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Abstract. In this paper we present a CTL-like logic which is interpreted

over the state spaces of Coloured Petri Nets. The logic has been designed

to express properties of both state and transition information. This is

possible because the state spaces are labelled transition systems. We

compare the expressiveness of our logic with CTL's. Then, we present

a model checking algorithm which for e�ciency reasons utilises strongly

connected components and formula reduction rules. We present empirical

results for non-trivial examples and compare the performance of our

algorithm with that of Clarke, Emerson, and Sistla.

1 Introduction

Coloured Petri Nets (CP-nets or CPN) are convenient for specifying complex

concurrent systems. Until now properties of CP-nets have mainly been speci�ed

directly in terms of the state spaces of CP-nets [4,6]. Temporal logics such as

CTL are also useful for expressing properties of concurrent systems (see, e.g., [1]).

We show how we can de�ne a CTL like logic, ASK-CTL, tailored especially for

expressing properties of state spaces of CP-nets. We provide example formulas

which indicate that the logic is powerful enough to express many of the standard

CP-net properties. Use of a logic implies that we get a well understood and easy

to use framework for expressing a much wider range of properties.

If a logic should be of practical use, it must be possible to verify formulas

e�ciently. The state space explosion problem often makes veri�cation imprac-

tical. Solutions to this problem are mainly concerned with two methods: The

�rst is state space reduction as proposed by, e.g., Valmari, Huber, Jensen, Gode-

froid, and Wolper [13,3,6,2,14]. The second method is concerned with algorithms

which traverse the state space in a more e�cient manner. The last point is ad-

dressed by this paper. We show how it is possible to improve the standard linear

time model checking algorithm in that we, in some cases, avoid searching the

complete state space, by taking into account strongly connected components

(SCC's). Our algorithm has the same worst case complexity as the standard

algorithm [1]. Nevertheless, our algorithm is faster in many interesting cases,

depending on the topology of the SCC's and the combination sub-expressions in

ASK-CTL formulas.



The rest of the paper is organised as follows. First we introduce Coloured

Petri Nets and state spaces (section 2 and 3 respectively). Then we present our

proposal for a suitable logic, called ASK-CTL, for CP-nets, and motivate its use-

fulness by expressing properties about example CP-nets (sections 4 and 5). The

formal de�nition of ASK-CTL is then given in section 6 (including a de�nition

of state spaces). In section 7 we show how to model check ASK-CTL formulas,

taking advantage of strongly connected components. Performance measures of

this model checking algorithm and comparisons with the standard algorithm [1]

are given in section 8. Finally in section 9, the conclusion.

2 Introduction to Coloured Petri Nets

We give here a short and informal overview of CP-nets although we assume the

reader to have some prior knowledge of CP-nets. For an in-depth introduction

to CP-nets, see [4,5]. We use three examples of CP-nets which are used for

performance measures.

The �rst example introduces the notation used in this paper, and illustrates

the classical scenario of the Chinese Dining Philosophers (�gure 1). A number

of philosophers share a bowl of rice, eating with chop-sticks. Exactly one chop-

stick is located between each philosopher, i.e., two neighbours share a chop-stick.

Each philosopher can be in a state where the philosopher is either eating or

thinking, modelled by two places called Eat and Think respectively. In order to

eat, the philosopher p needs to take two chop-sticks, Chopsticks(p); one from

the left and one from the right. Unused chop-sticks are located on the place

called Unused Chopsticks. In order to resume thinking, the philosopher puts

down both chop-sticks at the same time. In the initial state, all philosophers

are located on Think indicated with the inscription PH, and all chop-sticks are

located on Unused Chopsticks.

The philosophers are modelled with the colour set (type) PH which is an

indexed set (PH = fph(1); : : : ; ph(n)g). The chop-sticks are likewise modelled

with the indexed colour set CS. Finally, the function Chopsticks() returns a

multi-set1 of chop-sticks, given a philosopher. For example,

Chopsticks(ph(1)) = 1�cs(1) + 1�cs(2):

3 Introduction to State Spaces

We make extensive use of state spaces2 so we give here an informal overview of

some of the relevant concepts. We postpone the formal de�nition of state spaces

until needed.

One approach to formal veri�cation of a complex system is to generate all

possible states that the system can reach, given an initial state as starting point.

1 A set where multiple occurrences of the same element is possible. Also called a bag.
2 State spaces are elsewhere referred to as occurrence- or reachability graphs.
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val n = 12;
color PH = index ph with 1..n;
color CS = index cs with 1..n;
var p : PH;
fun Chopsticks(ph(i))
    = 1`cs(i)+1`cs(if i=n then 1 else i+1);

p

p

p

p

Chopsticks(p)

Chopsticks(p)

Fig. 1. The Dining Philosophers example.

When also recording the transitions from state to state, we obtain a labelled

transition system, which we refer to as the state space of the system. The tran-

sition system is a graph with the property that all nodes are reachable from the

node representing the initial state (see �gure 2). Given the full state space we are

now able to check properties that we expect the system to have. For example,

we verify a safety/invariant property by traversing all states in the graph. We

typically do this by quantifying over paths in the state space, where a path is a

sequence of states and transitions, possibly in�nite.

An example of a partial state space can be seen in �gure 2. Each node has a

label indicating the marking, where the marking of Unused Chopsticks is left

out, since it can be derived from Think and Eat. Each edge has a label indicating

the binding element (occurring transition and values of variables).

4 The Logic ASK-CTL

The �rst contribution of this paper is the proposal of a CTL-like logic, ASK-

CTL, useful for checking properties of CP-nets. The models over which we inter-

pret ASK-CTL are state spaces of CP-nets. These graphs carry information on

both nodes and edges. Hence, a natural extension of CTL is the ability to also

express properties about the information labelling the edges. (E.g., edge infor-

mation is needed when expressing liveness since liveness is expressed by means of

transition information.) For this purpose we introduce two mutually recursively

de�ned syntactic categories of formulas; state and transition formulas which are

interpreted on the state space at states and transitions respectively.

As found in CTL and other temporal logics, path quanti�ed state and tran-

sition formulas are interpreted over paths. Path quanti�cation is used in com-

bination with the CTL until-operator. This combination provides a means for

expressing temporal properties.
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1 Think: ph(1)+ph(2)+ph(3)+ph(4)

2

Think: ph(2)+ph(3)+ph(4)
Eat: ph(1)

4

Think: ph(1)+ph(2)+ph(4)
Eat: ph(3)

7
Think: ph(2)+ph(4)
Eat: ph(1)+ph(3)

Take<p=ph(1)>

Take<p=ph(3)>Take<p=ph(1)>

Put<p=ph(3)>

Take<p=ph(3)>

Put<p=ph(1)>

Put<p=ph(1)>

Put<p=ph(3)>

Fig. 2. A part of the state space for the Dining Philosophers example with 4 philoso-

phers.

In ASK-CTL we allow rather general predicates, since these are useful for

veri�cation of CP-nets. We argue that ASK-CTL is exactly as expressive as

CTL in the case where we limit the basic predicates (� and � below) to atomic

propositions. Since CTL cannot express standard fairness properties we inherit

this inability, and lose the ability to express interesting properties such as im-

partiality, fairness, and justice (as de�ned in [4,9]). However, there exist partial

remedies for this drawback as shown by Clarke et al. [1]. In that paper the

logic CTLF is introduced as a slight extension of CTL. The purpose is to in-

troduce fairness into CTL. This is done at the semantic level by interpreting

CTL-formulas only over paths which are fair with respect to a set of \fairness"

predicates. One observes that SCC-graphs are used in connection with CTLF ,

but not for e�ciency purposes as in our work. Fairness can be introduced in a

similar fashion for ASK-CTL. We do not elaborate further on this subject as it

is beyond the scope of this paper.

4.1 Syntax

Assume a �xed CP-net N . The logic, which is interpreted over the state space

of N , has two categories of formulas: state and transition formulas. The two

syntactical categories are mutually recursive.

State formulas:

A ::= tt j � j :A j A1 _ A2

j <B>

j EU(A1;A2)

j AU(A1;A2)
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where tt is interpreted as the constant value true, � is a function from the set

[M ! IB], i.e., a function mapping from markings to booleans, and B is a

transition formula. EU and AU are explained below.

Transition formulas:

B ::= tt j � j :B j B1 _ B2
j <A>

j EU(B1;B2)

j AU(B1;B2)

where � is a function from the set [BE ! IB], i.e., a function mapping from

binding elements to booleans, and A is a state formula.

We use the convention of always starting with A, thus all ASK-CTL formulas

are state formulas at the top-level, and transition formulas can only appear as

sub-formulas. Furthermore, when model checking, we implicitly do this with

respect to the initial state.

ASK-CTL resembles CTL except for the < � � � > operator. This operator

provides the possibility of changing between state and transition formulas. In

section 5.1, we give examples to demonstrate the usefulness of this operator.

Apart from the boolean operators : and _ the above logic also contains the

standard temporal operator U (until) combined with the path quanti�ers E and

A (exist and for-all respectively). E.g., the EU(A1;A2) operator expresses the

existence of a path from a given marking with the property that A1 holds until a

marking is reached at which A2 holds. Dually, AU(A1;A2) requires the property

to hold along all paths from a given marking.

We have imposed no restrictions with respect to computability of the boolean

functions � and �. We assume that they range over predicates which in practice

are useful for veri�cation purposes, i.e., they can be computed e�ciently.

The syntax of ASK-CTL is minimal, which is an advantage when we de�ne

the formal semantics. In order to increase the readability of the formulas we

make use of syntactic sugar. E.g., Pos (A) means that it is possible to reach a

state where A holds, Inv (A) means that A holds in every reachable state, and

Ev (A) for all paths, A holds within a �nite number of steps. Thus for the dining

philosophers example CP-net we can easily formulate the question whether the

initial marking is a home marking3. We only need to check if the state formula

Inv (Pos (IsInitial)) is satis�ed.

5 Example CP-nets

The second example is a CP-net taken from [8] where Kindler and Walter solves

the problem of rearranging di�erent integers asynchronously, see �gure 3. Ini-

tially a number of di�erent integers are distributed on the four places small,

great, compSM, and compGR. The latter two places contain only one integer each.

After a �nite number of steps the system ends up in a dead state, i.e., a state

where no binding elements are enabled, in which the following properties hold:

3 I.e., the initial state can be reached from every reachable state.
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{ The integers on the places small and maxSM are smaller than the integers

on the places great and minGR.

{ The number of integers on place small and great is the same as in the

initial state.

{ The place maxSM contains exactly one integer, and this integer is larger than

any of the integers on the place small.

{ The place minGR contains exactly one integer, and this integer is smaller

than any of the integers on the place great.

small

1`3+1`6+1`7+
1`11+1`15

Int

compSM
Int 1`2

minGR
Int

compGR
Int 1`20

maxSM
Int

great

1`1+1`4+
1`8+1`14+1`17

Int
t1

x>y

t'

t

t''

t2

x>y

color Int = int; var x,y:Int;
fun min (x,y:Int) = if x<y then x else y;
fun max (x,y:Int) = if x>y then x else y;

x

x

x x

x

x

x

y

y

y

y y

ymin(x,y)

min(x,y)

min(x,y)

max(x,y)

max(x,y)

max(x,y)

y

Fig. 3. The Integer Rearrangement example.

As the third and �nal example, we present a CP-net we call the Multi Stage

Process example (�gure 4). The purpose of the example is to illustrate processes

which go through multiple stages of success and failure. The idea is as follows:

Processes perform some kind of testing and continue to do so as long as the

test fails. If the test succeeds the process divides into two which continue in a

new cycle where they change between modes of waiting and idle. Here processes

perform tasks which also can fail or succeed. Furthermore, if all failed processes

are simultaneously located on either Wait1 or Wait3, then all processes may stop

performing tasks and leave the cycle. When the processes leave this cycle, they

become inactive and thus do not perform any further tasks.

The choice of these three examples are motivated in section 8.1, where we

describe their state spaces.
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Result

TestRes

Idle
Proc

Success

Retry

Task4 Task1

Wait2

Proc

Init
ProcProc

Test

color Proc = with p | q;
var pr : Proc;
color Res = with success | failure;
var res, new_res : Res;
color TestRes = product Proc * Res;

Wait1
TestRes

Task2Task3

Wait3
TestRes

Fail1Fail3

Fail1
Proc

Fail3
Proc

(pr,success)

2`pr

(pr,failure)

pr

pr

pr

pr pr

(pr,res)

(pr,res)

(pr,new_res)

pr

(pr,res)

(pr,new_res)

2`(p,failure) +
2`(q,failure)

2`(p,failure) +
2`(q,failure) 1`p+1`q1`p+1`q

Fig. 4. The Multi Stage Process example.

5.1 Expressing CP-net Properties Using ASK-CTL

In this section we use ASK-CTL to express reachability, liveness, and home

properties as presented in [6]. Then, we consider properties of the three examples.

We let M denote a marking, the state formula �M denote the characteristic

predicate for M , i.e., �M (M 0) is true if and only if M =M 0, and the transition

formula �t is the characteristic predicate for the transition t, i.e., �t(b) is true if

and only if the transition in b is t. The formula Inv (Pos (�M )) then expresses that

M is a home marking. Reachability of M is expressed by the formula Pos (�M ).

M is dead if it satis�es : <tt> and Inv (Pos (<�t>)) expresses that t is live.

For the Integer Rearrangement example it is expected that the system will

reach a state where it is totally sorted in a �nite number of steps. This property

can be expressed as Inv (Ev (IsSorted)), where IsSorted is the state predicate

denoting that: all integers in small are less than the integer in maxSM, all integers

in great are larger than the integers in minGR, and the integers in maxSM are

smaller than the one in minGR.

For the Multi Stage Processes example we use the predicate IsFailed to ex-

press that both processes are in either Fail1 or Fail3. We would expect that
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Inv (Pos (IsFailed)) is satis�ed and Inv (Ev (IsFailed)) is not satis�ed, i.e., the

processes can always fail, but it is also possible that this never happens.

As another example of the usefulness of transition formulas, let us consider

how one can express the property that one can reach a marking satisfying A by a

sequence of steps involving only transitions from a set T . In the modal �-calculus

such a property would be expressed as �X:A _ < T > X , where the notation

< T > is borrowed from [11]. We notice that the formula uses the recursion

operator �. Without transition formulas we would not be able to express the

above property easily. The state formula A _ <EU(�T ; <A>)> expresses the

desired property, where �T is the predicate that returns true if and only if the

transition of a binding element is an element of T . For the Integer Rearrangement

example the following formula is true: IsSorted _ <EU(�ft1;t2;t0g; <IsSorted>)>,

i.e., either we have already reached a state where IsSorted holds or it is possible

to reach such a state using only the transitions t1, t2, or t0.

6 Formal De�nition of ASK-CTL

So far we have been informal about the meaning of ASK-CTL formulas. In the

following we remedy this by giving the interpretation of ASK-CTL in terms of

a formal semantics.

6.1 De�nition of State Spaces

We use the concepts and notation of state spaces and SCC-graphs from [6].

Viewed as a de�nition of a directed graph, the de�nition of a state space is

non-standard with respect to items 2 and 3 below. They are included for two

reasons: Firstly, they allow multiple edges between two nodes. Secondly, they

make later de�nitions simpler.

De�nition 1. The state space of a CP-net with initial marking M0, is the

directed graph OG = (V;A;N) where:

1. V = [M0i.

2. A = f(M1; (t; b);M2) 2 V � BE� V jM1[t; biM2g.

3. 8a = (M1; (t; b);M2) 2 A : N(a) = (M1;M2).

Here V is the set of nodes (reachable markings), A the set of edges (occurrences

of binding elements), and N a function relating edges to their end-point nodes.

�

We always generate and explore the full state spaces when checking proper-

ties. Therefore we assume state spaces to be �nite throughout this paper.
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6.2 Interpretation

The logic is interpreted over state spaces, as de�ned above. For convenience we

introduce the following notation: M denotes markings of the CP-net, b denotes

binding elements, e denotes labelled edges of the corresponding state space, A

denotes state formulas, and B denotes transition formulas.

First we de�ne M j=St A, the interpretation of state formulas. The meaning

of tt, �, :, and _ is standard and do not need further explanation:

{ M j=St tt always holds

{ M j=St � i� �(M)

{ M j=St :A i� not M j=St A

{ M j=St A1 _ A2 i� M j=St A1 or M j=St A2

The next kind of state formula allows us to switch from state to transition

formulas. Recall the motivation for introducing this operator, namely that it

gives us the possibility to express properties about labels on edges in the state

space. The operator, <B>, means that we can �nd an immediate successor state

from the current state and that B holds on the edge between the two states.

Before giving the formal de�nition of the < � � �>operator, we need some con-

venient notation. We write M
b
�!M 0 whenever (M; b;M 0) 2 A, i.e., (M; b;M 0)

is an edge in the state space. Let PM denote the set of paths starting in M , i.e.,

the set PM = fM0b1M1b2 � � � j M0 = M ^ M0

b1
�! M1

b2
�! M2 � � �g. Notice

that a path, � 2 PM , may be either �nite or in�nite. We de�ne the length of a

path, � =M0b1M1 � � �Mn�1bnMn, to be j�j = n, otherwise in�nite.

The formal de�nition of the < � � �> operator is as follows:

{ M j=St<B> i�

(9b;M 0:M
b
�!M 0 ^ (M; b;M 0) j=Tr B)

The last two state formulas to consider quantify over paths in combination

with the until-operator, U , as known from CTL. A formula U(F1; F2) is to be

interpreted over a path. It holds for a path if there exists a state at which the

(state) formula F2 holds and F1 holds at all preceding states along the path. In

this logic, U only has meaning in combination with a path quanti�er, existential

(E) or universal (A). E.g., AU means that for every path, U holds (for the two

given properties). The formal de�nition is as follows:

{ M j=St EU(A1;A2) i�

(9� 2 PM :

(9n � j�j:(80 � i < n:Mi j=St A1)

^Mn j=St A2))

{ M j=St AU(A1;A2) i�

(8� 2 PM :

(9n � j�j: (80 � i < n:Mi j=St A1)

^Mn j=St A2))
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Notice that for the interpretation of EU(� � � ; � � �) and AU(� � � ; � � �), n is always a

�nite natural number, even if j�j =1.

The interpretation of transition formulas, a j=Tr B, where a = (M; b;M 0), is

given in the following. Again, tt, �, :, and _ have a standard interpretation:

{ a j=Tr tt always holds

{ a j=Tr � i� �(b)

{ a j=Tr :B i� not a j=Tr B

{ a j=Tr B1 _ B2 i� a j=Tr B1 or a j=Tr B2

Similarly, as for state formulas, we have a < � � �>operator in order to switch

from transition to state formulas. I.e., if we currently consider a transition, the

< � � �> operator allows us to express a property about the destination state of

the transition. Note that the following formal de�nition is simpler than in the

case of state formulas, because an edge always has a unique successor node.

{ a j=Tr<A> i� M 0 j=St A

The last two kinds of transition formulas, EU and AU , are de�ned in a dual

fashion as in the case of state formulas:

{ a j=Tr EU(B1;B2) i�

(9� 2 PM :

(9n < j�j: (80 � i < n: (Mi; bi+1;Mi+1) j=Tr B1)

^ (Mn; bn+1;Mn+1) j=Tr B2))

{ a j=Tr AU(B1;B2) i�

(8� 2 PM :

(9n < j�j: (80 � i < n: (Mi; bi+1;Mi+1) j=Tr B1)

^ (Mn; bn+1;Mn+1) j=Tr B2))

Whenever we interpret a formula A, we implicitly mean M0 j=St A. For nota-

tional convenience we suggest to use the abbreviations (syntactic sugar):

PosA � EU(tt;A)

It is possible to reach a state where A holds.

InvA � :Pos:A

A holds in every reachable state, i.e., A is invariant.

EvA � AU(tt;A)

For all paths, A holds within a �nite number of steps, i.e., is eventually true.

AlongA � :Ev:A

There exists a path which is either in�nite or ends in a dead state, along

which A holds in every state.

<B>A �<B ^ <A>>

There exists an immediate successor state, M 0, in which A holds, and B

holds on the transition between the current state and M 0.

EX(A) �<tt>A

There exists an immediate successor state in which A holds.

AX(A) � :EX(:A)

A holds for all immediate successor states, if any.
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We use similar abbreviations for transition formulas. Notice how the formula

< � > F from the Hennessy-Milner logic [10] can be captured using the state

formula < �� >AF where �� is a predicate expressing that a binding element

represents an � action and AF is a state formula corresponding to F .

6.3 Expressiveness

It can be formally proven that the model checking problem of ASK-CTL reduces

to the model checking problem of CTL. Here we just sketch the idea. Assume

that we are given a state space and a state formula A (transition formula B). In

linear time the state space can be transformed into an R-structure [1]. Intuitively,

the R-structure has a state for each markingM and each binding element e. We

split a labelled edge into two unlabelled edges and an intermediate state which

together with suitably de�ned atomic propositions represents the labelling of the

original edge. The formula A (B) can be transformed into a CTL formula A0 (B0)

such that A (B) is satis�ed at a marking M (binding element e) if and only if

A0 (B0) is satis�ed at the unique state in the R-structure that corresponds to M

(e). The translation of formulas is straightforward. CTL's X (next) operator is

used to simulate the \switch" between state and transition formulas. For the U

(until) operator, we use atomic propositions to distinguish between states which

correspond to markings and states which corresponds to binding elements.

In fact, our result implies that by performing the transformation as sketched

above, we could have used a standard CTL-model checker. However, we have

chosen to avoid this transformation step for several reasons, the major being

that our model checker is easier to implement directly in the Design/CPN envi-

ronment [7].

7 Model Checking the ASK-CTL Logic

In this section we present an improved model checking algorithm. The approach

is based on the \local model checking idea" from [12].

In [1] the complexity of model checking for a similar logic is shown to be

linear in the product of the size of the formula and the size of the state space.

We obtain the same worst case complexity result with ASK-CTL, assuming that

the predicates can be evaluated e�ciently, i.e., O(N(V + E)) where N is the

length of the formula, V is the number of nodes, and E is the number of edges

in the state space.

As the second contribution of this paper, we describe our improved model

checking algorithm. The concept of strongly connected components allows us to

improve the standard model checking algorithm [1].

7.1 Strongly Connected Component Graphs

We use a special kind of graphs derived from state spaces, namely strongly

connected component graphs (SCC-graphs). In �gure 5 a partial SCC-graph is

11



shown for the Multi State Process example. The SCC-graph is indicated with

large gray nodes and thick arrows. The underlying state space is shown with

small nodes and thin arrows.

An SCC-graph is a graph where each node is a strongly connected compo-

nent (SCC). Each SCC represents a subset of nodes in the state space with the

property that each node is reachable from any other node in the subset. These

subsets are mutually disjoint, maximal, and are a partition of the states in the

state space. There is an edge between two SCC's in the SCC-graph if there is an

edge between two nodes, one in each of the two SCC's. SCC-graphs are acyclic.

1

4

5

2

3 6

11

89

7

11

14

17

Fig. 5. The partial SCC-graph for the Multi Stage Process example. Thin line graphics

indicate the underlying state space.

7.2 A More E�cient Algorithm

Our model checking algorithm is a modi�cation of the standard algorithm given

in [1]. We optimise the standard algorithm for some combinations of ASK-CTL

formulas, partly by means of reduction rules, and partly by exploiting the SCC-

graph. In the following we show how.

All formulas are expanded to the basic primitives of the logic, and reduced

to eliminate redundant parts of the formula, e.g., :(:A) is reduced to A.

We optimise the checking of formulas that are combinations of EU(tt; � � �),

AU(tt; � � �), and : (i.e., essentially combinations of Pos, Inv, Ev, and Along).
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Listing all combinations of two, we recognise eight basic patterns (f is either a

state or a transition formula):

1. EU(tt; EU(tt; f))
2. AU(tt; EU(tt; f))
3. EU(tt; AU(tt; f))
4. AU(tt; AU(tt; f))
5. EU(tt;:EU(tt; f))
6. AU(tt;:EU(tt; f))
7. EU(tt;:AU(tt; f))
8. AU(tt;:AU(tt; f))

The �rst four patterns can be optimised by reduction rules, the next three pat-

terns can be model checked more e�ciently taking advantage of the SCC-graph,

while the last pattern does not seem to have such property.

Other formula combinations exist with, e.g., <f >. Unfortunately we have

not been able to improve the model checking algorithm for other cases by taking

into account the SCC-graph.

The three formula patterns 1{3 above can easily be reduced to EU(tt; f).

Furthermore, the pattern 4 can be reduced to AU(tt; f). We omit the formal

proof here.

Instead we explain informally why the pattern 2 is the same as EU(tt; f)

(only the state formula is considered in this section to simplify the discussion).

Assume AU(tt; EU(tt;A)) and a given initial state M0. This formula says that

eventually a state is reached from where it is possible to reach a state,MA, where

A holds. Then certainly it is possible to reachMA from M0, thus EU(tt;A) also

holds. Conversely assume that EU(tt;A) holds, i.e., it is possible to reach a state

MA from M0 where A holds. Observe that eventually a state is always reached

(viz. M0 in zero steps) from where it is possible to reach MA (our assumption).

Thus AU(tt; EU(tt;A)) holds. In general we can conclude that the following is a

sound reduction rule: AU(tt; EU(tt; f)) � EU(tt; f).

Similar arguments apply for the pattern 3 while the reduction rules for the

patterns 1 and 4 are more straightforward to prove.

The three patterns 5{7 (containing one negation) can all be optimised using

the SCC-graph. However, the pattern 8 does not seem to have similar properties,

and is thus not considered further. Below we illustrate the optimisation idea for

one of the three patterns (again, only the state formula is considered to simplify

the discussion).

We use the formula pattern 5 as an example. In order to make the fol-

lowing discussion more intuitive we negate the formula. Thus consider the for-

mula in question; h(A) = :EU(tt;:EU(tt;A)). The outer part :EU(tt;:A0)

means that it is not possible to reach a state in which A0 does not hold, where

A0 = EU(tt;A). This is equivalent of saying that A0 holds invariantly. The in-

ner part A0 says that there exists a path to a state in which A holds, i.e., it is

possible to reach a state where A is true. Thus the whole formula says that no

matter where you go, it is possible from there to reach a state in where A holds,

i.e., Inv (Pos (A)).
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How do we model check such a formula using the SCC-graph? In order to

motivate the usage of SCC's, consider for the moment the speci�c case where

A identi�es a set of markings. Now h(A) expresses the home space property as

de�ned in section 4.3 of [4]. In [6] section 1.4, proposition 1.14 indicates that

home spaces are related with SCC-graphs. In the proposition it is stated that a

set of markings, X , is a home space i� there exists a marking from X in each

of the terminal SCC's. In general h(A) can be checked by only considering the

terminal SCC's. If A holds somewhere in each terminal SCC, then h(A) also

holds, and vice versa. We omit the formal proof here.

This means that the complexity of checking this formula is linear in the

sum of sizes of the terminal SCC's (times the size of the formula). We gain a

signi�cant improvement in the performance when the number of nodes and edges

in the terminal SCC's are small compared with the full graph. If the SCC-graph

consists of only one node which is the worst case, we get the same performance

as with the original algorithm.

Similar signi�cant performance improvements can be found for the remaining

two cases (6{7) of formula patterns to consider.

8 Performance Measures

Above we have shown that a set of formula patterns can be model checked

more e�ciently compared to the standard algorithm, when taking into account

SCC-graphs. In practice we can compare implementations of the standard al-

gorithm and our improved algorithm by making performance measures on state

spaces generated from speci�c CP-nets. We use the three CP-nets already pre-

sented (section 5). These examples result in three very di�erent state spaces and

SCC-graphs. Thus the examples provide reasonably representative material for

a variation of experiments.

In the subsections following, we �rst show the characteristics of the state

spaces of the example CP-nets. Then we show that we gain signi�cant perfor-

mance improvements with our improved model checking algorithm.

8.1 State Spaces of Example CP-nets

We now describe the characteristics of the state spaces of the three examples used

in this paper. The Dining Philosophers is an example of a totally cyclic system.

This implies that the initial state is reachable from any reachable state. From

this we conclude that there is exactly one SCC in the SCC-graph containing all

reachable states of the CP-net. (The state space of this example contains 322

nodes and 2136 arcs.)

Simulating the Integer Rearrangement example always terminates in a �nite

number of steps. This implies that the state space does not have any cycles.

A totally acyclic state space has an isomorphic SCC-graph with only trivial

components, i.e., an SCC for each node of the state space. (The state space of

this example contains 895 nodes and 2548 arcs.)
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The Multi Stage Process example has a behaviour which includes both lo-

cal cycles and non-reversible changes between stages of the behaviour. The full

SCC-graph of the Multi Stage Process example is shown in �gure 6. For each

SCC we have shown the identity of the component (a natural number), the

number of states, and internal transitions. For each arc connecting two SCC's

we have indicated the number of binding elements between these SCC's. (The

state space of this example contains 578 nodes and 2498 arcs. The SCC-graph

has 11 components.)

1
#Nodes: 4
#Arcs: 8

2
#Nodes: 2
#Arcs: 2

4
#Nodes: 42
#Arcs: 138

6
#Nodes: 21
#Arcs: 48

9
#Nodes: 441
#Arcs: 2016

10
#Nodes: 1
#Arcs: 0

11
#Nodes: 1
#Arcs: 0

5
#Nodes: 1
#Arcs: 0

8
#Nodes: 21
#Arcs: 48

3
#Nodes: 2
#Arcs: 2

7
#Nodes: 42
#Arcs: 138

1

1

21

212

1

211

12

212

12

Fig. 6. The SCC-graph for the Multi Stage Process example. The node with a thick

border contains the initial state.

8.2 Performance Comparison of Algorithms

We have implemented two versions of the model checking algorithm on top of

the Design/CPN tool [7], one corresponding to the standard algorithm presented

in [1], and the other which is the standard algorithm including the above de-

scribed improvements taking advantage of the SCC-graph.

To investigate the performance of our implementation of the model checking

algorithm we have measured the time to check some formulas from section 5.1

using both the standard algorithm and the improved algorithm proposed above.

The formulas are used on the examples from section 4.1 and 5.1 The results

exhibit a signi�cant speed-up for all basic formula patterns (section 7.2), here

ranging from a factor 2.4 to more than 1300.

9 Conclusion

Three factors determine the usefulness of having a logic to express behavioural

properties in terms of state spaces of CP-nets. First of all the logic must be suf-

�ciently powerful to express interesting properties of the behaviour. Secondly,
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there must exist e�cient algorithms to validate the properties. Finally, the im-

plementation must be able to handle interesting problems, i.e., combinations of

large state spaces and complex formulas.

We have provided a CTL-like logic which can express interesting properties

about state spaces of CP-nets. In particular the logic allows properties of both

states and transitions to be expressed directly. This duality gives a very direct

formulation of standard CP-net properties such as liveness and home properties.

At the same time we have shown how a linear time model checker for the logic

still can be applied. Our model checker has been implemented on top of De-

sign/CPN4, which is a tool based on CP-nets | free of charge. The tool o�ers

the possibility of automatic generation of the full state space graph of a CP-net.

As we have access to the full state space graph we can, in some important cases,

improve the performance of the standard CTL model checking algorithm by

exploiting strongly connected components. We have presented empirical results

which show that, in some cases, our technique is much more e�cient than the

standard CTL model checking algorithm.

Contrary to the work of, e.g., Valmari [13] and Jensen [6] our technique

does not perform any state space reduction. Our model checking technique is

\orthogonal" to the symmetry based state space reduction technique described

by Jensen [6]. The symmetry reduced state space of a net contains all information

about the full state space. Future work should investigate the possibilities of

applying the technique proposed in the present paper on symmetry reduced state

spaces. We expect this to be possible under certain restrictions on the properties

to be veri�ed. Such properties could, e.g., be that predicates are invariant under

symmetries.
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