
“Ragnarok”
Contours of a

Software Project
Development Environment

Progress Report
by

Henrik Bærbak Christensen

Summer, 1996

Abstract

This report describes the current state of my research in software development environments. I argue
in favour of strong support forproject management, comprehension and navigation, andcollaboration
primarily based on experiences from developing large-scale industrial-strength applications.

An underlying model of such an environment, named “Ragnarok”, is outlined. A design and first
prototype of important parts of Ragnarok is described as well as some results from initial experiments.

1

Contents
1 Introduction 4

2 Motivation 4
2.1 A retrospective case study . 5

3 Contours 6
3.1 Hypothesis . 6
3.2 Aspects . 7

3.2.1 Project management . 7
3.2.2 Comprehension & Navigation . 7
3.2.3 Collaboration . 8

3.3 Discussion . 8

4 Model of Software Structure 9
4.1 Software component . 9
4.2 Components and project tasks . 9
4.3 Source- and derived components . 9
4.4 Physical representation . 10
4.5 Graph interpretation . 11
4.6 Annotations . 11
4.7 Discussion . 11

5 Context-Preserving Software Configuration Management 11
5.1 Motivation . 13
5.2 Context . 13
5.3 Modification . 14
5.4 Preserving context . 14
5.5 Generic configurations . 15
5.6 Variants . 16
5.7 Related work . 16
5.8 Discussion . 16

6 Software Configuration Management and Collaboration 17
6.1 Basic problems . 17
6.2 Basic change mechanisms . 17
6.3 Access control . 17
6.4 A flexible proposal . 18

6.4.1 Hierarchical access control . 18
6.4.2 Copy-modify-merge mechanism . 18
6.4.3 Version control in workspace . 18
6.4.4 Collaboration on a single component . 18

6.5 Model . 19
6.5.1 Check-in . 20
6.5.2 Check-out . 20
6.5.3 Awareness . 20
6.5.4 Synchronisation . 21
6.5.5 Distributed collaboration . 21
6.5.6 Off-line connections . 21
6.5.7 Recursive workspaces . 22

6.6 Discussion . 22

7 Spatial Metaphor Interface 22
7.1 Spatial Metaphor . 22

7.1.1 Psychological foundation . 22
7.1.2 Landmarks represent components . 23
7.1.3 Component hierarchies as visual nesting . 23
7.1.4 Aiding comprehension . 24
7.1.5 Displaying annotations . 24

2

7.1.6 Supporting highly salient landmarks . 24
7.2 Map visual formalism . 24

7.2.1 Ragnarok maps . 25
7.2.2 Overview map . 25

7.3 Ragnarok user interface . 25
7.3.1 Moving maps . 26
7.3.2 Avoiding cluttering . 27
7.3.3 Semantics of position . 27
7.3.4 Visual tools . 27
7.3.5 Spatial interpretation of hyper-links . 28

7.4 Direct manipulation . 28
7.5 Discussion . 28

8 Implementation of the Prototypes 29
8.1 Layered design . 29
8.2 Component Model . 29

8.2.1 RCM: The command-line tool . 30
8.3 Physical Backbone . 30
8.4 Visualisation . 31

9 First Light - Case Stories 32
9.1 ISA team . 32
9.2 DEVISE team . 33
9.3 RCM on Ragnarok . 34
9.4 Ragnarok . 34

10 Future Work 34

11 Conclusion 35

12 Acknowledgements 36

A Colour images 40

3

1 Introduction
This report outlines one year of research in the field of “Software Development Environments” with
special interest on the problems facing large-scale software projects.

Crafting large industrial-strength software applications requires numerous tasks to be performed cov-
ering a large spectrum of activities. In one end of the spectrum we must sell, plan, staff, and manage a
project and at the other we have to produce, debug, and test code in some programming language(s).

The focus of the current work is at the managerial end of this spectrum. This isnot because the
problems at the language-nearend are uninteresting; on the contrary strong compilers, editors, debuggers,
etc. are important, and weak support can be costly in terms of wasted (human) resources. However as
the size of a project increases more and more emphasis is put on the ability to collaborate and maintain
overview and control; and failure on these aspects generally have more devastating consequences. Also
research and tool support for the language-near activities has received much attention whereas support
for the managerial aspects is more uncovered ground.

The focus is also on softwareprojectsas is evident from the title of the report. Projects are seen
as having a well-defined goal which is achieved through a series of activities; activities which must be
monitored and controlled while keeping overview of their dependencies and contributions in fulfilling the
goal. Thus the term “software project development environment” is meant to stress the focus on project
support in a software development environment and not as defining a new category of environments. Rag-
narok could be classified as a programming environment [Nørmark89] or an integrated project support
environment/software engineering environment [Sommerville89].

This progress report is divided in the following manner:
Section 2 describes my interest in the subject as well as outlines some experiences gained in my

previous job as system designer and implementor.
These experiences are summarised in some contours of a system in section 3.
The next three chapters are devoted to what I see as basis for strong support in developing software

projects: A model of software structure in section 4 combined with an approach to software configuration
management (SCM), section 5. The SCM model is extended in section 6 to focus on collaboration issues.
While the ideas presented in section 4 and 5 have been tested in an implementation, the ideas in section
6 are still somewhat in their infancy.

The ideas underlying the user interface are described in section 7 followed by a short description of
the design of the Ragnarok prototype, section 8.

In section 9 I describe some of the experiences with the prototypes from two teams as well as my
own experiences.

Section 10 is devoted to some of the ideas I have for continuing the present work; and I will conclude
in section 11.

The ideas outlined in this report are grown out of the object oriented tradition and experience with
building industrial-strength application using object oriented technology. Though I do not see any im-
mediate problems in using Ragnarok with other approaches to system development, this aspect has not
been studied in great detail.

2 Motivation
In the Nordic mythology “Ragnarok” is the big chaotic struggle between gods and giants in which the
old world is destroyed.

I think that many developers who have participated in large software projects will readily agree that
a sensation of “Ragnarok” is not completely unfamiliar.

Here “Ragnarok” is the name of a software development environment designed to address some of
the issues associated with constructing and especially managing large-scale software projects1.

Many of the ideas for Ragnarok grew out of my experiences as chief architect as well as implemen-
tor of a family of industrial applications for nearly three years. One of the main aspects of industrial
development is in my opinion stated by Bertrand Meyer:“... once everything has been said, software
is defined by code.”[Meyer88, p. 30]. It is a high quality application that pays the bills; not nice OMT
diagrams, detailed milestone reports, nor reusable class libraries. It is therefore all too common that

1Bearing the name “Ragnarok” is ironically meant: Hopefully using it should be less chaotic than the name suggests.

4

software projects focus too much on producing code and loose control of other import managerial tasks
as the deadline rapidly approaches. Ragnarok is an attempt to help avoiding this unfortunate situation.

I have therefore deliberately chosen abroadapproach to the field of software development environ-
ments. Having a master degree in astrophysics has taught me that theories are just that – theories – until
they stand the test of confronting nature itself. I strongly believe in testing ideas in a real situation; and
only a successful adoption there provides evidence for the usefulness of an approach.

Providinggoodsolutions for alarge numberof often-occuring problems (as opposed to a“perfect”
solution for asingleone) is in my opinion vital in order to convince other people to try new tools and
approaches—including of course “Ragnarok”. I will try and provide that and hope to suggest at the
soundness of my ideas by people adopting and using them in their own software development projects.

2.1 A retrospective case study
For nearly three years I was engaged in developing a family of products for semi-automatic weather ob-
servation in airports. The system consisted of hardware and four special purpose software applications
running on IBM compatible PC's in a local area network. I was chief architect, in the sense of Herb-
sleb [Herbsleb et al. 95], as well as implemented large parts of two of these applications (both running
MicroSoft Windows).

The total software side of the product family accounted for about 11.500 staff-hours with project team
sizes ranging from 3-7 members. Ten systems were delivered and maintained when I left the company.
The first system accounted for almost half of the total staff-hours and was greatly underestimated in the
budgets; however because of the many systems delivered and a high degree of reuse a balance was found.

Though the systems were a success both in terms of stability and from the view point of the daily
users, we encountered many problems in the development process itself. It should be noted that because
the company had been in the field for almost 10 years it had good domain knowledge and a sound
understanding of the problems of the users. Thus the problems were not tied to the often reported
discrepancy between user expectations and developers understanding of the domain.

Below a short list of problems is given. A more detailed description can be found in [Christensen95].

Problems concerning management

Though a work break down had been made, based on initial design, which defined basic milestones the
plans were never the less quickly abandoned. This was caused by a number of reasons:

• The project manager was involved in software development because of lack of resources. Hence
he had a strong inclination for producing the product rather than managing the process.

• The initial design was often revised as new insight was gained. However our project management
tool was pretty bad at handling these kind of changes – and all changes had to be transferred to the
management tool manually as there was no link to our programming environment.

Process metrics, in the form of logging and categorising staff hours, were collected for all projects.
However as Jacobson notes [Jacobson et al. 92]: “Actually the real problem with metrics is that they are
not used.” It created a vicious circle: As the metrics were not used people were pretty sloppy about
getting the data correct, thus the data could not really be used for planning the next project and so on.

Problems concerning collaboration

We generally lacked adesign languagefor communicating and documenting design ideas and decisions
2. This made it hard to share ideas, hard to document them in a compact way, meaning lesser reuse, and
it was more difficult to introduce new developers to the projects. What we really wanted and lacked was
a “road map” giving the rough outlines of the system.

Design was notreviewedproperly. Therefore some problems about protocols between the different
units were detected rather late in the development phase.

We had no realversion- and configuration managementtool support. Sometimes already fixed bugs
suddenly reappeared because code was overwritten by anaccidental old copy. Much time was spent
diff' ing and merging when two developers had modified the same set of source files at home.

2The design notations Booch [Booch91] and OMT [Rumbaugh et al. 91] were still in their infancy when the basic design was
initiated.

5

We had no support forcollaborative work and awarenesson source files. If two developers had to
make changes to the same source file we adopted to ask each other to save the file before editing it ourself
– of course this is error-prone and cumbersome.

Problems concerning sense of locality

A single system consisted of more than 1000 files of source code, scripts, documentation etc. Finding
one's bearing in this jungle was guided by a (rather deep) directory structure; the final structure emerged
after a major re-organisation after completing the first two systems3.

The directory structure mimicked dependencies between modules and source files which aided in
navigating in the large number of files. However it could of course not indicate other important relations
like e.g. associations between classes so in this respect we had to completely rely on our own under-
standing and memory of the application structure (lacking a “road map” as described earlier). This was
of course a major problem to developers introduced late in the implementation and/or maintenance phase
but even the designers themselves got confused from time to time.

Our programming environment had a browser facility which could display inheritance graphs. How-
ever the browsing information was not available before the application could compile successfully. In
other words you often did not have the browser facility when you wanted it most desperately.

Problems concerning maintenance

More than ten systems are in operation in Denmark. Though they all share a large common core of code,
they are still tailored for individual needs and requirements of the specific airport. Though ideallyall
commonality should be factored out for ease of maintenance this solution was neither cost-effective nor
practical for all parts of the application. Tailoring was therefore partly handled byreuse through source
copy, for example there was a “main.cpp” file for every application though perhaps 80% of the code
was identical4. But this approach of course had the drawback that when a bug was detected in copied
code it had to be fixed in ten different but identical looking source files, and you had to run the same
test procedures in order to verify that the changes behaved identical in all contexts. As both tasks were
manual and tedious, they were rather error-prone.

Release control was obtained by making a complete raw backup of the project, and a release note
stating the version number and bugs/changes performed was written. This scheme worked but restoring
an old release for inspection was cumbersome because a complete backup had to be reinstalled and great
care exercised not to accidentally overwrite newly created code.

3 Contours
In the following section I will try to outline the contours of an environment geared towards large-scale
software development.

3.1 Hypothesis
My working hypothesis can be summarised in the following statement:

Hypothesis:
Much would be gained if the environment supported and encouraged a wider spectrum of the
project activities requiredby large-scalesoftware development, giving immediate benefits for
any cost introduced.

It is my general impression that software developers like crafting software much more than managing
the crafting process itself. This is especially a problem in teams where a manager is responsible for
creating parts of the software.

If we can support more processes to the extent that they become “part-of-the-production” instead
of “stealing-time-from-production” then it is more likely that they will be performed even in a tight
scheduled project.

3Though the re-organisation was necessary it was rather costly because it took weeks before we again were proficient in locating
things in the new structure.

4Though it was not necessarily thesame80% that was shared.

6

Nørmark argues in favour of raising the “tool abstraction level” i.e. let environment tools take over
more routine work [Nørmark89]. This is certainly true and desirable but not all routine work can be taken
over by tools (for instance logging and categorising staff-hours) and it is also important to support and
encourage activities in the high end of the activity abstraction level (for instance to provide overview in
project management).

3.2 Aspects
Based on the experiences shortly outlined in the previous section, I have identified three major aspects
that I feel a development environment could fruitfully support. These areproject management, com-
prehension and navigation, andcollaboration. These aspects are not orthogonal but for the ease of
presentation they are dealt with separately.

3.2.1 Project management

Our work-break-down structure was always out of date because it had to be updated manually when
changes were made to design.

Hypothesis:
If we can associate project management attributes and tasks directly with software compo-
nents, we need only maintain a single structure.

I propose to view management aspects as intimately and directly related to the design structure of a
software project. This way there is never a useless and out-dated work-break-down structure—because
any change in the application structureis a change in the work-break-down structure as well.

Goldberg gives an example list of task related management attributes which could be used as a
template [Goldberg et al. 95, Chap. 7]. There are other obvious candidates to associate with com-
ponents: Modification requests [Tichy88]/“bug reports”, hyper-links (in)to other material like sched-
ules (PERT/Gantt charts [Mikkelsen et al. 89]), requirements specifications (for tracking requirements
through the life-cycle), documentation, etc. Quality assurance is an important aspect of management as
well: Test suits and, in cases where test programs are impossible like e.g. testing user interface specifi-
cations,checklistsare also obvious candidates for being directly associated with components.

Collectively I will denote any kind of attributes associated to components forannotations.
Having a single structure may also diminish the “reporting delay” of e.g. logging staff-hours. Staff-

hours may be logged directly onto the components you are working on thus managers can track progress
much closer and approximately in “real-time”. The system itself can aid the developer in telling which
components she has been working on and when, thus encouraging higher quality process metrics. Thus
there is a better chance of having realistic historic data as resource when budgeting new project.

In this approach viewingcode(files, modules and their relations) andmanagement data(budgets,
milestones, deviations from estimated staff-hours) are just differentviewson the same basic application
structure.

3.2.2 Comprehension & Navigation

I suggest two ideas that in my opinion will help in comprehension and navigation:

• Provide support for building and maintaining a “road map” i.e. the overall outline of the (logical)
application structure, and to keep this consistent with the actual application source code. Ideally
the “road map” should be able to be displayed at different levels of detail.

• Provide effective, transparent support for the mapping between the logical and physical software
structure. This would allow the developer to view and navigate in the logical application structure
(the “road map”) and let the environment help locate actual files on the physical store.

The “road map” would typically use a common design notation like OMT [Rumbaugh et al. 91],
Booch [Booch91], unified method [Booch et al. 95] or (company defined) variants of these.

Furthermore I advocate the use of aspatial metaphorin designing the “road map”:

Hypothesis:
If we associate logical design components with salient, visual landmarks having a unique
position and extent in a physical space, navigational skills as well as overview will improve.

7

Humans are usually much more proficient in navigating in a physical, concrete, world than an abstract
design space. I see great potential in making design space more physical and concrete; not just in order
to increase navigational abilities in code but just as much to get an overview over complicated relations;
I will elaborate further on this point in section 7.

A final, pragmatic, but nevertheless import, point I want to make:

An act of navigation should not create lots of individual visual elements.

Many systems like for instance Mjølner ORM [Magnusson94], Self 4.0 [Maloney95, Smith et al. 95],
many commercial CASE tools (Select OMT, Rational Rose, Cadre ObjectTeam, and others), and many
applications using window based desktop systems like MicroSoft Windows, X11, etc., produce large
amounts of new windows/object when searching for a specific item (intermediate steps in the navigation).
Consequently (too) much time is spent constantly tidying up the workspace.

3.2.3 Collaboration

I find that these issues are the most pertinent:

• To share a common design language within the team by which the application architecture can be
understood, discussed, documented, and reused.

• To allow the individual developer to coordinate work on common tasks and avoid overwriting,
redoing or in other ways destroying the work of others.

• Collaborative awareness i.e. to be aware of actions taken by other individuals or groups that may
affect one's own work situation.

A “road map” using a common notation would support the first issue.
I see a strongsoftware configuration management(SCM) model as a good foundation to support

coordination and collaborative awareness. Developers could share software componentsby having access
to common versions while being able to work in isolation when needed. Awareness of new versions of
components as well as ongoing work could be mediated through messages and/or a highlighting scheme
for the components.

A strong underlying SCM model will also have great value with respect to project management as it
providestraceabilityof development effort (meaning better control) as well as release control.

My emphasis on collaboration as an important issue in development environments is supported in
[Herbsleb et al. 95] where it is stated that“The lack of tools to support annotating, keeping abreast of
changes, bringing novices up to speed—and collaborative use in general—is a serious drawback”.

3.3 Discussion
Based upon the discussion above I see the following as cornerstones for a software project development
environment:

• Ability to directly manipulate the (logical) parts/components of a software application

• Ability to document the relations between components using a graphical design language like e.g.
unified method, providing a “road map” of the application design.

• Ability to enhance overview and navigation in the architecture of components using a spatial
metaphor.

• Ability to attach, view, and modify annotations (project management and other kinds of attributes)
to these components.

• Provide a strong underlying software configuration management model in order to:

– Ease collaboration by providing awareness, easy sharing, as well as ability to workundis-
turbed.

– Provide traceability of the process as well as of released material.

As I have a strong wish for testing my ideas in a real setting I have also been lead by pragmatic
considerations. One important decision isnot to provide language support; though useful indeed it would
direct research towards implementation issues and I am more interested in the overall aspects of software
projects.

8

4 Model of Software Structure
Small strokes fell great oaks

Benjamin Franklin

In all but the smallest projects there is a need to divide and structure tasks into manageable pieces.
This is the well-proven maxim of “divide-and-conquer” known since ancient time for managing large
systems5.

The present section outlines the model used within Ragnarok and lays the foundation for the man-
agement model in section 5.

4.1 Software component
The basic building-blocks in a software system I denotesoftware components. An informal definition of
a software component is:

A part of a software system that is perceived as a logical whole by the team members.

Software components are often conceived by a single or a few chief architects [Herbsleb et al. 95]
and introduced to a broader team of developers and implementors after the initial analysis and design
phases.

As examples of components you may think of a C-compiler, an operating system, a container-library,
a module to interface certain hardware, a communication package, a set of classes encapsulating meteo-
rological domain knowledge, or a single class in an application.

Software components are natural units for discussion, documentation, and reuse within a develop-
ment team: “I think I've found a bug in the graphics component”, “No, I haven' t quite finished the
documentation on the database component yet”, “Here we can use the field editor component we devel-
oped in the last project”, etc.

Software components naturally form a hierarchy: A C-compiler consists of many smaller and simpler
components like preprocessor, parser, checker, code-generator, etc. Each of these are again composed
of even smaller and more basic components. This hierarchy of components represents different levels of
abstractionsin the application: At a high level of abstraction a C-compiler is considered a whole whereas
at a detailed level it is considered as consisting of a lot of modules and files.

A small example is depicted in figure 1.
Software components as described here are inspired byclass categories[Booch91, Chap. 5] and

clusters[Mathiassen et al. 93, Chap. 4]—and of course experience from crafting industrial applications,
where creating reusable software components is vital.

4.2 Components and project tasks
From a project point of view software components are also natural boundaries for definingtasksand del-
egating responsibilities. In large projects smaller teams are assigned to subsystems with a (sub)project
manager; subsystems are again subdivided until responsibilities, tasks, schedules and staffing are associ-
ated with all parts of a system.

This structure is of course not static, new components may be created and others deleted during the
life-cycle.

4.3 Source- and derived components
As Tichy [Tichy88] distinguishes between source- and derived objects as manually versus automatically
generated objects, I distinguish betweensource componentsandderived componentsusing the same
criteria. Typically files associated with a source component are processed by a compiler, linker, etc.
to produce a series of object files or perhaps a library. A single source component may have several
derived components depending on compiler directives, setting of switches for optimisation, etc. The
derived component knows the setup of the translator (for instance the switches of the compiler) that
constructed it. This way unnecessary translations can be avoided by the system caching often used
derived components for system-wide use.

The emphasis in this report will be on the source part of software components.

5Like the Roman Empire.

9

PriQueue NetBiosIntf

ComPack

MyAppl

Utility

Figure 1: Example of a software component structure. Component MyAppl represents the
root component with some unspecified child components (the dots) and the component “Util-
ity” representing a class utility in the Booch sense. Further down in the hierarchy there is a
component “ComPack” which represents a class for communication. ComPack uses a special
purpose priority queue, PriQueue, and a net bios interface, NetBiosIntf, defined as two child
components. The latter depends on some functionality defined in the Utility component. A
components child list is shown by solid lines; depend-on lists by dashed lines (both explained
in section 4.4).

4.4 Physical representation
The above intuitive definition of a software component is in terms of thelogical design architecture of
a software system. However a component must of course have aphysical manifestation, traditionally in
terms of a number of source files and possibly additional data like diagrams, documentation, bug reports,
etc.

Physically a source component is defined in terms of:

1. A list of childrencomponents defining awhole-part composition— for example “PriQueue” and
“NetBiosIntf” are children of “ComPack” in figure 1.

2. A list of components which this componentdepends-ondefining areference composition. For
example “NetBiosIntf” depends on some utility functions in the general purpose “Utility” compo-
nent.

3. A list of filesassociated with the component. Typically “ComPack” will have some files defining
the interface- and implementation of the class like e.g. “compack.h” and “compack.cpp” in a C++
setting. As such files areattributesof the source component.

4. A list of annotations. Annotations are placeholders for associated attributes as outlined in the
previous section.

Evidently this is an object-oriented definition of a source component: It has attributes and participates
in whole-part- and reference compositions. It is therefore natural that source components may act on
messageslike for instance “compile”, “check-in”, “sum all logged staff-hours”, etc. This notion is the
basis of the direct manipulation interface of Ragnarok described in section 7.

The distinction between children components and components depended upon is of course a design
decision. For instance the PriQueue component in the figure is a child of ComPack because it is a
very specially optimised queue strictly created for use in ComPack. However if a more general priority
queue is developed later which meets the demands of ComPack then this component may vanish and
component ComPack could instead depend upon this new general component, which would probably be
a child component of “Utility”.

10

Note that there is no explicit reference to the parent component though everyone except the root of
course has a parent. This is because the context-preserving approach to software configuration man-
agement outlined in section 5 assumes that a component does not rely on information in its parent or
ancestors in general. I will deal with this aspect later.

4.5 Graph interpretation
The definition of thephysical representation of a component suggests an interpretation in terms of a
directed graph. The nodes in the graph are components while edges connect components. Edges comes
in two flavours, namely the ones stemming from the child-list (whole-part composition), and the ones
from the depend-list (reference composition). Throughout the figures in this report the parent to child
edges will be drawn by solid lines with the arrow head pointing to the child, and dashed lines will be
used for edges from a component to the one it depends upon6. Please refer to figure 1.

The graph for the total application I will denote thecomponent graph.

4.6 Annotations
Annotations are associated with components. Some attributes, however, can be inferred indirectly from
the hierarchical structure.

An obvious example is individual bugs reported on a component. To get the full picture of bugs pend-
ing and fixed for, say, ComPack we can simply merge the individual bug lists for ComPack, PriQueue,
and NetBiosIntf, i.e. the components found by traversing the child edges from ComPack. The same
scheme can be used to produce a complete checklist of quality assurance items to check before releasing
a component.

Another example is summing staff-hours for tasks associated with a component. Here we could sum
all logged hours in the graph defined by the child edges. This could then be used to calculate deviations
from planning estimates.

4.7 Discussion
The outlined model assumes that a one-to-one mapping between the components of the logical design
architecture and their physical represention is possible. However this is not always possible — for
instance two interdependent classes cannot be defined in separate files in the Mjølner BETA fragment
system [Madsen94]. This is of course unfortunate but can be handled in a pragmatic way, for instance by
having a single interface file for the two classes in their common parent component.

One could simplify the above model by eliminating child components all together and consider child
component just to be components depended upon. However the parent-child relation define thehier-
archical structureof an application and is an important mechanism as it provides differentlevels of
abstraction. This is important for project management and used intensively in the user interface to pro-
vide overview. It fits with what is considered “good programming practise”, the idea of “programming
by contract” [Meyer88] and “incremental development” [Goldberg et al. 95].

The contractual approachused in IStar [Dowson87] resembles the outlined approach. However
IStar formalises the interfaces between the components in their hierarchy which can only be changed by
renegotiating the “contract” between the components.

5 Context-Preserving Software Configuration Management
This section outlines an approach to software configuration management denotedcontext-preserving
software configuration management.

Though parallels between this approach and that of Bendix [Bendix95] and others can be made
(see discussion in section 5.7) the motivation grew out of an analysis of the work situation of software
developers and managers, more than from theoretical considerations.

Generally the terminology defined by Tichy [Tichy88] will be used unless otherwise stated. This
includes using the Dewey notation for version identification throughout all examples and figures.

The approach is based on two things. The first follows quite naturally from the discussion in section
4, namely thata source component is a natural unit for version control. The component is informally the

6Pragmatically speaking if there is an edge from A to B then “Files in A imports/includes files in B”. Refer to figure 1.

11

3.1
...

1.8
...

1.3
...

’alpha’

ComPack

PriQueue
NetBiosIntf

Utility

...
2.1

Figure 2: This example illustrates the context of version 1.3 (having a symbolic name “alpha”)
of ComPack. Version groups are depicted as rounded boxes with the version graph inside; boxes
represent source-components-in-the-storage. The context of ComPack version 1.3 is PriQueue
version 1.8, and NetBiosIntf version 2.1. NetBiosIntf version 2.1 in turn specify version 3.1 of
the Utility component. To avoid too many arrows only the context of ComPack 1.3 is shown.

“unit” of discussion, documentation, reuse, etc. within a team and range from a single class to the whole
application according to the level of abstraction. Therefore it is quite natural to considerversion groups
of source components. Version groups of source components are persistent objects stored in a database.
This database is denoted theproject component storage. As is common the space where modifications
are made by developers is denoted theworkspace.

To clarify terminology a distinction is made betweensource components, which are the entities de-
velopers change and work on in their workspace, andsource-components-in-the-storagewhich reside
in the storage and are immutable; they can only be read or deleted once created. A source component
version group is a set of source-components-in-the-storage connected by the relations “revision-of” and
“variant-of”7 as defined in [Tichy88].

This will allow the team to speak in terms of “I have fixed the bugs you reported in version X of
the graphics component” or “I've added extra functionality in version X of the meteorological domain
knowledge component”.

Secondly let us extend the common notion of aversion:

Definition:
A version of a source component specifies the relevant context in which it was created.

As stated in the last section a source component contains lists of child components and components
otherwise depended upon. In order to fully specify context these must now pinpoint theexact version of
each component at the time of creation; not just specify the component version group. This is depicted
in figure 2.

Pragmatically speaking any version of any component is able to completely recreate the (relevant)
context that existed when the version of the component was created.

As an example consider the ComPack communication component shown in figure 2. A small team
is responsible for creating ComPack. A “stub” version of the ComPack component is quickly made to
allow the clients of ComPack to implement and test other aspects of the system. The ComPack team
then implements a fully working component creating the two components PriQueue and NetBiosIntf in
the process. Having passed internal test procedures the team wants to release the component for alpha-
testing. Thus they create a new version of ComPack, 1.3, with symbolic name “alpha” (see figure),
and publish the availability to the clients of ComPack. The clients, in turn, only need to “check out”
the new “alpha” version of ComPack to retrieve the full context of the component including the added
components PriQueue and NetBiosIntf as well as any changes to the Utility component.

The criteria ofrelevanceis important and must be defined by the development team. In a project
spanning several years it may be relevant to include the versions of the operating system, compiler,
linker, etc. as the relevant context; in a smaller project these may be considered constant and handling of
these be made by a backup scheme instead.

7The notion ofvariantsis discussed in more detail in section 5.6.

12

5.1 Motivation
Why the demand for preserving the context?

One major achievement is, in my opinion, that the implementation of a version gets closer to an
intuitive notion of the “version of a component”.

In RCS [Tichy82], CVS [Berliner90], the three dimensional graph model of Bendix [Bendix95] and
generally approaches based on selection rules for creating configurations the problem is, that the only
way to preserve the context of a component is bytaggingi.e. invent tags which must be associated with
every file/object used in a configuration8.

Say you want to make sure that you can recreate version 1.3 of ComPack. In RCS and CVS the only
real mean you have is to tag all files associated with the ComPack component (and possibly also files in
the company-wide software library) with a symbolic tag, here for instance “alpha”.

Tagging poses three basic problems:
The first two are pragmatic. First of all you have to remember it! Forgetting to tag everything leaves

you with some detective work in order to reconstruct the release. The second problem is that tags are
usually global. Thus tagging files in the company library with the tag “alpha” would probably give a
conflict because someone has already used that tag name. Also the library files will very rapidly contain
a myriad of tags.

The third is conceptual — what you actually do is to tell all files that they belong to a certain version
of a component, here “alpha” of ComPack. But this isnot my intuition of version “alpha” of ComPack;
there is no central notion of “ComPack in alpha release”. In contrast “alpha release of ComPack” is an
entity that designers and even more so its clients discuss and perceive as awhole: “Birger has reported a
bug in version 1.3 of ComPack”, “Your problem will be fixed in version 1.4 that I' ll finish later today”
etc.

The context-preserving SCM model avoids these problems. The version of the component can recre-
ate the context it was created in. I.e. conceptually this unique version embodies “alpha release of Com-
Pack” thus being very close to my own and my clients understanding. Also the symbolic name “alpha”
is associated with this version; but it is local to ComPack avoiding polluting the name-space and name
clashes.

Another important aspect is that of maintaining an overview of a large software application. As
outlined in section 3 comprehending and navigating in a large software system can be problematic. But
having a large software system under version control in essence adds yet another dimension to this
complexity because not only the myriad of source files has to be understood in terms of their relevance
to the overall picture; now also the myriad ofversionsof each file has to be taken into account. This
approach significantly reduces complexity as there are no selection rules involved, and the component
version itself knows and specifies which versions of other components it requires.

A more pragmatic aspect istraceability. Traceability of customer releases is extremely important,
but also to provide historical data on process metrics, as Goldberg points out [Goldberg et al. 95, Chap.
6]. Context-preserving SCM ensures that the context of i.e. management data is not lost which could
render the data useless.

5.2 Context
Let us return to the workspace of a developer. How can we define the context of a componentA so
that a check-in procedure can store the context as part of the new version ofA in the project component
storage?

Loosely speaking the context of a componentA is everything thatA directly or indirectly depends
upon. Let us first define these relations:

Definition: The relationdirectly-depending-onis a relation between two components. A
componentA is directly-depending-on another componentB if there is an edge[A,B] be-
tweenA andB in the component graph. (That is:B is listed in either the child- or the
depend-list ofA).

Definition: The relationdepending-onis a relation between two components. A component
A is depending-on another componentB if there is apath betweenA andB in the com-
ponent graph. (That is: There exists a set of components{C1, C2, . . . , Cn} such thatA is

8It is difficult to imagine version attributes that distinguish 'release 1.0.0' from 'release 1.0.1' — except an attributes that explicitly
states this fact.

13

directly-depending-onC1 andC1 is directly-depending-onC2 and. . . andCn is directly-
depending-onB).

The perhaps easiest way to describe the context ofA is to express it in terms of a sub-graph of the
component graph:

Definition: Thecontext graphfor a componentA is a sub-graph of the component graph for
which it holds that:

1. A is the root of the graph.

2. The graph contains all componentsCi for which it holds thatA is depending-onCi.

3. The graph includes all edges[Ci, Cj] for which it holds that bothCi andCj is in the
component set defined in point 2.

Please note that according to this definition theparentof a componentA is not part of the context
for A. If we had indeed included the parent of a component as part of the context then the context graph
for any component would always equal the whole application component graph; which would have made
the model a somewhat elaborate backup model instead of a SCM model.

5.3 Modification
In a development process we constantly modify bits and pieces of the components in our workspaces.
We can distinguish between two kinds of modifications:

Definition: A componentA is directly-modifiedif changes are made in any part ofA i.e.
changes made in any file associated withA, or modifications are made in the child- or
depend-lists or the associated annotations.

Thus adding a new child-component or changing a dependency relation is just as much a direct
modification as modifying one or several of the files associated with a component.

However a component may also be modifiedindirectly when for instance a child component or a
component depended upon is changed:

Definition: A componentA is indirectly-modifiedif a componentC in the context graph for
A has been directly-modified.

5.4 Preserving context
We want to preserve the exact context of a componentA when creating a new version ofA.

The check-out/check-in round trip is depicted in figure 3. The project component storage is asked
to check-out version 1.3 of component ComPack. The reason is that we want to re-engineer component
PriQueue into a general purpose priority queue. Thus in the workspace direct modifications are made
to component PriQueue, ComPack (because PriQueue has been removed from the child-list), and Utility
(PriQueue is now a child of Utility)9 . On the figure components that are directly modified are shown
with an asterisk, indirectly modified components with an asterisk in parenthesis.

Now checking-in ComPack again proceeds as follows:

1. Calculate the context graphG for ComPack. (This is simply the graph in the workspace in figure
3).

2. Prune the context graphG for all components that are not directly- nor indirectly-modified. (There
are none in the example).

3. Enumerate all componentsCi in the context graph in depth-first order and create a new version of
eachCi with a new version identification in the project component storage.

Hence in the example a new version of PriQueue is created first with identification 1.9. Then a
version of Utility is created referring to PriQueue 1.9. Next a NetBiosIntf version is created (because it
is indirectly-modified) with version 2.2 stating that it depends on Utility 3.2 and finally a version 1.4 of
ComPack is created.

Other developers can now be notified of the change and simply check-out ComPack 1.4 which would
automatically create the new PriQueue component and setup the new dependencies.

9There is no need to set up a direct dependency between ComPack and PriQueue because it is implicit via NetBiosIntf; however
in praxis it is probably better to state it anyway to secure against future restructuring.

14

Check-out
"ComPack 1.3"

Check-in
"ComPack"

1.8

Workspace

ComPack

PriQueue
NetBiosIntf

Utility
1.3

3.1

’alpha’

...

...

...

ComPack

NetBiosIntf

Utility
1.3

3.1

2.1

’alpha’

...

...

...

2.2

PriQueue

...

3.2

ComPack

NetBiosIntf

Utility

PriQueue

*

*

(*)

2.1

1.4

*

...

1.8 1.9

Project Component Storage

Figure 3: An example of a check-out/check-in round trip. ComPack 1.3 is checked-out
and a major restructuring is made. Then ComPack is checked-in creating new versions of all
components in the context graph. Directly modified components are marked with a *, while
indirectly-modified are marked with (*).

5.5 Generic configurations
Another way of stating the context-preserving requirement is that generic configurations are not allowed
in the project component storage, only baseline configurations.

However we of course have to be able to operate with generic configurations as well but it is only
allowed in the workspace. Here developers can select versions of components in order to create new
configurations of the system (or parts of it).

Presently I have not investigated the selection problem in much detail but the outlined model does
of course not get in the way of incorporating strong selection engines to produce configurations in
workspace based on selected attributes of the component. Furthermore my proposal of havingall project
management data as annotations of components may even provide new opportunities.

In the Ragnarok prototype one important selection rule is however available as it is necessary in
order to merge independent development efforts. This selection rule (denoted “upgrade” in the RCM
tool described in section 8.2.1) basically performs a check-out of a component but doesnot overwrite
components in workspace if either:

A: The component in workspace is marked asdirectly-modified.

B: The component in workspace isnewerthan the one that would otherwise have overwritten it.

Rule A allows you to upgrade without first checking-in components that are being worked upon. Rule
B allows merging independent work.

For example consider two developers working on different aspects of ComPack. Developer A is in
the process of making the restructuring shown in figure 3, but has not performed the check-in. Meanwhile
developer B has enhanced and optimised component NetBiosIntf and checked-in to create version 2.2.
Now if A tries to check-in ComPack it will create a branch in the version group of NetBiosIntf becausethe
check-in needs to create a new version of NetBiosIntf but there is already a version 2.210. This is not the
intention of developer A. The way out is to issue a command to “upgrade” NetBiosIntf in A's workspace
to version 2.2. Rule B will ensure that the changes made to Utility (including the newly added PriQueue
component) arenot overwritten though version 2.2 of NetBiosIntf as created by B specifies version 3.1
of Utility. Now A has merged B's effort into his own and may create a new ComPack version without
creating branches.

10The RCM tool described in section 8.2.1 will warn in such a situation and allows the user to cancel the operation.

15

5.6 Variants
Winkler introduced the termsprogram-variants-in-the-smalland program-variants-in-the-largein
[Winkler et al. 88]. Using branches in the version groups of components supports the notion of program-
variants-in-the-large.

However it is often program-variants-in-the-small that is most useful in praxis because variations
often occurs at the statement level, not at the component level. Examples are IO related classes having a
stub variant for testing without hardware, code generators for different platforms, conditional assertions,
debug, etc.

Program-variants-in-the-small are usually handled at the (near) language level by for instance the C
preprocessor or the BETA fragment system.

Ragnarok supports program-variants-in-the-small indirectly by the component concept: For instance
in BETA different variants are often represented by different fragment groups (“body files”) which are
naturally part of a single component, thus being treated as a whole. The concept of derived components
(section 4.3) also supports managing the different translated components.

5.7 Related work
The model outlined here resembles thethree dimensional graph modelproposed by Bendix [Bendix95,
Chap. 6]. Bendix proposes the model in order to integrate configurations and versions: In effect setting
the dependency information under version control.

However in Bendix's model dependencies goes from a single version in a version group to awhole
version group. Thus in figure 3 the edge from ComPack version 1.4 would reference thewholeversion
group of NetBiosIntf, and not thespecificversion 2.2.

This does not permit us to state the restructuring made between 1.3 and 1.4 of ComPack. This means
that preserving context must be handled by the selection mechanism. As already mentioned in section
5.1 I think this leads back into the unfortunate use of “tags”.

Explicit configuration objects are used for instance in DSEE [Leblang et al. 87] and Mjølner ORM
[Gustavsson90]. Tichy emphasise that a software object can be a configuration as well and uses it in
his AND/OR graph [Tichy88]. A baseline configuration object is a better solution than tags but still has
some of the deficiencies: We must remember to create one, put it under version control, and it is still just
a schema to reproduce a context; it is not a self-contained object that embodies for instance “ComPack
version 1.3”.

5.8 Discussion
The check-in algorithm sketched above ensures that the full context of a new version of a component A
is stored. This is done by cascading the storage operation through-out the modified parts of the context
graph of A. Thus new versions of a component somewhere in the context graph may actually be stored
even though it has not been directly modified itself—the new version of NetBiosIntf in figure 3 is such
an example.

At first this may seem like an unfortunate and even undesirable effect. However I find it quite natural
because it allows you to uniquely identifypartsof a major release. In the example we can thus discuss
the version of NetBiosIntf that is part of component ComPack version 1.4; and extract and manipulate it
separately.

The outlined context-preserving SCM model has chosen the link to parent as the “cut-off” point
in defining context. This came quite natural from common design principles of combining separate
classes/modules into aggregate structures where the individual component should know nothing of the
context they are used in.

However for instance block structured languages like BETA pose a problem. Conceptually block
structure fits nicely within the parent/child (whole-part) relation between components. However changes
in the parent (outer block) of course may seriously affect behaviour in a child (inner block); but according
to the definition of context creating a new version of the child doesnot preserve the parent context. The
problem can be avoided by pragmatic measures so that the context can be preserved but it is undeniable
that this constraint affects the (physical) structuring of the application. This is however not uncommon
in many CASE tools.

16

6 Software Configuration Management and Collaboration
So far the context-preserving SCM model has been introduced without considering what happens in a
team. As outlined in section 3 I find collaborative issues extremely important.

I see software configuration management as a potential candidate for mediating collaboration and
collaborative awareness.

6.1 Basic problems
There are many ways to delegate responsibilities in a software project, some of them are described in
[Goldberg et al. 95, Chap. 12]. In most of the team models mentioned there are tasks that are not the sole
responsibility of a single person. This may of course also be dictated by the education and background
of the team members and the concrete project.

I see a basic conflict between the perspective of theprojectand of the individualdeveloper.
From the project point of viewoverview, control, traceability, andqualityare crucial. That is, making

sure developers have a common, well-defined, goal, and ensure this is reflected in the SCM structure:
The global SCM structure should not be polluted by all sorts of irrelevant, intermediate, versions.

From the developers point of viewflexibility is important. A developer needs to experiment and in
this process create intermediate versions as “safe ground”; also if a “showstopper” is found in the code
of another developer, it is annoying and inefficient to have to wait for a slow bureaucratic management
to grant you permission to fix it yourself.

A development environment should try to provide flexible solutions that makes it a decision within
the project team how to balance the needs for control versus flexibility, asopposed to imposed by the
environment.

6.2 Basic change mechanisms
Traditionally there are two mechanisms for handling the case where two or more developers need to
change the same object:

• Lock-modify-unlock: This mechanism is basically abinary semaphoreon the object. In order to
change an object you mustlock the object first, and only one person at the time is allowed to do so.
As long as a person holds the lock no one else can change the object. This mechanism serialises
all access to an object. A well known tool using this scheme is RCS [Tichy82].

• Copy-modify-merge: In this approach several persons are allowed to modify an object concurrently
but they all operate on a copy. When done each must merge their changes into a new version (This
step can not be done concurrently). CVS uses this approach [Berliner90].

Both have benefits and drawbacks. The benefit of the lock-modify-unlock mechanism it that con-
flicting changes are avoided, but serialised access may provide a bottle-neck in some situations. The
copy-modify-merge mechanism has the problem that syntactic conflicts are discovered automatically but
not semantic conflicts: If for instance one developer changes the interpretation of a variable this may still
not give any syntactic conflicts though the code logic is changed.

6.3 Access control
Regardless of team-structure a project of reasonable size needs to delegate responsibilities and with
responsibilities comes the question ofcontrolling accessto components.

In my opinion, people sometimes confuse the issues ofmanaging creation of new versionsandcon-
trolling access to components. The “copy-modify-merge” mechanism may falsely give the impression
that “we can allow everybody to access everything because it will be merged nicely”. Of course this is
not true; developer A would not want some outsider B to introduce a “fix” in his components just before
a milestone without his prior acceptance11.

11At least I wouldn' t!

17

6.4 A flexible proposal
I propose the following four mechanisms should be supported:

• Hierarchical access control:Access to components of the system should be controllable.

• Provide a “copy-modify-merge” mechanism:To allow concurrent work on a single component.

• Version control in workspace:This idea proposed by Bendix [Bendix95] is very valuable in order
to create the flexibility a developer or sub-team needs to experiment without polluting the project
global SCM structure with irrelevant versions.

• Powerful constructs to support collaboration around a single component:This range from little
support when developer A just uses something in B's component to the intensive support needed
when A and B are working concurrently on the same component.

6.4.1 Hierarchical access control

Each component should contain a list of access rights for individuals and groups within the project team.
A hierarchical system akin to UNIX with rights for global, group, and individual access to read, modify,
create variants, and so on could be envisaged.

Access control also provides some security against deliberate malicious acts [Vessey et al. 95].

6.4.2 Copy-modify-merge mechanism

Concurrent work on the same component should be allowed12. Before a new version can be entered into
a version group all conflicting modifications must be (manually) solved.

Besides active use of access control to prevent the “everybody is changing everything” situation, I
suggesttwokinds of check-out mechanisms namely a defaultcheck-out for readand an explicitcheck-out
for modification. Having this distinction serves several purposes:

• I believe that by taking an explicit action in order to modify components, developers are more
inclined to think carefully about what and why they want to change it.

• Version groups are not polluted by irrelevant versions stemming from an accidental extra space
inserted while viewing some information.

• When issuing a request for checking-out a component for modification the environment gets valu-
able information to provide collaborative awareness: The requester can be told if other developers
already are modifying the component, and these other developers may be notified that a new “mod-
ifier” has entered the stage.

• Explicit check-outs for modification facilitate a modification request driven approach as suggested
by Tichy [Tichy88] and used intensively in for instance Aegis [Miller95].

6.4.3 Version control in workspace

Bendix proposesfully supported recursive workspacesin order to provide version control in the
workspace [Bendix95, Chap. 5]. The proposal is based on identifying the current lack of support for
the workspace concept, and argues that this approach allows experiments without polluting the reposi-
tory with intermediate versions. Clearly this is a way to give developers flexibility and freedom while
maintaining the overview and control aspect important seen from the management perspective.

Cagan terms the versions in workspacemicro-versionin contrast to the globalmacro-versionsin
[Cagan95]. I will generally denote themprojectand local versionsto reflect the usual visibility: local
version are “safe ground” during day-to-day implementation, project versions are deliberate steps and
milestones towards the project goal.

6.4.4 Collaboration on a single component

I identify three typical collaboration scenarios centred around a single component:

• Using a component:This is the situation where one developer A relies on a component that another
developer B has the responsibility of. A does not know the inner workings but wants to be aware
when B has made improvements, added functionality, etc.

12This may especially be necessary as components may contain several files.

18

Project

Storage
Component

Developer A
Component
Storage

Developer B
Component
Storage

Project
Check-in

Project
Check-in

Modification
Check-out for

Modification
Check-out for

Developer A
Workspace

Developer B
Workspace

Local
Check-in

Local
Check-in

[Notifications] [Notifications]

Fetch-on-Demand
Fetch-on-Demand

Figure 4: Collaboration and storage model.

• Parallel work on a component:Here A and B work in parallel on different aspects of the same
component but can largely work independently with a need to get updated on each others work
every now and then.

• Concurrent work on a component:Here A and B work on the very same aspects and need to work
and share ideas concurrently.

The first case seems trivial to support. Basically I think this can be handled by some notification
mechanism. When B submits a new version to the project component storage all developers depending
on this is notified. Then they may include the new version in their local work.

The third case is an active area of research with many interesting contributions, see for example
[Olsson94, Prasuan et al. 93, Smith et al. 95]. The general approach is to work on ashared representation
so you can see all modifications on-line often combined with some tele conferencing abilities allowing
you to talk together. Presently no support for this case is envisaged in Ragnarok.

The second case is an in-between scenario. Here I propose asynchronisation mechanismthat allow
A and B to merge their local versions from time to time in order to form a new common basis to continue
work from. The idea is described in more detail in the section 6.5.4.

6.5 Model
I suggest a model in which there is a singleproject component storageand manydeveloper/local com-
ponent storages. These are on-line connected in some way.

Local versionsare created and stored in the local component storage; however a notification about
their creation is propagated to the project component storage. The bodies of the versions are not auto-
matically transferred. Still another developer can see that a new local version has been made and may
fetch a copy, given he/she has the rights to access local versions of the creator.

Components just for viewing/translation are (usually) not kept locally; for instance common libraries
will typically be stored centrally and without general permission for modification hence there islittle
sense in creating local copies in the local storage nor local workspace13.

Components that are going to be modified will be made available as copies in a localworkspacefor
editing, tool manipulations, etc.

The idea is depicted in figure 4.

13Of course one may argue that a local copydoesexist in a viewers memory.

19

. . .

1.3

1.3.A1 1.3.A2 1.3.A6

Check-out for modification

Local check-in

Project check-in

1.4

ComPack

Figure 5: Example of local- and project check-in. A developer “A” check-out ComPack
version 1.3 for modification, goes through a number of iterations using local check-in's until
finally the component is checked-in into the project storage.

The use of the storages should betransparent. Ideally the developer should not care about a “local
workspace” where local copies reside; instead files and annotations associated with components should
be made available from anywhere in the system—from ones own local component storage, the project
component storage, or perhaps the local storage of another developer—in a “fetch-on-demand” man-
ner. This of course extends to the derived components allowing faster compilations because a certain
component needs only be compiled on a single site -after which it may be used project wide.

This way we avoid the conceptual and practical problems when having multiple copies of stable,
common, libraries in local workspaces.

6.5.1 Check-in

As shown in figure 4 having several storages requires different check-in operations.
Local versions are made by alocal check-in. As noted this action produces a notification about the

existence to the project component storage as well as performing the actual check-in action in the local
storage.

A line of local versions usually culminates in aproject check-inthereby providing an “official” new
version seen from the project point of view. Typically such versions must meet project requirements in
terms of fulfilling a list of goals, adhere to demands on quality, etc. A project check-in may automatically
trigger events such as regression tests, etc.

Figure 5 outlines the idea.
A situation can arise where another developer has already project checked-in a newer version when

a local version is about to be promoted to a project version (for instance if a developer “B” has already
created a version 1.4 of ComPack in figure 5). In this case a merge is performed and conflicts must be
resolved. Because of the context-preserving nature this involves merging everything in the context graph
and resolving conflicting changes here as well.

The right to perform a project check-in is of course also controlled by permissions.

6.5.2 Check-out

A check-out for readissued by a developer merely informs the local storage that a specific version (and
its context) is the one to use; thus if the developer wants to view a specific source file or some annotation
the relevant data stored as part of the version is provided. No actual “copy” operation from the storage
to a local file is made.

A check-out for modificationon the other hand must create an editable instance for the developer to
work on in a private workspace of the developer. I envisage a version identification scheme where local
versions indicate person (or group) creator along with a serial number as exemplified in figure 5 and 6.

6.5.3 Awareness

Because the common project component storage is always notified of changes and components checked-
out for modification developers could be notified of potential new versions on a subscription basis. Clas-

20

Project
Component
Storage ComPack ver. 1.3

Developer A
Component
Storage

Developer B
Component
Storage

. . .

. . .

Time

Synchro

. . .

1.3.A1 1.3.B1

1.3.A3[B4]

1.3.B3

1.3.A6

1.3.B4[A3]

1.3.A2

Figure 6: Synchronisation scenario.

sic notification mechanisms like e.g. e-mail could be considered in a command-line implementation;
other, less disturbing, mechanisms will be discussed in section 7.

6.5.4 Synchronisation

The idea is depicted in figure 6.
Two developers A and B work independently from a common version of a component in the project

component storage. They create local versions in their local developer storage, work independently and
when the need to exchange modifications arises, they perform asynchronisation. This operation merges
the two versions forming two new but identical versions in the local component storages. Work can then
be resumed independently until a new synchronisation is made or project check-in performed.

The synchronisation needs not be two-sided. One developer, A, may wish to merge the changes of
the other, B, into his own without affecting B's local storage.

6.5.5 Distributed collaboration

The suggested model has another important facet namely that there is not a great demand for high data
transmission bandwidth between project- and local component storages. Only the information about a
new local version (its identification and location) is generally communicated, not the full body of the
version.

6.5.6 Off-line connections

The connection between project- and developer component storage needs not be on-line all the time.
Then of course notifications of new local versions can not be broadcasted. However facilities to cope
with this is important because the inevitable “Eerh, well—I' ll fix it at home” syndrome in real world
projects. However this poses no great problem; when the local storage gets on-line again the additions
and modifications made are simply transmitted to the project storage. A project check-in requires an
on-line connection though.

21

Off-line operation requires some operation that transfers everything needed to work independently
on a given context from the project to the local storage. Here we have another benefit from the context-
preserving SCM model namely that this is already defined for any component one may choose.

6.5.7 Recursive workspaces

The only difference between a local and a project component storage is that information about new
versions is propagated from the local to the project component storage whereas the project storage does
not propagate anything. However a local component storage could just as well specifyanotherlocal
storage as the component storage to notify (Notifications will still be propagated all the way to the
project storage). This way recursive workspaces could be supported.

The synchronisation scenario in figure 6 could alternatively be realised by developer A and B sharing
a common, but local, component storage where the synchronisation could be made.

6.6 Discussion
Magnusson et al. propose fine-grained version control to mediate collaborative awareness using a tech-
nique calledactive diffs[Min ör et al. 93, Olsson94]. The underlying idea is to use visual clues that
display the concurrent work of others on the same document.

The model outlined here can also provide awareness through version control when combined with
the visual mechanisms described in the next section.

Prasuan et al. outlines a collaborative software engineering environment, Flecse, with special focus
on (geographical) distributed development [Prasuan et al. 93]. All shared material is stored at a single
site, and a distributed RCSTool (an RCS front-end) provide concurrency control. Though it provides
awareness (changes are reflected on local sites concurrently) there is no provision for version control in
workspace and the lock-modify-unlock mechanism serialise access. Partial results may be shared (akin
to synchronisation) only by starting a concurrent editing session. Generally Flecse is geared towards
the case of concurrent work on a single component; however it is my experience that the scenarios of
synchronisation and simple use of components are more common.

7 Spatial Metaphor Interface
The user interface of Ragnarok is based on three cornerstones: Aspatial metaphorcombined with the
visual formalism ofmaps, anddirect manipulationof components.

7.1 Spatial Metaphor
Spatial metaphors have been investigated especially in the context ofhypertext. Spatial metaphors are
seen as one way of avoiding for the often reported sensation of “getting-lost-in-hyperspace” people ex-
perience after following a few hyperlinks in a hypertext document: Not knowing where they are, how
they got there, how the displayed material relates to the rest of the text, etc.

Finding our way in a new large software system often leave us with the same sensation; and as the
systems grow very large, even the systems that we have partly designed ourselves becomes difficult to
overview.

7.1.1 Psychological foundation

Psychological theories emerge and disappear just as in other scientific fields, e.g. physics. It is therefore
difficult and dangerous to speak about onetrue model of how humans navigate. However today it is
generally accepted that humans build up acognitive map in the mind, which is theanalogue to the
physical layout of the environment. This was first postulated by Tolman in 1948.

When developing such a cognitive map (for instance when we find ourselves in an unknown town) it
is generally accepted that the acquisition of navigational knowledge passes through several stages.

According to this model we first represent knowledge in terms ofhighly salient visual landmarksin
the environment such as remarkable buildings, statues etc. Thus we recognise our position relative to
such landmarks and build up knowledge about their relative positions.

22

ComPack

PriQueue
NetBiosIntf

Layer 1

Layer 2

ComPack

PriQueue

NetBiosIntf

Corresponding view (Layer 1 only) Corresponding view (both layer 1 and 2)

ComPack ComPack

PriQueue

NetBiosIntf

Design Space Physical Space

Figure 7: Abstraction layers. Different levels of abstraction are represented by planes where
landmarks are located. Below the corresponding view the user sees when choosing to see layer
1 only and both layer 1 and 2.

The next stage isrouteknowledge where we can navigate from one point A to another B using our
knowledge of the landmarks we pass by as we move: I.e. something like “Turn right at the church and
continue until you see the railway station, then turn left...”. Still the route chosen may benon-optimal.

The third stage is the acquisition ofsurveyknowledge which is the fully developed cognitive map
Tolman speaks about. Here we can plan journeys precisely and describe the position of locations within
the environment.

The overview presented here is due to [McKnight et al. 91].
Whereas the second and third stages are less relevant in this context as they are mental processes,

their application relies on two important aspects of the first stage: Salient visual landmarks and the, for a
physical world, obvious fact that the landmarks can be assumed not to move.

7.1.2 Landmarks represent components

The underlying idea in the user interface of Ragnarok is:

Software components are represented byvisual landmarkshaving a unique position and
extent in a physical space.

This way focus is shifted from remembering the exactnameof a component to remembering an
approximateposition.

Presently Ragnarok uses a simple rectangle to represent a visual landmark and the physical space is
the two-dimensional plane.

All manipulations of components are mediated through the visual landmarks as outlined in section
7.4

7.1.3 Component hierarchies as visual nesting

At described in section 4 the hierarchy defined by the parent-child relation in an application can be
viewed as different levels of abstractions.

We can visualise this byvisual nesting. For instance component ComPack has child components
PriQueue and NetBiosIntf. This is represented by the landmark ComPack having the landmarks PriQueue
and NetBiosIntf nested within its boundaries.

As depicted in figure 7 we can visualise the different levels of abstractions (defined as the distance
from the root in the component graph) as definingplanesin which the corresponding landmarks are
located.

These planes I denoteabstraction layersas they represent a layer at a certain level of abstraction.

23

This interpretation allows the user to choose how much detail is wanted. For instance a user may
wish to see little detail and decides to view layer 1 only. Then only the ComPack landmark is visible.
If she chooses to see more detail she can specify to view both layer 1 and layer 2 which would display
landmark ComPack with landmarks PriQueue and NetBiosIntf nested inside.

7.1.4 Aiding comprehension

Nested landmarks provide some indication of software structure: The nesting shows the parent-child
relationship of components.

However additional graphics can be used to show many other kinds of relations.
One of the items listed in section 3 was the wish for a “road map” showing the relations between

components in the application. The Ragnarok prototype provides a (very) limited set of drawing prim-
itives to allow unified method class diagram [Booch et al. 95] notation to be drawn in the abstraction
layers.

This way the abstraction layers not only can depict the parent-child relation, but also associations,
inheritance, roles, multiplicity, comments, etc., between components.

The frame used for landmarks can also be changed to denote classes, class categories, or class utilities
according to the visual syntax of unified method.

Please refer to section 8 where the design of the Ragnarok prototype is described using the visual
capabilities of Ragnarok itself.

7.1.5 Displaying annotations

The graphical rectangles for landmarks can be used to display annotations in or, in case of lengthy
annotations like e.g. bug-lists or project management attributes, annotation summaries.

The size of the landmark of course determines how much information it is possible to display. How-
ever zooming in and enlarging a single landmark until it is large enough to accommodate all information
may be too cumbersome. Therefore I think the best way is to provide summery information in the land-
marks and then provide a way to spawn an independentannotation viewerin the form of a separate
(text)window or dialog box.

7.1.6 Supporting highly salient landmarks

The present prototype of Ragnarok does not support the “highly salient” part of landmarks: Presently
they are presented with identical looking rectangles.

This seems like a severe problem because real-world navigation is so dependent on this property:
Imagine going through your home town where all buildings were reduced to identical looking gray boxes.

One idea is to associate distincticonsto landmarks. However this reduces the space available for
other information and requires a large icon database or developers with good drawing skills.

Another interesting approach that I will try instead is to use thebackground. The idea is to superim-
pose landmarks on a easy identifiable background; for instance an image of earth. This would convey
knowledge along the lines of “This landmark lies within Norway, so it must be part of the graphics com-
ponent as I know it covers Scandinavia”, etc. This approach has the advantage that components that are
very alike but belong to different subsystems can still be distinguished easily14. The Terra-Vision project
at Art+Com in Berlin [Joachim96] which uses detailed, zoom-able, satellite images of earth to convey a
physical navigation sensation when browsing the World-Wide-Web, can be used as inspiration.

The background must of course use very pale colours in order not to disturb other more important
information.

Initial use of the prototype suggests that the additional graphics (class diagram notation) provides
adequate visual clues for small systems.

7.2 Map visual formalism
Harel advocates the use ofvisual formalismsby which (mathematical) problems can be understood and
solved by visual means taking advantage of humans highly developed visual system [Harel88]. His main
example isgraphswhich is a visual representation of a set of elements with some binary relation between

14As explained in section 2 we had ten systems where some components were pretty much the same and had the same names; and
sometimes we got mixed up which of course was very unfortunate

24

them; this basic visual formalism can be used in many different contexts, for instance state charts, dance
movements, and, as I have done, software project structure, and so on.

Nardi et al. argues in favour of using visual formalisms, like plots, panels, maps, outlines, and tables
[Nardi et al. 93]. Referring to the work of Reisenberg [Reisberg87] on “perceptual knowledge”, that is,
knowledge that can be accessed only through interaction with external representations, they conclude
that: “In short, we have access to certain kinds of knowledge only when weseeit.” 15. Visual formalisms
“provides manipulable external representations with well-defined semantics”allowing us to do just that.

Having an underlying spatial metaphor makes amapan obvious choice for representing data. Maps
has a number of important, commonly understood, features which we can exploit:

• Respects spatial relations. The basic purpose of a map is to show spatial relations between objects.

• Scale determines level of details. Maps come in different scales; by varying the scale we can get
overview or details depending on our problem.

• Different aspects possible. Maps can focus on different aspects of the objects they presents. Well-
known examples are maps with emphasis on roads, political maps, terrain maps, etc.

7.2.1 Ragnarok maps

In Ragnarok a map is:

• Associated with a specific abstraction layer. A map shows landmarks in this layer and optionally
in one or more of the layersbelow(denoted thedepthof view). You can request a map to instead
associate with the layer below (in essence azoom inoperation) or above (zoom out).

• Displaying a certain rectangular region of the abstraction layer. The map can display the region in
differentenlargements, like e.g. double or half size.

• Showing a specificaspectof the landmarks. Aspects are for instanceversion controlaspect (show
current version number and list of files of components—or maybe a graphical representation of the
version graph like in Orm [Gustavsson90]),comprehensionaspect (show class diagram notation),
managementaspect (project status summaries),quality assuranceaspect (checklists with items
marked as unchecked/checked), etc.

7.2.2 Overview map

Lots of maps displaying different areas of the underlying abstraction layers do not in itself create
overview (more likely the contrary). One way to retain overview is to create a special map whose main
purpose is to display the location of other maps. This is an approach often used in computer strategy
games like for instance “Civilization” [Meier91].

Ragnarok has an overview map denoted theworld mapas it defines the “world” that the developer
is working within; other maps are denoteddetail maps. The areas that are displayed by detail maps are
shown byoutlinesin the world map.

The world map is not a static, project defined map, but can be zoomed and scaled by the individual
developer to display the part of the project that is relevant to him or her.

7.3 Ragnarok user interface
A snapshot of the Ragnarok user interface can be seen in figure 8.

The Ragnarok window is divided into four panes:

• Theworld mapin the upper left corner. This is a map that showsoutlinesof detail maps superim-
posed on landmarks. One may zoom in and out, change the scale used, as well as what aspect to
display. However the size and position of the map within the Ragnarok window is fixed so that one
always know where to look for overview information.

• A playgroundright next to it in which may reside multipledetail maps. Detail maps display
regions of the abstraction layers to a certain depth, and can be moved, zoomed, scaled, and resized.
In addition their aspect can be changed. Detail maps are the primary medium for interaction with
landmarks and hence components.

15A well known example is that of remembering how a word is spelled: writing out a couple of possible spellings is usually enough
to pick the one that “looks right”.

25

Figure 8: The Ragnarok prototype window. Detail map 1 shows the version control aspect
of component “SourceComponent” (files with associated RCS revision numbers) while map 2
shows a comprehension aspect using unified method class diagram notation to show relations
between “SourceComponent” and other class components. Please refer to appendix for a colour
version of this figure.

• A information windowin the lower left corner which is essentially a runninglog of important
operations, typically the progress of check-in or check-out operations.

• A status barbelow the playground. This is primarily intended to displaying warnings without
disturbing the user with dialogues.

On the figure you can see two detail maps, map 1 showing version control properties and map 2
showing relations using unified method class diagram notation. In the world map the outlines of the two
maps are shown (please refer to the colour figure in appendix). This way one can easily see where the
maps display, relative to the overall context.

Detail maps and their corresponding outlines in the world map are of course fully synchronised so
that any move or resize of one of them is reflected in the other.

New detail maps are created simply by dragging out a new outline in the world map using the mouse.

7.3.1 Moving maps

Ragnarok has no scroll bars on the detail maps. Instead the outline of them on the world map is moved
(by grabbing the circle in the upper left corner). Though one may argue this is indirect in the sense that an
outline is moved, not the detail map itself, it is definitely a much better way of movingyour viewport in a
two-dimensional plane than using horizontal- and vertical scrollbars. In the scroll bar case you needtwo
actions to scroll to an arbitrary point which is both counter-intuitive and difficult to coordinate precisely.
Dragging the map outline in the world map instead is intuitive, fast, andaccurate.

When multiple overlapping maps are present you need a mechanism to bring one on top of the
others. Most systems, like X11, MicroSoft Windows, etc. do this when clicking the window frame;
which is impossible when the window is fully covered. Alternatively you can often leaf through windows,

26

bringing each one to the top, one by one, until you get to the right one. In Ragnarok you simply click the
aforementioned circle on the map outline, which is faster and a more direct method.

The radar-view of the Self 4.0 programming environment [Smith et al. 95, Maloney95] achieves some
of the same goals of relating the windows position with respect to the whole and allows movement in the
plane.

7.3.2 Avoiding cluttering

As mentioned in section 3 a design goal has been to avoid intermediate steps in navigations in the form
of spawning new windows/maps requiring effort to tidy up the screen all the time.

In Ragnarok all navigational operations just changes the view in the detail map, i.e. zooming in and
out, resizing, moving, etc., and all operations have fast short-key interfaces. This way the need for
intermediate maps is reduced. For instance if you have a map showing some details and need to see the
immediate context, you simply give one or two zoom-out operations (simply typing “o” once or twice),
view the context, and then zoom-in again (typing “i” once or twice).

In case of annotation viewers spawned from landmarks they should have the same visibility as the
landmarks: I.e. if a map overlays a landmark associated with a large annotation viewer, the viewer should
disappear—to reappear when the landmark again is visible.

7.3.3 Semantics of position

Arriving in an unknown city can be confusing. Still there are some implicit rules about city layout that
we can utilise in locating things. Oftenpublic services like railway stations, tourist informations, town
halls, etc. are located in the centre; habitant quarters are in the outskirts; and airports usually quite far
from the centre.

Having a spatial metaphor allows us to set analogue guidelines for the layout of software architec-
ture. One can imagine that domain knowledge central for the company is always centrally located; user
interface relevant parts “north” of the centre; and operating system specifics in the “south”, etc.

This way team members will know where to look even in an completely unfamiliar project.

7.3.4 Visual tools

The combination of a spatial metaphor and maps can become the backbone for numerous tools and views:

• Collaborative awareness: Landmarks could display information about who is currently modifying
local versions of a component; by names, colour coding, or some other scheme. This way aware-
ness could be achieved in a much less disturbing way than for instance conventional notifications
using e-mail.

• Project overview: Colour code landmarks according to release state of components (green = re-
leased, yellow = alpha-test, red = development, and so forth), deviations from estimates, critical
path components, etc. etc.

• Visual directory grep: Mark approximate location of a match in the landmarks by for instance a
bright red spot. Imagine a directory grep looking for some identifier giving a list of 2000 matches
in 300 files in 90 directories: Such information is virtually useless. However 2000 red spots (most
of them will probably merge) dispersed over a map of an application give immediate overview and
structural information by indication of clustering and possible misuse in form of lonely points —
and the ability to locate and zoom into areas of interest quickly.

• Structural diff: Colour code components according to no. of changes between two versions (green
= no changes – to – red = many changes). Or mark with red spots on the landmarks approximate
positions changed in the files.

• Code metricsor test coveragecan be visualised to give structural information.

I have no doubt that many other useful ideas will come into mind as people start using this approach.
The appeal of these tools all relies on the visual formalism of maps combined with a spatial metaphor

for components. This empowers us to get an overview of relations—in essence giving atopographyof
the application—otherwise difficult to infer from textual output.

One should also mention the idea offish-eye views[Furnas86] where e.g. the mouse pointer defines
the part of the application structure that is interesting (the focus) and therefore shown in great detail while

27

remote regions are shown in successively less detail. It could be interesting to investigate this technique
as well.

7.3.5 Spatial interpretation of hyper-links

Powerful editors and browsers of today often also contain cross-referencing abilities like e.g. the Mjølner
BETA structure editor Sif [Sif94]. Sif can follow semantic links from the application of a name to the
declaration. Though useful it has a backside, namely the already mentioned “getting-lost-in-hyperspace”
phenomenon.

I envisage a close integration between the Ragnarok user interface and powerful editors/browsers:
Clicking a file name in a landmark in a map brings up an editor on the file, and if hyper-links are followed
in the editor, the map will smoothly move to display the landmark containing the file of the hyper-link
endpoint. This way a spatial interpretation of hyperlinks is provided hopefully aiding in maintaining the
sense of direction.

7.4 Direct manipulation
Shneiderman introduced the termdirect manipulationin his often cited paper [Shneiderman83]. The
basic idea is to provide visual artifacts that react on user manipulations through devices like keyboard,
mouse, joystick, etc., in a sensible way.

The Self-4.0 programming environment [Smith et al. 95, Maloney95] for the Self prototypical object
oriented language [Ungar et al. 95] is based on concreteness and has taken the idea of direct manipulation
far. In this environment prototypical objects are moved and manipulated in a very direct way. Especially
construction of user interfaces is direct as one simply drags and drops components on top of each other
to form composite objects. More abstract manipulations on objects are performed by context-sensitive
menus that appear when a mouse button is pressed above an object.

The Mjølner Orm system has anobject-orientedapproach to window systems resembling the Self
approach [Hedin et al. 94], using context-sensitive menus.

I have adopted this idea and commands are issued directly to landmarks: Either using a context-
sensitive pop-up menu when the mouse is above any item in Ragnarok (landmarks, maps, etc.) or simply
by short-keys from the keyboard.

7.5 Discussion
The spatial metaphor can be used as basis for many views/aspects on the software project. However there
are obvious exceptions. Devising a project schedule to determine the sequence of tasks, critical paths,
etc. requires a view with strong focus ontime. Clearly a layout based on spatial relations is not suitable.

One problem is that of utilising thespaceavailable: In order to create the “road map” we need free
space around the landmarks to draw class diagram notation. This limits the space available for display-
ing information within the landmarks themselves. The key to the solution lies in providing summary
information only in the landmarks themselves and have the ability to get more detailed information on
request.

Another problem is that the success of a spatial metaphor relies on the “world” created being rela-
tively stable. We have all tried the problems when our favourite supermarket decides to put everything
in new places; it takes quite a while to regain proficiency in locating things. And we all know that re-
structuring and redesign occur in software projects. However it depends very much onscale. It doesn' t
matter much that a couple of classes are shuffled in a class category as long as the category is not moved.
And my own experience is that the large scale structure of an application is more stable than at the class
level — and especially in larger projects there is a substantial inertia because restructuring is costly.

The hierarchical window system of Mjølner Orm [Magnusson94, Hedin et al. 94] bears some resem-
blance to Ragnarok especially in the use of visual nesting. However whereas Orm insists on displaying
the context leaving little room for deeply nested views, Ragnarok provides infinite zooming in.

An interesting article by Jones et al. questions the usability of a spatial metaphor [Jones et al. 86]. In
three experiments with persons classifying newspaper articles using names or locations they get strong
indications that as the number of items is increased names are more easily remembered than locations.
However their results can not be transferred directly to Ragnarok:

• In the experiments the test persons were all the time trying to structurenewdata as opposed to
well-knowndata.

28

• The test persons were not allowed to preview the material before classifying it.

• They used aflat location space.

In contrast the spatial metaphor as used in Ragnarok is meant to structure data we are well acquainted
with in a hierarchical space. We can use our knowledge of the data to group related things together and as
software engineering usually means locating the same things again and again we get to know our “world”
well.

I see an analogy between screen-oriented editors and the spatial approach in Ragnarok: The benefit
of screen editors compared to line-oriented editors is that the context of an item of interest is always
visible and that items to a large extent are manipulated directly. Using line editors you are required to
rememberthe context of a line and use special commands to manipulate individual characters or words.
Ragnarok always shows the context and allows the developer to directly interact with the item of interest.

8 Implementation of the Prototypes
“Man må kravle før man kan g˚a”

Danish saying.

In order to test some of the fundamental ideas a rough prototype of Ragnarok was made. The proto-
type is avertical prototype[Floyd84] with main emphasis on two basic properties:

• The basiccontext-preserving software configuration managementmodel (section 4 and 5).

• The use of aspatial metaphorcombined withmapsfor navigation in a project structure (section
7).

Other interesting properties that there was unfortunately not time to implement were annotations and
annotation viewers, the collaborative extensions to the context-preserving SCM model16, and “highly
salient, visual landmarks”.

As described in section 9 I got the idea during the initial design phase to actually create two pro-
totypes: A stand-alone command-line tool containing the context-preserving SCM model only, and a
graphical prototype with more emphasis on the user interface.

The prototypes are implemented in the BETA language [Madsen et al. 93], using the Mjølner BETA
system [Andersen et al. 94], and uses some of the design patterns described in [Gamma et al. 94]. The
implementation consists of about 13.000 lines of BETA code and about 385 “staff”-hours went into
it. During the design phase I used paper based mock-ups of the envisaged Ragnarok to get an initial
impression of the environment.

8.1 Layered design
Though it was a prototype a great deal of attention was paid to the design in the hope that it could be
carried on into the next generations of Ragnarok.

The design is based on alayered modelhaving three layers. Each layer knows only the layers below
itself and extends the functionality. Below they are described from the simplest layer and up.

8.2 Component Model
Component Model is a class category which provides the context-preserving SCM model. Basically it is
a front end to RCS [Tichy82]; it maintains information about components and their dependencies in flat
text files, one for each component, and controls actual source files by calling the RCS “ci” and “co” tools
and parses their output.

The outline of the Component Model class category is depicted in the lower part of figure 9.
The full context-preserving SCM model described in section 5 is implemented in Component Model

but presently no support is made for local versions and local component storages as described in section
6. The project component storage is supported in the form of a hierarchical repository containing the RCS
files and the Component Model controlled files. The directory hierarchy typically (but not necessarily)
mimics the hierarchy of the components.

16These ideas also partly grew out of response from the user groups working with the prototype.

29

Figure 9: Component model, Annotation, and Physical Backbone. The class diagram graphics
was implemented very fast, therefore they are a bit “shaky”.

Each developer defines a private workspace on a per-project basis in the form of a directory: A
check-out operation recreates the directory structure found in the repository using this directory as root.

Check-outs default to read-only. To modify a component you obtain alock on it adhering to the
“lock-modify-unlock” mechanism of the underlying RCS tool. The lock isonly on the component i.e.
child components and components depended upon arenot automatically locked.

SourceComponent is the central class representing the concept of a source component from section
4. It has AccessRight's and Annotation's associated (presently only stubs for both), and manages a list
of VersionedFile's (the source files controlled by RCS), as well as the child- and depends lists (denoted
“nests” and “used-by” in the diagram).

A VersionGroup class handles versioning of SourceComponent instances, and is responsible for
maintaining data structures that allow recreation of all versions of the source components, and main-
taining the flat text files for persistence.

Annotation is a class category on itself because it is a “placeholder” for future development where it
is envisaged that different kinds of annotations will be provided by subclasses of class Annotation.

The ComLineIntf class utility contains the command-line tool source and manual described next.

8.2.1 RCM: The command-line tool

RCM is a command-line interface to the Component Model class category, unimaginatively named
“RCM” which stands for “Ragnarok Component Model”.

Originally RCM was meant purely as a mean of bootstrapping the development process of Ragnarok,
but as outlined in the next section, it is presently being used by other teams.

RCM provides operations for creating the component structure, generating different lists of the com-
ponent and dependency structure as well as lists of associated files with RCS version numbers, and of
course the basic context-preserving version control operations of check-in, check-out, and some facilities
for merging individual development efforts.

8.3 Physical Backbone
The physical backbone is a class category that creates a mapping from the logical design space into a
physical, concrete, space, by associating landmarks to components, and managing these landmarks in
abstraction layers.

The physical backbone class category is depicted in the upper part of figure 9.

30

Figure 10: Visualisation, and relations to Physical Backbone.

Class Landmark is associated with SourceComponent on a one-to-one basis (the 0 cardinality is
presently not used), and an abstraction layer may contain several landmarks. The abstraction layers as a
whole are controlled from ALRegister, primarily for persistence between Ragnarok sessions.

The Decoration class defines instances of class diagram notation graphics like e.g. lines, inheritance
arrowheads, aggregation symbol, text, etc.

The main task of the physical backbone is that of managing coordinate transformations: Integers
are used for coordinates and in order not to run out of resolution in very deeply nested landmarks the
scale between layers differs by a factor two (i.e. point (4,7) in layer 1 projected down on layer 2 is
(8,14)). Typically a detail map requests an abstraction layer to “give a list of everything visible in a region
(x0, y0, x1, y1) andd layers down”. The abstraction layer calculates this list converting the coordinates
into a coordinate system suitable for displaying on the map.

The reason that class Landmark not is a subclass of SourceComponent is that it may be beneficial to
be able to create landmarks but defer the creation of the actual source component, typically in a design
situation.

8.4 Visualisation
The visualisation part of Ragnarok is build on top ofLidskjalv [Lidskjalv95], a platform independent
object-oriented user interface construction framework for the Mjølner BETA System.

Most classes should be identifiable from the discussion in section 7. The ControlMap is an abstraction
of a Map that is mostly introduced as a way to break dependency between Map and VisualLandmark:
Map knows VisualLandmark but VisualLandmark only knows ControlMap.

Theobserver patternof Gamma et al. [Gamma et al. 94] is used to keep maps synchronised when
several are displaying the same underlying landmark. The classes are however not shown because they
reside in a project class utility (Soup) which is a general purpose library; and adhering to the spatial
metaphor a landmark can only be in one place. This is clearly unfortunate seen from a documenta-
tion point of view, and I am presently considering to allow “referencing landmarks” to overcome this
limitation.

31

9 First Light - Case Stories
In astronomy the event of the first proper image coming from a new telescope after assembling and
up-lining is called “first light”.

The layered design of the prototype gave me an opportunity to have “first light” quite early and test
the underlying ideas in the context-preserving SCM model. When the first layer, Component Model,
was implemented, it was equipped with a command-line interface and used as a stand-alone SCM tool to
control the development process of the rest of the Ragnarok prototype as well as provide release control
for the command-line tool itself. I have always found it a benchmark test of any development tool that
it can indeed aid in developing itself. The “bootstrapping” of the first Algol compiler is an admirable
example.

However the “baby” soon outgrew its cradle. Within a week of the first version of RCM a devel-
opment team at Institute for Storage ring facilities in Aarhus (ISA) was using it which put much more
emphasis on the collaborative issues, as two of the developers would use the tool actively.

Later another team of two developers at DEVISE started using the tool in a project developing a
prototype hospital system.

Both groups are involved with real development projects. The descriptions below are based on one
hour open-ended interviews using a mixture of the standardised open-ended interview and the general
interview guide approach [Patton80].

9.1 ISA team
The ISA team project, named LabSys, is a system for controllingaccelerators, storage rings, and other
large distributed equipment in experimental physics.

The team consists of five people, three in Aarhus and two in Stockholm. Presently only the three
developers in Aarhus are actively using the RCM tool, but the Stockholm group will start using it some
time this summer. The delegation of responsibility is rather strict whereeach member has “the final
word” for a well defined part of the system.

The development language is C++ combined with SQL, and the tools are MicroSoft Visual C++,
MicroSoft SQL Server, and MicroSoft Access via ODBC, on the MicroSoft NT platform. Presently
about 970 kB of data in 175 files in a rather shallow hierarchy of about 25 components is under RCM
control. The basic design consists of four main layers, each represented by a (large) component giving
few inter-component dependencies. The component structure mimics the design architecture.

The full LabSys project is estimated to about five man-years with about two man-years worth of work
made so far.

Before RCM was introduced they had version control using RCS [Tichy82] combined with scripts.
Now RCM has been adopted as their SCM solution.

As the main benefits of using RCM they emphasise:

• Version control of configurations:Using scripts to control RCS were cumbersome because adding
a new file to a module required changing the script making it unsuitable to check out previous
releases of the module.

• Overview:The RCM recursive list commands make it possible to get a good overview of files and
components in the project.

• Context-preserving aspect:Though not in the maintenance phase yet they see the benefits of trace-
ability and consistency of releases in theunderlying model.

When questioned about the drawbacks they mentioned:

• Version numbering:RCM uses the simplest possible version numbering scheme (simply consecu-
tive numbers) for components which means that e.g. the branch structure can not be seen from the
version identification. Thus getting an overview of versions in a version group is difficult

• Version pollution:They work with fewer intermediate versions than when they used RCS. They
list themselves two main reasons: Because of the version numbering problem they fear loosing the
overview of versions if too many “non-milestone versions”are introduced, especially in the root
component; secondly they are presently in a phase of pretty straight forward implementation with
little experimentation meaning less need for intermediate versions.

32

• Context overview:The backside of the context-preserving model is that checking-out a single
component may trigger a lot of actions on other components; and it is sometimes difficult to get an
overview of the consequences of for instance a check-out.

The present version numbering scheme is obviously too limited and has of course never been meant
as final but merely a prototype solution. The introduction of local storages would help on the pollution
problem (and a crucial extension when the Stockholm team joins in) while they suggesteda “consequence
function” for the last item, where one could see the consequence of e.g. a check-out before actually doing
it. A similar technique is available in CVS [Berliner90].

Concerning the underlying concepts in RCM they were very positive. The component idea to group
a set of source files suited them fine because changes are often made to many files but usually within
a single component (their components are generally large with some 10-20 files, partly because of the
“wizards”/code generation abilities of Visual C++).

The hierarchical approach fitted well with both the structure of their source code as well as their
delegation of responsibilities.

On the question of using a “lock-modify-unlock” versus “copy-modify-merge” mechanism for con-
trolling version creation they argued strongly in favour of locks. This is partially because the Visual C++
environment contains strong tools for user interface construction but relies on the ability of generating
unique ID's for interface elements in resource files. Thus merging resource files created in parallel is
impossible and they cannot allow this to happen.

This suggests that Ragnarok should support explicit locks as well as a “copy-modify-merge” scheme,
if a team decides so; perhaps on a per component basis.

9.2 DEVISE team
The DEVISE team is working on a prototype of a system handling resource allocations in a hospital. The
main purpose of the project is to test programming environment tools within the DEVISE BETA system.

The team consists of two developers. Before RCM was introduced there was no explicit delegation
of responsibilities.

The system is developed in BETA using the development tools in the Mjølner BETA programming
environment: The structure editor Sif, CASE tool Freja, the interface builder Frigg, persistent store
browser, etc., on the UNIX platform. About 270 kB of source code in 50 files in 28 components is
presently controlled. Being an evolving prototype the component hierarchy is a bit ad hoc with many
inter-component dependencies. The resulting component structure is thus more akin to a directory struc-
ture than mimicking the logical application architecture.

None of the team members have any practical experience with other software configuration manage-
ment tools.

One of the main reasons that the team wanted to use RCM was due to problems concerning collab-
oration; before the introduction of RCM they had individually modified copies of many files which was
tedious and error-prone to merge.

As main benefits they list:

• Easier merge of individual effort:RCM forced them into a more explicit division of responsibili-
ties, and serialised access meaning much less effort is spent on merging work made in parallel.

• Context-preserving aspect:On one occasion they had to provide a working prototype whilst in the
middle of changing the underlying persistent storage layer. An earlier known-to-work version was
checked out in a single operation.

• Security against overwriting work: RCM protects against loosing effort during a cumbersome
manual merging process.

Of problems they mention:

• Version pollution:Often intermediate, even non-working, versions have to be checked-in because
their working hours often do not overlap and in order to enable the other developer to change
things, components must in effect always be unlocked after a work session.

• Global locks too coarse:Often they resort to change the write permission of a single file instead
of obtaining a lock on a component. The global locks of RCM are too coarse and heavy-weight
if only a single debug print statement is wanted in some code which is actually the responsibility
of the other developer, and because the change is only temporary there is no need nor wish for a
check-in.

33

These drawbacks could also be handled by the introduction of a local storage layer between the
developer and the project component storage.

The DEVISE team had no objections concerning the underlying principles. They even felt that
RCM had influenced the structure of their application in a positive way. When asked about the idea
of context-preserving configuration management one developer countered the question with “What is the
alternative?”—a statement I find particularly amusing as few other SCM tools provides strong support in
this area. They too reported that it was difficult to overview the consequence of a check-out but did not
feel it as a serious problem.

9.3 RCM on Ragnarok
I used RCM intensively myself in the development of the physical backbone and visualisation layers as
well as to control the releases of RCM itself to the two user groups17. The Ragnarok prototype consists
of about 600 kB of BETA code, LaTex documents, and text files in 100 files in 30 components.

I generally agree with the viewpoints of the user groups: It is ideal for release control because of the
context-preserving property, and the often felt problem of getting the configurations right is almostgone.
Still getting a local component storage is very important.

One annoying problem I have encountered myself is that the depend-lists of components has to be
maintained manually18. It is all to easy to forget updating the component dependency structure if an
additional ' include' is added to the source code. This means that the context of an old version cannot be
checked out properly.

9.4 Ragnarok
The graphical user interface prototype of Ragnarok has so far not been used intensively and not by
anyone but myself. The main reason is that the direct manipulation interface to the components is only
implemented as short-cut keys, not by pop-up menus; and no manual exists. Secondly only few of the
full set of version control facilities are available. Thirdly there are still some inconveniences and bugs
around.

It is however my impression that the spatial metaphor provides good and fast navigational support;
related components/files are spatially close, so when wanting to open a specific file you can actually
create a detail map where the component with the wanted file is present in one or two simple mouse
operations.

The ability to change the contents of a detail map by dragging around the outline in the world map is
also a strong facility.

Another important difference between using RCM and the graphical Ragnarok is that when using
RCM you quite easily revert into thinking about components as “directories”19, and not as logical design
blocks. However when you in Ragnarok create a new landmark you think much more in terms of classes
and class categories because the visual representation focusses your mind in the direction of creating
object-oriented design diagrams.

10 Future Work
Lots, lots, lots...

Below I will give a short list of activities:

• Get the user interface prototype of Ragnarok into a stage where the user groups can begin using it
instead of the command-line tool. As they are already used to the context-preserving SCM model
they need only “climb the learning curve” for the spatial metaphor and use of maps. Such tests
would provide valuable information concerning the validity of the underlying assumptions.

• Implementing and testing the collaboration SCM model in a real setting. The coordination of
development effort between the Aarhus and Stockholm teams in the ISA LabSys project provides
an ideal test situation. Also handling of the BETA environment in DEVISE could be used as
“laboratory”.

17Presently there has been 13 releases
18Bendix refers to this as the “shadow” problem [Bendix95].
19If a team is only interested in the SCM aspects and only use RCM then this is of course fine.

34

• Implementing annotations. Traceable, strong, support for handling bug reports and checklists for
quality assurance could be first step, and then augment the model with task- and project manage-
ment aspects in the next.

• Delete operations for versions as well as components have not been treated. They are of course
a bit complicated due to the context-preserving SCM model. The semantics of delete operations
must be defined, implemented and tried out.

• Handling of derived components to facilitate software manufacture.

• Trying out the ideas on large-scale projects. The idea of unifying the work-break-down structure
with the design structure using project management annotations to components is a daring one and
needs to be tried out in a real setting.

• It is infeasible that I can envisage all uses of Ragnarok; an endless string of ideas for new aspects,
visual tools, and annotations can be foreseen. Thus providingextensibilityis important. Inspiration
can be found in the work on Emacs [Stallman84] and of Malhotra [Malhotra94].

• The landmarks in Ragnarok must cope with a potentially very large set of operations depending
on aspects, annotations, etc., which may end in serious problems concerning overview and consis-
tency. It should be studied if e.g. atools and materialsmetaphor [B¨urkle et al. 95] could be used
to structure the user interaction in a comprehensible and intuitive way.

• Integration with tools in the language-near end of the activity spectrum, compilers, debuggers,
editors, etc., is vital for acceptance by developers.

• Presently Ragnarok relies on two-dimensional planes as physical space and simple rectangles as
landmarks, but a full three-dimensional model would be very interesting to investigate.

An interesting line of thought is looking at anevent modelthat suits the human mind better. Computer
systems generally provide a simple linear event model in which user interaction events are processed lin-
early (where events may be “unprocessed” like emacs “undo”). Humans however seldom work linearly.
Watching an artist creating a portrait you' ll notice how attention in a split second is moved from a large
line in the face to a tiny shadow somewhere else, and then back again. In system development and im-
plementation we often experience the same: In the middle of writing a code statement you get a brilliant
idea for something in a completely different part of the system. I term these events “quantum leaps of
the mind”. Mind mapsis a technique that allows you to write down ideas during a brain-storm where
you have many such quantum leaps without loosing the overview. I would like to research more on the
cognitive foundation for this aspect, and see if it is possible to provide some support for structuring and
maintaining overview of different lines of thoughts while allowing such quantum leaps.

One could also envisage language support. The ability to draw class diagrams suggests code gener-
ation abilities, dependencies could be inferred from the source code itself, etc. However the DEVISE
project already has state-of-the-art tools for these aspect, [Freja95] and [Sif94], and my interests are
more towards the overall aspects of management, project support, and user interface issues. However a
symbiosis would clearly provide a strong environment.

11 Conclusion
The main contributions of my work so far is thecontext-preserving approach to software configuration
managementand the use of aspatial metaphor and mapsin visualising the structure of a software project.

The continued use of the RCM tool and the good response it has received from both the ISA and the
DEVISE teams leads me to believe that the ideas are sound in the context of “small to medium sized”
projects. Hopefully they scale to larger projects especially when combined with the ideas outlined in sec-
tion 6. Both teams readily accept the underlying concepts of a component, hierarchical structure, version
control of dependencies as well as preserving context as a natural and intuitive fundament. However it is
very important to ground the ideas in further experiments in larger projects with more people.

Even with the limited use of the full user interface prototype I also think there is great potential in
the ideas, especially when they are combined with annotations. In my opinion they have the potential of
providing overview of the many aspects of large-scale systems in a natural and intuitive way.

So—with high hopes and some successes in the bag, I look forward to the next two years of work.

35

12 Acknowledgements
“To live in fear is a life half-lived”
From the film “Strictly ballroom”

There are two people who I need to thank more than anyone else.
The first one is my wife who (reluctantly) agreed to cope with a substantial cut in our income in order

for her husband to pursue some of his crazy ideas.
The second one is Erik Meineche Schmidt for giving me the chance of getting back intoacademia,

and providing guidance during the first period.

I am of course also in debt to Ole Lehrmann Madsen for being an enthusiastic supervisor and the
DEVISE group in general for providing feedback on my ideas and also guiding me through some of the
dark corners of BETA. Also thanks to Torben Worm, Karsten Telling Nielsen, Henrik Røn, and Stephan
Erbs Korsholm for enduring the early versions of RCM and providing valuable comments and many
good new ideas. Klaus Marius Hansen suggested the name “Ragnarok” for the environment.

36

References
[Andersen et al. 94] Peter Andersen, Lars Bak, Søren Brandt, Jørgen L. Knudsen, Ole L. Madsen,

Kim J. Møller, Claus Nørgaard, Elmer Sandvad,The Mjølner BETA System, in
[Knudsen et al. 93]

[Bendix95] Lars Bendix,Configuration Management and Version Control Revisited, PhD
dissertation, Institute of Electronic Systems, Aalborg University, Denmark, Dec.
1995

[Berliner90] Brian Berliner,CVS II: Parallelizing Software Development, in Proceedings of
USENIX Winter 1990, Washington D.C.

[Booch91] Grady Booch,Object Oriented Design, The Benjamin/Cummings Publishing
Company, Inc., 1991

[Booch et al. 95] Grady Booch, James Rumbaugh,Unified Method for Object-Oriented Devel-
opment, Documentation Set Version 0.8, Rational Software Corporation, Santa
Clara/CA, 1995

[Bürkle et al. 95] Ute B¨urkle, Guido Gryczan, Heinz Z¨ullighoven, Object-Oriented System De-
velopment in a Banking Project: Methodology, Experience, and Conclusions,
Human-Computer Interaction, Vol. 10, pp. 293-336, 1995

[Cagan95] Martin Cagan,Untangling Configuration Management, in [Estublier95]

[Christensen95] Henrik B. Christensen,A Retrospective Case Study: SAVOS, Internal work note,
Obtainable from the author.

[Dowson87] Mark Dowson,Integrated Project Support with IStar, IEEE Software Nov 1987,
p. 6-15

[Estublier95] J. Estublier (Ed.),Software Configuration Management, ICSE SCM-4 and SCM5
Workshops, Selected Papers, Lecture Notes in Computer Science 1005, Springer
Verlag 1995

[Floyd84] C. Floyd,A Systematic Look of Prototyping, in R. Budde, K. Kuhlenkamp,
L. Mathiassen, H. Zullighoven, (Eds.),Approaches to Prototyping, Berlin:
Springer-Verlag, 1984

[Freja95] Freja, An Object-Oriented CASE Tool, MIA 93-24(1.0), Mjølner Informatics Re-
port, 1995

[Furnas86] George W. Furnas,Generalized Fisheye Views, in [Mantei et al. 86]

[Gamma et al. 94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Elements of
Reuseable Object-Oriented Software, Reading, MA: Addison-Wesley, 1994

[Goldberg et al. 95] Adele Goldberg, Kenneth S. Rubin,Succeeding with Objects, Decision Frame-
works for Project Management, Addison-Wesley 1995

[Gustavsson90] Anders Gustavsson,Software Configuration Management in an Integrated Envi-
ronment, Dept. of Comp. Science, Lund University, Thesis, 1990

[Harel88] David Harel,On Visual Formalisms, Communications of the ACM, Vol. 31, May
1988

[Hedin et al. 94] G¨orel Hedin, Boris Magnusson,Direct interaction in the Orm programming en-
vironment, in [Knudsen et al. 93]

[Herbsleb et al. 95] James D. Herbsleb, Helen Klein, Gary M. Olson, Hans Brunner, Judith S. Olson,
Joe Harding,Object-Oriented Analysis and Design in Software Project Teams,
Human-Computer Interaction, Vol. 10, pp. 249-292, 1995

[Jacobson et al. 92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, GunnarÖvergaard,Object-
Oriented Software Engineering - a Use Case Driven Approach, Addison-Wesley
1992

[Joachim96] Joachim Sauter,Terra-Vision, privat comm., project description on WWW:
http://www.artcom.de:80/Welcome

[Jones et al. 86] William P. Jones, Susan T. Dumais,The Spatial Metaphor for User Interfaces:
Experimental Tests of References by Location versus Name, ACM Transactions
on Office Information Systems, Vol 4, No. 1, Jan 1986

37

[Knudsen et al. 93] J. Lindskov Knudsen, M. L¨ofgren, O. Lehrmann Madsen, B. Magnusson,Object-
Oriented environments - The Mjølner Approach, Prentice-Hall 1993

[Leblang et al. 87] David B. Leblang, Robert P. Chase Jr.,Parallel Software Configuration Manage-
ment in a Network Environment, IEEE Software, Nov. 1987, p. 28-35

[Lidskjalv95] Lidskjalv: User Interface Framework, MIA 94-27(1.1), Mjølner Informatics Re-
port, 1995

[Nardi et al. 93] Bonnie A. Nardi, Craig L. Zarmer,Beyond Models and Metaphors: Visual For-
malisms in User Interface Design, Journal of Visual Languages and Computing,
Vol. 4, No. 1, March 1993

[Nørmark89] Kurt Nørmark,Programming Environments – Concepts, Architectures and Tools,
R-89-5, IES, Aalborg University, April 1989

[Madsen et al. 93] Ole Lehrmann Madsen, Birger Møller-Pedersen, Kristen Nygaard,Object-
Oriented Programming in the Beta Programming Language, Addison Wesley,
1993

[Madsen94] Ole Lehrmann Madsen,The Mjølner BETA fragment system, in
[Knudsen et al. 93].

[Magnusson94] Boris Magnusson,The Mjølner Orm System, in [Knudsen et al. 93]

[Malhotra94] Jawahar Malhotra,Tailorable Systems: Design, Support, Techniques, and Appli-
cations, Ph.D. Thesis, DAIMI PB-466, Aarhus University, 1994

[Mantei et al. 86] Marilyn Mantei, Peter Orbeton,CHI'86 - Human Factors in Computing Systems:
Proceedings from a Conference, ACM, New York, 1986

[Maloney95] John Maloney,Morphic: The Self User Interface Framework, Sun Microsystem
Inc, 1995

[Mathiassen et al. 93] Lars Mathiassen, A. Munk-Madsen, P. A. Nielsen, J. Stage,Objektorienteret
Analyse, Forlaget Marko, 1993

[McKnight et al. 91] Cliff McKnight, Andrew Dillon, John Richardson,Hypertext in Context, Camp-
bridge University Press, 1991

[Meier91] Sid Meier,Civilization User Manual, MicroProse, 1991

[Meyer88] Bertrand Meyer,Object-oriented Sofware Construction, Prentice Hall Interna-
tional Series in Computer Science, 1988

[Miller95] Peter Miller,Aegis, A Project Change Supervisor, User Guide, version 2.3, 1995,
part of the Aegis distrubution, obtainable through various ftp-sites.

[Patton80] Michael Quinn Patton,Qualitative Evaluation Methods, Sage Publications, Bev-
erly Hills, Calif., 1980

[Mikkelsen et al. 89] Hans Mikkelsen, Jens O. Riis,Grundbog i Projektledelse, 3. udgave, 2. oplag,
Forlaget PROMET Aps, 1989

[Min ör et al. 93] Sten Min¨or, Boris Magnusson,A mode for Semi-(a)Synchronous Collaborative
Editing, Proceedings of Third European Conference on Computer Supported Co-
operative Work - ECSCW' 93, Kluwer Academic Publishers, 1993

[Prasuan et al. 93] Prasuan Dewan, John Riedl,Towards Computer-Supported Concurrent Software
Engineering, IEEE Computer, Jan. 1993

[Olsson94] Torsten Olsson,Group Awareness using Fine-Grained Revision Control, Pro-
ceedings of NWPER, 1994

[Reisberg87] D. Reisberg,External representations and the advantages of externalizing one's
thought, in Proceedings of the Cognitive Science Society, Seattle, Washington,
pp. 281-293, 1987

[Rumbaugh et al. 91] James Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen,Object-
Oriented Modeling and Design, Prentice-Hall International Editions, 1991

[SCM] J. F. H. Winkler (ed.),Proceedings of the International Workshop on Software
Version and Configuration Control, Grassau, West Germany, B. G. Teubner,
Stuttgart, Jan 1988

38

[Shneiderman83] Ben Shneiderman,Direct Manipulation: A Step Beyond Programming Lan-
guages, IEEE Computer, August 1993

[Sif94] Sif / A Hyper Structure Editor / Tutorial and Reference Manual, MIA 90-11(1.2),
Technical Report, Mjølner Informatics, 1994

[Smith et al. 95] Randall B. Smith, John Maloney, David Ungar,The Self-4.0 User Interface:
Manifesting a System-wide Vision of Concreteness, Uniformity, and Flexibility,
Conference Proceedings, OOPSLA' 95, ACM SIGPLAN Notices, Vol. 30, No.
10

[Sommerville89] Ian Sommerville,Software Engineering, (3rd edition), Addison Wesley, 1989

[Stallman84] Richard M. Stallman,EMACS: The Extensible, Customizable, Self-Documenting
Display Editor, in “Interactive Programming Environments” by D. R. Barstow,
H. E. Shrobe & E. Sandewall, 1984

[Tichy82] Walter F. Tichy,Design, Implementation, and Evaluation of a Revision Control
System, 6th Conference on Software Engineering, Tokyo, Japan, 1982

[Tichy88] Walter F. Tichy,Tools for Software Configuration Management, in [SCM]

[Ungar et al. 95] David Ungar, Randy B. Smith,SELF: The Power of Simplicity, Lisp and Sym-
bolic Computation, 4, 3, 1991

[Vessey et al. 95] Iris Vessey, Ajay P. Sravanapudi,CASE Tools as Collaborative Support Tech-
nologies, Communications of the ACM, January 1995/Vol. 38, No. 1, p. 83

[Winkler et al. 88] Jürgen F. H. Winkler, Clemens Stoffel,Program-Variants-in-the-Smallin [SCM]

39

A Colour images
The next two pages are colour image screen shots of Ragnarok; LATEXcould not be persuaded to print
them properly in landscape mode, so the captions are given here instead:

1. Colour version of figure 8.

2. A somewhat more elaborate Ragnarok screen shot where the user has checked-out component
Landmark for modification (“obtained a lock”). The colour coding of map 4 showing version
control aspect indicates components directly-modified (red), indirectly modified (yellow) and not
modified (green) after Landmark has been locked.

40

