Behaviour Analysis and Safety Conditions:
a Case Study in CML

Hanne Riis Nielson Torben Amtoft Flemming Nielson
Computer Science Department, Aarhus University, Denmark

E-mail: {hrn,tamtoft,fn}@Qdaimi.aau.dk

October 2, 1997

Abstract. We describe a case study where novel program analysis technology
has been used to pinpoint a subtle bug in a formally developed control pro-
gram for an embedded system. The main technology amounts to first defining
a process algebra (called behaviours) suited to the programming language used
(in our case CML) and secondly to devise an annotated type and effect system
for extracting behaviours from programs in a such a manner that an automatic
inference algorithm can be developed. The case study is a control program de-
veloped for the “Karlsruhe Production Cell” and our analysis of the behaviours
shows that one of the safety conditions fails to hold.

Keywords: embedded systems, formal program development, program analy-
sis.

1 Introduction

There are several approaches for how to close the gap between the specification of
a system and its actual realisation as a program in some programming language.
Different procedures for systematic design have been developed with the goal of
reducing the likelihood of introducing errors, and concise notations have been
introduced for documenting and reasoning about systems.

Unfortunately, a system may have been developed using formal methods but
still have bugs. Advanced proof techniques may have been used to show that
the specification fulfills certain safety and liveness properties, but there is al-
ways the risk that the formalisation does not fully correspond to the informal
description (or even a formal description in another framework) and that the
code written does not fully correspond to the specification. Clearly the risk of
such unfortunate scenarios gets smaller the more care is taken in the develop-

ment of the system but we believe that it is not feasible to completely eliminate
the risk. Indeed there always is the risk of human mistake (like using a previous
incorrect version of the system instead of the current correct version) and of
malicious behaviour (a subcontractor cutting corners to increase profit).

While formal methods clearly are very useful for increasing our confidence in
the system, it would seem that more is needed. In this paper we demonstrate
that technology from program analysis can be invaluable in spotting some of the
subtle bugs that may have survived the careful use of formal methods. Tradi-
tionally, program analysis has been used in optimizing compilers but due to their
ability to analyse programs automatically and systematically we claim that they
also have an important role to play in program validation. Although the kind
of properties of interest in program validation may differ from those of interest
in optimizing compilers, we demonstrate in this paper that recent developments
have paved the way for adapting program analysis to the new application do-
main.

Background. In [6, 7] we present an annotated type system for extracting
the communication topology of programs written in a subset of CML [8]. We
introduce a formalism of behaviours, a process algebra like CCS or CSP but
tailored to the characteristics of CML. The traditional type system for CML
is then extended such that it determines behaviours of expressions as well as
their types. Both CML and the behaviours are equipped with a small-step
operational semantics and a key theoretical result is a subject reduction result
ensuring that whenever the CML program engages in a communication, then
also the behaviour will be able to do so. This means that safety results obtained
by analysing the behaviour also apply to the original CML program.

In [1] we develop an algorithm for type and behaviour reconstruction. The
development is sufficiently general that (1) the behaviours contain causality in-
formation, (2) ML-like polymorphism is supported, and (3) the algorithm is
sound as well as complete with respect to the annotated type system. These
properties are crucial for the application described in the present paper. The
causality of the various operations is often an integral part of safety conditions
for systems; without causal behaviours one can only validate rather few proper-
ties of interest. Polymorphism is important when analysing generic programs;
without polymorphism (or perhaps polyvariance) one will need to merge infor-
mation from different function calls and this may make it impossible to validate
many interesting properties. The soundness result ensures that the behaviours
obtained by the algorithm are correct with respect to the semantics of the pro-
gram and the completeness result ensures that the behaviours are as precise as
is possible according to the annotated type system; it should be obvious that
these are crucial properties as well.

Having established the theoretical foundations [1] we have implemented a proto-
type for extracting behaviours from programs [2]. The present version is able to
deal with a fairly large subset of CML and provides the basis for the experiments

reported here.

Accomplishments. We study a CML program for the well-known “Produc-
tion Cell” [4] developed by FZI in Karlsruhe as a benchmark for the development
of verified software for embedded systems. The CML program used has been
developed using systematic design methods: its functionality has been specified
in CSP and many of its safety conditions have been formally verified [9]. Fur-
thermore, it has been combined with the FZI simulator to a working prototype
that has subsequently been tested.

None the less, our program analysis reveals that the program does not fulfill
all of its safety conditions. Our experiments show that the program makes
certain assumptions about the initial configuration of the system — a bug that
has escaped the formal verification. Furthermore, it turns out that the simulator
makes similar assumptions about the initial configuration so that this particular
bug will never turn up during testing. We should stress that we do not mean
to criticise neither the formal development nor the verification methods nor the
programmers. We merely see it as an illustration of a typical problem in the
development of complex software systems as was alluded to above.

We believe that the results of our case study presents convincing arguments for
also using novel program analysis techniques when validating safety conditions
of embedded systems. Although we have been able to validate many of the safety
conditions of interest, and to find one that does not hold, there is room for ex-
tending our techniques because some of the safety conditions require information
not presently included in the behaviours.

Overview. In Section 2 we give a brief introduction to the basic primitives of
CML and we present a fragment of the program used in the case study. Then
in Section 3 we introduce the behaviours and sketch some of the central rules
for how to obtain behaviours from a CML program. In Section 4 we examine
three of the safety conditions of the Production Cell and in Section 5 we discuss
some further enhancements of our techniques. Finally, Section 6 contains the
concluding remarks.

2 The case study

The Production Cell (Figure 1) is designed to process metal blanks in a press
[4]. The work pieces (metal blanks) enter the system on a feed belt (the bottom
one in Figure 1) and are then transfered one at a time to a rotating table; the
table is then lifted such that one of the two robot arms can take the work piece
and place it in the press. After processing the work piece, a robot arm will take
it out of the press and deliver it to a deposit belt (the top one in Figure 1).
For testing purposes a crane has been added to move the work pieces from the
deposit belt back to the feed belt.

PR Ie0W CILL Rk A T

——

(LR IS
BN TAHY TalLE

L

Figure 1: The Karlsruhe Production Cell.

We shall concentrate on just one of these entities, namely the rotating table.
The table can be in one of two vertical positions and it can be rotated clockwise
as well as counterclockwise. The following safety conditions have been supplied
for the table:

1: The table must not be moved downward if it is in its lower position, and
it must not be moved upward if it is in its upper position.

2: The table must not be rotated clockwise if it is in the position required
for transfering work pieces to the robot, and it must not be rotated coun-
terclockwise if it is in the position to receive work pieces from the feed
belt.

3: There can only be one work piece at the table at any time.

The program. CML [8] is an extension of the higher-order functional language
SML [5] with constructs for communication. Processes and channels can be
created dynamically using the constructs spawn and channel; the constructs
send and accept are available for synchroneous communication. Functions as
well as channels are first class values and so are events: an event is a potential
communication created by one of the constructs transmit and receive. There
is also an explicit synchronization operation sync so the construct send(ch,v)
is equivalent to sync(transmit(ch,v)) and similarly accept(ch) is equivalent
to sync(receive(ch)). Events can be manipulated using the construct wrap;
this corresponds to a kind of speculative post-processing of an event in that it

fun table () =
let
fun clockwise (a) =
let val x = accept(table_angle)
in (send(table_right,());
while (accept(new_table_angle); accept(table_angle)) < a
do O;
send (table_stop_h, (D))
end;

fun counterclockwise (a) =
let val x = accept(table_angle)
in (send(table_left,());
while (accept(new_table_angle); accept(table_angle)) > a
do O;
send(table_stop_h,()))
end;

fun main () =
(accept (beltl_transmit_ready); accept(beltl_transmit_done);
clockwise (50);
send (table_upward, ());
accept (table_is_top) ;
send (table_stop_v,());
send(table_transmit_ready, ()); send(table_transmit_done, ());
send (table_downward, ());
accept(table_is_bottom) ;
send (table_stop_v,());
counterclockwise(0);
main())
in
spawn(fn () => main())
end;

Figure 2: CML program for the table.

will only take effect if and when the event is synchronized. Finally, we shall
mention the construct choose which can be used to choose one of several events.

The CML program for the Production Cell consists of 7 processes. They com-
municate with the simulator using 63 channels and they communicate internally
using 16 channels. The part of the program controlling the movements of the
table is shown in Figure 2. It uses the following channels for communicating
with the simulator:

(* actuator channels *)
val table_left = channel(): unit chan;
val table_stop_h = channel(): unit chan;

val table_right = channel(): unit chan;
val table_upward = channel(): unit chan;
val table_stop_v = channel(): unit chan;
val table_downward = channel(): unit chan;

(* sensor channels *)

val table_is_bottom = channel(): unit chan;
val table_is_not_bottom = channel(): unit chan;
val table_is_top = channel(): unit chan;
val table_is_not_top = channel(): unit chan;
val table_angle = channel(): int chan;
val new_table_angle = channel(): unit chan;

Internally, the table synchronizes its movements with the feed belt and the robot
and for this it uses the following channels:

val beltl_transmit_ready = channel(): unit chan;
val beltl_transmit_done channel(): unit chan;

val table_transmit_ready = channel(): unit chan;
val table_transmit_done channel(): unit chan;

We shall not explain the program in detail here; some of the points will naturally
be dealt with when we come to discussing aspects of its behaviour.

3 Behaviours

The safety requirements imposed on the Production Cell are to a large extent
concerned with the order in which the communications are performed. This
is exactly the kind of information that is available in the behaviours. The be-
haviours are terms of a process calculus designed to match the structure of CML.
The basic behaviours are:

e ¢ is the behaviour of a program that does not create any channels or
processes and that is not involved in any communication;

e t CHAN r is the behaviour of a program that creates a channel that can
be used to communicate values of type t and where the channel belongs to
the region r (a region is an indication of where in the program the channel
has been created);

e FORK b is the behaviour for a program that spawns a new process that will
behave as described by the behaviour b;

e rlt is the behaviour of a program that sends a value of type ¢t on one of the
channels created in the region r; and

e 7t is the behaviour of a program that receives a value of type ¢ on one of
the channels created in the region r.

The basic behaviours can then be combined using sequencing (expressed by ‘;’)
and choice (expressed by ‘+’) and they can be recursively defined.

As an example consider the following behaviours:

B = {table_angle}?int;{table_right}!unit; B;;{table_stop_h}!unit
By = {new_table_angle}7unit;{table_angle}?int; (e + Bi)

The behaviour B expresses that first there will be a communication on the chan-
nel table_angle (obtaining the current angle of the table) and next there will
be a communication on the channel table right (starting a clockwise rota-
tion of the table). Then the behaviour of B; will be executed and finally there
will be a communication on the channel table_stop_h (stopping the rotation).
The behaviour Bj is recursive: first there will be a communication over new_—
table_angle (indicating that the angle has changed) and subsequently there is
a communication on the channel table_angle (to obtain the new angle). After
that the program may exit (the angle has the required value) or it may repeat
the behaviour of By (still waiting for the angle to get the required value).

We shall see that B is the behaviour corresponding to the body of the function
clockwise of Figure 2. Comparing the code for the function with the behaviour
above shows that we have recorded which communications take place and in
which order, but we have ignored all values and tests. So while the behaviour
retains the overall control structure of the code, it loses those details of tests
that determine which branch is taken in conditionals.

Construction of behaviours. The behaviours are extracted from the CML
program by an extension of the standard polymorphic type system. The idea is
that each of the concurrency primitives when supplied with the appropriate pa-
rameters gives rise to one of the basic behaviours, and the composite expressions
will tell how these behaviours are combined into larger behaviours. A function
may require some arguments in order to exhibit its behaviour and an event may
need to be synchronized in order to exhibit its behaviour, and to capture this we
shall annotate the types with behaviour information. So a function may have
the type t; —° t, meaning that it takes an argument of type t;, gives a result
of type t2 and in doing so it will perform communications as described by the
behaviour b. Similarly, an event may have the type ¢t event b meaning that when
synchronized it will give rise to a value of type t and in doing so it will perform
communications as described by b. The following specifies the annotated types
of some of the primitive operations:

rit

send: (t chanr) x t »"" unit

accept: (t chan r) ="t ¢

transmit: (¢ chanr) X ¢ =° unit event (rt)

receive: (¢ chanr) =t event (r?t)

sync: (t event b) =" ¢

wrap: (t; event by) x (t; —° ty) =€ty event (b1;b)
choose: (t event b) list —»°t event b

The construction of the behaviours can be formulated as an annotated type
system and we shall now illustrate the basic idea; for the details we refer to
[6, 1].

A type environment tenwv gives the annotated type of a variable and just men-
tioning a variable z (in a call-by-value language like CML) does not give rise to
any interesting behaviour so we write this as

tenvbx:t & e if tenv(z) =t

We have a similar axiom for constants: mentioning a constant (like a numeral
or one of the primitive operators above) does not involve any computation so we
have

tenvbec:t. & €
where t. is (an instance of) the type of c.

For ordinary function abstraction we take

tenvjx — t1]Fe:ty &b
tenvFfnax=>e:t; =ty & €

So we guess a type t; for the formal parameter x and analyse the body of
the abstraction to determine its type t» and its behaviour b. We record the
behaviour as part of the overall type of the abstraction and note that as far as
communication goes nothing interesting has happened so the overall behaviour
will again be e. The case of recursive function definition is fairly similar

tenv[f =ty =Ptz t]Feta &b
tenvbfun fx=>e:t; =>bty & e

and here we will typically rely on b being a recursive behaviour that can be
unfolded as demanded by the unfolding of the recursive function call.

Turning to the rule for function application we have

tenv Feq it =P to & by, tenvk es:t; & bo
tenv - €1 €2 Zt2 & (bl,bg,b)

The idea is that we first determine the annotated type and the behaviour of
the operator and the operand. CML has a call-by-value parameter mechanism
so operationally we will first observe the communications originating from the

B = Fork(By)

By = {beltl_transmit_ready}?unit;{beltl_transmit_donel}7unit;
{table_angle}?int;{table_right}!unit; B;;{table_stop_h}!unit;
{table_upward}!unit;{table_is_top}7unit;{table_stop_v}!unit;
{table_transmit_ready}!unit;{table_transmit_done}!unit;
{table_downward}!unit;{table_is_bottom}?unit;{table_stop_v}!unit;
{table_angle}?int;{table_left}!unit; B;;{table_stop_h}'!unit;

By
By = {new_table_angle}?unit;{table_angle}?int; (e + Bi)

Figure 3: Behaviour for the table.

operator, then those from the operand and finally those from the called function.
Hence the application will have the behaviour by; bo; b — note that the causality
of the communications are recorded.

In order for this approach to work we have to be able to enlarge the behaviours.
As an example, all the elements in the argument list to the choose primitive
must have the same behaviour and to achieve this we shall need a subsumption

rule like
tenvke:t& b

— — _ifpCCV
tenvkFe:t &l o=

Here b C b’ is some ordering on behaviours that for example will express that +
is an upper bound operator so b; can be enlarged to by + bs. The ordering will
also express that € is a left and right identity for sequencing (¢;b = b = b;€) and
this allows us to get rid of a lot of uninteresting occurrences of e.

The full type system employs a general subtyping rule and also has rules for
dealing with ML-like polymorphism; we shall spare the reader for these details as
they do not seem so important for the current discussion. Instead we refer to the
development in [1] for the many fine details concerning the ordering C, subtyping,
polymorphism, constraint simplification, semantic soundness of the inference
system, and syntactic soundness and completenes of the inference algorithm.

The type and behaviour reconstruction algorithm has been implemented in
Moscow ML and is available on the web!. It has been used to analyse the CML
program implementing the Production Cell. For the part of the program corre-
sponding to Figure 2 the algorithm will determine the type unit —? thread_id
where B is the behaviour of Figure 3.

Correctness issues. The language CML as well as the language of behaviours
are equipped with a small-step operational semantics. This forms the basis for a

Ihttp://uwww.daimi.aau.dk/ brag130/TBAcml/TBA_CML.html

correctness proof that essentially says that whenever the CML program performs
a sequence of steps then also the associated behaviour can perform similar steps.
To be more specific: when the semantics of the CML program performs a step
corresponding to sending a value v of type ¢ on some channel ch in some region
r then the semantics of the behaviour can take a step that will execute the
basic behaviour r!t, and similarly for the other primitive actions. Thus the
behaviours give a safe approximation of the communications performed by the
CML program.

The behaviour may be able to perform more actions than are possible by the
CML program, for example because it will always be able to take both branches
of a conditional. However, in the case where the behaviour only can perform
one action then the CML will eventually have to perform a matching action —
unless it is deadlocked or is looping. To illustrate this, consider a behaviour that
contains the sequence

{table_is not_top}?unit; {table_upward}?unit

and let us assume the behaviour of the process of interest only has those two
occurrences of communications on the channels table is not_top and table -
upward. Then the correctness result will tell us two things. First, if the CML
program engages in a communication on table_upward then it will already have
communicated on table_is_not_top. Second, after having engaged in a commu-
nication on table_is not_top then it will eventually perform a communication
on table_upward — unless it enters a looping computation or a deadlock between
the two communications.

4 Safety conditions

Most safety conditions of the Production Cell [4] are concerned about the inter-
play between communications of only a few channels. Much of this information
is directly available in the behaviours and we can easily attempt validating the
three conditions mentioned in Section 2 based on the behaviours given in Fig-
ure 3. However, it is convenient to be able to ignore those channels that are
not relevant for validating the condition at hand, i.e. to abstract away from
communications on those channels.

As an example, suppose that we want to validate the following safety condition:

The engine starting the vertical movement of the table is always
turned off before it is turned on (assuming that it is initially turned

off).

The engine can only be turned on using one of the two channels table_upward
and table_downward and it can only be turned off using the channel table -
stop_v. We shall therefore replace all communications mentioned in Figure 3

10

that do not involve any of these three channels with ellipses and then we shall
apply some straightforward simplifications in order to obtain:

By = ---;{table_upward}!unit; ---;{table_stop_v}!unit;
-+ ;{table_downward}!unit; - --;{table_stop_v}!unit;
-3 Bo

This simplified behaviour clearly shows that the engine is turned on and off in
the manner described by the safety condition.

Just as our prototype is responsible for producing the behaviour of Figure 3 it
can also be used to produce the above simplified behaviours. The theoretical
foundations for the simplified behaviours are established in [1].

We shall now go through the three safety conditions of the rotating table men-
tioned in Section 2 and discuss to what extent they can be validated using the
behaviours. Based on the informal description of the condition and some overall
assumptions about the environment we shall decide which channels are of rele-
vance for the condition and extract that part of the behaviour. It turns out that
this will be a fairly simple behaviour so we can immediately judge whether or
not the safety condition is fulfilled; clearly a more formal approach is possible
as well.

Condition 1.

The table must not be moved downward if it is in its lower position,
and it must not be moved upward if it is in its upper position.

Validation of this condition relies on some assumptions about the environment:
The vertical movement of the table can only be initiated by communicating
on the two channels table upward and table_downward. Information about
the vertical position of the table can only be obtained from the four channels
table_is_bottom, table_is_not_bottom, table_is_top and table_is not_top.

We therefore select these six channels and obtain the following simplified be-
haviour from Figure 3:

By = ---;{table_upward}!'unit;{table_is_top}?unit;
... ;{table_downward}'unit;{table_is_bottom}?unit;

-3 Bo

Thus we see that all communications on table_downward are preceeded by a
communication on table_is_top. By unfolding the behaviour is is also easy to
see that, except for the initial case, all communications on table upward are
preceeded by a communication on table_is_bottom.

However, this is not the case for the initial communication on table_upward.
The behaviour will never allow a communication on any of the four channels
giving information about the vertical position of the table before the initial

11

communication on the channel table upward. It follows that the CML program
will never be able to do that either. Hence the analysis has shown that the CML
program does not fulfill Condition 1!

Condition 2.

The table must not be rotated clockwise if it is in the position required
for transfering work pieces to the robot, and it must not be rotated
counterclockwise if it is in the position to receive work pieces from
the feed belt.

Again we have to rely on some assumptions about the environment. The rotation
of the table can only be initiated by communication on one of the two channels
table right and table_left and it is stopped by communication on the channel
table_stop_h. The horisontal position of the table can be obtained from the
channel table_angle.

We therefore extract the behaviour involving the four channels mentioned above
and get:

By = ---;{table_angle}?int;{table_right}!unit; B;;{table_stop_h}!unit;
-+ ;{table_angle}7int;{table_left}!unit; B;;{table_stop_h}!unit;
By

By = -..;{table_angle}?int; (e + B;)

From this it is easy to see that we have validated the following version of the
safety condition:

The table is alternating between being rotated clockwise and counter-
clockwise.

However there is no information in the behaviours ensuring that the clockwise
rotation stops when the angle is 50 (as required for the robot) or that the coun-
terclockwise rotation stops when the angle is 0 (as required for the feed belt).
More powerful analysis techniques will be needed to capture this kind of infor-
mation; we shall return to this in Section 5.

Condition 3.

There can only be one work piece at the table at any time.

This condition is concerned about the synchronization between the individual
processes of the system and hence its validation will depend on properties of the
other processes, in particular those for the feed belt and the robot. The table
is the passive part in both of these synchronizations. The channels belt1_-
transmit ready and beltl transmit_done are used to synchronize with the

12

feed belt; between these two communications it is the responsibility of the feed
belt to place a work piece on the table. The channels table_transmit_ready
and table_transmit_done are used to synchronize with the robot; between these
two communications it is the responsibility of the robot to remove a work piece
from the table.

The analysis of the table will therefore need to make some assumptions about
the feed belt and the robot. These assumptions will later have to be validated by
analysing the behaviour of the program fragments for the respective processes.
The assumptions are:

(a) Whenever the feed belt leaves the critical region specified by the channels
beltl_transmit_ready and beltl_transmit_done it will have moved one
(and only one) work piece to the table.

(b) Whenever the robot leaves the critical region specified by the channels
table_transmit_ready and table_transmit_done it will have emptied the
table.

Under these assumptions we can now validate Condition 3.

We shall concentrate on the four channels specifying the critical regions and we
obtain the following simplified behaviour for the table:

By = {beltl_transmit_ready}?unit;{beltl_transmit_done}?unit; ---;
{table_transmit_ready}'!unit;{table_transmit_donel}!unit; ---;
By

Clearly this shows that the two pairs of communications alternate. Also it shows
that the synchronization with the feed belt happens first and by assumption
(a) a work piece is placed on the table. The simplified behaviour shows that
subsequently there will be a synchronization with the robot and by assumption
(b) the work piece will be removed from the table. Hence Condition 3 has been
validated with respect to the assumptions.

5 Discussion and further work

The results obtained from the analysis depend to a large extent on the pro-
gramming style. As an example, an alternative program for the Production
Cell uses the following function instead of the two functions clockwise and
counterclockwise:

fun turn_to(a) =
let val x = accept(table_angle) in
if x < a then
(send(table_right, ());
while (accept(new_table_angle); accept(table_angle)) < a

13

do O;
send (table_stop_h,()))
else if x > a then
(send(table_left,());
while (accept(new_table_angle); accept(table_angle)) > a
do O;
send (table_stop_h, ()))
else ()
end;

In the setting provided by Condition 2 we now get the following simplified be-
haviour for the program:

By = --;By;--+;B1;By
By = {table_angle}7int;
(e + {table_left}!unit; Bs;{table_stop_h}!unit
+ {table_right}'!unit; B>;{table_stop_h}'unit)
B> = -..;{table_angle}?int;(e + B>)

As expected we cannot validate Condition 2 from this. But even worse, we
cannot even validate that the table is alternating between being rotated clock-
wise and counterclockwise; only that it is rotated an even number of times.
The reason for the latter is that the current version of our technology does not
incorporate any information about values of variables and the entities commu-
nicated and therefore we cannot prune the behaviour for turn_to to take the
branch of interest for a given value of the parameter. We expect that techniques
from Control Flow Analysis [3] will prove useful when further developing the
technology.

The CML program for the Production Cell is basically a first-order program and
hence it does not exploit the higher-order constructs of CML. Our technique has
no problems handing higher-order functions nor communication of channels. To
illustrate a simple version of this, consider the following generic function

fun move start doit stop = (send(start,()); doit(); send(stop,()))

that takes a channel, a function and yet another channel as arguments. Let us
rewrite the program to use this function:

fun table () =
let
fun clockwise (a) =
let val x = accept(table_angle);
in move table_right
(fn () => while (accept(new_table_angle);
accept (table_angle)) < a do ())
table_stop_h
end;

14

fun counterclockwise (a) =
let val x = accept(table_angle)
in move table_left
(fn () => while (accept(new_table_angle);
accept (table_angle)) > a do ())
table_stop_h
end;

fun main () =
(accept (beltl_transmit_ready); accept(beltl_transmit_done);
clockwise (50);
move table_upward (fn () => accept(table_is_top)) table_stop_v;
send(table_transmit_ready, ()); send(table_transmit_done,());
move table_downward (fn () => accept(table_is_bottom)) table_stop_v;
counterclockwise (0);
main())
in
spawn(fn () => main())
end;

The behaviour of this version of the program is exactly as in Table 3; in par-
ticular the techniques easily distinguish between the different sets of parameters
supplied to the four calls of the move function.

6 Conclusion

We have argued that even the careful use of formal program development tech-
niques may in practice produce bugs that go undetected. To increase the avail-
able techniques for validating embedded systems we have argued that the use
of novel program analysis technology is likely to be indispensable and we have
substantiated this claim by the development of a prototype.

Acknowledgements. We should like to thank H. Rischel for providing us with
the simulator for Production Cell as well as the CML program for controlling the
Production Cell, and also A. P. Ravn for general discussions about the analysis of
embedded systems. This work has been supported in part by the DART project
funded by the Danish Science Research Council and also builds on theories and
tools developed during the LOMAPS project fundet by ESPRIT BRA.

References

[1] T. Amtoft, F. Nielson, and H. R. Nielson. Polymorphic subtyping for be-
haviour analysis. Book manuscript, 1997.

15

2]

3]

T. Amtoft, H. R. Nielson, and F. Nielson. Behaviour analysis for validating
communication patterns. DAIMI PB-527, Aarhus University, 1997.

K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of
control flow analyses for CML. In Proceedings of ICFP’97, pages 38-51.
ACM Press, 1997.

C. Lewerentz and T. Lindner. Formal Development of Reactive Systems,
Case Study “Production Cell”. SLNCS vol 891, Springer Verlag, 1995.

R. Milner, M. Tofte, and R. Harper. The definition of Standard ML. MIT
Press, 1990.

H. R. Nielson and F. Nielson. Higher-Order Concurrent Programs with Finite
Communication Topology. In Proc. POPL ’94, 1994.

H. R. Nielson and F. Nielson. Communication analysis for Concurrent ML.
In ML with Concurrency, Monographs in Computer Science. Springer-Verlag,
1997.

J.H. Reppy. Concurrent ML: Design, application and semantics. In Proc.
Functional programming, Concurrency, Simulation and Automated Reason-
ing, SLNCS 693, pages 165-19, 1993.

H. Rischel and H. Sun. Design and prototyping of real-time systems using
CSP and CML. In Proc. 9th Euromicro Workshop on Real-Time Systems,
pages 121-127. IEEE Computer Society Press, 1997.

16

