
Veri�cation by State Spaces with

Equivalence Classes

Jens B�k J�rgensen and Lars Michael Kristensen

Computer Science Department, University of Aarhus

Ny Munkegade, Bldg. 540, DK{8000 Aarhus C, Denmark

E-mail: fjbj, krisg@daimi.aau.dk

Abstract. This paper demonstrates the potential of veri�cation based

on state spaces reduced by equivalence relations. The basic observation

is that quite often, some states of a system are similar, i.e., they in-

duce similar behaviours. Similarity can be formally expressed by de�n-

ing equivalence relations on the set of states and the set of actions of a

system under consideration. A state space can be constructed, in which

the nodes correspond to equivalence classes of states and the arcs corre-

spond to equivalence classes of actions. Such a state space is often much

smaller than the ordinary full state space, but does allow derivation of

many veri�cation results.

Other researchers have taken advantage of the symmetries of systems,

which induce a certain kind of equivalence. The contribution of this paper

is to show that a more general notion of equivalence is useful. As example,

a communication protocol modelled in the formalism of Coloured Petri

Nets is veri�ed. Aided by a computer tool supporting state spaces with

equivalence classes, signi�cant reductions of state spaces are exhibited.

Topics. State space reduction methods, equivalence vs. symmetry, High-

level Petri Nets, communication protocols.

1 Introduction

In the research of veri�cation of parallel and distributed systems, some attention
has been given to take advantage of symmetry to alleviate the state explosion
problem [2]. Symmetry appears when a system is composed of similar compo-
nents, whose identities are immaterial with respect to state space veri�cation. As
an example, consider the well-known dining philosophers system. A state of this
system in which philosophers 1 and 3 are eating, is symmetric to a state in which
philosophers 3 and 5 are eating. The �rst state can be mapped to the second by
the permutation which rotates philosopher i into philosopher i+ 2 (modulo the
number of philosophers). Symmetry is also present in many real-world systems.

In [8], state spaces with equivalence classes (SSEs) are presented under the
name OE-graphs as a theoretical generalisation of state spaces based on symme-
tries. The author of [8] notes that the experiences with practical use of SSEs are
rather limited, and the examples given are all equivalences de�ned using only
the structure of the systems under consideration. In particular, symmetry is a

structural, statical notion, based on permutation of similar components. The
contribution of this paper is to recognise that sometimes, a more dynamic kind
of equivalence is needed, and to demonstrate that SSEs are applicable for this
purpose. SSEs are described and de�ned for the formalism of Coloured Petri
Nets, but the idea generalises immediately to formalisms allowing an explicit
representation of both states and actions of systems.

This paper is organised as follows: Section 2 introduces the communication
protocol to be used as example and the properties that we are going to ver-
ify. Moreover, Sect. 2 informally outlines the formalism of Coloured Petri Nets.
Section 3 presents the concept of SSEs and shows how to de�ne appropriate
equivalence relations on the states and actions of the considered example. In
Sect. 4, the example is veri�ed: It is �rst proved that the equivalence relations
are consistent (well-de�ned), ensuring that the SSEs can actually be used to
derive the desired veri�cation results. Then it is described how the veri�cation
was carried out. Finally, statistics are presented to compare veri�cation based
on SSEs and based on ordinary full state spaces. Section 5 draws the conclusions
including a discussion of related work.

2 An Example | The Transport Protocol

In this section, we present a protocol from the transport layer of the OSI refer-
ence model, the transport protocol. The system consists of a sender, which wants
to transfer some data to a receiver. Communication takes place on an unreliable
network, with risk of loss and overtaking. The data is a text string, split into
substrings of length eight, and each assigned a sequence number. A pair consist-
ing of a sequence number and a string is called a data packet. Data packets must
be received in the right order. Whenever a data packet is received, an acknowl-

edgement is sent. The protocol is a stop-and-wait protocol: The sender keeps
sending copies of the data packet that the receiver expects, until the sender gets
a proper acknowledgement from the receiver. Then, the sender starts sending
the next data packet. The term packet is used generically for both data packets
and acknowledgements.

The model of the transport protocol, shown in Fig. 1, is created in the for-
malism of Coloured Petri Nets (CP-nets) [5,7] which is a graphical language
for design, speci�cation, validation, and veri�cation of parallel and distributed
systems. CP-nets belong to the class of High-level Petri Nets, a generalisation
of ordinary Petri Nets, allowing succinct descriptions of models. The model in
Fig. 1 is created with the Design/CPN tool [6,7], which supports CP-nets. The
tool support for veri�cation based on SSEs [9], which is used in this paper, is an
integrated part of Design/CPN.

Below, we give a brief, informal description of CP-nets, su�cient to under-
stand the model of the transport protocol and subsequently the idea of SSEs.

In Fig. 1, the state of the sender is modelled by the two ellipse-shaped places

Send and NextSend. Send contains all data packets, and NextSend contains the
number of the next data packet to be sent. The state of the receiver is, in a similar

2

way, modelled by the two places Received and NextRec. Received contains the
data received until now, and NextRec contains the number of the next data
packet expected. The state of the network is modelled by the circular network
places, A and B which may contain data packets, and C and D which may contain
acknowledgements. The place Limit is used to model that the network has a
certain capacity, i.e., that the network can maximally contain a certain number
of packets at a time.

color INT = int; var n,k: INT;
color DATA = string; var d,rcv: DATA;
color INTxDATA = product INT * DATA;
color E = with e;
color BOOL = bool; var success: BOOL;
val stop = "########";

Send
Data

Trans
Data

Rec
Data

Rec
Ack

Trans
Ack

Send

INTxDATA

1‘(1,"CAV-1997")+
1‘(2,"-IN-HAIF")+
1‘(3,"A-ISRAEL")+
1‘(4,"########")

NextSend
INT

1

D

INT

A
INTxDATA

Received

DATA

""

NextRec

INT

1

B
INTxDATA

C

INT

Limit
E

2‘e

(n,d) (n,d)

if success
then 1‘(n,d)
else empty

(n,d)

(n,d)

if n=k
andalso
d<>stop
then rcv^d
else rcv

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if success
then 1‘n
else empty

n

k max(k,n)

rcv

e
if success
then empty
else 1‘e

e
if success
then empty
else 1‘e

n

Fig. 1. The transport protocol.

A place has amarking describing its contents. A state of a CP-net is a function
which maps each place to its marking. The marking of a place is a multi-set1,
i.e., it may contain more copies of the same token. The tokens carry data values
(called colours), and each place is assigned a type (colour set) which determines
the kind of tokens which the place may contain. The type of a place is written
in italics close to the place. E.g., the place Send has the type INTxDATA, which
in the declaration box shown at the bottom of Fig. 1, is de�ned as a (Cartesian)
product, where the �rst component is of type INT (an integer) and the second
component is of type DATA (a string). A data packet is represented as a token
of type INTxDATA. The initial state of the CP-net is determined by the initial

markings of the places, which are written close to the places (and omitted when
empty). E.g., Send initially contains all data packets, all four network places are
empty, and Received contains the empty string ("").

1 Multi-sets are functions from their domains into the set of natural numbers. A multi-

setms over a domainX is written as a formal sum like
P

x2X
ms(x)0x. empty denotes

the empty multi-set.

3

In Fig. 1, the actions of the sender correspond to the two box-shaped tran-

sitions SendData and RecAck. SendData models sending of data packets and
RecAck models reception of acknowledgements. The receiver only has one ac-
tion, corresponding to the transition RecData which models reception of data
packets and sending of acknowledgements. The actions of the network correspond
to the two transitions TransData and TransAck modelling transfer of packets.

Transitions and places are connected by arcs. The behaviour of a CP-net con-
sists of transitions removing tokens from the places connected by incoming arcs
(input places) and adding tokens to the places connected by outgoing arcs (out-
put places). The tokens removed and added are determined by arc expressions,
which are positioned next to the arcs. A transition that is ready to remove and
add tokens is said to be enabled and may occur. The conditions on a transition
to be enabled is that appropriate tokens are present on the input places. More
precisely, it must be possible to bind data values to the variables appearing on
input arcs such that the arc expressions evaluate to tokens available on the input
places. The condition on enabling of, e.g., SendData, is that it is possible to bind
the variables n and d such that the place Send contains a data packet (n,d) and
the integer n is on the NextSend place. Moreover, there must be an e token on
the Limit place. A binding element is a pair consisting of a transition and a
binding of data values to its variables. In the initial state, the binding element
(SendData,<n=1,d="CAV-1997">) is enabled. An occurrence of the transition
SendData models sending of a data packet. Because a double arc is a shorthand
for two arcs, one arc in each direction with the same arc expression, the net e�ect
of an occurrence of this binding element is that an e token is removed from the
place Limit and a (1,"CAV-1997") token is added to the A place.

The possibility of losing packets on the network is modelled using the boolean
variable success. In occurrences of the transitions TransData and TransAck,
success can be bound to either true or false. The former case corresponds to
successful transmission, the latter to loss of a packet.

In a given state M , the marking of a place p is denoted M(p). M denotes the
set of all states.M0 denotes the initial state. When a binding element b is enabled
in a state M1 and the occurrence yields the state M2, we write M1[b>M2. The
notationM1[b> means that b is enabled inM1. A reachable state is a state which
can be obtained fromM0 by a sequence of occurrences of binding elements. [M0>

denotes the set of all reachable states. The set of all binding elements is denoted
BE.

The properties which we want to verify for the transport protocol are:

{ No improper terminal state: In all terminal states (i.e., states with no enabled
transitions), all data packets have been received in the right order.

{ Possibility of termination: From any reachable state, it is always possible to
reach a terminal state.

{ Eventual termination: If only �nitely many packets are lost, then the system
does eventually terminate.

4

3 State Spaces with Equivalence Classes

An ordinary state space (SSO) for a CP-net is a directed graph with a node for
each reachable state and arcs corresponding to occurring binding elements. The
source of an arc is the state in which the associated binding element occurs, and
the destination is the state resulting from the occurrence.

The de�nition of a state space with equivalence classes (SSE) for a CP-net
requires that an equivalence speci�cation is given. An equivalence speci�cation
consists of two equivalence relations | one on the set of states and one on the
set of binding elements. The equivalence relations must capture an equivalence
actually present in the considered system. This means that two equivalent reach-
able states must induce similar behaviours. This requirement is referred to as
consistency, and resembles strong bisimulation in the process algebra CCS [10].
Consistency is formalised in Def. 1 below, which is equivalent to Def. 2.2. in [8].
For two states or two binding elements x and y, if x is equivalent to y, we write
x � y, and the equivalence class of x is written [x]. For a set X , [X] denotes the
set of elements equivalent with some element in X .

De�nition 1. Let ES be an equivalence speci�cation. ES is consistent if and
only if for all states M1;M2 2 [[M0>] and all binding elements b 2 BE:

M1 �M2 ^M1[b>M
0

1

+

9b
0

2 BE;M
0

2 2 M : b
0

� b ^M
0

2 �M
0

1 ^M2[b
0

>M
0

2.

Given a consistent equivalence speci�cation, the SSE has a node for each
equivalence class containing a reachable state. Moreover, the SSE has an arc
between two nodes if and only if there is a state in the equivalence class of
the source node in which a binding element is enabled and leads to a state
in the equivalence class of the destination node. There is exactly one arc for
each equivalence class of binding elements with this property. This is formalised
in Def. 2 below, which, disregarding di�erences in terminology, is identical to
Def. 2.3 in [8]. The set of all equivalence classes of states is denoted M � , and
the set of all equivalence classes of binding elements is denoted BE�.

De�nition 2. A state space with equivalence classes (SSE) is a triple (V;A;N)
satisfying the requirements below:

1. V = fC 2 M � jC \ [M0>6= ;g.
2. A = f(C1; B; C2) 2 V �BE� � V j9(M1; b;M2) 2 C1 �B �C2 :M1[b>M2g.
3. 8a = (C1; B; C2) 2 A : N(a) = (C1; C2).

Items 1 and 2 de�ne the sets of nodes and arcs, respectively. Item 3 de�nes
a function which for each arc designates its source and destination. Item 3 is
necessary to allow multiple arcs between two nodes which may appear in SSEs.

An SSE is often much smaller than the corresponding SSO, of course de-
pending on the equivalence speci�cation, and can be computed on-the-
y, i.e.,
without �rst constructing the SSO. When the SSE is �nite, it can be used di-
rectly to prove many dynamic properties of the CP-net. In this paper, we will

5

not discuss these properties exhaustively, but just note that the ones to be used
for veri�cation of the transport protocol can be proved from the SSE. For more
details, the reader is encouraged to consult [8].

The equivalence speci�cation for the transport protocol is dynamic, and
based on the observation that certain packets on the network may become similar
as the system executes. Suppose that the receiver expects data packet number
three next. Arrival of any data packet with a number less than three does not
change the state of the receiver. Such a data packet on the network will be called
old. Arrival of any old data packet has the e�ect that an acknowledgement ask-
ing for data packet number three is sent. Thus two old data packets arriving at
the receiver have exactly the same e�ect. Similar observations and terminology
apply to acknowledgements arriving at the sender. The purpose of the equiva-
lence speci�cation is to capture that old data packets and old acknowledgements,
respectively, are equivalent. The equivalence speci�cation will be explained and
de�ned below.

First, we consider the equivalence relation on the set of states. Let M1;M2 2

M be two states. M1 � M2 requires that the markings of all places but the
network places A, B, C, and D are identical in M1 and M2. For each of the
network places, the marking of the place is partitioned into two multi-sets, one
containing the old packets, and one containing the other packets. M1 � M2

requires that the number of old packets are the same in M1 and M2, and that
the multi-sets of the other packets are identical in M1 and M2. Below, jmsj

denotes the size of the multi-set ms, i.e., the number of elements appearing with
their multiplicity taken into account. For a multi-set with only one element, ms

also denotes that element. The de�nition uses a function old which takes a state
M in which jM(NextRec)j = 1 and one of the network places p 2 fA; Bg as
arguments, and yields the multi-set of old packets on that place:

old(M;p) =
X

(n;d)2M(p):n<M(NextRec)

((M(p))(n; d))0(n; d): (1)

A similar function, also called old, coping with old acknowledgements on the
places p 2 fC; Dg is used, where the condition n < M(NextRec) in (1) is replaced
by n �M(NextSend). Now the de�nition:

M1 �M2 ,

(jM1(NextSend)j = jM2(NextSend)j = jM1(NextRec)j = jM2(NextRec)j = 1)^
(8p 2 fSend; NextSend; Limit; Received; NextRecg :M1(p) =M2(p))^
(8p 2 fA; B; C; Dg :
jold(M1(p))j = jold(M2(p))j ^M1(p)� old(M1(p)) =M2(p)� old(M2(p))).

We now consider the equivalence relation on the set of binding elements. A
problem to solve �rst is that the transition TransData (see Fig. 1) cannot tell
whether a data packet that it is going to transmit is old or not. It only knows
the binding of its variables. Whether a data packet is old or not depends on the
marking of the place NextRec. The solution is to extend the model with a double
arc between TransData and NextRec with arc expression k. Similarly, a double
arc is added between TransAck and NextSend with arc expression k to cope with

6

old acknowledgements. This modi�cation changes concurrency properties of the
CP-net, but the SSO and SSE are preserved up to isomorphism (some binding
elements are extended/renamed).

Let b1; b2 2 BE be two binding elements. In general, b1 � b2 requires that
b1 and b2 are binding elements for the same transition. For SendData, b1 and
b2 themselves must be identical. For RecData and RecAck, if either b1 or b2 is
old, the other must also be old. Otherwise, b1 and b2 must be identical, i.e.,
correspond to reception of the same packet. For TransData and TransAck, there
are the same requirements, with the addition that a loss of packet in either b1
or b2 must be matched by the other. In the de�nition below, we use a predicate
is old which given a binding elements for the transition TransData yields true
if the binding element corresponds to an old packet, and false otherwise. We
similarly use a predicate is lost signalling a loss:

is old(TransData; <n= n
0; d = d

0; success = success
0; k = k

0>) = (n0 < k
0)

is lost(TransData; <n= n
0; d = d

0; success = success
0; k = k

0>) = success
0:

We use similar predicates is oldwhich are de�ned for the transitions RecData,
TransAck, and RecAck; and a predicate is lost which is de�ned for TransAck.
The transition of a binding element b 2 BE is denoted t(b). Now the de�nition
(for clarity written in a functional style):

b1 � b2 =

8>>>><
>>>>:

b1 = b2; t(b1) = t(b2) = SendData

(is old(b1) ^ is old(b2)) _ (b1 = b2); t(b1) = t(b2) 2 fRecData; RecAckg
((is old(b1) ^ is old(b2) ^
(is lost(b1) = is lost(b2))) _ (b1 = b2); t(b1) = t(b2) 2 fTransData; TranAckg
false; otherwise.

4 Veri�cation of the Transport Protocol

In this section, we describe veri�cation of the transport protocol. First, we prove
that the equivalence speci�cation de�ned above is consistent. Then, we translate
the properties listed at the end of Sect. 2 into dynamic properties of the CP-net,
and outline how these properties can be proved from the SSE. Finally, we present
statistics to compare the veri�cation based on SSEs and SSOs for di�erent values
of the system parameter L. L is the capacity of the network as determined by
the number of e tokens on the Limit place in the initial state.

We �rst prove that the equivalence speci�cation de�ned in Sect. 3 is con-
sistent according to Def. 1. Let M1;M2 2 [[M0>]. Let b 2 BE. Assume that
M1 �M2 and that M1[b>M

0

1. We prove the existence of b
0

and M
0

2 such that:

b
0

� b ^M
0

2 �M
0

1 ^M2[b
0

>M
0

2.

We do so by a case analysis on the transition of b. In this paper, we only sketch
the proof, and we only consider one of the �ve transitions, namely TransData.
We split the proof into four cases according to whether b corresponds to an old

7

data packet or not, and whether b corresponds to a loss or not. For p 2 fA; Bg; i 2
f1; 2g, let young(Mi(p)) be the marking of p in Mi in which all old data packets
are removed from p.

case 1: Assume :is old(b)^:is lost(b), i.e., b corresponds to a successful trans-
mission of a data packet (n0; d0) 2 young(M1(A)). Since M1 � M2 we have
(n0; d0) 2 young(M2(A)). Hence b is also enabled inM2, and we choose b

0

= b.
Let M

0

2 be such that M2[b>M
0

2. Since an occurrence of b cannot change the
marking of NextRec, an occurrence of b cannot convert a data packet which
is not old to an old, and vice versa. Since M1 � M2, we therefore have:
young(M

0

1(A)) = young(M1(A)) � f(n0; d0)g = young(M2(A)) � f(n0; d0)g =
young(M

0

2(A)) and jold(M
0

1(A))j = jold(M1(A))j = jold(M2(A))j = jold(M
0

2(A)j.
A similar argument goes through for the place B. Since all places but A and
B are left unchanged by an occurrence of b, we conclude that M

0

1 �M
0

2.
case 2: Assume :is old(b) ^ is lost(b), i.e., b corresponds to a loss of a data

packet, which is not old. This case is similar to case 1 above.
case 3: Assume is old(b)^:is lost(b), i.e., b corresponds to a successful trans-

mission of an old data packet. Since M1 � M2 there is also an old data
packet on A in M2. Choose b

0

corresponding to a successful transmission of
this old data packet. Clearly, b

0

� b and b
0

is enabled in M2. Let M
0

2 be such
that M2[b > M

0

2. The proof that M
0

1 � M
0

2 is similar to the corresponding
part of case 1.

case 4: Assume is old(b)^ is lost(b), i.e., b corresponds to a loss of an old data
packet. This case is similar to case 3 above.

Let us now consider the three properties listed at the end of Sect. 2 which
we want to verify for the protocol. We want to translate them into appropriate
dynamic properties of the CP-net, which are formally de�ned in [7], and infor-
mally described in the following. For No improper terminal state, we need the
concept of a dead state, which is a state in which no binding element is enabled.
The No improper terminal state property is established if we can verify that in
all dead states of the CP-net, all data packets have been properly received. For
Possibility of termination, we need the concept of a home space, which is a set
of states with the property that from any reachable state, it is possible to reach
a state of the home space. The Possibility of termination property is established
if we can verify that there exists a home space containing only dead states. For
Eventual termination, we need the concept of a set of binding elements being
impartial, meaning that elements from the set occur in�nitely often in any in�-
nite sequence of occurrences. The Eventual termination property is established
if we can prove that the set of binding elements corresponding to loss of packets
is impartial.

The proof rules for SSEs (OE-graphs) in [8] and their implementation as
query functions [9], allowed us to verify the protocol. It turned out that for each
investigated value of the system parameter L, the generated SSE had exactly
one terminal node. The corresponding equivalence class had only one member,
namely the state in which all data packets had been properly received, and all
four network places were empty. This equivalence class was a home space, thus
the only terminal state was a home state.

8

Table 1 contains the sizes of the SSOs and SSEs for di�erent values of L.
In addition, the generation and query times (in CPU seconds) are shown. The
Ratio columns hold the savings factors, i.e., the �gure for the SSO divided by the
�gure for the SSE. The measures were obtained on a Sun Ultra Sparc Enterprise
3000 computer with 512 MB RAM. An empty entry (-) signals that it was not
possible to obtain that measure.

Number of Nodes Number of Arcs Generation Time Query Time

L SSO SSE Ratio SSO SSE Ratio SSO SSE Ratio SSO SSE Ratio

1 33 33 1.0 44 44 1.0 1 1 1.0 1 1 1.0

2 293 155 1.9 764 383 2.0 1 1 1.0 1 1 1.0

3 1,829 492 3.7 6,860 1,632 4.2 6 7 0.9 8 6 1.3

4 9,025 1,260 7.1 43,124 5,019 8.6 56 36 1.6 63 19 3.3

5 37,477 2,803 11.2 213,902 12,685 16.9 642 157 4.1 358 48 7.5

6 136,107 5,635 24.2 891,830 28,044 31.8 7,507 553 13.6 1,666 112 14.9

7 - 10,488 - - 56,203 - - 1,716 - - 225 -

8 - 18,366 - - 104,442 - - 4,885 - - 432 -

9 - 30,605 - - 182,754 - - 12,461 - - 755 -

10 - 48,939 - - 304,445 - - 30,169 - - 1,359 -

Table 1. Veri�cation statistics.

It can be seen that SSEs yielded remarkable reductions in the numbers of
nodes and arcs, and that SSEs enabled us to analyse capacities of the network
that we could not handle using SSOs. Moreover, from a certain point, generation
of the SSE was faster than generation of the SSO. The query time, i.e., the
actual veri�cation of the three considered properties of the transport protocol,
was, again from a certain point, much faster on the SSE than on the SSO. This
is because the queries were made directly on the SSE, and the size of the graph
is the critical factor in the time complexity.

5 Conclusions

The motivation to write this paper came from our work with developing tool
support for SSEs [9]. Our prime focus was on state spaces with symmetries (OS-
graphs with permutations for CP-nets as de�ned in [8]), because their usefulness
was already recognised. The recent journal [2] contains four papers [1,3{5] that
all demonstrate the potential of using symmetry in state space veri�cation. A
common denominator for the four papers is that symmetry is conceived as a
structural property, described by permutations of similar components.

The generality of SSEs allowed us to experiment with di�erent kinds of equiv-
alence relations. During these experiments, we realised the usefulness of SSEs,
not based on permutations. In this paper, we saw that SSEs allow equivalences
that are dynamic, in the sense that they express that some information becomes
irrelevant as the execution of a system progresses. An interesting question is of
course, whether the results presented generalise, i.e., apply to other systems. We

9

believe they do. We believe that the notion of old of the example can be found
in various disguises in many systems.

State space veri�cation methods are often touted as being automatic and thus
quite reliable. For veri�cation based on SSEs, a quali�cation must be made: Prov-
ing the consistency of a proposed equivalence speci�cation may, as seen in this
paper, be a non-trivial task. A manual mathematical proof had to be conducted,
with the risk of making mistakes. In state spaces with symmetries (OS-graphs
with permutations of [8]), proving consistency of a proposed speci�cation can be
done by a trivial analysis of all static inscriptions of the CP-net. No ingenuity is
required, and the proof can be highly computer-aided. Also, in the approaches
to symmetry of [1,3], it is the responsibility of the user to de�ne the symmetries
of the system and ensure their consistency. In contrast, [4] presents a procedure
which automatically detects the symmetries of a system. The basic idea is to
impose narrow syntactical restrictions on the modelling language ensuring that
non-symmetry is not expressible.

The complexity of the consistency proof is a drawback of veri�cation based on
SSEs. However, the con�dence in the consistency of an equivalence speci�cation
can be highly increased with the aid of the tool supporting SSEs as described in
[8]. In conclusion, we do believe that the observations made and the reductions
exhibited in this paper are very encouraging for veri�cation based on SSEs.

Acknowledgements. We thank Kurt Jensen and S�ren Christensen for help
in writing this paper. We thank Rikke D. Andersen and Jesper G. Henriksen for
comments and proof-reading. The work has been supported by grants from the
Research Foundation and the Faculty of Science at University of Aarhus.

References

1. E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting Symmetries in Tem-

poral Model Logic Model Checking. In [2]. A version also in CAV 93, LNCS 697.
2. E.A. Emerson (editor). Formal Methods in System Design, Volume 9, Numbers

1/2 | Special Issue on Symmetry in Automatic Veri�cation, 1996.
3. E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. In [2]. A version

also in CAV 93, LNCS 697.
4. C.N. Ip and D.L. Dill. Better Veri�cation Through Symmetry. In [2].
5. K. Jensen. Condensed State Spaces for Symmetrical Coloured Petri Nets. In [2].
6. K. Jensen. Design/CPN Online, Computer Science Department, University of

Aarhus, Denmark. Online: http://www.daimi.aau.dk/designCPN/.
7. K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods and Prac-

tical Use. Vol. 1, Basic Concepts. Monographs in Theoretical Computer Science.

Springer-Verlag, 1992.
8. K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods and Practical

Use. Vol. 2, Analysis Methods. Monographs in Theoretical Computer Science.

Springer-Verlag, 1994.
9. J.B. J�rgensen and L.M. Kristensen. Design/CPN OE/OS Graph Manual. Com-

puter Science Department, University of Aarhus, Denmark.

Online: http://www.daimi.aau.dk/designCPN/.
10. R. Milner. Communication and Concurrency. Prentice-Hall International Series in

Computer Science. Prentice-Hall, 1989.

10

