
Behaviour Analysis for Validating

Communication Patterns

Torben Amtoft and Hanne Riis Nielson and Flemming Nielson

DAIMI, Aarhus University

Ny Munkegade, DK-8000 �Arhus C, Denmark

ftamtoft,hrn,fng@daimi.aau.dk

September 10, 1997

Abstract

The communication patterns of concurrent programs can be expressed

succinctly using behaviours; these can be viewed as a kind of causal

constraints or as a kind of process algebra terms. We present a sys-

tem which infers behaviours from a useful fragment of Concurrent ML

programs; it is based on previously developed theoretical results and

forms the core of a system available on the Internet. By means of a

case study, used as a benchmark in the literature, we shall see that the

system facilitates the validation of certain safety conditions for reactive

systems.

1 Introduction

It is well-known that testing can only demonstrate the presence of bugs,

never their absence. This has motivated a vast amount of research into

techniques for guaranteeing statically (that is, at compile-time rather than at

run-time) that the software behaves in certain ways; a prime example is the

formal veri�cation of software. In this line of development various notions

of type systems have been put forward because they allow to perform static

checks of certain kinds of bugs: at run-time there may still be a need to check

for division by zero but there will never be a need to check for the addition

of booleans and �les. As programming languages evolve in terms of features

like module systems and the integration of di�erent programming paradigms,

1

the research on type systems is constantly pressed for new problems to be

treated.

Our research has been motivated by the integration of the functional and

concurrent programming paradigms. We believe this combination to be

particularly attractive since (i) many real-time applications demand con-

currency, and (ii) many algorithms can be expressed elegantly and concisely

as functional programs. Example programming languages are Concurrent

ML (CML) [21] that extends Standard ML (SML) [13] with concurrency,

and Facile [27] that follows a similar approach but more directly contains

syntax for expressing CCS-like process composition. By the very nature of

programming, the overall communication pattern of a CML (or Facile) pro-

gram may not be immediately transparent, and compact ways of expressing

the communications taking place are desired. One such representation is

behaviours [17, 2], a kind of process algebra terms based on [14]; they are

related to \e�ects" [25] but augment these in that they convey causality

information.

To illustrate the use of behaviours to show the absence of bugs in concur-

rent systems, consider the following safety criterion: a machine M must

not be started until the temperature has reached a certain level. In a

CML programming environment, this criterion may amount to saying that

a process P should never send a signal over the channel start M unless

it has just received a signal over the channel temp OK. Now suppose we

can show that P has some behaviour b: then it may be immediate that

the above safety property holds, for instance if b is de�ned recursively as

b = � � �; temp OK ? ; start M ! ; b which should be interpreted as follows: P

performs a cycle and in each iteration it �rst performs some \irrelevant"

actions not a�ecting the two channels of interest; then it receives a signal

over temp OK; and �nally it sends a signal over start M. Other applications

of behaviour information are demonstrated in [17, 18].

Theoretical foundations. We have developed an algorithm which given

a CML program P returns a behaviour b; in order for this algorithm to be

trustworthy it must be ensured that b is \faithful" to the actual run-time

behaviour of P . To do so we have followed a classical recipe and

1. de�ned an inference system for behaviours, giving rules for when it is

possible to assign a given behaviour to an expression;

2. demonstrated that this inference system is sound wrt. a semantics for

2

CML, in the sense that \well-typed programs communicate according

to their behaviour" (and hence that \well-typed programs do not go

wrong", cf. [12]);

3. demonstrated that the algorithm is sound wrt. the inference system,

i.e. that its output represents a valid inference.

The above rather extensive development has been carried out in [3] for a

core subset
1
of CML; in addition a completeness result has been established,

stating that the inferred behaviours are in a certain sense principal.

The system. We have developed a tool for behaviour analysis, based on

the above algorithm; it can be accessed for experimentation at

http://www.daimi.aau.dk/~bra8130/TBAcml/TBA CML.html

The system takes as input a CML program and produces as output its

behaviour. The user interface allows to restrict the attention to a selection

of channels, in which case the output often becomes both readable and

informative and thereby enables one to validate certain safety criteria.

Overview. In Section 2 we give a brief overview of the programming lan-

guage CML. In Section 3 we introduce the notion of behaviours and illustrate

a few of the rules for assigning behaviours to expressions. Section 4 sketches

our inference algorithm which returns a set of constraints as output; in Sec-

tion 5 we shall see how to manipulate, and partially solve, these constraints

so to improve readability. The user interface is outlined in Section 6. The

use of the system for validating a program implementing the Karlsruhe pro-

duction cell [11] is brie
y presented in Section 7; luckily it turns out that a

number of safety properties can in fact be validated.

2 Concurrent ML

The language Concurrent ML (CML) extends Standard ML (SML) with

primitives for concurrency; before elaborating on these we shall �rst give a

1In most cases it is possible to incorporate extra constants or language constructs

into this subset without too much e�ort. However, to handle functions (such as wrap)

that manipulate events (cf. Sect. 2) we need to perform a non-trivial reformulation of the

semantics, similar to what is done in [19].

3

short tutorial to features common for SML and CML.

Functional features. SML [13] is an eager (call-by-value) functional lan-

guage, in the sense that a program consists of a sequence of function def-

initions. Much of the popularity of functional languages stems from the

possibility of de�ning generic functions that are applicable in a variety of

contexts. As an example of this, consider the function foldr de�ned by

fun foldr f [] a = a

| foldr f (x::xs) a = f (x, foldr f xs a)

which processes the list, given as second argument, from right to left. One

use for this function is to �nd the number of non-zero elements in a list:

fun num_non_zero xs =

foldr (fn (x,a) => if x = 0 then a else a+1)

xs 0

SML is equipped with a type system which ensures that \well-typed pro-

grams cannot go wrong" [12], that is if it is possible at compile-time to assign

a type to a given expression then certain kinds of run-time errors (such as

adding a boolean to an integer) cannot happen (whereas others like division

by zero may still occur). The SML type system will assign foldr the type

(�1 � �2 ! �2)! �1 list! �2 ! �2

This re
ects that foldr demands an argument f which is a binary function,

an argument xs which is a list, and an argument a whose type equals the

result type of foldr.

The type information pinpoints the generic nature of foldr:

1. it is higher-order, i.e. its arguments may be functions themselves;

2. it is polymorphic as can be seen from the presence of �1 and �2, these

type variables may each be instantiated to di�erent types (such as int

or bool) in di�erent contexts.

Concurrent features. CML [21] extends SML with primitives for con-

currency: the primitive spawn creates a new process; the primitive channel

4

creates a new channel; the primitive send sends a value over a channel as

soon as some other process is ready to receive, and blocks until this is the

case; the primitive accept receives a value from a channel as soon as some

other process is ready to send, and blocks until this is the case. This is not

an exhaustive list of all the concurrency primitives and we shall introduce

additional constructs in the sequel.

Also in a concurrent setting generic functions come to good use; as a simple

�rst example of this consider the function below which makes use of the

sequencing operator \;" well-known from many imperative languages. First

it sends a signal over the channel start ch (this may start some machine);

then it waits for the termination of function wait fun (which may loop until

the machine is in some desired position); �nally it sends a stop signal.

fun move_until wait_fun start_ch stop_ch =

(send(start_ch,())

; wait_fun ()

; send(stop_ch,()))

The CML type system will assign it the type

(unit! �)! unit chan ! unit chan ! unit

which is still higher-order but not really polymorphic (as � will typically be

unit); here unit is the singleton type with () as its only element.

In order for a concurrent system to behave in a systematic way it is conve-

nient to impose some protocol on the communication pattern. An example

protocol is the double handshake which allows an \active" part to interact

with a \passive" part. When the passive part is ready to interact it sends

a signal over a channel; when the active part has received this signal it

performs its \critical action" and afterwards sends a signal to indicate com-

pletion. In the case of CML only one channel is needed since channels are

bidirectional; the following piece of code thus implements the role of the

passive part:

fun passive_sync ready_ch =

(send(ready_ch,())

; accept(ready_ch)

)

and the following piece of code implements the role of the active part:

5

fun active_sync ready_ch crit_action =

(accept(ready_ch)

; crit_action ()

; send(ready_ch,())

)

A passive process may be able to interact with several active processes (or

vice versa) with the subsequent actions depending on the partner chosen.

This can be expressed by the pseudo-code (in the style of [8])

if ready ch1 ! passive sync ch1; cont1 ()

[] ready ch2 ! passive sync ch2; cont2 ()

�

where cont1 represent the \rest of the computation" in the case where ch1

is ready, similarly for cont2, and in general cont1 may di�er from cont2.

We shall see that this can in fact be expressed in CML, using the notion of

events: one can think of an event as a communication possibility. Events

are �rst class values, that is they can be passed around just like integers.

The CML primitive sync synchronises an event, which turns into an actual

communication; the operation may block if there is no communication part-

ner. The CML primitive select is as sync except that it takes a list of

events and synchronises one of these, the choice is deferred until it can be

ensured that the selected communication will not block.

To create events, CML o�ers the primitive transmit which is a \non-

committing" version of send in that it only creates an event without syn-

chronising it; in a similar way the primitive receive is a non-committing

version of accept. (We have the equations send x = sync (transmit x)

and accept x = sync (receive x).)

A �rst attempt to achieve the desired behaviour is then to write

select [transmit(ch1,()), transmit(ch2,())]

; select [receive (ch1), receive (ch2)]

; cont1 ()

but this will only work if cont1 equals cont2; furthermore this piece of code

does not exploit that the second occurrence of select has to conform with

the choice made by the �rst occurrence. In the general case one therefore

needs a way of \inlining" a \continuation" into an event, such that the event

6

applies the continuation if synchronised. This is taken care of by the CML

primitive wrap; using this primitive the desired behaviour can be achieved

by writing

select [wrap(transmit(ch1,()),

fn () => (accept(ch1)

; cont1 ())),

wrap(transmit(ch2,()),

fn () => (accept(ch2)

; cont2 ()))]

This suggests that a passive process should use the following generic function

for creating \handshake events":

fun passive_sync_event ready_ch cont =

wrap (transmit(ready_ch,()),

fn () => (accept(ready_ch)

; cont ()

))

This function returns an event which

� will only be synchronised if some other process is ready to receive on

the channel ready ch;

� if synchronised will (i) complete the double handshake, and (ii) execute

the rest of the computation as speci�ed by cont.

Accordingly the CML type system will assign the type

unit chan ! (unit! �)! � event

to passive sync event (where � will typically be unit).

Example. So far we have described a variety of building blocks for concur-

rent programs; we shall now illustrate how they can be combined. This will

form the basis of the main running example of this paper.

Consider a conveyor belt, part of the larger production cell described in [11],

used for transporting \blanks" from a robot to a crane. The default state

of the belt is that there is one blank somewhere on the belt; the procedure

to be iterated is

7

1. transport the blank onto the end of the belt;

2. let the crane pick up the blank;

3. wait for the robot arm to deliver another blank.

To detect whether or not the blank has reached the end of the belt we use two

sensors connected to the same photo cell, situated shortly before the end:

when its light ray is intercepted it signals on belt2 blank at end; when its

light ray is no more intercepted (i.e. the blank has passed the photo cell and

has thus reached the end) it signals on belt2 no blank at end. Step 1 can

then be implemented using move until, binding its �rst argument wait fun

to a function with body

accept(belt2 blank at end); accept(belt2 no blank at end)

Clearly step 2 and 3 can each be implemented using passive sync, but as

the robot may become ready before the crane, it is convenient to be able to

switch the ordering. Accordingly we use passive sync event to create two

events, \�rst 3 then 2" and \�rst 2 then 3".

The resulting code is:

let fun belt2_cycle () =

(move_until (fn ()=>(accept(belt2_blank_at_end);

accept(belt2_no_blank_at_end)))

belt2_start

belt2_stop;

select [passive_sync_event belt2_ready_for_arm2

(fn () => passive_sync belt2_ready_for_crane),

passive_sync_event belt2_ready_for_crane

(fn () => passive_sync belt2_ready_for_arm2)];

belt2_cycle ())

in ... end 2

3 Behaviours

As is apparent from the preceding section the CML type system may con-

vey useful information about the functionality of a program, but when it

8

comes to analysing the communication pattern it is of little use. To facil-

itate the latter we augment the system by annotating certain CML types

with behaviour and region information. The annotation � in a function type

t1 !� t2 describes the behaviour taking place whenever the function is

applied, and we shall continue to write t1 ! t2 for the type of a function

that is applied \silently" (as will be the case for constructors like pair and

transmit). The annotation � in an event type of the form t event � de-

scribes the behaviour taking place whenever the event is synchronised; �nally

the annotation � in a channel type t chan � describes the region in which

the channel is allocated. Regions can be thought of as sets of channels; we

shall return to the issue in Section 5.

Example. The function move until (introduced in Section 2) can be as-

signed the annotated type

(unit !�0 �0) !�1 unit chan �0 !�2 unit chan �1 !�3 unit

Here �1 as well as �2 \denotes" the empty behaviour ", which re
ects that

move until does not perform any action until it has been supplied with

three arguments; and �3 denotes the behaviour

(�0 ! unit);�0; (�1 ! unit)

which re
ects that move until when applied to the three arguments f , ch0,

and ch1 performs the following actions:

� �rst it sends the value () over the channel ch0, located in region �0;

� then it calls f with the argument (), since f has type unit !�0 �0

this will behave as indicated by �0;

� �nally it sends () over the channel ch1, located in region �1. 2

The notion of annotated types
2
goes way back in the literature; a classic

example being the e�ects of [25]. In the present paper, a behaviour b is

either

� a variable � (cf. the use of type variables �);

2In the following we shall often write \type" for \annotated type".

9

� the empty behaviour " (no \visible" actions take place);

� a sequential composition b1; b2 (�rst b1 and then b2 takes place);

� a choice operator b1 + b2 (either b1 or b2 takes place);

� SPAWN b (a process is spawned which behaves as indicated by b);

� t chan � (a channel, able to transmit values of type t, is allocated in

region �);

� � ? t (a value of type t is read from a channel situated in region �);

� � ! t (a value of type t is written to a channel situated in region �).

Example. The function passive sync can be assigned the type

unit chan � !� unit

where � denotes � ! unit; � ? unit

and its cousin passive sync event can be assigned the type

unit chan � !�0 (unit !�1 �) !�0 � event �

where �0 denotes " and � denotes � ! unit; � ? unit;�1

Here �1 is the behaviour of cont representing the rest of the computation. 2

3.1 Inference system

We now present some of the rules for assigning annotated types to CML

expressions; as in [20] (which was in turn inspired by [24, 9]) judgements

take the form

C;A ` e : t& b

Such a judgement states that the CML expression e has type t and that the

evaluation of e gives rise to visible actions as indicated by b, assuming that

� the environment A contains type information about the identi�ers oc-

curring free in e;

� the relation between the various variables in t and b is given by the

constraint set C.

10

Conditionals. The type of a conditional is determined by the rule

if C;A ` e0 : bool& b0

and C;A ` e1 : t& b1

and C;A ` e2 : t& b2

then C;A ` if e0 then e1 else e2 : t& b0; (b1 + b2)

where the use of the choice operator b1 + b2 re
ects that we cannot predict

which branch will be taken.

Function applications. The type of a function application is determined

by the rule

if C;A ` e1 : (t2 !� t1) & b1

and C;A ` e2 : t2& b2

then C;A ` e1 e2 : t1&(b1; b2;�)

where the behaviour b1; b2;� clearly states that CML employs a call-by-value

evaluation strategy: �rst the function e1 is evaluated, then its argument e2
is evaluated, and �nally the function is applied enacting the latent behaviour

on the function arrow.

Function abstractions. The type of a function abstraction is determined

by the rule

if C;A[x : tx] ` e : t&�

then C;A ` fn x)e : tx !� t& "

where the body e is analysed in an environment binding x to tx, with its

behaviour � becoming latent in the resulting function type.

3.2 Subtyping and sube�ecting

Our system is designed to be a conservative extension of the CML type

system, i.e. all programs typeable in the latter are also typeable in the

former and vice versa. But when examining the above rules this might seem

not to be the case: in particular the rule for function abstraction fn x)e

11

cannot be applied unless the body e can be assigned a behaviour which is a

variable, as only these may appear on arrows.

On the other hand, even if b is not a variable the judgement

C;A[x : tx] ` e : t& b

allows us to obtain

C;A ` fn x)e : tx !� t& "

provided that it is possible from C to deduce that b � �; this will for

instance be the case if the behaviour constraint (b � �) is contained in C.

Formally, this is due to the sube�ecting rule

if C;A ` e : t& b and C ` b � b0

then C;A ` e : t& b0

Here the behaviour ordering C ` b1 � b2 states that (given the assumptions

in C) b1 is a more precise behaviour than b2 in the sense that any action

performed by b1 can also be performed by b2.
3

The rules de�ning the ordering express that sequential composition \; " is

associative with " as neutral element; that \� " is a congruence wrt. the

various behaviour constructors; and that \+" is least upper bound wrt. � .

In order to increase the precision of the analysis we need also subtyping, as

witnessed by the situation below (cf. the considerations in [26, Chap. 5]):

we want to type a conditional if e0 then f1 else f2 occurring inside some

function body e situated in the context (fn f1)fn f2)e) e1 e2, where we

can assign e1 the type t1 = int !�1 int and e2 the type t2 = int !�2 int

with �1 6= �2. In order to use the rule for conditional, we must be able

to assign f1 and f2 a common type t = int !� int. Assuming that

�1 � � and �2 � � can be deduced from the constraint set, there are two

approaches to achieve this. (i) The insertion of sube�ecting may convert

the typings of e1 and e2 into typings where both expressions are assigned

the type t, then the body e is typed using an environment where both f1
and f2 are bound to t; the price to pay is that then all occurrences of f1 in e

3A similar claim is formalised in [19] where a syntactically de�ned ordering on be-

haviours is shown to be a decidable subset of the undecidable simulation ordering, induced

by an operational semantics for behaviours.

12

are indistinguishable from f2, and vice versa. (ii) The use of subtyping, on

the other hand, allows f1 to be bound to t1 and f2 to be bound to t2 when

typing e; then t1 and t2 are approximated to t immediately before the rule

for conditional is applied, using the subtyping rule

if C;A ` e : t& b and C ` t � t0

then C;A ` e : t0& b

Here the subtype relation C ` t1 � t2 states that (given the assumptions

in C) t1 is a more precise type than t2; it is induced by the sube�ecting

relation and unlike e.g. [24] we do not have any ordering on base types, such

as int � real. As is to be expected, the ordering is contravariant in the

argument position of a function type:

if C ` t0
1
� t1 and C ` � � �0 and C ` t2 � t0

2

then C ` t1 !� t2 � t0
1
!�0

t0
2

Of particular interest is the rule for channel types:

if C ` t � t0 and C ` t0 � t

and C ` � � �0

then C ` t chan � � t0 chan �0

which re
ects that the type of communicated values essentially occurs both

covariantly (when used in receive) and contravariantly (when used in send).

3.3 Polymorphism

In order for a function to be used polymorphically the environment must

map its name into a type scheme rather than just a type. In SML type

schemes are of form 8~� :t where ~� are the bound type variables; in [24],

which extends polymorphism with subtyping, type schemes are augmented

with constraints so as to be of the form 8(~� : C): t; in our approach we also

consider behaviour and region variables and hence type schemes are of the

form 8(~�~�~� : C): t.

CML primitives. Closed type schemes have been preassigned to all the

primitives, of which we list a few:

13

send 8(��� : f� !� � �g): (� chan �)� � !� unit

transmit 8(��� : f� !� � �g): (� chan �)� �! (unit event �)

accept 8(��� : f� ?� � �g): (� chan �) !� �

receive 8(��� : f� ?� � �g): (� chan �)! (� event �)

sync 8(�� : ;): (� event �) !� �

spawn 8(���0 : fSPAWN �0 � �g): (unit !�0

�) !� unit

wrap 8(� � � : (�;�0 � �00)): � event � � (� !�0

�0)! �0 event �00

The types make it clear that transmit is a non-committing version of send,

and similarly that receive is a non-committing version of accept.

De�nitions used polymorphically. In an expression let fun f x =

e0 in e end, one can use f polymorphically in e; and as the de�nition is

recursive, one can also use f in e0 but not polymorphically | we do not

allow polymorphic recursion. These considerations are re
ected in the rule

for typing such de�nitions, which looks like

if C [C0; A[f : t0][x : t1] ` e0 : t2&� with t0 = t1 !� t2

and C;A[f : 8(~�~�~� : C0): t0] ` e : t& b

then C;A ` let fun f x = e0 in e end : t& b

provided � � �

and it can be applied provided certain side conditions hold. The most famil-

iar of these state that the bound variables ~�~�~� must not occur in C or A;

the remaining conditions restrict the form of C0, and are trivially satis�ed

in the case where C0 is empty.

The above rule can be extended to allow for \value polymorphism" as in

let val x = e0 in e end where the de�ned entity may be something else

than a function. Then even more elaborate side conditions are needed in

order to ensure semantic soundness, and as witnessed by the related ap-

proach in [1] this is a delicate matter; the basic ideas are (i) that we cannot

generalise variables free in the behaviour (cf. [25]), and that (ii) the divi-

sion between bound and free variables must in some sense \respect" the

constraint set C0.

14

4 Inference Algorithm

We shall aim at constructing a type reconstruction algorithm in the spirit of

Milner's algorithmW [12]: given an expression e and an environment A, the

recursively de�ned function W will produce a substitution S, a type t, and

a behaviour b. The de�nition in [12] employs uni�cation [23]: if ei has been

given type ti (for i = 0; 1; 2) then in order to type if e0 then e1 else e2
one must unify t0 with bool and t1 with t2. Uni�cation works by decompo-

sition: in order to unify t1 ! t2 and t0
1
! t0

2
one recursively uni�es t1 with

t0
1
and t2 with t0

2
; and to unify a variable � with a type t one produces the

substitution [� 7! t] (assuming that � does not occur inside t).

In the presence of subtyping, however, the above uni�cation scheme will

not work properly: consider the above case where we analyse a conditional

if e0 then e1 else e2 and have found e1 to have type int !�1 �1 and

have found e2 to have type int !�2 �2. We shall lose precision, cf.

the considerations in Sect. 3.2, if we unify �1 with �2 via the substitution

[�2 7! �1]; instead we rather create a fresh variable � and generate the

constraints f�1 � �; �2 � �g. Our version of W thus follows [10] in that

it generates behaviour constraints.

In a similar way we shall lose precision if we unify �1 with �2, as then

�1 and �2 cannot later be instantiated to for example function types with

di�erent latent behaviours; instead we shall create a fresh type variable �

and generate the type constraints4 f�1 � �; �2 � �g.

The above considerations suggest the design of an algorithm F similar in

spirit to algorithm MATCH in [6], for doing what [24] calls \forced instan-

tiations": given a set of constraints it rewrites the type constraints and at

the same time produces a substitution. A typical rewriting rule is

f� � t1 !� t2g �! ft1 � �1; �
0 � �; �2 � t2g

via the substitution [� 7! (�1 !�0

�2)]

with �1; �
0; �2 fresh

where in addition an \occur check" is needed: clearly we cannot match �

with int !� �. However, extra variables are introduced by rules like the

4The presence of type constraints, in addition to behaviour constraints, is a consequence

of our overall design: types and behaviours are inferred simultaneously from scratch. This

should be compared with the approach in [26] where an e�ect system with subtyping but

without polymorphism is presented; as the \underlying" types are given in advance it is

su�cient to generate behaviour constraints.

15

above and as the produced substitutions are applied to the other constraints

they may become \larger", thus termination is not granted and in fact a

naive implementation may loop. To prevent this from happening we have

adopted the loop check mechanism, and the termination proof, from [6]. In

the case of successful termination of F , all the resulting type constraints

will be atomic, that is of form �1 � �2.

Below we list some typical clauses in the de�nition of W; each clause pro-

duces a quadruple (S; t; b; C).

Function abstractions. A function abstraction is analysed by the algo-

rithm fragment

W(A; fn x)e) =

let � be fresh

let (S; t; b; C) = W (A[x : �]; e)

let � be fresh

in (S; S � !� t; "; C [fb � �g)

which generates the behaviour constraint fb � �g to express the relation

between the behaviour of the function body and the recorded latent be-

haviour.

Function applications. A function application is analysed by the algo-

rithm fragment

W(A; e1 e2) =

let (S1; t1; b1; C1) =W(A; e1)

let (S2; t2; b2; C2) =W(S1A; e2)

let �; � be fresh

let (C;S3) = F(S2 C1 [C2 [fS2 t1 � t2 !� �g)

in (S3 S2 S1; S3 �; S3 (S2 b1; b2;�); C)

where the constraint fS2 t1 � t2 !� �g expresses that e1 must be a

function whose argument has t2 as a subtype; as this constraint is not atomic

we have to apply F on the overall constraint set. (Clearly S2 must be applied

to the entities produced by the �rst recursive call of W.)

16

Identi�ers. An identi�er is analysed by looking it up in the environment

and taking a fresh instance of the associated type scheme. As an exam-

ple, if A(x) = 8(�1�2� : f" � �g): �1 !� �2 then W(A; x) returns the

quadruple

(Id; �0
1
!�0

�0
2
; "; f" � �0g)

where �0
1
; �0

2
; �0 are fresh variables and where Id is the identity substitution.

CML primitives and channel labels. In a similar way, a CML primitive

is analysed by taking a fresh instance of its prede�ned type (cf. Sect. 3.3).

An important case is the call W(A; channel) which returns a quadruple

(Id; unit !�0

�0 chan �0; "; f�0 chan �0 � �0; flg � �0g)

with �0; �0; �0 fresh variables, and with l a fresh label which subsequently will

be \attached" to this particular occurrence of channel. We thus record the

\point of origin" for each channel; the i'th syntactic occurrence of channel

(starting from zero) will be labelled i.

De�nitions used polymorphically. Typing an expression let fun f x =

e0 in e end is a delicate matter when it comes to deciding which variables

can be generalised and thus occur bound in the type scheme; we shall dis-

pense with the details but refer to [15] for a related study (not dealing with

causality).

4.1 Constraint simpli�cation

We have seen that our algorithm W never uni�es two variables but rather

generates a constraint relating them; this is done for the sake of precision

but at the price of the output becoming rather unwieldy, as one will quickly

discover when implementing the algorithm. It turns out, however, that a

substantial number of the generated constraints can be replaced by unifying

substitutions without losing precision; this observation dates back to [5, 24]

and we therefore equip W with a simpli�cation procedure, to be called at

regular intervals.

The basic idea is that a variable can be shrinked into its \immediate prede-

cessor" or it can be boosted into its \immediate successor"; to illustrate this

17

consider a constraint �1 � �2 (behaviour or region variables are treated

likewise). Now suppose that �2 does not occur on any other right hand side;

then �2 can be shrinked, i.e. replaced by �1 globally, provided �2 occurs

\positively" in the type t as is the case for t = �1 !� �2. (In this case one

might alternatively boost �1 into �2 as �1 occurs negatively.) Intuitively,

due to the presence of subtyping the new type �1 !� �1 has the same

information content as the old type �1 !� �2; thus this step does not lose

precision.

5 Post-processing the Constraints

In the previous section we saw that our reconstruction algoritm W when

applied successfully to a given program returns a quadruple (S; t; b; C); here

S is of no interest (since the top-level environment contains no free variables),

and t will in many cases be unit. What we are really interested in is the

behaviour b, and the relation between the variables occurring there, as given

by C; this constraint set may be quite large in spite of the simpli�cations

mentioned in Sect. 4.1 and in this section we shall describe how to transform

the constraints so as to improve readability.

There will usually only be a few type constraints, and recall that they will be

of the form �1 � �2. There is no need to further manipulate them except

that cycles may be collapsed, that is if (� � �0) 2 C and also �0 � � can

be deduced from C then �0 may be replaced by � globally, i.e. in C as well

as in b.

Region constraints will be dealt with in Sect. 5.1 where we shall see that

they can be solved and thus completely eliminated; the intuition is that

if an expression e has type int chan � and a solution maps � to f2; 7g

then e is an integer channel allocated by either the 2nd or the 7th syntactic

occurrence of channel. We shall also see that the \solution of interest", R,

is not necessarily the \least" solution.

The user will typically, as illustrated in Sect. 7, restrict his attention to a

few selected channel labels. With L
hid

the remaining labels, we introduce

a special behaviour � which denotes creation of, or communication over, a

channel whose label belongs to L
hid

.

With R and L
hid

given, Sect. 5.2 lists a number of transformations that

can be used to manipulate the behaviour b and the behaviour constraints

C; the correctness criterion for these transformations is expressed using

18

bisimulations
5
, as is well-known from other process algebras.

Example. Suppose W returns the behaviour �0;�1; (SPAWN �2);�3, to-

gether with the region constraints

(f0g � �0), (f1g � �1), (�1 � �2)

and the behaviour constraints

(unit chan �0 � �0), (unit chan �1 � �1),

(�2 ! unit; �0 ? unit � �2), (�2 ? unit; �0 ! unit � �3).

The mapping R given by R(�0) = f0g and R(�1) = R(�2) = f1g is the least

solution to the region constraints, and it is possible to eliminate all behaviour

constraints by \unfolding" �0; �1; �2; �3: in the case where L
hid

= f1g the

overall behaviour is transformed into
6

unit chan f0g; � ;SPAWN (� ; f0g ? unit); � ; f0g ! unit
2

5.1 Solving region constraints

From Sect. 4 it is apparent that the region constraints are of the form �0 � �

or flg � �; the former kind may be produced when F decomposes a type

and the latter when analysing an occurrence of channel. Clearly there exists

a least solution to these constraints, mapping each region variable into a set

of labels, and it is computable using standard iteration techniques.

The least solution, however, is not necessarily the one of interest, as demon-

strated by the program

let fun f ch = if ... then ch else channel () in f end

for which W will infer the type

5The transition relation is de�ned from the type system: C ` b!a b0 if C ` a; b0 � b,

and an action a is of form either SPAWN b or t chan � or � ? t or � ! t or � . Now (b1; C1) �

(b2; C2) if whenever C1 ` b1 !
a1 b0

1 there exists a2 and b0

2 such that C2 ` b2 !
a2 b0

2 with

(a1; C1) _�(a2; C2) as well as (b0

1; C1) � (b0

2; C2), and vice versa; the bisimulation relation

_� on actions, among other things, formalises that � has the intended meaning: we have

e.g. that (� ! t; C1) _�(�; C2) if R(�) � Lhid.
6When printing behaviours, we often replace � by the value of R(�) n Lhid.

19

� chan � !� � chan �

and also generate the constraint f0g � � with 0 being the label assigned

to the occurrence of channel. The result produced by f may be a channel

allocated by this occurrence but it may also be a channel given as input to

the program, and the latter possibility is not recorded by the least solution

which maps � to f0g; therefore we shall rather prefer a solution which maps

� to f0g [�.

The above can be generalised, observing that \input channels" correspond

to region variables occurring negatively in the overall type: a solution should

map this kind of variable into a set containing not only labels but also a

meta variable (the variable itself can be used). Again it is clearly possible

to compute the least such solution, to be denoted R.

5.2 Transforming behaviour, and behaviour constraints

From Sect. 4 it is apparent that a behaviour constraint is of the form b � �;

it may be produced when F decomposes a type (in which case also b is a

variable) or when a function abstraction is analysed.

A catalogue of basic transformation steps, to be iteratively performed by

the post-processor until no more are applicable, is listed in the subsequent

paragraphs.

Collapsing cycles. As was the case for type variables, also cycles among

behaviour variables may be collapsed; this is done once and for all.

Hiding. In the case where attention is restricted to a selection of channels,

that is when L
hid

6= ;, actions a�ecting non-selected channels only are hid-

den: a behaviour t chan � is replaced by � provided R(�) � L
hid

, similarly

for � ? t and � ! t. Also this step may be done once and for all.

Equivalence transformation. Suppose that b and b0 are equivalent, that

is ; ` b � b0 and ; ` b0 � b, then b may be replaced by b0 if the latter is

smaller. A very frequent application is to replace b; " or "; b by b.

Unfolding. Suppose that (b � �) is the only constraint with � on the

right hand side, then this constraint can be eliminated and � globally re-

20

placed by b provided (i) � does not occur in b, and (ii) � does not appear

inside any type (in which case replacement with a non-variable b would result

in an ill-formed type).

As a preparation for this step, it may be necessary to combine a sequence of

constraints b1 � �; � � � ; bn � � into the single constraint b1+ � � �+ bn � �.

To prevent \code explosion", unfolding should be performed only if either

(i) there is at most one occurrence of � to replace, or (ii) b is very small (for

example ").

Sharing code. For further keeping the output small it turns out to be

crucial that \shared code" can be detected, as illustrated below: if the only

constraint with �1 on the right hand side has left hand side (f7g ! int;�1),

and the only constraint with �2 on the right hand side has left hand side

(f7g ! int;�2), then �1 can be globally replaced by �2.

Introducing new behaviour constants. For the sake of readability, we

use �n (n � 1) as an abbreviation for

n
z }| {

� ; � � �; �

Similarly, �1 intuitively abbreviates an unbounded number of � -actions: if

for example there is a constraint � ; � ;� � �, in e�ect saying that � performs

two � -action before it recurses, then � may be globally replaced by �1 (again

provided � does not occur inside any type).

6 User Interface

We have developed a system based on the algorithm from Sect. 4 and the

post-processing tools mentioned in Sect. 5. Below we describe how a user

can interact with our system, and mention the options available for tuning

the output so as to suit his particular needs.

The system is accessed via the web page

http://www.daimi.aau.dk/~bra8130/TBAcml/TBA CML.html

21

Figure 1: The initial menu.

that contains a short description of the system, including the syntax of our

CML fragment, as well as a link to the system itself. The link leads to a page

divided into two frames with the upper frame containing the initial menu

(Fig. 1); in particular notice that the program to be analysed can be taken

either from a �le or from the keyboard. The system works by translating

the CML fragment into a certain core subset; for debugging purposes it may

be useful to see this intermediate form, hence there is an option allowing to

display it.

The various features of the system are best explained by feeding an example

program into the analyser; we shall use the CML program
7
listed in Figure 2

which is built from the components mentioned in Sect. 2. Its overall purpose

is to control a belt in the Karlsruhe production cell and accordingly it ini-

tially declares two channels for starting and stopping the belt, two channels

for testing whether there is a blank at the end, and two channels for com-

municating with a robot arm (placing blanks on the belt) and with a crane

(removing blanks from the belt). The main function belt2 spawns a process

7On \top-level", fun f x = e ; ... is equivalent to let fun f x = e in ... end.

22

which initially performs a double handshake with the robot so as to place

one blank on the belt; then it enters the main loop belt2 cycle that is al-

ready explained in some detail (Sect. 2), making use of the previously de�ned

generic functions move until, passive sync, and passive sync event.

When pressing the button \Do it!" the inference algorithm W from Sect. 4

will be applied to the program, and after a short while the lower frame will

look as depicted in Figure 3: it contains

(up) a scroll-down menu for \post-processing", o�ering the features de-

scribed in Section 5;

(left) a list of \region names", i.e. program identi�ers bound to channels;

(right) a list of functions de�ned polymorphically.

In the subsequent subsections, each of these components will be treated in

some detail.

6.1 The list of region names

In our example, as will often be the case, there is a one-to-one corre-

spondence between program identi�ers and channel labels; as an example

belt2 start is always bound to a channel allocated by the 0th syntactic oc-

currence of channel. For labels which are in this way associated to a unique

identi�er, the post-processor can print that identi�er, rather than printing

the label itself. As an alternative option the user may choose \numbered

regions" instead of \named regions" such that e.g. \3" is printed instead of

\belt2 no blank at end" (the former is shorter but the latter is far more

readable).

We should mention that in general the above correspondence may be many-

to-one and/or one-to-many: for an example of the former, consider the

program

let val ch = channel () val ch1 = ch in (ch,ch1) end

where ch as well as ch1 \will be bound to" the same channel label; for an

example of the latter, consider the program

val ch = if ... then channel () else channel ();

23

(* command channels *)

val belt2_start = channel () ;

val belt2_stop = channel () ;

(* sensor channels *)

val belt2_blank_at_end = channel () ;

val belt2_no_blank_at_end = channel () ;

(* synchronisation channels *)

val belt2_ready_for_arm2 = channel(): unit chan;

val belt2_ready_for_crane = channel(): unit chan;

(*** Global help-functions ***)

fun move_until wait_fun start_ch stop_ch =

(send(start_ch,())

; wait_fun ()

; send(stop_ch,()));

fun passive_sync ready_ch =

(send(ready_ch,())

; accept(ready_ch));

fun passive_sync_event ready_ch cont =

wrap (transmit(ready_ch,()),

fn () => (accept(ready_ch)

; cont ()

)

);

(* belt2 unit ***)

fun belt2 () =

let fun belt2_cycle () =

(move_until (fn ()=>(accept(belt2_blank_at_end);

accept(belt2_no_blank_at_end)))

belt2_start

belt2_stop;

select [passive_sync_event belt2_ready_for_arm2

(fn () => passive_sync belt2_ready_for_crane),

passive_sync_event belt2_ready_for_crane

(fn () => passive_sync belt2_ready_for_arm2)];

belt2_cycle ())

in spawn(fn () => (passive_sync belt2_ready_for_arm2;

belt2_cycle ())) end;

(* starting *) belt2 ();

Figure 2: A belt for transporting blanks.

24

Figure 3: The \intermediate" menu.

where ch \may be bound to" the 0th occurrence of channel but it may also

be bound to the 1st occurrence.

6.2 Post-processing

Using the scroll-down menu from Figure 3, the result produced by W can

be examined and manipulated in various ways:

Show `interpreted' type and behaviour: Using the methods described

in Sect. 5, a solution R to the region constraints is found, and the

behaviour is transformed together with the behaviour constraints. We

say that a behaviour variable � can be interpreted as b, and write

\� means b", if the resulting constraint set contains (b � �) and �

appears on no other right hand side.

By selecting this option the entire communication pattern is displayed:

no actions are hidden, that is L
hid

= ;.

Only see restricted channels: As above, except that some channels are

hidden; the user has previously selected the channels of interest by

clicking on their occurrence in the list of region names.

25

Print dots for hidden channels: As above, but with \: : :" printed in-

stead of \�n" and \�1" (this may improve readability).

Show `raw' type, behaviour, constraints: This option suppresses post-

processing and displays the constraint set produced by W; for all but

very small programs it will be so large that one can hardly expect to

extract useful information manually.

Show time information: The total time spent by W is displayed, and

additionally also the time spent in some of its auxiliary functions
8
.

Returning to our example program in Figure 2 (which can be analysed in

about 4 seconds), the result of selecting the �rst option is

Interpretation of inferred type:

unit

Interpretation of inferred behaviour:

unit chan {belt2_start};unit chan {belt2_stop};

a0 chan {belt2_blank_at_end};a1 chan {belt2_no_blank_at_end};

unit chan {belt2_ready_for_arm2};

unit chan {belt2_ready_for_crane};spawn (B0;B1)

Interpretation of type/behaviour variables:

B0 `means' {belt2_ready_for_arm2}!unit;

{belt2_ready_for_arm2}?unit

B1 `means' {belt2_start}!unit;{belt2_blank_at_end}?a0;

{belt2_no_blank_at_end}?a1;{belt2_stop}!unit;

({belt2_ready_for_crane}!unit;

{belt2_ready_for_crane}?unit;B0

+ {belt2_ready_for_arm2}!unit;

{belt2_ready_for_arm2}?unit;

{belt2_ready_for_crane}!unit;

{belt2_ready_for_crane}?unit);B1

We see that after the initial channel allocation the main program spawns

a process which �rst performs B0, i.e. asks the robot arm to place a blank

on the belt, and then iterates as indicated by B1, i.e. follows the code in

8This information is useful only for the system maintainer!

26

belt2 cycle. The latter function selects between two events which are

symmetric as can be made apparent
9
by unfolding B0.

If we restrict our attention to belt2 start we get

Interpretation of inferred behaviour:

unit chan {belt2_start};tau5;spawn (tau2;B0)

Interpretation of type/behaviour variables:

B0 `means' {belt2_start}!unit;tau7;B0

re
ecting that each iteration of belt2 cycle starts by writing on belt2 start

and then performs 7 hidden communications.

6.3 The list of functions de�ned polymorphically

One can click on each of these and a post-processed version of its associated

type scheme will show up in the upper frame; for passive sync we get

unit chan R0 --B0-> unit

where

B0 `means' R0!unit;R0?unit

as predicted in Sect. 3. One can follow a further link and get the \raw" (i.e.

uninterpreted) version of the type scheme (re
ecting its use in W):

unit chan R0 --B0-> unit

where

B2;B3 <= B1, R1!unit <= B2, ep <= B3, R2?unit <= B4,

ep;B1;B4 <= B0, R0 <= R1, R0 <= R2

7 Case Study

To investigate the usefulness of our system we apply it to a larger example: a

CML program, written by a group of DAIMI students [4], that implements
10

9The system may be improved so as to recognise \common subexpressions"; then (i)

the occurrence in the code for B1 of the code for B0 may be replaced by B0, and (ii) a

new variable B2may be introduced, with the interpretation belt2 ready for crane!unit;

belt2 ready for crane?unit.
10There exists a simulator which visualises execution of the CML program.

27

the various components of the Karlsruhe production cell put forward as a

benchmark in [11]. We have already (Fig. 2) seen the code for the belt trans-

porting blanks between a robot and a crane; additionally the cell contains

a press for forging the blanks, an elevating rotary table, and another belt.

We shall now validate a certain safety property: that two blanks cannot be

put on top of each other on the belt. We therefore restrict our attention

to the channels belt2 start and belt2 ready for arm2 and this yields the

output depicted in Figure 4; by manual elimination of irrelevant information

we end up with the behaviour

spawn (B4;B5);spawn B2

and the interpretation

B2 `means' ...;

({belt2_ready_for_arm2}?unit;...;

{belt2_ready_for_arm2}!unit;B2

+ ...;B2)

B4 `means' {belt2_ready_for_arm2}!unit;

{belt2_ready_for_arm2}?unit

B5 `means' {belt2_start}!unit;...;

(...;B4

+ {belt2_ready_for_arm2}!unit;

{belt2_ready_for_arm2}?unit;...);B5

where clearly B2 is the behaviour of the robot (arm). Concerning the be-

haviour of the conveyor belt, we see (i) from B4 that it initially asks for a

blank, (ii) from B5 that it then repeatedly moves the belt before asking for

another blank. This convinces us that the desired safety property holds.

For a more comprehensive account of how our system can be used for val-

idating purposes, see [16] which examines another program for controlling

the Karlsruhe production cell. This program is developed [22] via formal

methods, but nevertheless an examination of its behaviour revealed an ini-

tialisation error.

8 Conclusion

In this paper we have described a system (available over the Internet) for

extracting communication behaviours from CML programs. Clearly the

28

Interpretation of inferred behaviour:

...;unit chan {belt2_start};...;unit chan {belt2_ready_for_arm2};

...;B0;spawn B1;...;spawn B3;B0;spawn (B4;B5);spawn B2;B0

Interpretation of type/behaviour variables:

B0 `means' spawn ...

B1 `means' ...;B1

B2 `means' ...;

({belt2_ready_for_arm2}?unit;...;

{belt2_ready_for_arm2}!unit;B2

+ ...;B2)

B3 `means' B6;...;B6;...;B3

B4 `means' {belt2_ready_for_arm2}!unit;

{belt2_ready_for_arm2}?unit

B5 `means' {belt2_start}!unit;...;

(...;B4

+ {belt2_ready_for_arm2}!unit;

{belt2_ready_for_arm2}?unit;...);B5

B6 `means' B0;...

Figure 4: Checking for blank collisions.

development of such a system is an open-ended story; it would, for example,

be quite useful to extend the analysis with control
ow analysis [7] (so as

to exploit contexts in the form of call strings) and constant propagation

(for tracking constants sent over channels) etc. However, by studying a

case study we demonstrated that already the present system is useful for

analysing reactive systems written in CML.

The development of the system was based on a formal system for assigning

behaviours to CML programs. We then transformed it into an algorithm

for inferring these behaviours automatically. In a sense this is all what is

needed for the theoretical development, but to present a useful tool we had

to combat (1) the size of the output presented to the user, and (2) the time

taken to produce that output. Sections 5 and 6 gave an overview of the

rather extensive set of techniques needed in order to overcome (1). The

system itself is written in Moscow ML
11

(a variant of SML) and also quite

some programming, using e�cient data structures, was needed to overcome

11The Moscow ML home page is http://www.dina.kvl.dk/~sestoft/mosml.html.

29

(2): initially the example displayed here took hours to analyse, whereas now

it takes only seconds. One lesson learned is that (1) and (2) are closely

related in that the techniques used to reduce the size of the output (mainly

the constraints) also bene�ts the overall running time: indeed the \optimal"

placement of the constraint simpli�cation steps (Sect. 4.1) have required

some experimentation.

We believe that the insights presented here should enable the development

of similar systems, for other programming languages and other choices of

relevant behaviour, and hope to explore this possibility in our future work.

Acknowledgements. We wish to thank Hans Rischel for drawing our

attention to the problem of validating a CML implementation of the pro-

duction cell. Kirsten L.S. Gasser developed the \front end" of our system:

a parser for CML and a translator into our intermediate language. The

CML program, used as a running example throughout this paper, was writ-

ten by Peter Andersen, Anette Christensen, Henning Jeh�j, Jacob Grydholt

Jensen, Tina Olesen, and Jan-Henrik Paulsen.

This research has been supported in part by the DART (Danish Science

Research Council) and LOMAPS (ESPRIT BRA 8130) projects.

References

[1] Torben Amtoft and Flemming Nielson and Hanne Riis Nielson and

J�urgen Ammann: Polymorphic subtypes for e�ect analysis: the dy-

namic semantics. In Analysis and Veri�cation of Multiple-Agent Lan-

guages, pages 172{206, SLNCS 1192, 1997.

[2] Torben Amtoft and Flemming Nielson and Hanne Riis Nielson: Type

and behaviour reconstruction for higher-order concurrent programs.

Journal of Functional Programming, 7(3):321{347, May 1997.

[3] Torben Amtoft and Flemming Nielson and Hanne Riis Nielson: Poly-

morphic subtyping for behaviour analysis. Version 1 is available from

file://ftp.daimi.aau.dk/pub/LOMAPS/LOMAPS-DAIMI-32.ps.Z.

[4] Peter Andersen and Anette Christensen and Henning Jeh�j and Ja-

cob Grydholt Jensen and Tina Olesen and Jan-Henrik Paulsen: Pro-

duktionsenheden i Concurrent ML. Student report, DAIMI, 1997 (in

Danish).

30

[5] You-Chin Fuh and Prateek Mishra: Polymorphic subtype inference:

Closing the theory-practice gap. In Proc. TAPSOFT '89. SLNCS 352,

1989.

[6] You-Chin Fuh and Prateek Mishra: Type inference with subtypes.

Theoretical Computer Science, 73, 1990.

[7] Kirsten L. Solberg Gasser and Flemming Nielson and Hanne Riis Niel-

son: Systematic realisation of control
ow analyses for CML. In Proc.

ICFP '97, pages 39{51, 1997.

[8] David Gries: The Science of Programming. Springer Verlag, 1981.

[9] Mark P. Jones: A theory of quali�ed types. In Proc. ESOP '92, pages

287{306. SLNCS 582, 1992.

[10] Pierre Jouvelot and David K. Gi�ord: Algebraic reconstruction of types

and e�ects. In Proc. POPL'91, pages 303{310. ACM Press, 1991.

[11] Claus Lewerentz and Thomas Lindner (editors): Formal development

of reactive systems; Case study Production cell. SLNCS 891, 1995.

[12] RobinMilner: A theory of type polymorphism in programming. Journal

of Computer Systems, 17:348{375, 1978.

[13] Robin Milner and Mads Tofte and Robert Harper: The de�nition of

Standard ML. MIT Press, 1990.

[14] Flemming Nielson and Hanne Riis Nielson: From CML to process

algebras. In Proc. CONCUR'93, SLNCS 715, 1993. Full version in

Theoretical Computer Science, 155:179{219, 1996.

[15] Flemming Nielson and Hanne Riis Nielson and Torben Amtoft: Poly-

morphic subtypes for e�ect analysis: the algorithm. In Analysis and

Veri�cation of Multiple-Agent Languages, pages 207{243, SLNCS 1192,

1997.

[16] Hanne Riis Nielson and Torben Amtoft and Flemming Nielson:

Behaviour analysis and safety conditions: a case study in CML.

Manuscript, 1997.

[17] Hanne Riis Nielson and Flemming Nielson: Higher-order concurrent

programs with �nite communication topology. In Proc. POPL'94, pages

84{97. ACM Press, 1994. Full version in [19].

31

[18] Hanne Riis Nielson and Flemming Nielson: Static and dynamic pro-

cessor allocation for higher-order concurrent languages. In Proc. TAP-

SOFT'95 (FASE), pages 590{604, SLNCS 915, 1995.

[19] Hanne Riis Nielson and Flemming Nielson. Communication analysis

for Concurrent ML. In ML with Concurrency: Design, Analysis, Im-

plementation and Application (editor: Flemming Nielson), Springer-

Verlag, 1996.

[20] Hanne Riis Nielson and Flemming Nielson and Torben Amtoft: Poly-

morphic subtypes for e�ect analysis: the static semantics. In Analysis

and Veri�cation of Multiple-Agent Languages, pages 141{171, SLNCS

1192, 1997.

[21] John H. Reppy: Concurrent ML: Design, application and semantics.

In Proc. Functional Programming, Concurrency, Simulation and Auto-

mated Reasoning, pages 165{198. SLNCS 693, 1993.

[22] Hans Rischel and Hongyan Sun: Design and prototyping of real-time

systems using CSP and CML. Euro-micro Real Time Workshop, 1997.

[23] J.A. Robinson: A machine-oriented logic based on the resolution prin-

ciple. Journal of the ACM, 12:23{41, 1965.

[24] Geo�rey S. Smith: Polymorphic inference with overloading and sub-

typing. In Proc. TAPSOFT '93, SLNCS 668, 1993. Also see: Principal

type schemes for functional programs with overloading and subtyping:

Science of Computer Programming 23, pp. 197{226, 1994.

[25] Jean-Pierre Talpin and Pierre Jouvelot: The type and e�ect discipline.

Information and Computation, 111, 1994. (A preliminary version ap-

peared in Proc. LICS '92, pages 162{173.)

[26] Yan-Mei Tang: Control
ow analysis by e�ect systems and abstract

interpretation. PhD thesis, Ecoles des Mines de Paris, 1994.

[27] Bent Thomsen, Lone Leth and Tsung-Min Kuo: FACILE|from Toy

to Tool. In ML with Concurrency: Design, Analysis, Implementation

and Application (editor: Flemming Nielson), Springer-Verlag, 1996.

32

