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densitiesandupdatingchannel densitiesdynamicallywouldhencereduce
runtimesigni�cantly. Anotherapproachis toimplementaparallel version
of the router. Duetothe inherent parallelismof anyGA, ahighspeedup
canbe expectedonanyMIMDarchitecture [4].

D.5 Conclusion and Future Work

In this paper a novel approach to global routing of macro-cell layouts
basedongeneticalgorithms has beenpresented. Theperformanceof the
router iscomparedtothatof TimberWolfMConMCNCbenchmarks. Ex-
perimental results shows that the qualityof completedlayouts improves
whenusing the GA-based router instead of TimberWolfMC, assuming
that the qualityof the givenplacement is su�cientlyhigh. The router is
inferior toTimberWolfMCwithrespect to runtime, but major improve-
ments are possible. Since the work presentedhere is a �rst approach
to global routing based on genetic algorithms, future improvements of
the layout qualityobtainable are alsoverylikely. We conclude that the
geneticalgorithmis well suitedas thebasicalgorithmof aglobal router.
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�rmedthis assumption. The topologyof the routinggraphof ami33-2-M
isunalteredthroughout theprocessandtheperformanceof theGA-based
router is nowsuperior tothat of TimberWolfMC. Verysimilar results are
observedfor ami49-M: Theroutinggraphtopologyis signi�cantlyaltered
during the layout process. The placement of ami49-2-Mis obtainedthe
same wayas ami33-2-M, and the performance of the GA-based router
improves signi�cantlyonthis example.

Thesigni�cantroutinggraphalterations for someproblemsareacon-
sequence of rather poor initial placements. It is not clear howbetter
placements woulda�ect the relative performance of the tworouters. As
placement qualityincreases, the relativee�ect of eliminatingawire from
the longest path in a polar graph increases, indicating a potential ad-
vantage for theGA-basedrouter. Onthe other hand, agoodplacement
contains less routing, suggestingthat theperformancegapwouldbenar-
rowed.

For the test examples consideredhere, most routingchannels onthe
longest paths arecompactedtotheirminimumwidths bythecompactor,
cf. the secondassumptiondiscussedinSectionD.3.1. However, inmost
cases at least one channel onthe longest paths are still wider thannec-
essary. Hence, theareaestimationperformedtends tounderestimatethe
�nal area. However, this assumptionappears tobe fairlyreasonable.

D.4.4 Runtime

Onaveragetherouter requires about 22, 12and130minutes torouteex-
amples basedonxerox, ami33andami49, respectively. TimberWolfMC
spends about 30 seconds for examples basedonxeroxand ami33, and
about 5minutes for ami49-basedexamples. Hence, theGA-basedrouter
is clearlyinferior toTimberWolfMCwithrespect to runtime. The total
layout generation process performedbyMosaico (i.e. excluding place-
ment) requiresabout 15minutes for examplesbasedonxeroxandami33,
andabout anhour for ami49-basedexamples, whenTimberWolfMCis
used. Hence, the use of theGA-basedrouter increases the layout gener-
ationtimebyafactor of twoor three.

However, the runtimeof thecurrent implementationcanbe improved
signi�cantly in a number of ways. The vast majority of the runtime
is spend computing channel densities. When estimating the area of a
solution, all densities are recomputedwhether the routinginachannel is
actuallychangedor not. Keepingtrackof theneedtorecomputechannel
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100(GA-result=TW-result� 1). Hence, a negative value indicates a re-
duction in percent obtained by the GA-based router, while a positive
value indicates a percentage overheadas compared to TimberWolfMC.
Despitetheinherentproblemsof thiskindof comparisondiscussedinSec-
tionD.4.2, it is clear that ingeneral theGA-basedglobal router obtains
thebest layout qualityfor the probleminstances considered.

Problem Solution Atot Aroute WL

xerox-M best �1:9 �4: 7 +0: 0
avg �1: 4 �3: 5 +0: 8

ami33-M best �3: 2 �5: 1 �3: 2
avg +1: 6 +2: 5 �0: 2

ami33-2-M best �3: 0 �4: 7 �1: 5
avg �1: 1 �1: 7 �0: 2

ami49-M best �1: 9 �3: 3 �1: 5
avg �0: 5 �0: 8 +0: 3

ami49-2-M best �4: 2 �7: 3 �4: 0
avg �3: 7 �6: 3 �2: 9

TableD.2: Rel at i ve i mprovement s obt ai ned by t he GA-based rout er. best

and avg. i s best and average of t he �ve runs perf ormed.

Inspection of the generated layouts reveals interesting information
regarding the two major assumptions underlying the area estimation,
discussedinSectionD.3.1. The placement of xerox-Mis adjustedonly
slightlyduringcompaction, andthe routinggraphtopologyis unaltered.
For this example, the GA-basedrouter obtains anaverage reductionof
3.5% of the routingareawhichcomes at thepriceof a0.8%increase in
total wirelength. However, for ami33-M, theGA-basedrouter onaverage
obtains larger layouts thanTimberWolfMC. Inthis case the placement,
andhence the routing graph topology, is signi�cantlymodi�edby the
compactor. As aconsequence, the functionminimizedbytheGA-based
router in its second phase correlates very poorly to the actual layout
generated, which inevitably leads to a poor result. To counteract this
phenomenon, a newplacement ami33-2-Mwas producedbyripping up
all routinginthe completedlayout of ami33-MgeneratedusingTimber-
WolfMC. Since the placement thus obtainedis the result of compaction
andcompletionof all routing, itwill probablyonlybesubjectedtominor
adjustments when used itself as input to Mosaico. Experiments con-
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inOcttools. ami33-2-Mandami49-2-Mareother placementsof ami33-M
andami49-M, respectively. The generationof these placements are de-
scribedinSectionD.4.3.

D.4.2 Method

Twofactorsmakes it di�cult todeviceasequenceof experimentsprovid-
ing anabsolute fair performance comparisonof the two global routers.
Firstly, global routingis just oneof asequenceof heavilyinteractingsteps
neededtogenerateacompletelayout. Hence, whenconsideringaspeci�c
result, it maybe inuencedbyapatternof interactionswithother tools,
whichaccidentallyfavours oneof the routers. Secondly, theoptimization
strategies usedbythe tworouters arenot identical. As describedearlier,
theGA-basedrouter explicitlyattempts tominimizeareaandsecondar-
ilywirelength. WhileTimberWolfMCalsogeneratestheshortestpossible
routes inphaseone, areaisnot anexplicit componentof theoptimization
criterionusedinthe secondphase. Instead, TimberWolfMCselects the
shortest possible routes subject tochannel capacityconstraints.

The chosenstrategy for experiments are as follows: For eachof the
placedexamples listedinTable D.1, Mosaicowas executedto generate
a complete layout, using either TimberWolfMCor the GA-basedrouter
for the global routing task. Hence, all other steps of the layout process
are performedbythe same tools.

Mosaicowasexecuted�vetimes for eachexampleusingtheGA-based
global router inorder tocapture the variations causedbythe stochastic
natureof theappliedalgorithms. Thesamesetof parametersareusedfor
all programexecutions, i.e., noproblemspeci�ctuningis performed. For
eachnet, at mostR = 30alternative routes are generated. The parame-
ters of theGAusedinphase one are as givenin[3]. The phase twoGA
is executedwithpopulationsizeM =40, stopcriteriaS =100, mutation
probabilityp mut =2: 5� 10 �4 andinversionprobabilityp inv =0: 1. There
is novariationof results whenapplyingTimberWolfMC.

D.4.3 Layout Quality

Table D.2 summarizes the impact on the completed layouts of using
theGA-basedrouter insteadof TimberWolfMC. A tot denotes total area,
Aroute denotes routing area, i.e., the part of the total areanot occupied
by cells andWLdenotes total wirelength. Eachentry is computed as
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forma ring. Apart of the ring is then selected at randomand re-
versed. More speci�cally, two points x; y 2 f0; 1; : : : ; N � 1g; x 6=y ,
are selected at random. The operator then de�nes the newordering
�0 as 2 �0((x +i) modN)=� ((y � i ) modN) if 0� i � (y � x ) modN
and� 0((x +i ) modN)=� ((x +i ) modN)otherwise, i =0; 1; : : : ; N�1.

D. 4 Experi mental Resul ts

The router has beenimplementedinthe Cprogramming language, and
all experiments are performed on a Sun Sparc IPXworkstation. The
router is interfacedwith the macro-cell layout systemMosaico, which
is a part of the Octtools CADframework developed at University of
California, Berkeley. This integrationallowsfor comparisonof therouters
performancetothat of TimberWolfMC[8], astateof theart global router
alsointerfacedtoMosaico.

D.4.1 Test Examples

Three of the MCNCmacro-cell benchmarks, xerox, ami33 and ami49,
wereusedfor the experiments. However, due toapurelytechnical prob-
lem, it becamenecessaryto remove all pads fromthese examples before
usingthem 3. Themodi�edbenchmarksarereferencedusinga'-M' su�x.

Problem #cells #nets #terms.

xerox-M 10 203 696
ami33-M 33 85 442

ami33-2-M 33 85 442

ami49-M 49 390 913
ami49-2-M 49 390 913

TableD.1: Probl emcharact eri st i cs.

Table D.1 lists the main characteristics of the test examples. The
number of nets andthe number of terminals listedare totals, i.e., they
include the fewtrivial nets. xerox-M, ami33-Mandami49-Mare placed
byPuppy, aplacement tool basedonsimulatedannealing, alsoincluded

2The de�niti on of �0 reli es on the mathemati cal de�ni ti on of modul o, i n whi ch the remai nder

i s al ways non-negati ve.
3In our versi onof Octtool s (5. 2) the channel de�ni ti on programAtl as can not handl e the pad

pl acement generated by Padpl ace.
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ThepopulationP =f p 0; p1; : : : ; pM�1 g isthensortedlexicographically
using area as most signi�cant criterion andwirelength as a secondary
criterion. Assume that P is sorted indecreasing order with respect to
this ordering. The�tnessF of p i is thencomputedasF (p i)=2i = (M� 1)
for i =0; 1; : : : ; M� 1. This scheme, called ranki ng, assures constant
variance of �tness throughout the optimization process. Ranking is a
good approach for controlling the speed of convergence, including the
avoidanceof premature convergence.

D.3.2.3 Crossover Operator

Giventwoparent individuals � and�, the crossover operator generates
two o�spring, � and . The parent individuals are not alteredby the
operator. Inthe following, a(second) subscript speci�eswhichindividual
themarkedpropertyis apart of. Crossover consists of twosteps:
1) One of the parents, say� , is chosenat random, anda copy of � is
made.  is thenreorderedso that it becomes homologous to� , that is,
� =� �.
2) Theo�springaregiventhe sameorderingas their parents: � � =�  =
��. Standard1-point crossover is thenperformed[5]: Acrossover-pointx
is selectedatrandominf 0; 1; : : : ; N � 2g . Theselectedroutesof � is then
de�nedbyq �(k);� =q �(k) ;� if k � x andq �(k) ;� =q �(k) ; otherwise, where
� =� �. Similarly, the selectedroutes of  is de�nedbyq �(k) ; =q �(k) ;

if k � x andq �(k) ; =q �(k) ;� otherwise.

D.3.2.4 Mutation and InversionOperators

Themutationoperator isverysimple. It goesthroughtheN tuplesof the
givenindividual andrandomlyselectsanother route for thek 'thnet with
probability p mut (rk � 1), where p mut is a small userde�ned probability.
This schemeis calledpointwisemutation.

As mentionedinSectionD.3.2.1a givenglobal routing solutioncan
be representedbyseveral equivalent individuals because of the indepen-
dence of the ordering � . However, the �tness of o�spring producedby
crossover depends onthe speci�c orderings of the givenparent individ-
uals. The purpose of inversion is to optimize the performance of the
crossover operator. With a givenprobability p inv , the inversionoper-
ator alters the ordering � of a given individual. To obtain a uniform
probability of movement of all tuples, we consider the set of tuples to
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cess. Routine eval uat e describedinSectionD.3.2.2computes the �tness
of eachof the givenindividuals, while best Of �nds the individual with
thehighest �tness. Oneexecutionof theouter \repeat"loopcorresponds
to the simulationof one generation. Throughout the simulation, M is
kept constant. Wekeeptrackof thebest individual s ever seen. Routine
st opCri t eri a terminates the simulationwhenno improvement has been
observedfor S consecutive generations. Eachgenerationis initiatedby
theformationof aset of o�springP N of sizeM. Thetwomates p 1 andp 2

areselectedindependentlyof eachother, andeachmateis selectedwitha
probabilityproportional toits �tness. Thecrossover routinedescribedin
SectionD.3.2.3generates twoo�springc 1 andc 2. Routine reduce returns
theM�ttest of thegivenindividuals, therebykeepingthepopulationsize
constant. Thegeneticoperators for mutationandinversionarediscussed
inSectionD.3.2.4. Routineopt i mi ze(s ) performs simplehill-climbingby
executingasequenceof mutationsons , eachof whichimprovesthe�tness
of s . The output of the algorithmis thenthe solutions .

D.3.2.1 Representation

Aglobal routingsolutionis representedbyspecifyingfor eachnet which
of its possibleroutes is used. Morespeci�cally, assumea�xednumbering
0; 1; : : : ; N � 1 of the nets, let � : f 0; 1; : : : ; N � 1g 7! f 0; 1; : : : ; N � 1g
be abijectionanddenote byr k � R the number of routes generatedin
phase one for the k 'thnet. Anindividual is thenaset of N tuples:

f (� (0); q�(0)); (� (1); q�(1)); : : : ; (� (N � 1); q�(N�1) )g

where1� q k � rk for all k =0; 1; : : : ; N�1. For example, thetuple(3,7)
speci�es that the 3rdnet uses its 7'throute. Themapping� de�nes an
orderingof thenets, thepurposeof whichis explainedinSectionD.3.2.4.
Note that the routingsolutionspeci�edbyanindividual is independent
of � .

D.3.2.2 De�nitionof Fitness

GivenapopulationP , the routine eval uat e of Fig. D.5computes the �t-
nessof eachindividual asfollows. Foreachindividual p 2 P , itsestimated
area is computedas describedinSectionD.3.1 and its estimatedtotal
wirelengthis computedas the sumof the lengthof the routes speci�ed
byp .
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The algorithmmaintains a popul at i on of i ndi vi dual s , eachof which
corresponds toaspeci�c solution. Ameasure of �t ness de�nes the qual-
ity of an individual. Starting with some set of individuals, a process
of evolution is simulated. The main components of this process are
crossover , whichmimics propagation, andmut at i on, whichmimics the
randomchanges occurring in nature. After a number of generat i ons ,
highly�t individuals will emerge correspondingtogoodsolutions tothe
givenoptimizationproblem. AgoodintroductiontoGAs is givenin[4].

generate(P C);
evaluate(P C);
s =bestOf(P C);
repeat until stopCriteria():
PN =;;
repeatM= 2times:
select p 1 2 PC , p2 2 PC ;
crossover(p 1; p2; c1; c2);
PN =P N [ f c1; c2g ;

end;
evaluate(P C [ PN);
PC =reduce(P C [ PN );
8 p 2 PC : possiblymutate(p );
8 p 2 PC : possiblyinvert(p );
evaluate(P C);
s =bestOf(P C [ f s g );

end;
optimize(s );
output s ;

FigureD.5: Out l i ne of phase t wo.

Fig. D.5outlines thephase twoalgorithm. Initially, the current pop-
ulationP C of sizeM =jP C j consists of M� 1 randomlygeneratedin-
dividuals anda single individual consisting of the shortest route found
for eachnet. Seeding the populationwiththis relativelygoodsolution
does not leadtobetter �nal results, butmerelyspeeds upthesearchpro-
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of the longest pathinHPGthenestimates the horizontal lengthof the
layout. ByconstructingVPGina similar way, the area is estimatedas
theproduct of the longest pathinHPGtimes the longest pathinVPG.

In[7] the cost of anedge inthe polar graphs is arather simple func-
tionof thenumber of nets present inthe correspondingroutingchannel.
However, if m nets are present inachannel, the channel densitycanbe
anynumber between0andm, assumingthat twometal layers are avail-
able for routing andthat eachlayer is usedexclusivelyfor routing ina
speci�cdirection. Therefore, toobtainamoreaccurateareaestimate, we
compute the exact channel density for eachedge inthe routing graph.
This is possible since the routing inphase one was performedusingac-
curate positions for the terminals of eachnet, cf. SectionD.2. The cost
of anedge inthe polar graphs is thenproportional to the densityof the
correspondingchannel.

Several factors a�ects the accuracy of the area estimate. The two
most important has to do with the subsequent compaction/spacing of
the layout:

1) If thecompactoralterstheplacementtotheextentwherethetopol-
ogyof the routing graphis changed, the polar graphs are alsochanged.
Hence, the quality of the area estimate decreases signi�cantly or may
evenbecome meaningless. In other words, a good initial placement is
requiredso that the compactor will onlyperformminor adjustments of
the cell positions. This situationreects the well-knownstrongmutual
dependencyof the placement andglobal routingtasks.

2) It is implicitlyassumedthat the compactor generates a layout in
whichnoroutingchannel onalongest pathof apolar graphiswider than
needed. Otherwise, the areawill be underestimated.

Thepractical consequencesof theseassumptionsareaddressedinSec-
tionD.4.3.

D.3.2 AreaandWirelengthOptimization

The concept of genetic algorithms, introducedbyJohnHolland[5], uti-
lizes the notionof the natural evolutionprocess. Innature, the individ-
uals constituting a populationadapt to the environment inwhichthey
live. The �ttest individuals have the highest probabilityof survival and
tendtoincreaseinnumbers, whilethe less �t individuals tendtodieout.
This survi val - of - t he- �t t est Darwinianprinciple is the basic idea behind
theGA.
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considers fewer distinct solutions andis slower thantheGA. Therefore,
theGAis usedfor everynet withmore thantwoterminals 1.

D. 3 Phase Two of the Router

The areaestimate is of course crucial tothephase twoalgorithm, andis
discussedinSectionD.3.1. Adetaileddescriptionof theGAperforming
the optimizationthenfollows inSectionD.3.2.

D.3.1 AreaEstimation

As in[7, 10] theareaestimationisbasedontheformationof polar graphs
as illustratedinFigD.4. For agivenplacement androutinggraph, two
polar graphs are constructed, ahorizontal (HPG) andavertical (VPG).
Let us startbyconsideringHPG. Theverticesof HPGconsistsof avertex
for eachcell plus twoadditional vertices, asource andasink. Eachedge
inHPGcorrespondstoavertical edgeintheroutinggraphandisdirected
fromthe source towards the sink.

source,
HPG

source, VPG

sink, VPG

sink, HPG

FigureD.4: Pol ar graphs f or area est i mat i on.

Assume that eachedge (v; w) has a cost which corresponds to the
spacingneededbetweencells v andw toperformthe routing. Further-
more, assignto eachpath fromsource to sinka �xedcost whichis the
sumof thehorizontal lengthof all cellsvisitedonthepath. Thetotal cost

1To obtai n as many di sti nct sol uti ons as possi bl e, the GAdoes not use the reducti on of the

search space descri bed i n [2, 3].
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D.2.1 Two-terminal nets

For eachnet withtwoterminals, analgorithmdue toLawler [6] is used
tocompute the shortest, second-shortest, third-shortest, etc. route until
a maximumof R routes are found or no more routes exists. Lawlers
algorithmis exact but also quite expensive, requiring time O(Rn 3) for
onenet, wheren is the number of vertices inthe routinggraph.

AnearlieralgorithmbyDreyfuss [1] mayat�rst seemmoreattractive.
It generates theR shortest routes fromadesignatedvertextoeachof the
other vertices intimeO(Rn logn ). However, loops areallowedinapath,
as opposedtoLawlers algorithm, andif twopaths donot visit the same
vertices inthe same order theyare considereddistinct. One couldthen
simplygenerateroutes until R loopless routes wereobtained, whichwere
alsodistinct inthe sense that their sets of edges are distinct. However,
experiments haveshownthat this strategyis not feasible inpracticedue
tothenumber of routes thenrequired.

D.2.2 Nets withat least three terminals

AtmostR distinct routes aregeneratedfor eachnethavingthreeormore
terminals using a GAfor the SPG. For a detailed description of that
algorithmthe reader is referredto[2, 3]. There are twomainadvantages
of usingthat algorithminthis context. Firstly, it generates high-quality
solutions. In[2] theGAis testedongraphs withupto2,500verticesand
is foundtobewithin1%fromtheglobal optimumsolutioninmorethan
92%of all runs. Theroutinggraphof amacro-cell placementwithC cells
will have less than3C vertices. It is therefore most likelythat the GA
will �ndthe shortest existingroute for everynet inanyreasonablysized
macro-cell layout. The secondadvantage of the GAis that it provides
anumber of distinct solutions ina single run. The problemof Mercury
andTimberWolfMCthat onlyone route is generatedfor nets withmany
terminals is thus eliminated.

For nets withfewterminals, say6-7or less, exhaustivesearchfor the
shortest route will oftenbe feasible. UsinganalgorithmbySullivan[9]
optimumcanbe foundbyexhaustingasearchspace consistingof

kX
i=0

0
@ n

i

1
A

points, where k =min(t� 2; n ) and t is the number of terminals of the
net. However, experiments has revealedthat Sullivans algorithmoften
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Figure D.2: Addi t i on of t ermi nal vert i ces (shaded) f or a net wi t h t hree

t ermi nal s (marked wi t h crosses).

Fig. D.3outlinesphaseone. Anet is t ri vi al if all its terminals arepro-
jectedontothe sameedge of the routinggraph. Althoughseveral routes
can still be generated for a trivial net, it will rarely be advantageous.
Hence, global routingis skippedfor suchnets.

generate routinggraph
for eachnon-trivial net do:
addvertices tograph
if 2-terminal net :
applyLawlers algorithm

else
applyaGAfor SPG

end
removevertices fromgraph

end

FigureD.3: Out l i ne of phase one.

The SPGis ingeneral NP-complete. However, if only two vertices
are to be connected, SPGreduces to a shortest pathproblem, whichis
handledbyanalgorithmof Lawler discussedinSectionD.2.1. Nets with
morethantwoterminals arehandledbyaGAdiscussedinSectionD.2.2.
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computingacorrespondingpathinthe routinggraph.
Aquite detaileddescriptionof howtogenerate the routinggraphfor

a givenplacement is given in [7]. Roughly speaking, eachedge of the
graphcorresponds to a routing channel andeachvertexcorresponds to
the intersectionof twochannels. Anexample is showninFig. D.1.

FigureD.1: Apl acement and t he correspondi ng rout i ng graph.

Before �ndingroutes for agivennet, vertices representingthe termi-
nals of the net are addedtothe routinggraphat appropriate locations.
Findingtheshortest route for thenet is thenequivalent of �ndingamin-
imumcost subtree in the graphwhichspans all of the added terminal
vertices, assumingthat the cost of anedge is de�nedas its length. This
problemis knownas the Steiner Problemin a Graph (SPG). Whena
net has beentreated, its terminal vertices are removedfromthe routing
graphbefore consideringthe next net, therebysigni�cantlyreducingthe
sizeof the SPGinstances tobe solved.

For eachterminal the locationof thecorrespondingterminal vertexis
determinedbyaperpendicular projectionof the terminal ontothe edge
representingthe appropriate routing channel, as illustratedinFig. D.2.
This is in contrast to the strategy used in e.g. [7]. Here vertices are
addedonlyat the center of routing channels andeachterminal is then
assignedtotheclosestvertex. Thisschememayresult insomenetshaving
identical sets of terminal vertices, inwhichcase some computations can
be avoided. On the other hand, our scheme provides a more accurate
estimateof thewirelengthandalsoallows amore accurateareaestimate
as discussedinSectionD.3.1.
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D. 1 Introducti on

Awell-knownstrategy for global routing of macro-cell layouts consists
of two phases [10]. In the �rst phase, a number of alternative routes
are generated for eachnet. The nets are treated independentlyone at
a time, andthe objective is tominimize the lengthof eachnet. Inthe
secondphase, aspeci�c route is selectedfor eachnet, subject tochannel
capacityconstraints, andsothat someoverall criterion, typicallyareaor
total interconnect length, isminimized. Amainadvantageof this routing
strategyis its independenceof anet ordering.

Mercury[7] andTimberWolfMC[8] are stateof theart global routers
for macro-cell layouts, and both are based on the two-phase strategy.
For nets with a small number of terminals, these routers generate up
to 10� 20 alternative routes for each net. However, due to the time
complexityof the appliedalgorithms, onlyasingleroute is generatedfor
nets havingmore than5� 11 terminals. As notedin[8] this limits the
overall qualityobtainable.

Inthis paper anewglobal router is presentedwhichminimizes area
and secondarily, total interconnect length. While also being based on
the two-phase strategy, this router di�ers signi�cantlyfromprevious ap-
proaches intwoways:

1) Eachphase is basedonageneticalgorithm(GA). TheGAusedin
phaseoneprovides several high-qualityroutes for eachnet independently
of its number of terminals. Inthe secondphase another GAminimizes
thedual optimizationcriterionbyappropriatelyselectingaspeci�croute
for eachnet.

2) The estimates of areaandtotal interconnect lengthusedthrough-
out the optimizationprocess are calculatedvery accurately. The area
estimateis basedoncomputationof channel densities andthewirelength
estimate is basedonexact pinlocations.

Experimental results shows that the layout qualityobtainedby the
router compares favourablytothat of TimberWolfMC.

D. 2 Phase One of the Router

Before the global routing process itself is initiateda rectilinear rout i ng
graph is extractedfromthe givenplacement. Routingis thenperformed
interms of this graph, i.e., computingaglobal route for anet is doneby
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Appendix D

AMacro-Cell Global Router Based

onTwoGeneticAlgorithms

This paper is publishedas H. Esbensen, \AMacro-Cell Global Router
BasedonTwoGeneticAlgorithms,"Proc. of The European Desi gn Au-

t omat i on Conf erence, pp. 428-433, Sept. 1994.

Abstract

This paper presents anovel approachtoglobal routingof macro-cell lay-
outs. Agenetic algorithmgenerates several short routes for eachnet.
Another genetic algorithmthenselects a route for eachnet while mini-
mizingareaandsecondarilyinterconnect length. Exact channel densities
are used for area estimation. The layout quality obtained onMCNC
benchmarks compares favourablytothat of TimberWolfMC.
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Cost CPU-time (secs)

Graph Copt Csph �Csph Cga �C ga Tbc1 Tbc2 Tsph Tga

E-1 111 111 0 111 0 1, 150 1, 394 7, 334 7, 395

E-2 214 216 0. 93 216 0. 93 6, 251 1, 993 7, 355 7, 444

E-3 4, 013 4, 060 1. 17 4, 013 0 26, 468 15, 782 50, 004 9, 449

E-4 5, 101 5, 113 0. 24 5, 102 0. 02 46, 008 1, 660 29, 921 7, 763

E-5 8, 128 8, 134 0. 07 8, 128 0 12, 564 411 9, 318 7, 474

E-6 73 76 4. 11 73 0 678 - 10, 060 10, 148

E-7 145 149 2. 76 145 0 27, 124 - 10, 306 10, 458

E-8 2, 640 2, 690 1. 89 2, 646 0. 23 118, 618 - 50, 013 12, 896

E-9 3, 604 3, 671 1. 86 3, 611 0. 19 24, 528 - 50, 014 14, 933

E-10 5, 600 5, 624 0. 43 5, 600 0 39, 261 - 50, 014 12, 976

E-11 34 34 0 34 0 1, 901 - 14, 472 14, 559

E-12 67 68 1. 49 68 1. 49 7, 200 - 14, 497 14, 588

E-13 1, 280 1, 317 2. 89 1, 289 0. 70 207, 059 - 50, 003 21, 787

E-14 1, 732 1, 767 2. 02 1, 736 0. 23 29, 263 - 50, 030 23, 022

E-15 2, 784 2, 795 0. 40 2, 784 0 7, 666 - 50, 020 18, 424

E-16 15 15 0 15 0 179 - 14, 425 14, 586

E-17 25 25 0 25 0 36, 040 - 14, 458 14, 619

E-18 572 625 9. 27 583 1. 92 - - 50, 017 29, 105

E-19 758 802 5. 80 766 1. 06 6, 372 - 50, 037 27, 319

E-20 1, 342 1, 357 1. 12 1, 342 0 272 - 50, 055 25, 107

TableC.12: Compari son of sol ut i on qual i t y and CPU- t i me f or t he graphs
i n cl ass E.
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Graph Tbc1 Tbc2 Tsph Tavg T�

D-1 476 200 486 523 8

D-2 284 148 488 537 13

D-3 2, 290 106 785 650 39

D-4 3, 529 41 689 554 21

D-5 811 37 522 504 8

D-6 2, 340 4, 148 687 788 44

D-7 100 1, 037 681 795 29

D-8 6, 985 17, 858 13, 237 2, 101 381

D-9 4, 630 16, 458 29, 354 2, 744 624

D-10 1, 312 1, 678 14, 780 1, 100 169

D-11 1, 374 24, 609 949 1, 070 59

D-12 305 5, 843 961 1, 085 20

D-13 1, 864 91, 718 15, 187 2, 357 245

D-14 3, 538 61, 335 41, 237 2, 601 393

D-15 1, 410 16, 889 24, 828 1, 302 102

D-16 871 9, 721 956 1, 047 21

D-17 6, 965 147, 598 950 1, 068 26

D-18 245, 192 227, 841 31, 015 2, 536 491

D-19 878 304, 380 50, 003 3, 441 580

D-20 47 1, 276 50, 010 2, 638 658

TableC.10: Compari son of CPU- t i me (seconds) f or t he graphs i n cl ass D.

Probl emsi ze Reduced si ze

Graph n m jEj n m jEj

E-1 2, 500 5 3, 125 680 5 1, 286

E-2 2, 500 10 3, 125 710 9 1, 328

E-3 2, 500 417 3, 125 637 199 1, 233

E-4 2, 500 625 3, 125 435 164 964

E-5 2, 500 1, 250 3, 125 222 108 649

E-6 2, 500 5 5, 000 1, 845 5 4, 318

E-7 2, 500 10 5, 000 1, 891 10 4, 372

E-8 2, 500 417 5, 000 1, 723 286 4, 193

E-9 2, 500 625 5, 000 1, 608 358 4, 069

E-10 2, 500 1, 250 5, 000 1, 046 366 3, 388

E-11 2, 500 5 12, 500 2, 498 5 12, 093

E-12 2, 500 10 12, 500 2, 500 10 12, 123

E-13 2, 500 417 12, 500 2, 341 321 11, 760

E-14 2, 500 625 12, 500 2, 139 388 11, 325

E-15 2, 500 1, 250 12, 500 1, 461 443 8, 514

E-16 2, 500 5 62, 500 2, 500 5 29, 332

E-17 2, 500 10 62, 500 2, 500 10 29, 090

E-18 2, 500 417 62, 500 2, 429 355 28, 437

E-19 2, 500 625 62, 500 2, 351 485 27, 779

E-20 2, 500 1, 250 62, 500 1, 988 758 24, 423

TableC.11: The cl ass E graphs bef ore and af t er reduct i ons.
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Probl emsi ze Reduced si ze

Graph n m jEj n m jEj

D-1 1, 000 5 1, 250 274 5 510

D-2 1, 000 10 1, 250 285 10 523

D-3 1, 000 167 1, 250 224 67 441

D-4 1, 000 250 1, 250 159 66 339

D-5 1, 000 500 1, 250 97 48 246

D-6 1, 000 5 2, 000 761 5 1, 741

D-7 1, 000 10 2, 000 754 10 1, 735

D-8 1, 000 167 2, 000 731 124 1, 708

D-9 1, 000 250 2, 000 654 155 1, 613

D-10 1, 000 500 2, 000 418 146 1, 317

D-11 1, 000 5 5, 000 993 5 4, 674

D-12 1, 000 10 5, 000 1, 000 10 4, 671

D-13 1, 000 167 5, 000 922 122 4, 433

D-14 1, 000 250 5, 000 853 160 4, 173

D-15 1, 000 500 5, 000 550 157 2, 925

D-16 1, 000 5 25, 000 1, 000 5 10, 595

D-17 1, 000 10 25, 000 999 9 10, 531

D-18 1, 000 167 25, 000 978 145 10, 140

D-19 1, 000 250 25, 000 938 193 9, 676

D-20 1, 000 500 25, 000 814 324 8, 907

TableC.8: The cl ass Dgraphs bef ore and af t er reduct i ons.

Graph Copt Csph �C sph Cbest Cavg Cworst C� �C avg �C worst Nga

D-1 106 106 0 106 106 106 0 0 0 0

D-2 220 220 0 220 220 220 0 0 0 0

D-3 1, 565 1, 570 0. 32 1, 565 1, 565 1, 565 0 0 0 0

D-4 1, 935 1, 940 0. 26 1, 935 1, 935 1, 935 0 0 0 0

D-5 3, 250 3, 254 0. 12 3, 250 3, 250 3, 250 0 0 0 0

D-6 67 71 5. 97 67 67. 1 68 0. 3 0. 15 1. 49 1

D-7 103 103 0 103 103 103 0 0 0 0

D-8 1, 072 1, 095 2. 15 1, 072 1, 072. 7 1, 074 0. 6 0. 07 0. 19 6

D-9 1, 448 1, 471 1. 59 1, 448 1, 448. 4 1, 450 0. 7 0. 03 0. 14 3

D-10 2, 110 2, 120 0. 47 2, 110 2, 110 2, 110 0 0 0 0

D-11 29 29 0 29 29 29 0 0 0 0

D-12 42 42 0 42 42 42 0 0 0 0

D-13 500 514 2. 80 500 500. 6 502 0. 7 0. 12 0. 40 5

D-14 667 675 1. 20 668 669. 7 671 0. 9 0. 40 0. 60 10

D-15 1, 116 1, 121 0. 45 1, 116 1, 116 1, 116 0 0 0 0

D-16 13 13 0 13 13 13 0 0 0 0

D-17 23 23 0 23 23 23 0 0 0 0

D-18 223 239 7. 17 226 227. 7 230 1. 2 2. 11 3. 14 10

D-19 310 335 8. 06 312 313. 3 315 0. 9 1. 06 1. 61 10

D-20 537 539 0. 37 537 537 537 0 0 0 0

TableC.9: Compari son of sol ut i on qual i t y f or t he graphs i n cl ass D.
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Graph Copt Csph �C sph Cbest Cavg Cworst C� �C avg �C worst Nga

C-1 85 85 0 85 85 85 0 0 0 0

C-2 144 144 0 144 144 144 0 0 0 0

C-3 754 757 0. 40 754 754. 2 755 0. 4 0. 03 0. 13 2

C-4 1, 079 1, 081 0. 19 1, 079 1, 079. 1 1, 080 0. 3 0. 01 0. 09 1

C-5 1, 579 1, 579 0 1, 579 1, 579 1, 579 0 0 0 0

C-6 55 55 0 55 55 55 0 0 0 0

C-7 102 102 0 102 102 102 0 0 0 0

C-8 509 512 0. 59 509 509 509 0 0 0 0

C-9 707 714 0. 99 707 707. 4 708 0. 5 0. 06 0. 14 4

C-10 1, 093 1, 098 0. 46 1, 093 1, 093 1, 093 0 0 0 0

C-11 32 32 0 32 32 32 0 0 0 0

C-12 46 46 0 46 46 46 0 0 0 0

C-13 258 263 1. 94 258 259. 7 260 0. 6 0. 66 0. 78 9

C-14 323 327 1. 24 323 323. 4 324 0. 5 0. 12 0. 31 4

C-15 556 558 0. 36 556 556 556 0 0 0 0

C-16 11 11 0 11 11. 7 12 0. 5 6. 36 9. 09 7

C-17 18 18 0 18 18 18 0 0 0 0

C-18 113 121 7. 08 113 114. 3 115 0. 8 1. 15 1. 77 8

C-19 146 155 6. 16 146 147 148 0. 4 0. 68 1. 37 9

C-20 267 267 0 267 267 267 0 0 0 0

TableC.6: Compari son of sol ut i on qual i t y f or t he graphs i n cl ass C.

Graph Tbc1 Tbc2 Tsph Tavg T�

C-1 27 25 61 79 6

C-2 812 45 61 79 3

C-3 543 25 72 104 19

C-4 510 23 75 83 10

C-5 474 5 61 63 0

C-6 49 561 83 130 11

C-7 83 522 86 153 24

C-8 674 1, 106 260 263 39

C-9 1, 866 5, 813 966 425 93

C-10 246 32 544 181 49

C-11 333 2, 769 119 187 20

C-12 120 1, 175 119 224 19

C-13 9, 170 9, 895 646 544 91

C-14 212 1, 150 1, 316 547 130

C-15 211 913 1, 544 262 56

C-16 10 877 119 180 22

C-17 98 14, 557 119 203 26

C-18 45, 848 20, 726 873 563 102

C-19 117 1, 689 3, 050 601 136

C-20 15 225 11, 374 334 57

TableC.7: Compari son of CPU- t i me (seconds) f or t he graphs i n cl ass C.
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Graph Tbc2 Tsph Tavg T�

B-1 0. 1 0. 1 0. 1 0. 0

B-2 0. 1 0. 1 0. 2 0. 0

B-3 0. 1 0. 1 0. 1 0. 0

B-4 0. 6 0. 1 1. 2 0. 6

B-5 1. 9 0. 1 0. 7 0. 2

B-6 0. 6 0. 1 0. 7 0. 1

B-7 0. 2 0. 2 0. 5 0. 1

B-8 0. 1 0. 2 0. 5 0. 1

B-9 0. 1 0. 2 0. 2 0. 0

B-10 3. 1 0. 3 1. 7 0. 5

B-11 1. 4 0. 3 1. 4 0. 6

B-12 0. 6 0. 3 0. 6 0. 1

B-13 0. 7 0. 4 1. 4 0. 4

B-14 1. 2 0. 5 0. 9 0. 3

B-15 0. 3 0. 5 0. 8 0. 1

B-16 18. 4 0. 6 4. 4 1. 9

B-17 3. 3 0. 6 2. 3 0. 6

B-18 1. 0 0. 6 1. 5 0. 3

TableC.4: Compari son of CPU- t i me (seconds) f or t he graphs i n cl ass B.

Probl emsi ze Reduced si ze

Graph n m jEj n m jEj

C-1 500 5 625 145 5 263

C-2 500 10 625 130 8 239

C-3 500 83 625 120 35 232

C-4 500 125 625 109 38 221

C-5 500 250 625 37 17 91

C-6 500 5 1, 000 369 5 847

C-7 500 10 1, 000 382 9 869

C-8 500 83 1, 000 336 54 818

C-9 500 125 1, 000 349 78 832

C-10 500 250 1, 000 213 76 624

C-11 500 5 2, 500 499 5 2, 184

C-12 500 10 2, 500 498 9 2, 236

C-13 500 83 2, 500 463 65 2, 108

C-14 500 125 2, 500 427 81 1, 961

C-15 500 250 2, 500 299 92 1, 471

C-16 500 5 12, 500 500 5 4, 740

C-17 500 10 12, 500 499 9 4, 698

C-18 500 83 12, 500 486 70 4, 668

C-19 500 125 12, 500 473 98 4, 490

C-20 500 250 12, 500 386 143 3, 850

TableC.5: The cl ass Cgraphs bef ore and af t er reduct i ons.
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C. 7 Computat i onal Resul ts

Probl emsi ze Reduced si ze

Graph n m jEj n m jEj

B-1 50 9 63 1 1 0

B-2 50 13 63 7 4 12

B-3 50 25 63 1 1 0

B-4 50 9 100 34 7 72

B-5 50 13 100 35 10 76

B-6 50 25 100 25 10 60

B-7 75 13 94 16 6 26

B-8 75 19 94 16 7 25

B-9 75 38 94 1 1 0

B-10 75 13 150 50 10 115

B-11 75 19 150 47 8 108

B-12 75 38 150 31 11 74

B-13 100 17 125 28 9 47

B-14 100 25 125 22 8 42

B-15 100 50 125 16 9 28

B-16 100 17 200 63 9 148

B-17 100 25 200 51 12 113

B-18 100 50 200 35 12 84

TableC.2: The cl ass B graphs bef ore and af t er reduct i ons.

Graph Copt Csph �C sph Cbest Cavg Cworst C� �C avg �C worst Nga

B-1 82 82 0 82 82 82 0 0 0 0

B-2 83 83 0 83 83 83 0 0 0 0

B-3 138 138 0 138 138 138 0 0 0 0

B-4 59 59 0 59 59 59 0 0 0 0

B-5 61 61 0 61 61 61 0 0 0 0

B-6 122 122 0 122 122 122 0 0 0 0

B-7 111 111 0 111 111 111 0 0 0 0

B-8 104 104 0 104 104 104 0 0 0 0

B-9 220 220 0 220 220 220 0 0 0 0

B-10 86 86 0 86 86 86 0 0 0 0

B-11 88 88 0 88 88 88 0 0 0 0

B-12 174 174 0 174 174 174 0 0 0 0

B-13 165 168 1. 82 165 165 165 0 0 0 0

B-14 235 235 0 235 235 235 0 0 0 0

B-15 318 318 0 318 318 318 0 0 0 0

B-16 127 127 0 127 127 127 0 0 0 0

B-17 131 131 0 131 131 131 0 0 0 0

B-18 218 218 0 218 218 218 0 0 0 0

TableC.3: Compari son of sol ut i on qual i t y f or t he graphs i n cl ass B.
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C. 6 Concl usi on

Inthis paper anewGeneticAlgorithm(GA) for the Steiner Problemin
aGraph(SPG) has beenpresented. Themainideabehindthealgorithm
is the applicationof theDistanceNetworkHeuristic for interpretationof
bitstrings specifyingselectedSteiner vertices. This scheme ensures that
everybitstringcorresponds toavalidsolutionandeliminatestheneedfor
penaltyterms inthe cost measure, therebyavoidingpotential problems
of assigningasuitable cost value toanincompleteor invalidsolution.

Theperformance of the algorithmhas beentestedonrandomgraphs
with up to 2,500 vertices and 62,500 edges. The experimental results
shows that inmore than92%of all executions the GA�nds a solution
whichis within1%fromthe global optimum. This performance com-
pares favorablywithoneof theverybest deterministicheuristics for SPG
as well aswithanearlierGAbyKapsalis et al. Performance is alsocom-
paredto that of branch-and-cut algorithms byLucenaandBeasleyand
byChopraet al. Whiletheruntimes of thesealgorithmsvariesextremely
andprevents the solutionof some of the probleminstances considered,
theGAis capable of generatinganear-optimal solutionfor all problems
withinamoderate amount of time.

Wethereforeconcludethefollowing: Incaseswhereagloballyoptimal
solutionis absolutelyrequired, the size of the givenproblemis not too
bigandruntime is not important, one of the branch-and-cut algorithms
arepreferable. Ontheother hand, if anear-optimal solutionis su�cient,
or the problemis verylarge or amoderate runtime limit is needed, the
GApresentedhere is the best choiceof the possibilities considered.

Acknowl edgement

The author wishes to thankPinaki Mazumder, Universityof Michigan,
who supervised this work in its initial phase when the author was at
Universityof Michigan. Alsothanks toJens ClausenandPawel Winter,
CopenhagenUniversity, forpointingout possibleimprovementsof anear-
lier versionof thealgorithmandfor suggestingasuitablestrategyforper-
formanceevaluation. FinallythankstoPeterM�ller-Nielsen, OleCaprani
andHolger Orup, Aarhus University, for several useful discussions and
suggestions concerningthis work.



C.5. FUTUREWORK 193

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0 50 100 150 200 250 300 350 400

P
er

ce
nt

ag
e 

ne
w

 in
di

vi
du

al
s

Generation

FigureC.10: Percent age of newi ndi vi dual s i n t he popul at i on as a f unct i on
of generat i on number.

C. 5 Future Work

Theworkpresentedhere canbe continuedinat least three directions:

1) Performance improvement: As discussedinSectionC.3 the main
ideaof theGApresentedis theapplicationof theDNHfor interpretation
of bitstrings. Incontrast, the genetic operators for crossover, mutation
and inversionare all standard. They are characterized by being very
simple andblindinthe sense that theydo not utilize knowledge of the
applicationdomaininanyway. Thesameis truefor thehill-climber. One
frequentlyusedwayof improving the performance of aGAis to apply
moreadvancedgeneticoperators and/or operators exploitingapplication
speci�cknowledge [12]. It is therefore likelythat theperformance of the
GApresentedhere canbefurther improvedbyapplyingsuchtechniques.

2) Other graphtypes: Anobvious weakness of the test-suite usedin
thisworkisthatall graphsaresparseandrandomlygenerated. It remains
tobeseenhowtheGAperforms one.g. densegraphs, rectilinear graphs,
non-randomgraphs arisinginreal-worldapplications, etc.

3) Contributions toperformance: Toobtainadetailedunderstanding
of the reasons for the success of the algorithmit wouldbe interestingto
investigate howthe various components of the algorithmcontribute to
theoverall performance. What is the individual e�ect onsolutionquality
andruntimecausedbye.g. thedecodingstrategy, the inversionoperator,
the searchspace reductionor the initial graphreductions ?
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However, the usedstopcriteria reects a priorityof solutionqualityas
beingmore important thanruntime.

Fig. C.9 shows for each generation the standard deviation of cost
in the population. Froma value of 19.2 ingeneration0, the standard
deviationdecreaseswithin10generations toabout 2.0andthenstays at
that level throughout the optimizationprocess.
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As describedinSectionC.3.1eachgenerationis initiatedbythe gen-
erationofM o�springindividuals. Fromthe total of 2M individuals the
bestM individualsarethenkeptasmembersof thenewpopulationwhile
therest arediscarded. Fig. C.10showsfor eachgenerationthepercentage
of individuals inthenewlycreatedpopulationwhichhas just emergedas
results of crossover. The percentage of newly generated individuals is
verystable around50. The important thing tonote is that the fraction
of newindividuals do not decrease with time but is constant also into
the late phase of the process. In other words, throughout the process
half the individuals generatedbythe crossover operator are better than
some other individual alreadyinthe population. This con�rms the role
of crossover as themost important of the geneticoperators.
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believethat themainreasonfor theperformancegapbetweenGA-KRSS
andtheGApresentedhere is the di�erent decodingstrategyandconse-
quently, the di�erent cost evaluationstrategy.

C.4.6 Typical Behavior

The progress of the typical optimization process is illustratedby Fig-
ures C.8, C.9andC.10, whichstems fromasample executionof theGA
withgraphD-15 as input. It shouldbe emphasizedthat although the
graphs stems froma speci�c single run, the picture they give is very
typical.
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For eachgeneration, the topgraphof Fig. C.8 indicates the average
cost of the individuals inthe populationat that time, while the bottom
graph indicates the cost of the current best individual. Initially, the
averagecost is 1,197andthe best is 1,156. The global optimumof 1,116
is obtained �rst time in generation 203, and the algorithmterminates
after 358 generations. Note that improvement is very rapidduring the
�rst part of the process. Then it levels out and further improvement
is obtainedonlyslowly. As mentionedinSectionC.3.1 the best as well
as the average cost are parts of the stop criteria. If only the cost of
the best solutionwere considered, the process would have terminated
after generation253, correspondingto a29%reductionof the runtime.
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AsproblemsizeincreasesthroughtheclassesB, C, DandEtheabove
observations becomeincreasinglypronounced. If onlyclass Bgraphs are
considered, it is di�cult tomakeanydistinctions regardingperformance
of the algorithms. These examples appears tobe toosimple.

C.4.5 ComparisonwithKapsalis Algorithm

In this Sectionthe GAbyKapsalis, Rayward-SmithandSmith [18] is
denotedGA-KRSS. As mentionedinSectionC.1GA-KRSSdi�ers from
theGApresentedhere inanumberof ways. Amongother things, neither
aninversionoperator nor ahill-climber is appliedinGA-KRSS. However,
the most signi�cant di�erences concerns the decoder andthe cost com-
putation. InGA-KRSSa genotype is a bitstring of lengthn inwhich
the i 'thbit indicates if the i 'thvertexis part of the phenotype tree. To
assure that every tree spans W eachgenotype is xor'edwith the �xed
stringspecifyingW. Hence, theencodingis verysimilar toour encoding.
However, the interpretationof a genotype is verydi�erent. Assume a
genotype speci�es the vertex set Z, W � Z � V . The corresponding
graphis thencomputedas the subgraphG Z of G inducedbyZ . Ingen-
eral G Z is not connected. Assume it consists of k � 1components. The
cost of asolutionisde�nedas thesumof thecost of aminimumspanning
tree for eachcomponent plus apenaltytermwhichgrows linearlywithk .

Computational results are givenonlyfor the class Bgraphs fromthe
OR-Library. The solution quality obtained for eachgraph is reported
as the best result of �ve runs. For eachgraph some parameter setting
of GA-KRSS has been foundwithwhich the global optimumis found
in �ve runs. However, the parameter setting varies with the problems
given. When�xingtheparameter settingfor all graphs, GA-KRSS�nds
theglobal optimuminapproximately70%of all runsandtheworst result
generatedis 7.3%abovethe global optimum.

All experiments withGA-KRSS are run on a Apple Mac IIfx. No
total runtimes are given. Insteadthe time spenduntil the best solution
foundappears �rst time, referredtoas Last ImprovementTime(LIT), is
measured. It isnot clear exactlywhichstopcriteriaisused, i.e., howlong
the algorithmtakes to terminate beyondLIT. For manyof the graphs,
the averageLITis inthe range from200to2,000secs. There is a time
limit of 4,000secs. for acomplete execution.

GA-KRSSisclearlyinferior toeachof theotheralgorithmsconsidered
inthispaper, bothwithrespect tosolutionqualityaswell asruntime. We
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For the class Eexamples, SPH-I �nds optimumfor 4 of the 20 graphs,
whiletheGA�nds theoptimumfor 11of thesegraphs. �C worst � �C sph

holds for all but onegraphinclassesB, CandD, andinclassEwehave
�C ga � �C sph for all graphs. Inotherwords, withasingleexceptioneven
the worst results generatedby the GAare equal to or better than the
resultgeneratedbySPH-I. Furthermore, for thegraphswherebothSPH-I
and the average executionof the GAfails to �nd the global optimum,
the expectedrelative error ratio �C avg of the GAis often an order of
magnitudebetter thanthe error ratio�C sph of SPH-I.

Error Ratio

Algorithm =0% < 0.5% < 1.0%

SPH-I 48.7 66.7 70.5

GA 77.1 86.7 92.6

TableC.1: Summary of sol ut i on qual i t i es obt ai ned by t he GAand SPH- I .

TableC.1summarizes the solutionqualities obtainedbytheGAand
the SPH-I. These �gures are basedonthe results of all 600 executions
of the GAandall 78 executions of SPH-I performedintotal. For each
algorithmTableC.1givestheaccumulatedpercentageof runswhichgave
a result withinthe statedrelative error fromoptimum. E.g., 66.7%of
all executions of the SPH-I gavearesult whichwas less than0.5%from
theoptimumsolution. Whencomputingthevalues listedfor theGAthe
results for the class Eexamples havebeenweightedbya factor of 10 to
compensatefor theimbalanceinthenumberof executionsfor eachgraph.

The results regarding runtimes can be summarized in three main
points:

� TheGAis capable of �ndingahigh-qualitysolutionfor al l graphs
consideredinamoderate amount of time. This is not the case for
anyof the twobranch-and-cut algorithms or for SPH-I.

� Inmostcasestheruntimeof theGAisverysimilartothatof SPH-I.
Inafewcases theGAis signi�cantlyfaster thanSPH-I, while the
opposite is never the case.

� The variationof the runtime of theGAis verysmall comparedto
the variationobserved for the branch-and-cut algorithms as well
as SPH-I. As a consequence, the branch-and-cut algorithms are
signi�cantlyfaster thanboththeGAandSPH-I for someexamples,
while theyare signi�cantlyslower onother examples.
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Table C.12 lists the solutionqualities obtainedby the GAand the
SPH-I together withthe runtimes of all algorithms considered. Due to
the extensive runtimes requiredfor the graphs inthis class, theGAwas
executedonlyonce for eachexample. C ga denotes the cost obtainedby
the GA, �C ga is the relative error of the solutionfoundbythe GAand
the time spendbyalgorithmis denotedbyT ga . Hence, C ga andT ga can
be consideredestimates of C avg andT avg , respectively.

It shouldbe notedthat the listedvalue of C opt for E-18maynot be
the global optimum, but according to the informationinOR-Library it
is the best knownsolutionas foundbyBeasley's algorithm[3]. The op-
timumfor this graph was not found within a cpu-limit of 21,600 secs
ontheCrayX-MP/48. Chopraet al [5] alsoencounteredproblems with
E-18. No runtime is listed for this graph since the algorithmdid not
terminate withina cpu-limit of 10 days on the VAX8700 [5]. Lucena
andBeasley[23] does not report anyresults for graphsE-6throughE-20,
andareasonis not given. However, consideringthe progressionof run-
time for the graphs inclasses CandD, it is reasonable to assume that
the algorithmis unable to solve some of these problems inareasonable
amount of time.

SPH-I exceeds the cpu-time limit of 50,000secs. for graphs E-3, E-8,
E-9, E-10, E-13, E-14, E-15, E-18, E-19andE-20. The estimatedtotal
time requiredbySPH-I for these graphs varies from81,000secs. for E-3
to 4: 3� 10 7 secs., or more than16months, for E-20. Comparedto the
branch-and-cut algorithms andSPH-I the runtimes of the GAare very
moderatefor all graphswithamaximumruntimeof 29,105secs. forE-18.
For most of the graphs for whichSPH-I terminates withinthe cpu-time
limit the runtimes of the GAand SPH-I are very similar. Regarding
solutionquality, SPH-I �nds the global optimumfor 4of the graphs and
has a worst relative error ratio exceeding9%for E-18. The GA�nds
optimumfor 11graphs andhas aworst relativeerror ratioless than2%.

C.4.4.5 Summary of Results

This sectionsummarizestheexperimental resultswithrespect tosolution
qualityandruntime. Whencomparingthe solutionqualityobtainedby
the GAto that obtainedbySPH-I for all graphs inclasses B, CandD
the followingcanbe observed: Of a total of 58 graphs, SPH-I �nds the
global optimal solution for 34 graphs, while the GA�nds optimum10
times out of 10 for 43graphs andat least one time of 10 for 55graphs.
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vertexdegree increases.
OntheclassDgraphs SPH-I �nds optimumfor 7of thegraphs, while

theGA�nds theoptimumat least once for 17graphs andeverytime for
13 graphs. SPH-I has relative errors exceeding 2%for 5 graphs while
that only happens for the GAongraphD-18. For all graphs we have
Cworst � Csph andC worst < Csph holds for 13graphs.

On this class of problems the runtimes for bothbranch-and-cut al-
gorithms varies bythree orders of magnitude andare as highas inthe
200-300,000secs. range correspondingto 2-3days of computation. The
runtime of SPH-I nowalso varies signi�cantly. For practical reasons it
became necessaryto introduce a cpu-time limit of 50,000 secs. for this
algorithmongraphs fromclassesDandE. WhenSPH-I didnot complete
its computationwithinthis limit, it was terminatedandthebest solution
foundsofarwasused. ThishappenedforgraphsD-19andD-20. Forthese
graphs thetotal timeneededbySPH-I is estimatedtobe95,000secsand
679,000secs., respectively. Theseestimates canbeconsideredtobequite
accuratesincetheyarebasedonmeasurementsof thecpu-timespendfor
eachpair of verticesx ; y 2 V , cf. Fig. C.7, whichis thenscaledwiththe
relative number of vertexpairs not yet consideredat the time the cpu-
limit is exceeded. The average runtime of the GAvaries from504 secs.
for D-5 to 3,441 secs. for D-19, i.e., by a factor of 7. This variation
is small compared to the variationof the other algorithms considered.
For graphs D-8, D-9, D-10, D-13, D-14, D-15, D-18, D-19andD-20the
GAis onaverageanorder of magnitude faster thanSPH-I while for the
remaininggraphs the runtimes of these algorithms are comparable.

C.4.4.4 TheE Graphs

Forthegraphs fromclassEthee�ectof graphreductionsfollowsapattern
whichcoincidesperfectlywiththepatterns observedfor classesCandD.
Evenafter reductions the searchspace sizes for the class Egraphs are
enormous. Usingthe bound

S(n ; m)>

0
@ n �m

k

1
A �

 
n �m� k +1

k

!k

wherek =min(m�2; n �m) revealsthat anumberof graphs inthis class
has searchspaces exceeding10 100 points. Especially, the searchspace for
E-13 exceeds 10 231 points and for E-18 it exceeds 10 242 points. These
bounds are computedafter graphreductions havebeenperformed.
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However, as the averagevertexdegree increases, the e�ect of reductions
of types a and b (see SectionC.3.2) decreases signi�cantly. Whenm
is small, the e�ect of reductions of type d is also very limited, as can
be seen by the results for C-11, C-12, C-16 and C-17. The obtained
reduction in search space sizes for these problems are negligible. The
e�ect of reductions of type c increases with the number of edges. For
C-16throughC-20about twothirds of all edges are eliminatedbygraph
reductions, mainlyof type c. However, since the GAoperates interms
of shortest paths, minimumspanningtrees, etc., thenumber of edges are
not that important for the performance of the algorithm.

TableC.6shows that theGA�nds the global optimumat least once
for all examplesandeverytimefor12of thegraphs, whileSPH-I �nds the
optimumfor 10of thegraphs. Whenneither theaverageGArunnor the
SPH-I �nds the global optimum, �C avg is oftenanorder of magnitude
better than�C sph . This is the case for C-3, C-4, C-9, C-14, C-18 and
C-19. For C-18andC-19the solutions producedbySPH-I are verypoor
witherrors inthe6- 7%range. Theresults forC-16areindirect contrast
toall other results. While the SPH-I �nds optimum, theGAencounters
severeproblems. In7of 10runs it misses theglobal optimumvalueof 11
andoutputs a tree of cost 12. This corresponds toahuge relative error
�C worst of 9.09%.

InTable C.7 andsubsequent tables T bc1 denotes the runtime of the
branch-and-cut algorithmbyChopra et al [5]. Dependingonthe prob-
lem, the runtime for both branch-and-cut algorithms varies extremely.
Chopra's algorithmspansfrom10secs. forC-16tomorethan45,000secs.
for C-18, while Lucena's algorithmvaries from5 secs. for C-5 tomore
than 20,000 secs. for C-18. As a consequence, the branch-and-cut al-
gorithms are signi�cantlyfaster thanboththe GAandSPH-I for some
graphs andsigni�cantlyslower for others. The runtimes of the GAand
the SPH-I are similar for most graphs, althoughthe GAis signi�cantly
faster for graphs C-15, C-19andC-20. The timevariationT � of theGA
is relativelysmall.

C.4.4.3 TheDGraphs

The e�ect of graph reductions on the class Dgraphs shows a pattern
similar to that observedfor the Cgraphs, althoughnowthe pattern is
evenclearer. Most graphs are reducedsigni�cantly, note especiallyD-5.
The e�ect of reductions decreases as m decreases and as the average
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reducedtothedegenerategraphconsistingof asinglevertexonly, which
means that the optimal solution is found solely by performing graph
reductions.

Table C.3 compares the solutionqualityobtainedbythe GAto the
globally optimal solutions as well as to the solutions found by SPH-I.
Copt is theglobal optimumandC sph is thesolutionfoundbySPH-I. C best ,
Cavg andC worst is the best, average andworst result produced by the
GAin the 10 runs, while C � denotes the standarddeviationof the 10
cost values. �C sph =100(C sph = Copt � 1) is the relative error inpercent
of the solutionfoundbySPH-I comparedtothe optimumsolution. Sim-
ilarly, �C avg =100(C avg = Copt � 1) denotes the averageerror of the solu-
tions foundbythe GA, and�C worst =100(C worst = Copt � 1) is the worst
error producedby the GA. Finally, N ga denotes the number of the 10
runs whichdidnot �ndthe global optimum. This notationis alsoused
inthe followingsections.

As canbe seen, theGA�nds the global optimumfor all examples in
everyexecution. SPH-I performs similarlyfor all graphs exceptB-13, for
whichit has a1.82%overhead.

TableC.4comparestheruntimeof theGAwiththat of SPH-I andthe
branch-and-cut algorithmbyLucenaandBeasley[23]. T bc2 denotes the
runtimeof thelatter algorithmandT sph is thetimeof SPH-I. Theaverage
timespentbytheGAis denotedT avg whileT � denotes thestandarddevi-
ationof thetimefor the10runs. Chopraet al [5] givesnocomputational
results for these graphs. It canbe seenthat all runtimes are verysmall
andwithintheaccuracyof thesemeasurements it is di�cult todrawany
conclusions regardingdi�erences inspeedfor the di�erent algorithms.

The fact that all three algorithms �nds optimal solutions (except for
SPH-I onB-13) ina very short time suggests that these examples are
simplytoosmall to facilitateanydistinctionof performance of the algo-
rithms. For several of thegraphs thesearchspacesafter graphreductions
areindeedverysmall andthelargest searchspaceis that of B-17withless
than10 9 points, whichis not that muchfor acombinatorial optimization
problem.

C.4.4.2 TheCGraphs

FromTable C.5 it canbe seenthat the graph reductions are also very
e�ectiveonmost graphs intheCclass. Note especiallygraphC-5which
after reductions has asearchspacesizeof onlyapproximately10 6 points.
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TheGAhas beenexecuted10times for eachexampleintheB, Cand
Dclasses. Solutionquality is then evaluatedin terms of best, average
andworst results produced. However, due to runtime requirements the
GAwas only executed once for each of the examples in class E. The
parameter settings areM =40, S =50, p mut =0: 005 andp inv =0: 1.
These values are usedfor all executions, i.e., noproblemspeci�c tuning
has beenmade. As mentionedinSectionC.1�xedparameter values are
of major importance fromapractical point of view.

The GAas well as SPH-I are implemented in the Cprogramming
language. For bothalgorithms, examples fromclasses B, CandDare
executedon a SunSparc IPXworkstationhaving 32 MbRAM. These
examplesrequireatmost10Mbof memory. FortheclassEexamples, the
memoryrequirement is about 58Mb. Therefore, for these examples the
GAas well as SPH-I are executedonaDECMips 5000-240workstation
having128MbRAM.

The branch-and-cut algorithmbyLucena andBeasley [23] is a fur-
ther development of the algorithmpresentedin[3], but insteadof using
aCray, it is nowexecutedonaSunSparc 2workstation. This machine
is roughlyas fast as the SunSparc IPX, but probablysomewhat slower
thantheDECMips 5000-240. Chopraet al'salgorithm[5] is executedon
aVAX8700whichis at most as fast as the other machines. Whencom-
paring absolute runtimes inSectionC.4.4 the reader shouldkeepthese
di�erences regarding the usedhardware inmind. However, the runtime
variations causedbythedi�erentmachines are insigni�cant comparedto
the variations causedbydi�erent probleminstances whenconsideringa
speci�calgorithm.

C.4.4 Results

In the following sections the detailed experimental results for all four
problemclasses are commented. The tables referenced can be found
in SectionC.7. Asummary and conclusionof the results are given in
SectionC.4.4.5.

C.4.4.1 TheB Graphs

Table C.2 lists the characteristics of the problems inclass Bbefore and
after thegraphreductionsof SectionC.3.2areperformed. Thereductions
signi�cantlyimpacts all graphs. Especially, graphs B-1, B-3andB-9are
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due to the fact that all distances have beenprecomputed. SinceO(m 2)
candidate solution trees T are computed, the total runtime of SPH-I
becomesO(n 3 +m 4n ).

graphReductions();
c (TSPH�I )=1;
8 x ; y 2 W; x 6 =y do

T =G xy;
Q =W\ V xy ;
whileW nQ 6 =; do

�ndavertexz 2 W n Q closest toavertexinT ;
addtoTashortest pathfromT toz ;
Q =Q[ f z g ;

if c (T )< c (TSPH�I ) thenT SPH�I =T ;
output T SPH�I ;

FigureC.7: Out l i ne of SPH- I .

C.4.3 Experimental Method

TheGAis evaluatedbyfour kinds of comparisons:

� The solutionqualityobtainedis comparedtothe global optimum.

� The absolute runtime is comparedto that of twodistinct branch-
and-cut algorithmsbyLucenaandBeasley[23] andChopra, Gorres
andRao[5].

� Solutionqualityandabsoluteruntimeiscomparedtothat of SPH-I.

� ComparisonwiththeGAbyKapsalis et al [18].

Thebranch-and-cut algorithmsareguaranteedto�ndtheglobal opti-
mum. However, runtimemaybeunacceptablefor someprobleminstances
or mayevenprevent someproblems frombeingsolved. It is therefore of
interest toinvestigateif anear-optimal solutioncanbefoundfor al l prob-
lems byusingamoderate amount of time.
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For agivengraph, the sizeof the searchspaceS (n ; m) tobeexplored
bytheGAis

S (n ; m) =
kX
i=0

0
@ n �m

i

1
A

wherek =min(m�2; n �m), sincethis is thenumberof possibledistinct
choices of theSteiner vertices. Someof theprobleminstances considered
representsextremelylargesearchspaces, aswill beseeninSectionC.4.4.4.
However, as mentioned in SectionC.3.7, the corresponding phenotype
spaces are smaller.

C.4.2 IteratedShortest PathHeuristic (SPH-I)

As mentionedinSectionC.3.4acomparative studyof the deterministic
heuristicsSPH, DNHandADHhasbeenmadebyWinterandSmith[31].
Several variantsof theseheuristics, especiallyanumberof repetitivevari-
ants of SPH, are also considered inthe study. The ADHis ingeneral
consideredto be one of the best deterministic heuristics, which is also
con�rmedbythe investigationin[31]. However, the results also reveals
that someof therepetitivevariantsof SPHconsistentlyoutperformADH
with respect to result quality. Furthermore, by applying initial graph
reductions the runtimeof the repetitiveSPHvariants canbemade com-
parable to that of the other heuristics. One of the speci�c conclusions
in[31] isthatonthelargestrandomgraphsconsidered, therepetitiveSPH
variantdenotedSPH-ZZoutperforms all other heuristics. Therefore, this
heuristic has beenchosenfor comparisonwiththeGA.

Fig. C.7outlinesour implementationof SPH-ZZ, denotedbySPH-I. It
starts bycomputingD(G) andperforminggraphreductions as described
inSectionC.3.2. For givenverticesx andy , G xy =(V xy ; Exy ) denotes the
subgraphof Gcorresponding to the shortest pathbetweenx andy . In
eachiterationof the outer loopatreeT is buildwhichspans all vertices
inW. T is initializedwithashortest pathbetweentwoof thevertices to
be spanned, andT is thenextendedbyrepeatedadditionof a shortest
pathto a closest, not yet connectedvertex. This scheme is triedfor all
possibleinitializationsof T , andthealgorithmoutputs thebest suchtree
obtained.

As describedinSectionC.3.2 routine graphReduct i ons requires time
O(n 3). Theconstructionof eachcandidatesolutionT takes timeO(m 2n )
since the \while" loopis iteratedO(m) times and it takes timeO(mn )
to �ndeachz vertexandextendT witha shortest path to it. This is
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inStep3of thedecodingprocess is almost always atree, andas aconse-
quence, Step4 is rarelyexecuted. Therefore, the true bottleneckof the
algorithmis theMSpTcomputationperformedinStep2of thedecoding,
whichrequires timeO(m 2).

C. 4 Experi ments

This sectiondescribes the experimental methodappliedandthe results
obtained. Characteristics of the test examples used are given in Sec-
tionC.4.1. The deterministicheuristic SPH-I usedfor comparisonis de-
scribedinSectionC.4.2andSectionC.4.3describes the chosenmethod
for performing the comparative experiments. The results are reported
anddiscussedinSectionC.4.4. As mentionedinSectionC.1 anearlier
GAfor SPGhas beendevelopedbyKapsalis et al. and a comparison
to that algorithmis presented in SectionC.4.5. Finally, SectionC.4.6
describes the typical behavior of theGAduringanoptimizationprocess.

C.4.1 Test Examples

Thealgorithmis testedonall 78SPGinstances fromtheOR-Library[4].
Accordingtotheir size, thesegraphs aredividedintofour classesdenoted
byB, C, DandE. All graphs aregeneratedat randomsubject onlytothe
connectivityconstraint, that is, the topologyis randomandthe vertices
to be spanned are selected at random. Every edge cost is a random
integer inthe interval [1,10]. Inclass Beachgraphhas n equal to50, 75
or 100. The valueof m is either n= 6, n= 4or n= 2andthe averagevertex
degree is either 2.5 or 4. Since all combinations exists, class Bconsists
of 18graphs. ClassesC, DandEconsists of graphs withn equal to500,
1,000 and2,500 respectively. m equals 5, 10, n= 6, n= 4 or n= 2 andthe
average vertexdegree is 2.5, 4, 10or 50. Thus, eachof the classes C, D
andEconsists of 20graphs.

One of the mainadvantages of using this test-suite is that it facili-
tates comparisonwiththe global optimal solutions. The global optima
were �rst computedby J. E. Beasleywho developeda branch-and-cut
algorithmwhichwas executedonaCrayX-MP/48supercomputer [3].
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Apart of the ringis thenselectedat randomandreversed. More specif-
ically, twopoints x ; y 2 f 0; 1; : : : ; r � 1g , x 6 =y , are selectedat random.
The operator thende�nes the newordering� 0 of g as 2

�0((x +i ) modr )=

8<
: � ((y � i ) modr ) if 0� i � (y � x ) modr
� ((x +i ) modr ) otherwise

for all i =0; 1; : : : ; r �1. The inversionoperator is illustratedinFig. C.6.

Before inversion:

� : f (2; 0); (3; 1); (0; 1); (4; 0); (1; 0)g

After inversionwithx =2, y =0:

� : f (0; 1); (3; 1); (2; 0); (1; 0); (4; 0)g

FigureC.6: I l l ust rat i on of t he i nversi on operat or wi t h r =5.

C.3.8 TimeComplexity

The �lter routine describedinSectionC.3.4, the generationof eachof
the initial individuals, andthe genetic operators crossover, mutate and
invert eachrequires timeO(r )=O(n �m). The repeateddecodings us-
ing DNHis the most expensive operationof the GA. Since knowledge
of shortest paths is also requiredwhen performing some of the initial
graphreductions, D(G) is precomputedonceandfor all as mentionedin
SectionC.3.2. This reduces the timeof Step1of DNHtoO(1) andas a
consequence, onedecodingcannowbeperformedintimeO(mn log(nm)).
Fitness computationrequiresO(MlogM) tosort the individuals. Into-
tal, the GA's setup time is O(n 3), and each generation requires time
O(M[nmlog(nm)+logM]).

Measurements reveals that the vast majorityof the total runtime is
spendondecodings. It alsoturns out that inpractice the graphformed

2The de�ni ti on of � 0 rel i es on the mathemati cal de�ni ti on of modul o, i n whi ch the remai nder

i s al ways non-negati ve.
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Givenindividuals:

� : f (2; 1); (0; 1); (1; 0); (4; 0); (3; 0)g
� : f (1; 0); (2; 1); (4; 1); (3; 1); (0; 0)g

Step1. Reordering� :

 : f (2; 1); (0; 0); (1; 0); (4; 1); (3; 1)g

Step2. Crossover withx =2:

� : f (2; 1); (0; 1); (1; 0); (4; 1); (3; 1)g
 : f (2; 1); (0; 0); (1; 0); (4; 0); (3; 0)g

Step3. Only� is subjectedtothe �lter :

� : f (2; 0); (0; 1); (1; 0); (4; 1); (3; 1)g

FigureC.5: I l l ust rat i on of t he crossover operat or wi t h m=r =5.

C.3.7 MutationandInversionOperators

The mutation operator is extremely simple. Given a genotype g , the
operator invertseachof ther bits ing withasmall givenprobabilityp mut .
This scheme is calledpointwisemutation. If necessary, g is thenpassed
throughthe �lter routine.

For a given phenotype, several equivalent genotypes usually exist.
Sincecrossoverisperformedintermsof genotypes, the�tnessof produced
o�springdepends onwhichof thepossiblegenotypes areusedas codings
of the givenphenotypes. The purpose of inversion is to optimize the
performance of the crossover operator by rearranging the components
withinagivengenotype, as explainedindetail in[12, 16].

Withagivenprobabilityp inv , the inversionoperator reorders the tu-
ples of a given genotype g by altering its ordering � . This does not
changethephenotypecorrespondingtog . Toobtainauniformprobabil-
ityof movement of all tuples, we consider the genotype to forma ring.
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C.3.5 FitnessMeasure

GivenapopulationP =f p 0; p1; : : : ; pM�1 g , theroutineeval uat e of Fig. C.2
computes the�tness of eachindividual as follows. LetC(p ) bethecost of
individual p , i.e. thecost of theSteiner treerepresentedbyp , andassume
that P is sortedso that C(p 0)� C(p 1)� : : : � C(pM�1 ). The �tness F
of p i is thencomputedas

F (pi)=
2i

M� 1
i =0; 1; : : : ; M� 1:

This �tness computationschemeis calledranki ng andisdiscussedin[29].
Controllingthe varianceof the�tness values is one of the frequent prob-
lemsof GA's [12]. Rankingassures that thevarianceis constant through-
out theoptimizationprocess. Thespeci�cschemechosenhereconstantly
gives the best individual twice the probabilityof the medianindividual
of beingselectedfor crossover.

C.3.6 CrossoverOperator

Giventwo parent genotypes � and� , the crossover operator generates
two o�spring, � and . The parent genotypes are not altered by the
operator. Anexample of crossover is showninFig. C.5. Inthis section,
asuperscript speci�eswhichindividual themarkedpropertyis apart of.
Crossover consists of three steps:

1) One of the parents, say� , is chosenat random, andacopy of �
is made.  is thenreorderedso that it becomes homologous to� , that
is, �  =� �.

2) Botho�spring are giventhe same ordering as their parents, i.e.,
�� =�  =� �. Standard1-point crossover is thenperformed[12, 16]: A
crossover-point x is selectedat randominf 0; 1; : : : ; r � 2g . The selection
of Steiner vertices in� and is thende�nedby

i��(k) =

8<
:
i��(k) if k � x

i

�(k) if k > x

and

i �(k) =

8<
:
i

�(k) if k � x

i��(k) if k > x

where� =� �.
3)Finally, both� and aresubjectedtothe�lter routine, if necessary.
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For agiveninstance of SPG, assumea�xednumbering0; 1; : : : ; r � 1of
the vertices inV n W. Let � : f 0; 1; : : : ; r � 1g 7 !f 0; 1; : : : ; r � 1g be a
bijectivemapping. Agenotype is thenaset of r tuples:

f (� (0); i�(0)); (� (1); i�(1)); : : : ; (� (r � 1); i�(r�1) )g

where i k 2 f 0; 1g , k =0; 1; : : : ; r � 1. The Steiner vertices S � V n W

speci�edbythegenotype isS =f v k 2 V j ik =1g . TheSteiner tree inG
corresponding to the genotype is the tree computedbyDNHusing the
setS [W as thevertices tobeconnected. InStep5of DNHeveryvertex
v 6 2 W of degree 1 is deleted. Note that the Steiner tree is independent
of � . Inother words, the Steiner tree constituting the phenotype of an
individual does not change if the tuples inits genotypeare reordered.

Anyset of valuesof thei k's inagenotypecorrespondtoavalidpheno-
type. However, Lawler [21] has shownthat aMStTinD(G) exists, which
has at mostm� 2Steiner vertices. This result relies onthe fact that re-
gardlessof theedgecost functionc , theedgecosts inD(G) always satisfy
the triangle inequality. Hence, it is su�cient toconsider onlythe subset
of genotypes whichsatis�es j S j � min(m� 2; r ). To take advantage of
this reductionof thesearchspace, aroutine�l t er hasbeende�ned, which
givenanygenotype g enforces the satisfactionof j S j � min(m� 2; r ) by
randomlyselectingandclearingthe necessarynumber of set bits.

Whenthe initial randompopulationhas beengenerated, the �lter is
appliedto eachof the individuals. Fromthenon, the searchis limited
to the restricted region by applying the �lter to every newindividual
generatedbyone of the geneticoperators.

It is important to note that the DNHis not chosen for use as de-
coder because it is a especially goodheuristic in terms of result qual-
ity. In [31] the performance of DNHis comparedto that of two other
well-knownpolynomial time heuristics for the SPG: The Shortest Path
Heuristic(SPH) byTakahashi andMatsuyama[27] andtheAverageDis-
tanceHeuristic (ADH) byRayward-SmithandClare [25]. Withrespect
to result qualitythe DNHis clearlyoutperformedbyboththese heuris-
tics. The reasonto use DNHfor decoding is �rst of all that it provides
awaytointerpret any set of selectedvertices as aval i d Steiner tree, and
secondly, that it is relativelyfast. The important advantageof consider-
ingvalidSteiner treesonlyis that it eliminatestheneedfor penaltyterms
inthe cost measure, and thus avoids potential problems of assigning a
suitable cost value toaninvalidor incomplete solution.
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FigureC.4: The st eps of DNHgi ven t he i nput graph f romFi g. C. 1.

C.3.4 GenotypeandDecoder

Thebasicideaof thegenotypeandtheassociateddecoderisthefollowing:
The genotype speci�es a set of selectedSteiner vertices. The decoder
computes the correspondingphenotypebyexecutingtheDNHusingthe
union of the selected Steiner vertices andW as the set of vertices to
be spanned. The selected Steiner vertices are speci�edby a bitstring
inwhicheachbit corresponds to a speci�c vertex. If the bit is set, the
vertexis selected. For reasons tobe discussedinSectionC.3.7, weneed
the genotype tobe independent of the orderingof the bits inthe string.
This is obtainedbyassociatingwitheachbit a tagwhichidenti�es the
vertexspeci�edbythat bit.

Speci�cally, thegenotypeandthedecoder canbedescribedas follows.
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C.3.3 DistanceNetwork Heuristic (DNH)

Thekeypoint indesigninganyGAis thedesignof asuitablegenotypeof
anindividual together withits interpretation, the decoder. The genetic
encodingdevelopedhereisbasedonuseof theDistanceNetworkHeuristic
(DNH), adeterministicheuristicfor theSPG, developedbyKouetal [20].
Therefore, beforeproceedingbypresentingthegenotypeandthedecoder,
theDNHis described.

GivenagraphG =(V ; E), acost functionc andasubset of vertices
W in accordance with the de�nition of SPGinSectionC.2, the DNH
computes anapproximationT DNH totheMStTforW inG in�vesteps:

1. Construct the subgraphG 1 of D(G) inducedbyW.

2. Compute aMSpTT 1 of G 1.

3. Construct fromT 1 the subgraphG 2 of G bysubstitutingeachedge
inT 1 bythe correspondingshortest pathinG.

4. Compute aMSpTT 2 of G 2.

5. ComputeT DNH fromT 2 byrepeatedlydeletingall verticesv 2 V n W

havingdeg(v )=1.

Any ties in Steps 2, 3 or 4 are broken arbitrarily. An example of
howtheDNHworks is showninFig. C.4, givenas input the graphG of
Fig. C.1andthe subsetW=f v 0; v1; v2; v3g .

If D(G) is not known, Step1of DNHrequires timeO(mn 2) tocom-
pute shortest paths fromeachof them vertices. SinceG 1 is complete
theMSpTinStep2 is computedusingPrim's algorithmrequiringtime
O(m 2). Eachof them� 1edges of T 1 maycorrespondtoapathinG of
upton �1edges. Hence, Step3requires timeO(mn ) andStep4requires
timeO(mn log(nm)) usingKruskal'salgorithm[1]. The�nal stepisdone
intimeO(n ). Hence, if D(G) is not known, Step1is themost expensive
andgives theDNHatime complexityof O(mn 2).
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Routine graphReduct i ons terminates whennoreductionof anytype suc-
ceeded for a complete iteration, i.e., when no reduction can reduce G
further.

computeD(G);
repeat
reductions(c);
reductions(b);
reductions(d);
reductions(a);

until no improvement inone iteration;

FigureC.3: Out l i ne of rout i ne graphReduct i ons.

Todeduce the worst case time complexityof graphReduct i ons , start
byconsidering the maximumtotal time spendonreductions of type d.
Due to the required update of D(G) a single reduction requires time
O(n 2). Since vertices canbe addedtoW whenperformingreductions of
typea, O(n ) typedreductions arepossible. Hence, the total timespend
on type d reductions is O(n 3). One executionof reduct i ons(x) require
at most time O(n 2) wheneither x 6 =d or x =d but no contraction is
performed. Sinceeachof the reductions a, bandddecreases thenumber
of verticesbyone, andsincetypecreductionsareperformedexhaustively
inthesensethat after executingreduct i ons(c) noedgeexistwhichcanbe
removedbya type c reduction, at least one vertexmust be removedin
everyseconditerationof the \repeat" loopingraphReduct i ons . Hence,
there canbe nomore thanO(n ) iterations. Intotal this gives routine
graphReduct i ons the time complexityO(n 3).

Although it is not di�cult to construct a graph for whichnone of
the reductions performed by graphReduct i ons applies, the routine has
been observedto be very e�ective onmany graphs, as will be seen in
SectionC.4.4. Whenappliedto the graphof Fig. C.1, the result is the
degenerategraphconsistingof onevertexonly, implyingthat aMStThas
beenfound. Ingeneral, especiallyreductions of typedhasbeenobserved
tobe verypowerful whenmis relativelylarge, whichcoincides withthe
results reportedin[31].
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d) Assumethat v 2 W anddenote theclosest neighbor tov byu 2 V ,
andthe second-closest neighbor byw 2 V . SinceG is connected, u
always exists. If w does not exist, assume c (e vw ) =1. Let z be a
vertexinWn f v g whichisclosesttou . If c (e vu )+c (sp(u ; z ))� c (evw )
thenanyMStTmust include e vu . Therefore, G canbe contracted
alongthis edge. Note that u 2 W) z =u )c (sp(u ; z )) =0 i.e.,
contractioncanalways beperformedinthis case.

To obtain the largest possible overall reductionof G, the above re-
ductions are performedrepeatedlyas describedbelow. Knowledgeof the
cost of ashortest pathis requiredwhenever areductionof typec or dis
performed. Shortest paths are alsorepeatedlyneededbytheGAas will
becomeapparent inSectionC.3.4. Therefore, thedistancegraphD(G) is
computedinitiallyusingFloyd'salgorithm[1] whichrequires timeO(n 3).
Whenever one of the above reductions are performed, D(G) has to be
dynamicallyupdated. WhenrepresentingD(G) as anadjacencymatrix
the update is trivial for reductions of type a or b: It simplyconsists of
deleting the rowandcolumncorresponding to the deletedvertex. Re-
ductions of type c leaves D(G) unchanged. However, for reductions of
type dthe update is slightlymore involved. Whenever a contractionis
performed, D(G) is updatedusing anO(n 2) algorithmbyDionne and
Florian[6].

In [30, 31] the following reduction is also suggestedalong with the
reductions described above: If maxf c (sp(v ; u )); c (sp(v ; w))g < c (e uw ),
euw 2 E and v 2 W, then noMStTcan include e uw , which therefore
canbedeleted. However, inthis case the requiredupdate of D(G) has a
worst casecomplexityof O(n 3) usingDionneandFlorian's algorithm[6].
I.e., theupdate couldbeas expensiveas recomputingtheentiredistance
graph, andfor this reasonthis reductionis omitted.

Whenperformingasequenceof reductions of thesametype, theover-
all result depends onthe chosentraversal of the graph, that is, the order
inwhich reductions are tried out. Furthermore, reductions of distinct
types are mutuallydependent inthe sense that performing all possible
reductions of sometypemayallownewsubsequent reductions of another
type. It is not clear inwhichorder reductions shouldbe performedto
obtainthe overall best reductionof a givengraph [31]. The arbitrarily
chosenscheme for performing reductions in routine graphReduct i ons is
showninFig. C.3. Routine reduct i ons(x) performs a single traversal of
all vertices (or edges in the case of type c reductions) of G in an un-
speci�edorder andcarries out a reductionof type x whenever possible.
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c1 andc 2. Routine reduce returns theM �ttest of the givenindividuals,
therebykeepingthe populationsize constant. Witha small probability
pmut , themut at i on operator randomlychanges eachof the components,
or genes , of its argument, as describedinSectionC.3.7. The genetic op-
erator i nvert (p ) alters the genotype of an individual p without altering
the corresponding phenotype. As describedin [12], the purpose of this
operator is to optimize the relative positions of the genes of p withre-
spect tothecrossover operator. The inversionoperator will bedescribed
inSectionC.3.7. Routineopt i mi ze(s ) performs simple local hill-climbing
byexecutinga sequence of mutations ons , eachof whichimproves the
�tness of s . Anexhaustivestrategyis usedsothat whenthe routine has
beenexecuted, no single mutationexists, whichcan improve s further.
The output of the algorithmis thenthe solutions .

C.3.2 GraphReductions

Before the GAitself is executed an attempt to reduce the size of the
givenproblemis performedusing standardgraphreductiontechniques.
RoutinegraphReduct i ons of Fig. C.2performs four kinds of rather simple
reductions all of whichare describedin[30, 31]. More elaborate reduc-
tions as well as proofs of the correctness of the reductions usedhere can
be foundin[9]. Let e vw denote the edge betweenvertices v andw, and
let sp(v ; w) � E denote the shortest pathbetweenv andw. The four
reductions usedare:

a) Assumedeg(v )=1ande vw 2 E. If v 2 W anyMStTmust include
evw . Hence, v ande vw canbe removedfromG andw is addedto
W if it is not alreadythere. If v 2 V n W, noMStTcaninclude
evw , i.e. inthis casev ande vw canalsobe deleted.

b) If v 2 V n W, deg(v ) =2ande uv ; evw 2 E, thenv ; euv ande vw can
bedeletedfromG andreplacedbyanewedgebetweenu andw of
equivalent cost. More speci�cally, if e uw 6 2 E thenE =E [ f euw g
andc (e uw )=c (e uv )+c (e vw ). If thereis anedgefromu tow already,
i.e., e uw 2 E, thenc (e uw )=minf c (e uw ); c (euv )+c (e vw )g .

c) If e vw 2 E andc (e vw )> c (sp(v ; w)) thennoMStTcaninclude e vw ,
whichtherefore canbe deleted.
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graphReductions();
generate(P C);
evaluate(P C);
s =bestOf(P C);
repeat until stopCriteria():
PN =; ;
repeatM= 2times:
select p 1 2 PC , p2 2 PC ;
f c1; c2g =crossover(p 1; p2);
PN =P N [ f c1; c2g ;

end;
evaluate(P C [ PN);
PC =reduce(P C [ PN );
8 p 2 PC : possiblymutate(p );
8 p 2 PC : possiblyinvert(p );
evaluate(P C);
s =bestOf(P C [ f s g );

end;
optimize(s );
output s ;

FigureC.2: Out l i ne of t he al gori t hm.

putes the �tness of eachof the givenindividuals, while best Of �nds the
individual withthe highest �tness. One executionof the outer \repeat"
loopcorresponds to the simulationof one generation. Throughout the
simulationthenumberof individualsM=j P Cj is kept constant. Wekeep
trackof thebest individual s ever seen. Routine st opCri t eri a terminates
the simulationwhenno improvement of the best or the average �tness
has beenobservedfor S consecutivegenerations, or whenthe algorithm
has convergedsothat all individuals havethe same�tness. Eachgenera-
tionis initiatedbythe formationof aset of o�springP N of sizeM. The
twomates p 1 andp 2 are selectedfromP C independentlyof eachother,
andeachmate is selectedwitha probabilityproportional to its �tness.
The crossover routine describedinSectionC.3.6generates twoo�spring
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C. 3 Descri pt i on of the Al gori thm

Inthis sectionthe developedalgorithmis describedindetail. First an
overviewof the algorithmis giveninSectionC.3.1. Initiallyanattempt
to reduce the size of a givenproblemis made byapplying some graph
reduction techniques describedinSectionC.3.2. The main idea of the
GAis the applicationof the Distance NetworkHeuristic for interpreta-
tion of the representationmanipulatedby the genetic operators. This
is discussedinSections C.3.3andC.3.4. Other components of the algo-
rithmis describedinSections C.3.5, C.3.6and C.3.7. Finally, the time
complexityof the algorithmis discussedinSectionC.3.8.

C.3.1 Overview

The concept of genetic algorithms, introducedbyJohnHolland[16], is
based on natural evolution. In nature, the individuals constituting a
population adapt to the environment in which they live. The �ttest
individuals have the highest probabilityof survival andtendto increase
innumbers, while the less �t individuals tendtodie out. This survi val -
of - t he- �t t est Darwinianprinciple is the basic ideabehindtheGA.

The algorithmmaintains a popul at i on of i ndi vi dual s , eachof which
corresponds to a speci�c solutionto the optimizationproblemat hand.
Ameasureof �t ness de�nes the qualityof anindividual. Startingwitha
set of randomindividuals, aprocess of evolutionis simulated. Themain
componentsof this process arecrossover , whichmimicspropagation, and
mut at i on, whichmimics the randomchanges occurring innature. After
anumber of generat i ons , highly�t individualswill emergecorresponding
togoodsolutions tothe givenoptimizationproblem.

Aphenot ype is thephysical appearanceof anindividual, whileageno-
t ype is the correspondingrepresentationor genetic encodingof the indi-
vidual. Crossover andmutation are performed in terms of genotypes,
while�tness is de�nedinterms of phenotypes. For agivengenotype, the
correspondingphenotypeis computedbyadecoder . Agoodintroduction
togenetic algorithms is givenin[12].

Fig. C.2 shows a template for the GAconsideredhere. Before the
GAitself is executed, routine graphReduct i ons tries toreduce the sizeof
the givenproblemas described inSectionC.3.2. Then the initial cur-
rent populationP C is constructedfromrandomlygeneratedindividuals
by routine generat e. Routine eval uat e described inSectionC.3.5 com-
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TheSteiner ProbleminaGraph(SPG): Givenaconnected, undi-
rectedgraphG=(V ; E), apositiveedgecost functionc : E 7 !< +, anda
subsetW � V , compute a connectedsubgraphG 0 =(V 0; E0) of G, such
thatW� V 0 andsuchthat c (G 0) is minimal.

Anyacyclic subgraphG 0 of G suchthatW � V 0 is calledaSt ei ner
Tree f or W i n G. AsolutionG 0 withminimal cost is calledaMi ni mal
St ei ner Tree (MSt T) f or W i nG. ThesetS � V n W suchthatV 0 =W[S
is calledthe St ei ner vert i ces of G 0. Note the generalityof this problem
formulation. Wedonot requireG tobe planar, andwe donot require c
tosatisfythe triangle inequality.
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Figure C.1: An exampl e i nst ance of t he SPG. The hi ghl i ght ed vert i ces
const i t ut es W.

Throughout this paper, let n =j V j , m=j Wj and r =n �m. If
m=2, SPGreduces to the shortest pathproblem, whichcanbe solved
bye.g. Dijkstra's algorithm[22] intimeO(j Ej logn ). If m=n , SPGis
the MinimumSpanning Tree problem(MSpT), whichcanbe solvedin
O(n 2) timebye.g. Prim's algorithm[1]. However, if 2< m< n , SPGis
ingeneral NP-complete 1 [19].

1Some speci al graph topol ogi es do exi st, f or whi ch SPGcan sti l l be sol ved i n pol ynomi al

time [ 30] .
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experimental results shows the following:

� The GApresentedhere clearly outperforms the GAin [18] with
respect to solutionqualityas well as runtime.

� Thesolutionqualityobtainedbyour GAis always at least as good
as that obtainedbySPH-I, andoftenthe error ratio is anorder of
magnitude better. Dependingonthe problem, the twoalgorithms
either requiresimilaramounts of runtime, or theGAis signi�cantly
faster.

� As opposedtothebranch-and-cut algorithms, theGAis not guar-
anteedto�ndaglobal optimal solution. However, the experiments
reveals that theGAdo�ndtheglobal optimuminmore than77%
of all runs andis within1%fromoptimuminmore than92%of
all runs. While theGAis capableof �ndingnear-optimal solutions
for al l test examples inamoderateamount of time, the runtimeof
the branch-and-cut algorithms varies extremelyandevenprevent
someof the largest probleminstances frombeingsolved.

Thepaperisorganizedasfollows. Apreciseproblemde�nitionisgiven
inSectionC.2. SectionC.3presents adetaileddescriptionof the devel-
opedalgorithmanddiscusses some of the maindesigndecisions taken.
The experimental method as well as detailed experimental results are
given in SectionC.4, and in SectionC.5 possible directions for future
workare suggested. Finally, SectionC.6concludes the paper.

C. 2 Probl emDe�ni t i on

The graphterminologyusedinthis paper is as in[1]. For agivengraph
G =(V ; E) anda subset V 0 � V , the subgraph of G i nduced by V0 is a
graphG =(V 0; E0), suchthat 1) E 0 � E, 2) (v i; vj) 2 E0 )v i; vj 2 V 0,
and3) [ v i; vj 2 V 0 ^ (v i; vj) 2 E ] )(v i; vj) 2 E0. Agraphis compl et e
if it has anedgebetweeneverypair of vertices. Thedi st ance graph of G,
denotedD(G), is the complete graphhavingthe same set V of vertices,
inwhichthecost of eachedge(v i; vj) equals thecost of the shortest path
inG fromv i tov j. For agivenedgecost functionc : E 7 !<, thecost of a
graph G is the sumof the cost of all edges of G, andis denotedbyc (G).
The problemconsideredcannowbede�ned:
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C. 1 Introduct i on

The Steiner Problemina Graph (SPG) is one of the classic problems
of combinatorial optimization. Givena graph anda designatedsubset
of the vertices, the task is to �nd aminimumcost subgraph spanning
the designated vertices. The SPGarises in a large variety of diverse
optimizationproblems suchas networkdesign, multiprocessor scheduling
andintegratedcircuit design[10, 28].

Numerous algorithms of various kinds have beendeveloped for the
SPG. Exact algorithms canbe foundine.g. [2, 3, 5, 8, 13, 23, 26]. How-
ever, sincetheSPGisNP-complete[19] thesealgorithmshaveexponential
worst case time complexities. Therefore, asigni�cant researche�ort has
beendirectedtowards polynomial time heuristics, cf. e.g. [2, 20, 24, 25,
27, 31]. Simulatedannealinghas alsobeenappliedtoSPG[7].

The Rectilinear Steiner Problem(RSP) is animportant special case
of SPG[14], whichis still NP-complete [11]. While at least twogenetic
algorithms for RSPhave beenpublished[15, 17], we are aware of only
onepreviousgeneticalgorithm(GA) for theSPG, developedbyKapsalis,
Rayward-SmithandSmith[18].

Thecontributionof this paper is anewGAfor theSPGwhichdi�ers
signi�cantlyfromtheapproachof Kapsalisetal. [18] inanumberof ways.
While invalidsolutions are allowedbut penalizedin [18], our approach
is toenforce constraint satisfactionat all times, therebyeliminatingthe
needfor penaltyterms inthe cost function. Another major di�erence is
our use of aninversionoperator.

Theperformanceevaluationstrategiesalsodi�ers signi�cantly. While
the parameter settings used in [18] varies fromproblemto problem, a
�xed set of parameter values has beenused for all results reported in
this paper. Fromapractitioners point of viewastochastic algorithmis
of limiteduse if it requires its parameters tobe tunedeverytime anew
probleminstance is presented. Therefore we consider a�xedparameter
settingtobe of major importance.

The presented algorithmis tested on all SPGinstances fromthe
OR-Library[4]. This test suite consists of randomly generated graphs
withup to 2,500 vertices and62,500 edges. The obtainedperformance
is comparedto that of the GAbyKapsalis et al. [18], an iteratedver-
sionof theShortest PathHeuristiccalledSPH-I, whichis oneof thevery
best deterministic heuristics [31], and two recent branch-and-cut algo-
rithms byLucenaandBeasley[23] andChopra, Gorres andRao[5]. The
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TOTHESTEINERPROBLEMINAGRAPH: : :

Abstract

AnewGeneticAlgorithm(GA)for theSteinerProbleminaGraph(SPG)
is presented. Thealgorithmis basedonabitstringencoding. Abitstring
speci�es selectedSteiner vertices and the corresponding Steiner tree is
computedusing the Distance NetworkHeuristic. This scheme ensures
that everybitstringcorrespondtoavalidSteiner treeandthuseliminates
the needfor penaltyterms inthe cost function.

TheGAis testedonall SPGinstances fromtheOR-Libraryof which
the largest graphs have2,500vertices and62,500edges. Whenexecuted
10times oneachof 58graphexamples, theGA�nds theglobal optimum
at least once for 55graphs andeverytimefor 43graphs. Intotal theGA
�nds theglobal optimumin77%of all programexecutionsandiswithin
1%fromthe global optimuminmore than92%of all executions.

The performance is compared to that of two branch-and-cut algo-
rithms andone of the verybest deterministicheuristics, aniteratedver-
sionof the Shortest PathHeuristic (SPH-I). For all test examples but
one, eventhe worst result ever found by the GAis equal to or better
thanthe result of SPH-I andinmanycases theaverageerror ratioof the
GAis anorder of magnitude better thanthat of SPH-I. The runtime of
the GAis moderate for all test examples. This is incontrast to SPH-I
as well as the branch-and-cut algorithms, for whichthe runtime insome
cases are extremelyhigh.
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AppendixC

ComputingNear-Optimal Solutions

tothe Steiner ProbleminaGraph

UsingaGenetic Algorithm

This paper is availableas technical report Daimi PB-468, Computer Sci-
enceDepartment, Aarhus University, February1994. Anearlier version
of thealgorithmwaspresentedinH. Esbensen, P. Mazumder, \AGenetic
Algorithmfor the Steiner ProbleminaGraph,"Proc. of The European

Desi gn and Test Conf erence, pp. 402-406, 1994.
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[10] DavidJ. Sirag, Paul T. Weisser, \TowardaUni�edThermodynamic
Genetic Operator,"Proceedi ngs of t he 2nd Int ernat i onal Conf erence
on Genet i c Al gori t hms , pp. 116-122, July1987.

[11] M. Upton, K. Samii, S. Sugiyama, \SimulatedAnnealingPlacement
forMixedMacroCell andStandardCell Layouts", Proceedi ngs of The
Int ernat i onal Workshop on Layout Synt hesi s , Vol. 1, May1990.



B.8. BIBLIOGRAPHY 163

Bibliography

[1] Emile Aarts, JanKorst, \SimulatedAnnealingandBoltzmannMa-
chines,"John Wi l ey & Sons , Chichester, 1989.

[2] M. Beardslee, J. Burns, A. Casotto, M. Igusa, F. Romeo,
A. Sangiovanni-Vincentelli, \MOSAICO: User's manual", Depart-
ment of Electrical Engineering and Computer Sciences, University
of California, Berkeley, March1990.

[3] ThorstenBoseniuk, WernerEbeling, \Boltzmann-, Darwin-, Haeckel-
Strategies inOptimizationProblems,"Proceedi ngs of t he 1st Work-

shop on Paral l el Probl emSol vi ng f romNat ure, pp. 430-444, FRG,
Oct. 1990, Springer-Verlag, 1991.

[4] W. M. Dai, B. Eschermann, E. S. Kuh, M. Pedram, \Hierarchi-
cal Placement andFloorplanning inBEAR", IEEETransact i ons on
Comput er-Ai ded Desi gn, pp. 1335-1349, Vol. 8, No. 12, 1989.

[5] Henrik Esbensen, \AGenetic Algorithmfor Macro Cell Place-
ment,"Proceedi ngs of The European Desi gn Aut omat i on Conf erence,
pp. 52-57, FRG, Sept. 1992.

[6] D. E. Goldberg, \Genetic Algorithms inSearch, Optimization, and
MachineLearning,"Addi son-Wesl ey, 1989.

[7] J. H. Holland, \AdaptioninNatural andArti�cial Systems,"Uni ver-
si t y of Mi chi gan Press , AnnArbor, MI., 1975.

[8] Hidetoshi Onodera, Yo Taniguchi, Keikichi Tamaru, \Branch-and-
Bound Placement for Building Block Layout", Proceedi ngs of The
28t h Desi gn Aut omat i on Conf erence, pp. 433-439, 1991.

[9] K. Shahookar, P. Mazumder, \VLSI Cell Placement Techniques,"
ACMComput i ng Surveys , Vol. 23, No. 2, 1991.



162
APPENDIXB. SAGA: MACRO-CELLPLACEMENTBYA

UNIFICATIONOFTHEGENETICALGORITHM: : :



B.7. CONCLUSION 161










































































  





























        



    





































































































 


















































































     











      

  










  

     









���
   

��




�
�



� �� ��� � ��� ���  ��



��


�






��

�
�



�
�

�� �� ��� ��� �� ��
�





�

�

�



�

�

�

�

�

�

��

����

�

�
�



�



�



�

�
�

�

�

�

�

�

�
�
�

�

�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�



�

�

�

�











�

�

�

�

�

�
�

��

��

�

�



�

�



�

��





�

��



�



�

��



����

��

��

��

�

�

�

�

�

�

�

�

��
�



��

��

�

�

�

�
�

�

�

��

��
��





�

�



�




�

�

�

�

�

�
�



�

�

�

�



�

�

�

�

�

�

�

�

�

�

�

�

�





�
 �� �

� ��
�

�

��
�

� ��� ��� ���� ���

�
�



�
�



�� ��� �� ���
�
�



�
�

���� �
�
�
�
�



�
�



���
�

� ����
�� ����� ������� ������ ��� �� �����

����������� ��������� ���� ���� � ����

�
�� � � �

�


� ���� �
���

�



�
�



�
�



�
�

�� � �� �� ��
�

��

�
���

����
��

��

 
    � �� �� ��

��

��� �� ��� 

�

���

���

�

��

�
�

�
�

�
�

���

�

�

�




�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�
��
�
�



�

�

�

�

�
�

�

�

���
�

�

�

�

�

�

�



�

�
��

�

�

�

�


�
�

�


� ��

������
���

��



��� ��� ���
���



��

�

� ��
����
�

�
 � �

��
���� ����

������ ��
��� ����

�� ��
��

����
�

� �
�

� ���� �� ��

�







�
�
�







�




��
��

� �
�

�

�

�

�

�

��

�

�

�

�

�

�
�


�
�

���

�

�

�
�



�

�

��

�

�

�

�

� ����

��������������������

������������

��

��

��

��

���

��

�

�

�

�

�

���

�������������������������
�
�
�
��

�
�
�
�
�

������������������
����������������������������������������������������������

���������������������������������������������������
�������������������������������������������������������
��������������������������������������������������������

�������������������������������������������������������������
�
�����������������������������������������������������������������
�
���������������������������������������������������������������������
�
�����������������������������������������������������������������������
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
����

����������������������������������
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������

�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��

��

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

������
�
�

����������

�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�

�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

��������� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�

����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

����������

����������������������������������������������������������

�
�
�
�
�
�
�
�
�

������������������������������������������������������ ����������������������������������������������������������������������������������������������
�������������������

�������������
�������������
��������������

�
�
�
�
�
�
�
�

�
������������
�
�
������������

������������
������������
������������

������������������������������������������������������������������������������������
������������������������������

������������������������
������������������������

���
���
��

�
�
�
�
�
�
�

�������������������

������������������������������������������������������������������
��������������������������������

����������������������������������������������������
����������������

���������������������������
�����������������������������������������������������������

���������������
�������������������������������������������������������� ���������������������������������������

�������������������������������������������������������������������� �������������������������������������������������������������������� ���������������������������������������������������������������

����
����

����������
���������������������

������������������������
�
�
�
�
�
�
�
�
�
�
�

�����������������������������������������������������������������
����������������� ������

�
�
�
�
�
�

��������������
��������������

���������������������

������������
����������
����������

������������
������������

�����������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������

���������

��
��
��

�
��
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
��
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
��
�
�
�
�
�
�
�

������������
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
����
��
��

�
�
�
�
�
�
��
�
�

�
�
�
�
�
��
�
�

�
�
�
�
�
�
�
�
�
�
��
�
�

�
�
�
�
��
�
��
�
��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
��
�
��
�
�
�
�

�
�
�
�
�
�

�������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

������������������
�����������������
����������������

�����������������������������������������������������������������������������������

����������������������� ���������������������

���������������������������������������
���������������������������������

������������������������������������
���������������������������������

���������������������������������������
��������������������������������������������������������������������������������������������������������

����������
��������������������������������� ������������������������������������������������������������

�����������
������������������������������������������

�
�
�

������������������������������
�����������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

���������������������
���������������������

���������������
����������������

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��

�
�
�
�
�
�

�����������
������������������
������������������

�
�
�

���������

���

�
�
�

��������������������������������������������������������
��������������������������

��

����������������������

�
�

�
�

��
��

�
�

�
�

�����������������

���������������������������

�����������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

���

������������ ����������� ����������� �










































 


  


   




















































































































































































































































































































































































































































































       














  
















 








 




 





 












































































































































































































































 














 


















 





































































































































 






















  

FigureB.19: The resul t obt ai ned f or t he Hp benchmark.

B. 7 Concl usi on

This paper has presented a stochastic optimization algorithm, called
SAGA, that combines the genetic algorithmwith simulatedannealing.
Theapproachis applicationindependentandadaptive. Theperformance
of the uni�edalgorithmonthe macro-cell placement problemhas been
investigated. It is empiricallyshownthat amixture of GAandSAper-
forms better thanapure GAonthis problem. Furthermore, onMCNC
placement benchmarks, we obtainlayouts better thanor comparable to
previouslypublished results byusing aGA/SAmixture. The currrent
implementationis not runtimecompetitivebut signi�cant improvements
canbe made. We therefore conclude that the approachpresented is a
verypromisingapproachtomacro-cell placement.
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qualityof thebest completedlayoutsare comparedtothebest published
results. The absolute area is core area inmm 2. To ease comparison,
relative areas have also beencomputedbyassigning the best result for
eachbenchmarktherelativearea1. Thetotal interconnect lengthinmm
andthe total number of vias is alsogiven.

Area Route

Benchmark System relative absolute length Vias

Apte SAGA 1.000 53.58 489 647
BB[8] 1.009 54.05 460 -
Seattle Silicon[11] 1.022 54.77 350 -

Xerox Seattle Silicon[11] 1.000 25.79 601 1104
BB[8] 1.015 26.17 628 -
SAGA 1.053 27.15 679 1379
BEAR[4] 1.104 28.47 633 897
MOSAICO 2 1.125 29.01 650 1173
VITAL 2 1.230 31.17 866 1029

Hp SAGA 1.000 11.81 261 675
Seattle Silicon[11] 1.003 11.85 200 -
BB[8] 1.029 12.15 278 -

TableB.3: Compari son of qual i t y wi t h ot her syst ems. Al l SAGAresul t s
l i st ed are obt ai ned usi ng t he mi xed GA/SAst rat egy. Ahyphen i ndi cat es

t hat t he val ue i s not avai l abl e.

While SAGAis highlycompetitive with respect to solutionquality,
the current implementationof the algorithmrequires signi�cantlymore
runtimethantheother systems listedinTableB.3. TheBBapproach[8]
is about 2-3 times faster andthe Seattle Siliconapproach[11] is about
10-20times faster. However, there is anumber of reasons whyweexpect
that runtime canbe improvedsigni�cantly. First of all, in the current
implementationthemajorityof the runtime is spendcomputingchannel
densities inaveryine�cientmanner. All densitycomputations aredone
fromscratch. Instead, byusing a suitable datastructure, most channel
densities couldbe computedmuchfaster by a dynamic update froma
previous, almost identical computation. Furthermore, duetotheinherent
parallelismof this kindof algorithm, ahighspeedupof aparallel version
of the uni�edalgorithmcanbe expectedonanyMIMDarchitecture.

2Ref erenced here as f ound i n [ 4, 11] .
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arequiteclosetotheoptimum, suggestingthat theroomfor improvement
over the GAis small. However, for the Apte andXerox benchmarks,
the values of A best , Aavg andA � are signi�cantlyimprovedbythemixed
strategy, while for the Hpbenchmark, no signi�cant improvement can
be observed. The improvement of estimatedareaobtainedbythemixed
strategyontheXeroxbenchmarkis illustratedinmoredetail inFig. B.18.
Theresults of eachof the40runs of SAGAweregroupedsothat the i 'th
group (left to right on Fig. B.18) corresponds to areas (mm 2) in the
interval [ 27: 5+0: 3i ; 27: 5+0: 3(i +1)[. The height of abar indicates the
number of the 40runs belongingtothe group.
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FigureB.18: Perf ormance compari son on Xerox.

Onaverage the GA/SAis about 40 %slower than the GAfor the
Xerox benchmarkwhile for Apte andHp the di�erences are less than
8%. The relativelylarge standarddeviations of runtime are causedby
the conservative stopcriterionS =200. If animprovement is seenafter
e.g. 195 consequtive generations without anyother improvements, the
searchis continuedfor at least another 200generations, nomatter how
insigni�cant the improvementmight havebeen.

B.6.3 Comparisonwithother Systems

Tenof the 40placements generatedfor eachbenchmarkbySAGA, using
the mixedGA/SAstrategy, has beenroutedandcompactedusingMo-
saico[2], whichispart of theOcttoolsCADframework. InTableB.3, the
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B.6.2 ComparingtheGAwithaMixedStrategy

Using the benchmarks, the performance of a mixed GA/SAstrategy
has beencompared to that of a pure GA. Consistent with the results
of SectionB.6.1, the parameters M 0 =25, S =200, p 0

mut =0: 025, and
pinv =0: 05 were used for both strategies. For the GA, P =1� 10 �7 ,
while for the GA/SA, � =0: 7,  =1: 4, R =80, P =0: 99, � =0: 6 and
� =1.

Thesameparameter settingshavebeenusedforall threebenchmarks,
i.e., no problem-speci�c tuning has been made. For each benchmark
and each set of parameters, SAGAwas executed40 times. Table B.2
summarizes the results. A best andA avg denote the best andthe average
estimatedareainmm 2, respectively. A � denotes the standarddeviation.
Since SAGAminimizes estimatedareaas opposedtoarea after routing
andcompaction, thebest comparisonof thetwooptimizationapproaches
is obtainedbycomparingestimatedareas. T avg denotes theaverageCPU-
time inseconds andT � is the standarddeviationof theCPU-time.

Benchmark Quantity GA GA/SA

Apte Abest 57.599 57.477
Aavg 58.648 58.250
A� 0.816 0.727
Tavg 3,134 3,328
T� 1,563 2,259

Xerox Abest 27.891 27.554
Aavg 28.961 28.521
A� 0.533 0.486
Tavg 9,354 13,192
T� 3,908 2,568

Hp Abest 12.805 12.803
Aavg 13.310 13.294
A� 0.357 0.369
Tavg 3,311 3,070
T� 1,353 1,499

TableB.2: Compari son of t he pure GAwi t h a GA/SAmi xt ure.

Theresults reportedin[5] approximatelycorresponds towhat is here
calledthepureGA, andtheyarecomparabletothebestresultspublished.
It isthereforelikelythat theareasshowninTableB.2obtainedbytheGA
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FigureB.16: Rat i o of at t empt ed mut at i ons whi ch are act ual l y accept ed.

� = =1: 0, and the remaining parameters as before. Inother words,
it is the SA-controlledmutations that allows the populationsize to be
reducedwhile at the same timemaintainingconvergence. Onthe other
hand, �xing the populationsize (� =1: 0) while performing an increas-
ing number of SA-controlledmutations leads to an ine�ective process.
In the late phase, manymutations will be attempted on a large num-
ber of individuals, but onlyfewmutations will actuallybe acceptedand
performed.
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GAprocess.
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FigureB.14: Average number of at t empt ed mut at i ons on each i ndi vi dual

as a f unct i on of generat i on number.

Inthe �rst phase of the optimizationprocess onlyfewmutations are
attempted, andalmost all of themare accepted. This resembles a pure
GAprocess. In the �nal phase of the optimization, the probability of
accepting cost-increasingmutations becomes small andthe ratio of ac-
ceptedmutations decreases toabout 20%.
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Thedecreaseof thepopulationsizeandthe increaseof thenumber of
SA-controlledmutationsarebothimportant componentsof theoptimiza-
tionprocess. ReducingthepopulationsizeinanotherwisepureGApro-
cesswill causedivergence, as illustratedinFig. B.17. Thesegraphs stem
froma sample execution of SAGAwith the parameters P =1� 10 �7 ,
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t i ons of comput at i onal work.

tionB.5.2). This quantity is approximatelyproportional to the actual
CPU-timerequired.

For eachgeneration, the averagenumber of attemptedmutations per
individual is showninFig. B.14. O�spring generatedlater inthe opti-
mizationprocess are subjected to more mutations. The probability of
accepting a cost-increasing mutation of an individual is decreased ac-
cording to the number of mutations performed on it, as described in
SectionB.4.2. Therefore, the average value of the acceptance probabili-
tiesP s (as de�nedinSectionB.4.2) inthepopulationdecreaseswithtime
as illustratedinFig. B.15. The ratioaf attemptedmutations, whichare
acceptedandperformed, is showninFig. B.16as afunctionof generation
number.
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mixedmode. These graphs are extracted fromthe same sample exe-
cution of the algorithmusing the parameter valuesM 0 =25, S =200,
p0mut =0: 025, p inv =0: 05, � =0: 7,  =1: 4, R =80, P =0: 99, � =0: 6
and� =1.
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FigureB.11: Est i mat ed areas of t he average and best i ndi vi dual s as f unc-
t i ons of generat i on number.

Fig. B.11shows for eachgenerationtheaverageof theestimatedarea
of all individuals and the estimatedarea of the best individual. Both
quantities improves veryrapidlywithinthe �rst 100generations. From
thenanduntil about generation800, the best individual improves only
very slowly. Up to this point, the observedbehaviour is typical for a
pure GA, incase of whichno further improvement shouldbe expected.
However, due to the SA-component of this algorithm, newsigni�cant
improvements are obtainedfromgeneration800to1,000. The verybest
individual emerges ingeneration1,009andthe process terminates after
1,209generations.

ThepopulationsizeM decreases as showninFig. B.12. Fromgener-
ation1,170it equals 1andthe process becomes pure SA. Of course this
does not alwayshappen. Inmanyexecutions, the�nal populationsize is
greater than1.

Sincethepopulationsizeaswell as theexpectednumberof attempted
mutationsoneachindividual pergenerationvaries, thenumberof genera-
tions simulatedis not proportional totheactual amount of computations
performed. The graphs of Fig. B.13give the obtainedareas as functions
of computational work. For practical reasons, work is measured here
as the number of channel densities measuredduringdecodings (see Sec-
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B. 6 Experi mental Resul ts

Inthis sectionexperimental results obtainedwithanimplementationof
the applicationof SAGAto macro-cell placement is reported. In Sec-
tion B.6.1, the behaviour of SAGAwhen executed in mixed GA/SA
mode is investigated. SectionB.6.2 compares the performance of the
pureGAmodewiththemixedGA/SAmode, andinSectionB.6.3, the
performance of SAGAis comparedtothe best results obtainedbyother
placement algorithms foundinthe literature.

Benchmark Cells Nets Terminals

Apte 9 97 287

Xerox 10 203 698

Hp 11 83 309

TableB.1: Benchmark charact eri st i cs.

The implementationis written inthe Cprogramming language and
consists of about 14,000 lines of source code. All experiments are per-
formedonaDECMips 5000-240workstation. Performance is measured
using three benchmarks fromthe 1992MCNCInternational Workshop
onPlacement andRouting. Table B.1 lists the maincharacteristics of
these examples.

B.6.1 Behaviour inMixedMode

The most interesting executionmode of SAGAis the mixed GA/SA
mode, which also causes the most complex behaviour. Figures B.11
throughB.16 illustrate the typical optimizationprocess obtainedinthe
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andupdatedas describedinSectionB.4.2usingthe correspondingstan-
darddeviations of areaandinterconnect length�̂ a and�̂ w, respectively.
The sameparameter P s (andP s) is usedfor bothtemperature computa-
tions. TheprobabilityP acc (s ; r ) of acceptingthemutationr =mutate(s )
is thencalculatedas

Pacc (s ; r )=

8>>>><
>>>>:
exp( Ca(r)�C a(s)

T as
) if C a(r )> Ca(s )

exp( Cw(r)�C w(s)

Tws
) if C a(r )=C a(s ) ^ Cw(r )> Cw(s )

1 otherwise

Theimplementationof thelocal hillclimber, routineopt i mi ze(t )of Fig. B.5
is verysimple. It performs a sequence of mutations, eachof whichim-
proves the �tness of t . An exhaustive strategy is used so that when
opt i mi ze(t ) has beenexecuted, no single mutationexists, that can im-
prove t further.

B.5.6 InversionOperator

For agivenphenotype, several equivalent genotypes usuallyexist. Since
crossover is performed in terms of genotypes, the �tness of produced
o�springdepends onwhichof thepossiblegenotypes areusedas codings
of the givenphenotypes. As mentioned inSectionB.2, the purpose of
inversion is to optimize the performance of the crossover operator by
rearrangingthe components withinagivengenotype.

The inversionoperator selects a subtree at randomandmoves it to
another free positioninsuchawaythat noconstraints are violatedand
so that the corresponding phenotype is still the same. An example of
this is showninFig. B.10. This genotype tree is generatedbymoving
the subtree rootedat b 2 inthe genotype showninFig. B.7.
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2. Alter the set of edges E by exchanging b i and b j. The priorities
of the cells are exchangedsimultaneously so that no pair of cells
are preventedapriori frombeingexchangeddue to the constraint
that anynodealwayshas ahigher prioritythanits predecessor. An
example is showninFig. B.9.

3. Alter � byexchanging� (b i) and� (b j).

4. Change the transformationof acell byalteringthe valueof o(b i).

Whenperformingeachof thesemutations, apart of thegenotypehas
tobedecodedtocheckif themutatedindividual satis�es all constraints.
Mutations 1 and4 require that all cells having priority� (b i) or higher
are decoded, while mutations 2 and 3 require decoding frompriority
min(� (b i); � (bj)). Amutationis onlyperformedif it does not cause any
constraint violations.
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Figure B.9: Amut at i on of t ype 2: Cel l s b 2 and b4 are exchanged, whi l e
t he pri ori t i es are st i l l at t ached t o t he same posi t i ons i n t he t ree.

Becauseof thedual optimizationcriteriondescribedinSectionB.5.3,
the cost of anindividual s cannot be suitablyexpressedinasinglenum-
ber C (s ). Therefore, the acceptance criterion for mutations shown in
Fig. B.6 has to be modi�edslightlyfor this application. Let C a(s ) and
Cw(s )denotetheestimatedareaandtotal interconnect lengthof s , respec-
tively. Eachindividual has twoseparatetemperatures, T a

s corresponding
toareaandT w

s correspondingto interconnect length. These are de�ned
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FigureB.8: Combi ni ng � and  .

E� is constructed as follows. Fromthe cell tree of � , a connected
subset T 0 =(V 0; E0), V 0 � V , E0 � E� is chosen. T

0 is chosenat random
but subject to the constraint that decoding T 0 in the order de�nedby
��, i.e., using b 2 V 0 j 8 b0 2 V 0 n f b g : ��(b ) < ��(b

0) as root, causes
no constraint violations. The size of V 0 is determinedbya normal dis-
tributedstochastic variable havingmeann= 2andstandarddeviation1.
InFig. B.8, the chosenT 0 is indicatedbythe dashed line. InitiallyE �

is de�nedto beE 0. Hence, � has inheritedall cells inV 0 from� . The
remainingcellsV �V 0 aretheninheritedfrom byextensionof E �. The
cell treeof  is traversedinascendingorder accordingto�  . Atanynode
it is checkedif the corresponding cell b belongs to V 0, that is, whether
it has beenplacedin� already. If so, the cell is skipped. Otherwise, b
is added to the cell tree of � by extendingE �. The positionat which
to addb is randomlychosenamong all free andfeasible positions. The
transformation of any cell is inheritedunaltered together with the cell
itself. � � is uniquelyde�nedsothat it corresponds tothe order inwhich
the cells were placedwhencreatingE �.

B.5.5 MutationOperator andHillclimber

The implementation of the operator mut at e of Fig. B.3 performs four
di�erent types of randomchanges onthe givengenotype. Let b i andb j

denote tworandomlychosencells, i 6 =j. The four types of mutationare:

1. Alter the set of edges E bymoving a leaf b i to another free and
randomlychosenposition. The typeof the edge goingintothe leaf
maybe changedas part of themove.
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of eachnode. The transformationof eachcell is de�nedbythe function
o : V !f 0,1,2,: : : ,7g .

Whenall cellsareplaced, thedecoder computestherectangleB. This
is done byextending the smallest rectangle enclosingall cells, until the
routing area estimate is satis�edalong all edges of B. At anypoint in
timeof the optimizationprocess, eachindividual satis�es all constraints.

B.5.3 FitnessMeasure

The�tnessof anindividual is relativetothe�tness of therest of thepop-
ulation. Therefore, �tness values are always computedfor a population
of individuals at atime. Let � be the set of all possible individuals for a
giveninstanceof theproblemhavingn cellsb 1; : : : ; bn andletF : �!< +

denotethe�tnessmeasure. Sincetheobjectiveis tominimizelayoutarea,
initiallyF is de�nedas

F (s )=
1

A(B s)�
Pn
i=1 A(b i)

whereB s is the outer rectangle of the individual s andA(x ) is the area
of rectangle x . That is, F (s ) is the inverse of the total estimatedrout-
ing area in s . All individuals having equal area will nowhave equal
�tness. But when�xingthe total areaof aplacement, theprobabilityof
a100%routingcompletionwithintheestimatedareais likelytoincrease
as the total interconnect lengthdecreases. Theminimizationof the total
interconnect lengthis therefore introducedas a secondaryoptimization
criterion. All individuals having the same area will have their �tness
values adjusted so that �tness increases as the estimated interconnect
lengthdecreases. This adjustment assures that area is still the primary
optimizationcriterion, i.e., smaller areawill always meanhigher �tness.
Finally, theadjusted�tnessvaluesarescaledlinearlyasdescribedin[6] in
order tocontrol thevarianceinthepopulation. Foradetaileddescription
of the �tness computationthe reader is referredto [5].

B.5.4 CrossoverOperator

Giventwoindividuals� and , thecrossoveroperatorgeneratesafeasible
o�spring � . This operation is illustrated inFig. B.8. Throughout this
section, a subscript speci�es whichindividual the markedproperty is a
part of.
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The genotype of an individual having n cells b 1; : : : ; bn is nowde-
scribed. An example genotype with n =7 cells is shown in Fig. B.7
togetherwiththecorrespondingphenotype. Theabsolutepositions of all
cells are representedbya binarytree (V ; E), V =f b 1; : : : ; bng , inwhich
the i 'thnode corresponds to cell i . Twokinds of edges exist: top-edges
andright-edges, sothatE =E t [ Er, Et \ Er =; . All edges aredirected
andare orientedawayfromthe root of the tree. Eachnode has at most
one outgoingtop-edge andat most one outgoingright-edge.
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FigureB.7: An exampl e genot ype and t he correspondi ng phenot ype.

Let e ij 2 E denoteanedgefromb i tob j, andlet (b
xl
i ; b

yl
i ) and(b

xu
i ; b

yu
i )

denote the coordinates of the lower left andupper right corners of b i,
respectively. e ij 2 Et (E r) means that cell b j is placedabove(totheright
of) b i inthe phenotype. That is,

8 eij 2 E : eij 2 Et )b
yl
j � b

yu
i ; eij 2 Er )b xlj � bxui :

The tree is decodedas follows. The cells are placedone at a time ina
rectangular areahavinghorizontal lengthW andin�nite vertical length.
Eachcell is movedas far downandthenas far left as possiblewithout
violating the routing area estimate, which is computed as each cell is
placed. The estimate is basedonthe computationof channel densities,
andis describedindetail in[5]. The cells are placedinascendingorder
accordingtotheirpri ori t i es , whicharede�nedbytheone-to-onemapping
� : V !f 1; : : : ; ng . Anynode has higher prioritythanits predecessor in
thetree. InFig. B.7, theprioritiesareindicatedat thetoprighthandside
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B.5.1 ProblemDe�nition

Themacro-cell placement problemcanbe de�nedas follows: Given

� Aset of rectangular cel l s , eachwithanumber of t ermi nal s at �xed
positions alongthe edges of the cell.

� Anetlist specifyingthe interconnections of all terminals.

� Anapproximatehorizontal lengthW of thechipunderconstruction.

Compute

� The absolute positionof eachcell.

� The orientationandpossible reection(s) of eachcell.

� ArectangleB de�ningthe shape of the chip.

The objective is tominimize the areaof B subject to the followingcon-
straints:

� Nopair of cells overlapeachother.

� The rectangleB encloses all cells andhas approximate horizontal
lengthW.

� The area withinB, which is not occupiedby cells, is su�ciently
largetocontainall routingneededtoimplement therequiredinter-
connections.

Tomeetthelastconstraint, thenecessaryroutingareaisestimatedduring
theplacement. Theestimateis basedontheassumptions that twometal
layers are usedfor routing, the areaoccupiedbycells andthe areaused
for routingare disjoint, andall nets are treatedas signal nets.

B.5.2 GeneticEncoding

Thegenetic encodingof amacro-cell placement is basedonageneraliza-
tionof the two-dimensional binpackingproblem. The standardbinpack-
ingalgorithmplaces theblocks inthebinoneat atimeat thedownmost
andthenat the leftmost position. For agiveninstance of the placement
problem, let aBL-pl acement (bottom-left) denote a solution, inwhich
nocell canbemovedfurther downor to the left without causingavio-
lationof a routing area estimate. The solutionspace consideredbythe
algorithmis restrictedtothe set of all possibleBL-placements.



146
APPENDIXB. SAGA: MACRO-CELLPLACEMENTBYA

UNIFICATIONOFTHEGENETICALGORITHM: : :

r =mutate(s );
if Ts =? do:
Ps =P ;
Ts =

�̂�

ln(P s)
;

cs =0;
end;

withprob. min(exp( C(s)�C(r)
Ts

); 1: 0) do:

s =r ;
cs =c s +1;
if cs =� do:
Ps =�P s;

Ts =
�̂�

ln(P s)
;

cs =0;
end;

end;

FigureB.6: St ruct ure of t he rout i ne SAmut at e(s ).

B.4.3 GAandSAas Special Cases

SAGAreduces to a pure GAwhenM 0 > 1, R =S , � =1: 0, andP is
close to 1.0. Pure SAis obtainedwheneverM 0 =1. In this case, the
reproductionstepingeneral is equivalenttoamutationwhichis accepted
if andonlyif it improves cost. Standardcrossover operators as foundin
[6, 7] havethepropertythat crossover(x ; x ) alwaysyields theo�springx ,
in which case the reproduction step becomes equivalent to the empty
statement 1.

B. 5 Appl i cat i on to Macro-Cel l Pl acement

The speci�cgenetic encodingandcorrespondingoperators developedfor
themacro-cell placement problemis brieydescribedinthis section. For
adetaileddescription, the reader is referredto [5].

1Al ternati vel y, the generati on of �n can be condi ti oned byM > 1, as can the i nvocati on of

the i nversi on operator, i f desi red.
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ThepopulationsizeM after c R reductions is

M=max(round(� cRM0); 1: 0)

whereM 0 is the initial populationsize, 0� � � 1is areal valuedparam-
eter, andround(x ) performs rounding to the nearest integer value of x .
Ultimatelywe mayhaveM =1, corresponding to a pure SAprocess.
WhenM is decreased, theM �ttest individuals are kept, while the rest
are discarded. Furthermore, the mutationrate p mut is increasedso that
after c R increases, it is givenby

pmut =min( cRp0mut ; 1: 0)

wherep 0
mut is the initial mutationrate, and � 1is areal valuedparam-

eter. Finally, notice that mutations are nowperformedby the routine
SAmut at e, whichwill be discussedinthe followingsection.

B.4.2 SA-ControlledMutations

Mutationof individual s is performed as illustrated inFig. B.6. Rou-
tine mut at e of Fig. B.3 is used to generate a randomchange of s . If
this is the �rst mutationof s , its variables P s, Ts andc s controlling its
cooling schedule are de�ned. Then the mutation is performed with a
temperature-dependent probability, as inSA. It maybe notedhowthis
scheme resembles the SAoutline of Fig. B.4. However, the tempera-
ture reductionis nowcomputedinaslightlydi�erent waywhichwill be
explainedbelow.

The absolute values of a suitable temperature schedule are problem
dependent. Tocircumventthisproblem, wede�neaschedulefor reducing
theprobabilityof acceptingacost-increasingmutation. Thetemperature
decrease is thencomputedso that the speci�edprobabilityis obtained.
More speci�cally, let P s be the probabilityof acceptingamutationons ,
whichincreases the cost of s by� , the standarddeviationof the cost of
all solutions inthe searchspace. Fromaninitial valueP , 0< P < 1, P s

is thenreducedbyafactor� , 0< � � 1, whenever quasi equilibriumhas
beenobtained. Foragivenvalueof P s, thecorrespondingtemperatureT s

is computedas

Ts =
��̂

ln(P s)

where�̂ is an estimate of � computedduring generationof the initial
population.
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generate(� c);
8 s 2 �c : Ts =?;
evaluate(� c);
q =bestOf(� c);
cR =0;
repeat until stopCriterion():
if no improvement forR generations do:
cR =c R +1;
M=max(round(� cRM); 1);
�c =reduce(� c; M);
pmut =min( p mut ; 1: 0);

end;
�n =; ;
repeatM times:
select s 2 � c, t 2 �c;
v =crossover(s ; t );
Tv =?;
�n =� n [ f v g ;

end;
evaluate(� c [ �n);
�c =reduce(� c [ �n; M);
8 s 2 �c : s =SAmutate(s );
8 s 2 �c : withprob. p inv do:
s =invert(s );

evaluate(� c);
q =bestOf(� c [ f q g )

end;
8 t 2 �c [ f q g : t =optimize(t );
r =bestOf(� c [ f q g );

FigureB.5: Out l i ne of SAGA.
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B. 4 The Uni �ed Al gori thm

Theuni�edalgorithmSAGAcannowbe presented. It canbeviewedas
aGAwhichhas beenmodi�edintwomajor ways, eachof whichwill be
discussedindetail inthe followingsections:

1. Themutations performedonanindividual areacceptedwithacer-
tainprobabilityas inSA. Eachindividual has its owntemperature,
andduring its lifetime, its temperature is decreasedaccording to
its owncoolingschedule.

2. Initially, SAGAexecutes as apure GA. But as the GAstagnates,
as illustrated in Fig. B.1, SAGAgradually switches over to SA.
The speedof this switchis adaptive, since it is determinedbythe
progress of the optimizationitself.

SAGAhas twoimportant properties:

� It is application-independent, in the sense that it canpotentially
be appliedtoanyoptimizationproblemfor whichGAandSAare
well-suited.

� It uni�es the GAandSAin sucha waythat it canbe executed
exclusivelyinGAor SAmodebyselectingappropriatevaluesof its
control parameters.

B.4.1 TheSwitchTowards SA

Fig. B.5 gives an overviewof SAGA. By comparing it to Fig. B.2, it
can be seen that only fewthings have changed. The temperature of
individual s is denotedT s, and? denotes the unde�ned value. Thus,
everynewindividual, generatedinthe initial populationor as aresult of
crossover, has anunde�nedtemperature.

The switchtowards SAis handledbythe i f -statement whichinitiates
eachgeneration. Asteptowards SAis takenwhenever no improvement
has been observed for R generations, 0� R � S . Astep towards SA
consists of reducingthe populationsizeM, andincreasingthemutation
rate p mut . In other words, more SA-controlledmutations will be per-
formedonasmaller number of individuals.
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B. 3 The Si mul ated Anneal i ng Al gori thm

The idea of SAis to performoptimization by simulating the thermal
process of coolingdowna solidinsuchawaythat it obtains a state of
minimal energy. Agoodpresentationof SAis givenin[1].

generate(s );
T =T ;
repeat until stopCriterion():
cs =0;
while c s < � do:
q =mutate(s );

withprob. min(exp( C(s)�C(q)
T

); 1: 0) do:
s =q ;
cs =c s +1;

end;
end;
T =�T ;

end;

FigureB.4: Out l i ne of t he SA.

Fig. B.4 outlines a simple SAimplementation. It starts witha ran-
domly generated solution s . As the algorithmprogresses, a sequence
of randomchanges are performedon s . Routine mut at e of Fig. B.3 is
used for this, assuming that p mut is su�ciently high. Each change is
acceptedandcarriedout withaprobabilitywhichdepends onthe tem-
perature T . The temperature is regularly decreased according to the
parameter 0< � � 1, and it starts froman initial temperature T . At
each�xedtemperature, a sequence of changes are performedons until
a quasi equilibriumstate is obtained. InFig. B.4, the temperature is
reducedeachtime� changes ons havebeenaccepted. C (x ) denotes the
cost of the solutionx . Note that if a randomchange decreases the cost
of s , it is always accepted. If the cost is increased, it is acceptedwith
probabilityexp( C(s)�C(q)

T
), whichdecreases withT .
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intermsof genotypes, while�tness isde�nedintermsof phenotypes. For
agivengenotype, thecorrespondingphenotypeis computedbyadecoder .
Agoodintroductiontogeneticalgorithms is givenin[6].

Fig. B.2 shows atemplate for the GAconsideredhere. Initially, the
current population� c is constructedfromrandomly generatedindivid-
uals. Routine eval uat e computes the �tness of eachof the given indi-
viduals, while best Of �nds the individual withthe highest �tness. One
executionof the outer \repeat" loop corresponds to the simulation of
one generation. Throughout the simulation, M=j � cj is kept constant.
We keeptrackof the best individual q ever seen. Routine st opCri t eri on
terminates the simulationwhenno improvement has beenobservedfor
S generations. Eachgenerationis initiatedbythe formationof a set of
o�spring� n of sizeM. Thetwomates s andt areselectedindependently
of eachother, andeachmate is selectedwithaprobabilityproportional
to its �tness. Routine reduce(�; k ) returns the k �ttest individuals from
�, therebykeepingthe populationsize constant.

8 components g 1; g2; : : : ; gl of t :
withprob. p mut do:
alter g k randomly

FigureB.3: St ruct ure of t he rout i ne mut at e(t ).

As illustratedinFig. B.3, themutationoperator performs pointwise
mutationwithagivenprobabilityoneachof the components, or genes ,
of its argument. The genetic operator i nvert (t ) alters the genotype of t
without altering the corresponding phenotype. As describedin [6], the
purposeof this operator is tooptimizethe relativepositions of thegenes
of t withrespect to the crossover operator. Finally, local hillclimbingis
performedonall existingindividualsbyroutineopt i mi ze(t ). It iscommon
practicetoapplyahillclimber inaGAinanattempt toslightlyimprove
the�nal solution[6]. The solutionr is the output of the algorithm.
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less �t individuals tendtodie out. This survi val - of - t he- �t t es t Darwinian
principle is the basic ideabehindtheGA.

generate(� c);
evaluate(� c);
q =bestOf(� c);
repeat until stopCriterion():
�n =; ;
repeatM times:
select s 2 � c, t 2 �c;
v =crossover(s ; t );
�n =� n [ f v g ;

end;
evaluate(� c [ �n);
�c =reduce(� c [ �n; M);
8 t 2 �c : t =mutate(t );
8 t 2 �c : withprob. p inv do:
t =invert(t );

evaluate(� c);
q =bestOf(� c [ f q g )

end;
8 t 2 �c [ f q g : t =optimize(t );
r =bestOf(� c [ f q g );

FigureB.2: Out l i ne of t he GA.

The algorithmmaintains a popul at i on of i ndi vi dual s , eachof which
corresponds toaspeci�c solution. Ameasure of �t ness de�nes the qual-
ity of an individual. Starting witha set of randomindividuals, a pro-
cess of evolutionis simulated. Themaincomponents of this process are
crossover , whichmimics propagation, andmut at i on, whichmimics the
randomchanges occurring in nature. After a number of generat i ons ,
highly�t individuals will emerge correspondingtogoodsolutions tothe
givenoptimizationproblem. Aphenot ype is the physical appearance of
anindividual, while agenot ype is the correspondinggenetic encodingor
representationof the individual. Crossover andmutationare performed
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havedevelopedandcomparedvariousmixedstrategies for theTSP. One
of the strategies is calledlife-cycle. Apopulationof individuals coexist.
Mutations are acceptedwitha certainprobabilityas inSA. Eachindi-
vidual goes throughalife-cycle. As it gets older, its probabilityof being
mutateddecreases while the probabilityof mating increases. Boseniuk
andEbelingreport that the life-cycle strategyis superior topure SAon
theTSP.

The approachpresentedhere is inspiredbyBoseniuk andEbeling's
ideas, althoughmanysigni�cant re�nements havebeenmade toimprove
theperformanceof the algorithm. Inour approach, thewayGAandSA
aremixedis dynamicallychangedduringtheoptimizationprocess, while
it is static in[3]. The contributions of this paper are:

� Toprovide anewalgorithmicmodel whichuni�es theGAandthe
SAinto one algorithm. The resulting algorithmis applicationin-
dependent andhighlyadaptive.

� To demonstrate the performance of the approach on the macro-
cell placement problem. It is experimentallyshownthat amixed
strategyperforms better thanapure GA. Furthermore, using the
mixed strategy onMCNCmacro-cell placement benchmarks, we
obtainresults comparable to, or better thanpreviouslypublished
results.

Therest of this paper is organizedas follows. InSectionsB.2andB.3
theconcepts of GAandSAarebrieyintroduced. Theuni�edalgorithm
is thendiscussedindetail inSectionB.4. ThediscussioninSectionsB.2,
B.3 andB.4 is application independent. SectionB.5 describes the ap-
plicationof the uni�edalgorithmto the macro-cell placement problem.
This includes a brief description of the application-speci�c genetic en-
coding and corresponding operators. Finally, experimental results are
describedinSectionB.6, andaconclusionis giveninSectionB.7.

B. 2 The Genet i c Al gori thm

The concept of genetic algorithms, introduced by JohnHolland[7] of
the Universityof Michigan, utilizes the notionof the natural evolution
process. In nature, the individuals constituting a populationadapt to
the environment in which they live. The �ttest individuals have the
highest probabilityof survival andtendtoincreaseinnumbers, whilethe
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B. 1 Introduct i on

Thegeneticalgorithm(GA) is ageneral-purposestochasticoptimization
technique, frequentlyusedto solve NP-hardoptimizationproblems. It
has been successfully applied to a wide variety of problems in various
�elds, includingVLSI layout generation[9].

The typical GAconvergencecurve is illustratedinFig. B.1. Initially,
thecost of thesolutions improves veryrapidly. But thenit becomes very
di�cult to obtainfurther improvement. The majorityof the runtime is
spent inthe later phase of the process inwhichsmall improvements are
obtainedveryslowly. Theworkpresentedhere is motivatedbythe need
to overcome this shortcoming of the GA. Our approach is to unify the
GAwith the simulatedannealing algorithm(SA), another well-known,
high-performanceoptimizationtechnique. WhileSAingeneral is able to
obtainimprovements also into the late phase of the process, it does not
converge as fast as the GAinthe initial phase. The uni�edalgorithm,
calledSAGA, is designedinsuchawaythat the advantages of the GA
as well as the SAare utilized.

Runtime

C
os

t

FigureB.1: The t ypi cal convergence of a GA.

Earlier attempts tocombineGAandSAhavebeenmade. Withthe
GAas the startingpoint, SiragandWeisser have incorporatedelements
fromSAwiththeobjectivetoimprovecontrol of populationvariance[10].
This is obtainedby a so-calledthermodynamic operator, inwhich the
number of destroyed/preservedschemasarecontrolledbyatemperature-
dependent stochasticvariable. Thedegreeof schemadisruptiondecreases
asaglobal temperatureisdecreased. However, this approachis limitedto
orderingproblems like the TravelingSalesmanProblem(TSP). Amuch
more general approach is presentedin [3]. Here BoseniukandEbeling
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AppendixB

SAGA: Macro-Cell Placement bya

Uni�cationof theGeneticAlgorithm

withSimulatedAnnealing

This paper is coauthoredbyP. Mazumder and is an extendedversion
of H. Esbensen, P. Mazumder, \SAGA: AUni�cation of the Genetic
AlgorithmwithSimulatedAnnealingandits ApplicationtoMacro-Cell
Placement,"Proc. of The 7t h Int ernat i onal Conf erence on VLSI Desi gn,
pp. 211-214, 1994.

Abstract

In this paper a stochastic optimizationalgorithmcalledSAGAis pre-
sented, which is a generalizationof the genetic algorithmandthe sim-
ulated annealing algorithm. Depending on the settings of its control
parameters, SAGAexecutes as a genetic algorithm, a simulated an-
nealing algorithm, or a controlable mixture of these. SAGArepresents
anapplication-independent approachtooptimization, andthe resulting
searchprocessishighlyadaptive. Theperformanceof theapproachonthe
macro-cell placement problemis examined. It is experimentallyshown
that amixture of the genetic algorithmwithsimulatedannealingyields
higher layout qualitythanapuregeneticalgorithm. Furthermore, layout
qualities obtainedbySAGAonMCNCbenchmarks havebeenobserved
tobe comparable toor better thanpreviouslypublishedresults.
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MIMDarchitecture, due tothe inherent parallelisminthis kindof algo-
rithm. This has beendemonstratednumerous times inthe literature, cf.
e.g. [9, 10, 11, 12].

A. 5 Concl usi on

Inthis paper a genetic algorithmfor the macro-cell placement problem
hasbeenpresented. Thealgorithmisbasedonageneralizationof thetwo-
dimensional bin-packingproblem. Byusingthe notionof bin-packing, a
genetic encoding has beendeveloped inwhichmost constraints of the
problemare implicitly represented. As a consequence, each individual
always satis�es everyconstraint. This designdecision is indirect con-
trast withthe more frequent approachof allowingconstraint violations
throughout the optimizationprocess andcontrollingthe degree of viola-
tionbyintroducingpenaltyterms inthequalitymeasure. Theadvantage
of theproposedstrategyis that it allows amoreaccurateestimateof the
layout quality, since the use of penaltyterms havebeenavoided.

The layout quality obtainedby the algorithmis comparable to the
best publishedresults. Since this workis anovel approachtomacro-cell
placement, further improvements are likely. The current runtime is not
competitive, but canbe improvedsigni�cantly. Therefore it is concluded
that the genetic algorithmis a promising approach to the macro-cell
placement problem.
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FigureA.8: The t ypi cal evol ut i on of t he sol ut i ons duri ng t i me. For each
generat i on t he est i mat ed area of t he best and average i ndi vi dual i s shown.

A.4.5 ComputationTime

The main factor setting the limits of the applicabilityof the algorithm
is the time consumption. On average, the current implementation re-
quires 52CPU-minutes for the apte benchmark, 55CPU-minutes for hp
and 156 CPU-minutes for xerox. The computation time requirements
currently prevents experiments with larger benchmarks like ami33 and
ami49. Furthermore, inorder tomake the runtime competitive to that
of other systems, it needs to be reducedbya factor of 3 to 10. How-
ever, therearetwomainreasonswhyit is believedthat suchasigni�cant
reductionis indeedobtainable:

Firstly, inthe current experimental implementationof the algorithm,
thevastmajorityof thetotal runtimeisspentmeasuringchannel densities
during decoding. For anexample suchas the hpbenchmark, the algo-
rithmcomputes between10and30millionchannel densities. Whenever
anewdensityis needed, it is computedwithout reusinganyinformation,
nomatter howsimilar the newpositioning of the involvedcells are to
the previous situation. Therefore, adatastructure whichallows a chan-
nel densitytobe dynamicallyupdatedas a cell is beingmovedslightly,
shouldbedeveloped.

Secondly, the runtime can also be signi�cantly improvedby imple-
menting a parallel version of the algorithm. One of the characteris-
tics of GAs in general is that a high speedupcanbe expectedon any



132
APPENDIXA. AGENETICALGORITHMFOR

MACRO-CELLPLACEMENT

Benchmark System Area Wirelength Vias

apte This work 53.99 563 720
BB[13] 54.05 460 -
Seattle Silicon[18] 54.77 350 -

hp Seattle Silicon[18] 11.85 200 -
This work 11.95 262 697
BB[13] 12.15 278 -

xerox Seattle Silicon[18] 25.79 601 1104
BB[13] 26.17 628 -
This work 26.58 556 1377
BEAR[5] 28.47 633 897
MOSAICO 1 29.01 650 1173
VITAL 1 31.17 866 1029

TableA.4: Compari son of qual i t y wi t h ot her syst ems. Ahyphen i ndi cat es

t hat t he val ue i s not avai l abl e.

A.4.4 ConvergenceRate

Fig. A.8 shows the estimatedareas of the best andaverage individuals
as a functionof time for the typical optimizationprocess. During the
�rst fewgenerations the best as well as the average individual improves
drasticallyandveryfast fromthe initial randomsolutions. Then, when
alargenumber of individuals inthepopulationpresumablyarerelatively
close tothe optimumsolution, further progress becomes veryslow. This
is the typical behaviour of anyGA. Here it has the advantage that if
the designer is willingto settle for a solutionwhichis relativelyfar, say
10%, fromthebest obtainable, thenthat solutioncanbeproducedmuch
faster.

1Ref erences of these tool s can be f ound i n [ 5, 18] .
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A.4.3 Layout Quality

Since the algorithmis stochastic the layouts generatedby consecutive
programexecutions will not be exactlyidentical. For eachof the three
benchmarks the results of executingthealgorithmtentimes usingaran-
dominitializationof the randomnumber generator, are shown inTa-
bleA.3.

Benchmark Abest Aavg A�

apte 53.99 55.91 1.20

xerox 26.58 29.11 1.51
hp 11.95 12.81 0.49

TableA.3: Vari at i on i n resul t qual i t y

Abest andA avg are the best and average areas, respectively, of the
completed layouts, while A � is the standard deviation. All values are
core areas inmm 2. Fig. A.7 shows the best placement obtainedfor the
hpbenchmark. As canbe seen, the cells aremovedonlyslightlyduring
routing, reectingaquite accurate routingareaestimation.
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FigureA.7: The hp benchmark bef ore and af t er rout i ng.

In Table A.4 the layout quality obtained is compared to the best
publishedresults. Again, the absolute areais coreareaof the completed
layout inmm 2. The total wirelengthinmmandthe total number of vias
ineachlayout is also listed. The results referencedshouldbe compared
with some caution due to minor variations in the problemde�nitions
used.
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At �rst sight this mayseemsurprising, sincethis particular combina-
tionrepresents the highest degree of randomizationamongall strategies
tested. However, as describedinSectionA.3, the selectionstrategyused
for survival into the next generationis purelydeterministic andspeeds
upthe convergence of the algorithm. The highly randomizedcrossover
operator is the variant that counteracts this potentiallydangerous e�ect
the best. Another possible reason for the observed results is that the
complexstructureof thesearchspaceprevents reallygoodsolutions from
beinggeneratedusinggreedystrategies like� 2aand� 2b. Consequently,
instead of improving the e�ciency of the search, the greedy strategies
actuallyprevents reallygoodsolutions frombeingfound.

A.4.2 Parameter Settings

For all examples considered, the same set of parameter values havebeen
used to control the GA, i.e., no problemspeci�c tuning has beenper-
formedtowards eachbenchmark. The values usedareM=j P C j =25, a
mutationprobabilityof 0.025for eachof the four types of mutation, and
aninversionprobabilityof 0.05. The algorithmwas terminatedwhenno
improvement hadbeenobservedfor s =200consecutivegenerations.

The inversionprobability is the probability that a given individual
p 2 PC is subject to inversion in a given generation. In contrast to
this de�nition, the mutationprobabilityfor a giventype of mutationis
de�nedrelativetothetotal number of possiblemutations of that typeon
the individual. This ensures problemindependent mutationrates.

Suitable values for the parameters a andb usedinthe routing area
estimate as describedinSectionA.3.1.2 depends onthe characteristics
of the interconnections to be made, i.e., these parameters are problem
dependent. TableA.2shows the values used.

Parameter apte xerox hp

a 0.0 0.2 0.0

b 12.0 10.0 7.0

TableA.2: Val ues of paramet ers f or rout i ng area est i mat e
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�1: j Vsj is chosenuniformlyandat randomsothat V min � j Vsj � Vmax ,
whereV min andV max areuserde�nedlimits. Theselimitsarechosen
sothat the interval [V min ; Vmax ] is approximatelysymmetricaround
n= 2 and so that the length of the interval is approximatelyn= 3,
wheren is the number of cells.

�2: j Vsj is determined as the rounded value of a normal distributed
stochastic variable having mean n= 2 and standard deviation 1.
Therefore, in the large majority of all cases, j V sj will be approx-
imatelyn= 2, but occasionallyit maybe close toor evenequal to1
or n .

Acell c inheritedfromthe secondparent � must be addedto the tree
of  by extending E  . Three di�erent strategies have been tried for
determiningthe positionat whichtoaddthe node:

� 1: Choose afree positionat randomamongall free locations.

� 2: Addc at apositionwhichwill probablyleadtoahigh�tness of  .
Determinethis positionbyevaluatingall freepositionsaccordingto
somequalitymeasure, andaddc at themost promisingpositionby
employingexhaustive search. Twodi�erent qualitymeasures have
beentried:

� 2a: Place c at the positioncorresponding to the lowest possible
positionat phenotype level.

� 2b: Place c at apositionwhichat phenotype level gives the best
packingdensityof all cellsplacedsofar. Tocomputethepack-
ingdensityof a givenposition, we formarectilinear polygon
enclosingall cells placedsofar includingthe cell c at its trial
position. The packingdensity is thende�nedas the ratio of
the sumof the areas of all placedcells includingc , dividedby
the areaof the enclosingpolygon. The closer this quantityis
to1, the better is the packingdensity.

All six combinations of one of �1 or �2 with one of � 1, � 2a or � 2b
have beentried. Whether � 2a or � 2b is used, no noticeable change in
performance has been observed. But � 1 consistently improves layout
quality compared to either of � 2a and � 2b. Furthermore, regardless
of the choice of � 1, � 2a or � 2b, layout quality is always unchangedor
improvedwhenusing�2 insteadof �1. Inconclusion, the best results
are consistentlyobtainedbyusingthe combinationof �2with� 1.



128
APPENDIXA. AGENETICALGORITHMFOR

MACRO-CELLPLACEMENT

A. 4 Experi mental Resul ts

Anexperimental versionof thealgorithmhas beenimplementedintheC
programming language, andruns onaDECMips 5000-240workstation.
Approximate size of the source code is 14,000 lines. The performance
has beentestedonthreebenchmarks fromthe1992MCNCInternational
WorkshoponPlacement andRouting. Table A.1 lists the maincharac-
teristics of these examples. Routingandcompactionof the layouts have
been performed by using the Mosaico toolset [1] which is part of the
Octtools CADframework.

Benchmark Cells Nets Terminals I/O-terms.

apte 9 97 287 73

xerox 10 203 698 2
hp 11 83 309 45

TableA.1: Benchmark charact eri st i cs. The number of t ermi nal s i ncl udes

t he i o- t ermi nal s.

A.4.1 Experiments withtheCrossover Operator

InmostGAimplementationscrossover is arandomoperationinthesense
that the parent fromwhichagivenfeature is inheritedis always deter-
minedrandomly. However, insomeGAimplementations, akindof local
optimizationis performedas an integratedpart of the crossover opera-
tion. Insteadof just combining the features of twogivenindividuals in
a completelyrandomizedfashion, anattempt is made to assimilate the
features insuchawaythat ahighly�t o�spring emerges. This kindof
attempt, whichis basedonapplicationspeci�c knowledge, seems to be
a natural wayof improving the searchprocess. Ageneral discussionof
knowledge-augmentedoperators canbefoundinChapter 5of Goldberg's
book[6].

Experiments withsixdi�erent variants of the crossover operator de-
scribedinSectionA.3.3 have beenperformed. These represent various
degreesof local optimization. Todeterminethesizeof theconnectedsub-
set V s inheritedfromthe �rst parent � , twostrategies havebeentried:
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is not one-to-one. This canusuallybe obtainedeasily[6], andhere the
decoder alreadyhas this property, as mentionedinsectionA.3.1.1.

c1

c2 c3

c4

c5

c6

c7

1 2

3 4 5

6 7

tt

t

r

r

t

FigureA.6: Anot her genot ype f or t he phenot ype i n Fi g. A. 2.

The inversionoperator selects a subtree at randomandmoves it to
another free positioninsuchawaythat noconstraints are violatedand
so that the corresponding phenotype is still the same. An example of
this is showninFig. A.6. This genotypetree is generatedbymovingthe
subtree rootedat c 2 inthe genotype showninFig. A.2.

A.3.6 StopCriterion

The evolutionprocess is terminatedwhennoimprovement has beenob-
servedfor auserde�nednumber of consecutivegenerations, denotedhere
bys . Whendeterminingif improvementhas occurredor not, weconsider
the best existing individual as well as the average individual, and we
compare individuals inaccordance withour dual optimizationcriterion
of minimizedareaandsecondarily, minimizedtotal interconnect length.
Tobespeci�c, denotebyA avg (t ) andA best (t ) theaverageandbest areaof
the individuals present ingenerationt , respectively. Similarly, letL avg (t )
and L best (t ) denote the average and best total estimated interconnect
lengthpresent ingenerationt . Thenbyde�nition, animprovement has
occurredingenerationk , if andonlyif for somex 2 f a v g ; b e s t g ,

Ax(k )< minf A x(t ) j k � � � t < k g

or

Ax(k )=minf A x(t )j k �� � t < k g _ Lx(k )< minf L x(t )j k �� � t < k g

where � =min(k ; s ).
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Figure A.5: Amut at i on of t ype 2: Cel l s c 2 and c4 are exchanged, whi l e
t he pri ori t i es are st i l l at t ached t o t he same posi t i ons i n t he t ree.

A.3.5 InversionOperator

Inatypical GAas presentedin[6], the crossover operator works insuch
a way that the closer two components of the genotype are, the more
likelyit is that the o�springwill inherit bothcomponents fromthe same
parent. This is alsothe case inthis algorithm. Let the distancebetween
two nodes in the genotype tree be the number of edges on the unique
pathconnectingthe nodes, andlet us consider the genotype tree of the
�rst parent� (seeFig. A.4). The smaller thedistancebetweentwogiven
nodes is, themorelikelyit is that bothnodeswill belongtotheconnected
subset T s =(V s; Es), andhence that bothnodes will be inheritedbythe
o�spring. Since T s is not altered during crossover, the two nodes will
continue tobe close inthe o�spring.

If the closenodes represent agoodsub-placement andcontribute sig-
ni�cantlyto ahigh�tness of the individual, thenthe abovepropertyof
the crossover operator is bene�cial. But otherwise this propertymayde-
grade the performance of the algorithm. The purpose of the inversion
operator is to eliminate this problem. Givena genotype, the inversion
operator computes a newgenotype by rearranging the components in
suchawaythat their mutual distances changes, while at the same time
assuringthat the correspondingphenotype is still the same. This means
that inorder toapplyinversionit is requiredthat the decoder mapping
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p shouldcorrespondto the order inwhichthe cells were placedwhen
creatingE . Since p is a bijection, the following constraints uniquely
determines p :

8 ci 2 Vs; 8 cj 2 V � Vs : p
(c i)< p (c j)

8 ci; cj 2 Vs : p
�(c i)< p�(c j))p (c i)< p (c j)

8 ci; cj 2 V � Vs : p
�(c i)< p �(c j))p (c i)< p (c j)

A.3.4 MutationOperators

Four di�erent mutation operators exist. Eachof these performs some
randomchangeinthegivengenotype. Let c i andc j denotetworandomly
chosencells, i 6 =j . The four operators are:

1. Alter the set of edges E bymoving a leaf c i to another free and
randomlychosenposition. The typeof the edgegoingintothe leaf
maybe changedas part of themove.

2. Alter the set of edges E by exchanging c i and c j. The priorities
of the cells are exchangedsimultaneously, so that no pair of cells
are preventedapriori frombeingexchangeddue to the constraint
that anynodealwayshas ahigher prioritythanits predecessor. An
example is showninFig. A.5.

3. Alter p byexchangingp (c i) andp (c j).

4. Change the transformationof acell byalteringthe valueof t (c i).

Whenperforming eachof these mutations, a part of the genotype has
tobedecodedtocheckif themutatedindividual satis�es all constraints.
Mutations 1 and4 require that all cells having priority p (c i) or higher
are decoded, while mutations 2 and 3 require decoding frompriority
min(p (c i); p (cj)). Amutationis onlyperformedif it does not cause any
constraint violations.
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A.3.3 Crossover Operator

Inthis sectionthe general functionalityof the crossover operator is de-
scribed. Since this operator is of paramount importance to the overall
performance of the algorithm, several experiments havebeencarriedout
withrespect to its detailedoperation. These experiments are described
insectionA.4.1. Giventwoindividuals � and� , the crossover operator
generatesanewfeasibleindividual  , thedescendantof � and� . Thisop-
erationis illustratedinFig. A.4. Throughout this section, a superscript
speci�es whichindividual themarkedpropertyis apart of.
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γ : A possible offspring
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c5 c6

1 2

3 4

5

6 7

r

t

c7 c2r

rr

t

FigureA.4: Combi ni ng � and � .

E is constructed as follows. Fromthe cell tree of � a connected
subset T s =(V s; Es), V s � V , Es � E� is chosen. T s is chosenat random
but subject to the constraint that decodingT s in the order de�nedby
p�, i.e. using c 2 V s j 8 c0 2 Vs n f c g : p�(c ) < p�(c 0) as root, causes
no constraint violations. Twodi�erent schemes have beentriedfor the
determinationof the size of V s, as will be describedinsectionA.4.1. In
Fig. A.4, the chosenT s is indicatedbythe dashed line. InitiallyE  is
de�ned to be E s. Hence,  has inherited all cells inV s from� . The
remaining cells V � V s are then inherited from� by extension of E .
The cell tree of � is traversed in ascending order according to p �. At
any node it is checked if the corresponding cell c belongs to V s, that
is, whether it has beenplaced in  already. If so, the cell is skipped.
Otherwise, c is added to the cell tree of  by extending E . Various
schemes for determining the positionat whichto addc has beentried,
see sectionA.4.1. The transformationof anycell is inheritedunaltered
together withthe cell itself. That is,

t(c )=

8<
: t�(c ) if c 2 Vs
t�(c ) if c 2 V � Vs
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individuals having the same areawill have their �tness values adjusted
sothat �tness increases as the estimatedinterconnect lengthdecreases.

The total interconnect lengthof anindividual is estimatedas in[7]:
LetM denote the number of nets, andletm k denote the total number
of terminals of the k 'thnet. Let t ki =(x ki ; yki ) denote the positionof
terminal i innet k . The cent er of gravi t y of the k 'thnet is thende�ned
by

Tk =( xk; yk)=
1

mk

mkX
i=1

tki

andthe estimatedtotal interconnect lengthL is de�nedas

L(p )=
MX
k=1

mkX
i=1

ktki � Tkk

where k x k denotes the usual Euclideanvector norm.
Nowsuppose that the population is enumerated inascending order

accordingtoF 0, andthat F 0(p i)=F
0(p i+1 )=: : : =F0(p j); i < j . Thus,

the�tnessof p i; : : : ; pj mustbeadjustedaccordingtointerconnect length.
In order to assure that area always predominates interconnect length,
this is done as follows. Sort p i; : : : ; pj into decreasing order according
to interconnect length, i.e. let us assumeL(p i)� L(p i+1 )� : : : � L(pj).
De�ne � F ij as

� Fij =
� A

j � i +1

where � A =F 0(p j+1 )� F 0(p j). Anew�tness valueF is thencomputed
as

F (pk)=F
0(p i)+(k � i )� Fij ; k =i ; : : : ; j :

Since the �tness values nowde�ned can be very small, they are nor-
malized. Finally, the values are scaledlinearlyas describedin[6]. The
purpose of scalingis twofold. At the initial phase of the evolution, afew
individuals havingveryhigh�tness comparedtotheaveragewill bevery
dominating. Asaconsequence, thesearchwill belimitedtoasmall region
of the searchspace tooearly. Scalingcounteracts this e�ect byreducing
the standarddeviationof the �tness at the initial phase of the process.
Inthe �nal phase of the evolution, the di�erence betweenthe best and
the average individuals tendto be small due to the convergence of the
process. Hence selectionbecomes almost random, therebyreducing the
chances of further improvement. At this stage, scaling counteracts this
e�ect byincreasingthe standarddeviation.
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thencomputedas

Ds =

8><
>:
� [ds +r o u nd (a

r
hs
�
+b )] if d s > 0

0 if d s =0

where h s is the length of side s of c i, � is the spacing in the routing
grid, r o u nd (x ) is the roundedvalue of x anda and b are user de�ned
parameters. The area inside the solid rectangle shown in Fig. A.3 is
uniquelydeterminedbyD s. Cell c i canbe placedat the givenposition
if andonly if this area contains no (parts of) cells apart fromc i itself.
Whena =b =0the estimatedrouting area is a lower limit of the area
needed by any router regardless of the channel de�nition. If a > 0,
the corresponding termof D s increases withh s. The argument for this
de�nition is that the longer the channel, the more likelynets will pass
throughit [18]. Notethatmovingc i inanydirectionmaya�ect thevalue
of D s for all four values of s .

Insummary, givenV , the genotype of an individual consists of the
relations E andthe functions p andt . The genotype (andthe decoder)
has the important propertyof implicitlyrepresentingmost constraints of
theproblem. This simpli�esthedesignof geneticoperatorswhichassures
the satisfactionof all constraints at all times.

A.3.2 Fitness Measure

Given(the phenotypeof) anindividual, its �tness is de�nedbythe pos-
itive functionF . Fitness is relative to other individuals, and therefore
always computedfor anentire populationat atime. Since the objective
is tominimizelayout area, initiallytheauxiliaryfunctionF 0 is de�nedas

F 0(p ) =
1

A(Rp)�
Pn
i=1 A(c i)

where n is the number of cells of the placement problem, A is the area
of arectangular cell andR p is the rectangleR of the individual p . That
is, F 0(p ) is the inverse of the total estimated routing area in p . All
individuals having equal area will nowhave equal �tness. But when
�xing the total area of aplacement, the probabilityof a 100%routing
completionwithin the estimatedarea is likely to increase as the total
interconnect lengthdecreases. Theminimizationof thetotal interconnect
lengthis therefore introducedas asecondaryoptimizationcriterion. All
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AnyBL-placement canbe representedbyat least one genotype, i.e.,
the decoder mapping is not one-to-one. Furthermore, since aplacement
canonlyberepresentedbyagenotypeif it is aBL-placement, the search
space exploredbythe algorithmis exactlythe set of all BL-placements.
This is one of the signi�cant di�erences to the approachin[3], inwhich
the searchspace is restrictedtoslicingstructures.

A.3.1.2 Routing AreaEstimation

Whendecodingthe binarytree, the routingareaneededis estimatedas
eachcell is placed. Whenplacing the i 'th cell, the distance needed in
eachdirections 2 S =f north,east,south,westg topreviouslyplacedcells
is computedbya functionD s, whichdepends on all previouslyplaced
cells. Eachcell is placedaccordingtotheBL-strategyandas closetothe
previouslyplacedcells as allowedbyD s. Figure A.3 illustrates howD s

is computed.

� -

6

?

6

?

� -

Dsouth

Dnorth

ci
Dwest Deast

FigureA.3: Est i mat i on of rout i ng area.

Whentestingif cell c i canbe placedat somegivenposition(c
xl
i ; c

yl
i ),

the four areas indicatedbydashedsquares are considered. D s depends
onall terminals at side s of c i andof all terminals inpreviouslyplaced
cells, whichare 1) inside the square at side s , 2) placed at some side
parallel to side s of c i and3) not shadowedbya interveningcell. Given
this set of terminals, the channel densityd s is computedas if the square
were the routing channel. Inorder to account for global routing, D s is
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Et \ Er =; . Eachnode has at most one outgoingtop-edge andat most
one outgoing right-edge. All edges are orientedaway fromthe root of
the tree. Let e ij 2 E denote anedge fromc i to c j and let (c

xl
i ; c

yl
i ) and

(cxui ; c
yu
i ) denote thecoordinates of the lower left andupper right corners

of c i, respectively. Thene ij 2 Et (E r) means that cell c j is placedabove
(to the right of) c i inthe phenotype. That is,

8 eij 2 E : eij 2 Et )c ylj � cyui ; eij 2 Er )c xlj � cxui

The tree is decodedas follows. The cells are placedone at a time ina
rectangular areahavinghorizontal lengthW andin�nite vertical length.
Eachcell is movedas far downandthenas far left as possiblewithout
violatingtheroutingareaestimatedescribedinsectionA.3.1.2. Thecells
are placedinascendingorder accordingtotheir pri ori t i es de�nedbythe
one-to-one functionp : V !f 1; : : : ; ng . Anynode has higher priority
thanits predecessor inthe tree. InFig. A.2 the priorities are indicated
at the topright handside of eachnode. The transformationof eachcell
is de�nedbythe functiont : V !f 0,1,2,: : : ,7g , whichis alsopart of the
genotype.

c1

c2 c3

c4

c5

c6

c7

1 2

3 4 5

6 7

tt

t

r

rr

genotype phenotype

c1

c2 c3

c4

c5

c6

c7

FigureA.2: An exampl e genot ype and t he correspondi ng phenot ype.

Whenall cellsareplacedthesmallestrectangle, R se enclosingall cells,
is computedbythe decoder. Eachof the four sets of i/o-terminals are
thenuniformlypositionedalong the corresponding edge of R se , so that
the ordering within each set is preserved. Finally, the rectangle R is
constructedbyextendingR se until the routingareaestimate is satis�ed
along all edges of R. Note that the genotype itself contains no explicit
representation of the i/o-terminals and no absolute coordinates of the
cells. At the time of computationof aphenotype fromagivengenotype
the decoder determines those quantities.
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Thedrawbackof the secondstrategyis that it ismorecomplexinnature
andits associatedgenetic operators are slowowingtothe fact that they
insure constraint satisfactionat all times.

While the�rst strategyis usedin[2], the algorithmpresentedhere is
basedonthe secondstrategy. Toavoidtoocomplexandslowoperators,
agenetic encodinghas beendevelopedinwhichsome of the constraints
are implicitly representedand therefore neednot be consideredby the
geneticoperators.

A.3.1 GeneticEncoding

InGAs a distinction is made betweenthe genot ype and the phenot ype
of an individual [6]. Agenotype is an encoding, or representation, of
the information constituting an individual, while the phenotype is the
physical appearance of the individual. Reproductionandmutationare
performedinterms of genotypes, while �tness is expressedinterms of a
phenotype. Adecoder is usedto compute the phenotype corresponding
toagivengenotype. Estimationof the routingareaneededis performed
duringdecoding.

The genetic encodingis inspiredbythe two-dimensional binpacking
problem, whichis the problemof compactlypackinga number of rect-
angular blocks into abinhaving�xedwidthandin�nite height insuch
awaythat the distance fromthe topedge of the highest placedblockto
thebottomedgeof thebinisminimized. Thestandardalgorithmfor this
problemplaces theblocksoneat atimeat thedownmost andthenat the
leftmost position. The placement algorithmis basedonageneralization
of this scheme. For agiveninstanceof themacro-cell placementproblem,
let aBL-pl acement (bottom-left) denote asolution, inwhichnocell can
bemovedfurther downor to the left without causingaviolationof the
routingareaestimate. The solutionspaceconsideredbythe algorithmis
restrictedtothe set of all possibleBL-placements.

A.3.1.1 GenotypeandDecoder

Assumethat thegivenproblemhaven cells c 1; : : : ; cn. Anexamplegeno-
typewithn =7cells is showninFig. A.2together withthe correspond-
ingphenotype. Abinarytree (V ; E), V =f c 1; : : : ; cng , inwhichthe i 'th
nodecorrespondstothecell i , representstheabsolutepositionsof all cells.
Twokindsof edgesexist: top-edgesandright-edges, sothatE =E t [ Er,
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simplyde�nedtobe theM �ttest individuals of P C [ PN .

Withasmall probability, eachindividual inP C is nowsubject tomu-
tation. Themainpurpose of mutationis to insure that informationlost
byreproductioncanbe recovered. InSectionA.3.4 four di�erent kinds
of mutations are described. If the mutationprobabilities are too high,
frequent mutations will prevent the convergenceof the process andturn
it intoarandomwalk. If themutationrates are toolow, the searchmay
prematurelyconvergetoalocal minimumonly. Followingmutation, each
individual is subject to aninversionoperationwitha small probability.
The purpose andthe operatingprinciple of this operator is explainedin
SectionA.3.5. Eachgenerationis completedbyevaluationof all individ-
uals as the basis for the selectionto take place inthe next generation.
Furthermore, the best individual ever seenis updated.

Whenthe last generationhas beensimulated, anattempt tooptimize
eachof the individuals P C [ f q g a little further is made using routine
optimize(p ), whichexecutesasequenceof �tness-improvingmutationson
eachindividual. Anexhaustivestrategyisused, sothatwhenoptimize(p )
has been performed, no single mutation can improve p further. The
best individual followingthe optimizationthenconstitutes the resulting
macro-cell placement.

Whenapplying aGAto a complexoptimizationproblem, there are
twomainstrategies for handlingtheconstraints imposedonanysolution:

1. Allowconstraint violations during the optimization process, and
control the degree of violation by adding one or more weighted
penalty-terms tothe�tness function.

2. Ensure that throughout the optimizationprocess, eachindividual
always satis�es everyconstraint.

The choiceof strategyhas signi�cant implications. The�rst choiceleads
tothesimplest andfastest geneticoperators, sincetheseneednot enforce
the satisfactionof all constraints bythe producedindividuals. However,
the�tnessmeasurehas becomemorecomplicatedandmore importantly,
it maybe di�cult to adjust the weights introducedinthe measure ina
way so that the contribution regarding the quality of the solutionand
the contributions regarding constraint violations are appropriately bal-
anced at all times. On the other hand, the second strategy allows a
simple �tness de�nition, since no penalty terms are needed. Thus, we
areguaranteedthat themeasurealwaysexpresses somethingmeaningful.
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generate(P C);
evaluate(P C);
q =bestOf(P C);
repeat until stopCriterion():
PN =; ;
repeatM times:
select p 1 2 PC , p2 2 PC ;
PN =P N [ crossover(p 1; p2);

end;
evaluate(P C [ PN);
PC =reduce(P C [ PN );
8 p 2 PC : possiblymutate(p );
8 p 2 PC : possiblyinvert(p );
evaluate(P C);
q =bestOf(P C [ f q g );

end;
8 p 2 PC [ f q g : optimize(p );
q =bestOf(P C [ f q g );
output q ;

FigureA.1: Out l i ne of t he al gori t hm.

repeatedselectionandmatingof individuals fromP C , a set of o�spring
PN of size M is generated. The selection strategy should reect the
principle of survival of the �ttest, andusing the terminologyof [6], the
schemeusedhere is stochastic samplingwithreplacement. That is, the
individual p i 2 PC is selectedwithprobability

F (pi)P
p2PC

F (p )

whereF is the�tness measure, cf. SectionA.3.2. The twomates needed
for one crossover are selectedindependentlyof eachother andanyindi-
vidual maybe selectedanynumber of times inthe samegeneration. By
replacing some individuals inP C with individuals fromP N , a newcur-
rent generationP C emerges. As opposedtothe selectionschemeusedfor
crossover, the selectionperformedhere is deterministic. The newP C is
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A. 3 Descri pt i on of the Al gori thm

The concept of the GA, whichwas introducedbyHolland [8], is based
onthe ideaof optimizingbysimulatingbiological evolution. Innature,
the individuals of apopulationadapts tothe environment inwhichthey
live. The �ttest individuals have the highest probabilityof survival and
tend to increase in numbers, since their reproduction rate is high and
their characteristics are inherited by their descendants. On the other
hand, the less �t individuals tends to die out. This Darwinianprinci-
ple of \survival of the �ttest" canbe usedinoptimization. Givensome
optimizationproblem, e.g. the macro-cell placement problem, de�ne an
i ndi vi dual tobe asolutionandde�ne ameasure of �t ness of anindivid-
ual. Thengenerateapopul at i on, andsimulateanevolutionprocess. The
most important components of this process are reproduct i on andmut a-
t i on, for whichapplicationspeci�c operators have tobe designed. After
simulationof anumber of generat i ons , highly�t individuals will emerge,
whichcorrespondto goodsolutions of the givenoptimizationproblem.
Ageneral introductiontoGAs is givenine.g. [6].

Manyvariants of GAs canbe foundinthe literature [2, 4, 6, 17]. An
outlineof theGAusedhereis showninFigureA.1. After brieypresent-
inganoverviewof the algorithmits various components are discussedin
detail inthe followingsubsections.

Initially, thecurrentpopulationP C is constructedfromrandomlygen-
eratedindividualsbyroutinegenerate(P C). The�tnessof eachindividual
is computedbyevaluate(P C), describedinSectionA.3.2. Sincethe qual-
ityof anyindividual is relativetotherest of thepopulation, computation
of �tness requires thecompletepopulationas input. RoutinebestOf(P C)
selects the best of the givenindividuals andis usedthroughout the pro-
cess tokeeptrackof the best individual q ever seen. Eachexecutionof
the outer repeat loopcorresponds toacompletesimulationof onegener-
ation. Throughout the optimizationprocess, the number of individuals
M=j P C j is kept constant. The number of generations to be simulated
depends onthe progress of the searchprocess itself, as describedinSec-
tionA.3.6.

Reproduction initiates eachgeneration. Mating is simulatedbythe
crossoveroperator describedinSectionA.3.3. Givenapair of individuals,
the crossover operator produces one o�spring. The overall purpose of
crossover is to assure explorationof the promising parts of the search
space. Hence the o�spring producedhave to resemble its parents. By



A.2. PROBLEMDEFINITION 115

Themacro-cell placement problemis thentocompute the following:

� The absolute positionof eachcell.

� The transformation of eachcell, i.e., its orientationand possible
reection(s) inone or bothof the axes.

� ArectangleR whichde�nes the shape of the layout.

� For eachof the four orderedsets of i/o-terminals, anabsolute po-
sitionalong the corresponding edge of R of eachterminal in the
set.

The objective is tominimize the area of R subject to the following
constraints:

� Nopair of cells overlapeachother.

� The rectangleR encloses all cells andhas approximate horizontal
lengthW.

� The i/o-terminals are positionedso that the orderingwithineach
set is preserved.

� The area withinR, which is not occupiedby cells, is su�ciently
large to containall routing neededto implement the interconnec-
tions betweenthe cells as speci�edbythe givennetlist.

Tomeetthelastconstraint, thenecessaryroutingareaisestimatedduring
the placement process. This estimate is basedonthe followingassump-
tions:

� Theareaoccupiedbycellsandtheareausedfor routingaredisjoint.

� Twolayers of metal are usedfor routing.

� All nets will be treatedas signal nets; i.e., all wires will have the
minimumwidthallowedbythe technology.

The macro-cell placement problemhas beenshownto be NP-hard[14].
Furthermore, the solution space is extremely large. If we ignore the
placement of i/o-terminals and only consider the placement of n cells
so that they constitute a matrix of some prede�ned shape, we obtain
O(n !8n) as alowerboundonthesizeof the solutionspace, sinceeachcell
canbe transformedin8distinct ways.
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A. 1 Introduct i on

Alarge number of algorithms for the placement of cells inVLSI layouts
havebeendevelopedduringthelast twodecades. Arecentsurveyisgiven
in[16]. At the current state of the art, simulatedannealing(SA) is one
of the most popular approaches. SAalgorithms produces highquality
placements at the cost of extensive runtimes.

Aless prevalent type of placement algorithmis the genetic algo-
rithm(GA). In[4, 15, 17] GAs for standardcell placementaredeveloped.
The performance of these algorithms is comparable to SAalgorithms.
Highqualityplacements are obtainedat the cost of extensive runtimes.
To our knowledge only two papers have beenpublished inwhichGAs
for macro-cell placement are presented[3, 2]. As will beaccountedfor in
SectionA.3, bothalgorithmsaresigni�cantlydi�erent fromtheapproach
presentedhere.

AGAfor the two-dimensional binpackingproblemhas beendevel-
opedbyKr�oger et al [9]. The two-dimensional binpackingproblemcan
beseenas thehypothetical special caseof themacro-cell placementprob-
leminwhichno nets exists, i.e. no routingwill be performed. Inthis
paper aGAfor themacro-cell placement problemis developedbasedon
comprehensive extensions of the genetic encodingandgenetic operators
foundin[9]. The resultingalgorithmis capableof producingplacements
havingaqualitycomparable tothe best publishedresults.

A. 2 Probl emDe�ni t i on

Intheliterature, thede�nitionof themacro-cell placementproblemvaries
slightly. Consistent withthe speci�cationof theMCNCbenchmarks we
de�ne the problemas follows.

The input is givenas:

� Aset of rectangular cells, eachof whichhas anumber of terminals
positionedalongits edges.

� Anorderedset of i/o-terminals for eachsideof thechipunder con-
struction. These terminals constitute the interface of the chip.

� Anetlist specifyingthe interconnections betweenall terminals.

� Anapproximatehorizontal lengthW of thechipunderconstruction.
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AppendixA

AGenetic Algorithmfor

Macro-Cell Placement

This paper describesanimprovedversionof thealgorithm�rst presented
inH. Esbensen, \AGeneticAlgorithmfor MacroCell Placement,"Proc.
of The European Desi gn Aut omat i on Conf erence, pp. 52-57, 1992. The
improvements are listedinSection5.1.2, page 64.

Abstract

Anewgenetic algorithmfor macro-cell placement is presented. The al-
gorithmis basedonageneralizationof the two-dimensional binpacking
problem. The genetic encoding and the genetic operators assures that
all constraints of theproblemarealways satis�ed. Consequently, thepo-
tential problems of thecommonapproachof addingpenaltyterms tothe
cost functionare eliminated. The algorithmhas beentestedonMCNC
benchmarks and the layout qualityobtained is comparable to the best
publishedresults.
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has been given. Yet, the GAwill probably remain a relatively time
consuming approach for the problems considered. However, as long as
runtimesarereasonablefromapractical pointof view, therewill bemany
situationswheredesignersarewillingtospendthetimerequiredtoobtain
aslightlybetter solution.

Important topics of future workincludes aneededupdate of the op-
timization criteria and the way they are combined. Furthermore, the
accuracyof thecrucial estimations shouldbeimproved, whichultimately
leads tothe considerationof simultaneous placement andglobal routing.
Judging fromthe characteristics of the problems, the general character-
istics of theGAandthe results presentedinthis thesis, it is likelythat
theGAwill bewell suitedfor approachingthe integratedproblem.
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Chapter 7

Conclusion

The purpose of this thesis has beento investigate the suitabilityof the
genetic algorithm(GA) for placement and global routing of macro-cell
layouts, assumingthat the mainobjective is toobtainthe best possible
layout quality. Four speci�c questions of interest were formulated in
Section1.1, page 3, andinthe followingthe answers are summarized.

Whencomparingtheperformanceof thedevelopedalgorithms tothe
best existingapproaches usinganyother method, the GAs are compet-
itive withrespect to layout quality. Consequently, the mainconclusion
of this thesis is that the GAis a verypromising approachto the prob-
lems considered. This conclusionis further emphasizedbythe fact that
thisworkamounts tothreeman-yearsonly, whileamuchlarger e�ort has
beeninvestedintheuseof e.g. simulatedannealingfor theseapplications.
Hence, signi�cant future improvements are likely.

Theperformanceof thedevelopedGAs is clearlysuperior tothat of a
previousGAfor macro-cell placement andapreviousGAfor theSteiner
probleminagraph(SPG). Inbothcases the most signi�cant di�erence
betweenthealgorithmsisthestrategiesusedfor constrainthandling. The
main conjecture of this thesis is that the design principle of enforcing
constraint satisfactionat all times is the mainreason for the obtained
performance. Hence, for problems havingcharacteristics similar tothose
considered here, traditional binary encodings and/or standard genetic
operators shouldbe abandonedwhenever theyobstruct enforcement of
constraint satisfaction.

Anumber of problemshavebeenidenti�ed, amongwhichtheruntime
requirements is the most serious. The current implementations of the
developedalgorithms are veryslowcomparedtoother approaches, with
the SPGalgorithmbeing the only exception. It is believed that the
runtimes canbe reducedsigni�cantly, anda number of reasons for this
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topologyof the model, i.e., the number of subpopulations, the number
of processing elements per subpopulation, the connections between lo-
cal controllers, etc. is de�nedat runtime as the �rst taskof the global
controller. This makes it easy to experiment with various degrees of
distributed selection, various communicationpatterns betweensubpop-
ulations, etc. As a special case, when the number of subpopulations
equals one, selectionis global as inasequential GA. Sincethemainbulk
of the work is performedby the processing elements, eachof these are
assignedtoaphysical processor, andthe local controllers andthe global
controller are thenevenlydistributedamongthe processors. Themodel
has not yet beenappliedto parallelize anyof the developedGAs. The
mainreasonis that althoughthe current sequential implementations are
not runtime competitive, the runtime requirements are not anobstacle
for the practical experimentationeither.

The typical hardware available at VLSI design sites is a set of in-
terconnectedworkstations. Consequently, fromanapplicationpoint of
view, parallel implementations of the algorithms presented in this the-
sis shouldbe targetedfor suchhardware. Agoodspeedupof aGAcan
still be obtained on interconnected workstations despite the fact that
the communication is very slowcompared to that of other MIMDar-
chitectures. This is demonstrated in [Mohan93] whichpresents a par-
allel implementationof the GAfor standardcell placement introduced
in[Shahookar 90b]. Anumber of systems exists, whichsupports the de-
velopmentof parallel algorithms tobeexecutedonaset of heterogeneous
machinesinterconnectedbyanetwork. OnesuchsystemisPVM(Parallel
Virtual Machine) [Sunderam90].

Comparingthecharacteristicsof thealgorithmspresentedinthis the-
sis to the literature on parallel GAs, there is no reason that a good
speedupshouldnot be obtainable for these algorithms. This is another
reasonwhytheworkonthis issuehas beengivenaquite lowpriority.
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one subpopulationtoanother. The questionis towhichextent selection
shouldbedistributedas described, andtoinvestigatethis experimentally
amodel of aparallel GAwas developedwhichis illustratedinFig. 6.1.
Themodel includes as special cases eachof themodels farming, di�usion
andmigrationdiscussedin[Macfarlane 90, Dodd91].

subpopulation
processing element
local controller

global
controller

Figure 6.1: An exampl e con�gurat i on of t he paral l el GA havi ng t hree
subpopul at i ons each of whi ch have t hree processi ng el ement s. The con-

nect i ons of t he gl obal cont rol l er t o al l ot her processes are not shown.

Three types of processes exists: processingelements, local controllers
andasingle global controller. Asubpopulationconsist of one local con-
trollerandanumberof processingelements. Thelocal controllerperforms
the selectionwithin the subpopulationand thendelegates tasks to the
processingelements. Eachtaskcorrespondtoone or more executions of
ageneticoperator onindividuals of whichcopies aregiven. Occasionally,
(copies of) individuals maymove fromone subpopulation to another,
as indicatedbythe interconnections of the local controllers. The global
controller is connectedtoall other processes, i.e., all local controllers and
all processing elements. The tasks of the global controller are to take
careof i/o, distributetheproblemde�nition, collect statistics andresults
andcontrol termination. Sinceall communicationsareasynchronous, the
subpopulations never havetowait for eachother, whilewithineachsub-
populationthe local controller has tosynchronizeits processingelements
onceper generationdue tothe selection.

This model has been implemented on a transputer network. The
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relaxedaccordingly.

Interrupting decodings of solutions whenanupper boundoncost is
exceededcouldalsopotentiallyimprove runtime. Assume for example a
steady-stateGA, inwhichgeneratedo�springalwaysreplacesthecurrent
worst solution. If, during a decodingprocess initiatedbythe crossover
operator, it canbe determinedthat the cost of the partlygeneratedo�-
springwill exceedthecostof thecurrentworst solution, thenthedecoding
of that o�spring canbe interrupted since it will not be inserted inthe
populationanyway.

Althoughthe improvementsmentionedaboveareexpectedtobevery
e�ective if implemented, it is still an open question if the placement
algorithms wouldbe able to handle the larger benchmarks Ami33 and
Ami49inareasonable amount of time. Some kindof hierarchical parti-
tioning as usedbye.g. the BBalgorithm[Onodera91] andthe BEAR
system[Dai 87b] wouldprobablyalsobeneeded.

6.3.2 Parallel GeneticAlgorithms

Consider the characteristics of theGAwiththeobjectiveof parallel pro-
cessing inmind. In each generation, long sequences of the operations
performed by the genetic operators are independent, i.e., they can be
performed in any order. The operators rely on local information only
(the input individuals), and they require non-uniformamounts of time
becauseof thedi�erenttypesof operationsandbecauseof their stochastic
nature. The onlysequential element is the selection, whichdepends on
therelative�tness of the individuals andhencerequires knowledgeof the
�tness of all individuals at acertainpoint intime. These characteristics
of the GAare the reason that the algorithmis well suited for parallel
implementationonMIMDarchitectures. Avast literature onthis topic
exists andgenerallygoodspeedups are reported. Notable workonpar-
allel GAs for combinatorial optimizationis done bye.g. M�uhlenbeinet
al [M�uhlenbein88].

The key issue when implementing a parallel GAis howto handle
selection. One possibilityis torelaxthe ideathat every individual has a
probabilitygreater thanzeroof beingchosenineveryselectionstep. This
canbedonebydividingthepopulationintoanumber of subpopulations
and restrict selectionso that parents are always chosenfromthe same
subpopulation. To allowinformation to spread throughout the entire
population, it should also be possible for an individual to move from
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implementationis animportant advantageof this algorithmas compared
toother optimizationmethods suchas e.g. simulatedannealing.

6.3.1 Improvements of theSequential Algorithms

The mainreason for the excessive runtime requirements of the current
implementationsof theplacementalgorithmsandtheglobal router is the
repeatedcomputationof channel densities, cf. Sections 5.2.2 and5.4.1.
As variouspositions for ablockis triedout bytheplacement algorithms,
channel densities involvingthe same set of instances are computedover
andover again. The onlydi�erence fromone computationto the next
is that the block to be placedhas beenmovedslightly. Currently, the
channel density is computed fromscratchwhenever a newposition is
triedout. Signi�cant amounts of computationcouldthus be eliminated
byusingadatastructurewhichallows the channel densitytobe dynam-
icallyupdatedas ablockis shiftedalongone dimension. The situation
is similar for theglobal router. Here the sets of terminals involvedinthe
channel densitycomputations are �xed, while the varying factor is the
nets entering/leavinga channel. Hence, computationtime couldbe re-
ducedsigni�cantlybyusingdatastructures whichallowedthedensityof
achannel tobedynamicallyupdatedas the sets of nets entering/leaving
the channel were altered. In the current implementation, whenever a
densityis needed, it is computedfromscratch. It is not evencheckedif
the routing of the channel has changed, i.e., if a newcomputationis at
all needed.

Adaptingtheideaof thest eady- st at e GAis another potential possibil-
ityof reducingruntime. Inasteady-stateGA, the crossover operator is
appliedonlyonceper generation, andthe generatedo�springis inserted
immediatelyintothepopulation, for examplebyreplacement of the cur-
rent poorest solution(s). This contrasts theschemeusedinthedeveloped
algorithms, inwhichapool of n o�springis generatedineachgeneration,
assumingapopulationsizeof n . Byeliminatingthesynchronous concept
of the generation, the steady-stateGApotentiallyallows goodsolutions
to spreadthroughout the populationmuchfaster thanthe generational
GA, interms of number of performedcrossings. Inother words, the al-
gorithms presentedhere probablyspends muchtime ineachgeneration
producing numerous o�spring ineachgenerationwhichare never used.
However, toavoidthat the steady-stateGAconverges prematurelytoa
local optimum, the factors controlling the selectionpressure should be
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anylimitations, andall nets are restrictedtopatterns of acertaintype.

The BEARlayout systemallows oorplanningandglobal routing to
be closely interleaved. As described inSection4.1.4, inBEARa clus-
tering tree is constructed initially, andoorplanning is thenperformed
during a top-down traversal of the tree. Global routing can be incor-
porated into this traversal as described in [Dai 87b]. At each level of
thehierarchy, aglobal routinggraphis extractedwhentheoorplanhas
beendetermined. All nets are thengloballyroutedinterms of the rout-
inggraph. Whenproceedingtothenext lower level of thehierarchy, the
global routing graphis re�nedaccordinglyandthe global route of each
net is re�nedintermsof thenewandmoredetailedgraph. Consequently,
as the tree traversal progresses towards the leaves, the global route for
eachnet becomes increasinglyaccurate. Furthermore, the global routing
performedat eachlevel a�ects the succeedingplacement steps, whichis
exactlythe kindof feedbackwanted. Afast computationof the Steiner
trees correspondingtoglobal net routes onagivenlevel of thehierarchy
is required. For this purpose, thechoiceof oorplans is restrictedsothat
the extractedglobal routinggraphs always haveacertainforminwhich
aminimumSteiner tree canbe computedinlinear time. However, this
scheme of simultaneous placement andglobal routing is not usedinthe
later versionof BEARpresentedin[Dai 89, Eschermann88].

Arecentapproachwhichcloselyintegratesplacementandglobal rout-
ing is SHARP, developedbyBapat andCohoon [Bapat 91, Bapat 93].
The basic idea is recursive partitioning combinedwith a collection of
pre-computedoptimal Steiner trees whichcanbe usedat each level of
thehierarchy. Global routingis re�nedas lower levels of thehierarchyis
consideredandhencefromthisoverall viewpoint, thebasicideasarequite
similar tothoseof [Dai 87b]. In[Bapat 93] theperformanceof SHARPis
comparedtothat of TimberWolf andis foundtobe inferior withrespect
tosolutionqualitybut about �ve times faster.

6. 3 Runti me Probl ems

It isexpectedthat theruntimeof thepresentedalgorithmscanbereduced
signi�cantlybyimprovingthe sequential algorithms as describedinSec-
tion6.3.1. Another andindependent approachtospeedupcomputation
is to parallelize the algorithms, as outlined in Section 6.3.2. The fact
that theGAis parallel bynature andhence verywell suitedfor parallel
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theGAcontextakeyissuethenbecomesthat of determiningtherelative
�tness of solutions while at the same time avoiding expressing solution
qualitybyasingle�gureof merit. In[Fonseca93] it is describedhowthis
canbedone sothat theGAsearches for (samples of) theParet o- opt i mal
set , whichis the set of solutions inwhichno solutioncanbe improved
with respect to any single criterionwithout degrading the value of at
least one other criterion. The Pareto-set is what the designer is looking
for initially. When (samples of) this set is known, the search can be
focussedoncertain interesting subsets by incorporating constraints for
someof the criteria. As pointedout in[Fonseca93] theGAis verywell
suited for this kind of optimization/explorationbecause of its built-in
simultaneous investigationof manyalternative solutions.

6. 2 Si mul taneous Pl acement andGl obal

Routi ng

The inherent problems of thearti�cial separationof themutuallydepen-
dentplacementandglobal routingtaskshavebeenamainthemethrough
Chapters 4and5. Tomake the synthesis process manageable, the tasks
were separatedwhen this �eldemergedand the separationhas beena
standard assumptionever since. But during the years a better under-
standing of the problems have developedand it nowseems natural to
investigate the possibilities of a reuni�cationof the problems. Clearly,
at least inprinciple solutionqualityshouldimprove whena problemis
solvedas awhole rather thanbycombiningsolutions of dependent sub-
problems. Onthe other hand, the uni�edproblemis of course harder to
solve than the subproblems, so inpractice the question is whether the
uni�edproblemcanbe solvedsu�cientlywell for the potential quality
improvement toappear.

Existing work on simultaneous placement and global routing is ex-
tremely limited 1. For the simple designstyle of gate arrays, a scheme
for simultaneous placement and routing was proposedas early as 1982
in [Burstein82]. An approach for building block layouts restricted to
slicing structures is presentedin[Szepieniec86]. However, a number of
strict assumptions prevents the practical applicabilityof the algorithm.
For example, routingcanbeperformedover the entire chipareawithout

1It i s not cl ear exactl y what the term\simul taneous" means i n thi s context, but f or the

di scussi on i n thi s Secti on i t i s su�ci ent to thi nk of a very cl ose i ntegrati on of the two tasks.
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nets are still trees, but thecriterionminimizedis the radius. McCoyand
Robins abandons the implicit assumptionusedthroughout the literature
for years, that a net is a tree [McCoy94]. Using the so-calledElmore
model of delay, they showthat non-tree routings maysigni�cantly im-
prove thedelayat arelativelysmall cost interms of wirelength.

Nomatter whichdelaymodel is used, toadapt theSPGalgorithmto
delayminimization, it is necessaryandsu�cient to replace the decoder
(andalter thecost computation). Necessityfollows fromthe fact that by
executinganSPGheuristic, the current decoder relies onknowledge of
the criterionoptimized. Su�ciencyis aconsequence of problem-speci�c
knowledge being exploitedby the decoder only. Hence, a newdecoder
shouldimplement aheuristic whichgivena set of selectedvertices gen-
erates a feasible, spanning graphof reasonable lowcost interms of the
delaymodel used. Agoodperformance wouldbe expected, cf. the �fth
conjecture of Section5.5.

Turningto the questionof the balancingof various possiblycompet-
ingobjectives, recall that inall presentedalgorithms areais givenhigher
prioritythanwirelength. Since bothquantities aremeasuredusingesti-
mates rather than exact values, the strict priorities may insome cases
deteriorate result qualityas pointedout inSection5.2.1. However, from
apractical point of viewanevenmoreimportant issueis theactual needs
of the designer. Whenenteringthe layout synthesis phase, thedesigners
knowledge of the properties of the future circuit will be limitedtoquite
roughestimatesasprovidedbyhighlevel synthesis tools. Therefore, dur-
ingthe layout synthesis phase thedesigner will typicallybe interestedin
exploring various trade-o�s between competing objectives such as e.g.
area, speedandpower consumption. Initiallythe overall objective will
often not be clearly de�ned, as it depends on the actual and still un-
knownpossibilities. Therefore, initiallythedesigner is interestedinaset
of solutions reecting the possible trade-o�s of the criteria considered,
rather than a single solution. Then, as knowledge of the possibilities
is acquired, the designer maywish to enforce constraints on some cri-
teria (nowknownto be satis�able) andthenexplore possible trade-o�s
amongthe remainingcriteriatoobtainabalancedsolutionsatisfyingthe
constraints.

This kindof multi-objective optimization/explorationis investigated
fromtheVLSI point of viewin[Dasgupta94, Takla94], andfromtheGA
point of viewin[Fonseca93]. Thequalityof asolutionis expressedbya
vectorof values, inwhicheachentrycorrespondstoaspeci�ccriterion. In
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Chapter 6

FutureWork

Manyaspects of the workpresented in this thesis warrants further re-
search. Based on the evaluations of Chapter 5 this Chapter discusses
threeparticular important directions of possiblefuturework. Section6.1
isafollowuponthediscussionfromSections5.1.1and5.2.1onthechoice
of optimizationcriteria andhowthey shouldbe balanced. The conse-
quences of the strong mutual dependence of the placement and global
routing tasks has beena recurrent theme in preceding chapters. This
suggests a closer integrationof these tasks whichis the topic addressed
inSection6.2. Finally, Section6.3presents anumber of possibilities for
reducingthe observedruntime problems, cf. Sections 5.2.1and5.4.1.

6. 1 Opti mi zat i on Cri teri a

Theissueof optimizationcriteriainvolves twomainquestions, addressed
inthe following: 1)Whichcriteriashouldbeoptimized? 2) Howshould
theybe combined?

Aspointedout inSection5.1.1thechoiceof minimisingareais highly
relevant froma practical point of view, while the minimizationof to-
tal wirelengthshouldbe replacedbythe explicit minimizationof delay.
The e�ort requiredto implement this change depends onthe extent to
whichthe algorithms exploit problem-speci�c knowledge. For the place-
ment algorithms, the change is merelya questionof replacingthe total
wirelengthestimatewithadelayestimate. However, for the global rout-
ingalgorithmthe situationis more complicated. Tominimize delaythe
SPGalgorithmrepeatedlyused in the �rst phase shouldminimize the
delayof anet rather thanthenet length. Variousmodels of delayexists.
In[Cong92] delayis de�nedfromthe radi us of anet, whichis themaxi-
mumroute lengthfromthe sourceterminal toanysinkterminal. Hence,
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� Anexperiencefromthisworkis that fromapractical point of view,
it is infact quite easyto �ndsettings of the GAcontrol parame-
ters whichyields goodperformance. It is de�nitelyeasier thanone
might think after having consulted the literature, inwhichquite
a fewpapers are concernedwiththe issue of parameter values, cf.
Section 3.4.4. This is not to say that a �xed set of parameters
will dofor anyalgorithm. Onthe contrary, due tothe complicated
interactions betweenvarious selectionstrategies, the (non-binary)
encoding used, etc. it is necessary to performa series of experi-
ments to�ndgoodsettingswhenever anewGAhas beendesigned.
However, this process is tedious rather than di�cult. Fromex-
perience with previous algorithms of a similar nature, one has a
(rather small) interval of feasible values for eachparameter. Find-
ingacombinationwhichworkswell canthenbeperformedinsome
systematic way as has beendone here. It is also likely that the
meta-GAapproachdescribedinSection3.4.4 is agoodwayof au-
tomatingthis workprocess, whichonlyhas tobedoneonceandfor
all whenever anewalgorithmis developed.
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� Estimations of area and interconnect length should be accurate,
since as alreadymentioned, the estimates e�ectively amounts to
addingnoise to the cost functions. If the noisemarginis not min-
imized, theworkperformedbytheGAinthe late phase, inwhich
most of the time is spend and only relative small improvements
obtained, maybepointless. This situationsuggests theuse of esti-
mates of whichthe accuracyis increaseddynamicallyas the opti-
mizationprocess progresses.

� The use of inversionoperators is beingdebatedamongresearchers
andthere are conicting views as to whether inversionshouldbe
usedorsubstitutedbyothertechniques, cf. Section3.4.1and[Bui 93,
Goldberg91]. As mentionedinSection5.1.3all GAs developedin
this work applies inversion operators, and all experiments which
addressedinversion, turnedout infavour of the operator. Hence,
the inversionoperators is one of the contributors to the obtained
performance.

� The SPGalgorithmperforms better than the other GAs devel-
oped in the sense that it is also runtime competitive. It is con-
jecturedthat bygeneralizingthe principles of the SPGalgorithm,
high-performanceGAs for alarger class of graphalgorithms canbe
obtained. Asimple bitstring can specify selectedvertices and/or
edges which should be (part of) a solution to a given problem.
Byusinga fast, deterministic heuristic for that problem, or some
other repair algorithm, thedecoder caninsure that anybitstringis
interpretedas a feasible (andpossiblyreasonably good) solution.
Standardgenetic operators canbe applied. Examples of problems
whichpresumablyare well suitedfor this approach, are themaxi-
mumindependent set problem, the maximumclique problemand
graphcolouring 10.

10In the case of graph col ouri ng the genotype shoul d be a stri ng of i ntegers speci f yi ng a col our

f or each vertex.
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5. 5 Overal l Eval uat i on and Conjectures

Summarizing the evaluation of the developed algorithms, they are all
highlycompetitive withrespect to solutionquality. For the placement
andglobal routing algorithms, this comes at the cost of excessive com-
putation times. In contrast, the SPGalgorithmis also competitive on
runtime. Overall, the obtainedresults are veryencouraging, especially
consideringthedevelopment timeinvestedinthis project, whichis about
3man-years. Signi�cantlymore timehas probablybeenspendonasys-
temsuchas TimberWolfMC.

The keyquestionis of course what are the reasons for the obtained
performance? Thefollowingconject ures arebelievedtobemainelements
of the answer:

� First of all, the complexityof theproblemsmakes themwell suited
for GAs, cf. Section 3.1.2. This claimis supported by the fact
that thedevelopedGAsmakes verylimiteduseof problem-speci�c
knowledge, cf. Section5.1.3. Inother words, the results are not
obtainedbyGAs heavilymixedwithother problem-speci�c tech-
niques, but of rather \pure"GAs 9.

� Due to the nature of the problems, constraints shouldbe handled
by enforcement, avoiding penalty terms in the cost function, cf.
the discussionof Section3.4.3. Anadditional reason is that the
drawbacks of penaltyterms become evenmore pronouncedfor the
problems consideredhere because of the involvedestimates, which
e�ectivelyamounts toaddingnoisetothe cost functions. Someex-
perimental indicationssupportsthisclaim: Themostsigni�cantdif-
ferencebetweentheGAfor theSPGpresentedinAppendixCand
the GAin [Kapsalis 93] is the constraint handling strategies, en-
forcement versus penalty. The performance results are veryclearly
in favour of the GAusing enforcement. Similarly, comparing the
GAfor placement to GAMP, one of the major di�erences is the
constraint handling strategies. Againthe algorithmusingenforce-
ment clearlyperforms best withrespect to solutionquality, while
here computationtimes are equal withinafactor of twoor three.

9The devel oped representati ons are hi ghl y probl em-speci �c, but i n accordance wi th the di s-

ti ncti ons i ntroduced i nSecti on 3. 4, the representati onand the use of probl em-speci �c knowl edge

are consi dered two di sti nct i ssues.
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5.4.2 Estimationsof RoutingAreaandInterconnect

Length

The estimate of total wirelengthcomputedbythe GAis exactlyas the
estimate used inTimberWolfMC, which is clearlymore accurate than
that of Mercurydue to the di�erent strategies for positioning terminal
vertices.

Comparing the routing area estimate of the GAto that of Mercury,
the GAperforms the most accurate computation. As explainedinSec-
tion4.2.2, inMercurythewidthof thechannel correspondingtoanedge
of the routinggraphis estimatedbya�xedcontributionandaexible,
that latter of which is proportional to the number of nets entering or
leaving the channel. In contrast, the GAcomputes the exact channel
densityconsideringall nets andusing exact terminal locations. Onthe
other hand, Mercuryis capableof adjustingtheplacementwithincertain
bounds, while theGArelies onthecompactor todothat. The total area
estimationof theGAis basedonthe assumptionthat all channels de�n-
ing the height andwidthof the �nal layout, will be compactedto their
minimumwidthbythe compactor. If that is not the case, the GAwill
underestimate the total area.

Acommonproblemof the area estimations of Mercuryandthe GA
is that theybothrelyonthe routinggraphtopologytobepreserved. As
is describedinSectionD.3.1, page210, if theplacement is adjustedafter
global routing so that the topologyof the corresponding routing graph
is altered, then the area estimate maybecome very inaccurate or even
meaningless. Another wayof sayingthis is that the givenplacement has
tobe su�cientlygoodtoassurethat it will onlyneedminor adjustments
later on. Again, this reects the strongmutual dependencebetweenthe
placement andglobal routingtasks. While the routinggraphtopologyis
preservedinall examples of Table 5.9, SectionD.4.3, page 216, includes
examples onwhat mayhappenwhenthat is not the case. The issue of
narrowing the gapbetweenplacement andglobal routing is brought up
inSection6.2.
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Since there is no stochastic variationwhenusingTimberWolfMC, only
one layout were generated using that router. Table 5.9 compares the
total area, the routing area (i.e., the total area minus the sumof the
cell areas) and the total wirelength of the completed layouts 8. Each
entry is computedas 100(GA res = T Wres � 1), where GA res is the result
using the GAandT W res is the result using TimberWolfMC. Hence, a
negative value is an improvement inpercent of using the GA. The GA
is clearlysuperior toTimberWolfMCwithrespect to layout quality. For
Xerox, theareareductionis obtainedbyincreasingthewirelength, while
for the other examples, area as well as wirelengthis reduced. However,
the qualityimprovement comes at a highprice. While TimberWolfMC
spends about 30seconds routing eachof XeroxandAmi33andabout 5
minutes routing Ami49, onaverage the GArequires about 22 minutes
for Xerox, 12minutes for Ami33and130minutes for Ami49. All values
are elapsedtime ona SunSparc IPX. The GAspends most of its time
computing channel densities, which are computed for all edges of the
routinggraphwhenever anewroutingsolutionis evaluated. Bykeeping
trackof the actual needfor recomputingchannel densities it is expected
that the runtime couldbe signi�cantlyimproved.

Circuit Solution Total area Routingarea Wirelength

Xerox best �1: 9 �4: 7 +0: 0
avg �1: 4 �3: 5 +0: 8

Ami33 best �3: 0 �4: 7 �1: 5
avg �1: 1 �1: 7 �0: 2

Ami49 best �4: 2 �7: 3 �4: 0
avg �3: 7 �6: 3 �2: 9

Table 5.9: Rel at i ve i mprovement s obt ai ned by t he GAcompared t o Ti m-
berWol f MC. Best and avg. i s best and average of t he �ve runs perf ormed

f or each ci rcui t .

8The ci rcui ts l i sted as Xerox, Ami 33 and Ami 49 corresponds to xerox-M, ami 33-2-Mand

ami 49-2-M, respecti vel y, i n Tabl e D. 2, page 217.
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5. 4 Eval uat i on of the Gl obal Router

ThefollowingSection5.4.1evaluatesthe layout qualityandcomputation
time of the global router, while the quality of the estimates are com-
mentedinSection5.4.2. Throughout these sections, the termGA refers
to the global router presentedinAppendixD, Ti mberWol f MC refers to
the global router of that system[Sechen88a, Sechen88b] (Section4.2.1)
andMercury is the approachof [Nishizaki 89] (Section4.2.2).

5.4.1 Performance

Since the GAminimizes area andsecondarilytotal interconnect length,
Mercuryminimizes the lengthof critical nets andsecondarilyarea, and
TimberWolfMCminimizes total interconnect length, the performance of
theGAshouldpreferablybecomparedtothatof Mercury. Unfortunately,
for purely technical reasons that was not possible 6. Instead the GA
was compared to TimberWolfMC. Despite of the distinct optimization
criteria, this comparisonstill provides some insight. In the �rst phase
of global routing, both routers attempts to �nd the shortest possible
routes, and consequently their phase two algorithms are given similar
input. Furthermore, theselectionof short routesoftenleadstoreasonably
small areas.

Inother respects the comparisonof the tworouters is presumablyas
fair as this kind of comparisonwill ever be: All input placements are
generatedbyPuppy, anSA-basedtool interfacedtoOcttools andboth
routersarealsointerfacedtoMosaico/Octtools. Consequently, all stepsof
thelayout synthesisprocess, except theglobal routingitself, isperformed
bythe same set of tools, whichmakes it fair to compare the completed
layouts. Furthermore, the routers are runonthe same machine, which
makes the computationtimes reasonablycomparable.

Placementsof theMCNCbenchmarksXerox, Ami33andAmi49were
usedfor theexperiments. Duetoatechnical problemit was necessaryto
remove all i/o-terminals (pads) fromthe examples 7. For eachexample,
�ve completedlayouts were generatedusing the GAfor global routing.

6Mercury i s i ncl uded i n Octtool s versi on 5. 2 i nstal l ed at Aarhus Uni versi ty, but our versi on

of the programi s not functi oni ng.
7InOcttool s 5. 2, the pl acement of pads producedbythe programPadpl ace cannot be handl ed

by the channel de�ni ti on programAtl as. Thi s i s the same probl emthat prevents the use of the

GA-based router on pl acements generated by SAGA, as menti oned i n Secti on 5. 2. 1.
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Table5.8comparestheabsolutecomputationtimesrequiredbySPH-I,
BC1, BC2andtheGA. For eachalgorithmandeachclass of graphs, the
twoentriesgives theminimumandmaximumcomputationtimerequired
tosolveone problem. I.e., consideringBC1andclass C, the easiest (for
BC1) of the 20problems was solvedin10seconds while the hardest (for
BC1) required45,848seconds. For theGA, thevalueslistedarethemini-
mumandmaximumof theaveragevaluesobtainedfor eachgraph. When
comparingthe absolute values of Table 5.8one shouldkeepinmindthe
di�erentmachines used. BC1are runonaVAX8700andBC2is runon
a SunSparc 2. For SPH-I andthe GA, a SunSparc IPXwas usedfor
graphs fromclasses B, CandD, while aDECMips 5000-240were used
for the graphs of class E.

BC1 BC2 SPH-I GA

Class min max min max min max min max

B - - 0 18 0 1 0 4
C 10 45,848 5 20,726 61 11,374 79 601

D 47 245,192 37 304,380 486 679,000 504 3,441

E 179 - 411 - 7,334 4: 3� 10 7 7,395 29,105

Table 5.8: Compari son of comput at i on t i mes. Al l val ues are CPU sec-

onds on t he respect i ve machi nes used. Ahyphen i ndi cat es a non- avai l abl e

val ue. The maxi mumval ues of SPH- I f or cl asses Dand Eare est i mat es.

Despitetheuseof di�erentmachines it is clear that theGAruntimes
arealwaysverymoderatecomparedtoanyof theother algorithms. Both
BC1andBC2are able tosolvesomeproblems extremelyfast, andmuch
faster thantheGA. But for other problems, the runtime of the branch-
and-cut algorithms explodeandevenprevents someproblems frombeing
solved. The maximumvalues for class Eare not available for these al-
gorithms, sinceBC1failedto solve one of the problems withina10day
CPU-limit, while for BC2, [Lucena92] onlylists runtimes for 5of the20
graphs, presumablybecause of runtime problems. Considering the esti-
matedtimes of SPH-I for the largest graphs, froma practical point of
viewthis algorithmis not able tohandle all problems either.

Summarizing fromTables 5.7 and 5.8, the GAgenerates solutions
whichare veryclosetothe global optimumwithahighprobability. The
GAis alsocompetitivewithrespect toruntimeandis theonlyalgorithm
capable of generating a solution for all problems within a reasonable
amount of time.
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� Abranch-and-cut approachbyChopra et al [Chopra92] denoted
here byBC1.

� The branch-and-cut approachbyLucenaandBeasley[Lucena92]
describedinSection4.2.3anddenotedhere byBC2.

Thebenchmarkdatausedare fromtheOR-Library[J. E. Beasley90]
andconsists of 78randomlygeneratedSPGinstances, whichare divided
into four classes B, C, Dand Eaccording to size. Graphs in class B
have at most 100 vertices, while inclasses C, DandE, eachgraphhas
500, 1000and2500vertices, respectively. The number of vertices to be
spannedvaries from5 to half of the vertices of the graph, andaverage
vertexdegreevaries from2.5to50. Hencethe largest graphs have62,500
edges. Class Bcontains 18 graphs while each of classes C, Dand E
contains 20graphs. Optimal solutions areknownfor all examples, which
were initiallyfoundbya branch-and-cut algorithmexecutedonaCray
supercomputer [J. E. Beasley89].

SPH-I GA

Class =0% < 1% =0% < 1%

B 94.4 94.4 100.0 100.0

C 50.0 80.0 78.0 93.5
D 35.0 65.0 77.5 92.5

E 20.0 45.0 55.0 85.0

Table5.7: Compari son of t he sol ut i on qual i t y obt ai ned by t he SPH- I and

t he GA.

As is accountedfor inSectionC.4.5, page 190, the geneticalgorithm
presentedin[Kapsalis 93] is clearlyinferior to all other algorithms con-
sideredhere, andare not discussedfurther inthis Section. While BC1
andBC2 �nds a global optimal solution for all graphs whichthey can
handle, this is of course not the case for SPH-I andthe GA. Table 5.7
compares thesolutionqualityobtainedbythelatter algorithms. For each
class of graphs andeachalgorithm, twoentries of the tablegives theper-
centage of all performed executions whichgave a solutionwithin 0 %,
respectively1%, fromthe global optimum. SinceSPH-I is deterministic
it was executedonce for eachgraphineachclass. TheGAwas executed
10 times on eachgraph in classes B, CandD, and once per graph in
class E. So, as anexample, 92.5%of the 10� 20=200executions of the
GAonthe graphs of class Dgaveasolutionwithin1%fromthe global
optimum, while in77.5%of these runs aglobal optimumwas found.
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easily be constructed for whichneither MBPnor GA/SAGAcan ever
�nda globallyoptimal solution. Terminal locations canbe assignedto
the placement of Fig. 5.1 (c) so that this placement corresponds to the
global optimumfor the completedlayout.

(a) (b) (c)

Figure 5.1: (a) A BL- pl acement whi ch i s not a sl i ci ng- s t ruct ure, (b) A

sl i ci ng- st ruct ure whi ch i s not a BL- pl acement , and (c) a pl acement whi ch

i s nei t her a BL- pl acement nor a sl i ci ng- st ruct ure.

These potential problems of GA/SAGAand MBPdo not disclose
themselves onthe benchmarks. Onthe contrary, these systems are the
ones obtaining the best layout quality. But the problemcould surface
onother examples andthis is more likelyfor GA/SAGAthanfor MBP
since for a givenproblemthe space of slicing-structures is presumably
larger thanthe space of BL-placements. Furthermore, the reductionto
slicing-structures has someadvantageswithrespect toroutingwhichthe
BL-placements donot, cf. Section2.3.

5. 3 Eval uat i on of the Stei ner Tree Al go-

ri thm

InthisSectionthetermGArefers tothealgorithmfor theSPGpresented
inAppendixC. Its performancehas beencomparedtothat of four other
approaches:

� Adeterministicheuristic denotedhere bySPH-I, describedinSec-
tionC.4.2, page182. Accordingtoacomparativestudypresentedin
[Winter 92] SPH-I is amongthe verybest deterministic heuristics,
andis superior toe.g. apopular algorithmby[Rayward-Smith86].

� Agenetic algorithmbyKapsalis et al. [Kapsalis 93], whichtomy
knowledgeis theonlygeneticalgorithmfor theSPGpublishedprior
tothis work.
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thanthe other systems. However, TimberWolfMCincludes a thirdfac-
tor whichdepends onthe locationof the channel inthe layout, so that
channels closetothecenter of thecircuit will bewider, cf. Section4.1.5.
There is nodoubt that this is agoodidea. Congestionat the center re-
gionof acircuit maysigni�cantlya�ect the sizeof channels everywhere,
andthis phenomenonis neither capturedbyMBPnor theGA.

Finally, some comments onthe areaestimationusedintheGA, con-
cerning the relationbetweenthe two terms measuring local andglobal
congestion. It should be noted that independent of the setting of the
parameters� and� , the global routingfactor is not equivalent tosimple
blockexpansion, since if the channel densityis zero, abutment of blocks
will be allowed. However, the presence of user-de�nedparameters is a
drawback, although it is not too di�cult to �ndsuitable settings. For
a givenproblem, the expectednumber of terminals involvedina chan-
nel densitycomputationcanbeestimated, for examplebyassumingthat
all terminals are uniformly distributedover all block sides. This gives
bounds onthe possible channel densities, i.e., the magnitude of the lo-
cal congestionterm. The desiredmagnitude of the global routing term
canthenbedetermined, consideringblocklengths andthe total number
of nets. Nevertheless, this issue requires further investigationaimingat
eliminatingthe parameters.

Another concern is the imbalance of the two terms with respect to
their accuracy. The local congestionestimate is veryaccurate but also
extremelytimeconsumingandthemainreasonfor the extensivecompu-
tationtimeof theGA. Combiningit withaless accurate termraises the
questionwhether thetimespendcomputingchannel densities is fullyjus-
ti�ed, althoughtheaccurate estimationis presumablyoneof the reasons
for the layout qualityobtainable bytheGA.

5.2.3 SearchSpaceReductions

GAandSAGAdi�ers signi�cantlyfromthe other approaches discussed
bythewaythesearchspaceis reduced. TherestrictiontoBL-placements
followedfromthe viewof the placement problemas a generalizationof
a bin-packing problem. In contrast, MBPuses the commonreduction
of the search space to slicing-structures, while neither BB, GAMPor
TimberWolfMCreduces the space explored. As illustrated inFig. 5.1,
placements exist which are contained in the search space explored by
MBPbut not byGA/SAGAandviceversa. Furthermore, problems can
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5.2.2 Estimationsof RoutingAreaandInterconnect

Length

As statedpreviouslythe issue of estimations is acrucial one. The chal-
lenge is to �nd a suitable balance betweenaccuracy and computation
time. The accuracydetermines the amount of noiseonthe cost function
optimized. In the following the estimates used in the GA(and hence
SAGA) are discussedandcomparedto those usedinthe other systems
presentedinChapter 4. However, since the nature of the estimations of
theBEARsystemaresigni�cantlydi�erent fromthoseusedbytheother
systems, comparisonwithBEARis di�cult andhavebeenomitted.

Startingwithwirelength, MBP, GAMP, andTimberWolfMCall esti-
mates total wirelengthbythe sumof the half-perimeters of all nets, and
BBimplicitlyuses thehalf-perimeters inthecost functionestimatingto-
tal area. Incontrast, theGAestimatesthelengthof eachnet byasumof
theEuclideandistance fromeachterminal toaconstructedcenter-point
of the net, as describedinSection5.1.2. The half-perimeter of anet is
a theoretical lower boundonthe requiredwirelength. For two-terminal
nets theGAalsounderestimates the wirelength, but for nets withthree
ormoreterminals thewirelengthmaybeoverestimated. Consequently, it
ishardtosaywhichestimateis themostaccurate. Sincethecomputation
time for wirelengthestimationis not likelytobe aserious bottleneckin
anyof the algorithms, time is hardlyanimportant criterionhere.

Turning to area estimation, the simplest strategy is static blockex-
pansion, i.e. initially expanding eachblockby a �xedamount in each
direction, dependingonthe terminals. This scheme, whichis appliedby
BBandGAMP, canbecharacterizedas beinginaccuratebut veryfast to
compute. However, inBBtheestimatedareais alsoindirectlya�ectedby
the estimatedwirelengththroughthe cost-function. The areaestimates
of MBP, TimberWolfMCandtheGAhas some commonfeatures. Inall
three systems, the estimatedwidthof achannel involves two(arti�cially
separated) contributions, one accounting for local congestion, and one
accountingfor global routing, i.e., nets passingthroughthe channel. In
MBPandTimberWolfMCthe local congestionis estimatedbya simple
functionof thenumber of involvedterminals, while intheGA, theexact
channel density is computed. In all three systems, the global routing
contributionis asimplefunctionof the lengthof thechannel. Hence, the
accuracyof the global routing contributions are about the same for the
three systems, while theGAestimates local congestionmore accurately



76
CHAPTER5. SUMMARYANDEVALUATION

OFDEVELOPEDALGORITHMS

Area Wirelength
Benchmark System absolute relative absolute relative Time

Apte SAGA 53.58 1.00 489 1.40 55
GA 53.99 1.01 563 1.61 52
BB 54.05 1.01 460 1.31 -
MBP 54.77 1.02 350 1.00 3
GAMP 61.80 1.15 591 1.69 28

Xerox MBP 25.79 1.00 601 1.08 9
BB 26.17 1.01 628 1.13 67
GA 26.58 1.03 556 1.00 156
SAGA 27.15 1.05 679 1.22 220
BEAR 28.47 1.10 633 1.14 2
MOSAICO 29.01 1.12 650 1.17 -
VITAL 31.17 1.21 866 1.56 -
GAMP 32.60 1.26 1,038 1.87 68

Hp SAGA 11.81 1.00 261 1.31 51
MBP 11.85 1.00 200 1.00 5
GA 11.95 1.01 262 1.31 55
BB 12.15 1.03 278 1.39 -
GAMP - - 365 1.83 40

Ami33 BB 2.24 1.00 109 1.20 89
MBP 2.42 1.08 91 1.00 49
BEAR 2.83 1.26 131 1.44 13
VITAL 3.12 1.39 135 1.48 -
MOSAICO 3.16 1.41 152 1.67 -
GAMP - - 279 3.07 112

Ami49 MBP 48.79 1.00 904 1.00 178
BB 51.49 1.06 1,021 1.13 -
GAMP - - - - 359

Table 5.6: Compari son of l ayout qual i t i es and comput at i on t i mes. Ab-

sol ut e area i s t he core area i n mm2 and absol ut e wi rel engt h i s t he t ot al

i nt erconnect l engt h i n mm. Ti me i s CPU- t i me i n mi nut es. To ease com-
pari sons, rel at i ve areas and wi rel engt hs are al so gi ven by normal i zi ng t he

best resul t f or each benchmark t o t he val ue 1. 00. For each ci rcui t t he

resul t s are ordered accordi ng t o obt ai ned area. A hyphen i ndi cat es t hat
t he val ue i s not avai l abl e. Regardi ng t he areas obt ai ned by GAMP f or Hp

and Ami 33, t he val ues gi ven i n [Chan 91] are not comparabl e t o t he ot her

val ues of t hi s t abl e, presumabl y due t o i ncompat i bl e scal i ngs.
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It is interesting to compare the total wirelengths obtained by the
GA/SAGAto those of MBP. While onXerox there are no signi�cant
di�erences, for Apte andHptheGA/SAGAvalues are 31- 61%higher
thanthose of MBP. Three factors cancontribute tothese signi�cant dif-
ferences:

� To some extent there is a tradeo�betweenarea andwirelength.
Hence it is likely that a very small area is obtained because of
longer routes for some nets. However, this canhardlyaccount for
muchof the observeddi�erence.

� The�tness computationof theGA/SAGAalways gives higher pri-
ority to area than wirelength. If solution Ahas a much larger
estimatedtotal wirelengththanBbut just a slightlysmaller esti-
matedarea, thenAis always consideredbetter thanB. Hence, this
priority relies heavilyona veryaccurate routing area estimation,
andwill not always be reasonable. This issue is discussedfurther
inSection6.1.

� The global routing of the GA/SAGAplacements could be infe-
rior to that of MBP's placements. As mentionedpreviously, the
GA/SAGAplacements are input toMosaico, whichuses theglobal
router of TimberWolfMCdescribed in Section 4.2.1. As will be
describedinSection5.4.1, the GA-basedrouter presentedinAp-
pendixDis clearlysuperior toTimberWolfMC, bothwithrespect
toareaandwirelength. Consequently, it is verylikelythat byusing
theGA-basedglobal router rather thanTimberWolfMC, the areas
andwirelengths reportedfor theGAandSAGAwouldimprovefur-
ther. Unfortunately, duetopurelytechnical problems this havenot
beencon�rmedexperimentally 5.

Regardingthereservationconcerningthefairnessof comparingcompleted
layouts, it canbenotedfromthelast pointabovethat theGA/SAGAare
probablydisadvantagedwithrespect tothe inuence of global routing.

5The GA-based gl obal router i s i nterf aced to Octtool s versi on 5. 2, i nstal l ed at Aarhus Uni -

versi ty. In thi s Octtool s versi on some bugs not present i n versi on 5. 1 prevents i /o-termi nal s

(pads) f rombei ng handl ed. Speci �cal l y, the channel de�ni ti on programAtl as can not handl e

the pl acement of pads generated by Padpl ace. The gl obal router coul d then be i nterf aced to

Octtool s 5. 1 i nstal l ed at Uni versi ty of Mi chi gan. But because of other di �erences between the

two Octtool s versi ons, thi s i ntegrati onwoul d requi re a si gni �cant amount of work.
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� The listedCPU-times are for the placement tools only, i.e., they
do not include routing and compaction, etc. The time for BBis
measuredonaDEC3100whileMBPuses anApolloDN4000. For
BEARthe times listedare elapsedtimerather thanCPU-timeand
are measured on a VAX8880 with workload 10.5-12.5. Finally,
GAMPis run on a Sun Sparc 1+and the GAand SAGAon a
DECMips 5000-240. For the latter twoalgorithms the listedrun-
times are averagevalues.

The remainingof this Sectioncomments onthe results listedinTa-
ble 5.6, keeping inmind the above reservations. BothSAGAandGA
performs verywell with respect to area, the main layout quality crite-
rion. ForApteandHp, thebestpublishedresults areobtainedbySAGA,
althoughdi�erences betweenthe best results are small. For Xerox, the
two algorithms are inferior toMBPandBB, but are still doing better
than e.g. BEAR. Turning to runtime, we see that the GAandSAGA
requires about the sameamounts of timeandthat theyare signi�cantly
slower thanall other algorithms. The runtime requirements of the algo-
rithms prevents Ami33andAmi49 frombeingplaced. Where su�cient
results areavailable, GA/SAGAareabout 2-3times slower thanBBand
GAMP, theotherGA-basedapproach. ComparedtoMBPthealgorithms
are 10-20times slower. Themachineusedfor theGA/SAGAis presum-
ablyat least as fast as the other machines, whichfurther ampli�es these
di�erences. Ontheother hand, sequential programs canoftenbespeeded
upsigni�cantlybyamere programming e�ort. Only very limitedtime
has beenspendonthis for theGA/SAGA.

It is possible that to some extent the small improvements obtained
byusingsigni�cantlymore computationtimemerelyreects the nature
of the problems. Manyresearchers haveworkedwiththese benchmarks,
whichhave beenavailable at least since 1990. As the gapto the global
optima is narrowed it becomes increasingly hard to obtain even small
improvements. Despite such factors, the runtime requirements of the
GA/SAGAare not satisfactory, and at least the algorithms should be
abletohandleall benchmarks. InSection6.3anumber of possibilities of
improvingruntime are discussed, andI believe that signi�cant improve-
ments canbe obtained.
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system[Casotto86] andtheVITALsystem[Putatunda88] arereferenced
here as foundin[Dai 89, Upton90a]. Noresults for TimberWolfMCare
givensincenonewere foundfor theMCNCbenchmarks.

Benchmark Cells Nets Terminals

Apte 9 97 287

Xerox 10 203 698
Hp 11 83 309

Ami33 33 123 522
Ami49 49 408 953

Table5.5: Charact eri st i cs of t he MCNCbenchmark ci rcui t s. The number

of t ermi nal s i ncl udes t he number of i /o- t ermi nal s (pads) t o be posi t i oned
al ong t he peri phery of t he ci rcui t .

All listedareas andtotal wirelengths aremeasuredfor the completed
layouts, i.e., after routingandcompaction, etc. Inotherwords, sinceit is
not possibletocompareplacements directly, the table compares theper-
formance of complete layout systems including routers andcompactors,
etc. At least three other factors complicates the comparison:

� The exact problemde�nitions used varies slightly. For example,
theBBsystemde�nes anaspect ratiogoal for some circuits anda
widthgoal for others.

� Someapproachesarestochasticandothers aredeterministic. Aver-
ageresultscouldthenbegivenfor thestochasticones. However, the
results forMBP, GAMPandpossiblyother approachesare\best of
a small number of runs". 3 Anargument for this is that aslightly
better resultwill beobtainedbyexecutingthestochasticalgorithm
afewtimes, whichis useful if layout qualityis the toppriority. Of
coursetheobviouse�ect oncomputationtimeshouldthenbetaken
intoaccount. Tomake the comparisonto the other stochastic ap-
proaches as fair as possible, the results for GAandSAGAlisted
in Table 5.6 are the best obtained of ten runs. Average results
andstandarddeviations are giveninappendices AandB. All GA
andSAGAresults havebeenobtainedusingtheparameter settings
giveninSection5.1.3 4 androutingandcompaction, etc. has been
done usingMosaico, cf. Section5.1.

3Personal communi cati onwi th authors of [ Chan 91, Upton 90a] .
4SAGAdynami cal l y adjusts the val ues of some of the parameters, but the val ues l i sted i n

Tabl e 5. 4 are val i d i n the i ni ti al generati on.
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As canbe seen fromthe table the parameter values usedare quite
similar. Variations inpopulationsizes andstopcriteria reects various
tradeo�s betweensolutionqualityandcomputationtime. The latter in-
creasesat least linearlywiththepopulationsizesincetheworkrequiredin
eachgenerationincreases linearlyandthe number of generations needed
for convergence is likelyto increase, too. For GAroute, if r k =20 the
mutationrate for net k is 0.00475, i.e. similar to the mutationrate of
GAspg. Themutationrate for GAplace is signi�cantlyhigher, whichco-
incideswiththeviews of [Tate 93] whostates that \...problems requiring
non-binaryencodingsmaybene�t frommutationratesmuchhigher than
thosegenerallyusedwithbinaryencodings."Extensiveexperimentshave
shownthat the algorithms are quite robust tochanges of the parameter
settings. For example, alteringthe mutationrate bye.g. 10%will not
a�ect performancemuch.

5. 2 Eval uat i on of the Pl acement Al gori thms

ThefollowingSectionscompares theplacementalgorithmswithother ap-
proaches. Section5.2.1compares layout qualityandcomputationtimes,
Section 5.2.2 compares the area and wirelength estimations and Sec-
tion 5.2.3 discusses the di�erences regarding search space reductions.
Throughout these Sections, GA will refer to the algorithmpresented
in Appendix A, SAGA refers to mixed-mode executions of the algo-
rithmpresented in Appendix B, MBP is the approach of [Upton90a]
(Section4.1.1), BB refers to [Onodera91] (Section4.1.2), GAMP is the
approach of [Chan91] (Section 4.1.3), BEARrefers to [Dai 87b] (Sec-
tion4.1.4) andTimberWolfMCrefers totheplacement algorithmusedin
theTimberWolfMCsystem[Sechen88a] (Section4.1.5).

5.2.1 Performance

Themaincharacteristics of theMCNCbenchmarks [Ko�zmi�nski 91] used
for performanceevaluationare listedinTable5.5. 1 Theobtainedresults
arecomparedtoother approaches inTable5.6, page76, whichtothebest
of myknowledgeincludesall thebestpublishedresults. TheMOSAICO 2

1Asi xth ci rcui t was added recentl y but no resul ts have been reported yet.
2Thi s shoul d not be confused wi th Mosai co, the macro-cel l l ayout systemwhi ch i s part

of Octtool s [ Octtool s 93] . We wi l l use capi tal l etters f or the pl acement al gori thmdescri bed

i n [ Casotto 86] .
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InGAplacemost constraintsareenforcedthroughtherepresentation.
However, both the decoder and the genetic operators have to actively
consider constraint violations since infeasible solutions canbe expressed
asagenotype. InGAspgconstraintsatisfactionisenforcedbythedecoder
exclusively.

GAplace GAspg

Representation yes no

Decoder yes yes

Geneticoperators yes no

Table5.3: Appl i ed const rai nt enf orcement met hods.

Selectionof Parameter Values

Of the four strategies for �nding suitable parameter settings for a GA
listedinSection3.4.4, the secondalternative have beenusedfor all al-
gorithms: A�xedset of parameter values have beenfoundfor eachal-
gorithmbased on experiments and general guidelines provided in the
literature. The resulting settinghas thenbeenusedfor all programex-
ecutions for whichresults are reported. That is, nodata speci�c tuning
havebeenperformed.

GAplace GAspg GAroute

Populationsize 25 40 40

Stopcriterion 200 50 100
Mutationrate 0.025 0.005 0: 00025(r k � 1)

Inversionrate 0.05 0.1 0.1

Table5.4: The �xed val ues used f or t he cont rol paramet ers.

Table 5.4 lists the values used. The stopcriterion is the number of
consecutivegenerations duringwhichnoimprovement has beenobserved
upon termination of the algorithm. Since all mutation operators per-
forms \point-wise"mutations, the mutation rates are the probabilities
that aspeci�c component of agenotype is mutatedwhenthe individual
is subjectedtomutation. For GAroute, r k is the number of alternative
routesof thek 'thnet. Hence, theintegervalueidentifyingaspeci�croute
for net k is alteredwiththe listedprobability. The inversionrate is the
probability that a givenindividual is subjected to inversion ina given
generation.
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Exploitationof Problem-Speci�cKnowledge

InTable 5.2the four ways of exploitingproblem-speci�cknowledgepre-
sentedinSection3.4.2arelistedandthealgorithmsclassi�edaccordingly.

GAplace GAspg GAroute

Heuristics indecoder no yes no

Heuristics inexistingoperators no no no
Newoperators added no no no

Seedingof initial population no no yes

Table5.2: Expl oi t at i on of probl em- speci �c knowl edge i n t he al gori t hms.

GAplace do not exploit any problem-speci�c knowledge. Although
rather complex, the decoder as well as the genetic operators merelyas-
sures feasibilityof the generatedindividuals anddonot attempt todis-
cardpoor solutions. SectionA.4.1, page128describesexperimentsonex-
ploitingproblem-speci�cknowledgeinthecrossoveroperatorof GAplace.
Theseattempts didnot result inanyimprovement of theperformanceof
the algorithm.

As mentioned when describing the GAtemplate applied, all algo-
rithms uses hillclimbers, i.e., theyhaveaddedoperators. However, these
are not problem-speci�c but simply executes a sequence of �tness-im-
provingmutations. Summarizing, it is evident that the use of problem-
speci�c knowledge in the algorithms is very limited, and hence leaves
a large potential for improvement of the algorithms, cf. Section 3.4.2
and[Michalewicz93].

Constraint Handling

In a sense any problemhave some constraints which needs to be sat-
is�ed. For example, a solutionmay have to be an integer value or it
maybe restrictedto acertaininterval. Suchconstraints are trivial ina
GAcontext as theyare easilyenforced. Therefore, whentalkingabout
\constraints"and\constraint handling", what is meant is (handlingof)
non-trivial constraints. As stated in the GAtemplate description, all
algorithms applies the strategyof enforcingconstraint satisfactionat all
times. Table 5.3 lists the three ways of enforcingconstraints introduced
inSection3.4.3. Since the problemde�nitionfor GAroute contains no
constraints, that algorithmis excluded.
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to agreat extent the performance of aGAis the result of the complex
interactionof anumberof designchoicesmade. Forexample, astatement
like\selectionschemeAfor crossover is better thanselectionschemeB"
rarelymakes sense on its own, since it depends on a number of other
issues suchas e.g. the selectionscheme usedfor survival into the next
generation.

Inthe followingthe algorithms are categorizedinterms of the issues
discussedinSection3.4. The placement algorithms describedinAppen-
dices AandBare identical as far as their GA-parts are concerned, and
henceare treatedhere as one algorithmreferredtoasGApl ace. TheGA
for the SPG(AppendixC) is referredtoasGAspg andGArout e denotes
theGAfor global routing(AppendixD), i.e., theGAusedinthe second
phase of the global router.

EncodingandSearchSpaceReductions

Table5.1liststhegeneticencodingsusedandindicateswhetherthesearch
space is reduced or not. The search space considered by GAplace is
limitedtoBL-placements only, cf. Section5.1.2, while the searchspace
reductioninGAspgstems fromanupper boundonthenumberof Steiner
vertices inaminimumSteiner tree, deducedby[Lawler 76]. Hence, the
searchspace reductionhas the formof anupper limit onthe number of
Steiner vertices selectedbyanyindividual, i.e., the number of 1's inany
binarystring. It is importanttonotethataglobal optimumisguaranteed
toexist withinthe reducedsearchspace consideredbyGAspg.

GAplace GAspg GAroute

Encoding binarytree bitstring integer array

Searchspace reduction yes yes no

Table 5.1: Represent at i ons and t he use of search space reduct i ons.

This is not the case for GAplace, since the global optimummaynot
be aBL-placement, as will be illustratedinSection5.2.3. Another ma-
jor di�erence is the waythe searchspace reductionis incorporatedinto
the algorithms. InGAplace the representationandthe decoder enforces
the reduction, while inGAspg it is handled exclusively by the genetic
operators.
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5.1.3 GATemplateandDesignDecisions

All GAs developedinthis workcomplies tothe sametemplatebyhaving
the followingproperties incommon:

1. Let n be the populationsize. Ineachgeneration, apool of n o�-
springis generatedbyrepeateduseof thecrossoveroperator. From
the resultingtotal of 2n individuals, the n best is thenchosende-
terministicallyfor survival intothe next generation.

2. The scheme usedfor selectingthe parent individuals for crossover
is st ochast i c sampl i ng wi t h repl acement [Goldberg89a]: The two
individuals are selectedindependentlyof eachother and eachin-
dividual is selectedwith a probability proportional to its �tness.
Everyindividual canbe selectedanynumber of times inthe same
generation.

3. Aninversionoperator is used.

4. The number of generations is not �xed. Insteadthe simulationis
stoppedwhennoimprovement has beenobservedfor auserde�ned
number of consecutivegenerations.

5. Throughout the process the best individual whichhas ever existed
is recorded. This schemeshouldnot be confusedwiththe common
schemeof assuringthat thebest individual inagenerationis never
deletedor deteriorated. Thelattermeans that �tnessof thecurrent
best individual as a functionof time is monotonically increasing,
while the �rst does not.

6. After thelastgeneration, thebest individual everseen(andpossibly
somemore) are optimizedfurther usingsimple hillclimbers.

7. All constraints are handled exclusively by enforcement. Conse-
quently, nocost/�tness-functioninvolves anypenaltyterms.

Thistemplatewasnot�xedinitiallyandthenusedall theway. Onthe
contrary, for most of the algorithms, lots of experimentationhave been
done with eachof these issues. The above template is the outcome of
theseexperiments. It turnedout toyieldthebestperformanceamongthe
alternatives triedandconsequentlyhavebeenusedfor the �nal versions
of all algorithms. When comparing speci�c items of the template to
alternativepossibilities fromthe literature, oneshouldkeepinmindthat
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markdata including randomgraphs of upto 2,500 vertices and62,500
edges. Furthermore, I came to knowof the high-performance SPGap-
proachesdiscussedinSection4.2.3. Thealgorithmwas improved, mainly
byaddingreductiontests, andthe implementationwas improved, reduc-
ing runtime as well as memory requirements. The newversionof the
algorithmwas comparedamongothers tothebranch-and-cut approaches
of Section4.2.3, and results were published in [Esbensen94c] which is
thepaper reproducedinAppendixC.

Global RoutingBasedOnTwoGAs

The global router explicitlyminimizes area as the main criterion and
total wirelength as a secondary criterion. In phase one, the only cri-
terion is to generate short routes, i.e., each net is an instance of the
SPG. Two-terminal nets are handledbyLawler's algorithm[Lawler 76]
whilenetswiththreeormoreterminals arehandledbytheGAdescribed
above. Terminal vertices are added at exact locations as in Timber-
WolfMC[Sechen88a].

For the secondphase anewGAwas developed. Asolutionis repre-
sentedbya stringof integers, where the i 'thinteger identi�es the route
chosen for the i 'th net. Routing area is estimatedusing polar graphs
as inMercury[Nishizaki 89]. However, as opposedtoMercury, the esti-
mate is basedoncomputationof the exact channel densityfor eachedge
of the routing graph, improving the accuracy of the estimation. This
is onlypossible since terminal vertices were addedat exact positions in
phaseone, andfor thesamereasontheestimateof total wirelengthis also
accurate. The initial populationof the GAis seededwiththe solution
consistingof theshortest route foundfor eachnet, sincethis solutionwill
alsousuallyhave arelativelysmall area. This seedingdoes not improve
the�nal layout qualityobtained, but speeds upconvergence. The global
router has beenpublishedas [Esbensen94d] reproducedinAppendixD.
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small, the total wirelengths are generally relatively high compared to
layoutsproducedbyother systems. Onepossiblereasonis that theglobal
router usedcouldbe inferior to the routers usedbythe other systems.
For thesereasons, followingtheplacementwork, it wasdecidedtodesign
aglobal router.

The choice fell onthe two-phase strategy(cf. Section4.2) since the
layouts consideredare relatively small and since the successful routers
TimberWolfMC[Sechen88a] andMercury [Nishizaki 89] are both two-
phase routers. Since the optimizationcriterioninvolves total wirelength,
this leads to consideration of the SPG. As discussed in Sections 4.2.1
and4.2.2, TimberWolfMCandMercurygenerates onlyasingleroute for
each net having more than 11 or 5 terminals respectively, due to the
runtime requirements of the involvedalgorithms. Potentiallythis limits
the overall quality obtainable, as noted in [Sechen88b]. Since a GA
provides a number of distinct solutions ineachrun it couldpotentially
overcomethis problem. This featureof theGAis especiallyappealingin
this context: Not onlythebest solution, but alsothe second-best, third-
best, etc. are actuallyneeded, andtheyare generatedbythe GAas a
\by-product"anyway.

The basic idea of the developedGAfor the SPGis to represent a
solutionas abitstringof lengthequal tothepotential number of Steiner
vertices. Eachbit speci�eswhether aspeci�cvertexis selectedfor inclu-
sionintheSteiner treeor not. Byusingafast, deterministicheuristicfor
the SPGas decoder, anybitstringis interpretedas avalidSteiner tree.

At this time, I was not aware of any benchmarks which could be
used to evaluate the algorithm. Routing graphs extracted fromreal
placements would be the ideal type of data, but since the router had
not yet beendeveloped - its future existence depended on the perfor-
mance of the SPGalgorithm- the interface to Mosaico had not been
investigated, so there was noeasywayof obtainingreal routinggraphs.
Consequently, randomgraphs weregeneratedandusedinstead, andper-
formance was comparedtothat of twodeterministic heuristics fromthe
literature, implemented for this purpose. The results were published
in [Esbensen94b] andwere veryencouraging, not onlywith respect to
solutionqualitybut alsowithrespect to computationtime. The latter
is unusual for aGA-basedapproach. Consequently, I hadtopursue this
topic alittle further, althoughthe direct relevance for the routingappli-
cationwouldprobablybelimited. InthemeantimeI becameawareof the
OR-Library[J. E. Beasley90], adatabase containingchallengingbench-
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searchprocess. Like anyother GAthe placement algorithminitiallyob-
tains signi�cant improvements rapidly. Thentheprocess slowsdownand
the algorithmspends the vast majorityof its time inaphasewhere only
minor improvements are obtained. SA-basedalgorithms convergesmuch
slower thanaGAinitially, but later onthe SAmaydo better. Hence,
the ideawas tocombinetheGAwithSAaimingat combiningthe initial
convergenceof theGAwiththe convergence of SAinthe later phase of
theprocess. Previousworkalongthis linehasbeendonebyBoseniukand
Ebeling [Boseniuk91], whichwas the mainsource of inspiration. How-
ever, theapproachpresentedhere is more general. It uni�es theGAand
SAinto one algorithm, calledSAGA. Boththe GAandSAare special
cases of SAGAwhichare obtainedbyappropriate settings of the control
parameters. Theinterestingpart is of courseexecutions inmixedGA/SA
mode. Here the algorithmstarts out as apureGA. As the performance
of the algorithmdecreases, SAGAgraduallyandadaptivelyswitches to-
wards SA. Mutations arenot carriedout immediately, but acceptedwith
a certaintemperature dependent probabilityas inSA. Eachindividual
has its own temperature. When no improvement has been seen for a
certainnumber of generations, asteptowards SAis takenbydecreasing
the populationsize andincreasingthe number of attemptedmutations.
Ultimately, the populationsizemaybecome one, inwhichcase the pro-
cess is pure SA. The problemrepresentation, genetic operators, etc. are
unchanged, i.e., theyare as describedinAppendixA.

Since SAGAis capable of producing the same layout qualityas the
pureGA, but inshorter time, it meets the original objectiveof speeding
upthe searchprocess. However, SAGAcanalso improve layout quality
further if executedfor about the sametimeas thepureGA. Since layout
qualityis consideredmore important thanruntime, cf. Section1.2, the
latter propertyis the one emphasizedwhenpresentingthe algorithm.

SAGAwas publishedas [Esbensen94a]. Anextendedversionof this
paper is presented in Appendix B. For example, the extended paper
illustrates indetail what happens duringamixed-modeexecution.

AGAfor theSPG

As discussed in Section 2.3, following placement/oorplanning, global
routingis the layout synthesis stepwhichshouldbeexpectedtoinuence
overall layout qualitythe most. Whenexaminingthe layouts generated
usingSAGAandMosaico, one notices that while the obtainedareas are
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where� is thespacingof theroutinggrid, l s is the lengthof sides , � and
� areuserde�nedparameters andtheroundingfunctionreturns thenear-
est integer of its argument. d s is the exact channel densitycomputedby
consideringall appropriateterminalswithinthesquareregionhavingside
lengthl s nexttosides of theblock, as illustratedinFig. A.3, page121. d s

is computedwithout consideringglobal routing, i.e., this termmeasures
local congestiononly. The two other terms, �

q
ls= � and� , are meant

to account for global routing. The �rst of these terms grows with the
lengthof the routing region, similar towhat is done in[Upton90a], cf.
Section4.1.1. Note that sinced s =0impliesD s =0blocks canbe abut-
ted. Total wirelengthis estimatedas in[Herrigel 89]. LetM denote the
number of nets, m k the number of terminals of net k andt ki =(x ki ; yki )
the coordinates of the i 'thterminal of net k . The cent er of gravi t y T k of
net k is thende�nedby

Tk =
1

mk

mkX
i=1

tki

andthe total wirelengthestimatedby

MX
k=1

mkX
i=1

k tki � Tkk

where k is the usual Euclideanvector norm. Fromthe estimatedtotal
areaandtheestimatedwirelength, �tness is computedinsuchawaythat
smaller areaalwaysmeans higher �tness.

Initially, this algorithmwas interfacedwiththe layout systemMagic
[Scott 85] andpublishedas [Esbensen92]. Later it was improved ina
numberof ways: Thecrossoveroperatoraswell asthemutationoperators
were improved, aninversionoperator was added, runtimewas improved
andthealgorithmwas interfacedtoMosaico/Octtools, whicho�ersmore
andbetter tools thanMagic. AppendixAdescribes the resultingversion
of the algorithm, whichperforms signi�cantly better than the original
versiondescribedin[Esbensen92].

AUni�cationof theGAandSAAppliedtoMacro-Cell Place-

ment

While the layout qualityobtainedbythe algorithmdescribedabovewas
verypromising, the computationtimerequiredwas still verylarge. Con-
sequently, itwasnatural tolookatwaysof improvingthee�ciencyof the
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relevant, despite the fact that it is a frequentlyusedcriterioninthe lit-
erature. Althoughshort total wirelengthwill oftenresult insmall layout
areaandashortdelay(thelengthof thelongestpaththroughthecircuit),
this will of coursenot alwaysbe the case. For high-performancecircuits,
explicitminimizationof delaywouldbemoreadequate, butwouldrequire
changes of the algorithms as will be discussedinSection6.1. The �rst
assumptionpreventsroutingontopof blocks. Thiswill rarelyberealistic
unless thedesignis small andareais not consideredanissue. Therefore,
the �rst assumptionis the one that compromises the practical applica-
bilityof the algorithms the most. However, incorporating over-the-cell
routinginthe algorithms wouldrequire signi�cant alterations.

5.1.2 What andWhy- theDevelopment History

AGAfor Macro-Cell Placement

The�rst algorithmdevelopedwasaGAformacro-cell placement. It is in-
spiredbyaGAfor thetwo-dimensional bin-packingproblem[Kr�oger 91].
Bin-packingis the problemof placinganumber of givenrectangles ina
rectangular areaof �xedwidthandin�nite height so that no rectangles
overlap and so that the height of the packing is minimized. Given a
target widthof a layout, the macro-cell placement problemcanbe seen
as the bin-packingproblemgeneralizedintwoways: Firstly, the place-
ment of eachrectangle (macro-cell) is directedbyafunctionde�ningthe
minimumdistance to previouslyplacedrectangles (the routing area es-
timate). Secondly, eachrectangle canbe orientedineight distinct ways
insteadof two. Atraditional bin-packingalgorithmplaces one rectangle
at a time, as far downandthenas far left as possible, andthe problem
thenis to�ndasuitable order inwhichtoconsider the rectangles. This
ideais adaptedintheGA. The (mainpart of) the genotype is abinary
tree specifying the relative positions of the blocks, andthe decoder in-
terprets the genotype by traversing the tree andplacing eachblockas
far downandthenas far left as possible without violating the routing
area estimate, whichis computedas eachblockis placed. Aplacement
generatedthis wayis calledaBL-pl acement (bottom-left). Whenplacing
a block, the distanceD s needed fromside s of the blockto previously
placedblocks is estimatedas

Ds =

8><
>:
� [ds +round(�

r
ls
�
+� )] if d s > 0

0 if d s =0
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2. Twolayersof metal areavailablefor routing. One is primarilyused
for horizontal wire segments while the other is primarilyusedfor
vertical segments.

3. All nets aretreatedas si gnal net s , i.e., for examplepowerandclock
nets are givennospecial consideration.

4. The criteriaoptimizedare total layout areaas themost important
criterionandtotal wirelengthas asecondarycriterion.

The most signi�cant advantage of this set of assumptions has to do
withthe evaluationof the algorithms. For the reasons discussedinSec-
tion1.2, the aimis to evaluate performance of the algorithms bycom-
paring it to the performance of state-of-the-art tools using benchmark
data. The most widely used set of benchmarks is distributed by the
MCNCCenter for Microelectronics, NorthCarolina [Ko�zmi�nski 91]. To
be meaningful, comparisons have tobe done interms of completedlay-
outs, cf. Section2.3, andtherefore the developedtools have beeninte-
gratedwitha complete macro-cell layout systemcalledMosaico, which
is part of the Octtools CADframework [Octtools 93]. Since the above
assumptions arecompatiblewiththeMCNCbenchmarkspeci�cationsas
well as the assumptions of theMosaicotoolset (routers, compactor, etc.)
theyprovideafeasible basis for the kindof comparisons desired.

The practical relevance of the assumptions is another issue. Power
nets have to be wider than signal nets, andhence are often routedby
dedicatedalgorithms, whichalsotakes care of sizingof the wires. Simi-
larly, clocknets oftenrequires special treatment toavoidvarious timing
problems. Hence, in technologies o�ering two layers of metal for rout-
ing, the secondassumptionis realistic, while the thirdis not. However,
the newest technologies available todayprovides three or four layers of
metal. Insuchtechnologies, it is commonto reserve one or twometal
layers for the routingof power andclocknets, andperhaps other critical
nets. The remaining two layers are thenusedfor routing of signal nets
only, inwhichcasethe secondandthirdassumptions becomes adequate.
Inanycase, since the secondandthirdassumptions are usedonlyinthe
estimates of routingareaandwirelength, andtherefore concerns isolated
parts of the algorithms only, it wouldnot be too di�cult to adapt the
algorithms toother versions of these assumptions.

While minimization of total layout area is highly relevant, cf. the
fourthassumption, theminimizationof total wirelengthis onlyindirectly
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Chapter 5

SummaryandEvaluationof

DevelopedAlgorithms

The appendices presents twoapproaches for macro-cell placement (Ap-
pendices Aand B), an algorithmfor the Steiner Problemin a Graph
(AppendixC) andaglobal router for macro-cell layouts (AppendixD).
Thisworkis summarizedinSection5.1andevaluatedinSections5.2, 5.3
and5.4, respectively. Finally, Section5.5provides anoverall evaluation
andpresents some conjectures.

5. 1 Summary

All algorithms relies on the same set of basic assumptions about the
problems solved, andthese are discussedinSection5.1.1. The keyideas
of the four papers reproducedinthe appendices are brieypresentedin
Section5.1.2. This presentationaccounts for themutual relationshipof
the papers as well as the relationship to other papers by pointing out
major similarities anddi�erences. Furthermore, considerations that lead
fromonepieceof worktothenextareincluded. Section5.1.3summarizes
keydesigndecisionstakenfor theGAs, andrelatesthesetothediscussion
of practical GAissues of Section3.4.

5.1.1 BasicAssumptions

Thealgorithms presentedinthis thesis all conformtofour basicassump-
tions:

1. The layout areaoccupiedbyblocks andtheareaoccupiedbyrout-
ingaredisjoint. Consequently, all terminalsof blocksarepositioned
alongthe blockedges.
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of tracks used, the total netlength and the total number of vias used.
Impressive results are reportedona number of benchmarks. Inall test
cases the result qualityobtainedis as goodor better thanthebest result
obtainedbyanyother algorithm.
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adding those of the left out constraints whichare violatedandthenre-
solvingtheLP. Whenthis process is terminated, theLPsolutionsatis�es
all constraints. Furthermore, at eachtree nodemore reductiontests are
carriedout andthe upper boundis possiblyimproved, againusing the
heuristicby[Rayward-Smith86].

4. 3 GAs f or Rel ated Probl ems

References to other GA-basedapproaches for macro- andstandard-cell
placement, partitioningandchannel routingaregivenbelow. The listing
is not meant tobeexhaustive, but is limitedtothemost signi�cant GA-
basedapproaches knowntothe author.

Cohoonet al presents adistributedGAfor oorplanningof building
blocklayouts, whichminimizes area andtotal wirelength[Cohoon91a].
Onlyslicingstructures are considered, whichare representedbyinverse
Polishexpressions. Thealgorithmisreportedtocomparefavourablywith
a simulatedannealing approach. Unfortunately the exclusionof bench-
markexamples prevents comparisonof this approachto the algorithms
developed in this thesis. Glasmacher et al has developeda GAwhich
improves a givenmacro-cell placement [Glasmacher 91]. The algorithm
adjusts the placement tominimize channel densities suchthat the total
layout area is reduced.

The �rst GAfor standard-cell placement, andperhaps the �rst GA
for VLSI layout synthesis, wasGeni e, developedbyCohoonandParis at
Universityof Virginia[Cohoon86]. Later, Shahookar et al presentedan-
otherGAfor this problemcalledGASP [Shahookar 90a, Shahookar 90b],
whichat the time of publicationoutperformedTimberWolf's SA-based
approachcalledTi mberWol f SC. In[Mohan93] aparallel implementation
of GASPis presented.

AGA-basedpartitioning algorithmis presented in [Shahookar 94a,
Shahookar 95]. It cando bi-partitioning, i.e., recursivelypartition the
layout in two parts, as well as multiwaypartitioning. Abreadth-�rst
searchof thegivennetlist determines the relativepositioningof blocks in
thegenotype, andconsequentlyaninversionoperator is not used. Result
qualityis superior to a classical partitioning algorithmof Fiduccia and
Matheyses [Fiduccia82].

Finally, a GAfor channel routing by Lienig et al should be men-
tioned [Lienig94a, Lienig94b]. The algorithmminimizes the number
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the fact that the original solutionwas alreadyminimal. Consequently,
givenaMSpTfor ~G satisfyingEquation4.1, the MStTfor the SPGis
simply ~G1, andthe cost of the MSpTequals the cost of theMStT. Let
Pi � ~E be the set of edges whichconnects to vertexi . The problemof
�ndinganMSpTfor ~G is thenformulatedin[J. E. Beasley89] as follows.
The variables are

xij =

8<
: 1 if (i ; j )2~E is inthe solution
0 otherwise

andthe objective is tominimize

X
( i;j)2~E

cijxij

subject tothe constraints

X
(p;q)2 ~E

xpq =j ~V j � 1 (4.2)

8 T �~V :
X

p;q2T; (p;q)2 ~E

xpq � j T j � 1 (4.3)

8 i 2 V �W; 8 (p ; q )2 Pi : x0i +x pq � 1 (4.4)

8 (i ; j )2~E : xij 2 f 0; 1g (4.5)

Equations 4.2 and 4.3 assure that the solution is a spanning tree, and
Equation4.4 is equivalent toEquation4.1. More constraints are added
in[Lucena92].

Before starting the branch-and-cut algorithm, anattempt to reduce
the size of the problemis performedbyapplyingvarious reduct i on t est s

to the givengraph. By examining local properties of the graph these
tests maybe able todetermine that certainedges cannever bepart of a
MStTor will be part of anyMStT. The tests usedin[J. E. Beasley89,
Lucena92] arealsousedbythe algorithmpresentedinAppendixC, and
hencewill be discussedinSectionC.3.2, page 172.

The searchschemeis depth-�rst traversal of abinarytree. Aninitial
goodsolutionisobtainedbytheheuristicin[Rayward-Smith86]. Ateach
tree node extensive computations are carriedout so that onlyvery few
nodes havetobevisited. Alower boundis computedbysolvingalinear
program(LP) obtainedby relaxing Equation4.5 and initially ignoring
most of the constraints. The boundis then iterativelystrengthenedby
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at Imperial College, London, UK[J. E. Beasley89] and later improved
byLucenaandBeasley[Lucena92].

The basic idea of this branch-and-cut approach is to transformthe
SPGintoanequivalent MinimumSpanningTree (MSpT) problemsub-
ject toanadditional constraint. AssumeV =f 1; 2; : : : ; ng , 8 (i ; j )2 E :
i < j andwithout lossof generality, assumethat 12 W. Furthermore, let
cij denote the cost of edge (i ; j ). Thenanextendedgraph ~G =( ~V ; ~E) is
constructedas illustratedinFig. 4.2(b) byaddingaspecial vertex0and
connectingit toall vertices inV �W andtothe vertex1usingedges of
zerocost. Speci�cally, ~V =V [ f 0g , ~E =E [ f (0; i ) j i 2 V �W+f 1g g ,
and8 i 2 V �W+f 1g : c 0i =0. AnyMSpTfor ~G which satis�es the
additional constraint

8 i 2 V �W : (0; i )2~E )deg(i )=1 (4.1)

will have the formillustratedinFig. 4.3.
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Figure 4.3: The st ruct ure of any MSpTf or ~G.

If the edge (0; 1) of theMSpTwas removed, twosubtrees ~G0 and ~G1

wouldemerge, as indicatedonthe �gure. ~G0 consists of a subset of the
verticesV �W, eachof whichareconnectedbyazerocost edgetovertex
0. Theverticesof ~G1 includesW, andinfact ~G1 isaMStTfor theoriginal
SPG: Assumethis is not thecase. Then ~G1 couldbereplacedbythetrue
MStTfortheoriginal SPG, andanyleftoutverticescouldbeaddedto ~G0,
that is, theycouldbeconnectedtovertex0usinganedgeof cost 0. The
resulting tree wouldbe a feasible MSpTfor ~G satisfyingEquation4.1.
But itwouldalsobeof lowercost thantheoriginal solution, contradicting
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4.2.3 TheSteiner ProbleminaGraph/ ABranch-

and-Cut Algorithm

The St ei ner Probl emi n a Graph (SPG) is the following: Givena con-
nected, undirectedgraphG =(V ; E), anedge cost functionc : E 7 !<;
c � 0, andasubsetW � V , �ndaconnectedsubgraphG 0 =(V 0; E0) of
G suchthatW� V 0 andsuchthat

P
e2E 0 c (e ) isminimal. AsolutionG 0 is

calledaMi ni mal St ei ner Tree (MSt T) forW inG. For2< j Wj < j V j the
SPGis NP-complete [Karp72]. Anexample probleminstance is shown
inFig. 4.2(a).
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Figure 4.2: (a) An i nst ance of t he SPGwi t h W =f 1; 3; 7g and (b) i t s

t ransf ormat i on t o a const rai ned mi ni mumspanni ng t ree probl em. The
added vert ex and edges are dashed.

The SPGis surveyedin[Winter 87], whichincludes presentations of
several deterministic heuristics for the problem. One of the most pop-
ular is analgorithmbyRayward-SmithandClare [Rayward-Smith86].
Morerecentlyother deterministicheuristicsof superior performancehave
been reported [Winter 92]. One of these is the I t erat ed Short est Pat h
Heuri st i c presentedinSectionC.4.2, page182. Tothebest of myknowl-
edge, the only GAfor the SPGpublished prior to the algorithmpre-
sentedinthis thesis is a recent algorithmbyKapsalis, Rayward-Smith
andSmith[Kapsalis 93], whichis discussedinSectionC.4.5, page 190.

In[Chopra92, J. E. Beasley89, Lucena92] state-of-the-artapproach-
es totheSPGbasedonbranch-and-cut are presented. These algorithms
solveproblemsof uptoj V j =2; 500verticestooptimality. Theremaining
of this Sectionsummarizes the algorithminitiallydevelopedbyBeasley
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capacityviolations is decreasedor the amount of violationis unchanged
but the total wirelengthis decreased.

4.2.2 AnInteger ProgrammingApproach

Mercuryisaglobal routerdevelopedbyNishizaki, IgusaandSangiovanni-
Vincentelli at Universityof California, Berkeley[Nishizaki 89]. Mercury
minimizes the lengthof speci�edcritical nets as well as the layout area.
The shortest route generated inphase one is always used for a critical
net, while for non-critical nets, longer routes maybe selectedinphase
two inorder tominimize layout area. As opposedto the non-restricted
positioningof terminal vertices usedbyTimberWolfMC, inMercuryter-
minal verticesareeither existingverticesof theroutinggraphor theyare
addedat the center of edges only. Consequently, some nets maycorre-
spondtothesameset of vertices, whichthenneeds tobeconsideredonly
once. The obvious drawbackis aless accurate net lengthestimate.

The phase one algorithms are the same as those of TimberWolfMC,
althoughthe searchperformedbySechen's algorithmfor multi-terminal
nets has beenpruned, thereby improving the time complexity of that
algorithmtoO(M k=(k�1) n3). Bydefault, M=5is usedwhenk � 5, and
M=1otherwise.

The phase two algorithmminimizes layout area, whichis estimated
usingpolar graphs as describedinSectionD.3.1, page 210. Twofactors
contributes to the estimate of the widthof a channel. A�xed contribu-
tionaccounts for critical nets andt ri vi al nets, i.e., nets whichare routed
solelywithinasingle channel. Since onlyasingle, �xedroute is consid-
eredfor suchnets, their contributionto the widthof eachchannel can
beprecomputed. Exact terminal locationsareusedfor this computation.
The other factor is variable andaccounts for those nets for whichalter-
native routes are selectedby the phase two algorithm. These nets are
assumedtocontribute to the widthof achannel byanamount whichis
proportional tothe number of nets enteringthe channel.

The route selection in phase two is formulated as an integer linear
program(ILP), whichfurthermore incorporates adjustment of theplace-
ment of blocks. The adjustment is limitedbythe fact that the routing
graphtopologyhas tobe preservedinorder for the area estimate tobe
meaningful, as explainedinSectionD.3.1. While the constraints formu-
lateddo not guarantee the preservationof the routing graph topology,
the approachis reportedtobe \goodenoughfor practical application".
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phasemethod. Toeasecomparison, thetwostate-of-the-artglobal routers
selectedfor presentationinSections 4.2.1and4.2.2, are alsobothgraph
based, two-phase routers, whichoptimizes similar criteria.

Theproblemrepeatedlysolvedinthe�rst phaseof atwo-phaserouter
when routing an individual net is known as the St ei ner Probl em i n a

Graph (SPG) , assumingthat the criterionminimizedis net length. This
thesis alsopresents anewalgorithmfor the SPG, andto facilitate com-
parisons, Section 4.2.3 summarizes a state-of-the-art approach to this
subproblemof global routing.

4.2.1 TimberWolfMC

TheTimberWolfMClayoutsystemwasintroducedinSection4.1.5. Chap-
ter 8of [Sechen88a] and[Sechen88b] describes theglobal router of Tim-
berWolfMC. It minimizes the total wirelength subject to the capacity
constraints of the routing regions. El ect ri cal l y equi val ent pi ns can be
handled, that is, if twoormoreterminals of ablockare connectedwithin
the block, onlyone of the terminals will be externallyconnectedbythe
router. Before alternativeroutes for aspeci�cnet is computed, terminal
vertices are addedtothe routinggraphat positions accuratelyreecting
the positionof the terminals. All terminal vertices are removedagain
before the next net is considered.

Inphaseone, theM shortest routes for eachtwo-terminal netarecom-
putedbyanexact algorithmdue toLawler [Lawler 76]. This algorithm
requires timeO(Mn 3), where n is the number of vertices of the routing
graph. For nets withmore thantwoterminals, Sechenhas developeda
heuristicgeneralizationof Lawler's algorithm, whichattempts to�ndthe
M shortest routes. Since this algorithmrequires timeO(M k+2 n3) for a
net withk terminals, 1 M has to be reducedfor nets withmanytermi-
nals. For two-terminal netsM=20 is typicallyused, whileM=1 for
nets with12or more terminals.

In phase two, a randominterchange algorithmis used. The initial
state consists of the shortest route for eachnet. If no constraints are
violated, the router terminates. Otherwise, a newstate is generated
byrandomlyselectinga net passing througha channel, the capacityof
whichhas beenexceeded. Anewroute for the net is chosenat random
amongthealternativeswhichdonot increasethetotal amountof capacity
violations. The newstate is acceptedif andonlyif the total amount of

1More preci sel y, k i s the number of termi nal s of the net, whi ch are not el ectri cal l y equi val ent.
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4. 2 Gl obal Routi ng

Most global routers for macro-cell layouts performs routinginterms of a
rectilinear gl obal rout i ng graph or channel graph, whichis extractedfrom
thegivenplacement. Theedgesof thegraphcorrespondtofuturerouting
regions while the vertices correspondto intersections of routingregions.
The routinggraphof asimpleplacement is showninFig. D.1, page 207.
To compute a global route for a speci�c net, vertices representing the
terminals are addedat appropriate locations, as illustratedinFig. D.2,
page 208. Finding a global route nowbecomes equivalent of �nding a
subtree in the routing graphwhichspans the terminal vertices. Every
edgeis assignedoneormorecost values typicallyrepresentingthe length
of the associatedrouting regionand/or the capacityof the region, i.e.,
the number of nets whichcanpass throughthe region.

Typical objectivesof global routingaretominimizetotal interconnect
length, the lengthof certaincritical nets, and/or layout area, subject to
channel capacityconstraints. Givenaroutinggraph, variousmethods for
performingthe routing exist. The so-calledsequent i al routers construct
acompleteglobal routingbyconsideringone net at atime. As eachnet
is routed, current channel congestions etc. aredynamicallyupdated. Al-
ternatively, all nets are routedwithout consideringanyconstraints, and
thenthe nets causing constraint violations are rippedupandrerouted.
Another commonmethod is employedby the t wo- phase rout ers , which
generatesaroutingsolutionintwodistinctphases. Inthe�rst phase, sev-
eral alternative routes are computedfor eachnet. The nets are treated
independentlyone at a time, andno constraints are considered. Inthe
secondphase aspeci�croute is selectedfor eachnet, attemptingtomin-
imize the objective function subject to channel capacity constraints or
anyother constraints.

Amaindrawback of sequential routers is that the result quality is
highlydependent of theorder inwhichnets are routed, andingeneral it
isdi�cult todeviceagoodnet orderingapriori. This problemis avoided
bythe two-phaserouter, whichinthis respect treats all nets equally. On
theother hand, sequential routers are faster thantwo-phaserouters, and
hence are generallypreferred for very large problems. There are other
types of global routers, graphbasedas well as not graphbased. Surveys
onglobal routingcanbe foundin[Sherwani 93, Venkateswaran94].

The algorithmfor global routingpresentedinthis thesis is basedon
a routinggraphandoptimizes area andtotal wirelengthusing the two-
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side, three factors are considered: 1) the average net t ra�c throughthe
correspondingchannel, 2) theposi t i on of t he channel inthe layoutand3)
the rel at i ve pi n densi t y alongtheblockside. Theaveragenet tra�cterm
is meant to account for global routingpassingthroughthe channel and
is proportional to the TEILdivided by the estimated channel length.
Since most nets will be implementedbyvery short routes, the closer a
channel is tothecenterof thelayout, themorecongestedit is likelytobe.
The secondfactor accounts for this phenomenonbyassuringthat blocks
placedat the center of the layout are allocatedmore surrounding space
for routing thanblocks placedat the periphery of the layout. Finally,
the relative pindensityis meant to account for local congestion, andis
de�nedas the number of pins along the blockside inquestiondivided
by the length of the side. Fromthese three contributions, an amount
of expansion is calculated. Chapter 6 of [Sechen88a] is devoted to a
descriptionof the routingareaestimate.

The placement algorithmis based on simulatedannealing, and the
cost functionminimizedconsistsof threeterms. The�rst termC teic is the
TEIC, computedasaweightedsumof thehalf-perimetersof all nets. The
secondtermC overlap =w

P
i<jO(i ; j )penalizesblockoverlap. O(i ; j )isthe

areabywhichblocks i andj overlap, andw is anormalizationconstant
de�nedsothat wC overlap =�C teic holds at the initial temperature T 0. A
value of 0.5 were successfully used for � . The �nal termof the cost
functionhas todowiththe positioningof pins of exible blocks.

Twotypes of moves exist. Ablockcanbemovedtoanother position
or apair of blocks canexchangepositions. Blockorientation(s) maybe
alteredas part of amove. Tooptimizetheperformanceof thealgorithm,
arange l i mi t er f unct i on de�nes anupper limit onthe distancebywhich
displacement of ablockis attemptedinasinglemove. The range limiter
function decreases with temperature, so that initially a block can be
movedanydistancewhileat lowtemperatures, onlyshort distancemoves
are generated. Another mechanismsimilarlyassures that short distance
movesarenot generatedat hightemperatures, sincetheyare likelytobe
insigni�cant at that time.

The temperature T k+1 at time k +1is computedas T k+1 =�(T k)Tk,
where�(T k) is asimple functionof the givenproblemwhichat all times
satis�es 0: 8� �(T k)� 0: 92. Temperature decreases the fastest towards
theendof theprocess. Forann blockproblem, 400n movesareattempted
at eachtemperature.
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tivitybetweenclusters i andj . The neededspace s kl betweenadjacent
blocks k andl is thenestimatedby

skl =� t kl
X
i;j

pklijcij

where � is the routing grid spacing, t kl is a parameter accounting for
distinct nets sharingthe sametrackinachannel, andp kl

ij is theprobabil-
itythat a connectionbetweenblocks i andj passes throughthe region
betweenblocksk andl . Theprobabilityp kl

ij is determinedbyconsidering
the shortest paths fromblocki to blockj , relyingonthe two-terminal
representationof the nets.

4.1.5 TimberWolfMC

TimberWolfMCisanother famousintegratedsystemforoorplanning/pla-
cement andglobal routingof buildingblocklayouts developedbySechen
at YaleUniversity[Sechen88a, Sechen88b]. The systemhas beencon-
tinuously improvedand re�ned for a number of years andhence o�ers
many useful facilities. The characteristic feature of TimberWolfMCis
that all mainalgorithms are basedonsimulatedannealing.

The problemde�nitionusedis verygeneral. Fixedas well as exible
blocksarehandled, ablockcanhaveanyrectilinear shape, andthesearch
space is not restrictedto e.g. slicing structures. The Total Estimated
Interconnect Cost (TEIC) is the only criterionminimized. TEICis a
weightedsumof theestimatedlengthof all nets. If all weights are equal,
TEICequals TEIL, theTotal EstimatedInterconnect Length.

TimberWolfMCconsist of two main phases, initial placement and
placement re�nement. The latter consist of repeatedexecutionof three
steps: channel de�nition, global routingandadjustmentof theplacement.
Heretheplacementis�ne-tunedaccordingtoexactchannel densities, and
onlythree iterations of the secondphase is neededfor TEICas well as
total estimatedarea to converge. The global router used inphase two
will be describedinSection4.2.1, while the remainingof this Sectionis
concernedwiththe phase one algorithmfor initial placement.

The basic ideaof the elaborate routingareaestimationis to expand
eachblockbyanamountwhichdependsonthepositionof theblock. I.e.,
as opposedtothe static blockexpansionstrategies appliedin[Chan91]
and [Onodera91] described inprevious sections, the scheme usedhere
is dynamic. To determine howmuchto expanda blockalong a given
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1) The t opol ogy of theplacement, i.e., the relativepositions of all blocks,
aswell astheorientationof eachblock, isdetermined. 2)Global routingis
performed. 3) Theplacementandglobal routingis adaptedtoeachother
throughasequenceof incremental alterations of theplacementas well as
the global routing. 4) Routingregions are de�nedandordered. 5) Local
routing is performed. As eachregionis routed, the placement is locally
adjustedaccordingtothe�nal regionwidth. Notethe thirdandthe�fth
step which integrates the optimization of the oorplanning/placement
withthe global anddetailedrouting, respectively. Duringthe thirdstep
dynamicupdates of theplacement aswell as theglobal routingaremade
possiblebytheuseof sophisticateddatastructures describedin[Dai 87a].
Anattempt ismade topreservethe topologyof theplacement andblock
orientations are not altered.

The remainingof this Sectionfocusses onthe �rst step. Initially, the
layout is hierarchicallystructuredbyrecursivelypartitioning the blocks
intoanumberof groups, or cl ust ers , sothat eachcluster containsatmost
5blocks. The partitioningheuristic considers blockshapes andconnec-
tivity. Aplacement is generatedbyatop-downtraversal of the resulting
cl ust er t ree. The searchspace is not restrictedinanyway. At eachlevel
of the hierarchy, acost functionis minimizedbyexhaustivesearchof all
possible topological arrangements of the involvedblocks/clusters. Fur-
thermore, blockorientations are determinedat the leaf level. The cost
function is a weightedsumof geomet ry cost and connect i on cost . The
latter termpenalizes connections betweennon-adjacent clusters, while
the�rst termestimates total areaandmeasures therelationshipbetween
actual shapeandt arget shape of theplacement. Whenchoosingaspeci�c
topology, target shapes for eachof theinvolvedblocks/clustersarepassed
one level downthe hierarchy. At the root of the tree, whichcorresponds
to the complete chip, a target shape of the layout is givenbythe user.
Althoughall possibletopologies are evaluatedat eachlevel of thehierar-
chy, not all topologies are pursuedfurther. Topologies for whichthe cost
signi�cantlyexceeds theminimumcost obtainedat the current level, are
unlikelyto leadtobetter placements. Consequently, suchtopologies are
prunedfromthe searchtree.

Whenevaluatingaspeci�ctopology, the routingareais estimatedas
follows. Am-terminal net is represented as m(m� 1)= 2 two-terminal
connections betweenall pairs of terminals. At non-leaf levels of thehier-
archy, all connections aremeasuredfromcenter tocenter of the involved
clusters. Aconnect i vi t y mat ri x is computed inwhichc ij is the connec-
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3. A and �B are dividedinto four submatrices each, according to the
cross-point:

An�m =

0
B@ A11

p�q A12
p�(m�q)

A21
(n�p)�q A22

(n�p)�(m�q)

1
CA

�Bn�m =

0
B@

�B11
p�q

�B12
p�(m�q)

�B21
(n�p)�q

�B22
(n�p)�(m�q)

1
CA

4. The o�springare de�nedas

Cn�m =

0
@ A11 �B12

�B21 A22

1
A Dn�m =

0
@ �B11 A21

A12 �B22

1
A

Notice that the �rst stepis neededtoassure that eachfeature is copied
into eacho�spring exactly once. Astepof this type is neededbyany
GAapplyingareorderingoperator. Inthis speci�c case, since inversion
permutes onlyrows andcolumns of the bitmapchromosomeas opposed
to individual entries, the sorting required in step one is done in time
O((n +m)log(n +m)) insteadof O(nmlog(nm)).

Generatedo�springisnot immediatelyincludedinthenewpopulation
asinthesimpleGAof Section3.2. Insteadapool of o�springisgenerated,
andthenewpopulationisdeterministicallyde�nedasthebest individuals
of the o�spring pool and the previous population. To obtainsu�cient
diversityof the parents selectedfor crossover, the �rst parent is selected
witha probabilityproportional to its �tness while the secondis chosen
uniformlyat random.

4.1.4 TheBEARSystem

At University of California, Berkeley, a famous integrated systemfor
oorplanning, placement and routing of building block layouts called
BEAR(Building-blockEnvironmentAllocationandRoutingsystem)has
been developed by Dai, Eschermann, Kuh and Pedramet al [Dai 89,
Eschermann88]. Givena set of rectangular blocks, whichmaybe exi-
bleand/or �xed, BEARminimizes layoutareaandtotal wirelengthwhile
consideringgiventarget values for theheight, widthor aspect ratioof the
layout. Thecharacteristicfeatureof BEARis that it integrates theoor-
planning and the routing steps muchcloser than previous systems, as
reectedbythe layout generationprocedurewhichconsists of �ve steps:
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4.1.3 AGAApproach

To my knowledge only two GAs for macro-cell placement have been
publishedprior to the algorithms presented inthis thesis. GAMP, de-
veloped by Chan, Shahookar and Mazumder at University of Michi-
gan [Chan91, Shahookar 94a], is the subject of this Section, while the
other approachis discussedinSection4.3. GAMPhandles macro-cells
of any rectilinear shape and the search space is not restricted in any
way. Three criteriaareminimized: Area, total wirelengthandviolation
of givenbounds oneachdimensionof the �nal layout. Routing area is
estimatedbyinitial expansionof all blocks byacertainamount, similar
to what is done in [Onodera91]. The total wirelength is estimatedby
the sumof the half-perimeters of all nets.

Givenn blocks, the genotypeof asolutionis an �m booleanmatrix
referredto as a bi t map chromosome. Eachof the n rows represents the
placementof aspeci�cblockas aconcatenationof binaryrepresentations
of its x andy coordinates andthree additional bits selectingone of the
eight possible orientations of the block. Infeasible solutions are allowed
and penalized by the cost measure, which is a weighted sumof four
terms: The total area, i.e., the smallest rectangle enclosing all blocks,
the estimatedtotal wirelength, the total blockareaexceedingthe given
bounds, and the total overlap area of blocks. Fitness of a solution is
proportional tothe inverseof its cost.

Crossover, mutation and inversion are the three genetic operators
used. Toallowinversion, all entriesof thebitmapchromosomearetagged
with identi�ers of the features they encode, cf. Section3.4.1. The in-
versionoperator is a generalizationto two dimensions of the standard
one-dimensional operator. It �rst reverses a randomlychosen, consecu-
tive sequence of rows andthenreverses a randomlychosen, consecutive
sequence of columns. The mutationoperator is standardpointwisemu-
tation. All entries of thebitmapchromosomeare independentlyinverted
witha givenprobability. Giventwo genotypes A andB, the crossover
operator generates twoo�springC andD infour steps as follows:

1. Acopyof B, denoted �B, is made homol ogous toA, that is, it is
reorderedbypermutingcolumns androws sothat eachentryof �B
encodes the same feature as the correspondingentryof A.

2. Across-point (p ; q )2 f 1; 2; : : : ; n � 1g � f 1; 2; : : : ; m� 1g is chosen
uniformlyat random.
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aboveonapartial placement, usingthesmallestsidelengthsof anyblocks
whichare not yet oriented. The decisiontree is traverseddepth-�rst to
reduce storage requirements.

Four boundingoperations are used:

1. Alowerboundoncost canbecomputedas just described. Initially,
agoodsolutionis obtainedbysolvinganapproximationof thecost
functionsubject tothe constraints usinglinear programming.

2. Agivensetof selectedinequalitiesmayspecifyaninfeasiblesolution
becauseof acycleof the form\Ais tothe right of B", \Bis tothe
right of C", \Cis to the right of A". Fortunately, this is the only
typeof inconsistencypossible, andit ishandledbypruningthetree
whenaviolatingconstraint is added.

3. All shape constraints are usedfor bounding.

4. Upper bounds onthe lengthof critical nets arealsousedfor bound-
ing, while lower bounds are of nouse.

Themore constraints the user speci�es, themore e�ectivethe search
becomes. Whennoadditional constraintsarespeci�ed, experimentshave
shownthat at most 6 blocks canbe placedby the algorithmwithin a
reasonable amount of CPU-time. Larger problems are handledby�rst
partitioningthe blocks intoclusters of at most 6blocks each. If needed,
i.e., if the layout consist of more than36 blocks, the partitioning is hi-
erarchical. The branch-and-boundalgorithmis thenrepeatedlyapplied
oneachcluster of the hierarchy, inabottom-uporder. The partitioning
algorithmusedis relativelysimple andconsiders connectivityonly.

At �rst thought onemight thinkthat sincethis approachis basedon
branch-and-bound, it shouldalwaysproduceanoptimal placement. Note
that therearetworeasonswhythat is not thecase. Firstly, \optimality"
of the placement of upto 6 blocks means that anoptimal value of the
chosencost functionis found. Therelationof thecost functiontothe�nal
layout, which involves factors suchas the accuracyof the routing area
estimate, is another issue. Secondly, the partitioning algorithmneeded
for layouts of more than6blocks inherentlyleads tosuboptimal results.
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4.1.2 ABranch-and-BoundApproach

Abranch-and-boundalgorithmhas beendevelopedbyOnoderaat Uni-
versityof California, Berkeley, andTaniguchi andTamaruat KyotoUni-
versity, Japan[Onodera91]. It places rectangularmacro-cellswhilemin-
imizinglayout area. The searchspaceconsideredis unrestricted, i.e., not
limitedtoe.g. slicingstructures. The cost functionminimizedis

(Wx +
�x

Wy

X
i

Liy)� (W y +
�y

Wx

X
i

Lix)

whereW x (Wy) is thewidth(height)of thesmallestrectangleenclosingall
blocks, L ix (L iy) is thewidth(height) of the smallest rectangle enclosing
all pins of net i , and� x (� y) is the routinggridspacinginthehorizontal
(vertical) dimension. Hence, the function optimized is the area of the
smallest rectangle enclosingall blocks, whichis expandedtoaccount for
routing. Theexpansionine.g. they-dimensionis� y times

1
Wx

P
iLix, i.e.,

theaccumulatednumber of horizontal wire segments spanningthewidth
of the layout. Routing is also accounted for by initially expanding all
blockswithanamount dependingonthenumber of terminals alongeach
of its sides.

The cost functionis minimizedsubject touserde�nedconstraints on
theshapeof thelayoutandoncritical nets. Theshapeconstraints canbe
atarget aspect ratio, bounds onaspect ratio, or upper bounds onone or
bothdimensions of the layout. Constraints oncritical nets canbeupper
and/or lower bounds onthe lengthof these nets.

Aplacement is describedbyspecifyinganorientationof eachblock
andthe topological relationshipbetweeneverypair of blocks. The topo-
logical relationshipof blocksA andB is either \A is to the right of B",
\B is to the right of A", \A is aboveB", or \B is aboveA". Eachof
these relations canbe expressedas alinear inequality. Toavoidoverlap-
pingof blocks, at least one of the inequalities shouldbe satis�ed. Each
decisionvariableof thealgorithmspeci�eseitheranorientationof ablock
or atopological relationbetweenapair of blocks. The latter is done by
selectingone of the four inequalities tohold.

To optimize the branching schedule, larger blocks and/or blocks re-
latedtocritical netsareconsideredbeforeother blocks. Furthermore, the
topological relationshipof the blocks constitutingapartial placement is
always determinedbefore the orientationof the blocks. Alower bound
oncost canthenbe obtainedbyevaluationthe cost functiondescribed
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MBPapplies aclassical estimateof the total netlengthknownas the
hal f - peri met ers of thenets. The lengthof eachnet is estimatedas half of
theperimeter of the smallest rectangle enclosingall terminals of thenet.
Total netlengthof the layout is estimatedas the sumover all nets of the
half-perimeters.

A B

DC

F

E

A B F

E

DC

Figure 4.1: Asl i ci ng st ruct ure and i t s correspondi ng sl i ci ng t ree. A l eaf
corresponds t o a bl ock and an i nt ermedi at e node corresponds t o a channel .

Animportant feature of MBPis that the twocost factors, areacost
and netlength cost, are not combined into a single cost measure us-
ing a weighted sum, as is done in many algorithms. As pointed out
in [Upton90a, Upton90b], a weightedsumoften introduces balancing
problems causedbythedi�erent nature of the involvedfunctions. These
problems are of the verysame nature as the problems of penaltyterms
discussed in Section 3.4.3. Instead, inMBPthe two criteria are eval-
uated independently. Two temperatures are maintained, one for each
criteria, usingthe same coolingschedule. If amovedecreases bothcost
values, it is alwaysaccepted. Whenoneor bothcost values increases, the
moveis acceptedif andonlyif it is acceptedwithrespect toeachcriteria
separately, considering eachcriteria in the usual manner andusing its
associatedtemperature.

Four types of moves exist. Two subtrees of the slicing tree canbe
exchanged, asubtree canbemoved, andthe orientationof asubtree can
be altered. Asubtree canconsist of anynumber of blocks. The fourth
move type is alterationof the aspect ratioof aexible block.
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4.1.1 ASimulatedAnnealingApproach

TheMacroBlockPlacementprogram(MBP), developedbyUpton, Samii
andSugiyamaat Seattle SiliconCorporationis describedin[Upton90a,
Upton90b]. MBPhandles layouts whichare amixture of standard-cells
andmacro-cells. This capabilityis highlyrelevant for real-worlddesigns,
cf. Section2.2. Aplacement is generatedinthreemainsteps:

1. Thestandard-cellsof thelayoutarepartitionedtoformanumberof
exible blocks. Criteriaminimizedare the size di�erence between
the blocks and the number of nets cut by the partitioning. The
techniqueusedis simulatedannealing.

2. Usingthe terminologyintroducedinSection2.3, this stepis oor-
planning: Anaspect ratiois tobedeterminedfor all exibleblocks
just created, and all blocks are to be placedandoriented. Total
area, total wirelength, andthedeviationfromatarget aspect ratio
is minimizedusingsimulatedannealing.

3. Whenall aspect ratios have beendeterminedandall blocks have
been placed and oriented, the standard-cells within each of the
blocks created in the �rst step are placed. Again simulated an-
nealingis used.

The remainingof this Sectiondiscusses the secondstep, whichis the
keystepof MBP. The searchis restrictedto slicingstructures, andthe
algorithmoperates interms of the s l i ci ng t ree, abinarytree representing
aslicingstructure as illustratedinFig. 4.1.

Three factors contributes to the estimatedareacost: Aroutingarea
estimate, i.e., the estimatedareaof channels, anestimate of the empty
space, i.e., the areawhichis neither occupiedbyablocknor a channel,
and �nally, a penalty for deviation fromthe target aspect ratio. The
routingareaandthe emptyspace is estimatedbyadepth-�rst traversal
of the slicing tree. At eachintermediate node the widthof the channel
separating the two subtrees are estimated. The width of the channel
betweenblocksAandBis estimatedas�

p
tA +t B +

q
max(l A; lB), where

� is the spacingof the routinggrid, t X is the number of terminals along
the relevant side of blockX and l X is the lengthof that side. The �rst
termestimates congestioninthe channel fromthe number of terminals
present, while the latter accounts for the global routingpassingthrough
the channel without being connectedwithinthe channel. The longer a
channel is, themore likelyit is that nets will pass throughit.
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Chapter 4

RelatedWork

This Chapter presents selectedalgorithms andtools whichtothebest of
myknowledgeconstitutes thecurrent state-of-the-art inmacro-cell place-
ment andglobal routing. To facilitatemeaningful performance compar-
isons, afurther selectioncriterionhas beenthat theusedproblemde�ni-
tions are similar to those usedinthe workpresentedinthis thesis. For
example, state-of-the-art tools explicitlyoptimizingcircuit performance
were excluded. The appliedoptimizationmethodhas not beenanissue,
althoughfor the problems where aprevious GA-basedapproachexist, it
hasbeenincludedtofacilitatedetailedcomparisons totheGAspresented
inthis thesis.

Section 4.1 presents approaches for macro-cell placement, and Sec-
tion4.2 presents approaches for global routing, including analgorithm
for the Steiner probleminagraph. References toGAs for relatedprob-
lemssuchaspartitioningandchannel routingareprovidedinSection4.3.
The performance of the approaches will be comparedinChapter 5. Fa-
miliaritywith the optimization techniques of simulated annealing and
branch-and-boundis assumedthroughout the chapter.

4. 1 Macro-Cel l Pl acement

Five approaches to macro-cell placement are presented, including algo-
rithms based on simulatedannealing, branch-and-bound, and the GA.
For asurveyon(macro-cell) placement techniques ingeneral, the reader
is referredto [Shahookar 91, Sherwani 93].
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becausedpartlybyanother operator, whichprovidedsome\good"input
individuals. Therefore, aschemeis neededinwhichcredit is propagated
\backwards"througha sequence of operators, whichproduced(the an-
cestors of) aspeci�c individual.
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of times for eachproblem, usingtheparameter values representedbythe
individual of themeta-GA. Thesearchspaceexploredbythemeta-GAis
verysmall comparedtousual GAapplications, e.g., in[Grefenstette 86]
the space merely consists of 262,144 points. This is one reasonwhy it
is reasonable to assume that the parameters usedfor the meta-GAare
not too critical. Otherwise, of course nothingwouldhave beengained.
Grefenstetteusedtheparameter valuesrecommendedin[DeJong75] for
the meta-GA. Other consequences of the extremely small searchspace
of the meta-GAis that a very small population is su�cient and that
a goodresult canprobably be obtained invery fewgenerations. Still,
the complexinteractionbetweenthe various parameters of theGAtobe
tuned is capturedmuchbetter by the meta-GAthanby simple strate-
gies appliedwhen searching for parameter settings manually. The ob-
vious drawbackof the meta-GAapproach is the runtime requirements.
In [Grefenstette 86] it is said that \...the metalevel experiments repre-
sents asizablenumber of CPUhours". Onthe other hand, it onlyneeds
tobedone once andfor all whenanewGAhas beendeveloped.

The �nal approach to parameter setting considered in this Section
is radicallydi�erent. Rather thanattempting to �nda �xedset of pa-
rameter values, Davis devises a scheme for dynamicallyupdating some
parametersduringtheexecutionof theGA[L. Davis 89]. Theparameters
inquestionare the probabilities whichde�nes the frequencyof applying
eachoperator. The idea is to dynamicallyupdate the application fre-
quencyof eachoperator accordingto its current performance, measured
interms of �tness-changeof the individuals alteredbytheoperator. The
current best performing operators should be applied the most. Initial
values for all parameters are still needed, but are less critical. Apart
frompartlyavoidingthe problemof �ndinggoodparameter values, this
strategyalsohas thepotential of improvingtheperformanceof thealgo-
rithm, since �xedparameter values throughout the runis unlikelytobe
ideal.

Theadaptionschemeitself introducessomenewparameters, e.g., how
oftentoperformdynamicupdates. In[L. Davis 89] �venewparameters
areintroduced. However, this number is�xedregardlessof thenumberof
parameters dynamicallyupdated. Furthermore, the introducedparam-
eters are probably less sensitive. But amore serious problemremains,
which is that of credit assignment: Howto update the operator prob-
abilities fairly. It is not su�cient to consider the performance of each
operator isolated, since the highperformance of a speci�c operator may
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However, themainlimitationof both[DeJong75] and[Grefenstette 86]
is that the proposed values only apply to GAs based on �xed length,
binaryrepresentations.

In [Goldberg89b] Goldberg presents a theoretical approach to the
determinationof an \optimal" population size, where \optimal" is de-
�ned interms of schemataprocessingper individual. This approach is
also limited to �xed length, binary representations. The results pre-
sented suggests a population size which grows exponentially with the
lengthof the encoding. As pointedout in[Reeves 93], suchpopulation
sizes will make the GAinferior to other optimizationmethods onreal-
worldproblems. Instead, Reevesdetermines alower boundontheusable
population size, the objective being that of using the smallest possible
population [Reeves 93]. Areasonable criterion is that anypoint inthe
searchspace shouldbe reachable usingcrossover only. Anecessarycon-
ditionfor this is that everypossible gene value is present at everygene
locationinthe initial population. Assumingthat the initial population
is generateduniformlyat random, alower boundonpopulationsize can
then be determined. Reeves shows that the minimumpopulation size
computedthis waygrows dramaticallywiththe cardinalityof the alpha-
bet used for the encoding, andpresents this as anargument in favour
of binary representations [Reeves 93]. However, based on very similar
considerations, a di�erent conclusioncanalso be reached. In [Tate 93]
it is suggestedthat whenthe probabilityof having everypossible gene
valuerepresentedat everypositioninthe initial populationbecomes too
low, one shouldcompensatebyincreasingthemutationrate rather than
increasingthepopulationsize. If this canbedonewithout compromising
convergence, the runtime penaltyof a large populationis avoided.

Thethirdapproachlistedis toconsider thesearchfor goodparameter
values as ameta-level optimizationproblem, whichis solvedas suchby
using e.g. a GA, referred to here as the meta-GA. This approachwas
introducedbyGrefenstette, who as mentionedpreviously, generated a
newset of generallyaccepteddefault values this way[Grefenstette 86].
In [Shahookar 90a] ameta-GAis usedto �ndsuitable values for aGA
for standard-cell placement. The individual of the meta-GAis a rep-
resentationof the parameter values of the GAto be tuned. Note that
this approachis quite general inthe sense that other options suchas se-
lectionschemes, alternativeoperators, etc. canalsobe incorporatedand
optimizedthis way. Asinglemeta-GA�tness computationconsistsof ex-
ecutingtheGAonarepresentativeset of problems, preferablyanumber
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3.4.4 Selectionof Parameter Values

Findingsuitablevalues of the control parameters of aGA, e.g., the pop-
ulationsize, crossover rate andmutationrate, is ingeneral anon-trivial
task, since the parameters interacts ina complicatedway. Yet, froma
practical point of viewthis problemis very important. A�xed set of
parameter values is needed, whichyields goodresults onawide range of
probleminstances, since tuning the parameters towards a speci�c prob-
leminstance is averytedious andtimeconsumingtask. Furthermore, it
does not provide a fair basis for comparing the performance of the GA
tothat of other approaches.

Four mainapproaches for selectionof parameter values canbe iden-
ti�edinthe literature, whichwill be commentedinthe following:

1. Ignore theproblemanddoproblemspeci�ctuning. Unfortunately,
it is not hardto�ndpapers followingthis approach.

2. Finda�xedset of parameters byextensiveexperimentationand/or
byusinggeneral guidelines providedinthe literature.

3. Consider the problemas anoptimizationtaskat ameta-level and
approachit byapplyinganother GA(ameta-GA).

4. Eliminate the problembyintroducinganadaptive scheme for the
parameter values.

Finding a �xed set of parameter values by extensive experimentation
is the most common approach, and is also the one used in the work
presentedinthis thesis. Various parameter settings are simplytriedout
insome systematicwayonaset of test problems. Due tothe stochastic
nature of the algorithm, anumber of runs is neededfor eachparameter
settingoneachproblem, whichof coursemakes this approachverytime
consuming. Furthermore, the complexinteractionof the parameters are
onlycapturedtoaverylimitedextent.

The literature does o�er some guidelines for �nding a �xed set of
parameter values, although they are of limited applicability. As early
as 1975, De Jongsuggestedaset of general applicable parameter values
basedonextensiveworkwithatest suiteof functions, whichisstill widely
used[DeJong75]. Later, Grefenstette suggestedaset of parameter val-
ues generatedbyameta-GA[Grefenstette 86], whichwereshowntoout-
performDe Jong's values. Grefenstette's settings has beenwidelyused
byother researchers andare generallyacceptedas reasonable defaults.
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remains the easiest and best methodwhen the feasible region is large
relative to the total domain, or whenthe problemis "smooth". Other-
wise, whenpossible, constraint enforcement is "probablythebest wayto
tackle constraints". This viewcoincides withthe experience of the au-
thor of this thesis. InaMasters project the highlyconstrainedproblem
of VLSI oor-planningwas approachedusingaGAbasedonthepenalty
method. Thealgorithmneverworkedwell, sinceit turnedout tobenext
to impossible to�ndsuitable values of theweights of the penaltyterms.
Inother words, the modi�edcost function �c was optimizedquite well,
but hadonlyverylimitedrelationtoc . Theworkonhighlyconstrained
problems presentedinthis thesis is basedonconstraint enforcement, as
will be discussedinChapter 5.

Tworecentapproachesfor constrainthandlingdonotquite�t intothe
abovediscussion, sincetheyrelyonconstraint enforcementwhilestill be-
ingquitegeneral. TheGENOCOPsystempresentedin[Michalewicz91,
Michalewicz92] is ageneral GA-basedsystemfor numerical optimization
problemswithanyset of linear constraints. Constraint satisfactionis en-
forcedbyaschemewhichrelies onthe convexityof the feasible regions.
Consequently, it cannot easilybe generalizedto nonlinear constraints.
In[Michalewicz91] GENOCOPis comparedtoaGAusingthe penalty
method, a specializedGAusing constraint enforcement (GENETIC-2)
andapackage for mathematical programming (GAMS), ona test suite
of sixfunctions. The best results are obtainedbyGENETIC-2, whichis
slightlybetter thanGENOCOP. However, GENOCOPis clearlysuperior
toGAMS, whilethepenalty-basedGAfails to�ndanyfeasiblesolutions
at all.

Theother approachis presentedin[Schoenauer 93]. Thebasicideais
toexecute theGAseveral times, eachtime satisfyinganot yet satis�ed
constraint. Inthe �rst execution, the cost functionis simplyp 1, hence,
the �nal population is (ideally) solutions satisfying the �rst constraint.
Fromthat startingpoint, theGAis executedagain, this timewithp 2 as
cost function. Solutions nowviolatingthe �rst constraint are eliminated
byassigningthemzero�tness. For agivenproblemwithk constraints,
this process is repeatedk times, to generate a populationsatisfyingall
constraints. Then, fromthis starting point, the original cost function
is optimizedby executing the GAthe k +1'th time. Inprinciple this
approachis generallyapplicable. But as notedbythe authors it is com-
putational expensive, andthe success of the approachrelies ondiversity
inthe populations beingcarefullymaintainedineachexecution.
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shouldestimatetheexpect ed compl et i on cost , whichis theadditional cost
neededtotransformthe infeasiblesolutionintoafeasibleone. Asuitable
estimateof completioncost is givenfor athree-dimensional problem, but
it is notedthat the technique cannot be easilygeneralized. Ascheme
for dynamicallyupdatingof penaltyterms is proposedin[Smith93], and
promising results are reported. However, only one probleminstance is
consideredwhichhas onlyone typeof constraints, i.e. k =1.

Property Penaltymethod Enforcement method

General ity of approach High Low, none

GA theory appl icable Yes No

Algorithmdevelopment time Short Long

Characteri stics of function optimized As cost function Worse than cost function

Size of search space Large Smal l

Some feasible solution guaranteed No Yes

Weight adjustment problems Likely No

Solutionqual i ty obtained Problemdependent Problemdependent

CPU-time requirement Problemdependent Problemdependent

Table3.1: Compari son of t he t wo mai n met hods f or const rai nt handl i ng.

It is especiallydi�cult tocomparethetwoconstrainthandlingstrate-
gies withrespect to performance, bothinterms of solutionqualityand
computationtime. The fewresults andopinions reportedinthe litera-
ture on this issue are conicting. According to [Smith93] the optimal
solution(s) of highlyconstrainedproblems tendto lie on the boundary
of the feasible region, and therefore, many neighbours of an optimum
are infeasible. Consequently, in order to �nd a path to an optimum,
it is important to allowintermediate, infeasible solutions to be consid-
ered[Richardson89, Smith93]. Interms of schemata, the argument is
that the feasiblesolutionsmaycontainarelativelylowproportionof the
buildingblocks, whichshouldbeput together toformthe feasible, global
optimum[Smith93]. Consequently, it maybe di�cult for aGAbased
onconstraint enforcement to�ndapathtoagoodsolution, let alone a
global optimum. SmithandTate [Smith93] further points out that due
to the complexityof constraint enforcingdecoders andoperators, these
operations canbe the bottleneckof the search, which is another argu-
ment infavour of the penaltymethod. Onthe other hand, aGAbased
on the penaltymethodmay spendmost of its time evaluating infeasi-
ble solutions, which is avoidedby the constraint enforcement method.
The best choice of constraint handlingmethodundoubtedlydepends on
the speci�c problem. According to [Schoenauer 93] the penaltymethod
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Clearlythe twomethods canbe combinedso that some of the con-
straints of a givenproblemare handledby penalty terms while others
are enforced. Eachmethodhas its advantages anddisadvantages to be
discussed in the following. The reader shouldkeep inmind that since
this researchtopic is still inits infancyother GAresearchers might not
agreewiththe views tobepresented. Themainpoints of the discussion
are summarizedinTable 3.1.

Thepenaltymethodisthemostgeneral, sinceit onlymodi�esthecost
function, whileall other components of thealgorithmremains unaltered.
For the same reason, existingGAtheory is applicable, while this is not
the case whena specializedrepresentationand/or specializedoperators
are usedtoenforce constraint satisfaction. Suchrepresentations andop-
erators are furthermorenontrivial todesign, andconsequentlyconstraint
satisfactionis themost expensiveapproachintermsof developmenttime.

Assumingthat thecost functionc has properties whichmakes it hard
to optimize andthat the penaltyfunctions p i are simple, e.g., linear or
quadratic, �c will not be signi�cantlyharder to optimize thanc . Incon-
trast, when enforcing constraints by some repair-method, the decoder
mapsmanygenotypes tothesamepoint inthephenotypespace, perhaps
in a very "non-smooth" way. Hence, the function actually optimized,
whenseenas a functionfromthe genotype space, will be harder to op-
timize thanc . Onthe other hand, constraint enforcement gives amuch
smaller search space, especially for highly constrainedproblems where
the feasible solutions mayconstitute onlyadisappearingfractionof the
domain.

Thepenaltymethodrequires thedesignof suitablepenaltyfunctions
andcorrespondingweights, whichis not a trivial task. If penalties are
toolow, nofeasible solutionmayever be found, while this is guaranteed
by constraint enforcement. Too highpenalties mayturn the optimiza-
tion into a search for a feasible solution only, while not being able to
distinguishthe qualityof distinct feasible solutions. Furthermore, if the
penaltyfunctions di�ers innature, e.g., p i is linear andp j is cubic, or if
some constraints are simplymucheasier to satisfythanothers, the rel-
ative importance of the penaltyterms maychangeduring the optimiza-
tionprocess. To overcome this problemthe weights needs dynamically
adjustment. Some general guidelines for the designof penaltyfunctions
are givenin[Richardson89]. They conclude that a goodpenalty func-
tionshouldnot just count thenumber of constraint violations. Insteadit
shouldestimatethedistancefromafeasiblesolution. That is, thepenalty
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4. Rather thaninitializingthe populationrandomly, it canbe seeded
withindividualsgeneratedbyheuristics, asdiscussedin[Schultz90,
Grefenstette 87], amongothers.

GAs exploiting problem-speci�c knowledge is sometimes referred to
inthe literature as hybri d GAs , knowl edge- augment ed GAs or Evol ut i on
Programs . In [Michalewicz93] a case study is presentedinwhichmore
andmore problem-speci�cknowledge is incorporatedintoaspeci�cGA.
As one would expect, the study shows that the more problem-speci�c
knowledge is exploited, the better performance is obtained.

On the other hand, as problem-speci�c knowledge is exploited, the
generalityof thealgorithmis compromised. Furthermore, anyknowledge
of algorithmicproperties obtainedbytheoretical analysis as discussedin
Section3.3 will be sacri�ced. And�nally, the time it takes to develop
the algorithmwill increase signi�cantly[Michalewicz93].

3.4.3 Constraint Handling

Sincealmost all real-worldproblems involvenontrivial constraints, tech-
niques for constraint handling inGAs is a very important, but almost
unexploredtopic. Further researchis indeedneeded. Therearetwomain
approaches toconstraint handlinginGAs:

1. Thepenaltymethod: Infeasiblesolutionsareallowedbut penalized,
typicallyas follows: Foragivenproblemwithk constraintsandcost
functionc , the cost functionis replacedby�c of the form

�c (s )=c (s )+�
kX
i=1

�ipi(s )

wheres denotes asolution, the functionp i � 0measures thedegree
of violationof thei 'thconstraint, � i > 0isaweightdeterminingthe
relativeimportanceof violations of the i 'thconstraint and� equals
1for minimizationproblems and�1for maximizationproblems.

2. Constraint satisfaction: Infeasible solutions are avoidedand only
feasible solutions are ever considered. Constraint satisfactioncan
beenforcedatall timesbyusingarepresentationinwhichonlysolu-
tions satisfying(someof) the constraints canbe expressed, and/or
byusingadecoder which\repairs"any(remaining) constraint vio-
lations, andbyusinggeneticoperatorswhichgeneratesonlyfeasible
solutions.
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3.4.2 ExploitingProblem-Speci�cKnowledge

TheprecedingSectiondiscussedhowtoimprovetheperformanceof aGA
byusing a problem-speci�c encoding. Another performance enhancing
technique is to incorporate the use of problem-speci�c knowledge into
the algorithminvarious ways. One of the strongest advocates of doing
so is LawrenceDavis. In[L. Davis 89] hewrote:

"... it has seemedtrue tome for some time that we cannot
handlemost real-worldproblemswithbinaryrepresentations
andanoperator set consisting only of binary crossover and
binarymutation. Onereasonfor this is thatnearlyeveryreal-
worlddomainhas associateddomainknowledgethat is of use
whenone is consideringatransformationof asolutioninthe
domain. It is a truismin the expert system�eld that do-
mainknowledge leads to increasedperformance inoptimiza-
tion, andthis truismhas certainlybeenborne out inmyex-
perience applyinggenetic algorithms to industrial problems.
Binary crossover and binary mutation are knowledge-blind
operators. Hence, if we resist adding knowledge to our ge-
neticalgorithms, theyare likelytounder-performnearlyany
reasonable optimizationalgorithmthat does take account of
suchdomainknowledge.

[...] I believethat geneticalgorithmsaretheappropriatealgo-
rithms touse inagreat manyreal-worldapplications. I also
believe that one should incorporate real-worldknowledge in
one's algorithmbyaddingit toone'sdecoder or byexpanding
one's operator set."

Problem-speci�cknowledgecanbe exploitedinat least four ways:

1. Heuristics canbeusedinthedecoder tointerpret agenotype"sen-
sibly"withrespect tothe problem.

2. The existing genetic operators can be altered so that e.g. the
crossoveroperator combinestheparent individualsusingaheuristic
to improve the �tness of the producedo�spring. This is discussed
ine.g. [Grefenstette 87, Goldberg89a, Davidor 91].

3. Newoperators can be added, which performs local optimization
of agivenindividual usinganyproblem-speci�cmethods available.
This is investigatedine.g. [Suh87].
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presentedin[Davidor 89], but as notedbythe author the approachhas
someserious limitations. One of these is that toavoidvisitingall points
of the searchspace, epistasis has tobe estimatedbyasamplingmethod,
for whichnocon�dencemeasure is provided.

Atechnique for reducing epistasis by increasing the size of the rep-
resentation is presented in [D. Beasley93c]. However, this method is
limitedto combinatorial optimizationproblems, and the price paid for
lowering epistasis is that of a much larger search space. There is no
general applicable techniques available to facilitate the designof a low
epistasis representationandconsequently, this important taskhas tobe
solvedad-hoc ona case-to-case basis. This is amajor reasonwhysome
talkabout the \art"of designingGAs.

As for the secondpropertymentionedabove, the desirable lowdis-
tancebetweenmutuallydependent genes, the situationis somewhat bet-
ter. Ingeneral, it is not knownapriori howthe genes are related, and
consequentlyit isgenerallyimpossibletodetermineagoodorderingstati-
cally. Instead, themostcommonapproachis toaddaso-calledreorderi ng
operat or to the set of geneticoperators. As theGAis executed, suchan
operator reorders givengenotypes, therebyattemptingtogrouptogether
themutuallydependent genes dynamically[Goldberg89a]. This requires
eachgenetobe labelledsothat the interpretationof agenotypebecomes
independent of theorderingof its genes. Themost usedreorderingoper-
ator is i nversi on introducedin[Holland75], whichselects a substringof
genesat randomandreversesit. Thedrawbackof usingreorderingopera-
tors isthattherequiredorder-independentgenotypee�ectivelyrepresents
asigni�cant expansionof the searchspace. Analternative to reordering
operators is presentedin[Goldberg91]. Here the optimizationprocess is
dividedintotwodistinct phases. The solepurposeof the�rst phase is to
�ndasuitableorderingwhiletheoptimizationis performedinthesecond
phase. However, it is hardtojudge the feasibilityof this approach, since
it is onlytestedonrather small problems. Another approachispresented
in[Bui 93], whichis applicabletoacertainclass of graphproblems only.
It is assumedthat the genotype is abitstring, inwhicheachbit selects
or de-selects acertainvertexof the graph. Inapreprocessingphase the
ordering is de�ned, for example as the order of traversal of the graph
byadepth-�rst or abreadth-�rst search. Extensiveexperimental results
are reported, whichshows that the preprocessingsigni�cantlyimproves
performancefor certaingraphtypes, whileit has noe�ect onother graph
types.
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processedas expressedintheBuildingBlockHypothesis andtheSchema
Theorem.

If theepistasis of arepresentationis verylow, i.e., there is littleor no
nonlinear interactionbetweenthecomponents, theproblemis easyinthe
sensethat it can(almost)besolvedbyoptimizingalongonecomponentat
atime. Consequently, theGAwill beoutperformedbysimplehillclimbing
techniques. Ontheother hand, if epistasis is extremelyhigh, theGAwill
fail to process schemata in a useful manner, and the search becomes
random. Hence, relative to competingoptimizationtechniques, the GA
will performits bestwhentheepistasis is neither toolownor toohigh, as
illustratedinFig. 3.3. Theimportantpointhereis that theepistasis level
is not �xedfor agivenproblembut depends onthe representationof the
problem, whichischosenbythedesigner. Thiscoincideswiththeremarks
of Section3.1.2regardingtheapplicationareaof GAs, sinceanyencoding
of a di�cult optimization problemwill have some degree of nonlinear
gene interaction. Yet, the designers task is to optimize performance by
devisinganencodinggivingthe lowest possible epistasis level.

epistasis

level

search

method
random searchhillclimbing GA

low highnone very high

Figure3.3: Rel at i ve GAperf ormance depends on t he epi st asi s l evel of t he
encodi ng.

Theoretically, for a large class of problems a representation exists
whichwill make the problemeasyto solve for aGA. More speci�cally,
Vose andLiepins have shown in [Vose91b] that for any problemwith
aninjectivecost function, arepresentationexists whiche�ectivelytrans-
forms the given probleminto a problemwhich is known to be easily
solvablebyaGA 1. This theoretical result cannot bedirectlyappliedin
practice since the constructionof the representatione�ectivelyrequires
the givenproblemto be solved. However, animportant consequence of
the result is that the pursuit of agoodencodingis not invain.

To facilitate the development of a lowepistasis representationfor a
givenproblem, a general applicable measure of epistasis of a represen-
tationwouldbe veryuseful. Anattempt to developsuchameasure is

1Thi s probl emi s the counting 1's problem, i . e. , the probl emof counti ng the number of 1's

i n the bi nary representati on of a gi ven posi ti ve i nteger. The counti ng 1' s probl emi s of course

easi l y sol ved by a tri vi al , determi ni sti c programbut can al so, i f one i nsi sts, be sol ved by a GA.
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natural wayof representingasolution. Andmoreseriously, it isoftenvery
hardif not impossibletoobtainacompetitiveperformanceonareal-world
problemwhen insisting on a binary encoding. Alot of workhas been
doneoncodings basedonintegers, e.g. [Bramlette 91] andoating-point
values, e.g. [Janikow91, Michalewicz91]. But whenthe parameters of a
problemare not numeric, as for example incombinatorial optimization,
completelydi�erent representations basedone.g. graphs maybe more
suitable. In[Esbensen92] abinarytree is part of agenotype.

Todaythe GAcommunity is divided in those who believe that the
binaryrepresentationshouldalwaysbeusedandthosewhoare infavour
of applyingany\natural"representation, whether it is binaryor not. To
alarge extent this divisioninviewpoints is probablycausedbydi�erent
objectivesof workingwithGAs. Generallyspeaking, whenusingahighly
specialized(non-binary) representation, performance is often gainedat
the cost of sacri�cingthe general applicabilityas well as the theoretical
foundation of the algorithm. Skeptics of GAtheory might argue that
therewasn't muchtheorytosacri�ceanyway.

However, the Building BlockHypothesis and the Schema Theorem
still provides useful guidance onhowtodesignagood(non-binary) rep-
resentationfor areal-worldproblem. The schematheorysuggests that a
goodencodingis one whichhas twoproperties, whichwill be explained
below:

1. The dependence betweenthe components of the representationis
small.

2. The distancebetweenmutuallydependent components is small.

The components of a representation, or genotype, for example the indi-
vidual bits of abitstring, iscommonlyreferredtoasgenes and, inanalogy
withbiologythe degree of nonlinear dependencebetweencomponents is
denotedepi st asi s [D. Beasley93a]. Thereisnogenerallyacceptedandex-
actde�nitionof thetermepistasis. But theideaisthat lowepistasisrefers
toalowdegree of nonlinear gene interdependence, that is, the �tness of
the individual is close to beinga linear combinationof the gene values.
Similarly, highepistasismeans that �tness is ahighlynonlinear function
of the gene values. The term\mutuallydependent components" refers
tocomponents, whichbytheir interactione�ects �tness signi�cantly. In
other words, the necessarycriteria of a goodencoding is that mutually
dependent genes are close together andthat epistasis is as lowas possi-
ble. If agenotypesatis�esthesecriteria, it allows schematatobeusefully
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is assumedtobe in�nite. Andin[Goldberg87] and[Horn93] onlytwo
possibleindividuals, \0"and\1", exists. Consequently, theinsightgained
sofar fromMarkovchainanalysis is limited, buthopefullyfutureresearch
will bringsigni�cant progress.

3. 4 Pract i cal I ssues of Genet i c Al gori thms

WhendesigningaGAfor a speci�c applicationa lot of practical issues
needs tobe addressed. For example, toavoidquicklygettingtrappedin
a (poor) local minimumwhile also avoidingveryslowconvergence, the
variance of the �tness values needs to be controlled throughout a GA
execution. For that purpose, the�tnessmeasure is most oftende�nedas
anon-trivial transformationof the givencost function. For adiscussion
of this andother problems for whiche�ective standardsolutions canbe
foundinthe literature, the reader is referredto [Goldberg89a].

This Section focusses on four speci�c problems that are especially
important forthealgorithmspresentedinthis thesisbut forwhichnoeasy
or generallyacceptedsolutions exists. Onthe contrary, these problems
are openresearchquestions.

The keypoint indesigninganyGAis the designof a suitable geno-
type, whichis the topicof Section3.4.1. Exploitationof problem-speci�c
knowledge is discussed in Section 3.4.2. The topic of Section 3.4.3 is
techniques for constraint handling, since non-trivial constraints are al-
most always introducedby real-worldproblems. Finally, Section3.4.4
presents strategies for �nding suitable values of the control parameters,
i.e., the populationsize, the crossover rate, themutationrate, etc.

3.4.1 What is agoodencoding?

Traditionally, GAresearchhas focussedonalgorithms basedonbinary
representations for manyreasons [D. Beasley93b]. The binaryrepresen-
tationmatches theviewof theGAas arobust, general-purposeapproach
tooptimization. Holland's original work[Holland75] focussedmainlyon
binaryrepresentationsandthemainbodyof GAtheoryassumesabinary
representation. As mentionedinSection3.3the binaryrepresentationis
generallybelievedtobepreferable fromatheoretical point of view, since
itmaximizesthenumberof schemata, althoughthis has beenquestioned.

However, for most real-worldproblems, a binary encoding is not a
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fullyprocessedinthe sense that the number of representatives increases
or decreases exponentially. Hollandshowedthat thenumber of schemata
usefullyprocessedinthis senseis intheorder ofO(n 3). Thisphenomenon
is knownas i mpl i ci t paral l el i smandis oftenreferredtoas the reasonfor
the goodperformance obtainable byGAs.

Tofullyexploit the e�ect of implicit parallelism, it shouldbe advan-
tageous to have as many schemata as possible. Consider an alphabet
of cardinalityk anda string lengthof l . The size of the searchspace
spannedis thenk l andthe number of possible schematais (k +1) l. For
a �xed searchspace size it can thenbe seen that the maximumnum-
ber of schematais obtainedbyminimizingthe cardinalityof the alpha-
bet. This is one of the mainreasons that the binaryrepresentationhas
beendominant in the GAliterature and is still preferred bymany re-
searchers. However, [Antonisse89] interprets schemata di�erently and
concludes that the binary alphabet does not maximize the number of
schemata. Onthecontrary, andincorrespondencewithintuition, alpha-
bets of higher cardinalityhasmoreexpressivepowerandrepresentsmore
schemata. Goldberghas later presentedarguments whyhigh-cardinality
alphabetsmayperformwell, thus attemptingtoaccount for thedi�erent
viewpoints [Goldberg90]. Another critical viewof thetraditional schema
theoryis presentedin[Grefenstette 89]. Here it is pointedout that Hol-
land'sO(n 3) estimateof implicitparallelismassumes independenceof the
individuals andhence onlyholds inthe �rst fewgenerations. It is also
noted that the Schema Theoremis formulated in terms of the �tness
functionrather thanagivencost function. This is problematic since the
�tness functionis part of theGAitself andasmentionedpreviouslyit is
typicallyde�nedas anon-trivial functionof the cost function.

SincetheSchemaTheoremdoes not guaranteethat representativesof
a speci�c (above average) schemawill ever emerge, it does not directly
provideinsight intotheglobal behaviourof theGAintermsof its overall
convergenceproperties. Theglobal behaviour of the simulatedannealing
algorithmhas beenanalyzedsuccessfullyusingMarkovchains, andit is
therefore anobvious idea to investigate the use of Markovchains for a
similaranalysis of GAs. Some�rst attempts inthis directionispresented
ine.g. [Goldberg87, T. E. Davis 91, Nix92, Suzuki 93, Horn93]. How-
ever, since the entire populationconstitutes the state of theprocess, the
number of possible states is enormous, whichgreatly complicates such
analysis unless extreme simplifying assumptions are made. For exam-
ple, in[Nix92] populationsize and/or the lengthof the genotype string



28 CHAPTER3. GENETICALGORITHMS

the populationat generationt , letm(H; t ) be the number of individuals
inthepopulationat generationt whichrepresentsH, andlet �f(H)bethe
average�tnessof all individualsrepresentingH at generationt . Thenthe
expectednumber of individuals representingH in the next generation,
i.e., E(m(H; t +1)), canbe estimatedas

E(m(H; t +1))� m(H; t )
�f(H)
�f

2
41� p c

� (H)

l � 1
� o (H)pm

3
5

This important result is calledtheSchema Theorem. Aderivationof the
theoremcanbefoundin[Goldberg89a]. If o (H) and� (H) aresmall, and
�f(H)> �f thenm(H; t +1) isexpectedtobem(H; t )multipliedbyafactor
greater thanone. Inother words, theSchemaTheoremstates that inthe
SGA, the expected number of individuals representing a schema with
short de�ning length, loworder andabove average �tness, will increase
exponentially.

What does the SchemaTheoremhave todowithGAperformance ?
The answer depends on the validity of The Bui l di ng Bl ock Hypot he-
si s [Goldberg89a], whichstates that bycombininggoodpart-solutions,
calledbui l di ng bl ocks , goodcomplete solutions emerge. By further as-
sumi ng that goodbuilding blocks corresponds to schemata with short
de�ning length, low-order andabove average �tness, the SchemaTheo-
remtells us that goodbuildingblocks are usefullyprocessedinthe sense
that their number of representatives increases exponentially, andhence
wehaveanexplanationwhythe SGAworks.

The SchemaTheoremhas beengeneralizedinvarious ways, notably
byVose. In[Vose91a] he generalizes the concept of a schematothat of
apredi cat e, whichis de�nedas any set of genotypes. ASchemaTheorem
interms of predicates is thendeveloped, althoughthe e�ect of mutation
is ignored. Since the concept of a predicate is representation indepen-
dent, sois the resultingversionof the SchemaTheorem. As pointedout
in[Vose91b] it is alsoindependent of the speci�cgeneticoperators. The
two last terms of the theoremmeasuring the probabilities of disruption
by crossover and mutation, respectively, can be replaced by functions
measuringthe disruptioncausedbyanyother set of operators used.

Let us return to the original Schema Theoremto discuss another
important phenomenon. Since a binary string of length l represents 2 l

distinct schemata, somewhere between2 l andn2 l schematawill be rep-
resentedinapopulationof sizen . However, crossover destroys schemata
of relatively high de�ning length, hence not all schemata will be use-



3.3. THEORYOFGENETICALGORITHMS 27

1    1    0    1    01    0    1

1    0    1 0    1    0    1    0

mutation

before

after

1    0    1 1    0    0    0    11    1    0    1    0 0    1    0

1    0    1 1    0    0    0    1 0    1    0 1    1    0    1    0

π
1

φ
1

π
2

φ
2

crossover
x x

Figure 3.2: One- poi nt crossover and poi nt wi se mut at i on. The vert i cal
l i nes marked ' x' i ndi cat es t he randoml y chosen crosspoi nt .

3. 3 Theory of Genet i c Al gori thms

There is no generally accepted and \complete" theory which fully ex-
plains the properties of the GA. However, hypothesis have beenformu-
latedwhichat leastpartiallyexplains thebehaviourof GAsandalsopro-
vides insight into themechanisms of the algorithm. This Sectionbriey
presents the classical explanationwhythe simpleGAfromthe previous
Sectionworks andcomments onrecent theoretical developments.

In [Holland75] the searchperformedby the SGAis investigatedin
terms of sampledschemat a, or hyperplanes. Let v 1v2 : : : vl; vi 2 f 0; 1g
denote the genotype of anindividual of the SGA, andlet aschema be a
stringof lengthl over thealphabet f 0; 1; #g . The symbol #matches a0
or a1, andagivenstring(genotype) is saidtorepresent agivenschema
if it matches the schema at all its �xed positions. E.g., if l =6, the
schema#10##1 is representedbye.g. 010111 and110101. Aschema
speci�es a hyperplane in the search space corresponding to the set of
strings which represents the schema. The idea of Holland's argument
is that the strings present in a population estimates the �tness of the
hyperplanes theyrepresent, that is, theyestimate the average �tness of
al l possiblestrings representingthehyperplane. Hollandhas shownthat
if the estimated �tness of a hyperplane is above average, the number
of strings representingthat hyperplane inthe followinggenerations wills
increase exponentially, until the representatives occupies a substantial
proportion of the population. More speci�cally, if H is a schema, the
order of H denotedo (H), is thenumber of �xedpositions of H, andthe
de�ni ng l engt h of H denoted� (H), is the distancebetweenthe �rst and
last �xedposition inH. E.g., o (#10##1) =3 and � (#10##1) =4.
Furthermore, let �f = 1

n

Pn
i=1 fi be the average�tness of all individuals in
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inFig. 3.2. Whencrossoverisnotperformed, copiesof theselectedparent
individuals are addedto � new . Following this stepcalledreproduct i on,
every individual is subjected to possible mutation. The mutation op-
erator performs poi nt wi se mutation, i.e., given a bitstring, eachbit is
independentlyinvertedwithagivensmall probabilityp m, as illustrated
inFig. 3.2. Eachgeneration is completedwith anupdate of � cur and
evaluationof all individuals, as abasis for the selectionto take place in
the next generation.

generate(� cur );
evaluate(� cur );
repeatG times
�new :=; ;
repeat n= 2times
select � 1 2 �cur , �2 2 �cur ;
if rand(p c) then
crossover(� 1; �2; �1; �2);
�new :=� new [ f �1; �2g ;

else
�new :=� new [ f �1; �2g ;

end;
end;
8 � 2 �new : mutate(� );
�cur :=� new ;
evaluate(� cur );

end;

Figure 3.1: The SGA. The popul at i on si ze n i s assumed t o be even.

Crossover is themainoperator of theGA. Byrecombininggoodpar-
tial solutions, evenbetter solutions will oftenemerge. Hence, promising
regions of the searchspace are exploredandat the endthe population
converges. Mutation is a secondaryoperator, althoughstill important.
If, at a speci�c bit position, all individuals have the same value, say0,
the value 1 cannever be recoveredif onlycrossover is performed. The
mainpurpose of mutationis to insure that this lost informationcanbe
recreated.
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are either not applicable or have di�culties �nding goodsolutions. As
will becomeclear inSection3.3, there isnoguaranteethat aGAwill �nd
a\good"solutiontoagiven, hardprobleminthe sensethat the solution
iswithinsomepre-speci�eddistancefromtheglobal optimum. However,
fromthepractitioners point of view, a\good"solutiontoahardproblem
is simply one which is better than the best already available solution
obtainedbyanyother method.

3. 2 The Si mpl e Genet i c Al gori thm

This Sectionpresents the simplest possible genetic algorithm, denoted
SGA. Althoughthepractical valueof SGAis verylimited, aswill bedis-
cussedinSection3.4, acloser lookat SGAprovides insight intothebasic
mechanisms of theGA. Furthermore, the original theoretical arguments
onwhyGAs work, whichwill be presentedinSection3.3, are basedon
theSGA.

InSGA, the genotype of an individual is simplya bitstring of �xed
lengthl andthe �tness of anyindividual is de�nedbyafunction, which
giventhe phenotype representedbya bitstring returns a positive, real
value. The SGAis outlinedinFig. 3.1. Routine generat e generates the
initial, current population� cur , which consists of n randombitstrings
of length l . The populationsizen is kept �xedthroughout the process.
Routine eval uat e computes the �tness of everyindividual. One iteration
of the outer repeat loopcorresponds tothe simulationof onegeneration,
hence the parameter G de�nes the total number of generations. Ineach
generation, a newpopulation� new is generated. Apair of individuals,
�1 and� 2, is selectedfrom� cur , a total of n= 2 times. The selectionis
proportional to the �tness of the individuals, that is, individual � k is
selectedwithprobability

fkPn
i=1 fi

where f k denotes the �tness of individual � k. The two individuals are
selectedindependently, andeveryindividual canbe selectedanynumber
of times inthe samegeneration. Theparameter p c is the crossover prob-
ability. Routinerand(x ) returns truewithprobabilityx . Whencrossover
is performed, it generates twoo�spring� 1 and� 2, whichare thenadded
to � new . Simple one- poi nt crossover is performedby selecting a cross-
point at randomandthenrecombiningthe twosubstrings as illustrated
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considers only a single solution at a time. Clearly, bothEAs and SA
are basedonmodels of nature simpli�edto the extreme extent where it
canhardly be recognized. In this sense the analogies to phenomenons
fromnature shouldbe seenonlyas sources of inspiration, nothing else.
Nevertheless, bothtypes of algorithms have provedtobe veryuseful in
optimization.

3.1.2 TheApplicationAreaof GAs

Compared to other optimization techniques the advantage of the GA
most often promoted in the literature, is the robustness of the algo-
rithm[Goldberg89a, D. Beasley93a]. As opposed to the vast major-
ity of other methods, the GAdoes not rely on any speci�c properties
of the objective function. No information on derivatives are used, in
fact the functionneednot evenbe continuous. Consequently, theGAis
robust inthe sense that it canbe usedfor optimizationinhighlycom-
plex and irregular search spaces. This claimof generality of the GA
is supportedbythe literature, inwhichapplications fromdiverse �elds
are reported. References to applications of GAs in e.g. biology, engi-
neering, operations research, business and social sciences canbe found
in [Goldberg89a]. In [Saravanan93] more than 400 references to pa-
pers onEAs andapplications are given, and[Nissen93] lists about 230
references onEAs inmanagement science. More speci�c applicationar-
eas of GAs includes numerical functionoptimization, combinatorial op-
timization, image processing, pattern recognition, design andmachine
learning[Goldberg89a, D. Beasley93a]. WhilemostGAresearchis still
beingcarriedout at universities, anincreasingnumberof GAprojectsare
reportedfromindustry [Goldberg94]. For example, General Electric is
usingaGA-basedsystemtodesigngas turbines andjet engines, Hughes
MissileSystemsCompanyinCaliforniais usinggeneticprogrammingfor
infraredimagetarget discriminationandAppliedGeophysical, Colorado,
uses aGAto solve problems arising fromseismic surveys relatedto oil
exploration[Goldberg94].

The price paid for the robustness of the GAis that ingeneral, the
algorithmisnotcompetitiveforrelativelyeasyorsmall-scaleoptimization
problems. Whenhighly specializedoptimizationtechniques exist for a
givenproblem, the GAwill most likelyshowinferior performance, both
interms of solutionqualityandruntime. Rather, thenatural application
area of the GAis that of veryhardproblems, for whichother methods
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current researchtopics. SinceHolland'soriginal work[Holland75] is very
general andquite formal it is hardlysuitableas a�rst approachtoGAs.

TheGAbelongs toawider class of algorithms, theEvol ut i onary Al -

gori t hms (EAs) , surveyedin[B�ack93]. Althoughthe GAis by far the
mostwell-knownEA, this class alsoconsists of Evol ut i on St rat egi es (ES)
andEvol ut i onary Programmi ng (EP) . Thecommonfeatureof EAsis that
theyall maintainapopulationof individuals andapplyvariousoperators
toevolveindividuals of increasingqualityduringtime. But therearealso
anumber of signi�cant di�erences betweenthe algorithms. First of all,
while crossover is themost important operator of theGAandmutation
is only considereda background operator, as will be discussed in Sec-
tion3.2, inESandEPalgorithms, mutationis the mainoperator and
crossover is less important. The EPalgorithms doesn't have acrossover
operator at all. Furthermore, while the parameters of theGAare �xed,
they are dynamically adjusted in ES and EP. The ES algorithms dif-
fers fromEPandGAalgorithms intwomajor ways. Firstly, the �tness
functionequals the objective function, while inEPs andGAs, the (rel-
ative) �tness of eachindividual is a (non-trivial) computationbasedon
the objective values of all existingindividuals. Secondly, selectionis de-
terministic inESalgorithms, while it is probabilistic inEPs andGAs.
Of course, the descriptionof the EAsubclasses givenhere just outlines
thegeneral di�erences. Givenaspeci�cEA, it maynot clearlybelongto
anyof the three categories as describedhere. The current state of EA
researchis surveyedin[DeJong93].

Aninterestingspecial case of theGAisGenet i c Programmi ng (GP) ,
introduced by [Koza92]. Given a speci�c problem, the idea is to let
theGAevolve acomplete computer program, whichsolves the problem
su�cientlywell. An individual is a program, and �tness is computed
by executing the programandmeasuring howgood the programwas
at solvingtheproblem. Byusingthe geneticoperators as usual, theGA
evolvesprogramswhichperforms increasinglywell withrespect tosolving
theproblem. The languageLispis especiallywell suitedfor GP.

Other types of algorithms than the EAs are inspiredbynature. A
well-knownexampleisthesi mul at ed anneal i ng (SA) algorithmintroduced
in1983by[Kirkpatrick83], whichis inspiredbythermodynamics. Op-
timization is performedbasedon an analogy to the process of cooling
downa solid insuchawaythat thermal equilibriumis obtained. The
most fundamental di�erence between the GAand SAis that the GA
considers anumber of solutions simultaneously, while the SAalgorithm
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the capabilityof adapting to the environment inwhichthey live. The
�ttest individuals has the highest probabilityof survival andreproduce
themost. The producedo�springresembles their parents sothat highly
�t individuals usually produces highly �t o�spring. Therefore, during
the evolutionprocess the�ttest individuals tends toincrease innumbers
while the less �t individuals tends todie out. This well-knownprinciple
of survi val of t he �t t est was �rst introducedin1859byCharles Darwin
inhis famous bookThe Ori gi n of Speci es by Means of Nat ural Sel ect i on.

Anatural evolutionprocess canbe viewedas an optimizationpro-
cess inthe sense that the individuals are \optimized"for survival. This
viewis the underlying ideaof the GA, whichperforms optimizationby
simulating a process of evolution. The algorithmmaintains a popul a-
t i on of i ndi vi dual s eachof whichcorresponds toaspeci�csolutiontothe
givenoptimizationproblem. Ameasure of �t ness de�nes the qualityof
asolution. Starting fromapopulationconsistingof randomlygenerated
individuals, the evolutionprocess is simulatedbyconsideringthe popu-
lationthroughanumber of generat i ons . Ineachgeneration, newindivid-
uals calledo�spri ng, are generatedfromexistingones usinga crossover
operator, whichimitates sexual propagation. The crossover operator is
designedinsuchawaythat the generatedo�spring resembles the par-
ent individuals. Furthermore, parents are selectedfor crossover witha
probabilitywhichdepends ontheir �tness, sothat the�ttest individuals
are selected for crossover with the highest frequency. This scheme en-
forces the principle of survival of the �ttest. Witha small probability,
eachindividual is subjectedtomutation, or randomchange, bythemu-
t at i on operator. After havingsimulatedanumber of generations, highly
�t individuals will emerge, correspondingtogoodsolutions to the given
optimizationproblem.

Adistinctionis made betweenthe representation, or genetic encod-
ing of a solutionand the natural appearance of a solution. Inanalogy
withbiology, the genetic encodingis calledthe genot ype andthe natural
appearance is calledthe phenot ype. The genetic operators manipulate
solutions interms of their genotypes, while �tness is measuredinterms
of phenotypes. Afunction calledthe decoder computes the phenotype
correspondingtoagivengenotype.

Introductions toGAs canbe found inmanytexts, e.g. [Davidor 90,
L. Davis 87, L. Davis 91, Michalewicz92], and [Goldberg89a] has be-
come the reference textbook. Arecent two-part paper [D. Beasley93a,
D. Beasley93b] provides anintroductiontoGAs as well as a surveyof
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Chapter 3

GeneticAlgorithms

Thepurpose of this chapter is tointroducethebasic concepts of theGe-
netic Algorithm(GA), to outline the current status of GAtheory and
todiscuss important practical issues of applyingGAs. Section3.1 intro-
duces the basic idea of GAs. The simplest possible GAis presentedin
Section3.2andSection3.3presents the theoretical arguments as towhy
the simpleGAworkandalsodiscusses the current status of GAtheory.
Readers familiar withGAs canskipSections 3.1, 3.2and3.3, whichare
all introductory. Section3.4 is devotedto four mainissues of applying
GAs, all of whichare subject of muchcurrent research. Furthermore,
these issues havebeenespeciallyimportant for the algorithms presented
inthis thesis, andconsequently, Section3.4is aprerequisiteof Chapter 5.
Section3.4.1discusses thedesignof suitableencodings andSection3.4.2
discusses if (andhow)problem-speci�cknowledgeshouldbeincorporated
intotheGA. Various strategies for handlingconstraints inGAs are dis-
cussedinSection3.4.3, andSection3.4.4addresses thepractical problem
of �ndingsuitable values of the control parameters of theGA.

3. 1 Introduct i on

Theconceptof geneticalgorithmswasfoundedbyJohnH. Holland, whose
Ph. D. thesis from1975[Holland75] is consideredthe originof the�eld.
One of themainapplicationareas of GAs is that of optimization, which
is the onlyapplicationareaconsideredinthis thesis.

3.1.1 TheBasic Ideaof GAs

TheGAis inspiredbythe process of natural evolutionstudiedinpopu-
lationbiology. Innature, the individuals constituting a populationhas
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that theentireroutingareaisdividedintochannelsbythis scheme, hence
completelyeliminatingthe needfor switchboxes. The obvious drawback
of restrictingthe searchspace to slicingstructures is that if the optimal
layout is not aslicingstructure, it will never be found. Slicingstructures
are brieyconsideredagaininSection5.2.3.
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routing in itself requires the solutionof perhaps hundreds of mutually
dependent, NP-hard problems, althoughmany of these problems may
have relativelysmall searchspaces. Channel routing as well as switch-
box routing are NP-hard [Szymanski 85], and so is for example via-
minimization[Naclerio89]. Inaddition, the problems are mutuallyde-
pendent, andhence relies heavilyonestimations of what will happenin
succeeding steps. In other words, the cost functions involved are not
accurate, but relies on the accuracy of the estimates. These inherent
problems have twoimportant consequences: Firstly, certainsteps of the
layout synthesis process, or perhaps thewhole process, typicallyhave to
be iterated a number of times to obtain a satisfactory result, as illus-
tratedinFig. 2.2. For example, asmentionedpreviously, itmaynot even
be possible to complete the routing of a givenplacement without going
backandadjustingtheplacement. Secondly, the qualityof solutions ob-
tainedfor some intermediate stepof the process cannot be accurately
evaluatedimmediately. For example, twodistinct placements cannot be
safelycomparedwithout actuallycompletingthe routingof the layouts.

Ingeneral, thesoonerastepisperformedthemoreit impactsthe�nal
layout quality. If for exampleaverypoor placement is generated, it can
not becompensatedfor insucceedingsteps, nomatter howwell theseare
solved. Inthis sensethe�rst stepsof layoutsynthesisaremoreimportant
researchareas than later steps, andthis is one of the reasons why this
thesis focusses onplacement andglobal routingrather thane.g. channel
routing. Especially, the oorplanning andplacement problems are very
hard, and consequently they are often solvedmanually [Sherwani 93].
As mentioned previously, a key problemhere is the estimation of the
neededroutingarea. Naturally, as the layout synthesis process proceeds,
estimations become increasinglyaccurate.

Slicingstructures is a class of building-blocklayouts whichhave be-
comeverypopular, sinceit eliminatesacoupleof theproblems described
above. As l i ci ng st ruct ure is abuilding-blocklayout, whichcanbe recur-
sivelypartitionedor"sliced"byasequenceof horizontal andvertical lines
eachof whichgoes all the waythrough the layout, until no more than
oneblockis present ineachpartition. For example, the layout of Fig. 2.3
is aslicingstructure: Ahorizontal linecanseparateblocksAandBfrom
blocks C, DandE. Then, vertical lines canseparate AfromB, Cfrom
DandE, and�nally, DfromE. Aslicingstructure simpli�es the routing
step: Eachline corresponds toachannel, anda feasible routingorder is
the inverse of the order inwhichthe lines were made. Especially, note
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channel routers are capable of meeting the lower bound givenby the
channel density in almost all cases occurring in practice. And when
theyfail, onlyone or twoadditional tracks are needed. For this reason,
the channel density is a very important and useful concept in routing
area estimation. Unfortunately there is no simple relationbetweenthe
number of terminals or nets present inachannel andthechannel density.
As illustratedinFig. 2.4, if n nets are present, the densitycanbe any
integer between0andn .

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

tracks

density: 0 density: 5

Figure2.4: Possi bl e ext reme val ues of t he channel densi t y, i l l ust rat ed wi t h
5 net s present i n t he channel . In t he channel t o t he ri ght al l 5 net s have
t o cross t he col umn i ndi cat ed by t he vert i cal dashed l i ne.

After completionof the routing step, the layout is functionallycom-
plete. However, a�nal stepof postprocessingisoftenperformed, inwhich
various kinds of �nal optimizations are attempted. The most common
kindof postprocessingis compact i on, where the layout is compressedin
one or both dimensions subject only to the design-rules. Compaction
reduces the total area andmayimprove performance byreducingwire-
lengths as well. Other kinds of postprocessingare viaminimizationand
re-assignmentof the layersof somewiresegments. Themetal layersused
for routinghavedi�erent electrical properties, andhence one layer may
bepreferable toanother. InFig. 2.3(d), somewiresegments of net 2has
beenassignedanother layer, allowingnet 4tobeplacedontopof it. The
resulting unusedtrackallows reductionof the total areabysubsequent
horizontal compaction.

Eachstepof the layout synthesis process describedabove is compu-
tationallyhardtosolve. Formulations of the partitioningandoorplan-
ning/placement problems are all NP-hard[Sahni 80, Donath80]. Com-
mon formulations of the global routing problemis equivalent to that
of �nding a minimal Steiner tree in a graph, which is NP-hard for a
single net having more than two terminals [Karp72]. Hence, global
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oneat time, usingachannel router or aswitchboxrouter as appropriate.
Nets may enter a channel by passing one of the two opposite sides at
which there are never any �xed terminals fromblocks. The channel
router assumes that it candecide itself the exact positionof where any
net enters and/or leaves the channel. When�xing the positionof anet
crossingontheborder betweentwoneighbouringchannels, this of course
a�ects bothchannels andconsequently, it imposes apartial ordering of
the routing of channels. For example, inFig. 2.3, the channel between
blocks CandDhas to be routedbefore the channel betweenblocks C
andA, sinceotherwisetheterminal positionsalongthebottomsideof the
latterchannel isnot�xedbeforethechannel isrouted. Givenanarbitrary
routingregionde�nition, asuitablechannel orderingmaynot exist andit
thenbecomesnecessarytointroduceaswitchbox. Therefore, thechannel
orderingisalsode�nedduringtheearlierroutingregionde�nitionstep. In
Fig. 2.3(b), apossibleroutingorder is to�rst routeall vertical channels,
i.e., thosewithterminalsalongvertical sides, inanyorder, andthenroute
all horizontal channels, inanyorder.

The objective of the detailed routers is �rst of all to complete the
routingwithintheavailablearea. Channel routersalsotypicallyattempts
tominimize the total wirelengthtogether withtwo other criteria to be
explainedshortly: the number of vias used, and the number of tracks
used. Avi a is a connectionfromone routing layer to another, i.e. it is
neededwhenever anet switches fromone layer toanother, as illustrated
in Fig. 2.3 (c) and (d). Due to the poor electrical properties of vias
their usage are oftenminimized. For a givenchannel, a set of design-
rules anda routing layer, a two-dimensional lattice canbe de�nedina
channel whichdetermines the minimumspacing neededbetweenwires
in that layer. The lines of the lattice which are parallel to the sides
having�xedterminals arecalledt racks , while theperpendicular lines are
calledcol umns . Byminimizingthenumber of tracks usedfor routingthe
channel router increases the possibility of improving the layout in the
succeedingpostprocessingstep, whichwill be describedlater.

When considering a speci�c column, a lower boundon the number
of wires whichhas to cross that column is the number of nets having
terminals onbothsides of the column. Whenmaximizingthis quantity
over all columns, the resulting value is knownas the channel densi t y.
Given the channel density, the number of available routing layers and
the design-rules, the minimumchannel widthneededby any router to
implement the routing caneasilybe computed. Todays state-of-the-art
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Thewiringneededtoconnectaset of electricallyequivalentterminals,
as speci�ed in the netlist, is calleda net . In the global routing step,
a "global" route for eachnet is determined in the formof a listing of
the routing regions it will use. Hence, the global router determines the
approximate route of eachnet, while not de�ning the exact positionof
eachwire segment. The typical objectiveof global routingis tominimize
the estimatedarea and/or total estimatedwirelengthor the estimated
lengthof speci�ccritical nets, whilenot exceedingtheestimatedcapacity
of anyrouting region. The result of routing regionde�nitionandglobal
routing is showninFig. 2.3 (b). Inthis example all routing regions are
channels.

wire in metal layer 2wire in metal layer 1 via

A

4

1
2 1

B

C 2
4
3 3

2 D E 1

3

A

4

1
2 1

B

3

2 DC 2
4
3

E 1

3

A

4

1
2 1

B

E 1

33

2 DC 2
4
3

A

4

1
2 1

B

C 2
4
3 3

2 D E 1

3

(a) (b)

(c) (d)

net 4 on top
of net 2

Figure 2.3: Amacro- cel l l ayout wi t h �ve macro- cel l s denot ed A t hrough

E. The numbers 1 t hrough 4 are net - i dent i t i es, posi t i oned at t he t ermi nal

l ocat i ons. (a) shows t he l ayout af t er pl acement , and (b) af t er channel
de�ni t i on and gl obal rout i ng. The dashed l i nes i ndi cat es t he borders of

t he channel s. (c) i s t he resul t af t er det ai l ed rout i ng, and (d) i s t he �nal

l ayout af t er a change of l ayer assi gnment of net 2 f ol l owed by compact i on.

In the detailed routing step, the exact physical position and layer
assignment is determinedfor eachnet. The routing regions are treated
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anddi�erent positions of its terminals. At ermi nal , or pi n, is a point
withinthe blockwhichshouldbe electricallyconnectedto one or more
pointsof other blocks. Ablockis calledexi bl e if its sizeisknown, but its
shapeandpinpositions havenot yet beende�ned. For some subcircuits
completedblocks mayhave beendesignedearlier, i.e., their exact size,
shape andpinpositions are known. Suchablockis calleda�xed block
or amacro- cel l .

The purpose of the oorplanning/placement stepof layout synthesis
is twofold. Firstly, aspeci�c implementationof all exible blocks is cho-
sen, that is, all exibleblocks are turnedinto�xedblocks. Secondly, an
absolute positionandanorientationis determinedfor eachblock. The
spacingbetweenblocks shouldbe su�cient toallowfor all neededinter-
connections tobe implementedinsucceedingsteps. Inthe literature, the
most commonoptimizationcriteriausedare minimizationof total esti-
matedareaand/or total estimatedinterconnect length. If oneormoreof
theblocksareexible, steptwois referredtoasoorpl anni ng, while if all
blocks aremacro-cells, this stepis calledpl acement . Hence, placement is
aspecial caseof oorplanning. Acrucial issueof oorplanning/placement
is toestimate theareaneededbetweentheblocks for routing. The accu-
racyof this estimate determines the accuracywithwhichthe qualityof
the placement is assessed. Inparticular, if the routing area is underes-
timated, it maynot evenbe possible to implement the interconnections
later onwithout alteringthe placement. Fig. 2.3 (a) shows aplacement
of �vemacro-cells.

Followingoorplanning, the purpose of the rout i ng stepis to imple-
ment all interconnectionsbetweenthemacro-cells inaccordancewiththe
netlist. As indicatedinFig. 2.2, routingconsist of three subtasks: rout -
i ng regi on de�ni t i on, gl obal rout i ng anddet ai l ed rout i ng. The�rst taskis
to divide the area not occupiedbyblocks into a number of rectangular
areas calledrouting regions. It is a commonassumptionthat the area
used for routing and the area occupiedby blocks are disjoint. Conse-
quently, all terminals of ablockhavetobeplacedat theperipheryof the
block. Arouting regionwith terminals along zero or one side only, or
withterminals along twoopposite sides, is calleda channel . Arouting
region, which is not a channel, is calleda swi t chbox. The objective of
routingregionde�nitionis todivide the routingareaintoas fewregions
as possible. Especially, the number of switchboxes shouldbeminimized,
since aswitchboxis muchharder tohandle inthe later detailedrouting
stepthanachannel.
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design or not, if the design is hierarchical, it will consist of building-
blocks fromacertainlevel.

2. 3 Bui l di ng-Bl ock Layout Synthesi s

Fig. 2.2outlinesthelayoutsynthesisprocess for thebuilding-blockdesign
style. Due to the inherent complexityof the process it is divided into
a number of subtasks, whichare solvedone at time although they are
mutuallydependent [Sherwani 93].
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Figure 2.2: Overvi ew of t he l ayout synt hesi s process f or bui l di ng- bl ock

l ayout s. The arrows i ndi cat es t he order i n whi ch t he st eps are perf ormed.
Af t er each st ep t he desi gner ei t her proceeds t o t he next st ep i f everyt hi ng

i s al l ri ght , or (s)he may have t o go back and redo one or more previ ous

st eps i n order t o meet t he overal l obj ect i ves.

Most circuits cannot be handledbythe CADtools as awhole, due
to the requiredcomputationtime as well as the memoryconsumption.
Therefore, the �rst stepof layout synthesis is part i t i oni ng, inwhichthe
designspeci�edbythe givencircuit diagramis partitionedinto a num-
ber of subcircuits of manageable size. For large circuits the partitioning
may be hierarchical, cf. Section 2.2. Standard criteria considered by
a partitioning algorithmare the number of subcircuits, the size of each
subcircuit andthe connectivitybetweenthem. The output of the parti-
tioning stepis a set of subcircuits andanet l i st , whichis a speci�cation
of the interconnections tobemadebetweenthe subcircuits.

Eachsubcircuit will be implementedby a building-block. The size
of ablockimplementingaspeci�c subcircuit canbe estimatedfromthe
numberandtypesof componentsitcontains. However, several alternative
layouts of the blockare possible, leadingtodi�erent shapes of the block
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mancerequirements canbemet. Prototypingis another applicationarea
of semi-customdesigns.

Amain reason why full-customdesigns increases the development
time signi�cantly is that manyof the subproblems to be solvedduring
the layout synthesis phase are signi�cantlyharder tosolve thanthe cor-
respondingproblems for semi-customdesigns. For example, interconnec-
tions inastandard-cell layout is typicallyimplementedinsuchawaythat
onlyonedimensionneeds tobeconsideredat atime. Inabuilding-block
layout this problemis trulytwo-dimensional. Consequently, manyof the
keysubproblems of layout synthesis aresolvedbytools, whicharedesign
style speci�c. ImprovedCADtool performance is �rst of all neededfor
the full-customdesign style. Inherently, these tools often performrel-
atively poorer than their semi-customcounterparts, and this is one of
the reasons whytheworkpresentedinthis thesis is concentratedonthe
full-customdesignstyle.

Table 2.1 summarizes the comparison of the full-customand semi-
customdesign styles. Generally speaking, as more restrictions are im-
posedonthe layout, the di�erences listedwill be increasinglyprevalent.
Inotherwords, thecomparisonof Table2.1still holds if e.g.\full-custom"
is replacedby\standard-cell"and\semi-custom"is replacedby\gatear-
ray".

Criterion Preferable designstyle

exibilitywrt. requirements full-custom

performance of circuit full-custom

layout area full-custom
cost per circuit full-custom

development timeandcost semi-custom

tool support semi-custom

Table 2.1: Compari son of desi gn st yl es.

Real-worldcircuit designs oftenconsists of amixtureof layout styles.
Someparts of the layoutmaybeconstructedfromlibrarystandard-cells,
while other, more critical parts are full-customdesign. To handle the
complexityof large circuits, the designmaybe hierarchicallystructured
intotwoor more levels. Asmentionedpreviously, blocks of afull-custom
layout maybe constructedfromanumber of smaller blocks. Standard-
cells mayalsobe groupedtogether to formabuilding-blockat the next
higher level of the hierarchy. So whether standard-cells are used in a
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cells. The cells are placedinrows as illustratedinFig. 2.1 (right) and
they are almost always designed so that some of the wires, typically
power supplies andclocksignals, are positionedat the sameheight inall
cells. Thesewires are thenautomaticallyconnectedbyabutment of the
cells. While a full-customlayout rarelyconsist of more than50 cells, a
standard-cell layoutmayconsist hundreds of cells.

Figure 2.1: Lef t : A f ul l - cust om l ayout . Ri ght : A st andard- cel l l ayout .

Onl y out l i nes of cel l s are shown.

Theother semi-customlayoutstylesmentionedareall morerestrictive
than the standard-cell layout style. Broadly speaking, they all restrict
eachcell toimplement asinglegateonly, andtheplacement of the gates
are restrictedtomatrix-like structures. For afurther discussionof these
layout styles, the reader is referredto [Sherwani 93].

The choiceof adesignstyle for agivenapplicationdepends onmany
factors. The layout density, i.e., the number of transistors per areaunit,
is highest whenusing the full-customdesign style, which consequently
gives the smallest area andthe lowest cost per producedcircuit 1. The
best circuit performance is also obtainedby a full-customdesign, and
it is the most exible withrespect to atypical or severe circuit require-
ments, whichmaynot be satis�able usingstandard-cells froma library.
For these reasons, the full-customlayout style is generallypreferredfor
mass-producedcircuits andfor circuitshavingtomeet strict performance
requirements, suchas CPUs. Themaindrawbackof the full-customde-
signstyle is that it increases the development time andhence cost, sig-
ni�cantly. Therefore, a semi-customlayout style is generally preferred
for circuits tobe producedinmediumsizedquantities, providedperfor-

1Here i t i s assumed that the ci rcui t do not have an obvi ous regul ar structure. For exampl e,

RAMci rcui ts are hi ghl y regul ar and have very hi gh transi stor densi ti es. However, appl i cati on

speci �c ci rcui ts are rarel y very regul ar by nature.
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toobtainasatisfactoryresult.

Thesiliconcompilationprocessisdividedintotwoconsecutivephases,
hi gh- l evel synt hesi s andl ayout synt hesi s , thelatter of whichis alsoknown
asphysi cal desi gn aut omat i onorphysi cal l ayout generat i on. Givenahigh-
level descriptionof analgorithm, the output of the high-level synthesis
phase is adetailedci rcui t di agram, whichdescribes the circuit solelyin
termsof gatesandinterconnectionsbetweengates. Then, fromthecircuit
diagram, a layout of the circuit is generatedas the result of the layout
synthesis phase. High-level synthesis is not discussedinthis thesis.

[Mead80] and [Weste88] are classical textbooks onVLSI designin
general. Moreadvancedtopics arediscussedin[Glasser 85]. Siliconcom-
pilationisthetopicof [Gajski 88], whichalsopresentsanumberof speci�c
siliconcompilers. Arecent andwell-writtentextbookonlayout synthesis
is [Sherwani 93].

2. 2 Desi gn Styl es

Fundamental tothe layout synthesis phase is the choiceof adesi gn st yl e

or l ayout st yl e, whichspeci�es various degrees of structural regularityof
the generatedlayout. The layout styles canbe classi�edas either f ul l -
cust omor semi - cust om.

In a full-customlayout the circuitry is partitioned into a relatively
small number of cel l s , eachof which implements a speci�c part of the
requiredfunctionality. Acell of afull-customlayout is alsocalledabl ock
or abui l di ng- bl ock. Ablockmaybeconstructedfromsmaller blocksor it
maybe designedmanuallyor automaticallybye.g. amodul e generat or .
Theblocksarethenplacedandinterconnected. Thecharacteristicfeature
of thefull-customlayoutis irregularity. Eachblockcanhaveanysizeand,
ingeneral, anyrectilinear shape. Furthermore, the blocks canbe placed
at anypositionsubject only to the limitations imposedby the design-
rules, as illustratedinFig. 2.1(left).

Incontrast to the full-customlayout, the semi-customlayout styles
introduces various degrees of regularity. St andard- cel l s , gat e arrays , sea-
of - gat es , and gat e mat ri x layouts are all semi-customlayout styles. A
standard-cell layout is made upof st andard- cel l s , whichare rectangular
andhave identical height but varyingwidth. Eachcell is either designed
manuallyor stems froma cel l l i brary of predesignedcells. Commercial
siliconcompilerstypicallycomeswithlibrariesof afewhundredstandard-
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or usingabutment) assignedto anappropriate layer. Similarly, a tran-
sistor is speci�edas aspeci�ccombinationof shapes of di�erent layers at
the samephysical location, andaconnectionbetweentwodistinct layers
is speci�edby an appropriate shape at the requiredposition, which is
assignedalayer dedicatedtothis purpose.

The software usedfor siliconcompilationis calleda si l i con compi l er

orVLSI CADt ool s . As indicatedbythe�rst designation, asiliconcom-
piler has alot incommonwithatraditional compiler for aprogramming
language. For example, the generatedcode has to obeycertainsyntax
rules and it shouldbe e�ective. Similarly, the layout generatedbythe
silicon compiler has to obey a set of desi gn rul es givenby the manu-
facturer. The designrules speci�es minimumsizes of shapes, minimum
distances betweenshapes of distinct layers, limitations as towhichlayers
canbe placedon top of eachother, etc. The generated layout should
alsobe\e�ective"inthe sense that certaincriteriashouldbe optimized.
Exactlywhichcriteriaare important depends onthe speci�capplication.
If the circuit will constitute the CPUof a computer, speedwill be cru-
cial. For satelliteapplications, alowpower consumptionwill beof major
importance. For medical equipment, reliabilityhopefullyhas the high-
est priority. Tocontrol the programs inawashingmachine, production
cost per unit will be a major concern, and for applications inmilitary
equipment, insensitivityto large temperature variations maybe a very
important requirement. The optimizationcriteriamost frequentlystud-
iedinthe literature andalso adoptedinthis work, aremi ni mi zat i on of
l ayout area and t ot al wi re l engt h. Minimizing area means maximizing
yieldandhenceminimizingcost. It alsomeansmaximizingthe function-
alitywhichcanbe implementedonasinglechip. Minimizingwire-length
tosome extent means minimizingdelayandhencemaximizingspeed.

Several other similarities betweencompilers andsiliconcompilers ex-
ist. However, there are alsomajor di�erences causedbythe tremendous
di�erence of the complexityof the problems considered. As will be de-
scribedinSection2.3, the siliconcompiler has to deal witha sequence
of mutuallydependent, NP-hardoptimizationproblems. Consequently,
it is basedonalarge number of heuristics, someof whichare not always
capable of producing satisfactory results. Therefore, a siliconcompiler
is not a single program, rather it is a collectionof a (large) number of
integratedtools, eachof whichcanbeexecutedindividually. Most silicon
compilers allows for user interventionat various points inthe process so
that oneormorecritical steps of theprocess canbecarriedoutmanually
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Chapter 2

Layout Synthesis

The aimof this chapter is to present the basics of layout synthesis, of
whichfamiliaritywill be assumedinsucceedingchapters. The introduc-
tionisbrief, but providesreferences for further reading. Section2.1intro-
duces layout synthesis ingeneral, andSection2.2presents the concepts
of full-customandsemi-customlayouts. Anoverviewof layout synthesis
of building-blocklayouts, whichis thespeci�cproblemareaof this thesis,
is giveninSection2.3. Readers familiar with layout synthesis canskip
this chapter.

2. 1 Introduct i on

Given a high-level description of an algorithm, the task of (semi-)au-
tomaticallytranslating the descriptioninto anexact speci�cationof an
integratedcircuit, whichimplements the algorithm, is referredto as de-
si gn aut omat i on or si l i con compi l at i on.

Hardware descriptionlanguages, of whichVHDLis the most popu-
lar [Lipsett 89], is commonlyused for the input high-level descriptions.
Alternatively, general purpose programming languages such as Occam
or C++canbe used[Caprani 91, Andersen92]. The output generated
is a detaileddescriptionof the circuit, whichcomprises all information
neededbythe manufacturer for the production. The description, com-
monlyreferredtoasthe l ayout , is aspeci�cationof a(large) set of planar,
geometric shapes. Eachshape is assignedto a speci�c l ayer of the cir-
cuit, whichis identi�edbyaname or acolour. Typicallyrectangles are
the onlyshape allowed. Some layers of the circuit are usedfor intercon-
nections, or wires, while combinations of other layersmaycorrespondto
e.g. a transistor or anelectrical connectionbetweentwospeci�c layers.
Hence, inthe layout, awireis speci�edas aset of rectangles (overlapping
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ideas onhowto handle the most important identi�edproblems of the
proposed algorithms. Finally, the main conclusions of this thesis are
giveninChapter 7.

1. 4 Descri pt i on of Papers

As previouslymentioned, the thesis is based on researchpapers, four
of whichconstitutes Appendices AthroughD. The following presents
the papers by listing informationon co-authorship, publication status,
etc. For adescriptionof the contents of the papers andthe relationship
between the papers the reader is referred to Chapter 5. The thesis is
basedonthe followingpapers:

1. HenrikEsbensen, \AGeneticAlgorithmforMacroCell Placement,"
Proc. of The European Desi gn Aut omat i on Conf erence, Hamburg,
Germany, pp. 52-57, 1992.

2. HenrikEsbensen, Pinaki Mazumder, \SAGA: AUni�cationof the
GeneticAlgorithmwithSimulatedAnnealinganditsApplicationto
Macro-Cell Placement,"Proc. of The 7t h Int ernat i onal Conf erence

on VLSI Desi gn ' 94, Calcutta, India, pp. 211-214, 1994.

3. HenrikEsbensen, Pinaki Mazumder, \AGeneticAlgorithmfor the
Steiner ProbleminaGraph,"Proc. of The European Desi gn and
Test Conf erence, France, Paris, pp. 402-406, 1994.

4. HenrikEsbensen, \ComputingNear-Optimal SolutionstotheSteiner
ProbleminaGraphUsingaGeneticAlgorithm,"Technical report
Daimi PB-468, Computer ScienceDepartment, Aarhus University,
February1994.

5. HenrikEsbensen, \AMacro-Cell Global Router BasedonTwoGe-
neticAlgorithms,"Proc. of The EuropeanDesi gn Aut omat i on Con-

f erence, Grenoble, France, pp. 428-433, 1994.

AppendixApresents animprovedversionof the algorithmdescribed
inthe �rst paper. Anextendedversionof the secondpaper constitutes
AppendixB, thefourthpaper constitutesAppendixCandthe�fthpaper
constitutes AppendixD. The papers havebeenreformattedinorder to
obtainaconsistent typographyof the thesis.
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ageneral backgroundincomputer science, but no speci�c knowledge of
VLSI layout generationor geneticalgorithms.

The main part of the thesis is the second part, which consists of
Appendices AthroughD. Here the four maintopics consideredinthis
workarepresented, eachone inthe formof apaper. Thepapers assumes
some knowledge of layout generationand/or genetic algorithms, which
canbe acquiredbyreadingthe �rst part of the thesis.

The rest of the �rst part of the thesis is organized as follows: A
brief introduction to macro-cell layout synthesis is giveninChapter 2.
This includes a brief account of layout styles, withparticular emphasis
on the characteristics of the macro-cell layout style. An overviewof
the individual steps of the macro-cell layout synthesis process is given,
focussingonthecomplexityof eachstepandtheinterrelationshipbetween
the steps. Readers familiar withmacro-cell layout synthesis canskipthis
Chapter.

The concept of genetic algorithms is presentedinChapter 3. Abrief
overviewis giventogether withanaccount of the underlying ideas. Fo-
cus isontheoryof geneticalgorithms, practical considerationsof applying
GAsandcurrentresearchtopics. Readers familiarwithGAscanskipSec-
tions 3.1, 3.2and3.3, while Section3.4discusses various designoptions,
andconstitutes the basis for later discussions inChapter 5.

Relatedwork are reviewedinChapter 4. The presentationgivenis
notmeant tobeexhaustive, but describes thestate-of-the-art approaches
toplacementandglobal routingof macro-cell layouts. Furthermore, Sec-
tion 4.3 gives a brief overviewof previous applications of GAs within
the layout synthesis area ingeneral. The GAhas beenappliedto e.g.
standard-cell placement andchannel routing.

Asummary of the conducted research is given inChapter 5. This
includes a brief descriptionof eachof the four algorithms presented in
the appendices, andanaccount of the relationshipbetweenthe di�erent
parts of the work. The obtainedresults are evaluatedbycomparingthe
performance of the proposedalgorithms to that of the best existingap-
proaches, cf. Chapter 4. Advantages anddisadvantages of the proposed
algorithms are discussed, and based on the presentation of design op-
tions inSection3.4, the important GA-characteristics of the algorithms
are summarized. Thealgorithmshavesomecommonproperties, whichis
believedtobe themainreasons for the obtainedperformance.

Chapter 6 points at some possible directions for future workonthe
basis of the evaluationpresentedinthe previous chapter. This includes
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onworst possible result relative to the global optimum, worst-case time
analysis, etc. Apart fromthe fact that these kinds of analysis are very
hardif not impossible toapplyfor GAs, suchperformancemeasures are
not the immediate interest of theCADengineer. The engineer wants to
knowif the result obtainedis likelytobe better thanresults obtainable
using other tools, andwhichabsolute runtime is to be expected. The
latter viewpoint does not rule out or conict withthe �rst, insteadthe
twoviewpoints supplement eachother. But inthis applicationareait is
natural toput emphasis onthe latter viewpoint. For example, toobtain
agoodabsolute runtime, theworst-case time complexityshouldbe con-
sidered. However, if the problemsizes consideredinpractice canalways
be solvedin, say, acouple of seconds, thedesignengineer will not worry
whether the complexityof the algorithmisO(n logn ) orO(n ). Later on
(s)he might be spendingCPU-hours solvinganother subproblemof the
layout generationprocess. Andif the input causingthe worst-case time
complexityrarelyor never occurs inpractice, the theoretical complexity
of analgorithmwill not provide the engineer withmuchinformationas
towhichruntime shouldbe expected.

For thesereasons, theperformanceof thealgorithmsdevelopedinthis
workis evaluatedbyimplementingeachalgorithmandinterfacingit toa
set of existingCADtools. The algorithms are thentestedusingbench-
markprobleminstances whenever possible, andthe obtainedqualityfor
the benchmarks as well as absolute runtime are compared to those of
current state-of-the-art tools. Comparisonis donetoanystate-of-the-art
approach, nomatter if it is basedonacompletelydi�erent strategysuch
as branch-and-boundor simulatedannealing. Again, fromthe CADen-
gineers point of view, the GAapproachis interesting if andonly if it is
competitivetootherapproaches, whereasatypical GA-performancemea-
sure suchas on-line or o�-line performance is of no immediate interest
onits own.

1. 3 Organi zat i on of the Thesi s

Thethesis isbasedonpaperswrittenduringmyPh.D. studyandconsists
of twoparts. The �rst part consists of Chapters 1 through7. Here the
relevant topics are introduced, the obtainedresults are summarizedand
relatedtoearlier approaches, andpossibledirections for future workare
discussed. This part of thethesis is writtenassumingthat thereader has
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does not capture the temperature dependency of delay. There is also
geometric aspects withno obvious physical counterparts. For example,
twogeometricallydistinct paths of awiremaybeequivalentwithrespect
to their physical properties. The choice of viewpoint is causedby the
interests andbackgroundof the author as well as the needtodemarcate
the topic.

As describedinSection1.1 the overall purpose of this workis to in-
vestigateif the applicationof GAs canimprovetheperformance of CAD
tools available to designengineers. The applicationorientedpurpose of
course a�ects the approach taken, whichalso becomes applicationori-
ented. The remainingof this Sectiondiscusses important consequences
of the applicationorientedapproach.

Whenconsideringperformance of the developedalgorithms, the ob-
tainedlayout qualityis assumedtobemore important thanruntime. Of
course runtime shouldbe withinreasonable bounds tominimize the de-
velopment timeof acircuit. But if acircuit is tobemass-produced, even
aslight improvement of aqualityfactor suchas areawill meanasignif-
icant economical advantage. Hence, designers will most likelybewilling
to spendthe extradevelopment time causedbyslower CADtools. Fur-
thermore, whenproducinglarge, high-performancecircuits, thedesigners
maynot evenhave a choice. Just to obtaina layout satisfying the re-
quirementswithrespect to, say, timingandarea, thedesignersmayhave
to use the tools producing the best possible layout quality, no matter
what there runtime requirements are. It shouldbe emphasizedthat the
priorityof qualityas beingmore important thanruntimedoes not mean
that runtimehas noimportance. It is merelyamatter of priorities.

The applicationoriented approachmatches the application of GAs
well. The GAhas not beenchosenas the subject of this studybecause
of aninterest for the GAinits ownright, althoughI do �ndthe basic
ideaof theGAintuitivelyappealing. However, themainreasontoinves-
tigate theGAis that, judging fromresults obtainedwithinother �elds,
the algorithmcouldpotentiallybe able toproduce high-qualitylayouts.
Furthermore, it has not yet beeninvestigatedfor this applicationarea.
The GAis widelyacceptedas beingable to generate high-qualitysolu-
tions, whiletheyoftenhaveproblems competingwithrespect toruntime.
These characteristics matches our priorities.

Performance evaluationis strongly impactedbythe applicationori-
entedapproach. Froma theoretical point of view, the performance of
an algorithmcanbe evaluated in terms of convergence proofs, bounds
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areaanddelay) of the generatedlayouts the most, as will be explained
inChapter 2.

Therearetwomainreasonswhythegeneticalgorithm(GA) hasbeen
selected as the algorithmto be investigated for the chosen problems.
Firstly, almostnopreviousworkexist onGAs formacro-cell layout prob-
lems, cf. Chapter 4. Secondly, the GAhas beensuccessfullyappliedfor
several other highly complex optimizationproblems, cf. Section 3.1.2.
There is alsoa fewpromisingapplications of GAs for standard-cell lay-
out problems. Therefore, it is anatural ideatoinvestigateif theGAcan
beusedtoimprove the performance of macro-cell layout tools.

The purpose of this thesis is tocontribute answers toquestions such
as:

� Canthe concepts of genetic algorithms be successfullyappliedfor
placement andglobal routingof macro-cell layouts, whenthemain
objective is high-qualityresults ?

� Whichperformance canbe obtained?

� Arethereanyalgorithmicdesignprinciples, whichseemstobeyield-
ingthehighest performance ? If so, what are these principles ?

� What arethemainproblemsof aGA-basedapproachtotheseprob-
lems ?

1. 2 Chosen Approach

This thesis focusses onthe combinatorial optimizationaspects of layout
generationrather thanonthephysical aspects. Alayout ismainlyviewed
asaset of two-dimensional geometrical objectswhichshouldbeorganized
intheplane suchthat somemeasureof qualityis optimized. Thequality
measure is de�nable interms of sizes and shapes of geometric objects,
distancesbetweendi�erentobjects, etc. This is incontrast toaphysicists
point of view, inwhichalayout is aset of interconnectedtransistors and
the concepts discussedare rise and fall times, capacities, conductance,
andso on. The two viewpoints, or \worlds", are of course verytightly
relatedandmanyconcepts are (completelyor partly) transferable from
oneworldtotheother. Forexample, thesignal propagationdelaythrough
awire depends onthe geometric dimensions of the wire, i.e. this aspect
of delay is transferable. On the other hand, the geometric viewpoint
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the use of procedures inimperative programming languages. Alevel in
the hierarchical layout consist of a number of interconnectedblocks, or
cells, eachof which implement some part of the required functionality.
Eachblock is in turnmade up of a number of smaller, interconnected
blocks. At thebottomlevel of thehierarchy, ablockconsists of anumber
of interconnected transistors, which implement e.g. a single gate or a
register. Commercial CADtool packages includes libraries of so-called
standard-cells, whichimplements a wide range of relativelysimple and
common functions. Standard-cells are uniformand therefore relatively
easytoput together to formlarger blocks. Hence standard-cells simpli-
�es andspeeds upthe constructionof the lowest levels inahierarchical
design. However, if theperformancerequirementsfor thecircuit tobede-
signedareveryhigh, adesignbasedonstandard-cellsmaynot beableto
meet the requirements andthe designer will thenhave toconstruct cus-
tomizedcells for thelowest level of thehierarchy. Whether standard-cells
or customizedcells are usedinitially, above some level of the hierarchy,
the blocks will typicallyhave varying sizes and shapes, one of the rea-
sons beingthe interconnections made at lower levels. Suchnon-uniform
blocks are calledmacro-cells, anda level of the hierarchyconsisting of
macro-cells is calledamacro-cell layout. The concepts of standard-cells,
macro-cells andcustomizedcells, etc. will be discussedinmoredetail in
Chapter 2. If customizedcells are usedas the basic building blocks of
acircuit inorder tomeet the performance requirements, the layout will
oftenbe of the macro-cell type froma lower level inthe hierarchythan
if standard-cells were used.

Most CADtools are customizedtowards aparticular layout type, or
layout style, sothat the same sub-problemof the layout generationpro-
cess is solvedbydistinct tools, dependingonthecurrent layout style. As
onewouldexpect, the best tools havebeendevelopedfor standard-cells,
sinceastandard-cell layout is easier togenerate thanamacro-cell layout
implementing the same functionality. Due to the increasedcomplexity
of the sub-problems tobe solvedwhenusingthemacro-cell designstyle,
manual interventionis requiredmoreoftentoobtainasatisfactoryresult.
Inother words, the macro-cell layout tools are the ones that needs im-
provement themost, andarealsothe ones whichhavethe largest poten-
tial for improvement. This is the reasonwhythis thesis focusses ontools
for themacro-cell layout stylerather thanstandard-cell layouts. Further-
more, thespeci�csub-problemschosen, placementandglobal routing, are
the most important ones inthe sense that theyimpact the quality(e.g.
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Chapter 1

Introduction

Thesubjectof thisthesis isdesignof geneticalgorithmsfor solvingcertain
sub-problemsarisinginautomaticlayoutgenerationof VLSI (VeryLarge
Scale Integration) integrated circuits. Section 1.1 of this introductory
chapter briey introduces the subject anddescribes the purpose of the
thesis. The approachtakenis describedinSection1.2. The structure of
the thesis andsomeguidelines tothe reader are giveninSection1.3and
abrief introductionto the researchpapers onwhichthe thesis is based
is foundinSection1.4.

1. 1 Subj ect and Purpose of the Thesi s

During the last decades, the complexity of integrated circuits has in-
creasedexponentially. Inthe1970's atypical microprocessor suchas the
Intel 8080consistedof about 5,000transistorswhile in1993Intel's state-
of-the-art processor Pentiumcontains 3.1milliontransistors ona17.2by
17.2mmarea. This extremelyrapiddevelopment will most likelycon-
tinue, at least for someyearstocome. Tohandlethecomplexityof todays
circuitsthedesignengineersaretotallydependentonpowerful CADtools
tofacilitatea(semi-)automatictransformationof ahigh-level description
of acircuit intoanequivalent physical layout. The capabilities andlim-
itations of suchtools have crucial impact onthe performance andcost
of the producedcircuits as well as onthe resources requiredto develop
a circuit, both in terms of time and �nancial cost. Consequently, the
areaof CADtools for designof VLSI circuits, also referredtoas design
automationor siliconcompilation, is a veryimportant andincreasingly
growingresearcharea.

Due to the inherent complexityof anynon-trivial circuit, the layout
is commonly hierarchically structured. This situation is analogous to
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Preface

This thesis is the result of a 3 year Ph.D. study carriedout inthe pe-
riod from1991 to 1994. The researchwas done at Computer Science
Department, Aarhus University, Denmark, andsupervisedbyAssociate
Professor PeterM�ller-Nielsen. As anintegral part of the studyI was at
Department of Electrical EngineeringandComputer Science, University
of Michigan, MI, USA, for a one year period fromJune 1992 to June
1993. Duringthis timeAssociateProfessor Pinaki Mazumder was acting
supervisor.

The purpose of this researchis to investigate the possibilities of ap-
plying evolution-basedalgorithms to solve various subproblems arising
inlayout synthesis of VLSI integratedcircuits. Especially, the research
has focussedonthedesignof geneticalgorithms for placementandglobal
routing of macro-cell layouts. The goal is to contribute to answers for
questions suchas: Cantheconcepts of geneticalgorithmsbesuccessfully
appliedwithinthis applicationdomain, whenthe objective is to gener-
ate high-qualitylayouts ? Whichperformance canbe obtained? Which
algorithmicdesignprinciples yields the highest performance ? What are
themainproblems of the genetic algorithmapproach?

Thethesis consists of twoparts, the�rst of whichintroduces therele-
vant topics, summarizes theobtainedresults, relates theresults toearlier
signi�cant approaches, discusses possible directions for future work, etc.
The mainpart of the thesis is the secondpart, which is structured as
four appendices. Here themainresults are presentedinthe formof four
separate researchpapers, writtenduringthe study.

Toput the workpresentedinthis thesis intoperspective it is appro-
priate to give a brief account of mybackgroundandthe circumstances
that leadmetoworkinthis �eld. I �rst becameinterestedintheareaof
layout synthesis whenI hadacourseonVLSI designas part of myMas-
ters programme in computer science. Layout synthesis canbe studied
fromanumber of di�erent viewpoints, but what I foundfascinatingwas
the complexityof the optimizationproblems involved. Insteadof creat-
ingmore or less arti�cial problems and then studyhowto solve them,
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komplementerer i envis forstandhinanden, ogdettevar inspirationentil
udviklingenaf enplaceringsalgoritme kaldet SAGA, der kombinerer en
GAmedSAs�aledes at algoritmeni deninitielle fase er enrenGA, men
derefter gradvist ogadaptivt skifter overmodSAogtil slut kanv�reren
SA. SAGAer f�rst ogfremmest inspireret af [Boseniuk91], mener mere
generel ogi h�jeregradadaptiv. SAGAerpubliceret som[Esbensen94a],
ogartiklengengivet i appendixBer enudvidet versionheraf.

Somtidligere n�vnt er SPGet delproblemi forbindelse medglobal
routing, hvorforenGAtil SPGblevudvikletsomdet f�rsteskridtmoden
GA-baseretglobal router. Denf�rsteversionaf algoritmenblevpubliceret
som[Esbensen94b]. Daresultaterne varmeget lovende, blevalgoritmen
videreudviklet, selvomkarakteristikafor debenchmarkgrafer der nublev
arbejdet med, ikke l�ngere var direkte relevante for denglobale router.
AppendixCgengiver artiklen[Esbensen94c].

Endeligbeskrives i appendixDdenGA-baserede globale router, der
somendelalgoritmeanvenderGAenfraappendixC. Denglobale router
er publiceret i [Esbensen94d], somgengives i appendixD.
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erdetalligevel klart, atalledeudvikledealgoritmererkonkurrencedygtige
sammenlignet med state-of-the-art algoritmer m.h.t. den opn�aede l�s-
ningskvalitet. Specielt opn�as meget lovende resultater med SPGal-
goritmen og den globale router. P�a den anden side er SPGalgorit-
menden eneste, der ogs�a kankonkurrere p�a k�retid. De �vrige algo-
ritmer er alle betydeligt langsommere end demde sammenlignes med,
ofteenst�rrelsesorden. Der er imidlertidet antal kendte�arsager til at de
nuv�rende implementationer af algoritmerne er s�a tidskr�vende, hvor-
for det forventes at k�retiderne kanreduceres v�sentligt, sombeskrevet
i kapitel 6. Desudener GAs meget velegnede til parallelle implementa-
tioner.

Udover forslagtil hvordank�retidernekanforbedres, diskuterer kapi-
tel 6enmulig�ndringaf devalgteoptimeringskriterier samtkombinatio-
nenaf disse. Desudendiskuteresmulighederne for at sammens�tteplac-
eringogglobal routing til �enopgavem.h.p. at reducere de uundg�aelige
problemer somf�lger af un�jagtige estimater.

Endelig pr�senterer kapitel 7 afhandlingens hovedkonklusioner. Da
de udviklede algoritmer er konkurrencedygtige m.h.t. l�sningskvalitet
konkluderes det, at GAs er enlovendemetode til de unders�gte proble-
mer. Medundtagelse af SPGalgoritmener k�retiderne ikke tilfredsstil-
lende, mendet forventes at betydelige forbedringer kanopn�as p�adette
punkt. Denanvendtemetode til h�andteringaf begr�nsninger menes at
v�re denv�sentligste�arsag til de opn�aede resultater. Derfor konklud-
eres at for problemer medlignendekarakteristikaskal manfrav�lgeden
traditionelle bin�re problemrepresentationog de traditionelle genetiske
operatorer, n�ar disse forhindrer at alle l�sninger altid kanopfylde alle
begr�nsninger. Istedet opn�as bedre resultater veddesign af problem-
speci�kke repr�sentationer ogoperatorer.

Arti kl erne: Appendi ces Ati l D

Artiklengengivet i appendixApr�senterer enGAtil placeringaf makro-
celler. Hovedid�een er at betragte placeringsproblemet somen gener-
alisering af det to-dimensionelle binpacking problem, til hvilket enGA
beskrives i [Kr�oger 91]. Placeringsalgoritmenblev f�rst publiceret som
[Esbensen92] mener senere blevet forbedret p�a en r�kke punkter, og
artikleni appendixbeskriver dennyealgoritme.

De typiske konvergensforl�baf enGAog simulatedannealing (SA)
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ulated annealing [Upton90a, Upton90b], en branch-and-bound algo-
ritme [Onodera91], ogtost�rre layoutsystemer, BEAR[Eschermann88,
Dai 89] og TimberWolfMC[Sechen88a, Sechen88b], der begge inde-
holder gode placeringsalgoritmer. Desudener GAMPmedtaget, soms�a
vidt vides er deneneste tidligereGAtil makro-celleplacering[Chan91,
Shahookar 94a]. Toglobaleroutere pr�senteres: Mercury[Nishizaki 89],
der er baseret p�aheltalsprogrammering, ogdenglobale router indeholdt
i TimberWolfMC. Et delproblem, der opst�ar i forbindelse med global
routing er Steiner problemet i en graf (SPG), somdenne afhandling
ogs�apr�senterer enGAtil. Derfor pr�senterer kapitel 4 ogs�aenstate-
of-the-art SPGalgoritme baseret p�a branch-and-cut [J. E. Beasley89,
Lucena92]. Toandre SPGalgoritmer pr�senteres i appendixC, herun-
der enGA[Kapsalis 93] soms�avidt vides er deneneste tidligereGAtil
SPG.

Dencentrale del af afhandlingens oversigtsdel er kapitel 5, hvori de
udviklede algoritmer opsummeres og evalueres. F�rst pr�senteres og
diskuteres nogle antagelser vedr�rende optimeringskriterier og teknolo-
gier somer lagt til grundfor de udvikledealgoritmer. Dern�st fort�lles
projektetsudviklingshistorie: Hvilkealgoritmererudviklet, hvorfor, hvad
er hovedid�eernebagdem, oghvordaner derelateret til hinanden. Afhan-
dlingenpr�senterer to algoritmer til placeringaf makro-celler, enalgo-
ritme til SPGogenglobal router. Algoritmernes GA-karakteristikaop-
summeres i termer af de �re problemstillinger introduceret i afsnit 3.4.
Her er den vigtigste pointe at alle algoritmerne udelukkende betragter
lovlige l�sninger, dvs. at repr�sentationen af en l�sning, dekoderen
(en algoritme somtolker repr�sentationen) og/eller de genetiske oper-
atorer til enhver tidsikrer at enhver l�sninger komplet ogoverholderalle
begr�nsninger. Alternativt kanman tillade l�sninger, der overtr�der
(nogle af) begr�nsningerne, og istedet tilf�je straedtil costfunktionen.
Det er ogs�a karakteristisk at problemspeci�k viden stort set ikke ud-
nyttes, ogat det har v�ret relativt let at �ndepassendev�rdier for kon-
trolparametrene. De udviklede algoritmers estimater (der direkte eller
indirekte indg�ar i costfunktionerne) sammenlignesmeddeestimater, der
anvendes i algoritmerne beskrevet i kapitel 4. Sammenligningerne viser,
at f�rstn�vnte estimater generelt er de mest n�jagtige og dermedogs�a
demest tidskr�vendeat beregne.

Mange faktorer vanskeligg�r helt retf�rdige sammenligninger af de
udviklede algoritmers ydeevnemedeksisterende algoritmers, hvorfor de
este sammenligninger er forbundet medvisse forbehold. P�atrods heraf
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makro-celle layout best�ar af et hierarki af blokke (eller makro-celler),
der er indbyrdes forbundne med ledninger. En blok p�a blad-niveauet
indeholder transistorer, der implementerer engivenfunktionalitet, mens
blokkep�ah�jereniveauer best�ar af et antal mindre, indbyrdes forbundne
blokke. Automatiskgenereringaf et givetniveaui hierarkiet opdeles tra-
ditionelt i et antal delopgaver, der l�ses uafh�ngigt p�a trods af st�rke
indbyrdes afh�ngigheder. To af delopgaverne er pl aceri ng af blokkene,
somefterf�lges af routing, dvs. implementationaf forbindelsernemellem
blokkene. Routing opdeles igen i global og lokal routing, hvor gl obal
rout i ng drejer sigomat bestemmeledningernes overordnede, omtrentlige
router. Det er karakteristiskfor alledelopgaverneat deerNP-komplette.
Desudenkomplicereslayoutgenereringenaf indbyrdesafh�ngighedermel-
lemopgaverne, somf�rer til udbredt anvendelse af estimater for konse-
kvenserneaf l�sningaf endnuikkeudf�rte delopgaver. Medandre order
der st�j p�adeanvendtecostfunktioner. Placeringogglobal routinger de
todelopgaver, der har st�rst betydningfor denopn�aede layout kvalitet,
hvilket er env�sentlig�arsag til at netopdisse to opgaver er valgt som
emnet for denne afhandling.

Genetiske algoritmer (GAs) introduceres i kapitel 3. Dengrundl�g-
gende id�e er at udf�re optimeringvedat simulere enekstremt forenklet
biologiskevolutionsproces. Princippetomdenst�rkestesoverlevelse(sur-
vival of the�ttest) kanbetragtes somenoptimering, hvor kriteriet er at
opn�a denbedst mulige tilpasning til omgivelserne. I enGAgenereres
en population af individer, somhver svarer til en l�sning til et givet
optimeringsproblem. Ved anvendelse af rekombination, mutation, etc.
genereres nye individer fra eksisterende individer, og efter nogle genera-
tioner fremkommergodeindividersvarendetil godel�sninger til optimer-
ingsproblemet. Kapitel 3diskutereranvendelsesomr�adetforGAs. I envis
forstandg�lder det, at josv�rere et problemer, jomere velegnet er det
forenGA. Desudenredeg�resfordet teoretiskegrundlagforGAsogprak-
tiskanvendelse af teoriendiskuteres. Denv�sentligste del af kapitel 3
er afsnit 3.4, somdiskuterer �re centrale problemstillinger vedr. design
af GAs: De karakteristiske egenskaber for engod repr�sentationaf en
l�sning, udnyttelseaf problemspeci�kviden, h�andteringaf begr�nsninger
og valg af v�rdier for algoritmens kontrolparametre. Diskussionen af
disse�re emner danner grundlagfor senere diskussioner i kapitel 5.

Udvalgte v�rkt�jer og algoritmer, der repr�senterer state-of-the-art
indenfor placeringog global routing af makro-celle layouts, pr�senteres
i kapitel 4. Placerings-v�rkt�jerne er MBP, somer baseret p�a sim-
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VLSI layout syntese. Der tegnes et billede af state-of-the-art inden-
for omr�adet ved en pr�sentation af de bedste eksisterende algoritmer
og v�rkt�jer. Derefter gives et resum�e af de udviklede algoritmer, og
deres karakteristika og ydeevne evalueres v.hj.af sammenligninger med
state-of-the-art. Endeliggiver afhandlingens oversigtsdel nogle forslagtil
fremtidigt arbejde. Mens artiklerne i appendices foruds�tter kendskab
til layout syntese samt et vist kendskab til GAs, har det v�ret hen-
sigtenmedafhandlingens oversigtsdel at denikke skulle kr�ve specielle
foruds�tninger udover enalmindelig datalogiskbaggrund. Layout syn-
tese introduceres i kapitel 2 ogGAs i kapitel 3, og disse kapitler skulle
give tilstr�kkelige foruds�tninger for restenaf afhandlingen. Omvendt
kanl�seremedkendskabtil layout syntese undlade at l�se kapitel 2og
l�seremedkendskabtil GAs kanundlade afsnittene 3.1, 3.2og3.3.

Oversi gtsdel en: Kapi t l erne 1 t i l 7

Afhandlingens f�rste kapitel beskriver bl.a. denvalgte tilgangsvinkel til
anvendelsesomr�adet. Problemerne betragtes somkombinatoriske opti-
meringsproblemer, mens fysiskeaspekter somikkeumiddelbart kangives
en�kvivalent geometriskformulering, ignoreres. Tilgangsvinklener an-
vendelsesorienteret, hvilket har mange vigtige konsekvenser, bl.a. for
evalueringenaf de udviklede algoritmer. I stedet for teoretiske analyser
evalueres algoritmernes ydeevne somtidligere n�vnt ved at sammen-
lignemedeksisterendestate-of-the-artalgoritmersydeevnep�abenchmark
data. L�sningskvalitet m�ales relativt til hvadder er opn�aetmeddebed-
ste eksisterende algoritmer, ogvedk�retider forst�as absolutte cpu-tider.
Det er engrundl�ggende antagelse, at l�sningskvalitet prioriteres h�jere
endk�retid. I mange praktiske anvendelser vil designerenv�re villigtil
at bruge endel ekstratidfor at f�aenblot lidt bedre l�sning.

Kapitel 2 introducerer layout syntese af VLSI kredsl�b. Der �ndes
et antal forskellige layout typer (eng: design styles) repr�senterende
forskellige grader af regularitet. Til h�jtydende kredsl�bsomf.eks. en
CPUanvendesmakro-cellelayouts, somer denmest eksibledesigntype
og giver mulighed for det st�rste antal transistorer pr. arealenhed og
den bedste ydeevne af det producerede kredsl�b. Kompleksiteten be-
tyder samtidigt at makro-celle layouts er sv�rere at generere (manuelt
eller automatisk) endnogenanden layout type, hvorfor det st�rste be-
hovfor forbedrede v�rkt�jer netophaves for denne layout kategori. Et
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DanishSummary(DanskResum�e)

Denneafhandlinger resultatet af et 3-�arigtPh. D. studiumudf�rt i perio-
denfra1991til 1994vedDatalogiskAfdeling, AarhusUniversitet. Lektor
PeterM�ller-Nielsenhar v�ret vejleder p�aprojektet. Endel af arbejdet
blev udf�rt under et 1-�arigt ophold vedUniversity of Michigan, USA,
ogi denne periode fungeredeAssociateProfessor Pinaki Mazumder som
vejleder.

Af handl i ngens emne, f orm�al og struktur

Afhandlingens form�al er at unders�gemulighederne for at anvende evo-
lutions-baserede algoritmer til l�sning af nogle af de delproblemer, der
indg�ar i automatiskgenereringaf layouts af VLSI (VeryLarge Scale In-
tegration) kredsl�b. Kompleksitetenaf VLSI kredsl�ber steget eksplo-
sivt gennemen�arr�kke, ogdenne udviklingventes at forts�tte. Der er
derfor et st�rt behovfor fortsat forskning indenfor dette omr�ade. I de
seneste�ar har evolutions-baseredealgoritmermedheldv�ret anvendt til
l�sningaf komplekseoptimeringsproblemer indenfor mangeforskelligart-
ede omr�ader, og det er derfor n�rliggende at unders�ge algoritmernes
anvendelighed til layout syntese. Speci�kt har projektet fokuseret p�a
designaf genetiske algoritmer (GAs) til placering og global routing af
makro-celle layouts under dengrundl�ggende antagelse, at designerens
prim�re m�al er at opn�a den bedst mulige layout kvalitet. Arbejdets
form�al er at unders�gehvilkenydeevneder kanopn�asmedGA-baserede
v�rkt�jer til disse problemer samt hvilke algoritmiske designprincipper,
der giverdebedsteresultater. Desuden�nskesdev�sentligsteproblemer
veddenne tilgangsvinkel belyst.

Afhandlingener baseret p�aartikler skrevet i l�bet af studiet, ogden
v�sentligste del af afhandlingenudg�res af �re udvalgte artikler, gen-
givet i appendices A- D. Derudover indeholder afhandlingenenoversigt
over det udf�rte arbejde i formaf kapitlerne 1 til 7. Heri introduceres
emneomr�adet, dvs. s�avel GAs somde betragtede problemer indenfor
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