
Polymorphic Subtyping for E�ect

Analysis: the Algorithm

F.Nielson & H.R.Nielson & T.Amtoft

Computer Science Department, Aarhus University, Denmark

e-mail:{fnielson,hrnielson,tamtoft}@daimi.aau.dk

April 19, 1996

Abstract

We study an annotated type and e�ect system that integrates let-poly-

morphism, e�ects, and subtyping into an annotated type and e�ect system

for a fragment of Concurrent ML. First a type inference algorithm and a

procedure for constraint normalisation and simpli�cation are de�ned, and

next they are proved syntactically sound with respect to the annotated

type and e�ect system.

1 Introduction

In a recent paper [8] we developed an annotated type and e�ect system for a frag-

ment of Concurrent ML and in the companion paper [1] we proved it semantically
sound. We now consider the algorithmic implications of the annotated type and

e�ect system that integrates ML-style polymorphism (the let-construct), sub-

typing (with the usual contravariant ordering for function spaces), and e�ects
(for the set of �dangerous variables�).

The previous papers already mentioned one key idea as far as the annotated type

and e�ect system is concerned, and this is now supplemented by an analogous

key idea concerning the construction of the algorithm; the two key ideas are:

• Carefully taking e�ects into account when deciding the set of variables over

which to generalise in the rule for let in the inference system; this involves
taking upwards closure with respect to a constraint set and is essential for

maintaining semantic soundness and a number of substitution properties.

1

• De�ning the set of variables over which to generalise in the algorithm; this

involves taking downwards as well as simultaneous upwards and downwards

closures with respect to a constraint set and is essential for achieving syn-

tactic soundness (and eventually syntactic completeness).

In this paper we develop an algorihmW for producing the typings of a given pro-

gram; it is constructed by means of a syntax directed algorithmW ′, an algorithm

F for ensuring that constraints are well-formed, and an (optional) algorithm R
for a rather dramatic reduction in the size of constraint sets. We prove that the

algorithms are syntactically sound and the issue of completeness seems promising.

We shall see that the algorithm generates a set of type and behaviour constraints

that can always be solved provided recursive behaviour systems are admitted.

Alternatively recursive behaviour systems can be disallowed thus rejecting pro-

grams that implement recursion in an indirect way through communication; this

is quite analogous to the way the absence of recursive types in the simply typed
λ-calculi forbids de�ning the Y combinator and instead requires recursion to be

an explicit primitive in the language.

2 Inference System

In this section we brie�y recapitulate the inference system presented in [8]. Ex-
pressions and constants are given by

e ::= c | x | fn x⇒ e | e1 e2 | let x = e1 in e2

| rec f x⇒ e | if e then e1 else e2

c ::= () | true | false | n | + | * | = |· · ·
| pair | fst | snd | nil | cons | hd | tl | isnil
| send | receive | sync | channel | fork

where there are four kinds of constants: sequential constructors like true and

pair, sequential base functions like + and fst, the non-sequential constructors

send and receive, and the non-sequential base functions sync, channel and
fork.

Types and behaviours are given by

t ::= α | unit | int | bool | t1 × t2 | t list
| t1 →b t2 | t chan | t com b

b ::= {t chan} | β | ∅ | b1 ∪ b2

Type schemes ts are of form ∀(~α~β : C). t with C a set of constraints, where a
constraint is either of form t1⊆ t2 or of form b1⊆ b2. The type schemes of selected

constants are given in Figure 1.

2

c TypeOf(c)

+ int × int→∅ int

pair ∀(α1α2 : ∅). α1 →∅ α2 →∅ α1 × α2

fst ∀(α1α2 : ∅). α1 × α2 →∅ α1

snd ∀(α1α2 : ∅). α1 × α2 →∅ α2

send ∀(α : ∅). (α chan) × α→∅ (α com ∅)
receive ∀(α : ∅). (α chan)→∅ (α com ∅)
sync ∀(αβ : ∅). (α com β)→β α

channel ∀(αβ : {{α chan}⊆β}). unit→β (α chan)

fork ∀(αβ : ∅). (unit→β α)→∅ unit

Figure 1: Type schemes for selected constants.

The ordering among types and behaviours is depicted in Figure 2; in particular

notice that the ordering is contravariant in the argument position of a function
type and that in order for t chan⊆ t′ chan and {t chan}⊆ {t′ chan} to hold
we must demand that t ≡ t′, i.e. t⊆ t′ and t′⊆ t, since t occurs covariantly when
used in receive and contravariantly when used in send.

The inference system is depicted in Figure 3 and employs the notion of well-
formedness:

De�nition 2.1 A constraint set is well-formed if all constraints are of form t⊆α
or b⊆ β; and a type scheme ∀(~α~β : C0). t0 is well-formed if C0 is well-formed

and if all constraints in C0 contain at least one variable among {~α~β} and if

{~α~β}C0↑ = {~α~β}. 2

Here1 we make use of upwards closure de�ned as follows:

XC↑ = {γ | ∃γ′ ∈ X : C ` γ′ ←∗ γ}

where the judgement C `γ1 ← γ2 holds if there exists (g1⊆ g2) in C such that

γi ∈ FV(gi) for i = 1, 2, and where we use ←∗ for the re�exive and transitive
closure. In a similar way we de�ne

XC↓ = {γ | ∃γ′ ∈ X : C ` γ ←∗ γ′} and
XCl = {γ | ∃γ′ ∈ X : C ` γ′ ↔∗ γ}

1We use g to range over t or b as appropriate and γ to range over α and β as appropriate

and σ to range over t and ts as appropriate.

3

Ordering on behaviours

(axiom) C ` b1⊆ b2 if (b1⊆ b2) ∈ C

(re�) C ` b⊆ b

(trans)
C ` b1⊆ b2 C ` b2⊆ b3

C ` b1⊆ b3

(chan)
C ` t ≡ t′

C ` {t chan}⊆{t′ chan}

(∅) C ` ∅⊆ b

(∪) C ` bi⊆ (b1 ∪ b2) for i = 1, 2

(lub)
C ` b1⊆ b C ` b2⊆ b
C ` (b1 ∪ b2)⊆ b

Ordering on types

(axiom) C ` t1⊆ t2 if (t1⊆ t2) ∈ C

(re�) C ` t⊆ t

(trans)
C ` t1⊆ t2 C ` t2⊆ t3

C ` t1⊆ t3

(→)
C ` t′1⊆ t1 C ` t2⊆ t′2 C ` b⊆ b′

C ` (t1 →b t2)⊆ (t′1 →b′ t′2)

(×)
C ` t1⊆ t′1 C ` t2⊆ t′2
C ` (t1 × t2)⊆ (t′1 × t′2)

(list)
C ` t⊆ t′

C ` (t list)⊆ (t′ list)

(chan)
C ` t ≡ t′

C ` (t chan)⊆ (t′ chan)

(com)
C ` t⊆ t′ C ` b⊆ b′

C ` (t com b)⊆ (t′ com b′)

Figure 2: Subtyping and sube�ecting.

4

(con) C,A` c : TypeOf(c) & ∅

(id) C,A`x : A(x) & ∅

(abs)
C,A[x : t1]` e : t2 & b

C,A`fn x⇒ e : (t1 →b t2) & ∅

(app)
C1, A` e1 : (t2 →b t1) & b1 C2, A` e2 : t2 & b2

(C1 ∪ C2), A` e1 e2 : t1 & (b1 ∪ b2 ∪ b)

(let)
C1, A` e1 : ts1 & b1 C2, A[x : ts1]` e2 : t2 & b2

(C1 ∪ C2), A`let x = e1 in e2 : t2 & (b1 ∪ b2)

(rec)
C,A[f : t]` fn x⇒ e : t& b
C,A`rec f x⇒ e : t& b

(if)
C0, A` e0 : bool& b0 C1, A` e1 : t& b1 C2, A` e2 : t& b2

(C0 ∪ C1 ∪ C2), A`if e0 then e1 else e2 : t& (b0 ∪ b1 ∪ b2)

(sub)
C,A` e : t& b
C,A` e : t′& b′

if C ` t ⊆ t′ and C ` b ⊆ b′

(ins)
C,A` e : ∀(~α~β : C0). t0 & b

C,A` e : S0 t0 & b
if ∀(~α~β : C0). t0 is solvable from C by S0

(gen)
C ∪ C0, A` e : t0 & b

C,A` e : ∀(~α~β : C0). t0 & b
if ∀(~α~β : C0). t0 is both well-formed,

solvable from C, and satis�es {~α~β} ∩
FV(C,A, b) = ∅

Figure 3: The type inference system.

where the relation ↔ is the union of ← and →, with → the inverse of ←. Also
we write C `C0 to mean that C ` g1 ⊆ g2 for all g1 ⊆ g2 in C0 and we say that

the type scheme ∀(~α~β : C0). t0 is solvable from C by S0 if Dom(S0) ⊆ {~α~β} and
if C `S0C0.

2.1 Properties of the Inference System

In [8] we proved the lemmas below which express how to get valid judgements

from valid judgements: we shall see that these results are crucial for showing

5

soundness of our inference algorithm.

Lemma 2.2 Substitution Lemma

For all substitutions S:

(a) If C `C ′ then S C `S C ′.

(b) If C,A` e : σ& b then S C, S A` e : S σ&S b (and has the same shape).

Lemma 2.3 Entailment Lemma

For all sets C ′ of constraints satisfying C ′ `C:

(a) If C `C0 then C ′ `C0;

(b) If C,A` e : σ& b then C ′, A` e : σ& b (and has the same shape).

3 The Inference Algorithm

In designing an inference algorithmW for the type inference system we are moti-
vated by the overall approach of [9, 3]. One ingredient (calledW ′) of this will be
to perform a syntax-directed traversal of the expression in order to determine its
type and behaviour; this will involve constructing a constraint set for expressing

the required relationship between the type and behaviour variables. The second
ingredient (called F) will be to perform a decomposition of the constraint set
into one that is well-formed and that hopefully contains much fewer constraints.
The third ingredient (called R) amounts to further reducing the constraint set;
this is optional and a somewhat open ended endeavour.

3.1 Well-formedness, Atomicity, and Simplicity

We need to introduce these three properties of constraint sets, types, type schemes,

behaviours, assumption lists, and substitutions. Already in De�nition 2.1 we in-
troduced the notion of well-formedness for constraint sets and type schemes; in

[8] it was argued that this notion is essential for the semantic soundness of the
inference system and this claim was substantiated in [1]. In addition we stipulate:

De�nition 3.1 Types, behaviours, and substitutions are trivially well-formed.

An assumption list is well-formed if all its type schemes are.

6

De�nition 3.2 A constraint set is atomic if all (t1⊆ t2) in the set have t1 to be a
type variable and if all (b1⊆ b2) have b1 to be a behaviour variable or a singleton

{t chan}; a type scheme is atomic if its constraint set is, and an assumption list

is atomic if all its type schemes are; �nally types, behaviours and substitutions

are trivially atomic.

Atomicity of behaviour constraints is unproblematic because a constraint (∅⊆ b)
can always be thrown away and a constraint (b1 ∪ b2⊆ b) can always be split to

(b1⊆ b) and (b2⊆ b). Atomicity of well-formed type constraints is responsible for

disallowing constraint like (int⊆α) and (t1 × t2⊆α) by forcing α to be replaced

by a type expression that �matches� the left hand side. This phenomenon can be

found in [5, 3, 9] as well. It is responsible for making the algorithm a �conservative

extension� (cf. [8]) of the way algorithm W for Standard ML would operate if

e�ects were not taken into account: in particular our algorithm will fail, rather

than produce an unsolvable constraint set, if the underlying type constraints of
the e�ect-free system cannot be solved.

De�nition 3.3 A type is simple if all its behaviour annotations are behaviour
variables; a behaviour is simple if all types occurring in it are simple; a constraint

set is simple if all the types and behaviours occurring in it are simple and if all
behaviour constraints (b1⊆ b2) have the right hand side (b2) to be a variable; a
type scheme is simple if the constraint set and the type both are; an assumption
list is simple if all its type schemes are; �nally a substitution is simple if it maps
behaviour variables to behaviour variables (rather than simple behaviours) and

type variables to simple types.

In examples we shall allow to weaken this restriction by allowing types to contain

∅ annotations in covariant positions; we shall then say that the type is essentially
simple as it can easily be replaced (without changing the set of �instances�) by

a simple type that uses fresh behaviour variables instead of ∅.
Fact 3.4 For all constants c, the type scheme TypeOf(c) is essentially simple.

The notion of simplicity is taken from [11] and is used also in [7] and is a way
to overcome the need for otherwise having to perform uni�cation (or decomposi-
tion) in a non-free algebra (like the algebra of behaviours). It is a key technical

assumption necessary for being able to maintain well-formedness of constraint

sets as we have no techniques available for decomposing a constraint of form

β1⊆β2 ∪ β3 into a set of well-formed constraints and therefore we need to en-
sure that constraints of this form never arise in the algorithm.

Fact 3.5 Let t be a simple type, b be a simple behaviour, C be a simple constraint

set, ts be a simple type scheme, and S, S ′ be simple substitutions. Then S t is
a simple type, S b is a simple behaviour, S C is a simple constraint set, S ts is a
simple type scheme, and S ′ S is a simple substitution.

7

3.2 Algorithm W

Our key algorithm W is described by

W(A, e) = (S, t, b, C)

where the intuition is that C, S A` e : t& b is the �best correct� typing of e
relative to an assumption list derived from A. We shall enforce throughout (by

using F) that all of S, t, b and C are well-formed, atomic and simple provided

that A is simple. Algorithm W is de�ned by the clause

W(A, e) = let (S1, t1, b1, C1) =W ′(A, e)
let (S2, C2) = F(C1)
let (C3, t3, b3) = R(C2, S2 t1, S2 b1, S2 S1A)
in (S2 S1, t3, b3, C3)

Here algorithm W ′ is de�ned in terms of algorithm W and is responsible for the
syntax-directed traversal of the argument expression e. In general,W ′ will fail to
produce a well-formed and atomic constraint set C, even when the assumption
list A is well-formed and simple; it will be the case, however, that all of S1, t1, b1

and C1 are simple (and that S1, t1, and b1 are trivially well-formed and atomic).
This then motivates the need for a transformation F (Section 4) that maps a
simple constraint set into a simple, well-formed and atomic constraint set; since
this involves splitting variables we shall need to produce a simple (and trivially
well-formed and atomic) substitution as well. The �nal transformation R merely

attempts to get a smaller constraint set by removing variables that are not strictly
needed. Its operation is not essential for the soundness of our algorithm and thus
one might de�ne it by R(C, t, b, A) = (C, t, b); in Section 5 we shall consider a
more powerful version of R.

Example 3.6 To make the intentions a bit clearer suppose that W ′(A, e) =
(S1, t1, b1, C1) so that C1, S1A` e : t1 & b1 is the �best correct� typing of e. If

C1 = {α1 × α2⊆α3, int⊆α4, {α5 chan} ∪ ∅⊆β}

then (S2, C2) = F(C1) should give

C2 = {α1⊆α31, α2⊆α32, {α5 chan}⊆β}
S2 = [α3 7→ α31 × α32, α4 7→ int]

Here we expand α3 to α31 × α32 so that the resulting constraint
α1 × α2⊆α31 × α32 can be �decomposed� into α1⊆α31 and α2⊆α32 that are

both well-formed and atomic. Furthermore we have expanded α4 to int as it

8

follows from Figure 2 that ∅` int⊆ t necessitates that t equals int. Finally we

have decomposed the constraint upon β into two and then removed the trivial

∅⊆β constraint. Clearly the intention is that also C2, S2 S1A` e : S2 t1 &S2 b1

is the �best correct� typing of e and additionally the constraint set is well-formed

and atomic (unlike what is the case for C1). 2

3.3 Algorithm W′

Algorithm W ′ is de�ned by the clauses in Figure 4 and is to be de�ned simul-

taneously with W since it calls W in a number of places. Actually it could call

itself recursively, rather than calling W, in all but one place2: the call to W
immediately prior to the use of GEN to generalise the type of the let-bound

identi�er to a type scheme. The algorithm follows the overall approach of [9, 4]

except that as in [3] there are no explicit uni�cation steps; these all take place as
part of the F transformation. The only novel ingredient of our approach shows

up in the clause for let as we shall explain shortly. Concentrating on �the overall
picture� we thus have clauses for identi�ers and constants; both make use of the
auxiliary function INST de�ned by

INST(∀(~α~β : C). t) = let ~α′ ~β ′ be fresh

let R = [~α~β 7→ ~α′ ~β ′]
in (Id, R t, ∅, RC)

INST(t) = (Id, t, ∅, ∅)

in order to produce a fresh instance of the relevant type or type scheme (as deter-
mined from TypeOf or from A); if the constant or identi�er is unknown, failure
is reported. The clause for function abstraction is rather straightforward; note
the use of a fresh behaviour variable in order to ensure that only simple types
are produced; we then add a constraint to record the �meaning� of the behaviour
variable. Also the clause for application is rather straightforward; note that in-
stead of a uni�cation step we record the desired connection between the operator

and operand types by means of a constraint. The clauses for recursion and con-
ditional follow the same pattern as the clauses for abstraction and application.

The only novelty in the clause for let is the function GEN used for generalisation:

GEN(A, b)(C, t) = let {~α~β} = (FV(t)Cl) \ (FV(A, b)C↓)
let C0 = C |

{~α~β}
in ∀(~α~β : C0). t

2Interestingly, this is exactly the place where the algorithm of [9] makes use of constraint

simpli�cation in the �close� function; however, our prototype implementation suggests that the

choice embodied in the de�nition of W gives faster performance.

9

W ′(A, c) = if c ∈ Dom(TypeOf) then INST(TypeOf(c)) else fail const

W ′(A, x) = if x ∈ Dom(A) then INST(A(x)) else fail ident

W ′(A, fn x⇒ e0) =
let α be fresh

let (S0, t0, b0, C0) =W(A[x : α], e0)
let β be fresh

in (S0, S0 α→β t0, ∅, C0 ∪ {b0⊆β})

W ′(A, e1 e2) =
let (S1, t1, b1, C1) =W(A, e1)
let (S2, t2, b2, C2) =W(S1A, e2)
let α, β be fresh
in (S2 S1, α, S2 b1 ∪ b2 ∪ β,

S2C1 ∪ C2 ∪ {S2 t1⊆ t2 →β α})

W ′(A, let x = e1 in e2) =
let (S1, t1, b1, C1) =W(A, e1)
let ts1 = GEN(S1A, b1)(C1, t1)
let (S2, t2, b2, C2) =W((S1A)[x : ts1], e2)
in (S2 S1, t2, S2 b1 ∪ b2, S2C1 ∪ C2)

W ′(A, rec f x⇒ e0) =
let α1, β, α2 be fresh
let (S0, t0, b0, C0) =W(A[f : α1 →β α2][x : α1], e0)
in (S0, S0 (α1 →β α2), ∅, C0 ∪ {b0⊆S0 β, t0⊆S0 α2})

W ′(A, if e0 then e1 else e2) =
let (S0, t0, b0, C0) =W(A, e0)
let (S1, t1, b1, C1) =W(S0A, e1)
let (S2, t2, b2, C2) =W(S1 S0A, e2)
let α be fresh

in (S2 S1 S0, α, S2 S1 b0 ∪ S2 b1 ∪ b2,
S2 S1C0 ∪ S2C1 ∪ C2 ∪ {S2 S1 t0⊆ bool, S2 t1⊆α, t2⊆α})

Figure 4: Syntax-directed constraint generation.

10

where C |
{~α~β}

= {(g1⊆ g2) ∈ C | FV(g1, g2) ∩ {~α~β} 6= ∅}. The de�nition of

C0 thus establishes the part of the well-formedness condition that requires each

constraint to involve at least one bound variable.

The exclusion of the set FV(A, b)C↓ (rather than just FV(A, b)) is necessary in

order to ensure {~α~β}C↑ = {~α~β} which is essential for semantic soundness [8, 1].

Finally we have chosen FV(t)Cl as the �universe� in which to perform the set

di�erence; this universe must be large enough that we will still get syntactic

completeness and all of FV(t), FV(t)C↓ (these two are not even upwards closed)

and FV(t)C↑ would have been too small for this.

Fact 3.7 Let σ = GEN(A, b)(C, t).

(a) If C is well-formed then so is σ.

(b) If C and t are simple, atomic and well-formed then so is σ.

Proof The only non-trivial task is to show that {~α~β}C↑ ⊆ {~α~β} where {~α~β} is
as in the de�ning clause for GEN. So assume C `γ1 ← γ2 with γ1 ∈ {~α~β}; we
must show that γ2 ∈ {~α~β}. Now γ1 ∈ FV(t)Cl and γ1 /∈ FV(A, b)C↓, hence we
infer γ2 ∈ FV(t)Cl and γ2 /∈ FV(A, b)C↓ which amounts to the desired result.

2

Remark: Note that FV(t)Cl is a subset of FV(t, C) and that it may well be a

proper subset; when this is the case it avoids to generalise over �purely internal�
variables that are inconsequential for the overall type. If one were to regard
let x = e1 in e2 as equivalent to e2[e1/x] (which is only the case if e1 has an
empty behaviour) this corresponds to forcing all �purely internal� variables in
corresponding copies of e1 to be equal. This is helpful for reducing the size of

constraint sets and type schemes. 2

4 Algorithm F

The transformation F may be described as a non-deterministic rewriting process.

It operates over triples of the form (S,C,∼) where S is a substitution, C is a
constraint set, and ∼ is an equivalence relation among the �nite set of type

variables in C; we shall write EqC for the identity relation over type variables in
C. We then de�ne F by

F(C) = let (S ′, C ′,∼′) be given by (Id, C,EqC)−→∗(S ′, C ′,∼′) 6−→
in if C ′ is atomic and well-formed

then (S ′, C ′) else fail forcing

11

(∅) C
·
∪ {∅⊆ b}⇀C

(∪) C
·
∪ {b1 ∪ b2⊆ b}⇀C ∪ {b1⊆ b, b2⊆ b}

(×) C
·
∪ {t1 × t2⊆ t3 × t4}⇀C ∪ {t1⊆ t3, t2⊆ t4}

(list) C
·
∪ {t1 list⊆ t2 list}⇀C ∪ {t1⊆ t2}

(chan) C
·
∪ {t1 chan⊆ t2 chan}⇀C ∪ {t1⊆ t2, t2⊆ t1}

(com) C
·
∪ {t1 com b1⊆ t2 com b2}⇀C ∪ {t1⊆ t2, b1⊆ b2}

(→) C
·
∪ {t1 →b1 t2⊆ t3 →b2 t4}
⇀C ∪ {t3⊆ t1, b1⊆ b2, t2⊆ t4}

(int) C
·
∪ {int⊆ int}

(bool) C
·
∪ {bool⊆ bool}

(unit) C
·
∪ {unit⊆ unit}

⇀C

Figure 5: Decomposition of constraints.

(dc)
C⇀C ′

(S,C,∼)−→(S,C ′,∼)

(mr) (S,C
·
∪ {t⊆α},∼)−→(RS,RC ∪ {Rt⊆Rα},∼′)
where (R,∼′) =M(α, t,∼)

(ml) (S,C
·
∪ {α⊆ t},∼)−→(RS,RC ∪ {Rα⊆R t},∼′)
where (R,∼′) =M(α, t,∼)

Figure 6: Rewriting rules for F : forcing well-formedness.

The rewriting relation is de�ned by the axioms of Figure 6 and will be explained
below; it makes use of an auxiliary rewriting relation, de�ned in Figure 5, which

operates over constraint sets.

The axioms of Figure 5 are rather straightforward. For behaviours the axiom

(∅) simply throws away constraints of the form ∅⊆ b and the axiom (∪) simply

12

decomposes constraints of the form b1 ∪ b2⊆ b to the simpler constraints b1⊆ b
and b2⊆ b. (A small notational point: in Figure 5 and in Figure 6 we write C

·
∪ C ′

for C ∪ C ′ in case C ∩ C ′ = ∅.) For types the axioms (×), (list), (chan),

(com), and (→) essentially run the inference system of Figure 2 in a backwards

way and generate new constraints t1⊆ t2 and t2⊆ t1 whenever we had t1 ≡ t2 in

Figure 2. Axioms (int), (bool) and (unit) are simple instances of re�exivity.

Fact 4.1 The rewriting relation ⇀ is con�uent and if C1⇀C2 then C2 `C1.

Proof Con�uence follows since each rewriting operates on a single element only,

and for each element there is only one possible rewriting. 2

We now turn to Figure 6. The axiom (dc) decomposes the constraint set but does

not modify the substitution nor the equivalence relation among type variables.

The axioms (mr) and (ml) force left and right hand sides of type constraints to
match. This is related to uni�cation and produces a new substitution as a result;
additionally it may modify the equivalence relation among type variables. The

details require the functionM (which may be unde�ned when the �occur check�
fails) to be de�ned shortly. Before presenting the formal de�nition we consider
an example.

Example 4.2 Consider the constraint t1⊆α0 where t1 = (α11 × α12) com β1.
Forcing the left and right hand sides to match means �nding a substitution R
such that Rt1 and Rα0 have the same shape. A natural way to achieve this is
by creating new type variables α21 and α22 and a new behaviour variable β2 and
by de�ning

R = [α0 7→ (α21 × α22) com β2].

Then R t1 = t1 = (α11 × α12) com β1 and Rα0 = (α21 × α22) com β2 and these
types intuitively have the same shape. Returning to Figure 6 we would thus

expectM(α0, t1,∼) = (R,∼).

If instead we had considered the constraint (α × α) com β⊆α then the above

procedure would not lead to a matching constraint. We would get

R = [α 7→ (α′ × α′′) com β ′]

and the constraint R ((α × α) com β)⊆Rα then is

(((α′ × α′′) com β ′) × ((α′ × α′′) com β ′)) com β⊆ (α′ × α′′) com β ′

which does not match. Indeed it would seem that matching could go on forever

without ever producing a matching result. To detect this situation we have an

13

�occurs check�: when M(α, t,∼) = (R,∼′) no variable in Dom(R) must occur

in t. This condition fails when t = (α × α) com β.

There are more subtle ways in which termination may fail. Consider the con-

straint set

{α1 com β1⊆α0, α0⊆α1}

where only the �rst constraint does not match. Attempting a match we get

R1 = [α0 7→ α2 com β2]

and note that the �occurs check� succeeds. The resulting constraint set is

{α1 com β1⊆α2 com β2, α2 com β2⊆α1}

which may be reduced to

{α1⊆α2, β1⊆β2, α2 com β2⊆α1}.

The type part is isomorphic to the initial constraints, so this process may continue
forever: we perform a second match and produce a second substitution R2, etc.

To detect this situation we as in [3] make use of the equivalence relation ∼ and
extend it with α1 ∼ α2 after the �rst match that produced R1. When performing

the second match we then require R2 not only to expand α1 but also all α′

satisfying α′ ∼ α1; this means that R2 must expand also α2. Consequently the
�extended occurs check�

Dom(R2) ∩ FV(α2 com β2) = ∅

fails. 2

To formalise the development of the example we need to be more precise about

the shape of a type and when two types match.

De�nition 4.3 A shape sh is a type with holes in it for all type variables and

for all behaviours; it may be formally de�ned by:

sh ::= [] | unit | int | bool | sh1 × sh2 | sh1 →[] sh2 | sh list

| sh chan | sh com []

14

M(α, t,∼) =
let sh[~α 0,~b 0] = t
let {α1, · · · , αn} = {α′ | α′ ∼ α}
let ~α 1, · · · , ~α n be vectors of fresh variables

of the same length as ~α 0

let ~β 1, · · · , ~β n be vectors of fresh variables

of the same length as ~b 0

let R = [α1 7→ sh[~α 1, ~β 1], . . . , αn 7→ sh[~α n, ~β n]]
let ∼′ be the least equivalence relation containing the pairs

{(α′, α′′) | α′ ∼ α′′ ∧ {α′, α′′} ∩ {α1, · · · , αn} = ∅}⋃
{(α0j, αij) | ~α 0 = α01 · · ·α0m, ~α i = αi1 · · ·αim, 1 ≤ i ≤ n}

in if {α1, · · · , αn} ∩ FV(t) = ∅
then (R,∼′)
else return no answer

Figure 7: Forced matching for simple types.

We write sh[~t ,~b] for the type obtained by replacing all type holes with the rel-

evant type in the list ~t and by replacing all behaviour holes with the relevant
behaviour in the list ~b ; we shall dispense with a formal de�nition of this and we
shall assume throughout that the length of ~t and ~b are adequate for the shape

sh.

Example 4.4 If sh = ([] × []) com [] then sh[~t ,~b] = (t1 × t2) com b1 if and

only if ~t = t1t2 and ~b = b1. 2

The axioms (mr) and (ml) make use of the operation M de�ned in Figure 7
to force a type t to match a type variable α. The call M(α, t,∼) = (R,∼′)
produces the substitution R and modi�es the equivalence relation ∼ (over the

free variables of a constraint set C ′) to another equivalence relation ∼′ (over
the free variables of the constraint set RC ′). In axioms (mr) and (ml) the newly

produced substitution R is composed with the previously produced substitutions.
Also note that the �extended occurs check� in Figure 7 ensures that R t = t.

Using Fact 3.5 it is straightforward to establish:

Fact 4.5 Suppose (S,C,∼)−→(S ′, C ′,∼′). Then there exists simpleR such that

S ′ = RS and such that RC⇀∗C ′. Moreover, if S and C are simple then also S ′

and C ′ are simple.

15

Remark: type cycles become behaviour cycles. To understand why F
does not report failure in more cases than a �classical type checker�, the following

example is helpful. Consider the constraint set

C = {int→α chan int⊆α}

which will not cause a classical type checker to fail since α is simply uni�ed with

int→ int. Now let us see how F behaves on this constraint, encoded as a set

of simple constraints:

{int→β int⊆α, {α chan}⊆ β}.

Here case (mr) in Figure 6 is enabled, and consequentially a substitution which

maps α into int→β′ int (with β ′ new) is applied to the constraints. The re-

sulting constraint set is

{int→β int⊆ int→β′ int, {(int→β′ int) chan}⊆β}

and after �rst applying case (dc) for (→) and then applying case (dc) for (int)
we end up with the constraint set

C ′ = {β⊆β ′, {(int→β′ int) chan}⊆ β}

which cannot be rewritten further. The set C ′ is atomic and well-formed so
Algorithm F succeeds on C. 2

4.1 Termination and Soundness of F

Having completed the de�nition ofM, −→ and F we can state:

Lemma 4.6 F(C) always terminates (possibly with failure). If F(C) = (S ′, C ′)
with C simple then S ′ and C ′ are simple, well-formed and atomic. Moreover, C ′

is determined from S ′C in the sense that S ′C⇀∗C ′ 6⇀.

Proof To show that F always terminates it su�ces to �nd a lexicographically

de�ned well-founded order such that each rewrite decreases the measure according

to the order. The �rst component of the measure of (S,C,∼) is the number of

equivalence classes of ∼. The second component is a vector of numbers that for
each index i lists how many constraints in C have size i; here the size of (g1⊆ g2)
may be taken to be the number of symbols occurring in it. Rewrites according to

axioms (mr) or (ml) reduce the �rst component; all other rewrites keep the �rst
component unchanged but decrease the second component.

It is easy to see that the other claims will follow provided we can show that if

(Id, C,EqC)−→∗(Sn, Cn,∼n)

16

then SnC⇀∗Cn and if C is simple then Sn and Cn are simple. We do this by

induction on the length of the derivation, where the base case as well as the part

concerning simplicity (where we use Fact 4.5) is trivial. For the inductive step,

suppose that

(Id, C,EqC)−→∗(Sn, Cn,∼n)−→(Sn+1, Cn+1,∼n+1)

where the induction hypothesis ensures that SnC⇀∗Cn. By Fact 4.5 there exists
R such that Sn+1 = RSn and such that RCn⇀∗Cn+1. As it is easy to see that

the relation ⇀ is closed under substitution it holds that RSnC⇀∗RCn, hence
the claim. 2

Lemma 4.7 F is sound

If F(C) = (S ′, C ′) then C ′ `S ′C.

Proof By Lemma 4.6 we have S ′C⇀∗C ′, which yields the claim due to Fact 4.1.
2

Remark. By Fact 4.1 we know that ⇀ is con�uent but this does not directly
carry over to −→ or F : the constraint α1⊆α2 may yield ([α1 7→ α0], {α0⊆α2}) as
well as ([α2 7→ α0], {α1⊆α0}). However, Lemma 4.6 told us that F(C) = (S ′, C ′)
ensures that C ′ is determined from S ′C, and we conjecture that S ′ is determined
(up to some notion of renaming) from C.

5 Algorithm R

The purpose of algorithm R is to reduce the size of a constraint set which is
already well-formed, atomic and simple. The techniques used are basically those
of [9] and [2], adapted to our framework.

The transformation R may be described as a non-deterministic rewriting process,
operating over triples of form (C, t, b), and with respect to a �xed environment

A. We then de�ne R by:

R(C, t, b, A) = let (C ′, t′, b′) be given by

A` (C, t, b)−→∗(C ′, t′, b′) 6−→
in (C ′, t′, b′)

The rewriting relation is de�ned by the axioms of Figure 8 and will be explained

below (recall that
·
∪ means disjoint union). To understand the axioms, it is

17

(redund) A` (C
·
∪ {γ′⊆ γ}, t, b)−→(C, t, b)

provided (γ′ ⇐∗ γ) ∈ C

(cycle) A` (C, t, b)−→(S C, S t, S b)
where S = [γ 7→ γ′] with γ 6= γ′

provided (γ ⇐∗ γ′) ∈ C and (γ′ ⇐∗ γ) ∈ C and

provided γ /∈ FV(A)

(shrink) A` (C
·
∪ {γ′⊆ γ}, t, b)−→(S C, S t, S b)

where S = [γ 7→ γ′] with γ 6= γ′

provided γ /∈ FV(RHS(C), A) and
provided t, b, and each element in LHS(C) is monotonic in γ

(boost) A` (C
·
∪ {γ⊆ γ′}, t, b)−→(S C, S t, S b)

where S = [γ 7→ γ′] with γ 6= γ′

provided γ /∈ FV(A) and
provided t, b and each element in LHS(C) is anti-monotonic in γ

Figure 8: Eliminating constraints.

helpful to view the constraints as a directed graph where the nodes are type or

behaviour variables or of form {t chan}, and the arrows cannot have a node of
form{t chan} as the source. To this end we de�ne:

De�nition 5.1 We write (γ ⇐∗ γ′) ∈ C if there is a path from γ′ to γ: there
exists γ0 · · · γn (n ≥ 0) such that γ0 = γ and γn = γ′ and (γi⊆ γi+1) ∈ C for
all i ∈ {0 . . . n− 1}.

Notice that (γ ⇐∗ γ) ∈ C holds also if γ /∈ FV(C). From re�exivity and tran-

sitivity of ⊆ we have:

Fact 5.2 If (γ ⇐∗ γ′) ∈ C then also C ` γ⊆ γ′.

We have a substitution result similar to Lemma 2.2:

Fact 5.3 Let S be a substitution mapping variables into variables, and suppose

(γ ⇐∗ γ′) ∈ C. Then also (S γ ⇐∗ S γ′) ∈ S C.

We say that C is cyclic if there exists γ1, γ2 ∈ FV(C) with γ1 6= γ2 such that

(γ1 ⇐∗ γ2) ∈ C and (γ2 ⇐∗ γ1) ∈ C.

We now explain the rules: (redund) removes constraints which are redundant due

to the ordering ⊆ being re�exive and transitive; applying this rule repeatedly is

18

called �transitive reduction� in [9] and is essential for a compact representation

of the constraints.

The remaining rules all replace some variable γ by another variable γ′. However,
unlike what is the case for F the substitution [γ 7→ γ′] is not returned and is not

applied to A; therefore we demand that γ does not belong to FV(A). This is not
something that can easily be recti�ed: not all substitutions S that solve C can

be written on the form S ′ [γ 7→ γ′] and hence we could lose completeness if we

relaxed our demand.

The rule (cycle) collapses cycles in the graph; due to the remark above a cycle

which involves two elements of FV(A) cannot be eliminated. (However, in [9] it

holds that ∅` b1 ≡ b2 implies b1 = b2 and hence cycle elimination can be part of

the analogue of F.)
The rule (shrink) expresses that a variable γ can be replaced by its �immediate

predecessor� γ′, and due to the ability to perform transitive reduction this can
be strengthened to the requirement that γ′ is the �only predecessor� of γ, which
can be formalised as the side condition γ /∈ FV(RHS(C)) where RHS(C) =
{γ | ∃g : (g⊆ γ) ∈ C}. We can allow γ to belong to t and b and LHS(C), where
LHS(C) = {g | ∃γ : (g⊆ γ) ∈ C}, as long as we do not �lose instances�, that is
we must have that S t⊆ t, S b⊆ b, and S g⊆ g for each g ∈ LHS(C). This will be
the case provided t and b and each element of LHS(C) are monotonic in γ, where
for example t = α1 →β1 α2 →β1 α1 is monotonic in γ for all γ /∈ {α1, α2}. A
more formal treatment of the concept of monotonicity will be given shortly, for
now notice that if γ /∈ FV(g) or if g = γ then g is monotonic in γ.

The rule (boost) expresses that a variable γ can be replaced by its �immediate
successor� γ′, and due to the ability to perform transitive reduction this can be

strengthened to the requirement that γ′ must be the �only successor� of γ. In
addition we must demand that we do not �lose instances�, that is we must have
that S t⊆ t, S b⊆ b, and S g⊆ g for each g ∈ LHS(C). This will be the case
provided t and b and each element of LHS(C) are anti-monotonic in γ, where
for example t = α1 →β1 α2 →β1 α1 is anti-monotonic in γ for all γ /∈ {α1, β1}.
Notice that if each element of LHS(C) is anti-monotonic in γ then γ′ in fact is

the only successor of γ.

Monotonicity

De�nition 5.4 Given a constraint set C. We say that a substitution S is increas-

ing (respectively decreasing) wrt. C if for all γ we have C `γ⊆S γ (respectively
C `S γ⊆ γ).
We say that a substitution S increases (respectively decreases) g wrt. C whenever

C ` g⊆S g (respectively C `S g⊆ g).

19

We want to de�ne the concepts of monotonicity and anti-monotonicity such that

the following result holds:

Lemma 5.5 Suppose that g is monotonic in all γ ∈ Dom(S); then if S is increas-

ing (respectively decreasing) wrt. C then S increases (respectively decreases) g
wrt. C.

Suppose that g is anti-monotonic in all γ ∈ Dom(S); then if S is increasing

(respectively decreasing) wrt. C then S decreases (respectively increases) g wrt.

C. 2

To this end we make the following recursive de�nition of sets NN(g) and NP(g)
(for �not negative� and �not positive�):

NN(γ) = {γ} and NP(γ) = ∅;
NN(unit) = NN(int) = NN(bool) = NN(∅) = ∅;
NP(unit) = NP(int) = NP(bool) = NP(∅) = ∅;
NN(t1→b t2) = NP(t1) ∪ NN(b) ∪ NN(t2);
NP(t1 →b t2) = NN(t1) ∪ NP(b) ∪ NP(t2);
NN(t1 × t2) = NN(t1) ∪ NN(t2) and NP(t1 × t2) = NP(t1) ∪ NP(t2);
NN(t list) = NN(t) and NP(t list) = NP(t);
NN(t chan) = NP(t chan) = FV(t);
NN(t com b) = NN(t) ∪ NN(b) and NP(t com b) = NP(t) ∪ NP(b);
NN({t chan}) = NP({t chan}) = FV(t);
NN(b1 ∪ b2) = NN(b1) ∪ NN(b2) and NP(b1 ∪ b2) = NP(b1) ∪ NP(b2).

We are now ready to de�ne the concept �is monotonic in�.

De�nition 5.6 We say that g is monotonic in γ if γ /∈ NP(g); and we say that

g is anti-monotonic in γ if γ /∈ NN(g).

Fact 5.7 For all types and behaviours g, it holds that NP(g) ∪ NN(g) = FV(g).
(So if g is monotonic as well as anti-monotonic in γ, then γ /∈ FV(g).)

Now we can prove Lemma 5.5:

Proof Induction on g, where there are two typical cases:

g is a variable: The claims follow from the fact that if g is anti-monotonic in
all γ ∈ Dom(S), then g /∈ Dom(S).

20

g is a function type t1 →b t2: First consider the sub-case where g is mono-

tonic in all γ ∈ Dom(S) and where S is increasing wrt. C. Then γ ∈ Dom(S)
gives γ /∈ NP(t1 →b t2), and we infer that γ /∈ NN(t1), γ /∈ NP(b), and
γ /∈ NP(t2), so that t1 is anti-monotonic in γ whereas t2 and b are monotonic in

γ. We can thus apply the induction hypothesis to infer that S decreases t1 wrt.
C and that S increases t2 as well as b wrt. C. But then it is straightforward that

S increases g wrt. C.

The other sub-cases are similar. 2

Example 5.8 Let C and t be given by

C = {α1⊆α2} and t = α1 →β α2. (1)

As t is monotonic in α2, it is possible to apply (shrink) and get

C ′ = ∅ and t′ = α1 →β α1. (2)

The soundness and completeness of this transformation may informally be argued
as follows: (1) �denotes� the set of types

{t1 →b t2 | ∅ ` t1⊆ t2}

but this is also the set of types denoted by (2), due to the presence of subtyping.

Notice that since t is anti-monotonic in α1, it is also possible to apply (boost)
from (1) and arrive at

C ′ = ∅ and t′ = α2 →β α2

which modulo renaming is equal to (2).

Example 5.9 Let C and t be given by

C = {α2⊆α1} and t = α1 →β α2.

Then neither (shrink) nor (boost) is applicable, as t is not monotonic in α1 nor
anti-monotonic in α2.

21

5.1 Termination and Soundness of R
Lemma 5.10 Suppose that C, t and b are simple, well-formed and atomic; then

R(C, t, b, A) always terminates successfully and if R(C, t, b, A) = (C ′, t′, b′) then
C ′, t′ and b′ are simple, well-formed and atomic.

Proof Termination is ensured since each rewriting step either decreases the num-

ber of constraints, or (as is the case for (cycle)) decreases the number of variables

without increasing the number of constraints. Each rewriting step trivially pre-

serves simplicity, well-formedness and atomicity. 2

Turning to soundness, we �rst prove an auxiliary result about the rewriting rela-

tion:

Lemma 5.11 Suppose A` (C, t, b)−→(C ′, t′, b′). Then there exists S such that

C ′ `S C, t′ = S t, b′ = S b, and A = S A.

Proof For (redund) we can use S = Id and the claim follows from Fact 5.2. For
(cycle) the claim is trivial; and for (shrink) and (boost) the claim follows from

the fact that with (γ1⊆ γ2) the �discarded� constraint it holds that (S γ1⊆S γ2)
is an instance of re�exivity. 2

Using Lemma 2.2 and Lemma 2.3 we then get:

Corollary 5.12 Suppose A` (C, t, b)−→(C ′, t′, b′).
If C,A` e : t& b then C ′, A` e : t′& b′.

By repeated application of this corollary we get the desired result:

Lemma 5.13 Suppose that R(C, t, b, A) = (C ′, t′, b′).
If C,A` e : t& b then C ′, A` e : t′& b′.

5.2 Results concerning Con�uence and Determinism

We have the following result showing that no new paths are introduced in the

graph:

Lemma 5.14 Suppose A` (C ′, t′, b′)−→(C ′′, t′′, b′′) and let γ1, γ2 ∈ FV(C ′′).
Then (γ1 ⇐∗ γ2) ∈ C ′ holds i� (γ1 ⇐∗ γ2) ∈ C ′′ holds.

Proof See Appendix A. 2

Observation 5.15 Suppose A` (C, t, b)−→(C ′, t′, b′) where the rule (cycle) is
not applicable from the con�guration (C, t, b). Then the rule (cycle) is not appli-

cable from the con�guration (C ′, t′, b′) either.

22

This suggests that an implementation could begin by collapsing all cycles once

and for all, without having to worry about cycles again. On the other hand, it is

not possible to perform transitive reduction in a separate phase as (redund) may

become enabled after applying (shrink) or (boost): as an example consider the

situation where C contains the constraints

γ0⊆ γ, γ⊆ γ1,

γ0⊆ γ′, γ′⊆ γ1

and (redund) is not applicable. By applying (shrink) with the substitution

[γ 7→ γ0] we end up with the constraints

γ0⊆ γ1, γ0⊆ γ′, γ′⊆ γ1

of which the former can be eliminated by (redund).

Concerning con�uency, one would like to show a �diamond property� but this

cannot be done in the presence of cycles in the constraint set (especially if these
contain multiple elements of FV(A)): as an example consider the constraints

γ0⊆ γ, γ0⊆ γ′, γ⊆ γ′, γ′⊆ γ

with γ, γ′ ∈ FV(A); here we can apply (redund) to eliminate either the �rst
or the second constraint but then we are stuck as (cycle) is not applicable and
therefore we cannot complete the diamond. As another example, consider the
case where we have a cycle containing γ0, γ1 and γ2 with γ0, γ1 ∈ FV(A). Then
we can apply (cycle) to map γ2 into either γ0 or γ1 but then we are stuck and the
graphs will be di�erent (due to the arrows to or from γ2) unless we devise some
notion of graph equivalence.

On the other hand, we have the following result:

Proposition 5.16 Suppose that

A` (C, t, b)−→(C1, t1, b1) and
A` (C, t, b)−→(C2, t2, b2)

where C is acyclic as well as simple, atomic and well-formed. Then there exists

(C ′1, t
′
1, b
′
1) and (C ′2, t

′
2, b
′
2), which are equal up to renaming, such that

A` (C1, t1, b1)−→≤1(C ′1, t′1, b′1) and
A` (C2, t2, b2)−→≤1(C ′2, t′2, b′2).

Proof See Appendix A. 2

23

(lub-exists) A` (C
·
∪ {b1⊆β}

·
∪ · · ·

·
∪ {bn⊆β}, t, b)−→(C, t, b)

provided β /∈ FV(C, t, b, A) and β /∈ FV(b1, · · · , bn)

(shrink-chan) A` (C
·
∪ {{t′ chan}⊆β}, t, b)−→(S C, S t, S b)

where S = [β 7→ {t′ chan}]
provided β /∈ FV(RHS(C), A, t′) and
provided t, b, and each element in LHS(C) is monotonic in β and

provided that S t and S b and S C are simple

(shrink-empty) A` (C, t, b)−→(C ′, S t, S b)
with C ′ = {(g1⊆ g2) ∈ S C | g1 6= ∅}
where S = [β 7→ ∅] with β ∈ FV(C, t, b)
provided β /∈ FV(RHS(C), A) and
provided t, b, and each element in LHS(C) is monotonic in β and
provided that S t and S b and C ′ are simple

Figure 9: Additional simpli�cations.

5.3 Extensions of R

In addition to the rewritings presented in Figure 8 one might introduce several
other rules, some of which are listed in Figure 9.

The rule (lub-exists) allows us to dispense with constraints which state that
some behaviours have an upper bound, as long as this upper bound does not
occur elsewhere. Notice that a similar rule for types would be invalid, since two
types do not necessarily possess an upper bound.

The rules (shrink-chan) and (shrink-empty) extend (shrink) in that they replace
a variable γ by its �immediate predecessor� g even if g is not a variable: for
(shrink-chan) g is a behaviour {t′ chan} (where an �occur check� has to be

performed), and for (shrink-empty) it is ∅ (which is a �trivial predecessor�).

For the rules (shrink-chan) and (shrink-empty), we must preserve the property of

being simple and we have explicit clauses for ensuring this; we also must preserve

atomicity and therefore rule (shrink-empty) discards all constraints with ∅ on the
left hand side.

Termination and soundness

Adding the rules in Figure 9 preserves termination and soundness, as it is easy

to see that Lemma 5.10 and Lemma 5.11 still hold: for (shrink-chan) we employ

24

the side condition β /∈ FV(t′); for (shrink-empty) we employ that ∅ is the least
behaviour; for (lub-exists) we use S = [β 7→ b1 ∪ · · · ∪ bn] and then employ

that ∪ is an upper bound operator, together with the side condition β /∈
FV(b1, · · · , bn).

Notice, however, that it no longer holds in general that the substitution S used

in Lemma 5.11 is simple; so if we were to extend R with the rules in Figure 9

we would lose the property that the inference tree �constructed by� the inference

algorithm is �simple�.

6 Experimental Results

In [8] we considered the program

fn f => let id = fn y =>

(if true

then f

else fn x =>

(sync (send (channel (), y));

x));

y

in id id

which demonstrated the power of our inference system relative to other ap-

proaches. Analysing this program with R as described in Figure 8, our prototype
implementation produces 4 type constraints and 7 behaviour constraints. The
resulting simple type is

((α44
β20→ α45) β34→ (α54

β31→ α54))

the resulting behaviour is ∅ and the resulting type constraints are

α44 ⊆ α45, α54 ⊆ α49, α58 ⊆ α54, α54 ⊆ α59

and the resulting behaviour constraints are

β20 ⊆ β23, {α7 chan} ⊆ β23,

β20 ⊆ β25, {(α58
β33→ α59) chan} ⊆ β25,

β20 ⊆ β27, {α49 chan} ⊆ β27,
β31 ⊆ β33.

25

Remark. Analysing the program above with a version of R which uses only

(redund) and (cycle) but not (shrink) or (boost), our implementation produces

71 type constraints and 88 behaviour constraints. This shows that it is essential

to use a non-trivial version of R in order to get readable output. Alternatively,

(shrink) and (boost) could be applied only in the top-level call to W; then the

implementation produces a result isomorphic to the one above (4 type constraints

and 7 behaviour constraints), but is much slower (due to the need to carry around

a large set of constraints).

Additional simpli�cations. This not quite as informative as we might wish,

which suggests that R should be extended with the rules in Figure 9: by applying

(lub-exists) repeatedly we can eliminate 6 of the behaviour constraints such that

the remaining type and behaviour constraints are

α44 ⊆ α45, α54 ⊆ α49, α58 ⊆ α54, α54 ⊆ α59, β31 ⊆ β33

and this makes it possible to shrink β33, α49, and α59 and to boost α58 such that
we end up with one constraint only:

((α44
β20→ α45) β34→ (α54

β31→ α54))

where α44 ⊆ α45

This is small enough to be manageable and is actually more precise than the
(essentially simple) type

(α→β α)→∅ (α′ →∅ α′)

(and no constraints) that is perhaps closer to what the programmer might have
expected.

7 Syntactic Soundness of Algorithm W

A main technical property of algorithm W is that it always terminates:

Lemma 7.1 If A is simple then W(A, e) always terminates (possibly with fail-

ure); if W(A, e) = (S, t, b, C) then S, t, b, and C are simple, well-formed and

atomic.

Proof This result is proved by structural induction in e with a similar result for
W ′ except that W ′(A, e) = (S, t, b, C) neither ensures that C is well-formed nor

atomic. For F and R we employ Lemma 4.6 and Lemma 5.10; for constants we

26

employ Fact 3.4; and throughout we employ Fact 3.5. 2

Note that if the expression e only mentions identi�ers in the domain of A (as

when e is closed), and that if e only mentions constants for which TypeOf is

de�ned, then the only possible form for failure is due to F. We conjecture that

then also ML typing would have failed (cf. the discussion in Section 3).

As a �nal preparation for establishing soundness of algorithm W we establish a

result about our formula for generalisation.

Lemma 7.2 Let C be well-formed; then C,A` e : t& b holds if and only if

C,A` e : GEN(A, b)(C, t)& b.

Proof See Appendix A. 2

Theorem 7.3 If W(A, e) = (S, t, b, C) with A simple then C, S A` e : t& b.

Proof The result is shown by induction in e with a similar result for W ′. See
Appendix A for the details. 2

8 Solvability of the Constraints Generated

Typability of an expression e might be taken to mean

∃t, b : ∅, []` e : t& b

where ∅ is the empty constraint set and [] is the empty assumption list. To check
for typability it is natural to perform a call W([], e) and to determine whether
or not the call

W([], e) terminates successfully (1)

rather than with failure (recalling that by Lemma 7.1 the callW([], e) must ter-
minate). We conjecture a completeness property showing that (1) is a necessary

condition for (certain kinds of) typability; here we shall be content with asking

whether (1) is a su�cient condition for typability.

IfW([], e) terminates successfully producing (S, t, b, C) it follows from the Sound-

ness Theorem 7.3 together with Lemma 7.1 that C, []` e : t& b with C simple,
well-formed and atomic; but to achieve typability we must achieve an empty con-

straint set. Due to the substitution and entailment lemmas (2.2 and 2.3) it will

su�ce to �nd a substitution S ′ such that ∅`S ′C for then we have a judgement

of the desired form: ∅, []` e : S ′ t&S ′ b.

Our goal thus is:

27

Given simple, well-formed and atomic C; �nd S ′ such that ∅`S ′C. (2)

This is a kind of simpli�cation process and as this paper does not address com-

pleteness issues we shall not be concerned with principality (that ∅`S ′′C implies

that S ′′ can be written as S ′′′ S ′).

We shall construct the S ′ mentioned in (2) by the formula S ′ = S ′3 S
′
2 S
′
1 where

S ′1 solves the type constraints of form (α1⊆α2), where S ′2 solves the behaviour

constraints of form (β1⊆β2), and S ′3 solves the behaviour constraints of form

({t chan}⊆β2). By simplicity, well-formedness, and atomicity of C this takes

care of all constraints of C (provided we demand that S ′1 and S ′2 preserve sim-

plicity, well-formedness and atomicity).

A crude approach to de�ning S ′1 is to select a unique type variable α∗ and let S ′1
map all type variables of FV(C) to α∗. Clearly this solves all type constraints

of C in the sense that all type constraints of S ′1C are of the form (α∗⊆α∗) and
hence instances of the axiom of re�exivity. (A less crude approach would be to
consider each (α1⊆α2) of C in turn and perform a most general uni�cation of

α1 with α2.)

A crude approach to de�ning S ′2 is to select a unique behaviour variable β∗ and
to let S ′2 map all behaviour variables of FV(S ′1C) to β∗. Clearly this solves
all behaviour constraints in C that were of the form (β1⊆β2) since in S ′2 S

′
1C

they appear as (β∗⊆β∗). (A less crude approach would be to adopt the ideas of

canonical solution from [10] but this is best combined with the construction of

S ′3 below.)

The remaining non-trivial constraints in S ′2 S
′
1C are {t1 chan}⊆ β∗,· · ·,

{tn chan}⊆β∗ for n ≥ 0. If β∗ does not occur in any of t1, · · · , tn we could follow
[10] and de�ne S ′3 by letting it map β∗ to β∗ ∪ {t1 chan} ∪ · · · ∪ {tn chan}
and perhaps even dispense with the �β∗ ∪ �. This situation corresponds to the
scenario in [10] where the type inference algorithm enforces that β∗ does not occur
in t1, · · · , tn by terminating with failure if the condition is not met. Intuitively,
failure to meet the condition means that the communication capabilities are used
to code up recursion in �much the same way� that the Y combinatior can be

encoded in the λ-calculus with recursive types (or in the untyped λ-calculus).
However, we shall take the view that it is too demanding to always forbid such
use of the communication capabilities and thus depart from [10].

It is important to note that a simple solution could be found if we changed the rep-
resentation of constraints to record their free variables only: then {{t1 chan}⊆β∗,
· · · , {tn chan}⊆β∗} is replaced by {(γ⊆β∗) | γ ∈

⋃
i FV(ti)}. Even if β∗ occurs

in one of t1, · · · , tn one could still let S ′3 map β∗ to β∗ ∪ γ1 ∪ · · · ∪ γm where

{γ1, · · · , γm} = FV(t1, · · · , tn) and we could obtain a solution due to the axioms
for ∪ in Figure 2. In many ways this would seem a sensible solution in that the

actual structure of the type is of only minor importance.

28

Motivated by the goals of [6] of eventually incorporating more causal information

also for behaviours, we shall favour another solution. This involves adding a new

behaviour of form RECβ.b. Formally we extend the syntax as in

b ::= · · · | RECβ.b

and extend the axiomatisation of Figure 2 with the axiom scheme

C ` (RECβ.b) ≡ b[(RECβ.b)/β]

For a constraint set C to be simple we require that there are no occurrences of

REC in it. With this new form of behaviour we can de�ne S ′3 by mapping β∗ to
RECβ∗.(β∗ ∪ {t1 chan} ∪ · · · ∪ {tn chan}). We then have ∅`S ′3 S ′2 S ′1C as

desired.

9 Conclusion

We have developed an inference algorithm for a previously developed annotated
type and e�ect system that integrates polymorphism, subtyping and e�ects [8].
Although the development was performed for a fragment of Concurrent ML we
believe it equally possible for Standard ML with references. The algorithm W
involves the syntactically de�ned W ′, and the algorithm F for obtaining con-
straints that are well-formed; an optional component, algorithm R for reducing
the size of constraint sets, is pragmatically very useful in reducing constraint sets
to a manageable size, as is illustrated in our prototype implementation. In this
paper we showed the syntactic soundness of these algorithms and the issue of
completeness seems promising.

Acknowledgement This work has been supported in part by theDART project
(Danish Natural Science Research Council) and the LOMAPS project (ESPRIT

BRA project 8130); it represents joint work among the authors.

References

[1] T.Amtoft, F.Nielson, H.R.Nielson, J.Ammann: Polymorphic Subtypes for
E�ect Analysis: the Semantics, 1996.

[2] Y.-C. Fuh and P. Mishra. Polymorphic subtype inference: Closing the

theory-practice gap. In Proc. TAPSOFT '89. SLNCS 352, 1989.

29

[3] Y.-C. Fuh and P. Mishra. Type inference with subtypes. Theoretical Com-

puter Science, 73, 1990.

[4] M. P. Jones. A theory of quali�ed types. In Proc. ESOP '92, pages 287�306.

SLNCS 582, 1992.

[5] J. C. Mitchell. Type inference with simple subtypes. Journal of Functional

Programming, 1(3), 1991.

[6] H.R. Nielson and F. Nielson. Higher-order concurrent programs with �nite

communication topology. In Proc. POPL'94, pages 84�97. ACM Press, 1994.

[7] F. Nielson and H.R. Nielson. Constraints for polymorphic behaviours for

Concurrent ML. In Proc. CCL'94. SLNCS 845, 1994.

[8] H.R.Nielson, F.Nielson, T.Amtoft: Polymorphic Subtypes for E�ect Analy-

sis: the Integration, 1996.

[9] G. S. Smith. Polymorphic inference with overloading and subtyping. In
SLNCS 668, Proc. TAPSOFT '93, 1993. Also see: Principal Type Schemes
for Functional Programs with Overloading and Subtyping: Science of Com-
puter Programming 23, pp. 197-226, 1994.

[10] J. P. Talpin and P. Jouvelot. The type and e�ect discipline. Information

and Computation, 111, 1994.

[11] J. P. Talpin and P. Jouvelot. Polymorphic Type, Region and E�ect Inference.
Journal of Functional Programming, 2(3), pages 245�271, 1992.

30

A Details of Proofs

Algorithm R

Lemma 5.14 Suppose A` (C ′, t′, b′)−→(C ′′, t′′, b′′) and let γ1, γ2 ∈ FV(C ′′).
Then (γ1 ⇐∗ γ2) ∈ C ′ holds i� (γ1 ⇐∗ γ2) ∈ C ′′ holds.

Proof (We use the terminology from the relevant clauses in Figure 8, which does

not con�ict with the one used in the formulation of the lemma). For (redund)

this is a straight-forward consequence of the assumptions. For (cycle), (shrink)

and (boost) the �only if�-part follows from Fact 5.3: if (γ1 ⇐∗ γ2) ∈ C ′ then
(S γ1 ⇐∗ S γ2) ∈ S C ′ and as γ1, γ2 /∈ Dom(S) this amounts to (γ1 ⇐∗ γ2) ∈ S C ′

which is clearly equivalent to (γ1 ⇐∗ γ2) ∈ C ′′.

We are left with proving the �if�-part for (cycle), (shrink) and (boost); to do so

it su�ces to show that

(γ′1⊆ γ′2) ∈ C ′′ implies (γ′1 ⇐∗ γ′2) ∈ C ′.

As C ′′ = S C we can assume that there exists (γ1⊆ γ2) ∈ C such that γ′1 = S γ1

and γ′2 = S γ2; then (since C ⊆ C ′) our task can be accomplished by showing

that

(S γ1 ⇐∗ γ1) ∈ C ′ and (γ2 ⇐∗ S γ2) ∈ C ′.

This is trivial except if γ1 = γ or γ2 = γ. The former is impossible in the case
(boost) (as LHS(C) is anti-monotonic in γ) and otherwise the claim follows from

the assumptions; the latter is impossible in the case (shrink) (as γ /∈ RHS(C))
and otherwise the claim follows from the assumptions. 2

Proposition 5.16 Suppose that

A` (C, t, b)−→(C1, t1, b1) and
A` (C, t, b)−→(C2, t2, b2)

where C is acyclic as well as simple, atomic and well-formed. Then there exists

(C ′1, t′1, b′1) and (C ′2, t′2, b′2), which are equal up to renaming, such that

A` (C1, t1, b1)−→≤1(C ′1, t′1, b′1) and
A` (C2, t2, b2)−→≤1(C ′2, t′2, b′2).

Proof As (cycle) is not applicable, each of the two rewriting steps in the assump-

tion can be of three kinds yielding six di�erent combinations:

31

(redund) and (redund) eliminating (γ′1⊆ γ1) and (γ′2⊆ γ2) where we can

assume that either γ′1 6= γ′2 or γ1 6= γ2 as otherwise the claim is trivial. The

situation thus is

A` (C
·
∪ {γ′1⊆ γ1}

·
∪ {γ′2⊆ γ2}, t, b)−→(C

·
∪ {γ′2⊆ γ2}, t, b)

A` (C
·
∪ {γ′1⊆ γ1}

·
∪ {γ′2⊆ γ2}, t, b)−→(C

·
∪ {γ′1⊆ γ1}, t, b)

where

(γ′1 ⇐∗ γ1) ∈ C
·
∪ {γ′2⊆ γ2} and (1)

(γ′2 ⇐∗ γ2) ∈ C
·
∪ {γ′1⊆ γ1}. (2)

It will su�ce to show that

either (γ′1 ⇐∗ γ1) ∈ C or (γ′2 ⇐∗ γ2) ∈ C (3)

for if e.g. (γ′1 ⇐∗ γ1) ∈ C holds then by (2) also (γ′2 ⇐∗ γ2) ∈ C holds and we
can apply (redund) twice to complete the diamond.

For the sake of arriving at a contradiction we now assume that (3) does not hold.
Using (1) and (2) we see that the situation is that

(γ′1 ⇐∗ γ′2) ∈ C and (γ2 ⇐∗ γ1) ∈ C and
(γ′2 ⇐∗ γ′1) ∈ C and (γ1 ⇐∗ γ2) ∈ C

and this con�icts with the assumption about the graph being cycle-free.

(redund) and (shrink) eliminating (γ′1⊆ γ1) and shrinking γ2 into γ′2 (with
γ′2 6= γ2). First notice that it cannot be the case that (γ′1⊆ γ1) = (γ′2⊆ γ2), for
then (with C the remaining constraints) we would have (γ′1 ⇐∗ γ1) ∈ C as well

as γ2 /∈ RHS(C). The situation thus is

A` (C
·
∪ {γ′1⊆ γ1}

·
∪ {γ′2⊆ γ2}, t, b)−→(C

·
∪ {γ′2⊆ γ2}, t, b)

A` (C
·
∪ {γ′1⊆ γ1}

·
∪ {γ′2⊆ γ2}, t, b)−→(S C ∪ {S γ′1⊆S γ1}, S t, S b)

where S = [γ2 7→ γ′2] and where

(γ′1 ⇐∗ γ1) ∈ C ∪ {γ′2⊆ γ2} and
γ2 /∈ FV(RHS(C), A) and γ2 6= γ1 and t, b, LHS(C) is monotonic in γ2.

Applying Fact 5.3 we get (S γ′1 ⇐∗ S γ1) ∈ S C which shows that

32

A` (S C ∪ {S γ′1⊆S γ1}, S t, S b)−→≤1(S C, S t, S b)

(if (S γ′1⊆ S γ1) ∈ S C we have �=� otherwise �−→�); it is also easy to see that

the conditions are ful�lled for applying (shrink) to get

A` (C
·
∪ {γ′2⊆ γ2}, t, b)−→(S C, S t, S b)

thus completing the diamond.

(redund) and (boost) eliminating (γ1⊆ γ′1) and boosting γ2 into γ′2 (with
γ′2 6= γ2). First notice that it cannot be the case that (γ1⊆ γ′1) = (γ2⊆ γ′2), for
then (with C the remaining constraints) we would have (γ1 ⇐∗ γ′1) ∈ C showing

that γ1 ∈ LHS(C), whereas a side condition for (boost) is that each element in

LHS(C) is anti-monotonic in γ2.

Now we can proceed as in the case (redund),(shrink).

(shrink) and (shrink) shrinking γ1 into γ′1 and shrinking γ2 into γ′2 where we
can assume that either γ′1 6= γ′2 or γ1 6= γ2 as otherwise the claim is trivial.
The situation thus is

A` (C
·
∪ {γ′1⊆ γ1}

·
∪ {γ′2⊆ γ2}, t, b)−→(S1C ∪ {S1 γ′2⊆S1 γ2}, S1 t, S1 b)

A` (C
·
∪ {γ′1⊆ γ1}

·
∪ {γ′2⊆ γ2}, t, b)−→(S2C ∪ {S2 γ′1⊆S2 γ1}, S2 t, S2 b)

where S1 = [γ1 7→ γ′1] and S2 = [γ2 7→ γ′2]. Due to the side conditions for (shrink)
we have γ1 6= γ2 and γ1, γ2 /∈ RHS(C) implying γ1, γ2 /∈ RHS(S1C) and

γ1, γ2 /∈ RHS(S2C), thus the � ∪ � on the right hand sides is really �
·∪ �. Our

goal then is to �nd S ′1 and S ′2 such that

S ′2 S1 = S ′1 S2 and

A` (S1C
·
∪ {S1 γ′2⊆ γ2}, S1 t, S1 b)−→(S ′2 S1C, S′2 S1 t, S ′2 S1 b) and

A` (S2C
·
∪ {S2 γ′1⊆ γ1}, S2 t, S2 b)−→(S ′1 S2C, S′1 S2 t, S ′1 S2 b).

We naturally de�ne S ′1 = [γ1 7→ S2 γ′1] and S
′
2 = [γ2 7→ S1 γ′2] with the purpose of

using (shrink), and our proof obligations are:

S ′2 S1 = S ′1 S2; (4)

S2 γ′1 6= γ1 and S1 γ′2 6= γ2; (5)

S2 t, S2 b,LHS(S2C) is monotonic in γ1; (6)

S1 t, S1 b,LHS(S1C) is monotonic in γ2. (7)

Here (4) and (5) amounts to proving that

33

S ′2 γ
′
1 = S2 γ′1 and S1 γ′2 = S ′1 γ

′
2 and S2 γ′1 6= γ1 and S1 γ′2 6= γ2 (8)

which is trivial if γ′1 6= γ2 and γ′2 6= γ1. If e.g. γ′1 = γ2 then we from our

assumption about the graph being cycle-free infer that γ′2 6= γ1 from which (8)

easily follows.

The claims (6) and (7) are easy consequences of the fact that t, b and LHS(C) are
monotonic in γ1 as well as in γ2: for then we for instance have {γ1, γ2}∩NP(t) = ∅
and hence NP(S1 t) = NP(S2 t) = NP(t).

(boost) and (boost) where we proceed, mutatis mutandis, as in the case

(shrink),(shrink).

(shrink) and (boost) shrinking γ1 into γ′1 and boosting γ2 into γ′2. Let S1 =
[γ1 7→ γ′1] and S2 = [γ2 7→ γ′2]. Four cases:

γ1 = γ2 (to be denoted γ). Then our assumption about the graph being cycle-free

tells us that γ′1 6= γ′2, and the situation is

A` (C
·
∪ {γ′1⊆ γ}

·
∪ {γ⊆ γ′2}, t, b)−→(S1C ∪ {γ′1⊆ γ′2}, S1 t, S1 b) (9)

A` (C
·
∪ {γ′1⊆ γ}

·
∪ {γ⊆ γ′2}, t, b)−→(S2C ∪ {γ′1⊆ γ′2}, S2 t, S2 b) (10)

where (according to the side conditions for (shrink) and (boost)) it holds that

γ /∈ RHS(C) and that t, b and each element in LHS(C) is monotonic as well as
anti-monotonic in γ. By Fact 5.7 and using that C is well-formed we infer that
γ /∈ FV(C, t, b), thus the right hand sides of (9) and (10) are identical.

γ1 = γ′2. By the side condition for (shrink) we then have γ2 = γ′1. The situation
thus is

A` (C
·
∪ {γ2⊆ γ1}, t, b)−→(S1C, S1 t, S1 b)

A` (C
·
∪ {γ2⊆ γ1}, t, b)−→(S2C, S2 t, S2 b)

where the right hand sides are equal modulo renaming.

γ2 = γ′1. By the side condition for (boost) we then have γ1 = γ′2 so we can proceed
as in the previous case.

γ1 /∈ {γ2, γ′2, γ
′
1} and γ2 /∈ {γ1, γ′1, γ

′
2} will hold in the remaining case. The sit-

uation thus is

A` (C
·
∪ {γ′1⊆ γ1}

·
∪ {γ2⊆ γ′2}, t, b)−→(S1C ∪ {γ2⊆ γ′2}, S1 t, S1 b)

A` (C
·
∪ {γ′1⊆ γ1}

·
∪ {γ2⊆ γ′2}, t, b)−→(S2C ∪ {γ′1⊆ γ1}, S2 t, S2 b)

34

where γ1 /∈ FV(RHS(C), A), where t and b and each element in LHS(C) is

monotonic in γ1, where γ2 /∈ FV(A), and where t and b and each element in

LHS(C) is anti-monotonic in γ2.

As γ1 6= γ′2 it is easy to see that γ1 /∈ FV(RHS(S2C), A) and that S2 t, S2 b and
LHS(S2C) is monotonic in γ1; and as γ2 6= γ′1 it is easy to see that S1 t, S1 b and
LHS(S1C) is anti-monotonic in γ2. Hence we can apply (boost) and (shrink) to

get

A` (S1C
·
∪ {γ2⊆ γ′2}, S1 t, S1 b)−→(S2 S1C, S2 S1 t, S2 S1 b)

A` (S2C
·
∪ {γ′1⊆ γ1}, S2 t, S2 b)−→(S1 S2C, S1 S2 t, S1 S2 b)

which is as desired since clearly S2 S1 = S1 S2. 2

Algorithm W

Lemma 7.2 Let C be well-formed; then C,A` e : t& b holds if and only if

C,A` e : GEN(A, b)(C, t)& b.

Proof For �if� simply use rule (ins) with S0 = Id. Next consider �only if� and
write

{~γ} = (FV (t)Cl)\(FV (A, b)C↓)

C0 = C | {~γ} = {(g1 ⊆ g2) ∈ C | FV (g1, g2) ∩ {~γ} 6= ∅}

so that GEN (A, b)(C, t) = ∀(~γ : C0). t; this is well-formed by Fact 3.7.

Next let R be a renaming of {~γ} into fresh variables. It is immediate that

∀(~γ : C0). t is solvable from (C\C0) ∪ RC0 by some S0; simply take S0 = R.
Finally note that {~γ} ∩ FV ((C\C0) ∪ RC0) = ∅ by construction of C0 and R,
and that {~γ} ∩ FV (A, b) = ∅ by construction of {~γ}.
We then have (using Lemma 2.3 on the assumption) that

((C\C0) ∪ RC0) ∪ C0, A ` e : t & b

and (gen) gives

(C\C0) ∪ RC0, A ` e : ∀(~γ : C0). t & b

and �nally Lemma 2.2 gives the desired result:

(C\C0) ∪ C0, A ` e : ∀(~γ : C0). t & b

35

This completes the proof. 2

Theorem 7.3 If W(A, e) = (S, t, b, C) with A simple then C, S A ` e : t & b.

Proof We proceed by structural induction on e; we �rst prove the result for W ′
(using the notation introduced in the de�ning clause for W ′(A, e)) and then in a

joint �nal case extend the result to W.

The case e ::= c. If TypeOf(c) is a type t0 then S = Id, t = t0, b = ∅, C = ∅ and
the claim is trivial. Otherwise write TypeOf(c) = ∀(~γ0 : C0). t0, let ~γ be fresh

and write R = [~γ0 7→ ~γ]. Then S = Id , t = R t0, b = ∅, and C = RC0. We then

have

C,A ` c : ∀(~γ0 : C0). t0 & ∅ by (con)

C,A ` c : R t0 & ∅ by (ins)

since Dom(R) ⊆ {~γ0} and C ` RC0.

The case e ::= x. If A(x) is a type t0 then S = Id, t = t0, b = ∅, C = ∅ and the
claim is trivial. Otherwise write A(x) = ∀(~γ0 : C0). t0, let ~γ be fresh and write
R = [~γ0 7→ ~γ]. Then S = Id , t = R t0, b = ∅, and C = RC0. We then have

C,A ` x : ∀(~γ0 : C0). t0 & ∅ by (id)

C,A ` x : R t0 & ∅ by (ins)

since Dom(R) ⊆ {~γ0} and C ` RC0.

The case e ::= fn x => e0. The induction hypothesis gives

C0, S0(A[x : α]) ` e0 : t0 & b0

and using C = C0 ∪ {b0 ⊆ β} and S = S0 we get

C, S(A[x : α]) ` e0 : t0 & b0

C, (S A)[x : S α] ` e0 : t0 & β

C, S A ` fn x => e0 : S α→β t0 & ∅

using �rst Lemma 2.3, then (sub) and �nally (abs).

The case e ::= e1 e2. Concerning e1 the induction hypothesis gives

C1, S1A ` e1 : t1 & b1

Using Lemmas 2.2 and 2.3 and then (sub) we get

36

S2C1, S2 S1A ` e1 : S2 t1 & S2 b1

C, S A ` e1 : S2 t1 & S2 b1

C, S A ` e1 : t2 →β α & S2 b1

Turning to e2 the induction hypothesis (which can be applied since S1 and hence

S1A is simple due to Lemma 7.1) gives

C2, S2 S1A ` e2 : t2 & b2

and using Lemma 2.3 we get

C, S A ` e2 : t2 & b2.

Finally we get

C, S A ` e1 e2 : α & S2 b1 ∪ b2 ∪ β

which is the desired result.

The case e ::= let x = e1 in e2. Concerning e1 the induction hypothesis gives

C1, S1A ` e1 : t1 & b1

and note that by Lemma 7.1 it holds that C1 is well-formed. Next let ts1 =
GEN (S1A, b1)(C1, t1) so that Lemmas 7.2, 2.2 and 2.3 give

C1, S1A ` e1 : ts1 & b1

S2C1, S A ` e1 : S2 ts1 & S2 b1

C, S A ` e1 : S2 ts1 & S2 b1

Turning to e2 the induction hypothesis gives

C2, (S2 S1A)[x : S2 ts1] ` e2 : t2 & b2

and using Lemma 2.3 we get

C, S A[x : S2 ts1] ` e2 : t2 & b2

and hence using (let)

C, S A ` let x = e1 in e2 : t2 & S2 b1 ∪ b2

37

and this is the desired result.

The case e ::= rec f x => e0. Concerning e0 the induction hypothesis gives

C0, S0A[f : S0 α1 →S0 β S0 α2][x : S0 α1] ` e0 : t0 & b0

Using Lemma 2.3, (sub), (abs) and (rec) we then get

C, S A[f : S α1 →S β S α2][x : S α1] ` e0 : t0 & b0

C, S A[f : S α1 →S β S α2][x : S α1] ` e0 : S α2 & S β

C, S A[f : S α1 →S β S α2] ` fn x => e0 : S α1 →S β S α2 & ∅
C, S A ` rec f x => e0 : S α1 →S β S α2 & ∅

which is the desired result.

The case e ::= if e0 then e1 else e2. The induction hypothesis, Lemmas 2.2
and 2.3 and rule (sub) give:

C, S A ` e0 : bool & S2 S1 b0

C, S A ` e1 : α & S2 b1

C, S A ` e2 : α & b2

and rule (if) then gives

C, S A ` if e0 then e1 else e2 : α & S2 S1b0 ∪ S2 b1 ∪ b2

which is the desired result.

Lifting the result from W ′ to W. We have from the above that W ′(A, e) =
(S1, t1, b1, C1) with C1 simple and that

C1, S1A ` e : t1 & b1

Concerning F we have

(S2, C2) = F(C1)

where Lemma 4.6 and Lemma 4.7 ensure that C2 is simple, well-formed and
atomic and that C2 ` S2 C1. Using Lemmas 2.2 and 2.3 we get

C2, S2 S1A ` e : S2 t1 & S2 b1

Concerning R we have

38

(C3, t3, b3) = R(C2, S2 t1, S2 b1, S2 S1A)

so by Lemma 5.13 we get

C3, S2 S1A ` e : t3 & b3

which is the desired result. 2

39

