
Dynamic Reflection for a Statically
Typed Language

Søren Brandt and René W. Schmidt

Department of Computer Science
University of Aarhus

DK-8000 Aarhus C, Denmark

Abstract

We present a runtime metalevel interface for BETA. BETA is a com-
piled and statically typed object-oriented programming language. The
metalevel interface preserves the type safe properties of the language and
supports static type checking. This is achieved through a novel language
construct, the attribute reference, on top of which the metalevel interface is
built. The metalevel interface is based on a simple conceptual model that
reifies a few basic language primitives. For the implementation, a met-
alevel architecture based on a virtual machine view of the runtime system
is introduced. In this model, an open implementation of compiled language
is achieved by providing the runtime virtual machine with a metalevel in-
terface supporting runtime reflection.

1 Introduction

Reusability is a main ingredient in most scientific and technical disciplines. Sci-
entific theories are building blocks for a deeper understanding of various systems,
well-engineered technical devices serve as building blocks for larger systems, and
software components should in general be able to form part of multiple end-user
applications. The keywords are modularity, extensibility, and tailorability.

Structured programming turned modularity into the single most important
program design principle. Extensibility and tailorability are major reasons for
the recent success of object-oriented programming, which allows the programmer
to treat new classes as built-ins, and tailor existing classes through subclassing
and similar mechanisms.

However, while object-oriented programming languages provide excellent fa-
cilities for expressing abstractions in many application domains, most languages
fall short in the disciplines of extensibility and tailorability of their own domain.

1



Class

Object

Object

MLI

Runtime System

checkpoint

Store

Persistent

Figure 1: A Persistent Store using runtime metalevel information.

Extension of a programming language with new type-orthogonal functionality
such as persistent storage, generic object copying, or distribution is typically not
possible. Common for these functionalities are that they all depend on metain-
formation and possibly implementation details of the language. To circumvent
language limitations, the programmer is often forced to use source code prepro-
cessing, special compilers, or new runtime systems.

This paper presents MetaBETA, an open implementation [Kiczales 92] of
the BETA language [Madsen et al. 93]. By providing a metalevel interface,
MetaBETA extends the BETA language with support for writing abstractions
for the language directly in the language.

The metalevel interface (MLI) is an abstract interface to the implementation
of a running program. Through the introspective part of the MLI, programs can
get an abstract description of the layout of any object. Through the intercessory
part, basic language primitives such as object invocation, creation, and destruc-
tion can be changed. Figure 1 depicts a persistent store utilizing the introspective
interface to access type information, thereby being able to serialize arbitrary ob-
jects to stable storage. In MetaBETA, the metalevel interface is runtime based, so
the persistent store can serialize any object, independent of its class and creator.
Access to source code is not necessary.

BETA is a statically typed1 and compiled language. It is designed for
programming-in-the-large, with explicit type annotations to make source code
easier to read, maintain, and debug. Thus, adding a MLI raises two major con-
cerns: i) seamless integration of the MLI with the existing type system, and ii)
performance retention.

Our approach to handling these concerns is outlined in the next section,
where we present the MetaBETA conceptual model and its motivation. Section 3
presents the metalevel interface. Section 4 introduces the metalevel architecture,
which is a runtime organization of a compiled program that supports the met-

1With statically typed we mean that most type checks are done at compile time. As is the
case with, e.g., Eiffel [Meyer 92] and Java [Arnold & Gosling 96], only partial compile-time
checking is possible, because subclasses may strengthen the type of inherited attributes. I.e.,
BETA allows covariant class hierarchies.

2



alevel interface. Section 5 describes the current status of the project along with
preliminary performance results. Section 6 summarizes related work. Finally,
Section 7 presents our conclusions.

2 Design and Motivation

Th lack of extensibility and tailorability of the current BETA implementation was
recognized during the design and implementation of a number of substrate sys-
tems for the Mjølner BETA system, including: type-orthogonal persistence [Brandt
94, Grønbæk et al. 94], distributed object system [Brandt & Madsen 94], an
embedded interpreter [Malhotra 93], a source-level debugger, and object- and
class-browsers.

These tools manipulate objects in a type-independent manner, and currently
depend on the memory layout of objects, as well as other implementation details.
Such dependencies severely compromises portability and type-safety. A common
trait of these tools is that they all work at the metalevel, using parts of a running
BETA program as data. Our work on MetaBETA is aimed at identifying the
core metalevel functionality needed by these systems, and to support those needs
through a type-safe metalevel interface.
Example 1 A type-orthogonal library such as object distribution must be ap-
plicable to any class, even if that class was written without distribution in mind,
and even if the source code is not available. Hence, the library must be able to
handle object in a type generic fashion. 2

The design criterias for the metalevel interface was that it should be simple,
dynamic, and efficient. By simple, we mean an interface that is easy to use and
understand, i.e., well integrated into the existing language. Albeit the metalevel
is to be used only for special purposes, it should be a tool for all programmers,
and not limited to “kernel-hackers”. By dynamic, we mean that metalevel com-
putation is a property that can be added to individual objects or sets of objects
at runtime. By efficient, we mean that the performance impact of using the MLI
must not be prohibitive, and the overhead of reflectional capabilities should only
be paid on use.

Our MLI builds on two concepts: first-class type information and runtime
events.

The introspective part of the MLI provides a way to obtain runtime access to
class-definitions and type-annotations as they existed in the source code. Type-
information is reified by pattern references and attribute references. In BETA,
patterns2 are already first-class values, while attribute references are introduced in
MetaBETA to turn attributes3 into first-class values as well. Attribute references

2Similar to a Class in this context. Patterns are described in Section 3.
3Similar to slots in CLOS terminology.

3



object

reflector

object

reflector

reflector

object

(ref)

(ref)

(ref)

invocation

invocation

invocation

Baselevel:

Metalevel:

Metametalevel:

Figure 2: Reflectors and Metalevels.

are the only syntactical difference between BETA and MetaBETA, and integrate
seamlessly into the existing type system.

To expose implementation primitives, the intercessory part of the MLI uses
reflectors. A reflector is an ordinary programmer-defined BETA object that can
be hooked into the runtime system to be automatically invoked whenever a given
event occurs. MetaBETA defines three different events, associated with the lan-
guage primitives object creation, object invocation, and object reclamation. In-
stead of having a metaobject that controls the execution of each object, there
exist a metaobject for each reified language primitive. Thus, reflection can be
performed on just parts of an object, making it easier to structure metacode and
to control the performance overhead.

Figure 2 despicts the use of reflectors to control object invocation: Normally
(baselevel), an object is invoked directly. If a reflector is associated with the
invocation-event for a given object, the reflector is invoked instead of the object
itself. The reflector is responsible for invoking the object, but is not required to
do so. Because a reflector is an ordinary BETA object, it is possible to associate
a reflector with a reflector-invocation-event, allowing, in effect, metametalevel
computation and so on.

3 The Metalevel Interface

This section describes the set of primitives reified by the MetaBETA MLI.
MetaBETA programs access the MLI through the globally visible MLI object.

4



Attribute references and pattern references are used as the foundation of the
metalevel interface, and are described in Sections 3.1 and 3.2. The MLI itself is
presented in Sections 3.3 and 3.4.

3.1 Patterns and Pattern References

BETA source code is a collection of patterns. The pattern is a unifying abstraction
for concepts such as class, method, virtual method, exception, coroutine, and
generics. A pattern P is declared as follows:

P: Super (#
(* attribute list *)
enter In
do (* do-part *)
exit Out
#)

where Super defines an optional superpattern for P, In is an optional enter-list
(formal parameters), and Out is an optional exit-list (return values). The do-part
of a pattern consists of imperative code executed by instances of P.
Example 2 Figure 3 shows how patterns are used to model both classes and
methods. The Calc pattern is used as a class. It has a single nested pattern
add which is used as a method. There is no syntactical difference between class
patterns and method patterns. The only difference is their usage. Figure 3 also
declares an instance, aCalc, of the Calc pattern, and calls its add method. The
return value from add is assigned to the integer variable res. Note, that the
BETA assignment operator, ->, assigns from left to right. 2

Calc: (* Calc is a class pattern *)
(# add: (* add is a method pattern *)

(# a,b,c: @Integer;
enter (a,b)
do a+b->c;
exit c
#);

#);
aCalc: @Calc; (* aCalc is an object *)
res: @Integer;

do (5,4)->aCalc.add->res;

Figure 3: The Calc pattern.

Dynamic pattern references turn patterns into first-class values. Given a dy-

5



namic pattern reference, it is possible to create instances of the referred pattern,
and to check subpattern relationships by comparing it with another pattern ref-
erence. The code below declares a dynamic pattern reference, calcP, assigns the
Calc pattern to calcP, and finally creates an instance of Calc:

calcP: ##Calc; (* Pattern reference *)
aCalc: ^Calc; (* Object reference *)

do Calc##->calcP##;
&calcP[]->aCalc[];

A pattern reference implicitly denotes the set of objects that are instances of
the referred pattern (the extension set), and may therefore be used to denote the
set of objects a given metalevel operation operates on4.

3.2 Attribute References

Dynamic pattern references allow programs to explicitly talk about patterns. The
MetaBETA MLI also needs to explicitly talk about attributes of patterns. For
this purpose we add a new language concept, the attribute reference, to the BETA
language.

Attribute reference declarations are typed to allow the compiler and program-
mer to make assumptions concerning the kind of attribute referred by a particular
attribute reference. Metalevel code thereby becomes more readable, and the com-
piler will be able to generate efficient, type-safe code. An attribute reference is
declared as:

attr_ref: .loc_qua*attr_qua

The syntax includes three qualifications:

1. loc qua, the (optional) location qualification. The attribute referred by
attr ref must be an attribute of the pattern loc qua, or of some super-
pattern of loc qua.

2. The kind qualification, shown as * in the declaration of attr ref, constrains
the attribute reference to refer specific kinds of attributes. Examples of
attribute kinds are dynamic (^) and static (@) object references.

3. attr qua, the (optional) attribute qualification, constrains the qualification
of the attribute referred by attr ref. For example, an attribute reference

4To allow pattern references that denote more general extension sets than those correspond-
ing to pattern extensions, the MetaBETA pattern reference mechanism has been generalized
into a type reference mechanism, as described in [Brandt & Knudsen 96]. The generalized
mechanism allows pattern references with single-element extension, and pattern references cor-
responding to sets of patterns.

6



Person: (# ... #);
Family:
(# mother: ^Person;

father: ^Person;
child: ^Person;

#);
aFamilyPerson: .Family^Person;

Figure 4: Example of an Attribute Reference.

may be qualified to refer only attributes referring text objects.

Example 3 The MetaBETA fragment in Figure 4 declares the patterns Person
and Family, and the attribute reference aFamilyPerson. Families have attributes
mother, father, and child, each of which are dynamic references to person ob-
jects. The attribute reference aFamilyPerson has location qualification Family,
kind qualification “dynamic object reference”, and attribute qualification Person,
which qualifies it to refer any of the family attributes. The attribute reference
can be used as:

aFamily: @Family;
aPerson: ^Person;

do ...
Family.mother:->aFamilyPerson;
aFamily.(aFamilyPerson)[]->aPerson[];

First, the Family.mother attribute is assigned to the aFamilyPerson attribute
reference. Then, aFamilyPerson is applied to the aFamily object, thus returning
a reference to the mother in aFamily. In this example, all necessary type-checking
can be done at compile-time due to attribute reference qualifications. 2

Using the syntax:

uc_attr_ref: .?

we may declare an unconstrained attribute reference that is allowed to refer any
kind of attribute, including attribute reference attributes themselves.

3.3 Introspective Capabilities

An executing program can access metainformation about itself by using the in-
trospective capabilities. Metainformation is represented as pattern and attribute
references. The MLI allows extraction of complete object descriptions modulo
the do-parts.

7



Introspecting Attribute References Given an attribute reference, the BETA
MLI allows extraction of the name of the attribute, the qualification of the at-
tribute, and the attribute kind. Qualifications are returned as dynamic pattern
references that, e.g., can be compared against known patterns to locate attributes
of specific types in an object.

Introspecting Pattern References Given a pattern reference, p, it is possible
to scan the attributes that exist in instances of p. For each attribute of p,
an attribute reference, ar, is returned. Persistent stores, object browsers, and
schema evolution tools, to mention a few, can use this to handle objects in a type
independent manner.

The scanDyn method of the MLI provides a way to scan all object reference
attributes of a pattern:

scanDyn:
(# current: .^;
enter (p:##Object)
do ... INNER ...
#);

The scanDyn iterator pattern calls INNER for each attribute of the pattern p5.
Example 4 To print the names of all dynamic object reference attributes of the
Family pattern, we can write:

Family##->MLI.scanDyn (#
do current->MLI.AttrName->screen.putline;
#);

This will print out the text strings mother, father, and child. The real MLI
allows subpatterns of scanDyn to strengthen the qualification of current, thus
supporting static type-checking of code inside subpatterns of scanDyn that use
current to access object attributes. 2

3.4 Intercessory Capabilities

The intercessory capabilities opens up the runtime system, providing access to the
implementation of language primitives. The MLI provides an abstract interface to
the implementation of object creation, object execution, and object destruction.

The MLI presents each reified primitive by: i) a controller object in the run-
time system; ii) a reflector pattern, which is used as superpattern for user-defined

5Execution of a method m always starts at the least-specific specialization of m, and con-
tinues down the specialization-chain at each INNER imperative. An INNER imperative for which
no specialization is specified corresponds to the empty imperative.

8



reflectors; iii) a method that directly executes the reified primitive; and iv) a
method that invokes the default implementation of the primitive, shortcutting
the reflectional mechanisms. Table 1 summarizes the intercessory mechanisms
supported by the MetaBETA MLI. These mechanisms are described in detail in
the following sections.

Primitive Controller Reflector Callable Int. Default Impl. Int.
Obj. Creation AllocCntr AllocReflector & defaultAlloc
Obj. Execution ExecCntr ExecReflector exec defaultExec
Obj. Deletion GCCntr GCReflector N/A N/A

Table 1: MetaBETA Intercession Primitives.

3.4.1 Object Creation

A new BETA object is created with the & operator. In MetaBETA, & is reified,
allowing user-defined code to be executed in response to & invocations. The user-
defined code is presented to the metalevel interface in the form of instances of
the AllocReflector pattern:

AllocReflector:
(# type:< Object;

onAlloc:< (#
enter (new:^type)
do INNER;
#);

#);

Invocation of AllocReflector objects is controlled by the AllocCntrmetaob-
ject whose interface is shown in Figure 5. An AllocReflector is inserted into
the runtime system by the AllocCntr.register method. As a parameter,
AllocCntr.register takes a pattern reference q, and an AllocReflector refer-
ence ar. The q parameter determines the object creations that should trigger the
ar.onAlloc virtual6: When objects of type q is created, ar.onAlloc is called
with the new object as parameter.

In case several reflectors apply to an object creation, those registered with
the most general q are executed first. If several AllocReflectors are registered
with the same q, they are called in last-registered-first-called order.
Example 5 In Figure 6, the reflectors VehicleAR and CarAR are registered to re-
flect on, respectivly, the allocation of Vehicle and Car objects. Then, a Vehicle

6onAlloc is a virtual pattern, as determined by :<, and can be specialized in subpatterns
of AllocReflector.

9



AllocCntr: @
(# register: (#

enter (q:##Object,
ar:^AllocReflector)

exit (reflId: @Integer)
#);

remove: (#
enter (reflId: @Integer)
#);

#);

Figure 5: AllocCntr interface.

and a Car is created. The Vehicle creation only triggers VehicleAR.onAlloc,
whereas the Car creation triggers VehicleAR.onAlloc and then CarAR.onAlloc,
since Vehicle is a superpattern of Car. As a result of executing Figure 6,

A: Vehicle
B: Vehicle Car

is therefore printed to the screen. 2

The AllocCntr allocates the new object before any AllocReflector is called.
Hence, reflectors cannot change the type or size of a newly created object, a
limitation which avoids severe performance penalties. In particular, the size
and type of new objects must be known at compile-time, to allow objects to be
statically inlined in other objects and to support type-inference.

Implementation: AllocReflectors can be efficiently implemented by adding
an extra word to the runtime class representation. Figure 7 illustrates the runtime
data structures built in response to the registration of the two AllocReflectors
from Figure 6.

The registration of VehicleAR installs a reference from the Vehicle class
object to VehicleAR, and a reference from the Car class object to VehicleAR,
since Car is a subclass of Vehicle, and since a more specific AllocReflectorwas
not already installed for Car. The subsequent registration of CarAR overwrites the
reference from the Car class object to VehicleAR, since the VehicleAR reference
was “inherited” from the Vehicle class object. If multiple reflectors are registered
with the same class, this will be represented as a linked list of reflectors.

Testing for an AllocReflector can now be implemented as a constant-time
check for the presence of a reflector in the runtime class representation for
the newly created object. However, this overhead will negatively affect non-
reflective applications, and is therefore not acceptable. However, by exploit-

10



VehicleAR: @MLI.AllocReflector
(# onAlloc:: (#

do ’ Vehicle’->screen.puttext;
#);

#);
CarAR: @MLI.AllocReflector

(# onAlloc:: (#
do ’ Car’->screen.puttext;
#);

#);
aVehicle: ^Vehicle;
aCar: ^Car;

do (Vehicle##,
VehicleAR[])->MLI.AllocCntr.register;

(Car##,
CarAR[])->MLI.AllocCntr.register;

’A: ’->screen.puttext;
&Vehicle[]->aVehicle[];
’\nB:’->screen.puttext;
&Car[]->aCar[];

Figure 6: AllocReflector Example

ing the copying collection scheme used in the youngest object generation of the
Mjølner BETA System, an implementation with no overhead on non-use can be
achieved. In BETA, object creation is efficiently performed by bumping the top-
of-heap pointer with the instance size retrieved from the class object, followed
by a check that no heap-overflow occurred. In MetaBETA, this implementa-
tion is unchanged, and thus no additional overhead is imposed. However, if an
AllocReflector is installed in a class object, we arrange for the class object to
return an instance-size large enough to force a heap-overflow. On heap-overflow,
an extra check will determine whether it is actually time for a garbage-collection,
or whether an AllocReflector is to be invoked.

3.4.2 Object Execution

MetaBETA allows programmer defined ExecReflector objects to be invoked on
object execution events, so the default implementation can be specialized. An
ExecReflector is defined as:

11



Class Vehicle

Class Car

VehicleAR

Class Object

Application Class Hierarchy

MLI AllocCntr

CarAR

Application

RTS

Figure 7: AllocCntr Runtime Representation.

ExecReflector:
(# type:< Object;

onExec:<
(# callNextReflector: (# do ... #);
enter (method:^type, dp:##Object)
do INNER
#);

#);

The ExecCntr metaobject is responsible for invoking the onExec virtual when
specific do-parts are executed. To understand the exact ExecReflector seman-
tics, we first take a closer look at BETA method execution.

The method call (5,4)->aCalc.add->res7 (from Figure 3) is executed in the
following steps:

1. A new instance, method, of the aCalc.add pattern is created8. method is
an ordinary BETA object playing the role of an activation record.

2. The actual input list, (5,4), is evaluated and assigned to the formal enter
list of method, thus assigning 5 to method.a and 4 to method.b.

3. The do-part of method is executed, assigning 9 to method.c.

4. The formal exit list, (c), of method is evaluated and assigned to the actual
output list (res). Hence, the value of method.c is assigned to res.

Notification of ExecReflector objects embraces step 3 above. This allows
the ExecReflector to query and change the value of attributes of the method
object before and after its execution, and, if necessary, to actually execute the
method object itself. Thus, the ExecCntrmetaobject exposes three aspects to the

7Syntactic sugar for (5,4)->&aCalc.add->res, & being the object creation operator.
8If add had been a virtual pattern, the allocation step would include a table lookup to

retrieve the exact binding of add.

12



scrutiny of ExecReflectors: The state of the method object before execution,
the actual execution of the method, and the state of the method object after
execution.

ExecCntr: @
(# register:

(# conflict:< Exception (#
enter (cfl:^ExecReflector)
do INNER
#)

enter (dp:##object,
er:^ExecReflector,
active:@Boolean)

do ...
exit (reflId:@Integer)
#);

remove: (#
enter (reflId:@Integer)
do ...
#);

#);
exec: (#
enter (method:^Object, dp:##Object)
do ...
#);

defaultExec: (#
enter (method:^Object, dp:##Object)
do ...
#);

Figure 8: ExecCntr interface.

The ExecCntr interface is shown in Figure 8. To register an ExecReflector,
metalevel code calls ExecCntr.register with a do-part specification dp, an
ExecReflector parameter er, and a boolean parameter active. Then, when-
ever an object that qualifies to dp is about to execute the dp do-part, ExecCntr
calls the er.onExec virtual with the method object and do-part to be executed
as parameters.

The active parameter to ExecCntr.register reflects whether er handles the
execution of method objects itself, or whether it simply monitors object execution
events.

If several ExecReflectors apply, passive reflectors are executed in the same
order as described for AllocReflector objects. An ExecReflector passes on

13



control to the next reflector in the chain by calling callNextReflector. When
all passive reflectors have been executed, callNextReflector passes on control
to a possible active reflector. It is called last since it is responsible for actually
executing the object. If no active reflector applies, the method object is automat-
ically executed when the last passive ExecReflector calls callNextReflector.
Usually there should be at most one active reflector applicable. If more than one
is registered, the conflict exception will be raised at registration time. How-
ever, by catching and ignoring or explicitly sorting out conflicts, it is possible to
register several active reflectors applying to the same object execution.

exec is a procedural interface to the object execution primitive. It executes
the do-part of an object starting at a specified level of the specialization chain.
Using exec to execute an object will trigger possible ExecReflector’s installed
for the object, whereas defaultExec will not. These methods can be used by
active programmer-defined onExec methods to execute an object.

addER: @MLI.ExecReflector
(# type:: Calc.add;

onExec:: (#
do method.a->screen.putint;

method.b->screen.putint;
callnextReflector;
method.c->screen.putint

#);
#);

aCalc: @Calc;
res: @Integer;

do (Calc.add##,
addER[],FALSE)->MLI.ExecContr.register;
(1,2)->aCalc.add->res;

Figure 9: Using an ExecReflector.

Example 6 Assume that we want to monitor calls to the add method of Calc
objects from Figure 3. To do so, an ExecReflector is associated with a dynamic
pattern reference to Calc.add, as shown in Figure 9. Execution of Calc.add
instances is then redirected into execution of addER.onExec, whose method pa-
rameter will refer the aCalc.add instance about to be executed. addER.onExec
prints the parameters to the method call, and then calls callNextReflector
to execute the method object. Notice how addER specializes the type virtual to
Calc.add, giving onExec static knowledge of the attributes of the method object.

The registration of addER shown in Figure 9 makes addER reflect on the exe-
cution of the add method of any Calc instance. Alternatively, if reflection is only

14



wanted for a specific Calc instance, e.g., aCalc, then addER can been registered
as:

do (aCalc.add##,addER[],FALSE)
->MLI.ExecContr.register;

The difference is that the latter uses the aCalc.add## qualification, whereas
Figure 9 used the more general Calc.add## qualification. Reflection happens on
the same do-part, but the extension of aCalc.add is smaller than the extension
of Calc.add, thereby restricting reflection to take place on a smaller set of object
executions. 2

Example 7 The following code shows an ExecReflector that might be used
to implement object distribution. Methods to be executed in a remote address
space are packed and sent to the remote host for execution:

DistER: @MLI.ExecReflector
(# onExec:: (#

do method[]->packAndSendToRemoteHost
#);

#);

On the remote host, the method object would get unpacked, executed, (using
exec or defaultExec), and finally sent back. DistER is an active ExecReflector,
and the following code registers the aCalc.add method for remote execution:

do (aCalc.add##,DistER[],TRUE)
->MLI.ExecContr.register;

2

Implementation Execution reflection is implemented by runtime code modi-
fications. Since patching does not occur until an ExecReflector is installed, and
patches are undone when the ExecReflector is removed, there is no overhead
for programs that do not use the mechanism.

Reconsider Example 6: It was demonstrated that we could either choose to
reflect on the execution of all add methods, using the qualification Calc.add##,
or we could choose to reflect only on the execution of the add method of a specific
Calc object, using the qualification aCalc.add##. In any case, the code patch
will be applied to the piece of machine-code that implements the add do-part.
Thus, to reflect on aCalc.add## executions, patch code must verify that the
current execution does not correspond to the execution of the add method of a
Calc instance different from aCalc, before invoking the installed reflector. As a
result, reflection on the aCalc.add## qualification will induce an overhead on all

15



methods qualifying to Calc.add##. Preliminary measurements in Section 5 will
illustrate this point.

3.4.3 Object Reclamation

The GCCntr metaobject shown in Figure 10 allows MetaBETA programs to mon-
itor the reclamation of specific objects. BETA is garbage-collected, so objects
are never explicitly deallocated.

GCReflector:
(# onReclaim:< (#

enter (reflId: @Integer)
do INNER
#);

#);
GCCntr: @
(# register: (#

enter (obj: ^Object,
gr: ^GCReflector)

exit (reflId: @Integer)
#);

query: (#
enter (reflId: @Integer)
exit (obj:^Object)
#);

remove: (#
enter (reflId: @Integer)
#);

#);

Figure 10: GCCntr interface.

To register a GCReflector, metalevel code calls GCCntr.register with an
object parameter obj and a GCReflector parameter gr. Then, when obj be-
comes garbage, gr.onReclaim is called, and passed the reflId to identify the
dead object. reflId is a unique receipt for the registration of a reflector, and
can be used to remove a reflector or to obtain a direct reference to the object
corresponding to reflId, using GCCntr.query. In this way, reflId can be seen
as a weak object reference.

GCCntr does not allow garbage-collection of an object to be prevented, since
this would introduce problems comparable to those of incremental and concurrent
garbage-collection. Likewise, GC-tracing of all instances of some pattern is not

16



(a) (b)

Application

RTS

Libs

Operating System

RTSLibs

Application

Operating System

Baselevel Interface

Metalevel Interface

Figure 11: System Structures for: (a) a traditional compiled language, and (b)
the metalevel architecture.

supported: In the case of a copying garbage-collector, that would require an
expensive scan of all garbage after each collection.

Functionality corresponding to GCCntr already exists in the current BETA im-
plementation, and is used by the source code debugger to track objects. However,
the functionality is not available through a public interface.

4 The Metalevel Architecture

The implementation of a program with a runtime metalevel interface must main-
tain a causal connection to the metainformation at run-time. However, for most
compiled languages, there is no specific component responsible for executing the
code and maintaining the metainformation. The compiler generates machine-
code to be executed directly by the processor.

The MetaBETA metalevel architecture is a runtime organization for compiled
languages that supports a metalevel interface by making the runtime system re-
sponsible for code execution and metainformation maintenance. The organization
is very similar to the implementation of most semi-interpreted and dynamically
typed languages, such as CLOS [Kiczales et al. 91] and Smalltalk [Goldberg &
Robson 89].

4.1 Runtime Organization

We think of the runtime system as a virtual machine extending the underlying
operating system. In the same way as binary programs may be considered data
to be executed by the operating system, we can think of compiled programs as
data to be executed by the runtime system. Conceptually, the runtime system is

17



responsible for executing the compiled code. In practice, it hands the machine-
code part of the compiled program to the underlying CPU for direct execution.

The virtual machine view of the runtime system induces a different system
structure than for traditional compiled languages. The difference is shown in
Figure 11. For a traditional compiled language, the application runs directly
on top of the operating system, supported by the runtime system (RTS) and
libraries. The runtime system, operating system, and libraries are viewed as
black box implementations, i.e., they can only be accessed through baselevel
interfaces. In the metalevel architecture (Figure 11b) the runtime system is the
central component. It is responsible for running the application and providing
metainformation to the application and libraries through its metalevel interface.
The runtime system and libraries can also use a metalevel interface provided by
the operating system [Kiczales & Lamping 93].

The benefit of the virtual machine view is that it conceptually as well as
in practice defines an entity to provide the metalevel interface for a compiled
program.

4.2 The Runtime System

A central responsibility of the runtime system is to load and link compiled
MetaBETA code. The compiler generates code to the MetaBETA runtime sys-
tem, not to the operating system. A special code-format is used that contains the
usual machine-code part, and also the metainformation needed by the metalevel
interface.

Thus, the runtime system is the only executing program seen by the operat-
ing system. To execute a compiled MetaBETA program, the runtime system is
started from the command-line with a parameter specifying which application it
has to load and execute. This is in contrast to a traditional compiled language
where the compiler generates executables for each application.

Since the runtime system is responsible for linking and loading code it can
maintain and update the metainformation for a given program execution. Fur-
thermore, it knows the code-layout in memory so runtime code-modification can
be implemented efficiently.

5 Status

The implementation of MetaBETA is underway. Our strategy is to make pro-
totype implementations of specific parts of the metalevel interface by extending
the current Mjølner BETA implementation. This approach allows us to quickly
implement and test parts of the MLI, and to verify the design on real metacode.
Also, several implementation issues can be tested and verified independently. We

18



are also working on a detailed design for the BETA virtual machine, i.e., the
code-format, the loader, and the internal representation of metainformation.

w/ Overhead
Pattern NormalReflector Total Patch

Pattern Reflection
A 1.04 3.25 212% 16%
B 1.29 3.47 167% 15%

Object Reflection
objA 0.29 2.43 738% 19%
objA′ 0.29 0.40 - 40%

Table 2: Reflector Overhead. Times are in µsecs and is measured on a 75MHz
SparcStation 20.

A working prototype of the ExecReflector has been implemented with the
main purpose of examining the overhead of inserting reflectors at runtime by
patching binary code9. To determine the overhead, we have measured the over-
head of reflecting on a specific pattern (Pattern Reflection), and on a specific
instance of a pattern (Object Reflection). The results are shown in Table 2. The
patterns A, B, and Refl are defined as follows:

A: (# do INNER #);
B: A(# do INNER #);
Refl: @MLI.ExecReflector (#

onExec:: (# do callNextReflector #);
#);

For pattern reflection we both measure the time to execute a top-level pattern
A, and its subpattern B, because the BETA compiler generates a different call
sequence for code called through INNER.

Most of the Total Overhead shown in Table 2 is the inherent overhead of
creating and invoking the Refl.onExec method, which takes 1.73 µsecs. Thus,
the patch-code overhead is Tw/reflector − (Tnormal + TRefl). It is shown in percent
in the last column.

Reflection on execution of a single object requires that the patch code checks
whether it actually applies to the current object execution. This overhead is
measured under Object Reflection: objA and objA′ are both instances of the A
pattern, but only execution of objA is reflected upon. The time for executing an
existing object is much faster than object creation and execution, because it does
not require a new object to be allocated. Hence, the total overhead is much worse

9The prototype does not as yet support dynamic link and load of code.

19



than for pattern reflection. Installing a reflector on a specific object introduces
an invocation overhead of 0.11 µs on other objects of the same type.

We expect these preliminary numbers to be acceptable as compared to the
overhead of, e.g., implementation of object distribution by other means. However,
to verify this claim, future work includes the implementation of distributed BETA
based on MetaBETA abstractions.

6 Related Work

The work presented in this paper is related to a number of previous research
efforts in reflective language design and implementation. How they relate to
MetaBETA is described in the following.

CLOS [Kiczales et al. 91] includes a comprehensive metalevel interface, (the
CLOS MOP, or metaobject protocol), which allows the metalevel programmer
to inspect and change several primitives of the programming language, including
redefinition of slot access, multiple inheritance semantics, and replacement of
metaclasses. The CLOS MOP greatly influenced the design of the introspective
part of the MLI. However, the scope of the intercessory parts in BETA is on
purpose much more limited, because we do not aim at changing fundamental
language semantics such as inheritance order and scoping rules. Our focus is
more on opening up the implementation of a few basic language primitives.

Also, BETA is statically typed, whereas CLOS is dynamically typed, lead-
ing to a considerably different style of metalevel interface. Most notably, the
BETA MLI allows, but does not force, the metalevel programmer to express
static typing constraints, thereby leading to more readable and possibly more
efficient metalevel code. ABCL/R2 [Masuhara et al. 92], AL-1/D [Okamura
et al. 93], and SELF [Hölzle & Ungar 94] are further examples of dynamically
typed programming languages with reflectional capabilities. As with CLOS, the
most notable difference between the metalevel interfaces of these languages and
MetaBETA, is the issue of static versus dynamic typing.

Open C++’s [Chiba 93] (version 1) concept of reflect methods was the direct
inspiration for the reflector mechanism used in MetaBETA to reify basic lan-
guage primitives. A reflector in MetaBETA controls the implementation of a
specific language primitive, which is similar to the CodA [McAffer 95] system for
Smalltalk.

The newest version of Open C++ [Chiba 95] implements a compile-time metaob-
ject protocol, with metalevel code controlling the compilation of baselevel code.
A similar approach is used in the START system [Kirby et al. 94], implemented
for the Napier88 language [Morrison et al. 93]. These systems offer compile-time
reflection, and thus assumes that the metalevel is statically known. In compari-
son, MetaBETA is entirely dynamic, with reflective hooks inserted at run-time,
i.e., MetaBETA offers later binding than systems based on compile-time reflec-

20



tion. ABCL/R3 [Masuhara et al. 95] may be seen as a combination of the two
approaches: Partial evaluation attempts to compile away interpretation of the
metalevel, whereas different code-versions support runtime change of metaob-
jects.

The C++ concept of pointers to members may be considered a restricted ver-
sion of attribute references, which the MetaBETA MLI is based on. However, the
absence of runtime type information, run-time type checking, and restriction to
function members renders C++ pointers to members less powerful than attribute
references.

7 Conclusion

This paper desribed an extension of the statically-typed and compiled language
BETA with a metalevel interface. Our metalevel interface is based on first-class
attributes and classes, which allows metalevel computations to be easily inte-
grated into the existing language without circumventing or changing the existing
type-system.

Our metalevel interface is a runtime entity giving a running program access to
the representation of objects. The use of the metalevel interface does not require
access to source code. This provides a large flexibility that allows metalevel code
to be applied to classes written before the metalevel code itself.

Previous metalevel interfaces for statically typed languages have either cir-
cumvented the language type-system, or has been based on a compile-time MLI.
With the introduction of attribute references, MetaBETA provides a both run-
time based and type-safe metalevel interface for statically typed languages.

Acknowledgements

We would like to thank Ole Lehrmann Madsen and Jørgen Lindskov Knudsen
who read earlier versions of this paper and provided many valuable comments.

References

[Arnold & Gosling 96] K. Arnold and J. Gosling. The Java Programming Lan-
guage. Addison-Wesley Publishing Company, Reading, MA, March
1996.

[Brandt & Knudsen 96] S. Brandt and J. L. Knudsen. Patterns and Qualifica-
tions in BETA: A Case for Generalization. In Proceedings of the Ninth
European Conference on Object-Oriented Programming (ECOOP), July
1996.

21



[Brandt & Madsen 94] S. Brandt and O. L. Madsen. Object-Oriented Dis-
tributed Programming in BETA. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors, Lecture Notes in Computer Science 791, pages 185
– 212. Springer-Verlag, January 1994.

[Brandt 94] S. Brandt. Implementing Shared and Persistent Objects in BETA —
Progress Report. Technical report, Department of Computer Science,
University of Aarhus, May 1994.

[Chiba 93] S. Chiba. Designing an Extensible Distributed Language with a Meta-
Level Architechture. In O. Nierstrasz, editor, Proceddings of the 7th
European Conference on Object-Oriented Programming, volume 707 of
LNCS, pages 482 – 501. Springer-Verlag, July 1993.

[Chiba 95] S. Chiba. A Metaobject Protocol for C++. In Proceedings of the 10th
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), October 1995.

[Goldberg & Robson 89] A. Goldberg and D. Robson. Smalltalk-80. The Lan-
guage. Addison-Wesley, Reading, MA, 1989.

[Grønbæk et al. 94] K. Grønbæk, J. Hem, O. Madsen, and L. Sloth. Hypermedia
Systems: A Dexter-Based Architecture. Communications of the ACM,
37(2):64 – 74, February 1994.

[Hölzle & Ungar 94] U. Hölzle and D. Ungar. A Third Generation Self Implemen-
tation: Reconciling Responsiveness with Performance. In Proceedings
of the 9th Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 229 – 243, October 1994.

[Kiczales & Lamping 93] G. Kiczales and J. Lamping. Operating Systems: Why
Object-Oriented? In Proceedings of International Workshop on Object-
Orientation in Operating Systems (IWOOS), 1993.

[Kiczales 92] G. Kiczales. Towards a new model of Abstraction in Software Engi-
neering. In A. Yonezawa and B. C. Smith, editors, Proceedings of Inter-
national Workshop on Reflection and Meta-level Architecture (IMSA),
pages 1–11, November 1992.

[Kiczales et al. 91] G. Kiczales, J. Rivieres, and D. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[Kirby et al. 94] G. Kirby, R. Connor, and R. Morrison. START: A Linguistic
Reflection Tool Using Hyper-Program Technology. In Proceedings of the
6th International Workshop on Persistent Object Systems, pages 346 –
365, September 1994.

22



[Madsen et al. 93] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison
Wesley, Reading, MA, 1993.

[Malhotra 93] J. Malhotra. Dynamic Extensibility in a Statically-Compiled
Object-Oriented Language. In Proceedings of the International Sym-
posium on Object Technologies for Advanced Software (ISOTAS),
Kanazawa, Japan, November 1993.

[Masuhara et al. 92] H. Masuhara, S. Matsuoka, T. Watanabe, and A. Yonezawa.
Object-Oriented Concurrent Reflective Languages can be Implemented
Efficiently. In A. Paepcke, editor, Proccedings of the 7th Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), pages 127 – 144, October 1992.

[Masuhara et al. 95] H. Masuhara, S. Matsuoka, K. Asai, and A. Yonezawa.
Compiling Away the Meta-Level in Object-Oriented Concurrent Re-
flective Languages Using Partial Evaluation. In Proceedings of the 10th
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), October 1995.

[McAffer 95] J. McAffer. Meta-Level Programming with CodA. In Proceed-
ings of the 9th European Conference on Object-Oriented Programming
(ECOOP), August 1995.

[Meyer 92] B. Meyer. Eiffel, The Language. Prentice Hall, 1992.

[Morrison et al. 93] R. Morrison, A. L. Brown, R. C. H. Connor, Q. I. Cutts,
A. Dearly, G. N. C. Kirby, and D. S. Munro. The Napier88 Reference
Manual (Release 2.0). Technical Report CS/93/15, University of St
Andrews, 1993.

[Okamura et al. 93] H. Okamura, Y. Ishikawa, and M. Tokoro. Metalevel Decom-
position in AL-1/D. In Proceedings of the International Symposium on
Object Technologies for Advanced Software (ISOTAS), November 1993.

23


