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Abstract. Control Flow Analysis is a widely used approach for
analysing functional and object oriented programs and recently it
has also successfully been used to analyse more challenging notions of
computation involving concurrency. However, once the applications
become more demanding also the analysis needs to be more precise in
its ability to deal with mutable state (or side-effects) and to perform
polyvariant (or context-sensitive) analysis. Several insights in Data
Flow Analysis and Abstract Interpretation show how to do so for im-
perative programs but the techniques have not had much impact on
Control Flow Analysis because of the “less abstract” way in which
the techniques are normally expressed. In this paper we show how to
incorporate a number of key insights from Data Flow Analysis (in-
volving such advanced interprocedural techniques as call strings and
assumption sets) using Abstract Interpretation to induce the analyses
from a general collecting semantics.

Keywords. Control Flow Analysis; Interprocedural Data Flow Anal-
ysis; Abstract Interpretation.

Note. A shortened version is to appear in the Proceedings of ESOP’99
to be published in Springer Lecture Notes in Computer Science.



1 Introduction

Consider a functional language with assignments in the manner of Standard ML
where both functions and references are first-class entities. This language is
sufficiently complex that precise Control Flow Analysis information is needed
and at the same time the language is sufficiently close to advanced imperative
languages that established techniques from Data Flow Analysis and Abstract
Interpretation should be applicable.

Control Flow Analysis. The primary aim of Control Flow Analysis is to
determine the set of functions that can be called at each application (e.g. x
e where x is a formal parameter to some function) and has been studied quite
extensively (28, 13, 20] to cite just a few). In terms of paths through the program,
one tries to avoid working with a complete flow graph where all call sites are
linked to all function entries and where all function exits are linked to all return
sites. Often this is accomplished by means of contours [29] (a la call strings
[27] or tokens [14]) so as to improve the precision of the information obtained.
One way to specify the analysis is to show how to generate a set of constraints
[10, 11, 22, 23] whose least solution is then computed using graph-based ideas.
However, the majority of papers on Control Flow Analysis (e.g. [28, 29, 13, 20]) do
not consider side-effects — an exception to this is [12] that considers a functional
language with shared variable communication between concurrent processes.

Data Flow Analysis. The intraprocedural fragment of Data Flow Analysis
ignores procedure calls and usually formulates a number of data flow equations
whose least solution is desired (or sometimes the greatest when a dual ordering
is used) [9, 15, 16]. It follows from Tarski’s theorem [30] that the equations could
equally well be presented as constraints: the least solution is the same (also see
[6])-

The interprocedural fragment of Data Flow Analysis takes procedure calls into
account and aims at treating calls and returns more precisely than mere goto’s:
if a call site gives rise to analysing a procedure with a certain piece of informa-
tion, then the resulting piece of information holding at the procedure exit should
ideally only be propagated back to the return site corresponding to the actual
call site. This is illustrated in Figure 1. In other words, the intraprocedural view
is that all paths through a program are valid (and this set of paths is a regular
language), whereas the interprocedural view is that only those paths will be valid
where procedure entries and exits match in the manner of parentheses (and this
set of paths is a proper context free language). Looking at the literature, the ma-
jority of papers on Data Flow Analysis (e.g. [27, 17]) do not consider first-class
procedures and therefore have no need for a component akin to Control Flow
Analysis — an exception to this is [24] that studies an object-oriented language
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with virtual method calls. In the sequel we shall provide a rough classification of
the approaches used in the literature (although hybrids exists, e.g. [32]).

Figure 1: Function call.

e One approach deals with the interprocedural analysis by obtaining trans-
fer functions for entire call statements (obtained by constructing and then
solving an equation system that relates transfer functions in a manner de-
pendent upon the program to be analysed) after which the standard tech-
niques for intraprocedural analysis suffice (for example for solving equation
systems by iterative techniques or using interval analysis) [27, 17] (and to
some extent [4]).

Alternatively one may dispense with formulating equations (or contraints) as
the function level and extend the space of properties to include explicit context
information.

e A widely used approach modifies the space of properties to include informa-
tion about the pending procedure calls so as to allow the correct propagation
of information at procedure exits even when taking a mainly intraprocedu-
ral approach; this is often formulated by means of call strings [27, 31].

e A somewhat orthogonal approach modifies the space of properties to include
information that is dependent on the information that was valid at the last
procedure entry [24, 18, 25]; an example is the use of so-called assumption
sets that give information about the actual parameters.

In this paper we shall focus on the last two groups of techniques.
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Abstract Interpretation. In Abstract Interpretation [5], the systematic de-
velopment of program analyses is likely to span a spectrum from abstract spec-
ifications (like [20] in the case of Control Flow Analysis), over syntaz-directed
specifications® (as in the present paper), to actual implementations in the form
of constraints being generated and subsequently solved (as in [10, 11, 22, 23, 8]).
The main advantage of this approach is that semantic issues can be ignored in
later stages once they have been dealt with in earlier stages, and another ad-
vantage is that in all stages the set of solutions will be known always to have
a least solution that will continue to be a solution also to the specifications of
earlier stages. The first stage, often called the collecting semantics, is intended
to cover a superset of the semantic considerations that are deemed of potential
relevance for the analysis at hand. The purpose of each subsequent stage is to
incorporate additional implementation oriented detail so as to obtain an analysis
that satisfies the given demands on efficiency with respect to the use of time and
space.

Aims. This paper presents an approach to program analysis that allows the si-
multaneous formulation of techniques for Control and Data Flow Analysis while
taking the overall path recommended by Abstract Interpretation. Many of the
ingredients presented have been studied before in other contexts; what is unique
about the present paper is the way in which the interplay between these tech-
niques is expressed. Indeed, we take care to express the development in a form
that is close to formulations of Control Flow Analysis to be found in the literature
so as to make the development more accessible.

For this to succeed it is essential to keep the specification compact, as irrelevant
details otherwise obscures the main insights, and to this end we present the
Control Flow Analysis in the form of a succinct flow logic; we refer to [21] for
how to implement such specifications. Throughout the development we maintain
a clear separation between environment-like data and store-like data so that the
analysis more clearly corresponds to the (formal or informal) semantics of the
language analysed. As in [12] we add components for tracking the side-effects
occurring in the program and for explicitly propagating environments (thereby
extending [20]); for the side-effects this gives rise to a flow-sensitive analysis and
for the environments we might coin the term scope-sensitive. (As we shall see, the
techniques for scope-sensitivity are also useful for analysing languages without
side-effects in that they allow to incorporate the results of tests into the analysis
information passed to the branches of the test.)

Another important ingredient is the judicious choice of a space of mementoes
(for expressing context information) that is general enough that both call string

'For syntaz-directed specifications the coinductive method identified in [20] coincides with
the inductive method.



based approaches (e.g. [27, 29]) and dependent data approaches (in the manner of
assumption-sets [24, 18]) can be obtained by merely approximating the space of
mementoes; this gives rise to a context-sensitive analysis. The most general choice
of mementoes considered here was inspired by [7]. The mementoes themselves are
approximated using a surjective function and this approach facilitates describing
the approximations between the various solution spaces using Galois connections
as studied in the framework of Abstract Interpretation [4, 5]. Compared with
previous approaches based on Abstract Interpretation (e.g. [4, 1, 7]) we retain the
flavour of the “high-level” syntax and semantics of the programming language,
because we do not resort? to a collecting semantics operating on “low-level” traces
of activation records.

Overview. In Section 2 we present the syntax and big-step operational seman-
tics of a functional language with side-effects. In Section 3 we specify the abstract
domains of our analysis using a general and rather expressive set of mementoes
and in Section 4 we give the details of the analysis. In Section 5 we then show
how the classical developments mentioned above can be obtained as Abstract
Interpretations of the general choice of mementoes. Finally, Section 6 contains
the concluding remarks.

Appendix A establishes the correctness of the analysis, Appendix B presents a
generalisation of the analysis to deal with reference counts (so as to be able to
kill as well as generate new information), and Appendix C contains the proofs of
the main results.

2 Syntax and Semantics
We shall study a functional language with side-effects in the style of Standard
ML [19]:
z,f € Var=-... (unspecified)
e = cla|fn,x=>e|fun, fr=>el| (61 ) |e; e |refyelle
| e :=ey|let z =€ in ey | if e then e; else e

¢ == true|false| () |---

Here fn, z => e is a function that takes one argument and fun, f x => e is a

recursive function (named f) that also takes one argument. We have labelled all
syntactic occurrences of function applications with a label [ € Lab, all defining

2There are considerable differences in the field as to what constitutes a “high” level of
abstraction and what constitutes a “low” level of abstraction; hence our use of “low-level”
should not be understood in a negative sense.



m € Mem = {o} U (Lab x Mem) x Val x Store x (Pntg x Mem)
d € Data = --- (unspecified)
(m,mq) € Closure = Pntg x Mem
(w,myq) € Cell = Pntg x Mem
v € Vala = Data U Closure U Cell
W e Val = P(Mem x Vala)
R € Env = Var — Val
S € Store = Cell = Val

Table 1: Abstract domains.

occurrences of functions with a label 7 € Pntg and all defining occurrences of
references with a label @w € Pntg. These labels will play a crucial role in the
specification of the analysis; it is not required that the labels are distinct but the
analysis will be more precise if they are.

The semantics is specified as a big-step operational semantics with environments
p € Env and stores o € Store. The language has static scope rules and we give it
a traditional call-by-value semantics. The semantic domains are:

. € Lloc=--- (unspecified)

w € Val

w == c|close (fn, z =>¢) in p| close (fun, f z=>¢)inp|.
6 PR ‘ L

p € Env=Var —g, Val

o € Store = Loc —g, Val

The set Loc of locations for references is left unspecified. The judgements of the
semantics have the form
pE{e,o0) = (w,09)

and are specified in Table 7 of the Appendix; the clauses themselves should be
fairly straightforward. (We should also note that the choice of big-step opera-
tional semantics is not crucial for the subsequent development.)

3 Abstract Domains

The abstract domains of the analysis are shown in Table 1 and are explained
below.



Mementoes. The analysis will gain its precision from the so-called mementoes
(or contours or tokens). A memento m € Mem represents an approximation of
the context of a program point: it will either be ¢ representing the initial context
where no function calls have taken place or it will have the form

((l, mh)’ I/Va Sa (7T: md))

representing the context in which a function is called. The idea is that

e (I,my) describes the application point; [ is the label of the function appli-
cation and my, is the memento at the application point,

e W is an approximation of the actual parameter at the application point,
e S is an approximation of the store at the application point, and

e (m,my) describes the function that is called; 7 is the label of the function
definition and my is the memento at the definition point of the function.

Note that this is well-defined (in the manner of context-free grammars): compos-
ite mementoes are constructed from simpler mementoes and in the end from the
initial memento ¢. This definition of mementoes is akin to the contexts consid-
ered in [7]; in Section 5 we shall show how the set can be simplified into something
more tractable.

Example 1. As a running example we shall consider the program “program”
defined by:
((fn; x => ((x x)! (fn, y => x))?) (fn, z => z))?

The applications are performed in the order 3, 1 and 2. The mementoes of interest
are going to be

m3 = ((3’0)’W3’ [ ]’ ("L"O))
my = ((1’m3)’W17 [ ]7 (Z’O))
mo = ((Q’ml)’WQ’ [ ]7 (Z’O))

where Wy, W5 and W3 will be specified in Example 2 and [ | indicates that the
store is empty. O

Abstract values. We operate on three kinds of abstract values: data, function
closures and reference cells. Function closures and reference cells are represented
as pairs consisting of the label (7 and w, respectively) of the definition point and
the memento my at the definition point; this will allow us to distinguish between
the various instances of the closures and reference cells. The abstract values will



D RS € RCachee = Pntr — Env
Mp € MCacheg = Pntg — P(Mem)
Wr € W(fa\chep = (ePntg U Pntre) — Val
Sy € SCacheg = (ePntg UPntre) — Store

Table 2: Caches.

always come together with the memento (i.e. the context) in which they live so
the analysis will operate over sets of pairs of mementoes and abstract values. The
set Val obtained in this way is equipped with the subset ordering (denoted C).
The sets Env and Store of abstract environments and abstract stores, respectively,
are now obtained in an obvious way and ordered by the pointwise extension of
the subset ordering (denoted C).

Example 2. Continuing Example 1 we have

Wy = {(o;(2,0))} Wi ={(ms, (2,0))} Wa={(m1,(y,ms))}

since the function z is defined at the top-level (o) and y is defined inside the
application 3. O

Caches. The analysis will operate on five caches associating information with
functions; their functionality is shown in Table 2 and their use will be explained
below.

The caches R%, RY% and My associate information with the labels 7 of function
definitions:

e The environment caches R} and RS.: for each program point m, R} ()
records the abstract environment at the definition point (i.e. as applies to
the free variables) and RS (7) records the same information but modified
to each of the (presumably different) contexts in which the function body
might be executed. As an example, the same value v of a variable z used in
a function labelled 7 may turn up in R%(7)(x) as (mg,v) and in RS (7)(z)
as (me,v) where mg = ¢ in case of the function being declared at top-level
and m, = ((l,0), W, S, (m,©)) in case of the call being performed at the
top-level application labelled [.

e The memento cache Mp: for each program point m, Mg(7) records the set
of contexts in which the function body might be executed; so Mg(7) =0
means that the function is never executed.

The caches Wr and Sr associate information with function calls. For a function
with label 7 € Pntg we shall use o7 (€ ePntg) to denote the point just before

8



entering the body of the function, and we shall use me (€ Pntge) to denote the
point just after leaving the body of the function. The idea now is as follows:

e The value cache Wi: for each entry point emr, Wr(er) records the abstract
value describing the possible actual parameters, and for each exit point e,

Wr(me) records the abstract value describing the possible results of the
call.

e The store cache Sp: for each entry point em, Sp(em) records the abstract
store describing the possible stores at function entry, and for each exit

point e, Sp(me) records the abstract store describing the possible stores
at function exit.

Example 3. For the example program we may take the following caches:

Wr(em) | {(ms, (2,0))} {(ma, (2,0)), (ma, (y, ms)) }
W (me) | {(ms, (y,ms3))} {(ma, (2,0)), (ma, (y, ms))}

(o) []
(re) []
(7) [] [x = {(
) ]
F(7) {ms}

 (2,0))}]

SN

= w =2 R
A
o

{ma, my}

4 Syntax-directed Analysis

The specification developed in this section is a recipe for checking that a proposed
solution is indeed acceptable. This is useful when changing libraries of support
code or when installing software in new environments: one merely needs to check
that the new libraries or environments satisfy the solution used to optimize the
program. It can also be used as the basis for generating a set of constraints [21]
whose least solution can be obtained using standard techniques (e.g. [2]).

Given a program e and the five caches (R%, R%, Mg, Wr,Sr) the purpose of
the analysis is to check whether or not the caches are acceptable solutions to the
Data and Control Flow Analysis. The first step is to find (or guess) the following
auxiliary information:

e an abstract environment R € Env describing the free variables in e (and
typically it is L if there are no free variables in the program),

e a set of mementoes M € P(Mem) describing the possible contexts in which
e can be evaluated (and typically it is {o}),
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e an initial abstract store S; € Store describing the mutable store before
evaluation of e begins (and typically it is T if the store is not initialised
before use),

e a final abstract store S, € Store describing the mutable store after evalua-
tion of e completes (and possibly it is T), and

e an abstract value W € Val describing the value that e can evaluate to (and
it also possibly is T).

The second step is to check whether or not the formula
RMrp>e:S —>S&W

is satisfied with respect to the caches supplied. This means that when e is exe-
cuted in an environment described by R, in a context described by M, and upon
a state described by S; the following happens: if e terminates successfully then
the resulting state is described by S, and the resulting value by W.

We shall first specify the analysis for the functional fragment of the language
(Table 3 in Section 4.1) and then for the other constructs (Table 4 in Section
4.2). As in [20] any free variable on the right-hand side of the clauses should be
regarded as existentially quantified; in principle this means that their values need
to be guessed, but in practice the best (or least) guess mostly follows from the
subformulae.

Example 4. Given the caches of Example 3, we shall check the formula:

[],{o} > program : [ ] = [] & {(o, (y, ms))}

So the initial environment is empty, the initial context is ¢, the program does not
manipulate the store, and the final value is described by {(¢, (v, m3))}. O

4.1 The functional fragment

For all five constructs in the functional fragment of the language the handling
of the store is straightforward since it is threaded in the same way as in the
semantics.

For constants and variables it is fairly straightforward to determine the abstract
value for the construct; in the case of variables we obtain it from the environment
and in the other case we construct it from the set M of mementoes of interest.

For function definitions no changes need take place in the store so the abstract
store is simply threaded as in the previous cases. The abstract value representing
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RM~©p>c:5—>5&W
iff Sy C Sy A {(m,d.) | me M} CW

RM~©p>xz:5 —>S&W
iff S C Sy AR(z) CW

RM > fn,x=>e:5 =S &W
iff S; C Sy A {(m,(m,m)) [me M} CW ARC RYT) A
RG(m)[x = We(em)], Mp(m) > e:Sp(om) = Sp(me) & Wg(me)

R M > fun, fx=>e:5 > S &W
iff 51 C So A {(m, (m,m)) |me M} CW A
R[f = {(m, (m,m)) | m € M}] E RE(m) A
RG(m)[x +— We(em)], Mp(m) > e:Sp(om) = Sp(me) & Wg(me)

R,M > (e;e) :S — S &W
IffR,M > e : S =S &W, /\R,M > 62252%53&W2 VAN
Vi € {m | (m, (7m,mq)) € Wi} :
let X = ne—ww((l, M), WQ, Sg, Wl)
Xpe = {(mg, m¢) | (mg, mp, m.) € X}
Xo ={mc | (mg, mp,m;) € X}
Xuc = {(mp,me) | (Mg, mp,m.) € X}
Xow = {(me,ma) | (ma, mp, me) € X}
in R2%(m)[Xpc|] E RG(m) A Xe € Mp(m) A
Wa [ Xuc] € We(om) A S3[ Xuc] T Sp(em) A
Wr(me)[ Xcx| €W A Sp(me)[Xex| E Sy

new, ((L, M), W,S,W') =
{(mdamhamc) ‘ (mha (W:md)) € Wla mp € M,
me = new((l, mh)a Wa S, (7‘-7 md))}

Table 3: Analysis of the functional fragment.

the function definition contains a nested pair (a triple) for each memento m in the
sett M of mementoes according to which the function definition can be reached:
in a nested pair (my, (7, my)) the memento m; represents the current context and
the pair (m,mg) represents the value produced (and demanding that m; = mq
corresponds to performing a precise relational analysis rather than a less precise
independent attribute analysis). Finally, the body of the function is analysed
in the relevant abstract environment, memento set, initial abstract state, final
abstract state and final abstract value; this information is obtained from the
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Figure 2: Analysis of function call.

caches that are in turn updated at the corresponding call points. More precisely,
the idea is to record the abstract environment at the definition point in the cache
R% and then to analyse the body of the function in the context of the call which
is specified by the caches RS, Mg, Wr and Sp as explained in Section 3. The
clause for recursive functions is similar.

Example 5. To check the formula of Example 4 we need among other things
to check:

[J{e}>fn, z=>z:[] =[] & {(o,(2,0))}

This follows from the clause for function definition because [ | C [ ] and the clause
for variables gives:

[z = {(mla (Z,O)), (mQa (yam3))}]a{m1’m2}l>z : [] - [] & {(mla (zao))’ (mQa (yam3))}

Note that although the function z is called twice, it is only analysed once. O

In the clause for the function application (e, e;)! we first analyse the operator
and the operand while threading the store. Then we use W; to determine which
functions can be called and for each such function 7 we proceed in the following
way.

First we determine the mementoes to be used for analysing the body of the
function w. More precisely we calculate a set X of triples (mg, my, m.) consisting
of a definition memento m, describing the point where the function 7 was defined,

12



a current memento my describing the call point, and a memento m,. describing
the entry point to the procedure body. (For the call (x x)' in Example 1 we
would have X = {(¢,m3,m;)} and m = z.) For this we use the operation new,
whose definition (see Table 3) uses the function

new : (Lab x Mem) x Val x Store x (Pntg x Mem) — Mem

for converting its argument to a memento. With Mem defined as in Table 1 this
will be the identity function but for simpler choices of Mem it will discard some
of the information supplied by its argument.

The sets Xpo, Xo, Xue, and Xy are “projections” of X. The body of the function
7 will be analysed in the set of mementoes obtained as X, and therefore X, is
recorded in the cache My for use in the clause defining the function. Because
the function body is analysed in this set of mementoes we need to modify the
mementoes components of all the relevant abstract values. For this we use the
operation

WY = {(mg,v) | (m1,v) € W, (my,ms) € Y}

defined on W C Val and Y C Mem x Mem. This operation is lifted to abstract
environments and abstract stores in a pointwise manner.

Coming back to the clause for application in Table 3, the abstract environment
RY.(m) is relative to the mementoes of the definition point for the function and
thus has to be modified so as to be relative to the mementoes of the called function
body and the set X facilitates performing this transformation. (For the call
(x x)! in Example 1 we would have that Xy, = {(¢,m;)}.) In this way we ensure
that we have static scoping of the free variables of the function. The actual
parameter W, is relative to the mementoes of the application point and has to be
modified so as to be relative to the mementoes of the called function body and
the set Xy facilitates performing this transformation; a similar modification is
needed for the abstract store at the entry point. We also need to link the results
of the analysis of the function body back to the application point and here the
relevant transformation is facilitated by the set Xy.

The clause for application is illustrated in Figure 2. On the left-hand side we
have the application point with explicit nodes for the call and the return. The
dotted lines represent the abstract environment and the relevant set of mementoes
whereas the solid lines represent the values (actual parameter and result) and the
store. The transfer function [Xp¢| is used to modify the static environment of
the definition point, the transfer function [ Xy¢] is used to go from the application
point to the function body and the transfer function [X¢q| is used to go back
from the function body to the application point. Note that the figure clearly
indicates the different paths taken by environment-like information and store-like
information — something that is not always clear from similar figures appearing
in the literature (see Section 5.2).
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Example 6. Checking the formula of Example 4 also involves checking:

[x = {(ma, (z,0))}]. {ma} > (x x)" : [] = [] & {(ms, (2,9))}

For this, the clause for application demands that we check

[x = {(ms, (z,0))},{ms} > x: [] = [] & {(ms, (2,0))}
which follows directly from the clause for variables.

Only the function z can be called so we have to check the many conditions only
for this function. We shall concentrate on checking that {(ms, (z,¢))} Xac| C
Wr(e2) and Wr(ze)[Xcx| C {(ms, (2,0))}. Since X = {(¢,m3,m1)} we have
Xuc = {(mg3, m1)} and the effect of the transformation will be to remove all pairs
that do not have mgs as the first component and to replace the first components
of the remaining pairs with m;; using Example 3 it is immediate to verify that
the condition actually holds. Similarly, X¢z = {(m1, m3)} so in this case the
transformation will remove pairs that do not have m; as the first component
(i.e. pairs that do not correspond to the current call point) and replace the first
components of the remaining pairs with mjs; again it is immediate to verify that
the condition holds. O

4.2 Other constructs

The clauses for the other constructs of the language are shown in Table 4. The
clauses reflect that the abstract environment and the set of mementoes are passed
to the subexpressions in a syntax-directed way and that the store is threaded
through the constructs. The analysis is fairly simple-minded in that it does not
try to predict when a reference (w, my) in the analysis only represents one location
in the semantics and hence the analysis does not contain any kill-components (but
see Appendix B).

For the let-construct we perform the expected threading of the abstract environ-
ment and the abstract store. For the conditional we first analyse the condition.
Based on the outcome we then modify the environment and the store to reflect

the (abstract) value of the test. For the environment we use the transfer func-

tions gpﬁfg ) (R) and go[f;fgl(R) whereas for the store we use the transfer functions

¢£§’EZ}(52) and qﬁﬁ:m (S2). The result of both branches are possible for the whole
construct.

As an example of the use of these transfer functions consider the expression
if x then ey else ey
where it will be natural to set
e (R) = Rz = W N {(m, dyree) | m € Mem}]
Pratsa(R) = Rlz = W N {(m, dsarae) | m € Mem}]

14



R M > e ;e :5 — S3& W,
IffR,M > 61251—)52&W1/\R,M > ey: Sy — S & Wy

R.M > refgye:S;— S; &W
iff RRM > e:S; —= Sy &W A{(m,(w,m)) |me M} CW'A
SoCS3AVme M : W C Ss3(w,m)

RM > le: S — S, &W
iff R,M > e:S; — Sy &W AVY(m, (w,mg)) € W: So(w,mg) C W'

R,M > e Z=€2151—>S4&W
IffR,M > 61251—)52&W1/\R,M > 62252%53&W2/\
{(m,d())|m€M}§W/\SggS4/\
V(m, (w,mq)) € Wy : Wy C Sy(w, my)

R,M|>1€t$=6111162151—)53&W2
IffR,M > 61251—)52&W1/\R[.TF—)W1],M > 62:SQ_>S3&W2

R, M 1> if e then e; else ey : S — S5 & W'
IfFR,M > 6351—)SQ&W/\
let Ry = gl (R); Ry = @ineb(R); Sz = dhmel(S2); Sa= phtea(Ss)
in Rl,M > 61253—)55&W, /\RQ,M > 62254—)55&W,

Table 4: Analysis of the other constructs.

Thus even though R(z) might be {(mp, dsrue), (M4, dsarse) } it will be possible to
analyse each of the branches with precise information about x as was already
hinted at in the Introduction. Little can be said in general about how to define
such functions: it depends on the exact details of the expression upon which the
test is made.

To avoid cluttering the presentation of the analysis we have only inserted trans-
fer functions where they are essential for our main story. There are certainly
a number of additional places where non-identity transfers could be useful for
certain applications. One example of this is the clause for let where we could
use transfer functions to allow recording the fact that the bound variable is first
“allocated” and later “de-allocated”.

To obtain a more concise statement of the theorems below we shall mostly assume
that the transfer functions ¢~ and ¢ of Table 4 are in fact the identities. In
Appendix A we establish the semantic correctness of the analysis presented here.

15



my, € Memy = Lab®F
d € Data = .- (unspecified)
(m,mpq) € Closurey, = Pntg x Memy
(w, mpg) € Cellg = Pntg x Mem;
v, € Valag = Data U Closure;, U Cell,
Wk € Valk = P(Memk X VaIAk)
R, € E/n\v,c = Var— \//ak
S, € Storey = Cell, — Valy

Table 5: Abstract domains for k-CFA.
5 Classical Approximations

The definition of mementoes used in Table 1 is much too unwieldy to be of
practical interest. In this section we shall study some alternative choices.

5.1 k-CFA

The idea behind k-CFA [13, 28] is to restrict the mementoes to keep track of
the last k£ call sites only. This leads to the abstract domains of Table 5 that are
intended to replace Table 1. Naturally, the analysis of Tables 2, 3, and 4 must
be modified to use the new abstract domains; also the function new, must be
modified to make use of the function

newy : (Lab x Mem;) x Val, x Store;, x (Pntg x Mem;) — Mem;,

defined by
newg (L, mgn), Wk, Sk, (7, mgq)) = takeg(I"myp)

where “”” denotes prefixing and takey returns the first £ elements of its argument.
This completes the definition of the analysis.

Theoretical properties. One of the strong points of our approach is that
we can use the framework of Abstract Interpretation to describe how the more
tractable choices of mementoes arise from the general definition. Previously such
explanations have been performed at “lower levels” of syntactic and semantic
abstraction, and in our view this has hampered the wide-spread use of these
techniques. However, the reader unaccustomed to Abstract Interpretation might
prefer to skip this explanation on a first reading.

To express the relationship between the two analyses we define a surjective map-
ping pr : Mem — Mem; showing how the precise mementoes of Table 1 are
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truncated into the approximative mementoes of Table 5. It is defined by

po(m) = ¢
prir(0) = €
:uk-H((l’ m)a W, S, (71-’ md)) = lA:uk(m)

where ¢ denotes the empty sequence. It gives rise to the functions a}! : P(Mem) —
P(Mem;) and 7 : P(Mem;) — P(Mem) defined by

a' (M) = {ue(m) [me M} 5 (My) = {m | p(m) € My}

Since o) is surjective and defined in a pointwise manner there exists precisely
one function such that

is a Galois insertion as studied in Abstract Interpretation [3, 5]: this means that
aM and v are both monotone and that v (a}(M)) 2 M and o} (vM(My)) =
M, for all M C Mem and M, C Mem;. One may check that v} is as displayed
above.

To obtain a Galois insertion

we proceed in two steps. First define a surjective mapping 7, : Mem x Valy —
Memk X VaIAk by

Nk (mh7 d) = (/J'k (mh)7 d)
Nk (mh7 (71', md))

Ne(mp, (@, ma)) = (ux(ma), (@, ur(ma)))

|
T
B
3
Z

Next define af and ) by
af (W) = {ne(m,v) | (m,v) € W} 2 (Wi) = {(m,v) | m(m,v) € Wy}
It is then straightforward to obtain a Galois insertion

E
— e
Env — Envy
E
g

by setting

a (R)(z) = o (R(z)) 2 (Re)(z) = 7 (Ri(2))
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To obtain a Galois insertion

T
S
Store — Storey,
ay

—

we define

ap (S) (@, mpa) = ay (J{S(@, ma) | tix(ma) = mya})
Ve (Se)(w@,ma) = v (Sk(@, pe(ma)))

We now have the machinery needed to state the relationship between the present
k-CFA analysis (denoted t>) and the more general analysis of Section 4 (denoted
D):

Theorem 5.1 If (Ryp, Ry, Mir, Wik, Skr) satisfies
Ry, M, >y e: Sk1 — Sio & W,

then (7119E © REF,’YE © RiFa%JcV[ © MkF,%‘c/ © chF,%f OSkF) satisfies
Yo (Ri), &' (Mi) > e: 7 (Sk1) = Vi (Ske) & v (Wy)

(provided all transfer functions ¢.. and . are the identities).

The proof is by structural induction on e. In the case of application we establish
three auxiliary facts: the relationship between new; and new, the relationship
between fewy, and few,, and the relationship between (-)[-] and y(-[-]). (The
statement and proof of the theorem for general transfer functions ¢: and ¢ is
somewhat more complex.)

In Appendix A we establish the semantic correctness of the analysis of Section
4; it is then a consequence of the above theorem that semantic correctness holds
for k-CFA as well.

Call strings of length k

The clause for application involves a number of transfers using the set X relating
definition mementoes, current mementoes and mementoes of the called function
body. In the case of a k-CFA like approach it may be useful to simplify these
transfers.

The transfer using Xy, can be implemented in a particularly simple way by taking

Xpo = {(mh,takek(lAmh)) | my € M}

18
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_ X
function
call
function
Xon body
function
return
X,

Figure 3: Degenerate analysis of function call.

where [ is the label of the application point. This set may be slightly too large
because it is no longer allowed to depend on the actual function called (the )
and because there may be m;, € My, for which no (my, (7, mg)) is ever an element
of W;. However, this is just a minor imprecision aimed at facilitating a more
efficient implementation. In a similar way, one may take

Xo = {takek(lAmh) | my € M}

where again this set may be slightly too large.

The transfers using X4 can also be somewhat simplified by taking

Xeg = {(takek(lAmh),mh) | mp € M}
{(me, dropy(m,)) | dropi(m.) € M}
U {(me,dropi(m.)"l") | drop;(m.)l' € M}

where drop; drops the first element of its argument (yielding e if the argument
does not have at least two elements). Again this set may be slightly too large.

The transfer using X, can be rewritten as
Xoo = {(ma, takeg(I'mp)) | my, € M, (my,, (7, maq)) € Wi}

where again [ is the label of the application point and 7 indicates the actual
function being called. For functions being defined at top-level there is not likely
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mp € Mem, = {e} U P(Data U Pntg UPntg)
€ Data = - (unspecified)
(my,mpq) € Closure, = Pntg x Mem,;
(w, mpq) € Cellp = Pntg x Mem,
vp € Valap = Data U Closure, U Cell,
W, € Val, = P(Mem; x Valap)
R, € E/n\vP = Var — @P
Sy € Storep = Cell, — Val,

Table 6: Abstract domains for assumption sets.

to be too much information that need to be transformed using X,.; however,
simplifying X, to be independent of 7 is likely to be grossly imprecise.

Performing these modifications to the clause for application there is no longer
any need for an explicit call of new,. The resulting analysis is similar in spirit to
the call string based analysis of [31]; the scenario of [27] is simpler because the
language considered there does not allow local data. Since we have changed the
definition of the sets Xp¢, Xo, Xgo and Xy to something that is no less than
before, it follows that an analogue of Theorem 5.1 still applies and therefore the
semantic correctness result still carries over.

It is interesting to note that if the distinction between environment and store is
not clearly maintained then Figure 2 degenerates to the form of Figure 3; this is
closely related to the scenario in [26] (that is somewhat less general).

5.2 Assumption sets

The idea behind this analysis is to restrict the mementoes to keep track of the
parameter of the last function call only; such information is often called assump-
tion sets. This leads to the abstract domains of Table 6 that are intended to
replace Table 1. Naturally, the analysis of Tables 2, 3, and 4 must be modified to
use the new abstract domains; also the function new, must be modified to make
use of the function

news : (Lab x Mem;) X Val, x Store, x (Pntg x Mem;) — Mem,
defined by
news (1, mpp), We, Sp, (m,mpq)) = {keepp(vp) | (Mmp, vp) € W}
where keep, : Valap — (Data U Pntg U Pntg) is defined as follows

keepp(d) = d
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keepp (T, Mpg) = 7

keepp (w0, mpg) = w

This completes the definition of the analysis.

Theoretical properties. We can now mimic the development performed in
Section 5.1; once again the reader unaccustomed to Abstract Interpretation might
prefer to skip this explanation on a first reading.

The crucial point is the definition of a surjective mapping pp : Mem — Mem;
showing how the precise mementoes of Table 1 are mapped into the approximative
mementoes of Table 6. It is defined by

pe(0) = ¢
pe((l,m), W, S, (m,ma)) = {keep,(v) | (m',v') € W}

where keep), : Vala — (Data UPntg UPntg) is the obvious modification of keepy to
work on Val rather than Vala,. Based on up, we can now define Galois insertions

(!, 7)) between P(Mem) and P(Mem;)
() ,7Y) between Val and \//z]P
(af,~E) between Env and Env,
(o

a5, 45) between Store and Store,

very much as in Section 5.1 and we then obtain the following analogue of Theorem
5.1:

Theorem 5.2 If (Rpp, Rop, Mer, Wer, Spr) satisfies
Rp, My D>p e:Spp — Spe & Wy
then (V5 o Rpp, % © Rop, 12" 0 Mor, 75 0 Wer, 75 © Ser) satisfies
¥ (Be), 2! (Mp) > €295 (Ser) = 7 (Se2) & 3 (W7)

(provided all transfer functions ¢. and . are the identities).

(The statement and proof of the theorem for general transfer functions ¢ and
.. is somewhat more complex.) As in Section 5.1 it is a consequence of the above
theorem that semantic correctness holds for the assumption set analysis as well.
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6 Conclusion

We have shown how to express interprocedural and context-sensitive Data Flow
Analysis in a syntax-directed framework that is reminiscent of Control Flow Anal-
ysis; thereby we have not only extended the ability of Data Flow Analysis to deal
with higher-order functions but we also have extended the ability of Control Flow
Analysis to deal with mutable data structures.

We used Abstract Interpretation to pass from the general mementoes of Section
3 to the more tractable mementoes of Section 5. While there are related studies
in the literature, we believe that our development is more faithful to the “level of
abstraction” given by the “high-level” syntax and semantics of modern program-
ming languages. In particular, our development was not forced to start from
a collecting semantics operating upon “low-level” stacks of activation records:
all our analyses® are based on the specification of Tables 3 and 4. We strongly
believe that this aspect of our development is likely to be crucial for Abstract
Interpretation to become more widely used.
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here have benefited from conversations with Patrick Cousot, Laurie Hendren,
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A Semantic Correctness

To formulate the correctness result we need a way to associate the locations of the
semantics to the cells of the analysis. We shall therefore introduce the concept
of a store model:

> : Loc = Pntg x Mem

The idea is that 3(:) = (w,my) means that the location ¢ is created at the
program point w in the context described by the memento m,. We shall impose
an ordering on store models:

X <3y
if and only if dom(3;) C dom(%;y) and Vi € dom(%) : £1(¢) = 3a(e).

We also need a way of associating a definition memento with the closures of the
semantics. So we introduce the concept of a value model:

2 € P(Val x Mem)

That (close (fn, x => €) in p,my) € 2 means that close (fn, z => €) in p is cre-
ated in the context described by the memento my. A similar comment holds for
the closures of recursive functions. The relation will never contain pairs where
the first component is a constant or a location. Obviously value models can be
ordered by subset inclusion.

In order to formulate the correctness result we shall need a couple of predicates

of the form “e3"; they are defined relative to (R%, R%, Mg, Wy, Sr) (just as

the inference system is). We shall need one of these predicates for values, one for
environments and one for stores. The predicates are defined co-inductively due
to the presence of recursive functions.

For values we define
weSEW

to mean that either
e w = c and then (m,d.) € W.
e w =close (fn, = => €) in p and then there exists (w, my) € §2 such that

— (m, (m,my)) € W,
- pey? Ry(n), and
— R%(7)[x = Weg(em)|, Mp(m) > e:Sp(om) — Sp(me) & Wg(me)

e w =close (fun, f x => e) in p and then there exists (w,my) € 2 such that

— (m, (m,my)) € W,
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— (plf = wl) €30 RY(r), and
— R%(7)[x — Wg (o), Mp(7) > e:Sp(em) — Sp(me) & Wg(me)

e w = and then (m,X(:)) € W.

For environments we define
p €2 Riff Vo : p(x) €2 R(z)
and for stores we define

o e SiffVi:o() €2 S(2(1))

Theorem A.1 Assume that
pE{e,o0) = (w,0o9)

and that (R%, RS, Mp, Wr, Sr) satisfies the formula

RM©p>e:S5—S&W
For allm € M and oll ¥ and Q): If

P E,En’ﬂ R and o, EE;Q Sy

then there exists X' > Y and € D Q such that

09 E,E,L"Q' Sy and w E,E,L"Q' 1%

(provided all transfer functions ¢ and .. are the identities).

The proof is by induction on the inference in the semantics and using auxiliary
facts expressing that for “€2?” it is possible to enlarge W, R, and S, to enlarge
¥ and €, and to modify the mementoes using the operation -[-]. In the case of
recursive function definition we rely on coinduction. (The statement and proof of
the theorem for general transfer functions ¢ and ¢! is somewhat more complex.)

B Reference Counts

An obvious extension of the work performed here is to incorporate an abstract
notion of reference count for dynamically created cells. In the manner of [31] we

could change the definition of Store (in Table 1) to have

S € Store = Cell — (Val x Pop)
p € Pop = {O,,M}
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pt{c,o) = {(c,0)
pF{z,0) = (w,0) if w = p(z)
pF {fn, x => e,0) — (close (fn, x => €) in p, o)
ptE (fun, f z =>e,0) = (close (fun, f = =>¢€) in p,0)

pF {e1,01) = (close (fn, z =>e) in p/,09), pt (es,09) = {wo,03),
plr = wo] F {e,03) = (w,04)

pt{(e1 ea)',01) = (W, 04)

p b {er,01) = {close (fun, f z =>¢e) in p/,09), pt {es,09) = {ws,03),
p'[f — close (fun, f z =>¢) in p][z — ws] F (e, 03) = (w,04)
)

pt{(e1 e2)t,01) = (w, 04

pt{e1,01) = (w1,02), pk (e,09) = (w2, 03)
pk(e1; ez, 01) = (ws,03)

pE{e,o1) = (w,o9)
pF (ref, e,01) = (1,02t — w])

where ¢ is the first unused location

pk{e,o1) = (1,09)
pE(le,01) = (w, 09)

where w = 5(1)

pt{ei,01) = {t,00), plt {ez,00) = (w,03)
pk{er :=ez,01) = (0,03t = w])

pt(e1,01) = (wi,00), plw > wi]t (ez,02) = (w2, 03)
P F <1et T =e; in 62,0'1> — (w2,03>

pk (e, 01) = (true,03), ph (e1,02) = (w,03)
pF (if e then e; else ey,01) — (w, 03)

pt{e,01) = (false,03), pt (e2,02) = (w,03)
pF (if e then ey else ey, 01) = (w,03)

Table 7: Operational semantics.

Here the new Isé\p component denotes how many concrete locations may simul-
taneously be described by the abstract reference cell: O means zero, | means at
most one, and M means arbitrarily many (including zero and one).
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RM > refge:S;— S; &W!
iff RRM > e:S; = Sy &W A{(m,(w,m)) |me M} CW'A
Vm € M : Sy @ ((w,m), W) C Sy

R,M > !6251—)52&W’
iff RLM > e:S; — Sy & W AV(m, (w,mq)) € W : So(w, mq) T (W', M)

R,M > e I=€2281—>S4&W
IfFR,M > 61251—)82&W1/\R,M > 62552—>S3&W2/\
{(m, dy) | m € M} C W A
V(m, (ww,mq)) € W1 : (S36 (w, mq)) ® ((ww,mq), Wa) C Sy

Table 8: Dealing with reference counts.

This makes it possible for the analysis sometimes to overwrite (as opposed to
always augment) the value of a cell that is created or assigned. For this we need
a new operation for adding a reference:

S & ((@,m), W) = S[(w,m) = (W",p")]

where
Wwhy) = S(w,m)
"o (WUW’,M) ifp’#O

We also need a new operation for removing a reference:
S (w,m) = S[(w,m) — (W",p")]

where
(Wlﬂ pl) = S(w’ m)
"o (Wlapl) if pl =M

The necessary modifications to the analysis are shown in Table 8.

C Proofs of Theorems

Proof of Theorem 5.1. The proof proceeds by structural induction on e. In all
cases the definition of Tables 3 and 4 (for ;) is used to “unfold” the assumption.
Next the induction hypothesis and simple calculations are used to obtain similar
unfolded statements for the conclusion. Finally the definition of Tables 3 and 4
(for ©>) is used to “fold” the statements so as to obtain the conclusion.
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The proof exploits that

® L is surjective, and

e all (ag, k) are Galois insertions.

In the case of conditional the assumptions about ¢. and ¢ simplify what needs
to be proved; for a more general statement one would need explicit assumptions
about the relations between the two sets of transfer functions.

In the case of application the following fact is used:

Fact C.1 pg(new((l,my), W, S, (m,myq))) =
newy, (1, ik (mn)), o (W), 0§ (S), (w0, i (ma)))

Writing ui[X] = {(ue(x1), -, pe(zn)) | (@1,--+,2,) € X} this allows us to
establish:

Fact C.2 Setting

Xk: = m—wwk((laMk)awk:Skawl::)

we have that up[X] C X.

Fact C.3 If u[X"] € X}, then 4 (Wi)[X'] € 7 (We[ X})).

Proof of Theorem 5.2. We construct the Galois insertions as follows. First
the function pp is extended in a pointwise manner to obtain a Galois insertion

P(Mem) = P(Mem;)

%1%

where

ay (M) = {pe(m) | m e M}
W (M) = {m|p(m)e Mp}
To obtain a Galois insertion
S S
Val = Val,
oy
we once more proceed in two steps. First define a surjective mapping

7p : Mem X Valy — Mem; X Valap
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nP(mhﬂd) = (:uP(mh)’d)
e (1, (m,mq)) = (pe(mn), (0, pp(ma)))
e (M, (@, ma)) = (e(mn), (@, pe(ma)))

Next define ) and 7Y by

ay (W) = {ne(m,v) | (m,v) € W}
Yo (W) = {(m,v) [ ne(m,v) € Wr}

It is then straightforward to obtain a Galois insertion

W
Env S Env,
af
by setting
of (R)(z) = oy (R(z))
W (Re)(z) = 7 (Re(2))
To obtain a Galois insertion
o
Store :S Store;
we define
Ozf(S)(w, de) = OAX(U{S(w,md) | /*['P(md) = de})

%o (Se)(@,ma) = % (Se(@, up(ma)))

The proof of the theorem then proceeds as for Theorem 5.1; the crucial step is
that the following fact holds:

Fact C.4 pp(new((l,my), W, S, (m,mq))) =
news (L 1z (mn), @ (W), a5(S), (v, e (ma).

Proof of Theorem A.1. The proof is by induction on the inference in the
semantics. In all cases Tables 7, 3 and 4 are used to “unfold” the assumptions.
Next the three facts below are used to establish the prerequisites for the applica-
tion of the induction hypothesis. Finally the required result is obtained by simple
calculations using the three facts below.

The case of recursive function definition is slightly more complicated than the
other cases because of the coinductive nature of the definition of “€>*”.
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Fact C.5 The abstract element can be enlarged:
o ifweZW and W C W' then w €2 W'
o if peZ R and RC R' then p €29 R

o ifoc €S and SC S then o €59 S

Fact C.6 The store model and the value model can be enlarged: Assume ¥ < X'
and Q C Q. Then

o ifwer W thenw €Z¥ W
o if p R then p XY R

o ifo e S theno €2 S
Fact C.7 The memento can be changed: Assume (m,m') € Y. Then

o ifw €W thenw € W[Y]
o if peZ? R then p €2 R[Y]

o if 0 €22 S theno € S[Y]
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