
Constraints for Polymorphic

Behaviours of Concurrent ML

Flemming Nielson, Hanne Riis Nielson

DAIMI, Computer Science Department,

Aarhus University (Bldg. 540), Ny Munkegade,
DK-8000 Aarhus C, Denmark.

To appear in Proceedings CCL'94 (Springer Lecture Notes in Computer Science).

We present a type and behaviour reconstruction algorithm for Standard
ML with concurrency. The behaviours express the communication e�ects

during execution and resemble terms of a process algebra. The algorithm

uses uni�cation for the (essentially) free algebra of types and algebraic
reconstruction for collecting constraints for the non-free algebra of be-

haviours. The algorithm and the statement and proof of soundness are

designed so as to make no assumptions on the existence of \principal" be-
haviours as these are unlikely to exist. The main complication is that the

notion of expansiveness does not su�ce for a su�ciently general treatment

of the polymorphic let-construct.

1 Introduction

Currently there is a growing interest in so-called multiparadigmatic languages that
attempt to obtain the best of two worlds by integrating the features of more than

one programming paradigm. In this paper we study CML [11] that extends Standard

ML with primitives for communication; other languages with similar aims include
Facile[2], PolyML[7] and LCS [1]. The e�cient implementation of such languages is a

major task and places new demands on the technology for program analysis so as to

provide correct and useful information about the behaviour of programs. Furthermore
program analysis may be used to provide information that may help programmers to

maintain important invariants by extracting information that may otherwise be deeply

buried in the code. An example is the link between multiparadigmatic languages of
the CML-variety and process algebras of the CCS-variety �rst pointed out in [9]. Here

program analysis is used to extract the communication behaviour of CML-programs in

the form of a process algebra: which communications take place, in what order, over
which channels, and what are the types of entities communicated. As demonstrated in

[10] this can be used to obtain a clearer understanding of the behaviour of programs

which leads to more resource-conscious implementations that allow to dispense with

1

multi-tasking and multi-plexing for well-behaved programs.

The advantages of strong typing are well-known as exempli�ed by the growing success

of Standard ML and similar languages. An increasingly popular trend in program anal-

ysis is to express additional intensional program properties in notations reminiscent of
type systems: we shall use the term annotated type systems for such notations. An

early approach was the use of strictness types to analyse lazy (call-by-name) functional

languages for which function parameters were surely needed and hence could be eval-
uated before entering the function (e.g. [5]). Another noteworthy development is the

use of e�ect systems to analyse side-e�ects, aspects of communication behaviour, and

the possibility of parallel execution on vector processors. Our use of communication
behaviours falls within this approach but retains much more causal information in the

communication behaviours.

The speci�cation of program analyses thus takes the form of presenting an inference

system for annotated types that generalises the more common inference systems for

ordinary types, an example of which is the Damas-Milner inference system for Stan-
dard ML. The methods distinguish themselves from more general logical methods, e.g.

the use of strictness logics [3], by the demand to maintain decidability of the inference

system: the hope is that modi�cations of algorithms for type inference, an example
being Milner's algorithm W, may su�ce for obtaining also the program analysis in-

formation of interest. A noteworthy paper along these lines is [4] that develops an

algebraic reconstruction algorithm for a simple e�ect system for the higher-order poly-
morphic language KFX. Robinson uni�cation is used for the type structure, which is

a free algebra, whereas constraint collection is used for the e�ect structure, which is a

non-free algebra; these constraints then have to be solved and in the case of [4] there
is one associative and one commutative law so that one may use UCAI-uni�cation (see

[14] for references).

A main limitation of most current algorithms for extracting e�ect information (includ-

ing [4]), and similarly for much work on admitting subtypes (e.g. [8]), is the proper

treatment of the polymorphic let-construct of Standard ML. There are two reasons
for this: one is that the presence of side-e�ects (e.g. in the form of communications)

makes it impossible to expand the let-construct by syntactically substituting the let-

bound expression into the body of the let; the other is that we shall want to exploit
the e�ect information to obtain more general solutions than provided by the rather

simple-minded distinction between expansive and non-expansive let-constructs. To

obtain a general treatment of the let-construct in the case of side-e�ects, [12] departs
from [4] by modifying the notion of algebraic reconstruction and avoiding the explicit

use of uni�cation in non-free algebras. In particular, constraints take the form of inclu-

sions (in our notation d � �) rather than equations (as in d = �), a special canonical

solution to a set of constraints is de�ned, and this canonical solution is used extensively

during the uni�cation steps of the algorithm. A key result shows that the canonical

solution is principal in the sense of Robinson uni�cation in that it provides the most

general substitution (under composition of substitutions).

Since the extraction of communication behaviours for CML involves a general treat-

ment of the let-construct it is natural to base our algorithm on [12] as opposed to

[4]. However, our non-free algebra of e�ects (which we call behaviours) has much more

algebraic structure than [12]. Although a notion of canonical solution can still be

de�ned we have been unable to �nd a suitable notion of principality. Consequently

our algorithm will build on ingredients from both [12] and [4] but many aspects need

to be carefully revised (not least concerning which type variables to generalise in the
let-construct), new notions developed, and special attention paid to generic (or poly-

morphic) variables in the formulation of soundness. While our algorithm is speci�cally

developed for the extraction of behaviours for CML [10] we believe the ideas to be
useful in general when principality of solutions to constraints cannot be ascertained,

an example being extending [4] to deal properly with the polymorphic let-construct.

In summary we believe that this paper presents the �rst type and behaviour/e�ect

reconstruction algorithm that (1) gives a general treatment of let-polymorphism and at

the same time (2) allows the behaviours/e�ects to have complicated algebraic structure.
The constraints collected by the algorithm need not have principal solutions so special

care is taken to ensure that \incomparable" solutions cannot accidentally be mixed.

2 Type and Behaviour Inference

We consider a polymorphic subset of CML [11] where expressions e 2 Exp are given

by

e ::= c j x j fn x => e j e1 e2 j let x = e1 in e2 j rec f x => e

j if e then e1 else e2

Here x and f are program identi�ers. In addition to function abstraction and function

application we have a polymorphic let-construct, recursion and a conditional. The

constants c 2 Const are given by

c ::= () j true j false j n j + j * j = j � � �
j pair j fst j snd j nil j cons j hd j tl j isnil

j send j receive j choose j wrap j sync j channel j fork

We have constants corresponding to the base types unit, bool and int together with
operations for constructing and destructing pairs and lists as well as the usual arith-

metic and boolean operations. We shall allow to use a bit of syntactic sugar: so we

write [e1,e2] for cons e1 (cons e2 nil), we write (e1,e2) for pair e1 e2, and we
write e1;e2 for e.g. snd(e1,e2). The primitives of CML are available as operations for

sending and receiving values over channels, for choosing between various communica-

tion possibilities and for modifying values being communicated. To be more precise
these primitives only construct suspended communications that may be enacted using

synchronisation. Finally, there are primitives for creating new channels and processes.

As usual we shall use types to classify the values that expressions can evaluate to. When

executing a CML program channels and processes may be created and values may be

communicated and we shall extend the type system with communication behaviours to
record this. To be able to distinguish between the various channels, e.g. based on the

program points where they are created, we introduce a notion of regions into the type

system but the details will not be of importance for the developments of this paper.

For types t 2 Typ we take

t ::= unit j bool j int j � j t1 !
b t2 j t1 � t2 j t list j t chan r j t com b

where � is a meta-variable for type variables (�; �1; �0 etc.). The function type is
written t1 !

b t2 indicating that the argument type of the functions is t1, the result

type is t2 and the latent behaviour is b; this means that when a function is supplied

with its argument the resulting behaviour of executing the function call will be b. The

type of a channel is t chan r indicating that the channel is allocated in region r and
that values of type t can be communicated over it. Finally, t com b is the type of a

suspended communication: when it eventually is enacted using sync, it will result in a

value of type t and the resulting behaviour will be b.

Formally, behaviours b 2 Beh are given by

b ::= � j r!t j r?t j t chan r j � j fork b j b1; b2 j b1 + b2 j rec �: b

Here � stands for the non-observable behaviour. We write r!t for sending a value of type
t over a channel in region r and similarly r?t for receiving a value of type t over a channel

in region r. The allocation of a new channel in region r is written t chan r where t is

the type of values to be communicated. The behaviour fork b expresses that a process
with behaviour b is spawned. Behaviours may be combined using sequencing and choice

and they may be recursive. We write � for a meta-variable for behaviour variables

(�; �1; �
0 etc.). So for example rec �: (t chan r + (fork(r?t); �)) is the behaviour

of a program that either will create a channel and then no more communications take

place, or it will spawn a process that inputs on some channel and then the overall

process will recurse.

Finally, regions r 2 Reg are given by

r ::= r0 j r1 j � � � j �

Here � denotes a meta-variable for region variables (�; �1; �0 etc.) and r0, r1, : : :

denote region constants (which it may be instructive to think of as program points).

The type schemes are obtained from types by quantifying over type variables, behaviour

variables and region variables: they have the form 8~�~�~�:t where ~�, ~� and ~� are lists of

variables. We shall occasionally allow to use as a meta-variable that ranges over �'s,
�'s and �'s as appropriate. A type t is a generic instance of a type scheme ts = 8~�~�~�:t0,

written ts � t (or ts � t under '), if there exists a substitution ' such that 't0 = t

and the domain of ' is a subset of f~�~�~�g. Here a substitution ' is a total function

from type variables to types, from behaviour variables to behaviours, and from region
variables to regions, such that all but a �nite set of variables are mapped to themselves.

The domain of the substitution ' is the �nite set of variables not mapped to themselves

and we write Dom(') for this set. Furthermore, a type scheme ts0 is an instance of ts,
written ts � ts0, if whenever ts0 � t also ts � t.

Occasionally, the context may demand that a subexpression is given a type with a
latent behaviour that is larger than what seems to be desired at a �rst glance. For an

example consider the program

choose [send (ch1, 7), receive ch2]

The �rst element of the list has type int com r1!int (assuming ch1 has type int

chan r1) and the second element has type int com r2?bool (assuming ch2 has type

int chan r2). We want the elements of the list to have type int com (r1!int +

r2?int) to record that either one of the branches may be chosen at run-time. So we

need to coerce the types int com r1!int and int com r2?int into int com (r1!int

+ r2?int).

As discussed in [10] there are several ways of achieving this. The decision made there

is to adopt the approach of early subsumption where generic instantiations produce
the required specialised types and we do not have subsumption rules for modifying the

c TypeOf(c)

+ 8�1; �2: int !�+�1 int !�+�2 int

pair 8�1; �2; �1; �2: �1 !
�+�1 �2 !

�+�2 �1 � �2

fst 8�1; �2; �: �1 � �2 !
�+� �1

snd 8�1; �2; �: �1 � �2 !
�+� �2

send 8�;�1; �2; �: (� chan �)� �!�+�1 � com (�!�+ �2)

receive 8�;�1; �2; �: (� chan �)!�+�1 � com (�?�+ �2)

choose 8�;�1; �2; �3: (� com �1) list!
�+�2 � com (�1 + �3)

wrap 8�1; �2; �1; �2; �3; �4: (�1 com�1)� (�1 !
�2 �2)!

�+�3

�2 com ((�1;�2) + �4)

sync 8�;�1; �2: (� com �1)!
�1+�2 �

channel 8�;�;�: unit!(� CHAN �)+� (� chan �)

fork 8�;�1; �2: (unit!
�1 �)!(FORK �1)+�2 unit

Table 1: Type Schemes for Selected Constants

tenv ` c : t & b if TypeOf(c) � t and � v b

tenv ` x : t & b if tenv(x) � t and � v b

tenv[x 7! t] ` e : t0 & b

tenv ` fn x => e : t!b t0 & b0
if � v b0

tenv ` e1 : t!
b t0 & b1 tenv ` e2 : t & b2

tenv ` e1 e2 : t
0 & b0

if b1; b2; b v b0

tenv ` e1 : t1 & b1 tenv[x 7! ts] ` e2 : t2 & b2
tenv ` let x = e1 in e2 : t2 & b0

if ts = gen(tenv; b1)t1 and b1; b2 v b0

tenv[f 7! t!b t0][x 7! t] ` e : t0 & b

tenv ` rec f(x)=>e : t!b t0 & b0
if � v b0

tenv ` e : bool & b tenv ` e1 : t & b1 tenv ` e2 : t & b2
tenv ` if e then e1 else e2 : t & b0

if b; (b1 + b2) v b0

Table 2: Type and Behaviour Inference

behaviours that label type constructors. A similar choice is made in [12]. This means

that the latent behaviour of functions and suspended communications must always be
prepared to be larger than what seems desired at a �rst glance. Hence whenever the

behaviour b seems called for we shall write b + � for a suitable behaviour variable �.

This explains the type schemes of the selected constants given in Table 1. Note that

only the constants sync, channel and fork have a non-trivial latent behaviour (i.e.

have b 6= �).

� pre-order laws P1. b v b

P2. if b1 v b2 and b2 v b3 then b1 v b3
� pre-congruence laws C1. if b1 v b2 and b3 v b4 then b1; b3 v b2; b4

C2. if b1 v b2 and b3 v b4 then b1 + b3 v b2 + b4
C3. if b1 v b2 then fork b1 v fork b2
C4. if b1 v b2 then rec �: b1 v rec �: b2

� laws for sequencing S1. b1; (b2; b3) � (b1; b2); b3
S2. (b1 + b2); b3 � (b1; b3) + (b2; b3)

� laws for � E1. b � �; b

E2. b; � � b

� laws for choice (or join) J1. b1 v b1 + b2 and b2 v b1 + b2
J2. b+ b v b

� laws for recursion R1. rec �: b � b[� 7! rec �: b]
R2. rec �: b � rec�0:b[� 7! �0] if �0 not free in rec�:b

Table 3: Ordering on Behaviours

The typing judgements have the form tenv ` e : t & b where tenv is a type environment

mapping identi�ers to type schemes, t is the type of e and b is its behaviour. Since

CML has a call-by-value semantics there is no behaviour associated with accessing an
identi�er and therefore the type environment does not contain any behaviour compo-

nent (except within type schemes). The typing rules are given in Table 2 and are fairly

close to the standard ones except that also behaviour information is collected. The
types of constants and identi�ers are obtained as generic instances of the appropriate

type schemes. The actual behaviour is � but, as mentioned earlier, we may want to

use a larger behaviour and to express this we introduce an ordering v on behaviours.
This turns out to be a general pattern of the axioms and rules: it is always possible to

enlarge the actual behaviour.

In the rule for function abstraction we record the behaviour of the body of the function

as the latent behaviour of the function type. The construction of a function does not
in itself have an observable behaviour and so is �. In the rule for function application

we see that the actual behaviour of the composite construct is that of the operator

followed by that of the operand and then the behaviour of the function application
itself; the latter is exactly the latent behaviour of the function type. Again we note

that this rule is only sound because CML has a call-by-value semantics. In the rule for

local de�nitions we generalise over those type variables, behaviour variables and region
variables that neither occur free in the type environment nor in the behaviour; this is

expressed by

gen(tenv; b)t =

let f~�~�~�g = FV (t) n (FV (tenv) [FV (b)) in 8~�~�~�:t

where FV (� � �) is the set of free type variables, behaviour variables and region variables

of the argument. The actual behaviour of the let-construct simply expresses that the

local value is computed before the body. In the rule for recursive functions we make
sure that the actual behaviour is equal to the latent behaviour of the type of the

recursive function. The rule for conditional should be straightforward.

The ordering v on behaviours is de�ned by the axioms and rules of Table 3. Thus we

require v to be a pre-order and a pre-congruence. We use � for the associated equiv-
alence, i.e. b1 � b2 stands for b1v b2 and b1 w b2, whereas we reserve = for syntactic

identity. Furthermore, sequencing is an associative operation with � as identity and we

have a distributive law with respect to choice. A consequence of the laws for choice
is that it is the least upper bound operator and hence associative and commutative.

Finally, the law for recursion allows to unfold the rec-construct and we have a law for

alpha-renaming the bound variable.

The main di�erence between the typing system presented here and those more closely

following [12] is that we keep track of the dependencies between the individual com-
munications. If we were to get rid of the di�erence between sequencing and choice and

to allow all behaviours to be implicitly recursive we could move closer to the world of

[12, 13] by extending Table 3 with the laws b1; b2 � b1 + b2 and rec �: b � b[� 7! �];
but then we would loose so much causality that the applications in [10] would no longer

be possible.

3 Type and Behaviour Reconstruction

The key idea to our use of algebraic reconstruction is that certain behaviours are

replaced by behaviour variables; the information that might get lost by such a replace-
ment is then retained by a collection of constraints that relate the behaviour variables

to the behaviours. Since the behaviour variables will be chosen as \fresh" variables in

the algorithm this ensures that behaviour variables identify unique behaviour positions
| but only until uni�cation forces us to \merge" such positions in the manner alluded

to in the discussion of \early subsumption" above.

To carry this idea through we de�ne simple types

s ::= unit j bool j int j � j s1 !
� s2 j s1 � s2 j s list

j s chan r j s com �

to be types where only behaviour variables occur as latent behaviours of functions and

suspended communications. In a similar manner we de�ne simple behaviours

d ::= � j r!s j r?s j s chan r j � j fork d j d1;d2 j d1 + d2

to be behaviours that only use simple types. Additionally we ban the use of (explicit)
recursive behaviours since for the purposes of the algorithm they are replaced by sets

of constraints (that may be implicitly recursive). Finally to retain the relationship

between behaviour variables and behaviours we use constraints of the form d � � and
we shall write C for a �nite set fd1 � �1; � � � ; dk � �kg, or [d1 � �1; � � � ; dk � �k], of

such constraints. The symbol � is a formal symbol closely related to v: a substitution

' solves C, written ' j= C, i� 'div'�i for all di � �i in C.

A constrained type scheme (or simple scheme) is of the form 8~�~�~�:s[C] where the type

t of a type scheme is replaced by the \pair" s[C] consisting of a simple type and a set of

constraints. Intuitively, the \translation" from t to s[C] proceeds as follows: whenever
t has a behaviour d + � at a certain position replace it by the behaviour variable �

and add the constraint d � � to C. Several examples of this \translation" is given by

comparing the constrained type schemes of Table 4 to the type schemes of Table 1. One
subtle point may need to be clari�ed: we choose to collect d � � rather than d+� = �

c CTypeOf(c)

+ 8�1; �2: int!
�1 int!�2 int [� � �1; � � �2]

pair 8�1; �2; �1; �2: �1 !
�1 �2 !

�2 �1 � �2 [� � �1; � � �2]

fst 8�1; �2; �: �1 � �2 !
� �1 [� � �]

snd 8�1; �2; �: �1 � �2 !
� �2 [� � �]

send 8�;�1; �2; �: (� chan �)� �!�1 � com �2 [� � �1; �!�� �2]

receive 8�;�1; �2; �: (� chan �)!�1 � com �2 [� � �1; �?� � �2]

choose 8�;�1; �2; �3: (� com �1) list!
�2 � com �3 [� � �2; �1 � �3]

wrap 8�1; �2; �1; �2; �3; �4: (�1 com�1)� (�1 !
�2 �2)!

�3 �2 com �4
[� � �3; �1;�2 � �4]

sync 8�;�1; �2: (� com �1)!
�2 � [�1 � �2]

channel 8�;�; �: unit!� (� chan �) [� chan � � �]

fork 8�;�1; �2: (unit!
�1 �)!�2 unit [fork �1 � �2]

Table 4: Constrained Type Schemes for Selected Constants

because this suits us later; however, semantically there is no di�erence because dv �

is equivalent to d+ � � � given that + is the least upper bound operator.

A typical use of the type and behaviour reconstruction algorithmW upon an expression
e takes the form

W senv e = (�; s; d;C; S)

Here senv is a constrained type environment (or simple environment) that maps iden-

ti�ers to constrained type schemes. The �rst result � is a simple substitution that
maps type variables to simple types, behaviour variables to behaviour variables (and

not to simple behaviours), and region variables to region variables. Naturally s is a

simple type and d is a simple behaviour. If we had no need to consider constraints we
would formulate soundness of W by stating that �(senv) ` e : s & d is derivable in the

inference system of Table 2.

The need to consider constraints presents several complications that are further aggra-

vated by our general treatment of let in Table 2 where we use the behaviour infor-
mation when deciding which variables to generalise (as opposed to trying to use the

concept of expansiveness). An obvious need forW is to collect the set C of constraints.

For the statement and proof of soundness we shall be interested in a record of other
\phenomena" taking place in the course of execution. One piece of information is the

set of \fresh" variables that are generated; we could choose to collect this in the solu-

tion restriction S but following the usual \sloppiness" dating back to the presentation
of the original algorithm W we shall abstain from this and merely write Fresh(senv ,e)

for this set. Another piece of information is a record of all variables generalised in an

internal let-construct; we shall choose to be precise about this and place the entry G�

in S whenever a set � of type, behaviour or region variables has been generalised. A

third piece of information is a record of all instantiations of (constrained) type schemes

taking place for constants and identi�ers; we shall choose to be precise about this and

place the entry ~ : ~0 in S whenever ~0 is an instance of ~. Special care must be taken

when applying substitutions to solution restrictions. This is done pointwise and we

de�ne �(~ : ~0) to be ~ : �~0 and �(G�) to be G� for reasons to become clear later.

In the next section we shall formalise soundness ofW based on the idea that �h�(senv)i `

e : �(s) & �(d) should be provable whenever � is a solution to C that is faithful to

the solution restriction S. The de�nition of W is given in Table 5 and is explained
in some detail below. Throughout we use the following conventions: the functional

composition of the substitutions '1 and '2 is written '1'2 rather than '1 � '2; sim-

ilarly the application of substitution '1'2 to an argument s is written '1'2s rather
than '1('2s). These conventions bind more tightly than any other operations (e.g. set

union or semi-colon).

In the clause for constants we need to produce a new generic instance of the constrained

type scheme for the constant. This is accomplished by the function INS de�ned by

INS (8~�~�~�:s[C]) = let ~�0 ~�0~�0 be fresh

� = [~�~�~� 7! ~�0 ~�0~�0]

in (�s)[�C];f~�~�~� : ~�0 ~�0~�0g

It may appear strange that the solution restriction is thrown away; later we shall see
that this is correct because no constraint set of Table 4 is implicitly recursive.

For identi�ers we have the analogous clause except that the solution restriction is
retained; later we shall see that this is necessary because we cannot a priori guarantee

that there is no implicit recursion in the constraint set for the identi�er.

In the clause for function abstraction the recursive call uses an empty constraint set for

the fresh type variable because a type variable contains no behaviours. Since the latent
behaviour of the function space should really be d (or perhaps d+ �) it is sensible to

use the behaviour variable � provided we add the constraint d � �.

Uni�cation is as normal except that we must take care also to unify behaviour variables

and region variables. For type variables we have the usual \occurs check" and we should

stress that the set of constraints does not enter into this (unlike [12]); the reason is that
we can solve all sets of constraints and so do not need to check for circular behaviours.

For reasons of space we omit formal de�nition of UNIFY.

The interesting part of the clause for let is the treatment of generalisation. As an

analogue of gen(tenv ,b)t used in Table 2 we here use

GEN(senv , d) s[C] = let f~�~�~�g = G(s; d; senv; C)

in 8~�~�~�:s[C]; fGf~�~�~�gg

for a suitable set G(s; d; senv; C). Note that we incorporate the entire constraint set in
the result of W; the rationale is that even if the let-bound variable does not occur in

the body we must still be able to type its de�ning expression. Also note that we do

not attempt to reduce the size of the constraint set bound into the constrained type

scheme as might be sensible given that the entire set has been incorporated into the

result of W; while such reductions may be possible it seems incorrect to simply adapt

the constraint-splitting of [12].

To de�ne G we need an auxiliary concept. A set Y of variables is said to respect a set
C of constraints if each constraint of C satis�es that it either only involves variables

of Y or of the complement of Y :

8(d � �) 2 C : FV (d � �) � Y _ FV (d � �) \ Y = ;

In this case C may be split into two disjoint sets C1 and C2 such that their union still

W senv c =

let s[C]; S = INS(CTypeOf c)

in (Id; s; �; C; ;)

W senv x =
let s[C]; S = INS(senv x)

in (Id; s; �; C; S)

W senv (fn x => e) =

let �;� be fresh
(�; s; d;C; S) =W (senv[x 7! � []]) e

in (�; ��!� s; �;fd � �g [C;S)

W senv (e1 e2) =

let �;� be fresh

(�1; s1; d1; C1; S1) =W senv e1
(�2; s2; d2; C2; S2) =W (�1senv) e2
� = UNIFY (�2s1; s2 !

� �)

in (��2�1; ��; �(�2d1;d2;�); ��2C1 [�C2; ��2S1 [�S2)

W senv (let x = e1 in e2) =

let (�1; s1; d1; C1; S1) =W senv e1
ss; S = GEN(�1senv; d1) s1[C1]

(�2; s2; d2; C2; S2) =W ((�1senv)[x 7! ss]) e2
in (�2�1; s2; �2d1;d2; �2C1 [C2; �2S1 [�2S [S2)

W senv (rec f x => e) =
let �1; �2; � be fresh

(�; s; d;C; S) =W (senv[f 7! �1 !
� �2 []][x 7! �1 []]) e

�0 = UNIFY (��2; s)

in (�0�; �0��1 !
�0�� �0s; �; �0C [f�0d � �0��g; �0S)

W senv (if e then e1 else e2) =
let (�; s; d;C; S) =W senv e

�0 = UNIFY (s, bool)

(�1; s1; d1; C1; S1) =W (�0�senv) e1
(�2; s2; d2; C2; S2) =W (�1�0�senv) e2
�0 = UNIFY (�2s1; s2)

in (�0�2�1�0�; �
0s2; �

0�2�1�0d; (�
0�2d1 + �0d2);

�0�2�1�0C [�0�2C1 [�0C2; �
0�2�1�0S [�0�2S1 [�0S2)

Table 5: Type and Behaviour Reconstruction

gives C but C1 only involves variables of Y and C2 does not involve variables of Y . To

prepare for the treatment of soundness, in particular the existence of solutions faithful

to the solution restriction, we demand that G(s; d; senv; C) respects C. As was the

case for gen we want G(s; d; senv; C) to be disjoint with FV (d) [FV (senv). Surely

G(s; d; senv; C) should contain variables of s but since much of the information that
\ought to be" in s has been placed in C we should take this into account by \closing

under C". Formally we de�ne the closure of a set X under C by the formula

XC = fn j 0 2 X ^ 8i < n : (� � �i+1� � � � i) 2 Cg

(reminiscent of the de�nition of the set of sentential forms generated by the nontermi-
nals X given the grammar C). We then de�ne G(s; d; senv; C) to be the maximal set

ful�lling these restrictions:

G(s; d; senv; C) =
S
fY j Y � FV (s)Cn(FV (d)[FV (senv)); Y respects Cg

Lemma 3.1 This de�nes a set that respects C.

Variations in the de�nition of G are of course conceivable. An obvious question is

whether also to close FV (d)[FV (senv) under C following [6]; but given our insistence

on \respecting C" this does not a�ect the de�nition of G.

The clauses for recursion and conditional should present no surprises.

Fact 3.2 W always terminates (possibly with failure).

Existence of solutions

Having constructed a (necessarily �nite) set of constraints our next task is to solve

them. Due to the presence of recursive behaviours we can modify the approach of [12]

to construct solutions to all �nite sets of constraints. Formally a solution � to a set
of constraints C is a substitution that maps behaviour variables to behaviours (not

simple behaviours only) such that �dv�� holds for all d � � in C. The canonical

solution C is constructed as follows:

� if C = ; then

C = Id

where Id is the identity substitution

� if d1 � �, � � �, dk � � are all the constraints in C with right-hand side � then

C = [� 7! rec �:C�(d1 + � � �+ dk)]�C�

where C� is C n fd1 � �; � � �; dk � �g.

There is a fair amount of nondeterminacy in this de�nition. We may reduce this

by assuming a linear order on behaviour variables and then consider the behaviour

variables in increasing order. The �nal ambiguity is the order in which the d1; � � �; dk
are collected but this does not inuence the solution (modulo �).

Lemma 3.3 All (�nite) sets of constraints have a solution; in particular: C j= C.

The di�culty with this canonical solution is to �nd a sense in which it is \principal". To

illustrate this consider the constraint � � �. Its canonical solution is [� 7!rec�.�] but

[� 7!�], [� 7!�], [� 7!�!�] and [� 7!rec�.(�+�!�)] are also solutions. To de�ne \principal-
ity" we need to de�ne an operator > such that � >rec�:�, � >rec�:�, �!� >rec�:�

and rec�:(�+ �!�) > rec�:�. It is by no means clear how to use v and composition

of substitutions to achieve this. (It is easy to prove that w cannot be used for >.)

This then motivates our design of an algorithm that does not assume the existence of
\principal" solutions.

Note that the use of rec� in the de�nition of C above is superuous if the C�(d1+� � �+
dk) in question does not contain �: simply use R1 to unfold rec�:C�(d1+ � � �+dk) to

C�(d1 + � � �+ dk). This is the case if C contains no implicit recursion over behaviour

variables. Then much as in [12] any solution � to fd1 � �; � � �; dk � �g satis�es
��w�(d1 + � � �+ dk) w �(C�(d1 + � � �+ dk)) � �(C�) so in a sense C� is \principal"

(least) in this case: in [12] � j= C implies � = ��C whereas we get �w��C (provided C

has no implicit recursion!). These remarks shed some additional light on our di�erent
treatment of constants and identi�ers in algorithm W.

4 Soundness

To state the soundness of algorithm W we need a few auxiliary concepts and notations

and to conduct the proof we need a technical proposition about the algorithm. We

therefore begin by establishing the required terminology.

Recall our notation for substitutions: we use ' (and '0; '1 etc.) for general substitu-

tions, � (and �0; �1 etc.) for simple substitutions, and � (and �0; �1 etc.) for solution
substitutions. The domain Dom(') of a substitutions ' is the �nite set of variables not

mapped to themselves. We shall say that ' has no e�ect on a type s if Dom(')\FV (s)

= ; so that 's = s; similar terminology applies to behaviours and constraints. The
substitution ' involves the set Inv(') = Dom(')[

S
f FV (') j 2Dom(') g of vari-

ables; we shall say that ' does not involve a type s if Inv(')\FV (s) = ; and similarly

for behaviours, constraints, sets of variables, etc. For types, behaviours and constraints
we shall say that the set of variables involved are their set of free variables. The ap-

plication of ' to a simple scheme 8~:s[C] is 8~0:('�[~ 7! ~0])(s[C]) where ~0 is chosen

so as to avoid capture of free variables; there is some amount of nondeterminacy in
this de�nition and we shall assume that ~0 is chosen to be ~ whenever possible. The

application of a substitution may be extended to a simple environment in a \pointwise"

manner.

The set BV (8~:s[C]) of bound variables of 8~:s[C] is f~g and the set FV (8~:s[C]) of
free variables is FV (s[C])nf~g. For a simple environment senv we de�ne BV (senv) =S
fBV (senv(x)) j x in the domain of senvg and similarly for FV (senv). It is possible

that a variable occurs free in senv as well as bound at more than one identi�er; we
shall say that senv is consistent if this is not the case:

8x6=y: BV (senv(x)) \ (BV (senv(y))[FV (senv(y))) = ;

(Consistency can always be achieved by alpha-renaming.) Next, we write GV (S) for

the set
S
f� j G� 2 Sg of variables recorded to be generalised in the solution restriction

S, LV (S) for the set f j (� � �� � � : � � �0� � �) 2 Sg of instantiated variables and RV (S)

for the set f0 j (� � �� � � : � � �0� � �) 2 Sg of instantiation variables.

We also need to be able to keep the di�erent \classes" of polymorphic variables sep-

arate: to this end we de�ne BV(senv) = fBV (senv(x)) j x in the domain of senvg

and GV(S) = f� j G� 2 Sg. Note that BV (senv) =
S
BV(senv) and GV (senv) =S

GV(senv) and that consistency of senv implies that the sets of BV(senv) are mutually

disjoint.

We can now strengthen Fact 3.2 by stating a technical proposition about the result

(�; s; d;C; S) produced by W senv e for consistent senv : e.g. that � is a simple and

idempotent substitution. For reasons of space we omit the formal statement.

We now turn towards the statement of soundness. Recall that a substitution � solves

a set C of constraints, written � j= C, if �dv�� holds for all d � � in C. It satis�es
a simple scheme (� j= 8~:s[C]) if it satis�es the constraints embedded (� j= C). Note

that for the purpose of satisfying simple schemes we do not regard the quanti�ed

variables as concealed from the outside; this creates no problems because we work with
consistent environments that do not involve freshly generated variables. We also need

a special notion of applying a substitution � to a simple scheme 8~:s[C] in order to

obtain a type scheme:

�h8~:s[C]i = 80 2 FV (�~): �(s)

This de�nition would be problematic if FV (�~) n f~g contains a variable free in s

because then this variable gets bound as part of the application. Rather than amending

this by replacing FV (�~) with e.g. FV (�~)n(FV (s) n f~g) we shall make sure only to
work with solution substitutions where this phenomena does not occur. The special

notion of application may be extended to simple environments in a \pointwise" manner.

One restriction we impose upon a solution � is that it maintains the distinction

between \polymorphic variables", i.e. BV (senv) [GV (S), and \free variables", i.e.
FV (senv)[Fresh(senv; e). Additionally a solution must maintain the distinction be-

tween the di�erent \groups" of polymorphic variables. To express this concisely write

�1#��2 i� FV (��1)\FV (��2) = ;

and de�ne

� z P;F i� the sets of P are mutually disjoint and

8�1; �2 2 (
S
P) [F : �1#��2 _ f�1; �2g � F n (

S
P) _

9P 2 P : f�1; �2g � P

The condition then is that � z BV(senv)[GV(S); FV (senv)[Fresh(senv; e) and then

the capture of free variables in �h� � �i cannot take place. Note that � z P; F is equivalent

to � z P; F n
S
P as well as � z P [fF n

S
Pg; ;.

Another restriction we need to impose upon a solution � is due to the fact that we

do not assume the existence of principal solutions. Yet it will be of importance for
soundness that the solutions to a generic scheme is \compatible" with the solutions to

its instantiations. To this end de�ne

� y S i� 8(~�~�~� : ~�0 ~�0~�0) 2 S : each ��0 � b for some b that is a substitution

instance of ��

so that � y S expresses the desired \compatibility" (modulo �).

To prepare for the statement of soundness we write tenv ` e : t & b (modulo �)

as a shorthand for: there exists tenv0, t0 and b0 such that tenv0 ` e : t0 & b0 and

tenv � tenv0, t � t0 and b � b0. We then have

Theorem 4.1 Suppose W senv e = (�; s; d;C; S) and senv is consistent. Then

� � j= C ^ 8x : � j= �(senv(x))

� � y S ^ � z BV(senv) [GV(S), FV (senv)[Fresh(senv; e)

implies �h� senvi ` e : �(s) & �(d) (modulo �).

The condition that � j= C simply states that � solves the constraints generated. But
in order that the translation of the simple environment senv to the type environment

�h�senvi is meaningful we need to ensure that also the constraints in the simple type

environment are correctly solved. We could have used a \solution environment" for
this but our assumptions on consistency etc. ensure that we can dispense with this

machinery. The two conditions on faithfulness with respect to S have already been

motivated.

The proof of this result uses a number of observations. For these we de�ne ts � ts0

(modulo �) to mean that if ts � t0 then there exists t such that ts � t and t � t0.

Fact 4.2 b1w b2 is equivalent to b1 � b1 + b2 and implies FV (b1) � FV (b2).

Lemma 4.3 If � j= C then
S
f FV (�) j 2 XCg =

S
f FV (�) j 2 Xg for all

sets X.

Lemma 4.4 For all constants c of Tables 1 and 4: if � j=CTypeOf(c) then TypeOf(c) �

�hCTypeOf(c)i (modulo �).

Existence of solutions

The conditions imposed upon the solution � in the statement of soundness imply that

even when the simple environment senv is empty it will not always work to use the
canonical solution C to the set C of constraints produced. The reason is that C need

not be faithful to the solution restriction S, in particular C y S might fail.

To sketch this consider distinct behaviour variables �1 and �2 and constraints b1 � �1
and b2 � �2 where we shall assume that b1 and b2 have no free variables and that we

do not have b1vb2 nor b1wb2. Let �1 and �2 be polymorphic variables and suppose
they are instantiated to fresh behaviour variables �0

1 and �0

2; we then generate the

constraints b1 � �0

1 and b2 � �0

2. If we later unify �0

1 and �0

2 we intuitively get the

constraints b1 + b2 � �0

1 and b1 + b2 � �0

2. Thus the canonical solution (modulo �, in
particular after using R1) maps �1 to b1 but �0

1 to b1 + b2 and similarly for �2 and

�0

2. This contradicts the presence of (�1 : �
0

1) in S since b1 + b2 is not a substitution

instance of b1 (modulo �).

Luckily we can overcome the above problem by accepting canonical solutions to mod-

i�ed sets of constraints than those produced by the algorithm. To prepare for this we
shall say that senv respects itself if all senv(x) = 8 ~x:sx[Cx] satisfy that f ~xg respects

Cx.

Theorem 4.5 Let senv be consistent and respect itself and suppose that W senv e =

(�; s; d;C; S). Then there exists a solution � such that

� � j= C ^ 8x : � j= �(senv(x))

� � y S ^ � z BV(senv) [GV(S), FV (senv)[Fresh(senv; e).

5 Conclusion

Our treatment of let is necessarily more complex than in [4] because we want to

obtain more polymorphism than is possible using the concept of expansiveness: this is

a syntactic condition on an expression that guarantees the e�ect of that expression to
be �. In [4] the construct let x = e1 in e2 is treated as e2[e1=x] for expansive e1 (thus

admitting polymorphism) and as (fn x => e2)(e1) for non-expansive e1 (thus preventing

polymorphism). We wish to achieve polymorphism even for non-expansive e1. So
suppose e1 = e11;e12 where only e12 has e�ect equivalent to �. Then we shall treat let

x = e11;e12 in e2 as e11;e12;(e2[e12=x]). In general we cannot syntactically dissect e1
into its \expansive" part e12 and its \non-expansive" part e11 and we therefore follow
[12] in the more complicated de�nition of generalisation.

Our behaviours have much more algebraic structure than the e�ects of [12] and the
presence of recursive behaviours means that we can solve all constraints. The price to

pay for the latter is that the canonical solution does not appear to be principal and

consequently our algorithm deviates fundamentally from [12]. This may be paraphrased
by saying that [12] solves constraints on-the-y (to facilitate the \occurs check" and

the splitting of constraints) whereas our algorithm involves no solving on-the-y.

To investigate the link between uni�cation in non-free algebras and algebraic re-

construction (in the sense of [12]) consider the types t1 = int !�1 !�1+�1 int and

t2 = int !�2?�2+�2 int. It is impossible to unify them if behaviours constitute a
free algebra because �1!�1 cannot be uni�ed with �2?�2. If behaviours admit com-

mutativity for +, as is the case given the axiomatisation of Table 3, we can rearrange

terms and use the substitution � = [�1 7! �2?�2; �2 7! �1!�1]; more precisely we
perform uni�cation modulo �, i.e. we get �t1 � �t2, where � has been extended from

behaviours to types in the obvious manner. Another substitution that will unify t1
and t2 (modulo �) is �0 = [�1 7! �2?�2 + �12; �2 7! �1!�1 + �12]; this is a \strange"
substitution to suggest as the result of uni�cation involves a behaviour variable that

is not free in the arguments. We now show that this is essentially what goes on in

algebraic reconstruction.

To see this note that using constraints we represent t1 as s1[C1] where s1 = int!�1 int

and C1 = f�1!�1 � �1g and similarly for t2. Algebraic reconstruction then \uni�es"

s1[C1] and s2[C2] by constructing a uni�er �00 for s1 and s2 and by collecting the

constraints C12 = f�1!�1 � �00�1; �2?�2 � �00�2g. The substitution �00 is going to be
one of [�1 7! �2] or [�2 7! �1] but let us pretend that instead it is [�1 7! �12; �2 7! �12].

Then C12 boils down to f�1!�1 � �12; �2?�2 � �12g which under the laws of Table 3

is equivalent to f�1!�1 + �2?�2 � �12g and f�1!�1 + �2?�2 + �12 = �12g. This shows
that �00si[Ci] is just another way of presenting �0ti above.

It thus appears that algebraic reconstruction is a very special case of uni�cation where
only the laws for + being least upper bound are of importance and where all substitu-

tions produced have a special form: there always is a \+�12" component and it is the

�12 that will be used for further uni�cations.

An interesting question left open by our treatment is the completeness of W wrt. the

inference system of Table 2. While this question is of great theoretical importance it
is in good accord with the considerations of program analysis that we do not regard

it as prominently as soundness: the whole nature of program analysis is to trade a

lack of precision for acceptable time- and space-complexities | not least because most

program analysis questions turn out to be undecidable when exact answers are required.

On the practical side we have experimented with an implementation of (a precurser

of) the algorithm presented. This has proven to be a most e�ective way of increasing

one's understanding of the communication behaviour of CML-programs.

Acknowledgements to Torben Amtoft, Fritz Henglein, Pierre Jouvelot, Jean-Pierre

Talpin, and Mads Tofte for interesting discussions and to LOMAPS (Esprit Basic
Research) and DART (Danish Science Research Council) for funding.

References

[1] B. Berthomieu, T. Le Sergent: Programming with Behaviours in an ML Frame-

work, the Syntax and Semantics of LCS. Proc. ESOP'94, SLNCS 788, 1994.

[2] A. Giacalone, P. Mishra, S. Prasad: Operational and Algebraic Semantics for

Facile: A Symmetric Integration of Concurrent and Functional Programming.
Proc. ICALP'90, SLNCS 443, 1990.

[3] T. Jensen: Disjunctive Strictness Analysis. Proc. LICS'92, 1992.

[4] P. Jouvelot, D. K. Gi�ord: Algebraic Reconstruction of Types and E�ects. Proc.
POPL'90, 1990.

[5] T.-M. Kuo, P. Mishra: Strictness Analysis: A New Perspective based on Type
Inference. Proc. FPCA'89, ACM Press, 1989.

[6] X. Leroy, P. Weiss: Polymorphic Type Inference and Assignment. Proc. POPL'90,
ACM Press, 1990.

[7] D. Matthews: A Distributed Concurrent Implementation of Standard ML. Proc.
EurOpen Autumn 1991 Conference, 1991.

[8] J. C. Mitchell: Type Inference with Simple Subtypes. Journal of Functional Pro-

gramming 1, 1991.

[9] F. Nielson, H.R. Nielson: From CML to Process Algebras. Proc. CONCUR'93,

SLNCS 715, 1993.

[10] H. R. Nielson, F. Nielson: Higher-Order Concurrent Programs with Finite Com-

munication Topology. Proc. POPL'94, ACM Press, 1994.

[11] J.H. Reppy: Higher-Order Concurrency. Ph.D.-Thesis, Rep. 92-1285, Department

of Computer Science, Cornell University, 1992.

[12] J.-P. Talpin, P. Jouvelot: The Type and E�ect Discipline. Proc. LICS'92, 1992.

(Also see Information and Computation 111 2 , 1994.)

[13] B. Thomsen: Polymorphic sorts and types for concurrent functional programs.

Techn. Rep. ECRC-93-10, 1993.

[14] J. H. Siekmann: Uni�cation Theory. Journal of Symbolic Computation 7, 1989.

