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A distributed system is one that stops you from getting any work done
when a machine you’ve never even heard of crashes.

— Leslie Lamport (Attributed)

Beware of bugs in the above code; I have only proved it correct, not tried it.

— Donald Knuth

There are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious deficiencies.

— C.A.R. Hoare
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Abstract

The thesis consists of six individual papers, where the present paper
contains the mandatory overview, while the remaining five papers are
found separately from the overview. The five papers can roughly be di-
vided into three areas of research, namely case studies, education, and
extensions to the CPN method.

The primary purpose of the PhD thesis is to study the pragmatics,
practical aspects, and intuition of CP-nets viewed as a formal method for
describing and reasoning about concurrent systems. The perspective of
pragmatics is our leitmotif, but at the same time in the context of CP-nets
it is a kind of hypothesis of this thesis. This overview paper summarises
the research conducted as an investigation of the hypothesis in the three
areas of case studies, education, and extensions.

The provoking claim of pragmatics should not be underestimated. In
the present overview of the thesis, the CPN method is compared with a
representative selection of formal methods. The graphics and simplicity of
semantics, yet generality and expressiveness of the language constructs,
essentially makes CP-nets a viable and attractive alternative to other
formal methods. Similar graphical formal methods, such as SDL and
Statecharts, typically have significantly more complicated semantics, or
are domain-specific languages.

The research conducted in this thesis, opens a new complex of prob-
lems. Firstly, to get wider acceptance of CP-nets in industry, it is im-
portant to identify fruitful areas for the effective introduction of the CPN
method. Secondly, it would be useful to identify a few extensions to the
CPN method inspired by specific domains for easier adaption in industry.
Thirdly, which analysis methods do future systems make use of?
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Overview

In this paper I provide the compulsory overview of the PhD work accomplished
throughout the past four years of research, with Kurt Jensen as supervisor. This
thesis constitutes six individual papers, one of which is the present overview
paper. The remaining five papers are divided into the following research areas:
Two papers are case studies ([78] and [61]), one is related to educational issues
([21]), and two propose extensions to the CPN method ([20] and [14]). These
five papers are summarised in this overview, and they are published separately
as individual papers. They are included in the thesis without modifications
(with the exception of layout). Detailed publication information can be found
in Sect. 4.

1 Introduction

The title of this thesis suggests involvement of a number of different topics. The
main topic is, of course, Coloured Petri Nets as the primary research area. (The
term Coloured Petri Nets is henceforth abbreviated as CP-nets or CPN.) Our
application domain is distributed systems which is partly chosen due to the case
studies carried out during the PhD, and partly due to the fact that CPN is a
suitable language for describing distributed systems. We explain this claim in
Sect. 2 below. Viewed as a method for developing systems, CP-nets support the
development process on many levels. In the present thesis we limit ourselves to
the claim that CP-nets support the two activities of design and analysis (the
latter here meaning reasoning about properties). Although a full development
method must support many other activities it is, in our opinion, design and
analysis which are the more challenging and important. In our case studies it
has been the design and analysis activities which have been prevailing.

The important perspective of this thesis is to regard CP-nets as a formal
method with emphasis on pragmatics. We use the term of pragmatics in the
sense of something being practicable, with emphasis on usefulness and suitabil-
ity. In fact, the perspective of pragmatism is central to this thesis — a provoca-
tive hypothesis, if one wishes. The title may also be interpreted as suggesting
that no other formal method promotes pragmatism, which obviously would be
likely to be unfair. However, with the title we wish to indicate that CP-nets
are potentially more focused on pragmatism than most other commonly known
formal methods. We want to emphasise, throughout this thesis, that CP-nets
indeed is a practically applicable visual language, a formal method, suitable for
describing and reasoning about concurrent systems.

In the following sections of this introduction we explain the central concepts
which constitute the title, and describe the structure of the remaining thesis.

1.1 Coloured Petri Nets

CP-nets was in 1979 formulated by Kurt Jensen [53, 54, 55, 56], and is a
graphical oriented general purpose language useful for specifying, designing,
and analysing concurrent systems. CP-nets are derived from Genrich and



Lautenbach’s Predicate/Transition Nets [35, 34] which are a generalisation of
Condition/Event Nets and Place/Transition nets. Condition/Event Nets were
founded by Carl Adam Petri with his PhD thesis “Kommunikation mit Auto-
maten” in 1962 [84]. With Petri’s thesis it was the first time a general theory
for discrete concurrent systems was formulated. The formal model of Petri Nets
is a generalisation of automata theory such that the concept of concurrently
occurring events can be expressed in a simple but powerful framework. The
semantics of Petri Nets is mathematically defined, and Petri Nets have the ad-
vantage of being executable. For general access to information on Petri Nets
and the community researching in Petri Nets, see the Petri Nets home-page on
the World-Wide Web [117] (currently maintained and moderated by the author
under the auspices of the Petri Nets steering committee). Additionally, there
exists a number of introductory articles and books on Petri Nets [79, 92].

The syntactical elements of CP-nets are essentially places, transitions, arcs,
and inscriptions. Only the latter is textual while the rest are graphical elements.
See Fig. 1 for an overview of these elements. Places are drawn as ellipses and

[Guard inscription]

Colour set Colour set

Input Arc inscription Transition | Arcinscription Output
place place

Initial marking

Figure 1: The elements of Coloured Petri Nets.

represent a kind of containers which may contain multi-sets of elements (tokens)
of some specified type (colour set). The collection of tokens on the places in a
CPN model determine, at any time, the state of the given system. Transitions
are drawn as rectangles and represent possible actions. The arcs represent the
relation between places and transitions, and determine how a state changes
when an action occurs. The arc inscriptions, which are functions, are used to
determine the quantity of tokens moved between states. The role of guards is
to filter and restrict possible action occurrences. Possible actions not in conflict
may occur concurrently, and occurrences happen instantaneously, i.e., as atomic
actions. Colour sets are types on places, and initial markings determine the
initial configuration/state of a CP-net. Finally, CP-nets include support for
large-scale modelling by means of hierarchical decomposition (of transitions).
As can be seen, the elements of CP-nets are few and the concepts simple, and it
is therefore not surprising that the basics of CP-nets can be taught in a matter of
hours. Using and applying CP-nets in projects is a different matter. Experience
shows that 1-2 weeks of training is necessary before users can apply CP-nets
in non-trivial projects. Because of this, CP-nets have become widely known
and have been applied in many domains. Typical application areas of CP-nets
include, but are not limited to, protocols, VLSI, embedded, and distributed
systems. The CPN research group at University of Aarhus has a World-Wide
Web page with information on current activities in the field of CP-nets [114].
The popularity of CP-nets is also due to serious and industrial minded
tool support. Design/CPN [57] is a tool which supports CP-nets, and is now
maintained and developed by the CPN research group at University of Aarhus.
Formerly, Design/CPN was developed chiefly in an industrial setting at Meta



Software Corporation, Massachusetts in close cooperation with researchers at
University of Aarhus. A lot of information about Design/CPN exists on the
World-Wide Web [115].

1.2 Formal Methods

In essence, formal methods denote the application of mathematical approaches
to software/hardware development activities such as specification, design, vali-
dation, verification, and implementation. Thus formal methods, being charac-
terised by mathematical techniques, provide a rigorous foundation to systems
development. Based on mathematics, we can expect that a formal method sup-
ports an unambiguous and abstract approach of talking and reasoning about
systems. In spite that prejudiced opinions consider formal methods rarely ap-
plicable, they are just beginning to become more wide-spread in industry. This
change has happened especially during the past few years. Formal methods are
typically introduced in the development process where critical conditions arise,
such as safety- or life-critical systems, and where systematic testing is difficult.
Typical examples of formal methods constitute VDM, the Z notation, RAISE,
and LOTOS. There are many general introductions to formal methods some of
them being [113, 43, 7], and with an industrial perspective in [8]. On the World-
Wide Web there also exists important resources on formal methods [6, 116].

1.3 Design and Analysis

In this work we use a somewhat broad meaning of the concept of design. We
consider design to cover activities which, by some techniques and methods, have
the purpose of making a representation of a system in question, typically by
means of a kind of computer based language. The system in question, also called
a referent or target system, may be concrete or just an idea. A design captures
some aspects of the referent system while abstracting away others, and often
has a specific viewpoint in mind, for instance analysis of some in advance known
or required properties. A design can be used for several purposes. Some of the
more commonly encountered are implementation and analysis. Implementation
is a result of using the design as a recipe.

In this work we consider analysis to be the effort of obtaining answers to
questions about the behaviour of a design or system. We consider validation to
be the sub-activity of trying to convince others (and yourself) of sound behaviour
of the system, and we consider verification to be the sub-activity of proving
rigorously that a formal design has a formally stated property. Verification
has two prevailing approaches, namely model checking and theorem proving.
Model checking involves exhaustively checking that a property holds in a finite
representation of the design, such as a state space. Although a system may
have infinitely many states, reduction techniques may be used to create a finite
representation. Theorem proving involves automatic or semi-automatic proof
search. Analysis has the goal of gaining insight and confidence in aspects of
behaviour of the design.



1.4 Distributed Systems

The application domain, which is referred to in the title of the thesis, is dis-
tributed systems. It turns out that CP-nets are well-suited for describing es-
sential characteristics found in typical distributed systems. What characterises
distributed systems is described in the following.

There exist many different instances of defining distributed systems, which
depend mostly on the point of view of research. For instance Tanenbaum [101],
who works with distributed operating systems, takes the users’ point of view:

“A distributed system is a collection of independent computers that
appear to the users of the system as a single computer.”

Interestingly in an earlier definition [100] it is additionally required that the
computers do not have shared memory.

It is typical that people working with distributed algorithms focus more
on correctness. For instance Lynch [68] uses the following definition which is
significantly more specific in terms than that of Tanenbaum:

“Distributed algorithms are algorithms designed to run on hardware
consisting of many interconnected processors. Pieces of a distributed
algorithm run concurrently and independently, each with only a lim-
ited amount of information. The algorithms are supposed to work
correctly, even if the individual processors and communication chan-
nels operate at different speeds and even if some of the components
fail.”

There are other books on distributed algorithms such as Tel [102]. More general
introductions to distributed systems exist [28, 24, 98]. One of the most general
definitions we have seen has been proposed by Garg [33]:

“Concurrent systems that consist of multiple computers connected
by a communication network are called distributed systems.”

We do not rely on a specific definition. Whether to require shared memory
or to demand no single point of failure is not of our concern in this thesis.
However, the point is to get a general impression on distributed systems by
the above definitions, and it is important to note that the general aspects of
distributed systems typically include concurrency and communication between
processes (implying protocols).

1.5 Structure of the Overview

The remainder of this paper, the thesis overview, is structured as follows: Below
we proceed with topical issues in Sect. 2, where we put our work in a general
perspective and discuss current issues related to CP-nets. Related work in
general, i.e., in the context of the thesis title, is provided in Sect. 3. Then
Sect. 4 summarises the main contributions of the individual papers constituting
the thesis, and finally concluding remarks are provided in Sect. 5.



2 Topical Issues

In this section we put our work in a general perspective and discuss the current
complex of problems in the context of the main theme of this thesis, i.e., CP-nets
viewed as a pragmatic formal method.

CP-nets can be considered as a formal method because CP-nets have a formal
definition and therefore have roots in mathematics. The CPN method has
adapted a number of techniques for reasoning about systems, such as model
checking in the instance of state spaces and theorem proving in the instance
of linear invariants. As a description method, CP-nets offer mainly the simple
elements and concepts as described in the previous introduction section. For an
overview of CP-nets applied as a formal method see, e.g., Jensen’s books [54,
55, 56], in particular volume 3.

The success criteria of a formal method in academics differ from those in
industry. CP-nets are already widely accepted within the Petri Nets research
community, while CP-nets are only beginning to be more seriously recognised
in industry. (However, CP-nets are one of the most applied kinds of Petri Nets
among practitioners.) In spite of many successful case studies with CP-nets in
industrial settings, we are still faced with prejudiced opinions towards formal
methods as such [43, 7]. General awareness education on formal methods [26]
and guidance for choosing the appropriate formal method are topical issues [8].
Another important factor for more permanent success of a formal method in
industry is standardisation. SDL [96], wide-spread in the telecommunications
industry, is a recommended telecommunication standard. Exactly with this in
mind, some people in the Petri Nets community are currently working on a
standard for high-level Petri Nets. For more information see the Petri Nets
World-Wide Web [117].

Does the CPN method really keep its promises regarding the claim of prag-
matism? Again by referring to Jensen’s book [56] there is strong evidence that
CP-nets are sufficiently applicable for many different purposes. However, some
difficulties have been identified based on the experience gained from case stud-
ies. As a result there are a number of suggestions for language extensions such
as object-oriented Petri Nets [63, 2, 3] and specific constructions [64, 16]. Two
of the papers in this thesis also propose extensions, namely a language extension
in [20] and an analysis extension in [14]. The pragmatism of CP-nets is espe-
cially interesting to study in the context of teaching. Are students in general
able to grasp the basic concepts and apply the CPN method? The paper in [21]
discusses educational issues in a specific undergraduate course.

It has been discussed, for some time now, why, and if, graphical languages
(also referred to as visual or diagrammatic languages) are useful or better than
sentential languages such as purely textual languages. Due to the lack of precise
definitions of the visual nature of languages, the research in this area is largely
based on empirical studies, unfortunately sometimes disappearing in noise due
to poor argumentation. Some of the more serious work on assessing graph-
ical languages indicate that graphics and diagrams may not be as accessible
as textual representation as currently considered [83]. Even empirical research
on comparing Petri Nets and textual representations has been accomplished
putting Petri Nets in a new perspective [76, 39]. The results may be different
for the case of CP-nets due to the possibility of making more succinct repre-
sentations. Usually the general conclusions are, that although the accessibility



of graphical representations are criticised, users still see more possibilities in
graphics, typically due to more flexibility with respect to perceptual cues [112].
In this thesis we have a few comments on the usability of CP-nets as a graphical
language in relation with teaching in [21].

Are CP-nets, and formal methods in general, applicable everywhere or should
one choose projects with more care? The world is not a formal system. There-
fore we should not expect CP-nets to be able to describe every aspect of the
world. In fact, no formal method claims to be a panacea, but is usually spe-
cialised to effectively treat its own niche. For instance, SDL [96] is specialised
for the telecommunications industry. However, CP-nets are not as domain spe-
cific as SDL. The target systems for CP-nets are usually simply expected to be
concurrent discrete event systems. Thus we can expect, e.g., that chaotic, highly
dynamic, fuzzy systems, such as human social processes, are inappropriate tar-
get domains for CP-nets. Success in industry relies on gradual introduction of
formal methods as a supplement to existing practices as a tool to handle critical
aspects of systems, while emphasising the pragmatics of formal methods.

The target domain we treat in this thesis is distributed systems. In the
introduction (Sect. 1) we identified the characteristics of distributed systems,
namely that they typically include concurrency and communication between
processes. CP-nets are generally considered to be appropriate for describing
concurrency and protocols which are inevitable in computer communication.
Reisig and his research group are currently very active in the design and analysis
of distributed algorithms by means of (high-level) Petri Nets [111]. This group
is mainly focused on theorem proving techniques, such as linear invariants and
partial order methods, in the verification of Petri Nets designs.

We have now provided sufficient introduction of concepts and a general
overview of topical issues in order to proceed with related work below, and in
particular the summary of the five papers constituting the body of this thesis.

3 Related Work in General

In this section we emphasise other research activities which are related to the
theme of the present thesis, namely design and analysis of distributed systems
with formal methods. For a complete overview of formal methods, see the
World-Wide Web page assembled by Bowen [6].

There are many formal methods for various purposes, some even developed
and used in industry. The most widely known formal methods are VDM (Vienna
Development Method) [59], the Z notation [99], RAISE (Rigorous Approach to
Industrial Software Engineering) [80], LOTOS (Language of Temporal Ordering
Specifications) [108], and Larch [41]. VDM and Z are both based on sequential
languages while LOTOS and RAISE include concurrency, and otherwise com-
bine a number of methods. For instance, RAISE attempt to combine, among
other methods, VDM and CSP. There are also temporal logic formal methods
such as TL [70] and TLA [66] (thus putting into perspective our temporal logic
paper in [14]). None of these are based on graphical languages. We comment
on two graphical languages below, namely SDL and Statecharts.

SDL (Specification and Description Language) [96] is a general purpose con-
current language for describing communication systems. However it is most
commonly know in relation to the telecommunications industry. The basic be-



havioural model is that of communicating processes each represented by an
Extended State Machine. Communication is signal oriented, and is handled
by means of message queues. SDL share some concepts with CP-nets such as
states and transitions, which are graphically represented, but SDL lacks hi-
erarchy structure. An advantage of SDL is that it has a standardised static
and dynamic semantics recommended within the auspices of the International
Telecommunication Union (ITU). While CP-nets have rather few language con-
structs, the language of SDL is very rich and complex. As a result, SDL does
not share the popular verification methods of CP-nets such as linear invariants.
However, many attempts of translating SDL into different kinds of Petri Nets
has been accomplished, as described in Sect. 4.1 (under related work). Other
telecommunications formal methods are Estelle and LOTOS which both are
international standards within ISO.

Statecharts [44] by Harel is in the family of synchronous graphical concur-
rent languages. The processes of Statecharts are finite state machines which can
broadcast and receive messages to and from the surrounding environment. As
CP-nets, Statecharts incorporates hierarchy, but this is on the level of processes.
CP-nets are not inherently synchronous and have much simpler semantics than
Statecharts. In fact, Harel [44] speaks highly about Petri Nets and recommends
that hierarchies should be introduced into Petri Nets. In other work by Harel [45]
he opts for visual formalisms. They must be formal because diagrams are ma-
nipulated and analysed by computers, and must be visual because diagrams are
created by and communicated among humans. Harel indicates that diagrams
are a very suitable medium for the visual perception system of humans. There
are other synchronous languages very similar to Statecharts. Argos [71] is in-
spired by Statecharts and they share many features: both are graphical and
synchronous languages. Related synchronous languages are Esterel, Lustre, and
Signal although not inherently graphical as Statecharts.

There are quite a lot of people doing research on the design and analysis of
distributed systems, but only few where Petri Nets are a central ingredient. In
Sect. 2 we referred to the work of Reisig et al. [111], where they concentrate on
partial order techniques and fairness properties of distributed algorithms. Par-
tial order techniques are used with the purpose of causal reasoning. A different
aspect, of verification can be found in a recent book by Shatz on distributed
software, where Petri Nets are used to reason about Ada tasking programs [98].
Although referring to high-level Petri Nets, he never seriously considers this
family of nets.

There are many other domains where Petri Nets have been applied. Some
recent books have been published about other specific domains where Petri
Nets are the main tool. Silva et al. have written a book on the manufacturing
domain [27], and Balbo et al. on performance analysis with stochastic Petri
Nets [72]. In general, for a comprehensive overview of the activities in the Petri
Nets community there is plenty information on the World-Wide Web [117].

4 Contributions

In this section an overview of the work done and results achieved during the
course of my PhD research efforts is provided. The overview is based on the
original papers, which are published separately. Apart from the present paper,



five other individual papers constitute the PhD thesis. The five papers are
grouped as follows:

Case Studies

o Title: “Modelling the Work Flow of a Nuclear Waste Management
Program”
Publication information: Proceedings of the 15th International
Conference on Application and Theory of Petri Nets, Zaragoza, Spa-
in, June 1994 [77].
Thesis part: DAIMI PB - 518 ([78])

e Title: “Modelling and Analysis of Distributed Program Execution
in BETA Using Coloured Petri Nets”
Publication information: Proceedings of the 17th International
Conference on Application and Theory of Petri Nets, Osaka, Japan,
June 1996 [60].
Thesis part: DAIMI PB - 513 ([61])

Education

e Title: “Teaching Coloured Petri Nets — a Gentle Introduction to
Formal Methods in a Distributed Systems Course”
Publication information: To appear in the conference proceedings
of the 18th International Conference on Application and Theory of
Petri Nets, Toulouse, France, June 1997 [19].
Thesis part: DAIMI PB - 520 ([21])

Extensions

e Title: “Parametrisation of Coloured Petri Nets”
Publication information: Technical report, University of Aarhus,
1997 [20].
Thesis part: DAIMI PB - 521 ([20])

e Title: “Model Checking Coloured Petri Nets Exploiting Strongly
Connected Components”
Publication information: International Workshop on Discrete Ev-
ent Systems, Edinburgh, Scotland, UK, August 1996 [13].
Thesis part: DAIMI PB - 519 ([14])

The latter two extension papers are respectively a language extension and ex-
tension of analysis methods.

4.1 Work-Flow Modelling [77]

This section treats the paper “Modelling the Work Flow of a Nuclear Waste
Management Program” which is written in cooperation with V. Pinci, Meta
Software Corporation, Mass., USA. As part of this thesis, the full paper can be
found in [78].



4.1.1 Summary of Paper

This paper is about a project I was involved in while working at Meta Soft-
ware Corporation (Meta), Boston, USA in 1991. The project is concerned with
the disposal of nuclear waste in USA. Nuclear power plants produce, as a by-
product, nuclear waste. This kind of waste is one of the most lethal poisons
produced by mankind and needs to be isolated from human beings for 10,000
years. Currently there are only a few permanent storage places for nuclear
waste, and waste is therefore kept at the plants themselves. As local storage
place is limited there is an increasing interest and urge to find more stable and
permanent storage sites for nuclear waste. A problem description similar to this
periodically shows up in the news media.

The project at Meta had the purpose of studying and improving a proposed
work-flow model of a nuclear waste management system which had the task
of permanent disposal of nuclear waste in a geological repository. The system
is essentially a large project organisation. The original model was provided to
us in the form of a large number of IDEF0 diagrams.! Our task was then to
translate the IDEF0 model into a CPN model. The motivation for doing the
translation was due to the fact that IDEF0 models cannot be executed, while
this is the case for CPN models. The IDEF0 model was rather complex — it
consisted of 116 diagram pages, which represented the highly distributed nuclear
waste management system. Therefore the engineers of the IDEF0 model were
interested in investigating the dynamic behaviour of their work-flow model by
means of a formal method, in this case CP-nets. This is interesting because
IDEF0 and CP-nets have a number of striking similarities, such as the graphic
elements and hierarchy structure.

4.1.2 Results Achieved and Assessment of Methods Applied

The IDEFO0 standard describes a diagram syntax and informal semantics. How-
ever, the semantics is not based on a formal model but rather on the interpreta-
tion of diagram symbols. The standard explicitly notes that the diagram itself
is not sufficient in all cases; the standard gives examples of commonly occur-
ring diagram constructions which have ambiguous interpretations. Therefore,
the standard recommends additional explanation in the form of textual descrip-
tions written in the human language. It is thus clear that there does not exist
a general algorithm for executing (simulating) IDEF0 diagrams.

The task of Meta, who had the CPN modelling expertise, was to translate
the IDEFO model of the nuclear waste management system into a CPN model
with the goal of simulation. For this purpose we used an ad hoc method for
translation. The method is semi-automatic where the IDEF0 model first is
automatically translated into a CPN model without inscriptions, which then
were completed manually with inscriptions by us. The inscriptions would, of
course, depend on the elaborate descriptions by the IDEF0 modellers.

How would we present the simulation results to the IDEFO modellers? Again
an ad hoc method was developed which basically consisted of time-event dia-

'IDEFO (Integration DEFinition language 0) is a standard in USA (National Institute of
Standards and Technology in USA), and is widely spread in governments and companies.
IDEFO0 is based on SADT (Structured Analysis and Design Technique), which is the more
common notion in Europe.



grams; a graphical representation where time is mapped on one axis and IDEF0
function activities on the other.

The idea of translating IDEF0 models into CPN models with the purpose of
execution and animation is a classical example of applying a formal method to
an informal domain. The IDEF0 modellers wanted to investigate the dynamic
behaviour of the work-flow in the nuclear waste management system. Avail-
able technology did not allow simulation of IDEF0 models directly, thus they
determined to use other means. They discovered that the CPN language in
appearance is very similar to IDEF0 and, on top of that, CPN has a formal
semantics and tool support for simulation and animation. Therefore IDEF0
and CPN appeared to be a promising combination. Previous case studies had
already made a proof of concept for the viability of the method, see [85] and [97].
Indeed the method proved to be useful in this project also.

There are also critics of combining IDEF0 with CPN — in fact with any for-
mal method. Part of the IDEF(0 community expresses the opinion that IDEF0
being open for multiple interpretations is exactly its strength. By using formal
methods to resolve the ambiguities and thus enforcing a specific interpretation
may suppress important aspects of an IDEF0 model. Indeed this is an under-
standable argument.

During the project we experienced that animation of the nuclear waste man-
agement system was important for the communication of behaviour with the
IDEFO engineers. Finding the right way to express the behaviour of the system
in a graphical fashion was essential, and once an agreeable graphical notation
was established the IDEF0 engineers would be able to react on whether or not
the behaviour appeared as expected. Once simulating the work-flow the IDEF0
engineers never needed to look at the CPN model. Thus they did not need to
learn using a new modelling language.

A weakness of using IDEF0 and CPN as a method is related to the inflexibil-
ity of keeping consistency in relation with the semi-automatic translation which
was described above. Naturally the simulation and animation revealed many
errors. Some were due to bugs in the CPN model itself, and they were easy to
fix, thus removed immediately. Yet others were due to design errors and thus re-
quired changes to the IDEF0 model. Unfortunately, if a change was made in the
IDEFO0 model then we would have to redo the semi-automatic translation step
again for those parts changed — a fairly laborious task even for local changes.
However, most of the moderate changes needed only attention in the enclosed
textual descriptions of the IDEF0 model — only few demanded changes in the
graphics which triggered the need for redoing the semi-automatic translation.

In general there is a mismatch problem in case there is semi-automatic trans-
lation between two tools that are not integrated. In our case we needed an
alternative which could be an enrichment of the IDEFO0 tool. One possibility
could be to add CPN elements in the IDEFO0 tool, thus making all manual work
there and then making a fully automatic translation to the CPN tool. On the
other hand this would likely require some CPN skills of the IDEF0 modellers,
which in this case would be a disadvantage.

Consisting of 116 pages the model of the nuclear waste management system
was one of the largest seen in relation with CP-nets (actually any kind of Petri
Nets). As a result we had an opportunity for exercising currently available tools
and modelling techniques on a large scale case study. Due to the size of the
model we were forced to split the model into a number of modules, and before
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simulation the code was linked together. This was done manually. Another
technique we desired was simple parametrisation of the model with values in
connection with configuration and initialisation before simulation. Again this
was done manually by building a special purpose CPN sub-model for loading
configuration files used for the initialisation. Techniques and tools for module
library handling and parametrisation would have made our work more efficient
and less error prone.

4.1.3 Related Work

During our work with the manual translation phase to an executable CPN
model, i.e., the work on making inscriptions, we learned more about the possibil-
ity of making this translation fully automatic for the case of work-flow models.
Working with a lot of different cases gave us a better understanding in the di-
rection of automation. This was again due to the size of the model. During the
past few years Meta has developed tool support for work-flow analysis where
restricted classes of IDEF0 models are translated fully automatically either to
CP-nets or other executable representations in order to do further analysis or
animation. Work-flow analysis has over the years become increasingly popu-
lar in industry and government institutions. Many case studies, such as the
one presented here, have helped to build knowledge and support in the area of
work-flow analysis.

There are other visual languages than IDEF0 which share similarities with
CP-nets. One of them is SDL. The first standard was SDL’88 [95] which then
later was extended with object-oriented concepts resulting in OSDL also called
SDL’92 [96]. Both the graphical notation and the ideas behind the semantics are,
in some respects, similar to CP-nets. However, SDL lacks many of the popular
analysis methods of CP-nets such as linear invariants. Thus, there has been
some research on translating SDL to variants of Petri Nets [25, 31, 23, 62, 49].
In [31] the authors identify a number of extensions to PT-nets (SDL Time nets)
needed in order to make a fully automatic translation. One problem is due to
infinite message queues in SDL, another is about representation of time and
timers in SDL. (The problems disappear if CP-nets are used instead of Petri
Nets.) The authors of [31] have the viewpoint that the user never needs to
look at Petri Nets. Errors discovered when analysing Petri Nets are presented
as errors in the SDL representation. This is a great advantage as this means
that the user can apply the analysis methods of Petri Nets without learning
new languages and methods. A similar approach is taken in [49] with the tool
EMMA [50], except that they use Predicate/Transition Nets [35, 34] and the
analysis tool PROD [110].

4.1.4 Future Work

Current work at Meta, related to work-flow and IDEFO, is directed towards
their automatic work-flow analysis tool and interfacing with existing commercial
analysis and animation packages for work-flow. In general the area of work-flow
analysis and business re-engineering activities in industry are currently popular.
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4.2 Protocol Modelling and Analysis [60]

This section treats the paper “Modelling and Analysis of Distributed Program
Execution in BETA Using Coloured Petri Nets” which is written in cooperation
with J.B. Jgrgensen, University of Aarhus. A.V. Sousa contributed to previous
stages of this work. As part of this thesis, the full paper can be found in [61].

4.2.1 Summary of Paper

CP-nets have many case studies within modelling and analysis of communica-
tion protocols [56, 5, 4]. It was therefore natural to apply CP-nets on a new
protocol developed at our department of computer science. The goal was to
model the communication protocol used in an object-oriented framework for
distributed program execution which is part of the Mjglner BETA system [69].
The framework consists of an implementation in BETA and a number of papers
explaining the general design [9]. Prior to this project, there had not been any
attempts to analyse the framework with formal methods. Therefore the goal
was to build a CPN model of the framework and then validate and verify a
number of properties.

We chose to model the protocol from the viewpoint of threads (light-weight
processes). This was due to the fact that threads induce the main flow of control
in the protocol and that threads are competing for shared resources. It was thus
interesting to investigate properties such as liveness and safety in relation with
threads. The model was built based on an existing implementation, i.e., in a
reverse engineering fashion. The protocol designer acted as a consultant for
conceptual issues. It was interesting to observe how the designer would benefit
from the application of a formal method such as CP-nets.

4.2.2 Results Achieved and Assessment of Methods Applied

It was from the beginning clear that the protocol was too complicated for the
analysis methods and tools if no restrictions and assumptions were made about
the protocol. We were not so worried about simulation, which rarely takes
up many computational resources. The concern was related to already known
experience with using the verification methods of state spaces and linear place
invariants (henceforth invariants in short) [55]. Both are known to be infeasible
in some cases depending of the complexity and nature of the CPN model in
question. Therefore we used a number of techniques from the beginning of the
modelling process to reduce the complexity of the CPN model. The standard
tricks are to make appropriate assumptions about the world, and to limit the
complexity of data-types and inscriptions. During the state space analysis stage
we applied net structural reduction techniques [42] which reduced the size of
the state spaces by a factor of two. Due to lack of tool support we did not
apply reduction techniques based on symmetries [55]. (However, today such
tool support exists.) The invariant tool [103] we used was very sensible to the
complexity of inscriptions, thus this imposed a limiting factor on the nature of
inscriptions feasible for the invariant method.

Using the state space method is one of the more intuitive and generally
accessible verification methods available. This method does not demand a lot
of knowledge on the formal model behind CP-nets, if any. As a result the state
space method begins to gain increasing popularity in industry where Petri Nets
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and other formal methods are far from general knowledge. As a research topic
the state space method, or more generally model checking, is a very active area.
The result is an abundance of papers, tools, and experience.

In the protocol project we used state spaces to verify a number of properties
which we claimed and required the CPN model of the protocol to have in ad-
vance. These properties were formulated in a functional language and verified
automatically in the state space tool [17] integrated with Design/CPN. In some
cases it is not even necessary to write down the properties in advance. A number
of standard Petri Nets properties may be derived (by the tool) without any need
for writing state space queries. For instance, dead markings can efficiently be
derived, especially when the SCC-graph (strongly connected component graph)
is taken into account. This and many other proof rules of Jensen [55] may be
used to derive useful properties for a given CPN model. In [14], part of this
thesis, we make the query language for state spaces even more user friendly by
introducing a temporal logic specially designed to be interpreted on state spaces
generated from CP-nets.

Apart from the state explosion problem another major drawback of the state
space method is the dependency on the initial marking. Before any state space
generation can be accomplished one must specify the starting configuration of
the given model. This means, that the properties we verify for a state space are
in general only true with respect to the specific initial marking configuration.
In spite of this, the state space method is still very useful — it may often be
the case that you are only interested in verifying properties for a number of
carefully selected initial system configurations.

The invariant method is significantly more demanding of the user in terms
of mathematical skills. This is in general an inherent problem in the area of
theorem proving methods. Therefore the demand for tool support is even more
relevant. In the protocol project we used a prototype tool supporting the ex-
ploration for and verification of linear invariants [55]. For the case of PT-nets,
invariants can be determined fully automatically. In fact a basis of all possible
invariants can be calculated for a given Petri Net model. However, for CP-nets
this is not practical in general. In fact, due to the generality of CPN inscrip-
tions, it is for some models an undecidable problem. Although all invariants
can be automatically generated they do not necessarily have an intuitive inter-
pretation in the original CPN model. For this reason the approach taken in
the Design/CPN invariant tool is based on a semi-automatic algorithm where
the user must supply some ideas on what could be an invariant. For practical
reasons a set of heuristics are used in order to develop a full invariant based
on partial information given by the user. Once an invariant is proposed by the
user, the tool verifies the invariant fully automatically.

Although invariants are more difficult to use than state spaces, the invariant
method has the great advantage of being independent of the system configura-
tion parameters (initial marking) — in theory. (The currently applied prototype
invariant tool uses a verification algorithm which is dependent on the colour sets
used. Thus the determined invariants are only valid within the ranges of the
specific colour sets.) Properties determined from invariants are general results
without relation with specific start configurations of the given CPN model. In
fact, the initial marking expression often is part of an invariant property as a
symbol. Another advantage is that the checking of invariants are independent
of the state space and thus the state explosion problem. Even though an in-
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variant property is an equation which must hold for all reachable markings, the
check can be made entirely in the structure of the CPN model in question. On
the negative side the general checking problem is undecidable, and for many
cases exponential, as it essentially deals with determining equality of lambda
expressions. These are derived from the inscriptions on arcs (and guards) in the
CP-nets [103].

Traditionally within the area of formal methods, and as used in this work,
analysis is considered to be the process of obtaining answers to questions about
the behaviour of a system or proving correctness. Unfortunately, analysis is
sometimes considered to be the process of looking for errors only, i.e., debugging.
Although we acknowledge that analysis is useful for debugging we believe that
gaining insight into behaviour and properties is just as important. In any case
the general purpose of analysis is to increase the confidence in the system in
question. In the protocol project, for instance, we used both the state space
and invariant methods to verify the same properties to increase our confidence
in the methods, and therefore indirectly in the system. There is, however, a
(philosophical) problem with this as it is the model we analyse — but does
the model appropriately reflect reality? This was also an issue in the protocol
project. Although the framework designer believed that our analysis of the
CPN model was correct it did not have significant influence on his confidence
in his design exactly because of the gap between model and implementation.
The designer did actually simplify his protocol design, but that was due to
increased insight into the behaviour than the discovery of errors. In fact, no
protocol design errors were identified during the analysis process, which in this
case would have been of high value for the designer.

4.2.3 Related Work

There is an abundance of literature on the validation and verification of pro-
tocols. Below we focus on a few of the approaches which are either topical or
somehow exhibit alternative methods for analysis of CP-nets.

Genrich and Shapiro [36] have conducted a rather advanced approach to
verification of an arbiter cascade (hardware). It is an instance of combining
theorem proving with model checking. The structure of the arbiter cascade is
uniquely determined by its depth which is again determined by an integer. Thus
for small integers the cascade is small, i.e., the state space is manageable. For
small depths they verify the cascade with the state space method, and they then
apply mathematical induction in order to verify the arbiter cascade for arbitrary
depths. Unfortunately, the class of such regular systems is rather small, and it
is therefore seldom that this specific method can be applied. However, for those
cases where the state space method can be combined with induction, we have
a powerful technique for verifying properties. The combination of the state
space method with induction is less likely to be limited by the state explosion
problem. (Standard induction over integers can be generalised to well-founded
induction. However, so far, we have not seen any instances of verification of Petri
Nets properties with well-founded induction.) Another related technique for
verifying parametrised systems is compositional state space analysis. Valmari
et al. uses this technique to verify the alternating bit protocol where the number
of retransmissions is a parameter [107].

A recent industrial protocol analysis project was one accomplished by Chris-
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tensen and Jergensen [18]. They used an intermediate presentation format
in their validation effort, namely message sequence charts [51] — a telecom-
munication standard for specifying and visualising communication patterns in
protocols. Thus the CPN designers could quickly use automatically generated
message sequence charts to show and discuss behaviour of different scenarios
without the need to expose the CPN representation to the engineers. Although
teaching the CP-net notation is relatively easy it is still more attractive to use
already well-known notations.

In another project by Rasmussen and Singh [91], a similar idea was used in
order to communicate behavioural information of a security system modelled
with CP-nets. Although the CPN method and tools have been more integrated
in the company in question, the authors used an already practised concept,
called mimic-boards, in order to make an interactive user interface and be-
haviour visualisation interface [90]. The graphical mimic-board could both be
used to show the current state of the model of the security system, and be used
to control the simulation of the underlying CPN model. As with the protocol
above [18], the mimic-board was used as customised feedback to abstract away
from the CPN representation.

Our main obstacle in the protocol project, as described in [61], was the state
explosion problem. We attempted to alleviate the problem by restricting the
behaviour by means of property preserving CPN structural reductions. There
exists a number of other state space reduction techniques where interesting prop-
erties are preserved. Some of these methods are reduction by equivalences [55]
and stubborn sets [106].

4.2.4 Future Work

Over the past few years we have seen a growing interest in combining model
checking and theorem proving methods. For CP-nets it could be useful to
investigate the combination of, e.g., the state space and invariant methods.
In general a combination of the state space method with theorem proving may
be helpful to alleviate the state explosion problem.

Tools are essential in the effort of maturing analysis methods. Todays po-
tential target systems being analysed are becoming increasingly complex as the
computational power of machines increases. Therefore, most interesting anal-
ysis methods require tool development. Likewise do the development of tools
push technology as the demand for speed and memory increases. Currently
the most limiting factor of the state space method is space complexity. Thus
we see a tendency towards more research activity around space efficient algo-
rithms. For instance, currently a typical state space generation implementation
can calculate many hundreds of nodes and arcs per second resulting in mem-
ory resource problems in only 1-2 hours. The most commonly known state
space reduction methods are symmetries by Jensen [55], stubborn sets by Val-
mari [106], and BDDs (binary decision diagrams [12]) applied by McMillan [74].
Although BDDs seem to be a successful state space representation for temporal
logic models of hardware systems, it is yet to be seen whether BDDs are efficient
and practicable representations for CP-nets.

Our protocol project [61] was also a case study of applying CP-nets as a
method — an investigation of the suitability of CP-nets applied to a protocol in
an object-oriented design of a framework for distributed executions. How well
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did CP-nets support the modelling process in such a scenario? The most obvious
obstacle was the problem of modelling an object-oriented design by means of
CP-nets, which is not inherently object-oriented. The result was to interpret the
object-oriented design from a different viewpoint, i.e., that of CP-nets, instead
of doing language simulation of objects and method calls (communication). We
determined that, for the protocol project, tool support for substitution places by
Huber et al. [48] and channels by Christensen and Hansen [16] would alleviate
the representation of objects and method calls respectively. In general it would
be of interest how the CPN method could be adapted and extended in order to
cope better with representing object-oriented and distributed systems. Object-
oriented Petri Nets have been studied in two recent workshops [2, 3].

Distributed systems and Petri Nets in combination have been studied by
many. However, we limit ourselves in the following to briefly consider recent
work by Reisig et al. [111] on modelling and verification of distributed algo-
rithms. The research investigates how to extend Petri Nets in order to provide
better support for modelling distributed algorithms, and develop analysis tech-
niques which are inspired by partial order methods. One of the extensions they
consider is related to the issue of modelling fairness. Petri Nets (and thus CP-
nets) do not support fairness primitives in the language itself and it is therefore
in some cases impractical to model fairness. For instance, in our protocol project
we wanted to ensure fairness among threads competing at the entrance of critical
regions. We did not find a natural and straight-forward solution ensuring fair-
ness among threads. In fact, the fairness solutions we considered were far away
from reality since they would have involved global constraints, such as queues
on every place. The work by Reisig et al. contributes a notion of fair transitions.
Transitions cannot be enabled infinitely often without occurring (see, e.g., [93]).
Clarke et al. [22] takes a different approach where fairness is enforced on the
(execution) paths considered in the state space in the context of model checking
temporal properties (expressed in CTL). Jensen [55] uses the strongly connected
component graph (SCC-graph) in order to determine fairness properties. Thus,
given the body of research efforts on fairness issues elsewhere, we suggest to
consider similar issues for CP-nets.

In the protocol project we experienced the gap between two different lan-
guages namely that of object-orientation in the design and that of CP-nets.
Another gap, which we were not exposed to, is the difficulty of going from
the CPN model to implementation. One approach is, of course, to make the
implementation by hand. This is an error-prone process because a human in-
terpretation is needed. Another possibility is automatic code generation. This
approach provides high reliability and saves programming resources. In fact,
as a spinoff from the security system project by Rasmussen and Singh [91], it
was determined in a pilot project that automatic code generation from CP-nets
was feasible. The code was transferred to a chip and subsequently executed.
However, performance was not acceptable, therefore current research is focused
on efficiency. In fact, recent improvements exhibit encouraging performance
results.

4.3 Teaching with Coloured Petri Nets [19]

This section treats the paper “Teaching Coloured Petri Nets — a Gentle Intro-
duction to Formal Methods in a Distributed Systems Course” which is written
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in cooperation with S. Christensen, University of Aarhus. As part of this thesis,
the full paper can be found in [21].

4.3.1 Summary of Paper

Teaching computer science topics on an advanced level is an interesting and
important challenge. It is interesting because the teaching process gives new
insight, and it is important because dissemination of knowledge is fundamental
to the academic community.

Distributed systems is a topic that has become increasingly prevalent during
the past decade, not only in academic circles but also in industry. Job adver-
tisements require knowledge on aspects of distributed systems. Thus teaching
computer science students about distributed systems has become of interest
and of necessity more than ever. During the past 10-15 years, research on dis-
tributed systems has become a very active field in computer science, and as a
result there is an abundance of published literature.

At the Computer Science Department (DAIMI), University of Aarhus, we
have provided a one-semester course on distributed systems for the past five
years (since 1993). As part of the course the students are required to undertake
two comprehensive project assignments. In the first assignment the students
design and validate three layers in a communication protocol for a distributed
system by means of CP-nets. In the second they implement their design in an
object-oriented language. Our roles in the course were, among other things, to
be responsible for the planning and execution of the two compulsory project
assignments.

The course is partly based on the second half of a textbook on operating
systems by Tanenbaum [100]. In that book his definition of a distributed system
is as follows:

“A distributed system is one that runs on a collection of machines
that do not have shared memory, yet looks to its users like a single
computer.”

A collection of machines implies a concurrent system, the lack of shared mem-
ory suggests communication, and communication implies protocols. CP-nets
is a well-suited technique for designing, validating, and verifying concurrent
systems and communication protocols. Therefore it was natural to start offer-
ing a computer science course with the combination of distributed systems and
CP-nets.

The primary goal of the course is to introduce basic concepts and techniques
for distributed systems. The concepts and techniques are illustrated by the dis-
tributed systems that the students use every day, such as file systems, printers,
and electronic mail — concepts they already know from using the workstations
at DAIMI. In the course the students are exposed to CP-nets as a practically
applicable formal method for designing and analysing distributed systems. This
is a supplement to the students’ background in formal methods which is mostly
on a theoretical level. CP-nets are used to illustrate and introduce concepts
encountered in Tanenbaum’s book in a gradual fashion.
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4.3.2 Results Achieved and Assessment of Methods Applied

Teaching involves a lot of different activities, the more essential being consider-
ations of which didactical methods that should be applied, i.e., considerations
such as how to convey the basic concepts efficiently, how to choose appropriate
project assignments, how to ensure training in applying and combining concepts
in problem solving, etc. In particular we are concerned with the two compul-
sory project assignments encountered in the course as these are the most difficult
and realistic application of CP-nets, as a formal method applied to a distributed
system.

As the compulsory project assignments are an important ingredient for
putting the major subjects of the course together, CP-nets and distributed
systems, we want to ensure some level of quality of the assignments posed. We
used the following criteria:

e The project assignment should exercise the concepts from the course text-
books.

e The project assignment should have a meaningful context.
e The project assignment should not be alienating.
e The project assignment should have industrial characteristics.

e The project assignment should be solvable within the given time frame,
but should at the same time be open to further work for the ambitious
and curious students.

In addition to this we also wish the project assignments to be reusable in the
sense that we can use variants of the assignments throughout several semesters
with only minor changes. A more detailed explanation of the criteria above can
be found in the paper in [21].

The criteria regarding the demand for industrial characteristics in the project
assignments should not be underestimated. A majority of the students at
DAIMI get jobs in systems engineering. It is of importance that the students
get realistic assignments in order to prepare them for such jobs. The students
should learn to make an approximate solution to an unsolvable problem. Some
possibilities are to make the formulation of the assignments intentionally in-
complete and ambiguous, to allow a wide range of very different solutions to
be acceptable, to implant unsolvable problems, and to imitate well-known real-
world distributed systems. For instance, the classical impossibility result of
consensus in distributed algorithms (see, e.g., Lynch [68]) is camouflaged in one
of the project assignments. Once the students realise the problem they must
determine an approximation.

Throughout the project assignments we observed that the students, in fact,
to a large extend successfully apply CP-nets on a larger non-trivial design prob-
lem in the project assignments. Using a graphical language such as CP-nets
often proves to be a helpful didactic method for introducing new concepts. Our
experience is that it is possible to start with CP-nets and teach the main prin-
ciples in a matter of a few hours, and CP-nets can thus be used very early in
an intuitive fashion to illustrate both static and dynamic aspects of systems.

Teaching with CP-nets yield a number of general concepts which can be
used to speak about distributed systems. For instance, CP-nets offer general
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concepts for concurrency, conflict, boundedness, liveness, deadlock, home prop-
erties, among others. The course provides the students with a general framework
for understanding the usefulness of applying formal methods to complex concur-
rent systems. Although CP-nets could be replaced with other formal methods,
only few offer the simplicity and pragmatics of CP-nets.

However, the most serious obstacle is how to efficiently apply CP-nets as a
technique for designing and analysing systems. As with other expressive com-
puter languages it takes time to combine and apply the elements of CP-nets
to structure complicated systems. It takes several weeks to master the CP-net
technique on a level where the students are able to apply CP-nets to problems
of the size of the project assignments.

4.3.3 Related Work

The successful diffusion of formal methods among computer scientists and en-
gineers depends, perhaps more than expected, on didactics in the context of
courses on computer science topics. It seems to be important that the prag-
matics of formal methods are taught early and it seems that one should not be
afraid of teaching selected topics from mathematics as a prerequisite and sup-
port. The recent book “Teaching and Learning Formal Methods” [26] contains a
number of papers illustrating the importance of teaching formal methods, both
to academics and industry.

Teaching CP-nets as a formal method to industry is only just beginning to
get attention. Two recent projects in industry, one with Dalcotech [91] the other
with B&O [18], have provided valuable experience with teaching CP-nets in an
industrial setting. For these two projects the participants from industry were
exposed to six days of CPN training. After that only regular technical meetings
were offered when needed, in order to ensure the continuation of the projects
in question. It can be discussed whether or not six days are a lot of training.
However, it seemed that it was sufficient to get the participants started for those
two projects.

Earlier work on teaching of Petri Nets exists in academics. In fact, we share
the opinions of Oberquelle [81] and Jantzen [52] that Place Transition nets (PT-
nets) are a useful language for explaining concepts on both the informal and the
rigorous level. However, the students are quickly faced with the limitations of
PT-nets because, even for toy examples, such as the Dining Philosophers, they
lack encoding facilities for data. CP-nets, and high-level nets in general, are
more applicable than PT-nets for visualising larger systems due to the abstrac-
tion facilities such as hierarchies and data types. Our experience is that it is
possible to use CP-nets as the starting point in teaching the elements of nets,
thus avoiding simpler and less succinct net-formalisms such as PT-nets.

4.3.4 Future Work

One issue is how much can be put into the syllabus of a course. Some topics, such
as simulation of CP-nets, depend crucially on tools and the power of computers.
As tools mature, the more advanced topics can and should be considered for
inclusion. Also, the faster the computers are and the more memory they have,
has a strong influence on what can be considered feasible topics. As an example,
during the period we have taught the course, the memory has doubled and the
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speed has quadrupled of our lab computers. As a result, the project assignments
have grown in size and complexity — without compromising feasibility. For the
future we consider including into the syllabus aspects of verification methods
such as the state space method — in fact elementary use of state spaces is
included in the current semester. The state space method can be used in an
easy fashion without requiring the user to conduct hard and error-prone manual
proofs, and is therefore a potential candidate for an easily accessible introduction
to verification. Other verification techniques with CP-nets are introduced in a
subsequent advanced course based on material in [55].

As part of the requirements of the project assignments the students must
document their work. We are considering to use a hyper-media tool developed
by the hyper-media group at DAIMI [40]. Design/CPN already supports com-
munication with the hyper-media tool which means that it is possible to create
a hyper-text where, e.g., there are links between CPN elements (such as places
and transitions), documentation (text), pictures, etc. In this way the students
can be exposed to state-of-the-art documentation techniques.

In Design/CPN a library supporting message sequence charts has been im-
plemented, which is a standardised notation prevalent in the telecommunications
industry [51]. Message sequence charts are graphical diagrams illustrating com-
munication patterns over time. It is our expectations that message sequence
charts can easily be used by the students in the project assignments. In this
way they also become familiar with another notation used in industry.

The improvement of the integration of the two parts of the course, distributed
systems and CP-nets, is an ongoing task. But we have gained useful experience
so far.

4.4 Parametrisation

This section treats the paper “Parametrisation of Coloured Petri Nets” which is
written in cooperation with S. Christensen, University of Aarhus. As part of this
thesis, the full paper can be found in [20]. The paper reflects the state-of-the-art
of parametrisation of CP-nets.

4.4.1 Summary of Paper

When we wish to make a computer representation of a large family of objects
of interest from the world around us, we can either choose to represent all in-
dividual objects or try making more efficient representations. The perspective
on a given problem has influence on the kind of efficiency needed. For instance,
space efficiency is often a concern. Different approaches exist for making efficient
representations — the one concerning us is parametrised representations. The
fundamental idea is to represent only a part common for all objects in a family
and characteristic holes of interest which later can be filled in. For instance,
flexible manufacturing cells in a bottling system could consist of an input buffer,
a transportation system, and a machine. We can imagine a parametrised repre-
sentation of a generic flexible manufacturing cell where, e.g., the machine would
be a parameter (the hole). Thus if we wish to have a packaging manufacturing
cell we just instantiate the generic manufacturing cell by inserting a packaging
machine into the hole.
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We propose a conceptual framework for parametrisation of CP-nets. It is a
first step towards the formulation and formalisation of Parametric CP-nets. We
identify and characterise three useful kinds of parametrisation, namely value,
type, and net structure parameters. While the two former kinds are simple to
design the latter kind is more complex, and in this context we describe how net
structure parametrisation naturally induces concepts like modules and scope
rules. The framework is applied to a non-trivial example from the domain of
flexible manufacturing. The example is in particular useful because it has many
similar components (manufacturing cells) which conveniently can illustrate the
use of the various kinds of parametrisation.

4.4.2 Results Achieved and Assessment of Methods Applied

As a result of studying a number of examples it appears that we can cover
many interesting cases with three different kinds of parametrisation, namely
value, type, and net-structure parameters. In addition we found it useful to
introduce runtime system parameters, which are parameters supplied by the
simulation engine at instantiation time.

The simplest parametrisation mechanism is using values such as integers,
strings, and other constants used in inscriptions of CP-nets. As we use Stan-
dard ML (SML) [104, 75] as inscription language in the Design/CPN tool, it
is possible to consider functions as values too. In SML, functions are treated
as first-class values. Examples of value parameters in a manufacturing system
could be the number of resources available determined by a parametrised initial
marking inscription, or time delay value parameters in arc inscriptions.

Parametrisation with types can, in fact, be made just as simple to handle as
value parameters. Just as with value parameters, a type parameter can appear
in any inscription where the syntactical category requires a type. One of the
interesting features of types is the concept of polymorphism. Thus introducing
type parameters implies polymorphic CPN models. Although there exists sev-
eral sub-classes of polymorphism, we only consider those supported by SML and
the given ML-compiler, namely, parametric and ad hoc polymorphism. Hence
inclusion polymorphism, as found in object-oriented languages, is not considered
in the framework.

Net structure parametrisation is relatively more complicated to handle, part-
ly due to the many possibilities to consider and choices which have to be made.
We have already made the choice to do parametrisation on the level of modules
as suggested above. The structuring mechanism of hierarchies in CP-nets is
accomplished via transitions, such that a (substitution) transition can repre-
sent another module. Likewise, we introduce net structure parametrisation via
transitions such that a transition can refer to any parametrised module which
fits a given signature determined by the parametrisation specification. Hence,
net structure parametrisation supplements hierarchies, and is considered as a
structuring mechanism on an equal footing.

The three kinds of parameters proposed above are user supplied. In the con-
ceptual framework we also propose parameters supplied by the runtime system
which, in this case, is the CPN simulation engine. We call this runtime system
parametrisation. For instance, the simulation time type is a runtime system
parameter. Simulating CPN models with time is in the Design/CPN tool cur-
rently supported for integers and reals. Thus the time type parameter may be
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used to make a CPN model which can handle both types.

Using external CPN model library modules induces the issue of what we
should do in the case of name clashes. Furthermore, in general there is the
issue of the visibility of names and where the boundaries of visibility must
be drawn. Such issues are handled by scope rules. Scope rules are therefore
a natural consequence of introducing parametrised modules in CP-nets. CP-
nets already contain scope rules, but only for the case of place fusion groups.
We introduce a generalised notion of scope rules which are inspired by the
hierarchical structure of CP-nets. Scope rules are generalised both for fusion
groups and name declarations.

4.4.3 Related Work

Chiola et al. [15] define a formal model for Parametric PT-nets. Their formal
model is restricted to parametrisation of initial markings, i.e., the parameters
are integers. The purpose of their paper is to compare the modelling power of
several variants of PT-nets within the framework of Parametric PT-nets. As
they formalise Parametric PT-nets we acknowledge that their work is in some
sense more rigorous compared with our framework which is informal. However,
we cannot, compare the results directly as both the purposes and net kinds are
different. Chiola et al. identifies that it is in some cases possible to reason about
net properties on the level of Parametric PT-nets, i.e., instead of analysing a
single system they analyse a family of systems. The family is determined by the
parametrised initial markings. One of the more interesting analysis methods
they consider is the invariant method.

Another Petri Nets language which supports parametrised representations is
the ExSpect framework [109]. This framework is interesting because it is related
with the CPN formalism and the framework supports the same three kinds of
parametrisation as in this work — in their terminology; functions, types, and
processors/subnets. However, the parametrisation concept is not built into the
ExSpect formalism, only in their tool. Like our work with parametrisation of
CP-nets, the ExSpect framework needs to formalise parametrisation in order
to get an unambiguous semantics. However, they already have the advantage
of having implemented parametrisation in their ExSpect tool — which we have
not. Additionally they have not made any work on analysing parametrised
ExSpect representations.

Some object-oriented languages have parametrisation capabilities. One of
these is BETA [69]. This language indirectly support parametrisation with a
language construct called virtual classes. It is a very general construct which is
also used for expressing other mechanisms than parametrisation. In a different
paper [82] an interesting idea of type substitution (a kind of genericity) is in-
troduced in object-oriented languages which then works as parametrisation. A
parametrised class can in this case be instantiated without the need to supply
parameters. The type names are already parameters and are thus already legal
types. We do not use this approach in parametrisation of CP-nets, although
it is possible in principle. One reason is that we are from the beginning influ-
enced by the target implementation language SML which does not support type
substitution (or object-orientation for that matter).

The original standard, called SDL’88, was extended with object-oriented
concepts [77] and later the object-oriented version SDL’92 [96] was proposed,
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also called OSDL. We take interest in OSDL because the language supports con-
cepts such as virtuals and parameters. The parameters supported are values,
types, and processes, the latter being similar to the net structure parameters
here. Parametrised SDL modules cannot be executed without supplying param-
eters, however SDL modules with virtuals can.

4.4.4 Future Work

The conceptual framework on parametrisation of CP-nets is considered to be
a preliminary investigation of concepts needed in order to provide support for
parameters in CPN models. Some of the next important steps is to apply the
current framework on a much larger example, and to make a formalisation of
parametrisation in CP-nets. Formalisation is important because a formal model
is a fundamental contribution which can be used as a reference. Such a reference
is necessary when ambiguities need to be resolved, and can also be very helpful
during implementation of a tool — here the integration into Design/CPN. A
formal model is helpful when studying parametrisation of analysis methods.
Our hope is that a formal model for Parametric CP-nets can unify the three
kinds of parametrisation we have studied here: value, type, and net structure
parameters. Although the tool user does not need to know of this level, a
unification may result in a simpler and more general formal model.

Once we have tool support for parametrised CP-nets it is important to eval-
uate the new mechanisms with larger case studies. This is the natural conse-
quence of how theory and application have mutual influence, and where tools
play the important role.

In the conceptual framework we restricted net structure parameters to be
on the level of transitions. Naturally we should also consider the case of letting
places be parameters. This is analogous to considering both substitution transi-
tions and substitution places as with some of the first formalisations of CP-nets.
We expect that net structure parameters on the level of places is very similar to
the case of transitions being parameters, and we do not see any serious problems
with having both in the same framework. The two concepts are in essence dual,
and they are both useful from a modelling point of view.

The parametrisation work presented here does not treat the issue of object-
orientation with Petri Nets. There are many other people working with intro-
ducing object-oriented concepts into Petri Nets [2, 3]. None of them, however,
consider parametrisation in their own variants of Petri Nets. The research on
object-oriented Petri Nets is very active, but no common directions or agreement
on object-oriented Petri Nets have been made yet.

4.5 Temporal Logics [13]

This section treats the paper “Model Checking Coloured Petri Nets Exploit-
ing Strongly Connected Components” which is written in cooperation with A.
Cheng and S. Christensen, University of Aarhus. As part of this thesis, the full
paper can be found in [14].
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4.5.1 Summary of Paper

State spaces generated from CP-nets are represented as graphs with state in-
formation labelled on nodes and transition (occurrence) information labelled
on edges. Query languages are usually developed in order to help the user to
express and explore properties in terms of the state space. Temporal logics are
in particular useful for this purpose and are generally popular and widely used
in the theoretical computer science community. In this work we are interested
in a logic which both can be model checked efficiently and which is sufficiently
expressive for practical purposes. The logic CTL [22] is a popular logic which
also has an efficient model checking algorithm. However the logic is not able to
express properties about transitions in the state spaces of CP-nets. Although
some logics can express properties about transitions, they are normally limited
to refer to only one transition label. (See, however, the logic of occurrences by
Galton [32] who consider the transition domain only.)

We have therefore developed a variant of CTL which we call ASK-CTL. The
logic ASK-CTL is very similar to CTL: it is a branching time temporal logic [87]
with a linear time model checking algorithm. From a practical point of view
we have extended CTL with operators such that we can express properties
about both states and transitions in a dual fashion. Furthermore, we improve
the standard model checking algorithms of CTL [22] such that the strongly
connected component graph (SCC-graph) is taken into account. The SCC-
graph is derived from the state space in linear time and space, where a node in
the SCC-graph represents a set of nodes in the state space such that any two
state space nodes are mutually reachable. Each SCC-node is maximal, and the
SCC-graph represents a unique partitioning of the state space.

4.5.2 Results Achieved and Assessment of Methods Applied

Our work with temporal logics serves two purposes: Firstly, we wish to propose
a suitable and practical logic for state spaces generated from CP-nets. Secondly,
we are concerned with the efficiency of model checking with the logic in question.
The latter is, of course, relevant in connection with building tools. Currently
the Design/CPN tool features state spaces in a component called the OG-tool
(Occurrence Graph Tool) [17]. With the OG-tool there exists a query language
for expressing properties about state spaces. Although the OG-tool already
contains a number of predefined queries, such as liveness and identification of
dead markings, the query language requires some amount, of knowledge of the
functional language SML. Temporal logics are in general considered compact
and intuitive for expressing tense related properties, and are thus a potential
candidate for an alternative (or supplementary) query language for the OG-tool.
The logic we propose, ASK-CTL, is a variant of the temporal logic CTL, and
we claim that the introduction of ASK-CTL in the OG-tool is an interesting
alternative to the existing SML-based query language — from a practical point
of view.

CTL is designed to reason about state space structures which do only have
labels on the nodes, i.e., CTL is designed only to reason about state properties.
State spaces generated from CP-nets also contain labels on edges with informa-
tion about transitions between states. We therefore extended CTL such that
properties about transitions, such as liveness of transitions, are also express-
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ible. The difference between ASK-CTL and CTL is essentially one operator
which is a domain toggle operator, the two domains being states and transi-
tions. With CTL one speaks about paths of states, i.e., possible traversals of
the state space graph where one records the states visited respecting the direc-
tion of the edges. In ASK-CTL it makes sense also to speak about paths of
transitions. A sub-formula expresses a property either in the domain of states
or transition, and only the domain toggle operator can switch between state and
transition formulas. For instance, with ASK-CTL it is possible to express some-
thing like Invariantly(Possible(ToggleDomain(StartEating))) should we wish to
specify that a philosopher, in the classical Dining Philosophers example without
deadlock, can always reach the situation of deciding to start eating. (Note, how-
ever, that the notation is more compact in the original paper in [14].) ASK-CTL
seems largely to suit our purposes, since it can express many interesting stan-
dard properties of Petri Nets. In [14] we give a number of examples supporting
this.

In general when introducing a new logic one needs to consider a lot of issues
such as decidability, complexity, axiomatisation, etc. The process of introducing
anew logic from scratch is laborious, and the methods used to treat all issues can
be very difficult. The approach we use is to extend an existing and well-known
logic.

In our paper [14], we outline that ASK-CTL is in fact just as expressive as
CTL. Thus we immediately avoid all issues listed above and can concentrate on
other issues. The main issues concerning us are developing a practical logic for
state spaces generated from CP-nets, and efficient model checking. Inheriting
everything from CTL is both an advantage and disadvantage. It is an advantage
because CTL comes with a large body of research and experience, and it is a
disadvantage because CTL has some weaknesses such as the inability to express
fairness properties [22]. (FCTL [30], fair CTL, has been introduced to remedy
this shortcoming.)

The complexity of temporal logic model checking, in the case of CTL, is linear
in the size of the state space and the depth for the given formula. Although we
cannot improve the general worst case linear time complexity we suggest in our
paper [14] how to improve the model checking algorithm for interesting specific
cases of formula combinations. We use the SCC-graph for this purpose. As an
example let us consider the formula Invariantly(Possible(InterestingMarkings))
which says that no matter where we go in the state space (invariantly) it is
always possible to reach a given set of interesting markings. This belongs to the
well-known class of Petri Net properties called home properties — the possibility
of always getting back to something good. Jensen [55] (Proposition 1.14) has
already given proof rules for home properties which provides a connection with
the SCC-graph. In fact, proposition 1.14 states that it is sufficient to look
only at terminal components (those without outgoing edges) in the SCC-graph.
The terminal components, the “Interesting Markings” property must hold for
all states (invariantly) belonging to those components. Thus even in the case
where the state space induces an SCC-graph with only one component it suffices
to check Invariantly(InterestingMarkings) and we avoid checking the Possible-
property. These improvements hold for a number of formula combinations as
mentioned in [14].
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4.5.3 Related Work

According to Lamport [65] some of the first people to apply temporal logics
to program verification were Pnueli [86] and Burstall [94]. There exists an
impressive body of research on logics, even if we restrict ourselves to temporal
logics. In the following we limit ourselves only to mention related work which is
relevant in the context of our research, which is chiefly concerned with branching
semantics. (We have not worked with the other commonly known semantics such
as linear, partial order, and interval semantics.)

There are a number of temporal logics used together with high-level Petri
Nets. One of the more interesting combinations is found in the PROD tool [110].
PROD is a state space analysis tool based on Predicate/Transition Nets [35, 34].
They use two different kinds of temporal logics as query languages, namely the
branching time logic CTL and the linear time logic LTL [86]. Heljanko [46] has
worked on improving their model checking algorithms, and as part of discussing
related work they consider the usage of the SCC-graph, and notice that their
model checking algorithms can be used with our SCC-graph technique.

The PEP system (Programming environment based on Petri Nets) [38] is a
larger environment for the development and verification of parallel systems. The
environment is too extensive to be explained here, however two of the compo-
nents respectively support M-Nets, a kind of high-level nets, and model checking
based on a branching time temporal logic. Apart from the basic propositional
logic, the PEP logic contains only the two temporal operators possibility and
invariance. Thus it is not as expressive as CTL. However, compared with De-
sign/CPN, PEP seems to be a more integrated and complete environment seen
from the viewpoint of developing concurrent programs. But it is not known how
well PEP scales for large programs.

SMV (Symbolic Model Verifier) [73, 74] by Clarke’s research group, is a
model checker which verifies CTL formulas. Although not based on Petri Nets,
SMV should be mentioned as it is an important tool which is able to handle very
large state spaces represented by BDDs [74]. Another important model checking
tool, not based on Petri Nets either, is the LTL model checker, SPIN [47]. The
model checking algorithm uses on-the-fly verification [37] when model checking
LTL.

There are many people using SCC-graphs in relation with temporal logics.
However, only few consider using SCC-graphs to speed up the model checking
algorithm. Other people use SCC-graphs for different purposes, such as fairness
considerations as in the work with CTLY, CTL with fairness, by Clarke et
al. [22]. Recent work by Pogrell [88] uses SCC-graphs in model checking of a
less expressive logic (S;) applied in relation with Time Petri Nets. The logic
does not contain until-operators as CTL (and ASK-CTL), and they do not use
SCC-graphs on the same level as in our work.

4.5.4 Future Work

Above we indicated that CTL, and therefore ASK-CTL, is not able to express
fairness properties. In spite of the fact that the CTL model checking algo-
rithm has favourable linear time complexity, we should still consider alternative
temporal logics. LTL is a possible alternative as fairness properties can be ex-
pressed, but LTL does not replace CTL as the expressiveness of the two logics
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is mutually incomparable, even if CTL is extended with fairness [30]. CTL*
encompasses both the expressiveness of LTL and CTL [29], however CTL* is
impractical from the viewpoint of model checking [30]. Therefore we should con-
sider to include LTL in Design/CPN as an alternative possibility to ASK-CTL,
because CTL and LTL together can express even more useful properties. Alter-
natively, we could follow up on the advice given by Emerson and Halpern [29]
that one should find an appropriate subset of CTL* for the given application.

ASK-CTL is only at a prototype stage. CTL has been applied in many case
studies, therefore we expect that ASK-CTL is also just as practical. But a larger
case study will increase our confidence in our implementation of the improved
model checking algorithm. Extended support needs to be developed in order to
provide a better environment for ASK-CTL. Used as a debugging tool we need
to be able to show counterexamples to the user in case the supplied formula is
false. In the context of existential path quantifiers the tool could additionally
show a witness path. Counterexamples and witness paths both help the user to
get insight into behaviour of the model in question.

Critiques of temporal logics claim that these logics are hard to learn and
in general hard to read due to their succinctness and language idiosyncrasy.
Formulas with depth more than 4 are impossible to comprehend. It is not sur-
prising that temporal logics may be difficult for some to learn as it is typically
the case that the concepts presented are totally new, and radically different
from existing practices. On the other hand, the philosophical background be-
hind temporal logics is very old and could be an alternative approach to teaching
about temporal logics, thus avoiding mathematical based didactic methods. Af-
ter all, temporal thinking is already inherent in the intuitive comprehension of
everyday activities. Take an arbitrary temporal logic formula. It is not difficult
to read it aloud in ordinary plain English. The difficulty arises when thinking
more abstractly about events ordered in the space of time.

In the 1950’ies and 60’ies Prior [89] established and formalised a logic of time
and tenses, of which temporal logics, among other logics, are based. (Prior was
inspired by, among other people, ideas of Peirce, and triggered by a footnote in a
book by Findlay.) The philosophy of Prior was to find the roots of tense logics
in the real-world and not only in symbols of mathematics. Although today,
many temporal logics are very succinct, we should expect, in the light of Prior,
that temporal logics are practicable languages in specifying and reasoning about
real-world systems.

It is, indeed, in general, hard to read deeply nested formulas. However, most
interesting formulas are limited to depths 2-3. Regarding specific difficulties
with ASK-CTL, we have experienced that it may be a disadvantage to mix
sub-formulas from the two domains of states and transitions because there is
currently no difference in syntax. We will consider to make the syntax more
explicit in order to distinguish which domain a sub-formula belongs to.

5 Concluding Remarks

The leitmotif of this thesis concerns the pragmatics, practical aspects, and in-
tuition of CP-nets from the perspective of being a formal method. In this thesis
the pragmatism has been explored in three different areas. Firstly, the applica-
bility of analysis methods have been illustrated and evaluated by means of the
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case studies. Secondly, didactical methods have been developed with experience
from the educational study. Thirdly, it has been shown that the CPN method
can benefit from extensions by means of a language extension and an extension
to analysis methods.

Our general experience with CP-nets as a formal method is that CP-nets
are sufficient in the process of design and analysis within a number of domains,
in particular distributed systems. The potential as a graphical language should
not be underestimated. Although it appears that diagrammatic oriented de-
scriptions, in general, are just as hard to comprehend as sentential descriptions
(perhaps more than expected), this kind of languages has potential for hiding
much of the mathematical notation. Hiding mathematical notation potentially
enables a formal method to reach a wider spectrum of people in industry. Fur-
thermore, CP-nets offer additional possibilities as compared with sentential lan-
guages with the use of perceptual cues by means of the graphics. Compared
with other graphical oriented languages, such as SDL and Statecharts, CPN is
generally a much simpler language with clean semantics and only relatively few
concepts to grasp — and it offers true concurrency as an inherent property of
the language. Being simple, and yet expressive, CP-nets offer the flexibility of
adaption and specialisation to many different domains. In fact, there already
exists a variety of Petri Net formalisms with special purposes. Although not as
widely spread in industry, the forthcoming international standard for high-level
Petri Nets may remedy this.

A number of formal methods are already being used in industry, such as
VDM, the Z notation, SDL, among many other methods. The future seems
to be promising with respect to increasing popularity of formal methods in
industry as more complex concurrent systems are being challenged. General
visibility must be pursued for instance by means of case study publications such
as [11, 1, 67, 56].
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