed-lengthcodethatmapsmultiplicity distributionsto a zero-baseddex numbers.
For instancethereare? differentmultiplicity distributionsfor multi-setsof cardinality5, if the
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Figurel: Numberof Bits Requiredfor Representind/ultiplicities

multiplicitiesaresortedn descendingrder:5,41,32,311,221,2111,11111.Eachdistribution
canberepresentetly a [log, 7]-bit number

The averagebit consumptiorof our codeis slightly morethantwo timesthe sizerequired
by thefixed-lengthcode.Theresultis notsobad,sincethefixed-lengthcodeis computationally
muchmoreexpensvethanourmethod.Also, thereachablenarkingsn typical Petrinetmodels
tendto consistof ordinarysets—aroptimal casefor our code.

3.2 Representing Empty Multi-Sets

In mary practicalmodels,thereis a substantiaihumberof empty placesin mostreachable
markings. With our optimisedmultiplicity encoding,anemptyplacerequires|log, m| bits of
storagejf therearem differentpossibilitiesfor thetotal numberof tokensin the place.

As it is ratheruncommonto definetight capacityconstraintan models,representinghe
cardinalitiestypically requiresone machineword per place. If the machineword lengthis n
bits, we would still need|?| n bitsfor representingnemptymarking. Thereoughtto beamore
compactencodingfor emptyplaces.

Our solutionis to startthe encodedmarkingwith the numberof emptyplacesng, 0 < ng <
|P|. Thisrequires[log,(|?|+ 1)] binarydigits. Thereare

() = e —aun

waysto pick asubsebf ne emptyplacedrom thesetof all | 2| places.It is possibleo enumerate
thesesubset@ndto represeneachof themasa binarynumberwith

log |P|
2\ e
digits. It is easyto seethatthis codeoccupiesat most|?| bits, sincethe total amountof all

subsetof theset?
|2 <|1>|)
neZ:O Ne
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evaluatego exactly 2/”1. For |?| = 1 we have 14 1 = 21, andassuminghatthe claim holdsfor
asetof magnitudg ?|, it follows that

|T|+1(|zp|+1> B <|£P|+1>+ 2 <m+1)
neZo Ne 0 nez_o ne+1
2 1o 121 (p
_ 1+Z<| ‘)*Z(' \)
ne:0 ne ne:0 ne+1

= 14274 (27— 1)
2171+,

Insteadof constructinghis kind of a fixed-lengthcode,we developedandimplementedn
MARIA asimplevariable-lengtrencodingschemewhich we shallpresenbelow.

3.2.1 A Variable-Length Code

Clearly, if thenumberof emptyplacesne happendo beO or | P|, thereis only oneway to select
the subset,andit canbe identified by a zero-lengthcode. In the following, we assumethat
0<ne<|P|.

If % |P| < ne < |P|—thatis, therearemoreemptyplaceghannonemptyones—therit makes
sensdo explicitly representheidentity of thenonemptyplaces.Theencodingwe have defined
sofaridentifieseachplacep € 2 with anindex number0 < op(p) < |P|, andit encodeghe
multi-setsassociatedavith the placesn ascendingrderof index numbers.

Thesmallestindex numberi; of anonemptyplacemustbein therange

0=I11<iz<hy=ne

sincethereare at mostne empty placesin the beginning of the sequence.So, i1, the index
numberof thefirst nonemptyplace,canbestoredusing|log,(h; — |1 + 1)] binarydigits. What
aboutthefollowing nonemptyplacesy.1? It holdsthat

her1 > 1 =ik +1,

sincethe indicesare processedn ascendingrder It is easyto seethatthereareiy — (k— 1)
empty placesbeforei, sinceig is the kth smallestindex of a nonemptyplace. Thus, of the
placedfollowing ik, ne — (ix — (k— 1)) areempty andfor theupperlimit hy1 > ik 1 we have

M1 = lkpa+ne—(ik—(k—1))
= ik+1+ne—ik+k—1
== ne+k.

Sinceh; = ng, it is easyto seethathy 1 = h+ 1.

Similarly, if 0 < ne < % |P|, we representheindicesof emptyplaces.Thisis analogougo
the previouscasewe just startwith hy = |P| — ne.

This techniqueis illustratedin Figure 2, which demonstrates casewith 13 places,6 of
whichareto beidentified. Theonewith thesmallesindex i; mustfulfill thecondition0<i; <
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7. A fixed-lengthcoderepresenting; takes3 bits. Unfortunatelyfor us, i, is at the smallest
possibleposition, andthe rangefor the next index is of the samesize: 1 < i, < 8. Sincei»

occursalmostatthe endof its range the uncertaintyover the positionof theremainingindices
reduces.Our approachrequiresl bit for storingiz andis. After i4 hasbeenstored,no further
bits are required. Our encodingusesa total of 8 bits for identifying the empty places. The

fixed-lengthcodewould use {Iogz (163)-‘ = 11 bitsfor this case.

In the worstcase whenall m placesto be identifiedoccurin the first m positions,our ap-
proachrequiresthe samenumberof bits for representingachindex, atotal of m[log,(m+ 1) ]
bits. In the bestcasewherethefirst index occursat the endof its range,the total requirement
dropsto [logy,(m+ 1)] bits.

3.22 Keepit Simple

Figure3 compareghe spaceconsumptiorof our variable-lengtrencodingschemeagainsthe
fixed-lengthcodediscussedn the beginning of this section.We have seenthatthefixed-length
codeneverusesmorethan(log,(|?| + 1)] + | P| binarydigits. Its averagebit consumptions

l0gs (2] +1) + ‘?‘HMZT ()|

Theaveragespaceconsumptiorof our variable-lengtlcodeappeard¢o be morethanonebit
perplace.Evenif ourimplementatiormadeuseof fractionalbits, the worst casefor |P| = 20
would requirealmost39 bits, nearlytwo bits per place. This raisesa thought: Why not use
exactly onebit perplacefor markingemptyplaces?The decodemwould not evenneedto know
thenumberof emptyplacesin advance which allows usto save further [log, (|| +1)] bits.

This simplecodecaneasilybeoptimisedfurtherfor placeshaving a capacityconstraint.No
signallingbit is requiredfor placesthatareconstrainedo be nonempty Also, if it is possible
to representhe cardinalityusingno morethan,say 2 bits, theemptinesdit canbe omitted.

A furtheroptimisationcanbe maderegardingplaceswith no capacityconstraintsIn prac-
tice, placesin Petrinetsarelikely to containa smallnumberof tokens. Using a shorterrepre-
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sentationfor small cardinalitiesseemdo make sense.Above we have suggestec codeof at

most1 bit for representinghe cardinalityt = 0. This codecanonly tell whethert =0ort > 0.

In thelatter case morebits arerequiredfor encodingthe exactvalueof t. Ourimplementation
in MARIA uses4 morebits for representinghe valuesl <t < 8, 10for 9 <t < 264,19 for

265< t < 65800,and4 + n bits for representinghe values65801< t < 2",

3.3 Redundant Places

Certaincommonlyappliedmodelling practicesntroduceredundang in the markingsof Petri
netmodels. Someof it canbe removed by transformingthe netto an equivalentone, but not
everything.For instancejf thereareno inhibitor arcsin theformalism,it is difficult to remove
complemenplaces.

All practicaimodelsarelik ely to containredundanplaces.Thestateencodewould perform
betterif it could somehav omit all redundantplacesfrom the encodedmarking. The only
problemis that there must be a mechanisnfor computingthe contentsof redundantplaces
whendecodinghe marking.

MARIA solvesthe problemby allowing the initialisation expressionf placesto refer to
the markingsof otherplaces.Whena markingis aboutto be addedto the reachabilitygraph,
the encoderensureghatthereis no controversyin the initialisation expressionf redundant
places,andissuesan error messagef thereis. Thus,theseusersupplied‘invariants”’canbe
viewedasanadditionalsafetychecksuppliedby theanalyserjustlik e capacityconstraintsand
checksin the expressiorevaluator

4 An Example

Figure4 illustratesa high-level Petrinetmodelof a distributeddatabasemanagemergystem,
originally presentedy Genrich,LautenbachandJenseri3, 9]. In the initial marking of the
model,all placesexceptexclusion andinactive areempty The latter placeis initialised with
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Figure4: Model of a DistributedDataBaseManagemengystem

amulti-setsumof theitemsin the setD representinghe databaseseners. In otherwords,all
databasesenersareinactive in theinitial stateof themodel.

It is fairly easyto seethatwhen? is finite, the reachablestatespaceof the modelis finite.
The modelis alsobounded:the placeswaiting andexclusion containat mostonetoken, the
placeinactive containsat most|?| tokens,andthe otherplacesmay containat most|D| — 1
tokens.

4.1 Encodingthelnitial Marking

Theinitial markinghas3 nonemptyplaces:unused, inactive andexclusion. Theseplacesare
actuallyredundant:The placeunused andthe arcsattachedo it could be removed from the
modelwithout affecting its behaiour. The placeexclusion is kind of complementaryo the
placewaiting, andinactive containsall thoseitemsof ) not containedn the placeswaiting
andupdating. Utilising this information, our schemewould encodethe initial markingin 5
bits, onefor eachnon-redundanplace,signallingthatthe placesareempty

If our encodingschemas told nothingaboutthe redundany, it usesatotal of |?| = 8 bits
for identifying thethreenonemptyplaces.

The cardinalityof the multi-setassociateavith the placeinactive ist = d = |D|. If there
is a capacityconstraintd < t < |D|, thesetwo quantitiescanbe encodedn [log, (|D|+1)] +
[log, |D|] bits; otherwisene(|D|) + [log, | D|] bits arerequiredwheren, tells how mary bits
our variable-lengttcodefor cardinalitiestakes:

4 if1<t<8

ne(t) = 10 if 9<t <264

¢ 19 if 265<t < 65800
44+n if 65801<t < 2"
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All itemsin the multi-setfor inactive have the multiplicity 1. Althoughtheitemsin the multi-
setrepresenthewholesetD, ourencoderepresenteachvalueseparatelyusing| D| [log, | D| |
bits.

For the placeexclusion, we havet = 1. This leavesno choicefor the numberof distinct
tokens,which is also 1. Encodingthe item takesno bits, sincethe datatype associatedvith
the placehasonly onevalue—theemptytuple (). If thereis a capacityconstrainthatdictates
0 <t <1, onebitis enoughfor encodinghemulti-set. Otherwise is representedith 4 binary
digits, sinceit is in therangel <t < 8.

Theplaceunused is initially markedwith amulti-setof thecardinalityt = |D|>— | D|. The
reachablanarkingsof the modelappeatto fulfill the capacityconstraint = 1+ \@|2 —-2|D|v
t = |D|? — |D| for this place. This capacityconstraintallows t to be representedh one bit.
The encoderdoesnot know that the numberof distinctitemsis d =t; it assumed < d <t
andthereforerepresents asa [log,t]-digit binarynumber Eachitemin the multi-setrequires
[2log, |D|] bits of storageassuminghatthemodelusesanunconstrainedatatypefor storing
the pairs? Laterwe shall seethatrepresentinghis redundanmulti-setsubstantiallyincreases
the spacerequirementsin the following summary we considera modelwherethis placehas
beenremoved.

To summarisethe initial marking—excluding the placeunused—fits in 11+ nc(|D|) +
(|D]+1) [log, | D|] bitswhenno capacityconstraintor redundang informationareexploited.
With tight capacityconstraints,only 8+ [log, (|D|+1)] + (|D] + 1) [log, | D|] bits are re-
quired. The difference3+ n¢(|D|) — [log, (|D] +1)] is always positive in our implementa-
tion, sincenc(t) > [log,t]. For |D| = 10, utilising the capacityconstraintsaves9 bits. When
theredundanyg informationis utilised, theinitial marking(whereall non-redundanplacesare
empty)canbeencodedn only 5 bits, independenof | D| andn.

4.2 Encoding All Reachable Markings

Our schemdor encodingmarkingshasbeenimplementedn MARIA [11, 12], areachability
analysefor AlgebraicSystenmNets[10] with userdefinabldinite-domainstructuredatatypes.
We comparethe performanceof MARIA with PRoD [15], areachabilityanalyserfor akind of
Predicate/TansitionNets[4].

Tables1 and2 illustrate the performanceof our stateencodingscheme.We analysedhe
model dbm net distributed with PROD without and with unfolding, and three variantsof a
correspondingnodelwith MARIA: withoutandwith capacityconstraintsandwith redundant
placesndicated.

Thefiguresin Table2 arefor modelswheretheredundanplaceunused hasbeenremoved.
The spaceconsumptiordropsto lessthanafifth whenthis placeis omitted. A naturalexplana-
tion is thatthis placehasa complementargharacterit containsalarge numberof tokensin all
reachablanarkings.If PROD or MARIA usedtheinitial markingasareferencevhenencoding
othermarkingsthedifferencedetweernthetwo tableswould be considerablysmaller

Thefiguresdo notincludethe spaceaequiredfor thegraphdirectory In PROD, it consistf
afixedheademndof arecordof 8 machinewords—typically32 bytes—peistate.In MARIA,
thedirectoryis atableof hashvaluesandfile offsets.Ona 32-bitsystemwith 32-bitfile offsets,

2This numberwould dropto [log,(|D|? — |D|)] if we definedthe domainof the placeto be a multi-setover
(D x D)\ Usep{(s,9)} insteadof D x D.
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Tablel: ReachabilityGraphSizesfor the DistributedDataBaseModel

Model Size EncodedStateSpacean Bytes

|D|  States PROD (unfolded) MARIA (cap.) (red.)

1 2 19 3 4 2 2
2 7 99 29 28 15 9
3 28 645 844 223 168 86
4 109 3,925 1,745 1,403 1,090 414
5 406 21,519 10,151 8,439 7,487 2,396
6 1,459 107,967 54,307 46,109 42,292 10,807
7 5,104 505,297 280,229 208,807 198,599 43,569
8 17,497| 2,239,617 1,296,227 908,810 873,816 168,089
9 59,050/ 9,507,051 5,605,363 4,423,852 4,308,020 738,397
10 196,831| 38,972,539 23,134,187 18,006,540 17,685,747 2,683,381

Table2: ReachabilityGraphSizesfor the Model Excludingthe Placeunused

Model Size EncodedStateSpacean Bytes

|D| States | PRrRoD (unfolded) MARIA (cap.) (red.)
1 2 17 3 4 2 2
2 7 76 21 21 14 9
3 28 389 139 150 111 86
4 109 1,848 761 724 543 414
5 406 8,113 3,651 3,565 3,159 2,396
6 1,459 33,548 16,045 15,725 14,266 10,807
7 5104| 132,693 76,067 60,786 55,683 43,569
8 17,497 507,400 357,219, 233,702 217,213 168,089
9 59,050| 1,889,585 1,511,227 998,945 952,558 738,397
10 196,831| 6,889,068 6,009,887 3,559,389 3,526,147 2,683,381
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thebookkeepingoverheads 8 bytesperencodedstate.

Whenthereis no capacityconstraint,our implementationrepresentshe cardinality of a
multi-setusinga variable-lengticode,which occupiesl + 4 bits morethanonemachineword
in theworstcase.The otherextremeis a capacityconstrainthatallows only onevaluefor the
total numberof tokens. Defining a capacityconstraintcanthus save morethanone machine
word for eachnon-emptyplacein themarking.

We alsotranslateda variantof the ISDN-DSS1 protocolmodel[8] from PROD to MARIA
format. The encodedepresentatiof the 20,084 statestakes 37.2 bytesper statein PROD
(38.3for anunfoldedmodel)and9 in MARIA, or 13.7if no capacityconstraintaredefined.

Therun-timeoverheadf our encodingmethodis negligible, asourimplementatiormakes
heary useof automaticallygenerateddynamicallylinked C code. Whenanalysingthe above
mentioned SDN-DSS1 model,theanalyzerspendsessthan4 percenif its total timein theen-
coder This canpartially beexplainedby therelatively large numberof placesandtransitionsn
themodel,which shiftsthebottleneckio transitioninstanceanalysis. Whenanalysingdifferent
variationsof thedatabasemodel,we experiencedhatencodingstatesakes9—-22percenof the
totaltime. Theworstfigurewasobtainedor amodelthatincludedtheredundanplaceunused
andsupplieda marking-dependennitialisationexpressiorfor it.

5 Conclusion and Future Work

We have presente@ schemdor condensee@xplicit storageof markingsof high-level Petrinets,
representinghe multiplicities of multi-setitemsin a compactway. Eventhoughour scheme
doesnot utilise ary similaritiesbetweenor insidemarkingsin arny way, animplementatiorof
it performsup to anorderof magnitudebetterthana previously implementedschemeavenfor
simplemodels.

Our ideaof using [log, |D|]| binary digits for representingnulti-setitemsbelongingto a
finite set® assumethateachitemoccurswith equalprobability Thisis oftennotthecasewith
practicalmodels,andit would be worth investigatinghow well Holzmanns ideason recursve
indexing andcompressiottrainingruns[ 7] couldbe combinedwith our approach.
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Abstract

An implementation of compositionality for Generalized Stochastic Petri
Nets (GSPN) and for Stochastic Well-formed Nets (SWN) has been recently
included in the GreatSPN tool. Given two GSPNs (or SWNs), and a labelling
function for places and transitions, it is possible to produce a third one as su-
perposition of places and transitions of equal label, for SWN colour domains
and arc functions have to be treated appropriately.

The main motivation for this extension was the need to evaluate a library
of fault tolerant “mechanisms” that have been recently defined, and are now
under implementation, in a European project called TIRAN.

The goal of the TIRAN project is to devise a portable software solution
to the problem of fault tolerance in embedded systems, while the goal of the
evaluation is to provide evidence of the efficacy of the proposed solution. Mod-
ularity being a natural “must” for the project, we have tried to reflect it in our
modelling effort.

In this paper we discuss the implementation of compositionality in the
GreatSPN tool, and we show its use for the modelling of one of the TIRAN
mechanisms, the so-called Local Voter.

1 Introduction and motivations

TIRAN (Tailorable fault tolerance framework for embedded applications) is an Euro-
pean ESPRIT project, involving six European partners from industries and universi-
ties, that is defining and implementing a new approach to fault tolerance in embedded
systems. The TIRAN solution is built around a software solution which provides fault

*We acknowledge contribution of the EEC project 28620 TIRAN.
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tolerance capabilities to automation systems. TIRAN basically consists of a library
of functions that add fault tolerant behaviour to software, a support for their exe-
cution, and a language to specify how to react to errors: this is what is called “the
TIRAN framework.” The framework is meant to allow application programmers to
equip their programs with a variety of software-based solutions for fault masking, er-
ror detection, isolation and recovery. The framework is currently under development
on different hardware platforms, while two pilot applications are being developed to
test the framework[5].

Modelling in TIRAN is meant for validation, evaluation, and library documenta-
tion. Models are built out of a software specification document. Validation is done
with respect to a number of “environment scenarios”, that include application model,
fault model and recovery action specification.

The role of the modelling team in the project is to provide models of the single
mechanism and of the system software, in such a way as to be easily composed
with models of the different target applications developed by the partners as test
cases for the library. Moreover each mechanism is usually a set of tasks that interact
through the communication primitive offered by the run time support. Due to the high
complexity of the problem, coloured nets [18, 19] have been used for most mechanisms.
Important required feature of coloured nets include efficient solution mechanism [7, 8],
as well as modularity, reuse and easy modifications of models.

Figure 1 shows the compositional approach to TIRAN modelling. Starting from the
specification of the components (whether they are TIRAN mechanisms or hardware
specification, or user behaviour) a model per each component is built. The different
models are then integrated into a single GSPN/SWN model for evaluation of the
whole TIRAN framework. There are a number of boxes all tagged as “model con-
struction,” but they may actually require different construction techniques since the
input specification are of different types: the specification of the mechanisms is done
with UML diagrams (typically state diagrams and message charts) plus some textual
comments, fault specification is instead taken from the requirements specification
document, that describes the type of faults and the type of the affected component
in a semi-formal language, hardware specification has not been included yet, while
the user specification is again based on the requirement specification document.

Most of the mechanisms are built as a collection of tasks, and usually there is
a state diagram per task, plus a specification of the interactions among them: the
corresponding models are built using GSPN/SWN and the compositional facility of
GreatSPN described in this paper.

The construction of the integrated model is, in general, a more complicated task,
since this is where model reuse really comes into play. To adequately support this
composition the PSWN class [1] has been recently defined, that allows the definition
of parametric colour classes, and for which a compositional operator has been defined
that allows to import and export values and types. Unfortunately no implementation
is yet available for PSWN.

SWN were a natural choice for their efficient analysis techniques both for state
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Figure 1: Compositional modelling in TIRAN

space generation and for performance evaluation based on aggregated Markov chains,
but the tool GreatSPN [9], that nicely supports state space generation exploiting
symmetries, steady state computation exploiting lumpability, and discrete event sim-
ulation with confidence interval computation, has also a number of weak points, since
there is: a) no support for modularity, b) very few tools for debugging the model
(no invariant computation or check, no reachability analysis is possible apart from
checking the properties that are more relevant for performance evaluation, typically
the presence of an home state, or to do an inspection of the reachability graph written
in ASCII form), and ¢) no concept of a parameterized “library of models”.

To overcome this weak points a number of activities are planned and/or are under
implementation by the GreatSPN group, in particular: 1) to implement composition
over places and transitions for GSPN and SWN 2) to implement PSWN, recently
defined in [1], to allow reuse of coloured models in different contexts 3) to export
GreatSPN model to PROD nets [23], so as to apply all PROD tools for reachability
analysis 4) to export GreatSPN model to AMI-nets [12], so as to apply the P-invariant
computation for coloured nets [11] that is available in CPN-AMI [12]. 5) to extend the
definition and to implement the PSR methodology [13] for the modelling of layered
hardware and software architecture.

This paper discusses the implementation of the first point, and shows its use in a
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non-trivial modelling case taken from the TIRAN library: a mechanism to implement
application replication and voting.

Of the remaining points, the export to PROD nets is at the latest stages of im-
plementation, while the export to AMI-nets has not started yet. For what concerns
PSWN, their implementation is a non trivial extension of the composition operator
that has been implemented. Indeed the compositional rule implemented is not very
sophisticated from the point of view of the treatment of the colour classes: there is
no concept of parametric colour classes, nor of import and export values and types,
as it is the case in the PSWN class defined in [1].

There are a number of techniques proposed in the literature for the composition or
compositional analysis of high level models: [15, 10, 2, 6, 4, 20], and a very thorough
survey of these methods can be found in [20], but in this paper we concentrate only
on tool support for compositional construction, and not for compositional analysis.

To the best of our knowledge there is no other tool offering the possibility of com-
posing stochastic coloured nets based on labelling, although composition based on
labelling is a well established technique for Petri nets [3], and there is an implemen-
tation available for a class of high level nets called M-nets [4], that do not include a
notion of time, and that have been used to provide a semantic to the programming
language B(PN)? [4].

However there are tools to assist modular modelling also in a stochastic context.
CPN-AMI gives the possibility to paste modules next to each other in one model
and use the modular services of the graphical interface for the fusion of places or
transitions [12]. Design/CPN makes use of hierarchy to assist the user to build
complex models, a transition that represent a complex activity may be replaced by a
subnet [14], and a similar approach is taken in HiIQPN [17], that offers also a larger
number of performance evaluation features. UltraSAN models may be combined using
the operations replicate and join, these operations provide common places that can
be used for communication between the submodels [22].

The choice of GreatSPN was taken based on practical consideration (like the avail-
ability of the source code and of their knowledge), but mainly because of the need to
have aggregated symbolic state space generation like the one provided by GreatSPN
for SWN (the same analysis is also provided by CPN-AMI, but through an export
to GreatSPN). An example of the importance of aggregated, symbolic state space
generation will be given in the example section.

Section 2 introduces the compositional rule for SWN and its implementation in
GreatSPN. Section 3 describes the Local Voter mechanism, as given in the TIRAN
specification document, while Section 4 shows and discusses the SWN models of the
local voter. Section 5 concludes the paper.
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2 Composition for SWN in the GreatSPN tool

2.1 Composition of two labelled SWN

The composition rule proposed is centered around the classical idea of “matching
labels”: transitions and places are labelled and pairs of transitions (places) with
matching labels are superposed. Let Ly (Lp) be the set of labels for the set of
transitions T' (of places P), then we can define the labelling function A, under the
hypothesis that Ly and Lp are disjoint, as:

T —P(Ly) if 2€T

Az) _{ P —P(Lp) if e P (1)
that implies that more than one label can be associated with a single place or tran-
sitions (we call this aspect “multilabelling”, and it should not be confused with mul-
tilabelling in Petri Boxes [3], that refers to bag of labels). The formal definition of
superposition is not given here for space restriction reasons, since it is a simplification
of the one presented in [1] (that does not consider parametric colours), while we recall
here, through examples, the main ideas.

First, we concentrate on the case in which only transitions are superposed. Let N =
(P,T,Pre,Post,Inh, pri,C, c¢d, w, ) be a labelled SWN obtained by the composition
of two labelled SWN A; and N;; then the elements of A are obtained as follows.

The set of places P is the union of the sets of places, i.e. P = P P, (renaming of
place names may be necessary in order to avoid matching names). The colour domain
function cd gives edq(p) if p € Pi, cd2(p) otherwise.

The unlabelled transitions are considered non-observable with respect to the com-
position, and those whose labels do not appear in the other operand, are not involved
in superposition. These transitions are simply copied into T' (as for places, renaming
may be necessary). To show how the operation proceeds to superpose transitions
let us assume that A; is multilabelled, while N3 is not, and the labelling is non-
injective. Let T5(l) denote the set of transitions t’ of Ty with [ € A(t), where A(t)
gives the set of labels of t. In A there will be a replica of t € T} for each element
in Quer),m(n2(y 12(1), where @ is the Cartesian product. An example is shown in
Fig. 2, for transition tl: A(tl) = {l1,12,[3} and the above defined Cartesian product
has the elements {t2,t4} and {t3,t4}. In the composed net t11 (t12) is obtained by
superposing t1,t2 and t4 (t1,t3 and t4).

If two arcs connected to different transitions that are involved in the same super-
position have identical variable names in their arc expression, then these variables are
renamed in the arc expression of all the arcs connected to one of the two transitions.
If these variables appear in the guard of the transition whose arcs’ expressions are
changed, the renaming is performed in the guard as well. As an example, in Fig. 2,
during the superposition of t1,t2 and t4 the variable x of the arcs and guard func-
tion connected to t2 is renamed to x1. (As it will be mentioned in Section 2.2 the
implemented version of the algorithm allows the user to override the above described
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Figure 2: A multilabelled, non-injective example

renaming rule to “unify” values of the nets.) When two superposed transitions have
both a guard function these guard functions are joined with logical and relation.

The matrices Pre, Post,Inh describing the arc structure of AMare built in the
following way. The arcs of N} and N connected to transitions that are not involved in
superposition are simply copied into A'. An arc connected to a transition involved in
superpositions will have as many instances as the times the transition is superposed.
In our example the arc P1-tl has two instances in the composed net: P1-tll and
P1-t12.

The priority function pri gives the same value as before for the transitions that are
not involved in superposition. A transition resulting from superposition inherits the
priority value from the involved transition of A;. The weight function w is handled
similarly to the priority one. We assume that there are not marking dependent weights
and rates, and we basically leave the user the task of redefining pri and w for the
final net, since compositional ways to handle pri and w are still an open question,
although some attempts to address this problem may be found in [16, 21].
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Figure 3: Superposition of places and transitions

The set of basic colour classes C and their definitions are assumed to be common
for V7 and N5.

The operation to superpose places is the direct counterpart of the operation de-
scribed above, with the additional, obvious, constraint, that places of equal label
should have the same colour domain. However the superposition of places is less
complicated as it does not require renaming of arc or guard expressions.

The simultaneous application of superposing places and transitions has two features
that were not shown in the above description. First, having an arc whose place
(transition) is involved in n, (n:) superpositions, there will be n, - n; instances of the
arc in the composed net connecting all the instances of its place with all the instances
of its transition. Second, having two arcs whose places and transitions are superposed,
the arc expressions of these two arcs are added. An example for the latter is shown
in Fig. 3 where the arc expressions of the arcs P1 —tl and P3 — t2 are summed.

2.2 Implementation

The compositional operators described in the previous subsection are implemented
by a program called algebra, that uses and produces SWN nets in GreatSPN format.
The modeller may build the component nets using the graphical interface of Great-
SPN. Since the present interface does not allow to define labels, they are encoded in
the name of the transitions and places. Both transition and place names have the
structure tagllabell|label2..., where tag is the name of the transition or place followed
by its labels separated by bars.

The user may define the set of labels which will be taken into account during the
composition. This feature may be useful when composing more than two nets and the
modeller wish to avoid that all labels are considered at all stages of the composition.

Right now algebra is able to deal with non-injective labelling in both operands,
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Figure 4: Superposition using GSPN

while only one of the two may be multilabelled. This was judged an adequate com-
promise between the complexity of the implementation and the foreseen use of the
operator (this choice is adequate, for example, to support the implementation of the
PSR methodology cited before as point 5 of the “wish-list” of GreatSPN).

When composing algebra attempts to create a well-readable net. The “shape” of
the original components are maintained. The user may define where the individual
components are placed in the composed model. If a transition (or place) has multiple
instances in the resulting net, the additional instances are placed around the original
position of the transition. When, as a result of the composition, an arc’s place and
transition are in different subnets the arc is drawn as “broken arc” in the resulting
net. A small example for the output of the program is given in Fig. 4. GreatSPN
does not draw arc expressions on broken arcs, those have been written on the figure
“by hand”.

Fig. 4 demonstrates another feature of the program: if a variable name starts with
the character #, it is not renamed during the superposition. This allows the modeller
to use the same variables in different components, so as to “unify” values.

algebra may be called from the command line by
>> algebra netl net2 op labels net [placement shiftx shifty]

The two operands are netl and net2, the resulting SWN is net. The operator is
defined by op and may be t to superpose transitions, p to superpose places or b to
superpose both places and transitions. The set of labels over which the superposition
will be performed may be given in the file 1abels, this file has the following format:
transition={t11[t12}

place={pl1lpl2|pl3}

The labels that are not given in this file are not considered during the operation. If
the file does not exist all labels are considered. The last three arguments may be used
to define the placement of the components: if the parameter placement is 1 (2) the
two nets are placed next to each other horizontally (vertically), if it is 3 the second
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net is shifted by (shiftx,shifty) compared to the first net.

3 The local voter specification

The Local Voter mechanism (LV) aims at masking the occurrence of faults during
the execution of a piece of code of an application process. Fault masking is achieved
by the adoption of a spatial redundancy of the execution of the piece of code and by
the voting on the results coming from the replicas.

‘ Pl ane 2

‘ Pl ane 1

Pl ane 0

APP 1 |

O
<o

BB

Figure 5: A description of the local voter

Depending on the voting technique adopted in the LV and on the spatial redun-
dancy, a limited number of faults may be masked; for instance, by using a majority
voting algorithm and by running concurrently N replicas, up to [%] faults can be
made transparent for an application process.

Figure 5 shows a graphical representation of LV taken from the specification doc-
ument of TIRAN; the LV can be used concurrently by several application processes
and three replicas are considered per application.

The replicas are executed on separate “planes”, that naturally correspond to sepa-
rate processing nodes. The application process APP; that uses the LV mechanism is
split in two parts, a part that does not require a replicated execution, and a part that
instead requires it. If there are n applications that can use LV, then each application
has its distinct piece of code to be executed.

Since each replica, called IST;; in the figure, should receive the same input data
there is a task IR (input replicator) that performs a replica over the three planes of
the input data: the data do not go directly to the application replica, but to the input
dispatcher of the corresponding plane ID; that takes care of passing it on to the right
application.

A similar approach is used to collect the results: when a replica IST;; ends its
computation it sends its output data to the output collector of the corresponding
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Acr. | description no. of them
APP | application n
IR | input replicator 1
ID | input dispatcher 3
IST | replicated software to vote upon 3*n
OC | output collector 3
OV | output voter n
BB | backbone -

Table 1: Acronyms

plane OC;, that takes care of forwarding it to the appropriate voting task OV;; there
is one voting task per application.

The components of the local voter interact with the backbone BB, that is a sort of
run-time support for the TIRAN library of mechanism, that handles all exceptions
as well as the recovery actions. All interactions among tasks are based on mailbox
communications.

Table 1 lists the acronyms used in the paper for the different tasks, and for each
task lists how many copies of that task there are in a LV that serves n applications.

The OV behaviour is described by a state diagram in the specification document,
that basically amounts to a 2-out-of-3 voting. An additional textual specification also
states that, as soon as OV, for application APP; receives the first output from one
of the replicas, it sets a time-out for receiving the other replicas. Fach OV sends a
message back to the corresponding application only if all three replicas are received
before the time-out expires, and there is a match 3-out-of-3 of the results. In all other
cases BB comes into play.

4 The SWN model of the local voter

The following assumptions were made to model LV: tasks communicate in an asyn-
chronous manner via mailboxes, and there is one mailbox for each ordered pair of
tasks, time required to prepare a message is in general negligible, while the time to
actually transmit it from the task output buffer to the recipient mailbox is not. For
what concerns the graphical representation, we have used grid places to emphasize
mailboxes and shadowed boxes to delimit portions of the nets that corresponds to
“recovery actions”, and that will be explained in the next subsection.
Three colour classes have been defined:

AP is the colour class of applications that can request a replicated execution of a
piece of their code, and it is defined as AP = uApp, that is to say a single static
subclass, unordered, defined as App = {apl,..,apn};
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P is the colour of the planes, there are always three planes in LV, therefore P = uPl,
and Pl = {pll,pl2, pl3};

FEzc is the colour used to distinguish the positive or negative outcome of a LV activity,
and it is built out of two static subclasses Fxec = uFexl, Fca2, where Fxel =
{el} means that there has been a time-out expiration, while Fxc2 = {e2}
means that there was no time-out expiration.

|d|;ﬂ<App| activity F';lpap snd_LV P;Pa\p T1ap ap| I'Lb;AP-IR
<> I <> () _<x> <X3 <x> <>
&) L @ U [

ap| mhxBB- AP

<x>) AP

rcv_reply Apap

Figure 6: The application model

Figure 6 shows the SWN model of the application, that cyclically executes its own
activity, sends a message to the task IR of the local voter, and waits for a message
coming from the backbone BB.

Idle IR

ir2|rese

s
rcv_data
<X>

Plir
AP
<>
<#x>
broad_to_pls

<X>

P3ir
....... | AP
<#x.y> <X,S> o> P2ir TLir  ir|nbxIR 1D
............ D . AP AP,P
ir|mbxl D-IR '
APP rcvack_I D

ifr|resetlR
:6

Figure 7: The input replicator model

Figure 7 shows the SWN model of the input replicator IR: it waits for messages
coming from the applications. As soon as a request of replicated execution for appli-
cation App; is received, it broadcasts it to the input dispatcher task of each plane, and
waits for an acknowledge from ID. Since there is only one IR task, then no colours
are needed.
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Figure 8 shows the SWN model of the input dispatcher ID. There is one task 1D
for each of the three planes: it receives from IR the identity of the application to be
executed, it acknowledges reception to IR, and it activates a task corresponding to
the requested replica (called instance) for that plane.

id2|reset!I D

T3
<#X,y>
<X <X,y> <XV>

. \_J
id mxID-IR  T2ig P4i d
AP,P APP
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: LI N
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APP AP,

i d3| reset | D
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Figure 8: The input dispatcher model

Figure 9 shows the SWN model of the replica of the code to be executed on the
different planes: since the TIRAN framework allows only static tasks, then it is correct
to assume that all replica are activated at the beginning and then suspend themselves
waiting for a message from the ID tasks. There are |AP| x | P| instances, i.e. one for
each application and for each plane. Each instance (x,y) waits for a message (x,y)
from ID y. When a message (,y) is received the instance of application & on plane
y starts its activity, modelled by timed transition comp, and then sends the result of
the computation to OC.

Figure 10 shows the SWN model of the output collector (OC): there is one such
process for each plane, and each OC waits for a message coming from the replicas
running on its plane, and it forwards it to the output voter. According to the textual
portion of the specification, the OC should wait for a “ready message” from OV, but
since the conditions under which OV should send this ready message are not specified,
we assume that OV is always willing to accept messages in its mailbox.

Figure 11 shows the SWN model of the output voter task OV: there is an OV for
each application that can use LV. Each OV executes the voting algorithm (majority
voting 2 out of 3) on replicas of the same application, independently from the others.
OV waits for the replicas outcome from the three different planes. As soon as the
first outcome is received, a timeout for reception of the other two replicas outcome is
set. Then three situations may occur:

C1 all the three outcomes are received before the time-out expiration, i.e. transition
recv3noTO fires and voting on the three outcomes takes place;
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Figure 9: The model of the replicated code

C2 the time-out has expired and two of the three outcomes have been received (firing
of transition recv2&TO), and a vote on the two replicas takes place;

C3 the time-out has expired and only one of the three outcomes has been received
by OV, i.e. firing of transition recvl&TO.

Under condition C1 a message of exception of type €2 (no time-out has occurred)
is sent to the the backbone BB; in cases C2 and C3 a message of exception of type
el (a time-out has occurred) is sent to BB. Observe that we are not passing on to
the backbone the information on whether the vote was successful or not, although
this will be a trivial extension, since the success or failure of the 2-out-of-3 algorithm,
according to the state diagram of the specification document, is modelled in detail in
the SWN of Figure 11.

When the message is sent to BB, OV waits for an acknowledge from BB to return
back into its idle state. Observe that we are assuming that no direct answer goes
back directly from OV to APP, not even in the case of a “normal” 3-out-of-3 voting,
since we impose that all restarted are caused by BB.

Figure 12 shows the SWN model of the Backbone task, or, more precisely, of that
part of BB devoted to interactions with LV. BB is in an idle state until it receives an
exception message coming from OV. If the exception is of type €2, i.e. no time-out has
occurred, then BB sends an acknowledge to OV and to the application. If instead the
exception is of type el, then a time-out has occurred, and therefore a reset operation
is needed, before sending back the messages to OV and to APP.

4.1 Local voter without recovery actions: an open model

A first analysis was performed for the case of a “single run” for each application. In
order to obtain the complete model the single nets have to be composed using the
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program algebra explained in Section 2. The nets used are the one without shad-
owed portion, so that no message is passed from OV to BB, so that each application
is executed only once. The resulting SWN net has been solved, for the single ap-
plication case, using the symbolic reachability graph construction of GreatSPN, that
produces 589 tangible states corresponding to 4261 ordinary ones.

There are 3 symbolic dead markings, corresponding to 7 ordinary dead markings.
Each marking is described in terms of dynamic colour subclasses associated to places,
and, for each dynamic subclass, its cardinality is given. For each symbolic marking
the number of corresponding ordinary markings is given; for instance, the following
dead marking:

MARKING D856 # ordinary marking: 3 (dead)

Idle_BB(1) Oc|mbXOC-OV(1<AppO,P11>) Idle_0C(1<P10>1<P11>) Idle_IR(1)
Idle_ID(1<P10>1<P11>) Idle_Ist(1<App0,P10>1<App0,P11>) P3ap(1<App0>)
Exception(1<App0,Exc10>)

|Exc101=1 |Exc21|=1 |AppOl=1 |P10|=1 |P11]=2

corresponds to a case of time-out expiration: only one replica has been received
by OV and the time-out has expired while waiting for the remaining replicas. All
components, except OV and APP, are in their initial states (idle state), APP and
OV are both waiting for a msg from BB, that will, of course, never arrives. Observe
that symbolic marking provides a more abstract information with respect to ordinary
one: in this case the abstraction is on the identity of the replica (plane) that has
finished first. Other deadlocks represent the case of reception of all the three replicas
before the time-out expiration, corresponding to an ordinary deadlock marking, and
the case of time-out expiration after two replicas have been received, corresponding
to three ordinary markings.
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Figure 11: The model of the output voter

4.2 Local voter and recovery actions: an ergodic model

All the deadlocks found describe a “good” (expected) behaviour, so that it makes
sense to proceed to add also the reconfiguration activities needed to restart an ap-
plication. The model obtained composing all nets, including also with the shadowed
portions, is ergodic (there is a single strongly connected component)

The basic idea is that the recovery action taken by BB is:

e to remove messages from mailboxes that refer to the application that has sig-
naled the exception;

o to take the corresponding tasks back to the their initial states.

To accomplish this BB enables a number of immediate transitions, one per model
component, and they are labelled in such a way as to superpose with the cleaning
transitions in the model components. Observe that these transitions are assigned a
different priority, mainly to avoid the generation of useless interleavings, that could
significantly slow down the state space generation.
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The symbolic reachability graph for the single application case has 1452 tangi-
ble states, while the ordinary one has 7074. Initial marking is a home state. The
generation took a few minutes on a rather standard 64Mbyte Pentium 2 machine.

Since the running time of the reachability graph generation grows very significantly
into an almost trashing situation even when increasing only by 1 the number of
applications, then we have tried the discrete event simulation available in GreatSPN,
to compute performance indices for our LV model while varying the number N of
applications. Table 2 shows the list of timing parameters to be assigned to transitions
to perform a simulation. For a timing assignment in which values differ for up to one
order of magnitude the simulator was able to provide estimates for throughput and
mean value of tokens in places in a few minutes, for an accuracy level set to 10 percent
and a confidence level of 0.95. Table 3 shows the results obtained varying the number
of application processes that use the LV mechanism in the range [1,10].

4.3 Local voter without recovery actions and explicit faults

In the models considered up to now no faults are explicitly included in the model, so
that a time-out can expire only due to a delay in the completion of one of the replicas.
To this goal the model of IST has been modified to include a timing transition that
models the fault and that takes IST into an error state place. The resulting model,
for the single application case, has 1185 symbolic tangible markings (corresponding
to 6008 ordinary ones) and there are 7 symbolic dead markings, corresponding to
20 ordinary dead markings. Among them a very interesting one is the marking that
represents the state of the model where all the instances are in an error state, and
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Param. | Description Value(ms.)
act | time of normal operations of an application 1
tr_tolR | transmission time of a msg to IR 0.1
broad | time for IR to broadcast to 1Ds 0.1
snd_toist | time for ID to send a msg to a same-plane istance | 0.1
tr_acktolR | transmission time of an ack to IR 0.1
tr_tolD | transmission time of a msg to IDs 0.1
tr_tolst | transmission time of a msg to Ists 0.1
comp | time spent by the istances to perform operations | 2
trtoOC | transmission time of a msg to OCs 0.1
snd_toov | time spent by OC to send the replica to OV 0.1
tr.toOV | transmission time of a msg to OVs 0.1
TO | time-out 5
vote3d | time spent by OVs to vote on 3 replicas 0.1
vote2&TO | time spent by OVs to vote on 2 replicas 0.1
tr_toBB | transmission time of msg to BB 0.1
tr_ BB-OV | transmission time of an ack from BB to OV 0.1
tr_.BB-AP | transmission time of a reply to application. 0.1
Table 2: Timing parameters
NOAppl Xactivity ACC(%) chv_reply ACC(%) NPQir ACC(%)
1] 0.211637 | 5.092404 | 0.211637 | 5.092404 | 0.020518 | 9.141612
21 0.419355 | 0.483286 | 0.419433 | 0.488460 | 0.041899 | 1.311778
31 0.625945 | 0.663775 | 0.626182 | 0.666935 | 0.062012 | 1.594000
41 0.827432 | 1.076573 | 0.827014 | 1.103949 | 0.081316 | 1.966425
5| 1.025215 | 1.037140 | 1.027469 | 1.023215 | 0.101616 | 2.34418
6 | 1.227929 | 1.227031 | 1.228012 | 1.141775 | 0.120755 | 4.246115
71 1.413914 | 0.904866 | 1.414766 | 0.911834 | 0.145302 | 3.139288
8 | 1.595689 | 2.375840 | 1.596397 | 2.388058 | 0.163623 | 6.134849
9 | 1.779154 | 1.517227 | 1.777283 | 1.534383 | 0.177373 | 4.467230
10 | 1.952531 | 3.056724 | 1.949649 | 2.366157 | 0.206051 | 7.254697

Table 3: Simulation results
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this correspond to a case in which no replica will ever reach OV, so no time-out will
be set. This case is, up to now, not considered in the specification document.

Observe that, to produce an ergodic model it will not be enough to consider the
reset activity of BB, but an explicit testing for the three replicas all being in an error
state should be added to the model.

5 Conclusions

In this paper we have described the compositional operator that is now implemented
in GreatSPN for the superposition over labelled places and transitions for GSPN
and SWN nets, and its application for the study of a mechanism for fault tolerance
called local voter. Tool support was fundamental in the model developing phase,
since specification were still changing and the definition of the abstraction level for
modelling was not set.

To provide more flexibility to these models we should include a modular definition
of the communication (for example to investigate rendez-vous instead of mailboxes),
and different models of fault.

Another open point is how to take into account the hardware on which the applica-
tions and the framework will run: indeed for this point we are planning to extend the
definition of PSR to SWN models. It seems envisionable that the size of the models
will only allow simulation since the models that we have produced are quite detailed
as they are meant for validation, while an interesting open problem is how to derive
from these models some more compact ones to be used for performance evaluation
purposes.

We have already mentioned in the introduction that there is very little support
for reachability analysis right now in GreatSPN, so that, if a net has an error that
make some place unbounded, the state space generation simply does not stop. Indeed
before running the state space generation we have always run simulation, that allows,
by checking the accumulated performance indices, to check whether certain place
markings grow in a suspicious manner.
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