
On Patterns and Graphs by Brian Mayoh

As graph grammars are used in many areas of computer science, it is
not surprising that many different kinds of graph grammars have been
introduced. As there are many practical and theoretical advantages of context-
freedom, it is not surprising that most useful graph grammars fit the abstract
characterisation of "contextfree" in [Co87]. However the practical and
theoretical advantages of contextfreedom are not lost if one moves to the
more expressive pattern version of a contextfree grammar. In this paper we
have 3 aims:
• to explain what the pattern version of a contextfree grammar is and why

the advantages of contextfreedom are preserved,
• to give the pattern version of several popular graph and hypergraph

grammars,
• by giving striking examples to show that the extra expressive power of

patterns is worth having.

#1 Patterns: what and why?
 In formal language theory the idea of patterns seems to have appeared

first in the contextual grammars of Marcus[Ma69] and Paun[Pa82,Pa94].
Then those interested in language learning started using patterns [An80], and
now the formal linguists are reinvigorating the idea [DPS93]. In the string
world one can define a pattern as a word W on terminal and nonterminal
letters together with a partition of the occurrences of the nonterminals in W. If
all occurrences of the same nonterminal are equivalent, then the pattern is
fractal; if all occurrences of nonterminals are equivalent only to themselves,
then the pattern is discrete. Thus a discrete fractal pattern has at most one
occurrence of each nonterminal. When displaying patterns we display the
partitition using the convention:
• λ is the empty pattern
• nonterminals with the same adornment are equivalent,
• unadorned nonterminals are only equivalent to themselves.
Thus a b S c b T a c S' b b T' is a pattern where the last two nonterminals are
equivalent to each other and the first two are only equivalent to themselves. If
W1 (W2 , W3) are terminal words derivable from S (T, both S and T), then
one can substitute in the pattern to get the terminal word:
a b W1 c b W2 a c W3 b b W3

Def.1. A string pattern multigrammar Γ consists of Σ a terminal alphabet, ∆ a
nonterminal alphabet, and for each S in ∆ a set ΠS of patterns over Σ and ∆.
Γ is fractal if all its patterns are fractal; Γ is discrete if all its patterns are
discrete. The underlying context free grammars of Γ are given by choosing a
nonterminal from ∆, then converting each pattern π in ΠS to the rule S -> p
where word p is π without its adornments.

Def.2. A [discrete, fractal] string pattern language L ⊂ Σ* is generated by a
[discrete, fractal] string pattern multigrammar Γ if L= LS for some S in ∆
where LS is the S-component of the least fixed point of the language function
Φ defined by

W in ΦS[....Lδ...] iff
W = u0 v1 u1 v2 u2.....vn un

for some pattern u0 δ1 u 1 δ2 u2.....δn un in ΠS and terminal words
u0,u1,u2.....un,v1,v2....vn such that vi in Lδ i and δi eq δj implies vi = vj.
Here and later ..Lδ.. represents a tuple of pattern sets Lδ one for each δ in ∆.

Clearly we could have formulated the definition using "rewriting steps
and derivations". We have chosen the equivalent fixed point definition, both
because it generalises more naturally to graph grammars and to emphasize
that it is more general than the "pattern languages" of the formal languagists.
Their definition corresponds to requiring "only one nonterminal" in ours (one
gets the original Marcus contextual languages if also requires "only one
nonterminal occurrence in a pattern"). Their pattern languages are
incomparable with the contextfree string languages whereas we have

Theorem 1 String pattern languages strictly include the contextfree
languages.
Proof: Contextfree languages are exactly the discrete string pattern languages
(look at the conversion of patterns to contextfree rules in definition 1). The
inclusion is strict because {a2n} is not a contextfree language but it is
generated by the following pattern multigrammar:
 Σ = {a} ∆ = {S} ΠS = {a, S' S' }

Example 1 Leyton processes
 How do we recognise shapes? Many experiments have shown that our eyes
rapidly shift (the socalled sacchidic movements) between points of maximum

and minimum curvature. These points also play a critical role in the theory of
memory developed by the psychologist Leyton [Le,HL]. In this theory the
shape of physical objects reveals the history of the internal and external
processes that caused them to be as they are. Computer evidence for this
theory from shape analysis of the Hawaian volcanic islands can be found in
[La93]. Consider the figure

aed!ed!ea

e
a a

e

e
d! d!

b c

protrusion squashing

c ¡

a

e e ¡ d !d

protrusion

indentation resistance

inflexion

squashing

indentation resistance

b !

figure 1 Interpretation of the "island" multigrammar

The possible 2D shapes are given by the first pattern language of the "island"
multigrammar

Σ = {a, b, c, d, e, !,¡} ∆ = {0,1,2,3,4}
Π0 = { λ, 1 2 }
Π1 = { b, b !, 1 2 1 } = "protrusions"

Π2 = { c, c ¡, 2 1 2, a 4 a } = "squashings"
Π3 = { d, d !, 3' 4 3', a 1 a} = "resistances"
Π4 = { e, e ¡, 4 3 4} = "indentations"

The underlying CFG is the same as in [HL] but we have placed one
equivalence to capture "negative curvature maxima are very local"

aedeaaeacλ
figure 2 Shapes generated by the "island" multigrammar

Example 2 Kolams and Lindenmayer languages
There is a close connection between fractal pattern languages and
Lindenmayer languages even although the synchronisation mechanism is
different. The OL grammars in [PKV89] for the three kolams in figure 3
correspond to the pattern multigrammars:
"Snake" Σ = {f,+,-} ∆ = {S,X}

ΠS = {f + X' f + f + X' f}
 ΠX = {l, X' f - f - f + X' f + f + X' f - f - f + X' }

"Anklets of Krishna" Σ = {f,+,-} ∆ = {S,X}
ΠS = {- X' - - X'}

 ΠX = {l, X' f X' - - X' f X' }

"Bag of Candles" Σ = {f,+,-} ∆ = {S,X,Y,Z}
ΠS = {- X' - - X'}

ΠX = {Z f Y - - Z f Y , X' f X' - - X' f X' }
 ΠY = {f + + f f f f - - f - - f f f f + + f + + f f f f - - f}
 ΠZ = {f - - f f f f + + f + + f f f f - - f - - f f f f + + f}

figure3 Three kolams

Before one can generalise pattern multigrammars to other worlds than
strings, one must make a suitable abstraction. The abstraction of
contextfreedom in [Co87] shows the way.

Def.3.A substitution structure Ξ consists of Σ a terminal alphabet, ∆ a
nonterminal alphabet, and a substitution space []Π of patterns over Σ and ∆.
The elements of []Π are the patterns over Σ and ∆, the objects of []Π are the
patterns over Σ, a Ξ- language is a set of objects of []Π . The result of
substituting any objects e1,e2,....en for the n ∆- occurences in any element e is
an object of []Π , written as e[∆<- <e1,e2,....en>]. There must be a well
ordering of the objects of []Π such that each ei is before e[∆<- <e1,e2,....en>].

Def.4. A substitution structure Ξ = {Σ, ∆ , []Π} is sorted if there is a sort set
[]∆, such that every pattern has a sort (its skin) and every occurrence of a
nonterminal in a pattern has a sort (its interface).

Comment: Every substitution system can be trivially sorted (take any
singleton for []∆), but such a trivial sorting does not help in defining
substitution.For a nontrivial sorting one need only define e[∆<- <e1,e2,....en>]
when each ei has the same sort as the nonterminal it is replacing; if this
condition is not met, the result of the substitution can be defined arbitrarily.

Def.5. A Ξ− pattern multigrammar Γ consists of a substitution structure Ξ ,
and for each S in ∆ a set Π S of patterns over Σ and ∆. The underlying
contextfree grammars of Γ are given by choosing a nonterminal from ∆, then
converting each pattern π in ΠS to the rule S -> p where p is π without its
adornments. A Ξ-pattern multigrammar Γ is sorted if Ξ is sorted and there is
a function sort:∆ −> []∆ such that

π in ΠS implies skin(π) = sort(S)
δ is occurrence of S in π implies interface(δ) = sort(S)

Def.6. A Ξ− pattern language L is generated by a pattern multigrammar Γ if
L= LS for some S in ∆ where LS is the S-component of the least fixed point
of the language function Φ defined by

w in ΦS[....Lδ...] iff w = π[∆ <- <v1,v2....vn >]
for some pattern π in ΠS and objects v1,v2....vn such that

vi in L δ i and δi eq δj implies vi = vj.

Example 3 Text Languages
 Let us look at the pattern version of the very new contextfree text languages
[EPR94]. A word on an alphabet S can be defined as a finite function f:V -> S

and a linear order ρ of V; a text on an alphabet S can be defined as a finite
function f:V -> S and two orders <ρvis, ρhid > of V. One writes texts as
a X[2,1] instead of:

f(1) = a , f(2) = X , ρvis = 1 < 2 , ρhid = 2 < 1.
We define a substitution space []Π of patterns over Σ and ∆ by taking texts on
Σ and ∆ as the elements of []Π . The result of substituting any texts e1,e2,...en
for the n ∆.- occurences in any text e is the text
e[∆ <-<e1,e2,....en>] given by :

V' = V + V1 + V2 +....+ Vn - {v in V such that f(v) is nonterminal}
ρvis' = ρvis except V1...Vn with their visible orderings inserted
ρhid' = ρhid except V1...Vn with their hidden orderings inserted.

Now that we have a substitution system Ξ , definitions 5 and 6 give us text
pattern multigrammars and text pattern languages. If only discrete text
patterns are allowed, we get precisely the contextfree text grammars and
languages of [EPR94]. Consider the interesting text multigrammar:

Σ = {a} ∆ = {S,X,Y}
ΠS = { X, Y }
ΠX = { a, a X [2,1] }
ΠY = { a, Y' Y'[1,2] }

This generates the text pattern languages:
LS = LX ∪ LY
LX = { an [n...1] where n > 0 }
LY = { a2n [1...2n] where n > 0 }

This is interesting because LS is NOT a context free text language (shown by
the argument in [EPR94] for a slightly different language), even although the
underlying string language is regular.

Theorem 2 The Ξ- pattern languages are closed under union. The Ξ- pattern
languages are closed under quasi-intersection, provided that Ξ allows patterns
with 2 nonterminals.The Ξ- pattern languages have a decidable membership
problem. The Ξ- pattern languages have an undecidable emptiness problem,
provided that Ξ allows patterns with 2 nonterminals and the Ξ- contextfree
languages have an undecidable intersection problem.
Proof: Suppose LX and LY are pattern languages generated by disjoint
multigrammars ΓX and ΓY. Let ∆ = ∆ X ∪ ∆ Y ∪ {S}.
If one adjoins ΠS = {X,Y} to ΓX and ΓY, one gets a multigrammar that
generates LS = LX ∪ LY . If one adjoins ΠS = {X' Y'} to ΓX and ΓY; one
gets a multigrammar that generates the quasi-intersection L'S defined by:

 X Y[∆ <- <W,W>] in L'S iff W in both LX and LY.
If one could decide whether L'S were empty, one could decide whether LX
and LY had an empty intersection. However one can decide whether or not an
object W is in a pattern language L. One has the pseudo-Ada algorithm:

function Member(W,nonterm):Boolean;
begin for each nonterm pattern P

do if W fits P then
 if Member(Wi,δi) for all ∆-occurrences in P
 then begin Print(P); return True; end;
end; return False;

end;
The well ordering requirement on substitution systems ensures that this
algorithm always terminates.
Corollary: String pattern languages have an undecidable emptiness problem,
because they are closed under quasi-intersection.
Those who dislike imperative programs may prefer their reformulation as
logic programs as in the

Example 4 Meanders
In quantum physics a fascinating topological problem arose which was solved
by the use of meanders [Ar88,LZ90]. A meander is a closed curve in the plane
intersected by a line; there are four kinds of intersections of a closed curve
and a line; two meanders are distinct if they have different kinds of
intersections. The problem of counting the number of distinct meanders is still
open, and a grammar that generated all and only meanders would probably
solve the problem.

a b c da ac c b b c d bd

Fig.4 Interpretation of "meander" multigrammar

As an object in the pattern language LS, generated by the following pattern
multigrammar, may contain more than one meander, we have not quite solved
the counting problem.
"meander" Σ = {a,b,c,d} ∆ = {S,U,L}

ΠS = { U' L'}
ΠU = { λ, U U, a U c, a U d, b U c, b U d }
ΠL = { λ, L L, a L b, a L d, c L b, c L d }

 a a d d a d a a b d c a d d a a b b c c b d b d
 a a d d a d a a b d c a d d a a b b c c b d b d

Fig.5 Some shapes generated by the "meander" multigrammar

The promised reformulation of the parsing algorithm as a logic program is:
S(<x,y>):- U(x), L(y), x = y.
U(<>) . L(<>).
U(<x,y>):- U(x), U(y). L(<x,y>):- L(x), L(y).
U(<a,x,c>):- U(x). L(<a,x,b>):- L(x).
U(<a,x,d>):- U(x). L(<a,x,d>):- L(x).
U(<b,x,c>):- U(x). L(<c,x,b>):- L(x).
U(<b,x,d>):- U(x). L(<c,x,d>):- L(x).

Note 1: The expressive power of logic programming is not being used here:
replacing the first "rule" by "S(x):- U(x), L(x)." would give true intersection,
not quasi-intersection; Prolog's length predicate would allow many useful
grammar constraints; moving to constraint logic programming [MTP94]
would give still more expressive "context-free" grammars and languages.

Such natural generalisations of Ξ- pattern multigrammars will be studied in a
later paper.
Note 2: Often logic programs have not only the usual "logical" and
"procedural" readings but also a "graphical" reading as a set of structural
rewriting rules. Of the many papers on this topic the reader might like to look
at [MR92,Co87]

#2 Cellular Pattern Multilanguages
Imagine a partition of a 2D- (3D-) Euclidean subspace into rectangles

(rectangular boxes), each labelled by a letter from Σ or ∆ . If we define a
pattern to be such a labelled partitioned subspace that is itself rectangular,
then substitution can be "scaling,then replacement". Before giving a formal
definition of this kind of pattern multilanguage, let us look at an example.

Example 5 Matrix Grammars
One of the many kinds of matrix grammar in the literature is defined by
• a string grammar G0 to give the rows
• for each terminal letter t of G0 a string grammar Gt to give the columns.
To show how such a matrix grammar can be reformulated as a pattern
multigrammar, let us redo the meander example

U

L

ΠU = {

ΠL = {

ΠS = {
U
L

L L

U U

}

, , }

, , }

figure 6 matrix grammar and typical object

Notice that this pattern multigrammar can generate non-meanders, because it
cannot capture " upper and lower rows have the same length".

U U

U U

figure 7 typical lower and upper halves of meanders

Example 6 Floor and Building layouts
Figure 8 shows two panelled floors, rectangular partitions of rectangles.
Such panellings have been studied by mathematicians [SSR92] who have
been interested in such properties as sliceabilty , whether the partition can be
decomposed by cuts which go from one edge of a part to another. Figure 8
also shows two pattern multigrammars, one generating sliceable pannelled
floors, the other not.

∏ = { , , } S∏ = { , , } SS

Σ = Shaded Rectangles

figure 8 Floor panelling pattern multigrammmars

Figure 9 shows a layout for a building estate, another kind of rectangular
partition of rectangles. The pattern multigrammar for this and similar layouts
has nonterminals for two building contractors; it uses pattern equivalences to
ensure that the building contractors are treated equally.

∏S = { ,
}A' B',S S

∏A = { , , }

A

 ,

∏B = { }

B

 ,
 ,

B

 ,

 ,

 , ,

figure 9 Estate layout and an estate pattern multigrammmars

Example 7 3D Fractals
Figure 10 shows a pattern multigrammar for a typical 3D fractal

xy

z

figure 10 3D fractal pattern multigrammar

For the formal definition of cellular pattern multilanguages we must formulate
our labelled partitions of Euclidean spaces as a substitution structure Ξ. First
we define a cellular pattern over Σ and ∆ as a rectangular Euclidean
subspace, partitioned into rectangular parts, each labelled by a letter from Σ
or ∆ , such that: each coordinate of each part is a rational number. This
requirement ensures that each pattern has rational Skin Parameters (span of
pattern in each dimension and coordinates of "centre") and each part of each
pattern has rational Interface Parameters.

Now we have a substitution space []Π of patterns over Σ and ∆ and we
must define the result of a substitution in a pattern: e[∆ <- <e1,e2,....en>]. For
each ei in the substitution we have rational skin parameters for ei and a
rectangular part in e with rational interface parameters, so these parameters
give a linear embedding of ei in the appropriate part of e. Note that none of
our cellular pattern multigrammars are sorted, even although the underlying
cellular substitution structure is sorted and the sorts are used in defining the
results of substitutions.

#3 Hypergraph Pattern Multilanguages
Even if one is only interested in generating graphs, it is usually more

convenient to exploit the greater expressive freedom of hypergraph grammars.
Suppose each hyperedge of a hypergraph is labelled by a letter from Σ and ∆.
For each of the many ways of substituting a hypergraph for a hyperedge in
another hypergraph one can give a formal definition of a particular kind of
hypergraph pattern multilanguage.

Example 8 Neural nets
Most forms of neural nets can be specified as hypergraphs- a vertex for

each neuron and a labelled hyperedge for each "hidden" neuron. A sorted
substitution space for neural nets is given by: the sort of a net is the number of
inputs and outputs it has, the sort of a labelled neuron is the number of inputs
and outputs it has, and the substitution of a net for a nonterminal labelled
neuron of the same sort is given by identifying inputs and outputs. Figure 11
shows a sorted neural net pattern multigrammar and some of the neural nets it
generates. These neural nets are "emotional" in that they mimic the chemical
activity of the brain. A later paper will explain this new kind of net; for now it
suffices to say that the usually implicit "bias input" of each neuron is made
explicit (the black dots in the figure)

∏4,4 = { , }

∏2,2 = { , }

∏8,2 = { }

2,2 2,2

4,4 4,4

4,4^

4,4

4,4^

2,2^

2,2^

f : g:

h: i:

j :

Genotype

produces

j

h

f

h

f

Fig 11 Neural net pattern multigrammar

Large neural nets are notoriously hard to understand as they behave in
obscure ways. Using pattern equivalences to make such nets structured and
modular is a natural way of alleviating this problem. A pattern multigrammar
may also be useful in the proliferating art [FF94] of using genetic algorithms
to generate neural nets (the genotypes are derivations in the multigrammar).
Kitano, Mjolness and others have used matrix grammars (remember example
5) and genetic algorithms to generate neural nets. Conversely genetic
algorithms may be useful in the proliferating art [CO94] of inducing
grammars from examples, even inducing pattern multigrammars.

For the formal definition of hypergraph pattern multilanguages we must
formulate some notion of labelled hypergraphs as a substitution structure Ξ .

The simplest notion is ∆-ranked directed hypergraphs- hyperedges are
sequences of vertices, []∆ is the positive integers, each letter in ∆ has a rank,
and each hyperedge labelled by δ in ∆ is a sequence of length rank(d). First
we define a hypergraph pattern over Σ and ∆ as a ∆-ranked directed
hypergraph with a skin (not only is each hyperedge labelled by a letter from
Σ or ∆, but there is an extra skin hyperedge). Just as the sort of the directed
hypergraph is the length of its skin hyperedge, so the "interface" sort of each
of its labelled directed hyperedges is given by their lengths.
 Now we have a sorted substitution space []Π of patterns over Σ and ∆ and
we must define the result of a substitution in a pattern: e[∆ <-<e1,e2,....en>].
For each ei in the substitution we have a skin hyperedge for ei and an
interface hyperedge in e with the same length, so these parameters define the
result of replacing the nonterminal hyperedge by ei: identify the vertices of
the nonterminal hyperedge with the corresponding skin hyperedge vertices,
add the other ei-vertices and all ei-hyperedges except its skin. Note that
hypergraph pattern multigrammars are usually sorted, because one only wants
to define substitution when skins and interfaces have the same sort (have the
same number of inputs and outputs for example 8, are vertex sequences of the
same length for ∆-ranked directed hypergraphs).

#4 Combinatorial Pattern Multilanguages

Graph grammars have proved useful for describing the developement
of biological organisms (partitions of 3D space into labelled cells) and
geographical analyses (partitions of 2D space into labelled regions). Many of
the graph grammars used have been somewhat ad hoc because there is no
obvious way of defining spatial substitution. It seems cleanest to follow the
combinatorial topologists [So91] and redefine the notion of hypergraph; from
now on a labelled hypergraph over Σ and ∆ contains a set D of darts, a map
from D to Σ and ∆, and two partitions of D called Vertex and Edge. A labelled
hypergraph may contain more information than this; putting an order on D
gives the labelled directed hypergraphs of #3, putting two orders on D gives
the text languages of example 3; further examples will suggest other useful
extra information.

Example 9 planar graphs and maps

∏S = { , , }

S' S^

S'S^ S S

figure 12 Planar maps and a map pattern multigrammar

Since the formulation of the four colour conjecture, many mathematicians
have been interested in graph colourings. Figure 12 shows a typical coloured

map, its formulation as a coloured planar graph, and a map pattern
multigrammar that generates it. Imagine a dart on either side of each
"boundary"; the boundaries give the Edge permutation of darts and circular
traversal of the boundaries of each "region" gives the Vertex permutation of
darts. This dart representation of a planar map is completed by defining its
skin as the Vertex cycle for the outside region of the map. The other Vertex
cycles are the interfaces for the inner regions. Substituting a map e for a
region v is done by dropping the skin darts of e and identifying their Edge
companions with the interface darts of v. As the reader can invent many
different ways of "identifying two sets of darts", we need not give a precise
definition here.

Example 10 pavings and biological organisms
One can represent 3D structures by introducing a third Paving permutation of
darts. Informally this permutation gives the ordering of components around
vertices, but we do not have the space here to give a precise, formal definition
of the paving substitution system. The reader can probably reconstruct it from
the biological example [LL92] in figure 13.

figure 13 Biological organisms and a paving pattern multigrammar

Example 11 LH graphics and other node labellings

water

water(with ferry)

water

land

landland

∏L = { land , land }

∏W = { water , water(with ferry) }

W' W'

W

L L

∆ = { L, W } Σ = { land , water } attributes = { ?ferry? }

figure 14 LHgraphics and a LH pattern multigrammar

In [HM90] a way of representing "knowledge" is described; as one can see in
figure14, knowledge is represented by an undirected graph with labels and
attributes for each vertex in the graph. In the dart approach the set of vertex
labels can be taken as the set Σ of terminal dart labels (all terminal darts at a
vertex get its labels). The set ∆ of nonterminal dart labels is used both for
designated "skin" hyperedges and for occasional hyperedges in patterns. This
reformulation gives the ∆ - sorted hypergraphs for which we describe a
substitution structure at the end of this section.

Example 12 Petri Nets

Produce Produce Produce Consume

figure 15 typical Petri Net and action net

Although Petri nets are usually drawn as in figure 15, one can define them as
hypergraphs, with "places" as vertices and "transitions" as hyperedges. The
dart labelling must distinguish between the inputs and outputs of places and
transitions. One way of doing this is to let dart labels be pairs < n, tl > , where
n is a non-zero integer and tl is a transition label from Σ or ∆. Note that Petri
nets have natural skins- the input (output) places, the vertices whose dart
labels are all negative (all positive). In defining e[∆ <- <e1,e2,....en>] the
skin darts of ei have to be assigned to the vertices of e. Assuming that the
darts of a nonterminal S have different labels, one can decree: skin darts
labelled < n, tl> are assigned to the same vertex as the nonterminal dart
labelled < n, S> (if no such dart exists, then the skin vertex is retained and
keeps its dart labelled < n,tl>). A glance at figure 16 will make this more clear

}

X'XΠS = { , }

Y

CS

ΠY = { , }

ΠCS = { }

-> Y->

-> ->Y

ΠX = { ,

X'

Y X

CS

figure 16 A Petri net pattern multigrammar

Large Petri nets are hard to understand, but using pattern equivalences
to make such nets structured and modular is a natural way of alleviating this
problem.

Example 13 Action Nets and Planning
In practice and in theory one often represents plans as action nets like that in
figure 15. If one defines "states" as maps from "features" to "values", one can
define action nets as hypergraphs with "features" as vertices and "actions" as
hyperedges. The dart labelling must distinguish between the preconditions
and postconditions of actions. One way of doing this is to let dart labels be
triples < fe, int, al > where fe is a positive postcondition feature or negative

precondition feature, int is an interval of values and al is an action label from
Σ or ∆. Then one can describe the interface sort of an action occurrence as the
features mentioned in its dart labels, one can describe the skin sort of an
action net as the features mentioned in its input or output dart labels, and one
can describe substitution as " matching features and ignoring value-intervals
of nonterminals".

Plans in the form of large action nets are hard to understand, but using
pattern equivalences to make such nets structured and modular may alleviate
this problem.

ΠS ={ ,
P P }CP S

S'

S'
S

, ,

ΠC = {

ΠP = {

}
<-itemnr,>0,consume> <+itemnr, any, consume>

}
<+itemnr, any, produce><-itemnr, any, produce>

figure 17 An action net pattern multigrammar

For the formal definition of combinatorial pattern multilanguages we must
formulate our new notions of labelled hypergraphs as substitution structures.
The simplest notion is ∆-sorted hypergraphs- ∆ is partitioned, and each
hyperedge having a dart with nonterminal label δ has all its darts labelled by
nonterminals from the same part of ∆ as δ. First we define a hypergraph
pattern over Σ and ∆ as a ∆- sorted hypergraph with a designated skin-
hyperedge, whose darts are labelled by nonterminals from the same part of ∆.

Now we have a substitution space []Π of patterns over Σ and ∆ and we
must define the result of a substitution in a pattern: e[∆ <- <e1,e2,....en>]. For
each ei in the substitution we have:
• a skin hyperedge for ei all of whose darts are labelled by nonterminals

from the same part of ∆

• a hyperedge in e whose darts are labelled by the same nonterminals so
these parameters define the result of replacing the nonterminal edge by ei:

• to identify these hyperedge darts with the corresponding skin hyperedge
darts, and add all the other ei-darts.

Note that combinatorial pattern multigrammars are usually sorted, because
one only wants to define substitution when skins and interfaces use dart labels
from the same part of ∆.

Summary
In this paper we have explained what the pattern version of a contextfree
grammar is and why the advantages of contextfreedom are preserved, we have
given the pattern version of several popular graph and hypergraph grammars,
and we have given striking examples to show that the extra expressive power
of patterns is worth having. We have indicated how simple computer
programs can generate and analyse pattern languages, but we have not
described how they can learn pattern multigrammars from a sample of actual
patterns.

References
[An80] D.Angluin "Finding patterns common to a set of strings"
J.Comp.Sys.Sci.21(1980)46-62
[Ar88]V.I.Arnol'd ."A branched covering of CP2 -> S4, hyperbolicity and
projective topology", Sib.Math.J. 29 (1988)717-726
[Co87] B.Courcelle "An axiomatic definition of context-free rewriting and its
application to NLC graph grammars" Th.Comp.Sci. 55 (1987) 141-181
[CO94] R.C.Carrasco, J.Oncina (eds.) "Grammatical inference and
applications" Springer LNAI 862(1994)
[DPS93] J.Dassow, G.H.Paun, A.Salomaa "Grammars based on patterns"
Int.J.Found.Comp.Sci.4 (1993)1-14
[EH94] J.Engelfriet & L.Heyker "Hypergraph Languages of bounded degree"
J.Comp.Sys.Sci.48 (1994)
[EPR94] A.Ehrenfeucht & P.ten Pas & G.Rozenberg "Context-free Text
Grammars", Acta Informatica 31 (1994)161-206
[FF94] D.S.Fogel, L.J.Fogel "Evolutionary computation" Guest Editorial for
special issue IEEE Trans. Neural Networks 5(1994)3-14.
[HL91] P.J.Hayes & M.Leyton "Processes at discontinuities"
Proc.Int:Conf.Art.Int.,pp.1267-1272 Detroit1991

[HM90] L.Hess & B.Mayoh "The Four Musicians: analogies and expert
systems- a graphic approach" pp 430-445 Springer LNCS532
[La93] T.W.Larsen "Proces grammatik og proces historie for 2D objekter"
DAIMI IR-115, Aarhus Univ.Report 1993.
[Le92] M.Leyton "Symmetry, Causality, Mind" MIT press 1992
[LL92] J.Lück, H,B.Lück "Cellworks: an application to plant morphogenesis"

in [RS92]
[LZ90] S.K.Lando,A.K.Zvonkin "Meanders", Institut des Hautes Etudes
Scientifiques report IHES/M/90/91
[Ma69] S.Marcus "Contextual grammars" Rev.Roum.Math.Pures Appl.
14(1969)1525-1534
[MTP94] B.Mayoh, E.Tyugu, J.Penjam (eds:) "Constraint programming"
NATO ASI Series F, Vol. 131, Springer 1994
[MR92] U.Montanari,F.Rossi "Graph grammars as contextdependent
rewriting systems: a partial ordering semantics"
Springer LNCS581(1992)232-247
[Na89] R.Narasimhan(ed.) "A perspective in theoretical computer science:
Commemorative volume for Gift Simoney" World Scientific 1989
[Pa82] Gh.Paun "Gramatici contextuale" Ed.Acad.Soc.Romania 1994
[Pa94] Gh.Paun "Marcus contextual grammars after 25 years" Bull.EATCS
52(1994)263-273
[PKV89] P.Prusinkiewicz & K.Krithivasan & M.G.Vijayanarayana
"Applications of L-systems to algorithmic generation of south indian folk art
patterns and karnatic music" pp229-247 in [Na89]
[RS92] G.Rozenberg, A.Salomaa(Eds.) "Lindenmayer Systems"
Springer1992
[So91] E.Sopena "Hypermap rewriting: a combinatorial approach"
Th.Comp.Sci. 85 (1991) 253-281
[SSR92] R.Simoney & K.G.Subramanian & T.Robinson "Map L-systems
with multiple markers" in [RS92]

"DNA Pattern multigrammars" by Brian Mayoh

How can one go from the sequence of nucleotides in a DNA molecule
to a description of its secondary structure? A popular answer [Se93] is:use
one or more grammars to parse the DNA string and the resulting
derivation trees give descriptions of the secondary structure of the DNA
string. As grammars usually give languages with more than one word, they
can be used to parse more than one DNA string, so they can handle genetic
variation. The language L generated by a grammar can cover not only the
possible alleles of a gene but also the possible mutations that are viable.
Biologists have devised several elegant grammars for DNAstrings, but
they also hope that machine learning techniques can extract suitable
grammars from a sample of "related" DNA strings [Se93].

 In this paper we introduce DNA pattern multigrammars and argue
that they are particularly appropriate for both machine learning and the
description of DNA secondary structure.

#1 Grammars that describe DNA strings

Proteins are long sequences of aminoacids, so their primary structures can
be represented as words on 20 symbol alphabet. In a later paper we will
describe how grammars can give the secondary structure of proteins. An
RNA molecule is a long sequence of ribonucleotides - Adenine, Cytocine,
Guanine or Uracil - so its primary structure can be represented as a word
on the alphabet { a, c, g, u}. A DNA molecule is one or two long
sequences of deoxyribonucleotides - Adenine, Cytocine, Guanine or
Thymine - so its primary structure can be represented as one or two words
on the alphabet { a, c, g, t}. As shown in figure 1, one of the two words for
double stranded DNA can be ignored, because it is uniquely determined
by the other word and the pairing rules: a = t, c = g, g = c, t = a .

 g g t a g c c c c c c c c c c c t a g g g

 c c a t c g g g g g g g g g g g a t c c c

Fig.1 Twin Strand DNA molecule and its twin words

The secondary structure of RNA and DNA molecules arises from the fact
that these pairing rules also apply to letters in their individual "primary
structure words". As shown in figure 2, the rules give crossdependencies
that indicate how the molecules fold in space.

g g t a g c c c c c c c c c c g a t g g g

g g t a g c c c c c c c c c c c t a g g g

g
g

t

a

g c

t

a

g
g

g

c

c
c c

c

c

c

c
c c

c t a = g a t

Fig.2 Crossdependencies and word duality

For spatial reasons "reversal" is involved in the definition of matching
dual words. For both DNA and RNA the dual λ of the empty word λ is
just the empty word λ. For DNA the dual word W is defined by:

a W = W t, cW= W g, g W= W c, t W= W a
For RNA the dual word W is defined by:

a W = W u, cW= W g, g W= W c, u W= W a
These dualities should be incorporated in any grammar for describing and
analysing families of DNA and RNA molecules. Among such grammars
we should mention stochastic context-free grammars [SBHMSUH94] and
string grammars [Se93]. In the next paragraph we introduce our rival
"pattern grammars".

One can define a pattern as a word W on terminal and nonterminal
letters together with a partition of the occurrences of the nonterminals in
W. When displaying patterns we display the partitition using the
convention:
• λ is the empty pattern
• nonterminals with the same adornment are equivalent,
• unadorned nonterminals are only equivalent to themselves.
Thus a b S c b T a c S' b b T' is a pattern where the last two nonterminals
are equivalent to each other and the first two are only equivalent to
themselves. If W1 (W2 , W3) are terminal words derivable from S (T,
both S and T), then one can substitute in the pattern to get the terminal
word: a b W1 c b W2 a c W3 b b W3
 To get an RNA or DNA pattern we need only add: nonterminals may or
may not be underlined; dual words are substituted for underlined patterns.

Def.1. A DNA (RNA) pattern multigrammar Γ consists of ∆ , a
nonterminal alphabet, and for each S in ∆ a set ΠS of DNA(RNA) patterns
over ∆ and {a, c, g, t} ({a, c, g, u }).

Def.2. A DNA (RNA) pattern language L is generated by a DNA (RNA)
pattern multigrammar Γ if L= LS for some S in ∆ where LS is the S-
component of the least fixed point of the language function Φ defined by

W in ΦS[....Lδ...] iff
W = u0 v1 u1 v2 u2.....vn un

for some pattern u0 δ1 u1 δ2 u2.....δn un in Π S and terminal words
u0,u1,u2.....un,v1,v2....vn such that vi in Lδ i and
• δi eq δj implies vi = vj
• δi eq δj implies vi = vj
• δi eq δj implies vi = vj.
HereLδ.. ...represents a tuple of pattern sets Lδ one for each δ in ∆.

Conventions: Any word can be substituted for an underlined space in a
pattern. The ornament & indicates that any word may be substituted but
the same word must be substituted at other occurrences of & and the dual
of the word must be substituted at other occurrences of & . Both these
conventions are used in the one pattern DNAparsing multigrammar in
figure 3.

Repeat -> _ & _ & _

g g
g

c
c c

c

c

c

c _

g

t

a

g c

t

a
g

c
c c

 &

 &

 _
 _ Repeat

 & &

 _ _
Repeat

 _

g g t a g c c c c c c c c c c c t a g g g

 _ & _ & _

Repeat

Fig.3 DNA Parsing with a one pattern grammar

#2 Grammars describing DNA secondary structure.
Every cell in a multicellular organism like us has identical DNA

molecules, but most cells are very different; hair is very unlike skin,
muscle and brain cells. The reason for these differences is that in each cell
some of the genes encoded in the DNA are active and some are passive.
Sometimes this genetic switching between active and passive genes
corresponds to different secondary structures of the DNA. As grammars
can be ambiguous, allow for alternative derivations of the same word, they
can neatly capture alternative secondary structures of DNA and RNA
molecules. A simple example of this is given by the two pattern grammar:

InvertedRepeat -> _ & _ & _
Attenuator -> _ & _ & _ & _

Clearly any word that can be derived from the attenuator pattern can also
be derived from the repeat pattern in two different ways. Figure 4 gives an
example of this simple example of possible genetic switching.

Repeat

g g
g

c
c c

c
c

c
c _

g
t
a
g c

t
a

g

c
c c

 &

 &
 _ _

g g g g t a g c c c c c
 &

Attenuator

 _

g g t a g c c c c c c c c c c c t a g g g g g g g t a g c c c c c

 _ & _ & _

g g t a g c c c c c c c c c c c t a g g g g g g g t a g c c c c c

 _ & _ & _ & _

Repeat

c
c

c
t
a t

a
g

c
c

c

g
g g

g g

g g

g g t a g c c c c c c c c c c c

Attenuator

 _

 _ _ _

 &

 &

 &

g g t a g c c c c c c c c c c c t a g g g g g g g t a g c c c c c

 _ & _ & _

Fig.4 Genetic Switching

Another common secondary structure is the PseudoKnot; it is prominent in
the RNA pattern multigrammar for tobacco mosaic virus RNA:

PseudoKnot -> & _ ¨& _ & _ ¨&
tmv_3prime -> PseudoKnot PseudoKnot PseudoKnot _ & _ ¨& &'

_ InvertedRepeat &' ¨& _ & InvertedRepeat PseudoKnot _
InvertedRepeat -> & _ &

Notice that one has the alternative derivation of
" _ & _ ¨& &' _ InvertedRepeat &' ¨& _ & " from the Pseudoknot
pattern. Figure 5 shows the secondary structure of a simple PseudoKnot
and the more intricate tmvRNA.

Fig.5 Pseudoknots and Tobacco Mosaic Virus RNA (177 nucleotides)

The string grammar for transfer RNA [Se 93p92] begins with:
tRNA(Codon) ---> AcceptorArm, _, DArm, _, ~DArm, _, AnticodonArm,

_ ,~AnticodonArm, _, TpsiCArm, _, ~TpsiCarm, _, ~AcceptorArm, _.

The RNA pattern multigrammar for transfer RNA begins with:
tRNA -> & CloverLeaf &
CloverLeaf -> _ Darm _ AntiCodonArm _ TψCarm _

Figure 6 gives the full multigrammar and the derivation for tRNA; figure 7
shows that biological reality is more complex than the simple examples in
this paper.

tRNA -> & CloverLeaf &
	 CloverLeaf -> _ Darm _ AntiCodonArm _ TψCarm _
	 Darm -> & _ &
	 AntiCodonArm -> & _ Codon _ &
	 TψCarm -> & _ &
	 Codon -> Nucleotide Nucleotide Nucleotide
	 Nucleotide -> g | c | a | u

&

&

&

&

&

&

&

&

_

_

_

_

_ _

_

_
Darm TψCarm

Anti
Codon
Arm

C

CloverLeaf

tRNA

Fig. 6 grammatical derivation of transfer RNA

Fig. 7 Real transfer RNA
a) spatially realistic
secondary structure
b)corrected cloverleaf
secondary structure
c) tertiary structure

#3 Genetic variation: alleles and viri.
One can consider DNA or RNA strings of length N as points in a

sequence space of dimension N. As there are only 4N such points in this
space, its topology is very different from our familiar Euclidean space; in
particular the largest possible distance (= number of mutations) between
two points is N, and there are many "shortest" paths between points, not
just one "straight line". Any DNA or RNA pattern language corresponds to
a set of points in this strange sequence space; the DNA or RNA strings in
any population correspond to a multiset of points in this strange sequence
space, as the same string may occur many times in the population.
Consider the population of people now living in Denmark. The
corresponding (multi)set of sequence space points is included in the
(multi)set for the people who have ever lived in Denmark, which is
included in the (multi)set for the people who will ever live in Denmark.
This is because there is genetic variation in people, genes have alleles.
Traditionally one assumes that the genetic variation of a species is given
by a sequence space point for the socalled "wild type" and a cluster of
nearby points, but this will only be true if "nearby" does not mean "few
mutations away from". There is much evidence that the traditional view is
totally inadequate for influenza, HIV and other viri, because they have
vast populations and high mutation rates [Ei92]. Eigen has introduced the
term quasispecies for populations of viri and other organisms with very
dynamic genetic variation. In sequence space quasispecies will give
cloudy, fractal multisets; species will give clean, compact multisets;
nevertheless both should be amenable to description by DNA and RNA
pattern multigrammars.

Fig.8 Population dynamics
a) perfect replication of wild type
b) highly imperfect replication
c) perfect replication with alleles
d) quasispecies

Viri seem to be a promising area for grammatical approaches to DNA
and RNA analysis. The chemical and biological details of genetic
switching, we described earlier, were first worked out for the
bacteriophage λ (a virus that preys on bacteria) [Pt86]. The phage λ
switches between two forms: a virulent form, in which bursts the bacteria,
and a dormant form where it reproduces when the bacteria cell divides.
The two forms differ in which genes are expressed and which are
repressed. It is not difficult to devise a pattern multigrammar for phage λ
in which the two forms correspond to alternative derivations of its RNA
sequence:

phage -> early1 cloff early2 headon tailon lysison
phage -> early1 clon early2 headoff tailoff lysisoff
early1 -> recombination C111 N
early2 -> cro C11 replication Q

and patterns for cro and the other genes - cloff (headon, tailon, lysison) has
the same pattern as clon (headoff, tailoff, lysisoff)

phage -> early1 cloff early2
headon tailon lysison

phage -> early1 clon early2
 headoff tailoff lysisoff

Fig.9 Genetic Switching
 in the phage λ

#4 Machine learning of DNA grammars.
Where do grammars come from? There are many machine methods

for inventing grammars that fit positive and negative examples of the
"language" to be described by the grammar [OP91,CO94]. Some of these
methods allow expert knowledge to preadapt the grammar search space.
Among the methods with this advantage, the one that seems most
appropriate to the hunt for RNA and DNA grammars seems to be genetic
algorithms , even although it is not mentioned in the latest survey of
machine learning applied to gene recognition [CS94]. Genetic algorithms
can be used if one can measure the fitness of a candidate RNA/DNA
grammar. The discussion of sequence spaces and quasispecies in the last
section suggests a suitable fitness measure: how well does the language
generated by the grammar include the multiset of positive examples and
exclude the multiset of negative examples.

The basic idea of genetic algorithms is shown in figure 10: a
population of phenotypes is constructed from a population of genotypes,
the fitness of the phenotypes is evaluated, their fitness influences the
evolution of a new genotype population and a new "life-cycle" starts.
Figure 10 also shows a version of the usual evolutionary operators,
crossover and mutation, that is appropriate if we make the reasonable
assumption:

Genotype = Phenotype = DNA/RNA pattern multigrammar
so the construction phase is trivial.

construction Phenotypes fitness

Genotypes evolution Evaluated
 Phenotypes

r1 r2 r3 r4 r5 r6 s1 s2 s3 s4 s5 s6

r1 r2 r3 s4 s5 s6 s1 s2 s3 r4 r5 r6

r1 m2 r3 s4 s5 s6 s1 s2 s3 m4 r5 r6

crossover of very fit parents

mutation of children

Fig 10 Genetic algorithms & grammar evolutionary operators

Any attempt to learn DNA/RNA pattern multigrammars by genetic
programming will only be successful if wise decisions have been made on
various crucial questions.
• genotype representation Do we want PRE,SUF,LIG operations on

grammars [Se93], or do sorted lists of patterns suffice?
• crossovers How do we ensure that useful structural building blocks

are not destroyed? Should we insist that all grammars contain such
common building blocks as: internal repeats, Pseudoknots etc.?

• mutations Do we need more than changing the underlining and
ornamentation (equivalence relation) of patterns?

• fitness Clearly recognition of positive (negative) examples
should be rewarded (punished), but should precise and detailed
grammars be rewarded (remember the alternative derivation in the
tobacco virus grammar) ?

• examples Wise choice of negative examples is essential, but should

all positive examples be used? Coevolution as in [Hi90] but using
sampling and spatial rotations to get new positive and negative examples.

#5 Conclusion.
DNA and RNA pattern multigrammars are expressive and learnable;

they may be useful in analysing DNA and RNA molecules.

References
[CO94] R.C.Carrasco, J.Oncina (eds.) "Grammatical inference and
applications" Springer LNAI 862(1994)
[CS94] M.W.Craven, J.W.Shavlik "Machine learning approaches to gene
recognition" IEEE Expert???(1994)2-10
[Ei92] M.Eigen "Steps toward life", Oxford U.P.1992
[Ei93] M.Eigen "Viral quasispecies", Sci.Amer.1993 july 32-40
[Hi90] W.D.Hillis "Co-evolving parasites improve simulated evolution as
an optimisation procedure" in S.Forrest(Ed.) "Emergent computation"
pp228-234, North Holland 1990.
[KSQMSWSR74] S.H.Kim, F.L.Suddath, F.L.Quigley, A.McPherson,
J.L.Sussman, A.H.J.Wang, N.C.Seegman,A.Rich "Three-dimensional
tertiary structure of Yeast phenylalanine transfer RNA", Science
185(1974) 435-439
[OP91] G.C.Overton, J.A.Pastor "A platform for applying multiple
machine learning strategies to the task of understanding gene structure"
IEEE???(1991) 450 -457
[Pt86] M.Ptashne "A Genetic Switch: gene control and phage λ"

Cell Press and Blackwell Scientific Publications, 1986.
[SBHMSUH94] Y.Sakakibara, M.Brown, R.Hughey, I.S.Mian,
K.Sjolander, R.C.Underwood, D.Haussler "Recent methods for RNA
modelling using stochastic context-free grammars" Springer LNCS
807(1994) 289-306
[Se93] D.B.Searls "The computational linguistics of biological sequences"
in Artificial Intelligence and Molecular Biology chapter 2, pages 47-120.
AAAI Press 1993.
[Wa77] J.D.Watson "Molecular biology of the gene", W.A.Benjamin,
Inc.1977

