
Modelling and Analysis of

Distributed Program Execution in BETA

Using Coloured Petri Nets

Jens B�k J�rgensen and Kjeld H�yer Mortensen

University of Aarhus, Computer Science Department

Ny Munkegade, DK{8000 Aarhus C, Denmark

fjbj,khmg@daimi.aau.dk

Abstract. Recently, abstractions supporting distributed program ex-

ecution in the object-oriented language BETA have been designed. A

BETA object on one computer may invoke a remote object, i.e., an object

hosted by another computer. In this project, the formalism of Coloured

Petri Nets (CP-nets or CPN) is used to describe and analyse the proto-

col for remote object invocation. In the �rst place, we build a model in

order to describe, understand, and improve the protocol. Remote object

invocation in BETA is modelled on the level of threads (lightweight pro-

cesses) with emphasis on the competition for access to critical regions and

shared resources. Secondly, the model is analysed. It is formally proved

that it has a set of desirable properties, e.g., absence of dead markings.

1 Introduction

In this project, the formalism of Coloured Petri Nets (CP-nets or CPN) [11] is

used to describe and analyse the protocol for remote object invocation in the

object-oriented language BETA [14].

The project is divided into a construction stage and an analysis stage. In

the construction stage a model is built in order to describe and understand the

considered protocol. Several meetings are held between the modellers and the

designer of the protocol. In the process, the designer increases his own under-

standing. As a consequence, a number of changes are made.

In the analysis stage, the protocol is veri�ed. It is formally proved that it has a

set of desirable properties. E.g., we prove that the protocol has no deadlocks, that

certain BETA objects always have the chance to do remote object invocations

(liveness), and that a monitor construction correctly ensures exclusive access to

a critical region. We apply recently developed computer tools for formal analysis

of CP-nets, an occurrence graph tool and a place invariant tool.

The rest of this paper is structured as follows: In Sect. 2, the system sup-

porting distributed program execution in BETA and the protocol for remote

object invocation are introduced. Sect. 3 describes the constructed CPN model

and Sect. 4 its analysis. In Sect. 5 related work is discussed. Finally, in Sect. 6,

we draw some conclusions.

2 Description of the DistBETA System

The system considered in this project will be called the DistBETA system [2,3].

The DistBETA system is a framework for distributed program execution in

BETA. It includes the protocol for remote object invocation. In this section

we �rst introduce a set of concepts from the DistBETA system that are used to

describe the protocol. Then we explain the protocol itself.

The following three concepts are relevant for the remote object invocation

protocol:

{ Ensemble: Is a representation of the operating system on a computer con-

nected to a network.

{ Shell: Is similar to a process. Shells exist inside ensembles. A shell can com-

municate with another shell in a remote ensemble or in its own ensemble.

Moreover, a shell can communicate directly with its ensemble.

{ Thread: Each shell contains at least one user thread executing the main

program and exactly one listener thread taking care of incoming requests

from the network.

The framework that the application programmer uses to support distributed

program execution contains a class called the RPC handler. The RPC handler

includes the necessary primitives for serialization (marshalling) and communi-

cation. The framework is more general than RPC1. An object can act both as

a client and as a server, allowing arbitrarily long invocation-chains wandering

through many di�erent computers. The parameters passed in an invocation are

not just values as for RPC. They may be objects or references to objects, to

which messages can be sent resulting in object invocations.

Network

Ensemble Ensemble

Shell Shell

o1 o2

Host1 Host2

Fig. 1. A remote object invocation.

1 RPC is an acronym for remote procedure call. For an introduction, see [16]. In this

paper the term \RPC" means remote object invocation.

2

In the following we describe the protocol for remote object invocation (see

Fig. 1). Suppose that an active object o1 wants to invoke another object o2.

The two objects are physically separated on two computers, Host1 and Host2

respectively. Each object has a unique object identi�er (OID)2. The sequence of

events is as follows:

1. o1 looks up the OID of the object to be invoked (o2) in a table containing

OIDs of remote objects. The table is local to the shell of o1. o1 allocates

a resource containing the necessary primitives for serialization. All param-

eter objects are serialized. o1 invokes a method for sending remote object

invocation requests in the RPC handler.
2. The remote object invocation together with its associated serialized param-

eter objects are sent to Host2. The invoking object o1 is blocked.
3. The RPC handler in the shell enclosing o2 receives the incoming request.

A worker thread containing the necessary primitives for invoking objects is

allocated. The worker thread unserializes the received parameter objects.

While doing so it also looks up the OID of the receiver object in a table

containing OIDs of local objects. The table is local to the shell of o2.
4. The object o2 is invoked with the unserialized parameter objects.
5. The worker thread gets the result which is serialized. Control is handed over

to the RPC handler again. The worker thread is released and the result is

sent back to Host1.
6. The result is unserialized by o1, the resource allocated is released, and �nally

the result is given to o1.

When objects are passing the boundary of shells their OIDs are looked up in

tables of remote or local OIDs. Upon serialization it is checked if new objects

cross the boundary. If a new OID is needed for an object not yet in any of the

tables, it is necessary to communicate with the relevant ensemble, since it is the

ensembles that generate unique OIDs.

Many shared resources and critical regions are involved in the sequence of

events described above: Allocating and releasing resources, allocating and re-

leasing worker threads, looking up OIDs in tables of remote and local objects,

and communication with ensembles upon requests for new OIDs. Monitors and

semaphores are used to grant exclusive access for competing threads. Threads

compete with other threads belonging to the same shell. The DistBETA sys-

tem ensures that no thread is starved, by associating queues with monitors and

semaphores.

3 Description of the CPN Model

The CPN model of the DistBETA system describes the basic
ow of control

inside active objects. The model is a hierarchical CP-net consisting of global

2 The purpose of an OID is to have a database key. Some objects may be persistent,

i.e., they may survive between program executions, and are typically stored in a

database on a permanent storage (as a hard-disk). The OID is then used to retrieve

the object again or can even be used to get type information about the object.

3

declarations plus 12 pages with net structure. It aims at describing the remote

object invocation protocol of the DistBETA system, emphasising how objects

compete for shared resources and access to critical regions. In this section we

provide a description of the CPN model. In Sect. 3.1 some of the important

declarations are outlined. The net structure is explained in Sect. 3.2. Sect. 3.3

addresses the limitations of the model.

The model is built with Design/CPN [12], a general editing, simulation, and

analysis tool for CP-nets. Design/CPN uses the language CPN ML for declara-

tions and inscriptions. CPN ML is an extension of the functional programming

language Standard ML [18].

3.1 Global Declarations

The basic components of the DistBETA system are ensembles, shells, and threads,

which are all active objects, plus messages and packets, which are both passive

objects.

Colour sets for these components are declared in a straightforward fashion

in CPN ML. Most places in the model have colour set Thread. The movement

of Thread-tokens describe the main
ow of the model. A Thread-token being in

a certain place is similar to a program counter having a certain value.

A token from colour set Thread is a pair. The �rst component identi�es the

thread. The colour set identifying a thread is called ThreadInfo. It is a record

colour set with �elds for identities of an ensemble, a shell, and a thread. The

second component of a Thread-token is an environment holding information that

the thread needs at certain points in its lifetime, e.g., values of local variables.

It is modelled by the record colour set Environment.

There are di�erent kinds of Thread-tokens used for di�erent purposes: User

threads are making requests for remote object invocations, listener threads are

receiving requests, and worker threads are handling the requests and subse-

quently returning results.

Threads communicate by sending packets over a network. Packets are mod-

elled in CPN ML by the colour set Packet, which is a record type holding a

sender, a receiver, and a message. The set of messages is very coarse. Basically,

a message is either a request or a result because we are only concerned with

its direction. As an example a real BETA object may want to send a message

like (2,5)->add to a remote object and expect the result 7 to be returned, but

this level of description is not necessary for our purpose. We are concerned with

communication patterns only, not with the data involved. In addition to the

basic types of requests and results, a message may be a network error message.

3.2 Net Structure

The net structure can be seen from the hierarchy page of the CPN model, shown

in Fig. 2.

The hierarchy page has a node for each page of the model. An arc between

two nodes indicates that the source node contains a transition whose behaviour

4

is described on the page of the destination node. Such a transition is called a

substitution transition. The page of the destination node is called a subpage.

The model consists of four parts, each one with its own well-de�ned meaning:

A top-level part, a network part, a sender part, and a receiver part. Some pages

are shared between the sender and receiver part. This means that these pages

have more than one page instance. Places, transitions, and arcs on a page with

more than one instance, accordingly appear in more than one instance3.

DistBETA

ShellLevel

Network Receive

Listen OIDGen

ExecuteGet

Put

AssignOID

RPCCall

Send

Top-level part

Sender part

Receiver part

Network part

Fig. 2. The hierarchy page.

A detailed description of the model can be found in [13]. Below we describe

two typical pages. The other pages are comparable with respect to the number

of places, transitions, and arcs; and the complexities of the arc inscriptions.

Page RPCCall The page RPCCall shown in Fig. 3 is �rst described. The four

places with thick border have colour set Thread. The two places with a dot-

dashed border model the interface to the network. Conceptually they contain

packets. Each one of them contains a list of packets for each shell. These lists act

as input and output bu�ers to the network. To enhance readability, all colour

sets are hidden. The variable thrinf is over colour set ThreadInfo and the

variable envr is over colour set Environment.

3 In this paper, when no confusion is possible, we say \page" instead of the proper

term \page instance". Similar remarks apply to places, transitions, and arcs.

5

Success Out

BeginIn

Send

[ensid = #ens thrinf,
 shlid = #shll thrinf,
 pck = toPack(#rpcpar envr)]ToNetOut

Blocked

Recv
[thrinf = #to pck,
 #cont pck <> aRequest]FromNetIn

Error Out

((ensid, shlid), pcklst^^[pck])

(thrinf,assignRetry(envr,bb))

(thrinf,envr)

(shl, pck::pcklst)

if ok(pck)
then 1‘(thrinf,assignRPCPar(envr, NONEpck))
else empty

((ensid, shlid), pcklst)

(shl, pcklst)

if not(ok(pck)) andalso retry(envr)
then 1‘(thrinf,envr)
else empty

(thrinf,envr)

if not(ok(pck)) andalso not(retry(envr))
then 1‘(thrinf,assignRPCPar(envr, NONEpck))
else empty

Fig. 3. The page RPCCall.

The page RPCCall is a central part of the CPN model. It models the be-

haviour of the sender side4 in a remote object invocation assuming the nec-

essary preceding work has been done, e.g., serialization of parameters. When

a user thread is in the place Begin, it is ready to initiate the remote object

invocation. When the transition Send occurs, a packet is directed to the net-

work, modelled by the network interface place ToNet receiving a certain token.

A packet is appended to the network input bu�er for the shell enclosing the user

thread, modelled by the arc inscription5 ((ensid, shlid), pcklst^^[pck]).

After having sent, the user thread is blocked waiting for an answer. It sits in the

place Blocked. This models the synchronous nature of the communication. An

answer will eventually emerge from the network, modelled by a certain token

being available on the other network interface place FromNet. When this is the

case, the transition Recv becomes enabled for the waiting user thread. In the

normal case (the expression ok(pck) is true), an ordinary result comes back. In

this case, the remote object invocation went well and the user thread ends up in

the place Success. If an error appeared (ok(pck) is false), the user thread may

end up in the place Error, or it may return to the place Begin and try to do

the failed invocation once again depending on the value of the boolean variable

retry in its environment.

Page AssignOID Now the page AssignOID shown in Fig. 4 is described. It

models a monitor construction ensuring unique OIDs upon request from user

threads.

4 RPCCall is also included in the receiver part because a receiving object sometimes

does an RPC with its ensemble in order to obtain an OID.
5 The operator ^^ concatenates two lists.

6

P5 Out

P1 In

RPCCall HS

Cache_provides_OID

ToNet

PacketBuffer

Out

FromNet

PacketBuffer

In

DeadOut

Ensemble_provides_OID

P3 MonitorFree

Shell

FG

Enter_Monitor
[#ens thrinf = ensid,
 #shll thrinf = shlid]

P2

Exit_Monitor
[#ens thrinf = ensid,
 #shll thrinf = shlid]

P4

(thrinf,envr)

(thrinf, ...)

(ensid,shlid)

(ensid,shlid)

(thrinf,envr)

(thrinf,envr)

(thrinf,envr)

(thrinf,envr)

Fig. 4. The page AssignOID.

The monitor is controlled by the place MonitorFree which initially contains

a token for each shell. A user thread is inside the monitor exactly when the

corresponding token is in a place that is inside the monitor. The inside of the

monitor is made up of places both on the page AssignOID itself and its subpage

RPCCall. On AssignOID, the places P2, P3, P4, and Dead6 are inside the monitor.

In addition, the monitor includes the places on the subpage RPCCall. The entry

to the monitor is modelled by the transition Enter Monitor. When it occurs,

a user thread enters the monitor, and the appropriate token is removed from

MonitorFree. This disallows any other user thread from the same shell from

entry before the appropriate token is redeposited in MonitorFree. The tran-

sition Exit Monitor models exit from the monitor. When it occurs, the token

corresponding to the shell of the exiting user thread is added to MonitorFree.

3.3 Limitations

The model explained in this section is an abstraction of the protocol for remote

object invocation of the DistBETA system. We have aimed at keeping the model

as simple and clear as possible. Simplicity and clarity are of course natural goals

6 A user thread is terminated, i.e., ends at the place Dead, if the ensemble fails to

provide an OID upon request.

7

by themselves, but in this project they are more than just worth striving for.

They are necessary in order for the model to be tractable for formal analysis.

In agreement with the designer of the DistBETA system, we choose to leave out

certain aspects from the model, though still keeping it realistic and usable. The

most important limitations are listed below. They are justi�ed in detail in [13].

In the DistBETA system, a thread may invoke an object on a remote com-

puter. Upon invocation, a new thread is created on the other computer. This

thread may invoke an object on yet another remote computer causing the cre-

ation of a new thread on that computer, etc. In this way an active object can

act both as client and server at the same time. We do not include this aspect in

our model. It would cause the number of reachable markings to be in�nite.

As mentioned at the end of Sect. 2, the DistBETA system cannot starve any

threads competing for access to critical regions and shared resources. The CPN

model can. It is easy to construct an in�nite occurrence sequence starving any

given user thread. Preventing starvation in the model requires use of complex

data structures.

In the DistBETA system, communication errors may happen and be detected

both on the sender side and on the receiver side. In the CPN model errors can

only happen on the sender side. This is straightforward to model since errors

here can be handled locally. Error handling on the receiver side is much more

complex.

4 Analysis of the CPN Model

Both informal and formal analysis methods are applied to the CPN model in

this project. The informal analysis consists in simulating the model. Simulation

is an important activity in any CPN modelling project. In this paper however,

our focus is on describing the formal analysis of the CPN model.

This section consists of two subsections, one for each of the two formal analy-

sis methods used. Occurrence graph analysis is described in Sect. 4.1 (occurrence

graphs are also known as state spaces and reachability graphs). Place invari-

ant analysis is described in Sect. 4.2. Using the formal methods, we are able to

prove that the CPN model has certain properties. Both techniques are supported

by computer tools. For a thorough introduction to formal analysis of CP-nets,

see [11].

4.1 Occurrence Graphs

In this section, �rst the main characteristics of the occurrence graph method are

recalled. The goals of our analysis and the results obtained are described next.

Finally, an attempt to alleviate the state explosion problem using net reductions

is discussed.

8

The Method An occurrence graph for a CP-net is a directed graph with a node

for each reachable marking and an arc for each occurring binding element7. An

arc is going from the node of the marking in which the associated binding element

occurs to the node of the marking resulting from the occurrence.

All standard dynamic properties for a CP-net8 can be derived from its oc-

currence graph, e.g., boundedness, home, liveness, and fairness properties. It

is worthwhile also to construct the SCC-graph for the occurrence graph. The

SCC-graph has a node for each of the strongly connected components of the

occurrence graph. If there is an arc in the occurrence graph between two nodes

from di�erent strongly connected components, then the corresponding arc is in

the SCC-graph. Investigating the SCC-graph instead of the full occurrence graph

may signi�cantly speed up the check of a dynamic property. Using Tarjan's al-

gorithm (see, e.g., [8]), the construction of the SCC-graph is an inexpensive

operation. It is linear in the size of the occurrence graph.

The most serious drawback of the occurrence graph method is the state ex-

plosion problem: Very often, even for relatively small CP-nets the occurrence

graphs get so big that they cannot be generated, even with the most power-

ful computers available. Another limitation inherent to the occurrence graph

method is dependency of the initial marking: Each possible initial marking of

a considered CP-net may yield a new occurrence graph. Thus verifying proper-

ties for all values (perhaps in�nitely many) of some system parameter requires

generation of an occurrence graph for each value.

The tool used for the occurrence graph analysis is called the Design/CPN

Occurrence Graph Tool (Occ Tool) [4]. It is an application that is integrated with

the basic simulation tool o�ering functionalities to generate occurrence graphs,

to draw them, and to do queries. All our analysis including generation of the

occurrence graphs is conducted on a Sun Sparc 20 with 256 MB physical RAM.

Analysis Goals The state explosion problem and the dependency of the initial

marking are general problems of the occurrence graph method. However, in a

concrete application, we can try to �nd workarounds.

This speci�c CPN model is created with formal analysis in mind. Therefore,

we have carefully tried to choose colour sets and to build the net structure so

that the state explosion is controlled, at least for small initial markings, i.e.,

initial markings containing only a few user threads (and consequently only a few

ensembles and shells).

Our model does have an in�nite number of legal initial markings. What we

will call a con�guration is determined by the number of ensembles; for each

ensemble, the number of shells; and for each shell, the number of user threads.

Each con�guration uniquely induces an initial marking. The model has an in�nite

number of legal con�gurations. Because of the dependency of the initial marking

problem, we have no chance of verifying the model in general. However, if we

7 A binding element is a pair containing a transition and a binding. The binding assigns

values to all variables in the surroundings of the transition.
8 Here we consider only CP-nets with a �nite number of reachable markings.

9

show that the considered properties are satis�ed for a number of con�gurations,

our con�dence in the CPN model is increased.

The occurrence graph analysis focusses on proving the two vital dynamic

properties stated below.

1. The CPN model has no dead markings.

2. Each user thread can forever participate in the basic send/receive communi-

cation. Formally this can be stated as two speci�c sets of binding elements

being live | one set of binding elements for each of the transitions Send and

Recv on the page RPCCall (see Fig. 3) of the sender part.

If the CPN model has these two properties, there is strong evidence that the

protocol is well-functioning. Property 2 means that each user thread remains

active, i.e., it will always have the chance to request a remote object invocation,

and a request will always be followed by a result (which might be an error

noti�cation). It is obvious that property 1 is a consequence of property 2. Thus

it su�ces to prove 2. As an aid we show:

3. The CPN model is always able to return to its initial marking, i.e., the initial

marking is a home marking.

4. For any given user thread there is an occurrence sequence starting in the

initial marking and containing an occurrence of each of the transitions Send

and Recv on the page RPCCall of the sender part. Both occurrences with

the variable thrinf bound to the given user thread.

Property 3 states that from any given reachable marking, it is possible to �nd

an occurrence sequence leading back to the initial marking. Property 4 says that

from the initial marking we can �nd an occurrence sequence containing a binding

element from the set we are analysing for liveness. Hence, together 3 and 4 imply

2. It is well-known that 5 below implies 3. In summary, it is su�cient to prove 4

and 5.

5. The SCC-graph consists of exactly one component.

The original CPN model does not have the listed properties 1 and 2. The

reason is rather technical and is explained in [13]. The violation is not a mod-

elling error, but is inherent to the DistBETA system. Fortunately, we can eas-

ily construct a modi�ed version of the model which we will prove to satisfy

the properties. All we have to do is to make the communication between user

threads asking for OIDs and their ensembles error-free. For this reason the

CPN model analysed with the occurrence graph method is a slight variation

of the original one. The modi�cation is accomplished just by giving the tran-

sition Ensemble provides OID on the page AssignOID (see Fig. 4) the guard

[false].

10

Analysis Results It is our aim to prove the properties 1 and 2 for as many con-

�gurations as possible. However, due to the state explosion problem, we cannot

expect to be able to handle con�gurations with many user threads. The experi-

ments will take us as far as we can get before the computer runs out of memory.

Our results are summed up in Fig. 5 and are commented below. In the �gure

a con�guration is visualised as in Fig. 1: Boxes represent ensembles, rounded

boxes represent shells, and black �lled circles represent user threads. E.g., con-

�guration 1 has one ensemble with one shell containing two user threads. The

time indicated in the �gure is wall-clock time for the occurrence graph genera-

tion, not CPU time. The computer was only spending little time running other

processes while the occurrence graph generations were going on.

Con�guration Time Nodes Arcs

seconds

1 96 5,501 13,725

2 760 21,554 54,793

3 653 21,554 54,793

4 � 5,247 � 75,018 � 183,827

Fig. 5. Statistics for generation of occurrence graphs.

Intuitively con�guration 1 is more likely to lead to a dead marking than

con�gurations 2 and 3. All monitors, resources, and critical regions are local to

shells. Con�guration 1 has two user threads running within the same shell, so

con
icts will arise. In this case, it is possible to verify directly that property 5

holds. Property 4 is established in the simulator. As an alternative, property 4

may be proved by �nding an appropriate path in the occurrence graph. Thus for

con�guration 1, the desired properties 1 and 2 hold.

For con�gurations 2 and 3, properties 1 and 2 are shown similarly. As an

aside, we note that the two graphs have exactly the same size. This fact is no

surprise, because in both cases, the two user threads are independent, i.e., they

never have to wait for each other because they run in di�erent shells.

For con�guration 4, the full occurrence graph is too big to be generated. Thus

this con�guration cannot be analysed with the available tool and computers.

This result is of course negative for the veri�cation of our CPN model, but it

does exhibit the state explosion problem very clearly. Increasing the number

of user threads from two to three causes the occurrence graph to grow to a

size that we presently cannot handle. We will return with an attempt to tackle

con�guration 4 at the end of this section. For now, we can only generate a partial

occurrence graph, i.e., a graph where only a subset of the reachable markings

11

and the occurring binding elements is included. Therefore, we only have lower

bounds for the number of nodes and arcs, and for the generation time.

There are a number of con�gurations with a total of three user threads,

e.g., three ensembles, one shell in each, and one user thread in each shell. Of

these possibilities con�guration 4 is the one with the lowest number of reachable

markings: In a system with three user threads running in the same shell, the user

threads are forced to wait for each other once in a while. Thus the behaviour is

more restricted than, e.g., the system mentioned above. Obviously, generation of

a full occurrence graph is not possible for a con�guration with more than three

user threads. Therefore, we have not tried to generate occurrence graphs for

more con�gurations. In summary, with the software and hardware used for these

experiments, con�gurations with less than three user threads can be analysed

with the occurrence graph method. Larger con�gurations cannot.

Above the Occ Tool was used to verify properties for the �nal version of the

CPN model. It is not the only way to use it. It is a convenient tool for debugging

in the model creation stage as well. It provides a systematic way to investigate

all occurrence sequences, in contrast to simulation where only one occurrence

sequence at a time is considered. The process of �nding and correcting modelling

errors in this project was eased by using occurrence graphs. For more details see

[13].

Alleviating State Explosion Using Reductions As mentioned at the begin-

ning of this section, we make an attempt to alleviate the state explosion problem.

We do so using reductions. Reductions of Petri nets are among the classical ap-

proaches to analysis. The basic idea is to derive a net from the original one in

a systematic way using a set of rules that are known to preserve a selected set

of dynamic properties. We certainly expect the derived net to have a smaller

occurrence graph than the original.

P2

Generate_OID

Reply

P3

P2

Reply

Reduction(thrinf,envr)

(thrinf,envr)

(thrinf,envr)

(thrinf,envr)

Fig. 6. Reduction of the CPN model using pre-agglomeration.

12

To illustrate how reductions are applied to our model, consider the extract

of the model shown in Fig. 6. Removal of the transition Generate OID and the

place P3 results in a simpler model. This reduction is a special case of pre-

agglomeration of transitions de�ned in [10]. In this reference it is proved that

the reduced model has the same properties as the original with respect to the

properties we are considering: Home markings, liveness, and dead markings.

We make a number of pre-agglomerations of transitions in the model. In

total, �ve places and �ve transitions are discarded. The relevant statistics for

the occurrence graph generation is shown in Fig. 7.

Con�guration Time Nodes Arcs

seconds

1 47 2,541 6,877

2 338 9,810 27,497

3 345 9,810 27,497

4 � 10,340 � 75,001 � 245,794

Fig. 7. Statistics for generation of occurrence graphs for the reduced model.

The occurrence graphs for the reduced model are signi�cantly smaller than

for the original. For each of con�gurations 1, 2, and 3, the graph for the original

model has approximately twice as many nodes as the graph for the reduced

version. The same remark applies to the number of arcs. Smaller occurrence

graphs for the reduced model is of course the expected result. Anyway, it is

remarkable that removal of only �ve places and �ve transitions yields occurrence

graphs of sizes half of the original. The original model has 70 places. Thus

removing about 7% of the places gives decent reductions in the sizes of the

occurrence graphs. The lesson learned is that it is sensible to apply as much

as possible reduction strategies preserving the properties we are interested in

before an occurrence graph is generated. Small reductions in the net structure

may yield signi�cant reductions. But alas, even with the reduction technique, we

cannot handle con�gurations with more than two user threads. The occurrence

graph for con�guration 4 is partial, also for the reduced model.

4.2 Place Invariants

In this section, �rst the main characteristics of the place invariant method are

recalled. The goals of our analysis and the results obtained are described next.

13

The Method The basic idea of the place invariant method is to �nd equations

that are satis�ed for all reachable markings of a considered CP-net. To explain

how in more details, we recall the concepts of weights and sets of weights. In

this context, a weight is a linear function associated with a certain place in the

considered CP-net. Its domain is the place colour set. It can also be applied to

multi-sets over the place colour set. A set of weights contains exactly one weight

for each place, and all its weights have a common range. Given a set of weights,

the weight of a place is computed by providing its marking as argument to the

weight. The weight of a marking of the net is the multi-set sum of the weights

of all the places. A set of weights can be viewed as a means to extract some

speci�c information that we are interested in, from the complex information of

the full marking. Typically, a set of weights will contain zero weights9 for a large

number of places and non-zero weights for a relatively small number of places.

The set of places for which the weight is non-zero is called the support of the

set of weights. A place invariant is a set of weights for which the weights of all

reachable markings are identical.

Compared to the occurrence graph method, an advantage of the place in-

variant method is that it does not su�er from the state explosion problem. To

check if a proposed set of weights is a place invariant does not require gener-

ation of all reachable markings. Instead, the check may be done statically and

locally: For each binding element it is checked that the weight of the multi-set

of tokens removed is identical to the weight of the multi-set of tokens produced

upon occurrence. In this case, we will say that the binding element preserves

the weight. Typically, all binding elements of a given transition may be checked

simultaneously. A transition preserves the weight when all its binding elements

preserve the weight. The set of all binding elements is known in advance, thus

investigating all reachable markings is not needed. We just have to check that

all transitions preserve the weight.

Another advantage of the place invariant method is that it is not dependent of

the initial marking. When proving that all transitions preserve the weight, only

the static inscriptions appearing in arcs and guards in the net are considered.

The place invariant analysis is conducted using the Design/CPN Place In-

variant Tool (Inv Tool) [17]. It is a research prototype. For a given set of weights,

it checks if all transitions preserve the weight: The CPN ML expression for the

weight of the net e�ect of a transition is translated into a lambda expression.

The Inv Tool uses lambda reduction rules to rewrite this expression. When no

more reductions are possible, it checks if the expression equals the zero function.

Analysis Goals The aim of the place invariant analysis is to increase our

con�dence in the CPN model. Throughout the model construction stage, we

have in mind a set of important properties that a sensible model must satisfy.

Using place invariants, we are able to prove that the �nal model actually has

these properties. Most of them are very similar. They state that certain sets of

9 A zero weight maps each multi-set into the empty multi-set.

14

tokens remain constant. Another property says that a monitor construction is

correct. Speci�cally we prove the following:

1. The set of user threads is constant, i.e., no user thread ever disappears and

no new user thread is ever created.

2. The set of listener threads is constant.

3. The set of network input bu�ers is constant.

4. The set of network output bu�ers is constant.

5. The monitor ensuring unique OIDs on the page AssignOID (see Fig. 4) is

correct, i.e., there are never two user threads from the same shell inside the

monitor at the same time.

Analysis Results First we consider the veri�cation of property 1: We are

aiming at de�ning a suitable set of weights. We take the weight for any place

that has colour set di�erent from Thread to be zero. All places with colour

set Thread get the same weight: If the argument is a user thread, it returns the

identity of the thread, i.e., it ignores the environment. If the argument is a thread

which is not a user thread, it returns the empty multi-set. The Inv Tool is able

to verify that the weight set thus de�ned is a place invariant. Thus property 1

is proved. A set of weights corresponding to property 2 is constructed similarly.

Properties 3 and 4 are shown by constructing appropriate sets of weights

whose support are the network bu�er places ToNet and FromNet (see Fig. 3)

respectively.

To establish property 5, we need a more sophisticated place invariant. Con-

sider the page AssignOID shown in Fig. 4 in Sect. 3. The set of weights proving 5

contains the same weight for all places inside the monitor | a weight shell that

maps a Thread-token to its enclosing shell. The set of weights contains the

identity-function for MonitorFree and zero for all other places in the model. If

this set of weights is a place invariant, it states that the places with non-zero

weights in any reachable marking M together contain exactly one token from

each shell (given the initial marking). In terms of an equation:

M(MonitorFree) +
X

p2InMonitor

shell(M(p)) = AllShells

where AllShells is a multi-set containing exactly one appearance of each shell,

and InMonitor is the set of all places inside the monitor. Thus assuming two

or more user threads from the same shell inside the monitor at the same time is

a contradiction: The multi-set on the left-hand side of the equation contains an

element with coe�cient at least two and the right-hand side does not.

The Inv Tool tool is not able to establish that the set of weights de�ned for

property 5 is a place invariant. E.g., it cannot verify that the transition Recv on

the page RPCCall (see Fig. 3) preserves the weight. This is a shortcoming in the

tool. The involved arc expressions, e.g., on the RPCCall page are too complex

for the present prototype. If we analyse the model that is modi�ed by making

the communication between user threads asking for OIDs and their ensembles

15

error-free, property 5 can now be established by the Inv Tool. The modi�cation

must be done by explicitly deleting parts of the model. The reason is that it

is thus not necessary to check the complex transitions on the page RPCCall,

which were causing the problems in the original model. The model modi�ed

as described above has the same behaviour as the original one simpli�ed by

giving the transition Ensemble provides OID on the page AssignOID the guard

[false], as we did for the occurrence graph analysis.

Thus all �ve properties are established (property 5 only for a modi�ed version

of the model).

An attempt was made to prove a place invariant capturing the following

property: When a user thread is blocked after a send, either there is a packet

from that user thread on its way on the network to the receiver side, or the

receiver side is working on providing a result, or there is a packet addressed to

the blocked user thread on the network. The set of weights de�ned in order to

conduct the proof has a large support. Due to a shortcoming in the Inv Tool, it is

unfortunately not possible to verify that this set of weights is a place invariant.

However the tool is able to provide a partial check of the proposed place invariant.

Partial in the sense that it can verify that some but not all transitions preserve

the weight. In this way, the tool may be an aid in a semi-automatic checking

of a proposed place invariant, by simply reducing the number of transitions the

user has to consider manually.

It is possible to prove all of the listed properties in this section using oc-

currence graphs | for a �xed con�guration. Each property can be veri�ed by

a traversal of the full occurrence graph where it is checked that every marking

satis�es the considered property. In fact, we did this for property 5 above for the

con�gurations for which the full occurrence graphs were generated.

5 Related Work

A large number of papers describing system modelling and simulation using

Petri nets exist. Signi�cantly fewer reports on formal analysis. The explanation

is natural: Formal analysis of interesting models require tool support. So far,

while having excellent tools for editing and simulation, the Petri nets community

has been lacking high-quality tools for formal analysis of anything but very small

models. Nevertheless, some papers documenting modelling and formal analysis

projects do exist. In this section, we relate our work to a number of these.

In [5] the modelling and simulation of a network management system using

CP-nets is described. A large model was built and to some extent analysed using

place invariants. However, the authors note that they only made very limited use

of formal analysis due to the lack of tool support. They propose to use formal

analysis during the model construction stage. Viewing our project in the light

of these remarks, we note that formal analysis actually was used during our

model construction: The Occ Tool assisted us �nding and correcting errors in

the process as described in Sect. 4.1. Moreover, we had a set of place invariants in

16

mind throughout the model construction. These invariants were formally proved

with the Inv Tool, thus increasing our con�dence in the model.

The occurrence graph analysis of our model could only verify properties for

a few initial markings. It is of course highly desirable if the model can be ver-

i�ed independently of some initial marking. Alas, this is prohibited in general

because of the nature of the occurrence graph method (refer to the discussion

of the dependency of the initial marking problem in Sect. 4.1). Sometimes, the

problem may be overcome though. In [7], the modelling and analysis of a hard-

ware chip (an arbiter cascade) is reported. The model is characterised with one

single integer system parameter d, the depth of the cascade. The authors verify

the model for all possible values of the system parameter in the following way:

For d = 0 and d = 1, the number of reachable markings is small, and occurrence

graphs are easily constructed. With them, the desired properties of the model

are veri�ed directly. Mathematical induction establishes the proof for all values

d > 1. Using occurrence graphs in conjunction with induction is very appealing

whenever applicable. This strategy solves the two most serious problems with

occurrence graph analysis: The state explosion problem is simply eliminated be-

cause it is only necessary to generate occurrence graphs when the number of

reachable markings is small. The dependency of the initial marking is elegantly

overcome with the inductive step. However, this approach relies upon the con-

sidered system being regular in the sense that it is characterised by a natural

number parameter, and there is a well-de�ned relation between the behaviour

of the system with parameter d and the system with parameter d+ 1. Unfor-

tunately, our communication protocol does not adhere to these requirements.

In fact, we think it will be hard in general to apply this technique to complex

communication protocols. It seems that hardware designs are more regular, and

thus more adequate for inductive proofs.

In our place invariant analysis, we concentrated on proving place invariants

whose existence we presumed. Thus our place invariant analysis was a checking

of properties that we expected the CPN model to have. An alternative is to try

calculating all place invariants for a given model automatically. With a model

of this size, we believe that the computational complexity of this approach is

prohibitive. Moreover from some representation of all place invariants it is not

necessarily easy to pick out the ones of interest, i.e., the ones that express relevant

properties of the model. Our attitude towards place invariant analysis is shared

by the authors of [1].

In [13] our project is compared with three others that exploited formal anal-

ysis methods. They are described in [9], [15], and [6].

Finally in this section, we make clear the contribution of our project in com-

parison with the other projects mentioned here. We are convinced that the avail-

ability of suitable formal analysis tools is the reason why we obtained quite

powerful analysis results compared to the earlier projects. Moreover, we exploit

both occurrence graphs and place invariants. We are well aware that we do not

use some combination of or interaction between the two methods. However, we

believe that the two methods inspire the user to investigate di�erent aspects of

17

the model. Therefore it is sensible to apply both, if possible. It will typically pro-

duce a more comprehensive set of analysis results. It did in this speci�c example,

where the two methods supplemented each other nicely.

6 Conclusion

In this project we have modelled and analysed the protocol for remote object

invocation in BETA.

The �rst stage was to build the CPN model. It had some impact on the

protocol. We had a number of meetings with the designer. The discussions gave

both him and us a better insight into the behavioural aspects. As a consequence,

a number of changes were made to the protocol. More speci�cally, some super-

uous critical regions were removed.

The second stage was to analyse the model using formal methods. For this

purpose we used two standard methods, occurrence graphs and place invari-

ants. The results obtained were non-trivial. Careful choice of colour sets and

net structure for the model implied a relatively successful use of the occurrence

graph method: It was possible to prove important dynamic properties such as

absence of dead markings and liveness of speci�c sets of binding elements for

small initial markings. Place invariants were used to prove quite di�erent dy-

namic properties of the model, e.g., that certain sets of threads remain constant,

and that a monitor construction correctly ensures exclusive access to a critical

region. We took advantage of two recently developed tools, the Occ Tool and

the Inv Tool.

The analysis stage did not in
uence the protocol, because the design was

already sensible before the analysis began. If the formal analysis had revealed,

e.g., an unexpected deadlock, then of course this problem would have to be �xed

in the design and implementation of the protocol. Thus the formal analysis would

have had an impact. The designer of the protocol has the viewpoint that the

formal analysis was mostly usable to increase his con�dence in the CPN model.

Therefore, the key question is if the model is a proper re
ection of the design and

implementation of the protocol. In this speci�c project, both the designer and

ourselves are con�dent that the model sensibly captures relevant and important

aspects of the protocol. The veri�cation of the model thus does increase our

con�dence in the protocol. It is theoretically possible though that something left

out from the model (e.g., error handling on the receiver side) is exactly what is

causing a serious problem.

Advantages and drawbacks of both formal methods were discussed. The main

drawbacks inherent to the occurrence graph method, state explosion and depen-

dency of the initial marking, were exhibited. Although the problems are generally

recognised in the theory, it is valuable to see their impact on a speci�c real-world

example. Here we saw that only con�gurations with less than three user threads

could be handled. When the number of user threads was increased, occurrence

graphs could not be generated in full. We proposed net reductions as a means

18

to alleviate the state explosion problem and demonstrated decent savings in the

sizes of the occurrence graphs.

The model built in this project is complex. It is thus very hard to get cer-

tain information about its dynamic behaviour using informal methods such as

simulation only. E.g., ruling out the possibility of a dead marking requires for-

mal veri�cation. Unfortunately we have to accept the fact that currently full

occurrence graphs can only be generated for small initial markings. Thus, e.g.,

absence of dead markings is only established for a few markings. Hence on one

hand, we saw an example of a model where formal analysis proved really useful

when applicable. On the other, formal analysis was somewhat obstructed. There

are two categories of sources limiting the applicability of formal analysis. One

concerns the analysis methods, the other the tools. The most severe limitations

are inherent to the methods, e.g., the state explosion problem. However, the

present theoretical work is much more advanced than the present tool support.

An important �eld for future work is development of better tools for formal anal-

ysis of CP-nets. With respect to the Occ Tool, generation of larger occurrence

graphs will be possible when a version storing markings in a more economic

fashion is implemented. The current version does not use memory in an opti-

mal way. Moreover, only ordinary occurrence graphs are presently supported. It

will de�nitely be valuable reconsidering the analysis done in this project when

the Occ Tool is matured to support occurrence graphs with equivalences [11].

With respect to the Inv Tool, it needs to be matured to handle more complex

expressions.

Acknowledgements We thank S�ren Brandt, S�ren Christensen, Alexandre

Valente Sousa, and Jan Toksvig for help in this project. Thanks to Kurt Jensen,

Rikke Drewsen Andersen, Vincent Becuwe, Torben Bisgaard Haagh, Ludovic

Joly, Lars Kristensen, and Ren�e Wenzel Schmidt for proof-reading various ver-

sions of this paper.

This work has been supported by grants from the Danish Research Councils

SNF and STVF, and from the Faculty of Science at University of Aarhus.

References

1. J. Billington, G. R. Wheeler, and M. C. Wilbur-Ham. PROTEAN - A High-level

Petri Net Tool for the Speci�cation and Veri�cation of Communication Proto-

cols. In K. Jensen and G. Rozenberg, editors, High-level Petri Nets, Theory and

Application. Springer-Verlag, 1991.

2. S. Brandt. Implementing Shared and Persistent Objects in BETA. Technical

report, Computer Science Department, University of Aarhus, 1994.

3. S. Brandt and O. L. Madsen. Object-Oriented Distributed Programming in BETA.

In R. Guerraoui, O.M. Nierstrasz, and M. Riveill, editors, Object-Based Distributed

Programming, Lecture Notes in Computer Science, Kaiserslautern, Germany, 1993.

Springer-Verlag.

19

4. S. Christensen, K. Jensen, and L. Kristensen. The Design/CPN Occurrence Graph

Tool. User's manual version 3.0. Computer Science Department, University of

Aarhus, 1996.

Online: http://www.daimi.aau.dk/designCPN/.

5. S. Christensen and L. O. Jepsen. Modelling and Simulation of a Network Man-

agement System using Hierarchical Coloured Petri Nets. In E. Mosekilde, editor,

Proceedings of the 1991 European Simulation Multiconference, Copenhagen, Den-

mark, 1991. Springer-Verlag.

6. H. J. Genrich, H.-M. Hanisch, and K. W�ollhaf. Veri�cation of Recipe-based Control

Procedures by Means of Predicate/Transition Nets. In R. Valette, editor, Proceed-

ings of the 15th International Conference on Application and Theory of Petri Nets,

Lecture Notes in Computer Science, Zaragoza, Spain, 1994. Springer Verlag.

7. H. J. Genrich and R. M. Shapiro. Formal Veri�cation of an Arbiter Cascade. In

K. Jensen, editor, Proceedings of the 13th International Conference on Application

and Theory of Petri Nets, Lecture Notes in Computer Science, She�eld, UK, 1992.

Springer Verlag.

8. A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.

9. C. Girault, C. Chatelain, and S. Haddad. Speci�cation and Properties of a Cache

Coherence Protocol Model. In K. Jensen and G. Rozenberg, editors, High-level

Petri Nets, Theory and Application. Springer-Verlag, 1991.

10. S. Haddad. A Reduction Theory for Coloured Nets. In K. Jensen and G. Rozenberg,

editors, High-level Petri Nets, Theory and Application. Springer-Verlag, 1991.

11. K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods and Practical

Use. Volume 2, Analysis Methods. Monographs in Theoretical Computer Science.

Springer-Verlag, 1994.

12. K. Jensen, S. Christensen, P. Huber, and M. Holla. Design/CPN. A reference

manual. Computer Science Department, University of Aarhus, 1996.

Online: http://www.daimi.aau.dk/designCPN/.

13. J.B. J�rgensen and K.H. Mortensen. Modelling and Analysis of Distributed Pro-

gram Execution in BETA Using Coloured Petri Nets. Technical report, Computer

Science Department, University of Aarhus, 1995.

14. O. L. Madsen, B. M�ller-Pedersen, and K. Nygaard. Object-Oriented Programming

in the BETA Programming Language. Addison Wesley, 1993.

15. W. M. McLendon, Jr. and R. F. Vidale. Analysis of an Ada System Using Coloured

Petri nets and Occurrence Graphs. In K. Jensen, editor, Proceedings of the 13th

International Conference on Application and Theory of Petri Nets, Lecture Notes

in Computer Science, She�eld, UK, 1992. Springer Verlag.

16. A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall International, 1992.

17. J. Toksvig. Tool Support for Place Flow Analysis of Hierarchical CP-nets Version

2.0. Technical report, Computer Science Department, University of Aarhus, 1993.

18. J. D. Ullman. Elements of ML Programming. Prentice-Hall, 1993.

20

