

Dynamically Extensible Objects in a

Class-Based Language

René W. Schmidt
Department of Computer Science

University of Aarhus
DK-8000 Aarhus C, Denmark

rws@daimi.aau.dk

Abstract

Object-oriented programming techniques support construction of reusable and extensible code. However, class-based
languages have poor support for implementing type-orthogonal behavior and extending non-leaf classes, which results in
implementations with poor performance or limited functionality. This paper presents dynamic slots, a mechanism for
extending objects at runtime. We show how this mechanism can be used to build efficient implementations of
type-orthogonal abstractions. Dynamic slots are statically typed and have been integrated into the BETA programming
language. Measurements of a persistent store show that they significantly improve performance.

Introduction

The object-oriented programming paradigm is generally renowned for its modeling capabilities.
Real-world concepts and phenomena can be modeled directly by classes and objects, and refinement of
concepts is supported by subclassing. A concept is typically organized into a framework, which is a set
of classes that implements a given concept, e.g., a window framework. A framework can typically be
used as-is, but can also be used as a starting point for more specialized frameworks.

Figure 1: Reference asymmetry

Inherently in a framework is a predefined object structure. The designer of the framework has decided
how objects refer to each other. Subclassing a framework allows adding new functional components that
follows the predefined object structure, but only allows limited changes to the object structure. For
example, it is not possible to extend a window framework, so all objects have a direct reference to the
top-most window, without modifying the basic class describing a window. However, it is possible to
create an object that references all window objects. This is due to the asymmetry between in-going and

out-going references. It is always possible to create more in-going references to an object (by creating
objects that have references to it) but not vice-versa. This is illustrated in Figure 1.

This asymmetry gives rise to a number of problems must notable the back-pointer problem. It is not
possible to construct a class that implements a list, where an object in a list has a back-pointer into the
list it is contained in. Another example is when implementing type-orthogonal abstractions. A
type-orthogonal abstraction can be viewed as imposing a new role (or view) onto an object. For
example, an application looks at a window object as a "physical" window on the screen, where as a
PersistentStore object looks at it as some state that needs to be serialized. The "role information" cannot
easily be attached to an object, because it is not possible to have an extra reference out of an existing
object that describes the role.

This can have several negative consequences when implementing type-orthogonal abstractions: (i)
unnecessary limitations, such as a class is required to be of a certain (sub)type to be used by a particular
abstraction, (ii) unsatisfactory performance, because the extra information must be found in auxiliary
data-structures, or (iii) the design of special-purpose programming languages, that include tailored
support for a specific feature, e.g., the Emerald language [Jul et al. 88] is designed and implemented
with compiler and runtime support for distribution.

A mechanism for fixing the above asymmetry is proposed in this paper, called dynamic slots. Dynamic
slots make it possible to extend objects at runtime with additional attributes. Dynamic slots are statically
declared in the source code, hence statically typed, but storage is not allocated until their first use.

We have incorporated dynamic slots into the static typed and compiled language BETA [Madsen et al.
93]. The implementation required no change to the compiler and only minor changes to the runtime
system. Furthermore, it provides virtually no overhead for existing programs, while providing efficient
access to and creation of dynamic slots. To evaluate dynamic slots, an existing implementation of a
persistent store has been modified to take advantage of dynamic slots. By using dynamic slots, we
simplified the implementation, and measurements show that the performance is significantly improved.

The rest of the paper is organized as follows. The following section describes dynamic slots in detail.
Section 3 gives several real-word examples of where they are applicable. Section 4 presents how they
can be implemented efficiently in a statically typed language. Section 5 discusses related strategies.
Section 6 evaluates our implementation of dynamic slots for BETA. Finally, Section 7 presents our
conclusions.

Dynamic Slots

A dynamic slot is an attribute that exists in all objects, and for which storage is only allocated if the
dynamic slot is used, i.e., if a value is assigned to it.

Conceptually, we can view all classes as having a common superclass, typically called Object. Adding
behavior or substance to this common superclass will affect all classes and therefore all objects in the
system. Hence, creating a dynamic slot is semantically equivalent to adding a new object reference
attribute to class Object. A dynamic slot exists in all objects independently of whether an object was
created before or after the dynamic slot was created.

Syntax

Instead of creating a new syntax for declaring dynamic slots, they have been added to the BETA
language as a class. Each dynamic slot is represented as an instance of the DynSlot class, shown in
Figure 2.

Figure 2: Declaration of the DynSlot class

It contains three methods: set, get, and init. An object reference is assigned to a dynamic slot by the set
method. It takes as parameters: an object, o, which contains the slot we want to access, and the new
value for the slot, value. For example, a BETA assignment of the form: newVal[]->o.mySlot[] is written
as (o[], newVal[])->mySlot.set for a dynamic slot. The value of a dynamic slot can be read by using the
get method which, given an object, returns the value of the slot. Before a new dynamic slot can be used,
it must be initialized with the init method. In a sense, init is a metaobject method (or class-method) that
adds the dynamic slot definition to class Object and initializes the slot to NONE for all objects.

The drawback of modeling dynamic slots as a class is that access to dynamic slots and ordinary BETA
attributes are different. In a language that supports operator overloading, e.g., C++ [Stroustrup 93], this
could potentially be avoided. Another approach is to extend the BETA language definition with a special
syntactical construct for dynamic slot declaration. However, for the initial experimentation with
dynamic slots that was considered less of an issue.

Declaration

The declaration point of a dynamic slot is independent on which objects it exists in. Recall that a
dynamic slot is available on all objects. However, the declaration point of a dynamic slot determines
which part of the code that has access to the slot. A dynamic slot is represented as an ordinary BETA
object, hence, the BETA scopeing rules determine which code has access to the dynamic slot. Of course,
a dynamic slot object can be passed by reference to all parts of the code, just as any other object.

The following BETA fragment shows a declaration of a dynamic slot psSlot that is of type: reference to
a psInfo class.

class psInfo: (# OID: @integer #);

psSlot: @DynSlot(# type::class psInfo #); (* Dyn. Slot instance *)

In the example, the virtual type parameter is specialized to psInfo. This tells the compiler to statically
check that a value assigned to set is at least a psInfo object, and that it can safely assume that a value
returned by get is at least a psInfo object. Thus, no runtime type checking is needed for a dynamic slot.
Dynamic Slots are statically typed, but dynamically allocated.

Notice that it is the ability to have generics that makes it possible to implement the dynamic slot
interface using a class and still maintain static type-checking. In BETA, this is done using a virtual class.
In C++, the template mechanism could be used.

Motivation

To further motivate dynamic slots, we will look at three examples where they are applicable. Based on
these examples, we will argue that the kinds of runtime extensibility provided by dynamic slots are
indeed applicable and useful in a compiled language. The same kinds of functionality cannot easily be
provided at compile/link time.

The first two examples are based on the current implementations of object persistence [Brandt 94] and
distribution [Brandt & Madsen 94] for the Mjølner BETA System. The last example describes how
dynamic slots make it possible to extend an existing framework in a way not possible by using
subclassing alone.

Persistent Storage

The persistence model for BETA is based on reachability. A set of objects is registered with the
persistent object store (PStore) as persistent roots. When the checkpoint operation is invoked on the
PStore, the transitive closure of the root objects is serialized to stable storage. Implied in this model is
that the PStore is completely type-orthogonal. It can serialize any object with no regard to its type.

Figure 3: Using dynamic slots to store object identifiers

To make it possible to reconstruct objects anywhere in memory when objects are restored from their
serialized form, object references are converted to unique object IDs (OIDs) during serialization. Each
object is assigned a unique OID by the PStore.

The translation between object references and OIDs during the checkpoint operation is a major source of
overhead in the current implementation. Converting an object reference into an OID requires a linear
scan of a list containing pairs of object references and OIDs an operation which complexity is
proportional to the number of objects that have been serialized. The linear scan is necessary because, in
general, is it impossible to hash on an object reference in a garbage-collected language, since most
garbage collectors move objects around in memory. The OIDs cannot be stored directly in an object,
because the object can be of an arbitrary type. By using dynamic slots, the OID for an object can be
stored directly with the object, so the linear scan is exchanged with a constant time operation. Thus, the
time complexity is asymptotically improved.

Figure 3 outlines how an OID look-up method (getOID) can be implemented with dynamic slots. The
Pstore creates a dynamic slot (psSlot) to store the extra OID for each object. The getOID method looks
up the value of that dynamic slot on a specific object and returns the OID. If an OID has not been
assigned yet, the method automatically assign an OID to the object.

A main advantage of using dynamic slots in this situation comes from the fact that objects are extended
on demand. Dynamic slots will only be allocated for persistent objects. Hence, the memory requirements
for storing the OID values will be minimal. This same property is difficult, if not impossible, to achieve
through compile or link time program modifications. Such modifications must rely on a conservative
program analysis to determine which objects that may need to be extended.

Distribution

The BETA distribution library provides transparent access to remote objects, i.e., objects located in
another process that possibly exists on another physical machine. Transparency is provided by proxies
[Shapiro 86]. A remote object is represented by a proxy object in the caller s address-space, which
forwards all calls to the remote object. For the caller, the proxy is indistinguishable from the remote
object.

A request is forwarded by the proxy object by serializing the method invocation along with its
parameters and sending it to the process where the remote object resides. This serialization is similar to
the PStore implementation. In addition to an OID, the distribution library also needs to maintain addition
state information such as which communication channels to use.

In contrast to the PStore where OIDs are only needed for the checkpoint operation, the distribution
library needs the information on every call on a remote object. Therefore, a linear scan to locate the
extra state information is unacceptable. Instead the current implementation requires a distributed object
to be a subclass of the remoteable class, that contains the extra state information. In effect, the
implementation is trading type-orthogonality away for efficiency.

Dynamic slots can be used in the distribution library, in a similar way as they were used in the PStore
example. It will thereby be possible to remove the type-limitation, while retaining efficiency.

Extending Frameworks

The last two examples discuss how dynamic slots are practical when implementing type-orthogonal
abstractions. This example is more general than the preceding two. It outlines how dynamic slots can be
used to solve an extensibility problem in object-oriented software engineering.

Consider the classical example of a class hierarchy describing graphical shapes. A general shape is
described with the class Shape, which implement methods for manipulating shapes, such as moving,
resizing, etc. More specific shapes (e.g., triangles, squares, etc.) are added to the system by subclassing
the Shape class.

Now we want to describe shapes that have colors. Then we have to modify the Shape class with an extra
attribute describing the color. Unfortunately, this requires us to change and recompile the entire
framework, including all subclasses of Shape. This might not only be impossible if the framework is
supplied by a third-party vendor, it might also not be a desirable solution. It can be argued that a color
attribute is not an intrinsic part of a shape, and clearly not all conceivable application utilizing the shape
framework will need the color attribute. Hence, the color attribute does not belong in the shape class.
However, having two parallel hierarchies, Shape and ColoredShape, is not an ideal solution either.

An alternative solution is to implement the color attribute using delegation. Shapes with colors have a
reference to an object describing its color. In this manner, extra substance can be added to all shapes
orthogonal to the shape hierarchy. A dynamic slots reference can be used to dynamically add the color
substance to a shape, by referring to an object describing the color. A method, getShapeColor, can be
written (similar to the getOID method), that given a shape as an argument, returns a color object.

This solution requires no recompilation or access to source code, and the color substance is available for
all current and further implementation of shapes.

Implementation

The main motivation behind dynamic slots is to enhance the performance of certain types of
abstractions, so an efficient implementation is important. However, of equal importance is that the
implementation does not impose significant overhead on ordinary programs. Our requirements to the
implementation are:

Dynamic slots should not have any impact on the performance of applications not using them, i.e.,
you only pay for what you use.

Dynamic slots are available on all objects, i.e., they are orthogonal to the type-system. Also, their
use does not require special compiler-switches during source code compilation. These
requirements ensure that, e.g., persistence is available on all objects, no matter if the code for an
object was written with persistence in mind or not. This is especially critical when third-party
libraries are used.

The use of dynamic slots must scale. All dynamic slots are conceptually defined in class Object.
Thus, the total number of slots in a system is the number of created slots times the number of
objects. The space overhead must be proportional to the number of slots in use, not to the
conceptual total number of dynamic slots.

Before describing our implementation, we will briefly introduce the runtime organization that our
implementation is based on.

Runtime Organization

We have integrated dynamic slots into the BETA programming language. The object layout used by the
Mjølner BETA System is fairly standard for a static typed and garbage-collected object-oriented
language. A similar implementation can be used for languages such as Modula-3 [Nelson 91], Eiffel
[Meyer 92], and Java [Arnold & Gosling 96].

Figure 4: Object layout in BETA

The memory layout is split into two areas. The static part that contains immutable information about
each class in a program execution, and a dynamic part that contains the dynamically created objects
during a program execution. Class information is stored in a structure called a prototype. A prototype
contains information that is used for runtime type checking, locating references in an object, and virtual
method look-up. Figure 4 shows the structure for two instances of class A and two instances of class B.
The static area contains prototypes for the classes A, B, and Object. The inheritance hierarchy is
encoded in the prototypes by having references to the superclass s prototype. All objects have a reference
to their prototype, which is used both by the garbage collector and by the compiled code.

The BETA garbage collector is a variant of a generation-based scavenging collector [Ungar 84].
Memory is divided up into two main areas, the Infant Object Area (IOA) and the Adult Object Area
(AOA). New objects are allocated sequentially in IOA. When the IOA area is full, all the live objects are
copied from IOA to To-Space, and IOA and To-Space swap roles. An object is promoted to AOA when
it has survived a number of IOA collections. In the AOA area, most objects are expected to stay alive, so
instead of using a copy-collector as for IOA, a mark & sweep collector is used.

Representing Dynamic Slots

The representation of dynamic slots at runtime must be space-efficient, so only slots in use take up
space. Secondly, it must be efficient to add a dynamic slot to an object and to look it up. For each object,
we store the non-zero slot values in a linked list. Thereby a slot only takes up space if it contains a value
that is different from NONE, i.e., the memory overhead is proportional to the number of slots in use.

Figure 5: Representation of dynamic slots in an object

Figure 5 shows an object with three dynamic slots. A slot is located by following the FirstSlot reference
that is stored in the last word of the object. The functionality of the DynSlot primitives are as follows:
The init method assigns a unique dynamic-slot ID (DID) to each slot, which is used to identify a slot.
The set operation adds a new element to the list, or removes an element if the NONE value is assigned.
The get operation scans the list for an element with a particular DID.

Access to a dynamic slot will naturally be slower than for statically allocated attributes, because it
requires a traversal of a linked list instead of a direct memory access. We expect only a few slots to be
associated with each object, so the overhead of scanning through a linked list will be small. If a large
number of dynamic slots are used, it might be feasible to store the dynamic slot values in a hash table
instead. The dynamic slot implementation could automatically choose the optimal representation of the
slot values to maximize its performance.

The Self System [Hölzle & Ungar 94] allows objects to be dynamically extended during runtime using
the addSlot method. They allocate a new object with the additional slot, copy the contents of the old
object to the new object, and update all pointers to point to the new object. This approach aim at fast
access at the cost of a high setup time, since it requires a scan of the heap to update pointers and possible
recompilation of code. In contrast, representing dynamic slots as a linked list aims at medium setup cost
and at medium access time. In addition, this scheme can easily be integrated into most compiled
language implementation without requiring modifications to the compiler.

Extending Objects

The above representation of dynamic slots requires an extra word for the FirstSlot reference in all
objects. Unfortunately, a trivial implementation that statically extends all objects with an extra word will
significantly add both time and space overhead to a program execution.

Application Compiler Sif Factory

Avg. IOA object
size

32b 26b 27b

IOA allocation 1.89Gb 150Mb 373Mb

Avg. AOA object
size

46b 65b 35b

AOA allocation 4400Kb 660Kb 2500Kb

AOA to IOA ratio 0.2% 0.4% 0.7%

Table 1: Allocation statistics

The memory behaviors of several BETA programs have previously been studied [Grarup & Seligmann
93] and are summarized in Table 1. The table shows memory statistics for the BETA Compiler
compiling itself (Compiler), an interactive editor for BETA source code (Sif), and a discrete-event
simulation system (Factory). Based on these numbers, extending each object with an extra word will
yield an allocation overhead from 12% to 16%, which for the Compiler means that it will request an
additional 240Mb of memory. This increased memory allocation will result in more than 480 additional
IOA collections, thereby significantly degrade performance.

The ideal solution would be to only extend objects that use dynamic slots with the FirstSlot attribute.
This can be achieved by allocating a new prototype for each object that uses dynamic slots and store the
FirstSlot reference in the prototype. The prototypes are statically extended with an extra word so it can
contain the FirstSlot reference. This avoids changing the size of objects, and since there are considerably
fewer prototypes than objects, it is acceptable to increase the size of a prototype. However, the smallest
size of a prototype in BETA is 32 bytes. In the best case, if more than 12% of the objects use dynamic
slots, the memory overhead of this approach will be the same or worse than just adding an extra word to
each object. Also, prototypes are not allocated in the garbage-collected heap in the current BETA
implementation, so reclamation of prototypes is non-trivial.

Instead, we have adopted a solution where the garbage collector is modified to dynamically extend
objects with the extra word at runtime. The worst-case space overhead can then never be worse than
statically extending all objects with an extra word. An object in IOA can easily be extended by
provoking an IOA garbage-collection, and then extending it when it is copied to To-Space. Objects are
lazily extended when the first dynamic slot value is assigned to them. In our implementation, we set a bit
in the prototype indicating that an object must be extended, thereby extending all instances of a specific
class at a time. This simplifies the implementation, because all objects of a given class have the same
size and it amortizes the cost of the IOA garbage-collection over all objects of a given class.

Extending objects in AOA is non-trivial, because these objects are garbage-collected using a mark &
sweep algorithm that needs several sweeps of AOA in order to locate live objects and compact storage.
Provoking AOA garbage-collections may introduce several disruptive breaks in the program execution,
due to its potentially large size. In addition, little garbage is likely to be found. To avoid this, we notice
that only about 0.2% to 0.7% of all allocated objects are promoted to AOA. Thus, eagerly adding the
extra word to all objects that are moved into AOA will only introduce an insignificant allocation

overhead. In fact, based on the numbers from Table 1, an allocation overhead between 0.02% to 0.07%,
which in the case of the Compiler translates to a little less than 400Kb. For Sif and Factory, the
additional memory overhead is 40Kb and 300Kb, respectively.

We have modified the garbage collector in the Mjølner BETA System to dynamically extend objects
during IOA collections, and to eagerly extend objects when they are promoted to AOA. These changes
required only minor modifications to the existing implementation. Extending objects during IOA
collections introduces one complication. It is possible that the To-Space runs full during an IOA
collection if most objects stay alive and get extended at the same time. We handle this case by
promoting the rest of the live objects to AOA.

Discussion

The dynamic slot concept presented here for a class-based language has previously materialized itself in
a number of other languages and systems, including Self, CLOS, and LISP. Dynamic slots are also
related to a number of reflective systems. In the following we will compare and discuss our approach to
a number of such systems.

Prototype-based languages use a similar mechanism as dynamic slots to extend objects. In Self, objects
can be extended with new slots at runtime by using the addSlot method. Dynamic slots were strongly
inspired by that feature. However, adding dynamic slots to a class-based language was not an attempt to
make it more prototype-based, since we are not sacrificing or limiting any expressibility of the original
language. Dynamic slots provide an extra dimension in which objects can be extended, that is
orthogonal to the class-hierarchy. This is particularly useful when implementing type-orthogonal
abstractions.

Interestingly, the Self System itself does not use the addSlot method in a way similarly to dynamic slots.
Instead, a primitive that returns an immutable hash value on an object exists in Self. The extra word we
extend BETA objects with could also be used to store a unique and immutable hash value. However, this
will require the programmer to explicitly create a hash table to store all (object, value) relations. We find
that the "extensible object" metaphor to be a more direct and general concept.

LISP [Steele 84] also contains a mechanism similar to dynamic slots. A LISP symbol has an associated
property list, where (key, value) pairs can be stored. The mechanism is not as general as dynamic slots,
since it is only available on symbols as compared to on all objects. Also, static type checking is not an
issue in LISP. In LISP implementations, property lists are typically not stored with the symbol, but in an
external hash table hashed on the symbol’s hash value. Dynamic slots have also been proposed for
CLOS [Kiczales et al. 91], where they denote statically declared attributes but for which memory is
allocated on demand. These are very similar to the dynamic slots presented in this paper, except that we
allow dynamic slots to be declared outside a class definition. That is crucial to support type-orthogonal
abstractions.

Metalevel interfaces have been constructed for several static typed languages, including Open C++
[Chiba 95], Napier88 [Kirby et al. 94], and BETA [Brandt & Schmidt 96], and there has been an
increased interest in Open Implementations [Kiczales 92]. One of the goals of these approaches is to
make it possible to implement type-orthogonal abstractions directly in a programming environment,
without relying on implementation details or changing the language implementation. Many such
abstractions need to associate additional state to the objects they work on, e.g., object distribution,

profiling, and debugging tools. A type-orthogonal facility to extend objects is therefore needed to allow
maximum flexibility and efficiency of metalevel programs. In Open C++ and Napier88 this is supported
by compile-time modification of source code. The metalevel interface for BETA is entirely a runtime
entity. It does not rely on compile-time modifications or access to source code. Hence, a mechanism for
runtime extensibility of objects, such as dynamic slots, is required.

Performance

To evaluate dynamic slots we use three benchmarks. First, we measure the performance of the dynamic
slot primitives to see how they perform compared to ordinary BETA attributes. This measures the raw
speed of the implementation. Second, we examine the runtime overhead of adding dynamic slot support
to the BETA runtime system, i.e., what is the impact on ordinary applications. Third, we have measured
the performance of a version of the persistent store that uses dynamic slots, in comparison with the
original implementation and a non-type-orthogonal implementation.

All the measurements have been performed on a 75MHz dual-processor SUN SparcStation 20 with
175Mb of memory. The machine was lightly loaded and had approximately 50Mb of free memory at the
time of the measurements. The times measured are the total user + system time for a given operation as
reported by the Solaris 2.4 operating system. All times are given as an average over a large number of
executions.

Microbenchmark

Table 2 shows the performance of the three dynamic slot primitives. In the benchmark, the object was
already extended with the FirstSlot reference and the linked list of dynamic slots only contained one
element. Hence, the measured results are the best-case performance of the primitives. The set operation
will provoke an IOA garbage-collection once for each object of a new type it is invoked on. Performing
an IOA garbage-collection takes on average 18 msecs.

Primitive Time

Init 1.1

Set 4.1

Get 2.3

Table 2: Performance of the dynamic slot primitives (in µsecs)

An access to a statically declared integer attribute takes approximately 0.15 µsecs, so dynamic slots
sacrifice more than an order of magnitude in performance. An invocation of a null-method takes 0.9
µsecs, so a large percent of the overhead is due to the method invocation. This could be eliminated by
inlining the set and get primitives.

Runtime Overhead Benchmark

Extending the BETA runtime system with dynamic slot support introduces two kinds of runtime
overhead: i) objects in AOA are eagerly extended with the FirstSlot reference, so the garbage-collection
behavior is changed, and ii) during IOA collections, the garbage-collector must check if an object has
been extended, and in that case follow the FirstSlot reference when marking live objects.

Since the effect of adding dynamic slots will be most apparent on long running batch programs, we use
the BETA compiler as a benchmark. Three versions of the compiler are used, the standard BETA
Compiler (Standard), a version that eagerly extend all objects with the extra FirstSlot attributes (Trivial),
and a version where objects are only eagerly extend in AOA (Dynamic). By comparing, the Trivial and
the Dynamic implementation we see the effect of avoiding extending objects in IOA.

Standard

Trivial Dynamic

Total Overhead Total Overhead

Execution
time

352s 386s 9.7% 360s 2.3%

Memory
usage

1.84Gb 1.89Gb 2.7% 1.89Gb 2.7%

IOA GCs 5770 7256 +1486 5770 0

AOA GCs 17 20 +3 18 +1

Table 3: Implementation overhead for the BETA compiler

Table 3 shows the runtime statistics of compiling an approximately 28,000 lines program (the compiler
itself) with the three versions of the BETA compiler. The Trivial version shows a significantly changed
garbage-collection behavior compared to both the Standard version and the Dynamic version. Thus,
avoiding changing the size of objects in IOA is an important optimization. The Dynamic implementation
shows an execution time overhead of 2.3%, which we find acceptable. The extra 2.7% of memory usage
do require an extra AOA garbage-collection. The average time for an AOA garbage-collection is 0.26
secs, which means that most of the execution time overhead is spent in the new dynamic slot handling
code in the garbage collector.

Our current implementation of dynamic slots could be further improved. In the current implementation,
an object is extended with two words, because BETA objects are required to be double word aligned. On
average, the last word in half of the objects is not used, and therefore could be used to store the FirstSlot
reference. This will cut the memory requirements in half, as well as avoiding an IOA garbage-collection
to extend objects that have an unused word. If the compiler was modified to set a flag in the prototype
indicating this situation, this optimization could easily be implemented.

Another possible optimization is the handling of the FirstSlot reference. The garbage collector must
follow the FirstSlot reference in order to locate all live objects. This is currently implemented by explicit
checks in the garbage-collector code, thereby introducing an overhead even when dynamic slots are not
used. Instead, the dynamic reference table in a prototype could be extended at runtime. It contains the

offsets of all reference attributes in an object. In the BETA implementation, the dynamic reference table
is represented as a null-terminated list of offsets. If the compiler was changed to make a double-null
terminated list, the list could be extended by overwriting the first terminating null. Using this scheme,
following the FirstSlot reference will introduce no performance overhead for applications that do not use
dynamic slots, at the expense of slightly larger prototypes.

Persistent Store Benchmark

Finally, to evaluate the performance increase provided by dynamic slots when implementing
type-orthogonal abstractions, we have modified the existing implementation of a persistent store [Brandt
94] to use dynamic slots. We compare that implementation against the original type-orthogonal
implementation and against a "static" implementation. In the "static" implementation, the OID attribute
is pre-allocated for all objects so it can be accessed directly. This is done by requiring all persistent
objects to be a subtype of a special PersistentObject class. In effect, the "static implementation is trading
type-orthogonality for speed.

The time complexity of the checkpoint operation is proportional to the number of objects, n, and the
total number of object references, m, since it both has to visit all objects as well as following all
references. For the original implementation, a linear scan is required to translate an object reference to
an OID, so the time complexity is O(n+mn), or simply O(mn). In the dynamic slot implementation (and
"static implementation), an object reference can be translated into an OID in constant time, so the time
complexity is O(m+n), or simply O(m), when m dominates n. Thus, we would expect an asymptotically
speed-up by using dynamic slots.

To evaluate the effect of the reference density, we have measured the time to checkpoint a single linked
list, where there is one reference in each object (m=n-1), and we have measured the time to checkpoint a
fully connected graph, where all objects have references to the others (m=n2).

The results are shown in Figure 6 and Figure 7. For the single linked list the size of the data structure is
approximately 1 MB for 40,000 objects, and the fully connected graph the size is 3.8 MB for 1,000
objects. The minor fluctuations in the graphs are due to different garbage-collection behavior.

As expected, we get a dramatic speed-up by using dynamic slots, since the linear scan is avoided. For
the single linked list, it is apparent that the dynamic slot implementation exhibits a near linear time
complexity in the number of objects, whereas the original implementation exhibits a higher-order time
complexity. Furthermore, the dynamic slot implementation performs very close to the optimal speed
exhibited by the "static" implementation. They are only separated by a small constant factor. This shows
that the dynamic slot abstraction is very well suited to solve the type-orthogonality/speed trade-off.

Figure 6: Checkpointing
a single-linked list

Figure 7: Checkpointing
a fully connected graph

Conclusion

At first, it might seem that the types of problems we are trying to address with dynamic slots are coursed
by bad design of frameworks. Thus, they could be solved by statically including some new attributes in
the design. However, often this is neither possible nor feasible. Such solutions are likely to either go
against the principle of extensibility or simplicity or both.

The persistent store and distribution examples illustrated that the original implementations suffered from
limited type-orthogonality or performance. The graphical shape example illustrated how dynamic slots
can be used to avoid bloated or parallel class hierarchies. Furthermore, dynamic slots make it possible to
extend non-leaf classes without having access to the source code. Dynamic slots extend the expressive
power by providing a new dimension of extensibility in addition to the class hierarchy.

It has been shown that dynamic slots can be seamlessly integrated into a statically typed language, such
as BETA. They do not compromising type-safety, introduce potential runtime errors, nor require runtime

type checking. A simple and efficient implementation strategy was presented. Measurements of our
prototype implementation showed both little overhead for ordinary applications, as well as efficient
access to the dynamic slot primitives. An existing implementation of a type-orthogonal persistence
showed significant speed-ups when re-implemented with dynamic slots. Furthermore, as described in the
last section, we expect that it is possible to enhance our implementation further by simple compiler
support.

Acknowledgment

Most parts of this work were carried out at the Department of Computer Science at the University of
Aarhus. The author wish to thanks Søren Brandt, Alexander Sousa, and Ole Lehrmann Madsen for the
many valuable comments and discussions about dynamic slots.

References

[Arnold & Gosling 96] K. Arnold and J. Gosling. The Java™ Programming Language. Addison-Wesley, 1996.

[Brandt & Madsen 94] S. Brandt and O. L. Madsen. Object-Oriented Distributed Programming in BETA. In R. Guerraoui, O.
Nierstrasz, and M. Riveill, editors, Object-Based Distributed Programming, Springer-Verlag, January 1994.

[Brandt & Schmidt 96] S. Brandt and R. W. Schmidt. The Design of a Metalevel Architecture for the BETA Language. In C.
Zimmermann, editor, Advances in Object-Oriented Metalevel Architectures and Reflection. CRC Press Inc., Boca Raton,
Florida, 1996.

[Brandt 94] S. Brandt. Implementing Shared and Persistent Objects in BETA Progress Report. Technical report, Department
of Computer Science, University of Aarhus, May 1994.

[Chiba 95] S. Chiba. A Metaobject Protocol for C++. In Proceedings of the 10th Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), October 1995.

[Goldberg & Robson 89] A. Goldberg and D. Robson. Smalltalk-80. The Language. Addison-Wesley, Reading, MA, 1989.

[Grarup & Seligmann 93] S. Grarup and J. Seligmann. Incremental Mature Garbage Collection. Master s thesis, Department
of Computer Science, University of Aarhus, August 1993.

[Hölzle & Ungar 94] U. Hölzle and D. Ungar. A Third Generation Self Implementation: Reconciling Responsiveness with
Performance. In Proceedings of the 9th Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), October 1994.

[Jul et al. 88] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained Mobility in the Emerald System. ACM
Transactions on Computer Systems, 6(1):109 133, February 1988.

[Kiczales 92] G. Kiczales. Towards a new model of Abstraction in Software Engineering. In A. Yonezawa and B. C. Smith,
editors, Proceedings of International Workshop on Reflection and Meta-level Architecture (IMSA), November 1992.

[Kiczales et al. 91] G. Kiczales, J. Rivieres, and D. Bodrow. The Art of the Metaobject Protocol. MIT Press, 1991.

[Kirby et al. 94] G. Kirby, R. Connor, and R. Morrison. START: A Linguistic Reflection Tool Using Hyper-Program
Technology. In Proceedings of the 6th International Workshop on Persistent Object Systems, September 1994.

[Madsen et al. 93] O. L. Madsen, B Møller-Pedersen, and K. Nygaard. Object-Oriented Programming in the BETA
Programming Language. Addison-Wesley, Reading, MA, 1993.

[Meyer 92] B. Meyer. Eiffel, The Language. Prentice Hall, 1992.

[Nelson 91] G. Nelson, editor, System Programming with Modula-3. Prentice Hall Series in Innovative Technology, 1991.

[Shapiro 86] M. Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Principle. In Proceedings of the 6th

International Conference on Distributed Computing Systems, May 1986.

[Steele 84] G. L. Steele. Common LISP: The Language. Digital Press, 1984.

[Stroustrup 93] B. Stroustrup. The C++ Programming Language. Addison Wesley, second edition, 1993.

[Ungar 84] D. Ungar. Generation Scavenging: A Non-Disruptive High Performance Storage Reclamation Algorithm. In
Proceedings of the First Symposium of Practical Software Development Environments, April 1984.

