
Polymorphic Subtyping for E�ect

Analysis: the Integration

H.R.Nielson & F.Nielson & T.Amtoft

Computer Science Department, Aarhus University, Denmark

e-mail:{hrnielson,fnielson,tamtoft}@daimi.aau.dk

April 15, 1996

Abstract

The integration of polymorphism (in the style of the ML let-construct),

subtyping, and e�ects (modelling assignment or communication) into one

common type system has proved remarkably di�cult. One line of research

has succeeded in integrating polymorphism and subtyping; adding e�ects

in a straightforward way results in a semantically unsound system. An-

other line of research has succeeded in integrating polymorphism, e�ects,

and sube�ecting; adding subtyping in a straightforward way invalidates the

construction of the inference algorithm. This paper integrates all of poly-

morphism, e�ects, and subtyping into an annotated type and e�ect system

for Concurrent ML and shows that the resulting system is a conservative

extension of the ML type system.

1 Introduction

Motivation. The last decade has seen a number of papers addressing the dif-

�cult task of developing type systems for languages that admit polymorphism in
the style of the ML let-construct, that admit subtyping, and that admit e�ects

as may arise from assignment or communication.

This is a problem of practical importance. The programming language Stan-

dard ML has been joined by a number of other high-level languages demonstrat-
ing the power of polymorphism for large scale software development. Already

Standard ML contains imperative e�ects in the form of ref-types that can be

1

used for assignment; closely related languages like Concurrent ML or Facile fur-

ther admit primitives for synchronous communication. Finally, the trend towards

integrating aspects of object orientation into these languages necessitates a study

of subtyping.

Apart from the need to type such languages we see a need for type systems

integrating polymorphism, subtyping, and e�ects in order to be able to continue

the present development of annotated type and e�ect systems for a number of

static program analyses; example analyses include control �ow analysis, binding

time analysis and communication analysis. This will facilitate modular proofs of

correctness while at the same time allowing the inference algorithms to generate

syntax-free constraints that can be solved e�ciently.

State of the art. One of the pioneering papers in the area is [8] that developed

the �rst polymorphic type inference and algorithm for the applicative fragment
of ML; a shorter presentation for the typed λ-calculus with let is given in [2].

Since then many papers have studied how to integrate subtyping. A number of
early papers did so by mainly focusing on the typed λ-calculus and only brie�y
dealing with let [9, 4]. Later papers have treated polymorphism in full generality
[15, 6]. A key ingredient in these approaches are the techniques for simplifying
the enormous set of constraints into something manageable [3, 15].

Already ML necessitates an incorporation of imperative e�ects due to the pre-
sence of ref-types. A pioneering paper in the area is [18] that developes a dis-

tinction between imperative and applicative type variables and that characterises
expressions as being expansive or non-expansive. A number of papers have tried
to improve upon this work by allowing to type programs that are rejected ac-
cording to the expansiveness distinction; this includes [7, 19, 16] but all of these
systems (as well as the one we develop) fail to fully generalise the expansiveness

distinction as is discussed in [16, section 11].

In the area of static program analysis, annotated type and e�ect systems have

been used as the basis for variations of control �ow analysis [17] and binding

time analysis [11, 5]. These papers typically make use of a polymorphic type
system with subtyping and no e�ects or a non-polymorphic type system with
e�ects and subtyping. A more ambitious analysis is the approach of [12] to

let annotated type and e�ect systems extract terms of a process algebra from

programs with communication; this involves polymorphism and sube�ecting but
some algorithmic problems remain [10].

A step forward. In this paper we take an important step towards integrating
polymorphism, subtyping, and e�ects into one common type system. As far as

the annotated type and e�ect system is concerned this involves the following key

2

idea:

• Carefully taking e�ects into account when deciding the set of variables over

which to generalise in the rule for let; this involves taking upwards closure

with respect to a constraint set and is essential for maintaining semantic

soundness and a number of substitution properties.

This presents a major step forward in generalising the sube�ecting approach

of [16] and in admitting e�ects into the subtyping approaches of [15, 6]. The

development is not only applicable to Concurrent ML (with communication) but

also Standard ML (with references) and similar settings.

Overview. In this paper we study a fragment of Concurrent ML that includes

the λ-calculus, let-polymorphism, and primitives for synchronous communica-
tion as well as the dynamic creation of channels and processes. We develop an
annotated type and e�ect system in which a simple notion of behaviours is used
to keep track of the type of channels created; unlike previous approaches by some
of the authors no attempt is made to model any causality among the individual

behaviours. Finally, we show that the system is a �conservative extension� of the
usual type system for Standard ML.

The formal demonstration of semantic soundness, as well as the construction of
the inference algorithm, are dealt with in companion papers [1, 13].

2 Inference System

The fragment of Concurrent ML [14] we have chosen for illustrating our approach
has expressions (e ∈ Exp) and constants (c ∈ Con) given by the following syntax:

e ::= c | x | fn x⇒ e | e1 e2 | let x = e1 in e2

| rec f x⇒ e | if e then e1 else e2

c ::= () | true | false | n | + | * | = |· · ·
| pair | fst | snd | nil | cons | hd | tl | isnil
| send | receive | sync | channel | fork

For expressions this includes constants, identi�ers, function abstraction, applica-
tion, polymorphic let-expressions, recursive functions, and conditionals; a pro-

gram is an expression without any free identi�ers.

Constants can be divided into four classes, according to whether they are se-

quential or non-sequential and according to whether they are constructors or base

functions.

3

The sequential constructors include the unique element of the unit type, the two

booleans, numbers (n ∈ Num), pair for constructing pairs, and nil and cons

for constructing lists.

The sequential base functions include a selection of arithmetic operations, fst

and snd for decomposing a pair, and hd, tl and isnil for decomposing and

inspecting a list.

We shall allow to write (e1,e2) for pair e1 e2, to write [] for nil and [e1 · · · en]
for cons(e1,cons(· · ·,nil) · · ·), and to write e1;e2 for snd(e1,e2) as this is a

more readable way of expressing the sequencing between e1 and e2.

The unique �avour of Concurrent ML is due to the non-sequential constants

which are the primitives for communication; we include �ve of these but more (in

particular choose and wrap) can be added. The non-sequential constructors are

send and receive: rather than actually enabling a communication they create

delayed communications which are �rst-class entities that can be passed around
freely. This leads to a very powerful programming discipline (in particular in the
presence of choose and wrap) as is discussed in [14]. The non-sequential base
functions are sync, channel, fork and these are explained below.

The function sync synchronises a delayed communication. Thus one process can
send the value of e to another process by the expression sync (send(ch,e)) where
communication takes place along the channel ch. Similarly a process can receive
a value from another process by the expression sync (receive(ch)).

The function channel allocates a new typed channel for communication when
applied to ().

The function fork forks a new process e when applied to the expression
fn dummy⇒ e; this process will then execute concurrently with the other pro-
cesses, one of which is the program itself.

Remark. We stated in the Introduction that our development is widely appli-

cable. To this end it is worth pointing out the similarities between the ref-types

of Standard ML and the delayed communications of Concurrent ML. In particu-
lar ref e corresponds to channel(), e1:=e2 corresponds to sync (send(e1,e2)),
and !e corresponds to sync (receivee). Looking slightly ahead the Standard ML
type t ref will correspond to the Concurrent ML type t chan. 2

4

Example 2.1 Consider the program

fn f => let id = fn y =>

(if true

then f

else fn x =>

(sync (send (channel (), y));

x));

y

in id id

that takes a function f as argument, de�nes an identity function id, and then

applies id to itself. The identity function contains a conditional whose sole

purpose is to force f and a locally de�ned function to have the same type. The

locally de�ned function is yet another identity function except that it attempts
to send the argument to id over a newly created channel. (To be able to execute
one would need to fork a process that could read over the same channel.)

This program is of interest because it will be rejected in the sube�ecting approach
of [16] whereas it will be accepted in the system of [18]. We shall see that we will

be able to type this program in our system as well! 2

2.1 Annotated Types

To prepare for the type inference system we must clarify the syntax of types,
e�ects, type schemes, and constraints. The syntax of types (t ∈ Typ) is given
by:

t ::= α | unit | int | bool | t1 × t2 | t list
| t1 →b t2 | t chan | t com b

Here we have base types for the unit type, booleans and integers; type variables

are denoted α; composite types includes the product type, the function type and
the list type; �nally we have the type t chan for a typed channel allowing values
of type t to be transmitted, and the type t com b for a delayed communication

that will eventually result in a value of type t.

Except for the presence of a b-component in t1 →b t2 and t com b this is much the

same type structure that is actually used in Concurrent ML [14]. The role of the
b-component is to express the dynamic e�ect that takes place when the function
is applied or the delayed communication synchronised. Motivated by [16] and (a

simpli�ed version of) [12] the syntax of e�ects, or behaviours, (b ∈ Beh) is given
by:

5

b ::= {t chan} | β | ∅ | b1 ∪ b2

Here {t chan} records the allocation of a channel of type t chan; behaviour
variables are denoted β; ∅ denotes the minimal behaviour and b1 ∪ b2 denotes

the union of the two behaviours b1 and b2. The de�nition of types and behaviours

is of course mutually recursive.

A constraint set C is a �nite set of type (t1⊆ t2) and behaviour inclusions (b1⊆ b2).

A type scheme (ts ∈ TSch) is given by

ts ::= ∀(~α~β : C). t

where ~α~β is the list of quanti�ed type and behaviour variables, C is a constraint

set, and t is the type. We regard type schemes as equivalent up to alpha-renaming

of bound variables. There is a natural injection from types into type schemes
which takes the type t into the type scheme ∀(() : ∅). t.
We list in Figure 1 the type schemes of a few selected constants. For those
constants also to be found in Standard ML the constraint set is empty and the
type is as in Standard ML except that the empty behaviour has been placed on
all function types. The type of sync interacts closely with the types of send and
receive: if ch is a channel of type t chan, the expression receivech is going to

have type t com ∅, and the expression sync (receivech) is going to have type t;
similarly for send. The type of channel clearly records the type of the created
channel in the behaviour labelling the function type. Finally1 the type of fork
indicates that the argument may have any behaviour whatsoever, in particular
this means that e in fork (fn dummy⇒ e) is free to create new channels.

Following the approach of [15, 6] we will incorporate the e�ects of [16, 12] by
de�ning a type inference system with judgements of the form

C,A` e : σ& b

where C is a constraint set, A is an environment i.e. a list [x1 : σ1, · · · , xn : σn] of
typing assumptions for identi�ers, σ is a type t or a type scheme ts, and b is an
e�ect. This means that e has type or type scheme σ, and that its execution will

result in a behaviour described by b, assuming that free identi�ers have types as

speci�ed by A and that all type and behaviour variables are related as described
by C.

The overall structure of the type inference system of Figure 2 is very close to those
of [15, 6] with a few components from [16, 12] thrown in; the novel ideas of our

1As discussed previously one might add wrap to the language: this constant transforms

delayed communications of type t com b into delayed communications of type t′ com b′; here b′

(and thus also b) may be non-trivial.

6

c TypeOf(c)

+ int × int→∅ int

pair ∀(α1α2 : ∅). α1 →∅ α2 →∅ α1 × α2

fst ∀(α1α2 : ∅). α1 × α2 →∅ α1

snd ∀(α1α2 : ∅). α1 × α2 →∅ α2

send ∀(α : ∅). (α chan) × α→∅ (α com ∅)
receive ∀(α : ∅). (α chan)→∅ (α com ∅)
sync ∀(αβ : ∅). (α com β)→β α

channel ∀(αβ : {{α chan}⊆β}). unit→β (α chan)

fork ∀(αβ : ∅). (unit→β α)→∅ unit

Figure 1: Type schemes for selected constants.

approach only show up as carefully constructed side conditions for some of the
rules. Concentrating on the �overall picture� we thus have rather straightforward
axioms for constants and identi�ers; here A(x) denotes the rightmost entry for x
in A. The rules for abstraction and application are as usual in e�ect systems: the

latent behaviour of the body of a function abstraction is placed on the arrow of
the function type, and once the function is applied the latent behaviour is added
to the e�ect of evaluating the function and its argument. The rule for let is
straightforward given that both the let-bound expression and the body needs to
be evaluated. The rule for recursion makes use of function abstraction to concisely
represent the ��xed point requirement� of typing recursive functions; note that

we do not admit polymorphic recursion. The rule for conditional is unable to
keep track of which branch is chosen, therefore an upper approximation of the
branches is taken. We then have separate rules for subtyping, instantiation and
generalisation and we shall explain their side conditions shortly.

2.2 Subtyping

Rule (sub) generalises the sube�ecting rule of [16] by incorporating subtyping and
extends the subtyping rule of [15] to deal with e�ects. To do this we associate two

kinds of judgements with a constraint set: the relations C ` b1⊆ b2 and C ` t1⊆ t2
are de�ned by the rules and axioms of Figure 3.

In all cases we write ≡ for the equivalence induced by the orderings. We shall also

write C `C ′ to mean that C ` b1⊆ b2 for all (b1⊆ b2) in C ′ and that C ` t1⊆ t2
for all (t1⊆ t2) in C ′.

7

(con) C,A` c : TypeOf(c) & ∅

(id) C,A`x : A(x) & ∅

(abs)
C,A[x : t1]` e : t2 & b

C,A`fn x⇒ e : (t1 →b t2) & ∅

(app)
C1, A` e1 : (t2 →b t1) & b1 C2, A` e2 : t2 & b2

(C1 ∪ C2), A` e1 e2 : t1 & (b1 ∪ b2 ∪ b)

(let)
C1, A` e1 : ts1 & b1 C2, A[x : ts1]` e2 : t2 & b2

(C1 ∪ C2), A`let x = e1 in e2 : t2 & (b1 ∪ b2)

(rec)
C,A[f : t]` fn x⇒ e : t& b
C,A`rec f x⇒ e : t& b

(if)
C0, A` e0 : bool& b0 C1, A` e1 : t& b1 C2, A` e2 : t& b2

(C0 ∪ C1 ∪ C2), A`if e0 then e1 else e2 : t& (b0 ∪ b1 ∪ b2)

(sub)
C,A` e : t& b
C,A` e : t′& b′

if C ` t ⊆ t′ and C ` b ⊆ b′

(ins)
C,A` e : ∀(~α~β : C0). t0 & b

C,A` e : S0 t0 & b
if ∀(~α~β : C0). t0 is solvable from C by S0

(gen)
C ∪ C0, A` e : t0 & b

C,A` e : ∀(~α~β : C0). t0 & b
if ∀(~α~β : C0). t0 is both well-formed,

solvable from C, and satis�es {~α~β} ∩
FV(C,A, b) = ∅

Figure 2: The type inference system.

8

Ordering on behaviours

(axiom) C ` b1⊆ b2 if (b1⊆ b2) ∈ C

(re�) C ` b⊆ b

(trans)
C ` b1⊆ b2 C ` b2⊆ b3

C ` b1⊆ b3

(chan)
C ` t ≡ t′

C ` {t chan}⊆{t′ chan}

(∅) C ` ∅⊆ b

(∪) C ` bi⊆ (b1 ∪ b2) for i = 1, 2

(lub)
C ` b1⊆ b C ` b2⊆ b
C ` (b1 ∪ b2)⊆ b

Ordering on types

(axiom) C ` t1⊆ t2 if (t1⊆ t2) ∈ C

(re�) C ` t⊆ t

(trans)
C ` t1⊆ t2 C ` t2⊆ t3

C ` t1⊆ t3

(→)
C ` t′1⊆ t1 C ` t2⊆ t′2 C ` b⊆ b′

C ` (t1 →b t2)⊆ (t′1 →b′ t′2)

(×)
C ` t1⊆ t′1 C ` t2⊆ t′2
C ` (t1 × t2)⊆ (t′1 × t′2)

(list)
C ` t⊆ t′

C ` (t list)⊆ (t′ list)

(chan)
C ` t ≡ t′

C ` (t chan)⊆ (t′ chan)

(com)
C ` t⊆ t′ C ` b⊆ b′

C ` (t com b)⊆ (t′ com b′)

Figure 3: Subtyping and sube�ecting.

9

The de�nition of C ` b1⊆ b2 is a fairly straightforward axiomatisation of set in-

clusion upon behaviours that are themselves sets of elements of the form t chan,
with variables ranging over behaviours and with union and empty set; note that

the premise for C ` {t1 chan}⊆{t2 chan} is that C ` t1 ≡ t2.
The relation C ` t1⊆ t2 expresses the usual notion of subtyping, in particular

it is contravariant in the argument position of a function type. In the case of

chan note that the type t of t chan essentially occurs covariantly (when used in

receive) and contravariantly (when used in send) at the same time; hence we

must require that t ≡ t′ in order for t chan⊆ t′ chan to hold.

2.3 Generalisation

We now explain some of the side conditions for the rules (ins) and (gen). This

involves the notion of substitution: a mapping from type variables to types and
from behaviour variables to behaviours2 such that the domain is �nite. Here
the domain of a substitution S is Dom(S) = {γ | S γ 6= γ} and the range
is Ran(S) =

⋃ {FV(S γ) | γ ∈ Dom(S)} where the concept of free variables,

denoted FV(· · ·), is standard. The identity substitution is denoted Id and we
sometimes write Inv(S) = Dom(S) ∪ Ran(S) for the set of variables that are
involved in the substitution S.

Rule (ins) is much as in [15] and merely says that to take an instance of a type
scheme we must ensure that the constraints are satis�ed; this is expressed using
the notion of solvability:

De�nition 2.2 The type scheme ∀(~α~β : C0). t0 is solvable from C by the sub-

stitution S0 if Dom(S0) ⊆ {~α~β} and if C `S0C0.

Except for the well-formedness requirement (explained later), rule (gen) seems
close to the corresponding rule in [15]: clearly we cannot generalise over variables
free in the global type assumptions or global constraint sets, and as in e�ect
systems (e.g. [16]) we cannot generalise over variables visible in the e�ect. Fur-

thermore, as in [15] solvability is imposed to ensure that we do not create type

schemes that have no instances; this condition ensures that the expressions let

x = e1 in e2 and let x = e1 in x;e2 are going to be equivalent in the type

system.

Example 2.3 Without an additional notion of well-formedness this does not
give a semantically sound rule (gen); as an example consider the expression e
given by

2We use γ to range over α's and β's as appropriate and use g range over t's and b's as

appropriate.

10

let ch = channel ()

in · · ·
(sync(send(ch,7)))

(sync(send(ch,true)))

and note that it is semantically unsound (at least if �· · ·� forked some process

receiving twice over ch and adding the results). Writing C = {{α chan}⊆β,
{int chan}⊆ β, {bool chan}⊆β} and C ′ = {{α′ chan}⊆β} then gives

C ∪ C ′, []`channel() : α′ chan&β

and, without taking well-formedness into account, rule (gen) would give

C, []` channel() : (∀(α′ : C ′). α′ chan) &β

because α′ /∈ FV(C, β) and ∀(α′ : C ′). α′ chan is solvable from C by either of
the substitutions [α′ 7→ α], [α′ 7→ int] and [α′ 7→ bool]. This then would give

C, [ch : ∀(α′ : C ′). α′ chan]` ch : int chan& ∅
C, [ch : ∀(α′ : C ′). α′ chan]` ch : bool chan& ∅

so that

C, []` e : t& b

for suitable t and b. As it is easy to �nd S such that ∅`S C, we shall see (by
Lemma 2.15 and Lemma 2.16) that we even have

∅, []` e : t′& b′

for suitable t′ and b′. This shows that some notion of well-formedness is essential
for semantic soundness. 2

The arrow relation

In order to formalise the notion of well-formedness we next associate a third kind

of judgement and three kinds of closure with a constraint set.

De�nition 2.4 The judgement C ` γ1 ← γ2 holds if there exists (g1⊆ g2) in C
such that γi ∈ FV(gi) for i = 1, 2.

The following trivial result proves useful:

11

Fact 2.5 Suppose C ∪ C0 ` γ1 ← γ2 with γ1 /∈ FV(C); then C0 ` γ1 ← γ2.

From this relation we de�ne a number of other relations: → is the inverse of ←,

i.e. C ` γ1 → γ2 holds i� C ` γ2 ← γ1 holds, and ↔ is the union of ← and →,

i.e. C ` γ1 ↔ γ2 holds i� either C ` γ1 ← γ2 or C ` γ1 → γ2 holds. As usual ←∗
(respectively→∗,↔∗) denotes the re�exive and transitive closure of the relation.

For a set X of variables we then de�ne the downwards closure XC↓, the upwards

closure XC↑ and the bidirectional closure XCl by:

XC↓ = {γ1 | ∃γ2 ∈ X : C ` γ1 ←∗ γ2}
XC↑ = {γ1 | ∃γ2 ∈ X : C ` γ1 →∗ γ2}
XCl = {γ1 | ∃γ2 ∈ X : C ` γ1 ↔∗ γ2}

It is instructive to think of C ` γ1 ← γ2 as de�ning a directed graph structure
upon FV(C); then XC↓ is the reachability closure of X, XC↑ is the reachability
closure in the graph where all edges are reversed, and XCl is the reachability

closure in the corresponding undirected graph.

Well-formedness

We can now de�ne the notion of well-formedness for constraints and for type
schemes; for the latter we make use of the arrow relations de�ned above.

De�nition 2.6 Well-formed constraint sets

A constraint set C is well-formed if all right hand sides of (g1⊆ g2) in C have g2

to be a variable; in other words all inclusions of C have the form t⊆α or b⊆β.

The well-formedness assumption on constraint sets is motivated by the desire
to be able to use the subtyping rules �backwards� (as spelled out in Lemma 2.7
below) and in ensuring that subtyping interacts well with the arrow relations (see
Lemma 2.8 below).

Lemma 2.7 Suppose C is well-formed and that C ` t⊆ t′.

• If t′ = t′1 →b′ t′2 there exist t1, t2 and b such that t = t1 →b t2 and such
that C ` t′1⊆ t1, C ` t2⊆ t′2 and C ` b⊆ b′.

• If t′ = t′1 com b′ there exist t1 and b such that t = t1 com b and such that
C ` t1⊆ t′1 and C ` b⊆ b′.

• If t′ = t′1 × t′2 there exist t1 and t2 such that t = t1 × t2 and such that

C ` t1⊆ t′1 and C ` t2⊆ t′2.

12

• If t′ = t′1 chan there exist t1 such that t = t1 chan and such that C ` t1⊆ t′1
and C ` t′1⊆ t1.

• If t′ = t′1 list there exist t1 such that t = t1 list and such that C ` t1⊆ t′1.

• If t′ = int (respectively bool, unit) then t = int (respectively bool,

unit).

Proof See Appendix A. 2

Lemma 2.8 Suppose C is well-formed:

if C ` b⊆ b′ then FV(b)C↓ ⊆ FV(b′)C↓.

Proof See Appendix A. 2

We now turn to well-formedness of type schemes where we ensure that the embed-
ded constraints are themselves well-formed. Additionally we shall wish to ensure
that the set of variables over which we generalise, is sensibly related to the con-
straints (unlike what was the case in Example 2.3). The key idea is that we do

not generalise over γ1 if γ1 ← γ2 and we are prevented from also generalising over

γ2. These considerations lead to:

De�nition 2.9 Well-formed type schemes

A type scheme ∀(~α~β : C0). t0 is well-formed if C0 is well-formed, if all (g⊆ γ) in
C0 contain at least one variable among {~α~β}, and if {~α~β} = {~α~β}

C0↑
.

It is essential for our development that the following property holds:

Fact 2.10 Well-formedness and Substitutions

If ∀(~α~β : C). t is well-formed then also S (∀(~α~β : C). t) is well-formed (for all
substitutions S).

Proof We can, without loss of generality, assume that (Dom(S) ∪ Ran(S)) ∩
{~α~β} = ∅. Then S (∀(~α~β : C). t) = ∀(~α~β : S C). S t. Consider (g′1⊆ g′2) in S C;
it is easy to see that it su�ces to show that g′2 is a variable in {~α~β}.
Let g′1 = S g1 and g′2 = S g2 where (g1⊆ g2) ∈ C. Since C is well-formed it holds

that g2 is a variable, and since FV(g1, g2) ∩ {~α~β} 6= ∅ and since {~α~β} = {~α~β}
C↑

it holds that g2 ∈ {~α~β}. Therefore g′2 = S g2 = g2 so g′2 is a variable in {~α~β}. 2

Example 2.11 Continuing Example 2.3 note that {α′}C
′↑ = {α′, β} showing

that our current notion of well-formedness prevents the erroneous typing. 2

13

Example 2.12 Continuing Example 2.1 we shall now brie�y explain why it is

accepted by our system. For this let us assume that y will have type αy and that

x will have type αx. Then the locally de�ned function

fn x => (sync (send (channel (), y)); x)

will have type αx →b αx for b = {αy chan}. Due to our rule for subtyping

we may let f have the type αx →∅ αx and still be able to type the conditional.

Clearly the expression de�ning idmay be given the type αy →∅ αy and the e�ect
∅. Since αy is not free in the type of f we may use generalisation to give id the

type scheme ∀(αy : ∅). αy →∅ αy. This then su�ces for typing the application

of id to itself.

The approach of [16] lacks subtyping although it has sube�ecting. Consequently

for the type of f to match that of the locally de�ned function we have to give

f the type αx →b αx where b = {αy chan}. This then means that while the
de�ning expression for id still has the type αy →∅ αy we are unable to generalise
it to ∀(αy : ∅). αy →∅ αy because αy is now free in the type of f. Consequently

the application of id to itself cannot be typed. (It is interesting to point out that
if one changed the applied occurrence of f in the program to the expression fn z

=> f z then sube�ecting would su�ce for generalising over αy and hence would
allow to type the self-application of id.)

We should also point out that in the approach of [18] one can generalise over αy
as well and hence type the self-application of id to itself. To see this, �rst note
that αy is classi�ed as an imperative type variable (rather than an applicative

type variable which would directly have allowed the generalisation) because αy
is used in the channel construct and thus has a side e�ect. Despite of this, next
note that de�ning expression for the id function is classi�ed as non-expansive
(rather as expansive which would directly have prohibited the generalisation of
imperative type variables) because all side e�ects occurring in the de�nition of id

are �protected� by a function abstraction and hence not �dangerous�. We refer
to [18] for the details. 2

2.4 Properties of the Inference System

We now list a few basic properties of the inference system that we shall use later.

Fact 2.13 For all constants c of Figure 1, the type scheme TypeOf(c) is closed,
well-formed and solvable from ∅.

Fact 2.14 Solvability and Well-formedness of Typing Judgements

If C,A` e : σ& b and A is well-formed and solvable from C then σ is well-formed

and solvable from C.

14

Proof A straightforward induction on the shape of the inference tree; for con-

stants we make use of Fact 2.13. 2

Lemma 2.15 Substitution Lemma

For all substitutions S:

(a) If C `C ′ then S C `S C ′.

(b) If C,A` e : σ& b then S C, S A` e : S σ&S b (and has the same shape).

Proof See Appendix A. 2

Lemma 2.16 Entailment Lemma

For all sets C ′ of constraints satisfying C ′ `C:

(a) If C `C0 then C ′ `C0;

(b) If C,A` e : σ& b then C ′, A` e : σ& b (and has the same shape).

Proof See Appendix A. 2

Fact 2.17 Let x and y be distinct identi�ers: if C,A1[x : σ1][y : σ2]A2 ` e : σ& b
then C,A1[y : σ2][x : σ1]A2 ` e : σ& b (and has the same shape).

Fact 2.18 Let x be an identi�er not occurring in e and let t be an arbitrary
type; if C,A` e : σ& b then C,A[x : t]` e : σ& b (and has the same shape).

Proof Let α be a fresh type variable. Then a straight-forward induction in the
proof tree (using Fact 2.17) tells us that C,A[x : α]` e : σ& b (and has the same
shape). Now apply Lemma 2.15 with the substitution [α 7→ t]. 2

2.5 Proof Normalisation

It turns out that the proof of semantic soundness as well as the proof of complete-
ness of an inference algorithm is complicated by the presence of the non-syntax

directed rules (sub), (gen) and (ins) of Figure 2. This motivates trying to nor-

malise general inference trees into a more manageable shape; to this end we de�ne
the notions of �normalised� and �strongly normalised� inference trees. But �rst

we de�ne an auxiliary concept:

15

De�nition 2.19 Constraint-Saturated

An inference tree for C,A` e : σ& b is constraint-saturated, written
C,A `c e : σ& b, if and only if all occurrences of the rules (app), (let), and

(if) have the same constraints in their premises; in the notation of Figure 2 this

means that C1 = C2 for (app) and (let) and that C0 = C1 = C2 for (if).

Fact 2.20 Enforcing Constraint-Saturation

Given an inference tree for C,A` e : σ& b there exists a constraint-saturated

inference tree C,A `c e : σ& b (that has the same shape).

ProofA straightforward induction in the shape of the inference tree using Lemma

2.16 in the cases (app), (let) and (if). 2

We now de�ne the central concepts of T- and TS-normalised inference trees.

De�nition 2.21 Normalisation

An inference tree for C,A` e : t& b is T-normalised if it is created by:

• (con) or (id); or

• (ins) applied to (con) or (id); or

• (abs), (app), (rec), (if) or (sub) applied to T-normalised inference trees; or

• (let) applied to a TS-normalised inference tree and a T-normalised inference
tree.

An inference tree for C,A` e : ts& b is TS-normalised if it is created by:

• (gen) applied to a T-normalised inference tree.

We shall write C,A `n e : σ& b if the inference tree is T-normalised (if σ is a

type) or TS-normalised (if σ is a type scheme).

Lemma 2.22 Normalisation Lemma

If A is well-formed and solvable from C then an inference tree C,A` e : σ& b
can be transformed into one C,A `n e : σ& b that is normalised.

Proof See Appendix A. 2

A somewhat stronger property is the following:

16

De�nition 2.23 Strongly Normalised

An inference tree for C,A` e : σ& b is strongly normalised if it:

• is constraint-saturated; and

• is normalised; and

• has an occurrence of (sub) after each T-normalised inference tree in
C,A` e : σ& b not created by (sub); and

• has no consecutive applications of (sub).

We write C,A `s e : σ& b when this is the case.

Lemma 2.24 Enforcing Strong Normalisation

If A is well-formed and solvable from C then an inference tree C,A` e : σ& b
can be transformed into one C,A `s e : σ& b that is strongly normalised.

Proof By Lemma 2.22 we can obtain a normalised inference tree that by Fact 2.20

can be assumed to be constraint-saturated. Now after each T-normalised subin-
ference insert a trivial application of (sub); this maintains the property of being
normalised and constraint-saturated. Now use the transitivity of subtyping and
sube�ecting to contract all consecutive applications of (sub) into just one applica-
tion; this maintains the property of being normalised and constraint-saturated. 2

2.6 Conservative Extension

We �nally show that our inference system is a conservative extension of the sys-
tem for ML type inference. For this purpose we restrict ourselves to consider
sequential expressions only, that is expressions without the non-sequential con-
stants channel, fork, sync, send, and receive.

An ML type u (as opposed to a CML type t, in the following just denoted type)

is either a type variable α, a base type like int, a function type u1 → u2, a

product type u1 × u2, or a list type u1 list. An ML type scheme is of the form

∀~α .u.
We say that a type is sequential if it does not contain subtypes of form t com b
or t chan. From a sequential type t we construct an ML type ε(t) as fol-

lows: ε(α) = α, ε(int) = int, ε(t1 →b t2) = ε(t1)→ ε(t2), ε(t1 × t2) =
ε(t1) × ε(t2), and ε(t1 list) = ε(t1) list. It is convenient also to de�ne ε(t)
for non-sequential types and we (somewhat arbitrarily) do this by stipulating

ε(t com b) = ε(t chan) = ε(t).

17

(con) A `ML c : MLTypeOf(c)

(id) A `ML x : A(x)

(abs)
A[x : u1] `ML e : u2

A `ML fn x⇒ e : u1 → u2

(app) A `ML e1 : u2 → u1, A `ML e2 : u2
A `ML e1 e2 : u1

(let)
A `ML e1 : us1, A[x : us1] `ML e2 : u2

A `ML let x = e1 in e2 : u2

(ins) A `ML e : ∀~α .u
A `ML e : Ru if Dom(R) ⊆ {~α }

(gen) A `ML e : u
A `ML e : ∀~α .u if FV(A) ∩ {~α } = ∅

Figure 4: The core of the ML type inference system.

We say that a type scheme ts = ∀(~α ~β : C). t is sequential if C is empty and if t is

sequential. From a sequential type scheme ts = ∀(~α ~β : ∅). t we construct an ML
type scheme ε(ts) as follows: ε(ts) = ∀~α .ε(t). (We shall dispense with de�ning
ε(ts) on non-sequential type schemes for reasons to be discussed in Appendix A.)

The core of the ML type inference system is depicted in Figure 4. It em-
ploys a function MLTypeOf which to each sequential constant assigns either
an ML type or an ML type scheme; as an example we have MLTypeOf(pair)
= ∀α1α2.α1 → α2 → α1 × α2.

Fact 2.25 For a sequential constant c we have that TypeOf(c) is sequential.

Assumption 2.26 For a sequential constant c we have that MLTypeOf(c) =
ε(TypeOf(c)).

We are now ready to state that our system conservatively extends ML.

Theorem 2.27 Let e be a sequential expression. If ∅ `ML e : u then there exists
a sequential type t with ε(t) = u such that ∅, ∅` e : t& ∅; and if ∅, ∅` e : t& b
then there exists an ML type u with ε(t) = u such that ∅ `ML e : u.

Proof: See Appendix A.

18

3 Conclusion

We have extended previous work on integrating polymorphism, subtyping and

e�ects into a combined annotated type and e�ect system. The development

was illustrated for a fragment of Concurrent ML but is equally applicable to

Standard ML with references. A main ingredient of the approach was the notion

of constraint closure, in particular the notion of upwards closure. We hope that

this systemwill provide a useful basis for developing a variety of program analyses;

in particular closure, binding-time and communication analyses for languages

with imperative or concurrent e�ects.

The system developed here includes no causality concerning the temporal order

of e�ects; a future goal is to incorporate aspects of the causality information

for the communication structure of Concurrent ML that was developed in [12].

Another (and harder) goal is to incorporate decidable fragments of polymorphic
recursion. Finally, it should prove interesting to apply these ideas also to strongly

typed languages with object-oriented features.

Acknowledgement This work has been supported in part by theDART project
(Danish Natural Science Research Council) and the LOMAPS project (ESPRIT
BRA project 8130); it represents joint work among the authors.

References

[1] T.Amtoft, F.Nielson, H.R.Nielson, J.Ammann: Polymorphic Subtypes for
E�ect Analysis: the Semantics, 1996.

[2] L. Damas and R. Milner. Principal type-schemes for functional programs.
In Proc. of POPL '82. ACM Press, 1982.

[3] Y.-C. Fuh and P. Mishra. Polymorphic subtype inference: Closing the

theory-practice gap. In Proc. TAPSOFT '89. SLNCS 352, 1989.

[4] Y.-C. Fuh and P. Mishra. Type inference with subtypes. Theoretical Com-

puter Science, 73, 1990.

[5] F. Henglein and C. Mossin. Polymorphic binding-time analysis. In Proc.

ESOP '94, pages 287�301. SLNCS 788, 1994.

[6] M. P. Jones. A theory of quali�ed types. In Proc. ESOP '92, pages 287�306.
SLNCS 582, 1992.

[7] X. Leroy and P. Weis. Polymorphic type inference and assignment. In Proc.

POPL '91, pages 291�302. ACM Press, 1991.

19

[8] R. Milner. A theory of type polymorphism in programming. Journal of

Computer Systems, 17:348�375, 1978.

[9] J. C. Mitchell. Type inference with simple subtypes. Journal of Functional

Programming, 1(3), 1991.

[10] F. Nielson and H.R. Nielson. Constraints for polymorphic behaviours for

Concurrent ML. In Proc. CCL'94. SLNCS 845, 1994.

[11] H.R. Nielson and F. Nielson. Automatic binding analysis for a typed λ-
calculus. Science of Computer Programming, 10:139�176, 1988.

[12] H.R. Nielson and F. Nielson. Higher-order concurrent programs with �nite

communication topology. In Proc. POPL'94, pages 84�97. ACM Press, 1994.

[13] F.Nielson, H.R.Nielson, T.Amtoft: Polymorphic Subtypes for E�ect Analy-

sis: the Algorithm, 1996.

[14] J. H. Reppy. Concurrent ML: Design, application and semantics. In Proc.

Functional Programming, Concurrency, Simulation and Automated Reason-

ing, pages 165�198. SLNCS 693, 1993.

[15] G. S. Smith. Polymorphic inference with overloading and subtyping. In
SLNCS 668, Proc. TAPSOFT '93, 1993. Also see: Principal Type Schemes
for Functional Programs with Overloading and Subtyping: Science of Com-

puter Programming 23, pp. 197-226, 1994.

[16] J. P. Talpin and P. Jouvelot. The type and e�ect discipline. Information

and Computation, 111, 1994.

[17] Y.-M. Tang. Control Flow Analysis by E�ect Systems and Abstract Inter-

pretation. PhD thesis, Ecoles des Mines de Paris, 1994.

[18] M. Tofte. Type inference for polymorphic references. Information and Com-

putation, 89:1�34, 1990.

[19] A. K. Wright. Typing references by e�ect inference. In Proc. ESOP '92,
pages 473�491. SLNCS 582, 1992.

20

A Details of Proofs

Well-formedness

Lemma 2.7 Suppose C is well-formed and that C ` t⊆ t′.

• If t′ = t′1 →b′ t′2 there exist t1, t2 and b such that t = t1 →b t2 and such

that C ` t′1⊆ t1, C ` t2⊆ t′2 and C ` b⊆ b′.

• If t′ = t′1 com b′ there exist t1 and b such that t = t1 com b and such that

C ` t1⊆ t′1 and C ` b⊆ b′.

• If t′ = t′1 × t′2 there exist t1 and t2 such that t = t1 × t2 and such that

C ` t1⊆ t′1 and C ` t2⊆ t′2.

• If t′ = t′1 chan there exist t1 such that t = t1 chan and such that C ` t1⊆ t′1
and C ` t′1⊆ t1.

• If t′ = t′1 list there exist t1 such that t = t1 list and such that C ` t1⊆ t′1.

• If t′ = int (respectively bool, unit) then t = int (respectively bool,
unit).

In addition we are going to prove that the size of each of the latter inference trees
is strictly less than the size of the inference tree for C ` t⊆ t′. Here the size of
an inference tree is de�ned as the number of (not necessarily di�erent) symbols

occurring in the tree, except that occurrences in C do not count.

Proof We only consider the case t′ = t′1 →b′ t′2, as the others are similar. The
proof is carried out by induction in the inference tree, and since C is well-formed
the last rule applied must be either (re�), (trans) or (→).

(re�): the claim is trivial3.

(trans): assume that C ` t⊆ t′ by means of a tree of size n because C ` t⊆ t′′
by means of a tree of size n′′ and because C ` t′′⊆ t′ by means of a tree of size

n′. Here n = n′ + n′′ + |t| + |t′| + 2. By applying the induction hypothesis on

the latter inference we �nd t′′1, t
′′
2 and b′′ such that t′′ = t′′1 →b′′ t′′2 and such

that C ` t′1⊆ t′′1 and C ` t′′2⊆ t′2 and C ` b′′⊆ b′, each judgement by means of an

inference tree of size < n′. By applying the induction hypothesis on the former
inference (C ` t⊆ t′′) we �nd t1, t2 and b such that t = t1 →b t2 and such that

C ` t′′1⊆ t1 and C ` t2⊆ t′′2 and C ` b⊆ b′′, each judgement by means of an inference

tree of size < n′′. We thus have C ` t′1⊆ t1, by means of an inference tree of size

< n′ + n′′ + |t′1| + |t1| + 2 < n′ + n′′ + |t′| + |t| + 2 = n. By similar reasoning

3This case is the reason for not de�ning the size of a tree as the number of inferences.

21

we infer that C ` t2⊆ t′2 and C ` b⊆ b′, each judgement by means of an inference

tree of size < n.

(→): the claim is trivial. 2

For variables we need a di�erent kind of lemma:

Lemma A.1 Suppose C `α⊆α′ with C well-formed. Then α ∈ {α′}C↓.

Proof Induction in the proof tree, performing case analysis on the last rule

applied:

axiom: then (α⊆α′) ∈ C so the claim is trivial.

re�: the claim is trivial.

trans: assume that C `α⊆α′ because C `α⊆ t′′ and C ` t′′⊆α′. By using

Lemma 2.7 on the inference C `α⊆ t′′ we infer that t′′ is a variable α′′. By ap-
plying the induction hypothesis we infer that α ∈ {α′′}C↓ and that α′′ ∈ {α′}C↓,
from which we conclude that α ∈ {α′}C↓. 2

Lemma 2.8 Suppose C is well-formed:

if C ` b⊆ b′ then FV(b)C↓ ⊆ FV(b′)C↓, and

if C ` t ≡ t′ then FV(t)C↓ = FV(t′)C↓.

Proof Induction in the size of the inference tree, where we de�ne the size of

the inference tree for C ` t ≡ t′ as the sum of the size of the inference tree for
C ` t⊆ t′ and the size of the inference tree for C ` t′⊆ t.
First we consider the part concerning behaviours, performing case analysis on the
last inference rule applied:

(axiom): then (b⊆ b′) ∈ C so since C is well-formed b′ is a variable; hence the

claim.

(re�): the claim is trivial.

(trans): assume that C ` b⊆ b′ because C ` b⊆ b′′ and C ` b′′⊆ b′. The induction
hypothesis tells us that FV(b)C↓ ⊆ FV(b′′)C↓ and that FV(b′′)C↓ ⊆ FV(b′)C↓;
hence the claim.

(chan): assume that C ` {t chan}⊆{t′ chan} because C ` t ≡ t′. The induc-

tion hypothesis tells us that FV(t)C↓ = FV(t′)C↓; hence the claim.

(∅:) the claim is trivial.

(∪ :) the claim is trivial.

22

(lub): assume that C ` b1 ∪ b2⊆ b′ because C ` b1⊆ b′ and C ` b2⊆ b′. The induc-
tion hypothesis tells us that FV(b1)

C↓ ⊆ FV(b′)C↓ and that FV(b2)
C↓ ⊆ FV(b′)C↓,

from which we infer that FV(b1 ∪ b2)
C↓ = FV(b1)

C↓ ∪ FV(b2)
C↓ ⊆ FV(b′)C↓.

Next we consider the part concerning types, where we perform case analysis on

the form of t′:

t′ = t′1 →b′ t′2: Let n1 be the size of the inference tree for C ` t⊆ t′ and let n2

be the size of the inference tree for C ` t′⊆ t. Lemma 2.7 (applied to the former

inference) tells us that there exist t1, b and t2 such that t = t1 →b t2 and such

that C ` t′1⊆ t1, C ` b⊆ b′ and C ` t2⊆ t′2, where each inference tree is of size< n1

(due to the remark at the beginning of the proof). Lemma 2.7 (applied to the

latter inference, i.e. C ` t′⊆ t) tells us that C ` t1⊆ t′1, C ` b′⊆ b and C ` t′2⊆ t2,
where each inference tree is of size < n2.

Thus C ` t1 ≡ t′1 and C ` t2 ≡ t′2, where each inference tree has size < n1+n2. We

can thus apply the induction hypothesis to infer that FV(t1)
C↓ = FV(t′1)

C↓ and
that FV(t2)

C↓ = FV(t′2)
C↓; and similarly we can infer that FV(b)C↓ ⊆ FV(b′)C↓

and that FV(b′)C↓ ⊆ FV(b)C↓. This enables us to concluce that FV(t)C↓ =
FV(t′)C↓.

t′ has a topmost type constructor other than →: we can proceed as above.

t′ is a variable: Since C ` t′⊆ t we can use Lemma 2.7 to infer that t is a variable;
then we use Lemma A.1 to infer that FV(t′)⊆FV(t)C↓. Similarly we can infer
FV(t)⊆FV(t′)C↓. This implies the desired relation FV(t)C↓ = FV(t′)C↓. 2

Properties of the inference system

Lemma 2.15 For all substitutions S:

(a) If C ` C ′ then S C ` S C ′.

(b) If C,A ` e : σ & b then S C, S A ` e : S σ & S b (and has the same shape).

Proof The claim (a) is straight-forward by induction on the inference C ` g1⊆ g2

for each (g1⊆ g2) ∈ C ′. For the claim (b) we proceed by induction on the
inference.

For the case (con) we use that the type schemes of Table 1 are closed (Fact 2.13).
For the case (id) the claim is immediate, and for the cases (abs), (app), (let),

(rec), (if) it follows directly using the induction hypothesis. For the case (sub)
we use (a) together with the induction hypothesis.

23

The case (ins). Then C,A` e : S0 t0 & b because C,A` e : ∀(~α~β : C0). t0 & b

where C ` S0C0 and Dom(S0) ⊆ {~α~β}, and wlog. we can assume that {~α~β} is
disjoint from Inv(S). The induction hypothesis gives

S C, S A` e : ∀(~α~β : S C0). S t0 &S b. (1)

From (a) we get S C `S S0C0. Let S ′0 = [~α~β 7→ S S0 (~α~β)], then on FV(t0, C0)
it holds that S ′0 S = S S0. Therefore S C `S ′0 S C0, so we can apply (ins) on (1)

with S ′0 as the �instance substitution� to get S C, S A` e : S ′0 S t0 &S b. Since

S ′0 S t0 = S S0 t0 this is the required result.

The case (gen). Then C,A` e : ∀(~α~β : C0). t0 & b because C ∪ C0, A` e : t0 & b,
and

∀(~α~β : C0). t0 is well-formed, (2)

there exists S0 with Dom(S0) ⊆ {~α~β} such that C `S0C0, and (3)

{~α~β} ∩ FV(C,A, b) = ∅ (4)

De�ne R = [~α~β 7→ ~α′ ~β ′] with {~α′ ~β ′} fresh. We then apply the induction hypoth-

esis (with S R) and due to (4) this gives us S C ∪ S RC0, S A` e : S R t0 &S b.
Below we prove

∀(~α′ ~β ′ : S RC0). S R t0 = S (∀(~α~β : C0). t0) is well-formed, (5)

there exists S ′ with Dom(S ′) ⊆ {~α′ ~β ′} such that S C `S ′ S RC0, and (6)

{~α′ ~β ′} ∩ FV(S C, S A, S b) = ∅ (7)

It then follows that S C, S A` e : S (∀(~α~β : C0). t0) &S b as required. Clearly
the inference has the same shape.

First we observe that (5) follows from (2) and Fact 2.10. For (6) de�ne S ′ =
[~α′~β ′ 7→ S S0 (~α~β)]. From C `S0 C0 and (a) we get S C `S S0C0. Since S ′ S R =
S S0 on FV(C0) the result follows. Finally (7) holds trivially by choice of ~α′ ~β ′. 2

Lemma 2.16 For all sets C ′ of constraints satisfying C ′ ` C:

(a) If C ` C0 then C ′ ` C0.

(b) If C,A ` e : σ & b then C ′, A ` e : σ & b (and has the same shape).

Proof The claim (a) is straight-forward by induction on the inference C ` g1⊆ g2

for each (g1⊆ g2) ∈ C0. For the claim (b) we proceed by induction on the

inference.

24

For the cases (con), (id) the claim is immediate, and for the cases (abs), (app),

(let), (rec), (if) it follows directly using the induction hypothesis. For the case

(sub) we use (a) together with the induction hypothesis.

The case (ins). Then C,A` e : S0 t0 & b because C,A` e : ∀(~α~β : C0). t0 & b

and C `S0C0 and Dom(S0) ⊆ {~α~β}. The induction hypothesis gives

C ′, A` e : ∀(~α~β : C0). t0 & b. From (a) we have C ′ `S0C0 so C ′, A` e : S0 t0 & b
follows. Clearly the inference has the same shape.

The case (gen). Then C,A` e : ∀(~α~β : C0). t0 & b because C ∪ C0, A` e : t0 & b
and

∀(~α~β : C0). t0 is well-formed, (8)

there exists S with Dom(S) ⊆ {~α~β} such that C `S C0, and (9)

{~α~β} ∩ FV(C,A, b) = ∅ (10)

We now use a small trick: let R be a renaming of the variables of {~α~β} ∩ FV(C ′)
to fresh variables. From C ′ `C and Lemma 2.15(a) we get RC ′ `RC and using

(10) we get RC = C so RC ′ `C. Clearly RC ′ ∪ C0 `C ∪ C0 so the induction
hypothesis gives RC ′ ∪ C0, A` e : t0 & b. Below we verify that

there exists S ′ with Dom(S ′) ⊆ {~α~β} such that RC ′ ` S ′C0, and (11)

{~α~β} ∩ FV(RC ′, A, b) = ∅ (12)

and we then have RC ′, A` e : ∀(~α~β : C0). t0 & b. Now de�ne the substitution R′

such that Dom(R′) = Ran(R) and R′ γ′ = γ if Rγ = γ′ and γ′ ∈ Dom(R′). Using
Lemma 2.15(b) with the substitution R′ we get C ′, A` e : ∀(~α~β : C0). t0 & b as
required. Clearly the inference has the same shape.

To prove (11) de�ne S ′ = S. Above we showed that RC ′ `C so using (9) and

(a) we get RC ′ `S ′C0 as required. Finally (12) follows trivially from {~α~β} ∩
FV(RC ′) = ∅. 2

Proof normalisation

Lemma 2.22 If A is well-formed and solvable from C then an inference tree

C,A` e : σ& b can be transformed into one C,A `n e : σ& b that is normalised.

Proof Using Fact 2.20, we can, without loss of generality, assume that we have a
constraint-saturated inference tree for C,A` e : σ& b. We proceed by induction

on the inference.

25

The case (con). We assume C,A `c c : TypeOf(c) & ∅. If TypeOf(c) is a type
then we already have a T-normalised inference. So assume TypeOf(c) is a type

scheme ∀(~α~β : C0). t0 and let R be a renaming of ~α~β to fresh variables ~α′ ~β ′. We

can then construct the following TS-normalised inference tree:

C ∪ RC0, A` c : ∀(~α~β : C0). t0 & ∅
(con)

C ∪ RC0, A` c : Rt0 & ∅
(ins)

C,A` c : ∀(~α′ ~β ′ : RC0). R t0 & ∅
(gen)

The rule (ins) is applicable since Dom(R) ⊆ {~α~β} and C ∪ RC0 `RC0. The

rule (gen) is applicable because ∀(~α~β : C0). t0 = ∀(~α′ ~β ′ : RC0). R t0 (up to alpha-
renaming) is well-formed and solvable fromC (Fact 2.13), and furthermore {~α′ ~β ′}∩
FV(C,A, ∅) = ∅ holds by choice of ~α′ ~β ′.

The case (id). We assume C,A `c x : A(x) & ∅. If A(x) is a type then we

already have a T-normalised inference. So assume A(x) = ∀(~α~β : C0). t0 and

let R be a renaming of ~α~β to fresh variables ~α′ ~β ′. We can then construct the

following TS-normalised inference tree:

C ∪ RC0, A` x : ∀(~α~β : C0). t0 & ∅
(id)

C ∪ RC0, A`x : R t0 & ∅
(ins)

C,A`x : ∀(~α′~β ′ : RC0). R t0 & ∅
(gen)

The rule (ins) is applicable since Dom(R) ⊆ {~α~β} and C ∪ RC0 `RC0. The

rule (gen) is applicable because ∀(~α~β : C0). t0 = ∀(~α′ ~β ′ : RC0). R t0 (up to alpha-
renaming) by assumption is well-formed and solvable from C, and furthermore

{~α′ ~β ′} ∩ FV(C,A, ∅) = ∅ holds by choice of ~α′ ~β ′.

The case (abs). Then we have C,A `c fn x⇒ e : t1 →b t2 & ∅ because
C,A[x : t1] `c e : t2 & b. Since t1 is well-formed and solvable from C we can

apply the induction hypothesis and get C,A[x : t1] `n e : t2 & b from which we

infer C,A `n fn x⇒ e : t1 →b t2 & ∅.
The case (app). Then we have C,A `c e1 e2 : t1 & (b1 ∪ b2 ∪ b) because

C,A `c e1 : t2 →b t1 & b1 and C,A `c e2 : t2 & b2. Then the induction hypoth-
esis gives C,A `n e1 : t2 →b t1 & b1 and C,A `n e2 : t2 & b2. We thus can infer

the desired C,A `n e1 e2 : t1 & (b1 ∪ b2 ∪ b).

The case (let). Then we have C,A `c let x = e1 in e2 : t2 & (b1 ∪ b2) be-
cause C,A `c e1 : ts1 & b1 and C,A[x : ts1] `c e2 : t2 & b2. Then the induc-

tion hypothesis gives C,A `n e1 : ts1 & b1. From Fact 2.14 we get that ts1

26

is well-formed and solvable from C, so we can apply the induction hypoth-

esis to get C,A[x : ts1] `n e2 : t2 & b2. This enables us to infer the desired

C,A `n let x = e1 in e2 : t2 & (b1 ∪ b2).

The cases (rec), (if), (sub): Analogous to the above cases.

The case (ins). Then C,A `c e : S t0 & b because C,A `c e : ∀(~α~β : C0). t0 & b

where Dom(S) ⊆ {~α~β} and C `S C0. By applying the induction hypothesis we

get C,A `n e : ∀(~α~β : C0). t0 & b where this inference tree has the form

...

C ∪ C0, A `n e : t0 & b

C,A `n e : ∀(~α~β : C0). t0 & b
(gen)

Since (gen) is applied we know that {~α~β} ∩ FV (C,A, b) = ∅. From Lemma 2.15
we therefore get

C ∪ S C0, A `n e : S t0 & b

and using Lemma 2.16 we get C,A `n e : S t0 & b as desired.

The case (gen). Then we have C,A `c e : ∀(~α~β : C0). t0 & b because

C ∪ C0, A `c e : t0 & b where ∀(~α~β : C0). t0 is well-formed, solvable from C and

satis�es {~α~β} ∩ FV(C,A, b) = ∅. Now A is well-formed and solvable from C ∪ C0

so the induction hypothesis gives C ∪ C0, A `n e : t0 & b. Therefore we have
the TS-normalised inference tree C,A `n e : ∀(~α~β : C0). t0 & b. 2

Conservative extension

Here we shall prove Theorem 2.27, but �rst we must develop the necessary ma-
chinery.

First some auxiliary notions: we say that a constraint set C is sequential if all

constraints in C are of form β1⊆β2; and the set of free type variables in some
entity g is denoted FTV(g).

Next we introduce the notion of simplicity: a type is simple if all its behaviour
annotations are behaviour variables; a sequential type scheme is simple if its type

is; an assumption list is simple if all its type schemes are; �nally a substitution

is simple if it maps behaviour variables to behaviour variables and type variables
to simple types.

27

A type or type scheme is said to be essentially simple if it is simple except that

some arrows in covariant position are annotated with ∅, because these annotations
can be replaced by fresh (bound) behaviour variables without changing the set

of �instances� (the result of �rst applying (ins) and then applying (sub)).

Fact A.2 For all sequential constants c, the type scheme TypeOf(c) is essentially
simple.

Fact A.3 For all simple or essentially simple types t, it holds that FV(ε(t)) ⊆
FV(t) and that FTV(ε(t)) = FTV(t).

For all simple and sequential type schemes ts, it holds that FV(ε(ts)) ⊆ FV(ts)
and that FTV(ε(ts)) = FTV(ts). 2

From a substitution S we construct an ML substitution R = ε(S) as follows:

Rα = ε(S α).

Fact A.4 For all substitutions S and types t, we have ε(S t) = ε(S) ε(t).

Proof Induction in t. If t = α, the equation follows from the de�nition of ε(S).
If t is a base type like int, the equation is trivial. If t is a composite type like

t1 →b t2, the equation reads

ε(S t1)→ ε(S t2) = ε(S) ε(t1)→ ε(S) ε(t2)

and follows from the induction hypothesis. If t is a non-sequential type like
t′ com b, the equation reads ε(S t′) = ε(S) ε(t′) which follows from the induction
hypothesis. 2

Proof of the �rst part of Theorem 2.27

The �rst part of the theorem follows from the following proposition, which admits

a proof by induction, showing that there exists β and sequential C and sequential
t with ε(t) = u such that C, ∅` e : t&β. Now let S be a substitution which maps

all behaviour variables into ∅ and which leaves all type variables unchanged; then

apply Lemma 2.15 and Lemma 2.16 to get ∅, ∅` e : S t& ∅ where clearly S t is
sequential with ε(S t) = ε(t) = u.

Proposition A.5 Let e be sequential. Suppose A `ML e : us and that A′ is
simple and sequential with ε(A′) = A. Then there exists sequential C, simple

and sequential ts with ε(ts) = us, and β such that C,A′ ` e : ts&β. Similarly
with u and t instead of us and ts.

We need the following auxiliary result:

28

Fact A.6 Suppose t and t′ are simple and sequential and that ε(t) = ε(t′). Then
there exists sequential C such that C ` t ≡ t′.

Proof Induction in t: if t = α then ε(t′) = α so from t′ being sequential we

deduce that t′ = α, hence the claim (with C = ∅).
Now consider the case where t is a composite type like t1 →b t2. Then ε(t′) =
ε(t1)→ ε(t2) so from t′ being sequential we deduce that t′ is of form t′1 →b′ t′2,
with ε(t′1) = ε(t1) and ε(t′2) = ε(t2). The induction hypothesis then tells us that

there exists sequential C1, C2 such that C1 ` t1 ≡ t′1 and C2 ` t2 ≡ t′2. As t and t′
are simple it holds that b and b′ are both variables; therefore the constraint set
C = C1 ∪ C2 ∪ {b⊆ b′, b′⊆ b} is sequential and clearly C ` t ≡ t′. 2

We now embark on proving Proposition A.5 by induction in the proof tree for

A `ML e : us, where we perform case analysis on the de�nition in Fig. 4 (where

the clauses for conditionals and for recursion are omitted, as they present no
further complications).

The case (con): By Assumption 2.26 (and Fact 2.25) together with Fact A.2
we can use ts = TypeOf(c) and C = ∅; in order to get from ∅, A′ ` c : ts& ∅ to
∅, A′ ` c : ts&β (with β a fresh variable) we can use (sub) since ∅` ∅⊆β.

The case (id): Trivial; as in the previous case we use (sub).

The case (abs): We can clearly �nd simple and sequential t1 such that ε(t1) =
u1. Then ε(A′[x : t1]) = A[x : u1], so we can apply the induction hypothesis to
infer that there exists sequential C, simple and sequential t2 with ε(t2) = u2 and
β such that

C,A′[x : t1]` e : t2 &β.

Let β ′ be a fresh variable, then by using (abs) and (sub) we are able to infer

C,A′ ` fn x⇒ e : t1 →β t2 &β ′

where the conclusion is as desired since ε(t1 →β t2) = u1 → u2.

The case (app): We can apply the induction hypothesis to �nd sequential C1

and C2, behaviour variables β1 and β2, and simple and sequential t′1 and t′2 with
ε(t′1) = u2 → u1 and ε(t′2) = u2, such that

C1, A′ ` e1 : t′1 &β1 and C2, A′ ` e2 : t′2 &β2.

29

Clearly there exists β and simple and sequential t2, t1 such that t′1 = t2 →β t1,
and ε(t2) = u2 and ε(t1) = u1. By Fact A.6 there exists sequential C ′ such that

C ′ ` t′2 ≡ t2. Hence by (sub) we have

C1, A′ ` e1 : t2 →β t1 &β1 and C2 ∪ C ′, A′ ` e2 : t2 &β2

so by (app) we are able to infer

C1 ∪ C2 ∪ C ′, A′ ` e1 e2 : t1 &β1 ∪ β2 ∪ β.

Let C = C1 ∪ C2 ∪ C ′ ∪ {β1⊆β, β2⊆ β}, then by (sub) we have

C,A′ ` e1 e2 : t1 &β

which is as desired since ε(t1) = u1 and since C is sequential.

The case (let): We can apply the induction hypothesis to �nd sequential C1,

simple and sequential ts1 with ε(ts1) = us1 and β1 such that

C1, A
′ ` e1 : ts1 &β1.

Since ε(A′[x : ts1]) = A[x : us1] we can apply the induction hypothesis to �nd
sequential C2, simple and sequential t2 with ε(t2) = u2 and β2 such that

C2, A′[x : ts1]` e2 : t2 &β2

Let C = C1 ∪ C2 ∪ {β2⊆β1}, then we can apply (let) and (sub) to get the
desired judgement

C,A′ ` let x = e1 in e2 : t2 &β1.

The case (ins): We can apply the induction hypothesis to �nd β, sequential
C and simple and sequential ts with ε(ts) = ∀~α .u such that

C,A′ ` e : ts&β.

Here ts is of form ∀(~α ~β : ∅). t0 where u = ε(t0) with t0 simple and sequential. It

is clearly possible to �nd a simple substitution S with Dom(S) ⊆ {~α } such that
ε(S) = R and such that S t0 is sequential and simple. But then (ins) gives us the

judgement

C,A′ ` e : S t0 &β

which is as desired since by Fact A.4 we have ε(S t0) = Ru.

30

The case (gen): We can apply the induction hypothesis to �nd β, sequential
C and simple and sequential t with ε(t) = u such that

C,A′ ` e : t&β

and the conclusion we want to arrive at is

C,A′ ` e : ∀(~α : ∅). t&β

which follows by using (gen) provided that (i) ∀(~α : ∅). t is well-formed and

solvable from C and (ii) ~α ∩ (FV(A′) ∪ FV(C) ∪ {β}) = ∅. Here (i) is trivial;
and (ii) follows since we from Fact A.3 have FTV(A) = FTV(A′).

Auxiliary notions.

Before embarking on the second part of Theorem 2.27 we need to develop some

extra machinery.

ML type equations. ML type equations are of the form u1 = u2. With Ct a
set of ML type equations and with R an ML substitution, we say that R satis�es

(or uni�es) Ct i� for all (u1 = u2) ∈ Ct we have Ru1 = Ru2.

The following fact is well-known from uni�cation theory:

Fact A.7 Let Ct be a set of ML type equations. If there exists an ML sub-
stitution which satis�es Ct, then Ct has a �most general uni�er�: that is, an
idempotent substitution R which satis�es Ct such that if R′ also satis�es Ct then
there exists R′′ such that R′ = R′′R.

Lemma A.8 Suppose R0 withDom(R0) ⊆ G satis�es a set of ML type equations
Ct. Then Ct has a most general uni�er R with Dom(R) ⊆ G.

Proof From Fact A.7 we know that Ct has a most general uni�er R1, and hence

there exists R2 such that R0 = R2R1. Let G1 = Dom(R1)\Dom(R0); for α ∈ G1

we have R2R1 α = R0 α = α and hence R1 maps the variables in G1 into distinct

variables G2 (which by R2 are mapped back again). Since R1 is idempotent we
have G2 ∩ Dom(R1) = ∅, so R0 equals R2 on G2 showing that G2 ⊆ Dom(R0).
Moreover, G1 ∩ G2 = ∅.
Let φ map α ∈ G1 into R1 α and map α ∈ G2 into R2 α and behave as the
identity otherwise. Then φ is its own inverse so that φφ = Id. Now de�ne

R = φR1; clearly R uni�es Ct and if R′ also uni�es Ct then (since R1 is most
general uni�er) there exists R′′ such that R′ = R′′R1 = R′′ φφR1 = (R′′ φ)R.

31

We are left with showing (i) that R is idempotent and (ii) that Dom(R) ⊆ G. For
(i), �rst observe that R1 φ equals Id except on Dom(R1). Since R1 is idempotent

we have FV(R1 α) ∩ Dom(R1) = ∅ (for all α) and hence

RR = φR1 φR1 = φ IdR1 = R.

For (ii), observe that R equals Id on G1 so it will be su�cient to show that
Rα = α if α /∈ (G ∪ G1). But then α /∈ Dom(R0) and hence α /∈ G2 and

α /∈ Dom(R1) so Rα = φα = α. 2

From a constraint set C we construct a set of ML type equations ε(C) as follows:

ε(C) = {(ε(t1) = ε(t2)) | (t1⊆ t2) ∈ C}.

Fact A.9 Suppose C ` t1⊆ t2. If R satis�es ε(C) then R ε(t1) = R ε(t2).

So if C `C ′ and R satis�es ε(C) then R satis�es ε(C ′).

Proof Induction in the proof tree. If (t1⊆ t2) ∈ C, the claim follows from

the assumptions. The cases for re�exivity and transitivity are straight-forward.
For the structural rules with the �sequential� type constructors, assume e.g. that

C ` t1 →b t2⊆ t′1 →b′ t′2 because (among other things) C ` t′1⊆ t1 and C ` t2⊆ t′2.
By using the induction hypothesis we get the desired equality

R ε(t1→b t2) = R ε(t1)→ R ε(t2) = R ε(t′1)→ R ε(t′2) = R ε(t′1 →b′ t′2).

For the structural rules with the non-sequential type constructors, assume e.g.
that C ` t com b⊆ t′ com b′ where C ` t⊆ t′. Then the desired equality reads

R ε(t) = R ε(t′) and follows from the induction hypothesis. 2

Relating type schemes. For a type scheme ts = ∀(~α ~β : C). t we shall not

in general (when C 6= ∅) de�ne any entity ε(ts); this is because one natural
attempt, namely ∀(~α : ε(C)). ε(t), is not an ML type scheme and another natural

attempt, ∀~α .ε(t), causes loss of the information in ε(C). Rather we shall de�ne
some relations between ML types, types, ML type schemes and type schemes:

De�nition A.10 We write u≺Rε ts, where ts = ∀(~α ~β : C0). t0 and where R is
an ML substitution, i� there exists R0 which equals R on all variables except ~α
such that R0 satis�es ε(C0) and such that u = R0 ε(t0).

Notice that instead of demanding R0 to equal R on all variables but ~α , it is
su�cient to demand that R0 equals R on FTV(ts). Hence we have the expected
property that if u≺Rε ts and ts is alpha-equivalent to ts′ then also u≺Rε ts′.

32

De�nition A.11 We write u≺us, where us = ∀~α .u0, i� there exists R0 with

Dom(R0) ⊆ ~α such that u = R0 u0.

De�nition A.12 We write us∼=R
ε ts to mean that (for all u) u≺us i� u≺Rε ts.

Fact A.13 Suppose us = ε(ts), where ts = ∀(~α ~β : ∅). t is sequential. Then

us∼=Id
ε ts.

Proof We have us = ∀~α .ε(t), so for any u it holds that u≺us ⇔ ∃ R with

Dom(R) ⊆ ~α such that u = R ε(t)⇔ u≺Idε ts. 2

Notice that ∀().u∼=R
ε ∀(() : ∅). t0 holds i� u = Rε(t0). We can thus consistently

extend ∼=R
ε to relate not only type schemes but also types:

De�nition A.14 We write u∼=R
ε t i� u = R ε(t).

De�nition A.15 We write A′∼=R
ε A i� Dom(A′) = Dom(A) and A′(x)∼=R

ε A(x)
for all x ∈ Dom(A).

Fact A.16 Let R and S be such that ε(S) = R. Then the relation u≺Rε ts holds
i� the relation u≺Idε S ts holds.

Consequently, us∼=R
ε ts holds i� us

∼=Id
ε S ts holds.

Proof Let ts = ∀(~α ~β : C). t. Due to the remark after De�nition A.10 we can

assume that ~α ~β is disjoint from Dom(S) ∪ Ran(S), so S ts = ∀(~α ~β : S C). S t.

First we prove �if�. For this suppose that R′ equals Id except on ~α and that R′

satis�es ε(S C) and that u = R′ ε(S t), which by straight-forward extensions of
Fact A.4 amounts to saying that R′ satis�es R ε(C) and that u = R′R ε(t). Since
{~α } ∩ Ran(R) = ∅ we conclude that R′ R equals R except on ~α , so we can use

R′R to show that u≺Rε ts.
Next we prove �only if�. For this suppose that R′ equals R except on ~α and

that R′ satis�es ε(C) and that u = R′ ε(t). Let R′′ behave as R′ on ~α and be-
have as the identity otherwise. Our task is to show that R′′ satis�es ε(S C) and
that u = R′′ ε(S t), which as we saw above amounts to showing that R′′ satis�es
R ε(C) and that u = R′′R ε(t). This will follow if we can show that R′ = R′′R.
But if α ∈ ~α we have R′′Rα = R′′ α = R′ α since Dom(R) ∩ {~α } = ∅, and if

α /∈ ~α we have R′′Rα = Rα = R′ α where the �rst equality sign follows from

Ran(R) ∩ {~α } = ∅ and Dom(R′′) ⊆ ~α . 2

Fact A.17 If us∼=Id
ε ts then FV(us) ⊆ FV(ts).

33

Proof We assume us∼=Id
ε ts where us = ∀~α ′.u and ts = ∀(~α ~β : C). t. Let α1 be

given such that α1 /∈ FV(ts), our task is to show that α1 /∈ FV(us).

Clearly u≺us so u≺Idε ts, that is there exists R with Dom(R) ⊆ ~α such that R
satis�es ε(C) and such that u = Rε(t). Now de�ne a substitution R1 which maps

α1 into a fresh variable and is the identity otherwise. Due to our assumption

about α1 it is easy to see that R1R equals Id on FV(ts), and as R1R clearly

satis�es ε(C) it holds that R1 u = R1R ε(t)≺Idε ts and hence also R1 u≺us. As

α1 /∈ FV(R1 u) we can infer the desired α1 /∈ FV(us). 2

Proof of the second part of Theorem 2.27

The second part of the theorem follows from the following proposition which

admits a proof by induction.

Proposition A.18 Let e be sequential, suppose C,A` e : ts& b, suppose R
satis�es ε(C), and suppose A′∼=R

ε A; then there exists a us with us∼=R
ε ts such

that A′ `ML e : us. Similarly with t and u instead of ts and us (in which case

u = R ε(t)).

We perform induction in the proof tree (the clauses for conditionals and for
recursion are omitted, as they present no further complications):

The case (con): Suppose R satis�es ε(C), and suppose A′∼=R
ε A. We can infer

A′ `ML c : MLTypeOf(c) so we must show MLTypeOf(c)∼=R
ε TypeOf(c).

By Assumption 2.26 and by Fact A.13 we know that MLTypeOf(c)∼=Id
ε TypeOf(c).

There clearly exists S with ε(S) = R, so the claim follows from Fact A.16, since

TypeOf(c) is closed (cf. Fact 2.13).

The case (id): Suppose R satis�es ε(C), and suppose A′∼=R
ε A. Then

A′(x)∼=R
ε A(x) and A′ `ML x : A′(x), as desired.

The case (abs): Suppose R satis�es ε(C) and that A′∼=R
ε A. Then also

A′[x : R ε(t1)]∼=R
ε A[x : t1], so the induction hypothesis can be applied to �nd

u2 such that u2 = R ε(t2) and such that A′[x : Rε(t1)] `ML e : u2. By using

(abs) we get the judgement

A′ `ML fn x⇒ e : R ε(t1)→ u2

which is as desired since R ε(t1)→ u2 = R ε(t1 →b t2).

34

The case (app): Suppose R satis�es ε(C1 ∪ C2) and that A′∼=R
ε A. Clearly

R satis�es ε(C1) as well as ε(C2), so the induction hypothesis can be applied to

infer that
A′ `ML e1 : Rε(t2 →b t1) and A′ `ML e2 : R ε(t2)

and since R ε(t2→b t1) = R ε(t2)→ R ε(t1) we can apply (app) to arrive at the

desired judgement A′ `ML e1 e2 : R ε(t1).

The case (let): Suppose R satis�es ε(C1 ∪ C2) and that A′∼=R
ε A. SinceR sat-

is�es ε(C1) we can apply the induction hypothesis to �nd us1 such that us1
∼=R
ε ts1

and such that A′ `ML e1 : us1.

Since R satis�es ε(C2) and since A′[x : us1]∼=R
ε A[x : ts1] we can apply the induc-

tion hypothesis to infer that A′[x : us1] `ML e2 : R ε(t2). Now use (let) to arrive

at the desired judgement A′ `ML let x = e1 in e2 : Rε(t2).

The case (sub): Suppose R satis�es ε(C) and that A′∼=R
ε A. By applying the

induction hypothesis we infer that A′ `ML e : R ε(t) and since by Fact A.9 we
have R ε(t) = R ε(t′) this is as desired.

The case (ins): Suppose that R satis�es ε(C) and that A′∼=R
ε A. The induc-

tion hypothesis tells us that there exists us with us∼=R
ε ∀(~α ~β : C0). t0 such that

A′ `ML e : us.

Since C `S0C0 and R satis�es ε(C), Fact A.9 tells us that R satis�es ε(S0C0)
which by Fact A.4 equals ε(S0) ε(C0), thus R ε(S0) satis�es ε(C0). As R ε(S0)
equals R except on ~α , it holds that R ε(S0) ε(t0)≺Rε ∀(~α ~β : C0). t0 and since

us∼=R
ε ∀(~α ~β : C0). t0 we have R ε(S0) ε(t0)≺us. But this shows that we can use

(ins) to arrive at the judgement A′ `ML e : R ε(S0) ε(t0) which is as desired since
ε(S0) ε(t0) = ε(S0 t0) by Fact A.4.

The case (gen): Suppose that R satis�es ε(C) and that A′∼=R
ε A. Our task is

to �nd us such that us∼=R
ε ∀(~α ~β : C0). t0 and such that A′ `ML e : us. Below

we will argue that we can assume that {~α } ∩ (Dom(R) ∪ Ran(R)) = ∅.

Let T be a renaming substitution mapping ~α into fresh variables ~α ′.
By applying Lemma 2.15, by exploiting that FV(C,A, b)∩{~α ~β } = ∅,
and by using (gen) we can construct a proof tree whose last nodes are

C ∪ T C0, A` e : T t0 & b

C,A` e : ∀(~α ′~β : T C0). T t0 & b

35

the conclusion of which is alpha-equivalent to the conclusion of the

original proof tree, and the shape of which (by Lemma 2.15) is equal

to the shape of the original proof tree.

There exists S0 with Dom(S0) ⊆ {~α ~β } such that C `S0C0. Fact A.9 then tells

us that R satis�es ε(S0C0) which by Fact A.4 equals ε(S0) ε(C0).

Now de�ne R′0 to be a substitution with Dom(R′0) ⊆ {~α } which maps ~α into
R ε(S0) ~α . It is easy to see (since ~α is disjoint from Dom(R) ∪ Ran(R)) that
R′0R = R ε(S0), implying that R′0 satis�es R ε(C0).

By Lemma A.8 there exists R0 with Dom(R0) ⊆ {~α } which is a most general

uni�er of Rε(C0). Hence with R′ = R0R it holds not only that R′ satis�es ε(C)
but also that R′ satis�es ε(C0), so in order to apply the induction hypothesis on R′

we just need to show that A′∼=R′
ε A. This can be done by showing that R equals

R′ on FV(A), but this follows since our assumptions tell us that Dom(R0) ∩
FV(RA) = ∅.
The induction hypothesis thus tells us that A′ `ML e : R′ ε(t0). Let S be such

that ε(S) = R and Dom(S) = Dom(R) and Ran(S) ∩ {~β } = ∅; since {~α } ∩
Ran(R) = ∅ we can also obtain {~α }∩Ran(S) = ∅. By Fact A.16 and Fact A.17 we
infer that FV(A′) ⊆ FV(S A), so since {~α }∩FV(A) = ∅ we infer {~α }∩FV(A′) =
∅. We can thus use (gen) to arrive at the judgement A′ `ML e : ∀~α .R′ ε(t0).
We are left with showing that ∀~α .R′ ε(t0)∼=R

ε ∀(~α ~β : C0). t0 but this follows from
the following calculation (explained below):

u≺Rε ∀(~α ~β : C0). t0
⇔ u≺Idε ∀(~α ~β : S C0). S t0
⇔ ∃R1 with Dom(R1) ⊆ {~α }

such that R1 satis�es R ε(C0) and u = R1R ε(t0)
⇔ ∃R1 with Dom(R1) ⊆ {~α }

such that ∃R2 : R1 = R2R0 and u = R1R ε(t0)
⇔ ∃R2 with Dom(R2) ⊆ {~α } such that u = R2R0R ε(t0)
⇔ u≺∀~α .R′ ε(t0).

The �rst⇔ follows from Fact A.16 where we have exploited that {~α ~β } is disjoint
fromDom(S)∪Ran(S); the second⇔ follows from the de�nition of ≺Idε together

with Fact A.4; the third⇔ is a consequence of R0 being the most general uni�er
of R ε(C0); and the fourth ⇔ is a consequence of Dom(R0) ⊆ {~α } since then

from R1 = R2R0 we conclude that if α′ /∈ {~α } then R1 α′ = R2 α′ and hence

Dom(R1) ⊆ {α} i� Dom(R2) ⊆ {α}.

36

