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1 Introduction

It is well known that the local truncation error of the explicit method and of the fully
implicit method [4] for linear parabolic equations is O(h? + k) and of the Crank-Nicolson
method [3] is O(h?+k?) ([6], p. 119f). It is also well known that this order of approximation
carries over to the global error in case of Dirichlet boundary conditions ([6], p. 63f). The
discretization of a derivative boundary condition using a first order formula will however
influence the global error as shown in [1] for the explicit method.

We shall study the form of the pointwise error for the Crank-Nicolson formula on a linear
parabolic equation and various discretizations of a derivative boundary condition and show
that a formula which is first order in A will influence the overall accuracy of the method
to being only first order in A.

We shall pursue our investigations along two different tracks. Assuming that the global
error can be expressed on the form hc(t,z) + k d(t,x) + h*f (¢, z) + k*g(t, z) + - - - we shall
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present parabolic initial-boundary value problems for the functions in the leading terms of
the error expansions, and we shall use a Richardson-like technique to reveal the (practical)
order of approximation and to give approximate values of the leading auxiliary functions
at selected grid points.

2 The problem and the method

We shall study the parabolic equation

U = QUgy + bug + Ku + v, t>0,0<z<A (1)
where A is a positive constant and where a, b, k, and ¥ may depend on ¢ and z. The side
conditions include an initial condition

u(0,2) = ug(x), 0<z<A (2)

where ug(z) is a given function of z, and two boundary conditions

au(t,0) — Bug(t,0) = 7, t>0, (3)
u(t, A) = 0, t>0, (4)

where «, 3, 7, and 6 may depend on t. We have chosen a Dirichlet condition at one end
for simplicity. If the coefficients are sufficiently smooth the solution (¢, z) will be suitably
differentiable. In our derivation we shall require u to have four continuous derivatives.

For the finite difference solution we introduce a grid with step sizes At = k and Ax = h =
A/M where M is a positive integer, and also the difference operators (in the z-direction):

B = Lt ®)
Un,m - 2vn,m + vn,m—
Py = = 12 - (6)

We then compute approximate values
Unm = u(nk,mh) forn=0,1,..,and m=1,2,...,M—1
using the Crank-Nicolson formula:

Un—|—1,m -

v a b
— = 3 {6%0ns1m + %0 m | + 5 1HOVn+1m + pOVnm}

K
+§ {Un+1,m + Un,m} +v (7)

which is known to be second order accurate in both k£ and h. If a, b, x, and v depend on ¢
and z they should be evaluated at t = (n + 1)k, = mh.
Equation (7) can be rewritten using A = k/h* to

A bh kk A

—§(a - ?)Unﬂ,m—l +(1+aX - 7)Un+1,m - 5(66 + 7)Un+1,m+1



A bh k A bh
= —(U, - E)Un,m—l + (1 —aX+ ;)Un,m + 5(@ + E)Un,m—f—l + kv (8)

The initial condition and the second boundary condition are discretized in a straightforward
manner: vy, = ug(mh), m = 0,1,2,...,M; v, = 6(nk), n = 1,2,..., and for the
derivative boundary condition we shall study three discretizations based on three different
finite difference approximations to the first derivative at (¢, 0):

th"’o (first order) (9)
?)"71;7;"7*1 (second order, symmetric) (10)

— 4 -3
Un,2 + ;}’;1 Un,0 (second order, asymmetric) (11)

For the sake of our analysis we shall assume that the computed solution satisfies an ex-
pansion of the form

v(t,z) = wu(t,x)—hc(t,z) —kd(t,z) — h*f(t,x) — k*g(t,z) + - - - (12)

and we shall collect information about the auxiliary functions ¢, d, f, and g which we
shall assume to be suitably differentiable. Actually v(t,z) is only defined on grid points
(nk,mh) but it can be extended (in many ways) as a differentiable function on the whole
region.

3 The auxiliary functions

We now want to insert the expansion (12) in the difference formula (7) and use Taylor’s
formula to get a series in powers of £ and h. We shall therefore need the following formulas
for v and similarly for ¢, d, etc.

Un m un,m 1
%T = Ut -+ ﬂk2uttt —+ O(lﬁ4) (13)

where the derivatives on the right hand side are evaluated at the mid-point (¢, z) = ((n +
Dk, mh).
YA

Un,m — Un,m— 1
[y gy = — +12h ML =+ éh%zm + O(h%) (14)
-2 _ 1
52un,m _ Un,m+1 7;1112,711 + Un,m—1 = Uy, + EhQUmmmm + O(h4) (15)



The derivatives on the right in the above two equations are evaluated at (¢, x) = (nk, mh),
but in the next equations we are back at the mid-point:

1 1
§{Un+1,m + U'n,m} = u+ ngUtt + O(k4) (16)
1 1 1
g 0t stm & Bt} =ttt s+ koo + O+ WRE KT (17)
1 1 1
g0 unsim + 0 unm} = e+ 5H Unsm + K s + O + WK+ £Y) - (18)

From the left hand side of equation (7) we now get using (12) and (13):

1
ug + ﬂm“ttt — hey — kdy — B f, — kg, + O(B® + hE® + E%) (19)

The right hand side is a bit more complicated:

1 1
af{uzz + _h2u$$$$ + _k2u$$tt - hcww - kdwz - h2fww - k2g;v;v}

12 8
1 1
+b{uav + éhQUzzz + gkzuwtt - hc:c - kdw - th:c - kQQw}

1
+r{u+ ngUtt —he —kd — B2 f — E’g} + v+ O(h® + W’k + hE* + k%) (20)

Equating (19) and (20) and collecting terms with various powers of h and £ such as 1, h,
k, h?, k? we get the following relations

Uy = QUgg + buz + kKu + v (21)
Ci = QCyy + by + ke (22)
di = adg +bd, + kd (23)
1 1
ft = a.fa:a: + bfz‘ + Kf — 75 QUgzxr — _bummm (24)
12 6
1 1
9t = gz +bgy + kg + ﬂuttt — g(auwwtt + gy + Kiy) (25)

Actually these relations need only be satisfied at the half-way grid points ¢ = (n + 1)k,
x = mh, but it is natural to require them to hold in the whole region. The equation for u is
merely a demonstration of the fact that our difference formula is consistent with the given
differential equation. We note that ¢ and d should satisfy the corresponding homogeneous
equation whereas f and g should satisfy inhomogeneous versions provided the function u is
four times differentiable. The last four terms in the equation for g can be combined using
the differential equation for u to —%um + %l/tt.

We assume that the initial condition is satisfied exactly, i.e. vo, = u(0, mh) = uo(mh)

and therefore ¢(0, mh) = d(0,mh) = --- = 0. If we extend to the whole interval [0, A] we
see that it is natural to require ¢(0,z) = d(0,z) =--- =0, 0 <z < A. Similarly the right
boundary condition results in ¢(¢, A) = d(t,A) =---=0, t > 0.
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4 A first order boundary approximation

For the derivative boundary condition (3) we shall investigate three discretizations of the
derivative term. First the simple first order approximation

Qv — B0 = (26)

If the coefficients «, £, and 7 depend on ¢ they should be evaluated at t = nk. Using (12)
and Taylor’s formula we get

1 1 1
a{u —hc—kd — h*f — k*g} — B{u, + ihum + éhQUme — heg — §h20m
1
—kdy — Shkdgy — R’ fy — k*g.} — v = O(h® + h?k + hk® + k?) (27)

Collecting terms with 1, h, k, h%, and k? as before we get

au—fu, = v (28)
ac—fe; = =3Pz (29)
ad—fBd, = 0 (30)
af = 0fs = —é&mm+%ﬂ%x (31)
ag—PBg, = 0 (32)

Again the consistency of our difference approximation is reflected in relation (28) which is
identical to the condition (3). Now we can collect the information we have gathered about
the function c(t, z):

Ct = QCgq + by + KC t>0,0<x<A,

c(0,2) =0 0<z <A,
ac(t, 0) = Byt 0) = —L Bt £>0,
c(t,A) =0 t>0.

So ¢ must satisfy a rather similar initial-boundary value problem as u, homogeneous except
for the derivative boundary condition. We shall return to this in the examples.

For the function d(¢,z) we have

dy = adyy + bd, + kd t>0,0<z <A,

(0,:5):0 0<z<A,
ad(t,0) — Bd;(t,0) =0 t>0,
(tA):o t>0.

This is a purely homogeneous problem and as such has d(¢,z) = 0 as its (unique) solution,
so we can conclude that the error is (at least) second order in £ as is expected from Crank-
Nicolson. Combining with what we know about ¢ we have that the error is O(h + k?).
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For completeness we state the corresponding equations for f and g:

ft_afzz'i'bfz'i_’{'f_ auzzzz_%buwww tZ0,0S.%SA,

f(0,2) =0 0<z<A4,
af(t,0) = Bfe(t,0) = — 5Bz + 50¢ea t>0,
f(t,A) =0 t>0.
and
9t = 0Gze + b9z + Kg — F5Um + §Vs t>0,0<x <A,
9(t, A) = t > 0.

The side conditions are homogeneous but the equation is not so we expect that g(t,z) # 0.

One might argue: why is there no hk-term in the error expansion (12). First of all we have
no reason to expect such a term, but we might just for the exercise add a term —hk e(t, x)
in formula (12) and see what happens. Actually in formula (27) there is an hk-term which
so far is unaccounted for. Collecting terms with hk we now arrive at

e; = aeyy + be, + ke t>0,0<z <A,

e(0,z) =0 0<z <A,
ae(t,0) — Beg(t,0) = lﬁdm t>0,
e(t,A) = t>0.

We have already shown that d(¢,z) = 0 and since the equations for e therefore are homo-
geneous we can conclude also that e(t,z) = 0 and that there indeed is no hk-term in the
error expansion.

5 The symmetric second order approximation

In the derivative boundary condition (3) we now use the symmetric second order formula
(10):

Un,1 — Up

(Wn,o—ﬂ’T’_l = 7 (33)

In order to eliminate the ‘fictitious point’ v, _; we must also use formula (7) for m = 0,
i.e. on the left boundary but that does not change anything in our analysis. Now for the
error expansion

ofu — he — kd — B2 f — k*g} — B{u, + éh?um — hegy — kdy — B* fy — K29} —
= O(h* + R’k + hE* + K*)  (34)



Collecting terms with 1, h, k, etc. as before we get

oau— Bu, = 7y
ac—LPBec; = 0
ad—fd, = 0

1
Oéf - ﬂfm = _éﬂummm
ag—pB9: = 0

The main difference from before is that the equations for the function ¢ are now homo-
geneous implying that c(t,2) = 0 and that the error consequently is O(h? + k?) as is
customary for Crank-Nicolson.

6 An asymmetric second order approximation

In some cases the introduction of the fictitious point is not desirable but using formula
(11) we have another way of achieving second order accuracy. The derivative boundary
condition (3) now leads to:

—Up2 + 4vUp1 — 3Un
2h

Qv — (35)

and the error expansion gives

oaf{u — hc—kd — h*f — k*g} — B{u, — %hQUIm — hey — kdy — WP f, — K?g,} —
= O(h® + h’k + hk*> + K*)  (36)

Collecting terms as before we get

au — 6“:6 Y
ac— fBe, = 0
ad—fBd, = 0
1
af - 6fz = gﬁuwww

The only difference from the symmetric case is the factor on the right hand side in the
equation for the function f. We conclude that also in this case c(¢,2) = 0 and that the
error consequently is O(h? + k?) as above.



7 Experimental determination of the order

If one performs computations with different step sizes then a Richardson extrapolation [5]
can give information on the discretization error. As before we assume that

vy, = u—hc—kd—h2f—k’qg+--- (37)

where the subscript 1 on the computed function v now indicates that the computation has

been performed with step sizes £ and h. We repeat the calculation with step sizes £ and
h/2:

1 1
vy = u—§hc—kd—1h2f—k29+--- (38)
By subtraction
1 3
Vo — V1 = §h0+1h2f+ (39)

Now we repeat the calculation with step sizes k and h/4:

1 1, 9
= u—~hc—kd— — — 4
v3 u 4hc kd 16h f—kg+ (40)
1 3
— = “hc+ —h? 41
V3 (%) 1 C+16 f+ ( )

For every grid point in the coarsest grid, i.e. corresponding to k£ and h we can compute
these differences and their quotient:

va — U1 _ 26+§hf+"' (42)

V3 — V2 C+th+
If ¢(t,z) # 0 and we can expect hc to be the dominant term we would expect to see
numbers close to 2.0 at all points indicating that the approximation is O(h). On the other
hand if ¢(t, ) = 0 and h?f is the dominant term then we would expect to see numbers close
to 4.0 all over the place. As it is easy to distinguish numbers close to 2.0 from numbers
close to 4.0 the determination of the order of the method is pretty reliable. But one should
compute these quotients for many (all) grid points because there may be (more or less)
isolated points where the value deviates considerably from the otherwise accepted value,
e.g. because the function c(t, z) takes on a small value at the grid point in question. More
about this phenomenon in the examples.

Furthermore if our investigations indicate that c¢(t,z) # 0 then we can get approximate
values of this function from

4 3

c(t,z) = E(’Ug —vg) — th(t, z)+--- (43)



by ignoring the last term. Similarly, if ¢(¢,2) = 0 then we can find f(¢,z) from

fta) = goples— )+ (49)

Completely similar investigations can be performed w.r.t. the step size k£ and the function
g(t,z) and we can thus have an experimental verification of the order of the method as
well as some information on the leading terms in the error.

A further discussion of the reliability of formulas (42) — (44) will be postponed to the
examples where it is easier to point out the strengths and shortcomings of this approach.

8 An example

We shall illustrate our techniques on a simple example involving the heat equation:

Ut = Ugy t20,0§x§7r/2

with initial condition

u(0,z) = cosx 0<z<m/2

and boundary conditions

uz(t,0) = 0 t>0,
u(t,m/2) =0 t>0.

The solution is u(t,z) = e~*cos .

We have solved numerically (using h = 7/80 and £ = 0.025) the initial-boundary value
problems for ¢(¢,z) and ¢(t, z) corresponding to the first order boundary approximation
and show the results graphically in Fig. 1 and Fig. 2.

The values of ¢(t,z) lie between 0 and 0.31 and those of g(¢,z) between 0 and 0.030.
With A = 7/80 the contribution to the error from hc(t,z) is between 0 and 0.0013, and
with k£ = 0.025 the contribution from k%g(¢,z) is less than 0.16 % of that. To reduce the
truncation error it is therefore essential to reduce h. This will of course increase the value of
A = k/h? and consequently tend to introduce oscillations, so typical of the Crank-Nicolson
process. Such oscillations are visible in Fig. 1. near (0, 0).

Using formula (42) and the similar one for & we check the order of the method calculating
the ratios on a 10 x 10 grid using step sizes that are four times smaller. The results are
shown in Fig. 3 and Fig. 4 for h and £ respectively.
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t\x 000 016 031 047 063 079 094 110 126 141
0.10 21 21 21 21 21 21 21 21 19 16
0.20 21 21 21 21 21 21 21 21 21 21
0.30 21 20 20 21 21 21 21 21 21 21
0.40 20 20 20 20 20 20 20 20 21 21
0.50 20 20 20 20 20 20 20 20 20 20
0.60 20 20 20 20 20 20 20 20 20 20
0.70 20 20 20 20 20 20 20 20 20 20
0.80 20 20 20 20 20 20 20 20 20 20
0.90 20 20 20 20 20 20 20 20 20 20
1.00 20 20 20 20 20 20 20 20 20 20

Fig. 3.
h-ratio

t\x 000 016 031 047 063 079 094 110 126 141
0.10 76 -255 -44 -63 32 56 -366 47 44 41
0.20 714 58 42 42 38 41 40 38 38 38
030 -111 17 45 39 40 40 40 40 40 40
0.40 -2.7 21 42 40 40 40 40 40 40 40
0.50 03 28 40 40 40 40 40 40 40 40
0.60 18 33 40 40 40 40 40 40 40 40
0.70 26 36 40 40 40 40 40 40 40 40
0.80 31 38 40 40 40 40 40 40 40 40
0.90 34 39 40 40 40 40 40 40 40 40
1.00 36 40 40 40 40 40 40 40 40 40

Fig. 4.
k-ratio

The method is clearly first order in h with only few values deviating appreciably from 2.0.
The picture is more confusing for & where the second order is only convincing for larger
values of ¢ or z. Negative ratios near (0,0) indicate oscillating behaviour and a greater
sensitivity is to be expected here since k?¢(t, x) is so much smaller than hc(t, x)

The values for ¢(t, ) as determined by (43) with A = 7 /80 and k = 0.025 agree within 7 %
with those obtained from solving the differential equation for ¢ and a better agreement can
be obtained using smaller step sizes and/or Richardson extrapolation. The corresponding
determination of g(¢,z) is reasonably good when ¢t and z are not too close to 0. In the
regions where we have difficulty determining the order (cf. Fig. 4) we can of course have
little trust in an application of formula (44) but in regions where the ratio (42) is between
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3.0 and 5.0 the agreement is within 8 % with the step sizes chosen.

With the second order boundary approximations c(t,z) is expected to be identically 0,
and the derivative boundary condition for f reduces to f;(¢,0) = 0 since ¢;; = 0 and
Uzzz(t,0) = e sin 0 = 0.

The inhomogeneous term in the differential equation for f is now

1 1, 1
——QUgggpg = ———C€ "COST = — Uy
12 12 12

and we therefore see that f(¢,z) = —g(t, z).

For the symmetric approximation (10) the ratio (42) assumes values between 3.997 and
4.001 for the h-dependence and between 4.004 and 4.005 for the k-dependence when using
h = 7/20 and k = 0.1. These good results are due to the fact that the next terms in the
error expansion (12) are h* and k* because of the symmetry and therefore interfere little.
The values for f and g agree within 1 % with each other and with the values obtained
from the independent solution of the differential equation.

For the asymmetric second order boundary approximation (11) the second order in & is
clearly detectable on the 10 x 10 grid using A = 7/20 and k = 0.1 (see Fig. 6) whereas step
sizes four times smaller are needed to produce satisfactory results for A (cf. Fig. 5). The
values obtained here for ¢(t,z) agree within 1 % with those previously obtained whereas
the values for f(t,z) are 10 - 20 % too small in agreement with the order being determined
consistently 10 - 20 % too small. The presence of an interfering h3-term in the error
expansion is clearly noticeable here.

t\x 000 016 031 047 063 079 094 110 126 141
0.10 26 32 36 38 39 39 40 40 40 40
0.20 31 34 35 37 38 38 39 39 39 40
0.30 33 34 36 37 37 38 38 39 39 39
0.40 33 35 36 36 37 38 38 38 38 38
0.50 34 35 36 36 37 37 38 38 38 38
0.60 34 35 36 36 37 37 37 38 38 38
0.70 35 35 36 36 37 37 37 37 38 38
0.80 35 385 36 36 37 37 37 37 37 37
0.90 35 36 36 36 37 37 37 37 37 37
1.00 35 36 36 36 37 37 37 37 37 37

Fig. 5.
h-ratio
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t\x 000 016 031 047 063 079 094 110 126 141
010 63 52 24 36 44 43 41 40 40 39
020 37 38 42 42 39 39 39 40 41 41
030 42 41 38 40 40 40 40 40 40 40
040 39 40 41 40 40 40 40 40 40 40
050 40 40 40 40 40 40 40 40 40 40
060 40 40 40 40 40 40 40 40 40 40
070 40 40 40 40 40 40 40 40 40 40
080 40 40 40 40 40 40 40 40 40 40
090 40 40 40 40 40 40 40 40 40 40
100 40 40 40 40 40 40 40 40 40 40

Fig. 6.

k-ratio

Since f = —g it is very tempting to try equal step sizes with the second order boundary

approximations. Using h = k = /80 we can confirm that the symmetric approximation
now leads to a method which is fourth order (see Fig. 7). We mention in passing that the
asymmetric approximation (11) leads to a method which is third order in the common step

size.
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Fig. 7.
h-ratio
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9 An example from electrochemical kinetics

The second example is borrowed from electrochemistry, more precisely from a model for lin-
ear potential scan voltammetry, cf. [2]. The unconditional (matrix-)stability of the Crank-
Nicolson method may be violated if a time-dependent boundary condition is approximated
in the wrong way and for this reason we analyzed several boundary approximations in that
paper. We shall consider two of them here corresponding to approximations (9) and (10)

and denoted F1 and C1 in [2].

Again we have the simple diffusion equation

Uy = Ugy,

t>0,0<z<L

where u is the concentration of a chemical species. The initial concentration is

u(0,2) =1,
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9(t,x)
and the boundary conditions are
a(t)u(t,0) — ug(t,0) = 0, > 0,
u(t,L) =1, t>0,
where
a(t) = eXP(_%(T — 1)), 0<t<t,
B exp(—%(T - Zts + t))7 ts <t S tmam

and e, =48, t, =24, 71 =12, L = 42 = 6+/taz-

In Figs. 8-11 we show the concentration u(t,z) and the functions c(¢, x), f(t,z) and g(¢, x)
as computed numerically with step sizes h = 0.1, £ = 0.01.

In Fig. 12 we show the result of applying formula (42) on part of the area in question
and corresponding to the first-order approximation (9). The numbers clearly indicate an
O(h)-approximation, and numbers significantly different from 2.0 are found only at places
where c(t,z) assumes small values. The corresponding numbers in Fig. 13 indicate an
O(k?)-dependence with deviations from 4.0 at small ¢-values where g(¢,z) is small and
close to (0,0) where oscillations are present.
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A comparison of the c(t, z)-values determined from the numerical integration and from
formula (43) reveal deviations less than 10% everywhere except in a small region near
(0,0).

Using the symmetric boundary approximation (10) we get results which are second order
in h as well as in k£ as witnessed by Figs. 14 and 15.

The values for ¢(¢,z) as computed by the formula corresponding to (44) for the two bound-
ary approximations deviate by less than 5% in most places. The correspondence with the
values from the numerical integration is not quite as good near (0,0) where oscillations
influence the quality of the numerical integration.
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