
Termination Analysis

based on Operational Semantics

Flemming Nielson, Hanne Riis Nielson

Computer Science Department, Aarhus University

Ny Munkegade, DK-8000 Aarhus C, Denmark

e-mail:ffnielson,hrnielsong@daimi.aau.dk

Abstract

In principle termination analysis is easy: �nd a well-founded partial order and

prove that calls decrease with respect to this order. In practice this often requires

an oracle (or a theorem prover) for determining the well-founded order and this

oracle may not be easily implementable. Our approach circumvents some of these

problems by exploiting the inductive de�nition of algebraic data types and using

pattern matching as in functional languages. We develop a termination analysis for a

higher-order functional language; the analysis incorporates and extends polymorphic

type inference and axiomatizes a class of well-founded partial orders for multiple-

argument functions (as in Standard ML and Miranda).

Semantics is given by means of operational (natural-style) semantics and soundness

is proved; this involves making extensions to the semantic universe and we relate this

to the techniques of denotational semantics. For dealing with the partiality aspects

of the soundness proof it su�ces to incorporate approximations to the desired �xed

points; for dealing with the totality aspects of the soundness proof we also have to

incorporate functions that are forced to terminate (in a way that might violate the

monotonicity of denotational semantics).

Keywords: Semantics of programming languages, program analysis by annotated

type systems, proof techniques for operational semantics.

1 Introduction

Total correctness of programs is often treated as two separate problems: one is partial

correctness saying that if the program terminates then the result satis�es its speci�cation
and the other is termination that ensures that the program does terminate. Techniques

for analysing programs so as to ensure termination are therefore valuable for program

development and for being able to guarantee the correctness of using (possibly partial)
program-de�ned functions in expressing semantic conditions such as invariants.

1

For another example closer to programming consider a multi-paradigmatic programming

language that allows communication. A good design principle is that processes should

spend as little time in critical regions as possible and surely it is unacceptable if a process

might loop or fail while inside the critical region. Similarly, the enforcement of fairness

among processes being multi-tasked on a single processor might be facilitated by not

having to call the scheduler within subcomputations known to terminate within a reason-

able time bound. (In the Conclusion we briey discuss the possibility of extending our

approach with time-complexity.).

Our approach is motivated by the belief that it may be bene�cial to extend type systems

with special notations for the type of functions that can be guaranteed to terminate.

While there are other approaches to the same goal we believe that a main advantage of

the approach based on type systems is to make the �ndings of the analysis available to

the programmer; indeed it could form an important part of the interface de�nitions of

modules.

The present paper demonstrates that such an approach is semantically sound and briey

discusses how to modify the standard type inference algorithm so as to obtain an imple-

mentation. Since the underlying problem is undecidable this means that our approach
must have some weaknesses; yet we believe it to be widely applicable to functions that

traverse datastructures or other inductively de�ned data types (including the natural
numbers). This includes functions like map, filter, foldr, member, union of functional
programming [15, 27] and it should be clear that the approach based on types generalises
well to passing funtions with known termination behaviour around as �rst class citizens.

To assess the strength of the method presented here we note that it will be clear from
our approach that it applies to any function that strictly observes the rules for being in
primitive recursive form. As our main running example shows we can even step outside

primitive recursive form and show that Ackerman's function always terminates.

Related work on termination analysis

Termination analysis is an abstraction of time-complexity in the sense that having a time-
bound on a computation also ensures termination. Automatic analysis of time-complexity,
say by guessing and solving recurrence equations [12, 23], is very hard and cannot always
succeed due to the undecidability of the problem although an impressive study is contained

in [9]. Similar remarks go for automatic termination analysis where it is more often a well-

founded order [6] (for recursive calls, or iteration) that needs to be guessed and veri�ed.

However, one must be careful when reading the literature on automatic time-complexity:
too often one aims at establishing bounds that are only partially correct in the sense that

if the program terminates then it will at most have used the time stated [21, 22]. Such
approaches are useless for automatic termination analysis.

Automatic techniques that always succeed for termination analysis (and time-complexity)
must necessarily have some weaknesses; an example is [7] that essentially gives up on

recursive programs (e.g. by producing a time-estimate of \in�nity"). A better approach

may be to adapt the linear restraints of [4]. Not surprisingly the strongest techniques to
termination analysis have been developed in terms of logical approaches [17, 16, 8, 2, 28]

2

whose implementation then often requires an oracle to resolve the non-syntax directed

parts of the analysis. Our goal is to obtain an automatic analysis, by means of an inference

system, that is sound and able to handle a reasonably large class of mainly datastructure-

traversing functions and that interacts well with strongly typed languages. To this end

we study a typed functional language with algebraic data types and an eager semantics.

We do not develop an algorithm for inferring termination types although we conjecture

that this may indeed be possible as is briey discussed in the Appendix.

Throughout we shall restrict our attention to eager languages, in fact an eager func-

tional language with pattern matching, as laziness (of data type constructors) presents

formidable complications (although attempted in [24, 3]). A problem related to the study

of termination analysis is that of quasi-termination analysis [10] that is relevant for partial

evaluation: that the program only goes through a �nite number of di�erent con�gura-

tions. Also termination has been studied for term rewriting systems (e.g. [13]) and for

logic languages (e.g. [1]) but our approach relies heavily upon the algebraic data types of

our language and the nature of the operational semantics.

Main aims and overview

Our study has been motivated by an investigation into the semantic principles needed
to show the correctness of non-trivial termination analyses. We have decided to take

an operational approach, rather than a denotational approach, because a long term goal
is to be able to handle multi-paradigmatic languages where even the construction of a
denotational semantics is not a trivial task. To this end we identify a need, not present in
denotational semantics, of extending the semantic universe with new constructs, merely
in order to be able to conduct certain kinds of proofs. Having done this one needs to

investigate to which extent this means redoing the analysis for the new constructs. This is
a problem that does not arise in denotational semantics and seems to be related to the full
abstractness problem for denotational semantics: this is not of relevance for operational
semantis but our works seems to indicate that related problems crop up anyway in order
to facilitate conducting non-trivial proofs.

Section 2 de�nes the language, a fragment of Standard ML [15], that we will be working
with: it has algebraic data types and uses pattern matching in preference to the general

conditional. In addition we de�ne the operational semantics [20] in form of a natural-style
(or big-step) semantics and this is mostly straightforward. To prepare for the soundness

proof we must extend the \semantic universe" with new primitives: functions FUNk that

limit the number of recursive unfoldings to k (useful for the analogue of �xed point induc-
tion); and functions FUN[�; ~w;w] for enforcing termination upon arguments not dominated

by the parameter list (useful for establishing termination information).

In Section 3 we then develop the termination analysis. Following recent trends in program

analysis we shall specify termination analysis by means of an inference system [11, 29] and

annotate the type constructors. For the analysis of functions we ensure that the order
of parameters in not important in that all permutations of parameters will be considered

(before concluding that a function is not total).

Section 4 is devoted to showing soundness by proving results corresponding to monotonic-

3

ity, continuity and inclusiveness (of predicates) that would be expected in a denotational

approach; here the FUN[�; ~w;w] functions present complications as they are not mono-

tonic. Similar complications are to be expected even in denotational semantics since one

cannot prove functions total (i.e. terminating) using inclusive predicates.

In Section 5 the concluding remarks focus on the lesson learned about how to structure

proofs of analyses when based on operational semantics. In the Appendix we provide the

detailed proofs (although the highlights are usually presented in the main text) and we

briey discuss how to modify the usual algorithm for type inference [14] so as to obtain

our totality types.

2 Syntax and Semantics

All programs may rely on the existence of the booleans as could have been introduced by

the algebraic type de�nition

DEF 'Bool = True + False

As in Miranda [27] we write constructors with an initial capital letter and the Standard
ML [15] convention of using quotes to indicate type variables is \generalized" to apply
also to type constants. The de�nition of Ackerman's function then is

DEF 'Num = Zero + Succ 'Num

FUN ack Zero m => Succ m

& ack (Succ n) Zero => ack n (Succ Zero)

& ack (Succ n) (Succ m) => ack n (ack (Succ n) m)

ack

where the last line is the \program" to be executed (a call to Ackerman's function de�ned
immediately above).

Here we introduce the natural numbers as an algebraic data type and then use pattern
matching to de�ne Ackerman's function: ack 0 m = m + 1, ack (n + 1) 0 = ack n 1

and ack (n + 1) (m + 1) = ack n (ack (n + 1) m). We shall not follow Miranda in

allowing to write (n + 1) for the pattern (Succ n) as this would only complicate the
technical development without adding new insights. But we should point out that it
is a deliberate, and to some extent crucial, choice to use pattern matching rather than

conditional to select among the three clauses of the de�nition.

The semantics will make clear that the language is eager (or strict) and so is closer to
Standard ML than Miranda; in particular this means that data structures are �nite and

therefore no spurious numbers (the \in�nite ones") are included in 'Num (as would have
been the case in Miranda). Hence Ackerman's function as de�ned here will be a total

function and our analysis will be able to show this. We will obtain this information by
inferring the annotated type

!T 'Num �!

T
'Num �!

T
'Num

4

prog ::= defn block e

defn ::= � j defn defn

j DEF tv1 : : : tvp�0 tc = c1 t11 : : : t1(m1�0) + : : :+ cn�1 tn1 : : : tn(mn�0)

block ::= � j block block

j FUN v p11 : : : p1(m�1)) e1 & : : : & v p(n�1)1 : : : pnm) en

e ::= v j c j e e j IF e THEN e ELSE e

v ::= x j y j z j : : :

p ::= v j c p1 : : : pn�0

c ::= Nil j Cons j Zero j : : :

t ::= t1 : : : tn�0 tc j t �!

a
t j tv

tc ::= 'List j 'Int j : : :

tv ::= 'a j 'b j : : : j ''a j ''b j : : :

a ::= av j T j �

av ::= '1 j '2 j : : :

ts ::= t j 8 tv: ts j 8 av: ts

Figure 1: Abstract Syntax

The �rst !T indicates that the program does in fact terminate and produces a function
ack. The �rst subscript T says that supplying an argument n to ack still terminates giving
a function ack n. The �nal subscript T is non-trivial and says that giving the function
yet another argument m the computation still terminates giving the result ack n m. In
this notation T indicates a total function whereas an � (to be thought of as the empty

symbol and hence \invisible") indicate a possibly partial function; so our notation is a
conservative extension of the usual one.

[prog]

[] ` block + �
� ` e + w
` defn block e + w

[�] � ` � + �

[;]

� ` block1 + �1
�1 ` block2 + �2

� ` block1 block2 + �2

[FUN] � ` (FUN v ~p1) e1 : : :) + �[v 7! FUN � v ~p1) e1 : : :]

Figure 2: Semantics of Programs and Blocks

5

Syntax

The abstract syntax is summarized in Figure 1. A program (prog 2 Prog) consists of a

de�nition (defn 2 Defn) of a series of algebraic data types followed by a block (block 2

Block) introducing a series of recursive functions and then an expression (e 2 Exp).

The algebraic data types are not intended to be mutually recursive and at some point

in the development we shall make the simplifying assumption that function types cannot

be components of algebraic data types. The recursive functions are not intended to be

mutually recursive either but allow pattern matching in several levels simultaneously;

part of the well-formedness condition to be formulated later is that the patterns must be

exhaustive.

The syntax of expressions, variables (v 2 Var), patterns (p 2 Pat) and constructors (c 2

Con) present no surprises. A small syntactic convenience is that we allow to write e.g.

tvp�0 for tvp with a side condition p � 0. In the course of the development we shall see

that the syntax for expressions will have to be extended and later we shall argue in favour

of this piecemeal approach as opposed to introducing all auxiliary syntactic constructs

right at the start.

Types (t 2 Type) include parameterized type constants (tc 2 TyCon) and type variables
(tv 2 TyVar) as well as function types. The syntax for function types allows labelling the
arrow with an annotation (a 2 Ann). Possibilities include a = � for arbitrary (possibly

partial) functions and a = T for functions guaranteed to be total; the �nal possibility of
annotation variables (av 2AnnVar) is analogous to type variables and will be clari�ed
in the type inference system. Type variables are of two kinds: singly quoted ones that
may be instantiated to arbitrary types, and doubly quoted ones that may be instantiated
only to types not containing function types (or singly quoted type variables).

Type schemes (ts 2 TyScheme) are types quanti�ed over by type variables or annotation
variables; we shall sometimewrite tav 2 TyVar [AnnVar to reduce the number of cases

to be considered. A closed type, or monotype, is one without type or annotation variables
whereas a polytype is a type that may well contain type or annotation variables. In a
similar way a closed type scheme is one where all free type and annotation variables of
the underlying type have been universally quanti�ed.

Semantics

The operational semantics is of the big-step variety (also called natural semantics) where
a syntactic construct evaluates to the required value in one big step. The semantics of

programs and blocks is given in Figure 2. The purpose of the elaboration of a block

is to extend a given environment (� 2 Env) to an extended environment incorporating
the function de�nitions of the block. We shall regard an environment as a list of pairs

of variables and values but written in a more readable syntax and relying on the usual
convention of locating values in the environment by using the value of the rightmost pair

whose variable is the one looked for. For functions the value bound into the environ-

ment is the function abstraction itself but extended with the environment at the point of
declaration so as to obtain static scope. We do not need semantic rules for elaborating

de�nitions; in our approach this will be a task for the type inference system.

6

v : w; [v 7! w]

pi : wi ; �i (FORALL i = 1; : : : ; (m � 0))

(p1; : : : ; pm) : (w1; : : : ; wm); []�1 : : : �m

pi : wi ; �i (FORALL i = 1; : : : ; (m � 0))

c p1 : : : pm : c w1 : : : wm ; []�1 : : : �m

pi : wi 6;

(p1; : : : ; pm) : (w1; : : : ; wm) 6;

(p1; : : : ; pm) : (w1; : : : ; wm0) 6; IF m 6= m0

pi : wi 6;

c p1 : : : pm : c w1 : : : wm 6;

c p1 : : : pm : c0w1 : : :wm0 6; IF m 6= m0 _ c 6= c0

Figure 3: Semantics of Matching

To handle the semantics of function application we need to be able to match a pattern

against a value: if it succeeds we get a new small environment and write p : w ; �; if it
fails we write p : w 6;. More generally we may match a tuple of patterns against a tuple
of values and this is achieved by the rules and axioms given in Figure 3. We have used
the notation pi : wi ; �i (FORALL i = 1; : : : ;m � 0) as a shorthand for the more usual
p1 : w1 ; �1 : : : pm : wm ; �m together with the side condition m � 0. In this way the

rules and axioms for composite patterns are applicable also for constructors: so c : c; []
where [] denotes the empty environment and c : c0 6; when c 6= c0.

The eager semantics of expressions is given in Figure 4. The general form of a judgement
is � ` e + w and says that in the environment � the expression e evaluates to the value
w. The values (w 2 Val) are given by

w ::= (FUN � v ~p1) e1 : : :) w1 : : : wm<j ~p1j j c w1 : : : wm�0

and those constructed by the semantics will not contain any free variables; we shall write

this as FV (w) = ; for a hopefully obvious de�nition of FV .

The �rst few axioms and rules are straightforward. Rules [APP<
FUN] and [APP=

FUN]

both deal with the application of a function requiring j ~p1 j arguments, where j ~p1 j is

the number of patterns in the list, to m arguments. The �rst rule considers the case
m < j ~p1 j where the function remains less than fully applied. The second rule deals

with the case m = j ~p1 j where the function becomes fully applied and hence has to be
\unfolded". We take care to change to the de�nition-time environment and to extend it

with the function applied; this gives static scope and allows recursive calls. Additionally,

we must select the right branch of the function body and extend the environment with a
binding of formal parameter variables to actual argument values. This could have been

7

[v] � ` v + �(v)

[c] � ` c + c

[IFT]

� ` e1 + True

� ` e2 + w
� ` IF e1 THEN e2 ELSE e3 + w

[IFF]

� ` e1 + False

� ` e3 + w
� ` IF e1 THEN e2 ELSE e3 + w

[APPC]

� ` e1 + c w1 : : : wm�1

� ` e2 + wm

� ` e1 e2 + c w1 : : : wm

[APP<
FUN]

� ` e1 + (FUN � v ~p1) e1 : : :)w1 : : :wm�1

� ` e2 + wm

� ` e1 e2 + (FUN � v ~p1) e1 : : :)w1 : : : wm

IF m <j ~p1 j

[APP=
FUN]

� ` e1 + (FUN � v ~p1) e1 : : :)w1 : : :wm�1

� ` e2 + wm

�[v 7! FUN � v ~p1) e1 : : :] ` (�~p1:e1 : : :)w1 : : : wm + w
� ` e1 e2 + w

IF m =j ~p1 j

[�1]

(p11; : : : ; p1m) : (w1; : : : ; wm); �0

�; �0 ` e1 + w

� ` (�p11 : : : p1m:e1 : : :)w1 : : : wm + w

[�2]

(p11; : : : ; p1m) : (w1; : : : ; wm) 6;

� ` (�p21 : : : p2m:e2 : : :)w1 : : :wm + w

� ` (�p11 : : : p1m:e1 & p21 : : : p2m:e2 : : :)w1 : : :wm + w

[w] � ` FUN � v ~p1) e1 : : : + FUN � v ~p1) e1 : : :

Figure 4: Semantics of Expressions and Temporaries

incorporated into rule [APP=
FUN] but to avoid an overly complicated rule we have added

the two rules [�1] and [�2] for selecting and evaluating the appropriate branch. To this
end we have introduced temporary expressions (e.g. te 2 TempExp) given by

te ::= (� p11 : : : p1(m�1):e1 & : : :& p(n�0)1 : : : pnm:en) w1 : : :wm

Since temporary expressions cannot be written in a program and cannot be bound into

8

environments or values we do not include temporary expressions in the syntax of expres-

sions or values. Also note that the use of pattern matching saves us the trouble of adding

explicit destructor functions.

A small �nal point is that we shall �nd it helpful to regard values as a special kind of

expressions. This may be achieved by extending the syntax of expressions by1

e ::= : : : j FUN � v p11 : : : p1(m�1)) e1 & : : :& v p(n�1)1 : : : pnm) en

and by having the axiom [w] in Figure 4.

Example 1 Let defn and block be the de�nitions of Num and ack in Ackerman's function,

respectively. Then one may verify

` defn block ack (Succ2 Zero)(Succ3 Zero) + (Succ9 Zero)

where (Succ2 Zero) abbreviates Succ (Succ Zero) etc. 2

Extending the semantic universe

In denotational semantics the semantic domains may contain elements that are not de-
notable as the semantics of programs or other syntactic constructs. This phenomenon
lies at the heart of the full abstractness problem for denotational semantics but it also
facilitates a number of proofs where such elements can be used. In operational semantics
the semantic universe is no larger than what has been introduced: either in the syntax

or as new auxiliary forms (e.g. FUN � v : : :) facilitating the de�nition of the semantics.
Thus when performing certain proofs we shall �nd a need to extend the semantic universe
with new auxiliary forms whose sole purpose is to facilitate a certain method of proof
when establishing a theorem. We shall see this need arise in the soundness proof and to
avoid cluttering the paper we present the extensions here; however, it may be advisable

to postpone the reading until needed for the soundness proof. In the conlusion we will
then comment on the overall picture that we see emerging in proofs based on operational
semantics.

The �rst extension is a syntactic device

FUNk � v ~p1) e1 & : : :& v ~pn) en

that allows only k unfoldings of the function v. Formally we extend the syntax of values

(and similarly expressions) by

w ::= : : : j (FUNk � v ~p1) e1 : : :) w1 : : : wm<j ~p1j

and the semantics by the following modi�cations of the rules of Figure 4:

1Since we use a big-step semantics there is no harmful ambiguity between viewing a syntactic construct
as a value or as an expression (when both are possible). Hence we do not follow [19] in enclosing values
in angle brackets.

9

[w]0 � ` FUNk � v ~p1) e1 : : : + FUNk � v ~p1) e1 : : :

[APP<
FUN]

0

� ` e1 + (FUNk � v ~p1) e1 : : :) w1 : : :wm�1

� ` e2 + wm<j ~p1j

� ` e1 e2 + (FUNk � v ~p1) e1 : : :) w1 : : : wm�1 wm

[APP=
FUN]

0

� ` e1 + (FUNk+1 � v ~p1) e1 : : :) w1 : : :wm�1

� ` e2 + wm=j ~p1j

� [v 7! FUNk � v ~p1) e1 : : :] ` (� ~p1:e1 : : :) w1 : : :wm�1 wm + w
� ` e1 e2 + w

Thus in the clause for a fully applied function we allow FUNk+1 to unfold with access to

FUNk and FUN0 is not allowed to unfold at all.

The second extension is a syntactic device

FUN[�; w1; : : : ; wm; w]� v ~p1) e1 & : : :& v ~pn) en

that allows to modify a function to arbitrarily produce the result w upon arguments
w1; : : : ; wm that do not satisfy (w1; : : : ; wm) � (w1; : : : ; wm) for some relation �. Formally
we extend the syntax of values (and similarly expressions) by

w ::= : : : j (FUN[�; w1; : : : ; wj ~p1j; w] � v ~p1) e1 : : :) w1 : : :wm<j ~p1j

and the semantics by the following modi�cation of the rules of Figure 4:

[w]00 � ` (FUN[�; w1; : : : ; wm; w] � v ~p1) e1 : : :)
+ (FUN[�; w1; : : :wm; w] � v ~p1) e1 : : :)

[APP<
FUN]

00

� ` e1 + (FUN[�; w1; : : : ; wj ~p1j; w] � v ~p1) e1 : : :) w1 : : : wm�1

� ` e2 + wm<j ~p1j

� ` e1 e2 + (FUN[�; w1; : : : ; wj ~p1j; w] � v ~p1) e1 : : :) w1 : : : wm�1 wm

[APP=
FUN]

00

1

� ` e1 + (FUN[�; w1; : : : ; wm; w] � v ~p1) e1 : : :) w1 : : : wm�1

� ` e2 + wm=j ~p1j

�[v 7! FUN � v ~p1) e1 : : :] ` (� ~p1:e1 : : :) w1 : : :wm�1 wm + w

(w1; : : : ; wm) � (w1; : : : ; wm)
� ` e1 e2 + w

[APP=
FUN]

00

2

� ` e1 + (FUN[�; w1; : : : ; wm; w] � v ~p1) e1 : : :) w1 : : : wm�1

� ` e2 + wm=j ~p1j

:((w1; : : : ; wm) � (w1; : : : ; wm))
� ` e1 e2 + w

10

The latter two rules show the di�erent behaviour of FUN[�; w1; : : : ; wm; w] : : : upon argu-

ments depending on their relation to (w1; : : : ; wm). Note that in [APP
=
FUN]

00

1 it is FUN, not

FUN[�; w1; : : : ; wm; w], that is made available to the recursive calls. It is when construct-

ing these expressions that it is important that all algebraic data types do contain at least

one element that can be used for w.

We shall call FUNk for a constrained version of FUN and FUN[�; w1; : : : ; wm; w] for a forced

version of FUN. When referring to the rules of the semantics we shall allow dispensing

with the superscript dashes and the subscript integer as this is not likely to cause any

confusion. We shall say that an entity (e.g. an expression or an environment) is pure

if it contains no forced version of FUN whereas constrained versions are permitted. The

motivation behind this notion is that some of our subsequent results (e.g. Lemmas 12 and

13) are not valid for forced versions of FUN. However, it does simplify our task (mainly in

the proof of Lemma 18) to be able to use forced versions when due care is taken.

3 Termination Inference

When analysing a recursive function the idea will be to ensure termination by comparing
the formal parameters (as given by the patterns of the function de�nition) with the
actual parameters of the recursive calls in the body of the recursive function de�nition.

To facilitate this the analysis of expressions will not only determine the type of the
expression but also a set (W below) of recursive calls. To control the size of this set we
also maintain a set of relevant function names (cenv below).

Following recent trends in program analysis we shall specify the termination analysis by
means of an inference system (as opposed to an abstract interpretation). Since the types
play an important role for our analysis the inference system takes the form of an extended
inference system for type analysis.

Before giving the details of this inference system we give a brief overview of the di�erent
kinds of judgement involved in the system. The judgement for programs is

` defn block e : !a t

where a and t are (not necessarily closed) annotations and types, respectively. The basic

idea is that the program must terminate if a = T and that if it terminates the result will
be as described by the annotated type t. The judgement for de�nitions is of the form

denv1 ` defn) denv2

and extends the existing de�nition environment denv1 with the local de�nitions so as to
produce the new de�nition environment denv2; this involves recording the arity of each

type constructor and the type scheme of each constructor. The judgement for blocks is of

the form

denv; tenv1 ` block) tenv2

11

and extends the existing type environment tenv1 with the local functions declarations so

as to produce the new type environment tenv2; this involves recording the type scheme

of each function declared. Finally, the judgement for expressions is of the form

denv; tenv; cenv ` e : !a t & W

Here the idea is that W is a set of those maximal syntactic constructs v e01 : : : e
0

k that may

be found inside the expression e where v is one of the functions selected for \monitoring"

in the \calling environment" cenv. The environments denv and tenv are as above and

the annotation a and the type t are as for programs.

Programs and de�nitions

We are now ready to provide the details of the annotated type system. As said above the

judgement for programs is ` defn block e : !a t where a and t are (not necessarily closed)

annotations and types, respectively. The intent is that the program must terminate if

a = T and that if it terminates the result will be as described by the annotated type t.

[prog]

['Bool : 0][True 7! 'Bool][False 7! 'Bool] ` defn) denv

denv; [] ` block) tenv

denv; tenv; ; ` e : !a t & W
` defn block e : !a t

[�] denv ` �) denv

[;]

denv ` defn1) denv1
denv1 ` defn2) denv2

denv ` defn1 defn2) denv2

[DEF]

denv[tc : p] ` tij : true (FORALL i = 1; : : : ; n) (FORALL j = 1; : : : ;mi)
denv[tc : p] ` tvi : true (FORALL i = 1; : : : ; p)
ftcg \ dom (denv) = ;

FTV (tij) � ftv1; : : : ; tvp) ^ FAV (tij) = ; (FORALL i) (FORALL j)

9i : denv ` tij : true (FORALL j = 1; : : : ;mi)
fc1; : : : ; cng \ dom (denv) = ;

denv ` DEF tv1 : : : tvp tc = c1 t11 : : : t1m1
+ : : :+ cn tn1 : : : tnmn

)
denv[tc : p] : : : [ci : 8tv1 : : :8tvp:ti1 �!

T
: : :�!

T
timi

�!

T
tv1 : : : tvp tc] : : :

Figure 5: Analysis of Programs and De�nitions

There is just one rule applicable to programs; it is listed in Figure 5 as rule [prog]. The

�rst step is to process the de�nitions and to obtain a de�nition environment. An example
de�nition environment is

['Bool : 0][True 7! 'Bool][False 7! 'Bool]

12

that records a type constructor 'Bool of arity 0 and two constructors True and False

of the expected type.

Turning to de�nitions we recall the form, denv1 ` defn) denv2, of the judgements.

Three axioms and rules ared de�ned in Figure 5. The axiom [�] and the rule [;] express

that the de�nition environment is obtained by traversing the de�nition and extending the

de�nition environment along the way.

The rule [DEF] records the e�ect of an algebraic data type de�nition: the type constructor

and its arity must be recorded and for each constructor we record the appropriate type

scheme. We demand that a type constructor is never rede�ned (line 3 of the premiss) and

also that the constructors are never rede�ned (line 6). For the development of the next

section it is important that the algebraic data type does not contain function types (line

1) and that the type variables used as parameters will never be instantiated to function

types either (essentially line 2). The details of these formulations are given in Figure 6: a

type t is well-formed if denv ` t : s for some s and if additionally s = true it is simple, i.e.

obeys the restriction of no function types. Returning to the rule [DEF] we ensure that

the type schemes recorded for the constructors are indeed closed by means of an explicit

and rather natural condition (line 4). Finally, we want to avoid creating empty types like
DEF 'Empty = Empty 'Empty and the formulation chosen (line 5) avoids the creation of

empty types.

denv ` 'a : false

denv ` ''a : true

denv ` t1 : s1
denv ` t2 : s2

denv ` t1 �!

T
t2 : false

denv ` ti : true (FORALL i)

denv ` t1 : : : tn tc : true

IF denv(tc) = n

Figure 6: Type Well-formedness and Simplicity

Example 2 Having analysed the de�nition part of Ackerman's function the de�nition en-
vironment is ['Bool= 0; 'Num : 0; True 7! Bool; False 7! Bool; Zero 7! 'Num; Succ 7!

'Num �!

T
'Num]. 2

Expressions

We shall defer the treatment of blocks until we have explained the treatment of expres-

sions. The judgement for expressions is denv; tenv; cenv ` e : !a t & W . Here denv

is a de�nition environment, i.e. a list of type constructors and their arity and a list of

constructors and their closed type schemes. In a similar way tenv is a type environment,

13

i.e. a list of variables and their type schemes; these type schemes need not be closed and

may degenerate to ordinary types (which need not be closed either). The set cenv is a

\calling environment" that indicates those recursive calls we wish to collect in the W

component. The idea is that W is a set of those maximal constructs v e01 : : : e
0

k that may

be found inside the expression e; so whenever function v occurs in a context we attempt

to determine the maximal number of arguments e01 : : : e
0

k to v and then collect v e01 : : : e
0

k

(rather than v e01 : : : e
0

k0 for some k0 < k) in W . The annotation a and type t are as for

programs.

The formal de�nition is given in Figure 7. The axioms for variables collect the call of

a single variable if that variable is in the calling environment; for constants we collect

nothing. Since we are in an eager language variables and constants always evaluate,

hence the !T annotation. The type must be a generic instance of the appropriate type

scheme and this is written

denv ` ts � t

where ts is the type scheme denv(v) or denv(c). To formalize this let a substitution be
a �nite mapping from type variables to types (not type schemes) and from annotation
variables to annotations. It is ground if all types and annotations in its range are closed.
It covers a given syntactic construct if the domain of the substitution includes all type and
annotation variables of the syntactic construct. It is (denv-)well-formed if it respects sim-
plicity of types and does not introduce types that are not well-formed; for a substitution

U this may be written

denv ` tv : true ^ tv 2 dom (U)) denv ` U(tv) : true

denv ` tv : false ^ tv 2 dom (U)) 9s : denv ` U(tv) : s

The notion of generic instance may then be clari�ed by

denv ` 8tav1 : : :8tavm:t � U(t)

IF U is a denv-well-formed substitution with domain ftav1; : : : ; tavmg

Applying a substitution to a type or an annotation is a simple structural procedure but

when applying it to a type scheme (and the substitution is not ground) care must be
taken to rename the bound type and annotation variables so as to avoid conict.

The rules for application and conditional assume that types and annotations match. The

calls to be collected are the union of the calls of the subexpressions. An exception arises

for application in the case where e1 2 W1 : in this case e1 is in itself a maximal call and
we must collect e1 e2 instead of e1. With the rules of Figure 7 this means that we may

treat IF : : : THEN v e1 e ELSE v e2 e more precisely than (IF : : :THEN v e1 ELSE v e2) e
in terms of the maximality of the calls collected. It is possible to improve upon this by a

more re�ned version of the rules in Figure 7: the set W must be split into one component
for maximal inner calls and one component for maximal calls that are \exposed to the

continuation".

14

[VAR] denv; tenv; cenv ` v : !T t & fvg \ cenv

IF denv ` tenv(v)� t

[CON] denv; tenv; cenv ` c : !T t & ;

IF denv ` denv(c) � t

[APP]

denv; tenv; cenv ` e1 : !
a t1 �!

a
t2 & W1

denv; tenv; cenv ` e2 : !
a t1 & W2

denv; tenv; cenv ` e1 e2 : !
a t2 & W

WHERE W = W2 [(W1nfe1g) [

(
fe1 e2g if e1 2 W1

; if e1 =2 W1

[IF]

denv; tenv; cenv ` e1 : !
a 'Bool & W1

denv; tenv; cenv ` e2 : !
a t & W2

denv; tenv; cenv ` e3 : !
a t & W3

denv; tenv; cenv ` IF e1 THEN e2 ELSE e3 : !
a t & W1 [W2 [W3

[SUB]
denv; tenv; cenv ` e : !a t & W

denv; tenv; cenv ` e : !a
0

t0 & W

IF a; a0; t; t0

Figure 7: Analysis of Expressions

The subsumption rule [SUB] may be used to facilitate the use of rules [APP] and [IF]

in which we assumed that types and annotations match. The annotation may be left
unchanged or a T may be changed to anything. This is formalized by just two axioms:

a; a T; a

For types we allow to change annotations in top-level covariant positions only. This may
be formalized by one axiom and one rule:

t; t

a; a0 t2; t02
t1 �!

a
t2 ; t1 �!

a0
t02

By restricting ourselves to covariant positions we avoid the problems of contravariance
and by restricting ourselves to top-level positions we avoid the need to regard a \doubly

contravariant" position as a \covariant" one.

RemarkWe conjecture that if the subsumption rule is restricted to be applicable only to

variables and constants then this corresponds to what would have been obtained without

a subsumption rule and with type schemes

8av1 : : : avm: t1 �!

av1
: : : tm �!

avm
t

15

(for \fresh" annotation variables av1; : : : ; avm) instead of the

t1 �!

T
: : : tm �!

T
t

used in the rule [DEF] (and similarly [FUN]). 2

Example 3 When analysing the last clause in the de�nition of Ackerman's function we

shall see that we have

denv as given by Example 2

tenv = [ack : 'Num �!

T
'Num �!

T
'Num][n 7! 'Num][m 7! 'Num]

cenv = fackg

The analysis

denv; tenv; cenv ` ack n (ack (Succ n) m) : !a t & W

then yields

a = T

t = 'Num

W = f(ack n (ack (Succ n) m)), (ack (Succ n) m)g

In this case rule [SUB] was not needed. 2

Blocks

This leaves us with the analysis of blocks. The axiom [�] and the rule [;] in Figure 8 are
as for de�nitions. To avoid an overly complicated rule for function declarations we have a
separate rule [GEN] for generalization: it applies to type variables as well as annotation

variables. We use FTV (t) and FTV (tenv) to denote the sets of free type variables and
FAV (a) and FAV (tenv) to denote the sets of free annotation variables.

The function declaration itself is handled by rule [FUN �] and extends the given type
environment with the type of the recursively de�ned function itself. This involves guessing
the types t1; : : : ; tn of the argument and the type t of the result. We must therefore check
the well-formedness of the type t (line 1 of the premiss) and of the types t1; : : : ; tn (line 2).

At the same time we obtain the small environments tenv1; : : : ; tenvn that give the types

of the variables embedded in the patterns. The details of this are given by the inference
system of Figure 9; once again the rule for constructors may have m = 0 and so yields

denv ` c : t) [] if the side condition is ful�lled. The main premiss of [FUN �] is then the
validation that the respective bodies give the correct type (line 3): the given environment

is extended with the type of the recursive functions and of the variables embedded in the

patterns.

The � subscripting rule [FUN �] is a permutation over 1; : : : ;m. To allow postulating

that we de�ne a total function we must verify that the recursive calls are only applied

to smaller arguments. These recursive calls were collected in the Wi components. Since

there are many arguments it is natural to use a lexicographic order. It is given by

16

(e01; : : : ; e
0

k) <
�
a (p1; : : : ; pm)

m

9j : f�(1); : : : ; �(j)g � f1; : : : ; kg ^

8i < j : e0�(i) �a p�(i) ^

e0�(j) <a p�(j)

where �a (with irreexive part <a) is responsible for recognizing that the corresponding

position has (strictly) decreased. The key axioms are

e <a c : : : e : : :

e1 <� e2

stating that for a total function we must eventually �nd a call to a pattern that was

contained in a larger pattern in the original call, and that for a possibly partial function

we do not require this. On top of this we need the axiom

e �a e

and the rules

e1 <a e2
e1 �a e2

e1 �a e2 e2 �a e3
e1 �a e3

e1 �a e2 e2 <a e3
e1 <a e3

e1 <a e2 e2 �a e3
e1 <a e3

in order to axiomatize that �a is a partial order with <a its irreexive part.

Example 4 Consider the Ackerman function and let � be the trivial permutation (i.e.

� = (1; 2)). We have

(n, Succ Zero) <�

T (Succ n, Zero)

because n <T Succ n ; next we have

(Succ n, m) <�

T (Succ n, Succ m)

because Succ n �T Succ n and m <T Succ m; �nally we have

(n, ack (Succ n) m) <�

T (Succ n, Succ m)

17

[�] denv; tenv ` �) tenv

[;]

denv; tenv ` block1) tenv1
denv; tenv1 ` block2) tenv2

denv; tenv ` block1 block2) tenv2

[FUN �]

denv ` t : s

denv ` (pi1; : : : ; pim) : (t1; : : : ; tm)) tenvi (FORALL i)

denv; tenv[v 7! t]tenvi; fvg ` ei : !
a t & Wi (FORALL i)

denv; tenv ` (FUN v p11 : : : p1m) e1 & : : :& v pn1 : : : pnm) en))
tenv[v 7! t]

WHERE t = t1 �!

T
: : :�!

T
tm �!

a
t

IF exhdenvt1:::tm
([[p11; : : : ; p1m]; : : : ; [pn1; : : : ; pnm]])

IF 8(v e01 : : : e
0

k) 2 Wi : (e
0

1; : : : ; e
0

k) <
�
a (pi1; : : : ; pim) (FORALL i)

[GEN]
denv; tenv ` FUN : : :) tenv0[v 7! ts]

denv; tenv ` FUN : : :) tenv0[v 7! 8tav:ts]

IF tav =2 FTV (tenv0) [FAV (tenv0)

Figure 8: Analysis of Blocks

because n <T Succ n. If Ackerman's function had taken its parameters in the opposite
order we would use the permutation (2; 1). 2

The �nal side condition in rule [FUN �] is the demand that all the patterns should be
exhaustive. This is important when we try to determine that a function is total and

will rule out the possibility that the semantics will fail (because neither [�1] nor [�2]
is applicable); because of its impact on reliable programming this condition is imposed
also in Standard ML [15]. We achieve this by means of the function exh that takes a
list of patterns as argument, a list of types as subscript and the de�nition environment
as superscript.2 An important invariant is that the i'th pattern in each list of patterns

should have the i'th type. (In the notation of Figure 8 each pij should have type ti.)

One way to de�ne exh is as a functional program in a Miranda-like notion as is done in
Figure 10. The �rst clause allows a nice termination of the recursive calls whereas the
third clause terminates any unwanted call. In the second clause the easy case is when

all the patterns in head position are variables: then we just perform a recursive call on

the remaining parts. As a notational convention we write p for a pattern, pp for a list of

patterns and ppp for a list of lists of patterns. Also p : pp denotes prepending the element

p to the list pp and pp1 ++pp2 denotes appending two lists. Turning to the harder case
in the second clause we have to split the patterns according to the constructors that may

produce elements of the type in question. For each such constructor c the list

2Another usage of termination analysis, not mentioned in the Introduction, is to ensure that functions
de�ned in a programming language may indeed be used in speci�cations (using the traditional two -
valued logic).

18

getk c [p1 : pp1; : : : ; pn : ppn]

is a list of lists of \exploded patterns": if pi consists of a constructor that is not c we

disregard pi : ppi; if pi is the constructor c we \explode" the pattern; and a variable is

treated as the pattern c x1 : : : xk where x1; x2; : : : is some list of variables. Each of these

lists must be checked for exhaustiveness. All these test must yield true and we express this

using a Miranda-like ZF-expression and the function and that calculates the conjunction

of a list of truth values.

denv ` v : t) [v 7! t]

IF denv ` t : s

denv ` pi : ti) tenvi (FORALL i = 1; : : : ; (m � 0))

denv ` (p1; : : : ; pm) : (t1; : : : ; tm)) [] tenv1 : : : tenvm

denv ` pi : ti) tenvi (FORALL i = 1; : : : ; (m � 0))

denv ` c p1 : : : pm : t) [] tenv1 : : : tenvm

IF denv ` denv(c) � t1 �!

T
: : :�!

T
tm �!

T
t

Figure 9: Pattern Decomposition and Well-formedness

Example 5 In Ackerman's function we must test for exhaustiveness of the patterns.
Write S for Succ, Z for Zero and N for 'Num. The initial call is

exhNN ([[Z;m]; [Sn, Z]; [Sn, Sm]])

where we omit the de�nition environment that is as given in a previous example. The

second case of the second clause applies and gives

and [exhN[[m]]; exhNN[[n, Z]; [n, Sm]]]

where we treated the constructor Z �rst and S second. Now the �rst case of the second
clause applies twice and yields

and [exh[][[]]; exhN[[Z]; [Sm]]]

The �rst clause gives

and [true; exhN[[Z]; [Sm]]]

and the second part of the second clause gives

and [true; and[exh[][[]]; exhN[[m]]]]

19

exhdenv[] ([[]; : : : ; []]) = true

exhdenvt1:::tm
([p1 : pp1; : : : ; pn : ppn]) =

if all of p1; : : : ; pn is a variable then

exhdenvt2:::tm
([pp1; : : : ; ppn])

if some of pi is a constructor applied to something then

and ([exhdenvt0
1
:::t0

k
t2:::tm

(getk c [p1 : pp1; : : : ; pn : ppn])

j c constructors in denv of type � t01 �!

T
: : :�!

T
t0k �!

T
t1])

exhdenvt1:::tm
([pp1; : : : ; ppn]) = false if no previous case applies

getk c [] = []

getk c ((p : pp) : ppp) =
if p is c p1 : : : pk then

([p1; : : : ; pk] ++pp) : (getk c ppp)
if p is c0 p1 : : : pl for c 6= c0 then

getk c ppp

if p is a variable then
([x1; : : : ; xk] ++pp) : (getk c ppp)

Figure 10: Checking Exhaustiveness

This all evaluates to true showing that the patterns are exhaustive. (They are also
mutually exclusive but this is not speci�ed by exh.) 2

Putting all this together we have now obtained the annotation and type for Ackerman's
function that was claimed in Section 2:

!T 'Num �!

T
'Num �!

T
'Num

Also it should be clear that our technique applies to all functions that strictly adhere to

primitive recursive form. For a third and much simpler example consider

FUN twice f x = f (f x)

that may be analysed so as to obtain the type environment

[twice 7! 8 'a :8 'b :8 '1 :('a �!

'1
'b)�!

T
'a �!

'1
'b]

Thus twice may be instantiated to apply to a total function as well as a possibly partial

function and in both cases we will have as much information about the result as about
the argument.

20

Remark A �nal important point is that we have only speci�ed the analysis for those

language constructs that are accessible to the programmer. This means that temporary

expressions (i.e. �-expressions) and semantic extensions (e.g. FUNk) are of no concern to

the analysis. However, we shall see in the next section that they will be of concern for

the de�nition of validity. 2

4 Soundness

To prove the soundness of the analysis we must decide on a notion of validity for the

judgements that the analysis deals with. For this we begin with values and expressions of

closed types (i.e. monotypes), extend to closed type schemes and then �nally allow free

type and annotation variables.

Validity

For values of a simple (i.e. containing no function space) algebraic and closed type

t1 : : : tp tc we set:

j=denv w : t1 : : : tp tc � 9c; w1; : : : ; wm; t
0

1; : : : ; t
0

m :
w = c w1 : : : wm ^

denv ` denv(c) � t01 �!

T
: : :�!

T
t0m �!

T
t1 : : : tp tc ^

8i � m : j=denv wi : t
0

i

Since t1 : : : tp tc is closed also t01; : : : ; t
0

m will be closed due to the premises of rule [DEF]
in Figure 5; and since t1 : : : tp tc is simple the de�nition is well-de�ned by induction in the
structure of the value w (assuming FV (w) = ;). Also t01; : : : ; t

0

m are determined uniquely
due to the premises of rule [DEF] in Figure 5.

For expressions of a simple and closed type we use the notion of logical relations:

j=�
denv e : !� t � (9w : � ` e + w)) j=�

denv e : !
T t

j=�
denv e : !T t1 �!

a
t2 � 9w : (� ` e + w ^

8�0 : 8e0 : (�0; e0) pure ^ j=�0

denv e0 : !T t1

) j=�0

denv w e0 : !a t2)

j=�
denv e : !

T t1 : : : tp tc � 9w : (� ` e + w ^ j=denv w : t1 : : : tp tc)

This de�nition is well-de�ned by induction in the structure of the type; more precisely we
prove well-de�nedness of j=�

denv e : !a t by induction in (t; a) ordered lexicographically:

the �rst component by substructure and the second by T below �. Note the choice of a new

fresh environment together with the argument expression in the clause for function space.
Also note that if we did not insist on types being simple this straightforward inductive

argument for well-de�nedness would no longer work: in the de�nition of validity of values

21

we should then expect to meet a value of a function type and for this the notion of logical

relations would have to be used once again. We return to this issue in the Conclusion.

It is helpful with a few simple facts about the notion of validity.

Fact 6 For a value w as produced by �0 ` e0 + w we have

j=
�

denv w : !a t, j=
[]

denv w : !a t.

Proof Inspection of the three clauses in the de�nition of validity and using that a value

evaluates to itself in all environments. 2

Fact 7 If � ` e + w then j=
�
denv e : !a t, j=

�
denv w : !a t.

Proof Induction on (t; a) ordered lexicographically as above and using that the semantics

is deterministic and that a value evaluates to itself. 2

Corollary 8 (Semantic Equivalence)

If �1 ` e1 + w ^ �2 ` e2 + w or if �1 ` e1 + w, �2 ` e2 + w then

j=
�1
denv e1 : !

a t, j=
�2
denv e2 : !

a t.

Proof If e1 and e2 both evaluate use the above two facts. If neither e1 nor e2 evaluates

then the result is immediate. 2

To deal with environments we �rst extend the de�nition of validity to include closed type
schemes:

j=�
denv e : !a 8tav1 : : :8tavn: t �

8U : U is a ground and well-formed substitution with domain ftav1; : : : ; tavng
+

j=�
denv e : !a U(t)

For environments we then have

j=denv � : tenv � dom (�) = dom (tenv) ^

8v 2 dom (�) : j=�
denv v : !T tenv(v)

where we restrict tenv to map variables to closed type schemes only.

Expressions

Turning to the judgements for expressions we now allow free type and annotation variables:

denv; tenv; cenv j= e : !a t & W �

8U : 8� : (U is a ground and well-formed substitution that covers tenv; a; t

^ j=denv � : U(tenv))

+

j=�
denv e : !

U(a) U(t) ^
8v;w; e1; : : : ; en : if v e1 : : : en is a maximal and exposed

call in � ` e + w and v 2 cenv then
(v e1 : : : en) 2 W

22

This requires a few auxiliary notions. A call v e1 : : : en occurs in � ` e + w if there is

a subinference of the form �0 ` v e1 : : : en + w0. The call is maximal if it is not part of

a strictly larger call v e1 : : : en en+1 : : : eq that occurs in � ` e + w. The call is exposed

if there are no occurrences of rules [�1] or [�2] of Figure 4 on the way from the root of

� ` e + w to the root of �0 ` v e1 : : : en + w0. This latter condition restricts us from

looking inside the bodies of nested calls; also the exposed part of an inference has the

same environment everywhere.

Lemma 9 (Soundness of expressions) denv; tenv; cenv ` e : !a t &W implies denv; tenv;

cenv j= e : !a t & W .

Proof We proceed by induction on the inference tree and let a ground substitution U

that is denv-well-formed and that covers tenv; a and t be given as well as an environment

� that satis�es j= � : U(tenv). The proof then amounts to inspecting each of the rules and

axioms of Figure 7. Please refer to the Appendix for the details of this and subsequent

proofs. 2

Matching

Soundness of blocks requires several preparations. For matching we have two results. One
shows that when matching succeeds it produces a correct environment. The other shows
that exhaustiveness of the patterns prevents matching from failing.

Lemma 10 (Soundness of matching) Let U be a ground and denv-well-de�ned substitu-
tion that covers tenv; t1; : : : ; tm. If

(p1; : : : ; pm) : (w1; : : : ; wm); �

denv ` (p1; : : : ; pm) : (t1; : : : ; tm)) tenv

8i : j=
[]

denv wi : !
T U(ti)

then j=denv � : U(tenv).

Proof We proceed by induction on the syntax of the tuple of patterns (p1; : : : ; pm). One

case is when (p1; : : : ; pm) is a variable, another is when it is a constructor applied to a
number of patterns, and the third is when it is a proper tuple of patterns. 2

Lemma 11 (Soundness of exhaustiveness) Let U be a ground and tenv-well-formed sub-

stitution that covers t1; : : : ; tm. If

exhdenvt1;:::;tm
([[p11; : : : ; p1m]; : : : ; [pn1; : : : ; pnm]])

8i : j=
[]

denv wi : !
T U(ti)

then matching must succeed, i.e.

:8i : (pi1; : : : ; pim) : (w1; : : : ; wm) 6;

23

Proof We de�ne a well-founded order � by (w1; : : : ; wm) � (w0

1; : : : ; w
0

n) i� the sum of

the sizes of w1; : : : ; wm is strictly less than the sum of the sizes of w0

1; : : : ; w
0

n. We then

prove the result by contradiction in an induction on (w1; : : : ; wm) ordered by �. 2

Syntactic continuity and inductiveness

For the partial correctness part of functions in the soundness of blocks it is convenient to

be able to perform a numerical induction on the number of times a function is unfolded.

This is facilitated by the function value

FUNk � v ~p1) e1 & : : :& v ~pn) en

that allows only k unfoldings. Its formal semantics was dealt with in Section 2.

We may now de�ne a syntactic ordering v upon terms and judgements extended with

FUNk. The basic axioms may informally be stated as

FUNk v FUNl if k � l

FUNk v FUN

and where v is then extended in a componentwise manner to a partial order on expres-
sions, values and environments. We trust the details are obvious and else refer to [18,
Chapter 6].

To motivate our auxiliary results it is helpful to pretend that we are doing denotational
semantics. For this de�ne the semantic function sem as follows:

sem(�; e) =

(
w if � ` e + w
? if :9w : � ` e + w

Here ? is a new symbol and it may be incorporated into the partial order by setting ? v e

for all expressions e. The function sem is well-de�ned because the semantics of Section 2
is deterministic. In denotational semantics a major result would then be to establish the

continuity of sem.

The monotonicity part amounts to:

Lemma 12 (Monotonicity) If �1 v �2; e1 v e2 and �1 ` e1 + w1 then there exists w2 such

that �2 ` e2 + w2 and w1 v w2; provided that all (�i; ei) are pure.

Proof We proceed by induction on the inference tree for �1 ` e1 + w1. 2

The other half of the continuity result is a bit harder. First, we de�ne the notion of

labelling. Given an expression e we may obtain a labelling3 e0 of e by replacing all FUN

in e by FUNk's (where the subscript need not be the same for di�erent occurrences). The

labelling is safe for m if all subscripts are chosen to be greater than or equal to m. If

all subscripts are chosen to be exactly m we write e0 as e[m]. Similar notions apply to

3Note that a labelling corresponds to a compact (or �nite) element in domain theory.

24

environments and values. Finally, the size of � ` e + w is the number of nodes in the

inference tree.

Lemma 13 (Continuity) Let m be arbitrary and let (�; e) and (�0; e0) be pure. If � ` e + w

and (�0; e0) is a labelling of (�; e) that is safe for m plus the size of � ` e + w, there exists

a labelling w0 of w such that �0 ` e0 + w0 and w0 is safe for m.

Proof We proceed by induction on the inference tree for � ` e + w. 2

For the continuity of sem let (�k; ek)k be a pure chain with pure limit (�; e). If sem(�; e) =

? we are done by monotonicity so assume � ` e + w and that this inference tree has size

m0. The chain (�[m+m0]; e[m+m0])
m
clearly has limit (�; e) and by the above lemmas there

exists wm such that �[m+m0] ` e[m+m0] + wm and w[m] v wm v w. Furthermore, (w[m])m is

clearly a chain with limit w. Each element in the chain (�[m+m0]; e[m+m0])m is dominated

by some element in the chain (�k; ek). By monotonicity each wm is dominated by some

sem(�k; ek) and clearly sem(�k; ek) v w. This shows that (sem(�k; ek))k is a chain with

limit w. This may be summarized as:

Corollary 14 sem is continuous (on pure arguments). 2

A more formal, and considerably more tedious, development along these lines may be
found in [18, pages 177-184].

Continuing our excursion into denotational semantics the notion of inclusive predicate is
useful.

Lemma 15 (Inclusiveness) Let a and t be closed annotations and types, respectively,
with t being denv-well-formed. If (�k; ek)k is a pure chain with pure limit (�; e) and if

8k : j=�k
denv ek : !

a t

then j=�
denv e : !a t.

Proof We proceed by induction on (t; a) ordered lexicographically and using the conti-
nuity of sem. 2

The �nal result is of a somewhat di�erent character and is related to the total correctness
part of functions.

Fact 16: For all de�nition environments denv obtainable from Figure 5 and for all well-
formed and closed types t, i.e. denv ` t : s, there exists a pure value wt such that
j=

[]

denv wt : !
T t.

ProofWe proceed by induction on t. For function types we construct a constant function.

For algebraic types we use induction on the order in which they were introduced into denv;
we here use the premiss in rule [DEF] of Figure 5 that guarantees the non-emptiness of
types. 2

Blocks and programs

Turning to the judgements for blocks we again allow free type and annotation variables:

denv; tenv j= block) tenv0 �

25

8U : 8� : (U is a ground and denv-well-formed substitution that

covers tenv0 ^ j=denv � : U(tenv) ^ � is pure)

+

9�0 : � ` block + �0 ^ j=denv �
0 : U(tenv0) ^ �0 is pure

For this to be meaningful it must be the case that U also covers tenv; that this is the case

follows from:

Fact 17 If denv; tenv ` block) tenv0 then tenv0 is a possibly trivial prolongation of

tenv.

Proof We proceed by induction on the inference. 2

Lemma 18 (Soundness of blocks) denv; tenv ` block) tenv0 implies denv; tenv j=

block) tenv0.

Proof We proceed by induction on the inference tree. (We do not let U and � be given a

priori for all cases because U must be varied in case [GEN].) The harder case is the one

for function de�nition where we have two cases. When the function must be shown to be

possibly partial we use the constrained functions FUNk and induction in k; we then pass
to the limit using the lemma on inclusiveness. When the function must be shown to be

total we used the forced functions FUN [: : :] and prove termination using the well-founded
order <�

T of [FUN�]. 2

The overall correctness of the analysis is then given by:

Theorem 19 Let ` denv block e : !a t, write denv for the de�nition environment obtained

from defn, and let U be a ground and denv-well-formed substitution that covers a and t.
We then have:

� if Ua = T there exists w such that ` denv block e + w

� if ` defn block e + w then j=
[]

denv w : !T U(t) 2

5 Conclusion

We have developed an approach for the termination analysis of higher-order functional

programs and proved it sound. We believe that a pleasant aspect of our approach is to

make the result of the analysis available to programmers in a readable form: types are
well-established and we have shown that a rather minimal extension of the syntax of types

allows for conveying the termination information.

For annotated types we decided to label the function space constructor rather than indi-

vidual types. For strictness analysis both approaches have been used: an example of the
former is [29] and an example of the latter is [11]. In terms of readability in applications

we believe our choice is superior and is su�ciently readable to be incorporated into the

syntax of a realistic programming language. However, if we shift from an eager language

to a lazy language the other possibility will be more informative; to see this note that a

thunk like 'Unit ! t is written simply t in a lazy language and to distinguish between
'Unit �!

T
t and 'Unit �!

�
t we must allow writing !T t and !� t, respectively.

26

We conjecture that it would be possible to extend this work with simple run-time com-

plexity information for functions traversing data structures in a regular and systematic

way. Examples include the map, fold, and filter functions from functional languages.

The idea is that linear run-time is ensured if the function call in question always recurses

by decreasing one of the parameters. We believe that such functions occur frequently

enough in functional programming that the results obtainable may be useful for improv-

ing the implementation and for annotating high-level functions built in terms of such

primitives. While we have mainly worst case complexity in mind it would be interesting

to investigate whether the techniques of [9] for average-case analysis may be incorporated

into our type based approach.

Extensions and limitations Extensions are needed to handle functions counting up

to a treshold rather than down to zero. Similarly a more complicated well-founded order

[6] (involving ranking functions on the constructors of algebraic data types) will be needed

in order to handle the flatten function that takes a list of trees and produces a list of

leaves by recursively decomposing a composite tree at the head of the list to its list of

(simpler!) subtrees. Finally our analysis is very sensitive to the textual appearance of sub-
patterns: in the de�nition of Ackerman's function it is crucial that the �rst recursive call

is written ack n (Succ Zero) rather than the \equivalent" ack (id n) (Succ Zero)

where id is the identity de�ned by id x => x. To handle the latter we would need to add
a new component to the analysis: perhaps a \second-order" component using \quantity
names" to be able to express the relationship between the result and the argument of a
function.

We need to investigate the possibility of a constraint-based algorithm for automatically
inferring the annotated type information. This is likely to give faster results than adapting
the algorithmW as is briey discussed in the Appendix. However, we do believe that the

analysis is manageable both from a theoretical point of view (by being applicable to all
functions that strictly adhere to primitive recursive form) and practically (by being not
too much more costly than algorithm W).

Proof techniques for operational semantics This research is part of an undertak-
ing towards studying the applicability of operational semantics and inference systems as

the basis for reasoning about program analyses and program transformations and the
development has been structured so as to highlight the principles we see emerging.

To cater for the soundness proof we were twice compelled to a piecemeal extension of the

syntax and semantics. The �rst instance was the introduction of FUNk so as to facilitate

proving partial correctness statements by induction on the number of recursive unfoldings.

The second instance was the introduction of FUN[�; ~w;w] to facilitate proving total cor-
rectness statements by induction on the arguments. New extensions might be conceivable

for other methods of proofs required for other results; hence a piecemeal extension of the

syntax and semantics (but not the inference system!) seems unavoidable. It is important
to stress that when doing so the relevant proofs have to be amended due to the new rules

present in the semantics. It remains open whether these problems might be alleviated

by adopting other forms of structural operational semantics: one possibility is small-step

operational semantics [20] and another is \GooSOS" that allows explicit speci�cation of

27

in�nite as well as �nite behaviours [5].

Since this is a phenomenon not found in denotational semantics it may be appropriate

to ask why we insisted on an operational semantics. Similarly one may ask why we

favoured the inference system approach over abstract interpretation. In both cases the

answer is that there are language constructs like concurrency for which denotational

semantics is no easy task (to put it mildly). While this is not a concern of the present

paper it would be a concern if the termination analysis was to be used for some of the

applications mentioned in the Introduction and our future work is likely to follow this

path. Furthermore, proponents of inference systems for strictness analysis often claim

that they give a cleaner separation between speci�cation and implementation than does

abstract interpretation. It is hard to be objective about such claims but we believe

that our inference system for termination analysis compares favourably with the abstract

interpretation for quasi-termination developed in [10].

Acknowledgement This work was supported in part by the European Union (ESPRIT

BRA project 8130 LOMAPS, and ESPRIT BRA working group 6809 SEMANTIQUE)

and by the Danish Science Research Council (project DART).

References

[1] M. Baudinet: Proving Termination Properties of PROLOG Programs: A Semantic

Approach, Proc. Logic in Computer Science, pp. 336{347, (1988).

[2] R.Berghammer, B.Elbl, U.Schmerl: Proving Total Correctness of Programs in Weak
Second-Order Logic, Proc. Semantics: Foundations and Applications (1992), SLNCS

666 pp. 51{72, (1993).

[3] B.Bjerner, S.Holmstr�om: A compositional approach to time analysis of �rst order

lazy functional languages, Proc. ACM Conf. Functional Programming and Computer

Architecture, pp. 157{165 (with errata sheet), ACM Press, (1989).

[4] P.Cousot, N.Halbwachs: Automatic Discovery of Linear Restraints among Variables

of a Program, Proc. ACM Conf. on Principles of Programming Languages, pp. 84{96,
ACM Press, (1978).

[5] P.Cousot, R.Cousot: Inductive De�nitions, Semantics and Abstract Interpretation,
Proc. ACM Conf. on Principles of Programming Languages, ACM Press, (1992).

[6] N.Dershowitz: Orderings for Term-Rewriting Systems. Theoretical Computer Science

17, pp. 279{310, (1982).

[7] V.Dornic, P.Jouvelot, D.K.Gi�ord: Polymorphic Time Systems for Estimating Pro-

gram Complexity, ACM Letters on Programming Languages and Systems, 1 1, pp.

33{45, (1992).

[8] S.Feferman: Logics for termination and correctness of functional programs, Proc.

Leeds Proof Theory, (1990).

28

[9] P.Flajolet, B.Salvy, P.Zimmermann: Automatic average-case analysis of algorithms,

Theoretical Computer Science 79, pp. 37{109, (1991).

[10] C.K.Holst: Finiteness Analysis, Proc. FPCA'91, SLNCS 523, pp. 473{495, (1991).

[11] T.M.Kuo, P.Mishra: Strictness Analysis: A New Perspective based on Type Infer-

ence. Proc. FPCA'89, pp. 260{272, ACM Press, (1989).

[12] D.LeMetayer: ACE: An Automatic complexity evaluator, ACM Transactions of Pro-

gramming Languages, 10 2, pp. 248{266, (1988).

[13] U. Martin, E.Scott: The order types of termination orderings on monadic terms,

strings and multisets, Proc. Logic in Computer Science, pp. 356{363, (1993).

[14] R. Milner: A Theory of Type Polymorphism in Programming, Journal of Computer

Systems 17, pp. 348{375, (1978).

[15] R.Milner, M.Tofte, R.Harper: The De�nition of Standard ML, MIT Press, (1990).

[16] H.R.Nielson: A Hoare-like Proof System for Total Correctness of Nested Recursive
Procedures, Proc. Fourth Hungarian Computer Science Conference, (1985).

[17] H.R.Nielson: Proof Systems for Computation Time, Proc. Third Conf. on Founda-

tions of Software Technology and Theoretical Computer Science, (1983).

[18] F.Nielson, H.R.Nielson: Two-Level Functional Languages, Cambridge Tracts in The-
oretical Computer Science 34, (1992).

[19] F. Nielson, H.R. Nielson: From CML to Process Algebras, Proc. CONCUR'93,
SLNCS 715, pp. 493{508, 1993.

[20] G.D.Plotkin: Structural Operational Semantics, Lecture Notes DAIMI FN-19,

Aarhus University, Denmark, (1981, reprinted 1991).

[21] M.Rosendahl: Automatic Complexity Analysis, Proc. ACM Conf. on Functional Pro-

gramming and Computer Architecture, pp. 144{156, ACM Press, (1989).

[22] D. Sands: Calculi for Time Analysis of Functional Programs, Ph.D.-dissertation,
Imperial College, University of London, (1990).

[23] D.Sands: Time Analysis, Cost Equivalence and Program Re�nement, Proc. Foun-
dations of Software Technology and Theoretical Computer Science, SLNCS 560, pp.

25-39, (1991).

[24] D.Sands: Complexity Analysis for a Lazy Higher-Order Language, Proc. ESOP'90,

SLNCS 432, pp. 361{376, (1990).

[25] J.-P. Talpin, P. Jouvelot: The Type and E�ect Discipline, Proc. LICS'92, 1992. (Also
see Information and Computation 111 2, 1994.)

[26] Yan-Mei Tang: Control-Flow Analysis by E�ect Systems and Abstract Interpreta-
tion, Ph.D.-thesis, Ecole Nationale Superieure des Mines de Paris, (1994).

29

[27] D.A.Turner: Miranda: A Non-strict Functional Language with Polymorphic Types,

Proc. FPCA'85, SLNCS 201, pp. 1{16, (1985).

[28] C.Walther: Argument-bounded Algorithms as a Basis for Automated Termination

Proofs, Proc. CADE-9, SLNCS 310, pp. 602{621, (1988).

[29] D.A.Wright: A New Technique for Strictness Analysis, Proc. TAPSOFT'91, SLNCS

494, pp. 235{258, (1991).

Appendix

Proof of Lemma 9 (Soundness of expressions)

We proceed by induction on the inference tree and let a ground substitution U that is

denv-well-formed and that covers tenv; a and t be given as well as an environment � that

satis�es j= � : U(tenv). The proof then amounts to inspecting each of the rules and

axioms of Figure 7.

The case [VAR]. For the �rst conjunct we know U(a) = T and from the assumptions we

have j=�
denv v : !T U(tenv)(v). Since denv ` tenv(v) � t we also have denv ` U(tenv)(v) �

U(t) and hence the desired j=�
denv v : !

T U(t) follows.

For the second conjunct we know that if v 2 cenv then v is the only maximal call in
� ` v + w and clearly it is exposed.

The case [CON]. For the �rst conjunct we know U(a) = T. It su�ces to establish

j=�
denv c : !

T U(denv(c)) since the desired j=�
denv c : !

T U(t) then follows as in [VAR]. Since
denv(c) is closed we can dispense with U and simply use:

Fact 20 j=�
denv c : !

T denv(c)

Proof Consider denv ` denv(c) � t01 �!

T
: : : �!

T
t0m �!

T
t1 : : : tp tc with the latter type being

closed and show

j=�
denv c : !

T t01 �!

T
: : : �!

T
t0m �!

T
t1 : : : tp tc

This boils down to assuming j=�i
denv ei : !

T t0i with �i ` ei + wi and proving

j=�
denv c w1 : : : wm : !T t1 : : : tp tc

But this is immediate since j=denv wi : t
0

i. 2

The second conjunct is immediate since c =2 cenv.

The case [APP]. For the �rst conjunct we know from the induction hypothesis that

j=�
denv e1 : !

U(a) U(t1 �!

a
t2) and j=

�
denv e2 : !

U(a) U(t1) and we must show that j=�
denv e1 e2 :

!U(a) U(t2).

30

If U(a) = T we have � ` e1 + w1 for some w1 and furthermore j=
�

denv w1 e2 : !
T U(t2).

From the Corollary 8 on Semantic Equivalence it is then immediate that also j=�
denv e1 e2 :

!T U(t2).

If U(a) = � we must assume that � ` e1 e2 + w and then j=
�

denv e1 e2 : !
T U(t2) has to

be shown. In this case also � ` e1 + w1 and � ` e2 + w2 for some w1 and w2 and then

j=�
denv e1 : !

T U(t1 �!

T
t2) and j=

�
denv e2 : !

T U(t1). We may then proceed as in the case

U(a) = T.

For the second conjunct let v e01 : : : e
0

n be a maximal and exposed call in � ` e1 e2 + w

with v 2 cenv. The last rule used in � ` e1 e2 + w must be either [APPC], [APP
<
FUN] or

[APP=
FUN].

If it is [APPC] or [APP
<
FUN] we have � ` e1 + w1 and � ` e2 + w2 with w = w1 w2.

The call v e01 : : : e
0

n may be all of � ` e1 e2 + w (except for [APPC]), may be a proper

part of � ` e1 + w1 or may be a part of � ` e2 + w2. In the �rst case there will also

be a maximal call v e01 : : : e
0

n�1 in � ` e1 + w1 and hence e1 = v e01 : : : e
0

n�1 2 W1 so

e1 e2 = v e01 : : : e
0

n 2 W . In the second case v e01 : : : e
0

n 2 W1nfe1g � W and in the third

case v e01 : : : e
0

n 2 W2 � W .

If the last rule used in � ` e1 e2 + w is [APP=
FUN] we additionally have to consider the

possibility that v1 e
0

1 : : : e
0

n is a maximal and exposed call in

�[v 7! : : :] ` (� : : :) : : : + w

However, our de�nition of \exposed" prevents this from being the case.

The case [IF]. For the �rst conjunct suppose �rst that U(a) = T. From j=�
denv e1 :

!T 'Bool it is immediate that � ` e1 + w1 where w1 2 fTrue; Falseg. Let

i1 =

(
2 w1 = True

3 w1 = False

so that

� ` IF e1 THEN e2 ELSE e3 + w i� � ` ei1 + w

From j=�
denv ei1 : !

T U(t) and the Corollary 8 on Semantic Equivalence we then have the

desired j=�
denv IF e1 THEN e2 ELSE e3 :!

T U(t).

Next suppose that U(a) = �. We must assume that � ` IF e1 THEN e2 ELSE e3 + w and

then show j=�
denv IF e1 THEN e2 ELSE e3 : !

T U(t). In this case also � ` e1 + w1 and with

i1 as above � ` ei1 + w. Hence j=
�
denv e1 : !

T 'Bool and j=�
denv ei1 : !

T U(t) and we may

proceed as in the case U(a) = T.

For the second conjunct we simply use the induction hypothesis because any call v e01 : : : e
0

n

must be part of one of e1; e2 or e3.

The case [SUB]. The �rst conjunct is a consequence of the following facts:

Fact 21 If a; a0 and j=�
denv e : !

U(a) U(t) then j=�
denv e : !

U(a0) U(t)

31

Proof We proceed by induction on a ; a0 and the only non-trivial case is when a =

T and a0 is arbitrary. If U(a0) = T the result is immediate (since U(a) = U(a0)) and if

U(a0) = � we use the de�nition of validity. 2

Fact 22 If t; t0 and j=�
denv e : !

U(a) U(t) then j=�
denv e : !

U(a) U(t0).

ProofWe proceed by induction on t; t0 and the only non-trivial case is when t = t1 �!

a0
t2

and t0 = t01 �!

a0
0

t02 where t1 = t01; t2; t02 and a0; a00. If U(a) = � we assume � ` e + w for

some w and so proceeds as when U(a) = T. So j=
�
denv e : !

T U(t) and hence � ` e + w for

some w and whenever j=�0

denv e
0 : !T U(t1) we also have j=�0

denv w e0 : !U(a0) U(t2). By the

induction hypothesis and the previous fact this implies j=�0

denv w e0 : !U(a0
0
) U(t02). Since

U(t1) = U(t01) this then establishes the desired j=
�
denv e : !

T U(t0). 2

The second conjunct is immediate from the induction hypothesis. 2

Proof of Lemma 10 (Soundness of matching)

We proceed by induction on the syntax of the tuple of patterns; we shall write ~p for a
tuple of patterns as well as proper patterns.

When ~p is a variable we have tenv = [v 7! t] and � = [v 7! w] where 9s : denv ` t : s and

j=
[]

denv w : !T U(t). Clearly j=denv � : U(tenv) follows.

When ~p is a constructor c applied to patterns p1; : : : ; pm we have

tenv = [] tenv1 : : : tenvm

� = [] �1 : : : �m

where denv ` pi : t
0

i) tenvi and pi : wi ; �i and

denv ` denv(c) � t01 �!

T
: : : �!

T
t0m �!

T
t

Since U covers t it also covers t01; : : : ; t
0

m. From j=
[]

denv w : !T U(t) we then get w =

c w1 : : :wm such that j=
[]

denv wi : !
T U(t0i). The induction hypothesis is now applicable and

yields j= �i : U(tenvi) from whichj= � :U(tenv) follows.

When ~p is a tuple of patterns p1; : : : ; pm we have

tenv = [] tenv1 : : : tenvm

� = [] �1 : : : �m

where denv ` pi : ti) tenvi and pi : wi ; �i and j=
[]

denv wi : !
T U(ti). The induction

hypothesis is applicable and yields j= �i : U(tenvi) from which j= � : U(tenv) follows. 2

Proof of Lemma 11 (Soundness of exhaustiveness)

We de�ne a well-founded order � by

32

(w1; : : : ; wm) � (w0

1; : : : ; w
0

n)

i� the sum of the sizes of w1; : : : ; wm is strictly less than the sum of the sizes of w0

1; : : : ; w
0

n.

We then proceed by induction on (w1; : : : ; wm) ordered by � and prove the result by

contradiction. To this end assume that

8i : (pi1; : : : ; pim) : (w1; : : : ; wm) 6; (?)

We consider each of the three de�ning clauses for exh in turn. The �rst clause has m = 0

and the desired contradiction is immediate. The last clause has exh (: : :) = false and

the desired contradiction is immediate. In the second clause we have two cases. One is

when all of p11; : : : ; pn1 are variables. Then we also have

exhdenvt2;:::;tm
([[p12; : : : ; p1m]; : : : ; [pn2; : : : ; pnm]])

8i : (pi2; : : : ; pim) : (w2; : : : ; wm) 6;

and the desired contradiction then follows from (w2; : : : ; wm) � (w1; : : : ; wm) and the
induction hypothesis.

The other case is when there are constructors among p11; : : : ; pn1. Then w must be of the
form c w0

1 : : :w
0

k where

denv ` denv(c) � t01 �!

T
: : : �!

T
t0k �!

T
t1

and from j=
[]

denv w : !T U(t1) we have

8i :j=
[]

denv w
0

i : !
T U(t0i)

Now classify each pi1 into one of three categories:

A: if pi1 is a variable then (?) is equivalent to

(x1; : : : ; xk; pi2; : : : ; pim) : (w
0

1; : : : ; w
0

k; w2; : : : ; wm) 6;

B: if pi1 is a pattern c pi11 : : : pi1k then (?) is equivalent to

(pi11; : : : ; pi1k; pi2; : : : ; pim) : (w
0

1; : : : ; w
0

k; w2; : : : ; wm) 6;

C: if pi1 is a pattern c0 pi11 : : : pi1k0 with c 6= c0 then (?) is equivalent to true.

For c as given by w = c w0

1 : : : w
0

k next write

~pc = get c [[p11; : : : ; p1m]; : : : ; [pn1; : : : ; pnm]] = ppp1 ++ : : :++ pppn

where each pppi is either [], corresponding to pi1 of category C, or is of the form
[[x1; : : : ; xk; pi2; : : : ; pim]], corresponding to pi1 of category A, or is of the form

[[pi11; : : : ; pi1k; pi2; : : : ; pim]], corresponding to pi1 of category of B.

Our assumptions then imply

33

exhdenvt0
1
;:::;t0

k
; t2;:::;tm

(~pc)

8i : j=
[]

denv w
0

i : !
T U(t0i) ^ 8i > 1 : j=

[]

denv wi : !
T U(ti)

8[p0i; : : : ; p
0

k; : : : ; p
0

m+k�1] in ~pc : (p01; : : : ; p
0

k; : : : ; p
0

m+k�1) : (w
0

1; : : : ; w
0

k; w2; : : : ; wm) 6;

and by the induction hypothesis the desired contradiction follows. 2

Proof of Lemma 12 (Monotonicity)

We proceed by induction on the inference tree for �1 ` e1 + w1; this amounts to proceeding

by cases on which axiom or rule of Figure 4 with later amendments that has been applied

last.

The case [v] is a direct consequence of the assumptions.

The case [c] is trivial.

The case [IFT]. Here ei = IF ei1 THEN ei2 ELSE ei3 and �1 ` e11 + True. From the

induction hypothesis we get w21 such that �2 ` e21 + w21 and True v w21; this boils
down to w21 = True so that �2 ` e21 + True. Applying the induction hypothesis to
�1 ` e12 + w1 we then get w2 such that �2 ` e22 + w2 and w1 v w2; this then proves the
result.

The case [IFF] is similar.

The case [APPC] is a simple consequence of the induction hypothesis (or see [APP=
FUN]

below).

The case [APP<
FUN] is similar.

The case [APP=
FUN]. Here ei = ei1 ei2 and we have

�1 ` e11 + (FUN �1 v ~p1) e11 : : :) w11 : : : w1(m�1)

�1 ` e12 + w1m

�1[v 7! FUN �1 v ~p1) e11 : : :] ` (�~p1:e11 : : :) w11 : : :w1m + w1

Applying the induction hypothesis to these inferences we obtain

�2 ` e21 + (FUN �2 v ~p1) e21 : : :) w21 : : : w2(m�1)

where �1 v �2 and e1j v e2j and w1j v w2j. Next we obtain

�2 ` e22 + w2m

where w1m v w2m. Finally

�2[v 7! FUN �2 v ~p1) e21 : : :] ` (�~p1:e21 : : :) w21 : : :w2m + w2

34

where w1 v w2. This then proves the desired result.

The case [�1]. This follows from the induction hypothesis and

Fact 23 If ~p : ~w; � and ~w v ~w0 then there exists �0 such that ~p : ~w0
; �0 and � v �0. 2

The case [�2]. This follows from the induction hypothesis and

Fact 24 If ~p : ~w 6; and ~w v ~w0 then ~p : ~w0 6;. 2

The case [w] is trivial.

The cases [w]0; [APP<
FUN]

0 and [APP=
FUN]

0 are similar to their non-primed counterparts.

The cases [w]00; [APP<
FUN]

00; [APP=
FUN]

00

1 and [APP=
FUN]

00

2 do not arise given the assump-

tions about purity. 2

Proof of Lemma 13 (Continuity)

We proceed by induction on the inference tree for � ` e + w; again this amounts to

proceeding by cases on which axiom or rule of Figure 4 with later amendments that has

been applied last.

The case [v] is a direct consequence of the assumptions.

The case [c] is trivial.

The case [IFT]. Here e = IF e1 THEN e2 ELSE e3 and � ` e1 + True and � ` e2 + w.
Applying the induction hypothesis to e1 we get �0 ` e01 + w0

1 where w0

1 is a labelling of
True; this boils down to w0

1 = True so that � ` e01 + True. Applying the induction

hypothesis to e2 we note that a labelling that is safe for m plus the size of � ` e + w

is also safe for m plus the size of � ` e2 + w and we obtain �0 ` e02 + w0 where w0 is a
labelling of w that is safe for m. This then proves the desired result.

The case [IFF] is similar.

The case [APPC] is a simple consequence of the induction hypothesis (or see [APP=
FUN]

below).

The case [APP<
FUN] is similar.

The case [APP=
FUN]. Here e = e1 e2 and we have

� ` e1 + (FUN � v ~p1) e1 : : :) w1 : : :wm�1

� ` e2 + wm

�[v 7! FUN � v ~p1) e1 : : :] ` (�~p1:e1 : : :) w1 : : : wm + w

Write m1;m2 and m3 for the sizes of the these trees and note that m1 +m2 +m3 is less

than the size of � ` e + w. Applying the induction hypothesis we obtain (writing FUN�

for FUN or FUNl for some l � 0)

�0 ` e01 + (FUN� �
0 v ~p1) e01 : : :) w

0

1 : : :w
0

m�1

where the righthand side is safe for m+m2 +m3 and hence m+m3. Next we obtain

35

�0 ` e02 + w
0

m

where w0

m is safe for m+m1 +m3 and hence m+m3. Finally, we obtain

�0[v 7! FUN? �
0 v ~p1) : : :] ` (�~p1:e

0

1 : : :) w
0

1 : : :w
0

m + w
0

where w0 is a labelling of w safe for m. This then proves the desired result.

The case [�1]. This follows from the induction hypothesis and

Fact 25 If ~p : ~w ; � and ~w0 is a labelling of ~w safe for m then there exists �0 such that

~p : ~w0
; �0 and �0 is a labelling of � safe for m. 2

The case [�2]. This follows from the induction hypothesis and

Fact 26 If ~p : ~w 6; and ~w0 is a labelling of ~w then ~p : ~w0 6;. 2

The case [w] is trivial.

The cases [w]0; [APP<
FUN]

0 and [APP=
FUN]

0 are similar to their non-primed counterparts.

The cases [w]00; [APP<
FUN]

00; [APP=
FUN]

00

1 and [APP=
FUN]

00

2 do not arise given the assump-
tions about purity. 2

Proof of Lemma 15 (Inclusiveness)

We proceed by induction on (t; a) ordered lexicographically and using the continuity of
sem.

The case (t1 : : : tn tc; T). From j=�k
denv ek : !a t we get wk such that �k ` ek + wk and

j= wk : t1 : : : tn tc. Since (pk; ek)k is a chain and sem is continuous also (wk)k is a chain
and its limit w satis�es � ` e + w. Given that t1 : : : tn tc is denv-well-formed the chain

(wk)k must be a constant chain and hence each element equals w. (This may be proved
by structural induction on w.) This proves the desired j=�

denv e : !
a t.

The case (t1 �!

a0
t2; T). From j=

�k
denv ek : !

a t we get wk such that �k ` ek + wk and

j=�0

denv e
0 : !T t1 implies j=�0

denv wk e
0 : !a0 t2

Since (�k; ek)k is a chain and sem is continuous also (wk)k is a chain and its limit w
satis�es � ` e + w. The induction hypothesis then gives

j=�0

denv e
0 : !T t1 implies j=�0

denv w e0 : !ao t2

and this shows the desired j=�

denv e : !
a t.

The case (t; �). We assume � ` e + w as otherwise the result is immediate. By continuity
of sem there must be a co�nal chain of (�k; ek)k for which �k ` ek + wk. For this co�nal

chain we have j=�k
denv ek : !T t and the desired j=�

denv e : !T t follows from the induction

hypothesis. 2

36

Proof of Lemma 18 (Soundness of blocks)

We proceed by induction on the inference tree. (We do not let U and � be given a priori

for all cases because U must be varied in case [GEN].)

The case [�]. Let U be given and consider pure � such that j=denv � : U(tenv). Since

tenv0 = tenv and � ` � + � the result is immediate.

The case [;]. Let U be given and consider pure � such that j=denv � : U(tenv). From the

induction hypothesis applied to block1 we get � ` block1 + �1 and denv; tenv ` block1)

tenv1 such that j=denv �1 : U(tenv1) and �1 is pure. From the induction hypothesis

applied to block2 we get �1 ` block2 + �0 and denv; tenv1 ` block2) tenv0 such that

j=denv �
0 : U(tenv0) and �0 is pure. This then proves the desired result.

The case [FUN�]. Let � be a permutation and write

t = t1 �!

T
: : : �!

T
tm �!

a
t

Let U be a ground and denv-well-formed substitution that covers tenv0 = tenv[v 7! t]
and let pure � be given such that j=denv � : U(tenv). De�ne

w0 = FUN � v ~p1) e1 & : : : & v ~pn) en

�0 = �[v 7! w0]

and note that � ` block + �0. The desired result j=denv �
0 : U(tenv[v 7! t]) then boils down

to

j=
[]

denv w0 : !
T U(t)

(using a few simple facts about validity). First we observe that [] ` w0 + w0. The next
step is formally by induction on m. It boils down to assuming

j=�i
denv e

0

i : !
T U(ti)

(for pure �i and e0i) and de�ning (necessarily pure) wi by

�i ` e
0

i + wi

and showing

j=
[]

denv w0 w1 : : :wm : !U(a) U(t)

where we have used the Corollary 8 on Semantic Equivalence. We now proceed by cases

on the value of U(a).

The subcase U(a) = �. We shall write

w
[k]
0 = FUNk � v ~p1) e1 & : : : & v ~pn) en

37

and by the Lemma 15 on Inclusiveness it su�ces to prove

j=
[]

denv w
[k]
0 w1 : : : wm : !� U(t)

by induction on k. When k = 0 this is immediate since w
[0]
0 w1 : : : wm does not evaluate.

For k > 0 we assume

[] ` w
[k]
0 w1 : : :wm + w

and our proof obligation now amounts to

j=
[]

denv w : !U(a) U(t)

using the Corollary 8 on Semantic Equivalence. The last rule used must be [APP=
FUN]

0

and so

�[v 7! w
[k�1]
0] ` (�~p1:e1 & : : : & ~pn:en) w1 : : :wm + w

The last [�1] rule used identi�es an index i such that

~pi : (w1; : : : ; wm); �i

�[v 7! w
[k�1]

0]�i ` ei + w

The Lemma 10 on Soundness of matching gives

j=denv �i : U(tenvi)

where denv ` ~pi : (t1; : : : ; tm)) tenvi. Together with the induction hypothesis of the
numerical induction and the assumption on � we now have

j=denv �[v 7! w
[k�1]
0]�i : U(tenv[v 7! t]tenvi)

From the Lemma 9 on Soundness of expressions we have

denv; tenv[v 7! t]tenvi; fvg j= ei : !
a t & Wi

and this gives

j=
�[v 7!w

[k�1]

0]�i
denv ei : !

U(a) U(t)

which is equivalent to the desired

j=
[]

denv w : !U(a) U(t)

38

(using the Corollary 8 on Semantic Equivalence).

The subcase U(a) = T. The partial order <�
a of [FUN�] gives rise to a well-founded

order <�
U(a) on tuples (w1; : : : ; wm) of values because U(a) = T. The desired result follows

from

(8i : j=
[]

denv wi : !
T U(ti) ^ wi pure)) j=

[]

denv w0 w1 : : : wm : !T U(t)

which we prove by induction on this well-founded order. So consider a pure tuple

(w1; : : : ; wm) such that the result holds for all smaller tuples. From the Lemma 11 on

Soundness of exhaustiveness there exists an index i such that

8j < i : ~pj : (w1; : : : ; wm) 6;

~pi : (w1; : : : ; wm); �i

and consequently

� ` w0 w1 : : : wm + w i� �[v 7! w0]�2 ` ei + w

Now recall the existence of a pure value wU(t) satisfying j=
[]

denv wU(t) : !
T U(t) and de�ne

the impure w
[]

0 by

w[]
o = FUN [<�

U(a); w1; : : : ; wm; wU(t)]� v ~p1) e1 & : : : & v ~pn) en

and note that by assumption on (w1; : : : ; wm) this is a total function satisfying

(8i : j=
[]

denv w
0

i : !
T U(ti))) j=

[]

denv w
[]
0 w0

1 : : :w
0

m : !T U(t)

Our assumptions now amount to

j=denv � : U(tenv)

j=denv [v 7! w
[]

0] : [v 7! U(t)]

j=denv �i : U(tenvi)

where denv ` ~pi : (t1; : : : ; tm)) tenvi and we have used the Lemma 10 on Soundness of

matching. Using the Lemma 9 on Soundness of expressions we have

denv; tenv[v 7! t]tenvi; fvg j= ei : !
a t & Wi

and this gives

j=
�[v 7!w

[]

0]�i
denv ei : !

U(a) U(t)

This means that

39

�[v 7! w
[]
0]�i ` ei + w (?)

j=
[]

denv w : !T U(t)

Now consider an exposed (and maximal) call v e001 : : : e
00

m in (?). It will have the form

�00 ` v e001 : : : e
00

m + w
00

where

�00 = �[v 7! w
[]
0]�i

and we also know

(e001; : : : ; e
00

m) <
�
U(a) ~pi

Now de�ne w00

1 ; : : : ; w
00

m by

�00 ` e00j + w
00

j

and note that for ~pi = pi1 : : : pim we have

�00 ` pij + wj

as a consequence of ~pi : (w1; : : : ; wm); �i and the de�nition of �00. From

Fact 27 If � ` e1 + w1 and � ` e2 + w2 and e1 <a e2 then w1 <a w2.

Proof The induction hypothesis incorporates a similar claim for �a and proceeds by
induction on e1 <a e2. 2

We then have

(w00

1 ; : : : ; w
00

m) <
�
U(a) (w1; : : : ; wm)

Hence w
[]

0 is replacable by w0 in �00 and (?) is replacable by

�[v 7! w0]�i ` ei + w

Then the desired

j=
[]

denv w0 w1 : : :wm : !T U(t)

follows.

The case [GEN]. Let U be given as a ground and denv-well-formed substitution that
covers tenv0[v 7! 8tav:ts] where tav =2 FTV (tenv0) [FAV (tenv0). In case tav 2 dom
(U) write U 0 for the restriction of U that is unde�ned on tav and note that it still covers

tenv0[v 7! 8tav:ts]. Let pure � be given such that j= � : U(tenv) and hence j= � : U 0(tenv).

From the induction hypothesis it follows that whenever V is a ground and denv-well-

formed substitution with domain ftavg, we have

40

� ` block + �0

j=denv �
0 : (U 0 [V)(tenv0[v 7! ts])

Since V is arbitrary this gives

j=denv �
0 : U 0(tenv[v 7! 8tav:ts])

from which the desired result follows. 2

Proof of Theorem 19

Write

['Bool : 0; True : 'Bool; False : 'Bool] ` defn) denv

denv; [] ` block) tenv

denv; tenv; ; ` e : !a t & W

for the justi�cation for ` defn block e : !a t. Now let U be a ground and denv-well-formed
substitution that covers a and t. Let V be an extension of U that additionally covers
tenv. From the Lemma 18 on Soundness of blocks we have

[] ` block + �

j=denv � : V (tenv)

and from the Lemma 9 on Soundness of expressions we have

j=�
denv e : !

V (a) V (t)

which amounts to

j=�
denv e : !

U(a) U(t)

If U(a) = T this means that � ` e + w for some w and hence ` defn block e + w. When

this is the case we have j=
[]

denv w : !T U(t) by the Corollary 8 on Semantic equivalence. 2

Discussion of construction of algorithm

The key focus of this paper is the formulation of an inference based termination analysis
and the techniques needed for a soundness result based on operational semantics. We have

added su�cient complexity to our inference system that it is able to tackle a reasonably
large class of function de�nitions, yet we have stopped short of introducing any features

that might make the system undecidable. The development of an e�cient implementation

is likely to involve the construction and solution of constraints and is beyond the scope

41

of the present paper. However, to substantiate our belief that our inference system is

indeed decidable we now sketch how the standard type inference algorithm W [14] may

be modi�ed to produce the desired results.

First we would inline rule [GEN] with rule [FUN�]. Next note that the treatment of

algebraic data types does not go beyond what is done in the adaptation ofW to Standard

ML [15]. In a similar vein the need to guess the types ti for rule [FUN�] does not go

beyond the pattern matching found in Standard ML. Also it should be obvious that

collecting the set W of maximal calls is purely syntactic and does not interfere with type

inference. The only potentially trouble-some ingredients of our inference system are the

use of permutations and the annotations on arrows.

The permutations may give rise to ine�ciency if functions have many arguments. This

does not a�ect decidability because there is only a �nite number of permutations over a

given number of arguments (readily determined from the syntax). Hence one can simply

cycle through all permutations for one that will allow to declare the function total; only

if this fails for all permutations will partiality be declared.

Adding annotations on the arrows of function spaces presents no problems either. This
is clear from the many algorithms for type and e�ect inference that are able to take care
of polymorphism (e.g. [25]). The potential problem is with the notion of sub-typing that
allows to replace T by any other annotation. There are at least two ways to deal with
this. One is to adapt the algorithm for sub-e�ecting presented in [26] to take special care

to assume that constraints always match. Another is to borrow the two-stage approach
to sub-typing algorithm also presented in [26]; here the underlying polymorphic types are
computed �rst before strictness termination annotations are added.

In conclusion we believe that it is within state-of-the-art to produce an type and total-
ity reconstruction algorithm although the approach based on the above sketch may be
ine�ecient.

LaTeXed February 16, 1995.

42

