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The programme committee has received a total of 19 papers for evaluation and of
these 11 have been accepted for presentation. Two thirds of the accepted papers
deal with different projects in which Coloured Petri Nets and their tools have been
put to practical use - most of these in an industrial setting. The remaining papers
deal with different extensions of theory and tools.

The papers from the first CPN Workshop can be found via the web pages:
http://www.daimi.aau.dk/CPnets/workshop98/. After an additional round of
reviewing and revision, some of the papers have also been published as a special
section in the International Journal on Software Tools for Technology Transfer
(STTT). For more information see: http://sttt.cs.uni-dortmund.de/
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CONVERTING INFLUENCE NETS WITH TIMING INFORMATION TO A DISCRETE
EVENT SYSTEM MODEL, A COLORED PETRI NET ∗

LEE W. WAGENHALS AND ALEXANDER H. LEVIS
System Architectures Laboratory

School of Information technology and Engineering
George Mason University

Fairfax, VA 22030-4444, USA
{lwagenha, alevis}@gmu.edu

ABSTRACT

Recent research has shown how to incorporate time in probabilistic modeling  techniques called
influence nets that are used to model complex political/military situations.  By adding timing
information to these models, which are static equilibrium models, they are converted to discrete event
system models that can be represented as colored Petri nets.  Executing these CP nets reveals the
dynamic changes in the probability values of key events that are modeled as propositions in the
influence net.  This paper illustrates how the state space analysis capability of Design/CPN was used
to verify the behavior of a generic CP net model generated from the influence net.  First, the
implications of incorporating time in an influence net are presented along with the type of behavior
that the discrete event model should have.  A procedure for interconnecting CP net modules to create
the overall model is presented.  Finally, the state space analysis capabilities of Design/CPN are used
to verify the behavior of the model and reveal interesting properties of the dynamical model that are
not intuitively obvious from the structure of the model.

1 INTRODUCTION

Influence nets [11] are inspired by and are similar in form to Bayesian nets [2, 3, 10].
Because they are simpler to construct and computationally less burdensome than the
Bayesian net, they can support the development of models of situations by a group of subject
matter experts who need not be experienced in Bayesian nets.  The fundamental assumption
in influence nets, that the parents of any node are independent, causes them to behave in a
similar, but not identical, manner to Bayesian nets of the same form.  This assumption also
facilitates the introduction of timing information which is a fundamental enabler of this
research.

The influence net models are created to identify a set of controllable events that collectively have
the maximum positive influence on the objectives modeled in the network.  These events are called
actionable events.  Analysts create the influence net model of a situation using three types of nodes
(hypotheses).  Terminal nodes represent the effects or objectives that are desired as the result of
actions to be taken.  They have no outgoing arcs. Input nodes model the occurrence of the actionable
events that may directly or indirectly influence or cause the objectives to occur.  The third type of
node is the intermediate node. These nodes model propositions that provide influencing links between
the actionable events and the objectives .  Once the model is constructed, a sensitivity analysis is
performed to identify the actions that have the most impact on the objectives.  These actions represent
the un-sequenced and un-timed elements of a Course of Action (COA) which is defined as a timed
sequence of actionable events.

In current practice, once the un-sequenced COA has been determined, the set of selected actions
are provided to operational planners.  They evaluate the availability of the resources needed to cause
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the occurrence of the actionable events and determine how to schedule those resources to achieve
those actions. After the plan has been formulated and approved, it is executed under the direction of
operational controllers, who make adjustment in the tasking of resources as the plan unfolds.

Several observations about the current process are in order:
1. Bayesian net or influence net are static equilibrium models.  They are not dynamic; there is

no concept of time.  They yield a joint probability distribution that is consistent with any
knowledge about the hypotheses in the net.  In evaluating situations, they provide the
marginal probability of the nodes that represent the objective hypotheses given occurrence of
a set of input actions.

2. The probabilistic model does not provide information about the impact of sequencing or
timing of the actionable events on the objectives.

3. There is limited collaboration between the situation analyst, the operational planners, and the
operational controllers who design and implement the COA.  Each receives an input from the
other, but little dialog,, discussion, or debate takes place between the actors.

1.1  CONTRIBUTION

This research provides a formal procedure for converting the information contained in an influence
net along with timing information into an executable model of the situation that will generate the
timed sequence of probability values for all nodes in an influence net for a given timed sequence of
actionable events that defines the COA.  This procedure clearly shows the time phased impact of the
scheduling of resource activities on the objectives that are desired from the set of actions.  A software
application, written in CPN/ML, that automatically generates the CP net equivalent of the influence
and provides the charting capability to display the impact of any COA on the objectives has been
documented [12].  Furthermore. the researches have used the state space analysis tools of
Design/CPN [4, 5, 6, 7] to verify the behavior of the CP net generated by the code.

The remainder of this paper is organized as follows.  The next section shows how adding timing
information changes the influence net  model to a discrete event system that can be modeled using a
CP net.  Section 3 reviews the CP nets that are generated by the CPN/ML code and describes how
they operate to generate probability profiles.  Section 4 describes the state space analysis that was
done to verify the behavior of the CP nets. The last section provides future directions for research.

 2  INFLUENCE NET AS A DISCRETE EVENT SYSTEM

The influence net is based on causal relationships between propositions.  In constructing influence
nets, a temporal precedence is assumed between a causing proposition and the propositions that it
influences.  This assumption is consistent with most treatments of models of causality [10].  This in
turn implies a sequencing of the probability of the propositions in the model as the propositions of the
initial nodes become true and their effects propagate through the network.  We assume that the cause
and effect relationship between nodes is based on some real world phenomenon.  This can be
expressed as "Proposition A can trigger Proposition B (with some probability) after a time delay, d."
This time delay is caused by a real world phenomenon, such as a communication process, that
transfers the knowledge of proposition A to an underlying entity that can cause Proposition B to
occur.  We further assume that it is possible to calculate or estimate the delay.

This description suggests that the influence net is an abstraction of an underlying dynamical
system that consists of concurrent and asynchronous processes.  Associating time with the arcs of the
influence net introduces more complex behavior to the model of the system.  This behavior can be
modeled by converting the influence net to a discrete dynamical model.  Any model so created must
have at least three characteristics,

It must be capable of computing the marginal probability of any node, given a change in the
state of one or more of its parents.

It must be capable of modeling time.

It must preserve the locality principle of the causal theory.
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While several modeling frameworks could be considered, Petri nets seem most appropriate.
Because of the need to compute the marginal probabilities, a Colored Petri net is required.

Because, in its intended use, the influence net is a model of causal influences where inputs will be
provided only to nodes with no parents. We assume a sub-set of these input nodes will represent the
actionable events, propositions that we have the ability to cause with certainty.  Thus, it is assumed
that the probability values of these nodes will either be zero or one.  The initial probability value of all
nodes representing actionable events is assumed to be zero.  We assume each actionable event will be
made to occur at some time, thus each such node will change from a probability value of zero to a
value of one.  Whenever such a node changes from zero to one or F to T, its effect will propagate
through the network to one or more terminal nodes.

From this perspective, we can re-cast the model of the influence net into a discrete event system
model as follows:

Let M be the set of nodes in the influence net, mi∈  M
Partition the set of nodes of the influence net as follows:

Let I be the set of input nodes representing the actionable events.
These are the nodes without parents

Let N be the set of non-input nodes; I+N=M
Define the state of a node mi of the influence net be its probability, P(mi)

Let u be the input to the model represented by the set of the nodes in I; a vector of
probability values from the elements of I

Let x be the state vector of the set of nodes in N
Let y be a vector of probability values of a subset of the nodes in N, these are the nodes of

interest, usually the objective nodes, that are the output of the model
Let k be variable whose domain is the set of integers that is used as an index to indicate a

particular value of u, x, or y  in a sequence of values

An input episode will be defined as a sequence of changes in the values of the elements of uk .  In
the initial state, none of the actionable events has occurred so uk = 0.  As each actionable event
occurs, the corresponding value of the element of uk changes from zero to one.  Each element changes
value once.  The final state of the input vector is the unit vector, uk = 1.

With these definitions, it is possible to view an influence net as a discrete event system under the
following conditions.   (1) The state of the system is the vector of marginal probability values of each
of the nodes in the N. (2) There is a set of admissible inputs for the nodes with no parents.  As a
discrete event system, there is a single initial state defined as the equilibrium probability values, of all
the nodes in N, that would be calculated by the influence net with the probability value of all of the
input nodes set to zero.  Furthermore, there is a single final state, regardless of the sequence of the
actionable events, that is the set of probability values computed by the static influence net model with
all input nodes set to one.  We can consider the input space, U, and the output, space, Y, as
hypercubes.  Each allowable input sequence can be represented as discrete changes of position in the
input hypercube.  Each input sequence induces a finite sequence of changes in the output space,
starting with the  single initial point and ending at the single final output point.  Each sequence of
changes represents a probability profile over the set of nodes in the output space.  Figure 1 illustrates
these concepts.

Figure 1 is based on a model with three input and three output nodes or variables.  In the input
space, all input sequences start at the origin of the input space.  For this initial point in the input space,
there is a corresponding point, marked P00 in the output space.  Each allowable input sequence can be
viewed as a set of discrete jumps from the origin of the input space to various "corners" of the
hypercube, ending at the point [1,  1, …, 1].  Each sequence induces a piece-wise set of jumps or steps
through the output space, culminating at a single final point, labeled Pf in the figure.  Two input
sequences are highlighted, input sequence 1 is shaded, and input sequence 2 is solid.  The
corresponding notional paths through the output space are also shown.  The projection of the paths in
the output space on the various axes provides the probability profile for each output variable.
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Figure 1 Admissible Input Sequences Induce Output Sequences

It is important to recognize, that there is no time or clock associated with the sequences in the
above description. As described in detail by Cassandras [1], two classes of models are available that
capture the behavior of discrete event system, finite state automata and Petri nets, with Petri nets
being the more general model.

So far the case has been made that an influence net can be modeled as an untimed discrete event
system.  We need to extend the approach to incorporate time, creating a timed discrete event system
model.  Figure 2 shows an example of a influence net with time delays associated with the influences.
A time line annotated with events is shown below the net.  A time stamp can be associated with each
state change of the set of input nodes.  It is assumed that updates of the marginal probability of any
node occur immediately after the associated time delay.

In the time line of Figure 2, the actionable events, E and F both occur at time t = 0, that is, they
have a time stamp of zero.  As shown on the time line, at t = 1,  node A is updated due to the change
in state of node E.  This update uses the P[E] = 1.0 and the probability of P[F] = 0.0 even though both
are one.   This is denoted as UA|E on the time line.  At t = 2, node A updates its state again due to the
change in node F that occurred at t = 0.  At t = 3, two updates occur simultaneously.  Node B is
updated due to the change of node F, and node C updates due to the first update of node A.  Finally, at
t = 4, node C becomes aware of the new states of both nodes A and B and thus updates its state
accordingly.
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Figure 2 Timed Influence Net
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This example illustrates how both the time delays associated with the influences and the time
stamps of the inputs effect the order and the number of updates that occur in all of the nodes of the
net.  The order of the updates also affects the probability values for each update.  By converting the
influence net to a timed CP net, this dynamic behavior can be captured.

3  A CPN MODEL OF A TIMED INFLUENCE NET

To create a CPN model, first consider a general node in an influence net.  Recall that each node in
an influence net can be categorized as to one of three types, an initial node, and terminal node, or an
intermediate node.  The actionable events are always initial nodes, and the outcomes are the terminal
nodes.   Figure 3 presents a representation of an intermediate node in an influence net.  Node A has n
parents and m children.  When the state of any parent changes, Node A will be ready to update its
state after the time delay indicated on the appropriate incoming arc.  Similarly, when Node A changes
state, the evidence of that state change will be available at each of its children after the delay indicated
on the appropriate departing arc.  Note that an initial node is just an intermediate node with no
parents, and a terminal node is an intermediate node with no children.

Figure 4 shows a generalized CP net design for intermediate Node A of Figure 3 with n inputs and
m output arcs.  The global declaration node (GDN) is shown in Figure 5.  This first half of the GDN
specifies the color sets and the variables used in the model.  The second half of the GDN contains a
set of functions that are used to compute the marginal probability of a node from a list of the marginal
probabilities of the node's parents and a list containing the values of conditional probability
distribution of the node.  The function used in the CP net arc inscription is compmarg(<list of
parents>, <list of conditional probability values>).

The net is composed of n + m + 1 places and 1 + m transitions.  The places named IN1 and INn
represent inputs to Node A from each of its parents.  The tokens are of color set Marg that is a pair
composed of a real and an integer.  The real portion contains the marginal probability of the parent
node, and the integer acts as a control for the transition td.  This transition is enabled whenever
there are tokens in all of the places representing the input nodes and the guard function evaluates
to true.  The subnet has an initial marking for all of the input places and each place is both in the
preset and the post set of any transition it is connected to, so that any firing of such a transition
removes and replaces the token.  Thus there will always be a token in each place of color set Marg.
Furthermore, the guard function of the td transition evaluates to true whenever one or more of the
integer components of the input places is greater than zero.  This means that whenever a parent is
updated, it must replace the current token with a new token containing the new marginal
probability value and the control integer set to one.

Node I1

Node In

Node O1

Node Om

Node A

dlO1

dlOm

dl1

dIn

Figure 3  Generic Intermediate Node in an Influence Net

The td transition has a place of color set Rule in both the preset and the postset (a self loop).  The
Rule place contains tokens that are triples. The first element of the triple is an integer used as a
counter. The second element of the triple contains a list of the values of the conditional probability
distribution of the node.  The third element is a list of the time delay values for all of the paths to the
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children of the node.  When td fires, it removes the token in the Rule place and replaces it with a
similar token with the counter incremented by one.

Figure 4  CP Net of an Intermediate Node of an Influence Net

Figure 5 Global Declaration Node

color Control = int;
var c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,cn: Control;
color Delay = int;
var dl, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, dm: Delay;
color Prob = real;
var prob, marg ,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,pn:  Prob;
color Marg = product Prob * Control;
color Count = int;
var ct: Count;
color CondList = list Prob;
var cond: CondList;
color DelayList = list Delay;
color Rule = product Count * CondList * DelayList ;
color NewMarg= product Prob * Count timed;

fun constlist 0 = []
   | constlist n = (n-1)::constlist (n-1);
fun twopower 0 = 1
   | twopower p = 2*(twopower (p-1));
fun detbase 1 n = [n]
   | detbase p n  =
      let val q = (n div (twopower (p-1)))
     in q::(detbase (p-1) (n-(q*(twopower (p-1))))) end;
fun probdet [] [] = 1.0
   | probdet (p::ps) (y::ys) = (if y=0 then p else (1.0-p))*(probdet ps ys);
fun multlist [] [] = 0.0
   | multlist ((x:real)::xs) ((y:real)::ys) = (x*y) + (multlist xs ys);
fun compmarg(pli,problist)=multlist (map (probdet pli) (map (detbase
(length(pli))) (constlist (length(problist))))) problist;

Marg
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When transition td fires, it calculates a new marginal probability for Node A by reading all of the
current values of the inputs.  These are the arguments for the compmarg function that is on each of the
td transition's output arcs that are going to the child nodes of the influence net.  The first argument is a
list of the marginal probabilities of all of the parents [p1, …, pn] and the second is a list of the
condition probability values for Node A that is stored in the place of color set type Rule.  Transition td
sends a token with the new marginal probability value, to m different output places of type NewMarg.
NewMarg is a timed color set that is a double composed of a real, for the probability value, and an
integer.  Each of these tokens is given a time stamp consistent with the delay associated with the
propagation of the influence between Node A and each of its children (d1, d2,… or dm).  After the
appropriate delay, each transition tu1 through tum fires and exchanges the token in the input place of
the child with the new marginal probability of Node A and the control value set to one.  This "signals"
the child, which has a CP net that is similar to that for Node A, that a new update has arrived.

The purpose of the place of color set Count is to implement a first in, first out (FIFO) protocol on
token in the NewMarg places.  The FIFO protocol is required because it is possible, depending on the
firing sequence, to have transition td fire more than once without advancing the simulation time clock.
This means that more than one token can exist in the NewMarg places with the same time stamp.  It is
necessary to preserve the order of the generation of tokens with the same time stamp to ensure that the
correct final state is reached.

The FIFO protocol is implemented by the second component of token in the Rule place which is a
counter that is initialized to one and whose value is incremented each time transition td fires.  The
place with color set Count contains a similar counter that increments whenever its transition, tui, fires.
If there are multiple tokens in the NewMarg place, they will be consumed in the order in which they
were generated by transition td because the ct variable of the token must match the value of the ct in
the Count place.

CP nets representing input and terminal nodes are similar to an intermediate node as shown in
Figures 6 and 7.  Note that the input node has a single input place of timed color set NewMarg to
allow for the time stamps to be incorporated on the input tokens that represent the occurrence of an
actionable event.  The terminal node has a single output to which there is no delay associated.  The
NewMarg color set is used as the output place named ResultO1.  It contains an initial marking that is
the marking of the node that results if all the inputs are set to zero.  The same Rule place is used to
provide a counter for the tokens generated in the ResultO1 place indicating the sequence in which
they were generated.

Figure 6 Generic CP Net of an Input Node of an Influence Net
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Figure 7 Generic Output Node

Converting an influence net to a time colored Petri net is straight forward.  Indeed, an automatic
routine for doing this has been written in CPN/ML [12].  To illustrate how the sub nets are
interconnected, consider the three node timed influence net of Figure 8 with time delays d1, d2, and
d3. Node A is a input or source node, node B is an intermediate node, and node C is a terminal or sink
node.  The corresponding colored Petri net for this influence net is shown in Figure 9.  Most of the arc
inscriptions have been suppressed for clarity.

d1

d2

d3

Node A

Node B

Node C

Figure 8 Three Node Timed Influence Net
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Figure 9 CP net of Influence Net
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4 STATE SPACE ANALYSIS FOR VERIFICATION OF BEHAVIOR

State space analysis was used to verify the behavior of the CP net construction presented in
Section 3.  This section highlights key parts of the analysis and illustrates how the Occurrence Graph
Analyzer (OGA) of Design/CPN can be used for behavior verification.  The analysis was done in two
steps.  First a simple influence net model that has all three types of nodes was used and the
corresponding CP net was created using Design/CPN.  The OGA was used to generate occurrence
graphs to generate all the possible occurrence sequences in the CP net.  In addition, the state space
report that provides statistical and standard properties of the CP net was used to verify its behavior.
This analysis revealed that joins are a major factor in the behavior of the model.  Thus, in the second
step a detailed analysis of a join was conducted.

Figure 10 shows the timed influence net that was used for the verification process.  Included are
the conditional probability distributions for the intermediate and terminal nodes.  In addition, the
initial values of the conditional probabilities for each node is shown with the o subscript.  The
topology was selected because it has the minimal set of features needed to verify the behavior of
larger nets.  These features include multiple inputs and terminal nodes, an intermediate node, and at
least one branch and one join.

Input 1
I1

Input 2
I2

Intermediate
Node X

Output 1
O1

Output 2
O2

d1

d2

d3

d4
P[X|~I1,~I2]=0.9

P[X|~I1, I2]=0.5

P[X|I1,~I2]=0.2
P[X|I1,I2]=0.1

P[O1|~X]=0.9

P[O1|X]=0.2

P[O2|~X]=0.2

P[O2|X]=0.8
P[X]0=0.9

P[O2]0=0.74

P[O1]0=0.27

P[I1]0=0.0

P[I2]0=0.0

Figure 10 Verification Test Timed Influence Net

Occurrence graphs and state space reports were generated for four different cases. Each case
illustrates, important features and characteristics of the discrete event model of the timed influence
net.  The cases are:

1.) Untimed (all delays set to zero and both input occur at time zero) single input,
2.) Timed unequal time delays and input time stamps of zero.
3.) Timed with all delays equal zero and unequal time stamps on the inputs.
4.) Timed with a combination of different time delays and time stamps on the inputs

To aid in understanding the occurrence graphs and the state space reports, the CP net of the timed
influence net is shown in Figure 11.  Most of the annotations have been suppressed; the names of the
places and transitions are shown in Helvetica bold and the color sets are in italic.

The occurrence graph of the untimed single input (I1) case is shown in Figure 12.  Details of the
states and occurrences have been provided for only a few of the key nodes and arcs of the graph, and
a level index has been added to help in the description of the behavior.  From the topology of the CP
net, we can see that with only input I1, there should be seven steps for the input to propagate its effect
through the network, ending in a dead marking.  The first three transitions to fire should be tdInput01,
tInput01, and tdI1 because these transitions will be the only enabled transitions in this sequence.
After tdI1 fires, both tu1 and tum are enabled.  This results in a branch in the occurrence graph at
node 4.  The remaining steps of firing occur as tu1, tum, tdO1, and tdO2 fire.  The exact order of
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firing is not specified in the CP net, hence there are several different paths from node 4 to the final
node 12 in the occurrence graph.  Observing the state of the CP net at node 12 reveals that the
markings of the ResultO1 and ResultO2 places are correct given the input.  ResultO1 shows the initial
probability of 0.27 and a final probability of 0.76 which are the correct values.  Similarly ResultO2
has probabilities of 0.74 and 0.32, which are also the correct values.

Marg

I N 1

1

Marg

INn

1

tdI1

Rule
R I 1 1 NewMarg

ResultIm

NewMarg

ResultI1 tu1

Count
C I 1 1

1

tum

Count
CI1m 1

Marg

INom

1

Marg

INo1

1

NewMarg

ResultIn1
tIinput01

NewMarg

ResultIn2
tinput021

tdInput01

NewMarg

Input01

1

Rule

RIn1 1

NewMarg

Input02

1

tdInput02

Rule
RIn2 1

tdO1

Rule
R O 1

1

NewMarg

ResultO1

1

tdO2

Rule

R O 2 1

NewMarg

ResultO2

1

Figure 11  CP Net of Timed Influence Net

Design/CPN is capable of generating a state space report without executing the net.  This report
can be generated very quickly, even for large state spaces, and provides a great deal of useful
information about the properties of the CP net that characterize the behavior of the net for a given
marking.  The report is divided into four sections:  Statistical Information, Boundedness Properties,
Home and Liveness Properties, and Fairness Properties.   The Statistical section of the State Space
Report for the Single Input case is shown in Table 1.

Table 1 Statistical Information For Single Input

Statistics
--------------------------------------------------------
  Occurrence Graph  Scc Graph
    Nodes:  12 Nodes:  12
    Arcs:   15 Arcs:   15
    Secs:   0 Secs:   0
    Status: Full

The statistics show that the state space has 12 states with 15 arcs.  The Secs indicates the number
of seconds it took for the processor to generate the State Space Report.  In this case it was less than
one second.  The status means that the full state space has been analyzed.  The SCC Graph stands for
Strongly Connected Component Graph. The SCC graph has the same number of nodes as the state
space.  Since none of the SCCs has more than one node, there are no cycles in the state space, and,
therefore, no infinite occurrence sequences.  This is the correct characteristic for the CP net.

The Boundedness Properties of the report are shown in Table 2.  This report lists the upper and
lower integer bounds for each place in the net.  These bounds indicate the maximum and minimum
number of tokens that can exist in each place in the CP net in all the reachable markings.  This report
indicates that the CP net is functioning properly.  Each of the Counter and Rule places always has one
token as do the places that hold the current marginal probability values of the nodes of the influence
net.  The Result places hold either zero, one or two tokens depending on their location in the net.  The
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ResultO1 and ResultO2 places always have at least one token, the initial marking, and have no more
than two tokens after all of the updates arrive.

1 
0:1

2 
1:1

3 
1:1

4 
1:2

4
XTest'ResultO1 1: 1`(0.27,0) @[0]
XTest'ResultIm 1: 1`(0.2,1) @[0]
XTest'CI11 1: 1`1
XTest'ResultI1 1: 1`(0.2,1) @[0]
XTest'RO2 1: 1`(1,[0.2, 0.8] ,[])
XTest'Input01 1: 1`(1.0,0) @[0]
XTest'RI1 1: 1`(2,[0.9, 0.5, 0.2, 0.1] ,[0, 0] )
XTest'INo1 1: 1`(0.9,0)
XTest'RIn2 1: 1`(1,[],[0] )
XTest'IN1 1: 1`(1.0,0)
XTest'ResultO2 1: 1`(0.74,0) @[0]
XTest'RO1 1: 1`(1,[0.9, 0.2] ,[])
XTest'Input02 1: 1`(1.0,0) @[0]
XTest'ResultIn2 1: tempty
XTest'INn 1: 1`(0.0,0)
XTest'INom 1: 1`(0.9,0)
XTest'ResultIn1 1: tempty
XTest'RIn1 1: 1`(2,[],[0] )
XTest'CI1m 1: 1`1

5 
1:2

6 
1:2

9 
1:1

8 
2:2

7 
1:1

11 
2:1

10 
2:1

12 
2:0

12
XTest'ResultO1 1: 1`(0.27,0) @[0]+ 
1`(0.7600000000000001,1) @[0]
XTest'ResultIm 1: tempty

XTest'CI11 1: 1`2
XTest'ResultI1 1: tempty
XTest'RO2 1: 1`(2,[0.2, 0.8] ,[])
XTest'Input01 1: 1`(1.0,0) @[0]
XTest'RI1 1: 1`(2,[0.9, 0.5, 0.2, 0.1]
,[0, 0] )
XTest'INo1 1: 1`(0.2,0)
XTest'RIn2 1: 1`(1,[],[0] )
XTest'IN1 1: 1`(1.0,0)
XTest'ResultO2 1: 
1`(0.3200000000000001,1) @[0]+ 
1`(0.74,0) @[0]
XTest'RO1 1: 1`(2,[0.9, 0.2] ,[])
XTest'Input02 1: 1`(1.0,0) @[0]
XTest'ResultIn2 1: tempty
XTest'INn 1: 1`(0.0,0)
XTest'INom 1: 1`(0.2,0)
XTest'ResultIn1 1: tempty

XTest'RIn1 1: 1`(2,[],[0] )
XTest'CI1m 1: 1`2

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

4:4->5
XTest'tu1 1: 
{prob=0.9,marg=0.2,ct=1}

5:4->6
XTest'tum 1: 
{prob=0.9,marg=0.2,ct=1}

Figure 12  Occurrence graph of Single Input Initial Marking for Untimed Net

Table 3 shows the upper multi-set bounds for the CP net. While the integer bound provides
information about the maximum and minimum number of tokens in a place, the multi-set bound
provides information about the value that the tokens can carry.  The upper multi-set bound of the two
output places, ResultO1 and ResultO2 are of particular interest.  The upper multi-set bound provides a
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list of all the possible probability values of these place, and thus the maximum and minimum value of
any possible probability profiles for the given initial marking.

Table 2  Upper Integer Bounds for Single Input Case

Boundedness Properties
--------------------------------------------------------------------------------------------
  Best Integers Bounds Upper Lower Best Integers Bounds Upper Lower
  CI11 1 1 1 RIn2 1 1 1
  CI1m 1 1 1 RO1 1 1 1
  IN1 1 1 1 RO2 1 1 1
  INn 1 1 1 ResultI1 1 1 0
  INo1 1 1 1 ResultIm 1 1 0
  INom 1 1 1 ResultIn1 1 1 0
  Input01 1 1 1 ResultIn2 1 0 0
  Input02 1 1 1 ResultO1 1 2 1
  RI1 1 1 1 ResultO2 1 2 1

Table 3 Upper Multi-set Bounds for Single Input Case

Best Upper Multi-set Bounds
  CI11 1        1`1+ 1`2
  CI1m 1        1`1+ 1`2
  IN1 1         1`(0.0,0) + 1`(1.0,0) + 1`(1.0,1)
  INn 1         1`(0.0,0)
  INo1 1        1`(0.2,0) + 1`(0.2,1) + 1`(0.9,0)
  INom 1        1`(0.2,0) + 1`(0.2,1) + 1`(0.9,0)
  Input01 1     1`(1.0,0) + 1`(1.0,1)
  Input02 1     1`(1.0,0)
  RI1 1         1`(1,[0.9, 0.5, 0.2, 0.1] ,[0, 0] ) + 1`(2,[0.9, 0.5, 0.2, 0.1] ,[0, 0] )
  RIn1 1        1`(1,[],[0] ) + 1`(2,[],[0] )
  RIn2 1        1`(1,[],[0] )
  RO1 1         1`(1,[0.9, 0.2] ,[]) + 1`(2,[0.9, 0.2] ,[])
  RO2 1         1`(1,[0.2, 0.8] ,[]) + 1`(2,[0.2, 0.8] ,[])
  ResultI1 1    1`(0.2,1)
  ResultIm 1    1`(0.2,1)
  ResultIn1 1   1`(1.0,1)
  ResultIn2 1   empty
  ResultO1 1 1`(0.27,0) + 1`(0.76,1)
  ResultO2 1 1`(0.32,1) + 1`(0.74,0)

Table 4 shows the lower multi-set bounds for the net.  A lower multi-set bound is the largest
multi–set which is smaller than all of the reachable markings of a place.  In other words, it is a
multi–set of tokens in a place whose values never change in all of the reachable markings.  The are
five such places in the Single Input Case.  The first three in the table are associated with the Input I2
that was never activated so the markings of the place named INn1 and the Rule place named Rin2
never changed.  The other Rule and counter places change because the counter values change.  The
initial marking of the ResultO1 and ResultO2 places never change because there are no output arcs
from either of these places.

The third part of the state space report provides information about the Liveness Properties of the
CP net as shown in Table 5.   It lists dead markings and dead transitions.  A dead marking is a
marking with no enabled transition, a final state in the occurrence graph.  The report shows that there
is a single dead marking of node 12 in the occurrence graph.  A dead transition is a transition that is
never enabled from any reachable marking.  In this CP net there are two dead transitions, tdInput02
and tinput021.  These transitions are on the path from the second input I2 and can never fire given the
initial marking.
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Table 4 Best Lower Multi-set Bounds Table 5 Liveness Properties

  INn 1 1`(0.0,0) -------------------------------
  Input02 1 1`(1.0,0) Dead Markings:  [12]
  RIn2 1 1`(1,[],[0] ) Dead Transitions Instances:
  ResultO1 1 1`(0.27,0) tdInput02 1
  ResultO2 1 1`(0.74,0) tinput021 1
  All others    empty

The state space analysis shows that the CP net is operating properly with a single input.  The next
step is to generalize the analysis for multiple inputs with the net both unitimed and timed.

The most general case is that with all inputs present and the network untimed.  This case can be
created by marking all inputs with tokens that enable the input transitions and setting all of the delay
values to zero.  This initial marking will provide the maximum flexibility in firing sequences for the
transitions in the CP net.  It will also provide the largest state space for the CP net.  Any initial
marking that incorporates at least one delay that differs from all the other delays, or incorporates a
different time stamp on any input token will provide a restriction on the firing sequences and generate
a subset of the state space of the "untimed" CP net.

The state space report revealed that the untimed CP net with both inputs activated has the same
behavioral properties as the single input case.  The statistical report showed that the SCC graph and
the occurrence graph have the same number of nodes (122) and arcs (235), and, therefore, no cycles.
The integer boundedness properties are also the same as for the single input case, with the exception
that ResultI1 and Result1m can have two tokens as the upper integer bound and ResultO1 and
ResultO2 can have three tokens as the upper bound.

The topology of the 122 node occurrence graph revealed several important characteristics of the
untimed CP net.  First, there were three final states in the graph and 15 levels in the graph.  Two of
the final states (nodes 121 and 122) are reached if all 15 levels are traversed while the third final state
(node 87) requires only 10 levels.  At the first level, it is possible to reach all three final states.
However choices made at level 1 or level 2 could eliminate one final state as a reachable marking.
Level 3 is the last level were it is possible to reach more than one final state.  It is the branches in the
influence net that cause these choices.

Most of the boundedness properties were the same as for the single input case.  The key property
is associated with the ResultO1 and ResultO2 places. The portion of multi-set boundedness properties
associated with the two terminal nodes is shown in Table 6.  The probability and the counter values of
the tokens shows that each place starts with its initial value, (0.27, 0) and (0.74, 0), respectively.
These are the initial values because the counter values are zero.  The remaining elements of the multi-
set show that ResultO1 can have values of (0.55, 1), (0.76, 1), (0.83, 1) and (0.83, 2).  The token with
the highest counter value is the final state of the node, 0.83, which is the correct value, given both
inputs.  The other values are intermediate values that are computed when either the first input
propagates through the net before input 2 or when the second input propagates through the net before
input 1.  More precisely, these values correspond the sequence of arrival of the input updates at the
transition tdI1 (see Figure 11) which computes the new marginal probability of node X. The value
(0.83, 1) indicates that the input updates were both available to the transition tdI1 when it fired for the
first time.  Notice that if the updates do not arrive simultaneously then transition tdI1 will fire twice,
once for each update.

Table 6 Boundedness Properties of the Untimed CP Net
Best Upper Multi-set Bounds
  ResultO1 1  1`(0.27,0) + 1`(0.55,1) + 1`(0.76, 1) + 1`(0.83, 1) + 1`(0.83, 2)
  ResultO2 1 1`(0.26,1) + 1`(0.26,2) + 1`(0.32, 1) + 1`(0.5,1 ) + 1`(0.74, 0)

  Best Lower Multi-set Bounds
  ResultO1 1 1`(0.27,0)
  ResultO2 1 1`(0.74,0)
  All Others empty
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The Liveness properties indicate that there are three dead markings, nodes 87, 121, and 122 of the
occurrence graph.  Unlike the single input case, there are no dead transitions because each transition
can at fire least once on some path through the occurrence graph.  In our case, each transition fires at
least once on all paths through the occurrence graph.

The value of the ResultO1 and O2 places for dead markings is shown in Figure 13.  The other
places for the dead markings of nodes 121 and 122 are the same as for node 87 with the exception that
the counter values for nodes 121 and 122 are three in all places with counters.

The three dead markings are consistent with the State Space Report and desired behavior of the CP
net.  Node 87 is the result of firing sequences in which the two updates for Input 1 and Input 2 occur
before the transition tdI1 fires, hence it only fires once with the correct marginal probability of node
X.  Thus, the markings of the places ResultO1 and ResultO2 make one single change from the initial
probability to the final probability.  Occurrence Graph node 121 is reached if transition tdI1 fires
when enabled by the update from input 1 without the update from input 2 and then fires a second time
when the update from input 2 arrives, thus generating two tokens.  The first token generates an
intermediate marginal probability values of 0.76 and 0.32 in ResultsO1 and O2, respectively, before
the second token generates the final marginal probability values.  Occurrence graph node 122 has the
same property except the result of input 2 occurs first before the final result that includes both inputs.

This explanation demonstrates the need for the counters that enforce the FIFO protocol.  Without
this protocol it would not be possible to distinguish the final value of the marginal probability from
the intermediate values.

Once the behavior of the untimed CP net was verified, the behavior of the timed net was
examined.  There are two types of timing constraints that can be incorporated in the CP net.  The first
is by setting the timing of the inputs, and the second is by incorporating time delays on the arcs
between parents and children.  Each was investigated individually and then in combination.

The occurrence graphs clearly showed the effects of timing.  The occurrence graph with the Input
1 and 2 occurring at t = 0 and t = 1, respectively, showed that separating the inputs reduces the size of
the state space from 122 nodes to 23 and reduces the dead markings from three to one.  As expected,
the occurrence graph is simply two single input occurrence graphs that are concatenated.

The occurrence graphs with obtained different time delays and both inputs with time stamp of
zero, showed that these delays have the impact of separating the inputs but only after both input
transitions have firesd  This is because either input can be concurrently enabled throughout every step
of the propagation the other while the simulation time remains at zero.  Thus, the first half of the
occurrence graph has many more nodes than that of the case where the inputs where timed.
Nevertheless the final results with respect to the dead marking are the same.

Finally, a mix of time delays and time difference of the inputs was examined.  These can cause the
occurrence graph become a single chain as all choice is eliminated.

As was noted earlier when the occurrence graph of the untimed net was introduced, the
determination of which dead marking will be reached occurs early in any firing sequence.  A closer
look at the occurrences in the occurrence graph reveals that it is the joins in the influence net that
determines the number of dead markings in an untimed CP net model the influence net.   A net with

87
ResultO1 1: 1`(0.27,0) @[0]+ 1`(0.83,1) @[0]
ResultO2 1: 1`(0.26,1) @[0]+ 1`(0.74,0) @[0]
121
ResultO1 1: 1`(0.27,0) @[0]+ 1`(0.76,1) @[0]+ 1`(0.83,2) @[0]
ResultO2 1: 1`(0.26,2) @[0]+ 1`(0.32,1) @[0]+ 1`(0.74,0) @[0]
122
ResultO1 1: 1`(0.27,0) @[0]+ 1`(0.55,1) @[0]+ 1`(0.83,2) @[0]
ResultO2 1: 1`(0.26,2) @[0]+ 1`(0.5,1) @[0]+ 1`(0.74,0) @[0]

Figure 13 ResultO2 and O2 for the Three Dead Markings
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no joins will have a single dead marking.  A net with at least one join will have multiple dead
markings.  Branches have no impact on the number of dead markings, but do impact the size of the
state space.

To further examine the impact of joins on the number and composition of dead markings, a simple
CP net model of a join was created as shown in Figure 14.  This CP net represents a three legged join.
To keep the model simple, only the places and transitions that update each leg of the join were
modeled.  The join has a single output because branches do not effect dead markings.
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Figure 14 CP Net of Three Legged Join

The behavior of this CP net model can be anticipated.  Initially transitions tu1, tu2, and tu3 will be
concurrently enabled. Because there is no control on the firing sequences of concurrently enabled
transitions, any one of those three can fire first.  As soon as one fires, transition tdO1 becomes
concurrently enabled with the remaining two tui transitions. It can fire next or wait until one or more
of the two remaining tui fire.  Whenever tdO1 fires, it "reads" the current probability values of each
preset place (IN1, IN2, and IN3), and generates a token that is a double with the "new" marginal
probability based on those values plus the current counter number.  The values of the preset places
depend on whether the corresponding tui has fired.  Depending on the firing sequence, transition tdO1
can fire only once if it "waits" until all three tui have fired, it can fire twice, if it fires once before all
three tui have fired or it can fire three times if it fires sequentially after each tui fires.

Obviously there are a number of potential firing sequences for this CP net model.  We can view
the combination of potential firing sequences based on all of the possible sequences of arrivals of the
three inputs.  For three inputs there are 13 such sequences.  Each sequence will produce a different
marking in the Result place, hence we can expect the occurrence graph of the CP net to have 13 dead
markings.

The values probability values generated in the firing sequences can be predicted.
Let P[X] be the marginal probability  of the join node that is calculated when tdO1 fires.
Let ui be the current (old) marginal probability value of the ith parent.
Let ui' be the new, updated marginal probability value of the ith parent

Then, for the 13 potential sequences of the 3 inputs there are 23 = 8 marginal probability values:

P[X|u1, u2, u3], P[X|u1, u2, u3'], P[X|u1, u2', u3], P[X|u1', u2, u3], P[X|u1, u2', u3'], P[X|u1',  u2, u3'],
P[X|u1', u2,' u3], P[X|u1', u2', u3']

These sets of values can be arranged in a partial order based on the number of new updates in the
condition.

Without loss of generality, the initial values of the old and new marginal probabilities and the
conditional probability distribution have been chosen in a way that will simplify the analysis of the
state space.  The initial marginal probability values are set to zero and the new updates are all one.
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The conditional probability distribution is a set of eight unique values starting with 0.9 and
descending in equal increments to 0.2.  Because the calculation of marginal probability involves
products of the input probabilities and their compliments, each input sequence will uniquely result in
one of the values of conditional probability distribution.

These characteristics are summarized in Table 7. The first column is an index indicating the
sequence number.  The second three columns indicate the order of processing of the three updates, u1,
u2, and u3.  For example 1, 2, 3 means the updates are processed in sequence, while 2, 1, 1 means that
u2 and u3 are processed first, simultaneously followed by u1.  This ordering corresponds to different
paths through the input space that was illustrated in Figure 1.  The fifth column lists, in sequence, the
marginal probability values that are computed for the specific sequence.  The sixth column provides
the actual probability values for the set of initial markings as discussed in the previous paragraph.

The behavior described in Table 7 can also be presented graphically as shown in Figure 15.  The
nodes in the graph are triples that indicate the value of the three inputs that are used in the marginal
probability calculation.  For example, (0, 1, 0) means u1=0, u2=1 and u3=0.  The arcs indicate an
allowable change from one value to another.  The initial conditions start with the input (0, 0, 0), and
the input sequence always terminates with all values of the inputs equal to one (1, 1, 1).  There are 13
paths from the initial node to the terminal node. Each path presents a feasible sequence of changes in
the marginal probability.  Note that there are arcs from the initial node to all other nodes and arcs
from all nodes to the terminal node.

Table 7  Sequences of Updates

No. u1 u2 u3 Marginal Probability Calculations Values

1 1 2 3 P[X|u1', u2, u3], P[X|u1', u2', u3], P[X|u1', u2', u3'] 0.5, 0.3, 0.2

2 1 3 2 P[X|u1', u2, u3], P[X|u1', u2, u3'], P[X|u1', u2', u3'] 0.5, 0.4, 0.2

3 2 1 3 P[X|u1, u2', u3], P[X|u1', u2', u3], P[X|u1', u2', u3'] 0.7, 0.3, 0.2

4 2 3 1 P[X|u1, u2, u3'], P[X|u1', u2, u3'], P[X|u1', u2', u3'] 0.8, 0.4, 0.2

5 3 1 2 P[X|u1, u2', u3], P[X|u1, u2', u3'], P[X|u1', u2', u3'] 0.7, 0.6, 0.2

6 3 2 1 P[X|u1, u2, u3'], P[X|u1, u2', u3'], P[X|u1', u2', u3'] 0.8, 0.6, 0.2

7 1 2 2 P[X|u1', u2, u3], P[X|u1', u2', u3'] 0.5, 0.2

8 2 1 1 P[X|u1, u2', u3'], P[X|u1', u2', u3'] 0.6, 0.2

9 1 1 2 P[X|u1', u2', u3], P[X|u1', u2', u3'] 0.3, 0.2

10 2 2 1 P[X|u1, u2, u3'], P[X|u1', u2', u3'] 0.8, 0.2

11 1 2 1 P[X|u1', u2, u3'], P[X|u1', u2', u3'] 0.4, 0.2

12 2 1 2 P[X|u1, u2', u3], P[X|u1', u2', u3'] 0.7, 0.2

13 1 1 1 P[X|u1', u2', u3'] 0.2

The occurrence graph of the three legged join CP Net had 51 nodes, 58 arcs, and 13 dead
markings.  The other properties are consistent with  the state space analysis performed on the untimed
CP net of Figure 11.  The most interesting property is the upper multi-set bound for the ResultO1
node.  This multi-set is 1`(0.2,1) + 1`(0.2,2) + 1`(0.2,3) + 1`(0.3,1) + 1`(0.3,2) + 1`(0.4,1) + 1`(0.4,2)
+ 1`(0.5,1) + 1`(0.6,1) + 1`(0.6,2) + 1`(0.7,1) + 1`(0.8,1) + 1`(0.9,0).

This upper multi-set bound shows eight potential marginal probability values for the three legged
join.  These are the same values shown in Table 7. The 13 markings for ResultO1 extracted from the
dead markings are shown in Table 8.  Each row of the table represents one of the 13 paths from the
initial to the final value and each path contains the sequence of probability values that can occur in a
probability profile.
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Figure 15 Graph of 13 Sequences Given 3 Inputs

Table 8  Dead Markings for the ResultO1 Place

OG Node Counter = 0 Counter = 1 Counter = 2 Counter = 3
25 0.9 0.2
37 0.9 0.3 0.2
38 0.9 0.4 0.2
35 0.9 0.5 0.2
42 0.9 0.6 0.2
40 0.9 0.7 0.2
44 0.9 0.8 0.2
46 0.9 0.5 0.3 0.2
47 0.9 0.5 0.4 0.2
48 0.9 0.7 0.3 0.2
49 0.9 0.7 0.6 0.2
50 0.9 0.8 0.4 0.2
51 0.9 0.8 0.6 0.2

If one or more of the inputs to the three legged join are given a time stamp that is different from
the other inputs, the impact should be to reduce both the size of the state space and the number of
dead markings.  This is because the time difference in the inputs separates the availability of the
tokens and reduces the number of transitions that can be concurrently enabled.

This behavior was clearly depicted in the occurrence graph of the three legged join with inputs 1
and 2 with time stamps of zero and input 3 with a time stamp of 2.  In each dead marking , the initial
marginal probability value of the node was 0.9 with a counter value of zero.  All three dead markings
showed the correct final probability value of 0.2 that occurs at time equal 2.  The three dead markings
differed in the set of markings at time equal zero. Each has the same final probability value at t = 0
but each shows a different intermediate value caused by a different path through a portion of the
output space.  The intermediate probability values occur because of different firing sequences due to
concurrent enablements of transitions.  These intermediate values with the same time stamp are
artifacts of the updating process and have no real meaning.  The FIFO protocol ensures that tokens
produced at joins will be processed by children of the join in the order they were created, with the last
token value being the correct and final value of the update process at a given point in time. The
sequenced set of correct and final probability values of a node constitute a probability profile for the
node for a given input.  In the example, each of the dead markings generates an identical probability
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profile starting with the initial value of 0.9 that changes to 0.3 at time t = 0 and remains at that value
until t = 2 when it changes to 0.2.

Figure 16 shows the output space for the join.  The arcs are labeled with the updated probability
that arrived at the join that triggered the transition in state.  The bolded nodes and arcs indicate the
portion of the state space that is reachable for this timed example.

Figure 16 Output Space of ResultO1

This example can be used to  illustrate the concept of the probability profile.  If the arrival
times of the inputs to the join can be selected, it is possible to control the probability profile.
Figure 17 shows two profiles that can be generated from the join.  The profile with the square
points is for the case where input 2arrives at time = 1, input 3 arrives at time = 2 and input 1
arrives at time = 4.  If the arrival times of the inputs are changed to  inputs 1, 2 and 3 at times
1, 1, and 2, respectively, the probability profile changes to the one denoted by the circles.  If
the objective was to cause the output probability to be as small as possible, the second profile
is preferred over the first because decreases more rapidly.  While it is easy to determine the
probability profile of a simple net, the state space analysis has shown that the CP net can be
used to generate the probability profile for any influence net with time delays and a specific
set of timed inputs.  

Figure 17 Example of a Probability Profile for the Join
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5 SUMMARY AND FUTURE DIRECTIONS

We have introduced the formal concepts that permit the introduction of time to influence nets.
Influence nets are basic static equilibrium models.  They have no concept of time.  It was shown that
in order to correctly capture the behavior of an influence net with time delays, they must be converted
to a discrete event system model.  The most general model of discrete event systems, the colored Petri
net, is a suitable modeling formalism.  Three similar CP nets that can model the behavior of input,
output, and intermediate nodes of the net have been proposed.  A method of interconnecting the three
types of CP nets to form a complete model of the timed influence net was demonstrated.  State space
analysis of the CP net components was conducted to analyze their behavior.  This analysis
demonstrated that the CP net construct behaves correctly and can be used with confidence to model
any timed influence net.

Future research areas include developing ways to use the CP net models to support effects based
planning and dynamic re-planning of actions that support Courses of Action.  We plan to investigate
methods for using these models to track and measure progress of actions as situations unfold.  The
goal is to determine how the information produced by these models on the changing potential for
achieving desired effects and results can be  used in dynamic re-planning.
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Abstract

This paper deals with modelling and analysis of the Transmission Control Protocol

(TCP). The TCP protocol is the transport protocol used on the Internet. We present a

generic Coloured Petri Net model (CPN model) suited for performance and behavioural

analysis of di�erent versions of the TCP protocol. The CPN model covers connection

establishment and termination, data transfer phase, and concepts such as slow start,

congestion avoidance, fast retransmit, and fast recovery.

As a representative example we show how the CPN model can be instantiated to

analyse two di�erent versions (TCP Reno and TCP Tahoe) of the TCP protocol. By

means of simulations of the CPN model, we investigate the behaviour of both TCP versions

when they face di�erent packet loss situations, and we investigate the impact of packet

loss on the throughput obtained with the TCP Reno and TCP Tahoe protocols.

1 Introduction

The Internet has over the past decade experienced a crescent and rapid growth. Despite the

continuous and signi�cant advances in Internet technology, severe congestion problems have

appeared with the growth of Internet applications. One of the main causes for congestion

problems is the transport protocol implementations [11]. The Transmission Control Protocol

(TCP) is the transport protocol used on the Internet. Di�erent versions of the TCP protocol

have been de�ned [8, 10, 22] in order to cope with congestion problems.

The window 
ow control in TCP is one of the mechanisms for handling congestion on the

Internet. Basically, the window 
ow control manages the demand on the receiver's capacity.

Four intertwined algorithms have been de�ned and introduced in modern TCP versions.

They can act as a preventive way to avoid congestion as well as a congestion recovery scheme

to restore an operating state, when faced with unexpected changes such as an increase in

traÆc and loss of packets. These algorithms, named slow start, congestion avoidance, fast

retransmit and fast recovery, have been successfully applied and widely adopted. Some of

them are classi�ed as mandatory for TCP implementations.

�This work was partially supported by CNPq/Brazil under grant 201462/91-5 (NV).
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Many case studies have been conducted to investigate the performance of the di�erent

versions of TCP over congested networks. Kumar [17] uses a stochastic model to predict the

throughput of di�erent versions of TCP, considering the presence of random losses on a wire-

less link in a local area network. Lakshman and Madhow [18] examine the TCP performance

over wide area networks when data traÆc coexists with real-time traÆc. Fall and Floyd [8]

present the bene�ts of adding selective acknowledgements and a selective strategy to TCP.

Fall and Floyd used simulation to make comparisons between di�erent TCP versions. Goyal

et al [9] study the design issues for improving TCP performance over an ATM Unspeci�ed Bit

Rate (UBR) service. Simulation is used to obtain di�erent performance measures and TCP

is analysed over di�erent switch drop policies. Ost and Haverkort [21] use a Stochastic Petri

Net model to evaluate performance of windowing mechanisms in world-wide web applications.

In this paper we apply hierarchical Coloured Petri Nets (CP-nets or CPNs) [12{14, 16]

for modelling and simulation-based performance analysis of TCP protocols. For construction

and simulation of the CPN models we use the Design/CPN tool [2, 20]. The Design/CPN

tool has previously been used in a number of projects on performance analysis, e.g., in the

areas of high-speed interconnects [3] and ATM networks [4, 5]. The reader is assumed to be

familiar with the basic concepts of high-level Petri Nets [15].

The primary objective of this paper is to present a generic CPN TCP model to analyse

the performance and the behaviour of TCP protocols. The model incorporates aspects such

as slow start, congestion avoidance, fast retransmit and fast recovery. The model has been

constructed in such a way that di�erent TCP versions can be analysed. Performance analysis

can be carried out by conducting lengthly simulations of the CPN model. Di�erent kind

of performance measures can be de�ned and observed. Such model and simulation-based

performance analysis can be applied to investigate what-if questions, and used as a test-bed

for evaluation of di�erent aspects and variations of the TCP protocol. As a representative

example, we compare the behaviour of the two most common TCP versions (TCP Reno and

TCP Tahoe) when they face di�erent packet loss situations. We also consider performance

analysis for both TCP versions.

This paper is organised as follows. Section 2 introduces the basic concepts of TCP pro-

tocols with emphasis on the data transfer part and the concepts of slow start, congestion

avoidance, fast retransmit, and fast recovery. Section 3 presents the developed CPN TCP

model. Section 4 describes the simulation scenario. Section 5 presents the analysis performed

for the TCP Reno and TCP Tahoe protocols for di�erent packet loss situations. Finally, in

Sect. 6 we sum up the conclusions.

2 The Transmission Control Protocol

The Transmission Control Protocol (TCP) provides a connection-oriented, reliable, byte

stream service [6, 22]. A connection is initialised when two processes want to communicate.

When a connection is established, the TCP protocol is able to transfer a continuous stream

of octets. Octets are packed into segments1 for transmission over the Internet. When the

communication is completed, the connection is terminated. TCP connections are full duplex,

i.e., messages can 
ow in both directions. The focus of this paper is on the data transfer part.

Therefore, we do not consider the connection part in any detail. The reader interested in the

connection part can refer to [7, 22].

1Throughout this paper we will use the terms segment and packet interchangeably.
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During the data transfer part, each segment transfered in a TCP connection is given a

unique sequence number. The sliding window strategy is employed to provide eÆcient trans-

mission and 
ow control. The TCP sender keeps for each connection, the necessary informa-

tion in order to guarantee the correct behaviour of the sliding window strategy. The TCP

sender also maintains a variable that contains the maximum receiver window size indicating

the bu�ering capacity of its counterpart.

The TCP receiver can accept out-of-order packets. The TCP receiver has a �nite bu�er

where packets can be stored. The packets must be delivered in correct sequence to its TCP

user. The TCP receiver returns an acknowledgement for every packet successfully received.

The acknowledgement contains the sequence number for the next packet it expects and the

current maximum window size the TCP receiver can cope. It is important to point out that

the acknowledgements are cumulative, i.e., an acknowledgement with sequence number n

indicates that all packets up to and including n� 1 were successfully received.

TCP must recover from data that is damaged, lost, duplicated, or delivered out of order

by the Internet communication system. Basically, when TCP sends a segment it maintains a

timer waiting for an acknowledgement. The timer is set to a Retransmission Time-Out (RTO)

value [6], which is de�ned based on a running estimate of the packet Round-Trip Time (RTT).

The segment is retransmitted if no acknowledgement is received within this time.

The basic ideas discussed above are common to all TCP versions. However, to improve

TCP throughput, many modern TCP versions incorporate modi�ed 
ow control procedures

to limit the number of packets in the network. We discuss such procedures in the following

subsections.

2.1 Slow Start and Congestion Avoidance

Slow start and congestion avoidance are two independent algorithms used to treat computer

networks congestion problems [11]. Although, the two algorithms are independent and have

di�erent objectives, they are in practice implemented together [22, 23].

The basic idea behind slow start is that the packets rate injection into the network at

the sender side is based on the rate at which acknowledgements are returned by the receiver

side. Thus, instead of injecting multiple packets into the network as performed by old TCPs

implementations, the sender starts by transmitting few segments2. As soon as it receives an

acknowledgement, the number of segments to be sent is gradually increased. This prevents

the sender from overwhelming the network with a large amount of traÆc, which is likely to

cause segment losses. Actually, two segments are allowed to be sent for each acknowledgement

received.

A packet can be lost either by damage in transit or by congestion in the network. Losses

due to damage are extremely rare [11]. So, it is assumed that a packet loss indicates congestion

in the network. Congestion avoidance was de�ned as a way to cope with the loss of packets.

Thus, if congestion is detected the sender must have some strategy to decrease its utilisation

of network. Congestion is detected at the sender side by a timeout or by the reception of

duplicate acknowledgements (dupACKs)3.

2As originally de�ned, the sender starts transmission in the slow start phase by sending one segment [11].

However a larger initial window was already suggested and evaluated in [1].
3Notice that the concept of duplicate acknowledgment does not refer to the communication channel dupli-

cating the acknowledgement.
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To implement these algorithms, a congestion window size variable (CWND) is kept at the

sender as a measure of the capacity of the network. Moreover, a slow start threshold vari-

able (SSTHRESH) is maintained to distinguish between slow start and congestion avoidance

phases. The maximum number of data that the sender can send is de�ned by the minimum

of CWND and the receiver window size (RemoteWindow). If CWND < SSTHRESH, then

the connection is in slow start phase. Otherwise, congestion avoidance is performed. The

sender starts transmission in the slow start phase by sending one segment. When the sender

receives an acknowledgement for a new segment, CWND is incremented by 1. This means

that CWND is doubled every round trip time. Therefore, slow start phase corresponds to an

exponential increase in the number of data which can be sent.

When congestion is detected, one-half of the current congestion window size is saved in

SSTHRESH. The SSTHRESH value should be at least two segments. Additionally, if

congestion was triggered by a timeout, then CWND is set to 1 and the slow start phase

starts.

During congestion avoidance phase, the sender increases itsCWND variable by 1=CWND

every time an acknowledgement is received. Di�erently from slow start, a linear increase in

the number of data allowed to be sent is observed in this phase.

2.2 Fast Retransmit and Fast Recovery

As stated previously, whenever the TCP receiver receives new data, it sends an acknowl-

edgement to the TCP sender specifying the sequence number for the next expected packet.

However, if an out-of-order packet is received (indicating a potential packet loss), a dupACK

is immediately sent to the sender [23].

The idea behind fast retransmit is to realize, as soon as possible, if a segment has been

lost. It is assumed that if the cause for the duplicate acknowledgements is just a reordering

of segments, the number of duplicate acknowledgements is very small. E�ectively, the sender

waits for a �xed small number K of dupACKs. Typically, K is set to 3. If more than K

dupACKs are received, the TCP sender concludes that the segment indicated in the duplicate

acknowledgements has been lost. Immediately, the sender retransmits the segment what

appears to be the segment lost. At this point, the sender reduces its CWND variable by half

plus K segments. The addition of K is based on the assumption that K more packets have

successfully left the network. Also half of the original CWND is saved to SSTHRESH.

For each additional dupACK, the sender increases CWND by one and sends a new segment

whenever possible.

When a new acknowledgement is received for the retransmitted segment, congestion avoid-

ance is performed instead of slow start. This enhancement is known as fast recovery and con-

tributes to a higher throughput under moderate congestion. Thus, instead of setting CWND

to one segment as in a regular time-out situation, TCP sets CWND to SSTHRESH and

performs congestion avoidance. This occurs approximately one RTT after the lost segment is

retransmitted.

2.3 TCP Versions

Di�erent TCP versions have been proposed. Basically, the various TCP versions di�er in the

way they recover from the loss of packets. Below we summarise a number of TCP versions.

Details about the di�erent versions can be found in [8{10, 17, 22].
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TCP Vanilla: Incorporates slow start and congestion avoidance aspects. The recovery of

a packet loss is performed in the original way, i.e., the TCP sender waits for a coarse

timeout to retransmit the packet. After retransmission, slow start is performed.

TCP Tahoe: Fast retransmit, slow start and congestion avoidance are considered. This

version tries to conclude as soon as possible that a segment has been lost. When more

than K dupACKs are received, it behaves as if a timeout has occurred and begins

retransmission. However, after retransmission, slow start is performed.

TCP Reno: Similar to TCP Tahoe but takes fast recovery into consideration. This means

that instead of slow-starting, the TCP Reno sender makes some estimates of the amount

of outstanding data upon reception of additional incoming duplicate acknowledgements.

The TCP Reno version is said to be conservative [17] because it retransmits only one

segment, even in case of multiple packet losses in one window.

TCP New Reno: A slight variation of TCP Reno that eliminates the approach in case of

multiple losses. In such a situation, when the fast retransmission is �rst triggered, the

sender saves the highest sequence number sent. When a new acknowledgement is re-

ceived, it veri�es if the acknowledgement includes all the segments sent. If so, the sender

acts as in the TCP Reno version by setting CWND to SSTHRESH and performing

congestion avoidance. On the other hand, if not all segments were acknowledged, the

sender immediately retransmits the next segment that appears to be lost. This continues

until all the segments are acknowledged.

TCP SACK: Incorporates the selective acknowledgement approach to eÆciently recover

from multiple segment losses [8]. In this version, the information carried in the ac-

knowledgements is more elaborate and contains additional details about the segments

which have been received by the TCP receiver. From this information, the TCP sender

can infer about the segments that were not received by its counterpart.

3 The CPN TCP Model

This section contains a detailed description of the CPN TCP model. Considering that the

primary purpose of TCP is to provide a reliable data transfer and connection oriented service

between pairs of processes, four aspects were considered in the model as suggested in [7]:

connection, basic data transfer, 
ow control, and reliability. The CPN TCP model is a timed

hierarchical CPN model and was developed in such a way that di�erent TCP versions can be

analysed with only minor modi�cations to the CPN model.

Figure 1 provides an overview of the CPN TCP model. The CPN TCP model is divided in

two main parts: the connection part (right part of the hierarchy page) and the data transfer
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TCPDataTransfer#28
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CloseOpen

ConnectionDataTransfer

TCPDataSendTCPDataReceive

closeside1 closeside2Retransmission

Figure 1: The Hierarchy page for CPN TCP model

part (left part of the hierarchy page). The TCP connection part is divided in two sub-

parts. Page TCPOpen models the three-way handshake procedure used for TCP connection

establishment. Page TCPClose and its subpages Close1 and Close2 model the termination of

a TCP connection.

The data transfer phase is modelled by the subpages of TCPDataTransfer. During this

phase, the two processes involved in the connection exchange messages. Recall that each mes-

sage is packed in segment(s) which are transfered via the communication system. Segments

are reassembled in the receiver side to reconstitute the original message. An acknowledgement

is required for each segment successfully received. A TCP process is not only exclusively a

sender or a receiver, i.e., each process must be able to act as a sender and also as a receiver.

The TCP data transfer part is therefore divided in a data send part (pages TCPData Send

and TCPRetransmission) and a data receive part (page TCPDataReceive).

Although a complete TCP model has been developed, we present a simpli�ed version

in this paper. Since the main objective of this paper is to analyse TCP performance and

behaviour during the data transfer phase, the entire TCP connection phase was omitted.

It is assumed that the connection is successfully initialised and all connection information

accordingly set. The data transfer part of the model is described in the following subsections.

3.1 The Transmission Control Block

Much information is generated when a connection is opened. For example, the processes

should agree on the initial sequence numbers. This information is updated when data trans-

mission occurs. The Transmission Control Block (TCB) is the data structure where the

connection information is stored [7]. In the CPN model, TCB is modelled by an accordingly

named place. There is one token on this place for each of the currently open TCP connections.

Figure 2 lists the de�nition of the colour set (type) TCB.

Id is a pair of endpoints that identi�es a connection. LocalWindow determines the maxi-

mum number of bytes the process can receive. This information should be included in all data
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color TCB = record Id: Connection �

LocalWindow: Int �

RemoteWindow: Int �

CWND: Int �

SSTHRESH: Int �

SN: Int �

SNm: Int �

RN: Int �

NACK: CongAvoid �

NSeg: Int �

RNStatus: Status �

ConState: States;

Figure 2: The TCB colour set

segments that are transmitted. RemoteWindow indicates the maximum number of bytes the

remote process can receive. This information is used to determine the data segment size.

CWND and SSTHRESH keep current information about congestion window size and

threshold, respectively. These values are used to perform fast retransmit and fast recovery

as explained previously. SN, SNm, and RN are three attributes used to control the 
ow of

segments and to de�ne the sliding window. SN indicates the next segment to be sent. SNm

indicates the sequence number of the segment its counterpart is waiting for. This information

is important to determine if a new segment can be sent as well as in the retransmission

mechanism. RN indicates the segment the local process is expecting to receive. The NACK

attribute indicates if the connection is performing fast retransmit. Moreover, when receiving

dupACKs, it keeps track of the number of dupACKs which have been received. NSeg is an

auxiliary attribute used to update CWND, in case of congestion avoidance. RNStatus can

assume two values: acked or notacked. As soon as a new segment is received, RNStatus is set

to notacked. When the acknowledgement is sent, it changes to acked. An acknowledgement

is sent only when RNStatus is set to notacked. ConState indicates either a connection phase

or a data transfer phase.

3.2 Sending Segments

In the TCP model two di�erent types of segments are de�ned: ack segments and data seg-

ments. Ack segments carry only the sequence number of the next expected segment. Data

segments are more complex. Besides its sequence number, each data segment carries the re-

mote window size information. Remember that since data can be sent in both directions, a

data segment could be used to acknowledge receipt of a segment.

Figure 3 depicts page TCPDataSend modelling the transmission of segments. In this

paper, the part of the model responsible for the fragmentation of data from the TCP user

layer was simpli�ed. It was assumed that the TCP sender is an in�nite TCP source, i.e., TCP

always sends a segment whenever allowed by the window. All segments are also assumed to

have the same size. The part of page TCPDataSend modelling access to TCB has been

highlighted using dashed lines and arcs.

Occurence of transition Accept (top) indicates the acceptance of a new segment to be sent,

sorenchr
 27 



Input

ConnectionxE

Accept

[#SN(tcb)< #SNm(tcb) + 
min(#RemoteWindow(tcb), #CWND(tcb))
andalso connection= #Id(tcb) andalso
#NACK(tcb) <> retransmit]

Send Ack
Segment[#RNStatus(tcb) = notacked 

andalso #ConState(tcb) = established]

ToSend

ConnectionxListDataSegment

Send Data
SegmentWait

TimeOut

TCB

TCB

TransmitData

LinkJob

WaitLink1

ConnectionxDataSegment

WaitLink2

ConnectionxACKS

AckSegment
Sent

DataSegment
Sent

Retransmission
HS

TransmitAck

LinkJob

(connection, e)

(connection, listrec^^[preparesegment(tcb)]) 

(connection, dsegment::listrec)

tcb

acceptTCB(tcb)

sendackTCB(tcb)tcb

(connection, dsegment)

LinkTransmit ((connection, datasegment dsegment))LinkTransmit ((connection, acksegment(#RN(tcb))))

LinkSent ((connection, datasegment dsegment))

(connection, dsegment)

(connection,  
findplace(dsegment, listrec), 
(time() + RTO))@+ RTOLinkSent ((connection, 

                 acksegment rn1))

(connection, nok)(connection, ok)

(connection, ok)

(connection, nok)

NoSegmentNoSegment

NoSegment

(connection, listrec)

(connection, listrec)

(connection, 
listrec, nexttime)@ignore

NoSegment

Figure 3: The TCPDataSend page

i.e., the window is not full. According to the sliding window strategy, a new segment will be

accepted if its sequence number is less than the last sequence number acknowledged plus the

minimum value of the remote window and congestion window sizes. The guard of transition

Accept guarantees that this condition is satis�ed. If transition Accept occurs, a new (token)

segment is created by the function preparesegment and deposited on place ToSend. Also,

TCB is updated by function acceptTCB. Place ToSend keeps a list of data segments to be

sent. A FIFO policy is adopted.

Occurence of transition Send Data Segment (right) represents that the segment is being

enqueued in the transmission link bu�er. A copy of the data segment is kept on place

WaitLink1. When the data segment is e�ectively enqueued, transition DataSegment Sent

occurs and a token is deposited on place Wait. Place Wait maintains a list of data segments

sent that will be used for retransmission when necessary (subpage Retransmission). This

is a timed place and the Retransmission Time Out (RTO) value is used to determine the

timestamp for its tokens.

Occurence of transition Send Ack Segment (left) represents the sending of an ack segment.

This is possible when the status for the reception of segments is notacked, as indicated in

the guard of the transition. After sending an ack segment, the status is set to acked by

the function sendackTCB. Place WaitLink2 and transition AckSegment Sent has a similar

functionality as WaitLink1 and DataSegment Sent.

Figure 4 depicts page Retransmission. This it the subpage of the substitution transition

Retransmission in Fig. 3. Two di�erent forms of retransmission are modelled: a timeout re-

transmission or a fast retransmission. Transition Timeout models the regular retransmission,
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Discard

[connection= #Id(tcb) andalso 
#SNm(tcb) > #Seqn(dsegment)]

Fast
Retransmit

[connection= #Id(tcb)  andalso
#NACK(tcb) = retransmit andalso
#SNm(tcb) = #Seqn(dsegment)]

Timeout

[connection= #Id(tcb)  andalso
#SNm(tcb) <= #Seqn(dsegment)]

ToSend

ConnectionxListDataSegment

TCB

TCB

Wait

TimeOut

(connection, dsegment::lwait, nexttime)
tcb

timeoutTCB(tcb)

(connection, listrec^^[dsegment])

(connection, dsegment::lwait, nexttime)@ignore

tcb

discardTCB(tcb)

(connection, listrec)

(connection, lwait, nexttime)
@+NextTimeOut(nexttime)

(connection, dsegment::lwait, nexttime)@ignore

(connection, lwait, nexttime)@+NextTimeOut(nexttime)
fastrecTCB(tcb)

tcb

(connection, listrec^^[dsegment]) (connection, listrec)

(connection, lwait, nexttime)@+ NextTimeOut(nexttime)

Figure 4: The Retransmission page

i.e., when no acknowledgement is received and the timeout timer expires. After occurence

of transition Timeout, the TCB attributes are updated accordingly by the function time-

outTCB. For example, CWND and SSTHRESH are set to 1 and half of the current CWND,

respectively.

The TCP fast retransmit aspect is modelled by the transition Fast Retransmit. This

transition occurs only when K dupACKs have been received. When the NACK attribute

in TCB has the value retransmit, indicating that K duplicate acknowledgements have been

received, transition Fast Retransmit can occur. Function fastrecTCB updates CWND and

SSTHRESH as described in Sect. 2.2. Transition Discard removes segments from the list on

place Wait whenever segments are acknowledged.

3.3 Receiving Segments

Page TCPDataReceive modelling the reception of segments is shown in Fig. 5. Transitions

Receive Ack Segment (right) and Receive Data Segment (left) model the reception of ack seg-

ments and data segments, respectively. When an ack segment is received, function ackrecTCB

updates TCB. Minor adjustments in function ackrecTCB are required in order to consider

di�erent versions of TCP.

If a data segment is received the TCB information is updated by the function datarecTCB.

Moreover the segment received is stored on the place Segments Received. A special function

updatelr is used in order to verify if the segment was already received or if it was a new

one. This function also reassembles the messages before they are delivered to upper protocol
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ConnectionxListDataSegment

TCB
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LinkJob

ReceiveData

LinkJob

LinkTransmitted((coonection, 
datasegment dsegment))

tcb

datarecTCB(tcb,dsegment,listrec)

(connection, listrec)
(connection, 
updatelr(dsegment,listrec))

LinkTransmitted ((connection,acksegment rn1))

ackrecTCB(tcb,rn1)

tcb

Figure 5: The TCPDataReceive page

layers.

4 Simulation Scenario and Model

The simulation scenario considered was based on the scenario used in [8] by Fall and Floyd

to compare di�erent TCP versions.

Figure 6 shows the network topology for the considered simulation scenario, i.e., the

environment in which we study the TCP Reno and the TCP Tahoe protocols. The bandwidth

between the Sender and the Switch is 8Mbps (Mbit per second) and the link delay is 0:1ms.

The bandwidth and delay for the link between the Switch and the Receiver are 0:8Mbps and

100ms, respectively.

Data are sent exclusively in one direction, from the Sender to the Receiver. A �nite-

bu�er drop tail switch was considered. Also, three TCP connections from the Sender to

the Receiver was considered, however only the �rst connection was analysed. The other two

connections were used only to achieve the desired pattern of drops to be analysed (1, 2 or

3 packet losses in one window of packets). The pattern of packet drops is changed by the

number of packets sent by the second and third connections. Thus, simulations and analysis

were performed considering three situations: one packet loss (packet number 14), two packet

losses (packets 14 and 28) and three packet losses (packets 14, 26 and 28).

Figure 7 provides an overview of the model considered for simulation. It represents an in-

Sender Receiver Switch

8Mbps
0.1 ms

0.8Mbps
100 ms

Figure 6: Simulation scenario
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Figure 7: The hierarchy page for the simulation model

stantiation of the CPN TCPmodel presented in the previous section in such a way that the two

TCP versions can be studied. The model consists of two instances of page TCPDataTransfer:

one representing the Sender and one representing the Receiver. In page TCPDataReceive the

function ackrecTCB was de�ned di�erently for the two TCP versions. In case of TCP Reno,

ackrecTCB was set to de�ne fast retransmit and fast recovery concepts. For the TCP Tahoe,

ackrecTCB does not consider fast recovery. In both cases, the congestion window threshold

K was set to 3.

The switch and link bandwidth capacities and delays are modelled by the pages Channel

and Link. Figure 8 depicts page Link. Packets to be transmitted are represented by Link-

Transmit tokens in place Incoming Packets. Occurence of transition Packet Arrival indicates

that the packet was transmitted. Function LinkResourceJobArrival checks the availability

of space in the bu�er. If there is no space left, the packet is dropped. A LinkSent token is

deposited back in place Incoming Packets with timestamp set to the transmission time value.

This indicates that it is necessary to wait at least the transmission time to be able to transmit

a new packet. Transition Schedule Packet occurs whenever the timestamp of the token in

place LinkResource is satis�ed. This timestamp is set based on the link delay value.

The Design/CPN tool [20] was used to simulate the model. The performance facilities

[19] of the Design/CPN simulator were used to de�ne the analysis functions and to perform

data collection. Basically two functions were de�ned: a function that keeps track of all data

sent by the TCP sender and a function that determines the number of packets successfully

delivered at the receiver side.
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Incoming
Packets

LinkJob

Packet
Arrival

[LinkResourceValidateJob connsegment  linkres,
 linkmodres = LinkResourceJobArrival connsegment linkres]

Schedule
Packet

[LinkResourceRunning linkres,
 (linkjobs,linkmodres) = LinkResourceScheduleJob linkres]

C

LinkResource

LinkResource

Outgoing
Packets

LinkJob

if success then
LinkResourceJobsDone linkjobs
else empty

LinkTransmit connsegment

linkres@ignore linkmodres@+LinkResourceNextEvent linkmodres

linkres linkmodres@+(LinkResourceNextEvent linkmodres)

LinkSent connsegment@+(LinkTransmitTime ())

Figure 8: CPN model for the link

5 Analysis of the Model

Simulation was performed considering one, two and three packet loss situations. For each

situation, the sequence of packets sent by the TCP sender was observed. In addition, the

number of packets delivered was obtained and a performance measure was computed.

5.1 Behavioural Analysis

To observe the behaviour of the two TCP versions, we de�ned a graph that shows the sequence

of packets sent from the Sender to the Receiver. We have time on the x-axis, and the packet

number (mod 60) on the y-axis. A square represents each packet as it arrives in the switch.

Packet losses are represented in the �gure by a cross mark.

One Packet Loss

We consider the situation where the packet with sequence number 14 is lost. Figures 9 and

10 show the sequence of packets sent by the Sender, considering the TCP Reno and TCP

Tahoe versions respectively.

In case of TCP Reno, packets 0-13 are sent without problems (14 square marks in the four

initial windows in Figure 9). During this phase, TCP performs slow start and the congestion

window increases exponentially from 1 to 15. Packet number 14 is dropped, represented by a

cross mark in Fig. 9. This means that all the packets for the fourth window were successfully

delivered, except packet 14. Thus, the TCP sender receives 7 ack segments and it increases

CWND from 8 to 15. The TCP sender is allowed to send packets 15-28 (�fth window in

Figure 9).
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Figure 9: TCP Reno - one packet loss
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Figure 10: TCP Tahoe - one packet loss
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When the receiver successfully receives packet number 13, it acknowledges reception by

asking for packet number 14. Packets 15-28 were successfully delivered. Therefore, besides

the �rst acknowledgement asking for packet 14, the sender receives 14 additional acknowl-

edgements for this same packet (dupACKs).

After reception of the third dupACK asking for packet 14, fast retransmission is performed.

At this point, SSTHRESH is set to 7 (half of CWND) and CWND is set to 10 (half plus K).

Packet 14 is then retransmitted. Since 11 dupACKs were received after retransmission of

packet 14, CWND is increased up to 21.

When CWND is increased for the last six dupACKs, the sender is allowed to send packets

29-34. When the retransmitted packet is received, the sender exits fast recovery and starts

congestion avoidance with CWND set to 7.

In case of TCP Tahoe, the behaviour is identical to TCP Reno's behaviour until the

reception of the third dupACK for packet 14. Then, the sending TCP Tahoe reduces it

congestion window to one and retransmits packet 14. When an acknowledgement is received

for the retransmitted packet, CWND is increased by 1 and packets 29 and 30 are sent. The

sender continues in slow start and when packet 34 is sent, the slow-start threshold is reached

and congestion avoidance starts.

Two Packet Losses

Figures 11 and 12 show the sequence of packets sent for the two packet loss situation consid-

ering TCP Reno and TCP Tahoe, respectively. The two lost packets are 14 and 28, as shown

by the cross marks in Figures 11 and 12.

The protocol behaves exactly the same as in the one drop situation until packet 28 is sent.

Since packet 28 is also lost, the number of duplicate acknowledgements asking for packet 14

is 13 instead of 14 for the one-drop situation.

Considering the TCP Reno protocol, the sender is able to send packets 29-33. After

reception of the third duplicate acknowledgement, CWND drops to 10 and increases up to 20

due to the reception of the last 7 duplicate acknowledgements asking for packet 14. When

the retransmitted packet 14 is acknowledged, packet 28 is expected. Since this is the �rst

acknowledgement that asks for packet 28, the sender is allowed to send a new packet (packet

34). At this point, the sender exits fast recovery with CWND of 7.

Since packet 28 is also lost, the sender will receive 6 duplicate acknowledgements asking for

packet 28. Reception of the third duplicate acknowledgement triggers a second fast retrans-

mission situation. CWND and SSTHRESH are set to 6 and 3 respectively. CWND increases

to 9 when the sender receives the sixth duplicate acknowledgement. Then, the sender is able

to send packets 35 and 36. When the acknowledgement for the second retransmitted packet

is received, the sender exits again fast recovery with a congestion window of three.

In the case of TCP Tahoe protocol, after the reception of the third dupACK for packet

14, CWND is reduced to 1 and packet 14 is retransmitted. The sender then receives an

acknowledgement asking for packet 28 and CWND is increased by one. Packets 28 and 29

are sent and the sender continues in the slow start phase. The congestion avoidance phase

starts when the sender sends packet 40.
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Figure 11: TCP Reno - two packet losses

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ac

ke
t N

um
be

r 
(M

od
 6

0)

Time (seconds)

 

Figure 12: TCP Tahoe - two packet losses
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Figure 13: TCP Reno - three packet losses
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Figure 14: TCP Tahoe - three packet losses
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Three Packet Losses

In addition to loss of packets 14 and 28, now also packet 26 is lost. Figure 13 shows the

sequence of packets sent by the TCP Reno sender for the three packet loss situation. Figure

14 shows the sequence of packets for the TCP Tahoe protocol.

In case of TCP Reno, packets 0-13 are sent without problems. When packets 15-28 are

sent, the TCP sender receives 12 dupACKs asking for packet 14. After retransmission of

packet 14, CWND decreases to 10 and reaches 19 due to dupACKs. When the TCP sender

receives an acknowledgement asking for packet 26, it exits fast recovery. At this point, CWND

is set to 7. However, since packet 26 is lost, after receiving three dupACKs asking for packet

26, the TCP sender performs a second fast retransmission. SSTHRESH is reduced to 3 and

CWND is set to 6. The three next dupACKs increase CWND to 9. After receiving an

acknowledgement asking for packet 28, the sender exits fast recovery and CWND is reduced

to 3.

Since CWND is 3 and three packets still unacknowledged, the sender is stalled and is

unable to perform fast retransmission. This is re
ected in Fig. 13 as the absence of squares in

the period from 1.5 seconds to about 3 seconds. Thus, the sender waits for a retransmission

timeout. When timeout occurs, packet 28 is retransmitted and the TCP sender sets CWND

to 1, and slow start is then performed. The congestion window CWND now increases ex-

ponentially to a value of 3, after which congestion avoidance is entered since SSTHRESH is

3.

TCP Tahoe acts as in the two previous cases to cope with the loss of packet 14. When

the sender receives an acknowledgement asking for packet 26, the CWND is increased to 2.

In some situations, TCP Tahoe sender may forget the fact that some packets were previously

sent. This problem is likely to appear when multiple packet losses occur in one window of

packets. So, packets 26 and 27 are sent for the second time. Two acknowledgements for

packet 28 are received. However the congestion window is increased to 3 because only one

of the two acknowledgements represents the acknowledgement for a new data. The sender

remains in the slow start phase and switches to congestion avoidance phase when packet 37

is sent.

5.2 Performance Analysis

Di�erent kind of performance measures can be de�ned and analysed by simulation of the

CPN TCP model. In this section we consider eÆciency, which is de�ned as the number of

packets delivered to the receiver divided by the maximum number of packets that could be

delivered (when there is no loss of packets). It means that eÆciency is 1 when there is no

packet drop.

In the simulations we have assumed a segment size of 1000 bytes and a TCP maximum

receiver window size of 32K bytes. All simulations runs correspond to 5 seconds of real time.

We observed the eÆciency in both TCP versions for the situations of packet losses pre-

sented in the previous section. Table 1 summarises the results.

The results indicate that the TCP Tahoe keeps almost the same eÆciency for the three

situations. If we analyse the TCP Tahoe behaviour presented in the last section, we can

observe that TCP Tahoe recovers from the packet losses in the three situations performing

one slow start.

TCP Reno presents greater eÆciency when it faces the one packet loss situation. This
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EÆciency

Situation TCP Reno TCP Tahoe

1 packet loss 0.59 0.47

2 packet losses 0.38 0.47

3 packet losses 0.14 0.45

Table 1: EÆciency Results

occurs because Reno uses fast recovery after retransmission of the loss packet, allowing a

smoothly recover from the packet loss. For the two packet losses situation, TCP Reno was

forced to perform two successive fast retransmit and fast recovery procedures. Thus, the

congestion window was reduced in half twice. Since the reductions were performed in two

successive round-trip times, the performance of TCP connection was degraded. TCP Reno

presents vary poor performance (eÆciency of 14%) for the three packet losses situation. In

this case, TCP Reno waited for a retransmit timeout to recover from a packet loss and a

considerably performance reduction was observed.

The experiments showed that TCP Reno performs nicely in the case of a simple packet

drop. For two or more packet losses the performance of TCP Reno is signi�cantly degraded.

6 Conclusion

We have presented a timed hierarchical CPN model for behavioural and performance analysis

of TCP protocols. The model considers the four most prevalent TCP algorithms for congestion

control. We have used the term generic to emphasise that with minor changes it is possible

to adapt the model for di�erent TCP versions.

Simulation based performance analysis for the TCP Reno and TCP Tahoe protocols was

also presented focusing on eÆciency under di�erent packet loss scenarios. The obtained results

indicate that the model can be successfully applied to investigate TCP performance and can

be used as a test-bed to evaluate di�erent scenarios and variations of TCP.

The CPN TCP model has also been used as a building block in two other performance

analysis projects. In one project it was used as a component in a model focusing on capacity

planning and performance analysis of web servers. The TCP protocol is used in this context

for transmission of documents between web clients and web servers. In another project, it

was used as component in a model analysing the performance of a web based application

for distributed teaching. The TCP protocol is used in this context to implement the remote

procedure call mechanism by means of which clients and servers communicate.

Although the preliminary results indicate that the CPN TCP model can be applied to

analyse performance of TCP protocols, further investigation on this issue still needed. The

idea is to use the newly developed batch simulation facilities in the Design/CPN tool in order

to make a larger number of simulations, considering various network scenarios and di�erent

switch drop policies.

Further re�nements in the CPN TCP model to incorporate additional aspects are also

important. For example, a more detailed model for RTO estimation can be developed. The

timer granularity is an important factor in determining TCP performance.
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Abstract

We describe in this paper a general method for automatic code generation from Coloured Petri Nets
(CP-nets or CPN). The method is supported by the Design/CPN tool which has been extended during the
past few years, such that it also can be used to generate code automatically from a CPN model. We do
not describe the algorithms for code generation but rather the context such a tool is used in.

The rough outline of the method is as follows. One models the system of interest with CP-nets and
Design/CPN. The modelled system behaviour is debugged and analysed, and when one has significant
confidence in the model then the automatic code generation tool is applied, giving the final executable
implementation as a result. Thus the behaviour of the model and executable are identical, and the tradi-
tional implementation phase has been eliminated.

In this paper we demonstrate that the method is usable in practice for an industrial example, namely
an access control system developed by the Danish security company Dalcotech A/S.

This CPN model is a first version of the next generation of access control systems to be developed by
Dalcotech. We describe the model and how they apply the automatic code generation method in order
to obtain a system implementation quickly and safely. In this way Dalcotech now has the capability
to reduce the time spent in the implementation phase dramatically. Another benefit is that they also
dramatically reduce the amount of time spent on debugging the implementation.

1 Introduction

Coloured Petri Nets (CP-nets or CPN) [6, 9] is a language with an unambiguous formal definition and can
therefore be subject to compilation and execution in a computing environment. The Design/CPN tool [30]
has so far supported this in the form of a simulation engine, which is the traditional approach to execution
of CPN models.

In an earlier project with Dalcotech [1] we made a proof-of-concept experiment with automatic code
generation for a complex alarm system [20]. Standard ML code was extracted from a CPN model and
burned into two PROMs that were mounted in a prototype of the final hardware. (See [15, 19] for more
information on the functional computer language ML.) The experiment showed that automatic code gen-
eration from CPN models can be used in practice, but the experiment also showed a need to produce more
efficient code and to develop additional tool support, e.g., for debugging, testing, and interfacing libraries.

However, automatic code generation was not the focus of that project. In fact the implementation of the
system was done by hand in C++ based on the CPN model that was built. This was very time-consuming.
Therefore it was decided to follow up on the challenges in a new project dedicated to automatic code
generation. The project is called AC/DC (Automatic Code Generation from Design/CPN) [24] which is
the main topic of this paper. The AC/DC project was supported by the Danish National Centre for IT-
Research (CIT) [26].

The AC/DC project was initiated in April 1997 and ended successfully in April 1999. The project was
supported by a consultancy group of 4 people (2 from the University of Aarhus [27], 1 from Dalcotech [28],
and 1 from DELTA [29]) and a work group of 2 people from Dalcotech and 2 people from University of
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Aarhus. About 2 man-years was spent on the project. The total budget was 1 million Danish kroner of
which CIT contributed with half of the funding.

The purpose of the AC/DC project was to develop techniques and tools for automatic generation of
code from CPN models. In this way it is possible to obtain an automatic implementation of systems that
are designed by means of CP-nets and the Design/CPN tool. This eliminates a time-consuming and error-
prone manual implementation phase. It also implies that the final system is behaviourally equivalent to
the system design that was validated by means of simulation. Testing of the system can be accomplished
already in the modelling phase. We elaborate on the technique and tools for automatic code generation in
Sect. 2.

In the AC/DC project we applied the techniques and tools in practice. This was accomplished by means
of a CPN model of a new embedded system for controlling buildings (access control, alarm system, energy
control, energy measurement, etc.). The access control system was designed and specified by a CPN
model, and it was implemented by means of automatic code generation directly from the model alone. We
elaborate on the access control model in Sect. 3.

In Sect. 4 we compare our work with others, and finally we conclude the paper with a summary of main
results of the AC/DC project and a report on ongoing and future research.

2 Automatic Code Generation Techniques and Tools

The method for automatic code generation constitutes a number of techniques and tools which we present
in this section. Firstly the general approach is presented and then we explain how specialised libraries can
be added in order to support the environment used by Dalcotech. The section after this (Sect. 3) describes
the application of the method on an industrial case.

2.1 General Approach

The method for automatic code generation is summarised in Fig. 1. The figure indicates a number of stages
and intermediate products. The central idea is that the system in mind is modelled by means of CP-nets
in the Design/CPN tool. The Design/CPN tool supports several analysis techniques, such as state spaces
and simulation, in order to debug the model. Once sufficiently confident that the model is accurate and
complete we are ready for the code generation stage. The code, in the form of ML source, is extracted
directly from the simulator because the simulator already implements a super-set of the model. (Details
on the simulator can be found in a thesis [4].) Graphics simulation feedback is removed because it has no
influence on the semantics of the implementation and is not needed in the final system. We only extract
the kernel of the simulation engine and the implementation of the CPN elements of the specific model (cf.
Fig. 2).

The ML source can now be compiled by whichever ML compiler is suitable for the target hardware
platform in mind. In the figure there are two more stages which are specific for the AC/DC project, and we
therefore postpone these technical stages to Sect. 2.2 below.

There are two major advantages of taking the implementation directly from the simulator. Firstly we
get an implementation which corresponds exactly to what is included in the model. This immediately gives
a number of benefits:

� Always consistent documentation of the system. As the model is considered as documentation it is
only the model that is ever modified. Never the implementation.

� The implementation is of standard quality since the ML compiler always generates the same style of
code.

� Analysis results found in the model can also be applied on the running system, assuming that the
environment has been emulated accurately in the model.

� Errors are discovered early in the development process. The turn-around time is short should we find
an error in the running system.
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Figure 1: Overview of method as developed in the AC/DC project.
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Figure 2: Same code used in simulator and final system implementation.

Secondly since the code generation method is automatised, we eliminate a time consuming and error-prone
implementation phase.

� Errors do not originate from implementation since it is made automatically from the ML compiler.

� We save time because the implementation phase has been reduced to “pushing a button”.

Figure 1 also suggests the possibility for using a number of different ML compilers to generate the final
system. Each compiler has each own advantages and limitations which we elaborate on in the following.
We have chosen to focus on four compilers which generate very different kinds of code, namely SML/NJ,
Moscow ML, MLton, and MLj. There are other ML compilers but their features are covered by these
four. SML/NJ [14] generates native machine code and produces very fast executions. However the size of
the code generated is very large. Moscow ML [21] generates byte-code which needs an interpreter. The
execution is typically 50 times slower than SML/NJ but the size of the generated code is typically 75 times
smaller than SML/NJ. MLton [23] generates C source code for which there exists numerous optimised
compilers. Execution time is typically 3 times slower than SML/NJ but the size is about half of what
SML/NJ generates. MLj [5] generates Java which has the advantage of being portable and supported by
many platforms. We do not have experience with this compiler, but we expect that it has slower execution
time than SML/NJ in the case of a Java interpreter. There are therefore a comfortable range of compilers
for ML, and it is up to the user of the code generation method to judge the trade-offs in a given application.

Since we have no control over the implementation we may encounter some problems which depend on
the target platform chosen. We lose control over performance of the automatically generated code. The
simulation engine may not handle all kinds of models efficiently and could therefore be useless for some
real-time systems. We also lose control over memory management which may be inappropriate for some
kinds of embedded systems. We see later that these problems are not significant in the AC/DC project.

2.2 Code Generation for Embedded Systems at Dalcotech

Above we have described the general techniques and tools for automatic code generation. In the case
of CPN models made by Dalcotech we need to take account of other factors. There are a number of
requirements of embedded systems and limitations of specific environments described below. To solve
these issues a special add-on library was made to handle the specifics of the environment used by Dalcotech.
The post-processing supports add-on libraries (see Fig. 1).

Requirements and Limitations

Most of the security systems designed by Dalcotech, such as Seculon [20], contains an embedded controller
which is the core of our concern. The controller has, as other controllers in embedded systems, limited
memory and is required, to some extent, to exhibit real-time behaviour. However the limitations are not as
severe as other embedded systems such as those found in pumps, wrist watches, and weights.

With the systems produced by Dalcotech we also need to take into consideration the fact that they are
required to run in special standard hardware and software configurations. Otherwise the systems will not
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be approved by national and international quality organisations. The controlling unit must run under MS
DOS and with a special network called LonWorks. The network uses the protocol called LonTalk. 1

The reader may wonder why we consider an access control system to be a kind of embedded system,
since the system is distributed over a network and there is user interaction. We generate only code for
the controlling unit which is part of a larger LonWorks network configuration. The controlling unit senses
hardware generated messages sent via the network and may send messages to the network. We therefore
consider the controller unit to be a self-contained embedded system.

LonTalk Library

In order to support the LonTalk protocol in CPN models we have developed a library written in ML such
that it is directly usable as inscriptions in Design/CPN. The LonTalk library is documented in a manual [18].

LonWorks is a networking architecture typically used for process control in building automation and
manufacturing environments. The network speed is 40 kbit/s, and the protocol used, LonTalk, is OSI based.
The protocol is reliable in the sense that if a send-message call terminates successfully it is guaranteed that
the message was also received successfully and intact. (Authentication is also supported but not used in
this project.) Devices, such as actuators and sensors, are attached to the network via a Neuron chip. A
Neuron supports the LonTalk protocol, and input/output to the device in question. For instance, a device
could be a lamp (actuator) or an infrared detector (sensor). A Neuron is responsible for maintaining and
communicating values of network variables to other Neurons on the LonWorks network, and are therefore
in some sense analogous to a neuron in a brain.

On the application level one does not know about the details of devices directly, but rather on an
indirect level by means of network variables. A network variable is an abstraction of the state of devices
on the network. For instance, the application programmer updates the value of a network variable which
represents the state of a lamp or reads another network variable which represents the state of an infrared
detector. A network variable may even be related with another network variable such that if one is updated
then the other is also updated automatically. On system startup the network variables are configured to fit
the setup of devices in question.

Apart from initialisation and configuration functions the interface of the library has two important
functions, namely those to be used for input/output of messages to/from the LonWorks network. Below we
have listed the signature of the functions:

val LONin : LON_Millisec -> LON_TIMED_EVENT
val LONout : NV_IDX * NV_VAL -> LON_RESULT

The function LONin attempts to read a message from the network within the specified time-out (LON -
Millisec). If a message arrives before time-out then it is returned immediately to the caller, otherwise
at time-out the caller is informed that no messages arrived (NO EVENT). The LONout function sends a
message to the network and returns a diagnostic value. The LONin function should be called regularly in
order to prevent input buffer overflow.

While modelling with CP-nets one often wishes to make a simulation in order to analyse the system. In
a model where LonTalk is being used it is usually not possible to make a simulation because the network is
not present. In order to remedy this problem a special version of the LonTalk library can be used which is
able to emulate messages sent and received on the network. All one has to provide is a file which specifies
which messages are to be received by the model and at which points in time. In this way one can debug the
model with a simple list of messages and then run the model on the input and investigate how the model
responds either at the end of a simulation run or in a stepwise fashion. This emulation version of the library
is also documented in [18].

Generic Post-processing Tool

When we build models which are based on LonWorks we need to use the LonTalk library somehow in the
model. In the model we wish to specify that we send and receive messages on the LonWorks network.

1LonWorks and LonTalk are trademarks of Echelon Corporation [31].
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Figure 3: Dalcotech’s use of libraries and automatically generated code.

While simulating with Design/CPN we cannot rely on the network being present. On the other hand the
code generated from the model must run in a LonWorks environment. Figure 3 depicts the situation for
Dalcotech and is therefore a specialisation of Fig 2.

To support this we have built a post-processing tool which takes the generated simulation code as input.
The tool recognises platform dependent code, such as the LonTalk library, via special include statements
specified by the user in the global declaration node: use " <library-name>.sml". It is the leading
underscore which is recognised by the post-processing tool. The tool produces one self-contained source
file, with the platform dependent code linked in, which can be compiled by whatever compiler is needed
in relation with the target hardware in question. In the AC/DC project we run on the DOS platform and
the compiler we use is Moscow ML [21]. This compiler generates compact byte-code for a DOS-based
interpreter, and is therefore useful in the AC/DC project. The post-processing tool is documented in a
manual [17]. In Fig. 4 the code generation method as used by Dalcotech is summarised. It is a specialisation
of the general method as depicted in Fig. 1.

The disadvantage of Moscow ML is that it does not support the full module language of SML/NJ [14]
which is what the code generator of the simulator produces. We therefore apply a, so called, de-functor-
iser [23] which unfolds the source code to the Standard ML core language [15]. The unfolded source can
be compiled by Moscow ML.

The post-processing tool does not depend on the LonTalk library as used in the AC/DC project. The
tool is in fact generic in the sense that it can be parameterised with whatever platform dependent libraries
are needed. A library which is used with the tool must conform to the procedure as described in the
manual [17]. In short one needs to make two versions of the library: A simple version which should
consist of at least an interface, and a full version with complete functionality. The simple version is used in
the model and the full version is linked with the simulator generated code by means of the post-processing
tool. In the case of the LonTalk library the simple version is a simple emulation of the LonTalk protocol as
described earlier in this section. The advantage is that we can use a platform dependent library both in the
simulator and the final system, but the disadvantage is that it is the user’s responsibility to ensure that the
two versions of the library behave similarly.

3 Access Control Model

In this section we present the access control model which was made by Dalcotech in the AC/DC project. We
demonstrate how the code generation method, described in the previous section, was successfully applied,
and we show that the model architecture is flexible in case a customer requests new features.

The model was built mainly by two people from Dalcotech which took less than two man-months
including specification, design/modelling, analysis, and code generation. People from the consultancy
group was only involved in two model reviews. The reviews were very useful and effective means for
improving the modelling strategy and architecture. The first review resulted in guidelines for continuing
the modelling work while the second review was used for minor adjustments in order to finish the model.

The access control system works roughly as follows (see Fig. 5): A person outside the room may open
the door by punching his personal code on the code entry unit (1). The system recognises the person,
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Figure 5: Access control scenario. White squares on the network represents the standard interface (Neu-
rons) to various devices.

checks that the person is allowed in the area at this time, disables the alarm, and unlocks the door for a
limited period of time. The system log is updated by printing status information on the log printer (5).
More people may enter, each punching a personal code, and the system updates the log. In order to leave
the room a person must push the open door button (2). The last person leaving the room must punch in the
personal code in order to enable the alarm again. In alarm mode the horn (6) can be triggered in case one
of the entry detectors are activated (3 and 4). There is other interaction possibilities and combinations of
actions, but they are left out of this paper.

3.1 Model Structure

The structure of the CPN model of the access control system is depicted in Fig. 6. The model is of moderate
size, and consist of 21 pages and 70 transitions. There are three important parts in the model, namely
initialisation (Initialize), Neuron (Neuron), and event handler (Main). They are described in the
following sections.

Initialize

The model is initialised in several steps in a sequential fashion, see also Fig. 6.

1. All network variables are initialised in order to related each network variable with a devices in the
network. (See also Fig. 7.) It is worth noting here that this configuration covers three code entry units
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Figure 6: Hierarchy page of CPN model.

which corresponds to covering three rooms (or doors). Furthermore there are 10 user configurable
network variables.

2. The user database is initialised with names related with entry codes and where people are allowed to
be and when.

3. The database containing information about man-machine interfaces (MMI), such as the code entry
unit, are initialised with logic for managing enabling and disabling of alarms in case the correct code
is punched.

4. The expected initial states of inputs are initialised. For instance we assume that all input devices are
off.

5. Finally we initialised the status of the areas. All areas a initially armed.

After this sequence the configuration is extracted from the databases in the model and sent to the network.
If the configuration fails then error information is passed on to the main loop of the model.

Neuron

The Neuron is a standard component in LonWorks based systems. Care should be taken to model such
a component as it is expected to be reused in other models of LonWorks systems. The model made by
Dalcotech is depicted in Fig. 8. Relevant colour sets are shown below:

colorset NV_UPDATE = product
NV_IDX * (* LonWorks Network variable index *)
NV_VAL; (* LonWorks Network variable value *)

colorset LON_EVENT = union
...
NO_EVENT + (* No events from LonWorks *)
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Figure 7: CPN page modelling the initialisation of network variables.

UPDATE: NV_UPDATE; (* Update of network variable *)
colorset LON_TIMED_EVENT = product
LON_EVENT * (* LonWorks event *)
INT; (* Ticks passed since last time reporting ticks *)

As with the physical Neuron, the model is divided into two parts: A device driver part (left) and a
part providing an interface to the application (right). The device driver part just makes basic input/output
calls to the LonTalk library which is the basic interface to the network. The LonTalk protocol is rather
complicated and is therefore not modelled as a CP-net. The application part converts network messages to
higher level messages (events) appropriate for the application (upper half) and also converts higher level
messages to network messages (lower half). In case no message (NO EVENT) is received from the network
then timer information is propagated. This information can be used elsewhere in the access control model
for managing user access times and alarm timeouts. Notice that the model does not use timed CP-nets but
instead stores information on the (real) time passed since last event was read (LON TIMED EVENT).

The Neuron is modelled such that either input or output is treated exclusively, never both at the same
time. This is to avoid multi-threaded behaviour in the access control model. Why we have made this choice
will become more evident below where we describe the model part for event handling.

We could also imagine that the model would benefit from using timed CP-nets. Timeouts and delays
could then be expressed directly as modelling primitives and then potentially make the model simpler. The
timing logic of the transition scheduler of the simulation engine would then need to be related with the
system clock. Otherwise the timeouts and delays would not be real-time. Unfortunately this simulation
architecture is not very well studied, and there are problems to be solved. For instance, what if the model
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gets significantly behind the real-time clock? This could happen if a calculation in a transition takes up too
much CPU time. We leave this as a research topic for the future.
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Figure 9: CPN page modelling the main event handling cycle.

Event Handling

Event handling is a central cycle in many systems, in particular reactive systems where user input is in-
volved. The access control model also has an event cycle which is depicted in Fig. 9. The relevant colour
sets are listed below:

colorset MSG = product
INT * (* Id *)
NV_TYPE * (* Network variable type *)
NV_VAL; (* Data *)

colorset MSGs = list MSG;

Once the system is initialised (top left substitution transition) the Neuron is activated such that new
messages from the network can be read. The Neuron, Neuron Input/Output, converts a network
message to an event which is put on the place Msg in. This is subsequently dispatched to the appropriate
event handler which can be one of User changed, User code handling, Command handling,
Input change handling, or Time handling. Once an event is fully treated then the event cycle
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checks if we need to generate any messages to the network (Update outputs), and then generates
messages for the log printer on the network. For instance, if a user has punched in an access code, then
the system registers this and then sends an unlock door message, a turn on green light indicator message,
and a log entry message to the printer. Finally the Neuron is activated again for processing all assembled
messages on Msg out, and then the Neuron is ready to process the next input message from the network.

Note that the description just provided is purely sequential. As noted before where we described the
Neuron page, concurrency is something we have chosen to avoid at this level. Handling of multiple events
concurrently would make the model much more complicated because there are several data bases accessed
throughout the model, and ensuring mutual data base consistency would be difficult. Also, we know that
the target hardware platform only has a single CPU, thus there is not an obvious performance benefit of
having concurrent activities in the model. However, the idea was to start with a simple solution and then
make it more advanced with respect to concurrency as more experience was obtained.

3.2 Code Generation Method Applied

In the following we describe in detail how the code generation tools are applied for the access control
model. We assume that we have the access control model and that we are sufficiently confident that it
works. In the global declaration node we have made a reference to the platform dependent LonTalk library
by including the statement use " Lontalk.sml". The steps described below corresponds to the high-
level description in Sect. 2.

We load the access control model into the Design/CPN tool and invoke the ML simulation engine
(called the switch to simulator). As part of the syntax check and simulator setup, the ML source code
is extracted and then saved to a file, say /tmp/ml.out. Then we call the post-processor on a Linux
machine to make platform dependent source:

linux% cpnsim2mosml.pl /tmp/ml.out /tmp/accsctrl.sml

The post-processor recognises the special use-statement and includes the full version of the lontalk library.
Finally we move accsctrl.sml to the DOS platform and create the final executable:

dos% mosmlc accsctrl.sml

This command creates a DOS executable called mosmlout.exewhich now can be started, assuming the
LonWorks network is attached to the machine. The whole procedure takes 10–20 minutes on a 200MHz
Pentium PC with 64Mb RAM for the access control model.

Once the automatically generated implementation is executing on the DOS platform we can investigate
the behaviour and responsiveness of the system. We have a simplified demonstration hardware scenario
similar to Fig. 5. Instead of having an alarm horn there is a lamp, and instead of specific sensors such as
forced entry detectors there is a switch which can be controlled manually. This is a cheap but still effective
scenario for testing the running system.

We are now able to investigate the running system. Although we are able to run the same system in the
simulator of Design/CPN, we may discover anomalies which were not found while simulating. The state
space tool in Design/CPN could have helped us to find more problems as a means to make an exhaustive
simulation, but this tool was never applied in the AC/DC project, mainly because the model has an infinite
state space (messages on the network is unbounded). The model can however be modified such that we
obtain a finite state space, but this was not pursued further. Another interesting property of the running
system is how it performs. How quick can it react to user inputs and is it sufficiently fast to generated
alarms? On the 33MHz DOS machine with 32Mb of RAM the system was indeed running fast enough.
The system reaction time to user input is less that half a second, which is within the margins of this kind
of access control systems. We could in principle have carried out more systematic performance analysis in
Design/CPN as it is supported in the tool, but this was out of scope of the project.

3.3 Benefits of Model Architecture

The model we have describe above in Sect. 3.1 has a number of useful engineering properties. It has
reusable components, is extensible, and adaptable. It is of great interest for Dalcotech to learn from mod-
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elling experiences and use this model in future projects. Usually a customer will need an access control
system with special features and it is therefore important to avoid building the system from scratch every
time. Reusing existing modules is faster and safer. In the following we show that the model has such
properties.

Extensible

Consider the CPN module in Fig. 9 which depicts the event handler of the access control model.
The structure of the event handler is divided into cases for each kind of possible event. A new customer

would typically request support for new devices in the system which consequently would induce new kinds
of events from the network. Extending the case structure is relatively easy as one just needs to add a new
substitution transition to handle the new kind of event. An event may require updating some of the access
control data bases in the system, but these are easily accessible as they are located on fusion places.

It is also relatively safe to add support for a new event with respect to data base integrity, because only
one event at a time can be processed by the system.

Reusable

Consider the CPN module in Fig. 8 which depicts the Neuron of the access control model. A Neuron is a
standard component to interface between devices and the LonWorks network. We therefore only need to
model a Neuron once.

If we model the Neuron as one page, as in our case, we can easily use the save/load sub-page feature
in Design/CPN in order to imitate a simple module facility. Should we need the Neuron module in another
model, all we have to do is to make a substitution transition and load the Neuron module via load sub-page
and then assign the ports to the sockets around the substitution transition.

As the Neuron is a standard component it will be used frequently and therefore also tested in many
different contexts. We therefore expect such a module to become increasingly robust over time. As the
module matures it will become safer to use in new contexts.

Another example of re-usability in the access control model is the underlying data bases which are
used to manage the access control logic. This manager is not described further, but we would like to note
that the functions operating on the data bases are written in ML and therefore easy to include as libraries
in the global declaration node. ML libraries are in general frequently used as reusable components in
Design/CPN models.

Adaptable

Consider the initialisation phase which is described in Sect 3.1. One step in the initialisation consists
of sending configuration information to the LonWorks network (Fig. 7) such that network variables are
configured for the attached devices. The configuration is in fact adaptable by the end-user within a limited
range. For instance, a specific code generated system targeted for small buildings will typically be pre-
configured to be able to handle about three rooms with 20 sensors and actuators as is the case in Fig. 7. In
this way Dalcotech does not need to code generate a new system for every new customer, but can instead
have a limited number of products each covering a range of building sizes.

4 Related Work

There are more than 50 tools for Petri nets which are actively being developed [32]. Many of these tools
have some sort of simulation support for Petri nets. Typically a given Petri net model is translated into
a different language (C/C++, Java, SML, etc.) which subsequently is interpreted or compiled by already
established and well-known tools. In this section we compare our work with other tools and approaches,
however limited to tools supporting high-level Petri nets or other high-level languages such as object-
oriented languages.
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LOOPN++

LOOPN++ supports a kind of object-oriented high-level Petri nets [10]. It contains a translator which can
generate C++ source code which is then subsequently compiled to native machine code and executed. The
tool has also been extended to generate Java source code [11]. LOOPN++ is only a compiler and does not
contain a simulator, and is therefore very different from Design/CPN in the respect that LOOPN++ does
not have a direct behaviour relation between model and generated code (cf. Fig. 2).

CPN-AMI

CPN-AMI is a CASE environment based on some kind of high-level Petri nets [13]. Among other com-
ponents CPN-AMI contains a simulator (CPN/DESIR) and a code generator (H-Tagada) which generates
ADA code. The code executed by the simulator and the generated ADA code are different. Thus there is
not as strong relationship between simulation and generated code as with the code generation method of
Design/CPN (cf. discussion of Fig. 2). However, the H-Tagada code generator is able to separate a Petri net
model into processes (G-objects), thus making potential for true concurrent executing in multi-processor
environments. This is not supported in the Design/CPN code generator.

Another tool called Artifex [25] is similar to CPN-AMI in that it has both a simulator and code gener-
ator, however Artifex generates C/C++ code. There are a number of other tools which has the same code
generation architecture as these.

PEP

PEP [3] has many different kinds of translators which can translate back and forth many different kinds of
languages such as P/T nets (Petri box), high-level nets (M-net), and textual language (B(PN) 2). A modifi-
cation in one language representation can automatically be updated in another, in a consistent fashion. This
is analogous to what sometimes can be found in UML notation based environments. Updating a textual
representation of a class will consistently update a diagrammatic representation of a class and vice versa.
An example of such system is the Mjølner System [8].

The code generation method of Design/CPN does not support what can be called reverse engineering,
i.e., translation from implementation to a CPN model. However, this is not the intention either. Once the
code has been generated it should neither be investigated nor modified manually. One would then ask if
we could support reverse engineering, but this would be difficult in the case of SML and Petri nets because
they are radically different languages. This is not the case for the UML based environments where the
diagrams and textual languages are very similar in structure. Also in the case of PEP the various languages
supported are mutually similar, and could thus be worth investigating closer in case we wish to support
translation in both directions in Design/CPN.

ML compared with C/C++

We are often asked whether it would be easier to generate C/C++ source code instead of ML. There are
two main reasons that C/C++ would be harder to generate in the current architecture. Firstly the inscription
language of CPN models is ML. Most of the inscriptions are directly implementable in ML. Generation
to C/C++ would require a translation, in particular for the cases of pattern matching. Pattern matching is
a powerful construct and is frequently used in CPN models. ML directly supports pattern matching but
C/C++ does not.

Secondly the ML compiler is interactive which is in contrast to most compilers for C/C++ which are
batch compilers. It is easy the change a CPN model given an interactive compiler because we just send
new source code to directly overwrite existing representations of the model. With C/C++ batch compiling
the turn-around time is longer because a new application needs to be generated.

In general the CPN language is more in the nature of functional languages where side effects are not
allowed. C/C++ is imperative and side effects are more naturally used.
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5 Conclusion

Dalcotech is a small company and it is therefore limited what the company can invest of resources on
a project like AC/DC. However, given that Dalcotech was already familiar with CP-nets and previous
positive experience with CPN development projects they were quite certain that the AC/DC project would
be feasible [7].

Although Dalcotech has used CP-nets in practice for a number of years, it is in AC/DC the first time
they use CP-nets directly for automatically generating the implementation. In this way Dalcotech now
has the capability to dramatically reduce the time spent in the implementation phase. Additionally they
also dramatically reduce the amount of time spent on debugging because errors in the implementation in
principle originate from the model only.

In the AC/DC project Dalcotech has successfully conducted a code generation case study where a
CPN model has been built for the next generation of access control systems the company has planned to
produce. By means of the code generation method and their model, Dalcotech has obtained an automatic
implementation of the embedded controlling unit of the access control system. This non-trivial case study
proves that the method can be applied in practice by engineers who are not completely familiar with the
advanced technology behind automatic code generation. Additionally, Dalcotech has during the modelling
process gained better insight into access control systems in general.

The AC/DC project has for our part provided an excellent opportunity to develop and apply the tech-
niques and tools in the context of an interesting industrial case study. Furthermore, we have been able to
extend the use of CP-nets into the new area of automatic code generation for embedded systems and de-
veloped a method to support this [16]. It has been a useful challenge to match the needs of Dalcotech, and
we have thus become more experienced with the techniques and tools and more confident that our method
works in practice [7].

A significant part of Dalcotech’s revenue is from development contracts and it is therefore expected
that automatic code generation from CPN models will have a significant role in the future [7].

Another ongoing activity is the effort to conduct technology transfer of the method to other companies.
A full day seminar was conducted for the Danish industry. The seminar included introduction to CP-nets,
the method for automatic code generation, and its application. Such seminars are held under the auspices
of DELTA. In this way we help to make advanced computer science technology more easily available for a
wider audience. At the seminar the attendants were motivated and asked a lot of relevant questions. One of
the main concerns, however, was how they could convince their companies to use the CPN methodology.
We proposed a number of arguments that could be used: The CPN language is simple to learn and yet
powerful to use. It is a visual approach where diagrams can be explained for non-experts. The CPN
methodology can be introduced in a company for enriching existing methods, such as UML — not as a
replacement. Typically CP-nets can be used in situations where the existing methods are limited, e.g., in
analysis and verification phases. We have also seen in a previous CPN project with Dalcotech that the CPN
methodology was used as part of a valid argument for approving a security system product based on CPN.

We have also made contact with research groups in Copenhagen who are working with optimising ML
compilers such that garbage collection can be avoided [22]. Most ML systems have a garbage collector
of some kind. They are interested in AC/DC because they are looking for an industrial case study. We
are interested because for embedded systems an automatic garbage collector may cause unpredictable and
unwanted long waiting times, and getting rid of garbage collection is expected to be a benefit in practice.
In the access control system the garbage collector has never been an issue, but this may be different for
other kinds of embedded systems, e.g., where real-time behaviour is more critical.

Finally we need to generalise and optimise code generation in several directions. There is ongoing
work of defining parametrised CP-nets [2, 12]. Thus we need to consider code generation for parametrised
CPN modules which is expected to be realistic because SML also supports parametrised modules. It is also
interesting to minimise the amount of generated code. With a minimal CPN model and Moscow ML we
need at least about 160kb memory which is the best we can hope for at the moment because Moscow ML
is the only ML compiler we know of which generates the least amount of code. Can we find alternative
strategies for code generation? What if we generate code, not for a ML interpreter or Java virtual machine,
but instead a CPN virtual machine? Can we make a compact CPN interpreter for which we can generate
small sized applications? According to the description of the Petri net tool called PACE [32], it can translate
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models into code for a virtual Petri net machine. This should be investigated further.
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Abstract. Object-oriented Petri nets have gained a lot of interest in

the last years. We used the tool Design/CPN in several projects, espe-

cially for Object-Oriented Coloured Petri Nets (OOCPN). However, De-

sign/CPN does not support OOCPN directly. To allow easier modelling

we developed a net generator (GPS = Generator for Petri net Systems).
GPS works on class diagrams like those presented in the Uni�ed Mod-

elling Language (UML). The output of GPS are OOCPN, where each

class and its objects are represented in one separate speci�c Coloured

Petri Net (CPN). The generated nets are directly executable in De-

sign/CPN as far as creation and deletion of objects are concerned. Meth-

ods and variables are prepared as well, but the user has to give some

meaning to the method skeletons. Associations are represented as classes.

Keywords: Coloured Petri Nets, Design/CPN, Net Skeletons, Net Gen-

eration, Object-Orientation, Prototyping, Computer Tools

1 Introduction

In our group the integration of object-orientation and Petri nets is an ongoing

topic (see [BM93], [Mai96], [Mol96], [Val91], [Val98]). One major goal is to allow

for the use of Petri nets as the means to execute object-oriented speci�cations.

To achieve this a transformation of the models to Petri nets is necessary. In

[Mol96] for several techniques transformation schemes were proposed, but no

tool was presented at that time. In this paper we will concentrate on the central

technique, the class diagrams. For the class diagrams again only the basic kinds

of associations and some tool support by Design/CPN are considered. Another

major goal of the transformation is to get a deeper understanding of static models

and to provide better semantics to techniques like class diagrams.

Class diagrams exist in several variants. The most important one is that of the

Uni�ed Modeling Language (UML) (see [BRJ99,JBR99,RJB99]). This version of

class diagrams combines most of the features that have been developed for static

relationship modelling so far.

Our planned speci�cation environment aims at the support of several tech-

niques. This includes the integration of the di�erent models. Since object ori-

entation is the central paradigm, the starting point for the integration are the

classes (or objects). In [Mol96] three main views on a system are discussed: the

static view, the dynamic view, and the functional view. All these views are mod-

elled for an object and can then directly be integrated after they are transformed
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into Coloured Petri Nets. On this basis only one formalism is given and hence

the integration is easier. Modellers can present an executable speci�cation to

users. However, this requires some additional input for the improvement of the

user interface. Otherwise the user has to interpret the net simulation directly.

At the current state only fragments have been supported by tools. Due to

the fact that tools are a precondition for the successful application of OOCPN,

we are working on these tools. In this paper we will show for the central concept

of classes (and objects) how to transform class models to OOCPN class models.

The basic assumption is that even for the static models (class diagrams) an

operational semantics has to be provided. Each relation can e.g. be classi�ed

as being mandatory or optional. Mandatory relations cause some actions in the

related classes when in the other classes objects are created or deleted. This

cascading of operations is usually not modelled elsewhere in UML. To interrupt

this cascading would violate the integrity constraints that are expressed by the

relationship. When providing an operational semantics for this feature of the

class diagrams, a speci�c protocol can be added to other "standard" protocols

for methods, attributes etc. All other kinds of attributes of relations require also

some kind of protocol. These protocols may di�er considerably.1

It is important to notice that we do not present a generator of Petri nets for

class diagrams in general including all features and their implicit protocols2. So

far we have concentrated on to provide the basic infrastructure, which means

to generate one Hierarchical Coloured Petri Net (HCPN) for one class. Each

usual relationship (association) is also considered to be a class. This allows to

assign methods and attributes to associations. The related protocols of the be-

haviour e.g. to a (1:N) relationship are not automatically generated. As many

other features these could be integrated on demand. However, this would require

some speci�c programming for which we had no time resources up to now. It is

interesting to see that Entity-Relationship-Diagrams (ERD) (see e.g. [You89])

can be handled in the same way as class diagrams.

1.1 Modelling process

Figure 1 shows the steps of how to derive from object-oriented models the Object-

Oriented Coloured Petri nets within the Design/CPN tool. In the following de-

scription we concentrate on the class diagrams and omit the other techniques.

The Petri nets generated for the other techniques would be integrated into the

here described models.

The user models the class diagrams and receives by this the executable Petri

nets in Design/CPN. The large box represents the overall action. First of all

1 With protocol we do not mean e.g. TCP/IP, but the rules which determine simple

sequences or parallel actions that serve to support the interaction of two or more

objects. An example is the instantiation of a second object which needs to be present

due to an association between the related classes and the instantiation of an object

of one of the classes. This will be explained in the following sections in more detail.
2 This is the reason why we use object-based instead of object-oriented in the title of

this contribution (see also [Weg87])
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User builds class diagrams

class diagram (figurative)

class diagram parser

class diagram (textual)

GPS

Petri nets in SNIFF textformat

SNIFF

executable Petri nets in 
     Design/CPN

class diagram editor

Fig. 1. Steps to derive executable Object-based Petri net skeletons

the user has to draw the class diagrams. There is an ongoing work (diploma

thesis) at our department to support the drawing of class diagrams within the

Design/CPN environment3. Any other tool than Design/CPN can be used as

long as its output format can be translated to the class diagram text format

that is currently used by the GPS toolset4. Its output format are Design/CPN-

oriented Coloured Petri nets in the Sniff text format [MMR98]5. This text

format for Coloured Petri nets can be imported to Design/CPN and can be

handled in a way as if the models were drawn by the user.

Except for the drawing of the class diagrams all parts of this procedure are

executable within Design/CPN because they are implemented using the Stan-

dard ML language [Des93,Pau92]. All functions are written in a way that enables

their concatenation: The output of the �rst function is taken as the input for

the next and so on. These function calls can be hidden from the user, who only

has to call one function without arguments. The user designs the class diagrams

3 Remark: One goal is to do all tasks within one environment, here the Design/CPN

environment.
4 This text format is an ad-hoc approach to class diagram text formats. At this point

also a standard like IDL (Interface De�nition Language) could be used. With the

times changing we will surely switch over to a standard notation.
5
Sniff is an input/output library for Design/CPN presented at the Design/CPN

workshop in Aarhus in 1998. The newest version of Design/CPN has now a tool

being build in that allows the im- and export, however, the format is di�erent (see

[LM98]).
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within one page of Design/CPN and gets the resulting Object-Oriented Coloured

Petri nets on just one mouse click. Changes to the underlying diagrams do not

require a change of the environment. Therefore, the ML functions acting behind

the scene are invisible for the user, they behave like a re�ned transition of a Petri

net. Therefore, the large box in Fig. 1 can also be interpreted as one transition,

not showing the required input from the outside in the same way as this is not

done for the single transitions (or functions).

Nevertheless all single functions are accessible for the experienced user. This

assures maintainability, adaptability, and expandability.

1.2 Why object-based nets?

Petri nets have proven to be a useful formalism to express concurrency. Problems

related to concurrent processes and distributed algorithms are getting more and

more important to be managed, i.e. solved, even in mainstream computer science.

One idea to tackle this situation is to combine the results from di�erent �elds

of computer science. We have chosen Coloured Petri Nets (CPN) and object

orientation (OO) as the main concepts. This allows to combine the structuring

facilities of OO with the advantages of a technique with a sound theoretical back-

ground. Up to now object-oriented speci�cations, like those of UML, are hardly

executable. With our approach this problem is (partially) overcome. However,

the resulting nets are too large to be used directly by a modeller. Therefore, we

propose the use of specialised tools and here we concentrate on the GPS. Due to

the simple nets, we support up to now, we call the generated nets object-based

skeletons. These skeletons have to be completed to contain the functionality. In

combination with other tools which cover the modelling of the functionality this

could also be automated as well (as far as a generator can help here).

The rest of the paper contains two main parts: Section 2 shortly presents

the main relevant concepts of Object-oriented Coloured Petri Nets and section 3

discusses the generator GPS and its implementation. The paper ends with a

short conclusion and an outlook for future work.

2 Object-Oriented Coloured Petri Nets

This paper is intended to show the computer aided implementation of Object-

Oriented Coloured Petri nets as proposed by Moldt [Mol96]. With respect to this

aim other approaches to combine both the advantages of Object-Orientation and

Petri nets are not discussed here. For some work of object-orientation and Petri

nets see for example [SB94,Lak95,Val98,Mai96,Kum00,BG91,EMNW99,MM99].

Due to limited space the introduction of Petri nets in general and Coloured

Petri nets in special is skipped here as well as the presentation of well-known con-

cepts of Object-Orientation and techniquess like UML class diagrams. To become

familiar with these concepts see for the study of Petri nets [Pet62,Rei92,Jen92]

and for Object-Oriented concepts [Lou93,Fow97,RJB99].
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Objects, classes, and methods are the basic components of Object-Oriented

programming languages [Lou93]. An object invokes a method (service) of another

object by sending it a message. In the following subsections, Moldt's transforma-

tion of objects, classes, and a messaging mechanism to Petri net representation

will be introduced (see [Mol96]).

2.1 Objects

An object encapsulates its state and behaviour. The only way to change an

object's state is through the methods provided at the interface of the object.

In an Object-Oriented programming language classes are de�ned and objects,

so-called instances of these classes, are created during runtime. Local variables

of an object are also called instance variables.

class Class_x {

public:

int method_1 ();

void method_2 ();

...

int method_n ();

protected

anytype inst_var;

};

Fig. 2. Class de�nition from Moldt [Mol96]

Transformation of Objects The class de�nition in �gure 2 de�nes n methods6.

In addition, a local variable inst var is declared which can only be used by the

class itself, or by a subclass. An object (instance) of this class, called OBJECT X,

is shown as a net in �gure 3 and is called Object-Net7. Variables are transformed

to places, methods to transitions. An object is a marked net page according to

Jensen [Jen92]8.

The object receives and sends messages using the two places in pool and

out pool. These two places are the interface between the object and the message

6 The examples are given using a notation similar to C++ without claiming to be

syntactically correct in that way.
7 The net inscriptions are given in the functional language ML as it is used in the Petri

net tool Design/CPN. For the sake of simplicity parts of the net inscriptions are

omitted to focus on the core concepts. The given nets are therefore not syntactically

correct according to Jensen [Jen92] in the sense that arc inscriptions etc. have to

be added. Concurrency is not restricted by the model introduced here. Objects can

process several messages at the same time.
8 The marking is normally omitted because the main purpose here is to show the static

aspects.
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output
[(#send in_msg)<>(#rec in_msg)]

input

[(#rec in_msg)=id]

out_pool
msg

in_pool
msg

rec_msg

msg

send_msg

msg

method 2

method 1

inst_var
any_type

OBJECT_X

own_id

obj_id

own_method

[(#send in_msg)=(#rec in_msg)]

method n

in_msg
out_msg

out_msgin_msg

id

in_msgin_msg

in_msg out_msg

Fig. 3. Object-Net from Moldt [Mol96]

handler. Depending on whether one considers these places as part of the object

or not, an object is a place- or transition-bounded net. The message handler is

responsible for transporting the messages from out pool to in pool places of

objects.

The transition input selects the appropriate messages from the in pool using

the side condition own id, thus ensuring that only a message for the object

reaches the place rec msg. Because a method can only be invoked by a message

in the place rec msg, the presented Object-Net realises an encapsulation of the

object's state and behaviour.

A method selects its appropriate message using a guard that refers to the

method name in the message. The functionality of the method can be given as a

net re�nement or a code segment as being used in the Petri net tool Design/CPN.

After computation a reply message is put into the place send msg that is sent

to out pool by the transition output or, if the receiver of the message is the

object itself, is put to the place rec msg by the transition own method.

One can look at an Object-Net as consisting of two parts. The transitions

input, output, own method and the places rec msg, send msg are common to

all objects and can be used as a template for objects. The speci�c state and

behaviour of an object is being realised through the places for instance variables

and the transitions for methods.

Object Identity Beside its state and behaviour, an object has a clear identity,

i.e. a unique key that is used as a reference. In this proposal a unique key
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called Object-ID is used. An Object-ID denotes exactly one Object-Net and is

generated during the creation of an object. To get a unique key the following

convention is used. The Object-ID consists of the class name and an atomic

expression locally unique for this class, usually a number of type integer. The

class name is assumed to be unique inside the system.

2.2 Classes

A class de�nes the internal state and the behaviour of its objects and therefore

their type. One can look at classes as having a construction plan to manufacture

objects. Sometimes they are therefore called "Factory Objects". In addition to

de�ning its objects' type, a class provides operations to create, destroy and

manage them. A class can receive and send messages and can therefore be looked

at as an object, too.

The creation and deletion of new objects, the re�nement of methods, and the

concept of relationships will be discussed in more detail in Section 3 but not in

this subsection.

Folding Objects to Classes Corresponding to the type de�nition of variables, ob-

jects are declared belonging to a class, assumed the language is typed. Therefore

we need a mechanism for nets to de�ne classes and later create and manage ob-

jects of that class. This is done by folding Object-Nets with the same state and

behaviour9 to so-called Class-Nets (Figure 4). The type of each place is extended

with the Object-ID. A place in the Object-Net with type any type now gets the

new type obj id*any type in the Class-Net. The places own id in the Object-

Nets are folded to the place all Inst (all instances) in the Class-Net. The place

class id in the Class-Net holds the Object-ID (the name) of the class. The type

of the variables used in the arc expressions is extended in the same way. Thus it

is ensured that the Class-Net has the same behaviour as the folded Object-Nets

before.

In addition, the Class-Net is enriched with class operations like new. It is

therefore capable of de�ning the type of its objects and to create and manage

them. In a Class-Net, the tuple obj id*any type is called inst type for the sake

of simplicity, obj id*msg is called msg. A Class-Net gets the reserved Object-ID

(<classname>, 0), called Class-ID. Using this Class-ID one can send a message

to a Class-Net, e.g. to invoke the creation of a new object. The way to create

or discard objects or to perform other class operations is based on the idea that

classes are objects. A class contains method transitions that describe the desired

action to be invoked by calling the method.

9 Again we refer to the static aspects of state and behaviour: All folded Object-Nets

must have the same places and transitions but may di�er in their markings at run-

time.
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outputinput

out_pool
msg

in_pool
msg

rec_msg

obj_id*msg

send_msg

obj_id*msg

method 2

method 1

inst_var
obj_id*any_type

Class_X

all_Inst

obj_id

own_method

[(#send in_msg)=(#rec in_msg)]

method n

class_id
obj_id

(self,
 in_msg)

(self, in_msg)

Fig. 4. Folding Object-Nets to Class-Nets

2.3 Messages

Messages are used to invoke a method in the destination object. In this ap-

proach messages are realised using tokens that are exchanged between objects.

An error-free messaging mechanism is assumed. The message format has to cover

information about sender and receiver in term of class, object, and method as

well as parameters which have to be passed around. Depending on the kind of

message system di�erent message formats are required. In this paper we use a

straightforward one which explicitly represents all information directly. Conse-

quently the message parsing has to be done within the net. One could argue that

this could be done within the message handler and could therefore be hidden.

This is true, however, in [Mol96] the principle structure should be visible and for

convenience we have also chosen this format for our generator. In further work

we will also support other message formats.

The Message-Handler A message-handler is used to route the messages be-

tween objects. One way to realise this message-handler is by simply fusing all

the in - and out pool places using place fusion. In a distributed environment a

more sophisticated version should be used to model di�erent routing strategies

or incorporate possible losses of messages. The concept of a message-handler

has therefore been included to provide the possibilities to model these relevant

aspects of distributed systems.
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3 Design

The developer of an environment for computer aided design of Object-Oriented

Coloured Petri nets has to take care of certain procedures like the creation

of new objects. The traps like the �nding of a unique identi�er for the new

object should be handled by the system in order to aid the user. Object-Oriented

Coloured Petri nets o�er some features from the Object-Oriented Analysis like

associations. These features lead to even more complex protocols that sometimes

include the interplay of several di�erent classes. To release the modeller from the

burden of explicitly modelling we propose to generate these protocols from more

abstract diagrams. The case of an automatic generation of association skeletons

without the protocols for the speci�c behaviour will be handled during this

chapter. All Petri nets illustrating the following pages are shown as they are

(automatically) generated by the GPS tool set. They are not adjusted in any

way.

3.1 Association protocols

A protocol to handle relations between objects serves on the one hand to dis-

burden the modeller of an Object-Oriented system. The protocol is needed to

automatically handle a relation and to move it to the desired code. On the other

hand a protocol gives a clear meaning to the constructs of a diagram. In larger

projects the class diagrams are cut into pieces and given to di�erent program-

mers. Every programmer has its own view on the system and on how to handle

e.g. the relations. This can lead to misinterpretations followed by mistakes. The

code of one programmer is not understandable by another.

In order to reach this aim it is necessary to have a clear understanding of

relations between classes. Usually relations are categorised being \simple" or

\complex". A simple relation should be handled by the related classes itself while

a complex relation needs a so-called \relation class" to be implemented. Again it

is not clear how to formalise such a distinction. Due to this reason the presented

system generates an new class for each relation. This is obviously not necessary

for very simple cases like a one-to-one relation without attributes or methods

but the computer does not complain about the extra work. The disadvantages

concerning performance, however, are obvious. Therefore, we plan to provide

protocols for "simple" relations such that no separate relation has to be build. It

might even be possible to integrate two classes that have a one-to-one relation.

However, this has not been done up to now.

The set of possible relations between objects or classes divides into two sub-

sets with di�erent properties: Mandatory and optional relations. This distinction

is motivated by giving example procedures. The principle situation is as follows:

Two classes have a certain association between them. This association has a cer-

tain multiplicity for each of the objects. It has for each of them the information

if the relation between objects of this class is mandatory or optional. If for one of

the classes an abject is created the association now implies a certain behaviour

(protocol) at the other side of the association. This is discussed in the following.
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Mandatory relations An object of a class in a mandatory relation shall be

created. We �rst consider the case of an one-to-one relation, that has to be

distinguished from other multiplicities like one-to-many or many-to-many. In

the �rst case exactly one corresponding counterpart of the newly created object

and an object of the relation class have to be created. In the latter case the new

object may be related to one or more existing objects of the relation class. The

relation class itself has to handle the co-ordination between the objects, which

can be toilsome especially when the multiplicities of the relations have restricted

number areas. The choice of the right relation classes for a newly created object

can not be done automatically. The user has to be prompted for that choice or the

diagrams have to be extended to cover some information about this issue. This

is true in general. However, depending on certain conventions, project speci�c

rules, application speci�c requirements etc. there are some cases where this could

be automated. In the normal case, however, the developer has to decide what

has to be done. This process again can be done at di�erent points of time and

depends heavily on the available tools. One idea this paper wants to present is

that there is a problem and that there are certain ways to solve them. Here only

the main stream is discussed. For an eÆcient and practical application tools are

a prerequisite.

The erasure of an object in an one-to-one relation enforces the erasure of the

related object and the object of the relation class. The erasure of related objects

can lead to troublesome situations10. The situation of having some states when

the whole system is inconsistent is one of the main reasons to use protocols. Only

if a protocol �nishes successfully the operation is really performed. Otherwise

the system has to reset the already performed actions. Exactly this point makes

the protocols so important and so diÆcult to describe in general. A general

simple solution is not available. However, with the appropriate tools the situation

becomes more relaxed. It should not be forgotten that in the area of databases

this problem has largely been solved. E.g. the automatic generation of database

schemes shows how to cope with this kind of problem. For the area of analysis

and in speci�c for Petri nets there are still some open questions.

Optional relations If a relation between objects is not mandatory things are

a little bit easier to handle. If it is not necessary for an object to have a related

counterpart our environment does not have to take care about the relation class

at all. But such a procedure might not be an adequate aid for the user of our

system. So the user can be prompted if he is willing to put a new object in some

relation or not.

3.2 Class net frontpages

This subsection contains an example of a generated Object-Oriented Petri net.

Before we introduce the example with a one-to-many multiplicity, we introduce

the example with the arti�cial one-to-one relationship. The company with only

10 See for example [Mol96].
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company
employer-employee

person 1 1

Fig. 5. Simple class diagram with relationship

one employee is very small here and gets larger in the one-to-many case. The ex-

ample consists of two classes, company and person, standing in relation employer-

employee (see Figure 5). The �rst trivial example will also be extended by pay-

ment as an attribute and by a method to tell the payment for a special instance

of the relationship.

A textual description11 of this relationship would be as follows:

interface Person {

associates

company 1-1 employer-employee

}

interface company {

associates

person 1-1 employer-employee

}

To make the example more interesting we enhance the class company with

an attribute, the company's name and two methods to get and set this name.

Figure 6 shows the Petri net frontpage (or rootpage) of this class. The extended

textual description is:

interface company {

associates

person 1-1 employer-employee

attributes

string companyName

methods

string getName(void);

bool setName(string);

}

11 See appendix A for the syntax of this description language.
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companyName employer-employee

getName

companyName employer-employee

set
Name

companyName employer-employee

companyName employer-employee

delete

new

own
send_msgrec_msg

outputinput

out_poolin_pool

out_msgin_msg

Fig. 6. Frontpage of Class-Net company
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getName

send_msgrec_msg

companyName employer-employee

(oid,v_companyName_out)
(oid,v_companyName_in)

(oid,v_employer-employee_out)

(oid,v_employer-employee_in)

Fig. 7. Subpage of method getName

All methods can access the two attribute places. Place companyName re-

sults from the attribute of the class description above. Note that all places with

the same name are connected via the concept of place fusion available in De-

sign/CPN12. These places behave like one physical place and always contain

the same marking. The attribute place employer-employee corresponds to the

relationship between the classes company and person. Its name is that of the

relation and its marking contains the identi�er of the relation class instance that

belongs to the actual object. Despite of the few visible inscriptions this net is

fully executable in the sense that one can call the class method new to create

new instances of that class and operate with them at will.

The implementation of the method functionality is generally handled using

subpages, the hierarchy mechanism of Design/CPN. This assures a clear front-

page even in complex classes with many methods. Notice that the arc orientation

re
ects the method's functionality: The method new puts new markings to the

attribute places, delete takes them away. As there is no information on the in-

ternals of the other methods they generally get two-way arcs as a default.

3.3 Method subpages

Figure 7 shows the subpage to the method getName as it is generated by GPS.

On subpages the arcs that access the attribute places are labelled. They get their

own names depending on reading ( out) or writing ( in) access. The transition

that holds the name of the re�ned method o�ers an easy way to implement the

methods functionality. It is attached with an prede�ned code region that is not

mentioned in �gure 7. This code region imports all attributes that are connected

12 The tool GPS automatically hides the detailed inscriptions that are necessary in

Design/CPN to get things like place fusion going. If the user wants full access to the

generated nets he can easily adjust GPS not to hide anything.
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companyName employer-employee

wait_reply

end

relation
call

direct 
reply

new

send_msg
rec_msg

(oid,v_companyName_in)

(oid,v_companyName_in)

(oid,v_employer-employee_in)

(oid,v_employer-employee_in)

Fig. 8. Subpage of method new

with the transition and contains a prede�ned reply message. Simple methods can

be �nally implemented by the user in a very short amount of time using this

prede�ned code region. A more complex method can certainly be implemented

by the user utilising all the functionality o�ered by Design/CPN.

The class method new can normally be left unchanged by the user. Figure

8 shows the method's subpage in the case of a class connected to another via

one relationship. The method has to distinguish two variants of being called:

It can be called by any external object that knows the class or by the relation

class. The call of new by the relation class is easier to handle because all possible

dependencies that arise from the relationship are already satis�ed by the calling

relation class. The method just has to put some default values and the identi�er

of the calling relation class instance into the attribute places and reply to the
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caller. This is done by the transition direct reply in �gure 8. If the method is

called by an external object there is a little bit more work to be done: A new

instance of the relation class has to be created, this instance has to ful�l all

dependencies arising from the relationship. After doing this the relation class

object reports back to the waiting new method where the transition end is ac-

tivated and �nishes the creation of the object. The call of the relation class is

done by transition relation call. This transition also puts an appropriate token

into place wait replay. The reply message sent back by the newly instantiated

relation class object matches to this token, so that transition end can �re. Again

a reply message is send to the �rst calling external object.

3.4 Relation classes

The frontpage of the relation class is so much alike to that of a normal class that

the picture is skipped here. It shows the class methods new and delete and the

methods person and company that help detecting the related counterparts of a

given object.

Figure 9 shows the new method's subpage of the relation class hiding less

net elements then the �gures before. This is done to allow a closer look on the

complexity of the generated nets. Normally most of these details are not shown

to the user but the degree of complexity shown is easily adjustable within GPS.

Due to limited space a description of the course of events happening in the

relation class is omitted here. The interested reader may refer to [Hei99] where

some detailed example procedures are presented as well as the quite complex code

regions of the transitions. Furthermore, the declaration nodes and how construct

them according to the input by the designer can be found there. Especially the

creation of correct inscriptions is a tidious task. This can be supported by tools.

4 Conclusions and Future Work

To design Coloured Petri Nets in an object-oriented way implicit protocols for

the object behaviour have to be created. The GPS tool allows the automatic

generation of nets from class diagram descriptions. Relationships between classes

are also considered to be classes. They are special classes that incorporate a

speci�c behaviour to ensure the operational behaviour that one expects for the

associated classes (e.g. when creating or deleting objects or when navigating from

one object to another). However, the protocols which cover these di�erent kinds

of behaviour are not shown in this paper. They still have to be added. It should

also be mentioned that these protocols must cover many di�erent cases. Even for

simple standard cases the starting point of an creation of some objects (related

by a mandatory relationship) can a�ect the kind of protocol. Furthermore, the

information that has to be added (in programming languages these would be

the parameters), has to be provided. When also covering inheritance there is an
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OIDxASSO_ATTR Firma
OIDxASSO_ATTR

Person

OIDxINTxMSG

wait_reply
OID
all_Inst

INTEGER
send_pool

end

[#rep_no in_msg = wait_msg_num]

object
call [#rep_no in_msg = 0]

OIDxMSG

in_msg
OID

free_oids

new

[#meth in_msg 
   = "new"]

OIDxMSG

send_msg

OIDxMSG

rec_msg

(oid,v_company_in) (oid,v_person_in)

(oid,(wait_msg_num,wait_msg))

(oid,(msg_num,in_msg))

oid

(oid,out_msg)

(oid,out_msg)

msg_num

msg_num

oid

(self,in_msg)

(0,in_msg)

(oid,in_msg)

(oid,in_msg)

Fig. 9. Subpage of method new of the relation class

explosion of the possible entry points13. We have drawn some protocols by hand,

but did not write the generator for it. Furthermore, more complex associations

like inheritance have to be handled. For our general attempt to use OOCPN for

speci�cation or at least for execution the missing features have to be provided

to provide a reasonable speci�cation environment. The generator is build in a

way that it can be easily extended by plug-ins. These plug-ins could then cover

the di�erent protocols.

The use of ML for the generator allows the easy integration into the De-

sign/CPN environment, however, hinders the transformation to other environ-

ments which are e.g. based on Java.

13 In [Mol96] delegation is used to implement the inheritance. This concept is quite

powerful, however, it requires the explicit representation of aspects which should

normally be hidden to a user.
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The generated nets and some attempts to apply the OOCPN by hand (with-

out tool support (see [Net99]) show that there have to be some additional, more

abstract concepts for users to build OOCPN models. The principal ideas for

providing an operational semantics for class diagrams in form of Petri nets have

shown to be good, however, the operational side has some disadvantages. Prob-

lematic is that diagrams got quite large. Overhead to explicitly model all the

operational behaviour induced by the object-oriented concepts could not be ig-

nored. It made up a large percentage of the whole model. The large models

to express relatively simple behaviour have a considerable impact on the per-

formance (and the applicability of analysis tools, especially due to the growing

state space). Many transitions have to �re before the, from the view point of

object-orientation, simple action has been performed. This has lead us to look

for shorthand notations. UML can be considered to be one possible solution.

However, we can not directly provide an abstraction recommendation which can

be applied within the Coloured Petri nets themselves.

One of the goals is to get a better understanding of the semantics of e.g.

class diagrams. This can be achieved when providing an operational semantics

for them. Tool support helps on this way and so does the GPS tool set.
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A Class diagram description language

diagram ::= <classdescription>*

classdescription ::= 'class' <classname> '{'

<relations>

<attributes>

<methods> '}'

relations ::= 'relationship' <relationset>

| ()

attributes ::= 'attributes' <attributeset>

| ()

methods ::= 'methods' <methodset>

| ()

relationset ::= (

<relatedClass>

<relationtype>

<relationname> ';'

)*

attributeset ::= ( <type> <attributename> ';' )*

methodset ::= ( <type> <methodname> <arguments> ';' )*

relatedClass,

relationname,

attributename,

methodname ::= identifier

relationtype ::= '1-1' | '1-n' | 'n-1' | 'n-m'

arguments ::= '(' <typeset> ')'

typeset ::= <type> ',' <typeset> | <type>

type ::= 'void' | 'int' | 'string' | 'real'
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Abstract

This paper contains a design proposal for facilities for doing batch simulations in De-
sign/CPN. These facilities can be used for running a group of simulations without user in-
teraction. We discuss what kind of functionality is needed to run batch simulations. We also
give proposals on how to implement this functionality in Design/CPN. To illustrate the use
of the batch scripting facilities we present examples of how batch simulations can be defined.

Keywords. Coloured Petri Nets, Design/CPN, batch simulations.

1 Introduction

It is often necessary to run many simulations in order to obtain satisfactory or necessary results.
There are many situations in which a series of simulations of Coloured Petri Nets (CP-nets or
CPNs)[2–4] need to be run in Design/CPN[1], and it is not always necessary for a user to be
present while the simulations are executed. Several such situations are:

� Calibration - tuning parameters in the CP-net so that simulation results resemble results
from the modelled system.

� Performance analysis and/or data collection - analysing results generated by different start
parameters.

� Sensitivity analysis - discovering which parameters have the most significant impact on
simulation results.

sorenchr
 79 



Design/CPN lacks support for running a group orbatch of simulations without user inter-
action between simulations. This paper describes ideas for the design of batch facilities which
could solve this problem. The batch facilities will largely consist of a number ofprimitives that
can be combined inscripts for defining a batch of simulations. Batch scripts will simply be ML
code which executes a series of ML functions, also referred to as primitives. The batch facilities
are currently being implemented. With the batch facilities it will be easy to specify and run a
batch of simulations. It will be possible to change model parameters between simulations and
specify where output should be saved. Furthermore, using the batch facilities will save time
when running several simulations because the simulations will be automatically run one after the
other without having to wait for a user to explicitly start each simulation.

The structure of this paper is as follows. Section 2 describes the basic design proposal for the
batch facilities in terms of how primitives and scripts can be used. Section 3 describes some of
the changes that need to be made in existing primitives so that they can be used to define a batch
run. Section 4 discusses user scripts, which are scripts that can be totally defined, and therefore
customised, by a user. Finally, Sect. 6 presents a design proposal for a standard script which
allows a user to add some extra functionality to a partially-predetermined batch script.

2 Basic Design Proposal

One of the simplest forms of batch simulations is the execution of a constant number of simula-
tions. Figure 1 contains a script that can be used to execute a given number of simple simulations.
The primitivesimulate will run a simulation, and the primitiveinit state initialises the state of
the CP-net. Evaluating the expressionrunBatch(10) will execute 10 simulations, and the state
of the CP-net will be initialised before each simulation is started.

fun runBatch (noOfSimulations) =
if noOfSimulations> 0 then

(init state();
simulate();
runBatch (noOfSimulations�1))

else ();

runBatch10;

Figure 1: A simple batch script.

2.1 Primitives

Running a batch of simulations usually requires more than just executing a group of simulations.
Users will use the batch facilities for different purposes which means it should be possible to
customise a batch run. It has to be possible for a user to specify actions, details, or changes to
be made for each individual simulation. The central idea of this design proposal is to ensure
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that a set of essential primitives are available for defining a batch run. The following list is a set
of actions that are likely to be useful when specifying a batch run. For each action, it is noted
whether or not a primitive for executing the action currently exists in Design/CPN.

1. Update reference variables. A reference variable can be used for many different purposes
in a CP-net: as a parameter for a function, as an initial marking, to identify an input file,
to model a characteristic of a part of the modelled system, e.g. the speed of a CPU, etc.
The value of reference variables can be changed anywhere which means that reference
variables will be particularly useful when running batch simulations.Primitive: the ML
assignment operator:= can be used to change the value of a reference variable.

2. Manipulate input files. Files are often used to provide input for a simulation.Primi-
tive: there are already primitives for opening and closing files by means of standard ML
functions.

3. Initialise the state of the CP-net. Primitive: the functioninit state changes the state of
a CP-net to the initial marking. For timed CP-nets, the functioninit time resets the model
clock to the initial time.

4. Initialise data collectors. This is relevant only when running batch simulations in the
Design/CPN Performance Tool [6, 7].Primitive: the functioninitAllDataCollectors ini-
tialises all data collectors.

5. Set and read simulation options. For example, simulation stop criteria.Primitive: there
are currently no primitives for setting or reading options, but it will be easy to add such
primitives. Simulation options are currently set using dialog boxes.

6. Run the simulation. Primitive: the functionsimulate1 will execute a simulation.

7. Gather results. A user may want to collect the following types of information after a sim-
ulation finishes: markings, values of reference variables, performance reports, simulation
options. Primitive: files can be opened, updated, and closed by users. Reference vari-
ables can be dereferenced, and the values can be converted to strings which can be saved
in files. The functionsavePerformanceReport will save a performance report in a file
when simulating in the performance tool.

8. Stop batch run. It is necessary to be able to stop a batch run. Stopping a batch could de-
pend on different types of criteria, e.g. number of simulations run, the value of a reference
variable, the number of steps taken, the output of the previous simulation, etc.Primitive:
users can define functions which examine different criteria, and which determine whether
the batch should stop based on the status of the criteria. The functionsstep andtime can
be used to examine how many steps have been taken and the current model time.

1The primitivesimulate is just an alias for the functionsac step which is used to execute a simulation in
Design/CPN.

sorenchr
 81 



If the batch facilities contain primitives for executing these 8 actions, then a wide variety of
batch simulations can be defined. Most of the actions mentioned here are already supported in the
version of Design/CPN that includes the Design/CPN Performance Tool. Some of the primitives
that exist will be modified slightly in the future, and other primitives need to be created. Section 3
discusses the modifications that will be made.

2.2 Scripts

The aforementioned actions can be combined in different ways to create different batch runs.
For example, using varying combinations of these actions inrunBatch in Fig. 1 would result in
different forms of batch runs. We propose using ML functions or expressions to specify exactly
which actions should be executed for a batch of simulations. Such a function or expression will
be called ascript. Again, Fig. 1 is an example of a simple script. The reason for selecting ML as
the scripting language is that ML is used throughout Design/CPN.

Exactly how these scripts should be defined and executed is an important issue. In order to
make the batch facilities as general as possible, it must be possible for a user to specify precisely
which actions should be executed and when they should be executed during a batch run. For this
reason, the facilities will supportuser scripts with which a user can totally define a batch run
using the available primitives. A user script will consist of arbitrary ML code. Section 4 presents
examples of user scripts.

The building blocks of scripts are primitives. As the name indicates these are low-level
functions. Certain actions, e.g. updating variables, will often be repeated in different batch runs.
In order to make the batch facilities easier to use, high-level functions for performing often used
functionality will be introduced. These high-level functions are discussed in Sect. 5.

While user scripts may be useful for defining special or non-standard batch runs, they may
be difficult to define for people with limited ML experience. It is also reasonable to expect that
many users will define similar batches. For example, many batch runs will probably consist of
changing simple variable values, running simulations and gathering relevant results. Therefore,
the batch facilities will eventually include support for running standard batch runs orstandard
scripts. A standard script will often be parameterised, offering some predetermined functionality,
but it will still be possible for a user to specify certain actions to be executed during the batch
run. Examples of a standard script will be discussed in Sect. 6.

The idea for supporting both user scripts and standard scripts was inspired by the Design/CPN
Occurrence Graph Tool (OG-Tool, [5]). In the OG-Tool queries can be made concerning the
details of occurrence graphs. There are a number of standard queries which are either totally
predefined or parameterised. For the parameterised queries a user needs only to specify relatively
simple parameter values. These two types of queries are very easy to use. Finally, it is possible
for a user to totally define his own queries. User-defined queries can be used to investigate
characteristics that are relevant only for a given net. For example, a user query could be used
to discover if a token with a certain colour was ever found on a given place. By supporting
these three different types of queries, the query facility in the OG-tool is both user friendly and
general. The batch facilities will support user scripts and standard scripts in an attempt to achieve
the same balance between user friendliness and generality.
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3 Basic Modifications

Most of the primitives that were mentioned in Sect. 2.1 can be used as they are. However, there
are some primitives that will be modified in order to make them more useful within the batch
facilities. One of the actions that will be used frequently is initialising the state of the CP-net
between simulations. Section 3.1 discusses the implications of and problems concerning initial-
ising the state of a CP-net. Section 3.2 contains suggestions for improving the functionality of the
simulate primitive which executes a simulation. Section 3.3 discusses what kind of primitives
need to be created for setting and reading options.

Before discussing the modifications that will be made to primitives, it should be noted that
slight modifications will also have to be made to the user interface of the simulator for running
batch simulations. The user interface of Design/CPN provides feedback about the status of a
simulation to a user. This is done by means of dialog boxes, updating the status bar, beeps, etc.
In particular, a dialog box is opened when a simulation stops, and this dialog box must be closed
by user interaction before a new simulation can start. Since the purpose of batch simulations
is to execute several simulations without user interaction, the batch facilities must include a
primitive for disabling the relevant parts of the user interface when running batch simulations.
The feedback that is provided by the user interface could instead be redirected to a log file.

3.1 Initialise State Function

A user will have to decide whether or not the state of the CP-net should be initialised between
simulations in a batch of simulations. Section 3.1.1 discusses the difference between initialis-
ing the state and not initialising the state of the CP-net between simulations. Item 1 in the list
of essential actions (Sect. 2.1) mentions that variables may be changed between simulations. It
should be possible to influence the initial marking of a CP-net by updating reference variables.
Section 3.1.2 discusses why the function that calculates the initial marking will need to be mod-
ified in order to make this feasible.

3.1.1 To Initialise, or Not

Whether or not the state of a CP-net is initialised between simulations will have a significant
impact on the meaning of the batch simulations. In particular, it will influence the independence
of the individual simulations from each other.

If the state of the net is initialised between simulations, then each simulation in a batch run
is a new simulation. In this case all simulations will be independent from the others. Every
simulation will start from an initial marking wherestep = 0. This type of batch run can be used
for a variety of different purposes. By initialising the state – and possibly setting the random
seed of the simulator (see Sect. 3.3) – it is possible to use different start parameters or different
input sources and compare the performance of the system for different start conditions. It is
also possible to run several independent simulations for one given set of parameters, and then
study variations in the performance of the system for the different simulations. This last option
is useful when the behaviour of the system is non-deterministic.
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The other alternative is to choose not to initialise the state between simulations. If no state
initialisation is undertaken, the batch run itself is a single simulation that is divided into sub-
simulations. The outcome of each simulation is dependent on the simulations that preceeded it.
This type of batch run can be used to collect data and differentiate between data from different
intervals of one simulation.

3.1.2 Calculating the Initial State

We have previously mentioned that it should be possible for users to change the values of refer-
ence variables between simulations. These variables can be used, for example, as parameters for
functions, in arc inscriptions, and in initial markings for places. The idea is that after changing
the value of the variable before a simulation, the new value of the variable should always be used
throughout the simulation. Unfortunately, the current implementation ofinit state does not use
the changed variable values. This section will describe this area in the current design of the state
initialisation primitive in Design/CPN, and it will propose an alternative design for the primitive.

The following situation will be used to illustrate the difference between the current design
of the state initialisation facility and our proposal. The left-hand side of Fig. 2 illustrates how
we would like to be able to indicate the initial markings for a place. Assume that placePlace 1
should have an initial marking that is dependent on the reference variableX. The initial marking
of Place 1 could be calculated using the functioninitFun which dereferences the reference
variableX.

Init
E

e

Initialise

Current DesignFuture Design

Place 1
E

color E = with e;

val X = globref 3;

fun initFun () = (!X)‘e;

Place 1
E

initFun()

e

initFun()

Figure 2: Calculating the initial markings.
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In the current implementation of Design/CPN, the initial marking of the CP-net is calculated
once and for all during the switch from the editor to the simulator. The marking for each place
is calculated during the switch, and the marking is saved for possible later use. If a user chooses
to return to the initial state while in the simulator, then the markings that were previously calcu-
lated are simply reinstalled for each place instead of being recalculated. Assume that the initial
marking ofPlace 1 was given directly by the inscriptioninitFun() (as shown on the left-hand
side of Fig. 2). Assigning a new value toX before returning to the initial state willnot change
the initial marking of the place. Installing pre-calculated markings can save execution time, but
it means that it is difficult to use different initial markings.

If one is interested in using different initial markings, then there are ways to work around the
problem in the current implementation. The right-hand side of Fig. 2 illustrates one workaround:
using transitions to compute pseudo-initial markings that can differ from one simulation to an-
other. Instead of declaring an initial marking for the placePlace 1, it is possible to add extra
nodes to the net for initialisation purposes. In this casePlace 1 will have an empty initial mark-
ing, and when the transitionInitialise occurs, the desired tokens will be put on the places (see the
arc fromInitialise to Place 1). Thus, the pseudo-initial marking is created. Now, if the value of
X is changed before initialising the state, then the pseudo-initial marking ofPlace 1 will reflect
the new value ofX. With this workaround it is possible to define different “initial” markings
without user interaction.

At the moment it is unclear how much extra time would be needed to recalculate the initial
marking of a net when using the new design proposal. It may be the case that recalculating
the initial marking during state initialisation requires significantly more time than simple re-
installation of pre-calculated values. It may also be possible to combine the two strategies and
recalculate only certain parts of the initial marking when returning to the initial state. With
this alternative the “constant” initial markings of places could be calculated once and for all
during the switch, while only the markings that could change from one simulation to another are
recalculated when initialising the state of the net.

An alternative to ensuring that the desired initial marking is recalculated when the state of a
CP-net is initialised, is to make adjustments to the marking after the state has been initialised.
In the simulator, there is a dialog box that can be used to change the marking of a place. The
functionality of this dialog box could be captured in a primitive, which could then be used to
modify markings. The primitivechangeMarking would take a place name, and a marking as
parameters, and it would replace the old marking of the given place with the new marking. An
advantage of having such a primitive would be that this primitive could be used at any point
during a simulation and not just when initialising the state of the net.

3.2 Simulate

We now turn to the primitive for executing an individual simulation in a batch run. An individual
simulation of a batch run will be a slightly modified version of a simulation that is currently
started by invokingAutomatic Run in the simulator. Section 3.2.1 contains design ideas for new
stop criteria. Section 3.2.2 discusses ideas for better exception reporting during simulation.
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3.2.1 Stop Criteria

Many simulations can run for many steps before there are no more enabled transitions. Some
CP-nets give rise to infinite firing sequences which means that other simulations could continue
running forever. Therefore, the batch facilities need some mechanism for specifying when each
individual simulation is to stop. It is possible to allow a simulation to run until there are no more
enabled transitions. In Design/CPN it is also possible to set some so-called stop criteria. The stop
criteria that are currently supported are based either on the number of steps that have occurred
or on the model time. These stop criteria are quite useful, but they are somewhat limited. In this
section we propose designs for new stop criteria. These stop criteria would be incorporated in
the standard simulator and would, therefore, also be available when using the batch facilities. In
other words, these new stop criteria would not just be available when running batch simulations.

User Defined The current stop criteria are net-independent, i.e. the stop criteria can be used
for every CP-net. It is currently impossible to define stop criteria that are dependent on how a
net is defined (net-dependent), e.g. stop criteria based on markings or binding elements. In order
to make the stop-criteria facilities net-dependent, we propose adding a function for setting a stop
flag. When this function is invoked the simulator will stop after the current step. The function
for setting the stop flag can be used anywhere in a model. This means that a simulation can be
stopped at any time. Some examples are:

1. When a certain transition occurs. In this case the stop function could be written in the
corresponding code segment.

2. When a specific marking has been reached. This will currently only be possible when in
the performance tool. A data collector can be used to inspect the marking of the net, and
could call the stop function if the appropriate marking is present.

Regarding item 2 there are two possible drawbacks to using the facilities of the performance
tool only for stopping a simulation using the stop flag. The first drawback is that more time will
be needed to make a switch to the simulator because extra structures need to be created during
the switch for accessing markings and binding elements. The other drawback is that more time
will be needed to run a simulation if the entire net marking is extracted after each step of the
simulation. Preliminary tests show that simulation time increases by approximately 25% when
the net marking is calculated after each simulation step (for more details see Sect. 8 in [7]).

Real Time and CPU Time The stop criteria that are currently supported in the simulator are
dependent only on the state of a simulation of a CP-net, i.e. either the model time or the number
of steps that have occurred. In some cases it may be useful to be able to stop a simulation after it
has run for a certain amount of real time. For example, a user may want to stop a simulation 30
minutes after it had started. Similarly it might be useful to be able to stop a simulation after it has
had a certain amount of CPU time. Using CPU time instead of real time would ensure that the
simulation had actually run for the desired amount of time. It is likely that a simulation would
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be only one of many processes running on a CPU, therefore real time would only indicate how
long ago the simulation started, and not actually how long it had run. Supporting stop criteria
depending on real and CPU time could be advantageous.

3.2.2 Exception Reporting

Another aspect of the simulator that needs to be improved is exception reporting. Currently, a
user is only notified that an exception has been raised causing a simulation to stop. No indication
is given about what type of exception has been raised. There is also no feedback about where
an exception has been raised, e.g. when evaluating a code segment or a guard. The performance
tool provides some support for exception reporting (see Sect. 9 in [6]). However, this exception
reporting is used only when an exception has been raised while executing performance tool
specific functions, e.g. evaluating observation functions, opening observation log files, updating
statistical variables within data collectors, etc.

Exception reporting facilities would be useful when running single simulations, and they
would be especially useful when running batch simulations. If a batch simulation is started, and
some or all of the simulations stop because of exceptions, then a user will want to know why the
exceptions were raised. If detailed feedback is not provided when exceptions are raised during
batch simulations, then it may be difficult to find the source of the problem for each individual
simulation.

3.3 Set and Read Options

There are several different types of simulation options. Stop criteria are simulation options.
It is also possible to indicate whether step information or bindings should be saved in case a
simulation report will be saved at the end of a simulation. Selecting a fast simulation or a fair
simulation is also done by setting a simulation option. New primitives will need to be created for
setting and reading simulation options.

There may be situations in which a user will want to set simulation options differently for
each simulation in a batch run. For example, given the results of one simulation, it may be clear
that the next simulation should run for more steps, in which case it would be useful to be able
to set new stop criteria during a batch simulation. Another example of a simulation option that
could be changed is the seed for the random number generator of the simulator. When several
simulations are performed using different input, e.g. from a file, it could be useful to be able to
minimise random behaviour by ensuring that each simulation uses the same seed when running
a batch.

Currently, all simulation options are set using dialog boxes. There are no primitives for either
reading or setting simulation options. Simulation options are saved using reference variables.
Reading and setting a simulation option is simply a matter of dereferencing or reassigning the
appropriate reference variable. A user should not have direct access to the reference variables
in question, therefore data encapsulation methods should be used. To this end simple primitives
can be made for reading and writing the relevant simulation options. It is possible to define
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meaningful batch simulations without primitives for reading and setting options, but the batch
facilities would be improved with such primitives.

4 User Scripts

In this section we illustrate how the batch scripting facilities can be used to create user scripts.
User scripts are defined using the primitives discussed in Sect. 2.1. In addition to these primitives,
it is also possible to define a script using any other user-defined ML function, ML primitive, or
any ML function that is available in the simulator of Design/CPN.

4.1 Updating Several Variables

In this section we will give a simple example of a batch that runs simulations with different values
of two reference variables. Batch simulations may be used to explore the impact of different
combinations of parameter values on simulation results. Therefore, it will often be the case
that the values of one or more reference variables in the CP-net will need to be changed before
starting a new simulation. An example of such a situation is described in Example 1:

Example 1 Assume that x and y are parameters in a CP-net, and that they are
declared in the global declaration box as global reference variables. A simulation
of a model should be performed for every integer value of the variable x within the
interval [3; 4] and for every even value of the variable y within the interval [2; 6].
This means that a simulation should be run for each of the following combinations
of parameters (x, y): (3; 2); (3; 4); (3; 6); (4; 2); (4; 4); and (4; 6).

Figure 3 illustrates how Example 1could be implemented using the primitives that are avail-
able in the batch facilities. In this user script the two reference variablesx andy are updated
between the simulations. A simulation is run for each combination of the parameter values that
have been given. The model will possibly behave differently for each combination of the vari-
ables.

4.2 Data Collection

It is likely that the batch facilities will often be used to perform batches of simulations in the
Design/CPN Performance Tool. The performance tool is used to collect and output data during
simulations. Observation log files are generated automatically during a simulation, but a user
needs to explicitly ask for a performance report to be generated. Figure 4 illustrates a user script
for running simulations in the performance tool.

The parameteri is used to count how many simulations have been run. Before each simulation
is started, the state of the CP-net is initialised. When initialising the state of a CP-net in the
performance tool, any existing data collectors are deleted, and the performance functions are
reevaluated in order to install new data collectors. When a simulation is run, data is collected
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fun varScript(i) =
if i <= 4 then

let
fun runLocalScript(j) =

if j <= 6 then
(x:= i; (* x is a parameter in the model *)
y:= j; (* y is a parameter in the model *)
init state();
simulate(); (* Run a simulation using the newly assigned values of x and y *)
runLocalScript(j+2))

else ()
in

runLocalScript2;
varScript (i + 1)

end
else ();

varScript 3;

Figure 3: A batch script changing two reference variables.

fun dataCollectionScript(i:int, n:int) =
if i <= n then

(init state();
simulate();
savePerformanceReport("PerfReportBatch"ˆmakestring(i)ˆ".txt");
(dataCollectionScript(i+1, n))

else ();

dataCollectionScript(1, 10);

Figure 4: A batch script for collecting data in the performance tool.

as usual, and statistical variables and observation log files are updated. After a simulation has
stopped the primitivesavePerformanceReport is used to save a performance report. Note that
the value ofi is incorporated into the name of the file containing the performance report. This
is done to create unique file names that indicate from which simulation the performance report
came. Before starting the next simulation the counter is incremented, and ifn simulations have
been run the batch stops. EvaluatingdataCollectionScript(1,10) will execute ten simulations
in the performance tool, and ten performance reports with unique names will be saved during the
batch.
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5 High-level Functions

When users write user scripts for running batches some functionality is implemented over and
over again, e.g. changing values of variables between simulations. It would be useful if the batch
facilities provided functions for standard actions. This section discusses some functions that will
be provided in the batch scripting facilities to provide auxiliary functionality, and it will give a
few examples of how the functions can be used in user scripts. Section 5.1 describes high-level
facilities for updating variables. Section 5.2 discusses batch status files for giving an overview of
the batch simulation by summing up some of the main results of the batch. Section 5.3 describes
some of the results that can be gathered during a batch run, and it describes how to manage the
many files that may be generated. Finally, Sect. 5.4 discusses support for standardised batch stop
criteria.

5.1 High-level Support for Updating Variables

Figure 3 in Sect. 4.1 illustrates how to write a batch script for updating two variables with some
specific values. When the number of different variables increases it may become a laborious task
to write the code for considering all combinations of variables. We want to provide high-level
support for indicating which variables should be updated before a simulation is started.

Supporting this kind of value2 specification would be useful, and it would increase the user-
friendliness of the batch facilities. When considering how general the specification of values of
variables should be, we discussed several different possibilities. The first idea was that for each
variable the user should be able to specify a minimum value, a maximum value, and a constant
step value as described in Example 1 in Sect. 4.

We realised that one may not be interested in increasing the value by a constant for each
simulation. Instead, one might want to specify a function that would return the step increase. By
using such a step-increase function one could, for example, specify an exponential increase in
the value of a variable between simulations. This step-increase function would make the value-
specification facility more flexible.

The value-specification facility will include the following functionality. The user can specify
which variables to change and how to change them, as discussed in the last proposal above,
by means of the initialisation functioninitVarUpdate shown in Fig. 5. The parameter for this
function is a list of records. Each record specifies how to update one reference variable: it
contains the name of the reference variable (var name), the minimum value (min), the maximum
value (max), and the step-increase function (inc).

After defining which variables should be updated, it is time to start simulating. After execut-
ing a single simulation the variables need to be updated. This will be done using the function
varUpdate. By invoking the functionvarUpdate all of the variables are automatically updated
properly. After each simulation a user ought to be able to check whether all combinations of
values in the variables have been used. This is done by means of the functionstopVarUpdate

2In this section the termvalues refers to values of type integer or real, though, some of the discussion may be
relevant for other types, too.
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fun varScript() =
let

fun runLocalScript() =
if not (stopVarUpdate()) then

(init state();
simulate();
varUpdate();
runLocalScript())

else ()
in

initVarUpdate([fvar name=x, min=3, max=4, inc=fn () => 1g,
fvar name=y, min=2, max=6, inc=fn () => 2g]);

runLocalScript()
end;

varScript ();

Figure 5: A batch script changing two reference variables using high-level primitives.

which returnstrue when no more variable updates need to be performed.

As an alternative to specifying the maximum value of a variable, we also considered support-
ing the use of a predicate function that could be used to indicate when a value no longer should
be increased. However, to keep the design of this value specification facility simple, this idea
was discarded. This facility is designed to beeasy to use and to supportsimple variable updates.
Requiring a user to define a predicate function for determining when to stop increasing a value
would contradict these two goals. Furthermore, this facility of specifying intervals of values is
particularly useful for users with limited experience in programming CPN ML. Therefore, it is
important to keep the interface simple.

5.2 Batch Status File

After having performed a batch of simulations it may be difficult for a user to maintain a general
overview of all the different simulations: which simulations have stopped with no more enabled
transitions, which exceptions have been raised, and information like this. One way to preserve the
overview is to save the status of each simulation in a so-calledbatch status file. The purpose of
the batch status file is to present the most important information from each individual simulation.

Some of the questions that arise when designing support for a batch status file are the fol-
lowing. How detailed should the information in this batch status file be? Should the contents of
the file be totally predetermined by the batch facilities, or should it be possible for the user to
influence the contents of the file?

If the contents of the batch status file are totally predetermined by the batch facilities, then
one of the advantages is that it will be easy to compare different batch status files. However, the
information that will be contained in such a file would be restricted to information like:
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� Simulation number.

� Number of simulated steps.

� Model time.

� Why the simulation stopped:

– No more enabled transitions.

– Stop criteria fulfilled.

– Exception raised during the simulation.

� How long the simulation took:

– In real time.

– In CPU time.

� Use of memory.

In some cases this kind of model-independent information may not be sufficient for the user.
The user may want some user-defined information to be written in the batch status file, e.g. the
value of a particular variable. The reason might be that he would like a single file containing
the main results of the batch of simulations. We think that it will be necessary to include the
possibility to make the batch status file user definable. If we disallowed this possibility then the
user would have to make the files himself – and therefore introduce yet another status file. If we
allow the user to specify some text to be included in the batch status file, then we could omit the
need for having more than one status file.

fun statusFileScript n=
let

fun runLocalScript i=
if i > 0 then

(simulate();
updateBatchStatusFile("x has the value: "ˆ(makestring(!x)));
runLocalScript(i�1))

else ()
in

initBatchStatusFile("filename.txt");
runLocalScript(n)

end;

statusFileScript10;

Figure 6: A batch script updating the batch status file.

Figure 6 illustrates how a batch status file could be used. First of all the batch status file
needs to be created. This can be done using the functioninitBatchStatusFile as shown in Fig. 6.
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When the batch status file should be updated, the functionupdateBatchStatusFile must be
invoked. The parameter to the function is the user-defined text that the user wants to be added to
the standard contents of the file which are described above.

A user may not want to have all of the standard information in the batch status file. Other
primitives could be designed so that a user could control exactly which information should be
included. Separate primitives could be made for each of the items of information that were
mentioned earlier. Then a user could choose exactly which information was relevant and use
the appropriate primitives for including it in the batch status file. For example, a function like
updateBatchStatusFileModelTime would add only the model time to the batch status file. The
advantages of using such primitives is that a user can easily save relevant information, but he does
not have to manage the details of opening, closing, and updating the status file himself.

5.3 Gathering Results

It is very likely that users will want to collect data and results from batch simulations. This means
that the data and results need to be stored – usually in files. The batch status file can be used to
collect some standard information concerning the status of simulations, and it can also include
some user defined information. However, a user may want to save simulation results or data sep-
arately from simulation status information. For example, if a batch consists of twenty different
simulations and five variables are changed in each simulation, then it would be desirable to re-
member the exact values for each variable within each simulation. In such a situation, it may be
valuable for a user to save relevant information about each simulation after the simulation ends.
Batch simulations will also often be used to compare and evaluate results from several different
simulations. Again, files are needed for storing the results. When simulating in the performance
tool, it is possible that many observation files will be created in addition to performance reports.

Other Results Here we will briefly mention other types of results or information that may be
useful to save after a simulation is finished. The first item is asimulation report. Options can
be set such that step information and bindings are saved. These can then be saved in yet another
file. A primitive will need to be created for doing this, since the only way to save a report in
the current implementation is via a dialog box. Another primitive will be needed for clearing the
simulation report.

The results and information that we have discussed previously all have one thing in common:
it is data that is extracted from either the CP-net or from the the simulator. In other words, the
data represents a small part of the information that is available in the simulator. When running
single simulations, the entire state of the simulator is often saved as an ML image. This state
image can then be used later to continue a simulation or to avoid a lengthy switch from the editor
to the simulator. It is conceivable that there will be occasional need for saving the state of the
simulator during batch runs. A new primitive will be created for this purpose.

File Management It should now be obvious that it is quite possible that many files will be
generated during a batch run. Remembering which files were generated by which simulation
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may be a real problem. In order to alleviate this problem the batch facilities will include some
high-level support for file management.

One way to differentiate between files is to ensure that the files have names that indicate from
which simulation they were generated. This could be done by using a string value, or label, which
contains information that is unique for each separate simulation. For example, in Example 1 in
Sect. 4.1 the values ofx andy could be used to make unique labels. It should be possible to
provide a function for creating labels given variable names. For example ifx = 3 andy = 2,
then the function could return the label “x3y2”. This type of label could certainly be used to
define unique file names for different simulations. If one file is used to gather results from all of
the simulations, then the label could also be used to separate results in that file.

Another alternative for managing files, is to save results in a new directory for each new
simulation. Again, a label could be used to give each directory a unique, mnemonic name. The
batch facilities could also include a function which automatically creates directories with simple
names, together with a function that returns the name of the current batch directory. Figure 7
illustrates the use of primitives for creating new directories.

fun dirScript i =
if i > 0 then

(createNewDirectory();
init state();
simulate();
savePerformanceReport(newDirectoryName()ˆ"PerfReport.txt");
dirScript (i�1))

else ();

dirScript 10;

Figure 7: A batch script creating new directories.

The functioncreateNewDirectory would create a new directory name with a name that
indicates when the directory was made. For example the directory name “Batch1Sim1” would
indicate that the directory was created for the first simulation in the first batch of simulations.
After the simulation is finished, the performance report is saved in this directory by creating a
file name using the functionnewDirectoryName to access the name of the most recently created
directory. Additionally, if the names of observation log files are also prefixed with the name of
the new directory, then all of the performance related output from one simulation can be found
in the same directory.

5.4 Batch Stop Criteria

In this section we consider high-level functions for specifying when to stop a batch of simu-
lations. Of course the user could define stop criteria himself, but it may be useful to provide
functions for the criteria that are frequently used. In the following we will describe some of the
most useful criteria for determining when to stop a batch of simulations.
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All of the criteria that are currently used to stop simulations could also be used as batch stop
criteria. In other words, batch stop criteria could also depend on the number of steps taken or the
model time. The simplest form of batch stop criteria would be to stop the batch after a constant
number of simulations have been run. We have introduced simulation stop criteria that depend
on real or CPU time. An often recurring question when running simulations that run for a long
time is: will the batch ever stop, or is it cycling forever? It would also be useful to have batch
stop criteria that ensure that the entire batch will stop within a certain time limit. New functions
will need to be created for setting and checking batch stop criteria.

In contrast, by giving the user the ability to write his own criteria for stopping a batch, we
allow the number of simulations to depend on the results of previously performed simulations
(within the same batch run). This gives the possibility of setting parameters in a CPN model,
then simulating the model, and deciding whether another simulation should be run based on the
results obtained.

6 Standard Scripts

As described in Sect. 5 some batch runs have a certain common structure. An example could be
that many batches have a well-defined loop structure, possibly with a well-defined initialisation
before starting a simulation and a well-defined way of reporting results after a simulation. When
such standard skeletons for implementing batches are identified, it is possible to integrate these
in the batch facilities by providing standard scripts implementing these skeletons. Depending on
how standardised the batch run is, it may be necessary for the user to be able to slightly extend
standard scripts, i.e. to add some functionality to the standard script. Standard scripts are not
replacements for user scripts, instead they are alternatives to user scripts. Some standard scripts
may be for very specific, but often used, situations, e.g. just updating variables before running a
simulation. This idea of using standard scripts is similar to using standard queries in the OG-tool
[5] of Design/CPN. In this section we will propose a standard script that will make it simple to
run standard batches. In the future when applying the batch facilities in practice, we will surely
identify other useful standard scripts.

The idea behind a general standard script is that many batches will contain the scenario
illustrated in Fig. 8. First of all, the batch job is initialised. To prepare the simulation the
user specifies some initialisation, followed by possibly initialising the state of the model before
starting a simulation. Then simulations are executed until a stop criterion is satisfied. When the
simulation stops the user may want to gather results, and finally possibly start a new simulation.

This standard batch script can be used in many different situations. It is so general that many
different batches can be expressed by means of this standard batch. It should not be hard to see
that the batch script in Fig. 5 using high-level primitives could easily be implemented by means
of this standard script. To get the intended behaviour the user supplies functions defining the
user-specified behaviour as parameters to the standard script. It should be easier for the user to
use such a standard script than having to implement the entire script himself.
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fun simpleStandardScript(initBatch, endBatch, stopCriteria, beforeSimulation, doInitState, afterSimulation) =
let

fun runLocalScript() =
if not (stopCriteria()) then

(beforeSimulation();
if doInitState() then

init state()
else ();
simulate();
afterSimulation();
runLocalScript())

else ()
in

initBatch();
runLocalScript();
endBatch();

end;

Figure 8: Implementation of a general standard script.

7 Conclusion

In this document we have described the design of batch scripting facilities for running batch sim-
ulations in Design/CPN. We have described what changes need to be made in the Design/CPN
tool, and what functions would be useful to have when writing batch scripts. Many of the prim-
itives that we have discussed are already implemented. As soon as users know what primitives
are available, they will be able to begin writing user scripts. The facilities will be improved
when new primitives are created. We also discussed different levels of writing batch scripts, i.e.
user-defined scripts and standard scripts.

An issue that we have not discussed is how the scripts should be defined and invoked. There
are at least two different possibilities. First of all, the user could write the batch script in an aux-
iliary node and then use ML-evaluate to start the batch. The batch could also be run by starting
Design/CPN from the command prompt with a batch option and a name of a file containing a
batch script. Then Design/CPN would automatically run the batch script without the graphical
interface. This would make it possible to use Design/CPN as an engine, and it would be easier
to use for a user who is not familiar with the graphical interface of Design/CPN.

In Sect. 6 we discussed using standard scripts for easing the work when implementing batch
scripts. Another option would be to use templates for batch scripts. A user could select a certain
template, and then some code, possibly something like Fig. 8, could be added to an auxiliary
box. Then the user could modify this code to get the intended behaviour of the batch. Template
scripts would be both easy to use and fully customisable.

The design of the batch facilities was developed immediately after designing, implementing
and using the Design/CPN Performance Tool. This may have influenced the design of the batch
facilities in both positive and negative ways. On a positive note, we were very aware of how
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the batch facilities could be used to easily collect data from a variety of different simulations.
Therefore, we were determined to include primitives that would ease the collection and output
of data during batch simulations. On the other hand, we may have overlooked some important
issues pertaining to simulating without using our data collection facilities in the performance tool.
We are indeed aware that the present design is only based on needs that have been expressed by
Design/CPN users. In the future we will look into other simulation tools that use batch facilities
and consider relevant literature in the area of batch simulation. Additionally, we will also take
into account comments and feedback from future users of the batch facilities.

To test the design of the batch facilities we made a few scripts using the primitives discussed
in this paper. Preliminary tests have shown that the batch scripting facilities are well-suited for
defining batch runs. From early experiments we think that this design provides very general and
easy-to-use facilities for writing batch scripts. Additional experiments will indicate whether or
not the design presented here will need to be modified.
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Abstract

This paper addresses the design and visualization of animated models for

coordinated and decentralized discrete event control systems, e.g. manufacturing

systems and tra�c control systems. We introduce an approach to the design

and animation of such controllers based on Coloured Petri nets models and the

Design/CPN tool. The approach is illustrated by a simple tra�c control network

modeling.

Keywords: discrete event system control, Coloured Petri nets, model ani-

mation.

1 Introduction

The design of complex control systems such as Intelligent Transportation Systems

[10] requires the coordination of decentralized controllers in di�erent intersections of a

tra�c network. Also, the need for adaptive control for such systems is increasing in

importance so that parameters of the decentralized controllers can be tuned according

to the environmental needs, e.g. tra�c �ow. As a complex system the need for visual

sorenchr
 99 



Field Controllers

for th
e contro

llers

environment

Signals
Control

data

Field data

Controlled Systems
Models for the 

Input Interface

Output Interface

and Controllers

Data from the

Parameters Controllers

System
Controlled

Figure 1: Adaptive control architecture

tools to help during the design phase for a better understanding of the domain problem

are very important.

In this paper we introduce an approach to the design and animation of coordinated

decentralized controllers for discrete event systems based on Coloured Petri (CPN) nets

[3, 4, 2] models created using the Design/CPN tool [5].

The example used in this paper is a tra�c signal control system as discussed in

[8, 9, 1, 10, 13].

The paper is organized as follows: the architecture and the functionalities of an

adaptive control for distributed discrete event systems is presented in Section 2. In

Sections 3 and 4 we introduce basic concepts related to the coordinated control of

tra�c light control and modeling respectively. In Section 5 we present an approach to

the animation of a CPN model constructed using the Design/CPN. In Section 6 we

detail, based on a simple example the introduced approach. Finally, in Section 7 we

present the conclusions of the paper.

2 Decentralized Adaptive Controllers

Discrete event control system are usually organized in a hierarchical structure [12, 11].

In the lowest level of the hierarchy are the local controllers performing local tasks, such

as machines controllers in manufacturing systems and tra�c light signal controllers.

These controllers are usually decentralized and coordinated based on the parameters

de�ned on the upper levels of a control hierarchy. Considering the case of tra�c lights,

sequences of green, red and yellow are repeated for each tra�c lights. In the case of

�xed length intersections, the coordination level de�nes the timing of the green signals
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for consecutive intersections along a desired path. Usually this timing considers only

the arterial tra�c, so that the timing for a green wave of lights is de�ned. In this case

the major problem the optimization of the timing for the tra�c lights in all intersections

in the given path.

The block diagram for an adaptive decentralized control architecture is shown in

Figure 1. The computer running the models for the controlled system (e.g. a tra�c

network) and the controllers (e.g. each tra�c light controller) is interfaced with the

controlled system by means of input and output interfaces. The input interface collects

data from the �eld and sends data to the machine running the model. The parameters

of the model that depends on this data are then updated so that new output parameters

are de�ned for each controller in the �eld. Then, these parameters are sent to the �eld

controllers through an output interface.

As shown in Figure 2 in the context of this paper we use a CPN model built using

the Design/CPN tool [5]. Then, the occurrence graph is generated and the behavior

speci�cation for the system maybe de�ned, either using functions written in CPN-

ML or de�ned using ASKCTL [7], a temporal logic used for model checking in the

Design/CPN tool.

A �le with the state information is created, so that the behavior of all �eld con-

trollers parameters can be extracted from it. The data from the environment is stored

in a �le and transitions in the CPN model are properly parameterized with the infor-

mation from this �le in a similar way as discussed in [6].

3 Tra�c Signal Systems

Nowadays a tra�c signal may exist as a single isolated controller or may be part of

a multi-signal tra�c control system. These tra�c control systems are comprised of

interacting components such as signals, detectors, and communication infrastructure

that are arranged in a manner which e�ectively and e�ciently coordinate tra�c �ow

along a corridor or throughout a network. Tra�c engineers are continually re�ning the

control strategies in an e�ort to allow for the safe and e�cient movement of people and

goods. Due to the prohibitive costs, the increase in the use of motor vehicle without a

proportional increase in the infrastructure lead to many di�erent problems, such that

increase in fuel consumption and pollution. The sophistication level of tra�c control

has advanced beyond the exclusive use of time-of-day programs and local �ow detec-

tion. Today, many research is devoted to real-time tra�c adaptive control systems.

These systems not only operate based on local detector demand but also make control

decisions based on predicted future demand [13, 10].
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speci�cation

In arterial and network systems, tra�c is thought of as moving groups, namely

platoons. Typically, signals located at the boundary of the system group vehicles

during the red phase and then discharge this platoon under green. The tra�c control

system coordinates the cycles for tra�c signals at the intersections in order to maintain

the tra�c �ow. Such a control system consists of coordinated-actuated controllers that

are distributed in nature. Also, the control systems must provide actuated control

capabilities that are intended to improve the functioning of a tra�c control system.

This is accomplished by allowing individual intersections to respond to varying tra�c

demands while also maintaining coordination from one intersection to another.

To improve the current practice of using coordinated-actuated controllers for tra�c

signal control systems, advanced tra�c control systems are being developed. The

reader can refer to Figure 1 in what follows. The basic methodology for these adaptive

systems is to have a model for the tra�c network, an input interface to gather data

from the intersection tra�c �ow, and an output interface to the various intersection

controllers. The model is then used together with up to date information from the

tra�c �ow in the network and then �nds out a better control policy for a given behavior

speci�cation, as for example optimize green wave on throughput.

There are di�erent levels of sophistication in tra�c control systems. The most
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simple is known as Webster's Method. It indicates how to divide the amount of green

time in a periodic cycle between opposing �ows of tra�c at an intersection. Optimal

sequences of green time are determined using predicted arrivals of vehicles or blocks.

For more details the interested reader may refer to [8, 9, 1, 10, 13].

4 Design of a Tra�c Control System

The problem of the design of a tra�c control system consists of elaborating a model

of a tra�c network that allows the control of the tra�c lights, guaranteeing that

con�icting routes (in one particular intersection) do not have green signs at the same

time, as well as modeling the dynamics of the stream of vehicles (or blocks) through

the intersection. Also, a block of cars always stop as minimum as possible when in

arterial tra�c. The vehicles passing through the network may come from each one of

the existing intersections or they may come from another tra�c network. Thus, it is

necessary to represent the interaction of this network with the environment, modeling

the input of vehicles by the edges of the network and the output of vehicles after

crossing it.

An example of a network composed of six intersections is shown in Figure 3. The
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routes are represented by directed arcs. We assume that the controllers for each inter-

section have the same structure.

A Hierarchical Coloured Petri net model was built and the hierarchy page is shown

in Figure 4. For this model three pages were built: the tra�c network page, the control

page, and the �ow page. Also, it is shown a page were the CPN-ML functions, queries,

and occurrence graph options for the model are de�ned.

The tra�c network page models the network connecting all the intersections. The

control page models the controllers implementing the sequence of allowed phases for

each intersection and the timing for the phases. The �ow page represents the movement

of blocks through the intersection including timing parameters for the phases, as well

as how long a block takes to move through an intersection.

In what follows we present the declaration node including the color sets and func-

tions and some details related to each one of the pages for the model.

4.1 Color Sets

The Color Sets for the entire model is shown below.

color MAX_T = int with 8..13;

color YELLOW_T = int with 3..7;

color INTERSECTION = with c1|c2|c3|c4|c5|c6 timed;

color PHASE_N = with ph1 | ph2 | ph3 | ph4;

color CR_MINT_YELT = product INTERSECTION*MIN_T * YELLOW_T timed;
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color CR_YELLOWT = product INTERSECTION*YELLOW_T timed;

color CR_YELT = product INTERSECTION*YELLOW_T;

color CR_MAXT= product INTERSECTION * MAX_T timed;

color PHASES_SET = product PHASE_N*MAX_T*MIN_T*YELLOW_T;

color CR_PHS = product INTERSECTION*PHASES_SET;

color PHSET_LIST = list PHASES_SET;

color CR_PH = product INTERSECTION*PHSET_LIST;

color CR_PHASE = product INTERSECTION*PHASE_N;

color CROS_PH_LIST = list CR_PHASE;

color B = with b;

var x : PHASES_SET;

var max_t : MAX_T;

var min_t : MIN_T;

var yellow_t : YELLOW_T;

var phase_n : PHASE_N;

var ph : PHASE_N;

var vph1 : PHASE_N;

var vph2 : PHASE_N;

var cr : INTERSECTION;

var cr1 : INTERSECTION;

var cr2 : INTERSECTION;

var cr3 : INTERSECTION;

var cr4 : INTERSECTION;

var cr5 : INTERSECTION;

var cr6 : INTERSECTION;

var last_cr : INTERSECTION;

var phset_list : PHSET_LIST;

var cros_ph_list : CROS_PH_LIST;

var cros1_ph1_list : CROS_PH_LIST;

var cros_ph : CR_PHASE;

var cros1_ph1 : CR_PHASE;

Some of the color used in the model are explained as follows:

PHASE_N is a 4-tuple, where each element indicate a possible phase that will be in

use in the intersection, at sometime. Phases for example are as shown in Figure

5.

PHASES_SET is a 4-tuple. The �rst element (PHASE_N) indicates the phase that

will be, or is, currently, active for the intersection; the second (MAX_T) and the
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Figure 5: Phases for the example

third (MIN_T) elements indicate, the maximum time and the minimum time

that a phase remains active, respectively. And the fourth element (YELLOW_T)

indicates the time that the yellow light will remain active.

MAX_T represents the maximum green time for the tra�c light.

MIN_T represents the minimum green time for the tra�c light.

YELLOW_T represents the yellow time for the tra�c light, it varies from phase to

phase.

INTERSECTION represents the intersections of the tra�c network.

CR_PHASE is a pair de�ning the active phases for the intersections.

CROS_PH_LIST represents is a list de�ning pairs specifying the intersection and

the phases (CR_PHASE) of a path for a block.

CR_PH represents a pair de�ning the intersection and a list of possible phases for

the intersection with the maximum and minimum green time and the yellow time

for the phase.
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4.2 Controller Page

The controller page is shown in Figure 6. This CPN models all the controllers of

the system. Each controller is represented by a token of the color set CRPH (see

Section 4.1) in place IntersectionsAndCorrespondingPhases. The red time of the tra�c

light was not stored since it is not considered in this model. The �ring of transition

MakePhases, models the beginning of a phase for each controller. The green time

can vary from a minimum value to a maximum one, depending on the existence or

not, of a block of cars crossing the intersection. If the minimum time was consumed,

WaitMinTime �res, putting a token in place MinimumTimeExpired. If there is no

block of cars crossing the respective intersection, in other words, there is a token in

place Intersections1, corresponding to this intersection, ChangePhase2 �res and the

controller will change the tra�c light to yellow, on the contrary the light remains green

until max_t, after that transition WaitMaxTime �res. A token in place YellowTime

models the amount of time that the tra�c light must remain on yellow. A token in

Intersections2, represents the end of a phase.

4.3 Flow Page

The Flow page is shown in Figure 7. A token in place BlockOfCarsItinerary represents

a block of cars arriving at the intersection or a block of cars waiting for a speci�ed

phase. To cross the intersection, blocks of cars wait at the intersection, represented by

tokens in place BlockOfCarsItinerary, until the speci�ed phase is the active one for the

corresponding intersection and there is no block of cars crossing it. The active phases

are de�ned by tokens in fusion place CrossingPhase (see Controller page description).

When these conditions occur, transition EnteringCrossing �res putting a token in place

BlockOfCars1 and removing one token, corresponding to the current intersection, from

place Intersections1. This allows only one block of cars to cross the intersection at

a time. The timed transition BlockCrossingTime models the time spent by a car to

move through the intersection. Observe that, this amount of time may vary from block

to block, but for simplicity in this model we are not taking this into account. When

transition BlockCrossingTime �res, a token corresponding to the actual intersection

for a block is put in place Intersections1, and another is put place IntinerartOfBlock-

OfCars2. The token representing the path is a list of pairs for the intersection and

the phase for the block, when a token is removed from place IntinerartOfBlockOfCars1

the head of the list is removed, thus the token put in place IntinerartOfBlockOfCars2

de�nes the rest of the path.
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Figure 6: CPN page for the intersection controllers
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Figure 7: CPN page for the �ow of blocks of cars in an intersection

4.4 Tra�c Network Page

The Tra�c Network page is shown in Figure 7. This is the model the Tra�c Network

itself, as shown in Figure 3. A token in any of the places Intersectioni ( i = 1,2,3,4,5,6)

represents a block of cars entering in the intersection. Each transition EnteringInteri

(i = 1,2,3,4,5,6) is a substitution transition, modeling the �ow page for each intersec-

tion. The input places of these transitions correspond to place BlockOfCarsItinerary,

modeling the arrival of a block of cars in an intersection as well as a block of cars

waiting for a speci�ed phase. When a block of cars is at the intersection a token is put

at place ChooseDirectioni (i = 1,2,3,4,5,6). The information represented by this token

indicates if a block of cars continues in the system, as for example a token such that

1'([(c2,ph2),(c3,ph3)]) de�nes that the block of cars goes to the intersection 2, in this

case the transition LeavingInter2 �res. Otherwise the block of cars leaves the system,

the list specifying the path is empty or the next speci�ed intersection is not immedi-

ately reachable. For these cases any of the transitions ExitingSystemi (i = 1,2,3,4,5,6)

�re.

In the following section we introduce the main concepts related to the animation

of CPN models.

5 Animation Environment

The animation approach introduced in this paper is based on a Java applet that receives

as input a textual description of the animation environment and control information for
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Figure 8: CPN page for the �ow of blocks of cars in the network
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Figure 9: Block diagram for the animation environment

animation purposes from a �le. This control �le is generated based on the occurrence

graph of Design/CPN as explained in Section 2. In Figure 9 a block diagram for the

animation environment is shown.

A description of the animation environment follows a grammar that de�nes all the

components taking part in a speci�c animation. Basically the components are: �xed

and mobile objects, a board de�ning the grid where the animation takes place, the

routes for the mobile objects, and the controllers for the shared regions in the grid.

Two di�erent �les are used for animation purposes: one describing the objects, and

a control data �le (or stream) Indeed, the control �le is a set of vectors (markings)

including the speci�c markings for the controller or controllers de�ned for the target

system. In this paper each position of a vector in the control �le de�nes the phases for

the set of signals for each intersection for the tra�c network shown in Section 4.

The Animation Applet is a set of classes to manipulate the interface actions so that

the visual objects can behave according to some basic rules, e.g. objects cannot be in

the same area at the same time or they cannot enter in shared regions that are blocked

to them. This can be used for example to stop a block of cars in an intersection.

The main characteristic of the implementation is the use of an applet based on a

generic controller class that can be de�ned depending on the system being modeled

and animated. For example, in the case of the tra�c signal controllers the control �le

de�nes the phases and the timing for the controllers of each intersection in the tra�c

network.
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the Behaviour the Behaviour the Behaviour

Figure 10: Control information for �le control.aja

The class for the controller, the control �le, and the description of the animation

�le, are integrated by the Animation Applet. Each row in the control �le represents

the states of all the controllers, and the state of each controller is in a speci�c position

of this row. This information is extracted from the occurrence graph. In Figure 10 we

illustrate an example for the control �le specifying the behavior of �ve controllers. It

is important to point out that at this moment we do not assume that the structure

of the controllers are the same. Di�erent classes for each controller can be plugged in

the animation applet. For the example of the tra�c light controllers the behavior is a

simple �nite state machine that controls sequential timed changes of phases for each

intersection.

5.1 Generic Controllers

The idea of generic controllers is based on the possibility of de�ning abstract classes and

interfaces in Java. The generic behavior of a controller is speci�ed by an abstract class

named Controller. Any controller belonging to the class Controller must implement

the following basic functionalities:

� take as input a list, as shown in Figure 10, specifying the reachable states.

� have a set of methods to manage the list and take the appropriate control actions.

� implement synchronization mechanisms to support di�erent threads of execution.

� to turn public its status.

For the example of tra�c lights the list have the phase and timing information for

each controller. Therefore, for each class the designer must de�ne a method to extract

this information from the control �le. In the next section we shown an example for a

simpli�ed tra�c network controller.
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The controllers operate over shared structures or regions that are accessed by mov-

ing objects during the animation. For animation purposes this corresponds to avoid

that visual objects occupy the same area on the screen. For example if a tra�c light is

closed in a given direction the block moving towards that direction must stop. Since

the control objects as well as visual moving objects are controlled by di�erent threads

of control operating over di�erent critical regions, it is possible to implement a parallel

animation, what would not be possible otherwise [6].

5.2 Grammar for the Input Control File

As said before the information needed to describe the animation model is stored in a

�le. In the following the grammar for description of a model is presented.

<animation model> := <input><grid><routes><objects><controllers>

<input> := input = <path>;

<routes> := <route><routes> | <route>

<route> := route IDENTIFIER = <points>;

<objects> := <object> <objects> | <object>

<object> := object IDENTIFIER = <size>,<speed>,<quantity>,

<id_route>[,<pos>];

<grid> := grid = <size>,{<active>};

<controllers> := <controller><controllers> | <controller>

<controller> := controller IDENTIFIER = <points>,<pos>;

<points> := <point>,<points> | <point>

<point> := (INT,INT)

<size> := <point>

<active> := <lines>

<lines> := <line>,<lines> | <line>

<line> := <row> | <column>

<row> := r(INT,INT,INT)

<column> := c(INT,INT,INT)

<pos> := INT

<path> := IDENTIFIER

<speed> := INT

<quantity> := INT

<id_route> := IDENTIFIER
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The terminals are very intuitive and the rules are always very short. Except for

the connection between the control �le and the controller description, all the other

components are basically visual informations. The controller must be associated to a

column de�ning a place of the marking vector for the CPN model representing the state

of a controller for the target system. The controllers update their status according to

the values de�ned in each speci�c column in the marking vector. Based on this grammar

one can de�ne the animation in a straightforward way. An example based on the tra�c

network control is as follows:

input = control.file;

grid = (10,10),{r(5,1,10),r(6,1,10),c(5,1,10),c(6,1,10)};

route RT1 = (6,1),(6,10);

route RT2 = (6,1),(6,5),(10,5;

route RT3 = (5,10),(5,1);

route RT4 = (5,10),(5,5),10.5);

object BLOCK1 = (1,1),1,1,RT1;

object BLOCK2 = (1,2),1,1,RT3;

object BLOCK3 = (1,1),1,1,RT4;

controller SEMAPHORES = (5,5)(5,6),(6,5)(6,6),2;

For the example shown for the animation �le, observe for example the routes

RT1,RT2,RT3 and RT4 and the critical region (SEMAPHORE) in Figure 11. For more

complex con�gurations, as in the example presented in Section 4 the de�nition of the

animation model is very simple.

6 A Case Scenario

In this section we present details related to the process to obtain the behavior speci�-

cation for the controllers for a simpli�ed tra�c network with two intersections each one

with two phases. For this case the occurrence graph (OG) was obtained in 87 seconds,

on a time-shared Pentium II, with 256 Mbytes of main memory, running Linux 2.2.12.

The OG has 468 nodes and 1408 arcs.

To obtain the speci�cation of the states for the controllers for the green wave the

following steps were executed:

1. De�ne the initial marking and timing de�nition. In this case, the traveling time

between the intersections was 3 time units, and the crossing time for the inter-

sections was 2 time units. The block of cars generation rate was 12 time units.
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Figure 11: Animation grid in the board

2. Verify whether a green wave exists, if not, then change the timing for the initial

marking. To do so, a set of CPN-ML functions were de�ned and are shown below.

3. Find a set of markings satisfying the green wave property specifying the behavior

for the controllers.

(* Find the path matching the green wave *)

fun FindThePath ( [] ) = [] |

FindThePath (head::tail) =

let

val Path = (NodesInPath(InitNode,head)) handle NoPathExists => nil;

in

if ((Path <> nil) andalso ((length(RemoveDup (Path))) > 1))

then Path

else FindThePath (tail)

end;

(* Remove duplicated marking from the path (ignoring time stamps) *)

fun RemoveDup( [] ) = [] |

RemoveDup ( h::t ) =

let

val aux = [];

in

if (memberNode(h,t) orelse
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(StripTime (Mark.Flow'IntersectionsAndCorrespondingPhases 1 h) == empty))

then RemoveDup (t)

else h::RemoveDup (t)

end;

(* Verify if a node is member of a path *)

fun memberNode (x,nil) = false

| memberNode (x,h::t) = if (st_Mark.Flow'RemoveDup 1 x) =

(st_Mark.Flow'RemoveDup 1 h)

then true

else memberNode (x, t) ;

(* Save the state of the controller for the green wave *)

fun SaveMarkings (file,[]) = false |

SaveMarkings (file,h::t) =

(output(file,(st_Mark.Controller'IntersectionsAndCorrespondingPhases 1 h));

SaveMarkings (file,t); true);

The speci�cation for the controllers is a �le which contents is as follows:

C'ICP 1: 1`(c1,[(ph2,5,3,1),(ph1,6,4,2)])@[0]+ 1`(c2,[(ph1,5,3,1),(ph2,8,6,2)])@[0]

C'ICP 1: 1`(c1,[(ph1,6,4,2),(ph2,5,3,1)])@[6]+ 1`(c2,[(ph1,5,3,1),(ph2,8,6,2)])@[0]

C'ICP 1: 1`(c1,[(ph1,6,4,2),(ph2,5,3,1)])@[6]+ 1`(c2,[(ph2,8,6,2),(ph1,5,3,1)])@[9]

C'ICP 1: 1`(c1,[(ph2,5,3,1),(ph1,6,4,2)])@[10]+ 1`(c2,[(ph2,8,6,2),(ph1,5,3,1)])@[9]

C'ICP 1: 1`(c1,[(ph2,5,3,1),(ph1,6,4,2)])@[10]+ 1`(c2,[(ph1,5,3,1),(ph2,8,6,2)])@[13]

|_________| |___|

(CL1)_______________________| |__________(Time Stamp)

Observe that ICP is the place IntersectionsAndCorrespondingPhases for the CPN

for the controller shown in Figure 6. From each line of this �le the applet extracts the

required information to manage all the controllers at a given moment. For the example

shown, to coordinate the behavior of the �rst controller "c1", the applet takes the

tuples of the column CL1 and the Time Stamp. Based on these two information the

applet activates the controller at time zero (@[0]) and phase 1 (ph1). Observe that the

value of the Time Stamp de�nes when controller changed to the actual phase. Thus,

the phase remained green for 4 time units and yellow for 2 time units. This information

is calculated from the di�erence between the the current time stamp, the previous time

stamp, and the yellow time de�ned for the previous phase, in this case 2 time units.

sorenchr
 116 



7 Conclusions

In this paper we presented an approach to the speci�cation, analysis, design and an-

imation of distributed controllers based on Coloured Petri nets and the Design/CPN

tool. From the point of view of the animation the main advantage is that the user

can observe the concurrent behavior of a given system modeled using the Design/CPN

tool. Also the approach introduced for the de�nition of the behavior of decentralized

controllers can be used for adaptive control for systems which behavior can change, as

is the case of tra�c light controllers for a network.

To illustrate the approach we presented the design of a coordinated tra�c supervi-

sion, based on decentralized controllers for the intersections. We have used the model

for de�ning the control for the case of a green wave for arterial tra�c. It is important

to point out that there are other aspects related to coordinated tra�c control that can

be considered, such as the �early return to green� problem, ine�cient green splits, and

cycle lengths being too short or too long [10].

In this paper we have used an approach based on ML functions to search for mark-

ings expressing the desired properties for the model. The results obtained indicates

that the approach for both, the speci�cation of the behavior of the controllers as well

as the animation is correct. In the case of the use of model checking it is still neces-

sary to make some changes in the ASKCTL library, so that information such as the

identi�cation of node at the de�ned property was proved or not.

Also, we are currently investigating the applications of the introduced approach to

manufacturing and batch systems supervision and animation. Also, we are re�ning the

solution, both the controllers behavior and the animation, so that a more automatic

and interactive tool can be developed. Apart from developing the animation, we are in-

vestigating the use of the approach introduced for control. Basically, what is necessary

to do is to substitute the the animation applet by a controller applet.
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Abstract

This paper describes the redesign of the interface for Design/CPN, a graphical editor for building,
simulating, and analyzing Coloured Petri Nets.  One of our goals in the redesign is to explore how
recent advances in graphical interfaces and interaction techniques can improve the editor’s
support for CP-net designers.  This requires an understanding of Petri Nets In Use, our term for
the collection of guidelines, work styles, and interaction patterns that influence the way designers
build CP-nets.  This concept is central to our design framework, and has guided our design
process.

In this paper we describe our design framework and give an overview of our design process, a
series of empirical studies, brainstorming sessions, and design exercises.  We then follow two key
issues (setting graphical attributes and alignment) through our design process, and describe how
the Petri Nets In Use perspective influenced the evolution of toolglasses and magnetic guidelines
as solutions for these issues in the new tool.

Keywords

Participatory Design, Coloured Petri Nets, Design Process, Toolglasses, Magnetic Guidelines

1 INTRODUCTION

A Coloured Petri Net is not simply a mathematical formalism; it uses a graphical representation
because it is easier for people to understand. The Design/CPN tool, designed in the 1980’s,
recognized this and provided a state-of-the-art graphical editor to interactively create, simulate
and analyze CP-nets.

The CPN2000 project is a complete redesign of the Design/CPN tool developed at the University
of Aarhus. The project draws from four areas of expertise within the computer science
department: Coloured Petri Nets, object-oriented languages, human-computer interaction and
advanced interaction techniques. The project, funded by Hewlett-Packard, began in February,
1999, and involves participants from each of these research areas, with a core group of 11 people
involved in the design.

One goal of the project is to take advantage of new graphical interaction techniques that have
been developed in the past decade. However, this is not simply a question of replacing old
technology for new. Instead, our approach is to combine these new techniques in novel ways to
support the real patterns of use. We call this collection of patterns Petri Nets In Use: how people
borrow from existing Petri nets, rearrange objects for practical and aesthetic reasons and
iteratively test and modify their designs.

This paper describes our attempts to identify the critical elements of Petri Nets In Use and explore
how to support them with new interaction techniques in the design of CPN2000. Our research
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approach includes observation of CPN users at work, and various design activities that capture
processes associated with designing Coloured Petri Nets.

The structure of the paper is as follows: First, we explain our design framework, including
examples of advances in interaction techniques and an explanation of the concept of Petri Nets In
Use. Second, we give an overview of the design process.  Finally, we follow two design issues
(managing graphical attributes, and aligning objects) through the design process, and show how
participatory design and our understanding of Petri Nets In Use led us to develop effective
solutions to these issues.

2 DESIGN FRAMEWORK

Our design framework is composed of both technology and use domains. Factors that influence
the architecture of the tool, such as its functionality, the graphical interface and interaction
techniques, are part of the technology domain. Factors related to the use of the tool, including
design guidelines, overall work styles and interaction patterns, are part of the use domain. Our
design framework is based on developing an in-depth understanding of these two domains and the
interaction between them and combining this with the Petri Nets In Use concept to guide the
design of the new tool.

2.1 Design principles

There are three key principles that we use in the design of the overall graphical interface:

1. Reification: The process of turning interaction patterns into first class objects. Thus,
commands can be made accessible as instruments, combinations of properties can be
turned into styles and the selection of multiple objects can be tagged and accessed as
groups.

2. Polymorphism: Similar operations may be applied to different objects. Thus, various
objects can be cut, copied or pasted, any operation can be undone, and operations that
apply to a single object can be applied to groups of objects.

3. Reuse: Previous commands and the responses by the system can be reused by the user.
Thus, input may be reused as the "redo" command and macros, output may be reused as
input to other commands, and new commands may be created out of existing
commands and a partial list of pre-defined arguments.

The reification principle has strongly influenced the design of the new tool.  For example, in the
current tool a set of objects are aligned by applying a “vertically align center”  command, but
additional objects cannot be added without reselecting the aligned objects. In the new tool, this
alignment command is reified into a magnetic guideline, a visible first-class object which is
continuously accessible and modifiable.  New objects can be attached to the guideline, and
moving the guideline also moves all the objects attached to it.

2.2 Interaction Techniques

The interaction techniques of most traditional graphical interfaces use some combination of
Windows, Icons, Menus, and Pointing (WIMP).  Although these have a number of strengths, e.g.,
when well designed they are self-revealing to a novice user, their interaction is often limited to
indirect manipulation techniques.  This type of interaction forces users to divert their focus from
the objects they are working with to commands embedded in menus and dialog boxes.  In the
context of a graphical editor, this separation between object and action is inefficient and slow.
Contextual menus and floating palettes are improvements, but are still indirect manipulation
techniques.
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In contrast, direct manipulation techniques (Shneiderman, 1998) follow three principles:
continuous representation of the objects and actions of interest with meaningful visual metaphors,
physical actions or presses of labeled buttons, instead of complex syntax, and rapid incremental
reversible operations whose effect on the object of interest is visible immediately.

We are working with the concept of Instrumental Interaction (Beaudouin-Lafon, 1998), which
encompasses the range of techniques between direct and indirect manipulation.  In this model,
instruments mediate the interaction between a user and the objects in the interface.

Toolglasses (Bier et al., 1993), for example, are floating, semi-transparent instruments for
direct, two-handed manipulation. They are positioned with the non-dominant hand and applied
with the dominant hand.  A toolglass similar to a color palette would allow a user to apply a color
to or absorb a color from an underlying object directly.  The non-dominant hand moves the
desired color over the object of interest, and then applies the color by clicking through the
toolglass on the underlying object with the dominant hand.  This allows the user to specify both
the object and the action with a single mouse click, in context.  An extension of this idea is a
Magic Lens, a transparent instrument that shows a modified version of underlying objects.  For
example, a magic lens version of a color palette would show the portion of the underlying objects
within each cell in that cell’s color.  Each cell in the palette would effectively become a graphical
preview.

Another advanced interface technique is layers (Fekete, 1996), which creates graphical sets of
objects whose visibility and depth can be controlled like overlapping layers of transparencies.
Layers are an effective way of separating structural objects from informational objects.  This
allows the user to manage the complexity of the view by adjusting the visibility of a layer based
on its relevance to the current activity.  For example, comments could be placed into one layer
and simulation feedback in another, allowing the user to fade or hide items when they are not the
focus of attention.

Standard architectures for graphical interfaces do not support these “Post-WIMP” interaction
techniques and they are not trivial to add to existing interface toolkits.  We have, therefore,
completely redesigned the user interface architecture to support these new types of interaction.

2.3 Petri Nets In Use

To introduce the new interaction techniques and apply the design principles, we have conducted
several studies of current CP-net design practice. Petri Nets In Use is our term for the collection
of factors that influence the way a designer works with Coloured Petri Nets.  We divide these
factors into three groups: visual representation, work style, and interaction patterns.

The graphical characteristics of the visual representation are essential in communicating the
underlying meaning of the CP-net to others.  We look at this communication role both within
smaller workgroups, in larger communities of designers in a certain domain area, and in general
between designers familiar with the language of CP-nets.

CP-net designers have developed a number of guidelines for building readable nets.  Some of
these guidelines are applicable to graphs in general, some are specific to CP-nets, and some are
used only within certain workgroups. Jensen's (1992) readability guidelines, for example, are
general and applicable to most CP-nets.  They include suggestions on the use of structure and
graphical attributes to emphasize the flow of data and the semantic relationships between objects.
Information visualization techniques (Noik, 1994) and guidelines from graph drawing research
(Di Battista, 1999) are additional sources for techniques designers may employ to communicate
and emphasize the meaning of their net.  Understanding these guidelines and how designers
employ them is essential in the process of designing an editor to support them.
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Interaction patterns describe the designer’s low level interactions with the design tool during
the process of building a CP-net.  For example, does the designer use keyboard shortcuts instead
of menus?  Does the designer create new objects or cut, paste and edit existing objects?
Understanding these patterns in the current tool helps us determine if they should be supported in
the future tool, improved or replaced with different interaction patterns.

The work styles describe the designer’s overall process of creating a net.  Several of the
modeling guidelines described in Jensen (1992) suggest a top-down framework: the designer first
models the core functionality and then progressively adds details, switching between editing
(building the model) and simulation (testing the model).  Schön (1983) described design less
formally, as an iterative process of “ reflection-in-action” , and “seeing and moving” .  Feedback
from our user group and examples from industrial use (Christensen et al, 1997) show how these
approaches are employed in CP-net design.  During this process, the designer may create a net in
isolation, or use parts of existing nets, design guidelines, and group conventions.  Jensen, (1992)
discusses additional guidelines for modeling CP-nets involving the use of abstraction and
structure.  How individual designers employ these guidelines is their work style.

The components of Petri Nets In Use are intertwined: the guidelines that a workgroup use for the
visual aspects of a net will affect the way that members of that workgroup create a net; the factors
that influence the work process will also affect the result. Understanding these relationships helps
us design a tool to support them.

2.4 Redesigning Petri Nets In Use

Figure 1 illustrates how the components of the design framework combine in the process of
creating the new tool. Through the different design process activities, the users have worked on
redesigning their Petri Nets In Use, and we have used this input to guide our design of the new
tool.

scenarios
Use

patterns
Interaction

techniques
Interaction

specifications

Visual

Petri Nets In Use
Redesigning

components
Petri Nets In Use

representation
Interaction
patterns

Workstyles

Functionality

Use domainTechnology domain

Design framework

Figure 1.  Petri Nets In Use and the Design Framework

The functionality specifications of the design tool are created through a requirements analysis
and define what the new tool must support both in terms of the visual representation, and the
simulation/analysis of the underlying model.  Our analysis of the current tool, research in
graphical interfaces, and the participation of CPN experts define the functionality of the future
tool.

In the use domain, the interaction patterns and use scenarios describe how the users of the
current tool create and work with Coloured Petri Nets. We rely on observation of users and
interviews of experts to identify and understand these components.  Through analysis of these
observations and interviews, and feedback from users, we identify areas where work styles can be

sorenchr
 122 



improved and integrated in the new tool.  The interaction techniques we have introduced and the
interaction patterns from the current tool together help define the interaction patterns of the new
tool. This area of the design is entirely reinvented through our design process.

3 DESIGN PROCESS

The project uses a participatory design approach, in which we rely on the active participation of
expert CP-net designers throughout all phases of the project. Our design process involves four
key activities: studying Petri nets as they are actually used in real-world settings, generating ideas
for new ways of interacting with the CPN2000 tool, designing the tool itself, and evaluating the
design ideas (Figure 2).

Studying Use Generating Ideas Designing Evaluating designs
observation text brainstorming design workshops experiments
interviews video brainstorming software prototypes prototype evaluation

analysis
scenario

brainstorming
design scenarios

design walkthroughs

Figure 2.  Design activities

3.1 Studying use

We began by studying how novice and expert users build and edit CP-nets. We conducted two
types of user studies: video observations and interviews. For the video observations, we visited a
range of users, including expert users at a small company working on their current project, an
academic expert working through the solutions to student exercises as well as his own project,
and a group of students trying out the same set of exercises. In each case, we visited people in
their offices (or in the computer lab) and asked them to work as they would normally rather than
give us a demo. We interviewed each person afterwards and asked them to explain their actions
and identify key problems. We also interviewed several local CP-net experts about their ways of
using the tool and what they felt were problems with using the tool.

We performed several types of data analysis. The most basic involved coding activities and
problems from the videotapes and making transcripts of the interviews. From these, we created a
video summary of the most common problems, contrasting the experiences of novice and expert
users. We also created use scenarios, comprised of typical activities and problems observed in
the field studies. These scenarios enabled us to create concrete representations of Petri Nets In
Use, including current work styles and interaction patterns, and helped us focus on areas where
they could be improved.

We were particularly struck by the time the users spent adjusting layout and how often they were
forced to constantly shift their attention as they searched for commands and other information.
Subsequent design activities were specifically organized to address the problems we identified
during the field studies.

3.2 Generating ideas

To kick off the design activities, we engaged in several different types of brainstorming sessions,
with the goal of generating, rather than evaluating, new ideas. We began with traditional
brainstorming sessions, with both CPN experts and other researchers. Everyone was asked to
generate a list of problems with the new tool and ideas for possible solutions. We provided
inspiration the week before by showing video clips of new interaction techniques that might be
relevant to the new CPN tool.

Subsequent brainstorming sessions involved video, which forced participants to demonstrate,
rather than just talk about, new ideas. Participants were given paper, scissors, transparencies,
pens, post-it notes and other supplies and asked to simulate ideas for new ways of interacting with
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the new tool. We found that having participants perform the interaction in front of the camera
forced them to work out the details of the interaction and created a video record that was used
later to create software prototypes. Early video brainstorming sessions were open-ended, with
participants offering design solutions to a range of problems within a specified area, such as
layout. Later video brainstorming sessions were organized around use scenarios, in which
participants were asked to generate multiple ways of supporting the work activities shown in the
video.

3.3 Designing prototypes

Our design process involves a combination of activities, including a systematic review of the
technical functionality required in the tool, a comparison of the interaction techniques possible for
each function, and an analysis of how the choice of particular interaction techniques affects users’
patterns of interaction with the tool. Whereas the brainstorming sessions helped expand the range
of possibilities being considered, the design sessions involved the difficult task of balancing
tradeoffs and actually making design decisions. Using our design principles helped us generate
new solutions to design problems, ensure uniformity within the interface and resolve design
conflicts. Most design sessions generated new issues and some design decisions were deferred,
requiring either additional user studies or new brainstorming sessions.

Our design activities included a series of design workshops, with a mix of software designers,
human-computer interaction researchers and Coloured Petri Net experts. Each workshop
examined a different design issue. We also developed video design scenarios to help us examine
how CP-net developers would use the tool under different work conditions. For example,
designing a new net is different from editing an existing net or modifying it to make it conform to
local guidelines. We had to ensure that the new design could accommodate developers working in
each context.

To explore the consequences of particular design decisions we created software prototypes,
derived from the video brainstorming sessions and other design activities. We also developed a
completed demonstration of the current state of the design, in the form of a video prototype
scenario. We used this video to communicate the current look and feel of the design to each other,
new members of the team and to the programmers developing the code.

3.4 Evaluating designs

Our design process involves evaluation of ideas throughout, since we obtain feedback on a
regular basis from experienced CP-net users. In addition, we have begun a series of more formal
evaluation activities, including experiments to test specific design decisions and design
walkthroughs to give us qualitative feedback about the look and feel of the tool. These activities
are currently underway but are beyond the scope of this paper.

4 DESIGN PROBLEMS AND SOLUTIONS

Figure 3 shows the flow of our design process.  The sequence of events is listed in the left
column, and each event is shaded to match its corresponding design activity.  The artifacts
generated by each event are placed in the column corresponding to the type of design activity, and
the flow of the design process is emphasized with arrows. The artifacts created in this process
were critical in our identification of problems, our understanding of Petri Nets In Use, and the
evolution of ideas into the design of the new tool.

Two significant issues identified during this process were improved support for managing
graphical attributes and positioning objects. The new editor supports these issues with toolglasses
and magnetic guidelines.  The following sections will trace the evolution of these ideas through

sorenchr
 124 



the design process, and how participatory design and our focus on Petri Nets In Use has helped us
to refine and improve these ideas.

Design Activities
Event

Studying Use Generating Ideas Designing
Meeting redesign issues

Observation,
Interviews

video, notes,
transcripts

Traditional Brainstorming design ideas
Video Brainstorming video clips of ideas

Prototype
prototypes,
feedback

Interview
Petri Nets In Use,

redesign issues

Scenario Brainstorming
scenarios,

design ideas

Prototype
prototypes,
feedback

Scenario Brainstorming
scenarios,

design ideas

Design Workshop
design framework,

scenarios,
prototypes

Figure 3.  The flow of events and their relationship to design artifacts

4.1 Problem 1: Managing graphical attributes

Figure 4, which is based on figure 3, shows how the different activities in our design process
contributed to our understanding of graphical attribute issues.  The preliminary meeting raised
two issues concerning graphical attributes: support for styles, and a better way of copying
attributes from one object to another.

Design Activities
Event

Studying Use Generating Ideas Designing
Meeting redesign issues

Observation,
Interviews

video, notes,
transcripts

Brainstorming design ideas
Video Brainstorming video clips of ideas

Prototype
prototypes,
feedback
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scenarios,

design ideas

Prototype
prototypes,
feedback

Scenario Brainstorming
scenarios,

design ideas

Design Workshop
design framework,

scenarios,
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Figure 4.  Sources for graphical attribute issues and toolglass ideas

In the first brainstorming session, people raised several issues on styles and setting attributes:
style sheets, personal configuration of styles, selection by graphical property (e.g., all red
transitions).  At this point, the ideas were general; they described ways the users wanted to be able
to work but did not contain details on interaction.  Style sheets, the first idea, make it easier to
formalize standard guidelines used for related groups of objects or types of objects.  The second

Toolglasses for
Managing Attributes

Toolglasses for
Setting Attributes

Graphical Attribute Issues
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idea, personal configuration, supports switching between the guidelines developed inside
different work groups, e.g. one group may use thick and thin lines, while another group might use
the colors blue and green.  The third idea, selection by property, overlaps with the style idea, but
is more informal.  For example, a user can select all red transitions and change them to thick lines
directly, without changing a style.

These issues are important components of Petri Nets In Use; sharing a style among objects often
emphasizes a semantic connection between the two, or adherence to specific guidelines.  Both of
these issues highlight a need for better support for managing and reusing object attributes.

4.2 Solution 1: Toolglasses

The lower two boxes in figure 4 show the evolution of toolglasses in our design process as a way
to solve these graphical attribute issues. Toolglasses appeared to us as an obvious choice for
working with attributes. As explained earlier, they are transparent tools that bring the action to the
object, a feature that is not supported with traditional menus and dialog boxes.  We explained the
concept of toolglasses to the CPN experts participating in our video brainstorming workshop,
and they developed several design ideas using toolglasses to set graphical attributes.

Figure 5 shows an example of a "styleglass" produced in the video brainstorming workshop. The
video clip created during the workshop shows how a toolglass displays objects in the net in
different styles: one style for the client side of the network, one for the server side, etc. The
toolglass is moved with the non-dominant hand, using a trackball, and the dominant hand can use
the mouse to click on the toolglass frame with the desired style to apply that style to the object.
Participants at the workshop developed several variations on this idea: One-handed toolglasses,
toolglasses that can be resized, and toolglasses for port assignment.

Figure 5.  Style preview toolglass

The styleglass has one transparent frame where the object of interest in the underlying net can be
seen unmodified.  Surrounding this transparent frame are eight opaque frames for displaying the
object in different styles. A variation of this is a toolglass where all frames are semi-transparent,
but each displays the underlying net in a different style.  Both toolglasses apply the style to the
object of interest by clicking on the style. There is a trade-off between the two concerning the
visual complexity of the screen image: With the opaque frames one object is shown in several
styles making comparison easy, but they cover parts of the underlying net.  With the transparent
frames, it is more difficult to compare the different styles for one object, but more of the net
structure is visible. These are some of the tradeoffs we investigated in the first prototype.
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We wanted to test how the toolglass with styles would actually look and feel so that we could
compare the different versions.  We built several prototypes of the toolglasses (e.g., changing the
number and color of the frames, switching between one and two-handed input) in Tcl/Tk and
presented them to the project group for evaluation.

The general feedback was positive.  People were surprised at how easy and natural two-handed
input felt.  The advantages of two-handed input (smooth movement and positioning of the
toolglass, easy interaction with the underlying net) clearly made up for the small amount of desk
space the extra input device occupies. Actually trying the toolglasses convinced the group of their
potential, and they became central to the new design as a result of this prototype.

Given the simplicity of these first prototypes, the feedback was mostly on the idea level and not
really an in-depth evaluation.  Some of this feedback (how many frames should we have, where
do you click to apply changes to an object, etc.) was used in the design phase and for the
subsequent prototypes.

Given the input from the earlier brainstorming sessions, we wanted to develop these ideas further
in the context of realistic scenarios.  In the scenario brainstorming workshop we constructed
two scenarios illustrating realistic use situations, and recorded them on videotape. These two clips
showed simple editing of graphical attributes on a single page, selecting all items with some
particular property and changing them to a new style. We showed the participants the video clip,
and then asked them to brainstorm how the task could be performed with the future tool.

Figure 6.  Graphical search and replace toolglass

The workshop resulted in a number of different versions of a search and replace toolglass: a
toolglass that makes it easy to find and change items with a certain property or combination of
properties. Figure 6, an artifact from the workshop, shows a circular toolglass with three sections
around the outside for line style, line thickness, and line color.  Clicking through the center picks
up the attributes of the object underneath, changes the current settings in the different sections of
the toolglass, and highlights other objects in the diagram with the same attributes.  A related
toolglass allowed the user to specify the values of attributes to search for and the attributes to
replace them with. It is possible, for example, to set the toolglass to find all objects that are red
and make their outlines dashed.  After this workshop, one CPN expert commented that if
graphical search and replace was very easy, then formal support for styles may not be necessary.

In the second use scenario workshop, one group developed a toolglass to pick up and apply
attributes. Its appearance was very similar to the search-and-replace toolglass, showing the values
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picked up from the objects in the fields of the toolglass. Clicking through the middle of the
toolglass on an object then applied these attributes to the object. It was also possible to set the
desired values of attributes directly in the toolglass.

We based the second prototypes on the evaluation of the first and the design ideas from the use
scenario workshop. All prototypes in this phase were programmed in Beta and connected to the
underlying user interface tool kit.

Figure 7. Toolglass prototypes.  (a) Click through Toolglass. (b) Magic Lens version
of Toolglass

We built two simple versions of toolglasses for changing the graphical attributes of objects in the
net.  Figure 7a shows a toolglass prototype that a user clicks through to apply an attribute to an
underlying object.  Figure 7b shows a magic lens version of the earlier prototype with transparent
frames showing the net underneath in different styles, with click-through for applying the styles.
The upper two cells of the toolglass show the arcs in different line thicknesses, and the lower two
cells show the arcs in different colors.

In the design workshops, we continued to define and evaluate the low-level interaction with
toolglasses through scenarios of use.  We have also begun looking into how to integrate and
manage toolglasses in a workspace.

The adoption of toolglasses as a solution for setting attributes was not clear until the first working
prototypes where users could actually experience them.  Since then, they have become
increasingly sophisticated.  Originally they were a way of managing styles, and more recently they
have become tools for inspecting attributes, and graphical search and replace.

4.3 Problem 2: Positioning objects

The second problem we focus on in this paper is positioning objects.  The box in the upper right
of figure 8 shows an overview of the events that highlighted the problems of positioning objects,
and especially rerouting arcs.  For example, we analyzed a video clip of an expert from industry
engaged in the relatively simple task of creating a new place, redirecting arcs to that place from
another, and connecting other objects in new ways. This task takes approximately three minutes,
over 60% of which involve tedious and repetitive rerouting operations. Clearly much time and
effort could be saved if a better way of interacting with arcs was invented. Positioning of arcs
should be more highly automated, according to the positions of the objects the arcs are attached
to, based on simple guidelines for how arcs should be routed through a net.

The first input on the issue of positioning of objects came from the preliminary meetings, and was
about having constraints as a supplement to ordinary alignments. From the first brainstorming
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session there were only a few ideas on constraints - one was to have constraints between
bendpoints on arcs, an idea that later became essential for ideas on manipulating arcs.

The issues of manipulating arcs and aligning objects might appear to be separate, but both have to
do with how to position objects easily, and arcs are essential to this.  When an object is moved,
the arcs must follow.  The users have attempted to integrate these two areas of work throughout
the design process.

Design Activities
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Meeting redesign issues
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Brainstorming design ideas
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Figure 8. Sources for alignment issues and magnetic guideline ideas

4.4 Solution 2: Magnetic Guidelines

The lower two boxes in figure 8 show an overview of the events that influenced our design of
magnetic guidelines as a solution to the problem of positioning objects.  Figure 9a shows a video
clip from the video brainstorming workshop illustrating the idea of magnetic guidelines.  In this
clip, when an object is moved over another object, guidelines will appear for both of them, and
the object moved will “snap-to”  the guideline of the other object, so that they are aligned. The
guidelines can be more or less advanced, appearing only for the center of the object or for center
and sides, so that it is possible to align to different points of the objects this way.

Figure 9. Magnetic Guidelines:  (a) video clip of an idea from video brainstorming
(dashed lines are guidelines); (b) software prototype showing three objects attached
to two horizontal and two vertical guidelines.  Objects dragged near a guideline
snap onto it.  Moving a guideline moves the objects attached to it.

Figure 9b is a screenshot from a prototype of magnetic guidelines. In the prototype, it is possible
to insert objects (places and transitions) on a canvas, connect them with arcs and create
guidelines. When moved over the guidelines, the objects will snap to the guidelines as

Alignment Issues

Magnetic Guidelines
for Aligning Arcs

Magnetic Guidelines
for Aligning Places

and Transitions
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demonstrated in the video brainstorming clip. The guidelines can be toggled to show or not show,
but objects will still snap to when near a (possibly invisible) guideline. An important feature
demonstrated in the prototype is that guidelines can be selected and moved, which also moves any
attached objects. This is an example of a reification of the alignment constraint - the constraint
between the aligned objects has been turned into an object that can itself be moved and
manipulated.

For the scenario brainstorming workshops we constructed use scenarios from user study
videotapes. Figure 10a is from a video clip on rerouting arcs that was turned into a use scenario
with a storyboard. In the workshops we worked through the scenario to redesign the interaction in
a new design context.

Figure 10. Magnetic guidelines for arcs.  An image from the video scenario is
shown in (a), and a sketch for the design idea is shown in (b)

Inspired by the prototype on magnetic guidelines and the use scenario, one of the groups in the
workshop developed the idea of guidelines for arcs.  These guidelines control the routing of an
arc by holding the bendpoints of an arc in a fixed position relative to the objects the arc is
connected to.  The alignment of an arc segment is adjusted automatically when the guideline or
one of the objects is moved, as shown in figure 10b. This is a continuation of the reification of
alignment constraints - the constraints between the arc segments and bendpoints (originally
mentioned in the first brainstorming) can now be manipulated.

In the design workshops we have unified the concepts of aligning and moving arcs, arc
segments, nodes, etc. through the use of guidelines.  We have recently begun integrating
spreading constraints into guidelines as well.  These guidelines evenly spread objects that are
attached to them.  More complex layouts can then be achieved by combining these two types of
guidelines.  For example, attaching several alignment guidelines to a spreading guideline creates
equally spaced parallel rows of objects.

Turning all constraints into guidelines of the same overall nature makes it possible to create
polymorphic interaction techniques for manipulating different kinds of constraint guidelines.
These guidelines can then be combined or split according to a “guideline algebra,”  making
constraints a powerful and flexible functionality in the new tool.

The evolution of design ideas to handle graphical attributes and object alignment demonstrates
the influence of Petri Nets In Use in our design process.  Design issues were highlighted during
observation, interviews and feedback from users.  Design ideas were generated and progressively
refined by CP-net experts, who were creating their future work styles.  The participation of CP-
net users has been essential throughout the design process.
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5 CONCLUSIONS

This paper describes a series of design activities with a multidisciplinary group of participants,
including CP-net experts, to redesign the Design/CPN graphical editor.  We followed two key
issues (managing graphical attributes, and positioning objects) through our design process and
showed how the Petri Nets In Use perspective guided the evolution of our design solutions.
These solutions integrate recent advances in graphical interfaces and interaction techniques
(toolglasses and magnetic guidelines), and they have been tailored to fit the specific needs of CP-
net designers.

Our goal in this paper is to share our current understanding of Petri Nets In Use with members of
the CP-net community; both to get feedback about our observations, and input into the design of
the new tool.  We hope that increased understanding of Petri Nets In Use will increase the
effectiveness of the new CPN tool and provide even greater support for CP-net designers.
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Abstract. In this paper we examine Coloured Petri Nets extended with parameters. We characterise
three kinds of parameterisation and formally de�ne Parameterised Coloured Petri Nets. We then discuss
how parameterised Coloured Petri Nets can be used to create libraries of Coloured Petri Nets modules
in the same way as libraries for programming languages. Finally we discuss how to implement a simple
simulator for such modules.

1 Introduction

In Coloured Petri Nets (CPN), as in traditional programming languages, it is infeasible to work on industrial
size problems as one single unit. To tackle problems of a certain size, it is necessary to work on smaller units,
which can later be composed into the full system.

A modular approach to modelling makes larger systems easier to handle. There is less to validate which
reduces the debugging period. Even veri�cation usually takes bene�t of modular models, though the situation
here is a bit more complex, since the environment a module is put into (i.e. the neighbourhood of the
substitution transition) tends to in
uence the dynamic properties of the module, that one wishes to verify.

But perhaps more importantly, a modular framework opens up for reuse of commonly used constructions.
From a modelling point of view, reuse saves time and e�ort. From a validation point of view, reuse increases
faith in correctness, since a module tested in depth in one environment, is likely to work as expected in a
similar environment. Needless to say, reusing a veri�ed module is vastly better than creating a new, untested
module.

It is often the case that large models contain a number of similar constructions, where only a few details
di�er. Modularisation alone does not allow for much reuse in such circumstances, however, the constructions
can in most cases be changed in a way, such that their di�erences depend on a set of parameters, which
can be assigned when needed. This observations leads to the concept of Parameterised Coloured Petri Nets
(PCPN).

In [2] three kinds of parameterisation were identi�ed: type, expression,1 and net parameterisation, and
a short discussion of a possible implementation was given. In this paper we formally de�ne Parameterised
CPN, and the three kinds of parameter assignments. We also repeat the discussion on implementation issues,
but this time based on an actual implementation of a simulator.

The paper is organised as follows: Sect. 2 introduces the concepts through small toy examples, showing
the use of type, expression, and net parameters. In Sect. 3 we formally de�ne Parameterised CPN and the
three kinds of parameter assignments. Readers only interested in the practical use of Parameterised CPN can
safely skip this section. In Sect. 4 we discuss how Parameterised CPN naturally leads to a module system. In
Sect. 5 we show how to implement a simulator to take bene�t of this module system. Readers only interested
in the use of Parameterised CPN and not tool development can safely skip this section. Finally we consider
future work in Sect. 6 and conclude in Sect. 7.

Familiarity with (non-hierarchical) Coloured Petri Nets [5] is assumed throughout this paper, and famil-
iarity with SML, especially the module system [9, 10], is assumed for Sect. 5.

1 In [2] expression parameters were called value parameters, however, we �nd that the term expression parameters
are more true to the de�nitions given in this paper.
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2 A small example

In this section, we will introduce the general ideas of parameterised CPN, via a small toy example. Say we
want to count the number of times a certain transition �res. We can do this by a construction like the one
in Fig. 1. If we substitute the transition whose �rings we wish to count with the net in the �gure, we get the
number of �rings by the value of the token on place C.

A
T

PORT

B
T

PORT

PARAMETERS

type T
C

int

1‘0

1‘t

1‘t

1‘i

1‘(i+1)

Fig. 1. C - Counter net.

2.1 Type Parameters

In Fig. 1 we do not know, nor do we care about the type T of the places A and B. We only care about the
token on place C which counts the �rings of the transition. Any transition between places A and B (with the
same colour set) could be substituted with the net in Fig. 1, regardless of the type of A and B. We would
like to think of the type T as a parameter to be speci�ed at the location where we use the net.

Consider Fig. 2 where we have places A and B with colour set int. To count the �rings of transition Y
we could substitute Y with the net C where we have assigned type T to int.

A

int

1‘0

Y NET:C

type T=int
port A=A
port B=B

B

int

X

1‘j

1‘j

1‘j

1‘(j+1)

Fig. 2. Using the counter net.

The resulting net is shown in Fig. 3. Here transition Y has been removed and the counter net C has been
inserted in its place. The two nets are then connected through the border places of the substituted transition
in the �rst net, and a subset of the nodes of the second net. The connection places of the �rst net are called
the sockets of the substituted transition. The connection places of the second net are called the ports of the
net.

A substitution can be thought of as an operation on nets. Given two nets it creates a new net by replacing
a transition in the �rst net with the second net as described. For a formal description of substitution we
refer to Sect. 3.

In practice we do not create the new net in this way, but simply describe the substitution with a NET
region as seen in Fig. 2. Here we name the net to substitute with, together with assignments of parameters
and port/socket assignments, determining how the two nets should be combined.
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A

int

1‘0

Y

B

int

X C

int

1‘0

1‘t

1‘t

1‘j

1‘(j+1)

1‘i

1‘(i+1)

Fig. 3. Fig. 2 and the counter net after substitution.

If more than one transition is substituted with the same net, we create copies of that net, and let a copy
substituted each transition. This makes it possible to use the same net in several locations, instantiated
with di�erent types. Consider Fig. 4. Here we have places A and B of type int separated by transition X,
and places A0 and B0 of type bool separated by transition Z. To put a counter on both X and Z we could
substitute it with the net in Fig. 1, assigning type T to be int for X and bool for Z.

A’

bool

1‘false

Z NET:C

type T=bool
port A=A’
port B=B’

B’

bool

Y

B

int

A

int

1‘0

XNET:C

type T=int
port A=A
port B=B

1‘b

1‘b

1‘b

1‘(not b)

1‘j

1‘j

1‘j

1‘(j+1)

Fig. 4. Using the counter net with di�erent types.

This would then lead to the net shown in Fig. 5.

A’

bool

1‘false

B’

bool

Y

B

int

A

int

1‘0

C

int

1‘0
C’

int

1‘0

1‘t

1‘t

1‘b

1‘(not b)

1‘t

1‘t

1‘j

1‘(j+1)

1‘i

1‘(i+1)

1‘i

1‘(i+1)

Fig. 5. Using the counter net with di�erent types, after substitution.

2.2 Expression Parameters

We might not want to count all �rings, but only some, depending on the binding, and we might not want to
increment the counter with the same value in all cases. We cannot specify this directly in our counter net,
since the choice of which �rings to count will depend on the speci�c uses of the net. Instead we can add a
predicate to the net to decide when to increment the counter, and a value specifying the step with which to
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increment, and let both be parameters of the net. These parameters are called expression parameters of the
net.

In Fig. 6 we see the counter net from Fig. 1 extended with a predicate p that, given a value of type T ,
returns a boolean, which then determines whether to increment the counter. The predicate is an expression
parameter to the net, as indicated in the box to the right of the net. Furthermore we have the expression s
of type int. This is used to specify the step with which to increment the counter.

A
T

PORT

B
T

PORT

PARAMETERS

type T
expr p : T -> bool
expr s : int

C

int

1‘0

1‘t

1‘t

1‘i

if p t
then 1‘(i+s)
else 1‘i

Fig. 6. C0 - Counter with value parameters.

These expression parameters are mentioned in the PARAMETERS box, together with the type parameter
T . We have typed the parameters in the declaration, and we only allow expressions with the right type to
be assigned to the expression variables.

Fig. 7 shows the new net in use. The left part counts all �rings of X after i has exceeded 5, and does
this with an incrementation step of 2. The right part only counts the �rings of Z when b is true. Since b is
negated in each cycle, only every second �ring of Z is counted. The incrementation step is 1.

C

bool

1‘false

Z

NET:C’

type T=bool
port A=C
port B=D
expr p = fn b=>b
expr s = 1D

bool

Y

B

int

A

int

1‘0

X

NET:C’

type T=int
port A=A
port B=B
expr p = fn i=>i>5
expr s = 2

1‘b

1‘b

1‘b

1‘(not b)

1‘i

1‘i

1‘i

1‘(i+1)

Fig. 7. Using the counter with expression parameters.

2.3 Net Parameters

Not only types and values are interesting as parameters. Sometimes, we would like to be able to leave parts
of nets unde�ned, until the net is used. What we need is a way of parameterising parts of a net, and a way of
substituting such parts with other nets. For the latter we need to decide exactly how the rim of a parameter
part in one net should be glued together with the second net. In this paper we will only allow transitions to
be parameters, and glue nets together by fusing the border places of substituted transitions with a subset of
places from the second net. For two other ways of substitution (place and arc substitution) we refer to [8].

In a way we have already seen how net parameters should work. In Fig. 2 we said that we substituted the
transition Y with the counter net C. This was done by simply referring to C in the NET region of Y. Here
we assumed that C was globally known. Instead we could demand that the net referred to was a parameter.
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Y
NET:N

type T=int
port A=A
port B=B

X 

B

int

A

int

1‘0 PARAMETERS

net N:C’SIG

1‘i

1‘i

1‘i

1‘(i+1)

Fig. 8. Net with net parameter.

Consider Fig. 8. This is almost the same net as in Fig. 2. The di�erence is the PARAMETERS box and the
name in the NET region. In Fig. 8 we substitute Y with a net N which is given as a parameter to the net.

The net parameter is restricted to a speci�c signature. The signatures do for net parameters what type
declarations does for expression variables. It speci�es which nets are legal parameters, by �xing how any
parameter must look like to ensure a legal substitution. Signatures can be automatically generated from the
nets. We will assume this has been done for the nets in this paper, and we will refer to the signature of a
net N as N 0SIG.

For a net, the signature is de�ned by the set of ports (a subset of the places) and the parameters the net
takes, i.e., the type, expression, and net parameters. In the case of the counter net C (Fig. 1), the signature
speci�es one type parameter T and two ports, named A and B, both with colour set T . C 0SIG refers to this
exact signature. The net in Fig. 8 accepts any net with type parameter T and ports A and B with colour set
T .

Another net with signature C 0SIG is show in Fig. 9. This is a net that logs all bindings of a transition on
the place L. The net in Fig. 8 can be instantiated with any net with signature C 0SIG, and thus with both
the counter net and the log net as net N .

A
T

PORT

L

T

B
T

PORT

PARAMETERS

type T

1‘t

1‘t

1‘t

Fig. 9. L - Log net.

Of course we did not really need net parameters for switching between C and L. We could simply change
the name in the NET region. It gets more interesting when net parameters are nested, that is, when the
assignment of net parameters depend on the net they are used in.

Consider Fig. 10. Denote this net LR. LR chooses randomly whether the left or the right transition �res.
The net takes a type parameter T and a net parameter N , with signature C 0SIG. We can assign both C
and L to N . If we assign C, LR will count how many times each transition �res, if we assign L, LR will log
the binding elements.

Now consider Fig. 11. This net takes a net parameter M with signature LR0SIG. It substitutes the
transition X with M where the net N is assigned L, and it substitutes transition Z with M where N is
assigned C. If M was assigned LR we would log left and right on X and count left and right on Z.
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A

T

PORT

NET:N

type T=int
port A=A
port B=B

NET:N

type T=int
port A=A
port B=B

B
T

PORT

PARAMETERS

type T
net N:C’SIG

1‘t 1‘t

1‘t 1‘t

Fig. 10. LR - Random left or right.

C

bool

1‘false

Z NET:M

type T=bool
net  N=C
port A=C
port B=DD

bool

Y

B

int

A

int

1‘0

XNET:M

type T=int
net  N=L
port A=A
port B=B

PARAMETERS

net M:LR’SIG

1‘b

1‘b

1‘b

1‘(not b)

1‘i

1‘i

1‘i

1‘(i+1)

Fig. 11. Nested net parameters.

3 Formal De�nitions

In this section we will de�ne formally what we mean by Parameterised CPN. We de�ne three di�erent kinds
of parameters: type, expression, and net parameters. We then combine these into Parameterised CPN. For net
parameters we will only consider transition substitution. Place and arc substitution have been examined in
[8]. The important ideas however appear in the de�nition of transition substitution, and examining all three
kinds of substitution will only complicate the de�nitions. For a more detailed description of the de�nitions
we refer to [8].

3.1 Type Parameters

As we saw in the examples in Sect. 2 we would like to leave some types unde�ned until a speci�c type is
actually needed. We would like to refer to type variables instead of actual types, and assign types to variables
when necessary. In the examples we only used type variables for colour sets, but in general we would want
to use the type variables when constructing types, e.g., lists or products of a variable type.

We will assume the existence of some type language, e.g., a set of basic types and ways of constructing
products, sums etc. of types. We let T denote this language, i.e., T denotes the set of expressions created
over the type constructions. Furthermore we assume that T includes variables from a set of type variables
TV which is disjoint from any other set in the de�nition.

We assume that no type in T is empty, i.e. 8T 2 T : T 6= ;. T must contain the type bool = ftrue; falseg.
This is used in the de�nition of guards (see Def. 6). Finally, we assume that T contains a multiset construction
( � )MS . This is used in the de�nition of arc functions and initialisation functions (see Def. 6).

De�nition 1 (Type assignment). A type assignment � : TV * T is a partial mapping from type
variables TV to type expressions in T. ut

For partial mapping � we let dom(� ) denote the elements on which the mapping is de�ned.

De�nition 2. For type expression T 2 T and type assignment � , denote by T [� ] the expression obtained by
replacing all variables in the domain of � , v 2 dom(� ) appearing in T with � (v). ut

We will only consider legal type assignments, i.e., for expressions T 2 Twe will only consider � : TV * T

such that T [� ] 2 T.
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3.2 Expression Parameters

As for type parameters we would like to use expression variables in inscriptions, and assign actual expressions
to these variables when necessary.

We will assume the existence of an inscription language E , with a set of type rules such that all valid
expressions in E evaluate to values with a type in T. We will assume that we can talk about the variables of
an expression E 2 E and that we can talk of the type of a variable. We assume two di�erent kinds (i.e. two
disjoint sets of variables) of variables, \ordinary", or binding, variables and expression variables EV. The
former is used in bindings, the later for expression parameters. For variable v let Type(v) denote the type
of v. We will demand that Type(v) 2 T for all variables. By Type(E) we denote the type of expression E,
and we demand that Type(E) 2 T. By Var(E) we denote the binding variables in E.2

De�nition 3 (Expression assignment). An expression assignment � is a partial mapping from expres-
sion variables EV to expressions in E , � : EV * E . ut

De�nition 4. For expression E 2 E we denote by E[�] the expression obtained by replacing all variables
v 2 dom(�) appearing in E with �(v). ut

We will only consider legal value assignments, i.e., for expressions E 2 E we will only consider � : EV*

E such that E[�] 2 E .

3.3 Net Parameters

Intuitively net parameters work in much the same way as type and expression parameters. We associate a
variable to parts of a net, and allow for this part to be substituted with another net when necessary. Net
parameters are a little more complex however, since assigning actual nets to variables requires that we de�ne
a way to glue two (or more) nets together. In this paper we only consider transition substitution to glue nets
together.

In the following we assume we are considering some universe of Parameterised CPN closed under the
operations described in this section. Let PCPN denote the set of all PCPN in the universe, let P denote
the union of all place sets in PCPN. We de�ne PCPNs shortly (Def. 6), but for now, just think of PCPN
as a set, where each element has an associated set, called the places of the net. We furthermore assume we
have a set of net variables NV and a set of port names PN.

De�nition 5 (Net assignment). A net assignment is a mapping � : NV * Pow(PN � P) �PCPN,
where Pow(PN�P) denotes the powerset of PN�P. � should satisfy for all net 2 dom(�) with �(net) =
(R;N ), if we let P denote the set of places of N the relation R � PN� P relates port names to the places
in N . ut

A net assignment maps net variables to nets and give a relation which names a subset of the ports of the
nets. The naming of ports is used later for gluing nets together.

3.4 PCPN

With the three kinds of assignments de�ned, we are ready to de�ne PCPN, and describe how assignments
a�ects nets.

Let TASS denote the set of type assignments, i.e., TASS = (TV * T), let EASS denote the set of
expression assignments, i.e., EASS = (EV * E), and let NASS denote the set of net assignments, i.e.,
NASS = (NV* Pow(PN �P)�PCPN).

De�nition 6 (PCPN). A Parameterised CPN (PCPN) is a tuple N = (P; T;A;N;C;G;E; I; Ports; TS)
such that

1. P is a �nite set of places

2 BVar(E) would perhaps be a better notation, however Var(E) is used in [5] so we stick to this convention.
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2. T is a �nite set of transitions
3. A is a �nite set of arcs, such that

P \ T = P \ A = T \A = ;

4. N is a node function. N : A! (P � T [ T � P ).
5. C is a colour function C : P ! T.
6. G is a guard function G : T ! E such that

8t 2 T :Type (G(t)) = bool

7. E is an arc expression function, E : A! E such that

8a 2 A :Type(E(a)) = C(p(a))MS

where p(a) is the place of N(a), and C(p(a))MS denotes the set of multi-sets over C(p(a)).
8. I is an initialisation function, I : P ! E such that

8p 2 P :
�
Type(I(p)) = C(p)MS ^ Var(I(p)) = ;

�
9. Ports � P is a subset of the places.
10. TS is a substitution mapping TS : T * NV � Pow(P �PN)�TASS�EASS�NASS is a partial

mapping from the transitions of N to pairs of net variables and relations of places and port names.
For transition t 2 T let S(t) = �t [ t�. S(t) is called the sockets of t. TS should satisfy, that for all
t 2 dom(TS ) with TS (t) = (net; R; �;�;�), R � S(t) � PN, that is the relation is a relation between
the sockets of t and port names. dom(TS ) is called the substitution transitions of N .

ut

The de�nition of TS looks a little ghastly, but will hopefully be more clear after we have discussed the
three kinds of assignments related to PCPN.

Intuitively, TS relates to each substitution transition a net variable and a naming of sockets, and a triple
of a type, expression, and net assignment. Given a net assignment, which relates the net variable to an actual
net, the assignments are applied to this net and the relation is used to \glue" the two nets together.

In the examples we used the NET regions to de�ne TS (see Fig. 12). The name (after the colon) is the net
variable, and refers to the net parameter in the PARAMETERS box. The relation and the three assignments
are de�ned in the box. We use type to de�ne type assignments, expr to de�ne expression assignments and
net to de�ne net assignments. The relation is de�ned by the port assignments. Whenever we refer to a net
variable which is not a parameter, we assume that the variable refers uniquely to a speci�c net. We can then
think of the net as already being assigned.

Y
NET:N

type T=int
expr E=fn x=>x+5
net  M=N’
port A=A
port B=B

B

int

A

int

1‘0 PARAMETERS

net N:N’SIG
net N’:N’’SIG

1‘i

1‘i

Fig. 12. Example of NET region.

If we ignore Ports and TS for a moment, we can see that PCPN looks a lot like non hierarchical CPN
as de�ned in [5] (Def. 2.5). We do not have the set of colour sets �. Instead we have the type languages T.
Furthermore, CPN as de�ned in [5] does not allow for type nor expression variables.

sorenchr
 140 



We will only consider the behaviour of PCPN with no type and expression variables, i.e., for which all
variables have been assigned (see Def. 16 and Def. 12). This behaviour is the same as for CPN.

For transition t let Var(t) denote the (binding) variables of t i.e., the union of the binding variables in
the guard of t and the arc expressions on the arcs with source or destination in t. Var(t) does not include
any expression variables.

8t 2 T :Var(t) = f v j v 2 Var (G(t)) _ 9a 2 A(t) :v 2 Var (E(a)) g

where A(t) denotes the set of arcs with source or destination in t.

For expression E 2 E and mapping b : Var(E)! E denote by Ehbi the expression obtained by replacing
all variables in the domain of b, appearing in E with b(v). This closely matches the de�nition of expression
variable substitution, however the di�erent set of brackets [�] vs. h�i distinguish the two.

De�nition 7 (Binding, [5] Def. 2.6). A binding of a transition t is a function b de�ned on Var(t), such
that

1. 8v 2 Var(t) : b(v) 2 Type(v)

2. G(t)hbi = true

By B(t) we denote the set of all bindings for t. ut

De�nition 8 ([5] Def. 2.7). A token element is a pair (p; c) where p 2 P and c 2 C(p), while a binding
element is a pair (t; b) where t 2 T and b 2 B(t). The set of all token elements is denoted TE while the set
of all binding elements is denoted by BE.

A marking is a multi-set over TE while a step is a non-empty and �nite multiset over BE. ut

Let E(x; y) denote the (multi-set) sum of expressions on arcs between x and y. This will be well de�ned
since these expressions will range over the same multi-set. Either x or y must be a place, and the expressions
will range over the associated colour set.

8(x; y) 2 (P � T [ T � P ) : E(x; y) =
X

a2A(x;y)

E(a)

where A(x; y) is the set of arcs from x to y.

De�nition 9 (Enable, [5] Def. 2.8). A step Y is enabled in a marking M if

8p 2 P :
X

(t;b)2Y

E(p; t)hbi �M(p)

De�nition 10 (Occur, [5] Def. 2.9). When a step Y is enabled in a marking M it may occur, changing
the marking to another marking M 0, de�ned by

8p 2 P :M 0(p) =

0
@M(p)�

X
(t;b)2Y

E(p; t)hbi

1
A+

X
(t;b)2Y

E(t; p)hbi

ut

3.5 Assignments

We can now de�ne how to assign values to parameters.
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De�nition 11. For PCPN N = (P; T;A;N;C;G;E; I; Ports; TS) and type assignment � , let N [� ]T =
(P; T;A;N;C 0; G;E; I; Ports; TS0) denote the net obtained by replacing in N all appearances of type variables
v 2 dom(� ) with � (v). Then

8p 2 P : C 0(p) = C(p)[� ]

and TS 0 de�ned for all t 2 dom(TS ) by TS 0(t) = (net; R; � �; �;�) when TS (t) = (net; R; � 0; �;�) where
� �(v) =

�
� 0(v)

�
[� ] whenever v 2 dom(� 0) ut

Substituting types in a net changes the colour function and propagates the substitution to subnets through
the transition substitution function. Type substitution is likely to change the type of variables. We do not
consider this more formally since it depends heavily on the way Type(v) is given.

De�nition 12. For PCPN N = (P; T;A;N;C;G;E; I; Ports; TS) and expression assignment �, we let
N [�]E = (P; T;A;N;C 0; G;E; I; Ports; TS0) denote the net obtained by replacing in N all appearances of
expression variables v 2 dom(�) with �(v), where

1. G0(t) = G(t)[�] for all t 2 T

2. E0(a) = E(a)[�] for all a 2 A

3. I 0(p) = I(p)[�] for all p 2 P

4. TS 0 de�ned for all t 2 dom(TS ) by TS 0(t) = (net; R; �;��; �) when TS (t) = (net; R; �;�0; �) where
��(v) =

�
�0(v)

�
[�] whenever v 2 dom(�0)

ut

Expression substitution changes the di�erent inscription functions. Again, the substitution is propagated
to subnets via the TS function.

We might need to put some restrictions on the expressions we allow a given variable to be substituted for.
In the examples in Sect. 2 we explicitly typed the expression parameters used. This is not explicitly required
from the de�nition, but is used to ensure that all expression assignments used are legal. Other restrictions
might be needed for other inscription languages or for other purposes. We will not consider this further
however.

Before we de�ne how to apply a net assignment (Def. 17), we need to de�ne how we substitute transitions
with nets (Def. 16), but �rst we need to de�ne how to fuse places:

De�nition 13 (Place fusion). A place fusion set F of a PCPN N = (P; T;A;N;C;G;E; I; Ports; TS) is
an equivalence class partition of P such that

8p0 2 [p]F : C(p0) = C(p) ^ I(p0) = I(p)

where [p]F denotes the class of F containing p. ut

De�nition 14. For PCPN N = (P; T;A;N;C;G;E; I; Ports; TS), and a place fusion set F over P , we can
fuse the places and get a net

�
N
�
F
= (P 0; T; A;N 0; C 0; G;E; I 0; P orts0; TS) given by

1. P 0 =
�
[p]F

�� p 2 P
	

2. N 0 : A! P 0 � T [ T � P 0 de�ned by

a 7!

(�
[p]F ; t

�
if N(a) = (p; t) 2 P � T�

t; [p]F
�

if N(a) = (t; p) 2 T � P

3. C 0 : P 0 ! T de�ned by [p]F 7! C(p).
4. I 0 : P 0 ! E de�ned by [p]F 7! I(p).
5. Ports0 = f [p]F j p 2 Ports g

ut

A place fusion creates a place for each fusion class and connects a (class-)place and a transition if there
is an original place in the class, connected to the transition.

Notice that any class containing a port itself becomes a port.
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De�nition 15 (Port/Socket relation). Let N = (P; T;A;N;C;G;E; I; Ports; TS) be a PCPN. For
PCPN N and N 0 = (P 0; T 0; A0; N 0; C 0; G0; E0; I 0; P orts0; TS0) and transition t 2 T a relation R � Ports0 �
S(t) for which

R(p; s) ) C 0(p) = C(s) ^ I 0(p) = I(s)

is called a port/socket relation (between N 0 and t). ut

A port/socket relation is a relation between the ports of a net and the sockets of a transition. The
restrictions to the colour set and initial marking ensures that we can fuse ports and sockets.

In the following we use
U
i=1;:::;nAi to mean the disjoint union of sets

�
Ai

	
i=1;:::;n

. We assume we have

new symbols 1;2 : : : , one for each n 2 N, and de�ne
U
i=1;:::;nAi to mean the set

S
i=1;:::;n

�
(i; a) j a 2 Ai

	
.

We de�ne for each i a function ini : Ai !
U
i=1;:::;nAi by ini x = (i; x) to map elements in Ai to the copy

in the disjoint union.
Using disjoint union ensures, among other things, that we can have more than one instance of the same

nets.

De�nition 16 (Transition substitution). LetN = (P1; T1; A1; N1; C1; G1; E1; I1; P orts1; TS1) be a PCPN
and let � be a partial mapping � : dom(TS 1)*

�
Pow(P�P)

�
�PCPN such that for all ti 2 dom(�) with

�(ti) = (Ri;Ni), Ri is a port/socket relation between Ni = (Pi; Ti; Ai; Ni; Ci; Gi; Ei; Ii; P ortsi; TSi) and ti.
We can substitute with � and get the net N [�]TS constructed in the following way: Let N � = (P �; T �; A�;

N�; C�; G�; E�; I�; P orts�; TS�) be de�ned by

1. P � =
U
i=1;:::;n Pi

2. T � =
�
T1 � dom(�)

�
]
U
i=2;:::;n Ti

3. A� =
�
A1 � A (dom(�))

�
]
U
i=2;:::;nAi where A (dom(�)) denotes the set of arcs connected to any

transition in dom(�)
4. N� : A� ! (P � � T � [ T � � P �) de�ned by ini a 7!

�
(ini � ini ) ÆNi

�
(a)

5. C� : P � ! T de�ned by ini p 7! ini Ci(p)
6. G� : T � ! E de�ned by ini t 7! Gi(t)
7. E� : A� ! E de�ned by ini a 7! Ei(a)
8. I� : P � ! E de�ned by ini p 7! Ii(p)
9. Ports� = in1 Ports1
10. TS� : T � * NV�Pow(P ��PN)�TASS�EASS�NASS de�ned by ini t 7! TS0

i(t) if t 2 dom(TSi),
where TS0

i(t) =
�
net; f (ini p; pn) j (p; pn) 2 Rg

�
when TSi(t) = (net; R)

De�ne on P � the relation F as the smallest equivalence relation satisfying F (ini p; in1 s) if Ri(p; s).
Thus de�ned, F will relate all ports related to at least one common socket, and all sockets related to at

least one common port, and the closure of this. F will be an equivalence satisfying the properties needed for
a fusion set. Thus we can create the net

�
N �
�
F
. Let N [�]TS be this net. ut

In short, a transition substitution creates copies for each instance of nets, and fuse ports and sockets
related by some port/socket relation.

We relate the substitution mapping TS to net assignments � in the following way. Whenever we have
PCPN N and net assignment � we can de�ne �� : T * Pow(P �P)�PCPN by

t 7!

8>>>>>>>>>>><
>>>>>>>>>>>:

(R0 ÆR;N �) when t 2 dom(TS ) and

TS (t) = (net; R; �;�;�0) and

net 2 dom(�) and

�(net) = (R0;N 0) and

N � =
��
N 0[� ]T

�
[�]E

�
[�0]N

unde�ned otherwise
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Here N 0[�]N is net N 0 after net assignment as de�ned in Def. 17.

Please also notice the order of assignments in
��
N 0[� ]T

�
[�]E

�
[�0]N . Expression substitution must always

occur after type substitution, to be able to specify values of speci�c types, and still obey type-rules upon
substitution. Placing net substitution last ensures that type and expression substitution only takes place
through the substitution mappings in Sub.

Notice that the mapping �� de�ned in this way matches the mapping from Def. 16.
Intuitively, TS maps substitution transitions to variables while � maps variables to nets. �� is the

composition that links substitution transitions to nets.
Intuitively TS relates each substitution transition to a signature consisting of the net variable and the

naming of the sockets. The net assignment � then relates a signature to a speci�c net, by associating the net
variable with a net and naming the ports. This is illustrated in Figure 13. On the left we see a substitution
transition with two sockets p and q. TS maps this transition to the variable N , and relates the socket p to
the name A and socket q to the name B. The signature is drawn on the dashed line. On the right we see a
net with two ports. In the �gure � maps variable N to this net, and relates the upper port to name A and
the lower port to name B. �� can be thought of as the composition of the arrows in the �gure.

p

bool

NET:N

port A=p
port B=q

q

bool

b

b

b

b
A

bool

PORT

bool

B
bool

PORT

b

b

b
N

A

B

Fig. 13. Composition of TS and �

Missing from the �gure is the assignments. In this example all assignments are empty, but in general
assignments will take place before gluing the nets together.

We will only consider legal net assignments, that is, for PCPN N and net assignment �: For t 2 dom(��)
and with ��(t) = (R;N �) the relation R is a port/socket relation between N � and t. The signatures used
in the examples in Sect. 2 are not part of the de�nition, but are used to ensure that all net assignments
considered are legal.

De�nition 17. For PCPN N and net assignment � we de�ne the the net N [�]N to be N [��]TS.

Notice that Def. 17 is a recursive de�nition, since it refers to the function �� which refers to net assign-
ments.

4 PCPN Modules

As de�ned, PCPN are a kind of non-hierarchical CPN with parameters. It could just as well have been
de�ned as a hierarchical CPN [5] with parameters. Parameterisation is really orthogonal on the hierarchy
concept. There is, however, no need to add hierarchical nets to PCPN, since net parameterisation leads
naturally to a module system for PCPN.

We will think of modules as self-contained units with a well-de�ned signature, and constructions for
combining modules into other modules. This is exactly what we have with net parameters in PCPN. As
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mentioned in Sect. 2 we can talk about the signature of a PCPN, de�ned from the parameters and the set
of ports. Likewise we can talk about the signature of a substitution transition de�ned by the NET region,
i.e., the type, expr, net, and port assignments there. Whenever the signature of a net matches that of a
substitution transition we can substitute the transition with the net and get a new net.3

Nets with signatures work in much the same way as abstract data types. We hide the implementation
(the actual net) and only access the functionality through the interface, given by the signature. This allows
us to re�ne one module, or even replace it with a new module, without a�ecting any other module using the
�rst module.

With Parameterised CPN we can make very general modules, or libraries of modules, and such libraries
can then be used in several di�erent models.

Consider a communication protocol, or a protocol suite. Each protocol layer can be modelled as a PCPN
with a number of parameters, e.g., a net parameter for the lower layers, a type parameter for the data to be
transmitted, and a number of expression parameters for, say, timeout interval or packet sizes. The modules
can then be combined in various ways to model di�erent protocol con�gurations. Furthermore, a library of
protocols can be used when modelling distributed applications. Once the protocol library is modelled and
validated it can be used in a number of di�erent models.

Tools working with PCPN should of course be built to take advantage of the underlying modularity. For
example, tools that generate code from PCPN for simulation, should translate nets into separate units, such
that making changes to one net only leads to re-compilation (or re-code-generation) of that particular net.
When we write programs in high-level languages, we expect to be able to compile each unit separately, and
then link the pieces together. The same should be possible for PCPN.

5 Implementation

The modules as described in the previous section can be realized through Standard ML's module system
in a straight forward manner. In this section we will indicate how this can be done. For a discussion of a
\proof-of-concept" implementation of a simulator of the kind described in the following, we refer to [7].

We have chosen SML as the implementation language for its module system which closely match our
requirements. SML modules consist of structures, signatures, and functors. Structures are used to package
up related types, values, and functions. Signatures are then used to specify what components a structure
must contain. A functor allows structures to be parameterised. In the following we will consider how to
translate PCPN modules into SML structures, which can be used for simulation and analysis of the modules.

Let us return to the examples in section 2. The �rst module we considered was the counter shown in
Fig. 14. We will refer to this module as C. As we saw in section 2, we can think of the type T as a parameter
to the module, as indicated in the PARAMETERS box. Furthermore we can think of the two port places
A and B as parameters. A net using this module will have to specify both the type T and the places to be
related to A and B. Net C should therefore be translated into an SML functor which takes T , A, and B as
parameters and implements the behaviour of the net.

A
T

PORT

B
T

PORT

PARAMETERS

type T
C

int

1‘0

1‘t

1‘t

1‘i

1‘(i+1)

Fig. 14. C - Counting transition �rings.

3 In the formal de�nition of substitution (Def. 17 in the previous section) we only allowed legal net assignments. The
matching signatures are one way of ensuring this.
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A general PCPN module consists of the following components:

Parameters. Both the explicit parameters, e.g., the type T in Fig. 14, and the ports, e.g., the two places
A and B in Fig. 14.

Declarations. Any CPN module can have a number of declarations local to that particular module. We
want modules to be self-contained units, so obviously any declaration used in a module should be local.

The actual net. This is the most important part for determining the behaviour of the module, and will
determine most of the code for executing the module.

Sub-modules. Amodule can contain a number of sub-modules. The sub-modules correspond to substitution
transitions, or rather, the nets that substitutes the transitions.

Fig. 15 is a modi�ed version of the module in Fig. 2. It is modi�ed in the way that the arc inscription
on the arc from X to A has been changed to a call of a function, de�ned in a DECLARATIONS box. This
is an example of a module with no parameters, with a non-empty set of declarations, and a non-empty set
of sub-modules. Denote this module by N .

Y
NET:C

type T=int
port A=A
port B=B

X 

B

int

A

int

1‘0 DECLARATIONS

fun updi i =     
      1‘(i+1)

1‘i

1‘i

1‘i

updi i

Fig. 15. N - Counting transition �rings.

This particular module contains one sub-module, which is an instance of C, the module in Fig. 14. The
module should thus be translated into a SML structure with one sub-structure, corresponding to the module
C. By implementing C as a functor, we get a parameterised structure in SML, and instantiating the sub-
module of N is a matter of instantiating the SML functor with the appropriate parameters, as speci�ed in
the NET region.

5.1 Translating PCPN modules into SML structures

Before we can decide how to translate a net module into an SML structure, we will have to decide how the
structure is going to interact with the tool using the module. In the following we will assume the modules
are going to be used in a simulator. Using the modules in other tools, like say a state space tool, should work
in a similar fashion.

We will assume that we have a simulator which is responsible for scheduling transition �rings, and one
global state. Each module will have functions responsible for updating the global state when a �ring occurs,
and for adding transitions to the scheduling queue when needed.

In general this will work as follows: Initially all transitions will be examined, and the enabled transitions
will be added to the scheduling queue. When a transition is scheduled, an enabled binding element will be
chosen randomly (if such a binding exists), and the transition will �re and update the state. Changing the
state will possibly result in a number of transitions becoming enabled. Each candidate for this will be added
to the scheduling queue. We will denote the combination of the selection of binding element, updating state,
and scheduling new candidates, as an event. We will henceforth refer to the scheduling queue as the event
queue.

All the actions associated with an event, can be encapsulated in a function or a record of functions,
stored in the event queue. Once the initial events are installed in the event queue, the scheduler will only be
required to select and execute the next event, if any. No further knowledge of the modules is required.

sorenchr
 146 



We will therefore use the signature in Fig. 16 for a PCPN module. Here the function init is responsible for
initialising the module, i.e., adding all initial events to the event queue. The init function is also responsible
for initialising any sub-modules, by calling their init function.

signature PCPN MODULE =
sig

val init : unit �> unit
end

Fig. 16. Signature for PCPN module

A general PCPN module as described above can then be translated to an SML functor of the form seen
in Fig. 17.

functor M((* Parameters *)) : PCPN MODULE =
structure

(* | Declarations | *)

(* | Code for Handling Events | *)

(* | Sub-modules | *)

(* | Module Initialisation | *)
fun init () = ((* Initialisation code *))

end

Fig. 17. Template for PCPN module functor

The functor generated for the module C (in Fig. 14) is shown in Fig. 18. In the �gure, only the code
related to parameterised modules is shown, and the code for interacting with the simulator is omitted. The
interesting part in the �gure is the parameter part of the functor. The parameters consists of the type
parameter T , and the two port places A and B. T is an SML type parameter, while A and B are structures
implementing places.

We construct the parameter part of the functor from the PARAMETERS box of the net, and we do this in
a very straightforward manner. We translate certain PCPN keywords into SML keywords, and insert the rest
verbatim into the SML functor. The keywords are translated as follows: port is translated to structure, expr
is translated to val, and net is translated to functor. We will return to the latter shortly. This preprocessing is
done solely for allowing PCPN keywords in declarations. We could do without it by using the SML keywords.
Places marked as ports are also inserted in the parameter part. These are structure parameters with signature
PLACE.

The last line in the parameter part of the functor in Fig. 18 speci�es that the colour set of the port places
A and B is the same as the parameter type T . This is implicitly assumed from the colour set speci�ed in the
net inscriptions. The line is needed because we implement places as structures, each with a colour set (type)
C.

Figure 19 shows the functor generated for the moduleN in Fig. 15. As can be seen,N takes no parameters.
In the net there is no PARAMETERS box, and in the functor, the parameter part is empty. There is, however,
a DECLARATIONS box in the net. The declarations there have been inserted verbatim into the functor.
The declarations are put at the beginning of the functor, before any code that could possibly need it. In
some cases it might be necessary to pre-process a DECLARATIONS box before inserting the declarations
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functor C(type T
structure B : PLACE
structure A : PLACE
sharing type T = B.C = A.C) : PCPN MODULE =

struct

(* <<snipped open of needed structures>> *)

(* <<snipped code for handling events>> *)

fun init () =
((* <<snipped code>> *))

end

Fig. 18. Functor for module C.

functor N((* none *)) : PCPN MODULE =
struct

(* <<snipped open of needed structures>> *)

(* DECLARATIONS *)
fun updi i = 1`(i+1)

(* <<snipped code for handling events>> *)
structure Y = C(type T=int structure A=A structure B=B)

fun init () =
((* <<snipped code>> *))

end

Fig. 19. Functor for module N .
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into the functor in the same way as we process PARAMETERS boxes. We will assume this is not necessary
for the simulator we are considering.

Notice the sub-module in Fig. 19. This is simply implemented as an SML structure, created by a call to
the appropriate functor. In this case the functor C from Fig. 18. The parameters used in the functor call
are created from the NET box in the same way as the parameters for the functor C were created from the
PARAMETERS box.

In Fig. 19 the functor used to create the sub-module must be globally known, since it is referred to simply
by a name. We want to be able to handle net parameters in much the same way, but where we let the functor
used to create the module be a parameter of the functor that contains the sub-module. To implement this
we can use higher order functors as implemented in SML/NJ [1].

Consider the net in Fig. 20, and denote it M. The functor created for this net is seen in Fig. 21. Here
M takes as argument a functor N and creates the sub-module Y with this functor. The functor N is typed
with the functor signature C 0SIG. This signature is created automatically from the net C we saw in Fig. 14.
The de�nition of C 0SIG is shown in Fig. 22.

Y
NET:N

type T=int
port A=A
port B=B

X 

B

int

A

int

1‘0 PARAMETERS

net N:C’SIG

1‘i

1‘i

1‘i

1‘(i+1)

Fig. 20.M - Net with net parameter.

6 Future work

CPN has powerful and general methods for both validation and veri�cation. Validation is concerned with
convincing ourselves that a net behaves as intended, while veri�cation is concerned with proof that a net has
a formally stated property. The obvious next step for PCPN is to extend these methods to handle parameters.
This is necessary to be able to examine modules independently, and to exploit the underlying modularity.

6.1 Validation

Validation is usually done through simulation. In Sect. 5 we examined how to implement a simulator for
PCPN. The discussion, however, was only concerned with how to translate PCPN into SML code, and
was not concerned with how to actually simulate the nets. With our prototype simulator [7] we can only
simulate instantiated nets, and we have only de�ned the behaviour of nets without free type and expression
parameters.

Modules, however, are usually self-contained units, and we must expect that modules are primarily
developed independently, thus we should be able to validate modules independently. At least, to as high
a degree as possible. To do this we have to come up with a meaningful de�nition of the behaviour of a
parameterised net, and tool support for this.

6.2 Veri�cation

The primary veri�cation techniques for CPN are state spaces and invariants [6]. Work has been done on
exploiting modularity in veri�cation with both techniques in [3] and [4].

sorenchr
 149 



The state space method relies heavily on the initial marking of the net in question, and it is thus hard
to imagine veri�cation independent of instantiation. Symbolic state spaces, however, could turn out to make
this possible in some cases.

Invariants rely on the structure of nets rather than the initial marking, and o�ers perhaps more promise
as a veri�cation technique for PCPN. Type parameters will not in
uence invariant properties directly, but
will determine the weight functions. Expression and net parameters will in general a�ect properties, but by
putting restrictions on the possible nets and expressions assigned to parameters we might be able to prove
certain properties.

7 Conclusion

In this paper we have formally de�ned PCPN as CPN with type, expression, and net parameters. We
have seen how net parameters lead to a module system for PCPN and examined how a simulator can be
implemented such that code for separate modules can be generated independently, and such that instantiated
nets can be simulated.

Now, the next step is to create validation and veri�cation techniques for handling parameterised nets
individually.
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functor M(functor N:C'SIG) : PCPN MODULE =
struct

(* <<snipped code>> *)

structure Y = N(type T=int structure A=A structure B=B)

fun init () =
((* <<snipped code>> *))

end

Fig. 21. Functor for moduleM.

funsig C'SIG (type T
structure B : PLACE
structure A : PLACE
sharing type T = B.C = A.C) = PCPN MODULE

Fig. 22. Functor signature for net C.
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Abstract 

This paper describes the design and validation of a CPN (Coloured Petri Net) model for the
MAC layer based on the IEEE 802.3 standard. The main purpose of this system is to teach the TE
students at this university how Coloured Petri Nets can be used in the modeling and analysis of real
systems (especially those based on concurrency), allowing them to extract net modeling and analy-
sis techniques. Furthermore, it also aims to introduce Design/CPN as an adequate tool for the edi-
tion, simulation and validation of CPN models.

A bus LAN has been modelled. The model comprises a set of stations (each of them with the
MAC layer implemented inside it) and a common channel which connects them all.

By means of this model it is aimed to analyse how the MAC layer allocates use of the shared
communication medium among the competing nodes. The basic idea is to make the stations trans-
mit packets in bursts to the common noisy channel using the CSMA/CD access method and analyse
how they adquire the medium and recuperate from collisions. This access method where several
stations may try to transmit their packets concurrently creates the perfect environment for the use
of Coloured Petri Nets because of the natural way they include concurrency in their structure.

1   Introduction

This paper describes the designing and validation processes for the MAC layer of a bus
LAN using the CSMA/CD access protocol. A previous work on modeling LANs using Petri
nets can be found in [Goo87]. The Petri nets in this paper were created and analysed by
Design/CPN tool [Ref93].

The basic purpose of the MAC layer is to allocate use of the shared communication medium
among the competing nodes coordinating the communication among them by means of the
CSMA/CD protocol [Jes94] [Tan] [Joh96]. According to this protocol, when a station gener-
ates a new packet, it first senses the broadcast channel to detect the presence of any ongoing
transmission. If the channel is sensed idle, the packet transmission is started after a short delay
called “interframe spacing”. If instead, the channel is sensed busy, the transmission is delayed
until the channel becomes idle. During the transmission the channel is monitored to detect the
presence of any interference from another transmitting station (collision). If a collision is
detected, the transmission is immediately stopped, and the channel is jammed for a short time
to make sure that all stations recognize the collision, and the packet transmission is resched-
uled at some later time, after a random delay. By using a random delay, the stations which are
involved in the collision are not likely to have another collision on the next transmission
attempt. However, to ensure that this backoff technique maintains stable, a method known as
truncated binary exponential backoff is used. In this method a station will persist in trying to
transmit when there are repeated collisions. These retries will continue until either the trans-
mission is successful or 16 attempts (the original attempt plus 15 retries) have been made
unsuccessfully. At this point (if all 16 attempts fail) the packet is discarded.

The backoff strategy is quite simple. If a packet has been transmitted unsuccessfully n
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times, the next transmission attempt is delayed by an integer r times the base backoff time
(which is often chosen to be twice the end-to-end propagation delay). The integer r is selected
as a uniformly distributed integer in the range 0 ≤ r ≤ 2k where k =min(n, 10), that is, k is the
minimum of the number of presently attempted transmissions and the integer 10. Thus as the
load becomes increasingly heavy, the stations automatically adapt to the load.

The global model has been constructed taking advantage of the hierarchical CPN capabili-
ties [Jen92][Jen94][Jen97a][Jen97b]. Hierarchical CPN allow the construction of a large
model as a set of smaller models connected to each other using well-defined interfaces (substi-
tution transitions). In this way, a complex model like this can be reduced to the generation of
smaller models which solve certain functions in the global model into which they are inte-
grated. The model aims to be as detailed as possible, i.e., it tries to collect the whole of the
functions and aspects included in the MAC layer. The size of the resulting model is propor-
tional to the adopted level of detail. 

The main drawback of such a modeling is the risk of a state space explosion. This phenom-
enon makes difficult the validation of the model forcing to master the size and the level of
detail and trying to find an equilibrium between these two opposite factors: detail and model
size vs size of the state space and easy validation.

Since the system model is rather complex -its full net specification requires some 23 pages
and a total of about 200 places- this paper merely attempts to cover some basic features of its
construction and its validation, but it cannot be very specific on all details. In this sense, some
of the component pages of the model have not been included and only main pages have been
exhaustively explained.

The paper first introduces the nets structure naming all its parts. Each part is described
breaking it down into the basic net components necessary to model it. Finally, the last part of
this paper is related to the validation process and the several problems found to achieve it.

2   The CPN model

The following assumptions have been adopted in order to set the basic parameters of the
system:

•    Size. The network comprises six similar stations.

•    Burst arrivals. In each station there is a LLC (Logical Link Control) user who generates
packets in bursts. In this way, it is aimed to model the real behaviour of a network infor-
mation flow where it is possible to find time intervals where no packets are transmitted
and other ones where one or more stations may try to transmit a great volume of informa-
tion.

•    Buffering. Each node has a buffer containing packets to be transmitted. The buffer
capacity has been limited to one packet in order to simplify the model.

•    Collisions and retransmissions. Each packet which collides with another must be
retransmitted. The maximum number of retransmission attempts for a given packet has
been set to 16 (the original one plus 15 retries).

•    Noise. The channel is not ideal and contains noise. This implies that packets are submit-
ted to two different kinds of errors: those produced by the noise and those produced by
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the collision among packets from stations which try to transmit concurrently.

•    Propagation delay. The propagation delay between two adjacent nodes, Tr, has the same
value for all adjacent node couples and it is small in comparison with the packet trans-
mission time, Tp (all packets have the same length).

Figure 1 shows the page hierarchy graph for the bus network. It can be noted that the CPN
model has a very modular structure. Among its pages it is possible to distinguish the page

NET#15, the prime page. Its content is shown in figure 2. According to the hierarchy, the rest
of the net pages depend on it. This forces to a top-down analysis on its hierarchical structure. It
comprises six similar stations connected to each other by a common communication channel.
Each station is composed of one transition stationx with 1 ≤ x ≤ 6 where x is the identifying
subindex for each station and three places associated to it: nx, Cx and interfacex. Each of these
transitions (station1,..., station6) is related to the same subpage (station#1). This means that
the hierarchical net has six page instances of station#1, each one with its own marking which is
different from the other page instances markings.

As regard to the places:

•    Interfacex represents the access point of the station x to the channel allowing the trans-
mission and reception of packets. The color Packet associated to this place must be of the
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Figure 1. Page hierarchy graph.
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general form:

color Packet=product State*Origin*Destination*CRC timed;

with

color State=with STX | MTX | ETX | JAM;

color Node=int with 0..maxnodes1;

color Origin=Node;

color Destination=Node declare ms;

color CRC=int with 0..1;

According to its declaration, State can adopt four different values: STX (Start Trans-
mission), MTX (Middle Transmission), ETX (End Transmission) and JAM (collision sig-
nal), indicating the part of the packet that is being transmitted. STX, MTX and ETX refer
to the head, data and end of the packet respectively. JAM is a general value to be used
when the token which transports it does not represent a packet but a collision signal.

Origin identifies the station which generates the frame, Destination indicates the
address of the destination station and CRC models the frame check sequence (FCS) asso-
ciated to the information transported by the data field. The data field, as well as other
component fields of the basic MAC frame have not been modelled. This is the case of
the preamble, PAD, etc.

The word “timed” included in the declaration indicates that this is a timed color, i.e.,
the tokens belonging to this color will have a time stamp attached to them, describing the
earliest model time at which the token can be removed by a binding element.

•    Cx is a place whose associated token always indicates the number of tokens in the place

1.  Maxnodes is a global constant indicating the maximum number of stations. 0 is a broadcast address.
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Figure 2. Page NET#15.
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interfacex of the station x. This token belongs to the color Numtoken, an integer type.
Taking the existing tokens in each of the channel access places (and hence, of the chan-
nel itself) into account is a very important feature since it allows to know the number of
packets being transmitted along the channel. In this way, it is easy to detect:

- The collisions in the channel. For a given station, a collision will be produced
when the station is transmitting and the token in Cx has a value of two or more.

- The idle channel. This condition must be fulfilled before the transmission starts,
and this will happen when the token in this place is equal to 0.

•    nx is a place associated to the color Node which always stores a token establishing the
address of the station to which it is attached. This address is an integer number included
in the range 0..maxnodes.

As in any real bus network, the stations must be connected to each other by means of a com-
mon channel in order to communicate. This function is achieved by the substitution transition
channel which is related to the subpage channel#6 through the interfaces declared in its hierar-
chical inscriptions.

3   The channel model

The channel constitutes the physical device which interconnects all the stations in a net-
work. Figure 3 shows the obtained model for the channel. It is made up of 17 places and 5 tran-
sitions.

The channel is composed of six main places (node1,..., node6) modeling the physical points
of the channel through which the stations transmit and receive their packets (modelled by
means of tokens of color Packet) interconnected among them via the transitions Si with i=1..5
which also connect some control places taking account of the number of tokens in each of
these main places and informing about the address of the station to which every one of these
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Figure 3. The channel page.
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main places is attached (C1, ..., C6 and n1, ..., n5 respectively).

The rest of the existing channel between two consecutive stations has been modelled bear-
ing in mind its time parameters only, i.e., the distance between two consecutive stations has
been transformed into propagation delays. This implies that the movement of the tokens from a
place called nodex to another one, nodex+1, must be time controlled in order to get a realistic
effect in the propagation process of packets along it. The transitions Si is in charge of this, at
the same time that they update the values of the tokens in the control places. These five transi-
tions, Si with i=1..5, are substitution transitions in such a way that the transition S1 is related to
the subpage begin#7, S5 to final#9 and S2, S3 and S4 to the subpage middle#8. The subpages
begin#7 and final#9 model the extreme segments of the channel, while the subpage middle#8
models its intermediate segments.

This channel structure as a set of three possible types of subpages, begin#7, middle#8 and
final#9, allows us to construct a channel with the desired size by only leaving intact the substi-
tution transitions related to the subpages begin#7 and final#9 and their associated places and
introducing between them as many places and substitution transitions related to the subpage
middle#8 as needed.

3.1   Propagation of a packet

Once the basic channel structure has been explained, a brief introduction about the packet
propagation along the channel must be given. This includes an explanation not only about the
propagation of those packets correctly transmitted, but also about their propagation in those
situations where collisions have been produced. The way in which the noise affects the trans-
mitting packets and how this fact is modelled by means of the CRC field will also be
explained.

One of the way of achieving the propagation of a packet along the channel consists of mak-
ing the transmitting station to deposit at each time interval (with the same value as the propa-
gation delay between two consecutive nodes) a token which moves bidirectionally, at the same
time that the previous tokens propagate simultaneously along the channel in their propagation
direction. This process will continue until the transmission of the packet is completed. Figure 4
describes this process for a packet.

According to the described process, all the tokens which propagate along the channel don’t
need the element State, since they are all similar. Although this process is very realistic, it
presents a serious drawback: the number of firings required to achieve the transmission of a
packet is very high, slowing the simulation down and, at the same time, producing a very large
state space. This last consequence leads to a disproportionate growth of the size of the occur-
rence graph due to the great quantity of firings required and hence, different reachable mark-
ings. Furthermore, as this process has been defined, the size of the occurrence graph depends,
in a direct way, on the length of both the packet and the channel (as the number of stations per
length unit remains constant, this is equivalent to affirm that it depends on the number of con-
nected stations).

This is quite a serious problem, not only because of the simulation slowness but also
because a large occurrence graph may be impossible to be analysed (by both visual inspection
and standard queries), due to the limitation of RAM memory in our equipment.

The reduction of the state space has been achieved by making its size not to depend on the
length of the packets but only on the number of stations connected to the channel (note that it is
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almost impossible to make the occurrence graph not to depend on this last factor). Now, firings
must not be produced during the whole packet duration but only during the adquisition and lib-
eration intervals, i.e., at the beginning and the end of the transmission of the packet.

Accordingly, it is necessary to distinguish between the beginning and the end of the packet.
This is achieved by means of the element State in the color Packet. Therefore, it is important to
emphasize that the introduction of the element State in the color Packet is not based on the
MAC frame structure but on the obtained CPN structure for the channel which forces to differ-
entiate between the beginning and the end of the packets in order to be able to achieve its prop-
agation along the channel in an efficient way, minimizing at the same time the size of the state
space.

This forces us to find a new way of performing the packet propagation along the channel. In
this way, it is supposed that as soon as the station which wants to transmit senses the channel to
be idle, it places in the channel a token with the form (STX,x,y,1), where STX represents the
beginning of the transmission (the head is being transmitted), x is the origin address, y is the
destination address and 1 indicates that the FCS is in accordance with the information carried
by the packet. After a time period Tr (delay between two consecutive stations), this token will
propagate in both directions to the adjacent places, leaving in the place it occupied a token with
the form (MTX,x,y,1) which will remain in this place until the end of the packet is transmitted
modeling in this way that in this part of the channel data is being transmitted.

Starting from this moment tokens with State=STX will move sideways in their direction of
propagation leaving in the places where they move from tokens with State=MTX. When these
tokens arrive to the end of the channel, they are lost.

The channel remains untouchable with all its places occupied by tokens with MTX until the
end of the packet is being transmitted (State=ETX). In this moment the token with MTX
placed in the place attached to the transmitting station is consumed and a token with
State=ETX is added to it. This token will propagate in both directions leaving the places it
comes from empty, modeling in this way the progressive channel freeing once the packet
transmission is ended. This process will continue until the channel becomes idle. As an exam-

Figure 4. Packet propagation.
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ple, figure 5 shows this process for a packet.

This form of propagation minimizes the state space size since it limits the transition firings
in the channel to the time intervals needed to acquire and free it. Furthermore, there is another
important reason justifying the introduction of State in the color Packet: it facilitates the mod-
eling of the frame reception in the station reducing it to only detect the first and last tokens of a
transmitting packets as it will be later explained.

3.2   Noise effect

As it has been already said, the channel is not ideal and the presence of noise may affect the
packets. To model this effect it will be supposed that there is a probability of packets to be
affected by this phenomenon and that all affected packets will be discarded. It is only left to be
defined the way in which noise will be modelled in the net.

Although any part of the packet may be affected by noise (head, data or end), in order to
simplify the model, it will be supposed that such effect will always be noticed at the end of the
packet (token with State=ETX). It is equivalent to affirm that the probability of any packet to
be affected by noise is condensed in its final part in order to be easily detected by the transi-
tions in our obtained model.

A transmission will be considered to be noise free if the FCS received by the receptor dur-
ing all the transmission is always equal to 1. If its value changes from 1 to 0 it will be supposed
that it has been affected by the noise and it will be thrown away.

3.3   Propagation of several packets simultaneously: collisions

Once a packet propagation has been defined, it is only left to establish the way in which col-
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Figure 5. New packet propagation.
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lisions are signposted and how the jamming signal (State=JAM) will propagate along the chan-
nel.

When two or more stations transmit their packets simultaneously to the channel, they will
propagate in accordance with the method established in section 3.1 until the moment in which
their signals reach the other transmitting stations. In this moment the stations detect the colli-
sion, stop their packet transmission and transmit to the channel a jamming signal with the form
(JAM,x,0,1) where JAM indicates collision, x is the origin address and 0 is a broadcast
address. The collision signal will propagate along the channel.

4   The station model

Figure 6 shows the obtained model for the MAC layer of the station (page station#1).

Information being passed from the LLC layer to the MAC layer can be found on the place
InterfaceLLCMAC which acts as an interface between these two layers. This place stores a
token of color Inf whose declaration is of the general form:

color Times=int with 0..5;
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1‘ (0,"f")

channel Packet

P I/O
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Figure 6. The station (station#1).
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color Prev= string;

color Inf= product Times*Prev;

Their interpretation will be discussed later.

Each firing of assembled (related to the subpage Assembled#17 whose content is shown in
figure 7) firstly generates a new message which is stored in the place New_message that acts as

the system buffer with capacity for one message, secondly updates the token in place P which
acts like a counter of the number of tokens in New_message and thirdly sends back to Interfa-
ceLLCMAC a token whose value is determined by the function value. 

Since the buffer capacity is limited to one message, this transition will only fire when the
buffer is empty, i.e., the token in P is equal to 0.

The first element of the new message is an origin node number which is extracted from the
information carried by the token in place n. The second element identifies the destination sta-
tion. Its value is fixed by the variable d which does not appear in the input arc inscriptions.
This implies that d may adopt whatever value of its corresponding type, i.e., from 0 to maxn-
odes. A guard ([d<>node], [d<>0]) has been attached to the transition in order to prevent this
variable to adopt the same value as the origin address (a station is not allowed transmit a
packet to itself) or the broadcast address (0, reserved for collisions). During the simulation, the
simulator will provide this random value automatically. The third element will be fixed to 1 to
model the fact that the FCS is in accordance with the information carried by the assembled
frame. 

This frame generation must follow a burst function. This is done using the information car-
ried by the token in the place InterfaceLLCMAC and the time stamp attached to the token
added on the place New_message. 

From a mathematical viewpoint this function has been obtained by combining three differ-
ent random functions: two negative exponential distribution functions whose intensities, n1
and n2 (with n1>>n2) set the time separation among frames and a third function r with a uni-
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Figure 7. Subpage Assembled#17.
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form distribution determining the pass from one exponential distribution function to another.
Figure 8 shows the mathematical function structure, where p is the probability for generating
packets with intensity n1 and 1-p with intensity n2.

In order to obtain a noticeable burst effect, this last variable will be examined each five gen-
erated messages. This account will be taken by the first element of the token in InterfaceLLC-
MAC (times).

The random variable determining the pass from an exponential distribution function to the
other is the variable r we can find in the output arcs of the transition assembled arriving to the
places New_message and InterfaceLLCMAC. Its value is automatically fixed by the simulator
in each occurrence of assembled and together with the variables times (indicating the number
of generated frames since the last inspection of r) and prev (indicating the exponential function
which is being used) fix the time stamp for the token added in New_message by the function
chron and the token added in InterfaceLLCMAC fixed by the function value.

Chron was implemented using random number generators. The distribution functions used
have been implemented on the top of the new random function. This random function gives
samples from a standard uniform distribution. The different distribution functions are then
implemented by applying different procedures to this random function. In this way, the nega-
tive exponential function was extracted from [The97] and used to obtain our functions.

Once the new frame is generated, it will remain in New_message until no previous frame is
trying to be transmitted. In this sense, the transition no_mess_tx in page tx_idle#18 (figure 6)
inspects the stored tokens in P, P1 and P2 only firing in the case that P has a token with value
1 (indicating the existence of a message in the buffer) and the places P1 and P2 (which take
account of the number of tokens stored in the places mess_ready_TX and mess_sent respec-
tively) have their respective token with value 0, indicating that the previous message (if
existed) has already been transmitted properly or that the maximum number of transmission
attempts has been reached and the packet has been thrown away.

Mess_ready_TX stores packets trying to be transmitted and mess_sent is a buffer where a
copy of the transmitting packet is stored in order to prevent a packet loss when a collision
occurs.

The firing of no_mess_tx passes the token from New_message to mess_ready_TX and adds
a token with value 1 to Memory to indicate that this is the first transmission attempt. Memory
models a counter of the number of transmission attempts. The message will remain in this new
place until the channel is sensed idle. When this happens, the transmission is started after a
short delay called “interframe spacing”. This process is achieved by the substitution transition
Channel_free whose associated subpage is transmission#3 shown in figure 10.
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Figure 8. Mathematical structure.
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Figure 9. Frame generation.
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In this page, channel_free inspects the place P3 whose token indicates the number of tokens
in the place channel, the station access point to the channel. As soon as channel has no tokens,
this transition will fire passing the token from mess_ready_TX to Interframe_delay with a time
stamp “interframe spacing” units (tif) greater than the simulated time at which the transition
fired. After this time interval, TX2 is enabled and it fires starting the packet transmission by
storing the packet in the place channel and adding a token with value TX on the place if_tx to
indicate that the station has passed from being idle (IDL) to be transmitting. It also adds a copy
of the transmitting message to the place mess_sent and stores on the place chronos a token
with a time stamp “packet length” (tp) greater than the current simulated time. This last place
acts as a clock indicating the simulated time at which the transmission ends.

The place if_tx models the state of the station: whether it is idle (IDL), transmitting (TX) or
receiving (RX). Its token ensures the mutual exclusiveness between the transmission and
reception processes. In this way, any of these processes is only allowed to be achieved when
the system is idle (IDL).
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Figure 10. Subpage transmission#3.

sorenchr
 164 



Notice that a copy of the transmitting message has been stored on the place mess_sent. This
is necessary for the retransmission of such a message in the case that a collision is produced.

Once the transmission is started, two possibilities may occur:

•    The packet is properly transmitted.

•    A collision is produced and the transmission is retried if the number of attempts is
smaller than 16.

In the first case, the only thing left to do to start the transmission on a another frame is to
erase the copy of the transmitted message stored in mess_sent, update the value of the token in
P2, remove the token stored in Memory and set the state of the station to idle (IDL).

The removal of such a copy must be time controlled, i.e., it has to be removed after ensuring
that the transmission has ended without collision. That’s what we use the token on the place
chronos for. As soon as the global clock reaches the same value as the time stamp of the token
stored on it, the transition update_p2 in page update#16 is enabled. That subpage is shown in
figure 11.

In the other case (collision) the transition collision in subpage collision#5 will fire. Figure
12 shows its subpage. A collision is produced when two or more stations try to transmit their
packets concurrently through the channel. Since at every moment the number of tokens in each
of the places of the channel is taken in account, a collision will be produced when in the access
place to the channel related to a transmitting station there are two or more tokens. The detec-
tion of such a situation is performed by the transition collision which inspects the place P3.

Its firing immediately stops the transmission and lets the station idle (IDL). It also removes
the token in the place chronos to avoid a later firing of update_p2, adds a token with State
equal to JAM on the place channel in order to inform the rest of the stations about the collision
and stores on inter a token with value null that does not carry information and that can be inter-
preted as a signal sent to the transition top_attempts to force it to fire.

As soon as the collision is detected and the jamming signal is transmitted, the only thing left
to do is to investigate whether the message will be transmitted again or it is thrown away
because of having overtaken the maximum number of transmission attempts. Top_attempts
inspects the number of attempts stored on Memory. If this number is smaller than 16, the mes-
sage copy is passed from mess_sent to mess_ready_TX and the number of attempts is increased
by one unit.

chronos

Chronos

P In

mess_sent

Message

P In

update_p2

Memory

Attempts

P In

P2 Numtoken

P I/O
If_tx

RxTx

P I/O

1‘cont1  1‘t

1‘(cont1-1)

1‘ mens
1‘ attempts

1‘ TX

1‘ IDL

Figure 11. Subpage update#16.
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Before trying to transmit this copy again, it has to wait for a random delay fixed by a func-
tion called backoff. This is done by giving to the token added to mess_ready_TX a time stamp
fixed by the function backoff which is of the form:

infix **;
fun ((x:int)**0)=1 | (x**y)=x*(x**(y-1));
fun backoff (n:attempts)= (real(CPN’randint(0, 2**(min(n,10)))))*ts;

where ts is the time slot value.

In the case that the number of attempts is equal to 16 both the copy of the message stored on
mess_sent and the token in Memory will be erased.

The modelled station not only takes charge of the transmission process but also the recep-
tion one. This is performed by the substitution transition reception in figure 6 whose subpage
is shown in figure 13. The reception of a frame starts when an idle station detects in the chan-
nel the head of a packet (a token with State equal to STX) appointed to it (Origin is equal to the
station address). The detection of such a token is performed by RX1 whose occurrence sends
back to the channel a similar token as the consumed one and stores the origin direction on the
place Store_orig. After this process the station has started to receive a packet, that’s why the
state of the station is now RX.

The station will continue receiving a packet until the transition RX2 detects a token
appointed to it from the same origin station as the first one indicating end of packet
(State=ETX) or collision (State=JAM). If the token is a jamming signal (State=JAM), the sta-
tion ceases from receiving and remains idle. On the other hand, if the received token is an end
of packet indicator (State=ETX), it is supposed that the packet has been totally received. Since
the channel is noisy, the receiving station analyses the FCS (CRC). If its value is 1, it is sup-
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Message
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P2

Numtoken

P I/O

channel Packet
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P3

Numtoken

P I/O

n
Node

P I/O

P1
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P I/O
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E
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P I/O
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P I/O
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null

1‘node

if  (attempts<16) then
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Figure 12. Subpage collision#5.
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posed that the received packet is noise free and its information is passed to the LLC layer mod-
elled by the place message_rec which also counts the number of well received packets.

In both cases the occurrence of RX2 stops the reception and lets the station idle. This last
fact is modelled adding to if_tx a token with value IDL. Its time stamp is tif units greater than
the simulated time to avoid from receiving another packet until this period of time has passed.

5   Validation of the MAC layer

The validation is the work of proving that the obtained model reproduces the real system
behavior. The obtained model may contain errors or be incomplete in the sense that it does not
cover all the possible situations through which the real system may pass. It is then necessary to
verify the model in order to guarantee it is error free and without any kind of anomalous prop-
erties.

To verify the model it is necessary to identify first all the properties it has to comply with.
After that, it must be proven that the obtained model satisfies them. 

Design/CPN supports two different analysis methods to verify the CPN model perform-
ance: simulation and occurrence graph analysis.

5.1   Simulation of the model

Simulation is an important instrument for debugging and validating CPN. It gives the devel-
opers an improved understanding of the system behaviour.

During the construction of the model, simulation was intensively used. In its early phases,
manual simulations where made. This kind of simulation was applied to the individual model
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P I/O
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Figure 13. Subpage reception#4.
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subpages in order to test their performance. Its application helped to detect some errors allow-
ing us to dig down in the CPN model to locate and fix them. In this sense, an iterative approach
was used, alternating between modeling and simulation.

The first prototype was gradually refined, and eventually it constituted the final model.
Since manual simulations became time cost due to the model size, automatic simulations were
achieved in order to check the correctness of the final model. In this last kind of simulation
mode it is only possible to know the initial and final markings and the fired transitions
sequence (stored in a text file), but it is nearly impossible to know the intermediate markings of
the model. It was necessary to find a way of knowing what happens in the net during simula-
tion and this was made using the report facilities. 

Report facilities allow the user to apply standard graphical routines to create and manipulate
graphical representations of the simulation results. With their help it is possible to obtain
graphics relating the occurrence of certain events in the net with the simulated time in which
they occur. In this sense, some code segments updating graphics were attached to certain tran-
sitions. Analysing the obtained graphics and bearing in mind the initial and final markings, it
was easy to establish whether during the simulation the model worked properly.

As an example, figure 14 shows one of the obtained graphic for the packet generation sys-
tem. It describes the bursts of packets generated by the LLC user.

Although simulation is extremely useful for the understanding and debugging of a CPN, it
is obvious that, by means of simulation it is impossible to obtain a complete proof of its
dynamic properties. This forced us to analyse the model using occurrence graphs.

5.2   Occurrence graph analysis

At the end of the design phase, occurrence graph analysis was applied in order to detect as
many errors as possible and prove that the obtained model fulfilled some dynamic properties
(reachability, boundeness, liveness, etc). The basic idea behind occurrence graphs is to con-
struct a graph containing a node for each reachable marking and an arc for each occurring
binding element. Obviously such a graph may become very large and in many cases, infinite.

In our case, despite of the adopted decisions in the modeling process in order to minimize
the occurrence graph size, it was quite too large to allow its analysis via visual inspection (the
obtained graph for a 10 seconds analysis has a partial status and more than 10.000 nodes).

Figure 14. Bursts generation.
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The great size is due to:

•   The great quantity of different actions that may occur in the network: each station is able
to send packets to the rest of the stations. At the same time, these packets may collide
among them a number of times, lose because the maximum number of transmissions has
been reached or because of noise, transmit properly, etc.

•   The inclusion of time in a cyclic system like this (the transmission-reception process in
each station is a cyclic system) makes the timed occurrence graph become infinite,
because each repeated appearance of a marking corresponds to a new state and hence
implies the creation of a new node.

To obtain occurrence graphs with a manageable size and a full status, it was necessary to
simplify the CPN model. In this sense, the size of the network was reduced to only three sta-
tions without changing the channel and each of them was allowed to transmit only one new
packet. These three packets were forced to collide and later be properly retransmitted.

A part of the occurrence graph (O-graph) for the simplified network is shown in figure 15. It
has a full status and 751 nodes.

The O-graphs were constructed by means of the OG tool [Occ93]. When an O-graph has
been calculated, a set of standard queries makes it possible to investigate reachability, bounde-
ness, home, liveness and fairness properties. For the reduced model a standard report was cal-
culated and a summary is shown in table 1. The report doesn’t show deadlocks and the
examination of the state [751] indicates the packets have been properly transmitted and the
channel is free. This standard report applies some standard queries to the model and saves the

Figure 15. Occurrence graph.
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results in a text file. Its analysis revealed no errors in the model.

6   Conclusions

Two different versions of the tool have been used during the construction of the model
(3.0.4 and 3.1.1). The migration from the 3.0.4 to the 3.1.1 version not only depended on time
reasons (note that this last version has recently appeared) but also on some problems detected
in the previous version. These problems were related to an strange syntax sensibility on the
tool that made the simulation and validation of the model by means of the 3.0.4 version nearly
impossible. After hard enquiries in the model and Internet pages, the problem could be par-
tially solved. The detected errors were mainly related to the introduction of carry returns in
color regions of places. However some problems could not be solved neither by means of the
3.0.4 version nor by means of the 3.1.1 version. This unsolved problem, that in fact still affects
our model, is the application crash when some report facilities (bar charts) are used. Despite of
our efforts and other people advices it still remains.

In addition to this problem, there are some other areas that have become into serious prob-
lems along this project. Some of them have been partially solved by means of the 3.1.1 version
they mainly still remain unsolved. To start with, the pass from the editor to the simulator and
occurrence graph generator is very time cost. When the model has a reasonable size the time
spent to enter the simulator usually makes the user drive to despair, especially during the
model debugging when it is necessary to enter the simulator and return back to the editor many
times in order to correct some errors. Another important problem is the great memory require-
ments for the application. In our case, the graduate student is disposed of a Pentium working at
120 Mhz and 48 Mbytes of Ram memory. It was rather impossible to work with this equip-
ment. While these two problems remain unsolved it will be difficult to introduce Design/CPN
as a common use tool among our students. 

Despite of this, some good impressions have been extracted from the application. It must be
brought out the well-suited graphical interface, the possibility of constructing modular models
using the hierarchical capabilities and overall, its straightforward analysis methods: simulation
and occurrence graphs. Version 3.1.1 has reinforced this last section by the introduction of
occurrence graphs with equivalence classes and symmetries. It is a pity that OE/OS graphs
with time have not been theoretically developed yet. On the contrary they would had been
applied to our model.

Table 1: OG results.

Nodes Arcs Time
Dead 

Markings

751 2257 3 1 [751]
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Abstract. In this paper the practical use of Coloured Petri Nets and Design/CPN is demonstrated

through an industrial cooperation project. The project is based on studies of a concrete industrial

product and on methods well-known and currently used in the design of the product in the company.

The paper describes the modelling in Design/CPN of the system of the product followed by an analysis

of the model in relation to a set of desired properties de�ned by the company. The properties are

formally veri�ed by means of occurrence graphs and the Design/CPN Occurrence Graph tool.

1 Introduction

This paper is based on a project in the Centre for Object Technology (COT), which is a joint project between

industry and universities in Denmark. The project is a cooperation project between the Danish industrial

production company Danfoss and the CPN group at University of Aarhus. Three persons, representing both

sides, have been involved in the project as primary project members supported by the leaders from both

cooperating parties. The project group has held a number of meetings and communicated electronically

throughout the whole project. However, most work has been based on internal documents kindly made

available for the project by the company.

The overall aim of the paper, and the underlying project, is to show the applicability of Coloured Petri

Nets (CPNs) [7] and occurrence graphs (OGs) [6] in industrial settings. In order to succeed in this endeavour it

is important to relate to concrete industrial products on one hand and to the solutions used so far in industry

on the other hand. In the project, which this paper is based on, this means that a speci�c product of the

cooperating industrial company, a 
owmeter (Fig. 1), is chosen as a relevant study object, and that present

design techniques of this system is related to and combined with the new design and analysis techniques

based on CPNs and OGs.

Fig. 1. A 
owmeter

Flowmeters are primarily used for measuring the 
ow of water through pipes. In the concrete 
owmeter

system of this project di�erent processes are used to measure the 
ow, e.g., a 
ow measurement process, a

temperature measurement process and a calculation process. These processes cooperates to carry out the

overall task - to measure the 
ow of water in the pipe.
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In recent years Danfoss has changed the concept of the 
owmeters from a system with a centralised

operating system to a distributed and more 
exible system with hardware modules which can be combined

in many ways. With the new distributed 
owmeter system a customer can design his own system and

construct it from only the needed modules. However, this makes new problems arise. In the distributed

setting based on communication between the processes it is diÆcult to reason about the individual processes

and their in
uence on each other.

Practical tests in Danfoss have shown that the process communication in the �rst design version of the


owmeter system contained at least one deadlock, and therefore a new design was needed. As part of the

new design a set of desired properties of a 
owmeter system have been formulated and a solution has been

presented using new design methods, but the correctness of the solution still has to be formally veri�ed. This

project should be seen as part of these experiments with new methods in Danfoss. The aim of the underlying

project has been to secure the quality of the design process in Danfoss introducing Coloured Petri Nets

(CPNs or CP-nets) and the tool Design/CPN [3].

In the following the 
owmeter system is described in more detail, a CPN model of the protocol is

introduced, a set of desired properties of the 
owmeter system are motivated and formulated, di�erent

design alternatives for the processes are modelled in Design/CPN and it is analysed by means of occurrence

graphs using the Design/CPN OG tool [8] whether the design alternatives ful�l the desired properties of a


owmeter system.

2 The 
owmeter system

The 
owmeter system consists of one or more modules connected via a Controller Area Network (CAN) [9].

The processes are called CAN Applications (CANAPPs) and are placed in the modules. The placement of the

CANAPPs in the modules is 
exible, however, which means that the concrete placement of the CANAPPs

should not a�ect the functionality of the total system. All communication in the system consists of message

passing between the CANAPPs. To control the communication among the CANAPPs in the modules a

superior communication system is needed. The communication system consists of parts in every module

called drivers. This means that a 
owmeter system consists of a number of modules, each containing a driver

and one or more CANAPPs. A system of three modules each containing four CANAPPs is shown in Fig. 2.

In the following the protocol de�ning the transaction procedure and message structure is presented.

CANAPP

Module

CANAPP

Module

driver

driver

CANAPP
driver

Module

CAN

Fig. 2. A 
owmeter system

2.1 The protocol

The protocol is based on a three layered architecture. The layers constitute a collapsed form of the OSI seven

layer architecture, mapping onto the physical, data link and application layers of the OSI Reference Model

[4].
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The application layer provides six services: read, write, action, broadcast, command and event as shown

in Fig. 3. The services fall into two groups, which will be dealt with separately in the following description:

two-way asynchronous communication and one-way asynchronous communication.

Service Function

read Address an other CANAPP and read the value of an attribute

write Address an other CANAPP and modify the value of an attribute

action Address an other CANAPP and ask it to execute an action

broadcast Cyclically distribution of actual values without any acknowledgements

command Address all other CANAPPs and ask them to execute a system command

event Address all other CANAPPs and report a single event

Fig. 3. The application layer services

The system considered in the rest of this section is a system of three modules each containing one

CANAPP. The system is shown in Fig. 4.

CANAPP3

CANAPP2

CANAPP1

driver2

Module2

driver1

Module1 Module3

CAN

driver3

Fig. 4.

2.2 Two-way asynchronous communication

When a CANAPP invokes a read, write or action service, the CANAPP acts like a client. A destination

CANAPP, which is going to act like a server in the interaction, is addressed in a request. A response is

returned from the server CANAPP.

In case CANAPP 2 invokes a read service to read an attribute of CANAPP 3, the sequence of events

shown in Fig. 5 occurs. Write and action services are performed in a similar way.

1. CANAPP 2 delivers the request to the driver in the same module (driver 2) to have the request sent to

CANAPP 3.
2. Driver 2 transmits the request to the driver in the module in which CANAPP 3 is located (driver 3) via

the CAN bus.
3. An INCAN OK acknowledgement is returned from driver 3 to driver 2 (i.e. driver 2 is ready to accept

messages from any other driver).
4. Driver 3 delivers the request to CANAPP 3, which starts processing the request.
5. CANAPP 3 completes the processing, generates a response and delivers it to the driver in the same

module (driver 3) to have the response sent to CANAPP 2.
6. Driver 3 sends the response to the driver in the module in which CANAPP 2 is located (driver 2) via

the CAN bus.
7. An INCAN OK acknowledgement is returned from driver 2 to driver 3.
8. Driver 2 delivers the response to CANAPP 2.
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CANAPP Communication (READ)

CANAPP1 MODULE1 CANAPP2

1

MODULE2

2

7

8

MODULE3

3

4

6

CANAPP3

5

 

READ

READ

INCAN OK

READ

READ

READ

INCAN OK

READ

Fig. 5. Two-way asynchronous communication

2.3 One-way asynchronous communication

The one-way asynchronous communication may be used to distribute information to all the other CANAPPs

in the 
owmeter system - either as broadcast, as shown in Fig. 6, without any guaranty of delivery, or as

commands or events, as shown in Fig. 7, with guaranteed delivery.

In case CANAPP 3 invokes a broadcast service the sequence of events shown in Fig. 6 occurs.

CANAPP Communication (BROADCAST)

CANAPP1 MODULE1

4

CANAPP2 MODULE2

3

MODULE3

2

6

CANAPP3

1

 

BROADCAST

BROADCAST

BROADCAST

BROADCAST

Signal

Fig. 6. One-way asynchronous communication - broadcast

1. CANAPP 3 delivers the broadcast message to the driver on the same module (driver 3) to have the

message broadcasted to all other CANAPPs in the 
owmeter system.

2. Driver 3 sends the message to all other drivers in the system via the CAN bus. No acknowledgements

are returned.
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3. Driver 2 delivers the broadcast message to its local CANAPPs (CANAPP 2).

4. Driver 1 delivers the broadcast message to its local CANAPPs (CANAPP 1).

5. CANAPP 3 is informed about completion of the transmission. This is not an acknowledgement from

the individual receiver CANAPPs but a �nal synchronisation signal from the transmitter to the sending

CANAPP. Notice that the signal can occur before the message has been received by the CANAPPs in

the system.

In case CANAPP 3 invokes an event service, the sequence of events shown in Fig. 7 occurs. The command

service is performed in exactly the same way as the event service. The delivery of the message is guaranteed

by use of the INCAN OK acknowledgement mechanism.

CANAPP Communication (EVENT)

CANAPP1 MODULE1

6

8

CANAPP2 MODULE2

3

4

MODULE3

2

5

7

CANAPP3

1

 

EVENT

EVENT

INCAN OK

EVENT

EVENT

INCAN OK

SIGNAL

EVENT

Fig. 7. One-way asynchronous communication - event

1. CANAPP 3 delivers the message to the driver in the same module (driver 3) to have the message sent

to all other CANAPPs in the 
owmeter system.

2. The requests are sequentially distributed to all other drivers in the system with an acknowledgement

from each individual receiver.

3. When an acknowledgement is received, the request is sent to the next receiver.

4. CANAPP 3 is informed about completion of the transmission. This is not an acknowledgement from

the individual receiver CANAPPs but a �nal synchronisation signal from the transmitter to the sending

CANAPP. Notice that the signal occurs before the message has been received by CANAPP 1.

3 CPN model of the 
owmeter system

The constructed model of the 
owmeter system consists of 11 pages. An overview is given via the hierarchy

page in Fig. 8.

The system modelled and presented in this section is a system consisting of two modules, each containing

two CANAPPs. This system is shown in Fig. 9.

The topmost page Flowmeter System of the CPN model is shown in Fig. 10. This page contains a top

level description of a 
owmeter system consisting of a number of CANAPPs communicating by means of the

three layered protocol presented in Sect. 2. This is re
ected by the four parts of the page: A part modelling
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Flowmeter_System#1 M Prime

Hierarchy#10 GlobalDecl#2

CANAPP#3

DataLinkLayer#4

ApplicationLayer#5

Transmitter#6

Internal_Waitpoint#9

Primary_Waitpoint#1

MOut#7

MIn#8

Dispatcher#11

Fig. 8. The hierarchy page

the CANAPPs and three parts modelling the three layers of the protocol. CANAPP, ApplicationLayer and

DataLinkLayer are all substitution transitions which means that the detailed behaviours are shown on the

subpages with the corresponding names. The four CANAPPs in the system are modelled by use of colour

sets. Therefore only one page modelling the CANAPPs is needed in the CPN model. The page CANAPP is

further split into two parts modelling two di�erent design alternatives for the CANAPPs. The presentation

here concentrates on the parts of the model relevant for experimenting with the two di�erent high level

design alternatives of the CANAPPs. Therefore only the pages ApplicationLayer and CANAPP are presented

in detail. First the page ApplicationLayer is presented as a basis for understanding the following CANAPP

presentation and analysis. Then the desired properties of a 
owmeter system are motivated and presented,

the page CANAPP containing the design alternatives is presented and it is analysed whether the system

modelled ful�ls the properties formulated.

CANAPP3

CANAPP1

Module2

driver2

driver1

Module1

CANAPP2

CAN

CANAPP4

Fig. 9. The 
owmeter system modelled
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Fig. 10. Page Flowmeter System

3.1 CPN model of the protocol

The page ApplicationLayer is shown in Fig. 11. This page contains the model of the driver, which is the part of

the communication system in each module. The part of the driver responsible for receiving and delivering the

messages from and to the CANAPPs in the module is modelled in the page Dispatcher. Messages are received

from the CANAPPs via the place Service Interface and delivered to the CANAPPs via the places RInterface

and RInterface1. The dispatcher is responsible for the internal communication in the module. There is no

need to send messages from a CANAPP in a module to another CANAPP in the same module via the CAN

bus. These intra module messages is delivered to the receiving CANAPP by the dispatcher. The inter module

messages are handled by the rest of the driver. The dispatcher and the rest of the driver communicate via

the 7 places to the left of the substitution transition Dispatcher in Fig. 11. We will return to these places

later in this section.

To avoid deadlock between two modules the driver is implemented to support some concurrency. All

incoming requests are received and handled to the CANAPPs for processing even if the driver is waiting

for a response to an outstanding request from a CANAPP in the module. Speci�c bu�ers are allocated to

handle incoming and outgoing broadcasts. This means that independent on other activities the modules are

always able to transmit and receive broadcast messages. To obtain the wanted concurrency the part of the

driver responsible for sending and receiving messages and to wait for responses is implemented as four state

machines, two state machines for outgoing requests and the corresponding incoming responses and two state

machines for incoming requests and the corresponding outgoing responses. This is re
ected in the model by

the four parts: BOut, MOut, MIn and BIn. MOut and MIn are substitution transitions, which means that

the detailed behaviours are shown on the subpages with the corresponding names. These subpages will be

presented later in this section.

Messages received from the data link layer on place DtoA are directed through the IN-bu�ers MessageIN

and BroadcastIN, depending of the type of message. Broadcast messages are directed through BroadcastIN,

the rest is directed through MessageIN. If the message is a read, write or action message the corresponding

response is directed through the same IN-bu�er in the opposite direction. Messages from the CANAPPs are

directed through the OUT-bu�ers MessageOUT and BroadcastOUT to the data link layer on place AtoD. If

the message is a read, write or action the corresponding response 
ows through the same OUT-bu�er. In

the rest of this section the modelling of the four statemachines BroadcastOUT, BroadcastIN, MessageOUT,

and MessageIN is presented.
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Fig. 11. Page ApplicationLayer

The BroadcastOUT statemachine The BroadcastOUT statemachine for sending broadcast messages

can be seen in page ApplicationLayer which is shown in Fig. 11. The statemachine is very simple and consists

only of the place BOut Idle and the transition BOut. Initially there is a token corresponding to each module

in the system on place BOut Idle modelling that all drivers in the system are idle and ready to transmit

broadcast messages. When a CANAPP sends a broadcast message a token modelling the message is by the

dispatcher put on place D2BOut. This message is to be sent on the CAN bus to all other drivers in the

system. The dispatcher is responsible for sending the broadcast message to all other CANAPPs in the same

module. When there is a token corresponding to a broadcast message on place D2BOut the transition BOut

can occur. The message is put on place BroadcastOUT to be put on the CAN bus and a token modelling

a signal is put on place BOut2D. This signal is by the dispatcher delivered to the sending CANAPP. The

tokens on place BOut Idle modelling the modules in the system ensure that each module only transmits one

broadcast message at a time.

The BroadcastIN statemachine Also the BroadcastIn statemachine for receiving broadcast messages can

be seen in page ApplicationLayer which is shown in Fig. 11. The statemachine consists of the place BIn Idle

and the transition BIn. Initially there is a token corresponding to each module in the system on place BIn Idle

modelling that all drivers in the system are idle and ready to accept broadcast messages from the data link

layer to be delivered to the CANAPPs in the module.

When a broadcast message is received from the data link layer, the message is put on the place Broad-

castIN. Now the transition BIn can occur and the message is put on place BIn2D. The dispatcher now

distributes the message to all CANAPPs in the module. The tokens on place BIn Idle modelling the modules

in the system ensure that each module only receives one broadcast message at a time.
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The MessageOUT statemachine The MessageOUT statemachine is modelled by the substitution tran-

sition MOut. The page MOut is shown in Fig. 12.
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Initially the driver in each module is idle and ready to accept messages from the CANAPPs in the

module to be sent to other CANAPPs in the system. This is modelled the place TrxIdle which contains a

token modelling each of the modules in the system. When a CANAPP in a module wants to send a non-

broadcast message to a CANAPP in another module, a token modelling the message is by the dispatcher

put on place D2MOut. The dispatcher is responsible for delivering intra module messages.

If the driver in the module in which the sending CANAPP is placed is idle the transition StartTrans can

occur. The e�ect of the occurrence of the transition StartTrans is

{ The token corresponding to the module is removed from place TrxIdle modelling that the driver is not

idle anymore but is in the process of transmitting the message.
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{ The message is removed from place D2MOut

{ A token consisting of a pair where the �rst component is the module and the second component is a list of

the messages which are to be sent is put on the place Send. The list is constructed by use of the function

SendSet. Depending on the type of the message being sent di�erent actions occur. If the message is a

read, write or action message, the list has the message sent from the CANAPP as the only element. If

the message instead is an event or command message the elements in the list are a message to each of

the other CANAPPs in the system witch is placed on another module as the sending CANAPP. All of

these messages are to be sent one by one and an acknowledgement is awaited between each individual

transmission.

{ A token modelling the message is put on place Service. The function of this place is to \remember" the

type of message being sent. In this way it can later be decided whether a response should be awaited (in

case of read, write or action messages) or a signal should be sent to the sending CANAPP (in case of

event and command messages).

If the list of messages on place Send is non-empty the transition ReqTrans can occur. The e�ect is

{ The pair (module,msg::msglist) is removed from the place Send.

{ The �rst message in the list is put on place MessageOUT to be put on the CAN bus.

{ A token corresponding to the pair of the module and the list of messages (including the message just

send) is put on place Wait modelling that an acknowledgement is awaited between each transmission.

The acknowledgement will be directed through the same OUT-bu�er. When an acknowledgement to the

message just sent arrives on the place MessageOUT the transition Collect can occur. The e�ect is

{ The pair (module,msg::msglist) is removed from the place Wait.

{ The pair (module,msglist) is put on place Send to have the rest of the messages in the list sent.

{ If the message is a read, write or action message a response which will be directed through the same

OUT-bu�er has to be awaited and a the pair (module,msg) is put on place WaitResp.

When the transmission is �nished (i.e, the list of messages on place Send is empty), the transition EndTrans

can occur. The e�ect is

{ A token corresponding to the module is put on place TrxIdle modelling that the driver is now idle and

ready to send a new message.

{ The pair of the module and the message on place Service is removed. If the message is an event or

command message a token modelling a signal is put on place MOut2D to be delivered to the sending

CANAPP by the dispatcher. The signal indicates that the transmission is �nished, not that the individual

messages actually have been received by the CANAPPs.

When a response arrives the at the place MessageOUT transition RecResp can occur. The e�ect is

{ The pair (module,msg) is removed from place WaitResp modelling that no response is awaited anymore.

{ The token corresponding to the response message is removed from MessageOUT.

{ The response is put on place MOut2D to be delivered to the receiving CANAPP by the dispatcher.

The MessageIN statemachine The statemachine MessageIN is modelled by the substitution transition

MIn. The page MIn is shown in Fig. 13.

Initially the driver in each module is idle and ready to accept request messages from the data link layer

on place MessageIN to be delivered to the CANAPPs in the module. This is modelled by the place RecIdle

which contains a token modelling each of the modules in the system.

If the driver in the module in which the receiving CANAPP is placed is idle and a request message arrives

on place MessageIN the transition Collect can occur. The e�ect of the occurrence is

{ The token corresponding to the module in which the receiving CANAPP is placed is removed from the

place RecIdle modelling that the driver in the module is no longer idle but in the process of receiving a

message.

{ The token modelling the message is removed from the place MessageIN
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{ A token modelling the message is put on the place MIn2D to be delivered to the receiving CANAPP by

the dispatcher.
{ If the message is an event or command message no response is to be returned and a token corresponding

to the driver is put back on place Wait modelling that the driver is again idle and ready to receive non-

broadcast messages from the data link layer. If instead the message is a read, write or action message

the driver has to wait for an response message to deliver to the sending CANAPP. In this case a token

is put on the place Wait.

When the receiving CANAPP has generated the response a token corresponding to the message is by the

dispatcher put on the place D2MIn. The transition ResTrans can now occur. The e�ect is

{ The message is removed from the place D2MIn.
{ The pair of the module and the request message is removed from the place Wait modelling that the

response from the CANAPP is no longer awaited.
{ The message is put on place MessageIN to be put on the CAN bus.
{ A token corresponding to the pair of the module and the message is put on place WaitAck modelling

that an acknowledgement is awaited.

The acknowledgement will be directed through the same IN-bu�er. When an acknowledgement to the re-

sponse message sent arrives the transition recv OK can occur. The e�ect is
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{ The pair (module,msg) is removed from the place WaitAck modelling that an acknowledgement is no

longer awaited.

{ A token corresponding to the module is put on place RecIdle modelling that the module is now idle and

ready to receive messages from the data link layer to be delivered to the CANAPPs in the module.

The CPNmodel for the protocol de�ning the transaction procedure for message passing among the CANAPPs

in a 
owmeter system has now been introduced. In the following sections the CPN model of two di�erent

design alternatives for the CANAPPs are presented and analysed.

3.2 CPN model of the CANAPPs

When two CANAPPs communicate they do it in an asynchronous way: when receiving a read, write or

action message a response message is sent back to the sender of the request. As we will see in this section

the CANAPPs need to be carefully designed to avoid deadlocks and other problems.

When designing the 
owmeter system Danfoss used the OCTUPUS method [1], where two basic design

alternatives are presented: internal wait point and primary wait point.

As it is most important in collaboration projects to relate to existing knowledge and concepts in the �eld

examined, this section will combine these two well known design alternatives with the CPN modelling of the

system. Therefore a design of the CANAPPs based on each of the wait points above is modelled.

After the modelling each of the two models has to be analysed concerning the presence of the desired

properties of a 
owmeter system. These are, as stated by the producer:

{ No deadlocks in the 
owmeter system

{ No change in the variables of a CANAPP when it is in the process of doing asynchronous communication

Internal wait point When a request is sent the CANAPP is blocked. If the CANAPP cooperates with

other CANAPPs on the same module all CANAPPs in the task are blocked. The CANAPPs in the task are

not released until the response message (or signal) has been received.

A CPN model of the CANAPPs based on the internal wait point approach is modelled on page Inter-

nalWaitpoint which shown in Fig. 14. The system modelled is the system in Fig. 9 of two modules each

containing two CANAPPs. CANAPP 1 and 2 cooperate in the same task in module 1 and CANAPP 3 and

4 cooperate in the same task in module 2.

Initially all CANAPPs in the system are idle and ready to generate request messages to or receive

messages from the other CANAPPs in the system. This is modelled by the place Idle which contains a token

for each of the CANAPPs in the system. The place Attr models the attributes of the CANAPPs. Each of the

CANAPPs modelled has an attribute (a local variable) which is modelled as an integer. When a CANAPP

receives a write request or receives a response to a previously sent read request the CANAPP updates it's

attribute according to the value sent in the message.

If the CANAPP is idle the transition Request can occur. The e�ect is

{ The tokens modelling the sending CANAPP and the other CANAPP in the task are removed from the

place Idle modelling that both of the CANAPPs in the task are blocked until a response message or a

signal returns.

{ A token modelling the message is put on the places Service Interface to be delivered to the receiving

CANAPP.

{ A pair of the sending CANAPP and the message sent is put on place Wait modelling that the message

is sent and the sending CANAPP has to wait for a response message or a signal.

{ The places Packet and Attr1 are inspected to generate a packet with the value of the attribute of the

sending CANAPP.

When a response message arrives on place RInterface1 the transition Con�rm can occur. The e�ect is

{ The message is removed from place RInterface1.
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{ The pair modelling the sending CANAPP and the message sent is removed from place Wait modelling

that the CANAPP no longer waits for a response.

{ The token modelling the attribute of the CANAPP is removed from the place Attr. If the response

message is a read message the attribute is updated to the value of the message. Otherwise a token with

the original value of the attribute is put back on the place Attr.

{ Two token corresponding to the two CANAPPs in the task are put back on place Idle modelling that

both CANAPPs in the task are now idle and ready to either generate a message to another CANAPP

in the system or to receive a message from another CANAPP.

When a message is sent to a CANAPP a token modelling the message is put on place RInteface. If the both

of the CANAPPs in the task of the receiving CANAPP are idle the transition Indication can occur. The

e�ect is

{ The message is removed from place RInterface1.

sorenchr
 185 



{ The tokens modelling the two CANAPPs in the task are removed from the place Idle modelling that

they are no longer Idle but in the process of receiving a message.
{ The token modelling the attribute of the receiving CANAPP is removed from the place Attr. If the

message is a write message the attribute is updated to the value of the message. Otherwise a token with

the original value of the attribute is put back on the place.
{ If the message is a one-way message (i.e., a broadcast, event or command message) no response has to be

generated and a two tokens modelling the two CANAPPs in the task are put on place Idle. If the message

instead is a read, write or action message a response has to be generated and a pair of the CANAPP

and the message is put on place Generate.

Now transition Response can occur. The e�ect is

{ The pair is removed from the place Generate modelling that the response has been generated.
{ Two tokens modelling the two CANAPPs in the task are put on place Idle modelling that the CANAPPs

in the task are now idle and ready to either generate a message to another CANAPP in the system or

to receive a message from another CANAPP.

Primary wait point In the primary wait point approach the return message is treated as an event and

the sending CANAPP or any other CANAPPs in the task are not blocked. This means that a CANAPP can

receive a request even if it is temporarily waiting for a response to a previously sent request.

A CPN model of the CANAPPs based on the primary wait point approach is modelled on page Primary-

Waitpoint which is shown in Fig. 15. The system modelled is the system in Fig. 9 of two modules each with

two CANAPPs. CANAPP 1 and 2 cooperate in the same task in module 1 and CANAPP 3 and 4 cooperate

in the same task in module 2.

The CPN model in Fig. 15 di�ers from the CPN model in Fig. 14 by having two idle places (Idle and Idle2)

instead of just one. This means that a CANAPP can receive and send messages independently. Furthermore

are the other CANAPP in the not blocked when a CANAPP is sending or receiving messages.

Properties of the model based on each of the two designs The model has been analysed with both of

the two designs of the CANAPPs. The model has been analysed by means of the Design/CPN OG tool. The


owmeter system analysed is the system consisting of four CANAPPs - two in each module. Furthermore the

total number of messages sent is limited in order to make the occurrence graphs �nite. The analysis shows

that even in this simple setting undesired properties of the two models can be found. Other con�gurations

have been analysed. The results can be found in Sect. 4.

The internal wait point approach presents the problem, that it is not possible to access any CANAPP in a

task, if one CANAPP is waiting for an asynchronous return message. This may result in deadlock situations

as the following analysis shows.

The analysis reveals that the occurrence graph of the model, when the CANAPP design in Fig. 14 based

on the internal wait point approach is used, has several dead markings. Not surprisingly the analysis shows

that a deadlock occurs if two CANAPPs on di�erent modules simultaneously send a request to each other.

They both wait for a response but both are blocked and are not able to receive and process the request.

We will concentrate on another and more problematic kind of deadlock which is found in the analysis of

the model based on the internal wait point approach. Figure 16 visualises a path to a node in the occurrence

graph representing a dead marking of the CP-net.

CANAPP 2 sends a request to CANAPP 4. As the model is based on the internal wait point approach

and CANAPP 1 and 2 are in the same task, both CANAPP 1 and 2 block until a response is received.

CANAPP 3 sends a request to CANAPP 1. Of the same reason as before both CANAPP 3 and 4 block until

a response is received. Now neither CANAPP 4 nor CANAPP 1 can receive the requests and the system is

deadlocked.

All deadlocks are of course unwanted, but especially the kind of deadlock visualised in Fig. 16 is prob-

lematic in a 
owmeter system because it it very hard to identify. The reason is that the CANAPPs are freely

movable between the modules in the system but the concrete placement of the CANAPPs should not a�ect

the functionality of the system. If CANAPP 4 in the example above instead is placed in a separate module

(the 
owmeter system consists of three modules instead of two) no deadlock would have occurred.
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One of the desired properties of a 
owmeter system is, as listed in section 3.2, that it should not have any

deadlocks - the analysis shows that the design of the CANAPPs based on the internal wait point approach

does not ful�l this property.

The occurrence graph of the model, when the CANAPP design in Fig. 15 based on the primary wait

point approach is used, only has dead markings due to the limitations of the number of messages sent. This

means that no deadlock in the communication occurs - the design of the CANAPPs based on the primary

wait point approach therefore ful�ls the �rst desired property of the 
owmeter system.

The second desired property as stated in section 3.2 is that the internal state of a CANAPP should not be

corrupted while the CANAPP is involved in asynchronous communication, i.e., the attributes of a CANAPP
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Fig. 16. Visualisation of a path to a dead marking

should not be changed while the CANAPP is waiting for a response to a previously sent request. In Fig. 17

the negation of the desired property is formulated in CPN ML [3]. All reachable markings are investigated

via the prede�ned function SearchAllNodes and it is by a predicate function checked whether a CANAPP

is waiting for a response in the marking and the marking has a successor marking in which the CANAPP

is still waiting and the attributes have changed. If it is the case then the design does not ful�l the second

desired property of the 
owmeter system.

 (***********************************************************************)
 (* predicate testnext:                                                 *)
 (* A CANAPP is waiting in the marking and there is a successor marking *)
 (* in which the CANAPP is still waiting but the attibutes have changed *)
 (***********************************************************************)  

 fun testnext (n,l::li) = 
  ((Mark.PrimaryWaitpoint’Wait 1 n)==(Mark.PrimaryWaitpoint’Wait 1 l))    
       andalso
     ((Mark.PrimaryWaitpoint’Attr 1 n)<><>(Mark.PrimaryWaitpoint’Attr 1 l))
     orelse (testnext (n,li))
   | testnext (n,[]) = false; 

Fig. 17. The negation of the second desired property formulated in CPN ML

A search in the occurrence graph of the model in Fig. 14 based on the internal wait point approach

returns the empty list - the predicate function returns false for all reachable markings, which means that

the negation of the property holds in all markings; the attributes of a CANAPP are not corrupted while the

CANAPP is waiting for a response to a sent request.

A search in the occurrence graph of the model in Fig. 15 based on the primary wait point approach

returns a non-empty list. This means that a corruption of the attributes of a CANAPP can occur while the

CANAPP is doing asynchronous communication. The design of the CANAPPs based on the primary wait

point approach therefore does not ful�l the second desired property of the 
owmeter system. Fig. 18 shows

a sequence of events which leads to a node in the occurrence graph which represents a marking in which the

attribute of a CANAPP has been corrupted.

CANAPP 2 sends a request to read an attribute of CANAPP 3. As the model is based on the primary

wait point approach CANAPP 2 is now waiting for a response but is not blocked. CANAPP 3 sends a request
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Fig. 18. Visualisation of a path to a marking where the attribute of a CANAPP has been corrupted

to write an attribute of CANAPP 2. CANAPP 2 receives the message from CANAPP 3 and changes its

attribute. Now the attribute of CANAPP 2 has been corrupted while CANAPP 2 is waiting for a response

to a previously sent message.

To summarise, the design based on the internal wait point approach violates the �rst property (no

deadlocks) and ful�ls the second (no corruption of attributes). The design based on the primary wait point

approach on the other hand ful�ls the �rst property but violates the second. Therefore, none of the two

approaches above are suitable for the �nal design of the 
owmeter system. In their construction of the

�nal design the company has in fact chosen to work with a combination of the two described approaches,

combining, as stated by the company, the best parts from both approaches.

4 Con�gurations

In Sect. 3.2 a small con�guration of the 
owmeter system was analysed. Even in this small setting deadlocks

and corruption of attribute values could be detected thereby pointing out the problems of the, for the

engineers in Danfoss, well known designs based on internal wait point and primary wait point. However

the occurrence graphs get very large as the con�gurations analysed get bigger. This is as expected due to

the asynchronous communication among the CANAPPs, which means that all possible interleavings are

represented in the occurrence graph.

Below a overview of the size of the occurrence graph for di�erent small con�gurations of the system is

given to illustrate how the size of the occurrence graphs grows very fast as asynchronous communication

over modules and more CANAPPs are introduced in the model. The results from Sect. 3.2 applies to all the

con�gurations analysed.

Consider the 
owmeter system with the con�guration shown in Fig. 9, which is a system of two modules

each containing two CANAPPs. The occurrence graph of this system where one message can be sent has

18,397 nodes and 48,930 arcs. If two messages can be sent, but with the restriction that only one CANAPP

in each task is the sender of the messages, the occurrence graph has 45,939 nodes and 159,688 arcs. This

means that the system with two messages (but the restriction that only one CANAPP in a task can be the

sender of a message) instead of one message the occurrence graph grows by approximately a factor 3. The

occurrence graph for the system with two messages without restrictions on the sending CANAPPs has more

than 500,000 nodes and 1,500,000 arcs.

In this concrete project the use of CPNs in the design of the CANAPPs is well illustrated through small

con�gurations. This means that the large occurrence graphs is not actually a problem. However, if a �nal

design of a product is going to be based on a CPN model larger con�gurations have to be analysed to increase

con�dence in the system designed.
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A subject for further work is therefore to use di�erent techniques to reduce the size of the occurrence

graph thereby making it possible to analyse even larger con�gurations. An interesting approach could be to

consider the CANAPPs as symmetric in a task [6] and use stubborn sets [10] to reduce the size of the part

of the occurrence graph related to the asynchronous communication among the CANAPPs.

5 Conclusions

The distributed 
owmeter system studied in this paper is today a product sold by Danfoss.

The new design of a 
owmeter system as a distributed system, relying on asynchronous communication

among the processes in the system, raises a need for new ways of reasoning about the system and of val-

idating the presence of the desired properties in a given 
owmeter system. The project described in this

paper demonstrates through concrete modelling and analysis of the constructed models by means of the De-

sign/CPN OG tool that Coloured Petri Nets and occurrence graphs may indeed be relevant new techniques

to be used in industrial settings, not only related to this product but also related to the design process of

future products.

The deadlock found by Danfoss in the design phase of the product was found in a practical test of the

product. The analysis performed in this project is able to detect the same deadlock and also show how this

kind of deadlocks is unavoidable if the design of the CANAPPs is based on the internal wait point approach.

Furthermore the project shows that the desired properties of a product as stated by the producer can be

expressed and easily analysed when a CPN model of the system is constructed.

Also the graphical qualities of Coloured Petri Nets have proven to function well among engineers and

between engineers and other groups involved in the design process.
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Threat

1‘incoming

T3

C

P8

SurveillanceDirective

P3

TacticalPicture

P4

TacticalPicture

P7 Order

P6

Rules_of_Engagement

1‘war

P9

ControlToInterceptor
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1‘weapon
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C

T4
C
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 Rules_of_Surveillance

1‘tracking

P11

Resources

1‘sensor T2

C

output (d3,d2,d1,b1); 
action 
let val 
   d3 = getDelayNet AAW’T2_1’AAW’P12 and 
   d2 = getDelayNet AAW’T2_1’AAW’P7 and 
   d1 = getDelayNet AAW’T2_1’AAW’P8 and 
   b1 = getDelayBase AAW’T2_1 
in (d3,d2,d1,b1) end; 

P5

Report

1‘interceptor_away

P12

Resources

1‘commander

P14

Resources

1‘sensor

 (* Local Declaration Node *)  

pageref  AAW’T1_1 = [9,10,11]; 
pageref  AAW’T1_1’AAW’P3 = [9]; 
pageref  AAW’T1_1’AAW’P4 = [10]; 
pageref  AAW’T1_1’AAW’P11 = [11]; 

pageref  AAW’T2_1 = [12,13,14]; 
pageref  AAW’T2_1’AAW’P8 = [12]; 
pageref  AAW’T2_1’AAW’P7 = [13]; 
pageref  AAW’T2_1’AAW’P12 = [14]; 

pageref  AAW’T4_1 = [15]; 
pageref  AAW’T4_1’AAW’P14 = [15]; 

pageref  AAW’T3_1 = [16,17,18]; 
pageref  AAW’T3_1’AAW’P9 = [16]; 
pageref  AAW’T3_1’AAW’P13 = [17]; 
pageref  AAW’T3_1’AAW’P5 = [18]; 
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1‘sensor T2

C
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1‘interceptor_away
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P14
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1‘sensor

 (* Local Declaration Node *)  

pageref  AAW’T1_1 = [2,2,2]; 
pageref  AAW’T1_1’AAW’P3 = [5]; 
pageref  AAW’T1_1’AAW’P4 = [6]; 
pageref  AAW’T1_1’AAW’P11 = [3]; 

pageref  AAW’T2_1 = [3,3,3]; 
pageref  AAW’T2_1’AAW’P8 = [5]; 
pageref  AAW’T2_1’AAW’P7 = [6]; 
pageref  AAW’T2_1’AAW’P12 = [3]; 

pageref  AAW’T4_1 = [2]; 
pageref  AAW’T4_1’AAW’P14 = [1]; 

pageref  AAW’T3_1 = [3,3,3]; 
pageref  AAW’T3_1’AAW’P9 = [1]; 
pageref  AAW’T3_1’AAW’P13 = [2]; 
pageref  AAW’T3_1’AAW’P5 = [3]; 
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1 
0:1

1
AAW’P1 1: 1‘incoming@[0]
AAW’P8 1: 
AAW’P3 1: 
AAW’P4 1: 
AAW’P7 1: 
AAW’P6 1: 1‘war
AAW’P9 1: 
AAW’P13 1: 1‘weapon@[0]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[0]
AAW’P5 1: 1‘interceptor_away@[0]
AAW’P12 1: 1‘commander@[0]
AAW’P14 1: 1‘sensor@[0]

2 
1:1

2
AAW’P1 1: 
AAW’P8 1: 
AAW’P3 1: 1‘new@[0]
AAW’P4 1: 1‘new@[0]
AAW’P7 1: 
AAW’P6 1: 1‘war
AAW’P9 1: 
AAW’P13 1: 1‘weapon@[0]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[1]
AAW’P5 1: 1‘interceptor_away@[0]
AAW’P12 1: 1‘commander@[0]
AAW’P14 1: 1‘sensor@[0]

3 
1:2

3
AAW’P1 1: 
AAW’P8 1: 1‘default@[0]
AAW’P3 1: 
AAW’P4 1: 1‘new@[0]
AAW’P7 1: 1‘intercept@[0]
AAW’P6 1: 1‘war
AAW’P9 1: 
AAW’P13 1: 1‘weapon@[0]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[1]
AAW’P5 1: 
AAW’P12 1: 1‘commander@[1]
AAW’P14 1: 1‘sensor@[0]

4 
1:1

4
AAW’P1 1: 
AAW’P8 1: 1‘default@[0]
AAW’P3 1: 
AAW’P4 1: 
AAW’P7 1: 
AAW’P6 1: 1‘war
AAW’P9 1: 1‘take_off@[0]
AAW’P13 1: 1‘weapon@[1]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[1]
AAW’P5 1: 1‘interceptor_away@[0]
AAW’P12 1: 1‘commander@[1]
AAW’P14 1: 1‘sensor@[0]

5 
1:1

5
AAW’P1 1: 
AAW’P8 1: 
AAW’P3 1: 
AAW’P4 1: 1‘new@[0]
AAW’P7 1: 1‘intercept@[0]
AAW’P6 1: 1‘war
AAW’P9 1: 
AAW’P13 1: 1‘weapon@[0]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[1]
AAW’P5 1: 
AAW’P12 1: 1‘commander@[1]
AAW’P14 1: 1‘sensor@[1]

6 
2:0

6
AAW’P1 1: 
AAW’P8 1: 
AAW’P3 1: 
AAW’P4 1: 
AAW’P7 1: 
AAW’P6 1: 1‘war
AAW’P9 1: 1‘take_off@[0]
AAW’P13 1: 1‘weapon@[1]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[1]
AAW’P5 1: 1‘interceptor_away@[0]
AAW’P12 1: 1‘commander@[1]
AAW’P14 1: 1‘sensor@[1]

1:1->2
AAW’T1 1:

2:2->3
AAW’T2 1: 

3:3->4
AAW’T3 1: 

4:3->5
AAW’T4 1: 

6:5->6
AAW’T3 1: 

5:4->6
AAW’T4 1: 
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1 
0:1

1
AAW’P9 1: 
AAW’P13 1: 1‘weapon@[0]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[0]
AAW’P5 1: 1‘interceptor_away@[0]
AAW’P12 1: 1‘commander@[0]
AAW’P14 1: 1‘sensor@[0]
AAW’P1 1: 1‘incoming@[0]
AAW’P8 1: 
AAW’P3 1: 
AAW’P4 1: 
AAW’P7 1: 
AAW’P6 1: 1‘war

2 
1:1

2
AAW’P9 1: 
AAW’P13 1: 1‘weapon@[0]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[5]
AAW’P5 1: 1‘interceptor_away@[0]
AAW’P12 1: 1‘commander@[0]
AAW’P14 1: 1‘sensor@[0]
AAW’P1 1: 
AAW’P8 1: 
AAW’P3 1: 1‘new@[7]
AAW’P4 1: 1‘new@[8]
AAW’P7 1: 
AAW’P6 1: 1‘war

3 
1:1

3
AAW’P9 1: 
AAW’P13 1: 1‘weapon@[0]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[5]
AAW’P5 1: 
AAW’P12 1: 1‘commander@[13]
AAW’P14 1: 1‘sensor@[0]
AAW’P1 1: 
AAW’P8 1: 1‘default@[15]
AAW’P3 1: 
AAW’P4 1: 1‘new@[8]
AAW’P7 1: 1‘intercept@[16]
AAW’P6 1: 1‘war

4 
1:1

4
AAW’P9 1: 
AAW’P13 1: 1‘weapon@[0]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[5]
AAW’P5 1: 
AAW’P12 1: 1‘commander@[13]
AAW’P14 1: 1‘sensor@[18]
AAW’P1 1: 
AAW’P8 1: 
AAW’P3 1: 
AAW’P4 1: 1‘new@[8]
AAW’P7 1: 1‘intercept@[16]
AAW’P6 1: 1‘war

5 
1:0

5
AAW’P9 1: 1‘take_off@[20]
AAW’P13 1: 1‘weapon@[21]
AAW’P2 1: 1‘tracking
AAW’P11 1: 1‘sensor@[5]
AAW’P5 1: 1‘interceptor_away@[22]
AAW’P12 1: 1‘commander@[13]
AAW’P14 1: 1‘sensor@[18]
AAW’P1 1: 
AAW’P8 1: 
AAW’P3 1: 
AAW’P4 1: 
AAW’P7 1: 
AAW’P6 1: 1‘war

1:1->2
AAW’T1 1: 

2:2->3
AAW’T2 1: 

3:3->4
AAW’T4 1: 

4:4->5
AAW’T3 1: 
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