Improved Question-Guided
Stubborn Set Methods for State Properties

Lars Michael Kristensen! and Antti Valmari?

L University of Aarhus, Department of Computer Science
DK-8000 Aarhus C., DENMARK, Email: kris@daimi.au.dk
2 Tampere University of Technology, Software Systems Laboratory
PO Box 553, FIN-33101 Tampere, FINLAND, Email: ava@cs.tut.fi

Abstract. We present two new question-guided stubborn set methods
for state properties. The first method makes it possible to determine
whether a marking is reachable in which a given state property holds.
It generalises the results on stubborn sets for state properties recently
suggested by Schmidt in the sense that that stubborn set method can
be seen as an implementation of our more general method. We propose
also alternative, more powerful implementations that have the potential
of leading to better reduction results. This potential is demonstrated on
some practical case studies.

As an extension of the first method, we present a second method which
makes it possible to determine if from all reachable markings it is possible
to reach a marking where a given state property holds. The novelty of
this method is that it does not rely on ensuring that no transition is
ignored in the reduced state space. Again, the benefit is in the potential
for better reduction results.

Topics: System design and verification using nets, Analysis and synthe-
sis of nets, Computer tools for nets.

1 Introduction

State space methods have proven powerful in the analysis and verification of
concurrent systems. Unfortunately, the state spaces of systems tend to grow very
rapidly when systems become bigger. This well-known phenomenon is referred to
as state explosion, and it is a serious problem for the use of state space methods
in the analysis of real-life systems.

Many techniques for alleviating the state explosion problem have been sug-
gested, such as the stubborn set methods [7,10]. They comprise a subgroup of
rather similar methods first suggested in the late 80’s and early 90’s [3 5]. These
methods are based on the fact that the total effect of a set of concurrent tran-
sitions is independent of the order in which the transitions occurs. Therefore, it
often suffices to investigate only one or some orderings in order to reason about
the behaviour of the system.

This paper presents two new stubborn set methods which make it possible
to reason about state properties. A state property is a property that talks about

only one marking. For instance, M (p) < 10 is a state property, whereas IM’ €
[M) : M'(p) > M(p) is not.

The first stubborn set method makes it possible to answer the following ques-
tion: “is it possible to reach a marking where a given state property holds?” The
method is question-guided, i.e., it takes a state property as input and generates
a reduced state space. This reduced state space will contain a marking where
the property holds if and only if there exists a reachable marking in which the
state property holds. This method is important, because with it one can, e.g.,
find place bounds, and check reachability of a (perhaps incompletely specified)
marking, more efficiently than with existing stubborn set methods [6,8,9]. The
method presented is based on the ideas in [6], but tries to compute better stub-
born sets. This can potentially lead to better reduction results.

The second question-guided method makes it possible to answer the question:
“is it possible from all reachable markings to reach a marking where a given state
property holds?” This method can for instance be used to check liveness of a
single transition with better reduction results then an earlier methods [9] that
check liveness of all transitions simultaneously. It can also be used to check
whether a given (perhaps incompletely specified) marking is a home marking
more efficiently than with the technique described in [6].

The paper is organised as follows. Section 2 recalls the basic facts of Place/-
Transition Nets (PT-nets), state spaces, and stubborn sets used in the rest of
this paper. Section 3 gives an informal introduction to the first stubborn set
method by means of a small example. Sections 4-7 formally develop the new
stubborn set methods, and Sect. 8 considers their implementation. Section 9
discusses applications of the first method to boundedness properties of PT-nets.
Section 10 gives some numerical data on the performance of the first method on
some case studies. Finally, we sum up the conclusions in Sect. 11.

2 Background

This section briefly summarises the basic facts and notation of PT-nets, state
spaces, and stubborn sets used in the rest of the paper. We assume that the
reader is familiar with the dynamic behaviour of PT-nets and the basic ideas of
state spaces (also called occurrence graphs or reachability graphs/tress).

Definition 1. A Place/Transition Net is tuple PI'N = (P,T,A,W, M),
where P is a finite set of places, T is a finite set of transitions such that PNT = (),
AC(PxT)U(T x P) is a set of arcs, W : A — Ny is an arc weight function,
and My : P — Ng is the initial marking. O

We use M as the initial marking instead of the more conventional My. This
allows us to use My as the first marking of occurrence sequences which does
not necessarily start in the initial marking. If a transition ¢ is enabled in a
marking M; (denoted Mi[t)), then ¢ may occur in M; yielding some marking
M. This is written M;[t)My. Extending this notation, an occurrence sequence
is denoted My[t1)My -+ Mp_1[tn) M, and satisfies M;_1[t;)M; for 1 < i < n.

When the intermediate markings in an occurrence sequence are not important
we will write it as My[t1t2 - - - t,) M. A reachable marking is a marking which can
be obtained (reached) by an occurrence sequence starting in the initial marking.
By [M) we denote the set of markings reachable from a marking M. For a place
(transition) z, ez denotes the set of input transitions (places) of z, and xe is a
similar notation for output transitions (places). The notation is extended to sets
by taking the union of ex (xe) over each member z of the set. In a marking M,
the marking of a place p is denoted M (p).

Definition 2. The Full State Space of a PT-net is a directed graph SG =
(V,E), where V.=[Mp) and E = { (M1,t, M3) e V. X T x V| My[t)My }. O

In the rest of this paper we assume that a PT-net (P, T, A, W, M;) with a
finite full state space SG = (V, E) is given. For some of the stubborn set algo-
rithms presented in this paper we will exploit the strongly connected components.
A strongly connected component (SCC) is a non-empty set C of reachable mark-
ings such that if M € C then C ={ M’ | M' € [M) AM € [M’) }. An SCC is
said to be a terminal strongly connected component ift M € C implies [M) C C.

State space construction with stubborn sets follows the same procedure as
the construction of the full state space of a PT-net, with one exception. When
processing a marking, a set of transitions, the so-called stubborn set, is con-
structed. Only the enabled transitions in the stubborn set are used to construct
successor markings. This means that only a subset of the relation M[t)M’ is
used for the construction of the reduced state space. We denote this subset by
Mt)ssaM’, and define M[t1,- -, tn)sscM’, [M)ssq as for the full state space
but now based on the relation M[t)ssgM’. The stubborn set reduced state
space (from now on called the SS state space) can be defined as a directed graph
SSG = (Vssa, Essc) based on the relation M[t)ssgM’ in a similar way as the
full state space. We define the (terminal) SCCs for the SS state space analogously
to the case for the full state space.

The choice of stubborn sets depends on the properties that are being analysed
or verified of the system. Many stubborn set algorithms are surveyed in [10].
They all assume that the stubborn sets used in each marking satisfy certain
conditions, and stubborn set methods for different properties are obtained by
using different conditions. However, it is common to almost all of them that the
conditions listed below should hold. Below T¢(M) denotes the stubborn set used
in the marking M.

D1 Ift e TS(M[]), t1,...,tpn ¢ TS(M[]),]\/fo[tltg .- tn>Mnu and Mn[t>M7ll, then
there is M) such that My[t)M{) and M{[tits - - tn)M),.

D2 If My has an enabled transition, then there is at least one transition t, €
Ts(My) such that if t1,...,t, ¢ Ts(My) and My[t1ta - - -ty) My, then M, [ty).
Any transition with this property is called a key transition of Tg(Mp).

The conditions D1 and D2 as such are not suited for constructing stubborn
sets since they refer to occurrence sequences. Therefore, the construction of
stubborn sets is in practice implemented by relying on rules that refer only to

the structure of the PT-net and the current marking, and which express sufficient
conditions to make D1 and D2 hold. The tutorial [10] lists a number of such.
Below we give a simple proposition which guarantees that D1 and D2 hold. The
proposition analyses the dependencies between transitions at a rather coarse
level, and it is not optimal in the sense of yielding smallest possible stubborn
sets and smallest SS state spaces. We will use it only for illustration purposes.

Proposition 1. The conditions D1 and D2 hold if the following hold for every
te T,(M):

1. IfEIt1 eT: M [t1>, then 3ty € TS(M) M [tg)
2. If =M [t), then Ip € ot : M(p) < W(p,t) A op C T(M).
3. If M [t), then (ot)e C To(M). a
The important aspect of Prop. 1 is that the three items can be read as rules.
Item 1 specifies that if there is an enabled transition, then an enabled transition
has to be in the stubborn set. Item 2 specifies that if a disabled transition ¢ has
been included in the stubborn set, some place p in the preset of ¢ which does not
contain enough tokens for ¢ to be enabled must be chosen and its preset included.
Finally, item 3 specifies that if an enabled transition ¢ has been included then
the postset of the preset of ¢ must be included. A number of algorithms for
constructing stubborn sets based on propositions like Prop. 1 are given in [10].

3 An Example

In this section we introduce the first of our improved stubborn set methods in
an informal way using the simple PT-net shown in Fig. 1. Figure 2 shows the full
state space of this PT-net. Node 1 corresponds to the initial marking. Each arc
has an associated label giving the name of the transition to which it corresponds.
For a node n we denote the corresponding marking by M,,.

Suppose that we want to check that there exists a reachable marking in which
the place p1g contains at least two tokens. This can be expressed as the state
property ¢ = M (p10) > 2. My is the only such marking.

The stubborn set method in [6], in the following referred to as the attractor
set method, would define an attractor set in M, denoted Ay(My), for the atomic
state proposition M (p1o) > 2. The role of the attractor set is to ensure that in
each step of the SS state space construction, progress is made towards a marking
where the property holds. The attractor set in M; would consist of the transitions
which can add tokens to p1o. Hence Ag(M7) = {t5,16}. The attractor set method
requires the attractor set to be a subset of the stubborn set in each marking. If
we apply Prop. 1, then the stubborn set in M; will be {t1, 2, t3, t4, t5, tg}. Hence
both enabled transitions (¢; and ¢3) are in the stubborn set in Mj.

If we consider the marking M> then the attractor set remains the same as
in My and Prop. 1 gives us {ta,14,ts5,ts} as the stubborn set. Again, all enabled
transitions are included in the stubborn set. The situation in M3 is symmetric
to Ms. In My, the transition t5 will be in the stubborn set. The situation in Mg

(¥

a-B H@

Fig. 2. Full state space for the PT-net in Fig. 1.

is symmetric to My, and in Ms, the transitions t5 and tg will be in the stubborn
set. In M~ and Mg, the transition tg and t5, respectively, will be in the stubborn
set. In conclusion this means that the attractor set method yields an SS state
space consisting of markings M7 to My.

It can however be observed that it is possible to select stubborn sets during
the construction of an SS state space with fewer enabled transitions than those
required by the attractor set method. This could potentially lead to more re-
duction. The basic idea in our new method is to relax the requirement that the
attractor set must always be contained in the stubborn set.

Suppose that the requirement imposed by the attractor set were totally re-
moved. From Prop. 1 it follows that in M; we can select {t2,t4} or {t1,t3} as
the stubborn set. Suppose that we select {¢1,¢3}. Proposition 1 implies that it
is possible to select {t5} or {¢2,t4} as the stubborn set in Ms. If in M, we select
the latter, then in M5 we can select {t5}, {t6}, or {t7} as the stubborn set.

If in M5 we select the stubborn set consisting of {¢7} only, then the con-
struction of the SS state space will terminate at this point, since Ms is already
included in it. This means that we would wrongly conclude that there does not

exist a marking in which ¢ holds. The problem is that we have not ensured
progress towards such a marking. The attractor set method ensures progress in
each marking of the SS state space by always including the attractor set in the
stubborn set. Instead of this strong requirement we will ensure that from each
marking in the SS state space eventually progress can be made, i.e., a marking
is reachable in the SS state space in which progress is made.

For this purpose we introduce the notion of up sets. An up set is a set of
transitions chosen such that at least one transition in it has to occur in order
to make the state property hold. Hence the up sets are similar to attractor sets.
However, unlike the attractor set method, we will not require that the up set is
always contained in the stubborn set. Moreover, we will additionally exploit that
the state properties which we consider are growing Boolean functions. This makes
it possible to ensure progress towards the property by either reducing the length
of an occurrence sequence leading to a marking where the state property holds,
or by increasing the number of atomic state propositions which are satisfied. This
requirement will ensure that t5 or tg is in the stubborn set in M. Similarly, it
will ensure that g is in the stubborn set in M7, and that ¢5 is in the stubborn
set in Msg.

Ensuring eventual progress is however not sufficient for preserving state prop-
erties. As a simple example, suppose that we want to show that a marking is
reachable in which M(p3) = 0 and M(ps) = 1. This corresponds to showing
that My or My is reachable. If {t2,t4} is selected as the stubborn set in M,
then neither of My and My will be in the SS state space. The problem is that
in M7 the only enabled transition in the stubborn set is t2, and an occurrence
of this transition can change the value of the state property from True to False.
To account for this we introduce the notion of down sets. A down set is a set of
transitions chosen such that a transition in the down set has to occur in order to
make the property not hold. We will ensure that if an enabled transition which
is in the down set is in the stubborn set, then the transitions in the up set are
also in the stubborn set. This will ensure that if ¢5 is in the stubborn set in M;
then also ¢; is.

4 State Properties

We consider state properties expressed as formulas that are composed of so-
called atomic state propositions using only the logical operators “A” and “V”
and parentheses “(” and “)”. For a state property ¢ we denote its atomic state
propositions by ¢1, @2, ..., @n, and let I = {1,2,...,n} denote the set of indices
of the atomic state propositions. The atomic state propositions and state prop-
erties are interpreted on the markings of the PT-net, and the resulting truth
values are denoted by ¢;(M) and ¢(M). The atomic state propositions are de-
fined according to the following syntax, where p, p1, and ps denote arbitrary
places and k is an integer constant.

@i = M(p) = k| M(p1) = M(p2) | M(p) =k | M(p1) = M(p2) |
M(p) <k | M(pr) > M(p2) | M(p) # k | M(p1) # M(p2)

We have not included M (p) > k and M (p) < k as atomic state propositions since
they can be expressed as M(p) > k + 1 and M(p) < k — 1, respectively. The set
of atomic state propositions could be extended provided that the corresponding
up and down sets to be defined in Sect. 5 are implemented properly.

Above only conjunction and disjunction were allowed as the Boolean opera-
tors. However, the atomic state propositions are closed under negation (p; and
p2 may be swapped when needed), so formulas which use negation can always be
re-written to a form allowed by the above syntax using De Morgan’s equivalences
(ie., =(P1Vp2) = =1 A= and =(d1 Ag2) = —¢1 V —¢2). Therefore, the syntax
does not restrict generality. It is however important for the correctness of the
later algorithms that formulas are given in a negation-free form, i.e., that they
have been preprocessed before being provided as input to the algorithms.

Definition 3. Let M be a marking and ¢ a state property constructed from the
atomic state propositions { ¢; | i € I }. The set indices of the atomic state
propositions which are satisfied in M is denoted ony,(M). The set of the indices
of the atomic state propositions which are not satisfied in M is denoted off 4 (M).
Formally:

ong(M)={ieI|pi(M)} andoffy(M)={iel|-p;(M)} O

If we let B = {True, False}, treat the ¢;’s as argument symbols, and define False <
True, then a state property formula ¢ determines a monotonically increasing
Boolean function from B"™ to B.

The following proposition lists important properties of the state property
formulas which will be exploited later.

Proposition 2. Let M and M’ be markings and ¢ a state property constructed
from the atomic state propositions { ¢; | i € I }. Then the following holds:

1.Viel:pi(M) <pi(M') = ¢(M) < o(M').
2. p(M)YA—-p(M') = Ti €1:p;(M)A—p;(M). m

Item 1 states that ¢ is a monotonically increasing Boolean function. Item 2 states
that if ¢ is satisfied in M but not in M’ then there exists at least one atomic
state proposition which is satisfied in M but not satisfied in M’. Item 2 is a
consequence of item 1.

5 Up/Down and Satisfiability Sets

To describe the required properties of the stubborn sets, we define two sets of
transitions related to a state property ¢: an up set and a down set. The up set
of ¢ in a marking M is a set of transitions chosen such that if ¢ does not hold
in M then at least one transition in the up set must occur before ¢ can start
to hold. The down set of ¢ is a set of transitions chosen such that it contains at
least all transitions whose occurrence can change the value of some atomic state
proposition ¢; of ¢ from True to False. In addition to these two sets we define

the satisfiability set of ¢ in M as a set of indices of the atomic state propositions
such that at least one atomic state proposition that has its index in the set has
to change its value from False to True in order to make the state property hold.
The implementation of concrete up and down sets will be determined from
the atomic state propositions and Boolean combinators. However, the properties
of up and down sets are general concepts and not tied to the specific set of state
properties considered in this paper. Therefore, we define up and down sets as
properties of a set of transitions. A similar remark applies to satisfiability sets.

Definition 4. Let ¢ be a state property constructed from the atomic state propo-
sitions { @; |1 € I } and let My € [M1). A set of transitions T' C T has the up
set property in My with respect to ¢ iff the following holds for all occurrence
sequences Myltita - - - t,) M, starting in My:

—‘(ﬁ(Mo)/\(]5(Mn)=>3] 1§j§n/\tj€T’

A set of transitions T’ C T has the down set property with respect to ¢ iff
the following holds for all markings M, M’ € [M;), allt € T, and all i € I:

M [t> M//\(pi(M) /\“QOi(M/) =teT

A set of indices J C I has the satisfiability set property in My with respect
to ¢ iff the following holds for all occurrence sequences Mo[tita - - - tn) My :

=¢(Mo) N p(M,y,) = Fi € J : ~pi(Mog) A pi(My) U

The properties of up set and satisfiability set are relative to the current
marking whereas the down set property is not. This is deliberate and due to
the way our methods will later use these sets. It is worth observing that the
definition of up (down) set property allows approximations of the up (down)
sets to be used: if 77 C T” and T’ has the up (down) set property then also
T” has the up (down) set property. A similar remark applies to indices and
the satisfiability set property. This will be exploited later once we show how to
construct such sets. Moreover, if a marking in which ¢ holds is reachable from
a marking M then a satisfiability set in M exists and it is non-empty because
of Prop. 2. From now on we will assume that we have an algorithm that given
a state property ¢ produces some down set downg, and additionally given a
marking produces some up set up, (M) and some satisfiability set saty(M). We
will give such an algorithm in Sect. 8.

6 Preserving Reachability of State Properties

This section presents the new stubborn set method for determining whether a
reachable marking exists in which a given state property holds. The method
consists of obeying the D1 condition from Sect. 2 and two additional conditions
formulated in the following definition. An explanation of the definition will be
given below.

Definition 5. Let M be a marking and ¢ a state property constructed from the
atomic state propositions { p; | i € I }. A set Ts(M) C T is Reachability of a
State Property Preserving (RSPP) stubborn in M, iff the following hold:

D1 Ifty,...,tn & To(M), t € To(M), Mlt1tg---tn)M,, and My,[t)M],, then
there is M’ such that M[t)M' and M’'[t1ts - - - t,)M].

SPP1 If ~¢(M) and 3t : M [t) At € downg At € Ty(M) then up,(M) C Ty(M).

SPP2 For every i € saty(M) there is an occurrence sequence My[t1)Mi[ta) - - -
[tn) M, such that M = My, t; is a key transition of To(M;—1) for 1 < j <mn,
and ¢(Mn) \ UPy, (Mn) - U?:o Ts(Mj)' U

The intuitive purpose of SPP1 is to ensure that a next step in the SS state space
can be taken in such a way that we do not get further away from a marking
where ¢ holds. SPP1 requires that if we have taken an enabled transition in the
down set, then we have also included the transitions in the up set. The latter
transitions represent a step towards a marking where ¢ holds, since we know that
a transition in the up set has to occur in order to make ¢ hold. Therefore if one
transition makes regress then there is another transition that makes progress. It
is also possible that no enabled transition makes regress or progress.

SPP2, on the other hand, is there to ensure progress — to ensure that we will
eventually get closer to a marking where ¢ holds. If ¢ holds in M then SPP2
holds trivially since we can then choose n = 0. If SPP2 does not take us directly
to a marking where ¢ holds, then it ensures that there is a path in the SS state
space where we eventually try every transition in the up set of some atomic state
proposition which has to change its value. This represents progress, since such
an additional atomic state proposition has to be satisfied in order to make the
state property hold. SPP2 states its requirement to every element i € saty (M)
because saty(M) is an upper approximation and we do not necessarily know
which member is important.

We now turn to the correctness of the RSPP-stubborn set method. The key
to establishing correctness is the following lemma.

Lemma 1. Let ¢ be a state property, SG = (V, E) the full state space, and
SSG = (Vssa, Essa) an SS state space constructed using RSPP-stubborn sets.
Let My € Vssa be a marking such that —¢(Mg) and for which there exists an
occurrence sequence Mg[t1) Mi[ta) - - - [tn) My such that ¢(M,y,) holds. Then there
is a marking M|, € [My)ssc such that the following holds.

1. There are transitions ty,t5, ..., t.. and markings M{, M}, ..., M. such that
M) M [t) - - [t,) M}, and $(M},) holds.

2. The occurrence sequence in item 1 leading to a marking where ¢ holds is no
longer than the original occurrence sequence, i.e., m < n.

3. The length of the occurrence sequence in item 1 has decreased, i.e., m < n,
or the set of the atomic state propositions of ¢ which are satisfied has grown,
i.e., ong(My) C ong(Mg). O

Proof of Lemma 1. Since ~¢(My) and ¢(M,) then saty(Mp) contains an ¢ such
that —p; (Mp) and @;(My,). Since ~¢(My) and T5(My) (the RSPP-stubborn set in
M) satisfies the condition SPP2 there exist key transitions t1,...,{; and mark-
ings My, ..., M), € Vssq such that My = M[t1)ssaMilt2)ssa -+ - [tk) ssa Mg,
and ¢(My) V up,,, (My) € Us_, To(M;).

If ¢(M;) holds for some 0 < j < k then the claim holds by choosing M} = M;
and m = 0. In this case m < n since ~¢(My) and ¢(M,,). From now on we may
therefore assume that V5,0 < j < k : ﬂ¢(]\7[j). In the rest of the proof the
following fact is needed:

Q) If {t1,...,ta} NTs(My) = 0 for every 0 < h < | < k, then, due to the
key transition property of &1, ..., & and D1, there are markings My, ..., M,
such that M, = Mo[fl . -fl)Ml and M|ty -- -tn)Ml. Furthermore, if we as-
sume that there exists a smallest index h such that ¢541 € downg then
d(Mp), ..., (Mp) hold due to the down set property. Thus, —¢(My) and
¢(My) and SPP1 implies that O # {t1,...,tn} Nupy(Mp) € To(Mp) con-
trary to our assumption. Consequently, ¢1,...,% &€ downg and we therefore
have ong(Mg) C ong(M;) C --- C ong(M;), ong(My) C ong(M;) C --- C
ong (M), and (M), ..., d(M;) hold.

We now split the proof in two cases.

Case A: {t1,...,t,} ﬁTS(Mj) #) for some 0 < j < k. In this case we can pick
the smallest such j and apply (1) for [= j. Since T5(M;) contains at least one
of the transitions t1,ta,...,tn, then we can pick the first such transition ¢y
and apply D1 on M;[ty -« tp_1tptpis - - tn)MJ— to obtain a marking M” such
that M;[tp)M"[t1 - th_1tpi1 - tn)M;. The claim now holds with M} =
M"” and m=n—1.

Case B: {t1,....t,} NT5(M;) = 0 for every 0 < j < k. In this case (1) gives us
that on¢(]\7[0) - on¢(Mk) and on¢(M0) - on¢(Mk). If on¢(M0) = on¢(Mk)
then we must have one of the t1,1a,...,t, in up,, (M},) and by SPP2 also in
U?:o T.(M;) which contradicts the assumption that {t1, ..., ¢, }NTs(M;) = 0
for every 0 < j < k. Therefore ony(Mo) C ong(Mj,) and the claim holds with
M}, = My, and m = n. O

The following theorem states that if there exists a marking in the SS state space
from which it is possible to reach a marking where the state property holds then
the SS state space also contains a marking in which the state property holds.
The correctness of the RSPP stubborn set method follows immediately from the
theorem by letting My = M.

Theorem 1. Let ¢ be a state property, SG = (V,E) be the full state space,
SSG = (Vssa, Essa) an SS state space constructed using RSPP-stubborn sets,
and let My € Vssa. Then:

M € [My) : p(M) < IM’ € [My)ssa : p(M') O

10

Proof of Thm. 1. The < direction follows from the fact that Vssg C V and
Essc C E. For establishing the = direction we apply Lemma 1 inductively to
obtain My € [My)ssa, Ma € [Mo)ssc, - - ., until we find an M,, € [My)ssc such
that ¢(M,,) holds. The induction hypothesis is that there is a marking M;S and
an occurrence sequence o; such that M;[o;) M and ¢(M/,) holds. When i = 0
this holds with Mg = M.

Define the distance A(M’, o, ¢) between a marking M’ € Vsge and a marking
My € V which satisfies ¢ and which can be reached from M’ by the occurrence
sequence o as follows (|o| denotes the length of the occurrence sequence o):

A(M’;0,¢) = (|I| +1) - |o| + [off s (M7)]

The reason for the rather complicated definition of distance is that if at a marking
we choose a transition which decreases the length of the occurrence sequence
leading to a marking where ¢ holds we may at the same time switch some of the
atomic state propositions off.

If ¢ does not hold in M;_1, then Lemma 1 gives a marking M; € [M;_1)ssc,
an occurrence sequence o;, and a marking M} such that M;[o;) M and ¢ holds
in M. Ttems 2 and 3 of Lemma 1 ensure that A(M;, 04, ¢) < A(Mi_1,0i-1,9).
Clearly 0 < A(M;, 04, ¢) < 0o, so eventually this process terminates in a mark-
ing M,, € [My)ssc in which ¢ holds. O

7 Preserving Home State Properties

This section presents a new stubborn set method for determining whether from
all reachable markings it is possible to reach a marking where a given state
property holds. This can be formally expressed as determining whether VM €
[Mp) : AM’ € [M) : ¢(M’). The method presented is based on the observation
that by negation this is the same as determining whether a reachable marking
exists from which it is not possible to make the given state property hold. This
can be expressed as AM € [My) : VM’ € [M) : =¢(M"). We will use “¢ € [M)”
as an abbreviation of AM’ € [M) : ¢(M") (from M a marking M’ can be reached
where ¢ holds), and “¢ € [M)ssa” as an abbreviation of IM’ € [M)ssa : ¢(M').

The method consists of obeying the conditions from the RSPP-stubborn set
method from Sect. 6 and two additional conditions formulated in the following
definition.

Definition 6. Let M be a marking and ¢ a state property. A set Ts(M) C T is
Home State Property Preserving (HSPP) Stubborn in M, iff T,(M) is
RSPP stubborn in M and the following hold:

D2 Ifty,....tn ¢ To(M), t € T{(M), Mtita---t,) My, and M [t), then M, [t).
SPP3 For every t € downy there is an occurrence sequence My [t1) - -+ [t,) M,
such that M = My, t; € Ts(M;—1) for 1 < j <n, and t € T{(M,). O

11

The intuitive purpose of Ty(M) being RSPP stubborn in the context of this
method is to ensure that we from any marking in the SS state space always
attempt to make ¢ hold (recall that we are trying to show that there exists a
reachable marking from which ¢ cannot be made to hold). The D2’ condition is
like the D2 condition from Sect. 2, except that it requires all enabled transitions
in the stubborn set to be key transitions and allows Ty(M) =). Together with
the D1 condition inherited from RSPP this implies that HSPP stubborn sets are
strong stubborn sets [10]. SPP3 is there to ensure progress, to ensure that we
eventually get closer to a marking from which ¢ cannot be made to hold. This
is formulated in terms of transitions in the down set since such a transition has
to occur in order to make ¢ not hold.

The correctness of the HSPP stubborn set method follows immediately from
the following theorem by letting My = Mj.

Theorem 2. Let ¢ be a state property, SG = (V, E) be the full state space,
SSG = (Vssa, Essa) an SS state space constructed using HSPP stubborn sets,
and let My € Vssg. Then:

AM € [My) : ¢ ¢ [M) & IMgsa € [Mo)ssa : ¢ ¢ [Mssa)ssa a

Proof of Thm. 2. The <« direction follows immediately from Thm. 1. We prove
the = direction by showing the following for a strictly decreasing sequence of
values of n:

(1) There are ME, t%, ..., 7 and M™ such that MJ € [Mo)ssa, M§ [thty - --t)
M™ and ¢ ¢ [M").

Initially we get (1) for some finite non-negative value of n from the left hand
side of the theorem if we choose M = My. If ¢ ¢ [M{), then ¢ ¢ [MJ)ssca, so
Mg can be chosen as the Mgge and the right hand side of the theorem holds.
This happens at the latest when n = 0. Therefore, we get our result by showing
that if (1) holds for some n and ¢ € [M}'), then (1) holds also for some m such
that 0 <m < n.

So we assume that ¢ € [M[') holds. Thm. 1 asserts the existence of t7,...,t}
and M(l]/, ceey M}’ll such that Mg = Mél, Mél[tlll>sng{/[tI2’>55G cee [t%>ssgﬁﬂl’ and
o(M]'). We first establish the existence of an occurrence sequence Myt1) ssa M
[t2)ssc -« [tk)ssa My such that MY = My and {t},...,t"} N Ts(M;) # 0 for
some 1 < j < k. We split the proof in two cases.

Case A: If at least one t7,..., ¢ belongs to Tg(M{) U--- U Ts(M]!), then we
just choose k = h and t; =t/ and M; = M/ for 1 < i < h.

Case B: If none of t},...,t" is in To(Mg) U --- U Ty(M}), then due to D1
and D2’ there is M, such that M}'[t?---t?)M; and M"[t]---t])M,. Be-
cause of ¢ ¢ [M™) we know that —¢(M;). Because ¢(M,') holds, there is
t? € {t7,...,t]} such that ¢t} € downy. Therefore, SPP3 gives the desired
occurrence sequence.

12

We can now choose the smallest j such that {¢7,...,t%} NTy(M;) # 0. Let ¢
be the smallest number such that t?* € 7y(M;). Due to D1 and D2’ there is M"~*
such that M;[t7 - -¢")M"™ * and M"[t1---t;)M"~*. We have ¢ ¢ [M™!), be-
cause otherwise ¢ ¢ [M™) would not hold. Due to D1 there is M~" such that
Mty ssa My~ tr -7ty -+ - t7)M"L. We thus have (1) for n — 1.]

8 Implementation

We now consider the implementation of the RSPP and HSPP stubborn set meth-
ods presented in the previous sections. In Sect. 8.1 we show how to construct

up, down, and satisfiability sets. In Sect. 8.2 we discuss different ways of imple-
menting the conditions D1, D2/, and SPP1-3.

8.1 Implementation of Up/Down and Satisfiability Sets

In this section we show how to define up, down and satisfiability sets for the
state properties considered in this paper. The construction is in all three cases
specified inductively using the syntactical structure of the state properties. We
end the section with a proposition which states that the defined up, down, and
satisfiability sets posses the up, down, and satisfiability set properties as defined
in Def. 4. First we give the definition of up sets.

Definition 7. Let M be a marking and ¢ a state property. The up set up¢(M)
in M is defined as follows. If ¢ holds in M we define upy(M) = 0. If ¢ does not
hold in M we define up¢(M) according to the following cases:

Case ¢ = M(p) < k :up,(M) consists of the transitions which can remove to-
kens from p and which add at most k tokens to p:

upy(M) ={teT|W(p,t)>W(t.p) AW(t,p) <k}

Case ¢ = M(p) = k : If p contains too few tokens then up,(M) consists of the
transitions which can add tokens and do not require additional tokens to be
present on p, and if p contains too many tokens then up¢(M) consists of the
transitions which can remove tokens from p and which add at most k tokens:
up¢(1b[) =
{{t €T | W(p.t) <W(t,p) A\W(p,t) < M(p) } if M(p) <k

{teT|W(p,t)>W(tp) AW(t,p) <k} if M(p) >k

Case ¢ = M(p) > k : upys(M) consists of the transitions which can add tokens
and which do not require additional tokens to be present on p:
upy(M) = {t €T | W(p,t) <W(t,p) \W(p,t) < M(p) }

Case ¢ = M(p) # k :up,(M) consists of the transitions which can change the
marking of p and which do not require additional tokens to be present on p:

upg(M) ={t €T |W(p,t) #W(t,p) \W(p,t) < k }

13

Case ¢ = M(p1) > M(p2) or ¢ = M(p1) > M(p2) :
upy(M) ={te T |W(t,p1) — W(p1,t) > W(t,pa) — W(p2,1) }
Case ¢ = M(p1) = M(p2) : UP¢(M) =
{ {teT |W(t,p1) = W(p1,t) > W(t,p2) — W(pz2,t) } if M(p1) < M(p2)
{teT | W(t,p1) — W(p1,t) < W(t,p2) — W(p2,t) } if M(p1) > M(p2)

Case ¢ = M(p1) # M(p2) :
upg(M) ={teT|W(t,p1) - W(pr,t) # W(t,p2) — W(p2,t) }
Case ¢ = ¢1 A g2 s upy(M) is the up set of one ¢; which does not hold in M :
(=1 (M) A upy (M) = upg, (M)) V (=¢2(M) A upy (M) = UP¢2(M))
Case ¢ = ¢1V ¢2 : upy(M) = upy, (M) Uupy, (M) O
Next we give the definition of down sets.

Definition 8. Let M be a marking and ¢ a state property. The down set downg
is defined as follows:

Case ¢ =M(p) <k : downy ={teT|W(pt) <W(t,p) AN\W(p,t) <k}
Case o =M(p) =k : downy ={teT|W(pt)#W(t,p) AN\W(p,t) <k}
Case o= M(p) #k : downy, ={teT | W(p,t)#W(t,p) N\W(t,p) <k}
Case ¢ =M(p) >k : downy ={teT|W(pt)>W(tp) A\W(tp) <k}
Case ¢ = M(p1) > M(p2) or ¢ = M(p1) > M(p2)

downy = {t €T | W(p1,t) — W(t,p1) > W(p2,t) — W(t p2) }
Case ¢ = M(p1) = M(p2) or ¢ = M(p1) # M(p2) :

downg = { £ € T'| W (t,pr) — W(pr,) # W(t,pa) — W(pay) }
Case ¢ = ¢p1 A2 or ¢ = 1 V ¢ : downg = downy, Udowny, O

Finally, we give the definition satisfiability sets.

Definition 9. Let M be a marking and ¢ a state property constructed from the
atomic state propositions { @; | i € I }. The satisfiability set saty(M) in M is
defined as follows. If ¢(M) holds then saty(M) = (). Otherwise it is defined as
follows.
Case ¢ = ¢; :saty(M)={1i}
Case ¢ = ¢1 V ¢2 : saty(M) = saty, (M) U satg, (M)
Case ¢ = ¢1 A ¢ : saty(M) is the satisfiability set of one ¢; which does not
hold in M :
(=1 (M) Asaty(M) = saty, (M)) V (—pa(M) A saty(M) = saty, (M)) O

The following proposition states that the up, down, and satisfiability sets defined
above have the required properties. The proof of the proposition is based on
structural induction on the state properties and is not contained in this paper.

Proposition 3. Let M be a marking and assume that upy(M) C T, downy C
T, and saty(M) C T are constructed according to Def. 7, Def. 8, and Def. 9,
respectively. Then the following hold:

1. up,(M) has the up set property in M with respect to .

2. downg has the down set property with respect to ¢.

3. saty(M) has the satisfiability set property in M with respect to ¢. O

14

8.2 Implementation of RSPP and HSPP Stubborn

We now consider the implementation of D1, D2’, and SPP1-3. The implementa-
tion of D1, D2’ and SPP1 is rather straightforward. Techniques for ensuring D1
and D2’ are well-established (see, e.g., [10] for a survey), and SPP1 can be han-
dled with similar techniques. Below we suggest three implementations of SPP2
and SPP3. The more complex implementations has the potential of leading to
better reductions of the state space.

Attractor Set. A simple way to implement SPP2 is to ensure that in each marking
M encountered during the SS state space generation we have up,, (M) C T5(M)
for every i € satg(M). In the case of SPP3 we also ensure that downg C T5(M).
This guarantees that the n in the formulation of SPP2 and SPP3 can be chosen to
be zero. SPP1 is automatically guaranteed since U{ iesat, (M) } UPp; (1) € To(M)
has the up set property in M. This implementation of SPP2 coincides with the
attractor set method suggested in [6].

Terminal SCC Detection. A more powerful implementation of SPP2 can be
obtained by exploiting strongly connected components (SCCs) and the fact that
for a directed graph it is always possible to reach the nodes belonging to some
terminal SCC. This fact implies that if all enabled transitions in the stubborn
sets used are key transitions, then a sufficient condition for SPP2 and SPP3 to
hold is that for every ¢ there exists an occurrence sequence satisfying SPP2 and
SPP3 in each of the terminal SCCs of the SS state space. Stubborn sets in which
all enabled transitions are key transitions are also referred to as strong stubborn
sets. Strong stubborn sets are already guaranteed in case of HSPP due to D2'.
In case of RSPP, we can obtain strong stubborn sets by simply ensuring also
D2’ in addition to D1, SPP1, and SPP2.

Checking that the terminal SCCs satisfy the requirement formulated above
can be done on-the-fly when combining a depth-first generation of the SS state
space with generation of SCCs by means of TARJAN’s algorithm [2]. If a ter-
minal SCC C is about to be completed and the construction of the SS state
space is about to backtrack from the marking My then we check that either
¢(M) holds in some M € C or for each atomic state proposition ¢; we have
that up,, (Mo) € U; areo) Z5(M). If we find an atomic state proposition ¢ such
that 1) up, (Mo) € Uy arecy T5(M) and 2) the stubborn set in Mo, TP (M)
containing up,,, (Mo) — Uy arec y Ts(M) contains enabled transitions which are
not in Ty(Mp), then we extend the stubborn set used in My with 72" (My). The
extension of the stubborn set is simple to implement since the union of two stub-
born sets are again a stubborn set. SPP3 requires also the check that for every
t € downg, there is a M € C such that ¢t € T(M).

The use of terminal SCCs was first suggested in [9] for a condition which
from an implementation point of view resembles SPP2 and SPP3. The condi-
tion was later called “S” in [10]. We refer to [9] for additional details about its
implementation.

15

Cycle Detection. An approximation to ensuring that an occurrence sequence
exists satisfying SPP2 and SPP3 in each of the terminal SCCs is to ensure the
stronger requirement that such an occurrence sequence exists in each of the
SCCs. This can implemented without the use of TARJAN’s algorithm, and we
can rely on depth-first generation and strong stubborn sets only. The algorithm
operates as follows.

Whenever we reach a marking M; during the SS state space generation which
is on the depth-first search stack, we search backwards in the stack through mark-
ings My, My—1,..., My and check whether for all i we have that up,, (M) €
Uj=1 Ts(M;). For all atomic state prop051t10n i such that up,,, (M1) € U 1 Ts(M;)
we compute a new stubborn set in My, 7™ (M) containing up,,, (M)— UJ:1 Ts(
and extend the stubborn set used in M1 with 75" (M). Again, SPP3 requires
taking also downg into account in the check.

9 Applications

In this section we develop stubborn set methods for boundedness properties based
on the RSPP stubborn set method. The considered boundedness properties are
inspired from how boundedness properties of High-level Petri Nets are inter-
preted at the level of the equivalent PT-net. The purpose of this section is
twofold. Firstly, to develop methods for a general set of boundedness properties
as such, and secondly to illustrate how the results of this paper can be applied
as a tool for developing stubborn set methods for state properties composed of
atomic state propositions beyond those considered in this paper.

Best Upper Bounds. An integer k is an upper bound for a set of places P’ C P iff
VM € [Mg): 2 ,cpr M(p) < k. We are interested in finding the minimal such k,
denoted the best upper bound of P’. One approach is to check the state properties
OF (M) = > pep M(p) > k starting with k = 0 and incrementing k until a ko is
found for which a marking with M (p) > kg is not reachable. ko — 1 is then the
best upper bound. A problem which has to be solved before this approach works
is that we have not allowed }_ ., M(p) > k as an atomic state proposition.
However, all that is needed to make our stubborn set algorithm work in this case
is to define proper up and down sets for this “new” atomic state proposition.
The up set for ¢* can be defined as the set of transitions which adds tokens to
P’ and which does not require additional tokens to be present on P’. The down
set can be defined as the transitions which can remove tokens from P’ and which
produces less than k token on P’. Formally:

up¢k(M) ={teT| Z W(p,t) < Z W(t,p) A Z W(p,t) < Z M(p) }

pEP’ pEP’ pEP’ peP’
downye = {t €T | Z W(p,t) > Z W(t,p) A Z W(t,p) <k}
peP’ peP’ peP’

16

Mj)v

An alternative is to observe that upyk s independent of k and downyx can be
approximated from above by removing “ZpG p W(t,p) < k” from its definition.
This means that the stubborn sets used are then independent of k. It therefore
suffices to generate just a single SS state space.

Best Lower Bounds. An integer k is a lower bound for a set of places P’ C P iff
VM € [Mp) 2>, cpr M(p) > k. We are interested in finding the maximal such
k, referred to as the best lower bound of P’. Similarly to the upper bound case
we consider state properties of the form : ¢*(M) = > pep M(p) < k starting
with & = 0 and continuing until the first &g is found for which a marking with
M(p) < ko is reachable. kg is then the best lower bound. The up and down sets
for the atomic state proposition . . M (p) < k can be defined as shown below.
If one is interested in generating only a single SS state space when finding the
best lower bound of a set of places, then the dependency of k can be eliminated
like for the best upper bound case by approximating the up and down sets to
become independent of k.

upge (M) = {t| > W(p,t)> > W(t,p)A D> W(t,p) <k}

pEP’ pEP’ pEP’
downg. = {t| > W(pt)< > W(t,p)AVpeP :W(pt)<k}
peP’ peP’

10 Experimental Results

We have implemented the RSPP stubborn set method on top of the state space
tool of Design/CPN [1]. The prototype implements the Attractor Set and Cycle
Detection algorithms given in Sect. 8.2. The construction of stubborn sets is
based on the strong component algorithm described in [10] adapted to take the
condition SPP1 into account.

Tables 1 and 2 gives numerical data on the reduction obtained with the two
implemented algorithms on some examples. For PETERSON’s and HYMAN’s mu-
tual exclusion algorithms we consider the two state properties corresponding to
mutual exclusion (Mutual Excl.), and that each of the two processes can reach
the critical section (Reach. of CS). For the Reader/Writer protocol we consider
three state properties; the writers can get write access (Reach. of Write), the
three readers can get read access (Reach. of Read), and the protocol guaran-
tees exclusive write (Excl. Write). For the Reader/Write protocol we consider
a configuration with 2 writers and 3 readers. For the Master /Slave protocol we
consider two properties; a marking is reachable in which the master has received
a response from all slaves which in turn have returned to their idle state (Donel-
dle), and the master never continues before having received a response from all
slaves (DoneWIdle). For the Master/Slave protocol we consider configurations
with 3,5 and 6 slaves.

17

Table 1 gives information about the performance of the Cycle Detection al-
gorithm. The table contains two main parts. In the Up set Driven part the
construction of the stubborn set is initiated from the transitions in the up set
and it favours stubborn sets containing transitions in the up set. In the Up
set/Enabling Driven part the construction of the stubborn set is initiated from
the transitions in the up set but it does not favour stubborn sets containing
transitions in the up set. The DFG columns represent a depth-first generation of
the state space with early termination, i.e., as soon as a marking has been found
where the state property holds the generation stops. The CG columns represent
a complete generation, i.e., the generation continues even though a marking has
been found where the state property holds. This gives information about how
large a state space the corresponding algorithm considers in the worst-case. For
those properties where no marking is reachable where the property holds, depth-
first and complete generation coincide, and only the numbers for the complete
generation is given. The entries in the Min Length columns are of the form z/y,
where x gives the number of nodes in a shortest path leading to a marking where
the property holds for the depth-first generation (if such one exists), and y gives
the corresponding number for the complete generation. This gives information
about how good the algorithm is at providing short witness paths.

Table 2 gives information about the performance of the Attractor Set al-
gorithm and the full state space. The table contains two main parts. The Full
State Space part lists the size of the full state space. In the Attractor Set Method
part, the DFG and CG columns represent depth-first generation with early ter-
mination, and complete generation, respectively. The BFG column represents a
breadth-first generation with early termination. The entries in the Min Length
are of the form x/y, where z gives the number of nodes in a shortest path leading
to a marking where the property holds for the depth-first generation (if such one
exists), and y gives the corresponding number for the BFG generation. It was
proved in [6] that the latter equals the number of nodes in one of the shortest
paths of the full state space. All state spaces reported on in this section were
generated in less than 2 minutes on a 166 Mhz PII PC.

If we first compare the numbers for the complete generation (CG) in Tables 1
and 2 then in all cases the Up set/Enabling Driven implementation gives much
better reduction than the Attractor Set Method. The Up set Driven implemen-
tation gives approximately the same reduction as the Attractor Set Method. As
a consequence of this the Up set/Enabling Driven implementation outperforms
the Attractor Set Method in the cases where the state property does not hold.
If we consider the set of state properties which holds then for the first three ex-
amples the Attractor Set Method seems slightly better than the cycle detection
algorithm in terms of yielding small state spaces and generating short witness
paths. However, when we turn to the larger Master/Slave example, then the
Up set/Enabling Driven implementation again outperforms the Attractor Set
Method in terms of reduction and it is still able to generate a short witness
path. The intuitive reason for the Up set/Enabling Driven implementation to be
better in these cases is that if the state property is located “far” from the initial

18

Table 1. Experimental results — Cycle detection algorithm.

Model/ Up set Driven Up set/Enabling Driven
Property DFG CG Min DFG CcG Min
Nodes Arcs|[Nodes Arcs|Length|[Nodes Arcs|Nodes Arcs| Length
Peterson
Reach. of CS 9 8 36 59 9/6 6 5 34 51 6/6
Mutual Excl. - - 48 84 - - - 47 79 -
Hyman
Reach. of CS 5 4 60 95 5/5 8 7 38 46 8/8
Mutual Excl. 19 19 64 106 17/12 18 20 45 57| 12/12
Reader /Writer
Reach. of Write 3 2 7 221 3/3 7 [§ 14 17 77
Reach. of Read 3 2 85 197 3/3 14 17 14 17)7
Excl. Write - - 46 111 - - - 24 37 -
Master /Slave
Doneldle-3 60 67 229 548| 60/15 30 30 130 152| 30/15
Doneldle-5 230 277| 7,837 32,412|230/23 691 790| 1,654 2,172| 483/23
Doneldle-6 516 622|46,781 233,276|513/27|| 1,744 2,084| 5,600 7,658|1053/27
DoneWIdle-3 - - 231 562 - - - 185 272 -
DoneWIdle-5 - -| 7,839 32,494 - - -| 3,745 6,592 -
DoneWIdle-6 - -146,783 233,470 - - -|16,769 31,168 -

marking (as is the case for the Master/Slave example), then the Attractor Set
Method and to some extent also the Up Set Driven implementation have a high
risk of investigating wrong branches of the state space first. For the cases where
the state property holds the Up set/Enabling Driven implementation therefore
seem to represent a good solution to the trade-off between generating short wit-
ness paths and considering large state spaces.

11 Conclusions

We have presented two new stubborn set methods for reasoning about state
properties. The method for determining whether a reachable marking exists in
which a given state property holds was based on ideas first presented in [6]. The
main difference between our new method and [6] is in how progress towards the
state property is ensured. We have replaced the always progress condition of [6]
with the weaker eventual progress condition, which have the potential of leading
to better reduction results, and which contains the always progress condition as a
special case. We have demonstrated the potential on some practical case studies
by means of an implementation of the new method. The case studies showed that
the new stubborn set method is significantly better when the state property does
not holds in any reachable marking. When a reachable marking exists in which
the state property does hold, then it represents good solution to the trade-off
between short witness paths and large state spaces. From an implementation
point of view the more powerful implementations which we have suggested for
the eventual progress condition seems to require strong stubborn sets, whereas
for the always progress implementation it suffices to use weak stubborn sets.
We have extended the first stubborn set method to obtain a second stubborn
set method representing a novel technique for determining, e.g., whether a mark-
ing is a home marking, and for checking liveness of only a single transition. Like

19

Table 2. Experimental results — Full state space and attractor set algorithm.

Model/ Full Attractor Set Method

Property State Space DFG BFG CG Min.
Nodes Arcs||[Nodes Arcs|[Nodes Arcs|Nodes Arcs|| Length

Peterson 58 116

Reach. of CS 9 8 10 11 39 67 9/5

Mutual Excl. - - - - 50 90 -

Hyman 80 160

Reach. of CS 7 6 14 17 60 95 7/5

Mutual Excl. 36 42 49 76 64 106 30/12

Reader/Writer 136 532

Reach. of Write 3 2 3 2 7 221 3/3

Reach. of Read 3 2 3 2 85 197 3/3

Excl. Write - - 118 419 -

Master/Slave

Doneldle-3 232 588 61 79| 212 520| 229 548|| 45/15

Doneldle-5 7,840 32,656(| 1,623 4,144| 7,700 31,966| 7,837 32,412(| 575/23

Doneldle-6 46,784 233,856|| 9,819 37,155(33,092 156,317 |46,701 233,276||1566,/27

DoneWlIdle-3 232 588 - - - - 231 562 -

DoneWIdle-5 7,840 32,656 - - - -| 7,839 32,494 -

DoneWIdle-6 46,784 233,856 - - - -146,783 233,470 -

existing methods for checking liveness of transitions it relies on strong stubborn
sets, but it does not require ignoring to be eliminated.

As an application to boundedness properties we have illustrated the use of
the results presented in this paper as a tool for developing stubborn set methods
for state properties beyond those considered in the paper. In fact, it can be
observed that we only directly referred to PT-nets in the implementation of up
and down sets, and hence the suggested methods can be transferred to other
modelling formalisms — provided that they allow for the definition of sets of
transitions satisfying the properties of up and down sets.

References

1. S. Christensen, J. B. Jorgensen, and L. M. Kristensen. Design/CPN - A Computer
Tool for Coloured Petri Nets. In E. Brinksma, editor, Proceedings of TACAS’97,
volume 1217 of Lecture Notes in Computer Science, pages 209—-223. Springer-
Verlag, 1997.

2. A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.

3. P. Godefroid. Using Partial Orders to Improve Automatic Verification Methods.
In Proceedings of Computer-Aided Verification ’90, volume 531 of Lecture Notes in
Computer Science, pages 175-186. Springer-Verlag, 1990.

4. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems,
An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

5. D. Peled. All from One, One for All: On Model Checking Using Representatives.
In Proceedings of Computer-Aided Verification ’93, volume 697 of Lecture Notes in
Computer Science, pages 409-423. Springer-Verlag, 1993.

6. K. Schmidt. Stubborn Sets for Standard Properties. In S. Donatelli and J. Kleijn,
editors, Proceedings of ICATPN’99, volume 1639 of Lecture Notes in Computer
Science, pages 46—65. Springer-Verlag, 1999.

20

10.

A. Valmari. Error Detection by Reduced Reachability Graph Generation. In
Proceedings of the 9th FEuropean Workshop on Application and Theory of Petri
Nets, pages 95-112, 1988.

A. Valmari. A Stubborn Attack on State Explosion. In Proceedings of Computer-
Aided Verification ’90, volume 531 of Lecture Notes in Computer Scienc, pages
156 165. Springer-Verlag, 1990.

A. Valmari. Stubborn Sets for Reduced State Space Generation. In G. Rozenberg,
editor, Advances in Petri Nets ’90, volume 483 of Lecture Notes in Computer
Science. Springer-Verlag, 1990.

A. Valmari. The State Explosion Problem. In W. Reisig and G. Rozenberg, editors,
Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Computer
Science, pages 429-528. Springer-Verlag, 1998.

21

