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• specification of specific analyses for programming languages,

• the role of effects, polymorphism, conjunction/disjunction types, de-
pendent types etc. in specification of analyses,

• algorithmic tools and methods for solving general classes of type-based
analyses,

• the role of unification, semi-unification etc. in implementations of anal-
yses,

• proof techniques for establishing the safety of analyses,

• relationship to other approaches to program analysis, including ab-
stract interpretation and constraint-based methods,
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A Calculus of Tagged Types, with applications
to process languages

Bernard Berthomieu
Camille le Moniés de Sagazan
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Abstract

Tagged Types encode some families of types indexed by labels.
Like Wand’s row types, they make use of specific variables from which
new fields can be extracted, and like Rémy’s record types, the types
introduced in these fields can be parameterized. However, the logi-
cal and technical treatment of tagged types is original; it is claimed
that they combine the intuitiveness of row types with most of the
expressiveness of record types. Their use is illustrated by the design
of polymorphic typing systems for various process calculi extending
CCS. Processes are assigned types which associate polymorphic types
with all communication labels.

1 Introduction

1.1 Types for tagged expressions

Typing record expressions or some behavior expressions, or inferring signa-
tures in module systems, require collections of types associated with labels.
A number of proposals have been done to give such structures some exten-
sions capabilities. Wand introduced row variables in [20] to type records
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with partial knowledge of their fields. Rémy [13] subsequently used infini-
tary products and proposed a convenient polymorphic type system for record
expressions. A connection between the two formalisms is made clear in [21]
where row types are presented as a handy notation for some of Rémy’s record
types.

In row types notation, a function taking a record as argument and extracting
the content of its field labelled a has type {a : P(α)}∆→ α where encapsu-
lation by P means that field a is required and the row variable ∆ implicitly
associates some type variable αb with every label b �= a. In Rémy’s notation,
it has type {a : P(α); β} → α, where β is a “pattern” for the types in other
fields than that labelled a.

Record types and row types may be read as total mappings, assigning types
to all labels. Consistently with Rémy’s treatment, row variables may be read
as partial mappings. The row type {a : P(int)}∆, for instance, associates a
type with every possible record label but, in that context, the row variable ∆
does not assign any type to label a since one is already assigned to it. This
interpretation implies a well-formedness condition for types excluding types
like e.g. ∆→ {a : int}∆.

The Tagged Types we introduce use row variables, but these are interpreted
as total mappings; well-formedness of types becomes a simple grammatical
constraint. Label replications (as in {p: int} {p: β}Ω, obtained from {p:
int}∆ by substituting ∆) are handled by considering that a field supersedes
any inner fields bearing the same label. In addition, row variables are asso-
ciated with type schemes used as patterns for the types implicitly assigned
by the variables; this gives tagged types most of the flexibility of Rémy’s
record types. From an axiomatization of their equality, we derive unification
algorithms that extend in a simple way the standard techniques.

1.2 Typing process calculi

Tagged types were developed to typecheck parallel programs written in LCS
[3], a language combining ML and an higher order version of the Calculus of
Communicating System [9] with behavior passing and parametric channels.

There are basically two classes of process programming languages, according
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to whether or not communication channels are considered first-order values.

Languages in the former class include the π-calculus [10], CML [15], FACILE
[5] and Plain CHOCS [17]. In these languages, channels are typically typed
like locations in a store; processes are merely checked in an environment as-
signing types to channels and other variables, and are given a trivial process
type (see e.g. [7]). Alternatively, [12] annotate functional types with behav-
ioral informations from which various static analyses, including typing, can
be performed.

Calculi and languages in the latter class include CHOCS [16], TPL [11] and
LCS [3]. The “channels as locations” analogy would give here a poor typing
system, rejecting many useful programs. A better approach is to see processes
as records of channels and to assign each process the set of types expected
on the communication labelsit uses. This is basically the approach of [11].

Computing statically that set of labels is not always possible, in particular in
languages allowing process-passing or permitting to define process combina-
tors. Such features can be handled by making the type of a process assign a
type information to all possible communication labels, and not only to those
used by the process; such process types are conveniently encoded by tagged
types. This is the approach taken for LCS; it bears strong similarities with
the way record expressions are typed in [21] or [13].

1.3 Plan of the paper

Tagged Types are introduced in Section 2, including unification techniques.
Section 3 illustrates their use for typing CCS programs and various higher
order extensions. We conclude with some comparisons with related work.
Most of the results are given here without proofs, these will be included in
a longer version of this paper. More details can be found in [2], an earlier
attempt at formalizing tagged types, or in the second author’s forthcoming
thesis [6].
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2 Tagged Types

2.1 The language of tagged types

Given a countable set of labels Σ = {p, q, . . .}, types τ , of which the tagged
types ρ are a subset and type schemes σ obey the following grammar:

τ ::= α, β, γ, . . . plain type variables
| a, b, c, . . . plain constant types
| τ → τ function type
| ρ tagged types

ρ ::= ∆σ, Θσ′ , . . . tagged type variables, σ, σ′ closed
| ∇µ,∇µ′ , . . . tagged type constants, µ, µ′ monotypes
| {p : τ}ρ field prefixing, for each p ∈ Σ

σ ::= τ | ∀αs.σ type schemes

The types are classified into sorts; infinitely many variables are available at
each sort. Plain variables and plain constants have the plain sort U . A tagged
variable ∆σ or tagged constant ∇σ has the tagged sort T (σ); each closed type
scheme defines a tagged sort. Sort assignment for the other types will soon
be made precise. A monotype is a type in which no variable occurs (of any
sort). Though this is not essential, it is assumed that tagged variables have
polymorphic sorts (i.e. the closed type scheme σ in ∆σ contains at least one
variable).

Tagged types have a number of fields prefixing a tagged variable or tagged
constant (called the extension); each field associates a type with a label. The
type {p1 : τ1} . . . {pk : τk}ρ is also written {p1 : τ1 . . . pk : τk}ρ when type ρ
has no fields and labels p1 are pairwise distinct. Sort annotations are omitted
for tagged variables having sort T(∀α.α) : ∆, Θ, stand for the variables ∆∀α.α,
Θ∀α.α.

As usual, type schemes are types possiblyquantified at the outermost. τ̄
denotes the closure of type τ , obtained by quantifying all of its variables.

Finally, we restrict here the possible tagged sorts to those not including them-
selves any tagged variables. This is for the sake of simplicity; the treatment
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developed in the following sections is easily extended to higher order tagged
sorts.

2.2 Substitutions

[ ] is the identity substitution; [τ1/α
s
1, . . . , τk/α

s′
k ] replaces variables αs

1, . . . , α
s′
k

by types τ1, . . . , τk, respectively; S2oS1 is the composition of S1 and S2. ≤
is the substitution instance preorder (τ ≤ τ ′ ⇔ ∃S. τ = S τ ′), and ≡ is the
associated equivalence relation (τ ≡ τ ′ ⇔ τ ≤ τ ′ ∧ τ ′ ≤ τ).

To define substitutions, it is convenient to cast our types into the framework
of order-sorted languages: Terms in an order sorted language are classified
into sorts, and the set of sorts is equipped with a partial ordering ⊆ (often
called sort inclusion). Substitutions are restricted to those preserving sorts:
For any substitution S and variable v, we must have Sort(S v) ⊆ Sort(v).

The sort membership rules for variables and constants were explained in
Section 2.1. Function types have the plain sort U . A tagged type {p : τ}ρ
has sort T(σ′) when T(τ) ⊆ T(σ′) and T(σ) ⊆ T(σ′), where T(σ) is the sort
of type ρ. Relation ⊆ includes all pairs T(σ) ⊆ U , for any σ, and all pairs
T(τ) ⊆ T(τ ′) with τ ≤ τ ′.

In other words, a plain variable may be substituted by any type while a tagged
variable of sort T(τ) may only be substituted by tagged types in which the
type in each field and the exponent of the extension are instances of τ . E.g.
let τ = {p : α}∆∀δβ.δ→β; then the types {p : α} {q : λ → µ}Θ∀δβ.δ→β and
{p : e}∇b→c are substitution instances of τ , but neither {p : α}∆∀β.β nor
{p : α}(γ → δ) are.

A renaming is a substitution mapping variables to variables and injective on
its domain; renamings are written R, R′, etc. We have τ ≡ τ ′ iff ∃ R. τ =
R τ ′. A substitution is nonexpansive when it maps tagged variables to tagged
variables; nonexpansive substitutions are written N , N ′, etc.
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2.3 Equality

Models of tagged types

To avoid a semantics of tagged types tied to a specific programming notation,
we define an extensional equality that we assume valid in all models of closed
type schemes. Equality of closed type schemes (=g) is defined from their
monotype instances (Π, Π′ are tagged monotypes):

σ =g σ′ ⇔ (∀µ ≤ σ ⇒ ∃µ′ ≤ σ′. µ =g µ′) ∧ (∀µ′ ≤ σ′ ⇒ ∃µ ≤ σ. µ =g µ′)

a =g a (for each plain constant a)

µ1 → µ′1 =g µ2 → µ′2 if µ1 =g µ2 ∧ µ′1 =g µ′2

Π =g Π′ if ∀p ∈ Σ. Π(p) =g Π′(p)

with Π(p) obtained by:({p : µ}Π)(p) = µ

({q : µ}Π)(p) = Π(p) (q �= p)

∇µ(p) = µ

Monotype tagged types are seen as mappings; ∇µ is a constant mapping;
{p : µ}Π stands for the mapping obtained from Π by replacing its (p, ) pair
by (p, µ). We axiomatize in the sequel equality =g.

∼-equality

Relation ∼ is the smallest congruence including identity and the pairs from:

(permutation) {p : τ}{q : τ ′}ρ ∼ {q : τ ′}{p : τ}ρ (for any p,q: p �= q)

(pruning) {p : τ}{p : τ ′}ρ ∼ {p : τ ′}ρ (for any p)

(µ-expansions) ∇µ ∼ {p : µ}∇µ (for any p)

Fields may appear in any order. A field may be removed when it follows
another field bearing the same label; such fields are said hidden. The last
axiom expresses how to extract a field out of a tagged constant.
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∼-equality is preserved by substitutions. |τ | is the normal form of type τ ,
obtained from τ by removing its hidden fields. V(τ) is the set of variables
occurring in |τ |.

Expansion equivalence

We would like to express some extensionality axiom for tagged variables,
similar to the one above for tagged constants. For this, we need some method
to control introduction of variables:

An expansion component is a substitution [{p : τ ′}∆τ̄/∆τ̄ ], with τ ′ ≡ τ and
(V(τ)∪{∆τ̄})∪V(τ ′) = ∅. Given a set W of protected variables, an expansion
basis away from W is a set of substitutions such that (1): It holds the empty
substitution and exactly one component [{p : τ ′}∆τ̄/∆τ̄ ] for each pair (∆τ̄ , p),
(2): For any two components [{p : τ}∆σ/∆σ] and [{q : τ ′}Θσ′/Θσ′ ] in the
set, we have V(τ)∩V(τ ′) = ∅ and (V(τ)∪V(τ ′))∩W = ∅ and (3): it is closed
by composition of substitutions.

For each W, ΞW denotes the union of all expansion basis away from W; the
elements of ΞW are called expansions away from W.

From this we define the expansion preorder �η, and expansion equivalence
∼η, both away from W, by:

τ �η τ ′ ⇔ ∃W, X ∈ ΞW. V(τ ′) ⊂W ∧ τ ∼ Xτ ′

τ ∼η τ ′ ⇔ ∃τ ′′ . τ �η τ ′′ ∧ τ ′ �η τ ′′

∼η is an equivalence relation. τ �η τ ′ means that τ may be obtained from τ ′

by making some of its fields explicit. The types introduced follow from the
sort of the variable expanded; the definition of ΞW prevents expansions to
introduce a variable in fields with different labels, or variables already used
in the type expanded.

Instances and ∼=-equivalence

The substitution instance preorder ≤ is too restrictive for our purpose; we
want in addition to consider types modulo ∼ and expansion-equivalence. We
define thus a coarser preorder � (read less or equally general) as the least
preorder obeying:
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τ ≤ τ ′ ⇔ τ � τ ′

τ ∼ τ ′ ⇔ τ � τ ′

(∃ τ1, τ2.τ �η τ1 � τ2 �η τ ′)⇒ τ � τ ′

∼= is the associated equivalence relation (read equally general) by:

τ ∼= τ ′ ⇔ τ � τ ′ ∧ τ ′ � τ

Example 1: Consider the following types (all tagged variables have sort):

(1) {p : α}{s : γ}∆→ {p : β}{s : γ}∆
(3) {p : α}∆→ ∆

(5) {p : β}Θ→ {p : ω}Θ

(2) {p : α}∆→ {p : β}∆
(4) {p : β}{s : λ}Θ→ {p : ω}{s : λ}Θ
(6) Θ→ {p : ω}Θ

We clearly have (1) �η (2) �η (3) and (1) ∼η (2) ∼η (3), as well as (4) ∼η

(5) ∼η (6), but neither (3) �η (6), nor (6) �η (3). However, we have (3) � (6)
and (6) � (3); all types are equivalent by ∼=. None of them are related by ∼.

� and ∼= are characterized as follows in terms of substitutions (R is a renam-
ing and N is a nonexpansive substitution):

τ � τ ′ ⇔ ∃W, X ∈ ΞW, N. V(τ) ∪ V(τ ′) ⊂W ∧Xτ ∼ (NoX)τ ′

τ ∼= τ ′ ⇔ ∃W, X ∈ ΞW, R. V(τ) ∪ V(τ ′) ⊂W ∧ (RoX)τ ∼ Xτ ′

Equality of type schemes and canonical forms

Equality of closed type schemes is defined by τ̄ ∼= τ̄ ′ ⇔ τ ∼= τ ′. That equality
is sound versus the extensional equality =g discussed earlier: σ ∼= σ′ implies
σ =g σ′. It is conjectured that the converse implication is also true.

Several canonical forms can be defined for closed type schemes. They all
follow from the fact that the number of types in normal form which are related
by ∼= to some type, and are maximal by preorder �η, is finite (modulo a
renaming of variables and a permutation of fields). For the types in Example
1, for instance, there are exactly two such maximal classes, including types
(3) and (6), respectively. Any total ordering on maximal classes defines a
canonical form; the greatest lower bound of these maximal classes by �η,
defines an other canonical form. In Example 1, that latter class would hold
types (2) and (5).
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2.4 Unification

∼-unification: A substitution U is a ∼-unifier of (τ1, τ2) iff we have Uτ1 ∼
Uτ2. In addition, U is a ∼-most general unifier (∼-mgu for short) iff for any
other ∼- unifier V of (τ1, τ2), we have V τ1 � Uτ1.

If U and U ′ are two ∼-mgus of (τ1, τ2), then we must have Uτ1
∼= U ′τ1.

Theorem: There is an algorithm that returns for any types τ and τ ′ a
∼-principal ∼-unifier, or indicates failure if these types are not ∼-unifiable.

We give a proof sketch by reducing ∼-unification to an order-sorted vest of
the standard first order unification problem:

In what follows, Sτi ∼ S ′τi stands for Sτ1 ∼ S ′τ1 ∧ Sτ2 ∼ S ′τ2 and all
expansions are assumed away from the variables occurring in the types to
which they are applied, as well as away from all variables in the surrounding
context when unification is used as part of a more general process.

From the characterization of preorder �, finding a ∼-mgu of (τ1, τ2) is equiv-
alent to finding a nonexpansive substitution N , and an expansion X such
that:

(i) (NoX)τ1 ∼ (NoX)τ2

(ii) ∀N ′, X ′.(N ′oX ′)τ1 ∼ (N ′oX ′)τ2

⇒ ∃X ′′, W.(X ′′oN ′oX ′)τi ∼ (WoNoX)τi

If such an N and X are found, then (NoX) is a ∼mgu of (τ1, τ2). That
problem can be shown equivalent to finding N and X such that:

(i’) (NoX)τ1 ∼ (NoX)τ2

(ii’) ∀N ′.(N ′oX)τ1 ∼ (N ′oX)τ2 ⇒ ∃W.(N ′oX ′)τi ∼ (WoNoX)τi

(iii) ∀N ′, X ′.N ′ ∼-mgu of (X ′oXτ1, X
′oXτ2)

⇒ ∃X ′′.(N ′oX ′oX)τi ∼ (X ′′oNoX)τi

A sufficient condition to guarantee the commutation property (iii) is that
expansion X makes all tagged variables in (τ1, τ2) bear fields for exactly
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the same set of labels. Further, given such an expansion X, (Xτ1, Xτ2) is
necessarily equal by ∼ to some pair (τ ′1, τ

′
2) holding no hidden fields, in which

tagged variables and constants are all preceded by fields for the same set of
labels, and these fields occur in the same label-order. Since ∼ is preserved
by substitutions and τ ′i ∼ Xτi, an equivalent formulation of the previous
problem is to find a nonexpansive substitution N such that:

(i’) Nτ ′1 = Nτ ′2

(ii”) ∀N ′. N ′τ ′1 = N ′τ ′2 ⇒ ∃W.N ′τ ′i = (WoN)τ ′i

That is of finding a nonexpansive and sort preserving unifier of τ ′1 and τ ′2
which is most-general in the usual sense. The order-sorted discipline of Sec-
tion 2.2 is easily embedded in the standard unification algorithms, without
affecting their correctness. Plain variables may be substituted by any type.
Unifying two tagged variables, say ∆τ and Θν , consists of substituting a third
variable Θω for both (asserted not to occur yet in the unification context nor
in any expansion), with ω determined as the most general type which is an
instance of both σ and δ; type ω is naturally obtained from the unification
of σ and δ. If ω is reduced to a monotype, we should substitute both ∆τ and
Θν by the tagged constant ∇ω instead. Unifying a tagged variable ∆τ with
a tagged constant ∇µ is substituting it by the constant, if µ can be unified
with τ . �

This rudimentary algorithm suffices to prove existence of ∼-unification algo-
rithms. Another algorithm is suggested in Appendix, convenient for practical
purposes. It integrates the expansion and normalization steps and relies on
a weaker sufficient condition than that used above to fulfill condition (iii).

As an example, applied to the pair:

{p : Ψ}{r : b→ α}∆∀α.a→α, {q : δ}{r : β}Θ∀βγν.β→γ→ν)

Expansion and normalization produces the pair:

({p : Ψ}{q : a→ αq}{r : b→ α}∆∀α.a→α,
{p : βp → γp → νp}{q : δ}{r : β}Θ∀βγν.β→γ→ν)

And unification returns (after normalization):

{p : βp → γp → νp}{q : a→ αq}{r : b→ α}Ω∀γν.a→γ→ν
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The variables introduced by expansions are arbitrary, but must be different
from those in use in the types and those introduced by unification of tagged
variables.

Similarly, from the pair: (∆→ Θ→ {p : a}∆, ∆→ Θ→ {p : a}Θ)

Unification produces: {p : δ}Ω→ {p : θ}Ω→ {p : a}Ω

Note in this last example that the naive∼-unifier [Ω/∆, Ω/Θ] is not a ∼-mgu.
It leads to type Ω → Ω → {p : a}Ω, expansion-equivalent to {p : δ}Ω →
{p : δ}Ω → {p : a}Ω which is clearly less general by � than the result of
unification.

2.5 Further issues and Related work

Tagged types were compared to row types in the introductory section. In the
general allowing higher-order sorts (not discussed here), tagged Types and
the generalized record types in [14] have different expressiveness since record
types do not admit higher order expansion patterns while tagged types do
not allow type variables to be shared between expansion patterns as in the
record type {α} → {β} → {α→ β}. However, when neither of these features
are used, one can easily pass from one of the formalisms to the other.

The usefulness of higher order sorts is questionable as long as no applications
taking advantage of them are found. But nontrivial sorts are undoubtedly
useful. They serve to encode inheritance in type systems for records, and
some of the type systems discussed in Section 3 take advantage of them as
well.

As a summary, well-formedness of tagged types reduces to a simple gramma-
tical constraint, tagged variables have a meaning independent of any context,
extensibility is simply explained, tagged types can be unified with simple ex-
tensions of the standard algorithms, and closed type schemes admit a variety
of canonical forms. We believe that tagged types provide a more intuitive
and technically simpler alternative to the existing treatments.
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3 Typing CCS and Higher Order variants

3.1 The Calculus of Communicating Systems

Given a language of message expressions e and a countable set of labels Σ,
our starting process calculus is CCS [9], extended by local declarations (x is
a message variable, X is a process variable, a and b are labels in Σ):

P ::= a(x).P | be.P | τ .P | Σi∈IPi | P | P’ | P\a | P[b/a] | if e then P else P’

| letrec X = P in Q | X | let X= P in Q

Message expressions e should include two constants encoding a boolean type.
CCS expressions denote processes (or behaviors). They are built, possibly
recursively, from the empty summation (written 0), action prefixing, restric-
tion, renaming and compositions. Actions include proposing a message on
a label (ae.P), accepting a message on a label (a(x).P), and performing an
internal move (τP).

Processes communicate by rendez-vous. Restrictions and relabelling delimit
the scope of label instances. P\a delimits the scope of the instances of a in P
to P. P [a/b] makes actions using labels a and b in P appear to the enclosing
context as all using label a (but not within P).

A simple rule ensures type-safe communications between processes: When-
ever their scopes intersect, two label instances must transmit messages of
the same type. The rule is sufficient though not necessary; it is only neces-
sary for the pairs which may actually be involved in a communication, but
this cannot be generally inferred at compile-time (unless severely restricting
message expressions).

3.2 Typing CCS expressions

Behavior expressions will be assigned behavior types, which associate a type
with every possible communication label. Behavior types are conveniently
defined as a particular class of tagged types. Two sorts are required: a sort
M of message types, and a process sort P that can be defined as the tagged
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−
A|−x:µ

A(x)≥µ

-

A|−X:π

A(X)≥π

A|−P :π

A|−P :π′
π∼π′ (equal)

A(X)≥π

A|−X:π

A⊕〈x:µ〉|-P : {a : µ}π
A|−a(x).P :{a:µ}π

A|−e:µ A|−P :{a:µ}π

A|−āe.P :{a:µ}π

A|−P :{a:µ}π

A|−P\a:{a:µ}π

A|−P :{a:µ}{b:µ}π

A|−P [a/b]:{a:µ}{b:µ′}π

A|−b:bool A|−P :πA|−P ′:π

A|− if b then P else P ′:π′

(∀i∈I)A|−Pi:π

A|−Σi∈IPi:π

A|−P :π A⊕〈X:Gen(A,π)〉|−Q:π′

A|−let X=P inQ:π′

A|−P :π A|−P ′:π

A|−P |P ′:π

A⊕〈X:π〉|−P :π A⊕〈X:Gen(A,π)〉|−Q:π′

A|−letrec X=P in Q:π′

Table 1: Type inference rules for CCS + let

sort T (∀αM.αM). Since CCS does not allow process passing (classes e and P
above are disjoint), sortsM and P are order-unrelated; process types should
not be substituted for message type variables, nor message types for process
type variables.

CCS behavior types obey the following grammar in which µ (resp. π) rages
over all types of sortM(resp. P):

µ ::= α, β, γ, . . . message type variables
| bool, . . . some type constants

π ::= ∆, Θ, . . . process type variables
| {a:µ}π field prefixing

The most general type scheme for a process is ∀∆.∆. The scheme type
∀−.{a : µ}π (assumed closed) is the type of processes that may communicate
massages of type µ on label a. For other labels than a, the constraints are
given by type π.

The type inference rules for CCS expressions are shown in Table 3.1. A
maps message and process identifiers to types. As in [7], Gen(A, π) is the
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type scheme obtained by universally quantifying the variables that are free
in π but not in A. Input bound variables here are typed like lambda-bound
variables in [4] or [7].

The rule for relabelling says that labels a and b must have same types before
relabelling, and that b has any type after relabelling. The processes involved
in compositions must all have the same (process) type. The empty summa-
tion has any process type; it is assumed that the initial typing environment
assigns the type scheme ∀∆. ∆ to 0. Recursion is typed as in [4], which
explains e.g. that the expression (letrec A = (p!1.A)\p in A) cannot be
assigned the scheme ∀∆.∆, but only the weaker ∀∆.{p : int}∆, though that
process cannot communicate through p). The equal rule allows to permute
fields or remove hidden fields in the process of inference, but expansions are
assumed performed by the generic instance rule.

Soundness of the inference system is proven along the lines of [18] by first
defining the computations that yield type errors and then proving that if some
type could be inferred for some process, then it cannot yield an error when run
(the complete proof will appear in [6]). As in [4, 8], type synthesis is reduced
to unification. The essential part of the type assignment algorithm is shown
in Table 3.2. A maps identifiers to types; Id is the identity substitution. The
type assignment algorithm does not rely on generic instantiation to perform
the necessary expansions; these are performed by the unification algorithm
for tagged types instead (function Unify). Function newtype(s) returns a
new type variable of sort s.

3.3 Behavior Passing

CHOCS [16] or LCS [3] allow process passing, while retaining the semantics
of the restriction operator of CCS. To handle this, the only change required to
our previous language is to merge the syntactic classes P and e. In addition,
we must allow message type variables to be substituted by process types
(i.e. the process sort P becomes included in the message sort M). The
type inference rules are as in Table 3.1, with variables X and x assumed in
the same syntactic class. These rules enforces the fact that, whenever an
expression is used as a behavior expression, it must have a behavior type.
The algorithm in Table 3.2 is easily updated to enforce these constraints
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W (A,P ) = case P of

X => if X∈Dom(A) then(Id,A(X))elseFAIL

τ.P => let (S1,π) =W (A,P )

S2 = Unify(π,newtype(P)

in (S2,S1,S2π)

ae.P => let (S1,µ) =W (A,e)

(S2,π) =W (S1 A,P )

S3 Unify (π,{a: S2µ} (newtype(P)))

in (S3S2S1,S3π)

a(x).P => let µ =newtype(M)

(S1,π) =W(A⊕〈x:µ〉,P)

S2 = Unify(π,{a: S1µ}(newtype(P)))

in (S2S1S2π)

P\a => let (S1,π) =W (A,P )

S2 = Unify(newtype(P),π)

in (S2S1{a:newtype()}(S2π))

P [a/b] => let (S1,π) =W (A,P )

µ = newtype(M)
S2 Unify(π,{a: µ}{b:µ}(newtype(P)))

in (S2S1{b:newtype()}(S2π)) etc.

Table 2: Type assignment algorithm for CCS (fragments)
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(expressions like e.g. p!2.4 would be rejected).

Processes like e.g. (a(x).x) cannot be assigned types in that system (the
solution τ should solve τ = {a : τ}∆). This problem is equivalent to that of
typing (letrec f = λx.f in f) in [4], or that of typing channels communicating
themselves in [19]. Clearly, the problem cannot be solved without some form
of recursive types, either part of the language of types (we did not investigate
the issue for tagged types), or provided at the level of declaration of new type
operators (as in ML).

3.4 Parametric Channels

Following a proposal of [1], LCS provides parameterized channels to imple-
ment a weak form of delegation. LCS communication ports are constituted
of a label, as in CCS, and of an extension (a value admitting equality). Ex-
tensions may not appear in restrictions or relabellings. The typing problem
with these parametericed channels is essentially the same than for CCS, ex-
cept that when the scope of two ports intersect, they must have the same
extension types too.

To handle these ports, the behavior types of CCS must be enriched with a
sort Q of extension types (possibly a subsort ofM). Process types assign to
each label a pair of types θ •µ, with θ of sort Q and µ of sortM the process
sort P is redefined as T (∀αQβM.αQ • βM). Except for this, the treatment is
similar to that for CCS.

3.5 Lambda expressions

Adding abstraction and application to our language would permit to define
new process combinators. A pipe combinator, connecting a process sending
messages on port out to another receiving messages on port inp could be
defined by:

pipe = λa . λb. (a \tmp [tmp/out] | b \tmp [tmp/imp]) \tmp

These constructions would be typed as in [7], and the necessary inference
rules just added to those in Table 3.1. Extending this way the previous
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process passing variant of CCS would just require to add function types to
the message sort M The principal type scheme inferred for function pipe

would be:

∀αβγ∆.{out : α}∆→ {inp :α, tmp :β}∆→ {tmp :γ}∆

4 Conclusion

Tagged types clearly build upon the work of Wand on row types and that of
Rémy on record types. The connections with these formalisms were explained
in Section 2 and the Introduction. For practical purposes, tagged types
combine, we believe, the intuitiveness of row types with the expressiveness
of record types. Further, they require a lighter theoretical treatment.

All these formalisms widely extend the class of expressions of programming
languages for which types can be mechanically inferred. For process calculi,
our results strictly strengthen the “sorting” methods discussed in the lit-
erature and permit type inference for parallel programs based on the CCS
paradigm. Compared to the types used in [11], ours do not attempt to rep-
resent “polarity” of labels (i.e. to distinguish between labels used for input,
output, or both), but it fully handles “label” polymorphism. Compared to
the method of [19] (for different calculi), ours has the advantage of assigning
nontrivial types to process variables, which permit type reconstruction for
processes from the types of their constituent processes. This can be consid-
ered an advantage in implementations of declarative languages based upon
these paradigms.

Tagged types, and the typing methods presented, have been experimented
for several years. The typechecker of the implementations of the language
LCS is directly based on the unification algorithm found in Appendix, and
on the type inference systems and type assignment algorithms discussed in
Section 3.
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[13] D. Rémy, “Typechecking records and variants in a natural extension of
ML”, ACM Symposium on Principles of Programming Languages, 1989.
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APPENDIX – The unification algorithm

All instances of a tagged variable are assumed to occur with identically writ-
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us to omit quantifiers in indices. Tagged variable symbols are assumed not
overloaded at several sorts.
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τ1 Unify τ2 = τ1 U∅ τ2

where τ1 UL τ2 = case {τ1, τ2} of
{α1, α2} ⇒ if α1 = α2 then [ ] else [α1/α2] (1)
{α, τ} ⇒ if α In τ then Fail else [τ/α] (2)
{τ1 → τ2, τ

′
1 → τ ′2} ⇒ (S τ2 U∅ S τ ′2) o S where S = τ1 U∅ τ ′1 (3)

{∆σ1
1 , ∆σ2

2 } ⇒ if ∆σ1
1 = ∆σ2

2 then [ ] else U o X1 o X2 (4)

where U = if Monotype (Sσ1)

then [∇(Sσ1)/∆σ2
2 ] o [∇(Sσ1)/∆σ1

1 ]

else [∆
(Sσ1)
1 /∆σ2

2 ] o [∆
(Sσ1)
1 /∆σ1

1 ]

and X1 = Expand (L, ∆σ1
1 )

and X2 = Expand (L, ∆σ2
2 )

where S = σ1 U∅ σ2

{∆σ,∇µ} ⇒ U o X (5)

where U = [∇(Sσ)/∆σ] o [∇(Sσ1)/∆σ1
1 ]

and X = Expand (L, ∆σ)
where S = σ U∅ µ

{∇µ,∇µ} ⇒ [ ] where S = µ U∅ µ′ (6)
{{p : τ}ρ1, ρ2 as ∆σ} or {{p : τ}ρ1, ρ2 as {q : τ ′}ρ} (7)

⇒ if p ∈ L then ρ1 UL ρ2

else (S2 (S1 ρ1) UL∪{p} S2 (S1 ρ2)) o S2 o S1
where S2 = S1 τ U∅ τ ′

where (S1 τ ′) = Extract (p, ρ2)
– ⇒ if τ1 = τ2 then [ ] else Fail (8)

Each case matches the parameters of function UL with some set pattern, e.g.
both sets {β, Ψ} and {Ψ, β}, for some type Ψ and plain variable β, match
{α, τ} in case (2). Algorithm U has a third parameter (its subscript) which
is the set of labels for which its arguments have been unified so far (when
these are tagged types). That set serves to skip hidden fields and to handle
misordering of fields (in case (5)). The nonoverloading hypothesis for tagged
variables allows to reuse one of the variable symbols in case (4).

Function In implements the occurrence check; it does not check occurrences
of variables in hidden fields. Function Expand (L,∆σ) returns a substitution
expanding ∆σ for all labels in L; expansions introduce copies of scheme σ in all
fields, using fresh type variables. Extract (p,ρ) lookups the type associated
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with label p in ρ, expanding ρ on the fly if it has no such field; it returns
that type and a substitution (empty or an expansion).
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Abstract

We show that a type system based on the intuitionistic modal
logic S4 provides an expressive framework for specifying and analyz-
ing computation stages in the context of factional languages. Our
main technical result is a conservative embedding of Nielson & Niel-
son’s two-level factional language in our language Mini-ML✷, which
in addition to partial evaluation also supports multiple computation
stages, sharing of code across multiple stages, and run-time code gen-
eration.
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1 Introduction

Dividing a computation into separate stages is a common informal technique
in the derivation of algorithms. For example, instead of matching a string
against a regular expression we may first compile a regular expression into
a finite automaton and then execute the automaton on a given string. Par-
tial evaluation divides the computation into two stages based on the early
availability of some function arguments. Binding-time analysis determines
which part of the computation may be carried out in a first (static) phase,
and which part remains to be done in a second (dynamic) phase.

It often takes considerable ingenuity to write programs in such a way that
they exhibit proper binding-time separation, that is, that all computation
pertaining to the statically available arguments can in fact be carried out.
From a programmer’s point of view it is therefore desirable to declare the
expected binding-time separation and obtain constructive feedback when the
computation may not be staged as expected. This suggests that the binding-
time properties of a function should be expressed in its types in a prescriptive
type system, and that binding-time analysis should be a form of type check-
ing. The work on two-level functional languages [NN92] and some work on
partial evaluation (e.g. [GJ91, Hen91]) shows that this view is indeed possible
and fruitful.

Up to now these type systems have been motivated allgorithmically, that
is, they are explicitly designed to support partial evaluation. In this paper
we show that they can also be motivated logically, and that the proper log-
ical system for expressing computation stages is the intuitionistic variant of
the modal logic S4. This observation immediately gives rise to a natural
generalization of standard binding-time analysis by allowing multiple com-
putation stages, sharing of code across multiple stages, and communication
of binding-time information across module boundaries via types.

One of our conclusions is that when we extend the Curry-Howard iso-
morphism between proofs and programs from intuitionistic logic to the in-
tuitionistic modal logic S4 we obtain a natural and logical explanation of
computation stages. Each world in the Kripke semantics of modal logic cor-
responds to a stage in the computation. A term of type ✷A corresponds to
a piece of residual code to be executed in a future stage of the computation.
The modal restrictions imposed on a type of the form ✷A guarantee that a
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function of type B → ✷A can carry out all computation concerned with its
first argument while generating the residual code of type A.

The starting points for our investigation are the systems for the intuitionis-
tic modal logic S4 in [BdP92, PW95] and the two-level λ-calculus in [NN92].
We augment the former with recursion to obtain Mini-ML✷ and then show
that a two-level functional language may be fully and faithfully embedded in
Mini-ML✷. This verifies that Mini-ML✷ is indeed a conservative extension
of the two-level language of [NN92] and thus correctly expresses standard
binding-time separation. Following [PW95], we also sketch a compilation
from Mini-ML✷ to a related language Mini-ML✷

e whose operational seman-
tics embodies the separation of evaluation into multiple stages.

2 Modal Mini-ML: An Explicit Formulation

This section presents Mini-ML✷
e , a language that combines some elements

of Mini-ML [CDDK86] with a modal λ-calculus for intuitionistic S4, λ→✷
e

[BdP92, PW95]. The presentation of the modal constructs differs from λ→✷
e

in that we have a let form for de-constructing boxed values, and use two
contexts in the typing rules. This avoids the need for syntactic substitutions,
but does not alter the essential properties of the system.

For the sake of simplicity, we make the language explicitly typed, since
we do not treat type inference here. We have also chosen not to include
polymorphism, because there are issues regarding the interaction between
type variables and computation stages that would distract from the main
point of this paper.

2.1 Syntax

Types A ::= nat | A1 → A2 | A1 × A2 | ✷A
Terms E ::= x | λx : A. E | E1 E2

| fix x : A. E | 〈E1, E2〉 | fst E | snd E
| z | s E | (case E1 of z⇒ E2 | s x⇒ E3)
| box E | let box x = E1 in E2

Contexts Γ ::= · | Γ, x : A

We use A, B for types, Γ, ∆ for contexts, and x for variables assuming that
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any variable can be declared at most once in a context. Bound variables may
be renamed tacitly. We omit leading ·’s from contexts. We write [E ′/x]E
for the result of substituting E ′ for x in E, renaming bound variables as
necessary in order to avoid the capture of free variables in E ′. The addition
of types ✷A to Mini-ML introduces two new term constructs: box E for
introduction and let box x = E1 in E2 for elimination.

2.2 Typing Rules

Our typing rules for the Mini-ML fragment of the explicit language are com-
pletely standard. The problem of typing the modal fragment is well under-
stood; we present here a variant of known systems [BdP92, PW95] inspired
by zonal formulations of linear logic such as Girard’s LU [Gir93]. Our typing
judgment has two contexts, the first containing assumptions regarding all
future worlds, and the second containing assumptions regarding the current
world. Thus our judgement

∆; Γ 	e E : A

would correspond to ✷∆, Γ 	 E∗ : A in λ→✷
e , where E∗ is an appropriate

obvious translation of E. Note that our system has the property that a valid
term has a unique typing derivation. Due to space constraints, throughout
this paper we have omitted the rules for fix, nat, and pairs, since they are
completely standard. The rules are given in full in [DP95].

x : A in Γ

∆; Γ 	e x : A
tpe Ivar

x : A in ∆

∆; Γ 	e x : A
tpe gvar

∆; Γ, x : A 	e E : B

∆; Γ 	e λx : A. E : A→ B
tpe lam

∆ : Γ 	e E1 : A→ B ∆; Γ 	e E2 : A

∆; Γ 	e E1 E2 : B
tpe app

∆; · 	e E : A

∆; Γ 	e box E : ✷A
tpe box

∆ : Γ 	e E1 : ✷A ∆, x : A; Γ 	e E2 : B

∆; Γ 	e let box x = E1 in E2 : B
tpe let box

Note that the rule tpe box does not allow variables bound in the second con-
text to appear in the body of a box constructor, and only the rule tpe let box
binds variables in the first context.
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2.3 Operational Semantics

The Mini-ML fragment of our system has a standard operational semantics.
For the modal part, we interpret box E as a value containing the frozen
computation E which may be carried out in a future stage. We evaluate let
box x = E1 in E2 as a substitution of the residual code generated by E1

for x in E2 and then evaluating E2. The residual code for E1 will then be
evaluated during the evaluation of E2 as necessary.

Note that if E : A and E ↪→ V then V : A and V is unique. Mini-ML has
this property, which is easy to establish by induction over the structure of
an evaluation. Also note that we have omitted types in terms from the rules
below, since they are irrelevant here.

Values V ::= λx. E | 〈V1, V2〉 | z | s V | box E.

λ x. E ↪→ λ x. E
ev lam

E1 ↪→ λ x. E′1 E2 ↪→ V2 [V2/x]E′1 ↪→ V

E1 E2 ↪→ V
ev aap

box E ↪→ box E
ev box

E1 ↪→ box E′1 [E′1/x]E2 ↪→ V2

let box x = E1in E2 ↪→ V2

ev let box

Note that in the evaluation of well-typed terms, only terms inside a box
constructor are ever substituted into another box constructor.

2.4 Example: The Power Function in Explicit Form

We now show how we can define the power function in Mini-ML✷
e : in such

a way that has type nat → ✷(nat → nat), assuming a closed term times :
nat→ nat→ nat (definable in the Mini-ML fragment in the standard way).

power ≡ fix p : nat→ ✷(nat→ nat).
λn : nat. case n

of z ⇒ box (λx : nat. sz)
| s m⇒ letbox q = p m in box (λx : nat. times x (qx))

The type nat → ✷(nat → nat) expresses the that function evaluates every-
thing that depends on the first argument of type nat (the exponent) and
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return residual code of type ✷(nat → nat). Indeed, we calculate with our
operational semantics:

power z↪→ box (λx : nat. s z)
power (s z)↪→ box (λx : nat. times x ((λx : nat. s z)x)

power (s (s z))↪→ box (λx : nat. times x ((λx : nat. times x (λx : nat. s z)x))x))

Modulo some trivial redices of variables for variables, this is the result we
would expect of partial evaluation.

2.5 Implementation Issues

The operational semantics of Mini-ML✷
e may be implemented by a translation

into pure Mini-ML, mapping ✷A to unit → A; box E to λu : unit. E; and
let box x = E1 in E2 to (λx′ :unit → A. [x′()/x]E2)E1. It may then appear
that the modal fragment of Mini-ML✷

e is redundant. Note, however, that the
type unit→ A. does not express any binding time properties, while ✷A does.
It is precisely this distinction which makes Mini-ML✷

e interesting: the type
checker will reject programs which may execute correctly, but for which the
desired bindingtime separation is violated. Without the modal operator, this
property cannot be expressed and consequently not checked.

Another implementation method would be to interpret ✷A as a data-type
representing code that calculates a value of type A. This code could be either
machine code, source code, or some intermediate language. This would al-
low optimization after specialization, and could also support an operation to
output code as a separate program. The representation must support substi-
tution of one code fragment into another, as required by the ev let box rule.
If the code is machine code, this naturally leads to the idea of templates,
as used in run-time code generation (see [KEH93]). The deferred compila-
tion approach in [LL94] would provide a more sophisticated implementation,
supporting fast run-time generation of optimized code.

3 Modal Mini-ML: An Implicit Formulation

We now define an implicit version Mini-ML✷ of the explicit Mini-ML✷
e , follow-

ing [PW95] where an implicit system λ→✷ was defined. This system is more
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reasonable as a programming language, since we do not have to explicitly
stage computation as required with let box x = E1 in E2. The operational
semantics of the new system is given in terms of a type-preserving compiIa-
tion to the explicit system. Our development differs from [PW95] in that we
introduce a term constructor pop. This means that typing derivations for
valid terms are unique and the compilation from implicit to explicit terms is
deterministic, avoiding some unpleasant problems concerning coherence.

3.1 Syntax

Types A ::= nat | A1 → A2 | A1 ×A2 | ✷A
Terms M ::= x | λx : A. M | M1 M2

| fix x : A. M | 〈M1, M2〉 | fst M | snd M
| z | s M | (case M1 of z⇒M2 | s x⇒M3)
| box M | unbox M | pop M

Contexts Γ ::= · | Γ, x : A
Context Stacks Ψ ::= · | Ψ; Γ

All the categories, except context stacks are standard. The importance of
context stacks will be apparent when we present the typing rules.

3.2 Typing Rules

In this section we present typing rules for Mini-ML✷ using context stacks.
The typing judgment has the form

Ψ; Γ 	i M : A term M has type A in local context Γ under stack Ψ.

The context stack enables the distinguished use of variables depending on
their relative position with respect to the box operators that enclose the term
being typed. Intuitively, each element Γ of the context stack Ψ corresponds
to a computation stage. The variables declared in Γ are the ones whose
values will be available during the corresponding evaluation phase. When
we encounter a term box M we enter a new evaluation stage, since M will
be frozen during evaluation. In this new phase, we are not allowed to refer
to variables of the prior phases, since they may not be available when M is
unfrozen (“unboxed”). Thus, variables may only be looked up in the current
(innermost) context (rule tpi var) which is initialized as empty when we enter
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the scope of a box (rule tpi box). However, code generated in the current or
earlier stages may be used, which is represented by the rules tpi unbox and
tpi pop.

x : A in Γ

Ψ; Γ 	i x : A
tpi var

Ψ; (Γ, x : A) 	i M : B

Ψ; Γ 	i λx : A. M : A→ B
tpi lam

Ψ; Γ 	i M : A→ B Ψ; Γ 	i N : A

Ψ; Γ 	i M N : B
tpi app

Ψ; Γ; · 	i M : A

Ψ; Γ 	i box M : ✷A
tpi box

Ψ; Γ 	i M : ✷A

Ψ; Γ 	i unbox M : A
tpi unbox

Ψ; ∆ 	i M : ✷A

Ψ; ∆; Γ 	i pop M : ✷A
tpi pop

Note that it may be useful to consider the modal fragment of the implicit
language to be a statically typed analogue to the quoting mechanism in
Lisp. Then box corresponds to backquote and unbox (pop ·) to comma.
unbox alone corresponds to eval, while pop alone corresponds to quoting an
expression generated with comma. Note however that our implementation
via a compilation to Mini-ML✷

e is quite different from Lisp quoting.

3.3 Examples in Implicit Form

We now show how we can define the power function in Mini-ML✷ in a simpler
form than in Mini-ML✷

e , though still with type nat→ ✷(nat→ nat). We use
unboxi M as syntactic sugar for unbox(popi M).

power ≡ fix p : nat→ ✷(nat→ nat).
λn : nat. case n

of z ⇒ box (λx : nat. s z)
| s m ⇒ box (λx : nat. times x (unbox1(p m)x))

As another example, we show how to define a function of type nat → ✷nat
that returns a box’ed copy of its argument:

liftnat ≡ fix f : nat→ ✷(nat. λx : nat.case x of
z ⇒ box z

| s x′ ⇒ box (s (unbox1 (f x′)))
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A similar term of type A→ ✷A that returns a box ’ed copy of its argument
exists exactly when A is observable, i.e., contains no →. This justifies the
inclusion of the lift primitive in two-level languages such as in [GJ91], and
in fact in a more realistic version of our language it could also be included
as a primitive.

3.4 Translation to Explicit Language

We do not define an operational semantics for Mini-ML✷ directly; instead we
depend upon a translation to Mini-ML✷

e . This translation recursively extracts
terms inside a pop constructor and binds the result of their evaluation to
new variables, bound with a let box outside the enclosing box constructor.
Variables thus bound occur exactly once.

The compilation from implicit to explicit terms is perhaps most easily un-
derstood if we restrict pop to occur only immediately underneath an unbox
or another pop. On the pure fragment terms then follow the grammar

Terms M ::= x | λx : A. M | M1 M2

| box M |unbox P
Pops P ::= M | pop P

The extension to the full language including recursion is tedious but trivial.
Any term can be transformed to one satisfying our restriction by replacing
isolated occurrences of pop M by box (unbox (pop (pop M))).

The compilation below keeps track of the context in which the term to be
translated should be placed (the k argument). This is necessary so that when
we encounter an pop operator we can find the matching box operator and
insert a let box binding in the resulting explicit term. We use the notation
k = Λh. E for a context k with hole h. Filling the hole is written as an
application k(E ′). This must be implemented as syntactic replacement since
k is intended to capture variables free in E ′. First, the translation on terms,
[[M ]] k.

[[x]] k = k(x)
[[M1 M2]] k = [[M1]](Λh1. [[M2]](Λh2. (h1 h2)))
[[λx. M ]] k = [[M ]](Λh. k(Λx. h))
[[box M ]] k = [[M ]](Λh. k(box h))
[[unbox P ]] k = [P ]k(Λh. h))

30



Nested pop operators are translated by traversing the current context k from
the inside out until a box operator is found. This cancels one pop operator
and continues the translation. After all pop operators have been removed
(possibly none), we introduce a let box and continue the translation. The
b argument accumulates the body of the let box which will eventually be
introduced.

[pop P ](Λh. k(E1 h)) b = [pop P ] k(Λh. E1 b(h))
[pop P ](Λh. k(h E2)) b = [pop P ] k(Λh. b(h) E2)
[pop P ](Λh. k(λx. h)) b = [pop P ] k(Λh.λx. b(h))
[pop P ](Λh. k(box h)) b = [P ] k(Λh.box b(h))
[pop P ](Λh. k(let box x = h in E2)) b

= [pop P ] k(Λh. let box x = b(h) in E2)
[pop P ](Λh. k(let box x = E1 in h)) b

= [pop P ] k(Λh. let box x = E1 in b(h))

[M ] k b = [[M ]](Λh. k(let box y = h in b(y))) where y is new

Since h must occur exactly once in Λh. E, the cases for [pop P ] k b leave
out only Λh. h. If the original term is well-typed this case can never arise. An
important invariant of [P ] k bis that Λh. k(b(h)) remains the same in every
recursive call. At present we have not formally proven that the translation
above maps well-typed explicit terms to well-typed implicit terms. A related,
slightly more complicated translation has been proven correct in [PW95].

As an example of this translation, it maps the above definition of power
to the previous explicit one.

It is important to note that the operational semantics induced by the
trans-lation is very different from the natural one defined directly on Mini-
ML✷. In [MM94] a simple reduction semantics for a system similar to our
implicit system is introduced which does not reflect binding time separation
in any way. It is instead used to prove a Church-Rosser theorem and strong
normalization for a pure modal λ-calculus.

4 A Two-level Language

In this section we define Mini-ML2, a two-level functional language very close
to the one described in [NN92]. We then define a simple translation into Mini-
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ML✷ and prove that binding-time correctness in Mini-ML2 is equivalent to
modal correctness of the translation in Mini-ML✷.

Our language differs slightly from [NN92] in that we inject all run-time
types into compile-time types, instead of just function types. This follows
[GJ91], where there is no such restriction. Also, we find it convenient to
divide the variables and contexts into run-time and compile-time, which in-
volves a small change in the “up” and “down” rules. All other differences to
[NN92] are due to minor differences between their underlying language and
Mini-ML.

4.1 Syntax

Run-time Types τ ::= nat | τ1→τ2 | τ1×τ2

Compile-time Types σ ::= nat | σ1→σ2 | σ1×σ2 | τ
Terms e ::= x | λx : τ. e | e1 @ e2

| fix x : r. e | 〈e1, e2〉 | fst e | snd e

| z | s e | (case e1 of z⇒ e2 | s x⇒ e3)
| y | λy : σ. e | e1 @ e2

| fix y : σ. e | 〈e1, e2〉 | fst e | snd e

| z | s e | (case e1of z⇒ e2 | s y ⇒ e3)
Run-time Contexts Γ ::= · | Γ, x : τ
Compile-time Contexts ∆ ::= · | ∆, y : σ

4.2 Typing Rules

Run-time Typing

x : τ in Γ

∆; Γ 	r x : τ
tpr var

∆ 	c e : τ

∆; Γ 	r e : τ
down

∆; Γ;x : r2 	r e : τ

∆; Γ 	r λx : r2. e : τ2→τ
tpr lam

∆; Γ 	r e1 : τ2→τ ∆; Γ 	r e2 : τ2

∆; Γ 	r e1 @ e2 : τ
tpr app

Compile-time Typing

32



y : σ in ∆

∆; Γ 	c y : σ
tpc var

∆; · 	r e : τ

∆ 	c e : τ
up

∆, y : σ2 	c e : σ

∆ 	c λy : σ2. e : σ2→σ
tpc lam

∆ 	c e1 : σ2→σ ∆ 	c e2 : σ2

∆ 	c e1@ e2 : σ
tpc app

Note that we remove run-time assumptions at the down rule, while in
[NN92] this is done later at the up rule. This change is justified since by the
structure of their rules, such assumptions can never be used in the compile-
time deduction in between.

4.3 Translation to Implicit Modal Mini-ML

The translation to Mini-ML✷ is now very simple. We translate both run-time
and compile-time Mini-ML fragments directly, and insert ✷, box, unbox
and pop to represent the changes between phases. We define two mutually
recursive functions to do this: ‖ · ‖ is the run-time translation and | · | is
the compile-time translation. We overload this notation between types and
terms. We write e and e to match any term whose top constructor matches
the phase annotation.

Run− time Types
||nat|| = nat

||τ1→τ2|| = ||τ1|| → ||τ2||
||τ1×τ2|| = ||τ1|| × ||τ2||

Compile− time Types
|nat| = nat

|σ1→σ2| = |σ1| → |σ2|
|σ1×σ2| = |σ1| × |σ2|

|τ | = ✷||τ ||

Run− time Terms
||x|| = x

||λx : τ. e|| = λx : ||τ ||. ||e||
||e1 @ e2|| = ||e1|| ||e2||

||e|| = unbox (pop|e|)
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Compile− time Terms
|y| = y

|λy : τ. e| = λy : |τ |. |e|
|e1 @ e2| = |e1| |e2|

|e| = box ||e||

4.4 Equivalence of Binding Time Correctness and Modal
Correctness

In this section we state our main theorem, which is that binding time cor-
rectness is equivalent to modal correctness of the translation to Mini-ML✷.

Theorem 1

1. If ||e|| = M then:

(a) if ∆; Γ 	r e : τ then we have |∆|; ||Γ|| 	i M : ||τ ||;
(b) if |∆|; ||Γ|| 	i M : A then we have |∆|; ||Γ|| 	r e : τ with
||τ || = A.

2. If |e| = M then:

(a) if ∆ 	c e : σ then we have |∆| 	i M : |σ|;
(b) if |∆| 	i M : A then we have ∆ 	c e : σ with |σ| = A.

Proof: By simultaneous induction on the definitions of ||e|| and |e|. Note
that we can take advantage of strong inversion properties, since we have
exactly one typing rule for each term constructor in Mini-ML✷ and Mini-
ML2, plus the up and down rules to connect the 	c and 	r judgements.1

✷

By examining this proof we can verify that the translation of a two-level
term can always be type-checked only using the tpi unbox and tpi pop rules
when tpi un box immediately follows tpi pop. This corresponds to a weaker
modal logic, K, in which we drop the assumption in S4 that the accessibility
relation is reflexive and transitive [MM94].

1See [DP95] for proof details.
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In fact, we can define a language Mini-ML✷
K by replacing the unbox and

pop constructors with one equivalent to unbox1 as in [MM94]. Then, Mini-
ML✷

K closely models Mini-ML2, but permits an arbitrary number of phases,
each of which can only execute the code generated by the immediately pre-
ceding one. This is similar to the idea of B-level languages in [NN92] (with B
linearly ordered), and in fact a B-level version of Mini-ML would be exactly
equivalent to Mini-ML✷

K , by a natural extension of the two-level translation.
It is also similar to the Multi-level Generating Extensions of [GJ95].

It is interesting then to consider what the reflexitivity and transitivity
assumptions model in the context of staged computation. Essentially they
allow us to execute generated code at any future time, or immediately. It
would be difficult to achieve the same in an extension of a two-level lan-
guage, since the separation between the levels is achieved by duplicating the
term and type constructors. Hence we consider Mini-ML✷ to be an appro-
priate language in which to study more general forms of staged computation,
including run-time code generation.

5 Extended Example

In [GJ95] the calculation of inner products is given as an example of a pro-
gram with more than two phases. We now show how this example can be
coded in Mini-ML✷. Note that we have assumed a data type vector in the
example, along with a function sub : nat → vector → nat to access the el-
ements of a vector. We also use let x = E1 in E2 as syntactic sugar for
(λx : A. E2)E1.

Then, the inner product example without staging is expressed in Mini-ML
as follows:

let iprod = fix ip : nat→ vector→ vector→ nat.
λn : nat. case n

of z ⇒ λv : vector. λw : vector. z
| s n′ ⇒ λv : vector. λw : vector.

plus (times (sub n v) (sub n w)) (ip n′ v w)
in . . .

We add in ✷, box and unboxi to get a function with three computation
stages. We assume a function liftnat as defined earlier and a function sub′ :
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nat → ✷(vector → nat) which is a specializing version of sub, that perhaps
pre-computes some pointer arithmetic based on the array index. We first
define a staged version times′ of times which avoids the multiplication in the
specialization if the first argument is zero. This will speed up application of
iprod′ to its third argument, particularly in the case that the second argument
is a sparse vector.

let times′ : ✷(nat→ ✷(nat→ nat)) =
box (λm : nat. case m

of z ⇒ box (λn : nat. z)
| s m′ ⇒ box (λn : nat. times n (unbox1 (mathitliftnat m))))

in let iprod′ = fix ip : nat→ ✷(vector→ ✷(vector→ nat)).
λn : nat. case n

of z ⇒ box (λv : vector. box (λw : vector. z))
| s n′ ⇒ box (λv : vector. box (λw : vector.

plus (unbox1 (unbox1 times′(unbox1(sub′ n) v))
(unbox2(sub′ n) w))

(unbox1 (unbox1(ip n′) v) w)))
in let iprod3 : ✷(vector→ ✷(vector→ nat)) = iprod′ 3.
in let iprod3a : ✷(vector→ nat) = unbox iprod3 [7, 0, 9].
in let iprod3 b : ✷(vector→ nat) = unbox iprod3 [7, 8, 0].
in . . .

The last four lines show how to execute the result of a specialization using
unbox without pop (corresponding to eval in Lisp). Also, the occurence
of unbox2 indicates code used at the third stage but generated at the first.
These two aspects could not be expressed within a multi-level language.

Note the erasure of the unboxi and box constructors in iprod′ leaves iprod,
except that we used a different version of multiplication. The operational
semantics of the two programs is of course quite different.

We have also experimented with programming some other standard ex-
amples from partial evaluation in Mini-ML✷, including regular expression
matching and the Ackerman function, both of which are easily expressible.
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6 Conclusion and Future Work

In this paper we have proposed a logical interpretation of binding times and
staged computation in terms of the intuitionistic modal logic S4. We first
presented an explicit language Mini-ML✷

e (including recursion, natural num-
bers, and pairs) and its natural operational semantics. This language is too
verbose to be practical, so we continued by defining an implicit language
Mini-ML✷ which, with some syntactic sugar, might serve as the core for an
extension of a language with the complexity of Standard ML. The opera-
tional semantics of Mini-ML✷ is given by a compilation to Mini-ML✷

e . It
generalizes Nielson & Nielson’s two-level functional language [NN92] which
is demonstrated by a conservative embedding theorem, the main technical
result of this paper.

The two-level language we consider, Mini-ML2 , is directly based on the one
in [NN92], but has a stricter binding-time correctness criterion than used, for
example, in [GJ91]. Essentially, this restriction may be traced to the fact that
our underlying evaluation model applies only to closed terms, while [GJ91]
seems to require evaluation of terms with free variables. Glück and Jørgensen
[GJ95] present a multi-level binding-time analysis with the less strict binding-
time correctness criterion, along with practical motivations for multi-level
partial evaluation, though they do not treat higher order functions. A modal
operator similar to the “next” operator from temporal logic looks promising
as a candidate to model this looser correctness criterion, but we have yet to
develop this line of research.

Our language Mini-ML✷ requires the insertion of the box, unbox and pop
coercions into a functional program. It may be preferable for these coercions
to remain implicit, though in such a language valid expressions no longer
have unique or even principal types, thus raising coherence problems. We
intend to study a language in which the modal types are considered refine-
ments of the usual Mini-ML types, using intersections to express principal
types (see [FP91] for analogous non-modal refinement types). Refinement
type inference for this language would be a form of generalized, polyvari-
ant binding-time analysis. Compilation would be type-directed, generating
different versions of functions appropriate for different stagings of computa-
tion. The programmer would control this process through refinement type
constraints imposed upon functions by type annotations. Type inference in
such a language would need to depend strongly on subtyping via implicit
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coercions between refinement types.

Our operational semantics is also rather naive from a partial evaluation
point of view. In particular, we do not memoize during specialization. A
memoizing semantics would be desirable for a serious implementation, and
would require some restrictions on side-effects. See [BW93] for a description
of a serious partial evaluator for Standard ML, which in part inspired this
work.

This paper does not treat polymorphism, though it seems that it should
not cause any problems. We conjecture that computational effects can es-
sentially be treated as in other work on partial evaluation by prohibiting,
through typing, that effects move between computation stages (see, for ex-
ample, [BW93]). We expect our type system to interact very well with ML’s
module system. In fact, part of our motivation was to provide the pro-
grammer with means to specify staging (= binding time) information in a
signature and thus propagate it beyond module boundaries.

Our approach provides a general logically motivated framework for staged
computation that includes aspects of both partial evaluation and run-time
code generation. As such it should allow efficient code to be generated within
a more declarative style of programming, and provides an automatic check
that the intended staging is achieved. We have implemented a simple version
of Mini-ML✷ in the logic programming language Elf [Pfe91]. To date we have
only experimented with small examples, but plan to carry out more realistic
experiments in the near future.
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Abstract

Nonstrict higher order functional programruing languages are no-
torious for their low run time efficiency. Optimizations based on flow
analysis, which determines for each variable x in a program which
expressions could have originated the value of x, can improve the si-
tuation by removing redundant eval and thunk operations, avoiding
thunk updates, and allowing the use of unboxed representations of
some data. We formulate flow analysis as an inference problem in a
type system built using type inclusion constraints and an algorithm
for solving these constraints is also given.

1 Introduction

Polymorphically typed nonstrict higher order functional programming lan-
guages are a boon to the programmer because they provide powerful mecha-
nisms for abstraction [11]. Equally, and for the same reasons, they are very
difficult to compile to efficient code.

Among the main obstacles are the frequent need to build thunks (repre-
sentations for unevaluated expressions), test whether objects are thunks or

∗Work partly funded by Esprit BRA 8130 LOMAPS
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WHNFs (i.e. integers, cons-cells, partial applications, etc), call statically
unknown code (in order to evaluate a thunk or in a higher order function),
and update thunks with the result of their evaluation (to preserve sharing).

The interaction of polymorphism, thunks and garbage collection also cre-
ates problems by forcing compilers to use a uniform, one-size-fits-all represen-
tation of all data regardless of type. Since some objects, e.g. Cons cells and
thunks, must be boxed (represented as pointers into the heap), all objects
are forced to be boxed.

Part of the problem is solved by strictness analysis [15, 10] which can
reduce the number of thunks that need to be built, creating opportunities
to eliminate evals (the operations that test if an object is a thunk and if so
evaluates it) and ultimately allow the use of specialized representations (like
unboxed integers etc). But strictness analysis in itself does not exploit these
additional opportunities — it only allows us to eliminate some of the thunks.

Instead, we use flow analysis to exploit these opportunities. By flow anal-
ysis, we mean an analysis that determines, for each variable x in a program
P , a safe approximation to the set of expressions that might have origi-
nated the value of x. This information can be post-processed in simple ways
to yield information that allows a compiler to eliminate evals and thunks,
use unboxed data representations, omit thunk updates and optimize calls to
statically unknown code.

We analyze programs in Fleet, a Functional Language with Explicit Evals
and Thunks, intended as a compiler intermediate language. Variable binding,
function application, etc is strict, but there are thunk and eval expressions
that can be used to express lazy evaluation explicitly. Strictness analysis
can be used prior to flow analysis to generate as few thunk expressions as
possible.

Possible originators in Fleet are lambda abstractions, constructor and op-
erator applications, and thunk expresions. Every originator is labeled with
a unique originator label and every object is tagged with the label of the
expression that originated it.

We give Fleet a semantics in the style of natural semantics by defining a
rewriting relation between configurations (triples of a store, an environments
and an expression) and results (pairs of a store and an address in the store).

For each variable x in a Fleet program there is a set x of labels, called the
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tag set of x, such that a run-time type error occurs, ie the execution “goes
wrong”, if x is ever bound to an object whose label is not in x.

Type inference in the system presented in Section 3 either fails or derives
values for the xi such that the execution of the program is guaranteed not to
“go wrong”. Any program that is well-typed in the Hindley-Milner system
can be translated to a Fleet program that is well-typed in the flow type
system.

The flow type system is formulated in terms of type inclusion constraints
and an algorithm for solving these is given.

We discuss three applications of the analysis; eval/thunk elimination, un-
boxing (which we generalize to representation selection), and avoidance of
unnecessary updates by sharing analysis.

Finally, we present preliminary experimental results for some small bench-
marks which show that the optimizations we have discussed can cut execution
time with a factor ranging from about 1.6 to about 3.2.

1.1 A note on notation

We will use standard function notation; given a function f , f [x �→ y] is a
function that maps x to y and otherwise behaves as f . We will also write id
for the identity function.

2 Fleet

The syntax and semantics of Fleet is presented in Figs. 1 and 2, respectively,
and an example program is given in Fig. 3. We give Fleet a natural semantics,
similar to those given in [12] and [19], which fairly closely models a modern
graph reduction implementation of a lazy functional language. In particular,
we model the graph explicitly, so environments map variables to adresses
which are mapped to closures by the graph.

a ∈ Addr ρ ∈ Var→ Addr G ∈ Addr→ Closure

A closure is a pair of an environment and a value (a lambda abstraction,
con-structor application or thunk expression). The label of a closure (ρ, e),
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written label(ρ, e), is the label of e. The rules in Fig. 2 allow us to prove
sentences of the form 〈G, ρ, e〉 ⇓ 〈G′, a〉 which are to be read “in graph G and
environment ρ the expression e rewrites to the address a in the graph G′”.
A program P is a closed expression and the result of executing P is 〈G, a〉
iff 〈[ ], [ ], P 〉 ⇓ 〈G, a〉.

Figure 1: Syntax of Fleet

In an expression let x = e1 in e2, x must occur tree in e2 and if x occurs
free in e1, then e1 has to be a value (this makes the rule for let expressions in
Fig. 2 unproblematic; if x occurs free in e1 then e1 is simply put in a closure
whose environment part refers to the closure itself).

The only cases when existing closures are overwritten are when thunks
are evaluated in the second rule for eval in Fig. 2. Here, the thunk to be
evaluated is first overwritten with a black hole and subsequently with an
indirection to the result of its evaluation. In both cases the new closure is
a thunk with the same label as the original. This means that the label of a
closure at a certain address never changes.

If, when rewriting 〈G, ρ, e〉, some variable x in e is bound to a closure
labeled with a label not in x, then 〈G, ρ, e〉 ⇓ 〈G,wrong〉 where wrong is a
distinguished address that is used to signal a run-time type error.

There is no implicit evaluation of thunks in those contexts where a whnf
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Figure 2: Rewriting expressions

is needed; instead, an explicit eval operation has to be used, as the one on
line 3 in Figure 3.

3 The type system

In ordinary Hindley-Milner style type systems [14, 4], types are generally ei-
ther function types or algebraic datatypes (e.g. lists). Such types correspond
to raw types in Fleet. To the raw types, we add annotated types and label
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Figure 3: An example: Printing the natural numbers

types to capture information about labels1. Note that raw types can contain
nested annotated types and label types.

τ ∈ AnnoType ::= 〈η, ν〉 | v
η ∈ LabelType ::= {l1, . . . , ln} | w | w ∩ {l1, . . . , ln}
ν ∈ RawType ::= τ1 −> τ2 | T η1 . . . ηk τ1 . . . τn | u

v ∈ AVar w ∈ LVar ∪ Var u ∈ RVar

Here, AVar, LVar and RVar are three disjoint sets of type variables, and the
use of program variables (∈ Var) in LabelTypes will be explained below.
Sometime it will be convenient to allow Ω to range over any kind of type
expression and α over any kind of type variable (including program variables):

Ω ∈ TypeExp ::= τ | η | ν α ∈ TypeVar ::= v | w | u

Figure 4 gives some example expressions and their types. In these examples

Figure 4: Examples of expressions and their types

1Annotated types play a similar role to the decorated types in [23].
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we have given very precise types to expressions. For instance, the integer con-
structor expression @6 0 in the first example was given the type 〈{@6}, Int〉
but can also be typed as 〈{@3, @6}, Int〉. Intuitively, this type is less pre-
cise than 〈{@6}, Int〉 because there are more expressions producing integers
labeled with @3 or @6 than there are expression producing integers labeled
only with @6. We formalize this intuition as an ordering � on type expres-
sions, defined in Figure 5 (this is essentially a subtype ordering). We now
have 〈{@6}, Int〉 � 〈{@3, @6}, Int〉.

Figure 5: The �-ordering

We define a substitution θ to be a function of the form id[α1 �→ Ω1, . . . , αn �→
Ωn] mapping type and program variables to type expressions in such a way
that AVars are mapped to AnnoTypes and so on (program variables are
mapped to LabelTypes). We also extend substitutions to type expressions
in the obvious way.

A type inclusion constraint is an inequality of the form Ω ≤ Ω′ and is solved
by a substitution θ iff θ(Ω) � θ(Ω′).2 A set S of type incluzon constraints is
solved by θ if every constraint in S is solved by θ, and we write Sol(S) for
the set of all θ that solves S. We also sometimes write τ ≤π x where x is
a program variable as a shorthand for τ ≤ 〈x, u〉 where u is some RVar not
occurring anywhere else in the derivation. Constraints of this form are called
tag constraints and will be used to determine safe values for the tag sets xi.

Like in all Hindley-Milner style type systems, we use type schemes to
express polymorphic types. The syntax of type schemes is given by

σ ∈ TypeScheme ::= τ | ∀α1 . . . αk . τ where S

2In inclusjon bmed type inference systems, the symbol ⊆ is generally used where we
use � and ≤, in addition to its use for set inclusion, but we prefer to keep these symbols
separate.
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where S is a set of type inclusion constraints and we quantify over LVars,
Rvars and AVars but never over Vars. Such a type scheme stands for all
types τ ′ such that there is a substitution θ = id[α1 �→ Ω1, . . . , αk �→ Ωk],
such that Sol(θ(S)) �= ∅ and τ ′ = θ(τ). Hence, τ is equivalent to ∀ . τ where
{}. We extend substitutions to type schemes as follows

θ(∀α1 . . . αk . τ where S) = ∀ α1 . . . αk . θ(τ) where θ(S)

where we assume that no name clashes will occur (for every quantified vari-
able αi, that θ(αi) = αi and for no other α ∈ Dom(θ), does αi occur in
θ(α)).

3.1 Type inference

In a type inference system, one infers the type of an expression from assump-
tions about the types of the free variables of the expression. For instance,
in the Hindley-Milner system one would infer that f x has type τ ′ from the
assumption that f has type τ −> τ ′ and x has type τ , or symbolically,
{f : τ −> τ ′, x : τ} � f x : τ ′. The relation between the types of f , x
and f x is expressed by τ and τ ′ occurring both in the type of f and in the
types of x and f x, respectively.

An alternate approach would be to express this relation explicitly with a
separate set of constraints, written between the assumptions and �: {f :
τ ′′, x : τ}, {τ ′′ = τ −> τ ′} � f x : τ ′. As a generalization, one
can use inclusion constraints rather than equality constraints; then we have
{τ ′′ ⊆ τ−> τ ′} in place of the above constraint. See Aiken et. al. [1] and
Smith [21] for type systems defined in this way.

In the flow type system, our example inference looks as follows:

{f : τ ′′, x : τ}, {τ ′′ ≤ 〈η, τ −> τ ′〉} � f x : τ ′

As can be seen from the inference rules in Figure 6, typing judgements in our
system are of the form A, S � e : τ , where A is a set of typing assumptions
of the form x : σ, S is a set of type inclusion constraints, e an expression
and τ an AnnoType. The ALT rule forms a slight exception to this in that
it has the form A, S, ν � C x1 . . . xk −> e : τ . Here, the RawType ν is
the type of the object we attempt to match C x1 . . . xk against.
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There is one rule for each form of expression and there are no separate rules
for instantiation and elimination. Instead, instantiation is merged with the
VAR rule and generalization is merged with the LET rule. These rules use
the auxilliary predicates I and G, respectively. Studying their definitions,
given in Fig. 7, we see that we never generalize over Vars. This restriction
is the mechanism with which we combine flow information from the various
uses of a let-bound variable. Note also the tag constraints in the ABS, ALT
and LET rules.

Another thing to note about the LET rule is that, in contrast to systems
like those in [1] and [21], we do not have the restriction that Sol(S) be
nonempty — instead we have the restriction that x must occur in e′ (the
body of the let expression).

Studying the THUNK and EVAL rules, we see that the only thing that
happens, type-wise, when we suspend or restart computation is the addition
or deletion, respectively, of some labels. Hence, if a function can accept a
thunk as argument, then it can also accept the result of evaluating this thunk.

The inference rules OPCON and ALT also make use of constructor and
operator typings. Each constructor C is defined by a constructor typing
(which can be derived from some algebraic datatype declaration in the source
program) of the form

C τ1 . . . τr : T w1 . . . wk v1 . . . vn

where only the type variables that occur to the right of : are allowed to occur
to the left. Example constructor typings are:

Cons v 〈w, List w v〉 : List w v and Nil : List w v.

Similarly, for each operator op there is an operator typing of an analogous
form. An example is the typing of the inc operator, inc 〈LabW, Int〉 : Int,
which means that if inc is given an integer in whnf, the result is an integer.

3.2 Soundness

We define soundness as the following property: For every program P , set of
type inclusion constraints S, and AnnoType τ , if ∅, S � P : τ and Sol(S)
�= ∅ and 〈[ ], [ ], P 〉 ⇓ 〈G, a〉 then a �= wrong.
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Figure 6: Type inference rules for Fleet
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Figure 7: Generalization and instantiation

We have proved the soundness of this type system with respect to the
operational semantics of Fleet. The proof is by induction on the height of
the proof of the evaluation relation, and is similar in spirit to the one given
by Leroy in [13] where he proves the soundness of the Hindley-Milner type
system relative to a natural semantics of an extension to ML with references
and continuations. Unfortunately, the proof is rather large, so we do not
include it in this paper.

4 A Type Inference Algorithm

In this section we present an implementation of the analysis in the form
of a type inference algorithm. Given a program (closed expression) P , the
algorithm either fails if P is not type correct or, if P is type correct, finds
values for the tag sets of the variables in P such that P will not go wrong.

The first step is to find the most general S and τ such that ∅, S �
P : τ . It is rather straight forward to turn the inference rules in Fig. 6
into a recursive procedure that takes a set of typing assumptions A and an
expression e as arguments and gives a set of inclusion constraints S and a
type τ as result. Fresh type variables are used for the type expressions that
occurs in a rule without occurring in the typing assumptions of the conclusion
of the rule or in the type part of any of the premises.

Most implementations of lazy functional laguages pass the value of the
program to the run-time system for printing (or interpretation, as in the
case of the Haskell I/O model). Given that we have obtained S and τ by
the algorithm sketched above, we model I/O by the constraint τ ≤ τrun where
τrun is an AnnoType representing the run-time system. Let S1 = S ∪ {τ ≤
τrun}.
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We now simplify S1 by applying the rules in Fig. 8 exhaustively. It is
easy to see that the decomposition rules preserve solutions exactly since they
correspond very closely to the definition of � in Fig. 5, The substitution
rules preserve solutions in the sense that if S → θ(S) by some substitution
rule, then every solution θ′ to S can be written as θ′′◦θ where θ′′ ∈ Sol(θ(S)).
This is because Ω � Ω′ only is possible if Ω and Ω′ have the same outermost
type constructor. If this simplification process terminates then either all
RawTypes and AnnoTypes remaining are variables, or the system has no
solutions.

To see that simplification always terminates, call a constraint Ω ≤ Ω′

where either Ω or Ω′ is a type variable a variable constraint and call other
constraints nonvariable constraints. Now, each application of a decomposi-
tion rule will eliminate one nonvariable constraint of height k and add some
new constraints of height strictly less than k, for some k. Further, each ap-
plication of a substitution rule will strictly decrease the number of variable
constraints of height at most k without increasing the number of nonvariable
constraints of height larger than k, for some k.

Let S2 be the result of this simplification and suppose that all RawTyes
and AnnoTypes remaining are variables; then we can instantiate all of the
RVars and all of the AVars to an arbitrary RVar or AVar, respectively, and
drop the resulting trivial constraints.

We now have a system S3 of inequalities of the form η1 ≤ η2. We solve
these in three steps as follows:

1. Split every label set inclusion into one inclusion over LabT and one
over LabW, as follows

η1 ≤ η2 → η1 ∩ LabT ≤ η2 ∩ LabT, η1 ∩ LabW ≤ η2 ∩ LabW

and simplify all set expressions as much as possible. There are now no
LabelTypes of the form w left, only of the forms w∩ LabW and w∩
LabT. Call the result S4

2. Let S5 be the transitive closure of S4.
3

3The transitive closure of a set S of inequalities is the smallest set S+ such that S ⊆ S+

and {η ≤ η′, η′ ≤ η′′} ⊆ S+ ⇒ η ≤ η′′ ∈ S+.
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3. If there is some {l} ≤ {l1, . . . , lk} such that l /∈ {l1, . . . , lk} in S5, type
checking has failed. Otherwise, the smallest values of the xi are given
by:

x = {l | {l} ≤ x ∩ LabW ∈ S5 or {l} ≤ x ∩ LabT ∈ S5}

5 Applications of the analysis

In the following we assume that we have performed the analysis on a program
(closed expression) and that for every x in the program, x is a safe tag set
for x.

It turns out that many of the algorithms below can be formulated as reach-
ability in a directed or undirected graph. This is good since there are fast
algorithms for that problem.

5.1 Elimination of evals and thunks

It is clear that, in a Fleet-program, an expression of the form eval x can be
replaced by x alone if no label that labels a thunk-expression is related to x.

It is also clear that if evaluation of the body e of a thunk-expression is
certain to terminate (without runtime error) the thunk can be replaced by e
(we call this inlining the thunk), even if it is not known if its value will be
needed in whnf. Thus e gets executed speculatively. Inlining is advantageous
if either e is very cheap to evaluate (a few machine instructions), or very
likely to be evaluated later anyhow.

Now, these two observations are actually related since an eval is typically
an expensive operation (in general, it is not even certain that it terminates)
Hence the removal of an eval might enable the removal of a thunk which
enables removal of further evals and so on. In a recursive function, we might
even have circular dependencies.

For instance, in the example in Figure 3, the thunk labelled @3 contains
an application of the inc operator (a cheap, safe operation) and an eval of
the variable n. Looking at the tag set of n, which is {@3, @4, @6}, we see
that the only thunk that n can be bound to is @3. Hence, if we inline the
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Figure 8: Simplification rules

@3 thunk, n can only be bound to whnfs, so we can eliminate the eval and
we arrive at the program in Figure 9.

Figure 9: The example transformed

This leads to the following rules for eval/thunk elimination: Let R be the
set of labels of residual thunks, i.e. those that should not be inlined, and
let R0 ⊆ R be those thunks that should not be inlined even if all evals were
eliminated (because they contain other unsafe or expensive operations). Let
ε : Lab → P(Lab) be a function such that for each thunk expression l
thunk e in the program, if X is the set of variables that are arguments to
exposed evals in e (i.e. those not inside other thunk expressions in e), then
ε(l) = ∪{x | x ∈ X} (intuitively; the evaluation of l might lead directly
to the evaluation of any thunk with label in ε(l). Then R must satisfy the
following condition:

If ε(l) ∩R �= ∅, then l ∈ R
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We can compute the smallest R satisfying the above by the following algo-
rithm:

1. Let G be a directed graph whose nodes are the labels of all thunks and
where there is an edge (l1, l2) iff l2 ∈ ε(l1).

2. Let R = {l | ∃l′ ∈ R0 : l′ is reachable from l in G}.

We can now inline every l thunk e such that l /∈ R and eliminate every
eval x such that x ∩ R = ∅. We also adjust all of the xi by removing the
eliminated thunks, to enable later analyses to take advantage of the removal
of the thunks.

5.2 Representation analysis

We will treat unboxing in this more general context since there are many
special representations that one might want to use.

Let R be a set of representations and let r̂ ∈ R be the canonical represen-
tation (for example R might be {Boxed, UnboxedInt, UnboxedFloat} with
r̂ = Boxed). As the example suggests, not all representations are possible
for all data; a Cons cell can’t be represented as an UnboxedFloat, and in
addition not all operations may be supported for all representations; x can’t
be an UnboxedInt if it is the argument of an eval. We formalize this by
writing ∆(l) for the set of possible representations of objects with label l and
∆(x) for variables. Further, we require r̂ to be a possible representation for
all originators and variables.

Since a representation is a static property of a variable, it is the same for
every invocation of a function. Thus we can trace variables from activation
records at garbage collection time since we can find static information about
the activation record from the return address.

Now, representation selection is the problem of finding an assignment δ
: Var ∪ Lab → R of representations to variables and originators such that
δ(l) ∈ ∆(l) and δ(x) ∈ ∆(x) for all l and x, satisfying the following constraint:

l ∈ x⇒ δ(l) = δ(x)

This gives us the following algorithm for representation selection:
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1. Let G be an undirected graph whose nodes are the variables and labels
and where there is an edge {l, x} iff l ∈ x.

2. Let G1, . . . , Gn be the connected components of G.

3. For each Gi:

(a) Choose an r ∈ ⋂{∆(z) | z ∈ Gi}.
(b) For every z ∈ Gi, δ(z) = r.

5.3 Sharing analysis

Sharing analysis answers two related questions: For an originator, it tells
whether objects computed by this originator may be accessed more than
once, and for a variable it tells whether any object the variable might be
bound to may be accessed more than once. This information is important
since it may allow us to destructively update or immediately garbage collect
unshared objects.

We can compute sharing information from a syntactic characterization of
variables together with flow information.

Consider the life of a heap cell allocated during computation. When it is
born, it will be unshared since the storage allocator will return precisely one
reference to it, to which precisely one variable will be bound. In order for
this cell to become shared later, the reference must either be duplicated or
stored in a heap cell that becomes shared.

So one way of looking at sharing analysis is to determine that references
to an object are never duplicated and never stored in a shared closure in the
graph. The first condition is quite simple: A variable that is flow linear (i.e.
occurs at most once along any path of control in its scope) can’t duplicate
any references.

References gets captured in environments stored in the heap (or abstractly,
in the graph) when rewriting values. In the case of lambda abstractions and
constructor applications, they can then be read from the heap an arbitrary
number of times, but in the case of thunks, however, the free variables will
only be accessed once (if they are flow linear, of course) since the thunk is
overwritten with a black hole at the start of its evaluation.

56



This leads to the following sharing conditions: Let S be the set of labels
of possibly shared objects. Then the following consistency conditions must
hold:

1. If l ∈ x and x is not flow-linear, then l ∈ S.

2. For each constructor application l C x1 . . . xk: If l ∈ S then xi ⊆ S for
each xi.

3. For each lambda abstraction l \ x −> e: If l ∈ S then y ⊆ S for each
y in FV (e)− {x}.

We can find the smallest S satisfying the above as follows:

1. Let G be a directed graph whose nodes are labels and where there is
an edge (l1, l2) iff either

(a) l2 is the label of a constructor application of the form l2 C x1 . . . xk

and l1 ∈ xi for some xi, or

(b) l2 is the label of a lambda abstraction l2 \ x −> e and l1 ∈ y for
some y ∈ FV (e)− {x}.

2. Let N =
⋃{x | x is a flow-nonlinear variable}

3. Then S = {l | ∃l′ ∈ N : l′ is reachable from l in G}.

6 Measurements

We have implemented flow inference in an experimental compiler for a simple
lazy functional language called Plain. The Plain compiler contains a very
simple backwards strictness analyzer which assumes all unknown functions
to be non-strict, so it doesn’t find much strictness in programs using a lot of
higher order functions.

The compiler implements flow inference as described in this paper (except
for an improved constraint solution algorithm) and uses the results to perform
eval/thunk-elimination, representation selection and update avoidance. The
analysis can be turned off for comparison, in which case the generated code is

57



similar in performance to the code generated by the Chalmers LML-compiler
with optimization turned on ( O to Imlc).

We have measured the effectiveness of the optimizations on the following
small test programs:

qh The N-Queens program written with lots of higher order functions; even
length and append are defined in terms of foldr Run with N=10.

q1 Same as qh, but with all higher order functions specialized. The trans-
formation from qh to q1 could be done automatically by a compiler,
but we have done the transformation by hand.

qf Same as q1, but some intermediate lists eliminated by deforestration [24].
append Writes two copies of stdin on stdout. Run with a 92KByte
textfile as input.

nrev Naive reverse of a 1KB textfile.

nfib The not-really-Fibonnaci function that counts the number of function
calls. Run with input 32.

The Plain compiler can generate instrumentation code that counts var-
ious kinds of events, including eval checks, thunk constructions and calls,
updates, and boxing and unboxing operations. In Table 1 we summarize
the memurements we have made of the test programs. For each measured
quantity we give the number of occurrences in the unoptimized code and the
percentage of those occurrences that were eliminated by the optimizations.
Thus 100% means that there were (almost) no occurrences of that event in
the optimized code. The timing measurements were made on a lightly loaded
40 MHz SPARCstation 10 with 32 MBytes of memory and no second level
cache running SunOS 4.1.3. The times reported are CPU times.

7 Related work

What we call flow analysis is known by a number of different names. It has
been called closure analysis by Sestoft [18] and others, flow information by
Steckler and Wand [25] and others, and control flow information by Jones,
Shivers [20], and others.
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Program eval trunk box unbox
# % # % # % # %

qh 9587 78 1660 47 372 6 5330 45
q1 8579 95 1241 66 349 100 5330 100
qf 7023 99 822 95 384 100 5030 100
append 554 50 185 0 462 100 647 100
nrev 1361 50 678 0 5 100 6 100
nfib 7049 100 0 14 10574 100 14098 100

Program updates time (seconds)
# % unopt opt speedup

qh 2987 92(54) 4.69 2.90 1.62
q1 2175 100(100) 3.75 1.75 2.14
qf 1362 100(100) 2.88 1.08 2.67
append 370 50(0) 1.92 1.06 1.81
nrev 1356 100(100) 4.42 1.40 3.16
nfib 0 65(18) 6.04 1.92 3.15

Table 1: Event count and timing measurements (all counts in thousands)

The way in which the information is computed also varies. In older work,
such as that by Sestoft, Jones and Shivers, abstract interpretation is generally
used, but recently there have been a number of formulations in terms of
constraint systems, among which are [25] and Heintze [8]. Also, Palsberg
[16] has used a similar framework. Common to these analyses is that the
analysis problem to be solved is set up in terms of the expressions etc in
the program to be analyzed. Therefore, the entire program is always needed,
and separate compilation becomes very troublesome. Analyses based on type
and effect inference have been studied since in a type inference setting one
only need the types of the free identifiers in the program. An example is [22],
where Tang and Jouvelot study a combination of effect inference and abstract
interpretation (they use abtract interpretation for its superior accuracy as
compared to their monomorphic type system).

When it comes to exploitation of the analysis information, most of the
above use the information for replacing function parameters with global vari-
ables or binding time analysis for partial evaluation. Sestoft , in [18], however,
explores the use of closure information to turn first order analyses into higher
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order analyses which is close in spirit to our applications were we combine
flow information with local information.

Recently, Boquist [3] has applied a constructor analysis due to Johnsson to
the optimization of a graph reduction intermediate language. The transfor-
mations performed are related to our eval elimination, but the formulation
is rather different. Boquist also uses the analysis information to enable in-
terprocedural register allocation.

The applications we discuss have also been much studied separately, at
least from the theoretical point of view,

Thunk inlining is already discussed by Mycroft (but only for a first order
language) [15] and by Augustsson [2] who also discusses eval elimination,
although he does not give any algorithm and does not discuss the interaction.
Gomard and Sestoft [6, 7] and others have studied path analysis which is
similar to eval elimination.

Boxing has been treated by several authors, a recent example being [9]
where Henglein and Jørgensen defines an optimality criterion for boxing com-
pletions in a call-by-value language. Here boxing is used only because of
polymorphism, but they do not treat the requirements from garbage collec-
tion and lazy evaluation. Their approach is considarably different from ours
in that it is not based on program analysis, but rather on stepwise, meaning
preserving transformations, and it is also more general than our approach.

On the other hand, Peyton-Jones and Launchbury [17] take account of all
the requirements (polymorphism, gc and lazy evaluation), but do not give
any algorithm but rather argues that representation selection should be done
by the programmer.

In [5], Goldberg presents an abstract interpretation that detects sharing
of partial applications in a nonstrict higher order language. He also applies
it to the generation of fully lazy supercombinators. Also, Hughes discusses a
backwards sharing analysis in [10].
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Abstract

We consider the problem of analyzing and proving correct simple
closure conversion strategies for a higher-order functional language.
We specify the conversions as deductive systems, making use of an-
notated types to provide constraints which guide the construction of
the closures. We exploit the ability of deductive systems to spec-
ify concisely complex relationships between source terms and closure-
converted terms. The resulting specifications and proofs are relatively
clear and straightforward. The use of deductive systems is central
to our work as we can subsequently encode these systems in the LF
type theory and then code them in the Elf programming language.
The correctness proofs can also be coded in this language, providing
machine-checked versions of these proofs.

1 Introduction

Closure conversion is the process of transforming functions containing free
variables into a closures, a representation of a function that consists of a piece
of code for the function and a record containing the free variables occurring in
the original function. This process consists not only of converting functions
to closures but also of replacing function calls with the invocation of the code
component of closures on the actual parameter and the closure itself (which
will contain values for the free variables). Closure conversion is a critical step
in the compilation of higher-order functional languages, and different closure
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conversion strategies can have remarkably different run-time behaviors in
terms of space utilization. Reasoning about these conversions can become
complicated as the conversion themselves become more complicated. We
believe that a means for analyzing various conversion strategies will provide a
useful tool for understanding and correctly implementing closure conversion.

1.1 Contribution

The main contribution of this paper is the development of type systems to
specify and prove correct various closure conversion strategies. In particular,
the type systems are reasonably simple and clearly express the relationship
between source terms and closure converted terms. We specify the conver-
sions as deductive systems axiomatizing judgments which relate expressions
containing functions and those containing closures. These systems make
critical use of annotated types to provide constraints which guide the con-
struction of the closures. The use of deductive systems is critical to this
work, as we subsequently encode these systems into the LF [7] type theory
and then the Elf programming language [11], providing both experimental
implementations of closure conversion but also machine-checked proofs of
correctness. In the current paper we focus only on the deductive systems,
but most of the systems presented here have been implemented and proved
correct in Elf. We include only the deductive systems and statements of the
relevant correctness theorems. For the full proofs and the Elf code imple-
menting the closure conversions and specifying the proofs see the full version
of the paper, available as a technical report from our institution.

The kinds of closure conversions addressed in this paper are simple, but the
methods developed demonstrate the capabilities of type systems for describ-
ing closure conversions. Recent work on space efficient closure representation
has demonstrated the efficiency possible if closures are carefully constructed
using a variety of information [12]. While we have not yet considered such
advanced closure conversion representations, we believe that our approach
will provide a useful tool for reasoning about and proving correct such tech-
niques.
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1.2 Related Work

The problem of correctness for closure conversion has recently been addressed
in [14]. The approach used in that work includes a flow analysis to generate
constraints which ensures that the closure conversion algorithm generates
closures that consistently use the correct procedure calling protocol in the
presence of multiple calling protocols (for example, one protocol for use with
closures as procedures and one for use with λ-abstractions as procedures).
Based on techniques from abstract interpretation, their approach requires the
introduction of an abstract notion of terms and evaluation (their “occurrence
evaluator”) and the relationship between their original language and this ab-
stract version. Annotations are then added to provide constraint information
and they prove that their conversion satisfies these constraints. Their proof
of correctness, however, only shows what we called soundness in [6]: if the
source program evaluates, then the converted term does too. (Wand proved
the converse using different techniques in [13].) Our initial motivation was to
demonstrate how equivalent results could be produced using type systems.

The idea of using type systems to specify constraints of programs and
to guide the translation of programs has been successfully used by Tofte
and Talpin to describe region inference for Standard ML programs. Region
inference detects blocks of storage that can be allocated and deallocated in
a stack-like fashion. Their use of annotated types has motivated some of our
techniques for annotating function types with information regarding the free
variables required to call the function.

Related work on compiler correctness includes [3] where compiler optimiza-
tions based on strictness analysis are proved correct. This work, however,
considers CPS translations and definitions that resemble denotational seman-
tics.

1.3 Organization of Paper

The remainder of the paper is organized as follows. In Sec. 2 we introduce a
basic closure conversion specification and a verification of its correctness. In
Sec. 3 we extend the basic conversion to a selective one and demonstrate how
its correctness is a direct generalization of the basic case. In Sec. 4 we extend
the selective conversion to one in which not all free variables need be included
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in a closure. Finally in Sec. 5 we conclude by mentioning some additional
conversion strategies and our intent to verify them. In the appendix we give
a brief introduction to the LF type theory and its application to specifying
deductive systems.

2 Simple Closure Conversion

We begin by considering a simple closure conversion specification in which
every function is converted into a closure.

2.1 Source and Target Languages

We consider just the simply typed λ-calculus as the source language:

E ::= x | λx.E | E @ E

in which E1 @ E2 represents application. For our first presentation of closure
conversion types play no role, and so we can also consider this method as
applying to an untyped language. But in subsequent sections we rely heavily
on types and a typed language.

The target language of closures consists of the following:

M ::= x | n#C | C | M @c M
C ::= c | [λc.λx.M, L]
L ::= · | L, M

in which E1 @c E2 represents application in which the value of E1 will be
a closure. The meta-variables M , C and L range over terms in the target
language, closures (and closure variables), and lists of target terms, respec-
tively. The λ-abstraction of the source language is replaced by the closure
construction [λc.λy.M, L] in which the bound variable c corresponds to the
closure itself, the bound variable y corresponds to the bound variable of the
λ-abstraction, M corresponds to the body of the λ-abstraction and L is a list
of the free variables of the λ-abstraction. (We refer to c as the closure-bound
variable of the closure.) We include the bound variable c to approximate the
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structure of closures as described in [2] in which a closure is invoked by fetch-
ing the first field of the closure and applying it to its arguments including
the closure itself.

We represent variables in two ways: locally bound variables (i.e., variables
bound by the nearest enclosing lambda abstraction in a source term) are
represented as in the source language; non-locally bound variables are rep-
resented by the term n#C in which n is a positive integer (de Bruijn index)
and C is either a closure or a closure-bound variable. For example, the term
λx.λy.(x y) is represented in the target language by the term

[λc1.λx.([λc2.λy.((1#c2)y), (·, x)]), ·]

For both the source and target languages we can provide an operational
semantics, each given by a set of inference rules which can be directly rep-
resented as LF signatures. Both semantics implement call-by-value to weak-
head normal form. For the source language we introduce the judgment
e ↪→s v and axiomatize it via the following two rules:

λx.E ↪→s λx.E

E1 ↪→s λx.E ′ E2 ↪→s V2 E ′[V2/x] ↪→ V
E1 @ E2 ↪→s V

For the target language we introduce the judgment e ↪→t v and axiomatize
it via the following rules:

[λc.λy.M, L] ↪→t [λc.λy.M, L]

M1 ↪→t [λc.λy.M ′, L] M2 ↪→t V ′2 M ′[V ′2/y][[λc.λy.M ′, L]/c] ↪→t V ′

M1 @c M2 ↪→t V ′

nth N L V ′

N#[λc.λy.M, L] ↪→t V ′
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The judgment (nth N L V ) expresses the relation that the N th element in
the list L is V .

This specification of evaluation using closures focuses on the access of free
variables in function bodies, but not on the mechanism by which values are
stored into the record component of the closure. In the specification above,
the substitution M ′[V2/y] replaces all occurrences of y in M ′ with value V2.
As y may occur in the record component of a closure, this substitution can
have the effect of loading the value V into any number of closures. While
this is hardly realistic, this convention makes the specification particularly
simple and easy to analyze. Our future goal is to provide further refinements
of this specification to reflect more accurately the manipulation of closures.

2.2 The Closure Conversion Specification

To specify closure conversion we could have introduced a type system for
source terms in which the type of a function explicitly provides information
about the shape of the desired closure for the function. Then the translation
from source to target languages would be trivial. We can, in fact, combine
these two operations (typing and translating) into a single deductive sys-
tem, in which types play a reduced role due to the presence of contextual
information.

We specify closure conversion as a translation from source to target lan-
guages. We introduce the judgment E =⇒ M which denotes the property
that source term E closure converts to term M . As we need some addi-
tional information to specify the conversion, we also introduce the judgment
〈L, x, c〉 � E =⇒ M ; L′ in which L and L′ are lists of target language terms
(typically variables), x is a source language term (typically a variable), c is
a closure (or closure variable), E is a source term and M is a target term.
The judgment can be read as follows: L is the list of variables (or terms sub-
stituted for these variables) that occur free and must therefore be included
in an enclosing closure; x is the bound variable of the nearest enclosing λ-
abstraction; c is the closure variable of the nearest enclosing closure (to be
constructed); E is the source term to be converted; M is the converted term;
and L′ is the (possible) extension of L which includes the free variables of
M . Note that the first judgment E =⇒M is really just a special case of the
second judgment where the sets L and L′ are empty. We prefer to use two
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distinct judgments as it simplifies and clarifies the correctness proofs. Note
also that while x and y in rules (1.2) and (1.4) denote variables in the source
and target languages, respectively, in the remaining rules occurrences of x,
y, z and c, though suggestive of variables, can range over arbitrary terms of
the appropriate syntactic class (source term, target term or closure).

Finally, we need a third judgment, L�x �→ N ; L′ which is used to generate
a de Bruijn index N for a variable x. This judgment relies on the property
that bound variables are distinct in the given source term. The judgment
can be understood as follows: starting with (target) variable list L, source
variable x closure converts to the N th variable of L′. The list L′ is different
from L if only if the variable y to which x converts is not already in L. In
this case, y is added to the end of L, creating L′. The complete system for
basic closure conversion is given in Fig. 1.

The first two rules specify the top-level conversion. In rule (1.2) the uni-
versal quantification of the variables x, y, and c ensures that these variables
are arbitrary (and do not already occur in any assumptions). (In our imple-
mentation in Elf this property is automatically maintained from our use of
higher-order syntax and Π -quantification of these variables.) Note that the
variable x may occur free in E and the variables y and c may occur free in M .
The variables are bound by the universal quantifiers in the antecedent of the
rule and are bound by λ-abstractions in the conclusion. This manipulation of
variables, motivated by the higher-order syntax used in our implementation,
eliminates any need for variable conventions or renaming. We use implication
to introduce the hypothesis x =⇒ y (an instance of the judgment E =⇒M),
instead of maintaining an explicit context of information. Again, our im-
plementation supports this operation and structuring the rule in this way
simplifies the correctness proofs. The operation L + L′ denotes the new list
of variables obtained by appending to L those elements of L′ (in order) not
already occurring in L.

The structure of these rules, in particular, the use of universal quantifica-
tion and implication is critical when we encode these rules into an LF signa-
ture and Elf program and apply the Propositions-as-Types analogy. Then,
for example, the judgment ∀x∀y∀c(x =⇒ y ⊃ 〈·, x, c〉 � E =⇒ M ; L), when
viewed as a type denotes a functional type taking four arguments (terms for x,
y, and c, and an object of type x =⇒ y). Thus a deduction of this judgment,
when viewed as an object, represents a function which when applied to terms
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Figure 1: Basic Closure Conversion

E ′, M ′, C ′ and an object representing the deduction E ′ =⇒ M ′, yields an
object representing a deduction of 〈·, E ′, C ′〉�E[E ′/x] =⇒M [M ′/y, C ′/c]; L.

2.3 Verifying the Conversion

We are now in a position to state the correctness criteria for our closure con-
version specification. First we state two lemmas about the auxiliary judg-
ments L � x �→ N ; L′ and 〈L, x, c〉 � E =⇒M ; L′:

Lemma 1. For all lists L, L’, source term E, target term M and natural
number N, if 
 L � E �→ N ; L′ and 
 (nth N L’ M) then 
 E =⇒M .
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The proof is by induction on the structure of the deductions for the judg-
ment L � E �→ N ; L′.

Lemma 2.

1. For all source terms E, V, x, target term M, lists L, L’, and closure
term (or variable) C, if 
 E ↪→s V and 
 〈L, x, C〉 � E =⇒M ; L′ then
there exists a V’ such that 
M ↪→t V ′ and 
 V =⇒ V ′;

2. For all source terms E, x, target terms M, V’, lists L, L’, and closure
term (or variable) C, if 
 〈L, x, C〉 � E =⇒ M ; L′ and 
 M ↪→t V ′

then there exists a V such that 
 E ↪→s V and 
 V =⇒ V ′.

The proof is straightforward by induction on the structure of the deduc-
tion for E ↪→s V and then by cases on the structure of the deduction for
〈L, x, c〉 � E =⇒M ; L′. Finally, we can state the main theorem.

Theorem 3.

1. For all source terms E, V and target term M, if 
 E ↪→s V and 

E =⇒M then there exists a V’ such that 
M ↪→t V ′ and 
 V =⇒ V ′;

2. For all source term E and target terms M, V’, if 
 E =⇒ M and

M ↪→t V ′ then there exists a V such that 
 E ↪→s V and 
 V =⇒ V ′.

This kind of correctness statement is in the same spirit as one of the cor-
rectness statements for the compiler found in our earlier work on compiler
correctness [6].

3 Selective Closure Conversion

As pointed out in [14], avoiding closure creation plays an important role
in generating efficient code for higher-order languages. In the basic closure
conversion specification of the previous section, alI source language functions
were converted to closures. We consider here the possibility of selective
closure conversion in which source language functions are not converted to
closures, but rather left as functions. Our focus in this section is not so much
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on determining exactly when closures need not be converted, but rather on
demonstrating that both closures and functions can be handled together,
ensuring that applications in the target language are constructed with the
proper procedure calhng conventions.

The approach taken in [14] uses a relatively complex flow analysis, related
to some abstract interpretation techniques. Using a type system, we provide
a straightforward account of selective conversion. Instead of explicit con-
straints we have types, and type inference provides the means for resolving
constraints imposed by these types. For demonstration purposes, we consider
only one case in which a source language function is not translated into a
closure: when the function contains no free variables.

3.1 Extending the Language

We begin by considering the types for our languages and by extending the
target language. The types consist of some collection of base types and two
kinds of function types:

τ ::= a | τ → τ | τ →c τ

A λ-abstraction will be given type τ1 → τ2 if it should not be closure con-
verted. A λ-abstraction will be given type τ1 →c τ2 if it should be closure
converted.

The target language is extended by including λ-abstractions and a second
form of application:

M ::= x | n#c | [λc.λx. M, L] | M @c M | λx.M | M M

We extend the operational semantics for the language with the two rules:

λy.M ↪→t λy.M

M1 ↪→t λy.M M2 ↪→t V2 M [V2/y] ↪→t V
M1 M2 ↪→t V
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3.2 Adding Selective Conversion

The closure conversion specification is modified in a few ways. First, we
include the source language type in the judgments E =⇒M , 〈L, x, c〉�E =⇒
M ; L′, and L � x �→ N ; L′. The judgments become E =⇒ M : τ, 〈L, x, c〉 �
E =⇒ M : τ ; L′, and L � x �→ N : τ ; L′. Second, the original rules for
translating λ-abstractions and applications use the function type τ1 →c τ2 to
indicate that the λ-abstraction is converted to a closure and the application
contains an operator that should evaluate to a closure. Finally, we add two
new rules for when a λ-abstraction does not convert to a closure and the
corresponding rules for the new application. The complete system is given
in Fig. 2.

The rules for converting applications differ only in the type given to the
operator. The new rules (2.3) and (2.7) for converting λ-abstractions differ
from the original ones (in which closures are created) by requiring that the
list of free variables occurring in the term be empty. This is enforced by the
occurrence of ‘.’ on the right-hand sides of the antecedents in these two new
rules.

To ensure that this conversion produces terms that make proper use of
closures we have the following consistency lemma.

Lemma 4. For all source term E and target term M,

1. if 
 E =⇒M : τ1 → τ2 and M ↪→t V ′ then V ′ = λy.M ′ for some M ′;

2. if 
 E =⇒ M : τ1 →c τ2 and M ↪→t V ′ then V ′ = [λcλy.M ′] for some
M ′.

The proof is straightforward by induction of the structure of deductions. The
fact that closed λ-abstractions need not be converted to closures is obvious
and this lemma ensures that we can selectively convert λ-abstractions and
still have correct procedure call protocols.

3.3 Verifying the Conversion

Adapting the proof of correctness for basic closure conversion to selective
closure conversion is straightforward and the Elf program representing the
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Figure 2: Selective Closure Conversion
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proof is only slightly longer than the proof for basic conversion.

Theorem 5.

1. For all source terms E, V und target term M, if 
 E ↪→ V and 

E =⇒ M : τ then there exists a V’ such that 
 M ↪→t V ′ and

 V =⇒ V ′ : τ ;

2. For all source term E and target terms M, V’, if 
 E =⇒ M : τ
and 
 M ↪→t V ′ then there exists a V such that 
 E ↪→s V and

 V =⇒ V ′ : τ .

4 Lightweight Closure Conversion

The point of a closure is to provide a function body with access to non-local
variables at the time the function is called. In particular the function call
which originally bound some of these variables may have returned by the
time this closure is accessed. If, however, certain variables can be shown
only to be accessed during the evaluation of the function body which bound
them, then these variables do not necessarily need to be included as part of a
closure, as their bindings will be available elsewhere. We can exploit this idea
and reduce the number of variables included in a closure, possibly eliminating
the need for a closure entirely in some cases. Detecting when this is possible
requires detailed analysis of the expression being closure converted.

In related work we have developed a static escape analysis for λ-terms [5].
This analysis, presented as a type system, determines when a bound variable
can escape its scope at run time, i.e., when the variable may be accessed even
after the function in which it was bound has returned. This situation occurs
when bound variables occur inside of function bodies and these functions
can be returned as values of the function for which the variable is a formal
parameter. An example illustrates this relatively simple idea. Consider the
function λx.λf. f x. If this function is applied to some value v, then the result
of the function call will be the closure consisting of the function λf. f x and
the binding x �→ v. In this case, x is the bound variable of a function, but
this variable continues to exist after returning from the function.

A variable simply occurring in the body of another function is not a suf-
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ficient condition to imply that it escapes. Consider the term λx.((λf.f x)
(λy.y)). By some simple observations of this term, we can see that the oc-
currence of x in the body will not escape its scope.

Our analysis uses a judgment of the form Γ � E : τ ⇒ Es in which Γ
is a type context, E is a source term, τ is an annotated type, and Es is an
annotated term. The annotated target language is a typed λ-calculus, but
it includes two forms for each construct in the source language: one regular
form and one annotated form.

M ::= x | xs | λx.M | λsxs.M | M @ M | M @s M

A term of the form λsxs.M indicates that the variable xs cannot escape from
its scope. The term M @s N indicates that the value of the term M will be
a function whose bound variable cannot escape its scope.

The analysis essentially determines which lambda abstractions and applica-
tions in the source term can be annotated in the target term. For example,
the two term given above could be annotated as

λx.λf s.f s x and λxs.((λf s.f s xs)(λys.ys)).

The annotations in the first term indicate that f s cannot escape its scope but
that x may. The annotations in the second term indicate that no variables
can escape their scope. In [5] we use this information to provide a stack-
based implementation of a functional language by first translating it into an
annotated form. Annotated variables are allocated space on a run-time stack
and can be deallocated when a function returns. Closures are only created
at run time.

Applying this analysis to closure conversion we can observe that the only
variables required for a function closure are those variables that occur free
in the function and can escape their scope. If they can escape their scope,
then their binding will not necessarily be part of the “global” environment at
the time the function body is evaluated. Variables that cannot escape (those
annotated after analysis) can be allocated on a stack (because they can be
safely deallocated upon returning from the corresponding function call) and
their values can always be accessed, when required, from this stack. Closures
which do not contain such non-escaping variables are called lightweight clo-
sures in [14], though they do not focus directly on whether variables escape
their scope. They refer to these non-escaping variables as dynamic variables.
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We can specify such lightweight closure conversion as the composition of
our escape analysis and an extended version of the conversion specification
given in the previous section. Note that we could also combine these two into
a single specification, but for clarity we will keep the two distinct and focus
only on the extended version of closure conversion using annotated terms.
The specification for lightweight conversion includes the previous rules for
selective conversion (Fig. 2) and the additional rules of Fig. 3. The first five
rules simply treat annotated λ-abstractions, applications and local variables
as before in selective conversion. Rule (3.6) provides the essential difference.
In this case, non-local, annotated variables are not included in the set of
variables used for constructing closures. The variables are simply translated
into the appropriate target language variables. Compare this rule with (2.10).

Figure 3: Lightweight Closure Conversion

When using lightweight closures we do not explicitly pass dynamic vari-
ables to functions which need them (as done in [14]). Instead we expect
an implementation to exploit the availability of the variables (actually, the
values bound to them), located in some global store such as a stack. Some
simple calculations allows each function to determine the location at run time
of these dynamic variables on the stack [5].

To adequately characterize the correctness of lightweight closure conversion
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we would need to introduce an operational semantics for our closure language
that provides a finer specification of storage than given by the one in Sec. 2.
We leave this for future work.

5 Conclusions and Future Work

We have presented a series of closure conversion specifications using type
systems. The systems are relatively simple and for basic and selective con-
version we have constructed a machine-checked proof of correctness in Elf.
A corresponding proof for lightweight conversion is in progress.

We are applying our technique to other strategies for closure conversion,
with the expectation of constructing clear spec3cations for these strategies
and also correctness proofs. Our goal is to model the space-efficient closure
representations constructed in the Standard ML of New Jersey compiler [12].
An important aspect here is to represent closures in a manner which allows
storage to be deallocated or reclaimed as soon as data is no longer needed.
Before attempting these more complex closure representations and conversion
strategies we need a solid understanding of some of the basic issues and
techniques of closure conversion, and a suitable framework for expressing and
reasoning about them. The current work provides such initial experience.

A common program transformation, prior to closure conversion is CPS
translation which produces λ-terms which closely reflect the control-flow and
data-flow operations of a traditional machine architecture. We have speci-
fied and proved correct the translation from source program to CPS program
using the same approach given here, using deductive systems to specify oper-
ational semantics and the CPS translation. The proof is straightforward and
captures the essential notion of continuations. We have not, however, com-
bined this translation with closure conversion. This is the subject of future
work.

We intend to analyze more detailed translation strategies that incorporate
caller-save registers and callee-save registers as described in [2, 12]. Doing
this will require more complex analyses but we expect that using type systems
we can adequately express them. We intend to analyze and prove correct the
notion of safe for space complexity as described in [2]. To accomplish this
we will consider a variety of static analyses on programs including lifetime
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analysis and closure strategy analysis (which determines where to allocate
each closure).
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A A Overview of LF

We briefly review the LF logical framework [7] as realized in Elf [9, 10, 11].
A tutorial introduction to the Elf core language can be found in [8].

The LF calculus is a three-level calculus for objects, families, and kinds.
Families are classified by kinds, and objects are classified by types, that is,
families of kind Type.

Kinds K ::= Type | Πx : A. K
Families A ::= a | Πx : A1. A2 | λx : A1. A2 | A M
Objects M ::= c | x | λx : A. M | M1 M2
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Family-level constants are denoted by a, object-level constants by c. We
also use the customary abbreviation A → B and sometimes B ← A for
Π x : A. B when x does not appear free in B. Similarly, A → K can stand
for Π x : A. K when x does not appear free in K. A signature declares the
kinds of family-level constants a and types of object-level constants c.

The notion of definitional equality we consider here is based on βη-con-
version. Type-checking remains decidable (see [4]) and it has the advantage
over the original formulation with only β-conversion that every term has an
equivalent canonical form.

The Elf programming language provides an operational semantics for LF.
This semantics arises from a computational interpretation of types, similar
in spirit to the way a computational interpretation of formulas in Horn logic
gives rise to Pure Prolog. Due to space limitations, we must refer the reader
to [8, 9, 11] for further material on the operational semantics of Elf.

Throughout this paper we have used only deductive systems to present
solutions to problems. Each of these systems, however, has a direct encoding
as an LF signature (a set of constant declarations), and hence, also an Elf
programs In particular, an Elf program corresponding to a verification proof,
when type-checked, provides a (mostly) machine-checked version of the proof.
For lack of space we have not provided the LF signatures or Elf programs
corresponding to the systems given in the paper, but the ability to construct
these is a critical aspect of our work. The Elf language provides a powerful
tool for experimenting with, and verifying, various analyses.

We give here only a brief description of how the deductive systems and
proofs described in the paper can be encoded as LF signatures. From there,
the encoding of signatures into Elf programs is a direct translation: each
signature item becomes an Elf declaration.

We represent a programming language (that we wish to study) via an
abstract syntax consisting of a set of object constants for constructing objects
of a particular type. For example, we introduce a type tm of source programs
and collection of object constants for building objects of type tm. We use
a higher-order abstract syntax to represent functions and this simplifies the
manipulation of programs with bound variables.

We represent judgments such as e ↪→ v via a type family eval : tm →
tm→ type. For given objects e : tm and v : tm, (eval e v) is a type.
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We represent inference rules as object level constants for constructing ob-
jects of types such as (eval e v). For example, an inference rule

A1 A2 A3

A0

would be represented as a constant c : Π x1 : B1 · · ·Π xn : Bn(A∗1 → A∗2 →
A∗3 → A∗0) in which A∗i is the representation ofjudgment Ai as a type and
the xi : Bi are the free variables (implicitly universally quantified) of the
inference rule. Using such constants we can construct objects, for example,
of type (eval e v), representing the deduction e ↪→ v.

Finally, we represent inductive proofs (with the induction over the struc-
ture of deductions) as signatures in which each constant represents a case in
the inductive proof. For example, to prove a statement of the form “judgment
A is derivable iff judgment B is derivable” then we define a new judgment
or type family, for example thm : A→ B → type to express the relationship
between objects of type A and objects of type B. Base cases in the inductive
proof translate to axioms (objects of base type) while inductive step cases
translate to inference rules (objects of functional type). See [6] for examples
of this technique.
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Abstract

This paper describes a general purpose program analysis that com-
putes global control-flow and data-flow information for higher-order,
call-by-value programs. This information can be used to drive global
program optimizations such as inlining and run-time check elimina-
tion, as well as optimizations like constant folding and loop iuvariant
code motion that are typically based on special-purpose local analyses.

The analysis employs a novel approximation technique called poly-
morphic splitting that uses let-expressions as syntactic clues to gain
precision. Polymorphic splitting borrows ideas from Hindley-Milner
polymorphic type inference systems to create an analog to polymor-
phism for flow analysis.

Experimental results derived from an implementation of the anal-
ysis for Scheme indicate that the analysis is extremely precise and has
reasonable cost. In particular, it eliminates sigticantly more run-time
checks than simple flow analyses (i.e. 0CFA) or analyses based on
type inference.

1 Introduction

Advanced programming languages such as Scheme [3] and ML [15] encour-
age a programming style that makes extensive use of data and procedural
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abstraction. Higher degrees of abstraction generally entail higher run-time
overheads; hence, sophisticated compiler optimizations are essential if pro-
grams written in these languages are to compete with those written in lower-
level languages such as C. Furthermore, because Scheme and ML procedures
tend to be small, these compiler optimizations must be interprocedural if
they are to be effective.

Interprocedural optimizations require interprocedural control- and data-
flow information that expresses where procedures are called and where data
values are passed. In its purest form, the flow analysis problem for these
languages involves determining the set of procedures that can reach a given
application point and the set of values that can reach a given argument
position in an application. This information can be used to drive global
program optimizations such as inlining and run-time check elimination, as
well as optimizations like constant folding and loop invariant code motion
that are typically based on special-purpose local analyses.

We present a flow analysis framework for a call-by-value, higher-order lan-
guage. The framework is parameterized over different approximations of ex-
act values to abstract values, and hence can be used to construct a spectrum
of analyses with different cost and accuracy characteristics [12, 22]. In partic-
ular, we study a novel approximation technique called polymorphic splitting
that uses let-expressions as syntactic clues to gain precision. Polymorphic
splitting borrows ideas from Hindley-Milner polymorphic type inference sys-
tems to create an analog to polymorphism for flow analysis. Polymorphic
splitting allows the analysis to avoid merging information between unrelated
calls to a polymorphic function, yielding more precise flow information than
would be otherwise possible.

To investigate its effectiveness, we have implemented the analysis for Sche-
me. The implementation handles all of the constructs and operators specified
in the R4RS report [3], including variable-arity procedures, data structures,
first-class continuations, and assignment. We use the analysis to avoid unnec-
essary run-time type checks at primitive operations. Run-time type checks
can be avoided at an application of a primitive operator if the types of the ar-
guments can be proven to conform to the expected signature of the operator
being applied. As our analysis yields sets of abstract values that approximate
the types of the arguments, it is easy to determine when a run-time check
can be avoided: each argument’s abstract value or type must be a subset of
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the type expected.

Experimental results for realistic Scheme programs indicate that polymor-
phic splitting is extremely precise and has reasonable cost. The analysis
eliminates significantly more run-time checks than comparable simple anal-
yses (e.g. 0CFA [21]) or type-inference based techniques (e.g. soft typing
[24]). While the computational cost of our analysis appears to be higher
than that of type-inference based methods, analysis times are still within
reason for including the analysis in an optimizing compiler. Furthermore,
and perhaps surprisingly, our polymorphic splitting analysis is often faster
than coarse analysis such as 0CFA. We discuss the reasons for this Section
5.

The remainder of the paper is organized as follows. The next section infor-
mally motivates polymorphic splitting, and Section 3 defines our framework
in a formal manner. Section 3.1 discusses polymorphic splitting, Section 4
discusses the implementation, and Section 5 provides performance measure-
ments. The final section places our results in the context of related work.

2 Motivation

In the absence of any compile-time analysis, Scheme implementations must
ensure at run-time that primitive operations are applied to arguments of a
sensible type. Even in ML, where a static type discipline prevents some prim-
itives from being applied to incorrect values, many primitive operations (e.g.
hd) require run-time checks. These run-time checks can have a signficant
negative impact on program performance.

Although one can construct ad hoc heuristics to determine when certain
run-time checks can be safely removed, a more satisfactory solution is to
use a general interprocedural analysis. Many analyses with different cost
and accuracy characteristics are possible, and the right combination is not
readily apparent for a given optimization. For example, consider the following
Scheme expression:

(let ((f (lambda (x) x)))

(f 1))
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Simple control-flow analyses [22] or set-based analyses [9] determine that
the application of f to 1 produces 1 as the result. These simple low-order
polynomial-time analyses effectively determine all potential call sites for all
procedures, but merge the values of arguments from all call sites. The type
of a procedure’s argument is therefore the union of the types of all values
to which the argument is possibly bound. This set of abstract values is
propagated among expressions in the procedure’s body, yielding a similarly
merged set for the procedure’s result.

Because of the way information is approximated, these analyses fail to
recognize that a run-time check is unnecessary on the addition operation in
the following expression:

(let ((f (lambda (x) x)))

(f 1))

(f #t)))

The arguments (1 and #t) to the two calls to f are merged by such analyses
to yield {1,#t} as the abstract value for x in f’s body. Consequently, any
application of f in this framework yields {1,#t} as its result. Run-time check
optimizations based on these analyses are unable to eliminate the unnecessary
run-time check at the addition operation.

A more sophisticated analysis [22] avoids merging information in syntac-
tically distinct calls to the same procedure by treating the call site at which
the procedure is applied as a disambiguation context; this analysis is referred
to as 1CFA. In the above example, a 1CFA analysis deduces that f in the
first call is applied to 1 and returns 1 as its result and, that in the second
call, f is applied to #t and returns #t . With 1CFA, the run-time check at
the addition operation can be eliminated.

1CFA is an instance of a general flow-analysis framework based on call-
string approximations. Call-string based analyses use the N most recent
dynamic call sites as a disambiguation context, for some small, fixed N .
Because the point at which a procedure is defined may be far removed from
its point of use, call-string based analyses are highly sensitive to program
structure. It is easy to construct a simple extension to the above example
for which 1CFA computes overly conservative information:
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(let ((f (lambda (x) x)))

(g (lambda (a b) (a b))))

(+ (g f 1))

(g f #t)))

In this example, there is an intervening call between the point where f is
first referenced and the point where it is applied. 1CFA computes an abstract
value set for f’s result that contains both 1 and #t. Correctly disambiguating
the two calls to (lambda (x) x) made via the two calls to g requires a 2CFA
analysis that preserves two levels of call history.

In contrast, polymorphic type inference algorithms [14, 24] correctly infer
the proper type for f without requiring such tuning. Polymorphic type sys-
tems disambiguate different calls to a polymorphic procedure by effectively
duplicating the procedure wherever it is referenced. This yields an analysis
that is insensitive to the dynamic sequence of calls separating the construc-
tion of a value from its use. Consequently, analyses based on call-string
abstractions are only marginally useful in capturing polymorphism.

We therefore consider an alternative abstraction called polymorphic split-
ting that uses let-expressions as syntactic clues to determine when abstract
evaluation contexts should be disambiguated. Let f be a procedure bound
by a let-expression, and let f1, . . . , fn be syntactically distinct occurrences
of f within the let-expression’s body. An analysis incorporating polymor-
phic splitting associates a distinct abstract closure with each of the fi. Thus,
different applications of f will construct different abstract bindings for the ar-
guments. The abstract values of these bindings are not merged with abstract
values associated with bindings of other applications of f in the let-body. It
is well-known that quantification rules for type variables can be discarded in
favor of a substitution rule on polymorphic variables [16]. Polymorphic split-
ting captures the essence of polymorphism by incorporating this observation
into a flow-analysis framework.

Like polymorphic type inference, polymorphic splitting relies only on lexi-
cal structure and is independent of dynamic contexts. In the above example,
there are four distinct occurrences of let-bound variables in the let-body.
The analysis effectively substitutes the closure values of these variables at
the application points, and thereby avoids merging bindings from the di-
Rerent applications. A run-time check optimization based on this analysis

88



will eliminate all run-time checks from this example.

Some technical machinery is required to implement the intuition of poly-
morphism as substitution without actually performing an inefficient code
transformation. We discuss this issue in Section 3.1.

3 The Framework

We present a formal definition of our analysis framework for a functional
core language. The definition is sufficiently parameterized that we can easily
modify it to obtain a spectrum of analyses with different cost and accuracy
characteristics.

We consider a simple call-by-value language with labeled expressions el of
the form

el ::= cl | xl | (λx.el1
1 )l | (el1

1 el2
2 )l

| xl
[l′] | (let x[l] = el1

1 in el2
2 )l

| (if el1
1 then el2

2 else el3
3 )l

where c ∈ Const are constants, x ∈ Var are variables, and l ∈ Label are
labels. Constants include simple values like 0, 1, true, and false. Free
variables (FV ) and bound variables (BV ) are defined as usual [2], except
that a subscripted variable xl

[l′] must be bound by a let-expression with label

l′, and an unsubscripted variable xl must be bound by a λ-expression. A
program el0

0 is an expression with no free variables. We assume that bound
variables are appropriately re-named so that all bound variables in a program
are distinct. We require every subexpression of a program to have a unique
label, and occasionally omit labels from expressions to avoid clutter. The
exact semantics for this language is an ordinary call-by-value semantics [20].
Recursive procedures can be constructed with the call-by-value Y combinator.

Our analysis yields sets of abstract values. Abstract values are defined as
follows:
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v ∈ Value = Label + Closure
〈l, ρ, κ〉 ∈ Closure = Label × Env × Contour

ρ ∈ Env = Var → Contour
κ ∈ Contour

A single abstract value v is either a label l or a closure 〈l, ρ, κ〉. An abstract
value v = l identifies a particular occurrence of a constant cl, and hence
represents a single exact value. An abstract value v = 〈l, ρ, κ〉 identifies a
set of functions created by evaluations of a λ-expression (λx.e)l. In a typical
operational semantics, a closure is a pair consisting of a λ-expression and
an environment mapping its free variables to values. A single λ-expression
may thus produce many different closures. An abstract closure v = 〈l, ρ, κ〉
approximates a set of exact closures created from the same λ-expression.

Several exact closures are mapped to a single abstract closure by collapsing
their environments. An abstract closure’s environment maps variables to
contours rather than values. Contours are finite strings of labels. We can
make different choices for the set of contours, and the set of contours selected
governs the precision of the analysis. In call-string based analyses, contour
labels identify application sites. In our analysis, contour labels identify either
let-expressions or uses of let-bound variables.

A flow analysis of a program el0
0 is a function

F : ProgramPoint → 2Values

that maps program points to sets of abstract values. A program point is
either a Var × Contour or Label × Contour pair. Var × Contour pairs rep-
resent bindings constructed by function applications. Label × Contour pairs
represent the results of expressions. Informally, a program point associates
an abstract program state with an identifier or expression.

F is a flow analysis of a program el0
0 if A[[el0

0 ]]ρ0κ0 holds, where A is the
relation defined in Fig. 1 and implicitly parameterized by F , and ρ0 and
κ0 are a specific initial environment and initial contour. There are many
functions which are flow analyses of el0

0 . The least flow analysis is the least
such function. Intuitively, A specifies constraints on a graph defined by F .
Edges in the graph correspond to subset constraints, and nodes in the graph
correspond to program points. The addition of new information is modeled
in the framework in terms of satisfiability of these constraints. The following
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Figure 1: Relation A
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theorem establishes the existence of a least function F .

Theorem (Least Flow Analysis). Given envkonment ρ0, contour κ0 and
closed expession el0

0 , there exists a unique minimal function F such that
A[[el0

0 ]]ρ0κ0 holds.

Proof Sketch. Since the analysis only manipulates a finite set of values,
we can enumerate the set S of functions F for which A holds, and impose a
natural partial ordering on S. Suppose F1 and F2 are in S. By the structure
of the constraint rules, we show that A must also hold for F1 ∩ F2. �

The application rule introduces two constraints. The first requires that
the abstract value of the argument be a subset of the value of the formal;
in other words, information flows from the actual parameter of the call to
the function’s formal. The second requires that the abstract value of the
function body evaluated at this call site be a subset of the abstract value of
the application; in other words, information flows from the function body to
the call site. Besides these two constraints, the rule introduces an explicit
strictness ordering. If the abstract value of the function position at a call is
unspecified, i.e. no information flows into the node represented by the cor-
responding program point, the argument position need not be evaluated. A
similar strictness constraint is introduced to cutoff evaluation of the function
body if the abstract value of the argument position is unspecified. This strict-
ness constraint corresponds to a reachability assertion [12], and significantly
reduces the number of abstract values generated by the analysis.

3.1 Polymorphic Splitting

The last two rules of Fig. 1 for let-expressions and let-bound variables are
the only rules that introduce new contours. For programs that do not use
let-expressions, contours are essentially useless—all expressions are evaluated
in the initial contour. Thus, in the absence of let, the analysis computes the
same information as a 0CFA analysis. Polymorphic splitting uses different
contours created at let-expressions and let-bound variables to disambiguate
different uses of a let-bound procedure.

A let-binding evaluates in a new contour κ′ which is constructed by ap-
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pending the let-expression’s label l to the let-expression’s contour κ. The
maximum length of a contour string is therefore the maximum nesting depth
of let-bindings. Any closures created while evaluating the let-binding will
capture the extended contour κ′ as their third component (see the rule for
λ-expressions). To illustrate, we adapt the second example from Section 2
to our formal core language:

(let f = (λx.xl1)l2 in ((λd.(f l3
[l0] 1l4)l5)l6 (f l7

[l0] #tl8)l9)l10)l0

The let-binding evaluates in contour κ0l0, and returns the abstract value set
{〈l2, ∅, κ0l0〉}. This abstract value set is bound to f in program point 〈f, κ0〉.

When a let-bound variable xl
l′ , is used, abstract closures bound to the vari-

able are split. For each abstract closure c that captured the let-expression la-
bel l′, we define a new closure c′ whose contour is derived by substituting l for
l′ in c’s contour component. We return the new closure c′ rather than c. In the
example above, the abstract value set for f at f l3

[l0] is {〈l2, ∅, κ0l0〉}. We split
the closure in this set by substituting l3 for l0 in the closure’s contour, yielding
{〈l2, ∅, κ0l3〉} as the abstract value set for f l3

[l0]. Similarly, {〈l2, ∅, κ0l7〉} is the

abstract value set for f l7
[l0] When these closures are applied, their argument

bindings are created in different contours (κ0l3 and κ0l7) and the closures
evaluate in different contours. The analysis thereby avoids merging bindings
from the two calls.

As another example, consider the expression

((λ f.((f 0) (f true))) (λx.(λy.x)))

which evaluates to 0, and whose least flow analysis is shown in Fig. 2.
The set of abstract values for the result of this expression (program point
〈l0, κ0〉) is {l2, l5}. The analysis produces an imprecise result because the two
applications (f 0)l3 and (f true)l6 each create the same abstract closure. In
an exact semantics, these two applications create different closures binding
different values for their free variable x.

Rewriting the above example using a let-expression enables polymorphic
splitting to take place:

(let f = λx.λy.x in ((f 0) (f true))

Fig. 3 presents the least flow graph of this rewritten expression. Several
closures are now created for f with contours κ0l0, κ0l1, and κ0l4. Since there
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Figure 2: The least flow analysis of
el0
0 = ((λf.((f l10l2)l3 (f l4 truel5)l6)l7)l8 (λx.(λy.xl9)l10)l11)l0

are now two separate bindings for x corresponding to the two arguments
passed to f , this analysis yields a more precise result.

3.2 Comparison to Type Inference

For several important idioms, polymorphic-splitting results in finer precision
than Hindley-Milner typing or safety analysis [18] as embodied by a 0CFA
analysis. As a simple illustration, consider the expression:1

Figure 3: The least flow analysis of
el0
0 = (let fl0 = (λx.(λy.xl9)l10)l11 in ((f l1

[l0]0
l2)l3(f l4

[l0] true
l5)l6)l7)l0

(let h = (λx.λy.

1The examples in this section use natural extensions for begin and primitive operators.
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if xl1

then false

else yl2 + 1)l3

in begin

(1 + (hl4
[l0] false 1)l5)l6

(hl7
[l0] true ‘‘foo’’)l8

end )l0

Under a standard Hindley-Milner type discipline, this program would fail
to type-check for two reasons. First, the branches of the conditional have
different types. Second, y is assumed to be of type Int based on the context
in which it is used in the procedure body; the second call to h would violate
this assumption. Under a 0CFA analysis, the two calls to h would be merged
producing an abstract value for y that contains both 1 (from the first call)
and ‘‘foo’’ (from the second). Depending on how the analysis is used, this
merging would either lead to the program being rejected, or would result in
run-time type-checks being required at both calls to h, and in the addition
operation within h’s body.

Both static type inference and 0CFA ignore inter-variable dependencies.
Consequently, they are unable to capture the fact that y is an integer precisely
when x is false. The flow analysis described here captures this information.
In particular, the abstract values at all program points with label l2 do not
include the symbol ‘‘foo’’ since control never reaches the false branch of the
conditional in the second call. Moreover, the abstract value at all program
points with label l8 will contain only false, thus allowing such calls to be
used in a Boolean context even though the conditional yields an integer in
the false branch. This kind of precision captures a form of polymorphism
well-suited to Scheme programs, and has a direct impact on performance.

Although polymorphic splitting records inter-variable dependencies, the
approximation defined by relation A does lose precision relative to Hindley-
Milner typing in some cases. In particular, free occurrences of a polymorphic
procedure defined within another may get merged because of the way con-
tours are extended and substituted. Consider the following example:
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(let (f = (λx.xlf )
in (let g = λx.λy. . . . (f l5 x) . . . (f l6 y) . . .

in (gl3 . . .)
(gl4 . . .))l1)l0

To ftithfully model polymorphism, we require f to be evaluated in four dis-
tinct contours. However, because g’s closure binds f to contour κ0l0, the first
occurrence of f in g will be merged over the two calls to g, as will the second.
For example, the abstract value yielded by evaluating the first reference to
f in g will be a set containing the abstract closure 〈lf , ρ0, [κ0l5]〉; evaluation
of this occurrence of f in the second call to g will be the same.

It is possible to extend A’s definition to disambiguate polymorphic refer-
ences such that it fully captures the behavior of Hindley-Milner type infer-
ence. However, it is not clear whether such disambiguation in a flow-analysis
context can be performed without making the implementation of the anal-
ysis too expensive for realistic programs. Our experimental results indicate
that the potential loss of precision for programs that have nested polymor-
phic procedures does not compromise the practical utility of polymorphic
splitting eliminating run-time checks.

4 Implementation

The implementation of the analysis and the run-time type-check optimization
consists of approximately 4000 lines of Scheme code. The output of the
analysis is used to control the placement of three kinds of run-time checks:

1. An arity check is required at a λ-expression if the procedure may be
applied to an inappropriate number of arguments.

2. An application check is required at an application if the expression in
the call position may yield a value other than a closure.

3. A primitive check is required at a primitive operation if the operation
may be applied to a value of inappropriate type.
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The analysis operates over the entire Scheme language, and thus supports
variable-arity procedures, continuations, data structures, and assignment.
While most extensions to the functional core are straightforward, there are
several worthy of mention:

1. Data Structures. Elements of Scheme data structures can be mutated.
The analysis tracks such assignments by recording them in the program
point that holds the value of the corresponding sub-expression. Unlike
other static type systems proposed for Scheme [24], assigning to data
structures causes no loss in precision. Assigning to a field in a pair, for
example, simply augments the abstract value set for that field.

2. Implicit Allocation. Certain Scheme constructs implicitly allocate stor-
age. The most obvious example is variable-arity procedures, i.e., proce-
dures that take an optional number of arguments. Optional arguments
are bundled into lists which are implicitly allocated and bound to a rest
argument when the procedure is applied. Since expressions in the body
of the procedure can walk down the rest argument using regular list
operations, the implementation uses extra labels at each application to
hold rest arguments.

3. Type Predicates and Conditionals. A common Scheme idiom is to use
type predicates in conditional tests to guarantee that variables have
a desired type in appropriate branches of the conditional. Failure to
take such type predicates into account in the analysis can lead to un-
necessary merging of abstract value sets and loss of precision. Our
implementation recognizes type predicates that satisfy simple syntac-
tic conditions, and evaluates the branches of a conditional in separate
environments. These environments bind the variable upon which the
type predicate test is performed to different abstract values consistent
with the predicate check. (This environment splitting is not reflected
in Fig. 1.)

5 Performance

Our implementation runs on top of Chez [5], a commercially available im-
plementation of Scheme. At optimize-level 3, Chez eliminates almost all
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run-time checks, making no safety guarantees. By feeding the output of the
analysis to a procedure that inserts explicit run-time checks based on the
categories described in the previous section, the resulting program can be
safely executed at optimize-level 3.

We have used the analysis to eliminate run-time checks from moderately
sized Scheme programs. Fig. 4 lists the benchmarks used to test the analysis,
their size in number of lines of code, the number of sites where run-time checks
would ordinarily be required in the absence of any optimizations, and the
time to analyze them under polymorphic splitting, soft typing [24], a 0CFA
implementation, and a 1CFA implementation. The times were gathered on
a 150 MHz MIPS R4400 with 1 GByte of memory.

Figure 4: Benchmark programs, their sige (in lines of code), static incidences
of run-time checks for these programs in the absence of any run-time check
optimization, and analysis times under polymorphic splitting, soft typing,
0CFA, and 1CFA.

The program Lattice enumerates the lattice of maps between two lattices,
and is purely functional. Browse is a database searching program that allo-
cates extensively. The program Check is a simple static type checker for a
subset of Scheme. Graphs counts the number of directed graphs with a distin-
guished root and k vertices, each having out-degree at most 2. This program
makes extensive use of mutation and vectors. Boyer is a term-rewriting theo-
rem prover that allocates heavily. N-Body is a Scheme implementation [25] of
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the Greengard multipole algorithm [7] for computing gravitational forces on
point-masses distributed uniformly in a cube. Dynamic is an implementation
of a tagging optimization algorithm [10] for Scheme. Nucleic is a constraint
satisfaction algorithm used to determine the three-dimensional structure of
nucleic acids [6]. It is floating-point intensive and uses an object package
implemented using macros and vectors. Nucleic2 is a modified version of
Nucleic described below.

For several of the benchmarks, the analysis time required by soft typing
is less than the time required for either form of flow analysis. Because soft
typing is based on a Hindley-Milner type inference framework [11, 14], the
body of a λ-expression is evaluated only once. Applications unify the type
signature for a procedure’s arguments with the type inferred for the formal,
and thus do not require re-analysis of the procedure body. In contrast, the
implementation of the constraint rules specified for our flow analysis propa-
gates the value of a procedure’s argument to the sites where it is referenced
within the procedure body. Thus, expressions within a procedure may be
evaluated each time an application of the procedure is evaluated. Despite
the potential for re-evaluation of expressions in a λ-body, the analysis times
for polymorphic splitting are reasonably close to that of soft typing; Dynamic
and Nucleic are the only exceptions.

In many cases, the analysis time for polymorphic splitting is less than the
analysis time for 0CFA. On the surface, this is counter-intuitive: one might
imagine a more precise analysis would have greater cost in analysis time. The
reason for the significant difference in analysis times is because 0CFA yields
coarser approximations, and thus induces more merging. More merging leads
to more propagation, which in turn leads to more re-evaluation. Consider
an abstract procedure value P . This value is represented as a set of abstract
closures. As the size of this set becomes bigger, abstract applications of P
require analyzing the body of more λ-expressions since the application rule
applies the abstract value of the argument to each element in the set defined
by P . Because polymorphic splitting results in less merging than 0CFA,
abstract value sets are smaller, thus leading to shorter analysis times.

Fig. 5 shows the percentage of static checks remaining in these benchmarks
under the different analyses after run-time check optimization has been ap-
plied. The static iounts measure the textual number of run-time checks
remaining in the programs. Fig. 6 shows the percentage of dynamic checks
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remaining in the benchmarks. The dynamic counts measure the number of
times these checks are evaluated in the actual execution of the program. Dy-
namic counts provide a reasonable metric to determine the effectiveness of an
analysis—a good analysis will eliminate run-time checks along control-paths
most likely to be exercised during program execution.

Figure 5: Percentage of static checks remaining after run-time check opti-
mization.

For each of the benchmarks, polymorphic splitting requires fewer run-time
checks than either 0CFA or soft typing. In many cases, the difference is sig-
nificant. Interestingly, 0CFA also outperforms soft typing on several bench-
marks. For example, the Lattice program has roughly half as many static
checks when analyzed using 0CFA than using soft typing. The primary rea-
son for this is the problem of reverse flow [24] in the soft-typing framework
that leads to imprecise typing. Reverse flow refers to type information that
flows both with and counter to the direction of value flow. Conditionals often
cause reverse flow because the type rules for a conditional require both its
branches to have the same type. Consequently, type information specific to
one branch may cross over to the other, yielding a weaker type signature
than necessary for the entire expression. Because of reverse flow, a cascad-
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ing effect can easily occur in which many unnecessary run-time checks are
required because of overly conservative type signatures.

Figure 6: Percentage of dynamic checks remaining after run-time check op-
timbation.

The dynamic check count figures indicate that polymorphic splitting elim-
inates run-time checks at important program sites. The improvement over
soft typing is more striking here. For example, about one third as many run-
time checks are encountered during the execution of Lattice optimized under
polymorphic splitting than under soft typing. About one quarter as many
checks are executed for Dynamic. Here also, a simple 0CFA flow analysis
generally does better than soft typing, although for some benchmarks such
as Boyer and Graphs, 0CFA is worse. This indicates that the approximation
used by polymorphic splitting is superior to 0CFA. Insofar as the benchmark
programs use common Scheme idioms and programming styles, we conclude
that Scheme programs use polymorphism in interesting and non-trivial ways.
Analyses which are sensitive to polymorphism will outperform those that are
not.

The counts of static and dynamic checks for Nucleic are significantly

101



higher than for the other benchmarks. Nucleic implements a structure
package that supports a simple form of inheritance; the main data objects
manipulated by the program are defined in terms of structure instances.
Structures are implemented as vectors, and tags (represented as symbols)
are interspersed in this vector to demarcate distinct substructures in the
inheritance hierarchy. Since the analyses do not retain distinct type infor-
mation for individual vector slots, references to these structures invariably
incur a run-time check. Thus, although the vast majority of references in the
program are to floating-point data, all the analyses require run-time checks
at arithmetic operations that are applied to elements of these structures.
Nucleic2 is a modified version of Nucleic which uses an alternative rep-
resentation for structures. This representation separates the tags from the
actual data stored in structure slots, enabling the analyses to avoid run-time
checks when extracting elements from structures. Nucleic2 incurs signifi-
cantly fewer run-time checks than Nucleic for all analyses, although these
improvements come at the cost of increased analysis times.

6 Conclusions and Related Work

A flow analysis can enable and facilitate a number of important optimiza-
tions necessary to implement realistic high-level languages efficiently. Run-
time check elimination is one such example that is relevant in the context of
languages such as Scheme or ML.

Although the flow analysis problem has been well-studied [13], and al-
though parameterizable systems have been investigated elsewhere [12, 22],
the applicability of such frameworks for optimizing realistic programs has
enjoyed relatively little examination. When viewed in the context of run-
time check elimination, flow analysis bears an interesting relationship to type
inference [19]. However, there has been little work on extending the relation
to polymorphism or to understand its implications on implementations.

One important kind of run-time check optimization is elimination of type
tags [23]. Shivers [21] used the term type recovery to describe a type-tag elim-
ination optimization based on flow analysis. Because this framework relies on
call-string abstractions, and did not study the possibility of exploiting poly-
morphism, its success was limited. Moreover, since no attempt was made to
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implement the interpretation for the entire Scheme language, making a quan-
tified assessment of its utility is difficult. Henglein [10] describes a tagging
optimization based on type inference. While the analysis can reduce tagging
overheads in many Scheme programs, it does not consider polymorphism or
union types, and uses a coarse type approximation that is significantly more
imprecise than control-flow analysis via polymorphic splitting.

Soft typing [24] and Infer [8] are two other type systems implemented
for Scheme that employ traditional type inference techniques to derive type
information which can be then used to eliminate or obviate run-time checks.
Infer is a statically typed polymorphic dialect of Scheme. Like ML, certain
well-defined programs (as determined by Scheme’s dynamic semantics) will
be prohibited under Infer because of apparent type errors it detects. Soft
typing is a less restrictive alternative. Soft typing is a genertiation of static
type checking that accommodates both dynamic typing and static typing in
one framework. A soft type checker infers types for identifiers and inserts run-
time checks to transform untypable programs to typable form. Aiken et al. [1]
describe a more sophisticated soft type system for a functional language. This
system uses conditional types in a more powerful type language that should
yield more a precise analysis than the soft type system mentioned above, but
no implementation is available for a realistic programming language.

Besides type inference and abstract interpretation, there has been recent
work on using constraint systems [9, 17] to analyze high-level programs.
These systems are based on an operational semantics that ignores all inter-
variable dependencies. Consequently, while efficient implementations of these
analyses can be built, it is unclear whether they provide the necessary pre-
cision to perform useful run-time check optimizations. Refinements on these
approaches that take into account polymorphism are possible [9], but are ad
hoc and do not fit neatly within the constraint framework.

We conclude that flow analysis offers the possibility of distilling more pre-
cise information useful for run-time check elimination than unification-based
type inference procedures. Because flow analysis tracks dynamic control-flow,
it can avoid incorporating information propagated from dead or unreachable
code in abstract values. Furthermore, because these analyses record the cre-
ation points of values, they can be used to build a more refined notion of
the set of values that can be associated with a given program point. This
refinement can facilitate other kinds of optimizations beside run-time check
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elimination. Moreover, in sharp contrast to traditional abstract interpreta-
tion systems, a direct implementation of the least flow graph generated by
the constraint rules can be easily applied to analyze incrementally-defined
programs.

Our results indicate that flow analysis offers a promising platform upon
which to implement run-time check elimination. If the framework is equally
adept in supporting other optimizations, we expect to use the ideas upon
which it is based in an optimizing compiler for Scheme.
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Abstract

Higher-order programming languages, such as ML, permit a flexi-
ble programming style by using compile-time type inference together
with the concept of type polymorphism, which allows to specify the
types of generic functions. In ML, however, recursive factions must
always be given a unique (monomorphic) type inside their defition.
Giving polymorphic types to recursive functions is known as the prob-
lem of polymorphic recurcion which has been shown equivalent to the
problem of semi-unification, known as undecidable. We show that the
absence of a decidable specification to give polymorphic types for re-
cursive definitions lies on the non-adequacy of representing type poly-
morphism by using type variables as primitive elements. We introduce
the notion of syntactic type polymorphism to relate polymorphic types
with syntactic information. We formulate a decidable calculus which
gives polymorphic types to recursive factions in ML. We present an
inference algorithm which we prove the termination and correctness.

1 Introduction

Higher-order programming languages, such as Standard ML [8], permit a
flexible programming style by using the technique of compile-time type in-
ference [7, 2] for type-checking programs. This technique is one of the most
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appreciated features in ML-like languages as it delegates to the compiler part
of the task of the programmer to write extensive type declarations. This au-
tomation is not done by sacrificing the expressiveness of the type system.

Standard ML allows static typing of generic functions (e.g. functions which
may uniformly operate on arguments of different types) by using the notion
of type polymorphism. It has, however, a limitation. Recursive functions
must always be given the same type inside their definition. Giving polymor-
phic types to recursive functions in ML is known as the difficult problem of
polymorphic recursion.

Polymorphic recursion was first introduced in the Milner-Mycroft calculus
[9]. Latter, deciding typing in this calculus was shown equivalent to the prob-
lem of semi-unification [5], which was then proved undecidable [6]. Mean-
while, decidable restriction of semi-unification were isolated as the ground
for sound implementations of the Milner-Mycroft calculus [5].

The interest on the Mimer-Mycroft calculus has recently been renewed by
the discovery of its application in the specification of program analysis tech-
niques [15], such as effect systems [3, 12]. In this context, we are interested in
introducing a decidable calculus for assigning polymorphic types to recursive
functions which neither the syntax-directed processing of the Damas-Milner
calculus nor the undecidable Milner-Mycroft calculus yet permit.

We show that the difficulty of giving a decidable account to generic recur-
sive functions in the Damas-Milner calculus comes the fact that from using
type variables as primitive elements is non-adequate for representing type
polymorphism. Therefore, we introduce a notion of syntactic type polymor-
phism which relates polymorphic types with syntactic information. Using
syntactic type polymorphism, we formulate a calculus which gives polymor-
phic types to recursive functions and present an inference algorithm which
we prove the termination and correctness of.

2 Preliminary Examples

To address the problem polymorphic recursion, we consider some simple ex-
amples that establish the connection between mutually recursive function
definitions and type polymorphism. Let us define f , g and h as follows.
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f(x) = x : α→ α g(y) = f(3) : α→ int h(z) = j(true) : α→ bool

Each of these definition is typable in the Damas-Milner calculus. If we want
to give them a mutually recursive definition: “rec f(x) = x and g(y) = f(3)
and h(z) = f(true)′′, we can not type them anymore. The erason lies on the
fact that only one type of the function f must be given inside the recursive
definition. This type cannot simultaneously match α′ → int and α′′ → bool.

To overcome this problem, the principle of the Milner-Mycroft calculus is to
assume a type scheme ∀α.α→ α of f , as a representation of all its types, and
then prove that α→ α is a valid type of f . The essence of this calculus is to
solve a fixed-point equation between the assumption ∀α.α→ α and the result
α → α of the proof. However, a straightforward iteration technique fails to
terminate on other instances of the problem, such as: “rec f(g) = g(f)′′.

If we take ∀α0.α0 as an initial assumption for f and iterate, we first prove
“[f : ∀α0.α0] � rec f(g) = g(f) : (α1 → α2) → α′′2 where α2 is given to
g(f) and α1 → α2 to g and continue iteration, getting rec f(g) = g(f) :
((α3 → α4) → α4) → α4. We discover that each time we instantiate the
type scheme of f in the body of its definition, we built a new function type
with that instance as argument. Such a constraint does not have any finite
representation. Therefore, we should say that f is untypable.

By showing that typing a program in the Milner-Mycroft calculus reduces
to solving a problem in semi-unification, the technique employed in [5] allows
discovering such a situation. It detects that there is a cyclic instantiation
constraints between the type scheme of f and its instance g(f) in the body
of the function. This is done by performing an extended occurrence-check
over a set of collected instantiation constraints. This technique allows to
characterize a sound implementation of the Milner-Mycroft calculus.

Still, there are some other programs that exhibit cyclic instantiation con-
straints while being typable in the Milner-Mycroft calculus. For instance,
the definition rec f(x) = (f(f))(x); x.

It first applies f to f , then f(f) to x and then returns x, can be given
type ∀α.α → α in the Milner-Mycroft calculus. But there is (following [5])
a cyclic instantiation constraint between f : α → α and f(f) : (α → α) →
(α → α), represented by the semi-unification constraints α → α ≤ α′ and
α→ α ≤ α′ → (α→ α′′).
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3 Approach

In a programming language, the specification of a static semantics aims at
providing a tool to reason about properties of programs. By specification,
we understand a set of axioms and rules which characterize a judgment of
the form: “given the assumption a, the expression e has type t”. Our con-
tribution is to provide such a specification for assigning generic properties to
recursive definitions.

We can easily observe that the representation of polymorphism using prim-
itive or symbolic type variables a is not convenient for typing recursive func-
tions. This formalism does not provide us with enough information about the
program. Thus, the resulting specification does not provide enough discipline
in the choice of types.

To allows us to precisely control the amount of type polymorphism intro-
duced during the type-checking of a program, we choose to represent type
variables in strong connection with the syntax of the program.The idea is
to associate each type variables with the set of program labels at which this
type variable is used.

Let us reuse the first example of the previous section, with a few program
labels made explicit, to sketch how our technique works.

rec fa(xb) = x and g(y) = fc(3) and h(z) = fd(true)

We want to give a generic type to the declared function f (in place a) and
then give it exactly one (related) instance in the places it is called: c : f(3)
and d : f(true). The idea is to compose the type of f with the label mentioned
at the first place: f : ∀αa,b.αa,b → αa,b and then to aggregate this type with
the labels found at the place it needs to be instantiated. It will have types
fc : αa,b,c → αa,b,c and fd : αa,b,d → αa,b,d.

We obtain exactly one instance of the type off at each place the type needs
to be instantiated. Furthermore, each instance is related to the original
(generic) type by a covariant extension of the set-membership relation on
the structure of types (we assume that ground types are bigger than type
variables).
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αa,b → αa,b ⊆ αa,b,c → αa,b,c ⊆ αa,b,c,e → int
αa,b → αa,b ⊆ αa,b,d → αa,b,d ⊆ αa,b,d,f → bool

If now, we consider the second example, rec fa(gb) = g(fc)d we discover
that the type of f has a component αa,b,c which needs to match a bigger term
αa,e,c → αa,e,c,d.

A similar situation happens with the third example of the previous section.
This shows that, by representing type variables in close connection with the
syntax of the program, we can reduce the problem of determining the solution
of a set of acyclic semi-unification constraints into a system of equations over
sets of program labels.

4 Contribution

Using this notion of syntactic polymorphism, we formulate a calculus derived
from that of [7, 2] which, in addition, allows giving polymorphic types to
recursive functions, in the spirit of [9]. In our presentation, we systematize
the use of inference rules, not only to specify the static semantics of our
language, but also to define our unification and inference algorithms.

We obtain a calculus which give a decidable account to assigning poly-
morphic types for recursive functions. In the context of its applications to
type-based program analysis or effect systems, it can serve as a basis to ex-
press generic properties for recursive definitions in a decidable and uniform
framework. This approach offers significant advantages over previous inves-
tigations in this area [15]. It gives uniform results: it has a syntactically
correct inference algorithm. It is simpler to reason with: it has a decidable
logic.

Detailed proofs of the formal properties presented in this paper are avail-
able in [13] together with a proof that our calculus is consistent with respect
to a dynamic semantics of the language. In particular, we introduce a proof
technique derived from previous work in fixed-point theory [1] to establish
the termination of our algorithm.
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5 Syntax of the Language

We start by giving the syntax of our language. We consider a countable set
of program labels p. Values v are either integers n, λ-abstractions, written
fn(xp) = e, or recursive functions, written rec fp(xp) = ep. Identifiers i
are either value identifiers x or identifiers of recursive function definitions f .
Expressions are either values v, an identifiers ip, applications e(e)p or a let.
To each value and expression in a program corresponds a unique label p.

p program labels
v ::= n | fn(xp) = e | rec fp(xp) = ep values
i ::= x | f identifiers
e ::= v | ip | e(e)p | let val x = e in e expressions

Syntax

6 A Syntactic Type System

We define the quantities manipulated in our calculus by the following pro-
duction rules. A syntactic type variable α is represented by a set of labels
p assembled with the union operator “∪′′. A syntactic type t is either a
ground type int, a type variable α or a function type t→ t. We write fv(t)
the sequence α of type variables in t. A type scheme g, written ∀α.t, is a
type t quantified over the sequence of its free variables α. Type schemes
are not equivalent under renaming of bound syntactic variables. We write
fv(∀α.t) = fv(t)\α and bv(∀α.t) = α. An assumption is a sequence a[i : g]
of identifiers i and type schemes g, a(i) is type scheme associated to i in a.
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α ::= {p} | α ∪ α type variables
t ::= int | α | t→ t types
g ::= ∀α.t generic types
a ::= [] | a[i : g] assumptions

A syntactic type system

Types obey a covariant partial order relation t ⊆ t′. It denotes that the
type t′ can be used in strictly more places than t, either because t′ contains
either more program labels than t (for instance t = {p} and t′ = {p, p′} or
because it is a simpler types (for instance t′ = {p, p′} → {p, p′} or t′ = int).

α ⊆ int α ⊆ α ∪ α′
α ⊆ t1 α ⊆ t2
α ⊆ t1 → t2

t1 ⊆ t′1 t2 ⊆ t′2
t1 → t2 ⊆ t′1 → t′2

Specialization relation t ⊆ t′

A substitution is either the identity [] or, written [t/α] that replaces all free
occurrences of the type variable α by a term t. A substitution is a strictly ⊆-
extensive morphism (e.g. either α = t or α ⊂ α′ for all α′ ∈ fv(t)). We write
s ◦ s′ for the composition of s and s′ and sa the restriction of a substitution
s to the free variables of a. We identify s(a) and sa(a).

7 Static Semantics

We use structured operational semantics to give an inductive definition of
our static semantics as the judgment a � e : t, which reads: “given the as-
sumptions a, the expression e has type t”. The structure of this specification
is similar to previous polymorphic calculi [7, 2, 9] except that type variables
contain program labels.
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a � n : int
t �p a(i)
a � ip : t

a � e : t a[x : gen(a, t)] � e′ : t′

a � let val x = e in e′ : t′

a[x : t] � e : t′ p ⊆ t

a � fn(xp) = e : t→ t′
a � e : t′ → a � e′ : t′ p ⊆ t
a � e(e′)p : t′

a[f : gen(a, t)] � fn(xp′) = e : t p ⊆ t t′ �p′′ gen(a, t)

a � rec fp(xp′) = ep′′ : t′

Static semantics: a � e : t

An instance t′ of a type scheme ∀α.t at a program point p, written t′ �p

∀α.t, satisfies t′ = t[t/α] where α ⊆ t and p ⊆ t. This means that the term
substituted for all bound type variables in ∀α.t must mention p.

We write gen(a, t) the closure of the type t over its quantifiable variables α.
We write gen(a, t) = ∀α.t where α = {α ∈ fv(t) | ∀α′ ∈ fv(a), α′ �⊆ α}. This
means that a type variable α is generalizable if neither α nor a smaller α′ ⊆ α
occur free in a. This avoids capture of α via the ⊆-extensive substitution of
α′ by α.

8 Formal Properties

In this section, we characterize the invariants and formal properties of our cal-
culus. We define the formal criterion wf (a) which specifies how assumptions a
are constructed in the static semantics. We write wf ([]) and write wf (a[i : g])
if and only if wf (a) and for all α ∈ bv(g), for all α′ ∈ fv(a[i : g]), α′ �⊆ α.
The property wf (a) is stable under substitution wf (s(a)) and generalization
wf (a[i : gen(a, t)]). Given the above, we prove that our syntactic calculus is
stable under substitution on free variables and is preserved under stronger
assumptions. We write g′ � g if and only if, for any t and p, t �p g implies
t �p g′.

Lemma 1. If a[i : g] � e : t and g′ � g then a[i : g′] � e : t
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Lemma 2. If wf (a) and a � e : t then s(a) � e : s(t)

9 Unification Algorithm

Constraint resolution plays a central role in the process of computing the
principal type of programs. Thus, we start by defining our unification al-
gorithm before to present the inference algorithm. It is sketched by a set
of inference rules which associate a type equation “t = t′” to a ⊆-extensive
and idempotent substitution s which satisfy it: “s(t) = s(t′)”. When a type
equation cannot be solved, the unifier returns fails.

[α∪α′/α][α∪α′/α′] solves α = α′ fails solves int = t→ t′ fails solves t = failt

[int/α] solves α = int
s solves t1 = t2 s′ solves s(t′1) = s(t′2)

s′ ◦ s solves t1 → t′1 = t2 → t′2[int/α] solves int = α

α ∈ fv(t→ t′)
fails solves α = t→ t′

fails solves t→ t′ = α

α /∈ fv(t→ t′) s = [α ∪ α′/α′ ∈ fv(t→ t′)]

s ◦ [t→ t′/α] solves α = t→ t′

s ◦ [t→ t′/α] solves t→ t′ = α

Specification of the Unification Algorithm: s solves t = t

The inference rules are recursively defined on the structure of the input
pair (t, t′). Computations are required in the case of function types, where s
replaces all α′ ∈ fv(t→ t′) with α ∪ α′, in order for the substitution of α by
s(t → t′) to be ⊆-extensive. The correctness of the unification algorithm is
stated as follows.

Lemma 3 If s solves t = t′ then s(t) = s(t′). If s′(t) = s′(t′) then s
solves t = t′ and there exists s′′ such that s′(t, t′) = s′′(s(t, t))
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10 Inference Algorithm

In this section, we give the specification of our type inference algorithm using
a set of inference rules, written a � e : t (s), which, given a set of assumptions
a, describes how the principal type t of an expression e is computed.

Unlike the static semantics, the algorithm associates untypable expressions
with (failt, fails). This pair is the supremum of all other pairs (t, s). We
identify failt with t → failt, failt → t, s(failt) and fails(t) for any t, fails ◦ s
with fails for any s. We add that t ⊆ failt for any t. We use the rule
a[i : failt] � e : failt (fails) to propagate errors. Instantiation is written
instp(∀α.t) = t[α ∪ {p}/α]α∈α.

To infer the type of an abstraction, we take the program point p, at which
the identifier x is mentioned, as initial assumption for its type. Then, we
infer the type of the body and apply on p the resulting substitution s, which
sums up all the typing constraints that p must verify. For the application,
we introduce a type term, taken as the type of its result, which contains the
current program point p and satisfy the constraint “t′ → p equals s′(t)”.

To determine the type of a recursive function definition, we perform a
flxed-point iteration, which is specified by the sequence of judgments ranging
over j. Initially, we give the type t0 = p to the function identifier. At each
iteration j, we apply the previous substitutions s′j and s′j on aj and then
generalize the type s′j(tj) to gj to infer the type tj+1 and a substitution sj+1.
Then, we constraint tj+1 to be equal to sj+1(s

′
j(tj)), getting the substitution

s′j+1. The iteration terminates upon satisfaction of “s′k+1(tk+1) = s′k(tk)
′′.
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a � e : t (s) s(a)[x : gen(s(a), t)] � e′ : t′ (s′))
a � let val x = e in e′ : t′(s′ ◦ s)

a[x : p] � e : t (s))
a � fn(xp) = e : s(p)→ t (s)

a � ip : instp(a(i))[]
a � e : t (s) s(a) � e′ : t′ (s)
a � e(e′)p : s′′(p) (s′′ ◦ s′ ◦ s)

(s′′ solves s′(t) = t′ → p)

∀j > 0, aj−1[f : gj−1] � fn(xp′) = e : tj (sj)
s′j solves tj = sj(s′j−1(tj−1))
aj = s′j(sj(aj−1)) and gj = gen(aj , s

′
j(tj))

a � rec fp(xp′) = ep′′ : instp′′(gk+1(◦j≤k+1(s′j ◦ sj))






s′0 = [], t0 = p, a0 = a
g0 = gen(a0, t0)
s′k(tk) = s′k+1(tk+1)






Inference Algorithm:: a � e : t(s)

The unification performed during each iteration corresponds exactly to the
notion of widening in abstract interpretation [1]). Indeed, one can observe
that the relation “sj(tj−1) ⊆ tj” does not always hold (for instance, s1(t0) �⊆
t1). Therefore, we must use the unification algorithm to make sure that
s′j(sj(tj−1)) ⊆ s′j(tj) holds. This allows us to characterize our fixed-point
iteration technique as a widening operation (e.g. a ⊆-extensive operation)
and give a simple proof of termination of our inference algorithm, section 12.

11 An Example Revisited

To illustrate how the inference algorithm determines the type of an expres-
sion, we reconsider the example of rec f1(g2) = g3(f4)5 6 which was given
in the introduction. We label it with from 1 to 6. The inference algorithm
proceeds the program using the set {αs | s ⊆ {1, 2, 3, 4, 5, 6}} of syntactic
type variables. The first iteration of the algorithm, traced below, determines
the “shape” of the type of the abstraction “fn(g2) = g3(f4)5” given the initial
assumption “a1 = [f : ∀α1.α1]”.
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a1[g : α2] � g3 : α2 a1[g : α2] � f4 : α4

a1[g : α2] � g3(f4)5 : α25 (s1)
where s1 solves α2 = α14 → α5

a1[g : α2] � g3(f4)5 : α25 (s1)
a1 � fn(g2 = g3(f4)5 : (α124 → α25)→ α25 (s1)

because s1(α2) = (α124 → α25)

a1 � fn(g2) = g3(f4)5 : (α124 → α25)→ α25 (s1)
[] � recf1(g2) = g3(f4)5 : (α124 → α125)→ α125 (s′1 ◦ s1)

where s′1 solves α1 = (α124 → α25) → α25. The type s′1(t1) given to f
after the first iteration satisfies all collected constraints. We start the second
iteration with it, taking as assumption

a2 = [f : ∀α124.∀α125.(α124 → α125)→ α125]

The algorithm then terminates, issuing that the expression is untypable.
The reason is that the types t1 and t2 resulting from the iterations 1 and
2 cannot be unified. More insight on the trace of the constraint resolution
algorithm permit to understand why:

a2 � fn(g2) = g3(f4)5 : (((α124 → α1245)→ α25)→ α25 (s2)

[] � rec f1(g2) = g3(f4)5 : failf (fails)

With (s2(t1), t2) as input, the resolution algorithm discovers a fixed-point
equation between the type variable α124 and the term ((α124 → α1245) →
α1245)→ α125.

fails solves α124 = ((α124 → α1245)→ α1245)→ α125

This equation does not, of course, have a finite representation in our type
system. The detection of this equation is enabled by limiting the number of
instances of the type variable α124, at program point 4, during the second
iteration.
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12 Decidability

We establish that our inference algorithm terminates. An important issue
in this proof is to show that the fixed-point iteration technique employed to
infer the type of recursive definitions terminates given finite inputs (a, e). To
this end, we formulate the appropriate setting of fixed-point theory [11, 1].
The first step is to equip us with an ad-hoc extension of the relation ⊆ to
relate the successive results (t, s) of the iteration employed to infer the type
of recursive definitions.

Definition 4. For any substitution s, we write s ⊆ s′ if and only if
s(α) ⊆ s′(α) for any α. For any pair (t, s), we write (t, s) ⊆ (t′, s′) if and
only if t ⊆ t′ and s ⊆ s′.

We determine the iterator Fa,e employed in the inference algorithm to com-
pute the type of recursive definitions. It takes the pair (tj, s

′′
j ) as argument

and returns the pair (tj+1, s
′′
j+1). Using Fa,e, we define the chain Xa,e which

is computed during the iteration.

Definition 5. Given the expression rec fp(xp′) = e′, written e, and well-
formed assumptions a, we define Fa,e(t, s) = (s′′(t′), s′′ ◦ s′ ◦ s) where s(a)[f :
gen(s(a), t)] � fn(xp′) = e′ : t′ (s′) and s′′ solves s′(t) = t′. The chain
Xa,e = (Xa,e)j≥0 is defined by (Xa,e)0 = (p, []) and by (Xa,e)j+1 = Fa,e(Xa,e)j

for any j ≥ 0

We first make the observation that Fa,e is ⊆-extensive. By application of
Tarski’s fixed-point theorem [11], Fa,e admits a least-fixed point lfp(Fa,e) and
the chain Xa,e = (Xa,e)j≥0 is strictly increasing for ⊆. Then, we show that
the iteration employed in the inference algorithm to compute Xa,e terminates.

Lemma 6. For any (t, s), (t, s) ⊆ Fa,e(t, s)

Lemma 7. The chain Xa,e constructed using Fa,e is finite on any input
(a, e)

The proof of lemma 7, in [13], relates the cardinality of Xa,e to the variables
constructed using fv(a), bv(a) and fp(e). A careful reading of the definition
of the algorithm allows to actually determine the number of iteration needed
to compute the type of a recursive function f as being the number of oc-
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currences of f in its definition. The only place in the expression e where
new program points can be introduced in the pair Xa,e are exactly these of
occurrences fp of the function identifier f in the body e of the function. We
generalize the previous result to all expressions e by stating the termination
theorem.

Theorem 8. The derivation a � e : t (s) teminates on all input (a, e)

13 Correctness

We prove the syntactic correctness of our algorithm with respect to the static
semantics. We first show that the result of the algorithm has a proof in the
static semantics. Then, we state that any proof of the static semantics is
weaker than the result of the algorithm. In other words, the algorithm is
complete and computes the principal type of expressions. In particular, the
type computed for recursive definitions is the least fixed-point of the operator
Fa,e, section 12.

Theorem 9. If wf (a), a � e : t (s) and (t, s) �= (failt, fails) then s(a) � e : t.
If wf (a) and s(a) � e : t then a � e : t′ (s′) and there exists s′′ such that
(s(a), t) = s′′(s′(a), t′)

14 A Classification of Recursive Definitions

Examples of recursive functions which require type polymorphism can be
classified in two categories. The first category, previously mentioned in [9]
and [5] are mutually recursive definitions of the form rec f1(x1) = e1 . . . and
fn(xn) = en where the identifiers f1,...n occur in the expressions e1...n with
different and non matching types. Such examples cannot be typed in the
Damas-Milner calculus. As seen previously, they can be typed using the
Milner-Mycroft calculus. They can, in our calculus, as long as exactly one
type is required for typing each occurrence of f1,...n in e1,...n.

In our calculus, the typable examples from this first category have in com-
mon that each instance tji of the types ti of the recursive function identifiers
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fi satisfies ti ⊆ tji . There is, however, another category of recursive functions
which could benefit from a type system with polymorphic recursion. Exam-
ples in this category can be constructed by considering sophisticated user
data-types, where one of the constructor takes a strictly bigger object than
the one returned. An example is the following definition.

datatype a’ Tree = Leaf | Node of ’a ∗ ((’a ∗ ’a) Tree)

fun flatten t =

case t of

Leaf => []

| Node (a, p)) => a :: (map fst (flatten p))

@ (map snd (flatten p))

The constructor Node has type α × ((α × α) Tree → α Tree. We define a
recursive function to flatten the data-structure. This function collects from
an α Tree the elements of type α at its leaves. It has type α Tree → α list in
the Milner-Mycroft calculus.

In our calculus (provided an extension of the static semantics to handle
pattern matching), the recursive call needs type f : (α× α) Tree → (α× α)
list which cannot match that of flatten. The reason is that all program labels
at which flatten is instantiated are accumulated into the type of a and p (of
type (α×α) Tree). In the algorithm of [5], a type error is similarly reported,
resulting of an unsolvable instantiation constraint.

15 Related Work

As suggested from the results of all the examples presented in this paper, our
approach to type polymorphism for recursive functions provides very similar
results to the approach presented in [5]. The approach of Henglein is, in
essence, algorithmic: in [5], the author shows that typability in the Milner-
Mycroft calculus is equivalent to solving a problem of semi-unification. He
presents an algorithm which derives from a program a set of semi-unification
constraints. This set of semi-unification constraints is complete in the sense

121



that each Milner-Mycroft typable expression is a solution to this set of semi-
unification constraints.

In spite of the fact that the problem of semi-unification has been shown
undecidable [6], Henglein has shown that acyclic semi-unification constraints
could be solved. This provided the basis for a syntactically sound implemen-
tation of the Mimer-Mycroft calculus. Having shown the equivalence between
typability in the Mimer-Mycroft calculus and semi-unification allows one to
consider a wide spectrum of techniques to solve ever more sophisticated semi-
unification problems.

Some (unpublished) are reported in [16]. The first approach consist to it-
erate over a set of semi-unification constraints with a limited number of type
variables (as in our calculus). This enforces termination but, of course, does
not suffice to formally characterize the fixed point of solvable constraints
(like we do in section 12). Another consist to test whether the system of
instantiation inequations fall into a decidable class of semi-unification prob-
lems (or make sense as a matching statement) and to solve it if this is the
case. Reportedly, this approach allows typing some programs in the second
category of the previous section while we cannot.

Our approach differs in its principles to previous and present work on poly-
morphic recursion. Instead of giving a better algorithm to solve more typing
problems in the Milner-Mycroft calculus, we propose a calculus which gives
a limited but decidable account on assigning generic properties to recursive
definitions. Our prime interest for such a development is to provide a basis
for defining program analysis techniques based on principles of typing: ef-
fect systems. In this context, our approach offers signmcant advantages over
previous investigations in this area [15].

The analysis presented in [15] uses a variant of the Milner-Mycroft calculus
to express generic data-flow properties in recursive definitions. The inference
algorithm uses the semi-unification algorithm of [5]. Since this algorithm
fails on cyclic instantiation constraints, it must sometimes give a conservative
(monomorphic) account to the properties of certain recursive functions. This
has two disadvantages.

Practically speaking, cyclic instantiation constraints occur in function defi-
nitions which employ sophisticated recursion mechanisms. Giving a monomor-
phic approximation of their properties seriously impacts the quality of the
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analysis and of dependent program optimizations. Theoretically speaking,
it requires two logics to reason with. One with polymorphic properties for
recursive definitions (with respect to which the inference algorithm is sound)
and one with monomorphic properties for recursive definitions (with respect
to which the inference algorithm is complete).

On the opposite, our approach is more uniform in its results: an inference
algorithm of data-usage properties based on the principle of syntactic poly-
morphism never fails for well-typed expressions. It is simpler to reason with:
it has one logic and a syntactically correct inference algorithm.

16 Formal Relation to Other Calculi

In this section, we establish a formal comparison of our calculus with respect
to the Damas-Milner and Milner-Mycroft calculus. To this end, we give its
definition and then define the criteria which helps relating it to ours. First of
all, we must consider an hypothesis which is always used in the type systems
based on the Damas-Milner calculus. It is that type-schemes are equivalent
under renaming of bound type variables. Instead of this hypothesis, we make
the equivalent assumption that all type variables bound in assumptions Γ are
distinct. This is written Wf DM(Γ).

The property wf must be preserved under generalization and instantiation.
We write σ a type scheme ∀β.τ and τ �DM Γ(i) any τ such that Γ(i) = ∀β.τ ′,
τ = τ ′[τ/β] where fv(τ) ∩ bv(Γ) = ∅. We write Γ(τ) = ∀β.τ [β/β′] where
β′fv(Γ)fv(τ) and β ∩ (fv(Γ) ∪ bv(Γ)) = ∅. We relate typing judgments us-
ing a one to one map m from symbolic type variables β and syntactic type
variables α. We write m(β) the α associated to β by m. We show that any
well-formed Damas-Milner proof has a proof in our calculus via a map m.
Our calculus is thus complete with respect to the Damas-Milner calculus.

Proposition 10. If Wf DM(Γ) and Γ �DM e : τ then there exists m
such that m |= (Γ, τ) : (a, t), wf (a) and a � e : t

The converse statement is false. This can be shown by considering the
example: “rec f1(x2) = (f3(7); f4(true); x)”. It is not typable using the
Damas-Milner calculus and has type α12 → α12 in our calculus. But we
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can similarly show that any proof in our calculus can be related to a one in
the Milner-Mycroft calculus.

Proposition 11. If wf (a) and a � e : t then there exists Wf DM(Γ)
and m |= (Γ, τ) : (a, t) such that Γ |=MM e : τ

Again, the converse statement is false. Our calculus is more restrictive
that the Milner-Mycroft calculus in the generalization and the instantiation
of bound recursive function types. For instance, the program “rec f1(x2) =
(f3(f4)f5)(x)6; x” has type ∀α.α → α in the Milner-Mycroft calculus, but
cannot be assigned a type in our calculus.

17 Conclusion

We have presented a decidable calculus for giving polymorphic types to re-
cursive functions in ML. We have proved its consistency with respect to the
dynamic semantics of ML and introduced correct inference and constraint
resolution algorithms to implement it. We have conducted a systematic for-
malization of the calculus and of its implementation using structured op-
erational semantics. We have introduced a proof technique adapted from
previous results of fixed-point theory to prove the termination of our algo-
rithm.

As mentioned in the introduction, we are primarily interested in providing
a calculus which can serve as a basis for defining program analysis1. To this
respect, it has been demonstrated [15] that expressing properties of recursive
functions truly requires polymorphism. In this paper, we have presented a
decidable account and a syntactically correct inference technique for describ-
ing generic properties of recursive definitions. In a forthcoming paper [14],
we show that this framework can successfdy be applied to analysing alias
and lifetime of structured data, obtaining an effect system which favorably
competes over all previous type-based analysis techniques.

1More than proposing an extension to the type system of Standard ML with poly-
morphic recursion. Such an extension seems to be of limited interest compared to other
approaches, such as explicit type polymorphism, which may well address this very issue
in a simpler way
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18 Implementation Issues

Before concluding, we would like to give some hints on some important issue
in efficiently implementing our calculus. The first is to choose an appropriate
representation for syntactic type variables and the second to delimit the scope
within which they must be used. A first observation is that, in a modular
program, this scope is that of expressions in the module language (structure
and signature objects in Standard ML).

At this level, variables can be exported (by a process similar to signature
matching in Standard ML), by guarantying that a renaming exists between
an inferred type (in a structure) and a declared or exported type (in the
signature). Type information can be reported to the user by using the same
scheme. Conversely, values which we know the signature can be imported
within the analyser by using a reverse process. To represent syntactic type
variables, we use a hash-table to relate symbolic data with syntactic data.
This guarantees unique allocation of every syntactic type variables.
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