
Polymorphic Subtyping for Side E�ects

Torben Amtoft & Flemming Nielson & Hanne Riis Nielson

Computer Science Department, Aarhus University, Denmark

e-mail: {tamtoft,fn,hrn}@daimi.aau.dk

October 9, 1997

Abstract

The integration of polymorphism (in the style of the ML let-construct),

subtyping, and e�ects (modelling assignment or communication) into one

common type system has proved remarkably di�cult. This paper presents

a type system for (a core subset of) Concurrent ML that extends the ML

type system in a conservative way and that employs all these features; and in

addition causality information has been incorporated into the e�ects (which

may therefore be termed �behaviours�).

The semantic soundness of the system is established via a subject reduction

result. An inference algorithm is presented; it is proved sound and (in a

certain sense) also complete. A prototype system based on this algorithm

has been implemented and can be experienced on the WWW; thanks to

a special post-processing phase it produces quite readable and informative

output.

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 State of the Art . 8

1.3 Major Achievement I: Causality 10

1.4 Semantic Soundness . 10

1.5 An Inference Algorithm . 11

1.6 Syntactic Soundness . 12

1.7 Major Achievement II: Completeness 13

1.8 Implementation . 13

1.9 Future Work . 13

2 The Static Semantics 15

2.1 Annotated Types . 20

2.2 Subtyping . 24

2.3 Instantiation . 29

2.4 Generalisation . 30

2.4.1 The Arrow Relation 31

2.4.2 Well-formedness . 32

2.5 Working with the Inference System 34

2.6 Basic Properties of the Inference System 40

2

2.7 Proof Normalisation . 42

2.8 Conservative Extension . 44

2.9 Properties of the Arrow Relation 46

3 The Dynamic Semantics 50

3.1 The Sequential Semantics . 51

3.2 The Concurrent Semantics . 56

3.3 Reasoning about Proof Trees 57

3.4 Sequential Soundness . 61

3.5 Erroneous Programs cannot be Typed 66

3.6 Concurrent Soundness . 67

4 The Inference Algorithm 78

4.1 AlgorithmW . 79

4.2 AlgorithmW 0 . 80

4.3 Algorithm F . 84

4.3.1 Termination and Soundness of F 89

4.4 Algorithm R . 91

4.4.1 Termination and Soundness of R 97

4.4.2 Variants of R . 98

4.4.3 Results concerning Con�uence and Determinism 98

4.5 Syntactic Soundness of Algorithm W 100

4.6 Relation to ML Typing . 101

5 Completeness of the Inference Algorithm 102

5.1 Lazy Instance . 102

5.2 The Completeness Result . 104

5.3 Completeness of F . 106

3

5.4 Completeness of R . 107

5.4.1 Variants of R . 110

5.5 Completeness of AlgorithmW 110

5.6 Relation to ML Typing . 110

6 Post-processing the Inference Algorithm 112

6.1 Solving Region Constraints . 114

6.2 A Catalogue of Behaviour Transformations 115

6.2.1 Simpli�cation . 116

6.2.2 Hiding . 116

6.2.3 Unfolding . 116

6.2.4 Collapsing . 117

6.3 The Notion of Bisimulation 117

6.4 Correctness of the Transformations 120

6.4.1 Simpli�cation . 121

6.4.2 Hiding . 121

6.4.3 Unfolding . 123

6.4.4 Collapsing . 124

6.5 Semantic Soundness . 126

6.5.1 Semantic Soundness of the Overall System 129

7 Conclusion 130

A Proofs of Results Concerning the Basic Framework 131

B Proofs of Results Concerning the Semantics 148

C Proofs of Results Concerning the Algorithm 160

D Proofs of Results Concerning Completeness 172

4

E Proofs of Results Concerning Post-processing 195

F List of Symbols 201

5

List of Figures

2.1 Expressions e 2 Exp . 17

2.2 Expressions e 2 EExp . 17

2.3 Translating from Exp to EExp 18

2.4 The standard types of constants 23

2.5 The type inference system . 25

2.6 Subtyping . 27

2.7 Sube�ecting . 28

2.8 Subregions . 29

2.9 Our variant of the ML type inference system 45

3.1 The evaluation function � . 51

4.1 Syntax-directed constraint generation 81

4.2 Decomposition of constraints 85

4.3 Rewriting rules for F : forcing well-formedness 85

4.4 Forced matching . 88

4.5 Eliminating constraints . 92

6.1 The bisimulation relation � 118

6.2 The relation
�
� on action con�gurations 119

6

Chapter 1

Introduction

1.1 Motivation

The last decade has seen a number of papers addressing the di�cult task of

developing type systems for languages that admit polymorphism in the style

of the ML let-construct, that admit subtyping, and that admit e�ects as

may arise from assignment or communication.

This is a problem of practical importance. The programming language Stan-

dard ML has been joined by a number of other high-level languages demon-

strating the power of polymorphism for large scale software development. Al-

ready Standard ML contains imperative e�ects in the form of ref-types that

can be used for assignment; closely related languages like Concurrent ML or

Facile further admit primitives for synchronous communication. Finally, the

trend towards integrating aspects of object orientation into these languages

necessitates a study of subtyping.

Apart from the need to type such languages we see a need for type sys-

tems integrating polymorphism, subtyping, and e�ects in order to be able

to continue the present development of annotated type and e�ect systems

for a number of static program analyses; example analyses include control

�ow analysis, binding time analysis and communication analysis. This will

facilitate modular proofs of correctness while at the same time allowing the

inference algorithms to generate syntax-free constraints that can be solved

e�ciently.

7

1.2 State of the Art

Polymorphism. One of the pioneering papers in the area is [11] that devel-

oped the �rst polymorphic type inference system, and an algorithm, for the

applicative fragment of ML; a shorter presentation for the typed �-calculus

with let is given in [4].

Subtyping. Since then many papers have studied how to integrate sub-

typing. A number of early papers did so by mainly focusing on the typed

�-calculus and only brie�y dealing with let [12, 6]. Later papers have treated

polymorphism in full generality [26, 8]. A key ingredient in these approaches

is the simpli�cation of the enormous set of constraints into something man-

ageable [5, 26].

E�ects. Already ML necessitates an incorporation of imperative e�ects

due to the presence of ref-types. A pioneering paper in the area is [30] that

develops a distinction between imperative and applicative type variables:

for creation of a reference cell we demand that its type contain imperative

variables only; and one is not allowed to generalise over imperative variables

unless the expression in question is non-expansive (i.e. does not expand the

store) which will be the case if it is an identi�er or a function abstraction.

The problem of typing ML with references (but without subtyping) has lead

to a number of attempts to improve upon [30]; this includes the following:

� [32] is similar in spirit to [30] in that one is not allowed to generalise over

a type variable if a reference cell has been created with a type containing

this variable; to trace such variables the type system is augmented

with e�ects. E�ects may be approximated by larger e�ects, that is the

system employs sube�ecting.

� [28] can be considered a re�nement of [32] in that e�ects also record

the region in which a reference cell is created or a read/write operation

is performed; this information enables one to �mask� e�ects which have

taken place in �inaccessible� regions.

� [10] presents a somewhat alternative view: here focus is not on detecting

creation of reference cells but rather to detect their use; this means

8

that if an identi�er occurs free in a function closure then all variables

in its type have to be �examined�. This method is quite powerful but

unfortunately it fails to be a conservative extension of ML: some purely

applicative programs which are typeable in ML may be untypeable in

this system.

The surveys in [28, section 11] and in [32, section 5] show that many of these

(and other) systems are incomparable, in the sense that for any two ap-

proaches it will often be the case that there are programs which are accepted

by one of them but not by the other, and vice versa. Our approach (which

will be illustrated by a fragment of Concurrent ML but is equally applicable

to Standard ML with references) involves subtyping which is strictly more

powerful than sube�ecting (as shown in Sect. 2.5); apart from this we do

not attempt to measure its strength relative to other approaches but we do

demonstrate that it is a conservative extension of ML (Sect. 2.8).

Integration. In the area of static program analysis, annotated type and

e�ect systems have been used as the basis for control �ow analysis [29] and

binding time analysis [16, 7]. These papers typically make use of a poly-

morphic type system with subtyping and no e�ects, or a non-polymorphic

type system with e�ects and subtyping. A more ambitious analysis is the

approach of [17] to let annotated type and e�ect systems extract terms of

a process algebra from programs with communication; this involves poly-

morphism and sube�ecting but (presumably because the inference system is

expressed without using constraints) the algorithmic issues are non-trivial

[14]; [1] presents an algorithm that is sound as well as complete, but which

generates constraints that we do not know how to solve in the general case.

Finally we should mention [31] where e�ects are incorporated into ML types

in order to deal with region inference.

The type system presented in [19] is a major step towards integrating poly-

morphism, subtyping, and e�ects; it generalises the sube�ecting approach

of [28] and admits e�ects into the subtyping approaches of [26, 8]. A key

insight is that in order to establish semantic soundness (as is formally done

in [2]) one must be very careful when deciding the set of variables over which

to generalise in the inference rule for let: not only should this set be dis-

joint from the set of variables occurring in the e�ect (as is standard in e�ect

systems, e.g. [28]) but it should also be upwards closed with respect to a

9

constraint set. To keep the development in [19] as simple as possible, region

information is omitted from the e�ects.

1.3 Major Achievement I: Causality

Chapter 2 reintroduces regions and further improves on [19] in that causality

is incorporated into the e�ects, thus following [17], and we shall therefore

prefer to use the word �behaviours� rather than �e�ects�. At the same time we

slightly reformulate the notion of upwards closure used in the generalisation

rule (cf. the preceding paragraph). Judgements take the form

C;A ` e : t& b

with e an expression, b a behaviour, t a type annotated with behaviour in-

formation (as e.g. the function type int !b int), C a set of constraints

among types and behaviours and regions, and A an environment. A subtyp-

ing relation is de�ned using a sube�ecting relation on behaviours, with the

usual contravariant ordering for function space.

1.4 Semantic Soundness

Chapter 3 addresses the soundness of the static semantics (i.e. the type sys-

tem) wrt. a dynamic semantics. Statements of semantic soundness typically

contain as premise that the inference system assigns a type t to e but the

conclusion depends on the kind of dynamic semantics used: for a denota-

tional semantics one may require (as in [11]) that the denotation of e �has

type� t; for a big-step (natural) semantics one may require (as in [30, 10])

that if e! v then v �has type� t; for a small-step semantics [21] one requires

(as in [33]) the following subject reduction property: if e! e0 then the infer-

ence system also assigns e0 the type t. In addition, in order to ensure that

�well-typed programs do not go wrong� [11] one must establish that �error

con�gurations� (those which are �stuck�) cannot be typed.

We shall choose a small-step semantics as we consider this the most appropri-

ate for concurrent languages; the con�gurations of the transition system will

be process pools PP which map process identi�ers into expressions. To get

10

a �avour of how subject reduction is formulated in our setting consider the

case where PP rewrites to PP 0 because process p allocates a fresh channel

ch in region � which is able to transmit values of type t0, and suppose that

C;A ` PP (p) : t& b

holds: then Theorem 3.28 tells us that we also have

C;A[ch : t0 chan �] ` PP 0(p) : t& b0

where b approximates t0 chan �; b0 (that is, the sequential composition of the

�current action� t0 chan � and the �future action� b0). The general picture is

much as in [17] that types are unchanged whereas the behaviours get �smaller�

and the environments are �extended�.

Extending the environment is a potential danger to semantic soundness, cf.

the considerations in [30, section 5] where it was concluded that store opera-

tions in Standard ML are harmless unless they actually expand the store. In

Example 2.6 it is demonstrated that channel allocations (the way our setting

�expands the store�) may be harmful unless one is very careful when deciding

the set of variables over which to generalise in the rule for let in the infer-

ence system; the proof of Lemma 3.24 highlights how the judicious choice of

generalisation strategy actually allows to extend the environment.

1.5 An Inference Algorithm

In Chap. 4 we shall aim at constructing a type reconstruction algorithm in the

spirit of Milner's algorithmW [11]: given an expression e and an environment

A, the recursively de�ned function W will produce a substitution S, a type

t, and a behaviour b. The de�nition in [11] employs uni�cation [23]: if e1
has been given type t0 ! t1 and e2 has been given type t2 then in order to

type e1 e2 one must unify t0 and t2. Uni�cation works by decomposition: in

order to unify t1 ! t2 and t01 ! t02 one recursively uni�es t1 with t01 and

t2 with t02. Decomposition is valid because types constitute a �free algebra�:

two types are equal if and only if they have the same top-level constructor

and also their subcomponents are equal. However, this will not be the case

11

for behaviours, and therefore W of [11] cannot immediately be generalised

to work on annotated types.

We thus have to rethink the uni�cation algorithm; and as the behaviours

of this paper do not seem to satisfy simple algebraic properties (such as

associativity or commutativity) it appears unlikely that we can adapt results

from uni�cation theory [24] (to get a uni�cation algorithm producing a set

of uni�ers from which all other uni�ers can be derived). Therefore we shall

instead follow [9] and generate behaviour constraints: that is, in the process

of uni�ng t1 !
b t2 and t01 !

b0 t02 we generate constraints relating b and b0.

In order to incorporate subtyping we also need to generate type constraints

as in [6, 26]. The presence of type constraints is a consequence of our over-

all design: types and behaviours should be inferred simultaneously �from

scratch�, as is done by the algorithm W presented in Sect. 4.1. This should

be compared with the approach in [29, chapter 5] where an e�ect system

with subtyping but without polymorphism is presented; as the �underlying�

types are given in advance it is su�cient to generate behaviour constraints.

The constraints generated by W have to be massaged so as to satisfy certain

invariants and for this we devise the algorithm F (Sect. 4.3), inspired by [6].

Still the algorithm will produce a rather unwieldy number of constraints; to

reduce this number substantially we may apply an algorithm R (de�ned in

Sect. 4.4) which adapts the techniques of [5, 26].

1.6 Syntactic Soundness

In Sect. 4.5 we shall prove thatW is (syntactically) sound, that is ifW(A; e) =

(S; t; b; C) then C; S A ` e : t& b.

As the main distinguishing feature of our inference system (as mentioned

above), essential for semantic soundness, was the choice of generalisation

rule; so the distinguishing feature of our algorithm, essential for syntactic

soundness (and eventually for syntactic completeness), is the choice of gener-

alisation rule. This involves (rather similar to [32]) taking downwards closure

of a set of variables with respect to a constraint set.

12

1.7 Major Achievement II: Completeness

Chapter 5 is devoted to the di�cult task of proving the completeness of the

algorithm presented in Chap. 4. Theorem 5.18 demonstrates that if

C�; A� ` e : ��& b�

and if certain well-formedness criteria are ful�lled (to be discussed in Sect. 5.2),

then this judgement will be an �instance� of what is produced by W.

1.8 Implementation

The resulting algorithm W (which employs F and R) has been used as the

basis of a prototype implementation, available for experimentation on the

WWW1; we do not attempt to estimate the complexity of the algorithm.

The system post-processes the constraints generated by W so as to produce

readable output; in Chapter 6 we mention a selection of the techniques used

and show that the resulting constraint set is in a certain sense bisimilar to

the original constraints.

[3] contains a description of the system, illustrated by several examples, as

well as a brief account of the underlying theory (to be developed in the rest of

this document). It turns out [15] that the system greatly assists in validating

a number of safety properties for �realistic� concurrent systems.

1.9 Future Work

We have seen that the present development integrates many features from

previous approaches in the literature; below we mention some features that

are not yet covered:

� unlike [6, 26] we do not allow inclusion between base types, such as

int � real;

1http://www.daimi.aau.dk/�bra8130/TBA/TBA.html.

13

� unlike [7, 31] we do not enable polymorphic recursion in the type an-

notations.

14

Chapter 2

The Static Semantics

For illustrating our approach we have chosen a variant of Concurrent ML

(CML) [22, 20] which includes

� identi�ers x, function abstractions fn x)e and function applications

e1 e2 (as in the �-calculus);

� polymorphic let-expressions (as in ML [11]);

� recursive functions and conditionals (to facilitate programming);

� constructors (for building data structures);

� base functions (for inspecting and decomposing data structures).

Base functions as well as constructors are divided into two classes: the se-

quential (known from ML) and the non-sequential (incorporating the concur-

rency aspect); with F ranging over base functions, all unary, and with Cn

ranging over n-ary constructors (n � 0) we thus have

F ::= Fs j Fc

Cn ::= Cn
s j C

n
c

The sequential constructors will at least include the unique element of the

unit type, the two booleans, numbers (n 2 Num), pair for constructing

pairs, and nil and cons for constructing lists:

15

C0
s ::= () j true j false j n j nil

C2
s ::= pair j cons

The sequential base functions will at least include a selection of arithmetic

operations, fst and snd for decomposing a pair, and hd, tl and null for

decomposing and inspecting a list:

Fs ::= + j - j * j / j = j � � �

j fst j snd j hd j tl j null

The unique �avour of Concurrent ML is due to the non-sequential constants

which are the primitives for communication; we include �ve of these but more

(in particular choose and wrap) can be added.

C1
c ::= transmit j receive

Fc ::= sync j channell j spawn

The non-sequential constructors are transmit and receive: rather than ac-

tually enabling a communication they create delayed communications which

are �rst-class entities that can be passed around freely. This leads to a very

powerful programming discipline, in particular in the presence of choose and

wrap1, as is discussed in [22]. The non-sequential base functions are spawn,

sync, channell and these are explained below.

The function spawn spawns a new process e when applied to the expression

fn x)e (where x is not used in e); this process will then execute concurrently

with the other processes, one of which is the program itself.

The function sync synchronises (i.e. activates) a delayed communication.

Thus one process can send the value of e to another process by the expression2

sync (transmit (ch,e)) where communication takes place along the channel

ch. Similarly a process can receive a value from another process by the

expression3 sync (receive (ch)).

A function channell allocates a new typed communication channel when

applied to (); in order to keep track of the origin of the allocated channels

1To add these constants requires a non-trivial reformulation of the semantics presented
in Chap. 3.

2In CML, this can also be written send (ch,e).
3In CML, this can also be written accept(ch).

16

e ::= x j fn x)e j e1 e2 j let x = e1 in e2
j rec f x)e j if e then e1 else e2
j F <e>j Cn<e1; � � � ; en>

Figure 2.1: Expressions e 2 Exp

e ::= c j x j fn x)e j e1 e2 j e0 @
s
n < e1; � � � ; en >

j let x = e1 in e2 j rec f x)e j if e then e1 else e2

c ::= F j C0 j C1 j C2 j � � �

Figure 2.2: Expressions e 2 EExp

each syntactic occurrence of channel is assigned a label l (taken from some

unspeci�ed set Lab).

Source programs are expressions without any free identi�ers, where ex-

pressions (e 2 Exp) are given by the syntax in Figure 2.1. We thus require all

constructors and base functions to be fully applied; this facilitates the techni-

cal development and is no serious restriction as �partial applications� can eas-

ily be encoded: instead of writing say cons 3 one writes fn x)cons<3; x>.

We shall allow to write C0 for C0< >, to write (e1,e2) for pair<e1; e2>,

to write [] for nil, and to write [e1; � � � ; en] for cons< e1; [e2; � � � ; en]>.

Additionally we shall write e1;e2 for snd<(e1,e2)>; to motivate this notice

that since the language is call-by-value, evaluation of the latter expression

will give rise to evaluation of e1 followed by evaluation of e2, the value of

which will be the �nal result.

When typing expressions it is convenient to work with extended expressions

(e 2 EExp), given by the syntax4 in Figure 2.2: Compared to Fig. 2.1 the

full application of a constructor or base function has been removed, instead

constants have become �rst class objects and a special kind of �silent function

application� e0 @
s
n < e1; � � � ; en > (n � 1) has been introduced.

There is a natural injection T from Exp into EExp as tabulated in Fig.

2.3, exploiting that application of a constructor and the application of a

sequential base function takes place �silently� whereas the application of a

non-sequential base function may have visible (audible!) e�ect.

4In this �gure, e ranges over EExp.

17

T (x) = x

T (fn x)e) = fn x)T (e)

T (e1 e2) = T (e1) T (e2)

T (let x = e1 in e2) = let x = T (e1) in T (e2)

T (rec f x)e) = rec f x)T (e)

T (if e then e1 else e2) = if T (e) then T (e1) else T (e2)

T (Fs<e>) = Fs@
s
1 < T (e) >

T (Fc<e>) = Fc T (e)

T (C0<>) = C0

T (C1<e1>) = C1 @s
1 < T (e1) >

T (C2<e1; e2>) = C2 @s
2 < T (e1); T (e2) >

Figure 2.3: Translating from Exp to EExp

We shall often identify e 2 Exp with T (e) 2 EExp; whether e ranges over

Exp or EExp will usually be clear from context.

Remark We stated in the Introduction that our development is widely ap-

plicable. To this end it is worth pointing out the similarities between the ref-

types of Standard ML and the delayed communications of Concurrent ML. In

particular ref e corresponds to channel<()>, e1:=e2 corresponds to sync<

transmit<(e1,e2)> >, and !e corresponds to sync < receive<e> >.

Looking slightly ahead the Standard ML type t ref will correspond to the

Concurrent ML type t chan . 2

Example 2.1 The following CML-program map2 is a version of the well-

known map function except that a process is spawned for each tail while the

spawning process itself works on the head.

rec map2 f =>

fn xs =>

if null(xs) then []

else let ch = channel1 ()

in spawn (fn d =>

(sync (transmit (ch, map2 f (tl xs)))));

cons (f (hd xs))

(sync (receive ch))

18

Let f be a function which when applied to an argument of type �1 performs

the concurrent actions indicated by �1 and at the end returns a value of

type �2. Then map2 f will be a function which when applied to a list xs

will perform the following concurrent actions (indicated by �2): either it

performs no communication (if xs is empty) or it will �rst allocate in region

f1g a channel which transmits values of type �2 list; then it spawns a

process which �rst behaves like �2 (to work �recursively� on the tail of the

list) and then outputs to region f1g a value of type �2 list; then it performs

�1 (when computing f on the head of the list); and �nally it receives from

region f1g a value of type �2 list. 2

In Section 2.5 we shall see how our inference system enables us to express

the information sketched above in a compact way by means of behaviours.

This supports a two-stage approach to program analysis: instead of writing

a number of analyses for CML programs one writes these analyses for be-

haviours (presumably a much easier task) and then relies on one analysis

mapping CML programs into behaviours.

Example 2.2 Consider the program

fn f => let id = fn y =>

(if true

then f

else fn x =>

(sync (transmit (channel1 (), y));

x));

y

in id id

that takes a function f as argument, de�nes an identity function id, and then

applies id to itself. The identity function contains a conditional whose sole

purpose is to force f and a locally de�ned function to have the same type.

The locally de�ned function is yet another identity function except that it

attempts to send the argument to id over a newly created channel. (To be

able to execute one would need to spawn a process that could read over the

same channel.)

This program is of interest because it will be rejected by a system using

sube�ecting only, whereas it will be accepted in the systems of [28] and [30].

19

In Sect. 2.5 we shall see that we will be able to type this program in our

system as well! 2

2.1 Annotated Types

To prepare for the type inference system we must clarify the syntax of types,

behaviours, regions, substitutions, type schemes, and constraints. The syntax

of types (t 2 Typ) is given by:

t ::= � j unit j bool j int j t1 ! t2 j t1 !
� t2

j t1 � t2 j t list j t chan � j t event �

that is in addition to type variables (denoted �) we have base types including

the unit type, booleans and integers; composite types include the function

type, the product type and the list type; �nally we have the type t chan �

for a typed channel allowing values of type t to be transmitted, and the type

t event � for a delayed communication that will eventually result in a value

of type t.

Except for the presence of a �-component in t1 !
� t2 (omitted in a �silent�

function type t1 ! t2) and t event �, and the presence of a �-component

in t chan �, this is much the same type structure that is actually used in

Concurrent ML [22]. The role of the region variable � is to express the origin

of the channel, that is the label l of the channell call which created it;

accordingly the syntax of regions (r 2 Reg) is given by

r::=� j flg

The role of the behaviour variable � is to express the dynamic e�ect that

takes place when the function is applied or the delayed communication syn-

chronised; motivated by [17] the syntax of behaviours (b 2 Beh) is given

by:

b ::= � j " j b1; b2 j b1 + b2
j SPAWN b j t chan � j � ! t j � ? t

that is in addition to behaviour variables we have the empty behaviour "

(no �visible� actions take place); a sequential composition b1; b2 (�rst b1 is

20

performed and then b2); a non-deterministic choice b1+ b2 (either b1 or b2 are

performed); SPAWN b (a process with behaviour b is created); t chan � (a

channel able to transmit values of type t is created in region �); � ! t (a value

of type t is sent over a channel in region �); � ? t (a value of type t is received

over a channel in region �).

So compared with the e�ects in e.g. [28] we have (by means of the ; operator)

incorporated causality information; on the other hand we have not allowed

to mask out behaviours which operate on �inaccessible� regions (cf. Chap. 1).

In contrast to [17] there is no explicit recursion; in Section 2.5 we shall see

that constraints may implicitly give rise to �recursive� behaviours.

A substitution is a mapping from type variables into types and behaviour vari-

ables into behaviour variables and region variables into region variables such

that the domain is �nite. Here the domain of a substitution S is Dom(S) =
f
 j S
 6=
g and the range is Ran(S) =

S
fFV(S
) j
 2 Dom(S)g, where

we use the letter
 to range over �'s and �'s and �'s as appropriate (and

similarly we use g to range over t's and b's and r's as appropriate). The

identity substitution is denoted Id. The result of composing S1 and S2, i.e.

the mapping which takes each
 into S2(S1(
)), is denoted S2 S1.

A constraint set C is a �nite set of type inclusions (t1 � t2) and behaviour

inclusions (b1 � b2) and region inclusions (r1 � r2); the set of type inclusions

in C will be written Ct and the set of behaviour inclusions in C will be written

Cb and the set of region inclusions in C will be written Cr.

Remark As the result of applying a substitution S to a type must be a

(well-de�ned) type, we had to impose the restriction that S � must be of the

form � 0 (and that S � must be of the form �0). Alternatively one could allow

types to contain more complex behaviours, permitting say int !� ! int int;

the de�nition chosen amounts to demanding that types should be (what [14]

calls) simple. When designing a reconstruction algorithm it is apparently a

key feature to require all types in question to be simple, as in [27] and [32],

but in [27] the inference system employs non-simple types and in [32] a �di-

rect� as well as an �indirect� inference system (the latter geared towards an

algorithm employing constraints) is given. We have chosen (also to facilitate

the correctness proof of the algorithm) a more uniform approach, perhaps

similar in spirit to [31] where arrows are annotated with pairs of the form

�:� with � an e�ect variable and with � a set of region or e�ect variables:

one can think of this as an arrow annotated with � together with the con-

21

straint � � �. Similarly we in our framework can �encode� the above �type�

int !� ! int int as int !� int together with the constraint � ! int � �.

2

A type scheme (ts 2 TSch) is given by

ts ::= 8(~�~�~� : C): t

where ~�~�~� is the list of quanti�ed type and behaviour and region variables,

C is a constraint set, and t is the type. We regard type schemes as equivalent

up to renaming of bound variables. There is a natural injection5 from types

into type schemes which takes the type t into the type scheme 8(() : ;): t.

We use the letter � to range over types t and type schemes ts as appropriate.

An environment A is a list [c1 : �01; � � � ; cm : �0m; x1 : �1; � � � ; xn : �n] of
typing assumptions for constants and identi�ers; we let A(x) denote the

rightmost entry for x in A, similarly for A(c). We shall only deal with

standard environments, where an environment is standard if on constants it

behaves as in Figure 2.4 which we shall motivate brie�y:

First notice that all function types are silent except those occurring in non-

sequential base functions, cf. the translation in Fig. 2.3. For the sequential

constants the constraint set is empty and the type is as in Standard ML.

Turning to the non-sequential constants, the type of sync interacts closely

with the types of transmit and receive: if ch is a channel of type t chan �,

the expression receive@s
1 < ch > is going to have type t event � with

� ? t � �, and the expression sync (receive@s
1 < ch >) is going to have

type t; similarly for transmit. The type of channell records the type of

the created channel as well as its origin l in the annotation of the function

type; �nally the type of spawn records the behaviour of the spawned pro-

cess. (As discussed previously one might add wrap to the language: this

constant transforms delayed communications of type t event � into delayed

communications of type t0 event � 0.)

We will incorporate the e�ects of [28, 17] into the approach of [26, 8] by

de�ning a type inference system with judgements of the form

5We shall distinguish rather sharply between these two entities, but Observation 2.15
suggests that they may be identi�ed.

22

c A(c)

() unit

true; false bool

� � � � 1; 0; 1; 2 � � � int

+; -; *; / int� int ! int

= int� int ! bool

pair 8(�1�2 : ;): �1 ! �2 ! �1 � �2

fst 8(�1�2 : ;): �1 � �2 ! �1

snd 8(�1�2 : ;): �1 � �2 ! �2

nil 8(� : ;): � list

cons 8(� : ;): � ! � list ! � list

hd 8(� : ;): � list ! �

tl 8(� : ;): � list ! � list

null 8(� : ;): � list ! bool

transmit 8(��� : f� !� � �g): (� chan �)� � ! (� event �)

receive 8(��� : f� ?� � �g): (� chan �) ! (� event �)

sync 8(�� : ;): (� event �) !� �

channell 8(��� : f� chan � � �; flg � �g): unit !� (� chan �)

spawn 8(���0 : fSPAWN �0 � �g): (unit !�0 �) !� unit

Figure 2.4: The standard types of constants

23

C;A ` e : �& b

where C is a constraint set, A is an environment, e is an expression in EExp,

� is a type or a type scheme, and b is a behaviour. This means that e has type

or type scheme �, and that its execution will result in a behaviour described

by b, assuming that free identi�ers and constants have types as speci�ed by

A and that all variables are related as described by C.

The overall structure of the type inference system of Figure 2.5 is very close

to those of [26, 8] with a few components from [28, 17] thrown in; the novel

ideas of our approach only show up as carefully constructed side conditions

for some of the rules. Concentrating on the �overall picture� we thus have

rather straightforward axioms for constants and identi�ers: as the language

is call-by-value no actions take place when an identi�er is retrieved from the

environment. The rule for abstraction is largely as usual in e�ect systems: the

latent behaviour of the body of a function abstraction is placed on the arrow

of the function type; in our framework this behaviour must be a variable and

this can be achieved via sube�ecting (Sect. 2.2 and Fig. 2.7).

The rule(s) for application is as one may expect for a call-by-value language:

�rst the function is evaluated, then its argument is evaluated, and �nally the

function is applied enabling the latent behaviour on the function arrow; in

case of a silent function application the function type must be silent (this

will hold for expressions belonging to Exp, cf. Fig. 2.3 and Fig. 2.4). The

rule for let is straightforward given that both the let-bound expression

and the body needs to be evaluated. The rule for recursion makes use of

function abstraction to concisely represent the ��xed point requirement� of

typing recursive functions; note that we do not admit polymorphic recursion.

The rule for conditional is unable to keep track of which branch is chosen,

therefore an upper approximation of the branches is taken. We then have

separate rules for subtyping, instantiation and generalisation and we shall

explain their side conditions in subsequent sections.

2.2 Subtyping

Rule (sub) generalises the sube�ecting rule of [28] by incorporating subtyping

and extends the subtyping rule of [26] to deal with behaviours. To do this

we associate three kinds of judgements with a constraint set: the relations

24

(con) C;A ` c : A(c)& "

(id) C;A ` x : A(x)& "

(abs)
C;A[x : t1] ` e : t2 & �

C;A ` fn x)e : (t1 !
� t2)& "

(app)
C;A ` e1 : (t2 !

� t1)& b1 C;A ` e2 : t2 & b2
C;A ` e1 e2 : t1 &((b1; b2); �)

(sapp)
C;A ` e0 : (t1 ! � � � tn ! t0)& b0� � �C;A ` ei : ti& bi � � �

C;A ` e0 @
s
n < e1; � � � ; en > : t0 &(b0; b1; � � �; bn)

(let)
C;A ` e1 : ts1 & b1 C;A[x : ts1] ` e2 : t2 & b2

C;A ` let x = e1 in e2 : t2 &(b1; b2)

(rec)
C;A[f : t] ` fn x)e : t& b

C;A ` rec f x)e : t& b

(if)
C;A ` e0 : bool& b0 C;A ` e1 : t& b1 C;A ` e2 : t& b2

C;A ` if e0 then e1 else e2 : t&(b0; (b1 + b2))

(sub)
C;A ` e : t& b

C;A ` e : t0& b0
if C ` t � t0 and C ` b � b0

(ins)
C;A ` e : 8(~�~�~� : C0): t0 & b

C;A ` e : S0 t0 & b
if 8(~�~�~� : C0): t0 is solvable

from C by S0

(gen)
C [C0; A ` e : t0 & b

C;A ` e : 8(~�~�~� : C0): t0 & b
if 8(~�~�~� : C0): t0 is both well-

formed, solvable from C, and

f~�~�~�g \ FV(C;A; b) = ;

Figure 2.5: The type inference system

25

C ` t1 � t2 and C ` b1 � b2 and C ` r1 � r2 are de�ned by the rules

and axioms of Figure 2.6 and Figure 2.7 and Figure 2.8 which are mutually

recursive. In all cases we write� for the equivalence induced by the orderings.

We shall also write C ` C 0 to mean that C ` g1 � g2 for all (g1 � g2) in

C 0.

The relation C ` t1 � t2 expresses the usual notion of subtyping: given the

assumptions in C, t1 is a more precise approximation than t2. It is induced

by the sube�ecting relation so unlike e.g. [26] we do not have any ordering

on base types, such as int � real; in particular it is contravariant in the

argument position of a (silent as well as non-silent) function type. In the case

of chan note that the type t of t chan � essentially occurs both covariantly

(when used in receive) and contravariantly (when used in transmit); hence

we must require that t � t0 (and also � � �0 but not necessarily �0 � �) in

order for t chan � � t0 chan �0 to hold.

The relation C ` b1 � b2 states that given the assumptions in C, b1 is a

more precise approximation than b2 in the sense that any action performed

by b1 can also be performed by b2.
6 Its de�nition7 expresses that sequential

composition �; � is associative (seq-ass) with " as neutral element (seq-neut);

that � � � is a congruence wrt. the various behaviour constructors (cong);

and that + is least upper bound wrt. � (ub,lub). Observe that we have

no rules for relating say � ! t to � ! t0 even if t � t0; this is due to technical

reasons (in particular the desire that Lemma 2.29 should hold).

In contrast to what is standard in the literature we have explicit rules (bw)

for running the structural subtyping rules backwards; enabling us to �de-

compose� a type constraint into type and behaviour and region constraints.

On the other hand it would not make sense to run the behaviour inference

system backwards, as b1; b2 � b01; b
0
2 does not entail b1 � b01 and b2 � b02

(consider e.g. b1 = b02 = " and b01 = b2 = � ! int).

6A similar claim is formalised in [18] where a syntactically de�ned ordering on be-
haviours is shown to be a decidable subset of the undecidable simulation ordering, de�ned
using an operational semantics for behaviours.

7One might also add the rule C ` (b1 + b2); b3 � (b1; b3) + (b2; b3).

26

(axiom) C ` t1 � t2 if (t1 � t2) 2 C

(re�) C ` t � t

(trans)
C ` t1 � t2 C ` t2 � t3

C ` t1 � t3

(!)
C ` t01 � t1 C ` t2 � t02
C ` (t1 ! t2) � (t01 ! t02)

C ` t01 � t1 C ` t2 � t02 C ` � � � 0

C ` (t1 !
� t2) � (t01 !

�0 t02)

(�)
C ` t1 � t01 C ` t2 � t02
C ` (t1 � t2) � (t01 � t02)

(list)
C ` t � t0

C ` (t list) � (t0 list)

(chan)
C ` t � t0 C ` � � �0

C ` (t chan �) � (t0 chan �0)

(event)
C ` t � t0 C ` � � � 0

C ` (t event �) � (t0 event � 0)

(bw)
C ` (t1 !

� t2) � (t01 !
�0 t02)

C ` t01 � t1

C ` (t1 ! t2) � (t01 ! t02)

C ` t01 � t1

C ` (t1 !
� t2) � (t01 !

�0 t02)

C ` t2 � t02

C ` (t1 ! t2) � (t01 ! t02)
C ` t2 � t02

C ` (t1 � t2) � (t01 � t02)

C ` t1 � t01

C ` (t1 � t2) � (t01 � t02)

C ` t2 � t02

C ` (t list) � (t0 list)

C ` t � t0

C ` (t chan �) � (t0 chan �0)

C ` t � t0
C ` (t chan �) � (t0 chan �0)

C ` t0 � t

C ` (t event �) � (t0 event � 0)

C ` t � t0

Figure 2.6: Subtyping

27

(axiom) C ` b1 � b2 if (b1 � b2) 2 C

(re�) C ` b � b

(trans)
C ` b1 � b2 C ` b2 � b3

C ` b1 � b3

(cong)
C ` b1 � b01 C ` b2 � b02

C ` b1; b2 � b01; b
0
2

C ` b1 � b01 C ` b2 � b02
C ` b1 + b2 � b01 + b02

C ` b � b0

C ` SPAWN b � SPAWN b0

(seq-ass) C ` b1; (b2; b3) � (b1; b2); b3

(seq-neut) C ` "; b � b C ` b; " � b

(ub) C ` b1 � b1 + b2 C ` b2 � b1 + b2

(lub)
C ` b1 � b C ` b2 � b

C ` b1 + b2 � b

(bw)
C ` (t1 !

� t2) � (t01 !
�0 t02)

C ` � � � 0

C ` (t event �) � (t0 event � 0)

C ` � � � 0

Figure 2.7: Sube�ecting

28

(axiom) C ` r1 � r2 if (r1 � r2) 2 C

(re�) C ` r � r

(trans)
C ` r1 � r2 C ` r2 � r3

C ` r1 � r3

(bw)
C ` (t chan �) � (t0 chan �0)

C ` � � �0

Figure 2.8: Subregions

2.3 Instantiation

Rule (ins) is much as in [26] and merely says that to take an instance of a type

scheme we must ensure that the constraints are satis�ed; this is expressed

using the notion of solvability:

De�nition 2.3 The type scheme 8(~�~�~� : C0): t0 is solvable from C by the

substitution S0 if Dom(S0) � f~�~�~�g and if C ` S0C0.

A type scheme ts is solvable from C if there exists a substitution S such that

ts is solvable from C by S.

As 8(() : ;): t is trivially solvable from C, we stipulate that a type t is solvable

from C.

An environment A is solvable from C if it for all c in Dom(A) holds that A(c)
is solvable from C, and it for all x in Dom(A) holds that A(x) is solvable

from C. 2

Observation 2.4 As expected we have the following property: if ts and ts0

are equivalent up to renaming of bound variables, then everything that can

be derived from C;A ` e : ts& b, using (ins), can also be derived from

C;A ` e : ts0& b.

Observation 2.5 Suppose that

C;A ` e1 : t1 & b1 and C;A ` e2 : t2 & b2;

since C;A ` pair : t1 ! t2 ! t1 � t2 & " we clearly have

29

C;A ` (e1,e2) : t1 � t2 & b1; b2.

By similar reasoning we may arrive at other �derived rules�, e.g.

C;A ` e1 : t1 & b1 C;A ` e2 : t2 & b2
C;A ` e1;e2 : t2 & b1; b2

2.4 Generalisation

Except for the well-formedness requirement (explained later), rule (gen)

seems close to the corresponding rule in [26]: clearly we cannot generalise

over variables free in the global type assumptions or global constraint sets,

and as in e�ect systems (e.g. [28]) we cannot generalise over variables vis-

ible in the e�ect. Furthermore, as in [26] solvability is imposed to ensure

that we do not create type schemes that have no instances; this condition

ensures that the expressions let x = e1 in e2 and let x = e1 in (x;e2)

are going to be equivalent in the type system.

Example 2.6 Without an additional notion of well-formedness this does not

give a semantically sound rule (gen); as an example consider the expression

e given by

let ch = channel1 ()

in � � �

(sync(transmit(ch,7)))

(sync(transmit(ch,true)))

and note that it is semantically unsound (at least if �� � �� spawned some

process receiving twice over ch and adding the results). Writing C = ff1g �

�; � chan � � �; int chan � � �; bool chan � � �g and C 0 =

f�0 chan � � �g gives (with A standard)

C [C 0; A ` channel1 : unit !� �0 chan �& "

and therefore

C [C 0; A ` channel1 () : �0 chan �& �

30

and, without taking well-formedness into account, rule (gen) would give

C;A ` channel1 () : (8(�0 : C 0): �0 chan �)& �

because �0 =2 FV(C;A; �) and 8(�0 : C 0): �0 chan � is solvable from C by

either of the substitutions [�0 7! �], [�0 7! int] and [�0 7! bool]. This then

would give

C;A[ch : 8(�0 : C 0): �0 chan �] ` ch : int chan �& "

C;A[ch : 8(�0 : C 0): �0 chan �] ` ch : bool chan �& "

so that

C;A ` e : t& b

for suitable t and b. As the constraint set C does not in any way seem �un-

reasonable� or �inconsistent�, this shows that some notion of well-formedness

(for type schemes) is essential for semantic soundness; actually the example

suggests that if there is a constraint (�0 chan � � �) then one should not

generalise over �0 if it is impossible to generalise over �. 2

2.4.1 The Arrow Relation

In order to formalise the notion of well-formedness, we next associate another

kind of judgement and two kinds of closure with a constraint set. In order

to do so, we employ the notion of backwards closure:

De�nition 2.7 Let C be a constraint set. Then the backwards closure of

C, written C, is de�ned as

C = f(g1 � g2) j C `dc g1 � g2g

where `dc denotes a derivation which uses only the rules (axiom) in Figs.

2.6 and 2.7 and 2.8, the rule (trans) in Fig. 2.6 (but not in Fig. 2.7 or 2.8),

and the rules (bw) in Figs. 2.6 and 2.7 and 2.8. 2

31

So C is the least set containing C which is closed under decomposition of

type constraints and under transitive closure of the type constraints; it thus

holds that C = Ct [Cb [Cr. Notice that if (g1 � g2) 2 C then g1 as well

as g2 will be a syntactic subpart of C, implying that if C is �nite then C is

�nite and that FV(C) = FV(C).

Motivated by the concluding remark of Example 2.6 we now establish a

relation between the right hand side variable and the left hand side variables

in a constraint b � �:

De�nition 2.8 The judgement C `
 � holds i� there exists (b � �)

in C such that
 2 FV(b). 2

Remark Alternatively one could de�ne that C `
 � holds i� there

exists (b � �) in C such that
 2 topchan(b), where topchan(b) are those

variables which occur in a part of b not inside some � ! t or � ? t. This would

formalise the intuition that it is channel allocation (not read and write) which

is �dangerous�, cf. the discussion in the Introduction. We conjecture that the

future development will carry through using this revised de�nition with some

obvious modi�cations; but as it is not clear whether it will really add to the

power of the type system and as it will add a further level of complexity to

the exhibition, we shall refrain from such an attempt. 2

De�nition 2.9 For a set X of variables the downwards closure XC# and the

upwards closure XC" is given by:

XC# = f
1 j 9
2 2 X : C `
1
�
2g

XC" = f
1 j 9
2 2 X : C `
2
�
1g 2

(As usual, � denotes the re�exive and transitive closure of .) It is instruc-

tive to think of C `
1
2 as de�ning a directed graph structure upon

FV(C); then XC# is the reachability closure of X and XC" is the reachability

closure in the graph where all edges are reversed.

2.4.2 Well-formedness

We can now de�ne the notion of well-formedness for constraints and for type

schemes; for the latter we make use of the arrow relations de�ned above.

32

De�nition 2.10 Well-formed constraint sets

A constraint set C is well-formed if all behaviour constraints in C are of the

form b � � and if all region constraints in C are of the form r � �. 2

Requiring the right hand side of a behaviour constraint to be a variable

is crucial for our development and is motivated by a desire to represent

the constraints in a form such that it is easy to �read a solution�: consider

for instance the constraint set fb1 � �; b2 � �g which is equivalent to

the constraint set fb1 + b2 � �g and this suggests that one should really

�interpret� � as b1 + b2. On the other hand, we do not know how to handle

say the constraint set f� � b1; � � b2g as we have no explicit �greatest lower

bound operator�. Similarly, given the constraint set ff1g � �; f2g � �g we

should really �interpret� � as the set f1; 2g.

Fact 2.11 Let C be well-formed. Then C is well-formed; and for all substi-

tutions S also S C is well-formed. 2

We now turn to well-formedness of type schemes where we ensure that the

embedded constraints are themselves well-formed. Additionally we shall wish

to ensure that the set of variables over which we generalise is sensibly related

to the constraints (unlike the situation in Example 2.6). The key idea is that

if C `
 � then we do not generalise over
 unless we also generalise over

�. These considerations lead to:

De�nition 2.12 Well-formed type schemes

A type scheme 8(~�~�~� : C): t is well-formed if the following conditions hold:

1. C is well-formed;

2. all (g1 � g2) in C contain at least one variable among f~�~�~�g;

3. f~�~�~�g is upwards closed, i.e. f~�~�~�g = f~�~�~�g
C"
;

4. FV(Ct) \ f~� g = ;.

A type t is trivially well-formed. 2

33

Notice that if C = ; then 8(~�~�~� : C): t is well-formed, motivating why all

types are well-formed. Requirement 4 is needed in order for the following

essential closedness property:

Fact 2.13 Well-formedness and Substitutions

If 8(~�~�~� : C): t is well-formed then also S (8(~�~�~� : C): t) is well-formed (for

all substitutions S).

ProofWe can, without loss of generality, assume that (Dom(S)[Ran(S))\

f~�~�~�g = ;. Then S (8(~�~�~� : C): t) = 8(~�~�~� : S C): S t. By Fact 2.11 we

see that Requirement 1 will still hold; so as Requirements 2 and 4 are clearly

ful�lled it su�ces to show that f~�~�~�g = f~�~�~�g
S C"

, i.e. that if
 2 ~�~�~� and

S C `
 � then � 2 f~�~�~�g.

The situation thus is that there exists b with
 2 FV(b) such that (b � �) 2

S C; that is either (b � �) 2 S Ct or (b � �) 2 S Cb. But the former is

impossible: to see this, observe that all behaviour constraints in S Ct are of

the form �1 � �2, where (by Requirement 4) f�1; �2g \ f~� g = ;.

So it must be the case that (b � �) 2 S Cb; that is there exists b0 with S b0 = b

and � 0 with S � 0 = � such that (b0 � � 0) 2 Cb. As Ran(S) \ f~�~�~�g = ;

we infer that
 2 FV(b0), implying that C `
 � 0. Since 8(~�~�~� : C): t

is upwards closed we have � 0 2 f~�~�~�g, so as Dom(S) \ f~�~�~�g = ; we have

� = S � 0 = � 0 2 f~�~�~�g as desired. 2

Example 2.14 Continuing Example 2.6 note that f�0g
C0"

= f�0; �g showing
that our current notion of well-formedness prevents the erroneous typing. 2

Observation 2.15 C;A ` e : t& b holds i� C;A ` e : 8(() : ;): t& b

holds, as (gen) or (ins) can be used to conclude one of them from the other.

2.5 Working with the Inference System

In this section we shall explain in some detail how the programs in Example

2.1 and Example 2.2 can be typed using the inference system from Fig. 2.5

(in Chap. 4 we shall present an algorithm which is able to �nd such typings

automatically); and at the end we brie�y compare with other approaches.

34

Typing the program of Example 2.1

We shall see that by letting C contain the constraints

f1g � �

" � �e
"+ �c; �F ; �1; �r � �2

(�2 list) chan � � �c
SPAWN �f � �F
�e; �2; �s � �f

� ! (�2 list) � �s
� ? (�2 list) � �r

and with t = (�1 !
�1 �2) !

�e (�1 list !
�2 �2 list) it holds that

C;A ` map2 : t& " (1)

(where A is as in Figure 2.4). The behaviour constraints can be post-

processed, using the techniques described in Chap. 6, and as a result we

end up with a single behaviour constraint

"+ ((�2 list) chan �; SPAWN (�2; � ! (�2 list)); �1; � ? (�2 list))

� �2

which shows that we can give �2 the following �recursive interpretation� that

formalises the explanation in Example 2.1:

"

+ (�2 list) chan f1g; SPAWN (�2; f1g ! (�2 list)); �1; f1g ? (�2 list)

We are left with the task of proving (1). Let A1 be an extension of A where

map2 is bound to t and where f is bound to �1 !
�1 �2; then it will su�ce

to show

C;A1 ` fn xs => ... : �1 list !
�2 �2 list& �e.

Let A2 be an extension of A1 where xs is bound to �1 list; then it will

su�ce to show

35

C;A2 ` if null(xs) ... : �2 list& �2

and as C;A2 ` null(xs) : bool& " and C;A2 ` [] : �2 list& " it will

su�ce to show

C;A2 ` let ch = ... : �2 list& �c; �F ; �1; �r.

Let A3 be an extension of A2 where ch is bound to (�2 list) chan �; as

clearly C;A2 ` channel1 () : (�2 list) chan �& �c it will su�ce to show

C;A3 ` spawn (...); cons ... : �2 list& �F ; �1; �r

which (cf. Observation 2.5) can be done by demonstrating

C;A3 ` spawn (...) : unit& �F (2)

C;A3 ` cons ... : �2 list& �1; �r. (3)

To establish (2) it will su�ce to show

C;A3 ` fn d => ... : unit !�f �2 list& "

and with A4 an extension of A3 where d is bound to unit it will su�ce to

show

C;A4 ` sync (transmit ...) : �2 list& �f

and to do so it will su�ce to show

C;A4 ` transmit (ch,...) : (�2 list) event �s& �e; �2

which since C ` � ! (�2 list) � �s can be done by showing

C;A4 ` (ch,map2 ...) : (�2 list) chan �� �2 list& �e; �2

and (cf. Observation 2.5) this follows from

C;A4 ` map2 f (tl xs) : �2 list& �e; �2

36

which is a consequence of the assumptions in A4.

To establish (3) it will su�ce to show

C;A3 ` f (hd xs) : �2 & �1 and

C;A3 ` sync (receive ch) : �2 list& �r.

The former is an easy consequence of the assumptions in A3; and the latter

follows since C ` � ? (�2 list) � �r and hence

C;A3 ` receive ch : (�2 list) event �r & ".

Typing the program of Example 2.2

We shall now explain why this program is accepted by our system. Let

C = f�y chan � � �1; � !�y � �2; �1; �2 � �; �e � �; f1g � �g

and let C 0 = S1C [S2C [f" � �eg with

S1 = [�y��1�2� 7! int� 0� 01�
0
2�

0] and

S2 = [�y��1�2� 7! (int !�e int)� 0� 01�
0
2�

0].

Let A be as in Fig. 2.4, let Af = A[f : �x !
�e �x], let Afy = Af [y : �y],

and let Afyx = Afy[x : �x]. Finally, let

ts = 8(�y��1�2� : C): �y !
�e �y.

We shall establish that

C 0; A ` fn f => ... : (�x !
�e �x) !

�e (int !�e int)& "

and to do so it will su�ce to show

C 0; Af ` let id = fn y => ...in id id : int !�e int& �e

which can be done by showing

37

C 0; Af ` fn y => ... : ts& " (4)

C 0; Af [id : ts] ` id id : int !�e int& �e. (5)

To establish (5), we can use S2 and S1 as instance substitutions (as C
0 ` SiC

for i = 1; 2) to get

C 0; Af [id : ts] ` id : (int !�e int) !�e (int !�e int)& "

C 0; Af [id : ts] ` id : int !�e int& ".

It is easy to verify that ts is well-formed, in particular it is upwards closed,

and that f�y; �; �1; �2; �g \ FV(C
0; Af ; ") = ;, in particular observe that

�y =2 FV(Af(f)) = FV(�x !
�e �x). (6)

As it also holds that ts is solvable from C 0 (by S1 or S2), we can use (gen)

to establish (4) if we can show

C 0 [C;Af ` fn y => ... : �y !
�e �y & "

which (as C 0 ` " � �e) can be done by showing

C 0 [C;Afy ` if ...; y : �y & "

which (cf. Observation 2.5) can be done by demonstrating

C 0 [C;Afy ` if true then f else fn x => ... : �x !
� �x& "

C 0 [C;Afy ` y : �y & ".

The latter is trivial; and to establish the former it will su�ce to show that

C 0 [C;Afy ` f : �x !
� �x& " (7)

C 0 [C;Afy ` fn x => (sync ...; x) : �x !
� �x& ". (8)

(7) can be established by subtyping, since

38

C ` �x !
�e �x � �x !

� �x. (9)

To establish (8) it will su�ce to show that

C 0 [C;Afyx ` sync (transmit ...); x : �x& �1; �2

which (cf. Observation 2.5) can be done by demonstrating

C 0 [C;Afyx ` sync (transmit ...) : �y & �1; �2

C 0 [C;Afyx ` x : �x& ".

The latter is trivial; and in order to establish the former it will be su�cient

to show

C 0 [C;Afyx ` transmit (channel1 (),y) : �y event �2 & �1

and this can be done by showing that

C 0 [C;Afyx ` (channel1 (),y) : (�y chan �)� �y & �1

which (cf. Observation 2.5) is a consequence of

C 0 [C;Afyx ` channel1 () : �y chan �& �1

C 0 [C;Afyx ` y : �y & ".

Other approaches

We have demonstrated that the program from Example 2.2 can be typed in

our system, where the subtyping rule was used to establish (9); we shall now

examine how other type systems behave on this program.

First consider a system similar to [32] in that (i) it employs sube�ecting

only, and (ii) it contains no constraints, so all behaviour information has to

be explicitly coded into the types. As �y (the type of y) is then present in

the type of the locally de�ned function

fn x => (sync (transmit (channel1 (), y)); x)

39

it must also be the case, in order for the two branches in the conditional to

match, that �y is present in the type of f (compare with (6)). This means that

while the de�ning expression for id still may be assigned the type �y !
" �y

we are unable to generalise over �y; consequently the application of id to

itself cannot be typed. (It is interesting to point out that if one changed the

applied occurrence of f in the program to the expression fn z => f z then

sube�ecting would su�ce for generalising over �y and hence would allow to

type the self-application of id.)

The system of [28] does not have subtyping but nevertheless the application

of id to itself is typeable [28, section 11, the case (id4 id4)]. This is due to

the presence of regions andmasking (cf. the discussion in Chap. 1): with � the

region in which the new channel is allocated, the expression sync (transmit

(channel (), y)) does not contain � in its type �y and neither is � present

in the environment, so it is possible to discard the e�ects �y chan � and

� !�y. Thus the two branches of the conditional will match.

Also in the approach of [30] one can generalise over �y and hence type the

self-application of id. To see this, �rst note that �y is classi�ed as an im-

perative type variable (rather than an applicative type variable which would

directly have allowed the generalisation) because �y is used in the channel

construct and thus has a side e�ect. Despite of this, next note that the

de�ning expression for the id function is classi�ed as non-expansive (rather

as expansive which would directly have prohibited the generalisation of im-

perative type variables) because all side e�ects occurring in the de�nition of

id are �protected� by a function abstraction and hence not �dangerous�. We

refer to [30] for the details.

2.6 Basic Properties of the Inference System

We now list a few basic properties of the inference system that we shall use

later.

Fact 2.16 Let A be standard (i.e. on constants it behaves as indicated by

Figure 2.4). Then for all constants c the type (scheme) A(c) is closed, well-
formed, and satis�es that

� if c is a sequential base function, then (the type part of) A(c) takes the
form t01 ! t0;

40

� if c is a constructor Cn, then (the type part of) A(c) takes the form

t01 ! � � � t0n ! t0 with t0 not a variable and not a (silent or non-silent)

function type. 2

So constructors actually construct something (that is, a composite non-

functional type).

Fact 2.17 If C;A ` e : �& b then

� if A is well-formed then � is well-formed;

� if A is solvable form C then � is solvable from C.

Proof A straightforward case analysis on the last rule applied. 2

Lemma 2.18 Substitution Lemma

For all substitutions S:

(a) If C ` C0 then S C ` S C0 (and has the same shape).

(b) If C;A ` e : �& b then S C; S A ` e : S �&S b (and has the same

shape).

Proof See Appendix A. 2

Here the shape of an inference tree is the result of replacing all judgements

with the (name of the) axiom or inference rule used to derive them (and

dispensing with side conditions).

Lemma 2.19 Entailment Lemma

For all sets C 0 of constraints satisfying C 0 ` C:

(a) If C ` C0 then C 0 ` C0.

(b) If C;A ` e : �& b then C 0; A ` e : �& b (and has the same shape).

Proof See Appendix A. 2

41

Fact 2.20 Let x,y be distinct: if C;A1[x : �1][y : �2]A2 ` e : �& b

then C;A1[y : �2][x : �1]A2 ` e : �& b (and has the same shape).

Fact 2.21 Let x be an identi�er not occurring in e and let t be an arbitrary

type; if C;A ` e : �& b then C;A[x : t] ` e : �& b (and has the same

shape).

Proof Let � be a fresh type variable. Then a straightforward induction in

the proof tree (using Fact 2.20) tells us that C;A[x : �] ` e : �& b (and has

the same shape). Now apply Lemma 2.18 with the substitution [� 7! t]. 2

2.7 Proof Normalisation

It turns out that the proof of semantic soundness as well as the proof of

completeness of an inference algorithm is complicated by the presence of the

non-syntax directed rules (sub), (ins) and (gen) of Figure 2.5. This motivates

trying to normalise general inference trees into a more manageable shape:

De�nition 2.22 Normalisation

An inference tree for C;A ` e : t& b is T-normalised if it is created by:

� (con) or (id); or

� (ins) applied to (con) or (id); or

� (abs), (app), (sapp), (rec), (if) or (sub) applied to T-normalised infer-

ence trees; or

� (let) applied to a TS-normalised inference tree and a T-normalised

inference tree.

An inference tree for C;A ` e : ts& b is TS-normalised if it is created by:

� (gen) applied to a T-normalised inference tree.

We shall write C;A `n e : �& b if the inference tree is T-normalised (if �

is a type) or TS-normalised (if � is a type scheme). 2

42

Notice that if jdg = C;A ` e : �& b occurs in a normalised inference tree

then we in fact have jdg = C;A `n e : �& b, unless jdg is created by (con)

or (id) and � is a type scheme.

Lemma 2.23 Suppose that

jdg = C;A ` e : S t0 & b

follows by an application of (ins) to the normalised judgement

jdg0 = C;A `n e : 8(~�~�~� : C0): t0 & b

where Dom(S) � f~�~�~�g and C ` S C0. Then also jdg has a normalised

inference tree:

C;A `n e : S t0 & b.

Proof The TS-normalised judgement jdg0 follows by an application of (gen)

to the T-normalised judgement

C [C0; A `n e : t0 & b

where f~�~�~�g \ FV(C;A; b) = ;. From Lemma 2.18 we therefore get

C [S C0; A `n e : S t0 & b

and using Lemma 2.19 we get C;A `n e : S t0 & b as desired. 2

Lemma 2.24 Normalisation Lemma

If A is well-formed and solvable from C then an inference tree C;A ` e :

�& b can be transformed into one C;A `n e : �& b that is normalised.

Proof See Appendix A. 2

43

2.8 Conservative Extension

We next show that our inference system is a conservative extension of the

system for (pure functional) ML type inference. For this purpose we restrict

ourselves to consider sequential expressions only, that is expressions with-

out the non-sequential constructors Cn
c and without the non-sequential base

functions Fc.

An ML type u (as opposed to a CML type t, in the following just denoted

type) is either a type variable �, a base type like int, a function type u1 !

u2, a product type u1 � u2, or a list type u1 list. An ML type scheme us

is of the form 8~� :u. An ML substitution R maps type variables into ML

types. Our variant of the ML type inference system is depicted in Figure 2.9,

assigning types to sequential expressions in EExp. Also here we introduce

the notion of normalised inferences, denoted A0 `ML
n e : u; the de�nition

being a straightforward modi�cation of Def. 2.22, bearing in mind that (sub)

is not applicable.

We say that a type is sequential if it does not contain subtypes of the form

t chan � or t event �. From a sequential type t we can in a natural way con-

struct an ML type �(t); it is convenient also to de�ne �(t) for non-sequential
types so we stipulate the total function �() as follows (where the last clause is

somewhat arbitrary): �(�) = �, �(unit) = unit, �(bool) = bool, �(int) =
int, �(t1 !

� t2) = �(t1 ! t2) = �(t1) ! �(t2), �(t1 � t2) = �(t1)� �(t2),
�(t1 list) = �(t1) list, and �(t event �) = �(t chan �) = �(t).

We say that a type scheme ts = 8(~�~�~� : C): t is sequential if C as well as ~�

and ~� is empty and if t is sequential. From a sequential type scheme ts =

8(~� : ;): t we construct an ML type scheme �(ts) as follows: �(ts) = 8~� :�(t).
(We shall dispense with de�ning �(ts) on non-sequential type schemes for

reasons to be discussed in Appendix A.)

Clearly A(c) is sequential for all sequential c if A is as in Fig. 2.4.

Let � be a behaviour variable: we say that a sequential type t is �-sequential

if no other behaviour variables than � occur in t; we say that a sequential

type scheme 8(~� : ;): t is �-sequential if t is �-sequential; and we let C�

denote the constraint set f" � �; �; � � �g.

We are now ready to state that our system conservatively extends ML:

Theorem 2.25 Let e be a closed sequential expression 2 Exp. Let A be

44

(con) A0 `ML c : A0(c)

(id) A0 `ML x : A0(x)

(abs)
A0[x : u1] `

ML e : u2

A0 `ML fn x)e : u1 ! u2

(app)
A0 `ML e1 : u2 ! u1; A

0 `ML e2 : u2

A0 `ML e1 e2 : u1

(sapp)
A0 `ML e0 : u1 ! � � �un ! u0; A

0 `ML e1 : u1; � � � ; A
0 `ML en : un

A0 `ML e0 @s
n < e1; � � � ; en > : u0

(let)
A0 `ML e1 : us1; A

0[x : us1] `
ML e2 : u2

A0 `ML let x = e1 in e2 : u2

(rec)
A0[f : u] `ML fn x)e : u

A0 `ML rec f x)e : u

(if)
A0 `ML e0 : bool; A0 `ML e1 : u; A0 `ML e2 : u

A0 `ML if e0 then e1 else e2 : u

(ins)
A0 `ML e : 8~� :u

A0 `ML e : Ru
if Dom(R) � f~� g

(gen)
A0 `ML e : u

A0 `ML e : 8~� :u
if FV(A0) \ f~� g = ;

Figure 2.9: Our variant of the ML type inference system

45

de�ned on sequential constants only and let it behave as in Fig. 2.4; and let

�(A) = A0.

� If A0 `ML
n e : u then there exists �-sequential type t with �(t) = u

such that C�; A `n e : t& �.

� If C;A ` e : t& b where C contains no type constraints then there

exists an ML type u with �(t) = u such that A0 `ML e : u.

Proof See Appendix A. 2

So if e.g. A0 `ML e : int ! int then we may expect that also

f" � �; �; � � �g; A ` e : int !� int& �.

RemarkWe restrict our attention to expressions in Exp, as the (�rst half of

the) theorem does not hold in general for EExp: consider e.g. the expression

cons 3 which is typeable in ML but not in our system. 2

2.9 Properties of the Arrow Relation

For the subsequent development it is crucial that if C ` b � b0 then

FV(b)
C#
� FV(b0)

C#
, provided C is su�ciently �well-behaved�.8 In order

to prove this result it is convenient to consider forward derivations only; we

shall write C `fw g1 � g2 if C ` g1 � g2 can be derived from Figs. 2.6

and 2.7 and 2.8 without using the rules labelled (bw). We have followed a

non-standard approach by incorporating these explicit rules for decomposi-

tion; we shall see that for suitable C these rules do not add to the power of

the system.

In general it does not hold that C ` g1 � g2 implies C `fw g1 � g2 even

if C (and hence C) is well-formed. To see this, let

C = f� � �0; int event � � � list; �0 list � int event � 0g

8The result is formalised as Lemma 2.29 and is needed, together with Lemma 2.33, to
establish the cases for (gen) in the proofs of Lemma 3.24, essential for semantic soundness,
and Theorem 5.18, demonstrating the completeness of our reconstruction algorithm.

46

thus C is well-formed and C = C. As C ` � list � �0 list transitivity

yields C ` int event � � int event � 0 so by (bw) we get C ` (� �

� 0); but it is clearly impossible to derive C `fw (� � � 0). This example

motivates the following de�nition:

De�nition 2.26 We say that there is a mismatch between two non-variable

types t1 and t2 if their top-level type constructors are di�erent.

We say that a constraint set C is consistent if for all t1,t2 where there is a

mismatch between t1 and t2 it is impossible to derive C ` t1 � t2. 2

The notion of consistency is what is needed in order to dispense with the

explicit decomposition rules:

Lemma 2.27 Consider the inference rules in Figs. 2.6 and 2.7 and 2.8, where

we assume that C is consistent and backwards closed (i.e. C = C). Then

for all rules labelled (bw) the following holds: if the premise has a forward

derivation, then also the conclusion has a forward derivation.

Proof We will show that if C `fw t event � � t0 event � 0 then C `fw
t � t0 and C `fw � � � 0; the other cases are similar.

It is easy to see that there exists n � 0 and t00 � � � t
0
n with t00 = t event � and

t0n = t0 event � 0, such that for all i 2 f0 � � �n� 1g we have C `fw t0i � t0i+1

where the last rule applied is neither (re�) nor (trans).

As C is consistent by assumption, each t0i must be either a variable or an

event-type. We shall enumerate the latter kind of indices: let m be the

number of i's in f0 � � �ng with t0i a event-type; then m � 1 and there exists a

strictly monotone sequence i1 � � � im (with i1 = 0 and im = n), types t1 � � � tm,

and behaviour variables �1 � � ��m, such that for all j 2 f1 � � �mg we have

t0ij = tj event �j. As we clearly have t1 = t, �1 = �, tm = t0 and �m = � 0,

our task can be accomplished by showing that for all j 2 f1 � � �m� 1g it

holds that C `fw tj � tj+1 and C `fw �j � �j+1.

For a given j we distinguish between two cases:

(i) If ij+1 = ij+1 the situation is that C `fw tj event �j � tj+1 event �j+1

where the last rule applied is neither (re�) nor (trans); as the rules labelled

(bw) are not permitted the last rule applied must be either (event) or (ax-

iom). In the former case the claim follows directly; in the latter case the

claim follows from C being backwards closed.

47

(ii) Otherwise the situation is that there exists �1 � � ��p with p � 1 such

that C `fw tj event �j � �1, C `fw �k � �k+1 for all k 2 f1 � � �p� 1g,

and C `fw �p � tj+1 event �j+1, where the last rule applied in all these

inferences is neither (re�) nor (trans). As the rules labelled (bw) are not per-

mitted we infer that the last rule applied in all those inferences is (axiom).

The claim now follows from C being backwards closed. 2

Corollary 2.28 Assume that C is consistent and that C ` (g1 � g2).

Then C `fw (g1 � g2).

Proof Clearly C is consistent and C ` (g1 � g2); the result now follows by

induction in the latter inference using Lemma 2.27. 2

We are now ready for the main result, as promised in the beginning of this

section:

Lemma 2.29 Assume that C ` b � b0 with C well-formed and consistent.

Then for all
 2 FV(b) there exists
0 2 FV(b0) such that C `
 �
0.

(That is, FV(b)C# � FV(b0)C#.)

Proof By Corollary 2.28 we have C `fw b � b0; we perform induction in

this derivation. Most cases are straightforward; we only spell out the case

(axiom) in some detail: suppose that C `fw b � b0 because (b � b0) 2 C.

As the constraint set C is well-formed (Fact 2.11) we infer that b0 is a vari-

able � 0. Let
 2 FV(b), then the desired relation C `
 � 0 holds by the

de�nition of . 2

Next some results showing that the arrow relation is in some sense closed

under substitution and entailment:

Lemma 2.30 Suppose C `
 �. Let S be a substitution; then for all

0 2 FV(S
) it holds that S C `
0 S �.

Proof There exists b with
 2 FV(b) such that (b � �) 2 C; that is (cf.

De�nition 2.7) there is a derivation C `dc (b � �). By Lemma 2.18 we

infer that there also is a derivation S C `dc (S b � S �), implying that

(S b � S �) 2 S C. For all
0 2 FV(S
) we also have
0 2 FV(S b) and

therefore S C `
0 S � holds as desired. 2

48

Corollary 2.31 Suppose C `
1
�
2. Let S be a substitution; then for

all
01 2 FV(S
1) there exists

0
2 2 FV(S
2) such that S C `
01

�
02.

Proof Induction in the length of the sequence C `
1
�
2; if the length

is zero then
1 =
2 and the claim is trivial. So assume that there exists

� such that C `
1 � and C ` � �
2 (by a shorter derivation).

Given
01 2 FV(S
1) we by Lemma 2.30 infer that S C `
01 S �; and

the induction hypothesis tells us that there exists
02 2 FV(S
2) such that

S C ` S � �
02. This yields the claim. 2

Lemma 2.32 Suppose C `
 � and that C 0 ` C with C 0 well-formed

and consistent; then C 0 `
 � �.

Proof There exists b with
 2 FV(b) such that (b � �) 2 C; thus it holds

that C 0 ` b � �. The claim now follows from Lemma 2.29. 2

Finally a result which proves useful later on:

Lemma 2.33 Suppose the type scheme ts = 8(~�~�~� : C0): t0 is well-formed

(cf. De�nition 2.12) and that C is well-formed with f~�~�~�g \ FV(C) = ;.

Then f~�~�~�g
C[C0"

= f~�~�~�g.

Proof Let C [C0 `
 � with
 2 f~�~�~�g; our task is to show that

� 2 f~�~�~�g. There exists b with
 2 FV(b) such that (b � �) 2 C [C0,

leaving us with 3 cases:

� (b � �) 2 Cb: this is impossible as f~�~�~�g \ FV(C) = ;.

� (b � �) 2 C0
b: then C0 `
 � so as f~�~�~�g = f~�~�~�g

C0"
(since ts is

well-formed) we infer � 2 f~�~�~�g as desired.

� (b � �) 2 Ct [C0
t: b must be a behaviour variable and thus equal
,

that is
 2 ~� . As ts is well-formed
 =2 FV(C0
t) and by assumption

 =2 FV(Ct); showing that also this case is impossible.

2

49

Chapter 3

The Dynamic Semantics

In this chapter we de�ne a dynamic semantics which employs one system for

the sequential components (Sect. 3.1) and another for the concurrent com-

ponents (Sect. 3.2). Next (Sect. 3.3) we extend the repertoire of techniques

(from Chap. 2) for normalising and manipulating the inference trees of the

annotated type and e�ect system. Finally, we show that this system is in-

deed semantically sound with respect to the dynamic semantics: we establish

a sequential subject reduction result (Theorem 3.23) as a preparation for a

concurrent subject reduction result (Theorem 3.28) which shows that the

concurrent transition relation �preserves types� and �decreases behaviours�,

and which also demonstrates that the actions performed by the system are

in a certain sense as �predicted� by the behaviour information. Moreover, in

Sect. 3.5 we demonstrate (informally) that it is not possible to assign a type

to the �error con�gurations� which have been characterised in Proposition

3.9.

It is a crucial feature of the soundness theorem that it only considers channel

environments, where A is a channel environment if the identi�ers in Dom(A)

are all channel identi�ers1 and for each ch 2 Dom(A) that A(ch) takes the

form t chan �. The �initial environment� (where only constants are in the

domain) is a channel environment, and we shall see that the concurrent

soundness result 3.28 guarantees that the assumption is maintained; thus

our restriction seems to be a benign one. To see that it is actually necessary

1We assume that the set of identi�ers contains the set of channel identi�ers as an in�nite
subset; we use ch to range over such identi�ers.

50

Fs e �(Fs<e>)

fst pair<e1; e2> e1
snd pair<e1; e2> e2
hd cons<e1; e2> e1
hd nil hd<nil>

tl cons<e1; e2> e2
tl nil tl<nil>

null nil true

null cons<e1; e2> false

+ pair<n1; n2> n where n = n1 + n2

...
...

/ pair<n; 0> =<pair<n; 0>>

Figure 3.1: The evaluation function �

to impose the condition, note that otherwise the type of the channel would be

polymorphic and the sender and receiver of a transmitted value would then

be allowed to disagree on its type; this is exactly where type insecurities

would creep in.

3.1 The Sequential Semantics

We are going to de�ne a small-step semantics for the sequential part of the

language. Transitions take the form e! e0 where e and e0 are expressions in

Exp that are essentially closed: this means that all free identi�ers are channel

identi�ers (created by previous channel allocations).

We �rst stipulate the semantics of the sequential base functions Fs (such as

+ or fst) by means of an �evaluation function� �:

De�nition 3.1 The function � is a partial mapping from expressions of the

form Fs<e> into expressions (preserving the property of being essentially

closed): It is de�ned by the (incomplete) Figure 3.1; notice that we encode

�runtime errors� such as hd (nil) as loops whereas e.g. hd (7) is unde�ned.

2

We next introduce the notion of weakly evaluated expressions (w 2 WExp)

that are the �terminal con�gurations� of the sequential semantics:

51

De�nition 3.2 An expression w is a weakly evaluated expression provided

that either

� w is a channel identi�er ch; or

� w is a function abstraction fn x)e; or

� w is of the form Cn < w1; � � � ; wn > where n � 0, where w1; � � � ; wn

are weakly evaluated expressions, and where Cn is a n-ary constructor

(sequential or non-sequential). 2

To formalise the call-by-value evaluation strategy we shall employ the notion

of evaluation context:

De�nition 3.3 Evaluation contexts E take the form

E ::= [] j E e j w E

j let x = E in e j if E then e1 else e2
j F <E>j Cn<w1; � � � ; wi�1; E; ei+1; � � � ; en>

Notice that E is a context with exactly one hole in it, and that this hole

is not inside the scope of any de�ning occurrence of a program identi�er.

We write E[e] for the expression that has the hole in E replaced by e, and

similarly E[E 0] for the evalution context that results by replacing the hole in

E with E 0. The following (rather obvious) fact is proved in Appendix B:

Fact 3.4 (E1[E2])[e] = E1[E2[e]]. 2

Now we are ready for:

De�nition 3.5 Sequential Evaluation

The sequential transition relation! is de�ned by

E[e] ! E[e0] provided e * e0 holds according to the following de�ni-

tion:

52

(apply) (fn x)e) w * e[w=x]

(delta) Fs<w> * e0 if e0 = �(Fs<w>)

(let) let x = w in e * e[w=x]

(rec) rec f x)e * (fn x)e)[(rec f x)e)=f]

(branch) if w then e1 else e2 *

(
e1 if w = true

e2 if w = false

Fact 3.6 If e! e0 with e essentially closed then also e0 is essentially closed.

Observe that e1 e2 ! e0 holds i� either (i) e1 e2 * e0, or (ii) there exists e01
such that e1 ! e01 and e

0 = e01 e2, or (iii) there exists e
0
2 such that e2 ! e02 and

e0 = e1 e
0
2 (in which case e1 is a weakly evaluated expression). Further observe

that let x = e1 in e2 ! e0 holds i� either (i) let x = e1 in e2 * e0, or (ii)

there exists e01 such that e1 ! e01 and e
0 = let x = e01 in e2; and observe that

if e0 then e1 else e2 ! e0 holds i� either (i) if e0 then e1 else e2 * e0, or

(ii) there exists e00 such that e0 ! e00 and e
0 = if e00 then e1 else e2. Finally

observe that F <e1>! e0 holds i� either (i) e0 = �(F <e>) (in which case F

is sequential), or (ii) there exists e01 such that e1 ! e01 and e
0 = F <e01>; and

observe that Cn<e1; � � � ; en>! e0 holds if there exists i 2 f1 � � �ng and e0i
such that ei ! e0i and e0 = Cn<e1; � � � ; e

0
i; � � � ; en> (in which case e1 � � � ei�1

are weakly evaluated expressions).

As expected we have:

Fact 3.7 If w is a weakly evaluated expression then w 6!.

Proof It is easy to see that w 6*; the result then follows by an easy induction

on w. 2

We shall say that an essentially closed expression e is exhausted if it is not

weakly evaluated and yet e 6!. We shall say that an exhausted expression

e is top-level exhausted if it cannot be written on the form e = E[e0] with
E 6= [] and with e0 exhausted. It is easy to see (using Fact 3.4) that for any

exhausted expression e there exists E and top-level exhausted e0 such that

e = E[e0].

Fact 3.8 Suppose that e is top-level exhausted; then either

53

� e = if w then e1 else e2 with w =2 ftrue; falseg; or

� e = ch w with ch a channel identi�er; or

� e = (Cn<w1; � � � ; wn>) w; or

� e = Fc<w>; or

� e = Fs<w> with �(e) unde�ned.

ProofWe perform a case analysis on the essentially closed expression e. If e

is a channel identi�er or an abstraction then e is weakly evaluated and hence

not exhausted. If e is of the form rec f x)e, then e * � � � and hence e is

not exhausted.

If e is of the form let x = e1 in e2 then e1 is essentially closed and e1 6! (as

otherwise e!) but e1 is not exhausted (as e is top-level exhausted). Hence

we conclude that e1 is weakly evaluated, but this is a contradiction since then

e * � � �.

If e is of the form if e0 then e1 else e2 then e0 is essentially closed and

e0 6! (as otherwise e!) but e0 is not exhausted (as e is top-level exhausted).

Hence we conclude that e0 is weakly evaluated; and this yields the claim since

if e0 = true or e0 = false then e * � � �.

If e is of the form e1 e2 we infer (using the same technique as in the above

two cases) that e1 is a weakly evaluated expression w1 and subsequently that

e2 is a weakly evaluated expression w2. This yields the claim since if w1 is

an abstraction then e * � � �.

If e is of the form F < e1 > we infer (in the usual way) that e1 is a weakly

evaluated expression w1; this yields the claim since if F is sequential and

�(F <w1>) is de�ned then e * � � �.

If e is of the form Cn < e1; � � � ; en > we infer (by subsequent applications

of the by now familiar reasoning technique) that e1; � � � ; en are weakly evalu-

ated expressions; thus also e is weakly evaluated and hence not exhausted. 2

From the preceding results we get:

Proposition 3.9 Suppose that e is essentially closed and that e !� e0 6!.

Then either

54

1. e0 is a weakly evaluated expression; or

2. e0 is of the form E[Fc<w>]; or

3. e0 is of the form E[e00] with either

� e00 = if w then e1 else e2 with w =2 ftrue; falseg; or

� e00 = ch w with ch a channel identi�er; or

� e00 = (Cn<w1; � � � ; wn>) w; or

� e00 = Fs<w> with �(e00) unde�ned. 2

The con�gurations listed in case 3 can be thought of as error con�gurations,

whereas in Section 3.2 we shall see that case 2 corresponds to a process that

may be able to perform a concurrent action.

Fact 3.10 The rewriting relation ! is deterministic.

Proof We perform induction on e to show that if e ! e0 and e ! e00 then

e0 = e00. If e is an identi�er or a function abstraction then e 6! and if e is of

the form rec f x)e determinism is obvious.

If e is of the form let x = w in e2 the claim follows from w 6!. If e is of

the form let x = e1 in e2 with e1 not a weakly evaluated expression then

e0 takes the form let x = e01 in e2 where e1 ! e01 and by the induction

hypothesis this e01 is unique.

If e is of the form if w then e1 else e2 the claim follows from w 6!. If e is

of the form if e0 then e1 else e2 with e0 not a weakly evaluated expression

then e0 takes the form if e00 then e1 else e2 where e0 ! e00 and by the

induction hypothesis this e00 is unique.

If e is of the form F <w> the claim follows from w 6! and from � being a

function. If e is of the form F <e1> with e1 not a weakly evaluated expression

then e0 takes the form F <e01>where e1 ! e01 and by the induction hypothesis

this e01 is unique.

If e is of the form Cn < w1; � � � ; wn > the claim follows from e 6!. If e

is of the form Cn<w1; � � � ; wi�1; ei; � � � ; en> (i � n) then e0 takes the form

Cn<w1; � � � ; wi�1; e
0
i; � � � ; en> where ei ! e0i and by the induction hypothesis

this e0i is unique.

55

We are left with the case e = e1 e2. First suppose that e1 is not weakly

evaluated. Then e 6* so we infer that e0 takes the form e01 e2 where e1 ! e01
and by the induction hypothesis this e01 is unique.

Next suppose that e = w1 e2 with e2 not weakly evaluated. Then e 6* so

as w1 6! we infer that e0 takes the form w1 e02 where e2 ! e02 and by the

induction hypothesis this e02 is unique.

Finally assume that e = w1 w2. Then w1 6! and w2 6! so it must hold that

e * e0. Thus w1 is a function abstraction and then e0 is clearly unique. 2

3.2 The Concurrent Semantics

Next we are going to de�ne a small-step semantics for the concurrent part

of the language. Transitions take the form PP
sa
�! PP 0, where PP as well

as PP 0 is a process pool which is a �nite mapping from process identi�ers p

into essentially closed expressions 2 Exp, and where sa is a label describing

what kind of semantic action is taken.

De�nition 3.11 Concurrent Evaluation

The concurrent transition relation
sa
�! is de�ned by:

PP [p : e]
seq
�! PP [p : e0]

if e! e0

PP [p : E[channell<()>]]
p chanl ch
�! PP [p : E[ch]]

if the channel identi�er ch is not in PP or E

PP [p : E[spawn<w>]]
p spawn p0

�! PP [p : E[()]][p0 : w ()]
if p0 =2 Dom(PP) [fpg

PP [p1 : E1[sync<e1>]]

[p2 : E2[sync<e2>]]
p1;p2 comm ch
�! PP [p1 : E1[w]][p2 : E2[w]]

if e1 = transmit<pair<ch; w>> and e2 = receive<ch> and p1 6= p2

56

3.3 Reasoning about Proof Trees

In this section we present some auxiliary results which will eventually enable

us to show that if there is a typing for e and if e gets �rewritten� into e0

(sequentially or concurrently) then we can construct a typing for e0.

A common pattern will be that we have some judgement C;A ` E[e] : �& b,

but we want to reason about the typing of e rather than that of E[e]. To

this end we need to be precise about what it means for a judgement to occur

�at the address indicated by the hole in E�; motivated by the translation in

Fig. 2.3 (from Exp to EExp) we stipulate:

De�nition 3.12 The judgement jdg0 = (C 0; A0 ` e0 : �0& b0) occurs at E

(with depth n) in the inference tree for the judgement jdg = (C;A ` e :

�& b), provided that either

jdg = jdg0 and E = [] (and n = 0)

or there exists a judgement jdg00 and an evaluation context E 00 such that jdg0

occurs at E 00 (with depth n� 1) in the inference tree for jdg00, and such that

the last rule applied in the inference tree for jdg is either

� (sub), (ins), or (gen), with jdg00 as premise and with E = E 00; or

� (app), with jdg00 as leftmost premise and with E = E 00 e2 where e is of

the form e00 e2; or

� (app), with jdg00 as rightmost premise and with E = w1 E
00 where e is

of the form w1 e
00; or

� (app), with jdg00 as rightmost premise and with E = Fc<E 00> where

e is of the form Fc<e00>; or

� (sapp), with jdg00 as rightmost premise and with E = Fs<E 00> where

e is of the form Fs<e00>; or

� (sapp), with jdg00 as premise no. i+ 1 and with

E = Cn<w1; � � � ; wi�1; E
00; ei+1; � � � ; en> (i � n) where

e is of from Cn<w1; � � � ; wi�1; e
00; ei+1; � � � ; en>; or

57

� (let), with jdg00 as leftmost premise and with E = let x = E 00 in e2
where e is of the form let x = e00 in e2; or

� (if), with jdg00 as leftmost premise and withE = if E 00 then e1 else e2
where e is of the form if e00 then e1 else e2. 2

This is well-de�ned in the size of the inference tree for jdg. As expected we

have the following results, the latter to be proved in Appendix B:

Fact 3.13 Suppose that C 0; A0 ` e0 : �0& b0 occurs at E in the inference

tree for C;A ` e : �& b; then e = E[e0]. 2

Fact 3.14 Given jdg = (C;A ` E[e] : �& b); then there exists (at least

one) judgement jdg0 of the form C 0; A0 ` e : �0& b0 such that jdg0 occurs at

E in the inference tree for jdg. If jdg is normalised we can assume that jdg0

is normalised. 2

Some of the subsequent proofs will be by induction in the depth of a judge-

ment in an inference tree; for this purpose the following result is convenient:

Fact 3.15 Suppose the judgement jdg0 occurs at E with depth n in the

inference tree for jdg, where n � 2. Then there exists a judgement jdg00 and

evaluation contexts E1 and E2 such that

jdg0 occurs at E1 with depth < n in the inference tree for jdg00; and

jdg00 occurs at E2 with depth < n in the inference tree for jdg; and

E = E2[E1].

Moreover, if jdg is normalised we can assume that also jdg00 is normalised.

Proof We can clearly use jdg00 as in De�nition 3.12 (and choose E1 as E
00);

notice that if jdg is normalised then (as n � 2) the last rule applied cannot

be (ins). 2

Having set up the necessary machinery we are now ready for the �rst result,

which states that �equivalent� expressions may be substituted for each other:

58

Fact 3.16 Suppose the judgement C 0; A0 `n e : �0& b0 occurs at E in the

inference tree of C;A `n E[e] : �& b. If en is such that C
0; A0 `n en : �0& b0

then also C;A `n E[en] : �& b. 2

It proves useful to know something about the relationship between the root

of an inference tree and the interior nodes of the tree:

Lemma 3.17 Suppose the judgement C 0; A0 ` e0 : �0& b0 occurs at E in

the inference tree of C;A ` e : �& b. Then

� A0 = A;

� if C is well-formed then also C 0 is well-formed;

� if C is consistent then also C 0 is consistent.

Proof See Appendix B. 2

The next two lemmas tell us something about the relationship between the

type of an expression c<e1; � � � ; en>, the type of c, and the type of each ei.

Lemma 3.18 Suppose that with c 2 Cn, or c 2 Fs and n = 1, we have

C;A `n c<e1; � � � ; en> : t& b

and that A(c) is of the form (cf. Fact 2.16)

8(~�~�~� : C0): t
0
1 ! � � � t0n ! t0.

Then there exists S, t1 � � � tn, and b1 � � � bn, such that

Dom(S) � f~�~�~�g and C ` S C0 and C ` S t0 � t;

for all i 2 f1 � � �ng: C;A `n ei : ti& bi and C ` ti � S t0i;

C ` b1; � � �; bn � b.

Similarly, if A(c) = t01 ! � � � t0n ! t0 in which case f~�~�~�g = ; and C0 = ;

(so we have S = Id).

59

Proof The situation must be

C;A `n c : t1 ! � � � tn ! t0 & b0 � � �C;A `n ei : ti& bi � � �

C;A `n c<e1; � � � ; en> : t& b
(sapp),(sub)�

with C ` t0 � t and C ` b0; b1; � � �; bn � b. The leftmost premise has a

derivation tree

C;A ` c : A(c)& "
C;A `n c : S t01 ! � � �S t0n ! S t0& "

(ins)

C;A `n c : t1 ! � � � tn ! t0 & b0
(sub)�

where the instance substitution S satis�es Dom(S) � f~�~�~�g and C ` S C0.

All the claims now follow immediately. 2

Lemma 3.19 Suppose that we have

C;A `n Fc<e1> : t& b

and that A(Fc) is of the form

8(~�~�~� : C0): t
0
1 !

�0 t0.

Then there exists S, t1, and b1, such that

Dom(S) � f~�~�~�g and C ` S C0 and C ` S t0 � t;

C;A `n e1 : t1 & b1 and C ` t1 � S t01 and C ` b1;S �
0 � b.

Proof The situation must be

C;A `n Fc : t1 !
� t0 & b0 C;A `n e1 : t1 & b1

C;A `n Fc<e1> : t& b
(app),(sub)�

with C ` t0 � t and C ` b0; b1; � � b. The leftmost premise has a

derivation tree

C;A ` Fc : A(Fc)& "

C;A `n Fc : S t01 !
S �0 S t0& "

(ins)

C;A `n Fc : t1 !� t0 & b0
(sub)�

60

where the instance substitution S satis�es Dom(S) � f~�~�~�g and C ` S C0.

All the claims now follow immediately; in particular we have C ` b1;S �
0 �

"; b1;S �
0 � b0; b1; � � b. 2

The following two lemmas, both to be proved in Appendix B, show

� that we can replace variables by expressions of the same type, provided

these expressions have an empty behaviour; and

� that the latter condition can always be obtained for weakly evaluated

expressions.

Lemma 3.20 Suppose that C;A[x : �0] `n e : �& b and that C;A `n e0 :

�0& "; then C;A `n e[e0=x] : �& b.

Lemma 3.21 Suppose that C;A `n w : �& b; then

� C ` " � b and

� C;A `n w : �& ".

3.4 Sequential Soundness

First we shall prove that �top-level� reduction is sound:

Lemma 3.22 Let A be standard. If e * e0 and

C;A `n e : �& b

then also

C;A `n e0 : �& b.

Proof We perform induction in the proof tree of C;A `n e : �& b.

The rule (gen) has been applied: Then the situation is

C [C0; A `n e : t0 & b

C;A `n e : 8(~�~�~� : C0): t0 & b
(gen)

and the induction hypothesis yields

61

C [C0; A `n e0 : t0 & b

from which we by (gen) arrive at the desired judgement

C;A `n e0 : 8(~�~�~� : C0): t0 & b.

The rule (sub) has been applied: Then the situation is

C;A `n e : t& b

C;A `n e : t0& b0
(sub)

and the induction hypothesis yields

C;A `n e0 : t& b

from which we by (sub) arrive at the desired judgement

C;A `n e0 : t0& b0.

Otherwise a �structural� rule has been applied; we now perform case analysis

on the transition *:

The transition (let) has been applied: Then the situation is

C;A `n w : ts& b1 C;A[x : ts] `n e : t& b2

C;A ` let x = w in e : t& b1; b2

and using Lemma 3.21 we have

C ` " � b1 and C;A `n w : ts& "

which by Lemma 3.20 can be combined with the second premise of the infer-

ence to yield

C;A `n e[w=x] : t& b2

and since C ` b2 � "; b2 � b1; b2 we can apply (sub) to get the desired

result.

62

The transition (rec) has been applied: Then the situation is

C;A[f : t] `n fn x)e : t& b

C;A ` rec f x)e : t& b

and using Lemma 3.21 we have

C;A[f : t] `n fn x)e : t& "

so by applying (rec) we get the judgement

C;A `n rec f x)e : t& "

which by Lemma 3.20 can be combined with the premise of the inference to

yield the desired

C;A `n (fn x)e)[(rec f x)e)=f] : t& b.

The transition (branch) has been applied: Then the situation is

C;A `n w : bool& b0 C;A `n e1 : t& b1 C;A `n e2 : t& b2

C;A ` if w then e1 else e2 : t& b0; (b1 + b2)

and using Lemma 3.21 we have C ` " � b0. The claim now follows from

the fact that for i = 1; 2 we have C ` bi � "; (b1 + b2) � b0; (b1 + b2).

The transition (apply) has been applied: Then the situation is

C;A[x : t02] `n e : t0& � 0

C;A `n fn x)e : t2 !
� t& b1

(abs) (sub)�
C;A `n w : t2 & b2

C;A ` (fn x)e) w : t&(b1; b2; �)

where C ` " � b1 and also C ` t02 !
�0 t0 � t2 !

� t implying that

C ` t2 � t02 and C ` � 0 � � and C ` t0 � t.

By Lemma 3.21 followed by an application of (sub) we get

C ` " � b2 and C;A `n w : t02 & "

63

which by Lemma 3.20 can be combined with the upmost leftmost premise of

the inference to yield

C;A `n e[w=x] : t0& � 0

and since C ` t0 � t and C ` � 0 � � � "; "; � � b1; b2; � we can apply

(sub) to get the desired result.

The transition (delta) has been applied: The claim then follows from

an examination of the �gure de�ning �; below we shall list a typical case

only. In all cases we make use of Lemmas 3.18 and 3.21.

e = fst<pair<w1; w2>> and �(e) = w1: Then the situation is that

C;A `n fst<pair<w1; w2>> : t& b

so since A(fst) = 8(�1�2 : ;): �1 � �2 ! �1 Lemma 3.18 tells us that there

exists t0, b0 and S0 such that

C;A `n pair<w1; w2> : t0 & b0 and

C ` S0 �1 � t and C ` t0 � S0 (�1 � �2) and C ` b0 � b.

Since A(pair) = 8(�1�2 : ;): �1 ! �2 ! �1 � �2 Lemma 3.18 tells us

that there exists t1, b1, t2, b2 and S such that

C;A `n w1 : t1 & b1 and C;A `n w2 : t2 & b2;

C ` t1 � S �1 and C ` t2 � S �2 and C ` b1; b2 � b0;

C ` S (�1 � �2) � t0

and by Lemma 3.21 we infer that C ` " � b1 and C ` " � b2. Since

C ` t1 � t2 � S �1 � S �2 � t0 � S0 �1 � S0 �2

we deduce that

64

C ` t1 � S0 �1 � t

and since C ` b1 � b1; " � b1; b2 � b0 � b we from C;A `n w1 : t1 & b1
get the desired judgement

C;A `n w1 : t& b.

This completes the proof. 2

Theorem 3.23 Sequential soundness

Let A be standard. If e1 ! e2 and

C;A `n e1 : �& b

then also

C;A `n e2 : �& b.

Proof There exists E, e01 and e02 such that

e1 = E[e01] and e2 = E[e02] and e01 * e02.

By Fact 3.14 there exists C 0, A0, �0 and b0 such that C 0; A0 `n e01 : �0& b0

occurs at E in the inference tree of C;A `n E[e01] : �& b. By Lemma 3.17

we infer that A0 = A; this enables us to use Lemma 3.22 from which we get

C 0; A0 `n e02 : �0& b0

and by Fact 3.16 we get the desired judgement

C;A `n E[e02] : �& b.

This completes the proof. 2

65

3.5 Erroneous Programs cannot be Typed

The purpose of types is to detect certain kinds of errors at analysis time

rather than at execution time. To this end one usually (cf. the methodical

considerations in [33]) wants a result that guarantees that �error con�gura-

tions are not typeable�; here we presuppose some consistent constraint set C

and some standard channel environment A, and assume A is solvable from

C so by Lemma 2.24 we need consider only normalised inferences. (The

reason for demanding consistency is that otherwise too many expressions

may be assigned a type; if e.g. C contains a constraint int � bool then

C;A `n if 7 then 8 else 9 : int& ".)

By Proposition 3.9 and the discussion after it (together with Fact 3.14 and

Lemma 3.17), it su�ces to consider each of the error con�gurations listed

below, and show that it is not typeable.

ch w with ch a channel identi�er: since A(ch) is of the form t chan �, in order

for ch w to be typeable it must be the case that C ` t chan � � t1 !
� t2

for some t1,t2; this con�icts with C being consistent.

if w then e1 else e2 with w =2 ftrue; falseg: for this to be typeable it must

hold that

w can be assigned the type bool.

As C is consistent we infer that w cannot be a channel identi�er (as A is a

channel environment) and that w cannot be a function abstraction. Hence

w is of the form Cn<w1; � � � ; wn>; and an examination of Figure 2.4 (using

Lemma 3.18) will reveal that this can be given type bool only when n = 0
and Cn 2 ftrue; falseg.

(Cn<w1; � � � ; wn>) w: for this to be typeable it must hold that

Cn<w1; � � � ; wn> can be assigned a type of the form t1 !
� t2

and (using Lemma 3.18 and Fact 2.16) it is easy to see that this is impossible.

Fs<w> with �(Fs<w>) unde�ned: consider e.g. the expression fst<w>.

For this to be typeable there must (Lemma 3.18) exist t1 and t2 such that

66

w can be assigned the type t1 � t2.

As C is consistent we infer that w cannot be a channel identi�er (as A is a

channel environment) and that w cannot be a function abstraction. Hence

w is of the form Cn<w1; � � � ; wn>; and an examination of Figure 2.4 (using

Lemma 3.18) will reveal that it must be the case that Cn = pair. Thus w

is of the form pair<w1; w2>, but then �(fst<w>) is not unde�ned.

3.6 Concurrent Soundness

First a crucial result which generalises Fact 3.16 in two ways:

� The �new� expression en may be typed using an environment which

is an extension of the environment in which the old expression e was

typed. Such an extension is a potential danger to semantic soundness,

cf. the considerations in [30, section 5] where it was concluded that

store operations in Standard ML are harmless unless they actually ex-

pand the store; in order to construct an inference tree with the new

environment we must demand that the new environment variables are

�present� in the behaviour.

� The �new� expression en may have a behaviour which is a �su�x� of the

behaviour of the old expression e, the corresponding �pre�x� represents

the �action� of going from e to en.

Lemma 3.24 Suppose the judgement jdg0 = (C 0; A ` e : �0& b0) occurs at

E in the normalised inference jdg = (C;A `n E[e] : �& b) where C (and

by Lemma 3.17 then also C 0) is well-formed and consistent.

Let bn be a behaviour and let An be of the form A[x1 : �1][� � � : � � �][xm :

�m] with m � 0, such that x1 � � �xm do not occur in E[e] and such that

FV(�1) [� � � [FV(�m) � FV(bn).

Let en be an expression and b0r a behaviour such that

C 0; An `n en : �0& b0r and

C 0 ` bn; b
0
r � b0.

67

Then there exists br such that

C;An `n E[en] : �& br and

C ` bn; br � b.

Moreover, there exists S with Dom(S)\ FV(A; bn) = ; such that C ` S C 0.

Proof The full proof is given in Appendix B; here we only consider the

crucial case where jdg follows from jdg0 by an application of (gen). The

situation is
jdg0 = C [C0; A ` e : t0 & b

jdg = C;A ` e : 8(~�~�~� : C0): t0 & b

where 8(~�~�~� : C0): t0 is well-formed and where f~�~�~�g\FV(C;A; b) = ; and

where there exists S0 with Dom(S0) � f~�~�~�g such that C ` S0C0. Our

assumptions are

C [C0; An `n en : t0 & b0r (1)

C [C0 ` bn; b
0
r � b (2)

and we must show that there exists br and S such that the following holds:

C;An `n en : 8(~�~�~� : C0): t0 & br (3)

C ` bn; br � b (4)

Dom(S) \ FV(A; bn) = ; and C ` S (C [C0).

We choose br = b0r and S = S0 and then it will su�ce to prove

f~�~�~�g \ FV(bn; b
0
r) = ; (5)

for then (2) and Lemma 2.18 give that C [S C0 ` bn; b
0
r � b which (by

Lemma 2.19) implies (4); and since FV(An) n FV(A) � FV(bn) holds by

assumption we will be able to use (gen) to arrive at (3) from (1).

So we are left with the task of proving (5). By the assumption FV(b) \

f~�~�~�g = ; this can be done by showing

8
0 2 FV(bn; b
0
r)9
 2 FV(b) : C [C0 `
0 �
 (6)

8
0 2 f~�~�~�g : C [C0 `
0 �
 implies
 2 f~�~�~�g. (7)

68

(6) follows from (2) by Lemma 2.29, since C [C0 is well-formed and consis-

tent. (7) follows from Lemma 2.33. 2

Next some auxiliary results concerning the three kinds of concurrent transi-

tions:

Lemma 3.25 Let C be well-formed and consistent, let A be standard, and

suppose that

C;A `n E[channell<()>] : �& b.

Let ch be a channel identi�er that does not occur in E[channell<()>]; then

there exists tn, �n and br such that

C ` tn chan �n; br � b and C ` flg � �n and

C;A[ch : tn chan �n] `n E[ch] : �& br.

Proof The normalised inference tree contains a judgement of the form

C 0; A `n channell<()> : t0& b0

where C 0 is well-formed and consistent (Lemma 3.17). Since A is standard

A(channell) is given by

8(��� : f� chan � � �; flg � �g): unit !� (� chan �)

so using Lemma 3.19 (and subsequently Lemma 3.21 on the typing of ()) we

infer that there exists S such that

C 0 ` S � chan S � � S � and C 0 ` flg � S � (8)

C 0 ` S � chan S � � t0 and C 0 ` S � � b0.

Now de�ne tn = S � and �n = S � and bn = tn chan �n, then

C 0; A[ch : tn chan �n] `n ch : t0& " and C 0 ` bn; " � b0

so as FV(tn chan �n) � FV(bn) Lemma 3.24 gives us br such that

69

C;A[ch : tn chan �n] `n E[ch] : �& br and C ` tn chan �n; br � b

and additionally S 0 with Dom(S 0) \ FV(bn) = ; such that C ` S 0C 0; using

Lemmas 2.18 and 2.19 on (8) we therefore get C ` flg � �n and this com-

pletes the proof. 2

Lemma 3.26 Let C be well-formed and consistent, let A be standard, and

suppose that

C;A `n E[spawn<w>] : �& b.

Then there exists br, t
00, b00 such that

(a) C;A `n E[()] : �& br;

(b) C;A `n w () : t00& b00;

(c) C ` (SPAWN b00); br � b.

Proof The normalised inference tree contains a judgement of the form

C 0; A `n spawn<w> : t0& b0

where C 0 is well-formed and consistent (Lemma 3.17).

Since A(spawn) = 8(���0 : fSPAWN �0 � �g): (unit !�0 �) !� unit,

we from Lemma 3.19 get t1, b1 and S such that

C 0 ` SPAWN (S �0) � S � (9)

C 0 ` unit � t0 and C 0 ` b1;S � � b0 (10)

C 0; A `n w : t1 & b1 and C 0 ` t1 � unit !S �0 S � (11)

and by Lemma 3.21 we infer that

C 0 ` " � b1 and C 0; A `n w : t1 & ". (12)

From (10) we therefore get

70

C 0; A `n () : t0& " and C 0 ` S �; " � ";S � � b0

and Lemma 3.24 (with m = 0 and bn = S �) then gives us a br such that

C;A `n E[()] : �& br and C ` S �; br � b (13)

which yields the claim (a), and in addition an S 0 such that

Dom(S 0) \ FV(A; S �) = ; and C ` S 0C 0. (14)

For the remaining claims, we from (11) and (12) infer that

C 0; A `n w () : S �&S �0

so using (14) we (by Lemma 2.18 and Lemma 2.19) arrive at

C;A `n w () : t00& b00

for t00 = S 0 S � and b00 = S 0 S �0, thus yielding the claim (b).

In order to show (c) it by (13) is su�cient to show that C ` SPAWN b00 �

S �. But this follows from (9) using (14) (by Lemma 2.18 and 2.19). 2

Lemma 3.27 Let C be well-formed and consistent, let A be standard and

a channel environment, and suppose that

C;A `n E1[sync<transmit<pair<ch; w>>>] : �1 & b1 (15)

and that

C;A `n E2[sync<receive<ch>>] : �2 & b2. (16)

Let A(ch) = t chan �0, then there exists ts, bs, �s and tr, br, �r such that

(a) C;A `n E1[w] : �1 & bs and

C ` �s ! ts; bs � b1 and C ` ts � t and C ` �0 � �s;

71

(b) C;A `n w : t& ";

(c) C;A `n E2[w] : �2 & br and

C ` �r ? tr; br � b2 and C ` t � tr and C ` �0 � �r.

Proof The tree (15) will contain a judgement of the form

C1; A `n sync<transmit<pair<ch; w>>> : t1 & b01 (17)

where C1 is well-formed and consistent (Lemma 3.17). Since

A(sync) = 8(�� : ;): (� event �) !� �

Lemma 3.19 together with Lemma 3.21 tells us that there exists t3 and S3

such that

C1; A `n transmit<pair<ch; w>> : t3 & ";

C1 ` S3 � � b01;

C1 ` S3 � � t1;

C1 ` t3 � (S3 �) event (S3 �).

As A(transmit) = 8(��� : f� !� � �g): (� chan �)� � ! (� event �),
Lemma 3.18 (together with Lemma 3.21) tells us that there exists t4 and S4

such that

C1; A `n pair<ch; w> : t4 & ";

C1 ` (S4 �) ! (S4 �) � S4 �;

C1 ` (S4 �) event (S4 �) � t3;

C1 ` t4 � (S4 �) chan (S4 �)� (S4 �).

Since A(pair) = 8(�1�2 : ;): �1 ! �2 ! �1 � �2, Lemma 3.18 (together

with Lemma 3.21) tells us that there exists t5, t6, and S5 such that

72

C1; A `n ch : t5 & "; (18)

C1; A `n w : t6 & "; (19)

C1 ` S5 �1 � S5 �2 � t4;

C1 ` t5 � S5 �1 and C1 ` t6 � S5 �2.

Since A(ch) = t chan �0 we infer from (18) that

C1 ` t chan �0 � t5.

We now repeatedly apply the rules labelled (bw) from Figs. 2.6�2.8: from

C1 ` (S4 �) event (S4 �) � t3 � (S3 �) event (S3 �)

C1 ` t5 � t6 � S5 �1 � S5 �2 � t4 � (S4 �) chan (S4 �)� (S4 �)

we deduce that

C1 ` S4 � � S3 � � t1

C1 ` t chan �0 � t5 � (S4 �) chan (S4 �) (20)

C1 ` t6 � S4 �

C1 ` S4 � � S3 �.

From (19) we therefore get

C1; A `n w : t1 & "

so by Lemma 3.24 applied to (15) and (17) we �nd bs and S1 such that

C;A `n E1[w] : �1 & bs and C ` b01; bs � b1; (21)

Dom(S1) \ FV(A; b
0
1) = ; and C ` S1C1. (22)

Let ts = S1 S4 � and �s = S1 S4 �. By exploiting the contravariance of

� � � chan (cf. the remarks concerning Figure 2.6), we from (20) get

73

C1 ` t6 � S4 � � t

and from (19) therefore

C1; A `n w : t& "

and in addition we have (using (bw) on (20))

C1 ` (S4 �) ! (S4 �) � S4 � � S3 � � b01 and C1 ` �0 � S4 �.

Using (22) we from the preceding lines get (as FV(t; �0) � FV(A))

C ` ts � t and C;A `n w : t& " and

C ` �s ! ts � b01 and C ` �0 � �s.

Together with (21) this yields the claims (a) and (b).

Our remaining task is to show claim (c), where we �rst notice that the tree

(16) will contain a judgement of the form

C2; A `n sync<receive<ch>> : t2 & b02 (23)

where C2 is well-formed and consistent (Lemma 3.17). Since

A(sync) = 8(�� : ;): (� event �) !� �

Lemma 3.19 (together with Lemma 3.21) tells us that there exists t7 and S7

such that

C2; A `n receive<ch> : t7 & ";

C2 ` S7 � � b02;

C2 ` S7 � � t2;

C2 ` t7 � (S7 �) event (S7 �).

Since A(receive) = 8(��� : f� ?� � �g): (� chan �) ! (� event �),

Lemma 3.18 tells us that there exists t8 and S8 such that

74

C2; A `n ch : t8 & "; (24)

C2 ` (S8 �) ? (S8 �) � S8 �;

C2 ` (S8 �) event (S8 �) � t7;

C2 ` t8 � (S8 �) chan (S8 �).

Since A(ch) = t chan �0 we infer from (24) that

C2 ` t chan �0 � t8.

We now repeatedly apply the rules labelled (bw) from Figs. 2.6�2.8: from

C2 ` (S8 �) event (S8 �) � t7 � (S7 �) event (S7 �)

C2 ` t chan �0 � t8 � (S8 �) chan (S8 �)

we get, by exploiting the covariance of � � � chan (cf. the remarks concerning

Figure 2.6),

C2 ` t � S8 � � S7 � � t2 (25)

C2 ` (S8 �) ? (S8 �) � S8 � � S7 � � b02 and C2 ` �0 � S8 �. (26)

Clearly C � C2 so by Lemma 2.19 we can deduce from claim (b) that

C2; A `n w : t& "

so by applying (sub) we arrive at

C2; A `n w : t2 & ".

By applying Lemma 3.24 on (16) and (23) we �nd br and S2 such that

C;A `n E2[w] : �2 & br and C ` b02; br � b2; (27)

Dom(S2) \ FV(A; b
0
2) = ; and C ` S2C2. (28)

Let tr = S2 S8 � and �r = S2 S8 �. By (28) we from (25) and (26) get (as

FV(t; �0) � FV(A))

75

C ` t � tr and C ` �r ? tr � b02 and C ` �0 � �r

which together with (27) yields the claim (c).

This completes the proof. 2

We are now able to formulate that our system is semantically sound, in the

sense that �well-typed programs communicate according to their behaviour�.

We write C;A ` PP : PT &PB, where PT (respectively PB) is a mapping

from process identi�ers into types (respectively behaviours), if the domains

of PP , PT and PB are equal and if for all p 2 Dom(PP) we have C;A `

PP (p) : PT (p)&PB(p).

Theorem 3.28 Semantic (concurrent) soundness

Let C be well-formed and consistent, let A be a standard channel environ-

ment, and suppose

C;A `n PP : PT &PB.

If PP
sa
�! PP 0 then there exists PT 0, PB0 and a standard channel environ-

ment A0 such that

C;A0 `n PP 0 : PT 0&PB0

and such that if ch occurs in PP then A0(ch) = A(ch) and such that if p is

in the domain of PP then (i) PT 0(p) = PT (p) and (ii) if p is not mentioned

in sa then PB0(p) = PB(p).

Furthermore we have the following property:

� If sa = p0 chan
l ch0 then there exists t0 and �0 such that A0(ch0) =

t0 chan �0 and such that

C ` t0 chan �0;PB
0(p0) � PB(p0) and C ` flg � �0.

� If sa = p0 spawn p0 then

C ` (SPAWN PB0(p0));PB0(p0) � PB(p0).

� If sa = p1; p2 comm ch0 then, with A(ch0) = t chan �, there exists

76

ts and tr with C ` ts � t � tr and

�s and �r with C ` � � �s and C ` � � �r

such that

C ` (�s ! ts);PB
0(p1) � PB(p1)

C ` (�r ? tr);PB
0(p2) � PB(p2).

Proof We perform case analysis on the semantic action sa:

sa = seq: It follows from Theorem 3.23 that we can use PT 0 = PT , PB0 =

PB and A0 = A.

sa = p0 chan
l ch0: It follows from Lemma 3.25 that there exists t0,�0 and

br such that the claim follows with PT 0 = PT , PB0 = PB[p0 : br] and
A0 = A[ch0 : t0 chan �0]. (For p in the domain of PP with p 6= p0 we must

show that C;A `n PP (p) : PT (p)&PB(p) implies C;A0 `n PP (p) :
PT (p)&PB(p), but this follows from Fact 2.21.)

sa = p0 spawn p0: It follows from Lemma 3.26 that there exists t00, b00 and

br such that we can use PT 0 = PT [p0 : t00], PB0 = PB[p0 : br][p
0 : b00] and

A0 = A.

sa = p1; p2 comm ch0: It follows from Lemma 3.27 that there exists bs and br
such that we can use PT 0 = PT , PB0 = PB[p1 : bs][p2 : br] and A0 = A. 2

Remark Theorem 3.28 makes it explicit that the type of a channel does not

change after it has been allocated. This should be compared with the subject

reduction result in [33, Lemma 5.2], the formulation of which allows one the

possibility of assigning di�erent types to the same location at various stages

(although apparently it is always possible to choose the same type and still

get subject reduction). 2

77

Chapter 4

The Inference Algorithm

In designing an inference algorithm W for the type inference system we are

motivated by the overall approach of [26, 6]. One ingredient (called W 0) of

this will be to perform a syntax-directed traversal of the expression in order to

determine its type and behaviour; this will involve constructing a constraint

set for expressing the required relationship between the type and behaviour

and region variables. The second ingredient (called F) will be to perform a

decomposition of the constraint set into one that is atomic (as to be explained

below). The third ingredient (called R) amounts to (signi�cantly) reducing

the constraint set; this is optional and a somewhat open ended endeavour.

The algorithm also employs the notion of well-formedness for constraint sets

(introduced in De�nition 2.10) and for types and type schemes (introduced

in De�nition 2.12). Recall (Fact 2.11 and Fact 2.13) that these notions are

closed under substitution; this will not be the case for the notion of atomicity.

Atomicity

As in [12, 6, 26] we shall want the type constraints to match and shall de-

compose them into atomic constraints; in our setting these will not contain

base types as we have no ordering among those.

De�nition 4.1 A constraint set C is atomic if (i) C is well-formed, and (ii)

all type constraints in C are of the form �1 � �2. 2

Atomicity is a rather strong notion:

78

Fact 4.2 Let C be atomic. Then C is also well-formed and consistent; and

it holds that (C)
b
= Cb and (C)

r
= Cr; so if C `
 � then there exists b

with
 2 FV(b) such that (b � �) 2 C.

Proof To prove consistency one may employ the notion of matching and the

claim will be a corollary1 of Fact 5.11. 2

Atomicity of type constraints is responsible for transforming constraints like

(� � int) and (t1 � t2 � �) by forcing � to be replaced by a type expres-

sion that �matches� the opposite side of the constraint, and for disallowing

constraints like (t1 � t2 � t01 !
� t02); a phenomenon that can be found

in [12, 6, 26] as well. This feature is responsible for making the algorithm

a �conservative extension� of the way algorithm W for Standard ML would

operate if e�ects were not taken into account: in particular our algorithm

will fail, rather than produce an unsolvable constraint set, if the underlying

type constraints of the e�ect-free system cannot be solved. (We shall make

this point more precise in Section 4.6.)

4.1 Algorithm W

Our key algorithmW is described by

W(A; e) = (S; t; b; C)

where the intuition is that C; S A ` e : t& b is the �best correct� typing of

e relative to an assumption list derived from A. We shall enforce throughout

(by using F) that C is atomic provided that A is well-formed. AlgorithmW

is de�ned by the clause

W(A; e) = let (S1; t1; b1; C1) =W
0(A; e)

let (S2; C2) = F(C1)
let (C3; t3; b3) = R(C2; S2 t1; S2 b1; S2 S1A)

in (S2 S1; t3; b3; C3)

1There is no circularity going on, but to state Fact 5.11 already now requires us to set
up some amount of machinery and we will rather postpone this.

79

where the de�nitions of W 0 and W are mutually recursive; algorithm W 0

is responsible for the syntax-directed traversal of the argument e 2 EExp.

In general, W 0 will fail to produce an atomic constraint set C, even when

the assumption list A is well-formed; it will be the case, however, that C is

well-formed. This then motivates the need for a transformation F (Sect. 4.3)

that maps a well-formed constraint set into an atomic constraint set; since

this involves splitting variables we shall need to produce a substitution as

well. The �nal transformationR merely attempts to get a smaller constraint

set by removing variables that are not strictly needed. Its operation is not

essential for the soundness or completeness of our algorithm and thus one

might de�ne it by R(C; t; b; A) = (C; t; b); in Sect. 4.4 we shall consider a

more powerful version of R.

Example 4.3 To make the intentions a bit clearer suppose thatW 0(A; e) =

(S1; t1; b1; C1) so that C1; S1A ` e : t1 & b1 is the �best correct� typing of e.

If

C1 = f�1 � �2 � �3; �4 � int; �5 chan �; " � �g

then (S2; C2) = F(C1) should give

C2 = f�1 � �31; �2 � �32; �5 chan �; " � �g

S2 = [�3 7! �31 � �32; �4 7! int]

We expand �3 to �31 � �32 so the resulting constraint �1 � �2 � �31 � �32

can be �decomposed� into the atomic constraints �1 � �31 and �2 � �32.

Furthermore we have expanded �4 to int as it follows from Figure 2.6 that

; ` t � int necessitates that t equals int. Clearly the intention is that

also C2; S2 S1A ` e : S2 t1 &S2 b1 is the �best correct� typing of e and

additionally the constraint set is atomic (unlike what is the case for C1). 2

4.2 Algorithm W 0

Algorithm W 0 is de�ned by the clauses in Figure 4.1 and is to be de�ned

simultaneously with W since it calls W in a number of places. Actually it

80

W 0(A; c) = if c 2 Dom(A) then INST(A(c)) else failconst

W 0(A; x) = if x 2 Dom(A) then INST(A(x)) else failident

W 0(A; fn x)e0) =

let � be fresh

let (S0; t0; b0; C0) =W(A[x : �]; e0)

let � be fresh

in (S0; S0 � !
� t0; "; C0 [fb0 � �g)

W 0(A; e1 e2) =

let (S1; t1; b1; C1) =W(A; e1)

let (S2; t2; b2; C2) =W(S1A; e2)

let �; � be fresh

in (S2 S1; �; (S2 b1; b2; �); S2C1 [C2 [fS2 t1 � t2 !
� �g)

W 0(A; e0 @
s
n < e1; � � � ; en >) =
� � � let (Si; ti; bi; Ci) =W(Si�1 � � �S1 S0A; ei) � � � let � be fresh

in (Sn � � �S1 S0; �; (Sn � � �S1 b0;Sn � � �S2 b1; � � �; bn);

� � � [Sn � � �Si+1Ci [� � � [fSn � � �S1 t0 � Sn � � �S2 t1 ! � � � tn ! �g)

W 0(A; let x = e1 in e2) =
let (S1; t1; b1; C1) =W(A; e1)

let ts1 = GEN(S1A; b1)(C1; t1)
let (S2; t2; b2; C2) =W((S1A)[x : ts1]; e2)

in (S2 S1; t2; (S2 b1; b2); S2C1 [C2)

W 0(A; rec f x)e0) =
let �1; �; �2 be fresh

let (S0; t0; b0; C0) =W(A[f : �1 !
� �2][x : �1]; e0)

in (S0; S0 (�1 !
� �2); "; C0 [fb0 � S0 �; t0 � S0 �2g)

W 0(A; if e0 then e1 else e2) =

let (S0; t0; b0; C0) =W(A; e0)
let (S1; t1; b1; C1) =W(S0A; e1)
let (S2; t2; b2; C2) =W(S1 S0A; e2)

let � be fresh

in (S2 S1 S0; �; (S2 S1 b0; (S2 b1 + b2));
S2 S1C0 [S2C1 [C2 [fS2 S1 t0 � bool; S2 t1 � �; t2 � �g)

Figure 4.1: Syntax-directed constraint generation

81

could call itself recursively, rather than callingW, in all but one place2: the

call to W immediately prior to the use of GEN to generalise the type of the

let-bound identi�er to a type scheme. The algorithm follows the overall ap-

proach of [26, 8] except that as in [6] there are no explicit uni�cation steps;

these all take place as part of the F transformation. The main novel ingredi-

ent of our approach shows up in the clause for let as we shall explain shortly.

Concentrating on the overall picture we thus have clauses for constants and

identi�ers; both make use of the auxiliary function INST de�ned by

INST(8(~�~�~� : C): t) = let ~�0~� 0~�0 be fresh

let R = [~�~�~� 7! ~�0~� 0~�0]

in (Id; R t; "; RC)

INST(t) = (Id; t; "; ;)

in order to produce a fresh instance of the relevant type or type scheme as

determined by the environment A. The clause for function abstraction is

rather straightforward; note the use of a constraint to record the �meaning�

of the fresh behaviour variable. Also the clause for (silent and non-silent)

application is rather straightforward; note that instead of a uni�cation step

we record the desired connection between the operator and operand types by

means of a (non-atomic) constraint. The clauses for recursion and conditional

follow the same pattern as the clauses for abstraction and application.

The only novelty in the clause for let is the function GEN used for general-

isation:

GEN(A; b)(C; t) = let f~�~�~�g = (Clos(FV(t); C)) n (FV(A; b)C#)

let C0 = C j f~�~�~�g
in 8(~�~�~� : C0): t

where

� Clos(X;C) = f
 j 9
0 2 X :
 �C
0g with �C the least equivalence

relation satisfying that if (g1 � g2) 2 C and
;
0 2 FV(g1; g2) then

 �C
0;

2This is exactly the place where the algorithm of [26] makes use of constraint simpli�-
cation in the �close� function.

82

� C j f~�~�~�g = f(g1 � g2) 2 C j FV(g1; g2) \ f~�~�~�g 6= ;g.

The de�nition of C0 thus establishes the part of the well-formedness condition

that requires each constraint to involve at least one bound variable.

The exclusion of the set FV(A; b)
C#

(rather than just FV(A; b)) is necessary in

order to ensure f~�~�~�g
C0"

= f~�~�~�g which is essential for semantic soundness

(cf. the discussion in the Introduction); the computation of �Indirect Free

Variables� of [32] is very similar to our notion of downwards closure. Finally

we have chosen Clos(FV(t); C) as the �universe� in which to perform the set

di�erence; this universe must be large enough that we may still hope for

syntactic completeness and all of FV(t), FV(t)
C#

(similar to what is in fact

taken in [32]) and FV(t)C" are apparently too small for this (except for the

latter they are not even upwards closed).

Fact 4.4 Let � = GEN(A; b)(C; t). If C is atomic then � is well-formed.

Proof Using the terminology from the de�ning clause for GEN, the only

non-trivial task is to show that f~�~�~�g
C0"
� f~�~�~�g (notice that the re-

quirement FV(C0
t) \ f~� g = ; would not necessarily hold if we had just

assumed C to be well-formed). So assume C0 `
 � with
 2 f~�~�~�g;

we must show that � 2 f~�~�~�g. From Fact 4.2 we �nd b with
 2 FV(b)

such that (b � �) 2 C0 � C, implying C `
 � and
 �C �. From

 2 Clos(FV(t); C) and
 =2 FV(A; b)
C#

we thus infer � 2 Clos(FV(t); C)

and � =2 FV(A; b)C# so � 2 f~�~�~�g as desired. 2

Remark Note that Clos(FV(t); C) is a subset of FV(t; C) and that it may

well be a proper subset; when this is the case it avoids to generalise over

�purely internal� variables that are inconsequential for the overall type. If

one were to regard let x = e1 in e2 as equivalent to e2[e1=x] (which is sensi-

ble only if e1 has an empty behaviour) this corresponds to forcing all �purely

internal� variables in corresponding copies of e1 to be equal. This is helpful

for reducing the size of constraint sets and type schemes. 2

83

4.3 Algorithm F

We are now going to de�ne the algorithm F which �forces type constraints to

match� by transforming them into atomic constraints; the algorithm closely

resembles [6, procedure MATCH].

The algorithm may be described as a non-deterministic rewriting process. It

operates over triples of the form (S;C;�) where S is a substitution, C is a

constraint set, and � is an equivalence relation among the �nite set of type

variables in C; we shall write EqC for the identity relation over type variables

in C. We then de�ne F by

F(C) = let (S 0; C 0;�0) be given by (Id; C;EqC) �!
� (S 0; C 0;�0) 6�!

in if all type constraints in C 0 are of the form �1 � �2

then (S 0; C 0) else failforcing

The rewriting relation is de�ned by the axioms of Figure 4.3 and will be

explained below; it makes use of an auxiliary rewriting relation, de�ned in

Figure 4.2, which operates over constraint sets.

The axioms of Figure 4.2 are rather straightforward, implementing the rules

(bw) from Figs. 2.6 and 2.7 and 2.8. (A small notational point: in Figure 4.2

and in Figure 4.3 we write C
�
[C 0 for C [C 0 in case C \ C 0 = ;.)

Fact 4.5 The rewriting relation * is con�uent and if C1 * C2 then C2 `

C1.

Proof Con�uence follows since each rewriting operates on a single element

only, and for each element there is only one possible rewriting. 2

We now turn to Figure 4.3. The axiom (dc) decomposes the constraint set

but does not modify the substitution nor the equivalence relation among type

variables. The axioms (mr) and (ml) both forces left and right hand sides

of type constraints to match and produces a new substitution as a result;

additionally it may modify the equivalence relation among type variables.

The details require the predicate M (which performs an �occur check�), to

be de�ned shortly. Before presenting the formal de�nition we consider an

example.

84

(unit) C
�
[funit � unitg

(bool) C
�
[fbool � boolg

(int) C
�
[fint � intg

9>>>=
>>>;
* C

(!) C
�
[ft1 ! t2 � t3 ! t4g* C [ft3 � t1; t2 � t4g

(!) C
�
[ft1 !

�1 t2 � t3 !
�2 t4g

* C [ft3 � t1; �1 � �2; t2 � t4g

(�) C
�
[ft1 � t2 � t3 � t4g* C [ft1 � t3; t2 � t4g

(list) C
�
[ft1 list � t2 listg* C [ft1 � t2g

(chan) C
�
[ft1 chan �1 � t2 chan �2g* C [ft1 � t2; t2 � t1; �1 � �2g

(event) C
�
[ft1 event �1 � t2 event �2g* C [ft1 � t2; �1 � �2g

Figure 4.2: Decomposition of constraints

(dc)
C * C 0

(S;C;�) �! (S;C 0;�)

(mr) (S;C
�
[ft � �g;�) �! (RS;RC [fR t � R�g;�0)

providedM(�; t;�; R;�0)

(ml) (S;C
�
[f� � tg;�) �! (RS;RC [fR� � R tg;�0)
providedM(�; t;�; R;�0)

Figure 4.3: Rewriting rules for F : forcing well-formedness

85

Example 4.6 With t1 = (�11 � �12) event �1, consider the constraint

t1 � �0. Forcing the left and right hand sides to match means �nding a

substitution R such that R t1 and R�0 have the same shape. A natural

way to achieve this is by creating new type variables �21 and �22 and a new

behaviour variable �2 and by de�ning

R = [�0 7! (�21 � �22) event �2].

Then R t1 = t1 = (�11 � �12) event �1 and R�0 = (�21 � �22) event �2
and these types intuitively have the same shape. Returning to Figure 4.3 we

would thus expectM(�0; t1;�; R;�).

If instead we had considered the constraint � event � � � then the above

procedure would not lead to a matching constraint. We would get

R = [� 7! �0 event � 0]

and the constraint R (� event �) � R� then is

(�0 event � 0) event � � �0 event � 0

which does not match; indeed it would seem that matching could go on

forever without ever producing a matching result. To detect this situation we

have an �occur check�: whenM(�; t;�; R;�0) holds no variable in Dom(R)

must occur in t. This condition fails when t = � event �.

However, there are more subtle ways in which termination may fail. Consider

the constraint set

f�1 event �1 � �0; �0 � �1g

where only the �rst constraint does not match. Attempting a match we get

R1 = [�0 7! �2 event �2]

and note that the �occur check� succeeds. The resulting constraint set is

f�1 event �1 � �2 event �2; �2 event �2 � �1g

86

which may be reduced to

f�1 � �2; �1 � �2; �2 event �2 � �1g.

The type part is isomorphic to the initial constraints, so this process may con-

tinue forever: we perform a second match and produce a second substitution

R2, etc.

To detect this situation we follow [6] in making use of the equivalence relation

� and extend it with �1 � �2 after the �rst match that produced R1; the

intuition is that �1 and �2 eventually must be bound to types having the

same shape. When performing the second match we then require R2 not

only to expand �1 but also all �0 satisfying �0 � �1; this means that R2

must expand also �2. Consequently the �extended occur check� Dom(R2) \

FV(�2 event �2) = ; fails. 2

Remark Matching bears certain similarities to uni�cation and can actually

be de�ned in terms of uni�cation. In [12] matching is performed by �rst do-

ing uni�cation and then the resulting substitution is transformed such that

it �maps into fresh variables�. In [25, Fig. 3.7] it is �rst checked whether it is

possible to unify a certain set of equations, derived from the constraint set;

if this is the case then the algorithm behaves similar to the one presented

here except that the equivalence relation is no longer needed. 2

To formalise the intuition gained from the example we need to be more precise

about the shape of a type.

De�nition 4.7 A shape sh is a type with holes in it for all (type or behaviour

or region) variables; it may be formally de�ned by:

sh ::= [] j unit j bool j int j sh1 ! sh2 j sh1 !
[] sh2

j sh1 � sh2 j sh list j sh chan [] j sh event []

We write sh[~t ; ~� ; ~�] for the type obtained by replacing all type holes with the

relevant type in the list ~t and replacing all behaviour holes with the relevant

behaviour variable in the list ~� and replacing all region holes with the relevant

region variable in the list ~� ; we assume throughout that the lengths of the

lists equal the number of holes and shall dispense with a formal de�nition.

2

87

M(�; t;�; R;�0) holds

if f�1; � � � ; �ng \ FV(t) = ;

and R = [�1 7! sh[~� 1; ~� 1; ~� 1]; � � � ; �n 7! sh[~� n; ~� n; ~� n]]

and �0 is the least equivalence relation containing the pairs

f(�0; �00) j �0 � �00 ^ f�0; �00g \ f�1; � � � ; �ng = ;g
S

f(�0j; �ij) j ~� 0 = �01 � � ��0m; ~� i = �i1 � � ��im; 1 � i � n; 1 � j � mg

where f�1; � � � ; �ng = f�
0 j �0 � �g

and sh[~� 0; ~� 0; ~� 0] = t with ~� 0 having length m

and ~� 1; � � � ; ~� n are vectors of fresh variables, each of length m

and ~� 1; � � � ; ~� n are vectors of fresh variables of the same length as ~� 0

and ~� 1; � � � ; ~� n are vectors of fresh variables of the same length as ~� 0

Figure 4.4: Forced matching

For each type t there clearly exists unique sh, ~� , ~� , and ~� such that

sh[~� ; ~� ; ~�] = t.

Example 4.8 If sh = ([]� []) event [] then sh[~t ; ~� ; ~�] = (t1 � t2) event �1
if and only if ~t = t1t2 and ~� = �1 and ~� = (). 2

As already mentioned, the axioms (mr) and (ml) from Fig. 4.3 force a type t

to match a type variable � and employ the predicateM de�ned in Figure 4.4.

This predicate may also be considered a partial function with its �rst three

parameters being input and the last two being output; the �call� M(�; t;�
; R;�0) produces the substitution R and modi�es the equivalence relation �

(over the free type variables of a constraint set C 0) to another equivalence

relation�0 (over the free type variables of the constraint set RC 0). In axioms

(mr) and (ml) the newly produced substitution R is composed with the

previously produced substitution. Also note that the �extended occur check�

in Figure 4.4 ensures that R t = t.

Fact 4.9 Suppose (S;C;�) �! (S 0; C 0;�0). Then there exists R such that

S 0 = RS and such that RC *� C 0. Moreover, if C is well-formed then also

C 0 is well-formed. 2

Remark: type cycles become behaviour cycles. To understand why

F does not report failure in more cases than a �classical type checker�, the

88

following example is helpful. Consider the �constraint�

C = fint !� chan � int � �g

which will not cause a classical type checker to fail since � is simply uni�ed

with int ! int. Now let us see how F behaves on C, when �encoded� into

our format:

fint !� int � �; f� chan �g � �g:

Here case (mr) in Figure 4.3 is enabled, and consequentially a substitution

which maps � into int !�0 int (with � 0 new) is applied to the constraints.

The resulting constraint set is

fint !� int � int !�0 int; f(int !�0 int) chan �g � �g

and after applying (dc) twice we end up with the constraint set

C 0 = f� � � 0; f(int !�0 int) chan �g � �g

which cannot be rewritten further. The set C 0 is atomic so Algorithm F

succeeds on C. 2

4.3.1 Termination and Soundness of F

Having completed the de�nition ofM, �! and F we can state:

Lemma 4.10 F(C) always terminates (possibly with failure). Suppose that

F(C) succeeds with result (S 0; C 0); then

� if C is well-formed then C 0 is atomic; and

� C 0 is determined from S 0C in the sense that S 0C *� C 0 6*.

Proof We �rst address termination and for this purpose we (much as in

[6]) de�ne an ordering on triples (S;C;�) as follows: (S 0; C 0;�0) is less than

(S;C;�) if either the number of equivalence classes in FV(C 0) wrt. �0 is less

than the number of equivalence classes in FV(C) wrt. � or these numbers

are equal but C 0 is less than C according to the following de�nition:

89

for all i � 0 let si be the number of constraints in C containing i

symbols and let s0i be the number of constraints in C 0 containing i

symbols; then C 0 is less than C if there exists a n such that s0n < sn
and such that s0i = si for all i > n.

This relation on constraint sets is clearly transitive and it is easy to see that it

is also well-founded, hence the (lexicographically de�ned) ordering on triples

is well-founded. Thus it su�ces to show that if (S;C;�) �! (S 0; C 0;�0)

then (S 0; C 0;�0) is less than (S;C;�). If the rule (dc) has been applied then

C 0 is less than C (as n in the above de�nition we can use the number of

symbols in the constraint being decomposed) and �0=�. If the rule (mr)

or (ml) has been applied then the number of equivalence classes wrt. � will

decrease as can be seen from the de�nition ofM in Fig. 4.4: the equivalence

class containing � is removed (as this class equals Dom(R) and C 0 = RC)

and no new classes are added (as all type variables in Ran(R) are put into

some existing equivalence class).

We have thus proved termination; it is easy to see that the other claims will

follow provided we can show that if

(Id; C;EqC) �!
� (Sn; Cn;�n)

then SnC *� Cn and if C is well-formed then also Cn is well-formed. We do

this by induction on the length of the derivation, where the base case as well

as the part concerning well-formedness (where we use Fact 4.9) is trivial. For

the inductive step, suppose that

(Id; C;EqC) �!
� (Sn; Cn;�n) �! (Sn+1; Cn+1;�n+1)

where the induction hypothesis ensures that SnC *� Cn. By Fact 4.9 there

exists R such that Sn+1 = RSn and such that RCn *� Cn+1. As it is

easy to see that the relation * is closed under substitution it holds that

RSnC *� RCn, hence the claim. 2

Lemma 4.11 F is sound

If F(C) = (S 0; C 0) then C 0 ` S 0C.

90

Proof By Lemma 4.10 we have S 0C *� C 0, which yields the claim due to

Fact 4.5. 2

Remark By Fact 4.5 we know that * is con�uent but this does not directly

carry over to �! or F : the constraint �1 � �2 may yield ([�1 7! �0]; f�0 �

�2g) as well as ([�2 7! �0]; f�1 � �0g). However, Lemma 4.10 tells us that

F(C) = (S 0; C 0) ensures that C 0 is determined from S 0C; and we conjecture

that S 0 is determined, up to some notion of renaming, from C. 2

4.4 Algorithm R

The purpose of (the optional and somewhat open-ended) algorithm R is to

reduce the size of a constraint set which is already atomic. The techniques

used are basically those of [26] and [5], adapted to our framework.

The transformation R may be described as a non-deterministic rewriting

process, operating over triples of the form (C; t; b) with C atomic, and with

respect to a �xed environment A. We then de�ne R by:

R(C; t; b; A) = let (C 0; t0; b0) be given by

A ` (C; t; b) �!� (C 0; t0; b0) 6�!
in (C 0; t0; b0)

The rewriting relation is de�ned by the axioms of Figure 4.5 and will be

explained below (recall that
�
[means disjoint union). To understand the

axioms, it is helpful to view the constraints as a directed graph where the

nodes are either (i) type or behaviour or region variables, or (ii) non-variable

behaviours or channel labels; as the constraints are well-formed, the arrows

always have a variable node as the source. With this in mind we de�ne:

De�nition 4.12 We write (
 (�
0) 2 C if there is a path from
0 to
;

that is if there exists
0 � � �
n (n � 0) such that
0 =
 and
n =
0 and

(
i �
i+1) 2 C for all i 2 f0 � � �n� 1g. 2

Notice that (
 (�
) 2 C holds also if
 =2 FV(C). From re�exivity and

transitivity of � we have:

91

(redund) A ` (C
�
[f
0 �
g; t; b) �! (C; t; b)

provided (
0 (�
) 2 C

(cycle) A ` (C; t; b) �! (S C; S t; S b)

where S = [
 7!
0] with
 6=
0

provided (
 (�
0) 2 C and (
0 (�
) 2 C and

provided
 =2 FV(A) [ChanVar(t; b; C)

(shrink) A ` (C
�
[f
0 �
g; t; b) �! (S C; S t; S b)

where S = [
 7!
0] with
 6=
0

provided
 =2 FV(RHS(C); A) and

provided t, b, and each element in LHS(C) is monotonic in

(boost) A ` (C
�
[f
 �
0g; t; b) �! (S C; S t; S b)

where S = [
 7!
0] with
 6=
0

provided
 =2 FV(A) and

provided t, b and each element in LHS(C) is anti-monotonic in

Figure 4.5: Eliminating constraints

Fact 4.13 If (
 (�
0) 2 C then also C `
 �
0. 2

We have a substitution result similar to Lemma 2.18:

Fact 4.14 Let S be a substitution mapping variables into variables, and

suppose (
 (�
0) 2 C. Then also (S
 (� S
0) 2 S C. 2

We say that C is cyclic if there exists
1;
2 2 FV(C) with
1 6=
2 such that

(
1 (
�
2) 2 C and (
2 (

�
1) 2 C.

We now explain the rules: (redund) removes constraints which are redundant

due to the ordering � being re�exive and transitive; applying this rule re-

peatedly is called �transitive reduction� in [26] and is essential for a compact

representation of the constraints.

The remaining rules all replace some variable
 by another variable
0. How-

ever, a �solution� to C will not necessarily map
 and
0 into identical �terms�,

and therefore we should not (in the style of F) return the substitution

92

[
 7!
0] and subsequently apply it to A. In order to maintain soundness

(cf. Lemma 4.25) we must therefore demand that
 =2 FV(A).

The rule (cycle) collapses cycles in the graph; however, it is not possible to

eliminate a cycle which involves two elements of FV(A) [ChanVar(t; b; C)

where ChanVar() is the set of variables occurring inside some (sub)behaviour

of the form t0 chan �, � ! t0, or � ? t0. The requirement concerning FV(A)

is due to the remark above; the requirement concerning ChanVar(t; b; C) is

needed for technical reasons but notice that we may expect that all variables

in ChanVar(t; b; C) will belong to FV(A0) for some A0 encountered during

the algorithm (inside some channel type t0 chan �). (In [26] it holds that

; ` t1 � t2 implies t1 = t2 so if
 and
0 belong to the same cycle in C then

all substitutions that solve C can be written on the form S 0 [
 7!
0], hence

cycle elimination can be part of the analogue of F .)

The rule (shrink) expresses that a variable
 can be replaced by its �imme-

diate predecessor�
0, and due to the ability to perform transitive reduction

this can be strengthened to the requirement that
0 is the �only predecessor�

of
, which can be formalised as the side condition
 =2 FV(RHS(C)) where
RHS(C) = f
 j 9g : (g �
) 2 Cg. We can allow
 to belong to t and b

and LHS(C), where LHS(C) = fg j 9
 : (g �
) 2 Cg, as long as we do not

�lose instances�, that is we must have that S t � t, S b � b, and S g � g for

each g 2 LHS(C). This will be the case provided t and b and each element of

LHS(C) are monotonic in
, where for example t = �1 !
�1 �2 !

�1 �1 is

monotonic in
 for all
 =2 f�1; �2g. A more formal treatment of the concept

of monotonicity will be given shortly, for now notice that if
 =2 FV(g) or if

g =
 then g is monotonic in
.

The rule (boost) expresses that a variable
 can be replaced by its �immediate

successor�
0, and due to the ability to perform transitive reduction this can

be strengthened to the requirement that
0 is the �only successor� of
. In

addition we must demand that we do not �lose instances�, that is we must

have that S t � t, S b � b, and S g � g for each g 2 LHS(C). This will be

the case provided t and b and each element of LHS(C) are anti-monotonic in

, where for example t = �1 !
�1 �2 !

�1 �1 is anti-monotonic in
 for all

 =2 f�1; �1g. Notice that if each element of LHS(C) is anti-monotonic in

then
0 is in fact the only successor of
.

93

Monotonicity

De�nition 4.15 Given a constraint set C. We say that a substitution S is

increasing (respectively decreasing) wrt. C if for all
 we have C `
 � S

(respectively C ` S
 �
).

We say that a substitution S increases (respectively decreases) g wrt. C

whenever C ` g � S g (respectively C ` S g � g). 2

We want to de�ne the concepts of monotonicity and anti-monotonicity such

that the following result holds:

Lemma 4.16 Suppose that g is monotonic in all
 2 Dom(S); then if S

is increasing (respectively decreasing) wrt. C then S increases (respectively

decreases) g wrt. C.

Suppose that g is anti-monotonic in all
 2 Dom(S); then if S is increasing

(respectively decreasing) wrt. C then S decreases (respectively increases) g

wrt. C. 2

To this end we make the following de�nition

De�nition 4.17 We say that g is monotonic in
 if
 2 M(g); and we say

that g is anti-monotonic in
 if
 2 A(g).

Here the sets M(g) and A(g) are recursively de�ned below, where V denotes

the �universe� of variables:

M(
) = V and A(
) = V n f
g;

M(unit) = M(bool) = M(int) = M(") = M(flg) = V;

A(unit) = A(bool) = A(int) = A(") = A(flg) = V;

M(t1 ! t2) = A(t1) \M(t2);
A(t1 ! t2) = M(t1) \ A(t2);
M(t1 !

� t2) = A(t1) \M(t2);

A(t1 !
� t2) = (M(t1) \ A(t2)) n f�g;

M(t1 � t2) = M(t1) \M(t2);

A(t1 � t2) = A(t1) \ A(t2);

M(t list) = M(t) and A(t list) = A(t);
M(t chan �) = V n FV(t);

A(t chan �) = V n (f�g [FV(t));

M(t event �) = M(t);

94

A(t event �) = A(t) n f�g ;

M(b1; b2) = M(b1 + b2) = M(b1) \M(b2);

A(b1; b2) = A(b1 + b2) = A(b1) \ A(b2);

M(SPAWN b) = M(b) and A(SPAWN b) = A(b);

M(t chan �) = M(� ! t) = M(� ? t) = V n (f�g [FV(t));

A(t chan �) = A(� ! t) = A(� ? t) = V n (f�g [FV(t)).

Fact 4.18 For all types/behaviours/regions g, it holds that M(g) \ A(g) =

V n FV(g) and that (M(g) [A(g)) \ ChanVar(g) = ;. (So if g is monotonic

as well as anti-monotonic in
, then
 =2 FV(g).)

For all behaviours b, A(b) = V n FV(b). 2

Now we can prove Lemma 4.16:

Proof Induction on g, we list some typical cases:

g is a variable: The claims follow from the fact that if g is anti-monotonic

in all
 2 Dom(S), then g =2 Dom(S).

g is a function type t1 !� t2: First consider the sub-case where g

is monotonic in all
 2 Dom(S) and where S is increasing wrt. C. Then

 2 Dom(S) gives
 2 M(t1 !
� t2), and we infer that
 2 A(t1) and

 2 M(t2), so that t1 is anti-monotonic in
 whereas t2 is monotonic in

. We can thus apply the induction hypothesis to infer that S decreases t1
wrt. C and that S increases t2 wrt. C. But then it is straightforward (as

C ` � � S �) that S increases g wrt. C.

The other sub-cases are rather similar.

g is a sequential behaviour b1; b2: First consider the sub-case where g is

anti-monotonic in all
 2 Dom(S) and where S is increasing wrt. C. Then

 2 Dom(S) gives
 2 A(b1; b2), and we infer that
 2 A(b1) and
 2 A(b2),

so that b1 and b2 are both anti-monotonic in
. We can thus apply the

induction hypothesis to infer that S decreases b1 as well as b2 wrt. C. But

then it is straightforward that S decreases g wrt. C.

The other sub-cases are similar.

95

g is a channel behaviour t chan �: First consider the sub-case where g

is monotonic in all
 2 Dom(S). Then
 2 Dom(S) gives
 2 M(t chan �),

that is
 =2 FV(t) and
 6= �. Thus S t = t and S � = �, so clearly S increases

as well as decreases g wrt. C.

The other sub-case is similar. 2

Example 4.19 Let C and t be given by

C = f�1 � �2g and t = �1 !
� �2. (1)

As t is monotonic in �2, it is possible to apply (shrink) and get

C 0 = ; and t0 = �1 !
� �1. (2)

The soundness and completeness of this transformation may informally be

argued as follows: (1) �denotes� the set of types

ft1 !
� t2 j ; ` t1 � t2g

but this is also the set of types denoted by (2), due to the presence of sub-

typing.

Notice that since t is anti-monotonic in �1, it is also possible to apply (boost)

from (1) and arrive at

C 0 = ; and t0 = �2 !
� �2

which modulo renaming is equal to (2). 2

Example 4.20 Let C and t be given by

C = f�2 � �1g and t = �1 !
� �2.

Then neither (shrink) nor (boost) is applicable, as t is not monotonic in �1

nor anti-monotonic in �2. 2

96

Observation 4.21 The rules in Fig. 4.5 might be brought to a more sym-

metric form (employing that all right hand sides of constraints are assumed

to be variables):

� for the rule (shrink), the requirement
 =2 FV(RHS(C)) can be replaced

by the requirement that each element of RHS(C) is anti-monotonic in

;

� for the rule (boost), one can add the (void) requirement that each

element of RHS(C) is monotonic in
;

� for the rules (shrink) and (boost), one can add the requirement that

 =2 ChanVar(t; b; C) (which follows from the other requirements, using

Fact 4.18).

4.4.1 Termination and Soundness of R

Lemma 4.22 R always terminates. If R(C; t; b; A) = (C 0; t0; b0) with C

atomic then C 0 is atomic.

Proof Termination is ensured since each rewriting step either decreases the

number of constraints, or (as is the case for (cycle)) decreases the number of

variables without increasing the number of constraints. Each rewriting step

trivially preserves atomicity. 2

Turning to soundness, we �rst prove an auxiliary result about the rewriting

relation:

Lemma 4.23 Suppose A ` (C; t; b) �! (C 0; t0; b0) with C atomic. Then

there exists S such that C 0 ` S C, t0 = S t, b0 = S b, and A = S A.

Proof For (redund) we can use S = Id and the claim follows from Fact 4.13.

For (cycle) the claim is trivial; and for (shrink) and (boost) the claim follows

from the fact that with (
1 �
2) the �discarded� constraint it holds that

(S
1 � S
2) is an instance of re�exivity. 2

Using Lemma 2.18 and Lemma 2.19 we then get:

Corollary 4.24 Suppose A ` (C; t; b) �! (C 0; t0; b0) with C atomic.

If C;A ` e : t& b then C 0; A ` e : t0& b0 (and with the same shape). 2

97

By repeated application of this corollary we get the desired result:

Lemma 4.25 Suppose that R(C; t; b; A) = (C 0; t0; b0) with C atomic.

If C;A ` e : t& b then C 0; A ` e : t0& b0 (and with the same shape). 2

4.4.2 Variants of R

It is crucial for the use of R that Lemma 4.25 as well as Lemma 4.22 hold.

This will be the case for R trivially de�ned by R(C; t; b; A) = (C; t; b), but

one may also consider more powerful variants where the set of rewritings

presented in Figure 4.5 is augmented with other rules (all satisfying Corollary

4.24). It will be natural to allow the replacement of b by a �smaller� behaviour

b0 provided that ; ` b � b0 holds (then say "; �; " can be replaced by �).

4.4.3 Results concerning Con�uence and Determinism

For R as de�ned by Fig. 4.5, we have the following result showing that no

new paths are introduced in the graph:

Lemma 4.26 Suppose A ` (C 0; t0; b0) �! (C 00; t00; b00) and
1;
2 2 FV(C
00).

Then (
1 (
�
2) 2 C 0 holds i� (
1 (

�
2) 2 C
00 holds.

Proof See Appendix C. 2

It is easy to see (using Observation 4.21) that if A ` (C; t; b) �! (C 0; t0; b0)
then ChanVar(t; b; C) = ChanVar(t0; b0; C 0), yielding the following

Observation 4.27 Suppose A ` (C; t; b) �! (C 0; t0; b0) where the rule (cy-

cle) is not applicable from the con�guration (C; t; b). Then the rule (cycle)

is not applicable from the con�guration (C 0; t0; b0) either. 2

This suggests that an implementation could begin by collapsing all cycles

once and for all, without having to worry about cycles again. On the other

hand, it is not possible to perform transitive reduction in a separate phase

as (redund) may become enabled after applying (shrink) or (boost): as an

example consider the situation where C contains the constraints

0 �
,
 �
1,

0 �
0,
0 �
1

98

and (redund) is not applicable. By applying (shrink) with the substitution

[
 7!
0] we end up with the constraints

0 �
1,
0 �
0,
0 �
1

of which the former can be eliminated by (redund).

Concerning con�uency, one would like to show a �diamond property� but

this cannot be done in the presence of cycles in the constraint set (especially

if these contain multiple elements of FV(A)): as an example consider the

constraints

0 �
,
0 �
0,
 �
0,
0 �

with
;
0 2 FV(A); here we can apply (redund) to eliminate either the �rst

or the second constraint but then we are stuck as (cycle) is not applicable and

therefore we cannot complete the diamond. As another example, consider

the case where we have a cycle containing
0,
1 and
2 with
0;
1 2 FV(A).

Then we can apply (cycle) to map
2 into either
0 or
1 but then we are

stuck and the graphs will be di�erent (due to the arrows to or from
2) unless

we devise some notion of graph equivalence.

On the other hand, we have the following result:

Proposition 4.28 Suppose that

A ` (C; t; b) �! (C1; t1; b1) and

A ` (C; t; b) �! (C2; t2; b2)

where C is acyclic as well as atomic. Then there exists (C 0
1; t

0
1; b

0
1) and

(C 0
2; t

0
2; b

0
2), which are equal up to renaming, such that

A ` (C1; t1; b1) �!
�1 (C 0

1; t
0
1; b

0
1) and

A ` (C2; t2; b2) �!
�1 (C 0

2; t
0
2; b

0
2).

(Here ��!�1� denotes �=� or ��!�.)

Proof See Appendix C. 2

99

4.5 Syntactic Soundness of Algorithm W

The algorithmW always terminates and maintains certain invariants:

Lemma 4.29 W(A; e) and W 0(A; e) always terminate (possibly with fail-

ure). If A is well-formed then the following holds:

� if W(A; e) = (S; t; b; C) then C is atomic;

� if W 0(A; e) = (S; t; b; C) then C is well-formed;

� all subcalls toW and W 0 are made with an environment which is well-

formed.

Proof This result is proved by structural induction in e; for let we use Fact

4.4; for F and R we employ Lemma 4.10 and Lemma 4.22. 2

Note that if the expression e only mentions identi�ers in the domain of A (as

when e is a source program), and if e only mentions constants in the domain

of A, then the only possible form for failure is due to F . In Sect. 5.6 we shall

see that then also ML typing would have failed.

As a �nal preparation for establishing soundness of algorithmW we establish

a result about our formula for generalisation.

Lemma 4.30 Let C be atomic; then

C;A `n e : t& b implies C;A `n e : GEN(A; b)(C; t)& b.

Proof See Appendix C. 2

Theorem 4.31 If W(A; e) = (S; t; b; C) with A well-formed and e 2 EExp,

then C; S A `n e : t& b.

Proof The result is shown by induction in e with a similar result for W 0.

See Appendix C for the details. 2

100

4.6 Relation to ML Typing

We shall now see that if W succeeds on some sequential source program

e 2 Exp then e is �ML-typeable�.

Let A be as in Figure 2.4, and suppose that W(A; e) succeeds with result

(S; t; b; C). As A is closed and well-formed (Fact 2.16), it by Theorem 4.31

holds that

C;A `n e : t& b

where C is atomic by Lemma 4.29. Let S 0 unify all type variables, then we

by Lemmas 2.18 and 2.19 obtain

C 0; A `n e : S 0 t&S 0 b

where C 0 contains no type constraints. Let A0 be the restriction of A to

sequential constants, then clearly also

C 0; A0 `n e : S 0 t&S 0 b

and as A0 is �-sequential, Theorem 2.25 tells us that e can be typed in the

ML type system.

101

Chapter 5

Completeness of the Inference

Algorithm

5.1 Lazy Instance

We now begin the preparations for formulating syntactic completeness of

algorithmW, as done in Sect. 5.2; to do so we must adapt the notion of lazy

instance from [5].

De�nition 5.1 The type t is a generic instance (with respect to C) of the

type scheme 8(~�~�~� : C0): t0, written t <C 8(~�~�~� : C0): t0, if and only if

there exists a substitution S such that Dom(S) � f~�~�~�g, C ` S C0, and

C ` S t0 � t. 2

Notice that t <C 8(~�~�~� : C0): t0 holds i� there exists S0 such that 8(~�~�~� :

C0): t0 is solvable from C by S0 (cf. Def. 2.3) and C ` S0 t0 � t; thanks to

the latter feature (subtyping) a type scheme can �represent� a large class of

types �lazily�.

De�nition 5.2 The type scheme ts1 is a generic instance (with respect to

C) of the type scheme ts2, written ts1 �C ts2, if and only if for all C 0 and t:

whenever C 0 ` C and t <C0 ts1 then also t <C0 ts2. 2

Remark. Note that unlike the corresponding concept in [26] we allow to

replace C by any C 0 such that C 0 ` C thus borrowing ideas from Kripke-

102

semantics. In our view this is essential for achieving substitution and entail-

ment properties throughout and for avoiding the problem identi�ed in [26]

about enlarging the constraint set. 2

We write �1 �C �2 also in the case where �1 or �2 are types: here ts �C t

means ts �C 8(() : ;): t and t �C � means 8(() : ;): t �C �. For

assumptions A1 and A2 with Dom(A1) = Dom(A2) we write A1 �C A2 if

and only if for all entries �1 in A1 it for the corresponding entry �2 in A2

holds that (i) �2 is a type scheme i� �1 is a type scheme, and (ii) �1 �C �2.

Fact 5.3 Generic Instances and Types

(a) t <C 8(() : ;): t0 if and only if C ` t0 � t.

(b) 8(() : ;): t �C ts if and only if t <C ts.

Proof Only the �if� part of case (b) is non-trivial. So let t0 <C0 8(() : ;): t

with C 0 ` C, our task is to prove t0 <C0 ts where we write ts = 8(G1 :
C1): t1. From t <C ts we get a substitution S with Dom(S) � G1 such

that C ` S C1 and C ` S t1 � t. From t0 <C0 8(() : ;): t and (a) it

follows that C 0 ` t � t0. It follows (using Lemma 2.19) that C 0 ` S C1 and

C 0 ` S t1 � t0 and hence t0 <C0 ts. 2

Lemma 5.4 Properties of �C

(a) �C is re�exive and transitive.

(b) If �1 �C �2 and S is a substitution then S �1 �S C S �2.

(c) If �1 �C �2 and C 0 ` C then �1 �C0 �2.

Proof See Appendix D. 2

We now turn our attention to so-called typing judgements of the form jdg =

C;A j e : �& b; these are merely �ve-tuples written in a more readable form

and we write ` jdg for C;A ` e : �& b and S (jdg) for S C; S A j e :

S �&S b.

A judgement is an instance of another judgement if it has a stronger con-

straint set, a type (scheme) with fewer instances, a larger behaviour, and an

environment with more instances; the intuition is that if jdg1 is an instance

of jdg2 and ` jdg2 then certainly also ` jdg1.

103

De�nition 5.5 A typing judgement jdg1 = C1; A1 j e : �1 & b1 is an S-

instance of a typing judgement jdg2 = C2; A2 j e : �2 & b2, to be written

jdg1 �
S jdg2, if and only if C1 ` S C2, S A2 �C1 A1, �1 �C1 S �2 and

C1 ` S b2 � b1. 2

Note that if �1 = t1 and �2 = t2 then by Fact 5.3 the condition �1 �C1 S �2
amounts to C1 ` S t2 � t1.

Fact 5.6 jdg1 �
S jdg2 if and only if jdg1 �

Id S jdg2. 2

Lemma 5.7 Properties of �Id

(a) �Id is re�exive and transitive.

(b) If jdg1 �
Id jdg2 and S is a substitution then S jdg1 �

Id S jdg2.

(c) If C1; A1 j e : �1 & b1 �
Id jdg2 and C0 ` C1 then

C0; A1 j e : �1 & b1 �
Id jdg2.

Proof See Appendix D. 2

Lemma 5.8 Generalisation Lemma

If C�; A� j e : t�& b� �S C;A j e : t& b then

C�; A� j e : t�& b� �S C;A j e : GEN(A; b)(C; t)& b

(where GEN is de�ned as in Sect. 4.2).

Proof See Appendix D. 2

5.2 The Completeness Result

The notion of lazy instance [5] corresponds to our notion of S-instance and

is a key tool in the formulation of syntactic completeness (see Theorem 5.18)

which allows a proof by induction:

104

if C�; A� `atn e : ��& b� and

C� is atomic and

A� �C� S 00A with A well-formed

then there exists S, t, b, C, and S 0 such that

W(A; e) = (S; t; b; C)

S 00

NF(A; e)
S 0 S

C�; S 00A j e : ��& b� �S0 C; S A j e : GEN(S A; b)(C; t)& b

Here S1 X
S2 means that 8
 2 X : S1
 = S2
 and NF(A; e) is the com-

plement of the set F(A; e) of freshly generated variables during the call

W(A; e); note that FV(A) � NF(A; e) by the meaning of �freshness�. And

C�; A� `at e : ��& b� denotes an atomic inference; i.e. an inference tree

where for each application of the rule (gen) we put the following demand on

the type scheme 8(~�~�~� : C0): t0 occurring in the conclusion: C0 must be

atomic.

As we shall see below (Lemma 5.13) it is the restriction to atomic constraints

C� that allows algorithm F to manipulate type constraints without losing

instances. The decomposition of S 00 into S 0 S is standard and may be found

also in [26, 8]. Just as in [26] our hypothesis cannot simply be A� = S 00A

but has to be A� �C� S 00A; this is necessary for the inductive proof due to

the fact that the occurrences of rule (gen) in C�; A� ` e : ��& b� allow to

generalise over a smaller set of variables than is forced by the use of GEN in

algorithmW. Therefore we also have to use S 00A rather than A� in the �nal

judgement.

Below we shall discuss the severeness of the various restrictions on the com-

pleteness result; for that purpose we consider an arbitrary derivation C�; A `

e : t�& b� with e closed. It will be most natural to require A to behave as

in Figure 2.4 (implying well-formedness, cf. Fact 2.16); and it is clearly pos-

sible to �nd atomic constraints C�
0 such that A is solvable from C�

0 ; thus

(Lemma 2.19 and Lemma 2.24) we can in fact assume C� [C�
0 ; A `n e :

t�& b�. It is now possible to apply the completeness result (with A� = A and

S 00 = Id), provided that C� as well as the inference is atomic. We believe that

most inferences which occur in practice will in fact be atomic; unfortunately

we have not been able to give a general method for transforming non-atomic

inferences into atomic inferences and it is still open whether such a method

exists.

105

The completeness result is thus not quite as general as one might wish; in

Sect. 5.6, however, we shall see that for a large class of programs (those which

are typeable in ML) algorithm W does in fact succeed (and produces �the

most general typing�).

Before proving Theorem 5.18 we must address the completeness of F and R.

5.3 Completeness of F

We �rst introduce the crucial concept of matching:

De�nition 5.9 The types t1 and t2 match, written t1 � t2, if and only if

their unique decompositions ti = shi[~� i; ~�i ; ~�i] satisfy that sh1 = sh2.

We say that R is a matching substitution for a constraint set C whenever

R t1 � R t2 for all (t1 � t2) 2 C. 2

Fact 5.10 The relation � is a congruence on types. 2

Moreover, the relation � is an �inverse congruence� in the sense that if e.g.

(t1 event �1) � t02 then t02 = (t2 event �2) where t1 � t2.

Fact 5.11 Suppose the type constraints in C� are all of the form �1 � �2.

If C� ` t1 � t2 then t1 � t2.

Proof This is proved by induction on the inference C� ` t1 � t2. If

(t1 � t2) is an assumption in C� the result is immediate. The cases of

re�exivity and transitivity are immediate because � is an equivalence rela-

tion. The remaining cases are straightforward applications of the induction

hypothesis, using Fact 5.10 and the subsequent remark. 2

Algorithm F produces the most general matching substitution:

Lemma 5.12 Suppose that C is well-formed and that R is a matching sub-

stitution for C. Then F(C) will always succeed, and whenever F(C) =

(S 0; C 0) there exists R0 such that R0 is a matching substitution for C 0 and

R
NF(C)

R0 S 0, where NF(C) is the complement of the set F(C) of fresh vari-

ables generated in the call F(C).

106

If C is well-formed and C� ` RC with C� atomic, then (by Fact 5.11) R

is a matching substitution for C, and whenever F(C) succeeds with result

(S 0; C 0) the substitution R0 mentioned in the �rst part of the lemma can be

chosen such that C� ` R0C 0.

Proof See Appendix D. 2

To highlight the way in which the completeness proof for W makes use of

the completeness of F we state the following result that is a consequence of

Lemma 5.12 and that is more directly applicable in the proof of Theorem

5.18.

Lemma 5.13 Suppose jdg� = C�; A� j e : t�& b� has C� to be atomic; and

suppose jdg� �R jdg where jdg = C;A j e : t& b with C well-formed.

Then there exists C 0, S 0 and R0 such that F(C) = (S 0; C 0), R
NF(C)

R0 S 0,

and jdg� �R0

C 0; S 0A j e : S 0 t&S 0 b.

Proof Let jdg� and jdg satisfy the conditions stated. Since C� ` RC

we can use Lemma 5.12 to yield C 0, S 0 and R0 such that F(C) = (S 0; C 0),
R

NF(C)
R0 S 0, and C� ` R0C 0. Hence jdg� �R jdg may be rewritten as

jdg� �R0 S0 jdg which amounts to

jdg� �R0

S 0C; S 0A j e : S 0 t&S 0 b

and since C� ` R0C 0 we may replace S 0C with C 0 and thus achieve

jdg� �R0

C 0; S 0A j e : S 0 t&S 0 b

which is the desired result. 2

5.4 Completeness of R

First an auxiliary result (where we like to drop the condition Dom(S) \

ChanVar(g) = ;, but this cannot be done due to the lack of rules in Fig. 2.7

relating say � ! t and �0 ! t0):

107

Lemma 5.14 Suppose that C `
 � S
 holds for all
; then for g such

that Dom(S) \ ChanVar(g) = ; we also have C ` g � S g.

Proof Induction in g. If g is a variable, the result follows from the assump-

tions. If g is of the form t chan � or � ! t or � ? t, the assumptions tell us

that Dom(S) \ FV(g) = ; which trivially implies C ` g � S g. Otherwise,

the induction hypothesis will tell us that for all immediate subcomponents

gi of g it holds that C ` gi � S gi; using the laws of Figs. 2.6 and 2.7 this

can be combined to yield the desired result. 2

Next a crucial result about the rewriting relation:

Lemma 5.15 Suppose A ` (C; t; b) �! (C 0; t0; b0) with C atomic.

Then C ` C 0, C ` t0 � t, and C ` b0 � b.

ProofWe use the terminology of Figure 4.5; for (redund) the claim is trivial.

For (cycle) the claim follows from the fact that by Lemma 5.14 we for all

subcomponents g of (t; b; C) have C ` g � S g; so C ` S t � t and

C ` S b � b and for (g1 � g2) 2 C we have C ` S g1 � g1 � g2 � S g2.

For (shrink), our �rst task is to show that if (g �
0) 2 C then

C [f
0 �
g ` S g � S
0.

But this follows since

� f
0 �
g ` S g � g (using Lemma 4.16 and the assumption about

LHS(C) being monotonic in
);

� C ` g �
0;

�
0 = S
0 (by the assumption that
 =2 FV(RHS(C))).

Next we must show C [f
0 �
g ` S t � t and C [f
0 �
g ` S b � b,

but this follows from Lemma 4.16 since by assumption it holds that t and b

are monotonic in
.

For (boost), our �rst task is to show that if (g �
0) 2 C then

C [f
 �
0g ` S g � S
0.

108

But this follows since

� f
 �
0g ` S g � g (using Lemma 4.16 and the assumption about

LHS(C) being anti-monotonic in
);

� C ` g �
0;

� f
 �
0g `
0 � S
0.

Next we must show C [f
 �
0g ` S t � t and C [f
 �
0g ` S b � b,

but this follows from Lemma 4.16 since by assumption it holds that t and b

are anti-monotonic in
. 2

To highlight the way in which the completeness proof for W makes use of

the completeness of R we state the following results that are consequences of

Lemma 5.15 and that are more directly applicable in the proof of Theorem

5.18.

Corollary 5.16 Suppose A ` (C; t; b) �! (C 0; t0; b0) with C atomic and

suppose jdg� �R jdg where jdg� = C�; A� j e : t�& b� and jdg = C;A j e :
t& b. Then jdg� �R jdg0 where jdg0 = C 0; A j e : t0& b0.

Proof The situation is that C� ` RC, RA �C� A�, t� �C� R t, and

C� ` R b � b�. By Lemma 5.15 it holds that C ` C 0, C ` t0 � t, and

C ` b0 � b. By Lemma 2.18 and Lemma 2.19 we now infer that C� ` RC 0,

C� ` Rb0 � R b, and C� ` R t0 � R t which by Fact 5.3 amounts to

R t �C� R t0.

Our task is to show that C� ` RC 0, RA �C� A�, t� �C� R t0, and

C� ` R b0 � b�. All this follows easily from what is shown above. 2

By repeated application of Corollary 5.16 (and using Lemma 4.22) we get

the desired result:

Lemma 5.17 Suppose jdg� �R jdg with jdg = C;A j e : t& b where C is

atomic. Then R(C; t; b; A) will always succeed, and whenever R(C; t; b; A) =
(C 0; t0; b0) it holds that jdg� �R jdg0 where jdg0 = C 0; A j e : t0& b0. 2

109

5.4.1 Variants of R

In Sect. 4.4.2 we considered alternative versions of R; for each of these we

must check that Lemma 5.17 still holds. This is trivial for R de�ned by

R(C; t; b; A) = (C; t; b); and we can also allow to augment Fig. 4.5 with a

rewriting step that replaces b by a �smaller� behaviour b0 where ; ` b � b0,

as Corollary 5.16 can still be established.

5.5 Completeness of Algorithm W

Theorem 5.18 Completeness Theorem

If C�; A� `atn e : ��& b� and

C� is atomic and

A� �C� S 00A with A well-formed

then there exists S, t, b, C, and S 0 such that

W(A; e) = (S; t; b; C)

S 00

NF(A; e)
S 0 S

C�; S 00A j e : ��& b� �S0 C; S A j e : GEN(S A; b)(C; t)& b

Proof See Appendix D. 2

5.6 Relation to ML Typing

In Sect. 2.8 we demonstrated that programs typeable in the (pure functional)

ML type system can be typed in our system; we shall now elaborate on this

and show that such programs are in fact also accepted by our algorithmW.

Let e be a closed sequential expression belonging to Exp; and let A be as

in Figure 2.4 but restricted to sequential constants (then A is trivially well-

formed). Suppose that

�(A) `ML
n e : u.

Then Theorem 2.25 tells us that there exists t� with �(t�) = u such that

110

C�; A `n e : t�& � (1)

where C� = f" � �; �; � � �g. By examining the proof of Theorem 2.25,

we see that we can assume that the inference (1) is atomic. Hence we can

apply Theorem 5.18 (with S 00 = Id) to infer that

W(A; e) succeeds with result (S; t; b; C)

and that there exists S 0 such that

C�; A j e : t�& � �S0 C; S A j e : GEN(S A; b)(C; t)& b.

In particular, we have t� �C�
S 0 (GEN(S A; b)(C; t)) implying that

C� ` S� t � t� holds for some S�

so t is a �most general type�.

111

Chapter 6

Post-processing the Inference

Algorithm

In Chap. 4 we saw that our reconstruction algoritm W when applied suc-

cessfully to a given program e returns a quadruple (S; t; b; C); here S is of

no interest (since the top-level environment contains no free variables), and t

will in many cases be unit. What we are really interested in is the behaviour

b, and the relation between the variables occurring there as given by C; this

constraint set is atomic (cf. Lemma 4.29) and may be quite large in spite of

the size reduction performed by R (Sect. 4.4). In this chapter we describe

how to transform the constraints, and at the same time simplify b, so as to

improve readability.

In Sect. 6.1 we shall see how to �nd a solution R to the region constraints

Cr. The user will typically, as illustrated in [3, 15], restrict his attention to

a few selected channel labels; with Lhid the remaining �hidden� labels we

introduce a special behaviour � which denotes creation of, or communication

over, a channel whose label belongs to Lhid.

With R and Lhid given, Sect. 6.2 lists a number of basic techniques that can

be used to manipulate the behaviour b and the behaviour constraints Cb. In

Sect. 6.4 we shall see that these transformations are in fact correct, using the

correctness criterion1 from Sect. 6.3 which is expressed using bisimulations

1We do not aim at �syntactic� correctness or even just soundness, as Theorem 4.31
(stating that C;A `n e : t& b) apparently cannot be extended to state that also the
result of post-processing corresponds to a valid inference.

112

as is well-known from other process algebras.

Example 6.1 SupposeW returns the behaviour �0; �1; (SPAWN �2); �3, to-

gether with the region constraints

f0g � �0, f1g � �1, �1 � �2

and the behaviour constraints

unit chan �0 � �0, unit chan �1 � �1,

�2 ! unit; �0 ? unit � �2, �2 ? unit; �0 ! unit � �3.

The mapping R given by R(�0) = f0g and R(�1) = R(�2) = f1g is the least

solution to the region constraints, and it is possible to eliminate all behaviour

constraints by �unfolding� �0; �1; �2; �3: in the case where Lhid = f1g the

overall behaviour is transformed into2

unit chan f0g; � ; SPAWN (� ; f0g ? unit); � ; f0g ! unit. 2

Soundness and completeness issues. Suppose that (b; Cb) has been

transformed into (b�; C�), modulo a solution R to Cr. This is still seman-

tically sound in that �well-typed programs communicate according to their

behaviour�: Theorem 3.28 in essence says that the CML program is simulated

by (b; Cb), and in Sect. 6.4 we shall see that (b; Cb) is simulated by (b�; C�).
This suggests that we can compose the results, as is formally done in Sect.

6.5.

Concerning completeness, we from Theorem 5.18 know that b is a �small�

(and general) behaviour, in that for any other typing involving C� and b�

there exists S 0 such that C� ` S 0 b � b�. In Sect. 6.4 we shall see that

(b; Cb) simulates (b�; C�), indicating that also b� is a �small� behaviour. In

Sect. 6.1 we shall argue that R is in some sense �principal� and hence we might

be tempted to say that the algorithmW, augmented with post-processing, is

complete wrt. the inference system; it seems hard, however, to formalise this

claim in a meaningful way, and hence we shall refrain from such an attempt.

2When printing behaviours, we often replace � by the value of R(�) n Lhid.

113

6.1 Solving Region Constraints

Let R be a mapping from region variables into subsets of some universe

(which includes Lab); we say that R is a solution to the region constraints

C, to be written R j= C, if for all (r1 � r2) 2 C it holds that R(r1) � R(r2).

(Here R(flg) = flg.)

Fact 6.2 Suppose that R j= Cr, with C atomic. If C ` r1 � r2 then

R(r1) � R(r2).

Proof As C is consistent (Fact 4.2), Corollary 2.28 tells us that C `fw

(r1 � r2). The claim now follows from a trivial induction in this derivation,

employing that (C)
r
= Cr. 2

The region constraints returned byW are of the form �0 � � or flg � � (the

former kind may be produced when F decomposes a type and the latter when

analysing channell). Clearly there exists a least solution to these constraints,

mapping each region variable into a set of labels, and it is computable using

standard iteration techniques.

The least solution, however, is not necessarily the one of interest, as demon-

strated by the program

rec f ch)if : : : then ch else channel0 ()

for which W will infer the type

� chan � !� � chan �

and also generate the constraint f0g � �. The value returned by the program

may be a channel allocated by channel0 but it may also be a channel given as

input, and the latter possibility is not recorded by the least solution which

maps � to f0g; therefore we shall, in order to obtain some �principality�,

rather prefer a solution which maps � to f0g [f�g.

The above can be generalised, observing that �input channels� apparently

correspond to region variables occurring negatively in the overall type: a

solution should map this kind of variable into a set containing not only labels

but also a meta variable (the variable itself can be used). Again it is clearly

possible to compute the least such solution, to be denoted R.

114

6.2 A Catalogue of Behaviour Transformations

In this section we list a selection of basic transformation steps (assuming a

�xed mapping R and a set of hidden labels Lhid), operating on process con-

�gurations: pairs of the form (b; C) where C contains behaviour constraints

only. In Sect. 6.4 we shall see that if (b; C) in a number of such steps is

transformed into (b0; C 0), then (b; C) and (b0; C 0) are bisimilar (modulo R

and Lhid), as de�ned in Sect. 6.3. The catalogue is not exhaustive, and the

inclusion of other techniques may be bene�cial to further enhance readability.

Auxiliary notions. A behaviour is a channel action if it takes the form

t chan � or � ! t or � ? t; the region part � of a channel action ca is denoted

car.

Most transformation steps can be expressed as homomorphisms:

De�nition 6.3 Let F map channel actions into channel actions or � , and

map behaviour variables into arbitrary behaviours. The homomorphism in-

duced by F , to be denoted SF , is the mapping from behaviours into be-

haviours given by

SF (�) = F (�)

SF (") = "

SF (b1; b2) = SF (b1);SF (b2)

SF (b1 + b2) = SF (b1) + SF (b2)

SF (SPAWN b) = SPAWN SF (b)

SF (ca) = F (ca)

SF (�) = �

SF can in the obvious way be extended to operate on behaviour constraints:

SF (C) = f(SF (b1) � SF (b2)) j (b1 � b2) 2 Cg.

115

6.2.1 Simpli�cation

A behaviour or a constraint set may be simpli�ed into something equivalent:

(b; C) can be transformed into (b0; C 0), provided

C ` C 0 and C 0 ` C and C ` b � b0.

A very frequent application is to replace b; " or "; b by b.

6.2.2 Hiding

Channel actions, not a�ecting the channels of interest, may be replaced by �

(this step needs to be done only once): if C0 is well-formed then (b0; C0) can

be transformed into (H(b0);H(C0)), where H is the homomorphism induced

by Fh given below.

Fh(ca) = � provided R(�) � Lhid, where � = car;

otherwise Fh behaves as the identity.

6.2.3 Unfolding

Suppose that the well-formed constraint set C0 contains one and only one

constraint with �0 on the right hand side, namely (b00 � �0); and further

suppose that (i) �0 does not occur in b00, and (ii) �0 does not3 belong to

ChanVar(b0; C0) (cf. Sect. 4.4). Then �0 may be unfolded into b00, that is

(b0; C0) can be transformed into (U(b0);U(C0)), where U is the homomor-

phism induced by Fu given below.

Fu(�0) = b00 and otherwise Fu behaves as the identity.

Simpli�cation (cf. Sect. 6.2.1) often occurs in connection with unfolding:

� To prepare for unfolding, it may be necessary to replace two constraints

fb1 � �0; b2 � �0g by a single constraint (b1 + b2 � �0).

3This requirement is needed, since a behaviour variable in ChanVar() occurs inside
some type and hence cannot be replaced by a non-variable behaviour.

116

� After unfolding, U(C0) is not necessarily well-formed as it contains the

constraint U(b00) � b00; but due to requirement (i) above this is the

identity and hence it can be eliminated.

To prevent �code explosion�, unfolding should be performed only if either (i)

there is at most one occurrence of �0 in b0 and the left hand sides of C0, or

(ii) b00 is very small (for example ").

6.2.4 Collapsing

Let C0 be well-formed, and suppose that � 00 and � 000 are in some sense (to

be speci�ed soon) �equivalent� wrt. C0; then � 00 may be collapsed into � 000 :

(b0; C0) can be transformed into (C(b0); C(C0)), where C is the homomorphism

induced by Fc given below.

Fc replaces all occurrences of �
0
0 with � 000 .

Below we list two conditions, each of which is su�cient for this step to be

valid:

Cycles: C0 ` � 00 � � 000 holds.4.

Sharing code: the only constraints in C0 with � 00 or � 000 on the right hand

sides are (b00 � � 00) and (b000 � � 000), where b
00
0 = C(b00); notice that these

constraints will give rise to one constraint only in C(C0). (Example:

C0 contains the constraints � ! int; �
0
0 � � 00 and � ! int; � 000 � � 000 .)

6.3 The Notion of Bisimulation

In this section we formally de�ne the notion of (strong) bisimulation; the

intention is that two process con�gurations are bisimilar if any sequence of

�actions� performed by the �rst can be �simulated� by the second, and vice

4Notice that also cycles where two or more elements belong to ChanVar(b0; C0) may
be collapsed, something R does not allow; the reason why we can be more liberal here is
that we consider a correctness criterion based on the notion of bisimulation, rather than
on the inference system from Fig. 2.5.

117

(b1; C1) � (b2; C2)

if C1 ` b1 !
a1 b01) 9a2; b

0
2:

C2 ` b2 !
a2 b02 ^ (a1; C1)

�
� (a2; C2) ^ (b01; C1) � (b02; C2)

and C2 ` b2 !
a2 b02) 9a1; b

0
1:

C1 ` b1 !
a1 b01 ^ (a1; C1)

�
� (a2; C2) ^ (b01; C1) � (b02; C2)

Figure 6.1: The bisimulation relation �

versa. In our setting, an action a is a behaviour which is either a channel

action ca or of the form SPAWN b (a spawn action) or � (a hidden action);

notice that a homomorphism SF maps actions into actions. The inference

system from Fig. 2.7 gives rise to a transition relation, labelled with actions,

on process con�gurations; the intuition is that if C ` a; b0 � b then one of

the �options� of b is to �rst perform a and then become b0.

De�nition 6.4 We write C ` b!a b0 if C ` a; b0 � b. 2

We shall introduce a relation� on process con�gurations and another relation
�
� on action con�gurations, i.e. pairs (a; C) with a an action and C a set

of behaviour constraints; these relations are implicitly parametrised with

respect to the given R and Lhid. Our aim is that � and
�
� should enjoy the

properties stated in Figs. 6.1 and 6.2, expressing their mutual dependency;

these properties seem fairly natural. (Example: (� ! (int !�1 int); C1)
�
�

(� ! (int !�2 int); C2) will hold provided (�1; C1) � (�2; C2).)

We can in fact view Figs. 6.1 and 6.2 as de�nitions: since their right hand

sides give rise to a monotone functional G on the complete lattice of relations5,

ordered by subset inclusion, we can stipulate � [
�
� to be its greatest �xed

point (guaranteed to exist by Tarski's theorem).

The following proof principle is most useful for reasoning about � and
�
�:

Observation 6.5 Suppose we want to check that for some relation Q it

holds that

5The elements in this lattice are the subsets of PC �PC [AC �AC, where PC is the
set of process con�gurations and AC is the set of action con�gurations, and where with
some misuse of notation we write [for �disjoint union�; therefore each lattice element Q
may be uniquely written as Qp [Qa where Qp is a subset of PC �PC and Qa is a subset
of AC �AC.

118

(SPAWN b1; C1)
�
� (SPAWN b2; C2)

if (b1; C1) � (b2; C2)

(�; C1)
�
� (�; C2)

(ca; C1)
�
� (�; C2)

if R(�) � Lhid, where � = car

(ca; C1)
�
� (� (ca); C2)

if � is a substitution with only behaviour variables in Dom(�)

and 8� 2 FV(ca) : (�; C1) � (� �; C2)

(a1; C1)
�
� (a2; C2)

if (a2; C2)
�
� (a1; C1)

(a1; C1)
�
� (a2; C2)

if 9(a3; C3) : (a1; C1)
�
� (a3; C3) ^ (a3; C3)

�
� (a2; C2)

Figure 6.2: The relation
�
� on action con�gurations

Q � (� [
�
�). (1)

Then it is su�cient to show

Q � G(Q [� [
�
�). (2)

For as (� [
�
�) = G(� [

�
�) � G(Q [� [

�
�) holds by monotonicity of

G, (2) ensures that (Q [� [
�
�) � G(Q [� [

�
�) which (again employing

Tarski's theorem) is enough to establish (Q [� [
�
�) � (� [

�
�) and hence

(1). 2

As to be expected, � and
�
� are equivalence relations:

Fact 6.6 The relations � and
�
� are re�exive, symmetric, and transitive.

Proof See Appendix E. 2

119

6.4 Correctness of the Transformations

In Sect. 6.2 we have listed a number of techniques for transforming one

process con�guration (b; C) into another (b0; C 0); we shall now demonstrate

that all these techniques are �correct� in the sense that (b; C) � (b0; C 0). As �

is re�exive and transitive (Fact 6.6), this shows that if (b0; C0) is transformed

into (bn; Cn) via a sequence of such steps, then (b0; C0) � (bn; Cn).

Before examining the techniques in turn, we establish some general results

about homomorphisms :

Lemma 6.7 Let C be a set of behaviour constraints, and let SF be a homo-

morphism. If C ` b1 � b2 then also

1. SF (C) ` SF (b1) � SF (b2)

2. ChanVar(b1) � ChanVar(b2; C).

Proof As C is consistent (Fact 5.11), Corollary 2.28 tells us that C `fw b1 �

b2; the claims now follow from a straightforward induction in this derivation,

making use of the homomorphism properties. 2

Applying the lemma on judgements of the form C ` a; b1 � b yields

Corollary 6.8 Let C be a set of behaviour constraints, and let SF be a

homomorphism. If C ` b!a b1 then

1. SF (C) ` SF (b)!
SF (a) SF (b1)

2. ChanVar(a; b1) � ChanVar(b; C).

Lemma 6.9 Let C be a set of behaviour constraints, and let SF be a homo-

morphism with the following properties:

1. if for some b01 and b2 it holds that (b
0
1 � SF (b2)) 2 SF (C), then there

exists b1 with SF (b1) = b01 such that C ` b1 � b2;

2. if for some � it holds that F (�) is not a variable, then

C ` F (�) � � and SF (F (�)) = F (�).

120

We then have the following implications:

1. if SF (C) ` b01 � SF (b2) there exists b1 with SF (b1) = b01 such that

C ` b1 � b2;

2. if SF (C) ` SF (b2) !
a0 b00 there exists a, b0 with SF (a) = a0 and

SF (b0) = b00 such that C ` b2 !
a b0.

Proof See Appendix E. 2

6.4.1 Simpli�cation

We de�ne a relation Q on process con�gurations:

(b1; C1)Q (b2; C2) if C1 ` C2 and C2 ` C1 and C1 ` b1 � b2

and the correctness of simpli�cation (Sect. 6.2.1) can be demonstrated by

proving Q �� [
�
�; by Observation 6.5 it is su�cient to establish

Q � G(Q [� [
�
�).

So consider (b1; C1) Q (b2; C2). First assume C1 ` b1 !
a1 b01, that is C1 `

a1; b
0
1 � b1 � b2, so by Lemma 2.19 we also have C2 ` a1; b

0
1 � b2, that is

C2 ` b2 !
a1 b01.

Next assume C2 ` b2 !
a2 b02, that is C2 ` a2; b

0
2 � b2, so by Lemma 2.19

we also have C1 ` a2; b
0
2 � b2 � b1, that is C1 ` b1 !

a2 b02.

As � and
�
� are re�exive (Fact 6.6), this shows the desired relation

(b1; C1) G(Q [� [
�
�) (b2; C2).

6.4.2 Hiding

In order to show the correctness of transforming (b0; C0) into (H(b0);H(C0)),

cf. Sect. 6.2.2, we de�ne a relation Q on process con�gurations and action

con�gurations by stipulating

121

8b : (b; C0)Q (H(b);H(C0))

8a : (a; C0)Q (H(a);H(C0))

Then correctness can be demonstrated by proving Q � (� [
�
�); by Obser-

vation 6.5 it is su�cient to establish Q � G(Q [� [
�
�).

First consider (a; C0)Q (H(a);H(C0)), our aim is to show

(a; C0) G(Q [� [
�
�) (H(a);H(C0)). (3)

If a is a channel action ca with � = car, we distinguish between two cases:

� if R(�) � Lhid then H(a) = � , so clearly (3) holds;

� if R(�) n Lhid 6= ; then H(a) = a, to establish (3) observe that for all

� we have H(�) = � and hence (�; C0)Q (�;H(C0)).

If a is a spawn action SPAWN b then H(a) = SPAWN H(b) from which we

infer (3).

The remaining possibility is that a is a hidden action � , then H(a) = � and

(3) trivially holds.

Next consider (b; C0)Q (H(b);H(C0)), our aim is to show

(b; C0) G(Q [� [
�
�) (H(b);H(C0)). (4)

By Corollary 6.8 it holds that

C0 ` b!a b1 implies H(C0) ` H(b)!
H(a) H(b1)

which provides the �one half� of (4); for the �other half� assume that

H(C0) ` H(b)!
a0 b01

and we would like to �nd a and b1 with H(a) = a0 and H(b1) = b01 such that

C0 ` b!a b1.

122

Lemma 6.9 will provide these a and b1 so we must check that the conditions

for applying this lemma are ful�lled: Condition 2 is vacuously true so we

only need to consider Condition 1 as done below.

Let (b01 � H(b2)) belong to H(C0), that is (as C0 is well-formed) there exists

� and b1 such that (b1 � �) 2 C0 and H(�) = H(b2) and H(b1) = b01. As

H(�) = � we deduce that b2 = �, hence we have the desired judgement

C0 ` b1 � b2.

6.4.3 Unfolding

To show the correctness of transforming (b0; C0) into (U(b0);U(C0)), cf. Sect.

6.2.3, we de�ne a relation Q on process con�gurations and action con�gura-

tions by stipulating

8b with �0 =2 ChanVar(b): (b; C0)Q (U(b);U(C0))

8a with �0 =2 ChanVar(a): (a; C0)Q (U(a);U(C0))

Then correctness can be demonstrated by proving Q � (� [
�
�); by Obser-

vation 6.5 it is su�cient to establish Q � G(Q [� [
�
�).

First consider (a; C0)Q (U(a);U(C0)), our aim is to show

(a; C0) G(Q [� [
�
�) (U(a);U(C0)). (5)

If a is a channel action then U(a) = a, to establish (5) observe that for all

� 2 FV(a) we have (as then � 2 ChanVar(a)) � 6= �0, implying U(�) = �

and hence (�; C0)Q (�;U(C0)).

If a is a spawn action SPAWN b then U(a) = SPAWN U(b) from which we

infer (5) since �0 =2 ChanVar(b) and hence (b; C0) Q (U(b);U(C0)). If a is a

hidden action � then U(a) = � and (5) trivially holds.

Next consider (b; C0)Q (U(b);U(C0)), our aim is to show

(b; C0) G(Q [� [
�
�) (U(b);U(C0)). (6)

By Corollary 6.8 it holds that (as �0 =2 ChanVar(C0))

123

C0 ` b!a b1 implies U(C0) ` U(b)!
U(a) U(b1)

with �0 =2 ChanVar(a; b1)

which provides the �one half� of (6); for the �other half� assume that

U(C0) ` U(b)!
a0 b01

and we would like to �nd a and b1 with U(a) = a0 and U(b1) = b01 such that

C0 ` b !a b1 (Corollary 6.8 will then ensure �0 =2 ChanVar(a; b1), hence

(a; C0)Q (a0;U(C0)) and (b1; C0)Q (b01;U(C0))).

Lemma 6.9 will provide these a and b1 but we must check that the conditions

for applying this lemma are ful�lled: concerning Condition 2, our task can

be accomplished by showing C0 ` b00 � �0 and U(b
0
0) = b00, but this follows

directly from the side conditions for unfolding.

We are left with validating Condition 1: let b01 � U(b2) belong to U(C0),

that is (as C0 is well-formed) there exists � and b1 such that (b1 � �) 2 C0

and U(�) = U(b2) and U(b1) = b01, we must show C0 ` b1 � b2.

� if � 6= �0 then U(b2) = U(�) = � and we deduce that b2 is a variable.

(i) If b2 = �0 then C0 ` b1 � � = U(b2) = b00 � �0 = b2.

(ii) If b2 6= �0 then b2 = � so C0 ` b1 � � = b2.

� if � = �0, the uniqueness assumption on b00 ensures b1 = b00. We have

U(b2) = b00

and as �0 =2 ChanVar(b00) we therefore deduce that �0 =2 ChanVar(b2);

this shows (since U(�0) = b00) that if �0 2 FV(b2) then b2 = �0.

(i) If b2 = �0 then C0 ` b1 = b00 � �0 = b2.

(ii) If �0 =2 FV(b2) then C0 ` b1 = b00 = U(b2) = b2.

6.4.4 Collapsing

To show the correctness of transforming (b0; C0) into (C(b0); C(C0)), cf. Sect.

6.2.4, we de�ne a relation Q on process con�gurations and action con�gura-

tions by stipulating

124

8b : (b; C0)Q (C(b); C(C0))

8a : (a; C0)Q (C(a); C(C0))

Then correctness can be demonstrated by proving Q � (� [
�
�); by Obser-

vation 6.5 it is su�cient to establish Q � G(Q [� [
�
�).

First consider (a; C0)Q (C(a); C(C0)), our aim is to show

(a; C0) G(Q [� [
�
�) (C(a); C(C0)). (7)

If a is a channel action then observe that C is a substitution with only be-

haviour variables in the domain, hence (7) can be established as we for all �

have (�; C0)Q (C(�); C(C0)).

If a is a spawn action SPAWN b then C(a) = SPAWN C(b) from which we

infer (7). If a is a hidden action � then C(a) = � and (7) trivially holds.

Next consider (b; C0)Q (C(b); C(C0)), our aim is to show

(b; C0) G(Q [� [
�
�) (C(b); C(C0)). (8)

By Corollary 6.8 it holds that

C0 ` b!a b1 implies C(C0) ` C(b)!
C(a) C(b1)

which provides the �one half� of (8); for the �other half� assume that

C(C0) ` C(b)!
a0 b01

and we would like to �nd a and b1 with C(a) = a0 and C(b1) = b01 such that

C0 ` b!a b1.

Lemma 6.9 will provide these a and b1 so we must check that the conditions

for applying this lemma are ful�lled: Condition 2 is vacuously true, so we

only need to consider Condition 1 as done below.

Let b01 � C(b2) belong to C(C0), that is (as C0 is well-formed) there exists �

and b001 such that

125

(b001 � �) 2 C0 and C(�) = C(b2) and C(b
00
1) = b01.

If b2 = � we de�ne b1 = b001 and obtain the desired relations: C(b1) = b01 and

C0 ` b1 � � = b2.

If b2 6= � we infer that fb2; �g = f� 00; �
00
0g. In the case of Cycles, that is

C0 ` � 00 � � 000 , we de�ne b1 = b001 and obtain the desired relations C(b1) = b01
and C0 ` b1 � � � b2. In the case of Sharing code, we consider two cases

(we exploit that C is idempotent and that b000 = C(b00)):

� � = � 00 and b2 = � 000 : then (by uniqueness of b00) b
00
1 = b00 and we de�ne

b1 = C(b
00
1), yielding C(b1) = C(C(b

00
1)) = C(b

00
1) = b01 and also

C0 ` b1 = C(b
00
1) = C(b

0
0) = b000 � � 000 = b2.

� � = � 000 and b2 = � 00: then (by uniqueness of b000) b
00
1 = b000 and we de�ne

b1 = b00, yielding C(b1) = C(C(b
0
0)) = C(b

00
0) = C(b

00
1) = b01 and also

C0 ` b1 = b00 � � 00 = b2.

6.5 Semantic Soundness

So far in this chapter we have exhibited various techniques for manipulating

the output from W; we shall now demonstrate that the resulting behaviour,

together with the resulting constraints, still �simulates� the CML program in

question.

To accomplish this goal we reformulate and extend Theorem 3.28; here

(PB;C) � (PB�; C�) means that (PB(p); C) � (PB�(p); C�) for all p 2

Dom(PB) = Dom(PB�).

Theorem 6.10 Semantic soundness, revisited

Let C = Ct[Cb[Cr be atomic, let R be such that R j= Cr (cf. Sect. 6.1), let

Lhid be a set of hidden labels, and let � and
�
� be the bisimulation relations

implicitly parametrised by R and Lhid (cf. Sect. 6.3).

Let A be a standard channel environment, and suppose

C;A `n PP : PT &PB and (PB;Cb) � (PB�; C�).

126

If PP
sa
�! PP 0 then there exists PT 0, PB0, PB0

� and a standard channel

environment A0 such that

C;A0 `n PP 0 : PT 0&PB0 and (PB0; Cb) � (PB0
�; C�)

and such that if ch occurs in PP then A0(ch) = A(ch) and such that if p is

in the domain of PP then (i) PT 0(p) = PT (p) and (ii) if p is not mentioned

in sa then PB0
�(p) = PB�(p).

Furthermore we have the following properties:

� If sa = p0 chan
l ch then there exists t0 and �0 with l 2 R(�0) such that

A0(ch) = t0 chan �0

and there also exists action a with

(t0 chan �0; C
b)

�
� (a; C�)

such that

C� ` PB�(p0)!
a PB0

�(p0).

� If sa = p0 spawn p0 then there exists a with

(SPAWN PB0(p0); Cb)
�
� (a; C�)

such that

C� ` PB�(p0)!
a PB0

�(p0).

� If sa = p1; p2 comm ch then, with A(ch) = t chan �, there exists

ts and tr with C ` ts � t � tr and

�s and �r with R(�) � R(�s) and R(�) � R(�r)

and there exists actions a1, a2 with

(�s ! ts; C
b)

�
� (a1; C�) and

(�r ? tr; C
b)

�
� (a2; C�)

such that

127

C� ` PB�(p1)!
a1 PB0

�(p1) and

C� ` PB�(p2)!
a2 PB0

�(p2).

Proof First observe that C is well-formed and consistent (Fact 4.2). Hence

Theorem 3.28 is applicable, yielding A0 and PT 0 and PB0 with certain spec-

i�ed properties to be exploited in the sequel; also notice that if C ` b1 � b2
for some b1; b2 then (by Corollary 2.28) we have C `fw b1 � b2 which by a

trivial induction (using (C)
b
= Cb) implies Cb ` b1 � b2. We perform case

analysis on the semantic action sa; in all cases we for p not mentioned in sa

use PB0
�(p) = PB�(p), establishing (PB0(p); Cb) � (PB0

�(p); C�) for such

p.

sa = seq: The claim is trivial.

sa = p0 chan
l ch: We know that C ` flg � �0 which by Fact 6.2 implies

l 2 R(�0); and we know

Cb ` t0 chan �0;PB
0(p0) � PB(p0)

which as (PB(p0); C
b) � (PB�(p0); C�) implies the existence of a and b0

such that C� ` PB�(p0) !
a b0 with (t0 chan �0; C

b)
�
� (a; C�) and

(PB0(p0); C
b) � (b0; C�). We can thus de�ne PB0

�(p0) = b0 to obtain the

desired properties.

sa = p0 spawn p0: We know that

Cb ` (SPAWN PB0(p0));PB0(p0) � PB(p0)

which as (PB(p0); C
b) � (PB�(p0); C�) implies the existence of a and b0

such that C� ` PB�(p0) !
a b0 with (SPAWN PB0(p0); Cb)

�
� (a; C�) and

(PB0(p0); C
b) � (b0; C�), we can thus de�ne PB0

�(p0) = b0 to obtain the

desired properties.

sa = p1; p2 comm ch: We know that C ` � � �s and C ` � � �r which by

Fact 6.2 implies R(�) � R(�s) and R(�) � R(�r); and we know

Cb ` (�s ! ts);PB
0(p1) � PB(p1)

Cb ` (�r ? tr);PB
0(p2) � PB(p2)

128

which as (PB(p1); C
b) � (PB�(p1); C�) and (PB(p2); C

b) � (PB�(p2); C�)

implies the existence of a1; a2 and b01; b
0
2 such that

C� ` PB�(p1)!
a1 b01 and C� ` PB�(p2)!

a2 b02

with (PB0(p1); C
b) � (b01; C�) and (PB0(p2); C

b) � (b02; C�) and with

(�s ! ts; C
b)

�
� (a1; C�) and (�r ? tr; C

b)
�
� (a2; C�).

We can thus de�ne PB0
�(p1) = b01 and PB0

�(p2) = b02 to obtain the desired

properties. 2

6.5.1 Semantic Soundness of the Overall System

Let A be as in Figure 2.4, and suppose that W(A; e) succeeds with result

(S; t; b; C). As A is closed and well-formed (Fact 2.16), it by Theorem 4.31

holds that

C;A `n e : t& b

where C is atomic by Lemma 4.29. Next6 suppose that the methods from

Sect. 6.1 are applied to �nd R such that R j= Cr. Finally suppose that (b; Cb)

is transformed, using the methods from Sect. 6.2 and modulo this R and some

Lhid, into (b�; C�). From Sect. 6.4 we know that

(b; Cb) � (b�; C�)

and hence we are in position to apply Theorem 6.10.

6Concerning the type constraints in C, the system may as an additional feature collapse
all cycles: with S a substitution unifying all �1; �2 with C ` �1 � �2, we then have
C 0; A `n e : t0 & b0 with C 0 = S C and t0 = S t and b0 = S b; subsequently the system
operates on these entities rather than on (t; b; C).

129

Chapter 7

Conclusion

We have developed a type and e�ect system for a core subset of CML. The

e�ects include regions and causality information; the type system includes

polymorphism (á la ML) and subtyping (induced by the ordering on e�ects).

The type system is proved to be sound wrt. a small-step semantics, in the

sense that a subject reduction result holds. An inference algorithm is pre-

sented; it is sound and (in a certain sense) also complete.

The constraints produced by the algorithm can be post-processed so as to

be quite readable and informative, this is illustrated by our prototype imple-

mentation which can be experienced at

http://www.daimi.aau.dk/�bra8130/TBAcml/TBA_CML.html.

The system accepts programs written in a non-trivial subset of CML and

these are by the front end translated into our core subset, extended with a

bunch of extra constants.

We believe our approach to be rather open-ended, in the sense that extra

features can be added to the language or type system with a limited e�ort;

similarly it seems that many of the ideas may be transfered and applied to

other settings.

Acknowledgements. This research has been supported in part by the

DART (Danish Science Research Council) and LOMAPS (ESPRIT BRA

8130) projects.

130

Appendix A

Proofs of Results Concerning the

Basic Framework

Basic properties of the inference system

Lemma 2.18 For all substitutions S:

(a) If C ` C0 then S C ` S C0 (and has the same shape).

(b) If C;A ` e : �& b then S C; S A ` e : S �&S b (and has the same

shape).

Proof To establish (a), we prove that C ` g1 � g2 entails S C ` S g1 �

S g2 (with the same shape); this is straightforward by induction. For the

claim (b) we proceed by induction on the inference.

For the cases (con) and (id) the claim is immediate, and for the cases (abs),

(app), (sapp), (let), (rec), (if) it follows directly using the induction hypoth-

esis. For the case (sub) we use (a) together with the induction hypothesis.

The case (ins). Then C;A ` e : S0 t0 & b because with C ` S0C0 and

Dom(S0) � f~�~�~�g we have C;A ` e : 8(~�~�~� : C0): t0 & b, and wlog. (cf.

Observation 2.4) we can assume that f~�~�~�g is disjoint from (Dom(S) [

Ran(S)). The induction hypothesis gives

S C; S A ` e : 8(~�~�~� : S C0): S t0 &S b. (1)

131

From (a) we get S C ` S S0C0. Let S 0
0 = [~�~�~� 7! S S0 (~�~�~�)], then on

FV(t0; C0) it holds that S
0
0 S = S S0. Therefore S C ` S 0

0 S C0, so we can

apply (ins) on (1) with S 0
0 as the �instance substitution� to get S C; S A `

e : S 0
0 S t0 &S b. Since S 0

0 S t0 = S S0 t0 this is the required result.

The case (gen). Then C;A ` e : 8(~�~�~� : C0): t0 & b holds because

C [C0; A ` e : t0 & b

8(~�~�~� : C0): t0 is well-formed (2)

there exists S0 with Dom(S0) � f~�~�~�g such that C ` S0C0 (3)

f~�~�~�g \ FV(C;A; b) = ; (4)

De�ne R = [~�~�~� 7! ~�0~� 0~�0] with f~�0~� 0~�0g fresh. We then apply the induction

hypothesis (with S R) and due to (4) this gives us

S C [S RC0; S A ` e : S R t0 &S b.

Below we prove

8(~�0~� 0~�0 : S RC0): S R t0 = S (8(~�~�~� : C0): t0) is well-formed (5)

there exists S 0 with Dom(S 0) � f~�0~� 0~�0g such that S C ` S 0 S RC0 (6)

f~�0~� 0~�0g \ FV(S C; S A; S b) = ; (7)

It then follows that S C; S A ` e : S (8(~�~�~� : C0): t0)&S b as required.

Clearly the inference has the same shape.

First we observe that (5) follows from (2) and Fact 2.13. For (6) de�ne

S 0 = [~�0~� 0~�0 7! S S0 (~�~�~�)]. From (3) and (a) we get S C ` S S0C0. Since

S 0 S R = S S0 on FV(C0) the result follows. Finally (7) holds trivially by

choice of ~�0~� 0~�0. 2

Lemma 2.19 For all sets C 0 of constraints satisfying C 0 ` C:

(a) If C ` C0 then C 0 ` C0.

(b) If C;A ` e : �& b then C 0; A ` e : �& b (and has the same shape).

132

Proof To establish (a), we prove that C ` g1 � g2 entails C 0 ` g1 �

g2; this is straightforward by induction. For the claim (b) we proceed by

induction on the inference.

For the cases (con), (id) the claim is immediate, and for the cases (abs), (app),

(sapp), (let), (rec), (if) it follows directly using the induction hypothesis. For

the cases (sub) and (ins) we use (a) together with the induction hypothesis.

The case (gen). Then C;A ` e : 8(~�~�~� : C0): t0 & b because

C [C0; A ` e : t0 & b

8(~�~�~� : C0): t0 is well-formed

there exists S with Dom(S) � f~�~�~�g such that C ` S C0 (8)

f~�~�~�g \ FV(C;A; b) = ; (9)

We now use a small trick: let R be a renaming of the variables of f~�~�~�g \

FV(C 0) to fresh variables. From C 0 ` C and Lemma 2.18(a) we get RC 0 `

RC and using (9) we get RC = C so RC 0 ` C. Clearly RC 0[C0 ` C[C0

so the induction hypothesis gives RC 0 [C0; A ` e : t0 & b. Below we verify

that

there exists S 0 with Dom(S 0) � f~�~�~�g such that RC 0 ` S 0C0 (10)

f~�~�~�g \ FV(RC 0; A; b) = ; (11)

and we then have RC 0; A ` e : 8(~�~�~� : C0): t0 & b. Now de�ne the sub-

stitution R0 such that Dom(R0) = Ran(R) and R0
0 =
 if R
 =
0 and

0 2 Dom(R0). Using Lemma 2.18(b) with the substitution R0 we get

C 0; A ` e : 8(~�~�~� : C0): t0 & b as required. Clearly the inference has the

same shape.

To prove (10) de�ne S 0 = S. Above we showed that RC 0 ` C so using (8)

and (a) we get RC 0 ` S 0C0 as required. Finally (11) follows trivially from

(9) and f~�~�~�g \ FV(RC 0) = ;. 2

133

Proof normalisation

Lemma 2.24 If A is well-formed and solvable from C then an inference

tree C;A ` e : �& b can be transformed into one C;A `n e : �& b that is

normalised.

Proof We proceed by induction on the inference.

The case (id). (The case (con) is similar.) If A(x) is a type then we

already have a T-normalised inference. So assume A(x) = 8(~�~�~� : C0): t0
and let R be a renaming of ~�~�~� to fresh variables ~�0~� 0~�0. We can then

construct the following TS-normalised inference tree:

C [RC0; A ` x : 8(~�~�~� : C0): t0 & "
(id)

C [RC0; A ` x : R t0 & "
(ins)

C;A ` x : 8(~�0~� 0~�0 : RC0): R t0 & "
(gen)

The rule (ins) is applicable since Dom(R) � f~�~�~�g and C [RC0 ` RC0.

The rule (gen) is applicable because 8(~�~�~� : C0): t0 = 8(~�0~� 0~�0 : RC0): R t0
(up to alpha-renaming) by assumption is well-formed and solvable from C,

and furthermore f~�0~� 0~�0g \ FV(C;A; ") = ; holds by choice of ~�0~� 0~�0.

The case (abs). Then we have C;A ` fn x)e : t1 !
� t2 & " because

C;A[x : t1] ` e : t2 & �. Since t1 is well-formed and solvable from C we can

apply the induction hypothesis and get C;A[x : t1] `n e : t2 & � from which

we infer C;A `n fn x)e : t1 !
� t2 & ".

The case (app). Then we have C;A ` e1 e2 : t1 &(b1; b2; �) because

C;A ` e1 : t2 !
� t1 & b1 and C;A ` e2 : t2 & b2. Then the induction

hypothesis gives C;A `n e1 : t2 !
� t1 & b1 and C;A `n e2 : t2 & b2. We

thus can infer the desired C;A `n e1 e2 : t1 &(b1; b2; �).

The case (let). Then we have C;A ` let x = e1 in e2 : t2 &(b1; b2)

because C;A ` e1 : ts1 & b1 and C;A[x : ts1] ` e2 : t2 & b2. Then the

induction hypothesis gives C;A `n e1 : ts1 & b1. From Fact 2.17 we get

that ts1 is well-formed and solvable from C, so we can apply the induction

hypothesis to get C;A[x : ts1] `n e2 : t2 & b2. This enables us to infer the

desired C;A `n let x = e1 in e2 : t2 &(b1; b2).

134

The cases (sapp), (rec), (if), (sub): Analogous to the above cases.

The case (ins). Then C;A ` e : S t0 & b because with Dom(S) � f~�~�~�g

and C ` S C0 we have C;A ` e : 8(~�~�~� : C0): t0 & b. By applying the

induction hypothesis we get

C;A `n e : 8(~�~�~� : C0): t0 & b

so by Lemma 2.23 we get C;A `n e : S t0 & b as desired.

The case (gen). Then we have C;A ` e : 8(~�~�~� : C0): t0 & b because

C [C0; A ` e : t0 & b where 8(~�~�~� : C0): t0 is well-formed, solvable from

C and satis�es f~�~�~�g \ FV(C;A; b) = ;. Now A is well-formed and solvable

from C [C0 (Lemma 2.19) so the induction hypothesis gives C [C0; A `n
e : t0 & b. Therefore we have the TS-normalised inference tree C;A `n e :

8(~�~�~� : C0): t0 & b. 2

Conservative extension

Theorem 2.25

Let e be a closed sequential expression 2 Exp. Let A be de�ned on sequential

constants only and let it behave as in Fig. 2.4; and let �(A) = A0.

� If A0 `ML
n e : u then there exists �-sequential type t with �(t) = u

such that C�; A `n e : t& �.

� If C;A ` e : t& b where C contains no type constraints then there

exists an ML type u with �(t) = u such that A0 `ML e : u. 2

Before embarking on the proof we need to extend �() to work on substitu-

tions: from a substitution S we construct an ML substitution R = �(S) by

stipulating R� = �(S �).

Fact A.1 For all substitutions S and types t, we have �(S t) = �(S) �(t).

135

Proof Induction in t. If t = �, the equation follows from the de�nition of

�(S). If t is a base type like int, the equation is trivial. If t is a composite

type like t1 !
� t2, the equation reads

�(S t1) ! �(S t2) = �(S) �(t1) ! �(S) �(t2)

and follows from the induction hypothesis. If t is a non-sequential type like

t0 event �, the equation reads �(S t0) = �(S) �(t0) which follows from the

induction hypothesis. 2

Auxiliary notions I.

Before embarking on the �rst part of Theorem 2.25 we need to develop some

extra machinery; this is due to the fact that the typing of something in Exp,

such as tl< e>, may involve the typing of something not in Exp, such as

tl.

Intermediate expressions. We say that e 2 EExp is an intermediate

expression expecting m arguments if either

� m = 0, and e 2 Exp; or

� m = 1, and e is a sequential base function Fs; or

� m > 0, and e is a constructor Cm
s .

Actually we can allow to write m � 0 in the last clause (cf. Fig. 2.3).

Non-silent types. We say that a type is non-silent if it does not contain

any subtypes of form t1 ! t2 (but it may contain subtypes of form t1 !
�

t2).

We say that a type ism-order non-silent if it is of the form t1 ! � � � tm ! t0
with t0; t1; � � � ; tm all non-silent (so to be 0-order non-silent amounts to being

non-silent).

We say that a type scheme is (m-order) non-silent if its type is.

136

Fact A.2 Given ML type u, there exists a unique non-silent �-sequential

type t such that �(t) = u.

Proof Induction in u: if u = � then we can use t = �; and there clearly

exists no other sequential t with �(t) = �.

Now consider the case where u is a composite type like u1 ! u2. By induc-

tion there exists non-silent �-sequential types t1 and t2 such that �(t1) = u1
and �(t2) = u2. Let t = t1 !

� t2; then t is non-silent and �-sequential and

moreover �(t) = u. Concerning uniqueness, suppose that also t0 is non-silent

�-sequential with �(t0) = u. From t0 being non-silent and sequential we de-

duce that t0 is of form t01 !
�0 t02; as �(t

0
1) = u1 and �(t02) = u2 we from

the induction hypothesis deduce that t01 = t1 and t02 = t2; and from t0 being

�-sequential we deduce that � 0 = �. Hence t0 = t as desired. 2

Proof of the �rst part of Theorem 2.25

The �rst part of the theorem clearly follows from the following proposition

which admits a proof by induction:

Proposition A.3 Let e be sequential and also an intermediate expression

expecting m arguments (m � 0). Suppose A0 `ML
n e : u with �(A) = A0,

where A(c) behaves as in Fig. 2.4 for all sequential constants c and where

A(y) is non-silent and �-sequential for all identi�ers y in the domain of A.

Then there exists m-order non-silent and �-sequential t with �(t) = u such

that C�; A `n e : t& �.

Similarly with us and ts instead of u and t. 2

The proof is by induction on the structure of the normalised proof tree for

A0 `ML
n e : u (where the clauses for conditionals and for recursion are

omitted, as they present no further complications).

The case (con):

Here u = A0(c) and we can use t = A(c); then f" � �; �; � � �g; A `n
c : t& � will follow using (con) and (sub). That t is m-order non-silent and

�-sequential follows from an inspection of Fig. 2.4.

137

The case (con)(ins): Here A0 `ML
n c : Ru holds because A0(c) = 8~� :u

and Dom(R) � f~� g. Now A(c) takes the form 8(~� : ;): t with �(t) = u. It is

clearly possible (using Fact A.2) to �nd a substitution S with Dom(S) � f~� g

such that �(S) = R and such that for all � 2 f~� g it holds that S � is non-

silent and �-sequential. We can thus use (con), (ins), and (sub) to arrive at

the judgement

f" � �; �; � � �g; A `n c : S t& �

which is as desired since by Fact A.1 we have �(S t) = Ru. Moreover, an

inspection of Fig. 2.4 reveals that t is �-sequential and m-order non-silent,

from which we deduce that also S t is �-sequential and m-order non-silent.

The case (id):

Here u = A0(x) and we can use t = A(x); then f" � �; �; � � �g; A `n
x : t& � will follow using (id) and (sub). The assumptions about A tell us

that t is non-silent and �-sequential, and is thus of the desired form since x

is an intermediate expression expecting 0 arguments.

The case (id)(ins): Here A0 `ML
n x : Ru holds because A0(x) = 8~� :u and

Dom(R) � f~� g. Now A(x) takes the form 8(~� : ;): t with �(t) = u. It is

clearly possible (using Fact A.2) to �nd a substitution S with Dom(S) � f~� g
such that �(S) = R and such that for all � 2 f~� g it holds that S � is non-

silent and �-sequential. We can thus use (id), (ins), and (sub) to arrive at

the judgement

f" � �; �; � � �g; A `n x : S t& �

which is as desired since by Fact A.1 we have �(S t) = Ru. The assumptions

about A tell us that t is non-silent and �-sequential, from which we deduce

that also S t is non-silent and �-sequential and is thus of the desired form

since x is an intermediate expression expecting 0 arguments.

The case (abs): As fn x)e 2 Exp we deduce that also e 2 Exp. By Fact

A.2 there exists non-silent �-sequential t1 such that �(t1) = u1, implying that

�(A[x : t1]) = A0[x : u1]. We are thus able to apply the induction hypothesis,

and we infer that there exists non-silent and �-sequential t2 with �(t2) = u2
such that

f" � �; �; � � �g; A[x : t1] `n e : t2 & �:

By using (abs) and (sub) we get

f" � �; �; � � �g; A `n fn x)e : t1 !
� t2 & �

138

which is as desired since t1 !
� t2 is non-silent and �-sequential and since

�(t1 !
� t2) = u1 ! u2.

The case (app): Clearly e1 e2 2 Exp; and it is easy to see (as e1 is sequential

and hence cannot be of the form Fc) that it also holds that e1; e2 2 Exp. We

can thus apply the induction hypothesis to �nd non-silent �-sequential t01
and t02 with �(t01) = u2 ! u1 and �(t02) = u2 such that

C�; A `n e1 : t01 & � and C�; A `n e2 : t02 & �:

Clearly t01 takes the form t2 !
� t1, implying �(t1) = u1 and �(t2) = u2; and

as t2 and t02 are non-silent and �-sequential we can use Fact A.2 to infer that

t02 = t2. Hence we can apply (app) to get

f" � �; �; � � �g; A `n e1 e2 : t1 &(�; �); �

so by (sub) we arrive at the desired judgement

f" � �; �; � � �g; A `n e1 e2 : t1 & �:

and we have already seen that t1 is of the desired form.

The case (sapp): As e0 @
s
n < e1; � � � ; en >2 Exp we deduce that e0 is an in-

termediate expression expecting n arguments and that e1; � � � ; en 2 Exp. We

can thus apply the induction hypothesis to �nd non-silent and �-sequential

t1; t
0
1; � � � ; tn; t

0
n; t0 such that

C�; A `n e0 : t01 ! � � � t0n ! t0 & � and � � �C�; A `n ei : ti& � � � �

and such that �(t1) = u1; � � � ; �(tn) = un and such that �(t01 ! � � � t0n ! t0)

= u1 ! � � �un ! u0, implying �(t01) = u1; � � � ; �(t
0
n) = un; �(t0) = u0. From

Fact A.2 we infer that t01 = t1; � � � ; t
0
n = tn. Hence we can apply (sapp) to get

f" � �; �; � � �g; A `n e0 @
s
n < e1; � � � ; en > : t0 & �; � � �; �

so by (sub) we arrive at the desired judgement

f" � �; �; � � �g; A `n e0 @
s
n < e1; � � � ; en > : t0 & �

and we have already seen that t0 has the desired properties.

139

The case (let): As let x = e1 in e2 2 Exp we deduce that also e1; e2 2

Exp. We can apply the induction hypothesis to �nd non-silent and �-

sequential ts1 with �(ts1) = us1 such that

f" � �; �; � � �g; A `n e1 : ts1 & �:

Since �(A[x : ts1]) = A0[x : us1] (and ts1 is non-silent and �-sequential)

we can apply the induction hypothesis once more to �nd non-silent and �-

sequential t2 with �(t2) = u2 such that

f" � �; �; � � �g; A[x : ts1] `n e2 : t2 & �:

We can now apply (let) and (sub) to get the desired judgement

f" � �; �; � � �g; A `n let x = e1 in e2 : t2 & �:

The case (gen): We can apply the induction hypothesis to �nd m-order

non-silent and �-sequential t with �(t) = u such that

C�; A `n e : t& �:

The conclusion we want to arrive at is

C�; A `n e : 8(~� : ;): t& �

which follows by using (gen) provided that (i) 8(~� : ;): t is well-formed and

solvable from C� and (ii) f~� g \ FV(C�; A; �) = ;. Here (i) is trivial; and

(ii) follows from FV(A0) \ f~� g = ; since a type variable which is free in A

will also be free in A0.

Auxiliary notions II.

Before embarking on the second part of Theorem 2.25 we need to develop

some extra machinery.

ML type equations. ML type equations are of the form u1 = u2. With

Ct a set of ML type equations and with R an ML substitution, we say that

R satis�es (or uni�es) Ct i� for all (u1 = u2) 2 Ct we have Ru1 = Ru2.

The following fact is well-known from uni�cation theory:

140

Fact A.4 Let Ct be a set of ML type equations. If there exists an ML

substitution which satis�es Ct, then Ct has a �most general uni�er�: that is,

an idempotent substitution R which satis�es Ct such that if R0 also satis�es

Ct then there exists R00 such that R0 = R00R.

Lemma A.5 Suppose R0 with Dom(R0) � G satis�es a set of ML type

equations Ct. Then Ct has a most general uni�er R with Dom(R) � G.

Proof From Fact A.4 we know that Ct has a most general uni�er R1, and

hence there exists R2 such that R0 = R2R1. Let G1 = Dom(R1) nDom(R0);

for � 2 G1 we have R2R1 � = R0 � = � and hence R1 maps the variables in

G1 into distinct variables G2 (which by R2 are mapped back again). Since

R1 is idempotent we have G2\Dom(R1) = ;, so R0 equals R2 on G2 showing

that G2 � Dom(R0). Moreover, G1 \G2 = ;.

Let � map � 2 G1 into R1 � and map � 2 G2 into R2 � and behave as the

identity otherwise. Then � is its own inverse so that �� = Id. Now de�ne

R = �R1; clearly R uni�es Ct and if R0 also uni�es Ct then (since R1 is most

general uni�er) there exists R00 such that R0 = R00R1 = R00 ��R1 = (R00 �)R.

We are left with showing (i) that R is idempotent and (ii) that Dom(R) � G.

For (i), �rst observe that R1 � equals Id except on Dom(R1). Since R1 is

idempotent we have FV(R1 �) \ Dom(R1) = ; (for all �) and hence

RR = �R1 �R1 = � IdR1 = R:

For (ii), observe that R equals Id on G1 so it will be su�cient to show that

R� = � if � =2 (G [G1). But then � =2 Dom(R0) and hence � =2 G2 and

� =2 Dom(R1) so R� = �� = �. 2

From a constraint set C we construct a set of ML type equations �(C) as

follows:

�(C) = f(�(t1) = �(t2)) j (t1 � t2) 2 Cg:

Fact A.6 Suppose C ` t1 � t2. If R satis�es �(C) then R �(t1) = R �(t2).

So if C ` C 0 and R satis�es �(C) then R satis�es �(C 0).

Proof Induction in the proof tree. If (t1 � t2) 2 C, the claim follows

from the assumptions. The cases for re�exivity and transitivity are straight-

forward. For the structural rules with the �sequential� type constructors,

141

assume e.g. that C ` t1 !
� t2 � t01 !

�0 t02 because (among other things)

C ` t01 � t1 and C ` t2 � t02. By using the induction hypothesis we get

the desired equality

R �(t1 !
� t2) = R �(t1) ! R �(t2) = R �(t01) ! R �(t02) = R �(t01 !

�0 t02):

For the structural rules with the non-sequential type constructors, assume

e.g. that C ` t event � � t0 event � 0 because of C ` t � t0. Then

the desired equality reads R �(t) = R �(t0) and follows from the induction

hypothesis.

For the backwards rules, assume e.g. that C ` t01 � t1 holds because of

C ` t1 !
� t2 � t01 !

�0 t02. By using the induction hypothesis we have

R �(t1) ! R �(t2) = R �(t1 !
� t2) = R �(t01 !

�0 t02) = R �(t01) ! R �(t02)

from which the desired relation R �(t1) = R �(t01) follows. 2

Relating type schemes. For a type scheme ts = 8(~�~�~� : C): t we shall

not in general (when C 6= ;) de�ne any entity �(ts); this is because one

natural attempt, namely 8(~� : �(C)): �(t), is not an ML type scheme and

another natural attempt, 8~� :�(t), causes loss of the information in �(C).
Rather we shall de�ne some relations between ML types, types, ML type

schemes and type schemes:

De�nition A.7 We write u �R
� ts, where ts = 8(~�~�~� : C0): t0 and where

R is an ML substitution, i� there exists R0 which equals R on all variables

except ~� such that R0 satis�es �(C0) and such that u = R0 �(t0). 2

Notice that instead of demanding R0 to equal R on all variables but ~� , it

is su�cient to demand that R0 equals R on FV(ts). (We have the expected

property that if u �R
� ts and ts is alpha-equivalent to ts0 then also u �R

� ts0.)

De�nition A.8 We write u � us, where us = 8~� :u0, i� there exists R0

with Dom(R0) � ~� such that u = R0 u0.

De�nition A.9 We write us �=R
� ts to mean that (for all u) u � us i�

u �R
� ts.

142

Fact A.10 Suppose us = �(ts), where ts = 8(~� : ;): t is sequential. Then

us �=Id

� ts.

Proof We have us = 8~� :�(t), so for any u it holds that u � us , 9 R with

Dom(R) � ~� such that u = R �(t) , u �Id

� ts. 2

Notice that 8():u �=R
� 8(() : ;): t holds i� u = R �(t). We can thus consis-

tently extend �=R
� to relate not only type schemes but also types:

De�nition A.11 We write u �=R
� t i� u = R �(t).

De�nition A.12 We write A0 �=R
� A i� Dom(A0) = Dom(A) and A0(x) �=R

�

A(x) for all x 2 Dom(A).

Fact A.13 Let R and S be such that �(S) = R. Then the relation u �R
� ts

holds i� the relation u �Id

� S ts holds.

Consequently, us �=R
� ts holds i� us �=Id

� S ts holds.

Proof Let ts = 8(~�~�~� : C): t. Due to the remark after De�nition A.7 we

can assume that ~�~�~� is disjoint from Dom(S) [Ran(S), so S ts = 8(~�~�~� :

S C): S t.

First we prove �if�. For this suppose that R0 equals Id except on ~� and that R0

satis�es �(S C) and that u = R0 �(S t), which by straightforward extensions

of Fact A.1 amounts to saying that R0 satis�es R �(C) and that u = R0R �(t).
Since f~� g\Ran(R) = ; we conclude that R0R equals R except on ~� , so we

can use R0R to show that u �R
� ts.

Next we prove �only if�. For this suppose that R0 equals R except on ~�

and that R0 satis�es �(C) and that u = R0 �(t). Let R00 behave as R0 on ~�

and behave as the identity otherwise. Our task is to show that R00 satis�es

�(S C) and that u = R00 �(S t), which as we saw above amounts to showing

that R00 satis�es R �(C) and that u = R00R �(t). This will follow if we can

show that R0 = R00R. But if � 2 ~� we have R00R� = R00 � = R0 � since

Dom(R) \ f~� g = ;, and if � =2 ~� we have R00R� = R� = R0 � where the

�rst equality sign follows from Ran(R) \ f~� g = ; and Dom(R00) � ~� . 2

Fact A.14 If us �=Id

� ts then FV(us) � FV(ts).

143

Proof We assume us �=Id

� ts where us = 8~� 0:u and ts = 8(~�~�~� : C): t. Let

�1 be given such that �1 =2 FV(ts), our task is to show that �1 =2 FV(us).

Clearly u � us so u �Id

� ts, that is there exists R with Dom(R) � ~� such

that R satis�es �(C) and such that u = R �(t). Now de�ne a substitution R1

which maps �1 into a fresh variable and is the identity otherwise. Due to our

assumption about �1 it is easy to see that R1R equals Id on FV(ts), and as

R1R clearly satis�es �(C) it holds that R1 u = R1R �(t) �Id

� ts and hence

also R1 u � us. As �1 =2 FV(R1 u) we can infer the desired �1 =2 FV(us). 2

Proof of the second part of Theorem 2.25

The second part of the theorem follows (by letting R = Id, employing Fact

A.10, and recalling that A(c) is sequential if c is sequential) from the following

proposition, which admits a proof by induction.

Proposition A.15 Let e 2 EExp be sequential, suppose C;A ` e : ts& b,

suppose R satis�es �(C), and suppose A0 �=R
� A; then there exists a us with

us �=R
� ts such that A0 `ML e : us. Similarly with t and u instead of ts and

us (in which case u = R �(t)). 2

We perform induction in the proof tree for C;A ` e : ts& b, using the

terminology from Fig. 2.5 (the clauses for conditionals and for recursion are

omitted, as they present no further complications):

The case (id): (the case (con) is similar) Suppose R satis�es �(C),

and suppose A0 �=R
� A. Then A0(x) �=R

� A(x) and A0 `ML x : A0(x), as

desired.

The case (abs): Suppose R satis�es �(C) and that A0 �=R
� A. Then also

A0[x : R �(t1)] �=
R
� A[x : t1], so the induction hypothesis can be applied to

�nd u2 such that u2 = R �(t2) and such that A0[x : R �(t1)] `
ML e : u2. By

using (abs) we get the judgement

A0
`
ML fn x)e : R �(t1) ! u2

which is as desired since R �(t1) ! u2 = R �(t1 !
� t2).

144

The case (app): (the case (sapp) is similar) Suppose R satis�es �(C)

and that A0 �=R
� A. The induction hypothesis can be applied to infer that

A0
`
ML e1 : R �(t2 !

� t1) and A0
`
ML e2 : R �(t2)

and since R �(t2 !
� t1) = R �(t2) ! R �(t1) we can apply (app) to arrive

at the desired judgement A0 `ML e1 e2 : R �(t1).

The case (let): Suppose R satis�es �(C) and that A0 �=R
� A. We can

apply the induction hypothesis to �nd us1 such that us1 �=
R
� ts1 and such

that A0 `ML e1 : us1; and since A0[x : us1] �=
R
� A[x : ts1] we can apply the

induction hypothesis once more to infer that A0[x : us1] `
ML e2 : R �(t2).

Now use (let) to arrive at the desired judgement A0 `ML let x = e1 in e2 :

R �(t2).

The case (sub): Suppose R satis�es �(C) and that A0 �=R
� A. By applying

the induction hypothesis we infer that A0 `ML e : R �(t) and since by Fact

A.6 we have R �(t) = R �(t0) this is as desired.

The case (ins): Suppose that R satis�es �(C) and that A0 �=R
� A. The

induction hypothesis tells us that there exists us with us �=R
� 8(~�

~�~� : C0): t0
such that A0 `ML e : us.

Since C ` S0C0 and R satis�es �(C), Fact A.6 tells us that R satis�es

�(S0 C0) which by Fact A.1 equals �(S0) �(C0), thus R �(S0) satis�es �(C0). As

R �(S0) equals R except on ~� , it holds that R �(S0) �(t0) �
R
� 8(~�

~�~� : C0): t0
and since us �=R

� 8(~�
~�~� : C0): t0 we have R �(S0) �(t0) � us. But this shows

that we can use (ins) to arrive at the judgement A0 `ML e : R �(S0) �(t0)
which is as desired since �(S0) �(t0) = �(S0 t0) by Fact A.1.

The case (gen): Suppose that R satis�es �(C) and that A0 �=R
� A. Our

task is to �nd us such that us �=R
� 8(~�

~�~� : C0): t0 and such that A0 `ML e :

us. Below we will argue that we can assume that f~� g\(Dom(R)[Ran(R)) =

;.

Let T be a renaming substitution mapping ~� into fresh variables

~� 0. By applying Lemma 2.18, by exploiting that FV(C;A; b) \

145

f~�~�~�g = ;, and by using (gen) we can construct a proof tree

whose last nodes are

C [T C0; A ` e : T t0 & b

C;A ` e : 8(~� 0~� ~� : T C0): T t0 & b

the conclusion of which is alpha-equivalent to the conclusion of

the original proof tree, and the shape of which (by Lemma 2.18)

is equal to the shape of the original proof tree.

There exists S0 with Dom(S0) � f~�~�~�g such that C ` S0C0. Fact A.6 then

tells us that R satis�es �(S0 C0) which by Fact A.1 equals �(S0) �(C0).

Now de�ne R0
0 to be a substitution with Dom(R0

0) � f~� g which maps ~� into

R �(S0) ~� . It is easy to see (since ~� is disjoint from Dom(R)[Ran(R)) that

R0
0R = R �(S0), implying that R0

0 satis�es R �(C0).

By Lemma A.5 there exists R0 with Dom(R0) � f~� g which is a most general

uni�er of R �(C0). Hence with R0 = R0R it holds not only that R0 satis�es

�(C) but also that R0 satis�es �(C0), so in order to apply the induction

hypothesis on R0 we just need to show that A0 �=R0

� A. This can be done by

showing that R equals R0 on FV(A), but this follows since our assumptions

tell us that Dom(R0) \ FV(RA) = ;.

The induction hypothesis thus tells us that A0 `ML e : R0 �(t0). Let S be

such that �(S) = R and Dom(S) = Dom(R) and Ran(S) \ f~� ~� g = ;; since
f~� g \Ran(R) = ; we can also obtain f~� g \Ran(S) = ;. By Fact A.13 and

Fact A.14 we infer that FV(A0) � FV(S A), so since f~� g \ FV(A) = ; we
infer f~� g \ FV(A0) = ;. We can thus use (gen) to arrive at the judgement

A0 `ML e : 8~� :R0 �(t0).

We are left with showing that 8~� :R0 �(t0) �=
R
� 8(~�

~�~� : C0): t0 but this follows

from the following calculation (explained below):

u �R
� 8(~�

~�~� : C0): t0
, u �Id

� 8(~�
~�~� : S C0): S t0

, 9R1 with Dom(R1) � f~� g

such that R1 satis�es R �(C0) and u = R1R �(t0)

, 9R1 with Dom(R1) � f~� g
such that 9R2 : R1 = R2R0 and u = R1R �(t0)

, 9R2 with Dom(R2) � f~� g such that u = R2R0R �(t0)
, u � 8~� :R0 �(t0).

146

The �rst , follows from Fact A.13 where we have exploited that f~�~�~�g is

disjoint from Dom(S) [Ran(S); the second , follows from the de�nition

of �Id

� together with Fact A.1; the third , is a consequence of R0 being

the most general uni�er of R �(C0); and the fourth , is a consequence of

Dom(R0) � f~� g since then from R1 = R2R0 we conclude that if �0 =2 f~� g

then R1 �
0 = R2 �

0 and hence Dom(R1) � f~� g i� Dom(R2) � f~� g.

147

Appendix B

Proofs of Results Concerning the

Semantics

The sequential semantics

Fact 3.4 (E1[E2])[e] = E1[E2[e]].

Proof The proof is by induction in E1. If E1 = [] the equation reads

E2[e] = E2[e], so assume that E1 is a composite context and let us consider

the case E1 = E e2 (the other cases are similar). By using the induction

hypothesis for E we get the desired equation

E1[E2][e] = (E e2)[E2][e] = (E[E2] e2)[e] = E[E2][e] e2

= E[E2[e]] e2 = E1[E2[e]]:

This completes the proof. 2

Reasoning about proof trees

Fact 3.14 Given jdg = (C;A ` E[e] : �& b); then there exists (at least

one) judgement jdg0 of the form C 0; A0 ` e : �0& b0 such that jdg0 occurs at

E in the inference tree for jdg. If jdg is normalised we can assume that jdg0

148

is normalised.

Proof The proof is by induction in the inference tree for jdg. If E = [] we

can use jdg0 = jdg, so assume E 6= []. Hence the last rule applied in the

inference tree for jdg is none of the following: (con), (id), (abs), or (rec). If

(sub), (ins) or (gen) has been applied the induction hypothesis clearly yields

the claim; notice that if jdg is normalised then it cannot be the case that

(ins) has been applied, as E[e] is neither a constant nor an identi�er. So we

are left with (app), (sapp), (let) and (if); we only consider (app) as the other

cases are similar. Then E takes either the form E1 e2 or the form w1 E2 or

the form Fc<E1>; we consider the former only as the latter are similar.

The situation thus is that E[e] = E1[e] e2 so the left premise of jdg is of

the form C 00; A00 ` E1[e] : �00& b00 (abbreviated jdg00). Inductively we can

assume that there exists jdg0 which occurs at E1 in the inference tree for

jdg00; but this shows that jdg0 occurs at E in the inference tree for jdg. 2

Lemma 3.17 Suppose the judgement jdg0 = C 0; A0 ` e0 : �0& b0 occurs at

E with depth n in the inference tree of jdg = C;A ` e : �& b. Then

� A0 = A;

� if C is well-formed then also C 0 is well-formed;

� if C is consistent then also C 0 is consistent.

Proof We perform induction in n: if n = 0 then C = C 0 and A = A0 and

the claim is clear.

If n > 1 then by Fact 3.15 there exists judgement jdg00 = C 00; A00 ` e00 :
�00& b00 and evaluation contexts E1 and E2 such that

jdg0 occurs at E1 with depth < n in the inference tree for jdg00; and

jdg00 occurs at E2 with depth < n in the inference tree for jdg.

We can thus apply the induction hypothesis twice to infer that A0 = A00 = A,

that if C is well-formed then C 00 is well-formed and then C 0 is well-formed;

and that if C is consistent then C 00 is consistent and then C 0 is consistent.

149

So we are left with the case n = 1, where the inference rule applied is either

(app), (sapp), (let) with jdg0 as leftmost premise, (if), (sub), (ins) or (gen).

In all cases we have A = A0; and in all cases but the latter we have C = C 0.

So we only need to consider (gen) where the situation is

jdg0 = C [C0; A ` e : t0 & b

jdg = C;A ` e : 8(~�~�~� : C0): t0 & b

where 8(~�~�~� : C0): t0 is well-formed (implying that C0 is well-formed) and

where f~�~�~�g \ FV(C;A; b) = ; and where there exists S with Dom(S) �

f~�~�~�g such that C ` S C0, implying that C ` S (C [C0). We need to show

that if C is consistent then C [C0 is consistent: but if C [C0 ` t1 � t2
where there is a mismatch between t1 and t2 then (by Lemma 2.18 and 2.19)

C ` S t1 � S t2 and as there clearly is a mismatch between S t1 and S t2
this con�icts with our assumption about C being consistent. 2

Lemma 3.20 Suppose that C;A[x : �0] `n e : �& b and that C;A `n e0 :
�0& "; then C;A `n e[e0=x] : �& b.

Proof Induction in the shape of the proof tree for C;A[x : �0] `n e : �& b;

we perform case analysis on the way it is constructed (cf. De�nition 2.22).

(con) or (con)(ins) has been applied: Then e is a constant, and e[e0=x] =
e so the claim is clear.

(id) or (id)(ins) has been applied: Then e is an identi�er y. If y 6= x

then e[e0=x] = e and the claim is clear since A[x : �0](y) = A(y).

If y = x then the inference takes the form

C;A[x : �0] ` x : �0& "

C;A[x : �0] ` x : t& "

where the last rule follows by zero or one application of (ins). We must show

C;A `n e0 : t& "

but this follows from the second part of the assumption, using Lemma 2.23.

150

(abs) has been applied: Here the inference takes the form

C;A[x : �0][y : t1] `n e : t2 & �

C;A[x : �0] `n fn y)e : t1 !� t2 & "

where we can assume (by suitable alpha-renaming) that y 6= x and that y

does not occur in e0. Hence we can apply Fact 2.20 and Fact 2.21 to get

C;A[y : t1][x : �0] `n e : t2 & � with the same shape as the premise

C;A[y : t1] `n e0 : �0& ".

We can thus apply the induction hypothesis and subsequently use (abs) to

construct an inference tree whose last inference is

C;A[y : t1] `n e[e0=x] : t2 & �

C;A `n fn y)e[e0=x] : t1 !� t2 & "

which is as desired since (fn y)e)[e0=x] = (fn y)e[e0=x]).

(app) has been applied: Here the inference takes the form

C;A[x : �0] `n e1 : t2 !
� t1 & b1 C;A[x : �0] `n e2 : t2 & b2

C;A[x : �0] `n e1 e2 : t1 &(b1; b2; �)

where we can apply the induction hypothesis twice and subsequently use

(app) to construct an inference tree whose last inference is

C;A `n e1[e
0=x] : t2 !

� t1 & b1 C;A `n e2[e
0=x] : t2 & b2

C;A `n e1[e0=x] e2[e0=x] : t1 &(b1; b2; �)

which is as desired since (e1 e2)[e
0=x] = e1[e

0=x] e2[e
0=x].

(sapp), (let), (rec) or (if) has been applied: Similar to the above two

cases, exploiting Fact 2.20 and Fact 2.21 and we only spell the case (rec) out

in detail. Here the inference takes the form

C;A[x : �0][f : t] `n fn y)e : t& b

C;A[x : �0] `n rec f y)e : t& b

where we can assume that y 6= x, f 6= x and that neither y nor f occurs in

e0. Hence we can apply Fact 2.20 and Fact 2.21 to get

151

C;A[f : t][x : �0] `n fn y)e : t& b

C;A[f : t] `n e0 : �0& ".

and as the former inference has the same shape as the premise we can apply

the induction hypothesis to infer

C;A[f : t] `n (fn y)e)[e0=x] : t& b

which since y 6= x and y does not occur in e0 amounts to

C;A[f : t] `n fn y)e[e0=x] : t& b.

By applying (rec) we get

C;A `n rec f y)e[e0=x] : t& b

which is as desired since (rec f y)e)[e0=x] = (rec f y)e[e0=x]).

(sub) has been applied: Here the inference takes the form

C;A[x : �0] `n e : t& b

C;A[x : �0] `n e : t0& b0

with C ` t � t0 and C ` b � b0 so we can apply the induction hypothesis

and subsequently use (sub) to construct an inference tree whose last inference

is
C;A `n e[e0=x] : t& b

C;A `n e[e0=x] : t0& b0

(gen) has been applied: Here the inference takes the form

C [C0; A[x : �0] `n e : t0 & b

C;A[x : �0] `n e : ts& b

where ts = 8(~�~�~� : C0): t0 is well-formed, solvable from C, and satis�es

f~�~�~�g \ FV(C;A[x : �0]; b) = ;. By Lemma 2.19 we have

C [C0; A `n e0 : �0& "

152

so we can apply the induction hypothesis to get

C [C0; A `n e[e0=x] : t0 & b.

We can then apply (gen) (since f~�~�~�g \ FV(C;A; b) = ;) to arrive at the

desired judgement C;A `n e[e0=x] : ts& b. 2

Lemma 3.21 Suppose that C;A `n w : �& b; then

� C ` " � b and

� C;A `n w : �& ".

Proof It is enough to consider the case where � is a type t, for if the inference

C [C0; A ` w : t0 & b

C;A ` w : 8(~�~�~� : C0): t0 & b
(gen)

is valid it remains valid when b is replaced by ". We now prove the claim by

induction in the size of w, and the only interesting case is where w = Cn<

w1; � � � ; wn> with n � 1.

The normalised inference takes the form

C;A `n Cn : t1 ! � � � tn ! t0 & b0 � � �C;A `n wi : ti& bi � � �

C;A `n Cn<w1; � � � ; wn> : t& b
(sapp),(sub)�

where C ` t0 � t and C ` b0; b1; � � �; bn � b. We now infer, making use of

the induction hypothesis for w1 � � �wn, (i) that C ` " � bi for i 2 f0 � � �ng,

implying C ` " � "; "; � � �; " � b0; b1; � � �; bn � b; (ii) that we can construct

the inference tree

C;A `n Cn : t1 ! � � � tn ! t0 & " � � �C;A `n wi : ti& " � � �

C;A `n Cn<w1; � � � ; wn> : t& "
(sapp),(sub)

2

Lemma 3.24 Suppose the judgement jdg0 = (C 0; A ` e : �0& b0) occurs

at E with depth n0 in the normalised inference jdg = (C;A `n E[e] : �& b)
where C (and by Lemma 3.17 then also C 0) is well-formed and consistent.

153

Let bn be a behaviour and let An be of the form A[x1 : �1][� � � : � � �][xm :

�m] with m � 0, such that x1 � � �xm do not occur in E[e] and such that

FV(�1) [� � � [FV(�m) � FV(bn).

Let en be an expression and b0r a behaviour such that

C 0; An `n en : �0& b0r and

C 0 ` bn; b
0
r � b0.

Then there exists br such that

C;An `n E[en] : �& br and

C ` bn; br � b.

Moreover, there exists S with Dom(S)\ FV(A; bn) = ; such that C ` S C 0.

Proof We perform induction in n0: if n0 = 0 then E = [], C = C 0, � = �0,

b = b0 and the claim is trivial as we can choose br = b0r and S = Id.

If n0 > 1 then by Fact 3.15 there exists evaluation contexts E1 and E2 with

E = E2[E1] and judgement jdg00 = C 00; A `n e00 : �00& b00 such that

jdg0 occurs at E1 with depth < n0 in the inference tree for jdg00; and

jdg00 occurs at E2 with depth < n0 in the inference tree for jdg.

By Lemma 3.17 C 00 is well-formed and consistent, so if C 0; An `n en : �0& b0r
and C 0 ` bn; b

0
r � b0 we can apply the induction hypothesis (with jdg0 and

jdg00) to infer that there exists b00r and S1 such that C
00; An `n E1[en] : �

00& b00r
and C 00 ` bn; b

00
r � b00 and Dom(S1) \ FV(A; bn) = ; and C 00 ` S1C

0. We

can then apply the induction hypothesis once more (with jdg00 and jdg) to

infer that there exists br and S2 such that C;An `n E2[E1[en]] : �& br and

C ` bn; br � b and Dom(S2) \ FV(A; bn) = ; and C ` S2C
00. This is

as desired, since with S = S2 S1 we have Dom(S) \ FV(A; bn) = ; and (by

Lemma 2.18 and 2.19) C ` S C 0.

So we are left with the case n0 = 1. We perform case analysis on E:

154

E = E1 e2: Here E1 = [] and the situation is:

jdg0 = C;A `n e1 : (t2 !
� t1)& b1 C;A `n e2 : t2 & b2

jdg = C;A ` e1 e2 : t1 &(b1; b2; �)

and our assumptions are

C;An `n en : t2 !
� t1 & b0r and

C ` bn; b
0
r � b1

and we must show that there exists br and S such that

C;An `n en e2 : t1 & br (1)

C ` bn; br � b1; b2; � (2)

Dom(S) \ FV(A; bn) = ; and C ` S C.

We can choose br = b0r; b2; � and S = Id: then (2) is a trivial consequence of

the assumptions and of � being a congruence; and (1) will follow provided

we can show that

C;An `n e2 : t2 & b2

but this follows from Fact 2.21.

E = w E2: Here E2 = [] and the situation is:

C;A `n w : (t2 !
� t1)& b1 jdg0 = C;A `n e2 : t2 & b2

jdg = C;A ` w e2 : t1 &(b1; b2; �)

and our assumptions are

C;An `n en : t2 & b0r and

C ` bn; b
0
r � b2

and we must show that there exists br and S such that

C;An `n w en : t1 & br and

C ` bn; br � b1; b2; � and

Dom(S) \ FV(A; bn) = ; and C ` S C.

155

By Lemma 3.21 and Fact 2.21 we infer that

C ` " � b1 and C;An `n w : (t2 !
� t1)& "

which shows than we can use br = b0r; � and trivially S = Id.

E = let x = E1 in e2: Here E1 = [] and the situation is:

jdg0 = C;A `n e1 : ts1 & b1 C;A[x : ts1] `n e2 : t2 & b2

jdg = C;A ` let x = e1 in e2 : t2 &(b1; b2)

and our assumptions are

C;An `n en : ts1 & b0r and

C ` bn; b
0
r � b1

and we must show that there exists br and S such that

C;An `n let x = en in e2 : t2 & br (3)

C ` bn; br � b1; b2 (4)

Dom(S) \ FV(A; bn) = ; and C ` S C.

We can choose br = b0r; b2 and S = Id: then (4) is a trivial consequence of

the assumptions and of � being a congruence; and (3) will follow provided

we can show that

C;An[x : ts1] `n e2 : t2 & b2.

But this follows from Fact 2.21 and Fact 2.20 since all of x1 � � �xm are 6= x

and do not occur in e2.

E = if E0 then e1 else e2: Here E0 = [] and the situation is:

jdg0 = C;A `n e0 : bool& b0 C;A `n e1 : t& b1 C;A `n e2 : t& b2

jdg = C;A ` if e0 then e1 else e2 : t& b0; (b1 + b2)

and our assumptions are

156

C;An `n en : bool& b0r and

C ` bn; b
0
r � b0

and we must show that there exists br and S such that

C;An `n if en then e1 else e2 : t& br and

C ` bn; br � b0; (b1 + b2) and

Dom(S) \ FV(A; bn) = ; and C ` S C.

We can choose br = b0r; (b1 + b2) and S = Id; then the claims will follow since

by Fact 2.21 we have

C;An `n e1 : t& b1 and C;An `n e2 : t& b2.

E = Fs<E1>: Here E1 = [] and the situation is:

C;A `n Fs : (t1 ! t0)& b0 jdg0 = C;A `n e1 : t1 & b1

jdg = C;A ` Fs<e1> : t0 &(b0; b1)

and our assumptions are

C;An `n en : t1 & b0r and

C ` bn; b
0
r � b1

and we must show that there exists br and S such that

C;An `n Fs<en> : t0 & br and

C ` bn; br � b0; b1 and
Dom(S) \ FV(A; bn) = ; and C ` S C.

We clearly have

C ` " � b0 and C;An `n Fs : (t1 ! t0)& "

which shows than we can use br = b0r and trivially S = Id.

E = Fc<E1>: This case is much similar to the case E = w E2.

157

E = Cp< � � � ; wi�1; Ei; ei+1; � � �>: Here Ei = [] and the situation is that

C;A `n Cp<w1; � � � ; wi�1; ei; ei+1; � � � ; ep> : t0 & b0; b1; � � �; bp

because

C;A `n Cp : (t1 ! � � � tp ! t0)& b0 and

C;A `n wj : tj & bj for all j 2 f1 � � � i� 1g and

C;A `n ej : tj & bj for all j 2 fi � � � pg.

Our assumptions are

C;An `n en : ti& b0r and

C ` bn; b
0
r � bi

and we must show that there exists br and S such that

C;An `n Cp<w1; � � � ; wi�1; en; ei+1; � � � ; ep> : t0 & br and

C ` bn; br � b0; b1; � � �; bp and
Dom(S) \ FV(A; bn) = ; and C ` S C.

We infer (making use of Lemma 3.21) that

C ` " � bj for all j 2 f0 � � � i� 1g

and using Fact 2.21 and Lemma 3.21 we infer that

C;An `n Cp : (t1 ! � � � tp ! t0)& " and

C;An `n wj : tj & " for all j 2 f1 � � � i� 1g and

C;An `n ej : tj & bj for all j 2 fi+ 1 � � � pg

which shows that we can use br = b0r; bi+1; � � �; bp and trivially S = Id.

E = []: In this case jdg follows from jdg0 by one application of either (sub),

(ins) or (gen).

158

(sub) has been applied: the situation is

jdg0 = C;A `n e : t& b

jdg = C;A ` e : t0& b0

where C ` t � t0 and C ` b � b0. Our assumptions are

C;An `n en : t& b0r and

C ` bn; b
0
r � b

and we must show that there exists br and S such that

C;An `n en : t0& br and

C ` bn; br � b0 and

Dom(S) \ FV(A; bn) = ; and C ` S C.

But we can clearly choose br = b0r and S = Id.

(ins) has been applied: the situation is

jdg0 = C;A ` e : 8(~�~�~� : C0): t0 & b

jdg = C;A ` e : S0 t0 & b

where 8(~�~�~� : C0): t0 is solvable from C by S0 (and where the premise is

constructed by (con) or (id)). Our assumptions are

C;An `n en : 8(~�~�~� : C0): t0 & b0r and

C ` bn; b
0
r � b

and we must show that there exists br and S such that

C;An `n en : S0 t0 & br and

C ` bn; br � b and

Dom(S) \ FV(A; bn) = ; and C ` S C.

But we can clearly choose br = b0r and S = Id, using Lemma 2.23.

(gen) has been applied: this case has been covered in the main text. 2

159

Appendix C

Proofs of Results Concerning the

Algorithm

Algorithm R

Lemma 4.26 Suppose A ` (C 0; t0; b0) �! (C 00; t00; b00) and let
1;
2 2

FV(C 00). Then (
1 (
�
2) 2 C

0 holds i� (
1 (
�
2) 2 C 00 holds.

Proof (We use the terminology from the relevant clauses in Figure 4.5,

which does not con�ict with the one used in the formulation of the lemma.)

For (redund) this is a straightforward consequence of the assumptions. For

(cycle), (shrink) and (boost) the �only if�-part follows from Fact 4.14: if

(
1 (
�
2) 2 C 0 then (S
1 (

� S
2) 2 S C 0 and as
1;
2 =2 Dom(S) this
amounts to (
1 (

�
2) 2 S C
0 which is clearly equivalent to (
1 (

�
2) 2 C
00.

We are left with proving the �if�-part for (cycle), (shrink) and (boost); to do

so it su�ces to show that

(
01 �
02) 2 C
00 implies (
01 (

�
02) 2 C
0.

As C 00 = S C we can assume that there exists (
1 �
2) 2 C such that

01 = S
1 and
02 = S
2; then (since C � C 0) our task can be accomplished

by showing that

(S
1 (
�
1) 2 C

0 and (
2 (
� S
2) 2 C

0.

160

This is trivial except if
1 =
 or
2 =
. The former is impossible in the

case (boost) (as LHS(C) is anti-monotonic in
) and otherwise the claim

follows from the assumptions; the latter is impossible in the case (shrink) (as

 =2 RHS(C)) and otherwise the claim follows from the assumptions. 2

Lemma C.1 Let S = [
 7!
0].

1. If
1 2 M(g) then
1 2 M(S g), provided that
 2 M(g) or
1 6=
0.

2. If
1 2 A(g) then
1 2 A(S g), provided that
 2 A(g) or
1 6=
0.

Proof Induction in g. First consider the case where g is a variable: then also

S g is a variable so (1) follows vacuously; for (2) we must show that if
1 6= g

then
1 6= S g, but this follows from the side condition which reads
 6= g or

1 6=
0.

Next consider the case where g is a function type t1 !
� t2. Let
1 2 M(g)

(the case
1 2 A(g) is rather similar) and let
 2 M(g) or
1 6=
0, then

1 2 A(t1) \M(t2) and we also have
 2 A(t1) \M(t2) or
1 6=
0. Thus we

can apply the induction hypothesis to infer (by 2) that
1 2 A(S t1) and to

infer (by 1) that
1 2 M(S t2); hence
1 2 M(S t1 !
S � S t2) = M(S g) as

desired.

Next consider the case where g is a behaviour � ! t. Let
1 2 M(g) (the case

1 2 A(g) is similar), then
1 =2 FV(g). If
 2 M(g) then
 =2 FV(g) so

S g = g and the claim is trivial; if
1 6=
0 then
1 =2 FV(S g) so
1 2 M(S g).

The other cases are similar. 2

Proposition 4.28 Suppose that

A ` (C; t; b) �! (C1; t1; b1) and

A ` (C; t; b) �! (C2; t2; b2)

where C is acyclic as well as atomic. Then there exists (C 0
1; t

0
1; b

0
1) and

(C 0
2; t

0
2; b

0
2), which are equal up to renaming, such that

A ` (C1; t1; b1) �!
�1 (C 0

1; t
0
1; b

0
1) and

A ` (C2; t2; b2) �!
�1 (C 0

2; t
0
2; b

0
2).

161

Proof As (cycle) is not applicable, each of the two rewriting steps in the

assumption can be of three kinds yielding six di�erent combinations:

(redund) and (redund) eliminating (
01 �
1) and (
02 �
2) where we

can assume that either
01 6=
02 or
1 6=
2 as otherwise the claim is trivial.

The situation thus is

A ` (C
�
[f
01 �
1g

�
[f
02 �
2g; t; b) �! (C

�
[f
02 �
2g; t; b)

A ` (C
�
[f
01 �
1g

�
[f
02 �
2g; t; b) �! (C

�
[f
01 �
1g; t; b)

where

(
01 (
�
1) 2 C

�
[f
02 �
2g and (1)

(
02 (
�
2) 2 C

�
[f
01 �
1g. (2)

It will su�ce to show that

either (
01 (
�
1) 2 C or (
02 (

�
2) 2 C (3)

for if e.g. (
01 (
�
1) 2 C holds then by (2) also (
02 (

�
2) 2 C holds and

we can apply (redund) twice to complete the diamond.

For the sake of arriving at a contradiction we now assume that (3) does not

hold. Using (1) and (2) we see that the situation is that

(
01 (
�
02) 2 C and (
2 (

�
1) 2 C and

(
02 (
�
01) 2 C and (
1 (

�
2) 2 C

and this con�icts with the assumption about the graph being cycle-free.

(redund) and (shrink) eliminating (
01 �
1) and shrinking
2 into
02
(with
02 6=
2). First notice that it cannot be the case that (
01 �
1) =

(
02 �
2), for then we would have (
01 (
�
1) 2 C as well as
2 =2 RHS(C)

(with C the remaining constraints). The situation thus is

162

A ` (C
�
[f
01 �
1g

�
[f
02 �
2g; t; b) �!

(C
�
[f
02 �
2g; t; b)

A ` (C
�
[f
01 �
1g

�
[f
02 �
2g; t; b) �!

(S C [fS
01 � S
1g; S t; S b)

where S = [
2 7!
02] and where

(
01 (
�
1) 2 C [f

0
2 �
2g and

2 =2 FV(RHS(C); A) and
2 6=
1 and

t, b, LHS(C) is monotonic in
2.

Applying Fact 4.14 we get (S
01 (
� S
1) 2 S C which shows that

A ` (S C [fS
01 � S
1g; S t; S b) �!
�1 (S C; S t; S b)

(if (S
01 � S
1) 2 S C we have �=� otherwise ��!�); it is also easy to see

that the conditions are ful�lled for applying (shrink) to get

A ` (C
�
[f
02 �
2g; t; b) �! (S C; S t; S b)

thus completing the diamond.

(redund) and (boost) eliminating (
1 �
01) and boosting
2 into
02
(with
02 6=
2). First notice that it cannot be the case that (
1 �
01) =
(
2 �
02), for then we would have (
1 (

�
01) 2 C (with C the remaining

constraints) showing that
1 2 LHS(C), whereas a side condition for (boost)

is that each element in LHS(C) is anti-monotonic in
2.

Now we can proceed as in the case (redund),(shrink).

(shrink) and (shrink) shrinking
1 into

0
1 and shrinking
2 into

0
2 where

we can assume that either
01 6=
02 or
1 6=
2 as otherwise the claim is trivial.

The situation thus is

A ` (C
�
[f
01 �
1g

�
[f
02 �
2g; t; b) �!

(S1C [fS1

0
2 � S1
2g; S1 t; S1 b)

A ` (C
�
[f
01 �
1g

�
[f
02 �
2g; t; b) �!

(S2C [fS2

0
1 � S2
1g; S2 t; S2 b)

163

where S1 = [
1 7!
01] and S2 = [
2 7!
02]. Due to the side conditions for

(shrink) we have
1 6=
2 and
1;
2 =2 RHS(C) so RHS(S1C) = RHS(C) =

RHS(S2C) implying
1;
2 =2 RHS(S1C) and
1;
2 =2 RHS(S2C), thus the

�[� on the right hand sides is really �
�
[�. Our goal then is to �nd S 0

1 and S 0
2

such that

S 0
2 S1 = S 0

1 S2 and

A ` (S1C
�
[fS1

0
2 �
2g; S1 t; S1 b) �!

(S 0
2 S1C; S

0
2 S1 t; S

0
2 S1 b) and

A ` (S2C
�
[fS2

0
1 �
1g; S2 t; S2 b) �!

(S 0
1 S2C; S

0
1 S2 t; S

0
1 S2 b).

We naturally de�ne S 0
1 = [
1 7! S2

0
1] and S 0

2 = [
2 7! S1

0
2] with the

purpose of using (shrink), and our proof obligations are:

S 0
2 S1 = S 0

1 S2; (4)

S2

0
1 6=
1 and S1

0
2 6=
2; (5)

S2 t; S2 b;LHS(S2C) is monotonic in
1; (6)

S1 t; S1 b;LHS(S1C) is monotonic in
2. (7)

Here (4) and (5) amounts to proving that

S 0
2

0
1 = S2

0
1 and S1

0
2 = S 0

1

0
2 and S2

0
1 6=
1 and S1

0
2 6=
2 (8)

which is trivial if
01 6=
2 and
02 6=
1. If e.g.
01 =
2 then we from our

assumption about the graph being cycle-free infer that
02 6=
1 from which

(8) easily follows.

Using Lemma C.1, the claims (6) and (7) are easy consequences of the fact

that t, b and LHS(C) are monotonic in
1 as well as in
2.

(boost) and (boost) where we proceed, mutatis mutandis, as in the case

(shrink),(shrink).

(shrink) and (boost) shrinking
1 into
01 and boosting
2 into
02. Let

S1 = [
1 7!
01] and S2 = [
2 7!
02]. Four cases:

1 =
2 (to be denoted
). Then our assumption about the graph being

cycle-free tells us that
01 6=
02, and the situation is

164

A ` (C
�
[f
01 �
g

�
[f
 �
02g; t; b) �! (S1C[f

0
1 �
02g; S1 t; S1 b)

A ` (C
�
[f
01 �
g

�
[f
 �
02g; t; b) �! (S2C[f

0
1 �
02g; S2 t; S2 b)

where (according to the side conditions for (shrink) and (boost)) it holds

that
 =2 RHS(C) and that t, b and each element in LHS(C) is monotonic as

well as anti-monotonic in
. By Fact 4.18 and using that C is well-formed

we infer that
 =2 FV(C; t; b), thus the right hand sides of the above two

transitions are identical.

1 =
02. By the side condition for (shrink) we then have
2 =
01. The

situation thus is

A ` (C
�
[f
2 �
1g; t; b) �! (S1C; S1 t; S1 b)

A ` (C
�
[f
2 �
1g; t; b) �! (S2C; S2 t; S2 b)

where the right hand sides are equal modulo renaming.

2 =
01. By the side condition for (boost) we then have
1 =
02 so we can

proceed as in the previous case.

1 =2 f
2;

0
2;

0
1g and
2 =2 f
1;

0
1;

0
2g will hold in the remaining case. The

situation thus is

A ` (C
�
[f
01 �
1g

�
[f
2 �
02g; t; b) �!

(S1C [f
2 �
02g; S1 t; S1 b)

A ` (C
�
[f
01 �
1g

�
[f
2 �
02g; t; b) �!

(S2C [f

0
1 �
1g; S2 t; S2 b)

where
1 =2 FV(RHS(C); A), where t and b and each element in LHS(C) is

monotonic in
1, where
2 =2 FV(A), and where t and b and each element in

LHS(C) is anti-monotonic in
2.

As
1 6=
02 it is easy to see (using Lemma C.1) that
1 =2 FV(RHS(S2C); A)

and that S2 t, S2 b and LHS(S2 C) is monotonic in
1; and as
2 6=
01 it is easy

to see (using Lemma C.1) that S1 t, S1 b and LHS(S1C) is anti-monotonic

in
2. Hence the �[� on the right hand sides is really �
�
[�, and we can apply

(boost) and (shrink) to get

A ` (S1C
�
[f
2 �
02g; S1 t; S1 b) �! (S2 S1C; S2 S1 t; S2 S1 b)

A ` (S2C
�
[f
01 �
1g; S2 t; S2 b) �! (S1 S2C; S1 S2 t; S1 S2 b)

165

which is as desired since clearly S2 S1 = S1 S2. 2

Algorithm W

Lemma 4.30 Let C be atomic; then

C;A `n e : t& b implies C;A `n e : GEN(A; b)(C; t)& b.

Proof Write

f~
g = (Clos(FV(t); C)) n (FV(A; b)
C#
)

C0 = C j f~
g = f(g1 � g2) 2 C j FV(g1; g2) \ f~
g 6= ;g

so that GEN(A; b)(C; t) = 8(~
 : C0): t; this is well-formed by Fact 4.4.

Next let R be a renaming of f~
g into fresh variables. It is immediate that

8(~
 : C0): t is solvable from (C nC0)[RC0 by some S0; simply take S0 = R.

Finally note that f~
g \ FV((C n C0) [RC0) = ; by construction of C0 and

R, and that f~
g \ FV (A; b) = ; by construction of f~
g.

We then have (using Lemma 2.19 on the assumption) that

((C n C0) [RC0) [C0; A `n e : t& b

and (gen) gives

(CnC0) [RC0; A `n e : 8(~
 : C0): t& b

and �nally Lemma 2.18 gives the desired result:

(CnC0) [C0; A `n e : 8(~
 : C0): t& b.

This completes the proof. 2

166

Theorem 4.31 If W(A; e) = (S; t; b; C) with A well-formed and e 2 EExp,

then C; S A `n e : t& b.

Proof We proceed by structural induction on e; we �rst prove the result for

W 0 (using the notation introduced in Fig. 4.1) and then in a joint �nal case

extend the result to W. Notice that by Lemma 4.29, the side condition for

applying the induction hypothesis will always be ful�lled.

The case e ::= c (the case e ::= x is similar). If A(c) is a type t then

the claim is that

;; A `n c : t& "

but this follows by (con).

Otherwise write A(c) = 8(~�~�~� : C0): t0. The claim is that

RC0; A `n c : R t0 & "

where R maps ~�~�~� into fresh variables ~�0~� 0~�0. But this follows from the

inference

RC0; A ` c : 8(~�~�~� : C0): t0 & " (con)

RC0; A `n c : R t0 & " (ins)

where the application of (ins) is justi�ed since RC0 ` RC0.

The case e ::= fn x)e0. The induction hypothesis gives

C0; S0 (A[x : �]) `n e0 : t0 & b0

and using C = C0 [fb0 � �g and S = S0 we get

C; S (A[x : �]) `n e0 : t0 & b0

C; (S A)[x : S �] `n e0 : t0 & �

C; S A `n fn x)e0 : S � !� t0 & "

using �rst Lemma 2.19, then (sub) and �nally (abs).

167

The case e ::= e1 e2. Concerning e1 the induction hypothesis gives

C1; S1A `n e1 : t1 & b1.

Using Lemmas 2.18 and 2.19 and then (sub) we get

S2C1; S2 S1A `n e1 : S2 t1 &S2 b1

C; S A `n e1 : S2 t1 &S2 b1

C; S A `n e1 : t2 !
� �&S2 b1.

Turning to e2 the induction hypothesis gives

C2; S2 S1A `n e2 : t2 & b2

and using Lemma 2.19 we get

C; S A `n e2 : t2 & b2.

Using (app) we get

C; S A `n e1 e2 : �&S2 b1; b2; �

which is the desired result.

The case e ::= e0 @
s
n < e1; � � � ; en >. Concerning e0 the induction

hypothesis gives

C0; S0A `n e0 : t0 & b0.

Using Lemmas 2.18 and 2.19 and then (sub) we get

Sn � � �S1C0; S A `n e0 : Sn � � �S1 t0 &Sn � � �S1 b0

C; S A `n e0 : Sn � � �S1 t0 &Sn � � �S1 b0

C; S A `n e0 : Sn � � �S2 t1 ! � � � tn ! �&Sn � � �S1 b0.

For i 2 f1 � � �ng the induction hypothesis gives

168

Ci; Si � � �S1 S0A `n ei : ti& bi

and using Lemmas 2.18 and 2.19 we get

C; S A `n ei : Sn � � �Si+1 ti&Sn � � �Si+1 bi.

Using (sapp) we get

C; S A `n e0<e1; � � � ; en> : �&Sn � � �S1 b0; � � �;Sn � � �Si+1 bi; � � �

which is the desired result.

The case e ::= let x = e1 in e2. Concerning e1 the induction hypothesis

gives

C1; S1A `n e1 : t1 & b1

and note that by Lemma 4.29 it holds that C1 is atomic. Next let ts1 =
GEN(S1A; b1)(C1; t1) so that Lemmas 4.30, 2.18 and 2.19 give

C1; S1A `n e1 : ts1 & b1

S2C1; S A `n e1 : S2 ts1 &S2 b1

C; S A `n e1 : S2 ts1 &S2 b1.

Turning to e2 the induction hypothesis gives

C2; (S2 S1A)[x : S2 ts1] `n e2 : t2 & b2

and using Lemma 2.19 we get

C; (S A)[x : S2 ts1] `n e2 : t2 & b2

and hence using (let)

C; S A `n let x = e1 in e2 : t2 &S2 b1; b2

and this is the desired result.

169

The case e ::= rec f x)e0. Concerning e0 the induction hypothesis gives

C0; (S0A)[f : S0 �1 !
S0 � S0 �2][x : S0 �1] `n e0 : t0 & b0.

Using Lemma 2.19, (sub), (abs) and (rec) we then get

C; (S A)[f : S �1 !
S � S �2][x : S �1] `n e0 : t0 & b0

C; (S A)[f : S �1 !
S � S �2][x : S �1] `n e0 : S �2 &S �

C; (S A)[f : S �1 !
S � S �2] `n fn x)e0 : S �1 !

S � S �2 & "

C; S A `n rec f x)e0 : S �1 !
S � S �2 & "

which is the desired result.

The case e ::= if e0 then e1 else e2. The induction hypothesis, Lemmas

2.18 and 2.19 and rule (sub) give:

C; S A `n e0 : bool&S2 S1 b0

C; S A `n e1 : �&S2 b1

C; S A `n e2 : �& b2

and rule (if) then gives

C; S A `n if e0 then e1 else e2 : �&S2 S1 b0; (S2 b1 + b2)

which is the desired result.

Lifting the result from W 0 to W. We have from the above and Lemma

4.29 that W 0(A; e) = (S1; t1; b1; C1) with C1 well-formed and that

C1; S1A `n e : t1 & b1.

Concerning F we have

(S2; C2) = F(C1)

170

where Lemma 4.10 and Lemma 4.11 ensure that C2 is atomic and that C2 `

S2C1. Using Lemmas 2.18 and 2.19 we get

C2; S2 S1A `n e : S2 t1 &S2 b1.

Concerning R we have

(C3; t3; b3) = R(C2; S2 t1; S2 b1; S2 S1A)

so by Lemma 4.25 we get

C3; S2 S1A `n e : t3 & b3

which is the desired result. 2

171

Appendix D

Proofs of Results Concerning

Completeness

Lazy instance

Lemma 5.4

(a) �C is re�exive and transitive.

(b) If �1 �C �2 and S is a substitution then S �1 �S C S �2.

(c) If �1 �C �2 and C 0 ` C then �1 �C0 �2.

Proof Concerning (a) re�exivity of �C is immediate. For transitivity assume

that ts1 �C ts2 and that ts2 �C ts3; then C 0 ` C and t0 <C0 ts1 gives �rst

t0 <C0 ts2 and secondly t0 <C0 ts3; this shows that ts1 �C ts3. The entailment

property (c) is an immediate consequence of Lemma 2.19 (a), thanks to our

�Kripke-semantics�. This leaves us with the substitution property (b).

We can, without loss of generality, assume that �i = 8(~�i
~�i~�i : Ci): ti and that

~�i
~�i~�i does not occur otherwise (i = 1; 2). Then S �i = 8(~�i

~�i~�i : S Ci): S ti.

Consider t <C0 S �1 where C
0 ` S C and we will prove t <C0 S �2. Thus we

have

C 0 ` S1 S C1 (1)

172

C 0 ` S1 S t1 � t (2)

for some S1 with Dom(S1) � f ~�1
~�1 ~�1g. Clearly t1 <C[C1 �1 so using �1 �C

�2 we get (again thanks to our �Kripke-semantics�) t1 <C[C1 �2. This means

that

C [C1 ` S0C2 (3)

C [C1 ` S0 t2 � t1 (4)

for some S0 with Dom(S0) � f ~�2
~�2 ~�2g. Since f ~�1

~�1 ~�1g does not occur in

C nor in Dom(S) [Ran(S) we have S1 S C = S C so from C 0 ` S C we get

C 0 ` S1 S C. Using (1) we therefore have C 0 ` S1 S (C [C1) and Lemmas

2.19 and 2.18 applied to (3) and (4) give

C 0 ` S1 S S0C2 (5)

C 0 ` S1 S S0 t2 � S1 S t1.

Using (2) the latter yields

C 0 ` S1 S S0 t2 � t. (6)

Now de�ne S2 = [~�2
~�2 ~�2 7! S1 S S0(~�2

~�2 ~�2)]. Below we show that

S2 S
 = S1 S S0
 for
 2 FV (t2; C2) (7)

so (5) and (6) can be rewritten as

C 0 ` S2 S C2

C 0 ` S2 S t2 � t

showing that t <C0 S �2.

To prove (7) assume �rst that
 2 FV(t2; C2) \ f ~�2
~�2 ~�2g. Then

S2 S
 = S2
 since
 =2 Dom(S)

= S1 S S0
 by de�nition of S2

173

Next assume
 2 FV(t2; C2) n f ~�2
~�2 ~�2g. Then

S2 S
 = S
 since Dom(S2) \ FV (S
) = ;

= S1 S
 since Dom(S1) \ FV (S
) = ; as
 =2 f ~�1
~�1 ~�1g

= S1 S S0
 since
 =2 Dom(S0)

This completes the proof. 2

Lemma 5.7

(a) �Id is re�exive and transitive.

(b) If jdg1 �
Id jdg2 and S is a substitution then S jdg1 �

Id S jdg2.

(c) If C1; A1 j e : �1 & b1 �
Id jdg2 and C0 ` C1 then

C0; A1 j e : �1 & b1 �
Id jdg2.

Proof Concerning (a), re�exivity of �Id is immediate. For transitivity as-

sume that jdg1 �
Id jdg2 and that jdg2 �

Id jdg3 and that jdgi = Ci; Ai j e :
�i&bi; then C1 ` C2 and C2 ` C3 give C1 ` C3, A2 �C1 A1 and A3 �C2 A2

give A3 �C1 A1 (by Lemma 5.4), �1 �C1 �2 and �2 �C2 �3 give �1 �C1 �3
(by Lemma 5.4), and C1 ` b2 � b1 and C2 ` b3 � b2 give C1 ` b3 � b1; this

shows that jdg1 �
Id jdg3.

For the substitution property (b) assume that

C1; A1 j e : �1 & b1 �
Id C2; A2 j e : �2 & b2

and show

S C1; S A1 j e : S �1 & S b1 �
Id S C2; S A2 j e : S �2 & S b2.

Now note that by Lemmas 2.18 and 5.4 we have

C1 ` C2 implies S C1 ` S C2

A2 �C1 A1 implies S A2 �S C1 S A1

�1 �C1 �2 implies S �1 �S C1 S �2

C1 ` b2 � b1 implies S C1 ` S b2 � S b1.

174

For the entailment property (c) assume that

C1; A1 j e : �1 & b1 �
Id C2; A2 j e : �2 & b2 and C0 ` C1

and show

C0; A1 j e : �1 & b1 �
Id C2; A2 j e : �2 & b2.

Now note that by Lemma 2.19 and Lemma 5.4 we have

C1 ` C2 implies C0 ` C2

A2 �C1 A1 implies A2 �C0 A1

�1 �C1 �2 implies �1 �C0 �2

C1 ` b2 � b1 implies C0 ` b2 � b1.

This completes the proof. 2

Lemma 5.8 If C�; A� j e : t�& b� �S C;A j e : t& b then

C�; A� j e : t�& b� �S C;A j e : GEN(A; b)(C; t)& b.

Proof Assume the hypothesis; then we have

C� ` S C

C� ` S t � t�

and by Fact 5.3 it su�ces to prove

t� <C� S (GEN(A; b)(C; t)).

For this write

GEN(A; b)(C; t) = 8(G : C jG): t

and note that since S R (C jG) = S (RC j (RG)) = (S RC) j (RG) we have

S (GEN(A; b)(C; t)) = 8(RG : (S RC) j (RG)): S R t

175

for a renaming R that maps G into fresh variables. Next de�ne S 0 by

S 0
 =

(
S (R�1
) if
 2 RG

 otherwise

and note that S 0 S R = S on FV(t; C). Therefore we have the desired judge-

ments

C� ` S 0 ((S RC) j (RG))

C� ` S 0 (S R t) � t�.

This completes the proof. 2

Algorithm F

First a fact which in e�ect says that we do not have in�nite types:

Fact D.1 If t � sh[� � � t � � �; ~� ; ~�] then sh is [].

Proof There exists unique decompositions such that t = sh1[~�1 ; ~�1 ; ~�1] and

sh[� � � t � � �; ~� ; ~�] = sh2[~�2 ; ~�2 ; ~�2] and by de�nition of t � sh[� � � t � � �; ~� ; ~�]

we have sh1 = sh2. Clearly sh2 must be of the form sh[� � � sh1 � � �] and (say

by counting symbols) sh1 = sh2 is only possible if sh is []. 2

Lemma D.2 If R is a matching substitution for the well-formed constraint

set C, �0 � �00 implies R�0 � R�00, and (S;C;�) �! (S 0; C 0;�0); then there

exists R0 and T such that S 0 = T S, R
NF

R0 T , R0 is a matching substitution

for C 0, and �0 �0 �00 implies R0 �0 � R0 �00 (where NF is the complement of

the set F of fresh variables generated).

If C� ` RC with C� atomic, then (by Fact 5.11)R is a matching substitution

for C, and the substitution R0 mentioned above can be chosen such that

C� ` R0C 0.

Proof We perform case analysis on Figure 4.3.

176

The case (dc). Here S 0 = S and �0=� and F = ;; we choose T = Id and

R0 = R. Our task is to show that R is a matching substitution for C 0 and

that C� ` RC implies C� ` RC 0. But the former follows from the remark

after Fact 5.10; and the latter is trivial using the rules labelled (bw).

The cases (mr) and (ml) are rather similar and we only consider (ml) in

detail. HereM(�; t;�; T;�0) holds and C 0 = T C. Considering the de�nition

of M in Figure 4.4, our assumptions ensure that R�i � R� (for all i 2

f1 � � �ng) and R� � R t. Since R t = sh[R ~�0 ; R ~�0 ; R ~�0] this gives

R�i � sh[R ~�0 ; R ~�0 ; R ~�0] (for all i 2 f1 � � �ng).

It is then easy to see that we can �nd ~ti and ~� 0i and ~�0i such that R�i =

sh[~ti ; ~�
0
i ;
~�0i] (for all i 2 f1 � � �ng). We now de�ne R0 by

R0
 =

8>>><
>>>:
tij if
 = �ij (i > 0)
� 0ik if
 = �ik (i > 0)

�0il if
 = �il (i > 0)
R
 otherwise

and it follows that R0 T
NF

R since F = f�ij; �ik; �il j i; j; k; l > 0g.

Since RC = R0 T C = R0C 0 the remaining claims follow, except to show

that �0 �0 �00 implies R0 �0 � R0 �00. Since � is an equivalence relation

it su�ces to consider the two base cases in the construction of �0. One

is when �0 � �00 and f�0; �00g \ f�1; � � � ; �ng = ;; here R�0 � R�00 so

R0 �0 = R0 T �0 = R�0 � R�00 = R0 T �00 = R0 �00. The other is when

�0j �
0 �ij (for i > 0). We have

sh[R0 ~�0 ; R
0 ~�0 ; R

0 ~�0] = sh[R ~�0 ; R ~�0 ; R ~�0]

� R�i = sh[~ti ; ~�
0
i ;
~�0i] = sh[R0 ~�i ; R

0 ~�i ; R
0 ~�i]

and from the remark after Fact 5.10 we conclude R0 �0j � R0 �ij (for i > 0).

This completes the proof of Lemma D.2. 2

Lemma D.3 Suppose R is a matching substitution for the well-formed con-

straint set C, �0 � �00 implies R�0 � R�00, and that (S;C;�) 6�!. Then C

is atomic.

177

Proof Our task is to show that C cannot contain constraints of the form

t1 � t2, with t1 and t2 non-variables, and that C cannot contain constraints

of the form � � t or t � �, with t a non-variable.

For the former claim observe that R t1 � R t2 forces t1 and t2 to have the

same top-level type constructor and this contradicts our assumption that

(S;C;�) 6�!.

For the latter claim it su�ces to demonstrate that if R� � R t with t

a non-variable type then the �call� M(�; t;�) succeeds, that is there ex-

ists R0 and �0 such that M(�; t;�; R0;�0) holds. Let sh[~� ; ~� ; ~�] be the

unique decomposition of t. Assume for the sake of arriving at a contra-

diction that �0 is such that �0 � � and �0 2 FV(t) (i.e. �0 2 ~�); then

R�0 � R� � R t = sh[R ~� ;R ~� ;R ~�] = sh[� � �R�0 � � �; R ~� ;R ~�] so by Fact

D.1 we infer sh = [] and hence t is a variable, yielding the desired contradic-

tion. 2

Lemma 5.12 Suppose that C is well-formed and that R is a matching

substitution for C. Then F(C) will always succeed, and whenever F(C) =
(S 0; C 0) there exists R0 such that R0 is a matching substitution for C 0 and

R
NF(C)

R0 S 0, where NF(C) is the complement of the set F(C) of fresh vari-

ables generated in the call F(C).

If C is well-formed and C� ` RC with C� atomic, then (by Fact 5.11) R

is a matching substitution for C, and whenever F(C) succeeds with result

(S 0; C 0) the substitution R0 mentioned in the �rst part of the lemma can be

chosen such that C� ` R0C 0.

Proof We know by Lemma 4.10 that F will terminate. It will be su�cient

to prove that for all sequences

(Id; C;EqC) = (S0; C0;�0) �!
� (Si; Ci;�i)

(where by Fact 4.9 each Ci is well-formed) there exists Ri such that

Ri is a matching substitution for Ci, �
0 �i �

00 implies Ri �
0 � Ri �

00,

R
NFi

Ri Si, and C� ` RC implies C� ` RiCi

(where NFi is the complement of the set Fi of fresh variables generated in

the �rst i steps) for then Lemma D.3 will ensure that if (Si; Ci;�i) 6�! then

178

Ci is atomic and hence F will succeed.

The claim above will be proved by induction in i, where the base case is

immediate when we take R0 = R.

For the inductive step we simply make use of Lemma D.2 and construct Ri+1

as the R0 guaranteed by that lemma; in particular notice that if
 =2 Fi+1

then
 =2 Fi and neither
 nor Si
 are fresh in the induction step, so

Ri+1 Si+1
 = Ri+1 T Si
 = Ri Si
 = R
. 2

Completeness of Algorithm W

Theorem 5.18

If C�; A� `atn e : ��& b� and

C� is atomic and

A� �C� S 00A with A well-formed

then there exists S, t, b, C, and S 0 such that

W(A; e) = (S; t; b; C)

S 00

NF(A; e)
S 0 S

C�; S 00A j e : ��& b� �S0 C; S A j e : GEN(S A; b)(C; t)& b

Proof We assume that

C�; A� `atn e : ��& b� (8)

C� is atomic (9)

A� �C� S 00A with A well-formed (10)

(in particular, A�(x)/A�(c) is a type scheme i� A(x)/A(c) is a type scheme)

and proceed by induction on the structure of the normalised proof tree of (8),

cf. De�nition 2.22. In all cases we must �nd S, t, b, C and S 0 such that

W(A; e) = (S; t; b; C) (11)

S 00

NF(A; e)
S 0 S (12)

C�; S 00A j e : ��& b� �S0 C; S A j e : GEN(S A; b)(C; t)& b. (13)

179

In the case of a T-normalised proof tree (where �� is a type) we �rst prove

that there exist S, t, b, C, S 0 such that

W 0(A; e) = (S; t; b; C) (14)

S 00

NF
0(A; e)

S 0 S (15)

C�; S 00A j e : ��& b� �S0 C; S A j e : t& b (16)

(where NF0(A; e) is the complement of the set of freshly generated variables

during the callW 0(A; e)) and then in a common �nal case we lift the reasoning

and �nd (another) S, t, b, C, S 0 such that (11), (12) and (16) holds (this shall

frequently be used in the inductive proof). By Lemma 5.8 we immediately

get (13) from (16) since �� is a type.

In the case of a TS-normalised proof tree (where �� is a type scheme) we

directly prove (11), (12), and (13).

The case (id). (The case (con) is similar.) The proof tree of (8) must have

the form

C�; A� ` x : t�& "
(id)

where t� = A�(x). Now let

S = Id; t = A(x); b = "; C = ;; S 0 = S 00

which establishes (14) as well as (15). The claim (16) amounts to

C�; S 00A j e : A�(x)& " �S00 ;; A j e : A(x)& "

which is a consequence of (10).

The case (id)(ins). (The case (con)(ins) is similar.) The proof tree of (8)

must have the form

C�; A� ` x : 8(G�
0 : C

�
0): t

�
0 & "

(id)

C�; A� ` x : S�
0 t

�
0 & "

(ins)

180

where A�(x) = 8(G�
0 : C�

0): t
�
0, Dom(S�

0) � G�
0, and C� ` S�

0 C
�
0 . Next

let A(x) = 8(G0 : C0): t0, let R be the renaming of G0 performed by the

algorithm (in INST), and let R0 be a renaming of G0 into variables not in

Dom(S 00) [Ran(S 00) [FV(t0; C0). Now set

S = Id; t = R t0; b = "; C = RC0

and note that this establishes (14). From (10) we have 8(G�
0 : C�

0): t
�
0 �C�

S 00 (8(G0 : C0): t0) and since S�
0 t

�
0 <C� 8(G�

0 : C�
0): t

�
0 is ensured by our

assumptions we have

S�
0 t

�
0 <C� S 00 (8(G0 : C0): t0) = 8(R

0G0 : S
00R0C0): S

00R0 t0.

Hence there exists S 0
0 with Dom(S 0

0) � R0G0 such that

C� ` S 0
0 S

00R0C0

C� ` S 0
0 S

00R0 t0 � S�
0 t

�
0.

Now de�ne S 0 by

S 0
 =

(
S 0
0R

0
0 if
 = R
0 with
0 2 G0

S 00
 otherwise

and note that this establishes (15). Next note that

S 0R = S 0
0 S

00R0 on FV(t0; C0)

so that we already have

C� ` S 0C

C� ` S 0 t � S�
0 t

�
0

and by Fact 5.3 this then establishes (16).

The case (abs). The proof tree in (8) must have the form

181

...

C�; A�[x : t�1] `
at
n e0 : t�0 & ��

C�; A� `atn fn x)e0 : t�1 !
�� t�0 & "

(abs)

With � the fresh variable chosen by the algorithm and with S 00
� = S 00[� 7! t�1]

we have from (10) that

A�[x : t�1] �C� S 00
� (A[x : �]).

This enables us to apply the induction hypothesis which (since (11), (12),

(16) holds) gives us S0, t0, b0, C0 and S 0
0 such that

W(A[x : �]; e0) = (S0; t0; b0; C0)

S 00
� NF(A[x : �]; e0)

S 0
0 S0

C�; S 00
� (A[x : �]) j e0 : t�0 & �� �S0

0

C0; (S0A)[x : S0 �] j e0 : t0 & b0. (17)

To establish (14) we now set

S = S0; t = S0 � !
� t0; b = "; C = C0 [fb0 � �g

for � the fresh variable chosen by the algorithm. Setting

S 0 = S 0
0[� 7! ��]

establishes (15) since for
 2 NF0(A; fn x)e0) we have S 0 S
 = S 0
0 S0
 =

S 00
�
 = S 00
; in addition it holds that S 0 S � = S 0

0 S0 � = S 00
� � = t�1. Our �nal

task is to establish (16), i.e. to ensure that

C�; S 00A j e : t�1 !
�� t�0 & " �S0 C; S A j e : t& "

but using the previous results, in particular (17), this follows from the fol-

lowing observations:

182

C� ` S 0
0C0 = S 0C0

C� ` S 0 b0 = S 0
0 b0 � �� = S 0 �

C� ` S 0 t = t�1 !
�� S 0

0 t0 � t�1 !
�� t�0.

The case (app). The proof tree in (8) must have the form

...
...

C�; A� `atn e1 : t�2 !
�� t�& b�1 C�; A� `atn e2 : t�2 & b�2

C�; A� `atn e1 e2 : t�& b�1; b
�
2; �

�
(app)

Since A� �C� S 00A the induction hypothesis gives S1; t1; b1; C1 and S 0
1 such

that

W(A; e1) = (S1; t1; b1; C1)

S 00

NF(A; e1)
S 0
1 S1

C�; S 00A j e1 : t�2 !
�� t�& b�1 �

S0
1 C1; S1A j e1 : t1 & b1. (18)

We thus have A� �C� S 0
1 S1A and as S1A is well-formed we can apply the

induction hypothesis once more to �nd S2; t2; b2; C2 and S 0
2 such that

W(S1 A; e2) = (S2; t2; b2; C2)

S 0
1
NF(S1 A; e2)

S 0
2 S2 (19)

C�; S 0
1 S1A j e2 : t�2 & b�2 �

S0
2 C2; S2 S1A j e2 : t2 & b2. (20)

Given (19) we may replace S 0
1 in (18) by S 0

2 S2 so that we have

C�; S 00A j e1 : t�2 !
�� t�& b�1 �

S0
2

S2C1; S2 S1A j e1 : S2 t1 &S2 b1. (21)

To establish (14) we now set

S = S2 S1; t = �; b = S2 b1; b2; �;

C = S2C1 [C2 [fS2 t1 � t2 !
� �g

183

for � and � the fresh variables chosen by the algorithm. Setting

S 0 = S 0
2[� 7! t�; � 7! ��]

establishes (15) since for
 in NF0(A; e1 e2) we have FV(S
)\f�; �g = ; and

FV(S1
) � NF(S1A; e2) and therefore S 0 S
 = S 0
2 S2 S1
 = S 0

1 S1
 = S 00
.

Our �nal task is to establish (16), i.e. to ensure that

C�; S 00A j e : t�& b�1; b
�
2; �

� �S0 C; S A j e : �&S2 b1; b2; �

but this is an immediate consequence of (20) and (21) where S 0
2 can be

replaced by S 0, in particular we employ that C� ` S 0 t2 � t�2 and hence

C� ` S 0 S2 t1 � t�2 !
�� t� � S 0 (t2 !

� �).

The case (sapp). Is quite similar to (app).

The case (rec). The normalised proof tree in (8) must have the form

...

C�; A�[f : t�][x : t�1] `
at
n e0 : t�2 & ��

C�; A�[f : t�] `atn fn x)e0 : t�1 !
�� t�2 & "

(abs)

C�; A�[f : t�] `atn fn x)e0 : t�& b�
(sub)�

C�; A� `atn rec f x)e0 : t�& b�
(rec)

where

C� ` t�1 !
�� t�2 � t� and C� ` " � b�. (22)

Next de�ne

S 00
0 = S 00[�1 7! t�1; �2 7! t�2][� 7! ��]

with �1, �2 and � the fresh variables chosen by the algorithm; then we from

(10) infer that

184

A�[f : t�][x : t�1] �C� S 00
0 (A[f : �1 !

� �2][x : �1])

and hence we can use the induction hypothesis to �nd S0; t0; b0; C0 and S 0
0

such that

W(A[f : �1 !
� �2][x : �1]; e0) = (S0; t0; b0; C0)

S 00
0 NF(A[f : � � �][x : �1]; e)

S 0
0 S0

C�; S 00
0 (A[f : �1 !

� �2][x : �1]) j e0 : t�2 & �� �S0
0

C0; S0 (A[f : �1 !
� �2][x : �1]) j e0 : t0 & b0. (23)

To establish (14) we now set

S = S0; t = S0 (�1 !
� �2); b = "; C = C0 [fb0 � S0 �; t0 � S0 �2g

and we clearly establish (15) by setting

S 0 = S 0
0.

Our �nal task is to establish (16), i.e. to ensure that

C�; S 00A j e : t�& b� �S0
0 C; S0A j e : S0 (�1 !

� �2)& "

but this follows from the following observations (where we use (23) and (22)):

C� ` S 0
0 b0 � �� = S 00

0 � = S 0
0 S0 �

C� ` S 0
0 t0 � t�2 = S 00

0 �2 = S 0
0 S0 �2

C� ` S 0
0 S0 (�1 !

� �2) = S 00
0 (�1 !

� �2) = t�1 !
�� t�2 � t�

C� ` S 0
0 " � b�.

The case (if). The immediate premises of the inference (8) must have the

form

C�; A� `atn e0 : bool& b�0

C�; A� `atn e1 : t�& b�1

C�; A� `atn e2 : t�& b�2.

185

Since A� �C� S 00A the induction hypothesis gives

W(A; e0) = (S0; t0; b0; C0)

S 00

NF(A; e0)
S 0
0 S0

C�; S 00A j e0 : bool& b�0 �
S0
0 C0; S0A j e0 : t0 & b0.

We thus have A� �C� S 0
0 S0A and as S0A is well-formed we can apply the

induction hypothesis once more giving

W(S0A; e1) = (S1; t1; b1; C1)

S 0
0
NF(S0 A; e1)

S 0
1 S1

C�; S 0
0 S0A j e1 : t�& b�1 �

S0
1 C1; S1 S0A j e1 : t1 & b1.

We thus have A� �C� S 0
1 S1 S0A and as S1 S0A is well-formed we can apply

the induction hypothesis once more giving

W(S1 S0A; e2) = (S2; t2; b2; C2)

S 0
1 NF(S1 S0 A; e2)

S 0
2 S2

C�; S 0
1 S1 S0A j e2 : t�& b�2 �

S0
2 C2; S2 S1 S0A j e2 : t2 & b2.

To establish (14) we set

S = S2 S1 S0; t = �; b = S2 S1 b0; (S2 b1 + b2)

C = S2 S1C0 [S2C1 [C2 [fS2 S1 t0 � bool; S2 t1 � �; t2 � �g

for � the fresh variable chosen by the algorithm. Setting

S 0 = S 0
2[� 7! t�]

establishes (15) since for
 2 NF0(A; if e0 then e1 else e2) we have S
0 S
 =

S 0
2 S2 S1 S0
 = S 0

1 S1 S0
 = S 0
0 S0
 = S 00
. By similar reasoning, the results

of applying the induction hypothesis enable us to derive

186

C�; S 00A j e0 : bool& b�0 �
S0 S2 S1C0; S A j e0 : S2 S1 t0 &S2 S1 b0

C�; S 00A j e1 : t�& b�1 �
S0 S2C1; S A j e1 : S2 t1 &S2 b1

C�; S 00A j e2 : t�& b�2 �
S0 C2; S A j e2 : t2 & b2

and employing that S 0 � = t� it is immediate to verify

C�; S 00A j e : t�& b�0; (b
�
1 + b�2) �

S0 C; S A j e : t& b

which establishes (16).

The case (sub). The proof in (8) must have the form

...

jdg� = C�; A� `atn e : t��& b��

jdg = C�; A� `atn e : t�& b�
(sub)

where C� ` t�� � t� and C� ` b�� � b�. From the induction hypothesis

we have S, t, b, C and S 0 such that (14), (15) and (16) holds for jdg�; that

is

W 0(A; e) = (S; t; b; C)

S 00

NF
0(A; e)

S 0 S

C�; S 00A j e : t��& b�� �S0 C; S A j e : t& b.

It immediately follows using Fact 5.3 that

C�; S 00A j e : t�& b� �S0 C; S A j e : t& b

and this establishes (14), (15) and (16) for jdg.

The case (let). The proof tree in (8) must have the form

...
...

C�; A� `atn e1 : ts�1 & b�1 C�; A�[x : ts�1] `
at
n e2 : t�2 & b�2

C�; A� `atn let x = e1 in e2 : t�2 & b�1; b
�
2

(let)

187

Since A� �C� S 00A the induction hypothesis gives S1, t1, b1, C1, S
0
1 such

that (11), (12) and (13) holds:

W(A; e1) = (S1; t1; b1; C1)

S 00

NF(A; e1)
S 0
1 S1

C�; S 00A j e1 : ts�1 & b�1 �
S0
1 C1; S1A j e1 : ts1 & b1

where ts1 = GEN(S1A; b1)(C1; t1).

In particular it follows that ts�1 �C� S 0
1 ts1; combined with A� �C� S 00A this

gives A�[x : ts�1] �C� S 0
1 ((S1A)[x : ts1]). As (S1A)[x : ts1] is well-formed

(by Lemma 4.29) we can apply the induction hypothesis to �nd S2, t2, b2,

C2, S
0
2 such that (11), (12) and (16) holds:

W((S1A)[x : ts1]; e2) = (S2; t2; b2; C2)

S 0
1
NF((S1 A)[x : ts1]; e2)

S 0
2 S2

C�; S 0
1 ((S1A)[x : ts1]) j e2 : t�2 & b�2 �

S0
2

C2; (S2 S1A)[x : S2 ts1] j e2 : t2 & b2.

To establish (14) as well as (15) we set

S = S2 S1; t = t2; b = S2 b1; b2; C = S2C1 [C2; S
0 = S 0

2.

Our �nal task is to establish (16), i.e. to ensure that

C�; S 00A j e : t�2 & b�1; b
�
2 �

S0
2 S2C1 [C2; S A j e : t2 &S2 b1; b2

but this follows from the previous results, employing that S 0
2 S2 equals S

0
1 on

FV(b1; C1).

Lifting from W 0 to W. As promised in the initial part of the proof we will

now show the following result: let A be well-formed and let C� be atomic

and let �� be a type; if there exists S, t, b, C, S 0 which satis�es (14), (15)

and (16), then there also exists (another) S, t, b, C, S 0 satisfying (11), (12)

and (16).

So we assume that we have S1; t1; b1; C1 and S 0
1 such that

188

W 0(A; e) = (S1; t1; b1; C1)

S 00

NF
0(A; e)

S 0
1 S1

C�; S 00A j e : ��& b� �S0
1 C1; S1A j e : t1 & b1

(where NF0(A; e) is the complement of the set of fresh variables generated

during the call W 0(A; e)); by Lemma 4.29 C1 is well-formed.

Concerning F it follows from Lemma 5.13 (with R = S 0
1) that there exists

C2, S2, and S 0
2 such that

F(C1) = (S2; C2)

S 0
1
NF(C1)

S 0
2 S2

C�; S 00A j e : ��& b� �S0
2 C2; S2 S1A j e : S2 t1 &S2 b1

where NF(C1) is the complement of the set of freshly generated variables in

the call F(C1). By Lemma 4.10, C2 is atomic.

Concerning R it follows from Lemma 5.17 (with R = S 0
2) that there exists

C3, t3, and b3 such that

R(C2; S2 t1; S2 b1; S2 S1A) = (C3; t3; b3)

C�; S 00A j e : ��& b� �S0
2 C3; S2 S1A j e : t3 & b3.

So by letting S = S2 S1, t = t3, b = b3, C = C3, and S 0 = S 0
2, we have

W(A; e) = (S; t; b; C)

S 00

NF(A; e)
S 0
2 S2 S1 = S 0 S

C�; S 00A j e : ��& b� �S0 C; S A j e : t& b

thus establishing (11), (12) and (16). Finally note (once more) that Lemma

5.8 allows us to deduce (13) from (16).

The case (gen). The proof tree in (8) must have the form

189

...

C� [C�
0 ; A

� `atn e : t�& b�

C�; A� `atn e : ��& b�
(gen)

where

�� = 8(G� : C�
0): t

�

8(G� : C�
0): t

� is well-formed and solvable from C�

so let Dom(S0) � G� such that C� ` S0C
�
0

G� \ FV(C�; A�; b�) = ;.

Phase 1: Let R be a renaming of G� into fresh variables (in particular ones

which are not used by the algorithm), the need for R arises since G� and

FV(S 00A) are not necessarily disjoint. Let R�1 be such that Dom(R�1) =
Ran(R) and such that R�1R
 =
 for
 =2 RG�. From (10) we have

A� �C� S 00A and as RA� = A� and RC� = C� we can apply Lemma 5.4 to

deduce

A� �C�[C�
0
RS 00A.

Moreover, (9) and (8) tell us that

C� [C�
0 is atomic

and therefore we can apply the induction hypothesis to �nd S; t; b; C and S 0

such that (11), (12) and (13) hold:

W(A; e) = (S; t; b; C)

RS 00

NF(A; e)
S 0 S

C� [C�
0 ; R S 00A j e : t�& b� �S0 C; S A j e : ts& b

where ts = GEN(S A; b)(C; t).

Our goal (to be accomplished in Phase 2 and 3) will be to show that

190

t� <C�[C�
0
S 0 ts (24)

implies

�� = 8(G� : C�
0): t

� �C�[C�
0
S 0 ts (25)

because then by Fact 5.3 we have

C� [C�
0 ; R S 00A j e : ��& b� �S0 C; S A j e : ts& b

so by using Lemma 5.7, with the substitution R�1 S0 and using C� ` S0 C
�
0 ,

we get1

C�; S 00A j e : ��& b� �R�1 S0 S
0

C; S A j e : ts& b.

We de�ne Sy by

Sy
 =

(

 if
 2 RG�

R�1 S0 S
0
 otherwise

and as the variables of RG� are not used by the algorithm we thus have

C�; S 00A j e : ��& b� �Sy C; S A j e : ts& b

showing that Sy can be used to establish (13) but we must also show that Sy

will establish (12), i.e. that

S 00
 = Sy S
 for
 2 NF(A; e).

But if
 belongs to RG� we have S 00
 =
 = Sy
 = Sy S
; and otherwise

we have S 00
 = R�1RS 00
 = R�1 S0RS 00
 = R�1 S0 S
0 S
 = Sy S
.

1Here we see the need for R, in the case G� \ FV(S00 A) 6= ;.

191

Phase 2: Returning to our proof obligation we assume (24) and must prove

(25). For this we write

ts = 8(G1 : C1): t

and let R1 be a renaming of G1 into fresh variables such that

S 0 ts = 8(R1G1 : S
0R1C1): S

0R1 t.

Now (24) gives S1 with

Dom(S1) � R1G1; C
� [C�

0 ` S1 S
0R1C1; C

� [C�
0 ` S1 S

0R1 t � t�.

We must show �� �C�[C�
0
S 0 ts, so consider t+ and C+ such that

C+ ` C� [C�
0 and t+ <C+ �� = 8(G� : C�

0): t
�

where the latter amounts to the existence of S+ such that

Dom(S+) � G�; C+ ` S+C�
0 ; C

+ ` S+ t� � t+.

We then have C+ ` S+ (C� [C�
0) (as G

� \ FV (C�) = ;) so by Lemma 2.18

and Lemma 2.19 we get

C+ ` S+ S1 S
0R1C1

C+ ` S+ S1 S
0R1 t � S+ t� � t+.

Our task is to show that t+ <C+ S 0 ts, and for that purpose we use a trick

and de�ne S+
1 by

S+
1
 =

8<
:

S+ S1
 if
 2 R1G1

 otherwise

and our goal (to be accomplished in Phase 3) will be to show2

2Notice that a larger G1 and a smaller G� makes it easier to show (26).

192

 2 FV(t; C1) nG1 implies FV(S 0
) \G� = ;. (26)

For then we for all
 2 FV(t; C1) nG1 have (as FV(S 0
) \ R1G1 = ;) that

S+
1 S 0R1
 = S+

1 S 0
 = S 0
 = S+ S 0
 = S+ S1 S
0
 = S+ S1 S

0R1
 and

together with the de�nition of S+
1 this yields

S+
1 S 0R1
 = S+ S1 S

0R1
 for
 2 FV(t; C1)

from which we arrive at

C+ ` S+
1 S 0R1C1

C+ ` S+
1 S 0R1 t � t+

which shows the desired relation t+ <C+ S 0 ts.

Phase 3: Returning to (26) we consider
 2 FV(t; C1) n G1 and
0 2

FV(S 0
); we must show
0 =2 G�. Recall that

G1 = Clos(FV(t); C) n FV(S A; b)C# and C1 = C jG1
.

As FV(t; C1) � Clos(FV(t); C) it must be the case that
 2 FV(S A; b)C#,

that is there exists
1 2 FV(S A; b) such that C `
 �
1. Corollary 2.31

tells us that there exists
01 2 FV(S
0
1) such that S 0C `
0 �
01.

In Phase 1 we saw that C�[C�
0 is atomic and hence well-formed and consistent

(by Fact 4.2), and that

C� [C�
0 ` S 0C and C� [C�

0 ` S 0 b � b�.

Therefore we by (repeated applications of) Lemma 2.32 deduce that

C� [C�
0 `
0 �
01

and moreover there exists
02 2 FV(RS 00A; b�) such that

C� [C�
0 `
01

�
02;

193

for if
01 2 FV(S
0 b) this follows from Lemma 2.29; and if
01 2 FV(S

0 S A) the

result follows (with
02 =
01) since we in Phase 1 saw that RS 00

NF(A; e)
S 0 S.

Lemma 2.33 (which can applied since G� \ FV(C�) = ;) tells us that

G�(C�[C�
0
)" = G�

and3 as G� \ FV(RS 00A; b�) = ; we infer that

02 =2 G
�(C�[C�

0
)"

from which we deduce that neither
01 nor
0 belongs to G�(C�[C�
0
)" and in

particular that
0 =2 G�. This concludes the proof of (26). 2

3Also here we see the need for R, in the case G� \ FV(S00 A) 6= ;.

194

Appendix E

Proofs of Results Concerning

Post-processing

Fact 6.6 The relations � and
�
� are re�exive, symmetric, and transitive.

Proof Re�exiveness amounts to I �� [
�
� with I the identity relation; by

Observation 6.5 this can be shown by establishing I � G(I [� [
�
�) but

this is straightforward.

Symmetry amounts to ��1�� and
�
�
�1
�

�
�; by Observation 6.5 this can be

shown by establishing

��1� G(� [��1 [
�
� [

�
�
�1
) and

�
�
�1
� G(� [��1 [

�
� [

�
�
�1
)

where the latter is trivial as
�
�
�1
� G(

�
�) can be read from Fig. 6.2.

For the former, suppose (b1; C1) �
�1 (b2; C2) holds; as (� [

�
�) is a �xed

point of G we then have

(b2; C2) G(�;
�
�) (b1; C1). (1)

First assume C1 ` b1 !
a1 b01, due to (1) there exists a2 and b02 such that

C2 ` b2 !
a2 b02 with (a1; C1)

�
�
�1

(a2; C2) and (b01; C1) �
�1 (b02; C2).

195

Next assume C2 ` b2 !
a2 b02, due to (1) there exists a1 and b01 such that

C1 ` b1 !
a1 b01 with (a1; C1)

�
�
�1

(a2; C2) and (b01; C1) �
�1 (b02; C2).

This demonstrates ��1� G(��1 [
�
�
�1
), as desired.

Transitivity amounts to (� � �) �� and (
�
� �

�
�) �

�
�; by Observation 6.5

this can be shown by establishing

� � �� G(� � � [
�
� �

�
�) and

�
� �

�
�� G(

�
�)

where the latter can be trivially read from Fig. 6.2.

For the former, suppose (b1; C1) � � � (b2; C2) holds because (b1; C1) �

(b3; C3) and (b3; C3) � (b2; C2); as (� [
�
�) is a �xed point of G we then have

(b1; C1) G(�;
�
�) (b3; C3) and (2)

(b3; C3) G(�;
�
�) (b2; C2). (3)

First assume C1 ` b1 !
a1 b01, due to (2) there exists a3 and b

0
3 such that C3 `

b3 !
a3 b03 with (a1; C1)

�
� (a3; C3) and (b01; C1) � (b03; C3), and due to (3) there

then exists a2 and b02 such that C2 ` b2 !
a2 b02 with (a3; C3)

�
� (a2; C2) and

(b03; C3) � (b02; C2), that is (a1; C1)
�
� �

�
� (a2; C2) and (b01; C1) � � � (b02; C2).

Next assume C2 ` b2 !
a2 b02, due to (3) there exists a3 and b

0
3 such that C3 `

b3 !
a3 b03 with (a3; C3)

�
� (a2; C2) and (b03; C3) � (b02; C2), and due to (2) there

then exists a1 and b01 such that C1 ` b1 !
a1 b01 with (a1; C1)

�
� (a3; C3) and

(b01; C1) � (b03; C3), that is (a1; C1)
�
� �

�
� (a2; C2) and (b01; C1) � � � (b02; C2).

This demonstrates � � �� G(� � � [
�
� �

�
�), as desired. 2

Lemma 6.9 Let C be a set of behaviour constraints, and let SF be a

homomorphism with the following properties:

1. if for some b01 and b2 it holds that (b
0
1 � SF (b2)) 2 SF (C), then there

exists b1 with SF (b1) = b01 such that C ` b1 � b2;

2. if for some � it holds that F (�) is not a variable, then

C ` F (�) � � and SF (F (�)) = F (�).

196

We then have the following implications:

1. if SF (C) ` b01 � SF (b2) there exists b1 with SF (b1) = b01 such that

C ` b1 � b2;

2. if SF (C) ` SF (b2) !
a0 b00 there exists a, b0 with SF (a) = a0 and

SF (b0) = b00 such that C ` b2 !
a b0.

Proof We �rst prove 1.

As SF (C) is consistent (Fact 5.11), Corollary 2.28 tells us that SF (C) `fw
b01 � SF (b2); we shall perform induction in this derivation (in the various

cases, b1 and b01 and b2 always retain their meaning from the lemma formu-

lation).

The case (axiom). Follows from Property 1.

The case (re�). As b1 we can choose b2.

The case (trans). Suppose SF (C) ` b01 � SF (b2) because SF (C) ` b01 �

b03 and SF (C) ` b03 � SF (b2). By applying the induction hypothesis on the

latter inference we �nd b3 with SF (b3) = b03 such that C ` b3 � b2; by

applying the induction hypothesis on the former inference we next �nd b1
with SF (b1) = b01 such that C ` b1 � b3; as then C ` b1 � b2 this yields

the claim.

The case (cong). Suppose SF (C) ` b01 = b011; b
0
12 � b021; b

0
22 = SF (b2)

because

SF (C) ` b011 � b021 and SF (C) ` b012 � b022. (4)

First assume that b2 takes the form b21; b22, then SF (b21) = b021 and SF (b22) =

b022; we can thus apply the induction hypothesis twice to �nd b11 and b12 with

SF (b11) = b011 and SF (b12) = b012 such that C ` b11 � b21 and C ` b12 �

b22. Now de�ne b1 = b11; b12 and it is easy to verify that SF (b1) = b01 and

C ` b1 � b2.

Next assume that b2 is not of the form ; , then it must be the case that

b2 is a variable and that F (b2) = b021; b
0
22. As Property 2 holds we have

C ` F (b2) � b2 and SF (b
0
21; b

0
22) = b021; b

0
22, implying SF (b

0
21) = b021 and

SF (b
0
22) = b022. We can thus apply the induction hypothesis twice on (4) to

197

�nd b11 and b12 with SF (b11) = b011 and SF (b12) = b012 such that C ` b11 � b021
and C ` b12 � b022. Now de�ne b1 = b11; b12 and it is easy to verify that

SF (b1) = b01; moreover we have

C ` b1 � b021; b
0
22 = F (b2) � b2

as desired.

The rules for + and SPAWN are treated in a similar way.

The case (seq-ass). This is really two rules (as b � b0 amounts to b � b0

and b0 � b), we shall consider only one of them as the other is similar. So

suppose b01 = b03; (b
0
4; b

0
5) and SF (b2) = (b03; b

0
4); b

0
5.

First assume that there exists b3, b4 and b5 such that b2 = (b3; b4); b5, then

SF (b3) = b03 and SF (b4) = b04 and SF (b5) = b05; this shows that we can use

b1 = b3; (b4; b5).

Next assume that there exists b6 and b5 such that b2 = b6; b5 but b6 is not

of the form ; , then we infer that F (b6) = b03; b
0
4 with b6 a variable and

that SF (b5) = b05. As Property 2 holds we have C ` b03; b
0
4 � b6 and

SF (F (b6)) = F (b6), implying SF (b
0
3) = b03 and SF (b

0
4) = b04. By de�ning b1 as

b03; (b
0
4; b5) we obtain the desired relations: SF (b1) = b01, and

C ` b1 � (b03; b
0
4); b5 � b6; b5 = b2.

Finally assume that b2 is not of the form ; , then we infer that F (b2) =

(b03; b
0
4); b

0
5 with b2 a variable. As Property 2 holds we have C ` F (b2) � b2,

together with SF (b
0
3) = b03 and SF (b

0
4) = b04 and SF (b

0
5) = b05. By de�ning b1

as b03; (b
0
4; b

0
5) we obtain the desired relations: SF (b1) = b01, and C ` b1 �

F (b2) � b2.

The case (seq-neut). It is enough to consider the rules for "; , as the rules

for ; " can be treated in an analogous way. For one direction ("; b � b),

suppose that b01 = ";SF (b2); then we can use b1 = "; b2 as SF (b1) = b01 and

C ` b1 � b2.

For the other direction (b � "; b), suppose that SF (b2) = "; b01.

First assume that there exists b1 such that b2 = "; b1. As desired we then

have SF (b1) = b01 and C ` b1 � b2.

198

Next assume that there exists b0 and b1 such that b2 = b0; b1 but b0 6= ", then

F (b0) = " with b0 a variable and SF (b1) = b01. As Property 2 holds we have

C ` " � b0, enabling us to show the desired

C ` b1 � "; b1 � b0; b1 = b2.

Finally assume that b2 is not of the form ; and hence a variable; as Property

2 holds we have C ` "; b01 � b2 and SF (b
0
1) = b01. By de�ning b1 = b01 we

therefore obtain the desired relations: SF (b1) = b01 and C ` b1 � "; b01 � b2.

The case (ub). Suppose SF (b2) = b01 + (the case where SF (b2) = + b01 is

similar).

First assume that there exists b1 such that b2 takes the form b1+ . As desired

we then have SF (b1) = b01 and C ` b1 � b2.

Next assume that b2 is not of the form + and hence a variable; as Property

2 holds we have C ` SF (b2) � b2 and SF (b
0
1) = b01. By de�ning b1 = b01 we

therefore obtain the desired relations: SF (b1) = b01 and C ` b1 � SF (b2) �
b2.

The case (lub). Suppose SF (C) ` b01 = b011 + b012 � SF (b2) because

SF (C) ` b011 � SF (b2) and SF (C) ` b012 � SF (b2). We can apply the induc-

tion hypothesis twice to �nd b11 and b12 with SF (b11) = b011 and SF (b12) = b012
such that C ` b11 � b2 and C ` b12 � b2. Now de�ne b1 = b11 + b12 and it

is easy to verify that SF (b1) = b01 and C ` b1 � b2.

This concludes the proof of 1. We next prove 2: suppose SF (C) `
SF (b2) !

a0 b00, that is SF (C) ` a0; b00 � SF (b2), then by 1 there exists b1
with SF (b1) = a0; b00 such that C ` b1 � b2.

First assume that b1 does not take the form ; and thus is a variable; as

Property 2 holds we have C ` a0; b00 � b1 and SF (a
0) = a0 and SF (b

0
0) = b00.

De�ne a = a0 and b0 = b00, then we have the desired relations SF (a) = a0 and

SF (b0) = b00 and C ` a; b0 � b1 � b2, that is C ` b2 !
a b0.

Next assume that b1 takes the form a; b0. As desired we then have SF (a) = a0

and SF (b0) = b00 and C ` a; b0 � b2.

Finally assume that b1 takes the form b; b0 with b not an action, as SF (b) = a0

we deduce that bmust be a variable. As Property 2 holds we have C ` a0 � b

and SF (a
0) = a0, so by letting a = a0 we obtain the desired relations SF (a) =

a0 and SF (b0) = b00 and C ` a; b0 � b; b0 � b2, that is C ` b2 !
a b0. 2

199

200

Appendix F

List of Symbols

Table F.1 Naming conventions.

Table F.2 Judgements.

Table F.3 Transitions and rewritings.

Table F.4 Relations.

Table F.5 Operations on constraints.

Table F.6 Miscellaneous.

201

letter(s) denotes

A environment

a action

� type variable

b behaviour

� behaviour variable

C constraint set

ca channel action

ch channel identi�er

E evaluation context

e expression in Exp or EExp

g type/behaviour/region

 type/behaviour/region variable

jdg typing judgement

p process identi�er

PB mapping from process identi�ers to behaviours

PP process pool

PT mapping from process identi�ers to types

R ML substitution or special kind of substitution, e.g.

matching substitution or �renaming� substitution

r region

� region variable

S substitution

� type or type scheme

sa semantic action

sh shape (of type)

t type

ts type scheme

u ML type

us ML type scheme

w weakly evaluated expression

Table F.1: Naming conventions.

202

judgement explanation

C ` t1 � t2 Figure 2.6

C ` b1 � b2 Figure 2.7

C ` r1 � r2 Figure 2.8

C `dc g1 � g2 De�nition 2.7

C `fw g1 � g2 C ` g1 � g2 via forward derivation

C ` g1 � g2 C ` g1 � g2 and C ` g2 � g1

C;A ` e : �& b Figure 2.5

C;A `n e : �& b De�nition 2.22

C�; A� `at e : ��& b� atomic inference

C;A j e : �& b typing judgement

C `
 � De�nition 2.8

A0 `ML e : u Figure 2.9

A0 `ML
n e : u As De�nition 2.22

Table F.2: Judgements.

203

transition explanation

e! e0 De�nition 3.5

e * e0 De�nition 3.5

PP
sa
�! PP 0 De�nition 3.11

C * C 0 Figure 4.2

(S;C;�) �! (S 0; C 0;�0) Figure 4.3

A ` (C; t; b) �! (C 0; t0; b0) Figure 4.5

C ` b!a b0 De�nition 6.4

Table F.3: Transitions and rewritings.

204

relation explanation

t1 � t2 De�nition 5.9

t <C ts De�nition 5.1

�1 �C �2 De�nition 5.2

jdg1 �
S jdg2 De�nition 5.5

S1 X
S2 8
 2 X : S1
 = S2

(b; C) � (b0; C 0) Figure 6.1

(a; C)
�
� (a0; C 0) Figure 6.2

u �R
� ts De�nition A.7

u � us De�nition A.8

us �=R
� ts De�nition A.9

u �=R
� t De�nition A.11

 �C
0 used in de�ning Clos(;)

Table F.4: Relations.

205

operation explanation

Cb behaviour constraints in C

Cr region constraints in C

Ct type constraints in C

C De�nition 2.7

XC# De�nition 2.9

XC" De�nition 2.9

C
�
[C 0 C [C 0 in case C \ C 0 = ;

C j f~�~�~�g f(g1 � g2) 2 C j FV(g1; g2) \ f~�~�~�g 6= ;g

Table F.5: Operations on constraints.

symbol explanation

R j= C 8(r1 � r2) 2 C : R(r1) � R(r2)

car the region part of the channel action ca

(
 (�
0) 2 C De�nition 4.12

E[e] �lling e into the hole in the evaluation context E

sh[~t ; ~� ; ~�] �lling ~t ,~� ,~� into the holes in the shape sh.

Table F.6: Miscellaneous.

206

Index

A(), 94

action, 118

con�guration, 118

Ammann, J, 9

Amtoft, T, 9, 10, 13, 112

anti-monotonic, 93, 94

arrow relation, 31

atomic

constraints, 78�80, 84, 91, 100,

126

inference, 105, 190

�-sequential, 44

backwards closure, 31, 47

base function, 15

non-sequential, see non-sequential

base function

sequential, see sequential base

function

behaviour, 10, 20

behaviour constraints, 12, 21

Birkedal, L, 9, 14, 21

bisimulation, 112, 115, 117�119

C�, 44

Cn, 15

Cn
c , 15

Cn
s , 15

call-by-value, 17, 24, 52

causality, 10, 21

channel

action, 115

allocation, 11, 16, 20, 30, 32,

51, 56, 69, 76, 77, 114, 127

environment, 50, 66, 76, 126

identi�er, 50

label, 17, 20

channell, 16, 20, 22, 114

ChanVar(), 93, 97, 107

Clos(;), 82
completeness, 13, 104, 110

conservative extension, see ML, con-

servative extension

consistent, 47, 48, 66, 76

constraint set, 10, 21, 78

constructor, 15, 41

non-sequential, see non-sequential

constructor

sequential, see sequential con-

structor

contravariant, 26, 73

covariant, 26, 75

cycles, 92, 93, 98, 117

�, 51

Damas, L, 8

decreasing (substitution), 94

delayed communication, 16, 20

depth, see occurs at E with depth

Dom(), 21

domain, 21

downwards closure, 12, 32

207

�(), 44, 135, 141

EExp, 17

e�ect, 8, 10

environment, 10, 22

EqC , 84

error con�guration, 50, 55, 66

essentially closed, 51

evaluation context, 52

exhausted, 53

Exp, 17

expression, 17

extended expression, 17

F , 15

F , 12, 78, 80, 84

Fc, 15

Fs, 15

F(), 105, 106

Felleisen, M, 10, 66, 77

forward derivation, 46, 47

Fuh, Y-C, 8, 12, 13, 78, 79, 82, 84,

87, 89, 91, 102, 104

G, 118

GEN, 82, 105

generalisation, 9, 11, 12, 30�34, 82

generic instance, 102

Gi�ord, D.K, 12

Henglein, F, 9, 14

hidden action, 118

homomorphism, 115

Id, 21

increasing (substitution), 94

INST, 82

intermediate expression, 136

Jones, M.P, 8, 9, 22, 24, 82, 105

Jouvelot, P, 8, 9, 12, 19, 21, 22, 24,

30, 40

judgement, 10, 22

Kripke-semantics, 102, 172, 173

Lhid, 112, 115, 126

Lab, 17

label, see channel label

lazy instance, 102, 104

Leroy, X, 8, 10

let-generalisation, see generalisa-

tion

LHS(), 93

M, 84, 88

M(), 94

m-order non-silent type, 136

masking e�ects, 8, 21, 40

matching, 78, 84, 87, 106

substitution, 106, 176

Milner, R, 8, 10�12, 15

Mishra, P, 8, 12, 13, 78, 79, 82, 84,

87, 89, 91, 102, 104

mismatch, 47

Mitchell, J.C, 8, 78, 79, 87

ML

conservative extension, 9, 44,

79

substitution, 44, 135

type, 44

type equations, 140

type scheme, 44

typing, 44�46, 101, 110�111

monotonic, 93, 94

Mossin, C, 9, 14

NF0(), 180

NF(), 105, 106

208

Nielson, F, 9�11, 13, 20�22, 24, 26,

112

Nielson, H.R, 9�11, 13, 20�22, 24,

26, 112

non-sequential

base function, 16

constructor, 16

non-silent type, 136

normalised, 42, 44

occur check, 84, 86�88

occurs at E with depth, 57

Panangaden, P, 15

partial application, 17

Plotkin, G.D, 10

post-processing, 13, 35, 112�129

process

con�guration, 115

identi�er, 56

pool, 10, 56

prototype implementation, 13, 130

R, 12, 78, 80, 91

variants of, 80, 98, 110

R, 112, 114, 115, 126

Ran(), 21

range, 21

recursive behaviour, 21, 35

region, 8, 20, 40

region constraints, 21

Reppy, J.H, 15, 16, 20

RHS(), 93, 97

Robinson, J.A, 11

SF , 115

S-instance, 104

semantic action, 56

semantic soundness, see soundness,

semantic

sequential

base function, 16, 40

constructor, 15

expression, 44

type, 44

type scheme, 44

shape

(of type), 87

of inference, 41

Siekmann, J.H, 12

silent

function application, 17, 24

function type, 20, 24

simple type, 21

Smith, G.S, 8, 9, 12, 13, 22, 24, 26,

29, 30, 78, 79, 82, 87, 91�

93, 102, 103, 105

solvable, 29, 43

soundness

semantic, 10, 65, 76, 126

syntactic, 12, 100

source program, 17

spawn action, 118

standard (environment), 22, 40, 66,

76, 126

sube�ecting, 8, 10, 19, 24, 39

subject reduction, 10, 11, 77

substitution, 11, 21

subtyping, 8�10, 24, 39

syntactic soundness, see soundness,

syntactic

T , 17

� , 112

T-normalised, see normalised

209

Talpin, J-P, 8, 9, 19, 21, 22, 24, 30,

40

Tang, Y-M, 9, 12

Tofte, M, 8�11, 14, 19, 21, 40, 67

top-level exhausted, 53

transitive reduction, 92

TS-normalised, see normalised

type, 10, 20

type constraints, 12, 21

type scheme, 22

typing judgement, 103

unfolding, 113, 116�117

uni�cation, 11, 82, 87

upwards closure, 9, 32

V, 94

W, 11, 78, 79

W 0, 78, 80

weakly evaluated expression, 51

Weis, P, 8, 10

well-formed

constraint set, 32, 48, 49, 76,

78

type scheme, 33, 49, 78

well-typed programs

communicate according to their

behaviour, 76, 113

do not go wrong, 10

Wright, A.K, 8�10, 12, 21, 39, 66,

77, 83

210

Bibliography

[1] Torben Amtoft and Flemming Nielson and Hanne Riis Nielson: Type

and behaviour reconstruction for higher-order concurrent programs.

Journal of Functional Programming, 7(3):321�347, May 1997.

[2] Torben Amtoft and Flemming Nielson and Hanne Riis Nielson and Jür-

gen Ammann: Polymorphic subtypes for e�ect analysis: the dynamic

semantics. In Analysis and Veri�cation of Multiple-Agent Languages,

pages 172�206, SLNCS 1192, 1997.

[3] Torben Amtoft and Hanne Riis Nielson and Flemming Nielson: Be-

haviour analysis for validating communication patterns. Technical

Report DAIMI PB-527, Dept. of Comp. Science, Aarhus University,

September 1997. Invited submission for Springer International Journal

on Software Tools for Technology Transfer.

[4] Luis Damas and Robin Milner: Principal type-schemes for functional

programs. In Proc. of POPL '82, ACM Press, 1982.

[5] You-Chin Fuh and Prateek Mishra: Polymorphic subtype inference:

Closing the theory-practice gap. In Proc. TAPSOFT '89, pages 167�

183, SLNCS 352, 1989.

[6] You-Chin Fuh and Prateek Mishra: Type inference with subtypes. The-

oretical Computer Science 73, pages 155�175, 1990.

[7] Fritz Henglein and Christian Mossin: Polymorphic binding-time analy-

sis. In Proc. ESOP '94, pages 287�301, SLNCS 788, 1994.

[8] Mark P. Jones: A theory of quali�ed types. In Proc. ESOP '92, pages

287�306, SLNCS 582, 1992.

211

[9] Pierre Jouvelot and David K. Gi�ord: Algebraic reconstruction of types

and e�ects. In Proc. POPL'91, pages 303�310. ACM Press, 1991.

[10] Xavier Leroy and Pierre Weis: Polymorphic type inference and assign-

ment. In Proc. POPL '91, pages 291�302. ACM Press, 1991.

[11] Robin Milner: A theory of type polymorphism in programming. Journal

of Computer and System Sciences, 17:348�375, 1978.

[12] John C. Mitchell: Type inference with simple subtypes. Journal of

Functional Programming, 1(3):245�285, 1991.

[13] Flemming Nielson (editor): ML with Concurrency: Design, Analysis,

Implementation and Application. Springer Monographs in Computer

Science, 1997.

[14] Flemming Nielson and Hanne Riis Nielson: Constraints for polymorphic

behaviours for Concurrent ML. In Proc. CCL'94, SLNCS 845, 1994.

[15] Hanne Riis Nielson and Torben Amtoft and Flemming Nielson: Be-

haviour analysis and safety conditions: a case study in CML. Ac-

cepted for presentation at Nordic Workshop on Programming Theory

(NWPT'97), Tallinn, Estonia, October 1997.

[16] Hanne Riis Nielson and Flemming Nielson: Automatic binding analysis

for a typed �-calculus. Science of Computer Programming, 10:139�176,

1988.

[17] Hanne Riis Nielson and Flemming Nielson: Higher-order concurrent

programs with �nite communication topology. In Proc. POPL'94, pages

84�97. ACM Press, 1994. Full version appears as [18].

[18] Hanne Riis Nielson and Flemming Nielson. Communication analysis for

Concurrent ML. In [13].

[19] Hanne Riis Nielson and Flemming Nielson and Torben Amtoft: Poly-

morphic subtypes for e�ect analysis: the static semantics. In Analysis

and Veri�cation of Multiple-Agent Languages, pages 141�171, SLNCS

1192, 1997.

[20] Prakash Panangaden and John H. Reppy: The essence of Concurrent

ML. In [13].

212

[21] Gordon D. Plotkin: A structural approach to operational semantics.

Report DAIMI FN-19, Aarhus University, Denmark, 1981.

[22] John H. Reppy: Concurrent ML: Design, application and semantics.

In Proc. Functional Programming, Concurrency, Simulation and Auto-

mated Reasoning, pages 165�198, SLNCS 693, 1993.

[23] J.A. Robinson: A machine-oriented logic based on the resolution prin-

ciple. Journal of the ACM, 12:23�41, 1965.

[24] Jörg H. Siekmann: Uni�cation theory. J. Symbolic Computation, 7:207�

274, 1989.

[25] Geo�rey S. Smith: Polymorphic type inference for languages with over-

loading and subtyping. Ph.D thesis from Cornell, 1991.

[26] Geo�rey S. Smith: Polymorphic type inference with overloading and

subtyping. In Proc. TAPSOFT '93, pages 671�685, SLNCS 668, 1993.

Also see: Principal type schemes for functional programs with over-

loading and subtyping: Science of Computer Programming 23, pages

197�226, 1994.

[27] Jean-Pierre Talpin and Pierre Jouvelot: Polymorphic type, region and

e�ect inference. Journal of Functional Programming, 2(3):245�271, 1992.

[28] Jean-Pierre Talpin and Pierre Jouvelot: The type and e�ect discipline.

Information and Computation, 111, 1994. (A preliminary version ap-

peared in Proc. LICS '92, pages 162�173.)

[29] Yan-Mei Tang: Control �ow analysis by e�ect systems and abstract

interpretation. PhD thesis, Ecoles des Mines de Paris, 1994.

[30] Mads Tofte: Type inference for polymorphic references. Information

and Computation, 89:1�34, 1990.

[31] Mads Tofte and Lars Birkedal: Region-annotated types and type

schemes, 1996. Submitted for publication.

[32] Andrew K. Wright: Typing references by e�ect inference. In Proc.

ESOP '92, pages 473�491, SLNCS 582, 1992.

213

[33] Andrew K. Wright and Matthias Felleisen: A syntactic approach to

type soundness. Information and Computation, 115, pages 38�94, 1994.

214

