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“...there’s nothing like millions of years of really frustrating trial
and error to give a species moral fibre and in some cases, back-
bone.”

Reaper Man, Terry Pratchett
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Abstract

In the Neural network / genetic algorithm community, rather lim-
ited success in the training of neural networks by genetic algorithms
has been reported. In a paper by Whitley (1991), he claims that, due
to “the multiple representations problem”, genetic algorithms will not
effectively be able to train multilayer perceptrons, whoes chromosomal
representation of its weights exceeds 300 bit’s. In the following paper,
by use of a “real-life problem”, known to be non-trivial, and by com-
parison with “classic” neural net training methods, I will try to show,
that the modest success of applying genetic algorithms to the training
of perceptrons, is caused not so much by the “multible representation
problem” as by the fact that problem-specific knowledge available is
oftren ignored, thus making the problem unnessesarily tough for the
genetic algorithm to solve.
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1 Motivation

Genetic algorithms (GAs) are one of the most general search techniques
known in computer science. They have been applied with much success
over a broad spectrum of problems, especially since their rise in connection
with the publication of David Goldberg’s “classi” book on the subject from
89 [Goldberg89a]. Yet their success in relation to neural networks (NN) has
been limited. For the design of network architecture they have been tried on,
among other things, the notorious XOR problem (by e.g. [?], [Miller et al.89],
[Romaniuk93], [Zhang and Myhlenbein93]) with theoretically interesting re-
sults following. But the technique seems to be so computationally heavy that
only with difficulty can it be applied to “real-life problems” where it is outdis-
tanced by methods like Scott Fahlman’s “Cascade Correlation” [Fahlman90].
For the training of neural network’s weights and thresholds their use is more
obvious and a number of papers on the subject have been published during
the last four or five years; e.g. [?] and [Caudell and Dolan89]. They all seem
to have two things in common. Firstly analyses imply, that the achieved re-
sults in reality stem from a stochastic hillclimb, (for a description of various
hillclimbing techniques se [?]), Mther than from a GA’s hyperplane sam-
pling. This is first of all evident in exceptionally high mutation rates; see
e.g. [Ronald and Schoenauer94]. Instead of being a background operator, it
is in reality the mutation operator that scans the search space, guided by
the GA’s selectivity. Secondly, the chromosomes representing the coding of
the weights of the network in question, are usually relatively short. Montana
uses strings consisting of eleven real numbers, which must be assumed to be
insufficient for setting “the building block hypothesis” to work. Caudell &
Dolan use 288 bits; not much either.

The above conditions are summarised in a paper by Darrell Whitley [Whitley et al.91],
in which it is concluded, that GAs are unsuited for the training of percep-
trons, in cases where the coding of the weights consists of more than 300
bits. For this aim he proposes the use of a hybrid, a “genetic hillclimber”,
called GENITOR, which as the name implies is primarily based on muta-
tion/selection.

My main purpose with this paper is to render probable that it is yet too early
to abandon the idea of GAs as a general alternative to back-propagation
(BP), when training multilayer perceptrons. I personally believe that the

3



  

number 300 bits is of a size large enough to be non-trivial, but too small for
the GA’s hyperplane sampling to make itself felt. Below I will describe an
experiment where the chromosome length is in the magnitude of 10000 bits;
a couple of magnitudes longer than traditionally.

Finally, I will also try to focus on the generalization abilities of GA trained
nets as this very important aspect, (indeed the very reason for using NN in
the first place, on a given problem) is often ignored in the literature of this
field of research.

1.1 The Neural Nets’ Task

My “real-life problem” consists in training a fully connected perceptron with
6 input nodes, a hidden layer containing 15 nodes, and one single output-
unit, for the purpose of sorting corn in two catagories: “wanted” (wheat) and
“unwanted” (rye, barley and oats), see fig. 1.1. The inputs are obtained via
a scanner and some simple preprocessing. The problem is non-trivial, one of
the reasons being that overlaps exist between the different corn species, each
of these consisting of a number of subspecies, measured on the basis of the
six characteristics (length of grain, width, area ect.), the network is given as
input. E.g., one subspecies of wheat looks more like rye. than it looks like
any other subspecies of wheat. The problem was

used as a main project for an introductionary course in neural computa-
tion for undergraduates at the University of Aarhus in the autumn of 93.
Around 40 people ”competed” in producing the best network. This makes
the problem well suited for a GAIBP- comparison as the BP aspect was
thoroughly investigated then, including various extensions of standard BP,
such as Weight-decay, adaptive leaming-rates, alternative cost-functions and
constraints. I will return to this point shortly. The success criteria was:

“No. of correctly classified “wanted” grains” larger og equal to
85.0 per cent of all wanted grains

“No. of correctly classified “unwanted” grains” larger or equal to
99.0 per cent of all unwanted grains,
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Figure 1: The Perceptron. The black nodes represent thresholds and are
hardwired to the value −1.0.

and the latter maximized. The grains are in fact used as seed corn, so a high
level of purity must be obtained. Our (my team’s) record in 93 was:

“No. of correctly classified “wanted” grains” = 87.5000 per cent

“No. of correctly classified “unwanted” grains” = 99.4444 per
cent,

obtained after l554 on-line training epochs, on a test set consisting of 2000
wanted and 4500 unwanted grains. This result will be used as a bench-mark
in what follows. As I know that a good solution exists for the above neural
net architecture, it becomes a question of the GA’s (and my!) ability to
(re)find it. What follows is a short description of the various techniques
tried in connection with standard BP and their relative success.

1.2 Alternative cost functions

I tried three alternatives to the standard quadratic error measure usually
used as cost function in BP (ζµi − Oµ

i )2. Most success was obtained by the
use of the Relative Entropy Function:
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It origins from information theory. See e.g. [Solla et al.88]. In effect it
accelerates convergence on plains in the error landscape where the ordinary
error function could get stuck, and decelerates progress on sharp bends of
the cost surface, thus hopefully preventing oscillations around a minimum.
My experiments did show a somewhat faster convergence, but not a better
final result than what can be produced by the quadratic error measure. A
middle course suggested by Fahlman [?] is a new delta value for the output
layer:

δµi = [g′(hµi ) + ε] (ζµi −Oµ
i )

“g” is the neurons’ activation function. By way of ε, a mininum ”speed” on
the plains is assured, while the acceleration on the curves is kept. This works
quite as well as the relative entropy function; an indication of the fact that it
is the flat areas of the error landscape that constitute a problem in BP. But
again there is no real improvement of the quality of the end result. The last
alternative is also Fahlman’s work. Ignoring the actual error function we use
a new delta value for the back-propagation of the output layer:

δµi = arctanh1
2
(ζµi −Oµ

i )

The idea being that when the difference between the expected and the actual
output becomes large, we use a large step size. It perfor ned as the previous
function.

1.3 Weight decay

Here I started with a relatively high number of neurons, about 50, in the
hidden layer, hoping that weight decay (WD) would remove non-productive
weights by converging them towards zero. The rule employed was wnewij =
(1−εij)woldij . The strategy being that if BP is not actively trying to reinforce
a given weight, the factor (1−εij) will send it towards zero (with exponential
speed). The term:
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εij = γη
(1+w2

ij)
2

insures that small weights will decay more rapidly than large weights. Oth-
erwise we will discourage large weights, which is NOT our objective. If all
weights relevant to a given neuron are removed, the neuron itself can be
removed. In the end, one should be left with a network where only the rel-
evant structures remain. WD sounds intuitively attractive, but the results
were disappointing. Though a large interval of εij values was tested, the
expected effect did not materialize. All that happened was that all the per-
ceptron’s weights/thresholds were lowered with a factor that even appeared
rather constant for a given trial. Lack of success using WD was a general
experience among the approx. 40 participants engaged in classification of
corn in 93. Only a single participant reported some success.

1.4 Constraints on BP

As a new thing, we tried to impose some constraints on BP’s search of the
error landscape. Our starting point was the following strategy: If a number
of X epochs of BP have not improved ehe perceptron’s performance on a test
set, then restore the old weights and try again in another direction; however,
at most Y times. This is to prevent the BP from bouncing in a “hollow”
that it takes more than X steps to get out of. If the latter is the case (i.e. we
have tried Y times to get away from the hollow), X is reset to allow further
steps away from the hollow to be taken, otherwise (i.e. the X epochs HAVE
improved the performance) Y is reset. These constraints gave a significant
speed-up of the learning process; typically a factor two or three. But again-
no improvement on the final test set.

1.5 Interactive Learning-Rate

The following technique is in effect rather like the above-mentioned con-
straints, apart from the factthat it is exponential in time instead of linear.
However, the effect is here obtained by an ajustment of BP’s learning rate.
We started out with a learning rate on 0.04 and halved it each 25th (on-line)
epoch. For each 250th epoch we reset it to 0.04, to avoid rummaging about
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in a local minimum. It was by use of this technique that we obtained our
record for classification of corn by BP:
“No. of correctly classified “wanted” grains” = 87.5000 pro cent
“No. of correctly classified “unwanted” grains” = 99.4444 pro cent
Interactive learning rate gives a certain speed-up for most runs. In return
there is also a bigger ratio of erroneous runs compared to standard BP,
meaning runs where nothing like an acceptable result is ever obtained. This
is probably because the interactive learning rate very quickly drills down into
the minima that are present by virtue of the initial weights. When the initial
weights coordinate a bad area of the error landscape, we thus land on “rocky
ground”.

2 The Genetic Algorithm

In what follows, I will descripe my GA from Davis & Steenstrup’s five-
component outline [Davis87]. The GA was implemented in standard ANSI-C
(gnu-c ver. 2.5.6), and run on a HP 705 “Snake” computer.

2.1 Chromosomal Representation of the Problem

I have chosen a binary representation of the chromosomes as this choice
maximizes the number of building blocks per information unit. Most earlier
attempts of GA training of NN use real value strings, meaning that crossover
only takes place in the space between weights. This further means that the
only way the separate weights are actually changed is by mutation. Such a
strategy might not be taking full advantage of the GA’s processing capabili-
ties.

A perceptron is coded as a concatenation of its weights. As thresholds (bi-
ases) in practice are calculated as weights associated to a neuron hardwired
to the value −1.0, our perceptron (and thus our chromosomes) contains
(6 + 1) · 15 = 105 weights between the input layer and the hidden layer,
and (15 + 1) · 1 = 16 weights between the hidden layer and the output layer,
making a total of 105 + 16 = 121 weights. Each of these are represented by
four 29 bit integers, making 4 ·29 = 116 bits available for each weight. These
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bits are unifonnly mapped into the real-value interval [−16; 15] by the C pro-
gram. At these limits, the neurons’ activation function is, for all practical
purposes, completely saturated. How many of the 116 bits that are actually
used, depends of the precision the user requires. A chromosome thus max-
imally consists of 121 · 116 = 14036 bits. See fig. 2.1. In the experimental
results that follow, all 14036 bits are used when the genetic operators are
applied (on the genotype). However, when the chromosomes are decoded to
perceptrons (the phenotype) the numbers are rounded off to C’s ordinary
“double” precision, 53 bits. Consequently I am, with 121 · 53 = 6413 bits for
the phenotype ( and 14036 bits for the genotype), well on dhe other side of
the 300 bits barrier found by Whidey experimentally.

Figure 2: The Chromosome. Each of the 121 weights consists of 4 times 29
bits, i.e. 116 bits.

But in what order should the separate weights be concatenated? Whidey
et al. mention, as the primary source of the difficulties of using GAs for
NN training, The Multiple Symmetric Representations Problem (MSRP). In
each layer in a given perceptron, an arbitrary neuron and its incoming and
outgoing weights, can switch places with any other neuron in the same layer,
without changing the perceptron’s functionality. It is symmetric. In our case
it follows that there are 16!, i.e. approx. 2.1 · 1013 possible permutations
of an arbitrary solution! This means that the error landscape is extremely
multimodal. We can not rule out the possibility that a large amount of
dhe processing power will be wasted on a futile oscillation between equally
attractive weights. I have to a certain degree tried to solve dlis problem
by coding dhe perceptron in such a way that a node in dhe hidden layer
has its incoming weights distributed across most of the chromosome, instead
of grouping the incoming weights of a neuron in the hidden layer togedher,
as common knowledge would suggest. See fig. 2.2. In this way, the GA
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is to a certain degree forced to more or less “choose” one of the possible
permutations early in a run, as a templet for future generations to work on.

Figure 3: The bit groups, that each represent a weight, have been distributed
over a large part of the chromosome. For the input/hidden-layer weights it
means a concatenation of 7 clusters. Each cluster consists of a weight from
each of the hidden neurons, i.e. 16 weights altogether.

Why is it so? Well, if we have a MSRP of size 16! it means that the potential
”troublemaking” clusters of building blocks number 16 in a given solution.
But with a coding, like the one in fig. 2.2, there are only 7 clusters of
troublemakers (because there are 7 nodes in the input layer). Thus, if we
believe in the building block hypothesis, it means that only 7! = 5040 of
the possible 16! permutations of a given solution should have a reasonable
probability of being considered. This reduction from approx. 2 2.1 · 1013 to
5040 might be expected to boost the GA’s performance somewhat.

2.2 The Initial Population of Solutions

I choose, inspired by Herz, Krogh & Palmer [?], the initial weights at random,
uniformely distributed in the interval plus/minus the inverse of the square
root of the fan-in to the neuron in question. I.e. [− 1√

6
; 1√

6
] and [− 1√

15
; 1√

15
]

for the hidden layer and the output layer, respectively. Generally speaking,
GAs are characterized by being less dependent on the initial values for suc-
cess, than BP. The most important thing being that all possible alleles (i.e.
“0” and “1”) for a given locus in the chromosome are present. With a binary
alphabet and a population size of 100 individuals, this will statistically “al-
ways” be the case (the probability being 1− 2 · (1

2
)100 ≈ 1− 1.6 · 10−30 ≈ 1)

The initial population, generated as descriped above, by and large, turns out
to consist almost entirely of individuals that either catagorize all grains as
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being wheat or catagorize all grains as being non-wheat. See section 3.6 for
a discussion of the importance of the initialization.

2.3 Fitness Function, Selection Techniques ect.

The raw fitness varies from experiment to experiment and is mentioned in
the relevant sections. Common to all the different fitnesses is, however, the
fact that they are all based on the fact that the chromosome in question is de-
coded, loaded into a perceptron, and propagated by a training set, consisting
of approx. 2000 grains’ data. On the basis of the success of this classification
procedure, the raw fitness is created. Instead of scaling the raw fitness, I
have chosen to use Fitness Ranking [Baker85], [Davis89],[Whitley89]. The
solutions are sortet by their raw fitness and assigned a Reproductive Fitness
according to their rank. I use an exponential fitness ranking with base 0.95;
meaning that the best individual will receive reproductive fitness 0.950, the
second best individual receives 0.951, the 15th best individual receives 0.9514

and so on. This means, that we on average receive approx. five copies of the
best fit individual, approx. one copy of the 33nd most fit individual, that the
46th individual survives with a probabillity of 50 per cent, and that the least
fit individual survives with a probabillity of 0.031 per cent. Fitness rank-
ing conquers two of the biggest oroblemc inherited from traditional fitness
scaling: Over Compression and Under Expansion.

Over Compression occurs, in the beginning of a run, if a “super” individual
with, say, ten times the average fitness, is created. As a consequence of the
fitness scaling’s attempt to avoid Premature Convergence, (the geometrical
equivalence is being stuck at a local maximum in the 121-dimensional search
space,) the different individuals fitness values will be far too close to each
other. We then risk not only too slow convergence but also Genetic Drift
away from the true global optimum (optima).

Under expansion is essensially another name for the same phenomenon, when
it occurs at the end of a run. The genotypes are now supposedly very close to
each other in fitness, and the fitness scaling will try to increase the distance
among them, to avoid Slow Finishing. An extremely poor genotype, created
perhaps by a mutation, will represent one limit to the expansion (and the
best fit individual the other), and we will never quite reach the top of the
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function we are optimizing.

Fitness ranking represents an elegant solution to both these problems, as it
always forces a user-defined function (in my case an exponential function)
onto the individuals. No matter how good a solution, it will, on average,
never survive more than five times each generation. And most reasonably fit
individuals have a reasonable probability of survival. Experimental evidence
has by now shown fitness ranking to be superior to ordinary scaling over a
wide spectrum of problems.

As selection technique I have chosen Stochastic Universal Sampling (SUS),
invented by James Edward Baker. Baker shows [Baker87], that SUS has
Minimum “Spread” and zero “Bias”. Bias has (in this case) nothing to do
with the neurons’ tresholds, but is an expression for the absolute difference
between the expected and the actual number of individuals. Spread is here
the set of possible numbers of individuals, that can be selected, by a given
sampling strategy; mimimum spread is defined as the theoretically smallest
spread that allows zero bias. Baker thus effectively minimizes the genetic
drift caused by selection. This makes SUS superior to for example Stochastic
Remainder Sampling Without Replacement, a technique without the above-
mentioned properties, that is often used as a kind of “standard” sampling
technique in GAs. SUS can be visualized as a “wheel of fortune” with n
arrows instead of one, with equal angle distance to each other, n being the
number of individuals in the population.

I use a generation gap of one. When 100 individuals have been selected by
SUS, these are paired off randomly, and the 50 pairs are crossed over. Both
children of a crossing are mutated and passed on to the next generation, thus
again constituted of 100 individuals.

2.4 Genetic Operators

I only use the two operators “crossover” and “mutation”. In section 4.2
(Future Work) I discuss the possible appliance of some kind of reordering
operator.
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2.4.1 Crossover

I use a combination of the two techniques “Two Point Crossover” and “Uni-
form Crossover”, which I have called “Two Point Uniform Crossover with
Constraints”, which is specially designed to this problem.

Two-point crossover [Booker87] regards the chromosome as a ring instead
of a string; i.e. two crossover points are chosen. Both experimental results
and theoretical evidence, (one gets more building blocks, as these can be
wrapped around the ends of the string. Schemata, which in the ordinary
string representation, have the longest Defining Length, are now not so easily
ruined by crossover.) lead to the conclusion, that two-point crossover is
superior to ordinary crossover.

Uniform crossover is a more controversial matter, and many arguments exist,
both experimental and theoretical, for and against it. See e.g. [Eshelman et al.89]
and [Syswerda89]. But then, it is not really uniform crossover I use; “-with
Constraints” refers to the fact, that I only allow crossover between the parts
of two chromosomes, that represent the “same” weights. “Same” means, in
this connection, bit sequences that are decoded to the same weight in the
perceptron, i.e. the same position in the perceperon, NOT (nessesarily) the
same functionality. The chromosomes can thus, ae the time of crossover, be
regarded as consisting of a string of 121 rings, each made up of 53 bits. The
two crossover points, for a given ring chosen for crossover, are selected at
random. My justification of these constraints is the (reasonable) assump-
tion, that a stronger epistasis exists between bits in the same weight, than
between bits in different weights, statistically speaking.

It should be remarked, that my crossover technique in itself is a solution to
the multiple representations problem, as it is unlikely, that a whole cluster
of weights will be switched simultaneously.

The crossover rate mentioned in section 2.5 means the probability that each
single weight is crossed. Finally it should be mentioned that a crossover is
only performed, if there is a distance of at least two bits between the crossover
sites. Otherwise it is cancelled.
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2.4.2 Mutation

I use ordinary bit mutation where each bit in the chromosome is flipped with
a certain probability. This is NOT the same as each bit acquiring a random
value with the above-mentioned probability, but, on average, with twice the
above mentioned-probability. This banal point often causes misunderseand-
ing in the literature.

2.5 Parameter Values

By way of some short, initial experiments I fixed the crossover rate at 0.01 and
the mutation rate at 0.001, which means, that on average one weight of 100
and 19 will be crossed and mutated each generation, respectively. This again
corresponds to each chromosome being crossed 1.2 places and mutated in 6.4
bits on average. With a higher mutation rate, the system performed almost
like a random search, as the mutations override the selection mechanism.
This is characterized by the fact that a large part of the population, as
mentioned i section 2.2, either rejects or accepts all grains. In other words,
the GA does not function as a stochastic hillclimber. If no mutation is used,
the population converges to a local maximum in very few generations.

The population size is 100. This is probably a bit on the high side of what
one would usually choose, but I think that the overhead in computer time
is worth the (relative) security, a large gene pool provides. (As a matter of
fact, many of the results in GA theory are only valid, under the assumption,
that the population size is infinite!)

The number of generations is 120, which is based on the experimental obser-
vation that almost all runs will have converged at this point.

The above choices are hardly optimal, and there are other ways to deter-
mine a GA’s parameters. One possibility is a theoretical calculation of the
crossover and the mutation rates. Such techniques have been developed by,
for example, DeJong [DeJong75]. But as the GA I use differ from a standard
GA (on, among other things, the crossover operator), non of the methods
known to the author, can be directly applied here. Another possibility is
to use a Meta GA to find near optimal parameter settings [Grefenstette86].
The idea is theoretically attractive and has in practice yielded positive re-
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sults. But it is rather computationally heavy. Both the above-mentioned
methods are outside the scope of this article, and one can find comfort in the
thought, that GAs are supposed to be rather parameter stable.

3 Results

The results of my experiments follow. In each section the relevant charac-
teristics of the experiment are described. The graphs show the best of ten
runs, where “best run” is defined as the run that obtained the best single
individual. Both the average and the best individual of the generation are
shown.

3.1 Standard Configuration(Reference)

Here the raw fitness is calculated from a training set consisting of 1000 wanted
and 990 unwanted grains; i.e. approx. the same quantity of the two cate-
gories. Each correctly classified grain counts 1.0 in raw fitness, i.e. a raw
fitness of max. 1990 is possible. When a potentially successful solution is
obtained, the test set, consisting of 2000 wanted and 4500 unwanted grains, is
propagated. The perceptrons generalization ability is thus thoroughly tested.
As mentioned in section 1.2, a successful solution is defined by

“No. of correctly classified “wanted” grains” greater or equal to 85.0 per cent
of all wanted grains

“No. of correctly classified “unwanted” grains” greater or equal to 99.0 per
cent of all unwanted grains.

The results are shown in graph 1. However, with a single modification:
The fitness ought to be reproduced in two dimensions as a function of the
number of generations. See fig. 3.1. As 3D graphs seldomly turn out well
on paper, I have instead chosen, in the depiction, to add 150.0 to the MW
fitness of potentially successful solutions. The lowest value, which ensures
that the best solutions will in fact have the highest fitness. The maximum
theoretically possible fitness then becomes 1000.0 + 990.0 + 150.0 = 2140.0.
It is emphasized, that this boost of the raw fitness is NOT
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Figure 4: The fitness

used during the GA’s run. It is solely a technical “trick” in the depiction.

As appears from in graph 1, a population of reasonably fit individuals, quickly
arises and appears to remain reasonably stable. Five individuals, which po-
tentially fulfill the mininum requirements are created. Four of these, are able
to generalize satisfactorily. The best individual is created in generation 111,
with “No. of correctly classified “wanted” grains” (WG) equal to 85.85 per
cent and “No. of correctly classified “unwanted” grains” (UG) equal to 99.13
per cent, in performance on the test set.

The reason for the relatively modest number of successful solutions is of
course, that the GA has another goal in sight than the one we have defined.
Its only interest is to optimize its raw fitness, and therefore weights the recog-
nition of wanted grains just as highly as the rejection of unwanted grains.
From our viewpoint, the successful solutions are just spin-offs, from a less
discriminating search for a generally good solution (in this run, the record
is WG= 98.00% and UG= 96.26%). In the next experiment I will try to
change the situation, by the introduction of Penalty Terms.
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Figure 5: Graph 1: Standard Configuration (Reference).

3.2 Penalty Terms

We need a technique to guide the GA’s blind search in the right direction,
which traditionally can be obtained in two ways: We can either use “En-
forcement” or “Penalty Terms”. The former strategy bans chromosomes,
that which do not measure up to the mininum requirements; i.e. they are
”killed off” without any possibility of contributing genetically to the next
generation. The remaining strings, above the minimum limit, then somehow
fill up the empty space in the gene pool. But this technique demands, that
our mininum requirements are less severe than the case being, as it would
be difficult to fill up the initial population. (We would need to collect fit
chromosomes through many runs like the one in section 3. 1.)

The latter strategy, the one I will use in this section, consists of punish-
ing (or rewarding!) an individual’s raw fitness, before the fitness ranking is
performed, according to how close it is to the optimal requirements. The
following lines of pseudo code, equal the penalty terms placed in the C pro-
gram:

IF (# WG >= 85.0% AND #UG >= 98.0%) THEN
raw fitness = raw fitness +120.0
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raw fitness = raw fitness +6.0 ∗(#UG− 990.0 ∗99.0%)
END IF

IF (#WG >= 87.0 %) THEN
raw fitness = raw fitness −0.2 ∗(#WG− 1000.0 ∗85.0%)

END IF

The first term, and its consequences, are immediately intelligible. (The nu-
meric constants is a qualified guess from the author). An individual, who
(almost) lives up to the mininum requirements, is rewarded. The reward con-
sists of a higher fitness, which directly leads to bigger influence on the next
generation’s genes. The last three lines of the pseudo code are less obvious.
Often, while training the perceptron by means of BP, it was remarked that, in
very good solutions, there was a trade-off between WG and UG; when one of
them went up, the other went down. Therefore I punish successful solutions,
that use too many “resources”, (meaning internal flexibility in the neural net)
on increasing WG, (supposedly) at UG’s expense. When WG is just over 85
per cent we are satisfied with it, and the attention must be focused on op-
timizing UG. The results of the best of ten runs are shown in graph 2, the
maximum theoretical possible fitness here being (besides extremely unlikely)
1000.0 · 0.85 + 990.0 · 1.0 + 120.0 + 6.0 · (990.0 · 1.0− 990.0 · 0.99) = 2019.4.

Figure 6: Graph 2: Penalty Terms.
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Please note that, while the average fitness after about 50 generations stabi-
lizes at an average value, with oscillations in the size of 5-10 per cent, the
fitness of the generation’s best individual continues to grow more or less all
through the experiment. And we do end up with no less than 2093 potential
solutions, and 1053, i.e. more than half of these, generalize satisfactorily on
the test set! It is worth mentioning, that in the last generations, there are
more occurances of potentially good solutions that turn out to generalize
worse, than the potential solutions in the earlier generations, while at the
same time, the potential solutions that DO generalize satisfactorily, are bet-
ter than the ones in the previous generations. This polarization is caused
by the fact, that some of the chromosomes have stored noise contained in
the training set; a phenomenon well known in NN circles, where it is named
overfitting (or over-training). This indicates that the networks, to a certain
degree, lack more training data- they are in theory capable of storing more
information/rules, and have indeed done this, unfortunately in the shape of
noise. I will return to this important point in the next section. The best net
in this experiment has WG= 85.70% and UG= 99.20%; the best so far. This
phenotype occurs in generation 103.

3.3 Composition of the Training Set

Now I will try to alter the composition of the training set. The one we
have used so far was composed of 1000 wanted (i.e. wheat) grains and 990
unwanted (i.e. rye, barley and oat) grains. I try to compensate for the lack
of training data, mentioned in the last section, by changing this relationship.
As we want the highest precision in connection with UG, it makes sense to
give the GA access to more instances of unwanted grains, so it can build up
a statistically more stable, a more coherent and thus better, “picture” of the
fitness value as a function of the 121 weights in the perceptron. A quasi-logic
choice is to let the training set contain l S times as many unwanted grains
as wanted grains, as we want a 15 times higher precision (1.0%) with UG
than with WG (15.0%). In the following run (best of ten), all conditions are
equal to the ones in section 3.1, apart from the fact that the training set now
consists of 128 wanted and 1854 unwanted grains. The test set is unaltered
(2000 wanted, 4500 unwanted). The maximum theoretical possible fitness is
now 128.0 + 1854.0 = 1982. The results are presented in graph 3.
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Again the average individual is seen to oscillate around a rather fixed value,
while the generation’s best individual’s fitness is increasing as a function of
the number of generations, through the whole run. This time there is “only”
232 potential solutions. As the test set is propagated, 47 of these turn out
to generalize satisfactorily. The best phenotype is present both in generation
119 and generation l20. (One gets the impression, that 120 generations

Figure 7: Graph 3: Composition of the Training Set.

was a bit on the low side for this speciffic run). It has WG= 85.40% and
UG= 99.36%. We have now, with a factor ten fewer successful solutions,
broken the record from the previous experiment. It would seem, that we
have increased the exploitation/exploration ratio. It would now be natural
to try to combine the methods from section 3.2 and this section. I will return
to this in section 3.6.

3.4 Real Value Raw Fitness

In this section I will return to the ”roots”, as I replace the discrete error
function I have used so far, with a continuous one, similar to the one most
often used during traditional BP training of perceptrons. The hitherto used
error function has been discrete in the sense that a positive output, caused
by the propagation of a given input pattern, has been read as a +1.0, while
a negative output has been regarded as a 0.0, and then added to the fitness
score. We have not actually cared if the answer was e.g. 0.4 or 0.9. In this
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experiment we use the classic quadratic error measure (ζµi −Oµ
i ), where ζµi is

the expected (wished for!) output, and Oµ
i is the actual output. This number

is summarized for the whole training set and thus constitutes the raw fitness
function. It is an obvious increase of the exploitation/exploration ratio, as
the error landscape now no longer contains “don’t care” plateaus. The hope
is now that the GA in a more unambiguous way will be able to find a road
leading to the existing global minimum (or minima). (With this new fitness
function we are looking for minima, not maxima). Otherwise, the conditions
are similar to the conditions in section 3.2, apart from the constants on the
penalty terms which have been adjusted to fit the magnitudes of the new,
continuous, quadratic fitness function.

Out of 10 runs (or, as a matter of fact 20, I performed 10 more, to be sure),
not one potential solution that turns out to generalize satisfactorily occurs.
The best run of the first 10 has no less than 4006 potential solutions, but non
of them reached the 85.0/99.0 limit in performance on the test set. The GA
obviously lacks the freedom to act it is given by the discrete fitness function.
The bad generalization ability would suggest that we have reached “noise-
fissure” in the energy landscape of the training set. Maybe the GA enters
these, because the new, cogent fitness function forces genotypes which want
a chance of survival downwards at any price.

So why is the quadratic error measure generally working well when BP is
used in perceptron training? An explanation that springs to mind is that the
stringent error measure is countered by the randomness inherent in online
BP. The sligthly different versions of the error landscape contained in each
input instance makes the error landscape more “shimmering” and it is thus
harder to get stuck in a noise-fissure. GA training is more reminiscent of
batch training.

It is worth noticing that during GA training of neural nets, the quadratic
fitness function is the one that is normally used, by direct inspiration from
back-propagation. Indeed it is recommended as a standard in a survey paper
of the GA/NN field by David Schaffer [Eshelman et al.89]. It is more than
likely that this is one of the reasons for GAs’ undeserved bad reputation
in this area. Examples such as the above show that genetic algorithms,
though being a general search technique, should not be applied to a problem
“mindlessly”. They must be carefully fitted to the concrete problem if one
hopes to achieve good results.
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3.5 Hillclimbing of Good Solutions

Now I will try to hillclimb all solutions that generalize satisfactorily on the
test set. I therefore use three different data sets (otherwise some spoil-sport
might cry foul): One training set, for the fitness function, as previously.
One test set, to decide whether to hillclimb a given solution, or not, and a
validation set which takes on the role the test set had in the former sections,
to test the final generalization ability of the phenotypes. Like the test set, the
validation set consists of 2000 wanted grains and 4500 unwanted grains. The
hillclimber is a non-stochastic, round robin climber that in turn flips the 29 ·
121 = 3509 bits in the genotype, which code for the 30 most significant bits in
all 121 weights in a given phenotype. To keep down the number of candidates,
the prerequisite to be hillclimbed is a performance with WG>85.0% and
UG> 99.1% on the test set.

For each inverted bit, the chromosome is decoded and the training set is
propagated. If the performance is increased (defined as UG increased, and
WG not below 85.0%), the change is kept, otherwise the bit is flipped back
to its original value. The dimber runs, on a given chromosome, till it has not
succeeded in improving the performance 3509 times in succession; i.e. it runs
at least 3509 times and at most an infinite number of times (or to be precise
(3509− 1) · 23509 times). In the end the validation set is propagated. It must
be stressed that the round robin hillclimber has nothing to do with Whitley’s
“Genetic Hillclimber”. The former is a superstructure often imposed on GAs.
Geometrically speaking, it means that one will always “at least” reach a local
extremum, in the fitness landscape. (It appears silly to stand half way up a
mountain side and apparently have no idea of how to proceed further). Apart
from the hillclimber, the conditions in this experiment are like in section 3.2.
Of the runs I started, many did never finish, due to the hillclimber’s great
need of processing power.

The hillclimber turned out not to be worth the effort. During the execution
of one hillclimbing cycle (requiring 3509 decodings of the chromosome, and
3509 propagations of the training set), an amount of processing power equal
to almost 35 standard generations’ needs was used (“standard” meaning a
generation not containing any successful individuals; a standard generation
takes about 60 sec. in real time to perform on an HP 705), and in most
cases the aquired advantages turned, out to be minimal. Most often, no
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progress at all is made in any of the 121 dimensions! And almost never (one
in a hundred) in more than two or three. For a GA advocate, it is quite
satisfying, that the GA’s blind hyperplane sampling finds local maxima in
a 121-dimensional space. (Or to be more precise, a 121 times 53, i.e. 3509-
dimensional binary space). Evidently from a more practical point of view, it
means that the hillclimber was a dead end.

Fig. 8 shows the hillclimb that had the most success, concerning improvement
of the allready aquired weights. It is, with WG = 85.20% and UG = 99.29%
also the record in this section.

Each “hop” corresponds to one bit being tested. In more than two cycles,
i.e. during more than 7018 propagations, there are five bits, the flipping of
which produces an improvement on the performance. The screendump also
illustrates the above-mentioned trade-off between WG and UG; when one
goes up, the other goes down.

3.6 Alternative Initailization

Instead of creating the initial generation of perceptrons, as described in sec-
tion 2.2, I now use a completely uniform random initialisation. Each bit in
the initial population has exactly a 50 per cent probability of being switched
on. This is the procedure most often recommended for the seeding of a GA,
with the argument that then there will be amble instances of each allele at all
loci. Then it is up to the genetic operators to sort and recombine these. In
practice this turns out NOT to hold good. I performed 10 runs, like the ones
in section 3.2 with this initialization. The best result was WG = 86.20% and
UG = 99.06%. The last generation turned out, in all ten cases, to contain
very alike phenotypes. That could point to some kind of premature conver-
gence. The bad results are probably produced by the fact that many of the
initial weights, produced by the new initialization strategy, lie in the interval
where the perceptron’s activitation function is completely saturated. (The
activation function is the usuall hyperbolic tangent function). The same
conclusion as in section 3.5 can be drawn: The GA must be adjusted to the
specific problem in question.
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Figure 8: Screendump of the Hillclimber In Action.

3.7 Last Experiment

As a last experiment I try to combine the best of the previous experiments.
I use constraints and have increased the training set considerably to 1344
wanted and 4050 unwanted grains; The maximum number of training data
available. Besides I have increased the number of generations to 200. Finally,
the hillclimber will be activated if a successful solution has UG> 99.30%. Ten
runs gave as the best result WG= 85.20% and UG= 99.31% and the hill-
climber did not improve this solution. An interesting phenomenon occured
in almost all ten runs: Rather few potential solutions, typically around 40
in a run, were found. But they had a very fine generalization ability, when
the test set was propagated; often with UG in the area of 99.20% to 99.28%.
This situation did not occur during the experiments described in section 3.1
to 3.3. I have no immediate explanation for this.
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4 Conclusion and Future Work

4.1 Conclusion

I have in this paper tried to argue that it is possible to train perceptrons
efficiently by way of genetic algorithms, if one is careful to observe that a
series of problem-specific points, such as initialization, chromosomal repre-
sentation, crossover technique and, maybe most importantly, choice of fitness
function are non-trivial, and deserve of special attention.

It is difficult to directly compare GA training with the various kinds of back-
propagation. The GA has a larger space requirement than back-propagation,
as a certain population size must be sustained. But the space requirements
should not be a problem on most machines today, which are usually equipped
with at least a couple of megabyte RAM in their standard configuration.
More relevant is the time requirements, i.e. the processing power required.
It does not make a lot of sense to talk about time complexity in this connec-
tion since, as has often been pointed out, the time used to adjust the many
loose parameters, that both genetic algorithms (population size, probabilities
of aplying genetic operators, generation-gap size etc.) and back-propagation
(learning- rate, momentum, error measures etc.) suffer from, should be in-
cluded objectively in the final time measure. Maybe there is something to be
said for GAs here, as they are known to be relatively parameter insensitive,
and thus easier to stear to an acceptable configuradon. BP training, on the
other hand, probably has fewer loose parameters than GAs. Finally it should
be mentioned that GAs are very good at creating a large number of different,
good solutions to a given problem. And these may be further trained by var-
ious techniques. In a recent, comparative study of NN learning-techniques
[Heistermann94], GA training with a subsequent gradient search optimiza-
tion yields good results.
Concerning results, I achieved a 99.36% recognition of bad seeds on the test
set. In the autumn of 1993, 99.44% was reached by way of back-propagation,
a little better than the former. On the other hand 99.44 per cent was the sec-
ond best result achieved by approx. 40 people, so the results I have obtained
can not be overlooked. Also it should be noted, that the generalization abil-
ities of the networks are very high. Futhermore, there is reason to believe
that GA training has a larger potential than has been investigated here. This
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is what the next section is about.

4.2 Future Work

Due to the many loose parameters, mentioned in the preceeding section, and
due to the many possible alternatives under each point in Davis & Steen-
strup’s five component outline [Davis87], there is ample opportunity for fu-
ture work. But there is in particular one possibility that should be mentioned,
as it can be expected to yield good results. It is connected to the multible
representations problem, see fig. 9.

Figure 9: The hatched neurons (or rather, their weights) can switch positions
without altering the perceptron’s functionality.

I have, as mentioned in section 2.1, to a certain degree tried to solve this
problem by coding the perceptron in such a way that a node in the hidden
layer has its incoming weights distributed across most of the chromosome;
see fig. 3. In this way, the GA is to a certain degree forced to more or less
“choose” one of the possible permutations early in a run, as a templet for
future generations to work on. But a better solution to the problem would
be some kind of reordering operator. An effective reordering operator would
completely dispose of the problem. Unfortunately, reordering is a highly non-
trivial problem, (as a matter of fact, much harder than the original problem
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of finding good values, i.e. weights) and the operator usually employed for
the purpose, Inversion, is notorious for its lack of efficiency. Baker has given
some theoretical arguments for the lack of success of inversion. With this in
mind, Goldberg has, some time ago [Goldberg89b] suggested a new kind of
GA, a “Messy Genetic Algorithm” (mGA):
A mGA contains chromosomes of variable lengths. This means that the phe-
notype (in our case the perceptron) can be over- or underspecified. The latter
requires that one is able to define a partial fitness function based on a local
maximum in the search space. (One can see a possible rehabilitation of the
round robin hillclimber here). This is without doubt the greatest difficulty
in applying a mGA, but in our case it should be possible to solve it. In
this connection the interesting thing about Goldberg’s invention is the oper-
ators. The mGA uses mutation just as an “old-fashioned” GA, but instead of
crossover (and inversion) it has two operators called Cut and Splice. As their
names more than suggest, the former divides a chromosome in two, while the
latter splices two chromosomes together. Goldberg argues convincingly, from
theoretical arguments, that the cut/splice operators not only work effectively
on the chromosome’s alleles (like crossover), but also work on their order-
ing (i.e. their coding) much more effectively than inversion in an ordinary
GA. Furthermore he tests the mGA, with success, on a 30 bits order-three-
deceptive function with 310 optima. A situation not unlike ours, in character
if not in size. It is easy to imagine that this new technique should be able to
address “The Multiple Representations Problem” somehow, and the mGA
thus appears to be tailor-made for the training of perceptrons. More informa-
tion about “messy genetic algorithms” can be acquired from [Goldberg89b],
[Goldberg90], [Goldberg91], [Merkle and Lamont93] and [Markus93].
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