
Multi-Level Languages:
a Descriptive Framework

Flemming Nielson and Hanne Riis Nielson

Abstract

Two-level λ-calculi have been heavily utilised for applications such as partial evalu-
ation, abstract interpretation and code generation. Each of these applications pose
different demands on the exact details of the two-level structure and the corre-
sponding inference rules. We therefore formulate a number of existing systems in
a common framework so as to conceal those differences between the systems that
are not essential for the multi-level ideas, and so as to reveal the deeper similarities
and differences. The multi-level λ-calculi defined here allow multi-level structures
that are not restricted to the (possibly finite) linear orders found in most of the
literature. Finally, we generalise our approach so as to be applicable to a much
wider class of programming languages.

1 Introduction

Two-level languages are at least a decade old [9, 6] and multi-level languages at least
four years old [13]. In particular two-level languages have been used extensively in the
development of partial evaluation [2, 4] and abstract interpretation [7, 10] but also in
areas such as code generation [11] and processor placement [14].

A main goal of this paper is to cast further light on the two-level λ-calculi that may be
found in the literature. We will show that there is a high degree of commonality in the
approach taken: there are a number of levels (e.g. binding-times) and relations between
them. Also we will stress that there are major differences that to a large extent are
forced by the characteristics of the application domains (be it partial evaluation, code
generation, abstract interpretation, or processor placement). In our view it is important
to understand this point, that the application domains place different demands on the
formalisation, before it makes sense to compare formalisations with a view to identifying
their relative virtues.

After presenting a few key definitions from algebra we proceed to define a notion of multi-
level λ-calculi. This allows a very general structure upon the levels that is not restricted
to be a (possibly finite) linearly ordered structure as is the case in most of the literature.
We then consider five systems in detail and formally show that they can be formulated in
our present framework. These systems are: a system for code generation [13], a system for

1

partial evaluation [4], a system for multi-level partial evaluation [2], a system for abstract
interpretation [7], and a system based on modal logic [1]. An overview of parts of this
development was previously reported in [15].

Finally, we pave the way for a much more general theory of multi-level languages by pre-
senting definitions that are applicable for programming languages that are not necessarily
based on the λ-calculus.

Remark about the choice of levels. Perhaps the most obvious generalisation of a
notion of two levels is a (possibly finite) interval in Z ∪ {−∞,∞} (with the elements
corresponding to the levels [13, 2]). A somewhat more abstract possibility is to use a
general partially ordered set (with the elements corresponding to the levels as is briefly
discussed in [13]) although a Kripke-structure [8] (with the worlds corresponding to the
levels) would fit just as well. This might suggest that the ultimate choice is to let the
levels be given by a category because a partial order can indeed be viewed as a particularly
simple category. We shall find it more appropriate1 to use a many-sorted algebra with
sorts corresponding to the levels and operators corresponding to the relationships between
the levels; one reason is that it avoids the need for coding many-argument concepts as one-
argument concepts using cartesian products, another is that it naturally allows different
relationships between the levels for different syntactic categories, and yet a third reason
is that it allows finer control over the relationship between the levels in that it does not
necessarily impose transitivity.

2 Preliminaries

Programming languages are characterised by a number of syntactic categories and by a
number of constructs for combining syntactic entities to new ones. Using the terminology
of many-sorted algebras we shall represent the set of names of syntactic categories as a set
of sorts and the methods as operators. To this end we begin by reviewing some concepts
from many-sorted algebras [18, 3].

A many-sorted signature Σ over a set S of sorts consists of a set (also denoted Σ) of
operators; each operator σ ∈ Σ is assigned a rank, denoted rank(σ) ∈ S∗× S, designating
the sequence of sorts of the arguments and the sort of the result; if rank(σ) = (s1 · · · sn; s)
we shall say that σ is an n-ary operator.

A Σ-algebra M consists of a (usually non-empty) set Ms (called the carrier) for each sort
s ∈ S and a total function σM : Ms1 × · · · ×Msn →Ms for each operator σ ∈ Σ of rank
(s1 · · · sn; s). (Interpretations of Σ-algebras in other categories than Set can be found in
the literature.)

The free Σ-algebra T (Σ) has as carrier T (Σ)s the set of terms of sort s that can be built

1These approaches are not too dissimilar in their descriptive power and thus to some extent a matter
of taste: a many-sorted algebra can be regarded as a cartesian category (with objects corresponding to
sequences of sorts and operators corresponding to morphisms), and a cartesian category can be regarded
as a many-sorted algebra (with sequences of sorts corresponding to objects and morphisms corresponding
to operators).

2

using the operators of Σ; as operators it has the constructions of new terms. In a similar
way the free Σ-algebra T (Σ, X) over X has as carrier T (Σ, X)s the set of terms of sort s
that can be built using the operators of Σ and the identifiers in X where each identifier
x ∈ X has an associated sort, denoted sort(x); as operators it has the constructions of
new terms. Another way to present this is to say that T (Σ, X) = T (Σ ∪ X) where the
rank of x is given by rank(x) = (; sort(x)).

A homomorphism h from a Σ-algebra M1 to a Σ-algebra M2 consists of a sort-preserving
mapping from the carriers of M1 to those of M2 such that for each operator σ ∈ Σ and
for all values v1, · · · , vn in M1 of the required sorts, the equation h(σM1(v1, · · · , vn)) =
σM2(h(v1), · · · , h(vn)) holds in M2.

A derivor d from a signature Σ1 over S to a signature Σ2 over S is a mapping that sends an
operator σ ∈ Σ1 of rank (s1 · · · sn; s) to a term d(σ) ∈ T (Σ2, {x1, · · · , xn})s constructed
from the operators of Σ2 together with the identifiers {x1, · · · , xn} such that if each xi
has sort sort(xi) = si then d(σ) obeys the sorting rules and gives a term of sort s. (This
definition can be made more general by allowing Σ1 and Σ2 to have different sets of sorts
as is done in [3].)

We shall define a uniform derivor from a signature Σ1 over S to a signature Σ2 over S to
be a rank-preserving partial mapping δ from Σ1 to Σ2 that is only allowed to be undefined
on unary operators of Σ1; it extends to a derivor (also denoted δ) by mapping σ ∈ Σ1

of rank (s1 · · · sn; s) to (δ(σ))(x1, · · · , xn) if δ(σ) is defined and to x1 otherwise; note that
for this derivor all δ(σ) contains at most one operator symbol. (We should point out that
a uniform derivor is an instance of a signature morphism [18] whenever it happens to be
a total mapping.)

3 Multi-level lambda-calculi

In this section we shall define the syntax of the lambda-calculus and some common features
of multi-level structures. The aim is to provide a small universe in which some of the
different formalisations of multi-level languages found in the litterature can be explained
as necessary variations over a theme.

λ-calculus. The simply typed λ-calculus λ is the programming language specified by
the following data. The sorts (or syntactic categories) are Typ and Exp. The signature
(or the set of type and expression forming constructs) Σ is given by:

→: (Typ2; Typ) int : (; Typ) bool : (; Typ)

ci : (; Exp) xi : (; Exp) λxi. : (Exp; Exp)

@ : (Exp2; Exp) if : (Exp3; Exp) fix : (Exp; Exp)

for i ranging over some index set. There are two well-formedness judgements: `Tt for
the well-formedness of the type t and A`Ee : t for the well-formedness of the expression
e (yielding type t assuming free identifiers are typed according to the type environment
A). The inductive definition of these well-formedness judgements is given by the following

3

inference rule for `T:

[ok]
`Tt

(stating that all types are well-formed and where we regard an axiom as an inference rule
with no premises) and for `E:

[ci]
A`Eci : t

if t = Type(ci) [xi]
A`Exi : t

if t = A(xi)

[λxi]
A[xi : ti]`Ee : t
A`Eλxi.e : ti→ t

[@]
A`Ee0 : t1 → t2 A`Ee1 : t1

A`Ee0@ e1 : t2

[fix]
A`Ee : t→ t

A`Efix e : t
[if]

A`Ee0 : bool A`Ee1 : t A`Ee2 : t
A`Eif e0 e1 e2 : t

for some unspecified table Type giving the type of constants.

Note that this is just the algebraic presentation of the well-known simply typed λ-calculus:
we have the two syntactic categories (represented by the sorts), we have the abstract
syntax (represented by the signature), and we have the well-formedness judgements and
the inference rules for their definition. We are stepping slightly outside the algebraic
framework in allowing type environments, and operations upon these, even though there
is no sort corresponding to type environments; this could very easily be rectified but at
the price of a more cumbersome formalisation.

Remark about the choice of λ-calculus. An alternative presentation λ′ of the sim-
ply typed λ-calculus has the same sorts, the same signature, the same well-formedness
judgements but other rules of inference. For `T it has:

[int]
`Tint

[bool]
`Tbool

[→]
`Tt1 `Tt2
`Tt1 → t2

and for `E the rule [λxi] is changed to:

[λxi]
A[xi : ti]`Ee : t
A`Eλxi.e : ti → t

if `Tti

where it is natural to include as an explicit condition that the argument type is well-
formed. Since actually all types in λ′ are well-formed, just as in λ, the two presentations
are for all practical purposes equivalent. Consequently our development below must be
sufficiently flexible that it does not matter whether we base ourselves on λ or on λ′.

Multi-level structure. A multi-level structure B (for λ) is characterised by the sorts
Typ and Exp, a non-empty set WB (also denoted B) of levels, and a (WB × {Typ,Exp})-
sorted signature ΩB = ΩB

e ∪ ΩB
i . Here

• ΩB
e contains those operators that must be explicitly given,

4

whereas ΩB
i = {ιbs1···sn;s | b ∈ B ∧ s1, · · · , sn, s ∈ {Typ,Exp}} contains those operators

ιbs1···sn;s of rank ((b, s1) · · · (b, sn); (b, s)) that we shall regard as implicitly present. We shall
write |B| for the cardinality of WB .

As we shall see the intention is that the implicit operators ι allow arbitrary inference rules
as long as we stay at the same level but that whenever we change levels there must be
an explicitly given operator that supports (or permits) this. We shall illustrate this with
examples below.

Multi-level λ-calculus. A multi-level λ-calculus L over B (and λ) is characterised by
the sorts Typ and Exp, the multi-level structure B, the well-formedness judgements `T

b t
and A`E

b e : t (where b ranges over B), and the following information:

• a {Typ,Exp}-sorted signature ΣL (defining the syntax of L); and

• a set RL of labelled inference rules for the well-formedness judgements, where for
simplicity of notation we allow distinct rules to share the same label; and

• a uniform derivor δ : ΣL → Σ that is extended to map `sb to `s and thereby may
be used to map judgements and inferences of L to judgements and inferences of λ
in a mostly compositional manner; and

such that each inference rule ∆ ∈RL satisfies:

(i) its label identifies an operator ω ∈ ΩB of rank ((b1, s1) · · · (bn, sn); (b, s)) such that
the premises of ∆ concern the well-formedness judgements `sibi and the conclusion
concerns the well-formedness judgement `sb and the only judgements `s′b′ allowed in
the side condition2 have b′ = b; and

(ii) the rule δ(∆) is a permissible3 rule in λ.

We should point out that since the set RL of rules usually is finite and the set ΩB
i of

implicitly given operators is infinite, the set ΩB
i contains many operators for which there

is no need; however, this presents no complications for our development.

3.1 Example: code generation [13]

We shall now show that the restriction of the two-level λ-calculus of [13] to λ (summarised
in Appendix A.1) is an instance of the present framework. To this end we define the multi-
level language L = Lcg.

2If the present choice about b′ = b turns out to be too restrictive it can be weakened to b′ ∈
{b, b1, · · · , bn}.

3We say that a rule ∆ is a permissible rule for a rule set R whenever the set of provable judgements
using R equals the set of provable judgements using R ∪ {∆}. More restrictive demands on a rule might
be that it is a derived rule or even that it is an existing rule in R. If we were to adopt one of the more
restrictive possibilities then the choice between λ and λ′ would be of importance.

5

Two-level structure. Let B contain the two levels c (for compile-time) and r (for
run-time). The signature ΩB then has the following explicitly given operators:

• UP: ((r,Typ); (c,Typ))

• up: ((r,Exp); (c,Exp))

• dn: ((c,Exp); (r,Exp))

The operator UP indicates that run-time types can be embedded in compile-time types
thereby imposing the ordering that r is “less than” c. The operator up indicates that
values of run-time expressions (i.e. code) can be manipulated at compile-time and the
operator dn that values of compile-time expressions can be used at run-time.

Two-level λ-calculus. The signature ΣL is given by:

→c,→r : (Typ2; Typ) intc, intr : (; Typ) boolc, boolr : (; Typ)

cci , c
r
i : (; Exp) xi : (; Exp) λcxi., λrxi. : (Exp; Exp)

@c , @r : (Exp2; Exp) ifc, ifr : (Exp3; Exp) fixc, fixr : (Exp; Exp)

Note that we have two copies of every operator of Σ (except identifiers that can be viewed
as place-holders). Annotation with r corresponds to the underlining notation used in [13]
and annotation with c to the absence of underlinings.

For types the well-formedness rules include two copies of the well-formedness rules of λ′

(one for b = c and one for b = r):

[ιb]
`T
b int

b
[ιb]

`T
b bool

b
[ιb]

`T
b t1 `T

b t2
`T
b t1→bt2

On top of this we have a bridging rule corresponding to the operator UP of the two-level
structure:

[UP]
`T
r t1→rt2
`T
c t1→rt2

allowing us to transfer run-time function spaces to compile-time. It is trivial to verify
that we have given the correct treatment of types:

Fact 3.1 `T
b t if and only if ` t : b (in Appendix A.1).

For expressions we have two slightly modified copies of the well-formedness rules of λ′

(one for b = c and one for b = r). To capture the formulation of [13] we shall let the type
environment A associate a level b and a type t with each identifier xi:

6

[ιb]
A`E

b c
b
i : t

if t = Type(cbi) ∧ `T
b t [ιb]

A`E
b xi : t

if t = A(xbi) ∧ `T
b t

[ιb]
A[xbi : ti]`E

b e : t
A`E

b λ
bxi.e : ti→bt

if `T
b ti [ιb]

A`E
b e0 : t1→bt2 A`E

b e1 : t1
A`E

b e0@b e1 : t2

[ιb]
A`E

b e : t→bt

A`E
b fix

b e : t
[ιb]

A`E
b e0 : boolb A`E

b e1 : t A`E
b e2 : t

A`E
b if

b e0 e1 e2 : t

where as before4 we leave the table Type unspecified. On top of this we have two bridging
rules corresponding to the operators up and dn of the two-level structure:

[dn]
A′ `E

c e : t
A`E

r e : t
if `T

r t ∧ gr(A′) ⊆ gr(A)

[up]
A′ `E

r e : t
A`E

c e : t
if `T

c t ∧ gr(A′) ⊆ gr(A) ∧ ∀(xb′i : t′) ∈ gr(A′) : (b′ = c ∧ `T
c t
′)

where gr(A) = {(xbi : t) | A(xbi) = t} is the graph of A.

Example 3.2 Consider the apply function with the following annotations:

λcf.λrx.f@r x

It has type

(intr→rintr)→c(intr→rintr)

The following inference tree shows that this indeed is a well-formed type at level c:

`T
r int

r
[ιr]

`T
r int

r
[ιr]

`T
r int

r
[ιr]

`T
r int

r
[ιr]

`T
r int

r→rintr
[ιr]

`T
r int

r→rintr
[ιr]

`T
c int

r→rintr
[UP]

`T
c int

r→rintr
[UP]

`T
c (intr→rintr)→c(intr→rintr)

[ιc]

Note that the rule [UP] is used to switch context: the upper parts of the inference tree
are at level r and the lower parts at level c.

The inference tree below shows that the apply function has this type. Here Af abbreviates
[f c 7→ intr→rintr] and Afx abbreviates [f c 7→ intr→rintr, xr 7→ intr]. Again note how
the rules [up] and [dn] are used to switch between the two levels.

4Actually there is a small subtlety here concerning the A[xbi : ti] notation: if A already contains
[xb
′

i : t′i] for b′ 6= b, will the update then remove the entry for xb
′

i or not? In line with [13] we shall
assume that the entry is removed; however, it would be feasible to take the other approach (and then
perhaps replace the operators xi ∈ Σ with xbi ∈ Σ) or perhaps to insist that all bound identifiers are
distinct so that the choice does not matter.

7

Afx`E
c f : intr→rintr

[ιc]

Afx`E
r f : intr→rintr

[dn]
Afx`E

r x : intr
[ιr]

Afx`E
r f@

r x : intr
[ιr]

Af `E
r λ

rx.f@r x : intr→rintr
[ιr]

Af `E
c λ

rx.f@r x : intr→rintr
[up]

[]`E
c λ

cf.λrx.f@r x : (intr→rintr)→c(intr→rintr)
[ιc]

It is trivial to establish the following relationship between the typing judgements:

Fact 3.3 A`E
b e : t implies `T

b t.

To show that we have given the correct treatment for expressions we define a mapping
〈· · ·〉 into the type environments of Appendix A.1:

〈· · · [xbi : t] · · ·〉 = 〈· · ·〉[xi : t : b]〈· · ·〉

and we then prove:

Lemma 3.4 A`E
b e : t if and only if 〈A〉 ` e : t : b (in Appendix A.1).

Proof First we observe that it is straightforward to show that whenever 〈A〉 ` e : t : b
then also A`E

b e : t. For the other implication we prove the slightly stronger statement

A1 `E
b e : t and gr(A1) ⊆ gr(A2) imply 〈A2〉 ` e : t : b.

The proof is by induction on the inference of A1 `E
b e : t.

The cases of constants and identifiers are trivial using Fact 3.1.

For abstraction we have A1 `E
b λ

bxi.e : ti→bt because A1[xbi : ti]`E
b e : t and `T

b ti. The
induction hypothesis gives 〈A2〉[xi : (ti : b)] ` e : t : b since gr(A1[xbi : ti]) ⊆ gr(A2[xbi : ti]).
Since Fact 3.1 gives ` ti : b we get 〈A2〉 ` λbxi.e : ti→bt : b as required.

The cases of application, fixed points and conditional follow straightforwardly from the
induction hypothesis.

In the case of [dn] we have A1 `E
r e : t because A′1 `E

c e : t, `T
r t and gr(A′1) ⊆ gr(A1). Using

the assumption gr(A1) ⊆ gr(A2) we get gr(A′1) ⊆ gr(A2) and the induction hypothesis
gives 〈A2〉 ` e : t : c. From Fact 3.1 we get ` t : r so 〈A2〉 ` e : t : r as required.

In the case of [up] we have A1 `E
c e : t because A′1 `E

r e : t, `T
c t, gr(A′1) ⊆ gr(A1) and

∀(xb′i : t′) ∈ gr(A′1) : (b′ = c ∧ `T
c t
′). Now define A′2 by gr(A′2) = {(xb′i , t′) ∈ gr(A2) |

b′ = c ∧ `T
c t
′}. Since gr(A1) ⊆ gr(A2) by assumption it follows that gr(A′1) ⊆ gr(A′2).

Thus the induction hypothesis gives 〈A′2〉 ` e : t : r. From Fact 3.1 we get ` t : c so
〈A2〉 ` e : t : c as required. 2

To show that we have defined a multi-level λ-calculus we define a uniform derivor δ from
Lcg into λ: it simply removes all annotations. It is then fairly straightforward to prove:

8

Fact 3.5 Lcg is a multi-level λ-calculus.

The same story goes for letting the uniform derivor map into λ′. It is instructive to point
out that although we modelled the two-level λ-calculus after λ′ our notion of two-level
language is flexible enough that it is of no importance whether the derivor maps back to
λ or λ′.

Remark about the design decisions of [13]. As we shall see below, the multi-
level λ-calculi developed for partial evaluation have bridging rules for types that are
more permissive than the rule [UP] of Lcg . It may therefore be appropriate to briefly
recall the motivations behind the design of Lcg [9, 11, 13]. The idea is that a compiler
manipulates code which when executed manipulates run-time values (like closures and
lists); the compiler does not itself directly manipulate run-time values. This motivates
the requirement that the compile-time level only involves the run-time functions rather
than more general run-time data; to achieve the effect of operating on run-time data
(say of type intr) one can instead operate on code that produces run-time data (say of
type unitr→rintr). Technically, the correctness proofs of [11] depend profoundly on this
property of Lcg and would seem not to apply to two-level languages without this property.

3.2 Example: partial evaluation [4]

We shall now show that the restriction of the binding time analysis of [4] toλ (summarised
in Appendix A.2) is an instance of the present framework. To this end we define the multi-
level language L = Lpe.

Two-level structure. Let B contain the two levels D (for dynamic) and S (for static).
The signature ΩB then has the following explicitly given operators:

• DN: ((D,Typ); (S,Typ))

• dn: ((D,Exp); (S,Exp))

• up, coer: ((S,Exp); (D,Exp))

The operator DN indicates that dynamic types can be embedded in static types; usually
this is reflected by imposing an ordering S ≤ D saying that S computations take place
“before” D computations5. The operators dn and up reflect that expressions at the two
levels can be mixed much as in Subsection 3.1 and the presence of coer reflects that some
form of coercion of static values to dynamic values can take place.

5Intuitively, the level D corresponds to the level r of Subsection 3.1 and similarly the level S corre-
sponds to the level c. The ordering imposed on D and S above will then be the dual of the ordering
imposed on c and r in Subsection 3.1. This is analogous to the dual orderings used in data flow anal-
ysis and in abstract interpretation. By the duality principle of lattice theory these differenes are only
cosmetic.

9

Two-level λ-calculus. We use the following signature ΣL:

→D,→S : (Typ2; Typ) intD, intS : (; Typ) boolD, boolS : (; Typ)

cDi , c
S
i : (; Exp) xi : (; Exp) λDxi., λSxi. : (Exp; Exp)

@D , @S : (Exp2; Exp) ifD, ifS : (Exp3; Exp) fixS : (Exp; Exp)

This is very similar to Subsection 3.1 except that (adhering to the design decisions of [4])
there is no fixD, i.e. all fix point computations must be static.

For types we first introduce the following well-formedness rules:

[ιb]
`T
b int

b
[ιb]

`T
b bool

b
[ιb]

`T
b t1→bt2

(where b ranges over {S,D}). Note that the rule for t1→bt2 has no premises! Then we
have the following bridging rule corresponding to the operator DN:

[DN]
`T
Dt

`T
S t

allowing us to use any dynamic type as a static type. One can then prove that we have
given the correct treatment of types:

Fact 3.6 `T
b t if and only if b ≤ top(t) (in Appendix A.2).

Proof First we prove that `T
b t implies b ≤ top(t) by induction on the inference of `T

b t.
The cases of base types and function types are trivial since e.g. `T

b t1→bt2 implies that
top(t1→bt2) = b and we have b ≤ b. The only non-trivial case is when `T

S t because `T
Dt.

The induction hypothesis gives D ≤ top(t) but since S ≤ D it follows that S ≤ top(t) as
required.

Next we prove that b ≤ top(t) implies `T
b t by a case analysis on t. If t is a function type

as e.g. t1→b0t2 then the assumption b ≤ top(t1→b0t2) amounts to b ≤ b0. We trivially
have `T

b0
t1→b0t2 and thus have the result unless b 6= b0. But then b0 = D and b = S and

the result follows from the rule [DN]. The cases of base types are similar. 2

For expressions we first introduce the following slightly modified copies of rules from λ′:

[ιb]
A`E

b c
b
i : t

if t = Type(cbi) ∧ `T
b t [ιb]

A`E
b xi : t

if t = A(xi) ∧ `T
b t

[ιb]
A[xi : ti]`E

b e : t
A`E

b λ
bxi.e : ti→bt

if `T
b ti [ιb]

A`E
b e0 : t1→bt2 A`E

b e1 : t1
A`E

b e0@
b e1 : t2

if `T
b t2

[ιb]
A`E

Se : t→bt

A`E
Sfix

S e : t
[ιb]

A`E
b e0 : boolb A`E

b e1 : t A`E
b e2 : t

A`E
b if

b e0 e1 e2 : t

(where b ranges over {S,D}). Note that compared with Subsection 3.1 we have not
extended the entries in A with information about the level; furthermore, note that the
application rule now has a side condition ensuring that the result type is well-formed. In
addition we have the following bridging rules corresponding to the operators up, dn and
coer:

10

[up]
A`E

Se : t
A`E

De : t
if `T

Dt [dn]
A`E

De : t
A`E

Se : t

[coer]
A`E

Se : intS

A`E
De : intD

[coer]
A`E

Se : boolS

A`E
De : boolD

Note that the rule [coer] has no counterpart in Subsection 3.1.

Example 3.7 We shall now illustrate how a static conditional with two dynamic branches
can be typed dynamically. Consider the expression:

ifS e0 e1 e2

where e.g. A`E
Se0 : boolS, A`E

De1 : intD→DintD and A`E
De2 : intD→DintD. We have

the following inference tree:

...
...

...
A`E

De1 : intD→DintD A`E
De2 : intD→DintD

A`E
Se0 : boolS A`E

Se1 : intD→DintD
[dn]

A`E
Se2 : intD→DintD

[dn]

A`E
Sif

S e0 e1 e2 : intD→DintD
[ιS]

A`E
Dif

S e0 e1 e2 : intD→DintD
[up]

Note that in order to apply the rule for the conditional the judgements of the two branches
are transfered to the static level using [dn] and later the overall judgement of the condi-
tional is transfered back to the dynamic level using [up].

It is trivial to establish the following relationship between the typing judgements:

Fact 3.8 A`E
b e : t implies `T

b t.

To show that we have given the correct treatment for expressions we prove:

Lemma 3.9 A`E
b e : t if and only if A ` e : t ∧ b ≤ top(t) (in Appendix A.2).

Proof First we prove that if A`E
b e : t then A ` e : t and b ≤ top(t). We proceed by

induction on the inference of A`E
b e : t.

The cases of constants and identifies follow trivially using Fact 3.6.

In the case of abstraction we have A`E
b λ

bxi.e : ti→bt because A[xi : ti]`E
b e : t and `T

b ti.
The induction hypothesis gives A[xi : ti] ` e : t and b ≤ top(t). Fact 3.6 gives b ≤ top(ti)
so we get A ` λbxi.e : ti→bt. Clearly b ≤ top(ti→bt).

In the case of application we have A`E
b e0@b e1 : t2 because A`E

b e0 : t1→bt2, A`E
b e1 : t1

and `T
b t2. The induction hypothesis gives A ` e0 : t1→bt2, A ` e1 : t1 and b ≤ top(t1).

Fact 3.6 gives b ≤ top(t2). Thus we get A ` e0@b e1 : t2 as required.

The cases of fixed points and conditional follow straightforwardly from the induction
hypothesis. Similarly for the rules [up] and [dn].

11

In the case of a [coer] rule we e.g. have A`E
b e : intD because A`E

b e : intS. The induction
hypothesis gives A ` e : intS and b ≤ S. Clearly A ` e : intD and since S ≤ D we get
b ≤ D as required.

Next we prove that if A ` e : t and b0 ≤ top(t) then A`E
b0
e : t. We proceed by induction

on the inference of A ` e : t.

The cases of constants and identifiers are trivial since Fact 3.6 applied to the assumption
b0 ≤ top(t) gives `T

b0
t.

For abstraction we assume that A ` λbx.e : ti→bt because A[xi : ti] ` e : t, b ≤ top(ti) and
b ≤ top(t) and furthermore we assume that b0 ≤ top(ti→bt) (i.e. b0 ≤ b). The induction
hypothesis gives A[xi : ti]`E

b e : t. From Fact 3.6 we get `T
b ti so we have A`E

b λ
bx.e : ti→bt.

If b = b0 we are finished and otherwise b0 = S and b = D. Clearly then the rule [dn] can
be applied and gives the required result.

The cases of application, fixed points and conditional follow from the induction hypothesis
in a similar way.

Finally consider the coercion rules: Assume A ` e : intD because A ` e : intS and
furthermore assume that b0 ≤ top(intD) (i.e. b0 ≤ D). The induction hypothesis gives
A`E

Se : intS and thereby A`E
De : intD using the rule [coer]. If b0 = D then we are

finished, otherwise b0 = S and the rule [dn] will give the required result. 2

To show that we have defined a multi-level λ-calculus we define a uniform derivor δ from
Lpe into λ: it simply removes all annotations. It is then fairly straightforward to prove:

Fact 3.10 Lpe is a multi-level λ-calculus.

Remark about the design decisions of [4]. In the above rule for t1→bt2 it is not
required that the subtypes t1 and t2 are well-formed. So using the system of [4] one can
in fact prove

∅ ` λDx.x : (intS→DintS)→D(intS→DintS) (*)

One may argue that this is unfortunate since traditional partial evaluators cannot exploit
this information. However, we can easily rectify this in our setting: replace the above rule
for t1→bt2 with

`T
b t1 `T

b t2
`T
b t1→bt2

thus bringing the system closer to that of Subsection 3.1. As a consequence we can remove
the side condition `T

b t2 from the rule for application since well-formedness of t2 now can
be deduced from the well-formedness of t1→bt2. Note that with these changes (*) is no
longer derivable. We call this new system L′pe and would expect it to be more useful than
Lpe.

12

3.3 Example: multi-level partial evaluation [2]

We shall now show that the restriction of the multi-level binding time analysis of [2] to λ
(summarised in Appendix A.3) is an instance of the present framework. To this end we
define the multi-level language L = Lmp.

Multi-level structure. Let B contain the levels 0, 1, · · ·,max where intuitively 0 stands
for static and 1, · · ·,max for different levels of dynamic. The signature ΩB then has the
following explicitly given operators:

• DNb′

b : ((b+ b′,Typ); (b,Typ)) for 0 ≤ b < b+ b′ ≤ max

• dnb′b : ((b+ b′,Exp); (b,Exp)) for 0 ≤ b < b+ b′ ≤ max

• upb′b , liftb
′

b : ((b,Exp); (b+ b′,Exp)) for 0 ≤ b < b+ b′ ≤ max

Thus DNb′

b allows us to embed types at level b + b′ at the lower level b; this imposes the
ordering that b < b + b′ much as in Subsection 3.2. The operators dnb′b and upb

′
b reflect

that expressions on the various levels can be mixed and the presence of liftb
′

b reflects that
some form of lifting of values at level b to level b+ b′ can be performed.

Note that if we were to restrict b′ to be 1 we would only be able to move between adjacent
levels in B although we could of course repeat such moves.

Multi-level λ-calculus. We use the following signature ΣL where b ∈ {0, 1, · · ·,max}:

→b : (Typ2; Typ) intb : (; Typ) boolb : (; Typ)

cbi : (; Exp) xi : (; Exp) λbxi. : (Exp; Exp)

@b : (Exp2; Exp) ifb : (Exp3; Exp) fix0 : (Exp; Exp)

liftb
′
b : (Exp; Exp) for 0 ≤ b < b+ b′ ≤ max

As in Subsection 3.2 (adhering to the design decisions of [2]) all fix point computations
are required to be static6, i.e. at level 0. Note that in addition to the annotations on the
operators of λ we also have the new operators liftb′b which are explicit coercion operators.

For types we first introduce the following well-formedness rules:

[ιb]
`T
b int

b
[ιb]

`T
b bool

b
[ιb]

`T
b t1 `T

b t2
`T
b t1→bt2

(where b ranges over {0, 1, · · · ,max}). Then we have the following bridging rules corre-
sponding to the operator DNb′

b :

[DNb′
b]

`T
b+b′t

`T
b t

6In [2] recursive computations are specified implicitly.

13

allowing us to use any type at level b + b′ at the lower level b. One can then prove that
we have given the correct treatment of types:
Fact 3.11 `T

b t if and only if ‖ t ‖ ≥ b (in Appendix A.3).
Proof First we prove that `T

b t implies ‖ t ‖ ≥ b by induction on the inference of `T
b t.

The case of base types is straightforward. Next assume that `T
b t1→bt2 because `T

b t1 and
`T
b t2. The induction hypothesis gives ‖ t1 ‖ ≥ b and ‖ t2 ‖ ≥ b meaning that ` t1 : b1

and ` t2 : b2 for b1 ≥ b and b2 ≥ b. Thus ` t1→bt2 : b and ‖ t1→bt2 ‖= b. The case
where `T

b t because `T
b+b′t follows directly from the induction hypothesis.

To prove the other implication assume that ‖ t ‖ ≥ b, i.e. that ` t : b′ and b′ ≥ b. By
induction on the inference of ` t : b′ we shall then prove that `T

b t. The case where t is a
base type is straightforward using rule [DNb′−b

b] whenever b′ > b. In the inductive case we
assume that ` t1→bt2 : b because ` t1 : b1, ` t2 : b2, b1 ≥ b and b2 ≥ b. The induction
hypothesis gives `T

b t1 and `T
b t2 and it follows that `T

b t1→bt2. 2

For expressions we first introduce the following slightly modified copies of λ′:

[ιb]
A`E

b c
b
i : t

if t = Type(cbi) ∧ `T
b t [ιb]

A`E
b xi : t

if t = A(xi) ∧ `T
b t

[ιb]
A[xi : ti]`E

b e : t
A`E

b λ
bxi.e : ti→bt

if `T
b ti [ιb]

A`E
b e0 : t1→bt2 A`E

b e1 : t1
A`E

b e0@b e1 : t2

[ιb]
A`E

0 e : t→bt

A`E
0 fix

0 e : t
[ιb]

A`E
b e0 : boolb A`E

b e1 : t A`E
b e2 : t

A`E
b if

b e0 e1 e2 : t

(where b ranges over {0, 1, · · · ,max}). In addition we have the following bridging rules
corresponding to the operators upb′b , dnb′b and liftb

′

b :

[upb′b]
A`E

b e : t
A`E

b+b′e : t
if `T

b+b′t [dnb′b]
A`E

b+b′e : t
A`E

b e : t

[liftb
′

b]
A`E

b e : intb

A`E
b+b′lift

b′
b e : intb+b′

[liftb
′

b]
A`E

b e : boolb

A`E
b+b′lift

b′
b e : boolb+b′

If we restrict ourselves to just two levels then we have the multi-level language L′pe of
Subsection 3.2 except that L′pe has no syntactic operators to express coercion.

It is trivial to establish the following relationship between the typing judgements:
Fact 3.12 A`E

b e : t implies `T
b t.

To show that we have given the correct treatment for expressions we prove:
Lemma 3.13 A`E

b e : t if and only if A ` e : t ∧ ‖ t ‖ ≥ b (in Appendix A.3).
Proof First we prove that if A`E

b e : t then A ` e : t and ‖ t ‖ ≥ b. We proceed by
induction on the inference of A`E

b e : t.

The cases of constants and identifiers follow trivially from Fact 3.11.

In the case of abstraction we have A`E
b λ

bxi.e : ti→bt because A[xi : ti]`E
b e : t and `T

b ti.
The induction hypothesis gives A[xi : ti] ` e : t and ‖ t ‖ ≥ b. From Fact 3.11 we get
‖ ti ‖ ≥ b so A ` λbxi.e : ti→bt. Clearly ‖ t1→bt2 ‖ ≥ b.

14

The cases of application, fixed points and conditional follow straightforwardly from the
induction hypothesis. Similarly for [up] and [dn].

In the case of a [lift] rule we e.g. have A`E
b+b′lift

b′
b e : intb+b′ because A`E

b e : intb and
b < b+ b′ ≤ max. The induction hypothesis gives A ` e : intb and ‖ intb ‖ ≥ b. Clearly
A ` liftb′b e : intb+b′ and ‖ intb+b′ ‖ ≥ b+ b′ as required.

Next we prove that if A ` e : t and ‖ t ‖ ≥ b0 then A`E
b0
e : t. We proceed by induction

on the inference of A ` e : t.

The cases of constants and identifiers are trivial since Fact 3.11 applied to the assumption
‖ t ‖ ≥ b0 gives `T

b0
t.

For abstraction we assume that A ` λbx.e : ti→bt because A[xi : ti] ` e : t and ‖ ti ‖ ≥ b
and furthermore we assume that ‖ ti→bt ‖ ≥ b0. Then ‖ ti ‖ ≥ b (≥ b0) and
‖ t ‖ ≥ b (≥ b0). The induction hypothesis gives A[xi : ti]`E

b e : t and Fact 3.11 gives
`T
b ti and henceA`E

b λ
bx.e : ti→bt. Since Fact 3.11 gives `T

b0
ti→btwe getA`E

b0
λbx.e : ti→bt

using the rule [dnb−b0b0
] whenever b > b0.

The cases of application, fixed points and conditional follows from the induction hypoth-
esis in a similar way.

Finally consider the coercion rules: Assume A ` liftb
′
b e : intb+b′ because A ` e : intb

and b < b+ b′ ≤ max and furthermore that ‖ intb+b′ ‖ ≥ b0. The induction hypothesis
gives A`E

b e : intb and thereby A`E
b+b′lift

b′
b e : intb+b′. From Fact 3.11 we get `T

b0
intb+b

′

so we get that A`E
b0
liftb

′
b e : intb+b′ using the rule [dnb+b

′−b0
b0

] whenever b+ b′ > b0. 2

To show that we have defined a multi-level λ-calculus we define a uniform derivor δ from
Lmp into λ: it simply removes all annotations and all occurrences of liftb′b . It is then
fairly straightforward to prove:

Fact 3.14 Lmp is a multi-level λ-calculus.

3.4 Example: abstract interpretation [7]

We shall now show that the two-level language TML[dt,dt] of [7] can be seen as an instance
of the present framework. However, as our current framework does not directly support
combinator introduction we shall prefer to consider a version of [7] where the combinators
are replaced by λ-expressions; consequently it will be instructive to think only of forward
program analyses and we shall dispense with proving a formal relationship between Lai and
TML[dt,dt]. Given these considerations we can define the multi-level language L = Lai
as follows.

Two-level structure. The two-level structure B has the two levels d (for domain) and
l (for lattice). The signature ΩB has the following explicitly given operators:

• UP: ((l,Typ); (d,Typ))

• DN: ((d,Typ), (l,Typ); (l,Typ))

15

• up: ((l,Exp); (d,Exp))

• dn: ((d,Exp); (l,Exp))

Here UP reflects that a lattice is a domain, and DN reflects that a domain and a lattice
in certain cases can be put together and produce a lattice. The operations up and dn
reflect that expressions denoting elements of domains and lattices can be mixed much as
compile-time/run-time and static/dynamic expressions could in Subsections 3.1 and 3.2.

Two-level λ-calculus. We shall basically use the same signature ΣL as in Subsection
3.1:

→d,→l : (Typ2; Typ) intd, intl : (; Typ) boold, booll : (; Typ)

cdi , c
l
i : (; Exp) xi : (; Exp) λdxi., λlxi. : (Exp; Exp)

@d , @l : (Exp2; Exp) ifd, ifl : (Exp3; Exp) fixd, fixl : (Exp; Exp)
For types the well-formedness rules include two copies of the well-formedness rules of λ′

as was the case in Subsection 3.1:

[ιb]
`T
b int

b
[ιb]

`T
b bool

b
[ιb]

`T
b t1 `T

b t2
`T
b t1→bt2

(where b ranges over {l, d}). On top of this we have the bridging rule

[UP]
`T
l t

`T
d t

which corresponds to the one in Subsection 3.2 and is somewhat more general than the
one in Subsection 3.1; also we have an additional bridging rule

[DN]
`T
d t1 `T

l t2
`T
l t1→dt2

that has no counterpart in Subsections 3.1 and 3.2; it reflects that a function space from
a domain to a lattice is indeed a lattice. It is straightforward to show that `T

d t
′ holds if

and only if dt(t′) holds in [7], and that `T
l t
′ holds if and only if lt(t′) holds in [7].

For expressions we have two slightly modified copies of the well-formedness rules of λ′:

[ιb]
A`E

b c
b
i : t

if t = Type(cbi) ∧ `T
b t [ιb]

A`E
b xi : t

if t = A(xbi) ∧ `T
b t

[ιb]
A[xbi : ti]`E

b e : t
A`E

b λ
bxi.e : ti→bt

if `T
b ti [ιb]

A`E
b e0 : t1→bt2 A`E

b e1 : t1
A`E

b e0@b e1 : t2

[ιb]
A`E

b e : t→bt

A`E
b fix

b e : t
[ιb]

A`E
b e0 : boolb A`E

b e1 : t A`E
b e2 : t

A`E
b if

b e0 e1 e2 : t

(where b ranges over {l, d}); these rules are exactly as in Subsection 3.1. On top of this
we have the two bridging rules

16

[dn]
A`E

d e : t
A`E

l e : t
if `T

l t

[up]
A`E

l e : t
A`E

d e : t

which corresponds to two of the bridging rules in Subsection 3.2. It is trivial to establish
the following relationship between the typing judgements:

Fact 3.15 A`E
b e : t implies `T

b t.

To show that we have defined a two-level λ-calculus we define a uniform derivor δ: as in
the previous examples it simply removes all annotations. It is then fairly straightforward
to prove:

Fact 3.16 Lai is a multi-level λ-calculus.

Comparison. It is instructive to consider the relationship between Lai and the systems
Lcg and L′pe. Clearly we have the analogies

l ∼ r ∼ D (⊥)
d ∼ c ∼ S (>)

and let us now consider the bridging rules between types. The Lai system is unique in
allowing to embed types of level (>) into types of level (⊥) which (given the formulation
of the rule [DN] of Lai) is perfectly safe for abstract interpretation, whereas it would
be mind-boggling for code generation as well as partial evaluation. Apart from this the
system Lai has the general bridging rule also found in L′pe for embedding types of level
(⊥) into types of level (>) and thus does not need the more restricted bridging rule found
in Lcg . A similar comment holds for the bridging rules for expressions.

3.5 Example: modal language [1]

We shall now show that the restrictions of the modal logic languages MiniML2
K and

MiniML2 to λ (both summarised in Appendix A.4) are instances of the present framework.
To this end we define the multi-level languages LmlK and Lml.

Multi-level structure. Let B be the set {0, 1, · · ·} of levels where intuitively 0 corre-
sponds to compile-time or static. The signature ΩB

mlK then has the following explicitly
given operators:

• BOXb′

b : ((b,Typ); (b′,Typ)) for 0 ≤ b′ = b− 1

• boxb′b : ((b,Exp); (b′,Exp)) for 0 ≤ b′ = b− 1

• unbox1b′b : ((b′,Exp); (b,Exp)) for 0 ≤ b′ = b− 1

17

(so b = b′+ 1 ≥ 1). The signature ΩB
ml does not contain the operator unbox1 but instead

has:

• popb′b : ((b,Exp); (b′,Exp)) for 0 ≤ b′ = b− 1

• unboxbb: ((b,Exp); (b,Exp))

Here we prefer to highlight the latter as an explicit operator rather than keeping it as an
implicit one.

Multi-level λ-calculus. We use the following signature ΣL
mlK :

→: (Typ2; Typ) int : (; Typ) bool : (; Typ)

2 : (Typ; Typ)

ci : (; Exp) xi : (; Exp) λxi. : (Exp; Exp)

@ : (Exp2; Exp) if : (Exp3; Exp) fix : (Exp; Exp)

box : (Exp; Exp) unbox1 : (Exp; Exp)

The signature ΣL
ml does not contain unbox1 but instead has:

pop : (Exp; Exp) unbox : (Exp; Exp)

Note that the operators are not annotated with levels as was the case in the previous
Subsections.

For types we have the following well-formedness rules:

[ιb]
`T
b int

[ιb]
`T
b bool

[ιb]
`T
b t1 `T

b t2
`T
b t1 → t2

and the following bridging rule:

[BOXb
b+1]

`T
b+1t

`T
b 2t

One can then prove that we have given the correct treatment of types:

Fact 3.17 `T
b t if and only if ` t (in Appendix A.4).

Proof We first prove that `T
b t if and only if `T

b+1t by induction on the inference tree; for
this we use that b ∈ B implies (b + 1) ∈ B. We next show that `T

b t always holds by
reductio ad absurdum: otherwise there must be a type t with fewest symbols such that
`T
b t fails for some b, and clearly t cannot be of the form int, bool, t1 → t2 or 2t0. 2

For expressions we have the following well-formedness rules adapted from λ′:

18

[ιb]
A`E

b ci : t
if t = Type(cbi) ∧ `T

b t [ιb]
A`E

b xi : t
if t = A(xbi) ∧ `T

b t

[ιb]
A[xbi : ti]`E

b e : t
A`E

b λxi.e : ti → t
if `T

b ti [ιb]
A`E

b e0 : t1 → t2 A`E
b e1 : t1

A`E
b e0@ e1 : t2

[ιb]
A`E

b e : t→ t

A`E
b fix e : t

[ιb]
A`E

b e0 : bool A`E
b e1 : t A`E

b e2 : t
A`E

b if e0 e1 e2 : t

Note that the type environment associates types as well as levels with the identifiers
although the expressions are not annotated. Also note that all occurrences of `T

b t are
vacuously fulfilled and hence could be dispensed with. To introduce the bridging rules we
need a little auxiliary notation:

`̀bA if and only if ∀(xb′i : t′) ∈ gr(A) : b′ ≤ b
gr(A)	 b = {(xb′i : t′) ∈ gr(A) | b 6= b′}

Then LmlK has the bridging rules:

[boxbb+1]
A1 `E

b+1e : t
A2 `E

b box e : 2t
if gr(A1) = gr(A2) ∧ `̀bA2

[unbox1bb+1]
A1 `E

b e : 2t

A2 `E
b+1unbox1 e : t

if gr(A1) = (gr(A2)	 (b+ 1)) ∧ `̀b+1A2

whereas in the case of Lml we do not have the rule [unbox1] but instead have:

[popbb+1]
A1 `E

b e : 2t

A2 `E
b+1pop e : 2t

if gr(A1) = (gr(A2)	 (b+ 1)) ∧ `̀b+1A2

[unboxbb]
A1 `E

b e : 2t

A2 `E
b unbox e : t

if gr(A1) = gr(A2)

Since all types are well-formed it is trivial to establish the following relationship between
the typing judgements:

Fact 3.18 A`E
b e : t implies `T

b t.

To show that we have given the correct treatment for expressions we define a mapping7

〈· · ·〉 upon the type environments of Appendix A.4:

gr(〈Γ0 · · ·Γb〉) = {(xb′i : t′) | b′ ∈ {0, 1, · · ·, b} ∧ t′ = Γb′(xi)}

and we then prove:

Lemma 3.19 〈Γ0 · · ·Γb〉 `E
b e : t (in LmlK resp. Lml) if and only if Γ0 · · ·Γb ` e : t (in

MiniML2
K resp. MiniML2 of Appendix A.4).

7Actually there is a small sublety here concerning gr(A) in LmlK and Lml: is it permissible for gr(A)
to contain both (xb

′

i : t′) and (xb
′′

i : t′′) when t′ 6= t′′ and b′ 6= b′′? To obtain a succinct formulation of
the relationship with [1] we allow this phenomenon; if we were to disallow it and stick to the decision of
Subsection 3.1, we would instead require that all bound identifiers must be distinct.

19

Proof First we prove that if 〈Γ0 · · ·Γb〉 `E
b e : t then Γ0 · · ·Γb ` e : t. We proceed by

induction on the inference of 〈Γ0 · · ·Γb〉 `E
b e : t and deal with LmlK and Lml simultaneously.

The cases of constants and identifiers are immediate.

In the case of abstraction we have 〈Γ0 · · ·Γb〉 `E
b λxi.e : ti→ t because `T

b ti and 〈Γ0 · · ·Γb〉[xbi :
ti]`E

b e : t. Since 〈Γ0 · · ·Γb〉[xbi : ti] equals 〈Γ0 · · · (Γb[xi : ti])〉 the induction hypothesis gives
Γ0· · ·(Γb[xi : ti]) ` e : t from which the desired Γ0· · ·Γb ` λxi.e : ti→ t follows.

In the case of application we have 〈Γ0 · · ·Γb〉 `E
b e0@ e1 : t2 because 〈Γ0 · · ·Γb〉 `E

b e0 : t1 → t2
and 〈Γ0 · · ·Γb〉 `E

b e1 : t1. The induction hypotheses then give Γ0· · ·Γb ` e0 : t1 → t2 and
Γ0· · ·Γb ` e1 : t1 from which the desired Γ0· · ·Γb ` e0@ e1 : t2 follows.

The cases of fixed points and conditional are straightforward.

In the case of box we have 〈Γ0 · · ·Γb〉 `E
b box e : 2t because `̀b〈Γ0 · · ·Γb〉 and 〈Γ0 · · ·Γb〉 `E

b+1e :
t. Setting Γb+1 = [] we clearly have 〈Γ0 · · ·Γb〉 = 〈Γ0 · · ·ΓbΓb+1〉. The induction hypothe-
sis then gives Γ0· · ·ΓbΓb+1 ` e : t from which the desired Γ0· · ·Γb ` box e : 2t follows.

In the case of unbox1 we have 〈Γ0 · · ·ΓbΓb+1〉 `E
b+1unbox1 e : t because `̀b+1〈Γ0 · · ·ΓbΓb+1〉

and 〈Γ0 · · ·Γb〉 `E
b e : 2t where we used that gr(〈Γ0 · · ·Γb〉) = (gr(〈Γ0 · · ·ΓbΓb+1〉)	(b+1)).

The induction hypothesis then gives Γ0· · ·Γb ` e : 2t and the desired Γ0· · ·ΓbΓb+1 `
unbox1 e : t follows.

In the case of pop we have 〈Γ0 · · ·ΓbΓb+1〉 `E
b+1pop e : 2t because `̀b+1〈Γ0 · · ·ΓbΓb+1〉 and

〈Γ0 · · ·Γb〉 `E
b e : 2t. The induction hypothesis then gives Γ0· · ·Γb ` e : 2t and the desired

Γ0· · ·ΓbΓb+1 ` pop e : 2t follows.

In the case of unbox we have 〈Γ0· · ·Γb〉 `E
b unbox e : t because 〈Γ0· · ·Γb〉 `E

b e : 2t. The
induction hypothesis then gives Γ0· · ·Γb ` e : 2t and the desired result Γ0· · ·Γb ` unbox e :
t follows.

Next we prove that if Γ0 · · ·Γb ` e : t then 〈Γ0 · · ·Γb〉 `E
b e : t. We proceed by induction on

the inference of Γ0 · · ·Γb ` e : t and deal with MiniML2
K and MiniML2 simultaneously.

The cases of constants and identifiers are immediate since `T
b t holds vacuously (by Fact

3.17).

In the case for abstraction we have Γ0· · ·Γb ` λxi.e : ti → t because Γ0· · ·(Γb[xi : ti]) ` e : t.
We have ensured that 〈Γ0· · ·(Γb[xi : ti])〉 is defined and it clearly equals 〈Γ0 · · ·Γb〉[xbi : ti].
The induction hypothesis therefore gives 〈Γ0 · · ·Γb〉[xbi : ti]`E

b e : t and the desired result
〈Γ0 · · ·Γb〉 `E

b λxi.e : ti→ t follows because `T
b ti holds vacuously (by Fact 3.17).

In the case for application we have Γ0· · ·Γb ` e0@ e1 : t2 because Γ0· · ·Γb ` e0 : t1 → t2
and Γ0· · ·Γb ` e1 : t1. The induction hypotheses then give 〈Γ0 · · ·Γb〉 `E

b e0 : t1 → t2 and
〈Γ0 · · ·Γb〉 `E

b e1 : t1 and the desired result 〈Γ0 · · ·Γb〉 `E
b e0@ e1 : t2 follows.

The cases of fixed points and conditional are straightforward.

In the case of box we have Γ0· · ·Γb ` box e : 2t because Γ0· · ·ΓbΓb+1 ` e : t where Γb+1 =
[]. The induction hypothesis then gives 〈Γ0 · · ·ΓbΓb+1〉 `E

b+1e : t. Since 〈Γ0 · · ·ΓbΓb+1〉 =
〈Γ0 · · ·Γb〉 and `̀b〈Γ0 · · ·Γb〉 is immediate, the desired result 〈Γ0 · · ·Γb〉 `E

b box e : 2t fol-
lows.

20

In the case of unbox1 we have Γ0· · ·ΓbΓb+1 ` unbox1 e : t because Γ0· · ·Γb ` e :
2t. The induction hypothesis then gives 〈Γ0 · · ·Γb〉 `E

b e : 2t. Since gr(〈Γ0 · · ·Γb〉) =
(gr(〈Γ0 · · ·ΓbΓb+1〉) 	 (b + 1)) and `̀b+1〈Γ0 · · ·ΓbΓb+1〉 is immediate the desired result
〈Γ0 · · ·ΓbΓb+1〉 `E

b+1unbox1 e : t follows.

In the case of pop we have Γ0· · ·ΓbΓb+1 ` pop e : 2t because Γ0· · ·Γb ` e : 2t. The induc-
tion hypothesis then gives 〈Γ0 · · ·Γb〉 `E

b e : 2t. Since gr(〈Γ0 · · ·Γb〉) = (gr(〈Γ0 · · ·ΓbΓb+1〉)	
(b+1)) and `̀b+1〈Γ0 · · ·ΓbΓb+1〉 is immediate the desired result 〈Γ0 · · ·ΓbΓb+1〉 `E

b+1pop e :
2t follows.

In the case of unbox we have Γ0· · ·Γb ` unbox e : t because Γ0· · ·Γb ` e : 2t. The induction
hypothesis then gives 〈Γ0· · ·Γb〉 `E

b e : 2t and the desired result 〈Γ0· · ·Γb〉 `E
b unbox e : t

follows. 2

To show that we have defined a multi-level λ-calculus we define a uniform derivor δ from
LmlK and Lml into λ: it simply removes all occurrences of 2, box, unbox1, pop, and
unbox.

It is then fairly straightforward to prove:

Fact 3.20 LmlK and Lml are multi-level λ-calculi.

In particular this means that both MiniML2 and MiniML2
K can be regarded as multi-level

languages despite the contradictory statement made in Subsection 5.2 of [1].

Remark about MiniML2 of [1]. In [1] also a two-level language MiniML2 is defined and
a conservative embedding into MiniML2

K is established in Theorem 4 of [1]. Since MiniML2

is rather close to Lcg as defined in Subsection 3.1 we shall dispense with a formal definition
of it and instead briefly comment upon a few differences. The minor differences include
an explicit distinction between run-time and compile-time identifiers, a separation of the
type environment into a component for run-time identifiers and one for compile-time ones,
and minor differences in rules [dn] and [up]; however, despite the claim made in Subsection
4.2 of [1], both MiniML2 and Lcg use the rule [up] for excluding run-time identifiers from
the environment. The only major difference is that MiniML2 does not faithfully model
the restriction of Lcg that only run-time functions are allowed at compile-time; this seems
to be forced by their modal approach and we regard it a rather unfortunate feature of a
general framework intended to capture existing multi-level languages.

4 More general multi-level languages

So far we have considered a rather simple typed λ-calculus. To pave the way for more
general definitions of multi-level languages we need to liberate ourselves from the syntax
of the λ-calculus, to allow more complex type systems and even dispense with types
altogether, and finally to allow additional syntactic categories. In this section we present
a generalisation of multi-level λ-calculi that facilitates this; in doing so we occasionally
sacrifice a bit of formality in order to maintain readability.

21

Programming Language. A programming language L is specified by:

• a set of sorts SL (representing the syntactic categories); and

• a SL-sorted signature ΣL (representing the syntactic constructs); and

• a set JL = {`Ls| s ∈ SL} of families of indexed well-formedness judgements
`Ls = (`Lsi)i ∈ ILs (on the terms of the free algebra and with ILs non-empty and
possibly a singleton); and

• a set RL of labelled inference rules and axioms (which we regard as inference rules
with no premises); each inference rule ∆ is written

[l]
· · · `Ls1i1 · · · · · · `Lsnin · · ·

· · · `Lsi · · ·
if C

and its label is lab(∆) = l ∈ NL, its side condition is cond(∆) = C, and its rank is
rank(∆) = ((i1, s1) · · · (in, sn); (i, s)).

We shall say that L is a programming language over S whenever SL = S. We should like
to stress that the above definition handles typed and untyped languages equally well.

In this definition we have been somewhat informal about the precise form of the well-
formedness judgements “· · · `Lsi · · ·” and the side condition “C”. It is counter-productive
to be too formal about these points as doing so would demand a machinery that is either
notationally too heavy or unnecessarily restrictive. However, we need to say a bit more in
order to ensure that a derivor d from ΣL to Σ′ extends to the well-formedness judgements
and the inference rules.

Concerning “· · · `Lsi · · ·” we anticipate that it is of form “z−p, · · · , z−1 `Lsi z, z1, · · · , zq”
where z is a term of sort s ∈ SL and each zj may be a term of some sort in SL or
constructed out of the sorts in SL. The reason for not requiring all zj to be terms of
some sort in SL is to allow the use of notions like type environments without having a
sort for them in SL; this favours readability over formality and we have availed ourselves
of the opportunity in the previous section. Now consider a derivor d from ΣL to Σ′ that
is extended to map the judgements in JL to new judgements. This allows to define

d(z−p, · · · , z−1 `Lsi z, z1, · · · , zq) = d(z−p), · · · , d(z−1)d(`Lsi)d(z), d(z1), · · · , d(zq)

and we shall accept that the definition is not completely formal for those zj that do not
directly correspond to sorts of SL.

Concerning the side condition “C” we shall follow [18] and let it be built using proposi-
tional connectives (∧, ∨, ⇒ , ¬) and quantifiers (∀, ∃) from primitive propositions; these
include the well-formedness judgements “· · · `Lsi · · ·”, sorted equality tests “· · · =s · · ·”,
and we shall also allow ordinary mathematical notation like function application and
function update. Now consider a derivor d from ΣL to Σ′ that is extended to map the
judgements in JL to new judgements. This allows us to define

d

(
[l]
···̀ Ls1i1

··· ···`Lsnin
···

···`Lsi ···
if C

)
=

d(···`Ls1i1
···) d(···`Lsnin

···)
d(···`Lsi ···)

if d(C)

22

where d(C) is defined in a straightforward structural way.

We should point out the connection to equationally specified abstract data types where
there is a set of (possibly conditional) equations that are used to identify given terms.
In contrast we have been interested in free algebras and merely used the set of inference
rules to classify terms into those that are well-formed and those that are not. These two
viewpoints could be unified if we were to consider each `Lsi an operator in ΣL.

A more general definition of a programming language would result if we decided to specify
a set (of possibly conditional) equations between terms of a given sort; this would allow
to build things like alpha-renaming of bound identifiers into the programming language.

Multi-level Structure. A multi-level structure B is given by:

• a set SB of “sorts” (representing the syntactic categories); and

• a set WB (also denoted B) of levels (or worlds or binding-times); and

• a (WB × SB)-sorted signature ΩB = ΩB
e ∪ ΩB

i where ΩB
i is given by:

ΩB
i = {ιbs1···sn;s | b ∈ WB ∧ s1, · · · , sn, s ∈ SB}

and each operator ιbs1···sn;s has rank ((b, s1) · · · (b, sn); (b, s)) and is sometimes abbre-
viated as ιbn, ιb, or even ι.

Note that the implicit operators (in ΩB
i) stay at the same level whereas the explicit

operators (in ΩB
e) are allowed to change between levels. We shall say that B is a multi-

level structure over S whenever SB = S; it is a two-level structure if WB has precisely
two elements and a one-level structure if WB has precisely one element.

Multi-Level Language. A programming language LB is a B-level language over L iff

• there exists a set S of sorts such that L and LB are programming languages over
S, and B is a multi-level structure over S; and

• the set JLB = {`LBs | s ∈ SLB} of well-formedness judgements has ILBs = ILs ×WB

and `LBs = (`Lsib)ib ∈ ILBs whenever `Ls = (`Lsi)i ∈ ILs ; and

• there exists a function support : NLB → ΩB; and

• there exists a uniform derivor δ from ΣLB to ΣL that extends to a mapping from
JLB to JL by setting δ(`LBsib) = `Lsi ; and

• for each inference rule ∆ ∈ RLB we have:

– there is an operator ω ∈ ΩB such that for suitable i’s, b’s and s’s we have:

support(lab(∆)) = ω, and

rank(∆) = (((i1, b1), s1) · · · ((in, bn), sn); ((i, b), s)), and

rank(ω) = ((b1, s1) · · · (bn, sn); (b, s)), and

23

all judgements `LBs′i′b′ occurring in cond(∆) have8 b′ = b; and

– the rule δ(∆) is a permissible rule in L.

Note that this ensures that the derivor from LB to L maps provable judgements to
provable judgements.

Homogeneous Multi-Level Language. As a special case of multi-level languages we
now define the class of homogeneous multi-level languages. A programming language LB
is a homogeneous B-level language over L if it is a B-level language over L and if it
additionally satisfies:

• for all levels b∈WB the set of rules {∆ ∈ RLB | support(lab(∆)) = ιb} is in bijective
correspondence with the rules in RL; and

• for all rules ∆ ∈ RLB such that support(lab(∆)) 6∈ {ιb | b ∈ W} the premiss of
the rule δ(∆) equals the conclusion of δ(∆).

Except for Lai the examples considered in Section 3 are not only multi-level languages
over λ as well as λ′, but are indeed homogenous two-level languages over λ′ but not λ.
The notion of B-level language defined in [13] allows B to be a partially ordered set but is
somewhat more restrictive than our current notion of homogenous multi-level languages
in that the above bijection is required to equal δ. Although this is sometimes the case we
now believe that it is too demanding always to impose this.

5 Conclusion

In this paper we have developed a descriptive framework for multi-level λ-calculi and used
it to cast further light on some of the multi-level λ-calculi found in the literature. This
has had the effect of highlighting the essential differences and similarities and to pinpoint
design decisions in existing calculi that should perhaps be reconsidered; examples include
the restriction on fixb in Lpe and Lml and the “peculiar” well-typing in Lpe as opposed
to L′pe.

We have also generalised the descriptive framework so as to apply for more general classes
of programming languages: we allow many more syntactic categories (for example dec-
larations and statements), we allow more advanced typing constructs (polymorphism of
one kind or the other), and we allow to dispense with types altogether.

In another direction the descriptive approach of the present paper should be complemented
with a prescriptive approach as in [13]. This prescriptive approach should be more flexible
than the one of [13] but is unlikely ever to be as flexible as a descriptive approach: it is
like approximating a property from the below as well as the above (using a maxim from
abstract interpretation). This work is likely to focus on, say, the λ-calculus and seems
hard to achieve for arbitrary programming languages.

8As previously discussed a weaker demand is that b′ ∈ {b1, · · · , bn, b}.

24

Acknowledgements. This work was supported in part by the DART project (The
Danish Research Councils) and the LOMAPS project (ESPRIT Basic Research).

References

[1] R. Davies and F. Pfenning: A Modal Analysis of Staged Computation.
Proc. POPL’96, pp. 258–270, ACM Press, 1996.

[2] R. Glück and J. Jørgensen: Efficient Multi-level Generating Extensions for Program
Specialization. PLILP’95, Springer Lecture Notes in Computer Science, vol. 982:
pp. 259–278, 1995.

[3] J. A. Goguen and J. W. Thatcher and E. G. Wagner: An Initial Algebra Approach to
the Specification, Correctness and Implementation of Abstract Data Types. Current
Trends in Programming Methodology, vol. 4, (R. T. Yeh, editor), Prentice-Hall, 1978.

[4] F. Henglein and C. Mossin: Polymorphic Binding-Time Analysis. ESOP’94, Springer
Lecture Notes in Computer Science, vol. 788: pp. 287–301, 1994.

[5] G. E. Hughes and M. J. Cresswell: An Introduction to Modal Logic. Methuen and
Co. Ltd., London, 1968.

[6] N. D. Jones and P. Sestoft and H. Søndergaard: An Experiment in Partial Evaluation:
the Generation of a Compiler Generator. Rewriting Techniques and Applications,
Springer Lecture Notes in Computer Science, vol. 202: pp. 124–140, 1985.

[7] N. D. Jones and F. Nielson: Abstract Interpretation: a Semantics-Based Tool for
Program Analysis. Handbook of Logic in Computer Science, vol. 4: pp. 527–636,
Oxford University Press, 1995.

[8] J. C. Mitchell: Type Systems for Programming Languages. Handbook of Theoretical
Computer Science: Formal Models and Semantics, vol. B: pp. 365–458, Elsevier
Science Publishers (and MIT Press), 1990.

[9] F. Nielson: Abstract Interpretation using Domain Theory. PhD thesis, University of
Edinburgh, Scotland, 1984.

[10] F. Nielson: Two-Level Semantics and Abstract Interpretation. Theoretical Computer
Science — Fundamental Studies, vol. 69: pp. 117–242, 1989.

[11] F. Nielson and H. R. Nielson: Two-level semantics and code generation. Theoretical
Computer Science, vol. 56(1): pp. 59–133, 1988.

[12] H. R. Nielson and F. Nielson: Automatic Binding Time Analysis for a Typed λ-
calculus. Science of Computer Programming, vol. 10: pp. 139–176, 1988.

[13] F. Nielson and H. R. Nielson: Two-Level Functional Languages. Vol. 34 of Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press, 1992.

25

[14] F. Nielson and H. R. Nielson: Forced Transformations of Occam Programs. Infor-
mation and Software Technology, vol. 34(2): pp. 91–96, 1992.

[15] F. Nielson and H. R. Nielson: Multi-Level Lambda-Calculi: an Algebraic Description.
Proceedings from a Dagstuhl Seminar on Partial Evaluation, Springer Lecture Notes
in Computer Science vol. 1110: pp. 338–354, 1996.

[16] C. Stirling: Modal and Temporal Logics. Handbook of Logic in Computer Science,
vol. 2: pp. 477–563, Oxford University Press, 1992.

[17] C. Strachey: The Varieties of Programming Languages. Technical Monograph PRG-
10, Programming Research Group, University of Oxford, 1973.

[18] M. Wirsing: Algebraic Specification. Handbook of Theoretical Computer Science:
Formal Models and Semantics, vol. B: pp. 675–788, Elsevier (and MIT Press), 1990.

A Subsets of existing systems

A.1 Code generation: [13]

In this subsection we summarise the binding time analysis of [13] (excluding product types
and list types) as it pertains to the lambda calculus of the present paper.

For types [13] defines a predicate ` t : b:

` intb : b ` boolb : b
` t1 : b ` t2 : b
` t1→bt2 : b

` t1→rt2 : r
` t1→rt2 : c

For expressions the typing rules have the form A ` e : t : b and are defined by:

A ` cbi : t : b
if t = Type(cbi) ∧ ` t : b

A ` xi : t : b if (t : b) = A(xi) ∧ ` t : b

A[xi : (ti : b)] ` e : t : b
A ` λbxi.e : ti→bt : b

if ` ti : b
A ` e0 : t1→bt2 : b A ` e1 : t1 : b

A ` e0@b e1 : t2 : b
A ` e : t→bt : b
A ` fixb e : t : b

A ` e0 : boolb : b A ` e1 : t : b A ` e2 : t : b
A ` ifb e0 e1 e2 : t : b

A ` e : t : c
A ` e : t : r if ` t : r

A′ ` e : t : r
A ` e : t : c if ` t : c ∧ gr(A′) = {(xi : t′ : b′) ∈ gr(A) | b′ = c ∧ ` t′ : c}

A.2 Partial evaluation: [4]

In this subsection we present a restriction of the binding time analysis of [4] to the lambda
calculus of the present paper. Compared with [4] we do not incorporate the qualified types
(including polymorphism and constraints on binding times).

26

First define top(t) to be the annotation at the top level of t, i.e. top(intb) = b, top(boolb) =
b, and top(t1→bt2) = b; in [4] one writes tb to indicate that top(t) = b. Then the inference
system for expressions is:

A ` cbi : t
if t = Type(cbi) A ` xi : t if t = A(xi)

A[xi : ti] ` e : t
A ` λbxi.e : ti→bt

if b ≤ top(ti) ∧ b ≤ top(t)

A ` e0 : t1→bt2 A ` e1 : t1
A ` e0@b e1 : t2

if b ≤ top(t1) ∧ b ≤ top(t2)

A ` e : t→bt
A ` fixS e : t
A ` e0 : boolb A ` e1 : t A ` e2 : t

A ` ifb e0 e1 e2 : t
if b ≤ top(t)

A ` e : intS

A ` e : intD
A ` e : boolS

A ` e : boolD

A.3 Multi-level partial evaluation: [2]

In this subsection we present a restriction of the binding time analysis of [2] (expressed
using Scheme) to the lambda calculus of the present paper.

For types [2] defines a predicate ` t : b:

` intb : b
if 0 ≤ b ≤ max ` boolb : b

if 0 ≤ b ≤ max

` t1 : b1 ` t2 : b2

` t1→bt2 : b
if b1 ≥ b ∧ b2 ≥ b

Based on this define ‖ t ‖= b if and only if ` t : b.

For expressions the typing rules are:

A ` cbi : t
if t = Type(cbi) A ` xi : t if t = A(xi)

A[xi : ti] ` e : t
A ` λbxi.e : ti→bt

if ‖ ti ‖ ≥ b
A ` e0 : t1→bt2 A ` e1 : t1

A ` e0@b e1 : t2
A ` e0 : boolb A ` e1 : t A ` e2 : t

A ` ifb e0 e1 e2 : t
A ` e : t→bt
A ` fix0 e : t

if ‖ t ‖ ≥ b

A ` e : intb

A ` liftb′b e : intb+b′
if b < b+ b′ ≤ max

A ` e : boolb

A ` liftb′b e : boolb+b′
if b < b+ b′ ≤ max

Compared with [2] we have added an obvious side condition to the rules for abstraction
and lifting so as to ensure that the types derivable for the expressions are well-formed.

27

A.4 Modal language: [1]

In this subsection we present the modal languages MiniML2
K and MiniML2 of [1] but

ignoring the constructs for product and sum types and adding constants and conditional
so as to correspond more directly to the lambda calculus of the present paper.

For types there is no notion of a well-formedness predicate. Thus all types are well-formed
and we may record this by the inference rule:

` t

that states that all types are well-formed.

For expressions the typing rules of MiniML2
K are:

Γ0· · ·Γb ` ci : t if t = Type(ci) Γ0· · ·Γb ` xi : t if t = Γb(xi)

Γ0· · ·(Γb[xi : ti]) ` e : t
Γ0· · ·Γb ` λxi.e : ti → t

Γ0· · ·Γb ` e0 : t1 → t2 Γ0· · ·Γb ` e1 : t1
Γ0· · ·Γb ` e0@ e1 : t2

Γ0· · ·Γb ` e : t→ t
Γ0· · ·Γb ` fix e : t

Γ0· · ·Γb ` e0 : bool Γ0· · ·Γb ` e1 : t Γ0· · ·Γb ` e2 : t
Γ0· · ·Γb ` if e0 e1 e2 : t

Γ0· · ·ΓbΓb+1 ` e : t
Γ0· · ·Γb ` box e : 2t

if Γb+1 = []
Γ0· · ·Γb ` e : 2t

Γ0· · ·ΓbΓb+1 ` unbox1 e : t

The system MiniML2 does not have the last rule but instead has the rules:

Γ0· · ·Γb ` e : 2t
Γ0· · ·ΓbΓb+1 ` pop e : 2t

Γ0· · ·Γb ` e : 2t
Γ0· · ·Γb ` unbox e : t

Note that when writing unbox1 e for unbox(pop e) the rule for unbox1 in MiniML2
K is a

derived rule in MiniML2.

28

