
Static and Dynamic Processor Allocation

for

Higher-Order Concurrent Languages

Hanne Riis Nielson, Flemming Nielson

Computer Science Department,

Aarhus University, Denmark.

e-mail:fhrnielson,fnielsong@daimi.aau.dk

phone:+45.89.42.32.76 fax:+45.89.42.32.55

Abstract

Starting from the process algebra for Concurrent ML we develop two program analy-

ses that facilitate the intelligent placement of processes on processors. Both analyses
are obtained by augmenting an inference system for counting the number of chan-
nels created, the number of input and output operations performed, and the number

of processes spawned by the execution of a Concurrent ML program. One analysis
provides information useful for making a static decision about processor allocation;

to this end it accumulates the communication cost for all processes with the same
label. The other analysis provides information useful for making a dynamic decision

about processor allocation; to this end it determines the maximum communication
cost among processes with the same label. We prove the soundness of the infer-

ence system and the two analyses and demonstrate how to implement them; the
latter amounts to transforming the syntax-directed inference problems to instances

of syntax-free equation solving problems.

1 Introduction

Higher-order concurrent languages as CML [15] and FACILE [4] o�er primitives for the
dynamic creation of processes and channels. A distributed implementation of these lan-

guages immediately raises the problem of processor allocation. The e�ciency of the

implementation will depend upon how well the network con�guration matches the com-
munication topology of the program { and here it is important which processes reside on
which processors. When deciding this it will be useful to know:

� Which channels will be used by the process for input and output operations and

how many times will the operations be performed?

1

� Which channels and processes will be created by the process and how many instances

will be generated?

As an example, two processes that frequently communicate with one another should be

allocated on processors in the network so as to ensure a low communication overhead.

In CML and FACILE processes and channels are created dynamically and this leads

naturally to a distinction between two di�erent processor allocation schemes:

� Static processor allocation: At compile-time it is decided where all instances of a

process will reside at run-time.

� Dynamic processor allocation: At run-time it is decided where the individual in-

stances of a process will reside.

The �rst scheme is the simpler one and it is used in the current distributed implementation

of FACILE; �ner grain control over parallelism may be achieved using the second scheme

[17].

What has been accomplished. In this paper we present analyses providing informa-
tion for static and dynamic processor allocation of CML programs. We shall follow the

approach of [12] and develop the analyses in two stages:

� Extract the communication behaviour of the CML program.

� Analyse the behaviour.

The two analyses only di�er in the second stage.

The �rst stage follows [12] in developing a type and behaviour inference system for ex-
pressing the communication capabilities of programs in CML. This formulation takes full
account of the polymorphism present in ML and an algorithm for the automatic extrac-
tion of behaviours from CML programs is developed in [13]. As was already indicated in

[11] the behaviours may be regarded as terms in a process algebra (like CCS or CSP);
however the process algebra of behaviours is speci�cally designed so as to capture those
aspects of communication that are relevant for the e�cient implementation of programs
in CML.

The second stage of the two analyses are developed in detail in the present paper. To

prepare for this we �rst develop an analysis that uses simple ideas from abstract interpre-
tation to count for each behaviour the number of channels created, the number of input

and output operations performed and the number of processes spawned. To provide infor-
mation for static and dynamic processor allocation we then di�erentiate the information

with respect to labels associated with the fork operations of the CML program; these
labels will identify all instances of a given process and for each label we count the num-

ber of channels created, the number of input and output operations performed and the

number of processes spawned. The central observation is now that for the static alloca-

tion scheme we accumulate the requirements of the individual instances whereas for the

dynamic allocation scheme we take the maximum of the individual instance requirements.

2

In this paper we prove the correctness of the second stage of the analysis. The analy-

ses are speci�ed as inference systems and the correctness proof is based on a structural

operational semantics for behaviours and an appropriate abstraction of the non-negative

natural numbers. The correctness of the complete analysis then follows from the subject

reduction result of [12] that allows us to \lift" safety (as opposed to liveness) results from

the behaviours to safety results for CML programs.

We also address the implementation of the second stage of the analysis. Here the idea

is to transform the problem as speci�ed by the syntax-directed inference system into a

syntax-free equation solving problem where standard techniques from data
ow analysis

can be used to obtain fast implementations. (As already mentioned the implementation

of the �rst stage is the topic of [13].)

Comparison with other work. First we want to stress that our approach to processor

allocation is that of static program analysis rather than, say, heuristics based on pro�ling

as is often found in the literature on implementation of concurrent languages.

In the literature there are only few program analyses for combined functional and con-
current languages. An extension of SML with Linda communication primitives is studied

in [2] and, based on the corresponding process algebra, an analysis is presented that pro-
vides useful information for the placement of processes on a �nite number of processors.
A functional language with communication via shared variables is studied in [8] and its
communication patterns are analysed, again with the goal of producing useful information
for processor (and storage) allocation. Also a couple of program analyses have been devel-

oped for concurrent languages with an imperative facet. The papers [3, 7, 14] all present
reachability analyses for concurrent programs with a statically determined communica-
tion topology; only [14] shows how this restriction can be lifted to allow communication
in the style of the �-calculus. Finally, [10] presents an analysis determining the number
of communications on each channel connecting two processes in a CSP-like language.

As mentioned our analysis is speci�ed in two stages. The �rst stage is formalised in
[12, 13]; similar considerations were carried out by Havelund and Larsen leading to a

comparable process algebra [5] but with no formal study of the link to CML nor with
any algorithm for automatically extracting behaviours. The same overall idea is present
in [2] but again with no formal study of the link between the process algebra and the

programming language.

The second stage of the analysis extracts much more detailed information from the be-
haviours and this leads to a much more complex notion of correctness than in [12]. Fur-

thermore, the analysis is parameterised on the choice of value space thereby incorporating

ideas from abstract interpretation.

In summary, we believe that this paper presents the �rst provenly correct static anal-
yses giving useful information for processor allocation in a higher-order language with

concurrency primitives based on synchronous message passing.

3

2 Behaviours

Following [12] the syntax of behaviours (i.e. terms in the process algebra) b 2 Beh is

given by

b ::= � j L!t j L?t j t chanL j � j forkL b j b1; b2 j b1 + b2 j rec�: b

where L � Labels is a non-empty and �nite set of program labels. The behaviour

� is associated with the pure functional computations of CML. The behaviours L!t and

L?t are associated with sending and receiving values of type t over channels with label

in L, the behaviour t chanL is associated with creating a new channel with label in L

and over which values of type t can be communicated, and the behaviour forkL b is

associated with creating a new process with behaviour b and with label in L. Together

these behaviours constitute the atomic behaviours p 2 ABeh as may be expressed by

setting:

p ::= � j L!t j L?t j t chanL j forkL b

Finally, behaviours may be composed by sequencing (as in b1; b2) and internal choice (as
in b1 + b2) and we use behaviour variables together with an explicit rec construct to
express recursive behaviours. The structure of the types shall be of little concern to us

in this paper but for the sake of completeness we mention that the syntax of t 2 Typ is
given by

t ::= unit j bool j int j � j t1 !b t2 j t1 � t2 j t list j t chan L j t com b

where � is a meta-variable for type variables; see [12] for details.

Example 2.1 Suppose we want to construct a function pipe such that the call pipe
[f1,f2,f3] in out will produce a pipe of four processes as depicted in:

- f1

?

- f2

?

- f3

?

- id

?

-

in ch1 ch2 ch3 out

failfailfailfail

Here the sequence of inputs is taken over channel in, the sequence of outputs is produced

over channel out and the functions f1, f2, f3 (and the identity function id de�ned by

fn x => x) are applied in turn. To achieve concurrency we want separate processes for
each of the functions f1, f2, f3 (and id); these are interconnected using the new internal

channels ch1, ch2, and ch3. Finally fail is a channel over which failure of operation may
be reported.

We shall see that the following CML program will do the job:

4

let node = fn f => fn in => fn out =>

fork� (rec loop d =>

sync (choose [wrap (receive in, fn x => sync (send (out, f x));

loop d),

send(fail,())]))

in rec pipe fs => fn in => fn out =>

if isnil fs

then node (fn x => x) in out

else let ch = channel ()

in (node (hd fs) in ch; pipe (tl fs) ch out)

To explain this program consider �rst the function node. Here f is the function to be

applied, in is the input channel and out is the output channel. The function fork� creates

a new process labelled � that performs as described by the recursive function loop that

takes the dummy parameter d. In each recursive call the function may either report

failure by send(fail,()) or it may perform one step of the processing: receive the input

by means of receive in, take the value x received and transmit the modi�ed value f x by
means of send(out,f x) after which the process repeats itself by means of loop d. The
primitive choose allows to perform an unspeci�ed choice between the two communication

possibilities and wrap allows to modify a communication by postprocessing the value
received or transmitted. The sync primitive enforces synchronisation at the right points
and we refer to [15] for a discussion of the language design issues involved in this; once we
have arrived at the process algebra such considerations will be of little importance to us.
Next consider the function pipe itself. Here fs is the list of functions to be applied, in
is the input channel, and out is the output channel. If the list of functions is empty we

connect in and out by means of a process that applies the identity function; otherwise
we create a new internal channel by means of channel () and then we create the process
for the �rst function in the list and then recurse on the remainder of the list.

In the remainder of this paper we shall not be overly concerned with the syntax of CML.
However it is important for us that the type inference system of [12] can be used to prove
that the above program has type

(� !� �) list !� � chanL1 !� � chanL2 !b unit

where b is

rec�0:(fork�(rec�
00:(L1?�; �;L2!�;�

00 + L!unit))
+� chanL1 ;fork�(rec�

00:(L1?�;�;L2!�;�
00 + L!unit));�0)

and where we assume that fail is a channel of type unit chanL.

Thus the behaviour expresses directly that the pipe function is recursively de�ned and
that it either spawns a single process or creates a channel, spawns a process and recurses.

The spawned processes will all be recursive and they will either input over a channel in
L1, do something (as expressed by � and �), output over a channel in L2 and recurse or

they will output over a \failure"-channel in L and terminate. 2

5

p)p � �)�
p

b)� b rec �: b)� b[� 7! rec �: b]

b1)p b0
1

b1; b2)p b0
1
; b2

b1)p
p

b1; b2)p b2

b1)p b0
1

b1 + b2)p b0
1

b2)p b0
2

b1 + b2)p b0
2

Table 1: Sequential Evolution

The sequential evolution of behaviours is de�ned in Table 1. Here the con�gurations of

the transition system are either closed behaviours (i.e. having no free behaviour variables)

or the special terminating con�guration
p
. The transition relation takes one of the two

forms

b)p b0 and b)p
p

where p is an atomic behaviour. The axiom p)p � allows performing the primitive
behaviour p leaving the resulting behaviour �; we use � rather than

p
to accomodate the

axiom b; � � b of [12]. The axiom b)� b allows to perform any number of \silent" � steps;
this is to accomodate the axiom �; b � b of [12]. Less formally the idea is that any number
of computation steps may be performed in the pure functional part of CML before or after
any of the communicating steps are performed. The axiom �)�

p
expresses that the

execution of the �-behaviour can terminate1. The axiom involving rec allows to unfold
the recursive construct while performing a \silent" step. The rules for sequencing are
straightforward: when executing b1; b2 we are only allowed to start the execution of b2
when b1 has terminated. The rules for choice express an internal choice2.

The concurrent evolution of behaviours is de�ned in Table 2. Here we associate behaviours
with process identi�ers and the transitions will take the form

PB =)a
ps PB

0

where PB and PB0 are mappings from process identi�ers to closed behaviours and the
special symbol

p
. Furthermore, a is an action that takes place and ps is a list of the

processes that take part in the action. The actions are given by

a ::= � j t chanL j forkL b j L!t?L

and are closely connected to the atomic behaviours. The �rst two rules of Table 2 embed

the pure sequential computations into the concurrent system. The next two rules incorpo-
rate channel and process creation. Note that when a new process is created we record the

1A more general rule would be p)p
p

for all primitive behaviours p but the e�ect of this can be
obtained in two steps p)p �)�

p
and since we essentially ignore �-behaviours the two formulations

turn out to be equivalent.
2An alternative would be to use the axioms b1+ b2)� b1 and b1+ b2)� b2 but since we always allow

bi)� bi the two formulations turn out to be equivalent.

6

b)�
p

PB[pi 7! b] =)�
pi PB[pi 7!

p
]

b)� b0

PB[pi 7! b] =)�
pi PB[pi 7! b0]

b)tCHANL b0

PB[pi 7! b] =)tCHANL
pi PB[pi 7! b0]

b)FORKL b0 b0

PB[pi1 7! b] =)FORKL b0
pi1;pi2

PB[pi1 7! b0][pi2 7! b0]

if pi2 62 Dom(PB) [fpi1g

b1)L1!t b0
1

b2)L2?t b0
2

PB[pi1 7! b1][pi2 7! b2] =)L1!t?L2
pi1;pi2

PB[pi1 7! b0
1
][pi2 7! b0

2
]

if pi1 6= pi2 and L1 = L2

Table 2: Concurrent Evolution

process identi�er of the process that created it as well as its own process identi�er. Finally
we have a rule that facilitates communication. Here we insist that the sets of labels that
are used for the communication are equal as this is in accord with the typing system of
[12]; however a more general rule would result if L1 = L2 was replaced by L1 \ L2 6= ; or
L1 � L2. In all these rules we use the convention that PB in PB[pi 7! b] is chosen such
that the explicitly mentioned pi is not in the domain Dom(PB) of PB.

3 Value Spaces

In the analyses we want to predict the number of times certain events may happen. The
precision as well as the complexity of the analyses will depend upon how we count so we
shall parameterise the formulation of the analyses on our notion of counting.

This amounts to abstracting the non-negative integers N by a complete lattice (Abs,v).
As usual we write ? for the least element, > for the greatest element,

F
and t for least

upper bounds and u for greatest lower bounds. The abstraction is expressed by a function

R : N!m Abs

that is strict (has R(0) = ?) and monotone (has R(n1) v R(n2) whenever n1 � n2);

hence the ordering on the natural numbers is re
ected in the abstract values. Three

elements of Abs are of particular interest and we shall introduce special syntax for them:

o = R(0) = ?
i = R(1)

7

m = >

We cannot expect our notion of counting to be precisely re
ected by Abs; indeed it is

likely that we shall allow to identify for example R(2) and R(3) and perhaps even R(1)

and R(2). However, we shall ensure throughout that no identi�cations involve R(0) by

demanding that

R�1(o) = f0g

so that o really represents \did not happen".

We shall be interested in two binary operations on the non-negative integers. One is

the operation of maximum: maxfn1; n2g is the larger of n1 and n2. In Abs we shall

use the binary least upper bound operation to express the maximum operation. Indeed

R(maxfn1; n2g) = R(n1)t R(n2) holds by monotonicity of R as do the laws n1 v n1tn2,
n2 v n1 t n2 and n t n = n. As a consequence n1 t n2 = o i� both n1 and n2 equal o.

The other operation is addition: n1 + n2 is the sum of n1 and n2. In Abs we shall have

to de�ne a function � and demand that

(Abs, �, o) is an Abelian monoid with � monotone

This ensures that we have the associative law n1�(n2�n3) = (n1�n2)�n3, the absorption
laws n � o = o � n = n, the commutative law n1 � n2 = n2 � n1 and by monotonicity
we have also the laws n1 v n1 � n2 and n2 v n1 � n2. As a consequence n1 � n2 = o i�
both n1 and n2 equal o. To ensure that � models addition on the integers we impose the
condition

8n1; n2: R(n1 + n2) v R(n1)�R(n2)

that is common in abstract interpretation.

De�nition 3.1 A value space is a structure (Abs,v,o,i,m,�,R) as detailed above. It is
an atomic value space if i is an atom (that is o v n v i implies that o = n or i = n).

Example 3.2 One possibility is to useAbs1 = N[f1g and de�nev as the extension of
� by n v1 for all n. The abstraction function R can be taken as the injection function.
We then have

n1 t n2 =

8<
:

maxfn1; n2g if n1; n2 2 N

1 otherwise

For the operation � we take

n1 � n2 =

8<
:

n1 + n2 if n1; n2 2 N

1 otherwise

Clearly we have o = 0, i = 1 and m = 1. This de�nes an atomic value space. 2

8

Example 3.3 Another possibility is to use A3 = fo; i;mg and de�ne v by o v i v m.

The abstraction function R will then map 0 to o, 1 to i and all other numbers to m. The

operations t and � can then be given by the following tables:

t o i m

o o i m

i i i m

m m m m

� o i m

o o i m

i i m m

m m m m

This de�nes an atomic value space. 2

For two value spaces (Abs0,v0,o0,i0,m0,�0,R0) and (Abs00,v00,o00,i00,m00,�00,R00) we may con-

struct their cartesian product (Abs,v,o,i,m,�,R) by setting Abs = Abs0 � Abs00 and

by de�ning v, o, i, m, � and R componentwise. This de�nes a value space but it is

not atomic even if Abs0 and Abs00 both are. As a consequence i = (i0; i00) will be of no

concern to us; instead we use (o0; i00) and (i0;o00) as appropriate.

For a value space (Abs0,v0,o0,i0,m0,�0,R0) and a non-empty set E of events we may con-
struct the indexed value space (or function space) (Abs,v,o,i,m,�,R) by setting Abs =
E ! Abs0 (the set of total functions from E to Abs0) and by de�ning v, o, i, m, �
and R componentwise. This de�nes a value space that is only atomic when Abs0 is and
provided E is a singleton set. As a consequence i = �e:i0 will be of no concern to us.

For indexed value spaces we may represent

(f 2 E ! Abs) by (rep(f) 2 E ,! Absnfog)

where E ,! Absnfog denotes the set of partial functions from E to Absnfog; here
rep(f) maps e to n i� f(e) = n and n 6= o. This involves no loss of precision because
there is a bijective correspondance between the two representations. Furthermore there
is never a need to decrease the domains of functions involved, i.e. Dom(rep(f1 � f2)) and
Dom(rep(f1 t f2)) both equal Dom(rep(f1)) [Dom(rep(f2)) because neither � nor t
can yield o unless both operands are o.

In practice we want to restrict E to be a �nite set in order to obtain �nite representa-
tions. Actually we shall allow the analyses to be a bit informal about this: e�ectively

by pretending that E might be in�nite but that the indexed value spaces operates with
functions f 2 E !f Abs that are o on all but a �nite number of arguments. Here

we still have a bijective correspondence between the f 's and the rep(f)'s having a �nite

domain; the only snag is that the value space then has no greatest element but that for
each �nite subset of E one has to be content with having a greatest element for functions
that are o outside that �nite set.

4 Counting the Behaviours

For a given behaviour b and value space Abs we may ask the following four questions:

� How many times are channels labelled by L created?

9

benv ` � : []

benv ` L!t : [L 7! (o;o; i;o)] benv ` L?t : [L 7! (o; i;o;o)]

benv ` t chanL : [L 7! (i;o;o;o)]
benv ` b : A

benv ` forkL b : [L 7! (o;o;o; i)]�A

benv ` b1 : A1 benv ` b2 : A2

benv ` b1; b2 : A1 �A2

benv ` b1 : A1 benv ` b2 : A2

benv ` b1 + b2 : A1 t A2

benv[� 7! A] ` b : A
benv ` rec �: b : A

benv ` � : A if benv(�) = A

Table 3: Analysis of behaviours

� How many times do channels labelled by L participate in input?

� How many times do channels labelled by L participate in output?

� How many times are processes labelled by L generated?

To answer these questions we de�ne an inference system with formulae

benv ` b : A

where LabSet = Pf (Labels) is the set of �nite and non-empty subsets of Labels and

A 2 LabSet!f Abs

records the required information.

In this section we shall de�ne the inference system for answering all these questions
simultaneously. Hence we let Abs be the four-fold cartesian product Ab4 of an atomic
value space Ab; we shall leave the formulation parameterised on the choice of Ab but
a useful candidate is the three-element value space A3 of Example 3.3 and we shall use

this in the examples.

The idea is that A(L) = (nc; ci; no; nf) means that channels labelled by L are created at

most nc times, that channels labelled by L participate in at most ni input operations, that

channels labelled by L participate in at most no output operations, and that processes
labelled by L are generated at most nf times. The behaviour environment benv then
associates each behaviour variable with an element of LabSet!f Abs.

The analysis is de�ned in Table 3. We use [] as a shorthand for �L:(o;o;o;o) and

[L 7! ~n] as a shorthand for �L0:

(
(o;o;o;o) if L0 6= L

~n if L0 = L

)
. Note that i denotes the

designated \one"-element in each copy ofAbs0 since it is the atoms (i;o;o;o), (o; i;o;o),

(o;o; i;o), and (o;o;o; i) that are useful for increasing the count. In the rule for forkL

we are deliberately incorporating the e�ects of the forked process; to avoid doing so simply

10

remove the \�A" component. The rules for sequencing, choice, and behaviour variables

are straightforward given the developments of the previous section.

Note that the rule for recursion expresses a �xed point property and so allows some

slackness; it would be inelegant to specify a least (or greatest) �xed point property whereas

a post-�xed point3 could easily be accomodated by incorporating a notion of subsumption

into the rule. We decided not to incorporate a general subsumption rule and to aim for

specifying as unique results as the rule for recursion allows.

Example 4.1 For the pipe function of Example 2.1 the analysis will give the following

information:

L1: m channels created

m inputs performed

L2: m outputs performed

L: m outputs performed

�: m processes created

Thus the program will create many channels in L1 and many processes labelled � and it

will communicate over the channels of L1, L2 and L many times. While this is evidently
correct it also seems pretty uninformative; yet we shall see that this simple analysis su�ces
for developing more informative analyses for static and dynamic processor allocation. 2

Before considering the correctness of the inference system we present a few observations
about its properties. The concept of free behaviour variables of a behaviour is standard;
we shall need to modify this concept and so de�ne the set EV (b) of exposed behaviour

variables of b:

EV (�) = EV (L!t) = EV (L?t) = EV (t chanL) = ;
EV (forkL b) = EV (b)
EV (b1; b2) = EV (b1 + b2) = EV (b1) [EV (b2)
EV (rec�:b) = EV (b)nf�g
EV (�) = f�g

Thus the di�erence between free and exposed variables is that the latter do not include
behaviour variables embedded in type components. This su�ces for stating

Fact 4.2 Suppose benv ` b : A; if � 2 EV (b) then A w benv(�) and otherwise benv[� 7!
A�] ` b : A holds for all A�. 2

For the next result we need to recall the Egli-Milner ordering:

X v EMY i� (8x 2 X: 9y 2 Y: x v y) ^ (8y 2 Y: 9x 2 X: x v y)

Also we shall say that a behaviour environment benv su�ces for b when all exposed

variables of b are in the domain of benv . We then have
3We take a post-�xed point of a function f to be an argument n such that f(n) v n.

11

Lemma 4.3 For all b and benv that su�ce for b the set fA j benv ` b : Ag is non-

empty and has a least and a greatest element; furthermore the set depends monotonically

on benv in the sense that fA j benv1 ` b : Ag v EM fA j benv2 ` b : Ag whenever

benv1 v benv2 and both benv1 and benv2 su�ce for b. 2

To express the correctness of the analysis we need a few de�nitions. Given a list X of

actions de�ne

COUNT(X) = �L:(CC(X;L); CI(X;L); CO(X;L); CF (X;L))

where

CC(X;L): the number of elements of the form t chanL in X,

CI(X;L): the number of elements of the form L0!t?L in X,

CO(X;L): the number of elements of the form L!t?L0 in X, and

CF (X;L): the number of elements of the form forkL b in X.

Soundness of the analysis is then established by:

Theorem 4.4 If ; ` b : A and

[pi0 7! b] =)a1
ps1

: : : =)ak
psk

PB

then we have

R�(COUNT[a1; � � �; ak]) v A.

where R�(C)(L) = (R(c);R(i);R(o);R(f)) whenever C(L) = (c; i; o; f). 2

To prove this result we need the following lemma expressing the sequential soundness of
the analysis:

Lemma 4.5 If ; ` b : A and b)p b0 then there exists A0 and A0 such that ; ` p : A0,
; ` b0 : A0 and A0 �A0 v A. 2

Here we have extended the predicate of Table 3 to con�gurations by taking

; ` p : []

To prove the concurrent soundness of the analysis we de�ne

` PB : A

to mean that PB = [pi1 7! b1; � � �; pij 7! bj], ; ` b1 : A1; � � �; ; ` bj : Aj and A =

A1�� � ��Aj. We then have the following proposition fromwhich Theorem 4.4 immediately
follows:

12

Proposition 4.6 If ` PB : A and

PB =)a1
ps1

: : : =)ak
psk

PB0

then there exists A0 such that ` PB0 : A0 and

R�(COUNT[a1; � � �; ak])�A0 v A. 2

Variations on the inference system presented here are easily constructed. The entire

development is parameterised on the choice of Ab: using Abs1 of Example 3.2 will give

extremely precise answers compared with using A3 of Example 3.3. It is also immediate

to change the form of the de�nition of Abs: taking Abs = Ab we have the right setting

for answering each question individually rather than simultaneously. These variations

hardly change the development at all because our analysis always succeeds; in particular

we do not risk that failure of one component in
icts failure upon another component.

Another variation is to replace A : LabSet!f Abs with A0 : Labels!f Abs that more

directly gives the desired information for each label. One can always obtain information
in the form of A0 from information in the form of A (simply use the formula A0(l) =F fA(L) j l 2 Lg) but in general not vice versa. However, when the behaviours are
as constructed in [12] we expect that each label occurs in at most one label set, i.e.
the sets of Dom(rep(A)) are mutually disjoint, and then the di�erence between the two
approaches is only minor. Either way the modi�cations to the inference system of Table
3 are straightforward.

Replacing LabSet!f Abs by Abs
2

1 = (N [f1g)2 and only counting the number of
channels created and the number of processes generated is also straightforward and essen-

tially gives the analysis for detecting multiplexing and multitasking that was developed
in [12]. The major di�erence is that the analysis of [12] only operates over N2 and so has
to fail if 1 was to be produced; unlike the present approach this means that failure in
one component may in
ict failure upon another.

5 Implementation

It is well-known that compositional speci�cations of program analyses (whether as ab-
stract interpretations or annotated type systems) are not the most e�cient way of ob-

taining the actual solutions. We therefore demonstrate how the inference problem may be
transformed to an equation solving problem that is independent of the syntax of our pro-

cess algebra and where standard algorithmic techniques may be applied. This approach
also carries over to the inference systems for processor allocation developed subsequently.

The �rst step is to generate the set of equations. To show that this does not a�ect the set of
solutions we shall be careful to avoid undesirable \cross-over" between equations generated

from disjoint syntactic components of the behaviour. One possible cause for such \cross-

over" is that behaviour variables may be bound in more than one rec; one classical
solution to this is to require that the overall behaviour be alpha-renamed such that this

does not occur; the solution we adopt avoids this requirement by suitable modi�cation

13

E [[B : � : �]] = fh�i = [] g
E [[B : � : L!t]] = fh�i = [L 7! (o;o; i;o)] g
E [[B : � : L?t]] = fh�i = [L 7! (o; i;o;o)] g
E [[B : � : t chanL]] = fh�i = [L 7! (i;o;o;o)] g
E [[B : � : forkL b]] = fh�i = [L 7! (o;o;o; i)]� h�1i g [E [[B : �1 : b]]

E [[B : � : b1; b2]] = fh�i = h�1i � h�2i g [E [[B : �1 : b1]] [E[[B : �2 : b2]]

E [[B : � : b1 + b2]] = fh�i = h�1i t h�2i g [E [[B : �1 : b1]] [E[[B : �2 : b2]]

E [[B : � : �]] = fh�i = h�i g
E [[B : � : rec �: b]] = CLOSE�

�(fh�i = h�1i; h�i = h�i g [E [[B : �1 : b]])

Table 4: Constructing the equation system

of the equation system. Another possible cause for \cross-over" is that disjoint syntactic
components of the overall behaviour may nonetheless have components that syntactically

appear the same; we avoid this problem by the standard use of tree-addresses (denoted
�).

The function E for generating the equations for the overall behaviour B achieves this by
the call E [[B : " : B]] where " denotes the empty tree-address. In general B : � : b indicates
that the subtree of B rooted at � is of the form b and the result of E[[B : � : b]] is the set
of equations produced for b. The formal de�nition is given in Table 4.

The key idea is that E [[B : � : b]] operates with
ow variables of the form h�0i and h�0i.
We shall maintain the invariant that all �0 occurring in E [[B : � : b]] are (possibly empty)
prolongations of � and that all �0 occurring in E [[B : � : b]] are exposed in b. To maintain
this invariant in the case of recursion we de�ne

CLOSE�
�(E) = f (L[h�i=h�i] = R[h�i=h�i]) j (L = R) 2 E g

(although it would actually su�ce to apply the substitution [h�i=h�i] on the righthand

sides of equations and it would be correct to remove the trivial equation produced).

Terms of the equations are formal terms over the
ow variables (that range over the

complete lattice E ! Abs), the operations � and t and the constants (that are elements
of the complete lattice E ! Abs). Thus all terms are monotonic in their free
ow

variables. A solution to a set E of equations is a partial function � from
ow variables

to E ! Abs such that all
ow variables in E are in the domain of � and such that all

equations (L = R) of E have �(L) = �(R) where � is extended to formal terms in the

obvious way. We write � j= E whenever this is the case.

To express the relationship between the equations and the inference system we shall

introduce some notation. When F is a �nite set of behaviour variables we write benvdF

14

for the total function with domain F that maps � 2 F to benv(�). Similarly we shall

write �dF for the total function with domain F that maps � 2 F to �(h�i). (We shall

take care to use these notations only when we can ensure that the the resulting functions

are indeed total.) Correctness of the equations then amounts to

Theorem 5.1 The set f (benvdEV (b); A) j benv ` b : A g is equal to f (�dEV (b); �(h�i)) j
� j= E[[B : � : b]] g. 2

Corollary 5.2 [] ` b : A i� 9�: � j= E [[b : " : b]] ^ �(h"i) = A. 2

Corollary 5.3 The least (or greatest) A such that [] ` b : A is of the form �(h"i) for the
least (or greatest) � such that � j= E [[b : " : b]]. 2

We have now transformed our inference problem to a form where the standard algorithmic

techniques can be exploited. These include simpli�cations of the equation system, par-

titioning the equation system into strongly connected components processed in (reverse)

topological order, widening to ensure convergence when Abs does not have �nite height

etc.; a good overview of useful techniques may be found in [1, 6, 9, 16]. Also the
ow
variables may be decomposed to families of
ow variables over simpler value spaces using
the isomorphisms4

f1g ! Abs0 �= Abs0

(E1] E2)! Abs0 �= (E1 ! Abs0) � (E2 ! Abs0)

E ! (Abs0 � Abs00) �= (E ! Abs0) � (E ! Abs00)

where (E1] E2) denotes E1 [E2 subject to E1 and E2 being disjoint.

A �nal point worth mentioning is that we have generated a system of equations (i.e.
L = R) rather than a system of inequations (i.e. L w R). Given that there is a binary
least upper bound operator t associated with the partial order w there is hardly any
di�erence between the two formulations if the expressions L and R are unconstrained in
format: just model L = R as L w R and R w L and model L w R as L = L t R. In

our case L is constrained to be a
ow variable and here the equation system is the more
expressive one. Although we have only been generating equations it is interesting to point
out that we would have been generating inequations if our inference system included a

subsumption rule for the
ow information: i.e. e�ectively allowing to replace any A by A0

provided that A0 w A.

To further clarify the relationship between equations and inequations consider a set E of

inequations and the following operations on it. By E t we denote the inequation system

where all inequations L w R1; � � �; L w Rn with the same lefthandside are \coalesced" into
the single inequation L w R1 t � � � t Rn. (Extensions of this procedure would remove any

Ri being equal to L and would remove R w ? altogether.) Further let E= (and similarly
E t=) denote the system E (and similarly E t) where all inequations (L w R) have been

transformed into equations (L = R). Writing S(E0) for the set of solutions to the system

E0 and �(E0) for the least solution we have

4An isomorphism � from (Abs0,v0,o0,i0,m0,�0,R0) to (Abs00,v00,o00,i00,m00,�00,R00) is a bijective function
� from Abs

0 to Abs
00 such that � and ��1 are monotone and o

00 = �(o0), i00 = �(i0), m00 = �(m0),
n1 �00 n2 = �((��1n1) �0 (��1n2)) and R00 = � � R0.

15

S(E=) � S(E t=) � S(E t) = S(E)
�(E t=) = �(E t) = �(E) v �(E=)

where the latter inequality may be strict (e.g. for E = fh�1i w h�2i; h�1i w ig). So

when least �xed points are sought of \coalesced" systems there is no di�erence between

equational and inequational form.

6 Static Processor Allocation

The idea behind the static processor allocation is that all processes with the same label will

be placed on the same processor and we would therefore like to know what requirements

this puts on the processor. To obtain such information we shall extend the simple counting

analysis of Section 4 to associate information with the process labels mentioned in a given

behaviour b. For each process label La we therefore ask the four questions of Section 4

accumulating the total information for all processes with label La: how many times are

channels labelled by L created, how many times do channels labelled by L participate in

input, how many times do channels labelled by L participate in output, and how many
times are processes labelled by L generated?

Example 6.1 Let us return to the pipe function of Example 2.1 and suppose that we
want to perform static processor allocation. This means that all instances of the processes
labelled � will reside on the same processor. The analysis should therefore estimate the

total requirements of these processes as follows:

main program: L1: m channels created

�: m processes created
processes �: L1: m inputs performed

L2: m outputs performed
L: m outputs performed

Note that even though each process labelled by � can only communicate once over L
we can generate many such processes and their combined behaviour is to communicate
many times over L. It follows from this analysis that the main program does not in

itself communicate over L2 or L and that the processes do not by themselves spawn new
processes.

Now suppose we have a network of processors that may be explained graphically as follows:

&%
'$

&%
'$

&%
'$

P2 P3

P1

�
�
�
�
� @

@
@
@
@

16

benv ` � : [] & []

benv ` L!t : [L 7! (o;o; i;o)] & [] benv ` L?t : [L 7! (o; i;o;o)] & []

benv ` t chanL : [L 7! (i;o;o;o)] & []
benv ` b : A & P

benv ` forkL b : [L 7! (o;o;o; i)] & ([L 7! A]� P)

benv ` b1 : A1 & P1 benv ` b2 : A2 & P2

benv ` b1; b2 : A1 �A2 & P1 � P2

benv ` b1 : A1 & P1 benv ` b2 : A2 & P2

benv ` b1 + b2 : A1 t A2 & P1 t P2

benv[� 7! A & P] ` b : A & P

benv ` rec �: b : A & P
benv ` � : A & P if benv(�) = A & P

Table 5: Analysis for static process allocation

One way to place our processes is to place the main program on P1 and all the processes

labelled � on P2. This requires support for multitasking on P2 and for multiplexing (over
L1) on P1 and P2. 2

The analysis is obtained by modifying the inference system of Section 4 to have formulae

benv ` b : A & P

where A 2 LabSet!f Abs as before and

P : LabSet!f (LabSet!f Abs)

The idea is that if some process is labelled La then P (La) describes the total requirements
of all processes labelled by La. The behaviour environment benv is an extension of that
of Section 4 in that it associates pairs A & P with the behaviour variables. Note that in

the rule for forkL we have removed the \�A" component from the local e�ect; instead
it is incorporated in the global e�ect for L.

To express the correctness of the analysis we need to keep track of the relationship between

the process identi�ers and the associated labels. So let penv be a mapping from process
identi�ers to elements La of LabSet. We shall say that penv respects the derivation
sequence PB =)a1

ps1
: : : =)ak

psk
PB0 if whenever (ai; psi) have the form (forkL b; (pi1; pi2))

then penv(pi2) = L; this ensures that the newly created process (pi2) indeed has a label

(in L) as reported by the semantics.

We can now rede�ne the function COUNT of Section 4. Given a list X of pairs of actions

and lists of process identi�ers de�ne

COUNTpenv(X) = �La:�L:(CCLa(X ; L); CILa(X ; L); COLa(X ; L); CFLa(X ; L))

where

17

CCLa(X ; L): the number of elements of the form (t chanL; pi) in X
where penv(pi) = La,

CILa(X ; L): the number of elements of the form (L0!t?L; (pi0; pi)) in X ,

where penv(pi) = La,

COLa(X ; L): the number of elements of the form (L!t?L0; (pi; pi0)) in X ,

where penv(pi) = La, and

CFLa(X ; L): the number of elements of the form (forkLb; (pi; pi
0)) in X

where penv(pi) = La.

Soundness of the analysis then amounts to:

Theorem 6.2 Assume that ; ` b : A & P and

[pi0 7! b] =)a1
ps1

: : : =)ak
psk

PB

and let penv be a mapping from process identi�ers to elements of LabSet respecting the

above derivation sequence and such that penv(pi0) = L0. We then have

R�(COUNTpenv[(a1; ps1); � � �; (ak; psk)]) v (P � [L0 7! A])

where R�(C)(La)(L) = (R(c);R(i);R(o);R(f)) whenever C(La)(L) = (c; i; o; f). 2

Note that the lefthand side of the inequality counts the number of operations for all

processes whose labels is given (by La); hence our information is useful for static processor
allocation.

To prove the theorem we need the following lemma expressing the sequential soundness
of the analysis:

Lemma 6.3 If ; ` b : A & P and b)p b0 then there exists A0, P0, A
0 and P 0 such that

; ` p : A0 & P0, ; ` b0 : A0 & P 0 and A0 �A0 v A as well as P0 � P 0 v P . 2

Here we have extended the predicate of Table 5 to con�gurations by taking

; ` p : [] & []

To prove the concurrent soundness of the analysis we de�ne

`penv PB : P

to mean that PB = [pi1 7! b1; � � �; pij 7! bj], ; ` b1 : A1 & P1; � � �; ; ` bj : Aj & Pj and
P = P1�� � ��Pj�[L1 7! A1]�� � ��[Lj 7! Aj] where penv(pi1) = L1, � � �, penv(pij) = Lj .
We then have the following lemma from which Theorem 6.2 immediately follows:

Proposition 6.4 Assume that `penv PB : P and

PB =)a1
ps1

: : : =)ak
psk

PB0

18

where penv is a mapping from process identi�ers to elements of LabSet respecting the

above derivation sequence. Then there exists P 0 such that `penv PB0 : P 0 and

R�(COUNTpenv[(a1; ps1); � � �; (ak; psk)])� P 0 v P . 2

To obtain an e�cient implementation of the analysis it is once more pro�table to generate

an equation system. This is hardly any di�erent from the approach of Section 5 except

that by now there is even greater scope for decomposing the
ow variables into families

of
ow variables over simpler value spaces.

7 Dynamic Processor Allocation

The idea behind the dynamic processor allocation is that the decision of how to place

processes on processors is taken dynamically. Again we will be interested in knowing

which requirements this put on the processor but in contrast to the previous section we

are only concerned with a single process rather than all processes with a given label. We

shall now modify the analysis of Section 6 to associate worst-case information with the

process labels rather than accumulating the total information. For each process label La

we therefore ask the four questions of Section 4 taking the maximum information over all
processes with label La: how many times are channels labelled by L created, how many
times do channels labelled by L participate in input, how many times do channels labelled
by L participate in output, and how many times are processes labelled by L generated?

Example 7.1 Let us return to the pipe function of Example 2.1 and assume that we
want dynamic processor allocation. This means that all the processes labeled � need

not reside on the same processor. The analysis should therefore estimate the maximal

requirements of the instances of these processes as follows:

main program: L1: m channels created
�: m processes created

process �: L1: m inputs performed
L2: m outputs performed
L: i output performed

Note that now we do record that each individual process labelled by � actually only
communicates over L at most once.

Returning to the processor network of Example 6.1 we may allocate the main program on

P1 and the remaining processes on P2 and P3 (and possibly P1 as well): say f1 and f3

on P2 and f2 and id on P3. Facilities for multitasking are needed on P2 and P3 and
facilities for multiplexing on all of P1, P2 and P3. 2

The inference system still has formulae

benv ` b : A & P

where A and P are as in Section 6 and now benv is as in Section 4: it does not incorporate
the P component5.

5It could be as in Section 6 as well because we now combine P components using t rather than �.

19

benv ` � : [] & []

benv ` L!t : [L 7! (o;o; i;o)] & [] benv ` L?t : [L 7! (o; i;o;o)] & []

benv ` t chanL : [L 7! (i;o;o;o)] & []
benv ` b : A & P

benv ` forkL b : [L 7! (o;o;o; i)] & ([L 7! A] t P)

benv ` b1 : A1 & P1 benv ` b2 : A2 & P2

benv ` b1; b2 : A1 �A2 & P1 t P2

benv ` b1 : A1 & P1 benv ` b2 : A2 & P2

benv ` b1 + b2 : A1 t A2 & P1 t P2

benv[� 7! A] ` b : A & P

benv ` rec �: b : A & P
benv ` � : A & [] if benv(�) = A

Table 6: Analysis for dynamic process allocation

A di�erence from Section 6 is that now we need to keep track of the individual process

identi�ers. We therefore rede�ne the function COUNTpenv as follows:

COUNTpenv(X) = �La:�L:((CCPI(X ; L); CIPI(X ; L); COPI(X ; L); CFPI(X ; L))
where PI = penv�1(La))

where

CCPI(X ; L): the maximum over all pi 2 PI of the number of elements
of the form (t chanL; pi) in X ,

CIPI(X ; L): the maximum over all pi 2 PI of the number of elements
of the form (L0!t?L; (pi0; pi)) in X ,

COPI(X ; L): the maximum over all pi 2 PI of the number of elements
of the form (L!t?L0; (pi; pi0)) in X , and

CFPI(X ; L): the maximum over all pi 2 PI of the number of elements
of the form (forkLb; (pi; pi

0)) in X .

Soundness of the analysis then amounts to:

Theorem 7.2 Assume that ; ` b : A & P and

[pi0 7! b] =)a1
ps1

: : : =)ak
psk

PB

and let penv be a mapping from process identi�ers to elements of LabSet respecting the

above derivation sequence and such that penv(pi0) = L0. We then have

R�(COUNTpenv[(a1; ps1); � � �; (ak; psk)]) v (P t [L0 7! A]).

where R� is as in Theorem 6.2. 2

20

Note that the lefthand side of the inequality gives the maximum number of operations

over all processes with a given label; hence our information is useful for dynamic processor

allocation.

To prove this result we need the following lemma expressing the sequential soundness of

the analysis:

Lemma 7.3 If ; ` b : A & P and b)p b0 then there exists A0, P0, A
0 and P 0 such that

; ` p : A0 & P0, ; ` b0 : A0 & P 0 and A0 �A0 v A as well as P0 t P 0 v P . 2

Here we have once more extended the predicate of Table 6 to con�gurations by taking

; ` p : [] & []

To prove the concurrent soundness of the analysis we need to associate information with

process identi�ers rather than process labels. So we de�ne

`penv PB : P

to mean that PB = [pi1 7! b1; � � �; pij 7! bj], ; ` b1 : A1 & P1; � � �; ; ` bj : Aj & Pj and

P = (((P1 t � � � t Pj) � penv) n fpi1; � � �; pijg) t [pi1 7! A1; � � �; pij 7! Aj]

where P nPI gives o on PI and otherwise acts as P. We shall also need a version CT of
the function COUNT that associates information with process identi�ers:

CT(X) = �pi:�L:(CCfpig(X ; L); CIfpig(X ; L); COfpig(X ; L); CFfpig(X ; L))

We then have the following proposition from which we will be able to prove Theorem 7.2:

Proposition 7.4 Assume that `penv PB : P and

PB =)a1
ps1

: : : =)ak
psk

PB0

where penv is a mapping from process identi�ers to elements of LabSet respecting the
above derivation sequence. Then there exists P 0 such that `penv PB0 : P 0 and

R�(CT[(a1; ps1); � � �; (ak; psk)])�P 0 v P. 2

To obtain an e�cient implementation of the analysis it is once more pro�table to generate

an equation system and the remarks at the end of the previous section still apply.

21

8 Conclusion

The speci�cations of the analyses for static and dynamic allocation have much in common;

the major di�erence of course being that for static processor allocation we accumulate the

total numbers whereas for dynamic processor allocation we calculate the maximum; a mi-

nor di�erence being that for the static analysis it was crucial to let behaviour environments

include the P component whereas for the dynamic analysis this was hardly of any impor-

tance. Naturally, the proofs of their soundness di�er in an important aspect: for the static

analysis we could simply count the number of events for each label set whereas for the

dynamic analysis the proof had to consider each of the process identi�ers separately and

then take the least upper bound (or maximum) of the number of events over all process

identi�ers with the same label set. This di�erence in proof technology is reminiscent of

the di�erence between the formulation of MFP-style and MOP-style analyses: in the for-

mer the e�ects of paths (corresponding to process identi�ers with the same label set) are

merged along the way whereas in the latter the paths (corresponding to the process iden-

ti�ers) have to be kept separate and their e�ect can only be merged when the propagation

of e�ects have taken place.

Acknowledgements We would like to thank Torben Amtoft for many interesting dis-
cussions. This research has been funded in part by the LOMAPS (ESPRIT BRA) and
DART (Danish Science Research Council) projects.

References

[1] J.Cai, R.Paige: Program Derivation by Fixed Point Computation. Science of Com-

puter Programming 11, pp. 197{261, 1989.

[2] R. Cridlig, E.Goubault: Semantics and analysis of Linda-based languages. Proc.
Static Analysis, Springer Lecture Notes in Computer Science 724, 1993.

[3] C.E.McDowell: A practical algorithm for static analysis of parallel programs. Journal
of parallel and distributed computing 6, 1989.

[4] A.Giacalone, P.Mishra, S.Prasad: Operational and Algebraic Semantics for Facile:
a Symmetric Integration of Concurrent and Functional Programming. Proc.

ICALP'90 , Springer Lecture Notes in Computer Science 443, 1990.

[5] K.Havelund, K.G.Larsen: The Fork Calculus. Proc. ICALP'93 , Springer Lecture

Notes in Computer Science 700, 1993.

[6] M.S.Hecht: Flow Analysis of Computer Programs, North-Holland, 1977.

[7] Y.-C.Hung, G.-H.Chen: Reverse reachability analysis: a new technique for dead-

lock detection on communicating �nite state machines. Software | Practice and

Experience 23, 1993.

[8] S.Jagannathan, S.Week: Analysing stores and references in a parallel symbolic lan-
guage. Proc. L&FP , 1994.

22

[9] M.Jourdan, D.Parigot: Techniques for Improving Grammar Flow Analysis. Proc.

ESOP'90 , Springer Lecture Notes in Computer Science 432, pp. 240{255, 1990.

[10] N. Mercouro�: An algorithm for analysing communicating processes. Proc. of MFPS ,

Springer Lecture Notes in Computer Science 598, 1992.

[11] F.Nielson, H.R.Nielson: From CML to Process Algebras. Proc. CONCUR'93 ,

Springer Lecture Notes in Computer Science 715, 1993.

[12] H.R.Nielson, F.Nielson: Higher-Order Concurrent Programs with Finite Communi-

cation Topology. Proc. POPL'94 , pp. 84{97, ACM Press, 1994.

[13] F.Nielson, H.R.Nielson: Constraints for Polymorphic Behaviours for Concurrent ML.

Proc. CCL'94 , Springer Lecture Notes in Computer Science 845, 1994.

[14] J.H.Reif, S.A.Smolka: Data
ow analysis of distributed communicating processes.

International Journal of Parallel Programs 19, 1990.

[15] J.R.Reppy: Concurrent ML: Design, Application and Semantics. Springer Lecture

Notes in Computer Science 693, pp. 165{198, 1993.

[16] R.Tarjan: Iterative Algorithms for Global Flow Analysis. In J.Traub (ed.), Algo-
rithms and Complexity, pp. 91{102, Academic Press, 1976.

[17] B.Thomsen. Personal communication, May 1994.

A Proofs

Proof of Lemma 4.3 The functionality of A is E ! Abs for a �nite subset E of LabSet
that includes all labels of b; hence E ! Abs is a complete lattice just as Abs is. We
then proceed by structural induction upon b.

The base cases �, L!t, L?t, and t chanL are immediate as the sets in question are all
singletons that do not depend on benv. The base case � is also immediate because the
set is a singleton that depends on benv in a straightforward way.

The case forkL b follows from the induction hypothesis because the set fA j benv `
forkL b : Ag is obtained from the set fA j benv ` b : Ag by pointwise application of

the function �A:A� [L 7! (o;o;o; i)] that is monotone and non-reductive (i.e. the result

is greater than or equal to the argument). The cases b1; b2 and b1 + b2 follow from the
induction hypothesis because � and t are monotone and non-reductive.

For the case rec�:b let Bbenv
l be the function that maps A� to the least Al such that

benv[� 7! A�] ` b : Al and similarly let Bbenv
g be the function that maps A� to the great-

est Ag such that benv[� 7! A�] ` b : Ag. By the induction hypothesis these functions exist
and are monotone. Thus the set fA j benv ` rec�:b : Ag will contain the least �xed

point LFP(Bbenv
l) of Bbenv

l as its least element, and it will contain the greatest �xed point
GFP(Bbenv

g) of Bbenv
g as its greatest element, and in particular the set will not be empty.

That the set is monotone in benv boils down to considering benv1 v benv2 and showing

GFP(Bbenv1
g) v GFP(Bbenv2

g) and LFP(Bbenv1
l) v LFP(Bbenv2

l) and this is a consequence of

23

Bbenv1
g v Bbenv2

g and Bbenv1
l v Bbenv2

l as follows from the induction hypothesis. 2

Proof of Lemma 4.5 We proceed by induction on the inference of b)p b0.

The base cases p)p �, �)�
p

and b)� b are immediate since A� [] = []�A = A.

The case rec�:b)� b[� 7! rec�:b] follows from

Fact A.1 If benv[� 7! A0] ` b : A and benv ` b0 : A0 then benv ` b[� 7! b0] : A.

The case b1; b2)p b0
1
; b2 because b1)p b0

1
follows from the induction hypothesis and the

associativity and monotonicity of �. The case b1; b2)p b2 because b1)p
p

follows from

the induction hypothesis, the monotonicity of � and that o is the identity for �.
The case b1+b2)p b0i because bi)p b0i (for i = 1, 2) follows from the induction hypothesis

and that t is a least upper bound operation. 2

Proof of Proposition 4.6 We proceed by induction on the length k of the derivation

sequence. The case k = 0 is trivial and for the induction step we inspect how the �rst

step is performed.

First assume that PB[pi 7! b] =)a
pi PB[pi 7! b0] because b)a b0 (so we apply one of the

�rst three rules of Table 2). Then ` PB : A1 and ; ` b : A2 for some A1 and A2 with

A1�A2 = A. Hence Lemma 4.5 gives ; ` a : A0 and ; ` b0 : A00
2
such that A0�A00

2
v A2.

The induction hypothesis gives

R�(COUNT[a2; � � �; ak])�A0 v A1 �A00
2

and since awill be one of � and t chanL0 (for some t and L0) we haveR�(COUNT[a]) v A0.
From this we get

R�(COUNT[a; a2; � � �; ak])�A0 v R�(COUNT[a])�R�(COUNT[a2; � � �; ak])�A0

v A0 �A1 �A00
2

v A1 �A2 = A

Next assume that PB[pi1 7! b] =)FORKL0
b0

pi1;pi2
PB[pi1 7! b0][pi2 7! b0] because b)FORKL0

b0 b0.
Then ` PB : A1 and ; ` b : A2 for some A1 and A2 with A1 � A2 = A. Hence
Lemma 4.5 gives ; ` forkL0b0 : A0 and ; ` b0 : A00

2
such that A0 � A00

2
v A2. Now

A0 = [L0 7! (o;o;o; i)]�A00
0
where ; ` b0 : A

00
0
. The induction hypothesis gives

R�(COUNT[a2; � � �; ak])�A0 v A1 �A00
2
�A00

0

and since R�(COUNT[forkL0b0]) v [L0 7! (o;o;o; i)] it follows that

R�(COUNT[forkL0b0; a2; � � �; ak])�A0 v [L0 7! (o;o;o; i)]�A1 �A00
2
�A00

0

v A1 �A00
2
�A0 v A1 �A2 = A

Finally assume that PB[pi1 7! b1][pi2 7! b2] =)L1!t?L2
pi1;pi2

PB[pi1 7! b0
1
][pi2 7! b0

2
] because

b1)L1!t b0
1
and b2)L2?t b0

2
. Then ` PB : A1, ; ` b1 : A21 and ; ` b2 : A22 for some

A1, A21 and A22 with A1 � A21 � A22 = A. Hence Lemma 4.5 gives ; ` L1!t : A01 and

� ` b0
1
: A00

21
such that A01 � A00

21
v A21 and furthermore ; ` L2?t : A02 and ; ` b0

2
: A00

22

such that A02 � A00
22
v A22. Now A01 = [L1 7! (o;o; i;o)] and A02 = [L2 7! (o; i;o;o)].

The induction hypothesis gives

24

R�(COUNT[a2; � � �; ak])�A0 v A1 �A00
21
�A00

22

and it follows that

R�(COUNT[L1!t?L2; a2; � � �; ak])�A0 v A01 �A02 �A1 �A00
21
�A00

22
v A

This completes the proof. 2

Proof of Theorem 5.1 We proceed by structural induction on b. Without further

mentioning we shall use the fact that the
ow variables produced by E[[B : � : b]] are

either of the form h��0i or of the form h�0i for some �0 2 EV (b).

The base cases �, L!t, L?t and t chanL are immediate as the set of exposed variables

is empty and the inference system and the equation system both have the same unique

solution. The base case � is immediate because both sets equal f([� 7! A]; A) j A 2
E ! Abs g.
For the base case b1; b2 we perform the following calculation:

f (benvdEV (b1; b2); A) j benv ` b1; b2 : A g
= f ((benv1dEV (b1)) [(benv2dEV (b2)); A1 �A2) j

benv1 ` b1 : A1; benv2 ` b2 : A2;

8� 2 (EV (b1) \ EV (b2)) : benv1(�) = benv2(�) g
= f ((�1dEV (b1)) [(�2dEV (b2)); �1(h�1i)� �2(h�2i)) j

�1 j= E[[B : �1 : b1]], �2 j= E [[B : �2 : b2]],
8� 2 (EV (b1) \ EV (b2)) : �1(h�i) = �2(h�i) g

= f (�dEV (b1; b2); �(h�i)) j � j= E [[B : � : b1; b2]] g

where we have used the induction hypothesis and that the only
ow variables common to
E [[B : �1 : b1]] and E [[B : �2 : b2]] are f h�i j � 2 EV (b1) \ EV (b2) g. The case b1 + b2
is similar and the case forkL b is along the same lines.

For the case rec�:bwe �rst consider the e�ect of CLOSE�
� . For all sets E of
ow equations

containing the equation (h�i = h�i) we have

� j=CLOSE�
�(E) i� �[h�i 7! �(h�i)] j=E

We can then perform the calculations

f (benvdEV (rec�:b); A) j benv ` rec�:b : A g
= f (benv1dEV (rec�:b); A) j benv1 ` b : A; benv1(�) = A g
= f (�1dEV (rec�:b); �1(h�1i)) j

�1 j= E[[B : �1 : b]], �1(h�i) = �1(h�1i) g
= f (�dEV (rec�:b); �(h�i)) j

� j= E [[B : �1 : b]] [f h�i = h�i; h�i = h�1i g g
= f (�dEV (rec�:b); �(h�i)) j � j= E [[B : � : rec�:b]] g

25

thus �nishing the proof. 2

Proof of Lemma 6.3 This is a straightforward modi�cation of the proof of Lemma 4.5.

For the recursive case it uses

Fact A.2 If benv[� 7! A0 & P0] ` b : A & P and benv ` b0 : A0 & P0 then benv ` b[� 7!
b0] : A & P .

as a substitute for the Fact A.1. 2

Proof of Proposition 6.4 As in the proof of Proposition 4.6 we proceed by induction

on the length k of the derivation sequence. The case k = 0 is trivial and for the induction

step we inspect how the �rst step is performed.

First assume that PB[pi 7! b] =)a
pi PB[pi 7! b0] because b)a b0 and assume penv pi1 =

L. Then ` PB : P1 and ; ` b : A2 & P2 for some P1, P2 and A2 with P1 � P2 � [L 7!
A2] = P . From Lemma 6.3 we get ; ` a : A0 & P0 and ; ` b0 : A00

2
& P 00

2
such that

A0 �A00
2
v A2 as well as P0 � P 00

2
v P2. The induction hypothesis gives

R�(COUNTpenv[(a2; ps2); � � �; (ak; psk)])� P 0 v P1 � P 00
2
� [L 7! A00

2
]

and since a will be one of � and t chanL0 (for some t and L0) we have

R�(COUNTpenv[(a; pi)]) v P0 � [L 7! A0]

From this we get

R�(COUNTpenv[(a; pi); (a2; ps2); � � �; (ak; psk)])� P 0

v R�(COUNTpenv[(a; pi)])�R�(COUNTpenv[(a2; ps2); � � �; (ak; psk)])� P 0

v P0 � [L 7! A0]� P1 � P 00
2
� [L 7! A00

2
]

v P1 � P2 � [L 7! A2]
= P

Next assume that PB[pi1 7! b] =)FORKL0
b0

pi1;pi2
PB[pi1 7! b0][pi2 7! b0] because b)FORKL0

b0 b0

and assume penv(pi1) = L and penv(pi2) = L0. Then ` PB : P1 and ; ` b : A2 & P2

for some P1, P2 and A2 with P1 � P2 � [L 7! A2] = P . From Lemma 6.3 we get ; `
forkL0b0 : A0 & P0 and ; ` b0 : A00

2
& P 00

2
such that A0�A00

2
v A2 as well as P0�P 00

2
v P2.

Now A0 = [L0 7! (o;o;o; i)] and P0 = [L0 7! A00
0
] � P 00

0
where ; ` b0 : A

00
0
& P 00

0
. The

induction hypothesis gives

R�(COUNTpenv[(a2; ps2); � � �; (ak; psk)])� P 0

v P1 � [L 7! A00
2
]� P 00

2
� [L0 7! A00

0
]� P 00

0

and since

R�(COUNTpenv[(forkL0b0; (pi1; pi2))]) v [L 7! A0]

it follows that

26

R�(COUNTpenv[(forkL0b0; (pi1; pi2)); (a2; ps2); � � �; (ak; psk)])� P 0

v [L 7! A0]� P1 � [L 7! A00
2
]� P 00

2
� [L0 7! A00

0
]� P 00

0

v P1 � P 00
2
� [L 7! A2]� P0

v P1 � P2 � [L 7! A2]

= P

Finally assume that PB[pi1 7! b1][pi2 7! b2] =)L1!t?L2
pi1;pi2

PB[pi1 7! b0
1
][pi2 7! b0

2
] because

b1)L1!t b0
1
and b2)L2?t b0

2
and assume that penv(pi1) = L1 and penv(pi2) = L2. Then

` PB : P1, ; ` b1 : A21 & P21 and ; ` b2 : A22 & P22 for some P1, P21, P22, A21

and A22 with P1 � P21 � P22 � [L1 7! A21] � [L2 7! A22] = P . Hence Lemma 6.3 gives

; ` L1!t : A01 & P01 and ; ` b0
1
: A00

21
& P 00

21
such that A01�A00

21
v A21 and P01�P 00

21
v P21.

Furthermore ; ` L2?t : A02 & P02 and ; ` b0
2
: A00

22
& P 00

22
such that A02 � A00

22
v A22 and

P02 � P 00
22
v P22. Now A01 = [L1 7! (o;o; i;o)] and A02 = [L2 7! (o; i;o;o)]. We have

R�(COUNTpenv[(L1!t?L2; (pi1; pi2))]) v [L1 7! A01]� P01 � [L2 7! A02]� P02

The induction hypothesis gives

R�(COUNTpenv[(a2; ps2); � � �; (ak; psk)])� P 0

v P1 � P 00
21
� [L1 7! A00

21
]� P 00

22
� [L2 7! A00

22
]

and it follows that

R�(COUNTpenv[(L1!t?L2; (pi1; pi2)); (a2; ps2); � � �; (ak; psk)])� P 0

v R�(COUNTpenv[(L1!t?L2; (pi1; pi2))])�
R�(COUNTpenv[(a2; ps2); � � �; (ak; psk)])� P 0

v [L1 7! A01]� P01� [L2 7! A02]�P02 �P1� P 00
21
� [L1 7! A00

21
]�P 00

22
� [L2 7! A00

22
]

v [L1 7! A21]� P21 � [L2 7! A22]� P22 � P1

= P

This completes the proof. 2

Proof of Lemma 7.3 This is a straightforward modi�cation of the proofs of Lemmas

4.5 and 6.3 using that t is a least upper bound operation on a complete lattice with o as
least element. For the recursive case it uses

Fact A.3 If benv[� 7! A0] ` b : A & P and benv ` b0 : A0 & P0 then there exists P 0 such

that benv ` b[� 7! b0] : A & P 0 and P 0 v P0 t P .

as a substitute for Facts A.1 and A.2. 2

Proof of Proposition 7.4 As in the proof of Propositions 4.6 and 6.4 we proceed by

induction on the length k of the derivation sequence. The case k = 0 is trivial and for the

induction step we inspect how the �rst step is performed.

First assume that PB[pi 7! b] =)a
pi PB[pi 7! b0] because b)a b0. Then `penv PB : P1

and ; ` b : A2 & P2 for some P1, P2 and A2 with

(P1 n fpig) t ((P2 � penv) n (PI [fpig)) t [pi 7! A2] = P

27

where PI = Dom(PB). From Lemma 7.3 we get ; ` a : A0 & P0 and ; ` b0 : A00
2
& P 00

2

such that A0 �A00
2
v A2 as well as P0 t P 00

2
v P2. The induction hypothesis gives

R�(CT[(a2; ps2); � � �; (ak; psk)])�P 0

v (P1 n fpig) t ((P 00
2
� penv) n (PI [fpig)) t [pi 7! A00

2
]

and since a will be one of � and t chanL0 (for some t and L0) we have

R�(CT[(a; pi)]) v [pi 7! A0]

From this we get

R�(CT[(a; pi); (a2; ps2); � � �; (ak; psk)])�P 0

v R�(CT[(a; pi)])�R�(CT[(a2; ps2); � � �; (ak; psk)])�P 0

v [pi 7! A0]� ((P1 n fpig) t ((P 00
2
� penv) n (PI [fpig)) t [pi 7! A00

2
])

v (P1 n fpig) t ((P 00
2
� penv) n (PI [fpig)) t [pi 7! A0 �A00

2
]

v (P1 n fpig) t ((P2 � penv) n (PI [fpig)) t [pi 7! A2]
= P

Next assume that PB[pi1 7! b] =)FORKL0
b0

pi1;pi2
PB[pi1 7! b0][pi2 7! b0] because b)FORKL0

b0 b0

and note that penv(pi2) = L0. Then `penv PB : P1 and ; ` b : A2 & P2 for some P1, P2

and A2 with

(P1 n fpi1g) t ((P2 � penv) n (PI [fpi1g)) t [pi1 7! A2] = P

where PI = Dom(PB). From Lemma 7.3 we get ; ` forkL0b0 : A0 & P0 and ; ` b0 :
A00

2
& P 00

2
such that A0 �A00

2
v A2 as well as P0 t P 00

2
v P2. Now A0 = [L0 7! (o;o;o; i)]

and P0 = [L0 7! A00
0
] t P 00

0
where ; ` b0 : A

00
0
& P 00

0
. The induction hypothesis gives

R�(CT[(a2; ps2); � � �; (ak; psk)])�P 0

v (P1nfpi1; pi2g) t (((P 00
2
t P 00

0
)�penv)n (PI [fpi1; pi2g)) t [pi1 7! A00

2
; pi2 7! A00

0
]

and since

R�(CT[(forkL0b0; (pi1; pi2))]) v [pi1 7! A0]

it follows that

R�(CT[(forkL0b0; (pi1; pi2)); (a2; ps2); � � �; (ak; psk)])�P 0

v [pi1 7! A0]� ((P1 n fpi1; pi2g) t (((P 00
2
t P 00

0
) � penv) n (PI [fpi1; pi2g))

t [pi1 7! A00
2
; pi2 7! A00

0
])

v (P1nfpi1; pi2g)t(((P 00
2
tP 00

0
)�penv)n(PI [fpi1; pi2g))t [pi1 7! A0�A00

2
; pi2 7! A00

0
]

v (P1 n fpi1; pi2g) t ((P2 � penv) n (PI [fpi1; pi2g))) t [pi1 7! A2; pi2 7! A00
0
]

v (P1 n fpi1g) t ((P2 � penv) n (PI [fpi1g)) t [pi1 7! A2]

= P

28

where we have used that A00
0
v (P0 � penv)(pi2) v (P2 � penv)(pi2) v P1(pi2) t (P2 �

penv)(pi2).

Finally assume that PB[pi1 7! b1][pi2 7! b2] =)L1!t?L2
pi1;pi2

PB[pi1 7! b0
1
][pi2 7! b0

2
] because

b1)L1!t b0
1
and b2)L2?t b0

2
. Then `penv PB : P1, ; ` b1 : A21 & P21 and ; ` b2 : A22 & P22

for some P1, P21, P22, A21 and A22 with

(P1nfpi1; pi2g)t(((P21tP22)�penv)n(PI[fpi1; pi2g))t[pi1 7! A21; pi2 7! A22] = P

where PI = Dom(PB). Hence Lemma 7.3 gives ; ` L1!t : A01 & P01 and ; ` b0
1
:

A00
21

& P 00
21

such that A01 � A00
21
v A21 and P01 t P 00

21
v P21. Furthermore ; ` L2?t :

A02 & P02 and ; ` b0
2
: A00

22
& P 00

22
such that A02 �A00

22
v A22 and P02 t P 00

22
v P22. Now

A01 = [L1 7! (o;o; i;o)] and A02 = [L2 7! (o; i;o;o)]. We have

R�(CT[(L1!t?L2; (pi1; pi2))]) v [pi1 7! A01; pi2 7! A02]

The induction hypothesis gives

R�(CT[(a2; ps2); � � �; (ak; psk)])�P 0

v (P1nfpi1; pi2g)t (((P 00
21
tP 00

22
)�penv)n(PI [fpi1; pi2g))t [pi1 7! A00

21
; pi2 7! A00

22
]

and it follows that

R�(CT[(L1!t?L2; (pi1; pi2)); (a2; ps2); � � �; (ak; psk)])�P 0

v R�(CT[(L1!t?L2; (pi1; pi2))])�R�(CT[(a2; ps2); � � �; (ak; psk)])�P 0

v [pi1 7! A01; pi2 7! A02]�((P1nfpi1; pi2g)t (((P 00
21
tP 00

22
)�penv)n(PI [fpi1; pi2g))

t [pi1 7! A00
21
; pi2 7! A00

22
])

v (P1nfpi1; pi2g)t (((P21 tP22)�penv)n(PI [fpi1; pi2g))t [pi1 7! A21; pi2 7! A22]
= P

This completes the proof. 2

Proof of Theorem 7.2 Assume ; ` b : A & P and

[pi0 7! b] =)a1
ps1

: : : =)ak
psk

PB

From ; ` b : A & P we get

`penv [pi0 7! b] : ((P � penv) n fpi0g) t [pi0 7! A]

From Proposition 7.4 we therefore get

R�(CT[(a1; ps1); � � �; (ak; psk)]) v ((P � penv) n fpi0g) t [pi0 7! A]

We clearly have ((P � penv) n fpi0g) t [pi0 7! A] v (P t [L0 7! A]) � penv since

penv(pi0) = L0 so for all L

F fR�(CT[(a1; ps1); � � �; (ak; psk)])(pi) j penv(pi) = Lg v (P t [L0 7! A])(L)

29

From the de�nition of COUNTpenv and CT it follows that

COUNTpenv[(a1; ps1); � � �; (ak; psk)](L)
= maxfCT [(a1; ps1); � � �; (ak; psk)](pi) j penv(pi) = Lg

where max is applied componentwise. Using the \additivity" of R� we now get

F fR�(CT[(a1; ps1); � � �; (ak; psk)])(pi) j penv(pi) = Lg
= R�(maxfCT[(a1; ps1); � � �; (ak; psk)])(pi) j penv(pi) = Lg)
= R�(COUNTpenv[(a1; ps1); � � �; (ak; psk)](L))

This completes the proof. 2

30

