

Exponentiation, Modular Multiplication and
VLSI Implementation of High-Speed RSA

Cryptography

Ph.D Thesis

by

Holger Orup

Department of Computer Science,
University of Aarhus,

DK-8000 Aarhus C, Denmark

August 1995

Danish Summary (Dansk
Resumé)

Denne afhandling er resultatet af et Ph.D. studium udført i perioden fra 1990
til 1995. Studiet foregik ved Datalogisk Afdeling, Aarhus Universitet under
vejledning af Lektor Peter Møller-Nielsen. I perioden fra september 1990
til januar 1993 blev en del af arbejdet udført ved Udviklingsafdelingen, Tele
Danmark/Jydsk Telefon.

Problemstilling

Afhandlingen er motiveret af en problemstilling, der især er kendt fra anven-
delsen af RSA kryptosystemet: Den praktiske anvendelighed af systemet er
afhængig af hastigheden, hvormed man er i stand til at udføre de tilhørende
transformationer af data. For at undg̊a at anvendelsen af kryptografi bliver
en flaskehals i de elektroniske kommunikationssystemer, er det vigtigt at opn̊a
en tilstrækkelig høj transformationshastighed.

Transformationerne, der benyttes i RSA kryptosystemet, er baseret p̊a
en aritmetisk operation p̊a formen M e mod m kaldet modulo eksponentier-
ing. Da operandernes størrelse typisk er p̊a 500 bit eller mere, er modulo
eksponentiering en forholdsvis tidskrævende operation. I 1990, da projek-
tet startede, var den hurtigste implementering af modulo eksponentiering i
stand til at foretage beregningerne med en hastighed p̊a 29 Kbit/sek ved en
operandstørrelse p̊a 512 bit.

i

ii

Form̊al

Hovedformålet med arbejdet præsenteret i afhandlingen er at undersøge mu-
lighederne for at forøge hastigheden af modulo eksponentiering ved hjælp af
specialdesignede VLSI (Very Large Scale Integrated) kredsløb. Den konkrete
målsætning for projektet udført ved Tele Danmark/Jydsk Telefon var at
konstruere et VLSI kredsløb, som kunne foretage module eksponentiering af
operander p̊a 561 bit med en hastighed p̊a minimum 64 Kbit/sek. Endvidere
skulle kredsløbet implementeres p̊a en enkelt chip.

Formålet med selve afhandlingen er at beskrive resultaterne opn̊aet un-
der studiet og at sætte disse i perspektiv ved en diskussion og sammenlign-
ing med resultater kendt fra litteraturen. Desuden er det hensigten at give
læseren indsigt i de teknikker, der kan anvendes til at effektivisere modulo
exponentiering.

Tilgangsvinkel

Den valgte tilgangsvinkel er baseret pa en simpel analyse af VLSI imple-
menteringer, der var kendt i 1990: Alle de hurtigste implementeringer bruger
det samme antal klokke perioder til at foretage en modulo eksponentiering, og
forskellen i hastighed kan tilsyneladende alene tilskrives forskellen i den an-
vendte klokkefrekvens. Dette kunne tyde p̊a, at fremskridt i hastighed alene
er n̊aet p̊a baggrund af hurtigere kredslebsteknologier, og ikke p̊a grund af
forbedrede beregningsmetoder. Derfor blev det besluttet at undersøge mu-
lighederne for at udvikle nye og mere effektive beregningsmetoder, som er
velegnede til VLSI implementering.

Afhandlingens struktur

Afhandlingen er opdelt i to separate dele. Den sidste del best̊ar af fire ar-
tikler, gengivet i appendices A-D, samt en rapport med beskrivelser af RSA
kredsen i appendix E. Alle dokumenterne er skrevet i perioden fra 1990 til
1995. Artiklerne præsenterer nogle af de opn̊aede resultater. Den første del
af afhandlingen indeholder en relativt udtømmende oversigt over relevante
resultater fra litteraturen. Disse resultater diskuteres og sammenholdes med

iii

resultaterne opn̊aet under studiet. Desuden er projektet med konstruktion
af RSA kredsen beskrevet.

Oversigtsdelen

De første fire kapitler udgør en hierakisk struktureret fremstilling, hvor prob-
lemstillingerne identificeret p̊a ét niveau løses ved et sæt teknikker, der in-
troducerer et nyt sæt lavere liggende problemstillinger. Det nederste niveau
i hierakiet er kredsløbsniveauet, hvor løsningerne realiseres ved en kredsløbs-
arkitektur, der er i stand til at udføre en specifik beregningsmetode. Det
femte kapitel beskriver den senest udviklede beregningsmetode. Metoden
repræsenterer en markant fremgang i de opn̊aelige beregningshastigheder og
må ses som et produkt af at samle erfaringerne fra de første fire kapitler.
Endelig afsluttes oversigtsdelen med en kortfattet konklusion, der præciserer
de gennemg̊aende løsningsstrategier og -teknikker.

I det følgende er de væsntligste opn̊aede resultater kort skitseret. Resul-
taterne er opdelt efter emne:

Eksponentierings metoder. Da eksponentiering foretages ved gentagen
multiplikation, er litteraturen præget af metoder, der forsøger at min-
imere antallet of multiplikationsoperationer. Imidlertid er det muligt
at parallellisere beregningen og herved opn̊a en kortere beregningstid
end det er muligt med sekventielle metoder. Dette er p̊a trods af, at
det samlede antal multiplikationer ikke er minimalt. Det væsentligste
bidrag til dette emneomr̊ade er en metode, der anvender den parallelle
beregningsstrategi uden en samtidig signifikant forøgelse af VLSI kreds-
løbets størrelse. Dette opn̊aes ved at anvende en samleb̊andsteknik
(eng: pipelining). Det synes vanskeligt at opn̊a yderligere fremgang i
metoderne til modulo eksponentiering.

Modulo multiplikations metoder. Der er til gengæld store muligheder
for at forøge hastigheden af modulo multiplikation. I denne afhandling
er den gennemg̊aende strategi at opn̊a mere effektive beregninger af
modulo multiplikation ved at benytte s̊akaldte høj-radix metoder. Den
basale idé bag høj-radix metoder er at reduce antallet af additioner.
Dette kan udtrykke sig ved, at antallet af klokkeperioder per multip-
likation reduceres. Et af de største problemer ved høj-radix metoderne

iv

er, at det reducerede antal klokkeperioder ledsages af en forøgelse af
klokkeperiodens længde. Et af de væsentligste resultater i afhandlingen
er en særdeles effektiv høj-radix metode, hvor klokkeperiodens længde
ikke forøges ved stigende radices.

VLSI implementering. En RSA processor er blevet konstrueret, fabrikeret
og afprøvet. Den er fuld funktionsdygtig og lever op til kravene, der
blev specificeret ved projektets begyndelse. Det viser sig at være den
hidtil hurtigste kendte implementation af modulo exponentiering.

Artikeldelen

I de fem appendices A-E er gengivet fire artikler samt en kortfattet rapport.
Den første artikel, publiceret i [OSA90a], danner grundlag for beregningsme-
toderne, der benyttes af RSA processoren. Den anden artikel, publiceret i
[OK91], præsenterer en module multiplikations metode, der i udstrakt grad
udnytter egenskaberne ved s̊akaldte redundante repræsentationer. Endvidere
beskrives en velegnet kredsløbsarkitektur, som udnytter samleb̊andsteknikken
til at formindske størrelsen af kredsløbet. Den tredie artikel beskriver strate-
gien bag arbejdet med at reducere arealet af RSA processoren. Artiklen
indeholder en oversigt over effekten af de anvendte teknikker. Den fjerde ar-
tikel, publiceret i [Oru95], præsenterer en særdeles effektiv høj-radix modulo
multiplikationsmetode. Metoden baserer sig p̊a en kombination af tidligere
kendte teknikker. Endelig er en rapport inkluderet. Rapporten indeholder
nogle af de væsentligste data vedrørende RSA processorens funktionalitet.

v

Preface

This thesis is the result of a Ph.D. study carried out in the period from
1990 to 1995. The study was done at the Department of Computer Science,
University of Aarhus, Denmark, and supervised by Associate Professor Peter
Møller-Nielsen. As an integral part of the study I was at the Research and
Development Department, Tele Danmark/Jydsk Telefon, Denmark, in the
period from September 1990 to January 1993.

The study was driven by a specific problem known from the field of public
key cryptography: In order to avoid the application of cryptography to be
a bottle-neck in a communication system, it is necessary to perform the
cryptographic transformations at a rate corresponding to the transmission
rate of the communication channel. In the RSA public key crypto system,
and in other public key systems as well, the transformation rate is limited
by the speed of which modular exponentiation can be performed. The aim
of the study was, primarily, to implement a special-purpose processor by
means of the VLSI circuit technology and, hereby, to demonstrate that the
transformations used in RSA cryptography can be performed at 64 Kbit/sec,
corresponding to the transmission rate of an ISDN channel.

The thesis is organised as two major parts. The first part constitutes
a relatively exhaustive description of the relevant research results on meth-
ods for fast computation of modular exponentials. The description provides
an insight into the properties of the arithmetical operations used. It is dis-
cussed how these properties, through various optimisation techniques, can
be utilised to obtain efficient computation methods. Finally, the hardware
implementation project carried out at Tele Danmark/Jydsk Telefon is de-
scribed. The second part of the thesis is structured as five separate papers.
The papers presents the results obtained during the study.

My interest for the problem treated in this thesis was born in 1989 dur-
ing a conversation with two fellow students. One of the fellows was taking a
course in Cryptology and had been faced with the problem of RSA cryptog-
raphy. Hence, he asked

“Is it possible to construct a VLSI processor that performs fast
computations of expressions of the form M e mod m?”

We got the opportunity to study the problem in further detail and in January
1990 we completed our Master’s thesis [OSA90b] on the subject. The results

vi

were described in an article [OSA90a] and presented at the Eurocrypt ’90
Conference in Aarhus, Denmark, May 1990. Furthermore, a report [OS90]
on improvements of the results of the Master’s thesis was completed in June
1990.

After receiving my Master’s degree I applied for, and got, a Ph.D. scholar-
ship in the summer 1990. During the Eurocrypt ’90 Conference a contact to
Tele Danmark/Jydsk Telefon was established. A cooperation was initiated in
September 1990 with the purpose of implementing a VLSI processor. A com-
putation method and an associated architecture, mainly based on the article
from Eurocrypt ’90, was chosen for the implementation. The processor was
sent for fabrication in January 1993. It was presented at the Hot Chip VI
Symposium, Standford, California, August 1994 [Oru94]. In the first stage
of the project, for a period of approximately a year, the work was done in
cooperation with Erik Svendsen.

In the fall 1990 Professor Peter Kornerup, Odense University, Denmark,
gave me an introduction to the field of Computer Arithmetic and explained
that some of the ideas we had presented at Eurocrypt ’90 were well-known
techniques from that field. This resulted in the article [OK91], presented at
the 10th Symposium on Computer Arithmetic, Grenoble, France, June 1991.
Finally, at the 12th Symposium on Computer Arithmetic, Bath, England,
July 1995, the results of my latest work were presented [Oru95].

The photography on the front cover of the thesis shows the processor that
was implemented through the cooperation with Tele Danmark/Jydsk Telefon.

Aarhus, Denmark Holger Orup
August, 1995

Acknowledgements

I am truly grateful for the inspiration, advice and support I have received
from many people during my work on this thesis. It is not possible to mention
everyone whose interaction contributed to this work, but I would like to thank
some of the people that have helped me the most.

First of all I would like to express my deepest gratitude to my wife Hanne
for her all-out support.

At University of Aarhus I would like to thank my supervisor Peter Møller-

vii

Nielsen for his help, advice and support during my studies. I would also like
to thank Ole Caprani and Henrik Esbensen for many fruitful discussions and
suggestions.

At Tele Danmark/Jydsk Telefon I would like to thank my former col-
leagues at the Research and Development Department. A special thank to
Poul Gødsvang and Finn Barrett for many inspiring discussions. I would
also like to thank Erik Svendsen, who was directly involved in the design of
the RSA processor, as well as John Thorup, who designed and constructed
the boards for testing the processor. Finally, I owe thanks to Palle Brandt
for taking the initiative to establish the project of implementing the RSA
processor.

Thanks to Peter Kornerup, Odense University, for introducing me to the
field of Computer Arithmetic and for constructive discussions, advice and
support.

I am also very grateful for the financial support provided by the Depart-
ment of Computer Science, University of Aarhus and by the AIDA research
project1.

Aarhus, Denmark Holger Orup
August, 1995

1Danish Natural Science Research Council, grant no, 5.21.08.02

viii

Contents

1 Introduction 1

1.1 The Need for Crypyography 1

1.1.1 Information Integrity Functions 2

1.1.2 Cryptography . 4

1.1.3 The RSA Public Key Crypto System 7

1.1.4 Other Public Key Crypto Systems 10

1.1.5 Hardware Support . 11

1.2 Purpose of the Thesis . 12

1.3 Chosen Approach . 12

1.4 Organisation of the Thesis . 16

1.5 Description of Papers . 18

2 Exponentiation 21

2.1 Fewer Multiplications . 23

2.1.1 The m-ary Method . 24

2.1.2 Thurber’s Modification 30

2.1.3 Methods Based on Heuristics 33

2.2 Theoretical Limits . 36

2.3 Parallel Computation . 38

2.3.1 Pipelined Computation 42

2.3.2 From Computation Method to Implementation 47

2.4 Modular Exponentiation . 48

2.5 Summary and Discussion . 52

ix

x CONTENTS

3 Modular Multiplication 57

3.1 A Simple Modular Addition Method 60

3.2 Integer Representation and Arithmetic 61

3.2.1 Non-Redundant Representation 62

3.2.2 Redundant Representation 65

3.2.3 Comparison of Non-Redundant and Redundant Rep-
resentations . 73

3.3 Residue Representation and Arithmetic 74

3.4 Left-to-Right Modular Multiplication
Method . 77

3.5 Utilisation of Parallel Computations 79

3.6 Representation of Intermediate Operands 83

3.7 Computation of Multiples . 86

3.7.1 Multiplier Digit Set and Quotient Digit Set 86

3.7.2 Representation of Multiplicand and Modulus 88

3.7.3 Representation and Range of Resulting Multiple 94

3.8 Residue Range and Quotient Digit Set 97

3.9 Scaling of Modulus . 100

3.10 Quotient Determination Methods 103

3.10.1 Table Look-Up Methods 105

3.10.2 Analysis of Selection Intervals 108

3.10.3 Borrow Save and Carry Save Representation 110

3.10.4 Adjusting the Range of Modulus 117

3.11 Summary and Discussion . 122

4 Modular Exponentiation Processor 129

4.1 Background and History of the Project 130

4.2 Processor Description . 135

4.2.1 Modular Exponentiation Unit 136

4.2.2 Modular Multiplication Unit 138

4.2.3 Multiple Units . 143

4.2.4 Quotient Determination Unit 146

4.2.5 Control Unit . 150

CONTENTS xi

4.3 Layout . 151

4.4 Test and Performance . 153

4.4.1 Check of Pin Connections 154

4.4.2 Current Measurements on Reset 154

4.4.3 Test Board . 159

4.4.4 Test of Functionality 160

4.4.5 Performance Mesurements 163

4.5 Summary and Discussion . 166

5 Montgomery Residues 173

5.1 Montgomery Multiplication 175

5.2 Reducing the Recursion Cycle Time 177

5.2.1 Optimisation Techniques 178

5.3 Additional Processing . 183

5.4 Summary and Discussion . 185

6 Conclusion 191

Bibliography 195

A VICTOR, an Efficient RSA Hardware Implementation 215

B A High-Radix Hardware Algorithm for Calculating the Ex-
ponential ME Modulo N 217

C Area Reduction for Bit-Sliced Layouts using a Commercial
Development System 219

D Simplifying Quotient Determination in High-Radix Modular
Multiplication 221

E RSA Processor, Preliminary Engineering Data 223

Chapter 1

Introduction

This chapter provides an introduction to the subject and purpose of this
thesis. Section 1.1 gives a motivation for the work presented. After a brief
description of the services provided by cryptography, the RSA public key
crypto system is introduced. The complexity of computing modular expo-
nentials, expressions of the form M e mod m, represents the most serious
limitation on the applicability of public key cryptography. In Section 1.2 the
purpose of this thesis is described: To develop fast hardware implementations
for supporting the computations required in RSA cryptography. Section 1.3
describes the approach chosen for achieving the goal of the presented work.
Section 1.4 describes the overall organisation of the thesis. Finally, Section
1.5 provides a brief description of the papers included in the Appendices.

1.1 The Need for Crypyography

Electronic communication system are quickly overtaking paper-based sys-
tems and face-to-face meetings [DMW94]. Every day, millions of people use
telephones, fax machines, and computer network for interactions. Sensitive
data are transmitted over insecure channels. Landau et al. [LKB+94] de-
scribe cases, where weak links in the communication system have been used
for penetration: In the 1970s thousands of phone conversations about busi-
ness at IBMs private microwave network were systematically eavesdropped
by Soviet intelligence agents. A group of students at the University of Wis-
consin forged an email letter of resignation from the director of housing to

1

2 CHAPTER 1. INTRODUCTION

the chancellor of the university.

The accelerating introduction of electronic communication will increase
the importance of information integrity [Sim92a], i.e. all the questions con-
cerning privacy, authenticity, authority etc.: Business will tele-connect with
customers to sell and bill. Manufactures will electronically query suppliers to
check product availability. Insurance companies, doctors and medical centres
will carry on electronic exchanges about patient treatment.

Vulnerable communication can easily undermine user’s confidence in a
system. Hence, there is an urgent need for means to provide for the integrity
of information. A very important part of the solutions on the information
integrity is cryptographic in nature.

1.1.1 Information Integrity Functions

Information integrity functions for paper-based communication systems have
evolved over thousands of years. The needs for parties of the paper-based
communication include such functions as listed in Table 1.1 [DMW94]. The
table lists a few a the more common functions and is far from complete.
The conventional paper-based information integrity functions motivate the
need for similar functions in electronic communication and provide a basis
for analogies. The same message or transaction that now is handled by a
paper-based system will soon be sent by an electronic system, to improve
the speed of communication and the cost of handling. As this evolution
progresses, the security needs of users are not diminishing. In fact, with easy
access to more information on-line, the threats to the information integrity
are likely to increase.

Attacks on paper-based systems generally require physical access to one
of the few copies of a paper message. In contrast, an electronic system may
store multiple copies of messages. A sender and recipient of a message gen-
erally does not know exactly which nodes of a network carried the message.
Furthermore, there is a potential for undetectable, remote access to systems
storing or transmitting electronic messages. Some basic threats to the in-
formation integrity in electronic communication systems are listed in Table
1.1.1 [Fum91].

A more elaborate presentation of the information integrity functions needed

1.1. THE NEED FOR CRYPYOGRAPHY 3

Signature Verify the identity of the originator. Written signatu-
res are the primary form of identifying the originator.
In early times wax seals were imprinted with the sym-
bol of an important individual or office.

Integrity Ensure that the message or transaction received is the
same as that sent, without accidental or intentional
modification. Transactions are recorded in ink on non-
erasable documents. Special papers have been deve-
loped that display certain indicators if they are mo-
dified.

Non-repudiation Prove to a third party that the transaction actually
took place. This prevents an individual from denying
having engaged in a transaction. Procedures have
been established to verify individual signatures, keep
duplicate copies of transactions, and entrust third par-
ties to adjudicate disputes.

Privacy (secrecy) Keep communications private. Physical protection
mechanisms have evolved to ensure the privacy of
transactions. The glue seal on an envelope and the
wax seal on a document are used to discourage others
from reading a message. Cryptography, the basis of
much of the security in electronic communication
systems, is a method almost as old as writing itself.

Table 1.1: Information integrity functions in paper-based communication
systems.

4 CHAPTER 1. INTRODUCTION

Interception of data Network meadia can be tapped.

Modification of message Modification of a message occurs when the con-
tents of a message is altered without detection
and results in unauthorised effects

Replay of message A replay occurs when a message, or a part of it,
is repeated to produce an unauthorised effect.

Masquerading A masquerade is when an entity pretends to be
a different entity. This can be used to introduce
invalid messages that are delivered as if they
were genuine.

Repudiation This refers to a senders (or recipients) denial of
participation in a transaction.

Table 1.2: Some information integrity threats.

in electronic communication systems, and of the corresponding threats, can
be found in text-books on cryptography, e.g. [Den82, Bra88, PGV91, Sim92b].

1.1.2 Cryptography

As mentioned above, a means for providing some of the important informa-
tion integrity functions is cryptography. In general, there are two types of
cryptography denoted secret key cryptography and public key cryptography.
The crypto systems for performing secret key cryptography are also known
as conventional crypto systems. Until 1976, when the concept of public key
cryptography was introduced by Diffie and Hellman [DH76], all crypto sys-
tems were secret key systems. The following brief description of both types
of crypto systems gives the reader an introduction to the advantages, and the
disadvantages, of the public key crypto systems. The description is based on

1.1. THE NEED FOR CRYPYOGRAPHY 5

[Nec92].

Secret Key Cryptography

A secret key system consists of two transformations: An encryption transfor-
mation EK used for encryption of a message M , and a decryption transforma-
tion DK used for decryption of the encrypted message, i.e. DK(EK(M)) =
M . The transformations are parameterised with a parameter K, denoted
the key. By imposing certain requirements to the transformations, it is pos-
sible to withstand some of the information integrity threats in Table 1.1.1.
Suppose two parties, say Alice and Bob, are communicating messages on a
public communication channel. Furthermore, suppose that a third party, say
Charlie, has access to the communication channel:

• To prevent Charlie from intercepting a message M send from Alice to
Bob, Alice encrypts M using EK . Then, the resulting so-called cipher-
text C = Ek(M) is sent to Bob. Finally, Bob decrypts C using DK .
The key K, used as parameter in the encryption and the decryption,
is kept secret from Charlie. Hence, by requiring that it is infeasible for
Charlie to compute DK(C) without knowledge of the key value, Alice
and Bob have achieved privacy in their communication.

• Furthermore, if it is infeasible for Charlie to compute EK(M) without
knowledge of the key value, Charlie cannot pretend to be Alice in a
communication where M is send to Bob.

The secret key crypto systems are mainly used for providing privacy in a
communication between two parties. The Data Encryption Standard (DES)
system is the most widely used secret key crypto system, see e.g. [SB92].

Public Key Cryptography

One of the reasons [Dif92] for proposing public key cryptography was the
problem of key distribution: If two people, who have never met before, are
to communicate privately using secret key cryptography, they must somehow
agree in advance on a key that will be known to themselves and to no one else.
Another reason was the problems of signatures and of non-repudiation: A
method was needed for providing the recipient of a purely digital electronic

6 CHAPTER 1. INTRODUCTION

message with a way of demonstrating to other people, that the message
had come from a particular person. Hence, the signature should allow the
recipient to hold the author to the contents of the message.

Public key systems differ from secret key systems in that there is no
longer a single secret key shared by a pair of users. Rather, each user has
each own key material. Furthermore, the key material of each user is di-
vided into two portions, a private component and a public component. The
public component generates a public transformation E, and the private com-
ponent generates a private transformation D. Often, E and D is denoted the
encryption transformation and the decryption transformation, respectively.
This is, however, an imprecise terminology: Depending on the actual sys-
tem, it may be the case that D(E(M)) = M, E(D(M)) = M , or both. A
common requirement to the public transformation E is that it must be a
so-called trapdoor one-way function. “One-way” refers to the fact that E
should be easy to compute from the public component of the key but hard to
invert unless one possesses the corresponding private transformation D, or
equivalently, the private component of the key. The private component thus
yields a “trapdoor” which makes the problem of inverting E seem difficult
from the point of view of all but the possessor of D.

The following examples show how privacy, signatures, and non-repudiation
may be provided by a public key crypto system. The transformations DA

and EA are those generated by Alice’s key, and the transformations DB and
EB are those generated by Bob’s key:

• To prevent Charlie from intercepting a message M send from Alice
to Bob, Alice encrypts the message by means of Bob’s public avail-
able transformation EB. Then, the ciphertext C = EB(M) is sent
to Bob, who decrypts C by means of his own private transformation,
M = DB(C)1. So, when the public key crypto system is used for
obtaining privacy, only the transformations of the recipient are used.
The requirement to the transformations is that DB(EB(M)) = M . It
should be emphasised, that Bob never needs to share DB with Alice.

• To convince Bob that the message M indeed originates from Alice and,
hence, cannot have been generated by Charlie, Alice is able to sign the
message: Alice transforms the message by means of her own private
transformation. Then, the resulting signed message S = DA(M) is sent
to Bob. Finally, in order to verify the signature, Bob applies Alice’s

1.1. THE NEED FOR CRYPYOGRAPHY 7

public transformation to obtain M = EA(S). Since DA is strictly pri-
vate to Alice, Charlie could not possibly have generated the signed mes-
sage. Note that only the transformations of Alice’s are used. In order to
provide signatures, the transformations must obey EA(DA(M)) = M .

• The signed message, S = DA(M), could not even have been generated
by Bob. Furthermore, the signature can be verified by every person
who has access to Alice’s public transformation. Hence, Bob can prove
to a third party that Alice indeed was the author of the signed message,
and Alice cannot deny having signed the message.

To provide privacy, the transformations used in a public key systems must
obey the condition D(E(M)) = M , and to provide signatures they must obey
E(D(M)) = M . According to [Nec92] there is only one major system, the
Rivest-Shamir-Adleman (RSA) system, that satisfies both conditions. This
system will be introduced below.

Compared to the secret key systems, the public key systems provide a
wider range of information integrity functions. Furthermore, the key dis-
tribution problem is significantly reduced: There is no longer a need for
exchanging secret keys. Apart from the private transformation of a user,
only the public available transformations of the other users are required in
order to apply public key cryptography.

There are, however, a disadvantage of the public key systems: Compared
to the secret key systems, they are based on very slow transformations, i.e.
the obtainable bandwidths associated with public key cryptography are lim-
ited. A state-of-the-art dedicated hardware implementations of the DES
secret key system is able to perform the transformations at a rate of up to
90 Mbit/set [Pij91]. This is close to 1000 times faster than the fastest known
implementations of the RSA public key system. Indeed, the bandwidth prob-
lem represents the most serious limitation on the practical applicability of
public key systems.

1.1.3 The RSA Public Key Crypto System

The RSA public key crypto system is the best known public key crypto
system. Many authors regard the system as the most versatile system that
have been proposed. The system is invented by Rivest, Shamir and Adleman
[RSA78]. It was published for the first time in 1977 [Gar77].

8 CHAPTER 1. INTRODUCTION

Both the public transformation E and the private transformation D are
performed by a so-called modular exponentiation. The transformations have
a common modulus m. They only differ in the value of the exponent. The
pair (e, m), where e is the public exponent, constitutes the public component
of a user’s key. Similarly, the pair (d, m), where d is the private exponent,
constitutes the private component,

E(M) = M e mod m

D(M) = Md mod m, where M ∈ [0; m[(1.1)

In order to obey D(E(M)) = E(D(M)) = M , and simultaneously to achieve
that E has the properties of a trapdoor one-way function, the values of m,
e and d must be selected with care. A brief introduction of how to generate
the keys is given below.

In a typical application of RSA cryptography, the digital representation
of the message M will be much greater than the modulus m. In this case
the message is divided into a number of blocks, M = M1M2 . . . , where each
block is less than m. Then, each block is separately transformed using E or
D. Hence, a typical application consists of a (long) series of transformations,
where the modulus and exponent is fixed.

Generating Keys

The following is a brief description of the basic requirements to a user’s public
key (e, m) and private key (d, m). For a more detailed treatment of the key
generation topic, the reader is referred to e.g. [BO92, Moo92]. The keys are
generated through the following steps:

1. Two large prime numbers p and q are chosen. Then, the modulus is
computed as the product of the primes, i.e. m = pq. The so-called
Euler totient function of m (see e.g. [Den82, p. 41],) is computed as
well, ϕ(m) = ϕ(p)ϕ(q) = (p − 1)(q − 1).

2. Choose an integer exponent, say e, such that e ∈ [1; ϕ(m)[and gcd(e, ϕ(m)) =
1. The last condition ensures the existence of a multiplicative inverse
of e modulo ϕ(m). Then, let the other exponent d be a multiplicative
inverse, i.e. an integer d satisfying ed mod ϕ(m) = 1.

1.1. THE NEED FOR CRYPYOGRAPHY 9

When the modulus m and the exponents e and d are chosen in accordance
to these rules, the following equation holds for all M ∈ [0; m[,

D(E(M)) = E(D(M)) = M (1.2)

A proof of (1.2) is included in the original article [RSA78] by Rivest, Shamir
and Adleman. It should be mentioned, that several descriptions of the RSA
system contain an inadequate proof of Equation (1.2). Even though the
complete proof is pretty short, it is beyond the scope of this introductory
description. So, the interested reader is referred to [RSA78].

Security of RSA

The public transformation E(M) = M e mod m is a one-way function since it
is relatively easy to compute E(M) and relatively hard to invert the transfor-
mation without the knowledge of the private exponent d. Moreover, because
it is relatively easy to invert E using the private transformation D, E is a
trapdoor function.

Using a very rough measure of computing time, it takes about n = log2 m
primitive operations to perform a modular exponentiation assuming all of the
operands are of the same bit length n. The unit “primitive operations” is a
very imprecise measure. However, the measure is satisfactory for the purpose
of this introduction: To give a feeling of the computationally effort required
to perform the transformations E and D, and to invert E without knowing
D. Hence, the time for computing E, or D, is about n operations. The fastest
known methods for inverting E without knowing d require a factorisation of
m, i.e. a computation of the prime factors p and q of m. The problem of
prime factorisation is believed to be a hard problem in the sense, that it is
very resource demanding: One of the fastest methods, denoted the quadratic
sieve, requires in the order of exp(

√
n · log n) primitive operations to factorise

an n-digit number [Nec92].

In order to obtain a sufficient degree of security of the RSA crypto sys-
tem, the length of the keys must be chosen such that it becomes infeasible
to factorise the modulus. Until recently, it was believed that a key length of
512 bits was adequate. However, there have been a substantial progress in
the development of methods for prime factorisation: In 1977 it was estimated
that several billions of years was required to factorise a number of 129 deci-
mal digits [Gar77]. Indeed, the inventors of the RSA system challenged the

10 CHAPTER 1. INTRODUCTION

public by offering a $100 prize to the first successful decoder of an encrypted
message. The message was encrypted using a modulus of 129 decimal digits,
or in a binary representation, 426 bits. In April 1994 the message was finally
decoded in a factorisation project running over 8 months [AGLL94]. The
computations was distributed to about 600 sites by means of the Internet,
and a total of about 1600 machines were used. A 512 bit modulus has not
yet been factorised. The authors of [AGLL94] estimate that such a project
probably would require at least 100 times the computing power available
in the factorisation of the 426 bit modulus. Similar projects are described
in [LM89, DDLM93]. Today, a key length of 700-1000 bits is believed to
sufficiently safe.

1.1.4 Other Public Key Crypto Systems

Several public key crypto systems have been proposed since public key cryp-
tography was invented in 1976. Several of these systems have been broken, as
well. It is remarkable that virtually all systems, that have not been broken,
employ transformations based on exponentiation [Dif92, p. 166]. In general,
the “one-way” property of transformations based on exponentiation is due to
either the prime factorisation problem or to the discrete logarithm problem:

The prime factorisation problem refers to the problem of finding the
prime factors of a modulus m = pq. As discussed above, a factorisation
of m can be used for inverting the public transformations of the form,

E(M) = M e mod m.

The discrete logarithm problem refers to the problem of inverting a pub-
lic transformation of the form,

E(M) = aM mod p.

Here, both the prime number p and the base a are part of the public
key. If the result of applying E to M is denoted C, then the discrete
logarithm to the base a of C modulus p reveals the message, M = loga C
mod p.

The fastest methods for computing discrete logarithms, using n digit operands,
have resource requirements of the same order as the requirements for factor-
ing n digit moduli. Hence, the keys used in any of the transformations based

1.1. THE NEED FOR CRYPYOGRAPHY 11

on exponentiation is expected to be of about the same length. However,
compared to the RSA system, some public key systems based on the discrete
logarithm problem require longer operands to achieve the same degree of
security [vO92].

1.1.5 Hardware Support

Shortly after the invention of the RSA public key crypto system in 1977,
researchers began to develop dedicated hardware to support applications of
RSA cryptography with more computing power. The very first hardware
implementations of modular exponentiation were boards of discrete com-
ponents. These were shortly after followed by special purpose VLSI (Very
Large Scale Integrated) circuits. In 1980 Rivest, Shamir and Adleman de-
veloped a single-chip implementation for modular exponentiation of 512 bit
operands [Riv80]. The chip should have been capable of encrypting at a rate
of about 1.2 Kbit/sec. However, the chip never gotten to work correctly
[Riv82, Riv84]. In 1981 a 336 bit chip was developed at Sandia National
Laboratories, California. By combining two of these chips an encryption
rate of 420 bit/set using 336 bit keys was achieved [Riv84]. In 1990, when
the work presented in this thesis was initiated, the fastest known implemen-
tation had an encryption rate of 29 Kbit/sec using 512 bit keys. Today, in
1995, hardware implementations of the modular exponentiation operation
have increased the available encryption rate to more than 100 Kbit/sec for
key lengths of more than 512 bit. One of the implementations is a product
of the work presented in this thesis. Furthermore, the development of new
methods and the development of faster technologies implies that encryption
rates of several Mbit/set soon will be achievable.

The voluminous literature on implementation of fast RSA cryptography
witnesses the great interest of finding a solution to the bandwidth prob-
lem. Since 1980 more than twenty hardware implementations supporting
RSA cryptography have been made1, and several methods and architectures
suited for hardware implementation have been proposed.2 Some of the im-

1[Riv80, ST83, Koc85, Bar86, GD88, HDVG88, Tho88, Bri89, ICHO89, DK90,
VVDJ90, SVB91, Dif92, IWSD92, Lin, Pij92, SV93, Sch93, Oru94]

2[NS81, WC81, Bri82, Miy82, QC82, Bla83, Slo85, MA85, Mon85, ORS+86, SG86,
Bak87, Sed87, KH88, Gib88, LHLH88, ZMY88, BG89, JM89, MP89, Mor89, KH90a,
KH90b, Eve90, FDG90, OSA90a, WE90, Eld91, KH91, OK91, Wal91a, Wal91b, Tak92,

12 CHAPTER 1. INTRODUCTION

plementations are aimed for Smart Cards, where the available amount of
circuitry is quit limited [Kno88, Mor89, dWQ90]. Methods, and hardware
support, for other public key crypto systems have been developed as well
[ORS+86, GG90, AMOV91, ABMV93]. A description of the first years of
hardware development for public key cryptography is included in [Dif92], and
partial lists of existing RSA chips can be found in [Bri89, BFS91, Sch93].

1.2 Purpose of the Thesis

In 1990, when the work presented in this thesis was initiated, the following
specific subgoal was set up:

A VLSI implementation capable of performing modular exponen-
tiation should be realised. The implementation should be able to
compute the transformations used in RSA cryptography at a rate
of at least 64 Kbit/sec. Hereby, it should be possible to apply
real-time RSA cryptography to the data transmitted on an ISDN
channel. To obtain a satisfactory degree of security, the length of
the keys was specified to 561 bit. Furthermore, to enable the im-
plementation to be embedded in telecommunication equipment,
it should be implemented as a single VLSI chip. Finally, in order
to demonstrate the capabilities of the chip, it should support a
special interface used internally in some ISDN telephones.

Apart from describing the various decisions taken during the process of real-
ising the VLSI chip, the purpose of this thesis is to provide the reader with an
insight into the methods for performing modular exponentiation of operands
of several hundreds of bits.

1.3 Chosen Approach

In the work presented in this thesis the strategy for achieving faster transfor-
mation rates for the RSA system is to develop comptation methods, that are
more “efficient” than other known methods. The fastest implementation of
RSA cryptography is achieved by constructing dedicated hardware circuits.

TY92, IMI92a, IMI92b, Sau92, EW93, Kor93b, OPT93, Wal93, Zha93, Kor94b, Oru95]

1.3. CHOSEN APPROACH 13

In contrast to methods aimed for standard micro-processors, the methods of
this thesis are not constrained by a standard architecture. Indeed, the addi-
tional freedom of specifying special-purpose hardware architectures is utilised
to obtain optimal solutions where the hardware architecture are developed
in harmony with the computation method.

In general, the means for obtaining a fast hardware implementation can
be divided into two independent contributions:

The technology used for the implementation has a major influence on the
obtainable performance for a given computation method and architec-
ture. One of the reasons that the hardware implementations are be-
coming increasingly faster, compared to the initial initiatives in 1980,
is the improvement of the CMOS technology.

The effect of using a faster technology is often seen as increasing clock-
ing frequencies of VLSI chips. A good illustration of this effect is re-
ported in the article [IWSD92]: Ivey et al. have implemented the same
architecture and computation method in two different technologies. In
a bulk CMOS process they obtain a clocking frequency of 100 MHz, and
in a Silicon On Insulator (SOI) CMOS process they obtain a frequency
of 150 MHz. In [MP89] it is considered to use a Gallium Arsenide
(GaAs) process.

The computation method and the architecture do, of course, influen-
ce the obtainable speed of an implementation. In the article reprinted in
Appendix A it is observed that all of the fastest implementations known
in 1990 use about the same number of clock cycles for performing a
modular exponentiation. Hence, the underlying computation methods
are characterised by requiring the same number of cycles, and the dif-
ference in computation speed can be attributed to the varying clocking
frequencies. So, it is tempting to claim that, until 1990, the difference
in the computation speed is mainly due to the difference in technology
and to the skills of the VLSI circuit designers—it is not due to varying
“efficiencies” of the computation methods. This basic observation is
the reason for the approach chosen in this thesis: Through the devel-
opment of efficient computation methods and architectures, the speed
of hardware implementations for performing modular exponentiation is
increased independently of the technology chosen. Of course, a combi-
nation of “efficient” methods and fast technologies leads to even better

14 CHAPTER 1. INTRODUCTION

Clock Throughput Cycles Reference
Years 1980-1990:
Cryptech 14 MHz 17 Kbit/sec 42 · 105 [Bri89, Sch93]
AT&T 15 MHz 19 Kbit/sec 40 · 105 [Bri89, Sch93]
Thorn EM1 board 24 MHz 29 Kbit/sec 42 · 105 [Tho88]
Years 1990-1995:
Calmos Syst. Inc. 20 MHz 28 Kbit/sec 37 · 105 [Sch93]
Cryptech PQR512 25 MHz 32 Kbit/sec 40 · 105 [Lin]
Pijnenburg PCC200 25 MHz 40 Kbit/sec 32 · 105 [Pij92]
University of Sheffield 150 MHz 92 Kbit/sec 83 · 105 [IWSD92]
VICTOR 25 MHz 111 Kbit/sec 12 · 105 [Oru94]
Utilisation of CRT:
Thorn EMI board 24 MHz 56 Kbit/sec 22 · 105 [Tho88]
DEC Perle-0 board 26 MHz 200 Kbit/sec 6.7 · 105 [SVB91, BRV93]
DEC Perle-1 board 40 MHz 300 Kbit/sec 6.8 · 105 [SV93, BRV93]
Without CRT:
DEC Perle-0 board 26 MHz 50 Kbit/sec 27 · 105 [SVB91, BRV93]
DEC Perle-1 board 40 MHz 75 Kbit/sec 27 · 105 [SV93, BRV93]

Table 1.3: Existing hardware implementations performing 512 bit exponen-
tiation.

performance.

The article of Appendix A defines an “efficiency” measure of the under-
lying computation methods. The measure is basically a measure of the num-
ber of clock cycles required for a modular exponentiation: A high number
of cycles implies a low efficiency, and vice versa. All of the fastest hard-
ware implementations known in 1990 had the same efficiency. It should be
emphasised, that none of the slower performing implementations known in
1990 had higher efficiencies. So, in some sense, all of the fast performing
implementations in 1990 used a state-of-the-art method.

In the meanwhile, since 1990 when the article of Appendix A was written,
more hardware implementations have been made. Table 1.3 lists the fastest

1.3. CHOSEN APPROACH 15

implementations known by the author.3 The clocking frequency, the through-
put (i.e. the computation rate) for a modular exponentiation using 512 bit
operands, and the number of clock cycles required for an exponentiation are
shown in the table. Some uncertainty in the performance of the implementa-
tions should be expected: Often the obtainable throughput depends on the
actual data values. For the most common method of exponentiation, the
worst case computation requires twice the number of cycles of the best case
computation. For some of the implementations it is not known whether the
performance refers to the best case, the average case, or the worst case. The
first section of Table 1.3 lists the fastest implementations known in 1990.
The second section lists the implementations that have appeared since 1990.
The third, and fourth, section lists implementations that utilise the Chinese
Remainder Theorem (CRT) to reduce the computational effort required to
perform the private transformation of the RSA system. As described in Sec-
tion 2.4 this can reduce the computing time by a factor close to four. Since
the computing time for performing a general 512 bit modular exponentiation,
where the CRT cannot be used, is not known for the DEC implementations,
the fourth section of the table shows the expected performance when the
effect of the CRT is removed.

As seen by Table 1.3, the Thorn EMI board does not fully utilise the
potential of the Chinese Remainder Theorem: The number of cycles is de-
creased by less than a factor of two. Removing the effect of the CRT, it is
seen that only four of the implementations made after 1990 have significant
changes in the “efficiency” of the computation method: The Sheffield chip,
the DEC boards, and the chip denoted VICTOR. The implementation of the
latter chip is part of the work presented in this thesis.

• The Sheffield chip represents an approach where the “efficiency” of the

3In the article [SV93] the performance for the DEC Perle-1 implementation is specified
as 600 Kbit/sec. Therefore, many authors have been lead to the belief, that the DEC
Perle-1 implementation is capable of performing a single 512 bit modular exponentiation
in 0.85 msec. This is, however, not the case: According to a personal communication on
July 4 1995 with Mark Shand, one of the authors of [SV93], the specified throughput of
600 Kbit/sec is an estimate of the total performance of two independent modular expo-
nentiation units, each performing a 512 bit exponentiation. Therefore, a throughput of
300 Kbit/sec must be expected for a single exponentiation unit.

The throughput of 600 Kbit/sec have never been measued for the DEC Perle-1 imple-
mentation. However, a throughput of 185 Kbit/sec have been measured for a single unit
performing modular exponentiations using 970 bit operands.

16 CHAPTER 1. INTRODUCTION

computation method has decreased in comparison to the implementa-
tions made prior to 1990. On the other hand, the clocking frequency
is significantly higher than the rest of the implementations listed in
Table 1.3. This illustrates the fact, that the “efficiency” measure is a
bad stand-alone measure of the performance potential of a computation
method: Even though a fast technology is used for implementing the
Sheffield chip, the high clocking frequency is partly due to a short so-
called critical path of the circuitry, i.e. the longest delay of the circuitry
activated in a clock cycle.

• The VICTOR chip, and the DEC Perle-0 board, represents an ap-
proach where the increased performance is obtained by an increased
“efficiency” of the computation method. Even though the technology
used to implement the VICTOR chip is expected to be faster than
the technologies used prior to 1990, the clocking frequency has not
increased significantly. This indicates that the cost of using a more
“efficient” computation method is a relatively longer critical path.

• The varying performance of the two DEC boards is not due to a differ-
ence in the “efficiency”. The variation is expressed by a difference in
clocking frequency. However, it is not solely due to the variation of the
technology used for the implementation: In the Perle-1 implementation
another computation method with the same “efficiency” as the Perle-0
and a shorter critical path has been used.

Hence, to obtain a high performance of a computation method, and the
associated hard-ware architecture, both the required number of cycles and
the critical path of the circuitry must be considered. For a further discussion
on how to measure the performance, and on how to separate the contributions
from technology and method, the reader is referred to e.g. [PH94, Chapter
2]. In the following chapters of the thesis, the term “efficiency” will not refer
to a specific well-defined measure of performance.

1.4 Organisation of the Thesis

The thesis consists of two parts: The first part comprises six chapters, and
the second part comprises five appendices. Each appendix contains a paper
that has been written during the period from 1990 to 1995. The overall aim

1.4. ORGANISATION OF THE THESIS 17

of the first part is to provide the reader with an insight into the research on
computation methods for performing modular exponentiation. Furthermore,
the aim is to report the work done by the author. Through a discussion of
the existing literature on the research topic, the contributions represented
by the papers in the appendices is set into a consistent frame. The chapters
of the first part are on various topics. They can be read independently of
each other. Each chapter ends with a summary and a discussion of the
topic. It is assumed that the reader is familiar with the basic methods of
computer science. The papers in the appendices assume some knowledge of
the methods and techniques known from the fields of computer arithmetic
and VLSI design.

The first four chapters are structured as a hierarchal presentation where
the problems identified at one level are solved by introducing a new set of
problems at a lower level. The lowest level in the hierarchy is the hardware
level, where the solutions are realised as a hardware architecture capable of
executing a specific computation. The fifth chapter describes a particular
efficient computation method. The method can be viewed as the result of
combining the experiences gained from the preceeding chapters:

Chapter 1 gives a brief motivation to the subject of this thesis by consid-
ering applications of cryptography. The principles of public key cryp-
tography are briefly introduced with an emphasis on the RSA crypto
system. The problem of achieving sufficiently fast computation of mod-
ular exponentials is identified.

Chapter 2 is a relatively exhaustive description of methods for computa-
tion of exponentials. Since an exponentiation is performed by a series of
multiplications the focus is directed toward methods using as few mul-
tiplications as possible and toward methods that can utilise a parallel
computation scheme. An effort has been put into identifying various
properties of the multiplication operation and explaining how these
properties can be utilised to achieve efficient methods for computation
of exponentials.

Chapter 3 treats modular multiplication—the arithmetical operation used
in modular exponentiation. As the previous chapter, this chapter con-
tains a relatively exhaustive description of the methods and techniques
used for computing modular products. The important concept of “rep-
resentation” is introduced, and it is described how the properties of the

18 CHAPTER 1. INTRODUCTION

chosen representation can be utilised to achieve efficient methods for
addition, subtraction, multiplication and division. These are the fun-
damental operations used in modular multiplication. The problem of
determining quotient digits is treated in detail. It turns out that this
is one of the major problems in the approach of high-radix modular
multiplication described by the papers in the appendices.

Chapter 4 is a description of a project of implementing a VLSI processor
for computing modular exponentials. The style of the chapter is more
descriptive than discussing. The chapter includes a description of the
history of the project, the hardware architecture and the computation
methods, and the results of the tests and performance measurements.

Chapter 5 describes an efficient solution of the problem of determining quo-
tient digits. The solution represents a break-through in the high-radix
approach followed by the author. The chapter describes how the perfor-
mance of future hardware implementations of modular exponentiation
can be increased by more than an order of magnitude compared to the
fastest implementations known today.

Chapter 6 contains a brief conclusion on the work presented in this thesis.

1.5 Description of Papers

As previously mentioned the second part of the thesis consists of five papers
written during the period from 1990 to 1995 In the Appendices A through
E the original papers are printed in the original typesetting. Except from
the paper in Appendix E, all of the papers are research articles. The paper
in Appendix E is a document providing some of the essential data on the
VLSI processor described in Chapter 4. The following listing of the papers
provides information on co-authorship, publication status etc.,

1. Holger Orup, Erik Svendsen, and Erik Andreasen, “VICTOR, an Ef-
ficient RSA Hardware Implementation”, in Ivan B. Damg̊ard, editor,
Advances in Cryptology – EUROCRYPT ’90. Proceedings, volume 473
of Lecture Notes in Computer Science, pages 245–252, Aarhus, Den-
mark, May 21–24 1990. Springer-Verlag, Berlin, 1991.

1.5. DESCRIPTION OF PAPERS 19

This article includes a short motivation for focussing on more efficient
computation methods. The basic idea of using high-radix modular
multiplication is introduced. However, the term “multiple bit scan”
is used in place of “high-radix”. It is noteworthy that the estimated
speed of a suggested VLSI implementation is quit close to the speed of
the fabricated VLSI processor described in Chapter 4.

2. Holger Orup and Peter Kornerup, “A High-Radix Hardware Algorithm
for Calculating the Exponential ME Modulo N”, in Peter Kornerup
and David W. Matula, editors, Proceedings. 10th IEEE Symposium
on Computer Arithmetic, pages 51–56, Grenoble, France, June 26–28
1991. IEEE Computer Society Press, Los Alamitos, California, 1991.

In this article the terminology known from the field of computer arith-
metic is used. The article suggests an extended use redundant repre-
sentations. Furthermore, a computation schedule based on pipelining
is proposed.

3. Holger Orup, “Area Reduction for Bit-Sliced Layouts using a Commer-
cial Development System”, Unpublished article, Department of Com-
puter Science, University of Aarhus, 1994.

This article describes the experiences obtained from the work of reduc-
ing the area of the VLSI processor. The various techniques for reducing
the area, and the effect of applying them, are described.

4. Holger Orup, “Simplifying Quotient Determination in High-Radix Mod-
ular Multiplication”, in Simon Knowles and William H. McAllister, ed-
itors, Proceedings. 12th IEEE Symposium on Computer Arithmetic,
pages 193–199, Bath, England, July 19–21 1995. IEEE Computer So-
ciety Press, Los Alamitos, California, 1995.

This article describes how a combination of optimisation techniques
leads to a very simple quotient determination in high-radix modular
multiplication. Furthermore, a pipelining technique is utilised to obtain
a very short critical path in the hardware architecture.

5. Holger Orup, “RSA Processor, Preliminary Engineering Data”, Inter-
nal document, Department of Computer Science, University of Aarhus,
1993.

20 CHAPTER 1. INTRODUCTION

This is a document that provides some of the essential data of the VLSI
processor. It should be emphasised, that the document in no means
pretends to be a satisfactory complete product description. It is a docu-
ment providing preliminary descriptions of a prototype. The document
is included in order to provide an impression of the functionality of the
VLSI processor.

Chapter 2

Exponentiation

Exponentiation refers to the process of evaluating exponentials or powers be,
where b is the base and e is the exponent. The eth power of b is defined
recursively by

b0 = 1G (2.1)

be = be−1 ∗G b, e ∈ {1, 2, 3, . . . },

where b is element in a set G with a mutiplication composition ∗G : G×G
→
G and 1G ∈ G is a neutral element for multiplication. An example is the set
Zn = {0, 1, . . . , n − 1} with the multiplication composition modular multi-
pication (x · y) mod n and the neutral element 1. In this case, Equation 2.1
defines modular exponentials as in the RSA crypto system. The RSA crypto
system is described in Subsection 1.1.3. Taking into consideration, that this
thesis primarily is directed toward efficient methods for computing modular
exponentials, the definition seems very general. But, since the methods of
this chapter only uses a few properties of modular multiplication, the meth-
ods apply to all sets, where a multiplication composition is defined. Other
sets, that are used in crypto systems, are the Galois Fields GF(2n), where
the elements are polynomials and the multiplication composition is defined
as polynomial multiplication modulo an irreducible polynomial [Den82, p.
48].

A common characteristic for the computation of exponentials in crypto
systems is the very large exponents. E.g., at present, exponent values in the
range from 2512 to 21024 are considered to be necessary to achieve a sufficient
degree of security for the RSA system. In the future, even larger exponent

21

22 CHAPTER 2. EXPONENTIATION

values may be necessary.

A straight forward method for exponentiation is derived from Equation
2.1. It will be called the unary method,

b0 = be−1 ∗ b (2.2)

= (· · · ((1 ∗ b) ∗ b) · · ·) ∗ b.

To simplify the notation the subscripts of the multiplication composition and
the neutral element are made implicit. The unary method needs e multipli-
cations and two registers: One register for b and one for intermediate results.
Since (1 ∗ b) equals b the very first multiplication can be avoided, resulting
in e − 1 multiplications when e > 0.

In the following, exponentiation methods will be discussed and compared
in terms of the resource requirements: Computing time and memory re-
quirements. The computing time is expressed as the necessary number of
multiplications. It is assumed that the time for other operations such as
additions and comparisons are negligible. In certain algebraic systems there
may be a substantial difference in the computing time for a general multi-
plication and a squaring. E.g. Agnew et al. [AMV88] utilise that squaring
can be performed much faster than multiplication in GF(2n). Consequently,
whenever feasible, the total computing time will be split into a number of
multiplications and a number of squarings. The memory requirements will
be expressed as the number of registers needed, where a register is assumed
to contain a single element from the set G over which exponentiation is per-
formed. This is a rough measure since the binary encoding of two elements
may require very different amounts of space in terms of bits. Indeed, this
happens if exponentiation is performed by integer multiplication over N, the
non-negative integers. However, this rough measure is useful in the present
context, since in most crypto systems the set of elements is finite and a mod-
ulo reduction is part of the multiplication. Memory for the exponent and for
constants, such as the neutral element 1, will be implicit in the discussions
of memory consumption. Furthermore, the required number of processing
elements will be part of the resource requirements when parallel methods are
described.

This chapter is divided into five sections. Section 2.1 describes different
sequential computation methods. It is shown that if the multiplication com-
position is associative the computing time can be reduced to a logarithmic
number of multiplications. Moreover, it is utilised that by precomputing of-

2.1. FEWER MULTIPLICATIONS 23

ten used values and by saving these in a table the computing time can be
further reduced. Section 2.2 gives some theoretical lower bounds on the num-
ber of multiplications. This is used to access how well the different sequential
computation methods perform. In Section 2.3 parallel computation methods
are described. It turns out that a pipelined method is superior to the fastest
sequential methods, both with respect to computing time and to hardware
consumption. Section 2.4 describes how the algebraic properties of modular
multiplication can be utilised to speed up the computation of modular expo-
nentials in the RSA crypto system. Finally, Section 2.5 contains a summary
and a discussion.

2.1 Fewer Multiplications

Compared to the unary method the number of multiplications can be dramat-
ically reduced if the multiplication composition is associative, i.e. (a∗b)∗c =
a ∗ (b ∗ c). This property implies that b2e = be ∗ be = (be)2. Hence, if the
exponent is even the number of multiplications can be reduced to nearly half.
Furthermore, if the exponent is odd the rule b2e+1 = (be)2 ∗ b also reduces the
computationally effort. These rules can be used recursively and the result
is a logarithmic number of multiplications. This is the well known binary
method described by Knuth [Knu81, p. 441]. According to Knuth the binary
method was described as early as 200 B.C.. If the exponent is binary encoded
as a string of n bits, en−1en−2 . . . e0, the value of e can be expressed as

e =
n−1∑
i=0

ei2
i, ei ∈ {0, 1}, en−1 > 0 (2.3)

= ((· · · ((en−1)2 + en−2)2 + · · ·)2 + e1)2 + e0,

using Horner’s rule. Because of the constraint en−1 > 0 the trivial case, where
e = 0, is disregarded. This constraint ensures that the string of binary digits
does not contain any leading zeroes and, hence, that n − 1 equals [log2 e].
The eth power of b can now be written as

be = b((···((en−1)2+en−2)2+···)2+e1)2+e0 (2.4)

= ((· · · ((ben−1)2 ∗ ben−2)2 ∗ · · ·)2 ∗ be1)2 ∗ be0 .

This shows that exponentiation can be performed with n − 1 squarings and
n − 1 multiplications. The memory requirement is one register for b and

24 CHAPTER 2. EXPONENTIATION

another for the intermediate results. Since n− 1 equals �log2 e
 the method
is logarithmic.

If bit ei is 0 the multiplication by bei reduces to a multiplication by 1 and
can be neglected. Usually the number of bits, that are non-zero in the binary
encoding of e, is denoted ν(e), ν(e) =

∑
i ei ∈ {1, 2, . . . , �log2 e
 + 1}. This

function is called the Hamming weight of e. The number of squarings and
multiplications can then be expressed by respectively �log2 e
 and ν(e) −
1. Since the method scans the exponent from most significant bit to least
significant bit it is denoted the left-to-right binary method.

It is also possible to scan the exponent from right to left. Still using a
binary encoding of e, the eth power of b can be written as

be = be020+e121+···+ei2
i+···+en−12n−1

(2.5)

= (b20

)e0 ∗ (b21

)e1 ∗ · · · ∗ (b2i

)ei ∗ · · · ∗ (b2n−1

)en−1 .

The sequence of squares, b20
, b21

, . . . , b2i
, . . . , b2n−1

, can be computed in n−1
squarings by using the rule b2i

= (b2i−1
)2. After computation of the ith

square, b2i
, exponent bit ei is inspected. If it is 1 the ith square is multiplied

onto an intermediate result, giving be020+e121+···+ei2
i
. Again, the method uses

[log2 e] squarings and ν(e)− 1 multiplications. It requires two registers: One
register for the squares and one for the intermediate results. As described in
Section 2.3, the right-to-left method is easy to rewrite into a parallel method.

Shand and Vuillemin compare the left-to-right and the right-to-left bi-
nary method [SV93]. It is stated that the right-to-left method requires two
registers while the left-to-right method gets away with only one register. It
is correct that the left-to-right method only has a single intermediate re-
sult. But, contrary to the right-to-left method, the left-to-right method also
requires a register for b which is needed through the whole computation.

2.1.1 The m-ary Method

Knuth generalises the left-to-right binary method to a left-to-right m-ary
method. For m > 2 the exponent is m-ary encoded as a string of n digits,
such that e is expressed as

e =
n−1∑
i=0

eim
i, ei ∈ {0, 1, . . . , m − 1}, en−1 > 0 (2.6)

= ((· · · ((en−1)m + en−2)m + · · ·)m + e1)m + e0,

2.1. FEWER MULTIPLICATIONS 25

which for m = 2 is identical to Equation (2.3). The unary method is also
a specialisation of the m-ary method: Let m = 1 and let all digits ei in the
unary encoding be 1. This means that the unary encoding is a string of e
1’s. Hence, the following m-ary computation method applies to all m > 1:

be = b((···((en−1)m+en−2)m+···)m+e1)m+e0 (2.7)

= ((· · · ((ben−1)m ∗ ben−2)m ∗ · · ·)m ∗ be1)m ∗ be0 .

When m > 2 the exponent digits take values from the set {0, 1, 2, . . . , m −
1}. Consequently, the powers bei are no longer the simple values 1 and b.
Instead of computing bei for each i, implying that the same power of b may
be recomputed several times, they can be precomputed and stored into a
table of size m − 1. Stinson [Sti90] describes exponentiation methods for
an algebraic system where the time for squaring is negligible compared to
multiplication. One of Stinson’s results is an algorithm that computes all
powers b, b2, b3, . . . , bm−1 in not more than 1

2
m − 1 multiplications, where m

is assumed to be a power of two. The algorithm starts from b and proceeds
to the next even power by using the rule be = (b

e
2)2. This costs a squaring.

Then the next odd power is computed by the rule be = be−1 ∗ b at a cost of
a multiplication. By alternating application of these two rules the complete
table is builded up. If Stinson’s algorithm is applied to general values of m,
i.e. values that are not restricted to powers of two, and if the squarings are
brought into the analysis a total of m − 2 operations is used: �1

2
(m − 2)

multiplications and �1
2
(m− 1)
 squarings. The unary method also requires a

total of m − 2 operations to compute the table. However, only one of these
operations is a squaring.

After the table is precomputed the remaining computation uses νm(e)−1
multiplications and n− 1 = �logm e
 exponentiations with the (small) expo-
nent m. The function νm(e) ∈ {1, 2, . . . , �logm e
 + 1} denotes the number
of non-zero digits in the m-ary encoding of e. It is convenient to choose m
to be a power of two, i.e. m = 2k for some k. Then the exponentiations
with exponent m can be performed by k = log2 m squarings. This gives a
total of (log2 m)�logm e
+ �1

2
(m− 1)
 squarings and νm(e)− 1 + �1

2
(m− 2)

multiplications. Besides storage for the table a register for the intermediate
results is needed, a total of m registers. When m = 2k the digits ei of an
exponent e can be interpreted as groups of k bits in a binary encoding of
the exponent. This is the reason that the m-ary method is also named the
k-window method. It should be mentioned that an exponentiation method

26 CHAPTER 2. EXPONENTIATION

identical to the k-window method was described by Brauer [Bra39] in 1939.
Brauer developed the method to improve an upper bound on the number of
multiplications needed for computing exponentials.

Figure 2.1: The total number of operations for the m-ary method in the
worst, average and best case. Also shown is the number of squarings.

Figure 2.1 shows the computing time for different sizes of the window
k = log2 m when e is a 512 bit number. The curves are derived from the above
expressions, which are based on the assumption that m is a power of two.
So for non-integer window sizes the curves are approximations. The worst
case time is for all digits ei non-zero. The best case time is when all but the
most significant digit are zero. The best case time does not represent a lower
bound for the computing time for exponentiation but illustrates the interval
of computing time for various exponent values when the m-ary method is
applied. Indeed, when only the most significant digit is non-zero there is no
reason to precompute a table that is never used. Also shown in the figure is
the average time: If the digits are random in the set {0, 1, . . . , m − 1} the

2.1. FEWER MULTIPLICATIONS 27

�log2 e
 + 1 Window size Squarings Multiplications Total Registers
256 4 259 70 329 16
512 5 525 117 642 32
1024 6 1051 201 1252 64

Table 2.1: Minimal, worst case, computing time for m-ary method.

probability for a non-zero digit is m−1
m

. Recalling that en−1 > 0, this implies
that νm(e) = m−1

m
�logme
 + 1 in the average case. The number of squaring

operations is also depicted in the figure. If similar curves for 256 bit and 1024
bit exponents are plotted these will be shaped very much like the curves for
512 bit exponents.

In Table 2.1 the minimal total number of operations, in the worst case,
is listed for 256, 512 and 1024 bit exponents. With respect to the worst case
computing time a window size of 5 is optimal for 512 bit exponents. Com-
pared to the binary method (window size 1) the worst case total number of
operations is reduced by 37 percents for 512 bit exponents when a window
size of 5 is chosen. Although the optimal window size decreases with decreas-
ing exponent bit-lengths and increases for increasing exponent bit-lengths a
window size of 5 gives a worst case total number of operations that is fairly
close to minimum for exponents with bit-lengths from 256 bits to 1024 bits.

In the m-ary method the reduction in computing time time is achieved
at the expense of additional registers for holding a table of precomputed
values. The main contribution to the reduction is the reduced number of
multiplications performed in the last phase of the computation, i.e. in the
phase after the precomputation. In this phase the number of multiplications
is reduced by approximately a factor of k = log2 m from ν(e)−1 to νm(e)−1.
But also the number of squarings performed in this phase is (sometimes)
slightly reduced from �log2 e
 to (log2 m)�logm e
 . Since �log2 e
 equals
(log2 m)�logm e
 + �log2 en−1
 the reduction in the number of squarings
is �log2 en−1
 ∈ {0, 1, . . . , k − 1}. This means that the number of bits,
�log2 en−1
 + 1, used in the binary encoding of the most significant digit
en−1 determines the reduction of squarings. Since the value ben−1 has been
precomputed and stored into a table the savings in squarings corresponds
to a reuse of squarings already performed during the precomputation. It is
possible to get full advantage of these squarings already performed and always
achieve a total reduction of k − 1 squarings, independent of the number of

28 CHAPTER 2. EXPONENTIATION

bits used for en−1. The trick is to allocate windows to the binary encoding
of exponent e from left to right instead of from right to left. The following
illustration shows how windows are allocated from right to left in accordance
with Equation 2.6.

e =

en−1︷ ︸︸ ︷
00 . . . 01x . . . x

en−2︷ ︸︸ ︷
xx . . . xxx . . . x︸ ︷︷ ︸

j

· · ·
e1︷ ︸︸ ︷

xx . . . xxx . . . xx

e0︷ ︸︸ ︷
xx . . . xxx . . . x (2.8)

The bits denoted by x symbolise an arbitrary bit value. Since all windows
have the same window size k the most significant digit en−1 is padded with
j zero-bits, so that the most significant window has k = j + �log2 en−1
 + 1
bits in total. Now, if the windows are allocated from left to right instead and
the least significant digit e0 is padded with j zero-bits the following picture
is obtained

e′ =

e′
n−1︷ ︸︸ ︷

1x . . . xxx . . . x

e′
n−2︷ ︸︸ ︷

xx . . . xxx . . . x · · ·
e′
1︷ ︸︸ ︷

xx . . . xxx . . . xx

e′
0︷ ︸︸ ︷

xx . . . x00 . . . 0︸ ︷︷ ︸
j

(2.9)

Since e′ = 2je the computation of be can be done by using the following
expression for e instead of (2.6)

e =
e′

2j
= ((· · · ((e′n−1)m + e′n−2)m + · · ·)m + e′1)

m

2j
+

e′0
2j

, m = 2k (2.10)

The number of squarings is seen to be k(n−1)− j = k(n−1)+�log2 en−1
−
(k−1) = �log2 e
− (k−1), which independent of the number of bits used for
en−1. The number of multiplications is unchanged. If Equation (2.10) is used
for the computation of exponentials a further reduction of the computing
times in Table 2.1 is obtained. The reduction is 3 squarings for 512 bit
exponents and 2 squarings for 1024 bit exponents. There is no change in the
computing times for 256 bit exponents. This is shown in Table 2.2.

The direction in which the windows are allocated should not be confused
with direction in which the exponent digits are scanned. In the above de-
scription of the m-ary method the exponent digits are scanned from left to
right. Thus the description is still a generalisation of the left-to-right binary
method.

2.1. FEWER MULTIPLICATIONS 29

�log2 e
 + 1 Window size Squarings Multiplications Total Registers
256 4 259 70 329 16
512 5 522 117 639 32
1024 6 1049 201 1250 64

Table 2.2: Minimal, worst case, computing time for m-ary method when
windows are allocated left-to-right.

Knuth writes [Knu81, p. 444] that there is also a less obvious right-to-
left m-ary method that takes more registers but only a few more operations
compared to the left-to-right method. In fact, it is possible to derive a
right-to-left method that requires exactly the same number of registers and
operations as the left-to-right method. The strategy follows an idea by Yao
[Yao76]. Using an m-ary encoding of e, the eth power of b is written as,

be = be0m0+e1m1+···+eim
′+···+en−1mn−1

(2.11)

= (bm0

)e0 ∗ (bm1

)e1 ∗ · · · ∗ (bmi

)ei ∗ · · · ∗ (bmn−1

)en−1 .

If m is a power of two, say m = 2k, the sequence bm0
, bm1

, . . . , bmi
, . . . , bmn−1

,
can be computed in (n−1)k squarings. Instead of using registers for a precom-
puted table, m − 1 registers are used for intermediate results. The registers
are initialised to 1 and are denoted c1, c2, . . . , cm−1. After the computation
of the ith sequence element, bmi , exponent digit ei is inspected. Digit ei can
take one of the values in {0, 1, . . . , m − 1}. If ei = j and j > 0 the ith se-
quence element is multiplied onto cj. In this way all sequence elements with
common exponent digit value j are multiplied onto cj. It can be expressed
as

cj = 1 ∗
∏

i:ei=j

bmi

, for all j = 1, 2, . . . , m − 1 (2.12)

Since the first multiplication onto each cj is a multiplication onto 1 and there-
fore negligible, the number of multiplications required to compute c1, c2, . . . ,
cm−1 is νm(e) − δ. Here δ denotes the number of different digit values from
{1, 2, . . . , m − 1} represented by the exponent digits, i.e. the number of
non-empty index sets {i : ei = j} in (2.12).

The final phase of the computation uses an algorithm by Brickell et al.
[BGMW92]. In terms of the intermediate results, the eth of b can be ex-

30 CHAPTER 2. EXPONENTIATION

pressed as

be = cm−1
m−1 ∗ cm−2

m−2 ∗ · · · ∗ c1
1 (2.13)

= (cm−1) ∗ (cm−1 ∗ cm−2) ∗ · · · ∗ (cm−1 ∗ cm−2 ∗ cm−3 · · · ∗ c1).

= c′m−1 ∗ c′m−2 ∗ · · · ∗ c′1.

This phase of the computation is accomplished by two sweeps through the
intermediate results. Start by setting c′m−1 = cm−1 and then calculate c′m−2 =
c′m−1 ∗ cm−2, c′m−3 = c′m−2 ∗ cm−3, . . . , c′1 = c′2 ∗ c1 in δ − 1 multiplications. If
the value c′j is stored in register cj no further registers are required. Through
the second sweep c′m−2 = c′m−1 ∗ c′m−2, c′m−3 = c′m−2 ∗ cm−3, . . . , c′1 = c′2 ∗ c′1
are calculated in m − 2 multiplications. Now the value c′1 equals be. In
total, including a register for computing the sequence values bmi

, m registers
are required. The total number of operations is (n − 1)k squarings plus
νm(e)+m−3 multiplications. The only difference from the left-to-right m-ary
method is how the operations are divided into squarings and multiplications.

The right-to-left m-ary method described above uses a right-to-left win-
dow allocation. By using a left-to-right window allocation the number of
squarings also reduces to �log2 e
−(k−1) for the right-to-left m-ary method.

2.1.2 Thurber’s Modification

The m-ary method can be modified, so that the computing time and the re-
quired number of registers is decreased. An observation, by Thurber [Thu73],
that halves the table size for a given m reduces the time for precomputing
the table and therefore the total computing time. Thurber observes that
only the odd powers, b, b3, b5, . . . , b2� 1

2
m�−1, are needed in the table. These

�1
2
m
 powers can be precomputed by the rule b2e+1 = b2e−1 ∗ b2, which re-

quires a single squaring and �1
2
(m− 2)
 multiplications. The modification is

based on a rewriting of all non-zero exponent digits, such that ei is written
as 2rie′i, where e′i is odd. The number of zero-bits in the least significant
end of the binary encoding of ei is expressed by ri, which takes a value from
{0, 1, . . . , �log2ei
}. As an example, assume the binary encoding of ei is
101000, then ri is 3 and e′i is 5. In general, assume that all non-zero digits
are expressed as xie

′
i where xi ∈ {1, 2, . . . , m − 1} and be′i is a precomputed

2.1. FEWER MULTIPLICATIONS 31

power. Equation (2.6) is then written as

e = ((· · · ((xn−1e
′
n−1)m + xn−2e

′
n−2)m + · · ·)m + x1e

′
1)m + x0e

′
0 (2.14)

= (((· · · ((e′n−1

xn−1

xn−2

m + e′n−2)
xn−2

xn−3

m + · · ·)x2

x1

m + e′1)
x1

x0

m + e′0)x0.

In Thurber’s special case where xi = 2ri and m = 2k this leads to the
following expression of the exponent e,

e = (((· · · ((e′n−1)2
k+rn−1−rn−2 + e′n−2)2

k+rn−2−rn−3 (2.15)

+ · · ·)2k+r2−r1 + e′1)2
k+r1−r0 + e′0)2

r0 .

Apart from the precomputation the number of squarings in this exponentia-
tion method is (k + rn−1 − rn−2) + (k + rn−2 − rn−3) + · · ·+ (k + r1 − r0) + r0

which reduces to (n − 1)k + rn−1. This is rn−1 squarings more than used in
the m-ary method with right-to-left window allocation. However, it is possi-
ble to get rid of the rn−1 extra squarings. By rewriting the beginning of the
exponentiation based on expression (2.15)

· · · (be′n−1)2k+rn−1−rn−2 ∗ · · · = · · · (b2en−1)2k−1−rn−2 ∗ · · · , (2.16)

it is seen that the first k + rn−1 − rn−2 squarings have been transformed into
k − 1− rn−2 squarings plus the calculation of b2en−1 . This calculation is per-
formed by a single multiplication: If en−1 is odd then ben−1 is in the table and
ben−1 ∗ ben−1 = b2en−1 . If en−1 is even then both ben−1−1 and ben−1+1 are in the
table and ben−1−1 ∗ ben−1+1 = b2en−1 . Hence, the (n − 1)k + rn−1 squarings is
transformed into (n−1)k−1 squarings and a single multiplication. Further-
more, by allocating the windows left-to-right as in Section 2.1.1 it is possible
to reduce the (n − 1)k − 1 squarings to �log2e
 − k squarings. The num-
ber of multiplications is νm(e)− 1 plus an extra multiplication for the above
calculation. In total, including the precomputation, Thurber’s modification
of the m-ary method performs an exponentiation in �log2
 − (log2 m − 1)
squarings and �1

2
(m − 2)
 + νm(e) multiplications. Including a register for

the intermediate results a total of �1
2
m� registers are required. For a fixed

value of m this method is an improvement over the m-ary method with left-
to-right window allocation by �1

2
(m−1)
 squarings and �1

2
m� registers while

the number of multiplications has increased by one. In Table 2.3 the minimal
total number of operations, in the worst case, is listed for 256, 512 and 1024
bit exponents. Note that Thurber’s modification has increased the optimal

32 CHAPTER 2. EXPONENTIATION

�log2e + 1 Window size Squarings Multiplications Total Registers
256 5 251 67 318 16
512 6 506 117 623 32
1024 6 1018 202 1220 32

Table 2.3: Minimal, worst case, computing time for Thurber’s modification.

window size for 256 and 512 bit exponents. Compared to the m-ary method
in Table 2.1 the computing time for 512 bit exponents has been reduced by
3 percents.

No exponentiation method have been proposed that uses a fewer number
of operations than is used in Thurber’s modification of the m-ary method,
when nothing can be assumed about the value of exponent e and base b.
Although many other methods require fewer operations for special exponent
values or base values, no method performs better in the worst case.

When discussing the m-ary method and Thurber’s modification some au-
thors note that in the computation of be it may happen that some of the
precomputed table values are never used. Thus, by avoiding the precompu-
tation of these unused values the table size will be reduced and the number
of operations for performing the precomputation might be reduced. The ac-
tual number of unused values depends on the value of the exponent in use.
According to [HPS71, pp. 44–46] the probability pk(r, n) that exactly k out
of the r precomputed values are unused when n random table lookups are
done can be expressed as,

pk(r, n) =

(
r
k

) r−k∑
j=0

(−1)j

(
r − k

j

) (
1 − j + k

r

)n

, where 1 ≤ r ≤ n. (2.17)

Figure 2.2 shows how the number of unused table values is distributed
when the m-ary method and Thurber’s modification is applied for exponen-
tiation with random 512 bit exponents. For both methods the table size is
31 and the average number of table lookups is approximately equal to the
number of non-zero m-ary digits in the exponent, m−1

m
�logme
+1. This gives

100 lookups for the m-ary method and 85 lookups for Thurber’s modifica-
tion. The expected number of unused table values,

∑
k · pk(r, n), is 1.2 for

the m-ary method and 1.9 for Thurber’s modification. As seen in Figure 2.2
the probability that more than 4 values are unused is very small for both

2.1. FEWER MULTIPLICATIONS 33

Figure 2.2: Probability distribution of the number of unused table values for
random 512 bit exponents.

methods and, hence, the reduction in resource requirements is minor. Fur-
thermore, unless the unused table values are the last computed in the original
precomputation, it is not obvious that the absent of these values will lead to
a reduced precomputation time.

2.1.3 Methods Based on Heuristics

The strength of the m-ary method and Thurber’s modification is the upper
bound on the worst case computing time and on the number of required
registers. Furthermore, the methods are easy to express and therefore they
are easy to implement in a computer program or into a dedicated hardware
circuitry. For both methods the resource requirements in the average case
are very close to the requirements in the worst case.

In the methods based on heuristics the aim is to find a good individual
computation rule for each individual exponent value such that a better per-
formance is obtained. For the particular exponent value in consideration,
heuristics are used to find a computation rule which, hopefully, is superior to
the rules obtained from other methods. Of course the rules can be compared,

34 CHAPTER 2. EXPONENTIATION

such that the best one is selected for the exponentiation. The drawbacks of
the heuristic methods are the complicated descriptions and, for some heuris-
tics, the required computing time for finding a good rule. This implies that
the heuristic methods are not well-suited for hardware implementation. They
are best suited for applications where the particular exponent value is used
for many consecutive exponentiations, i.e. applications with a fixed expo-
nent such as the RSA crypto system, or in applications where the exponent
value has been known for long prior to the exponentiation. As a consequence,
Sauerbrey and Dietel [SD92] suggest that an exponentiation rule for a partic-
ular exponent be value can be precomputed by heuristic methods and then
be part of the input to dedicated hardware.

The strategy of most heuristic methods follows the strategy of the m-ary
method and Thurber’s modification: Split the binary encoded representation
of the exponent e into windows, where the value of the ith window is denoted
ei. Then precompute a table that holds a power bei for each window value ei.
Finally, perform the exponentiation, by means of the table, in approximately
�log2 e
 − �log2 en−1
 squarings and n − 1 multiplications, where n is the
number of windows and en−1 is the value of the most significant window.
The way in which the exponent is split into windows is called the window
distribution. As seen in Section 2.1.1 and 2.1.2 the window distribution has
influence on the computing time and on the number of required registers. By
choosing a large window size the number of windows becomes small and the
number of multiplications for the final phase of the computation becomes
small. But simultaneously the number of possible window values increases
and a large number of operations may be required to precompute the table.
So the window distribution is closely related to the precomputation time, and
a tradeoff between the number of operations required in the last phase of the
computation and the number of operations required in the precomputation
must be done.

Bos and Coster [BC89] were first to apply heuristics in exponentiation.
Bos and Coster proposed a window distribution with much bigger window
sizes than in Thurber’s modification. The idea is to precompute only the
powers of b that are needed and hereby avoid to precompute all possible
powers. To be successful this idea demands an efficient precomputation tech-
nique. In addition to some guidelines to optimise the window distribution,
Bos and Coster provide heuristics to construct an efficient precomputation of
the powers be0 , be1 , . . . , ben−1 . It is found that “in all cases we tried . . . with

2.1. FEWER MULTIPLICATIONS 35

ej ≤ 1000” [BC89, p. 405] the number of operations can be estimated to be
less than or equal to 3

2
log2 ej +n+1, where ej is the largest of the n window

values. Even though it is an estimate this result is remarkable: The absolute
minimal number of operations required to compute bej is log2 ej (see Section
2.2) and all methods described so far have a worst case computing time very
close to 3

2
log2 ej for ej ≤ 1000. Hence, the overhead for computing n − 1

additional powers of b is only slightly more than n − 1 operations. Bos and
Caster state that their method is capable of compute exponentials with 512
bit exponents in 605 operations on average. This is an improvement of 3
percents over the worst case time in Thurber’s modification.

In [SD92] Sauerbrey and Dietel examine different window distribution
methods with emphasis on the relationship between the number of opera-
tions and the number of required registers. The examination is based on
experiments with 100 random selected 512 bit exponents. The heuristics by
Bos and Coster are applied for the precomputation. None of the methods
use less than 610 operations on average. It is not clear whether one of the
examined window distribution methods is identical to the method of Bos and
Coster. Sauerbrey and Dieted observe that window distributions leading to
good results for the number of operations require a lot of registers, and vice
versa. Motivated by the fact that memory is a scarce resource for a VLSI
implementation, Sauerbrey and Dietel propose a new window distribution
method. It shows a better compromise between operation count and register
demand than previously known methods: For 512 bit exponents about 620
operations are used on average and 10-15 registers are required on average.
Compared to the worst case of Thurber’s modification in Table 2.3 this is an
improvement of less than 0.5 percent (3 operations) in computing time and
about 50-70 percents in register demand.

The results obtained by applying heuristics show a better average per-
formance than Thurber’s modification. But, if an exponentiation method is
going to be hardware implemented the adequacy of the average case analysis
can be questioned: The hardware implementation must be able to cope with
even the worst case input. This means that the available memory must fit
the worst case register demand. Furthermore, if the exponentiation is part
of a real-time application, the worst case computing time is often of greater
importance than the average computing time.

36 CHAPTER 2. EXPONENTIATION

2.2 Theoretical Limits

In the search for fast exponentiation methods the question “how few opera-
tions are needed?” arises. Theoretical questions about exponentiation meth-
ods is usually formulated as addition chain problems. An addition chain for
the integer e is defined as a sequence of integers

a0, a1, . . . , ar where a0 = 1, ar = e and for all i = 1, 2, . . . , r
ai = aj + ak for some k ≤ j < i

(2.18)

This means that every element, except a0, in the sequence can be expressed
as the sum of two preceding elements. The length of an addition chain with
r + 1 elements is said to be r. Three examples of addition chains for 15
are 1, 2 ,3 ,5, 10, 15 with length 5 and 1, 2, 3, 4, 7, 8, 15 with length
6 and 1, 2, 3, 4, 7, 8, 10, 15 with length 7. An addition chain for the
integer e can be viewed as a method to compute e by additions starting
from 1. As illustrated by the examples there is a variety of methods for
computing the same integer. Some methods compute intermediate results
that are never used, so another method using fewer additions must exist.
Even though a method uses all intermediate results, there might be other
methods with fewer additions. The length of an addition chain expresses
the number of additions used by the method. Hence, a chain for a given
integer with the shortest length prescribes a method with fewest additions.
Because of the rule be1+e2 = be1 ∗be2 an addition chain for the exponent e also
prescribes an exponentiation method for computing be where the number of
multiplications is equal to the addition chain length. In this section there
will be no distinction between squaring and multiplication.

The shortest length, for which there exists an addition chain for e, is
denoted l(e). All the exponentiation methods described so far can be formu-
lated as addition chains and the lengths of these chains give upper bounds for
l(e). The interesting question is how close these methods are to an optimal
method. A trivial lower bound for l(e) is log2 e since the value of a chain
element ai can be no more than twice the value of element ai−1. Another
lower bound for l(e) has been given by Schönhage [Sch75],

log2 e + log2 ν(e) − 2.13 ≤ l(e) (2.19)

For log2 ν(e) − 2.13 > 0 Schönhage’s bound is the best lower bound known
that applies for all e. An asymptotic better lower bound is given by Erdős

2.2. THEORETICAL LIMITS 37

in [Erd60] where it is stated that for allmost all e and an arbitrary chosen
positive real ε,

log2 e + (1 − ε)
log2 e

log2 log2 e
≤ l(e) (2.20)

The meaning of this formulation is that for suitably large values of e the
number of addition chains, that are shorter than the left side expression, is
substantially less than e. Thus, it is not possible to derive an exponentiation
method that for all e performs the computation in a number of multiplica-
tions less than the left side expression. Erdős also showed that the bound
given by (2.20) is tight, i.e. very close to known upper bounds of l(e). In
fact, an upper bound of l(e) is given by the m-ary method: Recall the worst
case computing time, (log2 m)�logm e
 + �logm e
 + m − 2. By insertion of
log2 m = �c log2 log2 e� , where c−1 = 1 + ε

2
and ε is an arbitrary chosen

positive real, the following bound is derived,

l(e) ≤ log2 e +
log2 e

�c log2 log2 e� + 2�c log2 log2 e� − 2

< log2 e + (1 +
ε

)
2

log2 e

log2 log2 e
+ 2(2log2 log2 e)c

≤ log2 e + (1 + ε)
log2 e

log2 log2 e
+ f(e), where (2.21)

f(e) = 2(log2 e)c − ε

2

log2 e

log2 log2 e

=
log2 e

log2 log2 e
(2

log2 log2 e

(log2 e)1−c
− ε

2
) (2.22)

Since 1 − c > 0 the expression (log2 e)1−c grows faster than log2 log2 e
when e is increasing. For a fixed value of ε this implies that f(e) eventually
becomes negative when e is increasing. This result states that asymptotically
no methods exists that performs better than the m-ary method. However,
researchers should not be discouraged in the attempts to find methods that
for the given range of exponent values of interest exponentiates faster than
the known methods.

An indication of the hardness of finding an addition chain with the short-
est length is given by Downey, Leong, and Sethi in [DLS81]. The authors
proves that the addition sequence problem is NP-complete. The addition se-
quence problem is formulated as: “Given a sequence e1, e2, . . . , es of positive

38 CHAPTER 2. EXPONENTIATION

integers, what is the smallest number of additions to compute all s integers
starting with 1?”. This is a generalisation of the addition chain (s = 1) prob-
lem. In fact, in this chapter addition sequences have already been used for
precomputing a table of powers. It is NP-hard to find the shortest addition
sequence length and, of course, at least as hard to find an addition sequence
with the shortest length. Even though the complexity of the addition chain
problem still remains open, the results on addition sequences indicates that
it might be very hard to find shortest addition chains. However, it cannot
be concluded that the addition chain problem is hard. The article [DLS81]
is often, incorrectly, referenced for proving that the addition chain problem
is NP-complete.

The lower bounds by Schönhagen and Erdős give some answers to the
question asked in the beginning in this section: For arbitrary exponent values
the m-ary method is about the best obtainable. Other methods may perform
the exponentiation in fewer operations, but the difference is vanishing for
increasing exponent values. For exponent values of interest in this thesis
Schönhage’s bound (2.19) implies that at most 17 percents improvement
of Thurber’s method for 512 bit exponents is possible. Furthermore, the
complexity of the addition sequence problem indicates that it might be very
hard to improve the methods.

2.3 Parallel Computation

In Section 2.1 the aim was to reduce the required number of operations for
computing exponentials and hereby to obtain a fast computation. In this
section another approach for obtaining fast computation of exponentials is
taken. Instead of reducing the number of operations, the aim is now to
reduce the time for performing the computation. This can be accomplished
by computing some of the operations in parallel. In a sequential computation
the number of operations is a direct measure of the computing time. This
is not always the case for parallel computation. It might very well happen
that methods with comparatively many operations are better suited for fast
parallel computation than methods with comparatively few operations.

Kung [Kun88] has made a thorough treatment of the problem of how
to systematically map an algorithm onto an array of processing elements.
Although the techniques described by Kung have not been systematically

2.3. PARALLEL COMPUTATION 39

used in the work presented in this thesis, some of the descriptive techniques
are applied for visualising and clarifying purposes. As noted by Rivest [Riv84]
the right-to-left binary method, described by Equation (2.5), is suited for a
parallel computation. To see how the operations of the right-to-left binary
method can be computed in parallel the method is expressed as a set of
recursive equations,

be = Xn−1 where Xi+1 = Xi ∗ (Yi+1)
ei+1 , X−1 = 1,

Yi+1 = Yi ∗ Yi, Y0 = b.
(2.23)

Figure 2.3: Dependence graph for right-to-left binary method.

A useful tool for revealing the possibilities for parallel computation of such
a set of equations is a dependence graph. Figure 2.3 shows the dependence
graph for the right-to-left binary method. The graph gives an illustration of
the Equations (2.23) when they are folded out. Each node correspond to an
operation: The unshaded nodes correspond to one of the Yi ∗ Yi operations
and the shaded nodes correspond to one of the Xi ∗ (Yi+1)

ei+1 operations. An
arc into a node represents a value on which the operation depends, and an
arc out from a node represents a result of the operation. So, a dependence
graph gives an explicit view of how an operation depends on the results from
other operations and, hence, dictates the sequence of computation. The de-
pendence graph can guide the designer when decisions about the parallel
computation are taken: How many processing elements should be used, how
should the operations be divided between the processing elements and when
should each individual processing element execute the operations? The deci-
sion on how to configure processing elements and allocate operations onto the
processing elements is described as a mapping from the dependence graph

40 CHAPTER 2. EXPONENTIATION

onto a configuration of processing elements. A straightforward mapping is
the one-to-one mapping of the nodes in Figure 2.3 onto an array of 2n−1 pro-
cessing elements, one for each node. In this case, the execution sequence of
each individual processing element, the schedule of computation, is indicated
by the stippled lines in the figure: All nodes on the same line are processed
at the same time. Such lines are called equitemporal hyperplanes. The lines
have been numbered from 0 to n − 1. The numbering gives an ordering in
time for the execution of the operations. In the following the line numbered
i will also be referred to as time step number i.

Figure 2.4: Parallel computation of right-to-left binary method.

Assume that the operation corresponding to a node takes one time unit.
Then the number of nodes on the longest path from input to output corre-
sponds to the longest sequence of operations and, therefore, is a measure of
the minimal computing time or latency obtainable from the method. The
actual latency depends on how the computation, expressed by the depen-
dence graph, is mapped onto a number of processing elements and how the
computation is scheduled on the processing elements. In the one-to-one map-
ping the latency is n time units, which is minimal for the right-to-left binary
method. Note that the array can be pipelined, implying that a new com-
putation can be initiated in each time unit. Each computation then ripples
through the array and the stage of each computation is shown by one of the

2.3. PARALLEL COMPUTATION 41

equitemporal hyperplanes. The result is a throughput of one exponential per
time unit.

Unless there is a need for high throughput the utilisation of processing
elements is very inefficient in the one-to-one mapping for a single exponen-
tiation. Instead the dependence graph can be mapped onto two processing
elements, where all the unshaded nodes in Figure 2.3 are mapped onto one
processing element and all the shaded nodes are mapped onto the other pro-
cessing element. The schedule of this computation remains as indicated by
the stippled lines at the dependence graph. In Figure 2.4 a hardware ar-
chitecture, consisting of two processing elements (multiplication units), two
registers and data connections between processing elements and registers, is
depicted together with an algorithmic description of the computation sched-
ule. Furthermore, an invariant that holds prior to each cycle of the loop in the
algorithm is given. The variables X and Y denote the contents of the regis-
ters. The hardware architecture and algorithm in Figure 2.4 is also presented
in the articles reprinted in Appendix A and B. Note that the numbering of
the stippled lines in the dependence graph is closely related to the value of i
in the loop. Indeed, the ith cycle of the loop corresponds to a processing of
all the nodes on the ith stippled line of the dependence graph and the invari-
ant describes a relation between the inputs to these nodes. The invariant is
also a snapshot of the register contents just prior to the processing of cycle
i. The labels on the data connections in the hardware architecture have the
following meaning: A label on an input to a processing element denotes the
data value just prior to the processing of cycle i, and a label on an output
from a processing element denotes the data value just after the processing of
cycle i.

The mapping onto two processors also gives the minimal latency of n
time units. If it is assumed that the time for a squaring equals the time for
a general multiplication the sequential computation methods in Section 2.1
can be compared to the parallel computation on two processing elements.
The parallel computing time is equal to the time for n multiplications and it
is independent of ν(e), the number of non-zero bits in the binary encoding
of e. The sequential computing time for the binary methods is n + ν(e)− 2,
and it depends on ν(e) which varies from 1 to n. So, compared to the worst
case sequential computing time, a speed-up very close to 2 is achieved by
using two processing elements. The number of required registers is two for
both the sequential and the parallel computation of the right-to-left binary

42 CHAPTER 2. EXPONENTIATION

method.

A remark on the difference between the best case sequential computing
time of n − 1 time units and the parallel computing time of n time units is
due here. In Equations (2.23) the value of X0 is expressed as 1 ∗ be0 . This
expression is transformed into a node in the dependence graph. Even though
X0 can be “calculated” by a simple selection between 1 and b a multiplication
is performed in the parallel computation shown in Figure 2.4. In the analysis
of the sequential computation in Section 2.1 a multiplication by 1 is not
counted as a multiplication. Furthermore, the minimal sequential computing
time, n−1 time units, arrises when all exponent bits e0, e1, . . . , en−2 are zero
and only the most significant bit en−1 is one. (As written in the beginning of
Section 2.1 it is assumed that en−1 > 0). For this special exponent value the
parallel computing time could also be reduced to n − 1 time units since the
last operation performed is a multiplication by 1. But in general the latency
of the parallel computation is n time units. However, a throughput of one
exponential per n− 1 time units can be achieved if X0 is not computed by a
multiplication but simply initialised to be0 . Then, as seen at the dependence
graph, the next computation can overlap the current computation by one
time unit, i.e. the next computation of Y1 can be performed by one processing
element simultaneously with the current computation of Xn−1 by the other
processing element.

Compared to the worst case computing times for Thurber’s method in
Table 2.3 the improvement is 19 percents for 256 bit exponents, 18 percents
for 512 bit exponents and 16 percents for 1024 bit exponents. According to
the lower bounds in Section 2.2 the parallel computing time is smaller than
the computing time for any sequential method when ν(e) ≥ 8. Obviously,
the strength of the parallel computation lies in the reduction of the worst
case sequential computing time. If the value of ν(e) is decreased the speed-
up is also decreased. But, as already noted in Section 2.1.3 the worst case
computing time is often of greater importance than the average computing
time when the exponentiation is part of a real-time application.

2.3.1 Pipelined Computation

For the parallel computation on two processing elements the reduced com-
puting time is obtained at the cost of an extra processing element. Now,
as observed in Appendix A and B it is also possible to perform the parallel

2.3. PARALLEL COMPUTATION 43

computation on a single pipelined processing element. Then the overhead
in hardware is reduced to the extra registers that implement the pipeline
buffers. In general, to implement a two-stage pipelined computation of an
operation denoted by the function f it must be possible to decompose f into
functions f1 and f2 such that f = f2 ◦f1, i.e. f is equal to the composition of
f1 and f2. The efficiency of the pipelined computation is highly dependent
on how the decomposition is done: First, the computing time for f1 and f2

should be balanced and both computing times should be about the half of the
computing time for f . This ensures that the neither f1 or f2 is a bottleneck
in the pipeline and that the throughput of the pipeline is about twice the
throughput of a non-pipelined computation. Finally, the required number of
registers for buffering the result from f1 should be as small as possible.

Figure 2.5: Dependence graph for pipelined right-to-left binary method.

In the following a pipelined computation of the binary right-to-left method
will be developed. The main operation in Equations (2.23) is the multipli-
cation operation. Assume that the multiplication operation is decomposed
into the operations denoted by f1 and jf2, such that the composition of these
gives,

f2 ◦ f1(X, Y, e) = X ∗ (Y)e =

{
X ∗ Y if e = 1
X if e = 0.

(2.24)

Then, if this decomposition substitutes the multiplication operation in Equa-
tions 2.23, the following set of recursive equations describes a pipelined right-
to-left binary method,

be = Xn−1 where Xi+1 = f2 ◦ f1(Xi, Yi+1, ei+1), X−1 = 1,
Yi+1 = f2 ◦ f1(Yi, Yi, 1), Y0 = b

(2.25)

44 CHAPTER 2. EXPONENTIATION

The dependence graph for these equations is shown in Figure 2.5. In this
graph an unshaded node corresponds to one of the f1 operations and a shaded
node corresponds to one of the f2 operations. The new dependence graph
can be viewed as a modification of the old graph in Figure 2.3 where each
old node is expanded into two new nodes. A multiplication now takes two
operations. However, if it is assumed that the time for operation performing
an f1 or an f2 operation is the half of the time for performing a multiplica-
tion then the computing time for a multiplication is unchanged. The idea
behind the pipelined computation becomes clear when the dependence graph
is mapped onto two processing elements, where one processing element per-
forms f1 operations and the other processing element performs f2 operations.
The expected total hardware consumption for these two processing elements
is about the same as the hardware consumption for a single processing el-
ement that is capable of performing a complete multiplication operation.
Hence, the new hardware architecture contains two processing elements that
together form a pipelined version of one of the processing elements used in
the previous hardware architecture in Figure 2.4.

A computation schedule is given by the equitemporal hyperplanes in Fig-
ure 2.5. The schedule has been chosen such that only one f1 operation and
only one f2 operation is performed at the same time. The latency for the
proposed pipelined computation is 2n+1 time units. This corresponds to the
time for performing n + 1

2
multiplications. The small increase in latency is

common for all pipelined computations: A small overhead due to the buffer-
ing in the pipeline will appear, and the overhead, measured in time units, will
usually be equal to the number of inserted buffers. In this case the pipeline
has two stages and a single buffer is inserted between the stages. Regarding
the throughput, then it is obvious from the dependence graph that time step
number 0 in the next computation can be overlapped with the current time
step number 2n. This results in a throughput of one exponential per 2n time
units. Furthermore, a repetition of the discussion on page 42, of how the
computation of X0 can be replaced by a simple initialisation, will conclude
that it is also possible to achieve a throughput of one exponential per 2(n−1)
time units when the computation is pipelined.

In Figure 2.6 the pipelined hardware architecture is shown together with
an algorithmic description of the computation schedule and two invariants.
The hardware architecture is depicted in two states: The upper state corre-
sponds to one of the even numbered time steps in Figure 2.5 and the lower

2.3. PARALLEL COMPUTATION 45

Figure 2.6: Pipelined computation of right-to-left binary method.

state corresponds to one of the odd numbered time steps. There are three
registers in the hardware architecture. Register B is the pipeline buffer. It
contains the result from an f1 operation. The actual size of register B de-
pends on how f1 is chosen. Register R alternately holds the value Yi and the
value Xi−1. Finally, register Y is used for saving the value Yi during a period
of two time units. As seen in Figure 2.5, Yi is needed in two consecutive time
steps. The algorithm consists of an initialisation and a loop. Each cycle in
the loop is divided into two phases: The first phase corresponds to an even
numbered time step in Figure 2.5 and the second phase corresponds to an
odd numbered time step. So, a cycle in the loop describes the computation

46 CHAPTER 2. EXPONENTIATION

of two consecutive time steps. According to Figure 2.5 register R must be
initialised to b prior to the first phase of the first cycle. This is done before
entering the loop. Furthermore, register Y and register R must be initialised
to respectively b and 1 prior to the second phase of the first cycle. Since
Y is not altered during the first phase, Y can also be initialised before the
loop is entered. The initialisation of R prior to the second phase can be
done by initialising register B to the value f1(1, 1, 0) prior to the first phase.
Then the computation in the first phase will result in an assignment of the
value f2(f1(1, 1, 0)) = 1 to register R. Of course the initialisation of register
R could also have been carried out by a simple assignment in a conditional
control structure, e.g. # if i = 0 then R := 1 else R := f2(B), during
the first phase. The time step numbering in Figure 2.5 relates closely to i in
Figure 2.6. The even numbered time step 2i corresponds to the first phase
of the ith cycle and the odd numbered time step 2i + 1 corresponds to the
second phase of the ith cycle.

The hardware requirement for the pipelined right-to-left binary compu-
tation corresponds to one multiplication unit, two registers and a pipeline
buffer. Except for the buffer this is equal to the hardware requirement for the
sequential right-to-left binary method. In Chapter 4 a VLSI implementation
of a processor, that can compute modular exponentials, is described. The
processor is using a pipelined right-to-left binary computation method for
the exponentiation. The size of the pipeline buffer in this implementation
is equal to the size of the other registers. So, at least when the multipli-
cation composition is defined as modular multiplication, it is reasonable to
count the buffer as a register. Hence, at the cost of a single additional reg-
ister it is possible to halve the worst case computing time for the sequential
binary method. The pipelined binary computation is superior to Thurber’s
modification—both with respect to computing time and with respect to hard-
ware consumption. It can be concluded that it is better to use additional
registers for a pipelined computation than to use registers for a table of pre-
computed values. However, as described by Brickell et al. in [BGMW92] it
is possible to obtain very fast computation of exponentials by using a large
table of precomputed values under the assumption that the computing time
for this table can be disregarded. Indeed, in applications where the base
is fixed over many consecutive exponentiations with varying exponents the
table is computed only once.

Shand and Vuillemin [SV93] have analysed the pipelined binary right-

2.3. PARALLEL COMPUTATION 47

to-left method. The analysis is based on the description of the method
in Appendix B. Apparently the description is unclear, because Shand and
Vuillemin assume that the computation is scheduled on a single processing
element by time-multiplexing. In Figure 2.7 the dependence graph from Fig-
ure 2.3 is shown with a time-multiplexed computation schedule. It is seen
that the computation can be scheduled on a single processing element that
alternately executes an Xi ∗ (Yi+1)

ei+1 operation and an Yi ∗ Yi operation.
This is what is meant by a time-multiplexed computation schedule. The
computing time is 2n− 1 time units, where a time unit refers to the time for
performing a complete multiplication, and the computing time is equal to
the worst case time for the sequential binary method. Shand and Vuillemin
observe that in the average case the sequential binary method is 33 percents
faster than a time-multiplexed computation of the parallel binary method.
Of course the time-multiplexed computation is slow. It corresponds to a se-
quential computation where all multiplications of the type Xi ∗ (Yi+1)

e+1 is
executed—even though ei+1 is zero. In fact, the pipelined right-to-left binary
computation is 33 percents faster than the average case for the sequential bi-
nary computation.

Figure 2.7: Dependence graph for right-to-left binary method. Time-
multiplexed computation schedule.

2.3.2 From Computation Method to Implementation

In this section, dealing with parallel computation, several descriptive tech-
niques have been used. It has been utilised that a computation method can

48 CHAPTER 2. EXPONENTIATION

be analysed by a dependence graph. The analysis revealed some options for
the structure of the hardware architecture and for the computation schedule.
The computation schedule has been formulated as algorithms and invariants
have been given. In traditional programming disciplines the invariants are a
useful means for proving the correctness of computer programs or algorithms.
The invariants are also useful when dedicated hardware is constructed and
used for a computation. Indeed, from an algorithmic point of view it does not
matter whether standard micro-processors or dedicated hardware is used for
the computation: An algorithm is a general description of the computation
schedule, and the only requirement to the underlying hardware is, that the
instructions in the algorithm are performed correctly. Hence, the invariants
are useful for proving the correctness of the computation schedule. Moreover,
as noted in the beginning of Section 2.3, an invariant can be viewed as being
a snapshot of the register contents. This appeared to be very valuable in the
process of implementing the exponentiation processor described in Chapter
4: The control logic was implemented by translating the algorithms to finite
state machines, and invariants were used for keeping track of the states. The
processing elements in the hardware architecture were translated to com-
binatorial logic and the registers were translated to flip-flops. During the
validation of the combinatorial logic, invariants were used for expressing the
correct register contents between consecutive clocking periods.

2.4 Modular Exponentiation

The exponentiation methods described in the previous sections only assume a
single property about the multiplication composition: It must be associative.
In this section the attention will be focussed on a specific multiplication
composition: Modular multiplication as used in the RSA crypto system. It
will be discussed how the algebraic properties of modular multiplication and
of the exponents used in RSA cryptography can be utilised to improve the
computing time for modular exponentiation.

In the RSA crypto system (see Section 1.1.3) the functions used for en-
cryption and decryption have the form be mod m, where b is a block of data
that is encrypted or decrypted and the pair (e, m) is a key. Modulus m
is a composite of two prime numbers p and q, i.e. m = pq. To be useful
as key, the exponent e must obey the restriction gcd(e, ϕ(m)) = 1 where

2.4. MODULAR EXPONENTIATION 49

ϕ(m) = (p − 1)(q − 1). Furthermore, the primes p and q must be about the
same bit-length [Nec92, p. 207]. The bit-length of modulus m and exponent
e determines the security of the RSA crypto system. At present, bit-lengths
in the range from 512 to 1024 are adequate. Since the number of multiplica-
tions needed for performing an exponentiation is about proportional to the
exponent bit-length, it has been suggested to use small exponent values. It
is possible to use a small public exponent value without compromising the
security, but the length of the private exponent must be about the same
length as modulus. Knuth [Knu81, pp. 386-389] suggests a public exponent
of value 3. However, as observed by Hastad [Has88] small public exponent
values may be vulnerable to crypto analytical attacks. So, some precautions
should be taken when small public keys are used.

If small public exponents are used, the computing time for exponentiation
with public exponents is significant shorter than the computing time for ex-
ponentiation with private exponents. Quisquater and Couvreur [QC82] show
how the composite property of m, and the knowledge of the prime factors
p and q, can be utilised to speed up exponentiation with private exponents.
The trick is to apply the Chinese Remainder Theorem for dividing the com-
putation of be mod m into two faster computations, be mod(p−1) mod p and
be mod(q−1) mod q. The results of these computations can then be combined
to the value of be mod m by means of two multiplications. The following
formulation of the Chinese Remainder Theorem is found in [Knu81, pp. 268-
276], where Knuth discusses modular arithmetic,

Theorem 2.4-1 (Chinese Remainder Theorem) Let m1, m2, . . . , mr be
positive integers that are relatively prime in pairs, i.e.,

gcd(mj, mk) = 1 when j �= k. (2.26)

Let m = m1, m2, . . . , mr, and let a, u, u1, u2, . . . , ur be integers. Then there
is exactly one integer u that satisfies the conditions

a ≤ u < a + m, and u ≡ uj(mod mj) for 1 ≤ j ≤ r. (2.27)

A proof of Theorem 2.4-1 and some methods for computing a solution u to
(2.27) are included in Knuth’s book. To see how the theorem can be applied
for computing a solution u = be mod pq observe that if up = be mod p and

50 CHAPTER 2. EXPONENTIATION

uq = be mod q then,

up = be mod p = (be mod pq) mod p ≡ u(mod p), and
uq = be mod q = (be mod pq) mod q ≡ u(mod q).

(2.28)

So, by computing up and uq and combining these, a unique solution u = be

mod pq can be found. The advantage of splitting the computation of be mod
pq into the computations of be mod p and be mod q becomes clear when the
following rewriting is done: According to Fermat’s theorem (e.g. [Knu68, p.
69] bp−1 ≡ 1 (mod p) whenever p is a prime and b is not a multiple of p.
Hence, if it is assumed that b mod p �= 0,

up = be mod p

≡ b(p−1)(e div (p−1))+e mod (p−1) (mod p)

≡ (b(p−1))e div (p−1) · be mod (p−1)(mod p) (2.29)

≡ 1e div (p−1) · be mod (p−1)(mod p)

≡ be mod (p−1)(mod p)

If b mod p = 0 Fermat’s theorem cannot be used. However, for this special
case the congruence be be ≡ be mod (p−1) ≡ 0 (mod p) is valid when e mod
(p − 1) �= 0. It should be noted that the congruence is not valid if e > 0,
e mod (p − 1) = 0 and b mod p = 0; by insertion into the definition of an
exponential in (2.1) it follows that,

be ≡ be−1 · b ≡ 0e−1 · 0 ≡ 0 (mod p), and be mod (p−1) ≡ b0 ≡ 1(mod p).

A similar discussion leads to uq ≡ be mod (q−1) (mod q) when e mod (q− 1) �=
0. The restrictions on the exponent values do not imply difficulties for an
application of the Chinese Remainder Theorem in the RSA crypto system.
Indeed, since the exponent values are already restricted by the condition
gcd(e, (p − 1)(q − 1)) = 1 it is seen that e mod (p − 1) �= 0 and e mod
(q − 1) �= 0.

Now, to obtain the solution u = be mod pq, the intermediate results up

and uq are combined by the computation,

u = (((up − uq) · q−1) mod p) · q + uq (2.30)

where q−1 is a precomputed integer satisfying q · q−1 ≡ 1 (mod p), i.e. q−1

is q’s multiplicative inverse modulo p. According to Fermat’s theorem, q−1

2.4. MODULAR EXPONENTIATION 51

can be computed as qp−2 mod p. Equation (2.30) was proposed by Garner
in 1959 [Gar59]. Opposed to other ways of computing u from up and uq,
Equation (2.30) does not require multiplication modulo pq. This is a nice
property when dedicated hardware is build for the computation.

The computing time for the exponentiation method based on the Chinese
Remainder Theorem is smaller than the time for previous described meth-
ods. First, since the length of exponent e mod (p − 1) and e mod (q − 1) is
approximate half the length of e, the number of modular multiplications for
computing each of up and uq is halved. If up and uq are computed in parallel
the time for computing both values will be reduced by a factor two due to the
smaller exponent values. Second, the lengths of moduli p and q are half the
length of m. According to Chapter 3 the computing time for modular mul-
tiplication is approximate proportional the operand length when dedicated
hardware is used for the computation. This implies a reduction in computing
time by a factor of two. If a standard micro-processor is used the computing
time for multiplication is proportional to the square of the operand length
[SV93], i.e. a reduction by a factor of four can be expected. The overhead
for combining up and uq is a multiplication module p, an ordinary integer
multiplication, a subtraction and an addition. This overhead is negligible
when p and q have lengths of more than hundred bits. The values e mod
(p− 1), e mod (q− 1) and q−1 are also needed in the computation. However,
these values can be thought of being a part of the private key, and the values
can be precomputed once for all when the private key is generated. In total,
the computing time can be reduced by a factor of four by using dedicated
hardware to compute up and uq in parallel. Such a dedicated hardware cir-
cuitry will contain two units for performing modular multiplication. But,
since each unit operates on word sizes that are half the length of m = pq,
the circuit size is expected to be equal to the size of a single unit capable of
performing multiplication modulo m. If a single standard micro-processor is
used the reduction factor is four, and if two processors are used for a parallel
computation of up and uq the reduction factor is eight.

It has been mentioned that dedicated hardware do not need a modulo
m multiplication unit. This is true when private exponents are used. If a
public exponent is used, the user is not expected to know the prime factori-
sation of m. Hence, in this case the Chinese Remainder Theorem cannot be
applied, and a modulo m multiplication unit is needed. If a single dedicated
hardware device shall be able to perform exponentiations with both private

52 CHAPTER 2. EXPONENTIATION

and public exponents, and be able to explore a parallel computation by the
Chinese Remainder Theorem, it must be reconfigurable: Two “half-length”
modular multiplication units should be configured into a single “full-length”
modular multiplication unit. Of course, it would also suffice to include both
kinds of modular multiplication units, but this would imply a large hardware
consumption. Shand and Vuillemin describe a highly configurable implemen-
tation that is based on field programmable gate arrays in [SV93].

2.5 Summary and Discussion

The resource requirements and some characteristics for the exponentiation
methods described in this chapter are summarised in Table 2.4. It should be
remarked that the expressions for computing time and register requirement
in the m-ary method and Thurber’s modification assume m is a power of
two. The unit of time is the computing time for a single multiplication or
squaring, so the computing time expressions represent the total number of
multiplication and squaring operations. The main interest in this thesis is
to investigate efficient methods for performing modular exponentiation with
very large operands. Therefore the table also shows the resource require-
ments for a modular exponentiation where the bit-length of the operands is
512 bit. (This operand length has become the standard length when differ-
ent exponentiation methods or implementations for the RSA crypto system
are being compared). Apart from the method based on heuristics all the re-
quirements for 512 bit exponentiation are calculated for the worst case. The
window sizes for the m-ary method and Thurber’s modification is chosen
such that a minimal worst case computing time is achieved. In Table 2.4 the
number of processing elements corresponds to the number of multiplication
units. In the pipelined method a single multiplication unit is split into two
parts, where each part perform a computation in a half time unit. This is
the reason for the awkward time expression.

In Section 2.1 the sequential computation methods has been treated. The
binary method, it’s generalisation to the m-ary method, Thurber’s modifi-
cation and methods based on heuristics have been described. By precom-
puting often used values and storing these into a table it is seen that the
total computing time can be reduced. It is shown that it does not matter,
with respect to resource requirements, whether the exponents are scanned

2.5. SUMMARY AND DISCUSSION 53

left-to-right or right-to-left. Furthermore, it is described how a left-to-right
window allocation can reduce the computing time. The fastest sequential
method is Thurber’s modification of the m-ary method. Compared to the
binary method it reduces the worst case time for 512 bit exponents with 39
percents. Slightly shorter average computing times have been reported for
methods based on heuristics. However, in real-time applications the worst
case computing times are of greater importance, and when dedicated hard-
ware is constructed the worst case memory requirement must also be consid-
ered.

Method Resource requirements and characteristics Example

Binary Time: �log2 e
 + ν(e) − 1 1022
Registers: 2 2

m-ary Time: �log2 e
 − (log2 m − 1) + ν(e) + m − 3 639
Registers: m 32
Window size: log2 m 5

Thurber Time: �log2 e
 − (log2 m − 1) + νm(e) + m
2 − 1 639

Registers: m
2 32

Window size: log2 m 5
Heuristics Time: Average based on experiments (620)

Registers: Average based on experiments (10–15)
Theoretical Time: log2 e + log2 ν(e) − 2.13 519
lower bound
Parallel Time: �log2 e
 + 1 512

Registers: 2 2
Process. elem: 2 2

Pipeline Time: 1
2 (2�log2 e
 + 3) 512 1

2

Registers: 3 3
Process. elem.: A single element split into two parts 1

Chinese Modular exponentiation: Modulus and exponent as in
Remainder RSA system. Gives 4 times speed up of a given method
Theorem for exponentiation.

Table 2.4: Summary of exponentiation methods, exemplified with worst case
512 bit modular exponentiation.

54 CHAPTER 2. EXPONENTIATION

Section 2.2 gives answers to some theoretical questions about exponentia-
tion. These questions are usually formulated in terms of addition chains. As
a curiosity the following quotation of Brauer from 1939 [Bra39] shows that
the research for fast methods to compute modular exponentials has taken
place for quit a while:

“The following question leads to addition chains: The least posi-
tive residue of cn (mod m) (c, m, n given integers) is to be formed
using the smallest possible number of multiplications.”

One of the theoretical results is a lower bound on the number of multipli-
cations. This bound implies that no sequential method can compute expo-
nentials with 512 bit exponents in less than 519 multiplications. Hence the
computing time for the binary method cannot be reduced by more than 49
percents.

As described in Section 2.3 a change of approach can reduce the com-
puting time. Instead of trying to reduce the number of multiplications a
parallel computation can reduce the time for performing an adequate num-
ber of multiplications. It is shown how the right-to-left binary method can be
computed in parallel. Hereby a computing time less than a theoretical lower
bound for sequential computation is obtained. Furthermore, it is explained
how a pipelined hardware architecture can be constructed. Compared to the
binary method the pipelined method only requires a single additional regis-
ter, and it reduces the worst case computing time by 50 percents. This is
superior to any of the other methods.

In Section 2.4 a special class of exponentials is considered. This class is
modular exponentials as defined by the RSA crypto system. The algebraic
properties of the operands can be utilised to improve the computing time.
It is discussed how the Chinese Remainder Theorem can be used to split
a modular exponentiation with private exponent into two faster modular
exponentiations. If dedicated hardware is used it is possible to reduce the
computing time by approximately a factor of four. Table 2.4 do not show
an explicit expression for computing time, register requirements etc. for
this type of computation. This is because the trick of applying the Chinese
Remainder Theorem in some sense is orthogonal to the other methods: The
Chinese Remainder Theorem do not give an explicit method for computing
exponentials, but the theorem tells how to speed up the computation of
certain kinds of modular exponentials. A prerequisite is that a method for

2.5. SUMMARY AND DISCUSSION 55

performing general modular exponentiation is given. Hence, any of the other
methods in Table 2.4 can be selected as the general exponentiation method.

When studying papers on implementations of modular exponentiation it
is remarkable that virtually all constructions of dedicated hardware do use
the binary exponentiation method. The only exceptions are the first VLSI
implementation from Sandia National Laboratories [Riv84], which uses the
parallel right-to-left binary method, and the DEC Perle-1 implementation
[SV93], which uses a 25-ary method. The VLSI implementation described in
Chapter 4 uses, of course, the pipelined method.

The literature on exponentiation methods, both regarding the issues of
practical implementations and the theoretical aspects, is extensive. One of
the most thorough descriptions has been made by Knuth in [Knu81, pp.
441–466]. An approach, not mentioned in this chapter, for computing expo-
nentials is described by Zhang, Martin and Yun in [ZMY88]. In this article
it is utilised that in some algebraic systems a multiplicative inverse b−1 exists
for all elements b, i.e. b ∗ b−1 = 1, where b �= 0.1 This implies that negative
digits are acceptable in an encoding of the exponent. The presented method
results in a computing time about equal to the time for a 4-ary method while
the number of required registers is decreased by one compared to the later
method. The suggested encoding of the exponent is also known as a bi-
nary encoding with the redundant symmetric digit set {−1, 0, 1}. The same
method is described in [JM89, Zha93]. In [Bri82] a similar method, with the
same performance, is described. It is also possible to describe Zhang et al.’s
method in terms of a generalisation of addition chains: addition/subtraction

1Zhang et al. apply this method for computing modular exponentials in the RSA crypto
system. To ensure the existence of the multiplicative inverse b−1 mod m the condition
gcd(b, m) = 1 must be fulfilled. Since m = pq is a composite of two primes this condition
does not always hold. It does not hold when b is a multiple of p or q. However, in
practice this is not of great concern because the probability, that b is a multiple of p or q,
is vanishing when p and q are large and b is random in the set Zm = {0, 1, . . . , m − 1}.
Typical, the bit-lengths of p and q are more than 256 bits. The set {b ∈ Zm : b > 0 and
gcd(b, m) = 1} is denoted Z

∗
m and consists of ϕ(m) = (p − 1)(q − 1) elements [Nec92, p.

258]. Hence, the probability that b ∈ Zm and b /∈ Z
∗
m is

1 − ϕ(m)
m

= 1 − (p − 1)(q − 1)
pq

=
p + q − 1

pq
.

If p and q is assumed to be 2256 the probability is about equal to 2−255 which indeed is
vanishing.

56 CHAPTER 2. EXPONENTIATION

chains. The theoretical lower bound by Schönhage, Equation (2.19), is ex-
tended to addition/subtraction chains in Schönhage’s original article [Sch75].
An exponentiation method, inspired from a data compression algorithm, is
presented by Yacobi in [Yac90]. It uses the precomputation technique known
from the m-ary method, but the window size is varied during a scan of the
exponent. The computing time for this method depends on the “compress-
ibility” of the exponents. Compressible exponents results in faster computing
times, and vice versa. Finally, methods especially suited for computations
where the based is fixed for many consecutive exponentiation while the expo-
nent is varying are described by Brickell et al. in [BGMW92]. These methods
result in very fast computations when a large table has been precomputed.
Since the base is fixed the precomputation is only performed once. Further
development of these methods is described by de Rooij in [dR94] and by
Lim and Lee in [LL94]. A warning to the time unit of this chapter is given
by McCarthy in [McC86]. In this chapter a time unit corresponds to the
time for performing a multiplication. When the multiplication composition
is known to be modular multiplication the intermediate results will remain
limited to the range given by modulus. Hence, it is fair to assume that the
multiplication time is independent on the operands. But for other multipli-
cation compositions the time for a multiplication may be highly dependent
on the operand bit-length and, consequently, other exponentiation methods
may be the most efficient.

Chapter 3

Modular Multiplication

The previous chapter discussed the evaluation of exponentials. The defini-
tion of an exponential refers to an abstract multiplication composition. In
this chapter a specific multiplication composition, modular multiplication, is
studied. In general, multiplication refers to the process of evaluating prod-
ucts a ∗ b where ∗ is a multiplication composition. As for the definition of
exponentials a general definition of products refers to another abstract com-
position, now called addition. Since the main interest of this thesis is fast
evaluation of modular exponentials the descriptions in this chapter will be
restricted to modular multiplication. Certainly, many of the methods and
ideas of this chapter can also be used for other multiplication compositions
that possess algebraic properties similar to modular multiplication.

A recursive definition of the modular product a ∗Zm b = (a · b) mod m,
where a is the multiplier, b the multiplicand and m the modulus, can be
formulated as

0 ∗Zm b = 0 (3.1)

a ∗Zm b = ((a − 1) ∗Zm b) +Zm b.

It is assumed that m is an integer, m > 0, and that both a and b belongs to
the set of non-negative integers less than m, Zm = {0, 1, . . . , m − 1}. The
addition composition, +Zm : Zm × Zm
→ Zm, is modular addition and it is
defined by x +Zm y = (x + y) mod m.

The reason for formulating modular products by the above equations be-
comes clear when a comparison to the definition of exponentials, Equation
(2.1), is done. It is seen that the definition of modular products is a spe-

57

58 CHAPTER 3. MODULAR MULTIPLICATION

cialisation of the general definition of exponentials: The multiplier a is an
exponent, the multiplicand b is a base and the addition composition, with
the neutral element 0, is a multiplication composition in Equation (2.1).
Therefore, the exponentiation methods in Chapter 2 also can be formulated
as modular multiplication methods, and the results obtained on exponen-
tiation methods can be used when discussing modular multiplication. All
efficient exponentiation methods require that the multiplication composition
is associative and, indeed, modular addition is associative.

When studying the literature on modular multiplication it appears that
most methods can be identified as analogous forms of one of the exponen-
tiation methods in Chapter 2. (A class of modular multiplication methods,
that cannot be properly described by Equation (3.1), is called Montgomery
multiplication. This class will be treated in Chapter 5). Hence, a complete
description of the methods used in an implementation of modular exponentia-
tion can be made by identifying the exponentiation method and the multipli-
cation method as one of the methods from Chapter 2, and by characterising
the modular addition method.

The exponentiation methods in Chapter 2 were formulated in general
terms. The methods were based on very few assumptions about the alge-
braic properties of the multiplication composition and of the application of
the exponentials. In this chapter another approach will be taken: The alge-
braic properties of modular addition will be explored and utilised as much as
possible to achieve fast modular multiplication methods. Furthermore, the
knowledge of the application area of the modular products will be utilised
to formulate techniques that may only be advantageous in the specific appli-
cations considered in this thesis. The applications are characterised by very
large operands and by many consecutive computations of modular products
using a fixed modulus. Moreover, the majority of the modular products are
intermediate results in the application.

In this chapter the emphasis will be on the so-called high-radix modular
multiplication methods. These methods are the analogous forms of the β-ary
exponentiation methods. (The β-ary encoding was denoted the m-ary en-
coding in Section 2.1.1. Because the symbol m is denoting a modulus in this
chapter it may be a source for confusion, so the new symbol β is used). Radix
2 and radix 4, i.e. 2-ary and 4-ary, modular multiplication methods domi-
nate the literature. For radices greater than 4 the computation becomes more
complicated. However, if these complications are solved efficiently, there is

59

a potential for faster evaluation of modular products and, hence, modular
exponentials by using high-radix methods. Opposed to the description of
the exponentiation methods in Chapter 2 the resource requirements of the
modular multiplication methods in this chapter will not be precisely stated.
The large number of design tradeoffs and possibilities for combining the var-
ious techniques makes this an infeasible task. Instead the chapter will be
of a more descriptive nature. To illustrate the implications of the presented
methods and techniques some of the discussions comprise an analysis and
comparison of examples.

This chapter is divided into eleven sections. Section 3.1 introduces a sim-
ple method for performing modular additions. The purpose of the description
is to give the reader an introduction of the basic types of operations required
in the computation of modular multiplication methods. In Section 3.2 the
representation of integers is discussed. It turns out that the representation of
the operands is very important for the efficiency of addition and subtraction
operations, and for the efficiency of the formation of multiples. In particular,
so-called redundant number representations are useful. Section 3.3 discusses
how a residue modulo m can be used for representing intermediate results
in the computation of modular operations. As for the redundant number
representation the residue representation also introduces a kind of redun-
dancy in the representation. The redundancy in the residue representation
is utilised to achieve an efficient quotient determination. It is also shown
how the rules of modular arithmetic make it possible to replace the basic
modular addition operation by other kinds of basic operations. In Section
3.4 the left-to-right modular multiplication method is treated. This method
is similar to the left-to-right exponentiation method. The basic operation is
of the form (2ks + aib) mod m. Instead of subdividing this basic operation
into a number of modular additions another approach for the computation
is followed: The basic operation is expressed as the intermediate operation
2ks+aib−qim which is subdivided into computation of multiples aib and qim,
and into determination of a quotient digit qi. Section 3.5 shows how a paral-
lel computation of the left-to-right modular multiplication method leads to a
computing time that is about equal to the computing time for SRT division
(e.g. [Kor93a]). Moreover, a hardware architecture for this parallel computa-
tion is presented. Section 3.6 explains a general scheme for the computation
of modular operations. The scheme keeps track of the representations of the
intermediate operands by means of restrictions on the input and output of

60 CHAPTER 3. MODULAR MULTIPLICATION

modular operations. In Section 3.7 the computation of multiples is discussed.
The representations of the operands and the resulting multiple have influence
on the computing time and on the required circuitry for a dedicated hard-
ware implementation. The next three sections are devoted to the quotient
determination operation: Section 3.8 provides an analysis of the interdepen-
dencies of the parameters that characterise the quotient determination. The
implications of the parameter values are discussed. Section 3.9 shows how
a simple scaling of the modulus can be used for improving the parameter
values and, hence, for reducing the complexity of the quotient determina-
tion. Section 3.10 comprises a description of methods for determination of
quotient digits. In particular, methods based on table-lookup are treated
in detail. Furthermore, the quotient determination complexity in modular
multiplication and in SRT division is compared. Finally, the results of this
chapter is summarised and discussed in Section 3.11.

3.1 A Simple Modular Addition Method

To illustrate some of the techniques used for performing modular multiplica-
tion and to introduce some terminology the following straightforward mod-
ular addition method is discussed,

x +Zm y = x + y − qm, where q =

{
0 if x + y − m < 0
1 otherwise.

(3.2)

Here, modular addition is implemented by ordinary integer addition followed
by a modular reduction. The reduction is implemented by ordinary integer
comparison and subtraction. In general, a modular operation can be im-
plemented by applying the related integer operation followed by a modular
reduction. A reduction modulo m of the integer z refers to the process of
computing z mod m. This means to find the non-negative integer r such that
z = qm + r, where 0 ≤ r < m and q is some integer. Modular reduction is
closely related to integer division, where the aim is find the integer q, denoted
z div m, such that z = qm + r, where 0 ≤ r < m for some integer r. Since q
and r are unique for a given pair (z, m) it makes sense to name q and r re-
spectively the quotient and the remainder. In (3.2) a comparison determines
the quotient value. Since x ∈ Zm and y ∈ Zm the sum x + y is restricted
to the range {0, 1, . . . , 2(m − 1)} and, therefore, the quotient is restricted
to the range {0, 1}. It is seen that the quotient is 0 when x + y − m < 0

3.2. INTEGER REPRESENTATION AND ARITHMETIC 61

and 1 when x + y − m ≥ 0. This calculation of a quotient will be called
quotient determination. It is also known as quotient selection. To obtain
an efficient quotient determination the knowledge of the operand ranges is
utilised. In this case a single comparison is sufficient. After the quotient q
has been determined the modular reduction is completed by subtraction of
the multiple qm. Since all operations used in the evaluation of (x + y) mod
m are integer operations (addition, subtraction and comparison) it is natural
to apply well known techniques (e.g. [Kor93a]) for efficient computation of
integer expressions: Assume x, y , and m are binary encoded in n bits and
also the result (x + y) mod m is delivered in a binary encoding. Further
assume that negative integers are represented by two’s complement. Then
all integer operations needed can be performed by an n+1 bit wide addition
unit. In total, two integer additions are used in Equation (3.2): One addition
for computing x + y and one addition for computing (x + y) + (−m). The
comparison is done by inspection of the resulting sign of the latter addition,
so the subtraction and comparison are accomplished by the same operation.

3.2 Integer Representation and Arithmetic

As seen from the simple method in Equation (3.2) modular addition can be
computed by means of integer addition, subtraction and comparison. Hence,
by applying the techniques known from integer arithmetic an efficient com-
putation of modular sums may be obtained. One of the most important
issues in computer arithmetic is the representation or encoding of numbers.
Numbers can be represented in several ways: Outside the community of
computer scientists and electrical engineers the decimal representation is the
most common representation. When computations are executed on elec-
tronic computers the binary representation is better suited. The number
representation has great influence on the efficiency of a computation. Some
representations are better suited for one type of computation while other
representations may be preferable for another. As a simple illustration of
this, consider multiplication by a constant: If a number is binary encoded
multiplication by 2 is obtained by a left-shift of the binary digits. A decimal
encoded number is multiplied by 10 when left-shifting the decimal digits. It
is much more inconvenient to multiply a binary encoded number by 10 or to
multiply a decimal encoded number by 2. In Section 2.1.1 the β-ary encoding
was introduced. Both the binary encoding (β = 2) and the decimal encoding

62 CHAPTER 3. MODULAR MULTIPLICATION

(β = 10) are specialisations of the β-ary encoding. An example of an un-
conventional number representation is the Residue Number System, see e.g.
[Gar59, ST67, Tay84]. Indeed, this representation was implicitly introduced
in Section 2.4 where the Chinese Remainder Theorem was utilised to com-
pute modular exponentials. According to this theorem an integer u in the
range {0, 1, . . . , pq − 1} can be uniquely represented by a pair of residues (u
mod p, u mod q), where p and q are primes. In Section 2.4 it was shown how
an exponential ue mod pq can be efficiently computed in this representation.

Until now, no specific assumptions about the number representation have
been made. One of the advantages when constructing dedicated hardware
to support a particular computation is the possibility to choose between dif-
ferent ways to represent the operands. This freedom is not present when
a standard micro-processor is used for executing the computation. In stan-
dard micro-processors all operands are binary encoded. In the remaining of
this chapter it will be utilised that some arithmetic operations can be per-
formed very efficiently when certain integer representations, different from
the binary encoding, are chosen. There is, however, one limitation on the
representation; it is assumed that the input to a modular exponentiation
and the resulting output are binary encoded. This implies that a conversion
between binary encoding and the representation chosen for the intermediate
operands is necessary. So, before another number representation is applied
in the computation the cost of the conversion must be considered.

3.2.1 Non-Redundant Representation

The β-ary encoding of an integer is an example of a non-redundant fixed-
radix representation [Kor93a, Chapter 1]. Let the integer x be β-ary encoded
as a string of n digits, xn−1xn−2 . . . x0. Then each digit belongs to the digit
set {0, 1, . . . , , β − 1} and the value of x is expressed by

x =
n−1∑
i=0

xiβ
i (3.3)

In this sum the weight of digit xi is the ith power of a fixed integer β, which
is called the radix. The smallest possible value of x is 0 and the largest
possible value is βn − 1. Therefore the range [0;βn − 1] is called the range
of the representable integers. Obviously, all possible values of x are integer

3.2. INTEGER REPRESENTATION AND ARITHMETIC 63

values. In total there are βn different strings with n digits. It is easy to
see that an n-digit string is a unique representation of an integer x: Each
digit xi, i = 0, 1, . . . , n− 1, is uniquely determined by the expression xi = (x
div βi) mod β. Therefore, all βn integers in the range [0; βn − 1]can be
represented by an n-digit string. Since no two different strings represent the
same value, the representation is said to be non-redundant.

The most natural representation of integers in computer systems is the
binary encoding, which is identified as a non-redundant radix 2 representation
with the digit set {0, 1}. However, a string of bits can also be interpreted
as a radix 2k representation with the digit set {0, 1, . . . , 2k − 1}. Then each
group of k bits, starting from the least significant bit, is a radix 2k digit.
The value of such a digit is binary encoded. It is common to denote radix
2k representations high-radix representations whenever k is greater than 1.
Since it is just a matter of interpretation of the meaning of a string of bits
there is no additional cost when a representation is changed between a binary
encoding and a 2k-ary encoding. In the literature on computer arithmetic the
term high-radix multiplication usually refers to a method where the number
of multiplier-bits scanned in each iteration is more than one bit, say k bits.
This corresponds to the 2k-ary exponentiation method from Section 2.1.1.
Similarly, the term high-radix modular multiplication corresponds to the 2k-
ary exponentiation method.

The literature on computer arithmetic contains many different methods
for efficient addition of binary numbers. Since these methods are described
in standard textbooks on computer arithmetic (e.g. [Hwa79, Obe79, Spa81,
Sco85, Kor93a]) and on VLSI design (e.g. [GD85, WE92]) the methods will
not be treated in detail in this thesis. A simple addition method is known
as carry ripple addition. The worst case computing time for this method
is proportional to the operand bit-lengths. In fact, if the bit-lengths are n
bits the computing time is equal to the delay of n full adders. The hard-
ware architecture of a carry ripple adder is simple and very regular; it is
a row of n full adders, where the communication is limited to the nearest
neighbours. The fastest addition methods, e.g. carry lookahead addition,
perform the addition in a time proportional to log2 n. However, the archi-
tectures for these methods are more complex and less regular than a carry
ripple adder. Assuming that negative integers are represented properly, e.g.
by two’s complement, subtraction is accomplished by addition of a negative
integer. Furthermore, comparison is done by subtraction followed by inspec-

64 CHAPTER 3. MODULAR MULTIPLICATION

tion of the resulting sign. Hence, both addition, subtraction and comparison
of non-redundant binary numbers can be done in a time proportional to log2

n. No faster methods for these operations are known. Indeed, according to
Koren [Kor93a, pp. 80–81] theoretical results indicate that the lower bound
for binary addition is logarithmic in the number of bits.

Integer Multiplication and Modular Multiplication

In the beginning of this chapter it was explained how (modular) multipli-
cation can be viewed similarly as exponentiation. It was argued that if the
addition composition is associative the results obtained from exponentiation
can be reused in multiplication. However, integer multiplication is inherently
more efficient than integer exponentiation when the integers are represented
by a fixed-radix representation. E.g. assume the integers are binary encoded
and the bit-length is n. Further, assume the binary left-to-right exponen-
tiation method in Section 2.1 is applied for both exponentiation and mul-
tiplication. The worst case computing time for an exponentiation is n − 1
squarings plus n− 1 multiplications. Integer squaring cannot be done essen-
tially faster than integer multiplication1, so the total time is about 2(n − 1)
multiplications. This indicates that the time for integer multiplication is
about 2(n − 1) additions. But, observe that a squaring operation b ∗ b in
the exponentiation process corresponds to a doubling operation b + b in the
multiplication process. Since doubling can be done by a simple left-shift it is
seen that the time for this operation is negligible in comparison to the time
for a general addition. Hence, the worst case time for integer multiplication
is about (n − 1) additions when the binary method is used. Now, the com-
puting time for doubling is negligible in integer multiplication but how about
doubling in modular multiplication ? According to the simple modular ad-
dition method in Equation (3.2) a modular doubling can be achieved by a
left-shift and a subtraction. The subtraction is needed to perform a modu-

1If some very fast integer squaring method appeared then an integer multiplication
could be implemented by the quarter-square multipliccation method. According to Chen
[Che71] this method was used in analog computation. The method is based on the expres-
sion,

a · b =
(

a + b

2

)2

−
(

a − b

2

)2

Hence, integer multiplication is not significantly slower than squaring.

3.2. INTEGER REPRESENTATION AND ARITHMETIC 65

lar reduction of the left-shifted intermediate result. Even though a modular
doubling is faster than a general modular addition it is not negligible. A
modular doubling requires one integer addition while a general modular ad-
dition requires two integer additions. Hence, the worst case computing time
for modular multiplication performed by the binary method corresponds to
n − 1 plus 2(n − 1) integer additions; a total of 3(n − 1) integer additions.
This is three times more than the computing time for integer multiplication.
If the parallel computation of the binary right-to-left method in Section 2.3
is applied, the computing time for the integer multiplication corresponds to
n integer additions while the computing time for the modular multiplication
corresponds to 2n integer additions.

3.2.2 Redundant Representation

In the previous section the non-redundant radix β representation of an integer
x was defined to be a string of digits xn−1xn−2 . . . x0 where a digit is restricted
to the digit set {0, 1, . . . , β−1}. A redundant radix β representation is char-
acterised by having more than β values in the digit set. Avižienis [Avi61] have
studied a class of redundant representations where the digit set is a symmet-
ric set of negative and positive digit values {−σ,−σ +1, . . . , 0, . . . , σ− 1, σ}
where σ is a positive integer not greater than β−1. If 2σ+1 > β this set has
more than β digit values and, hence, is redundant. Avižienis denotes this
class of redundant representations for signed digit number representation.
The value of a redundant represented integer is given by the same expression
as non-redundant representations in Equation (3.3). As an example, consider
a string of n digits in radix 4 representation with digit set {2, 1, 0, 1, 2} where
d denotes the negative digit value (−d): The range of representable integers
is [−2

3
(4n − 1); 2

3
(4n − 1)]. Each of the 4

3
(4n − 1) integers in this range can

be represented by some n digit string. There are 5n different strings with n
digits, so when n > 1 some integers must be represented by more than one
string. E.g. the strings 12 and 02 both represents the value 2. Avižienis
restricts the largest absolute value σ of a digit by σ ≤ β − 1. Hereby it is
ensured that the representation for a zero valued integer is unique.

The advantage of redundant representations is that the computing time
for addition turns out to be independent on the operand digit length. I.e.
there is no carry ripple effect when two redundant represented integers are
added. The sum is represented by the same redundant representation. To be

66 CHAPTER 3. MODULAR MULTIPLICATION

Figure 3.1: Addition of two redundant represented integers.

more specific, Avižienis shows that if the allowable number of digit values is
greater than or equal to β +2 then the ith sum digit can be determined from
the ith and (i − 1)th operand digits. This means that a carry (or borrow)
cannot ripple more than one digit position. This is illustrated in Figure 3.1.
The feature in redundant addition, that makes the computing time indepen-
dent on the operand digit length, is the possibility for absorbing an incoming
carry without generating a new carry. Assume x and y are encoded in a
redundant radix β representation with symmetric digit set {σ, σ − 1, . . . , σ},
where σ ≤ β−1. Then wi and ci+1 are computed by the unshaded processing
elements in Figure 3.1 such that

xi + yi = wi + βci+1 where wi ∈ {σ − 1, σ − 2, . . . , σ − 1} and
ci+1 ∈ {1, o, 1}.

Now the final sum digit si = wi + ci can be computed by the shaded process-
ing element. The constraints on the values of wi and ci ensure that si belongs
to the digit set {σ, σ − 1, . . . , σ}. Hence, a carry generated at position i will
be absorbed at position i+1 without generating a new carry. Figure 3.1 also
illustrates that the hardware architecture of redundant adders has a very reg-
ular structure where the communication is limited to the nearest neighbours.
In [Avi61] Aviženis also shows that the (least) redundant representation with
β + 1 allowable digit values has similar properties. However, then the ith
sum digit must be determined from the ith, (i − 1)th and (i − 2)th operand
digits.

3.2. INTEGER REPRESENTATION AND ARITHMETIC 67

Another often used redundant representation is called carry save repre-
sentation. A carry save representation is a radix 2 representation with the
asymmetric digit set {0, 1, 2}. The sum of two binary numbers s and c can
be interpreted as a single number in carry save representation by assigning
the sum of the ith bits si + ci to the ith redundant digit. Indeed, the re-
sult of a carry save addition is two binary numbers s and c. A carry save
adder resembles of carry ripple adder. However the carry output from the
full adder at position i is not connected to the carry input of the full adder
at position (i + 1). Instead the carry outputs are part of the result, just as
the sum outputs are part of the result, and the carry inputs are being an
extra operand. So, a carry save adder takes three binary numbers as input
and outputs two binary numbers whose sum is equal to the sum of the three
input numbers. The output is in carry save representation where the ith
digit is encoded as the pair (si, ci). This is illustrated in Figure 3.2 where a
node symbolises a full adder. A carry save adder is also called a “3-2 adder”
or a “3-2 compressor”. These names mirrors the fact that a carry save adder
reduces the representation of a sum from three numbers to two numbers. A
carry save adder cannot be used for addition of two carry save represented
numbers. It may add three binary numbers or it may add a binary number
to a carry save number. For addition of two carry save numbers a 4-2 adder
is required. Obviously, a 4-2 adder can be constructed from two 3-2 adders.

Figure 3.2: A carry save adder.

Redundant addition is much faster than non-redundant addition when
the operands are relatively long. Furthermore, the hardware architectures
of redundant adders are more regular than the architectures of fast non-
redundant adders. Thus, if several additions or subtraction have to be per-
formed on intermediate operands, that may be kept in redundant represen-
tation, redundant adders are preferable with respect to computing time and

68 CHAPTER 3. MODULAR MULTIPLICATION

regularity. In the literature on modular multiplication there are several pro-
posals for utilisation of redundant represented intermediate operands. Most
of these proposals can be grouped into one of three different radix 2 represen-
tations: The carry save representation (e.g. [Miy82, Bak87, GD88, HDVG88,
ICHO89, Mor89, KH90a, IWSD92, OPT93]), the borrow save representation
(e.g. [VVDJ90, TY92, Tak92]), which is identical to the radix 2 signed digit
representation with the digit set {1, 0, 1}, and the delayed carry save rep-
resentation (e.g. [Bri82, Gib88, FDG90, WE90]). The delayed carry save
representation is a slightly modified version of the carry save representation.
There are of course many possible choices of a redundant digit set for a given
radix. Parhami [Par93] has analysed the properties of a generalisation of the
redundant signed digit representation.

Figure 3.3: A Wallace Tree for computing a sum of nine binary numbers.

Utilisation of Redundant Addition in Multiplication

A classic application of redundant addition is integer multiplication. This op-
eration is computed by a number a consecutive additions and only the final
result has to be converted into non-redundant representation. A multiplica-
tion unit that uses the carry save representation is suggested by Wallace in

3.2. INTEGER REPRESENTATION AND ARITHMETIC 69

[Wal64]. The time for performing an integer multiplication by Wallace’s mul-
tiplication unit is proportional to log2 n where n is the operand bit-length.
This computing time is achieved by an architecture that is structured as a
tree of carry save adders. Such a tree of carry save adders is often denoted
a Wallace Tree. The Wallace Tree in Figure 3.3 depicts a tree where each
node is a carry save adder (CSA). The tree is capable of computing a sum
of nine binary encoded numbers in a time equal to the time for four carry
save additions. The sum is in redundant carry save representation which can
be converted to non-redundant representation by a non-redundant addition.
Note that the tree in Figure 3.3 implements a 9-2 adder. Since a multipli-
cation operation is computed by means of a number of additions a Wallace
Tree is useful for obtaining a fast multiplication. Indeed, Wallace’s multipli-
cation unit is remarkable fast. The time for computing the sum of n binary
numbers is comparable to the time for an addition of two n bit numbers by
one of the fastest non-redundant adders. In [TYY85] Takagi et al. describe
a multiplication method that uses a tree of redundant signed digit adders,
and a VLSI implementation of this method is described in [HNN+87].

Multiplier Recoding

Another important application of redundant representations is multiplier re-
coding. Consider the multiplication a·b where the multiplier a is expressed as
n non-redundant radix β digits an−1an−2 . . . a0. Then the multiplication may
be performed by summing together the multiples an−1β

n−1b, an−2β
n−2b, . . . ,

a0β
0b. The number of non-zero multiples is equal to νβ(a), the number of

non-zero digits of multiplier a. In Section 2.1 the function νβ determines the
data-dependent part of the required number of multiplications for performing
an exponentiation. Similarly, in multiplication, νβ determines the number of
multiples to be summed. In worst case νβ(a) is n and, hence, the worst case
number of additions is n − 1. First consider the radix 2 case with digit set
{0, 1}. As hinted by Booth [Boo51] it is possible to reduce the value of ν2(a)
by recoding the multiplier digits into the redundant signed digit set {1, 0, 1}.
Booth’s recoding is based on the observation that a bit sequence of ones in
a can be replaced by a redundant digit sequence containing precisely two
non-zero digits, e.g. 01111 is equal to 10001. This corresponds to replacing
the sum 23 + 22 + 21 + 20 by 24 − 20. So, by recoding the multiplier to a
redundant signed digit set the value of ν2(a) may be reduced. Note, that
the signed digits implies that both a positive and a negative version of the

70 CHAPTER 3. MODULAR MULTIPLICATION

multiplicand b must be present.

In Section 2.5 is mentioned that an exponentiation method, suggested by
Zhang et al. [ZMY88], is based on a recoding of the exponent to the radix
2 digit set {1, 0, 1}. Zhang proves in [Zha93] that this recoding technique
leads a value of ν2(a) that is the least possible. According to [Kor93a, p.104]
such a technique is called the canonical recoding. In 1960 Reitwiesner [Rei60]
proposed a recoding technique that gives the representation of a with minimal
ν2(a). Reitwiesner also proved that a representation having this property is
unique (i.e. Zhang et al’s recoding is identical to Reitwiesner’s recoding) and
is characterised by the following constraints: Let anan−1 . . . a0 be the non-
redundant two’s complement representation of a where bit an determines the
sign of a, i.e. an = 1 if a is negative and an = 0 if a is non-negative. Further,
let the “minimal” encoding of a be denoted a′

na
′
n−1 . . . a′

0. Then a′
i+1 · a′

i = 0
for all i ∈ {0, 1, . . . , n − 1}, i.e. no two consecutively indexed digits are
both non-zero. Hence, the canonical recoding gives the bound ν2(a) ≤ �n+1

2
�

which compared to the non-redundant encoding approximately halves the
worst case value of ν2(a). This means that the number of multiples that
have to be summed in a multiplication may be limited to �n+1

2
� for n + 1

bit multipliers. Consequently, a faster computation must be expected and,
furthermore, for some multiplication units, e.g. units based on a Wallace
Tree, a reduction in hardware consumption is achieved. Reitwiesner also
analyses the average value of ν2(a) when the canonical recoding is applied.
He finds that ν2(a) approximates n

3
for large values of n. If a is non-redundant

encoded the average value is n
2
. The canonical recoding can be recursively

described by the following equations where ci+1 ∈ {0, 1} is a carry propagated
from position i to position i + 1,

ci+1 = (ai + ai+1 + ci) div 2, where c0 = 0 (3.4)

a′
i = ai + ci − 2ci+1 for i ∈ {0, 1, . . . , n}.

It is assumed that an+1 = an, i.e. the sign of the two’s complement represen-
tation of a is extended to position n + 1 during the recoding. This implies
that cn+1 = an. The canonical recoding results in a representation with value

n∑
i=0

a′
i2

i =
n∑

i=0

ai2
i − cn+12

n+1 =
n∑

i=0

ai2
i − an2n+1 =

n−1∑
i=0

ai2
i − an2n,

which, indeed, is the value of the two’s complement representation of a. The
equations in (3.4) show that a carry may ripple from position 0 to position

3.2. INTEGER REPRESENTATION AND ARITHMETIC 71

n and, hence, that the digits a′
i must be computed from right to left. So,

in multiplication methods where the multiplier digits are scanned from left
to right or in methods where all digits must be simultaneously available the
time for the canonical recoding may be significant. In right-to-left methods of
multiplication the canonical recoding can be done on-the-fly while the multi-
plier is scanned. (In [ZMY88, Zha93] the left-to-right binary exponentiation
method is used together with a canonical recoding of the exponent. Even
though the time for the recoding, compared to exponentiation, is negligible it
would be more natural to use the right-to-left method). Although the canon-
ical recoding gives the minimal value of ν2(a) it is not in wide use. Other
recodings, with a worst case value of ν2(a) equal to the worst case value of
the canonical recoding, allow parallel computation of the multiplier digits.

An often used recoding method known as Booth modified recoding is
suggested by MacSorley [[Mac61]. The idea in this method is to recode two
consecutive bits in a two’s complement representation into a single radix 4
signed digit belonging to the set {2, 1, 0, 1, 2}. (This can also be identified
as a radix 4 digit set conversion from the non-redundant digit set {0, 1, 2, 3}
into the redundant digit set {2, 1, 0, 1, 2}). Since a radix 4 digit in the set
{2, 1, 0, 1, 2} can be interpreted as two consecutive radix 2 digits in the set
{1, 0, 1}, where at most one of these digits is non-zero, Booth modified re-
coding also halves the worst case value of ν2(a). A generalisation of Booth
modified recoding, a radix 2k digit set conversion from {0, 1, . . . , 2k−1} into
{2k−1, 2k−1 − 1, . . . , 2k−1}, can be described by the following equations where
i ∈ {0, 1, . . . , n} and c0 = 0,

ci+1 = ai div 2k−1 (3.5)

a′
i = ai + ci − 2kci+1.

The carry ci+1 simply is the most significant bit in the binary encoding of
ai and, therefore, a′

i must belong to {2k−1, 2k−1 − 1, . . . , 2k−1}. Since a′
i is

determined from ai and the most significant bit of ai−1 there is no carry
ripple effect. Consequently, the digits a′

i may be computed left-to-right,
right-to-left or simultaneously. In particular, the radix 4 version of Booth
modified recoding is widely used in the implementation of multiplication
units. The reason is that multiples of the multiplicand b are restricted to the
set {2b, b, 0, b, 2b} and, hence, the multiples needed in the addition are just
shifted versions of b or b. If, instead, the radix 4 multiplier digits are encoded
in the digit set {0, 1, 2, 3} the multiple 3b is source for inconveniences: Since

72 CHAPTER 3. MODULAR MULTIPLICATION

3b cannot be computed by a simple shift operation it must be precomputed
and stored into a table in order not to delay the multiplication operation.

Some references for a more throughout treatment of multiplier recod-
ing and its application in multiplication are [Rub75, VSH89, SG90, Kat94,
Kor94a].

Comparison Operation

The methods for computation of modular addition use integer addition and
integer comparison. In this section it has been shown how redundant rep-
resentations lead to a computing time of addition that is independent on
the operand lengths and, hence, that a very fast addition operation can be
obtained. Unfortunately, a comparison of two redundant represented num-
bers cannot be performed faster than a comparison of two non-redundant
represented numbers. For example, consider a redundant signed digit rep-
resented number as defined by Avižienis. Then a comparison can be done
by a subtraction followed by an inspection of the resulting sign. The sign
of the result is equal to the sign of the most significant non-zero digit and,
consequently, in the worst case all digits must be inspected to find the sign of
the number. This implies that the fastest methods for comparison must re-
quire a computing time that is proportional to the logarithm of the operand
length. Thus, the comparison operation is a critical operation in modular
multiplication methods.

Now, modular reduction and integer division are closely related, so the
techniques known from division may be used in modular reduction too. A
class of division methods is named SRT division after Sweeney, Robertson
[Rob85] and Tocher [Toc58] who independently discovered the method. SRT
division uses subtraction and shifting similar to the paper-and-pencil method.
However, instead of an exact calculation of the quotient digits, which in-
volves a slow comparison operation, an estimate of the quotient digits is
used [Rob85, Atk68]. Opposed to an exact quotient determination a quotient
estimation only uses a few of the most significant digits of the partial remain-
der and the divisor. Therefore, a faster computation can be achieved. The
penalty of using a quotient estimate in modular reduction is that, sometimes,
the result will differ from the correct result by a multiple of the modulus.
This can be illustrated by a version of the simple modular addition method

3.2. INTEGER REPRESENTATION AND ARITHMETIC 73

in Equation (3.2) where an estimate is used.

x +Zm y = x + y − qm, where q =

{
0 if x + y − m − ∆ < 0
1 otherwise.

(3.6)

Assume the comparison x + y − m < 0 in Equation (3.2) is replaced by a
comparison where only a few of the most significant digits are used. This
corresponds to the comparison x + y−m−∆ < 0 where ∆ is the truncation
error. The possible sign and magnitude of ∆ depends on how the number
x + y − m is represented and on the number of truncated digits. If the
representation is the redundant signed digit representation ∆ may take both
positive and negative values, and if the carry save representation is used, ∆
is non-negative. So, if x + y − m − ∆ turns out to be zero, or close to zero,
the correct sign of x + y − m may depend on the sign of ∆ and, hence, the
quotient estimation technique in (3.6) may assign a wrong value to q. In
such a situation the result from Equation (3.6) will be (x + y) mod m ± m.
However, in Section 3.3 it will be demonstrated that the quotient estimation
technique can be applied during the computation of intermediate results.
Efficient estimation of quotient digits is the subject of Section 3.8, 3.9 and
3.10.

3.2.3 Comparison of Non-Redundant and Redundant
Representations

It has been shown that redundant number representations often are preferable
in applications where a large number of additions are needed. Multiplication
is an example of such an application. The time for performing an addi-
tion becomes independent of the operand digit-length. The time for adding
two carry save represented numbers is about equal to the delay of two full
adders. Similar computing times are expected for other radix 2 redundant
represented numbers. The fastest non-redundant addition is proportional to
the logarithm of the operand digit-lengths. Hence, for very long operands the
redundant number representation is superior to the non-redundant number
representation. It has also been shown how a multiplier efficiently can be
recoded into a redundant representation. Hereby, the number of terms to
be summed in a multiplication is about halved. There are, however, some
costs implied by redundant representations. First, an increased hardware
consumption may be expected. The registers for holding a redundant rep-

74 CHAPTER 3. MODULAR MULTIPLICATION

resented number consume more circuitry than registers for non-redundant
represented numbers: Due to the enlarged digit set the circuitry for holding
a single digit must be able to hold more digit values. Second, the enlarged
digit set also implies an increased complexity for the circuitry to add two
redundant digits. Furthermore, even though redundant addition is fast, the
overhead for conversion from redundant into non-redundant representation
should be considered before a redundant representation is applied for a com-
putation. According to Kornerup [Kor94a], a conversion from redundant into
non-redundant representation can be done in a time that is proportional to
log2 n. Further, Kornerup notes, that for any conversion from a redundant
digit set into a non-redundant digit set there exist situations where the most
significant digit of the result depends on the least significant digit of the
number being converted and, hence, such a conversion must take logarith-
mic time. As an example consider a conversion from redundant signed digit
representation into non-redundant representation. This can be achieved by a
non-redundant addition: Split the redundant integer into two non-redundant
integers, such that one integer consists of all positive digits and the other in-
teger consists of all negative digits from the redundant represented integer.
Then these two non-redundant integers are added by a non-redundant adder,
and a conversion into non-redundant representation is achieved.

3.3 Residue Representation and Arithmetic

In the preceeding section it was shown how redundant representations can
lead to very fast addition and multiplication of integers. Unfortunately, com-
parison cannot be performed as fast as addition and, consequently, the com-
parison operation needed in the modular addition method is limiting the
efficiency of modular addition. Further, while integer doubling is obtained
by a simple shift operation, the comparison operation makes modular dou-
bling about just as hard as modular addition. In the preceeding section it
was also discussed how the quotient estimation technique can improve the ef-
ficiency of modular reduction. However, the result from a modular reduction
based on a quotient estimate, see p. 73, may differ from the correct result
by a multiple of the modulus. In the following it will be discussed how these
results can be viewed as other valid representations of the result obtained
from a correct computation.

3.3. RESIDUE REPRESENTATION AND ARITHMETIC 75

Consider a modular reduction of z, i.e. the computation of z mod m. If
the quotient estimation technique is applied the result of the computation
may not be z mod m but, certainly, it will belong to the set

[z] = {x : x = z mod m + k · m, k ∈ Z} = {x : x = z + k · m, k ∈ Z}.
(3.7)

An element x ∈ [z] is called a residue of z modulo m and [z] is called the
residue class of z modulo m. If two elements, say x and y , both are residues
of z module m then x is congruent to y modulo m, which is written by the
notation x ≡ y (mod m), or by x ≡m y. Now, the aim in a modular reduction
of z is to compute the smallest positive residue, denoted z mod m, in [z].
The result of a quotient estimation technique is not necessarily z mod m but,
indeed, it is a residue of z modulo m. Such a residue can be viewed as another
representation of z mod m. By allowing more than a single representation
of z mod m a kind of redundant residue representation is obtained. The
redundancy of this representation must not be mixed up with the redundancy
of the integer representation in Section 3.2.2. Indeed, these two types of
redundancies are independent of each other. The advantage of the redundant
integer representation is a fast addition operation while the advantage of the
redundant residue representation is a fast quotient determination.

The following well known arithmetic rules, e.g. [Knu68, p. 39] or [Den82,
p. 37], show that modular addition, subtraction and multiplication can be re-
placed by the corresponding ordinary integer operations without the residue
class of the result is being changed. Since modular exponentiation is com-
puted by modular multiplication this observation applies to modular expo-
nentiation as well.

x + y ≡m (x + y) mod m

x − y ≡m (x − y) mod m (3.8)

x · y ≡m (x · y) mod m

So, if it is allowed to represent an intermediate result, say z mod m, by other
residues in the same residue class [z] then the basic modular operations may
be simplified. As example consider modular multiplication. This operation is
computed by a number of modular additions. If redundancy is allowed in the
representation of all intermediate results the quotient estimation technique
can be used for obtaining a faster computation. It is only the final result

76 CHAPTER 3. MODULAR MULTIPLICATION

that has to be converted into the (non-redundant) residue in the interval Zm.
Further, observe that if the modular multiplication is part of a computation
of a modular exponential it is not necessary to perform this conversion on
the intermediate modular products.

According to Equation (3.8) there is really no need to complicate the
intermediate computations with modular reductions and, hence, quotient
determinations. This is only required in the final conversion. In fact, an
addition or subtraction of a multiple of m is just a change of representation
in the same residue class,

z + q · m ≡m z mod m, where q ∈ Z.

However, since the cardinality of a residue class is infinite it is necessary
to limit the number of allowable representations in order to limit the hard-
ware consumption for registers and processing elements. Of course, if the
number of intermediate operations is finite and the input is finite a com-
putation will lead to a finite output. But for some modular operations the
operand length may be significant if all intermediate modular operations are
performed by the corresponding integer operation. An extreme example is
modular exponentiation be mod m as used in the RSA crypto system where
the input operands are, at least, 512 bits integers. Without any modular re-
duction of the intermediate results these might achieve lengths up to 512·2512

bits! (This is a tremendous huge number. The reader is encouraged to esti-
mate the number of atoms in the complete universe and make conclusions of
his/her own). A less extreme example is modular multiplication (a · b) mod
m. If a and b are n bit numbers then the product a · b may consume up to
2n bits. There are, indeed, several proposals for computing (a · b) mod m
by an ordinary integer multiplication followed by a modular reduction, e.g.
[NS81, MA85, KH88, Eve90, Sau92]. In particular the early designs of de-
dicated hardware for modular exponentiation uses this strategy for modular
multiplication, e.g. [Riv80, ST83, VVDJ90]. Compared to a computation
method based on the simple modular addition method, described in Section
3.1, these methods require an addition unit and registers that must be able
to handle operands of double the length. Hence, an increased circuit size
must be expected for dedicated hardware implementations of these modular
multiplication methods. Furthermore, as will be shown in Section 3.5, the
computing time for performing a modular reduction z mod m by a SRT divi-
sion method is about equal to the computing time for performing a modular

3.4. LEFT-TO-RIGHT MODULAR MULTIPLICATION METHOD 77

multiplication (a · b) mod m by a similar method. So, there seems to be no
reasonable argument in favour of splitting the modular multiplication opera-
tion into an ordinary integer multiplication followed by a modular reduction.

The quotient determination method controls the range of the intermedi-
ate operands. The smallest range is obtained by an exact calculation of the
quotients while the estimation technique leads to an increased range and,
consequently, an increased hardware consumption. In general, the operand
range increases with the “inaccuracy” of the quotient determination while the
time for determining the quotient is expected to decrease. Further, the final
conversion of a result into a residue in the range Zm increases in complex-
ity when the range of the intermediate operands increases. So, the decision
on the allowable range of intermediate operands must be a tradeoff between
the hardware consumption, the complexity of quotient determination and
the complexity of the final conversion. In some computations, e.g. modular
exponentiation, the computation is dominated by many intermediate oper-
ations and, hence, the computing time for performing the final conversion
may be neglected.

3.4 Left-to-Right Modular Multiplication

Method

Nearly all contributions in the literature on modular multiplication methods
are variations on the β-ary left-to-right exponentiation method described by
Equation (2.7) in Section 2.1.1. In this chapter the radix is restricted to a
power of two, i.e. β = 2k for some integer k > 0. The 2k-ary left-to-right
modular multiplication method can be described by the congruence,

(a · b) mod m ≡m 2k(· · · 2k(2k(an−1b) + an−2b) + · · ·) + a0b. (3.9)

The operation (a · b) mod m is a specialisation of the general operation
(2knr + a · b) mod m, which can be described by

(2knr + a · b) mod m ≡m 2k(· · · 2k(2k(2kr + an−1b) + an−2b) + · · ·) + a0b.
(3.10)

Both the computation of (3.9) and of (3.10) can be done by an intermediate
operation that computes a residue modulo m of expressions of the form 2ks+

78 CHAPTER 3. MODULAR MULTIPLICATION

aib, i.e. an operation that computes 2ks + aib − qim for some quotient digit
qi

2. This operation is, indeed, a very useful and important operation: If a · b
is zero the operation becomes 2ks−qim, which is the basic operation in some
division methods [Rob85], and if qim is zero for all i, the operation becomes
2ks + aib which is the basic operation in left-to-right integer multiplication
methods. Hence, the basic operation 2ks + aib − qim of the left-to-right
modular multiplication method can be seen as a merge, or generalisation, of
the known basic operations of integer multiplication and division.

As described in Section 3.1 a computation of a residue modulo m of
2ks+aib may be subdivided into a number of modular doublings and modular
additions. Indeed, this is the approach in [TY92] where Takagi and Yajima
develop a radix 2 and a radix 4 modular multiplication method. Takagi and
Yajima use redundant signed digit representation to achieve a fast addition
and, moreover, by allowing residues in the range]−m; m[they can utilise the
quotient estimation technique in the computation. Another approach is to
postpone the quotient determination until after the calculation of 2ks + aib
instead of using modular doubling and modular addition as primitives in
the computation. This is the most commonly used approach. In the next
section it will be shown that the computation of the intermediate operation
2ks+aib−qim can be made about as fast as the computation of 2ks−qim. The
latter operation computes a residue modulo m of 2ks which corresponds a
modular k-fold doubling. So, exemplified by the case where k = 1, this shows
that it is advantageous to postpone the modular reduction until after the
doubling and the addition is performed. Apparently, the additional time for
performing the addition operation is vanishing in comparison with the time
for just performing a modular doubling. This may also be the reason that
right-to-left modular multiplication method, which is similar to the right-to-

2Lu et al. [LHLH88] have proposed a generalisation of (a · b) mod m into (a · b + c)
mod m. Lu et al. use this operation in place of modular multiplication in the left-to-right
exponentiation method and achieve a method for evaluation of polynomials module m. If
c is 2k-ary encoded, c =

∑n−1
i=0 ci2ki, the intermediate operation in the computation of

(a · b + c) mod m becomes (2ks + ci) + aib− qim. The computation of 2ks + ci is obtained
by the usual left-shift of s with the modification that ci, in place of a zero valued digit,
is shifted into the least significant digit position of s. So, compared to the intermediate
operation 2ks + aib − qim Lu et al.’s generalisation do not increase the computationally
efforts.

In summary, if Lu et al.’s generalisation is unified with the generalisation in (3.10) it
is seen that a residue modulo m of the expression (2knr + a · b + c) may be computed by
intermediate operations of the form (2ks + ci) + aib − qim.

3.5. UTILISATION OF PARALLEL COMPUTATIONS 79

left exponentiation method in Section 2.1.1, only has been considered in a
single article [FDG90]. Suppose the parallel computation of the right-to-left
method in Section 2.3 is utilised. Then, two basic operations of the form
2ky− qjm and x+aiy− qim, respectively, are computed in parallel. The first
of these operations is seen to be identical to the above discussed modular
k-fold doubling operation. So, unless some method, that is faster than the
computation of 2ks + aib − qim, is proposed for the computation of 2ks −
qim there will be no benefit of using the right-to-left modular multiplication
method—not even if the parallel computation is utilised.

As seen from Equation (3.9) the left-to-right modular multiplication can
be computed by n executions of the intermediate operation 2ks + aib − qim
where n denotes the number of radix 2k digits required to represent the
multiplier a. Assume / binary digits is sufficient to represent the value of a.
Then, compared to a radix 2 modular multiplication method, the required
number of intermediate operations can be reduced to about �

k
by using a

radix 2k version of the operation. Indeed this observation is the motivation
for considering the use of high radices: The aim of the high-radix modular
multiplication approach is to obtain a faster computation by reducing the
required number of intermediate operations. However, if the computing time
for a single radix 2k version of the intermediate operation increases by a rate
greater than or equal to k, there may be no point in using a high radix. The
remainder of this chapter is devoted to efficient computation of intermediate
operations of the form 2ks + aib − qim or of a form similar to this.

3.5 Utilisation of Parallel Computations

Using the notation introduced in Section 2.3 the left-to-right method in Equa-
tion (3.9) can be described by a set of recursive equations,

(a · b) mod m ≡m S0, where Si = Ri − qim, Sn = 0,
Ri = 2kSi+1 + aib.

(3.11)

The value of Ri is the result of a “shift-and-add” operation and Si denotes
the result of a modular reduction of Ri. The quotient digit qi must be de-
termined from the the value of Ri and modulus m. In Figure 3.4 a slice of
the dependence graph for this method is depicted. Note that the dependence
graph is more “fine-grained” than the equations in (3.11), i.e. there is more

80 CHAPTER 3. MODULAR MULTIPLICATION

nodes in the graph than there is equations in (3.11): The black node cor-
responds to an equation that expresses the determination of quotient digit
qi and the shaded nodes correspond to equations that compute the multi-
ples aib and qim. To keep the notation simple these equations have been
left out. The dashed lines in the figure symbolise the start-point of a new
cycle in the computation of the recursive equations. The computation of the
nodes between two consecutive start-points is denoted the computation of a
recursion cycle. As seen from the data dependencies the computing time for
a single recursion cycle is determined by the time for adding the multiple
aib to 2kSi+1, the time for determining a quotient digit qi, the time for com-
puting the multiple qim, and the time for subtracting qim from Ri. Note,
that the multiple aib can be computed in parallel with the other operations
and, hence, the time for computing aib has no influence on the time for a
recursion cycle. This is because ai and b are part of the input to the modular
multiplication, so the only demand is that the computation of aib should by
completed before it is needed in a recursion cycle.

Figure 3.4: Slice of dependence graph for the left-to-right method based on
a recursive evaluation of Si = (2kSi+1 + aib) − qim.

Now, it is possible to reduce the recursion cycle time by rearranging
the computation of the values in (3.11). In Figure 3.4 it is seen that the
determination of qi is delayed by the computation of Ri = 2kSi+1 + aib. It
is, however, not necessary to perform the addition of aib after the modular
reduction of Ri+1: It may be done before the subtraction of qi+1m, and
in parallel with the determination of qi+1 and the computation of multiple
qi+1m. Another set of recursive equations that mirrors such a computation

3.5. UTILISATION OF PARALLEL COMPUTATIONS 81

can be developed by rewriting (3.11),

Ri = 2kSi+1 + aib

= 2k(Ri+1 − qi+1m) + aib

= (2kRi+1 + aib) − 2kqi+1m

= Ti − 2kqi+1m, where

Ti = 2kRi+1 + aib.

Hence, the computation of Ti can be performed in parallel with the compu-
tation of 2kqi+1m. If the initial value Sn = 0 is replaced by the initial value
Rn = 0, (3.11) can be written as,

(a · b) mod m ≡m S0, where S0 = R0 − q0m,
Ri = Ti − 2kqi+1m, Rn = 0,
Ti = 2kRi+1 + aib

Further, to simplify these equations the recursion depth is enlarged by one,
which means i ∈ {−1, 0, . . . , n − 1}, and the multiplier digit a−1 = 0 is
introduced. This gives,

R1 = T1 − 2kq0m = (2kR0 + a−1b) − 2kq0m = 2k(R0 − q0m).

Therefore, the result S0 can be expressed as R−1 div 2k which is easily ob-
tained by a right-shift of R−1. Hereby, the rearrangement of (3.11) is com-
pleted and the following set of recursive equations is obtained,

(a · b) mod m ≡m R−1, where Ri = Ti − 2kqi+1m, Rn = 0,
Ti = 2kRi+1 + aib. a−1 = 0

(3.12)

The new dependence graph in Figure 3.5 shows how a parallel computation
of Ti and of 2kqi+1m can be utilised to improve the computing time for
a recursion cycle. Indeed, assuming that the most time consuming path
in the figure is the path through the quotient determination node and the
node computing the multiple 2kqi+1m, a recursion cycle time for modular
multiplication that is comparable to the recursion cycle time of SRT division
methods is achieved. As long as the computing times for determination
of a quotient digit and for computation of a multiple 2kqi+1m have not be
discussed, the recursion cycle times cannot be properly compared. However,
this will be done in detail in the sections from 3.7 to 3.10. The computing

82 CHAPTER 3. MODULAR MULTIPLICATION

time for a SRT division recursion cycle turns out to be about equal to the
computing time for a modular multiplication recursion cycle. According to
(3.12) the cost of using this computation strategy is an additional recursion
cycle. For large operands this additional cost is vanishing.

Figure 3.5: Slice of dependence graph for the left-to-right method based on
a recursive evaluation of Ri = (2kRi+1 + aib) − 2kqi+1m.

It should be mentioned that the method illustrated by Figure 3.5 is similar
to the method described in the article in Appendix A. This article describes
a hardware architecture that, indeed, is a direct mapping of the five nodes in
a single recursion cycle onto five processing elements. In Figure 3.6 the hard-
ware architecture is shown. The VLSI processor described in Chapter 4 has a
very similar hardware architecture. However, since the pipelined exponentia-
tion method, see Section 2.3.1, requires that two modular multiplications are
performed simultaneously the architecture is pipelined. This implies that the
computation of a recursion cycle is divided into two sub-computations and
that a pipeline buffer is inserted somewhere in the architecture. Furthermore,
the architecture of the VLSI processor has an additional multiplier register.

Assume a modular multiplication is based on (3.12) and assume the com-
putation utilises the possibilities for improving the recursion cycle time by
performing some of the operations in parallel. Then, as indicated by the
dependence graph in Figure 3.5 and by the hardware architecture in Figure
3.6, the computing time is determined by the time for determining a quo-
tient digit qi+1, the time for computing the multiple 2kqi+1m, and the time
for subtracting this multiple from Ti. These three operations will be the issue
of the discussion in the following sections.

3.6. REPRESENTATION OF INTERMEDIATE OPERANDS 83

Figure 3.6: Hardware architecture for computation of Ri = (2kRi+1 + aib)−
2kqi+1m.

3.6 Representation of Intermediate Operands

In the light of the discussions on integer representations in Section 3.2 and on
residue representations in Section 3.3 a general scheme for methods of com-
putations of modular operations can be made. The scheme described below
is based on the very general, and simple, observation that if the benefits of
converting a computation into another “domain” are greater than the costs
imposed by the conversion into and back from this domain then a more effi-
cient computation is achieved. Furthermore, the scheme is directed toward
recursive or iterative computation methods where a modular operation is
computed by repeated application of an intermediate operation. Indeed, all
the methods for computation of modular operations considered in this thesis
have this property: Modular exponentiation is computed by repeated appli-
cation of modular multiplication, and modular multiplication is computed by
repeated application of an intermediate operation, e.g. 2kRi+1+aib−2kqi+1m.

Stimulus: All inputs that may be a result from a previous application of the
present modular operation are imposed by a restriction on the residue
range and on the integer representation. Denote this restriction by D.

Response: The result from the present modular operation must fulfil re-
striction D. This ensures that the present modular operation may
be invoked repeatedly without any concerns about the validity of the
residue range or integer representation of the intermediate results.

84 CHAPTER 3. MODULAR MULTIPLICATION

Method: The present modular operation is computed by means of repeated
application of an intermediate modular operation. First, if the interme-
diate operation has a restriction on the input values that differs from
D, say E a conversion of the input values from D into E must be per-
formed. Then the intermediate operation can be applied repeatedly
until the computation is completed. Finally, a conversion of the result
from E back to D is done.

As example, consider the evaluation of modular exponentials be mod m in
the RSA crypto system. In this application D denotes non-redundant bi-
nary represented integers in the range Zm. The intermediate operation in
exponentiation is a multiplication operation with the restriction E. An often
used restriction on the multiplier, the multiplicand and, hence, the resulting
product is that these must be non-redundant binary represented integers in
the residue range [0; 2m[. Since D is included in E no conversion is needed
before the intermediate modular multiplication operations are applied. A
conversion of the final result from E into D is, however, required. This can
be accomplished by a single non-redundant subtraction of m.

Until now, the only restriction on the quotient digit qi is that it must be an
integer. However, if the allowable range of residues is bounded an enhanced
restriction on the quotient determination is imposed. Suppose the range of
residues is bounded to the symmetric range [−αm; αm]3. Then the quotient
determination in (3.11) and in (3.12) may be described by the operation,

{ Determine integer qi such that |Ri − qim| ≤ αm }. (3.13)

Obviously, the residue range must include at least m integers, so α ≥ 1
2
. The

parameter α, in some sense, specifies the redundancy of the residue range.
If α = 1

2
the residue range is non-redundant and the quotient estimation

technique cannot be applied. For increasing values of α the computational
efforts required to perform the quotient determination in (3.13) are expected
to be decreasing. However, the complexity of the quotient determination also

3The notation and analysis in this chapter is inspired by Kornerup’s description in
[Kor93b]. Kornerup considers symmetric ranges because he uses a redundant signed digit
integer representation with digit set {σ, . . . , σ} to encode the multiplier digits ai and the
quotient digits qi. There are several descriptions of modular multiplication methods that
use non-negative residue ranges and non-negative digit sets. The article in Appendix A is
one example. In [Wal91a] Walter presents an analysis of a high-radix modular multiplica-
tion method with non-negative residue ranges and non-negative digit sets.

3.6. REPRESENTATION OF INTERMEDIATE OPERANDS 85

depends on the range of Ri. If this range is large compared to [−αm; αm]
the quotient digit set, i.e. the set of quotient digit values that may be the
result of (3.13), will be comparatively large. Therefore, the complexity of
the quotient determination is expected to increase for increasing cardinality
of the quotient digit set, too. Also the complexity of the computation of
multiples qim is increasing for increasing cardinality of the quotient digit
set. In the following, the range [−δαm; δαm] will denote the range of Ri,
and qmax will denote the maximal required absolute value of a quotient digit
in (3.13), i.e. |qi| ≤ qmax. With these range restrictions imposed on the
intermediate operation 2kSi+1 + aib− qim the computation can be described
as,

Algorithm 3.6—1 (Intermediate operation 2kSi+1 + aib − qim)

Stimulus: Si+1, ai and b, where |Si+1| ≤ αm and |aib| ≤ (δ − 2k)αm.

Response: Si, where |Si| ≤ αm.

Method: Ri := 2kSi+1 + aib;
{ Determine integer qi such that |Ri − qim| ≤ αm and |qi| ≤ qmax }
Si := Ri − qim;

Note that no restrictions on the integer representation of Si and Si+1 are
stated in this description. However, in order to obtain fast addition and
subtraction a redundant representation is usually applied. The range restric-
tion on aib ensures that |Ri| ≤ δαm. Obviously, δ ≥ 2k. In the same way,
and with the same comments, the computation of the intermediate operation
2kRi+1 + aib − 2kqi+1m can be described by,

Algorithm 3.6—2 (Intermediate operation 2kRi+1 + aib − 2kqi+1m)

Stimulus: Ri+1, ai and b, where |Ri+1| ≤ δαm and |aib| ≤ (δ − 2k)αm.

Response: Ri, where |Ri| ≤ δαm.

Method: Ti := 2kRi+1 + aib;
{ Determine integer qi+1 such that |Ri+1 − qi+1m| ≤ αm and |qi+1| ≤
qmax }
Ri := Ti − 2kqi+1m;

86 CHAPTER 3. MODULAR MULTIPLICATION

The computing time for these intermediate operations depends on the time
for performing addition and subtraction. As seen from the range restrictions
the operand lengths can be expected to be longer than modulus m. Hence,
in applications with moduli of several hundreds of bits, as in the RSA crypto
system, the only reasonable choice of addition techique is redundant addition
when aiming for fast modular multiplication. This implies that the operands
S, R and T in the above descriptions are redundant represented. The times
for computing multiples and for determining quotient digits also have influ-
ence on the total computing time for the above intermediate operations. The
next section will discuss methods for computation of multiples. Hereafter,
the interdependencies of α, δ and qmax will be made clear and techniques for
estimation of quotient digits will be discussed.

3.7 Computation of Multiples

In Section 3.5 it was seen that a fast computation of multiples qim, or
2kqi+1m, is important for obtaining a fast recursion cycle time in the mod-
ular multiplication methods. In this section the computation of multiples of
modulus m and of multiplicand b will be discussed. There are, in general,
three issues to consider in the approaches to camputation of the multiples:
The digit set for the multiplier digit ai and the quotient digit qi, the inte-
ger representation of the multiplicand, and the integer representation and
residue range of the resulting multiple.

3.7.1 Multiplier Digit Set and Quotient Digit Set

If a digit set is restricted to zero and to powers of two, e.g. {2, 1, 0, 1, 2}
the computation of a multiple is particularly easy. Then, as mentioned in
Section 3.2.2 page 71, the computation of a multiple requires, in worst case,
a simple shift of b or b. However, if only powers of two are accepted as valid
digit values the radix 2k is bounded to 2 or to 4. This is one of the main
reasons that radix 2 and radix 4 modular multiplication methods dominate
the literature. In fact, the only dedicated hardware construction that ap-
plies a high-radix method with radix greater than 4 is the VLSI processor
described in Chapter 4 where the radix is 32. In this processor the multiplier
digit set is {0, 1, . . . , 31} and the quotient digit set is {0, 1, . . . , 42}. Instead

3.7. COMPUTATION OF MULTIPLES 87

of precomputing a table of the possible multiples aib and qim these multi-
ples are computed “on-the-fly” when they are needed in each cycle of the
multiplication algorithm. The drawback, compared to the precomputation
approach, is an increased computing time for a cycle in the multiplication.
However, in the precomputation approach additional time for precomputing
the tables must be included in the total computing time. Furthermore, when
the multiplication method is hardware implemented the circuitry for tables
of these sizes consumes a significant area—an area that, in this radix 32
implementation, is estimated to be significantly larger than the area for the
circuitry to compute the multiples.

Now, suppose a hardware implementation is constructed and there is
room for a table of precomputed multiples. How is this table best utilised?
According to Section 3.5 the computation of aib can be performed in parallel
with the quotient determination and with the computation of a multiple of
m, so the computing time for aib is not as essential as the computing time
for qim. Furthermore, a precomputation of the possible values of qim is only
required once for each change of m. In modular exponentiation the modulus
is fixed for each modular multiplication, so the additional time for performing
this precomputation is negligible. This is not the case if the table is used for
precomputed values of aib. Consequently, the best solution for a hardware
implementation is a “hybrid” consisting of a table for holding precomputed
values of qim and consisting of circuitry for on-the-fly computation of aib.

The principle behind the technique for computation of multiples in the
VLSI processor is described in the articles in Appendix A and B. The tech-
nique can be identified as a multiplier recoding combined with a redundant
addition by a Wallace Tree (see Section 3.2.2): In the processor a single
radix 32 digit, say qi, in the set {0, 1, . . . , 42} is recoded into three radix 4
digits d0, d1, d2 such that qi = 42d2 + 41d1 + 40d0 and d0, d1 ∈ {1, 0, 1, 2} and
d2 ∈ {0, 1, 2}. Then the multiple qim is computed as the sum of the three
terms 42d2m, 41d1m and 40d0m. Since all three terms merely are shifted ver-
sions of m or m they are easy obtainable. The sum is computed by a carry
save adder which, indeed, is a three-input Wallace Tree. Thus, the time for
computing a multiple is equal to the recoding time plus the time for adding
three integers by a redundant carry save adder.

It should be noted that the computation scheme used in the VLSI proces-
sor can be improved: As described by Kornerup in [Kor93b] a radix 64 digit
in the symmetric set {42, . . . , 42} can be recoded into three radix 4 digits

88 CHAPTER 3. MODULAR MULTIPLICATION

in the set {2, 1, 0, 1, 2} and, hence, the radix can be increased from 32 to 64
without increasing the time for computing a multiple. In general, if a radix
22p digit qi is restricted to the symmetric set of digit values {qmax, . . . , qmax},
where qmax ≤ 2

3
(22p − 1), then qi can be recoded into p radix 4 digits in the

set {2, 1, 0, 1, 2} and the corresponding multiple can be computed as a sum
of p terms. A fast way of computing this sum is to use a Wallace Tree or a
similar tree that is constructed by redundant adders.

In the above discussions on how to compute multiples two alternatives
are mentioned: Precompute a table or use a multiplier recoding technique
combined with a tree of redundant adders. If it is advantageous for a concrete
implementation these alternatives may be combined, such that a small table
of precomputed multiples can be used as input to a tree of adders. For
example, if the value of 3m is precomputed all multiples qim where qi ∈
{63, . . . , 63} can be expressed as a sum of three terms such that qim =
42d2m+41d1m+40d0m and d0, d1, d2 ∈ {3, . . . , 3}. Hence, by precomputing
the multiple 3m it is possible to compute a wider range of multiples by the
same tree of redundant adders.

3.7.2 Representation of Multiplicand and Modulus

The representation of b an m has influence on the time and on the circuitry
required to compute the multiples aib and qim. Almost all proposed methods
for modular multiplication use a non-redundant binary encoding of b and m.
Regarding the representation of modulus m this is natural since, mostly, m
is part of the input for an application that performs some modular opera-
tions. Also, if modular multiplication is viewed as an application in its own
the multiplicand b may be assumed to be non-redundant binary represented.
However, if b is an intermediate operand, as in the computation of modu-
lar exponentials, it is a result from a previous computation. Therefore, if
redundant adders is used in the multiplication, a conversion from the inter-
mediate redundant representation into non-redundant binary representation
is required after each multiplication. This will enlarge the total computing
time. In modular exponentiation it is not even possible to utilise a compu-
tation scheme where the next multiplication is performed in parallel with a
conversion of the current result: In all the exponentiation methods presented
in Chapter 2, the result from the current modular multiplication is used as
multiplicand in the immediate succeeding multiplication.

3.7. COMPUTATION OF MULTIPLES 89

Redundant Representation of the Multiplicand

As a consequence of this conversion overhead it is suggested in the article in
Appendix B that no conversion performed after each modular multiplication
and, therefore, that the multiplicand b is redundantly represented. Tagaki
and Yajima [TY92, Tak92] have proposed a radi.x 4 modular multiplication
method that is based on the same idea. Also Morita [Mor89] uses a redundant
representation of the intermediate operands in a radix 4 method. However,
in Morita’s method the sign of the result is inspected after each multiplica-
tion. Since such an inspection, or comparison, is about as fast (or slow) as
a conversion into non-redundant representation Morita does not get full ad-
vantage of the redundant representation. The penalty for using a redundant
representation of b is a more complicated computation of the multiple aib.
For example, if b is in carry save representation it is encoded in two non-
redundant binary integers bs and bc such that b = bs + bc. This implies that
the formation of multiple aib expands to a formation of two multiples plus an
addition, aib = aibs + aibc. Hence, if a tree of adders is used for computing
aib, as described in Section 3.7.1, it must be able to add twice as many terms
as in the case of a non-redundant represented multiplicand. This means an
increased computing time and an increased hardware consumption for the
computation of aib. However, as explained in Section 3.5 the computation of
aib may be performed in parallel with the other computations, so the time for
a recursion cycle does not have to be affected by a redundant representation
of multiplicand b.

The VLSI processor in Chapter 4 uses a non-redundant binary represen-
tation of the multiplicand. To perform a conversion from carry save repre-
sentation into this non-redundant binary representation a binary adder has
been included in the architecture. The article in Appendix C lists the area
consumption of various parts of the processors circuitry. In the article the
binary adder is denoted a “high-speed adder”. It is seen that this adder
consumes about 14 percents of the area occupied by circuit cells. Suppose
the processor is using the carry save representation for both the multiplicand
and the multiplier. Then there is no need for the binary adder since the final
conversion into non-redundant representation may be performed by a full
adder during the process of outputting the result serially from the processor.
The additional circuitry required to handle carry save represented multipli-
cands and multipliers is three registers for holding the operands (the proces-
sor utilises the pipelined computation of modular exponentials described in

90 CHAPTER 3. MODULAR MULTIPLICATION

Section 2.3.1, hence the circuitry includes one multiplicand register and two
multiplier registers), a unit for computing a multiple (two 4-1 multiplexers,
a 3-1 multiplexer and a carry save adder), and two carry save adders for
adding the multiples aibs and aibc. The additional area for this circuitry is,
according to the data in the article, about equal to 2.2 times the area of a
binary adder. Hence, in total such a modification will require an extra area
corresponding to 1.2 times the size of a single binary adder; a total area
expansion of about 17 percents. How much, then, is the total computing
time improved? The VLSI processor uses 115 recursion cycles to perform a
modular multiplication plus a time corresponding to 7 recursion cycles for
the conversion. So, the computing time for this particular processor may be
improved by about 6 percents.

Figure 3.7: Slice of dependence graph for the left-to-right method based on
a recursive evaluation of Ri = ((2kRi+1 + aibs) + aibc) − 2kqi+1m.

Time-Multiplexed Computation

In the VLSI processor the overhead for conversion is about 6 percents. This
processor uses a radix 32 multiplication method. But, if higher radices is
used for the implementation the time spend for conversion will be more sig-
nificant and, regarding the computing time, the advantage of using redun-
dant represented multiplicands will be greater. The drawback of using even
higher radices is an increase of hardware consumption. Motivated by this, a

3.7. COMPUTATION OF MULTIPLES 91

computation schedule that reduces the required amount of circuitry is pro-
posed in the article in Appendix B. When the multiplicand is redundantly
represented, e.g. in carry save representation, the intermediate operation
2kRi+1 + aib − 2kqi+1m expands to 2kRi+1 + aibs + aibc − 2kqi+1m. A slice
of the dependence graph for this operation is shown in Figure 3.7. As indi-
cated in the figure the dependence graph can be mapped onto three process-
ing elements: The white nodes are mapped onto a processing element that
performs redundant addition, the shaded nodes are mapped onto an element
that computes multiples, and the black node is mapped onto an element that
performs the quotient determination. The computation of a single recursion
cycle is then scheduled into three sub-cycles as shown by the numeration of
the dashed lines. This computation schedule can be identified as a time-
multiplexed computation schedule where three additions are performed by
a single shared processing element and, similarly, the computations of three
multiples are performed by another shared processing element.

Figure 3.8: Hardware architecture for time-multiplexed computation of Ri =
((2kRi+1 + aibs) + aibc) − 2kqi+1m.

92 CHAPTER 3. MODULAR MULTIPLICATION

A hardware architecture for the time-multiplexed computation of 2kRi+1+
aibs +aibc −2kqi+1m is shown in Figure 3.8. The processing element denoted
REC performs the recoding of the multiplier. This recoding is not stated ex-
plicitly in the recursive equations describing the computation method, but,
as mentioned in Section 3.7.1, it is used for obtaining an efficient computation
of multiples. An example is the radix 4 recoding from carry save representa-
tion into the digit set {2, 1, 0, 1, 2} described by Morita in [Mor89]. A similar
proper encoding of the quotient digit is assumed to be performed during
the quotient determination by the black processing element. To simplify the
computation of the multiples aibs, aibc and −2kqi+1m into a computation of
the general form xiy where xi is some radix 2k digit and y is some full-length
operand, the value of modulus m has been replaced by −2km. This makes
the architecture of the shaded processing element simpler. Although it is not
illustrated at Figure 3.8 the computation performed by the white processing
element may by simplified too: The white processing element performs ad-
ditions of the general form y + z and 2ky + z, where y and z denote some
full-length operands. If k

3
is an integer value, the computation of the white

processing element can be simplified to a single type of addition with the
general form 2

k
3 y + z. This is seen by the following rewriting,

((2kRi+1 + aibs) + aibc) − 2kqi+1m =

2
k
3 (2

k
3 (2

k
3 Ri+1 + ai2

− k
3 bs) + ai2

− 2k
3 bc) − 2kqi+1m

Thus, if the right-shifted version 2−
2k
3 bs is replacing bs and 2

k
3 bc is replacing

bc in Figure 3.8 the simplification is obtained. The part of the architecture
in the dashed box shows the extra multiplier required if the pipelined com-
putation of exponentials is supported by the architecture. This pipelined
computation also requires that each processing element is pipelined into a
two-stage pipeline and, hence, that additional pipeline buffers must be in-
serted into each processing element.

The time for computation of a recursion cycle by the time-multiplexed
computation schedule is equal to the sum of the times for the three sub-cycles
in Figure 3.7. This time can be written as,

max(white, shaded) + max(white, shaded, black) + max(white, shaded),
(3.14)

where white, shaded and black are synonyms for the computing time of an
operation performed by a processing element of the corresponding colour.

3.7. COMPUTATION OF MULTIPLES 93

Using the same notation, the computing time of a recursion cycle performed
by Algorithm 3.6–2, and described by the dependence graph in Figure 3.5,
Section 3.4, can be written as,

white + max((black + shaded), white). (3.15)

Now, to be able to compare the recursion cycle time of these methods it
is assumed that the computing times for the processing elements are or-
dered by white ≤ shaded ≤ black. The validity of this assumption is not
obvious. However, if the radix is sufficiently large the computation of a mul-
tiple includes a redundant addition and, hence, it is reasonable to assume
white ≤ shaded. Further, as will be discussed in Section 3.10, the time for
determination of a quotient digit qi+1 is comparatively large for all known
methods that are feasible to implement in hardware. If this assumption is
accepted the recursion cycle time in (3.14) becomes shaded + black + shaded
and the time in (3.15) becomes white + black + shaded. So, the recur-
sion cycle time is increased by a time corresponding to shaded – white when
the multiplicand and the multiplier is redundant represented and the time-
multiplexed computation schedule is used. To make any comparisons of the
resulting total computing time for a modular multiplication it is necessary to
know the concrete times shaded and white in the time-multiplexed method
and the concrete time for the conversion into non-redundant representation
required by the method in Figure 3.5. Compared to the architecture of
the latter method the architecture in Figure 3.8 requires three extra regis-
ters: two registers for holding redundant representations of a and b and one
unspecified register, M , for holding multiples in some representation. The
circuitry for the registers holding the digits ai and qi+1 are negligible. On the
other hand the number of white and shaded processing elements are halved
and there is no longer a need for circuitry that implements the conversion
from redundant into non-redundant representation.

It should be noted that the time-multiplexed computation schedule also
can be applied for computations where the multiplier and multiplicand is
non-redundant represented. Indeed, if these operands are non-redundant rep-
resented the hardware architecture is reduced by one of the registers holding
bs, or bc and by one of the registers holding as or ac. Then, compared to
the architecture in Figure 3.6 the architecture in Figure 3.8 requires an extra
register M for holding multiples while the number of white and shaded pro-
cessing elements are halved. Further, if the computation of aib is performed

94 CHAPTER 3. MODULAR MULTIPLICATION

in sub-cycle 2 (see Figure 3.5) the computing time for a recursion cycle in
the time-multiplexed computation schedule in (3.14) becomes white + black
+ shaded which is equal to the time in (3.15). Hence, when the multiplier
and multiplicand are non-redundant represented the time-multiplexed com-
putation schedule results in the same computing time and, moreover, in a
reduced hardware consumption.

The above considerations on the recursion cycle time for the time-mul-
tiplexed computation schedule are only valid if each of the three sub-cycles
is performed as fast as possible. That is, the discussions on the computing
time are not valid if the same period of time is assigned to each sub-cycle.
In a hardware implementation, that uses a global clock signal to synchronise
the operations performed in various parts of the architecture, it is therefore
not optimal to assign a single clock period to each of the sub-cycles. In
such an implementation the minimal clock period is bounded by the time for
performing the slowest of the sub-cycles which probably is the quotient deter-
mination. Hence, to get full advantage of the time-multiplexed computation
schedule each sub-cycle must be divided into a number of clock periods that
corresponds to the required computing time for each particular sub-cycle.
The drawback of this approach is that a very fast global clock signal must
be generated and distributed to the processing elements in the implemen-
tation. For very fast clock signals this might be impossible or, at least, a
highly demanding technical challenge. There is, however, a way of avoiding
the global clock signal in a hardware implementation. This is by using asyn-
chronous circuit design or self-timed circuit design where the synchronisation
between communicating processing elements is performed locally between the
involved processing elements. Williams and Horowitz [WH91, Wil93] have
developed such techniques and applied these in a hardware implementation
of SRT division.

3.7.3 Representation and Range of Resulting Multiple

Consider the computation of (2kRi+1 + aib) − 2kqi+1m where the redun-
dant addition technique is applied for computing Ti = 2kRi+1 + aib and
Ri = Ti − 2kqi+1m. As explained in Section 3.2.2 it is faster to add a re-
dundant represented integer and a non-redundant represented integer than
it is to add two redundant represented integers. Further, the adder used for
the latter addition is more complex. In a computation where Ti is computed

3.7. COMPUTATION OF MULTIPLES 95

in parallel with the determination of qi+1 and the computation of qi+1m the
recursion cycle time cannot be improved by using a non-redundant represen-
tation of aib. However, since the recursion cycle time depends on the time for
computing Ri the time can be (slightly) reduced by using a non-redundant
representation of qi+1m. The only feasible way of obtaining a non-redundant
representation of qi+1m is by precomputing all possible multiples of m and
holding these multiples in a table: If the multiples are computed on-the-fly,
the time for performing the conversion into non-redundant representation will
be much longer than the time saved by the subtraction in the computation
of expression Ri = Ti − 2kqi+1m.

The recursion cycle time does not depend on the representation chosen
for the resulting multiple aib. But, the residue range of aib does affect the
quotient determination and, hence, the recursion cycle time. In Section 3.6
the range of aib is given by the stimulus restriction of Algorithm 3.6–1 and
3.6–2 |aibi| ≤ (δ − 2k)αm. The parameter α is determined by the precision
of the quotient estimation and δ is determined by the range of aib. As
discussed in Section 3.6 a small value of δ leads to a small quotient digit set
and, therefore, the complexity of the quotient determination is expected to
be comparatively smaller. Furthermore, a small quotient digit set leads to a
less complex computation of the multiples qi+1m.

Now, if multiplicand b is the result from a previous modular multipli-
cation, it will be restricted to some residue range given by the response
restriction of that modular multiplication method. In some multiplication
methods this range is positive, e.g. [0; 2m[. Then, the maximal absolute
value of b can be halved by converting b into a symmetric residue range, e.g.
a residue in [0; 2m[can be converted into a residue in [−m; m] by a subtrac-
tion of m. In [Mor89, Mor90] Morita uses this technique for converting a
multiplicand from the range [0;m[into the range [−1

2
m; 1

2
m]. Furthermore,

by recoding the multiplier digit ai into a symmetric digit set the smallest
absolute value of |aib|, and therefore δ, is obtained. It is, however, possible
to obtain a further reduction of the value of δ. The idea is to perform a
modular reduction of the multiple aib and hereby to replace the computation
of Ti = 2kRi+1 + aib by Ti = 2kRi+1 + aib − q′im, where q′i is a quotient digit
determined from the value of aib and m. The computation of Ti can still
be scheduled such that it is completed before the value of Ti is needed in
the subsequent computation of Ri = Ti − 2kqi+1m. At very best, if an exact
determination of q′i is performed, this idea leads to a residue of aib modulo

96 CHAPTER 3. MODULAR MULTIPLICATION

m in the range [−1
2
m; 1

2
m]. So, |aib| ≤ 1

2
m = (δ − 2k)αm which gives the

value δ = 2k + 1
2α

. This is the smallest obtainable value of δ when a modular
reduction of aib is performed.

In [Mor89, Mor90] Morita describes another approach for keeping the
value of δ small. Morita’s goal is to obtain the symmetric radix 2k digit set
{2k−1, . . . ,2k−1} for both the multiplier digits and for the quotient digits. As
will be shown in the next section, this is the smallest possible quotient digit
set. Therefore, the computationally effort required to compute the multiples
will be the least possible. In Morita’s method the penalty for achieving this
digit set is a more complex quotient determination: In the determination
of quotient digit qi Morita includes the value of the multiple ai−1b of the
next recursion cycle. Morita’s method can be described by the following
intermediate operation

Algorithm 3.7–1 (Morita’s intermediate operation)

Stimulus: Si+1, ai, ai−1 and b, where |2kSi+1 + aib| ≤ 2kαm, |ai−1| ≤ 2k−1

and |b| ≤ 1
2
m.

Response: Si, where |2kSi + ai−1b| ≤ 2kαm.

Method: Ri := 2kSi+1 + aib;
{ Determine integer qi such that |Ri + 2−kai−1b − qim| ≤ αm };
Si := Ri − qim;

So, Morita achieves a simple computation of multiples aib and qim at
the cost of a more complex quotient determination. In this method the
value of δ is specified by the bound |Ri + 2−kai−1b| ≤ δαm which gives
2kαm + 2−k2k−1 1

2
m = δαm. Hence, δ = 2k + 1

4α
which is smaller than the

value of δ obtained by a modular reduction of aib.

Fortunately, there is another, much simpler, way to obtain a small value
of δ. In Section 3.9 it will be shown how a simple scaling of modulus m
can give values of δ that are even smaller than the minimal values obtained
above. Furthermore, the scaling technique neither implies a major modifi-
cation of the architecture, as imposed by the modular reduction approach,
or an increased quotient determination complexity, as imposed by Morita’s
approach.

3.8. RESIDUE RANGE AND QUOTIENT DIGIT SET 97

3.8 Residue Range and Quotient Digit Set

In this section the interdependencies of the residue range of Ri, [−δm; δm],
the residue range of Ri−qim, [−αm; αm], and the required quotient digit set,
{qmax, . . . , qmax}, will be discussed. Recall the specification of the quotient
determination operation in Section 3.6,

{ Determine integer qi such that |Ri − qim| ≤ αm and |qi| ≤ qmax }

Figure 3.9: Robertson Diagram showing the modular reduction of Ri.

The quotient determination can be visualised by the Robertson Diagram
in Figure 3.9. This type of diagram was used by Robertson [Rob85] for
explaining the arithmetic operations performed during division. The figure
shows how a modular reduction of a value Ri (the horizontal axis) maps Ri

onto the residue Ri−qim (the vertical axis) for various choices of qi. Since the
aim is to obtain a residue in the range [−αm; αm] only a few values of qi can
be selected. An example where either 0 or 1 can be selected for qi is shown
by the dashed arcs in the figure. If more than a single quotient digit can be
selected for some values of Ri, the value of α is greater than 1

2
. If α = 1

2
there

is only a single proper quotient digit for each Ri and, consequently, an exact

98 CHAPTER 3. MODULAR MULTIPLICATION

determination of qi is required. So, an increasing value of α is expected to
decrease the computationally effort required to determine a proper quotient
digit. On the other hand, a large value of α makes the final conversion of a
residue from the range [−αm; αm] into the range [0;m[more complicated.
To ensure that the final conversion can be done by a single inspection of the
sign and a single addition of m, some authors require that α < 14. This
is, however, not particularly important for the application in this thesis: In
a computation of modular exponentials the intermediate operands do not
need such a conversion after each multiplication, so the time for performing
the final conversion is negligible compared to the total computing time for a
modular exponentiation.

From Figure 3.9 the maximal required absolute value, qmax, of a quotient
digit is seen to be determined by the constraint,

δαm − qmaxm ∈ [−αm; αm] (3.16)

qmax ∈ [(δ − 1)α; (δ + 1)α].

Hence, qmax = �(δ − 1)α� is sufficient to perform the modular reduction in
the figure. Since this equation is central for the complexity of quotient deter-
mination and the computation of the multiples qim it deserves to be stated
as a theorem,

Theorem 3.8–1 (Interdependencies of α, δ and qmax)
All values of Ri where |Ri| ≤ δαm can be reduced to Ri−qim, such that |Ri−
qim| ≤ αm, by selection of a quotient digit qi in the digit set {qmax, . . . , qmax}
where,

qmax = �(δ − 1)α�. (3.17)

In Section 3.6 it was seen that the parameter δ is bounded by δ ≥ 2k, so
Equation (3.17) states that it is not possible to both obtain a large value of
α and a small value of qmax. This means the complexity of the determination
of quotient digit qi cannot be reduced without increasing the complexity of
the computation of multiples qim, and vice versa.

4Some modular multiplication methods do not use symmetric digit sets for the multi-
plier digits and quotient digits. These methods are based on positive digits and positive
multiplicands. In these methods the corresponding requirement as that Ri − qim must be
a residue in the range [0; 2m[which has the same width as the range] − m;m[. This is
also the case for the methods described in the articles in Appendices A and B.

3.8. RESIDUE RANGE AND QUOTIENT DIGIT SET 99

Equation (3.17) is useful for analysis of a given modular multiplication
method. For example, Kornerup [Kor93b] derives the maximal allowable
value of α when qmax is bounded by qmax ≤ 2

3
(2k − 1) for even values of

k. As explained in Section 3.7.1, this particular bound on qmax gives an
advantageous computation of multiples. So, by this analysis Kornerup aim
for the simplest possible quotient determination given a fixed method for
computation of multiples.

Since α ≥ 1
2

the following lower bound of qmax can be derived by inserting
this bound and the bound δ ≥ 2k into Equation (3.17),

qmax ≥
⌈
(2k − 1)

1

2

⌉
= 2k−1 for all k ∈ {1, 2, . . . }. (3.18)

This shows that the quotient digit set {2k−1, . . . , 2k−1} used in Morita’s
method is the least possible. The maximal allowable value of α in Morita’s
method, described by Algorithm 3.7–1, can be derived from Equation (3.17).
Using qmax = 2k−1 and δ = 2k+ 1

4α
the following upper bound of α is achieved,

2k−1 ≥ (δ − 1)α = (2k − 1)α + 1
4

α ≤ 2k−1− 1
4

2k−1
= 1

2
+ 1

4(2k−1)
.

k α ≤
1 3

4

2 7
12

3 15
28

4 31
60

(3.19)

The table shows some sample values of the bound. The upper bound is
greater than 1

2
for all k ∈ {1, 2, . . . }, so it is indeed possible to perform a

modular multiplication with the constraint qmax = 2k−1 and still use the quo-
tient estimation technique. Note, the bound decreases for increasing values of
k. Hence, the required precision of the quotient determination increases for
increasing radices and, consequently, Morita’s “high-radix” method is best
suited for small radices.

From Equation (3.17) it follows that qmax ≥ (δ − 1)α. If this bound
is inserted into the stimulus restriction of Algorithm 3.6–1 and 3.6–2, the
following bound on the range of aib is obtained,

|aib| ≤ (δ − 2k)αm

≤ (qmax − (2k − 1)α)m. (3.20)

100 CHAPTER 3. MODULAR MULTIPLICATION

Further, by insertion of qmax = 2k−1 it follows that |aib| ≤ ((2k − 1)(1
2
−α) +

1
2
)m. So, even if the minimal parameter value α = 1

2
is used, the range of

aib is bounded by |aib| ≤ 1
2
m. Thus, as discussed in the previous section,

it requires a modular reduction of aib to achieve this minimal range of the
quotient digits. Moreover, an exact quotient determination is required.

3.9 Scaling of Modulus

In this section it will be shown how a simple scaling of the modulus m can
improve the value of parameter δ and, therefore, allow a larger value of α in
a computation where some fixed value of qmax has been chosen.

In Algorithm 3.6–1 and 3.6–2 the stimulus sets up a restriction on the
range of aib, |aib| ≤ (δ − 2k)αm. The left-to-right modular multiplication
methods given by (3.11) and (3.12) in Section 3.5 compute a residue of (a · b)
mod m in the residue range [−αm; αm]. Since, it is desirable to use the result
of a previous multiplication as input to the next multiplication without per-
forming any conversion of the residue range, it is assumed that multiplicand
b is bounded by |b| ≤ αm. Further, it is assumed that no modular reduction
of the multiple aib is performed during the recursion cycles of the modular
multiplication methods. Let amax denote the maximal absolute value of the
multiplier digits, i.e. |ai| ≤ amax for all indices i. The minimal value of amax

is obtained by using a symmetric digit set for the encoding of multiplier a.
Obviously, amax ≥ 2k−1. Under these assumptions the bound of aib can be
expressed by,

|aib| ≤ amaxαm ≤ (δ − 2k)αm. (3.21)

This gives the bound δ ≥ 2k + amax. Further, by insertion into (3.17) it is
seen that,

qmax ≥ (2k + amax − 1)α. (3.22)

Now, suppose the intermediate operation in Algorithm 3.6–1 or 3.6–2 is per-
formed by a scaled version m′ of modulus m, i.e. m′ = c ·m for some positive
integer constant c, and suppose the multiple b still is bounded by |b| ≤ αm.
Then the new stimulus restriction becomes |aib| ≤ (δ − 2k)αm′ and, conse-
quently, parameter δ is bounded by δ ≥ 2k + c−1amax. The term c−1amax

is the only part of δ that depends on the range of aib. Hence, by scaling

3.9. SCALING OF MODULUS 101

the modulus it is possible to make the contribution from the range of aib
arbitrary small. The scaling of m changes (3.22) to,

qmax ≥ (2k + c−1amax − 1)α. (3.23)

Apparently, the scaling technique gives a solution of one problem at the
cost of introducing another problem: How can the restriction |b| ≤ αm be
maintained when a modular multiplication is performed with the modulus
m′ = c · m? According to the above discussion the result will be in the
range [−αcm; αcm]. The trick, that gives an efficient solution to the latter
problem, is to scale the multiplier a as well. Thus, a residue of (a · b) mod
(mc) is computed in place of (a · b) mod m. Then, a residue of (a · b) mod m
in the range [−αm; αm] may be computed by an integer division,

x ≡ (ac · b) mod (mc), where |x| ≤ αcm (3.24)

x div c ≡ (a · b) mod m, where |x div c| ≤ αm.

By choosing a scaling constant equal to a power of two, i.e. c = 2r where
r ∈ {0, 1, . . . }, the scaling of m and a just requires a simple left-shift. The
integer division by c requires a simple right-shift. However, there may be
an additional cost imposed by scaling the multiplier a: The modular multi-
plication methods in Section 3.5 need n, respectively n + 1, recursion cycles
where n is the number of radix 2k multiplier digits. If the scaled multiplier ac
requires more than n digits the number of recursion cycles must be increased.
Using the notation introduced in Section 3.6, the left-to-right modular multi-
plication method in (3.12), based on the intermediateoperation in Algorithm
3.6–2 and the scaling technique, can be described by,

Algorithm 3.9–1 (Modular multiplication with scaling of modulus)

Stimulus: Scaled multiplier a′ = a2r =
∑n′−1

i=0 a′
i2

ki and a′
−1 = 0, where

|a′
i| ≤ amax.

Multiplicand b, where |b| ≤ αm.
Scaled modulus m′ = 2rm.
Scaling constant 2r, where r ∈ {0, 1, . . . }.

Response: S0 ≡m (a · b), where |S0| ≤ αm.

102 CHAPTER 3. MODULAR MULTIPLICATION

Method: Rn′ := 0;
for i := n′ − 1 downto −1 do Ri := 2kRi+1 + a′

ib − 2kqi+1m
′;

S0 := R−1 div 2k+r;

In Algorithm 3.9–1 the symbol n′ denotes the number of radix 2k digits of the
scaled multiplier a′. Hence, n′ −n additional recursion cycles are introduced
by the scaling technique.

In [Bri82] Brickell describes a radix 2 modular multiplication method that
utilises the scaling technique. In this method the scaling factor corresponds
to choosing r = 10, so 10 additional recursion cycles is needed. In the
articles in Appendix A and B, and in Kornerup’s method in [Kor93b], the
value r = k is chosen. This results in a single additional recursion cycle.
Also the VLSI processor described in Chapter 4 utilises the scaling technique
with r = k = 5.

The effect of the scaling technique can be illustrated by Kornerup’s mod-
ular multiplication method, which is identical to Algorithm 3.9–1. Kornerup
introduces the bound qmax ≤ 2

3
(2k − 1) and restricts k to even values. From

(3.23) it follows that,

α ≤ qmax

2k + c−1amax − 1
(3.25)

≤ 2

3
· (2k − 1 + c−1amax) − c−1amax

2k + c−1amax − 1

=
2

3
− 2

3
· 1

c
amax (2k − 1) + 1

(3.26)

Hence, by this bound of qmax the value of α is smaller than 2
3

for all k.
Through the scaling constant c it is possible to adjust the bound of α such
that it is arbitrary close to 2

3
, In Kornerup’s quotient determination method it

is essential to maximise the value �log2(α− 1
2
)
. Since α < 2

3
this maximum is

−3, and it is obtained if α ≥ 1
8
+ 1

2
= 5

8
. So, how should the scaling constant

c be selected to maximise �log2(α − 1
2
)
? Using (3.26) it follows that the

bound,

c ≥ 15amax

2k − 1

is sufficient to ensure the existence of a value α ≥ 5
8
. Kornerup assumes amax

is bounded by the same value as qmax. By insertion of this bound, it is seen

3.10. QUOTIENT DETERMINATION METHODS 103

that c ≥ 45
2
. So, if c = 2r it is sufficient to choose r ≥ 5. The bound (3.26)

becomes a constant, 2
3
· 48

49
, when c is equal to 25. Kornerup uses the value

c = 2k which, consequently, is suboptimal for radices given by k ≤ 4.

In [Tak92] Takagi describes a radix 4 modular multiplication method
that is a variant of Algorithm 3.9–1. Takagi’s method is based on the other
intermediate operation, given by Algorithm 3.6–1, in Section 3.6. Takagi
uses a scaling constant of 4 and the restriction qmax = amax = 2. It appears
this method is very similar to Kornerup’s method for k = 2. However,
the quotient determination methods differ for these modular multiplication
methods. Takagi restricts the range of α to range] 9

16
; 5

8
[. Although not

explicitly stated by Takagi, this is equivalent to demanding �log2(α − 1
2
)
 =

−4. So, also Takagi’s method might benefit from choosing a scaling constant
of 25.

In Section 3.7.3 it was claimed that the scaling technique is superior to
Morita’s method. Morita uses the restriction qmax = amax = 2k−1. If a scaling
constant c = 2k+1 is applied, Equation (3.25) reduces to,

α ≤ 1

2
+

3

8
· 1

2k − 3
4

By comparing this bound to the bound derived from Morita’s method in
Equation (3.19) it is seen that the scaling technique allows greater values
of α and, hence, is superior to Morita’s method. Note, the bound for α
is decreasing for increasing values of k. This is also the case for Morita’s
method, so none of these methods are suited for high radices.

Finally, according to (3.25) the bound of α is limited by the value of qmax

and the radix 2k. It is seen, that no matter how large the scaling constant is
chosen and how amax is restricted the bound of α is limited by,

α ≤ qmax

2k − 1
(3.27)

Using the fact that δ ≥ 2k, this bound is seen to be a direct consequence of
Theorem 3.8–1.

3.10 Quotient Determination Methods

In this section methods for determination of quotient digits will be discussed.
Recall the specification of the quotient determination operation,

104 CHAPTER 3. MODULAR MULTIPLICATION

{ Determine integer q such that |R − qm| ≤ αm and |q| ≤ qmax}.

The indices, referring to the recursion cycle of the operation, are left out of
the notation in this section. The range of R is bounded by |R| ≤ δαm. When
α > 1

2
there may be more than a single value of q that fulfils the requirement

of the quotient determination operation, |R− qm| ≤ αm. Then, as indicated
in Section 3.2.1, it is possible to perform this operation by inspecting just
a few of the most significant digits of R and of m and, thus, providing an
estimate of the quotient digit. For high-radix SRT division methods the
quotient determination operation has been identified as a very time-critical
operation of a recursion cycle [Tay85]. This is also the case for high-radix
modular multiplication methods.

In Section 3.5 and 3.7 the quotient determination operation was sym-
bolised by a black node that computes some proper quotient digit value in
some proper encoding. In the previous sections the emphasis has been on the
value of the quotient digit. This will be the case in this section as well. But,
according to Section 3.7 the encoding of the value q is important for the effi-
ciency of the computation of the multiple qm. So, regarding the computing
time there are two issues to consider in the quotient determination opera-
tion: The computing time for determining the value of q and, if a subsequent
recoding is necessary, the computing time for this recoding.

The methods for determination of quotient digits can be divided into two
classes which will be denoted respectively on-the-fly computation methods
and table look-up methods: The methods in the first class perform a compu-
tation of the quotient digit in each recursion cycle. The computation is based
on a few of the most significant digits of R and m. Since the computation
is done in every recursion cycles this class of methods is denoted on-the-fly
computation methods. The methods of this class can be further divided into
two subclasses. The subclasses are characterised by the approach used for
the computation: The first approach is based on comparison operations. By
comparing a few of the most significant digits of R to a number of comparing
constants the value of R is estimated. More precisely, an interval to which
R must belong is identified. A quotient digit value is associated to each of
these intervals. This quotient digit value is then returned as the result of the
quotient determination operation. This subclass of methods can be seen as
a generalisation of the modular reduction method used for performing the
simple modular addition described in Section 3.1 and further discussed in
Section 3.2.2, page 73. Some approaches based on comparison operations are

3.10. QUOTIENT DETERMINATION METHODS 105

described in [Bri82, Tay85, Bak87, FDG90, KH90a, Mor90, Tak92] and in the
article in Appendix B. The second approach of the on-the-fly computation
methods is based on a multiplication by an approximation of the reciprocal
of modulus m. Here, the idea is to obtain an approximation to the exact
quotient digit q = �R

m

 by performing a multiplication of truncated versions

of R and 1
m

. This approach for determining a quotient digit in modular mul-
tiplication methods is described in [NS81, Miy82, Bar86] and it is used in
the article in Appendix A.

The methods of the other class, the table look-up methods, utilise a pre-
computation strategy. The idea of these methods is to minimise the required
time of the quotient determination operation performed in each recursion
cycle by precomputing a table of quotient digit values. These values are
stored in the encoding required for the subsequent formation of multiple qm.
A quotient digit is then found by a simple table look-up. The table look-
up methods have a shorter computing time than the on-the-fly computation
methods. However, the table look-up methods require additional time for
precomputing the table. The remainder of this section will be devoted to
table look-up methods. In 3.10.1 the method and the notation used in the
subsequent descriptions are introduced. In 3.10.2 the required number of
most significant digits of R and m is analysed. Subsection 3.10.3 comprises a
detailed analysis of the case where operand R is redundant represented. As
well, the complexity for the quotient determination operation is compared for
a SRT division method and a modular multiplication method with the same
fixed value of qmax. Finally, the required number of table entries is discussed.
In Section 3.10.4 it is shown how the quotient determination complexity can
be reduced by adjusting the range of modulus.

3.10.1 Table Look-Up Methods

The idea of the table look-up methods is to precompute a table with an
entry for each pair (R̂, m̂) where R̂ and m̂ refers to a sufficient number of the
most significant digits of R respectively m. Then, the quotient determination
operation can be expressed as the table look-up,

q := QuotientDigitTable(R̂, m̂).

To minimise the required time for a computation of the table and to minimise
the need for storage it is important to use as few digits as possible of R

106 CHAPTER 3. MODULAR MULTIPLICATION

and m. Of course, in a hardware implementation the table can be placed
in a permanent storage at the time of construction and, then, no time for
the precomputation is required. In applications where modulus m is fixed
during many quotient determination operations it is advantageous to utilise
the knowledge of the value of m during the precomputation. Hereby, the
number of entries is reduced to the number of values of R̂ and the quotient
determination operation reduces to,

q := QuotientDigitTable(R̂).

The penalty is that the table must be computed each time the modulus
is changed. In, for example, modular exponentiation the modulus is fixed
for many intermediate modular multiplications and, furthermore, in RSA
applications the modulus may very well be fixed for several modular ex-
ponentiations. In stand-alone applications like division the “modulus” (in
division this operand is usually denoted the divisor) cannot be expected to
be fixed for more than a single operation. So, the application of the quotient
determination operation must be taken into account when the operation is
implemented. Obviously, the time for precomputation of the quotient digit
table is of minor importance in the applications considered in this thesis.
Hence, by utilising the precomputation technique a quotient determination
operation that is more efficient than those known from the literature on di-
vision methods can be expected. In the next subsection a condition that
expresses a necessary number of digits, i.e. a minimal required number of
digits of R and m, will be derived. Further, a condition that expresses a
sufficient number of digits will be derived.

Figure 3.10: Truncation of operands used in the quotient determination

3.10. QUOTIENT DETERMINATION METHODS 107

In Figure 3.10 the notation used in the descriptions of the quotient de-
termination methods is summarised. It is assumed that both m and R are
expressed in radix 2 number systems. A natural choice of representation for
m is the (non-redundant) binary representation, where the digit set is {0, 1}.
It is assumed that m is represented in / digits such that the most significant
digit is equal to 1. Hence, the range of m is [2�−1; 2�[5. For R a redundant
representation is more common: For example the carry save representation,
where the digit set is {0, 1, 2} or the borrow save representation, where the
digit set is {1̄, 0, 1}. The required number of digits for representing R is
denoted w and is determined from the range of R. The most significant part
of R and of m used in the quotient determination is denoted R̂ respectively
m̂. The u digits truncated from R is denoted ∆R and the v digits truncated
from m is denoted ∆m. The range of a truncation error ∆ depends on the
number of truncated digits and on the representation of the operand under
consideration. Table 3.1 lists the minimal value ∆min and the maximal value
∆max for an x digit truncation error in the above mentioned representations.
The range of R̂ follows from the expression R = 2uR̂ + ∆R and from the
condition |R| ≤ δαm. By Theorem 3.8–1 the value of δα is seen to be less
than or equal to qmax + α. Hence, R̂ must be bounded by,

⌈−(qmax + α)m − ∆max
R

2u

⌉
≤ R̂ ≤

⌊
(qmax + α)m − ∆min

R

2u

⌋

Equation (3.28) limits the number of values of R̂ and, hence, expresses the
maximal number of table entries of the form QuotientDigitTable(R̂) required
in the table look-up methods.

5Note that � a fixed parameter in a dedicated hardware implementation. This does
not imply maybe that the implementation is limited to perform modular multiplication
with a modulus of exactly � digits: It can perform the computation with all possible
values of modulus bounded by 0 < m < 2�. The trick is to perform a “normalisation”
by left-shifting modulus m and multiplicand b until the most significant modulus digit is
positioned at digit position �−1. Hereafter, the modular multiplication is performed using
the shifted operands. Let the number of left-shifts be denoted by r. Then the computation
corresponds to a computation of x ≡ (a · b2r) mod (m2r). According to Equation (3.24)
the desired result (a · b) mod m is equal to x div 2r and, therefore, it can be achieved by
r right-shifts of x.

108 CHAPTER 3. MODULAR MULTIPLICATION

Representation ∆min ∆max

Binary 0 2x − 1
Carry save 0 2(2x − 1)
Borrow save −(2x − 1) 2x − 1

Table 3.1: Range of an x digit truncation error for some radix 2 representa-
tions.

3.10.2 Analysis of Selection Intervals

The aim of a quotient determination method is to determine some “valid”
quotient digit value for a given value of m̂ and some value of R̂ in the range
(3.28). A valid quotient digit value j is obeying |R−jm| ≤ αm. The selection
interval for quotient digit j is denoted Ij and is defined as the interval of R̂

where j is a valid quotient digit value. So, if a value of R̂ belongs to Ij then

the table entry of this R̂ value can be initialised with the quotient digit value
j. From (j−α)m ≤ R ≤ (j +α)m it follows that Ij can be determined from,

(j − α)(2vm̂ + ∆m) ≤ 2uR̂ + ∆R ≤ (j + α)(2vm̂ + ∆m)

(j−α)(2vm̂+∆m)−∆R

2u ≤ R̂ ≤ (j+α)(2vm̂+∆m)−∆R

2u

(3.28)

Since the explicit values of the truncation errors are unknown during the
quotient determination process the worst case truncation errors must be con-
sidered in order to ensure that j is a valid quotient digit value. Consequently,
the cardinality of the selection intervals decreases for increasing worst case
truncation errors. If the lower bound and the upper bound of selection inter-
val Ij is denoted Imin

j , respectively Imax
j , the selection intervals are expressed

as,

Ij = {�Imin
j �, �Imin

j � + 1, . . . , �Imax
j �

Equation (3.28) gives the value of Imin
j when j = −qmax and the value of Imin

j

when j = qmax. The remaining bounds of the selection intervals are derived
by insertion of the worst case truncation error into (3.29),

Imin
j =




(j − α)(2vm̂ + ∆max
m) − ∆min

R
2u , if (j − α) ≥ 0

(j − α)(2vm̂ + ∆min
m) − ∆min

R
2u , if (j − α) ≤ 0

(3.29)

3.10. QUOTIENT DETERMINATION METHODS 109

Imax
j =




(j + α)(2vm̂ + ∆min
m) − ∆max

R
2u , if (j + α) ≥ 0

(j + α)(2vm̂ + ∆max
m) − ∆max

R
2u , if (j + α) ≤ 0

(3.30)

To ensure that all possible values of R̂ indeed are represented in some selec-
tion interval it must be demanded that the distance between two neighbour-
ing intervals, say Ij−1 and Ij, is less than or equal to one, i.e.,

�Imin
j � − �Imax

j−1
 ≤ 1 for all j ∈ {−qmax + 1, . . . , qmax}. (3.31)

From this demand a condition that expresses a sufficient precision of the
quotient determination procedure can be derived. The demand (3.32) is
fulfilled if Imin ≤ Imax

j−1 . First assume that (j − α) ≥ 0. Then, by using the
expression (3.30) for Imin

j and the expression (3.31) for Imax
j−1 the following

sufficient condition is achieved,

(j − α)(∆max
m − ∆min

m) + (∆max
R − ∆min

R) ≤ (2α − 1)(2vm̂ + ∆min
m). (3.32)

The worst case restriction on the truncation errors is when j is the largest
possible, i.e. j = qmax, and when m̂ is the smallest possible, i.e. 2vm̂ = 2�−1.
Exactly the same worst case restriction on the truncation errors is derived
under the assumption (j + α) ≤ 0. For the remaining values of j, where
−α < j < α, the restriction on the truncation errors is weaker than (3.33).
Observe that Theorem 3.8–1 gives qmax ≥ (δ − 1)α and since δ ≥ 2k this
results in qmax ≥ α for all k ≥ 1. So, there will always exist a value of j such
that (j − α) ≥ 0 and, therefore, the weaker restriction is of no importance.

In some cases Equation (3.33) is too restrictive. When �Imin
j � = Imin

j and
�Imax

j−1
 = Imax
j−1 it is sufficient and necessary to require Imin

j ≤ Imax
j−1 +1. Indeed,

for all cases this requirement is necessary. Hence, the following necessary
condition is derived,

(j − α)(∆max
m − ∆min

m) + (∆max
R − ∆min

R) ≤ 2u + (2α − 1)(2vm̂ + ∆min
m).

For this condition the worst case restriction on the truncation errors also
appears when j = qmax and when 2vm̂ = 2�−1 . In conclusion the following
theorem can be stated,

110 CHAPTER 3. MODULAR MULTIPLICATION

Theorem 3.10–1 (Necessary precision and sufficient precision)
Giuen qmax, the parameter α and the worst case truncation errors ∆max

m , ∆min
m

and ∆max
R , ∆min

R in some radix 2 representation. Then, a necessary condition
expressing the maximal allowable number of truncated digits u of R and v of
m is,

(qmax − α)(∆max
m − ∆min

m) + (∆max
R − ∆min

R) ≤ 2u + (2α − 1)(2vm̂ + ∆min
m).
(3.33)

Furthermore, a sufficient condition is,

(qmax − α)(∆max
m − ∆min

m) + (∆max
R − ∆min

R) ≤ (2α − 1)(2vm̂ + ∆min
m).

(3.34)

In the next subsection some implications of this theorem will be discussed.
It is be assumed that modulus m belongs to the interval [2�−1; 2�[and that m
is binary represented. Since the only difference between the quotient deter-
mination methods in SRT division and left-to- right modular multiplication
is the value of parameter α and of the maximal absolute quotient digit value
qmax, Theorem 3.10–1 can be applied for the analysis of SRT division meth-
ods as well. Indeed, a comparison of a modular multiplication method and
an SRT division method with the fixed value of qmax will be done. Accord-
ing to Table 3.1 the term (∆max

R − ∆min
R) evaluates to 2(2u − 1) when the

representation of R is either borrow save or carry save. Therefore, Theorem
3.10–1 reveals the same results for both these representations of R.

3.10.3 Borrow Save and Carry Save Representation

Consider the case where the intermediate operand R is redundant represented
in borrow save or carry save representation. Then, by insertion of the minimal
and maximal truncation errors from Table 3.1 the necessary condition (3.34)
reduces to,

(qmax − α)(2v − 1) + 2(2u − 1) ≤ 2u + (2α − 1)2vm̂.

(qmax − α)(2v − 1) + 2u ≤ 2 + (2α − 1)2vm̂ (3.35)

A bound on largest possible number u of truncated digits of R is obtained by
setting v to zero and by inserting the minimal value 2�−1 of modulus. Hence,
the necessary condition becomes,

2u ≤ 2 + (2α − 1)2�−1

3.10. QUOTIENT DETERMINATION METHODS 111

In [Kor93b] Kornerup maximises the value of �log2(α − 1
2
)
 in order to min-

imise the number of required digits of R̂ in the quotient determination. This
is seen to be in good correspondence with this bound on u. In Kornerup’s
modular multiplication method α is restricted to the range [1

2
; 2

3
[. As ex-

plained in Section 3.9 it is possible to obtain the constant value α = 2
3

48
49

,
independent on the radix of the method, by scaling the modulus. So, the
necessary condition is fulfilled if u ≤ / − 3. In [Atk68] Atkins analyses the
required precision in SRT division methods. Atkins restricts the analysis to
radix 2k methods with α = 2

3
. Further, both Kornerup’s modular multiplica-

tion method and Atkins’ SRT division method use qmax = 2
3
(2k−1) and both

methods are limited to even values of k. Obviously, also Atkins’ SRT divi-
sion method must fulfil u ≤ /− 3. By insertion of the maximal and minimal
truncation errors from the Table 3.1, the sufficient condition reduces to,

(qmax − α)(2v − 1) + 2(2u − 1) ≤ (2α − 1)2vm̂

(qmax − α)(2v − 1) + 2u+1 ≤ 2 + (2α − 1)2vm̂ (3.36)

When v = 0 and m = 2�−1 the sufficient condition becomes,

2u+1 ≤ 2 + (2α − 1)2�−1.

Hence, both for Kornerup’s method with α = 2
3

48
49

and for Atkins’ method
with α = 2

3
, Theorem 3.10–1 gives that u = / − 4 is a sufficient precision

of R̂ when no truncation of m is done. Since the above analysis reveals the
necessary precision u ≤ /−3, it might be possible that u = /−3 is sufficient.
Indeed, Atkins finds that u = / − 3 is sufficient. However, the following
calculation of the selection intervals for Atkins’ radix 4 method shows that
if u = /− 3 then it is not all possible values of R̂ that are represented in the
selection intervals. Using the value α = 2

3
and m = 2�−1 the bounds for the

selection intervals I2̄, I1̄, . . . , I2 are computed by Equations (3.30) and (3.31)
and by Equation (3.28). The result, when R̂ is borrow save represented, is:

j �Imin
j � �Imax

j

2 −11 −7
1 −5 −3
0 −1 1
1 3 5
2 7 11

112 CHAPTER 3. MODULAR MULTIPLICATION

It is seen that the values −6,−2, 2 and 6 of R̂ are missing in the selection
intervals and, therefore, there must be an error in Atkins’ analysis of the suf-
ficient precision of R̂. Further observe that according to expressions (3.30)
and (3.31) of the bounds for the selection interval, the best condition for im-
proving the sufficient precision of R̂ is when a a full precision of m, i.e. v = 0
is used. If v = 0 then the bounds of the selection interval Ij for a given j are
independent on the radix. Hence, the precision u = / − 4 is necessary and
sufficient for Atkins’ SRT division method and Kornerup’s modular multi-
plication method. The reason that the conclusion also holds for the modular
multiplication method is, that α is smaller than for the SRT division method.
So, for a given j the selection interval of the modular multiplication method
will be smaller than or equal to the selection interval for the division method
and, therefore the restrictions on the modular multiplication method will be
stronger than or equal to the restrictions on the SRT division method.

In [Atk70] Atkins describes the arithmetic unit of the computer ILLIAC
III developed at University of Illinois. The unit uses a radix 4 SRT division
method with a borrow save representation of the intermediate operand R a
binary representation of m, α = 2

3
and quotient digit set {2̄, 1̄, 0, 1, 2}. In this

implementation the precision corresponds to choosing u = /−4 and v = /−4.
So, fortunately, the erroneous result was not utilised in the implementation of
the arithmetic unit of ILLIAC III. (This might, of course, also be the reason,
that the error has not been corrected). If the precision given by u = / − 4
and v = /− 4 are chosen for R̂ and m̂ the selection intervals for the minimal
value of m̂ i.e. 2vm̂ = 2�−1 are:

j �Imin
j � �Imax

j

2̄ −22 −13
1̄ −12 −4
0 −4 4
1 4 12
2 13 22

Since no values of R̂ are missing, this precision of R̂ and m̂ is sufficient for
radix 4 and α = 2

3
. A similar computation of the selection intervals when

α = 2
3

48
49

shows that v = / − 4 is insufficient. However, v = / − 5 turns
out to be sufficient. So, for Atkins’ SRT division method and Kornerup’s
modular multiplication method the only difference in the complexity of the
quotient determination is in the required precision of m̂. Using the necessary

3.10. QUOTIENT DETERMINATION METHODS 113

and sufficient precision u = / − 4 of R̂ in Equations (3.36) and (3.37) the
following conditions for the precision of m̂ is obtained when qmax = 2

3
(2k−1),

α NecessaryPrecision SufficientPrecision

2
3

v ≤
{

/ − 2 − k for k = 2
/ − 3 − k for k > 2

v ≤
{

/ − 3 − k for k = 2
/ − 4 − k for k > 2

2
3
· 48

49
v ≤

{
/ − 2 − k for k = 2
/ − 3 − k for k > 2

v ≤
{

/ − 4 − k for k = 2
/ − 5 − k for k > 2

So, the necessary precision obtained by Theorem 3.10–1 for the two choices
of parameter α is identical. The sufficient precision differs by a single digit.
As indicated by the radix 4 case, these bounds on the sufficient precision of
m̂ may very well be improved by a more detailed analysis of the selection
intervals. However, in the application area of this thesis the precision of
m̂ is of minor importance: Assume the table look-up method is used for
determining the quotient digit and assume the computation of the table is
performed after each change of modulus. Then, the number of table entries
only depends on the range of R̂. It does not depend on the range of m̂. The
only implication of the precision of m̂ is in the computation of the table. It
is sufficient to use the above derived precision of m in the computation of the
table. Indeed, it might be a waste of computation time if a higher precision
is used.

Table Size and Representation of Operand R

The number of table entries is determined by the number of possible values of
R̂. The range of R̂ is given by Equation (3.28). Observe that the bounds of
R̂ depends on the representation of R̂. First, assume that R̂ is borrow save
represented. By insertion of the expressions for the worst case truncation
errors ∆min

R and ∆max
R it is seen that the bounds are symmetric around zero,

i.e.,

|R̂| ≤
⌊

(qmax+α)m+(2u−1)
2u

⌋
≤

⌊
(qmax+α)m

2u

⌋
(3.37)

Hence, the number of possible values of R̂ is bounded by,

2�(qmax + α)m2−u
 + 3 ≤ 2�(qmax + α)2�−u
 + 3.

114 CHAPTER 3. MODULAR MULTIPLICATION

The largest number is when m ∈ [2�−1; 2�[is maximal. Now, because R̂ is
redundant represented there exist values of R̂ that have more than a single
encoding. Hence, if the redundant encoding of R̂ is used as an address in
the table, the number of entries must be larger than the number of possible
values of R̂. For example, suppose the range of R̂ is {−31,−30, . . . , 31}.
Then, the number of possible values is 63, and the number of digits required
in the borrow save representation of R̂ is 5. There are 35 = 243 different
encodings of R̂ and each of these encodings represents some value in the
range of R̂. Hence, in this example, the number of encodings is nearly 4
times the number of values. In methods with an even larger range of R̂, e.g.
Atkins’ radix 4 division method or Kornerup’s radix 4 modular multiplication
method, this effect is even more dramatic. Therefore, it is common to convert
the redundant represented R̂ into a non-redundant representation before the
table look-up is performed. In [Kor93b] Kornerup suggests to convert R̂
into a signed-magnitude representation, i.e. into the (non-redundant) binary
representation of the absolute value of R̂ and into the sign of R̂. Then, by
utilising a symmetry property of the table the number of table entries can
be reduced to the number of absolute values of R̂,

�(qmax + α)m2−u
 + 2 ≤ �(qmax + α)2�−u
 + 2 (3.38)

The symmetry property of the table, when R̂ is borrow save represented, can
be expressed by,

QuotientDigitTable(R̂) =

{
QuotientDigitTable(R̂) if R̂ ≥ 0

−QuotientDigitTable(|R̂|) if R̂ < 0

The validity of this property follows from Equations (3.30) and (3.31) where
it is seen that the selection interval bounds obey Imin

j = −Imax
j̄ and, equiv-

alently, Imax
j = −Imin

j̄ . In table (3.40) the maximal required quotient digit
table size for Kornerup’s method is shown. The table sizes are calculated
with the value 2

3
48
49

of α and 2
3
(2k −1) of qmax. The precision u = /−4 is used

for R̂. In addition, the maximal required number of digits of R̂ is showen,

k Table Size R̂ Digits
2 44 6
4 172 8
6 684 10
8 2732 12

(3.39)

3.10. QUOTIENT DETERMINATION METHODS 115

In general, for this method, the maximal table size is 2
3
(2k − 1)16 + 12 and,

hence, the maximal required number of digits of R̂ is �log2(
2
3
(2k − 1)16 +

12)
 = k + 4. Also the maximal required number of digits w in the borrow
save representation of R can be calculated: w = u + k + 4 which is equal to
/+k digits. The maximal table size gives a bound of the required storage for
the quotient determination method, the maximal number of R̂ digits gives
a bound on the time for the conversion into non-redundant represent ation,
and the maximal number of R digits gives a bound of the size of the register
for holding R. Furthermore, in a hardware implementation the width of the
circuitry is bounded by w.

If R is carry save represented, the number of possible values of R is equal
to the number of values in the borrow save representation: By insertion of
the worst case truncation errors into Equation (3.28),⌊

(qmax + α)m + 2(2u − 1)

2u

⌋
≤ R̂ ≤

⌊
(qmax + α)m

2u

⌋

Since �(qmax + α)m2−u
 − 2 is less than or equal to the left side of this
expression, the number of possible values of R̂ is bounded by,

2�(qmax + α)m2−u − 3 ≤ 2�(qmax + α)2�−u
 − 3.

Because of the symmetry property of the quotient digit table it might seem
that the borrow save representation of R is superior to the carry save rep-
resentation. However, there is a similar symmetry of the table when R is
carry save represented. From Equations (3.30) and (3.31) it follows, that the
selection interval bounds obey Imin

j = −Imax
j̄ − (2 − 21−u) and, equivalently,

Imax
j = −Imin

j̄ − (2 − 21−u). So, the selection intervals are symmetric around

the value −(1−2−u). Unless the selection interval bounds are exact integers,
i.e. �Imax

j̄ − (2− 21−u)
 < �Imin
j̄
− 2, the quotient digit table will be symme-

tric around −1 when 2−u is small. Indeed, for the operand sizes considered
in this thesis 2−u is vanishing. So, the following symmetry of the quotient
digit table can be used for reducing the table size to exactly the same size as
obtained by the borrow save representation,

QuotientDigitTable(R̂) =

{
QuotientDigitTable(R̂) if R̂ ≥ −1

−QuotientDigitTable(|R̂| − 2) if R̂ < −1

For example, this symmetry applies both for Atkins’ division method and Ko-
rnerup’s modular multiplication method. Hence, for many cases it does not

116 CHAPTER 3. MODULAR MULTIPLICATION

matter whether the operand R is represented in borrow save representation
or in carry save representation.

Considering the Value of Modulus

Until now the only assumption about modulus m is that m is a binary repre-
sented / digit integer, i.e. the value of m is known to be in the range [2�−1; 2�[.
All the previous analysis of the required precision of R̂, the maximal number
of R̂ digits to be converted into non-redundant representation prior to each
table look-up, and the maximal number of entries in the quotient digit table
has been based on a worst case assumption about the value of m. This worst
case value is, dependent on the specific analysis, either the maximal value of
m or the minimal value of m. The only moment, where the actual value of
m is used in the quotient determination process, is when the quotient digit
table is computed. It might, however, be advantageous to further utilise
the knowledge of the actual value of modulus and obtain a reduction in the
resource requirements.

First, consider the precision of R̂. The largest precision is required when
the value of m is minimal. For Kornerup’s method it was shown that the
precision u = / − 4 is necessary and sufficient. How large should m be to
achieve a sufficient precision of u = /−3? Using Equation (3.37) the sufficient
condition m ≥ 1

2(2α−1)
2�−1 is obtained. If α = 2

3
48
49

the condition becomes

m ≥ 49
50

2�−1. So, for values of m satisfying this condition the precision of R̂
can be reduced to u = / − 3. According to (3.39) this reduces the maximal
table size to 2

3
(2k − 1)8 + 6 which, compared to the results in (3.40), is a

reduction of 50 percents:

k Table Size R̂ Digits
2 22 5
4 86 7
6 342 9
8 1366 11

(3.40)

The maximal number of R̂ digits is reduced by one. So, the maximal number
of R̂ digits becomes k + 3. In Atkins’ method, where α = 2

3
, the bound

corresponding on the modulus is m ≥ 3
2
2�−1.

Next, consider the number of R̂ digits. This number is determined by
the range of R̂ and the number increases with increasing values of m. In the

3.10. QUOTIENT DETERMINATION METHODS 117

worst case, for Kornerup’s method, the number of R̂ digits is k +4. Suppose
R̂ is borrow save represented. How small should m be to achieve a range
of R̂ such that the number of digits is k + 3? Using Equation (3.38) the
sufficient condition m ≤ 3

2
2�−1 is obtained. So, for values of m satisfying this

condition the table size is less than or equal to 2k+3. This corresponds to
approximately 75 percents of the results in (3.40). In Atkins’ method the
corresponding bound is m < 3

2
2�−1.

For Atkins’ SRT division method it is seen that the quotient determina-
tion can be reduced to an inspection of the k + 3 digits of R̂ and, hence,
that the maximal table size can be reduced to 2k+3. Note that the positions
of these k + 3 digits vary with the value of modulus m: If m ≥ 3

2
2�−1 the

digits of R̂ correspond to the digits of R from position u = / − 3 up to po-
sition / + k − 1, and if m < 3

2
2�−1 they correspond to the digits of R from

position u = / − 4 up to position / + k − 2. Hence, to utilise the knowledge
of the value of m to reduce the resource requirement, an implementation of
the quotient determination must be reconfigurable. For Kornerup’s modu-
lar multiplication method the above optimisation considerations divides the
value of m into three ranges: [2�−1; 3

2
2�−1],]3

2
2�−1; 49

30
2�−1[and [49

30
2�−1; 2�[. The

range giving the smallest table size is [49
30

2�−1; 2�[. The middle range sets the
maximal resource requirement and, unfortunately, this range is non-empty.
There is, however, a way to avoid values of modulus m in the middle range:
In the next subsection it will be discussed how an adjustment of the range
of modulus m can provide a more efficient quotient determination.

3.10.4 Adjusting the Range of Modulus

As described above there are some ranges of modulus m that gives an im-
provement in the maximal table size and in the maximal number of digits
of R̂. Consider Kornerup’s modular multiplication method with α = 2

3
48
49

.
As discussed, values of m in the range]3

2
2�−1; 49

30
2�−1[are inconvenient. Now,

suppose the range of m is checked each time an application is initialised with
a new value of m. Then, an inspection of the two most significant digits of
m can decide the relationship between m and the ranges,

[2�−1; 3
2
2�−1[and [3

2
2�−1; 2�[

The idea is now to adjust the range by scaling the modulus with some scaling
constant c before the modular multiplication is computed. The scaling con-

118 CHAPTER 3. MODULAR MULTIPLICATION

stant is determined from the present range of m. Suppose c = 4 is used when
m is in the first range, and c = 3 is used when m is in the last range. The
effect of this transformation of the ranges is shown in the following table:

Range of m [2�−1; 3
2
2�−1[[3

2
2�−1; 2�[

c 4 3

Range of c · m [2�+1; 3
2
2�+1[[9

8
2�+1; 2�+1[

Hence, if /′ = / + 2 denotes the number of digits of the scaled modu-
lus m′ = c · m, it is seen that all values of m′ are bounded to the range
[2�′−1; 3

2
2�′−1[. Consequently, if m′ is replacing m during all the subsequent

computations of intermediate modular products a more efficient quotient de-
termination is achieved for Kornerup’s method. As discussed in the previous
subsection the range [49

30
2�−1; 2�[of modulus leads to the smallest quotient

digit table. It is also possible, through a similar scaling of m, to obtain
this range. Then, an inspection of the four most significant digits of m is
needed. The following table shows how the scaling constant could be chosen
to achieve m′ ∈ [49

50
2�′−1; 2�′ [where /′ = / + 3:

m
2
−1 [8

8
; 9

8
[[9

8
; 10

8
[[10

8
; 11

8
[[11

8
; 12

8
[[12

8
; 13

8
[[13

8
; 14

8
[[14

8
; 15

8
[[15

8
; 16

8
[

c 14 12 11 10 9 9 8 7, 8

(3.41)

As shown, there might be more possible choices of integer values of c that
can be used in a subrange. In general, the smallest value of c for a given
range leads to the smallest quotient digit table.

The technique of adjusting the range of modulus is known from di-
vision methods. Some of the early articles describing this technique are
[Svo63] by Svoboda and [Kri70] by Krishnamurthy. By scaling both the
dividend and the divisor with the same scaling constant, it is assured that
the resulting quotient is unaffected by the adjustment. Ercegovac and Lang
[Erc83, EL85, EL90] have improved the quotient determination in SRT di-
vision methods by means of the range adjustment technique. In [EL90] a
radix 4 SRT division method with quotient digit set {2̄, 1̄, 0, 1, 2} and α = 2

3

is developed. So, the method has the same parameter values as Atkins’ di-
vision method. In this article, the aim of adjusting the range is to obtain
a quotient determination operation that is independent of the divisor. This
implies that the selection intervals are constant for all divisor values and,

3.10. QUOTIENT DETERMINATION METHODS 119

hence, the computation of the quotient digit table can be done once for all
at the time of implementation of the division method. Ercegovac and Lang
transform the divisor into a small range around a power of 2. The resulting
range can be expressed as [63

64
2�′ , 9

8
2�′ [. So, the position of the most significant

digit of the scaled divisor can be either /′−1 or /′. The range of the unscaled
divisor is subdivided into eight subranges as in (3.42). The parameter /′ is
equal to / + 3 too. However, the scaling constants differ: The values are
16, 14, 13, 12, 11, 10, 9 and 9, where 16 is used in the first subrange in
(3.42) and 9 is used in the last subrange. Ercegovac and Lang show that it
is sufficient to inspect the 6 most significant digits of the partial remainder
R in the quotient determination operation. In fact, it is sufficient to inspect
5 digits: A calculation of the selection intervals, given by Equations (3.30)
and (3.31), shows that u = /′ − 3 is sufficient. Furthermore, from (3.38)
it follows that |R̂| ≤ 25. So, it is sufficient to inspect the 5 most signifi-
cant digits of the partial remainder. The quotient digit table has 26 entries
when the symmetry property is utilised. Ercegovac and Lang emphasise that
it is important to use an efficient computation of the scaled dividend and
divisor: In general, the values of the dividend and the divisor cannot be
expected to be fixed for more than a single division operation. Hence, the
range adjustment must be performed prior to each application of the divi-
sion operation. In SRT division methods with radices higher than 4 it is
not possible to obtain a quotient determination that is independent on the
divisor without performing a more complex range adjustment. A calculation
of the selection intervals for a radix 2k method with α = 2

3
, qmax = 2

3
(2k − 1)

and precision u = /′ − 3 shows that if the range of the adjusted divisor is
[(1− 2−(k+2))2�′ ; (1 + 2−(k+4))2�′ [, or [(1− 2−(k+4))2�′ ; (1 + 2−(k+2))2�′ [, then
the quotient determination is independent on the divisor.

Although the division operation and modular reduction operation is closely
related, there is a difference in the way the range adjustment technique is
applied. Denote the dividend by z and the divisor by m. In division both
the dividend and the divisor is scaled by the same constant c. This is done
to assure the correctness of the resulting quotient value, (cz) div (cm) = z
div m. However, the resulting remainder r′ is not equal to the correct re-
mainder r. Indeed, if r = z mod m then r′ = (cz) mod (cm) = cr. So, to
obtain the correct remainder a division by c is required. In general, r′ and
r do not belong to the same residue class. In modular reduction only the
modulus is scaled. This implies that the result r′ ≡ z mod (cm) is belonging

120 CHAPTER 3. MODULAR MULTIPLICATION

to the same residue class as r ≡ z mod m, i.e. r′ ≡m r. So, the value r′ can
replace the value of r when r is an intermediate operand in the computation
of a modular operation. Only the final result of the computation needs a
complete modular reduction modulo m. Furthermore, in the applications in
this thesis, the computing time for the initial scaling of the modulus is not
as important as in the general division operation. So, even though the range
adjustment might be relatively complex it is advantageous to utilise the range
adjustment technique in high-radix modular multiplication methods.

The final correction is an additional cost compared to a computation with
unscaled moduli. However, when the number of consecutive modular multi-
plications is large the time for performing the initial adjustment and the final
correction is negligible in comparison with the total computing time. Indeed,
since the quotient determination complexity is reduced, both a reduction in
the total computation time and a reduction in the required quotient digit
table size may be expected. However, because the range of the intermediate
results increases by a factor of c the number of recursion cycles of the mod-
ular multiplication method increases. In a dedicated hardware implementa-
tion the required circuitry also increases with the range of the operand. So,
a more detailed analysis, taking the specific parameter setting of α, qmax, /, k,
etc. into account, should be completed before any qualified statements on
costs and benefits of the range adjustment technique is postulated.

In [Wal91b] Walter utilises the range adjustment technique to obtain a
simple quotient determination operation in modular multiplication. Walter
suggests to adjust the modulus range into a range of the form [(1−2−x)2�′ ; 2�′ [
where x is a sufficiently large integer. Indeed, Walter obtains a very simple
quotient determination where there is no need for a quotient digit table. The
idea is to obtain the relation,

R̂ = QuotientDigitTable(R̂). (3.42)

Apart from saving memory for holding the quotient digit table and saving
time for a computation of the table it might also be possible to avoid the con-
version of R̂ into non-redundant representation. This conversion is performed
in order to reduce the required number of table entries. So, if a redundant
represented value of the quotient digit may be accepted in the computation
of multiple qm, the conversion can be avoided. In general, it requires a rela-
tively large value of the parameter α to obtain relation (3.43). By insertion
of the expression R = 2uR̂ + ∆R into the range restriction |R − qm| ≤ α

3.10. QUOTIENT DETERMINATION METHODS 121

of the quotient determination operation and using q = R̂, the restriction is
written as,

|R̂(2u − m) + ∆R| ≤ αm. (3.43)

If m is known to be in the range [(1−2−x)2�′ ; 2�′ [and u equals /′ then the value
of the term R̂(2u − m) is in the range [R̂; 2�′−xR̂]. Therefore, by choosing a
sufficiently large value of x the contribution from this term can be made neg-
ligible in comparison to the contribution from the term ∆R. (Walter restricts
the range of m to [(1 − 2−x)2�′ ; 2�′ [. When R is carry save represented this
ensures that R− qm is non-negative. If negative values of R− qm is allowed
it would be advantageous to use the range [(1 − 2−x)2�′ ; (1 + 2−x)2�′ [of m.
This would reduce the required value of the scaling constant and, therefore,
reduce the required value of the scaling constant and, therefore, reduce the
computationally effort required value of the scaling constant and, therefore,
reduce the computationally effort required in the scaling of modulus and in
the correction of the final result.) A lower bound on α is then seen to be
determined from |∆| ≤ αm. Using the worst case value m = (1− 2−x)2�′ the
following bound is derived,

α ≥ |∆R|
(1 − 2−x)2�′

According to Tabler 3.1 the worst case truncation errors is 2(2�′ − 1) for the
carry save representation and (2�′−1) for the borrow save representation. So,
no matter how large x is chosen the value of α will be greater than or equal
to 2 for the carry save representation an greater than or equal to 1 for the
borrow save representation. Theorem 3.8–1 states that an increasing value
of α implies an increasing value of qmax and, therefore, the simplification
in the quotient determination operation is optained at the cost of a more
complicatedcomputation of multiples qm. A rough lower bound on the value
of qmax follows from qmax ≥ α(δ − 1) and δ > 2k. So, for the carry save
representation qmax > 2(2k−1) and for the borrow save representation qmax >
2k − 1. In [OPT93] Orton, Peppard and Tavares are proposing a modular
multiplication method similar to the method proposed by Walter. They
determine the minimal required value of the scaling constant for various
upper bounds of qmax when R is carry save represented. The upper bounds
of qmax are 2k+1, 2k+2 and 2k+3. It is noted that the bound qmax < 2k+1 only
is practical for the radix 2 case.

122 CHAPTER 3. MODULAR MULTIPLICATION

The idea of using the quotient digit estimate q = R̂ can be viewed af a
technique where only the overflow digits of R are reduced modulo m. Here,
the overflow digits are the digits given by R̂, i.e. the digits at a position
greater than or equal to u. The adjustment of the ragne of the modulus to
a value close to 2u then enhances the “quality”, i.e. reduces the value of
α, of the modular reduction. There have been several proposals for using
the overflow digits as a quotient digit estimate without utilising the range
adjusment technique. All articles [QC82, MA85, KH88, Kno88, CBK91,
IMI92a] describe some kind of variation on thes quotient determingation
technique.

3.11 Summary and Discussion

In the beginning of this chapter it was explained how multiplication can be
interpreted as a specialisation of exponentiation, and hence, that exponentia-
tion methods can be formulated as multiplication methods. The similarity of
exponentiation and multiplication has been noted by Knuth [Knu81, p. 443].
Knuth writes that the right-to-left binary exponentiation method (Equation
(2.5)) is closely related to a procedure for multiplication that was acutally
used by Egyptian mathematicians as early as 1800 B.C.. Further, Knuth
writes that this multiplication method is often called the “Russian peasant
method” of multiplication, since Western visitors to Russia in the nineteenth
centry found the method in wide use there. The name “Russian peasant
method” is now adopted by the exponentiation community as a synonym for
the right-to-left binary exponentiation method. Because of this similarity the
results on exponentiation methods from Chapter 2 can be reused in the dis-
cussion of multiplication methods. In the exponentiation methods the basic
operation is multiplication. To obtain the analogous multiplication methods
the basic operation simply is replaced by addition.

In exponentiation methods the required number of multiplications often
is formulated in terms of addition chain lengths. In the analogous multipli-
cation methods the addition chain length expresses the required number of
additions. The length of an addition chain is a direct measure of the required
number of basic operations. Hence, assuming that the computing time for
each basic operation is one time unit the addition chain length gives a mea-
sure of the total computing time for a sequential computation. As shown

3.11. SUMMARY AND DISCUSSION 123

in Chapter 2 it is possible to utilise a parallel computation and, hereby, to
obtain a computing time that is less than a theoretical lower bound for the
addition chain length. The validity of the assumption about equality of the
computing time for the basic operations is highly dependent on the specific
multiplication composition (or addition composition) under consideration.
Hence, the addition chain length may not be a good measure of comput-
ing time. Some compositions have the property that squaring (or doubling)
turns out to be much more efficient than the general basic operation. This
is the case when integer addition is the basic operation. An integer doubling
or even a many-fold doubling can be performed in a single very fast shifting
operation. Indeed, by combining this property with a parallel computation
it is possible to perform an integer multiplication in a time proportional to
the logarithm of the operand lengths. This was demonstrated by the Wallace
Tree computation in Subsection 3.2.2. No methods have been invented that
are able to perform the computation of modudar products in a similar time.
Opposed to integer doubling the computing time for a modular doubling is
non-negligible.

In Chapter 2 various methods for evaluation of exponentials was de-
scribed. The methods are formulated in general terms and they utilise very
few of the algebraic properties of a specific multiplication composition. In
fact, apart from the modular exponentiation method utilising the Chinese
Remainder Theorem in Section 2.4, the only demand is that the composition
must be associative. The variations of the methods are not due to variations
of the algebraic properties. The methods differ in the strategy of computa-
tion: By increasing the available memory the total computing time can be
reduced by means of the precomputation technique. Similarly, by increasing
the number of processing elements a parallel computation that reduces the
computing time can be scheduled. In a dedicated hardware implementation
these two techniques are seen to represent the well known tradeoff between
computing time and circuitry consumption.

In this chapter methods for evaluation of modular products have been
described. The addition composition used in the definition of a modular
product is modular addition. The presented methods and techniques are
highly dependent on the specific algebraic properties of modular addition.
Moreover, the knowledge of the application area of the modular products is
utilised in the development of the methods. The purpose of the discussions
in this chapter is to clarify how the properties of modular addition and the

124 CHAPTER 3. MODULAR MULTIPLICATION

conditions of the application area can be utilised to obtain a fast computing
time of modular products. Again, the techniques of precomputation and of
parallel computation are the tools for improving the computing time. How-
ever, by studying the properties of modular addition and the conditions of
the application area other possibilities reveal for exploring these techniques.

In Section 3.1 the primitive types of operations needed in the computation
of modular addition were introduced. It was shown that integer addition and
integer comparison are fundamental operations. The comparison operation is
used for determining quotient digits in the modular reduction stage. In Sec-
tion 3.2 it was discussed how the properties of various integer representations
influence the computing time for the addition operation. Since the applica-
tion area considered in this thesis is characterised by very long operands and
by many intermediate computations it is beneficial to use redundant represen-
tations. Hereby, the time for performing an integer addition of intermediate
operands becomes very fast and independent on the operand length. It was
also discussed how the technique of multiplier recoding can be utilised to
reduce the number of terms to be summed in an integer multiplication. This
was utilised in the computation of multiples in Section 3.7. In Section 3.3 it
was discussed how another kind of redundancy in the representation of the re-
sult of a modular operation can be utilised for improving the computing time
of the quotient determination. It was shown that a residue can represent the
desired intermediate result and, hence, that an exact integer comparison can
be replaced by an estimate. Furthermore, the properties of modular arith-
metic made it possible to transform the basic modular addition composition
into other kinds of modular operations. This was utilised in Section 3.4 where
the left-to-right 2k-ary modular multiplication method was introduced. The
basic operation used in this method is of the form 2ks + aib − qim, which
computes a residue modulo m of 2ks + aib. When k > 1 the 2k-ary method
is also called a high-radix method. In the left-to-right 2k-ary exponentiation
method the analogous operation is (s2k

) ∗ bai . In Chapter 2 the precompu-
tation technique was utilised to improve the computing time by initialising
a table of all possible values of bai . As shown in Section 3.5 and further dis-
cussed in Section 3.7 it is not optimal to do the analogous precomputation
of the multiples aib in the modular multiplication method. It is better to
utilise a parallel computation strategy where the multiple aib is computed
on-the-fly and in parallel with the determination of quotient digit qi and in
parallel with the subsequent formation of multiple qim. In the exponentia-

3.11. SUMMARY AND DISCUSSION 125

tion method the time-critical operations were the k-fold squaring of s and
the multiplication by bai . This is not the case for modular multiplication:
By utilising a parallel computation the computing time for the analogous
k-fold doubling and the addition of aib become secondary with respect to the
computing time for 2ks + aib − qim. Indeed, it turns out that time-critical
operations in this basic operation are the quotient determination, the com-
putation of multiple qim and the subsequent subtraction of this multiple. So,
the time-critical operations in modular multiplication (a · b) mod m are the
operations used for performing the modular reduction—not the operations
used for performing the multiplicationa ·b. These time-critical operations are
identical to the operations used in SRT division methods. Having efficiently
solved the addition and subtraction operation by redundant addition tech-
niques the focus of the remaining sections was shifted toward methods for
computation of multiples and methods for determination of quotient digits.
Section 3.7 demonstrated how redundant addition combined with multiplier
recoding can be utilised to develop a fast on-the-fly computation of multi-
ples aib and qim. By performing the addition in a tree-structured parallel
computation scheme, as illustrated by Wallace’s multiplication method, the
computing time for qim becomes proportional to the logarithm of the length
of the binary representation of qi. In most radix 2k modular multiplication
methods the quotient digit set is restricted to values of qi with a maximal
binary length of approximately k bits. Hence, for these methods the time
for computing a multiple qim will be about proportional to log2 k. This is of
course a very rough measure. It should be emphasised that this time measure
just gives an indication of the effect of increasing the radix. The on-the-fly
computation method can be made even faster by combining it with a pre-
computation of some multiples. The method giving the fastest formation of
multiples qim is the table look-up method where all possible multiples are
precomputed and stored in a table. Since the value of modulus is fixed for
many consecutive modular multiplications the time for this precomputation
will be vanishing. However, for high radix values this approach may require
too much memory in a dedicated hardware implementation. The implica-
tions of the representation of b in the computation of aib was discussed as
well. In particular it was discussed how a modular multiplication method
that allows redundant represented values of b can be scheduled. Since many
intermediate modular multiplications are performed in the applications con-
sidered in this thesis it is natural to keep the intermediate operands in the
redundant representation. Hereby, the computing time and the circuitry for

126 CHAPTER 3. MODULAR MULTIPLICATION

performing the conversion between redundant and non-redundant represent
ation can be avoided. In Section 3.8 the interdependencies of the parame-
ters characterising the quotient determination was analysed. It was shown
that the precision of the quotient determination operation cannot be reduced
without increasing the quotient digit set, and vice versa. So, in the modu-
lar multiplication methods there is a tradeoff between the complexity of the
quotient determination operation and the computation of the multiples qim.
Section 3.9 demonstrated how a very simple scaling of the value of modulus
can be utilised to obtain conditions for the quotient determination operation
that are arbitrary close to the conditions for the analogous quotient determi-
nation operation in SRT division. This implies that the time for computation
of the operation 2ks + aib − qim becomes about equal to the computation
of 2ks − qim which is the basic operation in SRT division methods. Sec-
tion 3.10 comprised a detailed discussion of quotient determination methods
based on table look-up techniques. Compared to the general purpose SRT di-
vision methods, where the operands cannot be expected to be fixed for more
than a single division operation, the precomputation technique can be fur-
ther explored to simplify the quotient determination operation. Because the
precomputation of the quotient digit table only has to be performed once for
each change of modulus and because the modulus is fixed for many consec-
utive modular multiplication it is advantageous to perform a comparatively
complicated precomputation. Indeed, it was discussed how an adjustment
of the range of modulus can lead to a very simple quotient determination
method, where the quotient digit value becomes equal to the value encoded
by the most significant digits of the intermediate operand R to be modular
reduced. In the table look-up methods the address of the entry containing
the quotient digit is given by the value of the most significant digits of R.
Since these digits are redundant represented it is required to perform a con-
version into non-redundant representation in order to limit the table size.
The conversion can be done in a time proportional to the logarithm of the
number of radix 2 digits. According to the examples in the section this num-
ber can be expected to be about k plus a few digits. So, roughly estimated,
the computing time for determination of a quotient digit by the table look-up
method is proportional to log2 k.

As explained in Section 3.4, the aim of the high-radix modular multipli-
cation approach is to obtain a faster computation by reducing the required
number of intermediate operations 2ks+aib−qim. This number of operations

3.11. SUMMARY AND DISCUSSION 127

is about proportional to 1
k
. The indications of the log2 k rate by which the

time for computation of multiples and for quotient determination increases
for increasing radices show that the total computing time for the high-radix
modular multiplication method indeed is decreasing for increasing radices.

128 CHAPTER 3. MODULAR MULTIPLICATION

Chapter 4

Modular Exponentiation
Processor

In the previous two chapters several methods for evaluation of exponentials
and modular products have been presented and discussed. The objective of
this thesis is to investigate the possibilities for supporting applications based
on evaluation of modular exponentials, like the RSA crypto system, with
adequate computing power. Since the hardware implementation medium—
in particular in the form of special-purpose VLSI circuits—is among the
fastest available media, the descriptions have been biased toward methods
that are suited for hardware implementation. In order to obtain experimental
evidence for the soundness of the methods and, moreover, to obtain insight
into the problems and limitations of such a VLSI implementation, a project
of implementing a modular exponentiation processor was initiated in the fall
1990.

In Section 4.1 the background and the history of the project is briefly
described. Section 4.2 gives an overview of the methods chosen for evaluation
of modular exponentials and modular products. Furthermore, a relatively
detailed description of the hardware architecture is provided. The layout of
the processor is shown in Section 4.3. In Section 4.4 testing procedure, and
the performance of the fabricated processor, is presented. Finally, Section
4.5 comprises a summary and a discussion of the experiences obtained from
the project.

129

130 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

4.1 Background and History of the Project

After a period of studying methods for computation of modular exponentials,
resulting in the Master’s thesis [OSA90b], the internal report [OS90] and the
article in Appendix A, a cooperation with the Department of Research and
Development, Jydsk Telefon/Tele Danmark, was established in September
1990. The aim of the cooperation was to demonstrate, that it is possible
to implement a single-chip modular exponentiation processor capable of per-
forming real-time RSA encryption of digital data transmitted on an ISDN
channel. The transmission rate of an ISDN channel is 64 Kbit/s. At that
time, the fastest known implementation was a PC plug-in board from the
company Thorn EMI [Tho88] capable of evaluating modular exponentials at
a rate of 29 Kbit/s for 512 bit operands. In RSA applications the length of
the modulus and of the exponent corresponds to the key length. It should
be mentioned that the Thorn EMI board supports RSA encryption based on
a utilisation of the Chinese Remainder Theorem (see Section 2.4). Hereby,
the encryption rate of the board may be increased to 56 Kbit/s for 512 bit
key lengths.

The project of implementing the modular exponentiation processor was
based on the above mentioned studies of computation methods. The work
of designing the circuitry and doing the physical layout of the processor was
performed in the environments of the VLSI design group at Jydsk Telefon.
Before the project of implementing the professor was started, the following
requirements of the processor were specified:

• It should be able to perform a real-time RSA encryption of data at
a transmission rate of at least 64 Kbit/s. As mentioned, this is the
transmission rate of an ISDN channel.

• The key length should be 561 bits. That means, the processor should
perform the evaluation of modular exponentials with 561 bit moduli.
In RSA encryption a block b of a message is encrypted by evaluation of
be mod m. To be able to uniquely determine b during the subsequent
decryption process, it is required that b < m. By limiting the length of
b to 560 bits, i.e. 70 bytes, and using 561 bit moduli this requirement
is fulfilled.

• The processor should be implemented by a single VLSI chip. This
limitation was imposed in order to minimise the physical size of the

4.1. BACKGROUND AND HISTORY OF THE PROJECT 131

implementation. The physical size influences the applicability of the
processor to be embedded into telecommunication equipment. Fur-
thermore, the cost of a single-chip implementation is expected to be
less than the cost of an implementation comprising more chips.

• The processor should support a special interface used internally in a
specific ISDN telephone. The aim was to demonstrate the capabilities
of the processor by embedding it into an ISDN telephone and, hereby,
be able to demonstrate a real-time RSA encryption of digitised voice
transmitted on an ISDN channel.

• The functionality of the processor should be testable. In case of a
malfunction it should be possible to track down the source causing the
error.

It was decided to use the methods and the hardware architecture described
in the article in Appendix A with a minor modification: Since the quotient
determination was expected to be one of the time critical operations, the
quotient determination method in Appendix A was replaced by the method
described in the article in Appendix B. The latter method was believed to
be faster.

For the implementation of the processor a commercial chip development
system, ChipCrafter [Cas91b] from the company Cascade Design Automation
Corporation, was used. The system is a so-called silicon compiler, where most
of the tasks of the design process are automated. A brief description of the
ChipCrafter development system is included in the article in Appendix C. A
collection of chip development tools from Valid Logic Systems and a circuit
simulator, Saber [Ana92] from Analogy, were used as well. Finally, a design
rule checker from Cadence Design Systems was applied.

The following description gives an overview of the history of the project:

September 1990 – November 1990. During the first three months some
initial experiments on the expected area consumption of the proces-
sor were done. The parts of the circuitry, expected to be the most
area consuming, were specified at a schematic entry level. Then, using
ChipCrafter’s automatic tools, some estimates of the area were ob-
tained. The area estimate was 175 mm2 for a design resulting from
a pure application of the ChipCrafter development system. An area

132 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

of 110 mm2 was estimated for a design resulting from a mixed de-
sign strategy, where the area critical parts were full custom designed
and the remaining parts were designed in ChipCrafter’s environment.
Since the aim of the project was to develop a prototype—not a product
ready for commercial sale—it was decided to stay in the ChipCrafter
environment. The time for implementing the processor was of greater
importance than the area of the prototype. Of course, due to limi-
tations of the fabrication facilities, there was an upper bound of the
physical dimensions of the processor. This bound was approximately
200 mm2.

As a curiosity, it should be mentioned, that the prototype was believed
to be ready for fabrication in February 1991. This turned out to be far
too optimistic: The processor was shipped for fabrication in January
1993!

December 1990 – May 1991. During the next six months the processor
was specified in detail. This included the design of the state machines
for controlling the sequence of computations and for controlling the
interfaces. In case the final processor should be malfunctioning, a
mechanism for tracking down the source for the errors was included.
This mechanism allows the processor to be configured into a test mode,
where all internal registers are connected into so-called scan-chains, e.g.
[WE92, Chapter 7]. The scan-chains behave as ordinary shift-registers,
allowing the user to stop the operation of the processor and to inspect
the internal state of the processor by shifting out the register values by
means of the scan-chain. Similarly, the processor can be brought into
an arbitrary internal state by shifting in a new value specified by the
user.

The functionality of the parts were validated through extensive simula-
tions. The design was structured in a hierarchy, where the root was the
complete processor design and the leafs were the primitive cells of the
cell library. The simulation were carried out in a modular way, starting
from the level just above the leaf cells and proceeding to the top level.
Hereby, the functionality of a part of the design was validated before
this part was included in another part at a higher level.

Finally, the timing of the parts in the design was analysed. Accord-
ing to the analysis, there would be no problem in meeting the timing

4.1. BACKGROUND AND HISTORY OF THE PROJECT 133

requirements of the processor. There was, however, another serious
problem: The design consumed by far too much area. This problem
became the main issue in the remaining work until the design was sent
for fabrication. The article in Appendix C reports some of the work
and the results of the efforts of reducing the area.

June 1991 – December 1991. Under the constraints of the chosen chip
development system the area of the processor layout was reduced. This
involved optimisation of the placement of the circuit parts and of the
routing of the wires connecting the parts. Furthermore, some of the
most area consuming parts were redesigned in order to provoke the
system to return a smaller layout. In spite of these actions it was not
possible to obtain an area below 340 mm2. The layout was still too
large to fabricate. The design consisted of about 550,000 transistors
and the power analysis showed a power consumption of approximately
2.5 W at a 25 MHz clocking frequency.

Simultaneously, the sources for the large area consumption were an-
alysed. Apart from a relatively bad placement and routing, the leaf
cells from the cell library had a large area consumption in comparison
with other known implementations. So, experiments on replacing some
of the cells with other user designed cells were initiated. Moreover, a
set of programs, that enforced a certain placement of the leaf cells by
manipulating the internal representation of the development systems
database, was written.

January 1992 – April 1992. It was decided to replace some of the leaf
cells in the cell library with smaller user designed cells. A new set
of leaf cells was developed. This included detailed simulations of the
electrical characteristics of the circuitry. The new cells were ported to
the development system.

May 1992 – November 1992. It was necessary to make some adjustments
of the design specification in order to include the new leaf cells. Conse-
quently, a new set of simulations of the functionality was required. The
optimisation of the placement and routing was repeated. The resulting
area of the final design were approximately 210 mm2. The transistor
count was reduced to about 300,000 transistors and the power consump-
tion was expected to be about 1.5 W at a 20 MHz clocking frequency.

134 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

A timing analysis indicated that the processor should be able to work
at a 25 MHz clocking frequency under the worst case conditions, i.e.
for a statistically slow process technology, a voltage of 4.5 V and a
temperature of 85◦C. The clocking frequency of 25 MHz corresponds
to an encryption rate of about 100 Kbit/s.

Since the development system was unable to assign dimensions to the
wires supplying the user designed leaf cells with power, it was necessary
to do experiments and calculations on these dimensions. Furthermore,
because the new flip-flop cells were known to be sensitive to the slope of
the clocking signal, detailed simulations were made in order to assure
that the clocking signal would be properly distributed on the chip.

December 1992 – January 1993. The final placement of the pad cells
were done in accordance to the specification of the package for the
processor.

The remaining two month, before the layout was sent for fabrication,
were spent on checking the layout. First a so-called LVS (layout versus
schematic) check was performed. This consists of a comparison of the
transistor netlist, extracted from the final layout, with the transistor
netlist obtained from the schematic specification level. The check re-
vealed about ten signal wires, that had been left unconnected by the
routing tool. These wires were manually connected by means of a layout
editor. Furthermore, the power distribution was manually improved.
The final check was the design rule check (DRC). This check revealed
a set of design rule violations resulting from the routing of wires in
the vicinity of the user defined cells. Fortunately, these violations were
easily corrected by manually moving the wires.

February 1993 – December 1993. The chips were returned from fabrica-
tion in March 1993. In order to test the functionality of the processor
and to measure the performance, a fairly large and complex circuitry
board was constructed. The design, construction and test of the test
board was completed around November 1993. The outcome of the test
and the results of the measurements are described in Section 4.4.

4.2. PROCESSOR DESCRIPTION 135

4.2 Processor Description

From the user’s point of view, the modular exponentiation processor can be
divided into the three functional blocks depicted in Figure 4.1. The control
unit is configuring the functionality of the processor in accordance to the
configuration chosen by the user. Furthermore, the control unit is controlling
the internal sequence of computations, and it is implementing the interface
protocols. As described in the engineering data in Appendix E, the processor
can be configured into several modes. One of these modes is the test mode,
which is entirely used for testing the processor by means of the built-in
scan-chains. The other modes are normal operation modes, which are used
when the processor is used for evaluation of modular exponentials. The
communication with the processor is controlled by means of a set of interface
signals, provided by the user, and a set of flags generated by the processor.
The data communication is bit-serial.

Figure 4.1: Functional blocks of the processor.

The processor’s I/O register is used for collecting the input data and for
holding the result of the previous evaluation. The I/O register is a shift-
register. So, simultaneously with receiving a string of data input bits, a
string a data output bits is shifted out from the register. When the I/O regi-
ster is filled with a new operand, say b, the content of the register is swapped
with the result, say c, from the modular exponentiation unit. Then, a new

136 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

input operand can be shifted into the I/O register while the result c is shifted
out from the processor. Simultaneously with this data communication, the
modular exponentiation unit evaluates the exponential be mod m. The value
e denotes the exponent, and the value m denotes the modulus. These val-
ues are shifted into the processor during an initialisation process, and the
values are used during all the subsequent modular exponentiations until a
new initialisation is done. Appendix E contains a more detailed description
of the configuration possibilities, the interface protocols and the pins of the
processor.

4.2.1 Modular Exponentiation Unit

The modular exponentiation unit is implementing a parallel computation of
the right-to-left binary exponentiation method presented in Section 2.3. The
parallel computation requires that two modular multiplications, a squaring
of the form y · y mod m and a general multiplication of the form x · y
mod m, are computed in parallel. The parallel modular multiplications are
characterised by having a common multiplicand. The parallel computation
is accomplished by a single modular multiplication unit that is pipelined into
two stages.

The hardware architecture of the modular exponentiation unit is illustra-
ted in Figure 4.2. The figure shows the external data connections to the
modular exponentiation unit, the internal functional blocks and the internal
data connection of these blocks. Apart from the pipelined modular multi-
plication unit, the modular exponentiation unit consists of five registers and
a small negation unit. All of the registers are holding binary represented
operands, and the data connections are communicating binary represented
data. Some of the data connections in Figure 4.2 are annotated with the
width of the data bus. If no explicit width is given, the bus has a width
corresponding to the full width of the communicated operand.

When the exponent e and the modulus m are feed serially into the pro-
cessor, the exponent is shifted into the shift-register denoted the E register,
and the modulus is shifted through the negation unit into the M register.
The negation unit negates the value of m. Hence, prior to each modular
exponentiation the E Register contains the value e, and the M Register con-
tains the value −m. In the right-to-left exponentiation method, the bits of
e are inspected from right to left. During the exponentiation process, the E

4.2. PROCESSOR DESCRIPTION 137

Figure 4.2: Hardware architecture of the modular exponentiation unit.

register is configured as a cyclic shift-register. Hereby, the actual exponent
bit, denoted ej, is positioned at the least significant end of the register. Af-
ter completion of the exponentiation process, the content of the E register
will be as prior to the start of the process, and E will be ready for the next
exponentiation.

The purpose of the Y register is two-fold: First, this register is used for
the exchange of new data, to be exponentiated, and for the result of an expo-
nentiation. The exchange is implemented as a swap of the contents of the Y
register and the I/O register. Second, the Y register is used for holding the
multiplier operand of the modular squaring operation. The B register is hold-
ing the common multiplicand for both of the modular multiplications that
are computed in parallel. So, prior to each parallel modular multiplication
the B register is loaded with the content of the Y register. The X register
is holding the other multiplier. During the modular multiplication process
the multiplier registers, X and Y , are configured as shift-registers. Since the
modular multiplication unit implements a radix 25 left-to-right method, the
multiplier digits, denoted aX

i and aY
i , are inspected from left to right. Each

radix 25 multiplier digit is encoded in five bits and, therefore, the bits of the
multiplier registers are shifted five positions at each shift operation. The X

138 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

register is cyclic. So, after each modular multiplication process, the content
of X will be as prior to the process. It is only in case of a high exponent bit
ej, that X is loaded with a new value. After every multiplication, Y is loaded
with the resulting modular square. Hence, there is no need for preserving the
content of the Y register. Upon completion of the exponentiation process,
the final result will be the content of the X register. The result is moved
to the Y register, and the modular exponentiation unit is ready for a new
exchange of data with the I/O register.

Denote the contents of the X, Y and B registers by, respectively, x, y
and b. Then, the modular multiplication unit computes, in parallel, a residue
module m of y · b and of x · b. The resulting residues are binary represented,
and they are restricted to the non-negative range [0; 2m[. In accordance
to the discussion on the representation of intermediate operands in Section
3.6, the modular multiplication unit allows the result of a previous modular
multiplication to be used, without any further conversion, as input to the
next modular multiplication. This means that x, y and b can be arbitrary
residues in the range [0, 2m[. The results from the modular multiplication
unit are delivered on the data connection denoted by R. Since the unit is
pipelined, the results are delivered in two consecutive time steps: First the
result RY ≡ y · b (mod m), then the result RX ≡ x · b (mod m). Because the
results from the modular multiplication unit are residues in the range [0, 2m[,
it is necessary to convert the final result of the modular exponentiation into
the residue range [0; m[. This is accomplished by a subtraction of m followed
by an inspection of the resulting sign. The final conversion is supported by
the modular multiplication unit.

4.2.2 Modular Multiplication Unit

The modular multiplication unit is implementing a radix 25 left-to-right mod-
ular multiplication method. The method is based on a recursive evaluation
of expressions of the form Ri = (25Ri+1 + aib) − 25qi+1m. As described in
Section 3.5, it is possible to utilise a parallel computation strategy, where the
evaluation of Ti = 25Ri+1 + aib is overlapped with the evaluation of 25qi+1m.
Furthermore, in order to improve the quotient determination complexity, the
modular multiplication unit utilises the scaling technique presented in Sec-
tion 3.9. The scaling constant, by which the modulus m and the multiplier a
are scaled, is 2r = 25. In fact, the modular multiplication method is identical

4.2. PROCESSOR DESCRIPTION 139

to the method described by Algorithm 3.9–1 with the modification, that the
resulting product is a residue in the non-symmetric range [0; 2m[. Finally, as
mentioned above, the modular multiplication unit is pipelined. This means
that two modular products are simultaneously computed. Since the multi-
plicand b and the modulus m are common operands for both multiplications,
it is sufficient to implement a simultaneous evaluation of the expressions
RY

i = T Y
i − 25qY

i+12
rm and RX

i = TX
i − 25qX

i+12
rm, where T Y

i = 25RY
i+1 + aY

i b
and TX

i = 25RX
i+1 + aX

i b. The radix 25 digits aX
i and aY

i denote the digits at
position i of the scaled multiplier operands.

Figure 4.3: Hardware architecture of the modular multiplication unit.

The hardware architecture of the modular multiplication unit is illustra-
ted in Figure 4.3. All of the internal connections are communicating data

140 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

represented in the redundant carry save form. These connections are sym-
bolised by double lines in the figure. The external connections are connected
to the registers of the modular exponentiation unit. The external connec-
tions are communicating (non-redundant) binary represented data. Before a
modular multiplication process is started, the external modulus register M
and the multiplicand register B must be properly initialised. To compute
residues modulo m of y ·b and x ·b, M must hold the value −25+rm = −210m
and B must hold the value b. During the modular multiplication process the
contents of the multiplier registers X and Y are shifted, digit by digit from
the most significant end, into the modular multiplication unit. As stated
by the stimulus condition of Algorithm 3.9–1, a multiplier register, say X,
must hold the scaled multiplier 2rx = aX

n′−1a
X
n′−2 . . . aX

0 plus an additional
digit aX

−1 = 0. Since 2r = 25 this implies that X must be initialised with the
value 210x. Similarly, register Y must be initialised with the value 210y. The
number of radix 25 digits held by a multiplier register is ni = n′ + 1, where
n′ denotes the number of digits used for representing the scaled multiplier.
Since a multiplier may be a result from a previous modular multiplication,
it is known to belong to [0; 2m[and, therefore, it may need 562 bits to be
binary represented. So, when scaled by 25, the number of bits increases to
567. This means the number of radix 25 digits of the scaled multiplier is
n′ = �567

5
� = 114. Hence, the number of radix 25 digits in the multiplier

registers is ni = 115.

The modular multiplication unit contains two pipelined units for redun-
dant addition and two pipelined units for computation of multiples. Further-
more, a binary adder, used for converting the carry save represented results
into binary representation, is included. The units with a grey-shaded frame
in Figure 4.3 are the pipelined units. They are pipelined into two stages and,
hence, each unit contains a register implementing the pipeline buffer.

The multiple unit denoted aB computes multiples of the multiplicand.
The unit has three input operands: The multiplicand B, and the two multi-
plier digits aX

i−1 and aY
i−1. The actual multiplier digit used in the computation

alternates between a digit from register Y and a digit from register X. A mul-
tiple is produced in each clock period. The sequence of computed multiples
can be expressed as

aY
113B, aX

113B, aY
112B, aX

112B, . . . , aY
−1B, aX

−1B, (4.1)

The multiple unit denoted qM performs a similar computation. It computes

4.2. PROCESSOR DESCRIPTION 141

multiples of the modulus value in register M . Instead of receiving the quo-
tient digit qi+1 to be used in the computation, the unit receives a truncated
version R̂i+1 of the intermediate result Ri+1. Hence, in this multiple unit,
circuitry for determination of the quotient digits is included. The input R̂ is
equal to the 12 most significant carry save digits from position 561 to 572 of
R, i.e. R̂ = r572r571 . . . r561.

Figure 4.4: Hardware architecture of the redundant adder denoted T .

The redundant adder denoted T is implementing the addition operation
in the expressions Ti = 25Ri+1 + aiB. Since both terms in this expression
are carry save represented, the adder can be identified as a 4–2 adder (see
Subsection 3.2.2). The hardware architecture of the unit is shown in Figure
4.4. The register, T , implementing the pipeline buffer is buffering the result
from the redundant addition. Since the result is carry save represented,
register T corresponds to two registers for holding binary represented data.
The redundant adder denoted R is implementing the addition operation in
the expressions Ri = Ti + qi+1M . (Recall that register M contains the value
−210m. Hence, the subtraction is converted to an ordinary addition). The
implementation of this adder is similar to the other redundant adder.

The binary adder is used for converting the final results, RY
−1 and RX

−1,

142 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

into non-redundant binary representation. Since the computing time for a
binary addition is relatively large compared to the computing time for the
other units, more than a single clock period is assigned for this operation.
The number of extra clock periods is denoted nw, the number of wait states.
The required number of wait states depends on the actual clocking frequency.
Therefore, the parameter nw can be configured by the user. While the pro-
cessor is waiting for the conversion to be completed, the contents of all the
registers, used in the computation of modular products, remain unchanged.
The binary adder was generated by the chip development tools. According
to the data book [Cas91a], this so-called high speed adder uses a carry select
architecture with a Manchester carry chain. (These addition techniques are
described in standard books on computer arithmetic and VLSI design, e.g.
[WE92, Chapter 8]).

The data connections in Figure 4.3 and in Figure 4.4 are annotated with
the values computed by the various units at a certain instant of time. The
annotation can be viewed as a snapshot of the internal state of the modular
multiplication unit. The snapshot shows the internal state just after the
evaluation of RX

i+1. Because of the pipelined architecture, all of the pipelined
units produce an alternating sequence of results as illustrated by (4.1). In
general, when a unit produces a result marked with Y , it simultaneously
consumes inputs marked with X, and vice versa.

It should be mentioned, that the final results are left-shifted versions of
the residues modulo m of x · b and y · b. The results can be expressed by
RY

−1/2
10 ≡m y ·b and by RX

−1/2
10 ≡m x ·b. According to the above discussion,

the multiplier registers X and Y must be initialised with 210x and with 210y
prior to each modular multiplication. Hence, the updating of these registers
with a result from a previous modular multiplication can be achieved by a
simple load of the value R−1.

The modular multiplication unit supports the conversion of a residue, say
R′, in the range [0; 2m[into the range [0;m[. As mentioned in the previous
subsection, such a conversion is required for the final result of a modular
exponentiation. The conversion is performed by a subtraction of m, i.e. the
operation R′ − m, and an inspection of the resulting sign: First register
B is loaded with the value R′. Then, by enforcing certain values to the
multiplier digits and quotient digits, the following computation implements

4.2. PROCESSOR DESCRIPTION 143

the subtraction using the existing hardware architecture:

R1 := 0;
R0 := (25R1 + a0B) + q1M, where a0 = 25 and q1 = 0;
R−1 := (25R0 + a−1B) + q0M, where a−1 = 0 and q0 = 1;

By insertion of the digit values, the computation is seen to result in R−1 =
210B + M , which equals the value 210(R′ − m). Finally, by means of the
binary adder the sign of R′ − m is computed.

4.2.3 Multiple Units

The hardware architecture of the multiple unit that computes multiples of B
is shown in Figure 4.5. The input operands are the multiplier digit aY

i−1 from
register Y and the multiplier digit aX

i−1 from register X, and the multiplicand
in register B. The input operands are binary represented. The digit set for
the radix 25 multiplier digits is {0, 1, . . . 31}. The multiple unit utilises the
technique described in Subsection 3.7.1, where a multiplier digit, say aX

i , is
recoded into three radix 4 digits (d0, d1, d2)

X
i such that aX

i = 42d2 + 41d1 +
40d0. The digit set for these radix 4 digits are {1̄, 0, 1, 2} for d0 and d1, and
{0, 1, 2} for d2. Therefore, the multiple aX

i B can be computed as the sum
of three shifted versions of B and −B. The sum is computed by a carry
save adder and, hence, the resulting multiple is carry save represented. The
multiple unit is pipelined into two stages. The pipeline buffer is a six bit
register denoted the a register.

The 2–1 multiplexer in the figure is used for selection of either a multiplier
digit from register Y or a multiplier digit from register X. As mentioned in
the previous subsection, the actual multiplier digit used in the computation
alternates between these two registers.

The unit denoted recode a is implementing the multiplier digit recoding.
The value of each of the resulting radix 4 digits (d0, d1, d2) is encoded into
two bits. Hence, the encoding of a multiplier digit expands from five bits to
six bits. It is possible to enforce the recode unit to produce the (d0, d1, d2)
encoding of the multiplier digit value 25 independently of the actual value
of the multiplier digit at the input. As described in the previous subsection,
this feature is needed for the final conversion of the result of the modular
exponentiation. A special control signal set32 controls the feature. A syn-
thesis tool named FINESSE [Cas91c] was used to generate the circuit for the

144 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

Figure 4.5: Hardware architecture of the multiple unit for computing multi-
ples of B.

recode unit. The functionality of the unit was specified by a table. From
this table, FINESSE generated a module comprising 15 instances of the basic
combinatorial circuit cells from the cell library.

The unit denoted multiplexer network is producing the three terms 40d0B,
41d1B and 42d2B by a simple selection between shifted values of B and −B.
The hardware architecture of this unit is shown in Figure 4.6. It consists
of two 4–1 multiplexers for generation of 40d0B and 41d1B and a single 3–1
multiplexer for generation of 42d2B. As illustrated by the figure, the encoding
(d0, d1, d2) of the multiplier digit is used as selection signal inputs to the
multiplexers. The input ¬(41B) denote the bit-wise inverted version of 41B:

4.2. PROCESSOR DESCRIPTION 145

Figure 4.6: Hardware architecture of multiplexer network.

The two’s complement is used for the representation of negative operands.
Therefore, the negative value −41B can be computed by ¬(41B) + 1. The
increment of ¬(41B) is not shown in the figure: Note that the values of the
four least significant bits of 42d2B are always zero. Hence, the increment can
be implemented by replacing the value of the least significant bit of 42d2B
with 1. Similar for the input denoted ¬(40B). If both d0 and d1 are equal to
1̄, the binary value of the two least significant bits of 42d2B is set to 10.

The hardware architecture of the multiple unit that computes multiples
of M is shown in Figure 4.7. The principles for the computation of these
multiples is similar to those presented above. However, in this unit, a quotient
determination unit is included. The quotient determination unit computes
the quotient digits qY

i+1 to be used in the formation of the multiples qY
i+1M .

The pipeline buffer is a 40 bit register denoted q register. It is holding
the computed quotient digit. The possible values of the resulting quotient
digit is known to be restricted to the quotient digit set {0, 1, . . . , 39}. The
representation of the resulting quotient digit is a bit-vector, where exactly
one of the elements is equal to one. The bit-vector has 40 elements, and
the position of the one-valued bit determines the value of the quotient digit:
Position 0 represents the value 0, position 1 represents the value 1, etc.. The
unit denoted recode q performs a recoding from the bit-vector representation
into the (d0, d1, d2) representation used by the multiplexer network. As for
the above described recoder, this unit can be forced to produce a (d0, d1, d2)
encoding of a certain quotient digit value. This value is equal to one, and
it is controlled by the signal set01. The functionality of the recode unit was
specified by a table, and FINESSE was used for generating the circuit. The
circuit comprises 30 instances of basic combinatorial cells.

146 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

Figure 4.7: Hardware architecture of the multiple unit for computing multi-
ples of M .

4.2.4 Quotient Determination Unit

The method implemented by the quotient determination unit is identical to
the method described in the article in Appendix B. The residue range is
non-negative, and the operation of the unit can be specified by

{Determine integer q such that R − qm′ ∈ [0; αm′[and q ∈ {0, 1, . . . , 42}}.

Since the unit merely computes an estimate of the exact quotient digit, the
parameter α has a value greater than 1. The scaled modulus m′ is equal
to 25m, where m ∈ [2560; 2561[. The restriction on the maximal allowable
quotient digit value, qmax = 42, is imposed by the method for computation
of multiples. However, as will be shown below, the quotient digit values
determined by the method of this quotient determination unit will never
exceed 39.

4.2. PROCESSOR DESCRIPTION 147

The basic principle of the method is to assign the value j to the quotient
digit q if R ∈ [jm′; (j + 1)m′[and, hereby, obtaining that R − qm′ ∈ [0; m′[.
By inspecting the results of the comparison operations R − jm′ ≥ 0 and
R − (j + 1)m′ ≥ 0 it is checked if R indeed belongs to [jm′; (j + 1)m′[. The
comparison constants cj = −jm′, where j ∈ {0, 1, . . . , 39}, are computed
simultaneously with the initialisation of the processor. Since the modulus m
is put serially into the processor, a serial computation of the constants can
be implemented by means of a few full adders and flip-flops.

However, in order to reduce the computing time for the comparison op-
erations, the comparisons are limited to the most signifiant parts of the
operands: The quotient determination unit performs the comparisons

R̂ + ĉj ≥ 0, for all j ∈ {0, 1, 2, . . . , 39}, (4.2)

where R̂ and ĉj refer to the most significant parts of R and cj. Then, if

R̂+ĉj ≥ 0 and R̂+ĉj+1 < 0 the value j is assigned to the quotient digit. Using
the notation in Section 3.10, where ∆ refers to the truncation error introduced
by neglecting the u least significant digits, the operands are written as R =
2uR̂ + ∆R and cj = 2uĉj + ∆cj

. Hence, R̂ + ĉj ≥ 0 implies that R − jm ≥
∆R + ∆cj

, and R̂ + ĉj+1 < 0 implies that R − (j + 1)m′ < ∆R + ∆cj+1
. So,

R−jm′ ∈ [∆R +∆cj
; m′+∆R +∆cj+1

[. According to Table 3.1, page 107, the
truncation errors of the binary represented comparison constants belong to
[0; 2u − 1], and the truncation error of the carry save represented R belongs
to [0; 2(2u−1)]. Therefore, the resulting quotient digit value will ensure that

R − qm′ ∈ [0, m′ + 3(2u − 1)[= [0; αm′[. (4.3)

According to the analysis in the article in Appendix B, it is sufficient to
use the precision u = 561 to restrict the values of q to the set {0, 1, . . . , 42}.
Indeed, it turns out that q will never be greater than 39: Equation (4.3) gives
that αm′ = m′ + 3(2u − 1). By inserting u = 561 and using m′ = 25m ≥
252560, it follows that α < 19

16
. Furthermore, R is the result of a recursive

computation of the form Ri := 25(Ri+1−qi+1m
′)+aib, where ai ∈ [0; 31] and

b ∈ [0; αm[= [0; α
32

m′[. Hence, R < 32(αm′) + 31
32

αm′. Finally, using α < 19
16

,
it is seen that R < 40m′ and, consequently, the quotient digit value will be
less than 40.1

1In fact it is sufficient to use the quotient digit set {0, 1, . . . , 38}: Theorem 3.8–1 states
that a digit set bounded by qmax = [(δ−1)α] is sufficient to achieve R− qm′ ≤ αm′, when
R ≤ δαm′. According to the above discussion, δ is bounded by δ < 32 + 31

32 , and α is
bounded by α < 19

16 . Therefore, �(δ − 1)α� is bounded by �(δ − 1)α� ≤ 38.

148 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

In the quotient determination unit the comparison operations include
the 12 most significant digits of R and cj = −jm′ from position 561 up to
position 572. Since an upper bound of R and jm′, given by 40m′ < 40 252561,
is less than 2572, the digits at position 572 determine the sign of the operands.
(The two’s complement representation is used for representation of negative
operands).

The hardware architecture of the quotient determination unit is shown
in Figure 4.8. It consists of 39 instances of a comparison unit and 40 exclu-
sive or (XOR) gates. The input to the quotient determination unit, and to
the instances of the comparison unit, comprises the 12 most significant dig-
its, denoted R̂X

i+1, of the carry save represented intermediate operand RX
i+1.

The output of the quotient determination unit is a bit-vector representation
(v0, v1, . . . , v39) of the value of quotient digit qX

i+1: The bit-vector represen-
tation obeys that vj = 1 if, and only if, qX

i+1 = j.

Figure 4.8: Hardware architecture of the quotient determination unit.

Each of the 39 comparison units performs one of the comparisons in (4.2).
The unit denoted comparison unit, j performs the comparison R̂X

i+1 + ĉj ≥ 0.

4.2. PROCESSOR DESCRIPTION 149

The result of the comparison is denoted carryj. Signal carryj is 1 if the
answer is “true”, and 0 if the answer is “false”. So, according to the above
discussion, the signal vj (equal to the exclusive or of carryj and carryj+1)
takes the value 1 if, and only if, the value j should be assigned to the quotient
digit. Since the intermediate operand RX

i+1 is restricted to the range [0; 40m′[,
signal carry0 is constantly 1, and carry40 is constantly 0.

The hardware architecture of the comparison unit is shown in Figure 4.9.
The unit contains a 12 bit register denoted ĉj register. The register holds
the most significant part of the comparison constant cj = −jm′. A carry

save represented sum of R̂X
i+1 and ĉj is computed by means of a carry save

adder. Finally, the sign of the sum is computed by a binary addition. The
value of the carry signal, denoted carryj, encodes the sign: Since R̂X

i+1 is

non-negative and ĉj is negative, a carry will be generated if R̂X
i+1 + ĉj ≥ 0.

No carry will be generated if R̂X
i+1 + ĉj < 0. The binary adder is an instance

of the so-called high speed adder generated by the chip development tools.
It should be mentioned, that only the resulting carry signal from the adder is
needed. The binary represented sum is discarded. Therefore, a more efficient
implementation of the comparison unit could be achieved by replacing the
binary adder with a simpler circuit, where the functionality is limited to a
computation of the resulting carry.

Figure 4.9: Hardware architecture of the comparison unit.

150 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

4.2.5 Control Unit

The control unit contains three finite state machines: The first state machine
is implementing the interface protocols, where data to be exponentiated are
collected in the I/O register. The second state machine is implementing the
initialisation procedure, where new values of the exponent and the modulus
are put into the processor, and where the ĉj registers in the quotient deter-
mination unit are initialised. Finally, the third state machine controls the
sequence of computations performed by the modular exponentiation unit.
The following description is limited to the third state machine. The other
state machines are similar. Apart from the state machines, the control unit
contains some counters. E.g. four counters are associated with the control
of the modular Exponentiation unit: Two counters are used for counting
the number of exponent digits and the number of multiplier digits that have
been processed in the exponentiation procedure. Furthermore, two counters
are used for counting the number of wait states in the binary addition im-
plementing the final conversion from carry save representation into binary
representation. (See the description of the modular multiplication unit in
Subsection 4.2.2).

The hardware architecture of the finite state machine for controlling the
modular exponentiation unit is depicted in Figure 4.10. The input to the
state machine is denoted signals. This input comprises external signals gen-
erated by the user of the processor. Moreover, it comprises internal signals
generated by one of the other state machines, status signals from the counters,
and the resulting sign from the binary adder in the modular multiplication
unit. The output from the state machine comprises a set of control signals
used for the internal control of the components in the modular exponentiation
unit and for the control of the counters. E.g. control signals for the registers
are controlling the moment of loading a new value, the moment of shifting
the contents of a shift-register, or the moment of clearing the content. A set
of flags is part of the output as well. Some of the flags are used internally
in the control unit to inform the other state machines of the status of the
modular exponentiation unit, and some of the flags are used for informing
the user about the status of the processor.

The architecture in Figure 4.10 contains two registers. The state register
holds the current state of the state machine, and the signal register holds
the current values of the control signals and flags. The unit denoted control

4.3. LAYOUT 151

Figure 4.10: The finite state machine for controlling the modular exponenti-
ation unit.

logic computes the next state of the state machine and the next value of the
signal register. In this computation the current state and the current value
of the input signals are taken into account.

For the implementation of the finite state machines, the synthesis tool
FINESSE was applied. The functionality of the finite state machines was
specified in a special purpose programming language. From this specifica-
tion FINESSE generated a circuit module containing flip-flops for the im-
plementation of the registers, and instances of basic combinatorial cells from
the cell library for the implementation of the control logic. The finite state
machine in Figure 4.10 comprises 30 flip-flops and 88 instances of the basic
combinatorial cells.

4.3 Layout

The floorplan of the layout of the processor is illustrated in Figure 4.11, and
a photography of the die of the fabricated processor is shown in Figure 4.12.

152 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

Figure 4.11: Floorplan of processor.

The three upper blocks of the floorplan contain all of the modules generated
by the FINESSE synthesis tool: The control unit (including some counters)
and the recoder units for the recoding of multiplier digits and quotient digits.
Furthermore, these blocks contain buffers (or drivers) for driving the clock
signal and the control signals. As indicated in Figure 4.11 these signals are
distributed on each side of the quotient determination unit. The very wide
circuitry consisting of registers, adders and multiplexers are laid out in bit-
slices. Because of the width of this circuitry (about 576 bit-slices), it is
divided into eight blocks of 72 bit-slices each and folded around the quotient
determination unit. Some parts of this circuitry are not exactly 576 bits wide.
Then, some of the bit-slices in the most significant (MSB) end, or in the least
significant (LSB) end, are left unused. Each of the eight blocks of bit-slices,
as well as the quotient determination unit, contains a second level of buffers
for driving the clock signal and the control signals. The grey-shaded area
inside the pad frame symbolises routing channels. The vast majority of this
area is used for routing of power supply wires. The pad frame contains 111
pads, of which 32 are used for the power supply. Each side of the pad frame
contains four Vdd pads and four GND pads.

The process technology used for the implementation of the processor is a
5 V, 1.2 µm, double metal layer, CMOS process technology, named ECPD12
[ES293], from the company European Silicon Structures (ES2). The ex-
act dimension of the layout, including the pad frame, is 14,112.9 µm times

4.4. TEST AND PERFORMANCE 153

Figure 4.12: Photography of the die.

15,045.3 µm. This gives a total area of approximately 212 mm2. The pro-
cessor comprises 126,864 p-transistors and 177,113 n-transistors, a total of
303,977 transistors.

4.4 Test and Performance

For testing the functionality of the processor, and for measuring the perfor-
mance, a series of experiments was done. The results reported in this section
are based on experiments with a sample of 100 chips. According to the chip
manufacturer, the company ES2, the expected yield should be in the range
from 7 to 15 percents. So, it was hoped to find 7–15 well-functioning chips.
Indeed, it turned out that 8 chips behaved in accordance to the specification
of the design of the processor. In the following, these 8 chips will be denoted
the “working chips” while the remaining 92 chips will be denoted the “failing
chips”.

154 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

4.4.1 Check of Pin Connections

The very first experiment was a check of the pin connections. This was done
to ensure that the actual connections of the pins were in accordance with the
specifications. (The chips were packed and bonded by the manufacturer).
The experiment was done by a series of measurements of the resistance be-
tween the pins of the package:

1. It was checked that all Vdd pins were electrically shorted internally at
the chip. Similar for the GND pins. Furthermore, it was checked that
the Vdd and GND pins were electrically isolated from each other.

2. It was checked that all of the other pins were isolated from the Vdd
pins and from the GND pins.

The pin positions are described in Appendix E. The check of the pin con-
nections was limited to a single chip. No errors in the connections were
found.

4.4.2 Current Measurements on Reset

The next experiment was a measurement of the current consumption of the
100 chips. The purpose of the experiment was to check if the chips consumed
a reasonable amount of power when clocked at varying frequencies. Further-
more, the responses of the chips on a reset procedure were observed: First,
the voltage levels of four output pins were measured while the reset signal
was activated. Then, the voltage levels were measured while the reset signal
was deactivated. This gave a first indication of the functionality of the chips.

A simple test board, using an adjustable clock generating circuit, was
built. The frequency of the system clock signal was set up via the parallel
interface port from a Personal Computer (PC). Except from the reset signal
and the system clock signal, all of the input pins were connected to either
Vdd (5 V) or GND (0 V), giving a proper configuration of the processor. The
processor was configured to use the so-called general purpose (GP) interface.

1. The measurements of voltage levels were done on the four output pins
denoted by outputData, doneKey, doneExp and errorsync in the de-
scription in Appendix E. Pin outputData is the data output from the

4.4. TEST AND PERFORMANCE 155

I/O register. This pin is the only tristate output pin of the processor.
DoneKey is a flag that signals the end of an initialisation procedure.
This procedure is performed by the processor each time new values of
the modulus and the exponent have been shifted into the processor.
DoneExp is a flag that signals the end of an exponentiation process.
Finally, errorSync is a flag that signals the detection of an error in the
synchronisation pattern used in the self-synchronising SLD interface
(see Appendix E). The correct voltage levels of the pins are shown in
Table 4.1. Note that pin outputData is in the high impedance state,
denoted by Z, when the reset signal is active. (The reset signal is active
at a low voltage level). To check the high impedance of the outputData
pin, the voltage level was forced to high through a pull up resistance
and, similarly, forced to low through a pull down resistance.

Reset OutputData DoneKey DoneExp ErrorSync
0 Z 0 5 5
5 0 5 5 0

Table 4.1: Correct voltage levels of observed output pins.

2. Simultaneously with keeping the reset signal at the active level, the cur-
rent consumption was measured at three clocking frequencies, 5 MHz,
10 MHz and 20MHz. During an activation of the reset signal, the con-
trol unit is brought into a well-defined state. In this state, some of
the registers are cleared, and all of the remaining registers are holding
their values. Consequently, the current consumed by the combinato-
rial circuitry between the registers will be minimal and, therefore, the
influence on the current measurements from the (unknown) values in
the registers after power-up will be relatively low.2 It was expected to

2None of the combinatorial circuit cells are using dynamic logic families, where an
internal node is pre-charged before the evaluation of the output values. Therefore, the
current consumed by these cells is independent of the actual input values. However, the
registers are using a type of D flip-flops [YS89], where an internal node is pre-charged
in each clock period. Depending on the actual value held by the flip-flop, this internal
node will be discharged in each clock period as well. In fact, if the value held by the
flip-flop is zero, this internal node will alternately be charged and discharged. If the value
is one, the node will remain charged. So, to some extent, the current measurements will be

156 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

see a linear relationship between the current consumption itotal and the
clocking frequency fΩ of the form

itotal = istatic + fΩ · idynamic (4.4)

The static current istatic is the contribution from leakages in the cir-
cuitry and from the output pins of the processor. Furthermore, there
is a contribution from the test board. (This contribution was mea-
sured, without a processor in the test board, to be 256 µA when the
reset signal was activated, and 40 µA when deactivated.) The dynamic
current idynamic is the contribution from the circuitry for distribution of
the clock signal and from the flip-flops clocked by this signal. The cur-
rent supply to the external circuit for generating the clock signal was
separated from the supply to the remaining parts of the test board.
Hence, the current contribution from the clock generation circuit was
excluded from the measurements.

3. Finally, after deactivating the reset signal, the current consumption was
measured at a 20 MHz clocking frequency. This current is a measure of
the power consumption when the processor is idle, i.e. in a state where
the processor is ready for further processing. The internal operation
of the processor, just prior to the event of deactivating the reset signal
and just after this event, only differs in one respect: No registers are
being actively cleared. However, since all registers are holding their
values, the cleared registers will remain cleared.

The current measurements, and the observation of the voltage levels of the
four output pins, implied that 17 chips were classified as failing chips: All of
these chips consumed a current, that was significantly larger than the other 83
chips. Furthermore, some of the failing chips had erroneous voltage levels at
the output pins. The difference in current consumption was most significant
for the measurements at the 5 MHz clocking frequency, and least significant

influenced by the power-up state of the registers. Some of the registers are using a flip-flop
variant that can be cleared, i.e. the value held by such a flip-flop can be forced to zero by
activation of a “clear” input signal. When this signal is activated, the above mentioned
internal node will remain discharged throughout a clocking period, and the pre-charging is
disabled. Approximately 1,200 of the flip-flops have this clear option. When the external
reset signal is activated, the clear signal for these flip-flops is activated, and when the reset
signal is deactivated, the clear signal is deactivated, as well.

4.4. TEST AND PERFORMANCE 157

for the 20 MHz frequency. This indicated a large static current consumption
for the failing chips, and it may be a symptom of, unintentionally, shorted
circuitry in the chips.

Figure 4.13: Plot of current as function of clocking frequency.

Two plots of the current measurements, with an active reset signal, for the
remaining 83 chips are shown in Figure 4.13. The plot on the left comprises
all 83 chips, while the plot on the right is limited to the data for the 8 working
chips. Except from two sets of data in the left plot, all sets of data show
an approximately linear relation between the current consumption and the
clocking frequency. Furthermore, it is seen that the slopes of the lines are
almost identical for the vast majority of the chips. So, assuming that the
current consumption is given by expression (4.4), it is seen that the variation
in current consumption of the chips are mainly due to variations in the static
current consumption. The plot of the currents for the working chips shows
a small variation in the static current consumption, and a small variation in
the dynamic current consumption.

The current measurements for the 8 working chips are listed in Table

158 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

Chip No. 5 MHZ 10 MHZ 20 MHZ 20 MHZ, non-reset istatic idynamic

mA mA mA mA mA mA/MHz
01 25.2 49.7 97.0 107.6 1.6 4.8
11 25.7 50.5 98.7 109.4 1.6 4.9
15 24.8 48.8 95.4 105.8 1.5 4.7
37 25.7 50.5 98.6 109.4 1.7 4.9
53 25.3 49.7 97.2 107.8 1.6 4.8
63 25.6 50.4 98.6 109.3 1.5 4.9
66 26.1 51.0 99.2 110.0 2.0 4.9
89 25.4 50.0 97.7 108.4 1.6 4.8

Table 4.2: Current consumption of working chips

4.2. The first column contain the identification numbers of the chips. The
next three columns lists the current measurements when the reset signal was
at the active level. The fifth column contains the single measurement done
when the reset signal was deactivated. Finally, in the last two columns,
some estimated values of the static current and of the dynamic current are
computed. These values are obtained by fitting a line, expressed by (4.4), to
the three measurements of the current when the reset signal was active. It is
seen that the static current for the working chips is in the range from 1.5 mA
to 2.0 mA, and the dynamic current is in the range from 4.7 mA/MHz to
4.9 mA/Hz. A similar computation for the other 83− 8 = 75 chips confirms
that the dynamic current is about equal for the vast majority of the chips:
Of the 83 chips, 75 have a dynamic current in the same range as the working
chips. The static current of the 83 chips shows a much larger variation: It
varies from 1.4 mA to 30.2 mA, and the number of chips, having a static
current in the same range as the working chips, is 37. Hence, it seems like
this relatively simple measurements of currents might be a suitable method
to classify the sample of chips into a class of candidates for working chips
and a class of definitely failing chips. In this case, the method would classify
approximately 60 percents of the chips as failing.

According to measurements at the 20 MHz clocking frequency in Table
4.2, the current consumption increases by 10.4–10.8 mA when the reset signal
is deactivated. This is due to the internal operation of about 1,200 flip-flops
that are no longer being actively cleared and, therefore, consume current
through a process of pre-charging and discharging an internal node.

4.4. TEST AND PERFORMANCE 159

4.4.3 Test Board

For testing the functionality and for measuring the performance of the pro-
cessor a new test board was built. The construction of this board was much
more complicated than the board used in the previous current measurements.
It should be mentioned, that both test boards were built by John Thorup,
the Research and Development Department, Jydsk Telefon/Tele Danmark.

Figure 4.14: Photography of the test board.

Figure 4.14 shows a photography of the new test board. The large chip,
placed in a socket near the centre of the board, is the processor to be tested.
At the rear a micro-processor (in the following denoted by µP) is located. It
controls the communication with the processor. At each side of the processor
a set of FIFOs (First In, First Out queues) is placed. The FIFOs are holding
the data to be serially shifted into, and out from, the processor. In front of the
processor a set of switches is located. The switches are used for setting those
of the configuration parameters, that are seldom changed. The remaining
configuration parameters can be set via the µP. A circuit for generating an
adjustable clocking signal is included on the board. The clocking frequency
is controlled via the parallel interface port from a PC. The clock generation
circuit provides two adjustable clocking signals for the processor: One for
the system clock input pin, and one for the data clock input pin. The latter
clocking signal determines the frequency by which data are shifted into, and

160 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

out from, the I/O register. It is possible to choose a system clock frequency in
the range from 320 KHz to 120 MHz, and a data clock frequency in the range
from 160 KHz to 60 MHz. The test board is also equipped with a number of
light-emitting diodes (LEDs). These monitor the status of the FIFOs (full,
empty, etc.) and the values of the processor’s output flags. As seen from
the photography, several components have not been mounted on the test
board. The board was prepared for supporting a scan-chain test. However,
it turned out that a test of the functionality of the normal operation modes
was adequate. Hence, the components for the scan-chain test were never
mounted and, consequently, it is not known if the test mode of the processor
is functioning.

A testing procedure can, briefly, be described as follows: After powering
up the test board, a program denoted a “command interpreter” is loaded to
the program memory of the µP. The command interpreter is loaded via one
of the serial interface ports from the PC. The test to be performed is specified
as a sequence of test commands. This specification has the form of a simple
text file on the PC. During the testing procedure a series of test commands,
including data, are transmitted to the µP from the PC via another serial
interface port. Similarly, after execution of each test command, the result
is returned to the PC. Then, the PC is used for comparing the result of the
test with the expected, correct, result.

Apart from the command interpreter to be executed by the µP, some
programs were written for implementation of the communication protocols
between the test board and the PC. Furthermore, a simple test command
“language” was specified. A parser/interpreter for checking the syntax and
for interpreting the test command files was written. Figure 4.15 shows the
listing of a typical test command file. The comments explain the meaning of
the commands.

4.4.4 Test of Functionality

The testing of the functionality of the processor was carried out by means of
a set of about 35 test command files. Apart from inspection of the results
of the modular exponentiation, it was checked if the output flags behaved
in accordance to the specifications. The data to be exponentiated and the
values of the keys (i.e. the modulus and the exponent) were chosen from two
categories: The first category was a set of “extreme” values. For example, the

4.4. TEST AND PERFORMANCE 161

Figure 4.15: Example of a test command file.

smallest, and the largest, allowable value of the exponent and the modulus.
The second category was a set of randomly selected values. Furthermore,
the second category contained a number RSA key pairs. Hereby, some of the
tests comprised a real encryption and a decryption of a series of data values.
To check the results of the modular exponentiation a “reference” program
was used. The reference program was not an implementation of the modular
exponentiation method used by the processor. Instead a standard library
routine was used. Hereby, it was ensured that errors in the method would
not be inherited by the reference program.

The clocking frequencies chosen for the functionality test were rather low:
160 KHz for the data clock and 2 MHz for the system clock. This was done to
ensure that failures would not be due to a too high clocking frequency. Later,
when the working chips were found, the clocking frequencies were increased
to measure the performance of these chips. The results of the performance

162 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

measurements are reported in the next subsection. The following tests were
performed:

1. During a process of initialising the key, the response of the doneKey
flag was inspected. After reseting the processor, the flag must be high.
Then, when the initialisation process is started, doneKey must go to
a low level. Finally, when the key values have been shifted into the
processor, and the processor have completed the internal initialisation
process, the flag must go back to the high level.

2. Using the relatively simple GP interface, the functionality of the pro-
cessor was tested. First, it was checked if data could be shifted into,
and out from, the I/O register. Then, it was checked if an exponentia-
tion process indeed was performed when the startExp input signal was
activated. On an activation of the startExp signal, the doneExp flag
must go low, and when the processor have completed the exponentia-
tion, the flag must return to high. The correctness of the results of the
exponentiation process was verified.

3. For the chips that passed the first two tests, a set of RSA encryption
operations and decryption operation were performed. The idea of the
test was to encrypt a large amount of random data and, then, after
a decryption, to check if the data had changed. For each pair of en-
cryption/decryption keys a total of 64,000 data blocks were processed.
However, instead of shifting 64,000 data blocks, each consisting of 561
bits, through the processor, a 64,000-fold encryption, followed by a
64,000-fold decryption, of a single random data block was performed.
Since the outcome of an encryption must look like a random num-
ber, this test was comparable to shifting 64,000 random data blocks
through the processor. Furthermore, if any of the intermediate results
were erroneous, the final result would not be identical to the original
data block. During these tests, the frequency of the system clock was
increased to 25 MHz, and the frequency of the data clock was increased
to 512 KHz.

4. The self-synchronising SLD interface was tested. Since the former tests
would reveal failures in the operation of the modular exponentiation
unit, this test was primarily aimed at a verification of the functionality

4.4. TEST AND PERFORMANCE 163

of the various configuration possibilities of the SLD interface. The SLD
interface is described in Appendix E.

The test of the functionality implied that 8 of the 83 remaining chips
were classified as working. Using the GP interface no failures were detected
in the functionality of these 8 chips. There was, however, detected a failure
in the expected functionality of the SLD interface. The failure was due to
an error in the specification of the finite state machine that implemented
the SLD interface protocol. So, the failure was reproduced in all of the 8
“working” chips. Fortunately, the GP interface was included in the design of
the processor. Hence, it was still possible to use the processor for computing
modular exponentials. As a consequence of the failing SLD interface, the
processor was never embedded in an ISDN telephone.

The failure was detected when the processor was configured to the trans-
mit and crypt mode. In this mode, the resulting 561 bits modular exponential
is merged with a 79 bits synchronisation pattern, giving a total of 640 bits.
During a communication on an ISDN channel, these 640 bits is divided into
80 frames of 8 bits. Except from one frame, each of the 80 frames contains a
synchronisation bit. In Table 4.3 the correct format of the output from the
processor is shown together with the erroneous format actually produced by
the chips. The 561 bits of the modular exponential is denoted c560c559 . . . c0,
where c0 is the least significant bit. As seen in the table, the synchronisation
pattern is correct in the erroneous format. Furthermore, the format of the
frames numbered from 1 to 79 is correct. The failure is in the last frame:
Here a shift of the I/O register is missing in the specification of the control-
ling state machine. The consequence is that bit c553 is represented twice in
the output format and that the most significant bit c560 is lost.

4.4.5 Performance Mesurements

The performance of the processor was measured while it was configured to
use the GP interface. It was planned to do the measurements under varying
external conditions for the processor, i.e. for varying supply voltages and for
varying temperatures. However, it turned out that some of the components
on the test board were quit sensitive to these conditions. So, the actual
variations were limited to a minor variation in the supply voltage. All of the
measurements were performed at room temperature. In the following, the
results of the measurements are listed:

164 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

Frame Correct Format Erroneous Format
1 1 c006 c005 . . . c000 1 c006 c005 . . . c000

2 0 c013 c012 . . . c007 0 c013 c012 . . . c007

3 0 c020 c019 . . . c014 0 c020 c019 . . . c014
...

78 0 c545 c544 . . . c539 0 c545 c544 . . . c539

79 c553 c552 c551 . . . c546 c553 c552 c551 . . . c546

80 0 c560 c559 . . . c554 0 c559 c558 . . . c553

Table 4.3: Correct and erroneous format of output in transmit and crypt
mode.

1. The minimal number nw of wait states required by the binary adder
in the modular multiplication unit, see Subsection 4.2.2, was found.
Since nw is increasing for increasing clocking frequencies, the number
was found simultaneously with the maximal allowable frequency of the
system clock. It turned out that the functionality of the 8 working chips
was preserved for nw ≥ 6 when they were clocked at their maximal
frequency at a supply voltage of 5.0 V.

2. At a supply voltage of 5.0 V, the maximal allowable frequency fΩ of
the system clock for the 8 chips varied from 26 MHz to 28 MHz. The
maximal frequencies are shown in Table 4.4. There seems to be no cor-
relation between these frequencies and the measurements of the current
consumption during a reset operation in Subsection 4.4.2.

Chip No. 01 11 15 37 53 63 66 89
fΩ (MHz) 28 28 27 27 28 26 27 27

Table 4.4: Maximal allowable system clock frequency for working chips.

3. The relation between the maximal allowable frequency and the supply
voltage was measured for a single chip. The chip used in the experiment
had identification number 66. For supply voltages less than 5.0 V
the minimal number of wait states turned out to be 7. For voltages
greater then or equal to 5.0 V the minimal number was 6. The result

4.4. TEST AND PERFORMANCE 165

State Current (mA) Power (W)
Idle 150 0.8
Busy 490 2.5

Table 4.5: Power consumption at 25 MHz.

of the experiment is illustrated by the plot in Figure 4.16. At the ± 10
percents voltage levels, i.e. at 4.5 V and 5.5 V, the maximal frequencies
were 24.0 MHz and 29.5 MHz.

Figure 4.16: Maximal clocking frequency as function of supply voltage.

4. The current consumption of chip no. 66 was measured. A measure-
ment was done while the processor was idle, i.e. the processor was
waiting for new data to exponentiate. When idle, the doneExp flag is
high. Furthermore, a measurement was done while the processor was
busy, i.e. a modular exponentiation was being executed. When busy,
the doneExp flag is low. The clocking frequency was 25 MHz, and the
supply voltage was 5.0 V. Table 4.5 shows the current and the corre-
sponding power consumption. The values of the current consumption
in the table are equal to the measured values minus 250 mA, which
was the current consumed by the test board without a processor in the
socket.

5. The time for computing a modular exponential was measured. When

166 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

an exponentiation process is started by an activation of the startExp
signal, the flag doneExp is pulled low by the processor. When the expo-
nentiation is completed, the doneExp flag is returned to high. Hence,
the computing time can be measured as the period from activation of
the startExp signal to the moment where the doneExp signal is raised.
This was done at a 25 MHz clocking frequency. The computing time
was measured to be 5.47 ms. Hence, in an encryption application, the
processor is able to encrypt at a rate of 561 bit per 5.47 ms, correspond-
ing to about 102 Kbit/s. In Figure 4.17 the response of the doneExp
flag is shown when the startExp signal is activated. Furthermore, the
figure shows the measured times. The delay, from activating startExp
until doneExp is pulled low, was measured as well. It was 188 ns at
the 25 MHz clocking frequency.

Figure 4.17: Measurements of computing time.

The time for computation of a modular exponential is proportional to
the clocking period tΩ. The clocking period is equal to the reciprocal
value of the clocking frequency fΩ. Furthermore, the time depends
on the parameter setting of the processor: The number of exponent
bits nj, the number of radix 32 multiplier digits ni, and the number of
wait states nw. In the above measurements, the parameter setting was
nj = 561, ni = 115, and nw = 7. In general, the computing time texp

for a modular exponentiation operation can be approximated by the
expression

texp = 2 · (ni + nw) · nj · tΩ. (4.5)

4.5 Summary and Discussion

The data in Table 4.6 summarises the physical dimensions, the power con-
sumption, and the performance of the modular exponentiation processor.

4.5. SUMMARY AND DISCUSSION 167

Technology 1.2 µm, 2 metal layers
Die area 212 mm2

Transistor count 303,977

Power, at 25 MHz:
— idle 0.8 W
— busy 2.5 W

Maximal clocking frequency:
— at 5.0 V, room temperature 26.0 MHz

Computing time:
— 561 bit operands, at 25 MHz 5.5 ms
Throughput:
— 561 bit operands, at 25 MHz 102 Kbit/s

Table 4.6: Summary of data for the modular exponentiation processor.

One of the main requirements of the processor was a minimal throughput of
64 Kbit/s. As seen from the table there is a comfortable margin from this re-
quirement to the actual maximal computing rate of 102 Kbit/s. Even though
the performance, listed in the table, is at the condition of 5.0 V supply volt-
age and room temperature, it is believed that there will be no problems in
meeting the requirement of 64 Kbit/s at the worst case conditions of 4.5 V
and 85 ◦C: According to Equation (4.5) the throughput for 561 bit operand
exponentiations are greater than 64 Kbit/s when the clocking frequency is
greater than or equal to 16 MHz. An indication of the effect of simultane-
ously raising the temperature and lowering the voltage can be obtained from
the performance measurements of a division chip reported by Williams and
Horowitz in [WH91]. Here, the circuit delay increases from 2.8 ns at 5.0 V
and 35 ◦C to 3.9 ns at 4.5 V and 125 ◦C. This corresponds to a performance
degradation to about 70 percents. Hence, it is reasonable to estimate the
frequency for the modular exponentiation processor at 4.5 V and 85 ◦C to
be greater than 0.70 · 26 MHz, which is greater than 18 MHz.

Although a design error in the SLD interface was revealed, the project
of implementing the modular exponentiation processor can be considered as

168 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

a success: It has been verified that it is possible to construct a single-chip
processor, which performs real-time RSA encryption of data transmitted via
a 64 Kbit/s ISDN channel. According to the best knowledge of the au-
thor of this thesis, the processor is still the fastest performing single-chip
implementation for computation of modular exponentials. Only one imple-
mentation has been reported to be faster: At Digital Equipment Corpora-
tion Paris Research Laboratory, Shand and Vuillemin [SV93] have made a
600 Kbit/s RSA encryption implementation, for 512 bit keys, using a so-
called Programmable Active Memory (PAM) and a workstation. The PAM
[BRV89, BRV93, VBR+94] is a kind of universal hardware coprocessor based
on a board of 23 field programmable gate arrays (FPGA). When the PAM
is performing an RSA encryption the clocking frequency is 40 MHz. The
PAM implementation uses a β-ary exponentiation method, where β = 25

(see Subsection 2.1.1), and a radix 4 modular multiplication method. It
should be mentioned that the PAM implementation utilises the Chinese Re-
mainder Theorem (see Section 2.4), which accounts for a speedup of about 4
when compared to the processor described in this chapter. So, for the general
computation of modular exponentials, where either the prime factors of the
modulus are unknown or the modulus is a prime, a throughput of about 150
Kbit/s for the PAM implementation may be expected.3

The modular exponentiation processor described in this chapter is de-
signed to use 561 bit keys. Usually, when comparing the speed of modular
exponentiation implementations, a key length of 512 bit is assumed. If the
processor had been designed for this key length, the computing time would,
according to (4.5), be about 2 · (105 + 7) · 512 · 40 ns, which is about 4.59
ms when a clocking frequency of 25 MHz is assumed. This corresponds to a
throughput of more than 111 Kbit/s. It is 3.8 times faster than the speed

3According to a personal communication on July 4 1995 with Mark Shand, Digital
Equipment Corporation, Systems Research Center, Palo Alto, California, the throughput
of 600 Kbit/s was, in fact, never measured for the PAM implementation. However, a
throughput of 185 Kbit/s was measured for an implementation using a 970 bit key length.
Therefore, if the effect of applying the Chinese Remainder Theorem is removed, the per-
formance of a general computation of 970 bit modular exponentials is expected to be about
46.25 Kbit/s. Furthermore, since the throughput for such a general exponentiation is ex-
pected to be proportional to the reciprocal of the key length, the estimated throughput
for 512 bit key lengths is approximately 88 Kbit/s. So, based on the comparisons of the
actual performance measurements of the PAM implementation and the processor, it is fair
to state, that the processor is the fastest known implementation for computing modular
exponentians, when no assumptions about the prime factors of the moduli are imposed.

4.5. SUMMARY AND DISCUSSION 169

obtained by the board from Thorn EMI (without utilisation of the Chinese
Remainder Theorem). The Thorn EMI board uses a clocking frequency of
24 MHz. Although an explicit description of the methods for modular ex-
ponentiation and for modular multiplication is missing in the data sheet for
the Thorn EMI board [Tho88], there are some indications: It seems like a
radix 2 modular multiplication method and a sequential binary exponen-
tiation method are used. Furthermore, it seems like the throughput of 29
Kbit/s is for the average case, i.e. when the exponent e consists of ν(e) = 256
non-zero bits (see Section 2.1). Then, for the worst case, where ν(e) = 512,
the throughput will be about 22 Kbit/s. So, for the worst case, the proces-
sor described in this chapter is about five times faster than the Thorn EMI
board. Both implementations are clocked at about 25 MHz. The comparison
illustrates the net effect of the computation methods used by the modular
exponentiation processor:

• The parallel right-to-left binary exponentiation method improves the
worst case computing time by a factor of two.

• The radix 25 modular multiplication method reduces the number of
recursion cycles by a factor of five.

• The time for a recursion cycle is increased by a factor of two. Recall
that the architecture has been pipelined into two stages. Hence, the
time for a recursion cycle corresponds to two clocking periods. The
increased recursion cycle time is due to the more complex quotient
determination unit and to the more complex units for computation of
multiples.

The resulting processor is a good illustration of the dilemma of the high-
radix modular multiplication methods: By choosing a higher radix the num-
ber of recursion cycles is reduced. This does, hopefully, result in a reduction
in the computing time. However, simultaneously with increasing the radix,
the circuit complexity is increasing and, consequently, the recursion cycle
time is increasing as well. In the next chapter it will be shown how a high-
radix modular multiplication method without this dilemma can be developed.
The method is a high-radix generalisation, and improvement, of the method
used by Shand and Vuillemin for the PAM implementation.

It is worth noting that the processor was found well functioning after a
single fabrication run. That means, there was no problems with the electrical

170 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

properties of the chip or with the functionality of the modular exponentiation
unit. Apart from a piece of luck, the reasons for this successful outcome can
be attributed to:

• An extensive support provided by the chip development system. The
chip designers were inexperienced with the design of large chips. So,
probably, many pitfalls were avoided by remaining in the consistent
environment of ChipCrafter, and by utilising the automatic tools for
generating circuit modules, and for doing the work of circuit place-
ment and routing. Finally, the analysis tools were of great help when
decisions between various design tradeoffs were taken.

• The way of structuring the architecture. The architecture was struc-
tured as a hierarchy of units, where each unit had a well-defined func-
tionality. Each unit was validated, in a bottom-up fashion, through
a series of simulations. Then, when some units were included in the
architecture of another unit at a higher hierarchal level, the focus was
restricted to the functionality obtained by combining the “black-box”
functionality of the lower level units. The strategy was to maintain an
overview of the architecture, and the functionality, through the use of
abstraction mechanisms.

• Simulations and theoretical verification. The algorithms describing the
methods for exponentiation and modular multiplication were verified
through formal proofs. Furthermore, the methods were verified through
simulations of functional models of the architecture. Although simu-
lations give an insight into the functionality of the design, it is not
possible to obtain a full verification of the correctness. The correctness
of an algorithmic description of the methods can be proved. However,
since a proof is limited to the properties of an abstract model of the
chip design, it must be supplemented with simulations.

At the transistor level, user defined leaf cells were verified through
extensive and detailed circuit simulations. Furthermore, the character-
istics of the cells were compared to similar cells from the library of cells
provided by the development system.

• Careful and disciplined style of work. Each time the design was mod-
ified, the validity was checked again. Furthermore, whenever possible,
the design was double checked: E.g. the transistor netlist obtained

4.5. SUMMARY AND DISCUSSION 171

from an extraction of the layout was compared to the netlist obtained
from the schematic description. The quality of some parts of the power
supply net was analysed through circuit simulations. Moreover, the
quality of the clock signal distribution was checked.

The penalty for sticking to the ChipCrafter development system was a
relatively large area consumption. Indeed, the problems with the area con-
sumption implied that the project was delayed by at least a year. However,
the lack of experience with design of large chips influenced the time for de-
veloping the processor as well.

An area consumption of 200 mm2 for a 300,000 transistor chip is quit
high when compared to (old) state-of-the-art designs: The Intel 80386 16
MHz micro-processor from 1985 was built using a 1.5 µm double metal layer
CMOS process. The 80386 consisted of 275,000 transistors and consumed
an area of 95 mm2 [Bak90, Section 9.2]. Later, in 1989, a 33 MHz version
was built using a 1.0 µm double metal layer process. In this version the area
was reduced to 43 mm2. Similarly, the Motorola 68030 from 1987 was built
using a 1.2 µm double metal layer CMOS process. It consisted of 270,000
transistors and occupied an area of 55 mm2. Therefore, an acceptable area
consumption, and yield, for the modular exponentiation processor can be
achieved through a redesign of the circuitry, where a full custom approach is
followed, and a modern process technology is used.

172 CHAPTER 4. MODULAR EXPONENTIATION PROCESSOR

Chapter 5

Montgomery Residues

In 1985 Montgomery [Mon85] proposed a new kind of modular multiplica-
tion method. The idea behind Montgomery’s method is to obtain a quotient
digit determination that is more efficient than those for the traditional mod-
ular multiplication methods described in Chapter 3. Because Montgomery’s
method requires some additional pre- and post-processing, it is best suited for
applications where several modular multiplication are done using the same
modulus. Hence, an application that may benefit from Montgomery’s method
is the computation of modular exponentials with very large operands.

Montgomery’s contribution can be viewed as another way of representing
residues modulo m, plus an efficient method for performing modular mul-
tiplication in the domain of this new representation. Kornerup [Kor93b]
denotes the new residue representation for an M -residue after Montgomery.
The M-residue of an integer x is equal to (xrn) mod m, where r is a con-
stant for the computation and n is the number of multiplier digits that are
processed in the multiplication method. The value of r is chosen such that
division and modular reduction by r becomes simple. Usually, r is chosen
to be equal to the radix of the multiplication method, i.e. r = 2k. Mont-
gomery’s multiplication operation, denoted by ∗M

Zm
: Zm ×Zm
→ Zm, can be

defined by

a ∗M
Zm

b = (a · b)r−n mod m, (5.1)

where r−n denotes the multiplicative inverse of rn modulo m. The product of
multiplying the M-residue of a, say x = (arn) mod m, and the M-residue of
b, say y = (brn) mod m, is a new M-residue which, indeed, is the M-residue

173

174 CHAPTER 5. MONTGOMERY RESIDUES

of (a · b):

x ∗M
Zm

y = (arn · brn)r−n mod m = (a · b)rn mod m.

Hence, Montgomery’s multiplication operation replaces ordinary modular
multiplication in the domain of M-residue representations. To ensure the
existence of the multiplicative inverse r−n (mod m), it is required that r and
m are relatively prime, i.e. gcd(r, m) = 1. When r is a power of two, this
requirement is fulfilled if m is restricted to odd values. In cryptographic ap-
plications the modulus is always an odd value, so the requirement does not
limit the usefulness of Montgomery’s multiplication method for the applica-
tion area considered in this thesis.

Figure 5.1: Modular exponentiation by means of Montgomery multiplication.

Because Montgomery’s multiplication operation is associative, all of the
efficient exponentiation methods in Chapter 2 can be used in the domain of
M-residues as well. It should be noted that the neutral for the multiplica-
tion operation is the M-residue of 1, i.e. rn mod m. Figure 5.1 illustrates
how a modular exponentiation may be accomplished in the M-residue do-
main. Before the exponentiation process is initiated, the base b must be

5.1. MONTGOMERY MULTIPLICATION 175

transformed into an M-residue. This can be done by a single Montgomery
multiplication b∗M

Zm
(rn)2, where (rn)2 (mod m) is a constant that have to be

precomputed once for each change of modulus. Similarly, after the exponen-
tiation process is completed, the resulting exponential y must be transformed
back from the M-residue representation. This can also be done by a single
Montgomery multiplication y ∗M

Zm
1. Hence, the Montgomery multiplication

operation serves both the exponentiation process and the additional process
of transforming operands to and from the M-residue domain. Compared to
an exponentiation where the traditional modular multiplication composition
is used, an exponentiation using Montgomery’s multiplication composition
requires two extra multiplications for the transformation to and from the
M-residue domain.

5.1 Montgomery Multiplication

Montgomery’s method for computation of a product of the form (a · b)r−n

mod m is analogous to the right-to-left binary exponentiation method given
by Equation (2.5). The method is easily generalised to a radix 2k version.
In the following formulation it is assumed that r = 2k and, hence, that r−1

is the multiplicative inverse of 2k modulo m:

(a · b)r−n ≡m (a0b + a12
kb + . . . + ai2

kib + . . . + an−12
k(n−1)b)r−n

≡m ((· · · ((a0b)r
−1 + a1b)r

−1 + . . . + aib)r
−1 +

. . . + an−1b)r
−1 (5.2)

It is seen that Montgomery’s multiplication operation can be computed by
n recursive applications of an intermediate operation of the form Si+1 :=
(Si + aib)r

−1 mod m, where Si is the result of the preceeding operation. The
intermediate operand S0 must be initialised to zero.

At first glance the computation of (Si + aib)r
−1 mod m looks more com-

plicated than the computation of the intermediate operations of the form
(2kSi+1 + aib) mod m used in the traditional modular multiplication meth-
ods in Chapter 3. However, as shown by Montgomery, the additional factor
r−1 leads to an efficient quotient determination in the modular reduction
phase. The idea is to transform the residue representation, Si + aib, into
another representation, Si + aib + qim, of the same residue class, such that
the least significant radix 2k digit of Si + aib + qim is zero. This implies that

176 CHAPTER 5. MONTGOMERY RESIDUES

(Si + aib + qim)r−1 can be written as,

[(Si + aib + qim) div 2k] · 2k · r−1 ≡m (Si + aib + qim) div 2k.

Hence, the multiplication by r−1 is replaced by a simple right-shift. Note
that the explicit value of r−1 is never used in the multiplication method.
The quotient determination can be formulated as,

{ Determine integer qi such that (Si + aib + qim) mod 2k = 0 }.

There is a unique solution qi (modulo 2k) to this equation. In the following,
the integer m′ denotes the multiplicative inverse of −m modulo 2k. The
existence of m′ is ensured by the restriction gcd(m, r) = 1. The value of m′

must be calculated each time the modulus is changed. The quotient digit qi

is determined by,

−qim ≡2k Si + aib

qi ≡2k (Si + aib) · m′ (5.3)

So, the quotient determination is a computation of the residue ((Si+aib)·m′)
mod 2k, which involves an addition of the least significant radix 2k digits of
Si and aib, followed by a multiplication by the least significant radix 2k

digit of m′. This corresponds to a k bit addition followed by a k × k bit
multiplication. The resulting quotient digit can be expressed in the digit set
{0, 1, . . . , 2k − 1} or, if convenient, in another residue range. Kornerup uses
the (nearly) symmetric digit range {−2k−1,−2k−1+1, . . . , 2k−1−1} [Kor93b].
As described in Section 3.7.1 it may be advantageous to use a symmetric digit
set in the computation of the multiples qim. The same observation holds for
the encoding of the multiplier digits ai.

Using the notation introduced in Section 3.6 the intermediate operation
in Montgomery’s modular multiplication method can be described as,

Algorithm 5.1–1 (Intermediate operation (Si + aib + qim)r−1)

Stimulus: Si, ai b, where 0 ≤ Si < b + m and 0 ≤ ai < 2k.

Response: Si+1 ≡m (Si + aib)r
−1, where 0 ≤ Si+1 < b + m.

Method: qi := ((Si + aib) · m′) mod 2k

Si+1 := (Si + aib + qim) div 2k;

5.2. REDUCING THE RECURSION CYCLE TIME 177

It is seen that the residue range restrictions are identical for Si and Si+1.
Hence, the intermediate operation can be recursively applied without addi-
tional processing. Algorithm 5.1–1 follows the style of the descriptions in
the article in Appendix D, where the residue ranges are non-negative, and
where the digit sets for the quotient and the multiplier are non-negative.
Symmetric ranges could have been used as well. In Appendix D a series
of algorithmic descriptions of the multiplication operation are given. It is
shown, that if the number of recursion cycles, n, obeys 2kn > 4m, and if the
input operands a and b is restricted to the residue range [0; 2m[, then the
resulting product (a · b)r−n (mod m) will belong to the same residue range.
Hence, the multiplication operation also can be applied recursively without
any additional processing.

5.2 Reducing the Recursion Cycle Time

The sub-operations of the intermediate operation given by Algorithm 5.1–1
are very similar to the sub-operations of the methods in Chapter 3. The
observations regarding the representations of intermediate operands, the en-
coding of the digits, and the computations of multiples apply for Montgomery
multiplication as well. Furthermore, the quotient determination operation is
subject to considerations and tradeoffs similar to those presented in Sec-
tion 3.10. The recursion cycle time for the intermediate operation given by
Algorithm 5.1–1 is, however, expected to be slightly shorter than for the
analogous traditional operation: The quotient digit set for the former op-
eration is smaller, implying that the time for computing the multiples qim
is shorter. Furthermore, the length of the operands used in the quotient
determination operation is smaller, giving a smaller computing time and,
in case the quotient determination is based on a table look-up, a smaller
number of table entries. These observations are also described by Kornerup
in [Kor93b], where the traditional modular multiplication method is com-
pared to Montgomery’s multiplication method. The quotient determination
is based on table look-up in both methods. Bosselaers, Govaerts and Vande-
walle have made a similar comparison, based on experiments with software
implementations, in [BGV93]. They conclude that Montgomery’s multipli-
cation method leads to a slightly faster evaluation of modular exponentials
with large operands.

178 CHAPTER 5. MONTGOMERY RESIDUES

It is, however, possible to obtain a substantial speed improvement by
combining the high-radix multiplication approach with a set of optimisation
techniques. This is the main issue of the article in Appendix D, where it is
shown that the recursion cycle time can be made independent of the radix
of the multiplication method. Moreover, it is shown that the time for a re-
cursion cycle can be made as short as the time for a single redundant 4–2
addition. These properties are superior to those of the traditional meth-
ods: As described in Section 3.11 an increased value of the radix implies
an increased recursion cycle time for the traditional modular multiplication
methods.

A detailed description of the optimisation techniques applied to Mont-
gomery’s multiplication method is included in Appendix D. In the following
subsection, an overview of the relationship between these techniques and the
optimisation techniques presented in Chapter 3 will be given.

5.2.1 Optimisation Techniques

The strategy of the optimisation techniques is identical to the strategy of
the techniques described in Chapter 3: The complexity of the intermedi-
ate operation is reduced by means of precomputations that only have to
be performed once for each change of the value of modulus. Since several
consecutive modular multiplications are performed using the same value of
modulus, the additional time for performing the precomputation becomes
negligible. Furthermore, parallel computations are utilised. It turns out that
the computation of consecutive intermediate operations can be overlapped
and, therefore, that Montgomery’s multiplication can be efficiently computed
on a pipelined hardware architecture. Appendix D describes three optimisa-
tion techniques that, to some extent, can be applied independently of each
other:

1. It is possible to avoid the multiplication operation in the quotient deter-
mination by adjusting the value of the modulus. A similar optimisation
technique for the traditional modular multiplication operation was pre-
sented in Subsection 3.10.4, where the aim was to obtain a modulus
value that is close to a power of two, i.e. the most significant digits
have a fixed known value after the adjustment. In Montgomery’s mul-
tiplication operation it is desirable to obtain a fixed known value of the
least significant digit of modulus. Hereby, also the value of m′ mod 2k,

5.2. REDUCING THE RECURSION CYCLE TIME 179

used in the quotient determination (5.3) becomes fixed. In Appendix
D it is shown how to adjust the value of the modulus such that m′ mod
2k becomes equal to 1, i.e. the multiplication operation in the quotient
determination is avoided. The new modulus value, say m̃, is obtained
through a simple scaling of m,

m̃ = c · m, where c = m′ mod 2k. (5.4)

The penalty for replacing the value of modulus with m̃ is a larger
residue range [0; 2m̃[of the results of Montgomery’s multiplication.
However, in applications like modular exponentiation, where several
intermediate multiplications are performed, the additional time for con-
verting the final result into the residue range [0;m[is vanishing. Since
the scaling constant c belongs to {1, 3, . . . , 2k−1} (note that m′ is odd
when m is odd) the residue range of the intermediate products will, at
worst, be [0; 2(2k − 1)m[. This implies that the required number of re-
cursion cycles n in Montgomery’s multiplication method may increase
by one. As previously mentioned, the number of recursion cycles is
constrained by 2kn > 4m̃.

2. It is possible to avoid the addition operation in the quotient determj-
natjon by scaling the value of the multiplicand. An analogous optimi-
sation technique for the traditional modular multiplication operation
was described in Section 3.5, where the aim was to achieve a higher
degree of parallelism in the computation. The means was an implicit
scaling of the multiplier a with the constant 2k. Since a multiplica-
tion by 2k is obtained through a left-shift, the scaling is implicit. In
Montgomery’s multiplication operation it is advantageous to implicitly
scale the multiplicand b with the constant 2k. Hereby, the value of aib

′,
where b′ denotes the scaled multiplicand, in the quotient determination
(5.3) becomes divisible by 2k and, consequently, the addition operation
in the quotient determination operation is avoided,

((Si + aib
′) · m′) mod 2k = (Si · m′) mod 2k, where b′ mod 2k = 0.

In order to compensate for the multiplicand scaling, the number of
recursion cycles in Montgomery’s multiplication method is increased
by one,

180 CHAPTER 5. MONTGOMERY RESIDUES

(ai · b)r−1 ≡m (a · 2kb)r−(n+1), where r−1 · 2k ≡m 1.

This penalty is identical to the penalty of using the implicit scaling
technique on the traditional modular multiplication operation.

When b is scaled, the updating statement in Algorithm 5.1–1 can be
formulated as Si+1 := (Si+qim) div 2k +aib. Hence, there is no explicit
reference to the scaled multiplicand b′.

3. It is possible to parallelise the computation of consecutive intermediate
operations. The idea of performing an overlapped computation of the
intermediate operation is introduced by Shand and Vuillemin in [SV93],
where the technique is denoted “quotient pipelining”. The basic idea
is to postpone the use of the quotient digit qi, computed on basis of
information available in the ith recursion cycle, by d recursion cycles.
Hence, the term qim does not appear in the updating statement until
the (i + d)th recursion cycle. Hereby, it is possible to overlap the
computation of d consecutive intermediate operations by means of a
pipelined computation scheme.

In Appendix D the quotient pipelining technique has been combined
with the above described optimisation techniques. It is shown how to
obtain a particular simple intermediate operation, where the quotient
determination is a simple inspection of the least significant digit of the
intermediate operand, qi := Si mod 2k, and the updating statement
reduces to a shift-and-add operation, Si+1 := Si div 2k + Ti−d. The
term Ti−d is the sum of the multiples qi−dm̂ and aib, where m̂ is a pre-
computed operand. Both multiples are based on information available
after the (i − d)th recursion cycle. Hence, the computation of Ti−d

can be performed by an architecture that has been pipelined into d
stages. The operand m̂ is precomputed each time the value of modulus
is changed. It is equal to (m̃ + 1) div 2k(d+1), where m̃ is the result of
a scaling of m similar to (5.4),

m̃ = c · m, where c = m′ mod 2k(d+1). (5.5)

Since the quotient determination reduces to a simple inspection of the
least significant digit of Si, the quotient determination requires no cir-
cuitry and, hence, the area contribution from this operation is zero.

5.2. REDUCING THE RECURSION CYCLE TIME 181

Compared to the quotient determination method used in the exponen-
tiation processor described in Chapter 4 this is a significant improve-
ment. The processor’s quotient determination unit had a significant
contribution to the total area and, furthermore, it had a significant
contribution to the recursion cycle time. In fact, the area of the proces-
sor’s quotient determination unit increases by a rate of 2k for increasing
radix 2k values.

In Appendix D an example hardware architecture for the computation
of a radix 28 Montgomery multiplication is discussed. It is seen that the
recursion cycle time can be reduced to the time for a single shift-and-
add operation, which is efficiently performed by a redundant adder.
Furthermore, it is seen that the recursion cycle time is independent
of the chosen radix. This property makes Montgomery multiplication
superior to the traditional modular multiplication methods. According
to Section 3.11 the recursion cycle time for the traditional modular
multiplication methods can be expected to increase by a rate of log2 k
for increasing radix 2k values. Hence, a significant step toward an
efficient utilisation of high radices in modular multiplication has been
achieved.

There is, however, a penalty imposed by using the quotient pipelining
technique:

• First, the number of recursion cycles increases with d since the
use of quotient digit qi is postponed for d recursion cycles.

• Second, because of the d pipeline buffers in the hardware archi-
tecture, the result of the multiplication process is further delayed
by d recursion cycles. If the input operands for the next multi-
plication is known before the result of the present multiplication
is completed, it is possible to start up the next multiplication as
soon as the first stage in the pipeline has completed the present
computation. Hence, it may be possible to overlap two consecu-
tive modular multiplications and, hence, to avoid the penalty of
d extra recursion cycles per multiplication. The required prop-
erty is, however, dependent on the application. So, the actual
scheduling of the multiplications may be improved after a further
investigation of the application.

182 CHAPTER 5. MONTGOMERY RESIDUES

• Third, the implicit scaling of the multiplicand requires an addi-
tional recursion cycle.

• Finally, the residue range of the product increases to [0; 2m̃[, which
at worst is [0; 2(2k(d+1)−1)m[. So, due to the constraint 4m̃ < 2kn,
the number n of basic recursion cycles increases by up to d cycles
compared to the original radix 2k version of Montgomery’s method
(5.2). Since m̃ is odd, it cannot be a power of 2. Therefore, the
constraint 4m̃ < 2kn is obeyed by the following value of n:

n =

⌈
log2 4m̃

k

⌉

≤
⌈

log2 m + k(d + 1) + 2

k

⌉

=

⌈
log2 m + 2

k

⌉
+ d + 1

≤
⌈

log2 m

k

⌉
+ d + 2, where k ≥ 2

In total, including all the additional penalty terms, the worst case num-
ber of recursion cycles for a radix 2k version of the optimised Mont-
gomery multiplication

n + d + d + 1 =

⌈
log2 m

k

⌉
+ 3(d + 1). (5.6)

Therefore, the delay parameter d should be chosen as small as possible.
In Appendix D it is indicated how the term Ti−d can be computed
by means of a pipelined Wallace Tree, see Subsection 3.2.2, containing
about log2 k stages. The time for each stage is smaller than or equal
to a redundant 4–2 addition, which corresponds to the delay of two full
adders.

It should be mentioned, that the resulting modular product of the
optimised Montgomery multiplication is redundantly represented. So,
the time for a conversion into non-redundant representation should be
added to the computing time indicated by (5.6). This issue is discussed
in Appendix D as well. As for the traditional modular multiplication
methods, it is possible to avoid the conversion by allowing the input

5.3. ADDITIONAL PROCESSING 183

operands a and b to be redundant represented. See the analogous
discussion concerning the traditional modular multiplication methods
in Subsection 3.7.2.

5.3 Additional Processing

In applications, like large operand modular exponentiation, where several
intermediate modular multiplications are performed, the time for perform-
ing the additional processing required by Montgomery’s method is usually
negligible. The additional processing can be divided into two groups:

Pre-processing. A series of computations must be performed before the
Montgomery multiplications are initiated. The computations may be
seen as a part of the initialisation process of the application. For a
modular exponentiation, the pre-processing consists of the following
tasks:

• Compute the neutral, rn mod m, for Montgomery’s multiplication
composition.

• Compute r2n mod m, which is used in the transformation of
operands into the M-residue domain.

• Compute m′ mod 2k(d+1), the multiplicative inverse of −m modulo
2k(d+1).

• Compute m̂ to be used in the updating statements. The expression
for m̂ is (m̃ + 1) div 2k(d+1), where the scaled modulus m̃ equals
(m′ mod 2k(d+1)) · m.

Some authors have a quit efficient solution to the pre-processing: In
applications like the RSA crypto system the value of m is a part of the
key. Therefore, it is known prior to the application and, consequently,
it can be assumed that the “key” include the value of m plus the deriva-
tive values rn mod m, r2n mod m and m̂. Of course these additional
values can be computed simultaneously with generating the RSA keys.
However, it cannot be expected that all of the equipment for perform-
ing the encryption and decryption in a large (public) communication
network are based on this particular implementation of the modular
multiplications. There may very well be other implementations that

184 CHAPTER 5. MONTGOMERY RESIDUES

uses a different set of derivatives. So, in a concrete application it can-
not be assumed that these derivatives are part of the input.

Post-processing. After the final multiplication, and transformation from
the M-residue range, a result in the residue range [0; 2m̃[has been
obtained. Hence, a final conversion into the residue range [0;m[is
required. A similar conversion is required for the traditional modular
multiplication methods.

Regarding the computing time, none of the above computations are partic-
ularly complex in comparison to a series of modular exponentiations. Of
greater concern is the required circuitry of a hardware implementation that
supports the additional processing. Hence, it is a challenging exercise to
figure out how the additional processing may be performed by the existing
hardware architecture without too many modifications and too much ad-
ditional circuitry. This thesis does not include a solution to the exercise.
However, some ideas and hints are provided:

• According to Kornerup [Kor94b], the modular reduction technique used
by Montgomery is similar to a method, proposed by Hensel [Hen08] in
1908, for computation of the multiplicative inverse of an odd number
modulo 2n Indeed, Kornerup shows how a slightly modified version of
Montgomery’s multiplication method can be applied for computing the
value of m′ mod 2k(d+1).

• When the scaling constant c = m′ mod 2k(d+1) is computed, the scaled
modulus m̃ = c · m may be computed by the existing hardware archi-
tecture. Finally, the operand m̂ = (m̃ + 1) div 2k(d+1) is computed.

• It is not necessary to perform a complete reduction modulo m of rn

and r2n since the multiplication method accepts residues in the range
[0; 2m̃[.

• Assume that rn mod m̃ has been computed. Then, it is possible to
compute r2n by an exponentiation process, where the exponent is set
equal to kn, and the base is set equal to 2rn (mod m̃): Observe that
2rn (mod m̃) in the range [0; 2m̃[can be obtained by a left-shift of rn

mod m̃. Furthermore, observe that 2rn (mod m̃) is the M-residue of 2.
Therefore, the exponentiation in the domain of M-residues will result

5.4. SUMMARY AND DISCUSSION 185

in the residue 2knrn (mod m̃) in the range [0; 2m̃[. Hence, since r is
equal to 2k, the desired residue r2n (mod m̃) has been computed.

• It is possible to convert the final result, say z, from the residue range
[0; 2m̃[into the residue range [0; 2m[by means of an exact division by
the scaling constant c, where c is given by (5.5). Kornerup [Kor94b] has
showed how to perform exact divisions by a slightly modified version
of Montgomery’s multiplication method.

To be able to use the exact division technique, the operation used for
transforming an operand from the M-residue domain, say y, is modified
(See Figure 5.1, page 174): Instead of computing z = y∗M

Zm
1, the scaled

result z′ = y ∗M
Zm

c is computed. Then from the congruence z′ ≡ c · z
(mod c · m) it follows that z′ div c ≡ z (mod m). Furthermore, since
z′ ∈ [0; 2c · m[, it follows that z ∈ [0; 2m[. Hence, a conversion into
the residue range [0; 2m[has been obtained by an exact division that
may be computed by a slightly modified version of the Montgomery
multiplication method.

5.4 Summary and Discussion

In this chapter, another representation of residues, denoted M-residues after
Montgomery, has been discussed. The advantage of this representation is a
more efficient modular multiplication method, where the quotient determina-
tion operation is simpler than the corresponding operation for the traditional
modular multiplication methods.

It has been discussed how a combination of two optimisation techniques,
“adjustment of the modulus” and “shifting of the multiplicand”, leads to a
particular simple quotient determination method, where a quotient digit is
obtained through a simple inspection. Hence, there is no computation as-
sociated with the operation and, consequently, no circuitry is required for
the operation. This implies that the critical operation of the inter-mediate
operation is the formation of the multiples qim and aib. Moreover, it has
been discussed how a further combination with the “quotient pipelining”
technique, invented by Shand and Vuillemin [SV93], allows a pipelined com-
putation of these multiples. The net effect of these optimisations is a modular
multiplication method, where the recursion cycle time is independent of the
radix of the multiplication method.

186 CHAPTER 5. MONTGOMERY RESIDUES

Indeed, the recursion cycle time can be made as short as the delay of
a single redundant addition. This is a significant improvement of the re-
cursion cycle time of the traditional modular multiplication methods (and
the non-optimised Montgomery multiplication method, as well): According
to Chapter 3 the recursion cycle time includes the time for determining a
quotient digit qi, the time for computing the multiple qim, and the time for
subtracting qim from the intermediate result. Compared to the new method
for computing a Montgomery multiplication, this represents an overhead cor-
responding to the time for a quotient determination plus the time for com-
puting a multiple. In fact, this overhead contributes significantly to the total
recursion cycle time: Even though the time for the quotient determination
may be reduced by adjusting the range of the modulus, see Subsection 3.10.4
the time for computing qim will be longer than or equal to the delay of log2 k
redundant additions, where the radix is expressed as 2k. Indeed, since the
quotient digit range for the traditional methods are wider than the range
for the optimised Montgomery method, the overhead will be longer than the
delay of log2 k redundant additions. Hence, the recursion cycle time has been
reduced by more than a factor log2 k.

The aim of using high radices in the modular multiplication methods
is to reduce the number of recursion cycles. In an ideal radix 2k modular
multiplication method the number of recursion cycles decreases by a factor
of k, and the recursion cycle time is independent on the chosen radix. So,
the computing time for an ideal high radix method decreases by a factor
of k. This chapter has described a method with properties that approaches
the ideal properties: The recursion cycle time is independent of the radix.
However, the optimisation techniques add a penalty term, 3(log2 k + 1), to
the ideal number of recursion cycles. It might be possible, through a more
careful scheduling of the computation on the pipelined architecture, to reduce
this penalty term. Compared to the computing time for an ideal high radix
method, the computing time for the non-optimised Montgomery method, and
for the traditional methods in Chapter 3, has a penalty factor proportional
to log2 k. Hence, the optimisation techniques presented in this chapter can
be viewed as a way of changing a multiplicative log2 k time-penalty into an
additive log2 k time-penalty. It should be noted that the relative penalty for a
given k, i.e. fraction of penalty-cycles in the total number of recursion cycles,
is decreasing for increasing operands. This means that the total computing
time is relatively closer to the ideal computing time for e.g. 512 bit modular

5.4. SUMMARY AND DISCUSSION 187

multiplications than for e.g. 256 bit modular multiplications. Hence, the
efficiency of the optimisation techniques is highest for computations with
large operands.

Figure 5.2: Transistor count of modular multiplication unit as function of
the radix.

Orton, Peppard and Tavares [OPT93] have optimised a traditional high
radix modular multiplication method using techniques very similar to the
techniques described in this chapter. They utilise an adjustment of the mod-
ulus and a pipelined hardware architecture to obtain a recursion cycle time
that is identical to the time for the optimised Montgomery method. The
penalties are, however, larger than those for the Montgomery method: Since
the range of the quotient digit values is wider, the number of pipeline stages
is larger. The scaling constant, by which the modulus is scaled, is greater as
well. Consequently, compared to the ideal high radix method, the number of
additional recursion cycles is approximately 0.75k + 7.5. This penalty is in-
creasing linearly with k while the corresponding penalty for the Montgomery
method is increasing with the logarithm of k. Moreover, due to the larger
scaling constant, the intermediate operands are greater. This means that the
required width of the hardware architecture is greater as well.

188 CHAPTER 5. MONTGOMERY RESIDUES

A pipelined hardware architecture for a radix 28 optimised Montgomery
method has been presented in Appendix D. The required circuitry for this
architecture is estimated to be about 300,000 transistors. This is about the
same amount of circuitry that was required for the processor described in
Chapter 4. This processor is implementing a traditional radix 25 modular
multiplication method. Hence, the fact that no quotient determination unit is
needed in the optimised Montgomery method implies that a higher radix can
be utilised without increasing the amount of circuitry. Figure 5.2 shows an
estimate of the required circuitry for a modular multiplication unit based on
the optimised radix 2k Montgomery method. The figure shows the transistor
count as function of k for a unit that is used for modular exponentiation
of 512 bit operands. Using a modern CMOS process technology it seems
feasible to implement a single chip modular exponentiation processor, that
is based on a high radix multiplication method with radices as high as 230:
According to the estimate, such an implementation will require less than 1.5
million transistors.

The estimate in Figure 5.2 is based on the following observations: For
a radix 2k implementation the number of latched redundant adders is k

2

and the number of latched multiplexers is k. The width of the adders and
multiplexers corresponds to the operand length, i.e. about log2 m̃ bits, which
is about k(log2 k+1)+log2 m bits. Hence, the transistor count approximately
increases by a rate of 3

2
k · (k(log2 k + 1) + log2 m).

Figure 5.3: Throughput of 512 bit modular exponentiation as function of the
radix.

5.4. SUMMARY AND DISCUSSION 189

To illustrate the speed potential of the optimised radix 2k modular multi-
plication method, the estimated throughput of a modular exponentiation of
512 bit operands is shown as function of k in Figure 5.3. It is assumed that
the recursion cycle time is 5 ns. Furthermore, it is assumed that a sequential
binary exponentiation method is used. The throughput shown in the figure
is for the worst case exponent value, i.e. two modular multiplications are
performed for each exponent bit. (See Section 2.1). The figure shows three
plots illustrating the obtainable throughput when one of the following modu-
lar multiplication methods is used: An ideal high radix method without any
penalty terms, the optimised Montgomery method presented in this chapter,
and the optimised traditional modular multiplication method developed by
Orton, Peppard and Tavares. For radix values, where k is less than 10, the
optimised methods are quit close to the ideal method. For higher radix values
the penalty terms becomes more dominating. It is seen that the throughput
for the traditional method is maximal for radices between 220 and 230. Due
to the smaller penalty term the Montgomery method is capable of utilising
even higher radices. Even with a modest radix value, it is possible to obtain
a throughput of more than 1 Mbit/set. Hence, compared to the processor in
Chapter 4, the throughput has increased by an order of magnitude. This is
in spite of the relatively primitive exponentiation method used in the compu-
tation of the throughput in Figure 5.3: The throughput may be increased by
almost another order of magnitude by utilising more efficient exponentiation
methods (see Chapter 2): The parallel exponentiation method doubles the
worst case throughput. The Chinese Remainder Theorem may be used to
further improve the throughput by a factor close to four.

The literature on modular multiplication methods includes several varia-
tions of Montgomery’s method [SVB91, DK90, Eve90, Eld91, IMI92b, Sau92,
Wal93, EW93] that have not been treated in this chapter. However, most
of the articles describes methods—or applications using methods—based on
radix 2 or radix 4. It should be mentioned that Arazi [Ara94] has observed
that the quotient determination becomes simple in Montgomery’s method for
certain restricted values of modulus. Consequently, Arazi proposes to restrict
the modulus values used in crypto systems to these favourable modulus val-
ues. It turns out that the adjustment of the modulus values, presented in this
chapter, is equivalent to a transformation into the domain of such favourable
moduli. Hence, it is not necessary to impose the restriction suggested by
Arazi to the crypto systems.

190 CHAPTER 5. MONTGOMERY RESIDUES

Chapter 6

Conclusion

One of the aims of the work presented in this thesis was to implement a
single-chip processor in the form of a VLSI circuit. The processor should
be able to perform modular exponentiation at a rate of at least 64 Kbit/sec
using 561 bit operands. As described in Chapter 4 the processor was suc-
cessfully implemented. The performance measurements on a sample of chips
show that they are able to compute the exponentials at a rate of more than
100 Kbit/sec. This is the fastest known implementation for computation of
modular exponentials when no assumptions about the operand values are
made.

Apart from a presentation of the results of implementing the proces-
sor, the thesis contains a throughout discussion of techniques for achieving
efficient methods for computation of exponentials and modular products.
Hereby, an insight into the problems associated to these computations have
been provided. Furthermore, through a discussion of the related literature,
the implications of the results presented in this thesis have been illuminated.

For a conclusion on each of the subtopics covered by this thesis, the
reader is referred to the summarising sections included in each chapter. It
is, however, appropriate to mention the main strategies and techniques used
in the research for efficient computation methods:

Identify and utilise the properties of the problem under consideration.
Both the properties of the application of an arithmetic operation and
the properties of the operation itself can be utilised to improve the
performance of a computation. Consider the application of RSA cryp-

191

192 CHAPTER 6. CONCLUSION

tography. If the prime factorisation of the modulus is known this can
be utilised to improve the speed of modular exponentiation by a factor
of four. Then consider the modular exponentiation operation. This
operation is defined in terms of modular multiplication which is an as-
sociative algebraic composition. This algebraic property can be utilised
to obtain a dramatic reduction in the required number of modular mul-
tiplications and, hence, the computing time. Finally, consider modular
exponentiation as an application that uses the modular multiplication
operation. The fact that the modulus value is fixed over several mod-
ular multiplications can be utilised to improve the speed of modular
multiplication.

Choose a proper representation of the intermediate operands. Usually
the input and output to an arithmetic operations is represented as
binary numbers. However, the freedom of choosing the best suited
representation of the intermediate operands can be utilised to obtain
faster computations. Indeed, the issue of representation is one of the
most important in the research on efficient methods for computation of
arithmetic operations. Especially the concept of redundancy is useful:
A redundant digit set can be utilised to obtain an addition operation
where the computing time is independent of the length of the operands,
and it can be used to reduce the required number of additions in mul-
tiplication operations. Furthermore, a redundant residue range can be
used to improve the time for performing division and hence, modu-
lar reduction. The results presented in Chapter 5 show that it useful
to represent residues by means of M-residues (Montgomery-residues).
Finally, the effect of applying the Chinese Remainder Theorem for im-
proving the speed of modular exponentiation can be viewed as the
result of using a particular representation. It should be emphasised
that none of these representations does exclude the use of one of the
other representations. Indeed, it turns out that the fastest performing
methods for modular exponentiation are based on a utilisation of all
these representations.

Parallel computation techniques are very attractive when special-pur-
pose hardware architectures can be applied. The possibility of using
this technique is one of the main reasons that special-purpose hard-
ware implementations have a higher performance than the standard

193

micro-processors. Parallel computation techniques are utilised at all
levels of computation: At the lowest level it is used in the architecture
of redundant addition units, and at the highest level it used to speed
up a modular exponentiation by means of the parallel binary method
and/or by means of the Chinese Remainder Theorem. Furthermore,
by pipelining the architecture, the parallel computations can be imple-
mented with a minimum of additional circuitry.

Precomputation techniques are utilised in various forms. First, the tech-
nique of precomputing a table of often used values reduces the total
computing time at the cost of additional circuitry for the table. Sec-
ond, the precomputation technique can be used for transforming the
operands of a computation. As discussed in the thesis it is advantageous
to transform the value of modulus prior to a modular multiplication op-
eration.

As discussed in Chapter 2 it seems difficult to achieve further progress
in the methods for computation of exponentials. However, for applications
that differ from RSA cryptography, it may be possible to find properties
that can be utilised. The prospect of achieving improvements of the modular
multiplication methods is more promising. In this thesis the possibilities of
using high-radix modular multiplication has been investigated. Judging from
the presented results, it is likely that computation rates of several Mbit/set
soon will be achievable for modular exponentiation using 512 bit operands.

194 CHAPTER 6. CONCLUSION

Bibliography

[ABMV93] G. B. Agnew, T. Beth, R. C. Mullin, and S. A. Vanstone. Arith-
metic operations in GF (2m). Journal of Cryptology, 6:3–13, 1993.

[AGLL94] Derek Atkins, Michael Graff, Arjen K. Lenstra, and Paul C. Ley-
land. The magic words are squeamish ossifrage. In Joseph Pieprzyk and
Reihanah Safavi-Naini, editors, Advances in Cryptology – ASIACRYPT
’94. Proceedings, volume 917 of Lecture Notes in Computer Science,
pages 265–277, Wollongong, Australia, November 28–December 1 1994.
Springer-Verlag, Berlin, 1995.

[AMOV91] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Van-
stone. An implementation for a fast public-key cryptosystem. Journal of
Cryptology, 3:63–79, 1991.

[AMV88] G. B. Agnew, R. C. Mullin, and S. A. Vanstone. Fast exponenti-
ation in GF(2n). In Christoph G. Günther, editor, Advances in Cryp-
tology – EURO-CRYPT ’88. Proceedings, volume 330 of Lecture Notes
in Computer Science, pages 251–255, Davos, Switzerland, May 1988.
Springer-Verlag, Berlin, 1988. The contents of this article is included in
[ABMV93].

[Ana92] Analogy, Inc., Aldwych House, Aldwych, London WC2B 4JP. Saber,
User’s Guide, 1992.

[Ara94] Benjamin Arazi. On primality testing using purely divisionless op-
erations. The Computer Journal, 37(3):219–222, 1994.

[Atk68] Daniel E. Atkins. Higher-radix division using estimates of the di-
visor and partial remainders. IEEE Transactions on Computers, C-
17(10):925–934, October 1968. This article is reprinted in [Swa90a],
pages 173–182.

195

196 BIBLIOGRAPHY

[Atk70] Daniel E. Atkins. Design of the arithmetic units of ILLIAC III: Use
of redundancy and higher radix methods. IEEE Transactions on Com-
puters, C-19(8):720–733, August 1970.

[Avi61] Algirdas Avižienis. Signed-digit number representations for fast
parallel arithmetic. IRE Transactions on Electronic Computers, EC-
10(3):389–400, September 1961. This article is reprinted in [Swa90b],
pages 54–65.

[Bak87] P. W. Baker. Fast computation of A ∗ B modulo N . Electronics
Letter, 23(15):794–795, July 1987.

[Bak90] H. B. Bakoglu. Circuits, interconnects, and Packaging for VLSI.
The VLSI Systems Series. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1990.

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman public
key encryption algorithm on a standard digital signal processor. In An-
drew M. Odlyzko, editor, Advances in Cryptology – CRYPTO ’86. Pro-
ceedings, volume 263 of Lecture Notes in Computer Science, pages 311–
323, Santa Bar-bara, California, August 11–15 1986. Springer-Verlag,
Berlin, 1987.

[BC89] Jurjen Bos and Matthijs Coster. Addition chain heuristics. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO ’89. Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 400–407, Santa
Barbara, California, August 20–24 1989. Springer-Verlag, Berlin, 1990.

[BFS91] Th. Beth, M. Frisch, and G. J. Simmons, editors. Public-Key Cryp-
tography: State of the Art and Future Directions, volume 578 of Lecture
notes in Computer Science, E.I.S.S. Workshop, Oberwolfach, Germany,
July 3–6 1991. Springer-Verlag, Berlin, 1992.

[BG89] Thomas Beth and Dieter Gollman. Algorithm engineering for public
key algorithms. IEEE Journal on Selected Areas in Communication.
7(4):458–466, May 1989.

[BGMW92] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and
David B. Wilson. Fast exponentiation with precomputation (extended

BIBLIOGRAPHY 197

abstract). In Rainer A. Rueppel, editor, Advances in Cryptology – EU-
ROCRYPT ’92. Proceedings, volume 658 of Lecture Notes in Com-
puter Science, pages 200–207, Balatonfüred, Hungary, May 24–28 1992.
Springer-Verlag, Berlin, 1993.

[BGV93] Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Compar-
ison of three modular reduction functions. In Douglas R. Stinson, edi-
tor, Advances in Cryptology – CRYPT0 ’93. Proceedings, volume 773
of Lecture Notes in Computer Science, pages 175–186, Santa Barbara,
California, August 22–26 1993. Springer-Verlag, Berlin, 1994.

[Bla83] G. R. Blakley. A computer algorithm for calculating the product AB
modulo M. IEEE Transactions on Computers, C-32(5):497–500, May
1983.

[BO92] E. F. Brickell and A. M. Odlyzko. Cryptanalysis. A survey of recent
results. In Simmons [Sim92b], chapter 10, pages 501–540.

[Boo51] Andrew D. Booth. A signed binary multiplication technique. Quar-
terly Journal of Mechanics and Applied Mathematics, 4(pt. 2):236–240,
June 1951. This article is reprinted in [Swa90a], pages 100–104.

[Bra39] Alfred Brauer. On addition chains. Bulletin of the American Math-
ematical Society, 45:736–739, October 1939.

[Bra88] Gilles Brassard. Modern Cryptology: A Tutorial, volume 325 of Lec-
ture Notes in Computer Science. Springer-Verlag, Berlin, 1988.

[Bri82] Ernest F. Brickell. A fast modular multiplication algorithm with ap-
plication to two key cryptography. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, Advances in Cryptology – Proceedings of
Crypto 82, pages 51–60, Santa Barbara, California, August 23–25 1982.
Plenum Press, New York, 1983.

[Bri89] Ernest F. Brickell. A survey of hardware implementations of RSA
(abstract). In Gilles Brassard, editor, Advances in Cryptology –
CRYPTO ’89. Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 368–370, Santa Barbara, California, August 20–24 1989.
Springer-Verlag, Berlin, 1990.

198 BIBLIOGRAPHY

[BRV89] Patrice Bertin, Didier Roncin, and Jean Vuillemin. Introduction to
programmable active memories. Research report 3, Digital Equipment
Corporation, Paris Research Laboratory, 85, Avenue Victor-Hugo, 92563
Rueil-Malmaison Cedex, France, June 1989.

[BRV93] Patrice Bertin, Didier Roncin, and Jean Vuillemin. Programmable
active memories: a performance assessment. Research report 24, Digital
Equipment Corporation, Paris Research Laboratory, 85, Avenue Victor-
Hugo, 92563 Rueil-Malmaison Cedex, France, March 1993.

[Cas91a] Cascade Design Automation Corporation, 3650 131st Avenue SE,
Bellevue, WA 98006. Cascade Design Automation Databook, 1991.

[Cas91b] Cascade Design Automation Corporation, 3650 131st Avenue SE,
Bellevue, WA 98006. ChipCrafter, Designer’s Handbook, 1991.

[Cas91c] Cascade Design Automation Corporation, 3650 131st Avenue SE,
Bellevue, WA 98006. FINESSE Reference Manual, 1991.

[CBK91] Andreas V. Curiger, Heinz Bonnenberg, and Hubert Kaeslin. Regu-
lar VLSI architectures for multiplication modulo (2n +1). IEEE Journal
of Solid-State Circuits, SC-26(7):990–994, July 1991.

[Che71] Tien Chi Chen. A binary multiplication scheme based on squaring.
IEEE Transactions on Computers, C-20(6):678–680, June 1971. This
article is reprinted in [Swa90a], pages 111–113.

[DDLM93] T. Denny, B. Dodson, A. K. Lenstra, and M. S. Manasse. On the
factorization of RSA-120. In Douglas R. Stinson, editor, Advances in
Cryptology – CRYPTO ’93. Proceedings, volume 773 of Lecture Notes
in Computer Science, pages 166–174, Santa Barbara, California, August
22–26 1993. Springer-Verlag, Berlin, 1994.

[Den82] Dorothy Elizabeth Robling Denning. Cryptography and Data Se-
curity. Addison-Wesley Publishing Company, Inc., Reading, Mas-
sachusetts, 1982.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, IT-22(6):644–654,
November 1976.

BIBLIOGRAPHY 199

[Dif88] Whitfield Diffie. The first ten years of public key cryptology. Proceed-
ings of the IEEE, 76(5):560–577, May 1988. This article is also available
as [Dif92].

[Dif92] Whitfield Diffie. The first ten years of public key cryptology. In Sim-
mons [Sim92b], chapter 3, pages 135–175. This article is also available
as [Dif88].

[DK90] Stephen R. Dussé and Burton S. Kaliski Jr. A cryptograhpic library
for the Motorola DSP56000. In Ivan B. Damg̊ard, editor, Advances in
Cryptology – EUROCRYPT ’90. Proceedings, volume 473 of Lecture
Notes in Computer Science, pages 230–244, Aarhus, Denmark, May 21–
24 1990. Springer-Verlag, Berlin, 1991.

[DLS81] Peter Downey, Benton Leong, and Ravi Sethi. Computing sequences
with addition chains. SIAM Journal on Computing, 10(3):638–646, Au-
gust 1981.

[DMW94] Diana M. D’Angelo, Bruce McNair, and Joseph E. Wilkes. Secu-
rity in electronic messaging systems. AT&T Technical Journal, pages
7–13, May/June 1994.

[dR94] Peter de Rooij. Efficient exponentiation using precomputation and
vector addition chains. In Pre-proceedings of EUROCRYPT ’94, pages
403–415, 1994.

[dWQ90] Dominique de Waleffe and Jean-Jacques Quisquater. CORSAIR: A
smart card for public key cryptosystems. In Alfred J. Menezes and Scott
A. Vanstone, editors, Advances in Cryptology – CRYPT0 ’90. Proceed-
ings, volume 537 of Lecture Notes in Computer Science, pages 502–513,
Santa Barbara, California, August 11–15 1990. Springer-Verlag, Berlin,
1991.

[EL85] Miloš D. Ercegovac and Tomás Lang. A division algorithm with pre-
diction of quotient digits. In Kai Hwang, editor, Proceedings. 7th IEEE
Symposium on Computer Arithmetic, pages 51–56, Urbana, Illinois,
June 4–6 1985. IEEE Computer Society Press, Los Alamitos, California,
1985.

200 BIBLIOGRAPHY

[EL90] Miloš D. Ercegovac and Tomás Lang. Simple radix-4 division with
operand scaling. IEEE Transactions on Computers, C-39(9):1204–1208,
September 1990.

[Eld91] Stephen E. Eldridge. A faster modular multiplication algorithm. In-
ternational Journal of Computer Mathematics, 40:63–68, 1991.

[Erc83] Miloš D. Ercegovac. A higher-radix division with simple selection
of quotient digits. In Proceedings. 6th IEEE Symposium on Computer
Arithmetic, pages 94–98, Aarhus, Denmark, June 20–22 1983. IEEE
Computer Society Press, Los Alamitos, California, 1983.

[Erd60] P. Erdős. Remarks on number theory III. On addition chains. Acta
Informatica, 6:77–81, 1960.

[ES293] ES2, European Silicon Structures, Mount Lane, Bracknell, Bergshire
RG12 3DY, United Kingdom. ES2, Techno1ogy & Services, 1993.

[Eve90] Shimon Even. Systolic modular multiplication. In Alfred J. Menezes
and Scott A. Vanstone, editors, Advances in Cryptology – CRYPT0
’90. Proceedings, volume 537 of Lecture Notes in Computer Science,
pages 619–624, Santa Barbara, California, August 11–15 1990. Springer-
Verlag, Berlin, 1991.

[EW93] Stephen E. Eldridge and Colin D. Walter. Hardware implementation
of Montgomery’s modular multiplication algorithm. IEEE Transactions
on Computers, C-42(6):693–699, June 1993.

[FDG90] C. H. N. Forster, S. S. Dlay, and R. N. Gorgui-Naguib. Carry de-
layed save adders for computing the product A ·B modulo N in log2 N
steps. Electronics Letter, 26(18):1544–1545, August 1990.

[Fum91] Walter Fumy. (Local area) network security. In Preneel et al.
[PGV91], pages 211–226.

[Gar59] Harvey L. Garner. The residue number system. IRE Transactions
on Electronic Computers, EC-8(2):140–147, June 1959.

[Gar77] Martin Gardner. Mathematical games. A new kind of cipher that
would take millions of years to break. Scientific American, 237(2):120–
124, August 1977.

BIBLIOGRAPHY 201

[GD85] Lance A. Glasser and Daniel W. Dopperpuhl. The Design and Anal-
ysis of VLSI Circuits. The VLSI Systems Series. Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1985.

[GD88] Phillip Gallay and Eric Depret. A cryptography processor. In 35th
IEEE International Solid-State Circuits Conference, ISSCC ’88. Digest
of Technical Papers, pages 148–149, San Francisco, California, 1988.
IEEE Press, New York, N. Y., 1988.

[GG90] W. Geiselmann and D. Gollmann. VLSI design for exponentiation
in GF (2n). In Jennifer Seberry and Josef Pieprzyk, editors, Advances
in Cryptology – AUSCRYPT ’90. Proceedings, volume 453 of Lecture
Notes in Computer Science, pages 398–405, Sydney, Australia, January
8–11 1990. Springer-Verlag, Berlin, 1990.

[Gib88] J. K. Gibson. A generalization of Brickell’s algorithm for fast mod-
ular multiplication. BIT, 28:755–763, 1988.

[Has85] Johan Hastad. On using RSA with low exponent in a public key net-
work. In Hugh C. Williams, editor, Advances in Cryptology – CRYPTO
’85. Proceedings, volume 218 of Lecture Notes in Computer Science,
pages 403–408, Santa Barbara, California, August 18–22 1985. Springer-
Verlag, Berlin, 1986.

[Has88] Johan Hastad. Solving simultaneous modular equations of low de-
gree. SIAM Journal on Computing, 17(2):336–341, April 1988. An early
version of this article is [Has85].

[HDVG88] Frank Hoornaert, Marc Decroos, Joos Vandevalle, and René Gov-
aerts. Fast RSA-hardware: Dream or reality? In Christoph G. Gunther,
editor, Advances in Cryptology – EUROCRYPT ’88. Proceedings, vol-
ume 330 of Lecture Notes in Computer Science, pages 257–264, Davos,
Switzerland, May 1988. Springer-Verlag, Berlin, 1988.

[Hen08] K. Hensel. Theorie der Algebraischen Zablen. B. G. Teubner,
Leipzig, 1908.

[HNN+87] Yoshihisa Harata, Yoshio Nakamura, Hiroshi Nagase, Mitsuharu
Takagawa, and Naofumi Takagi. A high-speed multiplier using a redun-
dant binary adder tree. IEEE Journal of Solid-State Circuits,

202 BIBLIOGRAPHY

SC-22(1):28–34, February 1987. This article is reprinted in [Swa90b],
pages 237–243.

[HPS71] Paul G. Hoel, Sidney C. Port, and Charles J. Stone. Introduction to
Probability Theory. The Houghton Mifflin Series in Statistics. Houghton
Mifflin Company, Boston, 1971.

[Hwa79] Kai Hwang. Computer Arithmetic: Principles, Architecture, and
Design. John Wiley & Sons, Inc., New York, 1979.

[ICHO89] Peter A. Ivey, Alan L. Cox, John R. Harbridge, and John K.
Oldfield. A single-chip public key encryption subsystem. IEEE Journal
of Solid-State Circuits, SC-24(4):1071–1075, August 1989.

[IMI92a] Keiichi Iwamura, Tsutomu Matsumoto, and Hideki Imai. High-
speed implementation methods for RSA scheme. In Rainer A. Ruep-
pel, editor, Advances in Cryptology – EUROCRYPL ’92. Proceedings,
volume 658 of Lecture Notes in Computer Science, pages 221–237, Bal-
atonfüred, Hungary, May 24–28 1992. Springer-Verlag, Berlin, 1993.

[IMI92b] Keiichi Iwamura, Tsutomu Matsumoto, and Hideki Imai. Systolic-
arrays for modular exponentiation using Montgomery method (extended
abstract). In Rainer A. Rueppel, editor, Advances in Cryptology – EU-
ROCRYPT ’92. Proceedings, volume 658 of Lecture Notes in Com-
puter Science, pages 477–481, Balatonfüred, Hungary, May 24–28 1992.
Springer-Verlag, Berlin, 1993.

[IWSD92] Peter A. Ivey, Simon N. Walker, Jon M. Stern, and Simon David-
son. A high performance RSA encryption processor in SOI and bulk
CMOS technologies. In Proceedings. 18th European Solid-State Cir-
cuits Conference, ESSCLRC ’92, pages 238-241, Copenhagen, Denmark,
September 21–23 1992. Technical University of Denmark, 1992.

[JM89] J. Jedwab and C. J. Mitchell. Minimum weight modified signed-digit
representation and fast exponentiation. Electronics Letter, 25(17):1171–
1172, August 1989.

[Kat94] Rajendra Katti. A modified Booth algorithm for high radix fixed-
point multiplication. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2(4):522–524, December 1994.

BIBLIOGRAPHY 203

[KH88] Scin-ichi Kawamura and Kyoko Hirano. A fast modular arithmetic
algorithm using a residue table (extended abstract). In Christoph G.
Günther, editor, Advances in Cryptology – EUROCRYPT ’88. Proceed-
ings, volume 330 of Lecture Notes in Computer Science, pages 245–250,
Davos, Switzerland, May 1988. Springer-Verlag, Berlin, 1988.

[KH90a] Ç. K. Koç and C. Y. Hung. Carry-save adders for computing the
product AB modulo N . Electronics Letter, 26(13):899–900, June 1990.

[KH90b] Ç. K. Koç and C. Y. Hung. Multi-operand modulo addition using
carry save adders. Electronics Letter, 26(6):361–363, March 1990.

[KH91] Ç. K. Koç and C. Y. Hung. Bit-level systolic arrays for modular
multiplication. Journal of VLSI Processing, 3:215–223, 1991.

[Kno88] Hans-Joachim Knobloch. A smart card implementation of the Fiat-
Shamir identification scheme. In Christoph G. Günther, editor, Ad-
vances in Cryptology – EUROCRYPT ’88. Proceedings, volume 330 of
Lecture Notes in Computer Science, pages 87–95, Davos, Switzerland,
May 1988. Springer-Verlag, Berlin, 1988.

[Knu68] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art
of Computer Programming. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1968.

[Knu81] Donald E. Knuth. Seminumerica1 Algorithms, volume 2 of The Art
of Computer Programming. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, second edition, 1981.

[Koc85] Martin Kochanski. Developing an RSA chip. In Hugh C. Williams,
editor, Advances in Cryptology – CRYPT0 ’85. Proceedings, volume 218
of Lecture Notes in Computer Science, pages 350–357, Santa Barbara,
California, August 18–22 1985. Springer-Verlag, Berlin, 1986.

[Kor93a] Israel Koren. Computer Arithmetic Algorithms. Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1993.

[Kor93b] Peter Kornerup. High-radix modular multiplication for cryptosys-
tems. In Earl Swartzlander, Jr., Mary Jane Irwin, and Graham Jullien,
editors, Proceedings. 11th IEEE Symposium on Computer Arithmetic,

204 BIBLIOGRAPHY

pages 277–283, Windsor, Ontario, June 29–July 2 1993. IEEE Computer
Society Press, Los Alamitos, California, 1993.

[Kor94a] Peter Kornerup. Digit-set conversions: Generalizations and appli-
cations. IEEE Transactions on Computers, C-43(5):622–629, May 1994.

[Kor94b] Peter Kornerup. A systolic, linear-array multiplier for a class of
right-shift algorithms. IEEE Transactions on Computers, C-43(8):892–
898, August 1994.

[Kri70] E. V. Krishnamurthy. On optimal iterative schemes for high-speed di-
vision. IEEE Transactions on Computers, C-19(3):227–231, March 1970.

[Kun88] S. Y. Kung. VLSI Array Processors. Prentice Hall Information and
System Sciences Series. Prentice Hall, Inc., Englewood Cliffs, New Jer-
sey, 1988.

[LHLH88] Erl-Huei Lu, Lein Harn, Jau-Yien Lee, and Wen-Yih Hwang. A
programmable VLSI architecture for computing multiplication and poly-
nomial evaluation modulo a positive integer. IEEE Journal of Solid-State
Circuits, SC-23(1):204–207, February 1988.

[Lin] Lintel. Cryptech PQR 512 RSA chip. Data Sheet Rev. 1.0 DOC 750512,
Lintel nv/sa, Av. de Jettelaan 32, 1080 Brussels, Belgium.

[LKB+94] Susan Landau, Stephen Kent, Clint Brooks, Scott Charney,
Dorothy Denning, Whitfield Diffie, Anthony Lauck, Douglas Miller, Pe-
ter Neumann, and David Sobel. Crypto policy perspectives. Communi-
cations of the ACM, 37(8):115–121, 1994.

[LL94] Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with
precomputing. In Yvo G. Desmedt, editor, Advances in Cryptology –
CRYPTO ’94. Proceedings, volume 839 of Lecture Notes in Computer
Science, pages 95–107, Santa Barbara, California, August 21–25 1994.
Springer-Verlag, Berlin, 1994.

[LM89] Arjen K. Lenstra and Mark S. Manasse. Factoring by electronic mail.
In J.-J. Quisquater and J. Vandewalle, editors, Advances in Cryptology –
EUROCRYPT ’89. Proceedings, volume 434 of Lecture Notes in Com-
puter Science, pages 355–371, Houthalen, Belgium, April 10–13 1989.
Springer-Verlag, Berlin, 1990.

BIBLIOGRAPHY 205

[MA85] S. B. Mohan and B. S. Adiga. Fast algorithms for implementing RSA
public key cryptosystem. EIectronics Letters, 21(17):761, August 1985.

[Mac61] O. L. MacSorley. High-speed arithmetic in binary computers. IRE
Proceedings, 49(1):67–91, January 1961. This article is reprinted in
[Swa90a], pages 14–38.

[McC86] D. P. McCarthy. Effect of improved multiplication efficiency on ex-
ponentiation algorithms derived from addition chains. Mathematics of
Computation, 46(174):603–608, April 1986.

[Miy82] Shoji Miyaguchi. Fast encryption algorithm for the RSA crypto-
graphic system. In Proceedings. 24th IEEE Computer Society Inter-
national Conference, COMPCON fall ’82, pages 672–678, Washington,
D.C., 1982. IEEE Press, New York, N.Y., 1982.

[Mon85] Peter L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44(170):519–521, April 1985.

[Moo88] J. H. Moore. Protocol failures in cryptosystems. Proceedings of the
IEEE, 76(5), May 1988. This article is also available as [Moo92].

[Moo92] J. H. Moore. Protocol failures in cryptosystems. In Simmons
[Sim92b], chapter 11, pages 541–558. This article is also available as
[Moo88].

[Mor89] Hikaru Morita. A fast modular-multiplication algorithm based on
higher radix. In Gilles Brassard, editor, Advances in Cryptology –
CRYPT0 ’89. Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 387–399, Santa Barbara, California, August 20–24 1989.
Springer-Verlag, Berlin, 1990.

[Mor90] Hikaru Morita. A fast modular-multiplication module for smart
cards. In Jennifer Seberry and Josef Pieprzyk, editors, Advances in
Cryptology – AUSCRYPT ’90. Proceedings, volume 453 of Lecture
Notes in Computes Science, pages 406–409, Sydney, Australia, January
8–11 1990. Springer-Verlag, Berlin, 1990.

[MP89] Rajeev Madhaven and Lloyd E. Peppard. A multiprocessor GaAs
RSA cryptosystem. In Proceedings. Canadian Conference on VLSI,
CCVLSI’89, pages 115–122, Vancouver, Canada, 1989.

206 BIBLIOGRAPHY

[Nec92] James Nechvatal. Public key cryptography. In Simmons [Sim92b],
chapter 4, pages 177–288.

[NS81] Michael J. Norris and Gustavus J. Simmons. Algorithms for high-
speed modular arithmetic. Congressus Numerantium, 31:153–163, April
1981.

[Obe79] R. M. M. Oberman. Digital Circzuits for Binary Arithmetic. The
MacMillan Press Ltd., London, 1979.

[OK91] Holger Orup and Peter Kornerup. A high-radix hardware algorithm
for calculating the exponential ME module N . In Peter Kornerup and
David W. Matula, editors, Proceedings. 10th IEEE Symposium on Com-
puter Arithmetic, pages 51–56, Grenoble, France, June 26–28 1991.
IEEE Computer Society Press, Los Alamitos, California, 1991.

[OPT93] Glenn Orton, Lloyd Peppard, and Stafford Tavares. A design of a
fast pipelined modular multiplier based on a diminished-radix algorithm.
Journal of Cryptology, 6:183–208, 1993.

[ORS+86] G. A. Orton, M. P. Roy, P. A. Scott, L. E. Peppard, and S.
E. Tavares. VLSI implementation of public-key encryption algorithms.
In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO
’86. Proceedings, volume 263 of Lecture Notes in Computer Science,
pages 277–301, Santa Barbara, California, August 11–15 1986. Springer-
Verlag, Berlin, 1987.

[Oru94] Holger Orup. A 100Kbit/s single chip modular exponentiation pro-
cessor. In HOT Chips VI, Symposium Record, pages 53–59, Stanford
University, Stanford, California, August 14–16 1994. Only the slides
from the presentation at HOT Chips VI are printed in the Symposium
Record. An abstract is available from the author.

[Oru95] Holger Orup. Simplifying quotient determination in high-radix mod-
ular multiplication. In Simon Knowles and William H. McAllister, ed-
itors, Proceedings. 12th 1EEE Symposium on Computer Arithmetic,
pages 193–199, Bath, England, July 19–21 1995. IEEE Computer Soci-
ety Press, Los Alamitos, California, 1995.

BIBLIOGRAPHY 207

[OS90] Holger Orup and Erik Svendsen. VICTOR. Forbedringer og videre-
udviklinger af VICTOR—en integreret kreds til understøttelse af RSA-
kryptosystemer. Internal report, Department of Computer Science, Uni-
versity of Aarhus, Denmark, June 1990. In Danish.

[OSA90a] Holger Orup, Erik Svendsen, and Erik Andreasen. VICTOR an
efficient RSA hardware implementation. In Ivan B. Damg̊ard, editor,
Advances in crypto1ogy – EUROCRYPT ’90. Proceedings, volume 473
of Lecture notes in Computer Science, pages 245–252, Aarhus, Denmark,
May 21–24 1990. Springer-Verlag, Berlin, 1991.

[OSA90b] Holger Orup, Erik S vendsen, and Erik Andreasen. VICTOR. Teo-
retiske og eksperimentelle undersøgelser af algoritmer til understøttelse
af RSA-krypto-systemer med henblik p̊a VLSI design. Master’s thesis,
Department of Computer Science, University of Aarhus, Denmark, Jan-
uary 1990. In Danish.

[Par93] Behrooz Parhami. On the implementation of arithmetic support
functions for generalized signed-digit number systems. IEEE Transac-
tions on Computers, C-42(3):379–384, March 1993.

[PGV91] Bart Preneel, René Govaerts, and Joos Vandevalle, editors. Com-
puter Security and Industrial Cryptography: State of the Art and Evo-
lution, volume 741 of Lecture Notes in Computer Science, ESAT Course,
Leuven, Belgium, May 21–23 1991. Springer-Verlag, Berlin, 1993.

[PH94] David A. Patterson and John L. Hennessy. Computer Organization
and Design: The Hardware/Software Interface. Morgan Kaufmann Pub-
lishers, Inc., San Mateo, California, 1994.

[Pij91] Pijnenburg. PCC100 DES encryption device. Product data sheet ver-
sion 1.2, Pijnenburg micro-electronics & software b.v., Boxtelseweg 26,
5261 NE Vught. PO Box 330, 5260 AH Vught, The Netherlands, 1991.

[Pij92] Pijnenburg. PCC200 RSA encryption device. Product data sheet ver-
sion 1.7, Pijnenburg micro-electronics & software b.v., Boxtelseweg 26,
5261 NE Vught. PO Box 330, 5260 AH Vught, The Netherlands, 1992.

[QC82] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for
RSA public-key cryptosystem. Electronics Letter, 18(21):905–907, Oc-
tober 1982.

208 BIBLIOGRAPHY

[Rei60] George W. Reitwiesner. Binary arithmetic. In Franz L. Alt, editor,
Advances in Computers, volume 1, pages 231–308. Academic Press, Inc.,
New York, 1960.

[Riv80] Ronald L. Rivest. A description of a single-chip implementation of
the RSA cipher. Lambda Magazine, 1(3):14–18, Fourth Quarter 1980.

[Riv82] Ronald L. Rivest. A short report on the RSA chip. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptol-
ogy – Proceedings of Crypto 82, page 327, Santa Barbara, California,
August 23–25 1982. Plenum Press, New York, 1983.

[Riv84] Ronald L. Rivest. RSA chips (past/present/future) – (extended ab-
stract). In Thomas Beth, Norbert Cot, and Ingemar Ingemarsson, edi-
tors, Advances in Cryptology. Proceedings of EUROCRYPT 84, volume
209 of Lecture notes in Computer Science, pages 160–165, Paris, France,
April 9–11 1984. Springer-Verlag, Berlin, 1985.

[Rob85] James E. Robertson. A new class of digital division methods. IRE
Transactions on Electronic Computers, EC-7(3):218–222, September
1958. This article is reprinted in [Swa90a], pages 159–163.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digi-tal signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120–126, feb 1978.

[Rub75] Louis P. Rubinfield. A proof of the modified Booth’s algorithm for
multiplication. IEEE Transactions on Computers, C-24(10):1014–1015,
October 1975.

[Sau92] Jörg Sauerbrey. A modular exponentiation unit based on systolic ar-
rays. In Jennifer Seberry and Yuliang Zheng, editors, Advances in Cryp-
tology – AUSCRYPT ’92. Proceedings, volume 718 of Lecture Notes in
Computer Science, pages 505–516, Gold Coast, Queensland, Australia,
December 13–16 1992. Springer-Verlag, Berlin, 1993.

[SB88] Miles E. Smid and Dennis K. Branstad. The Data Encryption Stan-
dard. Past and future. Proceedings of the IEEE, 76(5):550–559, May
1988. An updated version of this article is [SB92].

BIBLIOGRAPHY 209

[SB92] Miles E. Smid and Dennis K. Branstad. The Data Encryption Stan-
dard. Past and future. In Simmons [Sim92b], chapter 1, pages 43–64.
This article is an updated version of [SB88].

[SBV90] M. Shand, P. Bertin, and J. Vuillemin. Hardware speedups in long
integer multiplication. In Proceedings. 2nd Annual ACM Symposium on
Parallel Algoritms and Architectures. SPAA ’90, pages 138–145, Island
of Crete, Greece, July 2–6 1990. Association for Computing Machinery,
New York, 1990. This article also appears as [SVB91].

[SVB91] M. Shand, P. Bertin, and J. Vuillemin. Hardware speedups in long
integer multiplication. Computer Architecture News, SIGARCH – ACM,
19(1):106–113, March 1991. This article also appears as [SBV90].

[Sch75] Arnold Schönhage. A lower bound for the length of addition chains.
Theoretical Computer Science, 1(1):1–12, June 1975.

[Sch93] Bruce Schneier. Applied Cryptography: Protocols, Algorithms and
Source Code in C. John Wiley & Sons, New York, 1993.

[Sco85] Norman R. Scott. Computer Number Systems and Arithmetic.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.

[SD92] Jörg Sauerbrey and Andreas Dietel. Resource requirements for the
application of addition chains in modulo exponentiation. In Rainer A.
Rueppel, editor, Advances in Cryptology – EUROCRYPT ’92. Proceed-
ings, volume 658 of Lecture Notes in Computer Science, pages 174–182,
Balatonfüred, Hungary, May 24–28 1992. Springer-Verlag, Berlin, 1993.

[Sed87] Holger Sedlak. The RSA cryptography processor. In David Chaum
and Wyn L. Price, editors, Advances in Cryptology – EUROCRYPT ’87.
Proceedings, volume 304 of Lecture Notes in Computer Science, pages
95–105, Amsterdam, The Netherlands, April 13–15 1987. Springer-
Verlag, Berlin, 1988.

[SG86] H. Sedlak and U. Golze. An RSA cryptography processor. Micropro-
cessing and Miccroprogramming, 18:583–590, 1986.

[SG90] Homayoon Sam and Arupratan Gupta. A generalized multibit recod-
ing of two’s complement binary numbers and its proof with application

210 BIBLIOGRAPHY

in multiplier implementations. IEEE Transactions on Computers, C-
39(8):1006–1015, August 1990.

[Sim92a] Gustavus J. Simmons. Contemporary cryptology, a foreword.
In Contemporary Cryptology: The Science of Information Integrity
[Sim92b], pages vii–xv.

[Sim92b] Gustavus J. Simmons, editor. Contemporary Cryptology: The Sci-
ence of Information Integrity. IEEE Press, New York, 1992.

[Slo85] K. R. Sloan, Jr. Comments on “a computer algorithm for calculat-
ing the product AB modulo M”. IEEE Transactions on Computers,
C-34(3):290–292, March 1985.

[Spa81] Otto Spaniol. Computer Arithmetic: Logic and Design. Wiley Series
in Computing. John Wiley & Sons Ltd., Chichester, 1981.

[ST67] Nicolas S. Szabo and R. I. Tanaka. Residue Arithmetic and Its Ap-
plications to Computer Technology. McGraw-Hill, New York, 1967.

[ST83] D. Simmons and S. E. Tavares. An NMOS implementation of a large
number modulo multiplier for data encryption systems. In Proceedings.
Custom Integrated Circuits Conference, CICC 1983, pages 262–266.
IEEE Press, New York, 1983.

[Sti90] D. R. Stinson. Some observations on parallel algorithms for fast ex-
ponentiation in GF(2n). SIAM Journal on Computing, 19(4):711–717,
August 1990.

[SV93] M. Shand and J. Vuillemin. Fast implementations of RSA cryptogra-
phy. In Earl Swartzlander, Jr., Mary Jane Irwin, and Graham Jullien,
editors, Proceedings. 11th IEEE Symposium on Computer Arithmetic,
pages 252–259, Windsor, Ontario, June 29–July 2 1993. IEEE Computer
Society Press, Los Alamitos, California, 1993.

[Svo63] Antonin Svoboda. An algorithm for division. Information Processing
Machines, 9:25–32, 1963. This article is reprinted in [Swa90a], pages
183–190.

[Swa80] Earl E. Swartzlander, Jr., editor. Computer Arithmetic, volume 21
of Benchmark Papers in Electrical Engineering and Computer Science.

BIBLIOGRAPHY 211

Dowden Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania, 1980.
This volume is reprinted as [Swa90a].

[Swa90a] Earl E. Swartzlander, Jr., editor. Computer Arithmetic, volume
1. IEEE Computer Society Press, Los Alamitos, California, 1990. This
volume is a reprint of [Swa80].

[Swa90b] Earl E. Swartzlander, Jr., editor. Computer Arithmetic, volume 2.
IEEE Computer Society Press, Los Alamitos, California, 1990.

[Tak91] Naofumi Takagi. A radix-4 modular multiplication hardware algo-
rithm efficient for iterative modular multiplications. In Peter Kornerup
and David W. Matula, editors, Proceedings. 10th IEEE Symposium on
Computer Arithmetic, pages 35–42, Grenoble, France, June 26–28 1991.
IEEE Computer Society Press, Los Alamitos, California, 1991. This ar-
ticle also appears as [Tak92].

[Tak92] Naofumi Takagi. A radix-4 modular multiplication hardware algo-
rithm for modular exponentiation. IEEE Transactions on Computers,
C-41(8):949–956, August 1992. This article is based on [Tak91].

[Tay84] Fred J. Taylor. Residue arithmetic: A tutorial with examples. IEEE
Computer Magazine, 17(5):50–62, May 1984.

[Tay85] George S. Taylor. Radix 16 SRT dividers with overlapped quotient
selection stages. In Kai Hwang, editor, Proceedings. 7th IEEE Sympo-
sium on Computer Arithmetic, pages 64–71, Urbana, Illinois, June 4–6
1985. IEEE Computer Society Press, Los Alamitos, California, 1985.

[Tho88] Thorn EMI. RSA evaluation board. Data Sheet Rev. 1.0, 10/88,
Thorn EMI Central Research Laboratories, Dawley Road, Hayes, Mid-
dlesex, England, 1988.

[Thu73] Edward G. Thurber. On addition chains l(mn) ≤ l(n)− b and lower
bounds for c(r). Duke Mathematical Journal, 40:907–913, 1973.

[Toc58] K. D. Tocher. Techniques of multiplication and division for auto-
matic binary computers. Quarterly Journal of Mechanics and Applied
Mathematics, 11 (pt.3):364–384, 1958.

212 BIBLIOGRAPHY

[TY92] Naofumi Takagi and Shuzo Yajima. Modular multiplication hard-
ware algorithms with a redundant representation and their application
to RSA cryptosystem. IEEE Transactions on Computers, C-41(7):887–
891, July 1992.

[TYY85] Naofumi Takagi, Hiroto Yasuura, and Shuzo Yajima. High-speed
VLSI multiplication algorithm with a redundant binary addition tree.
IEEE Transactions on Computers, C-34(9):789–796, September 1985.

[VBR+94] J. Vuillemin, P. Bertin, D. Rochin, M. Shand, H. Touati, and P.
Boucard. Programmable active memories: The coming of age. Research
article, Digital Equipment Corporation, Paris Research Laboratory, 85,
Avenue Victor-Hugo, 92563 Rueil-Malmaison Cedex, France, July 1994.
Draft.

[vO92] Paul C. van Oorschot. A comparison of practical public key cryptosys-
tems based on integer factorization and discrete logarithms. In Simmons
[Sim92b], chapter 5, pages 289–322.

[VSH89] Stamatis Vassiliadis, Eric M. Schwarz, and Don J. Hanrahan. A
general proof for overlapped multiple-bit scanning multiplications. IEEE
Transactions on Computers, C-38(2):172–183, February 1989.

[VVDJ89] André Vandemeulebroeck, Etienne Vanzieleghem, Tony Denayer,
and Paul G. A. Jespers. A single chip 1024 bits RSA processor. In J.-
J. Quisquater and J. Vandewalle, editors, Advances in Cryptology –
EUROCRYPT ’89. Proceedings, volume 434 of Lecture Notes in Com-
puter Science, pages 219–236, Houthalen, Belgium, April 10–13 1989.
Springer-Verlag, Berlin, 1990. This article also appears as [VVDJ90].

[VVDJ90] André Vandemeulebroeck, Etienne Vanzieleghem, Tony Denayer,
and Paul G. A. Jespers. A new carry-free division algorithm and its ap-
plication to a single-chip 1024-b RSA processor. IEEE Journal of Solid-
State Circuits, SC-25(3):748–756, June 1990. This article also appears
as [VVDJ89].

[Wal64] C. S. Wallace. A suggestion for a fast multiplier. IEEE Transactions
on Electronic Computers, EC-13(1):14–17, February 1964. This article
is reprinted in [Swa90a], pages 114–117.

BIBLIOGRAPHY 213

[Wal91a] Colin D. Walter. Fast modular multiplication using 2-power radix.
International Journal of Computer Mathematics, 39:21–28, 1991.

[Wal91b] Colin D. Walter. Faster modular multiplication by operand scal-
ing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO
’91. Proceedings, volume 576 of Lecture Notes in Computer Science,
pages 313–323, Santa Barbara, California, August 11–15 1991. Springer-
Verlag, Berlin, 1992.

[Wal93] Colin D. Walter. Systolic modular multiplication. IEEE Transac-
tions on Computers, C-42(3):376–378, March 1993.

[WC81] Robert Willoner and I-Ngo Chen. An algorithm for modular expo-
nentiation. In Proceedings. 5th IEEE Symposium on Computer Arith-
metic, pages l35–138, Ann Arbor, Michigan, May 18–19 1981. IEEE
Computer Society Press, New York, N.Y., 1981.

[WE90] Colin D. Walter and Stephen E. Eldridge. A verification of Brick-
ell’s fast modular multiplication algorithm. Inernational Journal of Com-
puter Mathematics, 33:153–169, 1990.

[WE92] Neil H. E. Weste and Kamran Eshragian. Principles of CMOS VLSI
Design: A Systems Perspective. The VLSI Systems Series. Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, second edi-
tion, 1992.

[WH91] Ted E. Williams and Mark A. Horowitz. A 160ns 54bit CMOS di-
vision implementation using self-timing and symmetrically overlapped
SRT stages. In Peter Kornerup and David W. Matula, editors, Proceed-
ings. 10th IEEE Symposium on Computer Arithmetic, pages 210–217,
Grenoble, France, June 26–28 1991. IEEE Computer Society Press, Los
Alamitos, California, 1991.

[Wil93] Ted E. Williams. Performance of iterative computation in self-timed
rings. Journal of VLSl Signal Processing, January 1993.

[Yac90] Y. Yacobi. Exponentiating faster with addition chains. In Ivan B.
Damg̊ard, editor, Advances in Cryptology – EUROCRYPT ’90. Pro-
ceedings, volume 473 of Lecture Notes in Computer Science, pages 222–
229, Aarhus, Denmark, May 21–24 1990. Springer-Verlag, Berlin, 1991.

214 BIBLIOGRAPHY

[Yao76] Andrew Chi-Chih Yao. On the evaluation of powers. SIAM Journal
on Computing, 5(1):100-103, March 1976.

[YS89] Jiren Yuan and Christer Svensson. High-speed CMOS circuit tech-
nique. IEEE Journal of Solid-State Circuits, SC-24(1):62–70, February
1989.

[Zha93] C. N. Zhang. An improved binary algorithm for RSA. Computers
and Mathematics with Applications, 25(6):15–24, 1993.

[ZMY88] Chang N. Zhang, Herold L. Martin, and David Y. Y. Yun. Parallel
algorithms and systolic array designs for RSA cryptosystem. In Keith
Bromley, Sun-Yuan Kung, and Earl Swartzlander, editors, Proceedings.
1988 IEEE International Conference on Systolic Arrays, pages 341–350,
San Diego, California, 1988. IEEE Computer Society Press, Washington,
D.C., 1988.

Appendix A

VICTOR, an Efficient RSA
Hardware Implementation

215

VICTOR
an Efficient RSA Hardware Implementation

Holger Orup
Erik Svendsen
Erik Andreasen

Department of Computer Science, Aarhus University
Ny Munkegade 116

DK-8000 Aarhus C, DENMARK
e-mail: orup@daimi.aau.dk

March 19, 2001

Abstract

The latest improvements of RSA chips are based on progress in im-
plementation technology and strategy i.e. smaller circuits and higher
clock frequencies. There has been no improvements in efficiency of
the algorithms. The efficiency is here defined as the number of bits
produced pr. 1000 clock cycles.

We present algorithms which improve the efficiency by 300%–
400%. The main strategy is multiple bit scan and parallel execution of
two multiplications. Using these algorithms and the presented hard-
ware architecture a bit rate greater than 90 Kbit/sec can be achieved
encrypting 512 bit blocks.

216

Ω Bit rate efficiency
pr. 512 bits

Thorn EMI 24 MHz 29.0 K 1.21
AT & T 15 MHz 19.0 K 1.27
Cryptech 14 MHz 17.0 K 1.21

Table 1: The three justest RSA chips to date

1 Introduction

Several implementations or suggestions of how to implement the RSA proto-
col in hardware have been presented in the past. Brickell made an overview
of existing RSA chips. The three implementations with the highest bit rate,
when the length of an encryption block is 512 bits, are shown in table 1 [?]
[?].

We have defined the efficiency as the number of bits produced pr. 1000
clock cycles. Note that the efficiency of the three implementations are ap-
proximately the same, and the difference in bit rate is due to the difference in
clock speed. The efficiency as defined here is a performance measure of the
algorithm used. On the other hand, the clock rate is a rough performance
measure of the technology and methods used for realizing the algorithm in
hardware.

Apparently there has been no development of more efficient algorithms
suited for hardware implementation. In the following, we will present algo-
rithms for exponentiation and multiplication which result in a higher effi-
ciency than the above mentioned.

2 Exponentiation

The main operation in the RSA protocol is ME mod N , where the length
of each operand is at least 500 bits. Therefore it is essential to have an
efficient exponentiation algorithm. The most commonly used algorithm is
named Russian Peasant [?]. Below is shown a variant in which E is read
from the least significant bit. The i’th bit of E is denoted ei.

217

Algorithm: Modulo exponentiation.
Stimulation: E, M , N , where E ≥ 0 and 0 ≤ M < N .
Response: X = ME mod N
Method: i := 0

X := 1;
WHILE i < n DO

IF ei = 1 THEN X := (X · M) mod N END;
M := (M · M) mod N ;
i := i + 1;

END;

Algorithm 1: Variant of Russian Peasant for module exponentiation

If we denote the length of M , E and N by n the time complexity is:

T [Exp, n] =
2

3
nT [Mult, n]

Assuming it is possible to perform two multiplications in parallel, this is
indeed possible because the three statements in the loop do not depend on
each other, the complexity is:

T [Exp, n] = nT [Mult, n]

This gives a 33% time reduction compared with the variant with one multi-
plication unit.

3 Multiplication

To implement the exponentiation algorithm mentioned above, we need an
efficient way to perform modulo multiplication. Several algorithms have been
presented [?] [?] [?] [?]. None of them are able to carry out a multiplication
with fewer than n full additions of n-bit words.

218

S := 0; i := n′ − 1;
WHILE i ≥ 0 DO

S := (2kS + aiB) mod N ;
i := i − 1;

END;

Algorithm 2: Serial-parallel multiplication with integrated modulo reduction.

The usual way of multiplying is by scanning the multiplier one bit at a
time and conditionally accumulating the multiplicand parallelly. Assume we
scan the multiplier k bits at a time, corresponding to base 2k we can express
the serial-parallel multiplication scheme as in algorithm 2. In this algorithm
S is the accumulator, n′ is the number of digits in base 2k, ai is digit number
i of the multiplier, B the multiplicand and N the modulus. The multiplier
is scanned from the most significant digit.

S := 0; i := n′ − 1;
WHILE i ≥ 0 DO

q := estimate(S div N);
S := 2kS + aiB − 2kqN
i := i − 1;

END;
Correction of S;

Algorithm 3: Module multiplication with quotient estimation.

The modulo reduction can be carried out by subtracting N from S until
S ∈ [0; N [. The maximal number of subtractions will be 2k +2k − 2, because
ai ∈ [0; 2k − 1] and B ∈ [0; N]. Even though the number of subtractions is
limited, this method is rather slow. Instead we can estimate the quotient, S
div N , belonging to [0; 2k+1 − 2] and carry out the reduction in one subtrac-
tion. This is shown in algorithm 3. Note that this method is only feasible
if we are able to generate the products aiB and qN rapidly. We could for
example precalculate all the possible values of aiB and qN and save them
in a table. According to Barrett [?], the quotient estimate can be found
by multiplying a few of the most significant bits of the dividend S and the

219

reciprocal of the divisor N . We assume that the necessary amount of bits of
1
N

is part of the input to the chip. If q is to have an accuracy of x bits, then
by using x + 2 bits from S and 1

N
we get an estimate which at the most is

one less than the exact quotient.

In algorithm 3 the accumulator S does not necessarily belong to the interval
[0; N [after each iteration. This does not matter, as long as S belongs to the
same residue as S mod N , and S does not diverge. But after the loop S has
to be corrected by subtracting N until S belongs to the correct interval. It
is proven in [?] that S ∈ [0; (3 · 2k − 1)N] after each iteration. The range of
q is therefore [0; 3 · 2k − 1]. As we shall see later, we can construct hardware
that generates qN efficiently if the range of q belongs to [0; 42], this means
the scan factor k is limited to 3.

We are able to reduce the range of q, the idea is as follows: if we estimate
S
2

div N instead of S div N , the range of the quotient is apparently halved.
The modulo reduction is performed by subtracting 2 · 2kqN instead of 2kqN .
However, the accuracy of the quotient estimate is hereby reduced, implying
an increase of the range of S. A closer analysis [?] shows that if we estimate
S
2r div N we get a minimal range of q when k ≤ r : [0; 2k+1]. This means
that the scan factor can be increased to 4. The final algorithm for module
multiplication is shown as algorithm 4. Note that the final corrections can
be made by iterating two extra times while setting ai = 0 and further more
assuming r = k.

The final result is read from S discarding the 2k least significant bits.
Note that this result belongs to the interval [0; 2N [. A further reduction
is not necessary. When the exponentiation algorithm terminates, the result
will also belong to [0; 2N [, here a reduction is necessary. This reduction is
easily carried out while outputting the result serially. The correctness of the
algorithm is proven in [?]. The time complexity is:

T [Mult, n] = (�n + 1

k
� + 2)T [loop]

In the rest of this paper we will describe how to perform the central operation
of the loop: S := 2kS + aiB − 2k+rqN . To do this we have to take a closer
look at the hardware architecture of the multiplication unit.

220

Algorithm: Module multiplication.

Stimulation: A = an′−1an′−2 · · · a0a−1a−2,
where ai ∈ [0; 2k − 1], a−1 = a−2 = 0 and n′ = �n+1

k
�;

B, where B ∈ [0; 2N [;
N , where N ∈]2n−1; 2n[;
k, where k ≥ 3;
r, where r = k.

Response: S div 22k ≡N AB and
S div 22k ∈ [0; .2N [.

Method: S := 0; i := n′ − 1
WHILE i ≥ −2 DO

q = estimate(S div 2r, N);
S := 2kS + aiB − 2k+rqN ;
i := i − 1;

END;

Algorithm 4: Module multiplication.

3.1 Hardware architecture

The multiplication unit consists of circuits for generating the values −qN and
aiB. Each circuit returns the result represented in two words, i.e. the value
aiB is represented as aiBs and aiBc, where aiBs + aiBc = aiB. Similarly the
accumulator S is represented in two words Ss and Sc. The main task of the
loop is now to add six words together and represent the sum as two words
S ′

s and S ′
c Using the carry save addition technique this is easily done with

four rows of fulladders as shown in figure 5. The critical path of the multi-
plication unit is calculating the quotient estimate, generating −qN followed
by the delay of two fulladders. To be able to use the parallel version of the
exponentiation algorithm we have to perform two multiplications i parallel.
This can be achieved by pipelining the circuit and adding an extra A register.

221

It is not necessary to duplicate the B register since the two multiplications
always have a common operand. See algorithm 1.

Figure 5: Hardware architecture of the multiplication unit.

3.2 Generating aiB and −qN

To compute −qN we again use the carry save technique. Observe that all
numbers in [0; 42] can be expressed as a sum of three powers of two. Table 2
shows which values, α, β and γ, are needed to compute −qN = αN + βN +
γN . The values αN , βN and γN are generated through a selection network,
and added through a row of fulladders as shown in figure 6. Here again the
result is renresented in two words −qNc and −qNs.

The computation of aiB is performed following the same principle.

3.3 Quotient estimation

The quotient estimate q is calculated by adding the δ most significant bits
of S ′

c and S ′
s and then multiplying the sum with the ε most significant bits

of 1
N

. The quotient can then be found by discarding the δ + ε− (k + 2) least
significant bits of the product, where k is the scan factor.

222

q α β γ q α β γ q α β γ q α β γ q α β γ
0 0 0 0 10 -16 4 2 20 -16 -4 0 30 -32 0 2 40 -32 -8 0
1 0 0 -1 11 -16 4 1 21 -16 -4 -1 31 -32 0 1 41 -32 -8 -1
2 0 -4 2 12 -16 4 0 22 -32 8 2 32 -32 0 0 42 -32 -8 -2
3 0 -4 1 13 -16 4 -1 23 -32 8 1 33 -32 0 -1
4 0 -4 0 14 -16 0 2 24 -32 8 0 34 -32 0 -2
5 0 -4 -1 15 -16 0 1 25 -32 8 -1 35 -32 -4 1
6 -8 0 2 16 -16 0 0 26 -32 4 2 36 -32 -4 0
7 -8 0 1 17 -16 0 -1 27 -32 4 1 37 -32 -4 -1
8 -8 0 0 18 -16 -4 2 28 -32 4 0 39 -32 -4 -2
9 -8 0 -1 19 -16 -4 1 29 -32 4 -1 39 -32 -8 1

Table 2: q expressed as the sum of α, β and γ

Figure 6: Unit for generating −qN

Earlier we have given an upper bound of q = 2k+1, and this restricted
k ≤ 4. In [?] we have investigated the interdependency of q, δ, ε, k and found
an expression that gives a smaller upper bound for q:

qmax =
2k(2k+3−δ + 1 + 21−k)

1 − 2k−ε

Table 3 shows that we can achieve an upper bound equal to 42 with k = 5
by selecting δ = 10 and ε = 11. This scan factor is optimal for the presented
hardware architecture because the maximal value of ai will exceed 42 if k is
greater than 5. Simulations indicate that an even lesser upper bound for q
can be found, which means that δ and ε can be reduced, giving a simpler

223

circuit.

k δ ε 	qmax

4 8 8 27
4 8 9 26
4 9 9 22
4 9 10 22
5 9 9 51
5 9 10 50
5 10 10 43
5 10 11 42

Table 3: Upper bounds for the quotient estimate.

4 Performance

The critical path of the multiplication unit has been designed in a 2µ process.
Simulations show that a loop in the multiplication unit takes less than 85
ns. In a pipelined version each loop takes two clock cycles, thereby giving
a clock period less than 50 ns., corresponding to a clock frequency of more
than 20 MHz. The layout shows high regularity and the area is estimated at
approximately 100 mm2.

The efficiency of the algorithms is:

n · 1000bits

2 · n(n+1
k

+ 2)cycles

For n = 512 we achieve an efficiency of 3.8 for k = 4 and 4.8 for k = 5. The
bit rates for a clock frequency of 20 MHz are 78 Kbit/sec and 97 Kbit/sec
respectively.

224

5 Conclusion

We have presented a way to speed up a well known exponentiation algorithm
by performing two multiplications in parallel, and we have shown how these
multiplications can be performed efficiently using multiple bit scan. Further
more we have developed a highly regular hardware architecture, based on
the carry save addition technique, implementing the multiplication algorithm
with a scan factor of up to 5.

Currently a prototype is being developed at the Computer Science Depart-
ment, Aarhus University.

References

[Bar86] Paul Barrett. Implementing the Riverst Shamir and Adleman public
key encryption system on a standard digital signal processor. In Ad-
vances in Cryptology - CRYPTO ’86, pages 311–323, 1986.

[Bla83] G.R. Blakely. A Computer Algorithm for Calculating the Product
AB Modulo M. IEEE Trans. Computers, C-32:497–500, 1983.

[Bri89] Ernest F. Brickell. A Survey of Hardware Implementations of RSA.
In CRYPTO ’89, 1989.

[EMI88] THORN EMI. RSA Evaluation Board. Technical Report 10, Thorn
EMI Central Reasearch Laboratories, 1988.

[HDVG88] Frank Hoornaert, Marc Decroos, Joos Vandewalle, and René Go-
vaerts. Fast RSA-Hardware: Dream or Reality ? In Advances in Cryp-
tology - EURO-CRYPT ’88, pages 257–264, 1988.

[Knu69] Donald E. Knuth. The Art of Computer Programming - Seminu-
merical Algorithms, volume 2. Addison-Westley, 1969.

[ORSP86] G.A. Orton, M.P. Roy, P.A. Scott, and L.E. Peppard. VLSI im-
plementation of public-key encryption algorithms. In Advances in Cryp-
tology - CRYPTO ’86, pages 277–301, 1986.

225

[OS90] Holger Orup and Erik Svendsen. VICTOR. Forbedringer og videreud-
viklinger af VICTOR - en integreret kreds til understøttelse af RSA-
kryptosystemer. Computer Science Department of Aarhus University -
Internal report, 1990.

[OSA90] Holger Orup, Erik Svendsen, and Erik Andreasen. VICTOR - Teo-
retiske og eksperimentelle undersøgelser af algoritmer til understøttelse
af RSA-kryptosystemer med henblik p̊a VLSI design. Master’s thesis,
Computer Science Department of Aarhus University, 1990.

226

Appendix B

A High-Radix Hardware
Algorithm for Calculating the
Exponential ME Modulo N

217

A High-Radix Hardware Algorithm for

Calculating the Exponential ME Modulo N

Holger Orup
Computer Science Department

Aarhus University
DK-8000 Aarhus C, DENMARK

e-mail: orup@daimi.aau.dk

Peter Kornerup
Dept. of Math. and Computer Science

Odense University
DK-5230 Odense M, DENMARK
e-mail: kornerup@imada.ou.dk

March 19, 2001

Abstract

In a class of crypto systems fast
computation of modulo exponentials
is essential. The popular RSA pro-
tocol uses operands of more than
500 bits to achieve a suficient se-
curity. We present a parallel ver-
sion of a well known exponentia-
tion algorithm that halves the worst
case computing time. It is described
how a high radix module multipli-
cation can be implemented by in-
terleaving a serial-parallel multipli-
cation scheme with an SRT divi-
sion scheme. The problems as-
sociated with high radices are efi-
ciently solved by the use of a redun-
dant representation of intermediate
operands. We show how the algo-
rithms can be realized as a highly
regular VLSI circuit. Simulations
indicate that a radix 32 implemen-

tation of the algorithms is able of
computing 512 bit operand exponen-
tials in 3.2 msec. This is more than
5 times faster compared to other
known implementations.

1 Introduction

The concept of two-key crypto systems was
introduced by Diffie and Hellman [5] in 1976.
In 1978 Riverst, Shamir and Adleman [13]
published an encryption scheme based on
computing exponentials. The RSA scheme
realizes encryption as put forth by Diffie and
Hellman. Both encryption of a message and
decryption of an encrypted message are done
by computing an exponential ME mod N ,
M ∈ [0, N [. The message is denoted M and
the key (E, N). Modulus N is a product of

228

two very large primes and the security of the
system depends on the length of the keys.
To achieve a sufficient security key lengths of
500-600 bits are necessary.

For an implementation of the RSA protocol it
is crucial to calculate modulo exponentials in
a rate corresponding to the transmission rate
between transmitter and receiver to avoid the
encryption to be a bottle neck in the com-
munication system. Brickell [4] has made a
survey of hardware implementations of RSA.
In his paper chips from Cryptech [7] are the
fastest, with a computing time of 512 bit
messages corresponding to a rate of 17Kbit

sec .
Thorn EMI [15] has made chips that encrypt
512 bit messages at 29Kbit

sec .

In this paper we will present a method for
obtaining rates of more than 150Kbit

sec . Sec-
tion 2 describes how we construct a new
and faster algorithm for performing exponen-
tials by splitting the computation into paral-
lel multiplications. The implementation of
a high radix module multiplication is elab-
orated in sections 3, 4 and 5, where it is
shown how to interleave a multiplication with
a SRT division scheme and how the algorithm
can be realized in VLSI design. Section 6
discusses the performance of a VLSI imple-
mentation. The summary indicates how the
methods can be generalized to even higher
radices.

2 Exponentiation

A commonly known algorithm for performing
an expo-nentiation is named Russian Peas-
ant [8]. It performs the computation as
a number of multiplications and squarings
proportional to the bit length of the expo-
nent. The algorithm can be modified to
perform a modulo exponentiation by substi-
tuting the multiplications and squarings for
modulo multiplications and module squar-

ings [13]. Below is shown a variant in which
the exponent E is read from the least signif-
icant bit. The i’th bit of E is denoted ei.
In the curly brackets is an invariant for the
loop.

If we denote the bit length of M ,E and N by
n the worst case time is

T [Exp, n] = 2nT [Mult, n]

and the average time is

T [Exp, n] =
3
2
nT [Mult, n],

where it is assumed that the computing time
for squaring and multiplication is identical.

Observing that the three statements in the
loop are independent of each other it is possi-
ble to speed up the algorithm by performing
two multiplications in parallel. In this way
the computing time is reduced to

T [Exp, n] = nT [Mult, n], (1)

which is independent on the number of 1-bits
in E. It is hard to imagine how an exponen-
tiation can be performed with less than n
squarings.

Algorithm:
Module exponentiation.
Stimulation: E, M, N, where E ≤ 0

and 0 ≤ M < N ,

Response: X = ME mod N
Method: i := 0

X := 1; Y := M ;
WHILE i < n DO

{∗X · Y E div 2i ≡N ME∗}
IF ei = 1 THEN

X := (X · Y) mod X
END;
Y := (Y · Y) mod N ;
i := i + 1;

END;

Algorithm 1: Variant of Russian Peasant for
module exponentiation.

229

Note that by distributing the modulo reduc-
tion to squaring and multiplication the bit-
length of intermediate operands is bounded.
This makes the exponentiation algorithm fea-
sible to implement for large values of n.

3 Multiplication

To implement the exponentiation algorithm
mentioned above we need an efficient way to
perform modulo multilication. Several algo-
rithms have been presented [3] [2] [1] [10] [7].
All of them use radix 2. We will follow the
approach in e.g. [3], where the modulo reduc-
tion is further distributed in the algorithm
for multiplication. A similar approach is fol-
lowed in [9] where a radix 4 algorithm is elab-
orated.

The usual way of multiplying is by scanning
the multiplier serially from the least signifi-
cant digit and parallelly adding a multiple of
the multiplicand followed by a right shift of
the partial product [14]. This gives a maxi-
mal carry ripple length of the parallel addi-
tions corresponding to the length of the mul-
tiplicand.

In the algorithm shown below we scan the
multiplier from the most significant digit and
the partial product is left shifted. In an or-
dinary multiplication this would result in a
maximal carry ripple length equal to the sum
of the multiplier length and the multiplicand
length. But since we perform a modulo re-
duction on the partial product in every itera-
tion, the length of the intermediate operands
will be limited to n plus a few digits. Assume
we scan the multiplier k bits at a time, corre-
sponding to processing a digit in radix 2k, we
can express the serial-parallel multiplication
scheme as in Algorithm 2.

S := 0; i := n′ − 1;
WHILE i ≥ 0 DO

S := (2kS + aiB) mod N
i := i + 1;

END;

Algorithm 2: Serial-parallel multiplication
with integrated modulo reduction.

In this algorithm S is the accumulator, n′ the
number of radix 2k digits, ai is digit number
i of the multiplier, B the multiplicand and N
the modulus.

The module reduction can be carried out by
interleaving the multiplication with a divi-
sion. Division is usually performed by in-
specting the partial remainder and subtract-
ing a multiple of the divisor, followed by a
left shift of the resulting partial remainder.
In Algorithm 3 the variable S has the dual
role of a partial remainder in a SRT divi-
sion scheme [14] and of a partial product in
a serial-parallel multiplication. This is the
reason why we want to scan the multiplier
from the most significant digit and left shift
the partial product. Note that this method
is only feasible if we are able to generate the
multiples aiB and qN rapidly.

S := 0; i := n′ − 1;
WHILE i ≥ 0 DO

q := Estimate(S div N);
S := 2kS + aiB − 2kaN
i := i − 1;

END;
Correction of S;

Algorithm 3: Module multiplication with quo-
tient estimation.

Instead of calculating the exact value of the
quotient digit, which is a tedious task for long

230

operands, we estimate a value of q. This,
of course, implies that the final result is not
necessarily completely module reduced, and
a correction must be performed after the loop
by subtracting N until S belongs to the cor-
rect interval. It is then required that the pre-
cision of the estimate is chosen such that the
range of S does not diverge during a compu-
tation. Assuming that

a ∈ {0, 1, . . . , 2k − 1}
B ∈ [0; 2N [
q ∈ {0, 1, . . . , qmax}

we can derive a range restriction, which must
be satisfied by the estimated q, in the follow-
ing way

2kS + aB − 2kqN ≤ qmaxN

S − qN ≤ qmaxN − aB

2k
(2)

S − qN ≤ qmax − 2(2k − 1)

2k
N.

As we shall see later we can construct hard-
ware that generates multiples qN efficiently
if the range of q belongs to [0; 42]. Since q is
non negative it is required that S is non neg-
ative. We achieve this by restricting S − qN
to be non negative. The restriction then im-
plies that the maximal radix 2k is 16, i.e. the
scan factor is limited to 4.

However, we are able to increase the scan fac-
tor. The idea is to reduce the contribution of
the multiple aB in (2) by choosing a larger
divisor. Recall that we just want to modulo
reduce the partial product, so we can choose
an easily generated multiple of N , e.g. 2rN .
This gives the following range restriction

2kS + aB − 2kq2rN ≤ qmax2rN

S − q2rN ≤ qmax2rN − aB

2k
(3)

S − q2rN ≤ qmax2r − 2(2k − 1)

2k
N.

Since we want to generate multiples aB with
the same hardware as qN , a is limited to 42

and the maximal radix is therefore 32, cor-
responding to a scan factor of 5. To achieve
this, restriction (3) implies that r must be
greater than or equal to 1.

We are now ready to present the final algo-
rithm for modulo multiplication. Note that
the final corrections can be made by iterat-
ing two extra cycles, while setting ai = 0 and
furthermore assuming r = k.

The final result is read from S discarding
the 2k least significant bits, and belongs to
the interval [0; 2N [. A further reduction is
not necessary since, according to the stimu-
lation conditions, we can directly start up a
new multiplication in the exponentiation al-
gorithm with inputs in the interval [0; 2N [.
When the exponentiation algorithm termi-
nates the result will also belong to [0; 2N [,
here a reduction is necessary. This reduction
is easily carried out while outputting the re-
sult serially. The correctness of Algorithm 4
is proven in [11]. The time complexity is:

T [Mult, n] = (
⌈

n + 1
k

⌉
+2)T [iteration] (4)

In the rest of this paper we will describe how
to perform the central operations of the loop,
and take a closer look at the hardware archi-
tecture of the multiplication unit.

231

Algorithm: Modulo multiplication.

Stimulation: A = an′−1an′−2 . . .
a0a−1a−2,

where ai ∈ [0; 2k − 1],
a−1 = a−2 = 0,

n′ =
n+1
k �;

B, where B ∈ [0; 2N [;

N , where N ∈]2n−1; 2n[;
k, where k ≥ 3;
r, where r = k.

Response: S div 22k ≡N AB and

S div 22k ∈ [0; 2N [

Method: S := 0; i := n′ − 1
WHILE i ≥ 2 DO

{∗S ≡N (A div 2k(i+1))
·B∗}
q := Estimate(S div 2rN);

S := 2kS + aiB − 2k+rqN
i := i − 1;

END;

Algorithm 4: Modulo multiplication.

4 Calculation of 2kS+aB−
q2k+rN

Because we are dealing with very long
operands we use redundant carry save
adders. This implies that the result of a
multiplication is represented in two words.
To avoid an area or time consuming carry-
completing adder in the circuit we represent
the multipliers and multiplicands in carry
save form during the complete computation
of an exponential. The modulus is rep-
resented in 2’complement form and in one
word. We get the expression

2k(Ss + Sc) + a(Bs + Bc) − q2k+rN (5)

The multiplier digit a in radix 32 is re-
coded from the carry-save representation of
A through two levels. The 5 digit posi-
tions of A is interpreted as three digits in
radix 4 : d2, d1, d0 where d2 ∈ [0; 2] and
d1, d0 ∈ [0; 6]. These are first recoded into
digit sets [−1; 1] repectively [−1; 3], possibly
generating and absorbing carries. Secondly

these digits are recoded into α2, α1, α0 with
αi ∈ [−1; 2], where α2 may absorb a carry
without generating a carry out. Hence the
radix 32 digit a is represented as:

a = 42α2 + 4α1 + α0, ai ∈ {−1, 0, 1, 2}, (6)

thus aB can be computed as the sum of three
shifted versions of B in a multiplexing net-
work as shown in Figure 5. The result is
again represented in carry save form (aB)s

and (aB)c. The computation of −qN is per-
forme the same way, noting that q ∈ [0; 42]
can be represented in radix 4 as in (6).

Expression (5) is now expanded to the form

2k(Ss + Sc)

+((aBs)s + (aBHs)c) + ((aBc)s + (aBc)c)(7)

+2k+r((−qN)s + (−qN)c)

Figure 5: Unit for generating a multiple.

The cost of keeping the operands in carry
save form is that we get an expression of
eight terms instead of three terms. To re-
duce the hardware we perform the computa-
tion in a pipelined fashion, and share a single
unit for generating multiples and a single 4-2
adder for summing terms. The adder is con-
structed of two carry save adders. In Figure
6 the timing of the computation of expres-
sion (7) is illustrated. Each row shows the
activity of a hardware component by enclos-
ing the activity in a box. In the left column
the components are described.

232

Figure 6: Timing diagram for an iteration in the multiplication algorithm. The iterations
are overlapped.

A single iteration of the loop in Algorithm
4 is computed by six cycles of the hardware.
The iterations are overlapped, as illustrated
by the dashed lines, resulting in a through-
put of one iteration per 3 hardware cycles.
(Us, Uc), (Vs, Vc) and (Ss, Sc) denote regis-
ters in the pipeline for saving results in carry
save form. The computation is performed
from left to right.

5 Estimation of S div 2rN

Several implementations or suggestions of
how to implement the quotient estimation
have been presented in the past. According
to [1] the estimate can be found by multiply-
ing a few of tbe most significant digits of the
partial remainder S and the reciprocal of the
divisor 2rN . This assumes that the neces-
sary amount of digits of 1

2rN is part of input
to the chip or that it is computed on the chip.
The standard approach for SRT division, or
as extended in [6], is to use table lookup, im-
plemented as a PLA circuit. This method
seems to be infeasible for radices as high as
in this paper. We will follow the approach in
[3] which is based on what we identify as a

“parallel exhaustive search” for the quotient
digit. In parallel we compute the sign of re-
sulting partial remainders when the quotient
digit assumes all possible values, i.e. we per-
form in parallel

S − q2rN, q ∈ {0, 1, . . . , qmax}

where S is in carry save form. The sign is
detected as the carry out of the computa-
tion. A high carry out indicates a non neg-
ative partial remainder. Then we determine
the quotient digit as the smallest value of q
which results in a positive remainder. Since
the sign computation involves a carry ripple
we only use a few of the most significant dig-
its of S and −q2rN , and con-sequently the
quotient digit will just be an estimate. The
necessary number of digits is determined by
the range restriction (3). In Figure 7 is shown
a single cell in the quotient estimation unit
for calculating the sign of S − q2rN . There
is one cell for each possible value of q. In the
figure we denote by p the position of the most
significant bit, the sign bit, in Ss, Sc and in
−q2rN .

233

Figure 7: A cell in the quotient estimation
unit.

According to restriction (3) p = n + r +
�log2 qmax� and for qmax = 42 this gives
p = n+r+k+1. n is the bit length of N , and
n + x denotes the position of the least signif-
icant bit in the quotient estimation. Since
the weights of the discarded parts of Ss Sc

and −q2rN are all positive and belongs to
[0; 2n+x[, this computation gives the follow-
ing range for the estimated value of q:

S − q2rN = S′ + (−q2rN)′ + ε

∈ [0; 2rN + 3 · 2n+x[,

where S′ and (−q2rN)′ denotes S and
−q2rN with the bits from 0 to n + z − 1
set to zero. Now x can be determined from
the range restriction (3), where the redun-
dant digit set {0, 1, . . . , qmax} is assumed for
the multiplier:

2rN + 3 · 2n+x <
qmax2r − 2qmax

2k
N

2x <
1
6
(
2r − 2

2k
qmax − 2r),

where the smallest value 2n−1 of N has been
inserted. Substituting 5 for r and k, and 42
for qmax we get x ≤ 0. Thus the necessary
number of bits in the quotient estimation is
p − (n + x) + 1 = 12 in the case of radix 25.

This method for quotient estimation seems
very area consuming but compared to the
size of the multiple generating unit and the
4-2 adder for operands longer than 500 bits

this area is reasonable. As usual in VLSI de-
sign a high degree of concurrency results in
faster circuits at the cost of area.

6 Performance

Equation (1) and (4) gives an expression for
the computing time of an exponentiation

T [Exp, n] = n(
⌈

n + 1
k

⌉
+ 2)T [iteration].

As explained in Figure 6 an iteration in the
multiplication loop is performed in three cy-
cles through the hard-ware. Anticipating
that the quotient estimation unit is the crit-
ical path in the circuit we get

T [Exp, n] = n(
⌈

n + 1
k

⌉
+ 2)3T

[quotient estimation].

A cell of the quotient estimate unit has been
designed in a 2µ CMOS process and simu-
lations shows a delay less than 20 ns. For
n = 512 and k = 5 we achieve a computing
time of 3.2 ms, corresponding to a bit rate of

n

T [Exp, n]
= 159

Kbit
sec

.

Compared to the hardware implementation
from Thorn EMI [15] with a bit rate of 29
Kbit
sec this design improves the speed by a fac-

tor of more than 5.

The calculation on computing time assumes
that we have implemented the parallel ver-
sion of the exponentiation algorithm. This
can be done in two ways: By replicating the
multiplication unit or by pipelining a single
multiplication unit. With respect to area
the last approach is preferable. Observing
that the two parallel multiplications have the
modulus N and the multiplicand B in com-
mon we only need to add extra registers for

234

a multiplier in carry save form and latches to
implement the pipeline. An iteration in the
multiplication loop now consist of six clock
cycles at approximately 10ns. Clock frequen-
cies as high as this can be hard to achieve. A
way to avoid the use of a clock to synchronize
the circuit is to use self-timed circuit schemes
[16].

The VLSI design of the hardware compo-
nents shows high regularity and the area for
wiring is minimized through the use of carry
save adders. At the expense of regularity and
area, the speed of quotient estimation can be
increased by replacing the carry ripple circuit
in Figure 7 by carry look-ahead circuit.

We can obtain a rough estimate of the area
by comparing the proposed architecture to
the one described in [12], which has been laid
out using a silicon compiler: The area is ap-
proximately 200 mm2 in a 1.2µ CMOS pro-
cess technology for a chip capable of mod-
ulo exponentiating 561 bit operands. The
architecture presented here include one unit
for generating multiples and one 4-2 adder
where [12] include two of each and addition-
ally a 561 bit ripple adder. The adder is used
to convert the result of a multiplication from
carry save form to a non redundant represen-
tation. Taking into account the extra latches
for pipelining a multiplication unit we believe
that the area will be less than 200 mm2 in a
1.2µ process if we use the silicon compiler and
its library cells. We can reduce the area sig-
nificantly by making a full custom layout of
the design, since the library cells are designed
in a conservative manner using static regis-
ters and static logic gates. Another way to
reduce the area (and the computing time) is
by choosing a smaller process technology, e.g.
0.8µ which approximately halves the area.

All of the fastest implementations in Brick-
ells survey [4] include more than one chip.
Cryptechs 712 bit solution [7] comprise 6
chips, where each chip contains a datapath

for 120 bit. Thorn EMIs 768 bit solution
[15] comprise a controller chip and 3 data-
path chips for 256 bit each.

7 Summary

We have presented a way to speed up a well
known exponentiation algorithm by perform-
ing two multiplications in parallel, and we
have shown how these multiplications can be
performed efficiently using high radices. Fur-
ther more we have developed a highly regu-
lar hard-ware architecture, based on the re-
dundant carry save addition technique, im-
plementing the multiplication algorithm with
a radix of 32. Simulations indicates a result-
ing speed improvement of more than 500%
compared to other known implementations.

Currently we are working on generalizing the
multiplication to even higher radices. By ex-
pressing the quotient and multiplier in a sym-
metric redundant digit set it seems simple to
modify the hardware architecture to radix 64.

References

[1] Paul Barrett. Implementing the Riverst
Shamir and Adleman public key encryp-
tion system on a standard digital signal
processor. In Advances in Cryptology -
CRYPTO ’86, pages 311–323, 1986.

[2] G.R. Blakely. A Computer Algorithm
for Calculating the Product AB Modulo
M. IEEE Trans. Computers, C-32:497–
500, 1983.

[3] Ernest F. Brickell. A fast modular mul-
tiplication algorithm with applications
to two key cryptography. In D. Schaum,
R.L. Riverst, and A.T. Sherman, edi-
tors, Advances in Cryptology, Proceed-

235

ings of Crypto ’82, pages 51–60, New
York, 1982. Plenum Press.

[4] Ernest F. Brickell. A Survey of Hard-
ware Implementations of RSA. In Gilles
Brassard, editor, Advances in Cryptol-
ogy - CRYPTO ’89, pages 368–370.
Springer-Verlag, 1990.

[5] W. Diffie and M.E. Hellman. New direc-
tions in cryptography. In IEEE Trans.
on Info. Theory, volume IT-22(6), pages
644–654, Nov. 1976.

[6] Jan Fandrianto. Algorithm for high
speed shared radix 8 division and radix
8 square root. In Proceedings of the 9th
Symposium on Computer Arithmetic,
pages 68–75. IEEE, 1989.

[7] Frank Hoornaert, Marc Decroos, Joos
Vandewalle, and René Govaerts. Fast
RSA-Hardware: Dream or Reality ?
In Advances in Cryptology - EURO-
CRYPT ’88, pages 257–264, 1988.

[8] Donald E. Knuth. The Art of Com-
puter Programming - Seminumerical Al-
gorithms, volume 2. Addison-Wesley, 2.
edition, 1981.

[9] Hikaru Morita. A Fast Modular-
multiplication Algorithm based on a
Higher Radix. In Gilles Brassard, edi-
tor, Advances in Cryptology - CRYPTO
’89, pages 387–399. Springer-Verlag,
1990.

[10] G.A. Orton, M.P. Roy, P.A. Scott, and
L.E. Peppard. VLSI implementation of

public-key encryption algorithms. In
Advances in Cryptology - CRYPTO ’86,
pages 277–301, 1986.

[11] Holger Orup and Erik Svendsen. VIC-
TOR. Forbedringer og videreudviklinger
af VICTOR - en integreret kreds til
understøttelse af RSA-kryptosystemer.
Computer Science Department of
Aarhus University - Internal report,
1990.

[12] Holger Orup, Erik Svendsen, and
Erik Andreasen. VICTOR an Efficient
RSA Hardware Implementation. In I.B.
Damg̊ard, editor, Advances in Cryptol-
ogy - EUROCRYPT ’90, pages 245–252.
Springer-Verlag, 1991.

[13] Ronald L. Riverst, A. Shamir, and L.
Adleman. A method for obtaining digi-
tal signatures and public-key cryptosys-
tems. In Communications of the ACM,
volume 21, pages 120–126, Feb. 1978.

[14] Norman R. Scott. Computer Number
Systems & Arithmetic. Prentice-Hall,
1985.

[15] THORN EMI. RSA Evaluation Board.
Technical Report 10, Thorn EMI Cen-
tral Reasearch Laboratories, 1988.

[16] T.E. Williams, M. Horowitz, R.L. Alver-
son, and T.S Yang. A self-timed chip for
division. In Paul Losleben, editor, Ad-
vanced Research in VLSI. Proceedings of
the 1987 Stanford Conference, pages 75–
95. The MIT Press, 1987.

236

Appendix C

Area Reduction for Bit-Sliced
Layouts using a Commercial
Development System

219

Area Reduction for Bit-Sliced Layouts using a
Commercial Development System

Abstract

A large ASIC prototype has been developed by means of a com-
mercial development system. The ASIC has a very regular bit-sliced
architecture consisting of many instances of a few cell types. The first
version consumed 340 mm2, too large to fabricate. Through area re-
duction the second version was reduced to 210 mm2 and fabricated.
The techniques were cell modification and routing area minimization.
This paper describes the experiences gained from this area reduction
process under the constraints of a commercial development system.

INTRODUCTION

The ASIC prototype is a RSA processor developed to investigate the pos-
sibilities of making hardware support for cryptographic applications. The
applications are based on the so-called RSA scheme [RSA78], where a fast
computation of modular exponentials, ME mod N , is crucial. The operands,
M , E and N , have more than 500 bits. Modular exponentiation is imple-
mented by modular multiplications, AB mod N . The architecture for com-
puting a modular multiplication consists of two regular bit-sliced parts: One
that adds and subtracts words with a length corresponding to the operands
in the modular exponentiation, the other determines quotients for modular
reduction. The first part dominates with respect to area consumption.

The project was initiated in 1989, where efficient algorithms suitable for
VLSI implementation were developed [OSA91, OK91]. In cooperation with

238

the Department of Research and Development at Jydsk Telefon in Denmark
we began an VLSI implementation in September 1990. The requirements
for the RSA processor, set up by Jydsk Telefon, was a single chip imple-
mentation, capable of handling 576 bit operands and supporting a special
self-synchronizing i/o protocol that enables the processor to be embedded
into telecommunication equipment.

A commercial chip development system, Chipcrafter from Cascade Design
Automation [Cas91], was used in the implementation of the RSA processor.
The RSA processor was laid out in a 1.2 µm CMOS process technology. The
first version of the RSA processor, with an area of 340 mm2, was completed
in December 1991, but the layout consumed too much area, and it was never
fabricated. During the next 13 months the layout was analyzed, and it went
through an area reduction process that resulted in a 38% reduction of the
area. This second version of the RSA processor, with an area of 210 mm2,
was fabricated. The test of the processor showed that it was functionally
correct, and the speed was approximately as predicted by the development
system. It is more than twice as fast as other known RSA processors [Oru94].

Since we wanted to retain the extensive support offered by Chipcrafter, the
area reduction process was carried out as much as possible within the scope of
Chipcrafter, i.e. the manual interventions were kept to a minimum. The main
area reduction was obtained by modifying cells in bit-slices and minimizing
the area for routing within the bit-slices. Since the largest part of the chip
layout is 576 identical bit-slices an effort in reducing the area of a single
bit-slice yielded the vast area reduction of 38%.

DEVELOPMENT SYSTEM

The silicon compiler Chipcrafter was the environment for the implementation
of the RSA processor. It was used throughout the process of specification,
construction and analysis ending with a layout of the complete RSA pro-
cessor, ready for design rule check and fabrication. In order to preserve the
support offered by the tools in Chipcrafter our policy was to stay in this
environment during the area reduction process and perform the task under
the constraints of chipcrafter.

239

Figure 1: Main tools in Chipcrafter.

Chipcrafter is a silicon compiler in the sense that it is possible to achieve a
complete chip layout by means of high-level tools without detailed manual
interference. Figure 1 shows the main tools around the Chipcrafter database.
A chip is specified in the schematic editor as a set of hierarchal structured
schematic drawings, where the building blocks are cells from the cell library
or the outcome from invoking the module generator or the synthesis tool.

The cell library consists of a rich set of pad cells, standard cells and datapath
cells. Standard cells and datapath cells are functionally equivalent, but differ
in the layout style and in the way they are handled by the placement and
routing tools. A datapath is an array of datapath dells, as illustrated by
figure 2, where each row forms a so-called bit-slice and each column consists
of identical datapath cells. Datapaths are well suited for implementation
of circuitry, where each data bit in a bus is treated similarly. Power rails
and control signals are routed vertically in a datapath, and data lines are

240

routed horizontally. Chipcrafter lays out datapath cells with a minimal use
of second layer metal in order to reserve this layer for data line routing over
the cells.

Figure 2: A datapath is an array of datapath cells.

Module generators are available for generating a variety of sub circuits. We
used these for specifying a 576 bit high-speed adder, realized as a carry
select adder with Manchester carry chains, ready to be inserted into our
datapaths, and for the generation of counters in the control logic. The control
logic and i/o protocols were expressed in terms of finite state machines and
implemented by the synthesis tool as standard cell groups. We also applied
the synthesis tool for implementing functions specified by tables.

After the schematic specifications have been completed, Chipcrafter is in-
voked in order to construct a layout of the chip. It separates the design
in datapaths, groups of standard cells and a pad frame. Then it performs
the placement and routing automatically by using special purpose tools on
each part. After that, the core, composed of all parts inside the pad frame,
is placed and routed. Finally, the pad cells are attached to the core. It is
possible to guide the relative placement of parts in the core through an inter-
active floorplanning tool and to influence the placement of cells in datapaths
and standard cell groups by assigning different weights to routing nets. This
implies, that cells will be placed in a way, that tries to reduce the length of
nets with high weights.

The cells in the cell library are parameterized with respect to driving capa-
bility of the outputs, and the datapath cells are parameterized with respect

241

to the width of power supply rails as well. The tool for power and buffer
sizing is used for assigning proper widths to supply lines in order to prevent
high voltage drops and metal migration phenomena, and it is also used for
sizing the output driving stages of cells selected by the user. We used the
tool for sizing the buffers, that drive control and clock signals, and for sizing
all power supply lines.

The functionality of the design is analyzed by an event driven simulator.
Informations, regarding critical paths, setup and hold time violations, delays
etc., are extracted by the timing analyzer. The area and power analyzer
reports the area and power consumption for parts of the layout.

In the Chipcrafter environment it is impossible to edit the layout directly.
Furthermore, it is not feasible to export a datapath, make changes by means
of a layout editor and import the layout back into the environment. The
reason is that in order to insert a new layout into the database considerable
additional information have to be included: The schematic editor needs a
symbolic representation, the place and route tool needs information about
cell type, port types and port positions, the power and buffer sizing tool needs
information about capacitance and driving capability, the simulator needs a
model, the timing analyzer must know delay times, setup and hold times
etc., and a tool, that extract transistor netlists of the design, needs a SPICE
netlist. Hence, the Chipcrafter export/import supports the inclusion of new
layouts, but it is only feasible for a fairly small number of small layouts, such
as alternative leaf cells for the library.

RSA PROCESSOR

The RSA processor includes circuitry for calculating modular exponentials,
control logic and i/o protocols. The largest parts, with respect to area con-
sumption, are the circuitry implementing 576 bit operand computations and
the circuitry implementing quotient determination. These parts are imple-
mented as large datapath structures. Control logic and i/o protocols are im-
plemented as standard cell groups. The 576 bit-slices have been distributed
in a number of datapaths because Chipcrafter has an upper limit on the num-
ber of bit-slices per datapath, and furthermore a nearly quadratic floorplan
is obtained. The quotient determination unit is a single datapath.

242

Figure 3: Layout of the RSA processor.

Figure 3 shows a plot of the chip, that was sent to fabrication. The border
consists of the pad frame and of very wide power supply lines. The eight
rectangles of equal sizes are datapaths including a total of 576 bit-slices, and
the middle rectangle is the quotient determination unit. To the left, between
the datapaths and the border, control logic and i/o protocol circuitry are
located.

The very first layout of the RSA processor, laid out by Chipcrafter without
any user interference, comprised 550,000 transistors on an area of more than
500 mm2. The core parts were badly placed, and the datapaths had a high
area consumption. We reduced the area to 340 mm2 by applying the floor-
planning tool to the core and by assigning different weights to routing nets
inside the datapaths.

243

Since a 340 mm2 chip is infeasible to fabricate, even for a prototype, we
considered the possibilities for further reduction of the area within the de-
velopment system. We wanted to avoid a complete redesign, i.e. a new
algorithm and a new architecture. Instead we decided to keep the original
algorithm and architecture and focus on the physics layout only. In spite of
a large area consumption the core showed a good placement of the parts, so
we concentrated on the parts of the core.

The layout is dominated by 576 identical bit-slices, and an effort in reducing
the area contribution of a single bit-slice would yield a 576-fold improvement.
The area consumption of a bit-slice has two sources: The datapath cell area
and the routing area between datapath cells. In the following we will identify
the main contributions to the final area reduction from 340 mm2 to 210 mm2.

Datapath Routing

Inside a datapath power rails and control signals are routed different from
data signals. Power rails and control signals are routed vertically and feed
through all the identical cells in a column, as sketched in figure 2.

Figure 4: Fraction of a datapath in the fabricated chip.

Data signals are mainly routed horizontally, but when a connection to another
bit-slice is required, a vertical routing channel is allocated. The area for data
routing is influenced by the relative placement of datapath cells in a bit-slice.

244

The bit-slices in figure 4, that shows a fraction of a datapath in the fabricated
chip, are stacked densely without routing channels between the slices, i.e. the
horizontal data routing is exclusively over the cells. This was not the case for
the 340 mm2 layout, where the router allocated channels between the slices as
well. In order to obtain this elimination of routing area between bit-slices, we
changed the relative placement of cells in the bit-slice. We tried to eliminate
the routing area by assigning different weights to routing nets but did not
succeed. Instead we wrote a program that enforced a certain cell placement
by changing placement attributes in Chipcrafters internal representation of
a datapath.

If routing channels between bit-slices can be avoided, the height per bit-slice
in a datapath corresponds to the highest cell in the slice. In the 340 mm2

layout the height per bit-slice was 72.5 µm, and the highest cell was 58 µm.
Hence, a 20% area reduction of datapaths is obtained by avoiding routing
channels between bit-slices.

Datapath Cells

The 576 bit-slices are composed of many instances of a small set of different
datapath cell types. By changing the layout of a few cells, the effort will

Cell Type Trans x × y Area Instances Trans. Area Area Area
per Cell per Cell per Slice per Slice per Slice per Trans. per Slice

µm × µm µm2 µm2 µm2 %
DFF 28 76 × 58 4408 6 168 26448 157 18.2

DFF inv 30 90 × 58 5220 2 60 10440 174 7.2
DFF cir 34 93 × 52 4836 2 68 9672 142 6.7
MUX 2-1 12 36 × 44 1584 5 60 7920 132 24.7
MUX 3-1 22 83 × 54 4482 8 176 35856 204 5.5
MUX 4-1 30 99 × 50 4950 4 120 19800 165 13.8
Fulladder 28 81 × 50 4050 6 168 24300 145 16.7
CSadder 35-48 245 × 44 10780 1 ∼42 10780 225-308 7.4

Total 34 862 145216 168 100.0
Bit-slice 2793 × 58 161994

Table 1: Cells in a bit-slice in the 340 mm2 layout.

pay back several times. In order to illustrate this, we have included table
1 that lists characteristics of the different cell types in a bit-slice. The first
three cells are D flip-flops, where the second cell has both inverting and

245

non-inverting outputs and the third cell has an asynchronous clear option.

The next three cells are multiplexors having two, three and four data inputs.
These are followed by a full-adder and a component of a 576 bit high-speed
adder. For each cell type the transistor count, dimension and area are listed.
The right part of the table lists total contributions per bit-slice originating
from the cell type: Number of instances, transistor count, area, mean area
per transistor and the area in percentage of the total area per slice. At the
bottom line is the bit-slice dimension and area expressed as the sum of all
instance widths times the height of the highest cell. This represents the
area consumption per bit-slice when all routing area has been stripped off.
The line above the bottom line represents totals of the upper part. Table 2

Cell Type Trans x × y Area Instances Trans. Area Area Area
per Cell per Cell per Slice per Slice per Slice per Trans. per Slice

µm × µm µm2 µm2 µm2 %
DFF 11 29 × 49 1421 5 55 7105 129 9.4

DFFH 15 48 × 49 2352 1 15 2352 157 3.1
DFFH inv 17 54 × 49 2646 2 34 5292 156 7.0
DFF clr 17 53 × 49 2597 2 34 5194 153 6.8
MUX 3-1 10 40 × 49 1960 6 60 11760 196 15.5
MUXZ 3-1 10 41 × 49 2009 2 20 4018 201 5.3
MUXZ 4-1 13 41 × 50 2050 4 52 8200 158 10.8
Fulladder 20 72 × 49 3528 6 120 21168 176 27.9
CSadder 35-48 245 × 44 10780 1 ∼42 10780 225-308 14.2

Total 29 432 75869 176 100.0
Bit-slice 1570 × 50 78500

Table 2: Cells in a bit-slice in the 340 mm2 layout.

shows the same information for the final 210 mm2 layout. In the following
we describe the main contributions to the reduction of the area of a bit-slice
by changing cell layouts:

Aspect Ratio. According to table 1 the cell heights varies from 44 µm to 58
µm. Because the height of a bit-slice is determined by the highest cell in
the slice, this variation implies wasted area. Figure 5 illustrates a bit-
slice, where all routing area is stripped off. The shaded area represents
wasted area due to varying cell heights. For the 340 mm2 layout the
wasted area per slice is (161, 994− 145, 216)µm2 = 16, 778µm2, 10% of
the bit-slice area. This can be reduced by changing some of the cells
aspect ratio. The re-implemented cells in table 2 were laid out with

246

Figure 5: Area is wasted because of varying cell heights.

a smaller height variations and the wasted area per slice is now only
(78500 − 75869)µm 2 = 2, 631µm 2, or 3%.

Transistor Density. Some of the cells have a large area per transistor and
an inspection of the layouts shows a bad area utilization within a cell.
This is caused by the way cell layouts are represented in Chipcrafter:
They have a generic form that takes technology parameters as input,
hence, a layout cannot be optimal for all technologies. The area per
bit-slice can be reduced by taking the actual technology into account.
A comparison of table 1 and table 2 apparently shows that we did not
perform well on this. Even though the transistor density has increased
in most cell types, the mean density for a bit-slice has decreased slightly.
The mean area per transistor in a bit-slice has increased from 168 µm2

to 176 µm2, or 5%. The reason for this is, that the two adder cell types
with bad transistor densities make up a larger percentage of the total
bit-slice area in table 2.

Other Cell Implementations. The cells in Chipcrafters library are de-
signed to be used in all kinds of circuits. This means that a conservative
style has been chosen, where reliability has high priority. All combi-
natorial cells are based on static logic and the flip+flops have static
outputs. A significant area reduction can be obtained by using fewer
transistors in the implementations of flip-flops (32.1% of the bit-slice
area is flip-flops) and of multiplexors (43.8%).

In the final layout we used a nine transistor dynamic D flip-flop [YS89]
plus an inverter as basis for all flip-flop types. The cell types DFF in
both tables are immediate comparable and display a 68% reduction of
cell area. Similar results are achieved for the other flip-flop types. All
3–1 and 4–1 multiplexors were replaced by pass transistor implemen-
tations. The MUXZ cell types in table 2 differs slightly from a MUX
type: One of the data inputs is connected directly to a logical zero in
order to reduce the area allocated by the routing tool. The cell area

247

reduction is more than 55% for all types of 3–1 and 4–1 multiplexors.

Merging Cells. All 2–1 multiplexor instances in table 1 are used to im-
plement flip-flops with a hold option. By merging dynamic flip-flops
and pass gate multiplexors into a single cell the area for flip-flops with
hold option is reduced by about 60% and there is no longer an addi-
tional routing area to connect these cells. The types DFFH in table 2
represent flip-flops with hold option.

Total Effect of Bit-slice Area Reduction

Until now we have described the area reduction techniques applied to the
576 bit-slices and we have seen the isolated effects of these. This section
will report the total effect on the area of datapath structures containing the
bit-slices and the effect on the total chip area.

If we disregard the routing area in the datapaths, the modification of datap-
ath ceils reduced the bit-slice dimension from 2793µm×58µm to 1570µm×50µm,
corresponding to a total reduction from (576 · 2793 · 58) mm2 = 93 mm2 to
(576 · 1570 · 50) mm2 = 45 mm2. The total area of the datapaths were 159
mm2 in the 340 mm2 layout and 82 mm2 in the final layout. This gives a
reduction in routing area from (159−93) mm2 = 66 mm2 to (82−45) mm2 =
37 mm2. Thus, the 576 bit datapaths were reduced by 48%: A 44% reduction
in routing area and a 52% reduction in datapath cell area. The main part
of the reduction in datapath cell area is due to a reduction in the transistor
count by 52%, the reduction in wasted area sets off the decreased transistor
density. The same techniques were applied to the quotient determination
datapath. The total area was reduced from 32 mm2 to 20 mm2, a reduction
of 38%.

If we focus on the layout of the chip, the area went from 340 mm2 down to 210
mm2, a reduction of 130 mm2 or of 38%. The transistor count was reduced
from 550,000 to 300,000. (159 − 82) + (32 − 20) mm2 = 89 mm2 of the area
reduction is a direct result of the datapath area reduction. The remaining 41
mm2 is mainly due to a reduction of the routing area outside the datapaths
and a consequence of the datapath area reduction: When the datapath area
decreases, the length of routing nets along the datapath edges decreases. As
illustrated in figure 6 a simplified explanation of this is that the total chip area

248

Figure 6: Simplified explanation of reduction outside datapaths.

reduction is proportional to the datapath area reduction, where the reduction
factor is the ratio of chip edge length to datapath edge length. Applied to
the above mentioned areas, and assuming a quadratic floorplan of the chip
area and the datapath area, we get

√
340/

√
159 + 32 = 1.33, corresponding

to 33% further reduction, or 29 mm2, i.e. the main contribution to the 41
mm2 reduction outside the datapaths.

CONCLUSION

The project of developing the RSA processor shows that it is possible, even
though tedious, to reduce the area of the RSA processor from 340 mm2 to 210
mm2 under the constraints of Chipcrafter. This made it possible to fabricate
the RSA processor prototype. In the area reduction process the bit-sliced
architecture played an essential role. By modifying cells in a single bit-slice
and reducing the area for routing within the slice, an area reduction of 38%
was obtained. We are convinced, that a further area reduction is infeasible
within the scope of the Chipcrafter.

The experience from this area reduction process shows that it is important

249

that a development systems not only offers possibilities but supports the
user in the process of modifying the placement of cells and the routing of
signals. Moreover it must also support the inclusion of user-defined cells into
the development system. In later versions of Chipcrafter the possibilities for
modifying the placement of cells and routing of signals have been improved.

References

[Cas91] Cascade Design Automation Corporation. ChipCrafter Designer’s
Handbook, 1991.

[OK91] Holger Orup and Peter Komerup. A High-Radix Hardware Algo-
rithm for Calculating the Exponential ME Modulo N . In Peter Ko-
rnerup and David W. Matula, editors, 10th Symposium on Computer
Arithmetic, pages 51–56. IEEE Computer Society Press, 1991.

[Oru94] Holger Orup. A 100 Kbit/s Single Chip Modular Exponentiation
Processor. In HOT Chips VI, Symposium Record, pages 53–59. Stanford
University, 1994.

[OSA91] Holger Orup, Erik Svendsen, and Erik Andreasen. VICTOR an Effi-
cient RSA Hardware Implementation. In I.B. Damg̊ard, editor, Advances
in Cryptology - EUROCRYPT’90, pages 245–252. Springer-Verlag, 1991.

[RSA78] Ronald L. Riverst, A. Shamir, and L. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. In Communi-
cations of the ACM, volume 21, pages 120–126, Feb. 1978.

[YS89] Jiren Yuan and Christer Svensson. High-speed CMOS Circuit Tech-
nique. IEEE Journal of Solid-state Circuits, 24(1), 1989.

250

Appendix D

Simplifying Quotient
Determination in High-Radix
Modular Multiplication

221

Simplifying Quotient Determination in High-Radix

Modular Multiplication∗

Holger Orup
Computer Science Department

Aarhus University
Ny Munkegade, Bldg. 540

DK-8000 Aarhus C, DENMARK
e-mail: orup@daimi.aau.dk

June 1993

Abstract

Until now the use of high radices to implement modular multiplication has been
questioned, because it involves complex determination of quotient digits for the module
reduction. This paper presents algorithms that are obtained through rewriting of Mont-
gomery’s algorithm. The determination of quotients becomes trivial and the cycle time
becomes independent of the choice of radix. It is discussed how the critical path in the
loop can be reduced to a single ship-and-add operation. This implies that a true speed
up is achieved by choosing higher radices.

1 Introduction

Since the introduction of public key crypto
systems [1, 12] considerable effort has been
directed toward fast hardware implementa-
tion of modular multiplication of very large
integer operands. A review of techniques
for speeding up modular multiplication is in-
cluded in [4]. It is recognized that quotient
determination, i.e. determination of the mul-
tiple of modulus to subtract at each reduc-
tion stage, is the critical operation [4, 13].
This is the reason why, during the last five

years, Montgomery’s modular multiplication
method [7] has been considered the best can-
didate for faster implementations. Compared
to traditional SRT division, the method re-
quires additional pre- and post-processing,
but the time for this additional process-
ing becomes negligible when several modu-
lar multiplications have to be performed on
intermediate results, as is the case when cal-
culating modular exponentials.

In our previous work [11, 10], we have stud-
ied the possibilities of speeding up modular
multiplication by using higher radices. A

∗This work has been supported search by the Danish Natural Science Research Council, grant no.
5.21.08.02.

252

single chip modular exponentiation proces-
sor using radix 32 multiplication has been
successfully implemented [9]. It is based on
a traditional division method and is capa-
ble of exponentiating 560 bit operands in less
than 5.5 ms, corresponding to a throughput
of more than 100 Kbit/s, at a clocking fre-
quency of 25 MHz. According to our knowl-
edge, this is the fastest single chip implemen-
tation for performing modular exponentials.
Only one implementation [13] has been re-
ported to be faster. The high radix approach
has been criticized [4, 13] for a large hardware
depth (meaning a slow clocking frequency),
for a large hardware consumption and for
having a non-trivial determination of quo-
tient digits. This is also our experience, but
the high radix approach gives potential for
substantial speed improvements of modular
multiplication. In the rest of this paper we
will rewrite the original algorithm of Mont-
gomery and show how this leads to a high-
radix algorithm, suited for hardware imple-
mentation, where the quotient determination
becomes trivial, and the obtainable clock-
ing frequency is independent of the choice of
radix.

2 High-radix modular
multiplication algo-
rithm

In this section we will rewrite Montgomery’s
algorithm through a series of development
steps. We will show how this leads to an
algorithm, where the quotient determination
is trivial. Each of the presented algorithms is
supplied with an invariant, stating the alge-
braic relation between the stimulus and the
intermediate result, and an upper bound for
the range of the intermediate result. The
range condition of stimulus has been matched
such that the response of the modular mul-

tiplication algorithm can be used as stimu-
lus for the same algorithm without additional
processing. This has implications on the use-
fulness of the algorithms for e.g. modular ex-
ponentiation. All algorithms are expressed in
terms of non-redundant radix 2k digit sets.
This is done in order to limit the descrip-
tion, but the ideas apply as well to other digit
sets. See [5] for a high-radix version of Mont-
gomery’s algorithm using a symmetric redun-
dant digit set. Additional processing, that
may have be performed when Montgomery’s
method for modular multiplication is used, is
discussed in [7, 4, 5]. The first algorithm is
a radix 2k version of the algorithm proposed
by Peter L. Montgomery [7] for multiplying
two integers modulo M .

Algorithm 1
(Radix 2k Montgomery Modular Multiplication)

Stimulus:
A modulus M > 2 with gcd(M, 2) = 1 and
positive integers k, n such that 4M < 2kn.
The integers R−1 and M’ are given such that
(2knR−1) mod M = 1 and (−MM ′) mod 2k = 1.
Integer multiplicand A, where 0 ≤ A ≤ 2M , and

integer multiplier B =
∑n−1

i=0
(2k)ibi, where digit

bi ∈ {0, 1, . . . , 2k − 1} and 0 ≤ B ≤ 2M .

Response:
An integer Sn such that Sn ≡ ABR−1 (mod M)
and 0 ≤ Sn < 2M .

Method:
S0 := 0;
for i := 0 to n − 1 do
L : qi := (((Si + biA) mod 2k)M ′) mod 2k;

Si+1 := (Si + qiM + biA) div 2k;
end

Where:
The following invariant holds at label L:

2kiSi = A ·
i−1∑
j=0

bj2
kj + M ·

i−1∑
j=0

qj2
kj

∧
0 ≤ Si

< A + M.

Correctness: The condition gcd(M, 2) = 1 is suf-
ficient to ensure the existence of R−1 and M ′. To

253

establish the invariant, note that qi ≡ (Si + biA)M ′

(mod 2k) so qiM ≡ −(Si+biA) (mod 2k) and, hence,
that 2k divides Si + qiM + biA in the updating of
Si+1. The invariant holds trivially for i = 0. As-
suming it holds for i = �, from the updating of S�+1,
2kS�+1 = S� + q�M + b�A, we then obtain:

2k(�+1)S�+1 = A ·
∑�−1

j=0
bj2

kj

+M ·
∑�−1

j=0
qj2

kj

+ 2k�q�M + 2k�b�A

= A ·
∑�

j=0
bj2

kj

+M ·
∑�

j=0
qj2

kj .

Hence the first part of the invariant holds for i = �+1.
The last part follows from 0 ≤ qi ≤ 2k − 1 and
0 ≤ bi ≤ 2k − 1:

2k(�+1)S�+1 ≤ A · (2k − 1) 2k(�+1)−1
2k−1

+M · (2k − 1) 2k(�+1)−1
2k−1

S�+1 < A + M.

By inserting conditions of stimulus we find upon exit
from the loop:

2knSn = AB + M ·
∑n−1

j=0
qj2

kj and

0 ≤ 2knSn

< 2M · 2M + M · 2kn

< M · 2kn + M · 2kn.

So R−12knSn ≡ Sn (mod M) ≡ ABR−1 (mod M)
and 0 ≤ Sn < 2M which proves the correctness of
Algorithm 1. ✷

Montgomery’s method for modular multiplication
has been implemented for a standard DSP processor
[2] and for a board of field programmable gate ar-
rays [13]. Further, in [3, 17, 4, 6] some suggestions
for hardware implementations are described. Apart
from the DSP implementation, where the radix is de-
termined from the available instruction set, all pro-
posals for a hardware implementation end up with
choosing radix 2 or radix 4.

However, for a given operand size, the number of
iterations in Algorithm 1 can be reduced by choosing
a larger radix. But it is not obvious that this leads
to a smaller computation time. The time for an iter-
ation increases for higher radices. This is mainly due
to the quotient determination which requires a k bit
addition and a k×k bit multiplication. In the updat-
ing of Si+1, the calculation of multiples and addition
can be efficiently performed by constant time adders,
e.g. carry save adders, [11, 10]. Still the carry-out
from the k least significant bits of Si + qiM + biA
must be computed in each iteration. Because the
two statements of the loop are strictly sequential, we

are not able to reduce the computation time by over-
lapping the execution of the statements.

2.1 Avoiding multiplication in
quotient determination

In the case of radix 2 , i.e. k = 1, the multiplication
operation in the quotient dete nation in Algorithm 1
is avoided. Because M ′ mod 2 = 1, the statement
reduces to qi := (Si + biA) mod 2. For all values
of modulus, having the property M ′ mod 2k = 1,
the multiplication operation is avoided in the gen-
eral case of radix 2k. This observation leads us to
transform modulus M to a new value M̃ that pos-
sesses the wanted property. The transformation is

simple, M̃ = (M ′ mod 2k)M , and only has to be
performed once. The resulting algorithm is:

Algorithm 2
(Avoiding Multiplication in Quotient Determination)

Stimulus:
A modulus M > 2 with gcd(M, 2) = 1 and positive

integers k, n such that 4M̃ < 2kn, where M̃ is

given by M̃ = (M ′ mod 2k)M .
The integers R−1 and M’ are given such that
(2knR−1) mod M = 1 and (−MM ′) mod 2k = 1.

Integer multiplicand A, where 0 ≤ A ≤ 2M̃ , and

integer multiplier B =
∑n−1

i=0
(2k)ibi, where digit

bi ∈ {0, 1, . . . , 2k − 1} and 0 ≤ B ≤ 2M̃ .

Response:
An integer Sn such that Sn ≡ ABR−1 (mod M)

and 0 ≤ Sn < 2M̃ .

Method:
S0 := 0;
for i := 0 to n − 1 do
L : qi := (((Si + biA) mod 2k;

Si+1 := (Si + qiM̃ + biA) div 2k;
end

Where:
The following invariant holds at label L:

2kiSi = A ·
∑i−1

j=0
bj2

kj + M̃ ·
∑i−1

j=0
qj2

kj
∧

0 ≤ Si

< A + M̃.

Correctness: Algorithm 2 is verified by using

M̃ = (M ′ mod 2k)M and M̃ ≡ −1 (mod 2k). ✷

254

Transforming M into M̃ corresponds to moving
the common factor M ′ (mod 2k) from the quotient
determination to the updating of Si+1. Hereby, a
single initial multiplication replaces a multiplication
in each iteration. The penalty of using this algorithm
is a larger range of the resulting Sn and a value of n
that has increased by at most one.

2.2 Avoiding addition in quo-
tient determination

We can further reduce the quotient determination
complexity by replacing A by 2kA. This technique
is also used in [4] and [5]. Since the expression
(Si + biA) mod 2k in Algorithm 2 then reduces to
Si mod 2k, we have avoided the addition operation.

In the update of Si+1 we replace (Si + qiM̃ + biA)

div 2k by (Si +qiM̃) div 2k +biA. Comared to Algo-
rithm 2 the number of iterations is increased by one
to compensate for the extra factor 2k:

Algorithm 3
(Avoiding Multiplication in Quotient Determination)

Stimulus:
A modulus M > 2 with gcd(M, 2) = 1 and positive

integers k, n such that 4M̃ < 2kn, where M̃ is

given by M̃ = (M ′ mod 2k)M
The integers R−1 and M ′ are given such that
(2knR−1) mod M = 1 and (−MM ′) mod 2k = 1.

Integer multiplicand A, where 0 ≤ A ≤ 2M̃ , and
integer multiplier B =

∑n

i=0
(2k)ibi, where digit

bn = 0, bi ∈ {0, 1, . . . , 2k − 1} and 0 ≤ i < n

and 0 ≤ B ≤ 2M̃ .

Response:
An integer Sn+1 where Sn+1 ≡ ABR−1 (mod M)

and 0 ≤ Sn+1 < 2M̃ .

Method:
S0 := 0;
for i := 0 to n do
L1 : qi := Si mod 2k;

L2 : Si+1 := (Si + qiM̃) div 2k + biA;
end

Where:
The following invariant holds at label L1:

2kiSi = 2kA ·
∑i−1

j=0
bj2

kj + M̃ ·
∑i−1

j=0
qj2

kj
∧

0 ≤ Si

< 2kA + M̃.

Correctness: To verified the response, we note that
q0 = 0 and bn = 0, hence upon exit from the loop we
get:

2k(n+1)Sn+1 = 2kA ·
∑n

j=0
bj2

kj+

M̃ ·
∑n

j=0
qj2

kj

2k(n)Sin+1 = A ·
∑n−1

j=0
bj2

kj+

M̃ ·
∑n−1

j=0
qj+12kj

So Sn+1 ≡ ABR−1 (mod M) and 0 ≤ Sn+1 < 2M̃ .
✷

Noting that qi = Si mod 2k and that M̃ + 1 is
divisible by 2k, we can rewrite the statement at label
L2 in the loop:

(Si + qiM̃) div 2k + biA

= Si div 2k + (qiM̃ + Si mod 2k)
div 2k + biA

= Si div 2k + (qi(M̃ + 1)) div 2k + biA

= Si div 2k + qi((M̃ + 1) div 2k) + biA

The same approach is used for a radix 2 version of
Montgomery modular multiplication in [6]. By cal-

culating (M̃ + 1) div 2k once for each new value of
M , this is a simplification of the stiatement at label
L2. Now we not have to calculate the carry-out from

the k least sign cant bits of Si +qiM̃ in the updating
statement.

2.3 Utilizing quotient pipelin-
ing in modular multiplica-
tion

In [13] Montgomery’s modular multiplication al-
gorithm has been modified by applying quotient
pipelining. The idea is to delay the use of quo-
tient digit qi−d, determined from information avail-
able in iteration i − d by d iterations. The effect
is that d iterations are now available for deter-
mining a quotient. In [13] the penalty is d extra
iterations and an increased quotient digit range,
qi−d ∈ {0, 1, . . . , 2k(d+1)−1}. In Algorithm 4 we
have pipelined the quotient determination of Algo-
rithm 3 without increasing the quotient digit range
increasing the range of the result:

255

Algorithm 4
(Modular Multiplication with Quotient Pipelining)

Stimulus:
A modulus M > 2 with gcd(M, 2) = 1 and positive

positive integers k, n such that 4M̃ < 2kn, where M̃

is given by M̃ = (M ′ mod 2k(d+1))M and integer
d ≥ 0 is adelay parameter.
Integer R−1, where (2knR−1) mod M = 1 and in-

teger M ′, where (−MM ′) mod 2k(d+1) = 1, are
given.

Integer multiplicand A, where 0 ≤ A ≤ 2M̃ , and

integer multiplier B =
∑n+d

i=0
(2k)ibi, where digit

bi ∈ {0, 1, . . . , 2k − 1} for 0 ≤ i < n, bi = 0 for

i ≥ n and 0 ≤ B ≤ 2M̃ .

Response:
Integer Sn+d+2 where Sn+d+2 ≡ ABR−1

(mod M) and 0 ≤ Sn+d+2 < 2M̃ .

Method:
S0 := 0; q−d := 0; q−d+1 := 0; . . . ; q−1 := 0;
for i := 0 to n + d do
L1 : qi := Si mod 2k;

L2 : Si+1 := Si div 2k+

qi−d((M̃ + 1) div 2k(d+1)) + biA;
end

Sn+d+2 := 2kdSn+d+1 +
∑d−1

j=0
qn+j+12k

Where:
The following invariant holds at label L1:

2kiSi +
∑j=i−d

j=0
qj2

kj

= 2kA ·
∑i−1

j=0
bj2

kj

+M̃ ·
∑i−d−1

j=0
qj2

kj
∧

0 ≤ Si

< 2kA + M̃.

Correctness: To establish the invariant, note that

M̃ ≡ −1 (mod 2k(d+1)) so 2k(d+1) divides M̃ + 1
and note that 2k(Si div 2k) = Si − qi. The invari-
ant holds trivially for i = 0. Assuming it holds for
i = �, from the updating of S�+1 at label L2, we then
obtain:

2k(�+1)S�+1 = 2k(�+1)(S� div 2k)

+ 2k(�+1)q�−d((M̃ + 1) div

2k(d+1)) + 2k(�+1)b�A

= 2k�(S� − q�) + 2k(�−d)q�−d

(M̃ + 1) + 2k(�+1)b�A

= 2kA ·
∑t−1

j=0
bj2

kj+

M̃ ·
∑t−d−1

j=0
qj2

kj

−
∑�−1

j=�−d
qj2

kj − 2k�q�

+2k(�−d)q�−d

+2k(�−d)q�−dM̃

+2k(�+1)b�A

= 2kA ·
∑t

j=0
bj2

kj+

M̃ ·
∑t−d

j=0
qj2

kj

−
∑�

j=�+1−d
qj2

kj

Hence the first part of the invariant holds for i = �+1.
The last part is established by noting that,

M̃ + 1 ≤ (2k(d+1) − 1)M < 2k(d+1)M.

So (M̃ + 1) div 2k(d+1) < M . The updating of S�+1

at label L2 then gives:

S�+1 < (2k(A + M))div2k

+(2k − 1)M + (2k − 1)A

≤ 2k(A + M)

Hence the last part of the invariant holds for i = �+1.
To verify the response, we note that q0 = 0 and
bj = 0 for j ≥ n, hence upon exit of the loop we
get:

2k(n+d+1)Sn+d+1 +
∑n+d

j=n+1
qj2

kj

= 2kA ·
∑n+d

j=0
bj2

kj + M̃ ·
∑n

j=0
qj2

kj

2kn(2kdSn+d+1 +
∑d−1

j=0
qn+j+12kj

= A ·
∑n−1

j=0
bj2

kj + M̃ ·
∑n−1

j=0
qj+12kj

So after the last statement of the algorithm we ob-
tain Sn+d+2 ≡ ABR−1 (mod M) and 0 ≤ Sn+d+2 <

2M̃ . ✷

The last statement in Algorithm 4 is just a left
shift of Sn+d+1 where the d last quotient digits are
shifted in from the right. Algorithm 4 is clearly
an improvement of the quotient pipelined version in
[13]: There is no calculation involved in the quo-
tient determination. The quotient digit range has
not increased by a factor of 2d, otherwise implying
an increased complexity in the calculation of multi-

ples qi−d((M̃ + 1) div 2k(d+1)), where (M̃ + 1) div

2k(d+1) is a pre-calculated integer. However, com-
pared to the quotient pipelined algorithm in [13], Al-
gorithm 4 has an increased range of the result. In
[13] the pipelining technique was applied in order to
perform overlapping calculations of quotient digits,
hereby reducing the hardware depth for a radix 4
modular multiplication algorithm. In Algorithm 4 it

256

could seem meaningless to apply pipelining because
of the trivial quotient determination. The calcula-
tion of multiples becomes more time consuming for
higher radices, but we use the pipeline technique for
performing overlapping calculations of the multiples

qi−d((M̃ + 1) div 2k(d+1)) and biA. All of these
operands are available after iteration i−d, and the re-
sulting multiples are not needed before iteration i. If
convenient, we could even perform an addition of the
multiples before iteration i. Then we have reduced
the time for an iteration to the time for a shift and
an addition of two words, Si+1 := Si div 2k + Ti−d.
Because of the increased range of the result and the
increased number of iterations, we should choose d to
be as small as possible. The calculation of the mul-
tiples can be performed in about log2 k steps by two
pipelined adder-trees if a redundant representation
of the resulting multiples is allowed [16].

3 Example hardware ar-
chitecture

To get an impression of the speed potential of Algo-
rithm 4 we will discuss a hardware architecture for
executing the algorithm. Figure 1 shows an example
architecture where k = 8 and d = 3, i.e. the radix
is 28 and the architecture has 3 pipeline stages. The
architecture includes registers for the operands A, B

and (M̃ + 1) div 28(3+1).

Figure 1: Hardware architecture using

radix 28 and pipelined into 3 stages.

A small register for holding the last 3 quotient digit
(qi−1, qi−2 and qi−3) is also depicted. This register
is used in the last statement of Algorithm 4. All in-
termediate results are redundant represented and an
4–2 adder is used for adding two redundant repre-
sented integers. As described in [10], a multiple of A

or (M̃ + 1) div 28(3+1) can be calculated by feeding
the binary representation through a multiplexor net-
work. Then the multiple is represented as the sum of
a number of integers. In this case, where the radix is
28, the number of integers that represents a multiple
is four. These four integers can then be compressed
into two integers by using an 4–2 adder. Hence, a
multiple is redundant represented as two integers. In
the figure, the upper pairs of multiplexor networks
and 4–2 adders are used for calculating the multiples

of A and of (M̃ + 1) div 28(3+1). After this calcu-
lation, the multiples are added by a third 4–2 adder

giving Ti−3 = biA+qi−3(M̃ +1) div 28(3+1) Finally,
Ti−3 is added to Si div 28 by the 4–2 adder shown
in the lowest part of the figure. All of the multi-
plexor networks and 4–2 adders are latched. This
implements the pipeline.

The cycle time of Algorithm 4 (the time for com-
puting a single iteration of the loop) is determined by
the critical path, i.e. the circuitry with the longest
delay between two latches. Since the delay of the
multiplexor network is approximately the delay of a
single 4–1 multiplexor plus the set-up delay of a latch,
the cycle time of Algorithm 4 is seen to be equal
to the (longer) delay of an 4–2 adder. In modern
CMOS technologies the delay of the 4–2 adders (in-
cluding the latch set-up delay) is, by a conservative
estimate, less than 5 ns. As an example, we will per-
form modular multiplication with 512 bit operands.
If n is set to 69 the stimulus conditions of Algorithm
4 are fulfilled. Then the number of cycles in the loop
is 69 + 3 + 1 = 73. Since the first multiple of A, b0A,
is delayed by 3 stages in the pipeline, the first cycle of
the loop can begin after 3 clock periods. So, from the
input are available to the result is present 76 clock
periods are elapsed. With a 5 ns clock period this is
380 ns. Note that the result is redundant represented
and that A and B, in this example, are assumed to
be non-redundant represented. This means that the
result has to be converted to non-redundant repre-
sentation before it can be used as input for a new
multiplication. The conversion must be performed
by a carry completion adder. According to Algo-
rithm 4 the result can be up to 8 · 69 − 1 = 551
bit wide. The fastest carry completion adders for
these very large operands have a delay proportional
to log2 551 but they are quit large in comparison
with a carry ripple adder. In [13] a carry ripple adder
with an asynchronous carry completion detection cir-

257

cuit is proposed. It is utilized that the average carry
propagation length is the logarithm of the operand
bit length, i.e. log2 551 < 10 for our example. If
we estimate the average time for a conversion from
redundant to non-redundant representation to be 10
clock periods a total of 83 clock periods, or 415 ns,
is used for the multiplication.

In the above estimate for the computing time it
turns out that about 15% of the time is used for
conversion into non-redundant representation. As
described in [10] and in [14] it is also possible to
perform multiplications where the inputs are in re-
dundant representation. Regarding the multiplier B,
this does not imply serious trouble: The multiplier
is scanned digit by digit from the least significant
end, so a conversion into non-redundant representa-
tion may be done on-the-fly. The required circuitry
for a register capable of holding a redundant repre-
sented operand will be about double the circuitry for
holding a non-redundant represented operand. Re-
garding the multiplicand A, the penalty for using a
redundant representation is larger: The required cir-
cuitry for computation of the multiples biA will ex-
pand and the depth of the adder-tree will increase.
This means that the delay parameter d must be in-
creased. So, it is possible to obtain a further im-
provement of the computation time at the cost of
additional circuitry.

In the computation of modular exponentials, also
with 512 bit operands, the average number of re-
quired multiplications is 768 for a sequential algo-
rithm. This can be done in 768 · 415ns ≈ 319µs,
which corresponds to a throughput of more than 1.6
Mbit/s. If a parallel algorithm is applied, see [10],
the computing time is equal to the time for perform-
ing 512 multiplications, 212 µ s, and a throughput
of more than 2.4 Mbit/s is achieved. This is four
times faster than the fastest known implementation
[13]. Furthermore, if the modulus is a composite,
and the prime factorization is known, it possible to
speed up the computation by using the Chinese Re-
mainder Theorem. This technique is applied in [13]
to improve the time by about a factor of four.

The hardware consumption for the example ar-
chitecture in Figure 1 is two multiplexor networks,
four latched 4–2 adders and registers for the input
operands. Each multiplexor network consists of four
rows of latched 4–1 multiplexors and each 4–2 adder
consists of two rows of fulladders where one of these
is latched. Compared to the exponentiation proces-
sor in [9] this is an increase in circuitry of two rows of
latched fulladders, two rows of latched 4–1 multiplex-
ors plus the cost for modifying six rows of 4–1 multi-
plexors into latched 4–1 multiplexors. In [9] a large
quotient determination unit and a carry completion

adder are also included. There is no longer a need
for the quotient determination unit. The circuitry
cost of the primitive hardware components used in
the exponentiation processor is analyzed in [8]. The
transistor count for the complete exponentiation pro-
cessor is 304,000. We estimate that the architecture
in Figure 4, capable of multiplying 512 bit operands,
can be implemented by not more than 300,000 tran-
sistors.

The above example architecture illustrates the po-
tential of Algorithm 4. We could achieve even higher
speeds by choosing higher radices and adding more
circuitry to the architecture. A radix 216 version
could be implemented by adding a level in the trees
for calculating multiples. This would increase the
number of pipeline stages by one, increase the num-
ber of latched 4–2 adders by four and double the
circuitry for the multiplexor networks. The number
of clock periods for a 512 bit operand multiplication
would then be 4 + 38 + 5 = 47 for producing a re-
dundant represented result and 57 for producing a
non-redundant represented result This is about 31%
reduction of the total computing time for the radix
28 version. A 512 bit exponentiation would have a
throughput of 2.3 Mbit/s if the sequential exponenti-
ation algorithm is applied or 3.5 Mbit/s if the parallel
algorithm is applied.

4 Summary

In this paper we have rewritten a high-radix version
of Montgomery’s modular multiplication algorithm
in order to obtain a trivial quotient determination,
where the multiplication and addition operation is
avoided by a simple transformation of modulus. The
result is a quotient determination that is reduced to
a trivial extraction of the least significant digit of
the partial modular product, Si mod 2k. By ap-
plying a pipeline technique we have enabled over-
lapping computations. This implies that the criti-
cal computation path can be reduced to a shift-and-
add operation that is efficiently implemented by a
constant time adder. We have achieved a modular
multiplication algorithm, where the critical hadware
path is independent of the choice of radix. For a
fixed high radix, the cost of the proposed algorithms,
over Montgomery’s algorithm, is a few extra itera-
tion cycles, additional pre-processing for the trans-
formation of modulus and a wider range of the final
result. When several modular multiplications have
to be performed on intermediate results, this cost is
more than compensated by the faster time for an it-
eration and the possibility to reduce the number of
iterations through the choice of radix. By pipelining

258

the formations of the multiples, the only limitation
to the choice of radix is the size of the circuitry, not
the cycle time.

References

[1] Whitfield Diffie and Martin E. Hellman. New
Directions in Cryptography. IEEE Transac-
tions on Information Theory, IT-22(6):644–654,
November 1976.

[2] Stephen R. Dussé and Burton S. Kaliski Jr.
A Cryptograhpic Library for the Motorola
DSP56000. In Ivan B. Damg̊ard, editor, Ad-
vances in Cryptology - EUROCRYPT ’90. Pro-
ceedings, volume 473 of Lecture Notes in Com-
puter Science, pages 230–244. Springer-Verlag,
Berlin, 1991.

[3] Stephen E. Eldridge. A Faster Modular Mul-
tiplication Algorithm. International Journal of
Computer Mathematics, 40:63–68,1991.

[4] Stephen E. Eldridge and Colin D. Walter. Hard-
ware Implementation of Montgomery’s Modular
Multiplication Algorithm. IEEE Transactions
on Computers, C-42(6):693–699, June 1993.

[5] Peter Komerup. High-Radix Modular Multipli-
cation for Cryptosystems. In Earl Swartzlan-
der, Jr., Mary Jane Irwin, and Graham Jul-
lien, editors, Proceedings. 11th IEEE Sympo-
sium on Computer Arithmetic, pages 277–283.
IEEE Computer Society Press, Los Alamitos,
California, 1993.

[6] Peter Komerup. A Systolic, Linear-Array
Multiplier for a Class of Right-Shift Algo-
rithms. IEEE Transactions on Computers, C-
43(8):892–898, August 1994.

[7] Peter L. Montgomery. Modular Multiplication
Without Trial Division. Mathematics of Com-
putation, 44(170):519–521, April 1985.

[8] Holger Orup. Area Reduction for Bit–Sliced
Layouts using a Commercial Development Sys-
tem. This article is not published. It is available
from the author.

[9] Holger Orup. A 100Kbit/s Single Chip Modular
Exponentiation Processor. In HOT Chips VI,

Symposium Record, pages 53–59. Stanford Uni-
versity, 1994. Only the slides from the presenta-
tion at HOT Chips VI are printed in the Sympo-
sium Record. An abstract is available from the
author.

[10] Holger Orup and Peter Kornerup. A High-Radix
Hardware Algorithm for Calculating the Ex-
ponential ME Modulo N . In Peter Kornerup
and David W. Matula, editors, Proceedings.
10th IEEE Symposium on Computer Arith-
metic, pages 51–56. IEEE Computer Society
Press, Los Alamitos, California, 1991.

[11] Holger Orup, Erik Svendsen, and Erik An-
dreasen. VICTOR an Efficient RSA Hardware
Implementation. In Ivan B. Damg̊ard, editor,
Advances in Cryptology - EUROCRYPT ’90.
Proceedings, volume 473 of Lecture Notes in
Computer Science, pages 245–252. Springer-
Verlag, Berlin, 1991.

[12] R. L. Rivest, A. Shamir, and L. Adleman. A
Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of
the ACM, 21(2):120–126, February 1978.

[13] M. Shand and J. Vuillemin. Fast Implementa-
tions of RSA Cryptography. In Earl Swartzlan-
der, Jr., Mary Jane Irwin, and Graham Jul-
lien, editors, Proceedings. 11th IEEE Sympo-
sium on Computer Arithmetic, pages 252–259.
IEEE Computer Society Press, Los Alamitos,
California, 1993.

[14] Naofumi Takagi. A Radix-4 Modular Multi-
plication Hardware Algorithm Eficient for It-
erative Modular Multiplications. In Peter Ko-
rnerup and David W. Matula, editors, Pro-
ceedings. 10th IEEE Symposium on Computer
Arithmetic, pages 35–42. IEEE Computer Soci-
ety Press, Los Alamitos, California, 1991. This
article also appears as [15].

[15] Naofumi Takagi. A Radix-4 Modular Multipli-
cation Hardware Algorithm for Modular Expo-
nentiation. IEEE Trans. actions on Computers,
C-41(8):949–956, August 1992.

[16] C. S. Wallace. A Suggestion for a Fast Multi-
plier. IEEE Transactions on Electronic Com-
puters, EC-13(1):14–17, February 1964.

[17] Colin D. Walter. Systolic Modular Multipli-
cation. IEEE Transactions on Computers, C-
42(3):376–378, March 1993.

259

Appendix E

RSA Processor, Preliminary
Engineering Data

223

RSA Processor, Preliminary Engineering Data

Holger Orup
e-mail: orup@daimi.aau.dk

261

1 Introduction

The RSA processor is a special purpose processor for calculating modular ex-
ponentials. It supports two interfaces. A general purpose interface with a hand
shake protocol, and a self-synchronizing SLD interface that enables the pro-
cessor to be embedded into telecommunication equipment. Figure 1 shows the
basic blocks of the RSA processor.

Figure 1: Basic blocks in RSA processor.

The I/O register is a shift-register. Simultaneously with reading in a new
block of data, the result of the previous modular exponentiation is written to the
output. The Modular Exponentiation Unit can compute a modular exponential
in parallel with the I/O register is collecting data for the next computation.
Therefore, the user may take full advantage of the computing power of the RSA
processor.

262

The processor speed is determined by the system clock. At 20 MHz the
throughput for computations using 561 bit operands is more than 64 Kbit/sec.
The RSA processor is designed to support the RSA public key crypto system
[RSA78] with adequate computing power.

For the purpose of testing and diagnosing of errors, virtually all the internal
registers are linked together in scan chains [WE85]. The scan chains are not
shown in Figure 1.

2 Pin designations

The tables showen below list the pins of the RSA processor. If a pin name is
overlined it is active at the low voltage level. Otherwise it is active at the high
level. A bus notation is used to group a number of pins. E.g. ConstantW <5..0>
denotes a 6 bit bus with the name ConstantW. The least significant bit is denoted
ConstantW <0> and most significant bit is denoted ConstantW <5>. The pins
marked with ’(SLD)’ in their functional description are not used in the general
purpose interface. Input pins should never be left unconnected. Unused pins
must be tied to a high or a low voltage level.

Pin In/Out Function
Vdd, GND Power supply and return
SysClk in System clock

Reset in System reset
Sync in Use self-synchronizing SLD interface
Crypt in (SLD) Perform crypt operations on I/O register
Channel in (SLD) Use channel channel B1

Transmit/Receive in (SLD) Add block synchronization pattern
ConstantW<5..0> in Number of inserted wait states
ConstantI<6..0> in Number of radix 32 digits in multipliers

Table 1: Pins for system control and mode configuration.

Table 1 lists the pins used for configuring the RSA processor, for the power
supply, and for controlling the basic system. SysClk is the input from an external
generated system clock. The RSA processor does not contain an internal clock
generating circuit. The speed of the Modulo Exponentiation Unit is set by the
system clock frequency. None of the pins used in normal operation mode need
to be synchronized to the SysClk.

By pulling the pin Reset to low, the processor is reset. This must be done after
power up and are sometimes required to effectuate changes in the configuration
settings. A reset initializes some of the internal registers. The contents of the
I/O, the Modulus, and the Exponent registers are unchanged.

Pin Sync configures the processor to the self-synchronizing SLD interface or to
the general purpose interface. Crypt, Channel and Transmit/Receive are con-
figuration pins for the SLD interface. Crypt selects between the crypt and the

263

transparent mode, Channel selects between the two B channels of the ISDN con-
nection, and Transmit/Receive selects the direction of communication. When
the RSA processor is in transmit and crypt mode it adds a synchronization pat-
tern to the output. If it is configured to the receive and crypt mode, it checks
the synchronization pattern of the input.

The pins ConstantW <5..0> select the number of wait states that is inserted
by the processor when an internal carry completion addition is performed on
the very long words. A wait state has a duration of one system clock period.
By adjusting the value of the pins ConstantW <5..0>, the processor can be
tuned for a wide range of system clock frequencies. The pins ConstantI<6..0>
denote the number of radix 32 digits, i.e. 5 bit groups, in the internal multiplier
registers. Currently this is 115 and should not be changed by the user.

Pin In/Out Function
ErrorSync out (SLD) A block synchronization error is detected
FrameSync in (SLD) Frame synchronization clock
DataClk in Data synchronization clock
InputData in Serial data input
OutputData tri-state out Serial data output
StartExp in Start the exponentiation process
DoneExp out The exponentiation process is terminated

Table 2: Pins used for data I/O.

Table 2 lists the pins used for reading and writing data in the I/O register
and for controlling the moments of computation. Pin DataClk synchronizes the
reading and writing of each bit on the serial input pin InputData and the serial
output pin OutputData. The processor flags when it has completed a modular
exponentiation on pin DoneExp.

In the general purpose interface the pin StartExp is used to initiate a modular
exponentiation. Before starting this operation the I/O register must be initial-
ized with an operand. We denote the contents of the I/O register a block. The
usual bit length of a block is 561 bit.

In the SLD interface a frame is a group of 64 bits: 32 bits are communicated
in each direction of a bidirectional serial data line. Just 8 of the bits in a frame
are collected by the RSA processor. The Outputdata pin is a tri-state output
pin. This makes it possible to connect directly to the SLD data line. Pin
FrameSync is used to signal the start of a frame on the serial data line. Pin
ErrorSync only has a meaning when the processor uses the SLD interface and
is configured to the receive and crypt mode. Then the pin flags that an error in
the synchronization pattern of a block has been detected.

The pins used for the initialization of the Modulus and the Exponent registers
are listed in Table 3. Pin InitKey signals that a process of writing new values
to the Modulus and the Exponent registers is in progress. The serial input
pins for these registers are pin InputN and pin InputE. Pin ReadKey is used

264

Pin In/Out Function
InitKey in Start key initialization process
ReadKey in Key synchronization clock
InputN in Data input, Modulus
InputE in Data input, Exponent
DoneKey out Key initialization process terminated
ConstantQ<9..0> in Constant value for internal counter
ConstantJ<9..0> in Number of bits in exponent

Table 3: Pins used for key initialization.

for synchronizing the moment of writing to the Modulus and the Exponent
registers. The registers must be simultaneously initialized, i.e. the processor
reads values from both serial inputs in the same period of ReadKey. When the
initialization of the Modulus and the Exponent registers are completed, and the
processor is ready for a new series of modular exponentiations, the flag DoneKey
is activated by the processor.

The pins ConstantQ<9..0> are used to inform the processor of the number
of bits that are input to the Modulus register and the Exponent register. At
present, this number is equal to the bit length of the registers plus eight addi-
tional bits, a total of 569 bit. This value should not be changed by the user.
The pins ConstantJ<9..0> determine the number of bits in the Exponent reg-
ister that should be used in a modular exponentiation. If ConstantJ<9..0> is
less than 561 the processor will discard bits from the most significant end of
the Exponent register. See Section 3.2 for further details on the assignment of
values to ConstantJ<9..0>.

The pins in Table 4 are only used for test purposes. So, they are not used in
normal operation modes. However, all of the input pins must be connected to
certain voltage levels. This is described in Section 3. None of the pins in Table
4 are shown in Figure 1. The pins TestSysClk, TestDataClk and TestFrameSync
are control pins that choose between the normal operation modes and the test
operation modes.

The TestSysClk pin is controlling the three scan chains that must be syn-
chronized to the SysClk : The chain with the serial input ScanInSysClk and the
serial output ScanOutSysClk, the chain with the 5 bit input LSBreg<4..0> and
the 5 bit output ScanOutRegX<4..0> and, finally, the chain with the 5 bit input
LSBregM<4..0> and the 5 bit output ScanOutRegM<4..0>. All input to, and
output from, the pins controlled by TestSysClk must be synchronized to the
SysClk.

The TestDataClk is controlling the scan chain that must be synchronized to
the DataClk The chain with the serial input ScanInDataClk and the serial out-
put ScanOutDataClk All communication with these pins must be synchronized
to the DataClk.

Finally, TestFrameSync is controlling the scan chain that must be synchro-

265

nized to the FrameSync: The input is pin ScanInFrameSync and the output is
ScanOutFrameSync. All communications with these pins must synchronized to
FrameSync.

Pin In/Out Function Note

TestSysClk in Activate system clock scan chain
ScanInSysClk in Input for system clock scan chain
ScanOutSysClk out Output from system clock scan chain 1
LSBregX<4..0> in Input for shift register X
ScanOutRegX<4..0> out Output from shift register X
LSBregM<4..0> in Input for shift register M
ScanOutRegM<4..0> out Output from shift register M

TestSysClk in Activate data clock scan chain
ScanInSysClk in Input for data clock scan chain
ScanOutSysClk out Output from data clock scan chain

TestFrameSynk in Activate frame clock scan chain
ScanInFrameSynk in Input for frame clock scan chain
ScanOutFrameSynk out Output from frame clock scan chain

Table 4: Pins for scan chain inspection in test operations.

Notes

1. This pin is physical identical to pin ErrorSync in Table 2. In normal operation mode
the pin is ErrorTSync, and in test operation mode, the pin is ScanOutSysClk.

3 Processor

In normal operation mode the architecture of the RSA processor, from the users
point of view, is as illustrated in Figure 1. The Modulus and the Exponent
register holds the operands for the modular exponentiation. The registers must
be properly initialized before the start of the exponentiation. The I/O register
partly holds the new data to be exponentiated and partly holds the result of
the previous computation. The computation of the modular exponentials is
performed by the Modular Exponentiation Unit and it may be done in parallel
with the users access to the I/O register.

To obtain a correct functionality of the RSA processor, it is required that the
pins in Table 5 are properly connected. The values in the table ensures a correct
functionality for 561 bit modular exponentiation.

Pin In/Out Function Note
TestSysClk 0 0
TestDataClk 0 0
TestFrameSync 0 0
LSBregX<4..0> 1 00001
LSBregM<4..0> 0 00000
ConstantW<5..0> 6 000110 1
ConstantI<6..0> 115 1110011
ConstantJ<9..0> 561 1000110001 2
ConstantQ<9..0> 569 1000111001

Table 5: Pin values in normal operation mode.

266

Notes

1. The necessary number of wait states depends on the System Clock frequency. In this
table a frequency of 20 MHz is assumed. At higher frequencies a higher value may be
necessary.

2. As explained in section 3.2 this value may be decreased in order to decrease the com-
puting time for smaller exponent values.

3.1 I/O register and Modulo Exponentiation Unit

The interface of the RSA processor is entirely serial. Data is input, least sig-
nificant bit first, to pin InputData and shifted into the I/O shift register. After
each shift a new bit of the previous computation is ready to be read from pin
OutputData. When the I/O register is filled with a new 561 bit data block, and
the previous result is shifted completely out, the processor performs a swap of
the I/O register contents and the contents of the result register in the Mod-
ule Exponentiation Unit. Then, the next computation is initiated. If the I/O
register contents before the swap is denoted M , the resulting output from the
Modulo Exponentiation Unit can be expressed as ME mod N , where E is the
contents of the Exponent register and N is the contents of the Modulus register.
In the SLD interface this swap is performed automaticly when the I/O register
has been filled. In the general purpose interface the user have to control the
moment of swapping. This is signalled by making a positive transition on pin
StartExp. The processor responds by pulling pin DoneExp to high as soon as
the computation is terminated. In the general purpose interface the user also
have to control the I/O register by means of pin DataClk : A new result bit is
written to OutputData at a positive transition, and a new data bit is read from
InputData at the next negative transition.

3.2 Modulus and Exponent registers

In both interfaces the initialization of the Modulus and the Exponent regis-
ters is controlled completely by the user. Pin InputN is the serial input to the
Modulus register, and pin InputE is the serial input to the Exponent register.
Both registers expect the least significant bit first. The initialization process is
controlled by pin InitKey and ReadKey. By pulling InitKey to high the user
signals that a new initialization process is started. When a new set of 561 bit
values has been shifted into the registers the user pulls InitKey back to low,
and the RSA processor proceeds with some preprocessing in order to initialize
the internal circuitry. The processor responds by pulling pin DoneKey to high
upon completion, and is ready for new computations. Before an initialization is
started, the user must make sure that previous initializations and computations
are terminated, i.e. DoneKey and DoneExp are high. The moment of reading
pin InputN and InputE are at a negative transition of pin RedKey, and the pro-
cessor reads values from both pins. This means that the registers are initialized
in parallel. Even though the bit length of the modulus and the exponent is 561,

267

Figure 2: The Exponent register initialized to 187 bit exponents.

it is required that 569 bits are shifted into the registers: 8 zero bits must be
padded to the values. The format of the input to the registers are

InputE = e560e559 · · · e000000000

InputN = 00000000n560n559 · · ·n0

where e0 is the least significant bit of the exponent, and n0 is the least significant
bit of the modulus.

The Exponent register is a cyclic shift register. The pins ConstantJ<9..0>
express the number of cyclic shift operations performed during the calculation
of modular exponentials. It expresses the bit length of the exponent. If it less
than 561, some of the most significant bits will not be used in the calculation. In
some cases this can be used to decrease the computing time for an exponential,
which is roughly proportional to the value of ConstantJ. E.g. if an exponent
value is less than 187 bit (3 ∗ 187 = 561) the register can be loaded with a
561 bit value that is constructed by repeating the 187 bit exponent value three
times. When ConstantJ is set to 187 only the 187 least significant bits of the
Exponent register is used in a modulo exponentiation, and only 187 cyclic shifts
of the Exponent register are done. However, because of the repeated 187 bit
pattern the register contents after a modular exponentiation will be identical to
the contents prior to the exponentiation. This is shown in Figure 2. This will
reduce the computing time to one third of the computing time for ConstantJ
set to 561.

4 Interfaces

The RSA processor supports a general purpose interface and a self-synchronizing
SLD interface [Sie92c]. In both interfaces the processor is reading and writing
data in a bit serial format, least significant bit first. Initialization of the Modulus
and the Exponent registers, and reset of the processor is performed the same way
in both interfaces. The interfaces differs in how to access the I/O register and
how to start a modular exponentiation. Pin Sync determines which interface
to choose, a high value selects the self-synchronizing interface and a low value
selects the general purpose interface. The value of pin Sync must be well defined
when the RSA processor is reset, and a change of value will have an effect after
a new reset operation.

268

Figure 3: RSA processors placed at SLD bus interface.

4.1 General purpose interface

Most of the control is handed to the user in this interface. When a new 561 bit
data block has been shifted into the I/O register and a 561 bit result shifted out,
the user must control that the Modular Exponentiation Unit has terminated its
previous computation, i.e. pin DoneExp is high. Then a positive transition on
pin StartExp can be done in order to perform a swap of the I/O register and the
Modular Exponentiation Unit and to start a computation with the new data.

4.2 SLD interface

The SLD interface is included in the processor in order to ease the task of em-
bedding the processor in a telecommunication application. In the application is
an ISDN telephone modified to encrypt/decrypt digital voice, where the RSA
protocol is used. The ISDN telephone is of type Ascotel Crystal from Ascom,
Schwitzerland, and uses components from Siemens. A SLD bus is used to ex-
change data between a Codec [Sie92b] and a Line Subscriber Circuit [Sie92a].
The bus has a bidirectional bit serial data connection and is controlled by a
Data Clock signal and a Frame Synchronization signal. Two RSA processors
are placed at the SLD bus interface, one for encrypting transmitted data and
one for decrypting received data. The configuration is shown in Figure 3.

Pin OutputData at the processor is a tri-state output pin, and the periods

269

Figure 4: Byte sequence and timing in SLD interface.

with high impedance state are controlled by the configuration pins and the
Frame Synchronization signal pin FrameSync.

The protocol in the SLD interface is illustrated in Figure 4. In each frame,
starting at a positive transition of FrameSync, are four bytes transmitted in each
direction. The first half frame is denoted the receive direction, where data sent
on channel B1 or B2 are decrypted on its way from the Line Subscriber Circuit
to the Codec. The second half frame is denoted the transmit direction, where
data sent on the selected B channel are encrypted on its way from the Codec
to the Line Subscriber Circuit. The data byte associated with the unselected
B channel, the control byte, and the signalling byte are sent directly through
the RSA processor from pin InputData to pin OutputData. It is only the byte
associated to the selected B channel that is processed by the RSA processors.
Note that pin OutputData is brought into a high impedance state in one of the
half frames in order to be able to connect the RSA processors directly to the
bidirectional bit serial data line in the SLD interface.

Pin Transmit/Receive must be high when the processor is used for encryp-
tion. In the transmit mode parts of the incoming data bits are substituted with
a synchronization pattern. This is done in order to enable the receiving pro-
cessor to recognize the start of a block of encrypted data. When the processor
is used for decryption, pin Transmit/Receive must be low. In this mode the
processor is checking the synchronization pattern, and if an error is detected, it
discards the actual data block and search for the start of the next data block.
Transmit/Receive must be at a high or low logic level when resetting the RSA

270

Frame Input block, M Output block, C
1 x m006 m005 . . . m000 1 c006 c005 . . . c000
2 x m013 m012 . . . m007 0 c013 c012 . . . c007
3 x m020 m019 . . . m014 0 c020 c019 . . . c014
...

78 x m545 m544 . . . m539 0 c545 c544 . . . c539
79 x m552 m551 . . . m546 c553 c552 . . . c547 c546
80 x m559 m558 . . . m553 0 c560 c559 . . . c554

Table 6: Format of input and output block of RSA processor in transmit, crypt
mode.

processor, and a change of value will only have an effect upon a new reset oper-
ation. Pin Channel is used to select the B channel used for the communication.
Channel B1 is selected by a high input and channel B2 by a low input. A change
of value will have effect on the next positive transition of FrameSync.

The RSA processor can be configured to be completely transparent, i.e. all
data at InputData is sent directly to OutputData without modifying the values
or adding a synchronization pattern. In transparent mode the only effect is
that the values on OutputData are delayed a few nano seconds with respect
to the values on InputData and that pin OutputData is brought into a high
impedance state in the half frames determined by pin Transmit/Receive. This
is controlled by pin Crypt, a high value selects the crypt mode and a low value
the transparent mode. A change of value will have effect on the next positive
transition of FrameSync.

When the RSA processor is in transmit and crypt mode a 560 bit data block,
M = m559m558 . . . m0, is read from the selected B channel in 80 frames. As
shown in Table 6 is the least significant bit, denoted x, of the 8 data bit in a frame
discarded and used for the synchronization pattern. The remaining 7 bits in 80
frames is modular exponentiated and forms a 561 bit result, C = c560c559 . . . c0.
This is one bit longer than the input block. In the table 80 bits are discarded
per block but only 79 synchronization bits are added because the result block
is one bit longer than the input block. Note that the least significant bit in the
selected B channel is lost in this synchronization scheme.

When the RSA processor is in receive and crypt mode a 561 bit data block,
C = c560c559 . . . c0, is read from the selected B channel in 80 frames. As shown
in Table 7 the least significant bit of the 8 bit in a frame is mainly used for the
synchronization pattern. One of the them is used for data. After discarding
79 synchronization bits the remaining 561 bit are decrypted by performing a
modular exponentiation, and the result is a 560 bit block, M = m559m558 . . . m0.
This block is written in 80 frames where the least significant bit in each frame is
set to a high value in order to compensate for the discarded bits in the encryption
process of the transmitting processor.

271

Frame Input block, M Output block, C
1 1 c006 c005 . . . c000 1 m006 m005 . . . m000

2 0 c013 c012 . . . c007 1 m013 m012 . . . m007

3 0 c020 c019 . . . c014 1 m020 m019 . . . m014

...
78 0 c545 c544 . . . c539 1 m545 m544 . . . m539

79 c552 c551 . . . c547c546 1 m552 m551 . . . m547

80 0 c560 c559 . . . c554 1 m559 m558 . . . m553

Table 7: Format of input and output block of RSA processor in receive, crypt
mode.

The processor checks the synchronization pattern to find the start of a input
block. If noise on the transmission line has changed the value of a synchro-
nization bit, the processor is capable of finding the next block. This is what is
meant by a self-synchronizing interface. Pin ErrorSync is raised as soon as an
error is found and lowered again when the start of a new block is found.

5 Timing Specifications

The specifications in this section are based on estimates. The time unit “SysClk”
denotes the clock period for the system clock.

Symbol Parameter Min Max Units
TREpl Reset, widh of low pulse 1 SysClk

Table 8: Timing of signals in reset operation.

Figure 5: Timing of signals in reset operation.

272

Symbol Parameter Min Max Units
TDKdl DoneKey, delay of negative transition 1 3 SysClk
TDKdh DoneKey, delay of positive transition 571 573 SysClk
TIKs InitKey, setup 0 ns
TIKh InitKey, hold 1 SysClk
TIs InputN and InputE, setup 10 ns
TIh InputN and InputE, hold 10 ns
TRKpl ReadKey, width of low pulse 1 SysClk
TRKph ReadKey, width of high pulse 1 SysClk
TRKw ReadKey, width from low to low transition 4 SysClk

Table 9: Timing of signals used for key initialization.

Figure 6: Timing of signals used for key initialization.

Symbol Parameter Min Max Units
TIDs InputData, setup 10 ns
TIDh InputData, hold 10 ns
TODd OutputData, delay 0 2 SysClk
TDCpl DataClk, width of low pulse 1 SysClk
TDCph DataClk, width of high pulse 1 SysClk
TDCw DataClk, width from low to next low transition 4 SysClk
TSEs StartExp, setup 5 SysClk
TSEph StartExp, width of high pulse 1 SysClk
TSEpl StartExp, width of low pulse 1 SysClk
TDEd DoneExp, delay 2 4 SysClk

Table 10: Timing of signals used in general purpose interface.

Symbol Parameter Min Max Units
TDCd DataClock, delay −20 20 ns
TDOz OutputData, delay to/from high impedance state 1 3 SysClk
TFSpl FrameSync, width of low pulse 1 SysClk
TFSph FrameSync, width of high pulse 1 SysClk

Table 11: Timing of signals used in SLD interface.

273

Figure 7: Timing of signals used in general purpose interface.

Figure 8: Timing of signals used in SLD interface, receive mode.

Figure 9: Timing of signals used in SLD interface, transmit mode.

6 Package specification

274

Figure 10: 299 ceramic pin grid array package pinout (bottom view).

Pin Position
Vdd A2, A4, A10, A12, A19, B11, B20, C1, H20, J1, K19, K20, L1,

L2, M20, N1, V1, W12, W20, X1, X3, X9, X11, X17, X19
GND A3, A9, A11, A13, A18, A20, B1, C20, D1, D11, J20, K1, K4,

K17, L20, M1, U11, V20, W1, X2, X8, X10, X12, X18, X20

Table 12: Positions of power pins.

275

Pin Position Pin Position Pin Position
SysClk W5 ConstantI<6> N3 ConstantW<5> T3
Reset V9 ConstantI<5> N5 ConstantW<4> U1
Sync U15 ConstantI<4> N4 ConstantW<3> U3
Crypt W10 ConstantI<3> P2 ConstantW<2> T4
Channel T15 ConstantI<2> M5 ConstantW<1> T1
Transmit/Receive U13 ConstantI<1> P4 ConstantW<0> U3

ConstantI<0> M4

Table 13: Positions of pins for system control and mode configuration.

Pin Position
ErrorSync T14
FrameSync W11
DataClk W14
InputData V10
OutputData T10
StartExp U10
DoneExp W6

Table 14: Positions of pins used for data I/O.

Pin Position Pin Position Pin Position
InitKey L17 ConstantQ<9> T18 ConstantJ<9> L4
ReadKey J18 ConstantQ<8> U19 ConstantJ<8> J4
InputN K18 ConstantQ<7> N16 ConstantJ<7> M3
InputE K16 ConstantQ<6> M17 ConstantJ<6> P1
DoneKey L18 ConstantQ<5> M18 ConstantJ<5> K3

ConstantQ<4> M16 ConstantJ<4> J3
ConstantQ<3> L16 ConstantJ<3> L5
ConstantQ<2> U20 ConstantJ<2> N2
ConstantQ<1> P16 ConstantJ<1> L3
ConstantQ<0> N17 ConstantJ<0> K5

Table 15: Positions of pins used for key initialization.

276

Pin Position Pin Position
TestSysClk U6
ScanInSysClk T6 ScanOutSysClk T14
LSBregX<4> U12 ScanOutRegX<4> T9
LSBregX<3> T13 ScanOutRegX<3> U8
LSBregX<2> V14 ScanOutRegX<2> T7
LSBregX<1> W15 ScanOutRegX<1> U7
LSBregX<0> T12 ScanOutRegX<0> W7
LSBregM<4> X15 ScanOutRegM<4> V7
LSBregM<3> W17 ScanOutRegM<3> X5
LSBregM<2> W16 ScanOutRegM<2> U9
LSBregM<1> V15 ScanOutRegM<1> T8
LSBregM<0> V16 ScanOutRegM<0> X6
TestDataClk W9
ScanInDataClk T16 ScanOutDataClk W8
TestFrameSync X7
ScanInFrameSync X4 ScanOutFrameSync V8

Table 16: Positions of pins for scan chain inspection in test operations.

Figure 11: 299 ceramic pin grid array package dimension.

Symbol Parameter Min Nom Max Units
θJ A At ?? linear ft/min transverse airflow 23 ◦C/W

Table 17: 299 ceramic pin grid array package junction to ambient thermal re-
sistance.

277

7 Scan chains

Figure 12: Scan chain controlled by TestFrameSync.

Figure 13: Scan chain controlled by TestDataClk.

278

Figure 14: 5 bit scan chains controlled by TestSysClk.

279

Figure 15: First part of single bit scan chain controlled by TestSysClk.

280

Figure 16: Last part of single bit scan chain controlled by TestSysClk.

281

References

[RSA78] Ronald L. Riverst, A. Shamir, and L. Adlernan. A method for obtaining digital
signatures and public-key cryptosystems. In Communications of the ACM, volume 21,
pages 120–126, Feb. 1978.

[Sie92a] Siemens AG. ICs for Communications. ISDN Subscriber Access Controller, ISAC-S
PEB 2085. User’s Manual 02.92, 1992.

[Sie92b] Siemens AG. ICs for Communications. Signal Processing Codec Filter, SICOFI PEB
2060, SICOFI-2 PEB 2260. User’s Manual 03.92, 1992.

[Sie92c] Siemens AG. ICs for Communications. Telecom Handbook 06.92, 1992.

[WE85] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley,
1985.

282

