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Abstract

First a detailed de�nition of group signatures, originally suggested by

Chaum and van Heijst, is given. Such signatures allow members of a group to

sign messages anonymously on behalf of the group subject to the constraint

that in case of disputes later on a designated authority can identify the

signer. It is shown that if such schemes are to provide information theoretic

anonymity, then the length of the secret information of the members and

the authority increases with the number of members and the number of

signatures each member is allowed to make. A dynamic scheme meeting

these lower bounds is described. Unlike previous suggestions it protects each

member unconditionally against framing, i.e. being hold responsible for a

signature made by someone else.

1 Introduction

Group signatures as introduced in [CH91] allow members of a group

(e.g. a company or family) to make signatures on behalf of the group

in such a way that

� only members can make signatures,

� the actual member who made a given signature remains anonymous

except that

�Supported by Carlsbergfondet
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� in case of dispute a designated authority (who is given some extra

information) can identify the signer.

Such a signature scheme can for example be used in invitations to sub-

mit tenders. All companies submitting a tender then form a group and

each company signs its tender anonymously using the group signature.

Later when the preferred tender has been selected the winner can be

identi�ed, whereas the signers of all other tenders will remain anony-

mous. All submitters are bound to their tender by the signature, as

the signer can be identi�ed without his cooperation.

1.1 Related Work

Group signatures should not be confused with the related notion of

group oriented signatures �rst suggested in [Boy89b] and [CH89]. Here

certain subsets of a group of people are allowed to sign on behalf of

the group. Such schemes do not provide a method for identifying the

(subset of) members who actually made the signature (see [D93] for an

overview). Another related concept is that of multi-signatures which

require a digital signature from many persons (see [O88] and [OO93]).

As mentioned above, group signatures were introduced by Chaum

and van Heijst in [CH91] (see also [H92]). They present four schemes:

one protects the anonymity of the signer unconditionally, whereas the

other three only give computational protection. These schemes also

di�er with respect to the following two properties:

� Framing:

A group member, P , is said to be framed if other persons (including

group members) make a signature for which the trusted authority

will identify P as the signer.

� Dynamic:

A group signature scheme is called dynamic if the group members

do not have to change their secret keys when the group is changed

(members leaving or new members joining). Only the public key

of the group and possibly the secret key of new members must be

changed.
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In particular, the scheme from [CH91] providing unconditional ano-

nymity is not dynamic and it only protects against framing under a

cryptographic assumption.

In [CP94] a dynamic scheme providing unconditional anonymity is

presented, but security against framing relies on a cryptographic as-

sumption.

1.2 Results and Contents

This paper contains three main results:

� Group signatures are de�ned in details in Section 2. Based on this

de�nition, the method of double-signing introduced in [CP94] is

formalised (Section 3).

� A dynamic group signature scheme providing unconditional ano-

nymity and unconditional protection against framing is presented

(see Section 4).

� Lower bounds on the sizes of secret keys and auxiliary information

of the authority are given (see Section 5). These bounds say that

the length of the secret key of each member grows as T log2 n,

if each member can make T signatures and n is the number of

members. Similarly, the length of the auxiliary information of the

authority grows as Tn log2 n. The scheme presented in Section 4

actually meets these bounds except for constant factors.

2 De�nitions

In this section secure group signatures are de�ned. Throughout this

paperM denotes the message space.

De�nition 1 A group signature for a group of n members P1; :::; Pn

and an authority A is a tuple (n; k; gen; sign; test; iden). Here k is the

security parameter, and gen, sign, test, iden are all polynomial time

(in k) algorithms.
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� gen is a probabilistic algorithm generating the keys. On input (k; n)

it outputs

(pk; (s1; s2; :::; sn); aux);

where pk is the public key of the group, si is the secret key of Pi,

i = 1; 2; :::; n, and aux is the auxiliary information for A.

� sign is a probabilistic algorithm which on input si and m 2 M
outputs sign(si;m). A string � is called a correct signature on

m 2M, if there exists i 2 f1; 2; : : : ; ng such that � = sign(si;m).

� test is used to test signatures. On input pk, m, and a possible

signature on m, it outputs true or false. A string � is called an

acceptable signature on m with respect to pk if test(pk;m; �) =

true.

� iden is used by A to identify the signer. On input aux, m 2 M
and an acceptable signature on m, it outputs i 2 f1; 2; :::; ng[ f?g
(the output ? indicates that iden could not identify the signer).

For any i 2 f1; 2; :::; ng, and any m 2 M, the scheme must satisfy

test(pk;m; sign(si;m)) = true;

and

iden(aux;m; sign(si;m)) = i:

Remark Di�erent secret keys must produce di�erent signatures:

8i; j 2 f1; 2; :::; ng 8m 2 M : i 6= j ) sign(si;m) 6= sign(sj;m):

Remark A correct signature is also acceptable, but an acceptable

signature is not necessarily correct.

According to the informal description in the introduction group sig-

natures must provide

� Security against forgeries.
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� Anonymity of the signer.

� The authority must be able to identify the signer.

Each of these properties will be de�ned in the following.

2.1 Security Against Forgeries

It must be infeasible to forge signatures in adaptively chosen message

attacks (see [GMR88]). Let F be a polynomial time algorithm, which

on input pk and possibly aux, works as follows.

1. Repeat the following:

(a) Generate a message m 2M and i 2 f1; 2; :::; ng;

(b) Get sign(si;m):

2. Output a message m0 2M di�erent from all m's generated above

and ~�(m0).

De�nition 2 Let a group signature (n; k; gen; sign; test; iden) be gi-

ven. The scheme is secure against forgeries after signing T messages

if the following holds: For any polynomial time F as above getting at

most T signatures from each Pi, for all but a negligible fraction of the

keys,

8c > 0; 9k0; s:t :8k > k0

Prob[test(pk;m0; ~�(m0)) = true] � k�c;

where (m0; ~�(m0)) is the output of F . The probability is over the

random coins of signatures and the random coins of F .

2.2 Anonymity

Every group member should be able to make signatures on behalf of the

group without leaking any (Shannon-) information about his identity.

To de�ne this the distribution of the secret keys is needed.
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A public key pk, produced by gen, corresponds to a set of possible

secret keys de�ned as

SK(pk) = f(sk1; sk2; :::; skn) j 9aux :

gen(n; k) = (pk; (sk1; sk2; : : : ; skn); aux)g:

We will omit pk in the following. The set SK(i) is de�ned as all the

possible secret keys of Pi, i = 1; 2; : : : ; n, i.e. SK(i) is the projection of

SK on the i'th coordinate. If si 2 SK(i) denotes the actual secret key

of Pi, then

(s1; s2; : : : ; sn) 2 SK:

For any subset J of f1; 2; :::; ng and for all positive integers t and L,

0 < L � jJ jt, de�ne a subset of JL by

IJ(t; L) = f(i1; : : : ; iL) 2 J
L j 8j 2 J : jfl 2 f1; : : : ; Lg j il = jgj � tg;

Thus each j 2 J appears at most t times in i = (i1; : : : ; iL) 2 IJ(t; L).
For J = f1; 2; : : : ; ng, IJ(t; L) will be denoted I(t; L).
If �(mi) is a correct signature onmi 2M for i = 1; : : : ; L, then �(m)

denotes (�(m1); �(m2); : : : ; �(mL)). For every i 2 IJ(t; L), \�(m)( i"

denotes the event that there exists (sk1; sk2; : : : ; skn) 2 SK such that

for all j 2 f1; 2; : : : ; Lg:

sign(skij;mj) = �(mj):

De�nition 3 Let a group signature (n; k; gen; sign; test; iden) be gi-

ven. The scheme provides anonymity for signing T messages if for any

J � f1; 2; :::; ng, and for any L � jJ jT di�erent messages

m = (m1;m2; : : : ;mL);

and correct signatures on these made by (Pj)j2J

�(m) = (�(m1); �(m2); : : : ; �(mL))

the following holds. If each Pj has made at most T signatures, then

for any i 2 IJ(T;L),

Prob[�(m)( i] =
1

jIJ(T;L)j
:

The probability is over the choice of (sk1; sk2; : : : ; skn) 2 SK and the

random coins used in the signatures.
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2.3 Signer Identi�cation

For any subset J of f1; 2; :::; ng, let FJ be a polynomial time algorithm,

which on input pk and fsjgj2J , works as follows:

1. Repeat the following:

(a) Generate a message m 2M, and a number i 2 J c;

(b) Get sign(si;m).

2. Output a message m0 2 M di�erent from all m's in 1 and an

acceptable signature �(m0) on m0.

De�nition 4 Let (n; k; gen; sign; test; iden) be a group signature. The

scheme provides signer identi�cation for signing T messages if the fol-

lowing holds: For any subset J of f1; 2; :::; ng, and for any polynomial

time algorithm FJ as above getting at most T signatures from each Pi

(i 2 J c),

8d > 0; 9k0; s.t. 8k > k0

Prob[iden(aux;m0; �(m0)) 2 J ] � 1� k�d;

where (m0; �(m0)) is the output of FJ . The probability is over the

random coins of FJ and the choices of the received signatures.

There are two aspects of this de�nition. Firstly, for jJ j = 1 it says

that the signer must be identi�ed by the authority with overwhelming

probability. Secondly, it says that no subset of (polynomially bounded)

group members can frame a member outside this subset.

2.4 Secure Group Signatures

The preceding three de�nitions give

De�nition 5 A group signature scheme is secure for signing T mes-

sages, if it is secure against forgery, provides anonymity and signer

identi�cation after each member has made at most T signatures.

Remark The de�nition easily generalises to let Pi sign Ti messages,

i = 1; 2; : : : ; n.
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3 Identifying the signer

[CP94] sketched a general method by which the authority can identify

the signer. In the following this method is described in terms of the

previous de�nitions.

Let (n; k; gen; sign; test; iden) be a group signature scheme which

satis�es De�nition 2 and 3 for signing T messages. This scheme can

be used to construct a new one which under certain conditions satis�es

De�nition 5 for signing T messages. The new scheme will be denoted

by (n; k; gen0; sign0; test0; iden0) and is de�ned as

� gen0(k; n): execute gen(k; n) twice with independent random bits.

This gives (pki; (s1i; s2i; : : : ; sn;i); auxi) for i = 1; 2. The output of

gen0(k; n) is now de�ned as

((pk1; pk2); ((s11; s12); : : : ; (sn1; sn2)); (s11; s21; : : : ; sn;1)):

� sign0((si1; si2);m) = (sign(si1;m); sign(si2;m)) = (�1; �2).

� test0((pk1; pk2);m; (�1; �2)) = test(pk1;m; �1) ^ test(pk2;m; �2)

� iden0((s11; : : : ; sn;1);m; (�1; �2)) outputs id where

id =

8<
:
i if �1 = sign(si1;m)

? if no such i exists:

Since di�erent group members make di�erent signatures iden0 is well

de�ned. Thus, the new scheme consists of two independent versions

of the original scheme. Each member has two secret keys, and the

authority knows one of these.

Proposition 6 The scheme (n; k; gen0; sign0; test0; iden0) de�ned above

is secure against forgeries and provides anonymity for signing T mes-

sages.

Proof Forging a signature require forging a signature with respect to

pk2. This is infeasible by the properties of the original scheme.
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The scheme provides anonymity because the original scheme pro-

vides anonymity. ut

By the de�nition of iden0 the extended scheme can be used to iden-

tify members making correct signatures. Furthermore, under certain

circumstances it can be shown that the extended scheme satis�es the

requirements to signer identi�cation. This proof often depends on the

actual schemes (see Section 4.2.3 for an example).

In three of the schemes in [CH91] double-signing will make it easier

to identify the signer than using the interactive protocols proposed

there (at the cost of twice as long signatures).

4 Obtaining Unconditional Anonymity

This section presents a group signature scheme giving unconditional

anonymity. First, the basic ingredients are presented, and then it is

shown how these can be used to construct a group signature scheme.

Throughout this section let Gq denote a (multiplicative) group of

prime order, q.

4.1 Basic Signature

The basic signature can very brie
y be described as a combination of

the identi�cation protocol of [O93] and the fail-stop signature scheme

of [HP93].

Let two generators g1 and g2 of Gq be given. Let g2 = ge1 and let the

message space beM = ZZq n feg. It is easy to test membership inM
as m 2 ZZq is inM if and only if g2 6= gm1 .

A person having secret key (s1; s2) and a corresponding public key

h = gs11 g
s2
2 signs a message m 2 M by publishing � = s1 +ms2 mod q

and proving that this is indeed correct. This proof is obtained from

the interactive protocol in Figure 1 by computing the challenge c as

H(m;�; a; � ) where H is a hash function with \pseudo-random proper-

ties" (see [FS87]). More precisely, � = (�; c; r1; r2) is a correct signature

on m with respect to h if � = r1 +mr2 � c� and a = gr11 g
r2
2 h

�c satisfy

c = H(m;�; a; � ).
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P V

t1; t2 2R ZZ
�
q

a gt11 g
t2
2

�  t1 +mt2
(a; � )
������!

c 2R ZZ
�
q

c
 ������

r1  t1 + cs1 mod q

r2  t2 + cs2 mod q
(r1; r2)
������!

r1 +mr2
?
= � + c�

gr11 g
r2
2

?
= ahc

Figure 1: Interactive proof that � = s1 +ms2.

The scheme is only intended for signing one message, because given

signatures on two di�erent messages, the secret key can be derived by

solving two linear equations.

This also means that in order to forge a signature (given a signature)

the forger must be able to compute the secret key. Thus, it is su�-

cient to argue that the secret key cannot be computed from a single

signature.

Firstly, � does not help computing the secret key, because given

the public key all values of � are equally likely (there are q possible

secret keys and they will all give a di�erent value of � because m 6=
e mod q). Secondly, if c is chosen uniformly at random, an execution of

the protocol in Figure 1 does not help computing the secret key. Thus

under the assumption that computing c as H(m;�; a; � ) corresponds

to choosing it at random, the signature scheme is secure.

4.2 Group Signatures

We only consider the case with two persons (P1 and P2) in the group

(the general case is obtained by a straightforward extension). Let T

be a parameter, and let T + 1 generators g0; g1; : : : ; gT of Gq be given.
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These are chosen initially by a key authentication centre (or the group

authority) such that for some e 2 ZZq

gi = gei�1 for i = 1; 2; : : : ; T:

The message space is M = ZZq n feg as before. It is important that

no group member knows e. We therefore need the following extended

discrete logarithm assumption:

Assumption 1 Let A be any polynomially bounded algorithm which

takes q and (g0; : : : ; gT ) chosen at random as described above as input

and outputs a number d 2 ZZq. Then the probability that

gi = gdi�1 for i = 1; 2; : : : ; T

is smaller than the inverse of any polynomial for q su�ciently large.

The secret key of Pi is (si0; : : : ; siT ) 2 ZZ
T+1
q for i = 1; 2. The public

key of the group is

(g0; g1; : : : ; gT+1; h1; h2)

where

hi =
TY

j=0

g
sij
j for i = 1; 2

(assume h1 6= h2). The secret key of Pi will be denoted by si, where si
is the polynomial

si(x) =
TX

j=0

sijx
j mod q:

Pi's signature on a message m 2M is

� = si(m)

plus a proof that � is correct with respect to either h1 or h2. A witness

indistinguishable proof of this can be constructed from the protocol

in Figure 1 using the techniques of Schoenmakers (see [S93] | brie
y

sketched in Appendix A). The resulting protocol is shown in Figure 2.

The digital signature is then obtained as before using a pseudo-random

hash function. Thus the signature on m is (pretty long):

� = (�; (rik)i=1;2;k=0;:::;T ; (d1; d2)):
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P V

tik 2R ZZ
�
q

d2 2R ZZ
�
q

a1  
QT
k=0 g

t1k
k

a2  
QT
k=0 g

t2k
k h�d2

2

�1  
PT

k=0 t1km
k

�2  
PT

k=0 t2km
k � d2�

(a1; a2; �1; �2)
������!

c 2R ZZ
�
q

c
 ������

d1 = c � d2 mod q

r1k  t1k + d1s1k mod q

r2k  t2k
(rik)i;k
������!

c
?
= d1 + d2 mod q

PT
k=0 rikm

k ?
= �i + di�QT

k=0 g
rik
k

?
= aih

di
i

Figure 2: Interactive proof that � is correct with respect to h1 or h2
| P knows the secret key corresponding to h1. Here i = 1; 2 and

k = 0; 1; : : : ; T .

The last two tuples of this signature will also be called the proof-part

of �. The signature can be veri�ed by computing

�i =
TX

k=0

rikm
k � di� mod q for i = 1; 2

and

ai =
TY

k=0

grikk h�di
i for i = 1; 2

and verifying that d1 + d2 equals H(m;�; a1; a2; �1; �2).

In the analysis of this scheme it is sometimes necessary to consider

the general scheme with n members. This scheme is easily derived

from the case n = 2, and is shown in Appendix B.
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Proposition 7 The interactive protocol in Figure 2 is a witness in-

distinguishable proof of knowledge (see [FS90]) of (w0; : : : ; wT ) such

that

� =
TX

j=0

wjm
j mod q ^

0
@h1 =

TY
j=0

g
wj

j _ h2 =
TY

j=0

g
wj

j

1
A :

Proof Using the same arguments as in [S93] it can be shown that the

protocol is a proof of knowledge as claimed.

Witness indistinguishability is proved by considering the distribution

of the messages, which the prover sends. First it is shown that two

provers knowing di�erent witnesses to the same hi, say h1, produce

messages with the same distribution. Then it shown that a prover

knowing a witness to h1 cannot be distinguished from a prover knowing

a witness to h2 (the protocol for a prover knowing a witness to h2 is

symmetric to that in Figure 2).

An execution with witness (s10; : : : ; s1T ) using (t10; : : : ; t1T ) will give

exactly the same messages as an execution with secret key (s010; : : : ; s
0
1T )

and random choices (t010; : : : ; t
0
1T ), where

t01k = t1k + d1(s1k � s01k) for k = 0; 1; : : : ; T:

In particular,

TY
0

g
t0
1k

k =
TY
0

g
t1k+d1(s1k�s0

1k)
k =

TY
0

gt1kk hd1h�d1 =
TY
0

gt1kk

Similarly is
TX
0

t01km
k =

TX
0

t01km
k:

Next, an execution with witness (s10; : : : ; s1T ) (to h1) and random

choices (t10; : : : ; t1T ; t20; : : : ; t2k) will result in exactly the same mes-

sages as an execution with secret key (s20; : : : ; s2T ) (to h2) and random

choices (t010; : : : ; t
0
1T ; t

0
20; : : : ; t

0
2k) where

t01k = t1k + d1s1k

t02k = t2k � d2s2k
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for k = 0; 1; : : : ; T . It is not hard to see that for the same values of d1
and d2 in the two conversations all messages are equal. ut

The following lemma is essential for showing that the group signature

scheme is secure.

Lemma 8 Let 0 � l � T , and let correct signatures on di�erent mes-

sages m1;m2; : : : ;ml be given. For any hi, there are qT�l possible

(T + 1)-tuples in ZZq, which could be the secret key corresponding to

hi and these l signatures.

Proof Given these l signatures any secret key corresponding to hi
must satisfy the following equations:

hi = gsi00 gsi11 � � �g
siT
T

�j = si(mj) (1 � j � l):

For hi = gei0 these are equivalent to
0
BBBBBBBBBBBBBBB@

1 e e2 � � � eT

1 m1 m2
1 � � � m

T
1

1 m2 m2
2 � � � m

T
2

� � � � � � �
� � � � � � �
� � � � � � �
1 ml m2

l � � � m
T
l

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

si0
si1
si2
�
�
�
siT

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

ei
�1
�2
�
�
�
�l

1
CCCCCCCCCCCCCCCA

By the de�nition of M this matrix has maximal rank and therefore

there are exactly qT�l solutions.

The lemma now follows from the fact that the proof in Figure 2 is

witness indistinguishable (i.e., the proof-part of the signature reveals

no additional information about the actual secret key). ut

Remark If a member makes less than T signatures, his secret key

is information-theoretically protected. If he makes T signatures, the

key can be computed if e and ei are known. However, this is assumed

to be hard (see Assumption 1).
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4.2.1 Security Against Forgeries

If the challenge c is chosen uniformly at random, Proposition 7 shows

that � must equal si(m). Thus, if the hash function has the property

that it is just as hard to convince a veri�er who chooses c using H
as a veri�er who chooses c at random, the following assumption is

reasonable:

Assumption 2 If � is the �rst component of an acceptable signa-

ture on the message, m, then for some i 2 f1; 2; : : : ; ng there exists

a0; a1; : : : ; aT 2 ZZq such that

� =
TX
0

ajm
j and hi =

TY
0

gaii :

Furthermore, in order to produce such a signature it is necessary to

know (a0; a1; : : : ; aT ).

By knowing (a0; a1; : : : ; aT ) we simply mean that the ability to forge a

signature requires the ability to convince a veri�er in the interactive

protocol. As this is a proof of knowledge we can use the corresponding

knowledge extractor to obtain (a0; a1; : : : ; aT ).

Lemma 9 Given Pi's signatures on T �1 di�erent messages even with

unlimited computing power it is infeasible to �nd Pi's signature on a

new message with probability better than 1=q.

Proof Given l signatures from Pi there are q
T�l possible secret keys.

A forger, who can construct a signature on a new message is able, to

bound the number of possibilities to qT�l+1. A contradiction. ut

This lemma shows that it is hard to �nd a correct signature. In order to

rule out the possibility of making an acceptable signature the following

consequence of Assumption 1 is needed.

Lemma 10 By Assumption 1 it is hard to �nd a0; : : : ; aT ; b0; : : : ; bT 2
ZZq such that

(a0; : : : ; aT ) 6= (b0; : : : ; bT ) and
TY
i=0

gaii =
TY
i=0

gbii :
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Proof Given a0; : : : ; aT ; b0; : : : ; bT 2 ZZq as described. Then

TY
i=0

gai�bi
i = 0

and hence e is a root of the polynomial

TX
i=0

(ai � bi)x
i

over ZZq. Thus a probabilistic, polynomial time algorithm which com-

putes a0; : : : ; aT ; b0; : : : ; bT 2 ZZq can be used to �nd e in expected

polynomial time by �nding the roots of this polynomial (see [K81]).

ut

This lemma says that it is hard to �nd two di�erent secret keys corre-

sponding to the same public key.

Proposition 11 Under Assumptions 1 and 2 the scheme is secure

against forgeries after signing T � 1 messages.

Proof By Assumption 2 it is not feasible to construct a signature

unless the forger knows a secret key corresponding to the public key of

one of the members. Thus if the forged signature is acceptable and not

correct, the forger must know a possible secret key which is di�erent

from those held by the members. By Lemma 10 it is infeasible to �nd

such a key.

Next, Lemma 9 shows that even an unlimited powerful forger cannot

construct a correct signature. ut

The above proposition only proves security after signing T � 1 mes-

sages (for each member). However, it is conceivable that the scheme

also provides security against forgery after each member has signed

T messages. In particular, from an additional correct signature it is

easy to �nd the secret key of one of the members. Furthermore, no

matter how many signature a member makes it remains hard to �nd

an acceptable signature, which is not correct (under Assumptions 1

and 2).
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Thus it is su�cient to show that it is infeasible to �nd the secret

key of Pi given Pi's signatures on T messages m1; : : : ;mT . However,

we know of no formal proof of this.

4.2.2 Anonymity

If a member signs T+1 messages, then his secret key can be calculated.

However, the following shows that the scheme provides anonymity for

signing T messages.

Proposition 12 The scheme provides anonymity for signing T mes-

sages.

Proof Let a subset J of f1; 2; : : : ; ng and L � jJ jT di�erent messages

be given. Given signatures on these messages made by the members

of J such that each Pi has made at most T of these. We have to show

that for each i 2 IJ(T;L) the event �(m) ( i occurs with the same

probability.

Let i 2 IJ(T;L) be given. If r occurs lr times in i then there are

exactly qT�lr possible secret keys of Pr. The probability that Pr has a

secret key in this set is q�lr . Since the secret key of each member is

chosen independently of each other, the probability that all Pr's have

a secret key corresponding to i is

jJ jY
r=1

q�lr = q�L;

which is independent of i. ut

4.2.3 Identifying the Signer

In order to obtain a group signature scheme, we use the method of

double-signing described in Section 3. By Proposition 6 it is su�cient

to show that De�nition 4 is satis�ed.

Proposition 13 Under Assumptions 1 and 2 the scheme provides sig-

ner identi�cation for signing T � 1 messages if double-signing is used.
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Proof Suppose there exists a subset J of f1; 2; : : : ; ng, and an algo-

rithm FJ , which after getting at most T � 1 signatures from each Pi,

i 2 J c, can output a message m0 and an acceptable signature �(m0)

such that for some d > 0

Prob[iden(aux;m0; �(m0)) =2 J ] > k�d

for in�nite many values of k. This probability is over the random coins

of FJ and the randomness of the received signatures. Consider such a

k and let id = iden(aux;m0; �(m0)). Then

Prob[id =2 J ] � Prob[id =?] + Prob[id 2 J c]:

By Lemma 9 (even if FJ has unlimited computing power)

Prob[id 2 J c] < q�1

which is exponentially small in k. Next consider the event that id =?.

This means that the signature is acceptable, but not correct. By the

same arguments as in the proof of Lemma 10 it can be shown to be

hard to make such a signature in polynomial time. Thus Prob[id =?] is

smaller than the inverse of any polynomial for q su�ciently large. ut

Remark Even with unlimited computing power it is infeasible to

frame another group member (this corresponds to the event id 2 J c).

4.3 The Scheme is Dynamic

The scheme is dynamic in the sense that new members can always join

the group using the following procedure:

1. Select two secret keys ~si = (~si0; : : : ; ~siT ) and compute the corre-

sponding public key,

~hi =
TY

j=0

g
~sij
i

for i = 1; 2.
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2. The public key of the group is extended by adding (~h1; ~h1).

3. The secret key ~s1 is added to the auxiliary information of the au-

thority.

Dynamic schemes have not been de�ned formally, but it should be

intuitively clear that the new scheme satis�es the same properties as

the original one.

5 Lower Bounds

The scheme in Section 4.2 has the unfortunate property that the length

of the secret keys as well as the auxiliary information grows as the

number of of signatures grows. In this section it is shown that this

cannot be avoided in schemes providing unconditional anonymity (see

[CH91] and [CP94] for schemes with only computational anonymity

in which the length of the secret keys and auxiliary information is

independent of the number of signatures).

5.1 Secret Key

The main idea for proving the lower bound of the secret keys is to

divide the set of possible secret keys of each member into nonempty,

disjoint subsets. Then the number of possible secret keys is bounded

by the number of subsets.

For a t-tuple i = (i1; i2; :::; it) 2 f1; 2; :::; ngt, and t di�erent messages

m = (m1;m2; :::;mt), for every r; 1 � r � n de�ne

SK
(r)
i (m) = fsk 2 SK(r)jsign(sk;mj) = sign(sij ;mj); j = 1; 2; :::; tg;

where si is the secret key of Pi (i = 1; 2; : : : ; n). SK
(r)
i (m) is the

set of possible keys of Pr which will give Pij 's signature on mj for

j = 1; 2; : : : ; t.

Lemma 14 If a group signature (n; k; gen; sign; test; iden) provides

anonymity for signing T messages, then for any t � T , the follow-

ing holds: For all i = (i1; i2; :::; it), and any t di�erent messages m =
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(m1;m2; :::;mt),

SK
(r)
i (m) 6= ;;

r = 1; 2; :::; n.

Proof Assume there exist t � T di�erent messages m = (m1; :::;mt),

and i = (i1; i2; :::; it), such that

SK
(r0)
i (m) = ;;

for some r0.

Let �(mj) = sign(sij;mj), j = 1; 2; :::; t and i0 = (r0; r0; : : : ; r0).

Then

Prob[�(m)( i0] = 0;

which contradicts the de�nition of anonymity. ut

Theorem 15 Let a group signature (n; k; gen; sign; test; iden) be gi-

ven. If it provides anonymity for signing T messages, then for any

r 2 f1; 2; :::; ng,
jSK(r)j � nT :

Proof First, for any t � T di�erent messages m = (m1;m2; :::;mt), if

i = (i1; i2; :::; it) 6= (i01; i
0
2; :::; i

0
t) = i0;

then

SK
(r)
i (m) \ SK

(r)

i0
(m) = ;:

Otherwise there exists

sk 2 SK
(r)
i (m) \ SK

(r)

i0
(m);

such that for some j 2 f1; 2; : : : ; ng, ij 6= i0j,

sign(sk;mj) = sign(sij;mj) and sign(sk;mj) = sign(si0j;mj);

which contradicts De�nition 1, since di�erent members must make dif-

ferent signatures.
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Second, by Lemma 14, for any t di�erent messagesm = (m1; :::;mt),

and any t-tuple i = (i1; i2; :::; it) 2 f1; 2; :::; ng
t,

jSK
(r)
i (m)j � 1:

Finally, for any t di�erent messages m = (m1;m2; :::;mt)

jSK(r)j �
X

i2f1;2;:::;ngt
jSK

(r)
i (m)j � nt;

for any t � T . ut

Thus each member must have a secret key chosen from a set of at least

nT possible secret keys. In other words, at least T logn bits are needed

to represent some of the secret keys of each group member. Thus, its

length grows linearly in the number of signatures.

5.2 Auxiliary Information

In this section, we consider the length of the auxiliary information held

by the authority. To this end some random variables are needed.

De�nition 16 For any L, 0 < L � nT , a tuple

histL(m) = ((m1; �(m1)); (m2; �(m2)); : : : ; (mL; �(mL)))

is called an (L; T )-history, if

m = (m1;m2; : : : ;mL)

consists of L di�erent messages and there exists a tuple

i = (i1; i2; : : : ; iL) 2 I(T;L)

such that

�(ml) = sign(sil;ml); l = 1; 2; : : : ; L:

Let (n; k; gen; sign; test; iden), T and an integer L, 0 < L � nT be

given. Consider the following experiment given L di�erent messages

m1;m2; : : : ;mL:



22 5 LOWER BOUNDS

1. Generate (pk; (s1; : : : ; sn); aux) using gen.

2. Choose i1; i2; : : : ; iL 2 I(T;L) uniformly at random.

3. Let histl(m) be de�ned by

�(mj) = sign(sij;mj) for j = 1; : : : ; L:

Let AUX be the random variable of the authority's auxiliary informa-

tion (de�ned on the probability space induced by gen). Let ID be the

uniformly distributed random variable taking the value (i1; i2; : : : ; iL).

From the de�nition of unconditional anonymity, the following lemma

is obtained.

Lemma 17 If the group signature scheme (n; k; gen; sign; test; iden)

provides anonymity for signing T messages, then for any (L; T )-history

histL(m), ID is uniformly distributed on I(T;L). Especially, the con-
ditional entropy of ID given histL(m) is

H(ID j histL(m) = log2 jI(T;L)j = log2

0
@(Tn)!
(T !)n

1
A :

Theorem 18 If the group signature scheme (n; k; gen; sign; test; iden)

provides anonymity for signing T messages and signer identi�cation,

then

H(AUX) � Tn(log n� 1):

Proof Let L = Tn, and consider an (L; T )-history, h = histL(m).

The entropy of AUX can be written

H(AUX j h) = H(AUXjID; h) +H(ID j h) �H(IDjAUX; h):

Since the scheme provides signer identi�cationH(IDjAUX; h) = 0 and

thus

H(AUX) � H(AUX j h) = H(ID j h) +H(AUXjID; h) � H(ID j h):

From the lemma above,

H(ID j h) = log
(Tn)!

(T !)n
:
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Stirlings Formula

n! � e�nnn
p
2�n

gives

log
(Tn)!

(T !)n
� Tn logn+ log

p
2�Tn � n log

p
2�T � Tn(log n� 1):

This completes the proof. ut

This bound can be interpreted as follows. The authority needs some

information corresponding to each signature that each member is al-

lowed to make | in total nT pieces. Each of these must be be linked

to the actual member | this requires logn bits.

5.3 Comparison with Suggested Scheme

In the scheme presented in Section 4.2 the length of the secret key is

2(T + 1) log q bits. Taking into account that this scheme allows up to

q members this scheme meets the lower bound except for a factor of 2

originating from double signing.

The length of the auxiliary information is n(T +1) log q bits. Again

this meets the lower bound.

Finally, it should be mentioned that the length of the signatures

in the scheme of Section 4.2 grows linearly in the number of group

members and signatures. However, this need not always be the case

(e.g. see [CH91] for a scheme with constant length signatures).

6 Conclusion

We have given a detailed de�nition of group signature schemes provid-

ing unconditional anonymity, and presented a scheme which satis�es

this de�nition (the security against forgery relied on some assump-

tions). This scheme has the disadvantage that the length of the secret

keys and the auxiliary information grows linearly in the number of sig-

natures, but as shown in Section 5 this cannot be avoided. Thus group

signatures with unconditional anonymity have some limits which might

make them less attractive in some applications.
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A One out of n Witnesses

This appendix sketches Schoenmakers method for proving knowledge

of one out of many witnesses given in [S93] and further elaborated on

in [CDS94].

Let Gq denote a group of prime order q and let g be a generator of

Gq. The common input to the prover and veri�er is (g; h1; : : : ; hn) for

some n 2 IN, where each hi 2 Gq. Let hi = gxi, i = 1; 2; : : : ; n. The

protocol in Figure 3 is a proof of knowledge of xi; i = 1; 2; : : : ; n.

Now suppose that the prover only knows one of the n witnesses.

Given one of xi's as secret input, the prover shows that he knows w

such that for some i 2 f1; 2; : : : ; ng: hi = gw. The protocol is sketched

in Figure 4 for the case w = x1.

Intuitively, the challenge c =
Pn
1 di, gives the prover freedom to

choose (n � 1) of the dj's. Therefore, the prover must know at least

one of the n witnesses. However the prover's messages do not reveal

any information about which dj's the prover chooses initially.

Proposition 19 ([S93]) The protocol in Figure 4 is a witness indis-

tinguishable proof of knowledge (see [FS90]) of w satisfying

hi = gw for some i 2 f1; 2; : : : ; ng:

Remark An extension of this protocol allows the prover to show that

he knows at least k out of n secret keys (see [S93]).
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P V

s1; s2; : : : ; sn 2R ZZ
�
q

(ai gsi)i=1;2;:::;n
(a1; a2; : : : ; an)
������!

d1; d2; : : : ; dn 2R ZZ
�
q

(d1; d2; : : : ; dn)
 ������

(ri  si + dixi)i=1;2;:::;n
(r1; r2; : : : ; rn)
������! �

gri
?
= aih

di
i

�
i=1;2;:::;n

Figure 3: Proving knowledge of n witnesses

P V

s1; s2; : : : ; sn 2R ZZ
�
q

d2; : : : ; dn 2R ZZ
�
q

a1  gs1�
ai  gsih�di

i

�
i=2;:::;n

(a1; a2; : : : ; an)
������!

c 2R ZZ
�
q

c
 ������

d1  c �
Pn
2 di

r1  s1 + d1x1
(ri  si)i=2;:::;n

(d1; : : : ; dn; r1; : : : ; rn)
������!

c
?
=
Pn
1 di�

gri
?
= aih

di
i

�
i=1;2;:::;n

Figure 4: Proving knowledge of one of n witnesses.
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B The Complete Scheme

Figure 5 shows the interactive protocol in the general situation of n

members. The corresponding signature on m 2M is

� = (�; (rkj)j=1;:::;n;k=0;:::;T ; (dj)j=1;:::;n):

P V

tjk 2R ZZ
�
q

dj 2R ZZ
�
q for j 6= i

ai  
QT
k=0 g

tik
k

aj  
QT
k=0 g

tjk
k h

�dj
j

�i  
PT

k=0 tikm
k

�j  
PT

k=0 tjkm
k � dj�

(a1; : : : ; an)
(�1; : : : ; �n)
������!

c 2R ZZ
�
q

c
 ������

di = c�
P

j 6=i dj mod q

rik  tik + disik mod q

rjk  tjk
(rjk)j;k
������!

c
?
=
PT

k=0 dk mod q
PT

k=0 rjkm
k ?
= �j + dj�QT

k=0 g
rjk
k

?
= ajh

dj
j

Figure 5: Interactive proof that � is correct with respect to one of

h1; h2; : : : ; hn | here P knows the secret key corresponding to hi. The

subscripts j and k are over f1; 2; : : : ; ng and f0; 1; : : : ; Tg, respectively.
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