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Abstract

In this paper we propose a conceptual framework for parametrisa-

tion of Coloured Petri Nets | a �rst step towards the formulation and

formalisation of Parametric Coloured Petri Nets. We identify and charac-

terise three useful kinds of parametrisation, namely value, type, and net

structure parameters. While the two former kinds are simple to design the

latter kind is more complex, and in this context we describe how net struc-

ture parametrisation naturally induces concepts like modules and scope

rules. The framework is applied to a non-trivial example from the domain

of 
exible manufacturing. Finally we discuss implementation issues.

1 Introduction

When we wish to make a computer representation of a large family of entities or

objects of interest from the world around us, we can either choose to represent all

individual objects or try making more e�cient representations. The perspective

on a given problem has in
uence on the kind of e�ciency needed. For instance,

space e�ciency is often a concern. Di�erent approaches exist for making e�cient

representations | the one concerning us in this paper is that of parametrised

representations. The fundamental idea is to represent only a part common for

all objects in a family and characteristic holes of interest which later can be �lled

in. For instance, 
exible manufacturing cells in a bottling system could consist

of an input bu�er, a transportation system, and a machine. We can imagine

a parametrised representation of a generic 
exible manufacturing cell where,

e.g., the machine would be a parameter (the hole). Thus if we wish to have

a packaging manufacturing cell we just instantiate the generic manufacturing

cell by inserting a packaging machine into the hole. Note, in addition, that the

machine itself may be parametrised.

In the process of designing systems it is often convenient to describe a family

of systems instead of one speci�c system. Once we have made a parametrised

representation we have a generic and general description which easily can be

instantiated or specialised since the locations for substituting concrete entities

have already been speci�ed in well-de�ned locations. Additionally, veri�cation

of systems bene�ts in the case where it is possible to reason about a parametrised

representation, i.e., determining a property for a family of systems instead of

reasoning about each individual system. For instance we may be able to prove
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by induction that a property holds for an in�nite family of systems only char-

acterised by, say, one integer parameter.

In this paper we propose a conceptual framework for parametrisation of

Coloured Petri Nets (henceforth abbreviated as CP-nets or CPN) [9], and illus-

trate how the CPN tool, Design/CPN [11], can support parametrised CP-nets.

Our aim is to improve the modelling convenience of CP-nets and to improve

tool support. We argue that CP-nets can bene�t from becoming parametrised

which we illustrate with examples. Parametrisation enhances the support for

reusable components and is a supplement to the hierarchy concept of CP-nets,

and therefore parametrisation also enhances the techniques for designing large

scale systems. Additionally, parametrisation provides a 
exible and time-saving

technique for building models. Once we have a number of basic parametrised

building blocks (modules) we can quickly put together a model by specialising

modules by supplying speci�c parameters. Changing parameters is also easy

because we avoid the need for re-compilation | only re-instantiation with the

new parameters is required. (In this paper a module consists of a hierarchy of

CPN pages.)

For CP-nets we have chosen to distinguish between three kinds of parametri-

sation: value, type, and net structure parameters. Although all parameters

are just place-holders, we wish to characterise each level individually because

the three of them are di�erent in nature. Additionally, when we look at tool

support we are both inspired and restricted by the target language of the De-

sign/CPN simulation engine, namely the language Standard ML (abbreviated

as SML) [15, 17]. This language has a construct called functors which provides

a module structuring facility with parameters.

The use of parametrised modules as library units introduces the issue of

name clashes. Suppose we are building a model and then import some external

library module. The external module typically contains new colour set (type)

declarations, fusion sets, and many other name declarations. What should hap-

pen if a name in our model is in con
ict with a name in the external module?

Currently all names have global scope, except from fusion sets which do have

simple scope rules. In this paper we introduce a general mechanism for resolv-

ing name clashes in the form of scope rules. Other computer languages, such as

block-structured languages, usually have scope rules of some kind.

The synopsis of the paper is as follows. We begin with motivating the need

for parametrised CP-nets in Sect. 2 and declare our essential goals. Supported

by this we describe the conceptual framework in Sect. 3 for parametrised CP-

nets, which constitutes the main part of this paper. In Sect. 4 we describe our

design ideas of scope rules for name declarations, such as colour sets, and in

this context generalised the current scope rules for place fusion groups. Then

in Sect. 5 we support the usefulness of the conceptual framework by means of

a non-trivial example of a manufacturing system. Implementation issues are

discussed in Sect. 6. Future work, related research, and the conclusion can be

found in Sects. 7, 8, and 9 respectively.

2 Motivation and Problem Analysis

In this section we motivate the use of parametrised representations by informally

looking at a speci�c example with the purpose of investigating the possibilities
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of parametrised representations. By means of the example we introduce the

concepts needed for our work, and identify and suggest an initial overall set of

requirements. The intention is to provide an overview and exhibit the consider-

ations we have made in order to make a framework for parametrised CP-nets.

The example we use in the following is inspired by the domain of 
exible

manufacturing. We illustrate the usefulness of the three kinds of parametrisa-

tion studied here: value, type, and net structure parameters. Manufacturing

systems typically consist of the following three classes of entities: materials,

machines, and transportation [7]. Material 
ow through a system by means

of a transportation system while the material is manipulated by means of ma-

chinery. Our example manufacturing system is depicted in Fig. 1. The �gure
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Figure 1: An example of a simple bottling and packaging manufacturing system.

shows a simple bottling (and packaging) manufacturing system. The bottling

system is built up in a modular fashion where each module is represented as a

rectangle. Materials 
owing through the system are bottles, liquids, lids, labels,

and packages. The bottles induce the main 
ow while the rest of the materials

are local to each manufacturing cell. Therefore we describe in the following the

dynamics of the system from the viewpoint of the bottles. Each bottle enter

the bottling manufacturing system in the leftmost cell, the 
uid bottling cell,

where it is �rst put into a bu�er (B). Then the bottle is transported (T) on a

conveyer belt to the 
uid bottling machine (M) which takes 
uids from its local

resource (R), and the bottle is transported out of the cell to the bu�er in the

next cell, the lid �xing cell. In this cell the bottle is mounted with a lid and is

transported via a conveyer belt into the bu�er of the next cell, the labelling cell.

Here labels are �t to the bottle which then is transported via a conveyer belt

into the bu�er of the next cell, the packaging cell. The transportation system

in the packaging cell is in this module a robot arm which takes bottles one at

a time from the bu�er and put it into a packaging box mounted in a packaging

machine which closes and wraps the box when full of bottles. The boxes are

�nally transported out of the system by means of the robot.

Obviously the four manufacturing cells above have a lot in common which

also is re
ected in the �gure. Each cell has a bu�er, a transportation system, and

a machine with a resource. Furthermore, each cell manipulates bottles one way

or the other. In this case it may be advantageous to make a generic parametrised

manufacturing cell, because we can then use this generic cell as a building block

and make various specialised instances as needed. We can even make variations
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of the bottling system, e.g., by reordering the cells to investigate alternative

assembling sequences, or by adjusting whatever characteristic parameters such

as transportation speed or method. To make a generic cell we need to consider

which parameters we need in order to be able to describe the current four kinds

of cells in the example, but also future possible variants of cells. For bottling

manufacturing systems we probably need the following parameters for a generic

bottling manufacturing cell:

� Bottle kind

� Bu�er

� Transportation system

� Machine

� Resource

The bottle kind is a type parameter while the rest are net structure parameters

(using a module). Each of these modules can again be parametrised:

� Bu�er

{ Size (value parameter)

{ Bottle kind (type parameter)

{ Functionality (net structure parameter)

� Transportation system

{ Functionality (net structure parameter)

{ Transportation speed (value parameter)

{ Capacity (value parameter)

� Machine

{ Functionality (net structure parameter)

{ Processing speed (value parameter)

� Resource

{ Material (type parameter)

{ Size (value parameter)

We call these formal parameters. The items assigned to formal parameters are

called actual parameters.

The example above is useful for trying out the initial ideas for parameterised

representations. The concept of parametrised representations are a useful tech-

nique in the support for structuring a system design. It is easy to imagine that

parametrised modules can be used both in a top-down and a bottom-up fash-

ion, and that it can be used together with the hierarchy concept of CP-nets.

Parametrisation seems in particular to be useful for describing systems with

many embedded modules which can have many specialised variants. Systems
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such as 
exible manufacturing systems often need to be analysed by means of nu-

merous simulation runs, typically where a few simple parameters are perturbed

for each run in a series. Thus it is useful to use parametrised representations

in connection with scripting where numerous repeated runs are needed, say, for

identifying signi�cance in a set of statistical samples. It becomes just a matter

of programming the script to choose the parameter series. This implies that

we can easily imagine that value parameters often will be used in the initial

marking con�guration and similar constant value expressions.

Parametrisation is useful for other systems than 
exible manufacturing sys-

tems. In general, parametrised generic representations can be used to build a

reusable model library of standardised modules. With a well-designed library

there is support for building models with an advanced vocabulary which is on

a level of granularity suitable for the problem domain. For instance, we expect

that the domain of hardware design can bene�t from parametrised CP-nets. An-

other class of candidates is layered protocols which pro�tably can be described

as parametrised representations. It would be useful to be able to shift between

di�erent variants of a layer by means of a quick, easy, and safe plug-in method.

Currently the formal model of CP-nets does not contain a parametrisation

concept. The Design/CPN tool does not currently support parametrised CP-

nets, as the tool implementation is in
uence by the formal model of CP-nets. In

spite of this, value parameters can be imitated in an ad hoc fashion. However,

the current technique is both cumbersome and unsafe to use. It is cumbersome

because changing a parameter may require a time consuming re-check of the

CPN model, and unsafe because it is easy to make logical mistakes.

Hence our goal is to make support for parametrised representations for CP-

nets, the vision being that parametrised CP-nets are a useful technique for

designing and reasoning about systems. Our aim is to enhance the modelling

convenience of CP-nets and to make tool support for using parametrised CP-

nets to build more abstract and generic designs. In the sections following we

concretise our ideas by making a conceptual framework of parametrised CP-nets

(Sects. 3 and 4).

3 Conceptual Framework

In this section we propose a conceptual framework and design ideas for the

parametrisation of CP-nets. We consider a number of key questions: How

can CP-nets be parametrised? Which elements of parametrisation can we o�er

for CP-nets? Can we hope to allow for analysis on the level of parametrised

representations? Scope rules are considered separately in Sect. 4.

3.1 Variants of Parametrisation

In general parametrisation is the act of making holes (place-holders) in a rep-

resentation which then later can be instantiated by �lling out the holes with

concrete entities. The entities are restricted by the given context of use. We

can bene�t from characterising parametrisation in sub-categories. For instance

if we parametrise with integers then we can immediately make a number of

assumptions because integers are a very restricted sub-category. On the other
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hand, if we can parametrise without restrictions then it is hard to make assump-

tions and thus we may lose the possibility to investigate important properties.

Where does it make sense to make holes? That depends on several fac-

tors. The main restriction origins in the constituents of the language, and the

syntactical categories. For CP-nets we have syntactic elements such as places,

transitions, arcs, inscriptions, and declarations. The former three are in the cat-

egory of net structure while the latter two are textual. For the textual entities

we typically �nd named values and type identi�ers. This is also in
uenced by

the speci�c inscription language which for our case is SML. Thus in
uenced by

CP-nets and the inscription language SML it is natural to investigate parametri-

sation with values, types, and net structure.

Another issue is more of pragmatic nature: On what level of granularity do

we wish to locate a parameter speci�cation? We want to use parametrised rep-

resentations in practice and it is therefore interesting to investigate parametri-

sation on a higher level of granularity, e.g., modules. In fact parametrisation

of modules is an interesting candidate since the nature of a module is of being

predominately self-contained and encapsulated unit, only loosely coupled with

the environment. Thus we can expect that a module de�nes a natural and clear

boundary and interface for declaring a parameter speci�cation.

Additionally, there is a trade-o� between declaring in advance which names

that can be used as parameters or let every name be a potential parameter.

We choose the former because the process of parametrising a CPN model also

includes identi�cation of exactly where parameters must appear in the net struc-

ture. Thus in the user interface there must be support for making a parameter

speci�cation of modules. Additionally we could imagine that default values

for parameters would be useful such that the user avoids supplying often used

values, e.g., empty lists.

Each parametrised module has a parameter speci�cation which is the list

of parameter names used within the module in question. From a parameter

speci�cation we can derive, what we here call, a module signature which is

essentially the parameter names and their types. This is analogous to SML

signatures. Signatures are used to ensure that the use of a module in another

is consistent in the sense of type safeness.

In the sections following we treat each of the three kinds of parametrisation

separately. Our purpose is to discuss and identify useful properties of the three

concepts, where we take advantage of the restrictions that each of the three

levels impose.

3.2 Value Parametrisation

Parametrisation with values is the simplest to understand of the three kinds of

parametrisation we consider. It is simple because it is only a few well-de�ned

locations in the syntactic categories of CP-nets where values occur. This imposes

many restrictions on how and where value parameters can be used in a CPN

model. First we give an example.

Example of Value Parametrisation

We focus on the machine module in the 
exible manufacturing example from

Sect. 2. A CPN model of this module is depicted in Fig. 2. On the arc go-
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colorset Delay = with e  timed;
colorset M = ... ;
colorset InItem = ... ;
colorset OutItem = ... ;
colorset Resource = ... ;

Resource

Resource

Input InItem

Output OutItem

Get Next
Item

Idle M

Ready M

Delay
Delay
1‘e

Assemble
and Deliver

e

e@+1.0/SpeedP

Figure 2: CPN model of a machine which can be used inside our manufacturing

cells.

ing to the place Delay we have the inscription (e @+ 1.0/SpeedP), implicitly

requiring SpeedP to be of type real | otherwise we would violate the type sys-

tem (of SML). (The notation (exp @+ texp) means that the multi-set (tokens)

generated by expression exp has a time delay texp.) Our intention is that the

name, SpeedP, is a formal parameter of the machine module. This means that

upon instantiation of this module we need to supply a value to be substituted

on the place-holder of SpeedP. If we instead had written SpeedP(x) then the

value parameter SpeedP is a function taking one argument x and returning a

time value of type real. In the most general case the inferred type of x would

be polymorphic. Another useful example of value parametrisation is in initial

marking expressions, thus making the initial system con�guration more 
exible.

Design Ideas for Value Parametrisation

The example suggests that value parametrisation is a simple and useful mech-

anism. Value parameters can be simple values or functions. The latter is, of

course, inspired by the inscription language, SML, of Design/CPN. In this lan-

guage, functions are �rst class values. In the example we also saw that the

type of a value parameter can be speci�c or polymorphic. The type is either

explicitly annotated, or implicit where the tool then must infer the type.

Based on our �ndings in the example and discussion above, we summarise

our requirements for value parametrisation of modules:

1. A formal value parameter can be assigned any �rst class value (actual

parameter) which can be realised in the inscription language.
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2. A formal value parameter has a name and can appear in any inscription

as a place-holder. The name must appear where the syntactical category

is a value expression.

3. A formal value parameter has a type which is either explicitly given by

the user in the module parameter speci�cation, or implicit and inferred

by the type checker system.

4. A formal value parameter inside a module must be mentioned explicitly in

the parameter speci�cation of the module, including a name, an optional

type, and an optional default value.

3.3 Type Parametrisation

Type parameters are, like value parameters, also easy to understand. They ap-

pear only a few locations in the syntactic structure of declarations and inscrip-

tions of CPN models. Types can also be polymorphic which implies polymorphic

CP-nets.

Example of Type Parametrisation

The example we use for the illustration of type parameters is a generic CPN

model of the 
exible manufacturing cell, i.e., a model which describes a cer-

tain collection (or class) of manufacturing cells as used in Fig. 1. The generic

cell is depicted in Fig. 3. In this example we have included a few colour set

Machine

Transportation
System

iPreItem o PostItem

oBuffer

oBufferTypeP

Resource

ResourceTypeP

iBuffer

iBufferTypeP

colorset PreItem = PreP;
colorset PostItem = PostP;

Figure 3: A generic CPN model of the 
exible manufacturing cell.

declarations. This is to illustrate that we wish to be able to parametrise here

also. It is the intention that the two types for PreP and PostP are supplied

upon instantiation such that PreItem and PostItem are meaningful. We can

also have formal type parameters in colour set inscriptions of places such as

with the places iBu�er, oBu�er, and Resource. The formal parameter names

here are then iBu�erTypeP, oBu�erTypeP, and ResourceTypeP. Parametrised

type annotations in arc inscriptions should also be possible, e.g., (x:TypeParam)
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would be a legal inscription where TypeParam is a type parameter. Upon in-

stantiation the expression x would be restricted to whatever type supplied by

the user. Such an annotation implies that we can speak about a polymorphic

CPN module. The polymorphic types are visible in the module signature.

A more advanced use of type parameters may appear in relation with SML

pattern matching. Consider the input arc inscription ((p:Packet) as fsender=s,

: : :g), where p and s are variables, Packet is a formal parameter type, sender

is a record �eld, and \: : :" is part of the inscription syntax (\all the rest").

This means that, we impose the requirement that the place must contain record

tokens which includes at least the sender �eld | a very 
exible technique be-

cause extensions to the Packet type does not require modi�cations to the arc

inscription.

So far we have looked at, so called, parametric polymorphic types [3]. Below

we give an example of exploiting ad hoc polymorphic types, more speci�cally

overloaded types. Overloading is not a part of SML but is a feature of the spe-

ci�c SML compiler used for implementation. The overloaded types are not used

as parameters but we show that they are useful for parametrised CPN models.

Assume we have a timed CPN model where we would like a 
exible represen-

tation in the sense that it should be painless to change between the two time

representations integer and real. Let us look at the timed arc inscription from

Sect. 3.2: (e @+ 1:0/SpeedP). This form is in
exible if we change the time type

to integer because we need to change 1:0 to 1. A more 
exible alternative is:

(e @+ Inverse(SpeedP:SpeedTypeP)), where Inverse is an overloaded function,

SpeedP is a formal value parameter, and SpeedTypeP is a formal type parame-

ter. Now we can easily change between integer and real time by only changing

module parameters.

Design Ideas for Type Parametrisation

The example above shows that we can use type parameters practically just like

value parameters, with the extra feature of type inference. We do, however,

not consider sub-typing mechanisms (inclusion polymorphism [3]) in this work

because the target language SML does not support this. Design/CPN does,

however, support a limited version of sub-typing in colour set declarations. The

example also indicates that we can take advantage of polymorphic types to

express more general polymorphic CPN models.

Based on our �ndings in the example and discussion above, we summarise

our requirements for type parametrisation of modules:

1. A formal type parameter can be assigned any type (actual parameter)

within the restrictions of the type inference system.

2. A formal type parameter has a name and can appear in any inscription

as a place-holder. The name must appear where the syntactical category

is a type expression.

3. A formal type parameter can be polymorphic which implies that the mod-

ule in question gets a polymorphic signature.

4. A formal type parameter inside a module must be mentioned explicitly

in the parameter speci�cation of the module, including a name and an

optionally default concrete type.
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3.4 Net Structure Parametrisation

We have seen that value and type parametrisation are fairly simple mechanisms

to handle. It is a di�erent matter with net structure parameters. To be useful

we need to be able to parametrise with chunks of CP-net structure, and for

this we need to specify exactly how the rim of the chunks should be glued into

the hole. There are similarities with substitution transitions where the role of

these kinds of transitions are to be net macros. In this work we consider the

net structure parameter to represent a chunk which is a CPN hierarchy, i.e., a

hierarchy of pages, which can be inserted into a module place-holder. To simplify

the discussion and to keep the analogy with substitution transitions we restrict

ourselves to place-holders being the syntactical category of transitions only. This

means that a transition name can be a formal net structure parameter.

Example of Net Structure Parametrisation

We reuse the example from Fig. 3 in Sect. 3.3. In that �gure we see the transition

called Machine which in the following is a formal net structure parameter. Our

intention is to assign a module, such as the machine module in Fig. 4, to the net

structure parameter. Just as with value and type parameters, the net structure

colorset Delay = with e  timed;
colorset M = ... ;
colorset InItem = ... ;
colorset OutItem = ... ;
colorset Resource = ... ;

Resource

Resource

In

Input InItemIn

Output OutItemOut

Get Next
Item

Idle M

Ready M

Delay
Delay
1‘e

Assemble
and Deliver

e

e@+1.0/SpeedP

Figure 4: The machine module from Fig. 2 prepared to be used as a formal net

structure parameter.

parameter is nothing but a place-holder and we postpone any parameter or

interface place assignments until instantiation time. However, in the machine

module we need to point out exactly which places that can be used as a module

interface in a parametrisation relation, otherwise we would not necessarily know

which places to use. Thus we need to explicitly declare the places Input, Output,
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and Resource as module interface places. In Fig. 4 we visually use the respective

tags In, Out, and In. Finally, in the manufacturing cell module in Fig. 5 we

Machine PM

Transportation
System

iPreItem o PostItem

oBuffer

oBufferTypeP

Resource

ResourceTypeP

iBuffer

iBufferTypeP

parameters Machine;

colorset PreItem = PreP;
colorset PostItem = PostP;

Figure 5: The generic manufacturing cell module from Fig. 5 with the Machine

transition as a formal net structure parameter.

need to declare that Machine is a formal parameter by adding the name of the

parameter in the parameter speci�cation inside the manufacturing cell module

itself. As a graphical convention we use the PM tag to visualise the Machine

net structure parameter.

Design Ideas for Net Structure Parametrisation

To declare that a transition represents a formal net structure parameter is just

as simple as with value and type parameters; in a parameter declaration we

simply list those names of transitions we wish to be net structure parameters.

Additionally we need to specify those places which are interface places of each

module. Upon instantiation time the interface places are assigned to the places

surrounding the parameter transition, similar to port/socket assignments in

hierarchies. As an alternative we could allow any place of a module to be

assigned upon instantiation and thus allow any net structure interface relation

with the surrounding net. This is indeed possible, however we prefer the net

structure interface declaration because in this case we force the user to separate

out a well-de�ned net structure interface to each module. Finally, the interface

places in Fig. 3 have types (colour sets). In Sect 5, where we look at a larger

example, we suggest that these types can be omitted, where the idea is to let

the surrounding net determine, or at least overwrite, the type of the interface

places. Thus a type compatibility check is required between matched interface

places.

Based on our �ndings in the example and discussion above, we summarise

our requirements for net structure parametrisation of modules:

1. A formal net structure parameter has a name which denotes a syntactical

category of a transition.
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2. A module which has the purpose of being used as an actual net structure

parameter must declare a number of named places as its net structure

interface. (In hierarchies these places are called ports.)

3. Assignment of places (actual into formal parameters) should be explicit

and unambiguous by means of place names.

4. A formal net structure parameter inside a module must be mentioned

explicitly in the parameter speci�cation of the module, including a name

and an optionally default module name.

5. Formal net structure parameters implies a relation between modules, thus

inducing a hierarchy of parametrised modules. The module relation is

considered supplementary to the hierarchical substitution relation.

3.5 Runtime System Parametrisation

In this section we extend the concept of parametrisation to include also the en-

vironment in the following sense: The (simulation) runtime system can provide

parameters which can be used in the model. We use the term runtime system

parameters for this purpose.

An example of a runtime system parameter is the function called inst as

described by Jensen [9] (p. 93). The inst function is a parameter which only

has meaning during execution, i.e., the function only has a value while the

runtime system controls the execution. The function provides the current page

instance number. It is the runtime system which provides the value of the

inst function. In general all parametrised CPN models should have available

a number of default parameters which only are supplied with values by the

runtime system, i.e., parameter assignments beyond the control of the user.

So far we have only considered value parameters provided by the runtime

system. In the following we also investigate type and net structure parameters.

As we have seen in Sect. 3.3, type parameters imply polymorphic models | a

very useful mechanism for making generic models. Once we provide a concrete

type as a parameter we immediately restrict the use of values in the model.

Suppose we have a CPN model with time. In this case the runtime system

of Design/CPN supplies a concrete type for the type name called TIME. This

can be either int (integer) or real (
oating point). Thus if the user declares

functions in the time domain, then it is advisable to use the type name (formal

type parameter) TIME instead of restricting oneself on either integers or reals.

Finally, an example of a net structure runtime parameter could be a platform

dependent runtime library of modules. Suppose we have a CPN model where

some kind of communication with external components (hardware) takes place.

Then when using modules from the runtime library on the Macintosh the system

automatically provides the appropriate modules for that platform.

3.6 Putting Modules Together and Instantiation

Until now we have, in this section, considered various kinds of parametrisation.

We saw that parametrisation naturally implied modules as the basic building-

block. Below we describe the issue of building a model based on parametrised

modules and the issue of instantiation.
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In Sect. 3.4 we provided design ideas for net structure parameters and thus

decided to use parametrised modules for this purpose. Some of the important

characteristics of modules are that they are self-contained units with well-de�ned

interfaces, and no or only a few relations and dependencies with other modules.

This means that we should have the possibility of using declarations, such as

types, variables, functions, etc, locally in each module. Hence we use the term

module declaration for this purpose. In Sect. 4 we consider scope rules for local

declarations among others.

In order to instantiate a CP-net we need a speci�c module as origin, namely

a module containing all the prime pages. We call this special module the root

module of instantiation. This is the only module which can contain more than

one hierarchy of CPN pages, and in the tool this module will be one CPN hier-

archy. The root module will, if necessary, refer to other parametrised modules.

A module declaration is in particular useful in the root module when making

common declarations for all hierarchies with a prime page.

A special section of a module declaration consists of the declaration of the

parameters inside the module, i.e., the formal parameters. We use the term

parameter speci�cation for this purpose. From the parameter speci�cation we

can derive an overview of the module in the form of a signature which is a

list of parameter names; for each value parameter name also its inferred type,

for each type parameter also its most general inferred type, and for each net

structure parameter its interface places. It is the intention that it is the tool itself

which derives the signature, unless the user explicitly have supplied additional

parameter information in the speci�cation. The signature is useful in connection

with instantiation where the tool then quickly can determine whether or not the

parameter assignments of the user are valid.

As part of the net structure parametrisation framework we explained that

each module has a number of interface places. When specifying how a module

is used in another we need to make place assignments. This is simple because

this can just happen when making assignments of the formal parameters of the

module, i.e., we treat assignment of parameters and interface places on an equal

footing. As a tool feature we can make it such that the user involvement part

of the place assignment process can be kept to a minimum. Many assignments

of interface places can in principle happen automatically. We can simply make

a heuristics for place interface assignment. The idea is to take advantage of

identical names, types, or in/out tags. This is how it currently works in De-

sign/CPN.

We do not really need to explicitly type the interface places as we can just

use the type from the places of the context module where the parameter module

is embedded. We say that the types of the context module overwrites the types

in the parameter module.

Once we are satis�ed with the parametrised modules and are ready to link

the modules together to form a CPN model, we need a notation for assigning

parameters. Suppose we wish to make a small model by means of the modules

from the Figs. 3 and 2. In the generic cell module we need to specify the

assignments of the parameters relevant for the generic machine module. We thus

relate the transitionMachine in Fig. 3 with the following assignment expression:

GenericMachine[

10 -> SpeedP
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real -> TimeTypeP

WinePack[] -> Functionality

iBuffer -> iPostTrans

oBuffer -> oPostTrans

i -> oPreTrans

o -> iPostTrans

] -> Machine

where the notation actual parameter ! formal parameter means that we assign

actual parameter to formal parameter. The last four assignments are assignment

of interface places. We must also denote a multi-set of modules to be the starting

point of instantiation, and in this context we just make use of the prime page

concept from the CPN formalism and Design/CPN tool.

Once the user has given an instantiation relation for a CPN model we

can derive a graph which shows the modules and their dependencies. If the

user changes net structure parameter assignments then the overview graph will

change accordingly. We call such a graph for the module dependency graph. See

Sect. 5.1 for an example of such a dependency graph. It is important to note

that such a graph must be acyclic in order to prevent in�nite instantiation.

3.7 Open Runtime Environment

Just as the CP-net model can be parametrised, so can its runtime system. A

parametrised runtime system is a kind of an open environment which can be

tailored to perform speci�c tasks. Parameters can be supplied by the user

via a (special purpose) user interface. As an example, the tool Design/CPN

has a user interface where many di�erent parameters can be changed. For

instance, the user can control when a simulation should stop, change the degree

of concurrency, and the amount of visual feedback.

In general a runtime system which is parametrised is also a simple kind of

tailorable system. Environments which are tailorable have the advantage that

they can be adapted to more speci�c purposes by the users themselves, without

modifying the original source code. The CPN tool, Design/CPN, is an open

environment which is fairly tailorable, and we have already experienced that

users extend or tailor the tool to their purposes. For instance, many users have

made their own special purpose graphical animation for simulations, others have

made their own special kinds of simulations such as Monte Carlo simulations.

Yet others have made a temporal logic plug-in module [4] and equivalence ex-

tension [12] to the state space component of Design/CPN.

4 Generalised Scope Rules

In Sect. 3 we saw examples of that scope rules for CP-nets would be helpful,

e.g., when using parametrised CPN modules as libraries. In the following we

summarise the current scope rules with CP-nets and Design/CPN, and then

present our design ideas for scope rules of name declarations, such as colour

sets, for CP-nets. Furthermore, we generalise the existing scope rules for place

fusion groups.

For CP-nets we currently have simple scope rules for name declarations

and names of place fusion groups. These two need to be characterised and
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distinguished as they are used on di�erent levels and for di�erent purposes.

In this context we use the concept of name spaces as a useful technique for

managing and keeping di�erent kinds of names separated. We characterise a

name space by a name, its use, domain, and a set of scope rules. Hence names

from di�erent name spaces are unrelated, and names in di�erent non-overlapping

scopes are mutually invisible. The name spaces currently used with CP-nets and

Design/CPN are summarised in Table 1.

Name Use Domain Scope Rules

Declarations general declarations colour sets, global

constants,

functions

Place fusion groups fusion of places place groups global,

page,

page instance

Table 1: Current name spaces with CP-nets and Design/CPN.

4.1 Design Ideas for Improving Scope Rules

In the following we describe our design ideas for generalised scope rules for name

declarations and place fusions. The presentation is guided by examples.

One interesting question is if it is possible to use the same scope rules for

both name declarations and place fusions. We believe that the two domains

of name declarations and place fusions are rather similar. The di�erence is,

however, that fusion places complicate the fusion scope rules by the fact that

fusion works across the instance tree.

Name Declaration Scope Rules

The scope rules for name declarations are inspired by block-structured lan-

guages. Blocks determine a scope and a name declared in a block is visible

throughout the block and within nested blocks. However, if the same name is

declared again inside a nested block, the inner name shadows the name belong-

ing to the surrounding block. We apply similar principles for CP-nets, where we

consider a block to be a CPN page. For this purpose, we introduce the concept

of topological name declarations, e.g., a colour set declaration, which is analo-

gous to a declaration inside a block. The analogous concept of a nested block in

CP-nets is the sub-page, i.e., a page which is related with its super-page by the

hierarchical substitution relation (represented with a substitution transition).

Note that hierarchical substitution essentially is a macro feature, thus similar

to nested scopes. Consider the example in Fig. 6. The �gure illustrates that a

name declared in a hierarchy declaration is visible downwards in the hierarchy

structure, except when shadowed in the page called Page 2.

We need to consider a case where there apparently seems to be name con
ict

due to the fact that the hierarchy structure may have a page with two di�erent

super-pages. This may happen because the only restriction to the hierarchy

structure is that it is acyclic. Consider the example in Fig. 7. We need to make
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colourset A = ... ;

Page 2

Page 1

colourset A = ... ;

Page 3

"A" from Page 2
visible

"A" from Page 1
visible

Page 4

Figure 6: Example of hierarchical name declarations in a substitution hierarchy.

a choice in the bottommost page nodes. Our choice is directed by the instance

hierarchy which is always a tree structure. Thus in the instance hierarchy the

bottommost page node from before now has two instances. We choose to let

each of the pages inherit two di�erent declarations depending on which path

is used upwards to �nd the closest declaration. This means we for some cases

need to syntax check a page twice.

colourset A = ... ;

Page 2

Page 1

colourset A = ... ;

Page 3

Page 4

Inst 1.1

Inst 2.1 Inst 3.1

Inst 4.1 Inst 4.2

colourset A = ... ;

colourset A = ... ;

"A" taken from
page 1.1

"A" taken from
page 2.1

Instance treeModel hierarchy

Figure 7: Example of a hierarchy with apparently con
icting declarations.

To avoid some of these shadowing cases we wish to introduce local name

declarations, page declaration, with a scope limited purely by the page on which

it occurs. Consider a variant of the last mentioned �gure in Fig. 8. Thus page

declarations may help avoiding the extra syntax check which was required in

Fig. 7. Alternatively, we could choose to let page declarations shadow names

further up in the hierarchy, thus leading to a syntax error, \declaration of A not

declared", on Page 4.1 in Fig. 8. However, we �nd that it is more important to

insert a page declaration scope without a�ecting other pages in a hierarchy.

We also wish to consider the scope of a module. Recall that we, in this
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colourset A = ... ;

Page 2

Page 1

Page 3

Page 4

Inst 1.1

Inst 2.1 Inst 3.1

Inst 4.1 Inst 4.2

colourset A = ... ;

"A" taken from
page 1.1

"A" taken from

Instance treeModel hierarchy

colourset A = ... ;
Page declaration:

colourset A = ... ;
Page declaration:

page 1.1

Figure 8: Example of a hierarchy with no con
icting declarations due to a page

speci�c declaration.

paper, consider a module to be a substitution hierarchy of CPN pages. As we

consider a module to be a self-contained unit we wish that the scope of a name

does not exceed the boundaries of a module. Consider Fig. 9 where we have

added an extra module to Fig. 6. The �gure shows that the names declared

in one module are not visible in an embedded module | unless transferred via

a module parameter of course. Thus a module scope is more restricted than a

hierarchy scope.

Motivated by the examples we have reached the following scope rules for

name declarations used in page hierarchies and modules.

1. A name declaration is visible on the page where de�ned and all sub-pages

in the instance tree.

2. A name declaration may shadow a declaration of a super-page.

3. A page name declaration is visible only on the page where it is de�ned.

These declarations do only shadow on the page where de�ned, and not on

sub-pages.

4. Module declarations have the scope of the module in which they are de-

�ned.

5. Con
icting names are resolved by means of the instance hierarchy struc-

ture, which is a tree.

Place Fusion Scope Rules

Current place fusion scope rules consist of three possibilities: global, page, and

page instance fusion. A global fusion means that the place is globally visible,

thus independent of the instance structure. A page fusion means that the fusion

scope is visible only on a speci�c page but across all instances of the page. A

page instance fusion means that the fusion scope is limited to each generated

page instance.
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colourset A = ... ;

Page 2

Page 1

colourset A = ... ;

Page 3

"A" from Page 2
visible

"A" from Page 1
visible

Page 4

Module M1

Module M2

"A" from M1 not visible

Figure 9: Scoping with CPN modules.

Experience both from our own and industrial CPN models indicate that

the current fusion mechanism is not su�cient. In particular there exist several

examples where a mechanism oriented towards the hierarchy structure would

have resulted in simpler models. We remedy this problem below.

The current fusion scope rules are directed towards pages and instances.

Above we saw that scope rules for name declarations, such as colour sets, where

directed towards the hierarchical structure. In fact, we use this as motivation

for the way we extend the current fusion scope rules with an additional rule

related with the hierarchy structure. We refer to this generalised fusion concept

as topological place fusion.

As we have introduced the notion of modules we wish to reconsider the

meaning of a global fusion. We introduce the concept of module fusion to mean

a fusion place with the scope of all pages in a module and replaces the concept

of global fusion. A fusion set declaration on a page hence shadows a module

fusion declaration. We do not allow global fusion across modules, thus enforcing

the principle that modules are self-contained units with a well-de�ned interface

to their environment.

Analogously to name declarations we can talk about a place fusion declara-

tion which de�nes a fusion scope boundary consisting of the page in question

and all sub-pages in the instance tree. (This is the motivation for choosing

the name \topological place fusion".) A fusion declaration can be either of the

kinds page or instance, and determines, based on the instance tree, how fusion

of sub-tree scopes should happen: instance or page wise, respectively. A fusion

place will always belong to the same place fusion group as a fusion place located

further up in the page hierarchy structure, unless the scope is shadowed with a

fusion declaration of the same name.

The general rule for determining the scope works more speci�cally as follows.
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The place fusion groups are determined by inspecting the page instance tree for

each fusion place. Given a fusion place on a page, we travel up in the tree until

we �nd a fusion declaration of the same name. The declaration page determines

the place fusion group of the fusion place in question. Additionally, if the fusion

declaration is of kind page, then we merge the fusion group across all instances

of the identi�ed fusion declaration page.

In the example of Fig. 10 we see that the fusion place in page Inst. 5.1

belongs to the fusion group across all instances of Page 5, exactly because the

nearest fusion declaration is of kind page. On the other hand, the fusion place

Page 3 Page 4

Page 5

Page 1

Model hierarchy

Fusion A

Fusion A Fusion A

Fusion A

Page 2

Inst 1.1

Inst 2.1 Inst 2.2

Inst 3.1 Inst 4.1 Inst 3.2 Inst 4.2

Inst 5.1 Inst 5.2 Inst 5.3 Inst 5.4

Fusion A Fusion A Fusion A Fusion A

Fusion AFusion AFusion AFusion A

Fusion A Fusion A

Fusion A: Page

Fusion A:Instance Fusion A:Instance Fusion A:Instance

Fusion A: Page Fusion A: Page Fusion A: Page Fusion A: Page

Instance tree

Figure 10: Example of topological instance fusion and topological page fusion.

in page Inst. 3.1 does not belong to the same place fusion group as the place in

Inst. 3.2 because the nearest fusion declaration (Inst. 2.1 ) is of kind instance.

However, the fusion place in page Inst. 3.1 belongs to the same fusion group

as the place in page Inst. 4.1 because they both are inside the sub-tree of the

fusion declaration.

Thus, topological oriented scope rules provides more 
exibility oriented to-

wards the page instance tree structure.

5 A Larger Toy Example

In the previous sections we have motivated parametrisation of CP-nets, and

made a conceptual framework. In this section we wish to illustrate practical

aspects of our work by studying a more elaborate example of the 
exible man-

ufacturing system. An example also helps to explore a possible user interface

scenario.

5.1 CPN Model of the Bottling Manufacturing System

As our example, we present and describe a CPN model of the bottling manu-

facturing system of which there is an overview in Fig. 1. We present the CPN
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model in a mixture of bottom-up and top-down fashion, and we do it with

the granularity of modules. Hence each �gure we show is a module, possibly

parametrised. We start with a model of the generic manufacturing cell and

then, in a top-down fashion, we look at each of its major components, namely

the transportation system module and the machine module. Subsequently we

glue together variants of the generic cells, in a bottom-up fashion, to form a bot-

tling manufacturing system; where empty bottles enter the system and bottles

with 
uid, lids, and labels exit the system in packages.

The Generic Manufacturing Cell

We begin with the generic manufacturing cell which is the main building block of

our 
exible manufacturing system. We model the generic cell as a parametrised

module where two of the parameters are formal net structure parameters which

are place-holders for a transportation system and a machine module. We only

describe the machine module in this section and assume the transportation

system for given as an external library module.

The CPN model of the generic manufacturing cell is depicted in Fig. 11. In

Machine
PM

Transportation
System

PM

i o

oBuffer Out

ResourceIn

iBufferIn

parameters Transportation_System,
           Machine;

Figure 11: CPN model of the generic manufacturing cell.

Sect. 2 we characterised this module with the following parameters: a trans-

portation system and machine parameter, both of kind net structure. We could

have chosen to identify a number of type parameters for the colour sets of all

the places. However, we wish this module to be as generic as possible. Thus

by leaving them out we assume that the type system infers all the types once

we put the module in a context. The role of this module is therefore merely

to be a structuring component. Note that we have explicitly declared the two

parameters Transportation System and Machine in a module declaration box.

Additionally the tags PM on two of the transitions are a graphical convention,

and is a supplementary visual cue to the parameter declarations. We have also

explicitly expressed that the three places iBu�er, oBu�er, and Resource are the

net structure interface to the surrounding module by using the tagging notation

of In and Out. The role of the in/out-tags is to help the user of this generic
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module when building a manufacturing system. (See below where we compose

the bottling manufacturing system.)

In the generic cell just described we have the Machine parameter. The

generic machine module which we wish to use in our example is depicted in

Fig. 12. It has the following formal parameters: Functionality (net structure

parameters SpeedP,
           SpeedTypeP,
           Functionality;

colorset Delay = with e  timed;
colorset Tray = union vacant + full:InItem ;

var iitem ;

ResourceIn

Input InItem

In

Output

Out

Get Next
Item

Idle Tray

10‘vacant

Ready Tray

Delay
Delay
1‘e

Assemble
and Deliver

Functionality

PM

e

e@+Inverse(SpeedP:SpeedTypeP)

iitem vacant

full(iitem)

Figure 12: CPN model of the generic machine which is used by the generic

manufacturing cell.

parameter), SpeedTypeP (type parameter), and SpeedP (value parameter). Only

two colour set declarations are needed: Delay and Tray. The rest of the colour

sets are inferred by the type checker and given a speci�c type upon instantiation.

A type is inferred by the type checker for the value parameter SpeedP. In this case

it is determined by the type of the function Inverse which again is determined by

SpeedTypeP. The net structure parameter Functionality has the PM tag which

indicates that it is a place-holder for a module. We do not describe the contents

of the Functionality module.

Composing the Bottling Manufacturing System

Having made our main building block, the generic manufacturing cell, we can

proceed with modelling the bottling manufacturing system itself. We make a

number of specialisations of the generic cell and then build a manufacturing

line from them. Then we encapsulate this in order to make a manageable

parametrisation speci�cation to the complete manufacturing system.

In order to build a bottling manufacturing line in Fig. 13 we need four

variants of the generic cell from Fig. 11. Empty bottles enter the system and


ow through the four cells with the following functions: �rst the bottles are �lled

up with a 
uid (Fluid bottling cell), then lids are �tted on (Lid �xing cell) and

labels pasted on (Labelling cell), and �nally the bottles are packaged (Packaging

cell) and sent out of the system. Each of the four stages are represented by

21



Fluid bottling
cell HS

GenericCell[
  GenericMachine[
    MachSpeedP -> SpeedP
    real -> SpeedTypeP
    WinePack[] -> Functionality
    iBuffer->iPostTrans
    oBuffer->oPostTrans
    i->oPreTrans
    o->iPostTrans
  ] -> Machine
  GenericTransSys[
    ...
  ] -> Transportation_System
  Buffer1->iBuffer
  Buffer2->oBuffer
  Fluid_resource->Resource
]

Buffer1

BottleBuffer

Buffer1CapacityP

Buffer2

BottleBuffer

Buffer2CapacityP

Lid fixing
cell HS

Buffer3

BottleBuffer

Buffer3CapacityP

Fluid
resource

Fluid

InitialFluidP

Lid
resource

Lids

InitialLidsP

parameters BottleTypeP,
           PackageTypeP,
           MachSpeedP,
           Buffer1CapacityP = 10,
           Buffer2CapacityP = 10,
           Buffer3CapacityP = 10,
           Buffer4CapacityP = 10,
           Buffer5CapacityP =  1,
           InitialFluidP, InitialLidsP,
           InitialLabelsP, InitialPackagesP;

colorset BottleBuffer = Queue with BottleTypeP;
colorset PackageBuffer = Queue with PackageTypeP;

colorset Fluid = ... ;
colorset Lids = ... ;
colorset Labels = ... ;
colorset Packages = ... ;

Labelling
cell HS

Label
resource

Labels

InitialLabelsP

Buffer4

BottleBuffer

Buffer4CapacityP

Packaging
cell HS

Package
resource

Packages

InitialPackagesP

Buffer5

PackageBuffer

Buffer5CapacityP

Figure 13: Partial CPN model of a simple bottling manufacturing system.

specialisations of the generic manufacturing cell. For instance, the specialisation

to a 
uid bottling cell can be seen next to the HS -tag of the Fluid bottling cell

transition. In there we see all the assignments to the formal parameters and

assignments of the interface places. Note that in order to assign a module to

the machine parameter we need to make assignments to the formal parameters

of the machine module:

GenericMachine[

MachSpeedP -> SpeedP

real -> SpeedTypeP

WinePack[] -> Functionality

iBuffer -> iPostTrans

oBuffer -> oPostTrans

i -> oPreTrans

o -> iPostTrans

] -> Machine
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This means: take the module GenericMachine (actual parameter) and assign

it to the formal parameter Machine, but before doing that a number of param-

eters of the machine module need to be assigned. In MachSpeedP ! SpeedP

we take the value of MachSpeedP and assign it to the formal value parameter

SpeedP, where MachSpeedP is itself a parameter of the bottling manufacturing

system module. In real ! SpeedTypeP we assign the type real to SpeedTypeP.

In WinePack[] ! Functionality we assign the module WinePack[], which does

not have any parameters, to the formal net structure parameter Functionality.

The last four lines are assignments of the interface places.

The contents of the last three HS tags are similar to that of the transition

Fluid bottling cell. Note the tag notation used for the four transitions are the

same as those for substitution transitions in the tool Design/CPN.

Our bottling manufacturing system is almost complete. The �nal module we

need to treat is the top-level module depicted in Fig. 14. The role of this module

Wine Bottling
System

HS

BottlingSystem[
  Bottle -> BottleTypeP
  Package -> PackageTypeP
  10 -> MachSpeedP
  5000‘wine -> InitialFluidP
  5000‘cork -> InitialLidsP
  5000‘bordeax92 -> InitialLabelsP
  1000‘woodbox -> InitialPackagesP
  Input_Buffer -> Buffer1
  Output_Buffer -> Buffer5
]

Input
Buffer

BottleBuffer

Output
Buffer

PackageBuffer

colorset Bottle = ... ;
colorset Package = ... ;

Figure 14: Top-level CPN module of the manufacturing system.

is to be a simple abstraction of the manufacturing system where only the most

important formal parameters are visible. Thus this module provides a simple

and easy to change interface to the system. Changing an actual parameter

here does not require a full type check and compilation, but only a quick re-

instantiation of the system.

In Fig. 15 we see the module overview page which is similar to the tradi-

tional hierarchy page of CP-nets. Each node represents a module and each arrow

represents a relation between modules due to the assignments of net structure

parameters. Some of the nodes (and arrows) are dotted. These represent ex-

ternal modules which needs to be imported from module libraries. Thus the

dotted nodes represent modules which are not physically part of the main CP-

net model which constitutes the solid graphics nodes. The external modules

only get a transient physical representation when the system is instantiated for

the purpose of execution.

5.2 Evaluation of Applicability

Below we summarise some of the techniques used in the example above and

discuss their applicability. The use of parametrised CP-nets seems, as a side

e�ect, to induce a number of other useful modelling techniques.
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TopLevel M Prime

ConveyerBelt

WinePack

GenericTransSys

GenericMachine

GenericCell

BottlingSystem

Figure 15: Module overview page. Dotted nodes represent modules which are

imported from libraries.

In the example we illustrated the reuse technique where we reused the generic

manufacturing cell in a number of specialisations to make the manufacturing

system in Fig. 13. Using parametrised modules for this purpose is a 
exi-

ble technique which would be di�cult with hierarchical substitution transitions

only. In Fig. 15 we indicated that external library modules also would bene�t

to the reuse of parametrised modules.

Figure 15 is used to show module dependencies for a speci�c instantiation.

Actually the arrows between TopLevel, BottlingSystem, and GenericCell are

essentially the hierarchical substitution relation. The rest of the arrows are a

result of the net structure parameter assignments in Fig. 13. If the user edits the

formal parameters of the parameter assignments, then the module dependency

page may change appearance. We do not need to distinguish (graphically)

between the two kinds of relations, hierarchical substitution and parametrised

modules, because they are in essence the same.

Even for this relatively small example we observe that there are quite a few

formal parameters. As a result we see, e.g., in Fig. 13 that the assignment

notation may quickly become rather large and therefore complicated to look

at. This indicates that the user interface scenario explored so far may not be

adequate for handling larger examples. Thus we suggest that there should be

made further investigations in this area to make parameter assignments more

scalable.

6 Implementation Issues

In Sect. 3 we have proposed a conceptual framework for parametrised CP-nets.

Although we provide su�cient details such that the framework can be used as

a rough recipe for implementation, we have not conveyed all useful ideas. The

design ideas are somewhat biased with a target tool and implementation lan-
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guage in mind. They are respectively Design/CPN and SML. Design/CPN has

an interface look-and-feel tradition, and SML does contain a number of useful

language constructs such as module structuring features with parametrisation.

As the tool and implementation language is �xed in this paper it also makes

sense to describe a few practical restrictions imposed by these choices.

6.1 Parametrised Modules

The language SML has a module mechanism which is called structures. A

structure can be parametrised, and such a construct is called a functor. In

the following we outline that the modules system of SML, i.e., structures and

functors, are su�cient for our purposes of implementation. The SML example

below is inspired by the generic machine module from Fig. 12. This module has

three formal parameters SpeedP (value), SpeedTypeP (type), and Functionality

(net structure). In SML we �rst declare a couple of useful module interfaces

(called signatures):

signature FUNCTIONALITY

= sig

...

end;

signature GENERICMACHINE

= sig

...

end;

The purpose of these is to specify more exactly what we allow to be used as net

structure parameters for Machine and Functionality. With these signatures we

can now declare the generic machine module with an SML functor:

functor GenericMachine

(type SpeedTypeP

val SpeedP:SpeedTypeP

structure Functionality:FUNCTIONALITY):GENERICMACHINE

= struct

...

end;

Before we can instantiate the generic machine module we need �rst a module

to be assigned to the net structure parameter Functionality, which we call the

WinePack module (a component which can package wine bottles):

structure WinePack

= struct

...

end;

Now that we have the generic machine functor and a module, WinePack, we

can then instantiate a machine such that an executable machine module can be

generated:
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structure aMachine = GenericMachine

(type SpeedTypeP = real

val SpeedP = 10.0

structure Functionality = WinePack);

The SML code above should, of course, be generated automatically by the

tool. Throughout the whole process of declaring modules and instantiation we

are helped by the strongly typed language of SML. If we make a mistake the

SML compiler will report an error. Thus we conclude that SML is a potentially

appropriate implementation language for parametrised CP-nets.

7 Future Work

In this section we provide an overview of activities we wish to be a continuation

of this work. Below we discuss future work in the area of parametrised CP-nets,

implementation work, and related activities. Additionally we propose directions

in the important area of validation and veri�cation.

7.1 Parametric CP-nets

In Sect. 3 we have provided a conceptual framework for parametrised CP-nets.

The purpose is to provide a preliminary framework for further work. The next

step is to apply the current framework on a much larger example. We have

presented many design ideas which much be evaluated in the context of realistic

case studies.

Another future important step is to make a formal model of parametrisation

in CP-nets, which we refer to as Parametric CP-nets. It is important because

a formal model is a fundamental contribution which can be used as a reference.

Such a reference is necessary when ambiguities need to be resolved, and can

also be very helpful during implementation of a tool | here the integration into

Design/CPN. A formal model is also necessary when studying parametrisation

of analysis methods. Our hope is that a formal model for Parametric CP-nets

can unify the three kinds of parametrisation we have studied here: value, type,

and net structure parameters. Although the tool user does not need to know of

this level, a uni�cation may result in a simpler and more general formal model

and potentially a simpler implementation.

In this conceptual framework we restricted net structure parameters to be

on the level of transitions. Naturally we should also consider the case of let-

ting places be parameters. This is analogous of considering both substitution

transitions and places as with the original formal model of CP-nets. We expect

that net structure parameters on the level of places is very similar to the case

of transitions being parameters, and we do not see any serious problems with

having both in the same framework. The two concepts are in essence dual, and

they are both useful from a modelling point of view. Additionally, it could also

be interesting to investigate if arcs could be used as a syntactical category for

the source of net structure parametrisation.

We have been somewhat inspired by the implementation language SML,

but we have also made limitations due to SML. Our inspiration has been in-


uenced by the module feature of SML which allows the same three kinds of
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parametrisation as those we treat in this paper. SML is a strongly typed func-

tional language which features parametric polymorphism [3]. Other languages,

especially object-oriented, features inclusion polymorphism, and virtuals such

as BETA [14]. In BETA it is possible to use virtual classes for supporting

parametrised representations. As the mechanism of virtuals is very 
exible we

suggest to investigate how virtuals could be realised, if possible at all, in CP-

nets. We do not know of any work in that direction within the research area of

Petri Nets.

7.2 Implementation in the Tool Design/CPN

We need tool support for parametrised CP-nets in order to learn more about

pragmatic issues on parametrised representations. In Sect. 6 we have shown

that the target language, SML, in principle is su�cient for our needs.

We have claimed that parametrised CPN models should facilitate quick and

easy instantiation of parametrised modules in order to support an environment

for building many variants of models. Therefore we need a useful user interface

to building models with modules and instantiation. We can use a scripting

language in order to solve this issue. Such a scripting language should support

iteration over parameters of all kinds; value, type, and net structure. In fact, the

language SML is already suitable for such a purpose. For instance, suppose we

wish to study how our manufacturing system performs by varying the machine

speed parameter value. Then we just write a script that can make a large

number of instantiations with di�erent speed parameter values.

7.3 Enhancing Expressive Convenience

In the examples presented in this paper we have seen that we could leave out

many type inscriptions and therefore leave it to the type system to infer the most

general type. Furthermore, we have only considered parametric types [3] due

to the choice we made in advance about the target implementation language,

SML. Although not supported directly by SML we could also consider to include

the possibility of inclusion types, i.e., we should consider to introduce concepts

from the research area of object-orientation. Many people working with Petri

Nets already do research on di�erent kinds of object-oriented Petri Nets [2].

7.4 Validation and Veri�cation

CP-nets have very powerful and general analysis methods, i.e., methods for

obtaining answers to questions about the behaviour of CPN models. Usually

analysis methods are divided into two groups, namely validation and veri�cation

methods. Validation is concerned with convincing ourselves that a CPN model

behaves as intended, while veri�cation is concerned with proofs or algorithmic

checks that a CPN model has a formally stated property. Simulation is a typical

validation technique, and two of the most popular and successful veri�cation

methods are state spaces and place invariants [10].

Let us �rst consider validation techniques on parametrised CP-nets, more

speci�cally simulation. The characteristics of a module is that it is mostly a

self-contained unit, which is loosely coupled with its environment. This means

that we can expect that a module is primarily developed independently. How
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do we validate a parametrised module via simulation? Surely this is what we

would like to do in early stages of development. The way we have designed

parametrised CP-nets so far does not allow us to simulate a parametrised module

without instantiation. In Sect. 8 on related work we refer to other research on

parametrisation (although within object-orientation) which allows execution of

parametrised modules without assignment of parameters [16]. We suggest to

study that digression in order to investigate alternatives.

There are a number of successful veri�cation methods for CP-nets. Below

we emphasise two of the most well-known, namely the state space and invari-

ant methods. The state space method relies heavily on the initial marking of

the CPN model in question. Thus the method cannot be applied directly on

the level of our parametrised CPN models, as they are not executable with-

out instantiation of parameters. However, there are other methods in relation

with state spaces where parametrisation has been used. In [18] by Schmidt, a

symbolic state space method is applied to marking parametrised algebraic Petri

Nets. Although the theoretical results are interesting, the work still lacks an

implementation.

While the state space method belongs to the model checking area, the in-

variant method is more related with the area of theorem proving. Theorem

proving is often abstract in a mathematical sense which implies manipulation

of formulas on a symbolic level. Therefore we can expect that the invariant

method is more compatible with parametrised CP-nets. Although net structure

parameters in general violate invariant properties we may have more success

with value parameters as they can be used as terms in weight sets and the in-

variant properties themselves. Type parameters do not in
uence the invariant

properties directly, but rather determine the types of the weight functions as

these are derived from the types (colour sets) of the places. We additionally

suggest to make investigations on how to build parametrised representations

with analysis in mind.

Another analysis approach would be to combine a number of well-known

techniques and methods. There are examples of combining methods and tech-

niques in the literature. For instance, Shapiro et al. [8] has combined induc-

tion with the state space method in the veri�cation of an arbiter cascade CPN

model. The arbiter cascade is a tree structure of hardware components and the

veri�cation was conducted with induction in the depth of the tree. Although

the model cannot be parametrised within our framework of parametrised CP-

nets, we can still in principle use this idea | in particular with (integer) value

parametrisation. We may even apply the more general kind of induction called

well-founded induction. Further investigations in such combinatory approaches

would be interesting in the search for new analysis methods and techniques.

As indicated above there are other activities in progress for the development

of analysis methods in relation with parametrised Petri Nets. We also indicated

that the current framework in this paper of parametrised CP-nets is informal,

suggesting that the framework is not necessarily very useful in relation with

generalising analysis methods such as the state space and invariant methods.

Therefore we suggest to investigate further the issue of restricting the conceptual

framework presented here such that the popular analysis methods can be gen-

eralised in order to cope with parametrised CP-nets. This should in particular

be considered when making a formalisation of parametrised CP-nets. Another

approach is to extend the well-known analysis methods. For instance, one could
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consider to make semantical annotations on various places in a parametrised

CPN model, which then could be used as assumptions in relation with an anal-

ysis method such as invariants. These semantical annotations could be given,

e.g., to each net structure parameter which then should mean that there would

be further restrictions on which parametrised modules that could be used for

assignment.

8 Related Work

Chiola et al. [5] de�ne a formal model for Parametric PT-nets. Their formal

model is restricted to parametrisation of initial markings, i.e., the parameters

are integers. The purpose of their paper is to compare the modelling power of

several variants of PT-nets within the framework of Parametric PT-nets. As

they formalise Parametric PT-nets we acknowledge that their work is in some

sense more rigorous compared with our framework which is informal. However,

we cannot compare the results directly as both the purposes and net kinds are

di�erent. Chiola et al. identi�es that it is in some cases possible to reason about

net properties on the level of Parametric PT-nets, i.e., instead of analysing a

single system they analyse a family of systems. The family is determined by the

parametrised initial markings. One of the more interesting analysis methods

they consider is the invariant method.

Another Petri Nets language which supports parametrised representations is

the ExSpect framework [21]. This framework is interesting because it is related

with the CPN formalism and the framework supports the same three kinds of

parametrisation as in this work | in their terminology; functions, types, and

processors/subnets. However, the parametrisation concept is not built into the

ExSpect formalism, only in their tool. Like our work with parametrisation of

CP-nets, the ExSpect framework needs to formalise parametrisation in order

to get an unambiguous semantics. However, they already have the advantage

of having implemented parametrisation in their ExSpect tool | which we have

not. Additionally they have not made any work on analysing parametrised

ExSpect representations.

Some object-oriented languages have parametrisation capabilities. One of

these is BETA [14]. This language indirectly supports parametrisation with a

language construct called virtual classes. It is a very general construct which is

also used for expressing other mechanisms than parametrisation. The authors

of [16] introduce an interesting idea of type substitution (a kind of genericity) in

object-oriented languages which then works as parametrisation. A parametrised

class can in this case be instantiated without the need to supply parameters.

The type names are already parameters and are thus already legal types. We

do not use this approach in parametrisation of CP-nets, although it is possible

in principle. One reason is that we are from the beginning in
uenced by the

target implementation language SML which does not support type substitution

(or object-orientation for that matter).

The SDL language [19], which is a recommended telecommunications stan-

dard, share some characteristics with Petri Nets. The language is graphical and

has some kind of state/transition concept. The original standard, SDL'88, was

extended with object-oriented concepts [13] and later the SDL'92 [20] was pro-

posed, also called OSDL. We take interest in OSDL because the language sup-
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ports concepts such as virtuals and parameters, and is furthermore interesting

for people working with object-oriented Petri Nets. The parameters supported

are values, types, and processes which are similar to the net structure param-

eters in this paper. Parametrised SDL modules cannot be executed without

supplying parameters, however SDL modules with virtuals can. In spite that

OSDL is executable and tools have been made to support code generation from

OSDL representations, there are currently no advanced and general purpose

veri�cation methods such as the invariant method for CP-nets. Some SDL tools

do, however, use state spaces in limited fashions.

In this paper we do not treat the issue of object-orientation or virtuals

together with Petri Nets. There are many other people working with introducing

object-oriented concepts into Petri Nets [2, 1]. None of them, however, consider

parametrisation in their own variants of Petri Nets. The research on object-

oriented Petri Nets is very active, but no common directions or agreement on

object-oriented Petri Nets have been concluded yet.

9 Conclusion

In this paper we have investigated the possibility for the parametrisation of

CP-nets. To support this idea we have provided a conceptual framework for

parametrisation which resulted in the investigation of three concepts for param-

etrisation; namely value, type, and net structure parametrisation. By means

of examples we have indicated that value and type parametrisation is straight-

forward while net structure parametrisation is more complicated. The latter

induced the need for net structure parametrisation by means of modules, which

implied a relation between modules | a concept supplementary to the hierar-

chical substitution relation of CP-nets.

We saw that the introduction of modules into CP-nets lead naturally to the

need for scope rules for declarations such as colour sets. In the same context we

generalised the existing scope rules for place fusion groups, where we introduced

the concept of topological scope rules.

This conceptual framework is being considered a preliminary stage in the

parametrisation of CP-nets. We propose �rst to build tool support for para-

metrised CP-nets, and as a later stage when the design ideas have mature, to

realise the formalisation of Parametric CP-nets.
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